DTFT (4A)

- Discrete Time Fourier Transform

Copyright (c) 2009-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License"

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

DTFS and DTFT

Discrete Time Fourier Series

$$
\begin{aligned}
& \gamma_{k}=\frac{1}{N} \sum_{\boldsymbol{n}=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \Leftrightarrow x[\boldsymbol{n}]=\sum_{k=0}^{N} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
& \text { Discrete Frequency - Periodic }
\end{aligned}
$$

Discrete Time Fourier Transform

$$
X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{+\infty} x[\boldsymbol{n}] e^{-j \hat{\omega} n} \Leftrightarrow x[\boldsymbol{n}]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} X\left(e^{j \hat{\omega}}\right) e^{+j \hat{\omega} n} d \hat{\omega}
$$

Continuous Frequency - Periodic

Aperiodic Signal Conversion $x[\boldsymbol{n}]$

3A DTFT

From Summation to Integration

DTFS

$$
\begin{aligned}
& \gamma_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) k n} \\
& N_{0} \rightarrow \infty \quad \hat{\omega}_{0}=\left(\frac{2 \pi}{N_{0}}\right) \rightarrow 0 \\
& \hat{\omega}_{0} \rightarrow d \hat{\omega}, \quad k \hat{\omega}_{0} \rightarrow \hat{\omega} \\
& x_{N_{0}}[n] \rightarrow x[n], \quad \gamma_{k} N_{0} \rightarrow X\left(e^{j \hat{\omega}}\right)
\end{aligned}
$$

$$
x[\boldsymbol{n}]=\sum_{k=0}^{N} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}}
$$

$$
x_{N_{0}}[\boldsymbol{n}]=\sum_{k=0}^{N_{0}} \gamma_{k} e^{+j\left(\frac{2 \pi}{N_{0}}\right) k \boldsymbol{n}} \cdot \frac{2 \pi}{2 \pi} \cdot \frac{N_{0}}{N_{0}}
$$

$$
x_{N_{0}}[\boldsymbol{n}]=\frac{1}{2 \pi} \sum_{k=0}^{N_{0}} \gamma_{k} N e^{+j\left(\frac{2 \pi}{N_{0}}\right) k n} \cdot \frac{2 \pi}{N_{0}}
$$

$$
X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{+\infty} x[\boldsymbol{n}] e^{-j \hat{\omega} n} \Leftrightarrow x[\boldsymbol{n}]=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} X\left(e^{j \hat{\omega}}\right) e^{+j \hat{\omega} n} d \hat{\omega}
$$

From DTFS to DTFT

$$
\begin{aligned}
x_{N_{0}}[\boldsymbol{n}] & =\sum_{k=0}^{N_{0}} \gamma_{k} e^{+j\left(\frac{2 \pi}{N_{0}}\right) k \boldsymbol{n}} \cdot 1 \\
& =\sum_{k=0}^{N_{0}} \gamma_{k} e^{+j\left(\frac{2 \pi}{N_{0}}\right) k \boldsymbol{n}} \cdot\left(\frac{N_{0}}{2 \pi}\right) \cdot\left(\frac{2 \pi}{N_{0}}\right) \\
& =\frac{1}{2 \pi} \sum_{k=0}^{N_{0}} \gamma_{k} N_{0} e^{+j\left(\frac{2 \pi}{N_{0}}\right) k \boldsymbol{n}} \cdot\left(\frac{2 \pi}{N_{0}}\right) \\
x_{N_{0}}[\boldsymbol{n}] & =\frac{1}{2 \pi} \sum_{k=0}^{N_{0}} \gamma_{k} N_{0} e^{+j\left(\frac{2 \pi}{N_{0}}\right) k \boldsymbol{n}} \cdot\left(\frac{2 \pi}{N_{0}}\right)
\end{aligned}
$$

$$
N_{0} \rightarrow \infty \quad \hat{\omega}_{0}=\left(\frac{2 \pi}{N_{0}}\right) \rightarrow 0
$$

$$
\hat{\omega}_{0} \rightarrow d \hat{\omega}, \quad k \hat{\omega}_{0} \rightarrow \hat{\omega}
$$

$$
x_{N_{0}}[n] \rightarrow x[n], \quad \gamma_{k} N_{0} \rightarrow X\left(e^{j \hat{\omega}}\right)
$$

Sampling and Reconstruction

Ideal Sampling

Ideal Reconstruction

Sampled Signal

Ideal Sampling

$$
p(t)=\sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right)
$$

$$
\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \\
=\sum_{n=-\infty}^{+\infty} x_{c}\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
\end{gathered}=\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{k=-\infty}^{+\infty} \frac{1}{T_{s}} e^{j k \omega_{s} t} \\
\omega_{s}=\frac{2 \pi}{T_{s}}
\end{gathered}
$$

CTFT Frequency Shift Property

Continuous Time Fourier Transform

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
$$

$$
x_{c}(t)
$$

$$
\Leftrightarrow
$$

$$
X_{c}(j \omega)
$$

$$
x_{c}(t) e^{j k \omega_{s} t}
$$

$$
\Leftrightarrow
$$

$$
X_{c}\left(j\left(\omega-k \omega_{s}\right)\right)
$$

$$
\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{k=-\infty}^{+\infty} \frac{1}{T_{s}} e^{j k \omega_{s} t} \\
\omega_{s}=\frac{2 \pi}{T_{s}}
\end{gathered}
$$

$$
\begin{gathered}
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
\omega_{s}=\frac{2 \pi}{T_{s}}
\end{gathered}
$$

CTFT Delay Property

Continuous Time Fourier Transform

$$
\begin{array}{cc}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega \\
\delta\left(t-t_{d}\right) & \longmapsto X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \\
\delta\left(t-n T_{s}\right) & \longmapsto e^{j \omega t_{d}} \\
e^{-j \omega n T_{s}}
\end{array}
$$

$$
x_{s}(t)=x_{c}(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right)
$$

$$
\begin{aligned}
& X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}} \\
& =\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}
\end{aligned}
$$

CTFT of a Sampled Signal

Continuous Time Fourier Transform

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t
$$

$$
\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{k=-\infty}^{+\infty} \frac{1}{T_{s}} e^{j k \omega_{s} t} \\
\omega_{s}=\frac{2 \pi}{T_{s}}
\end{gathered}
$$

II

$$
\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \\
=\sum_{n=-\infty}^{+\infty} x_{c}\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
\end{gathered}
$$

$$
\begin{gathered}
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
\omega_{s}=\frac{2 \pi}{T_{s}} \\
\text { II } \\
X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}} \\
=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}
\end{gathered}
$$

z-Transform of a Sampled Signal

$$
\begin{aligned}
& X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}}= \\
& =\sum^{+\infty} x[n] e^{-j \omega n T_{s}}
\end{aligned}
$$

$$
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right)
$$

$$
\omega_{s}=\frac{2 \pi}{T_{s}}
$$

CTFT of a sampled signal

$$
\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-\frac{2 \pi k}{T_{s}}\right)\right)
$$

Z-Transform of a sampled signal

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad x[n]=x_{c}\left(n T_{s}\right)
$$

$$
X(z)_{z=e^{j \omega T_{s}}}=X\left(e^{j \omega T_{s}}\right) \quad \text { evaluated at } \quad \underline{z=e^{j \omega T_{s}}}
$$

z-Transform and Normalized Frequency

$$
\begin{aligned}
& \begin{array}{c}
X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}} \\
=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}
\end{array}=\begin{array}{c}
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
\omega_{s}=\frac{2 \pi}{T_{s}}
\end{array} \\
& \left.X(z)\right|_{z=e^{j \omega T_{s}}}=X\left(e^{j \omega T_{s}}\right) \quad=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}} \quad \text { z-Transform }
\end{aligned}
$$

$$
\hat{\omega}=\omega T_{s}
$$

$$
\left.X(z)\right|_{z=e^{j \hat{\omega}}} \quad X\left(e^{j \hat{\omega}}\right) \quad=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n}
$$

Normalized
Frequency

Discrete Time
Fourier Transform

DTFT and CTFT

$$
\begin{aligned}
\begin{array}{l}
X_{s}(j \omega)=\sum_{n=-\infty}^{+\infty} X_{c}\left(n T_{s}\right) e^{-j \omega n T_{s}} \\
=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n T_{s}}
\end{array} & =\begin{array}{c}
X_{s}(j \omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
\omega_{s}=\frac{2 \pi}{T_{s}} \\
X\left(e^{j \hat{\omega}}\right) \\
=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \\
\text { DTFT of a sampled signal } \\
X\left(e^{j \hat{\omega}}\right) \\
\hat{\omega}=\omega T_{s}
\end{array} \\
=X\left(e^{j \omega T_{s}}\right) & =\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \\
& =\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(j\left(\omega-\frac{2 \pi k}{T_{s}}\right)\right)
\end{aligned}
$$

CTFT of a sampled signal

CTFS and DTFS

Continuous Time Fourier Transform

$$
X(j \omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t \Leftrightarrow x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \omega) e^{+j \omega t} d \omega
$$

Discrete Time Fourier Transform

$$
X\left(e^{j \hat{\omega}}\right)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{\omega} n} \Leftrightarrow x[n]=\frac{1}{2 \pi} \int_{-\pi}^{+p i} X\left(e^{j \hat{\omega}}\right) e^{+j \hat{\omega} n}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M.J. Roberts, Fundamentals of Signals and Systems
[4] S.J. Orfanidis, Introduction to Signal Processing
[5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings

