DT Sinusoidal Function (1B)

- Discrete Time Sinusoidal Function

Copyright (c) 2009-2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Exponential Functions

McClellan Style

$$
\begin{aligned}
x[n] & =x\left(n T_{s}\right) \\
& =A \cos \left(\omega n T_{s}+\Phi\right) \\
& =A \cos (\hat{\omega} n+\Phi) \\
\hat{\omega} & =\omega T_{s}=\omega / f_{s}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\omega} & =2 \pi \hat{f} \\
\hat{f} & =f / f_{s} \\
x[n] & =A \cos \left(2 \pi n f / f_{s}+\Phi\right) \\
& =A \cos (\hat{\omega} n+\Phi)
\end{aligned}
$$

Roberts' Style

$$
\begin{aligned}
g[n] & =A e^{\beta n}=A z^{n} \quad e^{\beta}=z \\
& =A \cos \left(2 \pi F_{0} n+\theta\right) \\
& =A \cos \left(\Omega_{0} n+\theta\right) \\
\Omega_{0} & =2 \pi F_{0} \\
g[n] & =A \cos \left(2 \pi n q / N_{0}+\theta\right)
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{0} & =2 \pi F_{0} \\
F_{0} & =q / N_{0} \\
g[n] & =A \cos \left(2 \pi n F_{0}+\theta\right) \\
& =A \cos \left(\Omega_{0} n+\theta\right)
\end{aligned}
$$

DT Signal Fundamental Period

$$
\begin{aligned}
& \text { Fundamental Period } N_{0} \\
& \qquad \begin{aligned}
g[n] & =A e^{\beta n}=A z^{n} \\
& =A \cos \left(2 \pi F_{0} n+\theta\right) \\
& =A \cos \left(\Omega_{0} n+\theta\right)
\end{aligned}
\end{aligned}
$$

Periodic Condition

for some discrete time n and some integer m
$2 \pi F_{0} n=2 \pi m \Rightarrow F_{0} n=m$
$F_{0}=\mathrm{m} / \mathrm{n}$ a rational number
$F_{0}=f_{0} / f_{s}$ periodic

DT Signal Fundamental Period

Fundamental Period N_{0}

$$
\left\{\begin{array}{lll}
1 / N_{0}=F_{0}=\Omega_{0} / 2 \pi & \text { when } & q=1 \\
\frac{q / N_{0}}{t}=F_{0}=\Omega_{0} / 2 \pi & \text { when } & q \neq 1
\end{array}\right.
$$

$$
\begin{array}{ll}
\hline \text { reduced form } & \frac{q}{N_{0}} n=m \\
\text { reduced form } & \frac{5}{17} n=m
\end{array} \quad \Rightarrow \text { fundamental period } n=N_{0}
$$

DT Signal Frequency

discrete time n

a time index not time itself

$$
g(t)=\sin (2 \pi \cdot f \cdot t) \quad \Longrightarrow \quad g[n]=\sin \left(2 \pi \cdot f \cdot T_{s} \cdot n\right)
$$

units of samples

Normalized Cyclic Frequency

$$
F_{0}=\frac{f_{0}}{f_{s}} \quad \text { cycles/sample }=\frac{\text { cycles/second }}{\text { samples/second }} \quad g[n]=\sin \left(2 \pi \cdot F_{0} \cdot n\right)
$$

Normalized Radian Frequency

$$
\Omega_{0}=\frac{\omega_{0}}{f_{s}} \quad \text { radians/sample }=\frac{\text { radians/second }}{\text { samples/second }} \quad g[n]=\sin \left(\omega_{0} \cdot n\right)
$$

$$
\text { reduced form } \quad F_{0}=\frac{q}{N_{0}} \quad \Rightarrow 2 \pi \frac{q}{N_{0}} n=2 \pi m \quad \square \text { fundamental period } \quad n=N_{0}
$$

DT Signal Period : Samples \& Cycles

DT Signal Normalized Cyclic Frequency

DT Signal Fundamental Period

$f=1 \mathrm{~Hz}$
$=1$ cycles $/ \mathrm{sec}$

$$
g(t)=\sin (2 \pi \cdot f \cdot t) \quad \Rightarrow \quad g[n]=\sin \left(2 \pi \cdot f \cdot T_{s} \cdot n\right)
$$

$T_{s}=0.05 \mathrm{sec}$
$f_{s}=20$ samples $/ \mathrm{sec}$

$$
\begin{aligned}
& g[n]=\sin \left(2 \pi \cdot \frac{1}{20} \cdot n\right) \\
& F_{0}=\frac{f}{f_{s}}=\frac{1}{20} \Rightarrow \frac{q}{N_{0}}=\frac{1}{20}
\end{aligned}
$$

$$
\begin{aligned}
& T_{s}=0.2 \mathrm{sec} \\
& f_{s}=5 \text { samples } / \mathrm{sec} \\
& N_{0}=5 \text { samples } \\
& F_{0}=\frac{1}{5} \frac{\text { cycle }}{\text { sample }}
\end{aligned}
$$

$$
\begin{array}{ll}
g[n]=\sin \left(2 \pi \cdot \frac{1}{10} \cdot n\right) & \begin{array}{l}
T_{s}=0.1 \mathrm{sec} \\
f_{s}=10 \text { samples } / \mathrm{sec} \\
\frac{q}{N_{0}}=\frac{1}{10} \quad F_{0}=\frac{f}{f_{s}}=\frac{1}{10}
\end{array} \quad \begin{array}{l}
N_{0}=10 \text { samples } \\
F_{0}=\frac{1}{10} \frac{\text { cycle }}{\text { sample }}
\end{array}
\end{array}
$$

$$
T_{s}=0.3 \mathrm{sec}
$$

$$
g[n]=\sin \left(2 \pi \cdot \frac{1}{5} \cdot n\right)
$$

$$
f_{s}^{s}=3.33 \text { samples } / \mathrm{sec}
$$

$$
N_{0}=10 \text { samples }
$$

$$
F_{0}=\frac{f}{f_{s}}=\frac{1}{5} \Rightarrow \frac{q}{N_{0}}=\frac{1}{5}
$$

$$
\frac{q}{N_{0}}=\frac{3}{10} \quad F_{0}=\frac{f}{f_{s}}=\frac{1}{10 / 3}
$$

$$
F_{0}=\frac{3}{10} \frac{\text { cycle }}{\text { sample }}
$$

$$
T_{s}=0.4 \mathrm{sec}
$$

$$
T_{s}=0.5 \mathrm{sec}
$$

$$
f_{s}=2.5 \text { samples } / \mathrm{sec}
$$

$$
\begin{aligned}
& g[n]=\sin \left(2 \pi \cdot \frac{2}{5} \cdot n\right) \\
& F_{0}=\frac{f}{f_{s}}=\frac{1}{2.5} \Rightarrow \frac{q}{N_{0}}=\frac{2}{5}
\end{aligned}
$$

$$
f_{s}=2 \text { samples } / \mathrm{sec}
$$

$$
N_{0}=5 \text { samples }
$$

$$
N_{0}=2 \text { samples }
$$

$$
F_{0}=\frac{2}{5} \frac{\text { cycle }}{\text { sample }}
$$

$$
F_{0}=\frac{1}{2} \frac{\text { cycle }}{\text { sample }}
$$

DT Signal Spectrum Replication

$\begin{aligned} 2 \pi(F+1) n & =2 \pi F n+2 \pi n \\ (\Omega+2 \pi) n & =\Omega n+2 \pi n \end{aligned}$					$\begin{gathered} 2 \pi(F+\boxed{k}) n=2 \pi F n+2 \pi k n \\ (\Omega+2 \pi(k) n=\Omega n+2 \pi k n \end{gathered}$					
$\begin{gathered} \cos (2 \pi(F+ \\ \cos ((\Omega+2 \end{gathered}$	$\begin{aligned} & \text { 2) }= \\ & \text { a }= \end{aligned}$				$\begin{gathered} \cos (2 \pi(F+\boxed{k}) n)=\cos (2 \pi F n) \\ \cos ((\Omega+2 \pi(k) n)=\cos (\Omega n) \end{gathered}$					
$\begin{array}{r} \sin (2 \pi(F+ \\ \quad \sin ((\Omega+2 \end{array}$	$\begin{aligned} & = \\ & = \end{aligned}$				$\begin{gathered} \sin (2 \pi(F+\boxed{k}) n)=\sin (2 \pi F n) \\ \sin ((\Omega+2 \pi(k) n)=\sin (\Omega n) \end{gathered}$					
f_{0} cycle/sec	1	2	3	414\ldots	15	$\begin{gathered} 6 \\ 16 \\ \ldots \end{gathered}$	717\ldots	818\ldots	9	1020
	11	12	13						19	
	
$f_{\text {s }}$ sample/ sec	10	10	10	10	10	10	10	10	10	10
$F_{0}=\frac{f_{0}}{f_{s}} \frac{\text { cycle }}{\text { sample }}$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	$\frac{10}{10}$

DT Signal Fundamental Period

$\begin{aligned} & T_{s}=0.1 \mathrm{sec} \\ & f_{s}=10 \mathrm{samples} / \mathrm{sec} \end{aligned}$ f_{0} cycle/sec	$g(t)=\sin (2 \pi \cdot f \cdot t) \quad g[n]=\sin \left(2 \pi \cdot f \cdot T_{s} \cdot n\right)$									
	1	2	3	4	5	6	7	8	9	10
	11	12	13	14	15	16	17	18	19	20

f_{s} sample/sec	10	10	10	10	10	10	10	10	10	10
$F_{0}=\frac{f_{0}}{f_{s}} \frac{\text { cycle }}{\text { sample }}$	$\frac{1}{10}$ $\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$	$\frac{10}{10}$
$N_{0}=10$ samples			$\frac{3}{10}$				$\frac{7}{10}$		$\frac{9}{10}$	
$N_{0}=5$ samples		$\frac{1}{5}$		$\frac{2}{5}$		$\frac{3}{5}$		$\frac{4}{5}$		
$N_{0}=2$ samples					$\frac{1}{2}$					
$N_{0}=1$ samples										1

DT Signal Fundamental Period

DT Signal Fundamental Period

DT Signal Aliasing

$2 \pi(1-F) n=2 \pi n-2 \pi F n$	$2 \pi(k-F) n=2 \pi k n-2 \pi F n$ $(2 \pi-\Omega) n=2 \pi n-\Omega n$ $\cos (2 \pi(1-F) n)=\cos (2 \pi F n)$ $\cos ((2 \pi-\Omega) n)=\cos (\Omega n)$
$\cos (2 \pi(k-F) n)=\cos (2 \pi F n)$	
$\sin (2 \pi(1-F) n)=-\sin (2 \pi F n)$	$\cos ((2 \pi k-\Omega) n)=\cos (\Omega n)$
$\sin ((2 \pi-\Omega) n)=-\sin (\Omega n)$	$\sin (2 \pi(k-F) n)=-\sin (2 \pi F n)$

DT Signal Aliasing - COS

DT Signal Aliasing - SIN

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] G. Beale, http://teal.gmu.edu/~gbeale/ece_220/fourier_series_02.html
[4] C. Langton, http://www.complextoreal.com/chapters/fft1.pdf

