
Editing 2.0
MediaWiki's upcoming visual editor and the future of

templates

Brion Vibber 2011-08-05 Haifa

Part I: Editing

So pretty!

Wikipedia articles can include rich formatting, beyond simple links and images to complex
templates to generate tables, pronunciation guides, and all sorts of details.

So icky!

But when you push that “edit” button, you often come face to face with a giant blob of
markup that’s very hard to read. Here we can’t even see the first paragraph of the article until
we scroll past several pages of infobox setup.

Even fairly straightforward paragraphs start to blur together when you break out the source.
The markup is often non-obvious; features that are clearly visible in the rendered view like
links and images don’t stand out in the source view, and long inline citations and such can
make it harder to find the actual body text you wanted to edit.

RTL WTF?

As many of you here today will be well aware, the way our markup displays in a raw text
editor can also be really problematic for right-to-left scripts like Hebrew and Arabic. It’s very
easy to get lost about whether you’ve opened or closed some tag, or whether your list item is
starting at the beginning of a line. Without control over the individual pieces, we can’t give
any hints to the text editor.

RTL A-OK

The same text rendered as structured HTML doesn’t have these problems; bullets stay on the
right side of their text, and reference citations are distinct entities. If we could edit directly in
this view, we’d save ourselves a lot of aggravation!

JanPaul Posma’s InlineEditor extension is an excellent example of work on making it easier to
edit smaller pieces of a page, making the amount of other markup around you less
intimidating. Though each piece is still edited as raw markup, you’re only exposed to the
parts you’re working with, and you can switch them back to visual mode very quickly.
Unfortunately he couldn’t make it here to make his own presentation, but his thesis paper is
available online and will be good reading for some of us folks. :) One of the trickiest bits of
implementation is figuring out which HTML maps to which source, and consistently mapping
it back in after editing.

http://test.community.wikia.com/wiki/Awesome_page

Wikia’s rich-text editor plugin, which has been running in production on many of Wikia’s
newer sites for a while, modifies MediaWiki’s existing parser to add some structural
metadata. This allows a rendered view to be edited quite nicely in an HTML editor extending
FCKEditor, then translated back to wiki markup for saving.

http://test.community.wikia.com/wiki/Awesome_page
http://test.community.wikia.com/wiki/Awesome_page

http://test.community.wikia.com/wiki/Israel

But the complexity and fragility of the current parser makes this error-prone; some
structures can’t be represented in the HTML output, forcing a fallback to plain-text editing
for markup seen in many Wikipedia articles. Wikia has been hitting against the difficulties of
maintaining this system further, and has already leant one of their engineers to the R&D
stage of our new editor project to ensure that we can share a common next-generation visual
editor.

http://test.community.wikia.com/wiki/Israel
http://test.community.wikia.com/wiki/Israel

http://www.mediawiki.org/wiki/WYSIFTW
Magnus Manske’s WYSIFTW system takes a different approach, using a custom parser and
producing a view of the page that’s explicitly tailored for editing. Comments are visible,
complex templates and references are folded by default but can be expanded, and infobox
templates are presented as sort of editable data tables. While the current proof of concept
doesn’t scale well to large pages, there are a lot of ideas we expect to lift directly from it such
as a slightly-different editing-oriented view and explicit support for editing template usages.

http://www.mediawiki.org/wiki/WYSIFTW
http://www.mediawiki.org/wiki/WYSIFTW

So what are we going
to make for you?

We’d love to combine the “best of both worlds” of WYSIWIG and locality-based editing. If the
rendered page and editing system understand the document structure, we jump straight into
a table cell, template, or special markup construct and just start editing it in-place. This is a
demo I whipped up embedding a syntax-highlighting code editor to modify source code
examples inline on a fully rendered article -- alas it doesn’t yet know how to actually save. :)

Wikimedia’s Trevor Parscal and Wikia’s Inez Korczynski have been working on an editing
surface that handleslayout, typing, and cut-n-paste details in a more hands-on way than
many other editors that simply build on browsers’ basic HTML edit area support. This lets the
editor understand a custom document structure natively, which can be mapped back to the
original wikitext source.

Another advantage is that, unlike systems building on browsers’ content-editable system,
this works on mobile browsers like iOS and Android devices that have traditionally not
handled wysiwig editing on the web well. With mobile as a key outreach priority, the
possibility of an attractive mobile-optimized editing view for smartphones -- which will soon
be a huge portion of all phones -- has obvious good points.

Another thing we’re trying to bake into the editor is infrastructure to support multiuser
editing. In the Wikimedia community & staff alike we’ve found a huge usefulness to using
tools like Etherpad to let multiple people work on shared notes at the same time... but we
then have to copy them over to a wiki manually, or keep the separate links around. Neil
Kandalgaonkar’s been experimenting with embedding Etherpad as a plugin as a temporary
solution, and ensuring that the editor’s internal structures are suitable for the same kind of
multiuser updates and transactional reordering that will let us extend from a single user with
an undo stack to multiple users editing together.

Part II: Parser

MediaWiki

Article

Parser

HERE
THERE

BE
DRAGONS

Skin

OutputPage

ParserCache

Database

http://commons.wikimedia.org/wiki/File:Drake_p%C3%A5_en_medeltida_v%C3%A4vnad,_Nordisk_familjebok.png

So what is the parser? IT’S THE SCARY PART that turns all your scary markup into pretty web
pages and structured data like lists of which links and templates are used.

http://commons.wikimedia.org/wiki/File:Drake_p%C3%A5_en_medeltida_v%C3%A4vnad,_Nordisk_familjebok.png
http://commons.wikimedia.org/wiki/File:Drake_p%C3%A5_en_medeltida_v%C3%A4vnad,_Nordisk_familjebok.png

Parser + Editor
BFFs!

The most immediate reason is of course all this editing stuff we’ve been talking about. An
editor can become much more powerful and flexible when it understands the structure of the
document. Having a consistent way to build and represent that structure from the markup
helps a lot!

Remember the Wikia RTE limitations? The new parser will ensure that even when we can’t
represent everything 100% in the HTML output, we *can* send a structure that the editor
understands.

http://en.wikipedia.org/wiki/Open_content

Then, there’s a Big-Picture reason. Wikipedia is an open-content project, with an explicit goal
to create documents that can be redistributed and re-used. This is dependent on being able
to use the data in compatible ways. MediaWiki itself is free software, but it’s not suitable for
all uses -- our data must be able to live on separately.

http://en.wikipedia.org/wiki/Open_content
http://en.wikipedia.org/wiki/Open_content

http://www.mediawiki.org/wiki/Alternative_parsers
There are dozens of alternate implementations of MediaWiki’s syntax, but none of them
behaves quite the same way MW does. Most will fail dramatically on complex articles and
templates.

http://www.mediawiki.org/wiki/Alternative_parsers
http://www.mediawiki.org/wiki/Alternative_parsers

http://en.wikipedia.org/wiki/Israel

Hidden behind even simple-looking text -- not to mention complex infoboxes -- can lie all
sorts of templates, parser functions, and funky behavior.

http://en.wikipedia.org/wiki/Barack_Obama
http://en.wikipedia.org/wiki/Barack_Obama

PDF export

mwlib, the parser used by our PediaPress-powered PDF & print on demand export system,
handles most constructs fairly well, but may still have rendering issues.

http://sweble.org/crystalball/

Despite very good overall syntax coverage, the Sweble wikitext parser doesn’t handle a lot of
template and parser function constructs, and can simply break on them.

http://sweble.org/crystalball/
http://sweble.org/crystalball/

Why so hard?

Fragile

The parser’s main body consists of layer upon layer of fragile string processing, leading to
strange bugs when different layers fail to respect each other properly. More structured
processing should make this less error-prone.

Tricky templates

{{MedalTop}}
{{MedalSport | Men’s [[Alpine skiing at the Winter Olympics|Alpine Skiing]]}}
{{MedalGold | [[1976 Winter Olympics|1976 Innsbruck]] | Giant Slalom}}
{{MedalBottom}}

Templates that separately open and close lists and tables are very frequently used, such as
these sports medals templates on English-language Wikipedia.

{|

|}

|-
| row

|-
| row

{{MedalTop}}

{{MedalSport}}

{{MedalGold}}

{{MedalBottom}}

<table>

</table>

<tr>
<td>

<tr>
<td>

Here, each template expands into just a piece of the table. If we expand the templates in-
place in a node tree, the table rows will be siblings or cousins of the table-open node, rather
than its children. Because HTML tables require a hierarchical structure, we need to construct
a separate wiki ‘DOM’ and reassemble some larger structures into a legit HTML output tree.

ParserPlayground
extension/gadget

JavaScript parser

Automated parser tests

new PHP parser
new C++ parser

?

Visual Editor
& multi-user editing infrastructure prep

future...

Trevor, Inez, Neil

Brion

MediaWiki core

I’ve started on a JavaScript-based parser implementation that can be used in a client-side
Gadget for testing on existing wikis. Later on we’ll build a PHP, and possibly an accelerated C
++ version to integrate into MediaWiki core; having two compatible implementations will also
give us more confidence in the specification that we’re creating. Trevor and Inez are working
on the visual editor components, which will start to plug into the actual parser output soon.
Neil’s also putting together the infrastructure we’ll need to do multi-user editing -- we’ve
seen from Wikimedians’ use of Etherpad how useful this is, and consider it a long-term
requirement for a rich editor.

http://www.mediawiki.org/wiki/Extension:ParserPlayground
The ParserPlayground extension carries our in-progress parser layer, currently using a basic
Parser Expression Grammar parser generator and an ad-hoc JSON-style intermediate format.
This can also be imported as a gadget on live sites; as we continue integrating pieces, it’ll be
available for anyone to try out on real Wikipedia and Wikibooks, to test rendering and editing
in a real environment.

http://www.mediawiki.org/wiki/Extension:ParserPlayground
http://www.mediawiki.org/wiki/Extension:ParserPlayground

http://www.mediawiki.org/wiki/Wikitext_parser/Environment

To make it work as a gadget, the initial work on the new parser is being done in JavaScript
which can be loaded in safely without changing the server configuration. This will also
guarantee that once we finish the PHP code for core we’ll have two provably compatible
implementations of our specification. Creating a clear interface between the parser and its
host application environment is an important part of this -- MediaWiki’s parser has
traditionally been hard to extract out to reuse even in other PHP-based software.

http://www.mediawiki.org/wiki/Wikitext_parser/Environment
http://www.mediawiki.org/wiki/Wikitext_parser/Environment

JavaScript testing

Of course we’re not just going to rely on humans for testing! The JavaScript parser
implementation can be batch-tested in real browsers through the TestSwarm system, and in
a (much faster!) command-line server environment using Node.js, a server-side environment
built around Google’s V8 engine.

JavaScript testing

I’ve started on a batch test system that runs over an entire Wikipedia data dump: our
production sites can become a testing corpus to look out for regressions and help us
determine when the new parser is “good enough” to cover all but the needed corner cases.

http://commons.wikimedia.org/wiki/File:BahnhofsuhrZuerich_P1050253.jpg

When??

So you’re probably all asking yourselves, WHEN IS THIS COMING? When can I start helping
out? We hope to have opt-in testing of a real, if basic editor by the end of the year, moving
towards more public rollouts in mid-2012. Brave gadget testers should have some fun things
to play with even earlier this year.

http://commons.wikimedia.org/wiki/File:BahnhofsuhrZuerich_P1050253.jpg
http://commons.wikimedia.org/wiki/File:BahnhofsuhrZuerich_P1050253.jpg

wikitext-l

extensions/ParserPlayground

parsers/wikidom

Where?

http://www.mediawiki.org/wiki/Future/Parser_plan

If you’re very brave though, you can hop into the earlier work we’re doing now: defining the
environment and interface for the parser, the intermediate data structures, and the creation
of the basic editing widget.

http://www.mediawiki.org/wiki/Future/Parser_plan
http://www.mediawiki.org/wiki/Future/Parser_plan

What about templates?

So, what about templates? We already gave some examples of tricky constructs that the
parser & editor will have to deal with -- the intention is to get a solidly defined
implementation that’s very nearly compatible with the previous parser so it can replace it for
all our current data structures. So the good news is, you shouldn’t have to change too many
templates to make them work; we’ll try our best to make the parser work with them.

But we know that these kinds of templates are just *really hard to read*, write, and maintain.
So we’re also keeping in mind new ways to create templates in the future.

While this work should be largely independent of the editing work, having a clean document
structure that we could pass into more programming-like templates could make some kinds
of thinsg a LOT easier to maintain.. for instance anything that has to loop over multiple
inputs.

???

It’s still up in the air exactly what we’ll end up with, but expect some experimentation with
JavaScript and/or simple languages resembling a JavaScript subset. Cleaner interfaces,
structured data, better caching, etc could end up allowing much more efficient template
execution, including offloading slow processing to a dedicated script engine.

!!!!

Of course that leads on to other projects to help contributors create and share their own
interactive code; making Gadgets and user scripts easier to create and safer to share by
defining stable JavaScript interfaces. Hopefully I’ll be able to do a talk on that at next year’s
Wikimania!

http://www.mediawiki.org/wiki/Future

is now!

the

end :D

http://www.mediawiki.org/wiki/Future
http://www.mediawiki.org/wiki/Future

