Descriptives \& Graphing

Lecture 3

Survey Research \& Design in Psychology James Neill, 2017 Creative Commons Attribution 4.0

Overview:

Descriptives \& Graphing

1. Getting to know a data set
2. LOM \& types of statistics
3. Descriptive statistics
4. Normal distribution
5. Non-normal distributions
6. Effect of skew on central tendency
7. Principles of graphing
8. Univariate graphical techniques

Getting to know
 a data-set
 (how to approach data)

\qquad

Play with the data get to know it.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Level of measurement \& types of statistics

Golden rule of data analysis

A variable's level of measurement determines the type of statistics that can be used, including types of:

- descriptive statistics
- graphs
- inferential statistics

Levels of measurement and

 non-parametric vs. parametricCategorical \& ordinal data DV
\rightarrow non-parametric
(Does not assume a normal distribution)
Interval \& ratio data DV
\rightarrow parametric
(Assumes a normal distribution)
\rightarrow non-parametric
(If distribution is non-normal)
DVs = dependent variables
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

Parametric statistics

- Statistics which estimate parameters of a population, based on the normal distribution
-Univariate:
mean, standard deviation, skewness, kurtosis, t-tests, ANOVAs
-Bivariate:
correlation, linear regression
-Multivariate:
multiple linear regression

Parametric statistics

- More powerful
(more sensitive)
- More assumptions (population is normally distributed)
- Vulnerable to violations of assumptions (less robust)

Non-parametric statistics

- Statistics which do not assume sampling from a population which is normally distributed
-There are non-parametric alternatives for many parametric statistics
-e.g., sign test, chi-squared, MannWhitney U test, Wilcoxon matched-pairs signed-ranks test.
\qquad

Non-parametric statistics

- Less powerful (less sensitive)
- Fewer assumptions (do not assume a normal distribution)
- Less vulnerable to assumption violation (more robust)

Univariate descriptive statistics

Number of variables

| Univariate | mean, median, mode,
 histogram, bar chart |
| :--- | :--- | = one variable histogram, bar chart

Bivariate

= two variables
correlation, t-test,
Multivariate scatterplot, clustered bar chart
= more than two variables
reliability analysis, factor analysis, multiple linear regression

What do we want to describe?

The distributional properties of variables, based on:

- Central tendency(ies): e.g., frequencies, mode, median, mean
- Shape: e.g., skewness, kurtosis
- Spread (dispersion): min., max., range, IQR, percentiles, variance, standard deviation

Measures of central tendency

Statistics which represent the
'centre' of a frequency distribution:

- Mode (most frequent)
- Median (50 th percentile)
- Mean (average)

Which ones to use depends on:
-Type of data (level of measurement)
-Shape of distribution (esp. skewness)
Reporting more than one may be appropriate.

Measures of central tendency

	Mode / Freq. /\%s	Median	Mean
Nominal	$\sqrt{ }$	x	x
Ordinal	$\sqrt{ }$	If meaningful	x
Interval	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ratio	If meaningful	$\sqrt{ }$	$\sqrt{ }$

Measures of distribution

- Measures of shape, spread, dispersion, and deviation from the central tendency

Non-parametric: Parametric:

- Min. and max.
- SD
- Range
- Skewness
- Percentiles - Kurtosis

Measures of spread / dispersion / deviation

	Min / Max, Range	Percentile	Var/SD
Nominal	x	x	x
Ordinal	$\sqrt{ }$	If meaningful	x
Interval	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Ratio	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Descriptives for nominal data

- Nominal LOM = Labelled categories
- Descriptive statistics:
-Most frequent? (Mode - e.g., females)
-Least frequent? (e.g., Males)
-Frequencies (e.g., 20 females, 10 males)
-Percentages (e.g. 67% females, 33% males)
-Cumulative percentages
-Ratios (e.g., twice as many females as males)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad都
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Descriptives for ordinal data

- Ordinal LOM = Conveys order but not distance (e.g., ranks)
- Descriptives approach is as for nominal (frequencies, mode etc.)
- Plus percentiles (including median) may be useful

Descriptives for interval data

- Interval LOM = order and distance, but no true 0 (0 is arbitrary).
- Central tendency (mode, median, mean)
- Shape/Spread (min., max., range, $S D$, skewness, kurtosis)
Interval data is discrete, but is often treated as ratio/continuous (especially for > 5 intervals)

Descriptives for ratio data

- Ratio = Numbers convey order and distance, meaningful 0 point
- As for interval, use median, mean, $S D$, skewness etc.
- Can also use ratios (e.g., Category A is twice as large as Category B)

Mode (Mo)

- Most common score - highest point in a frequency distribution - a real score - the most common response
- Suitable for all levels of data, but may not be appropriate for ratio (continuous)
- Not affected by outliers
- Check frequencies and bar graph to see whether it is an accurate and useful statistic

Frequencies (f) and percentages (\%)

- \# of responses in each category
- \% of responses in each category
- Frequency table
- Visualise using a bar or pie chart

Median (Mdn)

- Mid-point of distribution (Quartile 2, $50^{\text {th }}$ percentile)
- Not badly affected by outliers
- May not represent the central tendency in skewed data
- If the Median is useful, then consider what other percentiles may also be worth reporting
\qquad

Summary: Descriptive statistics

- Level of measurement and normality determines whether data can be treated as parametric
- Describe the central tendency
-Frequencies, Percentages
-Mode, Median, Mean
- Describe the variability:
-Min., Max., Range, Quartiles
-Standard Deviation, Variance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four moments of a normal distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four moments of a

 normal distributionFour mathematical qualities (parameters) can describe a continuous distribution which at least roughly follows a bell curve shape:

- $1^{\text {st }}=$ mean (central tendency)
- $2^{\text {nd }}=S D$ (dispersion)
- $3^{\text {rd }}=$ skewness (lean / tail)
- $4^{\text {th }}=$ kurtosis (peakedness / flattness)

Mean
 (1st moment)

- Average score

Mean $=\Sigma \mathrm{X} / \mathrm{N}$

- For normally distributed ratio or interval (if treating it as continuous) data.
- Influenced by extreme scores (outliers)

Beware inappropriate averaging...

With your head in an oven
and your feet in ice

you would feel,
on average,
just fine
The majority of people have more than the average number of legs

$$
(M=1.9999) .
$$

Standard deviation (2nd moment)

- $S D=$ square root of the variance

$$
=\Sigma \frac{(X-X)^{2}}{N-1}
$$

- For normally distributed interval or ratio data
- Affected by outliers
- Can also derive the Standard Error (SE) = SD / square root of N

Skewness

(3rd moment)

- Lean of distribution
$-+v e=$ tail to right
- -ve = tail to left
- Can be caused by an outlier, or ceiling or floor effects
- Can be accurate (e.g., cars owned per person would have a skewed distribution)

Kurtosis (4th moment)

- Flatness or peakedness of distribution

$$
\begin{aligned}
& +\mathrm{ve}=\text { peaked } \\
& \text {-ve }=\text { flattened }
\end{aligned}
$$

- By altering the X \&/or Y axis, any distribution can be made to look more peaked or flat - add a normal curve to help judge kurtosis visually.

Image source: http:///classconnection.s3.amazonaws.com/65/flashcards/2185065/ipg/kurtosis-142C1127AF2178FB244.jpg 44

Judging severity of skewness \& kurtosis

- View histogram with normal curve
- Deal with outliers
- Rule of thumb:

Skewness and kurtosis >-1 or <1 is generally considered to sufficiently normal for meeting the assumptions of parametric inferential statistics

- Significance tests of skewness:

Tend to be overly sensitive (therefore avoid using)

Areas under the normal curve

If distribution is normal (bell-shaped - or close):
$\sim 68 \%$ of scores within +/- $1 S D$ of M $\sim 95 \%$ of scores within $+/-2 S D$ of M
$\sim 99.7 \%$ of scores within $+/-3 S D$ of M

Areas under the normal curve

Non-normal distributions

Types of non-normal distribution

- Modality
-Uni-modal (one peak)
-Bi-modal (two peaks)
-Multi-modal (more than two peaks)
- Skewness
-Positive (tail to right)
-Negative (tail to left)
- Kurtosis
-Platykurtic (Flat)
-Leptokurtic (Peaked)

Histogram of people's weight

\qquad
\qquad
\qquad
\qquad
\qquad

Histogram of daily calorie intake

Histogram of fertility

Fertility. average number of kids
\qquad

Mean $=81.21$
Std. Dev. $=18.228$
$\mathrm{~N}=188$ \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distribution for females
Distribution for males

56

Non-normal distribution:

Use non-parametric descriptive statistics \qquad

- Min. \& Max.
- Range = Max. - Min.
- Percentiles
- Quartiles
-Q1
-Mdn (Q2)
-Q3
-IQR (Q3-Q1)

Effects of skew on measures of central tendency
+vely skewed distributions mode < median < mean symmetrical (normal) distributions mean $=$ median $=$ mode
-vely skewed distributions mean < median < mode

Effects of skew on measures of central tendency

positive skew

Transformations

- Converts data using various formulae to achieve normality and allow more powerful tests
- Loses original metric
- Complicates interpretation
\qquad

Review questions

1. If a survey question produces a 'floor effect', where will the mean, median and mode lie in relation to one another?

Review questions

2. Would the mean \# of cars owned in Australia to exceed the median?

Review questions

3. Would the mean score on an easy test exceed the median performance?
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Science is beautiful
 (Nature Video)

(Youtube - 5:30 mins) $_{66}$

Is Pivot a turning point for web exploration?
 (Gary Flake)

(TED talk - 6 min.)

Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- Allow visual comparison

Graphs

(Edward Tufte)

- Visualise data
- Reveal data
- Describe
- Explore
- Tabulate
- Decorate
- Communicate complex ideas with clarity, precision, and efficiency

Graphing steps

1. Identify purpose of the graph (make large amounts of data coherent; present many \#s in small space; encourage the eye to make comparisons)
2. Select type of graph to use
3. Draw and modify graph to be clear, non-distorting, and welllabelled (maximise clarity, minimise clarity; show the data; avoid distortion; reveal data at several levels/layers)

Software for data visualisation (graphing)

1. Statistical packages

- e.g., SPSS Graphs or via Analyses

2. Spreadsheet packages

- e.g., MS Excel

3. Word-processors

- e.g., MS Word - Insert - Object Micrograph Graph Chart

Cleveland's hierarchy

\qquad
\qquad
\qquad
\qquad
\qquad

Univariate graphs

- Bar graph
- Pie chart
- Histogram
- Stem \& leaf plot
- Data plot / Error bar
- Box plot

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bar chart (Bar graph)

- Allows comparison of heights of bars
- X-axis: Collapse if too many categories
- Y-axis: Count/Frequency or \% - truncation exaggerates differences
- Can add data labels (data values for each bar)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pie chart

- Use a bar chart instead
- Hard to read
-Difficult to show
-Small values
- Small differences
-Rotation of chart and position of slices influences perception

76

Pie chart \rightarrow Use bar chart instead

77

Histogram

- For continuous data (Likert?, Ratio)
- X-axis needs a happy medium for \# of categories
- Y-axis matters (can exaggerate)

Histogram of male \& female heights

FIGURE 2.3.11 Histogram of heights constructed using the people. Photograph by Peter Morenus in conjunction with Prof. Linda Strausberg, University of Connecticut. Subjects are University of Connecticut genetics students, females in white tops, males in dark tops. Wild \& Seber (2000)

Stem \& leaf plot

- Use for ordinal, interval and ratio data (if rounded)
- May look confusing to unfamiliar reader

Raw Data	Stem	Leaf
011223444555667777	0	0112234445556677778899
8899	1	0111222333334445555556666666666777888899
1011111112121213131313	2	00112233444455667889
1314141415151515151516	3	005
1616161616161616161717		
17181818181919		
2020212122222323242424		
242525262627282829		
303035		

Stem \& leaf plot

- Contains actual data
- Collapses tails
- Underused alternative to histogram

Frequency	stem \&	Leaf
7.00	1.	
192.00	1.	22223333333
541.00	1.	444444444444444455555555555555
610.00	1.	6666666666666677777777777777777777
849.00	1	88888888888888888888888888899999999999999999999
614.00	2	0000000000000000111111111111111111
602.00	2	222222222222222233333333333333333
447.00	2	4444444444444455555555555
291.00	2.	66666666677777777
240.00	2.	88888889999999
167.00	3	000001111
146.00	3.	22223333
153.00	3	44445555
118.00	3	666777
99.00	3	888999
106.00	4.	000111
54.00	4.	222
339.00	remes	(>=43)

\qquad whisker)

- Useful for interval and ratio data
- Represents min., max, median, quartiles, \& outliers
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Box plot (Box \& whisker)

- Alternative to histogram
- Useful for screening
- Useful for comparing variables
- Can get messy - too much info
- Confusing to unfamiliar reader

Data plot \& error bar

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Line graph

- Alternative to histogram
- Implies continuity e.g., time
- Can show multiple lines

Graphical integrity

(part of academic integrity)
"Like good writing, good graphical displays of data communicate ideas with clarity, precision, and efficiency.

Like poor writing, bad graphical displays distort or obscure the data, make it harder to understand or compare, or otherwise thwart the communicative effect which the graph should convey."

Tufte's graphical integrity

- Some lapses intentional, some not
- Lie Factor = size of effect in graph size of effect in data
- Misleading uses of area
- Misleading uses of perspective
- Leaving out important context
- Lack of taste and aesthetics

Review exercise:

Fill in the cells in this table

Level Properties Examples | Descriptive Graphs |
| :--- |
| Statistics |

Nominal
/Categorical
Ordinal /
Rank
Interval
Ratio
Answers: http://goo.gl/Ln9e1

References

1. Chambers, J., Cleveland, B., Kleiner, B., \& Tukey, P. (1983). Graphical methods for data analysis. Boston, MA: Duxbury Press.
2. Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
3. Jones, G. E. (2006). How to lie with charts. Santa Monica, CA: LaPuerta.
4. Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.
5. Tufte. E. R. (2001). Visualizing quantitative data. Cheshire, CT: Graphics Press.
6. Tukey J. (1977). Exploratory data analysis. Addison-Wesley.
7. Wild, C. J., \& Seber, G. A. F. (2000). Chance encounters: A first course in data analysis and inference. New York: Wiley.

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

