DFT Analysis (5B)

Copyright (c) 2009-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Frequency View of a X[i] Vector

$\frac{N}{2}-1\left\{\begin{array}{l|}\hline X[0] \\ \hline X[1] \\ \hline X[2] \\ \hline \\ \hline \frac{N}{2}-1 \\ \hline \\ \hline X[N / 2+1] \\ \hline X[N / 2] \\ \hline X[N / 2+1] \\ \hline \\ \hline X[N-2] \\ \hline X[N-1] \\ \hline\end{array}\right.$

$0 \cdot f_{0}$	$0 \cdot f_{s} / N$
$+1 \cdot f_{o}$	$1 \cdot f_{s} / N$
$+2 \cdot f_{o}$	$2 \cdot f_{s} / N$
$+(N / 2-1) \cdot f_{o}$	$(N / 2-1) \cdot f_{s} / N$
$+(N / 2) \cdot f_{o}$	$(N / 2) \cdot f_{s} / N$
$-(N / 2-1) \cdot f_{o}$	$-(N / 2-1) \cdot f_{s} / N$
$-2 \cdot f_{0}$	$-2 \cdot f_{s} / N$
$-1 \cdot f_{0}$	$-1 \cdot f_{s} / N$

0/N
1/N
$2 / N$
$(N / 2-1) / N$
(1/2)/N
$-(N / 2-1) / N$
,
$-2 / \mathrm{N}$
$-1 / \mathrm{N}$

0 cycle
1 cycle
2 cycles
$(N / 2-1)$ cycles
$(N / 2)$ cycles
$-(N / 2-1)$ cycles
-2 cycles
-1 cycle

Resolutions of Frequency and Time Domains

Freq Domain
Time Domain

Using Sampling Frequency and Time

Freq Domain

Relations between Sampling Frequency and Time

Freq Domain
Time Domain

Frequency and Time Interval (1)

Freq Domain

Frequency and Time Interval (2)

Frequency and Time Interval (3)

Frequency and Time Interval (4)
$\Delta f_{5}=\frac{f_{55}}{8}=\frac{1}{8 \tau} \quad$ The finer frequency resolution

$$
f_{h 5}=\frac{f_{s 5}}{2}=\frac{1}{2 \tau}
$$

Use zero padding

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

