
Git notes
NOLA Hackathon - October 2011

Sunday, October 16, 11

Warnings

• Git was made by über-nerds

• CLI syntax, terminology have evolved like
Darwin's finches in a radiation leak

• "git help" is your friend

• Highly recommend the oreilly book.

Sunday, October 16, 11

Git data model

• (almost) everything is an object

• Object ID is SHA-1 hash of serialized object,
including it's properties

• Type, size, <stream of bytes>

Sunday, October 16, 11

Object types

Commit

Tree

Blob File contents

Directory tree

Version snapshot

Sunday, October 16, 11

Directory tree

Tree

Blob

Blob

BlobTree

Sunday, October 16, 11

Versioned directory
tree

Commit Tree

Blob

Blob

BlobTree

Commit Tree

Blob

Blob

BlobTree

Sunday, October 16, 11

Versioned directory
tree

Commit
Tree

Blob

Blob

BlobTree

Commit Tree

Blob

Graphs are hard!

Sunday, October 16, 11

Branching
models

are
variable

http://nvie.com/posts/a-successful-git-branching-model/
Sunday, October 16, 11

http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Repo sharing models

Sunday, October 16, 11

The Singleton

• "Git init" in any directory

• Local versioning,
branching

• Can publish/share later
with full history

Sunday, October 16, 11

The P2P Shuffle

Sunday, October 16, 11

In principle, each developer can maintain their own repository and push / pull things to each
other, with no single canonical master. This, however, is a bit of a pain in the ass to manage
if you have more than two developers!

Mothership

• Central master repo

• Committers clone to check out

• Committers push their own changes to master

Sunday, October 16, 11

As a practical matter, having a central master is very useful to organize around... but you can
always change where the master lives. This is much like using CVS or SVN, but still gives
benefits such as full history, offline branching, etc.

http://www.openclipart.org/detail/149239/cow-abduction-by-hector-gomez

Pull requests
• Github style

• Mothership + shared
personal clones

• Complete free reign over
your personal clone

• Helper tools to request,
perform merge from
personal clone to master

Sunday, October 16, 11

This is a style you'll see on sites like Github and gitorious. These sites have infrastructure for
giving anyone with an account their own hosted clone of the repo, where they can push their
own changes to share.

Some UI sugar makes it relatively easy to send a "pull request" asking the master project's
maintainers to review and merge the changes in a branch.

This can be used for everybody's work to implement a review process, with the same facilities
for longtime and drive-by contributors.

http://commons.wikimedia.org/wiki/File:Simplex_Pull_Station.jpg

Push to review

• Gerritt style

• Similar, but triggered by pushing to a
particular shared repo.

•

Sunday, October 16, 11

Extension example

Sunday, October 16, 11

• https://github.com/brion/OEmbedConsumer

• The master repo!

Sunday, October 16, 11

Clone to local
cd extensions

git clone https://github.com/brion/OEmbedConsumer.git

LocalSettings.php:
require "$IP/extensions/OEmbedConsumer/

OEmbedConsumer.php";

Sunday, October 16, 11

Run it

<oembed>http://www.youtube.com/watch?
v=Sau6l9TOhgk</oembed>

Sunday, October 16, 11

Make a tweak

Flickr support?

Error handling?

Toolbar button?

Sunday, October 16, 11

Show tree state

• git status

Sunday, October 16, 11

Branch & commit

• git checkout -b mybranch

• git add *

• git commit

Sunday, October 16, 11

Fun fact: the "git branch" command is NOT used to create a branch.

Well get into details on the add shortly...

Share it

• Fork on Github

• git remote add myname

• git fetch myname

• git push myname mybranch

Sunday, October 16, 11

Up to this point I didn't need to be even set up with a Github account; we've just cloned from
the public view of the master repo and made local modifications.

Logging and creating a personal fork on the hosting provider gives me a place where I can
share any modifications I've made -- and where github's magic pixie dust can help us.

Pull!!

Sunday, October 16, 11

Because the commit history in your branch includes references to the versions you branched
from, git is easily able to find the common ancestor. If the master has moved on from where
you branched, it can merge your changes in like applying a patch.

Merging

Sunday, October 16, 11

Conflicts etc

The index

• Stuff in here also called "staged" or "cached"

Sunday, October 16, 11

If "commit" reminds you of transactional systems, there's a good reason for that. While you're
fiddling with code you're in a transitional state, where git doesn't know what hangs you've
made yet.

Before actually committing, you first have to stage the changes: the "git add" command for
instances stages a new or changed file for the next commit.

For extra confusion, "git diff" shows only changed files that have *not* been staged. This can
be nice when you want to make sure you've got all your changes ready to commit though.

Rebasing

• Scary!

• Useful when cleaning up a work branch for
publishing

Sunday, October 16, 11

Rebasing is one of the scarier git features, and is one you should approach with caution.

Essentially rebase "rewrites history" by replaying the changes from some existing series of
commits, and recording them differently.

Working with other developers is like slowly moving where you keep your shoes from the front door to the closet... when you’re partway through, someone who comes in isn’t sure whether to
put their shoes in which place.

Sometimes you move things to the closet but the closet's gone, somebody removed it...

Rebase is like changing the past so the closet NEVER EXISTED!!!

This is useful for a number of scenarios: merging together a series of false steps into a single
commit with a working solution, or reordering them to make the editing logic clearer, or
reapplying a change against the current version of the master repo to make the resulting
merge cleaner.

Never, ever rebase a branch that anyone else may have cloned, as it will confuse the heck out
of them when they next pull updates.

Cheat sheets

Sunday, October 16, 11

Abandon all hope!

• git reset --hard HEAD

• git reset --hard origin/master

Sunday, October 16, 11

sometimes you gotta give up

Pulling someone's
branch

• git remote add

• git fetch ...

• git checkout .../...

Sunday, October 16, 11

Merging branches
manually

• git checkout dest

• git merge source

• If conflicts, fix & git commit

• Now push it or something!

Sunday, October 16, 11

http://www.mediawiki.org/wiki/
Git_conversion/Splitting_tests

Sunday, October 16, 11

http://www.mediawiki.org/wiki/Git_conversion/Splitting_tests
http://www.mediawiki.org/wiki/Git_conversion/Splitting_tests

