## HW\#6 Numerical Integration

## \#1 Root Mean Square

(a) Find the rms value of $\sin \omega t(\omega=1,2,3 \mathrm{rad} / \mathrm{sec})$ by numerical integration methods. and also by using trigonometric identities.
(see http://numericalmethods.eng.usf.edu/ for numerical integration)
(b) Explain the relationship between the following rms values.

$$
\begin{aligned}
& \sqrt{\frac{x^{2}[0]+x^{2}[1]+\cdots+x^{2}[n-1]}{n}} \\
& \sqrt{\frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}} x^{2}(t) d t}
\end{aligned}
$$

## \#2 Computing Fourier Series Coefficients

(a) find the fundamental period of $\sin \omega t(\omega=2 \mathrm{rad} / \mathrm{sec})$.
(b) find the integration values over the fundamental period

$$
\sin 2 t \sin 2 t
$$

$\sin 2 t \sin 4 t$
$\sin 2 t \cos 2 t$
$\sin 2 t \cos 4 t$
by numerical integration methods and also by trigonometric relationships.
(c) find the Fourier coefficients of $f(t)=\sin 2 t+0.3 \sin 4 t-0.9 \cos 6 t$ and plot the result.
(see http://www.complextoreal.com/chapters/fft1.pdf )

## \#3 Find the maximum

Assume a complex constant $\quad z_{1}$ has the value of $\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}=e^{j \frac{\pi}{4}}$.
Consider the function $f(z)=\frac{z_{1} z}{\left|z_{1}\right||z|}$.
Plot the function and find the maximum

## \#4 Cauchy-Schwartz Inequality

$$
x_{1}, \cdots, x_{n} \in \boldsymbol{C} \quad y_{1}, \cdots, y_{n} \in \boldsymbol{C} \quad \text { are any complex numbers }
$$

Then Cauchy-Schwartz inequality is as follows.

$$
\left|x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}\right|^{2}=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)\left(\left|y_{1}\right|^{2}+\cdots+\left|y_{n}\right|^{2}\right)
$$

Explain this formula in relation to \#3 problem.

