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ABSTRACT

The design of sampled analog filters using Z-transform

techniques developed in digital filter theory is studied.

Both recursive and non-recursive algorithms are implemented

and analyzed. Some deviations from theoretical frequency

responses are noted. An analog Fourier transformer is

constructed by cascading a recursive comb filter and a

non-recursive bandpass filter.
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I. INTRODUCTION

Whether one is extracting information , such as separating

signals from noise in a communications system, detecting

targets in a radar system, or preparting signals for trans-

mission or display, signal processing is a major portion

of system design. This processing may be accomplished by

several means, ranging from simple RLC circuits to complex

digital computers. Several factors will influence the

choice of processing scheme, among these are nature of the

signal and noise, desired results, weight, power consumption,

cost, and convenience. Each scheme has its own advantages

and liabilities.

One such type of signal processing scheme is the discrete

time or sampled signal processing. This method utilizes a

signal which is sampled at regular intervals. The sampled

values are combined with previous and subsequent samples by

some algorithm to produce the processed output. Implementa-

tions of these algorithms are referred to as sampled filters.

Basic Fourier analysis indicates that periodic sampling in

time makes the filter response periodic in frequency [1]

.

Busiginies and Dishal report a sampled filter, developed by

Clark, in 194 9 [2] . The repetitious nature of the frequency

response became useful with the development of radar systems.

A pulsed radar signal has a discrete spectrum, with

spectral lines spaced from the carrier frequency at multiples
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of the pulse repetition frequency (PRF) [3]. The signal

to noise ratio of a received signal could be improved by

passing the signal with the noise through a filter with a

series of narrow passbands also spaced at the PRF. The

signal components would all be passed by the filter while

only the noise components close to the signal frequencies

would pass. The remaining noise is attenuated by the filter.

Such a filter is called a "comb" filter due to the appearance

of the passbands as teeth of a comb. Figure 1.1 illustrates

the use of a comb filter.

Received

Signal

Comb
Filter

Response

Filtered

Signal

s(f)

_ _ 1
___

Radar Sigilal

A
Noise

H(f)

s(f)

j_i

FIGURE 1.1. Signal to Noise Ratio Improvement
by Use of a Comb Filter
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While it is theoretically possible to build a comb filter

out of many individual bandpass filters, maintaining the

proper harmonic spacing between them is difficult. A

sampled filter will have a frequency response which is

periodic at a constant frequency defined as the repetition

period, f . A low pass sampled filter, as shown in Figure

1.2, will be repeated as a bandpass filter centered at

multiples of f , hence the sampled low pass filter forms a
S3

comb filter.

Cont inuous
Low Pass
Filter

Sampled
Low Pass
Filter

H(f)

FIGURE 1.2. Sampled Lew Pass Filter

For a given continuous low pass filter with a cut-off

frequency of f , the resulting derived sampled filter will

have a bandpass bandwidth of 2f . Since a narrower 'tooth'c c

will reject more noise, the cut-off frequency of the sampled

filter should be a small fraction of the repetition period.

Another application for comb filters is found in radar

systems which use Doppler shift to detect moving targets.

14





Moving Target Indicator (MTI) radar uses a repetitious

filter to suppress the 'clutter' returns from stationary-

targets while allowing shifted returns from moving targets

to pass. This canceller filter can be implemented by a

sampled high pass filter, as illustrated in Figure 1.3.

H(f)

Continuous
High Pass
Filter

Response

Sampled
High Pass
Filter

Response

Received

Signal

s(f)

Doppl er
Shifted

Clutter

Signal -r->

j

ji

II

!i

I

PRF 2PRF

FIGURE 1.3 Sampled High Pass Filter as a Canceller

The sampled implementation of comb filters may be

accomplished by a recursive technique where the previous

inputs and outputs are weighted and fed-back to the input.

The results of recursive algorithms are treated in great

15





detail by Gold and Rader in Reference 1. The values of

the weighting coefficients determine the filter cut-off

frequency. Chapter II of this study looks at the details of

the relationships between the coefficients and the filter

response.

Current literature suggests areas other than radar where

comb filters are applicable. Arndt suggests the use of a

comb filters for TV signal enhancement in noisy channels [4]

.

Illetschko and Mavrodieva utilize comb filters in color TV

processing of chrominance, luminance, and brightness compo-

nents [5] , [6] . Uses for comb filters in digital controllers

are suggested by White [7]. Other areas of application will

no doubt emerge with time.

Since a comb filter effectively 'samples' the frequency

spectrum of the input signal with its uniformly spaced

passbands, information of the signal's spectral content is

available in each comb tooth. A tunable bandpass filter used

in conjunction with a comb filter would make it possible to

isolate the spectral content of a single tooth. Observation

of the behavior of that signal spectral component in 'real

time' would be possible. Webb indicates that cases where

short time variations in spectral components is of interest

arise in the aerospace discipline [8]

.

As will be shown in Chapter III, a tunable bandpass

filter can be implemented by sampled techniques. By taking

the impulse response of the desired continuous bandpass

filter response, sampling it at an interval equal to the

16





delay between filter outputs, and setting coefficients for

weighting the signal samples proportional to the impulse

response sample values, one may approximate the continuous

filter response. Such a technique is non-recursive. Filters

implemented by the non-recursive method are called transversal

or finite impulse response (FIR) filters.

The algorithms used in sampled signal processing tech-

niques require the operations of delay (storage) , multiplica-

tion (weighting) , and addition. The sampled signal values

may be stored digitally or by analog means. The weighting

coefficients must also be stored by one of these means.

Either analog or digital methods may be used to implement

the arithmetic operations. Until the recent development of

charge transport devices (CTD) , only sampled digital signals

could be stored. Since digital storage and logic hardware

has been increasingly available and inexpensive, a great

deal of study has been done on the digital implementation

of sampled filters, or simply, digital filters. Now analog

'shift registers' are available for implementing sampled

analog filters. This study will show that the various

Z-transform design methods developed for digital filter theory

may be equally well applied to sampled analog signal proces-

sors. As a demonstration, a recursive comb filter and a

non-recursive bandpass filter will be implemented and

cascaded to form an analog Fourier transformer.

17





II. SAMPLED ANALOG RECURSIVE FILTER

A. THEORY

The block diagram of a recursive sampled filter is

illustrated in Figure 2.1. Since this diagram has two

delays in that particular configuration, it is referred to

as a second-order recursive filter.

'i^M +

FIGURE 2.1 Second-Order Recursive Filter

18





Analysis of such a system, performed in Appendix A, indicates

that the transfer function, H(z), for this configuration is

given by,

-1 -2
V (z) a n + a n

z + a.z
wf 7 \ = out = 9

1 2

vm (z)
i ; b.z- 1

; b2Z
- 2

where z is defined as e^ and T is the time delay.

For the special case where a
2

= b
2

= , the system becomes

a first- order filter. Higher order filters may be obtained

by paralleling, cascading, or both, first and second-order

sections.

The frequency response of a sampled filter can be

determined from its transfer function, H(z), by using the

definition of z,

H(ju>) = H(z)
juiT

z = e J

Analysis performed in Appendix B indicates that the delay

terms introduce sine and cosine variations in the frequency

response, H(jw), which yield a periodic nature. The 'period'

of the repetitive response is defined as f , where

f = i
s T
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Two major design methods are available for determining

the transfer function coefficients: the standard Z-transform

and the bilinear Z-transform. Both methods will be studied.

1. Standard Z-Transform

The basis for the standard Z-transform comes from

the impulse response of the desired filter response, h(t)

.

The impulse response is sampled at the regular interval, T,

one time delay, which corresponds to z in the Z-domain.

The Z-transform is simply a power series in z" where the

coefficients of the series are the sampled impulse response

values, or

K(z) = 7 h(kT) z""
k

k=0

For many impulse responses of interest this series can be

expressed in closed form. Tables listing these closed forms

are called the Z-transform tables. Since the designer often

knows the Laplace transfer function, H(s), of the desired

filter, some tables are constructed to allow one to bypass

the actual impulse response and go directly from H(s) to

H(z).

a. First-Order Low Pass Filter

For a simple RC low pass filter, the impulse

response is known,

h(t) = uo
c

e ,

20





where co = =£ , the cut-off frequency. This impulse response

has a Z-trans form,

w.

H(z) =

1 - e
-co T -1 *

c z

The 3 dB corner frequency, u , is found in Appendix B to be

related to the feedback coefficient, b, , by the following

equation,

ui , . 1 +b,* - 4b.
c - 1 „^~"1 / 1= -s— COS ( ^r-

co 2tt 2b, ) ,

A *?

where oo„ - -=r . Figure 2.2 illustrates this equation
S J.

FIGURE 2.2 a) vs b,
c 1

For a normalized transfer function, a
Q

= 1 and a-, =

21





b. Second-Order Low Pass Filter

The impulse response for a second-order LC

low pass filter is,

h(t) = go sin to t ,

where oj = (LC) 2
. The resulting Z-transform is,

go sin oo T z

H( Z ) = £ c
-1 -2

1 - 2cos go T z + z
c

For a normalized transfer function,

a
Q

= ,

a
x

= 1 ,

a = ,

b>T = -2cos oj T ,1 c

b
2
= i .

go and b, are related by the following equation, which is

graphed in Figure 2.3,

w
c i -i

"b
i-°- = ~- cos L (-^) .

go 2tt 2
s

22





w
c

0.5

w
s 0.4

S*}^^^
0.2

0.1

•2.0 -1.fi -1.2 -.8 -0.4 0.4 0.8 1.2 1.6 2.0

FIGURE 2.3 0) vsb,
c 1

c. First-Order High Pass Filter

The impulse response for an RC high pass filter

is found in Appendix B to be,

h(t) = 6(t) - u)
c

e
-0) t

c

The resulting Z-transform is,

H(z) =

-U) T n
i c -1
1 - 03 - e z

c
~ w

c
T -1

1 - e z

23





By inspection, the coefficients are,

a
Q

- 1 - 03c ,

-CD T
a
x

= -e ,

-to T
b, = -e

Another first-order high pass filter can be

constructed from the low pass filter by changing the

polarity of b,

,

H(z) = "wc
T -1

1 + e c
z

•L

The polarity change has the effect of shifting the response

by Tp- , so the new corner frequency is => - w , where to

and b, are related by Figure 2.2.

d. Second-Order High Pass Filter

The impulse response for an LC high pass filter

is given by,

h(t) = (t) - sin io t ,
\0

p
where to = x-x . This yields the following second-order

Z-transform,

24





— 1 -2
1 - (2cos Co T + co sin co T) z + z

H(z) = ^ S —£
1 - 2cos co T z + z

c

thus,

a = I ,

a-, = -2cos co T - co sin co T ,1 c c c

a
2

= 1 ,

h-> - -2cos co T ,i c

b
2

= i .

2 . Bilinear Z-Transform

For the bilinear Z- trans form, the Laplace transfer

function, H(s), is used to determine the Z-transform

directly by using the following approximation for s as

described in Reference 1,

2_ . z - 1 .

S " T {
z + 1

'

This formula has the effect of warping the frequency of the

desired filter response, H(jco), so that,

«. .,. - i tan" 1 ^) .bilinear T 2

Appendix B shows the precise derivation of this relation.
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a. First-Order Low Pass Filter

The transfer function for a single pole low pass

filter is,

H(s) =
s + a) c

The result of substitution for s is the bilinear Z-trans form,

a) T w T n

+ -S .- ^ z" 1
ojT + 2 id T + 2

H(z) = -2—
co T - 2

A normalized transfer function would have coefficients,

a
Q
= 1 ,

a-j^ = 1 ,

U T - 2

b, = C
1 oo T + 2

*

C

The relationship between the bilinear Z corner frequency,

a) | f and b, is given by the following equation, which is

graphed in Figure 2.4,

w
c« 1 <_

-1
,

bl*\
1T =

*
tan (ET=T)

*
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v -0.5 ^~
V

.

8
0.4 ^^

0.3

-0.2

0.1

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0

'1

FIGURE 2.4 uj , vs b,
c 1

Since a
Q

= a., the bilinear Z low pass filter has a zero for

the frequency %a) , which means the low pass response goes
s

all the way to zero.

b. Second-Order Low Pass Filter

The transfer function for an LC low pass filter

is,

H(s) =
o>„2

o 2 4-
2 'S +03

c

-Ji
where m = (LC) 2

. The resulting normalized bilinear

Z-transform is given by

H(s)
1 + 2z X + z

2

2 2
2co T - 8 , 9

1 + <—-r-s —
) z + z~

2 2
0)

Z
T + 4

c

The corner frequency, uj i , is dependent on b, by the following

relation, graphed in Figure 2.5,
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w
c' 1 -l 2 +b

l k~ = - tan l U—r^)^
co it

v
2 - b.

w ,

_ c
r

0.5 .

w
0.4 y^

t^^^
0.2

0.1

-2.0 -1.6 -1.2 -.8 -0.4 0.4 0.8 1.2 1.6 2.0

FIGURE 2.5 co , vs b,
c' 1

c. High Pass Filters

Analysis performed in Appendix B shows that

for the bilinear Z-transform high pass filters, the same

form and coefficient values with the exception of the

polarity of a, as in the low pass case are used. The corner

frequencies are found using the same design curves as for

the low pass case.

d. Advantages of Bilinear Z-Transform

The bilinear Z-transform design method has

advantages over the standard Z-transform. Given a Laplace

transfer function, H(s), the Z-transformed transfer function,

H(z) , can be obtained directly. In addition, the bilinear

Z-transform places a zero to force the stop band attenuation

28





down. The position of this zero may be shifted to transform

a high pass filter into a low pass filter, and vice versa,

by reversing the polarity of the coefficient, a-,. The a.

coefficients of a bilinear Z-transform are always integral

multiples of one another, reducing design complexity. These

advantages occur at a price. The frequency scaling of the

bilinear Z-transform response is not linear with the frequency

response of H(s), but rather follows a tangent function. As

a result of this frequency warping, the bilinear Z-transform

frequency response will only approximate that of H(s) for

frequencies where,

m 0) COTan — = —
s s

The response cut-off frequency may have to be compensated,

pre-warped, in order to occur at the desired value.

3. Sampling Effects

For either of the design methods described above,

the frequency response will repeat at multiples of the

repetition period, f , so that the response shape for

< f < hf is mirrored from \1 < f < f and repeated— — * s s — — s

from kf < f < (k+l)f for k = 1,2,3,... . Figure 2.6

illustrates the repeated response of an arbitrary filter

response.
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Continuous
Filter

Response

H(f)

Sampled
„ Filter
Response

H(f)

\T\/
i*

\r

FIGURE 2.6 Repetitious Frequency Response

This repetitious response effect is equivalent to considering

an input at an arbitrary frequency, f, such that

f - k f = f < f < kf— a — 2
£

That is, the input is 'heterodyned' with the particular k

multiple of the repetition period such that the difference

frequency, f , is less than J§f . The filter frequency response
a s

H(f ) is then applied to the input. Therefore, for any input
a

signal frequency, only the filter response from <_ f _< %f

is used. If the input frequency meets the Nyquist criterion,

i.e. is less than Jgf , the multiple of the repetition period

used to heterodyne the signal, k, is zero. For frequencies
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beyond the Nyquist bandwidth of half the repetition period,

k is some positive integer. The ambiguity of k is an

aliasing effect. For k = 0, there is no ambiguity, thus no

aliasing.

B. EXPERIMENT

1. System Configuration

A first-order recursive filter was implemented using

a Reticon Corporation Serial Analog Delay (SAD-100) device

as the delay element. The transfer function coefficients

were obtained by potentiometer voltage dividers. The

arithmetic operations were implemented using operational

amplifiers with feedback. Figure 2.7 illustrates the system,

'in 'out

FIGURE 2.7 First-Order Recursive Filter
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A variable feedback resistance was installed on the Reticon

SAD-100 driver card output amplifier so that the gain of

the delay circuit, -a, could be adjusted. This factor, a,

is important to the setting of the coefficient potentiometers,

Circuit analysis of the coefficient potentiometers,

performed in Appendix C, indicates that the maximum coeffi-

cient values for a, and b, is a. In addition, since the

input impedance of the summing circuit is finite, the

coefficients are determined by a loaded voltage divider

relationship graphed in Figure 2.8 for the particular loading

used in the system.

1.0 t

0.2 0.4 0.6 0.8

Potentiometer Setting

FIGURE 2.8 Coefficient Calibration Curve
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The coefficient calibration curve may be experimentally

checked by observing the filter response to a unit step

input. Appendix D derives the expressions for the coeffi-

cients in terms of the differences between successive filter

outputs. Figure 2.9 shows the step response for a typical

first-order low pass filter. The coefficients are calculated

by the following relationships,

d
2

2 - d
x
d
3

d
k

a = d
l '

a
l

= C '
b
l

= " a—7 for k-3,4,5,... .

This technique is extended to second-order filters by the

use of the following relationships,

a = d
l '
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d
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Appendix E describes the use of the Tektronix 31 programable

calculator to solve these equations.
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For first-order standard Z-transform filters of the

form,

H(z) =

1 + b
1
z
-l '

another method for experimentally determining b, is available

As discussed in Appendix B, by taking the ratio between the

response minimum and maximum, y, b, is determined by,

Ik I
1 ~ y

"

b ii - r+T '

which is graphed in Figure 2.9.

1.0

FIGURE 2.9 b
1

vs y

34





2 . Experimental Frequency Response

Several types of filters were implemented to verify

the design theory and observe the characteristics of tne

repetitious response. For an implementation using a delay

time, T, theory indicates that the filter response should

repeat exactly at multiples of f , where,
5

f = i
s T

Since the SAD-100 is a 98-bit register, the delay time is

98 times the clock period, T ,

T = 98T
c

The repetition period would then be the clock frequency,

f , divided by 98. Since a new input is sampled every clock

cycle, the rate of sampling is f . The sampling is done at

the input gate of the SAD where a transistor is turned on

by one of the two clock phases for half of its period.

Since the two phase clock operates at H£ , the 'on' time,

i.e. the sampling pulse width, is T . The finite pulse

width causes an envelope over the sampled signal spectrum.

The envelope follows a
sin x

shape. This envelope has its

first null at f = =— = f . Since the clock frequency is
T c
c

N times the repetition period, where N is the number of

delay bits, N frequency response cycles will occur before
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the first sampling envelope null. Because of aliasing from

the sampling rate, f , only those responses for frequencies

less than or equal to H%~i i.e. the first %tt , are useful.

In this study, only the first twelve cycles- are observed,

therefore the minimum value of the envelope was,

,12,Sin TT(qfl-)
5 — = 0.976 ,

,12,

which is sufficiently close to unity to be neglected.

Standard Z-transform filters were implemented with,

a
Q

= 1 , a, = , b, = -0.3, -0.7 low pass,

b-, = 0.3, 0.7 high pass.

Bilinear Z-transform filters were implemented with,

a
Q

= 1 , a
1
=l, b

1
= -0.7, 0.0, 0.3, 0.7 low pass,

a
Q

= 1 , a
1

= -1 , b
1

= -0.3, -0.7 high pass

Two clock frequencies were used,

f = 400 kHz, 1 MHz .

Figures 2.10a through 2.19a illustrate the first response

period of the various filters implemented. The solid curve

represents the calculated response while the points are
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the observed response. Figures 2.10b through 2.19c illus-

trate several response cycles of the filters.

Some significant deviations from the theoretical

responses were noticed, especially for the larger values of

b-,. The responses are not mirror images of one another.

The reason for this 'skewness' is not clear at present. One

possible explanation may center on a frequency varying

coefficient, such as a, . The values of a and a, must stay

equal for a zero to appear at multiples of f . If one of

the values changes differently with frequency than the

other, say through a frequency characteristic of the delay

device, the zero would not be properly formed, perhaps

shifted up or down frequency from kf . The other major

deviation is the change of the maximum amplitudes of the

responses with frequency rather than staying uniform as

theory predicts.

For filters with small b,, the trend is for decreasing

amplitude with increasing frequency, particulary beyond 40 kHz,

This effect is probably due to the gain roll-off of the

operational amplifiers in the summers. Part of this decrease

could be due to the sampling envelope, though it is always

greater than 0.97.

For bilinear Z filters with b, = ±0.7, the maxima

of the frequency responses increase with frequency, as

shown in Figures 2.11 and 2.14. This trend may also be due

to deterioration of the zero from a
Q

and a, varying more





with increased frequency. The effects of frequency varying

coefficients need to be pursued.

Measurements of corner frequencies, which are

summarized in Table I, indicated good agreement with the

design theory.
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Filter

TABLE I

w
c
/w

s

Theoretical f = 400 kHz f = 1 MHz
c c

Bilinear Z

Low Pass

b
1

= 0.0 0.250

0.3 0.343

0.7 0.444

High Pass

b^ = -0.3 0.157

-0.7 0.056

Standard Z

Low Pass

i^ = -0.3 0.221

-0.7 0.057

High Pass

bj^ = 0.3 0.279

0.7 0.443

0.251 0.246

0.338 0.330

0.438 0.431

0.153 0.151

0.061 0.065

0.239 0.219

0.072 0.063

0.254 0.252

0.429 0.428
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III. SAMPLED ANALOG NON-RECURSIVE FILTER

A. THEORY

Since the frequency response of a sampled filter is

periodic, it may be described by a Fourier series [1],

H (]u))= E Dk e J
,

k=-<»

where

k 27T
-tt/T

This expression for D, is mathematically equivalent to an

inverse Laplace transform of the transfer function, H(s),

which is h(t) , evaluted at t = kT,

Dk
= h(kT) ,

where h(t) is the impulse response of the filter. By

using the definition of z,

k
H(z) = Z h(kT) tT ,

k=-°°

where h(t) is assumed to be an even function in time,

therefore it is not a true impulse response.
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For a delay device with 2N taps available, H(z) can be

approximated by the series,

N
kH(z) = I h(kT) 2' .

k=-N

Figure 3.1 illustrates the implementation of this series.

The approximation can be made closer to the designed

response by truncating the series at larger values of N.

At least 2N storage elements are required. •

For a rectangular bandpass filter response, such as

that shown in Figure 3.2, repeated with a period of

2tt
o)„ = -=-

r the coefficients of the Fourier series are calcu-
s T

lated in Appendix G by the following expression,

2
w

D, = D , = r=- sin(2k7TBT) cos (2k —

)

k -k k-rr to
'

s

Since truncating the series is like multiplying the

infinite series by a window which is unity for -NT < t <_ NT

and zero elsewhere, the result of the truncation is to

convolve the frequency response with the Fourier transform

of the window function. A rectangular window transforms to

s in x
a function which adds sidelobes to the response as

x

a result of the convolution. By choosing a different window

function, such as a Hamming window, these sidelobes can be

minimized at the expense of greater passband width [8]. To

use a Hamming window, each coefficient, D^, is multiplied

by a weighting factor, W,, where,
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FIGURE 3.1 Implementation of a Non-Recursive Filter
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FIGURE 3.2 Rectangular Bandpass Filter Response

Wv = 0.54 + 0.46 cos(tt ^)

Since the input to the non-recursive filter is sampled

with a finite width pulse of T , the clock period, the

spectrum of the input is enc losed within an envelope, E(f)

,

E(f)
sin(TifT

c )

TTfT

This envelope has its first null at f = f,, the clock

frequency. Though this envelope is imposed by sampling

rather than the filter algorithm, it can be included within

the filter response function as a multiplicative factor.
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B. EXPERIMENT

1. Configuration

Reticon Corporation markets a 12-term Tapped Analog

Device (TAD- 12) which provides 12 output taps with the

following time delay configuration.

FIGURE 3.3 TAD-12 Delay Configuration

Since the first tap is only T delayed from the input and

the remainder of the taps are spaced with 2T , the undelayed

input can not be used for the A^ term, therefore, only 11

terms of a given tapped delay device can be utilized.

The filter is implemented by weighting the tap

outputs proportional to the Fourier series coefficients.

Analysis performed in Appendix G and the computer program

described in Appendix H provide design values for the

tapping resistances, R,. Figure 3.4 describes the filter

set-up. The lower ends of R, are connected either to the

inverting or non-inverting input of the summer depending

upon the relative coefficient polarity. Since D^ = D_
k ,
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I

FIGURE 3.4 Non-Recursive Filter Set-Up
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R. = R_
k « In order to not load down the taps, a minimum

value of 10,0 00 ohms is set for the tapping resistances.

Appendix H indicates the following expression for R, ,

D
R. = (10K + r) (-*£*) - r ,

|D
k |

where r is the tap output impedance. For the TAD-12, r is

about 5K. Since the resistances depend on the relative

values of the series coefficients rather than the absolute

values, gain scaling is accomplished by adjustment of the

feedback resistance, Rf . For consistent scaling for
r
l

opposite polarity coefficients, R,. must be equal to R„.
t
2

t

Due to the TAD-12 circuitry, the tap outputs are at

a +5 volt bias level, so the lower end of R, returns to
r
2

+5 volts rather than ground. The output of the summer,

therefore, rides on a 5 volt bias level.

2 . Observations

Two sets of coefficients were designed for a Q of

15. The first set are for f
Q

= %f and the other for

f
Q

= Jgf . Table II lists the coefficients and corresponding

resistances. These sets of coefficients were measured at

clock frequencies of 50 and 100 kHz.

Figures 3.5 through 3.12 illustrate the experimental

frequency response compared to the theoretical calculations.

For these data, the measured center frequency, f
Q , passband

width, BW, and Q are listed in Table III.
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TABLE II

f =
o «. f

o
=
^s

k| D
|k|

RM Dw R
|k|

0.03333 10 K 0.03333 10 K

1 0.0 open -0.03084 11.2

2 -0.02770 17.0 0.02419 15.7

3 0.0 open -0.01556 27.1

4 0.00555 85.0 0.00773 59.7

5 0.0 open -0.00314 154.3

TABLE III

f
c

FFS f
o

50 kHz 0.25 6.2 5 kHz

0.5 12.5

BW Q

3.213 kHz 1.95

3.033 4.12

100 kHz 0.25 12.5 6.402 1.95

0.5 25.0 6.154 4.06
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It is noteworthy that Q did not change significantly when

the clock frequency was doubled and that the bandwidth

changed by a small amount when the center frequency was

doubled by coefficient changes.

The measured Q was significantly below the designed

value of 15. Some insight into the reason for this discrep-

ancy may be found by looking at the impulse response of a

rectangular bandpass filter. Without rejecting the negative

time portion of the impulse response, since the non-recursive

filter uses a ' two-dised 1 impulse response, one has from the

inverse Fourier transform of a rectangular window centered

at plus and minus go .r o

(i) t

o wo sin(Tr -tt—
h(t) = £ -£ cos(ta t) [ r^~

TT

This is a continuous function for a non-repeating frequency

response. For a frequency response periodic with period,

oj , the impulse response is discrete with the above function

acting as an envelope. Figure 3.13 illustrates the response

In actuality, the sampled nature of the impulse response

causes the repetitious frequency response, but the duality

of the Fourier transform ignores the true cause and effect

relationship. The spacing of samples is,

,. 2tt
At - —

OJ
s
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FIGURE 3.13 Two-Sided Impulse Response

w. -1
For — = a , there will be a samples per cosine period.

^s
There are Q divided by pi cosine periods under the main lobe

of the envelope. Therefore, the number of samples within

the main lobe is,

an

If one uses the criterion that the main lobe must be

represented completely in order to approximate the impulse

response, i.e. M samples are required, then some estimate

of the number of terms required to give a selected Q at a
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center frequency of aco is available from the above

equation. Conversely, if the number of terms is fixed, the

realizable Q may be estimated given the ratio of co to u .OS
In this study, M = 11 and a = 0.2 5 and 0.5. Table IV

lists the expected and measured Q's.

TABLE IV

0)
o

CO
s

expected Qmeasured

0.25 8.64 1.95

0.5 17.28 4.1

The observed Q's did occur in about the expected ratio of

two to one, but were significantly less than the expected

values. Analysis in Appendix J indicates that this lowering

of Q is mostly due to the Hamming weighting used. The

expected values for this weighting are 2.17 for the center

frequency to repetition period ratio of 0.2 5 and 4.35 for

the 0.5 ratio. These match more closely to the observed

values. The remaining difference is probably due to the

need for more impulse response terms than those in the main

lobe.

A significant amount of clock noise, up to 40 milli-

volts, was observed at the output. A low pass filter would

be desirable at the output to decrease this noise content.
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Perhaps this low pass filter could be built in conjunction

with a level shifter to remove the output bias. It was

further observed that using lead lengths of a few inches

to connect the coefficient potentiometers to the TAD added

significantly to the clock pick-up, which severely limits

the small signal handling capability of the device. Input

signals beyond 8 volts peak to peak began causing distortion

in the tap outputs. Therefore, without using a low pass

filter to suppress the clock noise, the dynamic range of

this device is less than 54 dB.
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IV. SAMPLED ANALOG FOURIER TRANSFORMS

A. THEORY

As mentioned in Chapter I, a possible application of

sampled analog signal processing is to use the combination

of a recursive comb filter and a non-recursive bandpass

filter as a sampled analog Fourier transformer. The teeth

of the comb filter breaks a signal into its Fourier compo-

nents, while the bandpass filter selects one of the

components. Figure 4.1 illustrates such a system.

In

Comb Filter Bandpass Filter

Out

S(f)

/
-f

Input Spectrum

kk
Sampled Spectram Selected Tooth

FIGURE 4.1 Sampled Analog Fourier Transformer
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B. EXPERIMENT

For the purpose of demonstration, a bilinear Z-transform

low pass filter with a narrow tooth width and a non-recursive

bandpass filter are implemented and cascaded. For this

example, the comb filter coefficients are chosen as

,

a = 1
'

a-j^ = 1 ,

b
1

= -0.7

The design of a generalized analog Fourier transformer

can be made based on the number of frequency components

desired, i.e. the number of comb teeth selected. The number

of desired components, K, determines the frequency of the

highest order tooth to be selected,

f = K fmax s

Since f = — , where T = LT for L equal to the number
S J. c

of delays in the recursive filter delay device and T is

the recursive filter clock period ,

f = =- f„ , where f = —
max L c c T

Since f is the sampling rate, the Nyquist criteria states

that,
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max — 2 c

so

L >_ 2K

For a bandpass filter designed for a center frequency to

repetition period ratio,

— = a
'

s

the next highest passband is located at (l-a)co . Since

the first K teeth should be distinct, the first repeated

passband should occur at least at a frequency,

m \ -. (K + 1)2tt
(1 - a)u>

s >_ ^

while,

_ 2-rr
aa)

s
- — .

These restrictions on a can be summarized,

a <- K + 2 *

If the bandpass is tuned by changing its clock frequency,

its Q will remain constant, so its bandwidth will increase
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as it is tuned to higher ordered teeth. At the maximum

value, i.e. K f , the bandwidth will be,

K f

BW = —tt-2. = 6 fmax Q s

The term, 8 , is a design choice that should be some fraction

less than unity. The required Q is, therefore,

Q>| •

From the equation relating Q, a, and M, the number of taps,

a guess at the required device length is made,

H > jl >
K <K + 2 >

— an — 3a

Thus, for a possible design to find 100 frequency components,

and a maximum bandwidth of one tooth repetition period,

i.e. 8=1/

H >
10Q ( 100+2 > = 3247

This means that the Fourier series is from the -1623 term

to the 1623
rd

term.

The non-recursive filter coefficients are selected for

a center passband frequency of ht . Figure 4.2 shows the

resulting transfer function for the cascaded filters plotted

against the comb response. The comb filter clock was run at
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<H<H

o o o

FIGURE 4.2 Observed Frequency Response
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at 400 kHz, which placed comb teeth at approximately

4.1 kHz increments. The bandpass filter clock was adjusted

so that the passband selected the third tooth. The frequency

of the third tooth maximum was measured to be 12.452 kHz.

The bandpass filter clock was measured to be 49.555 kHz.

Several aspects of the cascaded response are noteworthy.

The shape of the passband is determined by the comb filter

tooth shape, which should remain constant from one tooth to

the next, whereas the non-recursive bandpass filter bandwidth,

as shown in Chapter III, changes as it is tuned with its

clock. This use of the comb filter to maintain a constant

spectrum 'sample' window allows one to keep higher order

harmonics separated. The other important aspect of the

system which is noteworthy is the isolation achieved between

the selected tooth and the unselected teeth. The following

table lists the first several teeth and the isolation of each.

TABLE V

Tooth Isolation

1 ,
-2 3.1 dB

2 -27.1
3 0.0
4 -26.7
5 -34.2
6 -44.0
7 -37.1
8 -34.9
9 -13.4

10 -44.0

The low isolation figure for the ninth tooth resulted from

the repeated response at y f
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V. CONCLUSIONS

The Z-transform design methods developed for digital

filter theory are useful for sampled analog recursive filter

design. High and low pass cut-off frequencies were predict-

ably determined by the filter feedback coefficient values.

These values were adjusted by means of a generalized cali-

bration curve or by measurement of the unit step response

of the filter. Some deviations from theoretical frequency

responses were observed. These deviations are apparently

caused by instrumentation limitations

.

Non-recursive filters were implemented by truncation cf

a Fourier series expression for the desired repetitive

frequency response. The center frequency of the bandpass

filter response passband was tuned at nearly constant Q by

varying the clock frequency. The pass band was also shifted

at nearly constant bandwidth by changes made tc the coeffi-

cients of the filter. The sin X over X envelope caused by

the finite sampling pulse-width multiplies the desired

frequency response. This result decreases the signals passing

through the repeated passbands

.

Several particular frequency components of an input signal

spectrum were examined in real time by cascading a recursive

'comb' filter and a non-recursive bandpass filter tc form a

sampled analog Fourier transformer. An estimate of the

required delay device lengths for implementation cf a sampled

Fourier transformer by the above method was found for a general

number of desired components.
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APPENDIX A

Derivation of Filter Transfer Function

For the system diagram illustrated below,

~Eout^

FIGURE A-l

the transfer function, H(z), is defined as,

H(z) =
E . (z)out
E. (z) '

in

From the system diagram it follows that,

X(z) = E. (z) + (-b,)(X(z) z"
1

) + (-b 9
)(X(z) z~

2
) ,

in x ^
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so,

Ein
(z) = X(z) + b-jXfzJz"

1
+ b

2
X(z)z"2

The output of the system is,

EQut (z) = a
Q
X(z) + A

1
X(z)z" 1 + a

2
X(z)z~ 2

,

therefore,

E_.(z) X(z)(an + a^" 1
+ a9 z"

2
)

H(z) =
E
in

(z)
X(z) (1 + b^"" 1

+ b
2
z

2
)

-1 -2
a
Q

+ a, z + a~a

1 + bj^z
1

+ b
2
z

2
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APPENDIX B

Recursive Filter Design

The transfer function of a given second-order sampled

recursive filter is given by the following expression,

-1 -2
an + a, z + a 9 z

H(z) = — =—1 £T2~
1 + b,z + b

2
z

By using the definition of z,

z = e = e^
w

, where T is the time delay,

the frequency response, H(joo), can be determined

„,. .

a + a
l
e + a

2
d

1 + b,e J + b
2
e J

a
Q
+a,(cos coT - j sin ojT) + a

2
(cos 2coT - j sin 2u)T)

l+b,(cos coT - j sin gjT) + b
2
(cos 2ooT - j sin 2ooT)

Since the only variation of H(joo) with frequency is due to

the sine and cosine functions, and since they are periodic

in a) for a fixed T, H(jw) is periodic in frequency. In fact,

^ < „ < (Ic+l) ^
O O *rr

the period of the response is (k) -=- < go < (k+1) -=-
,
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for k = ...-2,-1,0,1,2,... . Since the sine and cosine

terms repeat themselves exactly, the entire frequency response

of the filter can be described by looking at a single period,

say <_ co _< -=- . The frequency, — , is called the

repetition period, to , which is related to the time delay, T.

As illustrated in Figure 2.6, the frequency response from

< co < hu> is mirrored for hu> < co < co . This periodic— — s s — — s r

nature of the filter frequency response, which arises from

the use of delays, can be used to implement comb filters as

described above.

There are several methods for designing the coefficients

of the transfer function, H(z). Two methods are frequently

used if the Laplace transfer function, H(s), or the impulse

response, h(t) , of the desired continuous response is known.

One is the standard Z-transform procedure. The other is the

bilinear -Z-transform method.

For the standard Z-transform approach, h(t) is determined

for the desired response and then sampled at intervals, T,

the time delay,

h , .(t) = Z h(kT) 6(t-kT)
sampled v—n

Its Laplace tranform is,

*f[h . ,(t) ] = Z h(kT) e
" skT

*V l sampled ,__„k=0
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STFrom the definition of z = e ,

00

H(z) = I h(kT) z"
k

k=0

Z-transform tables are available for those impulse functions

of interest where a closed form of the series is known.

The second technique, the bilinear Z-transform, involves

the use of an approximation for s in terms of z. The

transfer function, H(s), is converted directly to H(z) by

the substitution of,

S = —2 z - 1

T z + 1

The use of this approximation for s leads to a non-linear

relationship between the frequencies of s = jto and

z = e J
:

2 z - 1

so

therefore,

^ = tan Jgco'T ,

or,
9 2 — 1
^ tan(^w f T) and w' = ^r tan
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2ttSince cj
s

= ~ ,

w
s -1

w' = -= tan -"-(JgajT)
7T

This non-linearity is defined as frequency warping.

A. STANDARD Z-TRANSFORM DESIGN PROCEDURE

1. First-Order

a. Low Pass Filter

A first order RC low pass filter has the impulse

response,

"^t
i

h(t) = u)c
e , where u) = -^ .

The standard Z-transform is,

00 -u) nT
H(z) = a) E e z""

n

w
c

-U) T -1 "

1 - e ° z

For a first order low pass filter,

a = w
c '

a, = ,

-«
C
T

b, = -e
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Since the value of a
Q

is a constant factor which sets the

filter gain, normalizing the response is equivalent to making

a normalized transfer function with a
Q

= 1. Since the

coefficient b, is the only term which acts on the frequency

dependent z, the cut-off frequency, co , is determined solely

by b, . From the definition of cut-off frequency,

H(ju)
c )

|

2 = \ |H(ju>)
'

max

1 + b,(cos (i) T - j sin to T)

2
1 + 2b, cos co T + b,

1 c 1

The maximum value of H(jco) occurs when 2b, cos co T is

most negative, i.e. that factor is equal to -2|b,| .

Therefore,

h

1 + 2b, cos co T + b, 1 - 2|b, I + b,
2

1 c 1 ' 1
' 1

or

1 + 2b, cos co T + b
2 = 2 - 4 lb, I + 2b

2

1 c 1 '
1

' 1

cos co_T =
1 - 4|b

x |
+ b

x

2

c* 2b.
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9 , 1 - 4[b, | + b 2

0) T = U) (^) = COs"^ ^ ±-)
C C (j 2D,

2a -£ 00.-1(il^LliL,
co
s

2tt 2b
1

TABLE VI

b
l

0,.1716

0,.2

0.,3

0,.4

0..5

0,.6

0.,7

0.,8

0..9

1.,0

"s

0.5000

0.3524

0.2207

0.1573

0.1150

0.0831

0.0574

0.0357

0.0168

0.0000

For the first order low pass filter, b, < , therefore

maximum values will occur whenever 2b-, cos ojT = 2b, , or

when cos ojT = 1 , or

OJ ~ K ( ~m~) I * — ••• —2,— 1,0,1,2,... ,

kw
s

*
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Likewise, the minimum value of the response occurs when

wT = -1. / or ,

a) = (2k+l) (£)

= (k+H>)to
s

The ratio of the maximum response to minimum response yields

an interesting result,

2 l

H<»4n 1 + 2|bJ + b,
2

y =
H(jw) '

maX
1 - 2|b

1 |

+ b
x

2

(1 " IbJ)
2

i i 2 '

(1 + |b
1 |)

*-
'

b
l

y =
1 + jb.

Solving this equation for b-, yields,

b
i - r+r
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TABLE VII

V [*>!

0.0 1.0000

0.01 0.9802

0.025 0.9512

0.05 0.9048

0.1 0.8182

0.2 0.6667

0.3 0.5385

0.4 0.4286

0.5 0.3333

0.6 0.2500

0.7 0.1765

0.8 0.1111

0.9 0.0526

1.0 0.0000

This result can be of use in experimental determination

of the effective value of b,.

b. High Pass Filter

The low pass filter just described above can

be transformed into a high pass filter by shifting the

response by ^w so that the maximum values occur at

(k + h) w and the minimum values at kco . Changing the
s s

polarity of b, would accomplish this result since the

maximum response occurs when 2b-, cos wT = -2jb,| , which

would make cos wT = -1 and w = (k + h) u) for b, > .
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The minimum response would occur when cos coT = 1 , or

co = ku)_. T^ e cut-off frequency, go , is found by the same

procedure as for the low pass case:

H( jUc )|
2 =i|H(j.)|2

ax

-300 T
1 +bie

2
1 + 2b, cos co T + b,

1 c 1

From the previous case, since the expressions for the

cut-off magnitudes are identical,

u
c 1 -1 .

1 - 4b
l + bl\

zr
=
5¥ cos < jf; >

s 1

TABLE VIII

b
l

CO

c
CO
s

0.1716 0.0000

0.2 0.1476

0.3 0.2793

0.4 0.3427

0.5 0.3850

0.6 0.4169

0.7 0.4426

0.8 0.4643

0.9 0.4832

1.0 0.5000
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For this form of the first order high pass filter, the other

coefficients are the same as for the low pass case, i.e.

a
Q

= 1, a-, = for a normalized transfer function.

Another type of high pass filter may be imple-

mented by the standard Z-transform technique. For a first

order RC high pass filter the impulse response is,

(t) -£l onmn •<Cl
irfrri
S + U)

c

-0) T ,

= 6(t) - o)c
e , where w

c
= -^ .

The Z-transform of this impulse response is,

oo -a) nT
H(z) = Z (6(nT) - coce

C
) z

n

n=0

-"c
T

-1
1 - a) - e z

~~
;

-wc
T

-i
1 - e z

The transfer coefficients are,

a
Q
- 1 - wc ,

-wcT
a
1

= -e

-u> T
. c
b
1

= -e

The corner frequency is a function of both a, and b^

108





2 . Second-Order

a. Low Pass Filter

For a second-order LC low pass filter, the

impulse response is

2

J-1 w
c k

h(t) = J^ [—

r

j] = w
c

sin Uq* ' where co
c

= (LC) 2

s + U)
c

The resulting Z-transform is,

H(z) = Z (o sin a) nT z""
n

Ci*

oj sin ii) T z
c c

-1 -2 '

1-2 COS 03 T z + z
c

For a normalized transfer function, a
Q

= a~ = , b-, = 1 ,

and,

a
x

= 1 ,

b-, = -2 cos u) T .

1 c

From the expression above, the relationship between b, and

the corner frequency, u> , can be stated,

s
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TABLE IX

b
l

c

2.0 0.0000
1.8 0.0718
1.6 0.1024
1.4 0.1266
1.2 0.1476
1.0 0.1667
0.8 0.1845
0.6 0.2015
0.4 0.2180
0.2 0.2341
0.0 0.2500
0.2 0.2659
0.4 0.2820
0.6 0.2985
0.8 0.3155
1.0 0.3333
1.2 0.3524
1.4 0.4734
1.6 0.3976
1.8 0.4282
2.0 0.5000

b. High Pass Filter

The impulse response for a second order LC high

pass filter is,

2

h <t) = JZ 1[
-T
J'

2
]

= 6(t) " w
c

sin a3
c
t

S +0)
c

This transforms into,

H(z) = Z (6(nT) - to sin nu T) z
n

n=0 c c

-1 -2
1 - (2 cos w T + u sin a) T) z + z

t^ V* w

1-2 cos a) T z"
1

+ z~
c
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where,

a = 1 '

a, = -2 cos a) T + to sin 03 T ,1 c c c

a
2

= 1 ,

b n
= -2 cos u) T ,1 c

b
2

= i .

The cut-off frequency for this filter will be dependent on

both a, and b,

.

B. BILINEAR Z-TRANSFORM DESIGN PROCEDURE

1. First-Order

a. Low Pass Filter

The transfer function of a first-order RC low

pass filter is,

0)

H(s)
S + 0)

c

2 z - 1
By substitution of the bilinear approximation, s = ^ -^ ,
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H(z) =
2 z - 1

co
c
T(z + 1)

2z - 2 + a) (z + 1)

"c
T +

"cT z
" 1

2 + ai + (o)_ - 2) z" 1

to T a) T .
C

+ *-£— z" 1
2 -f h)c

2 + oj
c

1 + "c
T " 2

-1
•

1 + ZTTTT z

c

Co T
Normalizing the transfer function by -^-^— yields,

z + u
c

H(z) = - * + z
"

1 + ^TT2 z

where,

a
Q

- 1 ,

a
1

= 1 ,

0) T-2
b,
1 u T + 2

The bilinear Z-transform warps the frequency response, so

the actual cut-off frequency, oj , , is ,

2 -1
wc'

=
T

tan ( ^ C0
C
T)
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From the expression for b, in terms of w ,

so,

or,

-2 b
l
+ 1

w
c " "t~

(bprT )
'

-2 -l
b
l
+ 1

w
c ,

= — tan (E-rx) '

UC -1 . -l,
b
l
+ \

"3T
= — tan (E7^T )

s i

TABLE X

b
l

V
w
s

1.0 0.0000
0.9 0.0167
0.8 0.0352
0.7 0.0556
0.6 0.0780
0.5 0.1024
0.4 0.1289
0.3 0.1572
0.2 0.1872
0.1 0.2183
0.0 0.2500
0.1 0.2817
0.2 0.3128
0.3 0.34 2 8

0.4 0.3711
0.5 0.3976
0.6 0.4220
0.7 0.4444
0.8 0.4648
0.9 0.4833
1.0 0.5000
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b. High Pass Filter

For a first-order RC high pass filter the

transfer function is,

H(s) =
S + OJ '

c

which transforms to,

2 z - 1

H(z) = T z + :

2 z - 1

t T+T + w
c

z - 1

wc
T

z - 1 + -—• (z + 1)

W T + 2 m T + 2

"7" mc
t " 2

-l
1 + ^^ z

2
z"

1

For the normalized transfer function,

a
Q

= 1 ,

a
1

= -1 ,

to
c
T-2

b
l "

w T + 2 *
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It is noteworthy that the only change from a high pass filter

to a low pass filter, other than the gain normalization

factor, is the polarity of a, . Since the expression for b,

in terms of the design cut-off frequency, w , is the same

as for the low pass filter, the same relationship between

b
1
and the actual cut-off frequency, go , , as found for the

low pass case exists.

2 . Second-Order

a. Low Pass Filter

The transfer function for a second-order LC low

pass filter is,

2
to

c ______ .. _ „„i*|H(s) = -j J ' where go = (LC)
S +00

c

The bilinear Z-transform for this function is,

2
wcHz =

r
2 z - 1,2 2

[ T FTT ] + wc

2 7 2
gojV(z Z

+ z + l)

4z
2

- 8z + 4 + co

2
T
2
(z

2 +2z+l)

2^2 2_2 2^2
ooc

T 2co
c

T _ 1
oo
c

T _ 2

T~

7

+ —T~J Z + 2~ 2
—

'

Z

wc
T + 4 wc

T + 4 w
c

T + 4

2m 2
T
2

- 8 - 9, C -1 .
-2.

1 + —5—5 z + z

to T + 4
c
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where, for a normalized transfer function,

a
Q

= 1 ,

a
1

= 2 ,

a
2

= 1 ,

2 V - 8

b
l

= —T~2
c

b
2

= i .

By using the expression for b, to solve for in terms of

b,, one finds,

2 ,

2+b
l,>,

"c
=

t (r^»

Because of the frequency warping,

2 . ~l,2tbl^
^c-

=
t

tan (T^b7 )
'

or

<V 1 . -i.
2 * b

i,H~ " 7 tan [J^b7 ]

s 1

It is interesting that this design table is the same as

Table IX, the standard Z-transform second-order low pass

filter.
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TABLE XI

b
l

c

s

2.0 0.0000
1.8 0.0718
1.6 0.1024
1.4 0.1266
1.2 0.1476
1.0 0.1667
0.8 0.1845
0.6 0.2015
0.4 0.2180
0.2 0.2341
0.0 0.2500
0.2 0.2659
0.4 0.2820
0.6 0.2985
0.8 0.3155
1.0 0.3333
1.2 0.3524
1.4 0.3734
1.6 0.3976
1.8 0.4282
2.0 0.5000

b. High Pass Filter

A second-order LC high pass filter has the

following transfer function,

H(s) = s
2

2^2 '

s +0)
c

which is transformed to

,
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r
2 z - 1 .2

H(z) = T Z + 1

r 2 z - 1,2 2
[tm ] + w

c

4(z
2
- 2z + 1)

4z
2
- 8z + 4 + oj

2
T
2
(z

2 +2z+l)

3z
-1

4z" 2

2 2 2 2 2 2
T + 4 T + 4

Z T + 4
_c c c

2
c
2t2 - 8 -1 -2

1 + —£-= z
x + z

A

Z T + 4
c

For a normalized transfer function,

a = 1
'

a
1

= -2
,

a
2

= 1 ,

2 2
2w

Z
TT - 8

h _ c

03
Z
T
Z
+ 4

c

b
2

= 1

.

It is noteworthy that this transfer function has the same

coefficients as the low pass filter with the exception of

the sign of a,. The corner frequency is dependent on b,

in the same manner as for the low pass case. It is now

apparent that the polarity of a-, is the means for converting
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high pass bilinear Z-transforms to low pass and vice versa

In addition, the a Q/ a-,, and a
2

values are always integral

multiples of one another.

C. SUMMARY

The following table summarizes the design procedures

for the standard Z-transform and the bilinear Z-transform

for first order filters.
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TABLE XII

Design Method Filter Type Coefficients

o a
l

b
l

Response
Period

Standard Z Low Pass

oo
s

4
CO
c

-to T
-e

c

Low Pass

oo
s

4
1-0)

c

-u
c
T

-e
-oj

c
T

e

High Pass

CO
n

oo
s

4
l-„

c

-U)
c
T

-e
-co T

c
-e

High Pass

co 4
s

"c

-co T
c

e

Bilinear Z Low Pass

co 4
s

co
c
T co T

c -
co T-2
c

co T + 2
c

co T + 2
c

co T + 2
c

•

Low Pass

CO n

a)s
4

w
c
T co T

c
co T-2
c

co T + 2
c

co T + 2
c

co T + 2
c

High Pass

U> 4
s

2 -2 -
u,c
T-2

co T + 2
C

co T + 2
c "*c

T + 2

High Pass

CO i

oo
s

4

2 -2 a,
c
T-2

co T + 2
C

to T + 2
c

oo T + 2
c

nn
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APPENDIX C

Derivation of Calibration Curve
For Recursive Filter Coefficients

The coefficients of the recursive filter transfer

function are produced by potentiometers. These potentiometers

are loaded by the input impedance of the summing circuit and

are driven by the output of the SAD-10 driving board as

illustrated below.

in

out

FIGURE C-l Coefficient Circuit

It is assumed that the summer op amp is operated as a unity

gain, inverting device. Therefore, the voltage on the tap

of the pot is -v .. The voltage on the top of the poten-

tiometer is -av. . The coefficient, b, is defined as the
in

ratio of v . to v. . From the voltage divider equation,
out in J
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R R
a~vout

= " av
in \ + R

a i 1

1>
]

'

therefore,

aR R
cl

-v . R +~R
. out a
b =

-V. R R

R + R
a

R R
a= a

R (R - R ) + R R
a p a p

The limit of the coefficient, b, as R, the loading resistance,

gets arbitrarily large is,

R
a
R R

lim b = lim a
(

.
;

+
= * JTR->°° R-»o=> ap a p p

This is the expected value for a non-loaded voltage divider.

Since R is finite in this study, its effect must be

considered. For the actual hardware used, R = 10K,
P

R = 30. 9K, and a = 1. The following calibration curve was

calculated,
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R
a

IK

2

3

4

5

6

7

8

9

10

TABLE XIII

b observed

0.000 0.000

0.097 0.095

0.190 0.180

0.281 0.286

0.371 0.369

0.463 0.454

0.557 0.546

0.655 0.639

0.761 0.734

0.875 0.858

1.000 1.000
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APPENDIX D

DETERMINATION OF TRANSFER FUNCTION

COEFFICIENTS FROM UNIT STEP RESPONSE

A particular filter configuration can be characterized

by a transfer function, H(z) , where

-1 -2
an + a, z + a 9 z

H(z) = — -1 -2 '

1 + b, z + b~ z

sT
for z defined as e and T a time delay. Since a transfer

function relates the output of a system to its input,

or

E . (z)
u / \ out
H(z) =

p T7T~ 'E
in

vZ)

E_ . (z) = E. (z) H(z)
out m

-1 -2
an + a,z + a 9

z
' - E. (z)- -^ i^ —- .

in
1 + b

x
z

X
+ b

2
z

2

Multiplying the above equation by the denominator of H(z)

yields

,

Eout
(z) + b

l
E
out

(z) z~" + b
2

E
out

(z) Z
"

a E
in

(z) + a
l

E
in

(z) z" + a
2

E
in

(z)

124





so,

-1 -2 -1
E ^(z) = a„E. + a,E. z + a E. z - b,E ,_z
out in 1 in 2 in 1 out

- b~E . z"
2 out

Taking the inverse Z-transform yields the following time

expression,

eout
(n) = a

O
e
in

(n) + ^in'"' 1
'

+ a
2
e
in

(n- 2) " ^out'"" 1 '

" b
2
e
out (n- 2

» '

where,

e .(i) =e , (iT) .out out

Assuming zero inputs and outputs for n <_ and a unit step

input, i.e. e. (n) = 1 for all positive n, the output of

the filter will be the following sequence for the first

five values of n,
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Table XIV

n e. (n) e . (n)
in out

1 1 a
o

2 1 a~ + a, - b,a„
1 10

3 1 a« + a, + a« — b, (a„+a, -b, a^) - b^a«
1 2 10 1 10 2

4 1 a +a
1
+a

2
-b

1
(a +a

1
+a

2
-b

1
(a +a

1
-b

1
a )

-b
2
a )

"b
2
(a +arb

l
a )

5 1 a +a
1
+a

2
-b

1
(a +a

1
+a

2
-b

1
(a +a

1
+a

2

-b
1
(a +a

1
-b

1
a )-b

2
a -b

2
(a +a

1
-b

1
a ))

-b
2
(a +a

1
+a

2
-b

1
(a +a

1
-b

1
a )-b

2
a ) .

Defining the difference between successive steps in the

output wavefore as d. = e t
(i) ~ e j_(i-l)/ the following

relations are found,

d
1

= a
Q

- = a
Q

,

d
2

= a
o
+arb

i
a
o"

a
o

= a
l

" b
l
a

'

d
3

=Wa2-b
i
(a

o
+arb

i
a
o

)
"b

2
a
o"

a
o
+arb

i
a
o

= a
2

- b
1
(a

1
-b

1
a
Q

) - b
2
a
Q

,
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similarly,

d
4

= -b
l
(a2"b

l
(a

l"
b
l
a )

"b
2
a ) " b

2
(arb

l
a )

The relationship for higher differences is,

dk
= "b

l
d
k-l " b

2
d
k-2 '

k = 4 ' 5 ' 6 "-- •

It is clear that the term, a_+a, +a
2 , is subtracted out in

each difference calculation after k = 4, thus the higher

differences are a function of only b, , b
2 / and previous

differences. Solving this relation for b, yields,

"d
k

~b
2
d
k-2 .

b, =
j5 , for k _> 4,a
k-l

so,

"d
4 " b

2
d
2

b
l

= d—

—

From the higher difference relation,

d
5

= -b
l(

3
4

-b
2
d
3

.

Solving for b
2

and substituting the above relation for b,

,

one finds,

127





d
4

2
- d

3
d
5b

2
= —2

*

d
3 " d

2
d
4

Substituting this expression into the relation for b..

yields,

„ _
d
2
d
5

- d
3
d
4b

l 2"

d
3

" d
2
d
4

The a coefficients are now easily determined,

a
o

= d
i

'

a
x

= d
2

+ b a

«, + «,. X 5
' d3*

4

2 1,2 , ,
d
3 - d

2
d
4

d
l
d
2
d
5

+ d
2
d
3

2
" d

l
d
3
d
4

" d
2
2d

4

d
3 " d

2
d
4

a
2

= d
3

+ b
x
d
2

+ b
2
d
x

_
d
3

3
- 2d

2
d
3
d
4

+ d
2
2d

5
+ d

l
d
4

2
" d

l
d
3
d
5

d
3

2
" d

2
d
4

All coefficients are now determined solely as functions of

the differences between successive steps in the output.

Higher order differences could be used to determine b.
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and fc>

2
, but using cL and d

5
minimizes the differences required

to determine the five coefficients.

In the case of a first-order transfer function, i.e.

a
2

= fc>

2
- 0, a simplified set of equations would result,

so,

a = d
l '

a
2

= d
3

+ b
l
d
2

+ b
2
d
l

= d + b
1
d
2

+ 0-d ,

»1 - 1 " 4 >

a
l

= d
2

+ b
l
d
l

d
2

2
- d

l
d
3

d
2

Furthermore, since d, = -b-d,- -b
:
,d,_

2
and b

2
= 0,

d
k

b, = -
1 dk-l

This is a useful result for experimental determination of

the transfer function coefficients through measurement of

the step response since b, may be determined for several

values of k and then averaged to reduce error.
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APPENDIX E

PROGRAMS TO CALCULATE THE RECURSIVE FILTER

COEFFICIENTS FROM THE UNIT STEP RESPONSE

The formulae resulting from the derivation in Appendix

D lend themselves to a programmable algorithm for solution.

The programmable Tektronix 31 calculator is used to imple-

ment the algorithm in the laboratory. The first five step

differences from a unit step input are entered in order.

The calculator then determines and prints the five second-

order coefficients of the transfer function, a~, a,, a~

,

b, , and b~

.

The basic instructions for using the program are listed

below:

1. Turn on calculator and press "clear".

2. Insert tape cartridge containing filter

coefficient programs.

3. Press "reset" and transfer the desired program by

pressing "from tape" and the number of the track

the program is stored on (0 for second-order,

2 for first-order)

.

4. When "busy" light extinguishes, enter d, on

keyboard and press "cont". (Note: the calculator

should print out d, .

)

5. Repeat step 4 for d
2

through d^. The calculator

will finish execution of the program after "cont"
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is pressed for d- (d. for first-order

program)

.

After the coefficients are calculated and printed, the

program returns to its beginning and is ready to read a

new d.

.

Two limitations of the second order program are note-

worthy. First, the determination of all coefficients

except a
Q

is dependent on b
2
which is, in turn, dependent

on the higher order differences. For the coefficients of

interest in this study the differences became steadily

smaller, therefore, the higher ordered ones contain larger

percentage error. This error then propagates through the

other coefficients. Careful measurement of the step

response can minimize this problem.

The other limitation of the second-order program concerns

2
the factor d

3
- cUcL. For a first-order filter,

h -
*
3 - *«

1 " " d
2

" " aj '

or,

d
3

= d
4
d
2 '

thus,

d
3

2
- d

2
d
4

= 0.
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This factor, however, appears in the denominator of the

expressions for all the coefficients except a
Q

. Even if

experimental error kept the denominator from equaling zero,

the answer would be useless. For this reason the first-

order program was written. As noted above the first-order

program requires four differences to be entered. The

coefficient, b, , is calculated by the following weighted

average,

. = 3*3 lf4b
i - -

4 d
2

" 4 a
3

The average weighting is a crude compensation for the

greater percentage error in the d4 measurement.
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APPENDIX F

COMPUTER GENERATION OF THEORETICAL

RECURSIVE FILTER FREQUENCY RESPONSE

For a given recursive filter transfer function, H(z),

where,

-1 -2
a. + a., z + a z

H(z) = -2 ±_ ±—7- ,

1 + b, z
A + b

2
z

the frequency response, H(jco), may be calculated by using

the definition,

z = e = e J = cos (wT) + j sin (wT) ,

where T is the time delay. By substitution,

a n + a, (cos coT - j sin coT) + a 9 (cos 2ojT - j sin 2wT)

^ a,;
1 + b

1
(cos coT - j sin coT) + b

2
(cos 2coT - j sin 2 WT)

a
Q

+ a, cos ooT + a
2
cos 2u)T - j(a,sin coT + a

2
sin 2uT)

1 + b,cos tuT + b
2
cos 2wT - j (b, sin uT + b-sin 2coT)

i

For a given frequency, the magnitude and phase of the filter

response can be determined,

I* 2
H(jw) = [ReH(ju))] + [ImH(ju))]

*H( 3 co) - Tan [ ReH(^ )

J •
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A computer program was written to calculate, given the

transfer function coefficients, the response magnitude and

phase over a specified number of steps of a specified

interval of frequency. The results were then plotted on

the Calcomp plotter. Experimental magnitude versus fre-

quency measurements were read in, frequency normalized, and

super-imposed over the theoretical curves.

A sample data deck follows:

1. Line Printer Plot Characters

2. Transfer Function Coefficients

1.0 -1.0 0. •0.7 ' 0.

1 ... 10 11 ... 20 21 ... 30 31 ... 40 41 .. 50

All numbers F10.5, in order: a
fi

, a,, a
?

, b, , b
2

3. Experimental Data Head Card

9 4.125

12 3 4. . .13

13 F10.5

# Of points Response Repetition Period (kHz)
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4. Experimental Data Points

0.387 0.001

1 ... 10 11 ... 20

F10.5 F10.5

Frequency (kHz) Magnitude (normalized)

The program will print on the line printer the coeffi-

cients, the data points, a theoretical magnitude versus

frequency plot, a theoretical phase versus frequence plot,

and a message stating the status of the Calcomp plot, if

requested. A labeling statement is used to title the

Calcomp plot with the coefficients of the transfer function,

The title declaration cards need to be changed as different

coefficients are used for the title to coincide with the

response determining coefficients.
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APPENDIX G

Non-Recursive Filter Design

The design of a non-recursive filter is based upon the

periodic nature of a sampled filter frequency response.

The response may be described by a Fourier series,

jk(fj)u)

H(jw) = Z

k=-«3

D
k

e
T

where

2tt

T

tt/T

/ H(3co) e J d
-tt/T

w

The particular filter response of interest in this study is

a bandpass filter with rectangular passpands,

H(f)

< >

1 i

BP

-f

FIGURE G-l Rectangular Passband Filter
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which can be described with the parameters: response

repetition period, f ; passband center frequency, f
Q ;

and pass bandwidth, BP . The filter quality factor, Q,

is defined as,

and the fraction of the response repetition period which

corresponds to the center frequency is defined as,

FFS =
J°
s

The filter description is complete by specifying f , Q, and

FFS since the center frequency and bandwidth can be calcu-

lated from tne above three parameters. The repetition

period is

,

f = — Hz or 03 = -=- radians/second,
s T s T

For a rectangular bandpass filter,

H(ju>) =

1 | f - f
|

< ^BP

elsewhere

therefore,
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27T(f + J$BP)

D
k " 27 ' 1

'
e dw

2ir(f -JsBP)

2
-jk(27Tf

Q
T)

—- sin(kTr BP T) e
kit

2— sin(k7T BP T) (cos 27Tf
Q
T - j sin 27rf

Q
T) .

Since only real terms may be implemented, the series coeffi-

cients are,

2
D, = •,— sm(k7T BP T) cos(27if n T) .

The series expansion has infinite terms; however, the non-

recursive filter has a finite number of taps available to

approximate the series,

H(ju>) = Z D. e
jkwT

k=-N K

N
Z D, (cos(kooT) - j sin(kwT))

k=-N K

By using the definition of,

sT jwT
z = e = e J

,
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N
kH(z) = E D, tT

k=-N
K

Since the Z-transform must contain only non-positive powers

of z, i.e. no anticipated signal values only delayed values,

N
H(z) • z"

N
Z D, z

k"N

k=-N
K

This relation states that the transfer function will contain

a constant delay of NT from input to output in addition to

the response phase. A possible implementation of this function

is illustrated in Figure 3.1. From the expression derived

for the bandpass filter,

2 BP T sin(kTT BP T) /01 . mNDk = —1
krr BP T

cos(2kTrf T) ,

it can be seen that this is an even function of k, so,

Dk D-k

In addition,

lim D, = 2-BPT- (1) • (1) = 2BP-T ,

k->0
K

this can be expressed in terms of the design parameters, Q

and FFS,

D =2-BP-T=2— •— = 2-
FFS

9
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Window weighting functions are used to modify the

coefficients in order to improve the filter characteristics.

A Hamming window is frequently used where the weighted

coefficient, A,, is,

A^ = Dk (0.54 + 0.46 cos (^ it))

The expression multiplying D, is called the window weighting

function.
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APPENDIX H

Computer Calculation of Coefficients and
Tapping Resistances for the Non-Recursive

Filter

From the analysis performed in Appendix G for a bandpass

filter,

_ FFS sin(kX) .. ... XT . „ ..
D
k

= D_k
= 2 ~Q kX— cos(kY) , -N < k <_ N ,

where,

BP
X = tt -*— , BP = pass bandwidth

s f = response repetition period,
5

f
Y = 2tt -s— , f = passband center frequency,

s

Q = fe .

FFS = ~
s

For a Hamming weighting window,

A
R

= A_
k

= D
k
(0.54 + 0.46 COS (rr tt) )

For the TAD-12 analog delay device, the coefficients are

implemented by input resistances to the operational amplifier

summing circuit, as shown in Figure H-l.
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* V
out

FIGURE H-l Coefficient Implementation

In order to minimize the loading effect on the tap, the

tapping resistors, R,, are greater than or equal to 10 K ohms

The contribution of a single tap, V, , to the output, V .,

is the product of V, and the coefficient, A,, or,

V
out
V,

R,

r + R,

This expression indicates that R, is inversely proportional

to A, , therefore the largest coefficient will correspond to

the minimum allowable resistance, 10K, so,

R,

max r + 10K
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Solving this equation for R^ and substituting that result

into the A, expression yields,

*k

A (r + 10K)max
r + R,_

or,

\
max

>k

(r + 10K) - r

For the TAD- 12, the output impedance for a tap, r, is about

5K.

A computer program was written to calculate the weighted

and unweighted coefficients and their respective tapping

-1
resistances for a given T = f , Q, FFS , and a pair of N.

These parameters are inserted directly into the program as

follows

,

1. T

T = 0.001

1 . . . 6 7 . . .13

2. FFS

FFS =0.25

1 ... 6 7 ... 14
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and,

3. Q

Q = 15.

1 ... 6 7 ... 11

4. Truncation points, NM1 and NM2

(/ NM1 = 5

1...67. . .

NM2 = 11

1...67. . .

i

Note: The program calculates results for,

NM1 . „„_
B(.) - Z A, z

k"NM1
,

k=-NMl

NM2 . ._.«,
tt / \ ^ * k-NM2
H ( 2 ) = Z A, z

k=-NM2

5. Maximum passband magnitude, CA

/ CA = 1.
j

1...67. ..
i

Note: CA was set to one in the derivation in Appendix

G, but the program is more general in this

respect.
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APPENDIX I

Computer Calculation of Non-Recursive Filter
Frequency Response

Since the transfer function for a non-recursive filter

is,

H(z) = Z Av z , where z = e^
w

,

k=-N
K

it is possible to calculate the magnitude and phase of

H( jco) , where,

N
H(jw) = Z A. e

DkwT

k=-N K

N
Z A, (cos(ktoT) + j sin(ko)T))

k=-N K

N
= A

Q
+ Z [(A,+A , )cos ku)T + j(A,-A_

k
)sin kwT]

k=l

The real part of H(joj) is clearly the cosine terms,

N
Re H(jco) = A

Q
+ Z (A

]<

.+A_
k ) cos (kwT) ,

while the imaginary part of H(joi) is the sine term portion,

N
Im H (jco) = Z (A, -A . ) sin(ka)T)

k=l K ~K
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The magnitude and phase of H(j ) are readily calculated,

H(jw)| = [Re H(jw) ]

2
+ [ImH(jw)] 2

tt/ • \
""1 rim H ( jo)) ,

iH( DU ) = tan [„g;j M>
]

A program was written to calculate the magnitude and

phase of H(ju)) from = jco = —
, plot the result on the

line printer and Calcomp lotter for a given set of A, . In

addition, experimental data points may be read and plotted

over the theoretical curves.

The above analysis assumes perfect impulse sampling,

however, actual devices will have some sampling envelope,

s in xusually a function, which will multiply the magnitude

of the response. Provision is made in the program to

introduce this envelope.

The following sample deck will illustrate the use of the

program.

1. Line Printer Plot Characters

. * X Y

12 3 4 5
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2. NMAX, the number of coefficients

NMAX = 2N + 1

1 1

12 3

(13)

3. Coefficients

-0.0235

1 ... 10

(F10.5)

4. Data Header Card

NPTS, the number of data points (multiple of 30)

FCK, the clock frequency

XX , the value of sampling envelope at
magnitude maximum frequency

6 50. 0.9845

1 2 3 4 ... 13 14 ... 23

NPTS FCK XX

(13) (F10.5) (F10.5)
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5. Data Points

FX, observed frequency

HX, normalized magnitude

6.735 0.033

1 ... 10 11 ... 20

FX HX
(F10.5) (F10.5)

Note: If dummy cards are required to make NPTS

a multiple of 30, use FX = 999., HX = 1.

When the Calcomp plotter is used the "call draw" cards

are included and the title declaration cards are modified

to title the plot with the proper number of terms and FFS

value. The program will always print the number of coeffi-

cients, the coefficients, and the data points so that proper

data entry can be checked.
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APPENDIX J

Effects of Hamming Weighting

The use of a weighting factor, W, , in the time domain

is equivalent to convolving the frequency response of the

desired filter with the Fourier transform of the weighting

function. The Hamming weighting function,

TT

w
k
(t) = (0.54 + 0.46 cos(^ kT) )

which has a Fourier transform, W,(jco) ,

0J 0)

Wk
(joj) = 0.54 5(ju>) + 0.23(6(ju)+~) + 6(jo)-~)),

where,

2tt

"s
= —

This result can be illustrated as three impulses as in

Figure J-l.

0.54a H(w)

V 5 o 23

1
-w

2N
s

2N

FIGURE J-l Fourier Transform of Hamming Function
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When a bandpass filter is convolved with the impulses, its

bandwidth is increased by an amount proportional to the

spacing between the impulses. This added bandwidth will be

a fraction, y, of the Hamming function bandwidth,

OJ

added BW = y ( 2N

-U) 0)

2N ; V N

The value of gamma is estimated by the following procedure.

If the values of the impulses were equal, then the -3 dB

points of the convolved response would be shifted, roughly,
w
sby spacing of the impulses, ^rr- , as illustrated below.

FIGURE J-2 Equal Impulses

The added bandwidth would be equal to the spacing between
w
s

the impulses, — , or ,

Y - 1 •
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For the case where the outboard impulses are zero amplitude,

the response is just convolved with a single impulse and is

exactly reproduced, so zero bandwidth is added. In this

case, gamma is zero. A relationship is suggested by this

bracketing of gamma,

Y =_ amplitude of outboard impulses
amplitude of inboard impulse r

thus for a Hamming function,

Y = ^23 = 426Y 0.54
U ' qZb

•

The expected Q for a bandpass filter is,

v BW

Since the Hamming weighting adds some to the bandwidth, B,

the Q is expected to be less,

w
Q ' = bw-t-b < Q

By dividing the expression for Q' by that for Q yields
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Q' - Q
BW

BW + B

Q_ BW
Y(jO

BW +
N

n aN .

W
Q aN + yQ '

Where a "
—
s

It is noteworthy that the expression for Q' indicates that

the limit of Q' as N gets larger is Q.

If one uses the main lobe criterion for expressing the

impulse response by specifying the responses within the first

nulls, one finds that,

Q = (2N + 1) a?T

Substituting this result into the expression for Q' yields,

Q' = a
(2N +N) 7T

(2tty + 1)N + y-n

For the case of N = 5 and y = 0.43,

Q' = a (8.69) ,

so for a = 0.25 and 0.5, Q' will be 2.17 and 4.35, respectively.
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