NPS ARCHIVE
1968
ALLEN, T .

AIRCRAFT SURVIVABILITY INDEX FOR LOW ALTITUDE PENETRATION OF AN AIR DEFENSE COMPLEX

by

Thomas Harrison Allen, Jr.

UNITED STATES NAVAL POSTGRADUATE SCHOOL

THESIS

December 1968

This document has been approved for public release and sale; its distribution is unlimited.

Itbrars
U.S. Nava I Postgraduate School Uontorey, Celifornia 93940

```
AIRCRAFT SURVIVABILITY INDEX FOR LON ALTITUDE
    PENETRATION OF AN AIR DEFENSE COMPLEX
by
Thomas Harrison Allen, Jr.
Lieutenant Colonel, United States Marine Corps B.S., Naval Academy, 1953
```

Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH from the
NAVAL POSTGRADUATE SCHOOL December 1968

This paper develops a model for computing the probability of kill for an air defense complex composed of antiaircraft automatic weapons, radar controlled guns, and missile batteries. Two dimensional terrain was used to evaluate the model. The probabilities were determined at major terrain points along the route of approach to the vital area for altitudes of up to 3000 feet above terrain. The curves of probability of kill versus altitude were found to be dependent on terrain, air defense tactics, and weapon system parameters. A survivability index is calculated by combining the probabilities of kill with a pilot visual navigational probability. The resulting curves of survivability index versus altitude were found to be nonlinear requiring a nonlinear programing technique to solve for the altitude of optimal survivability index within aircraft flight path constraints. The nonlinear solution was not included in this work.

TABLE OF CONTENTS

Chapter Page
I Introduction 9
II The Mathematical Model 13
III The Computer Model 57
IV Program Verification, Results, and Analysis 71
V Conclusions and Extensions 88
Appendix I Bibliography 91
Appendix II Terrain and Battery Coordinates. 93
Appendix III Glossary of Fortran Variable Names 96
Appendix IV Fortran Program. 101
Appendix V Curves of Probability versus Altitudefor Selected Terrain Points106
Appendix VI Curves of Cost versus Altitude for
Selected Terrain Points. 115
Appendix VII Data Points for the Curves in Appendicies V and VI 122

LIST OF ILLUSTRATIONS

Figures Page
1 Model Geometry 15
2 Coordinate System. 18
3 Detailed Terrain Profile 20
4 Simplified Terrain Profile 20
5 Actual Terrain Profile 21
6 " " 22
7 " " 23
8 Weapon Target Kinematics 26
9 Negative Elevation Case. 30
10 Minimum Range 32
11 Maximum Azimuth Tracking Rate. 32
12 Maximum Elevation Tracking Rate. 37
13 Radar Detection Range 37
14 Slope Calculations for Line of Sight for
2 Dimensional Terrain 40
15 Slope Calculations for Line of Sight of
3 Dimensional Terrain 42
16 Block Diagram Computer Model 59
16a Block Diagram Computer Model continued 60
17 Block Diagram Computer Model Subroutine LOS. 61
18 Computer Line of Sight Calculations
AAW Battery 73
19 Computer Line of Sight Calculations
Gun Battery 74
20
Computer Probability Calculations AAN Battery. 76
21 Computer Probability Calculations Gun Battery. 77
22
Effects of Terrain and Weapon System 81
23 Lateral Range Curve 83

ACKNONLEDGEMENTS

I wish to express my appreciation to Lieutenant Colonel W. S. Miller, Jr., USMC and Major E. E. Brown, USMC for their assistance in the early development of this work. Their efforts in pioneering the way on this problem made possible my contribution.

I also wish to thank Professor W. Peyton Cunningham for his guidance and council during the preparation of this paper.

CHAPTER I

During the first year of the United States' involvement with the war in South East Asia, air power was employed extensively against many targets in North Vietnam. The commanders of attack aviation units were required to plan and execute strikes against the same targets over and over again. Initially air defense of these targets was sparse to nonexistent. As time passed, air defense weapons were supplied from communist bloc countries until the problem presented to the attack force commander was what to do about higher and higher attrition rates per raid. Specifically, strike planners were seeking a solution to the problem of finding the route of approach and altitude to fly into the target which would minimize aircraft losses from air defense means. One method of finding an answer to the problem is to analyze the losses from previous raids. This method is costly in lives and equipment and may not have produced data describing results from many altitudes and routes into the target. Using previous experience alone, one may never discover the optimal route. A major factor in the effectiveness of land air defenses is the terrain. Very often terrain provides a natural route of approach which in itself minimizes the capability of the air defense efforts. Sometimes this fact is obvious and in other situations it is not. It would be desirable in such a situation to provide the attack air force commanders with a
method that determines the optimal approach altitude and route that minimizes the air defense effort. The method would generate an actual flight profile for the pilot. As new data on the enemy's air defenses are ascertained, updated flight profiles would be provided in the time period between strikes. The method referred to here is a digital computer model which evaluates all possible routes of approach into a target. For each route, the model evaluates the terrain, the air defenses situated therein, and the pilot navigational problem for all feasible altitudes up to a maximum value, and then determines the altitude along the route which maximizes aircraft survivability. With a functioning computer program which computes such a flight profile, new information could be inserted into the program and new results obtained in a matter of hours. Such a tool would be of tremendous value to attack air force commanders. The development of a mathematical model and computer solution for generating a flight profile which maximizes strike aircraft survivability was accomplished in a thesis by Lieutenant Colonel W. S. Miller, Jr., USMC, and Major E. E. Brown, USMC, reference 1. In this work a model for calculating probabilities of detection of strike aircraft over two dimensional terrain was combined with calculated probabilities of detection of ground navigational targets to generate a functional relationship of cost versus altitude of the flight path above terrain. The term cost is defined to be a probability index which is a linear combination of
probability of radar detection and the probability that the ground navigational target was not detected at each altitude above terrain from 100 feet to 3,000 feet. Using this function as an objective function and calculating aircraft flight path constraints for each terrain point, the problem of determining that altitude which minimized the cost was solved as a linear program. The probability of detection mentioned above was calculated by computing at each terrain point and altitude the ratio of terrain visable to the total terrain within the coordinate system. As altitude increased, less terrain was masked from the point in question. Therefore, the probability of detection was found to increase in approximately a linear fashion. This model assumed that a radar within the air defense system could be placed at any and all points along the terrain under the aircraft flight path. In other words, radar locations were considered to be uniformly distributed over the entire route of approach. To be sure, this method of calculating the probability of detection produces an indication of the effect of altitude on terrain masking in evaluating air defense capability.

This paper extends the work of Miller and Brown. Since the uniform distribution of radar sites is not realistic and the method of calculating probability of radar detection is at best only an indication of air defense capability, a mathematical model and computer program will be developed to calculate the probability of kill for three types of air defense weapons sited in the terrain. Specifically, the

Abstract

problem to be solved will be to emplace an air defense complex in a section of terrain in order to calculate at each terrain point and altitude above terrain from 100 feet to 3,000 feet along the aircraft flight path the cumulative probability of kill for an aircraft flying straight and level up to each terrain point. The terrain points considered are those within the maximum effective range of the longest ranged air defense unit to the defended area. The problem reduces to finding the length of course line exposed to radar detection and within the effective range of the weapon systems in order to determine the number of rounds that may be fired from which the probability of kill is determined. The model evaluates the terrain masking on detection range and firing time. The problem is developed for three dimensional terrain. The computer model was programmed for three dimensional terrain. No digitalized three dimensional terrain was found for use in this model. The computer program was accordingly verified using only two dimensional terrain which was available. That portion of the program which evaluates the three dimensional terrain was not verified.

THE MATHEMATICAL MODEL

A mathematical model will be designed to compute the probability of kill for an approaching aircraft penetrating an air defense complex composed of heavy antiaircraft gun batteries, light antiaircraft automatic weapon batteries, and surface to air missile batteries. The purpose of this model is to determine a relationship of altitude versus probability at each major terrain point through the air defense complex. The model is designed to be general. No specific weapon system parameters in existence are used in the calculations. Values for the parameters are of the order of those found in actual systems. The general nature of the model was selected in order to permit its use with any system and to prevent the necessity of classification under security regulations.

PROBLEM FORMULATION

Since it is necessary to compute the probability of kill at each terrain point and at altitudes of every 100 feet above terrain to 3,000 feet, a concept for what is meant by a kill probability at a large number of specific points in space along a route of approach must be defined. The probability of kill by a weapon system is not defined at a point. Probability is calculated from the number of rounds the weapon system is capable of firing while the
target is within range. The kill probability at any particular terrain point and altitude, $P_{\text {Kki }}$, is defined to be the cumulative probability of kill resulting from the fire of all batteries of each type that bear on the target from each battery's maximum range to the terrain point in question. The amount of fire that each battery may produce is further constrained by terrain masking at the lower altitudes as it may occur. For example, at some terrain point k and altitude i, a line is drawn back along the route of approach to the beginning of the coordinate system or to the point of contact with a terrain formation, whichever is the shorter. Figure l is a diagram illustrating a two dimensional view of the terrain showing terrain points with altitude points above the terrain and the course lines associated with the (k,i)th point, representing the kth terrain point and ith altitude. In the figure, point F represents the 4 th terrain point and the lst altitude. Drawn from this point is a line back along the course line of aircraft flight as previously described. In this case, the line intersects a terrain formation at point G. The model assumes that when terrain interrupts a continuous flight, the aircraft will fly over the obstruction and continue on at the prescribed altitude. The line from G to F will represent a portion of the aircraft flight path. If a battery were located at point L, a probability of kill will be calculated from the number of rounds fired if sufficient time permits the firing of any rounds from any battery that bears on a target flying

FIGJRE 1
4
the course from G to F. Such a battery would be located at point L. The value of probability calculated here will be a number greater than or equal to zero for altitude 1 at terrain point 4. These numbers become part of some func= tional relationship existing at terrain point 4. Another example of discontinuous flight is at points H and I. The uninterrupted case is seen at point A, C, D, and E. Here no terrain obstruction enters into the situation and the factors effecting the probability calculated depend on the length of course lying in the detection radar beam pattern and the weapon system effectiveness envelope. As an example, consider a battery located at terrain point 5. If the model were evaluating the probability of kill contributed by this battery up to point $(4,2)$, the number of rounds that could be fired as the aircraft traveled from point B to point $(4,2)$ would be the determining factor. B is the point where the flight path passes into the radar beam pattern while point A is where the flight path enters the weapon system effectiveness envelope. The portion of the flight in both radar and battery effectiveness envelope only, enables firing to occur. Since the altitude of approach is so low, the aircraft cannot first be detected until point B. At point (4, 3) the battery at terrain point 5 detects the targets at point M in advance of its entry into the battery effectiveness envelope. A normal fire mission can be conducted in this case with adequate warning time.

In order for calculations to be carried out by the computer a coordinate system must be placed on the terrain section of interest. No existing map coordinate system will suffice. The coordinate square must be small enough to provide an acceptable approximation of the terrain contours. Figure 2 is a diagram from a top view of the terrain and battery situation. This view shows two dimensions, distance along the course line, and offset distance from the course line for terrain and battery positions.

The grid system shown in Figure 2 shall be the size necessary to cover the section of terrain holding the air defense complex of interest. A route of approach to be analyzed is selected and the grid system is placed over this route on an appropriate map with the X axis parallel to the course direction and centered over the line. At the intersection of each grid line, the altitude taken from the terrain contour lines is recorded along with the X and Y coordinates. The altitude above sea level becomes the H coordinate. All distances in this model are in feet. The X, Y, and H values are then punched on IBM cards for placing on computer tape as data input. The job of preparine map data for transfer to computer tape is tedious and time consuming. For an individual to attempt the task would be impractical. A team of trained operations plotters equiped with the proper equipment would be capable of accomplishing the task. Since no three dimensional data was available,

the computer model was solved usine two dimensional data. The model was verified with this data except for the line of sight calculations for batteries not on the target flight line. The two dimensional terrain was taken from reference 1. Each major terrain point was selected as either a peak or a valley. A sample of the terrain is shown in Figure 3 and 4. Figure 3 is the detailed profile of the terrain. Figure 4 is the simplified version obtained by drawing straight lines between major terrain points. For a sample of the terrain actually used in the model see Figure 5 through 7. The coordinates of the major peaks and valleys in the X direction and altitude in the H direction are recorded in Appendix 2. The offset distance Y is zero for all computations but is carried along in the model for possible future use. Coordinates of the battery positions used are found in Appendix 2. Referring again to Figure l, it should be noted that the X coordinate has its lowest value at the entrance of the air defense complex and increases to the maximun S coordinate value at the defended area.

Air Defense Complex

The three general types of weapons systems are the antiaircraft automatic weapon battery, the medium to heavy antiaircraft artillery battery, and the surface to air missile battery. These three are used since they cover the spectrum of ground to air weapon systems to be encountered in the reasonable future.

FIGUFS 3

SIMPLTFIED COREATN PRDFITE

FICURE It

The automatic weapons battery is defined to be a 10 gun unit of rapid firing weapons, five mounts, two guns to a mount. The fire control is by optics with target course and speed estimated by the crew. A computer is used to generate predicted azimuth and elevation for positioning the gun. Early warning is by radar with target acquisition by optical means. The medium to heavy antiaircraft artillery battery is composed of 4 guns with early warning radar, gun laying radar, and computer generated gun positioning signals via appropriate servo systems.

The surface to air missile system is a low to medium altitude system. It is capable of detecting targets within its early radar beam pattern which is approximately from 1° elevation to 50° for volume coverage. The radar is assumed to possess effective noving target indication at the low altitudes. The tracking radars are also assurned to have low altitude capability. Since only one aircraft is attacking the complex in this model it is not necessary to specify the type of guidance with respect to the number of targets the system may attack at one time.

The batteries are placed in the 2 dimensional terrain on the course line at various terrain points. The effect of terrain and increasing altitude, and the cumulative effect of more than one battery firing on a target is obtained from the various battery locations. No battery is permitted to fire at outbound targets. Each battery may fire from its maximum range or detection range up to its minimum range or
to its maximum turning rate in azimuth to the terrain point in question, whichever occurs first. No battery is permitted to fire on targets at a lower altitude than its own since this is not feasibly done.

Weapon Target Kinematics

In order to determine the length of target course line exposed to the fire of any battery, it is necessary to define the parameters of weapon target dynamics. Figure 8 is a three dimensional diagram of the problem to be solved. The line C D is the path the aircraft flies as it passes into the range of battery J as evaluated at the (k, i) th point. Line A B is the projection of target course on a horizontal plane at the same altitude as the fth battery. The ΔH, the difference in altitude between the fth battery and the ith altitude of approach, is given by

$$
\begin{array}{ll}
& K=1, \ldots, N \tag{1}\\
\Delta H=\left|A_{H k, i}-B_{H j}\right| & i=1, \ldots, 30 \\
& j=1, \ldots, N_{1}
\end{array}
$$

The difference in position of the kith terrain point and the jth battery along the course line is given by

$$
\Delta x=\left|x_{k, i}-B_{x j}\right| \quad \begin{array}{ll}
k & =1, \cdots, N \\
i & =1, \cdots, 30 \tag{2}\\
j & =1, \cdots, N_{1}
\end{array}
$$

FIGURE 8

Likewise for the offset distance of the j th battery

$$
\Delta y=\left|y_{k, j}-B_{y, j}\right| \quad \begin{align*}
& k=1, \cdots, N \tag{3}\\
& i=1, \cdots, 30 \\
& j=1, \cdots, N, N
\end{align*}
$$

where

$$
A H_{k, i}=H_{k}+100 i \quad \begin{array}{ll}
1=1, \cdots, 30 \tag{4}\\
& k=1, \cdots, N
\end{array}
$$

$\mathrm{N}=$ number of terrain points where a probability versus altitude function will be calculated

30 = number of altitude points above terrain for which probability calculations will be accomplished

$$
N_{1}=\text { number of weapon batteries employed in }
$$

the terrain.

The other parameters are defined as follows:

$$
R_{S}=\text { slant range from the battery to the }
$$

(k,i)th point

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=\text { horizontal component of } \mathrm{R}_{\mathrm{S}} \\
& \mathrm{R}_{\mathrm{m}}=\text { maximum effective range of the weapon system } \\
& \mathrm{R}_{\mathrm{xm}}=\text { horizontal component of } \mathrm{R}_{\mathrm{m}} \\
& \mathrm{R}_{\mathrm{h}}=\text { horizontal component of the range at which }
\end{aligned}
$$ the lower portion of the radar beam, at the estimated half power point of the radar beam pattern, intersects the target course line

$$
X_{D}=\text { the distance } J I \text { along the course line from }
$$

the maximum open fire range of the system to the (k, i) th point being evaluated. This parameter is the key distance which will determine the probability to be developed later.

$$
X_{D R}=\text { the warning distance, } H \text { J from maximum }
$$

detection range to maximum open fire range
$\theta=$ the estimated elevation of the half power
point of the lower edge of the radar beam pattern.

Calculating Equations of the Model
In this section all calculating equations will be explained or derived as appropriate. prevent Outbound Firing. In a high threat operating condition when enemy attack is probable or imminent, air defense commanders are more concerned with the inbound raid than outbound raids. If a target passes through the fires of a particular battery, the probability of an outbound kill is less in most cases than an inbound raid. The danger of firing at outbound raids results from not being ready to engage the next inbound raid. Therefore the policy of not firing past the position of any battery is designed into the model. To insure no outbound firing ΔX is calculated in equation (2) without the absolute value notation.

$$
\Delta x=\left\{\begin{array}{cc}
X_{k, i}-B_{x j} ; & \Delta x<0 \tag{5}\\
0 & ; \Delta x>0
\end{array}\right.
$$

Since any terrain point with a greater X coordinate value lies in an outbound direction from the j th battery, $\Delta X>0$ in this case. Firing is permitted up to the minimum range of the Jth battery, therefore setting $\Delta X=0$ permits later calculations for X_{D} up to $B_{X j}$ rather than to $X_{k, i}$. Any terrain whose X coordinate is less than $B_{X j}$ will produce a $\Delta X>0$ and $\Delta X w i l l$ be set equal to $/ X_{k i}-B_{X j} /$. Determine slant Range. The slant range to the (k, i)th point is given by

$$
\begin{equation*}
R_{S}=\sqrt{\Delta x^{2}+\Delta y^{2}+\Delta H^{2}} \tag{6}
\end{equation*}
$$

In Figure 8, it can be seen that R_{S} is the vector sum of $\Delta X, \Delta Y$, and ΔH. Therefore equation (6) will hold. For any battery j whose maximum range $R_{m}<R_{s}$ will not contribute any probability of kill. Therefore no calculations for the jth battery will be carried out in this case. Determine if Target Elevation is Negative. Since firing at elevations below 0° is not feasible for many reasons, this model excludes such cases. After solving for ΔH in (1), if $\Delta H<0$, excludes the j th battery from a probability calculation. Figure 9 illustrates this case. Minimum Firing Range. In certain cases which arise in this model the (k, i) th point lies over the $j t h$ battery or is inside the dead zone of battery effectiveness. The model must determine when this situation occurs and permit firing up to the minimum firing range for the ith altitude of approach. Figure 10 is a diagram of the minimum range

Figure 9
situation. R_{F} is the minimum firing range for the system. Angle B is the maximum elevation angle which is the minimum of the maximum radar antenna elevation angle and maximum elevation angle of the gun or launcher.

$$
\begin{equation*}
R_{X F}=R_{F} \cos B \tag{7}
\end{equation*}
$$

R_{XS} as previously defined is given by

$$
\begin{equation*}
R_{x s}=\sqrt{R_{s}^{2}-\Delta H^{2}} \tag{8}
\end{equation*}
$$

from Figure 8. If $R_{X S}<R_{X F}$, then firing must terminate at a horizontal range of $\mathrm{R}_{X F}$ rather than $\mathrm{R}_{X S}$. Therefore aquation (6) becomes

$$
R_{s}=\left\{\begin{array}{lll}
\sqrt{R_{x s}^{2}+\Delta H^{2}} ; & R_{x s}>R_{x F} \tag{9}\\
\sqrt{R_{x F}^{2}+\Delta H^{2}} & ; & R_{x s}<R_{x F}
\end{array}\right.
$$

Maximum Azimuth Tracking Rates. When the fth battery is at some distance ΔY from the course line, it is possible for the maximum tracking rate of the system to be exceeded before the (K, i) th point is reached. If this should occur the distance X_{D} would be decreased. The amount of this decrease is calculated by finding that point on the course line where maximum tracking occurs and determining if it lies between (k, i) th point and the crossover point which is where $\Delta X=0$ or before the (k, i) th point is reached. If the point of maximum tracking rate occurs before (k, i) th point on the course line then X_{D} is reduced by the distance between the

FIGURE 10

FIGURE 11
point of maximum tracking rate and (k, i)th point. Figure 11 is a diagram of the azimuth tracking rate problem on the horizontal plane. Point K is the point where firing must terminate projected on the horizontal plane at the same altitude as battery J. The tracking rate must first be determined at this point. Let $\dot{A Z}$ be the azimuth tracking rate. Then

$$
A^{\prime} Z=\frac{V_{X T}}{R_{X S}}
$$

where $V_{X T}=$ tangential velocity of the aircraft at point K and $\quad R_{X S}=$ horizontal component of the range to point K and was calculated in equation (8). From Figure 11 it is clear that V_{XT} is given by

$$
V_{X T}=\frac{V_{T} \Delta Y}{R_{X S}}
$$

Substituting this result into the equation above yields

$$
\begin{equation*}
A^{\prime} Z=\frac{V_{T} \Delta Y}{R_{X S}{ }^{2}} \tag{10}
\end{equation*}
$$

Now substituting equation (8) into (10) results in

$$
\begin{equation*}
A^{*} Z=\frac{V_{T} \Delta Y}{R_{S}^{2}-\Delta H^{2}} \tag{11}
\end{equation*}
$$

If $\dot{A Z_{M}}=$ maximum tracking rate for the system engaged, and $\dot{A} Z<\dot{A} Z_{M}$, no constraint due to tracking rate is active. If however $A^{\prime} Z>A^{\prime} Z_{M}$, then the constraint is active and firing must terminate at the point where the maximum rate occurred. To find this point solve equation (10) for $R_{X S}$ when $A Z$ is
replaced by $A Z_{\mathrm{M}}$ resulting in

$$
\begin{equation*}
R_{x s}=\sqrt{\frac{V_{T} \Delta Y}{A^{\cdot} Z_{m}}} \tag{12}
\end{equation*}
$$

Using the value of $R_{X S}$ determined in (12) a new value for R_{S} is found by solving equation (8) for R_{S} as follows:

$$
\begin{equation*}
R_{s}=\sqrt{R_{x s}^{2}+\Delta H^{2}} \tag{13}
\end{equation*}
$$

Equation (13) has changed the (k, i) th point to reflect the constraint due to the maximum azimuth tracking rate. Maximum Elevation Tracking Rate. The same problem occurs in elevation as in azimuth for the possibility of exceeding tracking rates at low altitudes. In some cases the elevation tracking rate is exceeded at a range further from the (K , i) th point than minimum range. It is necessary to compute the elevation tracking rate and determine if it is an active constraint. Figure 12 is a three dimensional diagram illustrating the vector component of target velocity tangential to the battery target line of sight. The tangential velocity in elevation is given by

$$
\begin{equation*}
V_{X T E}=\frac{V_{I} \sqrt{\Delta H^{2}+\Delta y^{2}}}{R_{\delta}} \tag{14}
\end{equation*}
$$

where the

$$
\sin A=\frac{\sqrt{\Delta H^{2}+\Delta y^{2}}}{R_{s}}
$$

Since the velocity $V_{X T E}$ is also opposite the angle A in the smaller triangle

$$
V_{X T E}=V_{T} \sin A
$$

Using the relationship as before that $\dot{E L}=\frac{V_{X T C}}{R S}$, results in

$$
\begin{equation*}
E \cdot L=\frac{V_{T} \sqrt{\Delta H^{2}+\Delta Y^{2}}}{R_{S}^{2}} \tag{15}
\end{equation*}
$$

If $\dot{E} L>\dot{E}_{M}$, Where $\dot{E} L_{M}$ is the maximum tracking rate in elevalion of the particular system, then it is necessary to find the range at which the maximum rate occurs. Solving (16) for $R_{S E}$ gives

$$
\begin{equation*}
R_{S E}=\sqrt{\frac{V_{T} \sqrt{\Delta H^{2}+\Delta y^{2}}}{E^{\prime} L_{m}}} \tag{16}
\end{equation*}
$$

The new value of R_{S} is determined from

$$
R_{S}=\operatorname{MAX}\left(R_{S A}, R_{S E}\right)
$$

and the new ΔX is determined by

$$
\begin{equation*}
\Delta X=\sqrt{R_{g}^{2}-\Delta H^{2}-\Delta Y^{2}} \tag{17}
\end{equation*}
$$

At this point the conditions for terminating the firing at or before the ($j, i)$ th point have been found. It is now necessary to find the point of open firing and then evaluate the effect of terrain on the length of course line between the open fire point, cease fire point, and the battery location.

Open Fire point. Referring to Figure 8, it is seen that the open fire point is at H_{0}. The distance X_{D} is from the cease fire point which may or may not be the (k, i) th point to F_{A} Depending upon the value of H, the distance $X_{D R}$ may have positive, negative, or zero values. point F must be found as it is the point where the detection radar first intersects the target course line. Figure 13 diagrams the situation. Lines 1 and 2 represent different altitudes of approach and the different points of detection in range. The horizontal range to the point of detection is found as follows:

$$
\begin{equation*}
R_{n}=\frac{\Delta H}{\tan \theta} \tag{18}
\end{equation*}
$$

This relationship will be a good approximation since the ranges where the beam pattern begins to curve are far beyond the maximum effective range of any weapon system. The horizontal component of the maximum range of the system is determined to be

$$
\begin{equation*}
R_{x m}=\sqrt{R_{m}^{2}-\Delta H^{2}-\Delta Y^{2}} \tag{19}
\end{equation*}
$$

The distance $X_{D} \not \subset X_{D R}$ on the target course line must be above all terrain points and must be visible over its entire length from the battery position in question. The effect of terrain on low altitude approaches on the distance $X_{D}+X_{D R}$ may be such that its value is decreased to less than zero when no firing is possible. A method of evaluating the terrain's effect on the problem will be developed.

FIGURE 12

FIGUES 13

Terrain Evaluation. The method to be used for determining if line of sight exists from the point of radar detection to the battery position is to compute the slope of the line from this point to the battery as well as the slope from each intervening terrain point to the point of radar detection. If the slopes of the terrain points are greater than the slope to the point of radar detection then line of sight exists. If one or more terrain points extend above the line joining the battery and the point of radar detection, tine line of sight does not exist for the length of the course line beyond the masking terrain points. A new point of radar detection is then found. A new slope line is computed from the masking terrain point at the altitude of approach and the battery. As before, all remaining intervening terrain point slopes are examined to determine if any more are masking the target course line. If another point has a slope less than the battery radar detection point line, then this higher terrain point becomes the new radar detection point. Depending on the terrain, the distance $\mathrm{X}_{\mathrm{D}} \not \mathrm{X}_{\mathrm{DR}}$ may be uneffected or reduced to zero. If X_{NK} is the coordinate of the radar detection point then the slope to the battery position is given by

$$
\begin{equation*}
S_{L P B}=\frac{A_{H i}-B_{H j}}{B_{x j}-X_{N K}} \tag{20}
\end{equation*}
$$

The slope of each terrain point to radar detection point is

$$
\begin{equation*}
S_{L P m}=\frac{A_{H,} i-H_{m, 1}}{x_{m, 1}-X_{N K}} \tag{21}
\end{equation*}
$$

Where

$$
\begin{aligned}
& A_{H, i}=\text { altitude of }(k, i) \text { th terrain point } \\
& H_{m, I}=\text { altitude of the }(m, l) \text { th terrain point } \\
& m \quad=m t h \text { terrain point between the battery and }
\end{aligned}
$$

the radar detection point

$$
1 \quad=\text { coordinate index of the offset distance }
$$

from the course line

$$
X_{m, I}=X \text { coordinate of the intervening terrain }
$$

points.

As long as the engaged battery is located under the target course line, the determination of major terrain points that may mask the line of sight is a relatively easy matter and the slope calculations are simple. Figure 14 is a diagram of the calculation of slope. Points $1,2,3$, and 4 represent terrain points which may be typically found between battery j and the radar detection point L. As shown in the diagram, terrain 3 and 4 have greater slopes than the line $B_{X j}, L$. They do not mask the line of sight. Terrain point 2 has a smaller slope than $B_{X j}, I$ and does mask the line of sight. Therefore, point Z is the new radar detection point at which a new comparison slope must be calculated. Let Z be the distance from 2 to $B_{X j}$ on the horizontal. Then

FIGURE 14

$$
\begin{equation*}
z=\frac{\left(A_{H i}-B_{H j}\right)\left(B_{x j}-X_{2,1}\right)}{H_{2,1}-B_{H j}} \tag{22}
\end{equation*}
$$

This equation is derived from similar triangles in Figure 14. The value of the X coordinate of point 2 is given by

$$
\begin{equation*}
X_{N K}=B_{X j}-Z \tag{23}
\end{equation*}
$$

When the engaged battery is located at some offset distance, Y from the target course line, a procedure must be found to determine if line of sight exists between the battery j and all the terrain that lies between the lines joining the cease fire point, and radar detection point on the target course line. Figure 15 illustrates this problem. Notice the coordinate grid. At each intersection of a grid coordinate, an IBM card recorded the X , Y grid index along with the altitude at the intersection. Notice also that the X coordinate is parallel to the target course line. As previously indicated, the X coordinate increases in the direction of target flight. Point J is the battery position. In order to determine if line of sight exists from J to $X_{N K}$ the slope of all terrain located on the line $J, X_{N K}$ will be computed and compared to the slope of the line $J, X_{N K}$. In order to find the vertical and horizontal differential for all points on line $J, X_{N K}$, a series of triangles will be solved for the hypotenuse such as a, b, c in Figure 15. The distance ac is the horizontal distance for the slope

calculation. The distance $b c$ is, if added to $X_{N K}$, the X coordinate of the closest point to P. Using the altitude of point P which has been recorded as previously described in digitalizing the terrain, the slope of the line $X_{N K}, C$ is calculated. The distance bc is given by

$$
\begin{equation*}
b c=a b \tan a \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{ab}=\text { distance between } Y \text { grid lines } \\
& \tan a=\frac{\mathrm{B}_{\mathrm{Xj}}-X_{N K}}{Y}
\end{aligned}
$$

so that

$$
\begin{equation*}
b c=a b \frac{\left(B_{x j}-x_{N K}\right)}{\Delta y} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
a c=\sqrt{(a b)^{2}+(b c)^{2}} \tag{26}
\end{equation*}
$$

For each successive triangle, $a b$ is replaced by Nab where

$$
N=\left(B_{y j}-Y_{k, I}\right) / Y k-1
$$

and

$$
\begin{aligned}
& B_{Y j}=Y \text { coordinate of battery } j \\
& Y_{k, 1}=Y \text { coordinate of the target course line. }
\end{aligned}
$$

Substituting as appropriate,

$$
\begin{align*}
& a c=\sqrt{\left[\frac{\left(B_{x j}-Y_{k, 1}\right)}{Y_{k}}-1\right]^{2}(a b)^{2}\left[1+\left(\frac{B_{x j}-X_{N K}}{\Delta y}\right)^{2}\right]} \tag{27}\\
& b c=\frac{a b}{\Delta y_{y k}}\left(B_{y j}-Y_{K_{1}, 1}\right)\left(B_{x j}-X_{N K}\right) \tag{28}
\end{align*}
$$

Solving (27) and (28) for each value of N, enables the slope to be found at each Y_{k} interval and establishes line of sight along the particular line being examined. If any terrain slope is less than the comparison slope, then line of sight does not exist on that particular line from J to $X_{N K}$. In this case $X_{N K}$ is increased by one X coordinate grid distance, X_{k} and the slope calculation process is again repeated. The value of $X_{N K}$ which remains after each slope line is compared with terrain determines the actual radar detection point. In the three dimensional case it is possible to track a target up to a terrain formation masking a portion of the target course line between the cease fire and radar detection point, and either continue tracking through the mask in memory track, enabling relock, or to lose lock and require reacquisition on the other side of the mask. In the relock situation, the previous radar detection point $X_{N K}$ stands. If reacquisition is necessary, then a new Value of $X_{N K}$ is computed from the point where the terrain ceased to mask the course line. The value that $X_{N K}$ takes on
is determined by

$$
\begin{equation*}
T=\frac{X_{p}}{V_{T}} \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{X}}=\text { time for aircraft to pass terrain mask } \\
& \mathrm{X}_{\mathrm{p}}=\text { distance on course line masking line of sight }
\end{aligned}
$$

to the battery

$$
\mathrm{V}_{\mathrm{T}}=\text { aircraft speed }
$$

If $T_{X} \leq T_{m}$, where T_{m} is the memory tracking period, then $X_{N K}$ remains unchanged. If $T_{X}>T_{m}, X_{n k}$ receives a new value as shown below,

$$
\begin{equation*}
X_{N K}=X_{K} N_{2}+X_{N K} \tag{30}
\end{equation*}
$$

where

$$
X_{k}=\text { distance between } X \text { grid lines }
$$

and

$$
N_{2}=\text { number of grid lines spanned by the terrain }
$$

mask

Determination of Length of Course Line for Firing. With the computation of $X_{n k}$ and the cease fire point after considering maximum effective range of the system, maximum radar detection range, and effects of possible terrain masking, the distance $B_{X j}-X_{n k}$ is available for firing after the system delays have been accounted for. The system delays assumed in this model are as follows:
(1) Reaction time, t_{r}, which is the average of time for the radar operator to recognize target pips on the plan position indicator of the early warning radar set in the battery operations center, identification of the target and decision to engage the target.
(2) Transfer action time, t, which is the time for the fire control operators to receive an assignment, lock the tracking radar on the target account for computer settling time, and gun crew reaction time to fire the first round.
(3) Time of flight of the first round of the system to reach the target.

Average values for (1) and (2) are assumed but time of flight is calculated from system parameters. An equation for solution of time of flight for gun systems is given by

$$
\begin{equation*}
t_{f}=\frac{R_{o F}}{V_{0}-K_{p} R_{o F}} \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{o f} & =\text { range to open fire } \\
V_{o} & =\text { projectile muzzle velocity } \\
k_{p} & =\text { projectile drag }
\end{aligned}
$$

If the k_{p} is known, (31) is a useful formula. If a system graph of time of flight versus slant range is available, a regression equation is also useful. This model uses a regression equation approximateing a typical system curve of slant range versus time of flight. The concept is to place the first round on the target at the maximum effective range
of the system. If sufficient time exists for the target to travel from the point of detection to open fire range, then the system is assumed to expend the time

$$
t_{T}=t_{r} \not t_{a} \not t_{f}
$$

prior to the targets arrival at the open fire range. If the detection range is less than maximum effective range, then the time t_{T} will reduce the time for firing. If on the other hand only a part of the time t_{T} is expended prior to open fire range, then some proportion of the t_{T} will reduce the firing time.

$$
\begin{equation*}
D_{t}=t_{T} V_{T} \tag{32}
\end{equation*}
$$

where

$$
D_{t}=\text { the distance the target travels during the }
$$

system delay time
As a result of terrain evaluation, $X_{n k}$, as was seen, may have a new value. Therefore, the range to the maximum radar detection point is given by

$$
\begin{equation*}
R_{n}=\sqrt{\left(B_{x j}-X_{N K}\right)^{2}+\Delta y^{2}} \tag{33}
\end{equation*}
$$

This relationship is illustrated in Figure 15. Since detection range may have decreased to be less than R_{Km}, the open fire range, as a result of terrain restrictions, $R_{X m}$ is now given by

$$
\begin{equation*}
R_{x m}=\operatorname{MIN}\left(R_{h}, R_{x m}\right) \tag{34}
\end{equation*}
$$

Actually, $R_{X m}$ is the horizontal range component. The slant range to open fire becomes

$$
\begin{equation*}
R_{o F}=\sqrt{R_{x m}{ }^{2}+\Delta x^{2}+\Delta y^{2}} \tag{35}
\end{equation*}
$$

The distance along the course line from the radar detection point to open fire is given by

$$
x_{O R}= \begin{cases}\sqrt{R_{h}^{2}-\Delta y^{2}}-\sqrt{R_{x m}^{2}-\Delta x^{2}} ; & R_{h}>R_{x m} \\ 0 ; & R_{h} \leq R_{x m}\end{cases}
$$

Now the distance on the course line involved in reaction time t_{T} may be all within $X_{D R}$ if $X_{D R}>t_{T}$, or part of t_{T} may be in $X_{D R}$ if $X_{D R}<t_{T}$. If $X_{D R}=0$ then t_{T} will reduce X_{D} by the amount $t_{T} V_{T} X_{D}$ will also be reduced by the time of flight for the last round fired since any round fired after the point (k, i) is reached does not contribute to the probebility of kill up to point (k,i). Therefore, X_{D} is given by

$$
x_{0}\left\{\begin{array}{l}
\sqrt{R_{x m}{ }^{2}-\Delta y^{2}}-\Delta x-x_{T}-f_{f} V_{T} ; x_{D R} \leq 0 \\
\sqrt{R_{m m}{ }^{2}-\Delta y^{2}}-\Delta x-x_{T}+V_{f} ; V_{T} ; \ll x_{D R}<x_{+37)} \\
\sqrt{R_{x m^{2}}{ }^{2}-\Delta Y^{2}}-\Delta x-+f V_{T} ; x_{D R} \geq x_{T}
\end{array}\right.
$$

where

$$
\begin{aligned}
& X_{T l}=X_{T}-X_{D R} \\
& X_{T}=\left(t_{r}+t_{a}\right) V_{T}
\end{aligned}
$$

Having derived the equation for X_{D}, the length of course line available for firing, it only remains to determine the number of rounds that will be fired in the time the target passes over $X_{D^{\circ}}$. The time for target passage is

$$
\begin{equation*}
T=\frac{X_{D}}{V_{T}} \tag{38}
\end{equation*}
$$

Then the number of rounds fired is given by

$$
\begin{equation*}
N_{r}=\frac{T}{T_{1 / r}} \tag{39}
\end{equation*}
$$

Where $t_{I / r}=$ time to fire one round and the rate of fire is $\frac{1}{t_{1 / r}}$.

If $X_{D R}<X_{T}$, then the entire delay time including the time of flight of the first round occurs during the early warning time period and (39) becomes

$$
N_{r} \begin{cases}\frac{T}{T_{1 / r}}+1 & ; x_{D R} \geq x_{T} \tag{40}\\ \frac{T}{T_{1 / r}} & ; x_{D R}<x_{T}\end{cases}
$$

Probability Model. In Chapter I, it was stated that the model was being developed for three different air defense systems. In the development of the model, the general scheme was to permit all calculations to apply to each type of weapon system except for the parameters used in the computer model. Except for the regression equations used for determining time of flight, this generality has been successfurl. However, the models must be separated for probability calculations into a separate one applying to each weapon
system. In the case of the two types of gun systems, a common model is still possible with one or two exceptions. The radar controlled antiaircraft gun system will be delft with first. The range at which each round is fired is computed as follows:

$$
\begin{gather*}
R_{f i}=\sqrt{\left(X_{0}+\Delta X-V_{T} T_{1 / r} i\right)^{2}+\Delta H^{2}+\Delta y^{2}} \\
i=1,2, \ldots, N_{r} \tag{41}
\end{gather*}
$$

This model assumes that the area a gun fires into is defined by a circular normal probability curve. The square of the radius of the circle described thusly has been determined empirically in references 2, 3, and 4 is given by

$$
\begin{equation*}
\sigma_{i}^{2}=\left(.05 V_{T}\right)^{2}+R_{f i}^{2} 10^{-6}\left(\frac{\sigma_{E}+V_{T}}{1000}\right)^{2}+\left(10 t_{f}\right)^{2} \tag{42}
\end{equation*}
$$

where

$$
\sigma_{E}=\text { angular error of the gun in milliradians. }
$$

σ_{i} is the result of all the errors introduced by the fire control, data transmission, orientation, and alignment of the battery. Equation (42) is based upon the following theoretical equation:

$$
\sigma^{2}=S_{r}^{2}+S_{T}^{2}+S_{F R}{ }^{2}
$$

Where

$$
\begin{aligned}
S_{r}= & \text { quasi static errors consisting of } \\
& \text { (1) Boresighting and alignment } \\
& \text { (2) Range errors (radar developed), radar }
\end{aligned}
$$

timing errors due to mechanical alignment
(3) Servo lag errors
(4) Computer error
(a) static errors
(b) ballistic match errors
(c) prediction errors
(5) Battery emplacement errors
$S_{t}=$ Tracking perturbation
$S_{f r}=F l i g h t$ roughness

The constants and results of using equation (42) have been verified in actual test firings according to reference 2. Target Area. The average cross sectional area of the target's vulnerable sections is denoted by A in square feet. The vulnerable cross sectional area changes with different positional attitudes. An average value is assumed in the following calculations. In addition a method for calculating the area as a function of target attitude was also implemented. This area is computed from

$$
\begin{equation*}
A_{i}=\frac{X_{i}}{R_{i}} \quad A_{x}+\frac{Y}{R_{i}} \quad A_{y}+\frac{H}{R_{i}} \quad A_{H} \tag{43}
\end{equation*}
$$

where
$A_{i}=$ percentage of area presented for the ith round fired

$$
\begin{aligned}
& R_{i}=\text { the range of the } i \text { th round } \\
& X_{i}=\text { the } X \text { component of the range to the target }
\end{aligned}
$$

at the ith round fired

$$
A_{x}=\text { cross sectional area of the standard target }
$$ defined to be $400 \mathrm{ft}^{2}$ in the X coordinate.

$$
A_{Y}=\text { same as above for the } Y \text { coordinate set at }
$$

$800 \mathrm{ft}^{2}$

$$
A_{H}=\text { same as above for the } H \text { coordinate set at }
$$ $150 \mathrm{ft}^{2}$

$$
Y_{i}=\text { the } Y \text { component of the range to the target }
$$

at the ith round fired

$$
H_{i}=\text { the } H \text { coordinate of the range to the target }
$$

at the ith round fired

The standard target may then be compared with any other target for converting probabilities.

The probability that one round from the gun hits the target is the ratio of the vulnerable cross sectional area of the aircraft to the area the weapon fires into as follows:

$$
\begin{equation*}
P_{i}=\frac{A}{2 \pi \sigma_{i}^{2}}, i=1, \ldots, N R \tag{44}
\end{equation*}
$$

The probability required is the probability that one round kills the target. If the probability of kill given a hit
is $P[K / H]$ then the probability of kill, assuming independence, is $P[K / H\rfloor P[H]$. Using this fact equation (44) becomes

$$
\begin{equation*}
P_{i}=\frac{A}{2 \pi \sigma_{i}^{2}} \quad P[K \mid H] \tag{45}
\end{equation*}
$$

If N_{r} is the number of rounds fired, assuming independence of rounds fired from the gun, the probability of kill is given by

$$
\begin{equation*}
P_{K}=1-\prod_{i=1}^{N_{r}}\left(1-P_{i}\right) \tag{46}
\end{equation*}
$$

where
$\mathrm{N}_{\mathrm{g}}=$ number of guns in the battery. With all guns firing the probability that the aircraft is killed, assuming independence of guns in the battery, is given by

$$
\begin{equation*}
P_{k i}=1-\left(1-P_{k}\right)^{N_{G}} \tag{47}
\end{equation*}
$$

The second type of weapon system is the automatic weapon battery. This battery does not possess gun laying radar. It depends on the optical means for acquiring the target. Early warning radar is assumed available. All equations in the previous model are applicable except equation (42). The total error for a gun with optical sights is assumed circular normal with the square of the radius of the circle of error given by

$$
\begin{equation*}
\sigma_{i}^{2}=\left(. \mid V_{T} t_{f}\right)^{2} \tag{48}
\end{equation*}
$$

This equation like (42) has been empirically determined and verified according to reference 2 。

In the surface to air missile battery, the third type of weapon system, a simplified model is assumed. Specific models are not feasible in order for the computer model to be applicable to any type of missile system. Therefore, the single shot kill probability is p. Then the battery kill probability is given by

$$
\begin{equation*}
P_{k j}=1-(1-P)^{N_{r}} \tag{49}
\end{equation*}
$$

N_{r} was calculated previously. However, in the missile battery the number of rounds fired at any target is constrained by the basic load of missiles. Further the high single shot kill probability of a missile round precludes the firing of more than 2 or 3 missiles per target in most cases. This model insures that the value of N_{r} permitted is as follows:

Any particular battery firing policy may change the value of N_{r} as the tactical situation may dictate. For each terrain point k and altitude $i, P_{k j}$ is calculated for all batteries. Then the overall kill probability for all batteries is given by

$$
\begin{align*}
& P_{T K j}=1-\prod_{j=1}^{N_{1}}\left(1-P_{K j}\right) \\
& k=1,2, \ldots, N \tag{51}\\
& i=1,2, \ldots, 30 \\
& j=1,2, \ldots, N_{1}
\end{align*}
$$

The assumption of independence is quite valid for equation (51) since all batteries act independently in actual firing. Equation (46) also requires the assumption of independence between each round fired. If the weapon is a radar controlled gun using equation (42) to model the area within Which all rounds are fired, the probability of a hit for each round P_{i}, must be independent for each value of i for the assumption to hold in (46). When examining the factors which determined (46), it is seen that certain of the errors are the same from round to round or are corrolated errors. These errors tend to break down the assumption of independence. Most of the errors are random in nature from round to round and are the factors supporting the assumption of independence. It is not known how serious the correlated errors effect the results of equation (46). If independence were not assumed, (46) would be modified as follows:

$$
P_{K i j}=1-\left[\left(1-P_{1}\right)\left(1-P_{2} \mid \bar{P}_{1}\right)\left(1-P_{3} \mid \bar{P}_{1} \bar{P}_{2}\right) \ldots\left(1-P_{N} \mid \bar{P}_{1} \ldots \bar{P}_{(5-1)}\right)\right]
$$

The difference between the probabilities in (46) and the conditional probabilities in (52) constitutes the error if if is significant. All models found in the literature use the independence assumption. Investigation of the probabilities in (52) to determine how bad the assumption of independence really is may prove interesting.

CHAPTER III

THE COMPUTER MODEL

In order to perform the calculations necessary to produce a relationship of altitude versus probability at each terrain point within the range of any battery in the defensive complex, a computer program capable of performing the calculations is essential. If the resulting computer program is to have any lasting value, the program itself must be documented in order to make clear how the program was designed and how the problem was solved by the computer. An explanation of the Fortran variables is f ound in Appendix III with the Fortran program located in Appendix IV.

The program was originally designed to produce as an output an array of probabilities and corresponding altitudes for each terrain point examined. It was expected that the results would be punched on an output deck for use as an input to the computer program in reference $l_{\text {。 }}$ The output deck from this program would then replace the probability calculations in the other program. This replacement has not been possible for reasons to be explained in a later chapter.

Computer Inputs
The inputs to the computer are of two types. The terrain digitalization and the weapon system parameters. The three arrays $X_{k, 1}, Y_{k, i}$, and $H_{k, i}$ are the coordinates
of the major terrain points being examined. In the two dimensional problem this is all the data needed. If the three dimensional data is available, three more arrays would be needed to record the terrain contours through out the area of interest. The arrays $\mathrm{HH}_{\mathrm{I}, \mathrm{K}}$ for altitude, $X X_{I, K}$, X coordinate, and $Y Y_{I, K}$ the Y coordinate of each recorded terrain point would also have to be inputs to the program.

As previously explained, the model was developed for any weapon system. If the model is to represent any specific weapon system the input parameters necessary to define the system must be clearly understood. An explanation of the input parameters is contained later in this chapter. The parameters are defined in the Fortran code notation to facilitate their incorporation into the computer program.

Description of Computer Solution.
Figures $16,16 a$, and 17 are a block diagram of the computer program in general terms. The following description will relate to the block diagram.

Block \#l. All data is read into the computer with units in feet and seconds, angles are in degrees.

Block \#2. Most parameters of angular measure are given in degrees. The program converts all degrees to radiams. Block \#3. The program is solved once for each N_{1} batteries at each of 30 altitudes and for each of N terrain points. This constitutes $30 \mathrm{~N}_{\mathrm{l}} \mathrm{N}$ iterations which in the sample used in the actual program is $30 \times 11 \times 53=18,490$ iterations.

Block Diagraun Continued

Figure $16 a$

Block \#4. In order to permit the program to use the same code for solving the problem for all three types of weapon systems, the system parameters are converted to a common set which represents the values corresponding to the particular system being examined at any one time. Blocks \#5, 6, 7, 8, 9. Antiaircraft fire has been constrained by
(l) Firing only at inbound targets
(2) Not firing at targets out of range
(3) Not firing at targets lower in elevation
than the battery
(4) Not firing at less than minimun range
(5) Not exceeding maximum azimuth and elevation tracking rates. A section of computer code as shown is Figure 16 provides the calculations to determine, at each iteration, the occurance of any one of the five constraints listed above. The overall effect of each of the constraints will now be explained.
(1) The program is designed to permit firing up to minimum range or to the point of maximum azimuth and elevation tracking rates. If a terrain point is well behind the battery or in the opposite end of the course from the direction of target attack, the minimum point is thusly established. On the other hand, if the terrain point in question is in the direction of attack, then the terrain point itself is the cease fire point unless the above constraints act to increase the cease fire range.
(2) Firing at targets that will always be out of range is prevented by assigning zero to the probability of kill if the range to the terrain point and altitude is beyond system range.
(3) If a target is lower in elevation than the battery, zero is assigned the probability of kill for that battery at that altitude。
(4) When either minimum range, maximum azimuth and elevation tracking rates are exceeded, whichever occurs first, the cease fire range is increased to that point. Block \#lo. The subroutine LOS is called at this point which calculates the distance of course line available for firing. The function of LOS will be explained later. Block \#ll. The length of target course line available for firing resulting from terrain considerations may produce a new value for open fire range. Based upon the value of X_{D}, the open fire range is calculated.

Block \#12. Depending on what type of battery is engaged, the program will go through one of the three paths in this block. The probability of kill depending on the number of rounds fired is calculated for one of the three systems. Block \#14. The overall kill probability is computed here for one iteration which includes all weapons at one terrain point and one altitude。

Block \#l5. After all iterations are completed the program is capable of plotting the curves of altitude versus probability. Any other output is available when desired.

Block \#l. Receiving all necessary data from the main program, all calculations planned are possible. Radar warning time is determined prior to terrain evaluation. The value for the point of first detection is the result of this block.

Block \#2. Here the program determines which terrain points lie between the battery and the point of first detection. If any terrain interrupts the line of sight, a new value for radar detection point is calculated. The computations are for two dimensional terrain which mean terrain for batteries on the target line of sight. Block \#3, 4. If three dimensional terrain is used, subroutine $S E E$ is called where the point of radar detection, as a result of terrain, is found.

Block \#5. Open fire range without regard to delay is calculated for use in determining time of flight.
Block \#6. Again the program branches into three paths, one for each weapon system. This is necessary since each system has a different function of slant range versus time of flight. Block \#7. The delay time which is the sum of crew reaction time, system delay time, and time of flight of the first round fired is calculated in this section. This value is not used in the case where early warning time is less than total delay time.

Block \#8. After all the above calculations are completed, it is possible to find the actual point of open fire. This
point is the range at which the first round is placed during delay time to maximize the number of rounds fired. Three possible situations arise in calculations for the open fire point as shown in Chapter II, equation (35)。 These are
(I) Adequate warning time exists for all delay time to occur during the early warning period.
(2) Only part of the delay time occurs during the early warning period and the open fire point is reduced.
(3) All of the delay time must fall during possible firing time due to the radar detection point being less than maximum effective range. The subroutine sends X_{D} back to the main program.

A Description of Input Parameters

At some later time, it may be desirable to compute the results from the model for an actual air defense system. In order to do this, an explanation of the input parameters is essential. A description of how to insert new inputs is provided below. Statement number 4 in Appendix III is the data statement。 Contained in this statement are all the system parameters. The program is convertable to any specific weapon systems by changing the values in the program data statement to conform to those of the new systems. Included with the description of each parameter is the value assumed in the current form of the program.

Parameter	Description
NAP	Number of altitude points above terrain examined. $\mathrm{NAP}=30$
NTT	Number of terrain points examined. $N A P=84$
NFU	Number of batteries placed in the terrain. $N F U=11$
ELRMG	Maximum elevation tracking rate for the radar controlled gun system。 ELRMG $=10 \% / \mathrm{sec}$
ELRMA	Maximum elevation tracking rate for the automatic weapon battery. ELRMA $=20^{\circ} / \mathrm{sec}$
ELRMM	Maximum elevation tracking rate for the missile battery. ELRMM $=15^{\circ} / \mathrm{sec}$
AZRMG	Maximum Azimuth tracking rate for radar controlled gun. AZRMG $=12 \% / \mathrm{sec}$
AZRIMA	Maximum azimuth tracking rate for automatic weapon battery. AZRMA $=20^{\circ} / \mathrm{sec}$
AZRMM	Maximum azimuth tracking rate for the missile system. AZRMM $=15 \% \mathrm{sec}$
RMG	Maximum effective range for radar controlled gun battery. RMG $=45,000$ feet
RMA	Maximum effective range AAW battery. RMA $=6,000$ feet
RMM	Maximum effective range missile system. RMM $=105,600$ feet 3s, 20 ?
THETI	Elevation angle for lower portion of detection radar beam pattern at half power point. $T H E T I=1.1 \circ_{2}$

Parameter
THET 2

THET 3

API

CONT

YK

VT
TRG
TRA
TRM

ATG
ATA
ATM

LT 1

LT 2

LT 3

Description
Elevation angle for detection radar，AAV battery．THET $2=.5$

Elevation angle for detection radar，missile battery． THET $3=1 .{ }^{\circ} 0$

The constant term in the linear equation for slant range versus tine of slight，gun battery． $A P I=0$

The constant in the expo－ nential equation for time of flight for AAN Battery． CONT $=.0002$

Distance between Y grid Iines， three dimensional terrain． $Y K=500$ feet．

Target speed．$V T=350 \mathrm{ft} / \mathrm{sec}$
Crew reaction time．This time is measured from time of first decision of detection of tar－ get to track radar lock on． This is an average figure． $T R G=$ gun system，$T R A=A A N$ system，and TRM＝missile system。TRG $=30 \mathrm{sec}$ 。 $T R A=10$ sec．\quad TRM $=30 \mathrm{sec}$.

System delay time measured from radar lock on to first round fired for gun battery， AAN battery，and missile battery．$A T G=20 \mathrm{sec}$ 。 $A T A=5$ sec．ATII $=10 \mathrm{sec}$.

Total number of gun batteries． IT $I=4$

Total number of AAN batteries plus gun batteries．LT $2=10$

Total number of gun batteries plus AAll batteries plus missile batteries．IT $3=11$

A	Cross sectional area of target. The average value as target aspect changes. $A=350$ feet
SIG	Angular error of radar cion trolled.AA gun when firing at a fixed point. $S I G=1.5$ mille radians
GUNS	The number of guns per gun battery: GUNS $=4$
TCRA	Cyclic rate of fire, AAN battery. TCRA $=6$ rounds $/ \mathrm{sec}$
PKSM	Single shot kill probability for missile system. PKSM $=.48$
NR	The firing policy of the missile battery, NR rounds per target. $N R=2$
TIM	Time for one round fired from the gun battery. TIM $=20 \mathrm{sec}$
AGUN	Number of guns per AAN battery. AGUN $=4$
TX	Memory track period for all systems. TX $=15 \mathrm{sec}$
LY	Index number for the Y coordinate of the target course line terrain points. $L Y=1$
RMFG	Minimurn firing range, gun battery. $\mathrm{RMFG}=500$ feet
RMFA	Minimum firing range for AAN battery. RMFA $=500$ feet
RMFM	Minimum firing range for missile system. RMFif $=9500$ feet
FE	Maximum elevation angle for all track radars. $F \dot{E}=87^{\circ}$
YM	Slope of the linear regression equation for time of flight of the gun battery. $Y M=.0007$

Slope of linear regression equation. ${ }^{\text {SM }}=1200$

PG

PA
Probability of a kill given a hit for the gun battery. This is the lithality factor. $P G=.8$

Probability of kill given a hit for the AAW battery. $P A=.3$

Certain other parameters may be found in the data list。 If they are not included in the list above, they are not in use in the final form of the program and should be disregarded.

Terrain Data Input. Statement number 7 in the main program is the read statement which picks up the data punched on 84 data cards. Here the variable NTT is set equal to 84. If in a subsequent use of the program more terrain points were required, changing the value of NTT and providing the same number of data cards provides the change. Statement number 8 reads in the coordinates of the Batteries. It is essential that the first system type be radar controlled gun batteries up to LT 1 。 Then the next type must be AAW batteries up to LT 2 which was defined to be LT 1 of the number of AAW batteries. The last system in order is the missile battery. Generally only one missile battery will be in range of a single azimuth of approach unless the azimuth is in the overlapping zones of fire of two adjacent
batteries. setting the values of LT l, Lt 2, and LT 3 along with the proper ordering of the data cards of each type of weapon system constitutes the conversion to a new defensive complex.

Three Dimensional Data Input. If three dimensional data is to be used, three new arrays must be introduced for the X , Y, and H coordinates of each recorded terrain point. When this is done, statement 6 in subroutine SEE must be replaced by a statement using the new altitude array for H(J,ly) presently in the program.

CHAPTER IV

PROGRAM VERIFICATION, RESULTS, AND ANALYSIS

The underlying factor in the model design from conception has been that the air defense capability is maximized. This means that the attacking aircraft situation is the worst possible condition for survival. This fact is apparent when considering the general model structure presented in Chapter II. It should be recalled that the aircraft was required to penetrate the defense from out of range to the defended area flying a straight and level course, with a raid size of one aircraft, and no electronic counter measures. In addition, the defense was assumed to be alerted, manned, and concentrating on the single intruder. The aircraft survivability index calculated in the model when submitted to a programing algorithm for minimization within the aircraft flight constraints finds the flight path which minimized the probability of kill under the worst possible attacking conditions. In actual application, anything the aircraft may do relieving the sever restrictions, wholly or in part, increases the survivability index. The act of following the programed output recommended flight path, penetrating the defense with more than one aircraft in the raid, and using.electronic counter measures will increase survivability. These facts must be considered when evaluating the model's results.

With the development of the model and the program for the computer, a verification of its main computing aspects is in order. Following this, the computer results will be presented and analyzed.

Verification of Computer Results
The two main problems solved by the computer within the mathmetical model are the cälculations for determining line of sight, in two dimensional terrain only, and the calculations for the probability of kill given a positive course line. All other computations within the program support these main requirements.

Terrain Evaluation. In order to verify the computer solution of the line of sight, a sample of computer print out contained in Figures 18 and 19 is presented. Figure 18 is a case where the coordinates of the point of maximum radar detection, $X_{n k}=26140$. The range of first detection is 163,060 feet since the coordinates of Battery 6 are given as $B_{X 6}=189,200$ on the X axis and 6700 feet altitude. The comparison slope $S_{L P B}=.00873, k k=46$, and $I I=5$. II is the terrain point number just greater than $X_{n k}{ }^{\circ} K K$ is the terrain point number just less than $\mathrm{B}_{\mathrm{x} 6^{\circ} \text {. Thus, the program }}$ has determined the number of intervening terrain points to examine for slope comparison. As explained in Chapter II, if any slope $S_{L P}$ is less than $S_{L P B}$ then line of sight as corrected by the distance Z exists. Observing Figure 18 again, it is seen that $S_{L P}(5)$ through $S_{L P}(29)$ are greater

than $S_{L P B^{\circ}}$ When $S_{L P}(30)$ is compared to $S_{L P B}$, it is found to be less and thus masking line of sight. $Z=70338.14$ was calculated from equation (22) Chapter II. A new value for $X_{n k}$ is given as $X_{n k}=118862$ from equation (23). Using the assumption that targets fly over the terrain when the flight path passes through terräin, a new comparison slope is calculated and $X_{n k}$ is changed from 26140 to 118862. Three more terrain obstructions exist such that the final value of $X_{n k}=183740$. From equation (37), $X_{D}=-1953.7$ which indicates that no time is available to fire any rounds and battery 6 contributes no probability of kill at terrain point 62, and altitude 7. Figure 19 illustrates a case where terrain masking occurs once but a distance of 4830.9 feet for X_{D} remains for firing remembering that the time for firing the first and last round have already been removed from X_{D}. Therefore three rounds are fired, one more than shown on Figure 19 which is the last round fired. The slope comparison calculation is performed 18,490 times less those cases where negative elevation angles occur and the terrain point is out of range of the battery being evaluated.

Probability Calculations. A sample of computer output of probability calculations is found in Figures 19, 20, and 21. Figure 19 is a sample of a radar controlled gun battery. As was seen, three rounds were fired with a probability of kill of $P_{k}(1)=.46$. This is the battery kill probability resulting from 12 rounds fired, 3 per gun at a range of

Camputer Probability Calculations Automatic Weapon Battery

Figure 20

Camputer Probability Calculations Gun Battery

Figure 21

5089, 3059, and 1280 feet. Due to the short range, the P_{i} are . 04, . 08, and .1. Looking at Figure 21 , a run of 17 rounds was fired. Here the altitude eliminates terrain masking with a course length of $X_{D}=33762.9$ feet. However, the range has increased to 23,526 feet so that the P_{i} vary from . 00046 to .061. The battery kill probability, $P_{K}(4)=.46$. This probability is the same as for battery I in the earlier example. The short rance in the other example accounts for the high probability for only 12 rounds fired. Figure 20 is the calculations for an automatic weapon battery. Fifty rounds were fired in this case. Actually more rounds could have been fired but the constraint on this weapon system limits firing to 50 rounds. The range is about 4500 feet on the average with P_{i} varying from .000016 to .0000217 . The battery kill probability is $P_{k}(5)=.0064$.
Program Results. Appendix V is a set of sample curves which plot altitude versus cumulative probability of kill for specific terrain points. The program prints out the curve for each terrain point examined. Included in the set are illustrative examples of program results. Appendix VI is a set of curves plotting probability cost index versus altitude above terrain. This curve is obtained by the following relationship:

$$
\begin{align*}
P_{1}=P_{H I, K, i} & +\left(1-P_{D 1}\right) \tag{53}\\
k & =1, \cdots, N \\
i & =1, \cdots, 30
\end{align*}
$$

where

$$
P_{D i}=\text { the probability that the aircraft pilot }
$$ detects the navigational target.

The values for $P_{D i}$ were obtained from the computer program VISTRAC in reference 1 .

Analysis of Results

The purpose of the mathmetical and computer models of the air defense complex is to compute and plot a curve of provability of kill versus altitude at each terrain point. Having obtained these curves, it is necessary to analyze them in order to determine the reasons for their shape. With this information, the application for the model's output can then be considered.

Terrain Effects. One of the most significant contributors to the shape of these curves is the terrain within which the air defense is situated. As was seen in Chapter II, Figures 5 through 7, the terrain has different formations producing different curves. The curves in Appendix V illustrate this fact.

Due to inaccessibility, many prominent terrain points are not occupied by firing batteries and only cause serious masking to batteries located on accessible terrain with less altitude than some others." The result is that at low altitudes of approach, some batteries may be masked and contribute no probability of kill to the target. Whereas at higher altitudes the target is unmasked soon enough to
be fired upon by the battery. Figure 22 illustrates this concept. The line of sight to altitude l intersects the course line at A and $X_{D l}=B E$. From this result it is clear that the probability of kill at altitude 2, $P_{K k 2}>P_{K k l}$ since $X_{D 2}>X_{D 1}$ due to increasing the altitude of approach. With the effect of terrain masking above, more rounds will be fired as altitude is increased. It can be observed in Appendix V that some curves appear to have discrete jumps or regions of discontinuity. This is caused by terrain effects as well. These jumps occur, when at the lower altitudes, a particular battery with high single shot kill probability is masked. At the mext altitude of approach considered, the battery is suddenly unmasked and a large jump in probability is the result. Effect of System Parameters. The battery effectiveness envelope is another influencing factor to curve shaping. This envelope was shown in Figure l, Chapter II。 In Figure l, notice the curve of the envelope as altitude increases. This curve is an assumption which approximates the effectiveness of the average type system in use. If this model is used to simulate a weapon system with a radically different envelope, then a modification may be in order. The effect of the assumed envelope is also illustrated in Figure 22. At altitude 3, the line of sight intersects the target course line at G, but is beyond the range of the gun system. Therefore, $X_{D 3}=C F$ since C is the point where the target course line intersects the weapon system envelope.

Figure 22

It is obvious that $C F<B F$ by the amount of $B C$ from which it is determined that $X_{D 3}<X_{D 2}$ and accordingly $P_{K k 3}<P_{K k 2}$. This then illustrates why the curves tend to slope down as altitude is increased over some regions of altitude.

Another system parameter which effects the output curves is radar performance. In Chapter II, the half power point of a radar beam pattern is assumed to be the conservative limit of usable volume coverage provided. Therefore, any target in this model falling within the beam pattern is assumed detected with probability l. This assumes a lateral range curve to be

$$
\begin{equation*}
P(x)=1-e^{-F(x)} \tag{54}
\end{equation*}
$$

where

$$
F(x)= \begin{cases}\infty & ; x \leq R \tag{55}\\ 0 & ; x>R\end{cases}
$$

Substituting (55) into (54) results in

$$
P(x)= \begin{cases}1 ; & x \leq R \tag{56}\\ 0 ; & x>R\end{cases}
$$

These equations are found in reference ll. Figure 23 is a plot of such a lateral range curve. The model assumed no maximum value for R as a parameter input. The maximum value R can take on is limited by the length of the terrain coordinate system. Maximum R used for the computer program is 47 miles. A nominal value for battery acquisition radars is 65 miles. If a coordinate system were longer than the

Lateral Range Curve

Figurs. 23
maximum rated range of a particular system, then a vilue of R for radar detection would have to be assigned. rurther, if the radar detection range normally used in the program were at the maximum rated range, the assumption of equation (56) may introduce significant error and a different radar detection rate would have to be incorporated into the model. The reason this factor was not developed was due to the extremely low altitudes of target approach where a detection range does not become greater than a value much less than the maximum rated range of the radar. Such a development would constitute a needless complication.

Two other parameters were used to perform a sensitivity analysis to determine the effect of a change in these parameters on the probability curves. The minimum and maximum range of the AAW battery was originally 500 feet and 6000 feet respectively. These values were changed to 1500 and 9000 feet for one run of the computer. Curve number 8 in Appendix V is the result of using both parameters plotted on one graph. Curve I is the result of the increased parameters. These two curves are not radically different, but the increased range did cause a general increase in probability for most values of altitude. The rate of fire and total number of rounds fired per run per gun is a more powerful factor in the model. Curve 5 in Appendix V is a curve for $A A V$ batteries firing up to 200 rounds per gun per run at 1000 rounds per minute with 10 guns firing independently per battery. The result of this
situation is a very high probability curve which is obvious since if sufficient rounds are fired high probabilities will result. Practical constraints will not permit this type of performance in the usual case.
Battery Enplacement Effects. The probability curves generated by the terrain in the computer model are found to be quite different from terrain point to terrain point. A few curves from adjacent terrain points are similar in the case where terrain does not change rapidly. Except for this case, the curves have different shapes. A different curve will obviously result if a different battery emplacement scheme is implemented since new battery to terrain masking situations occur. As the program calculates probabilities for the different terrain points, new situations occur such as a battery on a high peak is in range or a battery behind a peak is unmasked. This variation in terrain conditions is Why the curves are not exactly related even though the probabilities calculated are cumulative. The curves for terrain points 47 and 69, curves 3 and 4 , Appendix V, when compared, are found to be quite different. An additional factor to be kept in mind is that the altitudes above terrain are not at the same absolute altitude. Altitude 600 at terrain point 47 is not necessarily the same altitude at terrain point 69. There is no intention that there be any relationship between the different terrain points. The probability curve for each terrain point is separate and
distinct from any other unless, of course, ther is little terrain change between them except the X coordinate distance.

Model Application

In Chapter I, it was pointed out that the work done in reference 1 found the relationship between probability of radar detection and altitude above terrain to be approximately linear. As a result, the computer program incorporated a linear fit to the data. Following this the probability of pilot navigation was added to the linear function. The functional relationship was necessary for use in the simplex algorithm for linear program solution for the optimal altitude of approach. At the beginning of this work, the concept was to develop the air defense model as an input to the program in reference l. After examining the output curves of Appendix V a linear fit did not appear feasible for the data. In order to determine how bad a linearity assumption would be, a regression equation was calculated from the data of terrain point 62 in Appendix V. Curve number 4 is a plot of the equation. The function derived is given by

$$
\begin{equation*}
Y=.128+.000369 X \tag{57}
\end{equation*}
$$

To submit the output data to a linear fit would introduce serious misrepresentation of the model capability. This fact is obvious from the results of the linear fit to the data of terrain point 62 .

Abstract

Probability Cost Index. The curves in Appendix VI are a probability cost index. The values are not true probabilities since they are the sum of two probabilities as shown in equation (53). The term cost is defined to be a measure of the material effort necessary to penetrate the defense, reach the target, and deliver the ordnance. Since either one of the events constitutes failure in the mission, the higher the value of the cost index the greater the chance that the mission will be a failure. Consequently, the survivability of the aircraft in the penetration effort is maximized when the cost index is minimized.

When examining the curves in Appendix VI, it is observed that each curve contains a global minimum. The curves then possess a point which minimizes the cost index and provides the optimal survivability index number at the associated altitude.

CHAPTER V

CONCLUSIONS AND EXTENSIONS

The development of the air defense model within the assumptions and limitations is complete. As a result of the output from the computer model it is concluded:
(1) That the probability calculations developed a result that varies with terrain, air defense systems, and employment tactics. Consequently, no assumption of linearity between probability of kill and altitude above terrain is justified. In fact, an investigation of the degree of polynomial that a least square fit would require to model the curves in Appendix VI is necessary. Such an investigation would be required to discover how the degree would vary with terrain points using the same system parameters. It would also have to determine how the degree would vary with different air defense systems and terrain. Before an algorithm can be found to solve for the minimum point on the cost curve, the curve itself must be functionally modeled.
(2) That no practical results would be obtained from inserting the output from the air defense model into the program in reference 1 . If such an attempt were made, the simplex algorithm used in reference 1 would obtain a solution, but it would not be known if the solution were the
\&lobal minimum. Further, the linear regression curve would erossly missrepresent the probabilities calculated by the air defense model.
(3) That further investigation is necessary to discover the feasibility of fitting the curves in Appendix VI to some degree polynomial such that the degree chosen is acceptable for the curves of all the terrain points. If a single degree polynomial is not feasible, then a method of finding the best fit for each curve over a specified range of altitudes must be adopted.
(4) That having determined the functional relationship for the probability cost curve, a non linear programing algorithm must be found that solves for the global minimum of each curve within the aircraft flight path constraints used in reference 1 。

Air Defense Model Extensions

Two major assumptions in the air defense model should be investigated further. The assumption of independence between rounds fired successively from the same gun may introduce serious error. Research into the determination of the relative weitints eiven to correlated and unoorrelated error should give an indjcation of 'iow unrealistic the assumption of independence really is. If independence is unacceptable then means for finding the conditional probabilities associated with dependently fired rounds should be studied.

An additional problem for further study is the assumption that the gun fire shot pattern is circular normal. Fuch evidence points to the fact that the shot pattern is actually elliptical normal. Empirical equations for the elliptical normal error pattern such as equation (42) and (48), Chapter II in the circular normal case should be used if such equations exist.

The final extension is in the area of three dimensional terrain. As was previously pointed out, the Fortran code written for evaluation of line of sight in three dimensional terrain was not verified. With the availability of digitalized terrain this portion of the program should be verified. However, one serious disadvantage in the concept used in this model is the requirement that the target course line be parallel to the X axis of the coordinate system. The problem lies in the necessity of assigning new altitude values for each different route of approach into the target. Another method for determining line of sight between 2 points in 3 dimensional terrain is found in reference 6. This method requires a least square fit to the terrain points lying on the line between the two points for which line of sight is being determined. Then the method determines if the curve extends above the line of sight.

```
5927

1．Miller，\({ }^{\text {．}}\) ．So，Jro and Brown，E．E，Aircraft Surviv－ ability Index for Low Altitude Penetration，Thesis， U．So Naval Postgraduate School，Monterey， California，June，1968。

2．U．S．Army Material Command，Conventional AA Neapons （Effectiveness）Free World，U．S．A．Foreign Science and Technology Center，December 1965.

3．Shank，E．B．and Henderson，A。S．，A Comparative \(\frac{\text { Evaluation }}{\text { Weapon syst } \frac{\text { ems }}{} \frac{\text { Several }}{\text { Laborat }} \text { Fory } \frac{\text { Abd }}{\text { Aberdeen }} \frac{\text { Area }}{\text { Proving Ground，}} \frac{\text { Defense }}{} \text { Systems，}}\) Maryland，Hemorandum no。1930，of January 1964.

4．Ordnance Corps Developnent and Proof Services，A Study of Errors Associated with the M33 Fire Control System， Aberdeen proving Grounds，Maryland，July， 1957.

5．Vukmir，V．，Sudeimer，R。 H．，Lum，G。H．，Mostler，L．P．， Ecker，Ho Ao，Bell，Ro Jo，and Libby，To Lo， Analytical Methods and Specific Simulation Models for Determining Penetration Effectiveness of Manned Air－ craft，Air Force Systems Command，Wright Patterson Air Force Base，Ohio，April，1964．

6．Doughterty，C．Bo and Tuck，R。E。，Effectiveness of Guns，Rockets，and Unorthodox Weapons for Low Altitude Air Defense in the ZI，Rand Research Memorandum， Rm＝1172，of 15 January，1954。

7．Harrison，J．Lo，A Computer Simulation of an Aircraft Penetration Over Hostile Terrain，Thesis，U．S．Naval postgraduate school，Monterey，California， 1965.

8．Green，Jo Ro，and Martin，Ro Ho，An Operations Model for Estimating the Effectiveness and Attrition of Tactical Aircraft when penetrating Defenses at Iow Altitude，Rand Memorandum Rm－3295－PR，December 1962.

9．Sodergren，Po Ro，Naval AA Gunfire Dispersion for Point Defense，The Johns Hopkins University，Applied physics Laboratory， 1964.
10. Sesse, Mathematical Model Reconnaissance and Penetration study, Volume IIB- PENSAM Specifications, U. S. Air Force Systems Command, Nright Patterson Air Force Base, Ohio.
11. Koopman, B. O., Search and Screening, OEG Report No. 56, Washington, D. C. . 1946.

\section*{APPENDIX II}

TERRAIN AND BATTERY COORDINATES
COORDINATES DF MAJOR TERRAIN POINTS


\section*{COORDINATES OF MAJOR TERRAIN POINTS CONTIRUED}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 265927 . \\
& 268257 \\
& 275105 \\
& 279714 \\
& 281700 \\
& 285209 \\
& 286963
\end{aligned}
\] & \[
\begin{aligned}
& 7496 \\
& 7028 \\
& 6983 \\
& 7293 \\
& 7300 \\
& 8045 \\
& 8012
\end{aligned}
\] \\
\hline 288883: & 3375: \\
\hline 291700 . & 7162. \\
\hline 294290. & 7363. \\
\hline 295721. & 7773. \\
\hline \(297609^{\circ}\) & 7534. \\
\hline \(302107^{\circ}\) 。 & 7627. \\
\hline
\end{tabular}


\section*{GLOSSARY OF FORTRAN VARIABLE NAMES}

The following is a list of Fortran variable names in the order of appearance. This list excludes the system parameters which were presented in Chapter III。
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{K(K,LY)} & THE X COORDINATE OF THE KTH TERRAIN \\
\hline & POINT WITH THE LY TH Y Coordinate Index \\
\hline \multirow[t]{3}{*}{H(K,LY)} & THE H COORDINATE OR ALTITUDE OF THE KTH \\
\hline & TERRAIN POINT WITH LY TH Y COORDINATE \\
\hline & INDEX \\
\hline \multirow[t]{3}{*}{\(Y(K, L Y)\)} & THE Y COORDINATE OF THE KTH TERRAIN POINT \\
\hline & NITH LY TH Y COORDINATE INDEX, SET EQUAL \\
\hline & TO O FOR TNO DIMENSIONAL TERRAIN \\
\hline \(B X(J)\) & X COORDINATE OF THE JTH BATTERY \\
\hline \(B Y(J)\) & Y COORDINATE OF THE JTH BATTERY SET EQUAL \\
\hline
\end{tabular} TO 0 FOR 2 DIMENSIONAL TERRAIN
\(\mathrm{BH}(\mathrm{J}) \quad \mathrm{H}\) COORDINATE OF THE JTH BATTERY
RANGE(I) AN ARRAY USED WITH SUBROUTINE UTPLOT
\(A H(I) \quad\) ALTITUDE ABOVE TERRAIN FOR THE ITH POINT
DELTX THE DIFFERENCE IN X COORDINATES OF THE
    KTH TERRAIN POINT AND THE JTH BATTERY

DELTY

DELTH

THE DIFFERENCE IN Y COORDINATES OF THE KTH TERRAIN POINT AND JTH BATTERY

THE DIFFERENCE IN THE H COORDINATES OF THE KTH TERRAIN POINT AND THE JTH BATTERY
\begin{tabular}{|c|c|}
\hline ELRX & IAXIMUM ELEVATION TRACKING RATE FOR THE SPECIFIC BATTERY BEING EXAMINED \\
\hline A ZRX & MAXIMUM AZIMUTH TRACKING RATE OF THE \\
\hline & SPECIFIC BATTERY BEING EXAMINED \\
\hline RMF & MINIMUM RANGE OF THE SPECIFIC BATTERY \\
\hline & BEING EXAMINED \\
\hline RM & MAXIMUM RANGE OF THE BATTERY BEING \\
\hline & EXAIINED \\
\hline THETA & DETECTION RADAR LOWER EDGE OF BEAM \\
\hline & PATTERN ELEVATION ANGLE IN DEGREES OF \\
\hline & THE BATTERY BEING EXAMINED \\
\hline AT & SYSTEM DELAY TIME FOR THE BATTERY BEING \\
\hline & EXAMINED \\
\hline TR & CREN REACTION TIME FOR THE BATTERY BEING \\
\hline & EXAMINED \\
\hline RS & SLANT RANGE TO THE ( \(\mathrm{K}, \mathrm{I}\) ) TH POINT \\
\hline HF & HORIZONTAL COMPONENT OF MINIMUM RANGE \\
\hline RXS & HORIZONTAL COMPONENT OF RS \\
\hline HFT & HORIZONTAL COMPONENT OF THE RANGE OF TIE \\
\hline & POINT WHERE THE LINE DRANN FROM THE \\
\hline & MAXIMUM ELEVATION ANGLE INTERSECTS THE \\
\hline & TARGET COURSE LINE \\
\hline RSA & THE SLANT RANGE WHERE MAXIMUM AZIMUTH \\
\hline & RATE OCCURS \\
\hline RSE & THE SLANT RANGE WHERE MAXIMUM ELEVATION \\
\hline & RATE OCCURS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline XD & THE DISTANCE ON THE TARGET COURSE LINE AVAILABLE FOR FIRING ALL BUT FIRST AND LAST ROUNDS \\
\hline ROF & OPEN FORE SLANT RANGE \\
\hline T & TIME AVAILABLE FOR FIRING EXCLUDING \\
\hline & FIRST AND LAST ROUNDS \\
\hline NS, XNR & NUMBER OF ROUNDS FIRED PER RUN \\
\hline RH & HORIZONTAL RANGE TO MAXIMUM RADAR \\
\hline & DETECTION POINT ON COURSE LINE \\
\hline TF & TIME OF FLIGHT \\
\hline GUNS, NGUNS & NUMBER OF GUNS PER BATTERY, RADAR CON- \\
\hline & TROLLED GUN BATTERY \\
\hline R(II) & RANGE OF II TH ROUND FIRED \\
\hline SIG(II) & THE FIRING ERROR RADIUS OF THE II TH \\
\hline & ROUND FIRED \\
\hline SIGM & FIRING ERROR OF THE RADAR CONTROLLED GUN \\
\hline EP(II) & THE PROBABILITY OF KILL OF THE II TH \\
\hline & ROUND FIRED \\
\hline TN & \[
\prod_{L=I}^{N S}(I-E P(I I)) \text { FOR THE RADAR CONTROLLED }
\] \\
\hline \(P D(J)\) & PROBABILITY OF KILL OF THE JTH BATTERY \\
\hline TY & \[
\prod_{L=I}^{N S}(I-E P(I I)) \text { FOR AAN BATTERY }
\] \\
\hline NT, XNR & NUMBER OF MISSILES FIRED \\
\hline TP & \(\prod_{L=I}^{N F U}(I-P K(J))\) THE PROBABILITY THAT NO \\
\hline & ROUND KILLS THE TARGET \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{PHI(K,I)} & PROBABILITY THE AIRCRAFT IS KILLED AT THE (K,I)TH POINT IN SPACE \\
\hline & SUBROUTINE LOS \\
\hline \multirow[t]{2}{*}{RXM} & HORIZONTAL COMPONENT OF MAXImUM FIRING \\
\hline & Range \\
\hline \multirow[t]{2}{*}{XNK} & X COORDINATE ON TARGET COURSE LINE OF \\
\hline & FIRST RADAR DETECTION POINT \\
\hline \multirow[t]{3}{*}{WK} & X COORDINATE INDEX OF LAST TERRAIN POINT \\
\hline & betaeen point in space for calculation \\
\hline & and the battery \\
\hline \multirow[t]{3}{*}{II} & X COORDINATE INDEX OF FIRST TERRAIN POINT \\
\hline & betiveen point in space for calculation \\
\hline & AND THE BATTERY \\
\hline \multirow[t]{2}{*}{SLPD} & the slope of the line betaden the point \\
\hline & Of FIRST RADAR DETECTION AND THE BATTERY \\
\hline \multirow[t]{3}{*}{SLP (M)} & the slope of eaci of the m terrain points \\
\hline & that may cause terrain masking on each \\
\hline & FIRING RUN \\
\hline \multirow[t]{2}{*}{z} & distance on target course line from point \\
\hline & OF TERRAIN UNMASKIng to the battery \\
\hline \multirow[t]{3}{*}{XDR} & the distance between point of first \\
\hline & RADAR DETECTION AND OPEN FIRE POINT, ALSO \\
\hline & Called Warning time distance \\
\hline \multirow[t]{2}{*}{TT} & TOTAL DELAY DISTANCE ON TARGET COURSE \\
\hline & LINE SUBROUTINE SEE \\
\hline
\end{tabular}

APPENDIX IV

FORTRAN PROGRAM
```

non!
ジN4
CA
moret
-rro
Mrro
~M!?
<n!?
-9%
cN14
0^15
*M16
Mn!?
Mn!0
nnta
M?!
|?
0^??
のつつ多
M-95
--つタ
*9R
<170
M??
M^2%
M
*2\&
-クス7
-n27
M-N⿱口⿰口口

```

```

 04!
 जの42
M-n44
n!45
-n<6
-r47
~4Q
べ40
~CE1
MC!
are?
r054
-ac5
0756
-5%
A-cO
CMAG
が人
:M\&3
Mrg%
MCAK
CrAG
rrA7
MrAR
Mrgo
Mr7r
-972
--7E
CMF
-r77
MO78
Mron
\cap口ค!
IMPIICITRRAL*RIA-H\&R-7)INTEGFR*4IT-N)

```



```

 O
    ```







```

 *)
    ```

```

 Ca(fop
 34 FOPMATITH
 2E\Deltaत 5,|(X\1,|,H(I,J),Y(T,J)|,I=?,NTT),J=1,1)
    ```

```

 READ 3, (PNIII,I=1,NADI
 2 F
 ERMAT(FI?.4), FACH TERRAIN POINT
 THFTI=THFTT*2.14150265/1R1
 THFTV=THETTO*2,14,5az6511R2.
 THFYZ=THET*2.14!502651:82
    ```

```

 *)
 AIRMM=ATRMM***)
 FE=FF*2.141वOう&5/1RC.
 RANGEIII=\\rr.
 RANOCNに年
 OANFC(S)=0.
 RANGE(?)=1-
 PANGE!&&=^?
 CRMOUUYE DK FCR EACH \triangleLTITUNE TO ACIO FFFT
 nC 2n T=1, NAN
 9日=1
 AH(I)=H(K,IY)+RQ*1\capn
 C AH(IINH(K,IYItRR*IN\cap.
 OC 3^ J=1,NFU
 IFIJ.LE.!Ti\
 14}=
 17EX=\triangleZRNF
 QMF=RMFr,
 QM=Qur,
 TMFTA=THFT,
 AT=\DeltaTr
 THF=ATr
 RR=TRG,nc
 :5~ ELQX= EIRMA
 RMF=RMFA
 QN=QMA
 17RY=\triangle7QMA
 HFTA = THFT?
 \DeltaT=\DeltaTA
 TR=TRA
 1** SLRX=FI,QMM
 RMF=RMFM
 OM=RMM
 IZOX=\triangleZRMM
 THFTA= THFT2
 AT=ATM
 TR=TRM
 ORFVFNT CUTRCUNT FIRING
 INE TEIT TX=1X\K,|y)-ax(J)]
)ELTX=OARSiX\K,YY!-RX|J|I
 IEINFLTX, ,T, N,I NEL+X=~
 IFI\capFLTX,GT, N: NELTX=C
 DFLTY=חARS(V(K,LY)-QY(J))
 OS=\capCOF*R\capFLTX*\capELTX+DFLTY*\capELTY*OFLTH*\capELTHI
    ```

```

 IFIAHII| -RHI|II 'CN,IE.15
 C.HFCK ERD WINIM|M FIOINO, RANGF
 I=
 O XS=OSODTINFITX*\capEITX*OFI TY*\capFITYI
 HFT=OFLTH/OT&N\EEI
 IF(DXS.C.T,HFTI IT Tח 5,
 |F|HFT:G,T:HF|,त, TN 4Q
 OXC=HF
 OK=חCORT(QXS*RYC+DELTH*NELTH)
 MS=ПSDR T
 40 ROXS=HFT
 \capEITX=חSOQTIDXS*QXS-DELTY*OFITVI
 r 5, OQTMT IA?,OEITX,HF,HFFT,RXC
    ```

```

 CCR!TTNIIR
 IFINELTY.FO,A, I CON TNISG
 HFCV FOR MSXIMIIM A7TMIITH TR\triangleCKING QATES
 AノD=VT*\capFLTY/|QS*RS-DFLTH*OFLTHI
 \CA=?SORTIUT*CFITY/AYQX+\capELTH*\capCLLTMI
 QCA=\SORTIVT*CFITY/A/QX+\capELTH*\capCLTHI
 CHFCK F\capR MAXIMIJM FLFVATITV QATF
 IGR ELD=IVT*NSORTIORLTH*OFLTH+OFLTVAOELTYII/IRSARSI
 QSF=\capS\capRTIIVT*NSORTINELTH*\capO!TH+NFITY*\capNIRYII/FLQXI
 IFISLR.CGT.FLRXI RS=HMAXIIRS,QSEI
    ```



    IIX, ALTITIJNF

        RNF = R SF
        |FIJ.LF.LTil rin Tח 5n
        IF(J.LE.LTつ) r.n Tn AnC
    Eกา \(T=\{\times \cap / \vee T\)
        N \(\mathrm{C}=\mathrm{T} / \mathrm{T} 1 \mathrm{O}\)
        TF(QH, CT, RXM) NS = NS +
        \(X N C=N S\)
        IFINS.IF.NI GO TM ICO
        NGUN=GINE A GO TM ICN
        \(T W=1 . n\)
        NS \(=1 . n\)
        OT \(13511=1, A S\)
        \(W I=I I-\)
        IF ( \(X \cap+\cap E L T X), L T,(W \mid * V T * T Y Q)\) Cin Tn 125


    FP(tru*R(1)))**?

        TW=TW*(1. へーFFilil)
        RR=R (II)
        STrli=sici(II)
        EPI=FDII'
    175




    ! 'TF = ', ! X,Fir. 41

        AUTCMATIC WELRON RATTFQY
        T= (Xへ/VT)
        IF(D.H. GT, RXM) \(\quad J S=N C+1\)

        YNR \(N\) NS
        \(T Y=1.0\)
        NACOUN =ACOIN
        NS \(=\) NS +
        TT \(W=14, ~(T=1, N!S\)
        IF(IXn+クFLTX).LT, (WT*VT* © /TCRA)) Gn Tח 144




    44 CRNTINIJE




        DPINT AG EROMC, DK( II
    A4~ ERRWATI!
    r, CTO?
    MISくILF MONFI
    \(T=\left(x \cap / V^{\prime}\right)\)
    \(W R=N P\)
\(V T=A D\)
    IF(T.GT. (WR*TLM)) r.C \(T M \rightarrow 1\)
    VS=TiT1
    YNR=NS
    YNR \(=\) AJ
TFMD

    \(X A: R=Y M\)
\(V^{\top}=X N P\)

    \(r \rightarrow 10\)
-
    ! ダが
    rnmilin.
    CRNTINIE
    TP \(=1, n-n *(?)\)

    TO TON IT=?, NL

    \(10^{\circ}\)
        OHTK, 「=1.「-TD
        AXH(K, ) \(=\Delta \dot{4}(1)\)
        on CONTINIJE
    1) CONTYNIIt

    \(\Delta \Delta=1\)
    \(\Delta L T=\Delta\)
    \(\Delta L T=A A A^{\cdots} \cdot\)
    DHI(I)=(DHI(1.1)+(1.C-Pの1.J))

    FCOMATIIH?


SIJRONUT INE SEE(NXK,K,I, J, EYF \& Y YK)
INPLICI REAI 事隹 \(A-H, n-2)\), INTEGFR*4(I-N)

 \(X N K=N X K\)
RMRX=DSQRT( \((P Y(J)-Y(K, L Y)) * * 2+(R X(J)-X N K) * * ?)\)
SLDR = (HiJ, 1 Y)-RH(J) /RMOX
\(\mathrm{N}=(\) (RY(J)-Y(K,LY) \() / Y K)-.9999\)
\(N Y K=Y K\)
\(L Y K=L Y\)
SS=(qY|J)-LYK)/RMRX
DRTNT दNOJ, CC

) 1 ! I I = \(1, N\)
KK = YK * חTAN(חARCПS((RY(J)-LYK)/RMOX)
\(L X K=(X K+X N K) / Y K\)
\(X X K=L X K\)
\(\cap X=X K+X N K-X X K\)
IF(nx.1T..E) r? T? 5n
5c. \(\begin{aligned} \\ Y k=1 \\ Y K \\ Y\end{aligned}+Y K\)
YK=1 \(Y K\)
\(Y \mathbf{I}=1+1\)
SLP \(=1\)
(
IFICI.PR,GT. CIDJI GO TO ! O?
10
CONTINUE
EYC=?

109
 RF TIJRN
FA?

APPENDIX \(V\)

\section*{PROBABILITY VERSUS ALTITUDE FOR SELECTED \\ TERRAIN POINTS}


ALIITUDE VS PROB
- TERRAIN PT 47


CURVE 2


CURVE 3


CURVE 4



CURVE 6


CURVE 7


APPENDIX VI

COST VERSUS ALTITUDE FOR SELECTED
TERRAIN POINTS


CURVE 1




CURVE 4


CURVE 5


CURVE 6

APPENDIX VII

DATA POINTS FOR THE CURVES IN APPENDICES V AND VI

PROB
0.0027158
\(0.002711 C\)
0.0954828
0.4619637
0.4746011
0.5874727
0.7439264
0.7306477
0.7176845
\(0.824807 C\)
0.9328496
0.9320319
0.9559594
0.9597607
0.9563827
0.9864236
0.9782999
0.9858453
0.9815221
0.9825184
\(0.98 C 9653\)
\(0.979332 C\)
0.9776287
0.9758614
\(0.974 C 362\)
0.9721588
\(0.971235 C\)
\(0.9683 C C 2\)
0.9683471
0.9643678
ALTITUDE
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
COST
0.6375157
0.4982110
0.4660828
0.7422637
0.7152010
0.7920726
0.9031264
0.8490477
0.8013845
0.8931070
0.9937496
0.9874319
1.0060587
1.0072603
1.0017824
1.0305233
1.0090990
1.0098448
1.0030212
1.0635181
0.9981653
0.9940320
0.9920297
0.9901614
0.9847361
0.9792588
0.9763350
0.9736002
0.9704471
0.9676678

ALTITUDE
100
200
300
400
500
600
700
\(80 C\)
900
1000
1100
\(120 C\)
1300
1400
1500
1600
1700
1800
1900
2000
2106
2200
2300
2400
2500
2600
2700
\(280 c\)
2900
3000

COST
0.6348000
0.4955000
0.370600 n
0.5599825
0.2448940
0.2073299
0.1647344
0.1211246
0.0934210
0.0710170
0.0710170
\(0.0636!23\)
0.0572072
0.0555274
0.5925826
0.5925826
0.5990741
0.4376170
0.8680307
0.7515365
0.826 C 451
0.8988200
0.9522527
0.9411631
O.9411631
0.9923607
0.9924001
C. 9886891
0.9902095
0.9845450
0.9870284
PROB
0.0027316
0.0027297
0.0045465
0.0027241
0.0077265
0.0027164
0.0027117
0.4124928
0.4975135
0.5175910
0.6919966
0.7918245
\(0.801255 C\)
\(0.784154 C\)
0.8661683
0.9242823
0.9468088
0.9326292
0.972620
0.9639952
0.9749367
0.9843266
0.9811772
0.9842251
0.9827261
\(0.981188 C\)
\(C .9795651\)
\(C .977871\)
\(C .9761124\)
0.9742951
ALTITUDE
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
COST
\(C .6375316\)
0.4982296
0.3751464
0.2830241
0.2433205
0.2073163
0.1619117
0.5308927
0.5882134
0.5808919
0.7528966
0.8463245
0.8513550
0.8316540
0.9115682
0.9683323
0.9776098
0.9566292
\(C .9941202\)
0.9899952
0.9921367
0.9997236
0.9955771
0.9985251
0.9934261
0.9882830
0.9856650
0.9831711
0.9862124
0.9775949
PROB
0.0027238
0.0027202
\(0.002716 n\)
0.0027113
0.4737283
0.4753606
0.4886442
0.6693962
0.7629707
0.7530464
0.7393761
0.8401864
0.9071868
0.9384188
0.9611555
0.9649823
0.9611157
0.9878440
\(0.980627 C\)
0.9793022
0.9825637
0.9825942
\(0.981045 C\)
0.9794154
0.9777154
0.9759512
0.9741287
0.9722538
0.9703322
0.9683934
ALTITUDE
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
CDST
0.6375738
0.4982291
0.3733160
0.2830112
0.7143282
0.6799605
0.6478442
0.7877962
0.8536707
0.8213464
\(0.80 C 2760\)
0.8946863
0.9572908
0.9859188
1.0665546
1.0090818
0.9919156
1.0118437
1.0021267
\(1.0003 n 73\)
0.9997537
0.9972941
0.9954450
0.9937154
0.9884154
0.9830511
0.9802297
0.9775538
0.9744322
0.9716933


ALTITUDE
4110
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
\(\cos T\)
C. 7716645
.4982314
- 3733295
.2844496
.2433239
0.2073232
C. 1619161
0.1211113
C. 5242529
0.54881 .96
C. 555 C 302
C. 7312096
0.8201044
0.8095402
0. 7955756
0.8902959
\(0.942 n n 50\)
C. 9644541
C. 9846043
C. 9878788
C.98C1577
\(1 . C 030308\)
0.9959130
0.9959130
0.9940004
0.9936618
0.9897244
0.9871768
C. 9871768
C. 9847497
C. 98185170

\(A L T I\)
100
200
300
400
500
600
700
806
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

COST
0.6375225
\(C .4982187\)
0.3733143
.4982187
.2830094
.2472824
. 5730522
.4971564
0.9225257
0.8262691
0.8814847
0.8441339
0.9193104
C .9491118
. 9491118
. 0.0017300
1.0217981
0.9952130
1.0056353
1.0034351
1.0005856
0.9999996
0.9967327
0.9948506
:993ก943
0.9877698
0.9823833
0.9795408
0.9768479
0.9737105
0.9737105
0.9709816

ALTITUDE
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

COS
0.6375197
0.4982154
0.3733107
0.3119351
0.3119351
0.6618794
.6774828
0.837 C 770
0.7937515
0.7422764
-8669655
0. 9772544
-. 9738672
1. Cl 160999
1.0127392
1.0124633
1.0151186
0.9993590
\(0.999359 C\)
\(1 . C 064 C 87\)
1.0012112
C. 9996311
0.9955694
0.9936317
0.9918243
0.9918243
0.9864534
0.9810249
0.9781446
0.9754182
\(? .9722811\)
0.9695319

\section*{INITIAL DISTRIBUTION LIST}
IVo. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 2231420
2. Library ..... 2
Naval postgraduate school Monterey, California 93940
3. Director of Systems Analysis Division (OP 96) ..... 1 Office of Chief of Naval Operations Nashington, D. C. 20350
4. Commandant of the Marine Corps (Code AO3C) ..... 1
Headquarters, U. S. Marine Corps Washington, D. C. 22214
5. Professor \(W\). Peyton Cunningham ..... 2
Department of Physics Naval Postgradua.te School Monterey, California 93940
6. James Carson Breckinridge Library ..... 1
Marine Corps Development and Education Command Quantico, Virginia 22134
7. Lt. Col. T. H. Allen, Jr., USMC ..... 1
Naval Postgraduate School Student Mail Center Number 1773 Monterey, California 93940
8. Lt. Col. W. S. Miller, Jr., USMC ..... 1 4120 Darbydale Avenue Woodbridge, Virginia 22191
9. Major E. E. Brown, USMC ..... 1
427 Blair Road Vienna, Virginia 22180
10. Major Paul C. Palmer, USA ..... 1
Naval Postgradua.te School Student Mail Center Number 1295 Monterey, California 93940

2e. REFORT SECURITY CLASSIFICA TION UNCLASSIFIED
Naval Postgraduate school Honterey, California 93940

2h. GROUP

\section*{REPORT TITLE}

AIRCRAFT SURVIVABILITY INDEX FOR LON ALTITUDE
FEiNETRATION OF AN AIR DEFENSE COMPLEX
4 DESCRIPTIVENOTES (TyPE of report and.inclusive dates)
I'にS1S
AUTHOR(S) (First name, middle initial, las : tame)

Tiomas !larrison Allen, Jr., Lieutenant Colonel, USHC
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 6 \text { REPORT DATE } \\
& \text { DECEMber } 1968
\end{aligned}
\] & \begin{tabular}{c|c} 
7a. TOTAL NO. OFPAGES & 7b. NO. OF REFS \\
130 & 11
\end{tabular} \\
\hline Ba CONTRACT OR GRANT NO & \multirow[t]{2}{*}{9a. ORIGINATOR'S REPORT NUMEER(S)} \\
\hline b. PROJECTNO & \\
\hline c. & 9b. OTHER REPORT NOIS) (Any other numbers that may be assigned this report) \\
\hline d. & \\
\hline
\end{tabular}
10. DISTRIBUTION. STATEMENT

Jistribution of this document is unlimited.
11. SUPPLEMENTARY NOTES
sponsoring military activity
Naval Postgraduate School Honterey, California 93940

Tils paper develops a model for computing the probability of kill for an air defense complex composed of antiaircraft automatic weapons, radar controlled guns, and missile batteries. Two dimensional terrain was used to evaluate the model. The probabilities were determined at major terrain points along the route of approach to the vital area for altitudes of up to 3000 feet above terrain. The curves of probability of kill versus altitude were found to be dependent on terrain, air defense tactics, and weapon system parameters. A survivability index is calculated by combining the probabilities of kill with a pilot visual navigational probability. The resultins curves of survivability index versus altitude were found to be nonlinear requiring a nonlinear programing technique to solve for the altitude of optimal survivability index within aircraft flight path constraints. The nonlinear solution was not included in this work.


Aircraft survivability index for low alt


32768000989693 DUDLEY KNOX LIBRARY```

