Multiple Linear Regression II

Lecture 8 Survey Research & Design in Psychology James Neill, 2017 Creative Commons Attribution 4.0

Overview

- 1. Summary of MLR I lecture
- 2. Semi-partial correlations
- 3. Residual analysis
- 4. Interactions
- 5. Analysis of change
- 6. Writing up an MLR
- 7. Summary of MLR II
- 8. MLR II quiz Practice questions

Readings

- 1. As per previous lecture, plus
- 2. Howitt & Cramer (2014)• Ch 39: Moderator variables and
 - relationships between two variables

Summary of MLR I lecture

Purpose of MLR:

To examine linear relations between:

- $\mbox{two or more predictors}$ (IVs; X) and
- -a single outcome variable (DV; Y)

Model:

Develop a theoretical model:

- Path diagram and/or Venn diagram
- Express as one hypothesis per IV

Summary of MLR I

Check assumptions:

- Level of measurement
- Sample size
- Normality
- Linearity
- Homoscedasticity
- Collinearity
- Multivariate outliers
- Residuals should be normally distributed

5

4

Summary of MLR I

Choose type:

- Standard
- Hierarchical
- Stepwise, Forward, Backward

Summary of MLR I

Interpret output:

Overall:

- -R, R^2 , Adjusted R^2
- -Changes in R^2 (if hierarchical)
- -Significance (F, p)
- · For each IV:
 - -Standardised coefficient - size, direction and significance
 - Unstandardised coefficient - report equation (if useful)
 - -Semi-partial correlations (sr²)

Semi-partial correlation

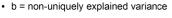
IV1,

7

DV

8

d


а

С

b

Venn Diagrams depict variance and shared variance:

- a + b + c + d = variance in DV
 a + b + c = R (variance in the DV
- explained by IV1 and IV2)
- a + c = uniquely explained variance
 b = pap uniquely explained variance

a and c are **semi-partial correlations (***sr***)**:

- a = sr between *IV1* and DV after controlling for (partialling out) the influence of IV2
- c = sr between IV2 and DV after controlling for (partialling out) the influence of IV1

Semi-partial correlations in MLR

When interpreting MLR coefficients:

- Draw a Path diagram or Venn diagram
- Compare 0-order (*r*) and semi-partial correlations (s*r*) for each IV to help understand relations amongst the IVs and the DV:
 - A semi-partial correlation (*sr*) will be less than or equal to the correlation (*r*)
 - If a srequals a r, then the IV independently predicts the DV
 To the extent that a sr is less than the r, the IV's explanation of
 - the DV is shared with other IVs – An IV may have a significant *r* with the DV, but a non-significant *sr*. This indicates that the unique variance explained by the IV may be 0.
- Manual and the unique valuance explained by the two may be 0.
 Compare the relative importance of the predictors
- Compare the relative importance of the predictors using betas and/or *srs* 9

Semi-partial correlations (*sr*) in MLR

- SPSS provides semi-partial correlations if selected (labelled "part")
- Square sr to get sr^2 .
- The *sr*² indicates the % of variance in the DV which is uniquely explained by an IV..

• Compare each *sr*² with the *r*² – do they differ – why?

10

Semi-partial correlations for MLR in SPSS

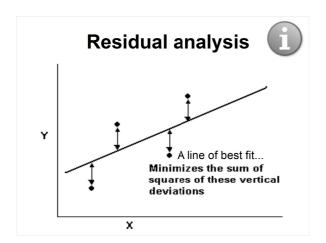
Analyze - Linear Regression - Statistics - Part and partial correlations

Linear Regression		×
_	- Demonstration (\frown
Case ID [CID]	Linear Regression: Statistics	Statistics
Researcher ID [Regression Coefficient	Plots
🗞 Gender [gender		Save Options
💑 Survey Resean 🔗 Age (years) [ac	Confidence intervals	Options
lnternational stu	Part and partial correlations	
🔏 Degree name (c	Covariance matrix Collinearity diagnostics	
Living during se	Residuals	
Enrolment statu Percentage of c	Durbin-Watson	

Semi-partial correlations for MLR in SPSS - Example

		Coefficien	ts	
	Image source: http://web.psych.unimelb.edu.au/jk	-		if
		Correlations	elations	
Model		Zero-order	Partial	Part
1	Zscore: GA: General Ability Total	.285	.107	.090
	Zscore: PSA: Perceptual Speed Ability Total	.419	.319	.280
	Zscore: PMA: Psychomotor Ability Total	.275	.034	.028
	QBK: Total Knowledge of Text Editing Keys (% correct)	.386	.368	.329

Semi-partial correlations (*sr*) indicate the relative importance of each of the predictors; sr^2 indicate the % of variance uniquely explained by each predictor₂


Summary: Semi-partial correlation (*sr*)

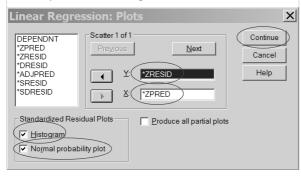
- 1. In MLR, *sr* is labelled "part" in the regression coefficients table SPSS output
- Square these values to obtain *sr*², the unique % of DV variance explained by each IV
- 3. Discuss the extent to which the explained variance in the DV is due to unique or shared contributions of the IVs

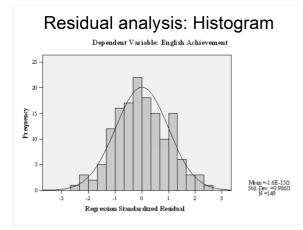
Semi-partial correlations (*sr*)

• $R^2 = .34$

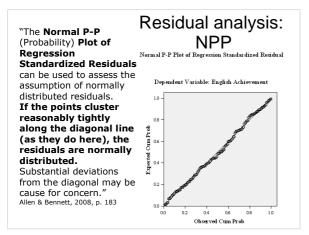
 16% is of the DV 		
variance is uniquely	Independent variables	sr^2
explained by the IVs	Not Coping (NC)	.07
(sum of <i>sr</i> ² s)	Somatic Coping (SC)	.06
 18% of the DV variance is explained 	Wishful Thinking (WT)	.02
by the combination	Worry (W)	.01
of the IVs (R^2 - sum		
of <i>sr</i> ²s)		14

Residual analysis

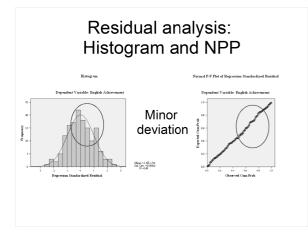

Assumptions about residuals:

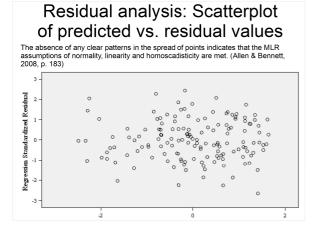

- Sometimes positive, sometimes negative but, on average, 0
- Error is random
- Normally distributed about 0

1	6	

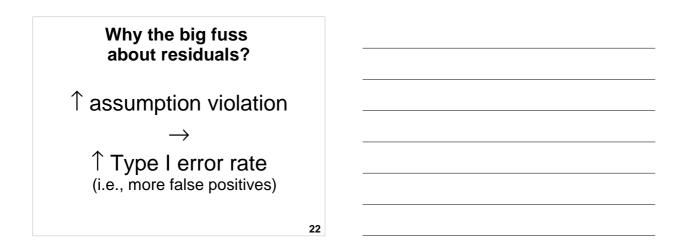

Residual analysis


Analyze - Linear Regression - Plots - Y and X









Why the big fuss about residuals?

- Standard error formulae (used for confidence intervals and sig. tests) work when residuals are well-behaved.
- If the residuals don't meet assumptions these formulae tend to underestimate coefficient standard errors giving lower *p*-values and more Type I errors.

23

Summary: Residual analysis

- 1. Residuals are the difference between predicted and observed Y values
- 2. MLR assumption is that residuals are normally distributed.
- 3. Examining residuals also helps to assess:
 - 1. Linearity
 - 2. Homoscedasticity

Interactions	i	
Image source: http://commons.wikimedia.org/wiki/File:Color_icon_orange.png		

Interactions

- Additivity when IVs act independently on a DV they do not interact.
- Alternatively, there may be interaction effects - i.e. the magnitude of the effect of one IV on a DV varies as a function of a second IV.
- Also known as a moderation effect.

26

Interactions: Example 1

Some drugs interact with each other to reduce or enhance other's effects e.g.,

 $\mathsf{Pseudoephedrine} \to \uparrow \mathsf{Arousal}$

Caffeine $\rightarrow \uparrow$ Arousal

Pseudoeph. X Caffeine $\rightarrow \uparrow\uparrow\uparrow$ Arousal

Interactions: Example 2

Physical exercise (IV1) and Natural environments (IV2) may provide multiplicative benefits in reducing stress e.g., Natural environment $\rightarrow \downarrow$ Stress Physical exercise $\rightarrow \downarrow$ Stress Natural env. x Phys. ex. $\rightarrow \downarrow \downarrow \downarrow$ Stress

28

Interactions: Example 3

 $\begin{array}{c} \text{University student satisfaction (IV1)}\\ \text{and}\\ \text{Level of coping (IV2)}\\ \text{may predict level of stress e.g.,}\\ \text{Satisfaction} \rightarrow \downarrow \text{Stress}\\ \text{Coping} \rightarrow \downarrow \text{Stress}\\ \text{Satisfaction x Coping} \rightarrow \downarrow \downarrow \downarrow \text{Stress}\\ \text{(Dissatisfaction x Not coping} \rightarrow \uparrow \uparrow \text{Stress}) \end{array}$

29

Interactions

Test interactions in MLR by computing a cross-product term e.g.,:

- Pseudoephedrine (IV1)
- Caffeine (IV2)
- Pseudoephedrine x Caffeine (IV3)

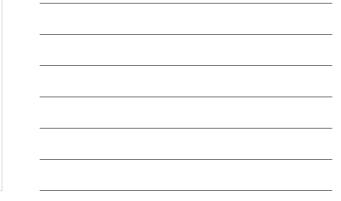
Interactions

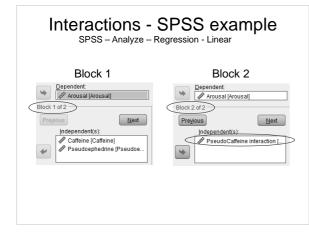
 $Y = b_1 x_1 + b_2 x_2 + b_{12} x_{12} + a + e$ • b_{12} is the product of the first two slopes $(b_1 \times b_2)$

*b*₁₂ can be interpreted as the amount of change in the slope of the regression of Y on *b*₁ when *b*₂ changes by one unit.

31

Interactions


- Conduct Hierarchical MLR –Step 1:
 - Pseudoephedrine
 - Caffeine
 - -Step 2:
 - Pseudo x Caffeine (cross-product)
- Examine ΔR^2 , to see whether the interaction term explains additional variance above and beyond the additive effects of Pseudo and Caffeine. 32


Interactions

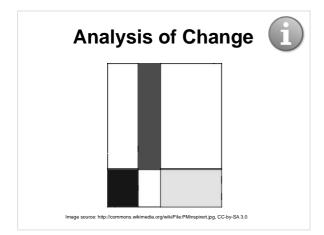
Possible effects of Pseudo and Caffeine on Arousal:

- None
- Pseudo only (\uparrow/\downarrow)
- Caffeine only (↑/↓)
- Pseudo + Caffeine $(\uparrow\uparrow/\downarrow\downarrow)$
- Pseudo x Caffeine (^{↑↑↑} (synergistic))
- Pseudo x Caffeine ($\downarrow \downarrow \downarrow$ (antagonistic))

Target Variable Target Variable PseudoCaffeine Tps=&Label M id	= (Turngit Expression Preudoephed/ine*Cuffeine	
Cottene Pecudochadine Parousal PseudoCatteine		Function group: All Arithmetic CDF & Noncentral CDF Conversion Courrent Date/Time Date Arithmetic Date Orreation Eunctions and Special Varia

	R	R Sau	iare		sted R luare	Std. Error of the Estimate		luare Inde
1	.543ª		295		.288	17.34399	0.10	.295
2	.547 ^b		299	.289		17.33241	.004	
a. Pr	edictors: (Co	nstant)	, Caffe	ine, Ps	eudoephe	drine		
b. Pr	edictors: (Co	nstant)	Caffe	ine, Ps	eudoephe	drine PseudoCa	affeine inte	eraction
ıdel			Unsta	ndardize	d Coefficients	Standardized Coefficients		
			0.000		Std. Error	Beta	t	Sig.
(C	onstant)		:	57.705	5.109	9	11.296	.000
Pseudoephedrine				1.511	1.510	.464	7.625	.000
15	iffeine			4.735	1.780	.162	2.660	.008
	meine			12.730	14.137	,	3.023	.003
Ca	onstant)							
Ca (C				8.137	6.025	5 .732	3.010	.003
Ca (C Ps	onstant)						3.010 1.998	.003 _047

Interactions


- Cross-product interaction terms may be highly correlated (collinear) with the corresponding simple IVs, creating problems with assessing the relative importance of main effects and interaction effects.
- An alternative approach is to conduct separate regressions for each level of one of the IVs e.g.,
 - What is the effect of caffeine on Arousal without pseudephedrine?
 - What is the effect of caffeine on Arousal with pseudephedrine?
 37

Summary: Interactions

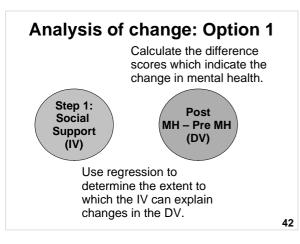
- 1. In MLR, IVs may interact to:
 - 1. Increase the IVs' effect on DV
 - 2. Decrease the IVs' effect on DV

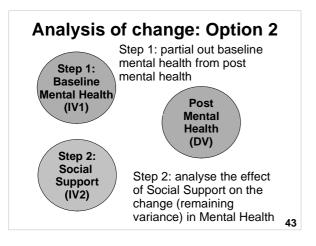
2. Model interactions using hierarchical MLR:

- 1. Step 1: Enter IVs
- 2. Step 2: Enter cross-product of IVs
- 3. Examine change in R^2

Analysis of change

- MLR can be used to analyse the variance of changes in outcome measures over time (e.g., an intervention study with pre-post tests).
- There are two main approaches:
 - 1. Standard regression:


1.Compute post-pre difference (or change) scores in the outcome measures and use these change scores as the DV and all IVs in Step 1 of a standard regression.


- 2. Hierarchical MLR:
 - 1. DV is the post measure
 - 2. Step1: "Partial out" the baseline score by entering the prescore.
 - 3. Step 2: Seek to explain remaining variance in the Post-test DV by entering the IVs of interest and examining the change in R^2 .

Analysis of change

Example research question: Does the quality of social support (IV2) explain changes in mental health (MH) between the beginning (IV1) and end (DV) of an intervention ?

Analysis of change: Option 2

Hierarchical MLR

- DV = Mental health after the intervention
- Step 1
 - -IV1 = Mental health before the intervention

Step 2

 -IV2 = Support from group members

44

Analysis of change: Option 2

Results of interest

- Change in R^2 amount of additional variance in the DV (MH2) explained by the predictor (IV2) added in Step 2 (after having baseline IV1 variance has been accounted for in Step 1)
- Regression coefficients for the predictor (IV2) in Step 2 – indicates variance explained in the DV (MH2) by the IV (SS) after controlling for baseline MH (MH1) in Step 1

Summary: Analysis of change

- 1. Analysis of changes over time can be assessed by:
 - 1. Standard regression
 - 1. Calculate difference scores (Post-score minus Pre-score) and use as a DV
 - 2. Hierarchical MLR
 - 1. Step 1: "Partial out" baseline scores
 - 2. Step 2: Enter other IVs to help predict variance in changes over time. 46

Writing up an MLR: Intro

- Explain the constructs of interest and why they are important
- Explain how / why the IVs may be related to the DV, drawing on theory and research
- State hypotheses (one per IV) –Null hypothesis or
 - -Directional hypothesis

Writing up an MLR: Results

- Establish the purpose of the analysis
- Provide univariate descriptive statistics (*M*, *SD*, Skewness, Kurtosis) for the IVs and DV
- Describe type of MLR
- Test assumptions
- Examine correlations
- Overall model: R², Adjusted R², F, p
- Explain regression coefficients
- Provide table of correlations and regression coefficients (unstandardised and standardised), *t*, *p*, and *sr*² values

49

Writing up an MLR: Discussion

• Summarise the results in relation to the hypotheses and the overall research question, paying attention to:

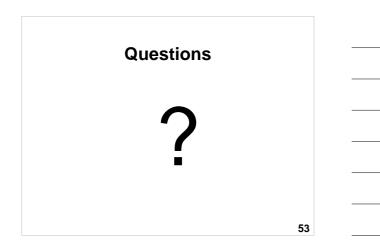
- Direction
- Size
- Statistical significance
- Interpret the results in the context of relevant psychological theory and research
- Consider alternative explanations and limitations
- Describe implications and/or recommendations

50

Table of regression coefficients

Table 2

Variables	PD ^a	NC	WT	W	SC	В	β	sr2b
	(DV)					(unique)		
Not Coping (NC)	.43					.41*	.29	.07
Wishful Thinking (WT)	.38	.36				.15*	.15	.02
Worry (W)	.36	.25	.40			.13*	.13	.01
Somatic Coping(SC)	.42	.22	.30	.38		.26*	.26	.06
Intercept						.60*		


Summary: Writing up an MLR

- 1. Introduction
 - 1. Establish purpose
 - 2. Describe model and hypotheses
- 2. Results
 - 1. Univariate descriptive statistics
 - 2. Correlations
 - 3. Type of MLR and assumptions
 - 4. Regression coefficients

3. Discussion

1. Summarise and interpret, with limitations

2. Implications and recommendations

MLR II Quiz – Practice question 1

In an MLR, if the *r* between the two IVs is 1, *R* will equal the *r* between one of the IVs and the DV.

[Hint: Draw a Venn Diagram]

- a) True
- b) False

54

MLR II Quiz – Practice question 2

In MLR, if two IVs are somewhat correlated with the DV and with one another, the *sr*s between the IVs and the DV will be ______ in magnitude than the *r*s: [Hint: Draw a Venn Diagram]

a) Equal

b) Smaller

c) Larger

d) Impossible to tell

55

MLR II Quiz – Practice question 3

In MLR, the unique variance in the DV explained by a particular IV is estimated by its:

a) Zero-order correlation square (r^2)

b) Multiple correlation coefficient squared (R^2)

c) Semi-partial correlation squared (sr²)

56

MLR II Quiz – Practice question 4

Interaction effects can be tested in MLR by using IVs that represent:

- a) Cross-products between the IVs and DV in a hierarchical regression
- b) Cross-products of IVs
- c) Semi-partial correlations squared (sr²)

MLR II Quiz – Practice question 5

To assess the extent to which social support from group members during an intervention program explain changes in mental health (MH) between the beginning and end of an intervention program, what MLR design could be used?

- a) Hierarchical with pre-MH in Step 1
- b) Hierarchical with cross-products of IVs in Step 2 58

References

- Allen, P. & Bennett, K. (2008). SPSS for the health and behavioural sciences. South Melbourne, Victoria, Australia: Thomson.
- Francis, G. (2007). Introduction to SPSS for Windows: v. 15.0 and 14.0 with Notes for Studentware (5th ed.). Sydney: Pearson Education.
- Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth.
- Howitt, D. & Cramer, D. (2011). *Introduction to statistics in psychology* (5th ed.). Harlow, UK: Pearson.

59

Next lecture

- Statistical power
- Significance testing
- Inferential decision making
- Effect sizes
- Confidence intervals
- Publication bias
- Academic integrity

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- <u>http://www.openoffice.org/product/impress.html</u>

