CLTI Differential Equations (4B)

•

Copyright (c) 2011 - 2014 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Causal LTI System Equations

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \cdots + a_{N-1}\frac{dy}{dt} + a_{N}y(t) = b_{0}\frac{d^{N}x}{dt^{N}} + b_{1}\frac{d^{N-1}x}{dt^{N-1}} + \cdots + b_{N-1}\frac{dx}{dt} + b_{N}x(t)$$

$$(D^{N} + \boldsymbol{a_1} D^{N-1} + \dots + \boldsymbol{a_{N-1}} D + \boldsymbol{a_N}) y(t) = (\boldsymbol{b_0} D^{N} + \boldsymbol{b_1} D^{N-1} + \dots + \boldsymbol{b_{N-1}} D + \boldsymbol{b_N}) x(t)$$

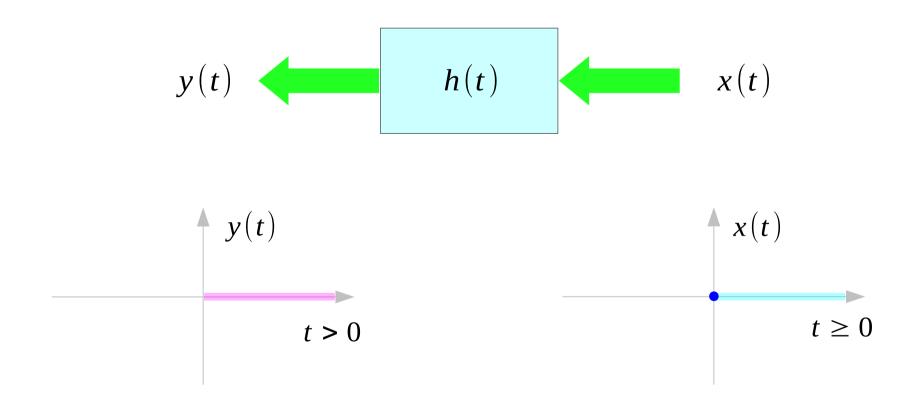
$$Q(D) = (D^{N} + \mathbf{a_{1}}D^{N-1} + \dots + \mathbf{a_{N-1}}D + \mathbf{a_{N}})$$

$$P(D) = (\mathbf{b_{0}}D^{N} + \mathbf{b_{1}}D^{N-1} + \dots + \mathbf{b_{N-1}}D + \mathbf{b_{N}})$$

- Zero Input Response
- Zero State Response (Convolution with h(t))
- Natural Response (Homogeneous Solution)
- Forced Response (Particular Solution)

Interval of Validity

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \cdots + a_{N-1}\frac{dy}{dt} + a_{N}y(t) = b_{0}\frac{d^{N}x}{dt^{N}} + b_{1}\frac{d^{N-1}x}{dt^{N-1}} + \cdots + b_{N-1}\frac{dx}{dt} + b_{N}x(t)$$

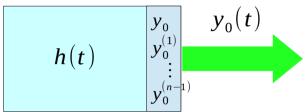


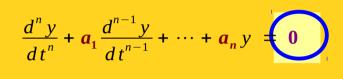
Comparison of System Responses (1)

Zero Input Response

Natural Response

Homogeneous





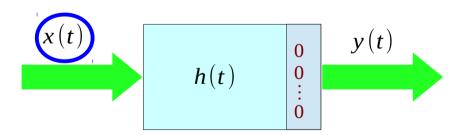
Response of a system when the input x(t) is zero (no input)

Solution due to characteristic modes only

Zero State Response

Forced Response

Particular



$$\frac{d^n y}{dt^n} + \mathbf{a}_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + \mathbf{a}_n y(t) =$$

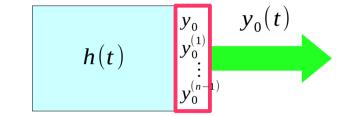
$$\mathbf{b}_0 \frac{d^n x}{dt^n} + \mathbf{b}_1 \frac{d^{n-1} x}{dt} + \dots + \mathbf{b}_n x(t)$$

Response of a system caused only by the input

Solution <u>excluding</u> the effect of characteristic modes

Comparison of System Responses (2)

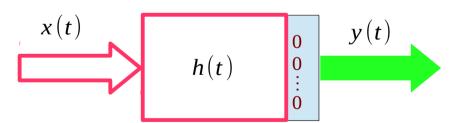
Zero Input Response



response to the initial conditions

$$\{y^{(N-1)}(\mathbf{0}^{-}), \dots, y^{(1)}(\mathbf{0}^{-}), y(\mathbf{0}^{-})\}$$

Zero State Response



response to the input

$$h(t) = b_0 \delta(t) + \sum_i d_i e^{\lambda_i t}$$

Natural Response

Homogeneous

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = \mathbf{0}$$

characteristic modes response

$$y_n(t) = \sum_i K_i e^{\lambda_i t}$$

Forced Response

Particular

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y(t) =$$

$$b_0 \frac{d^n x}{dt^n} + b_1 \frac{d^{n-1} x}{dt} + \dots + b_n x(t)$$

non-characteristic mode response

$$y_p(t)$$

Total Response

ZIR

ZSR

ZIR

ZSR

$$\sum_{i} c_{i} e^{\lambda_{i} t}$$

$$y_p(t)$$

 $y_{zi}(t) = \sum_{i} c_{i} e^{\lambda_{i} t}$

$$y_{zs}(t) = h(t) * x(t)$$

$$\sum_{i} k_{i} e^{\lambda_{i} t}$$

$$h(t) = b_0 \delta(t) + \sum_i d_i e^{\lambda_i t}$$

Natural Response

Forced Response

$$y_n(t) = \sum_i K_i e^{\lambda_i t} \qquad y_p(t)$$

$$y_{p}(t) = 0 \qquad x(t) = \delta(t)$$

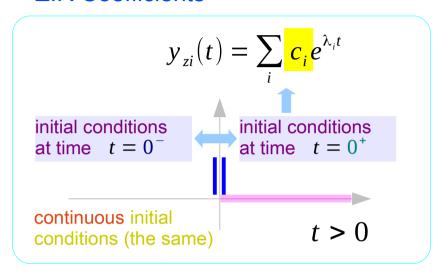
$$y_{p}(t) = \beta \qquad x(t) = k$$

$$y_{p}(t) = \beta_{1}t + \beta_{0} \qquad x(t) = t u(t)$$

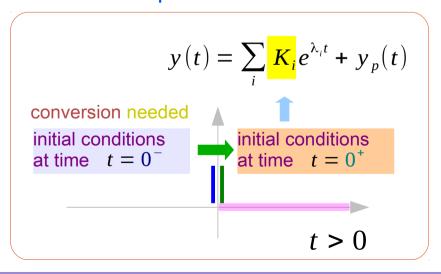
$$y_{p}(t) = \beta e^{\zeta t} \qquad x(t) = e^{\zeta t} \quad \zeta \neq \lambda_{i}$$

Initial Conditions

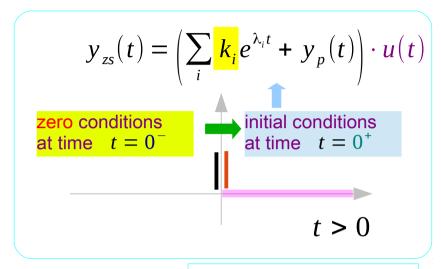
ZIR Coefficients



Forced Response Coefficients



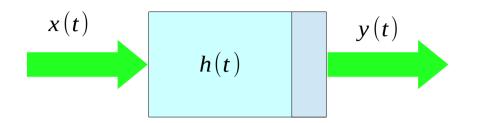
ZSR Coefficients



$$h(t) = b_0 \delta(t) + \sum_i d_i e^{\lambda_i t}$$

$$y_{zs}(t) = x(t) * \left(\sum_{i} d_{i} e^{\lambda_{i} t} + b_{0} \delta(t)\right)$$
zero conditions at time $t = 0^{-}$
initial conditions at time $t = 0^{+}$

Total Response



the initial condition before t=0 is used

$$\{y^{(N-1)}(0^-), \dots, y^{(1)}(0^-), y(0^-)\}$$

any input is applied at time 0, but in the ZIR: the initial condition does not change <u>before</u> and <u>after</u> time 0 since no input is applied

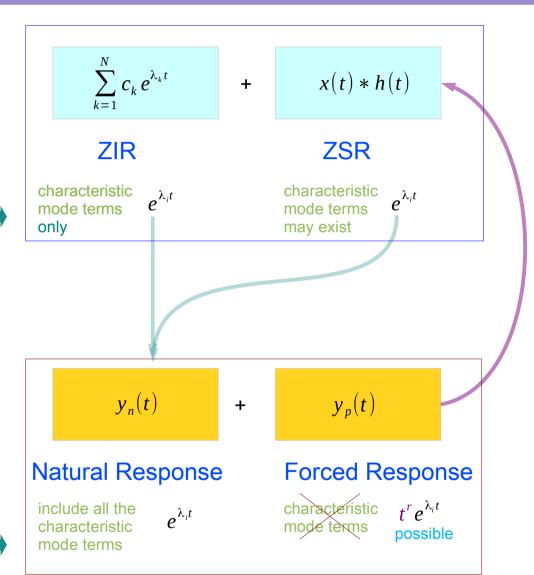
$$\frac{d^{n}y}{dt^{n}} + \mathbf{a_{1}} \frac{d^{n-1}y}{dt^{n-1}} + \dots + \mathbf{a_{n}}y(t) =$$

$$\mathbf{b_{0}} \frac{d^{n}x}{dt^{n}} + \mathbf{b_{1}} \frac{d^{n-1}x}{dt} + \dots + \mathbf{b_{n}}x(t)$$

the initial condition after t=0 is used

$$\{y^{(N-1)}(0^+), \dots, y^{(1)}(0^+), y^{(0^+)}\}$$

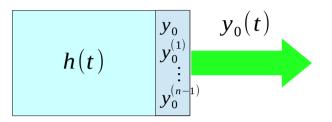
So the effects of the char. modes of ZSR are included.



Types of Causal LTI System Responses

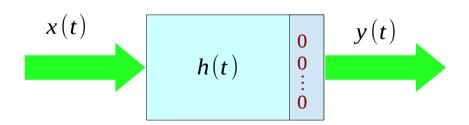
Zero Input Response

0



$$y_0(t) = \sum_i c_i e^{\lambda_i t} \{ y^{(N-1)}(\mathbf{0}^-), \dots, y^{(1)}(\mathbf{0}^-), y(\mathbf{0}^-) \}$$

Zero State Response



$$y(t) = h(t) * x(t) h(t) = b_0 \delta(t) + \sum_i d_i e^{\lambda_i t}$$

Natural Response

Homogeneous

$$\frac{d^{n} y}{dt^{n}} + a_{1} \frac{d^{n-1} y}{dt^{n-1}} + \cdots + a_{n} y = 0$$

$$y_n(t) = \sum_i K_i e^{\lambda_i t}$$

the coefficients K_i 's are determined by the initial conditions.

$$y_n(t)$$
 + $y_p(t)$

$$\{y^{(N-1)}(\mathbf{0}^{+}), \dots, y^{(1)}(\mathbf{0}^{+}), y(\mathbf{0}^{+})\}$$

Forced Response

Particular

$$\frac{d^n y}{dt^n} + \mathbf{a}_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + \mathbf{a}_n y(t) =$$

$$\mathbf{b}_0 \frac{d^n x}{dt^n} + \mathbf{b}_1 \frac{d^{n-1} x}{dt} + \dots + \mathbf{b}_2 x(t)$$

$$y_p(t) = \begin{cases} \beta e^{\xi t} & \text{or} \\ (t^r + \beta_{r-1} t^{r-1} + \dots + \beta_1 t + \beta_0) \end{cases}$$

 $y_p(t)$ similar to the input, with the coefficients determined by equating the similar terms

Three Initial Value Problems

$$y'' + P(x)y' + Q(x)y = f(x)$$

 $y(x_0) = y_0$
 $y'(x_0) = y_1$

$$y'' + P(x)y' + Q(x)y = 0$$

 $y(x_0) = y_0$
 $y'(x_0) = y_1$

Homogeneous DEQ

Zero Input Response

$$y'' + P(x)y' + Q(x)y = f(x)$$

$$y(x_0) = 0$$

$$y'(x_0) = 0$$

Nonhomogeneous DEQ Zero State Response

Zero Initial Conditions Initially at rest

Decomposing an Initial Value Problem

$$y''(t) + a_1 y'(t) + a_2 y(t) = b_0 x''(t) + b_1 x'(t) + b_2 x(t)$$

$$y(0^{-}) = k_0 \quad y'(0^{-}) = k_1$$

Target Initial Value Problem

$$y(t) = y_{zi}(t) + y_{zs}(t)$$

$$y''(t) + a_1 y'(t) + a_2 y(t) = 0$$

$$y_{zi}(0^-) = k_0 \quad y_{zi}'(0^-) = k_1$$

Nonzero Initial Conditions

$$y_{zi}(t)$$

Zero Input Response

$$y''(t) + a_1 y'(t) + a_2 y(t) = b_0 y''(t) + b_1 y'(t) + b_2 x(t)$$

$$y_{zs}(0^{-}) = 0$$
 $y_{zs}'(0^{-}) = 0$

Zero Initial Conditions

$$y_{zs}(t) = x(t) * h(t)$$

Zero State Response

Decomposing a Differential Equation

$$y''(t) + a_1 y'(t) + a_2 y(t) = 0$$

$$y_n(t)$$
 Natural Response

$$y''(t) + a_1 y'(t) + a_2 y(t) = b_0 y''(t) + b_1 y'(t) + b_2 x(t)$$

$$y_p(t)$$
 Forced Response

$$y''(t) + a_1 y'(t) + a_2 y(t) = b_0 x''(t) + b_1 x'(t) + b_2 x(t)$$

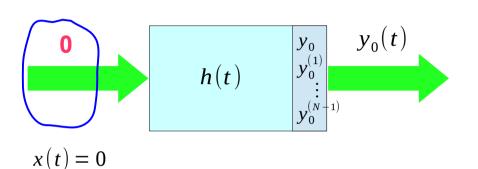
$$y(t) = y_n(t) + y_p(t)$$

$$y(0^+) = y_0 \qquad y'(0^+) = y_1$$

Target Initial Value Problem

Zero Input Response : $y_0(t)$

$$\frac{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)}{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)} y(t) = \left(b_{0}D^{N} + b_{1}D^{N-1} + \dots + b_{N-1}D + b_{N}\right) x(t)$$



$$\frac{d^2 y_n(t)}{dt^2} + a_1 \frac{d y_n(t)}{dt} + a_2 y_n(t) = \mathbf{0}$$

$$x(t) = 0$$

$$(D^N + a_1 D^{N-1} + \cdots + a_{N-1} D + a_N) y_0(t) = 0$$

linear combination of $y_0(t)$ and its derivatives

 $ce^{\lambda t}$ only this form can be the solution of $y_0(t)$

$$Q(\lambda) = 0 \qquad \underbrace{\left(\lambda^{N} + a_{1}\lambda^{N-1} + \dots + a_{N-1}\lambda + a_{N}\right)}_{= 0} \quad \underbrace{ce^{\lambda t}}_{\neq 0} = 0$$

Characteristic Modes

$$\frac{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)}{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)} y(t) = \left(b_{0}D^{N} + b_{1}D^{N-1} + \dots + b_{N-1}D + b_{N}\right) x(t)$$

$$Q(\lambda) = \frac{\left(\lambda^{N} + a_{1} \lambda^{N-1} + \dots + a_{N-1} \lambda + a_{N}\right)}{\left(\lambda^{N} + a_{1} \lambda^{N-1} + \dots + a_{N-1} \lambda + a_{N}\right)} = 0$$

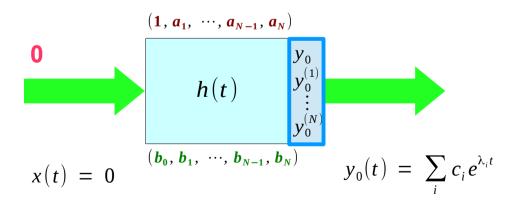
$$Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_N) = 0$$

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_N e^{\lambda_N t} = \sum_i c_i e^{\lambda_i t}$$

 λ_i characteristic roots

 $e^{\lambda_i t}$ characteristic modes

ZIR a linear combination of the characteristic modes of the system



the initial condition **before** t=0 is used

$$\{y^{(N-1)}(0^-), \dots, y^{(1)}(0^-), y(0^-)\}$$

$$= \{y^{(N-1)}(0^+), \dots, y^{(1)}(0^+), y^{(0^+)}\}$$

any input is applied at time 0, but in the ZIR: the initial condition does not change before and after time 0 since no input is applied

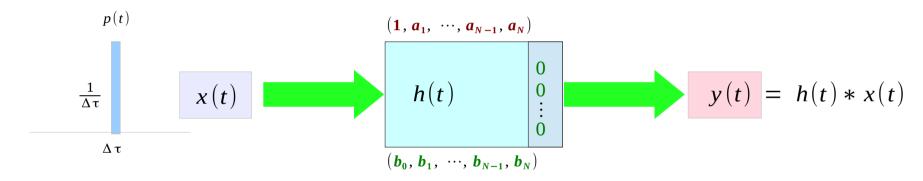
Zero State Response y(t)

$$(D^{N} + \boldsymbol{a_1} D^{N-1} + \dots + \boldsymbol{a_{N-1}} D + \boldsymbol{a_N}) y(t) = (\boldsymbol{b_0} D^{N} + \boldsymbol{b_1} D^{N-1} + \dots + \boldsymbol{b_{N-1}} D + \boldsymbol{b_N}) x(t)$$

All initial conditions are zero

$$y^{(N-1)}(0^{-}) = \cdots = y^{(1)}(0^{-}) = y^{(0)}(0^{-}) = 0$$

superposition of inputs only



$$x(t) = \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) p(t - n\Delta \tau)$$

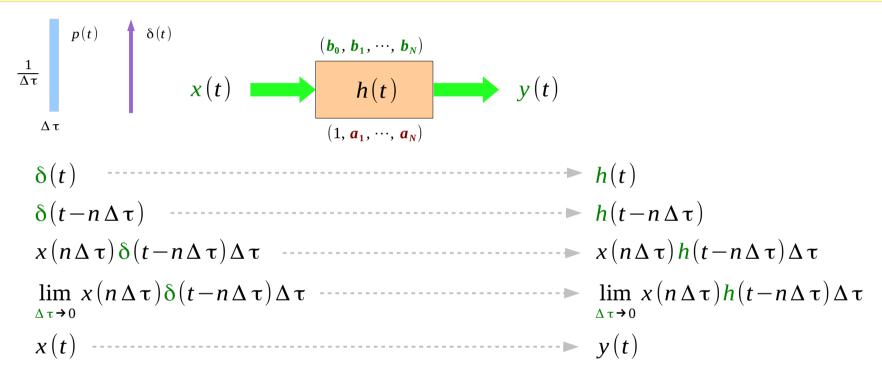
$$= \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) \frac{p(t - n\Delta \tau)}{\Delta \tau} \Delta \tau$$

$$= \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) \frac{\delta(t - n\Delta \tau)}{\Delta \tau} \Delta \tau$$

$$y(t) = \lim_{\Delta \tau \to 0} x(n\Delta \tau) \frac{h(t-n\Delta \tau)}{\Delta \tau}$$
$$= \int_{-\infty}^{+\infty} x(\tau) \frac{h(t-\tau)}{\Delta \tau} d\tau$$

Convolution with the Impulse Response

$$x(t) = \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) p(t - n\Delta \tau) = \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) \frac{p(t - n\Delta \tau)}{\Delta \tau} \Delta \tau = \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) \delta(t - n\Delta \tau) \Delta \tau$$



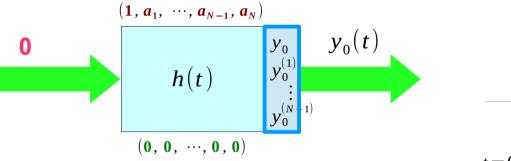
$$y(t) = \lim_{\Delta \tau \to 0} x(n\Delta \tau) h(t-n\Delta \tau) \Delta \tau = \int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d\tau$$

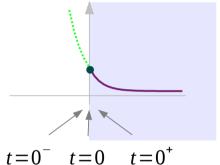
ZIR & Initial Conditions

$$\frac{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)}{\left(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}\right)} y(t) = \left(b_{0}D^{N} + b_{1}D^{N-1} + \dots + b_{N-1}D + b_{N}\right) x(t)$$

Non-zero initial conditions

$$\{y^{(N-1)}(0^-), y^{(N-2)}(0^-), \cdots, y^{(1)}(0^-), y^{(0)}(0^-)\}$$





 $y_0(t)$ is present at t=0we can be sure of $y_0(t)$ exists for t≥0

Application of the input x(t) at t=0 does not affect $y_0(t)$

non-zero initial conditions

$$\exists i, k_i \neq 0$$

$$y^{(N-1)}(0^{-}) = y^{(N-1)}(0) = y^{(N-1)}(0^{+}) = k_{N-1}$$

$$y^{(N-2)}(0^{-}) = y^{(N-2)}(0) = y^{(N-2)}(0^{+}) = k_{N-2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$y^{(1)}(0^{-}) = y^{(1)}(0) = y^{(1)}(0^{+}) = k_{1}$$

$$y(0^{-}) = y^{(0)} = y^{(0^{+})} = k_{0}$$

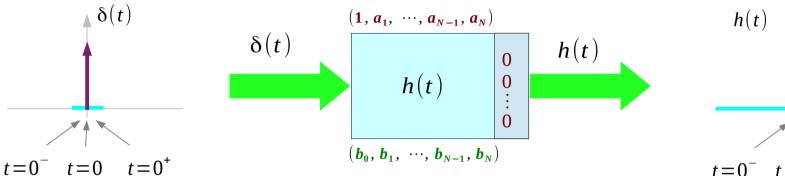
Inductor current Capacitor voltage

ZSR & Initial Conditions

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}) y(t) = (b_{0}D^{N} + b_{1}D^{N-1} + \dots + b_{N-1}D + b_{N}) x(t)$$

All initial conditions are zero

$$y^{(N-1)}(0^-) = y^{(N-2)}(0^-) = \cdots = y^{(1)}(0^-) = y^{(0)}(0^-) = 0$$



 $t=0^-$ t=0 $t=0^+$

For t>0, this can be considered

as finding the ZIR of the system

with the initial conditions

effective only at the instant t=0 and establishes non-zero initial conditions at the instant immediately after 0 (t=0⁺), by storing energy (capacitor)

$$y^{(N-1)}(0^{-}) = 0$$

$$y^{(N-2)}(0^{-}) = 0$$

$$\vdots \qquad \vdots$$

$$y^{(1)}(0^{-}) = 0$$

$$y(0^{-}) = 0$$

initially at rest

$$y^{(N-1)}(0) = K_{N-1}$$

$$y^{(N-2)}(0) = K_{N-2}$$

$$\vdots \qquad \vdots$$

$$y^{(1)}(0) = K_1$$

$$y(0) = K_0$$

finite jumps impulse matching

$$y^{(N-1)}(0^{+}) = k_{N-1}$$

$$y^{(N-2)}(0^{+}) = k_{N-2}$$

$$\vdots \qquad \vdots$$

$$y^{(1)}(0^{+}) = k_{1}$$

$$y(0^{+}) = k_{0}$$

non-zero initial conditions

$$\exists i, k_i \neq 0$$

Impulse Response

Impulse response $(t \ge 0) =$ **ZSR** to delta function

$$y^{(N-1)}(0^{-}) = 0$$

$$y^{(N-2)}(0^{-}) = 0$$

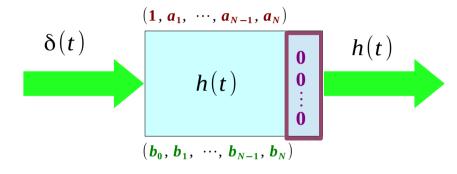
$$\vdots \qquad \vdots$$

$$y^{(1)}(0^{-}) = 0$$

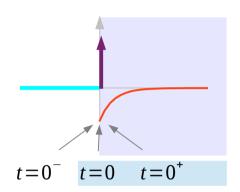
$$y(0^{-}) = 0$$

$$h(t) = b_0 \delta(t) + \text{char modes}$$

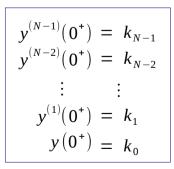
 $t \ge 0$



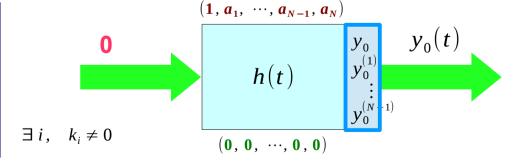
$$h(t)$$
 $(t \ge 0)$



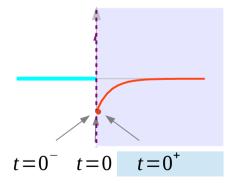
Impulse response (t > 0) = **ZIR** with the initial condition



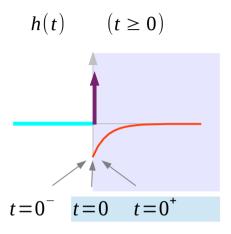
$$h(t)$$
 = char modes
 $t>0$, $(t \ge 0^+)$



$$h(t) \qquad (t \geq 0^+)$$



h(t) when $t \ge 0$ and $t \ge 0^+$



$$h(t) \qquad (t \ge 0^+)$$

$$t = 0^- \qquad t = 0 \qquad t = 0^+$$

$$h(t) = b_0 \delta(t) + \text{char modes}$$
 $t \ge 0$

Impulse response =
ZSR to delta function

$$y^{(N-1)}(0^-) = 0$$

$$y^{(N-2)}(0^-) = 0$$

$$\vdots \qquad \vdots$$

$$y^{(1)}(0^-) = 0$$

$$y(0^-) = 0$$

Impulse response (t > 0) = ZIR with the initial condition
$$y^{(N-1)}(0^{+}) = k_{N-1}$$

$$y^{(N-2)}(0^{+}) = k_{N-2}$$

$$\vdots$$

$$y^{(1)}(0^{+}) = k_{1}$$

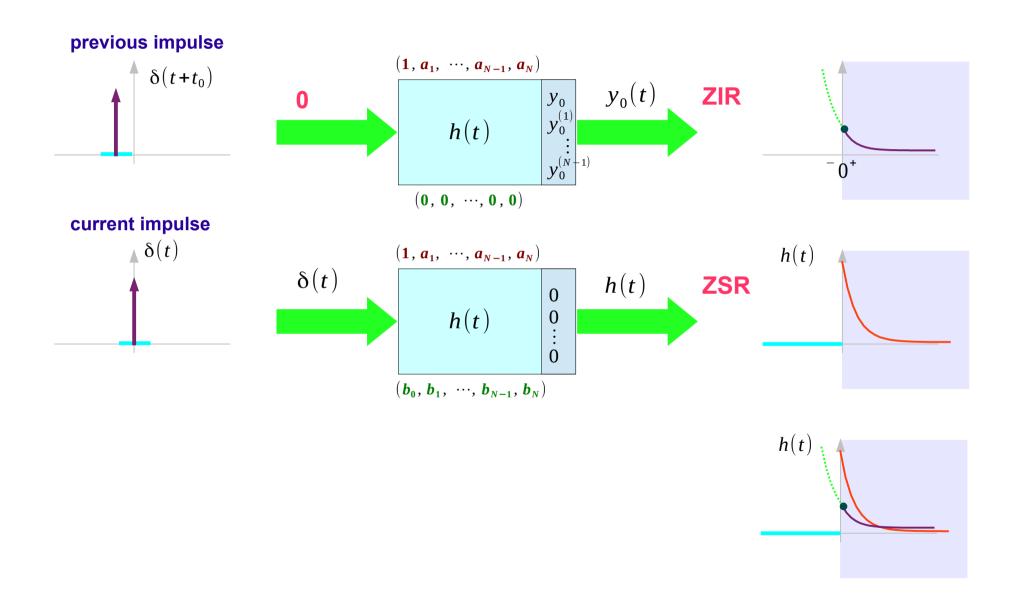
$$y(0^{+}) = k_{0}$$

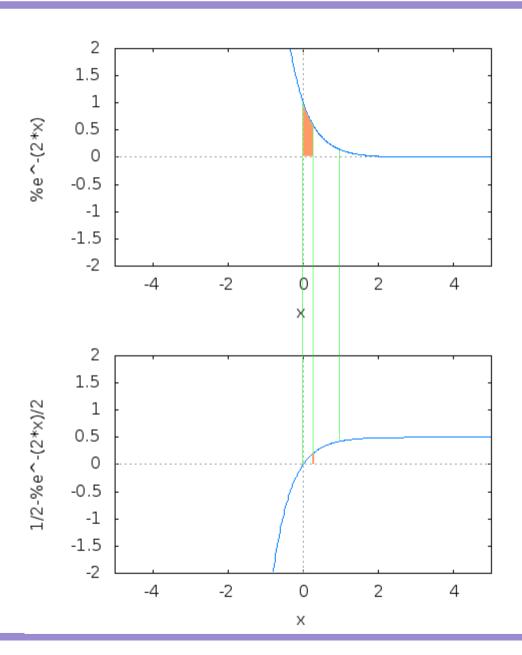
h(t) = char modes

non-zero initial conditions

$$\exists i, k_i \neq 0$$

Total Response y(t)

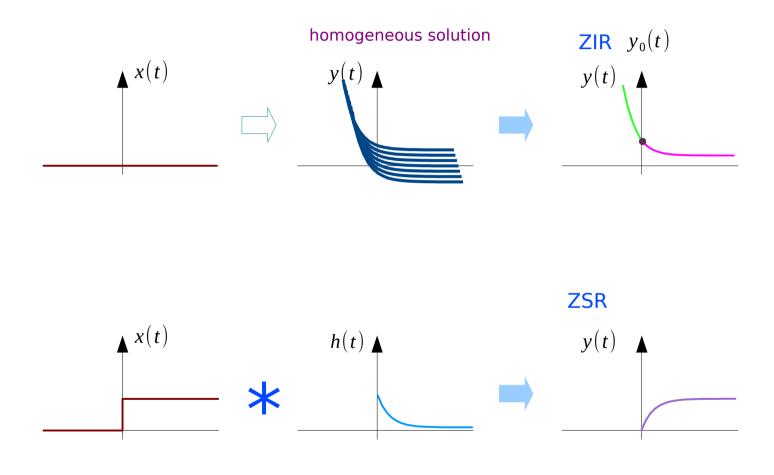




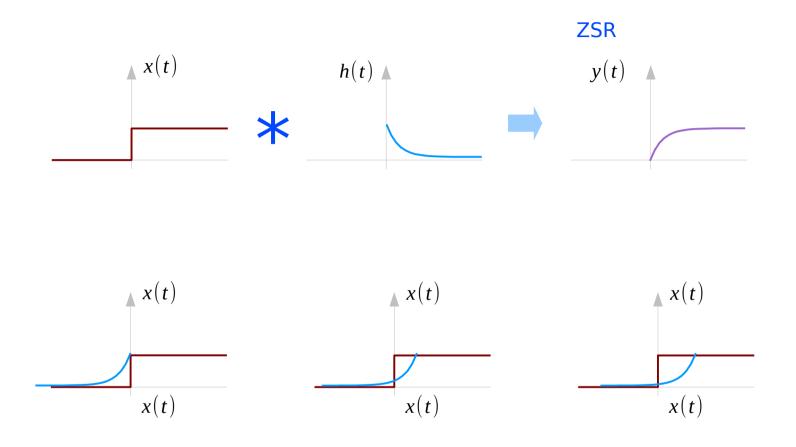
$$y_1(t) = e^{-2t}$$

$$y_2(x) = \int_0^x e^{-2t} dt = 1 - \frac{1}{2} e^{-2x}$$

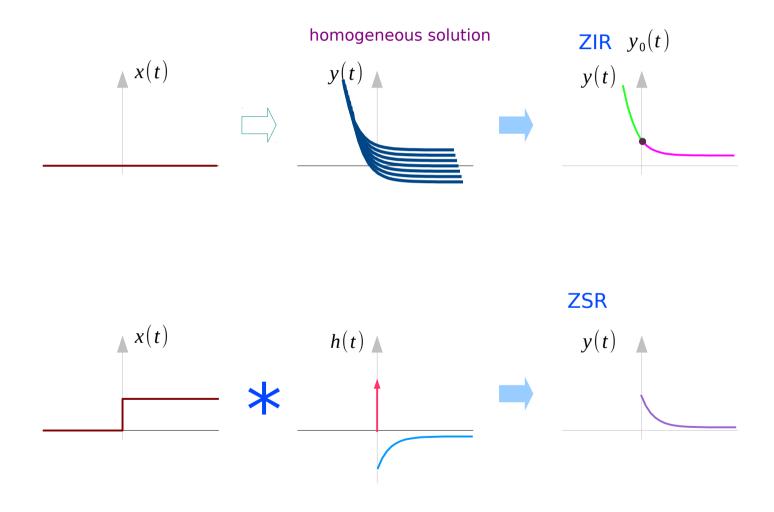
Total Response = ZIR + ZSR (Ex1)



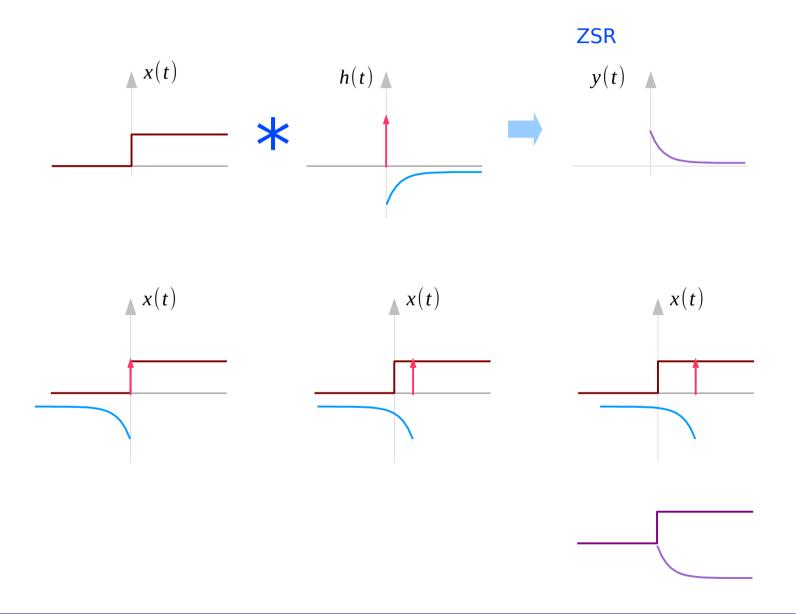
Total Response = ZIR + ZSR (Ex1)



Total Response = ZIR + ZSR (Ex2)



Total Response = ZIR + ZSR (Ex2)



Classical Solution

Natural Response

Homogeneous Solution

$$\frac{d^2 y_n(t)}{dt^2} + a_1 \frac{d y_n(t)}{dt} + a_2 y_n(t) = 0$$

Homogeneous Solution

$$Q(D)y_n(t) = 0$$

characteristic modes response

Forced Response

Particular Solution

$$\frac{d^{2}y_{p}(t)}{dt^{2}} + a_{1}\frac{dy_{p}(t)}{dt} + a_{2}y_{p}(t) = b_{0}\frac{d^{2}x(t)}{dt^{2}} + b_{1}\frac{dx(t)}{dt} + b_{2}x(t)$$

Particular Solution

$$Q(D)y_{\Phi}(t) = P(D)x(t)$$

non-characteristic mode response

Total Response

$$Q(D)[y_n(t) + y_{\Phi}(t)] = P(D)x(t)$$

$$y(t) = y_n(t) + y_{\Phi}(t)$$

Natural Response

Natural Response

Homogeneous Solution

$$\frac{d^{2}y_{n}(t)}{dt^{2}} + a_{1}\frac{dy_{n}(t)}{dt} + a_{2}y_{n}(t) = 0$$

$$Q(\lambda) = (\lambda^{N} + a_1 \lambda^{N-1} + \dots + a_{N-1} \lambda + a_N) = 0$$

$$Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_N) = 0$$

$$y_{n}(t) = K_{1}e^{\lambda_{1}t} + K_{2}e^{\lambda_{2}t} + K_{N}e^{\lambda_{N}t} = \sum_{i} K_{i}e^{\lambda_{i}t}$$

$$y_{n}(t) + y_{p}(t) \quad \{y^{(N-1)}(0^{+}), \dots, y^{(1)}(0^{+}), y(0^{+})\} \quad K_{i}$$

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_N e^{\lambda_N t} = \sum_i c_i e^{\lambda_i t}$$

$$y_0(t) \quad \{y^{(N-1)}(0^-), \dots, y^{(1)}(0^-), y(0^-)\} \quad c_i$$

Homogeneous Solution

$$Q(D)y_n(t) = 0$$

characteristic modes response

linear combination of the characteristic modes.

the same form as that of the zero input response

only its constants are different

← different initial conditions

Forced Response

Forced Response

Particular Solution

$$\frac{d^{2}y_{p}(t)}{dt^{2}} + a_{1}\frac{dy_{p}(t)}{dt} + a_{2}y_{p}(t) = b_{0}\frac{d^{2}x(t)}{dt^{2}} + b_{1}\frac{dx(t)}{dt} + b_{2}x(t)$$

Particular Solution

$$Q(D)y_{\Phi}(t) = P(D)x(t)$$

non-characteristic mode response

$$y_p(t) = \beta$$

$$x(t) = k$$

$$y_p(t) = \beta e^{\xi t}$$

$$x(t) = e^{\xi t} \quad \xi \neq \lambda_i$$

$$y_p(t) = \beta t e^{\xi t}$$

$$x(t) = e^{\xi t} \quad \xi = \lambda_i \quad e^{\xi t} \quad \text{ch. mode}$$

$$y_p(t) = \beta t^2 e^{\xi t}$$

$$x(t) = e^{\xi t} \quad \xi = \lambda_i \quad e^{\xi t} \quad \text{ch. mode}$$

$$y_p(t) = (t^r + \beta_{r-1} t^{r-1} + \dots + \beta_1 t + \beta_0) e^{\xi t}$$

$$y_p(t) = \beta \cos(\omega t + \Phi)$$

$$x(t) = \cos(\omega t + \Phi)$$

coefficients β_i are determined by substituting the possible $y_p(t)$ into the given differential equation, then equating the similar terms only for inputs with the finite derivatives

$$Q(D)\overline{y_p(t)} = P(D)x(t)$$

Everlasting & Causal Sinusoidal Function

everlasting sinusoid function

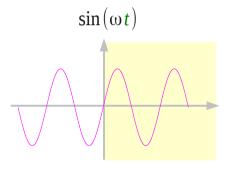
applied at $t = -\infty$

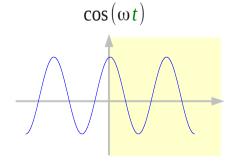
zero state (no initial conditions)

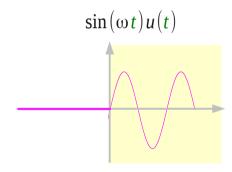
•causal sinusoid function

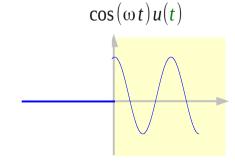
applied at t = 0

$$e^{i\omega t} u(t)$$









Everlasting & Causal Exponential Function

exponential function

$$e^{st} = e^{\sigma t + i\omega t}$$

$$s = \sigma + i\omega$$

everlasting exponential function

applied at $t = -\infty$

zero state (no initial conditions)

•causal exponential function

applied at
$$t = 0$$

$$e^{st} u(t)$$

sinusoid function

$$e^{st} = e^{i\omega t}$$

$$s = i\omega$$

everlasting sinusoid function

applied at $t = -\infty$

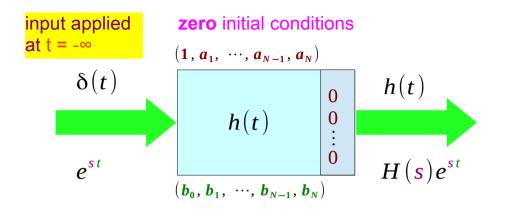
zero state (no initial conditions)

•causal sinusoid function

applied at t = 0

$$e^{i\omega t} u(t)$$

ZSR to an everlasting exponential input



$$y(t) = h(t) * e^{st}$$

$$= \int_{-\infty}^{+\infty} h(\tau) e^{s(t-\tau)} d\tau$$

$$= e^{st} \cdot \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

$$= e^{st} \cdot H(s)$$

$$H(s) = \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

$$Q(D)y(t) = P(D)x(t)$$

$$Q(D)[h(t) * x(t)] = P(D)x(t)$$

$$Q(D)[e^{st}H(s)] = P(D)e^{st}$$

$$H(s)Q(D)e^{st} = P(D)e^{st}$$

$$D^{r}e^{st} = \frac{d^{r}}{dt^{r}}e^{st} = s^{r}e^{st}$$

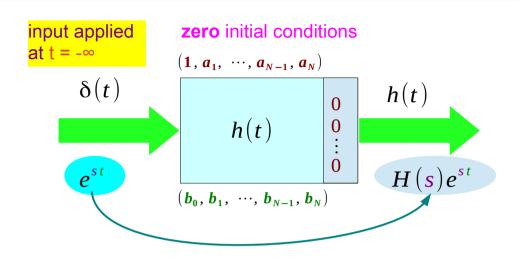
$$Q(D)e^{st} = Q(s)e^{st}$$

$$P(D)e^{st} = P(s)e^{st}$$

$$H(s) = \frac{P(s)}{Q(s)}$$

 $H(s)Q(D)e^{st} = P(D)e^{st}$

Everlasting Exponential Response



$$y(t) = H(\zeta)e^{\zeta t} \qquad -\infty < t < +\infty$$

$$y(t) = H(\zeta)x(t)$$
 $x(t) = e^{\zeta t}$

$$Y(s) = H(s)X(s)$$

Laplace Transform of h(t)

$$H(s) = \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

Polynomials of Differential Equation

$$H(s) = \frac{P(s)}{Q(s)}$$

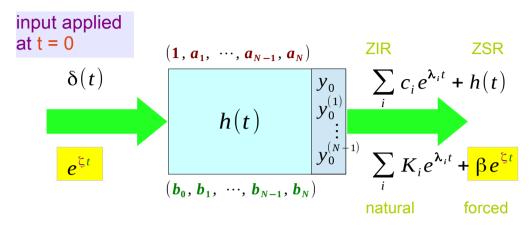
Transfer function (t-domain)

$$H(s) = \left[\frac{y(t)}{x(t)}\right]_{x(t)=e^{st}}$$

Transfer function (s-domain)

$$H(s) = \frac{Y(s)}{X(s)}$$

Forced Response to a <u>causal</u> exponential input



$$Q(D)y(t) = P(D)x(t)$$

$$Q(D)[\beta e^{\zeta t}] = P(D)e^{\zeta t}$$

$$\beta Q(D)e^{\zeta t} = P(D)e^{\zeta t}$$

non-zero initial conditions

$$y_0^{(N-1)} = y^{(N-1)}(0^+) = 0$$

$$y_0^{(N-2)} = y^{(N-2)}(0^+) = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_0^{(1)} = y^{(1)}(0^+) = 0$$

$$y_0 = y(0^+) = 0$$

These initial conditions does **not** be used in computing the coefficients β

But used in determining the coefficients K_i of the natural response $y_n(t)$

$$y_{n}(t) = K_{1}e^{\lambda_{1}t} + K_{2}e^{\lambda_{2}t} + K_{N}e^{\lambda_{N}t} = \sum_{i} K_{i}e^{\lambda_{i}t}$$

$$y_{n}(t) + y_{p}(t) \quad \{y^{(N-1)}(0^{+}), \dots, y^{(1)}(0^{+}), y(0^{+})\} \quad K_{i}$$

coefficients β_i are determined by substituting the possible $y_p(t)$ into the given differential equation, then equating the similar terms

$$D^{r}e^{\zeta t} = \frac{d^{r}}{dt^{r}}e^{\zeta t} = \zeta^{r}e^{\zeta t}$$

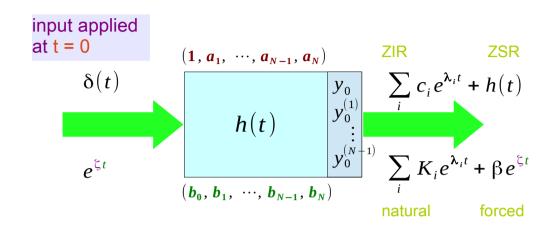
$$Q(D)e^{\zeta t} = Q(\zeta)e^{\zeta t}$$

$$P(D)e^{\zeta t} = P(\zeta)e^{\zeta t}$$

$$\beta = \frac{P(\zeta)}{Q(\zeta)}$$

 ζ : **NOT** a characteristic mode

Causal Exponential Response



natural forced

$$y(t) = \sum_{i} K_{i} e^{\lambda_{i}t} + H(\zeta) e^{\zeta t}$$
 $t \ge 0$

$$y(t) = \sum_{i} K_{i} e^{\lambda_{i} t} + H(\zeta) x(t) \qquad x(t) = e^{\zeta t}$$

$$Y(s) = \left[\sum_{i} \frac{K_{i}}{(s - \lambda_{i})} + H(s)\right] X(s)$$

Laplace Transform of h(t)

$$H(s) = \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

Polynomials of Differential Equation

$$H(s) = \frac{P(s)}{Q(s)}$$

Transfer function (t-domain)

$$H(s) = \left[\frac{y(t)}{x(t)}\right]_{x(t)=e^{st}}$$

Transfer function (s-domain)

$$H(s) = \frac{Y(s)}{X(s)}$$

Limits of the Classical Method

cannot separate the internal conditions and the external input

cannot express system response y(t) in terms of explicit function of x(t)

Restricted to a certain class of inputs

only for inputs with the finite derivatives

The auxiliary conditions must be on the total response which exists only for $t \ge 0^+$

In practices, only the initial conditions at $t = 0^-$ Is given,

We must drive the initial conditions at $t = 0^+$

$$y(t) = H(s)e^{st} \qquad -\infty < t < +\infty$$

System Response to External Input

= Zero State Response

$$y_p(t) = H(\zeta)e^{\zeta t} \qquad t \ge 0$$

Forced Response to Causal External Input

$$y(t) = y_n(t) + y_p(t)$$

$$y(t) = \sum_{i} K_{i} e^{\lambda_{i} t} + H(\zeta) e^{\zeta t} \qquad t \ge 0$$

$$t \to \infty \qquad y(t) = H(\zeta) e^{\zeta t}$$

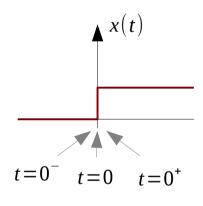
NOT a characteristic mode $\,\zeta\,$

Total Response y(t)

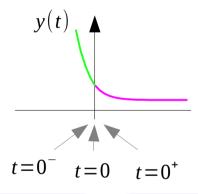
$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{N-M}\frac{d^{M}x(t)}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N}) \cdot y(t) = (b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N}) \cdot x(t)$$

$$Q(D) \cdot y(t) = P(D) \cdot x(t)$$



h(t)



zero input response +

zero state response

$$y(t) = y_0(t) \leftarrow t \le 0^-$$

because the input
has not started yet

$$y(0^{-}) = y_0(0^{-})$$

$$\dot{y}(0^{-}) = \dot{y}_{0}(0^{-})$$

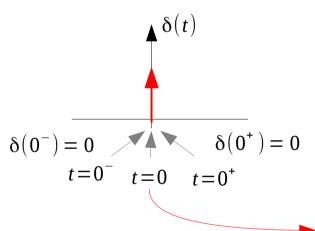
in general, the total response $y(0^-) \neq y(0^+)$ $\dot{y}(0^-) \neq \dot{y}(0^+)$ possible discontinuity at t = 0

Impulse Response h(t)

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \cdots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{N-M}\frac{d^{M}x(t)}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \cdots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$\frac{(D^{N} + a_{1}D^{N-1} + \cdots + a_{N-1}D + a_{N})}{(D^{N} + a_{1}D^{N-1} + \cdots + a_{N-1}D + a_{N})} \cdot y(t) = \frac{(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \cdots + b_{N-1}D + b_{N})}{(D^{N} + a_{1}D^{N-1} + \cdots + a_{N-1}D + a_{N})} \cdot x(t)$$

$$Q(D) \cdot y(t) = P(D) \cdot x(t)$$



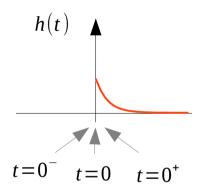
h(t)

Storage creates nonzero initial condition at $t=0^{+}$

All initial conditions are zero at $t=0^-$

$$y(0^{-}) = y^{(1)}(0^{-}) = \cdots = y^{(N-2)}(0^{-}) = y^{(N-1)}(0^{-}) = 0$$

$$y(0^{-}) = y^{(1)}(0^{-}) = \cdots = y^{(N-2)}(0^{-}) = 0, \quad y^{(N-1)}(0^{-}) = 1$$



 $t \ge 0^+$ h(t) = characteristic ($t \ne 0$) mode terms

t=0 h(t) can have at most an impulse $A_0 \delta(t)$

 $h(t) = A_0 \delta(t) + char mode terms t \ge 0$

h(t) can have at most a $\delta(t)$

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \cdots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{0}\frac{d^{N}x(t)}{dt^{N}} + b_{1}\frac{d^{N-1}x(t)}{dt^{N-1}} + \cdots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$(D^{N} + a_{1}D^{N-1} + \cdots + a_{N-1}D + a_{N})y(t) = (b_{0}D^{N} + b_{1}D^{N-1} + \cdots + b_{N-1}D + b_{N})x(t)$$

$$M = N$$

$$Q(D)y(t) = P(D)x(t)$$

$$\left(\frac{D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})h(t)}{b} = \underbrace{(b_{0}D^{N} + b_{1}D^{N-1} + \dots + b_{N-1}D + b_{N})\delta(t)}_{\text{(1)}}$$

If $\delta^{(1)}(t)$ is included in h(t), then the highest order term

$$\delta^{(N+1)}(t)$$

 $\delta^{(N)}(t)$

contradiction

h(t) cannot contain $\delta^{(i)}(t)$ at all $\rightarrow h(t)$ can contain at most $\delta(t)$ $M \leq N$

$$\frac{d^N y(t)}{d t^N} = \delta^{(N)}(t)$$

New Initial Condition created by $\delta(t)$

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{N-M}\frac{d^{M}x(t)}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$\frac{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot y(t) = \frac{(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot x(t)$$

$$Q(D) \cdot y(t) = P(D) \cdot x(t)$$

IC - Impulse Response (1)

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{N-M}\frac{d^{M}x(t)}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$\frac{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot y(t) = \frac{(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot x(t)$$

$$Q(D) \cdot y(t) = P(D) \cdot x(t)$$

$$t \ge 0^+$$
 h(t) = characteristic mode terms

$$t \ge 0$$
 h(t) = $A_0 \delta(t)$ + characteristic mode terms

Simplified Impulse Matching Method $\rightarrow h(t) = b_0 \delta(t) + [P(D)y_n(t)]u(t)$

 $y_n(t)$ linear combination of characteristic modes with the following initial conditions

$$y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) \cdots = y_n^{(N-2)}(0) = 0 \quad y_n^{(N-1)}(0) = 1$$

$$\frac{d^{N} y(t)}{d t^{N}} + a_{1} \frac{d^{N-1} y(t)}{d t^{N-1}} + \dots + a_{N-1} \frac{d y(t)}{d t} + a_{N} y(t) = \delta(t)$$

 $\delta(t)$ $\delta(t)$

IC – Impulse Response (2)

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + \dots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = b_{N-M}\frac{d^{M}x(t)}{dt^{M}} + b_{N-M+1}\frac{d^{M-1}x(t)}{dt^{M-1}} + \dots + b_{N-1}\frac{dx(t)}{dt} + b_{N}x(t)$$

$$\frac{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot y(t) = \frac{(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N})}{(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})} \cdot x(t)$$

$$Q(D) \cdot y(t) = P(D) \cdot x(t)$$

 $y_n(t)$ linear combination of characteristic modes with the following initial conditions

$$y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) \cdots = y_n^{(N-2)}(0) = 0 \quad y_n^{(N-1)}(0) = 1$$

$$\frac{d^{N}y(t)}{dt^{N}} + a_{1}\frac{d^{N-1}y(t)}{dt^{N-1}} + a_{2}\frac{d^{N-2}y(t)}{dt^{N-2}} + \cdots + a_{N-1}\frac{dy(t)}{dt} + a_{N}y(t) = \delta(t)$$

no jump discontinuity is allowed at
$$t = 0$$

no jump aiscontinuity is allowed at
$$t=0$$

integration
$$y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) \cdots = y_n^{(N-2)}(0) = 0$$
 $y_n^{(N-1)}(0) = 1$

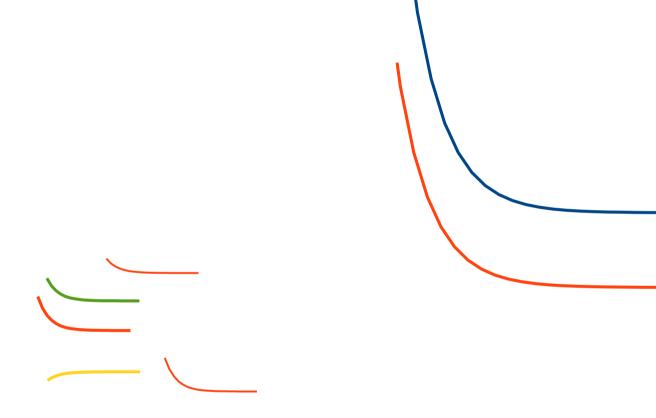
$$\delta(t) \qquad u(t) \qquad no jump \ discontinuity \ is \ allowed \ at \ t=0 \qquad unit jump \ discontinuity \ is \ allowed \ at \ t=0$$

$$y_n^{(N-1)}(0) = 1$$

unit jump discontinuity at t = 0

$$y_n^{(N)}(t) = \delta(t)$$

Impulse Response h(t)



References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] B.P. Lathi, Linear Systems and Signals (2nd Ed)
- [4] X. Xu, http://ecse.bd.psu.edu/eebd410/ltieqsol.pdf