DT Impulse Function (4B)

- Continuous Time Impulse Function

Copyright (c) 2009-2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

The Delta Function

Area

$$
\frac{1}{a} \cdot a=1
$$

$$
\frac{1}{a} \cdot a=1
$$

$$
\frac{1}{a} \cdot a=1
$$

$\boldsymbol{\delta}(\boldsymbol{t})$ Dirac Delta

Unit impulse function

> Unit Area
> $\frac{1}{a} \cdot a=1$

$$
a \rightarrow 0
$$

Depicted by an arrow
The length of arrow can represent a "weight"
$\frac{1}{a} \rightarrow \infty$
Infinite height but with a unit area.

The Unit Impulse

Impulse Train

$$
\mathrm{\delta}_{N}[n]=\sum_{m=-\infty}^{+\infty} \mathrm{X}[n-m N]
$$

[^0]
The Properties of the Delta Function

$\boldsymbol{\delta}(\boldsymbol{t})$	
Unit Area	$\frac{1}{a} \cdot a=1$
$\frac{1}{a} \rightarrow \infty$	$\delta(t) \neq 0 \quad(t=0)$
	Infinite height but with a unit area.
	$\delta(t)=0 \quad(t \neq 0)$

An Even Function

$$
\delta(-t)=\delta(t)
$$

The Scaling Property

$$
\delta\left(a\left(t-t_{0}\right)\right)=\frac{1}{|a|} \delta\left(t-t_{0}\right)
$$

The Equivalence Property

$$
\begin{aligned}
g(t) \delta(t) & =g(0) \delta(t) \\
g(t) \delta\left(t-t_{0}\right) & =g\left(t_{0}\right) \delta\left(t-t_{0}\right)
\end{aligned}
$$

The Sampling Property

$$
\begin{array}{r}
\int_{-\infty}^{+\infty} g(t) \delta(t) d t=g(0) \\
\int_{-\infty}^{+\infty} g(t) \delta\left(t-t_{0}\right) d t=g\left(t_{0}\right)
\end{array}
$$

The Replication Property

$$
\int_{-\infty}^{+\infty} g(\tau) \delta(t-\tau) d \tau=g(t)
$$

The Fourier Transform Property

$$
\int_{-\infty}^{+\infty} \delta(t) e^{-j 2 \pi f t} d t=1
$$

The Equivalence Property

$$
\sum_{n=-\infty}^{\infty} A \delta\left[n-n_{0}\right] x[n]=A x\left[n_{0}\right]
$$

$$
\Delta\left[n-n_{0}\right] x\left[n_{0}\right]
$$

Octave Impulse Functions

```
function y = Ddelta(n)
    y = double(n == 0);
    nn = find(round(n) ~= n);
    y(nn) = NaN;
function y = DdeltaTrain(N, n)
    if N == round(N),
        y = double(n/N == round(n/N));
    nn = find(round(n) ~= n);
    y(nn) = NaN;
    else
        disp("N is not an integer');
    end
```


References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] M. J. Roberts, Fundamentals of Signals and Systems
[4] S. Haykin, An Introduction to Analog \& Digital Communications

[^0]: $-2 N$
 $-N$
 0
 $2 N$

