Computational Aspects (1A)

of Fourier Analysis Types

Copyright (c) 2009-2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

		$T_{s}=1 \cdot T_{s}$	$T_{0}=N_{0} \cdot T_{s}$
		replication frequency	frequency resolution
$\omega=\frac{2 \pi}{T}$	Continuous Time	$\omega_{s}=\frac{2 \pi}{T_{s}}$	$\omega_{0}=\frac{2 \pi}{T_{0}}$
$\omega=\frac{\hat{\omega}}{T_{s}}$	Discrete Time	$\hat{\omega}_{s}=\frac{2 \pi}{1}$	$\hat{\omega}_{0}=\frac{2 \pi}{N_{0}}$
		normalized	normalized

ω_{s} and ω_{0}

Normalized ω_{s} and ω_{0}

$$
\begin{array}{cc}
\omega_{0}=\frac{2 \pi}{T_{0}} \\
\hat{\omega}_{0}=\omega_{0} T_{s} \\
=\frac{2 \pi}{N_{0} T_{s}} T_{s} & \hat{\omega}_{s}=\frac{2 \pi}{T_{s}} \\
\hat{\omega}_{0}=\frac{2 \pi}{N_{0}} & \hat{\omega}_{s}=\omega_{s} T_{s} \\
=\frac{\omega_{s}}{T_{s}} T_{s}
\end{array}
$$

CTFS \rightarrow CTFT

$$
\begin{aligned}
& T_{0} \rightarrow \infty \\
& \omega_{0} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
x_{T_{0}}(t) & =\sum_{k=-\infty}^{+\infty} C_{k} e^{+j \omega_{0} k t} \cdot 1 \\
& =\sum_{k=-\infty}^{+\infty} C_{k} e^{+j \omega_{0} k t} \cdot\left(\frac{T_{0}}{2 \pi}\right) \cdot\left(\frac{2 \pi}{T_{0}}\right) \\
& =\frac{1}{2 \pi} \sum_{k=-\infty}^{+\infty} C_{k} T_{0} e^{+j \omega_{0} k t} \cdot\left(\frac{2 \pi}{T_{0}}\right)
\end{aligned}
$$

$$
x_{T_{0}}(t)=\frac{1}{2 \pi} \sum_{k=-\infty}^{+\infty} C_{k} T_{0} e^{+j \omega_{0} k t} \cdot \omega_{0}
$$

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

DTFS \rightarrow DTFT

5A Spectrum Representation

$$
\begin{array}{ll}
\text { CT } x(t) \quad \text { PT } \frac{1}{T} \int_{0}^{T} d t & \text { PT } \frac{1}{T} \int_{0}^{T} 1 d t=\frac{T}{T} \\
\text { DT } x[n] \text { PT } \frac{1}{N} \sum_{n=0}^{N-1} & \text { PT } \frac{1}{N} \sum_{n=0}^{N-1} 1=\frac{N}{N}
\end{array}
$$

$$
\left.\begin{array}{ll}
X(j \omega) \approx T \cdot C_{k} & \text { CF }\left(\frac{1}{2 \pi}\right) \cdot T \cdot\left(\frac{2 \pi}{T}\right)
\end{array} \left\lvert\, \begin{array}{llll}
\text { CF } X(j \omega) & \text { AF } \frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \omega \\
X(j \hat{\omega}) \approx N \cdot \gamma_{k} & \text { CF }\left(\frac{1}{2 \pi}\right) \cdot N \cdot\left(\frac{2 \pi}{N}\right) & \text { CF } X(j \hat{\omega}) & \text { PF } \frac{1}{2 \pi} \int_{-\pi}^{+\pi}
\end{array} d \hat{\omega}\right.\right)
$$

DTFS and DFT coefficients relationship

Discrete Time Fourier Series DTFS

$$
\begin{aligned}
& \gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad \Leftrightarrow \quad x[n]=\sum_{k=0}^{N-1} \gamma[k] e^{+j(2 \pi / N) k n} \\
& X[k]=N \cdot \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \\
& X[k]=N \gamma[k] \\
& x[n]=\sum_{k=0}^{N-1} \frac{1}{N} X[k] e^{+j(2 \pi / N) k n} \\
& \gamma[k]=\frac{1}{N} X[k]
\end{aligned}
$$

Discrete Fourier Transform
 DFT

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad \Rightarrow \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n}
$$

Converting DTFS and DFT Coefficients

$$
\begin{aligned}
\operatorname{DFT}(x[n]) & =N D T F S(x[n]) \\
x[k] & =N y[k]
\end{aligned}
$$

$$
\gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N /) k n}
$$

$$
\begin{aligned}
\operatorname{DTFS}(x[n]) & =\frac{1}{N} D F T(x[n]) \\
\gamma[k] & =\frac{1}{N} X[k]
\end{aligned}
$$

Fourier Transform Types

Continuous Time Fourier Series

$$
C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \Leftrightarrow x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t}
$$

Discrete Time Fourier Series

$$
\gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \hat{\omega}_{0} n} \Leftrightarrow x[n]=\sum_{k=0}^{N-1} \gamma[k] e^{+j k \hat{\omega}_{0} n}
$$

Continuous Time Fourier Transform

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

Discrete Time Fourier Transform

$$
X(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \Leftrightarrow x[n]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} X(j \hat{\omega}) e^{+j \hat{\omega} n} d \hat{\omega}
$$

Continuous Time - CTFS Computation

Continuous Time Fourier Series

$$
C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \int x(t) d t \approx \sum_{n} x[n] \cdot T_{s}
$$

$$
\frac{1}{T} \cdot T_{s}=\frac{1}{N T_{s}} \cdot T_{s}=\frac{1}{N} \quad \omega_{0} t=\left(\frac{2 \pi}{N T_{s}}\right)\left(n T_{s}\right)
$$

$$
C_{k} \approx \frac{1}{N} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad \sum_{n} x[n]
$$

Discrete Time - DTFS computation

Discrete Time Fourier Series

$$
\gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \hat{\omega}_{0} n} \quad \sum_{n} x[n]
$$

$$
\gamma[k]=\frac{1}{N} \boldsymbol{D F} \boldsymbol{T}\{x[n]\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

$$
\sum_{n} x[n]
$$

Continuous Time - CTFT computation

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \int_{-\infty}^{+\infty} x(t) d t \approx \sum_{n=0}^{N-1} x[n] \cdot T_{s} \\
T_{s} \quad k \omega_{0} t=k\left(\frac{2 \pi}{N T_{s}}\right)\left(n T_{s}\right) \\
X\left(j k\left(\omega_{0}\right) \approx T_{s} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\}\right.
\end{gathered}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad \sum_{n=0}^{N-1} x[n]
$$

Discrete Time - DTFT computation

Discrete Time Fourier Transform

$$
X(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \quad \sum_{n=-\infty}^{+\infty} x[n]
$$

$$
X\left(j k \hat{\omega}_{0}\right) \approx \boldsymbol{D F T}\{x[n]\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

$$
\sum_{n=0}^{N-1} x[n]
$$

Continuous Time - CTFS Computation

Continuous Time Fourier Series

$$
C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \int x(t) d t \approx \sum_{n} x[n] \cdot T_{s}
$$

$$
\frac{1}{T} \cdot T_{s}=\frac{1}{N T_{s}} \cdot T_{s}=\frac{1}{N} \quad \omega_{0} t=\left(\frac{2 \pi}{N T_{s}}\right)\left(n T_{s}\right)
$$

$$
C_{k} \approx \frac{1}{N} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad \sum_{n} x[n]
$$

Discrete Time - DTFS computation

Discrete Time Fourier Series

$$
\gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \hat{\omega}_{0} n} \quad \sum_{n} x[n]
$$

$$
\gamma[k]=\frac{1}{N} \boldsymbol{D F} \boldsymbol{T}\{x[n]\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

$$
\sum_{n} x[n]
$$

Continuous Time - CTFT computation

Continuous Time Fourier Transform

$$
\begin{gathered}
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \int_{-\infty}^{+\infty} x(t) d t \approx \sum_{n=0}^{N-1} x[n] \cdot T_{s} \\
T_{s} \quad k \omega_{0} t=k\left(\frac{2 \pi}{N T_{s}}\right)\left(n T_{s}\right) \\
X\left(j k\left(\omega_{0}\right) \approx T_{s} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\}\right.
\end{gathered}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad \sum_{n=0}^{N-1} x[n]
$$

Discrete Time - DTFT computation

Discrete Time Fourier Transform

$$
X(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \quad \sum_{n=-\infty}^{+\infty} x[n]
$$

$$
X\left(j k \hat{\omega}_{0}\right) \approx \boldsymbol{D F T}\{x[n]\}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

$$
\sum_{n=0}^{N-1} x[n]
$$

Continuous Time - ICTFT computation

Continuous Time Fourier Transform

$$
\begin{array}{rl}
\int X(j \omega) d \omega \approx \sum_{k} X[k] \cdot \omega_{0} & X(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
\left.\left.\frac{1}{2 \pi} \cdot \omega_{0}=\frac{1}{T}=\frac{1}{T_{s}} \frac{1}{N} \quad k \omega_{0} t=k\left(\frac{2 \pi}{N T_{s}}\right) \right\rvert\, n T_{s}\right)
\end{array}
$$

$$
x\left(n T_{s}\right) \approx \frac{1}{T_{s}} \boldsymbol{I D F T}\left\{X\left(j k \omega_{0}\right)\right\}
$$

$$
\sum_{k} X[k] \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n}
$$

Discrete Time - IDTFT computation

Discrete Time Fourier Transform

$$
\int X(j \hat{\omega}) d \hat{\omega} \approx \sum_{k} X[k] \cdot \hat{\omega}_{0} \quad x[n]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} X(j \hat{\omega}) e^{+j \hat{\omega} n} d \hat{\omega}
$$

$$
\frac{1}{2 \pi} \cdot \hat{\omega}_{0}=\frac{1}{N} \quad k \hat{\omega}_{0} n=k\left(\frac{2 \pi}{N}\right)^{n}
$$

$$
x[n] \approx \boldsymbol{I D F T}\left\{X\left(j k \hat{\omega}_{0}\right)\right\}
$$

$$
\sum_{k} X[k] \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n}
$$

Continuous Time - ICTFS Computation

Continuous Time Fourier Series

$$
\sum_{k=-\infty}^{+\infty} C_{k}
$$

$$
x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t}
$$

Discrete Time - IDTFS computation

Discrete Time Fourier Series

$$
\sum_{k=0}^{N-1} \gamma[k] \quad x[n]=\sum_{k=0}^{N-1} \gamma[k] e^{+j k \hat{\omega}_{0} n}
$$

$$
x[n]=N \boldsymbol{I D F T}\left\{\gamma_{k}\right\}
$$

$$
\sum_{k=0}^{N-1} X[k] \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n}
$$

Computations using DFT

CTFS

Periodic x(t)
$C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t$
$C_{k} \approx \frac{1}{N} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\} \quad k \omega_{0}$
@ $k \omega_{0}=k\left(\frac{2 \pi}{T}\right) \mathrm{rad} / \mathrm{sec}$

DTFS

$\gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \hat{\omega}_{0} n}$
$\gamma[k]=\frac{1}{N} \boldsymbol{D F T}\{x[n]\} \quad k \hat{\omega}_{0}$
@ $k \omega_{0}=k \hat{\omega}_{0} f_{s}=k\left(\frac{2 \pi}{N T_{s}}\right) \mathrm{rad} / \mathrm{sec}$

CTFT

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
& X\left(j k \omega_{0}\right) \approx T_{s} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\} \quad \omega \leftarrow k \omega_{0} \\
& @ k \omega_{0}=k \hat{\omega}_{0} f_{s}=k\left(\frac{2 \pi}{N T_{s}}\right) \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Aperiodic $x[n]$
$X(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n}$
$X\left(j k \hat{\omega}_{0}\right) \approx \boldsymbol{D F T}\{x[n]\}$
$\hat{\omega} \leftarrow k \hat{\omega}_{0}$
@ $k \omega_{0}=k \hat{\omega}_{0} f_{s}=k\left(\frac{2 \pi}{N T_{s}}\right) \mathrm{rad} / \mathrm{sec}$

Forward Computations using DFT

CTFS

Periodic $x(t)$
CTFT
Aperiodic $x(t)$

$$
\left\{\begin{array}{l}
C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \quad \frac{1}{T} \cdot T_{s}=\frac{1}{N} \\
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \\
C_{k} \approx \frac{1}{N} \boldsymbol{D F T}\left\{x\left(n \omega_{0}\right)\right\}
\end{array}\right.
$$

$$
\begin{cases}X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t & 1 \cdot T_{s}=T_{S} \\ X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} & \omega \leftarrow k \omega_{0}\end{cases}
$$

$$
X\left(j k \omega_{0}\right) \approx T_{s} \boldsymbol{D F T}\left\{x\left(n T_{s}\right)\right\}
$$

DTFS

Periodic $x[n]$
$\int \gamma[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \hat{\omega}_{0} n} \frac{1}{N}$
$X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \quad k \hat{\omega}_{0}$
$\gamma[k]=\frac{1}{N} \boldsymbol{D F T}\{x[n]\}$

$$
\left\{\begin{array}{l}
\text { DTFT } \quad \text { Aperiodic } x[n] \\
X(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \\
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n} \\
X\left(j k \hat{\omega}_{0}\right) \approx \boldsymbol{D F T}\{x[n]\}
\end{array}\right.
$$

Inverse Computations using DFT

ICTFS

$$
\begin{cases}x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t} & 1 \cdot N=N \\ x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n} & t \leftarrow n T_{s} \\ x\left(n T_{s}\right) \approx N \operatorname{IDFT}\left\{C_{k}\right\}\end{cases}
$$

Periodic $x(t)$

Periodic $x[n]$

IDTFS

ICTFT
Aperiodic $x(t)$

$$
\left\{\begin{array}{l}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \frac{1}{2 \pi} \cdot \omega_{0}=\frac{1}{N T_{s}} \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n} \quad t \leftarrow n T_{s} \\
x\left(n T_{s}\right) \approx \frac{1}{T_{s}} \boldsymbol{I D F T}\left\{X\left(j k \omega_{0}\right)\right\}
\end{array}\right.
$$

IDTFT
Aperiodic $x[n]$

$$
\left\{\begin{array}{l}
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} X(j \hat{\omega}) e^{+j \hat{\omega} n} d \hat{\omega} \frac{1}{2 \pi} \cdot \hat{\omega}_{0}=\frac{1}{N} \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j \frac{2 \pi}{N} k n} n T_{s} \\
x[n] \approx \operatorname{IDFT}\left\{X\left(j k \hat{\omega}_{0}\right)\right\}
\end{array}\right.
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M.J. Roberts, Fundamentals of Signals and Systems
[4] S.J. Orfanidis, Introduction to Signal Processing
[5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings
[6] A "graphical interpretation" of the DFT and FFT, by Steve Mann

