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Diverse mutational landscapes in human 
lymphocytes

Heather E. Machado1, Emily Mitchell1,2,17, Nina F. Øbro2,3,4,17, Kirsten Kübler5,6,7,17, 
Megan Davies2,3,8, Daniel Leongamornlert1, Alyssa Cull9, Francesco Maura10, 
Mathijs A. Sanders1,11, Alex T. J. Cagan1, Craig McDonald2,3,9, Miriam Belmonte2,3,9, 
Mairi S. Shepherd2,3, Felipe A. Vieira Braga1, Robert J. Osborne1,12, Krishnaa Mahbubani3,13,14, 
Iñigo Martincorena1, Elisa Laurenti2,3, Anthony R. Green2,3, Gad Getz5,6,7,15, Paz Polak16, 
Kourosh Saeb-Parsy13,14, Daniel J. Hodson2,3, David G. Kent2,3,9 ✉ & Peter J. Campbell1,2 ✉

The lymphocyte genome is prone to many threats, including programmed mutation 
during differentiation1, antigen-driven proliferation and residency in diverse 
microenvironments. Here, after developing protocols for expansion of single-cell 
lymphocyte cultures, we sequenced whole genomes from 717 normal naive and 
memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried 
more point mutations and structural variants than haematopoietic stem cells, with 
higher burdens in memory cells than in naive cells, and with T cells accumulating 
mutations at a higher rate throughout life. Off-target effects of immunological 
diversification accounted for approximately half of the additional differentiation- 
associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off- 
target mutations genome-wide for every on-target IGHV mutation during the 
germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than 
in stem cells, with around 15% of deletions being attributable to off-target recombinase- 
activating gene activity. DNA damage from ultraviolet light exposure and other 
sporadic mutational processes generated hundreds to thousands of mutations in 
some memory cells. The mutation burden and signatures of normal B cells were 
broadly similar to those seen in many B-cell cancers, suggesting that malignant 
transformation of lymphocytes arises from the same mutational processes that are 
active across normal ontogeny. The mutational landscape of normal lymphocytes 
chronicles the off-target effects of programmed genome engineering during 
immunological diversification and the consequences of differentiation, proliferation 
and residency in diverse microenvironments.

The adaptive immune system depends on programmed somatic muta-
tion to generate antigen receptor diversity. T cells use recombinase- 
activating gene (RAG)-mediated deletion to generate functional 
T cell receptors (TCRs); B cells also use RAG-mediated deletion to 
rearrange immunoglobulin (Ig) heavy and light chains, followed 
by activation-induced cytidine deaminase (AID)-mediated somatic 
hypermutation (SHM) and class-switch recombination (CSR) to further  
increase diversity1. Off-target genome editing in lymphocytes 
can produce mutations driving lymphoid malignancies, including  
RAG-mediated deletions in acute lymphoblastic leukaemia2,3; 

AID-mediated SHM in diffuse large B cell lymphoma4–6; and CSR in 
multiple myeloma7.

Although the accumulation of mutations in lymphoid malignancies 
is well characterized, the mutation burden of normal lymphocytes has 
been less comprehensively studied. Patterns of base substitutions in 
59 normal, CD19-positive B cells revealed an age-related increase in 
burden, with evidence for off-target SHM8. More detailed quantifica-
tion and comparison of the genomic landscape of B versus T cells, naive  
versus memory cells, and normal versus malignant lymphocytes is 
lacking.
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Genome sequencing of B and T cells
Expanding single cells into colonies in vitro enables accurate identifica-
tion of all classes of somatic mutation using genome sequencing9–11. 
We developed protocols for expanding flow-sorted single naive and 
memory B and T cells in vitro to colonies of 30 to more than 2,000 
cells (Fig. 1a, Supplementary Fig. 1 and Methods). Culture efficiencies 
varied by cell type, but were typically 2–5% (Supplementary Table 1), 
which prompted us to evaluate whether there was evidence for poten-
tial bias in culture efficiency among lymphocytes (Supplementary 
Note). Reassuringly, cell surface marker expression was similar between 
lymphocytes that grew into colonies and those that did not (Extended 
Data Fig. 1). Furthermore, deep sequencing data for one donor showed 
strong correlation between variant allele fractions in bulk lymphocytes 
versus colonies (Extended Data Fig. 2a)—using bootstrapping, we esti-
mate that any bias in culture efficiency among lineages would amount 
to just 20% (for example, ranging from 0.04–0.06 for a mean efficiency 
of 0.05) for both B and T cells (Supplementary Note).

We obtained blood, spleen and bone marrow samples from four indi-
viduals aged 27–81 years, as well as tonsillar tissue from two 4-year-old 
children and cord blood from a neonate (Supplementary Table 2).  
All individuals studied were haematopoietically normal and healthy; one 

had a history of inflammatory bowel disease treated with azathioprine  
and the two tonsil donors had a history of tonsillitis. We focused on four 
classes of lymphocytes: naive B cells, memory B cells, CD4+ and CD8+ 
naive T cells, and CD4+ and CD8+ memory T cells. We also expanded T 
regulatory cells from one subject. Five of the subjects reported here 
were also analysed in a parallel study12 of haematopoietic stem and 
progenitor cells (HSPCs) with 39 overlapping HSPC genomes.

We performed whole-genome sequencing to an average depth of 
approximately 20×. To confirm that this provided sufficient depth, we 
calculated recall statistics for germline heterozygous variants for each 
colony, generating estimates of sensitivity of 80% at 10× and more than 
98% at 20× depth (Extended Data Fig. 2b). The final dataset comprises 
717 whole genomes (Supplementary Table 3).

Mutation burden
The overall burden of both single nucleotide variants (SNVs) and 
insertion–deletions (indels) per cell varied extensively, influenced 
predominantly by age and cell type (Fig. 1b). The burden of SNVs 
increased linearly with age across all cell types, but the rate of muta-
tion accumulation differed across cell types (P = 1 × 10−4 for the age–cell 
type interaction; linear mixed-effects model). HSPCs accumulated 
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Fig. 1 | Experimental design and lymphocyte mutation burden with age.  
a, Schematic of the experimental design. WGS, whole-genome sequencing.  
b, SNV mutation burden per genome for the four main lymphocyte subsets, 
compared with HSPCs (green points). Each panel shows data for HSPCs and the 

indicated cell type in colour, with the other three lymphocyte subsets plotted 
in white with grey outline. The lines show the fit for the indicated cell type using 
linear mixed-effects models.
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base substitutions at approximately 16 SNVs per cell per year (95% 
confidence interval 13–19), similar to previous estimates10,12. Naive and 
memory B cells showed broadly similar rates of mutation accumulation 
(naive B cells: 15 SNVs per cell per year, 95% confidence interval 12–18; 
memory B cells: 17 SNVs per cell per year, 95% confidence interval 6–28). 
However, T cells had higher mutation rates (naive T cells: 22 SNVs per 
cell per year, 95% confidence interval 19–25; memory T cells: 25 SNVs 
per cell per year, 95% confidence interval 17–32). Overall, this suggests 
that there are clock-like mutational processes adding mutations at 
constant rates, with different rates in each lymphocyte subset.

Additionally, there was a significant increase in the burden of base 
substitutions in lymphocytes that could not be explained by age, espe-
cially for memory cells. Compared with HSPCs, naive B and T cells had 
an average of 110 (95% confidence interval 5–216) and 59 (95% confi-
dence interval −35 to 153) extra SNVs per cell, respectively, beyond 
the effects of age. Memory B and T cells had an even more pronounced 
excess of mutations, carrying an average of 1,034 (95% confidence 
interval 604–1,465) and 277 (95% confidence interval 5–549) more SNVs 
per cell than HSPCs, respectively. This extra burden of base substitu-
tions presumably represents variants acquired during differentiation: 
approximately 100 from HSPC to naive cell and hundreds to thousands 
from naive to memory cell.

We found that the variance in mutation burden across cells also 
showed a massive increase with differentiation. Thus, compared to a s.d. 
of 70 SNVs per cell for HSPCs within a given donor, the values estimated 
for memory B and T cells were 820 SNVs per cell and 592 SNVs per cell 
respectively (P < 10−16 for heterogeneity of variance across cell types). 
This cell-to-cell variability within a donor considerably outweighed the 
between-person s.d., which we estimated at 60 SNVs per cell.

Indels accumulated at an average of 0.7 per cell per year in HSPCs 
(95% confidence interval 0.5–0.9), while lymphocytes had higher indel 

rates (naive B cells: 0.8 per cell per year, 95% confidence interval 0.6–1.0; 
naive T cells: 1.1, 95% confidence interval 0.9–1.2; memory B cells: 0.8, 
95% confidence interval 0.4–1.3; memory T cells: 1.0, 95% confidence 
interval 0.7–1.2; Extended Data Fig. 3a).

Somatic mutations can confer a selective advantage on normal cells, 
driving clonal expansions. Global measures of the strength of positive 
selection can be obtained by estimating the excess of non-synonymous 
mutations (N) compared to selectively neutral synonymous (S) muta-
tions13 (dN/dS ratio, with dN/dS = 1 denoting neutrality). Exome-wide, 
excluding immunoglobulin regions, we estimated the dN/dS ratio 
in lymphocytes to be 1.12 (95% confidence interval 1.06–1.19). This 
implies that positive selection shapes clonal competition in lym-
phocytes, with approximately 11% (95% confidence interval 6–15%) 
of non-synonymous mutations conferring a selective advantage 
(Extended Data Fig. 3b). At a single-gene level, ACTG1 was the only gene 
significant with a false-discovery rate of less than 1% (q = 5 × 10−3)—this 
gene is recurrently mutated in the plasma cell malignancy multiple 
myeloma14,15.

Mutational signatures
To determine whether the excess mutations observed in lympho-
cyte subsets were owing to a specific mutational process, we inferred 
mutational signatures across lymphocyte compartments (Fig. 2). 
Similar to HSPCs, the vast majority of mutations in naive B and T cells 
were derived from two mutational signatures. One of these—SBS1—is 
caused by spontaneous deamination of methylated cytosines, and 
accounted for 14% of mutations in HSPCs and naive B and T cells. 
Nearly all the remaining somatic mutations in these cellular compart-
ments had the typical signature of endogenous mutations in HSPCs10,11, 
which we term SBSblood (Extended Data Fig. 4a). The burden of both 
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Fig. 2 | Mutational processes in lymphocytes. a,b, The proportion of SNVs  
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signatures correlated linearly with age (Extended Data Fig. 4b,c), 
suggesting that they represent clock-like endogenous mutational 
processes.

For memory B and T cells, the absolute numbers of mutations attrib-
uted to these two endogenous signatures were broadly similar to those 
seen in naive B and T cells (Fig. 2b). The hundreds to thousands of extra 
mutations seen in memory B and T cells derived from additional muta-
tional signatures: SBS7a, SBS8, SBS9 and SBS17b. Whereas signatures 
SBS8 and SBS9 show correlations with age, SBS7a and SBS17a do not, 
consistent with them being sporadic. SBS7a and SBS17b probably rep-
resent exogenous mutational processes, whereas SBS9 is associated 
with differentiation, as discussed below.

Exogenous mutational signatures
SBS7a is the canonical signature of ultraviolet light damage, the pre-
dominant mutational process in melanoma16 and normal skin17. The 
signature that we extracted from memory cells matches the features of 
SBS7a, with a predominance of C>T substitutions in a dipyrimidine con-
text, transcriptional strand bias and a high rate of CC>TT dinucleotide 
substitutions (Fig. 2c and Extended Data Fig. 5). We found a substantial 
contribution of SBS7a (more than 10% of mutations; mean = 757 per 
cell, range 205–2,783) and CC>TT dinucleotide substitutions in 9 out 
of 100 memory T cells. Notably, memory cells with high levels of SBS7a 
mutations had significantly shorter telomeres than other memory 
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T cells (P = 0.01, Fisher’s method; Extended Data Fig. 5b), indicative 
of increased proliferation. As UVB radiation only penetrates human 
skin18 to a depth of 10–50 μm, the most plausible source of these SBS7a 
mutations is UV exposure during skin residency.

A second unexpected signature in memory cells was SBS17. This signa-
ture has been observed in cancers of the stomach and oesophagus and 
occasionally in B and T cell lymphomas16. This signature, characterized by 
T>G mutations in a TpT context (the underline indicates the mutated base), 
accounted for more than 10% of mutations (4× s.d. above the mean) in 3 out 
of 74 memory B and 1 out of 100 memory T cells. SBS17 has been linked to 
5-fluorouracil chemotherapy in metastatic cancers19,20, but its occurrence 
in primary oesophageal and gastric cancers (as well as our samples here) is 
independent of treatment. If its incidence in upper gastrointestinal tract 
cancers is caused by some unknown local mutagen, then the presence of 
SBS17 in memory cells may be evidence of a specific microenvironmental 
exposure associated with tissue residency in gastrointestinal mucosa.

Signatures of the germinal centre
SHM at heavy and light chain immunoglobulin regions followed the 
expected mutational signature (Fig. 3a), with the productive rearrange-
ment showing more mutations than non-recombined alleles (Extended 
Data Fig. 6a–c). However, as reported for lymphoid malignancies5, 
off-target mutations with the SBS9 signature in memory B cells had 
a different spectrum to SHM mutations, characterized by mutations 
at A:T base pairs in a TpW context (Fig. 3a), and different distribution 
across the genome (Extended Data Fig. 6d). SBS9 accounted for 42% 
of mutations (mean = 780 mutations per cell) in memory B cells, some-
times tripling the baseline mutation burden.

The number of SBS9 mutations genome-wide showed a strong lin-
ear correlation with the SHM rate (the percentage of the productive 
IGHV gene that was mutated), despite their different spectra (R2 = 0.57, 
P = 4 × 10−9, linear regression; Fig. 3b). The density of mutations was 
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270,000-fold greater at the IGHV locus than for SBS9 mutations 
genome-wide, confirming the precise targeting of SHM to antibody 
regions. Nonetheless, the genome is large, and even this high degree of 
mutational targeting means that every on-target IGHV mutation is accom-
panied by an average of 18 SBS9 mutations elsewhere in the genome.

Another feature of the germinal centre reaction is increased telom-
erase activity in B cells21,22. We estimated telomere lengths from the 
genome sequencing data for our dataset. Telomere lengths in HSPCs, 
T cells and naive B cells decreased by 30–50 bp per year over a life-
time23–25, consistent with cell divisions occurring every 6–24 months 
(Extended Data Fig. 7a). By contrast, telomere lengths in memory B cells 

were longer, more variable and actually increased with age (exclud-
ing tonsil samples; R2 = 0.13, P = 3 × 10−3, linear regression). Telomere 
lengths also correlated linearly with the number of SBS9 mutations 
genome-wide (R2 = 0.37, P = 3 × 10−8; Fig. 3c). This correlation supports 
a hypothesis of lengthening telomeres and occurrence of off-target 
SBS9 mutations during the germinal centre reaction.

A replicative-stress model of SBS9
The cytosine deaminase AID initiates on-target SHM at immunoglobulin 
loci, which generates damage (and consequent mutation) at C:G base 
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pairs. On-target mutations at A:T base pairs during SHM arise through 
errors introduced during translesion bypass of AID-deaminated 
cytosines by polymerase η26, which has an error spectrum weighted 
towards a TpW context27. As has been noted in lymphoid malignan-
cies5,16, SBS9 has a different spectrum from on-target, AID-mediated 
SHM, something we also observe in normal lymphocytes. In particular, 
SBS9 has a paucity of mutations at C:G base pairs and an enrichment 
of T mutations in TpW context (Fig. 3a), which makes the role of AID 
unclear because it specifically targets cytosines. The genome-wide 
distribution of off-target AID-induced deamination has been measured 
directly28, and shows a predilection for highly transcribed regions with 
active chromatin marks, which tend to be early replicating.

To explore whether genomic regions with high SBS9 burden show 
the same distribution, we used general additive models to predict SBS9 
burden from 36 genomic features, including gene density, chromatin 
marks and replication timing across 10-kb genome bins. After model 
selection, 18 features were included in the regression (R2 = 0.20; Fig. 3d 
and Supplementary Table 4). Replication timing is by far the strongest 
predictor, with increased mutation density in late-replicating regions, 
individually accounting for 17% of the variation in the genomic distribu-
tion of SBS9 (Extended Data Fig. 7b). By contrast, replication timing 
accounted for only 0.6% of variation in density of SBSblood or SBS1 
mutations in memory B cells and 0.1% in HSPCs. The next 4 strongest 
predictors of SBS9 distribution were all broadly related to inactive 
versus active regions of the genome (distance from CpG islands, gene 
density, GC content and LAD density: individual R2 values of 0.09, 
0.07, 0.05, and 0.02, respectively). For each variable, mutation den-
sity increased in the direction of less active genomic regions—this is 
in contradistinction to AID-induced deamination, which occurs in 
actively transcribed regions28.

Together, our data demonstrate that SBS9 accumulates during 
the germinal centre reaction, evidenced by its tight correlation with 
both on-target SHM and telomere lengthening. However, the relative 
sparsity of mutations at C:G base pairs and the distribution of SBS9 to 
late-replicating, repressed regions of the genome make it difficult to 
argue that AID is involved. Instead, we hypothesize that SBS9 arises 
from polymerase η bypass of other background DNA lesions induced 
by the high levels of replicative and oxidative stress experienced by 
germinal centre B cells. Normally, mismatch repair and other path-
ways would accurately correct such lesions, but the high expression 
of polymerase η in germinal centre cells29 provides the opportunity for 
error-prone translesion bypass to compete. The enrichment of SBS9 in 
late-replicating, gene-poor, repressed regions of the genome—regions 
where mismatch repair is typically less active30,31—would be consistent 
with this as a model of SBS9 mutation.

Epigenetic marks reveal mutation timing
Among human cell types, lymphocytes are unusual for passing through 
functionally distinct, long-lived differentiation stages with ongoing 
proliferative potential. Since variation in mutation density across the 
genome is shaped by chromatin state, a cell’s specific distribution of 
somatic mutations provides a record of the past epigenetic landscape 
of its ancestors back to the fertilized egg32,33. We thus hypothesized 
that the distribution of clock-like signatures would inform on the cell 
types present in a given cell’s ancestral line of descent. By contrast, 
the distribution of sporadic or episodic signatures can inform on the 
differentiation stage exposed to that particular mutational process.

We compared the distribution of somatic mutations across the 
genome with 149 epigenomes representing 48 distinct blood cell types 
and differentiation stages. Mutations resulting from the clock-like 
signature SBSblood in HSPCs correlated best with histone marks from 
haematopoietic stem cells (P = 0.002, Wilcoxon test; Fig. 3e), consist-
ent with mutation accumulation in undifferentiated cells. Notably, 
SBSblood mutational profiles in naive B cells also correlated better 

with the epigenomes of haematopoietic stem cells than naive B cells 
(P = 0.004; Fig. 3e). This implies that the majority of SBSblood muta-
tions in naive B cells were acquired pre-differentiation, consistent 
with ongoing production of these cells from the HSPC compartment 
throughout life and a relatively short-lived naive B differentiation state. 
By contrast, SBSblood mutations in naive T cells mapped best to the 
epigenomes of CCR7+CD45RO−CD25−CD235− naive T cells (P = 0.049; 
Extended Data Fig. 8), consistent with a large, long-lived pool of naive 
T cells generated in the thymus during early life. For memory B cells, 
SBSblood most closely correlated with histone marks from that cell 
type and not earlier differentiation stages (P = 0.02; Fig. 3e), suggesting 
that the majority of their lineage has been spent as a memory B cell.

For the sporadic mutational processes, SBS9 mutations most 
closely correlated with germinal centre B cell epigenomes (P = 0.049; 
Fig. 3e). This is consistent with our finding of a correlation between 
SBS9 and other processes associated with germinal centres (SHM and 
telomere lengthening), providing further evidence that SBS9 arises 
as a by-product of the germinal centre reaction. For SBS7a, the signa-
ture of ultraviolet light exposure seen in memory T cells, the genomic 
distribution is more tightly correlated with epigenomes of differenti-
ated T cells than naive T cells (Extended Data Fig. 8), supporting the 
hypothesis that SBS7a mutations accumulate in differentiated T cells.

Structural variants
Both V(D)J recombination and CSR are associated with off-target 
structural variants in human lymphoid malignancies2,3,7, but rates 
and patterns of structural variants have not been studied in normal 
human lymphocytes. We found 1,037 structural variants across  
635 lymphocytes, 85% of which occurred in immunoglobulin or TCR 
(Ig–TCR) regions (Extended Data Fig. 9). We identified fewer than the 
2 expected on-target V(D)J recombination events per lymphocyte, 
suggesting that the sensitivity for structural variants in these regions 
in our experiments is approximately 62%.

Excluding Ig–TCR gene regions, B and T cells carried more structural 
variants than HSPCs, with 103 out of 609 (17%) of lymphocytes hav-
ing at least one off-target structural variant (compared with a single 
structural variant in 82 HSPCs; P = 9 × 10−5, Fisher's exact test). Memory 
B and T cells had higher non-Ig–TCR structural variant burdens than 
their respective naive subsets (27% in memory B cells versus 5% in naive 
B cells; 25% in memory T cells versus 15% in naive T cells; P = 1 × 10−5). 
Although there were occasional instances of more complex abnormali-
ties, including chromoplexy (Fig. 4a) and cycles of templated inser-
tions34, most non-Ig–TCR structural variants were deletions (49%), 
several of which affected genes mutated in lymphoid malignancies 
(Fig. 4b and Supplementary Table 5).

V(D)J recombination is mediated by RAG1 and RAG2 cutting at 
a recombination signal sequence (RSS) DNA motif comprising a  
heptamer and nonamer with an intervening spacer. Twenty-four per 
cent of non-Ig–TCR and 96% of Ig–TCR structural variants had a full 
RSS motif or the heptamer within 50 bp of a breakpoint (Fig. 4c,d). 
Accounting for the baseline occurrence of these motifs using genomic 
controls, we estimate that 12% of non-Ig–TCR and 84% of Ig–TCR  
structural variants were RAG-mediated, especially deletions (around 
15% of non-Ig–TCR deletions). As expected, the RSS motif was typically 
internal to the breakpoint (62% and 91% for non-Ig–TCR and Ig–TCR 
structural variants). We observed a rapid decay in the enrichment of 
RAG motifs with distance from breakpoints, reaching background 
levels within about 100 bp (Fig. 4e). During V(D)J recombination, the 
TdT protein adds random nucleotides at the dsDNA breaks—this also 
occurs in off-target structural variants, with RAG-mediated events 
enriched for insertions of non-templated sequence at the breakpoint 
(44% and 88% for non-Ig–TCR and Ig–TCR structural variants, respec-
tively, versus 21% of off-target structural variants without an RSS motif; 
P = 9 × 10−3, Fisher's exact test).
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CSR is achieved through AID cytosine deamination at WGCW clusters, 

deleting IgH constant region genes and changing the antibody isotype. 
As expected, on-target CSR was enriched in memory (76%) compared 
with naive B cells (12%; Fig. 4f and Supplementary Table 6). By contrast, 
none of the non-Ig–TCR structural variants had CSR AID motif clusters, 
suggesting that CSR is exquisitely targeted.

Comparison with malignancy
A long-standing controversy in cancer modelling is whether tumours 
require additional mutational processes to acquire sufficient driver 
mutations for oncogenic transformation35. In many solid tissues, can-
cers have higher mutation burdens than normal cells from the same 
organ36,37, but myeloid leukaemias do not9. To address this question 
in lymphoid malignancies, we compared genomes from normal B and 
T cells to eight blood cancers15,38,39, which had similar distributions of 
effective sequencing coverage (Extended Data Fig. 9c). SNV burdens 
of follicular lymphoma, diffuse large B cell lymphoma and multiple 
myeloma were considerably higher than those of normal lymphocytes 
(Fig. 5a,b). By contrast, point mutation burdens observed in Burkitt 
lymphoma, mutated or unmutated chronic lymphocytic leukaemia 
and acute myeloid leukaemia were well within the range of those in 
normal lymphocytes. All lymphoid malignancies showed higher rates 
of structural variation than normal cells.

The increased point mutation burden could arise from increased 
activity of mutational processes already present in normal cells, or the 
emergence of distinct, cancer-specific mutational processes. The vast 
majority of mutations present across all B cell malignancies could be 
attributed to the same mutational processes active in normal memory 
B cells, and in broadly similar proportions (Fig. 5c–e). Cutaneous T cell 
lymphomas carried similar numbers of mutations attributable to ultra-
violet light as the high-SBS7a memory cells (Extended Data Fig. 5c). 
These data emphasize that the processes generating point mutations 
in normal lymphocytes can generate sufficient somatic variants for 
progression towards many types of lymphoid malignancy.

A feature of somatic mutations in B cell lymphomas is clustering of 
off-target SHMs in highly expressed genes. For both SBS9 (Fig. 5f) and 
off-target SHMs (Fig. 5g), we found considerable overlap in genes with 
elevated mutation rates. For example, BCL6, BCL7A and PAX5 exhib-
ited enrichment of mutations with the SHM signature in both normal 
and post-germinal malignant lymphocytes. Similarly, out of the 100 
genes most enriched for SBS9 in normal memory B cells, 64% were also 
SBS9-enriched (top 1%) in at least 3 of the 5 post-germinal malignancies.

About 10% of normal lymphocytes have a non-Ig–TCR RAG-mediated 
structural variant, accounting for 24% of off-target rearrangements. 
Across lymphoid malignancies, acute lymphoblastic leukaemia had 
similarly high proportions of RAG-mediated events, but in much 
higher numbers, as reported previously2,3 (Extended Data Fig. 10a). For 
other lymphoid malignancies, although the proportions were low, the 
absolute numbers of RAG-mediated structural variants (≥0.5 per lym-
phoma) were broadly comparable to those seen in normal lymphocytes 
(Extended Data Fig. 10b). This suggests that malignant transformation 
of lymphocytes is associated with the emergence of cancer-specific 
genomic instability, generating a genome with considerably more 
large-scale rearrangement.

Discussion
Positive selection acting on somatic mutations in lymphocytes is more 
pervasive than negative selection, suggesting that clonal expansions of 
individual lymphocytes are the evolutionary trade-off for physiological 
genome editing. Lymphoid cancers are clearly one consequence—that 
mutation burdens and signatures of normal lymphocytes match those 
seen in lymphoid malignancies argues that off-target mutagenesis is 
sufficient to transform occasional lymphocytes. For more than 50 

years, there has been speculation that driver mutations could underpin 
autoimmune diseases40–42, with recent data showing driver mutations 
in lymphocytes responsible for vasculitis associated with Sjögren’s 
disease43. Our data show, first, that mutation rates are high enough to 
generate considerable genetic diversity among normal lymphocytes, 
and second, that selective pressures favour clonal expansion of indi-
vidual lymphocytes.

Unique among human cell types, a lymphocyte experiences long  
periods of its life in diverse microenvironments such as marrow, thymus, 
lymph node, skin or mucosa. Given that lymphocytes divide44 every 
3–24 months, data supported by our estimates of telomere attrition, 
mutation rates during these maintenance phases would presumably 
be 5–50 per cell division. These stages are interspersed with short-lived 
bursts of differentiation, each of which is associated with prolifera-
tion and/or programmed genome engineering to improve antigen 
recognition, contributing additional mutations. The considerably 
greater cell-to-cell variation than person-to-person variation suggests 
that lifelong environmental forces (such as infections, inflammation 
and skin residency) are stronger influences on lymphocyte genomes 
than the inherited variation in mutation rates. The signatures of these 
mutations reflect both the unintended by-products of immunological 
diversification and exposure to exogenous mutagens; their genomic 
distribution reflects the chromatin landscape of the cell at the time the 
mutational process was active.
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Methods

Samples
Human blood mononuclear cells (MNCs) were obtained from four 
sources: (1) bone marrow, spleen and peripheral blood taken with writ-
ten informed consent (provided by next-of-kin) from three deceased 
transplant organ donors (KX001, KX002, KX003) recruited from 
Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital 
(by Cambridge Biorepository for Translational Medicine, Research 
Ethics Committee approval 15/EE/0152), (2) peripheral blood taken 
with written informed consent from one patient (AX001) recruited 
from Addenbrooke’s Hospital (approval 07-MRE05-44), (3) tonsil taken 
with written informed consent from guardians of two patients (TX001, 
TX002) recruited from Addenbrooke’s Hospital (approval 07-MRE05-
44), and (4) one cord blood (CB001) collected with written informed 
consent from guardian by StemCell Technologies (catalogue (cat.) no. 
70007) (Supplementary Table 2). All donors were haematopoietically 
normal and healthy. Donor KX002 had a history of Crohn’s disease 
and treatment with Azathioprine. Patients TX001 and TX002 had a 
history of tonsillitis. MNCs from (1), (2) and (3) were extracted using 
Lymphoprep (Axis-Shield), depleted of red blood cells using RBC lysis 
buffer (BioLegend) and frozen viable in 10% DMSO. Cord blood MNCs 
(4) were received frozen and then selected on the basis of CD34 expres-
sion using the EasySep human whole-blood CD34 positive-selection kit 
(Stemcell Technologies) as per the manufacturer’s instructions, with 
the CD34+ fraction used for HSPC cultures and the CD34− fraction used 
for lymphocyte cultures. Additional peripheral blood MNCs from (1) 
also underwent CD34 positive selection and was used for HSPC cultures.

Flow cytometry
MNC samples were sorted by flow cytometry at the NIHR Cambridge  
BRC Cell Phenotyping Hub on AriaIII or Aria-Fusion cell sorters into  
naive B cells (CD3−CD19+CD20+CD27−CD38−IgD+), memory B cells 
(CD3−CD19+CD20+CD27+CD38−IgD−), naive T cells (CD3+CD4/CD8+ 
CCR7+CD45RAhigh), memory T cells (CD3+CD4/CD8+CD45RA−), regulatory  
T cells (Tregs: CD3+CD4+CD25highCD127−) and HSPCs (CD3−CD19− 
CD34+CD38−CD45RA−) (Supplementary Fig. 1). HSPCs from AX001 
included HSCs (CD34+CD38−) and progenitors (CD34+CD38+CD10-/dim).  
The antibody panels used are as follows: lymphocytes (excluding  
Tregs): CD3-APC, CD4-BV785, CD8-BV650, CD14-BV605, CD19-AF700, 
CD20-PEDazzle, CD27-BV421, CD34-APC-Cy7, CD38-FITC, 
CD45RA-PerCP-Cy5.5, CD56-PE, CCR7-BV711, IgD-PECy7, Zombie-Aqua; 
Treg cells: CD3-APC, CD4-BV785, CD8-BV650, CD19-APC-Cy7, 
CD45RA-PerCP-Cy5.5, CD56-PE, CCR7-FITC, CD25-PECy5, CD127-PECy7, 
CD69-AF700, CD103-BV421, CCR9-PE, Zombie-Aqua; HSPCs (exclud-
ing AX001): CD3-FITC, CD90-PE, CD49f-PECy5, CD38-PECy7, 
CD33-APC, CD19-A700, CD34-APC-Cy7, CD45RA-BV421, Zombie-Aqua; 
HSPCs (AX001): CD38-FITC, CD135-PE, CD34-PE-Cy7, CD90-APC, 
CD10-APC-Cy7, CD45RA-V450, Zombie-Aqua. Details of the anti-
body panels used are in Supplementary Table 11. Cells were either 
single-cell sorted for liquid culture into 96-well plates containing 
50 μl cell-type-specific expansion medium, or (for AX001 HSPCs) 
bulk-sorted for MethoCult plate-base expansion. Plotting of the 
fluorescence-activated cell sorting data was performed with FlowJo 
and FCS Express.

In vitro liquid culture expansion
We designed novel protocols to expand B and T cells from single cells 
into colonies of at least 30 cells. Detailed step-by-step descriptions 
of the protocols are provided in Supplementary Information. The B 
cell expansion medium was composed of 5 μg ml−1 Anti-IgM (Stratech 
Scientific), 100 ng ml−1 IL-2, 20ng ml−1 IL-4, and 50 ng ml−1 IL-21  
(PeproTech EC), 2.5 ng ml−1 CD40L-HA (Bio-Techne) and 1.25 μg ml−1 
HA Tag (Bio-Techne), in Advanced RPMI 1640 Medium (ThermoFisher 
Scientific) with 10% fetal bovine serum (ThermoFisher Scientific), 

1% penicillin/streptomycin (Sigma-Aldrich), and 1% l-glutamine 
(Sigma-Aldrich). The T cell expansion medium was composed of 
12.5 μl ml−1 ImmunoCult CD3/CD28 (STEMCELL Technologies) and 
100 ng ml−1 IL-2 and 5 ng ml−1 IL-15 (PeproTech EC), in ImmunoCult-XF 
T Cell Expansion Medium (STEMCELL Technologies) with 5% fetal 
bovine serum (ThermoFisher Scientific) and 0.5% penicillin/strep-
tomycin (Sigma-Aldrich). Twenty-five microlitres of fresh expansion 
medium was added to each culture every 3–4 days. Colonies (30–2,000 
cells per colony) were collected either manually or robotically using a 
CellCelector (Automated Lab Solutions) approximately 12 days after 
sorting (depending on growth).

Sorted HSPCs from donors KX001, KX002, KX003 and CB001 were 
expanded from single cells into colonies of 200–100,000 cells in Nunc 
96-well flat-bottomed TC plates (ThermoFisher Scientific) contain-
ing 100 μl supplemented StemPro medium (Stem Cell Technologies) 
(MEM medium). MEM medium contained StemPro Nutrients (0.035%) 
(Stem Cell Technologies), L-Glutamine (1%) (ThermoFisher Scientific), 
Penicillin-Streptomycin (1%) (ThermoFisher Scientific) and cytokines 
(SCF: 100 ng ml−1; FLT3: 20 ng ml−1; TPO: 100 ng ml−1; EPO: 3 ng ml−1; IL-6: 
50 ng ml−1; IL-3: 10 ng ml−1; IL-11: 50 ng ml−1; GM-CSF: 20 ng ml−1; IL-2: 
10 ng ml−1; IL-7: 20 ng ml−1; lipids: 50 ng ml−1) to promote differentiation 
towards myeloid–erythroid–megakaryocyte (MEM) and natural killer 
cell lineages. Manual assessment of colony growth was made at 14 days. 
Colonies were topped up with an additional 50 μl MEM medium on day 
15 if the colony was ≥1/4 the size of the well. Following 21 ± 2 days in 
culture, colonies were selected by size criteria. Colonies ≥3,000 cells 
in size were collected into a U-bottomed 96-well plate (ThermoFisher 
Scientific). Plates were then centrifuged (500g for 5 min), medium was 
discarded, and the cells were resuspended in 50 μl PBS prior to freez-
ing at −80 °C. Colonies less than 3,000 cells but greater than 200 cells 
in size were collected into 96-well skirted Lo Bind plates (Eppendorf) 
and centrifuged (800g for 5 min). Supernatant was removed to 5–10 μl 
using an aspirator prior to DNA extraction on the fresh cell pellet. Sorted 
HSPCs from donor AX001 were plated onto CFC medium MethoCult 
H4435 (STEMCELL Technologies) and colonies were picked following 
24 days in culture.

Whole-genome sequencing of colonies
DNA was extracted from 717 colonies with Arcturus PicoPure DNA 
Extraction Kit (ThermoFisher Scientific), with the exception of larger 
HSPC colonies which were extracted using the DNeasy 96 blood and 
tissue plate kit (Qiagen) and then diluted to 1–5 ng. DNA was used to 
make Illumina sequencing libraries using a custom low-input protocol45. 
We performed whole-genome sequencing using 150 bp paired-end 
sequencing reads on an Illumina XTen platform, to an average depth 
of 20× per colony. Sequence data were mapped to the human genome 
reference GRCh37d5 using the BWA-MEM algorithm.

Variant calling
We called all classes of variants using validated pipelines at the Well-
come Sanger Institute. SNVs were called using the program CaVEMan46, 
insertion/deletions (indels) using Pindel47, structural variants using 
BRASS48 and copy number variants (CNVs) using ASCAT49. In order 
to recover all mutations, including high frequency ones, we used an 
in silico sample produced from the reference genome rather than 
use a matched normal for the CaVEMan, Pindel, and BRASS analyses.  
Germline mutations were removed after variant calling (see below). 
For the ASCAT analysis we elected one colony (arbitrarily chosen) to 
serve as the matched normal.

Variants were filtered to remove false positives and germline vari-
ants. First, variants with a mean VAF greater than 40% across colonies 
of an individual were probably germline variants and were removed.  
To remove remaining germline variants and false positives, we exploited 
the fact that we have several, highly clonal samples per individual. We 
performed a beta-binomial test per variant per individual, retaining 



only SNVs and indels that were highly over-dispersed within an indi-
vidual. For SNVs we also required that the variants be identified as sig-
nificantly subclonal within an individual using the program Shearwater, 
and applied filters to remove artefacts resulting from the low-input 
library preparation. Detailed descriptions of the artefact filters were 
provided previously45 and the complete filtering pipeline is made avail-
able on GitHub (https://github.com/MathijsSanders/SangerLCMFil-
tering). For both the beta-binomial filter and the Shearwater filter we 
observed bimodal distributions separating the data into low and high 
confidence variants. We made use of this feature, using a valley-finding 
algorithm (R package quantmod) to determine the p-value cut-offs, per 
individual. We genotyped each colony for the set of filtered somatic 
SNVs and indels (per respective individual), calling a variant present 
if it had a minimum VAF of 20% and a minimum of two alternate reads 
in that colony.

We estimated our sensitivity to detect SNVs using germline mutations 
as a truth set of heterozygous mutations. We called germline muta-
tions by performing a one-sided exact binomial test of the sum of the 
alternate and sum of the total reads across colonies of an individual for 
each CaVEMan unfiltered variant (alternate hypothesis of proportion of 
successes less than 0.5 for autosomes and female X chromosomes, 0.95 
for male sex chromosomes). A variant was called as germline on failure 
to reject the null at a false-discovery rate q-value of 10−6. We calculated 
sensitivity as the proportion of germline variants detected per colony.

We removed artefacts from the structural variant calls using Anno-
tateBRASS with default settings. The full list of statistics calculated 
and post-hoc filtering strategy was described in detail previously36. 
Somatic structural variants were identified as those shared by less 
than 25% of the colonies within an individual. Structural variants and 
CNVs were both subsequently manually curated by visual inspection.

Mutation burden analysis
We found that sequencing depth was a strong predictor of mutation 
burden in our samples. Therefore, in order to more accurately estimate 
the mutation burden for each colony, we corrected the number of SNVs 
or indels (corrected separately) by fitting an asymptotic regression 
(function NLSstAsymptotic, R package stats) to mutation burden as a 
function of sequencing depth per colony. For this correction we used 
HSPC genomes (excepting the tonsil samples, for which naive B and 
T cells were used), as lymphocyte genomes are more variable in muta-
tion burden, and included additional unpublished HSPC genomes to 
increase the reliability of the model12. Genomes with a mean sequencing 
depth of greater than 50× were omitted. The model parameters b0, b1 
and lrc for each dataset for the model y = b0 + b1 × (1 − exp(−exp(lrc) ×  x))  
are in Supplementary Table 7. Mutation burden per colony was adjusted 
to a sequencing depth of 30.

We used a linear mixed-effects model (function lme, R package nlme) 
to test for a significant linear relationship between mutation burden 
and age, and for an effect of cell subset on this relationship (separately 
for SNVs and indels). Number of mutations per colony was regressed 
on age of donor and cell type as fixed effects, with interaction between 
age and cell type, donor by cell type as a random effect, weighted by 
cell type, and with maximum likelihood estimation.

Detecting positive selection
In order to estimate an exome-wide rate of selection and to detect 
selection acting on specific genes we used the dndscv function of the 
dNdScv R package13. This program leverages mutation rate informa-
tion across genes. As the elevated mutation rate seen with SHM may 
break the assumptions of the test, we excluded the immunoglobulin 
loci from these analyses (excluded GRCh37 regions: chr14:106304735–
107283226, chr2:89160078–90274237, chr22:22385390–23263607). We 
performed the test for the following subsets of the data: all lymphocytes,  
naive B, memory B, naive T, memory T, all lymphocytes testing only 
cancer genes and all lymphocytes excluding cancer genes. Cancer 

genes were defined as the 566 tier 1 genes from the COSMIC Cancer 
Gene Census (https://cancer.sanger.ac.uk, downloaded 6 June 2018).

Mutational signature analysis
We characterized per-colony mutational profiles by estimating the 
proportion of known and novel mutational signatures present in each 
colony. For comparison, we included in the analysis 223 genomes from 
7 blood cancer types: Burkitt lymphoma, follicular lymphoma, diffuse 
large B cell lymphoma, chronic lymphocytic leukaemia (mutated), 
chronic lymphocytic leukaemia (unmutated), and acute myeloid  
leukaemia38 and multiple myeloma15. We identified mutational signa-
tures present in the data by performing signature extraction with two 
programs, SigProfiler50 and hdp (https://github.com/nicolaroberts/
hdp). We used the SigProfiler de novo results for the suggested number 
of extracted signatures. hdp was run without any signatures as prior, 
with no specified grouping of the data. These programs identified 
the presence of 9 mutational signatures with strong similarity (cosine 
similarity ≥ 0.85) to Cosmic signatures16 SBS1, SBS5, SBS7a, SBS8, SBS9, 
SBS13, SBS17b, SBS18 and SBS19 (version 3).

Both SigProfiler and hdp also identified the same novel signature 
(cosine similarity = 0.93), which we term the blood signature or SBS-
blood. This signature is very similar to the mutational profile seen 
previously in HSPCs10,11. As the signature SBSblood co-occurs with SBS1 
in HSPCs, leading to the potential for these signatures being merged 
into one signature, we further purified SBSblood by using the program 
sigfit51 to call two signatures across our HSPC genomes, SBS1 and a novel 
signature, with the novel signature being the final SBSblood (Extended 
Data Fig. 4a and Supplementary Table 8). SBSblood was highly similar 
to both the hdp and SigProfiler de novo extracted signatures (cosine 
similarity of 0.95 and 0.94, respectively) and had similarity to the Cosmic  
v3 SBS5 signature (cosine similarity = 0.87). One hypothesis is that 
SBSblood is the manifestation of SBS5 mutational processes in the 
blood cell environment.

We estimated the proportion of each of the 10 identified mutational 
signatures using the program sigfit. From these results we identified 
three signatures (SBS5, SBS13 and SBS19) that were at nominal fre-
quencies in the HSPC and lymphocyte genomes (less than 10% in each 
genome)- these were excluded from the analysis and the signature pro-
portions were re-estimated in sigfit using the remaining 7 signatures: 
SBSblood, SBS1, SBS7a, SBS8, SBS9, SBS17b, SBS18 (Supplementary 
Table 8).

Immunoglobulin receptor sequence analysis
In order to identify the immunoglobulin rearrangements, produc-
tive CDR3 sequences and per cent SHM for each memory B cell, we 
ran IgCaller52, using a genome from the same donor (HSPC or T cell) 
as a matched normal for germline variant removal. We considered 
the SHM rate to be the number of variants identified by IgCaller in  
the productive IGHV gene divided by the gene length. For CSR calling, 
see Supplementary Information.

We estimated the number of mutations resulting from on-target 
(IGHV gene) SHM compared with those associated with SBS9. We first 
counted all IGHV variants identified by Caveman pre-filtering, as we 
found that standard filtering removes many SHM variants. We then esti-
mated SBS9 burden as the proportion of SBS9 mutations per genome 
multiplied by the SNV burden. The SBS9 mutation rate per genome 
was the SBS9 burden divided by the ‘callable genome’ (genome size 
of 3.1 Gb minus an average of 383 kb excluded from variant calling).

Distribution of germinal centre-associated mutations in B cells
We assessed the genomic distribution of the germinal centre-associated 
mutational signatures, SBS9 and the SHM signature, in memory B cells. 
We performed per-Mb de novo signature analyses with hdp (no a priori  
signatures), treating mutations across all normal memory B cells 
within a given Mb window as a sample. The extracted SHM signature 

https://github.com/MathijsSanders/SangerLCMFiltering
https://github.com/MathijsSanders/SangerLCMFiltering
https://cancer.sanger.ac.uk
https://github.com/nicolaroberts/hdp
https://github.com/nicolaroberts/hdp
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(Supplementary Table 8) had a cosine similarity of 0.96 to the spectrum 
of memory B cell mutations in the immunoglobulin gene regions, sup-
porting the assumption that it is indeed the signature of SHM. In this 
analysis, SBSblood and SBS1 resolved as a single combined signature 
that we refer to in the genomic feature regression (below) as SBSblood/
SBS1.

We estimated the per-gene enrichment of SBS9 and SHM signatures 
across normal memory B and malignant B cell genomes (Burkitt lym-
phoma, follicular lymphoma, diffuse large B cell lymphoma, chronic 
lymphocytic leukaemia, and multiple myeloma). We first used sigfit 
to perform signature attribution of the signatures found in memory 
B cells (from the main signature analysis; SBSblood, SBS1, SBS8, SBS9, 
SBS17b or SBS18) and the extracted SHM signature from the above 1-Mb 
hdp analysis, considering each 1-Mb bin a sample. We subsequently 
calculated a signature attribution per variant. Gene coordinates were 
downloaded from UCSC (gencode.v30lift37.basic.annotation.gene-
only.genename.bed). We calculated the mean attribution of variants 
in a given gene, representing the proportion of variants attributable to 
a given signature. We estimated the enrichment of SBS9 or SHM over 
genomic background per gene per cell type as the P-value of individual 
t-tests. While for this down-sampled dataset few genes were significant 
after multiple testing correction, analysis of full datasets with larger 
sample sizes show statistically significant enrichment in most pre-
sented genes after multiple testing correction (data not shown).

Regression of SBS9 and genomic features
The hdp per-Mb memory B cell mutational signature results above 
were used to identify genomic features associated with the location of 
mutations attributable to a particular mutational signature. To achieve 
a finer-scale genomic resolution, each Mb bin was further divided up 
into 10-kb bins, and the proportion of each mutational signature in a 
Mb bin was used to calculate a signature attribution per 10-kb bin, based 
on the type and trinucleotide context of mutations in the 10-kb bin.

The number of mutations attributable to a particular mutational 
signature, per 10-kb window, was regressed on each of 36 genomic 
features (Supplementary Table 4). Noise was further removed from 
the replication timing data, using the GM12878 blood cell line data, and 
filtering the Wave Signal data by removing low sum signal (<95) regions, 
per Hansen et al.53. SBS9 was analysed separately from the SBSblood/
SBS1 combined signature. The number of mutations per signature 
per bin was calculated as the sum of the per-nucleotide probabilities 
per signature within a given bin. For the analysis of a given signature, 
a bin was only included if the average contribution of that signature 
was greater than 50%. This step ameliorates the problem of artificially 
high numbers of mutations being ascribed to a bin due to the combi-
nation of a trivially small attribution but a high overall mutation rate. 
This can occur in high SHM or SBS9 regions. This left 26,151 bins for 
SBS9 and 25,202 bins for SBSblood, out of 91,343 bins with mutations 
and 279,094 bins genome-wide. We also included a random sample of 
zero-mutation bins to equal 10% of the total bins.

We performed lasso-penalized general additive model regressions of 
the number of mutations per bin with the value of the genomic features. 
We used the gamsel function in R (package gamsel), with the lambda 
estimated from a fivefold cross-validation of training data (two-thirds 
of the data). To estimate individual effect sizes, we performed general 
additive model regressions per genomic feature using the function 
gam (R package mgcv). The same analysis was also performed on HSPC 
mutations. The results for the full and individual regression models 
for each of SBS9 and SBSblood/1 in memory B cells and for all HSPC 
mutations can be found in Supplementary Table 4.

RAG and CSR motif analysis
We assessed the enrichment of V(D)J recombination (mediated by 
RAG) and class switch recombination (CSR, mediated by AID) associ-
ated motifs in regions proximal to lymphocyte structural variants. We 

identified the presence of full length and heptamer RSS motifs associ-
ated with RAG binding and endonuclease activity (RAG motifs) for the 
50 bp flanking each structural variant breakpoint using the program 
FIMO54 (P < 10−4). Clusters of AGCT and TGCA repeats, associated with 
AID cytosine deamination and CSR (CSR motifs), were identified in 
the 1,000 bp flanking each structural variant breakpoint using the 
program MCAST55 (P < 0.1, maximum gap = 100, E < 10,000). In order to 
estimate a genomic background rate of these motifs, we generated 100 
genomic controls sets, randomly selected from regions of the genome 
not excluded from variant calling, and performed both the RAG and CSR 
motif analyses on these sets. The genomic background rate presented 
is the median of the 100 control datasets for each motif analysis. Both 
the RAG and CSR motif analyses were also performed for structural 
variants from the PCAWG cancer genomes included in the mutational 
signatures analysis and for acute lymphoblastic leukaemia genomes3.

Telomere length
We estimated the telomere length for HSPC and lymphocyte genomes 
(Supplementary Table 3) using the program Telomerecat56. Telomere 
lengths for all genomes for a given donor were estimated as a group.

Timing of mutational processes
Following a procedure described previously33,57, we modelled the dis-
tribution of somatic mutations along the genome from the density of 
chromatin immunoprecipitation–sequencing reads using random 
forest regression in a tenfold cross-validation setting and the LogCosh 
distance between observed and predicted profiles. Each mutation was 
attributed to the signature that most likely generated it and aggregated 
into 2,128 windows of 1 Mb spanning ~2.1 Gb of DNA. Signatures with 
an average number of mutations per window <1 were not evaluated 
due to lack of power. We determined the difference between models 
using a paired two-sided Wilcoxon test on the values from the ten-
fold cross-validation. Epigenetic data were gathered from different 
sources58–60 (Supplementary Table 9) and consisted of 149 epigenomes 
representing 48 distinct blood cell types and differentiation stages and 
their replicates. Histone marks used included H3K27me3, H3K36me3, 
H3K4me1 and H3K9me3. To evaluate the specificity of SBS9 mutational 
profiles in memory B cells, we took the same number of mutations as 
in SBSblood with the highest association with SBS9 and compared 
models with an unpaired two-sided Wilcoxon test.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data are available at the European Genome–Phenome 
Archive (accession number EGAD00001008107). All somatic mutation 
calls and other relevant intermediate datasets are available on the 
github repository at https://github.com/machadoheather/lympho-
cyte_somatic_mutation.

Code availability
An exhaustive repository of code for statistical analyses reported in 
this manuscript is available at https://github.com/machadoheather/
lymphocyte_somatic_mutation. 
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Extended Data Fig. 1 | Assessment of culture bias by index flow-sorting.  
(A) Representative scatterplots of cell surface marker fluorescence intensity 
measured by flow cytometry (sort AX001 10/05/2018; AX001 13/11/2018 for 
Treg gate). Cells that successfully seeded colonies are coloured red; cells that 
did not form colonies are coloured grey. (B) Box-and-whisker plots showing 
fluorescence intensity for different cell surface markers in the various 
lymphocyte populations (columns) across different patients and days of 
flow-sorting (rows). Cells that successfully seeded colonies are shown in teal; 

cells that did not form colonies in orange. Boxes show the interquartile range 
and the centre horizontal lines show the median. Whiskers extend to the 
minimum of either the range or 1.5× the interquartile range. Red asterisks show 
a statistically significant difference between the fluorescence values of colony 
forming versus non-colony forming cells (two-sided t-test, false-discovery rate 
*q < 0.05, **q < 0.01, ***q < 0.001, P-values in Table S10). The number of colony 
and non-colony forming cells per sort per subset can be found in Table S1.



Extended Data Fig. 2 | Clonal bias and sensitivity correction. (A) To assess 
clone-to-clone biases in successfully seeded colonies, we reanalysed deep 
targeted resequencing data of bulk B and T cell lymphocytes from AX00111.  
The figure shows scatterplots of the fraction of lymphocyte colonies reporting 
a given somatic mutation (x-axis; log scale) with the variant allele fraction of 
that mutation in the bulk resequencing data ( y-axis; log scale). Dashed lines are 
x = y equality and solid lines show the linear regression fit (B cells, R2 = 0.47, 
P = 1x10−18; T cells, R2 = 0.59, P = 2x10−31). (B) Estimates of sensitivity for 

mutation calling as a function of depth for each colony (points in left panels) 
from each donor (rows; the 5 donors with the highest numbers of colonies are 
shown). The second column of panels shows uncorrected estimates of 
mutation burden for HSPCs in each donor, while the third column shows 
mutation burden estimates after correction for sequencing depth by 
asymptotic regression. The fourth column shows the corrected mutation 
burdens for lymphocyte colonies.
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Extended Data Fig. 3 | Indels and selection pressure. (A) Indel mutation 
burden per genome for the four main lymphocyte subsets (pink points), 
compared with HSPCs (green points). Each panel has all genomes plotted 
underneath in white with grey outline. The lines show the fit by linear mixed 
effects models for the respective populations. (B) Plots of the estimated dN/dS 
ratio for mutations genome-wide (excluding immunoglobulin genes) for all 
lymphocytes, and for the various individual lymphocyte populations.  

The second row shows the estimated dN/dS ratio for known cancer genes in all 
lymphocytes. The diamond shows the point estimates, and the lines the 95% 
confidence intervals. The point estimates / number of variants included in each 
analysis are as follows: lymphocytes, genome-wide = 1.12 / 7555; lymphocytes, 
cancer genes = 1.21 / 352; naive B = 1.25 / 671; memory B = 1.10 / 1132; naive 
T = 1.16 / 4162; memory T = 0.99 / 1414.



Extended Data Fig. 4 | Mutational signatures by age. (A) SBSblood signature 
identified using HSPC genomes and the program sig fit. Trinucleotide contexts 
on the x-axis represent 16 bars within each substitution class, divided into 4 
sets of 4 bars, grouped by the nucleotide 5′ to the mutated base, and within 
each group by the 3′ nucleotide. (B) SNV mutation burden per genome, shown 
separately for each mutational signature. The lines show the fit by linear mixed 

effects models for the respective populations. Two outlier cells (PD40667vu 
and PD40667rx) are excluded from plotting. (C) The rate of mutation 
accumulation per year (slopes in B) for signatures with strong age effects. Error 
bars represent the 95% confidence intervals on the slope from the linear mixed 
effects models.
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Extended Data Fig. 5 | Ultraviolet light mutational signature (SBS7a) in 
lymphocytes. (A) Raw mutational spectra shown for all mutation calls from 
four lymphocyte colonies, two with high contribution of SBS7a (left) and two 
with a more typical T-cell spectrum (right) from two different donors (rows). 
For each cell, the top panel shows the SNV spectrum, with trinucleotide 
contexts on the x-axis representing 16 bars within each substitution class, 
divided into 4 sets of 4 bars, grouped by the nucleotide 5′ to the mutated base, 
and within each group by the 3′ nucleotide. The bottom panel shows frequency 
of dinucleotide substitutions. (B) Telomere lengths for memory T cells with 
(yellow) and without (grey) high SBS7a signature. A memory T cell with high UV 
signature is defined as having greater than 9.5% (2 standard deviations above 

the mean) of its mutations attributable to SBS7a. (C) Proportion of mutations 
attributable to SBS7a across normal lymphocytes (paediatric samples 
excluded) and lymphoid malignancies. Boxes show the interquartile range and 
the centre horizontal lines show the median. Whiskers extend to the minimum 
of either the range or 1.5× the interquartile range. Number of genomes included 
per group: naive B: 68, memory B: 68, naive T: 332, memory T SBS7a low: 78, 
memory T SBS7a high: 9, Burkitt lymphoma: 17, CLL (chronic lymphocytic 
leukaemia) mutated: 38, CLL unmutated: 45, C. (cutaneous) T-cell lymphoma: 5, 
DLBC (Diffuse Large B-cell) lymphoma: 47, follicular lymphoma: 36, multiple 
myeloma: 30, myeloid-AML (acute myeloid leukaemia): 10.



Extended Data Fig. 6 | Distribution of mutational signatures across the 
genome. (A) Estimates of the mutation rate across non-Ig chromosomes and Ig 
regions for memory (left) and naive B (right) cells. Rates for the Ig regions are 
calculated separately for the productive (triangles) and non-recombined 
alleles (circles) and exons (green) versus introns (orange). (B) Estimated 
mutation rates across different variable segments of the Ig genes for exons 

(green) versus introns (orange). (C) Number of productive V(D)J 
rearrangements affecting each variable segment in the dataset. (D) Proportion 
of mutations across chromosomes 2, 14 and 22 in each 1Mb window attributed 
to signatures SBS9, SBSblood and the canonical somatic hypermutation (SHM) 
signature (rows). Windows spanning the relevant immunoglobulin regions are 
coloured according to the key.
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Extended Data Fig. 7 | Telomere lengths and SBS9 versus replication 
timing. (A) The top left panel includes the tonsil-derived genomes, which have 
an exceptionally high variance in telomere length. The remaining panels 
exclude these genomes, and show the estimated telomere lengths ( y-axis) for 
each cell as a function of age (x-axis). Lines show the estimated fit by linear 

mixed effects models for each cell type, with the slope and 95% confidence 
intervals quoted in text. (B) Replication timing and number of SBS9 mutations 
per 10kb window. The line represents the GAM regression prediction. The 
x-axis is truncated at 5, excluding 0.3% of the data, and points have random 
noise (−0.5 to 0.5) to facilitate visualization.



Extended Data Fig. 8 | Relationships of signatures to epigenetic marks 
across haematopoietic cell types. Performance of prediction of 
genome-wide mutational profiles attributable to particular mutational 
signatures from histone marks of 149 epigenomes representing distinct blood 
cell types and different phases of development (subscripts indicate replicates); 

ticks are coloured according to the epigenetic cell type (purple, HSC; blue, 
naive B cell; grey, memory B cell; maroon, GC B cell); black points depict values 
from ten-fold cross validation; P-values were obtained for the comparison of 
the 10-fold cross validation values using the two-sided Wilcoxon test (CS, class 
switched; GC, germinal centre; HSC, hematopoietic stem cell; Mem, memory).
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Extended Data Fig. 9 | SV density and patterns in normal and malignant 
lymphocytes. (A-B) Mutation rates per 1Mb bin across the genome for SNVs (A) 
and structural variants (B) split by cell type, with chromosomes labelled in the 
top strip, and Ig/TCR regions marked. Circles (purple) denote bins with more 
mutations than 2 standard deviations above the mean. (C) Histogram showing 

the distribution of estimated number of reads per informative chromosome 
copy for the normal lymphocytes (blue) and lymphoid malignancies from 
PCAWG (purple). For cancer genomes, purity and ploidy were estimated from 
the copy number patterns; for lymphocyte colonies, the purity was 1 and ploidy 
was 2.



Extended Data Fig. 10 | RAG-mediated SVs in normal versus malignant 
lymphocytes. (A) Point estimates and 95% confidence intervals for the 
proportion of SVs with RSS (RAG) motifs within 50bp of a breakpoint. (B) Number 
of SVs with RSS (RAG) motifs within 50bp of a breakpoint. Boxes show the 
interquartile range and the centre horizontal lines show the median.  

Whiskers extend to the minimum of either the range or 1.5× the interquartile range. 
Paediatric samples were excluded. Number of SVs per group: B = 145, T = 841, 
ALL = 523, Burkitt lymphoma = 305, CLL mutated = 252, CLL unmutated = 440, 
C. T-cell lymphoma = 204, DLBC lymphoma = 3754, follicular lymphoma = 1095.
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