The Nyquist Channel

Young W. Lim

November 29, 2013

(ロ)、(型)、(E)、(E)、 E) のQ(()

Copyright (c) 2011-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The ISI Problem

- the overall pulse spectrum P(f)
- the optimum solution for the pulse shaping
 - zero intersymbol interference
 - minimum transmission bandwidth possible

$$y_i = a_i p_0 + \sum_{\substack{k=-\infty \ k \neq i}}^{\infty} a_k p_{i-k}$$
 $i = 0, \pm 1, \pm 2, \cdots$

Discrete LTI System $y[i] = \sum_{k} a[k]p[i-k]$ $a[i] \longrightarrow p[i] \longrightarrow y[i]$ $T_{b} \longrightarrow y[i]$

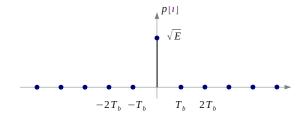
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Zero ISI Condition

•
$$y_i = a_i p_0 + \sum_{\substack{k = -\infty \\ k \neq i}}^{\infty} a_k p_{i-k}$$
 $i = 0, \pm 1, \pm 2, \cdots$

•
$$y_i = a_i p_0$$
 for all $i \iff$

•
$$p_0 = \sqrt{E}$$
 for $i = 0$,
• $p_i = 0$ for all $i \neq 0$



To Find the Optimum Pulse Shape $p_{opt}(t)$

•
$$y_i = \sqrt{E}a_i$$
 for all $i \iff$

• $p_0 = \sqrt{E}$	for $i = 0$,	
• <i>p_i</i> =0	for all $i \neq 0$	

•
$$p_i = p(iT_b) \implies p_{opt}(t) = ?$$

- the sampling rate is equal to the bit rate $R = 1/T_b$
- the bandlimited pulse p(t) for the interval $-B_0 < f < +B_0$
- interpolate $p_i = p(iT_b)$ keeping the bandwidth B_0 as small as possible

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- But the Nyquist sampling theorem gives
 - the minimum sampling rate in terms of a signal's bandwidth

Interpolation

Interpolation Formula: strictly bandlimited signal g(t), bandwidth W

$$g(t) = \sum_{n=-\infty}^{\infty} g(\frac{n}{2W}) \operatorname{sinc}(2Wt - n)$$

reconstructing the original signal g(t)from the sequence of sample values $\{g(n/2W)\}$ the sinc function sinc(2Wt): an interpolation function

• $p_i = p(iT_b)$: sampling p(t) at a uniform bit rate $R = 1/T_b$

• the pulse shape p(t) in terms of its sample values

$$p(t) = \sum_{i=-\infty}^{\infty} p\left(\frac{i}{2B_0}\right) \operatorname{sinc}(2B_0 t - i)$$

The Optimum Pulse Shape $p_{opt}(t)$ - Zero ISI

• The interpolated pulse shape

$$p(t) = \sum_{i=-\infty}^{\infty} p\left(\frac{i}{2B_0}\right) \operatorname{sinc}(2B_0t-i)$$

• Substitute the following equations for zero ISI

▶
$$p_0 = \sqrt{E}$$
 for $i = 0$,
▶ $p_i = 0$ for all $i \neq 0$
 $p(t) = p\left(\frac{0}{2B_0}\right) sinc(2B_0t - 0)$

$$p_{opt}(t) = \sqrt{E}sinc(2B_0t) = \frac{\sqrt{E}sin(2\pi B_0t)}{2\pi B_0T}$$

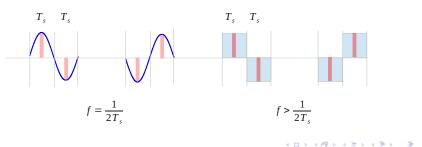
▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Optimum Pulse Shape $p_{opt}(t)$ - Minimum Bandwidth

•
$$p_{opt}(t) = \sqrt{E}sinc(2B_0t) = \frac{\sqrt{E}sin(2\pi B_0t)}{2\pi B_0T}$$

when transmitting symbols via the bandlimited baseband channel

- the maximum frequency that is allowed by the channel : B_0
- the upper bound for the bit rate $R = 1/T_b$ is obtained by
- $\frac{1}{2}\frac{1}{T_c} \leq B_o$: the bandwidth, the half of the bit rate $1/T_b$
- the lower bound for the required bandwidth
- bandwidth $\geq Nyquitst Bandwidth B_0 = \frac{1}{2}R$



-

The Optimum Pulse Spectrum

the optimum pulse shape function and spectrum

$$p_{opt}(t) = \sqrt{E} \operatorname{sinc}(2B_0 t) = \frac{\sqrt{E} \operatorname{sin}(2\pi B_0 t)}{2\pi B_0 T}$$

$$\begin{split} P(f) &= \frac{\sqrt{E}}{2B_0} \qquad & \text{for } -B_0 < f < +B_0, \\ P(f) &= 0 \qquad & \text{otherwise} \end{split}$$

- B_0 the minimum transmission bandwidth
 - a brick-wall function (a rectangular function) $\sqrt{E}rect(f/2B_0)$
 - no frequencies fo absolute value exceeding half the bit rate
 - bandwdith $\Longrightarrow B_0 = \frac{1}{2}R = \frac{1}{2T_h}$
 - if $rect(t/T_b)$ pulse is used, its spectrum becomes $T_b sinc(fT_b)$
 - the first zero crossing of $T_b sinc(fT_b)$: $1/T_b = R$
 - bandwdith $\implies B = R = \frac{1}{T_b}$
- zero intersymbol interference

The Nyquist Channel

- the optimum pulse spectrum : $P_{opt}(f) = \frac{\sqrt{E}}{2B_0} rect(f/2B_0)$
- the Nyquist channel : the PAM system with $P_{opt}(f)$
 - the goal of reducing the requried system bandwidth
 - the channel with the minimum bandwidth
 - ▶ bandwidth $\ge Nyquitst Bandwidth B_0 = \frac{1}{2T_b}$
- the optimum pluse shape : $p_{opt}(t) = \sqrt{E}sinc(2B_0t) = \frac{\sqrt{E}sin(2\pi B_0t)}{2\pi B_0T}$
- the impulse response $p_{opt}(t)$ of the ideal low pass filter $P_{opt}(f)$
 - zero crossigns at $k/2B_0 = kT_b$
 - ▶ shifted pulses of $p_{opt}(t kT_b)$ has no effect at zero crossings

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

zero ISI

The Problems in The Nyquist Channel

the optimum pulse spectrum : $P_{opt}(f) = \frac{\sqrt{E}}{2B_0} rect(f/2B_0)$

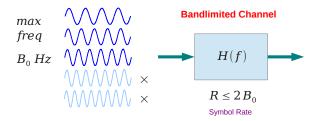
 P(f) is flat from -B₀and +B₀and zero elsewhere physically unrealizable (the abrupt transitions at ±B₀)

the optimum pluse shape :
$$p_{opt}(t) = \sqrt{E}sinc(2B_0t) = \frac{\sqrt{E}sin(2\pi B_0t)}{2\pi B_0t}$$

 p(t) decreases as 1/|t| for large |t| relatively decays slowly (related to the abrupt transition at ±B₀) no margin error in sampling times in the receiver

Nyquist Rate - Definition 1

- upper bound for the symbol rate in the bandlimited channel
- given a bandwidth B₀



bandwidth ≥ Nyquitst Bandwidth B₀ = ¹/₂R = ¹/_{2T_b}
given a symbol rate R

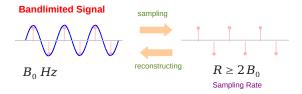
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nyquist Rate - Definition 2

lower bound for the sampling rate in the bandlimited signal

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• given a bandwidth B_0



- sampling frequency $\geq Nyquist Rate = 2B_0$
- sampling period \leq *Nyquist Interval* = $1/2B_0$

Reference

[1] S. Haykin, M Moher, "Introduction to Analog and Digital Communications", 2ed