DFT Frequency (4B)

- Negative Frequency
- Angular Frequency
- Fundamental Frequency
- Harmonic Frequency
- Sampling Frequency
- Normalized Frequency
- Examples of $\mathrm{N}=8$ DFT Matrix

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Euler Equation

$$
e^{+j \omega t}=\cos \omega t+j \sin \omega t
$$

Linear Phase (1)

Linear Phase (2)

$$
\Phi=\omega_{1} t \quad\left(\omega_{1}>0\right) \quad \Phi=\omega_{2} t \quad\left(\omega_{2}<0\right)
$$

$$
\omega_{2}=-\omega_{1}
$$

$$
\cos \left(\omega_{2} t\right)=\cos \left(-\omega_{1} t\right)
$$

$$
\sin \left(\omega_{2} t\right)=\sin \left(-\omega_{1} t\right)
$$

$$
e^{j \omega_{2} t}=e^{-j \omega_{1} t}
$$

$$
\begin{aligned}
& \cos \left(\omega_{2} t\right)=\cos \left(\omega_{1} t\right) \\
& \sin \left(\omega_{2} t\right)=-\sin \left(\omega_{1} t\right) \\
& e^{j \omega_{2} t}=\cos \left(\omega_{1} t\right)-j \sin \left(\omega_{1} t\right)
\end{aligned}
$$

Linear Phase (3)

$$
e^{j \omega_{1} t}=\cos \left(\omega_{1} t\right)+j \sin \left(\omega_{1} t\right)
$$

$$
\mathrm{OO}_{2}=\mathrm{OO}_{1}
$$

$$
e^{j \omega_{2} t}=\cos \left(\omega_{1} t\right)-j \sin \left(\omega_{1} t\right)
$$

Negative Frequency (1)

Coordinate (A)

As tincreases, the phase increases.
\Rightarrow positive angular speed

Coordinate (B)

As tincreases, the phase decreases.

- negative angular speed

Negative Frequency (2)

$$
\cos \left(\omega_{2} t\right)=\cos \left(\omega_{1} t\right)
$$

Negative Frequency (3)

Coordinate (A)

As tincreases, the phase increases.
\Rightarrow positive angular speed

Coordinate (B)

As tincreases, the phase decreases.

- negative angular speed

Negative Frequency (4)

$$
\sin \left(\omega_{2} t\right)=-\sin \left(\omega_{1} t\right)
$$

Complex Phase Factor

$$
W_{8}^{k}=e^{\Theta j\left(\frac{2 \pi}{8}\right) k}
$$

C.W C.C.W
(- angle) (+ angle) 11

$$
W_{8}^{-k}=e^{\oplus j\left(\frac{2 \pi}{8}\right) k}
$$

DFT Matrix (1)

$\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0}\end{array}$ $\begin{array}{lllllllll}W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7}\end{array}$ $\begin{array}{llllllll}W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6}\end{array}$ $\begin{array}{llllllll}W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} & W_{8}^{5}\end{array}$ $\begin{array}{lllllllll}W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4}\end{array}$ $\begin{array}{llllllll}W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} & W_{8}^{3}\end{array}$ $\begin{array}{llllllll}W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}\end{array}$ $\begin{array}{lllllllllllll}W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1}\end{array}$

$$
W_{8}^{k n}=e^{\Theta j\left(\frac{2 \pi}{8}\right) k n}
$$

DFT Matrix (2)

```
    n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7
k=0 0
k=1 0
k=2 0
k=3 0
k=4 0
k=5 0
k=6 0
k=7 0
```

$\mathbf{k}=\mathbf{0}$	stride $=0$	cw angular speed $=0$
$\mathbf{k}=1$	stride $=-1$	cw angular speed $=-1 \omega$
$\mathbf{k}=\mathbf{2}$	stride $=-2$	cw angular speed $=-2 \omega$
$\mathbf{k}=\mathbf{3}$	stride $=-3$	cw angular speed $=-3 \omega$
$\mathbf{k}=4$	stride $=-4$	cw angular speed $=-4 \omega$
$\mathbf{k}=5$	stride $=-5$	cw angular speed $=-5 \omega$
$\mathbf{k}=6$	stride $=-6$	cw angular speed $=-6 \omega$
$\mathbf{k}=7$	stride $=-7$	cw angular speed $=-7 \omega$

DFT Matrix (3)

$W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0} \quad W_{8}^{0}$
$W_{8}^{0} \quad W_{8}^{1} \quad W_{8}^{2} \quad W_{8}^{3} \quad W_{8}^{4} \quad W_{8}^{5} \quad W_{8}^{6} \quad W_{8}^{7}$
$W_{8}^{0} \quad W_{8}^{2} \quad W_{8}^{4} \quad W_{8}^{6} \quad W_{8}^{0} \quad W_{8}^{2} \quad W_{8}^{4} \quad W_{8}^{6}$
$W_{8}^{0} \quad W_{8}^{3} \quad W_{8}^{6} \quad W_{8}^{1} \quad W_{8}^{4} \quad W_{8}^{7} \quad W_{8}^{2} \quad W_{8}^{5}$
$W_{8}^{0} \quad W_{8}^{4} \quad W_{8}^{0} \quad W_{8}^{4} \quad W_{8}^{0} \quad W_{8}^{4} \quad W_{8}^{0} \quad W_{8}^{4}$
$W_{8}^{0} \quad W_{8}^{-3} \quad W_{8}^{-6} \quad W_{8}^{-1} \quad W_{8}^{-4} \quad W_{8}^{-7} \quad W_{8}^{-2} \quad W_{8}^{-5}$
$W_{8}^{0} \quad W_{8}^{-2} \quad W_{8}^{-4} W_{8}^{-6} \quad W_{8}^{0} \quad W_{8}^{-2} \quad W_{8}^{-4} W_{8}^{-6}$
$W_{8}^{0} \quad W_{8}^{-1} \quad W_{8}^{-2} \quad W_{8}^{-3} \quad W_{8}^{-4} \quad W_{8}^{-5} \quad W_{8}^{-6} \quad W_{8}^{-7}$

$$
W_{N}^{n k \pm N}=W_{N}^{n k}
$$

$$
W_{8}^{n k}=e^{\Theta j\left(\frac{2 \pi}{8}\right) n k}
$$

still symmetric matrix
$n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4 \quad n=5 \quad n=6 \quad n=7$

 $\mathbf{k}=3 \quad 0 \quad-3^{-3}-3^{-6}-3^{-1}-3^{-4}-3^{-7}-3^{-2}-3^{-5}$
 $\mathbf{k}=5 \quad 0 \quad+3{ }^{+3}+3{ }^{+6}+3{ }^{+1}+3{ }^{+4}+3{ }^{+7}+3{ }^{+2}+3+5$

$$
\mathbf{k}=60^{0}+2+2+2+2+6+2{ }^{+4}+2+4+2
$$

$$
\text { k=7 } \quad 0+1+1+1{ }^{+2}+1{ }^{+3}+{ }_{+1}^{+5}+1+6+1+7
$$

DFT Matrix (4)

```
    n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7
k=0}\mp@subsup{0}{0}{0
k=1 0
k=2 0
k=3 0
k=4 0
k=5 0}+\mp@subsup{3}{}{+3}+\mp@subsup{3}{}{+6}+\mp@subsup{3}{}{+1}+\mp@subsup{3}{}{+4}+\mp@subsup{3}{}{+7}+\mp@subsup{3}{}{+2}+\mp@subsup{3}{}{+5
k=6 0}+2\mp@subsup{2}{}{+2}+2\mp@subsup{2}{}{+4}+2\mp@subsup{2}{}{+6}+2\mp@subsup{2}{}{0}+2\mp@subsup{2}{}{+2}+2+4+2+
k=7 0 +1 +1 +1 +2 +1 +3 +1 +1 +4 +1 +5 +1 +1 +6 +1 +7
```

$\mathbf{k}=\mathbf{0}$	stride $=0$	cw angular speed $=0$
$\mathbf{k}=1$	stride $=-1$	cw angular speed $=-1 \omega$
$\mathbf{k}=\mathbf{2}$	stride $=-2$	cw angular speed $=-2 \omega$
$\mathbf{k}=3$	stride $=-3$	cw angular speed $=-3 \omega$
$\mathbf{k}=\mathbf{4}$	stride $=-4$	cw angular speed $=-4 \omega$
$\mathbf{k}=\mathbf{5}$	stride $=-5$	cw angular speed $=-5 \omega$
$\mathbf{k}=6$	stride $=-6$	cw angular speed $=-6 \omega$
$\mathbf{k}=\mathbf{7}$	stride $=-7$	cw angular speed $=-7 \omega$

Fundamental Frequency

$\mathrm{N}=8 \quad 8$ complex phases DFT
Matrix

$$
W_{8}^{6}=W_{8}^{-2}
$$

$$
W_{8}^{2}=W_{8}^{-6}
$$

$W_{N}^{n k} \triangleq e^{-j(2 \pi / N) n k}$

View as 8 samples in time domain

Fundamental Frequency : f=1/T

Harmonic Frequency

$\mathrm{N}=8 \quad 8$ complex phases

DFT

| Measuring Frequency | stride | angular | |
| :--- | :---: | :---: | :---: | :---: |
| speed | | | |

> Period: T

Fundamental Frequency : $\mathrm{f}=1 / \mathrm{T}$

Sampling Time

$\mathrm{N}=8 \quad 8$ complex phases

DFT
Matrix

Sampling Time: τ

Period:

T $\quad T=N \top$
$\mathbf{k}=\mathbf{1}\left[e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi \cdot 2}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi \cdot 5}{4} \cdot} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 7}\right) \Rightarrow-1$ cycle
\longrightarrow T

DFT Matrix and Signal

$2^{\text {nd }}$ Row of DFT Matrix

Time-domain Signal

Fundamental Frequency

$$
e^{+j \frac{2 \pi}{8} \cdot 6}
$$

Sampling Time

τ

Sampling Frequency

$$
f_{s}=\frac{1}{\tau}
$$

（samples per second ）

$$
f=\frac{f_{s}}{N} \quad\left(=\frac{1}{N \tau}\right)
$$

Cycles / Sample

T second/sample
1/т sample/ second

$\frac{0}{N T}$	(cycles / second)	-	0 cycle	over N	periods	= $0 / \mathrm{N}$ (cycles / sample)
$\frac{1}{N \tau}$	(cycles / second)	\square	1 cycle	،	"	= $1 / \mathrm{N}$ (cycles / sample)
$\frac{2}{N T}$	(cycles / second)	\Rightarrow	2 cycles	"	"	= $2 / \mathrm{l}$ ((cycles / sample)
$\frac{3}{N \tau}$	(cycles / second)	\square	3 cycles	"	"	= 3 / N (cycles / sample)
$\frac{4}{N \tau}$	(cycles / second)	\square	4 cycles	"	"	= 4 / N (cycles / sample)

Normalized Frequency

$$
\frac{f_{n}}{f_{s}}=\frac{n}{N}
$$

(cycles per sample)
(cycles per second)
(samples per second)

Normalized Frequency

$$
\Rightarrow T=N \tau
$$

Sampling Time τ (seconds per sample)

Sequence Time Length

$$
T=N \tau
$$

Sampling Frequency

$$
f_{s}=\frac{1}{\tau} \quad \text { (samples per second) }
$$

$1^{\text {st }}$ Harmonic Freq

$$
f_{1}=\frac{1}{T}=\frac{1}{N_{\tau}}=\frac{1}{N} f_{s}
$$

$n^{\text {th }}$ Harmonic Freq

$$
f_{n}=\frac{n}{T}=\frac{n}{N \tau}=\frac{n}{N} f_{s} \quad n=0,1,2, \ldots, \frac{N}{2}
$$

Normalized Frequency

$$
\frac{f_{n}}{f_{s}}=\frac{n}{N}
$$

(cycles per sample)

Normalized Frequency (Ex 1)

$$
1^{\text {st }} \text { Harmonic Freq } f_{1}=\frac{1}{T}=\frac{1}{N_{\tau}}=\frac{f_{s}}{N}
$$

$$
\text { Normalized Freq } \frac{f_{1}}{f_{s}}=\frac{1}{N}
$$

$$
\leftrightarrow \tau^{\prime} \longmapsto T^{\prime}=N \tau^{\prime}
$$

$$
1^{\text {st }} \text { Harmonic Freq } f_{1}{ }^{\prime}=\frac{1}{T^{\prime}}=\frac{1}{N \tau^{\prime}}=\frac{f_{s}^{\prime}}{N} \quad \text { Normalized Freq } \frac{f_{1}^{\prime}}{f_{s}{ }^{\prime}}=\frac{1}{N}
$$

Normalized Frequency (Ex 2)

4 cycles

$$
4^{\text {th }} \text { Harmonic Freq } f_{1}=\frac{4}{T}=\frac{4}{N \tau}=\frac{4 f_{s}}{N}
$$

$$
\text { Normalized Freq } \frac{f_{1}}{f_{s}}=\frac{4}{N}
$$

$$
4^{\text {th }} \text { Harmonic Freq } f_{1}^{\prime}=\frac{4}{T^{\prime}}=\frac{4}{N \tau^{\prime}}=\frac{4 f_{s}^{\prime}}{N}
$$

$$
\text { Normalized Freq } \frac{f_{1}{ }^{\prime}}{f_{s}{ }^{\prime}}=\frac{4}{N}
$$

$\mathrm{N}=8$ DFT

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$\left.\left.\begin{array}{l}X[0] \\ X[1] \\ X[2] \\ X[3] \\ X[4] \\ X[5] \\ X[6] \\ X[7]\end{array}\right]=\left[\begin{array}{llllllll|l}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} & W_{8}^{5} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{8} & W_{8}^{3} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1}\end{array}\right] \begin{array}{l}x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7]\end{array}\right]$

$\mathrm{N}=8 \mathrm{D}$ Г $:$ The 1st Row of the DFT Matrix

$$
\begin{aligned}
& e^{-j \cdot \frac{\pi}{4} \cdot 0} \\
& W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=0, \quad n=0,1, \ldots, 7
\end{aligned}
$$

$X[0]$ measures how much of the $+0 \cdot \omega$ component is present in \boldsymbol{x}.

```
\longrightarrow T
4 \longmapsto T = NT
```

Sampling Time
Sequence Time Length $T=N \tau$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
zero Frequency

N=8 DF「 : The 2nd Row of the DFT Matrix

$\boldsymbol{X}[1]$ measures how much of the $+1 \cdot \omega$ component is present in \boldsymbol{x}.

$$
\longrightarrow T=N_{\top}
$$

Sampling Time

 TSequence Time Length $T=N_{\top}$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$1^{\text {st }}$ Harmonic Freq $\quad f_{1}=\frac{1}{T}=\frac{1}{N T}=\frac{f_{s}}{N}$

$$
\begin{aligned}
& \left.e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 7}\right) \\
& W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=1, \quad n=0,1, \ldots, 7
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{T}$: The 3rd Row of the DFT Matrix

$$
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=2, \quad n=0,1, \ldots, 7
$$

\(\left.\begin{array}{l}R \Rightarrow samples of \quad \cos (-2 \omega t)=\cos (2 \omega t)

I \Rightarrow samples of \sin (-2 \omega t)=-\sin (2 \omega t)\end{array}\right\} \xrightarrow{measure} \Rightarrow\)	$\omega t=2 \pi f t$
$2 \pi \cdot\left(\frac{2}{8}\right) \cdot f_{s} \cdot t$	

$X[2]$ measures how much of the $+2 \cdot \omega$ component is present in \boldsymbol{x}.

\qquad

Sampling Time

 TSequence Time Length $T=N_{T}$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$2^{\text {nd }}$ Harmonic Freq $\quad f_{2}=\frac{2}{T}=\frac{2}{N \tau}=\frac{2 f_{s}}{N}$

N=8 DF丁 : The 4th Row of the DFT Matrix

$$
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=3, \quad n=0,1, \ldots, 7
$$

		$\omega t)=\cos (3 \omega t)$	measure	$\omega t=2 \pi f t$
	samples of	$\sin (-3 \omega t)=-\sin (3 \omega t)$		$\left(\frac{3}{8}\right) \cdot f$

$X[3]$ measures how much of the $+3 \cdot \omega$ component is present in \boldsymbol{x}.

$$
\triangleleft T=N \tau
$$

Sampling Time T

Sequence Time Length $T=N_{T}$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$3^{r d}$ Harmonic Freq $\quad f_{3}=\frac{3}{T}=\frac{3}{N \tau}=\frac{3 f_{s}}{N}$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{T}$: The 5th Row of the DFT Matrix

$$
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=4, \quad n=0,1, \ldots, 7
$$

\(\left.$$
\begin{array}{l}R \Rightarrow \quad \text { samples of } \quad \begin{array}{l}\cos (-4 \omega t)\end{array}
$$=\cos (4 \omega t)

I \Rightarrow

samples of \quad \sin (-4 \omega t)=-\sin (4 \omega t)\end{array}\right\} \xrightarrow{measure} \Rightarrow\)	$\omega t=2 \pi f t$
$2 \pi \cdot\left(\frac{4}{8}\right) \cdot f_{s} \cdot t$	

$X[4]$ measures how much of the $+4 \cdot \omega$ component is present in \boldsymbol{x}.

Sampling Time

 TSequence Time Length $T=N_{\top}$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$4^{\text {th }}$ Harmonic Freq $\quad f_{4}=\frac{4}{T}=\frac{4}{N \tau}=\frac{4 f_{s}}{N}$

N=8 DF丁 : The 6th Row of the DFT Matrix

$$
\left.\left.\begin{array}{l}
\left\{e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 7} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 3}\right. \\
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=5, \quad n=0,1, \ldots, 7 \\
R \Rightarrow \text { samples of } \cos (-(-3 \omega) t)=\cos (3 \omega t) \\
I \Rightarrow \text { samples of } \sin (-(-3 \omega) t)=\sin (3 \omega t)
\end{array}\right\} \text { measure } \begin{array}{c}
-\omega t=-2 \pi f t \\
2 \pi \cdot\left(\frac{-3}{8}\right) \cdot f_{s} \cdot t
\end{array}\right\}
$$

$\boldsymbol{X}[5]$ measures how much of the $-3 \cdot \omega$ component is present in \boldsymbol{x}.
\qquad

Sampling Time T

Sequence Time Length $T=N \tau$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$-3^{\text {rd }}$ Harmonic Freq $\quad f_{-3}=\frac{-3}{T}=\frac{-3}{N \tau}=\frac{-3 f_{s}}{N}$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{J}$: The 7th Row of the DFT Matrix

$$
\begin{aligned}
& e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2} \\
& \begin{array}{l}
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=2, \quad n=0,1, \ldots, 7 \\
R \Rightarrow \text { samples of } \quad \begin{array}{l}
\cos (-(-2 \omega) t)=\cos (2 \omega t) \\
\left.I \Rightarrow \text { samples of } \quad \begin{array}{l}
\sin (-(-2 \omega) t)=\sin (2 \omega t)
\end{array}\right\} \text { measure }
\end{array} \begin{array}{l}
-\omega t=-2 \pi f t \\
2 \pi \cdot\left(\frac{-2}{8}\right) \cdot f_{s} \cdot t
\end{array}
\end{array} . \begin{array}{l}
2 \text { cycles }
\end{array}
\end{aligned}
$$

$\boldsymbol{X}[6]$ measures how much of the $-2 \cdot \omega$ component is present in \boldsymbol{x}.

$$
\Rightarrow T=N_{\top}
$$

Sampling Time T

Sequence Time Length $T=N \tau$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$-2^{n d}$ Harmonic Freq $\quad f_{-2}=\frac{-2}{T}=\frac{-2}{N \tau}=\frac{-2 f_{s}}{N}$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{T}$: The 8th Row of the DFT Matrix

$$
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \quad k=7, \quad n=0,1, \ldots, 7
$$

\(\left.\begin{array}{l}R \Rightarrow samples of \quad \cos (-(-\omega) t)=\cos (\omega t)

I \Rightarrow samples of \sin (-(-\omega) t)=\sin (\omega t)\end{array}\right\}\) measure \quad| $-\omega t=-2 \pi f t$ |
| :---: |
| $2 \pi \cdot\left(\frac{-1}{8}\right) \cdot f_{s} \cdot t$ |

$X[7]$ measures how much of the $-1 \cdot \omega$ component is present in \boldsymbol{x}.

```
|
```

$$
\longrightarrow T=N_{\top}
$$

Sampling Time

$$
\tau
$$

Sequence Time Length $T=N_{\text {T }}$

Sampling Frequency $f_{s}=\frac{1}{\tau}$
$-1^{\text {st }}$ Harmonic Freq $\quad f_{-1}=\frac{-1}{T}=\frac{-1}{N \tau}=\frac{f_{s}}{N}$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{T}:$ DFT Matrix in + or - Frequencies

$$
\omega_{0}=2 \pi \cdot \frac{f_{s}}{N}
$$

C.W

0th row: samples of 1th row: samples of 2th row: samples of 3th row: samples of 4th row: samples of 5th row: samples of 6th row: samples of 7th row: samples of

0th row: samples of 1th row: samples of 2th row: samples of 3th row: samples of 4th row: samples of 5th row: samples of 6th row: samples of 7th row: samples of

$$
\begin{aligned}
& \cos \left(0 \omega_{0}\right) t+j \cdot \sin \left(0 \omega_{0}\right) t \\
& \cos \left(-1 \omega_{0}\right) t+j \cdot \sin \left(-1 \omega_{0}\right) t \\
& \cos \left(-2 \omega_{0}\right) t+j \cdot \sin \left(-2 \omega_{0}\right) t \\
& \cos \left(-3 \omega_{0}\right) t+j \cdot \sin \left(-3 \omega_{0}\right) t \\
& \cos \left(-4 \omega_{0}\right) t+j \cdot \sin \left(-4 \omega_{0}\right) t \\
& \cos \left(-5 \omega_{0}\right) t+j \cdot \sin \left(-5 \omega_{0}\right) t \\
& \cos \left(-6 \omega_{0}\right) t+j \cdot \sin \left(-6 \omega_{0}\right) t \\
& \cos \left(-7 \omega_{0}\right) t+j \cdot \sin \left(-7 \omega_{0}\right) t
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(0 \omega_{0}\right) t+j \cdot \sin \left(0 \omega_{0}\right) t \\
& \cos \left(+7 \omega_{0}\right) t+j \cdot \sin \left(+7 \omega_{0}\right) t \\
& \cos \left(+6 \omega_{0}\right) t+j \cdot \sin \left(+6 \omega_{0}\right) t \\
& \cos \left(+5 \omega_{0}\right) t+j \cdot \sin \left(+5 \omega_{0}\right) t \\
& \cos \left(+4 \omega_{0}\right) t+j \cdot \sin \left(+4 \omega_{0}\right) t \\
& \cos \left(+3 \omega_{0}\right) t+j \cdot \sin \left(+3 \omega_{0}\right) t \\
& \cos \left(+2 \omega_{0}\right) t+j \cdot \sin \left(+2 \omega_{0}\right) t \\
& \cos \left(+1 \omega_{0}\right) t+j \cdot \sin \left(+1 \omega_{0}\right) t
\end{aligned}
$$

(0 cycle) (-1 cycle) (-2 cycles) (-3 cycles) (-4 cycles) (-5 cycles) (-6 cycles)
(-7 cycles)
(0 cycle) (7 cycles) (6 cycles) (5 cycles) (4 cycles) (3 cycles) (2 cycles) (1 cycles)

N=8 DF「 : DFT Matrix in Both Frequencies

$$
\omega_{0}=2 \pi \cdot \frac{f_{s}}{N}
$$

0th row: samples of 1th row: samples of 2th row: samples of 3th row: samples of 4th row: samples of 5th row: samples of 6th row: samples of 7th row: samples of

0th row: samples of 1th row: samples of 2th row: samples of 3th row: samples of 4th row: samples of 5th row: samples of 6th row: samples of 7th row: samples of

$$
\cos \left(0 \omega_{0}\right) t+j \cdot \sin \left(0 \omega_{0}\right) t
$$

$$
\cos \left(-1 \omega_{0}\right) t+j \cdot \sin \left(-1 \omega_{0}\right) t
$$

$$
\cos \left(-2 \omega_{0}\right) t+j \cdot \sin \left(-2 \omega_{0}\right) t
$$

$$
\cos \left(-3 \omega_{0}\right) t+j \cdot \sin \left(-3 \omega_{0}\right) t
$$

$$
\cos \left(-4 \omega_{0}\right) t+j \cdot \sin \left(-4 \omega_{0}\right) t
$$

$$
\cos \left(+3 \omega_{0}\right) t+j \cdot \sin \left(+3 \omega_{0}\right) t
$$

$$
\cos \left(+2 \omega_{0}\right) t+j \cdot \sin \left(+2 \omega_{0}\right) t
$$

$$
\cos \left(+1 \omega_{0}\right) t+j \cdot \sin \left(+1 \omega_{0}\right) t
$$

$$
\begin{aligned}
& \cos \left(0 \omega_{0}\right) t+j \cdot \sin \left(0 \omega_{0}\right) t \\
& \cos \left(-1 \omega_{0}\right) t+j \cdot \sin \left(-1 \omega_{0}\right) t \\
& \cos \left(-2 \omega_{0}\right) t+j \cdot \sin \left(-2 \omega_{0}\right) t \\
& \cos \left(-3 \omega_{0}\right) t+j \cdot \sin \left(-3 \omega_{0}\right) t \\
& \cos \left(-4 \omega_{0}\right) t+j \cdot \sin \left(-4 \omega_{0}\right) t \\
& \cos \left(-5 \omega_{0}\right) t+j \cdot \sin \left(-5 \omega_{0}\right) t \\
& \cos \left(-6 \omega_{0}\right) t+j \cdot \sin \left(-6 \omega_{0}\right) t \\
& \cos \left(-7 \omega_{0}\right) t+j \cdot \sin \left(-7 \omega_{0}\right) t
\end{aligned}
$$

(0 cycle) (-1 cycle) (-2 cycles) (-3 cycles) (-4 cycles) (-5 cycles) (-6 cycles)
(-7 cycles)
(0 cycle)
(-1 cycle) (-2 cycles) (-3 cycles) (-4 cycles) (3 cycles) (2 cycles) (1 cycles)

Frequency View of a DFT Matrix

$\frac{N}{2}-1$	row 0
	row 1
	row 2
	row ($\frac{N}{2}-1$)
	row ($\frac{N}{2}$)
	row ($\left(\frac{N}{2}+1\right)$
$\frac{N}{2}-1$	
	row $N-2$
	row $N-1$

Normalized Frequency

$$
f_{o}=\frac{f_{s}}{N}
$$

Frequency View of a X[i] Vector

$\frac{N}{2}-1\left\{\begin{array}{l|}\hline X[0] \\ \hline X[1] \\ \hline X[2] \\ \hline \frac{N}{2}-1 \\ \hline\end{array} \begin{array}{l|}\hline X\left[\frac{N}{2}-1\right] \\ \hline X\left[\frac{N}{2}\right] \\ \hline X\left[\frac{N}{2}+1\right] \\ \hline\end{array} \begin{array}{l}\hline \\ \hline X[N-2] \\ \hline X[N-1] \\ \hline\end{array}\right.$

$f=0$	0
$f=+1 * f_{o}$	$\frac{1}{N} f_{s}$
$f=+2 * f_{o}$	$\frac{2}{N} f_{s}$
$f=+\left(\frac{N}{2}-1\right) * f_{o}$	$\frac{\left(\frac{N}{2}-1\right)}{N} f_{s}$
$f=+\left(\frac{N}{2}\right) * f_{o}$	$\frac{1}{2} f_{s}$
$f=-\left(\frac{N}{2}-1\right) * f_{o}$	$-\frac{\left(\frac{N}{2}-1\right)}{N} f_{s}$
$f=-2 * f_{o}$	$-\frac{2}{N} f_{s}$
$f=-1 * f_{o}$	$-\frac{1}{N} f_{s}$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

