CT Pulse Function Pairs (1B)

- Continuous Time Pulse Function Pairs

Copyright (c) 2009-2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Fourier Transform Types

Continuous Time Fourier Series
CTFS

$$
\begin{array}{r}
C_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} x_{T_{0}}(t) e^{-j k \omega_{0} t} d t \Leftrightarrow x_{T_{0}}(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{+j k \omega_{0} t} \\
\omega=k \omega_{0} \quad f=\frac{k}{T_{0}} \\
T_{0} \rightarrow \infty, \quad \omega_{0} \rightarrow d \omega\left(\frac{2 \pi}{T_{0}} \rightarrow d \omega\right), \quad k \omega_{0} \rightarrow \omega \square x_{T_{0}} \rightarrow x(t), \quad C_{k} T_{0} \rightarrow X(j \omega)
\end{array}
$$

Continuous Time Fourier Transform CTFT

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \quad \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

CTFS and CTFT

CTFS (Continuous Time Fourier Series)

CTFT (Continuous Time Fourier Transform)

$$
\begin{aligned}
C_{k} & =\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}=\frac{T}{T_{0}} \cdot \operatorname{sinc}\left(k \frac{T}{T_{0}}\right) \\
C_{0} & =\frac{T}{T_{0}}
\end{aligned}
$$

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \operatorname{sinc}(f T)
$$

$$
X(j 0)=T
$$

- Relation between CTFS and CTFT

CTFS and CTFT

Continuous Time Fourier Series
Periodic Continuous Time Signal

$$
\begin{array}{ll}
\begin{array}{ll}
C_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} x_{T_{0}}(t) e^{-j k \omega_{0} t} d t \Rightarrow & x_{T_{0}}(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{+j k \omega_{0} t} \\
C_{k}=\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}=\frac{T}{T_{0}} \cdot \operatorname{sinc}\left(k \frac{T}{T_{0}}\right) & \square \\
\text { CTFS } & \square-\frac{T_{0}}{2} \square_{-\frac{T}{2}}^{+\frac{T_{0}}{2}} T_{0}
\end{array} .
\end{array}
$$

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
& X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \operatorname{sinc}(f T) \\
& { }_{\text {CTFT }}
\end{aligned} \Rightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

Aperiodic Continuous Time Signal

CTFS and CTFT - in the time domain

CTFS (Continuous Time Fourier Series)

$$
x_{T_{0}}(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{+j k \omega_{0} t}
$$

$$
x_{T_{0}}(t)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} C_{k} T_{0} e^{+j k \omega_{0} t}\left(\frac{2 \pi}{T_{0}}\right)
$$

$$
\begin{aligned}
& T_{0} \rightarrow \infty \\
& \omega_{0} \rightarrow 0
\end{aligned} \quad\left[\begin{array}{r}
k \omega_{0} \rightarrow \omega \\
\frac{2 \pi}{T_{0}} \rightarrow d \omega \\
x_{T_{0}}(t) \rightarrow x(t)
\end{array}\right.
$$

Time

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

$$
I_{0}
$$

CTFT (Continuous Time Fourier Transform)

$$
T_{0} \rightarrow \infty
$$

$$
\frac{1}{T_{0}} \rightarrow 0
$$

$$
{ }_{{ }_{S}}{ }_{T}
$$

CTFS and CTFT - in the frequency domain

CTFS (Continuous Time Fourier Series)

$$
C_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} x_{T_{0}}(t) e^{-j k \omega_{0} t} d t
$$

$$
C_{k} T_{0}=\int_{-T_{0} / 2}^{+T_{0} / 2} x_{T_{0}}(t) e^{-j k \omega_{0} t} d t
$$

$$
T_{0} \rightarrow \infty
$$

$$
k \omega_{0} \rightarrow \omega
$$

$$
x_{T_{0}}(t) \rightarrow x(t)
$$

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
$$

CTFT (Continuous Time Fourier Transform)

$$
f=\frac{k}{T_{0}} \quad \frac{T}{T_{0}}-C_{-2 \omega_{0}-\omega_{0}=\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}, \omega_{0} 2 \omega_{0}}^{C_{0}}
$$

$$
\begin{gathered}
\text { Area }=2 \pi C_{k} \\
c_{k} X_{0} \\
\omega_{0}=\frac{2 \pi}{X_{0}}
\end{gathered}
$$

Impulse Train Weights (1)

Height	\triangle Area
$C_{k} \cdot T_{0}$	C_{k}

T_{0} copies

Height
$C_{k} \cdot T_{0}$
Area
$C_{k} \cdot T_{0}$

Height Area

T_{0} copies

Height
$C_{k} \cdot T_{0}$

T_{0} copies

Impulse Train Weights (2)

T_{0} copies stacked up

T_{0} copies stacked up

Height
Area
$C_{k} \cdot T_{0}^{2}$
$C_{k} \cdot T_{0}$

$$
T_{0} \text { copies stacked up }
$$

Impulse Train Weights (3)

Height
Area x 1
$C_{k} \cdot T_{0}^{2}$

$$
\begin{gathered}
C_{k} \cdot T_{0} \\
\underset{k \omega_{0}}{\longrightarrow} \frac{1}{T_{0}}=\frac{1}{a}
\end{gathered}
$$

Height
$C_{k} \cdot T_{0}^{2}$
$C_{k} \cdot T_{0}$
$\underset{k \omega_{0}}{\longmapsto} \frac{1}{T_{0}}=\frac{1}{2 a}$

Weight
$C_{k} \cdot T_{0}$

Impulse Train's Sampling Property

Weight

$$
X\left(j \omega_{k}\right) \delta\left(\omega-\omega_{k}\right) \quad \text { Unit Area }
$$

Sampling Property

$$
X\left(j \omega_{k}\right)=\int_{-\infty}^{+\infty} X(j \omega) \delta\left(\omega-\omega_{k}\right) d \omega
$$

$$
X\left(j \omega^{\prime}\right) \neq C_{k} \cdot T_{0} \cdot \frac{1}{T_{0}}=C_{k}
$$

CTFS and CTFT Frequency Components

$$
\begin{aligned}
C_{k} & =\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}=\frac{T}{T_{0}} \cdot \operatorname{sinc}\left(k \frac{T}{T_{0}}\right) \\
C_{0} & =\frac{T}{T_{0}}
\end{aligned}
$$

$$
f=\frac{k}{T_{0}} \quad \frac{T}{T_{0}} C_{k}=\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}
$$

$$
\begin{aligned}
& X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \boldsymbol{\operatorname { s i n c }}(f T) \\
& X(j 0)=T
\end{aligned}
$$

CTFS and CTFT Frequency Components

$$
\begin{array}{ll}
C_{k}=\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}=\frac{T}{T_{0}} \cdot \operatorname{sinc}\left(k \frac{T}{T_{0}}\right) \\
C_{0}=\frac{T}{T_{0}}
\end{array} \quad \begin{aligned}
& X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \operatorname{sinc}(f T) \\
& X(j 0)=T
\end{aligned}
$$

CTFS \rightarrow CTFT

CTFS

$$
C_{k}=\frac{1}{T_{0}} \cdot \frac{\sin \left(k \omega_{0} T / 2\right)}{k \omega_{0} / 2}=\frac{T}{T_{0}} \cdot \operatorname{sinc}\left(k \frac{T}{T_{0}}\right)
$$

$$
\text { Period }=T_{0}
$$

$$
x_{T_{0}}(t)=\sum_{n=-\infty}^{+\infty} x\left(t-n T_{0}\right)
$$

$$
\omega=k \omega_{0} \quad f=\frac{k}{T_{0}}
$$

$$
\begin{aligned}
& T_{0} \rightarrow \infty \\
& \omega_{0} \rightarrow 0
\end{aligned} \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

CTFT

$$
X(j \omega)=\frac{\sin (\omega T / 2)}{\omega / 2}=T \cdot \operatorname{sinc}(f T)
$$

CTFT and CTFS as $T_{0} \rightarrow \infty$ (1)

CTFT and CTFS as $\quad T_{0} \rightarrow \infty(2)$

the first zero

CTFT of a Rect(t/T) function (3)

CTFT of a $\operatorname{Rect}(t / T)$ function (4)

$$
\omega=\frac{2 \pi}{T}
$$

$$
\omega=k \omega_{0}=\left(\frac{T}{T_{0}}\right)^{-1} \omega_{0}=2 \omega_{0}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M. J. Roberts, Fundamentals of Signals and Systems
[4] S. Haykin, An Introduction to Analog \& Digital Communications

