CTFT of Rectangular Pulse Functions (3B)

- CTFT of a Rectangular Pulse
- CTFT of a Shifted Rectangular Pulse
- Spectrum Plots of the CTFT of a Rectangular Pulse
- Spectrum Plots of the CTFT of a Shifted Rectangular Pulse

```
Copyright (c) 2009-2013 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

- CTFT of a Rectangular Pulse
- CTFT of a Shifted Rectangular Pulse
- Spectrum Plots of the CTFT of a Rectangular Pulse
- Spectrum Plots of the CTFT of a Shifted Rectangular Pulse

CTFT of a Rectangular Pulse (1)

Continuous Time Fourier Transform

CTFT

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \Rightarrow \quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

$$
x(t)=\operatorname{rect}\left(\frac{t}{T}\right)
$$

$$
\begin{aligned}
& X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \operatorname{sinc}(f T) \\
& X(j 0)=T
\end{aligned}
$$

CTFT of a Rectangular Pulse (2)

Continuous Time Fourier Transform

$$
\begin{aligned}
X(j \omega) & =\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
X(j \omega) & =\int_{-T / 2}^{+T / 2} e^{-j \omega t} d t \\
& =\left[\frac{-1}{j \omega} e^{-j \omega t}\right]_{-T / 2}^{+T / 2}=-\left(\frac{e^{-j \omega T / 2}-e^{+j \omega T / 2}}{j \omega}\right) \\
& =\frac{\sin (\omega T / 2)}{\omega / 2} \\
X(j 0) & =\lim _{\omega \rightarrow 0}^{+\infty} \frac{\sin (\omega T / 2)}{\omega / 2} \\
& =\lim _{\omega \rightarrow 0} \frac{T}{2} \frac{\cos (\omega T / 2)}{1 / 2}=T
\end{aligned}
$$

Zero Crossings of $T \boldsymbol{\operatorname { s i n }}(f T)$

$\int_{-\infty}^{+\infty} x(t) \sin \omega_{0} t d t=0$

$\omega_{0}=\frac{2 \pi}{T}$

Zeros at

$$
X\left(j k \frac{2 \pi}{T}\right)=0 \quad \omega=k \frac{2 \pi}{T}
$$

Zero Crossings of $\boldsymbol{\operatorname { s i n c }}(f T)$

(2)

Zero Crossings of $T \boldsymbol{\operatorname { s i n c }}(f T)$

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \frac{\sin (\omega T / 2)}{\omega T / 2}=T \frac{\sin (\pi f T)}{\pi f T}
$$

Normalized Sinc function

$$
\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}
$$

$$
X(f)=T \cdot \boldsymbol{\operatorname { s i n }}(f T)
$$

Zeros at $t= \pm 1, \pm 2, \cdots$
Zeros at $\quad f T= \pm 1, \pm 2, \cdots$

$$
f= \pm \frac{1}{T}, \pm \frac{2}{T}, \cdots
$$

Unnormalized Sinc function

$$
\operatorname{sinc}(x)=\frac{\sin (x)}{x}
$$

Zeros at $x= \pm \pi, \pm 2 \pi, \cdots$

$$
X(j \omega)=T \cdot \boldsymbol{\operatorname { s i n }}(\omega T / 2)
$$

Zeros at $\omega T / 2= \pm \pi, \pm 2 \pi, \cdots$

$$
\omega= \pm \frac{2 \pi}{T}, \pm \frac{4 \pi}{T},
$$

Zero Crossings of $T \boldsymbol{\operatorname { s i n }} \boldsymbol{c}(f T)$

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \frac{\sin (\omega T / 2)}{\omega T / 2}=T \frac{\sin (\pi f T)}{\pi f T}
$$

Normalized Sinc function

$$
\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}
$$

$$
X(f)=T \cdot \boldsymbol{\operatorname { s i n c }}(f T)
$$

Zeros at $t= \pm 1, \pm 2, \cdots$
Zeros at $f T= \pm 1, \pm 2, \cdots$

$$
f= \pm \frac{1}{T}, \pm \frac{2}{T}, \cdots
$$

$$
\omega= \pm \frac{2 \pi}{T}, \pm \frac{4 \pi}{T}
$$

Summary : CTFS of a Rectangular Pulse

Continuous Time Fourier Transform
Aperiodic Continuous Time Signal

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
& X(j \omega)=\int_{-T / 2}^{+T / 2} e^{-j \omega t} d t \quad=\frac{\sin (\omega T / 2)}{\omega / 2}=T \frac{\sin (\omega T / 2)}{\omega T / 2}=T \frac{\sin (\pi f T)}{\pi f T} \\
& X(f)=T \cdot \boldsymbol{\operatorname { s i n c }}(f T) \\
& X(j \omega)=T \cdot \boldsymbol{\operatorname { s i n c }}(\omega T / 2) \\
& \text { Zeros } \\
& \text { at } \\
& \omega= \pm \frac{2 \pi}{T}, \pm \frac{4 \pi}{T},
\end{aligned}
$$

CTFS Pairs of Rect(t/T) - (1)

$$
x(t)=\operatorname{rect}(t)
$$

$X(j \omega)=\operatorname{sinc}(\omega)=\frac{\sin (\omega / 2)}{\omega / 2}$

zeros at $X\left(j k \frac{2 \pi}{1}\right)=0$

$$
x(t)=\operatorname{rect}\left(\frac{t}{2}\right)
$$

$X(j \omega)=2 \boldsymbol{\operatorname { s i n c }}(\omega)=\frac{\sin (\omega)}{\omega / 4}$

zeros at $X\left(j k \frac{2 \pi}{2}\right)=0$

$$
x(t)=\boldsymbol{\operatorname { r e c t }}(2 t)
$$

$X(j \omega)=\frac{1}{2} \operatorname{sinc}\left(\frac{\omega}{2}\right)=\frac{\sin (\omega / 4)}{\omega}$

zeros at $X\left(j k \frac{2 \pi}{1 / 2}\right)=0$

CTFS Pairs of Rect(t/T) - (2)

$$
x(t)=\operatorname{rect}\left(\frac{t}{T}\right)
$$

$$
X(j \omega)=T \operatorname{sinc}(T \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}
$$

CTFS Pairs of (1/T)Rect(t/T) - (1)

$$
x(t)=\operatorname{rect}(t)
$$

$X(j \omega)=\operatorname{sinc}(\omega)=\frac{\sin (\omega / 2)}{\omega / 2}$

zeros at $X\left(j k \frac{2 \pi}{1}\right)=0$

$$
x(t)=\frac{1}{2} \operatorname{rect}\left(\frac{t}{2}\right)
$$

$X(j \omega)=\operatorname{sinc}(2 \omega)=\frac{\sin (\omega)}{\omega / 2}$

zeros at $X\left(j k \frac{2 \pi}{2}\right)=0$

$X(j \omega)=\operatorname{sinc}\left(\frac{\omega}{2}\right)=\frac{\sin (\omega / 4)}{\omega / 2}$

zeros at $X\left(j k \frac{2 \pi}{1 / 2}\right)=0$

CTFS Pairs of (1/T)Rect(t/T) - (2)

$$
x(t)=\left(\frac{1}{T}\right) \operatorname{rect}\left(\frac{t}{T}\right)
$$

$$
X(j \omega)=T \operatorname{sinc}(T \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}
$$

$$
\text { zeros at } X\left(j k \frac{2 \pi}{T}\right)=0
$$

Duality (1)

Duality (2)

Duality (3)

$$
X(t)=W \operatorname{sinc}(t W)
$$

Duality (4)

- CTFT of a Rectangular Pulse
- CTFT of a Shifted Rectangular Pulse
- Spectrum Plots of the CTFT of a Rectangular Pulse
- Spectrum Plots of the CTFT of a Shifted Rectangular Pulse

Shifted Rect(t/T) CTFT (1)

Continuous Time Fourier Transform Aperiodic Continuous Time Signal

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
& X(j \omega)=\int_{0}^{+T} e^{-j \omega t} d t=\left[\frac{-1}{j \omega} e^{-j \omega t}\right]_{-T / 2}^{+T / 2} \\
&=-\frac{e^{-j \omega T / 2}-e^{+j \omega T / 2}}{j \omega}=e^{-j \omega T / 2} \cdot \frac{e^{+j \omega T / 2}-e^{-j \omega T / 2}}{j \omega} \\
&=\frac{\sin (\omega T / 2)}{\omega / 2} \cdot e^{-\infty} X(j \omega) e^{+j \omega t} d \omega \\
&|X(j \omega)|=\left|\frac{\sin (\omega T / 2)}{\omega / 2}\right| \\
& \operatorname{Arg}\{X(j \omega)\}=\operatorname{Arg}\left\{\frac{\sin (\omega T / 2)}{\omega / 2}\right\}-\omega T / 2
\end{aligned}
$$

Complex Function Plotting

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2} \cdot e^{-j \omega T / 2}
$$

$$
\frac{\sin (\omega T / 2)}{\omega / 2} \cdot \cos (\omega T / 2) \quad-\frac{\sin (\omega T / 2)}{\omega / 2} \cdot \sin (\omega T / 2) \quad\left|\frac{\sin (\omega T / 2)}{\omega / 2}\right| \quad \operatorname{Arg}\left\{\frac{\sin (\omega T / 2)}{\omega / 2}\right\}-\omega T / 2
$$

Re and Im of $X(j \omega)$

Abs and Arg of $X(j \omega)$

3-D Plots of $X(j \omega)$

Spectrum of the CTFS of a Signal

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
$$

$$
\text { Spectrum } \quad X(j \omega)=|X(j \omega)| \arg (X(j \omega))
$$

Magnitude Spectrum $\quad|X(j \omega)|$

Phase Spectrum $\arg (X(j \omega))$

Spectrum of the CTFS of a Real Signal

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
& X(-j \omega)=\int_{-\infty}^{+\infty} x(t) e^{+j \omega t} d t \\
& X^{*}(j \omega)=\int_{-\infty}^{+\infty} x^{*}(t) e^{+j \omega t} d t
\end{aligned}
$$

a real signal $x(t)=x^{*}(t) \quad \square$

magnitude: an even function

$$
|X(-j \omega)|=|X(j \omega)|
$$

phase: an odd function

$$
\arg (X(-j \omega))=-\arg (X(j \omega))
$$

a real even signal $\Rightarrow x(t)=x^{*}(t)$
$\square X(-j \omega)=X^{*}(j \omega)$
$X(-j \omega)=\int_{-\infty}^{+\infty} x(t) e^{+j \omega t} d t=X^{*}(j \omega)$

Spectrum of the CTFS of a Real Even Signal

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
& X(-j \omega)=\int_{-\infty}^{+\infty} x(t) e^{+j \omega t} d t \\
& X^{*}(j \omega)=\int_{-\infty}^{+\infty} x^{*}(t) e^{+j \omega t} d t
\end{aligned}
$$

```
a real even signal }x(t)=\mp@subsup{x}{}{*}(t)=x(-t
```

 a real even spectrum
 $$
X(j \omega)=X^{*}(j \omega)=X(-j \omega)
$$

a real even signal $x(t)=x^{*}(t)=x(-t)$
$X^{*}(j \omega)=\int_{-\infty}^{+\infty} x^{*}(t) e^{+j \omega t} d t=\int_{-\infty}^{+\infty} x(-t) e^{-j \omega(-t)} d t=X(j \omega)$
$X(-j \omega)=\int_{-\infty}^{+\infty} x(t) e^{+j \omega t} d t=\int_{-\infty}^{+\infty} x(-t) e^{-j \omega(-t)} d t=X(j \omega)$

- CTFT of a Rectangular Pulse
- CTFT of a Shifted Rectangular Pulse
- Spectrum Plots of the CTFT of a Rectangular Pulse
- Spectrum Plots of the CTFT of a Shifted Rectangular Pulse

Spectrum of a Rectangular Pulse

$$
X(j \omega)=\frac{\sin (\omega / 2)}{\omega / 2}
$$

Magnitude Spectrum of a Rectangular Pulse

$$
|X(j \omega)|=\left|\frac{\sin (\omega / 2)}{\omega / 2}\right|
$$

$$
X(j \omega)=\frac{\sin (\omega / 2)}{\omega / 2}
$$

Phase Spectrum of a Rectangular Pulse

- CTFT of a Rectangular Pulse
- CTFT of a Shifted Rectangular Pulse
- Spectrum Plots of the CTFT of a Rectangular Pulse
- Spectrum Plots of the CTFT of a Shifted Rectangular Pulse

Spectrum of a Shifted Rectangular Pulse

Magnitude Spectrum of a Shifted Rectangular Pulse

$$
\begin{aligned}
& |X(j \omega)|=\left|\frac{\sin (\omega / 2)}{\omega / 2}\right| \cdot\left|e^{-j \omega T / 2}\right| \\
& |X(j \omega)|=\left|\frac{\sin (\omega / 2)}{\omega / 2}\right|
\end{aligned}
$$

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2} \cdot e^{-j \omega T / 2}
$$

Phase Spectrum of a Shifted Rectangular Pulse

$$
-\pi-\omega T / 2
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] G. Beale, http://teal.gmu.edu/~gbeale/ece_220/fourier_series_02.html
[4] C. Langton, http://www.complextoreal.com/chapters/fft1.pdf

