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Thelymphocyte genome is prone to many threats, including programmed mutation

during differentiation’, antigen-driven proliferation and residency in diverse
microenvironments. Here, after developing protocols for expansion of single-cell
lymphocyte cultures, we sequenced whole genomes from 717 normal naive and
memory Band T cells and haematopoietic stem cells. All lymphocyte subsets carried
more point mutations and structural variants than haematopoietic stem cells, with
higher burdensin memory cells than in naive cells, and with T cells accumulating
mutations at a higher rate throughoutlife. Off-target effects of immunological
diversification accounted for approximately half of the additional differentiation-
associated mutations inlymphocytes. Memory B cells acquired, on average, 18 off-
target mutations genome-wide for every on-target /IGHV mutation during the
germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than
instem cells, with around 15% of deletions being attributable to off-target recombinase-
activating gene activity. DNA damage from ultraviolet light exposure and other
sporadic mutational processes generated hundreds to thousands of mutationsin
some memory cells. The mutation burden and signatures of normal B cells were
broadly similar to those seen in many B-cell cancers, suggesting that malignant
transformation of lymphocytes arises from the same mutational processes that are
active across normal ontogeny. The mutational landscape of normal lymphocytes
chronicles the off-target effects of programmed genome engineering during
immunological diversification and the consequences of differentiation, proliferation
and residency in diverse microenvironments.

The adaptiveimmune system depends on programmed somatic muta-
tion to generate antigen receptor diversity. T cells use recombinase-
activating gene (RAG)-mediated deletion to generate functional
T cell receptors (TCRs); B cells also use RAG-mediated deletion to
rearrange immunoglobulin (Ig) heavy and light chains, followed
by activation-induced cytidine deaminase (AID)-mediated somatic
hypermutation (SHM) and class-switch recombination (CSR) to further
increase diversity'. Off-target genome editing in lymphocytes
can produce mutations driving lymphoid malignancies, including
RAG-mediated deletions in acute lymphoblastic leukaemia®3;

AID-mediated SHM in diffuse large B cell ymphoma*¢; and CSR in
multiple myeloma’.

Although the accumulation of mutations inlymphoid malignancies
iswell characterized, the mutation burden of normal lymphocytes has
been less comprehensively studied. Patterns of base substitutions in
59 normal, CD19-positive B cells revealed an age-related increase in
burden, with evidence for off-target SHM?. More detailed quantifica-
tion and comparison of the genomiclandscape of B versus T cells, naive
versus memory cells, and normal versus malignant lymphocytes is
lacking.
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Fig.1|Experimental design and lymphocyte mutationburdenwithage.
a, Schematic of the experimental design. WGS, whole-genome sequencing.
b, SNV mutation burden per genome for the four main lymphocyte subsets,
compared with HSPCs (green points). Each panel shows data for HSPCs and the

Genome sequencing of Band T cells

Expandingsingle cellsinto coloniesinvitro enables accurate identifica-
tion of all classes of somatic mutation using genome sequencing’® ™.
We developed protocols for expanding flow-sorted single naive and
memory B and T cells in vitro to colonies of 30 to more than 2,000
cells (Fig.1a, Supplementary Fig.1and Methods). Culture efficiencies
varied by cell type, but were typically 2-5% (Supplementary Table 1),
which prompted us to evaluate whether there was evidence for poten-
tial bias in culture efficiency among lymphocytes (Supplementary
Note). Reassuringly, cell surface marker expression was similar between
lymphocytes that grew into colonies and those that did not (Extended
DataFig.1). Furthermore, deep sequencing data for one donor showed
strong correlation between variant allele fractionsin bulk lymphocytes
versus colonies (Extended Data Fig. 2a)—using bootstrapping, we esti-
mate thatany biasin culture efficiency among lineages would amount
tojust20% (for example, ranging from 0.04-0.06 for amean efficiency
of 0.05) for both Band T cells (Supplementary Note).

We obtained blood, spleen and bone marrow samples from four indi-
viduals aged 27-81years, as well as tonsillar tissue from two 4-year-old
children and cord blood from a neonate (Supplementary Table 2).
Allindividuals studied were haematopoietically normal and healthy; one
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indicated cell typein colour, with the other three lymphocyte subsets plotted
inwhitewithgrey outline. The lines show thefit for the indicated cell type using
linear mixed-effects models.

had ahistory ofinflammatory bowel disease treated with azathioprine
andthe two tonsil donors had a history of tonsillitis. We focused on four
classes of lymphocytes: naive B cells, memory B cells, CD4" and CD8"
naive T cells, and CD4" and CD8" memory T cells. We also expanded T
regulatory cells from one subject. Five of the subjects reported here
were also analysed in a parallel study™ of haematopoietic stem and
progenitor cells (HSPCs) with 39 overlapping HSPC genomes.

We performed whole-genome sequencing to an average depth of
approximately 20x. To confirm that this provided sufficient depth, we
calculated recall statistics for germline heterozygous variants for each
colony, generating estimates of sensitivity of 80% at 10x and more than
98% at 20x depth (Extended Data Fig. 2b). The final dataset comprises
717 whole genomes (Supplementary Table 3).

Mutation burden

The overall burden of both single nucleotide variants (SNVs) and
insertion-deletions (indels) per cell varied extensively, influenced
predominantly by age and cell type (Fig. 1b). The burden of SNVs
increased linearly with age across all cell types, but the rate of muta-
tionaccumulation differed across cell types (P=1x107*for the age-cell
type interaction; linear mixed-effects model). HSPCs accumulated
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Fig.2|Mutational processesinlymphocytes. a,b, The proportion of SNVs
(a) and SNV burden (b) per mutational signaturein the different cell types.
Each columnrepresents one genome. For each genome, signatureswitha
90% posterior interval lower bound of less than1% are excluded. ¢, Mutational
spectraofgenomes of colonies derived fromsingle cellsenriched in the

base substitutions at approximately 16 SNVs per cell per year (95%
confidenceinterval 13-19), similar to previous estimates'®'?. Naive and
memory B cells showed broadly similar rates of mutation accumulation
(naive B cells: 15 SNVs per cell per year, 95% confidence interval 12-18;
memory B cells:17 SNVs per cell per year, 95% confidence interval 6-28).
However, T cells had higher mutation rates (naive T cells: 22 SNVs per
cell per year, 95% confidence interval 19-25; memory T cells: 25 SNVs
per cell per year, 95% confidence interval 17-32). Overall, this suggests
that there are clock-like mutational processes adding mutations at
constant rates, with different rates in each lymphocyte subset.

Additionally, there was a significant increase in the burden of base
substitutionsinlymphocytes that could notbe explained by age, espe-
cially for memory cells. Compared with HSPCs, naive Band T cells had
an average of 110 (95% confidence interval 5-216) and 59 (95% confi-
dence interval =35 to 153) extra SNVs per cell, respectively, beyond
the effects of age. Memory Band T cells had an even more pronounced
excess of mutations, carrying an average of 1,034 (95% confidence
interval 604-1,465) and 277 (95% confidence interval 5-549) more SNVs
per cell than HSPCs, respectively. This extra burden of base substitu-
tions presumably represents variants acquired during differentiation:
approximately 100 from HSPC to naive cell and hundreds to thousands
from naive to memory cell.

We found that the variance in mutation burden across cells also
showed amassive increase with differentiation. Thus, comparedtoas.d.
of 70 SNVs per cell for HSPCs within a given donor, the values estimated
for memory B and T cells were 820 SNVs per cell and 592 SNVs per cell
respectively (P <107 for heterogeneity of variance across cell types).
This cell-to-cell variability withina donor considerably outweighed the
between-person s.d., which we estimated at 60 SNVs per cell.

Indels accumulated at an average of 0.7 per cell per year in HSPCs
(95% confidenceinterval 0.5-0.9), while lymphocytes had higher indel
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b. Trinucleotide contexts on the x-axis represent 16 bars within each substitution
class, divided into 4 sets of 4 bars, grouped by the nucleotide 5’ to the mutated
base, and within each group by the 3’ nucleotide (inthe order A, C, G, T).

rates (naive B cells: 0.8 per cell per year, 95% confidence interval 0.6-1.0;
naive T cells: 1.1, 95% confidence interval 0.9-1.2; memory B cells: 0.8,
95% confidence interval 0.4-1.3; memory T cells: 1.0, 95% confidence
interval 0.7-1.2; Extended Data Fig. 3a).

Somatic mutations can confer a selective advantage on normal cells,
driving clonal expansions. Global measures of the strength of positive
selection canbe obtained by estimating the excess of non-synonymous
mutations (V) compared to selectively neutral synonymous (S) muta-
tions® (dN/dS ratio, with dN/dS = 1denoting neutrality). Exome-wide,
excluding immunoglobulin regions, we estimated the dN/dS ratio
inlymphocytes to be 1.12 (95% confidence interval 1.06-1.19). This
implies that positive selection shapes clonal competition in lym-
phocytes, with approximately 11% (95% confidence interval 6-15%)
of non-synonymous mutations conferring a selective advantage
(Extended DataFig.3b). Atasingle-gene level, ACTGI was the only gene
significant with a false-discovery rate of less than 1% (g = 5 x 10%)—this
gene is recurrently mutated in the plasma cell malignancy multiple
myeloma'?,

Mutational signatures

To determine whether the excess mutations observed in lympho-
cyte subsets were owing to a specific mutational process, we inferred
mutational signatures across lymphocyte compartments (Fig. 2).
Similar to HSPCs, the vast majority of mutationsin naive Band T cells
were derived from two mutational signatures. One of these—SBS1—is
caused by spontaneous deamination of methylated cytosines, and
accounted for 14% of mutations in HSPCs and naive B and T cells.
Nearly all the remaining somatic mutationsin these cellular compart-
ments had the typical signature of endogenous mutationsin HSPCs™*,
whichwe term SBSblood (Extended Data Fig. 4a). The burden of both
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Fig.3|Correlation of SBS9 with genomic attributes and timing of
mutational processes. a, Mutational spectra of the SBS9 and SHM signatures.
Trinucleotide contexts onthe x-axis represent 16 bars within each substitution
class, divided into 4 sets of 4 bars, grouped by the nucleotide 5’ to the mutated
base, and within each group by the 3’ nucleotide. The y-axis shows the number
of mutationsineach class.b, The number of SBS9 mutations genome-wide
and the percentage of bases in /GHV that are mutated in the productive
rearrangement of memory B cells. Thelinerepresents the linear regression
estimate of the correlation. ¢, Number of SBS9 mutations versus telomere
length per genome, coloured by cell type. The regression line is for memory
Bcells.d, Explanatory power of each significant genomic featurein the
generalized additive model (GAM), expressed as the R? of the individual GAM

signatures correlated linearly with age (Extended Data Fig. 4b,c),
suggesting that they represent clock-like endogenous mutational
processes.

FormemoryBand T cells, the absolute numbers of mutations attrib-
uted to these two endogenous signatures were broadly similar to those
seeninnaive Band T cells (Fig. 2b). The hundreds to thousands of extra
mutations seeninmemory B and T cells derived from additional muta-
tional signatures: SBS7a, SBS8, SBS9 and SBS17b. Whereas signatures
SBS8 and SBS9 show correlations with age, SBS7a and SBS17a do not,
consistent with thembeing sporadic. SBS7aand SBS17b probably rep-
resent exogenous mutational processes, whereas SBS9 is associated
with differentiation, as discussed below.
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for predicting number of SBS9 mutations (left) or number of SBSblood or
SBS1mutations (right) per 10-kb window. LAD, lamina-associated domain.

e, Performance of prediction of genome-wide mutational distribution
attributable to particular mutational signatures from histone marks of 149
epigenomesrepresenting distinct blood cell types and different phases of
development (numbers after cell types on y-axisindicate replicates); ticks are
colouredaccordingto the epigenetic cell type (purple, HSC; blue, naive B cell;
grey, memory B cell; maroon, GC B cell); black points depict values from tenfold
cross-validation; P-values for comparison of the tenfold cross-validation values
by two-sided Wilcoxon test. CS, class switched; GC, germinal centre; HSC,
hematopoietic stem cell; Mem, memory; Mega, megakaryocyte.

Exogenous mutational signatures

SBS7ais the canonical signature of ultraviolet light damage, the pre-
dominant mutational process in melanoma'® and normal skin". The
signature that we extracted from memory cells matches the features of
SBS7a, withapredominance of C>T substitutionsin a dipyrimidine con-
text, transcriptional strand bias and a high rate of CC>TT dinucleotide
substitutions (Fig. 2c and Extended Data Fig. 5). We found a substantial
contribution of SBS7a (more than 10% of mutations; mean =757 per
cell, range 205-2,783) and CC>TT dinucleotide substitutions in 9 out
of 100 memory T cells. Notably, memory cells with high levels of SBS7a
mutations had significantly shorter telomeres than other memory
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Fig. 4 |Structural variation burden and off-target RAG-mediated deletion.
a, Top, chromoplexy cycle (sample PD40667sl, donor KX002). Black points
representthe corrected read depthalong the chromosome and arcs denote
structural variants. Bottom, the final genomic configuration of the four
derivative chromosomesis shown as coloured arrows. b, CREBBP deletions
(samples PD40521po, donor KX001and BMH1_PlateB1_E2, donor AX0O01).
c,Burden of structural variants per cell type. Dupl., duplication.d, The
proportion of deletions with an RSS (RAG) motif within 50 bp of the breakpoint
forIg-TCR (0.96) and non-Ig-TCR (0.24) regions. The black dashed line

T cells (P=0.01, Fisher’s method; Extended Data Fig. 5b), indicative
of increased proliferation. As UVB radiation only penetrates human
skin'®toadepth of10-50 pm, the most plausible source of these SBS7a
mutations is UV exposure during skin residency.

Asecond unexpected signaturein memory cells was SBS17. This signa-
ture has been observed in cancers of the stomach and oesophagus and
occasionallyinBand T cell lymphomas'. This signature, characterized by
T>GmutationsinaTpT context (the underlineindicates the mutated base),
accounted for more than10% of mutations (4x s.d.above themean)in3 out
of 74 memoryBand1loutof100 memory T cells. SBS17 hasbeen linked to
5-fluorouracil chemotherapy in metastatic cancers®®, butits occurrence
inprimary oesophageal and gastric cancers (as well as our samples here) is
independent of treatment. If itsincidence in upper gastrointestinal tract
cancersis caused by some unknown local mutagen, then the presence of
SBS17in memory cells may be evidence of aspecific microenvironmental
exposure associated with tissue residency in gastrointestinal mucosa.

represents the genomic background rate of RAG motifs. Error bars represent
95%bootstrap confidenceintervals.n =889 1g-TCR structural variants and 253
non-Ig-TCRstructural variants. e, Proportion of deletions with an RSS (RAG)
motifasafunction of distance from the breakpoint, with a positive distance
representingbases interior to the deletion, and anegative value representing
basesexterior to the breakpoint. The black dashed line represents the genomic
background rate of RAG motifs. f, The proportion of deletions with an RSS
(RAG) or switch (CSR) motif.

Signatures of the germinal centre

SHM at heavy and light chain immunoglobulin regions followed the
expected mutational signature (Fig. 3a), with the productive rearrange-
ment showing more mutations than non-recombined alleles (Extended
DataFig. 6a—c). However, as reported for lymphoid malignancies®,
off-target mutations with the SBS9 signature in memory B cells had
a different spectrum to SHM mutations, characterized by mutations
at A:T base pairs in a TpW context (Fig. 3a), and different distribution
across the genome (Extended Data Fig. 6d). SBS9 accounted for 42%
of mutations (mean = 780 mutations per cell) in memory B cells, some-
times tripling the baseline mutation burden.

The number of SBS9 mutations genome-wide showed a strong lin-
ear correlation with the SHM rate (the percentage of the productive
IGHV gene that was mutated), despite their different spectra (R*= 0.57,
P=4x107° linear regression; Fig. 3b). The density of mutations was
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arefromdonor AX0O1.T,,, Tregulatory cells.d,e, SBS9 burden (d) and
proportion (e) by cell type or malignancy. The box shows the interquartile

270,000-fold greater at the /IGHV locus than for SBS9 mutations
genome-wide, confirming the precise targeting of SHM to antibody
regions. Nonetheless, the genomeislarge, and even this high degree of
mutational targeting means that every on-target /GHVmutationisaccom-
panied by an average of 18 SBS9 mutations elsewhere in the genome.
Another feature of the germinal centre reactionisincreased telom-
erase activity in B cells*?2. We estimated telomere lengths from the
genome sequencing data for our dataset. Telomere lengths in HSPCs,
T cells and naive B cells decreased by 30-50 bp per year over a life-
time® ™, consistent with cell divisions occurring every 6-24 months
(Extended DataFig.7a). By contrast, telomere lengths in memory B cells
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range and the centre line shows the median. Whiskers extend to the minimum
ofeither therange or1.5x theinterquartile range. f,g, Heat map showing the
level of enrichment of SBS9 (f) and SHM (g) signatures near frequently mutated
genes for that signature compared with the whole genome. Number of
structural variants per group: Bcell: 145, T cell: 841, ALL: 523, Burkitt
lymphoma: 305, CLL mutated: 252, CLLunmutated: 440, cutaneous T cell
lymphoma: 204, DLBC lymphoma: 3,754, follicular ymphoma: 1,095.a,b,d e,
Number of genomes per group: naive B: 68, memory B: 68, naive T: 332,
memory T: 87, Burkitt lymphoma: 17, CLL mutated: 38, CLL unmutated: 45,
cutaneous T celllymphoma: 5, DLBC lymphoma: 47, follicular ymphoma: 36,
multiple myeloma: 30, myeloid-AML:10.

were longer, more variable and actually increased with age (exclud-
ing tonsil samples; R*=0.13, P=3 x 1073, linear regression). Telomere
lengths also correlated linearly with the number of SBS9 mutations
genome-wide (R?=0.37,P=3 x1075;Fig. 3c). This correlation supports
a hypothesis of lengthening telomeres and occurrence of off-target
SBS9 mutations during the germinal centre reaction.

Areplicative-stress model of SBS9

The cytosine deaminase AlD initiates on-target SHM atimmunoglobulin
loci, which generates damage (and consequent mutation) at C:G base



pairs. On-target mutations at A:T base pairs during SHM arise through
errors introduced during translesion bypass of AID-deaminated
cytosines by polymerase n*, which has an error spectrum weighted
towards a TpW context”. As has been noted in lymphoid malignan-
cies*®, SBS9 has a different spectrum from on-target, AID-mediated
SHM, something we also observe innormal lymphocytes. In particular,
SBS9 has a paucity of mutations at C:G base pairs and an enrichment
of T mutations in TpW context (Fig. 3a), which makes the role of AID
unclear because it specifically targets cytosines. The genome-wide
distribution of off-target AID-induced deamination has been measured
directly®®, and shows a predilection for highly transcribed regions with
active chromatin marks, which tend to be early replicating.

To explore whether genomic regions with high SBS9 burden show
the samedistribution, we used general additive models to predict SBS9
burden from 36 genomic features, including gene density, chromatin
marks and replication timing across 10-kb genome bins. After model
selection, 18 features were included in the regression (R?= 0.20; Fig. 3d
and Supplementary Table 4). Replication timingis by far the strongest
predictor, withincreased mutation density in late-replicating regions,
individually accounting for 17% of the variationin the genomic distribu-
tion of SBS9 (Extended Data Fig. 7b). By contrast, replication timing
accounted for only 0.6% of variation in density of SBSblood or SBS1
mutations in memory B cells and 0.1% in HSPCs. The next 4 strongest
predictors of SBS9 distribution were all broadly related to inactive
versus active regions of the genome (distance from CpGislands, gene
density, GC content and LAD density: individual R? values of 0.09,
0.07,0.05, and 0.02, respectively). For each variable, mutation den-
sity increased in the direction of less active genomic regions—this is
in contradistinction to AID-induced deamination, which occursin
actively transcribed regions?®,

Together, our data demonstrate that SBS9 accumulates during
the germinal centre reaction, evidenced by its tight correlation with
both on-target SHM and telomere lengthening. However, the relative
sparsity of mutations at C:G base pairs and the distribution of SBS9 to
late-replicating, repressed regions of the genome make it difficult to
argue that AID is involved. Instead, we hypothesize that SBS9 arises
from polymerase n bypass of other background DNA lesions induced
by the high levels of replicative and oxidative stress experienced by
germinal centre B cells. Normally, mismatch repair and other path-
ways would accurately correct such lesions, but the high expression
of polymerase njin germinal centre cells® provides the opportunity for
error-prone translesion bypass tocompete. The enrichment of SBS9in
late-replicating, gene-poor, repressed regions of the genome—regions
where mismatchrepair is typically less active***'—would be consistent
with this as amodel of SBS9 mutation.

Epigenetic marks reveal mutation timing

Among human celltypes, lymphocytes are unusual for passing through
functionally distinct, long-lived differentiation stages with ongoing
proliferative potential. Since variation in mutation density across the
genome is shaped by chromatin state, a cell’s specific distribution of
somatic mutations provides arecord of the past epigenetic landscape
of its ancestors back to the fertilized egg®>*. We thus hypothesized
that the distribution of clock-like signatures would inform on the cell
types present in a given cell’s ancestral line of descent. By contrast,
the distribution of sporadic or episodic signatures can inform on the
differentiation stage exposed to that particular mutational process.
We compared the distribution of somatic mutations across the
genome with 149 epigenomes representing 48 distinct blood cell types
and differentiation stages. Mutations resulting from the clock-like
signature SBSblood in HSPCs correlated best with histone marks from
haematopoietic stem cells (P= 0.002, Wilcoxon test; Fig. 3e), consist-
ent with mutation accumulation in undifferentiated cells. Notably,
SBSblood mutational profiles in naive B cells also correlated better

with the epigenomes of haematopoietic stem cells than naive B cells
(P=0.004; Fig. 3e). This implies that the majority of SBSblood muta-
tions in naive B cells were acquired pre-differentiation, consistent
with ongoing production of these cells from the HSPC compartment
throughoutlifeand arelatively short-lived naive B differentiation state.
By contrast, SBSblood mutations in naive T cells mapped best to the
epigenomes of CCR7*CD45R0"CD25°CD235 naive T cells (P=0.049;
Extended DataFig. 8), consistent with alarge, long-lived pool of naive
T cells generated in the thymus during early life. For memory B cells,
SBSblood most closely correlated with histone marks from that cell
type and not earlier differentiation stages (P = 0.02; Fig. 3e), suggesting
that the majority of their lineage has been spent as amemory B cell.
For the sporadic mutational processes, SBS9 mutations most
closely correlated with germinal centre B cell epigenomes (P = 0.049;
Fig. 3e). This is consistent with our finding of a correlation between
SBS9 and other processes associated with germinal centres (SHM and
telomere lengthening), providing further evidence that SBS9 arises
as aby-product of the germinal centre reaction. For SBS7a, the signa-
ture of ultraviolet light exposure seenin memory T cells, the genomic
distribution is more tightly correlated with epigenomes of differenti-
ated T cells than naive T cells (Extended Data Fig. 8), supporting the
hypothesisthat SBS7a mutations accumulate in differentiated T cells.

Structural variants

Both V(D)J recombination and CSR are associated with off-target
structural variants in human lymphoid malignancies**’, but rates
and patterns of structural variants have not been studied in normal
human lymphocytes. We found 1,037 structural variants across
635 lymphocytes, 85% of which occurred inimmunoglobulin or TCR
(Ig-TCR) regions (Extended Data Fig. 9). We identified fewer than the
2 expected on-target V(D)) recombination events per lymphocyte,
suggesting that the sensitivity for structural variants in these regions
in our experiments is approximately 62%.

Excludinglg-TCRgeneregions, Band T cells carried more structural
variants than HSPCs, with 103 out of 609 (17%) of lymphocytes hav-
ing at least one off-target structural variant (compared with a single
structural variantin 82 HSPCs; P=9 x 107, Fisher's exact test). Memory
B and T cells had higher non-Ig-TCR structural variant burdens than
their respective naive subsets (27%inmemory B cells versus 5% in naive
B cells; 25% in memory T cells versus 15% in naive T cells; P=1x107).
Although there were occasional instances of more complex abnormali-
ties, including chromoplexy (Fig. 4a) and cycles of templated inser-
tions*, most non-Ig-TCR structural variants were deletions (49%),
several of which affected genes mutated in lymphoid malignancies
(Fig. 4b and Supplementary Table 5).

V(D)) recombination is mediated by RAG1 and RAG2 cutting at
arecombination signal sequence (RSS) DNA motif comprising a
heptamer and nonamer with an intervening spacer. Twenty-four per
cent of non-Ig-TCR and 96% of Ig-TCR structural variants had a full
RSS motif or the heptamer within 50 bp of a breakpoint (Fig. 4c,d).
Accounting for the baseline occurrence of these motifs using genomic
controls, we estimate that 12% of non-Ig-TCR and 84% of Ig-TCR
structural variants were RAG-mediated, especially deletions (around
15% of non-Ig-TCR deletions). As expected, the RSS motif was typically
internal to the breakpoint (62% and 91% for non-Ig-TCR and Ig-TCR
structural variants). We observed a rapid decay in the enrichment of
RAG motifs with distance from breakpoints, reaching background
levels within about 100 bp (Fig. 4e). During V(D)) recombination, the
TdT protein adds random nucleotides at the dsDNA breaks—this also
occurs in off-target structural variants, with RAG-mediated events
enriched for insertions of non-templated sequence at the breakpoint
(44% and 88% for non-Ig-TCR and Ig-TCR structural variants, respec-
tively, versus 21% of off-target structural variants without an RSS motif;
P=9x1073, Fisher's exact test).
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CSRisachieved through AID cytosine deaminationat WGCW clusters,
deletingIgH constant region genes and changing the antibodyisotype.
As expected, on-target CSR was enriched in memory (76%) compared
with naive B cells (12%; Fig. 4f and Supplementary Table 6). By contrast,
none of the non-Ig-TCR structural variants had CSR AID motif clusters,
suggesting that CSR is exquisitely targeted.

Comparison with malignancy

Along-standing controversy in cancer modelling is whether tumours
require additional mutational processes to acquire sufficient driver
mutations for oncogenic transformation®. In many solid tissues, can-
cers have higher mutation burdens than normal cells from the same
organ®¥, but myeloid leukaemias do not’. To address this question
inlymphoid malignancies, we compared genomes fromnormal Band
T cells to eight blood cancers™***°, which had similar distributions of
effective sequencing coverage (Extended Data Fig. 9c). SNV burdens
of follicular lymphoma, diffuse large B cell ymphoma and multiple
myelomawere considerably higher than those of normal lymphocytes
(Fig. 5a,b). By contrast, point mutation burdens observed in Burkitt
lymphoma, mutated or unmutated chronic lymphocytic leukaemia
and acute myeloid leukaemia were well within the range of those in
normal lymphocytes. Alllymphoid malignancies showed higher rates
of structural variation than normal cells.

The increased point mutation burden could arise from increased
activity of mutational processes already presentin normal cells, or the
emergence of distinct, cancer-specific mutational processes. The vast
majority of mutations present across all B cell malignancies could be
attributed to the same mutational processes active in normal memory
Bcells, and in broadly similar proportions (Fig. 5c-e). Cutaneous T cell
lymphomas carried similar numbers of mutations attributable to ultra-
violet light as the high-SBS7a memory cells (Extended Data Fig. 5c).
These dataemphasize that the processes generating point mutations
in normal lymphocytes can generate sufficient somatic variants for
progression towards many types of lymphoid malignancy.

Afeature of somatic mutations in B cell lymphomas is clustering of
off-target SHMs in highly expressed genes. For both SBS9 (Fig. 5f) and
off-target SHMs (Fig. 5g), we found considerable overlap ingenes with
elevated mutation rates. For example, BCL6, BCL7A and PAXS exhib-
ited enrichment of mutations with the SHM signature in both normal
and post-germinal malignant lymphocytes. Similarly, out of the 100
genes most enriched for SBS9 in normal memory B cells, 64% were also
SBS9-enriched (top 1%) in at least 3 of the 5 post-germinal malignancies.

About10% of normal lymphocytes have anon-Ig-TCR RAG-mediated
structural variant, accounting for 24% of off-target rearrangements.
Across lymphoid malignancies, acute lymphoblastic leukaemia had
similarly high proportions of RAG-mediated events, but in much
higher numbers, as reported previously?* (Extended Data Fig.10a). For
other lymphoid malignancies, although the proportions were low, the
absolute numbers of RAG-mediated structural variants (=0.5 per lym-
phoma) were broadly comparable to those seenin normal lymphocytes
(Extended DataFig.10b). This suggests that malignant transformation
of lymphocytes is associated with the emergence of cancer-specific
genomic instability, generating a genome with considerably more
large-scale rearrangement.

Discussion

Positive selection acting on somatic mutationsin lymphocytes is more
pervasive than negative selection, suggesting that clonal expansions of
individuallymphocytes are the evolutionary trade-off for physiological
genome editing. Lymphoid cancers are clearly one consequence—that
mutationburdens and signatures of normal lymphocytes match those
seen in lymphoid malignancies argues that off-target mutagenesis is
sufficient to transform occasional lymphocytes. For more than 50
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years, there has been speculation that driver mutations could underpin
autoimmune diseases***?, with recent data showing driver mutations
inlymphocytes responsible for vasculitis associated with Sjogren’s
disease*®. Our data show, first, that mutation rates are high enough to
generate considerable genetic diversity among normal lymphocytes,
and second, that selective pressures favour clonal expansion of indi-
vidual lymphocytes.

Unique among human cell types, alymphocyte experiences long
periods ofitslife in diverse microenvironments such as marrow, thymus,
lymph node, skin or mucosa. Given that lymphocytes divide** every
3-24 months, data supported by our estimates of telomere attrition,
mutation rates during these maintenance phases would presumably
be 5-50 per cell division. These stages areinterspersed with short-lived
bursts of differentiation, each of which is associated with prolifera-
tion and/or programmed genome engineering to improve antigen
recognition, contributing additional mutations. The considerably
greater cell-to-cell variation than person-to-person variation suggests
that lifelong environmental forces (such as infections, inflammation
and skin residency) are stronger influences on lymphocyte genomes
thantheinherited variationin mutationrates. The signatures of these
mutationsreflect both the unintended by-products ofimmunological
diversification and exposure to exogenous mutagens; their genomic
distributionreflects the chromatinlandscape of the cell at the time the
mutational process was active.
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Methods

Samples

Human blood mononuclear cells (MNCs) were obtained from four
sources: (1) bone marrow, spleen and peripheral blood taken with writ-
ten informed consent (provided by next-of-kin) from three deceased
transplant organ donors (KX001, KX002, KX003) recruited from
Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital
(by Cambridge Biorepository for Translational Medicine, Research
Ethics Committee approval 15/EE/0152), (2) peripheral blood taken
with written informed consent from one patient (AX001) recruited
from Addenbrooke’s Hospital (approval 07-MREQ5-44), (3) tonsil taken
with writteninformed consent from guardians of two patients (TX001,
TX002) recruited from Addenbrooke’s Hospital (approval 07-MREO5-
44), and (4) one cord blood (CB0O1) collected with written informed
consent from guardian by StemCell Technologies (catalogue (cat.) no.
70007) (Supplementary Table 2). Alldonors were haematopoietically
normal and healthy. Donor KX002 had a history of Crohn’s disease
and treatment with Azathioprine. Patients TX001 and TX002 had a
history of tonsillitis. MNCs from (1), (2) and (3) were extracted using
Lymphoprep (Axis-Shield), depleted of red blood cells using RBC lysis
buffer (BioLegend) and frozen viable in 10% DMSO. Cord blood MNCs
(4) werereceived frozen and then selected on the basis of CD34 expres-
sionusing the EasySep human whole-blood CD34 positive-selection kit
(Stemcell Technologies) as per the manufacturer’s instructions, with
the CD34" fraction used for HSPC cultures and the CD34  fraction used
for lymphocyte cultures. Additional peripheral blood MNCs from (1)
alsounderwent CD34 positive selection and was used for HSPC cultures.

Flow cytometry

MNC samples were sorted by flow cytometry at the NIHR Cambridge
BRC Cell Phenotyping Hub on Arialll or Aria-Fusion cell sorters into
naive B cells (CD3°CD19°CD20"CD27 CD387IgD*), memory B cells
(CD3°CD19'CD20'CD27'CD387IgD"), naive T cells (CD3*CD4/CD8"
CCR7'CD45RA"e"), memory T cells(CD3"'CD4/CD8'CD45RA"), regulatory
T cells (Tregs: CD3*CD4'CD25"€"CD127") and HSPCs (CD3 CD19~
CD34"CD38 CD45RA") (Supplementary Fig.1). HSPCs from AX001
included HSCs (CD34*CD38") and progenitors (CD34*CD38*CD1074m),
The antibody panels used are as follows: lymphocytes (excluding
Tregs): CD3-APC, CD4-BV785, CD8-BV650, CD14-BV605, CD19-AF700,
CD20-PEDazzle, CD27-BV421, CD34-APC-Cy7, CD38-FITC,
CD45RA-PerCP-Cy5.5,CD56-PE, CCR7-BV711, IgD-PECy7, Zombie-Aqua;
T, cells: CD3-APC, CD4-BV785, CD8-BV650, CD19-APC-Cy7,
CD45RA-PerCP-Cy5.5, CD56-PE, CCR7-FITC, CD25-PECyS5, CD127-PECy7,
CD69-AF700, CD103-BV421, CCR9-PE, Zombie-Aqua; HSPCs (exclud-
ing AX001): CD3-FITC, CD90-PE, CD49f-PECy5, CD38-PECy7,
CD33-APC, CD19-A700, CD34-APC-Cy7, CD45RA-BV421, Zombie-Aqua;
HSPCs (AX001): CD38-FITC, CD135-PE, CD34-PE-Cy7, CD90-APC,
CD10-APC-Cy7, CD45RA-V450, Zombie-Aqua. Details of the anti-
body panels used are in Supplementary Table 11. Cells were either
single-cell sorted for liquid culture into 96-well plates containing
50 pl cell-type-specific expansion medium, or (for AX0O01 HSPCs)
bulk-sorted for MethoCult plate-base expansion. Plotting of the
fluorescence-activated cell sorting data was performed with Flowjo
and FCS Express.

Invitro liquid culture expansion

We designed novel protocols to expand B and T cells from single cells
into colonies of at least 30 cells. Detailed step-by-step descriptions
of the protocols are provided in Supplementary Information. The B
cell expansion medium was composed of 5 pg ml™ Anti-IgM (Stratech
Scientific), 100 ng ml™ IL-2, 20ng mI™ IL-4, and 50 ng mI™ IL-21
(PeproTech EC), 2.5 ng ml™ CD40L-HA (Bio-Techne) and 1.25 pg ml™
HA Tag (Bio-Techne), in Advanced RPMI11640 Medium (ThermoFisher
Scientific) with 10% fetal bovine serum (ThermoFisher Scientific),

1% penicillin/streptomycin (Sigma-Aldrich), and 1% L-glutamine
(Sigma-Aldrich). The T cell expansion medium was composed of
12.5 pl mI™ ImmunoCult CD3/CD28 (STEMCELL Technologies) and
100 ng mI™IL-2 and 5 ng mI™ IL-15 (PeproTech EC), in ImmunoCult-XF
T Cell Expansion Medium (STEMCELL Technologies) with 5% fetal
bovine serum (ThermoFisher Scientific) and 0.5% penicillin/strep-
tomycin (Sigma-Aldrich). Twenty-five microlitres of fresh expansion
mediumwas addedto each culture every 3-4 days. Colonies (30-2,000
cells per colony) were collected either manually or robotically using a
CellCelector (Automated Lab Solutions) approximately 12 days after
sorting (depending on growth).

Sorted HSPCs from donors KX001, KX002,KX003 and CBOO1 were
expanded fromsingle cellsinto colonies 0of 200-100,000 cellsin Nunc
96-well flat-bottomed TC plates (ThermoFisher Scientific) contain-
ing 100 pl supplemented StemPro medium (Stem Cell Technologies)
(MEM medium). MEM medium contained StemPro Nutrients (0.035%)
(Stem Cell Technologies), L-Glutamine (1%) (ThermoFisher Scientific),
Penicillin-Streptomycin (1%) (ThermoFisher Scientific) and cytokines
(SCF:100 ng mI™; FLT3:20 ng mI™; TPO:100 ng mI™;; EPO: 3 ng mI™; IL-6:
50 ng ml™; IL-3: 10 ng mI™; IL-11: 50 ng ml™; GM-CSF: 20 ng mI™; IL-2:
10 ng mI™;IL-7:20 ng mI™; lipids: 50 ng mI™) to promote differentiation
towards myeloid-erythroid-megakaryocyte (MEM) and natural killer
celllineages. Manual assessment of colony growth was made at 14 days.
Colonies were topped up with anadditional 50 pl MEM medium on day
15if the colony was >1/4 the size of the well. Following 21 + 2 days in
culture, colonies were selected by size criteria. Colonies >3,000 cells
insize were collected into a U-bottomed 96-well plate (ThermoFisher
Scientific). Plates were then centrifuged (500g for 5 min), medium was
discarded, and the cells were resuspended in 50 pl PBS prior to freez-
ingat-80 °C. Coloniesless than 3,000 cells but greater than 200 cells
in size were collected into 96-well skirted Lo Bind plates (Eppendorf)
and centrifuged (800gfor 5 min). Supernatant was removed to 5-10 pl
using anaspirator prior to DNA extraction on the fresh cell pellet. Sorted
HSPCs from donor AX001 were plated onto CFC medium MethoCult
H4435 (STEMCELL Technologies) and colonies were picked following
24 daysin culture.

Whole-genome sequencing of colonies

DNA was extracted from 717 colonies with Arcturus PicoPure DNA
Extraction Kit (ThermoFisher Scientific), with the exception of larger
HSPC colonies which were extracted using the DNeasy 96 blood and
tissue plate kit (Qiagen) and then diluted to 1-5 ng. DNA was used to
make llluminasequencinglibraries using a custom low-input protocol®.
We performed whole-genome sequencing using 150 bp paired-end
sequencing reads on an lllumina XTen platform, to an average depth
of 20x per colony. Sequence data were mapped to the human genome
reference GRCh37d5 using the BWA-MEM algorithm.

Variant calling

We called all classes of variants using validated pipelines at the Well-
come Sanger Institute. SNVs were called using the program CaVEMan*®,
insertion/deletions (indels) using Pindel¥, structural variants using
BRASS*® and copy number variants (CNVs) using ASCAT*. In order
to recover all mutations, including high frequency ones, we used an
in silico sample produced from the reference genome rather than
use a matched normal for the CaVEMan, Pindel, and BRASS analyses.
Germline mutations were removed after variant calling (see below).
For the ASCAT analysis we elected one colony (arbitrarily chosen) to
serve as the matched normal.

Variants were filtered to remove false positives and germline vari-
ants. First, variants with a mean VAF greater than 40% across colonies
of anindividual were probably germline variants and were removed.
Toremove remaining germline variants and false positives, we exploited
the fact that we have several, highly clonal samples perindividual. We
performed a beta-binomial test per variant per individual, retaining



only SNVs and indels that were highly over-dispersed within an indi-
vidual. For SNVs we alsorequired that the variants be identified as sig-
nificantly subclonal within anindividual using the program Shearwater,
and applied filters to remove artefacts resulting from the low-input
library preparation. Detailed descriptions of the artefact filters were
provided previously® and the complete filtering pipeline is made avail-
able on GitHub (https://github.com/MathijsSanders/SangerLCMFil-
tering). For both the beta-binomial filter and the Shearwater filter we
observed bimodal distributions separating the datainto low and high
confidence variants. We made use of this feature, using a valley-finding
algorithm (R package quantmod) to determine the p-value cut-offs, per
individual. We genotyped each colony for the set of filtered somatic
SNVs and indels (per respective individual), calling a variant present
ifithad a minimum VAF of 20% and a minimum of two alternate reads
inthat colony.

We estimated our sensitivity to detect SNVs using germline mutations
as a truth set of heterozygous mutations. We called germline muta-
tions by performing a one-sided exact binomial test of the sum of the
alternate and sum of the total reads across colonies of an individual for
each CaVEMan unfiltered variant (alternate hypothesis of proportion of
successes less than 0.5 for autosomes and female X chromosomes, 0.95
for male sex chromosomes). A variant was called as germline on failure
toreject the null at a false-discovery rate g-value of 1076, We calculated
sensitivity as the proportion of germline variants detected per colony.

We removed artefacts from the structural variant calls using Anno-
tateBRASS with default settings. The full list of statistics calculated
and post-hoc filtering strategy was described in detail previously>®.
Somatic structural variants were identified as those shared by less
than 25% of the colonies within an individual. Structural variants and
CNVs were both subsequently manually curated by visual inspection.

Mutation burden analysis

We found that sequencing depth was a strong predictor of mutation
burdeninoursamples. Therefore, in order to more accurately estimate
the mutation burden for each colony, we corrected the number of SNVs
or indels (corrected separately) by fitting an asymptotic regression
(function NLSstAsymptotic, R package stats) to mutationburdenasa
function of sequencing depth per colony. For this correction we used
HSPC genomes (excepting the tonsil samples, for which naive B and
Tcellswere used), as lymphocyte genomes are more variable in muta-
tion burden, and included additional unpublished HSPC genomes to
increase the reliability of the model. Genomes with amean sequencing
depth of greater than 50x were omitted. The model parameters b,, b,
andIrcforeach dataset for themodely = b, + b, x (1-exp(-exp(lrc) x x))
areinSupplementary Table 7. Mutation burden per colony was adjusted
to asequencing depth of 30.

We used alinear mixed-effects model (functionIme, R package nime)
to test for a significant linear relationship between mutation burden
and age, and for an effect of cell subset on this relationship (separately
for SNVs and indels). Number of mutations per colony was regressed
onage of donor and cell type as fixed effects, with interactionbetween
age and cell type, donor by cell type as arandom effect, weighted by
cell type, and with maximum likelihood estimation.

Detecting positive selection

In order to estimate an exome-wide rate of selection and to detect
selection acting on specific genes we used the dndscv function of the
dNdScv R package®. This program leverages mutation rate informa-
tion across genes. As the elevated mutation rate seen with SHM may
break the assumptions of the test, we excluded the immunoglobulin
locifromthese analyses (excluded GRCh37 regions: chr14:106304735-
107283226, chr2:89160078-90274237, chr22:22385390-23263607). We
performed thetest for the following subsets of the data: alllymphocytes,
naive B, memory B, naive T, memory T, all ymphocytes testing only
cancer genes and all ymphocytes excluding cancer genes. Cancer

genes were defined as the 566 tier 1 genes from the COSMIC Cancer
Gene Census (https://cancer.sanger.ac.uk, downloaded 6 June 2018).

Mutational signature analysis

We characterized per-colony mutational profiles by estimating the
proportion of known and novel mutational signatures presentin each
colony. For comparison, weincluded in the analysis 223 genomes from
7blood cancer types: Burkitt lymphoma, follicular ymphoma, diffuse
large B cell lymphoma, chronic lymphocytic leukaemia (mutated),
chronic lymphocytic leukaemia (unmutated), and acute myeloid
leukaemia®® and multiple myeloma®. We identified mutational signa-
tures present inthe data by performing signature extraction with two
programs, SigProfiler*® and hdp (https://github.com/nicolaroberts/
hdp). We used the SigProfiler de novo results for the suggested number
of extracted signatures. hdp was run without any signatures as prior,
with no specified grouping of the data. These programs identified
the presence of 9 mutational signatures with strong similarity (cosine
similarity > 0.85) to Cosmic signatures' SBS1, SBS5, SBS7a, SBSS8, SBS9,
SBS13, SBS17b, SBS18 and SBS19 (version 3).

Both SigProfiler and hdp also identified the same novel signature
(cosine similarity = 0.93), which we term the blood signature or SBS-
blood. This signature is very similar to the mutational profile seen
previously in HSPCs'™™. As the signature SBSblood co-occurs with SBS1
in HSPCs, leading to the potential for these signatures being merged
into one signature, we further purified SBSblood by using the program
sigfit> to call two signatures across our HSPC genomes, SBS1and anovel
signature, withthe novel signature being the final SBSblood (Extended
DataFig.4aand Supplementary Table 8). SBSblood was highly similar
to both the hdp and SigProfiler de novo extracted signatures (cosine
similarity of 0.95and 0.94, respectively) and had similarity to the Cosmic
v3 SBSS5 signature (cosine similarity = 0.87). One hypothesis is that
SBSblood is the manifestation of SBS5 mutational processes in the
blood cell environment.

We estimated the proportion of each of the 10 identified mutational
signatures using the program sigfit. From these results we identified
three signatures (SBSS, SBS13 and SBS19) that were at nominal fre-
quenciesinthe HSPC and lymphocyte genomes (less than10% ineach
genome)-these were excluded from the analysis and the signature pro-
portions were re-estimated in sigfit using the remaining 7 signatures:
SBSblood, SBS1, SBS7a, SBS8, SBS9, SBS17b, SBS18 (Supplementary
Table 8).

Immunoglobulin receptor sequence analysis

In order to identify the immunoglobulin rearrangements, produc-
tive CDR3 sequences and per cent SHM for each memory B cell, we
ran IgCaller®?, using a genome from the same donor (HSPC or T cell)
as a matched normal for germline variant removal. We considered
the SHM rate to be the number of variants identified by IgCaller in
the productive IGHV gene divided by the gene length. For CSR calling,
see Supplementary Information.

We estimated the number of mutations resulting from on-target
(IGHV gene) SHM compared with those associated with SBS9. We first
counted all IGHV variants identified by Caveman pre-filtering, as we
found thatstandard filtering removes many SHM variants. We then esti-
mated SBS9 burden as the proportion of SBS9 mutations per genome
multiplied by the SNV burden. The SBS9 mutation rate per genome
was the SBS9 burden divided by the ‘callable genome’ (genome size
of 3.1 Gb minus an average of 383 kb excluded from variant calling).

Distribution of germinal centre-associated mutations in B cells

We assessed the genomic distribution of the germinal centre-associated
mutational signatures, SBS9 and the SHM signature, in memory B cells.
We performed per-Mb de novo signature analyses with hdp (no a priori
signatures), treating mutations across all normal memory B cells
within a given Mb window as a sample. The extracted SHM signature
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(Supplementary Table 8) had a cosine similarity of 0.96 to the spectrum
of memory B cell mutations in theimmunoglobulin gene regions, sup-
porting the assumption that it is indeed the signature of SHM. In this
analysis, SBSblood and SBS1 resolved as a single combined signature
that werefer tointhe genomic feature regression (below) as SBSblood/
SBS1.

We estimated the per-gene enrichment of SBS9 and SHM signatures
across normal memory B and malignant B cell genomes (Burkitt lym-
phoma, follicular lymphoma, diffuse large B cell ymphoma, chronic
lymphocytic leukaemia, and multiple myeloma). We first used sigfit
to perform signature attribution of the signatures found in memory
B cells (from the main signature analysis; SBSblood, SBS1, SBS8, SBS9,
SBS17b or SBS18) and the extracted SHM signature from the above 1-Mb
hdp analysis, considering each 1-Mb bin a sample. We subsequently
calculated asignature attribution per variant. Gene coordinates were
downloaded from UCSC (gencode.v30lift37.basic.annotation.gene-
only.genename.bed). We calculated the mean attribution of variants
inagivengene, representing the proportion of variants attributable to
agiven signature. We estimated the enrichment of SBS9 or SHM over
genomicbackground per gene per cell type as the P-value of individual
t-tests. While for this down-sampled dataset few genes were significant
after multiple testing correction, analysis of full datasets with larger
sample sizes show statistically significant enrichment in most pre-
sented genes after multiple testing correction (data not shown).

Regression of SBS9 and genomic features

The hdp per-Mb memory B cell mutational signature results above
were used toidentify genomic features associated with the location of
mutations attributable to a particular mutational signature. To achieve
afiner-scale genomic resolution, each Mb bin was further divided up
into 10-kb bins, and the proportion of each mutational signatureina
Mb binwas used to calculate asignature attribution per10-kb bin, based
onthetype and trinucleotide context of mutations in the 10-kb bin.

The number of mutations attributable to a particular mutational
signature, per 10-kb window, was regressed on each of 36 genomic
features (Supplementary Table 4). Noise was further removed from
thereplicationtiming data, using the GM12878 blood cell line data, and
filtering the Wave Signal data by removing low sum signal (<95) regions,
per Hansen et al.”. SBS9 was analysed separately from the SBSblood/
SBS1combined signature. The number of mutations per signature
per bin was calculated as the sum of the per-nucleotide probabilities
per signature within a given bin. For the analysis of a given signature,
abinwas only included if the average contribution of that signature
was greater than 50%. This step ameliorates the problem of artificially
high numbers of mutations being ascribed to a bin due to the combi-
nation of a trivially small attribution but a high overall mutation rate.
This can occur in high SHM or SBS9 regions. This left 26,151 bins for
SBS9 and 25,202 bins for SBSblood, out of 91,343 bins with mutations
and 279,094 bins genome-wide. We also included arandom sample of
zero-mutation bins to equal 10% of the total bins.

We performed lasso-penalized general additive model regressions of
the number of mutations per bin with the value of the genomic features.
We used the gamsel function in R (package gamsel), with the lambda
estimated from a fivefold cross-validation of training data (two-thirds
ofthe data). To estimate individual effect sizes, we performed general
additive model regressions per genomic feature using the function
gam (R package mgcv). The same analysis was also performed on HSPC
mutations. The results for the full and individual regression models
for each of SBS9 and SBSblood/1in memory B cells and for all HSPC
mutations can be found in Supplementary Table 4.

RAG and CSR motif analysis

We assessed the enrichment of V(D)) recombination (mediated by
RAG) and class switch recombination (CSR, mediated by AID) associ-
ated motifsinregions proximal to lymphocyte structural variants. We

identified the presence of full length and heptamer RSS motifs associ-
ated withRAG binding and endonuclease activity (RAG motifs) for the
50 bp flanking each structural variant breakpoint using the program
FIMO** (P<107). Clusters of AGCT and TGCA repeats, associated with
AID cytosine deamination and CSR (CSR motifs), were identified in
the 1,000 bp flanking each structural variant breakpoint using the
program MCAST® (P < 0.1, maximum gap =100, £ <10,000). In order to
estimate agenomicbackground rate of these motifs, we generated 100
genomic controls sets, randomly selected fromregions of the genome
not excluded fromvariant calling, and performed both the RAG and CSR
motifanalyseson these sets. The genomic background rate presented
isthemedian of the 100 control datasets for each motif analysis. Both
the RAG and CSR motif analyses were also performed for structural
variants from the PCAWG cancer genomesincluded in the mutational
signatures analysis and for acute lymphoblastic leukaemia genomes>.

Telomerelength

We estimated the telomere length for HSPC and lymphocyte genomes
(Supplementary Table 3) using the program Telomerecat. Telomere
lengths for all genomes for a given donor were estimated as a group.

Timing of mutational processes

Following a procedure described previously>’, we modelled the dis-
tribution of somatic mutations along the genome from the density of
chromatin immunoprecipitation-sequencing reads using random
forestregressioninatenfold cross-validation setting and the LogCosh
distance between observed and predicted profiles. Each mutation was
attributed to the signature that most likely generated it and aggregated
into 2,128 windows of 1 Mb spanning ~2.1 Gb of DNA. Signatures with
an average number of mutations per window <1 were not evaluated
due to lack of power. We determined the difference between models
using a paired two-sided Wilcoxon test on the values from the ten-
fold cross-validation. Epigenetic data were gathered from different
sources®*®° (Supplementary Table 9) and consisted 0f 149 epigenomes
representing 48 distinct blood cell types and differentiation stages and
their replicates. Histone marks used included H3K27me3, H3K36me3,
H3K4mel and H3K9me3. To evaluate the specificity of SBS9 mutational
profilesin memory B cells, we took the same number of mutations as
in SBSblood with the highest association with SBS9 and compared
models with an unpaired two-sided Wilcoxon test.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Rawsequencing dataare available at the European Genome-Phenome
Archive (accessionnumber EGAD00001008107). All somatic mutation
calls and other relevant intermediate datasets are available on the
github repository at https://github.com/machadoheather/lympho-
cyte_somatic_mutation.

Code availability

An exhaustive repository of code for statistical analyses reported in
this manuscript is available at https://github.com/machadoheather/
lymphocyte_somatic_mutation.
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Extended DataFig.1|Assessmentof culturebias by index flow-sorting.
(A) Representative scatterplots of cell surface marker fluorescenceintensity
measured by flow cytometry (sort AX00110/05/2018; AX00113/11/2018 for
Treg gate). Cells that successfully seeded colonies are coloured red; cells that
did not form colonies are coloured grey. (B) Box-and-whisker plots showing
fluorescence intensity for different cell surface markers in the various
lymphocyte populations (columns) across different patients and days of
flow-sorting (rows). Cells that successfully seeded colonies are shownin teal;

cellsthat did not form coloniesin orange. Boxes show the interquartile range
and the centre horizontal lines show the median. Whiskers extend to the
minimum of either the range or 1.5x the interquartile range. Red asterisks show
astatistically significant difference between the fluorescence values of colony
forming versus non-colony forming cells (two-sided t-test, false-discovery rate
*¢<0.05,**¢ < 0.01,***¢ < 0.001, P-valuesin Table S10). The number of colony
and non-colony forming cells per sort per subset can be found in Table S1.
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Extended DataFig.2 | Clonal bias and sensitivity correction. (A) To assess
clone-to-clonebiasesinsuccessfully seeded colonies, we reanalysed deep
targeted resequencing data of bulk Band T cell lymphocytes from AX001™.
The figure shows scatterplots of the fraction of lymphocyte coloniesreporting
agiven somatic mutation (x-axis; log scale) with the variant allele fraction of
that mutationinthebulk resequencing data (y-axis; log scale). Dashed lines are
x=yequality and solid lines show the linear regression fit (B cells, R?= 0.47,
P=1x10"%5; T cells, R? = 0.59, P=2x107%"). (B) Estimates of sensitivity for
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mutation calling asafunction of depth for each colony (pointsin left panels)
fromeachdonor (rows; the 5donors with the highest numbers of colonies are
shown). The second column of panels shows uncorrected estimates of
mutation burden for HSPCsin each donor, while the third column shows
mutation burden estimates after correction for sequencing depth by
asymptotic regression. The fourth column shows the corrected mutation
burdens for lymphocyte colonies.
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Extended DataFig. 4 |Mutational signatures by age. (A) SBSblood signature
identified using HSPC genomes and the program sigfit. Trinucleotide contexts
onthex-axisrepresent16 bars within each substitution class, divided into 4
sets of 4 bars, grouped by the nucleotide 5’ to the mutated base, and within
eachgroup by the 3’ nucleotide. (B) SNV mutationburden per genome, shown
separately for each mutational signature. The lines show the fit by linear mixed
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and PD40667rx) are excluded from plotting. (C) The rate of mutation
accumulation per year (slopes in B) for signatures with strong age effects. Error
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accession EGAD00001008107. The 149 epigenetic datasets are from the ENCODE and IHEC studies and are described in Table S9. The genomic feature datasets are
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H3K4mel: doi.org/10.1038/s41586-019-1913-9
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L2_rep_dist_log10: doi.org/10.1038/s41586-019-1913-9
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rep_timing_Gm: http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwRepliSeq
RNAseq: doi.org/10.1038/s41586-019-1913-9
short_tandem_rep_dens_3e3: doi.org/10.1038/s41586-019-1913-9
SIMPLE_REPEAT rep_dist_log10: doi.org/10.1038/s41586-019-1913-9
TAD_b_dist_log10: doi.org/10.1038/s41586-019-1913-9
telomere_dist_log10: doi.org/10.1038/s41586-019-1913-9
triplex_mirror_rep_dist_log10: doi.org/10.1038/s41586-019-1913-9
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We optimised the number of individuals (7) and number of genomes per cell subset per individual (average of 102 genomes per individual) to
describe the general mutational landscape per cell subset across a range of ages. No power calculation was performed, and there was no
target effect size. The samples were chosen to have a broad distribution across ages, from birth (cord blood) up to 81 years of age, where we
would expect to start seeing clonal haematopoiesis. Samples were spaced as evenly as possible across ages, with the limitation of pediatric
samples, for which only 4 year old samples were obtainable. Previous studies had found an average mutation rate of 16 mutations per cell per
year, which indicated that sampling 7 individuals along the described age range would allow for a statistically significant estimates of mutation
rates in lymphocytes.

Data exclusions  Per pre-established criteria, genomes with a sequencing depth of less than 6x or and average VAF of less than 20% were excluded. This
removed a total 39 genomes: 15 KX001 genomes, 12 KX002 genomes and 12 KX003 genomes.
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Replication While the specific samples used have been exhausted, most of the results from this study should be generally reproducible in separate
healthy individuals of the same age, using the protocols and code included in this manuscript.

Randomization  Thisis not relevant to our study. All individuals were hematopoietically normal, and there was no test versus control groups.

Blinding Blinding was not relevant to our study. The study only included samples of normal lymphocytes, and no tests were performed that required
blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
X| Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Dual use research of concern

Antibodies

Antibodies used Antibody; Company; Clone; Catalogue Number; Flurophore; Dilution; Panel
CD3; BD; HIT3a; 555339; FITC; 1:500; HSPC_nonAX001
CD90; Biolgend; 5E10; 328110; PE; 1:50; HSPC_nonAX001
CD49f; BD; GoH3; 551129; PECy5; 1:100; HSPC_nonAX001
CD19; Biolgend; HIB19; 302226; A700; 1:300; HSPC_nonAX001
CD34; Biolgend; 581; 343514; APCCy7; 1:100; HSPC_nonAX001
Zombie ; Biolgend; NA; 423101; Aqua; 1:2000; HSPC_nonAX001
CD38; Biolgend; HIT2; 303516; PECy7; 1:100; HSPC_nonAX001
CD45RA; Biolgend; HI100; 304130; BV421; 1:100; HSPC_nonAX001
CD38; BD; HIT2; 560982; FITC; 1:100; HSPC_AX001
CD135; Biolegend; BV10A4H2; 313306; PE; 1:100; HSPC_AX001
CD34; BD; 581; 560710; PE-Cy7; 1:100; HSPC_AX001
CD90; BD; 5E10; 561971; APC; 1:100; HSPC_AX001
CD10; Biolegend; HI10a; 312212; APC-Cy7; 1:100; HSPC_AX001
CD45RA; BD; HI100; 562298; V450; 1:100; HSPC_AX001
CD3; Tonbo Biosciences; Hit3a; 20-0039-T100; APC; 1:80; lymphocyte_nonTreg
CD4; Biolegend; OKT4; 317441; BV785; 1:80; lymphocyte_nonTreg
CD8; BD; RPA-T8; 563821; BV650; 1:40; lymphocyte_nonTreg
CD19; Biolegend; HIB19; 302226; AF700; 1:80; lymphocyte_nonTreg
CD20; Biolegend; 2H7; 302347; PE Dazzle; 1:80; lymphocyte_nonTreg
CD27; BD; M-T271; 562513; BV421; 1:80; lymphocyte_nonTreg
CD38; Biolegend; HIT2; 356610; FITC; 1:80; lymphocyte_nonTreg
CDA45RA; Biolegend; HI100; 560362; PerCP Cy5.5; 1:80; lymphocyte_nonTreg
CCR7; Biolegend; GO43H7; 353227; BV711; 1:80; lymphocyte_nonTreg
1gD; Biolegend; IA6-2; 348209; PeCy7; 1:100; lymphocyte_nonTreg
live; Biolegend; n/a; 423101; Zombie aqua; 1:400; lymphocyte_nonTreg
CD3; Tonbo Biosciences; Hit3a; 20-0039-T100; APC; 1:80; Treg
CD4; Biolegend; OKT4; 317441; BV785; 1:80; Treg
CDS; BD; RPA-TS; 563821; BV650; 1:40; Treg
CD19; Biolegend; HIB19; 302226; AF700; 1:80; Treg
CD45RA; Biolegend; HI100; 560362; PerCP Cy5.5; 1:80; Treg
CD56; Biolegend; 39D5; 355503; PE; 1:80; Treg
CCR7; Biolegend; GO43H7; 353227; FITC; 1:80; Treg
CD25; Biolegend; BC96; 302607; PeCy5; 1:80; Treg
CD127; Biolegend; A019D5; 351319; PeCy7; 1:80; Treg
CD69; Biolegend; FN50; 310921; AF700; 1:80; Treg
CD103; Biolegend; Ber-ACTS; 350213; BV421; 1:80; Treg
CCR9; Biolegend; LO53ES; 358903; PE; 1:80; Treg
live; Biolegend; n/a; 423101; Zombie aqua; 1:400; Treg
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Validation These were all previously validated commercially available antibodies. Manufacturer validation and references for each can be found:
Antibody; Flurophore; Company; Catalogue Number; Manufacturerinformation
CCR7; FITC; Biolegend; 353227; https://www.biolegend.com/fr-ch/products/fitc-anti-human-cd197-ccr7-antibody-7537




CCR9; PE; Biolegend; 358903; https://www.biolegend.com/de-de/products/pe-anti-human-cd199-ccr9-antibody-8761

CD10; APC-Cy7; Biolegend; 312212; https://www.biolegend.com/fr-ch/products/apc-cyanine7-anti-human-cd10-antibody-4034
CD103; BV421; Biolegend; 350213; https://www.biolegend.com/de-de/products/brilliant-violet-421-anti-human-cd103-integrin-
alphae-antibody-9746

CD127; PeCy7; Biolegend; 351319; https://www.biolegend.com/fr-fr/products/pe-cyanine7-anti-human-cd127-il-7ralpha-
antibody-7216

CD135; PE; Biolegend; 313306; https://www.biolegend.com/fr-ch/products/pe-anti-human-cd135-flt-3-flk-2-antibody-2359

CD19; AF700; Biolegend; 302226; https://www.biolegend.com/it-it/products/alexa-fluor-700-anti-human-cd19-antibody-3399
CD20; PE Dazzle; Biolegend; 302347; https://www.biolegend.com/de-de/products/pe-dazzle-594-anti-human-cd20-antibody-10436
CD25; PeCy5; Biolegend; 302607; https://www.biolegend.com/en-gh/products/pe-cyanine5-anti-human-cd25-antibody-617

CD27; BV421; BD; 562513; https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/bv421-mouse-anti-human-cd27.562513

CD3; FITC; BD; 555339; https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/fitc-mouse-anti-human-cd3.555339

CD3; APC; Tonbo Biosciences; 20-0039-T100; https://tonbobio.com/products/apc-anti-human-cd3-hit3a

CD34; APCCy7; Biolgend; 343514; https://www.biolegend.com/fr-lu/products/apc-cyanine7-anti-human-cd34-antibody-6159
CD34; PE-Cy7; BD; 560710; https://www.bdbiosciences.com/en-gb/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/pe-cy-7-mouse-anti-human-cd34.560710

CD38; PECy7; Biolgend; 303516; https://www.biolegend.com/fr-ch/products/pe-cyanine7-anti-human-cd38-antibody-5418

CD38; FITC; Biolegend; 356610; https://www.biolegend.com/en-ie/products/fitc-anti-human-cd38-antibody-14047

CD38; FITC; BD; 560982; https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/fitc-mouse-anti-human-cd38.560982

CD4; BV785; Biolegend; 317441; https://www.biolegend.com/fr-lu/products/brilliant-violet-785-anti-human-cd4-antibody-7978
CD45RA; BV421; Biolgend; 304130; https://www.biolegend.com/de-de/products/brilliant-violet-421-anti-human-cd45ra-
antibody-7200

CDA45RA; PerCP Cy5.5; Biolegend; 560362; https://www.biolegend.com/en-us/search-results/percp-cyanine5-5-anti-human-cd45ra-
antibody-4241

CD45RA; V450; BD; 562298; https://www.bdbiosciences.com/en-gh/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/v450-mouse-anti-human-cd45ra.560363

CD49f; PECy5; BD; 551129; https://www.bdbiosciences.com/zh-cn/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/pe-cy-5-rat-anti-human-cd49f.551129

CD56; PE; Biolegend; 355503; https://www.biolegend.com/en-us/products/pe-anti-human-cd56-subset-msc-marker-antibody-8191
CD69; AF700; Biolegend; 310921; https://www.biolegend.com/fr-ch/products/alexa-fluor-700-anti-human-cd69-antibody-3425
CD8; BV650; BD; 563821; https://www.bdbiosciences.com/ko-kr/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/bv650-mouse-anti-human-cd8.563821

CD90; PE; Biolgend; 328110; https://www.biolegend.com/it-it/products/pe-anti-human-cd90-thyl-antibody-4114

CD90; APC; BD; 561971; https://www.bdbiosciences.com/en-ca/products/reagents/flow-cytometry-reagents/research-reagents/
single-color-antibodies-ruo/fitc-mouse-anti-human-cd90.555595

IgD; PeCy7; Biolegend; 348209; https://www.biolegend.com/en-us/search-results/pe-cyanine7-anti-human-igd-antibody-6996

live; Zombie aqua; Biolegend; 423101; https://www.biolegend.com/fr-fr/products/zombie-aqua-fixable-viability-kit-8444

Human research participants

Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation All samples were received as viably frozen human blood mononuclear cells (MNCs) obtained from bone marrow, spleen,
tonsil and peripheral blood from seven individuals.
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Instrument

Software

Cell population abundance

Gating strategy

Sorting was performed on FACSAria Ill or FACSAria Fusion (BD Biosciences).

During the sort data were collected using the FACSAria Ill or FACSAria Fusion (BD Biosciences) default software. Plotting of
the gating strategy supplementary figure was done on FlowJo and plotting of the index sort data for the culture bias
supplementary figure was done using FCS Express.

This study used no data on relative cell abundances for any of the samples.

The FSC/SSC gate was set using the manual gating tool to exclude debris and small particles and to identify the lymphocyte
fraction of cells as displayed in Supplementary Figure S1. Further gating was as follows: naive B lymphocytes (CD3-CD19
+CD20+CD27-CD38-IgD+), memory B lymphocytes (CD3-CD19+CD20+CD27+CD38-IgD-), naive T lymphocytes (CD3+CD4/CD8
+CCR7+CD45RAhigh), memory T lymphocytes (CD3+CD4/CD8+CD45RA-), regulatory T cells (Tregs: CD3+CD4
+CD25highCD127-) and HSPCs (CD3-CD19-CD34+CD38-CD90+CD45RA-). HSPCs from AX001 included HSCs (CD34+CD38-) and
progenitors (CD34+CD38+CD10-/dim).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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