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Causal LTI System Equations

d" x d" 'x dx
ar T g Tt gy

d
+ -+ aN_ld—)t/ + ayy(t) = b

+ by x(t)

(D"+a, D" '+---+a,_,D+ay)y(t) = (b,D"+b,D" '+---+b,_ D+b,)x(t)

Q(D) = (D"+a,D" '+---+a,_,D+ay)
P(D) = (b,D"+b,D" '+---+b,_,D+b,)

e Zero Input Response
o Zero State Response (Convolution with h(t))
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Interval of Validity

t>0 t =0
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Comparison of System Responses (1)

e Zero Input Response

@ h(t)

Yo
Yo

(n]

Yo

Response of a system when
the input x(t) is zero (no input)

« Zero State Response

J;;Lj> h(c)

o O

Response of a system

caused only by the input
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* Natural Response

Solution due to
characteristic modes only

 Forced Response

n n—1
Y40, s vay(0) =

tn
d" x d" 'x
b b -+ b t
[ 022 L2t

Homogeneous

Particular

Solution excluding the effect of

characteristic modes
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Comparison of System Responses (2)

e Zero Input Response

y&) YO(t)
0 h(t) )’0:

yol

response to the initial conditions

{y(N_l)(O_)’ B y(l)(o_)’ y(O_)}

« Zero State Response

~
—
~
~—
(-}
<
—
~
~—

response to the input

h(t)=b,8(t) + Z d.e"'

:
I

* Natural Response Homogeneous
dny dn—ly
+ +--+a,yl= 0
dt"  de"? 4

characteristic modes response

yalt) = 2 Ke™

 Forced Response Particular

dny ‘a dn—ly N

dt" vt +a,y(t) =
n n—1
boz;’(-'-blddtx +--+ b, x(t)

non-characteristic mode response

y,(t)

CLTI Differential Equations (4B)

Young Won Lim
9/20/14



Total Response

ZIR ZSR ZIR ZSR

Z ¢ |
l y,(t)

S ke
i

Natural Response Forced Response
y,(t)=0 x(t)=d(t)
v = TR [yl )=t 0=
i yp(t):ﬁ1t+[30 X(t):tu(t)
y,(t) =pe" x(t)=e*" T#MA
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Initial Conditions

ZIR Coefficients

yzi(t) = Z Cie}\it

initial conditions
attime t=0"

initial conditions
attime t=0

continuous

t>0

Forced Response Coefficients

~
At
y(t)= 2 Kie" +y,(t)
conversion
initial conditions -initial conditions
attime t=0" " attime t=0"
9 t>0

~

v

ZSR Coefficients

S ke 4y, (0)]-ult)

Ylt) =

zero conditions

‘ initial conditions
attime t=0

attime t=0"

t>0

h(t)=b,o(t)+ Z d.e"

ylt) = x(t) * Z d,e"" + b, d(t)

zero conditions

initial conditions
attime t=0 =)

“ attime t=0"

t>0
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Total Response

x(t) y(t)

) ) | ) I RN

ZIR ZSR

the initial condition before t=0 is used

characteristic eM characteristic eM
1) (s - - de t de't

{y(N 1)(0 )’ . y(l)(o ), y(O )} - gnnolye erms mgyeexciasrtms

any input is applied at time O, but in

the ZIR: the initial condition does not

change before and after time 0 since

no input is applied

1 {
d"y d 'y
v a, S X v a,y(e) =
W s X
b,—+b +---+b x(t
0 dtn 1 dt nx( )

Natural Response Forced Response

the initial condition after t=0 is used include all the - charagiefistic  r oMt
characteristic e mode ters  ocsible

{y(N—l)(()*), e y(l)(()*), y(()‘”)} B | mode terms

So the effects of the char. modes of

ZSR are included.
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Types of Causal LTI System Responses

e Zero Input Response

Yo YO(t)

0 he) | -

yolt) = 2™ [y (00), -,

« Zero State Response

) 4

y(6)=h(e)* x(t) hle)=bd(c)+ X de™

~
—
~
~—
(e}
<
—
~
~—

|

* Natural Response

d"y
dt"

dn—ly
dtn_l

+(11

yn(t) = Z Kie)\it

45 oo

Homogeneous

ta,y =0

the coefficients Ki's are determined
by the initial conditions.

yalt)] +|y,(t)

[y, -, yV(0%), y(07))

 Forced Response

dny ‘a dn—ly
de" L de"!
d" x d"'x

b +b
“de" O dt

+ ...

Particular

+a,y(t) =

+--+ b,x(t)

Be“" or
yp(t) - {(tr + ﬁr—ltr_l +oo Byt + ﬁo)

y ( ) similar to the input, with the coefficients
p determined by equating the similar terms
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Three Initial Value Problems

y'"'+P(x)y' +Q(x)y =f(x)
J’<X0) = Yo
y'(xo) - Y

y oy P(X) y’ + Q( X) y = 0 Homogeneous DEQ Zero Input Response

Y<X0) - Yo

y'(%) =y,

y an P(x)y' + Q(x)y - f(x) Nonhomogeneous DEQ Zero State Response

J <X°) y ! Zero Initial Conditions

y '(Xo) =0 Initially at rest

. " " Y W |_
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Decomposing an Initial Value Problem

e )+ vt - TR ¥(©0= (0% 7.0

y(07 )=k, y'(07)=k Target Initial Value Problem

g
y'(t) + a,y'(t) + a,y(t)|=| 0 yzi(t)
y,(07)=k, y,'"(07)=k, Nonzero Initial Conditions Zero Input Response

<
] |y (0= x()eh(

y,,(07)=0 y,'(07)=0 Zero Initial Conditions Zero State Response

\.
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Decomposing a Differential Equation

.
y'(t) + ay'le) + ay(t) =10 y, (t) Natural Response
{
y''(t) + a,y'(t) + ay(t) |=| byy''(t) + byy'(t) + b,x(t) yp(t) Forced Response
\.
y(6) + ay'(6) + apyle) = byx"'(6) + byx'(t) + b,x(1 y(t)=y,(t)+y,(t)
y(0 )=y, y'(07)=y, Target Initial Value Problem
CLTI Differential Equations (4B) 13 Young ¥oon L



Zero Input Response : y,(t)

(DN+a1DN_1+"'+aN—1D+aN)y(t) = (boDN+b1DN_1+'"+bN—1D+bN)X(t)

.V(o) yO(t) d2 ( ) d ( )
1 t t
h(e) P 2th o 0, 2208 4,0
R
X(1) =0 X(1) =0
Q(D)y,(t) = 0 (D"+a,D" '+ --+a, D+a,)y,(t) = 0

linear combination of y,(t) and its derivatives

ce’" only this form can be the solution of y,l(t)

\J
Q(x) =0 = W+ a "t ay  htay) e =0
=0 # 0
CLTI Differential Equations (4B) 14 Young Won Lim



Characteristic Modes

(DN"'alDN_l"'"'+aN—1D+aN)y(t) = (boDN+b1DN_1+'"+bN—1D+bN)X(t)

Qx) = W+a A" '+ +ay A+ay) = 0

Q(}\) = (7\ - ;\'1)()\ - )\'2) (7\ - ;\‘N) =0 A, characteristic roots

Volt) = cie  + ™ o+ e = D e e™  characteristic modes
ZIR | a linear combination of the
characteristic modes of o N _
the system the initial condition before t=0 is used
(1,a,, -, ay_,, ay) {y(N_l)(O_)J T y(l)(o_): y(o_)}
0 y — — + + +
0 = [y"(0"), -, y"(0), y(0%))
) 0 )
y(;)N any input is applied at time 0, but in
(bo. b ) by the ZIR: the initial condition does not
0> Y1, 77 Un-1, Up I i i
x(t) = 0 yo(t) = Z e change before and after time 0 since

,. no input is applied
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Zero State Response y(t)

(DN+a1DN_1+”'+aN—1D+aN)y(t) — (boDN+b1DN_1+'"+bN—1D+bN)X(t)

All initial conditions are zero y¥U07) = - = yU(07) = y?(0)

superposition of inputs only

(1,a,, -, ay_y, ay)
L 0 w0 w0 = Al x(
o (bo, brs - by bN>O
x(t) = Ahglozx(nm)p(t—nm:) y(t) = Alirr_l)lox(nA'c)h(t—nAr)A‘c
= lim 3 x(nav) EUGAT Ao = [ x(x)h(t-7) d=
= AlirilOZx(nA‘c)B(t—nAt)A‘c -
CLTI Differential Equations (4B) 16 Young Won Lim
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Convolution with the Impulse Response

x(t) = lim D) x(nAt)p(t—nAt) = jim Zx(nAr)p(t_nAT)Ar = lim Y, x(nAt)d(t—nAt)At

At>0 T e At At>0 T
p(t) o(t) (by, by, by)
1
A x(t) mmmd  h(e) wmd y(t)
At (1’01) aN)
o(t) h(t)
S(t—nAT) h(t—nAt)
x(nAT)8(t—nAT)AT x(nAt)h(t—nAT)AT
lim x(nAT)d(t—nAT)AT lim x(nAT)h(t—nAT)Ax
At=>0 AT>0
x(t) y(t)
y(t) = lim x(nAt)h(t—nAT)AT = fx('c)h(t—t)dr
ATt->0 —0
DT Convolution 17 Young W. Lim
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ZIR & Initial Conditions

(DN+a1DN_1+"'+aN—1D+aN)y(t) — (boDN+b1DN_1+”'+bN—1D+bN)X(t)

Non-zero initial conditions (y™(07), y™?(07), -, yP(07), y?(07))
(1’01’ "saN—laaN)
0 Yo yo(t)
(1)
) h0 \
(vf)
Yo
(0,0, ---,0,0) _/f\ N
t=0 t=0 =0
y (t) is present at t=0- Application of the input x(t) at t=0
we can be sure of y (t) exists for t=0 does not affect y ()
non-zero initial (N—1)(O—) _ (N—l)(O) — (N—l)(0+) - Kk Inductor current
conditions 4 (N2} “ (N-2) 4 (N—2) v Capacitor voltage
(07) = (0) = (0) Ky
di, k;#0
Y0 = ) = e = Ky
y(07) = y(0) = y(07) =k,
: : : Young Won Lim
CLTI Differential Equations (4B) 18 550714



ZSR & Initial Conditions

(D" +a,D" ' +--+ay_,D+ay)y(t) = (byD"+b, D" '+---+by_ D+by)x(t)
All initial conditions are zero Yy U) = Yo ) = - = yWUo) = y90) = 0

6(t) (1,ay, -, ay_y, ay) h(t)

‘ d(t) o | h(t)

PN 0 N

(bo: b1: ) bN—l: bN)

t=0" t=0 =0" t=0" t=0 t=0"
effective only at the instant t=0 and establishes non-zero For t>0, this can be considered
initial conditions at the instant immediately after 0 (t=07), as finding the ZIR of the system
by storing energy (capacitor) with the initial conditions
(N-1)(-) = 0 initially (N-1) - K finite jumps — (N-1) (") = Kk non-zero initial
- O_) B at rest y(N_z)(O) _ "' impulse y(N_z)(O+) _ "' conditions
y 7(07) =0 y (0) = Ky matching y©07) = Ko
. . . . . . 3 i, ki #0
y'o) =0 y'(o) = K, Yo =k
y(07) =0 y(0) = K, y(0%) = k,
H H H Young Won Lim
CLTI Differential Equations (4B) 19 950714



Impulse Response

Impulse response (t > 0) = h(t) =b,8(t)+ char modes
ZSR to delta function - h(t)  (¢20)
(N—l)(o—) 0 (1,a,, =, ay_y, ay)

K</\
=
o
-
[l
o
(=}

Impulse response (t > 0) = h(t) =char modes
ZIR with the initial condition (>0, (t > 0°)

(N—l)(0+) k (1, a;, -, ay_y, ay) E
= Ky-1 !
(N_z)(o ) = kN—Z yz)l) yO(t) E
. h(e) [ —p |
Yo" :.k (1\:1 1) /
y (0% 1 . Yo /t\
y(07) = k, i, k#0 (0,0, ---,0,0) _ ' -
e t=0" t=0 =0
CLTI Differential Equations (4B) 20 Young Won Lim



h(t) whent>0and t>0"

v -
i N

t=0" t=0 t=0" t=0" t=0 t=0"
h(t) = b,d(t)+ char modes h(t) =char modes
t>0 t>0, (t>=0")
Impulse response = Impulse response (t > 0) =
ZSR to delta function ZIR with the initial condition
(N-1)(a=) = 0 (N-1)(*) = Kk non-zero initial
(N_z)(o_) _ (N_Z)(O+ v conditions
y 7(07) =0 y (0) = Ky
; : 3i, k#0
y(07) =0 Y0 = k
y(07) =0 y(0") = k,
i i i Young Won Lim
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Total Response y(t)

previous impulse

(1,a,, ~, ay_y, ay)
Ble+to y(01) )’O(t)
he) A ‘ \
v
(0,0, ---,0,0)
current impulse
d(t) (1,a,, -, ay_y, ay)
S(t) o h(t)
_|_ ) h0 ‘
0
(by, by, =+, by_y, by)

CLTI Differential Equations (4B) 22 Young Won Lim
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2t
Y1(t) = €

£
*
)
{I
q
$ .

1|

15 L
-7
4 2 0 2 4
X

2 : - - - X 1

L5 ¢ : y,(x) = fe_ztdt = 1—5 e
o 1 0
=
*
™
{I
Q)
=2
o
—
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Total Response = ZIR + ZSR (Ex1)

homogeneous solution ZIR 0

Ixt yt

ZSR
A x(t) h(t) y(¢) I
* L

CLTI Differential Equations (4B) 24 Young Won Lim
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Total Response = ZIR + ZSR (Ex1)

CLTI Differential Equations (4B) 25 Young Won Lim
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Total Response = ZIR + ZSR (Ex2)

homogeneous solution ZIR yo(t)

x(t) y{t) y(t)

k \__

CLTI Differential Equations (4B) 26 Young Won Lim
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Total Response = ZIR + ZSR (Ex2)

ZSR
x(t) h() 0
x ] _
—
x(t) x(t) x(t)
N\ N\ \
N

CLTI Differential Equations (4B) 27 Young Won Lim
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Classical Solution

* Natural Response

Homogeneous Solution Homogeneous Solution
" e Q(D)y,(t)]= 0
t t L
3}:2 + a, );”t + ay,(t)=0 characteristic modes response

 Forced Response

Particular Solution Particular Solution
Py, (t) dy,(t) Q(D)lya(t)| = P(D)x(t)
— 5 ta—]—— + aZyp(t) = icti
dy dt non-characteristic mode response
b M + b dx_(t) + b X(t)
* 442 ' dt ’

* Total Response

Q(D)|ly.(t)+ ya(t)l|= P(D)x(t)

y(t) 3 y,(t)+ yalt)

Young Won Lim
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Natural Response

* Natural Response

Homogeneous Solution Homogeneous Solution

D t)f=0
) . dyal0) APl |
e TA4g t ay,(t)=0 characteristic modes response

QO\') = (7\-N+ al}\N_l"'""" ay_ A+ aN) =0

Q(A) = (M =AJA =2y - (A=Ny) =0

At At Ayt At linear combination of the
— 1 2 e + N = . ! . .
y,,(t) K.e * K,e Kye Z Kie characteristic modes.

yn(t) + yp(t) {y(N_l)(0+), Y y(l)(0+), J’(0+)} K, the same form as that of the

zero input response

only its constants are different

y (t) N T ¥ + oMt = Zcew «— different initial conditions
0 - 1 2 N - i
volt)  [y"H(00), -+, y(07), y(07)) © e
CLTI Differential Equations (4B) 30 Young Won Lim
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Forced Response

 Forced Response

Particular Solution Particular Solution
Py, (t)  dy,(t) _ Q(D)pya(t)) = P(D)x(t)
— L=t a, =+ a,y,(t) = L
;; n ddt( ] non-characteristic mode response
x(t x(t
b, g2 b, dt bzx(t)
y,(t)=p x(t) =k
y,(t)=pe x(t)=e"' T#M\
y,lt) =pre” x(t)=e" T=k e ch. mode
yp<t) = Btzem x(t) = %' C=M\ e, tet' ch. mode
Yp(t) = (tr + ﬁr—1tr Tt Bt + Bo)em X(t) = (t'+ OLr—ltr_l +eoe+ogt+ O‘o)egt
y,(t) =pcos(wt + @) x(t)=cos(wt +0)
coefficients B; are determined only for inputs with the finite derivatives
by substituting the possible y,(t)
into the given differential equation, then Q(D)ly,(t)| = P(D)x(t)
equating the similar terms \_/4
: : : Young Won Lim
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Everlasting & Causal Sinusoidal Function

severlasting sinusoid function scausal sinusoid function
applied at t = — appliedat t =0
zero state (no initial conditions) e u(t)

sin (o) sin(ot)u(t)

A

cos(wt) cos(wt)ul(t)
CLTI Differential Equations (4B) 33 Young Won Lim



exponential function
st ot+imt

e = e

S = O0o+iw

severlasting exponential function

appliedat t = —x

zero state (no initial conditions)

scausal exponential function
appliedat t =0

e’ u(t)

CLTI Differential Equations (4B)

Everlasting & Causal Exponential Function

sinusoid function

st it

severlasting sinusoid function

appliedat t = —x

zero state (no initial conditions)

ecausal sinusoid function
appliedat t =0

ei(ut U(t)

34

Young Won Lim
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ZSR to an everlasting exponential input

input applied zero initial conditions
att=-o
ol Lo e o) Q(D)y(c) = P(D)x(t)
¢ Q(D)[h(t) * x(¢t)] = P(D)x(t)
h(e) |0
N 0 Q(D)[e’'H(s)] = P(D)e"
€ (b, b by_1, by) H(s)Q(D)e'" = P(D)e"
y(t) = h(t)* e Detzd—rretzsret
dt
= [ h(v)e"Vd
_J; <+1;)e ’ Q(D)e’ = Q(s)e™
= e _f h(t)e *"dr P(D)e” = P(s)e”
= e’ +|H(s) H(s)Q(D)e’ = P(D)e"
H(s) = :‘&oh(r)e—”dt H(s) = (1;8

CLTI Differential Equations (4B) 35 Young Won Lim



Everlasting Exponential Response

input applied zero initial conditions Laplace Transform of h(t)
att:_oo (1’01: Ty, dy-g, aN)
6 (t) + 00

H(s) = [ h(t)e"d=

— 00

‘ ) o

0

H(s)e" p . . _ _
!bl : lebN/d olynomials of Differential Equation
H(s) = 28)
Q(s)

Transfer function (t-domain)

<

—
~

~—

—oo <[ <+00

~
N—
X

=
=

Young Won Lim
9/20/14
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Forced Response to a causal exponential input

input applied
att:o (1’01: “')aN—l; aN) ZlR ZSR
S(t) Yo | D.c;e +h(t)
y(l) i
) 0
(1)
et Yo > KeM +pe

(bo’ b1, ) bN—lJ bN)
natural forced

non-zero initial conditions

These initial conditions does
not be used in computing
the coefficients 3

But used in determining the

y(ol) = y(l)( coefficients K, of the natural
Yo= response y ()
yn(t) = Klem +K2e7‘2t +KNek”t = ZKieM

yalt) + y,(t)  (y™ (%), -, y(0%), y(07)} = K,

1

coefficients ; are determined by substituting the possible
yp(t) into the given differential equation, then
equating the similar terms

_ P(Y)
=201

C : NOT a characteristic mode

CLTI Differential Equations (4B) 37
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Causal Exponential Response

inpuf applied Laplace Transform of h(t)
att=20 (1,a,, -, ay_y, ay) ZIR ZSR

Z,-“C"eerh(t) H(s) = Th(r)e_”dr

‘ -

_1)
Z Kl.eh"t + Bect

Polynomials of Differential Equation

natural forced
H(s) = P(s)
Q(s)
natural forced Transfer function (t-domain)
t
y(6) = S K™ + H(T)e" (>0 H(s) = |21
: X(t) x(t)=e"

y(t) = Zi:Kie“'WH(C)X(t) x(t) = e

Transfer function (s-domain)

= K, s s s) = Y(s)
¥(s) = |2 iyl His) = 20
CLTI Differential Equations (4B) 38 Young Won Lim



Limits of the Classical Method

cannot separate the internal conditions st

and the external input y(t) = H(s)e —0 <t <+
cannot express system response y(t) in System Response to External Input
terms of explicit function of x(t) = Zero State Response

Restricted to a certain class of inputs yp(t) - H (Z;) e?;t £>0

only for inputs with the finite derivatives

Forced Response to Causal External Input

The auxiliary conditions must be on the y(t) = y.(t) + y,(¢)
total response which exists only for t > 0"

— At c
In practices, only the initial conditions at )’(t) - Z Ke" + H(C)e “llt=0
t=0Isgiven, !

- = ct
We must drive the initial conditions at t>o  y(t) H(T)e

t=0"

NOT a characteristic mode C

CLTI Differential Equations (4B) 39 Young Won Lim
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Total Response y(t)

d dyl(t dx(t
2" +a, FPLEs + ay_q gi )"'aNY( ) = by_y 4 + by _paq 4 +by_, d(t )+bNX<t)
(DN+ alDN_l"'""" ay_; D+ aN) Y(t) = (bN—MDM+ by M+1DM_1+ +by_, D+ bN) X(t)
Q(D) y(t) = P(D) x(t)
A X(t) y(t)
\
YAy YAy
t=0" t=0 ¢t=0" t=0 =0 ¢=0"
y(t) = yolt) = t<0” in general,
: , the total response
zero input response because the input - ;
has not started yet y(07) # y(07)
+ (A (At
tat y(07) = y,(07) A0 = )
Z€T0 state response i T possible discontinuity
y(07) = y,(07) att=0
i i 1 Young Won Lim
CLTI Differential Equations (4B) 40 520714



Impulse Response h(t)

d" y(t d" 'y(t dyl(t d" x(t d" 'x(t d x(t
d};]\(’ )'"‘11 dtN.)i(l )'" ay_q _)’( )"'aNY(t) = by_y dt]\,(f )+bN—M+1 dtM_(l) +by_, d(t )+bNX<t)
(DN+ alDN et ay_,D+ aN) Y(t) = (bN—MDM+ by M+1DM_1+ +by_,D+ bN) : X(t)
Q(D) y(t) = P(D) x(t)
h<t) L
\
5(07) =0 VAN
t=0 =0" t=0 = =0°
=0 Generates energy =0 =0
xstorage creates t>0" h(t) = characteristic

nonzero initial (t#0)

All initial diti .y .
initial conditions are condition at =0

zero at t=0 0
y(07)=y"(07)= - =y"P(0)=y"07)=0
y(0)=y"07)= - =y"(0) =0, h(t) =

mode terms

h(t) can have at most
an impulse A 8(t)

A,8(t)+ char mode terms t=0
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h(t) can have at most a o(t)

d" y(t d" y(t dy(t d" x(t d" ' x(t d x(t
d)tlj\(r )'*"117)1(1)"'""" aN—l%-l- aN)’(t) = bOTI\(I)-l- b17—<1)+"’+ by_, dE )+bNX(t)
(D"+a,D" '+--+ay_,D+ay)y(t) = (b,D"+b,D" '+--+b,_ D+b,)x(t)
M =N Q(D)y(t) = P(D)x(t)

(D"+a,D" '+ -+ ay_ D+ ay)h(t) = (byD"+b,D" '+ -+b,_, D+ bN)‘
2 2

If §(¢)is included in h(t), then the highest order term

5™ () ¢ 5™ (¢) contradiction

h(t) can contain at most o(t) M < N

h(t) cannot contain d0)(t) at all ==

Young Won Lim
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New Initial Condition created by 9O(t)

d"y(t d" "yt dy(t d" x(t d" 'x(t d x(t
d{lg )+al dtN)i(l >+”.+aN—1 y( )+aNy( ) = bN—M thl(I )+bN—M+1 dtM_(l ) bN_1 d( )+bNX(t)
(DN"' alDN R ay_, D+ aN) Y(t) = (bN—MDM+ bN—M+1DM_1+ +by_, D+ bN) X(t)
Q(D) y(t) = P(D) x(t)
d"y(t d"'y(t d"?y(t dy(t
d}tll\g) + a, dtN}i(l) a, dtN)ig) + + Ay C};E) + aNY() = 6(t) y(nN)(l“) = 6(t)
1 1 1 ! 1
5(t) u(t) tut) (Niz)vt(N_Z) u(t) (Nil)! (! u(t)
integration  integration integration  integration
1 i i i i
yo N0) =1y 0)= -y =y(0)=y,(0) = 0
8 1
unit jump discontinuity  no jump discontinuity is allowed at t = 0
att=10

Young Won Lim
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IC — Impulse Response (1)

N N-1
ddytlgt) d"y(t), .,

t=0" h(t) = characteristic mode terms

t=0 h(t) = A,8(t) + characteristic mode terms

Simplified Impulse Matching Method h(t) = b,o(t) + [P(D)y,(t)]ult)

y.(t)  linear combination of characteristic modes
with the following initial conditions

¥a(0)=y,(0)=y,(0) - =y"(0) =0 »""0) =1
dVy(t)  d"yl(t dy(t
dc +a, dtN—1)+ tay_ d( )+aNY<t) = 3(t)
i B i B . B
5(t) u(t) no jump discontinuity is allowed at t = ()
Young Won Lim
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IC — Impulse Response (2)

y,(t)  linear combination of characteristic modes
with the following initial conditions

¥a(0)=y,(0)=y,(0) - =y"(0) =0y 0) =1
dVy(t d" " y(t d" 2 y(t dy(t
d)tlzxg) + a, dtNy_(l) + a dtzv)ig) oo+ dy C);E) + ayy(t) = d(t)
i B i B i B
unit jump discontinuity at t = 0

S5(t) u(t) no jump discontinuity is allowed at t = ()
. .
= y&N_l)(O) =1

Young Won Lim
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Impulse Response h(t)

BN

N
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