
A better way to
enforce a data model
Suggestions to improve Autofix

Camillo Carlo Pellizzari di San Girolamo (user:Epìdosis)
Scuola Normale Superiore

This session is recorded: Please mute your
microphone and camera when you’re not speaking.

Summary

1. Modelling data: detect, decide, enforce

2. Enforcing a data model: overview of the methods

3. The most used enforcement method, Autofix, and its issues

4. Proposals of improvement, towards a new Autofix

1) Modelling data: detect,

decide, enforce

The aim: uniformity

The fundamental assumption is:

● structured data is great, but …

● … if everyone structures them in a different way, then they are

basically useless, because it’s nearly impossible to query them

So, we need to agree on data models: the same information should

always be structured in the same way

Detect, decide, enforce

Divergent data models naturally arise over time. In order to reduce

(and, ideally, completely suppress) these divergences, we can follow

the following process (see Wikidata:Events/Data Quality Days 2022/Modeling data

for a more complete description and examples):

1. detect the existence of divergent data models

2. decide which data model is the standard one

3. enforce the standard data model, converting the others into it

https://www.wikidata.org/wiki/Wikidata:Events/Data_Quality_Days_2022/Modeling_data

One example: martyrs

1. detection: a person who is considered a martyr by a certain religion

can be modelled as “instance of” (P31) = “martyr” or “occupation”

(P106) = “martyr” or “role of subject” (P2868) = “martyr” (etc.)

2. decision: a discussion at WikiProject Religions chooses the data

model “role of subject” = “martyr” as standard

3. enforcement: Autofix is used to automatically convert occurrences

of “instance of” and “occupation” to “role of subject”

2) Enforcing a data model:

overview of the methods

Overview of enforcement methods

Method What can it fix? Pros Cons

(manual editing) Everything Versatility
Dramatic

inefficiency

property constraints A few basic patterns Queryable
They don’t edit

items!

Autofix A few basic patterns Efficiency Many (see part 3)

DeltaBot fixClaims
Many more patterns

than Autofix
Versatility; efficiency

Some shared with

Autofix (see part 3)

bot (appositely

programmed)
Everything Versatility; efficiency

One-time; needs

programming skills

https://www.wikidata.org/wiki/Template:Autofix
https://www.wikidata.org/wiki/User:DeltaBot/fixClaims/jobs

3) The most used enforcement

method, Autofix, and …

Template:Autofix – overview

● programmed by user:Ivan A. Krestinin in 2017

● it is added in the talk pages of properties; once added, consequent

edits are made by KrBot (a bot managed by user:Ivan A. Krestinin)

● it is used for properties having as datatype “item” or a textual

datatype (“external-id”, “string” etc.)

https://www.wikidata.org/wiki/Template:Autofix

Template:Autofix – two examples

Example 1:

● Property talk:P106 (occupation)

{{Autofix|pattern=Q6498826|replacement=Q6498826|move_to=P2868}}

this means that “martyr” (Q6498826) is moved from P106 to P2868 (“role of subject”)

Example 2:

● Property talk:P214 (VIAF ID)

{{Autofix|pattern=<nowiki>([1-9]\d{1,8}|[1-9]\d{18,21})\/</nowiki>|replacement=\1}}

this means that the final “/” is cut from VIAF ID values

https://www.wikidata.org/wiki/Template:Autofix
https://www.wikidata.org/wiki/Property_talk:P106
https://www.wikidata.org/wiki/Property_talk:P214

… its issues

1) place of storage

Being stored as a template in property talk pages, Autofix:

1. is often a partial duplication of the information contained in
property constraints

2. cannot be queried

3. is not much visible

4. requires some (low) programming skills to be understood

5. can be edited by IPs (which from 2020 cannot edit properties)

The first 4 points can also be applied to DeltaBot

2) periodicity and tracking of edits

1. The periodicity of edits through which KrBot applies the Autofix

templates is not clearly stated; usually it is daily (for DeltaBot it is

clearly stated as hourly)

2. The batches of edits triggered by each Autofix template are not

tracked through EditGroups, which makes it very difficult to undo

them massively if necessary (same for DeltaBot)

https://editgroups.toolforge.org/

3) prevention of bot wars

• If a user (human or bot) continues to add a statement which is then

autofixed, Autofix has no mechanism which at some point stops it,

so the edit war could be potentially infinite (example)

https://www.wikidata.org/w/index.php?title=Q15983722&action=history

4.1) limitations: patterns which can be autofixed

Autofix can work on the following patterns (for datatype “item”):

● X:A -> X:B

● X:A -> Y:A

● X:A -> Y:B

● X:A -> X:A + X:B or X:A + Y:B

X or Y is main statement and qualifier and reference

A or B is the value of main statement and qualifier and reference

4.2) limitations: patterns which cannot be autofixed

Autofix cannot work on the following patterns (for datatype “item”):

1. restrict a certain fix only on main statement and/or qualifiers and/or

references instead of everywhere (neither DeltaBot, if I see correctly)

2. manage recursive subclasses (e.g. autofix X:A where A is a recursive

subclass of C to Y:A) (neither DeltaBot, if I see correctly)

3. manage combinations of main statement(s) and qualifier(s), e.g.

autofix X:A with qualifier Y:B to Y:B with qualifier X:A) (DeltaBot

manages these cases at least partially, if I see correctly)

4) Proposals of improvement,

towards a new Autofix

How a new Autofix should look like, IMHO

Premise: both Autofix and DeltaBot fixClaims function can (and should)

be taken as inspiration, but I think the new Autofix will need to be

written ex novo, because it should be different from its predecessors

at least in one fundamental aspect:

it should be a system that perform autofixes on the basis of

statements stored in content pages (mainly property pages, along

with constraints) and not on the basis of code lines stored elsewhere.

Proposed features

1. autofix “commands” are stored as statements in property pages,

together with constraints (so that they don’t duplicate constraints

and they are queryable and they are immediately visible and they

don’t require programming skills)

2. autofix edits based on the “commands” are performed by a bot with

a clear periodicity and their batches are tracked in EditGroups (so

that they can easily be undone if necessary)

Proposed features

3. The bot performing autofix edits should incorporate some

mechanism that, in case of edit wars, stops the edits on the

contended item and sends a message to the involved users

4. The autofix “commands” should support the widest possible range

of autofixes, including all the ones presently supported by Autofix

and DeltaBot plus the ones required above (mainly the case of

recursive subclasses; e.g. autofixing “martyr” + all its recursive

subclasses from “occupation” to “role of subject”)

Practically, what do we need?

• The main part of the new Autofix which still needs to be constructed

is a group of properties which should allow to store as statements

the autofix “commands” which are presently supported by Autofix

and by DeltaBot

• When we will be able to store in statements all the autofix

“commands”, creating a bot executing periodically edit batches on

the basis of them will probably be easy

How could we proceed?

• Comment on the detailed proposal of the new Autofix:

https://www.wikidata.org/wiki/Wikidata_talk:Events/Data_Quality_

Days_2022/Modeling_data (see also phab:T341405)

• Reflect on the properties we are missing in order to store autofix

“commands” as statements and propose them

https://www.wikidata.org/wiki/Wikidata_talk:Events/Data_Quality_Days_2022/Modeling_data
https://phabricator.wikimedia.org/T341405

Thanks for your
attention!

Get in touch with me:
Camillo Carlo Pellizzari di San Girolamo
camillo.pellizzaridisangirolamo@sns.it

mailto:camillo.pellizzaridisangirolamo@sns.it

