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Symmetry of Physical Laws

Part I

-Symmetry in Space-Time and Balance Theorems-

by Michael Satosi Watanabe

U.S. Naval Postgraduate School, Monterey, California

Abstract

In default of the theorem of "detailed balance": ?^a = Pj^, with

regard to elementary transition probabilities, several "balance" theorems

are introduced and proved on the basis of symmetry of physical laws in

space-time, (l) First theorem of "averaged balance" (#5) J We can estab-

lish P^i = P.. by averaging over quantities of "minus class." Table V

(#3) gives a list of "minus" quantities. (2) The so-called "detailed

balance of collisions" in classical physics is a special case of Theorem

(1). (3) Heitler-Coester's theorem of "semi-detailed balance" is also a

special case of Theorem (l). (4) Second theorem of "averaged balance"

(#5): We can establish P. .= P.. by averaging over quantities with PD = -1.

The quantities with
fR
= -1 are listed on Table II (#2). (5) Theorem of

"cyclic balance" (#7): In classical physics, a chain of transitions

i-*;)-*k-». . . -»i repeats itself cyclically. (6) Theorem of "long-

range balance" (#7): The time average of transition probability from i

to j is equal to the time average of transition probability from j to i.

Theorems (l), (2) and (3) are direct consequences of inversibility (co-

variance for space-and-time inversion). Theorem (4) is a consequence of
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reversibility (covariance for time reversal). Theorems (5) and (6) are

connected with ergodicity of Markoff's chains. This ergodicity is proved

by the condition of bilateral normalization of transition probabilities:

£ Pij s 1, Z/ Pi4 = 1. This bilateral normalization in turn can be

derived from either reversibility or inversibility. The limits of validity

of all these balance theorems in actual applications are carefully examined

in the text.
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#1. Introduction

Since some time it has come to general attention that the principle

of detailed balance by no means represents a universal rule in quantum

physics. Thus, thanks to Pauli's timely remark, the demonstration of the

H-theorem which does not utilize the assumption of detailed balance has

acquired a new importance.

The transition probability P. . from state S- to state S^ has to obey,

due to the very nature of probability,

However, the inverse normalization:

£P..= 1 (1.2)

is not self-evident.

That conditions (l.l) and 1.2) are sufficient for derivation of the

3 2
H-theorem was demonstrated by Husimi and Stlickelberg, and a simplified

2
version of this proof was given by Pauli.

1. J. Hamilton and H.W. Peng, Proc. Roy. Ir. Acad., A49, 197 (1944);

W. Heitler, Quantum Theory of Radiation (Oxford University ress, Lon-

don, 1944) second edition, p. 252.

2. E.C.G. Stlickelberg, Helv. Phys. Acta, 25, 577 (1952)

3. Kodi Husimi, Theory of Probability and Statistics (Kawade Shobo,

Tokyo, 1942, in Japanese) p. 277.
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Obviously, the detailed balance condition:

pij= pji <l-«

allows one to deduce (1.2) from (1.1), but this is of course too re-

strictive a condition.

It is known that the bilateral normalization, (l.l) and (1.2), can

be derived from the unitarity of transition matrix (S-matrix) in quantum

physics. But in this paper, the bilateral normalization is considered

in connection with the symmetry of physical laws in space-time. Namely,

it will be pointed out that either reversibility (covariance for time-

reversal) or inversibility (covariance for space-and-time inversion) is

sufficient to deduce the bilateral normalization, without making use of

the unitarity of transition matrices or of detailed balance. Reversi-

bility or inversibility has indeed a very clear physical meaning and may

be considered as a more basic physical principle than the unitarity of

transition matrices, which is specifically a quantum- mechanical situation.

In any event, in the quantum theory of elementary processes there never

appear transition matrices which do not obey reversibility or inversi-

bility. Therefore, reversibility or inversibility can be considered to

be a sufficiently general rationalization of the bilateral normalization.

The principle of detailed balance (1.3) is sometimes resorted to in

problems other than the H-theorem. Therefore it is worthwhile investigat-

ing its limits of validity. From Boltzmann's classical work, it is clear

that this principle is intimately related to inversibility. Our investi-

gation will show that if the physical system has inversibility, the
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theorem of detailed balance can be re-established in a broader sense with

the help of hypotheses of elementary disorder (or simply chaos hypotheses)

with regard to the physical quantities of what will be called the "minus

class." To the minus class belong regular tensors and first kind pseudo-

tensors of odd ranks and second and third kind pseudo-tensors of even

ranks. This classification of tensors will be discussed in detail in #2.

This result clearly explains that the principle of detailed balance

in classical physics is bound to utilize the chaos hypothesis with regard

to the 'positions of molecules, which are minus variables. Heitler-Coester's

5
so-called theorem of semi-detailed balance is also a variant of the above-

mentioned general rule. Rather inexactly expressed, this theorem of semi-

detailed balance means that we can re-establish the detailed balance by

averaging over the spin directions of particles. Since spin is a minus

variable, it is natural that a chaos hypothesis is necessitated with re-

gard to this variable. Although this theorem is particularly convenient

for considerations in the perturbation theory, its domain of validity

should not be over-estimated. In order to apply this theorem, we have

to describe the particles only by plane waves and to describe the elec-

tromagnetic field, not by the field strengths, but by its sources. Other-

wise, we need further averaging or chaos hypotheses regarding other vari-

ables of minus class. On the other hand, it is also not a general rule

4. S. Watanabe, Sci.Pap.Inst.Phys.Chem.Res. (Tokyo) 39, 157 (194$; S.

Watanabe, Phys.Rev. 84, 1008 (1951).

5. W.Heitler, loc.cit. ;W.Heitler, lecture notes, Ecole d'Ete de Physique

The'orique, 1952; F.Coester, Phys.Rev. 84, 1259 (1951).
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that each time the particles have an "internal" freedom, averaging or

chaos hypothesis is needed regarding this freedom.

Boltzmann already noticed that even if the detailed balance does

not hold, or in a rough usage of words, if the system in state Sj_ does

not return to S^ after a double transition: Sj_-> S .-* S. , there will be

a chain of transitions: S. -*• S .
-* Sv

—> . . . -*S. by which the system
i j K i

will come back to the original state. This "cyclic balance", or "closed

cycle of corresponding collisions" as Tolman calls it, can be considered

2
as a generalization of detailed balance. St'uckelberg pointed out, with-

out proof, that the mechanism of his H-theorem is connected with cyclic

7
balance. It is obvious that cyclic balance is a manifestation of the

ergodic nature of physical phenomena.

In the last section of this paper, we shall give a simplified version

of the ergodic theorem, using only the hypothesis of bilateral normaliza-

tion of transition probabilities. This will provide a general (though

schematized) basis for the theorem of cyclic balance, without referring

to collision processes.

This simplified ergodic theorem cannot directly be applied to the

actual physical problems, on account of various simplifying conditions,

which will be explained at an appropriate place. For instance, the num-

ber of states is assumed to be finite, which is not permissible for the

6. R.C. Tolman, The Principles of Statistical Mechanics (Oxford Univer-

sity Press, London, 1938) p. 11A.

7. The author is indebted to Prof W. Pauli who in a private communica-

tion emphasized this point. —
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applications in classical physics. We ignore also the important notion

of "macroscopic cell" on the energy shell. But on the the other hand,

our ergodic theorem has the advantages not only of being very simple and

mathematically rigorous, but also of exhibiting all the essential assump-

tions necessary for the deduction of the ergodic nature of transition

probabilities. In particular, it will be shown that, the simplifying con-

ditions being admitted, the bilateral normalization is the necessary and

sufficient condition for the "ergodicity." The term ergodicity will be

defined in accordance with the general ergodic theorem in physics. If

reversibility or inversibility is taken as the foundation of the bilateral

normalization, we can attribute ergodicity to the reversibility or in-

versibility of the physical laws. As in other versions of the H-theorem

and the ergodic theorem in quantum physics, here also, the non-commuta-

bility of the Hamiltonian with the operators defining the states plays

an essential role.

It is intended in the second Part to examine reversibility, reflecti-

bility (symmetry in space) and inversibility of quantum field theory, and

to discuss their bearings on the interaction types and other allied prob-

lems. In this Part-, these symmetry properties are formally defined and

8. As far as reversibility is concerned, the subject is fairly fully

covered in the second paper quoted under footnote 4. See also the

earlier works on this subject:.. ..E.P.Wigner, GSttinger wachr. 546

^1932); S.Watanabe, Le Deuxieme Theoreme de la Thermodynamique et la

Mlcanique Ondulatoire (Hermann et Cie, Paris, 1935); S.Watanabe, Sci.

Pap. Inst.Phys.Chem.Research (Tokyo) 31, 109 (1937).
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assumed to exist when necessary. The classification of physical quantities

into four "kinds" is explained in this paper in a fashion which may seem

unduly elaborate. ut this will prove to be instrumental not only for

the discussion of the principle of semi-detailed balance but also for

the discussion of reversibility, reflect ibility and inversibility in

general.
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#2. "Kinds" and "Classes" of Tensors

In this section, we shall give the mathematical definitions of the

four "kinds" and two "classes" of tensors. In the next section, we shall

first introduce a formal method to determine the kinds of tensors repre-

senting various physical quantities, and then clarify the physical im-

plication of this determination.

We consider the entire group of congruent transformations of co-

ordinates :

x'r«off»x", (/*,*> =»,*, 3, O
( 2#1)

which leave invariant

xA X? = y. v x^x" = ex' >» U»% CxV - U°)\ (2 . 2)

It is essential in the investigations involving inversions to use only

the real coordinates, lest the connectivity of the Minkowski space may

be altered.

of the "regular" kind are defined by the trans-

formation rule:

t''"" -ftf rfa^ .-t**" , (regular) (2.3)

which we write for simplicity as

t' « Tt .

t

(regular) (2.4)

The pseudo-tensors t/ of the first, second and third kinds are

defined respectively by

t» » erTtj (1st kind) (2.5)

t« =6"tT t, (2nd kind) (2.6)

and t'c6"
5 Tt, (3rd kind) (2.7)
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where * <r <r - a <*", *". ^ ^
' * »U' , X*, X>, X') >

^2.8)

(2.9)

(2.10)

The usual definition of ordinary tensors includes regular and second

kinds, and that of pseudo-tensors includes first and third kinds, since

only the "orthochronous" transformations are considered in their defini-

tion.

It is obvious from the above definition that the kind to which a pro-

duct (with or without contraction) of two tensors belongs is determined

by the following rules: (a) The product of two tensors of the same kind

is a regular tensor, (b) The product of a regular tensor and a pseudo-

tensor of a given kind belongs to the last-named kind, (c) The product

of two pseudo-tensors of different kinds is a pseudo-tensor whose kind

is different from either one of the two factors. (Table I). These rules

are symmetrical rega'rding three tensors involved in the operation of

multiplicat ion.

L
reg. 1 2 3

reg. reg. 1 2 3

1 1 reg. 3 2

2 2 3 reg. 1

3 3 2 1 reg.

Table I. The kind to which a product of two tensors belongs.
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The antisymmetric* tensor f/*"" of the rank n which is "comple-

mentary" to an antisymmetric* tensor t^"' of the rank (4—n) is defined

by r = 0/2«0 er „ K>t
/AVKA

(2.11)

^=(1/6) ^k> t/**
^

(2.12)

rr .o/O */*»<» t
KX

,
^2.13)

fy^K* = €^v>XX t 3
(2.15)

where the tensor € is completely antisymmetric, and its component

6«i/kx (=-6^**) is +1 or -1 in any coordinate system, according

as (m,V, K, >.) is an even or odd permutation of (1,2,3,0). To satisfy

this definition, 6 must be a pseudo-tensor of the fourth rank of the

first kind.

q
This complementary relation is reciprocal with regard to T and t.

The kinds of T , t and € st kind) are related by the product rule.

Thus, the second line of Table I will give the kind of T as dependent

on the kind of t,. '^he scalar defined by (2.11) as complementary to €

itself is a regular scalar and has the value -1 in any coordinate system.

This tunKx should not be confused with a regular tensor n^**x which is

+ 1 or -1 according as (u,u>,*,\) is an even or odd permutation of

(1,2,3,0) in a particular coordinate system. Such a tensor changes the

signs of its components by a transformation with (T=. -1. the comple-

mentary scalar to Y) is then a pseudo-scalar of the first kind.

9. However, a little caution must be taken regarding the sign. For in-

stance, r'
2"- t

36 but t^--rJ
°, also r=t

,a3 ° but t = -^according to the

above definition.

*. The modifier "antisymmetric" applies of course only to ranks higher than one,
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If a physical quantity is to be expressed as a tensor component, we

have to determine ^a) the rank of the tensor, (b) the component which

represents it and (c) the kind of the tensor. We assume in this work

that (a) and (b) are already determined by the Lorentz transofmrmat ions

in the narrow sense, except for the ambiguity due to the possible comple-

mentary representation.

To determine the kind of a tensor, it is sufficient to examine its

behavior for time-reversal (hereinafter reversion):

x', x1^5 -* x', x\ x3
; x° -* -V

,

(2.16)

and its behavior for total space-reflection (hereinafter mirage):

X', x\ X2 -* - x, -xL
,
-**

; X° -* X°

.

(2.17)

For reversion or mirage, a component Q of any tensor will retain or

change its sign, but its absolute value remains unchanged. We write for

reversion

Q'=?r^
, f*=+t or rl , (2.18)

and for mirage

Q'. ?M Q , ?« = + l "
- l -

(2.19)

The four possible combinations of the values of ^ R and C*M will lead

to the classification into four kinds.

According to the definition of the four kinds of tensors, 9r and S M

are directly determined by the kind of the tensor and by the nature of

the component in consideration. Table II and Table III list P* and ^m

for various components up to the second rank. In the designation of the

nature of components in these tables, "space" means A>«1,2,3 and "time"

means A* - 0.
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rank component reg. 1st 2nd 3rd

scalar + — — +
vector space f —

.

— 4-

time — + i —

tensor
2nd
rank

space-space
time-time 4 —>' — +

space-time — + +. —
I

Table II. The sign of P^ for various components as dependent on the

kind.

rank component reg. 1st 2nd 3rd

scalar * — + —

vector space — + — 4-

time + _, + —
tensor

2nd
rank

space-space
time-time + — + —

space-time — t *
1

i"

Table III. ^he sign of P M for various components as dependent on
the kind.

For the combination of reversion and mirage (hereinafter total in-

version or inversion):

X',X\ x\x° -+ -X', -X\ -x\ -x° (2.20)

we have <

R
/ = Pi Q.

with °
L

- p^o
M ^

v 2.21)

(2.22)

For total inversion, the transformation matrix T of (2.4) through (2.7)

becomes simply
T<= +L or -I

(2.23)
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according as the rank of the tensor is even or odd. I in (2.23) means

the identity matrix. The <T 's are here

C = + I

/
0Tt « -I , (5-s = -l. (2.24)

Definitions (2.4) through (2.7) show that the coefficient Pj is then

simply the product of T ^2.23) and one of the 0" 's ^2.24). Thus we

obtain a simple rule for Pj- , which depends only on the rank and the kind

of the tensor: Pj is positive for regular tensors and first kind pseudo-

tensors of even ranks and for second and third kind pseudo-tensors of odd

ranks. P is negative for regular tensors and first kind pseudo-tensors

of odd ranks and for second and third kind pseudo-tensors of even ranks.

All the quantities of the former group will form the "plus class", and

all the quantities of the latter group the "minus class."

rank 1 reg. 1st 2nd 3rd

even 1 -+ + — - 1

odd
J

- " + +

Table IV. The class of a tensor determined by its rank and kind.

-14-





#3. Determination of the Kinds of Physical Quantities

*t is a basic assumption of this entire work that any physical quantity

can be represented as a component of a tensor of a certain kind. We are

now going to introduce a set of formal prescriptions by which the kinds

of various physical quantities can be determined according to the defini-

tion of each quantity. Admittedly, "definitions" of physical quantities

and "physical laws" involving those quantities are hardly separable in

many cases. As a result, one may raise an objection to the "proof" of

reversibility etc. to the effect that the kinds of the physical quantities

are determined in such a way that the reversibility, etc. may hold auto-

matically. The point is however that the same physical quantities appear

in various physical laws, and that it is meaningful to verify that there

is no internal contradictions among these laws. In the following, we

shall use as elementary a definition as possible of each physical quantity

to determine its kind. The basic rules serving this purpose are as fol-

lows:

(a.) he attributes of elementary particles, i.e., rest-mass, elec-

tric charge, mesic charge, mangitude of spin, are regular scalars.

(b) The proper-time differential ds is a pseudo-scalar of the

second kind.

Rule (b) means that the sign of ds is determined by the sign of the time

differential dt. Besides these rules, we notice that the transformations
oo

(2.16) and (2.17) do not change the sign of the operation (Tfotx 1
elx

1 d*3

-OO
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This means that, as far as the sings £r anc* ?M are concerned, a physi-

cal quantity and its density behave in the same manner.

To begin with, we note that four-velocity d^/ds is a 2nd kind pseudo-

vector, since dx* is a regular vector while ds is a 2nd kind pseudo-

scalar. By the regular invariance of intrinsic mass, the momentum of a

particle mdX /ds becomes then a second kind pseudo-vector. This war-

rants the positive-definite definition of energy, since j>n = fw = 1

for the time component of a 2nd kind vector. Force tuckX'/aS rnust be a

regular vector, for dx'* is a regular vector and ds stands here sqaured.

The fact that the total charge of an elementary particle is a regular

scalar necessitates that the current-density vector should be a 2nd kind

pseudo-vector, since the 2nd kind is the only kind of vectors whose time

components (charge-density in this case) have ^R~fM~ 1* The orbital

angular momentum, being the product of a position-vector (regular) and a

momentum-vector (2nd kind), should be represented by the space-space com-

ponents of a 2nd kind pseudo-tensor. From Tables II and III, we see that

the space-apace components of a 2nd kind pseudo-tensor has the same values

of Q^ and ^m as the space component of a 1st kind pseudo-vector. This

suggests that the spin-density of a particle, if expressed as a vector,

should belong to the 1st kind. The magnetic moment density can be pic-

tured as the product of charge (regular) and angular momentum (2nd kind);

hence it must be represented as the space-space components of a 2nd kind

pseudo-tensor. -Lf it is represented as space-time components of a tensor,
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this tensor must belong to the 3rd kind in virtue of the theorem of comple-

mentary tensors. By the definition of the electric field as the force

on a charge, the £* and £* °^ the electric field must be the same as

those of the space components of a regular vector which is force. Thus,

we see from Tables II and III that electric field, if represented as the

space-time components of a tensor, must belong to the 2nd kind.. If we

know from the Lorentz transformation in the narrower sense that electric

field and magnetic field build a tensor, the magnetic field should then

be represented as space-space components of a 2nd kind tensor. An al-

ternative representation of the electromagnetic field is, in virtue of the

theorem of complementary tensors, such that the electric field and the mag-

netic field are respectively represented as space-space components and

space-time components of a 3rd kind pseudo-tensor. If the magnetic pole

strength is defined as the ratio of the force to the magnetic field, it

must behave like a first kind scalar, since we have ^— 1 and fys -1

for force and PR
-= -1 and PM «= 1 for magnetic field.

The kind to which energy-momentum density tensor belongs can be de-

termined by the requirment that its space-time components and time-time

'component should behave like the momentum-energy vector which is a 2nd

kind vector. This classifies the energy-momentum density tensor as a

regular tensor. From the relation between the energy-momentum density

tensor and the Lagrangian density, it follows that the latter has to be-

have like the diagonal elements of the former. In other words it is a regu-

lar scalar.
-17-





The ranks and kinds of various physical quantities being thus deter-

mined, their classes follow immediately from the rule which is tabulated

in Table IV. All these results together with some results which can easily

be inferred are listed in Table V.

rank kind class quantities

scalar reg.

+
intrinsic mass, electric charge,
mesic charge, magnitude of spin,

Lagrangian

1st 4- magnetic pole strength

vector reg. — position-time, force

1st *~ spin riensLty

2nd f- four-velocity, momentum-energy,
current-charge density, electro-
magnetic potentials, linear polari-
zation of photon

tensor

•

reg.
-f energy-momentum density

2nd angular momentum (space-space),
electric field (space-time), mag-
netic field (space-space), elec-
tric moment density (space-time),
magnetic moment density (space-
space), circular polarization of
photon (space-space)

3rd All the quantities listed under
2nd class pseudo-tensor become
3rd class pseudo-tensors by the
interchange of space-space com-
ponents and space-time components

Table V. Classification of various quantities into kinds and classes.
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The determination of the kinds to which belong various "internal"

variables (i.e., other than position-time and energy-momentum) of a spinor

field requires a further discussion in quantum field theory, which will

be given in Part II. Only some of the results will be given here. ?R

of these quantities have already been determined in a previous paper.

fM of these quantities can be shown to be the same as in the c-number

theory as determined by the transformation properties of spinors. Table

VI lists the classification of these quantities, assuming that the two

spinors appearing in each expression belong to the same transformation

10
rule for reversion and mirage, i.e., to the same "kind" of spinors.

'
c-number theory q-number theory

kind class kind class

4+4, 2nd — reg. +

L^Mf 2nd + 2nd +

l+%ft+ 2nd — 2nd —

ifM 3rd — 1st +

l^fcfrt 3rd + 1st —

Vtwtrfrf 3rd — 3rd —

Table VI. The kinds and classes of various tensorial quantities built
with two spinors of the same kind. The results for two
spinors of different kinds can easily be inferred from ,^
this table using the definition of the four kinds of spinors

10. The second paper quoted under footnote 4. These topics will be discussed
in detail in Part II

•
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The kind of the pi-meson field is the same as the kind of its source,

since the differentiation operator, if involved, is a regular vector. If

the spinors representing the nucleons before and after the emission or

absorption of a pi-meson are of the same kind, then the above table (under

q-number theory) will give immediately the kind of the pi-meson field?

An inspection of Table VI will tell that a combination of scalar and vec-

tor types of interaction and a combination of pseudo-vector and pseudo-

tensor types of interaction are not allowed. This "exclusion rule" of

combination arises not from mirage but from reversion due to the change

of Q R in q-number theory. This change of fi is exactly what is

10
required to give to these quantities their respective physical meanings.

(See for instance that spin I*! fro/*T becomes a 1st kind vector).

We now proceed to introduce the notions of "reversed state", "mir-

aged state" and "inverted state." The determination of kinds of the

physical quantities given above is based essentially on a comparison of

the two descriptions of the same physical phenomenon referring to two

different coordinate systems related to each other by (2.16) or (2.17).

The physical insight into the meahings of kinds can be obtained more easily

by an alternative interpretation of the transformation (2.16) or (2.17),

namely by considering two phenomena connected by this transformation des-

cribed by the same coordinate system.

11. This exclusion rule of combinations holds also when the nucleons be-

fore and after the pi-emission (absorption) belong to different

kinds of spinors. See also G. Lilders, ZS. f. Phys. 133 , 325 (1952).

* This is true for neutral pi-mesons, the situation is slightly more

complicated for charged pi-mesons. See Part II.
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Two phenomena are said to be reversed phenomena of each other if, by

suitably choosing the coordinate origin all the space coordinates involved

in one phenomenon at any instant t =. x* become the same as those involved

in the other phenomenon at -t. *t is hereby understood that the corres-

ponding coordinates refer to the same physical entities, say the particles

of the same attributes. The two states of the physical system, one refer-

ring to a phenomenon at t , the other referring to its reversed phe-

nomenon at -t , are said to he reversed states of each other.

From this definition follows that in two mutually reversed states,

the same particles have the same positions but the opposite velocities.

This entails that the current in the reversed state should have the op-

posite sign, resulting in the opposite sign of magnetic field, etc. The

rest of the argument then follows the same pattern as in the preceding

determination of kinds of tensors. We can confirm in this manner that

the invariance or change of the signs of the physical quantities in the

reversed state is exactly the same as ^ determined in the foregoing.

The reversed state So of a state S can now be re-defined as a state

in which all the physical quantities with
pR

= 1 have the same values as

in 3 and all the quantities with PR= -1 have the same absolute values but

with the opposite signs.

Two phenomena are said to be miraged phenomena of each other if, by

a suitable choice of the coordinate origin, all the space coordinates

involved in one phenomenon at t are the negative of all the coordinates

involved in the other phenomenon at the same instant t , whereby these

-21-





coordinates are supposed to refer to the same physical entities, '^he

states of the physical system in such two phenomena at the same instant

are said to be the miraged states of each other.

Comparing the consequences of this definition of the miraged states

with the preceding determination of the kinds of tensors, we can re-de-

fine the miraged state 5 M of a state 5 as a state in which all the

physical quantities with Pm = 1 have the. same values as in $ and all

the physical quantities with PM =. -1 have the same absolute values but

with the opposite signs.

Two phenomena are said to be totally inverted phenomena of each

other if, with a suitable coice of the space-time origin, all the space -

coordinates involved in one phenomenon at t are the negative of the cor-

responding space-coordinates involved in the other phenomenon at -t •

The two states compared here are totally inverted states of each other.

The totally inverted state S^ of a state S can be defined as a state in

which all the physical quantities with P^= 1 have the same values as in *5

and all the physical quantities with Pt — -1 have the same absolute

values but with the opposite signs.
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#4. Reversibility, Reflectibility and Inversibility

Every closed system of physical laws must include a time-dependent

law from which predictive statements can be deduced. Thus such a theo-

retical system should be capable of answering questions of the following

type: What is the probability P(S -> S'; t) of finding a physical system

in state S' at the end of a period of time t if the system was found

in state S at the beginning of this period? Such a probability will be

simply called transition probability from S to S'

.

If the description of the system by states S and S' is maximal,

i.e., as detailed as allowed in principle, the prediction may be called

a microscopic or dynamical prediction, while in other cases it is only

statistical. If the transition probability refers to a "statistical"

prediction, we shall use the symbol V instead of P. We shall deal

only with the dynamical probability P in this section. In classical

physics, P is either 1 or 0, while in quantum physics we have only

< P< 1 .

In classical physics, a state is maximally defined if the values

of all the independent physical quantities are furnished, ^n quantum

physics, by a maximally defined state is meant a "pure state", or a quani

turn state, in contrast to a "mixture" (Gibbs ensemble or density matrix).

Such a pure state may be considered as an eigenstate of a set of mutually

commuting operators, representing a group of physical quantities, although

in some cases these operators may be quite complicated.

* According to this usage of words, the ordinary transition probability in

quantum physics from one quantum state to another should be qualified as

microscopical or dynamical and not statistical. The "statistical" transition

probability in quantum physics then refers to a transition of a system known

to be in a Hilbert aubspace to another Hilbert subspace, where the dimensions

of subspaces are more than one.
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Covariance for reversion, or reversibility, means that a process and

its reversed process have the same probability, i.e., the transition

probability from S to S' during t is equal to the transition proba-

bility from the reversed state S R
' of S 1 to the reversed state S R of

S during time t. Symbolically:

P(S -» S« ; t) - P(SR ->S^ ; t). (4.1)

If a state S is characterized by the values Q of physical quanti-

ties, S R is characterized by PR Q. We write for brevity

S ={Q} , S R ={?*Qi , S'={QT

}, SjJ^Q'J (4.2)

Covariance for mirage, or reflectibility, then means, in a similar

symbolism,

P(S->S» ;t)zP(S'M ^S M ; t) (4.3)

withS-{Qj, S M *{?„Qi , S'slQ'j, S M
'

*{yM Q'} (4.4)

Finally, convariance for total inversion, or inversibility, means

P(S -» S' ; t) « P(S«
I
-^ S

x j t) (4.5)

with S =,{Qj , S
1 ={j>l Q}, S'^Q 1

}, S«t ={ft Q'} . (4.6)

There is a simple theorem which follows directly from this definition,

on account of (2.22).

Theorem: If a physical system obeying a certain set of physical laws

has any two of the three kinds of convariance, reversibility,

reflectibility and inversibility, then it has also the

third one.

For instance, suppose that a system enjoys reversibility and in-

versibility. First by reversibility, we have
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P( { Qj ->{Q'} ; t ) - P( \<} K Q'J -{fr*} j t), (4.7)

and second by inversibility

P( {j^Q'l - {fK Q\ ; O -*({frJR Q) ^frQ'} J t). (4.8)

Combining these two we obtain (4.3) > for

t should, however, be noted that it is quite possible that a physi-

cal system possesses only one of the three kinds of covariance. Physical

systems which obey reflectibility but not reversibility (hence not in-

versibility) are familiar to us. Husimi, in a private communication,

pointed out a rather peculiar mechanical example which has inversibility

but not reversibility. Such a case is also quite conceivable.

t may also very well happen that a physical system does not obey

(4.1) and (4.3) with the right signs of P* and P^ but does obey them

with wrong signs of PR and P M for some of the quantities, leading however

to the right signs of Px ~9k%- This statement is true for any permu-

tation of o
R f

o^ and P^ .

in classical physics, all the physical laws are written in terms of

tensorial components. Therefore, if the physical quantities appearing in an

equation belongs to the same kind, reversibility and reflectibility (hence

also inversibility) are automatically guaranteed, since the existence

of a solution representing a process will imply the existence of another

solution representing the reversed or miraged process. As this situation

is well-known, we shall limit ourselves to some remarks of general nature.

The mechanical laws are covariant for both reversion and mirage as
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far as the force rnofx^/ds* is equated to a regular vector. The space

components should then have f R
= + 1, J^

= -1. '''he frictional force,

say -k[V/lVl)V z (Newtonian) has ^ M « -1 but J R
- _i, thus it

satisfies reflectibility but not reversibility. The Lorentz force

e((E + [v* W)J ) however, has the right signs. The Maxwellian equations

are covariant for both reversion and mirage, since the electromagnetic

field tensor and its source, the current vector, belong both to the second

kind. (See Table V.) In contrast to this, Ohm's law, % — 6" Q3 is not

covariant for reversion: the left side has fK = -1, fn
- -1 while the

right side has
J
^- + 1, © M = -1. (See Tables II, III, V).

In quantum physics, the physical laws are not written in tansorial

expressions. Therefore we have to examine whether we can construct the

whole theory in such a way that the expectation values (including eigen-

values) of all the relevant physical quantities behave for reversion and

miarage as their respective kinds will dictate. The kinds of the physi-

cal quantities which have classical analogues can easily be determined

by the classical physics. The purely quantum mechanical quantities such

as spin, magnetic moment, etc., can also be determined by their rela-

tions to known classical quantities. For instance, from the conservation

law of total angular momentum, we have to assume the same 9 & and °^ for

spin as for orbital angular momentum. This is what has been done in #3.

The question as to whether quantum physics in its entirety can be formu-

lated in a covariant way for reversion and mirage will be studied in Part II.
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In the remainder ©f this paper it is assumed that the physical laws

governing the physical systems under consideration obey reversibility,

reflectibility and inversibility. This assumption may be considered to

be warranted as far as atomistic laws are concerned. In particular, it

is understood that these covariance properties exist independently of how

the states S and S' are defined, in so far as they are maximally

defined.
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#5» Detailed Balance, Semi-Detailed Balance and Averaged Balance

The theorem of detailed balance, literally taken, would mean

P(S -*S« j t) - P(S' -* S ; t). (5.1)

This type of theorem, however, holds only in the first order perturbation

theorem in quantum theory and is of course not of a general validity.

The so-called theorem of detailed balance in classical physics by

no means claims (5.l)> which is a dynamical or microscopic law, but it

represents a statistical law in which the state of a system is charac-

terized by a distribution function in "velocities (or momenta). It may

be written, to exploit the distinction between P and W, as

W(S -*S> ;t)s W(S» ^S|t) (5.2)

where S is defined only by a certain distribution in velocities. This

theorem is based essentially on an interesting fact that, as far as the

linear momentum and energy of particles are concerned, a state and its

totally inverted state are identical, since f i
— 1 f«r all "the four

components of momentum-energy vectors which are pseudo-vectors of the

second kind. (See Table IV).

This indicates that the basic fact underlying the theorem of detailed

balance is the theorem of total inversibilityr

P(S-*S» ; t) =P(S«
1

-> S
x

; t), (5.3)

which means that the (dynamical) transition probability from state S to

state S 1 is equal to the (dynamical) transition probability from the

inverted state Sj of S* to the inverted state S, of S, whereby the
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inverted state is constructed from the original state by keeping the values

of all the quantities of the "plus" class and changing the signs of all

the quantities of the "minus" class. See Table V. It should be noted

that since the position is a minus quantity, comparison must be made be-

tween a quantity at x in S and the same quantity at -x in Sj . For

instance the electric field (a minus quantity) at x in S must be equal

in magnitude and opposite to the electric field at -x in Sj . This is

in agreement with the situation created by the source point of this elec-

tric field placed at x in S and the same source point placed at

-X in Sj .

If we now disregard the electromagnetic field strengths and do not

use the notion "force" and consider only particles without spin, then the

only difference between a state and its inverted state lies in position

coordinates and angular momenta. (Table V). This means that positions

should be miraged, the change in sign of angular momentum ensuing auto-

matically from this. This mirage of coordinates (x -*• - x) involves not

only the mirage of positions of particles but also the mirage of shapes

of particles and mirage of the boundary.

It is now clear that, if the molecules are spherical (or points) and

spinless and the boundary is symmetrical with regard to mirage, then the

classical theorem of detailed balance (5.2) can be deduced, without dis-

cussion of collision processes, simply by the assumption that the distri-

bution function is independent of position. This exposes that the classi-

cal theorem of detailed balance is based on the "chaos" hypothesis with
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regard to the positions of molecules. (Chaos in angular momenta is a

result of the chaos in positions).

If the molecules are not spherical and/or the boundary is not mirage-

invariant, the chaos hypothesis regarding positions does not guarantee

(5.2), since we still have miraged molecules and the miraged boundary in

the inverted state. If the particles have at least one plane of sym-

metry, the miraged shapes of the particles can be reached by some rota-

tions. If the boundary has at least one plane of symmetry, the miraged

boundary can be considered as a rotated position of the same boundary.

In this case, we can further introduce a chaos hypothesis with regard to

the orientations of the molecules. This will secure a type of relation

(5.2), but the right hand side will still refer to the rotated position

of the boundary. Only if the boundary has a symmetry with regard to mir-

age, we can have the classical theorem of detailed balance on assumption

of two kinds of chaos, one regarding positions, the other regarding the

orinetations of molecules. This situation explains why the usual illus-

trations of breakdown of the theorem of detailed balance concerns either

12 13
non-spherical molecules or some irregular boundary. The first cate-

gories of cases of breakdown can be remedied by the assumption of chaos

12. R.C.Tolman's textbook (quoted under footnote 6). p. 119. Heitler's

lecture note (quoted under footnote 5). J.M.Blatt and V.F.Weiskopf

,

Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952)p. 530.

13. E.H.Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 193S)p.57
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with regard to the orientations of molecules if they have at least one

plane of symmetry. It is possible that this hypothesis should be suf-

ficient even if the molecules do not have a plane of symmetry, but in

such a case we shall have to discuss the collision process more in de-

tail. In case of a boundary which does not have a mirage-invariant shape

we had better resort to a long-range balance, or cyclic balance, which

we shall touch upon in the last section.

The above derivation of the classical theorem of detailed balance

suggests an immediate generalization. We can always establish a statisti-

cal balance of type (5.2), by assuming as many chaos hypotheses as we

need quantities of minus class to describe the state. This general rule

will be called "principle of averaged balance."

In classical physics as well as in quantum physics, we can limit the

number of necessary minus quantities to a certain degree by suitably choos-

ing the employed variables. For instance, we can use the electro-mag-

netic potentials (plus quantities) instead of electro-magnetic field

strengths (minus quantities), or even describing the electromagnetic

field only by its source. In more elementary examples, "force" can be

replaced by "potential."

In quantum physics, there is further a simplifying situation due to

the existence of non-commuting quantities. If we characterize particles

by their momenta (plus), we have to disregard their positions (minus) and

angular momenta (minus). Hence, for the quantum mechanics of spinless

partilces, we have even the detailed balance in the strictest sense (5.1)

* We should keep in mind that in some cases the chaos hypothesis regarding one

variable automatically entails the chaos hypothesis regarding another variable.

For instance, the chaos regarding position will result in chaos regarding aa gular

momentum. The same is true for spin and magnetic moment.
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if we adopt the plane-wave description, provided of course that the total

Harailtonian satisfies inversibility.

In case of the particleswith spin, we can derive the statistical

balance ($.2) only by one chaos hypothesis regarding spin. This can be

done by describing the electromagnetic field by its sources and describ-

ing these charged particles by linear momenta. From Table V, we see that

the remaining physical quantities of minus class are only spin and elec-

tromagnetic moments. Therefore, averaging over spin directions will

yield the averaged balance (5.2). This is what is called the principle

5
of semi-detailed balance by Heitler, which is a special case of our princi-

ple of averaged balance

.

The theorem of semi-detailed balance is obviously very convenient

when applied to the usual perturbation theory in which plane waves are

taken as unperturbed states, i.e., eigen-states of the non-interacting

Hamiltonian. Moreover, the spin l^Y$Tf«H[ (a s 1, 2, 3) in the direction

of propagation of the plane wave and the magnetic moment l^ftJVK 4**3 - 1>2,3)

in a direction perpendicular to this direction of propagation commute

with the non-interacting Harailtonian in the Dirac theory as well as with

the momentum operator. Therefore the characterization of a state by the

momentum and one of these "internal" variables is suitable for discussions

in the perturbation theory. But this is only one of the possible modes

of description. For instance, the total angular momentum, which is a

minus variable, is also a constant of motion of the non-interacting

Hamiltonian. It should also be noted 'that the inverted state of a diverg-
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ing wave is a converging wave, therefore it is also outside the scope of

this theorem.

Furthermore, there is no reason to limit the initial and final states

to the eigenstates of the non-interacting Hamiltonian. If, for instance,

the probability of existence of particles is more or less localized (wave-

packet), position variables (minus) will intervene in the description of

state, thus we shall need again a hypothesis of chaos regarding these

"external" variables. On the other hand, we could avoid internal vari-

ables of the minus group by using, for instance, the spin-orbit interac-

tion energy instead of spin (or magnetic moment) itself. Indeed, if we

consider two charged particles in interaction, the magnetic moment is

reversed in the inverted state, but the magnetic field strength due to the

other particle also changes its sign in the inverted state at the point,

so that the magnetic interaction will remain unchanged. Of course, this

description involves more or less localized particles, as a result of

which we shall have to pay for this simplification by the use of a chaos

hypothesis regarding "external" variables. Thus we are faced with a kind

of complementarity; to avoid one kind of chaos, we have to introduce

another kind of chaos. It should also be recalled that there are also

internal variables of the plus group. Table VI.

We thus see that we have to be very cautious in application of Heit-

ler-Coester's principle of semi-detailed balance. A general rule, which

does not fail, is that we should first determine the classes (plus or

minus) of all the variables used in the description of the system, and
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that, if we want to use a theorem of type (5.2), we should assume chaos

hypotheses for all the minus class variables (principle of averaged bal-

ance). We encounter sometimes in the existing literature, statements to

the effect that every time particles have an internal freedom, we have

to perform an averaging with regard to this freedom. But, the coinci-

dence of external and internal variables with plus and minus variables in

the case of Heitler-Coester' s theorem is only accidental.

We have used the word averaging or chaos in the above exposition

without clearly defining its meaning, which we now should like to do.

We. take a mixture M^ of state S and its inverted state Sj with equal

weights. Then the average probability (average over S and Sj ) of transi-

tion of a system in this mixture to S' or S' is given by

^.i =^{P(S->S')+?(S*Si)-vP( (Sr -$Oi-PCS l -SI
/

)} (5#4)

This probability is, due to inversibility (5.3)> equal to the average

transition probability of a system in a mixture M 2 of S' and S' with

equal weights to S or Sj

:

K.-iVP (*'-»*) +i($'*Si> tPt5i-»s)+P(st'-sI )} BV7j
_ (5>5)

This is the exact meaning of (5.2).

It should not be understood that this general consideration provides

any kind of justification for the chaos hypothesis (equal weight of a

state and its inverted state). In fact, if a system in mixture M t had the

same average transition probability to S 1 and to SJ , i.e., if

i {.Pises'; +2 tsj^o] =i{pcs*s;)tp( Sl ^)j (5 ;6)
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were true, then a "chaos" would remain a "chaos" after transition. But

(5.6) is by no means guaranteed by inversibility. One general way of

justifying the chaos hypothesis is to take a mixture of all the possible

states with equal weight, then we can expect that a system in this general

mixture has an equal average transition probability to S' and to S' .

In this case, the equal weight of a state and its inverted state holds as

well before as after transition. This property implies that 2pL: = 2»£ik
I

J U

where S. and Si, are inverted states of each other. And this condi-
3

K

tion is guaranteed by the inverse normalization, which is always true

whenever there is inversibility or reversibility, as we shall see in the

next section.

As far as the theorem of averaged balance is concerned, averaging is

supposed to be
>

made over each pair of states S and S- , or {Q.} and
\f]ty #

But in case of space-coordinates, pairing cf j^ and -;& with regard to

a particular coordinate system does not have an invariant meaning for

translation, therefore averaging over all the values of coordinates is

usually required.

Our derivation of the theorem of averaged balance using inversi-

bility shows that we can also introduce a second theorem of averaged

balance by considering reversed states instead of inverted states. Thus,

we can obtain a type of relation (5.2) by averaging, or introducing chaos

hypotheses, with regard to all the variables involved which have £p~H

(instead of Pj = -l).
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#6. Bilateral Normalization of Transition Probabilities

We shall first consider the condition of bilateral normalization of

microscopic transition probabilities P, and second consider the same

condition with regard to statistical transition probabilities W.

For a given maximally defined state S, we think of a . series of

maximally defined states S.(i =1,2,3, ...) such that S is one of them,

say, S^. Let us take the physical system in any condition, and repre-

sent the probability of finding it in state S. by p. . If

Z Pi -I (6.1)

we speak of a "complete" set of states. While in quantum physics there

are more than one such set, in classical physics there is one and only

complete set. In classical physics, the number of possible values of i

are usually continuously infinite, and even multi-dimensional, and p^

will be a kind of S" -function in these variables. Thus (6.1) should be

understood as a schematic simplification of the situation.

Take two such complete sets (which may be the same or different) of

states S. and S. and consider the transition probability:

P(S
±
-* S 5t) (6.2)

Then, the definition of P (#4) results, in virtue of (6.1), in the nor-

malizatin regarding the final states:

L P(S
±

-* S.;)= 1 (6.3)
J

J

However, the normalization with regard to the initial states:

g P(S
±

-» S.;t)= 1 (6.4)

is net guaranteed by the definition. We shall see that if the physical
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system obeys reversibility or inversibility, the inverse normalization

(6.4) follows from the first normalization (6.3). In the discussion which

immediately follows, we shall only speak of reversibility, but the word

"inversibility" can always be substituted for the word "reversibility."

The basis of the demonstration is the fact that if S belongs to a

complete set S-, its reversed state S* also belongs to set S.. Due

to reversibility, if S -*S' is a solution of the dynamical law, S R
' > S^

is also a solution, implying that if S is a possible state, S R is also

a possible state. In classical physics, there is one and only complete

set of states, therefore, this means that if S is a member of the set,

S^ is also its member.

In quantum physics, a pure state S at {Ql can be considered as an

eigen-state of a family of Hermitian operators which, though complicated

at times they may be, represent some physical quantities belonging to one

or other of the four kinds,. Therefore, each of them has a definite sign

of Pr . If the reversed state is a possible state (which is the case

here), this stale must also be an eigen-state of this family of physical

quantities, for it is characterized by -jf*Ql of the same physical quan-

tities. Hence Sr belongs to the same complete set as S. We can thus

conclude that a complete set of states is composed of self-reversed states

and pairs of mutually reversed states.

This being the case, the summation over all the S-'s and the sum-

mation over all the S-j^ ' s must mean the same operation. First by re-

versibility,
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? P(S
±
-» S^t) = 2 P(SjR -»> SiR jt) (6.5)

and, due to the above remark,

= ?P(SjR -* S
i5

t), (6.6)

which is on account ©f the first normalization condition (6.3) equal to

unity. Hence (6.4). Q.E.D.

It is true that the physical meaning underlying the unitarity of

transformation matrices in quantum physics is connected with the "com-

pleteness" of representation. But we have derived here the bilateral

normalization without utilizing specifically quantum-mechanical relations.

We now pass to the bilateral normalization with regard to the sta-

tistical transition probabilities W. It is usually the case that states

S defined only statistically exhibit also "completeness." In other words,
t

we can consider any non-maximally defined state S as a member of a

series of non-maximally defined states Sj_ (i = 1,2,3,...) such that the

probability w. of finding the system in a state S^ of the series obey

a normalization condition:

Z *i - 1 (6.7)

For example, in classical physics, after averaging over all space-coordi-

nates, the state of each molecule of a gas is characterized only by ve-

locities v . Then the velocity-space can be divided into small volume-

elements, which certainly have the property of completeness in the sense

of (6.7). We can also fcpply this consideration to a pair of molecules,

as is usually done in the discussion of collision processes. In case ©f

Heitler-C©ester 's mode of description, after the averaging over the spin-
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directions, the possible values of the momenta will constitute a complete

set.

Now, if we take such a complete set of non-maximally defined states,

it is quite natural to assume that it includes the reversed (inversed)

states of all its members. Then, we can conclude the bilateral normaliza-

tion by the same argument as given above. Or, more simply, if such a

set of non-maximally defined states is so chosen that the theorem of

averaged balance (5.2) is true, then the inverse normalization:

X W(S
i
-> S ;t) «1 (6.8)

follows immediately from the first normalization:

Z,\l(S±
-> S st) = 1 (6.9)

which is a consequence of (6.7).

it should be recalled that even in classical physics, the w's and W'i

are not limited to zero and unity, which is the case for the p's and P's

in this form of physics.
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#7. Ergodic Property of Transition Probabilities

It is well-known that the Markoff chain exhibits a particular pro-

perty which may be called "ergodic." But the usual exposition of this

subject is to© mathematical in nature and often overly simplified by the

assumption of detailed balance: P. .= P.. .

It is intended to point out in this section that the bilateral nor-

malization of transition probabilities is just necessary and sufficient

to derive the " ergodic ity" of the Markoff chain, and t© clarify in what

sense we can here speak of an ergodic theorem. In the following, we shall

discuss the subject in terms of the microscopic, or dynamical probabilities

P, but we shall soon find that the main body of argument applies also to

the statistical probabilities W.

We take a complete set IT of maximally defined states S., and the

indices i, j, etc., of the S's are supposed always to refer to this

same set. We limit ©ur selves to the cases where there are a finite number

of states in the set:

i = 1,2,3,..., T . (7.1)

In classical physics, there are usually a continuously infinite number

of the S's. In this case, the entire argument that follows offers only

a mathematical model which may approximate the real physical situation.

In quantum physics, (7.1) does not imply a real limitation, since we need

actually consider only a limited region of energy values (micr©-canonical

shell) and we can also assume the space domain to be limited. Then the

number ©f quantum states will become finite.

-40-





Among these states S^(i =• 1,2;..., r), some will be disconnected

from one another due to various conservation laws. For instance, two

states belonging to different values of the total angular momentum will

allow no transitions from one t© the other. Thus, the entire set of Sj_

will be divided into sub-sets, in each ©f which the states are "connected."

Such a sub-set will be called hereinafter "sub-shell." A more rigorous

definition of sub-shells will soon be given.

The theory of Markoff chains pertains t© the "repeated" transition

Cft)

probability Pji which is defined by

10 *£ lk kj X lk kJ

where

P« = P
iJ
=P(S

i
-3

j
sT). (7.3)

In classical physics, we have P- . =. 1 or 0, therefore also p. .=1 or 0,

In quantum physics, O^Ptj^.1 . In both cases, we have

L 1$ = 1, (7.4)

which follows from (7.2) in virtue of the first normalization:

L Py* 1. (7.5)

In the same manner, the inverse normalization:

2, pij =1 (7.6)

will result in

The classical physics is characterized by the fact that

Pij=P(S
i
-^ S.;r\Z ), (7.8)

which means that the physical system is not disturbed by observation.
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In quantum physics, this is not the case in general, unless the operators

defining S. commute with the exact Hamiltonian. In quantum physics,

the repeated transition probability (7.2) acquires a physical meaning

only on assumption that the system is observed every T seconds with the

operators defining S-
u

. In ether words, starting with a pure state

S., we observe the system after X seconds, and the result is statistically

represented by a mixture (ensemble or density matrix) composed of vari-

ous S. with the weight P. .. By repeating this process at each inter-

val of f seconds, we obtain after nt seconds a mixture of S^'s with

(n)

the respective weights P. .. This means that although we start with the

microscopic transition probabilities P. ., we have to interpret the re-

peated transition probabilities P. . in quantum physics in terms of

"mixtures." The ergodic theorem discussed in this section thus refers to

a chain of repeated observations and should not be confused with the more

14
important ergodic theorem which refer to two observations, one at the

initial instant and the other at the final instant.

Closely related to P. ., and physically and mathematically more sig-

nificant than these are the quantities:

(7.9)aV£iFA
14. J. von Newmann, ZS. f. Phys.57? 30 (1929); W.Pauli and M.Fierz, ZS,

f. Phys. 106 , 572(1937). For an interpretation of Neumann's ergodic

theorem in terms of initial and final observations, see an article

by S.Watanabe in the monograph: Louis de Broglie(Albin Michel,

Paris, 1952) p. 385.
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Physically important are they, since Q*x,t represents the "time average"

of transition from S. to S.« during the time nt seconds, while P.^

represents the transition probability at the instant *\t seconds after

the initial instant. Indeed, the main concept in an ergodic theorem in

physics is a comparison of "average in time" with "average in microcanoni-

cal ensemble." Mathematically useful are they, since Su has a better

convergence than P
Cr° for n -*•<*> . Although P

Cn;
is zero or unity in

classical physics, &» is not necessarily so: — ^6 m ^ * •

From the first normalization (7.5) follows:

2 a: « « i, (7.10)

and from the inverse normalization (7.6):

z&?! - i- (7.H)

Now the "ergodic theorem" which we are going to prove can be enunciated

as follows: The time average cjc^- (*--*<* ) of probability of finding a sys-

tern, which started from any S., in a state S. of the same sub-shell is
i j

equal to the a-priori probability of a state in the sub-shell, i.e., equal

to l/s if s is the number of states in the sub-shell. This statement

is certainly a faithful adaptation of the general ergodic theorem to our

simplified case, since the microcanonical ensemble represents a mixture

of all the states on an energy shell with equal weights. The main pur-

pose of this section is to show that the inverse normalization is the

necessary and sufficient condition for this simplified ergodic theorem,

the first normalization being always assumed for the Markoff chain.

We shall first enumerate without proofs some of the elementary
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theorems and definitions regarding the Markoff chain which can be found

15 rf
in any exposition of the subject. We shall denote by 1 the original

complete set of states (7.1). Only the first normalization is assumed in

the following theorems.

Theorem I. The sequence:

&%,&%,.... cs^V'O (7.12)

converges to a limit

:

fc** »£ =&« (7.13)

Of course, we have

0*9.?:

±

i, s&!Ui . (7.u)y > r -j

In the set IT there can be some states S. such that the average transi-

tion probabilities Soy to them vanish for any arbitrary initial state S..

Definition I. The "vanishing" part OP of V is the set of all

states S . such that

£-?J= o . C^er, S^K>) (7.15)

For the rest of the original set: T*'=1T-^ (which can easily be shown

not to be empty), we have the following theorem:

Theorem II. If £>? >0 , then &Jt>° . (S,, S^ST'.) (7.16)

In other words, if £>~ =0 , then ft? ^0 . (S
i

, S^ et 1

) (7.17)

15. Theorems I through IV are given in Husimi's textbook (Husimi, op.

cit., p. 280), but their physical applications in physics, .includ-

ing Theorems V, VI, are not giver; there. Husimi's exposition is based

on K. Yoshida and S. Kakutani, Topological Mathematics (Iwanami,

Tokyo, 1939, in Japanese) Vol. 2, p. 20. See also, W. Feller, Intro-

duction t© probability theory and its application, (John Wiley, New
York, 1950) p. 307 ff.
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Using Theorem II, we can divide T" into sub-sets ("sub-shell") such

that ,S2;r is zero if S. and S. belong to different sub-shells, and

Q-- >0 f°r S. and S* belonging to the same sub-shell.

Definition II. t' = €,- €,.+ ' + 6
f

(7.13)

Gtj =D (SL^ ,Sj*fc') (7.19)

S£ > C8wSj 6 € ) (7.20)

A sub-shell £ is disconnected from the vanishing part OP and from an-

other sub-shell € not only in terms of SEir (See (7.15) and (7.19)) but

also in terms of Pj^.j
J

Theorem III.

P
i;j
^o, (Si e € ,Sj e*> ) |

Pij
s °> (Si«€ »Sj €g;

) V (7.21)

p
i;5

»o, (8± e€' ,Sj^ ) J

Obviously the inverse of this theorem is not true. It can happen that

P. ., = even for S^ and S. belonging to the same sub-shell, i.e., in

spite of S2-- > 0.

We now pass to study the properties of those bc;r whose initial and

final states belong to the same sub-shell O consisting of s states Sj_:

i= 1, 2, 3, ...-, s. (7.22)

In virtue of (7.21), we can derive from (7.4)

£ P41 * 1, (s., s, e € ). (7.23)

Similarly, on account of (7.15) and (7.19), we have

Jj&y
- 1, (S± , Sj *£ ). (7.24)

Relations (7.23) and (7.24) show that the first normalization (7.4)
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(7.14) remains unchanged when the initial and final states are limited to

a sub-shell.

We are now prepared to intorduce an important theorem:

Theorem IV. Qv (St, 5 r *£) is independent of the initial

state S .

:

i

ft- = £. (S^ S
i
6 t ). (7.25)

Of course, we have on account of (7.24)
s

2 ft; = 1. (7.26)
j" J

The discussion up to this point assumes only the first normalization.

We now investigate the implication of the inverse normalization. In par-

ticular, we shall consider the condition:

2 P^* 1, (Si, S-6 € ), (7.27)
v i

which exhibits a symmetry to (7.23). On account of (7.21), the summation

with regard to S^ in

p
ij ' \ pik \i • <si.

s
3
* e

1
sk * ^ >>

actually extends only over S, 6 € • Hence

£ P^j = 1, (S^ S.^ £ ), (7.28)

and, by (7.9) and (7.13), alse

Z £- = 2 ft?j s 1* (S^ S, € € ). (7.29)

We now propose to show that the inverse normalization (7.27) is equiv-

alent to the condition that Qia< is not only independent of the initial

state Si (Theorem IV) but also independent of the final state S. . This

last condition can be written, in view of (7.26), as

siTj ^/s < si> V s )# (7,30)

-46-





Theorem V. The necessary and sufficient condition for (7.30) is

(7.27).

^roof: From the definition of & ji (7.9) (7.13), we can easily

obtain

a»=^a2p«i cAt,8,*«; s»#ir) (?.3D

On account of (7.15) and (7.19), the summation over S
k , in reality,

extends orriy over S. € € . If (7.30) is the case, (7.31) becomes

' i£p CS. ,Sj«€) (7.32)

showing that (7.27) is a necessary condition for (7.30).

Next we shall show that (7.27) is also a sufficient condition.

If (7.27) is true, then we have (7.29), which in view of (7.25)

raean» t OT: =5 fir « 1 CScSj € €) (7 '33 >

or

&j r ^ Q.E.D. (7.34)

Theorem V is obviously equivalent to the ergodic theorem we stated

at the beginning of this section.

It should be noted that our inverse normalization (7.27) is not

necessarily equivalent to the inverse normalization with regard to the

entire set:

Z Py- 1, (S
± , S^T ). (7.35)

It is however easy to see that if (7.35) is true then (7.27) is also true,

and that if (7.27) is true and if the entire set if has no vanishing

part OP , then (7.35) is true. Actually, in (7.27), Si
and S, can be

extended, without any additional assumption, to all the states belonging
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to r' - T-on :

l P^ - 1, (S^ S. e T f

), (7.36)

on account of (7.21). The summation in (7.36) extends to all the states

in T' . (7.36) is equivalent t© (7.27).

Now, if (7.35) is true, we shall have (7.11), in which S., S. 6 if.

But this contradicts the existence of a vanishing part (7.15). Hence,

if (7.35) is true, then T*~ Jp', and (7.36) and (7.27) ensue. On the other

hand, if we have (7.36) as a given premise, then the conclusion (7.35)

can be drawn only with the help of an additional condition T*= 2P •

From whatever state one may start, there will be in the long run a

vanishing probability of having the system in a state belonging to the

vanishing part, (7.15), and also starting from a state in any one of the

€ 's, we have a vanishing single transition probability P- ^ landing in

a state in the vanishing part, (7.21). In physical problems, an initial

state is after all the final state of another chain of observations.

Therefore, we may justifiably exclude states of the vanishing part also

as initial states. In any event, symmetry of the physical laws in time

(reversibility or inversibility) results in the inverse normalization

(7.35), which implies non-existence of vanishing part.

The ergodic theorem is sometimes expressed as a statement regarding

the eventual return to the initial state. In actual physical problems

in classical physics, a rigorous return to the initial state is not to

be expected, but the return to a state infinitely close to the original
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state (the so-called quasi-ergodic theorem) is sufficient, however, in

our simplified theory, a rigorous return to the initial state can be

concluded in classical physics.

Theorem VI. If the values of P. . are limited to zero and unity,

then there exists a value of n such that

P.
(%1, (7.37)
11

except for S. belonging to the vanishing part.

Pr©«f: Taking i « j in (7.20), we have

ft3 > O (7.38)

Hence, for large enough values of n, we have £$? >o (n> y\ ") (7.39)

Comparing (7.39) with (7.9)> we see that there must be a value of n

(indeed there must be an infinite number of such n's) for which

Pii ^ 0. (7.40)

If P is zero or unity as we assume, then P. . is also limited to
ij *3

the values zero and unity. Then (7.40) means that there is a value of n

for which

Pii-1 (7.41)

Taking the smallest value of such n's, we can further infer, in

virtue of (7.2),

liPii = pii = p
ii

'- '"
> (7.42)

showing a cyclic return to the initial state f This represents the funda-

mental fact on which Boltzmann's theorem which Tolman calls "cycle of

corresponding collisions" is based. Our proof of the cyclic balance

* Taking the smallest common multiple of the n's for various i, (7,37)

and (7.42) will become valid for all the i's.
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(7.42) is more general than Tolman's argument, since '^olman (i) assumes

without verification the ergodic nature of physical phenomena, (ii) util-

izes throughout the chaos hypothesis regarding the positions of molecules,

and (iii) limits his discussion to collision processes. Our proof ad-

mittedly is conditioned by the assumption that the number of possible

states is finite.

^t is not surprising that the proof ef Theorem VI does not utilize

the inverse-normalization, since in classical physics, exclusion of

vanishing part immediately results in inverse normalization. Indeed,

states belonging to T"' — IT" TO are connected in this case by a one-

to-one correspondence.

The theorem of cyclic balance (7.42) can be considered as a generali-

zation of the theorem of detailed balance, which is a special case of

(7.42) for n« 2. Indeed, from

P
i3
- P

31
. (7.43)

follows _
p
ii " £ P

ik
P
ki

- L (P
ik ) •

.

(7.44)

In classical physics, only one of P^Ck *1>2,...) is different from

zero and equal to unity. Thence,

P.. - 1. (7.45)

In quantum physics also, we have (7.40), but it is not of particular

interest. Probably another generalization of (7.43) may be more useful.

* This means that P. . is actually a permutation, and it is obvious that a

finite number of repeated permutations results in the identity trans-

, formation. The author's thanks are due to Prof. S. Kakutani for reading

this section before publication and for pointing out various interesting

facts pertinent to the subject matter, including the point mentioned in

this footnote.

-50-





In classical as well as quantum physics, we have

which is an obvious consequence of Theorem V. This means that the time

average of transition probability from S. to S. is equal to the time
i J

average of transition probability from S. to S.. This is also equal

to the time average of probability of return to the original state: Jd*^

or 0°° • Theorem (7.46) may be called theorem of "long-range

balance."

,
'*>>

In the entire, foregoing discussions, we used chiefly S^,^- .instead

of P. j, but it is evident that if P^ (n ~? 06 ) has a limit, this limit

is the same as O--

It should also be noticed that we can apply all the foregoing dis-

cussions to W(S^ -» S-sjt). Even in classical physics this quantity is

not limited to the values zero and unity. Therefore, what have been stated

above with regard to quanttum theoretical P's applies, mutatis mutandis,

to the W s.

For applications of our results to quantum theoretical problems, the

following remarks should be kept in mind, beside the remark we already

made with regard to chains of repeated observations in connection with

(7.2). If the S's are defined by operators which commute with the exact

total Hamiltonian, then P-j^ = Sj" , and the sub-shell will- reduce to
J

one quantum state. In this case, the entire argument loses its physical

interest. Therefore, the essential point in the discussion of ergodicity
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lies in the tacit assumption that the operators defining the states S^

exact, total
do not commute with the Hamiltonian. In fact, this assumption is adopted,

A

explicitly or implicitly, in any version of H-treorem or ergodic theorem

14
in quantum physics. In applications to Thermodynamics, it is neces-

sary to introduce the idea of macroscopic cells on the macroscopically

defined energy shell."^ Our derivation, which does not make use of this

concept, should therefore be considered as a simplified model which

serves only to clarify the mathematical gist underlying more elaborate

formulations.

The author would like to thank Dr. Cecile DeWitt whose instructive

seminar talk partially motivated the author to undertake this work.
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