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The determination of dislocation distribu- 
tion parameters is discussed for specimens 
where both strain broadening caused by 
dislocations and size broadening occur. If 
the strain broadening is well described by 
a model due to Wilkens, several methods 
are possible for the analysis of the broad- 
ening of diffraction lines. In sputter 
deposited nickel layers, three different 
methods for diffraction line broadening 
analysis yield identical results. The recrys- 
tallization of the nickel layers was investi- 
gated by annealing the layers at various 
temperatures in the range 300 K to 500 K. 
With increasing annealing temperature, the 
microstructure of the layers changed from 
a microstructure with small grains and 
high dislocation density, via a microstruc- 

ture that is a mixture of small grains with 
high dislocation density and large grains 
with low dislocation density, to a 
microstructure with large grains and low 
dislocation density. 
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1.    Introduction 

Since long, x-ray diffraction line broadening is used 
for the investigation of dislocation distributions; due to 
the stress fields induced by the dislocations atoms are 
displaced from their ideal lattice positions, which caus- 
es diffraction line broadening. Although theoretical 
models [1-3] as well as experimental equipment neces- 
sary to measure dislocation distribution parameters 
from diffraction line shapes have been available for 
several decades, the determination of dislocation distri- 
bution parameters in practice can still be problematic. 

In part this is due to the simple dislocation distribu- 
tions that underlie the theoretical models describing the 
diffraction line broadening in terms of dislocation dis- 
tribution parameters. For example, in most cases dislo- 
cations are supposed to be straight and infinitely long. 

and to be distributed in a rather ideal way. The assumed 
simple dislocation distributions limit the reliability of 
the dislocation distribution parameters (as the disloca- 
tion density) determined in practice. Still, very detailed 
information can be obtained without precise quantita- 
tive knowledge of these parameters. For example, the 
type and orientation of the dislocations can be deter- 
mined in practice (see, e.g., Refs. [4-6]). Such informa- 
tion is not easily assessed with other experimental tech- 
niques. 

A second difficulty for the analysis of diffraction line 
shapes in terms of dislocation distribution parameters is 
of experimental nature. In general, next to the (strain) 
broadening due to dislocations, diffraction line broad- 
ening also occurs because of other lattice defects such 
as stacking and twin faults, a non-ideal instrument 
(instrumental broadening), and the limited size of the 

65 



Volume 109, Number 1, January-Febraary 2004 

Journal of Research of the National Institute of Standards and Technology 

crystallites in the specimen (size broadening). For an 
interpretation of the diffraction line broadening in 
terms of dislocation distribution parameters, these addi- 
tional broadenings should be taken into account in the 
analysis. 

The present paper concerns this last problem. The 
paper focuses on the separation of size and strain 
broadening. Different methods of analysis are proposed 
and compared with each other and with methods of size 
strain separation known from the literature. As a pre- 
requisite it is supposed that the strain broadening is 
well described according to the simple model due to 
Wilkens [1]. It is shown that in that case, the Warren- 
Averbach method [7] for the separation of size and 
strain broadening should not be applied. On the other 
hand, a method that is not often used [8] is particularly 
useful. 

The methods discussed use two orders of a reflection 
measured at identical specimen orientations. In this 
respect the methods differ from the recently developed 
whole powder pattern fitting (WPPF) procedures 
[9,10], in which more reflections in the powder pattern 
are used for the analysis. In these methods either the 
Fourier coefficients, or diffraction line profiles them- 
selves are calculated using models for the strain and 
size distributions in the specimens. This differs from 
the approach in this paper, because in the presently dis- 
cussed methods a model for the size broadening is not 
used. A concern for the WPPF methods is that different 
diffraction peaks stem from different crystallites. 
Therefore, in the analysis, assumptions concerning the 
uniformity of the crystallites, the size of the crystallites, 
or the dislocation distributions therein, are made (see 
Ref. [11]). Such assumptions are not made in the meth- 
ods in this paper because the two orders of reflections 
stem from the same crystallites. Therefore, the methods 
are also insensitive to texture. However, as compared to 
the information obtained from WPPF procedures, the 
information obtained is limited since only a small frac- 
tion of the crystallites is considered. 

Strain broadening that cannot be written according to 
the model of Wilkens is not treated in the paper. 
Consequently, if, e.g., stacking and/or twin faults cause 
significant diffraction line broadening (the expressions 
due to Wilkens do not hold for broadening induced by 
faulting [12]), the methods of analysis discussed in the 
paper are not useful. 

As an example of the analysis methods discussed, 
the recrystallization in thin nickel layers was investigat- 
ed. The development of the dislocation distribution and 
grain size was assessed using x-ray diffraction meas- 
urements on specimens that were annealed at different 

temperatures. Such, a detailed picture of the recrystal- 
lization in the thin layers was obtained. 

2.    Background 

2.1    Representation of Diffraction Line Profile in 
Fourier Coefficients 

The intensity distribution P(S) of a structurally 
broadened diffraction line profile can be expressed as a 
Fourier series (e.g., Ref [7]): 

P{S) = KY, AiL)cosi27tLS)+B(L)smi27tLS),    (1) 

where K is approximately constant for a given diffrac- 
tion profile and A{L) and B{L) denote the cosine and 
sine Fourier coefficients, respectively, belonging to 
correlation distance L. Theoretically L takes only dis- 
crete values, but in practice L can be considered as a 
continuous variable. S is the diffraction vector, which is 
related to the diffraction angle 20 and the wavelength X 
hy S= 2sm9/X. Structural diffraction line broadening is 
often subdivided into size broadening, and strain broad- 
ening. The size coefficient A^{L) (the superscript S 
denotes size broadening) equals Ni/N, where N denotes 
the number of unit cells in the specimen considered, 
and A^i is the number of unit cell pairs at mutual dis- 
tance L, where the distance L is taken parallel to the dif- 
fraction vector [1,8]. Size broadening is always sym- 
metric (i.e., B^{L) = 0). The total structurally broadened 
profile is the convolution of the size-broadened profile 
and the strain-broadened profile. In terms of Fourier 
coefficients (the superscript D denotes distortion 
(strain) broadening): 

A(L) = AHL)A"{L), 

B{L) = A\L)B°(L). 

2.2    Strain Broadening Due to Dislocations: 
Wilkens Model 

(2) 

(3) 

The Wilkens model for diffraction line strain broad- 
ening due to dislocations presupposes that in the dif- 
fracting crystallites so-called restrictedly random dislo- 
cation distributions are present [1]. In a restrictedly ran- 
dom distribution, all dislocations are infinitely long and 
straight. All dislocations belong to the same set: i.e., all 
dislocations are of the same character and belong to the 
same slip system (the dislocations are parallel). A 
cross-section of the crystal, normal to the dislocation 
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lines, can be subdivided into sub-areas of equal size 
and shape containing exactly the same number of dislo- 
cations. Within each sub-area the dislocations are ran- 
domly distributed. Equal numbers of dislocations with 
positive and negative Burgers vectors are present in 
each sub-area: the net Burgers vector equals zero. Thus, 
the distribution is fully determined by the number of 
dislocations in each sub-area, as characterised by the 
dislocation density p, and the size of the sub-areas, 
which will be represented by the so-called outer cut-off 
radius R^ (see Refs. [1,5,13]). For circular sub-areas it 
can be shown: R^ ~ 0.78i? [1], where R is the radius of 
the circular sub-area. 

The following has been derived for the strain cosine 
Fourier coefficient of the diffraction line profile broad- 
ened due to a restrictedly random distribution of dislo- 
cations [1,5]: 

A"{L): ^-PL'(Q-\nL) 
(4) 

It was shown in Ref [14], that the elastic interaction 
between various sets is small. 

3.    Application to Experimental Data 

In practice, the determination of defect distribution 
parameters from experimental data using the above 
expressions can be troublesome. The parameters P and 
Q must be extracted from a diffraction line profile con- 
taining, apart from strain broadening, instrumental 
broadening and size broadening. If the values ofP and 
Q have been determined, they must be interpreted in 
terms of defect distribution parameters. 

/' = fgVCp 

Q = lnR^+2ln2---lna\id\ 

(5) 

(6) 

where L is the correlation length, b is the length of the 
Burgers vector b, (7 equals |sint//| where iff is the angle 
between the line vector / of the dislocation and the vec- 
tor g, where g is the diffraction vector at which Bragg's 
law holds exactly for the reflection considered (length 
g; for cubic material it holds: g={h^ +1^ + ff'^/aQ, 
where Uf, is the lattice parameter of the specimen). The 
scalar product of g and b is denoted by ^. C is the so- 
called contrast factor for the particular dislocation type, 
slip system and reflection (see, e.g., Ref [12]). The 
above expressions yield a proper description of the line 
profile if i?^VP ^ 1 andi < 0.5RJa\fi\ [1]. Further, the 
Wilkens model assumes symmetric line profiles (cor- 
rectly; see Ref. [14]) and therefore the sine coefficients 
of the line profile are zero. 

In practice, more than one set of dislocations will be 
present in a crystal. It was proposed in Ref. [1] that the 
diffraction line profile from a crystal with various sets 
of dislocations is the convolution of the line profiles 
from the single sets. Thereby, the elastic interaction of 
the various sets is neglected. Then, if more than one set 
i of dislocations is present Eq. (4) can still be used with 
(see Ref [5]): 

P = lP.=^8'b'J,C,p„ (7) 

3.1    Removal of Instrumental Broadening 

Instrumental broadening can be removed from an 
experimental profile if a reference specimen, contain- 
ing negligible size and strain broadening, is available. 
For each reflection measured, a peak profile of the ref- 
erence specimen, using identical diffractometer set- 
tings, must be recorded. After subtraction of the back- 
ground for both peaks, their Fourier coefficients are 
determined. The Fourier coefficients of the peak with- 
out instrumental broadening then follow by dividing 
the Fourier coefficients of the broadened peak by the 
Fourier coefficients of the peak of the standard speci- 
men (see, e.g., Ref. [7]). In the present case, because 
the structural broadening is symmetric, the moduli of 
the Fourier coefficients can be used. After removal of 
the instrumental broadening, Fourier coefficients are 
scaled such that the first coefficient, i.e., the coefficient 
for i = 0, equals 1. 

For the deconvolution procedure discussed above the 
quality of the reference specimen is of paramount 
importance. Furthermore, peak overlap of other diffrac- 
tion lines with the line profiles under investigation hin- 
ders the description of peak shape in terms of Fourier 
coefficients, because then the peak shape of the diffrac- 
tion line under consideration must be extracted first. 
Relatively long tails must be measured for accurate 
background determination, because a small error in the 
background determination leads to an error in the first 
few Fourier coefficients (low L). At high L errors in the 
Fourier coefficients occur due to limited counting sta- 
tistics and the finite step size used in the data acquisi- 
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tion. Therefore, relatively high counting time and a rel- 
atively small step size are required. 

3.2    Dealing With Size Broadening 

Various methods exist that separate the contributions 
of the size and the strain from diffraction line profiles. 
Several methods require measurements of two orders of 
a reflection at a given specimen orientation and assume 
that in both measurements the same crystallites are dif- 
fracting (defocusing of the diffractometer is thereby 
neglected). Consequently the size broadening is identi- 
cal for both diffraction peaks. However, the strain 
broadenings are different for the different orders of 
reflection. Obviously, information about the non-dif- 
fracting crystallites is not obtained. Below, methods are 
discussed that can be used to separate size and strain 
broadening using two orders of reflection. Two impor- 
tant relations for the first and the second order reflec- 
tions follow from Eqs. (7) and (8); 

P    / P   =4 

as.-and=in2 

(9) 

(10) 

In practice, several problems may arise using this 
method. First, the ratio is liable to experimental errors 
if ^i„ is close to zero. Second, the expressions for the 
line profiles are only reliable for relatively small corre- 
lation distance. IfR^ is small, this may lead to problems 
connected to a small fitting range, especially for the 
second order Fourier coefficients (and consequently for 
the ratio of the first and second order Fourier coeffi- 
cients). 

A better fitting range can be obtained using a method 
for the separation of size and strain broadening pro- 
posed in Ref. [8]. For strain Fourier coefficients for 
which Eqs. (4), (9), and (10) hold, AZ(L} = J^AjL). 
From this result it follows: 

\n[A,,{L)]-\n[A,^,{^L)] =ln[ A\L)] 
(12) 

The term on the right-hand side of Eq. (12) can be 
approximated using \n[A^{jL)] ~jln[ A^{L)], which 
holds for small L [8]. Consequently, the size Fourier 
coefficients can be obtained from: 

ln[4,(Z)]-ln[4„,(lL)] =\ln[jt(L}l (13) 

(the order is indicated by a subscript). These expres- 
sions are used throughout the derivations of the expres- 
sions below. 

If the Fourier coefficients of two line profiles con- 
taining exactly the same size broadening are divided, 
the size coefficients cancel. If Eqs. (4), (9), and (10) 
hold for the strain broadening, it follows for the ratio of 
the Fourier coefficients of the second order and first 
order diffraction line profiles [using Eq. (2)]:' 

AnAL)_^.AL) 
4,(Z)    4°(Z) 

:exp[-3/^,Z,^(G, fln2 -InZ)]. 

(11) 

Consequently, Pi^ and gi„ (and thereby Pjiid and gjnd) 
can be readily obtained by fitting Eq. (11) to the ratio of 
the Fourier coefficients obtained experimentally. 
Thereby, the strain coefficients are known. Then, the 
size coefficients are obtained, dividing the measured 
Fourier coefficients by the strain coefficients obtained. 

More generally, if the Fourier coefficients of any two line profiles I 
and II, with exactly the same size broadening and of which the strain 
broadening is well described by the Wilkens expressions, are divid- 
ed it holds: 

A"(L)     A"'"'(L) 
exp<-(P   -P )L -InL 

A'(L)      A""(L) 

Consequently, the ratio of any two line profiles that can be written 
according to Eq. (4) also obeys Eq. (4). 

In the following, the determination of the size coef- 
ficients using Eq. (13) will be referred to as the Van 
Berkum-Vermeulen (VB-V) analysis. The strain coeffi- 
cients of the first and second order reflection are deter- 
mined, dividing the measured Fourier coefficients by 
the size coefficients [cf. Eq. (2)]. Values of Pi,,, /'2„d, 
igia, and igjnd can be obtained by fitting the strain coef- 
ficients to Eq. (4). For the first order Fourier coeffi- 
cients a two times larger fitting range (L < 0.5RJa\iJ.\; 
ji = gb) can be used than for the second order Fourier 
coefficients. 

A third method can be used to obtain the value of Pznd 
(and consequently fi,,, cf Eq. (9)). It follows from Eqs. 
(2), (4), (9), and (10): 

41n[4^.(Z)]-ln[4„,(Z)] =3\n[A\L)-\ ■^„d^ln2. 
(14) 

Equation (14) is similar to the well-known Warren- 
Averbach equation: i.e.. 

41n[4^.(Z)]-ln[4„,(Z)]=31n[^^(Z)]. (15) 

The Warren-Averbach analysis obviously does not 
hold if Eqs. (4), (9), and (10) hold. Combining Eqs. 
(13) and (14) yields: 
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P,„,ZMn2: :21n[4,(Z,)]+ln[4„,(Z)] 
(16) 

Consequently, Pjnd can be obtained by plotting the 
right-hand side of Eq. (16) versus L^ and fitting a 
straight line. 

In the above paragraphs, a fit to Eq. (4), or similarly, 
to Eq. (11) was mentioned several times. For this pur- 
pose the so-called Krivoglaz-Wilkens plot [15] might 
be used. In that case ln[A^{L)]/L^ is plotted versus InL. 
From the slope of the straight line, the value of Pi^ (or 
Pjiid) is obtained and the value of Qi^^ (or gjnd) follows 
from the intercept. However, a small experimental scal- 
ing error, induced by a small error in the first Fourier 
coefficient (cf. Sec. 3.1) already yields a large deviation 
from the expected straight line at low L values (see Fig. 
1). The fit can therefore better be performed directly, 
allowing a small scaling error; i.e., in order to obtain P 
and Q, the data should be fitted to the function: 

A-{L): ^-PL-{Q-[nL) (17) 

where ««is a constant close to one. 

0.10 -r 

d.     0.05 < 

0.00 

-0.05 -I 

Fig. 1. Krivoglaz-Wilkens plots of the ratio of {222} and {111} 
Fourier coefficients (corrected for instrumental broadening) of the Ni 
specimen annealed at 350 K. The different series are Krivoglaz- 
Wilkens plots of the same data that were first multiplied with (from 
top to bottom) HQ = 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, and 1.06. 

4.    Experimental Illustration 

As an example for the above methodology, the evo- 
lution of grain size, dislocation density and outer cut- 
off radius were investigated for a set of Ni layers on Si. 
The layers were simultaneously sputter deposited at 

room temperature to a thickness of 500 nm on seven 
oxidized <100> wafers. Transmission electron 
microscopy (TEM) experiments revealed a microstruc- 
ture with more or less spherical grains with a diameter 
of about 20 nm. After deposition the specimens were 
subjected to anneals (0.5 h) at 300 K, 330 K, 350 K, 
400 K, or 450 K, in gas mixture of Ar (volume fraction 
95 %) and Hj (volume fraction 5 %) at 10' Pa. A last 
specimen was annealed 2 h at 500 K. After annealing, 
the {111} and {222} diffraction line profiles were 
recorded for each specimen on a Bruker AXS D5005 
0-9 type diffractometer equipped with a diffracted- 
beam monochromator set to select Cu Ka radiation. In 
all cases, Bragg-Brentano geometry was used. The 
same reflections were recorded from a Ni reference 
specimen containing negligible structural broadening, 
using identical diffractometer settings. The reference 
specimen was produced by annealing Ni powder (diam- 
eter 2 |j,m). The broadness of the peaks obtained from 
the Ni reference specimen compare well to the broad- 
ness of the peaks obtained from our Al reference spec- 
imen, which shows slightly less broadening than the 
SRM660 LaBg standard powder (see Ref. [16]). Figure 
2 shows an example of the broadened 111 peak of the 
specimen annealed at 350 K, and the 111 peak of the 
reference specimen. For all peaks a linear background 
was subtracted before the Fourier coefficients were cal- 
culated. Instrumental broadening was removed by 
dividing the moduli of the Fourier coefficients of the Ni 
layer diffraction lines, by the moduli of the Fourier 
coefficients of the corresponding diffraction lines of the 
reference specimen (ttj correction was not applied). 
The thus obtained Fourier coefficients of the structural- 
ly broadened profiles were scaled such that the first 
Fourier coefficient (correlation distance zero) was 
equal to one. 

10" 

10 

s c 
10 

350 K 
reference 

^^^i^O^-^^'ji^i ■■'V^l/;^tfJife«j: 
 1 1 1 r 

40 42 44 46 48 
Diffraction angle ("26 ) 

Fig. 2. The {111} diffraction lines of the Ni specimen annealed at 
350 K, and the Ni reference specimen. 
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The methods discussed in Sec. 3.2 are illustrated by 
means of the specimen annealed at 350 K. Fig. 3 shows 
the ratio of the Fourier coefficients of the {222} and 
{111} reflections together with a fit of Eq. (11) to the 
data. A good fit is obtained up to a correlation distance 
of about 15 nm. Using the values obtained for Pi^ and 
igia, the strain and size coefficients can be determined. 
Figure 4 shows the first and second order strain coeffi- 
cients constructed using Eqs (4), (9), and (10) (solid 
lines). Figure 5 shows the size coefficients, obtained by 
dividing the first and second order Fourier coefficients 
by the constructed strain coefficients (solid lines). 

1.0- 
o ratio 

- FittoEq. (11) 

0.5- ^^ 

>^ 

">    o 

'^oo 

0.0- 
1                                1 1 

10 20 
L{nm) 

Fig. 3. Ratio of the {222} and {111} Fourier coefficients (corrected 
for instrumental broadening) of the Ni layer annealed at 350 K. The 
solid line is a fit of Eq. (11) to the data belonging to correlation dis- 
tances Z, up to 15 nm. 

1.0-' 

,£ u 
It w o 
u 

n 

0.5- 

0.0- 

 from Eq. (11) 

VB-V{111} 
VB-V {222} 
fits to VB-V 

•-S-gW 
 \  

20 
L(nm) 

30 40 

Fig. 4. Strain Fourier coefficients of the {111} and {222} reflection 
of the Ni layer annealed at 350 K. Solid lines are the strain coeffi- 
cients constructed from the values of Pj^, and Qi^^ acquired from the 
fit in Fig. 3. Markers are the results of the VB-V analysis. Dotted 
lines are fits of Eq. (4) to the VB-V data, using the data belonging to 
correlation distances L up to 40 nm and 20 nm for the {111} and the 
{222} reflection, respectively. 

10 

o 
It 
o o 

» 

0.5 - 

0.0 

.4);.,^..4;:' 

 from Eq. (11) 
O    VB-V 350 K 

■ ♦ ■ VB-V 375 K 
-II-VB-V 500 K 

1 \   1  
20 

L(nm) 

Fig. 5. Size Fourier coefficients of the specimens annealed at 350 K, 
375 K, and 500 K. The solid lines are the size coefficients for the 
specimen annealed at 350 K, obtained by dividing the Fourier coef- 
ficients of the {111} and {222} reflections by the strain coefficients 
that were constructed by fitting the ratio of the {111} and {222} pro- 
files to Eq. (11), see Fig. 4. Markers (connected by dotted lines) are 
the result of the VB-V analysis. 

The size and strain coefficients were also determined 
with the VB-V analysis. In Fig. 5 the VB-V size coeffi- 
cients, obtained using Eq. (13), are shown (open cir- 
cles). The size coefficients determined with both meth- 
ods agree well. Additionally the VB-V size coefficients 
for the specimens annealed at 375 K and 500 K are 
shown. Figure 4 shows the first and second order strain 
coefficients obtained with the VB-V analysis (circles). 
These strain coefficients were obtained by dividing the 
measured Fourier coefficients (after elimination of 
instrumental broadening) by the VB-V size coeffi- 
cients. Again, good agreement exists between both 
methods of data analysis. Figure 4 also shows fits of 
Eq. (4) to the data (dotted lines). 

Figure 6 shows the plot proposed below Eq. (16) for 
the specimen annealed at 350 K, together with a fit to 
the data. The data follow reasonably the expected 
straight line. The value of Pi,, was obtained Irom the 
slope of the fit, using Eq. (9). 

Figures 7 and 8 show values for P,,, and Qi^^, respec- 
tively, determined with the different methods of data 
analysis for the specimens annealed at 300 K, 330 K, 
350 K, 375 K, and 500 K. For all specimens, the results 
of the different methods of data analysis correspond 
well. From the good agreement of the different methods 
of data analysis, we conclude that the assumption 
underlying the VB-V analysis, i.e., \n[A^{jL)] = 
jln[A^{L)] is valid in the present case. 
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—    10- 

1000 
L   ( nm 

2000 

Fig.  6. Right-hand side of Eq.  (16):  21n[^i3,(I) + ln[^2nd(^)]- 
6 ln[^2iid (T^)] versus L and linear fit to the data (dotted line). 

2.0x10' 

15- 
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"■♦■■■ Eq. (11) 
-O- VB-V{111} 
■■•■■■ VB-V{222} 
...^... Eq.(16) 

T I I r~ 
300 350 400 450 

Anneal temperature ( K ) 
500 

Fig. 7. Values of Pi^ for the specimens annealed at 300 K, 330 K, 
350 K, 375 K, and 500 K, obtained from the fit of the ratio of the 
{222} and {111} Fourier coefficients to Eq. (11), the VB-V analysis 
on the {111} and {222} reflections, and the analysis on the basis of 
Eq. (16). For clarity, the error bars of the results using the method on 
the basis of Eq. (16) are omitted. The errors in these values are typi- 
cally equally large as those observed for the other methods of data 
analysis. 

5- 

■■♦■■■ Eq. (11) 
"Q- VB-V {111} 
• ■ VB-V {222} 

300 350 400 450 
Anneal temperature ( K ) 

500 

Fig. 8. Values of gj,, for the specimens annealed at 300 K, 330 K, 
350 K, 375 K, and 500 K, obtained from the fit of the ratio of the 
{222} and {111} Fourier coefficients to Eq. (11), and the VB-V 
analysis on the {111} and {222} reflections. 

Extrapolating the first few data of the size coeffi- 
cients with a straight hne to the correlation distance 
axis yields the so-called apparent grain size [7]. For the 
specimen annealed at 350 K, a value of about 15 nm is 
obtained (see Fig. 5), this value corresponds reasonably 
well with the grain size observed with transmission 
electron microscopy. Figure 5 shows that during 
annealing at 375 K some grain growth has occurred. 
The size coefficients for the specimen annealed at 500 
K are close to one; i.e., for this specimen size broaden- 
ing is negligible. 

The dislocation density, represented by the value of 
Pis, (see Fig. 7), remains more or less constant as long 
as the anneal temperature does not exceed 375 K. In the 
specimen annealed at 500 K, the dislocation density has 
decreased considerably. The value of gi,, (see Fig. 8), 
indicating the strain energy of a dislocation, decreases 
somewhat with temperature if the anneal temperature 
does not exceed 375 K. For the (recrystallized) speci- 
men annealed at 500 K the value of Q^g^ is much larger. 

In summary, the following can be concluded about 
the evolution of microstructure of the nickel layers. Up 
to an annealing temperature of 375 K, relatively small 
changes in the microstructure of the specimens occur. 
In the specimen annealed at 375 K, the grains have 
grown out slightly (Fig. 5), and the strain energy of the 
dislocations (of which the density is constant) decreas- 
es somewhat with increasing temperature (i.e., decreas- 
ing Q^g^ in Fig. 8). Consequently, the annealing temper- 
atures not exceeding 375 K are high enough to allow 
for some dislocation rearrangement within the grains, 
but are too low to establish (large scale) recrystalliza- 
tion. In the specimen annealed at 500 K on the other 
hand, recrystallization has occurred. The specimen con- 
sists of large grains with low dislocation density. 
Because of the much lower dislocation density, the dis- 
location interaction is small and there is less possibility 
to minimize the strain energy by means of dislocation 
rearrangement. Therefore, the outer cut-off radius for 
this specimen, reflected by the value of gi^,, is relative- 
ly large. 

For a quantitative interpretation of the values of P^g^ 
and gi,„ determined in the above analyses, in terms of 
dislocation distribution parameters as dislocation den- 
sity and outer cut-off radius, knowledge of the contrast 
factor is necessary. The determination of the contrast 
factor is in general a difficult task and is beyond the 
scope of the present paper. In Refs. [5,11,17] sugges- 
tions are given how contrast factors can be obtained 
experimentally for heavily textured specimens and 
specimens with a homogeneous dislocation distribu- 
tion. For the present data, assuming that only screw dis- 
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locations (Burgers vector ^<110>) are present, it holds 
that C;, for the dislocations with Burgers vectors 
inclined to the diffraction vector and for the dislocations 
with Burgers vectors perpendicular to the diffraction 
vector equal 0.1384 and 0, respectively [17]. Assuming 
that dislocations are distributed homogeneously over 
the different sets and that for the different sets the 
outer cut-off radius is equal it holds: /J^, =^0.1384- 
f g^^^Ptot' where p,„, is the total dislocation density, 
and R^ = exp[Q^j -21n2 +i + ln(i%^)]. It follows that 
the dislocation densities and outer cut-off radii, before 
recrystallization, are about 10" m"^ and 18 nm, respec- 
tively. After recrystallization these values are about 
2 X lO''* m"^ and 150 nm. It is stressed here that these 
values should be considered as rough estimates. 
Further, it should be noted that dislocations might be 
generated during cooling down. Due to the different 
thermal expansion coefficients of silicon and nickel a 
thermal (tensile) strain develops in the nickel layer dur- 
ing cooling down. For the specimen annealed at 500 K, 
this strain is approximately 0.2 %. X-ray diffraction 
strain measurements revealed that the strain in the nick- 
el layer annealed at 500 K, at room temperature is close 
to this value, which suggests that the thermal strains are 
hardly plastically relaxed, and consequently, not many 
dislocations are formed during cooling down. Similar 
experiments to thin Al layers in which plastic deforma- 
tion was observed during cooling down revealed dislo- 
cation densities up to 3 x 10"* m"^ [4,5]. Thus, in this 
case, possible dislocations formed during cooling down 
can be neglected for the layers annealed at temperatures 
up to 375 K, that show much larger dislocation densi- 
ties. However, for the specimen annealed at 500 K, it 
carmot be excluded that the dislocations are (in part) 
generated during cooling down. 

A last example concerns the limitations of the above 
analyses. For the nickel layers treated above it has been 
assumed that a (more or less) homogeneous grain size 
and dislocation distribution was present in the speci- 
mens. However, the specimens annealed at 400 K and 
450 K have partly recrystallized. The microstructure of 
these specimens therefore consists of a mixture of small 
grains with large dislocation density (i.e., comparable 
to the not yet recrystallized specimen annealed at 375 
K) and large recrystallized grains (comparable to the 
grains in the specimen annealed at 500 K) with low dis- 
location density. For such inhomogeneous specimens, 
the methods treated above are not useful. 

In this case, an analysis of the diffraction line broad- 
ening is still possible. The microstructures of the spec- 
imens annealed at 400 K and 450 K are considered to 
be a mixture of the microstructures of the specimens 

annealed at 375 K and 500 K. Then, the diffraction 
peaks of the specimens annealed at 400 K and 450 K 
are simply the sums of the diffraction peaks of the dif- 
fraction peaks of the specimens annealed at 375 K and 
500 K, scaled with their respective (diffracting) volume 
fractions. The same holds for the Fourier coefficients of 
the diffraction peaks. Thus, the volume fractions of the 
"375 K microstructure" and the "500 K microstructure" 
can be obtained by fitting the volume fractions such, 
that shape the (Fourier coefficients of the) measured 
peak corresponds to the weighted sum obtained from 
(Fourier coefficients of) the 375 K and 500 K peaks. 
Applying this method to the Fourier coefficients, "375 
K" volume fractions of 0.57(4) and 0.40(4) were 
obtained for the specimens annealed at 400 K and 
450 K, respectively. In Fig. 9 the Fourier coefficients of 
the {111} and {222} reflection of the specimen 
annealed at 400 K are shown, together with the weight- 
ed sum of the Fourier coefficients of the specimens 
annealed at 375 K and 500 K. The specimen can quite 
well be characterized as a mixture of the microstruc- 
tures before and after recrystallization. Note that for 
this procedure, neither correction for instrumental 
broadening, nor determination of the strain broadening 
was necessary, in contrast to the methods above. 
Therefore, possible errors made by the removal of the 
instrumental broadening are avoided. 

1.0- 

o u 0.5- 

0.0 ^. 

100 
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Fig. 9. Fourier coefficients (not corrected for instrumental broaden- 
ing) of the {111} and {222} reflections of a nickel layer annealed at 
400 K. Solid lines are the sum of 0.54 times the Fourier coefficients 
of the specimen annealed at 375 K and (1-0.54) times the Fourier 
coefficients of the specimen annealed at 500 K. 

In the last example it was possible to perform a dif- 
fraction line shape analysis despite the inhomogeneity 
of the specimens under consideration. In general how- 
ever, this may not be possible and investigations to dis- 
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location distributions using x-ray line profile analysis, 
for inhomogeneous microstructures may become very 
difficult. 

5.    Conclusions 

Several methods can be used to determine disloca- 
tion distribution parameters from diffraction line broad- 
ening measurements in specimens for which both strain 
broadening caused by dislocations and size broadening 
occurs. If the strain broadening can be described with 
the model due to Wilkens, dislocation distribution 
parameters can be determined from the ratio of the 
Fourier coefficient of diffraction line profiles from two 
orders of reflection, as well as using the Van Berkum- 
Vermeulen analysis. The use of the Warren-Averbach 
method is in this case dissuaded. 

For thin nickel layers on silicon, the analysis on the 
basis of the ratio of the Fourier coefficients of two 
orders of reflection and the Van Berkum-Vermeulen 
analysis yield equal results within experimental preci- 
sion. 

Annealing thin nickel layers with large dislocation 
density and small grain size, at temperatures up to 375 
K does not lead to large scale grain growth and changes 
in dislocation density. However, the outer cut-off radius 
decreases somewhat, which suggests that strain energy 
is minimized at these temperatures by means of move- 
ment of the dislocations within the grains. Annealing at 
400 K and 450 K leads to an inhomogeneous 
microstructure that consists of large grains with low 
dislocation density and small grains with high disloca- 
tion density. Complete recrystallization occurs during 
annealing at 500 K; after annealing the specimen con- 
sists of large grains with low dislocation density. 
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