Descriptives \& Graphing

Lecture 3
Survey Research \& Design in Psychology James Neill, 2015

Overview:

Descriptives \& Graphing

1. Steps with data
2. How to approach data
3. Parametric vs. non-parametric \& LOM
4. Descriptive statistics
5. Normal distribution
6. Non-normal distributions
7. Effect of skew on central tendency
8. Principles of graphing
9. Univariate graphical techniques

Steps
 with
 data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data checking

- Survey data can be checked by having one person read the survey responses aloud to another person who checks the electronic data file.
- For a large study, a proportion of the surveys can be checked and the error-rate declared in the research report.

Data screening

- Carefully 'screening' a data file helps to minimise errors and maximise validity.
- For example, screen for:
-Out of range values (min. and max.)
-Mis-entered data
-Missing cases
-Duplicate cases
- Missing data

Don't be afraid - you can't break data!

Play with the data get to know it.
\qquad
\qquad

Get intimate with your data

Clearly report the data's main features

Parametric \&
 non-parametric statistics \& level of measurement

Golden rule of data analysis

Level of measurement
determines type of descriptive statistics and graphs
Level of measurement determines which types of descriptive statistics and which types of graphs are appropriate.

Levels of measurement and non-parametric vs. parametric

Categorical \& ordinal DVs
\rightarrow non-parametric
(Does not assume a normal distribution)
Interval \& ratio DVs \rightarrow parametric
(Assumes a normal distribution)
\rightarrow non-parametric (If distribution is non-normal)

DVs = dependent variables

Parametric statistics

- Procedures which estimate parameters of a population, usually based on the normal distribution
$-M, S D$, skewness, kurtosis \rightarrow t-tests, ANOVAs
$-r \rightarrow$ linear regression, multiple linear regression

Parametric statistics

- More powerful (more sensitive)
- Have more assumptions
- More vulnerable to violations of assumptions
\qquad

Non-parametric statistics

(Distribution-free tests)

- Do not rely on estimates of population parameters
- Common non-parametrics statistics:
-Frequency \rightarrow sign test, chi-squared
-Rank order \rightarrow Mann-Whitney U test, Wilcoxon matched-pairs signed-ranks test

Univariate descriptive statistics

17

What do we want to describe?
The distributional properties of underlying variables, based on:

- Central tendency(ies): Frequencies, Mode, Median, Mean
- Shape: Skewness, Kurtosis
- Spread (dispersion): Min., Max., Range, IQR, Percentiles, Var/SD for sampled data.

Measures of central tendency
Statistics which represent the
'centre' of a frequency distribution:

- Mode (most frequent)
-Median ($50^{\text {th }}$ percentile)
- Mean (average)

Which ones to use depends on:

- Type of data (level of measurement)
-Shape of distribution (esp. skewness)
Reporting more than one may be appropriate.

Measures of central tendency

	Mode / Freq. \%s	Median	Mean
Nominal	$\sqrt{ }$	x	x
Ordinal	$\sqrt{ }$	If meaningful	x
Interval	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ratio	If meaningful	$\sqrt{ }$	$\sqrt{ }$

Measures of distribution

- Measures of shape, spread, disperson and deviation from the central tendency

Non-parametric: Parametric:

- Min and max
- SD
- Range
- Skewness
- Percentiles
- Kurtosis

Measures of spread / dispersion / deviation

	Min / Max, Range	Percentile	Var/SD
Nominal	x	x	x
Ordinal	$\sqrt{ }$	If meaningful	x
Interval	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ratio	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Descriptives for nominal data

- Nominal = Labelled categories
- Descriptive statistics:
-Most frequent? (Mode - e.g., females)
-Least frequent? (e.g, Males)
-Frequencies (e.g., 20 females, 10 males)
-Percentages (e.g. 67% females, 33% males)
-Cumulative percentages
-Ratios (e.g., twice as many females as males)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Descriptives for ordinal data

- Ordinal = Conveys order but not distance (e.g., ranks)
- Descriptives approach is as for nominal (frequencies, mode etc.)
- Plus percentiles (including median) may be useful

Descriptives for interval data

- Interval = order and distance, but no true 0 (0 is arbitrary).
- Central tendency (mode, median, mean)
- Shape/Spread (min, max, range, SD, skewness, kurtosis)
Interval data is discrete, but is often treated as ratio/continuous (especially for > 5 intervals)

Descriptives for ratio data

- Ratio = Numbers convey order and distance, meaningful 0 point
- As for interval, use median, mean, $S D$, skewness etc.
- Can also use ratios (e.g., Category A is twice as large as Category B)

Mode (Mo)

- Most common score - highest point in a frequency distribution - a real score - for most no. of participants
- Suitable for all levels of data, but may not be appropriate for ratio (continuous)
- Not affected by outliers
- Check frequencies and bar graph to see whether it is an accurate and useful statistic.

Frequencies (f) and percentages (\%)

- \# of responses in each category
- \% of responses in each category
- Frequency table
- Visualise using a bar or pie chart

Median (Mdn)

- Mid-point of distribution (Quartile 2, $50^{\text {th }}$ percentile)
- Not badly affected by outliers
- May not represent the central tendency in skewed data
- If the Median is useful, then consider what other percentiles may also be worth reporting.

Summary: Descriptive statistics

Depending on the level of measurement and whether data is parametric (normal):

- Describe the central tendency
-Frequencies, Percentages -Mode, Median, Mean
- Describe the variability:
-Min, Max, Range, Quartiles
-Standard Deviation, Variance

Properties of the normal distribution

The four moments of a normal distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The four moments of a normal distribution

Four mathematical qualities (parameters) can describe a continuous distribution which as least roughly follows a bell curve shape:

- $1^{\text {st }}=$ mean (central tendency)
- ${ }^{\text {nd }}=S D$ (dispersion)
- $3^{\text {rd }}=$ skewness (lean / tail)
- $4^{\text {th }}=$ kurtosis (peakedness / flattness)

Mean (1st moment)

- Average score

Mean $=\Sigma \mathrm{X} / \mathrm{N}$

- For normally distributed ratio or interval (if treating it as continuous) data.
- Influenced by extreme scores (outliers)

Beware inappropriate averaging...

With your head in an oven and your feet in ice

\wpyou would feel, on average,
just fine
The majority of people have more than the average number of legs ($M=1.9999$).

Standard deviation (2nd moment)

- $S D=$ square root of the variance

$$
=\Sigma \frac{(X-X)^{2}}{N-1}
$$

- For normally distributed interval or ratio data
- Affected by outliers
- Can also derive the Standard Error (SE) = SD / square root of N

Skewness

(3rd moment)

- Lean of distribution
$-+v e=$ tail to right
- -ve = tail to left
- Can be caused by an outlier, or ceiling or floor effects
- Can be accurate (e.g., cars owned per person would have a skewed distribution)

Kurtosis (4th moment)

- Flatness or peakedness of distribution

```
+ve = peaked
-ve = flattened
```

- By altering the X \&/or Y axis, any distribution can be made to look more peaked or flat - add a normal curve to help judge kurtosis visually.

Kurtosis
 (4th moment)

Judging severity of skewness \& kurtosis

- View histogram with normal curve
- Deal with outliers
- Rule of thumb: Skewness and kurtosis >-1 or <1 is generally considered to sufficiently normal for meeting the assumptions of parametric inferential statistics
- Significance tests of skewness: Tend to be overly sensitive (therefore avoid using)

Areas under the normal curve

If distribution is normal (bell-shaped - or close):
$\sim 68 \%$ of scores within +/- $1 S D$ of M $\sim 95 \%$ of scores within +/- $2 S D$ of M
$\sim 99.7 \%$ of scores within $+/-3 S D$ of M

Areas under the normal curve

\qquad

Non-normal distributions

Types of non-normal distribution

- Modality
-Uni-modal (one peak)
-Bi-modal (two peaks)
-Multi-modal (more than two peaks)
- Skewness
-Positive (tail to right)
-Negative (tail to left)
- Kurtosis
-Platykurtic (Flat)
-Leptokurtic (Peaked)

Non-normal distributions

Histogram of weight

\qquad
\qquad
\qquad
\qquad
\qquad

Histogram of daily calorie intake

Histogram of fertility

Fertility. average number of kids
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mean $=81.21$
Std. Deve $=18.228$
$\mathrm{~N}=188$
. Dev. $=18.228$
$\mathrm{~N}=188$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 53

Non-normal distribution:

Use non-parametric descriptive statistics \qquad

- Min \& Max
- Range = Max-Min
- Percentiles
- Quartiles
-Q1
-Mdn (Q2)
-Q3
-IQR (Q3-Q1)

Effects of skew on measures of central tendency
+vely skewed distributions mode < median < mean symmetrical (normal) distributions mean $=$ median $=$ mode
-vely skewed distributions mean < median < mode

Effects of skew on measures of central tendency

positive skew

Transformations

- Converts data using various formulae to achieve normality and allow more powerful tests
- Loses original metric
- Complicates interpretation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

Review questions

1.If a survey question produces a 'floor effect', where will the mean, median and mode lie in relation to one another?

Review questions

2. Would the mean \# of cars owned in Australia to exceed the median?

Review questions

3.Would you expect the mean score on an easy test to exceed the median performance?
\qquad

Visualisation

\qquad
\qquad
\qquad

Science is

 beautiful(Nature Video)

(Youtube - 5:30 mins) $_{63}$

Is Pivot a turning point for web exploration?
 (Gary Flake)

(TED talk - 6 min.)

Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- Allow visual comparison

Graphs

(Edward Tufte)

- Visualise data
- Reveal data
- Describe
- Explore
- Tabulate
- Decorate
- Communicate complex ideas with clarity, precision, and efficiency

Graphing steps

1. Identify purpose of the graph (make large amounts of data coherent; present many \#s in small space; encourage the eye to make comparisons)
2. Select type of graph to use
3. Draw and modify graph to be clear, non-distorting, and welllabelled (maximise clarity, minimise clarity; show the data; avoid distortion; reveal data at several levels/layers)

Software for data visualisation (graphing)

1. Statistical packages

- e.g., SPSS Graphs or via Analyses

2. Spreadsheet packages

- e.g., MS Excel

3. Word-processors

- e.g., MS Word - Insert - Object Micrograph Graph Chart

Cleveland's hierarchy
Position along a common scale
Position along nonaligned scales
Length
Angle/slope
Area
Volume

Univariate graphs

- Bar graph
- Pie chart
- Histogram
- Stem \& leaf plot
- Data plot / Error bar
- Box plot

Bar chart (Bar graph)

- Allows comparison of heights of bars
- X-axis: Collapse if too many categories
- Y-axis: Count/Frequency or \% - truncation exaggerates differences
- Can add data labels (data values for each bar)

Pie chart

- Use a bar chart instead
- Hard to read
-Difficult to show
-Small values
- Small differences
-Rotation of chart and position of slices
 influences perception
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Histogram

- For continuous data (Likert?, Ratio)
- X-axis needs a happy medium for \# of categories
- Y-axis matters (can exaggerate)

Histogram of male \& female heights

\qquad
\qquad
\qquad
\qquad
FIGURE 2.3.11 Histogram of heights constructed using the people. Photograph by Peter Morenus in conjunction with Prof. Linda Strausberg. University of Connecticut. Subjects are University of Connecticut genetics students, females in white tops, males in dark tops. Wild \& Seber (2000)

Stem \& leaf plot

- Use for ordinal, interval and ratio data (if rounded) \qquad
- May look confusing to unfamiliar reader

Raw Data	Stem	Leaf
$\begin{aligned} & 011223444555667777 \\ & 8899 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0112234445556677778899 0111222333334445555556666666666777888899
1011111112121213131313 1314141415151515151516 1616161616161616161717 17181818181919	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	0011223344445566789 005
$\begin{aligned} & 2020212122222323242424 \\ & 242525262627282829 \\ & 303035 \end{aligned}$		

\qquad
\qquad
\qquad
\qquad
\qquad

Stem \& leaf plot

- Contains actual data
- Collapses tails
- Underused alternative to histogram

Frequency	Stem \&	Leaf
7.00		
192.00	1.	22223333333
541.00	1.	444444444444444455555555555555
610.00	1.	6666666666666677777777777777777777
849.00	1.	88888888888888888888888888899999999999999999999
614.00	2.	0000000000000000111111111111111111
602.00	2.	222222222222222233333333333333333
447.00	2.	4444444444444455555555555
291.00	2.	66666666677777777
240.00	2.	88888889999999
167.00	3.	000001111
146.00	3.	22223333
153.00	3.	44445555
118.00	3.	666777
99.00	3.	888999
106.00	4.	000111
54.00	4.	222
339.00 Ex	remes	(>=43)

Box plot (Box \& whisker)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad quartiles, \& outliers
 interval and ratio data

- Represents min., max, median,

22223333333 44444444444
 6666666666666677777777777777777
 88888888888888888888888888899999999999999999999

222222222222222233333333331111111
4444444444444455555555555
666666667777777
888888899999999
000001111
22223333
${ }_{44465555} 6222777$
888999
222 \qquad

- Usefulfor

Box plot (Box \& whisker)

- Alternative to histogram
- Useful for screening
- Useful for comparing variables
- Can get messy - too much info
- Confusing to unfamiliar reader

Data plot \& error bar

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Line graph

- Alternative to histogram
- Implies continuity e.g., time
- Can show multiple lines

Graphical integrity
(part of academic integrity)
"Like good writing, good graphical displays of data communicate ideas with clarity, precision, and efficiency. Like poor writing, bad graphical displays distort or obscure the data, make it harder to understand or compare, or otherwise thwart the communicative effect which the graph should convey."

Michael Friendly Gallery of Data Visualisation

Tufte's graphical integrity

- Some lapses intentional, some not
- Lie Factor = size of effect in graph size of effect in data
- Misleading uses of area
- Misleading uses of perspective
- Leaving out important context
- Lack of taste and aesthetics

Review exercise: Fill in the cells in this table				
Level	Properties	Examples	Descriptive Statistics	Graphs
Nominal /Categorical				
Ordinal / Rank				
Interval				
Ratio				

Answers: http://goo.gl/Ln9e1

Links

- Presenting Data - Statistics Glossary v1.1http://www.cas.lancs.ac.uk/glossary_v1.1/presdata.htm
- A Periodic Table of Visualisation Methods -http://www.visual-literacy.org/periodic_table/periodic_table.html
- Gallery of Data Visualization http://www.math.yorku.ca/SCS/Gallery/
- Univariate Data Analysis - The Best \& Worst of Statistical Graphs - http://www.csulb.edu/~msaintg/ppa696/696uni.htm
- Pitfalls of Data Analysis -
http://www.vims.edu/~david/pitfalls/pitfalls.htm
- Statistics for the Life Sciences -http://www.math.sfu.ca/~cschwarz/Stat-301/Handouts/Handouts.

References

1. Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
2. Jones, G. E. (2006). How to lie with charts. Santa Monica, CA: LaPuerta.
3. Tufte, E. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.
4. Wild, C. J., \& Seber, G. A. F. (2000). Chance encounters: A first course in data analysis and inference. New York: Wiley.

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

