$$
\begin{aligned}
& \text { QUA RYTR } \\
& \text { OPRPATOR'S }
\end{aligned}
$$

HAND BOOK.

Accession No.
Call No.C

So
gas. In, . Pincluctan isy By liis formma deliontinete Binn, ifinuderel 1655
-
-

QUARTZ OPERATOR'S

HAND BOOK.

WHEELER \& RANDALL, 「F

SAN FRANCISCO:

Mining and scifatitic Pess Jut Jrintirg 0ffice. 1865.

Lntered according to Act of Congress in the ycar of our Lord 1805, BY WHEELER \& RANDALL; In the Clerk's ofice of the Digtrict Court of the United States for the Northern District of California.

$$
817
$$

QUIRTM OPER HTORS'S IIIND BOOK.

In the preparation of this Hand Book, the object has been to make it a reliable and practical guide to the Quartz Operator.

No pains have been spared in gathering the material and in rendering the subjects discussed as concise and plain as their nature would admit.

Mindful that science and practice go hand in hand, the authors have confined their investigations to useful and established facts, leaving untouched all that is doubtful and chimerical.

No claim is made to originality, unless it may be in regard to the discussion of the tractory and the grinding effcets of differently formed plates - a subject of great importance to every quartz miner.

To what extent the authors have succeeded in their object, is submitted with no little diffidence to the decision of the public.

> WHEELER \& RANDALL.

San Francrico, April 26, 1865.

B L O W P I P E.

The Blowpipe is an instrument nsed for directing, by a current of air, the flame of a lamp or candle upon a mineral substance to fuse or oxydize it. The flame consists essentially of two parts-the orydizing and redueing.

1st. The oxydizing part is the outer and slightly luminous flame.

2nd. The reducing part, which is hottest, is the imer blue flane.

The reagents mostly used in making blowpipe tests are ehareoal, earbonate of soda, cyanide of potassium and borax.

The chareoal performs the part of a cupel as well as that of a reagent. The best charcoal is made of young hard wood.

The cupel or support consists of a sound piece of coal sawed or broken lengthwise, having a small cavity made in its plain side near the edge to hold the substanec to be tested.

The borax is prepared by being melted or vitrified and pulverized.
(A) Blowpipe Assay of Silver Ores containing sulphur and arsenic.

1st. Roast the pulverized ore within a shallow cavity on the coal support. To do this, direct by the blowpipe the oxydizing flame, that is, the extreme point of the outer flame upon the powdered ore; turn the speeimen
metal. With soda, it forms a magnetic powder of metal on charcoal.
"Oxyd of Silver is instantly reduced to metal when brought within the flame. It forms a white opaque glass with borax, and is partly reduced to metal in all instances; with alkaline fluxes it forms metal directly, when brought in the flame.
"Oxyd of Tellurium imparts to the flame a green color, fuses and sublimes; on charcoal it is easily reduced to metal. With borax, it melts to a colorless glass in the oxydizing flame; in the reducing flame the glass is gray. With carbonate of soda it acts as with borax but less distinctly.
"The Oxyds of Tin are converted into sesqui-oxyd, becoming dirty-yellow in the oxydizing flame; it forms metal after protracted heating on the charcoal support and in the reducing flane. With borax it forms a clear glass, and with alkaline fluxes it is easily reduced to metal on charcoal.
"Titanic Acid is not altered in the flame when exposed to it; with borax it melts to a colorless glass, which becomes opaque in cooling. In the reducing flame it becomes first yellow, then amethyst, and darkens in cooling. With carbonate of soda it dissolres with efferresence, forming a faint ycllow glass, which becomes gray in cooling. It forms no metal on charcoal.
"Zinc.-The oxyd of this metal forms a strong whitishgreen flame; it is slightly yellow when hot but turns
white in cooling. With borax it forms a transparent glass, whieh becomes milky by an intermittent flame; in the reducing flame it forms metal which is quiekly craporated. Alkaline fluxes do not alter it in the oxydizing flame; it is reduced on chareoal, and in the reducing flame. The metal burns readily and forms a white floculent oxyd, which is yellow when hot." Overman's Treaties on Metallurgy, pages 154-157.

CHEMIICAL TESTS.

Reagents or tests, usually in liquid form, are substances for indieating the presenee of other bodies. In the following examples the reagents are arranged at the left hand side of the page, and the precipitates or products at the right. The proper solvents are indicated by the name of the solution holding the substances sought :
TESTS FOR GOLD IN SOLUTION WITH AQUA-REGIA. Sulphate of Iron gives.... Metallic Gold as a purple powder.
Oxalic Acid gives Metallic Gold in large flakes
Yotash " Yellow Precipitatc.
Soda
TESTS FOR SILVER IN SOLUTION WIth Nitric ACID.
Potash gives Dark-Olive Prceipitate.
Soda " " " "
Plate of Copper gives Metallic Silver.
Muriatic Acid " White, Curdy Precipitate.

Common Salt gives White Curdy Precipitate. Tincturc of Nut-Gall gives, Brown Precipitate. tests for cobalt in solution witil nitric acid. Potash gives............. . Blue Precipitate. Soda " " "
Ferro-Prusiate of Potash
givcs Green "
Carbonate of Potash " Red "
tests for bismuth in solution with nitric acid.
Pure Water gives....... White Preeipitate.
Gallic Acid " Greenish Yellow.
Potash " White Precipitate. .
Soda " " "
TESTS FOR LEAD IN SOLUTION WITH NITRIC ACID.
Sulphate of Soda gives . . . White Precipitate.
Sulphuric Acid " ... "
Infusion of Nut-Gall gives,
tests for copper in solution with nitric acid.
Plate of Iron gives..... . Metallic Copper.
" " Zinc " " "
Potash " Green Precipitate.
Ammonia " Azure-Blue Color.
Infusion of Nut-Gall gives, Brown Precipitate.
tests for antimony in solution with four parts of muriatic acid and one part of nitric ACID.
Pure Water gives White Precipitate.

Plate of Iron gives Black Powder of the Metal. tests for mercury in solution witil sitric or muriatic acid.
Plate of Copper gives.... Metallie Mereury.
" " Iron " Dark Powder.
Gallic Acid " Orange Yellow.
tests for iron in solution with muriatic acid.
Infusion of Nut-Gall gives, Black Preeipitate.
Ferro-Prusiate of Potash
gives Blue
66
Ammonia gives......... . Brownish Red Precipitate.

EXPLANATION OF CHEMICAL TERMS.
Aqua Regia.-A fuming liquid composed of nitric aeid and muriatie acid, viz: One part of the former and two of the latter. This mixture readily dissolves gold and platinum.
$\left.\begin{array}{l}\text { Sulphate of Iron........ } \\ \text { Proto-Sulphate of Iron .. }\end{array}\right\}$ Copperas, Green Vitriol.
Sulphate of Copper Blue 1 itriol, Blue-Stone, Blue Copperas.
Nitrate of Potassa Nitre, Saltpetre.
Sulphate of Soda Glauber Salts.
Chloride of Sodium...... Sea Salt, Common Table Salt.
Nitric Acid Aquafortis.
$\left.\begin{array}{l}\text { Sulphuric Acid (Concen- } \\ \text { trated) }\end{array}\right\}$ Oi................ $\}$ Oil of Vitriol.
Hgdrochloric Acid... . . . Muriatie Aeid.

Oxalic Acid.-Sorrel Acid.-It is commonly manufactured by the action of nitric acid upon saccharine and farinaccous substances.

Gallic Acid.-An acid obtained from nut-galls or oakapples. It is also obtained from several other vegetable astringents.

Nut-Galls.-Oak apples, which are excrescences produced by small inscets depositing their eggs in the tender shoots of a species of oak.

Potassa.-Pure Potash, when refined by heat, is called pearlash. It is a vegetable fixed alkali.

Aqua-Vitae.-A liquid much used for precipitating hombres, properly called aquamortis, alcohol.

Chloride of Ammonium.-Sal-Ammoniac.
Catechu.-A dry, brown astringent extract obtained by decoction and evaporation from the acacia catechu in India. It contains a large portion of tannin or tannic acid.

ASSAY.

Assays are three kinds-Mechanical, dry and humid.
I. Mechanical Assays consist in washing or otherwise freeing, without the aid of chemical agents, the metallic substances from sands and other impurities. "Panning out," or separating the gangue (earthy matter) from the metallic substances, by washing in common mining pans, also, "winnowing," as practiced on rich, dry sands, are familiar examples of mechanical assays, and require no explanations; the former of which often furnishes safer
and more practical data for extensive operations, especially in gold mining, than either the dry or humid way.
II. The Dry wouy of assaying ores, usually requires fluxes for separating the gangue (earthy matters) from the metallic substances.

Assay of Galena.-Fuse in an earthen crucible, at a bright red heat.

Powdered ore. 6 parts.
Black Flux,. 9 "
Iron, in small pieecs, 2 "
Extraet from the slag, and weigh the button of Icad thus obtained.

Assay of Iron.-Fuse in a covered erucible, about one hour, a well triturated mixture of

Powdered and roasted ore, 2 parts
Fluor Spar, 1
Charcoal, 1 "
Common Salt, . 4 "
Extract and weigh the button of cast iron thus obtained.

Various other fluxes, as lime, clay, ctc., may be employed instead of the above. No general formula can be given, as their applieation depend upon the nature of the ore.

Assay of Copper Ores, containing no other metals besides iron and copper :

Heat gradually, at first, in an earthen erueible, and afterward increase the heat to bright red, which continue fifteen minutes.

Powdered Ore, . 1 part.

Blaek Flux, 3 "
Extraet from the slag, and weigh the button of copper thus obtained.

Assay of Copper Ores eontaining sulphur, but otherwise similar to the above:

Fuse in an carthen erueible, at a dull red heat, equal parts of the powdered ore and dried borax. Extrat from the slag the matte (crude copper) button, whieh pulverize ; roast slowly in an carthen erucible, and stir, in the meantine with a steel rod, till sulphurous acid eeases to be evolved; then increase the temperature to a white heat, which eontinue for several minutes. Next mix in the same erucible:

The Roasted Matte, 1 part
Blaek Flux, from... 3 to 4 "
Cover the mixture with a layer of fused borax, and subject it to a cherry heat for twenty minutes, in a wind furnace; then extract and weigh the button of eopper.

Assay of Copper Ores containing arsenie and various other metals:

Obtain and pulverize the matte as in the preeeding ease, then roast with it powdered charcoal, till the garlic odors of arsenie cease to be exhaled.

Reduce the matte thus obtained, as in the last case, with blaek flux and borax.

Cupel the button in a bone-ash eupel, with pure lead. Throw a little borax glass over the globule when its rotation eeases and brightening oecurs; eool and weigh the button of copper.

ASSAY OF GOLD OR SILTER, OR GOLD AND SILVER ORES Fuse in an eartlen erueible:
Powdered Ore parts.
Litharge, 4 "
Black Flux, 3
If the ores contain much oxyd of lead, add only black flux.

If the ores are very riell in pyrites, add litharge and nitre.

If the button obtained be an alloy-for instanee, of gold, silver, eopper and lead-make additions to it of silver and lead, so that the prepared alloy shall contain as near as may be, of

Gold,
1 part.
Silver,
Lead, . 16 "
First fuse the lead in a bone-ash eupel, within a muffle; then add the gold and silver inclosed in a pieee of paper, and continue the heat till the button brightens and beeomes tranquil. Cool and weigh the button. To separate the gold from the silver, called "parting of gold," anneal, beat the button into a thin plate, make it into a roll, which is termed a cornet. First heat this plate or eornet in dilute nitric acid as long as the aeid aets upon it, then in coneentrated nitrie acid till all of the silver is dissolved. Thoroughly wash, dry and ignite the eornet. The weight of silver is equal to the weight of the button before "parting," less that of the refined cornet.

HUMID WAY OF ASSAY-ASSAY OF GALENA.

1.-Digest the powdered ore in equal parts of nitric acid and pure water.
2.-Filter and digest the residual several hours with a strong solution of carbonate of soda.
3.-Filter and digest the second residual in dilute nitric acid, and again filtcr.
4.-Add either a solution of the sulphate of soda, or sulphuric acid to the collected filtrates, as long as any precipitate takes placc.
5.-Filter, then wash and dry the residual.
6.-Rcduce the residual, with powdered charcoal, in an earthen crucible; cool and weigh the button.

ASSAY OF COPPER ORES.
1.-Digest the powdered ore in dilute nitro-muriatic acid.
2.-Filter the solution.
3.-Add ammonia in excess to the filtratc.
4.-Filter and wash residual in ammonia.
5.-Evaporate the filtrate to dryness.
6.-Dissolve the dried filtrate in muriatic acid.
7.-Add clean iron or zinc plates to the solution much diluted.
8.-Wash dry and weigh the copper precipitate.
ASSAY OF SILVER [ORES.*
1.-Digest the pulverized ore in nitric acid.

[^0]2.-Add muriatic acill or solution of common salt to the silver solution as long as any precipitate takes place.
3.-Filter and dry the residual.
4.- Reiluce the dry residual with carbonate of soda, or black rosin in an earthen erucible, then cool and weigh the button of silver. It also may be redueed with chalk and elareoal.
ASSAY OF GOLD ORES.
1.-Digest the pulverized ores in one part of nitrie acid, and four parts lyydrochlorie aeit.
2.-Dilute, filter and evaporate the filtrate to dryness.
3.-Digest the dried filtrate in pure water, then boil the solution with a solution of sulphate of iron, which precipitates the gold as a dark-purple powler.
4.-Filter and heat the residual with hydroehlorie acid.
ammonia, and can be precipitated from this solution by the ad-
dition of nitrie acid. It is also soluble in a strone, hot solution dition of nitrie acid. It is also soluble in a strons, hot solution of common salt, (see Angustin process) from which it may be precipitated in its metallie state by a clean plate of copper.

Quicksilver partially decomposes the chloride of silver forming a silver amalyan; this is attended, however, with a loss of quicksilver, and shonld be aroided in prartical operations. Silver may be revived from its chloride state ly being kept from twelve to twenty-four hours in contact with clean iron, copper or zinc plates.

Bromide of Silver, in almost every respect, resembles chloride of silver; it is, however, less soluble in ammonia.
Iodide of Silver, found also native, is readily converten into elloride of siher by muriatic acid, and then may be treated as above describod.
5.-Filter, wash, dry and weigh the gold powder.

Oxalic acid substituted for the sulphate of iron precipitates the gold in large flakes.
ASSAY OR ANALYSIS OF IRON ORES CONTANING manganese.

1. - Digest the roasted and pulverized ore in dilute hydrochloric acid.
2.-Filter, wash residual and add washings to the filtrate.
3.-Add muriate of barytes until no farther precipitation takes place.
4.-Filter, wash and add washings to the filtrate.
5.-Evaporate the filtrate nearly to dryness and to it add sufficient nitric acid to transform the sulphate of iron to per-oxyd.
6.-Add solution of caustic ammonia in excess to the solution.
7.-Filter and reduce the iron to the magnetic state by heating the residual with resin in an iron cruciblethen cool and weigh.
8.-Precipitate the oxyd of manganese from the filtrate, by expelling the excess of ammonia with heat.

When the ores eontain much alumina or silex, flux them with thrce or four times their weight of caustic potash, then digest in hydrochloric acid and proceed as above.

ASSAY OR ANALYSIS OF ORES CONTAINING GOLD SILVER, COPPER. LEAD, IRON AND SLLPHLTR.
1.-Digest well the pulrerized ore in nitric acid.
2.-Filter, wash residual (1) and add washings to filtrate (1).
3.-Add to filtrate (1) hydro-chloric acid, or a solution of common salt, which precipitates the silver as a chloride.
4.-Filter, and digest residual (2) in lydro-chloric acid.
5.-Filter, wash residual (3) in warm water, and to filtrate (3) with the washing: add filtrate (2).
6.-Reduce the chloride of silver with carbonate of soda by fusion, and weigh the button of silver.
7.- Idd to filtrate (3), sulphate of soda in solution, which precipitates the lead as a sulplate.
8.-Filter, and add the residual to reeilual (1).
9.-Evaporate filtrate (4) to any desirable extent.
10.-Add, in excess, to conecentrated filtrate (4) ammonia, which precipitates sesqui-oxyd of iron.
11.-Filter, wash residual and add washings to filtrate (5).
12.-Dry and heat the residual in bydrogen gas within a glass tube as long as any rapor of water is disengaged, then weigh the iron. This powder, with glass as a flux at a high heat, becomes a button of iron.
13.-Treat filtrate (5), after evaporating it to dryness with hydro-chloric acid, then add clean iron or zine
plates to the solution diluted. Wash, dry and weigh the eopper preeipitate.
14.-Treat residual (1), first with a strong solution of carbonate of soda, then with dilute nitric acid; and to the eombined filtrates add sulphurie acid, or a solution of the sulphate of soda. Wash, dry and reduee the preeipitate with powered charcoal in an earthen erucible; then eool and weigh the button of lead.
15.- Digest the last residual in nitro-muriatic teid; add chloride of sodium in solution, filter, precipitate the gold from its solution by the addition of sulphate of iron in solution; wash, dry and weigh the gold.
16.-If the gold may be alloyed with silver and eopper, precipitate the eopper from the last filtrate by the addition of iron or zine plates; wash, dry and add the weight of the preeipitate to the eopper already obtained.

Heat the residuary ore in a strong solution of chloride of sodium, filter and precipitate the silver with a elean copper plate; wash, ignite and add the silver to that already obtained.
17.-Burn off the sulphur and weigh residuary ore. The sum of the weights of the gold, silver, copper, lead, iron and ealcined ore taken from the weight of the original ore, leaves the weight of the sulphur.

RECIPES.

Black Flux.-Black Flux is prepared by introdueing gradually in small quantities, into a erueible heated to a
very dull redness, a mixture of either two parts of cream of tartar and one of nitre; or equal parts of crean of tartar and nitre. White Flux is similarly prepared exeept that the mixture consists of one part of eream of tartar and two parts of nitre.

Iron Rust Cement.-To one hundred parts of powdered and sifted iron borings, add one part of sal-ammoniac. Moisten the mixture with water to a pasty consistency for use.

Lead Cement.-Red or white lead in oil, four parts; iron borings, two to three parts. Makes a good cement for steam boilers, steam pipes, ete.

Solders, for Lead.-Melt one part of block tin, and when in a state of fusion add two parts of lead. Resin should be used with this solder.

For Tin.- Pewter four parts, tin one part, and bismuth one part ; melt them together. Kesin is also used with this solder.

For Iron.-Tough brass with a small quantity of borax.

For Iron, Copper and Brass.-Spelter, that is au alloy of zinc and copper in nearly equal parts, is used.

Quicksilvering of Copper Plate.-First thoronghly eleanse the surface of the plate, and rub it orer with quieksilver, or with the nitrate of mercury.The surface is sometimes eleansed by simply scouring it with wood ashes, brick dust, or fine sand; and sometimes by washing it with dilute acid or strong alkali. When acid is emplosed, its corrosive qualities should
be neutralized before the application of the quieksilver. Nitrate of mereury, when erystalized, is readily converted to a liquid by heat, in whiel state it may be applied as a wash to the plate.
roastivg.

Roasting is employed to dissipate the volatile parts of ore by heat, and is effeeted in heaps or furnaces.

In Heaps.-Alternate layers of fuel and ore, usually as it eomes from the mine, are heaped up to the depth of several feet. The lowest or ground layer is of wood, arranged by eross-piling so as to afford a free eireulation of air. The upper layers may be of wood or coal.

The ratio of fuel in volume to that of ore varies from 1 to 6 to 1 to 18 . Fine ores and those rieh in sulphur require less than coarse ores and poor in sulphur. The fire is kindled through vertieal openings or ehimnies whieh extend to the ground layer. These openings are elosed when the fuel has well taken fire. The roasting should be slow and uniform in all parts of the heap. The heat may be regulated by opening or elosing the draft holes and ehimnies. Several days and even months, sometimes, are required for roasting one heap. Ores similarly piled with fuel are sometimes roasted in walled inelosures provided with side openings.

Furnaces.-There are a great variety of furnaees. Those mostly approved for the roasting of ores embracing also calcining and chloridizing are the reverberatory. The interior walls of the furnace should be of the best fire brick laid edgewise ; the outer walls may be of com-
mon building brick or stone. The furnace must be well tied with iron rode, and earefully dried before being used.

The Reverbreatory Furnace is construeted sometimes with one and sometimes with two hearths or soles one above the other. In the double hearth furnace, for instanee, in the treatment of silver ores the roasting and sulphatization are effected on the upper sole, and the calcining and clloridizing on the lower. The ore pulverized fine, is charged upon the upper sole to the deptli of from two to four inches, and is kept well stirred during the roasting. The heat should be at a low temperature, not exceeding brown or dull red. The aecess of air should be frec. A small jet of steam into the furnace assists in regulating the temperature and also faeilitates oxydation. The addition of powdered chareoal in small quantities may be made to advantage when the ores contain arsenie. If the ores are poor in sulphur add from two to three per cent. of the sulphate of iron. The first operation of roasting and sulphatizing is accomplished in four or five hours. Then through an opening in the mper hearth the ore is let fall upon the lower, where it is heated for some time at a temperature not meh higher than that above. The heat is then gradually inereased to cherry red, at which it is kept during the time required for ealeining and chloridizing. The heat should never exeeed bright red. The ore is frequently stirred. When calcination is complete a mixture of eommon salt melted and pulverized and seven
parts of cold calcined ore are added to the hot ore, cstimated at fifteen parts, and quickly and thoroughly mixed with it by stirring. Calcination is usually effected in four or five hours, and chlorination in fifteen or twenty minutes.

PURIFICATION OF MERCURY.

Mercury for the purposes of amalgamation should be pure. Any foreign substance such as lead, tin, zinc, or bismuth diminishes its properties of combining with gold and silver. To free from these and other impurities,

1st. Distil the impure mercury. A retort for this process may readily be made of a eommon quicksilver flask and iron pipe of syphon form. The short lcg of the pipe, a few inches long, is attached to the flask in the place of the removed stopper.

The long leg, three or four feet in length, inelines downward from the bend. The retort should not be sver two thirds filled with mercury. The heat ought first to be applied to the short leg of the pipe and upper part of the retort, then to all parts of the flask alike. The long leg of the pipe must be kept eold. This may be effected by wrapping it with cloths and pouring on eold water. The discharge end may also be immersed in cold water, kept in the receiver. The heat should be uuiform, and the distillation slow. The common eovered retort is far preferable to the onc deseribed.
2. Heat and frequently agitate the distilled mereury in thin sheets, with one part of nitric acid and two parts
of pure water. The heat should be kept at 120 degrees Fiblenheit, for several hours. Repeat these operations until satisfactory results are obtained. Then pour off the mercury for use.
3. Digest the erust (nitrate of mereury and impurities) in nitrie acid. Then dilute the solution, filter, preeipitate the mercury by metallic copper, and add it to the mereury already obtained. Or the nitrate of mercury may be converted to a liquid, simply by heat, and the metal then precipitated by copper plate.

EXTRACTION OF GOLD BY THE PAN PROCESS.

1. The rock, as it comes from the mines, is usually crushed wet by stamps, to a fine granular state, and run into large tanks.
2. Charges of the redueed ore, with sufficient water to form a thin paste, are thomondy ground in iron pans. As gold found in rock exists almost without excep ion in a metalie state, friction alone is required to fit it for amalgamation.
3. Quicksilyer is ordinarily added to the pulp, as the pans commence running. To avoid grinding the quicksilver excessively, the addition is sometimes made with the muller slightly raised, after the reduction of the ores
4. The charge is then drawn off and washed, leaving the amalgam in the separators.
5. The proportions msually observed, for instanee, in the Wheeler \& Randall grinders and amalgamators, are

Ore to the charge, 1,200 pounds.
Quicksilver to the charge of ore,.... 75

Revolutions of muller,............. . 60 to 75
Time of reducing, 2 to 3 hours.
As gold-bearing rock is seldom found sufficiently rich to render it advisable to treat the entire mass in pans, the above method is subject to various modifications, of which the following are a fcw:

1. The heavier and richer portions of the rock, as crushed, are concentrated by revolving-blankets, buddles or other machinery, and then pulverized and amalgamated in pans.
2. Amalgamation is commenced in the batteries during the crushing operation, and is carried on through a series of shaking tables, riffles, and copper plates. The richer portions of the tailings are then concentrated and treated in pans.
3. Grinding and amalgamating are effected in pans while the reduced ores are flowing continuously through them.
4. The sulphurets or concentrated tailings are sometimes roasted in a reverberating furnace, before being ground and amalgamated.
5. Thin layers of the concentrated sulphurets or tailings are spread in inclosures open to the sky, and allowed to remain a long time, for instance, a year. The tailings are occasionally turned with shovels and the lumps broken, so as to expose as much surface as possible to the action of the air. Common salt mixed with the tailings assists in their oxydation. When quite
thoroughly oxydized, they are treated in pans. This is very economical and effectual, and by it the yield of gold, (especially if very fine) to the ton is frequently much greater than was obtained at first from the same ores.

EXTRACTIOS OF GOLD BY CHLORINATION.

1. Pulverized Ores, containing gold, having been well roasted, cooled and moistened with water, are put into closely corered wooden cisterns, whose bottoms are so constructed that chlorine gas ean permcate the mass from underncath.
2. Chlorine gas prorluced by heating sulphuric acid, per oxyd of manganese and common salt, in a suitable generator, is calused to enter the cisterns at the bottom, through leaden pipes. The effeet of the chlorine on the gold, is to produce terehloride of gold.
3. Pure water, after the chloride has done its duty, which takes from ten to fifteen lours, the covers being removed, is added sufficient to keep the eisterns even with the mass. The effect of the water is to dissolve the terchloride of gold. The solution is then drawn off into glass vensels.
4. Sulphate of iron, in solution, is used to precipitate the gold, which may then be gathered as a powder.

EXTRACTION OF SILVER BY THE PATIO I'ROCESS.

1. Patio signifies a yard. For amalgamating purposes, the floor of the yard is male level, paved with brick or granite blocks, surrounded by high walls, and
usually left open to the sky. On this floor circular batches of silver ore, reduced to an inpalpable paste by stamps and arastras, or other machinery, are spread to the depth of seven to twelve inches, and inclosed by low close curbs.
2. Selt, varying in quantity according to its quality and the richncss of the ore, is well mixed with the pulp by treading it with horses, mules, or oxen, and turning it with shovels. The effect of the salt is to desulphurize the sulphurets, and produce chloride of silver. The batch is then left one entire day.
3. Magistral, that is, roasted and pulverized copper pyrites, varying in quantity with its quality, the richness of the ores and season, is well mixed with the pulp after it has been subjected to the treading and turning operation one hour. The ultimate effect of the magistral is to revive the silver by depriving it of its chlorine.
4. Quicksilver is added, usually in three charges to the mass, by being sprinkled in minute particles through cloth or other porous substance. After the addition of the first charge of quicksilver, the batch is thoroughly mixcd, thrown into heaps of about one ton each, smoothed and left at rest one whole day. The treading, turning and heaping operation is performed cvery other day, occupying five or six hours, and is found much more effective in a morning than an evening. The second charge of quicksilver is added and similarly treated when it is ascertained by washing a small quantity of the mixture, that the first has been well incorporatcd.

After the second charge has performed its work, the third charge is added to take up any stray particles of silver, and to fit the amalgam better for separation.
5. Lime is added to cool, and magistral to heat the mass, according as it may be too hot or too cold. Too muel heat is indicated by the quicksilver becoming extremely divided, and of a dark color, with occasional brown spots upon its surface. Too little heat is indicated by the quicksilver retaining its natural color and fluidity. A proper degree of heat is indieated by the amalgam's being of a greyish-white color, and yielding readily to a slight pressure.
6. The proportions to the ton of ore, valucd at fifty dollars, are:

Sea Salt, of good quality, 80 pounds.
Magistral.-When containing ten per cent., of the sulphate of copper,
in summer,..... 20 "
in winter, 10 "
Quieksilver-First charge, 14 " Second charge,............ 5 "
Third charge,............ 7 "
Lime.-More or less, see section $5 \mathrm{th}, \ldots . .15$ "
An exeess of magistral, quiehsilver, or lime is injurious. An exeess of salt causes a loss of quieksilver but is not otherwise injurious.

The time employed in treating a batch of ore raries from twche to sixty days. Light and good weather greatly facilitate operations.
7. The separation is aceomplished by agitating the
pulp or mixture with abundance of water, in a large, deep, circular vessel, and eausing the lighter portions of the mass to flow slowly off, until the amalgam is gathered by itself.
extraction of silver by the freyberg process.

1. This process takes its namc from Freyberg, a place in Germany, where it was first practieed. The ores, if possible, are assorted so as to contain not less than twenty-five per cent. of sulphurets. When they contain less, the sulphate of iron is added to make up the deficieney. When more, then a sufficient quantity of the richest in sulphurets is roasted without sea-salt to make good the ratio: the ores are erushed dry.
2. Sea-Salt and crushed ores are thoroughly mixed together, roasted in a reverberatory furnace, and then reduced to an impalpable powder in a suitable mill. The salt and heat transform the sulphurets of silver to chloride of silver.
3. Wrought Iron, in small picces, with a pasty mixture of the reduced ores and watce are put into German barrels, which, making twenty revolutions a minute, are run two hours. The effeet of the iron is to revive the silver to its metallic state.
4. Quickisileer is then poured into the barrels, after which they are run sixteen hours continuously, except the time taken to regulate the consisteney of the pulp, by the addition of ore or water. At the end of the time run, the easks are filled with water and revolved quite
slowly for one or two hours, when the mass is diselarged into lage rats and the analgam separated by wasling.
5. The Proportions to the ton of ore valued at $\$ 75.00$ per ton, are

Sect-Sult, added before the roasting process, 200 lbs .
Wrought Iron, added to the ton of roasted ore. 200 "
Quicksilver, added to the ton of roasted ore........ 1000 "

FXTRACTION OF SHJER BY THE VEATCH PROCESS.
The only essential difference between this and the Freyberg process consists in the employment of tubs instead of barrels, and the use of steam directly in the pulp. Vertical plates of iron or eopper, for reviving the silver from its ehloride state, are fastened to the muller arms, so as to revolve edgewise through the pulp or mass. The operations are greatly hastened by the applieation of steam, so that not more than five or six hours are required for the treatment of a charge of ore.

EXTRACTION OF SHLVER BY THE PAN PROCESS.

1. The Ores, as they come from the mines, are usually erushed wet to a granular state by stamps, and run into a series of large settling tanks. To erush wet, and at the same time fine, is rery objectionable, as much silver thereby is earried ofl by the water.
2. Charges of the reduced ores, with sufficient water to form a soft, pasty mass, are put into iron pans con-
structed as grinders, which are run from tivo to six hours, according to their reducing properties. Water is occasionally added during the grinding process, as the condition of the pulp may require.
3. Quicksilver is ordinarily poured into the pans as they commence running. Sometimes, to avoid grinding it excessively, the muller is slightly raised and the addition made after the reduction of the ores.
4. Chemicals, differing in kind and proportions, to almost an indcfinite extent are employed. As to their practical valuc, a diversity of opinion prevails among the most experienced and intelligent amalganators and mill-men. In pans of slow motion and of little grinding capacity, certain chemicals, in the treatment of some ores, have been used to advantage. Their employment and proportions, in all cases, depend upon the eomposition and character of the ores. Experience thus far, chiefly goes to show that the chemicals in pans, which grind rapidly, are not only valueless but in many instances injurious to amalgamation. In pans of this character, the sulphurets of silver ores become not only mechanically divided, but chemically decomposed. The heat of the steam contributes to the attainment of this desirable object; the iron of the pans serves also to revive any silver existing as a chloride.

The proportions usually observet in operating the Wheeler \& Randall grinders and analgamators, are:

 $=-$ $-=-\infty-\infty-$ \qquad

I 0 - 10

- E Lita

$$
\ldots
$$

$20 .-25$

.0. . 1 .

20…

REC. V.

Sulphate of Iron, 1.5 "
Nitric Acid, 1.5 "
Common Salt, 15.0 6
REC. VI.
Muriatic ^cid, 30 ounces.
Peroxyd of Mangancse, "
Sulphate of Copper, "
Sulphate of Iron, 10 "The salt is applied half an hour before the otherchemicals.
separation of silter from lead by the pattin
son process.

1. This process is founded on these facts: If a melted alloy of silver and lead is stirred while cooling slowly, crystals of lead form and sink, which may be removed with a drainer. A large portion of the lead may thus be separated from the silver.
2. Cast-iron pans, capable of holding about five tons each, and provided with fire places, are arranged in a series, as A, B, C, D, E, F, G, in a straight line.
3. The metal of ores containing silver and lead as it comes from ordinary smelting works, is melted, for instance, in pan D, and then allowed to cool very slowly. The metal while cooling is stirred, especially near the edges of the pan, with an iron bar. As soon as crystals form and sink to the battom, they are taken out with an iron drainer raised to a temperature somewhat higher
than that of the metal bath. From one half to two thirds of the eharge is thus removed to pan \mathbf{E}, and the balance taken to pan C. Other charges of D, are similarly treated and di-posed of. The charges of C and E : are treated and di-poed of in like mamner, except that the erystals of E go to F , and the bahnee to D , and the ergstals of C go to D , and the balance to B . Thus, after suecessive meltings and drainings, the alloys rich in silver pass to A, while the lead, almost entirely deprived of silver, goes to G. The alloys obtained in pan A are then subjeeted to cupellation. An alloy containing over six hundred dollars of silver to the ton should not be treated by this proces:-

SEPABATION OF GlLTER FROM COPPER BY TIIE LIQUATION PIROCESS.

1. This proeess is founded on these facts: Lead and copper fused together form an alloy, which, if rapidly cooled, maintains an intimate arlmixture, but if slowly cooled, separates. An alloy of lead and copper slowly heated to near its point of fusion. also separates. Silver, if eontained in the alloy. goes with the lead.
2. Either an alloy of eopper or silver, or matte (erude black eopper reduced, but not refined from sulphur and other impurities), containing silver, as it eomes from the smelting furnace, is melted with lead of about four times its weight, in a cupola furbace, and east into plain eircular plates which are suddenly cooled. These plates, called "liquation cakes," are arranged on their edges,
with alternate layers of charcoal, in a liquation furnace. The charcoal is then ignited, and a degree of heat produced somewhat below that of the fusing point of copper. The lead and silver melt and flow into a receiver, while the copper, in a porous state, retains the forms of the original cakes. If the separation may have been imperfect, the cakes are farther treated by being raised to a higher degree of heat in the "sweating furnace." The silver is then separated from the lead by cupellation.
separation of silyer from lead by the pariee process.
3. Lead, containing silver, is fused in large cast-iron pote. Melted zinc is added and well stirred in the alloy. The fire bcing withdrawn from under the pot, the whole is left at rest for a short time.
4. The silver and zine scparating from the lead, form an independent alloy, which is skimmed from the surface of the metal bath, as long as it rises.
5. This scum alloy, containing some lead, is heated in a liquation retort. The silver and lead fuse, and, to a great extent, flow into prepared moulds. The alloy thus run off is then cupelled; the alloy of zine and silver remaining in the retort, are partially separated by distillation. The silver thus obtained is freed of its impurities by cupellation.
6. The proportions are:

Charge of argentifcrous lead to the pot usually from 6 to 7 tons.
Charge of zinc to the ounce, of silver
by estimation, 1.5 to 2 pounds
Quantity of silver to the ton of lead. . 10 to 15 ounces Time of stirring alloy, after the addition of zinc, from. 10 to 15 hours.
The alloy prepared for cupellation contains, of silver, to the ton, about 1,000 ounces.
separation of silver from lead by cupelL. TION.

1. The Alloy of silver and lead is melted in a circular reverberatory furnace provided with openings through its sides for the admission of metal, heat, currents of air, and for the escape of vapors or litharge. The cescape is opposite the blast opening. The roof or top of the furnace is of dome-form and movable. At each cupellation, the hearth, usually of hollow form, is broken up and replaced by one made of clay, sand and carbonate of lime.
2. Blasts, or currents of air, are blown continually during the operation upon the surface of the fused alloy, promoting oxydation of the lead and causing the litharge to pass out through the escape opening. The gate-way of this opening is kept level with the surface of the metal withiu. The silver thus separated from the lead remains on the hearth of the furnace in nearly a pure state. It is deprived of what lead it may contain by the humid way of assay.
extraction of silver by the augustin process.
3. This Process, employed thus far chiefly in the treatment of matte, (impure copper) containing silver, is founded on the solubility of chloride of silver in a hot, concentrated solution of common salt.
4. The Matte, as it comes from the cupola or high furnace, is crushed dry by stamps, pulverized in suitable mills and bolted. The coarser portions thus obtaincd are taken to the copper works.
5. The Roasting of the powdered matte in a reverberatory furnace is commenced at a low temperature with a free access of air. By careful, uniform roasting, at a dull red heat, the sulphurets of silver, iron and copper are produced. The heat is then increased to cherry-red which decomposes the sulphates of iron and copper, but not the sulphate of silver.
6. Salt, previously melted, pulvcrized and mixed with cold calcined mattc, is added to the hot matte in the furnace and thoroughly mixed with it by stirring. The sulphate of silver is thus transformed to chloride of silver.
7. The Apparatus for the humid operations consist of a large heating rescrvoir, a series of dissolving tubs, two large settling cisterns, four precipitating tubs to each one of the dissolving tubs, and two large receptacles, arranged in the order here given on descending steps. The dissolving and precipitating tubs are nearly cylindrical. They are provided with filters made of small
sticks and straw, covered with cloth; a vertical partition, resting on the filter, divides each tub into two unequal compartments.
8. The Clloridized Matte being put into the larger compartments of the dissolving tubs, suflicient of the hot salt solution from the lieating reervoir abore to completely immerse the matte, is let into the tubs; they are then left at rest one hour. The dicclarge cocks of the heating reservoir and tubs then being opened, the hot salt solution is filtered through the contents of the tubs, and run off from the smaller compartments, at openings at first alsove the level of the matte, afterwards at openings near the bottoms of the tubs, into the settling cisterns, until a test with clean copper plate shows no trace of silver in the filtered solution.
9. Copper (copper coment) is put into eacll of the upper two precipitating tubs in the several series of four, and iron (wrought scrap) iron) into each of the lower two. The chloride solution from the settling cisterns is then slowly filtered through the several series of precipitating tubs, and the filtered solution run into the large receptacles below. The siluer is precipitated by the copper in the upper tubs, and the copper in solution is precipitated by the iron in the lower tubs. The silver is taken twice a week from the precipitating tubs and refined. The copper precipitated in the lower tubs is transferred to the upper tubs. The filtered matte is washed and taken to the copper works. The filtered
solution, in the receptacles, is pumped into the heating reservoir and used again.
10. The Proportions usually observed are:

Matte, before roasting, shonld contain of sulphur, not less than,

20 per ct.

> Charge of Matte, to thic furnace, for roasting and calcining;. .

> 500 pounds.

Charge.-Melted Salt, 35 "
Roasted Mattc,........... 220 "
Add same for ehloridizing.
Time.-Roasting on the upper sole of Furnace. 4 to $4 \frac{1}{2}$ hs. Calcining on lower sole of Furnace 4 to $4 \frac{1}{2}$ "
From. 8 to 9 "
Time of chloridizing, from. 15 to 20 minutes.
Charge of ehloridized matte to the tub, from 1000 to 1200 lbs.
Salt-In the solution, in referenec to the water, from. 20 to 25 per ct.
Degrees of Heat of salt solution . . 131° Fahr.
Time of dissolving and precipitating, from

20 to 24 hours.
Solution of Salt, run throngh each tub to 1000 pounds of matte, from

200 to 250 cubie ft .

Depth of Copper in precipitating
tubs, about.
6 inches.

Depth of Iron in precipitating
tubs, about.

EXTRACTION OF SILTVER BY THE ZIERYOGEL PORCESS.

1. This Process, employed thus far chiefly in the treatment of matte (impure copper) containing silver, is founded on the solubility of sulplate of silver in hot water.
2. The Mutte, as in the Augustin process, having been thoroughly pulverized, is carefully roasted and calcined till the sulplates of iron and copper are conrpletely decompresed, but none of the sulphate of silver. When small quantities of the roasted matte, thrown hot into water, give only a very slight blue color, the calcination is regarded complete.
3. The Sulphatized Matte is then treated, in all respects, the same as the chloridized mattc. (sec see. G, page m) in the Augustin process, except that pure water is employed instead of solution of salt.
4. The Proportions usually observed are:

Matte, before roasting, slould contain of sulphur, not less than,
Charge of Matle to the Furnace. .

20 per ct.
500 lbs.

Time.-Roasting on upper sole of
Fumace, 4 to $4 \frac{1}{4}$ hours.
Calcining on lower sole of
Furnace, 4 to $4 \frac{1}{2}$ hours.
From 8 to 9 •
Charge of sulplatized matte to
the tub, from
1000 to 1200 lbs.
Degrees of Heat of the water for
dissolving

149° Fahr.
Time of dissolving and precipita- ting, from 20 to 24 hours.
H_{o} t Water run through each tub, from 200 to 250 cubic ft.

Depth of Copper in upper precipitating tubs,................ 6 inches.
Depth of Iron in lower precipitating tubs,.................. ." "
extraction of silver by the patera process.

1. In this Process the ores are thoroughly pulverized and chloridized by roasting with common salt.
2. Hot Wuter to dissolve the chlorides of various base metals is filtered through the chloridized ores put in tubs similar to the dissolving tubs in the Augnstin process. The ores are then cooled and transferred to similar, but smaller tubs.
3. Myposulphite of Soda, in cold solution, is then filtered through the ores and run into prceipitating tubs until all the chloride of silver is completely dissolved.
4. Polysulphide of Sodium, sufficient to produce a neutral liquor, is then added, which precipitates the silver as a sulphide in sacks fitted to the inside of the tubs. This neutral liquor is preserved for lixiviating purposes.
5. The Sulphide of Silver thus obtaincd, after being washed in warm water, pressed and dried, is heated under muffles with frce access of air till nearly all the
sulphur is expelled. The metallic silter is then rerefined.

MECHANICS.

Force.-Tliat which produces or tends to produce motion, or ehange of motion, is termed foree.

Work:-The product of foree and the distanee through which it is exerted, is termed work-mechanical work.

Chits.-The units of force, distance, and lime are respeetirely one (1) pound, one (1) foot, and one (1) minute.

Hlorse Power.-Thirty three thonsand $(33,000)$ units of work constitute one (1) "horse power," that i, thirtythree thousand pounds raised vertically one (1) foot in one (1) minute, or its equivalent.

TO FIND THE HORSES POWER IN A GIVEN TIME.
Rule.-Divide the product of the weight in pounds and the vertical distance in feet through which the weight is to be raised, by the product of the time in minntes and thirty-three thonsand. (33,000 .)

Ex. 1.- Required the horses' power neeessary to drive forty-five (45) stamps, each stamp weighing six hundred and forty (610) pounds, falling ten inches, and inaking seventy-seven (77) drops per minute, allowing twentyfive per cent. for friction.

Cal. $45 \times 640 \times 77 \times 10 \div 12=1848000$.
$1848000 \times 1.25=2310000$.
$2310000 \div 33000=70$ horses' power. Ans.
Ex. 2.-How many horses' power are required to
raise water three hundred (300) feet by a single aeting pump seven (7) inches diametcr, thirty (30) inches stroke, making fifteen (10) lifting strokes per minute, allowing thirty five (35) per cent. for frietion?

Cal. $15 \times 30=450$ inches, column of water raised. $450 \div 12=37.5$ feet, column of water raised.
$7 \times 7 \times, 7854 \div 144=, 2672$ area of end of eolumn of water.
, $2672 \times 37.5=10.02$ solid inches in column of water. $10.02 \times 62 . j=626.25$ pounds in column of water. $626.25 \times 1.35=845.4375$ pounds with frietion added. $845.4375 \times 300 \div 330000=7.68$ horses' power. Ans.

Ex. 8.-The slant depth of the hoisting sliaft of the Eureka Mine, Sutter Creek, is one thousand (1000) fcet ; the dip of the lode being sixty $\left(60^{\circ}\right)$ degrees; how many horses' power are required to raise onc ton (2,000 pounds) of rock to the surface in five minutes, allowing fifty per cent. for friction?
$90^{\circ}-60^{\circ}=30^{\circ}$ coinplement.
$1000 \div 2=500$ feet side of right angled triangle opposite $30^{\circ} 1000 \times 1000=100000 ; 500 \times 500=250000$; $1000000-250000=750000$.
$\sqrt{750000}=866.0254$ perpendicular depth of mine. $866.0254 \times 1.50=1299.0376$, with friction adrled. $1299.0376 \times 2000=2598075 ; 33000 \times 5=165000$. $2598085 \div 165000=15.75$ horses' power. Ans.
Remarks.-1. It is found by experience that it requires to reduce by stamps hard quartz rock (frequently
ealled by miners, live rock,) from the size usually fed into batteries to the ordinary granular size coming from the same, about one horse power to the ton in twentyfonr hours ; and to farther reduee it from the granular state by the eommon pan-rriuders and amalgamators to a "slum" or slime of ceonomical fineness, about one horse power in the same length of time.
2. That the Wheeler \& Randall Grinder and Amalgamator, four feet diamster, making sixty-fise revolutions per minute, will reduce from the granular to the slime eondition, five tons of rock per twenty-four hours.

Note.-It is estimated by those using the Whecler and Randall Grinder and Amalgamator, that it requires 10 run each four foot machine sixty-five revolutions per minute, three (3) horse power. This is somewhat less than the inventors were ready to believe, on account of the extraordinary reducing properties of their invention.
3. That it requires to rum a Separator seven feet diameter, (not grinding, about one half of one horse power.

> VARIED MOTION.

Laes of Uniformly Varied Motion.-1. In uniformly varied motion, the path described at the end of any time is half that which the body would describe in the same time if it were to move uniformly with the velocity aequired during this time.
2. In uniformly aceclerated motion, the patlis described at the end of any two times, are to each other as the squares of these times.
3. That these paths are to each other as the square
of the relocities acquired at the end of the corresponding times.

Let one second be a unit of time; then will the times of a falling body, in vacuo, be
$1,2,3,4,5,6,7,8,9$, etc., etc.
The corresponding fall during each second, will be $1,3,5,7,9,11,13,15,17$, etc., etc.
The fall during any number of seconds, will be $1,4,9,16,25,36,49,64,81$, etc., etc.
And the velocities acquired at the end of each sccond, will be
$2,4,6,8,10,12,14,16,18$, etc., etc.
Now, a body at the equator falls, in vacuo, as determined by experiments, $16.090 t$ feet in one second of time. 'The resistance of the atmosphere does not much retard the velocity of heavy falling bodies. Let then, sixtecn feet represent the distance which a falling body will describe in one second of time, when impressed by gravity alone. The velocity acquired at the end of the first second of time, is called the "initial velocity," and is found to be 32.1808 feet; that is, twice 16.0904 feet. This velocity, due to the force of gravity, is usually denoted by g; that is, $g=32.1808$, which, for most practical purposes, may be taken at 32 feet. TO FIND THE DISTANCE A BODY WILL FALL IN TERMS of THE VELOCITY.
Rule 1.-Divide the square of the velocity by sixtyfour (6t).

Example.-The velocity is 256 feet, what distanee las the body fallen?

Culculation. $2.56 \times 256 \div 64=102$ \& feet. Ans.
TO FIND WIITT DIsTANCE IN FEET A BODY゙ WILL FALL IN A GIVEN TIME.
Rule 2.-Multiply the square of the time in seconds by si teen (16).

Erample.-What distance will a body fall in one ininute?

Calculation. $60 \times 60 \times 16=57600$ feet. Ans.
TO FIND THE VELOCITY IN FEET, IS TERMS OF THE TIME.
Rule 3.-Multiply the time in seconds by thirty-two. Excumple. - What relocity does a falling body atequire in seven seconds ($\overline{7}$)?

Calculation. $32 \times 7=22 t$ feet. Ans. TO FIND THE VELOCITY IN TERMS OF THE DISTANCE.

Rule 4.-Multiply the square loot of the distanee by eight (8).

Ficample. What velocity will a body acquire by falling one hundred and ninety-six feet (196) ?

Calculation. $8_{1} \overline{196}=112$ feet. Ans. to find tile time fallen, tify velocity being GIVEN.
Rule 5.-Divide the relocity by thirty-two (32).
Example.-The velocity is 1920 feet, what time has it fallen?

Calculation. $1920 \div 32=60$ seeonds. Ans.

TO FIND THE TIME A BODY HAS FALLEN, THE DISTANCE BEING GIVEN.

Rule 6.-Diride the square root of the distance fallen by four (4).

Example.-How long will it take a body to fall one hundred and forty-four feet (144)?

Calculation. 1 144 $\div 4=3$ seconds. Ans. Water POWER.

The theoretical velocity with which a liquid issues from an orifice in the bottom or side of a vessel that is kept full, is equal to that which a heavy body would acquire by falling from the level of the surface to the level of the orifice. The rules, therefore, under the head of "Varied Motion," apply cqually well to falling bodies and to hydraulies.

The practical velocity estimated for the entire opening, is considerably less than the theorctical velocity owing to oblique currents and to friction. These oblique currents produce a contraction in the vein or stream. The minimum transverse section of the contracted vein, is the plane at which the velocity is nearly equal to the theoretical velocity. 'The quantity of water which will be discharged in a certain time, depends upon the form of the opening, as well as upon the head. Thus, by means of a conical tube of the form of the contracted vein, the velocity at the opening or smaller end of the tube, is nearly equal to the theoretical velocity. The theoretical velocity per second (rule 4, varied motion),
is reight times thes square root of thes lesearl in freet. The actual seloreity ratimated for the coltire operoning, ats ordinarily ronstructerl, in five ansl four-tentlat the fruate rorot of the hearl.

Watcer, as a prower or forere, is rexcerted on water wherels by its wroight and lig its impulse. Wraght and

The: theoretical work areormpliahered by weight is the [roshact of ita force and the vertical de tancere through

 weighte of the flow of water, antrl the vertical heeight or horad nereotary (o) produce the: velocity with whirla the wroight moves.

Thre availatbe work depornde not only upren the magnitude of the forese exerted, hat upen the: direction of that forese in reference to the dirrection given to the resistancere; also upon the form of the floats or burkets of thos: wherel, friction, logaces by Jeakagere, rete.
'Thes averacere reffeicency of varions watcor wherelu, ran-
 rivourr, is is follown, to wit:
Urodershot, having: flat, radial floats 3.3
I'encelet, impuroverl umberahot, f, 0
T'urline, for rxaisple, the "Jonval," 6,8
Recertion, for example, thes Serotela 'Turbince, b6
Overstest arnd lireosest, thes cefficicency of that partof the fall acting by weight, is about. . . . 78
And of that part acting by impulse 40
The best velocities of the various water wheels, as compared with the supply velocities, are as follows:
Undershot and Low Breast, at circumference, . . 50
Turbines, at the middle of ring of buckets,. 65
Reaction, at circumference, 97
Overshot, at circumference, 50
The velocity of the overshot wheel at its circumfer-ence, should be about six feet; which is due a head of2.25 feet.

Let the vertical distance from the centre of the opening in the gate, to the surface of the water in the flume or reservoir, be termed the heard, and the vertical distance from the centre of the opening in the gate to the lower edge of the wheel, the fall.

TABLE OF COEFFICIENTS FOR ESTIMITING THE HORSEA PoWER OF WATER WIEELS.

Head. ft. in.	coefficient	$\begin{aligned} & \text { Head } \\ & \text { ft. in. } \end{aligned}$	cocfficient	Head. It in	coefticient	Ifead. ft. ith	coefficient.
1	12	17	54	32	76	9.	128
2	17	18	55	34	78	10.	1:55
3	21	19	56	36	80	12.	148
4	25	1.10	58	38	82	14.	160
5	28	1.11	59	310	84	16.	171
6	30	20	60	40	85	20.	191
7	33	21	62	43	88	25.	213
8	35	22	63	46	90	30.	233
9	37	23	64	49	9.3	36.	256
10	39	24	65	50	93	49.	298
11	41	$\because 5$	66	54	98	64.	341
10	43	26	67	58	101	81.	384
11	44	27	69	60	104	100.	426
12	46	28	70	66	109	121.	469
13	48	29	71	$\bigcirc 0$	11.3	144.	511
14	49	2.10	72	-6	11%	169.	5.4
15	51	2.11	73	80	121	196.	597
16	52	30	74	86	124	295.	639

TO FIND THE HORSES' POWER FOR V゙ARIOUS WATER WHEELS.

Rule.-Multiply the product of the tabular corfficient opposite the given head, the area of the opening in the gate in square inches, the entire head in feet (head and fall in case of overshot and breast wheels), by the effieiency of the class of wheel, pointing off six figures as decimals.

Example 1.-The dimensions of a stream are two inches by two hundred inches. What is its horses'
power, applied to a breast wheel affording a fall of ten feet?

Calculation. 2 inches by 200 inches $=400$ square inches opening.

Tabular coefficient opposite 2 feet 3 inches, 64
Efficicncy of wheel, arising from impulse. 40
Efficiency of wheel arising from weight, 78
Head, 2 feet 3 inches $=2.25$
$2.25 \times 40=90$, product of efficiency and head.
$10 \times 78=780$ product of efficiency and fall.
$90+780=870$ sum of products.
$870 \times 400 \times 64=22.27$ horses' power. Ans.
Example 2.-The dimensions of the stream are ten inches square, the head twenty-five feet, what is its horscs' power applied to a good turbine?

Calculation. $10 \times 10=100$ square inclies opening.
Tabular coefficient opposite head of twenty-five
feet,.......... $=213$
Efficiency of turbine $=68$.
$100 \times 213 \times 68 \times 25=36.21$ horses' power. Ans.

STEAM POWER.

Steam, as a force, acts by elastic pressure. The law "tlat in compressing the same quantity of air, or of a perfect gas into smaller spacce, the volumes occupied by it are inversely proportioned to the pressures," does not hold good in relation to saturated steam. In the following table, P denotes the total pressure in pounds per square inch; T the corrcsponding temperature, and V
the volume of the steam compared to the volume of the water that has produced it.
TABLE OF PRESSURES, TEMPERATL゙RES AND VOLL'MES.

P	T.	V.	P .	T.	V*	P .	T.	V V.
1	102.1	205*2	60	292.7	4.37	180	372.9	15.5
5	162.3	3813	65	29-. 0	405	190	37-.5	148
10	193.3	235°	70	3129	$3 \% \%$	200)	381.7	141
14.7	212.0	1642	75	307.5	3.5 .3	210	386.0	1.35
1.5	213.1	1610	81	312.0	33.3	220	389.9	129
25	228.0	1229	90	320.2	298	230	39.3 .8	123
25	240.1	956	100	3279	230	240	397.5	119
30	250.4	8.38	110	234.6	247	257	\$01.1	114
35	259.3	728	120	S+1.1	$2 \cdot 7$	260	404.3	110
40	$26 \% .3$	640	135	350.1	203	270	+10\%.9	108
45	274.4	$5: 2$	150	358.3	14.	$2 \bigcirc 0$	\$11.2	102
30	281.0	518	165	366.0	169	300	417.5	98

TABLE FOR ESTIMATING THE MEAN PRESSURE OF STEAM FOR A GIVEN CUT-OFF OF STROKE.

unjacketed cylinder. cut-cff coefficient. correction.			Jacketed cylinder. cut-of. eoefficient. correction,		
$\frac{1}{20}$.177	12.093	10	. 186	11.966
$4{ }^{3}$. 244	11.113	$\frac{3}{40}$. 254	10.966
1^{10}	. 303	10.246	${ }_{10}^{10}$. 314	10.084
$\frac{1}{8}$. 356	9.467	$\frac{1}{8}$.370	9.261
$2{ }^{3}$. 407	8.717	$2^{3} 0$. 417	8.570
$\frac{1}{6}$. 496	7.409	$\frac{1}{5}$. 505	7.297
$\frac{1}{4}$. 572	6.290	4	. 582	6.145
${ }^{3}$. 639	5.307	${ }^{3} 0$. 648	5.174
$\frac{7}{20}$. 697	4.454	$\frac{7}{20}$. 707	4.307
\%	. 748	3.704	$\frac{2}{5}$.756	3.587
$\frac{9}{20}$. 797	2.984	$\frac{9}{20}$. 800	2.940
$\frac{1}{2}$. 833	2.455	$\frac{1}{2}$. 840	2.352
$\frac{1120}{20}$. 869	1.926	$\frac{11}{20}$. 874	1.852
$\frac{3}{4}$. 894	1.558	$\frac{3}{5}$. 900	1.470
$\frac{1}{2} 3$. 923	1.132	$\frac{1}{2} 3$. 929	1.044
$\mathrm{T}^{3} \mathrm{O}$. 945	0.808	$1^{7} 0$. 945	0.808
$\frac{3}{4}$. 960	0.588	3	.960	0.588
${ }_{8}^{8}$. 976	0.353	告	. 976	0.353
$\frac{1}{27}$. 986	0.206	$\frac{17}{20}$. 986	0.206
İ0	. 997	0.044	9	. 997	0.044

By the table of pressures, temperature and rolumes, it will be seen that the volume of steam under a pressure of thirty pounds to the square inch produced from a cubie inch of ice-cold water is 8.38 eubie inches; while under a pressure of ninety pounds to the square inch, the volume is 298 eubie inches. Thus the ratio of the two pressures is as 30 to 90 , or as 1 to 3 , while the inverse ratio of the respective volumes of steam is as 1 to 2.81 . The meehanical effeet derlueed from the above data is as follows: $838 \times 30 \div 12=200.5$, and $298 \times 90 \div 12-2235$. Then $2235-2095=140$ difference of mechanieal effects, and $110 \div 2095=0668$; showing an adrantage of nearly seven per eemt. in faror of using steam at the higher pressure.

By the table for estimating the mean pressure of steam for a given cut-off of stroke, the coefficionts for one-fourth ($\frac{1}{2}$) ent-off are 572 in the unjacketed eylinder, and 582 in the jacketed cylinder.

$$
\begin{aligned}
& \text { Then } 582-572=10 \text {, } \\
& \text { and } 10 \div 572=.0175 \text {; }
\end{aligned}
$$

showing an adrantage of one and three-fourths of one per eent. in favor of the jaeketed eylinder for the given cut-off of stroke.

The back pressure of steam in the eylinder of an engine of ordinary structure is found, by experience, to be about four pounds to the square ineh above the atinospherie presure; the veloeity of piston being three hundred (300) feet per minute. It is also fonnd by ex-
pcrience that the excess of the back pressure above the atmospheric pressure varies nearly as the square of the velocity of the piston.

Thus, if the velocity of the piston be four hundred (400) feet per minute, the back pressure will be 7.11 pounds.

Calculation. $300 \times 300=90000 ; 400 \times 400=160000$; $4 \times 160000 \div 90000=7.11$ pounds.
to find thé mean pressure of steay for a GIVEN CUT-OFF OF STROKE.
Rule.-Multiply the excess of the pressure of steam above the atmospheric pressure per square inch as it enters the cylinder by the tabular coeffieient opposite the given cut-off, pointing off three figures as decimals, and deduct from the product the tabular correction for the samc cut-off.

Example.-What is the mean pressure of steam entering the cylinder at a pressure of ninety pounds to the square inch, and cut-off at three-tenths stroke?

Calculation.-Tabular coefficient, unjacketed
cylinder, for, $1^{3} 0$ stroke $=, 639$
Correction for same, $=5.307$
Then,, $639 \times 90=57.510$
$57.510-5.307=52.203$ pounds. Ans.
And, jacketed cylinder,

$$
\begin{aligned}
& , 648 \times 90=58.320 \\
& 58.320-5.174=53.146 .
\end{aligned}
$$

TO FIND THE EFFECTIVE HORSES' POWER OF A NON. CONDENSING STEAM EXGINE.
Rule.-Multiply fonr times the square of the diameter of the piston in inches by the product of the number of revolutions, length of stroke in feet, and the difference between the average forward pressure and the back pressure of steam in pounds per square inch, pointing off five figures as decinals.

Example.-What is the effective borses' power of an engine, the diameter of the piston being sixteen inches, the length of stroke three feet, the number of revolutions fifty per minute, and the average forward pressure, above the atmospheric pressure, seventy-five pounds per square inch?

Cal.-The back pressure $=4$ pounds.

$$
75-4=71 \text { pounds }
$$

Then,
$16 \times 16 \times 4 \times 50 \times 3 \times 71=109.05$ horses' power. Ans.
Ex. 2.- What is the effective horses' power of an engine, the diameter of tle piston being twelve inches, the lengtl of stroke two fcet, the pressure of steam, as it enters the cylinder, sixty pounds in excess of atmospherie pressure, cut-off at one-half stroke, and making seventy-five revolutions per minute?

Cal.-Back pressure 4 pounds.
Tabular coefficient for $\frac{1}{4}$ stroke $=, 833$.
" correction for same $=2.455$.
$833 \times 60-2.455^{2}-4=43.525$ effective pressure.

Then, $12 \times 12 \times 4 \times 43.525 \times 2 \times 75=37.60$ horses' power. Ans.

MECHANICAL POWERS.

There are three classes of mechanical powers, viz :the lever, pulley and inclined plane.

The wheel and axle belong to the first class, and are sometimes termed the perpetual lever.

The wedge and screw belong to the third class.
Weight signifies the resistance to be overcome, and power the force which overcomes or tends to overcome the resistance.

THE LETER.

The arms of a lever are the portions of it which are intercepted between the power and fulcrum, and between the weight and fulcrum.

Therc are three kinds of levers, in which :-

1. The fulcrum is between the power and weight.
2. The weight is betwcen the power and fulcrum.
3. The power is between the fulcrum and weight.

Assuming the lever itself to have no weight, and no friction, the condition of equilibrium or balance, is as follows:

The product of the power and the length of arm to which it is applied, is equal to the product of the weight and the length of arm to which it is applierl.

Ex. 1. If onc arm of a lever be ten feet, and the
other two feet, what power must be applied to the longer arm to balance a weight of 1000 pounds?

Cal. $1000 \times 2 \div 10=200$ pommls. Ans.
Ex. 2. If the radins of the axle, of "the wheel and axle," lex six inches, and the radius of the wheed fortycight inches, what power must be applied to the circumferenee of the wheel to balance 2400 pounds at the cireumferenec of the axle?

Cal. $2400 \times 6 \div 48=300$ pounds. Ans.

THE PLLLEY.

Assuming the pulley (as commonly arranged) to be without weiglat and free from friction and stilliness of cordage, the condition of equilibrium or balance is, that the weiglit is equal to the produet of the power and the number of cords at the movable block.

Tx.- What weight will be balanced by a power of one hundred pounds, there being three morable pulleys, or, in other words, six cords at the movable block?

Cal. $100 \times 6=600$ poinds. Ans.

THE INCLINED PIANE.

Assuming that there is no friction, and that the direc. tion of the power applied is parallel to the plane, the conditions of equilibrium of a borly sustained by any foree on an inclined plane, is as follows :

The protuct of the power and the length of the plane is equal to the product of the weight and the height of the plane.

Ex.-What power would be necessary to sustain a
rolling weight of 1,200 pounds upon an inclined plane of 10 feet length and 6 feet perpendicular height?

Cal. $-1200 \times 6 \div-10=720$ pounds. Ans.
If the power acts parallel to the base of the plane, then the product of the power and the length of the base is equal to the product of the weight and the height of the plane.

Ex.-What power would be necessary to sustain a rolling weight of 1200 pounds upon an inclined plane whose base is 8 fcet and height 6 feet?

Cal. $1200 \times 6 \div 8=900$ pounds. Ans.
Ex. 3d.-Omitting the consideration of friction, what power applied to the back of a werlge of the form of either a single or double inclined plane, and in the direction of the base of the inclined plane, will raise a weight of 2400 pounds, the back of the wedge being 3 inches thick, and the base being 48 inches long?

Cal. $2400 \times 3 \div 48=150$ pounds. Ans.
Ex. 4.-Omitting the consideration of friction, if the threads of a screw be 2 inches apart, and a power of 500 pounds be cxerted at the end of a lever 84 inches long, what weight or force will be produced at the end of the screw?

Cal. $84 \times 2 \times{ }_{2}{ }^{2}=528$ inches, base of inclined plane.
Distance of threads apart $=2$ inches, height of inclined planc, $528 \times 500 \div 2=132000$ pounds. Ans.

THIN CYLINDERS.

To determine the thickness of a thin hollow cylinder ;
the internal radins, pressure, and the tenacity of the material beingr given.

Rule. Multijuly the internal radius in inches lyy the flaid pressme in poumds, and divide the product by the tenacity per square inch of the material.

Sx:- The internal radias of a eylinder being 30 iuches, the fluid pressure 2.50 pounds to the sçuate inch, and the temacity of the material of the rylader twelve thousiand pounds per siquare inch, what is the thiekness of the eylinder?
(?al. 2:80) 30 7500.
$7500 \div 12000$ inclies. Ans.
To delermine the fluid pressure, the internal radius, thickness of cylinder, and lenucity of muterial beiny given.
Rule.-Divide the product of the thickness of the eylimer and temacity of the material, by the internal radius.
Lix.-The thickness of the cylinder bring one-fourts of an inch, the temacity eighteen thousand pounds, and the radins six inches, what Huid presure will the cylinder withstand per square inels?

Cul. 18000 $4 \div 6-700$ prounds. Ans.

TUtCK ItOt. OOW CMOLNOETH.

To determine the thickness of thiek, hollow cylinders, the internal radia, the flad presure and the tenacity of the material of the cylimer beinger given.

Liule.-Subtract one from the square root of the quo-
tient of the sum and difference of the tenacity per square inch of the material of the cylinder, and the fluid pressure per square inch, and multiply this difference by the internal radius.

Ex. 1.--The internal radins of a thick, hollow cylinder being mine inches, the tenacity of the material of the cylinder ten thousand pounds per square inch, what is the requisite thickness of the cylinder?

Cal. Sum of tenacity and fluid pressure,

$$
10000 \div 8000=18000
$$

Difference of tenacity and

$$
\text { fluid pressure, } \quad 10000-8000=2000
$$

Quotient of sum and difference, $\quad 18000 \div 2060=9$
Square root of quotients, $\quad V^{/ 9}=3$
Difference betwcen root and one,
$3-1=2$
Product of radius and this differ-

$$
\text { cnce } \quad 9 \times 2=18 \text { inches. Ans. }
$$

To determine the fluid pressure per square inch, which a thick, hollow cylinder will withstand, the internal and external radii, and the tenacity of the material of the cylinder being given.

Rule.-Dividc the difference of the squares of the radii, and inultiply the quotient by the tenacity per square inch of the material of the cylinder.

Ex. 2.-The internal and external radii of a thick, hollow cylinder being respectively nine inches and twenty-seven inches, and the temacity per square inch of the material of the cylinder ten thousaud pounds,
what fluid pressure per square inch will it withstand?
Cal. Square of external radius, $\quad 27 \times 27=729$
Square of internal radius,
Difference of squarcs,
Sum of squares,
Then $10000 \times 648 \div 810=8000$ pounds. Ans.

SUSPENSION RODAS OF UNIFORM STRENGTH.

To determine the transverse section at any point of a suspension rod of uniform strength:

Rule 1.-Divide the constant weight to be raised by the uniform tension per square inch, due the tenacity of the material in the rod, and multiply the quotient by 2,71828 , raised to a power equal to the prorluct of the length of the rod in inches, and the weight of one cubic inch of the rod, divided by the intensity of the tension per square inch.

Ex.-The weight to be raised being 27000 pounds, the intensity per square inch of the working tension 3,000 , the weight of rod per eubie inch $\frac{1}{1}^{5} \times$ of a pound, and the length of rod 600 feet. Required the transverse section at the upper end of rod?

Cal.- iVeight divided by intensity of tension,

$$
27000 \div 3000=9
$$

Product of length in inches and
weight of cubic inch,7200 $\times{ }_{1 \frac{5}{18}}^{5}=2000$
This product divided by intensity
of tension, $2000 \div 300 c=\frac{2}{3}$

Prorluct of 434295 and last quotient, , $434295 \times \frac{2}{3}=$,289530.
Number corresponding to loga-
rithm, $289530=1,94887$
And $\quad 1,94887 \times 9=17,5983$ inches. Ans.
to determine the weight of the rod the same data being given as in example under rule one.
Rule 2.-Multiply the transverse scction by the intensity of the tension, and subtract from the product the constant weight to be raised.

Ex.-The transverse section being 17,5983 square inches, as determined by solution of example one, the intensity of tension being 3,000 pounds per square inch, and the constant weight to be raised 27,000 pounds, what is the weight of the rod?

$$
\begin{gathered}
\text { Cal. } 17,5983 \times 3000=52794.9 \\
52794.9-27000.0=25794.9 \text { pounds. Ans. } \\
\text { WATER PIPES. }
\end{gathered}
$$

To determine the velocity of water per second, flowing through long pipes, the head or hight of reservoir above the point of delivery, the length and diameter of the pipe being given.

Rule.-Multiply the product of the head and diameter of the pipe in feet by twenty-three hundred. Divide this product by the sum of once the length and fifty-two
times the diameter of the pipe, and extraet the square root of the quotient.

Ex.-The head is six hundred fect; the diameter of pipe nine inches; the length of pipe six thousand feet; what is the velocity of the water per minute?

Cal.-Diameter of pipe $=9$ inches $=, 75$ feet.
Prorluet of head, diameter, ete., $600 \times 2300 \times, 75=$ 1035000,00.

Sum of length and product, $6000+52 \times, 75=6039$
Quotient, $1035000 \div 6039=171,386$.
Square root $1^{171,386}=13,199$ feet, velocity per see.
Per minute, $13,09 \times 60=785,4$ feet. Ans.
Plane Circular Plates.-To determine the grinding effects by one revolution of a plane circular plate of the usual ringr form, of uniform larlness, about its axis perpendieular to the grinding plane-the greater and less dianeters and pressure per square inch being given.

Rule-Multiply the difference of the fourth powers of the radii by the product of the pressure per square inch, and the square of the ratio betwoen the radius and circumference of a cirele, and divide the product by the greater radins. Deduced fiom formulas 4 and 5 Discussion of Tractory, ete.

Ex.-The greater diameter of a plane circular plate (muller) of the usual ring form, and of uniform lardness, being forty inches; the less diameter sixteen inches, and the pressure per square inch fire pounds, what is the grinding effect by one revolution?

Cal. $48 \div 2=24$ greater radius. $16 \div 2=8$ less radins.
$24 \times 24 \times 24 \times 24 \times=331776$ fourth power of greater radius.
$8 \times 8 \times 8 \times 8=4096$ fourth power of less radius.
$331776-4096=327680$ differenee of fourth powers.
$327680 \times \frac{22}{7} \times \frac{22}{7} \times 5 \div 24=674307.47$.* Ans.
Conical Plates.-To determine the grinding effeet by one revolution of a conieal plate (muller) of the usual ring form, of uniform hardness, about its axis perpendicular to the plane of the base, the greater and less diameters of the frustum, the height of the cone and the pressure per square inch, parallel with the axis of revolution being given.

Rule.-Multiply the square root of the sum of the squares of the greater radius, and height of the cone by the difference of the fourth powers of the radii, and this product by the product of the pressure per square inch, and the square of the ratio between the diameter and circumference of a circle, divided by the square of the greater radius. Dedueed from formulas $9{ }_{\tau}$ and 10 .

Ex.-The greater diameter of a conieal plate (muller) of the usual ring or frustum form being forty-eight

[^1]inches, the less diameter sixteen inches, the leeight of the cone twelve inches, the pressure per square inch, parallel with the axis of revolution, five pounds, what is the grinding effect by one revolution?

Cal. $48 \div 2=21$ greater radius.
$16 \div 2=8$ less radius.
$24 \times 24=576$ square of greater radius.
$12 \times 12=144$ square of higlit of eonc.
$1 \overline{576+144}=26.5328$ square root of sum.
$24 \times 24 \cdot 24 \cdot 24=331776$ fourth power of greater radius.
$8 \times 8 \times 8 \times 8=4096$ fourth power of less radius.
$331776-4096=327680$ difference of fourth powers.
$327680 \times 26.8328 \times 27 \times 23 \times 5 \div 576=753875.77$.
Ans.
Tractory Conoidal Plates.- To determine the grinding effect by one revolution of a tractory conoinlal plate (muller) of frustum form, of uniform hardness, about its axis perpendicular to the plane of its ba*e, the greater and less diancters of the frostum, and the pressure per square inch parallel with the axis of revolution being given.

Rule-Multiply the difference of the squares of the radii of the frustum by twiee the product of the greater radius, pressure per square inch, and the square of the ratio between the diancter and cireumference of a circle. Deduced from formula \bar{J}.

Ex.-The greater diameter of a tractory conoidal
plate (muller) being forty-eight inches, the less diameters sixteen inches, and the pressure, per square ineh, five pounds; what is the grinding effeet by one revolution.

Cal. $48 \div 2=24$ greater radius.
$16 \div 2=8$ less radius.
$24 \times 24=576$ square of greater radius.
$8 \times 8=64$ square of less radius.
$576-64=512$ difference of squares.
$512 \times 24 \times 5 \times \frac{22}{7} \times \frac{22}{7} \times 2=1213753.47$. Ans.
Remark:-Since, in this style of plate, the wear is perfectly uniform, the grinding effeet will be the same, whether the central opening be large or small, providing the weight of the muller be the same in each ease.

MENSURATION.

Prop. 1.-The square root of the sum of the squares of the base, and perpendicular of a right-angled triangle is equal to the hypothenuse.

Ex.-'The base of a right-angled triangle is eight feet, the perpendicular fifteen feet, what is the hypothenuse?
$\begin{array}{cc}\text { Cal. } & 8 \times 8=64 \\ 64+225=289 & 15 \times 15=225 \\ & 1^{\prime / 289}=17 \text { feet. Ans. }\end{array}$
Prop. 2.--'The square root of the difference of the squares of the hypothenuse, and one of the sides of a right angled triangle is equal to the other side.

Ex. 1.-The hypothenuse is thirteen feet, the perpendienlar twelve feet; what is the base?

Cal. $\quad 13 \times 13=169 \quad 12 \times 12=144$

$$
169-144=25 \quad \int^{/ \overline{25}}=5 \text { feet. Ans. }
$$

Ex. 2.-The hypothenuse is thirty-seren feet, the base twelve feet ; what is the perpendicular?

$$
\begin{array}{rlrl}
\text { Cal. } \quad 37 \times 37 & =1369 & & 12 \times 12=144 \\
1369-144 & =1225 & \sqrt{1225}=35 \text { feet. Ans. }
\end{array}
$$

Prop. 3.-The eircumference of a eirele is equal to twenty-two times the diameter, divided by seven, (nearly).

Remark.-The true cirenmference of a eircle lics between $3 \frac{10}{6}$ and $3 \frac{10}{9}$ times the diameter, whieh is nearly 3.1416. This ratio is usually represented in formulas by the character 11 .

Fx.-The diameter of a eirele being ten feet, what is the eireumference?

Cal. $10 \times 22 \div 7=31.428$, or $10 \times 3.1416=31.416$.
Ans.
Prop. 4.-The length of an are of a cirele eontaining any number of degrees is equal to the product of the number of degrees in the are, diameter of the eirele and 3.1416 divided by three hundred and sixty.

Ex. - What is the lengtl of an are containing seventyfive degrees, the diameter of whose eirele is twenty-one. Cal. $75 \times 21 \times 3.1416 \div 360=13.74$ feet. Ans.
Prop. 5 -The length of an arc of a cirele is equal to
one-third of the difference between eight times the chord of half the arc, and oncc the chord of the arc.

Ex.-Requirer the length of an are whose chord is ten feet, and the chord of one-half the are is 5.177 feet?

Cal. $5.177 \times 8-10=31.416 . \quad 31.416 \div 3=10.472$ feet. Ans.

Prop. 6-The diameter of a circle is equal to the sum of the hight of any segment of the circle, and one third the square of half the base of that scgment.

Ex.-The base of a segment of a wheel is fifty-four inches; the hight of the scgment three inches; what is the diameter of the wheel.

Cal. $54 \div 2=27 \quad 27 \times 27 \div 3=243$ $243+3=246$ inches. Ans.

Prop. 7.-The length of the common cycloid is equal to four times the diameter of the generating circle.

Ex.-What is the length of a common cycloid, the length of whose generating circle is five feet?

Cal. $5 \times 4=20$ feet. Ans.
Prop. 8. -The hight of a common parabola is equal to the square of half the base, or the square of the ordinate divided by twice the parameter.

Ex.-The base of a common parabola is eight feet; the perameter four thirds of a foot; what is its hight?

Cal. $8 \div 2=4 \quad 4 \times 4=16$

$$
4 \times 2 \div 3=8 \div 3 \quad 16 \times 3 \div 8=6 \text { feet. Ans. }
$$

Prop. 9.- The length of an are of the common parabola, measured from its rertex. is as follows:

Length of arc. $=y>\frac{\overline{p^{2}-y^{2}}}{2 p}+\frac{p}{2} \log \left(v-1 \frac{1 p^{2}+y^{2}}{p}\right)$.
Ex.-The half base or coordinate (y) being twelve feet, and the half parameter (1) being fire feet, what is the length of the are of the parabola, measured from the vertex:

Cul. $12 \times 12=144 \quad 5 \times 5=2.5$
$144+25=169 \quad 1 \quad 169=13$
$13 \times 12 \div 10=15.6 \quad 13+12=25$
$25 \div 5=5$ Niperian $\log , 5=1.61$
$1,61<5 \div 2=4.02 \quad 15.6+4.02=$
Prop. 10.-An ordinate of an ellipse is equal to the product of the minor axis, and the square root of the difference of the squares of the major axis, and the coordinate divided by the major axis.

Ex.-The axes of an ellipse are seven and ten feet An ordinate is six feet; what is the coordinate?

Cal. 10, 10=100 G. $\mathrm{G}=36$
$100-36=64 \quad 1 \overline{64}=8$
$8<\overline{7} \div 10=5.6$ fect. Ans.
Prop. 11.- The circumference of an ellipse is as follows:

Remarl:- In the above formulit, A denotes the aemimajor axis; E the eccentricity; that is, the distance
between the centre and one of the foci of the ellipse, divided by the semi-major axis.

$$
\text { Ex. } \quad \mathrm{E}^{2} \div 4=, 01 . \quad \mathrm{E}^{4} \times 3 \div 64=, 000075
$$

6
$\mathbf{E} \times 45 \div-2304=, 000001$.
$.01+000075+, 000001=.010076$

$$
1-.010076=, 989924
$$

$.989924 \times 2 \times 20 \div 2 \times 3.1416=62.1989$ feet. Ans.
Prop. 12.-An ordinate of an hyperbola is equal to the product of the conjugate axis, and the square root of the difference of the squares of the co-ordinate and transverse axis, divided by the transverse axis.

Ex.-The transverse axis of an hyperbola is four feet; the conjugate axis three feet, and an ordinate on the transverse axis and hight of the hyperbola ten feet; what is the co-ordinate?

Cal. $\quad 10 \times 10=100 \quad 4 \times 4=16 \quad 100-16=84$

$$
V(84)=9.165 \quad 9.165 \times 3 \div 4=6.874 \text { feet. Ans. }
$$

Prop 13.-The length of an hyperbola is as follows, to wit:

$$
={ }_{I I} A\left[1-\frac{1}{4}\left(2-\mathrm{E}^{2}\right)-\frac{3}{6^{3}}\left(2-\mathrm{E}^{2}\right)^{2}-\frac{\left.{ }^{\frac{4}{3}}{ }^{\frac{5}{4}}\left(2-\mathrm{E}^{2}\right)^{3}\right]}{}\right.
$$

Remark.-In the above formula, A represents the semi-transversc axis; E the eccentricity; that is, the distance of the center from one of the foci divided by the semi-transverse axis.

Ex.-The difference of the distances of a point in the curve, from the foci, being twenty feet, and the distance
from the center from one of the foci, fifteen feet, what is the length of the hyperbola?

Cal. $20 \div 2=10 . \quad 15 \div 10=$ E. Eccentricity.
$-\left(2-\mathrm{E}^{2}\right) \div 4=+, 1875 ; 3\left(2-\mathrm{E}^{2}\right)^{2} \div 64=-, 0264$
$-45\left(2-\mathrm{E}^{2}\right)^{3} \div 2304=+.0082 \quad 1 .+.1875+.0082$ $-, 0264=1.1693$
$1.1693 \times 10 \times 3.1416=36.7347$ feet. Ans.
Prop. 14.-The length of the spiral of Archimedes is as follows:

Length. $=\frac{A}{2}\left\{t \nu^{\prime}\left(1+t^{2}\right)+\log \left[\sqrt{ }\left(1+t^{2}\right)+t\right]\right\}$
Remark.-In the above formula, (t) represents the measuring arc, and (A) the relation between the radius rector and measuring arc.

Ex.-The measuring arc being the entire circle, and the radius vector unity, what is the length of the spiral or spire?

$\frac{1}{2} \sqrt{1+4 \times(3,1416)^{2}}=3,1811$
$\frac{1}{4 \times 3,1+16} \log \left[\sqrt{1+4 \times(3.1416)^{2}}+2 \times 3.1416\right]=.2019$
$3.1811+, 2019=3.383$. Ans.
Ex. 2.-The measuring arc being twice the circumference of a circle whose radius is unity, what is the length of the spiral, and what is the length of the second spire?

Cal. $\quad t=4 \mathrm{II} ; \quad a=\frac{-1}{21 i}$ a constant quantity.
$\sqrt{1+16 \times(3.1416) 2}=12.6060$
$\frac{1}{4 \times 3,1416} \log \left[\sqrt{1+16 \times(3.1416)^{2}}+4 \times 3.1416\right]=.2567$
$12,6060+, 2567=12,8627$ length of spiral. Ans.
The first spire, as found, for example one, is 3.383 .
Hence, $12.8627-3.383=9,4797$ length of second spire. Ans.

Prop. 15.-The area of a square, a reetangle, or a parallelogram, is equal to the product of its base and altitudc.

Ex.-What is the area of a flisor forty-five feet by one hundred and twenty-five feet?

Cal. $125 \times 45=55625$ squarc feet. Ans.
Prop. 16. -The area of a triangle is equal to half the product of the base and perpendieular.
$E x$. = What is the area of a triangle whose base is twelve feet, and altitude eighteen feet?

Cal. $12 \times 18 \div 2=108$ square feet. Ans.
Prop. 17.-The area of a trapezoid is equal to half the product of the sum of the two parallel sides and the altitude.

Ex. - The parallel sides being thirteen feet and seventeen feet, and their distance apart seven feet, what is the area of the trapezoid?

Cal. $13+17=30 . \quad 30 \times 7 \div 2=105$ square fect.
Ans.
Prop. 18.-The area of an irregular polygon is equal
to the sum of the areas of the separate triangles composing it.

TABLE. -

NAMES. EYDES. AREAS.
Triangle,3. , , 4330127
Square. 4. 1,0000000
Pentagon,.... 5.......1, 22042:4
Hexagon, 6. 2, 5980762
Heptagon, . . $7 . .$. 3,6339124

NAMES. SIDES.
AREAB.
Octagon. . . . 8 . . . 4,8284271
Nonacron 6,1818242
Decagon,. . 10.... 7,6942088
Undecaron 11 9,3656.399
Dodecagon.. 12 11,1961524

Prop. 19. - The area of a regular polygon is equal to the square of one of its sides multiplied by the area of a polygon of the same number of sides, and whose side are unity.

Ex.-What is the area of a nonagon whose side is ten feet?

Cal. $10 \times 10=100$. Tabular area $=6,1818242$
$6,1818242 \times 100=618,18242$ square feet. Ans.
Prop. 20. The area of a circle is equal to one fourth the product of the diameter and cireumference; also equal to the produet of the square of the diancter and ,7854; and also equal to the square of the diameter and cleven divided by fourteen.
E.c.-What is the area of a circle whose diameter is forty feet?

Cal. $40 \times 40 \times 11 \div 14=1257,14$ square feet. Ans.
Prop. 21.-The area of a sector of a cirele is equal to half the arc of the sector multiplied by half the diameter of the circle.

Ex.-What is the area of a scetor whose arc is forty degrees, and the diameter of the circle thirty feet.

Ca!. $\quad 3.1416 \times 40 \div 360 \times 30=10.472$
$10.472 \div 2 \times 15=78.54$ square fcet. Ans.
Prop. 22.-The area of a circular ring is cqual to the difference of the squares of the diameters multiplied by ,7854.

Ex.- What is the area of a circular ring whose greater diameter is forty-two fect, and less diameter seven feet?

Cal. $\quad 42 \times 42=1764 . \quad 7 \times 7=49$.
$1764--49=1715 . \quad 1715 \times, 7854=1346,96$ square feet. Ans.

Prop. 23.-The area of the common cycloid is equal to threc times the area of the generating circle.
E.r.-What is the area of a common cycloid, the diameter of whose generating circle is scven feet?

Cal. $7 \times 7 \times 11 \div 14 \times 3=115.5$ square feet. Ans.
Prop. 24.-The area of the common parabola is equal to two-thirds the product of the base and altitude.

Ex.-The basc of a common parabola is twelve feet, and the hight fiftecn feet, what is the area ?

Cal. $12 \times 15 \times 2 \div 3=120$ square feet. Ans.
Prop. 25.-The area of an ellipse is equal to the product of the scmi-diameters multiplicd by 3.1416 .

Ex.-What is the area of an ellipse, the semi-diameters being ten fect and eight fcet?

Cal. $10 \times 8 \times 3.1416=251.328$ square feet. Ans. D3

Prop. 26.-The area of an hyperbola is as follows :

$$
\text { Area }=x y-\mathrm{A} \times \mathrm{B} \log \left(\frac{x}{\mathrm{~A}}+\frac{y}{\mathrm{~B}}\right)
$$

Remark:-In this formula, A represents the semitransverse axis, B the eonjugate axis, x and y the general co-ordinates.

Ex.-Given the base, 13,748 fcet, the light six feet, transverse axis eight feet, and the conjugate axis six feet, what is the area of the hyperbola?

Cal. $\mathbf{A}=8 \div 2=4$ semi-transverse axis.
$\mathrm{B}=6 \div 2=3$ semi-conjugate axis.
$x=6+4=10$ eo-ordinate.
$y=13.748 \div 2=6.874$ co-ordinate.
Thien area $=68.74-12 \log 4.791=49.88$ square fcet. Ans.
Prop. 27.-The area of the equable spiral or spiral of Arehimedes, is equal to one-third the difference between the cube of the number of revolutions and the eube of a number one less than that of the revolutions, multiplied by 3.1416 .

Er.-What is the area of an equable spiral, whose radius veetor is seven fect, described by seven revolutions?

Cal. $\quad 7 \times 7 \times 7=313$ eube of revolutions $=n^{3}$
$6 \times 6 \times 6=216$ cube of number one less $=(n-1)^{3}$
Then $343=216=127$ differenee $=n^{3}-(n-1)^{3}$
$127 \times 3,14.16 \div 3=132.99$ square feet. Ans.
Prop. 28. The area of an irrcgular plane surface is equal to onc-third the distance between any two con-
secutive ordinates multiplied by the sum of the extreme ordinates, increased by four times that of the even ordinates, and twice that of the uneven ordinates.

Remark.-The entire number of ordinates or perpendiculars is to be uneven, and at equal distances apart.

Fig. 2

 as in figure 1 , the base A B, equal to 540 feet, and having found the perpendiculars $\mathrm{AD}=$ $50, a_{2} e_{2}=55, a_{3} e_{3}=80, a_{4} e_{4}=100, a_{5} e_{5}=120$, $\alpha_{6} e_{6}=110, a_{7} e_{7}=115, a_{8} e_{8}=130, a_{9} e_{9}=128$, $\alpha_{10} e_{10}=90, \quad \alpha_{11} e_{11}=110, a_{12} e_{12}=108, \quad a_{13} e_{13}=75$ feet, what is the arca of ABCD ?

Cal. $540 \div 12=45$ distance apart of perpendiculars. $45 \div 3=15$ one-third distance between any two perpendiculars.
$50+75=125$ sum of extremes.
$55+100+110+130+90+108=593$ sum of even ordinates or perpendiculars.
$80+120+115+128+110=553$ sum of uneven ordinates or perpendiculars.
$593 \times 4=2372 ; 553 \times 2=1106$. $125+2372+1106=3603$. $3603 \times 15=$ Area of $\mathrm{ABCD},=54045$ square feet. Ans.

Prop. 29.-The area or convex surface of a right D 4
prism, or of a cylinder, is equal to the primeter of the base multiplied by the altitude.

Ex.-What is the convex surface of a cylinder whose diameter is seven feet and length ten feet?

Cal. $7 \times 22 \div 7=22 ; 22 \times 10=220$ square feet. Ans.

Prop. 30.-The area or convex surface of a right pyramid or cone is equal to the perimeter of the base multiplied by one half of the slant height.

Ex.-What is the area or consex surface of a cone whose slant height is twenty feet, and the diameter of whose base is seren feet?

Cal. $7 \times 22 \div 7=22 ; 22 \times 20 \div 2=220$ square fect. Ans.

Prop. 31.-The area or convex surface of a spherical zone is equal to the altitude of the zone multiplied by the circumference of a great eircle of the sphere.
E. - The height of a zone is eight feet, the diameter of the sphere twenty-five feet. What is the area of the zone?

Cal. $8 \times 25 \times 3.1416=628.32$ square fect. Ans.
Prop. 32.-The area of a sphere is equal to the product of the diameter and eircumference.

Ex.-What is the area of a ball ten incles in diameter?

Cal. $\quad 10 \times 3.1416=31.416 ; \quad 31.416 \times 10=314.16$ square feet. Ans.

Prop. 33.-The area or surface described by revolving a cycloid about its base is sixty-four thirds of the generating circle.

Ex.-What is the area or surface described by the revolution of a cycloid about its base, the diameter of the gencrating circle being seven feet?

Cal. $7 \times 22 \div 4=38.5 ; 38.5 \times 64 \div 3=821.33$ square feet. Ans.

Prop. 34.-The area or convex surface of a paraboloid is as follows:

$$
\text { Area }=\frac{4 b h \mathrm{II}}{3}\left\{\left(1+\frac{b^{2}}{4 h^{2}}\right)^{\frac{3}{2}}-\frac{b^{3}}{8 h^{2}}\right\}
$$

Remark.-In this formula b represents one-half the diameter of the base, h the height of the paraboloid, and $\mathrm{I}=3.1416$.

Ex.-The diameter of the base of a paraboloid being six feet, and the height two feet, what is the surface of revolution?

Cal. $4 \times 6 \div 2 \times 2 \times 3.1416 \div 3=25.1328$.

$$
\left(1+\frac{9}{16}\right)^{\frac{3}{2}}=\frac{125}{64} ; \quad \frac{27}{8 \times 8}=\frac{27}{64} ; \quad \frac{125}{64}-\frac{27}{64}=\frac{98}{64} ;
$$

$25.1328 \times 98 \div 64=38.48$ square feet. Ans.
Prop. 35.-The area of an ellipsoid described by revolving an ellipse about its major axis, is as follows:

$$
\text { Area }=4 \mathrm{rIAB}\left(1-\frac{e^{2}}{6}-\frac{e^{4}}{40}-\frac{e^{6}}{112}-\& c .\right)
$$

Ex.-The major axis being twenty feet, and the eccentricity four-tenths of a foot, what is the area of the ellipsoid?

Cal. $\mathrm{B}=1^{\prime}(100-16)=9.165$ semi-ronjugate axis, $4 \times 3.1416 \times 10 \times 9.16 .5 \times(1$-. $0167-.0064$ —\&e. $)=$ 1113.59 square feet. Ans.

Prop. 36. - The convex surface of a hyperboloid is as follows:

$$
\begin{aligned}
& \text { Area }=\frac{\operatorname{II} B}{a}\left\{x_{1} /\left(x^{2}-a^{2}\right)-A_{1}\left(A^{2}-a^{2}\right)\right. \\
& \left.+a^{2} \log \left[\frac{\mathrm{~A}+1}{x^{2}+\mathfrak{l}^{\prime}} \frac{\left(\mathrm{A}^{2}-a^{2}\right)}{\left(x^{2}-a^{2}\right)}\right]\right\}
\end{aligned}
$$

Remark.-In the above formula, (A) represents the transverse axis; (B) the conjugate axis; (x) an ordinate on the axis of revolution; and, (a) equal to the square root of

$$
\frac{A^{4}}{A^{2}+B^{2}}
$$

Ex.-The transverse axis (A) is four feet, the conjugate axis (B) three feet, and the hight six feet; what is the area of the hyperboloid?

- Cal. $x=4+6=10 . \quad a=\frac{16}{6} . \quad a^{2}=\frac{236}{25}$.
$\frac{15 \times 3.1416}{16}(94.742-9.6-11.397)=217.31$ square feet. Ans.

Prop. 37. -The solid contents of a prism, or of a
cylinder, are equal to the area of the base multiplied by the altitude.

Ex.-The diameter of a cylinder is twenty-one inches and its length forty inches; what are the solid contents?

Cal. $21 \div 7 \times 22=66 ; \quad 66 \times 21 \div 4=346.5$ $346.5 \times 40=13860$ solid inches. Ans.

Prop. 38. -The solid contents of a pyramid, or of a cone, are equal to the base multiplied by one-third of the altitude.

Ex.-The square inelies in the base of a cone are 346.5, and the hight forty inches; what are the solid contents?

Cal. $346.5 \times 40 \div 3=4620$ solid inehes. Ans.
Prop. 39.-The solid contents of a frustum of a pyramid, or a cone, are equal to one-third of the altitude of the frustum, multiplied by the sum of the two bases, inereased by a mean proportional between them.

Ex.-What is the solidity of the frustum of a cone whose lower diameter is ten inches, upper diameter eight inches, and hight twenty-four inehes?

Cal. $10 \times 10=100 \quad 8 \times 8=64 \quad 10 \times 8=80$ $100+64+80=244 ; 244 \times, 7584 \times 24 \div 3=1533.10$ solid inches. Ans.

Prop. 40.-The solidity of a sphere is equal to onethird of the area of a great cirele, multiplied by the radius ; or, it is equal to the cube of the diameter, multiplied by ,5236.

Ex.-What is the solidity of a ball fourteen inches in diameter?

Cal. $\quad 14 \times 22 \div 7=44 ; \quad 14 \times 44 \times 14 \div 6=1437.33$ cubic inches. Ans.

Prop. 41.-The solidity of a spherieal segment is equal to one-half the light of the segment multiplied by the sum of the arcas of the two basis; and this product inercased by the solid contents of a sphere whose diameter is equal to the hight of the segment.

Remark.-If the segment has but one base, the other is to be regarded equal to () (zero).

Ex.-What is the solidity of a spherieal segment, the diameter of the sphere being forty inches, and the distances from the center to the bases sixteen inches, and ten inches?

Cal. $20 \times 20=400 ; \quad 16 \times 16=256 ; \quad 10 \times 10=100$; $400-256=144 ; \quad 400-100=300 ; \quad 144+300=444$; $444 \times 4=1776 ; 1776 \times, 7854=1394.8704 ; 1394,8704$ $\times 3=4184.6112 ; 6 \times 6 \times 6 \times, 5236=113.0976 ; 4184$, $6112+113.0976=4297.7088$ solid inches. Ans,

Prop. 42.-The solidity of a regular polyedron is equal to the cube of one of its edges multiphied by the solidity of a similar polyedron whose edge is one.

Table of Regular Polyedrons whose edges are one.

Names.	No. of Faces.	Surface.	Solidity.
Tetraedron. .	4	1.7320508	0.1178513
Hexaedron. .	6	6.0000000	1.0000000
Octaedron. . .	8	3.4641016	0.4714045
Dodecaedron..	12	20.6457288	7.6631189
Icosaedron...	20	8.6602540	2.1816950

Ex.-What is the solidity of an icosaedron whose edge is twenty inches?

Cal. $20 \times 20 \times 20 \times 2.1816950=17453.56$ solid inches. Ans.
Prop. 43.-The solidity of a solid, generated by the revolution of the cycloid about its base, is equal to fiveeighths of a cylinder whose length is equal to the base of the cycloid, and whose diametcr is twice that of the generating circle.

Ex.-What is the solidity of a solid, generated by the revolution of a cycloid about its base, the diameter of whose generating circle is seven feet?

Cal. $7 \times 22 \div 7=22$ length of solid, $7 \times 2=14$ diameter, $7 \times 22=154 ; 154 \times 22 \times 5 \div 8=2117.5$ solid fcet. Ans.

Prop. 44.-The solidity of a paraboloid is equal to one-half of the solid contents of a cylinder of the same bight, and same base as the paraboloid.

Ex.-What are the solid contents of a paraboloid, the diameter of whose base is twenty-eight inches, and height forty inches?

Cal. $28 \times 22 \div 7=88 ; \quad 88 \times 28 \div 4=616 ;$ $616 \times 40 \div 2=12320$ solid inelies. Ans.

Prop. 45.-The solidity of a spheroid is equal to two-thirds the solidity of a circumscribing eylinder.

Ex. 1.-What is the solidity of an oblate spheroid whose major diameter is twenty-eight inches, and minor diameter twenty-one inches?

Cal. $(28 \times 88 \div 4) \times(21 \times 2 \div 3)=8624$ solid inches. Ans.

Ex. 2.-What is the solidity of a prolate spheroid, the diameters being as in example 1.

Cal. $(21 \times 66 \div 4) \times(28 \times 2 \div 3)=6468$ solid inches. Ans.

Prop. 46.-The solidity of an hyperboloid is as follows:

$$
\text { Solidity }=\frac{11 B^{2}}{A^{2}}\left(\frac{x^{3}+2 A^{3}}{3}-A^{2} x\right)
$$

Remark.-In this formula the transverse and conjugate axes are respectivcly represented by (A) and (B), and the ordinate on the axis of revolution by (x).

Ex.-What is the solidity of an hyperboloid whose transverse axis is four feet, conjugate axis three feet, and hight six feet?

Cal. $\quad 6+4=10 ; \quad 3.1416 \times 0 \div 16=1.76715 ; \quad 1000$ $+128=1128 ; \quad 1128 \div 3=376 ; \quad 376-160=216$; $1.76715 \times 216=381.7$ solid fect. Ans.

Remark.-The relations of the co-ordinates to each other in the tractory curve, the length of the curve, the quadrature of the meridian plane coinciding with the axis, the surface of revolution of the tractory conoid; and the solid contents of that solid will be found under the hcading " Discussion of the Tractory and differently formed Grinding Plates."

INVOLUTION.

Involution is the raising of quantities to any proposed power.

The power of any quantity is that quantity multiplied any number of times by itself.

Thus, $\quad 3 \times 3=9$ is the second power of 3 ;
$5 \times 5 \times 5=125$ is the third power of 5 .
The power is sometimes expressed by writing the quantity with the number of the power a little above it, and at the right hand.

Thus, to express the power, write $3^{2}=3 \times 3=9$ square of 3 . $5^{3}=5 \times 5 \times 5=125$ cube of 5 . $2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=128$ seventh power of 2 .

The number of the power, as $2,3,7$ above, is termed the exponent or index.

EVOLUTION.
Evolution is the extracting of roots.

The root of any quantity is a quantity which, if multiplied by itself a certain number of times, produces the original quantity ; and is called the second or square root, the third or eube rout, ete., aceording to the number of multiplications.

Thus the seeond or square root of 9 is a quantity whose square or seeond power produces 9 -that is 3. And the seventh root of 128 is a quantity whose seventh power produces 128 -that is 2 .

Roots are sometimes represented by the symbol \imath^{\prime}, with the number of the root written within the angle of the symbol, and sometimes by exponents or indiecs.

Thus the square root is represented
$\sqrt[2]{\bar{y}}=9^{\frac{1}{2}}=3 \quad$ and is read square root or half power of
$r^{2} 9 \overline{125}=125^{\frac{3}{3}}=5$ and is read eube root or one-third power of 125.
$\sqrt{7} 128=128^{\frac{7}{4}}=2$ and is read seventh root or oneseventh power of 128.

The number 2 within the angle of the symbol in expressing the square root, is usually omitted.

Both involution and evolution are sometimes expressed by fractional exponents or indices.

Thus $32^{\frac{3}{5}}$.The numerator shows that the quantity is to be raised to the third power, $32 \times 32 \times 32=32768$, and the denominator shows that the fifth root of that power is to be extracted $-\sqrt[5]{32768}=32768^{\frac{1}{5}}=8$.

Or the denominator shows that the fifth root of the quantity is to be extracted $\sqrt{\frac{5}{32}}=32^{\frac{1}{5}}=2$.

And the numerator shows that the root thus obtained is to be eubed or raised to the third power, $2 \times 2 \times 2=8$.
to extract any root of a power or quality.
Rule.-1st. Point off the given power or quantity into periods, containing eaeh, except the left-hand period, as many figures as the required root indieates, beginning at the units place and pointing to the left in integers and to the right in decimals.

2d. Find by trial the first figure of the root and set it to the right of the quantity or power in the quotient's or root's place. Also place its first power at the head of a column on the extreme left, and its suecessive higher powers (regularly inereasing the exponents by one) at the heads of eolumns following in order toward the right; thus forming as many columns as there are units in the exponent of the power whose root is sought. The highest power of the first root figure falls under the lefthand period of the quantity, and is to be subtraeted therefrom, and with the remainder the next period is to be brought down.
$3 d$. Add the root figure to the first column, and multiply this sum by the root figure, plaeing the product in the next right hand eolumn and adding it thereto. Multiply this sum by the root figure, placing the product in the next right hand eolumn, which add thereto, and thus proceed adding and multiplying until the number of
additions shall be one lcss than the exponent of the number whose root is sought. The number thus found is termed the trial divisor. The root figure is to be added to the first column (the successive multiplications and additions following as above, except that one multiplication less is made each time) as many times as there are units in the exponent of the number whose root is sought.

4th. Find how many times the trial divisor is containerl in the remainder, with the first left hand figure of the next period brought down, and place the quotient as a second root figure. Also add this root figure, removed one place to the right, to the first column. Multiply the sum thus obtained by this root figure, adding the product, removed two places to the right, to the second column. Thus continue to multiply and add to the successire columns, remoring the product at each addition one figure further to the right, until the product, falling under the quantity whose root is sought, is to be subtracted therefrom, and the remainder with the next period brought down at before.

5th. In a similar manner the successive figures of the root are determined.

Example 1st. Required the side of a square inclosure containing 55225 square rods. Ans. 235 rods.

Cal.

	,$\quad 1$
2	$55225[235$
2	$\overline{152}$
$\overline{43}$	$\overline{129}$
$\frac{3}{465}$	$\overline{2325}$
2325	

$E x .2 d$. Required the side of a cubical reservoir containing 9663597 solid inches. Ans. 213 inches.

Cal.
2

2
2

$\overline{4}$	$\overline{1261}$
2	62
-	-
61	1323

1

$\overline{1}$
62
1
633

9663597 [213
8
-
1663
1261

402597
402597

Ex. 3d. Required the fifth root of 6436343 . Ans. 23.

Cal.				6436343 [23
2	4	8	16	32
2	8	24	64	
-	-	-	-	
4	12	32	80	3236343
2	12	48	278781	3236343
-	-	- ${ }^{\text {- }}$	-	
6	24	80	1078781	
2	16	12927		
-	-	-		
8	40	92927		
2	309			
103	4309			

What properties of the curve Huygens may have investigated does not appear. D'Alembert says that the evolute of the curve is the common catenary. Dr. Peaeock says that the Tractory is an inverted semieyeloid. As the term eycloid here used is not qualified, it must be inferred that the common is meant. Now, D'Alembert and Dr. Peacock eannot both be right ; for the involute of the eommon eycloid is similar and equal to the evolute, that is, the cyeloid itself. But the eycloid is essentially dissimilar and unequal to the catenary. Therefore, the eycloid and the involute of the catenary cannot both coineide with, or be the Tractory.

Again, as the equations of the Tractory, Catenary and cycloid, are essentially different, it is evident that neither D'Alembert, nor Dr. Peaeock has eorreetly demonstrated and set forth the properties of the Ttractory.

The discrepaney of the above named authors, and the unsatisfactory and unreliable manner of laying down the curve mechanieally, as alopted by C. Schiele, of Oldham, have led to the following discussion, the eorrectness of the result of which is not only certified to by several distinguished mathematicians, but is farther confirmed by numerous and earefully made experiments.

A tractory is defined to be " A curve whose tangent is always equal to a given line."

The direetrix of the traetory here investigated is parallel with one of the axes, and the point of origin of the curve is in a line at right angles to the directrix.

Fig. 1.

Let Λ Fig. 1 be the point
 of origin.

Lay off on the axis AY the constant tangent $\mathrm{AF}=a$.

Draw the directrix FD^{\prime} parallel with the axis $A X$.

Draw $\mathrm{CD}=a$ tangent to the curve $A C^{\prime}$ at the point C Produce BC in a right line intersecting FD in E.

Let x and y be coordinates of the curve at any point C, x and let z denote the length of the curve AC.

Then $\mathrm{CE}=\mathrm{BE}-\mathrm{BC}=a-y$, and $\mathrm{ED}=\left(\overline{\mathrm{CD}}^{2}-\overline{\mathrm{CE}}\right)^{\frac{1}{2}}$

$$
=\left(2 a y-y^{2}\right)^{\frac{1}{2}} .
$$

1. By similar triangles

$$
d x=\frac{\left(2 a y-y^{2}\right)^{\frac{1}{2}}}{a-y} d y
$$

2. By similar triangles $\quad d z=\frac{a d y}{a-y}$

1. Putting

$$
\begin{aligned}
& u=\left(2 a y-y^{2}\right)^{\frac{1}{2}} \\
& u^{2}=2 a y-y^{3}
\end{aligned}
$$

21. Squaring Eq. 1_{1},
3_{1}. Differentiating Eq. 2, $2 u d u=2 a d y-2 y d y$
22. Dividing Eq. 3_{1}, by $2(a-y) d y=\frac{u d u}{a-y}$
5_{1}. Transposing Eq. 2,$\quad y^{2}-2 a y=-u^{2}$
23. Completing square to Eq. $51, y^{2}-2 a y+a^{2}=a^{2}-u^{2}$
24. Extracting sq. root Eq. 61, $\quad y-a= \pm 1 /\left(a^{2}-u^{2}\right)$
8_{1}. Or,

$$
a-y= \pm \sqrt{ }\left(a^{2}-u^{2}\right)
$$

3. Transposing Eq. 7_{1},

$$
y=a \pm 1 /\left(a^{2}-u^{2}\right)
$$

9_{1}. Substituting value of $(a-y)$ Eq. 8_{1}, in Eq. 4_{1},

$$
d y=\frac{u d u}{ \pm \sqrt{ }\left(a^{2}--u^{2}\right)}
$$

4. Substituting values of $\sqrt{ }\left(2 a y-y^{2}\right)$ Eq. 1_{1}, $(a-y)$ Eq. 8_{1}, and $d y$ Eq. 4_{1}, in Eq. 1,

$$
d x=\frac{u^{2} d u}{a^{2}-u^{2}}
$$

5. Integrating Eq. 4,

$$
x=\int \frac{u^{2} d u}{a^{2}-u^{2}}
$$

12. By division

$$
\frac{u^{2}}{a^{2}-u^{2}}=-1+\frac{a^{2}}{a^{2}-u^{2}}
$$

$$
\frac{a^{2}}{a^{2}-u^{2}}=\frac{\mathrm{A}}{a-u}+\frac{\mathrm{B}}{a+u}
$$

3_{2}. Reducing to common denominator

$$
\frac{a^{2}}{a^{2}-u^{2}}=\frac{\mathrm{A} a+\mathrm{A} u+\mathrm{B} a-\mathrm{B} u}{a^{2}-u^{2}}
$$

42. Clearing Eq. 3_{2} of fractions

$$
a^{2}=(\mathrm{A}+\mathrm{B}) a \dot{+}(\mathrm{A}-\mathrm{B}) u
$$

5. Transposing Eq. $4_{2} 0=(\mathrm{A}+\mathrm{B}) a+(\mathrm{A}-\mathrm{B}) u-a^{2}$ 6_{2}. Eq. 4_{2} being true for all values of u, is true when $u=0$; hence $\mathrm{A}-\mathrm{B}=0$;
6. And
$\mathrm{A}+\mathrm{B}=a$
7. Adding Eiqs. 6_{2} and 7_{2}; and dividing by $2, \mathrm{~A}=\frac{a}{2}$
8. Subtracting Eq. 6_{2} from Eq. 72 ; dividing by 2, $\mathrm{B}=\frac{\alpha}{2}$ 10_{2}. Substituting values of A and B
in Eq. $2_{2} \quad \frac{a^{2}}{\alpha_{2}-u_{3}}=\frac{a}{2(a-u)}+\frac{a}{2(a+u)}$
11_{2}. Substituting value of

$$
\frac{a^{2}}{a^{2}-u^{2}} \text { in Eq. } \mathrm{I}_{3} \frac{u^{2}}{a^{2}-u^{2}}=-1+\frac{a}{2(a-u)}+\frac{a}{2(a+u)}
$$

6. Substituting value of
$\frac{u^{2}}{a^{2}-u^{2}}$ in Eq. $5 ; x=\int-d u+\int \frac{a d u}{2(a-u)}+\int \frac{a d u}{2(a+u)}$

$$
=-u-\frac{\alpha}{2} l(a-u)+{ }_{2}^{\alpha} l(a+u)+\mathrm{C}_{2}
$$

When

$$
x=0, u=0 \text { also } C=0 ;
$$

7. henee,

$$
x=-u-\frac{a}{2} l(a-u)+\frac{a}{2} l(a+u)
$$

8. whieh may be rendered $x=-u+\frac{a}{2} l\left(\frac{a+u}{a-u}\right)$
9. Integrating Eq. 2, $z=\int \frac{a d y}{a-y}=-a l(a-y)+\mathrm{C}$

When

$$
y=0, z=0 \text { and } \mathrm{C}=a l a
$$

10. hence, $\quad z=a l a-a l(a-y)$
11. which may be rendered $z=a l\left(\frac{a}{a-y}\right)$
l, in the above calculations denotes the Naperian logarithm.
to find the area of the meridian plane coinCIDING with the axis of revolution of the TRACTORY CONOID.
(b). Differential Equation, $\quad d($ area $)=y d x$
$(b)_{1}$. Substituting value ($d x$) Eq. $\left.1 ; y d x=\sqrt{ } / 2 a y-y^{2}\right) d y$
(b). Putting $y=a-n ; y d x=-\sqrt{ }\left(a^{2}-n^{2}\right) d n$
(b) ${ }_{3}$. Decomposing and integrating,

$$
\int y d x=-\int a^{2}\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n+\int n^{2}\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n
$$

(b) $)_{4}$. Second term of Eq. $(b)_{3}$;

$$
\int n^{2}\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n=-n \sqrt{ }\left(a^{2}-n^{2}\right)+\int d n \sqrt{ }\left(a^{2}-n^{2}\right)
$$

(b). Substituting in Eq. $(b)^{3},-\int\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n=$

$$
-\int a^{2}\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n-n\left(a^{2}-n^{2}\right)^{\frac{1}{2}}+\int\left(a^{2}-n^{2}\right)^{\frac{1}{2}} d n
$$

(b) $)_{6}$ Transposing,

$$
-\int\left(a^{2}-n^{2}\right)^{-\frac{1}{2}} d n=\frac{a^{2}}{2} \int \frac{-d n}{\sqrt{ }\left(a^{2}-n^{2}\right)}-\frac{n}{2} \sqrt{ }\left(a^{2}-n^{2}\right)
$$

(b) $)_{T}$ But, $\quad \frac{a^{2}}{2} \int \frac{-d n}{\sqrt{\left(a-n^{2}\right)}}=\frac{a^{2}}{2} \cos ^{-1}\left(\frac{n}{a}\right)$
(b) $)_{5}$ Hence,
$-\int\left(a^{2}-n^{2}\right)^{\frac{1}{2}} d n=\frac{a^{2}}{2} \cos ^{-1}\left(\frac{n}{a}\right)-\frac{n}{2} l\left(a^{2}-n^{2}\right)+\mathrm{C}$
$(b)_{0}$. Restoring value of $n, \quad \int l\left(2 a y-y^{2}\right) d y=$

$$
\frac{a^{2}}{2} \cos ^{-2}\left(\frac{a-y}{a}\right)-\frac{a-y}{2} \sqrt{ }\left(2 a y-y^{2}\right)+\mathrm{C}
$$

Making $y=0$; 'Then $\mathrm{C}=0$.
$(b)_{10 .}$ Hence, $\int \sqrt{ }\left(2 a y-y^{2}\right) d y=$

$$
\frac{a^{2}}{2} \cos ^{-1}\left(\frac{a--y}{a}\right)-\frac{a-y}{a} v\left(2 a y-y^{2}\right)
$$

$(b)_{13}$. Making $y=a . \quad$ Area $=\frac{a^{2} \cos -1}{2}(0)=\frac{a^{2} \times 2 \mathrm{II}}{2 \times 4}=\frac{a^{2} \mathrm{II}}{4}$
$(b)_{13}$. Making $y=2 a$. Area $=\frac{a^{2}}{2} \cos ^{-1}(-1)=\frac{a^{2}}{2} \times \frac{{ }^{2} 1 I}{2}=\frac{a^{2} I I}{2}$
Making $y=\frac{4 a}{10}$, as adopted in one of the inventions of Wheeler \& Randall, viz: in their grinder and amalgamator having the greater base of its muller upward. Making $a=1$, or unity.
Area $=\frac{1}{2} \cos ^{-1}(, 6)-\frac{6}{2}(, 8)=, 2232$ half plane of muller.

Sene, area $=, 4464$ entire plane of muller.
fo find the surface of revolution of the tractory conoid.
$(c)_{1}$. Differential Equation,d (surface) $=(a-y) d z$
(c) $)_{2}$. Substituting value of $d z$ Eq. $2, d s=2 \mathrm{~m} a d y$
(c) ${ }_{3}$. Integrating
$s=2$ нау
(c) Making $y=a$

$$
s=2 \mu a^{2}
$$

Making $y=, 4$, as adopted in that grinder and amalgamator of Wheeler \& Randall, having its greater base upward.
$(c)_{s}$. Surface of revolution $=s=2,5028$
to FIND the solid contents of the tractory CONOID.
e_{1}. Differential Equation, d (solid contents) $=\mathrm{II}(a--y)^{2} d x$ e_{2}. Substituting val. $d x$. eq. 1 ,

$$
d \mathrm{C}_{0}=\mathrm{H}(a-y)_{1} \quad\left(2 \alpha y-y^{0}\right) d y
$$

e_{3}. Put

$$
\begin{gathered}
a-y=n \text { then } y=a-n \\
d \mathrm{C}_{0}=-11 a^{\prime}\left(a^{2}-n^{2}\right) d n
\end{gathered}
$$

e_{3}. Put $s=a^{2}-n^{2}$, then $d s=-2 n d n$, and $\frac{d s}{2}=-n d n$
e_{0}. Substituting in Eq. $e_{4} \quad d \mathrm{C}_{0}=\frac{\pi s^{\frac{3}{2}} d s}{2}$
e_{7}. Integrating Eq. $e_{B} \quad \mathrm{C}_{0}=\frac{\mathrm{II} s^{\frac{3}{2}}}{3}$
e_{8}. Restoring $\left(a^{2}-n^{2}\right)$ for $s, \quad \mathrm{C}_{0}=\frac{11\left(a^{2}-n^{2}\right)^{3}}{3}$
e_{9}. Restoring $(a-y)$ for n

$$
\mathrm{C}_{0}=\frac{\mathbf{1 1}\left(2 a y-y^{2}\right)^{\frac{3}{2}}}{3}
$$

e_{10}. Making $y=a$

$$
\mathrm{C}_{0}=\frac{11 a^{3}}{3}
$$

e_{11}. Making $y=\frac{4 a}{10}=, 4$ when $a=$ unity $C_{0}=, 6362$
The fo lowing table is computed by making the tangent $a=1$, and asigning different values to u, not greater than a as shown i.s column marked u. That is, these values are substituted in equations 8,3 and 11 , and the co-ordinate values of x and y, and the length of the tractory curve \approx, thus determined in term; of the tangent or unity :

TRACTORY TABLE.

TO CONSTRUCT THE TRACTORY BY THE PRECEDING TABLE.

Draw the rectangular co-ordinate axes AX, AY, Figure 2.

On AY, lay off AF, equal to the given tangent, and draw the directrix FD, parallel with the axis AX, through the point F.

In a similar manner determine the points $\mathrm{C}^{\prime}, \mathrm{C}^{\prime \prime}, \mathrm{C}^{\prime \prime \prime}$, $\mathrm{C}^{\prime \prime \prime \prime \prime}$, etc., etc., in the curve.

Multiply the quantity in column z horizontal with the quantities thus taken in column x and y, and the product will be the length of the curve $\mathrm{AC}, \mathrm{ACC}$, etc., etc.

V—:

 mivenuranin . .

 shes.

 biun on : - $1=$
$+$

 shle $=$ ther brourn plaved anc.

To prove that to grinding plates coinciding, of uniform hardness, and of tractory conoidal form, the wear parallet with the axis of revolution is the same at all points of the grinding surface.

Fig.3.

Let AF D" $\mathrm{C}^{\prime \prime}$ represent one half of a meridian plane of a tractory conoid taken through the axis or directrix $F \mathrm{D}^{\prime \prime}$.

Draw $\mathrm{C} \mathrm{D}=a$, and $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ $=a$ each tangent to the curve at any points $\mathrm{C}, \mathrm{C}^{\prime}$; also draw the radii $\mathrm{CE}=r$ and $\mathrm{C}^{\prime} \mathrm{E}^{\prime}=$ r^{\prime} parallel with AF.

Let $w=o c$ denote the wear perpendicular to CD, and $w^{\prime}=$ $o^{\prime} c^{\prime}$ the wear perpendicular to $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$.
Let $\mathrm{P}=\mathrm{C} \varepsilon$ and $\mathrm{P}^{\prime}=\mathrm{C}^{\prime} c^{\prime}$ denote the wear respectively at the points C, C^{\prime} and each parallel with the axis $\mathrm{F}^{\prime \prime}$.

1s. Then by law id,

$$
w^{\prime}=\frac{w r^{\prime}}{r}
$$

2. By similar triangles,

$$
\mathrm{P}=\frac{a w}{r}
$$

3. By similar triangles,

$$
\mathrm{P}^{\prime}=\frac{a w^{\prime}}{r^{\prime}}
$$

4.- Substituting value of ur Eq. 1_{2}

$$
\text { in Eq. } 3_{2} \quad \mathrm{P}=\frac{a r r^{\prime}}{r r^{\prime}}
$$

5. Reedocing ed member of Eq. 4, $P^{\prime}=\frac{a w}{r}$
6. Substiveting value of $\frac{a r}{r}$ in Eq. $2, \quad P^{\prime}=P$

I- Than is, $\mathrm{C}^{\prime} c^{\prime}=\mathrm{C} c$
 as shown by Fee f_{8} ard is $_{5}$ it is the same at all points parallel with the axis, of serolotion.
(b) Aud burke the rare $\mathrm{A}^{\prime} \subset \mathrm{c}^{\prime} \mathrm{c}^{\prime \prime}$ is similar and equal to the tractors $A C C$ C".

Again, plates whose grinding surfaces are of tractory convidal form, alone pase ss the property of uniform wear parallel will the acis of revolution.

Io prove this fraction Pat (Fie. 8)
8. Then Eq. \tilde{S}_{3} brooundes

$$
\begin{aligned}
& a^{\prime}=C^{\prime} D^{\prime} \\
& P^{\prime}=\frac{a^{\prime} v}{r}
\end{aligned}
$$

9. Fran Eq. 2_{2} and α_{1} we hare $P: P:: \frac{a v}{r}: \frac{a^{\prime} v}{r}$
10. Pudusing ed outlet
$P: P^{\prime}:: a=a^{\prime}$
Projemions $1\left(t_{8}\right.$ Hours thin the wear P ' is equal to P^{\prime} orly when tang a is solual to a^{\prime}; but when a is equal to a' live live or curse is a tractors.
Q. E. D.

TO DETERMINE THE SOLIDITY OF A HOLLOW TRACTORY CONOID.

Let $\mathrm{AFD}^{\prime} \mathrm{C}^{\prime \prime \prime}$ represent onehalf of a meridian plane taken through the axis $\mathrm{F}^{\prime}{ }^{\prime}$.

Draw the curve $\mathrm{A}^{\prime} c c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}$ similar and equal to the tractory $A \mathrm{CC}^{\prime} \mathrm{C}^{\prime \prime} \mathrm{C}^{\prime \prime \prime}$. and at the distrance $\mathrm{A}^{\prime}, \mathrm{C}^{\prime \prime} \mathrm{c}^{\prime \prime}$ from it. (See conclusion (b).

Draw $\mathbf{A}^{\prime} \mathbf{E}, \mathbf{C}^{\prime} \mathbf{E}^{\prime}, c^{\prime} \mathbf{E}^{\prime \prime}$, paralley with AF, also Ge through $\mathrm{C}, \mathrm{G}^{\prime} c^{\prime}$, through $\mathrm{C}^{\prime}, \mathrm{G}^{\prime \prime} c^{\prime \prime}$, thougly $\mathrm{C}^{\prime \prime}$ parallel with $\mathrm{F} \mathrm{D}^{\prime}$.

Since the curve $c^{\prime} c^{\prime \prime}$ is similar and equal to $\mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$, and the line $\mathrm{C}^{\prime} c^{\prime}=\mathrm{C}^{\prime \prime} c^{\prime \prime}$, and $\mathrm{C}^{\prime} \mathrm{I}^{\prime}$ $=c^{\prime} \mathrm{C}^{\prime \prime}$, and the angle $c^{\prime} \mathrm{C}^{\prime \prime} c^{\prime \prime}=$ the angle $\mathrm{C}^{\prime} \mathrm{I}^{\prime} \mathrm{C}^{\prime \prime}$; it follows that the triangle $c^{\prime \prime} c^{\prime} \mathrm{C}^{\prime \prime}=\mathrm{C}^{\prime \prime} \mathrm{C}^{\prime} \mathrm{I}^{\prime}$, and also similar to it.

And since the conoidal triangle $\mathrm{C}^{\prime \prime} c^{\prime} \mathrm{C}^{\prime}$ is common to the parallelogram $\mathrm{C}^{\prime \prime} c^{\prime} \mathrm{C}^{\prime} \mathrm{I}^{\prime}$, and to the conoidal section $c^{\prime \prime} c^{\prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$, it follows that the conoidal section $c^{\prime \prime} c^{\prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}$ is equal to the parallelogram $\mathrm{C}^{\prime \prime} c^{\prime} \mathrm{C}^{\prime} \mathrm{I}^{\prime}$.

Again, since $c^{\prime} \mathrm{C}^{\prime}=\mathrm{A}^{\prime} \mathrm{A}=\mathrm{L} \mathrm{G}^{\prime}$, and $\mathrm{C}^{\prime \prime} c=\mathrm{I} \mathrm{L}$, it follows that the parallelogram $c^{\prime} \mathrm{I}^{\prime}=$ the parallelogram $\mathrm{L} \mathrm{G}{ }^{\prime \prime}$. Hence the conoidal section $c^{\prime \prime} c^{\prime} \mathrm{C}^{\prime} \mathrm{C}^{\prime \prime}=$ the parallelogram $\mathrm{L} \mathrm{G}^{\prime \prime}$; and since its position, in all respects, is at the same distance from the axis $F \mathrm{D}^{\prime}$, it
is evident, if it be revolsed about F^{\prime} as an axis, it will gencrate a conoidal ring of the same magnitude as a ring generated by revolving $\mathrm{L}^{\prime \prime}$ about the same axis.

In the same manner may it be shown that any conoidal ring, under similar circuinstances, is equal to the ring generated by revolving the corresponding parallelogram taken in $\mathrm{A}^{\prime} \mathrm{A} \mathrm{FE}$ a round the axis $\mathrm{F} \mathrm{D}^{\prime}$.

Hence the solidity of a hollow tractory conoidal is equal to the solidity of a cylinder having the same basc and same height as $\mathrm{A}^{\prime} \mathrm{A}, \mathrm{c}^{\prime \prime} \mathrm{C}^{\prime \prime}$, ineasured parallel with the axis of revolution.

Tractory Plates.-To determine the grinding effect of hollow tractory conoidal plates of uniform hardness.

Let, as in Figs. 1 and 2, the tangent or greater radius $=a$.

Let x and y be co-ordinates of any point, C, etc.
Let z denote the length of eurve A C , etc.
Let \mathbf{P} denote the wear parallel with the axis of revolution, by one revolution under a unit pressure to a unit surface.

Let S denote the grinding surface.
Let il denote the ratio of the diameter to the circumference of a circle.
1_{4}. Then, $\quad d s=2 \mathrm{n}(a-y) d z$
2. Substituting value of $d z$ of Eq. 2, in Eq. $1_{s} d_{s}=2 \mathrm{II} a d y$
34. Then, by one revolution,

$$
2 \mathrm{IIP}(a-y) d s=4 \mathrm{I}^{2} \mathrm{P} a^{2} d y-4 \varkappa^{2} \mathrm{P} a y d y
$$

4_{4}. Integrating Eq. 34,

$$
\int 2 \pi \mathrm{P}(a-y) d s=4 \Pi^{2} \mathrm{P} a y-2 \varkappa^{2} \mathrm{P} a y^{2}
$$

5. Resolving 2 d member of Eq. 4_{4} into factors;

$$
\int 2 \mathrm{Ir} \mathrm{P}(a-y) d s=2 \mathrm{r}^{2} \mathrm{P} a\left(2 a y-y^{2}\right)
$$

6_{4}. By making $y=a$ in Eq. 5_{4};
Grinding effect $=2 \mathrm{II}^{2} \mathrm{P} a^{3}$
Plane Plates.-To detcrmine the grinding effect of plane circular plates, increasing in hardness from the center to the circumference in the ratio of the increase of the radius.

Let $a=$ the radius of the plates.
Let $y=$ any radius of the plates less than a.
Let $\mathrm{P}=$ the wear at the circumference, perpendicular to the grinding surfacc, under a unit pressure to the unit surface, by one revolution.

Let $\mathrm{II}=$ ratio of diameter to the circumference of a circle.
1_{5}. Then $\quad d s=211 y d y$
2. By one revolution, 2 riPyds $=4$ ri $^{2} \mathrm{P}^{2} d y$
36. Integrating Eq. 25, $\quad \int 2 \pi \mathrm{P} y d s=\frac{4}{3} \pi r^{2} \mathrm{P} y^{3}$
4. By making $y=\alpha$ in Eq. 3_{b};

$$
\text { Grinding effect }=\frac{4}{3} \mathrm{I}^{2} \mathrm{~Pa}
$$

Plane Plates．－To determine the grinding effect of plane circular plates of uniform hardncss．

Let $a=$ the radius of the plates．
Let $y=$ any radius less than a ．
Let $P=$ the tendency to wear at the circumference， perpendicular to the grinding surfaces．

Let $\mathrm{S}=$ the surface of which y is the radius．
Let $11=$ ratio，etc．
18．Then

$$
d s=2 \text { пI } y d y
$$

Now，it is evident that when the tendency to wear at the circumference and at the distance a is P ，that the tendency to wear at the distance y from the centre will be $\frac{\mathrm{P} y}{a}$
2．Then by one revolution $\frac{2 \mathrm{r}^{2} \mathrm{P}}{a} y d s=\frac{41 \mathrm{I}^{2} \mathrm{P} y_{j} d y}{a}$
3．Integrating Eq．28

$$
\int \frac{2 \mathrm{II}^{2} \mathrm{P}}{a} y d s=\frac{4 \mathrm{r}^{2} \mathrm{P} y^{1}}{4 a}
$$

48．Reducing 2d member of Eq．${ }_{6}$－；

$$
\int \frac{2 \mathrm{I}^{2} \mathrm{P}}{a} y d s=\frac{1^{2} \mathrm{P}_{y}}{a}
$$

5．By making $y=a$ in Eq． 4_{θ} ，

$$
\text { Grinding effect }=I ⿰ 丿 丿 ⿱ 日 十_{2}{ }^{2} a^{8}
$$

Conical Plates．－To determine the grinding effect of bollow conical plates of uniform hardness．

Fig. 5.

Let, in Fig. 5, the right angled triangles AB C and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, similar and equal, and at the distance $\mathrm{A}^{\prime}=\mathrm{C}^{\prime}$ apart, be revolved about the axis $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

Then will the solid generated by $A A^{\prime} B B^{\prime}$ be equal to the solid generated by $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{A} \mathrm{C}$.

Let $a=$ the radius B A .
Let $h=$ height of cone $\mathrm{B} \mathrm{C}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

Let $\mathrm{P}=$ tendency to wear at A, parallel with the axis of revolution, by one revolution of the plate under a unit pressure to a unit surface.

Let x and y be coordinates of any point \mathbf{P}.
Let $z=$ CP the slant height of that cone the radius of whose base is y.

Let $S=$ the surface whose slant height is z.
Let $\mathrm{II}=$ ratio, etc.

$$
1_{r} \text { Then by similar triangles } \quad x=\frac{h y}{a}
$$

27. And (Euclid, Book 1, Prop. 47) $x^{8}+y^{2}=z^{3}$
3_{7}. Squaring Eq. $\mathbf{1}_{7}$

$$
x^{2}=\frac{h^{2} y^{2}}{a}
$$

4. Substituting value of x^{2} of Eq. 3_{7} in Eq. 2_{7}

$$
z^{2}=\left(\frac{h^{2}}{a^{2}}+1\right) y^{2}
$$

57. Extraeting square root of Eq. 4_{7}

$$
z=V\left(\frac{h^{2}}{a^{3}}+1\right) y
$$

67. Surface of eone whose slant height is z

$$
\mathrm{S}=11 \sqrt{ }\left(\frac{h^{2}}{a^{2}}+1\right) y^{2}
$$

77. Differentiating Eq. $G_{10} d s=2 \| v\left(\frac{l^{2}}{a^{2}}+1\right) y d y$ When the tendeney to wear at \mathbf{A} is P, it is evident that the tendeney to wear at P is $\mathrm{P}_{a} y$, parallel with the axis.
78. Hence differential of effeet

$$
\frac{2 \| \mathrm{P} y^{2}}{a} d s=\frac{4 \|^{2} \mathrm{P} 1^{\prime}}{a}\left(\frac{h^{2}}{a^{2}}+1\right) y^{2} d y
$$

9.. Integrating Eq. $87 \int \frac{211 \mathrm{P} y^{2}}{a} d s=\frac{11^{2} \mathrm{P}}{a}\left(\frac{h^{2}}{a^{3}}+1\right) y^{4}$
107. By making $y=a$ in Eq. $97 *$

Grinding effeet $=11^{2} P \sqrt{ }\left(\frac{h^{2}}{a^{2}}+1\right) a^{8}$
117. By making $h=\frac{a}{2}$ in Eq. 10 .

$$
\text { Grinding effeet }=\frac{11^{2} P a^{s}}{2} \sqrt{5}
$$

12. Removing surd sign from 2 d member of Eq. 11\%. Grinding effect $=1.11811^{8} \mathrm{P} \mathrm{a}^{8}$

Comparison.-Let a comparison now be instituted bctween the grinding effects of plane circular plates, increasing in hardness from the center to the circumference in the ratio of the increase of the radius, plane circular plates of uniform hardness, "Randall's Patent Grinding Plates," conical plates of uniform hardness, and tractory conoidal plates, and all of the usual ring, form, same diameter, same weight, and running at the same velocity.

1st. Plane circular plates, increasing in hardness from the center to the circumfercnce in the ratio of the increase of the diametcr.

Making y less than a. For example, $y=\frac{a}{3}$ and substituting this valuc for y in Eq. 3_{5}, and we have 1_{8}. Grinding cffect (the radius being $\frac{a}{3}$) $=\frac{4}{27} \mathrm{H}^{2} \mathrm{P} a^{3}$ 28. Subtracting Eq. 1_{8} from Eq. 4_{5}.

$$
\text { Grinding effcct (ring) }=\frac{32}{27} I^{\natural} \mathrm{P} a^{3}
$$

3_{8}. Or expressing dccimally.
Grinding effect (ring) $=1,1852 n^{2} \mathrm{P} a^{3}$
2d. Plane Circular Plates of uniform hardness.
Making y less than a. For example, $y=\frac{a}{3}$, and substituting this value for y in Eq. 4_{6}, and we have 19. grinding effect (radius being $\frac{a}{3}$) $=\frac{\Pi^{2} \mathrm{P} a^{3}}{81}$

2\% Saberaming Eq. 1s from Erz. 5on

$$
\text { (Frinding effect (riog })=\frac{\text { 2) } n^{2} P a^{3}}{51}
$$

3\% Or exproing derimally.

$$
\text { Grinding effisat (ring }=.98 \pi \overline{1} 13^{2} \mathrm{P} \mathrm{as}^{3}
$$

3d. Ifandatl's I'ulent Sirinding Plates. - These plates onn iet of two or more concentric rings of d firerent hardnebe The sufuer plates are arrangel nearer the center where there it che lene wear, and the harder plates more remone where the wear it greater. This arranywnent remerline in a great motasure the otberwis: fatal defects of plane circular and contical plates.

For Eisample-Let a = the greater radius of the plates.
$\mathrm{J}_{\text {et }}{ }_{3}^{4}=$ the radiut of the operining.
Let $\frac{2 \pi}{3}$ the greates radius of the inner ring.
1st. Saking $y={ }_{3}^{\prime \prime}$, and substituting this value for y in Fin. 4_{6} and we have
1_{20} Crinuling effert $\left(\right.$ radiue $\left.\frac{a}{3}\right)=\frac{I^{2} P a^{8}}{81}$
2d. Making $y=\frac{2 \%}{3}$, and sulstituting this value for y in Fis. 4_{n} and we have
2is Grinding efect $\left(\operatorname{radias} \frac{2 u}{8}\right)=\frac{1 \operatorname{FII}^{2} \mathrm{P} u^{2}}{81}$

3 3_{10}. Subtracting Eq. 1_{10} from Eq. 5_{6};

$$
\text { Grinding effect (ring) }=\frac{80}{81} \mathrm{I}^{2} \mathrm{~Pa}^{3}
$$

4 10 $_{0}$. Subtracting Eq. 2_{10} from Eq. 5_{6}

$$
\text { Grinding effect }(\text { ring })=\frac{65}{81} I I^{2} \mathrm{P} a^{3}
$$

5_{10}. Comparative weight of the outer ring,

$$
=a^{2}-\frac{4 a^{2}}{9}=\frac{5 a^{2}}{9}
$$

6_{10}. Comparative weight of entire plane, less the opening,

$$
=a^{2}-\frac{a^{2}}{9}=\frac{8 a^{2}}{9}
$$

7_{10}. Then $\frac{5 a^{2}}{9}: \frac{8 a^{2}}{9}:: \frac{65 I^{2} \mathrm{P} a^{3}}{81}: \frac{104 \mathrm{Ir}^{2} \mathrm{P} a^{3}}{81}$
8.0. Or grinding effect of outer ring, $=\frac{104}{81} \mathrm{rr}^{2} \mathrm{~Pa}^{3}$
9_{10}. The loss sustained by piates of uniform hardness,

$$
=\frac{104}{81} I^{2} \mathrm{P} a^{3}-\frac{80}{81} \mathrm{I}^{2} \mathrm{P} a^{3}=\frac{24}{81} \mathrm{I}^{2} \mathrm{P} a^{2}
$$

Let it now be assumed that the inner plates or rings are one-third as hard as the outer plates. 10_{10}. See Eq. 9_{10}. Loss sustained,

$$
=\frac{24}{81} \mathrm{I}^{2} \mathrm{~Pa}^{3} \div 3=\frac{8 \mathrm{I}^{2} \mathrm{P} a^{3}}{81}
$$

Subtracting Eq. 10_{10} from E'q. 8_{10}, gives for "Randall's Patent Grinding Plates, viz.:

$$
\text { Grinding effect }=\frac{96 \mu^{2} P a^{8}}{81}
$$

1210. Expressing decimally;

Grinding effect $=1.1852 \mathrm{n}^{2} \mathrm{P} a^{3}$.
Subtracting Eq. 2_{0} from Eq. 11_{10}, and dividing the remainder by Eq. 2_{9}, gives the prer eentage of "Randall's Patent Grinding Plates," both over plane circular, and conical plates of uniform hardness, as follows : 13_{10}. Per centage in favor of "Randall's Patent Grinding Plates," $\left(\frac{961^{2} \mathrm{P} a^{3}}{81}-\frac{801^{2} \mathrm{P} u^{3}}{81}\right) \div \frac{81}{801^{2} \mathrm{P}^{3} a^{3}}=, 20$

4th. Conical Plutes of uniform hardness and of ring form.
$\mathbf{1}_{11}$. Making y less than a, for example $y=\frac{a}{3}$, and substituting this value for y in Fiq. 9 , and we have the grind-

$$
\text { ing effect }\left(\text { the radius } \frac{a}{3}\right)=\frac{1^{2} \mathrm{P} a^{3}}{81}-1^{\prime}\left(\frac{h^{2}}{a^{2}}+1\right)
$$

2_{11}. Subtracting Eq. 1_{11} from Eq. 10 .

$$
\text { Grinding effect }(\text { ring })=\frac{801^{2} \mathrm{P} a^{3}}{81}-1\left(\frac{h^{2}}{a^{2}} \div 1\right)
$$

3 1 . Making $h=\frac{a}{2}$ in Eq. 2_{11}.

$$
\text { Grinding effeet }(r i n g)=\frac{8 \pi}{81} n^{2} P a^{3} v\left(\frac{5}{4}\right)
$$

4_{11} Expressing decimally.

$$
\text { Grinding effect }(\text { ring })=1,1042 \iota^{2} \mathrm{P} a^{3}
$$

5th. I'ractory Conoidal Plates of uniform hardness.
Making y less than a. For example $y=\frac{2 a,}{5}$ as is the ease in the Wheeler \& Randall muller or grinding plates.
1_{12}. Substituting $\frac{2 a}{5}$ for y in Eq. 5_{4}.

$$
\text { Ring effect }=\frac{32 \Lambda^{2} \mathrm{P} a^{3}}{25}
$$

2_{12}. Making the tractory conoidal plate of the same weight or solidity as the plane circular or conical plates, and Eq. 1_{12} becomes Grinding effect (ring) $=\frac{16}{9} 11^{2} \mathrm{P} a^{3}$ 3_{12}. Expressing decimally.

$$
\text { Grinding effeet }=1,7778 \varkappa^{2} \mathrm{P} a^{3}
$$

Recapitulation.-To express the relative grinding effeets of the differently formed plates now considered, the literal factors $\mathrm{II}^{2} \mathrm{P} a^{3}$, common to all their formulas, may be omitted.

Omitting the literal factors, and the relative grinding effeets of differently formed plates become as follows, to wit :
1_{13}. Eq. 3_{9}.-Plane circular plates of uniform harduess $=, 9877$.
213. Eiq. 122_{10} - Randall's Patent Grinding Plates $=1,1752$.
3_{13}. Ìq. 4_{11} - - Conical plates of uniform hardness $=1,10.42$.
4_{13}. Eq. 3_{13}.-Tractory conoidal plates of uniform hardness $=1,7778$.

Hence the conelusion that tractory conoidal plates not only differ materially in form from plane circular and from conical plates, but also differ essentially from, and are greatly superior to them in their grinding propertics.

PRORERTIES OF BODIES.

PROPRTIES OF BODIES-CONTINUED.

N.SME,	$\begin{gathered} \text { specific } \\ \text { pravity, } \\ \text { at } 3\langle 20 \text { th. } \end{gathered}$	$\begin{aligned} & \text { Melt'lige } \\ & \text { points } \\ & \text { not inalu } \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { of hrid } \\ & \text { neses } \end{aligned}$	$\begin{aligned} & \text { Tenacity } \\ & \text { in the. per } \\ & \text { sqr. inelh. } \end{aligned}$		Volatile at
Mica.	2.650					
Quartz	2. 624					
Serpentine....	2.264					
Cimmabar	6902					
Felspar	2.438					
Flint.	2.582					
Ash.	.84.)				8663	
Oak, American					4100.	
do Camalian.					5982	
do Enelish...	920				$6+8+$	
Pine, Yellow.					5375	
Walnat.					6645	
Cedar					5768	
Lim.	. 611			12000	10331	
Fir	. 600			10000		
Box	. 862			18000		
Teak.					12100	

MISCELLANEOUS.

5760 graius $=1$ pound troy $=1$ pound apothecary. 480 grains $=1$ ounce troy $=1$ ounce apothecary. 12 ounces $=1$ pound troy $=1$ pound apothecary. 7000 grains $=1$ pound avoirdupois. 437,5 grains $=1$ ounce avoirdupois.
16 ounces avoirdupois $=1$ pound avoirdupois.
252,458 grains $=1$ cubic inclı distilled water, Euglish standard 62° Fahr., Baroncter at 30 inches.

252,693 grains $=1$ cubie inch distilled water, U. S. standard 30.83° Fihr., Barometer at 30 inehes.

27,7015 cubic inches distilled water $=1$ pound avoirdupois.

1 cubic foot distilled $=62,37929$ pounds avoirdupois.
321 eubic inches $=8,3388822$ pounds avoirdupois $=$ 1 gallon U. S.

277,274 cubic inches $=10$ pounds avoirdupois $=1$ gallon Impcrial.
2150.42 cubic inches $=77,627413$ pounds aroirdupois $=1$ bushel.

1 grain Gold, 1000 fine $=\$, 0430663$ Mint value.
1 grain Silver, 1000 tine $=, 0026936$ Mint value.
1 grain Copper, 1000 fine $=, 0000595$ Mint value.
1 ounce Gold, 1000 fine $=20,671791$ Mint valuc.
1 ounce Silver, 1000 fine $=1,292929$ Mint value,
1 ounce Copper, 1000 fine $=, 028571$ Mint value.
23.22 grains Gold, 1000 fine +2.58 grains alloy $=$ 25.8 grains $=\$ 1.00$.
371.25 grains Silver, 1000 fine +41.25 grains alloy $=412.5$ grains $=\$ 1.00$.

16800 grains Copper, 1000 fine $=\$ 1.00$.
1 cubic inch Gold, 1000 fine $=10,12883$ ounces troy $=\$ 209.38$.

1 cubic inch Silver, 1000 fine $=5,50885$ ounces troy $=\$ 7.13$.

1 cubic inch Coppcr, 1000 fine $=4,62209$ ounces troy $=\$ 0.133$.

Gold and Silver, when pure, are said to be 1000 fine; or, by the old method, 24 carats fine.

The standard fineness of the United States Coin is 900 ; or, by the old method, $24 \times, 900=21.6$ carats fine.

gunter's chain.

7.92 inches $=1$ link.

100 links $=4$ rods $=1$ chain.
5280 feet $=320$ rods $=80$ chains $=1$ mile.
69.77 statute miles $=1$ degree of a great circle of the earth.

160 square rods $=10$ square chains $=1$ acre
640 acres $=1$ square mile.
french weights and measures.
1 Metre $=39.371$ inches .
1 Are $=3.953$ square rods.
1 Litre $=61.028$ cubic inches.
1 Stere $=35,31714$ cubic feet.
1 Gramme $=15,434$ grains troy.

The Grcek prefixes Deca, Hecto, Chilo, and Myria, respectively, signify 10 times, 100 times, 1000 times, and 10000 times.

And the Latin prefexes Deci, Centi, and Milli, respectively, 10 th part, 100 th part, and 1000 th part.

Thus, 1 Dcca-metre $=10$ metres, and 1 metre $=10$ Deci-meters.

Thus, 1 Chilo-gramme $=1000$ grammes, etc.
1 Arroba (Mexican) $=25$ pounds avoirdupois.
1 Fanega $=1,599$ bushels, U. S., $=3438.52$ cubic inches.

1 Marc or $\mathrm{Marco}=8$ ounces troy.
1 Vara $=33,384$ inches.
25 cubic fect of sand $=1$ ton.
18 cubic feet of earth $=1$ ton.
17 cubic fcet of clay $=1$ ton.
13 cubic feet of quartz, unbroken in lode, $=1$ ton.
18 cubic feet of gravel or earth, before digging, $=27$ cubic feet when dug.

20 cubic feet of quartz, broken, (of ordinary fineness)
$=1$ ton, contract measurement.

$$
\text { Oakland, August } 27,1864 .
$$

Mr. Randall-Sir :-I have carefully examined your demonstration of the Tractory Curve, and of the grinding effects of differently formed plates, and find your calculations correct.

Yours, etc., Franeis D. Hodgson,
Prof. Math. College of California.

San Francisco, September 7, 1864.
Mr. M. P. Randall-Dear Sir:-I have to thank you for the opportunity of inspecting the drawing and model of your and Mr. Wheeler's new form of grinding and amalgamating apparatus, in which you have adopted the Tractory Conoid as the form of the grinding surfaces.

Your mathematical demonstration of the mechanical properties of this curve is, so far as I am informed, original and very interesting, and satisfies perfectly the practical requirements of the problem. The Tractory Conoid is a solid the nature of whose curve is as different from that of the surface of a cone as is a cycloid from an inclined plane.

Your mathematical analysis of the problem of uniform grinding, by tractoroidal surfaces, is extremely interesting, and furnishes a finc illustration of the value of this method of discussion applied to a case which at first sight
would seem to be completely beyond the reach of such subtle and exact tests. The practical value of this discussion and of the results which it appears to sustain, are such as commend it to the serious attention of all who are interested in the development of the resourecs of the Pacific coast in the precious metals.

Yours, respectfully,
B. Silliman, Jr.

San Francisco, May 4, 1865.

Gentlemen:-Having made a careful and critical examination of your "Quartz Operator's Hand Book," it is with extreme pleasure that I certify to the correctness of your statements and deductions. It bcars the impress of extensive rescarch and thorough investigation. Your discussions of all the various subjects are remarkably clear, concise and rigidly exact; but permit me more especially to congratulate you upon your masterly discussion of the Tractory and the grinding effects of differently formed plates-a subject practically of the highest importance to every quartz miner.

With sentiments of high regard, I remain, Yours, truly,
W. R. Eckart, Jr.,

Engineer (late of) U. S. N.
To Messrs. Wheeler \& Randall.

San Francisco, May 29, 1865.

Messrs. Wheeler \& Randall :-Having examined your "Quartz Operator's Hand Book," I take pleasure in recommending it to miners and millmen, as a work likely to be of great use in properly understanding the nature of their ores, and consequently the treatment necessary to produce favorable results.

Respectfully, yours, etc.,
W. M. Belshaw,

Assayer, and Sup't. of the S. T. M. Co.

INDEX.

Assay, 13
Assay Blowpipe, 4
Assay of Copper-dry way, 14-15
Assay of Copper-humid way, 17
Assay of Gallena-dry way, 14
Assay of Gallena-humid way, 17
Assay of Gold-dry way, 16
Assay of Gold-humid way. 18
Assay of Iron-dry way, 14
Assay of Iron Ores containing Manganese, 19
Assay of Silver-dry way 16
Assay of Silver-humid way 17
Assay or Analysis of Ores containing Gold, Silver, Copper, Lead, Iron, and Sulphur, 20
Blowpipe, 4
Cupellation, 38
Comparison, 111
Cement, Iron Rust, 22
Chemical Recipes, 34-35
Chemical Terms, Explanation of, 12
Discussion of the Tractory and differently formed Grinding Plates, 92-116
F4
Erolution, 87
Extraction of Gold by Chloration, 28
Extraction of Gold by the Pan Process, 26
Extraction of Silver by the Pan Process 32
Extraction of Silver by the Freyberg Process, 31
Extraction of Silver by the Patio Pracess, 28
Extraction of Silver by the Veach Process, 32
Extraction of Silver by the Augustin Process, 39
Extraction of Silver by the Zierrogel Process, 42
Extraction of Silver by the Patera Process, 43
Flux, Black, 21
Flax, White, 22
Involntion. 87
Laws of Grinding, 102
Miscellaneous Table, 120
Mensaration, 69
Mecbanics, and Mechavical Problems, 44
Mechanical Powers, viz. 59
The Lever, 59
The I'nlley, 60
The Inclined Plane, 60
Mechanical Problems, 61-69
Plates, Grinding effects of, viz. 66-69
Conical, 107
Plane Circular, 107-108
Randall's Patent, 112
Tractory Conoidal. 106
Purification of Mercury, 25
Preface, 3
Properties of Bodies, Table of. 117
Recipes-Chemicals employed in Silver Mining, 34
Recapitulation of the Grinding effects of differently formed Plates, 115
Qnicksilvering of Copper Plate, 23
Roasting, viz. 23
In IIeaps, 23
In Furnaces, 23
In Reverberatory Furnaces, 24
Steam Power, 53
Solders, 22
Separation of Silver from Lead by the Pattinson Process, 35
Separation of Silver from Lead by the Parke Process, 37
Separation of Silver from Lead by Cupellation, 38
Suspension Rods of Uniform Strength, 64
Separation of Silver from Copper by the Liquation Process 36
Table of Coefficients for estimating the Horse Power of Water Wheels, 52
Table showing the Average efficiency of various Water Wheels, 50
Table showing the proper velocity of Water Wheels, 51
Table of Pressures, Temperatures and Volumes, 54
Table for estimating the Mean Pressures of Steam for a given Cut-off of Stroke 55
Table, Tractory 100
Tests, Chemical 10
To find the Mean Pressure of Steam for a given Cut-off of Stroke 57
To find the effective Horse Power of a Non-Condensing Engine, Rule, 58
To find the Horse Power for various Water Wheels, Rule. 52
Thin Cylinders, 61
Thick Hollow Cylinders, 62
To find the Grinding effects of
Plane Circular Plates, Rule, 66
Conical Plates, Rule, 67
Tractory Conoidal, Rule, 68
Table of Regular Polygons, ete, 76
Table of Regular Polyedrons, 85
To find the Area of the Meridian Tractory Plane, etc. 97
To find the Surface of Revolution of the Tractory Conoid. 99
To find the Solid Contents of the Tractory Conoid, 99
To construct the Tractory, etc., 101
To determine the Solidity of a Hollow Tractory Conoid,. 105
To extract any Root of a Power or Quantity, 89
Varied Motion, 46
Water Power, 49
Water Pipes, © 5
Weights and Measures, 121

ERRATA.

17th Page, 26th line.-After the word "acid," add dilute and filter.
28th page, 17 th line.-For "chloride" read chlorine.
28th " 19th " Add the word filled after "cisterns."
50th " 25th " For "Jouval" read Jonval.
53d " 2d " After the word "fect" add the head being 2 feet 3 inches.
89th " 5th " For "Quality," read Quantity.
93d " 13th " For "Catenary," read Involute of the Catenary.
101st " 11th " For "or AX," read on AX.
102 d " 23d " For "distruction," reud destruction.
102d " 10th " For "uniie," read unit.
104th " 12th " For "passes," read possess.
106th " 9th " For "Conoidal," read Conoid.

wheeler's

AMALGAMATOR.

 PATENTED DEC. 1883.This favorite Amalgamator has recently been greatly simplified and improved.

Over three hundred of these Machines are now in successful operation, and giving entire satisfaction, in California, Nevada, Mexico, Idaho, Colorado and Lower California.

Further comments are unnecessary.

> MANUFACTURED AT

MINERS' FOUNDRY............ San Francisco. PACIFIC IRON WORKS....... "
UNION IRON WORKS......... "
GOLDEN STATE IRON W'KS .
"
MARYSVILLE FOUNDRY........ Martsville P. W. GATES \& CO........... Chicago, Ill

WHEELER \& RANDALL.

SAN FRANCISCO, June 13, 1865.

TEIE

WHEELER \& RANDALL Grinder and Amalgamator.

In the enfraving on the opposite page, A repreaents the Rim of the Pan; 13, Cross Frame ; C, Legs ; 1), Gear; G, Driving Pulicy; IH. Mulier ; I, Driver; K, Dies; I, Shoes; M, Hand Wheel ; N, Jam Niut, and O, Wlags or Guide l'sates.

The attention of the Public is respectfully called to these facts:
lst. That the Mechanical work accomplished by differently formed grinding plates, having the same diameter, weight, hardness, and revolving at the same velocity, is as follows, to wit :

The Mechanical Work of plane, circular plates of the usual ring form, is ninety eight . 98

The Mechanical work of conical plates of the most approved form, is one hundred and ten........... 110

The Mechanical work of Tractory-formed plates, as introciuced in the invention of Wheeler \& Randall, is one hundred and seventy-seven... 177

That is, the Tractory-formed grinding plates will reduce one hundred and seventy-seven tons of ore, the conical grindiug plates one hundred and ten tons, and the plane circular grinding plates ninety-eiglt tons, to the same degree of fineness in the saine time. Those using this invention certify that they thoroughly reduce five tons of ore, as it ordinarily comes from the wet battery, per day in each pan, four feet diameter, the muller making sixty-five revolutions per minute.

2d. That as a whole, the Wheeler \& Randall Grinder and Amalgamator is one of the most simple, compact, substantial, convenient and efficient pans in use.
$0 \rightarrow$ Patent applied for.

> MANUFACTURED AT

GOLDEN STATE IRON WORKS.....San Francisco. UNION IRON WORKS.....
MINERS' FOUNDRY.
SAN FRANLISCO FOUNDRY
66
 OREGON IRON WORKS.........................Portland, Oregon.

WHEELER \& RANDALL, Inventors.

[^2]
THE EXCELSIOR GRINDER AND GMALGAMATOR.

In the engraving on the opposite pare. A represents the Rim of the Pan; B, Muller; C, I.pgs; D, Crona-Frame; \mathbf{E}, Gearing; \mathbf{F}, Screw; G, Lever; H, Dash-13oards ; 1, Key; a_{3} Dies; c, Shoes, and o, Openifys,

The relative grinding capacitics of "The Excelsior" Grinder and Amalgamator, of the Flat Bottomed Pan, and of the Conical Pan when properly constructed, are respectively 177, 98 and 110.

That is, the respective mullers being of the same diameter, same weight, same hardness, and running at the same velocity, "The Excelsior Grinder and Amalgamator" will reduce one hundred and seventr-seven tons of ore, the Flat Bottomed Pan ninetyeight tons, and the Conical l'an one liundred and ten tons to the same degree of fineness in the same time.

The wear to the Shoes and Dies at their grinding surfaces in the Excelsior Grinder and Amalgamator, is perfectly uniform, thus securing evenness of reduction to the pulp, as well as steadiness of motion to the muller. Uniform wear of the grinding plates has been attained in no other than that of the Tractory form-nor ean it be.

Another property of excellenee in this machine is that the metal or substance to be amalyamated passes direct from the grinding surfaces into the quicksilver; thus excluding the possibility of its becoming coated with any foreign substances, after having been burnished. It is truthfully said "that the Tractory-formed Pan as a Grinder has no equal, and as an Amalgamatorno superior."

As a whole, it is far superior to any other pan in use.

MANUFACTURED AT THE

Union Iron Works and Golden State Iron Works.

WHEELER \& RANDALL, Inventors.

> The nndersigned having had several years of experience in practical quartz miningoperations, witl ever take great pleasure in furnishing parties inferested in nining and machinery any desired information which they may ponsess.

WHEELEREREANDALL。
Ban Frarcisco, June $13,1805$.

G. W. PRESCOTE.

MARYSVILLE
 AND Machine Shop. CORNER FOURTH AND B STREETS,

 MARYSVILLE.The above Establiahment has been in uccesaful operation for the laat twelve jears. Having superior toois for manufacturing and finishing, and greatly lnereased their STOCK OF PATTEKNS, the undersigned are aow prepared to aupply all demanda for

MACHINERY AND CASTINGS,

 Of every deceription, at as LOW RATES as any Foundry in the State.
STEAM ENGINES BUILT AND REPAIRED.

Quartz Mills, Saw Mills, G'rist Mills, Threshing Machines

HOLESE POWEEEN,

Malt rollers, Cast iron riffles, and

 GEARING OF ALL KINDS.We have mixteen Steam Enginen Por Mnie, of our own manafacture, from 8 to 100 borse power, and will be furnlahed with Boifere and Fixtures complete.

AMALGAMATING MACHINERY,

Of every deseription, with all the latest Improvementa.

WHEELER \& RANDALL PANS,

> WHEELER PANS AND SEPARATORS, AMALGAMATING TUBS,

Car wheels, Derricks, etc. etc.

MIINIING PUMIP.

CORNISH PUMPS of all rizer, with Gearing and Pipes mande to order.
HoISTING MACHINERY, for Shans or Inelinea of every variety.
We are sole manufacturers for the state of California of
WINHAM'S HYDRAULIC COUPLING.
All orders promptly flled at the shortent notice, and at redured prleea for cash.

PIRESCOTT A SCHIEIDEL.

OREGON IRON WORKS.

 A. C. GIBBS.JOHN NATION.E. B MORGAN.
A. C. GIBBS \& C 0 .

 manufacturers of
SDCAAMCNGONKS,BOXMERS

 AND ALL KINDS Of mills.Moistiag Machines; Ronse Rowers,
Reapers \& Mowers, Quartx Mills, AMAKGAXATHER RANS and Separators OF THE MOST APPROVED KINDS.

COOKING RANGES, PUMPS, ETC., ETC.

ng Pattern Making in all its forms conneeted with the Establishment.

05 Plans and Specifieations for Miles and all kinds of Machinery furnished to order, by an experienced Draughtsman.

THE WHEELER \& RANDALL

 Crinder and Amalgamator.
GOLDEN STATE

Iron Worlzs,

PALMER, KNOX \& CO. Proprietors,

- MANCFACTUREALLEINDS OF

CASTINGS AND MACHINERY

Best Adapted to Mining and Milling.
QUARTZ MLLS, combining all improvements mado to date.

STEAM ENGINES of all sizes.

Wheeler \& ranoall's grimomg ano amalgamating pans.

knox's amalgamators, with Palmer's Steam Chest.
hanscom's Crishers, designed to prepare Ore for batteries.

TYLER'S PATENT IMPROVED WATER WHEEL.
DUNBAR'S PATENT PISTON PACKING.
\triangle FULL SUPPLY OP WHITE IRON CONSTANTLY ON HAND.
Parties desiring anything in our line, are invited to a personal interview, or to communicate by letter.

Nos. 19, 21, 23, 25 \& 27 First Street,
SAN FRANCISCO,

UNION IRON WORKS.

HENRY J. BOOTH...GEO. W. PRESCOTT...IRVING M. SCOTT

Н. Ј. ВООтН \& CO.

MANUFACTURERS OF
 FLUE, TUBULAR, CORNISH, AND MARINE BOILERS.

HOISTING MACHINES,
PUMPS AND PUMPING MACHINERY,

all kinds of
STAMPS and MORTARS, AMALGAMATING PANS AND SEPARATORS,

Of the most Improved Patterns.
AIL KIINDS OF SCREENS,
PATTERNS AND PATTERN MAKING, of all kinds, carried on.
PLANS and SPECIFICATIONS for Mills and all kinds of Machinery furnished free of cost.

> Н. Ј. ВООТН \& СО.
first street, Between Market and Mission, SAN FRANCISCO.

WHEELER \& RANDALL'S

SEPARATOR,

—wisn
ZENAS WHEELER'S
Patent Self-Regulating

QUICKSILER DISCHARfE APPARATES.

The structure of this Machine is simple and substantial. Its practical workings complete, requiring but little attention.

Its superior settling properties are readily acknowledged by the most intelligent and practical amalcamators and millismen.

WHEELER \& RANDALL,

Inventors.

Altining aml sticutific 解ucrss,

 PUBLISHED EVERY SATURDAY BY
DEWE \& \& C

PATENT AGENTS,

No. 505 Clay Street, corner of Sansome, SAN FRANCISCO.

Each number of the Pess contains sixteen pages of sixty-four columns, (size of Harper's Wcekly,) cmbracing a variety of reading of dircet value to the progressive citizens of the Pacific Coast. Our columns contain a liberal discussion of the different methods of

SAVING GOID,
All new discoveries in the treatment and development of precious ores and metals, and illustrations of new machinery and inventions. Commencement of Eleventh Volume, July 8th, 1865.

Terms, in AdVance.-One year, \$0 ; six months, \$3. Back volumes, to January 1, 1864, furnished at $\$ 3$ per volume.

OUR PATENT AGENCY

Is conducted in a competent, thorough, reliable and strictly confidential manner. Inventors on this coast laving their applications for patents made out through our Agency, can sign their papers at once, and thus sccure their rights at least threc months earlier than by trusting the same to distant agencies, situated in New York or Washington.

Tob Printing.

We have a large and well established Office for BOOK AND JOB PRINTING-in Plain, Fancy and Ornamental Style. Espccial attention given to all work for Mining Companies and managers.
er Prioes 工eOv.

CALIFORNIA STATE LIBRARY SACRAMENTO

This book is due on the date stamped below.
A book may be kept for three weeks and renewed for two weeks longer.

A fine of five cents a day will be charged on overdue books.

[^0]: * Chloride of Silver, as found native, is called horn-silver ; it is completely insoluble in nitric acid. It is readily dissolved by

[^1]: Remales.-The unit of grinding effect here taken is the result of a borly impressiug one square inch of another body, with on ponnd pressure, and moving, under these circumstances, on inch. See Laws of Grinding, Discussion of Tractory, ete.

[^2]: gan Francisco, June 13, 1805.

