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There are contradictory reports in the literature regarding the

anti-bacterial activity of graphene, graphene oxide (GO) and

reduced graphene oxide (rGO). This controversy is mostly due

to variations in key parameters of the reported experiments, like:

type of substrate, form of graphene, number of layers, type of

solvent and most importantly, type of bacteria. Here, we present

experimental data related to bacterial response to GO and rGO

integrated in solid agar-based nutrient plates—a standard set-up

for bacterial growth that is widely used by microbiologists.

Bacillus subtilis and Pseudomonas aeruginosa strains were used for

testing bacterial growth. We observed that plate-integrated rGO

showed strong anti-bacterial activity against both bacterial

species. By contrast, plate-integrated GO was harmless to both

bacteria. These results reinforce the notion that the response of

bacteria depends critically on the type of graphene material

used and can vary dramatically from one bacterial strain to

another, depending on bacterial physiology.
1. Introduction
Different types of nanoparticles have been tested and used to

study their anti-bacterial activity against various bacterial

pathogens that are responsible for infections in humans [1,2].

After the discovery of graphene and its exceptional properties

[3,4], it has also been reported that this material can act as an

anti-microbial agent [5]. This has further resulted in synthesis
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and anti-bacterial testing of other derivatives of graphene such as graphene oxide (GO) with phenol,

epoxide and hydroxyl groups on the basal plane [6] and reduced graphene oxide (rGO) [7], obtained

by chemical treatment or by thermally annealing GO. Several studies on anti-bacterial activity of GO

and rGO have been reported [8,9], where the mechanism of the anti-bacterial effect is attributed to the

membrane stress induced by the sharp edges, resulting in physical damage to the bacterial cell [9].

Nevertheless, contradicting reports followed, some showing anti-bacterial activity of graphene

derivatives [10] while some reporting the opposite [11]. According to the available literature, there are

certain important parameters that decide the anti-bacterial activity of graphene, e.g. shape, surface

functionalization, morphological state, number of layers, flake size, stability and properties of the

underlying substrate [2,12–14]. Dose-dependent cytotoxicity on bacteria has been observed with many

of the tested carbon materials [15–18]. Most studies on the anti-bacterial activity of carbon materials

have been performed with GO because of its hydrophilicity and good dispersibility in water. Our aim

in this study is to examine the bacterial behaviour on hydrophilic GO, and compare with the more

hydrophobic rGO, in a solid-state set-up, where GO and rGO are integrated in agar plates, widely

used by microbiologists. Therefore, we choose to work with two bacterial strains: Pseudomonas
aeruginosa, which can reduce GO to rGO [19], and Bacillus subtilis, which is not capable of reducing

GO to rGO [20]. In our experiments, GO and rGO were integrated in standard agar plates on which

bacterial colonies were grown. Agar plates with rGO showed anti-bacterial effect against both

B. subtilis and P. aeruginosa. By contrast, plate-integrated GO was harmless to both bacteria.
2. Experimental methods
2.1. Bacterial strain and culture medium
Bacillus subtilis NCIB 3610 and Pseudomonas aeruginosa PA01 were used in this study. Luria–Bertani (LB)

broth/agar was used for the cultivation and growth for both strains. To prepare the inoculum, a single

colony of each bacteria was inoculated in 5 ml of medium and incubated overnight at 378C.
2.2. Graphene oxide and reduced graphene oxide
Single layer GO (dispersed in water) was acquired from Graphene Supermarket INC, USA. The

concentration of the acquired GO is 500 mg l21 with a composition of 79% carbon and 20% oxygen.

The lateral flake size of GO is in the range of 0.3 to 0.7 mm. rGO was prepared in-house by using

standard autoclave process. The so acquired GO was characterized using Raman (Alpha300 R) and

FTIR (Perkin Elmer) analysis.
2.3. Preparation of agar plates with GO/rGO
LB agar plates were prepared using a standard protocol (10 g tryptone, 5 g yeast extract and 15 g of agar

l21). To prepare GO/rGO integrated plates, two sets of 0.01%, 0.02%, 0.04% and 0.08% of GO was

prepared in sterile water and sonicated for 30 min. To reduce GO to rGO, one set of GO solution

was autoclaved separately. Autoclaved LB agar medium was mixed with various concentrations of

GO and rGO using a shaking incubator and poured into Petri dishes. Triplicates were used for all the

experiments in this work.

Uniform dispersion of GO and rGO within the agar plates has been a constant concern. To overcome

this, after the addition of GO and rGO to the agar medium, the solutions were kept under continuous

stirring using a shaking incubator (20 min approximately), followed by pouring the solution in to

plates for solidification.
2.4. Formation and analysis of colony biofilms
The overnight grown cultures of bacterial suspensions (2 ml) were inoculated on the agar plates

containing various concentrations of GO and rGO and incubated at 378C. The images of the biofilms

were acquired after 1, 3 and 5 days of incubation and further processed with ImageJ 32 for the

analysis of the total area of the biofilms. All experiments were performed in biological triplicates and

presented as mean+ standard deviation.
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Figure 1. Raman characterization of acquired graphene oxide.
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2.5. Scanning electron microscopy analysis
Four-hour-old colonies grown with and without GO were collected and spread on a cover glass to make a

thin film. The bacterial films were fixed with 3% of glutaraldehyde and dehydrated with graded ethanol

as described previously [21] (electronic supplementary material). The dehydrated samples were then

dried overnight at room temperature and coated with a thin layer of gold (5 nm) and observed under

scanning electron microscope (JEOL JSM 6301F).
3. Results and discussion
3.1. Characterization of GO
The acquired GO was characterized by Raman spectroscopy (figure 1). Typically, the G peak at

1605 cm21 and D peak at 1353 cm21 indicate the presence of GO. The peak at 1605 cm21 corresponds

to E2g phonon of SP2 carbon atoms, whereas the peak at 1353 cm21 corresponds to k-point phonons

of A1g symmetry [22]. In some cases, there could be a shift of G band and D band, which is an

indication of certain defects, grain boundaries and other carbons. The ratio of these two bands and

their intensity correspond to the quality of the respective graphene material. There are two other

peaks observed at 2700 and 2900 cm21, which corresponds to the graphene peak and second-order

peak, respectively. If we observe the 2700 cm21 band, it is slightly broad, indicating the presence of

few-layer graphene (narrow peak indicates the presence of a mono- or bi-layer). The peak at

2900 cm21 is derived from the combination of D–G peaks [22].

3.2. Detection of GO and rGO in agar plates
Agar plates with integrated GO and rGO were prepared as explained earlier. Presence of GO and rGO

within the agar plates can be visually confirmed by dark precipitates of rGO (GO at higher

concentrations also shows dark precipitates). These experiments used a rich medium void of glucose

to facilitate rapid bacterial growth, since some studies state that glucose can reduce GO to rGO.

The agar plates with GO and rGO were characterized using ATR-FTIR to confirm the initial presence

of GO and rGO, and the subsequent reduction of GO to rGO by the bacteria growing on the surface. To

detect GO/rGO in agar plates before cultivating the bacteria, small samples of GO/rGO/LB agar were

carefully cut using a lancet and mixed with KBr for ATR-FTIR analysis. After cultivating bacteria on the

plates, the biofilm was carefully separated from the plate surface. Small samples of GO/rGO/LB agar

from the surface that had been in contact with the biofilm were cut and subjected to ATR-FTIR

analysis. (Keeping in mind the sensitivity of the samples, we have used the KBr method as it has a

high transmission window and does not show any absorption spectrum in the IR region).
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As seen in the transmission spectrum of figure 2, all the analysed samples show two strong peaks at

3439/3274 cm21 (O–H stretching) and 1624 cm21 (C ¼ C aromatic ring) due to the adsorbed water and

aromatic C ¼ C. The characteristic peaks of LB agar and KBr along with O–H stretching at 3274 cm21,

C ¼ C aromatic ring at 1624 cm21 and C–N stretching at 1063 cm21, were clearly visible in the FTIR

spectrum of LB agar and KBr [23]. From the FTIR spectrum of GO sample, intensities of five

characteristic peaks, at 2944, 1459, 1393, 1129 and 1117 cm21, are higher compared to other samples.

Several peaks are identical between GO and rGO: carboxyl C–O and O–H deformation was detected

at 1393 and 1459 cm21 in both samples.

For rGO, the intensities of the peaks associated with oxygen functional groups (at 1459, 1393, 1129

and 1117 cm21) are found to decrease compared to GO because the functional groups of O–H

deformation, carboxyl C–O and C–O stretching on the GO were destroyed by autoclaving or heating

[24–26]. Additionally, in comparison to the FTIR spectrum of GO, the peaks at 2944 cm21 (C–H or

C–H2 stretching) and 1080 cm21 (C–C stretching) of rGO almost disappear.

3.3. Toxicity of rGO towards B. subtilis and P. aeruginosa
Compared to other tested graphene materials, rGO has the highest oxidation capacity [10], which also

attributes to its electronic properties. In our assays, rGO exhibited strong anti-bacterial activity against

both B. subtilis and P. aeruginosa (figure 3). In our experiments, flake size would be expected to be

irrelevant compared to the dispersibility and metallicity of the graphene material, which plays an

important role when the flakes are in direct contact with cellular components [10]. Previously, it was

observed that single-walled carbon nanotubes (SWNT) can mediate electron transfer over a lipid bi-

layer [27] and this mechanism was experimentally proven by Liu et al. [10], showing that rGO can

also form a conductive bridge and is capable of oxidizing cellular components.

The area occupied by the bacterial colonies was measured and correlated to the concentration of rGO

(figure 3). The anti-bacterial effect of rGO on B. subtilis and P. aeruginosa is concentration dependent and

the biofilm size of the treated samples was reduced drastically compared to the cells on control agar

plates with increasing rGO concentrations. Correlation of rGO concentration versus B. subtilis colony

area exhibited first order of exponential decay with correlation coefficient 1 (figure 3a). The correlation

of rGO concentration to P. aeruginosa colony surface followed a sigmoidal pattern (R2¼ 0.99)

(figure 3b). The effective concentration of rGO to reduce the area of biofilm by 50% was 0.011% for

B. subtilis and 0.014% for P. aeruginosa.

Another interesting observation is the presence of transparent white rings at the centre of the

P. aeruginosa colonies. These rings contained mainly metabolically less active bacteria, and when these
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transparent zones were re-cultured in a non-graphene environment, they proliferated normally

(electronic supplementary material, figure S1). From this observation, we presume that older,

metabolically less active bacteria become more prone to killing by rGO. The glucose uptake from their

environment [28] and the metabolic redox reactions [29–31] would be slowed down in these cells,

making them less resistant to oxidative stress caused by rGO [10]. When the bacteria were separated

and transferred to a graphene free environment, they could again divide and proliferate normally.
3.4. B. subtilis is resistant to GO, but P. aeruginosa appears to be susceptible
When grown on agar plates with integrated GO, B. subtilis was not adversely affected, and in fact its

proliferation seems to be stimulated with increasing concentrations of GO (figure 4). This is in accord
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with previous reports stating that GO sheets can act as biocompatible sites for growth and proliferation

of bacteria [32].

Next, we tested the effect of plate-integrated GO on P. aeruginosa (figure 5). Initially, P. aeruginosa
cells on GO integrated in agar plates started to proliferate and were unaffected for the first 24 h.

Further, it was observed that bacterial growth became limited on plates with higher concentrations of

GO. Presumably, during this time, P. aeruginosa engages in reducing GO to rGO as mentioned in the

literature, without the help of any redox mediator [19]. Once enough rGO was produced, its anti-

bacterial effect, as established in figure 3, became observable and the colony size was reduced with

increasing concentrations of GO (figure 5; day 3 and day 5). At this stage (after day 3 and day 5), the

supposedly rGO from the GO plates was isolated and subjected to ATR-FTIR. To our understanding,

we could not detect any traces of rGO from either of the samples. This shows that either P. aeruginosa
needs more time to reduce GO to rGO or there is not enough bacteria that could reduce GO to rGO

in detectable quantities.

Figure 6 shows the comparison of bacterial interaction with GO facilitating the reduction to rGO.

In figure 6a, the bacteria are in the planktonic state and so the interaction with GO flakes is quite

natural under continuous stirring [19]. Comparatively, in our case (figure 6b), the interaction of

bacteria with GO is limited as they are in direct contact with only the GO flakes from the top layer.

So, there are not enough bacteria that can convert GO to rGO in a static environment, unlike in the

other case where they are under continuous stirring. We presume that this could be the main reason

that we could not detect enough traces of rGO in the ATR-FTIR analysis.

According to our results, GO is completely harmless to B. subtilis and P. aeruginosa (until bacteria

convert it to rGO). To confirm this, we examined the effect of GO on very early biofilm formation,

after only 4 h. Four-hour-old colonies were homogenized with 0.89% of NaCl, diluted serially and

plated on fresh agar plates to count the colony forming units. We did not observe any significant

difference in the viability of B. subtilis and P. aeruginosa from plates with integrated GO compared to



4000

3000

2000

1000

0

day 1 day 3 day 5

co
lo

ny
 a

re
a 

(m
m

2 )

day 5

day 3

day 1

control 0.01% GO 0.04% GO 0.08% GO

(b)

(a)

0% 0.01% 0.04% 0.08%

Figure 5. Photographs of P. aeruginosa colonies cultivated on agar culture plates with different concentrations of GO, the plates are
seeded with bacterial concentrations of 107 CFU ml21 (a); measured bacterial biofilm area of each agar culture plate (b).

interaction of P. aeruginosa with
graphene oxide (GO) flakes in
planktonic state

interaction of P. aeruginosa with
graphene oxide (GO) flakes within agar
plate in a static state

P. aeruginosa

GO flakes

P

(b)

(a)

Figure 6. Diagrammatic representation of GO-bacterial interaction in planktonic (a) and static (b) environments.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181083
7

control (figure 7a,b). This supports the notion that the reduction of GO to rGO by P. aeruginosa does not

start immediately, but rather accelerates with time and increasing number of bacteria. We also examined

cell morphology in these samples by SEM, and there was no evidence of mechanical damage by GO to

either B. subtilis or P. aeruginosa (figure 7c).
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Besides the above-mentioned possible capacity of P. aeruginosa to convert GO to rGO, there is another

possibility to account for higher survival of B. subtilis on plates with integrated GO. The main difference

between the cellular envelope of Gram-positive B. subtilis and Gram-negative P. aeruginosa is the

thickness of their peptidoglycan layer. To assess whether the thick peptidoglycan confers any

advantage to B. subtilis, we treated its inoculum with lysozyme, an enzyme known to degrade

peptidoglycan. The lysozyme-treated B. subtilis was inoculated on agar plates with GO and cultured

for 5 days and no significant difference in proliferation was observed between lysozyme-treated and

-non-treated B. subtilis colonies on plates with GO (figure 8).
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4. Conclusion

The anti-bacterial activity of GO and rGO against B. subtilis and P. aeruginosa was evaluated. GO and rGO

were integrated with standard agar medium plates and characterized by ATR-FTIR. It was observed that

rGO was toxic to both B. subtilis and P. aeruginosa, while GO was not harmful to either bacteria. However,

growth of P. aeruginosa became inhibited on plates with GO after a certain time which could possibly be

due to the reduction of GO to rGO by P. aeruginosa. When P. aeruginosa-treated GO was isolated and

tested for ATR-FTIR, we could not detect any rGO which could be because of the fewer number of

bacteria that could not convert whole GO to rGO in detectable quantities. This study highlights the

importance in understanding the specifics of the interaction of graphene and its derivatives with

bacteria, which can be purely mechanical but also metabolic. We hope that the methodology we have

developed here, with GO and rGO flakes integrated in agar plates, will be useful for the toxicity

assessment of other carbon materials and provide a basis for generating more comparable results

across this field.
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