Signals and Spectra (1A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Energy and Power

Instantaneous Power

$$
p(t)=x^{2}(t) \quad \text { real signal }
$$

Energy dissipated during

$$
E_{x}^{T}=\int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

Affects the performance of a communication system

Average power dissipated during

$$
(-T / 2,+T / 2)
$$

$$
P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t
$$

The rate at which energy is dissipated
Determines the voltage

Energy and Power Signals (1)

Energy dissipated during

$$
E_{x}^{T}=\int_{-T / 2}^{(-T / 2,+T / 2)} \chi^{2}(t) d t
$$

Energy Signal

Nonzero but finite energy

$$
0<E_{x}<+\infty \text { for all time }
$$

$$
E_{\chi}=\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t
$$

$$
=\int_{-\infty}^{+\infty} x^{2}(t) d t<+\infty
$$

Average power dissipated during

$$
(-T / 2,+T / 2)
$$

$$
P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t
$$

Power Signal

Nonzero but finite power

$$
0<P_{x}<+\infty \text { for all time }
$$

$P_{x}=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t$
$<+\infty$

Energy and Power Signals (2)

Energy Signal

Nonzero but finite energy
$0<E_{x}<+\infty$ for all time
$E_{x}=\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} x^{2}(t) d t$
$=\int_{-\infty}^{+\infty} x^{2}(t) d t<+\infty$

$$
\begin{aligned}
P_{x} & =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t \\
& =\lim _{T \rightarrow+\infty} \frac{B}{T} \rightarrow 0
\end{aligned}
$$

Non-periodic signals Deterministic signals

Power Signal

Nonzero but finite power

$$
\begin{aligned}
0 & <P_{x}<+\infty \text { for all time } \\
P_{x} & =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& <+\infty
\end{aligned}
$$

$$
\begin{aligned}
E_{\chi} & =\lim _{T \rightarrow+\infty} \int_{-T / 2}^{+T / 2} \chi^{2}(t) d t \\
& =\lim _{T \rightarrow+\infty} B \cdot T \rightarrow+\infty
\end{aligned}
$$

Periodic signals
Random signals

Energy and Power Spectral Densities (1)

Total Energy, Non-periodic

$$
E_{x}^{T}=\int_{-\infty}^{+\infty} x^{2}(t) d t
$$

Parseval's Theorem, Non-periodic

$$
\begin{aligned}
& =\int_{-\infty}^{+\infty}|X(f)|^{2} d f \\
& =\int_{-\infty}^{+\infty} \Psi(f) d f \\
& =2 \int_{0}^{+\infty} \Psi(f) d f
\end{aligned}
$$

Energy Spectral Density

$$
\Psi(f)=|X(f)|^{2}
$$

Average power, Periodic

$$
P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t
$$

Parseval's Theorem, Periodic

$$
\begin{aligned}
& =\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \\
& =\int_{-\infty}^{+\infty} G_{x}(f) d f \\
& =2 \int_{0}^{+\infty} G_{x}(f) d f
\end{aligned}
$$

Power Spectral Density

$$
G_{x}(f)=\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)
$$

Energy and Power Spectral Densities (2)

Energy Spectral Density

$$
\Psi(f)=|X(f)|^{2}
$$

Total Energy, Non-periodic

$$
\begin{aligned}
E_{x}^{T} & =\int_{-\infty}^{+\infty} x^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} \Psi(f) d f
\end{aligned}
$$

Parseval's Theorem, Non-periodic

Power Spectral Density

$$
G_{x}(f)=\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)
$$

Average power, Periodic

$$
\begin{aligned}
P_{x}^{T} & =\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} G_{x}(f) d f
\end{aligned}
$$

Parseval's Theorem, Periodic

Non-periodic power signal (having infinite energy) ?

Energy and Power Spectral Densities (3)

Power Spectral Density

$$
G_{\chi}(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
$$

Non-periodic power signal (having infinite energy) ?
\rightarrow No Fourier Series

$$
\begin{aligned}
& \quad \text { truncate } \quad\left(-\frac{T}{2} \leq t \leq+\frac{T}{2}\right) \\
& x_{T}(t)
\end{aligned}
$$

\rightarrow Fourier Transform $\quad X_{T}(f)$

$$
\begin{aligned}
P_{x}^{T} & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} \lim _{T \rightarrow \infty} \frac{|X(f)|^{2}}{T} d f
\end{aligned}
$$

Autocorrelation of Energy and Power Signals

Autocorrelation of an Energy Signal

$$
\begin{array}{r}
R_{\chi}(\tau)=\int_{-\infty}^{+\infty} \chi(t) \chi(t+\tau) d t \\
(-\infty \leq \tau \leq+\infty)
\end{array}
$$

$$
R_{x}(\tau)=R_{x}(-\tau)
$$

$$
R_{\chi}(\tau) \leq R_{\chi}(0)
$$

$$
R_{\chi}(\tau) \Leftrightarrow \Psi(f)
$$

$$
R_{\chi}(0)=\int_{-\infty}^{+\infty} x^{2}(t) d t
$$

Autocorrelation of a Power Signal

$$
\begin{array}{r}
R_{\chi}(\tau)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} \chi(t) \chi(t+\tau) d t \\
(-\infty \leq \tau \leq+\infty)
\end{array}
$$

Autocorrelation of a Periodic Signal

$$
\left.\begin{array}{rl}
R_{\chi}(\tau) & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi(t) \chi(t+\tau) d t \\
(-\infty \leq \tau \leq+\infty)
\end{array}\right) \quad \begin{aligned}
R_{x}(\tau) & =R_{\chi}(-\tau) \\
R_{\chi}(\tau) & \leq R_{\chi}(0) \\
R_{\chi}(\tau) & \Leftrightarrow G_{\chi}(f) \\
R_{\chi}(0) & =\frac{1}{T_{0}} \int_{-T_{0} \prime 2}^{+T_{0}^{\prime} / 2} \chi^{2}(t) d t
\end{aligned}
$$

Ensemble Average

Random Variable

$$
\begin{aligned}
m_{\chi} & =\boldsymbol{E}\{\boldsymbol{X}\} \\
& =\int_{-\infty}^{+\infty} x p_{X}(x) d x
\end{aligned}
$$

$$
\boldsymbol{E}\left\{X^{2}\right\}=\sigma_{x}^{2}+m_{x}^{2}
$$

$$
=\int_{-\infty}^{+\infty} x^{2} p_{X}(x) d x
$$

Random Process

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{X_{k}}(x) d x
\end{aligned}
$$

for a given time t_{k}

$$
\begin{aligned}
& R_{\chi}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
& \quad=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{1} x_{2} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

WSS (Wide Sense Stationary)

Random Process

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{X_{k}}(x) d x
\end{aligned}
$$

for a given time t_{k}

$$
\begin{aligned}
& R_{x}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
& \quad=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{1} x_{2} p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

WSS Process by ensemble average

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =m_{\chi}
\end{aligned}
$$

constant for all times

$$
\begin{aligned}
R_{\chi}\left(t_{1}, t_{2}\right) & =\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
& =R_{\chi}\left(t_{1}-t_{2}\right)
\end{aligned}
$$

depends on time differences

Ergodicity and Time Averaging

Random Process

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =\int_{-\infty}^{+\infty} x p_{x_{k}}(x) d x
\end{aligned}
$$

for a given time

WSS Process by ensemble average

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\} \\
& =m_{\chi}
\end{aligned}
$$

Ergodic Process by time average

$$
\begin{aligned}
m_{\chi}\left(t_{k}\right) & =\boldsymbol{E}\left\{X\left(t_{k}\right)\right\}= \\
m_{x} & =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& R_{\chi}\left(t_{1,} t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{1} x_{2} p_{X_{1}, X_{2}}\left(x_{1} x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

$$
\begin{gathered}
R_{\chi}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\} \\
=R_{\chi}\left(t_{1}-t_{2}\right)=R_{\chi}(\tau)
\end{gathered}
$$

$$
\begin{aligned}
& R_{x}\left(t_{1}, t_{2}\right)=\boldsymbol{E}\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}= \\
& =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) X(t+\tau) d t
\end{aligned}
$$

Autocorrelation of Power Signals

Autocorrelation of a Random Signal

$$
R_{x}(\tau)=\boldsymbol{E}\{X(t) X(t+\tau)\}
$$

$$
\begin{aligned}
& R_{\chi}(\tau)=R_{\chi}(-\tau) \\
& R_{\chi}(\tau) \leq R_{\chi}(0) \\
& R_{\chi}(\tau) \Leftrightarrow G_{\chi}(f) \\
& R_{\chi}(0)=\boldsymbol{E}\left\{X^{2}(t)\right\}
\end{aligned}
$$

Autocorrelation of a Power Signal

$$
\begin{array}{r}
R_{\chi}(\tau)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x(t) x(t+\tau) d t \\
(-\infty \leq \tau \leq+\infty)
\end{array}
$$

Autocorrelation of a Periodic Signal

$$
\left.\begin{array}{rl}
R_{\chi}(\tau) & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{0} / 2} \chi(t) \chi(t+\tau) d t \\
(-\infty \leq \tau \leq+
\end{array}\right] \begin{aligned}
R_{\chi}(\tau) & =R_{\chi}(-\tau) \\
R_{\chi}(\tau) & \leq R_{\chi}(0) \\
R_{\chi}(\tau) & \Leftrightarrow G_{\chi}(f) \\
R_{\chi}(0) & =\frac{1}{T_{0}} \int_{-T_{0} \prime 2}^{+T_{0}^{\prime} / 2} \chi^{2}(t) d t
\end{aligned}
$$

Autocorrelation of Random Signals

Autocorrelation of

a Random Signal

$$
\begin{aligned}
R_{\chi}(\tau) & =\boldsymbol{E}\{X(t) X(t+\tau)\} \\
& =\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) X(t+\tau) d t
\end{aligned}
$$

if ergodic in the
autocorrelation function

Power Spectral Density of a Random Signal

$$
G_{\chi}(f)=\lim _{T \rightarrow+\infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
$$

$$
\begin{aligned}
& G_{\chi}(f)=G_{\chi}(-f) \\
& G_{\chi}(f) \geq 0 \\
& G_{\chi}(f) \Leftrightarrow R_{\chi}(\tau) \\
& P_{\chi}(0)=\int_{-\infty}^{+\infty} G_{X}(f) d f
\end{aligned}
$$

Ergodic Random Process

$$
\begin{aligned}
& m_{X}=\boldsymbol{E}\{X(t)\} \quad \text { DC level } \\
& m_{X}^{2} \quad \text { normalized power in the dc component } \\
& \boldsymbol{E}\left\{X^{2}(t)\right\} \quad \text { total average normalized power (mean square value) } \\
& \sqrt{\boldsymbol{E}\left\{X^{2}(t)\right\}} \quad \text { rms value of voltage or current } \\
& \sigma_{X}^{2} \\
& m_{x}=m_{X}^{2}=0 \Rightarrow \sigma_{X}^{2}=\boldsymbol{E}\left\{X^{2}\right\} \quad \text { var }=\text { total average normalized power } \\
& =\text { mean square value }\left(r_{m s}{ }^{\wedge} 2\right) \\
& \sigma_{X} \quad r m s \text { value of the ac component } \\
& m_{X}=0 \quad r m s \text { value of the signal }
\end{aligned}
$$

Single Tone Input

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

$$
\begin{aligned}
& x(t)=A e^{j \Phi} e^{j \omega t} \\
& \left\{\begin{array}{l}
\text { amplitude }=A \\
\text { phase }=\Phi \\
\text { frequency }=\omega
\end{array}\right.
\end{aligned}
$$

$$
y(t)=\int_{-\infty}^{+\infty} h(\tau) A e^{j \Phi} e^{j \omega(t-\tau)} d \tau
$$

$$
=\int_{-\infty}^{+\infty} h(\tau) A e^{j \phi} e^{j \omega t} e^{-j \omega \tau} d \tau
$$

Fourier Transform

$$
=\underline{A e^{j \Phi} e^{j \omega t}} \int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau
$$

$$
=\underline{A e^{j \phi} e^{j \omega t}} H(j \omega) \quad \text { complex number }
$$

$=A e^{j \Phi} e^{j \omega t}$
$=\frac{A e^{j \Phi} e^{j \omega t}}{\Delta} \rho e^{j \theta}$

changes the amplitude and the phase of the single tone input but not the frequency

Impulse Response \& Frequency Response

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

Fourier Transform

$$
Y(j \omega)=H(j \omega) X(j \omega)
$$

$$
\left.\left.\begin{array}{rl}
Y(j \omega)=\int_{-\infty}^{+\infty} y(\tau) e^{-j \omega \tau} d \tau & H(j \omega)
\end{array}\right)=\int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau\right]
$$

Linear System

$$
y(t)=h(t) * x(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

single frequency component :
ω

Frequency Response

$$
H(j \omega)=\int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau
$$

Transfer Function \& Frequency Response

$$
\begin{aligned}
y(t)=h(t) * x(t) & =\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau \\
& x(t)
\end{aligned}
$$

Transfer Function
$H(s)=H(\sigma+j \omega)$

$$
H(s)=\int_{-\infty}^{+\infty} h(\tau) e^{-s \tau} d \tau
$$

Frequency Response
$H(\omega)=H(j \omega)$

$$
H(j \omega)=\int_{-\infty}^{+\infty} h(\tau) e^{-j \omega \tau} d \tau
$$

Laplace Transform
initial state
differential equation

Fourier Transform
steady state frequency response

Linear System \& Random Variables (1)

correlation

Fourier Transform

$$
\begin{aligned}
& \text { WSS } \\
& S_{X x}(\omega) \\
= & \int_{-\infty}^{+\infty} R_{x x}(\tau) e^{-j \omega \tau} d \tau
\end{aligned} \quad S_{Y Y}(\omega) \longmapsto=|H(\omega)|^{2} S_{X X}(\omega)
$$

Linear System \& Random Variables (2)

Ergodic WSS

$$
\begin{aligned}
& E[X(t)]=m_{x}=\overline{X(t)} \quad E[Y(t)]=m_{y}=\overline{Y(t)} \\
& \boldsymbol{E}[Y(t)]=\int_{-\infty}^{+\infty} h(\tau) \boldsymbol{E}[X(t-\tau)] d \tau \\
& \overline{Y(t)}=\int_{-\infty}^{+\infty} h(\tau) \overline{X(t)} d \tau=\overline{X(t)} \int_{-\infty}^{+\infty} h(\tau) d \tau=\overline{X(t)} H(0)
\end{aligned}
$$

Linear System \& Random Variables (3)

$$
\begin{aligned}
& \rho(t)=h(t) * h^{*}(-t) \\
& |H(\omega)|^{2}=H(\omega) H^{*}(\omega)
\end{aligned}
$$

$$
\begin{array}{ll}
R_{x y}(\tau)=R_{x x}(\tau) * h^{*}(-\tau) & R_{y y}(\tau)=R_{x y}(\tau) * h(\tau) \\
S_{x y}(\omega)=S_{x x}(\omega) H^{*}(\omega) & S_{y y}(\omega)=S_{x y}(\omega) H(\omega)
\end{array}
$$

$$
\begin{aligned}
& R_{y y}(\tau)=R_{x x}(\tau) * \rho(\tau) \\
& S_{y y}(\omega)=S_{x x}(\omega)|H(\omega)|^{2}
\end{aligned}
$$

can be viewed as follows

Fourier Transform

Summary (1)

Non-periodic signals

Energy Signal
$E_{x}^{T}=\int_{-T / 2}^{+T / 2} x^{2}(t) d t$

Energy Spectral Density
$\Psi(f)=|X(f)|^{2}$

Total Energy
$\int_{-\infty}^{+\infty} \Psi(f) d f$

Periodic signals

Power Signal
$P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t$

Power Spectral Density
$G_{\chi}(f)=\sum_{n=-\infty}^{+\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)$
Average Power
$\int_{-\infty}^{+\infty} G_{\chi}(f) d f$

Random signals

Power Signal
$P_{x}^{T}=\frac{1}{T} \int_{-T / 2}^{+T / 2} x^{2}(t) d t$

Power Spectral Density

$$
G_{\chi}(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
$$

Average Power

$$
\int_{-\infty}^{+\infty} G_{\chi}(f) d f
$$

Summary (2)

Energy Signal Autocorrelation

$$
\begin{aligned}
& R_{x}(\tau)= \\
& \int_{-\infty}^{+\infty} x(t) x(t+\tau) d t
\end{aligned}
$$

Non-periodic signals

$$
\begin{aligned}
& R_{x}(\tau)= \\
& \int_{-\infty}^{+\infty} x(t) x(t+\tau) d t
\end{aligned}
$$

Power Signal
Autocorrelation

$$
R_{\chi}(\tau)=
$$

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} x(t) x(t+\tau) d t
$$

Periodic signals

for a Periodic Signal

$$
\begin{aligned}
& R_{x}(\tau)= \\
& \frac{1}{T_{0}} \int_{-T_{0} / 2}^{+T_{T^{\prime}} / 2} x(t) x(t+\tau) d t
\end{aligned}
$$

Random Signal

 Autocorrelation$R_{\chi}(\tau)=$
$\boldsymbol{E}\{X(t) X(t+\tau)\}$

Random signals

for a Ergodic Signal
$R_{\chi}(\tau)=$
$\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} X(t) X(t+\tau) d t$

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] B. Sklar, "Digital Communications: Fundamentals and Applications"

