IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be biblicgraphically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
TransparanceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of Congress
Photoduplication Service

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire fillmé fut reproduit grâce à la générosité de:

Library of Congress
Photoduplication Service

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont le couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiers page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une teile empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent ètre filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenent le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

INVESTIQATION
TANOE OF THE SUN:
Pa MENTS WHICH DEPEND UPON IT,
OBSERVATIONS OF MARS,
OP POATION OF 1802, ANBNRROM OAHRE SOURCBS,

APPENDIX II.

INVESTIGATION

DISTANCE OF THE SUN,

4N11 OF 'IIT

ELEUENTS WHICH DEPEND UPON ITT.

FIGOMTIH.

OBSERVATIONS OF MARS,

OPPOSITION OF 186\%. AND FROM 0THER SOURCES.

DISTANCE OF TIIESUN

(ND) OF

TIIE ELEMENTS WIIICH DEPEND UPON IT.

About ten years since, astronomers began to suspect that Encke's valne of the Sun's dis. tance, dednced from the transits of Venns in the yeals 1761 and 1769, was largely in error. The different methods avalable for its correction all arpeed in imbleating a diminntion of between one twentr-fifth and one-thirtieth of the whole distance. 'The last doubt of the rorrectuess of the suspicion was removed by the publication of Powalky's paper on the Transit of 1769. In this paper it was shown that, with our mere accurate knowledge of the positions of the observing stations, the results of this Transit agreed with those of the molern mensures.

The magnitude of the correction being snch anserionsly to affect the reduction of meridian observations of Mercury, Vems, and Mars, as well as our computations of the mass of the Earth and the parallactic equation of the Moon, it becomes important to determine it with precision, even in advasce of the coming tramsits of Yemus. In such a determination the resulte of all methods which can be relied on, or the precision of which cam be extimated, ought, I conceive, to be combined in the fimal result. Let me, then, ghance at tine varions methods mow available.

1. By Observations of Transits of Venus. -This method has gone into our school-books as the one superior to all others in the precision of its results. It is true that transits which occurred a centiny ago, when the art of observation was in its infancy, have finmished the solar parallax which has hitherto been adopted as the standard. It is also possible that, should the civilized world take dne interest in the observation of the next two transits, and should circmastances prove favorable, the precision of either resnlt may exceed that of any other one determination. But it is certain that our modern determinations by other methods are more precise than any that can be derived from the past transits of Venus, and opportmities which oceur in but oue generation of men out of four are too rare to be implicitly relied on in future.
2. From Obscrvations of Mar's when near the Earth.-Three methods of making these observations have been employed.
u. By nearly simultaneons observations of differenco of declination between Mars and a neighboring star, at Observatories situated in different hemispheres of the earth, and by means of Equatorial 'Telescopes. For the employment of this method the United States Astronomical
 whar Yations in this way were mandat lipala, Laden, and Wishington, in the Northern Hemixphere, and sumtian in the somethern.
B. By similar ohervations with a Meridian ('irele, Mars being companed with a mamber

 was!".02s. * which it now apeats wan mot only neare the truth than Encke's value, but wat allected with a pratable arme leon than the absolute error of the latter.

As compared with the tirat, his phan has this atwatare: that, comparisoms being made with the same stars might atter night there is little danger of ahservations being lost at one station for want of comeremoting ones at another; while, by the wher, sime the planet must be compared with a difliment atar on every night, they will be loat, mbess mate on the same sight at hoth stations. The disalvalutages are, that the results are atberted bey the errors arising from wromens division of the circh, on wher camser perentiar to cach star, and that the observations: "amot be repeated on the same night. The probable magnitude of the first error may be inferred from the resulto of the investigations of Anvers on the declimations of the funda. mental stars, from whin it womld seem that the probable error arising fron these calmes is betwern two and therebonthe of anecond. It is, therefore, aivisable to compare with as many stars as posilde, in order to diminish the chances of ermer. hability to repeat the observations will appar a hess serions objection, if we reflect that, from some camse or amother, micrometrie comparme with an Equatorial domot ofen exhint the precision of meridian ohservations.

On the whole, I coneeve that, in a general combination of the principalative Observatories of the world, the mierometric method would be perferable; while, if the mamer in either hem. isphere is limited to one or two, the preference mans be given to the Cirele observations. The aramements of 1862 wore precisely the reverse of this.
r By diflerences of Right Ascension between Mars and neighboring stars bast ami west of the Meridian. Sof far as 1 am anare, this method was first empleyed by the Messes. Bond at the Observatory of Havard College, during the opposition of $1849-50$.t The value then obtained was $8^{\prime \prime} .605$, with a probable error of $0^{\prime \prime} .4$. It was also proposed by the Astronomer Royal, and actmally employed at the Royal Ohservatory, Greenwich, in 1862. The result has not, I believe, been published.

This method has not reedived the attention it deserves, probably fiom a general distrust of time observations. If cmployed at a station of less than fienty degrees latitude, with a steady and carefully-adjusted instrument, ami if eare be taken to eliminate eve:y sonrec of constant personal error, its results might, I eonceive, be received with entire confidence. Among the measmes necessary to secure a reliable result may be phaced the making of the observations on one side of the meridiat. with an inverting eye-piece, that the apparent direction of motion of the planet may be as nearly as possible the same on both sides of the meridian.

It is possible that ohservations over the horizomal wirs of an Altozimuth might be preferable to that over the right ascension wires of an Equatorial.
3. F'rom the Observel Purallactic Inequality of the Muon.-This ine quality has the solar parailax as a fictor, into which it is multiplied nearly fifteen times. Since astronomers ought to be able to determine the coeflicient of this inequality without a probable error of more than a tenth of a second, the solar parallas ought, it wonld seem, to be determined from it without a probable error exceeding $0^{\prime \prime} .007$, and, therefore, with greater precision than by iny other method yet employed. Unfortmately, however, the uncertainty of the observed value of the parallactic inequality still amomes to several tenths of a second, so that there is no hope of attaining this degree of precision.
 Mom.-By this method was obtained tho value of the sular parallas mopted by le Varior in

 A comparison of these two data gives the magle which the mans of the bath its.lf sublembe as ween from the sime or the solar parallan.
'This method is the least precise of all, sime it gives the solar parallax as the product of two lactors, neither of which are detemined with great precision. 'The observed value of tho hame equation mast at present depend on observed right nsecosions of the sum, wh widh the probable error is very large, and the morertain lactor af this eloment is alomt omethiol greatur
 verom to be to determine the lmar inequality from the solar parallas.

 well known that they need not be described. The theoretical ohjections to this method do mot wem to me to have moll fore and I see no insmprable reason why its results should mot be: as reliable as those of any other methot. It is quite true that in experiments wo doliato, hidden canses of constant error may defy the seruting of the experimmatist. It is also trone that Foncalt's operations have not heron piblished with that thallness of detail meressary to satisly astromomers that his results cond mot have bean vitated by any such canse. But, to test the rali-
 npparatus as different as possihle from that ased by Foncandt. Such a repetition is a desiderathm
 placing the fixed reflector at a great distance. sity 3,000 or 4,000 metres from the revolving mirror.

ร. 2.

When the Great Iransit Cirele was momoted at the Naval Otservatory, the prestion arose whether, in the reduction of ohservations of the sum and Planets, it sas possibhe to (amploy a value of the parallax so wear the troth that there would be little danger of finture investigators having to correct our results on aceonnt of error in the adopted constant of sila paralan. The most promising sombe at an acenrate parallax reemed to be the obsorvations of Liars, made in 1862 on the plan of Winneeke. They formad a better phamed, bettor exeented, and more extended series than was ever before avaibible. In the Sonthern Hemisphare the Observatories of Williamstown. Cape of Good Hopr, amf santiage, worked with remarkable suc-
 Northern Hemisphere the Observatories of Palkown, Petersburg, Helsingfors, Virman, Berlin, Leiden, Greenwich, Albany, and Washington, are known to have eo-ope:ated. Su extended a co-operative effort on the part of astronomers all over the civilized world has mot, I believe, been seen since the transit of Venns in the last century.

Three partial disenssions of thene observations have appeared.

1. Winnecke, by a comparison of observations at Pulkowa and the Cape of Good IIope, on thirteen corresponding nights, fomm the solar parallax $8^{\prime \prime} .964$.*
2. Mr. E J. Stone, of the Royal Ohservatory, Greenwich. disensed the observations of Greenwich, the Cape, and Willianstown, dedncing the parmallax $8^{\prime \prime} .943 . t$
3. The corresponding observations at Albany, Wishington, and Santiago, were discussed by Mr. Ferguson in the Washington Astromomical Observations for 1863. with the following results:

From 12 observations of Washington aud Santiago . - - $8^{\prime \prime} .834$
$1 \dot{5}$ " " Albany - . . - . - - - $8^{\prime \prime} .611$

 that a complater disemssime in to he deximed.

 Was also ohtamed thromph its distimenished direetor, who commmicated the observations ol

S : 3.

The following eonsiderations may lead to a method of detemining the parallax ol Mats from observations, more simple and rigorons than that af correponding paire of observations: The pertubations in the motions of the Earth and Mars beine perfectly koow for the period whide wo comsider, exery observation of that planet will lead rigoronsly to an equation of condition bet veron its paraliax, the six ebments of its orbit, and the six elements of the barth's orhit. 'I hirtean or more ohecrations will, when eompared with any therys, suthec, formatly, to correct the elfoments of that theory. But, if the ohservations extend throngh only a short interval. sty one month, the condicients of the corrections will be so minute that no trustworthy ralues of the correatoms can be dednced. We shall, in fact, find that our equations will only -nllice to determine a fow limetions of the elements, and that the elements themselves, if their ralues are only chosenso as to satisfy those functions, may all vary widely, withont ceasing to satisfy onf equations of condition. If, now, we can lix a primion the entire nmmber of finetions of this kind, ant nee them in lien of the elements of the liath and Mars, one equations will be pratically as rigorous as if we had introdnced the entire mmber of thirteen manown quatities.

One of these fanctions, the first one, indeed, will be the error of declination of Mars, since this will be wiven by a singte pair of ohservations. But, when there are a series of observafons, we may take, instead of the declination, the abrolute distance of the planet from the phate of the Earth's equator. This distance, or rather its error, may he developed in powers of the time, and the coellicients of this development may he taken in lien of the elements. 'Ihat is, we may assmme that the eron of tabular declimation may be expressed in the form

$$
\frac{\mathrm{sec} \mathrm{Dece}}{\jmath}\left(\alpha+\dot{t} t+\gamma t^{2}+\text { ete. }\right)
$$

That this assumption is a safe one in the case of Mars, may be shown by taking the ob-
 zeit der Opposition. 1 sibe," and developing them in this way. Dividing them into five series, and taking the mean of earh series as the error corresponding to the mean of the dates, we have the following five tabulat errors, and their broducts by the distance of Mars from the Earth:

1)ate.	F	1×1	Olis.
	"	"	
Augr. 31	4.28	1. 91	5
Nupt. 17	5. 3-	- 19	11
311	5. 1!	$\therefore .11$	7
13.4. 1.1	4. 5.5	1. 3.1	4
31	3, 53	1.73	\because

 find that mone of the devintions from the formula will amomet to 0 ". 10 . The coediciant of the second power of the time heing only 0 ". 日00:35, it mity, for a perion of tes days on each side of my opoch, bo neglected without danger of ermer.

It is to be remarked that, besides thonse terms divided by f in the axpression fin crror of
 mensured polar distances. Puting $J^{\prime}=$ deos bue and int = correction of parallax, anch com. parison of m observed and computed dedimation will give an equation of the firm

$$
i \text { Dce }=f^{\prime} i n+D_{n}+\frac{{ }^{\prime}}{J^{\prime}}+\frac{i s t}{\jmath^{\prime}}
$$

$\delta \pi, \mathrm{D}_{0}$, an and a heing the minnown quantities to be determined.

$\$ 1$.

The following is the list of observations inchated in the disenssion, with the antheritions for them:

nomthern onsheratobies.

Pallowa.-Thinty one observations. Beohachtugen tes Mars von Mr, A. Wimmerke.
Ihlsingfors.-Eighteen observations. Beobachtugen thes Mars und her Winneckeschen Vergleichsterne. Herhst, 1862, am Reichenhaid-Ertchschen Meridiankreise der sternwarte zu Helsinglors. (Commmicated by M. Struve.)

Leiden.—Twenty-nine observations. Astronomache Nachrichten, Bund 6id.
Grenwich - Fourteen observations. Greenwioh Observations of 1862.
Allbeny.-Twenty-six obervations. V whingtom Ohew vations of 186:3, p. xif.
II ashington.-Thirty-six obervations. Warhmion Obsurvitions of 186%.
southeren oberbyturies.
Williamstown.-Fifty-one observations. Reswhe commmicated by Robert I. Eltery, exs.
Cape of Good Mopr.-Forty-three observations. Observations, with their reductions, communicated by Sir Thomas Maclear.

Sentiayo.-Forty-nine observations, Observaciones Meridiams i Mieromstricas relativas al Planeta Marto al T'iempo de su oposicion en 1862, verifimatas en el Observalurio Nacional do Suntiago de Chile. Santiago, 1863.

This includes the entire list of those accessible observations the weight of which would be such as to sensibly affect the concluded parallan. The entire mumber is as follows:

$$
\begin{aligned}
& \text { In the Northern Memispher: } 151 \\
& \text { In the Southem Hemisplucre ! } 43 \\
& \text { Total } 297
\end{aligned}
$$

In discussing the observations, the first thing to be done is to make them strietly comparable with each other. This is effected by deduring them all differentially from whe set of comparison stars. In Wimeeke's plan, each observation of Mars can be compared with similar observations of eight stars of comparison. An ephemeris of the positions of these stars being prepared, a comparison of the observed polar distance of any star with the ephemeris gives an apparent correction to the observation. The mem of the eight corrections thus dednced from one night's work, by one observer, is considered a correction applicable to the poliu distance of Mars, observed on the same evening.

If every observer observed all eight comparison stars on every night, the adopted mean position of each star would be a matter of entire indifference. But, since a portion of the com-
parison stars were frequently miswed, it becomes important that the different stars should be redured to the same stamdard. Rignomsly, this stamdad shomld be, not that of absolnte correctness, but that of each particular instrument as affected with its errors of divisions, and corrected for the constant error of the mean of its positions of all eight stars. 'This standard being mathamable for want of a sufficient mmber of ohservations, we shall be obliged to use one
 arrors of division of omr instruments. The adopted positions will be derived from the observations of' (areenwich, Julkown, Altany, and Washington. 'The adopted stamdard of derlination will be that of Amwers, in his paper on the corrections necessary to reduce the diflerent eatalognes to a fumdamental systen. This raduction will be ohtained through the freenwich 'Transit Cirele, the correction of which, near the E , phator is $+0^{\prime \prime}$. 2 . Comparing the observa tions af Pulknwa, Washingtom, and Alhany with those of Greemwich, thas corrected, we find the following stamatic corrections to rednce them to Anwers:

Pulkowa					\%
Albany -					$+1.6$
Washington					

The meandechations for 1862.0 , thas conchaded from the observations of ench Observatory, with the seconds al concladed north polar distance for the same eporit, are wiven in Table I. 'The frations moder the mames of the Observatories are not corrected for systematic error. 'The small figures after each result show the number of observations. The weights are not proportional to the nmber of observations, hat on a somewhat abitrary sate, depending on the probable errors of divisions, and the discordance of individnal observations at the several Ohservatories. In Table II is given an ephemeris of apparent positions, computed with the comstants of the American Ephemeris and Nantical Nlmanac.

TABLE I .

TABLE II.
Ephemeris of the uppereat North Polur distances for trousit over the meridith af Wiskinuthon.

The observations being all reduced accordng to one miform system, no details need be given except for those cases in which a mode of observation different from that Wimeeke hats adopted, or in which some of the efements of reduction are doubtful or imperfect.

Gbernicici.

Only a small number of the comparison stars, sellom more than fonr, were wherved on any one evening. Moreover, the same stars were frequently selecten might after night, so that the positions of Mars depend mainly on less than batf the entire list of stars. The domble wire system was not used, but the single wire was placed alternately tangent to the two limbs of the planet. From the diseordince of the measured dianeters, this method would appear much less accurate than that of domble wires.

Almany.

Hare, also, a simbe wire was phared altermately tament to the for limbs of the planet, seseral contacts with earh limh heing marle. As the fixd wire was nsed in these measnes, and there was bat time toread the micrasenpes for all the eontacts, the readings were referred

 the present case, as well as all absimet of the observations, mas be fomm in the volame of Whatherton Ohservations for 183.3 . Owing to the irregularity of this methorl, I have hesitated
 tion of the apparathe, 1 an mable buse bow any somer of constant error combld haverept in, and have therefore almined them with a small werst.

Wasmention.
Inaribe the first serics (antil September 24) the star observations were inegrlar, two of the observers plating the star imate between the wires, and the thind nsing wire 1 exdmsively. 'The emplovment of the former system fise a limited momber of the observations does mot seem
 athert hisertions of a star by wire. But when the same wire is used for all the emparison stars, amd the me:an of the two wires for Ma ars, ally eror in the adopted distance of the wires will athect all the whevations in the same way. 'This distance being determine from madir observations, in the mammer despibed in Wishinerton Ohservations for 18tis, p. xarn, does not seem reliable. It was therefore redetemined in the following way:

1. Ruberence was made to the migimal observations for madir point in 1862 , and every result, both for simpe and domble interal of wites during the entire series of parallax obser. vations, was rassified aceordinis to the observer, and arraged in the order of time.

These reshlts, being subpord athected only with comstant personal erors, gave entirely reliahle values of the chenges of distance at those epochs when the wires were distarbed, thongh nome of the absohte distances are comsidered reliable. It was thas fomm that the distance of the wires froms september of to Oetuher 2 was greater by $0 r .0070$, or $0^{\prime \prime}$. 45 , than from October 7 to Novermber.
2. The absolute distance from Oetober 7 to November was derived from observations of comples of stars made on couples of dates, on which the order of nse of wires was reversed. Let O_{1} and I_{2} be the declinations of a star dedneed from observations on two dates with wires I and \because, reepertively; d_{2} and l_{1} the dechantions of another star, deduced on the same dates with

$$
\left.\therefore=\frac{1}{2}\left(\mathrm{I}_{1}-1\right)_{3}+d_{1}-d_{2}\right) .
$$

'Alons was fomm, $\delta=-00^{\prime \prime} .1: 3.2$.

'The cormetion on accomint of erroneons half distance, being only a humdredth of a second, has buen megleeted.

W'maintstown.

It is not stated by Mr, Bllery whether a single whe or a pair of wires was used.
The North Polar Distances, as forwarded in mamseript, were not corrected for errors of division. They wore, however, accompanied by a table, qiving the errors of division for every
degree of zenith distanee. Unformately, it was min stated either in what direetion the zenith
 might increase toward the north, or the polar distame, which incorsed thwath the sumth. In

 the zenith distame toward the morth, and appliod the corrections in the sume direction. Th

 diviston, and then the correetions were correeted for errors of divisum, in order th ser whe the they were thas diminiswed. The results were:

 that the correctness of the assumption can hardly be dombed. The arom of division have therefore been thas applied.

Santiago.

The observations appear to have been carefully made thronghont. Thoy do mot, however, impress one with a high sense of the excellence of the Moridian Cirele, or, at least, of the precision with which its microseopes call be read. There is alson weak puint in we of the important elements of redaction anmely, the inclination of the declimation wires. There are two of these wires, one fixed, the other movable by a micrometer seres. Ia the Mars observations, the latter was set over or moder the fixed wire, at a distance somewhat fess than the diameter of Mars, and the observations were then made in striet aceordance with Wimereke's programme. The only information respecting the inclination of the wires is in the fulluwing words:
"En el campo de vision del anteojo del Cirenlo Meridiano usti estendido un hijo dijo paralelo al camino que recorm una estrella ceuatorial. * * * Por fin, es de advertir que el hilo movil no es exatamenta paralelo al hilo lijn. Extando el anteojo dirijido al Norte, la estremidad occidental del hilo mòvil queda encima del hilo fijo, i la inclination de los dos hilas ascienda a $0^{\circ} 7^{\prime}$."

From this it is deducible that the correction to the observed buth polar distance, on aceont of inclination of movable wire, is negative when the observation is mate hefore meridian passage, and positive afterward, mad that the amome of the correction is as follows:

Interval from meridian.	Correction.
s.	11
10	0.31
20	0.61
30	0.9 .2
40	1.32
50	1.53
60	1.84
70	2.11

Bither the clock time of transit or the vertimal wire being given for all extra meridian ohservations, the polar distances obsorved with the movable wire were corrected for inclination acombling to the abme talle. It was soon seen that the effect of this correction was to problace large discordances in the results for polar point deduced from the several stars, and this affeet was somiform and well marked as to leave little donbt that the correction had no existance in fact.

It was then fomad that some correspondence hat passed between the Superintembent of the Naval Ohservatory and Mr. Moesta m this very subject, in 1864 , the effect of which was to throw darkess on the nature of the inclination correction of the Santiaro Cirele during this ritical perioul.

1 next attempten to determine the inclimation from observations of the same star, made on differme sides of tha meridian. To effect this, a table wat drawn m, showing the hour angles of Mars and carh of the dight stars, for each of the simtiago ohservations. It was found that the same star was nemly ahms observed with great regnlarity on the same side of the meridian. It was not possible, therefore, to determine the inclination of wires.

The following plan was adopted: la each determination of the polar point, the inclination of the mean of the wires was inchded as an mbown quantity multiplied be a mmerical condicient. egnal to the mean of the hour anghes. The correction to the pular distanee of Mars was then equal to this unknown puantity, multiplied by the difference of hom angle between Mars and the rest of the stars. 'The stars whose hour ames were farthest from that of Mars were then rejected in such nmber that the sum of the coethicents of the inclination should be quite small for each series, and, ats nearly as practicable, vanish entigely for the mean of all the ohservations.

$\$ 3$.

The North Polar Distances of Mars thas deduced from observations, with the resulting "quations of condition, are given in 'able In .
'The first column of this table gives the mean solar date, the day chaming betwean the meridians of Washington and Willamstown.

The third column gives the seconds of North lohar distance of Mars, derived in the way sid forth in the last section.

Following these are the multipliers of the equations of condition to rednce them to the same probable error. These multipliers are inversely as the comelnded probable errors of the positions of Mars. Ther are on a scale of 1 to 3 only, as it did not seem worth while to attempt dividing the olservations into more than three classes with respect to excellence. The multipliers ate assigned liy the following considerations:

1. The mean error of an obsavation at any one Observatory, as deduced from discordance of results fir polar points derived from the several stars observed an iny one evening.
\because. The number of stars on which the polar point depends. The onission of several stars does mot, however, serimsly diminish the moltiplier, unless the same stars are missed night after night, so that the final result of the work with any one instrment will depend on too few stars.
2. The notes of the observers with espect to the patity of the images. The preeision of the observations, however, "ppears to be much less affected by this eanse tham might he supposed. The greatest extremes of deseription ocem in the Cape observations. Here it is found that the mean discordaner on six good nights is $0^{\prime \prime} .37$; while, on six nights noted as very bad, or dephorably bud, it in $0^{\prime \prime} .35$. Here, at least, the effects of the cause in question would appear to be entirely masked by those of other causes.
3. 'The number of observers. There being ahways a possibility of persomal differences in the measmes. greater weight should be given to a series made by several than to a similar series made by obe observer.

The first consideration wis the fimblamental one. The mean errors for the different olverer vations were fomd to he as follows:

The adopted multiplier is supposed to carry the mean error of eache equation to abomt 0.":
The next column gives the compnted parallax in pular distance for the ohservation, the adopted constant of Sun's equatorial horizontal paraliax being

$$
\mathrm{s}^{\prime \prime} .90
$$

The following are the adopted en-ordinates of the different observations:

Next, we have the polar distances of Mars given by the ephemeris. In the adopted method of discussion it is essential that the differences between the ephemeris and the actual position of the planet should vary regularly during each period of twenty days. To insure this, heliocentric ephemerides of the Earth and Mars were computed by Mr. Charles Thirion, aici at the Naval Observatory, for every other day during the parallax observations, using Le Verrier's tables. In the ephemeris of the Earth the phanetary perturbations were smoothed of by differences, while the lumar perturbation, instead of being taken from the tables, was rigorously computed from the co-ordinates of the Moon. In the Mars ephemeris the perturbations of each separate planet were manly developed in powers of the time, to reduce the aceidental errors in the last place of decimals, produced by adding so many terms.

Comparing these positions with those of Winnceke's ephemeris, the variations of the differences from the desired law were found to be altogether insignificant, seldom amonting to $0^{\prime \prime} .02$ in longitude, and still less in latitude. I still feared that, as Winnecke used but seven decimals in computing his geocentric plans. the imperfections of the last decimal might have affected his deelinations. Differencing his two-day ephemeris, the accidental errors were fomul not to exceed, on the average, $0^{\prime \prime} .02$, so that their influence would be altogether insensible. His ephemeris was therefore adopted as a basis. From the right asceusion observations made at Pulkowa, it appeared that the tabular helincentric longitude of the planet was ton great by abont $2^{\prime \prime} .40$.

 dis．Will the following realt：

1atis．Augrast	18，＋2，3\％；
Siphember	7． 2.93 ；
	17，3．15；
	：7，3．24；
October	7，：316；
	17，：93；
	27，2．60：
November	6；+2.25.

 we have the fallowins，ephemeris of the theoretical morth polar distamees of dars at tramsit over the morilian of Pallowas：

1）ate．		皆			范			Date.		范					
Ang．${ }^{\text {a }}$	－7	$!$	小．10：	\because	二1，ix	$+18.12$	2.81194	Spt．	\cdots	1	［in． 110	$+1$	In	－ 1.	29360
31	－	1	\％3． 11	\because	33， 01	15．10	－ 20 \％	：	－	1 i	2．-2	4	6． 115	2.41	． 2 1110：
\cdots	－	4	1：1，！1	\because	21． 11	1i． 15	U．150．06	：31	a	10	－．7i	4	3.61	［1．${ }^{\text {a }}$	． 3×6375
21	-7	1	14． 51	3	4．3．0	15．15	． 11143	Oct． 1	－	11	12.11	4	11．36	4.17	，3－020
$\because 1$	id	\therefore	111． 24	1	54． 111	15.13	$\because .057$	$\stackrel{3}{7}$	－	1s	12.78	$:$	56． 111	5.10 .5	
\cdots	－ 11	\％	41i．1：7	1	$3-10$	15，12	1． 94.8031	：	－	\because	－．！11	：	61． 14	5． 87	． 3 \％ins
20	－i	iti	7．30	1	23， 0.5	15． 11%	1．93：3\％	1	－－	31	11.10	3	15． 27	19．6．1	． 3 B － 0
？	－i	$\therefore 1$	13．：37	1	$\therefore \cdots$	1．1． 11		\％	－	\cdots	15． 38	3	32． $6: 3$	7． 47	． $314 \% 1$
：－	－1i	i3	31．8．in	11	Eit．rit	14． 53	1．731：7	${ }^{1}$	\cdots	：$: 1$	± 1.10	3	31． 16	r．es	． 32161
2！ 1	－ 1	\％	A1，1i！ 1	1	319． 10	14． 71	1．50140	7	－	：31	5．5． 11	3	20． $9: 3$	－． 39	． 341733
311	ri	O	1．6ii	11	Ul．3：	14．\％	1．3－394	－	－	40	1－．115	8	13， $1: 3$	！1． 31	．ごずら，
31	－1i	51	36．31	－11	！ 1.3	14．191	－01．910－．9\％	$!$	－	113	：3． 61	：	4.17	10.11	－ 260% \％
sipt．	ais	S1	－\％． 611	＋11	1． 3.5	1.1 .31		111	－	41	36，14	$\stackrel{3}{3}$	5i3． 31	11．10	． 23960
－	Ni	51	3，in	11	119． 116	1．1．1－	1． $3-111$	11	\cdots	49	39． 31.2	\because	13． 11	11.37	． 2118
：	Nit	Si	51． 11	11	：33． 21	1．1． 133	1． $5: 16 \mathrm{ij}$	1：	－	자N	13． 311	$\stackrel{3}{ }$	：310．-1	$1 \% .13$	． 17860
1	cii	\therefore	01.15	11	42.3	13.910	1．（i） 4 \％	13	－	S1	12． 13	\because	$1 \times .11$	12.92	． $141: 8$
5	31	：3	11．！ 2 ！	1	1． 17	13． 1 i \％	1． 720 F	1.1	－	S\％	1． 57	\because	－． 16	13． 37	2.19195
1	81	S 1	13．14	1	11．${ }^{1}$	18．119	1．ri．11：3	15	－	$5!$	7． $3: 3$	1	51．-9	1．1．19	2． 0.1×79
7	iti	5	2． 3 ！$: 3$	1	$\because-.31$	13，1－	1．98：30	11	S！	1	5！ 5	1	33． 20	1．1． 3 y	1．990\％4
－	－i	ini	56． $3: 3$	1	11．1－1．	$1 \because, 93$	4． $10463{ }^{2}$	17	－！	\because	37.103	1	23， 23	15． 113	1．913020
$!$	－i	ら	35． 31	1	51.41	12.611	$\because 0.05-16$	12	－	4	11． 3	1	2． 20	15． 45	1． 2 3：38
111	－	11	30．1：	＇	7.11	12． 5	2． $1103=1$	19	N！	\bar{i}	$\therefore 4$.	1	$5 \times .85$	15.84	1． 7×202
11	7	$\stackrel{4}{2}$	：1！． $1: 1$	$\stackrel{3}{3}$	19． 31	11．${ }^{10}$	2． 113383	$\because 1$	N！	1	1．20	11	34.91	16．21	1． 51314
$1:$	－	1	5．．3！	$\stackrel{\square}{2}$	31． 11	111． $3: 3$	2．179 1	－1	－1	6	32.11	11	20.71	16． 14	1．31597
13	－7	7	29． 17	$\stackrel{2}{2}$	43． 17	111．	2． 21075	29	＋！	1	Ex，	＋11	4.21	16．72	（1．6212\％
1.1	8	111	11.91	$\stackrel{3}{3}$	5i3． 3.	10．3゙	2.23×12	4	－ 1	7	3．103	－11	12.51	16.91	1．091506
1.1	\pm	$1: 1$	（1． 39	：1	3． $3: 3$	！． 73	？． 2 di．118	\cdots	－1	（i）	50． 51	11	29．403	17.03	1． 4 （ivij
$11 i$	－	1ii	（1．10？	：	13． 118	9． 117		只	－！	${ }^{1}$	$\because 1.14$	0	16i． 45	17.19	1．66i69
12	－ 7	$1!1$	－	3	－	\therefore \％	2． 3045.49	26	S！	\％	：3．1．1	1	3.51	17．1：3	1． 20.315
1＊	\cdots	\cdots	－1．．11	：	301.91	Tin	3.30110	告	A）	1	：11．10	1	23．1． in 2	1\％． 118	1．901671
$1!1$	－	$\because 1$	15.9	：	3s． 5	1i． 8	2．33， 369	2	S！	3	111．4：3	1	37．75	16．90	1．96012
$\because 11$	－	？	51． 19	3	15．13	1i． 10.5	2.30899	！！	2！	1	38．	1	5．4．73	16．83	2． 10.968
$\because 1$	\cdots	：33	： 11.11	3	51， 17	5． 15	3.361 .19	311	N88		37.05	$\stackrel{4}{2}$	11.50	16． 63	？ 31191
\because	－7	$: 17$	31． $3-$	3	\％i． 60	4.31	$\because 37115$	－ 31	As		26，30）	$\stackrel{3}{3}$	2×21	16． 56	$2.170 \mathrm{~S}^{2}$
Q	－i	11	$\cdots \cdots .110$	1	11．-3	3．${ }^{3}$	\％．3F171	Nov． 1	SN	51	5心． 10	$\stackrel{2}{2}$	41． 31	11：41	\％．216ss
$\because 1$	－1	15	\cdots	1	1． 11	$\because \%$		$\stackrel{*}{1}$	－	59	1：3． 11	3	1.15	-16.21	2． 25×11
4	－7	$1!1$	23． 1.1	，	6． 3	1．：3i	2．39159	3	N	$4!$	$1 \because: 1$	－3	17．3 31		＋2．29533
31	－i	53	31． 31	1	7．7：	＋ $0.1: 19$	2． 3193148	1			5．1． 21				
27	8	57	17． 14.4	$+1$	c．1：	-1.80	＋2．39446								

From the abose ephemeris the positions in the sixth cohmn were computed by interpo－ lation，using the abpterl longitudns of the Ohservatories abready given．
J. forming the equations of condition, the abservations wo divided into five weries. The first two series comprise the observations made with the firet group of Winmerke a comparison stans, and the next three those mate with the there following inmons.

In forming the equations of comelition, the eroos of the north polar distance of the ephemeris proved to be so minute that the simple error of gencentric dedination was introlnerd into the ergations instead of the error of the linear eorordinate \% which it was intembed to use. The three maknown quantities in the equations are as follows:
α, the error of north polar distance at the middle dote of eath series.
β, the change of $\%$ in ten diys, supposed constant throughont each series.
π^{\prime}, the ecror of the Sun's menn equatorial lumizontal paralliax divided liy 0.8:.
'The general form of the equations of condition is

$$
0=\mathrm{P}\left\{x+\frac{1}{10}{ }^{j}+\frac{0.89 \mathrm{sin} z^{\prime}}{\lrcorner} \pi^{\prime}+\text { J.N.I..U. }\right\}
$$

where
$P=$ measure of precision, (column 4.)
$t=$ timo in days from the middle of each weries.
$z^{\prime}=$ planet's ipparent geocentrie zenith distance sonth.
J. $=$ planet's distance from the earth.
J.N.P.D. = the computed, minus the observed, geocentrie north polar distanco.
（＇ompurison of North Polar distames of Mars dirived from obseration with those giren by the Ephemeris． amd E＇quations of conditan giren by the compurison．

FHET AERIES．

1 Bate．	Hewervatory．			范			Equation	at eond oliserv：	ion given iolls．	by the
1－9．9． Ang．シl 中） Q：							$0=: a_{1}$	－3． SH_{1}	$-3.3 \pi^{\prime}$	＋1． 3
			3il，N0．	3	+11.71 +110.6	17.95 7.17				
	Alhany	．	11i． 17	1	－11．：31	5．${ }^{2}$		－1．1	$+1.1$	＋11．
	Willinimstown	．	⒈	\because	＋11．73	：1， 14	\because	－$\because .1$	－3．：	＋11． 3
	1 ＇110．			3	$+111.1$	$\checkmark 9$	3	－．f． 11	－ 3.9	＋0．7
	Suntiago	．	：1．3	\because	＋111．\％	3i1．${ }^{\text {a }}$		－$\because 11$	－י．1	\because
	Willimmstown	．	2． 5	：	＋11．－1	3：3，－7	＊	-1.9	－2． 1	－1．1
	luthowa－		1． 13.3	3	－15． 01	$4!1.11$	3	－－3．	＋1．i	＋1．1
	$1{ }^{\prime \prime} 10 \times$		31． 11	；	＋111．：11	15， 11.5	：	－ 3.7	－3．：	＋ 11.1
	大antiag		1.1	\because	$+110.4$	11．7．7	\because	-1.2	－：3	－ 11.14
$\because 1$	Willamastown		7．3is	\because	$+11.95$	11．-11	\because	-1.7	－3． 1	＋0．1i
	（：ipי．－．		31.9	3	$+11.111$	36i． 3	3	-3.1	－：3．：3	＋10．9
	Nantura．		\％i．a	1	＋10．！	（i． 75	1	－11．${ }^{\text {a }}$	－1．1	＋10．11
	dhany		15． $2 \times$	1	－11．71	5． 75	，	－11． 2	＋1． 3	＋1． 1
	Williamstown		7．10	\because	＋12．05	20.3	4	-1.5	－-1	＋：3． 1
	－＂¢，：．		：11．3！	3	$+11.10$	（13． 619	3	－ 31	－3． 3	＋1． 9
			511． $3: 3$	1	－13， 110	：17．97	，	－11．7	$+1.1$	＋11．8
	Salliamo－		（1．：	\because	＋ 11.11	lii． 30	：	－1．1	-3.3	－ 01.6
	Washimgom		$3 \mathrm{Mi} .11{ }^{\text {a }}$	1	－110， 26	1．7． 119	1	－11． 7	＋1．1	-0.1
36			53．1：	$\stackrel{1}{1}$	＋11．21	1． 5	$\stackrel{*}{*}$	-1.8	－2．	－11． 3
	Simbingo－		漫1	$1 \stackrel{3}{2}$	$+11.1$	$4 \% .14$	\because	-1.9	－ 3.2	－3．11
\because	Williamstown		5．5． 34	\because	$+1: 27$		\cdots	-1.1	－\because	＋1．6
	Greonwich		52．	1	－11．111	： 51.94	1	－11．${ }^{\text {a }}$	＋1．1	－1．1
\because	kinliaga－．		13.3	\because	$+11.0$	\％	\because	-1.0	－ 3.	－1．！
	Willanstawn		1：3．30	\because	＋12．37	$\therefore 14$	$\stackrel{3}{3}$	－11．9	－－	-1.5
	（irrouwich		H． 11	1	-14.11	－19．11	1	－11． 1	$+1.1$	－1．i
	Santiaro－	－	$\therefore .7$	1	＋11．：3	17．91	1	－1． 1	-1.1	＋1．9
	Wishington．		26． 39	1	－ 11.11%	16． 11.3	1	－ 0.1	＋1．1	＋1．
39	Willianstown		13， 1311	\because	＋13． 13	56．	\cdots	－11．7	－\％	＋11．3
	（リu）－		$\underline{3.174}$	\because	$+11.15$	31． 17	$\stackrel{3}{3}$	－1．1i	－3．3	＋11．0
	＊antingo－		1－1	I	＋11．：3	－	1	－11， 3	-1.1	-1.3
	Nhamy		24．0\％	1	－12， 1	27． $2: 1$	1	－1． 3	＋1． 3	$+0.9$
： 11	Williamstown			：	＋10．5if	10． 50	\because	－1． 5	－\％	＋11．1
	Williamstown		31.11	1	＋12．16i	13． 51	I	－11． 1	－1．3	＋11． 7
	C＇川＂י．－	－	－1． 519	8	＋ 11.16	361． 79	4	－11． 3	－3． 3	$+1.1$
	Santinga ． Lukowa		\％1．1		＋ 11.5	33． 14	\because	-11.2	－3．3	$+1.1$
sept． 1	l＇ukowa－		1：1．7．	：3	－16． 31	27.60	3	1.11	＋1．！	＋11．5
	（＇a！	－	1－9．6is	\％ 3	＋11．85	\％7．3i	3	1.11	－3．i	＋11．1
\because	l＇ulknwa ．	．	小－ C ：	：	－16．10	：3，3i	3	＋11．：3	＋1．9	－11．
	（＇upe－		？1． $3: 1$	．	$+11.81$		$: 3$	＋11． 3	－3． 6	-1.3
－	Alhmy ．		－ 20	\％	－13．50	36． 11	\cdots	＋11．3	＋ 3	＋1．：
3	Warbingion．	－	4＊．（iin	\cdots	－ 11.15	36，i1	\because	$+1.3$	＋3．3	-1.3
	Pulkowa－	．	T． 313	1 －	－119．51	51． 11	：	＋11．6	＋5．0	$+1.8$
	Capr	－	26！ 513	，	＋11．9\％	5． 27	1	$+11.2$	-1.8	＋11．4
	Cirenwioh Sntiago．	－		\because	－11．86		1	+11.4 +11.2	＋3．0	－11．1
	Jlbany		11.61	1	－13．5！	E9，it	1	＋0．\％	＋1．3	＋11．5
	Wrahington－		11． 25	1	－ 11.80	59． 3.1	\because	$+1.1$	＋－3． 3	＋0．3
4	Williamstown	．	－ 5	－1	＋13． 113	1% an	1	＋10．3	-1.3	＋1．2
	Pukkowa－	．	41.313	3	－16．68	9．1． 6.5	3	＋11．9	＋5． 11	－1． 1
	C＇upe－		13， 37	3	＋12， 101	品．	3	＋0． 3	－3． 18	＋0．6
	Sinuliago．	－	25． 7	，	± 11.9	37.511	1	+11.3 +10	-1.2	-0.1
	Alhany ${ }_{\text {Wraber }}$		$4!1014$	1	－13．6i	36.26 37.96	！	+10.1 +0.6	+1.3 $+\cdots .3$	+0.5 +0.
5	Willianstown	．	42.6	1	＋13．11	Sis． 38	i	＋10．4	－1．3	±-1.4
	Sipe－．	－	1． $3: 3$	\because	$+13.15$	1：1．71	$\stackrel{1}{4}$	＋11．8	-3.4	＋1．8
	Santiara－		16.9	\cdots	＋11．！	67．19	\cdots	＋0．${ }^{2}$	－2．1	-2.9
	N13may ．－		410． 37	，	－11．37	6－1	，	$+0.4$	＋1．：3	＋0．6
	Wushington ．		1115 5	3	－ 11.70	－3－73	$\stackrel{3}{1}$	$+11.8$	＋2．3	-0.1
6	Willimmstown	．	：3， 37	1	＋ 13.19	5\％． 11	1	＋13． 5	－1．：3	$+1.6$
	Washingtou		1－シ9	\because	－11．80	：31． 111	$\stackrel{\square}{2}$	$+1.0$	＋2．1	＋1．1
7	Snutingo－		34． 1	$\stackrel{7}{1}$	$+10.1$	51． $3: 3$	$\stackrel{3}{4}$	＋1．	＋1．4	－1． 3
	Alhany－．		B． 3 s	1	－12．24	$5 \% .08$	$0=1 a_{1}$	＋1． 6.33_{1}	＋1． 3 \％π^{\prime}	$+1.1$

Late．	Oheservitury．								
						Byphation	of romli whererva	$\begin{aligned} & \text { ion griven } \\ & \text { ions. } \end{aligned}$	by tha
$\begin{aligned} & 1-10 . \\ & \text { self. } \end{aligned}$ 9 11 $1:$									
	Williamstown （＇n⿰口口．．	11.61 dii， 619	1	$+13: 31$ $+10 \%$	\％6． 4 \％	11．${ }^{1} a_{1}$	+11.71 +1.1	－1．$: 3$	+1.7 +11.
	Santiago ．	11.1	1	＋1 $13:$	93， 3 ：	，	＋11．$\%$	1．：	＋11．1
	Albany ．	311．	1	－12，11：	$\because 1.3$	1	＋11．	＋1．3	＋1．11
	Washington．	3 3i． 17	\because	－11．97	2\％， 11	\because	＋1．1	－＋：3．1	＋1． 1
	Alhany－．	\％11． 11.	1	－13．11	11． 17	1	＋11．$=$	＋1．i3	＋3．：
	Williamstown	11． 310	\because	＋13．12	SI．31	\cdots	$+1.7$	\cdots	$+1.1$
	Puhhwn	1！ 3 3！	3	－17．3！	：3．1：	：	＋ 3.7	＋6． 1	＋11．1
	Laiden－	25． 311	\because	－1．i．Ais	111．\cdots	\because	＋1．$=$	＋3．1	＋1．\％
	Cineowich	\％\％， 10	1	－1． 11 il	12．35	1	＋11． 1	＋1．	＋11．
	Alluny－	21． 111	，	－1：1．	7． si	1	＋11．！	＋1．：	＋11．1
	Willinmstown	11． 1.1	\because	＋13． 51	S\％，34i	\because	＋1．：1	－$\%$	－1．${ }^{\text {a }}$
	latilen－	3.17	\because	－15， 3	1－．72	＂	＋$\because 11$	＋3．1	$+\because$.
	Girumwieh	$\therefore 110$	1	－1：．ini	611．111	1	＋1．11	＋1．6	＋ 11.0
	l＇ulkиwa－	1i，15，	\because	－12．4！	¢－3：	\because	＋$\because \because$	＋3．5	$-11 . \%$
	Indsimurlus	17． 92	1	－17．37	11． 8 si	1	＋1．1	＋1．	＋11．
	Cup：	511.01		＋13， 3	3.17	（1） 3	$+: 1: 3$		－11．
	ludinn．			－1．i．－ 1	$\rightarrow-1$	11.10	＋$: 1: 3.1 s_{1}$	$+1.7 \pi^{\prime}$	$+1.1$
Sbecodo skliles．									
Sept． $1: 3$	Willimmstuwn	35.97	\because	＋12．1i－	11.11	$n=u_{2}-1.1 i_{2}-3.7+1.0$			
	Pulkowa．	45， 26	3	－17．0．1	－3！ 17				
	11．1singtiors－	1－．-5	$\stackrel{*}{1}$	－17．1i\％	：3．	\because	-1.11	＋ 3.3	＋1．3
	Cッ口゙以－．	$\because 1.10$	：	＋10，	3.1 .151	：	$1 . \square$	－i．$=$	＋ 12.3
	Laturd．－	SMi．-.3	3	－15． 511	10.85	：	-1.5	＋1．${ }^{*}$	－11．4i
	Smatiago ．．	1.19	1	$+12.1$	1：3． 193	1	－11．\％	-1.3	0.1
	Washington ．	$\because \sim$－	\cdots	－13： 31	lis． 31	\because	－1．1！	＋\because	＋11．
	Williamstown	\therefore 相	3	＋1i，il	$1-19$	：	－1．：3	－1．1	－11．14
14	Inkown－	\％${ }^{3}$	3	－17．1is	11.91	：	-1.15	＋i：	-1.11
	Iadiden－－	31900	$\stackrel{3}{1}$	－12，！${ }^{\text {a }}$	－1． 12	\because	－10．－	＋－3．	＋11．
	santingo－	17.11	1	＋19\％	6！ 510	1	－1．1	-1.8	＋11．11
1：5	Willimustown ${ }^{\text {full }}$	Sin 0	\％	＋13． 315	－ 96	\because	－11． 7	$\cdots:$	-11.1
	Polkuwn－	：3． 316	3	－17．75		\because	$-11.1 i$	＋3．	－11．19
16	Werch－	13．19	8	－ 11.10 -12.12	10.11 $0 \because 611$	：	－ $11 .!$ ！	＋1．	+11.2 -1.3
	Williamstown	5． $3: 1$	3	＋13． 10	！1．15	3	－11． 7	-1.1	－ 0.13
	loulkowa－	\％\％． 15	1	－17，－15	11．11：	：	－11．19	＋．1． 1	－11．1i
17	Leitlent－－	：19． 11	：	－11i． 11 i	？2． 3	3	－11．6i	＋1．${ }^{*}$	＋11．
	Gromwidh－	111． 131	1	－ 11.161	－4． 919	，	－11：	＋1．1	＋1．1
	Suntingo－	50， 11	$!$	＋10．6	\％	1,	－11． 2	-1.3	－11．
	Williamstown ．	19.114 $410.0 \times$	3	+13.5 18.91	18． $8 \times$ 20.12	：	－ 11.4 -10.3	1.1 $+\therefore 1$	11.9 +11.1
		4．9． N	1	－ 17.98	20．14	1	-11.3 -10.1	$+\cdots 1$ +1.2	+11.1 -1.9
18	Leiden．．－	5：	1	－11．：31	：31． $7: 3$	1	－11．1	＋1．19	＋11．
	Grumwich－	58.5	1	－ 16.16	314． $3: 3$	，	－11．1	＋1．1	-11.2
	Smatiago－．－	5．${ }^{3}$	1	＋12， 10	1－4\％	1	-11.1	－1．：1	＋11． 3
	Pulkewn－．	$\because 4$	3	－12．102	4．3． 111	：	11.11	＋．．1	＋1．${ }^{-}$
	1 Ielsingtiors－．	5.95	．	－12．10；	4N． 10	1	11.11	＋1．${ }^{2}$	＋0．：
	Cupe ．．．	36． 13	3	＋10．	$51 .-8$	3	0． 01	－ $1 . \times$	＋11．1
119	Latiden ．${ }_{\text {Washingon }}$	13． $4=$ 0.310	3	－16．33		3	11.01 11.10	＋1．9	－10，
	Willimmitown－	0.318 2：3， 63	\cdots	－ 1803	17.118 7.98	：	11.11 +11.8	＋\％．	-1.1 +1.11
	Pulkowa ．．	3.15	3	－12．030	15， 1%	：	＋11．：	＋i． 1	-9.9
	（＇aj＂）－．－	111． 11	3	＋12．\％	\％． 9 ！	：	＋11．：	－is	＋11．
90	Leriten－－	4．7．7	1	± 16.3	31.36	1	＋11．1	$+1.6$	-1.11
	Suntingo－．． licidun－．	c． 318	1	+10.6 -16.11	16.51 110.115	1	+1.1 +10.15	-1.8 +1.9	-1.1 +11.7
2128	Santiage－．	Iti． 1	\because	$+10.7$	7\％． 118	2	＋11．1	＋-6	－is 1
	Williamstown ．	13．14	$\stackrel{3}{3}$	＋14． 161	45． 17	\because	＋11．5	－3．\times	－ 11.9
	Pukown ．．	5×17	3	－10，	31.91	3	＋11．9	＋5．	-11.1
	Albany－．	3－5\％	1	－13， 37	11i．${ }^{\text {a }}$	1	＋11：3	＋1．1	＋1．
	Wushington ．．	2．1：	1	－12．min	$4 \times .35$	1	$+11.3$	$+1.3$	－1．3
	Pulkuwa ．．．	［1］． 13	3	－12．87	31.38	$0=3 a_{2}$	$+1.23$	＋isin	－：．3

 eymations:

> Pirat merimen.
> $3114_{1}-11.0_{1}^{3}-30.13^{-1}+18^{\prime \prime} .5=0$.
> $-11.3 x_{1}+145 . x_{1}+111.0 n^{\prime}+11.0=0=$
> $-33.14+114.013+533.92+11.5=10$.
> Seconal series.
> $308 u_{2}+10.3_{1}+13037 n^{\prime}+z^{\prime \prime} .5=0$,
> $6 .{ }_{\mu_{2}}+41.1 \bar{x}_{2}-19.9 \pi^{-1}-1 . \therefore=0$.
> $123.7 u_{2}-19.9 y_{2}+719.65^{-}-25.3=0$.
> Thiad worics.

> Funrlh suries.
> 10: $\mu_{1}-23 . x_{1} y_{1}+60.1 \pi^{\prime}+41^{\prime \prime} .1=0$,
> $-23 . \boldsymbol{N}_{4}+2.17 \xi_{4}-11.0 \pi^{\prime}-9.7=0$,
> $6: 1 \alpha_{1}-11.0 a_{4}+127.9 n^{\prime}+38.1=0$.
> lififlervies.
> $\begin{array}{r}264 u_{5}+23.55_{5}-33.2 \pi^{\prime}+75^{\prime \prime} .1=0, \\ 245 u_{0}+45.45+26.5^{\prime}+7.5=0,\end{array}$
> $-83.2 u_{5}+26.4 \tilde{F}_{5}+375.2 \pi^{1}+38.6=0$.

The separate solntion of each series of equations gives the following results:

These are merely first upproximations to the values of the unknown quantities. The rig. orous solution would require us to take the last equation of each series and add thein lugether to form a siogle one, and then find the values of the eleven unkown quatities from the eleven equations to which the fifteen wonld thas be rednced. This we shall do by shecessive approximations.

There is another consideration which will modily their treatment. It will be remembered that β is simply the change in α during ten days, that change being supposed uniform. Now, having a series of values of a at intervals of twelve or fifteen days, we could, if they were strietly comparable, dednce from their differences the values of β. In liact, only the first two are strictly comparable, different stars being used in each of the following series, the adopted positions of which may not strictly eorrespond to those of the first series. The probable differences between the means of eight stars, several of which are common, is, however, so small that the values of β, dedneed by differences, can hardly be appreciably in error from this cause.

The comparison of the five successive valnes of α give the following values of β, alongside of which we phace, for comparison, the values which have just been derived from the equations.

The contrary progression and contrary signs of the two systems of valans are a little sinsular. I can attribute them only to aceidental eroms. From the two serios are dedaced the following, as the most probable values of β :

$$
\begin{aligned}
& \beta_{1}=+0.04 \\
& \beta_{2}=+0.04 \\
& \beta_{3}=0.00 \\
& \beta_{4}=-0.03 \\
& \beta_{3}=-0.03
\end{aligned}
$$

A second approximation to the valne of π^{\prime} gives

$$
\pi^{\prime}=-0^{\prime \prime} .05
$$

Substituting these values of β and π in the first equation of each series we have the fol. lowing values of α :

$$
\begin{aligned}
& a_{1}=-0.160, \\
& a_{2}=+0.011, \\
& a_{3}=-0.002, \\
& a_{4}=-0.219, \\
& a_{5}=-0.295 .
\end{aligned}
$$

These values of α, and the above of β, being substituted in the last equation of each series, these equations assume the following form, and give the following values of the solar parallax:

The probable error of each equation is about $0^{\prime \prime} .82$; the probable error of the concluded value of π^{\prime} is approximately equal to the quotient of this quantity by the square root of the cciefficient of π^{\prime} in the final equation, or $0^{\prime \prime} .016$; the probable error of π itself, therefore, is by the usual method, $0^{\prime \prime} .014$. But this method presupposes that the errors of all the separate equations are entirely independent-an unsafe hypothesis until we ascertain whether the observations mate at each Observatory may not be affected with errors peculiar to the observer. This we do by substituting in each equation of condition the concluded values of the unknown quantities, takiig the algebraic sums of the residuals of the equations belonging to each Observatory, and dividing by the sum of the numbers by which the errors of observation have been
multiplied，which is the same as the sum of the coefficients of α ．The following are the sepas rate sums of residuals and multipliers for each series of equations，with tho tinal mean residnal：

Tha probable algebraic sum of the residuals on the hypothesis of no constant errors pecm－ liar to each Observatory will be $0^{\prime \prime} .82 \sqrt{ } \mathrm{~N}$ ； N being the number of observations，and the mean value will be $0^{\prime \prime} .97 \sqrt{ } \mathrm{~N}$ ．

The following table exhibits a comparison of the actual and probable smons，and the actual and probable mean residuals of the individual observations in the entire number made at cach Observatory：

Observatory．	Probable sum．	Actual Eum．	Probable meat．	Actinal mean．
	＂	＂	＂	＂
Willinmstown	± 5.8	＋15． 2	± 0.05	＋0．14
Pulkowa－	士4．5	-16.1	上0． 05	－0．17
Helsingfors	± 3.6	-0.1	± 0.16	$-0.0 .4$
Cape－	± 5.4	－ 2.6	± 0.15	－0．0．122
Leiden－	± 4.4	$+6.4$	± 0.07	＋10． 10
Greenwich	士：30	-3.7	± 1.18	-0.20
Santingo－	± 5.7	－14．0	± 11.18	-11.28
Albany－－	± 4.3	＋ 2.2	± 0.15	＋0．90
Washington－	± 4.9	$+6.1$	± 0.08	＋11． 10

It will be seen that the actual exceeds the probable residual in seven cases out of the nine， so that the probability in favor of systematic differences is very great．In the case of albany the evidence in favor of extraordinary systematic difference is indisputable，the observed polar differences being nine－tenths of a second less than those of the other northern Ohiservatories
thronehout the antire meris. This wrat discrepancy ques rise to the question whether the
 of error, amb rejubled atimely; or, in other words, whether that standard to which the three sonthern Ohservatories is eomparable, is more likely to be the mean of all the northern Observatorias, inchuding Albang, or only the mean of those five which agree woll between themselves. Rejecting Alhany altogether, the final eqnation in π^{\prime} would be, approximately.

$$
9574 \pi^{\prime}=-97^{\prime \prime}
$$

The resulting parallax wonk, therefore, be $s^{\prime} .866$, the Nlbay observations entering into the limal result for prathan with a weight of only one-fiftioth that of all the others. I thank we may consider them entitled to this weirht motwithstanding their diseordance. and shath. therefore, comsider the parallax already dednced the most probable result of the meridian observations. Owing, haweve to the evidence of constant ertors, the probable erom of the result must be
 areording to Wimmerke's plan.

$$
\mathrm{s}^{\prime \prime} .855 \pm 0^{\prime \prime} .0: 0
$$

$\leqslant 1$.

Micomelrie Ohsercations of Muss, 1862.-These observations are discossed by Professor Inall, in the Introhnction to the W :ashington Observations for 1863 , in a mamer which, so far as I see, leaves nothing to be desiral. I shall, therefore, accept his result, which is

$$
\mathrm{s}^{\prime \prime} .8 .4 \geq \pm 0^{\prime \prime} .04
$$

the probahle error heing a rough estimate from the discordane of the results, and the probable systematic ermors of the observers.

$\$ 7$.

Solar Parallar fiomi Observed Perollactic Inequality of the Moon.-The observations of the Moon, especially the older obes, do not present values of the parallactic inefuality as accordant as we might expect from their mamber. In his second memoir on the corrections of the elements of the Moon's orbit, the Astronomer Royal finds, from all the Greenwich meridian shervations of the Moon. from 1750 to 1851 , the value $122^{\prime \prime} .79$, " while the Altazimuth observations alone give the value $125^{\prime \prime}$. 5 th. When the observations previous to 1811 are rejected, owing to murotanty What valmo of the semi-dimmeter shonld be nsed. the result is inereased to 124".37. Finally, it is concluded that the real value of the coeflicient camot be fir from $1: 4^{\prime \prime} .7$.

Ilansen's disenssion of the Greenwich observations appears, however, to have led to a anterially dillerent result. In calenbating the coefticients of the lanar pertarbations, he fomd. from an assumed solar parallas, the value $121^{\prime \prime} .368 . \dagger$ By comparison with observations, how ever, it results that this value of the inequality must be multiplied hy the factor 1.03573 , in

'The comparison of these publeations of Prolessor Hansen shows that these coellidents are those of the development of his distmbed mem anommly, while the usmal development is that of the lime lomyitmb. 'They eamot be compared with other values motil they are reduced to the latter development. If we represent by e_{1}, e_{2}, ete., the coefficients of sine mean anomaly. sine $\because \times$ mean anomaly: ote. in the development of the trae amomaly, we find the following value of the pertmbations of the latter from the formulae on page 3 of Hansen's tables:

$$
\begin{aligned}
i f f= & n i z\left[1+e_{1} \cos g+2 e_{2} \cos 2 g+\text { ete }\right] \\
& +(n \dot{n} z)^{2}\left[-\frac{1}{2} e_{1} \sin g-2 e_{2} \sin 2 g-\text { etc }\right]
\end{aligned}
$$

[^0]If we represent by a sin N any term in now, thero will result in if, in virtho of the first term of this equation, the terms

$$
a \sin N+\frac{1}{2} e_{1} \sin (N+g)+\frac{1}{2} e_{1} \sin (N-g)+e_{2} \sin (N+2 g)+i t c
$$

'The powers of noz are to be developed in like manner.
In developing the square of noz, I fime no terms which will sensihly alleet the parallatic inequality. The latter will therefore depend altogether in the following torms in Hamsens noz:

$$
\begin{aligned}
& -11^{\prime \prime} .692 \sin \left(-g^{\prime}+\left(1 \prime-w^{\prime}\right) \text { prochecing the cocfliciont } 0^{\prime \prime} .641\right. \\
& -121^{\prime \prime} .368 \sin \left(g-g^{\prime}+{ }^{\prime}+w^{\prime}\right) \\
& -\quad 1^{\prime \prime} .614 \sin \left(2 g-g^{\prime}+(1)-\left(w^{\prime}\right)\right.
\end{aligned}
$$

The total value of the theoretical coellicients is therefore $122^{\prime \prime} .09$, which, being multiphind by 1.03573, gives

$$
126^{\prime \prime} .46
$$

for the actual value of the parallactic inequality deduced by Hasen from the observalions of Greenwich and Iorpat, and adopted in his tables.

The Monthly Notices of the Royal Astrommical society for May, 185 B , contain a short abstract of a paper by Mr. Stone, in which he dednees from ${ }^{2}, 075$ Gremwieh observations the value

$$
125^{\prime \prime}
$$

This result 1 shall aceept as the dofinitive rosult of the Groenwich observations.
 compared with Hamsen's tables. I have discussed those mate within two dity of the time of maximum and minimum parallactic inequality, on the supposition that the affeet of errors in the other inequalities will destroy each other in the eomme of the four cears. 'Thus, the following corrections to Hansen's purallactic inequality are obtamed for the severat years:

1862,	$-2.2 ;$
1863,	$-2.2 ;$
1864,	$-2.0 ;$
1865,	-2.0.

These results are still subject to correction for adopted semi-dianeter of Moon. Seven transits of both limbs of the neaty full Moon were observed during the above period. The mean correction to Hansen's semi-diameter was zero. If. then, we smppose this same semi-diameter applicable to the Moon at her first and last quarters, the coefficicht of parallactic inequality will be

$$
126^{\prime \prime} .46-2^{\prime \prime} .10=124^{\prime \prime} .36
$$

But the sume semi-diancter will not be applicable, becanse ono-half the observations for parallactic inequality are made while the Sm is above the horizon, and a considerable fraction of the remaining haif are made during twilight, while those on which the semi-diameter depents are made at midnight, when the brilliancy of the Moon is such as to excite tho eye to a disagreeable extent. From the experiments of Dr. Robinson,* and the researehes of Mr. Breen, t and other data, it seems that the effect of this brilliancy is to increase the apparent semidiameter of the Moon by ubout $2^{\prime \prime}$. Abont one-hall of the observitions being thas affected, the correction to the parallactic inequality from this cause onglit to be about $+I^{\prime \prime}$. 0 .

[^1]+Greenwich Observations for 1*6.4, Appondix.

To obtain an independent determination of this correction, I have made a general comparison of the apparent errors of Hamen's tables in right ascension, when the ohservations were made daring daylight with the corresponding errors when they were made at night. The selected night homs were, on the averare, a very littlo nearer to midnight than the day hours were to nom. The results were for the apparent errors of the tables in right nscension:

$$
\begin{aligned}
& \text { Before sumset - . - - - - - - 0.154 } \\
& \text { Aftur bright daylight in the evening - . - - - } 0.093 \\
& \text { Before bright daylight in the morning - - . . . }+0.091 \\
& \text { Alter sumrise - - - - +0.153 }
\end{aligned}
$$

From this investigation, the real anlargement would appear to be $0^{\prime \prime} .92$, and the correction to the parallactic inequality $0^{\prime \prime}$. s . But this correction is so affected by the correction of the roctlicient of variation that it camon be relied on.

Thure is still another canse of smaller apparent diameter about sanrise and sonset. At thuse times the Mon's disk is generally very shamp defined, while at miduight there is generally more or less spurions colargement, called "bhrsing."

Finally, the following are adopted as the most probable corrections to the semi-dianeter at miduight:

On accou 6				
Total				

The effect of this correction will be to increase the parallactic inequality derived from the Washington observations to

$$
125^{\prime \prime} .46
$$

The diflerent results will be combined by giving this the weight 4 , Stone's the weight 8 , and Hansen's the weight 1 ; the latter being derived from the Dorpat as well as the Greenwich whervations. This gives

$$
125^{\prime \prime} .49
$$

as the most probable value of the parallactic inequality derived from observations.
Owing to the uncertainty respecting the proper semi-diameter of the Moon to be adopted, and to the fact that owing to the libration of the Moon's disk the points of the Moon's surface observed at quadratures may be systematically different from those observed at full Moon, I estimate the probable error of the above result at

$$
0^{\prime \prime} .35
$$

To deduce the solar parallax from this value of the parallactic inequality, the formuia of Delamay and Plana will be adopted.* They give, for the parallactic inequality in terms of the solar parallax,

$$
\mathrm{F} \cdot \frac{1-\mu}{1+\mu} \cdot \frac{\sin \pi}{\sin 1\left(1-\frac{m^{2}}{6}\right)}
$$

[^2]Where
$\bar{A}=$ romstand of mol.f parallan.

Whence, sular parallas from parallatic: inempality of the Man $=$ $s^{\prime \prime} .838 \pm 0^{\prime \prime} .0: 25$.

As a test of the theory, this result may be compared with that of llathen, in the Monthly Notices, vol. 24. From an vane of the Moon's mass - tables, $\left(126^{\prime \prime} .46\right.$, $)$ ho finds for the solar $8^{\prime \prime} .916$. Altering the result to correspond to the data of the present paper. it will be

$$
8^{\prime \prime} .814
$$

arreoing satisfactorily with the theory of Welamay.

$$
\$
$$

Solar Parallax from the Observed Lamer E'quetion af the Eiorth rombinal wilh the Muss of the Moom. - In constrmeting his tables of the Sun, La Verrier investigated the lmar inequality of the carth from 35 yeare of Greenwich, 42 of P^{\prime}. is, and 17 of Konigsherg observations, with the result*

$$
6^{\prime} .50
$$

and a probable error of about $0^{\prime \prime} .03$.
'To complete the investigation, 1 have added the rosults of 14 years of Groemwich and 5 years of Washington observations. Whe results for the separate years are as follows:

Gremwid Obsmations.

Resulting value of the lunar inequality,

$$
6^{\prime \prime} .56 \pm 0^{\prime \prime} .04
$$

$$
1 i^{\prime \prime} .51 \mid 0^{\prime \prime} .07 .
$$

 ing the inegnality from the romertion given by the nharevations:

It is meresary to axplain how these valnes have bren ohtained.
 of thr 'Tables in R. A. " x iven rach rear in the Greenwioh observations in eommetion with the obsorved positions of the sm, by a comparison of the "Apparent Eroors" within three daps of the maxima and minima values of lmar inequality. 'lhe next step is to find the valne of
 from Corlinis 'lables and pmblished each year in the British Nimtical Almanac. By indnction

 from theore, aml probably the table was constructed from this value. If, then, the ephemeris comespaded exactly with the tahles, this wouh he the value to which the corrections eorrespond.

But on page V of each vohme of the Nantical Ahanac from 1854 to 1860 , indusive, it is wated that "The Lonsitmbe and Radins. Vector have been compated acenrately from the Tables for the Dean Noon of every Bth day of the year, am interpolated with fourth dillerences for "arh dis.". Now, sine the hanar ineguatity goes throgh its period in a month, its sucessive orders of diflerences lior each sixth day will be divergent. and interpolation with lonrth differene will resalt in the interpolated inequality being genemally too small mmerically. To find how much foo small, actand trial was resorted to. A mumber of six-day series of valmes of the inepuality was taken from Carlini's Table V, interpolated to days mar the maxima and minima, and compared with the correspondines tahular valus. The result showed that the interpolated values were, on the arerige, mmerically too small by $0^{\prime \prime} .10 \mathrm{~s}$. Since one-sisth of the values would be acemrate, the athal diminntion of Carlini's inequality would be $0^{\prime \prime} .087$, redneing it to $6^{\prime \prime} .15$.

From 1 s5s forward, thesmis positions given in the dmerican liphemeris are deduced from llamsen's 'Tables, in which the value of the hanar imegnatity is $\mathbf{s}^{\prime \prime}$. 11 . Comparing these positions

$$
\begin{array}{ll}
\therefore & +0.02: \\
& +0.01: \\
& +0.01: \\
& \\
& +0.02:
\end{array}
$$

 13'. 43. The mean of this amd tie former result is $6^{\prime \prime} .44$, which was considered the most probahle value of the qumatity in question.
 are probable at sulliciently short intervals to aroid the crom of interp lation.

 observations:

$$
\text { Mean, by weights - - } 6.5: 20 \mid 0.0: 3 .
$$

Although the aceidental errors of the observations on which thit malt deprads are quite large, the observations have this invaluable chameteristic, that they serom to bo prefectly free
 servations of the sum are liable, 1 can think of mone which can syamatioally change with the first and hast quarters of the Mom. If there are nome, the precision of the determination of the lmar equation will go on inereasing imdefinitely with the number of observations.

The nexi step is to determine the mass of the Mom. The mest precise determination is obtained by a comparison of the constante of preesesion and untation. which gives the ration of

- the disturbing forces of the sm and Moon in chatumg the direction of the earth's axis of rotation. The value of this ratio will be dedinced from the exhanstive memoir of seret*, after reconstructing his expression for Ω so as to inchate the terms of the third order with respect to the inclination and eccentricity of the Monn's orhit, which he has neglected. This is effected by substituting the expression

$$
\left(1+\frac{1}{2} r^{\prime 2}\right) \sin r \cos r
$$

for c in his value of 0 .
Let us put
$\mu=$ mass of the Moon, that of the Earth being unity.
$p=$ sine of its parallis, in secomds.
$\mathrm{M}=$ mass of the Sim.
$\varepsilon=$ ratio of disturbing forces of Sun and Mom.
$x=$ disturbing torce of the sull.
$"=$ luni-solar precession for 18:3.
$\mathrm{N}=$ constant of mutation.
$\mathrm{P}=$ cocflicient of lunar equation of Earth.
Then the observed length of the seconds pendulam compared with the siderial year gives

$$
\log M \pi^{3}=5.35488
$$

Whence

$$
s=\frac{: 2 \eta^{3}}{M \pi^{3}}=[2.24812]: x
$$

The formule of precession and untation give

$$
\begin{aligned}
\mathrm{N} & =[9.38669] \times \varepsilon, \\
a & =[9.96272] x+[9.95922 \mid x \varepsilon .
\end{aligned}
$$

Peters's concluded value of the constant of nutation is

$$
\mathrm{N}=9^{\prime \prime} .223 .
$$

[^3]

$$
a=i w^{\prime \prime} .3 i n
$$

\[

$$
\begin{aligned}
& \operatorname{lng}:=0.3: 30 \cdot 30 \text {. } \\
& y=\begin{array}{c}
1 \\
-1.05
\end{array}
\end{aligned}
$$
\]

 corpesponding terom in the parallax. we lime

$$
J=1.010 \times 11 \frac{\pi}{1+\prime \prime}=|1.78351|=\frac{\pi}{1+n}
$$

11.

$$
-=.11646111\left(1+\frac{1}{!}\right)
$$

$$
\therefore=\mathrm{N}^{\prime \prime} . \mathrm{Nog}
$$

The most mentain data which rater into this pendt are the eonstant of nutation, with the resulting mase al' the Moon. amd the lman equation ol lho earth. 'The probable error of the
 the rexulang mass of the Moon and solar parallas, or, of $0^{\prime \prime}$. $04 t$ in the latter. 'The uncertainty of the other fiactor involves a probable error of 10 ". $0: 3$ t, so that the total probable error of the result is $0^{\prime \prime}$.0nt.
S.
 linds $\pi=8^{\prime \prime} .832 \pm 0^{\prime \prime} .021$. But considering that the homitude of the observing station at San José is macertan, he abhitrarily changes it hy los., which increases the parallax to $8^{\prime \prime}$. 86 , which he eonsiders the most probable value.

That so small a chamge in the longitude of a simgle station shond change the parallax so largely, shows that the probable error $0^{\prime \prime} .021$ mast be illusory. I think $0^{\prime \prime} .0 t$ a more likely value of this clement.

$$
10
$$

Comeluded Paraller and Distamere of the S mu. -The separate results low the solar parallax with their probalile errors, and their eonsequent weights, are as follows:

$$
\begin{aligned}
& \text { From meridiun observations of Mars, 146: - - 8.855-1 } .020 \text {; wt. }=25 \text {. } \\
& \text { From mirrometric observations of Mars, 186: - S.Ste\& .010; } 6 \\
& \text { From perallariir inequality of the } \mathrm{Mom}_{\mathrm{om}} \text { - - . s.s } 3>1.02 \mathrm{~s} \text {; } 16 \text {. } \\
& \text { From the lunar equation of the Earth - - - . 8.809t .054; } 3 . \\
& \text { From the trensit of Vemas in 1769 - - - - } 8.860+.040 \text {; } 6 . \\
& \text { From Foucalt's experiments on light - . - . 8. } 860 \text { ? ? }
\end{aligned}
$$

 all tho results, it is conelnded that in the prosent shat of astronomical seicne the most prohable: value of the mean equatorial homizontat parillas of the stm is

N".Nis,

witio a probable armer of
1-0"11:3,
corresponding to a mean distance of
92.350 .000 statutr milers.

For astronomical purposes the value of - .
 valur.
$\$ 11$.
 the equation of si 7 , which srives the mass of the sum in terms of its parallas, we find fur the value of that mass

$$
326800 \mid 1: 360
$$

taking the mass of the Earth as unity.
'Ihe value of the lanar equation of the barth derived in the samm section erives fur the mass of the Moom

$$
\frac{1}{81.14+0.33^{\circ}}
$$

Taking the mass of the sum as unty, the combined masies of the bath and Mon will therefore be

$$
1
$$

322500
With the above value of the mass of the loom we find from the equations of $\mathfrak{y} 7$.

$$
\begin{aligned}
& \vdots=2.174 \\
& \mathrm{~N}=9^{\prime \prime} . \% 10 \mid 0^{\prime \prime} .011
\end{aligned}
$$

a valne of the constant of matation rather more probable, and more easily obtained than any derived from direct observation. The advantage of the theoretieal mode of deriving this constant arises from the fact that an error in the adopted mass of the Moon prodnees an error of less than one-third its proportivnate amomat in the resulting eonstant of mutation.

The theory does not appen to be shbjeet to any objection arising from one ignorance of the physieal constitution of the interior of the biath.

From the data of $\$ 6$, Delamay's theory gives for the parallactic inequality of the Mon

$$
12 i^{\prime \prime} .63+0^{\prime \prime} .19
$$

Taking the constant of aberration as $20^{\prime \prime}$. 4 45), we have for the velocity of light
185,600 miles per second.
This is slightly greater than the resnlt of Foncant's experiments with the revolving mirror. Adopting that determination, the constant af aberrition wonld be increased about $0^{\prime \prime} .03$. But the distance of the Sun and the terrestrial determination of the velocity of light are both mocertain to an amount greater than this inerease, which is therefore altorether unreliable. The constant of aberation mast be fomed by direct observation.

[^0]: * Memoirs of the R yal Astronomient Suciety, vol. xxix, p. 16.
 t Mombly Notices R. A. S., vol, xxili, p. 84: ; Tables de ha Lune, p. 8 .

[^1]: * Memoirs Royal Astronomical Society, vol. v.

[^2]: *Theorie du monvamant de la lane, tome II, p. 847. Mr. Ielanuny was good enough to communicate the formula for f^{\prime} in advaner of the volume.

[^3]: *Amales de l'otoservatoire Impriat de I'aris, val. 1, p. iest.

