Lي

$$
\begin{aligned}
& \text { (lass TJ } 151 \\
& \text { Book_ } 114 \\
& 1899
\end{aligned}
$$

The Publishers and the Author will be grateful to asiy of the readers of this volume who will kindly call their attention to any errors of omission or of commission that they may find therein. It is intended to make our publications standard works of study and reference, and, to that end, the greatest accuracy is songht. It rarely happens that the early editions of works of any size are free from errors; but it is the endeavor of the Publishers to have them removed immediately upon being discovered, and it is therefore desired that the Author may be aided in his task of revision, from time to time, by the kindly criticism of his readers. JOHN WILEY \& SONS.
53 East Tenth Street.

THE

MECHANICAL ENGINEER'S
 - P0CKET-B00K.

A REFERHNCE-BOOK OF RULES, TABLES DATA, AND KORMULA, FOR THE USF OF
 AND STUDENTS.

B:
WILLIAM KEN'T, A.M., M.E., Consulting Engineer,
Member Amer. Soc'y Mechl. Engrs. and Amer Inst. Mining Engrs.

FOURTH EDITION, REVISED.
THIRD THOUSAND

NEW YORK:
JOHN WILEY \& SONS.
London: CHAPMAN \& HALL, Limited.
1899.

Copyright, 1895,
BY
WILLIAN KENT.
By transfer
OúT 251915

Printed by
Braunworth, Munn \& Barber.
Brooklyn, N. Y., U.S. A,

PREFACE.

More than twenty years ago the author began to follow the advice given by Nystrom: "Every engineeer should make his own pocket-book, as he proceeds in study and practice, to suit his particular business." The manuscript pocket-book thus begun, however, soon gave place to more modern means for disposing of the accumulation of engineering facts and figures, viz., the index rerum, the scrapbook, the collection of indexed envelopes, portfolios and 'ooxes, the card catalogue, etc. Four years ago, at the request of the publishers, the labor was begun of selecting from this accumulated mass such matter as pertained to mechanical engineering, and of condensing, digesting, and arranging it in form for publication. In addition to this, a careful examination was made of the transactions of engineering societies, and of the most important recent works on mechanical engineering, in order to fill gaps that might be left in the original collection, and insure that no important facts had been overlooked.

Some ideas have been kept in mind during the preparation of the Pocket-book that will; it is believed, cause it to differ from other works of its class. In the first place it was considered that the field of mechanical engineering was so great, and the literature of the subject so vast, that as little space as possible should be given to subjects which especially belong to civil engineering. While the mechanical engineer must continually deal with problems which belong properly to civil engineering, this latter branch is so well covered by Trautwine's "Civil Engineer's Pocketbook" that any attempt to treat it exhaustively would not only fill no "long-felt want," but would occupy space which should be given to mechanical engineering.

Another idea prominently kept in view by the author has been that he would not assume the position of an "authority" in giving rules and formulæ for designing, but only that of compiler, giving not only the name of the originator of the rule, where it was known, but also the volume and page from which it was taken, so that its
derivation may be traced when desired. When different formulæ for the same problem have been found they have been given in contrast, and in many cases examples have been calculated by each to show the difference between them. In some cases these differences are quite remarkable, as will be seen under Safety-valves and Crank-pins. Occasionally the study of these differences has led to the author's devising a new formula, in which case the derivation of the formula is given.

Much attention has been paid to the abstracting of data of experiments from recent periodical literature, and numerous references to other data are given. In this respect the present work will be found to differ from other Pocketbooks.

The author desires to express his obligation to the many persons who have assisted him in the preparation of the work, to manufacturers who have furnished their catalogues and given permission for the use of their tables, and to many engineers who have contributed original data and tables. The names of these persons are mentioned in their proper places in the text, and in all cases it has been endeavored to give credit to whom credit is due. The thanks of the author are also due to the following gentlemen who have given assistance in revising manuscript or proofs of the sections named: Prof. De Volson Wood, mechanics and turbines; Mr. Frank Richards, compressed air; Mr. Alfred R. Wolff, windmills; Mr. Alex. C. Humphreys, illuminating gas; Mr. Albert E. Mitchell, locomotives; Prof. James E. Denton, refrigerating-maw chinery; Messrs. Joseph Wetzler and Thomas W. Varley, electrical engineering; and Mr. Walter S. Dix, for valuable contributions on several subjects, and suggestions as to their treatment.

Wm. Kent.
Passaic, N. J., April, 1895.

$$
\text { THIRD EDITION, APRIL, } 189 \% .
$$

All the typographical and other errors discovered in the first and second editions have been corrected, a few alterations have been made in the text, and the index has been revised and enlarged.
W. K.

PREFACE TO FOURTH EDITION.

In this edition many extensive alterations have been made. Much obsolete matter has been cut out and fresh matter substituted. In the first 170 pages but few changes have been found necessary, but a few typographical and other minor errors have been corrected. The tables of sizes, weight, and strength of materials (pages 172 to 282) have been thoroughly revised, many entirely new tables, kindly furnished by manufacturers, having been substituted. Especial attention is called to the new matter on Cast-iron Columns (pages 250 to 253). In the remainder of the book changes of importance have been made in more than 100 pages, and all typographical errors reported to date have been corrected. Manufacturers' tables have been revised by reference to their latest catalogues or from tables furnished by the manufacturers especially for this work. Much new matter is inserted under the heads of Fans and Blowers, Flow of Air in Pipes, and Compressed Air. The chapter on Wire-rope Transmission (pages 917 to 922) has been entirely rewritten. The chapter on Electrical Engineering has been improved by the omission of some matter that has become out of date and the insertion of some new matter. A more complete revision of this chapter, which was intended, has been prevented by the necessity of going to press in the present month with this edition, the third edition being exhausted.

It has been found necessary to place much of the new matter of this edition in an Appendix, as space could not conveniently be made for it in the body of the book. It has not been found possible to make in the body of the book many of the cross-references which should be made to the items in the Appendix. Users of the book may find it advisable to write in the margin such cross-references as they may desire.

The Index has been thoroughly revised and greatly enlarged.
The author is under continued obligation to many manufacturers who have furnished new tables and data, and to many individual engineers who have furnished new matter, pointed out errors in the earlier editions, and offered helpful suggestions. He will be glad to receive similar aid, which will assist in the further improvement of the book in future editions.

William Kent.
Passaic, N. J., September, 1898.

CONTENTS.

(For Alphabetical Index see page 1079.)

MATHEMATICS.

Arithmetic.

PAGE
Arithmetical and Algebraical Signs 1
Greatest Common Divisor 2
Least Common Multiple. 2
Fractions 2
Decimals 3
Table. Decimal Equivalents of Fractions of One Inch 3
Table. Products of Fractions expressed in Decimals 4
Compound or Denominate Numbers 5
Reduction Descending and Ascending 5
Ratio and Proportion 5
Involution, or Powers of Numbers 6
Table. . First Nine Powers of the First Nine Numbers 7
Table. First Forty Powers of 2 7
Evolution. Square Root 7
Cube Root 8
Alligation 10
Permutation 10
Combination. 10
Arithmetical Progression 11
Geometrical Progression 11
Interest 13
Discount. 13
Compound Interest 14
Compound Interest Table, 3, 4,5, and 6 per cent 14
Equation of Payments 14
Partial Payments 15
Annuities 16
Tables of Amount, Present Values, etc., of Annuities. 16
Weights and Measures.
Long Measure 17
Old Land Measure 17
Nautical Measure 17
Square Measure 18
Solid or Cubic Measure. 18
Liquid Measure 18
The Miners' Inch 18
Apothecaries' Fluid Measure 18
Dry Measure 18
Shipping Measure 19
Avoirdupois Weight. 19
Troy Weight 19
Apothecaries' Weight 19
To Weigh Correctly on an Incorrect Balance 19
Circular Measure 20
Measure of time. 20
PAGE
Board and Timber Measure 20
Table. Contents in Feet of Joists, Scantlings, and Timber. 20
French or Metric Measures 21
British and French Equivalents 21
Metric Conversion Tables 23
Compound Units.
of Pressure and Weight 27
of Water, Weight, and Bulk 27
of Work, Power, and Duty 27
of Velocity 27
of Pressure per unit area 27
Wire and Sheet Metal Gauges. 28
Twist-drill and Steel-wire Gauges 28
Music-wire Gauge 29
Circular-mil Wire Gauge 30
New U. S. Standard Wire and Sheet Gauge, 1893 30
Decimal Gauge 32
Algebra.
Addition, Multiplication, etc 33
Powers of Numbers 33
Parentheses, Division 34
Simple Equations and Problems 34
Equations containing two or more Unknown Quantities 35
Elimination 35
Quadratic Equations 35
Theory of Exponents. 36
Binomial Theorem 36
Geometrical Problems of Construction. 37
of Straight Lines 37
of Angles 38
of Circles 39
of Triangles 41
of Squares and Polygons 12
of the Ellipse 45
of the Parabola 48
of the Hyperbola. 49
of the Cycloid 49
of the Tractrix or Schiele Anti-friction Curve 50
of the Spiral 50
of the Catenary 51
of the Involute. 52
Geometrical Propositions 53
Mensuration, Plane Surfaces.
Quadrilateral, Parallelogram, etc 54
Trapezium and Trapezoid 54
Triangles 54
Polygons. Table of Polygons. 55
Irregular Figures. 55
Properties of the Circle 57
Values of π and its Multiples, etc. 57
Relations of arc, chord, etc 58
Relations of circle to inscribed square, etc 58
Sectors and Segments. 59
Circular Ring. 59
The Ellipse 59
The Helix. 60
The Spiral. 60
Mensuration, Solid Bodies.
Prism 60
Pyramid 60
Wedge 61
The Prismoidal Formula 62
Rectangular Prismoid 61
Cylinder 61
Cone 81
PAGE
Sphere 61
Spherical Triangle 61
Spherical Polygon 61
Spherical Zoue 62
Spherical Segment 6:
Spheroid or Ellipsoid 6:3
Pulyedron 6.
Cylindrical Ring 62
Solids of Revolution 62
Spindles 63
Frustrum of a Spheroid. 6:3
Parabolic Conoid 61
Volume of a Cask 64
Irregular Solids 64
Plane Trigonometry.
Solution of Plane Triangles 65
Sine, Tangent, Secant, etc 65
Signs of the Trigonometric Functions 66
Trigonometrical Formulæ 66
Solution of Plane Right-angled Triangles 68
Solution of Oblique-angled Triangles 68
Analytical Geometry.
Ordinates and Abscissas 69
Equations of a Straight Line, Intersections, etr 69
Equations of the Circle. 70
Equations of the Ellipse 70
Equations of the Parabola 70
Equations of the Hyperbola 70
Logarithmic Curves. 71
Differential Calculus.
Definitions 72
Differentials of Algebraic Functions 72
Formulæ for Differentiating 73
Partial Differeutials. 73
Integrals T3
Formulæ for Integration 74
Integration between Limits 74
Quadrature of a Plane Surface 74
Quadrature of Surfaces of Revolution 75
Cubature of Volumes of Revolution. 75
Second, Third, etc., Differentials 75
Maclaurin's and Taylor's Theorems r 6
Maxima and Minima \% 6
Differential of an Exponential Function 77
Logarithms 77
Differential Forms which have Known Integrals 78
Exponential Functions 78
Circular Functions. \%8
The Cycloid 79
Integral Calculus 79
Mathematical Tables.
Reciprocals of Numbers 1 to 2000 80
Squares, Cubes, Square Roots, and Cube Roots from 0.1 to 1600 86
Squares and Cubes of Decimals 101
Fifth Roots and Fifth Powers. 102
Circumferences and Areas of Circles, Diameters 1 to 1000 103
Circumferences and Areas of Circles, Advancing by Eighths from $\frac{1}{6 \pi}$ to 100 108
Decimals of a Foot Equivalent to Inches and Fractions of an Inch. 112
Circumferences of Circles in Feet and Inches, from 1 inch to 32 feet 11 inches in diameter. 113
Lengths of Circular Arcs, Degrees Given 114
Lengths of Circular Arcs, Height of Arc Given 115
Areas of the Segments of a Circle. 116
PAGE
Spheres 118
Contents of Pipes and Cylinders, Cubic Feet and Gallons 120
Cylindrical Vessels, Tanks, Cisterns, etc 121
Gallons in a Number of Cubic Feet 122
Cubic Feet in a Number of Gallons 122
Square Feet in Plates 3 to 32 feet long and 1 inch wide 123
Capacities of Rectangular 'Tanks in Gallons 125
Number of Barrels in Cylindrical Cisterns and Tanks. 126
Logarithms 127
Table of Logarithms 129
Hyperbolic Logarithms 156
Natural Trigonometrical Functions. 159
Logarithmic Trigonometrical Functions 162
MATERIALS.
Chemical Elements 163
Specific Gravity and Weight of Materials 163
Metals, Properties of 164
The Hydrometer 165
Aluminum 166
Antimony 166
Bismuth 166
Cadmium 167
Copper 167
Gold 167
Iridium 167
Iron 167
Lead 167
Magnesium 168
Manganese 168
Mercury 168
Nickel 168
Platinum 168
Silver 168
Tin 168
Zinc 168
Miscellaneous Materials.
Order of Malleability, etc., of Metals 169
Formulæ and Table for Calculating Weight of Rods, Plates, etc 169
Measures and Weights of Various Materials 169
Commercial Sizes of Iron Bars. 170
Weights of Iron Bars 171
of Flat Rolled Iron 172
of Iron and Steel Sheets. 174
of Plate Iron 175
of Stee1 Blooms 176
of Structural Shapes 177
Sizes and Weights of Carnegie Deck Beams 177
" " Steel Channels 178
". " Pencoyd Steel Angles 178
179
179
" " " Tees 180
Channels 180
" " Roofing Materials 181
Terra-cotta 181
Tiles 181
Tin Plates 181
Slates 183
Pine Shingles 183
Sky-light Glass 184
Weights of Various Roof-coverings. 184
Cast-iron Pipes or Columns. 185
" " " " 12 ft . lengths 186
"" ". " Pipe-fittings 182
" "Water and Gas-pipe 188
" and thickness of Cast-iron Pipes 189
Safe Pressures on Cast Iron Pipe 188
PAGE
Sheet-iron Hydraulic Pipe 191
Standard Pipe Flanges 192
Pipe Flanges and Cast-iron Pipe 193
Standard Sizes of Wrought-iron Pipe 194
Wrought-iron Welded Tubes 196
Riveted Iron Pipes 197
Weight of Iron for Riveted Pipe 197
Spiral Riveted Pipe 198
Seamless Brass Tubing 198, 199
Coiled Pipes 199
Brass, Copper, and Zinc Tubing 200
Lead and Tin-lined Lead Pipe 201
Weight of Copper and Brass Wire and Plates 202
Round Bolt Copper 203
Sheet and Bar Brass 203
Composition of Rolled Brass 203
Sizes of Shot 204
Screw-thread, U. S. Standard 204
Limit-gauges for Screw-threads 205
Size of Iron for Standard Bolts 206
Sizes of Screw-threads for Bolts and Taps 207
Set Screws and Tap Screws 208
Standard Machine Screws 209
Sizes and Weights of Nuts 209
Weight of Bolts with Heads 210
Track Bolts 210
Weights of Nuts and Bolt-heads 211
Rivets 211
Sizes of Turnbuckles 211
Washers 212
Track Spikes 212
Railway Spikes 212
Boat Spikes 212
Wrought Spikes 213
Wire Spikes 213
Cut Nails 213
Wire Nails 214, 215
Iror Wire, Size, Strength, etc 216
Galvanized Iron Telegraph Wire 217
Tests of Telegraph Wire 217
Copper Wire Table, B. W. Gauge 218
Edison or Circular Mil Gauge 219
Insulated Wire 220
221
Copper Telegraph Wire 221
Electric Cables 221, 222
Galvanized Steel-wire Strand 223
Steel-wire Cables for Vessels 223
Suecifications for Galvanized Iron Wire 224
Strength of Piano Wire 224
Plough-steel Wire 224
Wires of different metals 225
Specifications for Copper Wire 225
Cable-traction Ropes 226
Wire Ropes 226, 22
Plough-steel Ropes 227, 228
Galvanized Iron Wire Rope 228
Steel Hawsers 223, 229
Flat Wire Ropes $2 \because 9$
Galvanized Steel Cables 230
Strength of Chains and Ropes 230
Notes on use of Wire Rope 231
Locked Wire Rope 231
Crane Chains 232
Weights of Logs, Lumber, etc 232
Sizes of Fire Brick 233
Fire Clay, Analysis 234
Magnesia Bricks 235
Asbestos 235
PAGE
Stress and Strain 236
Elastic Limit 236
Yield Point 237
Modulus of Elasticity 237
Resilience 238
Elastic Limit and Ultimate Stress 238
Repeated Stresses $2: 38$
Repeated Shocks 240
Stresses due to Sudden Shocks 241
Increasing Tensile Strength of Bars by Twisting 241
Tensile Strength 242
Measurement of Elongation 243
Shapes of Test Specirnens 243
Compressive Strength 244
Columns, Pillars, or Struts 246
Hodgkinson's Formula 246
Gordon's Formula 247
Moment of Inertia 247
Radius of Gyration 247
Elements of Usual Sections 248
Strength of Cast-iron Columns 250
Transverse Strength of Cast-iron Water-pipe. 251
Safe Load on Cast-iron Columns 252
Strength of Brackets on Cast-iron Columns 252
Eccentric Loading of Columns 254
Wrought-iron Columns 255
Built Columns 256
Phœenix Columns 257
Working Formulæ for Struts 259
Merriman's Formula for Columns 260
Working Strains in Bridge Members 263
Working Stresses for Steel 263
Resistance of Hollow Cylinders to Collapse 264
Collapsing Pressure of Tubes or Flues. 265
Formula for Corrugated Furnaces 266
Transverse Strength 266
Formulæ for Flexure of Beams 267
Safe Loads on Steel Beams 269
Elastic Resilience 270
Beams of Uniform Strength $2 i 1$
Properties of Rolled Structural Shapes $2 \pi 2$
Steel I Beams 273
Spacing of Steel I Beams $2 \pi 6$
Properties of Steel Channels 277

- T Shapes. 278
" " Angles 279،
" Z bars 280
Size of Beams for Floors 280
Flooring Material 281
Tie Rods for Brick Arches 281
Torsional Strength 281
Elastic Resistance to Torsion 282
Combined Stresses 282
Stress due to Temperature 283
Strength of Flat Plates 283
Strength of Unstayed Flat Surfaces 281
Unbraced Heads of Boilers 285
Thickness of Flat Cast-iron Plates 286
Strength of Stayed Surfaces 286
Spherical Shells and Domed Heads 286
Stresses in Steel Plating under Water Pressure 287
Thick Hollow Cylinders under Tension 287
Thin Cylinders under Tenslon 259
Hollow Copper Balls 289
Holding Power of Nails, Spikes, Bolts, and Screws 289
Cut versus Wire Nails 290
Strength of Wrought-iron Bolts 292
PAGE
Initial Strain on Bolts 292
Stand Pipes and their Design 292
Riveted Steel Water-pipes 295
Mannesmann Tubes 296
Kirkaldy's Tests of Materials 296
Cast Iron 296
Iron Castings 297
Iron Bars, Forgings, etc 297
Steel Rails and Tires 298
Steel Axles, Shafts, Spring Steel 299
Riveted Joints 299
Welds 300
Copper, Brass, Bronze, etc 300
Wire, Wire-rope 301
Ropes, Hemp, and Cotton 301
Belting, Canvas 302
Stones, Brick, Cement 302
Tensile Strength of Wire 303
Watertown Testing-machine Tests 303
Riveted Joints 303
Wrought-iron Bars, Compression Tests 304
Steel Eye-bars 304
Wrought-iron Columns 305
Cold Drawn Steel 305
American Woods 306
Shearing Strength of lron and Steel 306
Holding Power of Boiler-tubes 307
Chains, Weight, Proof Test, etc 307
Wrought-iron Chain Cables 308
Strength of Glass 308
Copper at High Temperatures 309
Strength of Timber 309
Expansion of Timber 311
Shearing Strength of Woods 312
Strength of Brick, Stone, etc $31 /$
"Flagging 313
" Lime and Cement Mortar
" Lime and Cement Mortar 313
Moduli of Elasticity of Various Materials 314
Factors of Safety 314
Properties of Cork 316
Vulcanized India-rubber 316
Xylolith or Woodstone 316
Aluminum, Properties and Uses 317
Alloys.
Alloys of Copper and Tin, Bronze 319
Copper and Zinc, Brass 321
Variation in Strength of Bronze 321
Copper-tin-zinc Alloys 322
Liquation or Separation of Metals
Alloys used in Brass Foundries 325
Copper-nickel Alloys 326
Copper-zinc-iron Alloys 326
Tobin Bronze 327
Phosphor Bronze 327
Aluminum Bronze 328
Aluminum Brass 329
Caution as to Strength of Alloys 329
Aluminum hardened 330
Alloys of Aluminum, Silicon, and Iron 330
Tungsten-aluminum Alloys 331
Aluminum-tin Alloys 331
Manganese Alloys 331
Manganese Bronze 331
German Silver 332
Alloys of Bismuth 332
Fusible Alloys 333
Bearing Metal Alloys 333
PAGE
Alloys containing Antimony 336
White-metal Alloys 336
Type-metal 336
Babbitt metals. 336
Solders 338
Ropes and Chains.
Strength of Hemp, Iron, and Steel Ropes 338
Flat Ropes 339
Working Load of Ropes and Chains. 339
Strength of Ropes and Chain Cables 340
Rope for Hoisting or Transmission $3+0$
Cordage, Technical terms of 341
Splicing of Ropes 341
Coal Hoisting $3+3$
Manila Cordage, Weight, etc 344
Knots, how to make 344
Splicing Wire Ropes. 346
Springs.
Laminated Steel Springs 34%
Helical Steel Springs 34
Carrying Capacity of Springs 349
Elliptical Springs 352
Phosphor-bronze Springs 352
Springs to Resist Torsional Force 352
Helical Springs for Cars, etc 353
Riveted Joints.
Fairbairn's Experiments 354
Loss of Strength by Punching 354
Strength of Perforated Plates 354
Hand vs. Hydraulic Riveting 355
Formulæ for Pitch of Rivets 357
Proportions of Joints 358
Efficiencies of Joints 359
Diameter of Rivets 360
Strength of Riveted Joints 361
Riveting Pressures 362
Shearing Resistance of Rivet Iron 363
Iron and Steel.
Classification of Iron and Steel 364
Grading of Pig Iron 365
Influence of Silicon Sulphur, Phos. and Mn on Cast Iron. 365
Tests of Cast Iron 369
Chemistry of Foundry Irou $3 \pi 0$
Analyses of Castings 373
Strength of Cast Iron 374
Specifications for Cast Iron 374
Mixture of Cast Iron with Steel 375
Bessemerized Cast Iron 375
Bad Cast Iron 375
Malleable Cast Iron 375
Wrought Iron 377
Chemistry of Wrought Iron 377
Influence of Rolling on Wrought Iron 377
Specifications for Wrought Iron 378
Stay-bolt Iron 379
Formulæ for Unit Strains in Structures 379
Permissible Stresses in Structures 381
Proportioning Materials in Memphis Bridge 382
Tenacity of Iron at High Temperatures 382
Effect of Cold on Strength of Iron 383
Expansion of Iron by Heat 385
Durability of Cast Iron. 385
Corrosion of Iron and Steel 386
Preservative Coatings; Paints, etc 387
Non-oxidizing Process of Annealing
PAGE 387
Manganese Plating of Iron
Manganese Plating of Iron 389
Steel.
Relation between Chem. and Phys. Properties 389
Variation in Strength 391
Open-hearth 392
Bessemer 392
Hardening Soft Steel 393
Effect of Cold Rolling 393
Comparison of Full-sized and Small Pieces 393
Treatment of Structural Steel 394
Influence of Annealing upon Magnetic Capacity 396
Specifications for Steel 397
Boiler, Ship and Tank Plates 399
Steel for Springs, Axles, etc 400
May Carbon be Burned out of Steel? 402
Recalescence of Steel 402
Effect of Nicking a Bar 402
Electric Conductivity 403
Specific Gravity 403
Occasional Failures 403
Segregation in Ingots 404
Earliest Uses for Structures 405
Steel Castings 405
Manganese Steel 407
Nickel Steel 407
Aluminum Steel 409
Chrome Steel 409
Tungsten Steel 409
Compressed Steel 410
Crucible Steel 410
Effect of Heat on Grain 412
Hammering, etc 412
Heating and Forging 412
Tempering Steel 413
MECHANICS.
Force, Unit of Force 415
Inertia 415
Newton's Laws of Motion 415
Resolution of Forces 415
Parallelogram of Forces 416
Moment of a Force 416
Statical Moment, Stability 417
Stability of a Dam 41%
Parallel Forces 417
Couples 418
Equilibrium of Forces 418
Centre of Gravity 418
Moment of Inertia 419
Centre of Gyration 420
Radius of Gyration 420
Centre of Oscillation 421
Centre of Percussion 422
The Pendulum 423
Sonical Pendulum 423
Centrifugal Force 423
Acceleration 423
Falling Bodies 424
Value of g 424
Angular Velocity 425
Height due to Velocity 425
Parallelogram of Velocities 426
Mass 427
Force of Acceleration 427
Motion on Inclined Planes 428
Momentum 428
Vis Viva PAGE 428Work, Foot-pound
428
Power, Hor'se-power
Energy 429
429
Work of Acceleration 430Force of a Blow
430
Impact of Bodies 431
Energy of Recoil of Guns 431
Conservation of Energy 432
Perpetual Motion 432
Efficiency of a Machine 432
Animal-power, Man-power 433
Work of a Horse 434
Man-wheel 434
Horse-gin 434
Resistance of Vehlcles 435
Elements of Machines.
The Lever 435
The Bent Lever 436
The Moving Strut 436
The Toggle-joint 436
The Inclined Plane 437
The Wedge 437
The Screw 437
The Cam 438
The Pulley 438
Differential Pulley 431
Differential Windlass 439
Differential Screw 43ε
Wheel and Axle 439
Toothed-wheel Gearing 439
Endless Screw 440
Stresses in Framed Structures.
Cranes and Derricks 440
Shear Poles and Guys 442
King Post Truss or Bridge 442
Queen Post Truss 442
Burr Truss 443
Pratt or Whipple Truss 443
Howe Truss 445
Warren Girder 445
Roof Truss 446
Heat.
Thermometers and Pyrometers 448
Centigrade and Fahrenheit degrees compared 449
Copper-ball Pyrometer 451
Thermo-electric Pyrometer 451
Temperatures in Furnaces 451
Wiborgh Air Pyrometer 453
Seeger's Fire-clay Pyrometer 453
Mesuré and Nouel's Pyrometer 453
Uehling and Steinbart's Pyrometer 453
Air-thermometer 454
High Temperatures judged by Color 454
Boiling-points of Substances 455
Melting-points 455
Unit of Heat 455
Mechanical Equivalent of Heat 456
Heat of Combustion 456
Specific Heat 457
Latent Heat of Fusion 459,461
Expansion by Heat 460
Absolute Temperature 461
Absolute Zero 461
PAGE
Latent Heat 461
Latent Heat of Evaporation 462
Total Heat of Evaporation $46^{\circ} 2$
Evaporation and Drying 462
Evaporation from Reservoirs 463
Evaporation by the Multiple System 463
Resistance to Boiling 463
Manufacture of Salt 464
Solubility of Salt and Sulphate of Lime 464
Salt Contents of Brines 464
Concentration of Sugar Solutions 465
Evaporating by Exhaust Steam 465
Drying in Vacuum 466
Radiation of Heat 467
Conduction and Convection of Heat 468
Rate of External Conduction 469
Steam-pipe Coverings 470
Transmission through Plates 471
" in Condenser Tubes 473
" "Cast-iron Plates. 474
from Air or Gases to Water 4î4
" from Steam or Hot Water to Air $4 \pi 5$ 478
Thermodynamics $4 \pi 8$
PHYSICAL PROPERTIES OF GASES.
Expansion of Gases 479
Boyle and Marriotte's Law 479
Law of Charles, Avogadro's Law 479
Saturation Point of Vapors 480
Law of Gaseous Pressure 480
Flow of Gases 480
Absorption by Liquids 480
AIR.
Properties of Air 481
Air-manometer. 481
Pressure at Different Altitudes 481
Barometric Pressures 482
Levelling by the Barometer and by Boiling Water 482
To find Difference in Altitude 483
Moisture in Atmosphere 483
Weight of Air and Mixtures of Air and Vapor 484
Specitic Heat of Air 484
Flow of Air.
Flow of Air through Orifices 484
Flow of Air in Pipes 485
Effect of Bends in Pipe 488
Flow of Compressed Air 488
Tables of Flow of Air 489
Anemometer Measurements 491
Equalization of Pipes 491
Loss of Pressure in Pipes 493
Wind.
Force of the Wind 493
Wind Pressure in Storms 495
Windmills 495
Capacity of Windmills 49~
Economy of Windmills 498
Electric Power from Windmills 499
Compressed Air.
Heating of Air by Compression 499
Loss of Energy in Compressed Air 499
Volumes and Pressures 500
Loss due to Excess of Pressure... 501
Horse-power Required for Compression 501
Table for Adiabatic Compression 50\%
Mean Effective Pressures 502
Mean and Terminal Pressures 503
Air-compressors 503
Practical Results 505
Efficiency of Compressed-air Engines 506
Requirements of Rock-drills 506
Popp Compressed-air Systemı 507
Small Compressed-air Motors 50%
Efficiency of Air-heating Stoves 507
Efficiency of Compressed-air Transmission 508
Shops Operated by Compressed Air 509
Pneumatic Postal Transmission 509
Mekarski Compressed-air Tramways 510
Compressed Air Working Pumps in Mines 511
Fans and Blowers.
Centrifugal Fans 511
Best Proportions of Fans 512
Pressure due to Velocity 513
Experiments with Blowers 514
Quantity of Air Delivered 514
Efficiency of Fans and Positive Blowers 516
Capacity of Fans and Blowers 517
Table of Centrifugal Fans 518
Engines, Fans, and Steam-coils for the Blower System of Heating. 519
Sturtevant Steel Pressure-blower 519
Diameter of Blast-pipes. 519
Efficiency of Fans 520
Centrifugal Ventilators for Mines 521
Experiments on Mine Ventilators 522
Disk Fans 524
Air Removed by Exhaust Wheel 525
Efficiency of Disk Fans 525
Positive Rotary Blowers 526
Blowing Engines 526
Steam-jet Blowers 527
Steam-jet for Ventilation 527
HEATING AND VENTILATION.
Ventilation 528
Quantity of Air Discharged through a Ventilating Duct. 530
Artificial Cooling of Air 531
Mine-ventilation 531
Friction of Air in Underground Passages 531
Equivalent Orifices 533
Relative Efficiency of Fans and Heated Chimneys 533
Heating and Ventilating of Large Buildings 534
Rules for Computing Radiating Surfaces 536
Overhead Steam-pipes 537
Indirect Heating-surface 537
Boiler Heating-surface Required 538
Proportion of Grate-surface to Radiator-surface 538
Steam-consumption in Car-heating 538
Diameters of Steam Supply Mains 539
Registers and Cold-air Ducts 539
Physical Properties of Steam and Condensed Water 540
Size of Steam-pipes for Heating 510
Heating a Greenhouse by Steam 541
Heating a Greenhouse by Hot Water 542
Hot-water Heating 542
Law of Velocity of Flow 542
Proportions of Radiating Surfaces to Cubic Capacities 543
Diameter of Main and Branch Pipes 543
Rules for Hot-water Heating. 544
Arrangements of Mains 544
PAGE
PAGE
Blower System of Heating and Ventilating 545
Experiments with Radiators 545
Heating a Building to $70^{\circ} \mathrm{F}$. 545
Heating by Electricity 546
WATER.
Expansion of Water 547
Weight of Water at different temperatures 54π
Pressure of Water due to its Weight 549
Head Corresponding to Pressures 549
Buoyancy 550
Boiling-point 550
Freezing-point 550
Sea-water 549, 550
Ice and Snow 550
Specific Heat of Water 550
Compressibility of Water 551
Impurities of Water 551
Causes of Incrustation 551
Means for Preventing Incrustation 55
Analyses of Boiler-scale 552
Hardness of Water 553
Purifying Feed-water 554
Softening Hard Water 555
Hydraulics. Flow of Water.
Fomulæ for Discharge through Orifices 555 555
Flow of Water from Orifices
Flow of Water from Orifices
Flow in Open and Closed Channels 55 \%
General Formulæ for Flow 557
Table Fall of Feet per mile, etc 558
Values of \sqrt{r} for Circular Pipes 559
Kutter's Formula 559
Molesworth's Formula 562
Bazin's Formula 563
1)'Arcy's Formula 563
Older Formulæ 564
Velocity of Water in Open Channels 564
Mean, Surface and Bottom Velocities 564
Safe Bottom and Mean Velocities. 565
Resistance of Soil to Erosion 565
Abrading and Transporting Power of Water 565
Grade of Sewers 566
Relations of Diameter of Pipe to Quantity discharged 566
Flow of Water in a $20-$ inch Pipe 566
Velocities in Smooth Cast-iron Water-pipes 567
Table of Flow of Water in Circular Pipes 568-5 ris 3
Loss of Head 5%
Flow of Water in Riveted Pipes $5 \pi 4$
Frictional Heads at given rates of discharge 5π
Effect of Bend and Curves $5 i 8$
Hydraulic Grade-line 578
Flow of Water in House-service Pipes 5\%
Air-bound Pipes 579
Vertical Jets $5 i 9$
Water Delivered through Meters 579
Fire Streams $5 i 9$
Friction Losses in Hose 580
Head and Pressure Losses by Friction 580
Loss of Pressure in smooth $21 / 2$-inch Hose 580
Rated capacity of Steam Fire-engines 580
Pressures required to throw water through Nozzles 581
The Siphon 581
Measurement of Flowing Water 582
Piezometer 582
Pitot Tube Gauge 583
The Venturi Meter 583
Measurement of Discharge by means of Nozzles 584
PAGE
Flow through Rectangular Orifices 584
Measurement of an Open Stream 584
Miners' Inch Measurements 585
Flow of Water over Weirs 586
Francis's Formula for Weirs 586
Weir Table 587
Bazin's Experiments 587
Water-power.
Power of a Fall of Water 588
Horse-power of a Running Stream 589
Current Motors 589
Horse-power of Water Flowing in a Tube 589
Maximum Efficiency of a Long Conduit 589
Mill-power 589
Value of Water-power 590
The Power of Ocean Waves 599
Utilization of Tidal Power. 600
Turbine Wheels.
Proportions of Turbines 591
Tests of Turbines 596
Dimensions of Turbines 597
The Pelton Water-wheel 597
Pumps.
Theoretical capacity of a pump 601
Depth of Suction 602
Amount ol Water raised by a Single-acting Lift-pump 602
Proportioning the Steam-cylinder of a Direct-acting Pump 602
Speed of Water through Pipes and Pump-passages 602
Sizes of Direct-acting Pumps 603
The Deane Pump 603
Efficiency of Small Pumps. 603
The Worthington Duplex Pump 604
Speed of Piston 605
Speed of Water through Valves 605
Boiler-feed Pumps 605
Pump Valves 606
Centrifugal Pumps 606
Lawrence Centrifugal Pumps 607
Efficiency of Centrifugal and Reciprocating Pumps 608
Vanes of Centrifugal Pumps 609
The Centrifugal Pump used as a Suction Dredge 609
Duty Trials of Pumping Engines 609
Leakage Tests of Pumps 611
Vacuum Pnmps 612
The Pulsometer 612
The Jet Pump 614
The Injector 614
Air-lift Pump 614
The Hydraulic Ram 614
Quantity of Water Delivered by the Hydraulic Ram 615
Hydraulic Pressure Transmission.
Energy of Water under Pressure 616
Efficiency of Apparatus 616
Hydraulic Presses 617
Hydraulic Power in London 617
Hydraulic Riveting Machines 618
Hydraulic Forging 618
The Aiken Intensifler 619
Hydraulic Engine 619
FUEL.
Theory of Combustion 820
Total Heat of Combustion 621
PAGE
Analyses of Gases of Combustion 622
Temperature of the Fire 622
Classification of Solid Fuel 623
Classification of Coals 624
Analyses of Coals 624
Western Lignites 631
Analyses of Foreign Coals 631
Nixon's Navigation Coal 632
Sampling Coal for Analyses 632
Relative Value of Fine Sizes 632
Pressed Fuel 63:
Relative Value of Steam Coals 633
Approximate Heating Value of Coals 634
Kind of Furnace Adapted for Different Coals 635
Downward-draught Furnaces 635
Calorimetric Tests of American Coals 636
Evaporative Power of Bituminous Coals 636
Weathering of Coal 637
Coke 637
Experiments in Coking 637
Coal Washing 638
Recovery of By-products in Coke manufacture 638
Making Hard Coke 638
Generation of Steam from the Waste Heat and Gases from Coke-ovens. 638
Products of the Distillation of Coal 639
Wood as Fuel 639
Heating Value of Wood 639
Composition of Wood 640
Charcoal 640
Yield of Charcoal from a Cord of Wood 641
Consumption of Charcoal in Blast Furnaces 641
Absorption of Water and of Gases by Charcoal 641
Composition of Charcoals 642
Miscellaneous Solid Fuels 642
Dust-fuel-Dust Explosions 642
Peat or Turf 643
Sawdust as Fuel 643
Horse-manure as Fuel 643
Wet Tan-bark as Fuel 643
Straw as Fuel 643
Bagasse as Fuel in Sugar Manufacture 643
Petroleum.
Products of Distillation 645
Lima Petroleum 645
Value of Petroleum as Fuel 645
Oil vs. Coal as Fuel 646
Fuel Gas.
Carbon Gas 646
Anthracite Gas 647
Bituminous Gas 647
Water Gas 648
Producer-gas from One Ton of Coal 649
Natural Gas in Ohio and Indiana 649
Combustion of Producer-gas 650
Use of Steam in Producers 650
Gas Fuel for Small Furnaces 651
Illuminating Gas.
Coal-gas 651
Water-gas 652
Analyses of Water-gas and Coal gas 653
Calorific Equivalents of Constituents 654
Efficiency of a Water-gas Plant 654
Space Required for a Water-gas Plant 656
Fuel-value of Illuminating-gas 656
Flow of Gas in Pipes 65%
Service for Lamps 658
STEAM.
Temperature and Pressure 659
Total Heat 659
Latent Heat of Steam 659
Latent Heat of Volume 660
Specific Heat of Saturated Steam 660
Density and Volume 660
Superheated Steam 661
Regnault's Experiments 661
Table of the Properties of Steam 662
Flow of Steam.
Napier's Approximate Rule 669
Flow of Steam in Pipes 669
Loss of Pressure Due to Radiation 671
Resistance to Flow by Bends 672
Sizes of Steam-pipes for Stationary Engines 67
Sizes of Steam-pipes for Marine Engines 674
Steam Pipes.
Bursting-tests of Copper Steam-pipes 674
Thickness of Copper Steam-pipes 675
Reinforcing Steam-pipes 675
Wire-wound Steam-pipes 675
Riveted Steel Steam-pipes 675
Valves in Steam-pipes 675
Failure of a Copper Steam-pipe 676
The Steam Loop 676
Loss from an Uncovered Steam-pipe 676
THE STEAM BOILER.
The Horse-power of a Steam-boiler 677
Measures for Comparing the Duty of Boilers. 678
Steam-boiler Proportions 678
Heating-surface 678
Horse-power, Builders' Rating 679
Grate-surface 680
Areas of Flues 680
Air-passages Through Grate-bars 681
Performance of Boilers 681
Conditions which Secure Economy 682
Efficiency of a Boiler 683
Tests of Steam-boilers 685
Boilers at the Centennial Exhibition 685
Tests of Tubulous Boilers 686
High Rates of Evaporation 687
Economy Effected by Heating the Air 687
Results of Tests with Different Coals 688
Maxirnum Boiler Efficiency with Cumberland Coal 689
Boilers Using Waste Gases 689
Boilers for Blast Furnaces 688
Rules for Conducting Boiler Tests 696
Table of Factors of Evaporation 695
Strength of Steam-boilers.
Rules for Construction 700
Shell-plate Formulæ ז01
Rules for Flat Plates 701
Furnace Formulæ 70\%
Material for Stays 703
Loads allowed on Stays 703
Girders 703
Rules for Construction of Boilers in Merchant Vessels in U. S 705
PAGE
U. S. Rule for Allowable Pressures 706
Safe-working Pressures 707
Rules Governing Inspection of Boilers in Philadelphia 708
Flues and Tubes for Steam Boilers 709
Flat-stayed Surfaces 709
Diameter of Stay-bolts 710
Strength of Stays 710
Stay-bolts in Curved Surfaces 710
Boiler Attachments, Furnaces, etc.
Fusible Plugs 710
Steam Domes r11
Height of Furnace 711
Mechanical Stokers 711
The Hawley Down draught Furnace 712
Under-feed Stokers 712
Smoke Prevention 712
Gas-fired Steam-boilers 714
Forced Combustion 714
Fuel Economizers 715
Incrustation and Scale 716
Boiler-scale Compounds 717
Removal of Hard Scale 718
Corrosion in Harine Boilers 719
Use of Zinc r20
Effect of Deposit on Flues 720
Dangerous Boilers 720
Safety Valves.
Rules for Area of Safety-valves 721
Spring-loaded Safety-valves 724
The Injector.
Equation of the Injector 725
Performance of Injectors 726
Boiler-feeding Pumps \%20
Feed-water Heaters.
Strains Caused by Cold Feed-water 72%
Steam Separators.
Efficiency of Steam Separators 728
Determination of Moisture in Steam.
Coil Calorimeter 729
Throttling Calorimeters 729
Separating Calorimeters 730
Identification of Dry Steam 730
Usual Amount of Moisture in Steam 731
Chimneys.
Chimney Draught Theory 731
Force or Intensity of Draught 73 :
Rate of Combustion Due to Height of Chimney 7.3:3
High Chimneys not Necessary 734
Heights of Chimneys Required for Different Fuels 734
Table of Size of Chimneys ris
Protection of Chimney from Lightning 736
Some Tall Brick Chimneys 73%
Stability of Chimneys 738
Weak Chimneys 738
Steel Chimneys 740
Sheet-iron Chimneys 741
THE STEAM ENGINE.
Expansion of Steam 74
Mean and Terminal Absolute Pressures 149
Calculation of Mean Effective Pressure
PAGE
744
Work of Steam in a Single Cylinder 746
Measures for Comparing the Duty of Engines 748
Efficiency, Thermal Units per Minute 749
Real Ratio of Expansion 750
Effect of Compression 751
Clearance in Low and High Speed Engines 751
Cylinder-condensatlon 752
Water-consumption of Automatic Cut-off Engines 753
Experiments on Cylinder-condensation 753
Indicator Diagrams 754
Indicated Horse-power 755
Rules for Estimating Horse-power 755
Horse-power Constant 756
Errors of Indicators 756
Table of Engine Constants 756
To Draw Clearance on Indicator-diagram 759
To Draw Hyperbolic Curve on Indicator-diagram 759
Theoretical Water Consumption 760
Leakage of Steam 761
Compound Engines.
Advantages of Compounding 762
Woolf and Receiver Types of Engines 762
Combined Diagrams 764
Proportions of Cylinders inCompound Engines 765
Receiver Space 766
Formula for Calculating Work of Steam $r 67$
Calculation of Diameters of Cylinders r68
Triple-expansion Engines 769
Proportions of Cylinders 769
Annular Ring Method r69
Rule for Proportioning Cylinders 771
Types of Three-stage Expansion Engines \%71
Sequence of Cranks สi
Velocity of Steam Through Passages \% 2
Quadruple Expansion Engines 7r2
Diameters of Cylinders of Marine Engines ヶ73
Progress in Steam-engines 773
A Double-tandem Triple-expansion Engine 773
Principal Engines, World's Columbian Exhibition, 1893 774
Steam Engine Economy.
Economic Performance of Steam Engines 775
Feed-water Consumption of Different Types 775
Sizes and Calculated Performances of Vertical High-speed Engines. 777
Most Economical Point of Cut-off 777
Type of Engine Used when Exhaust-steam is used for Heating 780
Comparison of Compound and Single-cylinder Engines 780
Two-cylinder and Three-cylinder Engines r81
Effect of Water in Steam on Efficiency 781
Relative Commercial Economy of Compound and Triple-expansion Engines 781
Triple-expansion Pumping-engines 782
Test of a Triple-expansion Engine with and without Jackets 783
Relative Economy of Engines under Variable Loads 783
Efficiency of Non-condensing Compound Engines 784
Economy of Engines under Varying Loads 784
Steam Consumption of Various Sizes 785
Steam Consumption in Small Engines 786
Steam Consumption at Various Speeds 786
Limitation of Engine Speed r87
Influence of the Steam Jacket 787
Counterbalancing Engines 788
Preventing Vibrations of Engines 789
Foundations Embedded in Air 789
Cost of Coal for Steam-power r89
PAGE
Storing Steam Heat 789
Cost of Steam-power
Cost of Steam-power 790 790
Rotary Steam-engines.
Steam Turbines 791
The Tower Spherical Engine 792
Dimensions of Parts of Engines.
Cylinder 792
Clearance of Piston 792
Thickness of Cylinder 792
Cylinder Heads 794
Cylinder-head Bolts 795
The Piston 795
Piston Packing-rings 796
Fit of Piston-rod 796
Diameter of Piston-rods 797
Piston-rod Guides r98
The Connecting-rod 799
Connecting-rod Ends 800
Tapered Connecting-rods 801
The Crank-pin 801
Crosshead-pin or Wrist-pin 804
The Crank-arm 805
The Shaft, Twisting Resistance 806
Resistance to Bending 808
Equivalent Twisting Moment 808
Fly-wheel Shafts 809
Length of Shaft-bearings 810
Crank-shafts with Centre-crank and Double-crank Arms 813
Crank-shaft wlth two Cranks Coupled at 90° 814
Talve-stem or Valve-rod 815
Size of Slot-link 815
The Eccentric 816
The Eccentric-rod 816
Reversing-gear 816
Engine-frames or Bed-plates 817
Fly-wheels.
Weight of Fly-wheels 817
Centrifugal Force in Fly-wheels 820
Arms of Fly-wheels and Pulleys 820
Diameters for Various Speeds 821
Strains in the Rims 822
Thickness of Rims 823
A Wooden Rim Fly-wheel 824
Wire-wound Fly-wheels 824
The Slide-valve.
Definitions, Lap, Lead, etc. 824
Sweet's Valve-diagram 826
The Zeuner Valve-diagram 827
Port Opening 828
Lead 829
Inside Lead 829
Ratio of Lap and of Port-opening to Valve-travel 829
Crank Angles for Connecting-rods of Different Lengths. 830
Relative Motions of Crosshead and Crank 831
Periods of Admission or Cut-off for Various Laps and Travels. 831
Diagram for Port-opening, Cut-off, and Lap 832
Piston-valves 834
Setting the Valves of an Engine 834
To put an Engine on its Centre. 834
Link-motion 834
Governors.
Pendulum or Fly-ball Governors 836
To Change the Speed of an Engine 837
PAGE
Fly-wheel or Shaft-governors 838
Calculation of Springs for Shaft-governors 838
Condensers, Air-pumps, Circulating-pumps, etc.
The Jet Condenser 839
Ejector Condensers 840
The Surface Condenser 840
Condenser Tubes 840
Tube-plates. 841
Spacing of Tubes 841
Quantity of Cooling Water 841
Air-pump 841
Area through Valve-seats 842
Circulating-pump 843
Feed-pumps for Marine-engines 843
An Evaporative Surface Condenser. 844
Continuous Use of Condensing Water 844
Increase of Power by Condensers. 846
Evaporators and Distillers 847
GAS, PETROLEUM, AND HOT-AIR ENGINES.
Gas-engines. 847
Efficiency of the Gas-engine 848
Tests of the Simplex Gas Engine 848
A $3: 0-\mathrm{H} . \mathrm{P}$. Gas engine. 848
Test of an Otto Gas-engine. 849
Temperatures and Pressures Developed 849
Test of the Clerk Gas-engine. 849
Combustion of the Gas in the Otto Engine. 849
Use of Carburetted Air in Gas-engines 849
The Otto Gasoline-engine. 850
The Priestman Petroleum-engine 850
Test of a 5-H.P. Priestman Petroleum-engine. 850
Naptha-engines 851
Hot-air or Caloric-engines. 851
Test of a Hot-air Engine 851
LOCOMOTIVES.
Efficiency of Locomotives and Resistance of Trains 851
Inertia and Resistance at Increasing Speeds 853
Efficiency of the Mechanism of a Locomotive 854
Size of Locomotive Cylinders. 854
Size of Locomotive Boilers 855
Qualities Essential for a Free-steaming Locomotive 855
Wootten's Locomotive 855
Grate-surface, Smoke-stacks, and Exhaust-nozzles for Locomotives 855
Exhaust Nozzles 856
Fire-brick Arches 856
Size, Weight, Tractive Power, etc. 856
Leading American Types. 858
Steam Distribution for High Speed 858
Speed of Railway Trains 859
Dimensions of Some American Locomotives. 859-862
Indicated Water Consumption 862
Locomotive Testing Apparatus 863
Waste of Fuel in Locomotives 863
Advantages of Compounding'. 863
Counterbalancing Locomotives 864
Maximum Safe Load on Steel Rails S65
Narrow-guage Railways. 865
Petroleum-burning Locomotives 865
Fireless Locomotives 866
SHAFTING.
Diameters Resist Torsional Strain 867
Deflection of Shafting. 868
Horse-power Transmitted by Shafting. 869
Table for Laying Out Shafting 871

CONTENTE

PULLEYS.

Proportions of Pulleys PAGE
Convexity of Pulleys 874
Cone or Step Pulleys 874
BELTINA.
Theory of Belts and Bands 876
Centrifugal Tension 876
Belting Practice, Formulæ for Belting. 87%
Horse-power of a Belt one inch wide 873
A. F. Nagle's Formula 878
Width of Belt for Given Horse-power. 879
Taylor's Rules for Belting 880
Notes on Belting 882
Lacing of Belts. 883
Setting a Belt on Quarter-twist 883
To Find the Length of Belt 884
To Find the Angle of the Arc of Contact. 884
To Find the Length of Belt when Closely Rolled 884
To Find the Approximate Weight of Belts. 884
Relations of the Size and Speeds of Driving and Driven Pulleys 884
Evils of Tight Belts 885
Sag of Belts 885
Arrangements of Belts and Pulleys 885
Care of Belts. 886
Strength of Belting. 886
Adhesion, Independent of Diameter 886
Endless Belts 886
Belt Data 886
Belt Dressing. 887
Cement for Cloth or Leather 88\%
Rubber Belting. 887
GEARING.
Pitch, Pitch-circle, etc 887
Diametral and Circular Pitch 888
Chordal Pitch 889
Diameter of Pitch-line of Wheels from 10 to 100 Teeth. 889
Proportions of Teeth. 889
Proportion of Gear-wheels 891
Width of Teeth 891
Rules for Calculating the Speed of Gears and Pulleys 891
Milling Cutters for Interchangeable Gears 892
Forms of the Teeth.
The Cycloidal Tooth 892
The Involute Tooth 894
Approximftion by Circular Arcs 896
Stepped Gears 897
Twisted Teeth 897
Spiral Gears 897
Worm Gearing 89~
Teeth of Bevel-wheels 898
Annular and Differential Gearing 898
Efficiency of Gearing 899
Strength of Gear Teeth.
Various Formulæ for Strength 900
Comparison of Formulæ 903
Maximum Speed of Gearing 905
A Heavy Machine-cut Spur-gear 905
Frictional Gearing 905
Frictional Grooved Gearing 906
HOISTING.
Weight and Strength of Cordage 906
Working Strength of Blocks 906
PAGE
Efficiency of Chain-blocks 907
Proportions of Hooks 907
Power of Hoisting Engines 903
Effect of Slack Rope on Strain in Hoisting 908
Limit of Depth for Hoisting 908
Large Hoisting Records 908
Pneumatic Hoisting 909
Counterbalancing of Winding-engines 909
Belt Conveyors 911
Bands for Carrying Grain 911
Cranes.
Classification of Cranes 911
Position of the Inclined Brace in a Jib Crane 912
A Large Travelling-crane 912
A 150-ton Pillar Crane 912
Compressed-air Travelling Cranes 912
Wire-rope Haulage.
Self-acting Inclined Plane 913
Simple Engine Plane 913
Tail-rope System. 913
Endless Rope System 914
Wire-rope Tramways 914
Suspension Cableways and Cable Hoists 915
Stress in Hoisting-ropes on Inclined Planes 915
Tension Required to Prevent Wire Slipping on Drums 916
Taper Ropes of Uniform Tensile Strength 916
Effect of Various Sizcd Druins on the Life of Wire Ropes 917
WIRE-ROPE TRANSMISSION.
Elastic Limit of Wire Ropes 917
Bending Stresses of Wire Ropes 918
Horse-power Transmitted 919
Diameters of Minimum Sheaves 919
Deflections of the Rope 920
Long-distance Trausmission. 921
ROPE DRIVING.
Formulæ for Rope Driving 929
Horse-power of Transmission at Various Speeds 924
Sag of the Rope Between Pulleys 925
Tension on the Slack Part of the Rope 925
Miscellaneous Notes on Rope-driving 926
FRICTION AND LUBRICATION.
Coefficient of Friction 928
Rolling Friction 928
Friction of Solids 928
Friction of Rest 928
Laws of Unlubricated Friction 928
Friction of Sliding Steel Tires 998
Coefficient of Rolling Friction 929
Laws of Fluid Friction 929
Angles of Repose 929
Friction of Motion 928
Coefficient of Friction of Journal 930
Experiments on Friction of a Journal. 931
Coefficients of Friction of Journal with Oil Bath 932
Coefficients of Friction of Motion and of Rest 932
Value of Anti-friction Metals 932
Cast-iron for Bearings 933
Friction of Metal Under Steam-pressure 93!)
Morin's Laws of Friction 933
PAGE
Laws of Friction of well-lubricated Journals 934
Allowable Pressures on Bearing-surface 935
Oil-pressure in a Bearing 937
Friction of Car-journal Brasses 937
Experiments on Overheating of Bearings 938
Moment of Friction and Work of Friction 938
Pivot Bearings 939
The Schiele Curve 939
Friction of a Flat Pivot-bearing. 939
Mercury-bath Pivot 940
Ball Bearings 940
Friction Rollers 940
Bearings for Very High Rotative Speed 911
Friction of Steam-engines 941
Distribution of the Friction of Engines. 941
Lubrication.
Durability of Lubricants 942
Qualifications of Lubricants 943
Amount of Oil to run an Engine 943
Examination of Oils. 944
Penna. R. R. Specifications. 944
Solid Lubricants 945
Graphite, Soapstone, Metaline 945
THE FOUNDRY.
Cupola Practice 946
Charging a Cupola 948
Charges in Stove Foundries 949
Results of Increased Driving 949
Pressure Blowers 950
Loss of Iron in Melting 950
Use of Softeners 950
Shrinkage of Castings 951
Weight of Castings from Weight of Pattern 952
Moulding Sand 952
Foundry Ladles 952
THE MACHINE SHOP.
Speed of Cutting Tools 953
Table of Cutting Speeds 954
Speed of Turret Lathes 954
Forms of Cutting Tools 955
Rule for Gearing Lathes 955
Change-gears for Lathes 956
Metric Screw-threads 956
Setting the Taper in a Lathe. 956
Speed of Drilling Holes 956
Speed of Twist-drills 957
Milling Cutters 957
Speed of Cutters 958
Results with Milling-machines 959
Milling with or Against Feed 960
Milling-machine vs. Planer 960
Power Required for Machine Tools 960
Heavy Work on a Planer. 960
Horse-power to run Lathes 961
Power used by Machine Tools 963
Power Required to Drive Machinery 964
Power used in Machine-shops 965
Abrasive Processes.
The Cold Saw 966
Reese's Fusing-disk. 966
Cutting Stone with Wire 960
The Sand-blast 966
Emery-wheels 967-969
Grịndstones. 968-970

Various Tools and Processes.

PAGE
Taps for Machine-sorews 970
Tap Drills. 971
Taper Bolts, Pins, Reamers, etc 972
Punches, Dies, Presses. 972
Clearance Between Punch and Die 972
Size of Blanks for Drawing-press 973
Pressure of Drop-press. 973
Flow of Metals 973
Forcing and Shrinking Fits 973
Efficiency of Screws 974
Powell's Screw-thread. 9\%
Proportioning Parts of Machine 9\%
Keys for Gearing, etc. $9 \pi 5$
Holding-power of Set-screws $9 \pi 7$
Holding-power of Keys. 978
DYNAMOMETEIRS.
Traction Dynamometers 978
The Prony Brake. 978
The Alden Dynamometer 979
Capacity of Friction-brakes. 980
Transmission Dynamometers 980
ICE MAKING OR REFRIGERATING MACHINES.
Operations of a Refrigerator-machine 981
Pressures, etc., of Available Liquids 98:
Ice-melting Effect 98.3
Ether-machines 98:3
Air-machines. 983
Ammonia Compression-machines 98:
Ammonia Absorption-machines 984
Sulphur-dioxide Machines. $98{ }^{\circ}$
Performance of Ammonia Compression-machines. 980°
Economy of Ammonia Compression-machines. 997
Machines Using Vapor of Water. 988
Efficiency of a Refrigerating machine 983
Test Trials of Refrigerating-machines 990
Temperature Range. 991
Metering the Ammonia 99:2
Properties of Sulphur Dioxide and Ammonia Gas 992
Properties of Brine used to absorb Refrigerating Effect. 994
Chloride-of-calcium Solution. 994
Actual Performances of Refrigerating Machines.
Performance of a 75-tou Refrigerating-machine. 994, 998
Cylinder-heating. 997
Tests of Ammonia Absorption-machine. 997
Ammonia Compression-machine, Results of Tests 999
Means for Applying the Cold. 999
Artificial Ice-manufacture.
Test of the New York Hygeia Ice-making Plant. 1000
MARINE ENGINEERING.
Rules for Measuring Dimensions and Obtaining Tonnage of Vessels 1001
The Displacement of a Vessel 1001
Coefficient of Fineness 100\%
Coefficient of Water-lines 1002
Resistance of Ships. 1002
Coefficient of Performance of Vessels 100:3
Defects of the Commion Formula for Resistance 1003
Rankine's Formula 1003
Dr. Kirk's Method 1004
To find the I.H.P. from the Wetted Surface 1005
E. R. Mumford's Method. 1006
Relative Horse-power required for different Speeds of Vassels. 1006
PAGE
Resistance per Horse-power for different Speeds 1006
Results of Trials of Steam-vessels of Various Sizes 1007
Speed on Canals, 1008
Results of Progressive Speed-trials in Typical Vessels 1008
Estimated Displacement, Horse-power, etc., of Steam-vessels of Various Sizes. 1009
The Screw-propeller.
Size of Screw. 1010
Propeller Coefficients 1011
Efficiency of the Propeller 1012
Pitch-ratio and Slip for Screws of Standard Form. 1012
Results of Recent Researches. 1013
The Paddle-wheel.
Paddle-wheel with Radial Floats 1013
Feathering Paddle-wheels 1013
Efficiency of Paddle-wheels. 1014
Jet-propulsion.
Reaction of a Jet 1015
Recent Practice in Marine Engines.
Forced Draught 1015
Boilers.. 1015
Piston-valves. 1016
Steam-pipes 1016
Auxiliary Supply of Fresh-water Evaporators. 1016
Weir's Feed-water Heater. 1016
Passenger Steamers fitted with Twin-screws. 1017
Comparative Results of Working of Marine-engine, 1872, 1881, and 1891. 1017
Weight of Three-stage Expansion-engines 1017
Particulars of Three-stage Expansion-engines. 1018
CONSTRUCTION OF BUILDINGS.
Walls of Warehouses, Stores, Factories, and Stables. 1019
Strength of Floors, Roofs, and Supports 1019
Columns and Posts 1022
Fireproof Buildings 1020
Iron and Steel Columns 1020
Lintels, Bearings, and Supports 1020
Strains on Girders and Rivets. 1020
Maximum Load on Floors. 1021
Strength of Floors 1021
Safe Distributed Loads on Southern-pine Beams 1023
ELECTRICAL ENGINEERING.
Standards of Measurement.
C. G. S. System of Physical Measurement $10 \% 4$
Practical Units used in Electrical Calculations 1024
Relations of Various Units. 1025
Equivalent Electrical and Mechanical Units 1026
Analogies between Flow of Water and Electricity 102̃
Analogy between the Ampere and Miner's Inch 1027
Electrical Resistance.
Laws of Electrical Resistance 1028
Equivalent Conductors 1028
Electrical Conductivity of Different Metals and Alloys 1028
Relative Conductivity of Different Metals 1029
Conductors and Insulators 1029
Resistance Varies with Temperature 1029
Annealing 1029
Standard of Resistance of Copper Wire 1030
Electric Currents.
Ohm's Law 1030
Divided Circuits 1031
PAGE
Conductors in Series 1031
Internal Resistance 1031
Joint Resistance of Two Branches 1032
Kirchhoff's Laws 1032
Power of the Circuit 1032
Heat Generated by a Current 1032
Heating of Conductors 1033
Heating of Wires of Cables. 1033
Copper-wire Table 1035
Heating of Coils 1036
Fusion of Wires 1037
Electric Transmission.
Section of Wire required for a Given Current 1038
Constant Pressure 1038
Short-circuiting 1039
Economy of Electric Transmission 1039
Table of Electrical Horse-powers 1041
Wiring Formulæ for Incandescent Lighting 1042
Wire Table for 100 and 500 Volt Circuits 1043
Cost of Copper for Long-distance Transmission 1044
Weight of Copper for Long-distance Transmission 1044
Efficiency of Long-distance Transmission 1045
Systems of Electrical Distribution 1046
Efficiency of a Combined Engine and Dynamo. 1047
Electrical Efficiency of a Generator and Motor 1047
Efficiency of an Electrical Pumping Plant. 1048
Electric Railways.
Test of a Street-railway Plant 1048
Electric Lighting.
Life of Incandescent Lamps 1049
Life and Efficiency Tests of Lamps 1049
Street Lighting 1049
Lighting-power of Arc-lamps 1050
Candle-power of the Arc-light 1050
Electric Welding 1051
Electric Heaters. 1052
Electric Accumulators or Storage-batteries.
Sizes and Weights of Storage-batteries 1054
Use of Storage-batteries in Power and Light Stations 1055
Working Current of a Storage-cell 1055
Electro-chemical Equivalents 1056
Electrolysis 1056
Electro-magnets.
Units of Electro-magnetic Measurement 1057
Lines of Loops of Force 1058
Strength of an Electro-magnet 1058
Force in the Gap between Two Poles of a Magnet 10.59
The Magnetic Circuit. 1059
Determining the Polarity of Electro-magnets 1059
Dynamo-Electric Machines.
Kinds of Dynamo-electric Machines as regards Manner of Winding 1060
Current Generated by a Dynamo-electric Machine 1060
Torque of an Armature 1061
Electro-motive Force of the Armature Circuit. 1061
Strength of the Magnetic Field 1062
Application to Designing of Dynamos 1063
Permeability 1064
Permissible Amperage for Magnets with Cotton-covered Wire 1065
Formulæ of Efficiency of Dynamos 1065
The Electric Motor. 1066
Table of Standard Belted Motors and Generators 1067

APPENIIIX.

Strength of Timber.
Safe Load on White-oak Beams 1069
Mathematics.
Formula for Interpolation 1070
Maxima and Minima without the Calculus 1070
Riveted Joints.
Pressure Required to Drive Hot Rivets $10 \pi 0$
Heating and Ventilation.
Capacities for Hot-blast or Plenum Heating with Fans and Blowers. 1071
Water-wheels.
Water-power Plants Operating under High Pressure. 1071
Formulæ for Power of Jet Water-wheels 10ヶ̃2
Gas Fuel.
Composition, Energy, etc., of Various Gases 1072
Steam-boilers.
Rules for Steam-boiler Construction 1073
The Steam-engine.
Current Practice in Engine Proportions 1074
Work of Steam-turbines 1075
Relative Cost of Different Sizes of Engines 10\%5
Locomotives.
Resistance of Trains 1075
Performance of a High-speed Locomotive 1076
Locomotive Link Motion 10π
Gearing.
Efficiency of Worm Gearing 1078

NAMES AND ABBREVIATTONS OF PERIODICALS and text-books frequently referred to IN THIS WORK.

Am. Mach. American Machinist.
App. Cyl. Mech. Appleton's Cyclopædia of Mechanics, Vols. I and II.
Bull. I. \& S. A. Bulletin of the American Iron and Steel Association (Philadelphia).
Burr's Elasticity and Resistance of Materials.
Clark, R T. D. D. K. Clark's Rules, Tables, and Data for Mechanical Engineers.
Clark, S. E. D. K. Clark's Treatise on the Steam-engine.
Engg. Engineering (London).
Eng. News. Engineering News.
Engr. The Engineer (London).
Fairbairn's Useful Information for Engineers.
Flynn's Irrigation Canals and Flow of Water.
Jour. A. C. I. W. Journal of American Charcoal Iron Workers' Association. Jour. F. I. Journal of the Franklin Institute.
Kapp's Electric Transmission of Energy.
Lauza's Applied Mechanics.
Merriman's Strength of Materials.
Modern Mechanism. Supplementary volume of Appleton's Cyclopædia of Mechanics.
Proc. Inst. C. E. Proceedings Institution of Civil Engineers (London).
Proc. Inst. M. E. Proceedings Institution of Mechanical Engineers (London.
Peabody's Thermodynamics.
Proceedings Engineers' Club of Philadelphia.
Rankine, S. E. Rankine's The Steam Engine and other Prime Movers.
Rankine's Machinery and Millwork.
Rankine, R. T. D. Rankine's Rules, Tables, and Data.
Reports of U. S. Test Board.
Reports of U. S. Testing Machine at Watertown, Massachusetts.
Rontgen's Thermodynamics.
Seaton's Manual of Marine Engineering.
Hamilton Smith, Jr.'s Hydraulics.
The Stevens Indicator.
Thrmpson's Dynamo-electric Machinery.
Thurston's Manual of the Steam Engine.
Thurston's Materials of Engineering.
Trans. A. I. E. E. Transactions American Institute of Electrical Engineers.
Trans. A. I. M. E. Transactions American Institute of Mining Engineers.
Trans. A. S. C. E. Transactions American Society of Civil Engineers.
Trans. A. S. M. E. Transactions A merican Soc'ty of Mechanical Engineers.
Trantwine's Civil Engineer's Pocket Book.
The Locomotive (Hartford, Connecticut).
Unwin's Elements of Machine Design.
Weishach's Mechavics of Engineering.
Wood's Resistance of Materials.
Wood's 'Thermodynamics.

MATHEMATICS.

Arithmetical and Algebraical Signs and Abbreviations.

+ plus (addition)
+ positive.
- minus (subtraction)
- negative.
\pm plus or minus.
minus or plus.
$=$ equals
\times multiplied by.
$a b$ or $a . b=a \times b$.
\div divided by.
divided by.
$\frac{a}{b}=a / b=a \div b . \quad 15-16=\frac{15}{16}$.
$.2=\frac{2}{10} ; .002=\frac{2}{1000}$.
\checkmark square root.
$\sqrt[3]{ }$ cube root.
$\sqrt[4]{4}$ th root.
$:$ is to, :: so is, : to (proportion).
$2: 4:: 3: 6$, as 2 is to 4 so is 3 to 6 .
: ratio; divided by.
$2: 4$, ratio of 2 to $4=2 / 4$.
\therefore therefore.
$>$ greater than.
$<$ less than
- square.

O round.

- degrees, arc or thermometer.
' minutes or feet.
" seconds or inches.
"/" "" accents to distinguish letters, as $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$.
$a_{1}, a_{2}, a_{3}, a_{b}, c_{c}$, read $a \operatorname{sub} 1, a \operatorname{sub} b$, etc.
() [] $\}$ \qquad vincula, denoting that the numbers enclosed are to be taken together ; as, $(a+b) c=\overline{4+3} \times 5=35$.
a^{2}, a^{3}, a squared, a cubed.
a^{n}, a raised to the nth power.
$a^{\frac{2}{3}}=\sqrt[3]{a^{2}}, a^{\frac{3}{2}}=\sqrt{a^{3}}$.
$a^{-1}=\frac{1}{a}, a^{-2}=\frac{1}{a^{2}}$.
$10^{9}=10$ to the 9 th power $=1,000,000,-$ 000.
$\sin . a=$ the sine of α.
$\sin .^{-1} a=$ the arc whose sine is a. $\sin . a^{-1}=\frac{1}{\sin . a}$
log. = logarithm.
$\log \cdot$ or hyp. log. $=$ hyperbolic logarithm.
\angle angle.
right angle.
\perp perpendicular to.
sin., sine.
cos., cosine.
tang., or tan., tangent.
sec., secant.
versin., versed sine.
cot., cotangent.
cosec., cosecant.
covers., co-versed sine.
In Algebra, the first letters of the alphabet, a, b, c, d, etc., are generally used to denote known quantities, and the last letters, w, x, y, z, etc., unknown quantities.

> Abbreviations and Symbols commonly used.
d, differential (in calculus).
integral (in calculus).
$\int_{\mathrm{b}}^{\mathrm{a}}$, integral between limits a and b.
Δ, delta, difference.
इ. sigma, sign of summation.
π, pi, ratio of circumference of circle
to diameter $=3.14159$.
g, acceleration due to gravity $=32.16$ ft. per sec.
Abbreviations frequently used in this Book.
L., l., length in feet and inches.
B., b., breadth in feet and inches.
D., d., depth or diameter.
H., h., height, feet and inches.
T., t., thickness or temperature.
V., v., velocity.
F., force, or factor of safety.
f., coefficient of friction.
E., coefficient of elasticity.
R., r., l'adius.
W., w., weight.
P., p., pressure or load.
H.P., horse-power.
I.H.P., indicated horse-power.
B.H.P., brake horse-power.
h. p., high pressure.
i. p., intermediate pressure.
l. p., low pressure.
A. W. G., American Wire Gauge
(Brown \& Sharpe).
B. W.G., Birmingham Wire Gauge.
r. p. m., or revs. per min., revolutious per minute.

ARITHMETIC.

The user of this book is supposed to have had a training in arithmetic as well as in elementary algebra. Only those rules are given here which are apt to be easily forgotten.

GREATEST COMMON MEASURE, OR GREATEST COMIION DIVISOR OF TWO NUIVBERS.

Rule.- Divide the greater number by the less; then divide the divisor by the remainder, and so on, dividiug always the last divisor by the last remainder, until there is no remainder, and the last divisor is the greatest common measure required.

LEAST COMIMON MULTIPLE OF TWO OR MORE NUMBERS.

Rule.-Divide the given numbers by any number that will divide the greatest number of them without a remainder, and set the quotients with the undivided numbers in a line beneath.

Divide the secoud line as before, and so on, until there are no two numbers that can be divided; then the continued product of the divisors and last quotients will give the multiple required.

FRACTIONS.

To reduce a common fraction to its lowest terms.-Divide both terms by their greatest common divisor: $\frac{3}{5} \frac{9}{2}=\frac{3}{4}$.
To change an improper fraction to a mixed number. Divide the numerator by the denominator; the quotient is the whole number, and the remainder placed over the denominator is the fraction: $\frac{39}{4}=9 \frac{3}{4}$.

To change a mixed number to an improper fraction.Multiply the whole number by the denominator of the fraction; to the product add the numerator; place the sum over the denominator: $1 \frac{7}{8}=\frac{15}{8}$.

To express a whole number in the form of a fraction with a given denominator.-Multiply the whole number by the given denominator, and place the product over that denominator: $13=\frac{39}{3}$.
To reduce a compound to a simple fraction, also to multiply fractions.-Multiply the numerators together for a new numerator aud the denuminators together for a new denominator:

$$
\frac{2}{3} \text { of } \frac{4}{3}=\frac{8}{9}, \text { also } \quad \frac{2}{3} \times \frac{4}{3}=\frac{8}{9}
$$

To reduce a complex to a simple fraction. -The numerator and denominator must each first be given the form of a sinple fraction; then multiply the numerator of the upper fraction by the denominator of the lower for the new numerator, and the denominator of the upper by the numerator of the lower for the new denominator:

$$
\frac{\frac{2}{3}}{1 \frac{1}{3}}=\frac{\frac{2}{3}}{4}=\frac{6}{12}=\frac{1}{2}
$$

To divide fractions.--Reduce both to the form of simple fractions, invert the divisor, and proceed as in multiplication:

$$
\frac{2}{3} \div 1 \frac{1}{3}=\frac{2}{3} \div \frac{4}{3}=\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}
$$

Cancellation of fractions. - In compound or multiplied fractions, divide any numerator and any denominator by any number which will divide them both without remainder, striking out the numbers thus divided and setting down the quotients in their stead.

To reduce fractions to a common denominator.-Reduce each fraction to the form of a simple fraction; then multiply each numera-
tor by all the denominators except its own for the new numerators, and all the denominators together for the common denominator:

$$
\frac{1}{2}, \frac{1}{3}, \frac{3}{7}=\frac{21}{42}, \frac{14}{42}, \frac{18}{42} .
$$

To add fractions. - Reduce them to a common denominator, then add the numerators and place their sum over the common denominator:

$$
\frac{1}{2}+\frac{1}{3}+\frac{3}{\tilde{i}}=\frac{21+14}{42}+18=\frac{53}{42}=1 \frac{1}{42} .
$$

To subtract fractions.-Reduce them to a common denominator, subtract the numerators and place the difference over the common denominator:

$$
\frac{1}{2}-\frac{3}{7}=\frac{7-6}{14}=\frac{1}{14}
$$

DECIMALS.

To add decimals. - Set down the figures so that the decimal points are one above the other, then proceed as in simple addition: $18 . \% 5+.012=$ 18. 762 .

To subtract decimals. -Set down the figures so that the decimal points are one above the other, then proceed as in simple subtraction: 18.75 $-.012=18.138$

To multiply decimals.-Multiply as in multiplication of whole numbers, then point off as many decimal places as there are in multiplie: and multiplicand taken together: $1.5 \times .02=.030=.03$

To divide decimals.-Divide as in whole numbers, and point off in the quotient as many decimal places as those in the dividend exceed those in the divisor. Ciphers must be added to the dividend to make its decimal places at least equal those in the divisor, and as many more as it is desired to have in the quotient: $1.5 \div .25=6.0 .1 \div 0.3=0.10000 \div 0.3=0.3833+$

Decimal Equivalents of Fractions of One Inch.

1-64	.015605		. 265625		. 515625	$\begin{aligned} & 49-64 \\ & 25-32 \end{aligned}$	$\begin{aligned} & .765625 \\ & .78!25 \end{aligned}$
1-3:2	.03125	$17-64$ $9-32$					
3-64	. 0468%	19-64	. 2968 ¢ 5	$\begin{aligned} & 1 \tilde{i}-32 \\ & 35-54 \end{aligned}$. 531125		
1-16	.0625	- $=16$. 3125	$9-16$. 56485	$51-64$ $18-16$	$.7968 \% 5$
5-64	. 078125	21.64	. 228125	3i-64			
3-32	. 09335	11-32	. 34375	- $191-64$. 578125	53-64	. 828125
โ-64	. 1093\%5	23-64	. 3 293 5	139-64	. 6939375	$27-3 \cdot$ $55-64$	$\begin{aligned} & .84375 \\ & .8593 \% 5 \end{aligned}$
1-8	. 125	3-8	. 3 \% ${ }^{\text {a }}$	5-8	. 625	-5-64	$.8593 \% 5$
9-64	. 140625	25-64	. 390625	4!-64			
5-32	. 15625	13-32	. 40625	-11-32	$.640625$	5i-64 29.32	
11-64	. 171875	-7-64	. $4218 \% 5$	43-64	. $6718 \pi 5$	- 29.32	$\begin{aligned} & .90625 \\ & .9218 \pi 5 \end{aligned}$
3-16	. 1875	7-16	. 4375	11-16	. 6875	-	$\begin{aligned} & .9218 \pi 5 \\ & .93 \pi 5 \end{aligned}$
13-64	. 203125	29-64	. 453125	45-6t			
\% ${ }_{\text {T-32 }}^{1-64}$. 21875	15-32	. 46875	23-32	$\begin{aligned} & .603125 \\ & .718 \pi 5 \end{aligned}$		
10-64	. $2343 \% 5$	31-64	. 4843 \%	4 ${ }_{\text {\% }}$. 7343 \%	$31-32$ $63-64$. 968% .984375
1-4	. 25	1-2		3=4	. 75		

To convert a common fraction into a decimal.-Divide the numerator by the denominator, adding to the numerator as many ciphers prefixed by a decimal point as are necessary to gire the number of decimal places desired in the result: $1 / 3=1.0000 \div 3=0.2333+$

T'o convert a decimai into a common fraction.-Set down the decimal as a numerator, and place as the denominator 1 with as many ciphers annexed as there are decimal places in the numerator; erase the

decimal point in the numerator, and reduce the fraction thus formed to its lowest terms:

$$
.25=\frac{25}{100}=\frac{1}{4} ; .3333=\frac{3333}{10000}=\frac{1}{3}, \text { nearly. }
$$

To reduce a recurring decimal to a common fraction.Subtract the decimal figures that do not recur from the whole decinal including one set of recurring figures; set down the remainder as the numerator of the fraction, and as many nines as there are recurring figures, followed by as many ciphers as there are non-recurring figures, in the denominator. Thus:

Subtract

$$
.79054054, \text { the recurring figures being } 054 .
$$

$$
79
$$

$$
\frac{78975}{99900}=(\text { reduced to its lowest terms }) \frac{117}{148}
$$

COMPOUND OR DENOMINATE NUMBERS.

Reduction descending.- To reduce a compound number to a lower denomination. Multiply the number by as many units of the lower denomination as makes one of the higher.

3 yards to inches: $3 \times 36=108$ inches.
.04 square feet to square inches: $.04 \times 144=5.76 \mathrm{sq} . \mathrm{in}$.
If the given number is in more than one denomination proceed in steps from the highest denomination to the next lower, and so on to the lowest, adding in the units of each denomination as the operation proceeds.
$3 \mathrm{yds}, 1 \mathrm{ft} .7 \mathrm{in}$. to inches: $3 \times 3=9,+1=10,10 \times 12=120,+7=127 \mathrm{in}$.
Reduction ascending.-To express a number of a lower denomination in terms of a higher, divide the number by the numb r of units of the lower denomination contained in one of the next higher; the quotient is in the higher denomination, and the remainder, if any, in the lower.
127 inches to higher denomination.

$$
\begin{array}{r}
12 \% \div 12=10 \text { feet }+7 \text { inches; } 10 \text { feet } \div 3=3 \text { yards }+1 \text { foot. } \\
\text { Ans. } 3 \text { yds. } 1 \text { ft. } 7 \mathrm{in} .
\end{array}
$$

To express the result in decimals of the higher denomination, divide the given number by the number of units of the given denomination contained in one of the required denomination, carrying the result to as many places of decimals as may be desired.

$$
127 \text { inches to yards: } 127 \div 36=3 \frac{1}{36}=3.527 \%+\text { yards. }
$$

RATIO AND PROPORTION.

Ratio is the relation of one number to another, as obtained by dividing one by the other.

$$
\begin{aligned}
& \text { Ratio of } 2 \text { to } 4 \text {, or } 2: 4=2 / 4=1 / 2 \text {. } \\
& \text { Ratio of } 4 \text { to } 2 \text {, or } 4: 2=2 .
\end{aligned}
$$

Proportion is the equality of two ratios. Ratio of 2 to 4 equals ratio of $366,2 / 4=3 / 6:$ expressed thus, $2: 4:: 3: 6$; read. 2 is to 4 as 3 is to 6 . The first and fourth terms are called the extremes or outer terms, the second and third the means or inner terms.
The product of the means equals the product of the extremes:

$$
2: 4:: 3: 6 ; 2 \times 6=12 ; 3 \times 4=12 .
$$

Hence, given the first three terms to find the fourth, multiply the second and third terms together and divide by the first.

$$
2: 4:: 3: \text { what number? Aus. } \frac{4 \times 3}{2}=6
$$

Algebraic expression of proportion. $-a: b:: c: d ; \frac{a}{b}=\frac{c}{d} ; a d$ $=b c ;$ from which $a=\frac{b c}{d} ; d=\frac{b c}{a} ; b=\frac{a d}{c} ; c=\frac{a d}{b}$.

Mean proportional between two given numbers, 1st and 2d, is such a number that the ratio which the first bears to it equals the ratio which it bears to the second. Thus, $2: 4:: 4: 8 ; 4$ is a mean proportional between 2 and 8 . To find the mean proportional between two numbers, extract the square root of their product.

$$
\text { Mean proportional of } 2 \text { and } 8=\sqrt{2 \times 8}=4
$$

Single Rule of Three; or, finding the fourth term of a proportion when three terms are given. - Rule, as above, when the terms are stated in their proper order, multiply the second by the third and divide by the first. The difficulty is to state the terms in their proper order. The term which is of the same kind as the required or fourth term is made the third; the first and second must be like each other in kind and denomination. To determine which is to be made second and which first requires a little reasoning. If an inspection of the problem shows that the answer should be greater than the third term, then the greater of the other two given terms should be made the second term-otherwise the first. Thus, 3 men remove 54 cubic feet of rock in a day; how many men will remove in the same time 10 cubic yards ? The answer is to be men-make men third term; the answrer is to be more than three men, therefore make the greater quantity, 10 cubic yards, the second term; but as it is not the same denomination as the other term it must be reduced, $=2 \pi 0$ cubic feet. The proportion is then stated:
$54: 270:: 3: x$ (the required number); $x=\frac{3 \times 270}{54}=15$ men.
The problem is more complicated if we increase the number of given terms. Thus, in the above question, substitute for the words " in the same time " the words "in 3 days." First solve it as above, as if the work were to be done in the same time; then make another proportion, stating it thus: If 15 men do it in the same time, it will take fewer men to do it in 3 days; make 1 day the 2 d term and 3 days the first term. $3: 1:: 15$ men $: 5$ men.

Compound Proportion, or Double Rule of Three.-By this rule are solved quesions like the one just given, in which two or more statings are required by the single rule of three. In it as in the single rule, there is one third term, which is of the same kind and denomination as the fourth or required term, but there may be two or more first and second terms. Set down the third term, take each pair of terms of the same kind separately, and arrange them as first and second by the same reasoning as is adopted in the single rule of three, making the greater of the pair the second if this pair considered alone should require the answer to be greater.
Set down all the first terms one under the other, and likewise all the second terms. Multiply all the first terms together and all the second terms together. Multiply the product of all the second terms by the third term, and divide this product by the product of all the first terms. Example: If 3 men remove 4 cubic yards in one day, working 12 hours a day, how many men working 10 hours a day will remove 20 cubic yards in 3 days?

To abbreviate by cancellation, any one of the first terms may cancel either the third or any of the second terms; thus. 3 in first cancels 3 in third, making it 1,10 cancels into 20 making the latter 2 , which into 4 makes it 2 , which into 12 makes it 6 , and the figures remaining are only $1: 6:: 1: 6$.

INVOLUTION, OR POWERS OF NUIIBERS.

Involution is the continued multiplication of a number by itself a given number of times. The number is called the root, or first power, and the products are called powers. The second power is called the square and
the third power the cube. The operation may be indicated without being performed by writing a small figure called the index or exponent to the right of and a. little above the root; thus, $3^{3}=$ cube of $3,=27$.
To multiply two or more powers of the same number, add their exponents; thus, $2^{2} \times 2^{3}=2^{5}$, or $4 \times 8=32=2^{5}$.

To divide two powers of the same number, subtract their exponents; thus, $2^{3} \div 2^{2}=2^{1}=2 ; 2^{2} \div 2^{4}=2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$. The exponent may thus be negative. $2^{3}+2^{3}=2^{0}=1$, whence the zero power of any number $=1$. The first power of a number is the number itself. The exponent may be fractional, as $2^{\frac{1}{2}}, 2^{\frac{2}{3}}$, which means that the root is to be raised to a power whose exponent is the numerator of the fraction, and the root whose sign is the denominator is to be extracted (see Evolution). The exponent may be a decimal, as $2^{0.5}, 2^{1.5}$; read, two the five-tenths power; two to the one and five-tenths power. These powers are solved by means of Logarithms (which see).

First Nine Powers of the First Nine Numbers.

$\begin{gathered} 1 \mathrm{st} \\ \text { Pow' }^{\prime} \end{gathered}$	$\stackrel{\stackrel{2}{d}}{\text { Pow }}$	3d Power:	4th Power:	5th Power:	6th Power.	rth Power.	8th Power.	9th Power.
1	1	1	1	1	1	1	1	
2	4	8	16	$3{ }^{3}$	64	128	256	512
3	9	2\%	81	243	\% 29	218 í	6561	19683
4	16	64	256	1024	4096	16384	65536	262144
5	25	125	625	3125	15625	78125	390625	1953125
	36	216	1296	7776	46656	279936	16 r9616	10077696
\%	49	343	2401	1680\%	117649	823543	5764801	40353607
8	64	512	4096	3.2768	262144	2097152	16777216	13421\%\%28
9	81	\% 29	6561	59049	531441	4782969	43046721	$38 \% 420489$

The First Forty Powers of 2.

$\begin{gathered} \dot{0} \\ \stackrel{y}{0} \\ 0 \\ 0 \\ 0 \end{gathered}$		-	¢	-	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\square}}$		¢	\%	$\stackrel{\text { ¢ }}{\stackrel{1}{61}}$
0	1	9	512	18	262144	27	13421~728	36	687194\%6736
1	2	10	1024	19	524288	28	268435456	$3{ }^{3}$	137438953472
2	4	11	2048	20	$10485 \sim 6$	29	536870912	38	274877906944
3	8	12	4096	21	2097152	30	10ヶ3T41824	39	549755813888
4	16	13	8192	22	4194304	31	2147483648	40	109951162\% 7 T6
5	32	14	16384	23	8388608	32	4294967296		
6	64	15	32768	24	167 T 216	33	8589934592		
7	128	16	65536	25	33554432	34	171\%9869184		
8	256	17	131072	26	67108864	35	34350738368		

EVOLUTION.

Evolution is the finding of the root (or extracting the root) of any number the power of which is given.

The sign V indicates that the square root is to be extracted: $\sqrt[3]{\sqrt[4]{4}} \sqrt[n]{\sqrt[n]{2}}$, the cube root, 4 th root, nth root.

A fractional exponent with 1 for the numerator of the fraction is also used to indicate that the operation of extracting the root is to be performed; thus, $2^{\frac{1}{3}}, 2^{\frac{1}{3}}=\sqrt{2}, \sqrt[3]{2}$.

When the power of a number is indicated, the involution not being performed, the extraction of any root of that power may also be indicated by
dividing the index of the power by the index of the root, indicating the division by a fraction. Thus, extract the square root of the 6 th power of 2 :

$$
\sqrt{2^{6}}=2^{\frac{6}{2}}=2^{\frac{3}{1}}=2^{3}=8
$$

The 6th power of 2 , as in the table above, is $64 ; \sqrt{64}=8$.
Difficult problems in evolution are performed by logarithms, but the square root and the cube root may be extracted directly according to the rules given below. The 4th root is the square root of the square root. The 6 th root is the cube root of the square ront, or the square root of the cube root; the 9 th root is the cube root of the cube root; etc.
To Extract the Square Root.-Point off the given number into periods of two places each, beginning with units. If there are decimals, point these off likewise, beginning at the decimal point, and supplying as many ciphers as may be needed. Find the greatest number whose square is less than the first left-hand period, and place it as the first figure in the quotient. Subtract its square from the left-hand period, and to the remainder annex the two figures of the second period for a dividend. Double the first figure of the quotient for a partial divisor ; find how many times the latter is contained in the dividend exclusive of the right-hand figure, and set the figure representing that number of times as the second figure in the quotient, and annex it to the right of the partial divisor, forming the complete divisor. Multiply this divisor by the second figure in the quotient and subtract the product from the dividend. To the remainder bring down the next period and proceed as before, in each case doubling the figures in the root already found to obtain the trial divisor. Should the product of the second figure in the ront by the completed divisor be greater than the dividend, erase the second figure both from the quotient and from the divisor, and substitute the next smaller figure, or one small enough to make the product of the second figure by the divisor less than or equal to the dividend.

To extract the square root of a fraction, extract the root of numerator and denominator separately. $\sqrt{\frac{4}{9}}=\frac{2}{3}$, or first convert the fraction into a decimal, $\sqrt{\frac{4}{9}}=\sqrt{.4444+}=.6666+$.

To Extract the Cube Root.-Point off the number into periods of 3 figures each, beginning at the right hand, or unit's place. Point off decimals in periods of 3 figures from the decimal point. Find the greatest cube that does not exceed the left-hand period; write its root as the first figure in the required root. Subtract the cube from the left-hand period, and to the remainder bring down the next period for a dividend.
Square the first figure of the root; multiply by 300 , and divide the product into the dividend for a trial divisor; write the quotient after the first figure of the root as a trial second figure.
Complete the divisor by adding to 300 times the square of the first figure, 30 times the product of the first by the second figure, and the square of the second figure. Multiply this divisor hy the second figure; subtract the product from the remainder. (Shonld the product be greater than the remainder, the last figure of the root and the complete divisor are too large;
substitute for the last figure the next smaller number, and correct the trial divisor accordingly.)

To the remainder bring down the next period, and proceed as before to find the third figure of the root-that is, square the two figures of the root already found; multiply by 300 for a trial divisor, etc.

If at any time the trial divisor is less than the dividend, bring down another period of 3 figures, and place 0 in the root and proceed.

Tie cube root of a number will contain as many figures as there are perinds of 3 in the number.

Shorter Miethods of Extracting the Cube Root.-1. From Wentworth's Algebra:

After the first two figures of the root are found the next trial divisor is found by bringing down the sum of the 60 and 4 obtained in completing the preceding divisor, then adding the three lines connected by the brace, and annexing two ciphers. This method shortens the work in long examples, as is seen in the case of the last two trial divisors, saving the labor of squaring 123 and 1234. A further shortening of the work is made by obtaining the last two figures of the root by division, the divisor employed being three times the square of the part of the root already found; thus, after finding the first three figures:

$$
3 \times 123^{2}=45387|20498963| 45.1+
$$

The error due to the remainder is not sufficient to change the fifth figure of the root.
2. By Prof. H. A. Wood (Steverss Indicator, July, 1890):
I. Having separated the number into periods of three figures each, counting from the right, divide by the square of the nearest root of the first period, or first two periods; the nearest root is the trial root.
II. To the quotient obtained add twice the trial root, and divide by 3. This gives the root, or first approximation.
III. By using the first approximate root as a new trial root, and proceeding as before, a nearer approximation is obtained, which process may be repeated until the root has been extracted, or the approximation carried as far as desired.

Example.-Required the cube root of 20. The nearest cube to 20 is 3^{3}.

$$
\begin{aligned}
& \left.3^{2}=9\right) \frac{20.0}{2.2} \\
& \text { 3) } \frac{6}{8.1} \\
& \overline{2 .} \overline{7} 1 \mathrm{st} \mathrm{T.R.} \\
& \left.2.7^{2}=7.29\right) \frac{20.000}{2.743} \\
& 5.4 \\
& \text { 3) } \overline{8.143} \\
& \text { 2.714, 1st ap. cube root. } \\
& \left.2.714^{2}=7.365796\right) 20.0000000 \\
& 2.7152534 \\
& 5.428 \\
& \text { 3) } \overline{8.1432534} \\
& 2.71441782 \mathrm{~d} \mathrm{ap} \text {. cube root. }
\end{aligned}
$$

Remark.-In the example it will be observed that the second term, or first two figures of the root, were obtained by using for trial root the root of the first period. Using, in like manner, these two terms for trial root, we obtained four terms of the root; and these four terms for trial root gave seven figures of the root correct. In that example the last figure should be 7. Should we take these eight figures for trial root we should obtain at least fifteen figuses of the root correct.

To Extract a Higher Root than the Cube.-The fourth root is the square root of the square root; the sixth root is the cube root of the square root or the square root of the cube root. Other roots are most conveniently found by the use of logarithms.

ALLIGATION

shows the value of a mixture of different ingredients when the quantity and value of each is known.

Let the ingredients be a, b, c, d, etc., and their respective values per unit w, x, y, z, etc.

$$
\begin{aligned}
A & =\text { the sum of the quantities }=a+b+c+d, \text { etc. } \\
P & =\text { mean value or price per unit of } A . \\
A P & =a w+b x+c y+d z, \text { etc. } \\
P & =\frac{a v+b x+c y+d z}{A}
\end{aligned}
$$

PERMITATEON

shows in how many positions any number of things may be arranged in a row; thus, the letters a, b, c may be arranged in six positions, viz. abc, cucb, $c a b, c b a, b a c, b c a$.

Rule.-Multiply together all the numbers used in counting the things; thus, permutations of 1,2 , and $3=1 \times 2 \times 3=6$. In how many positions can 9 things in a row be placed?

$$
1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9=362880 .
$$

COMEBINATION

shows how many arrangements of a few things may be made out of a greater number. Rule : Set down that figure which indicates the greater number, and after it a series of figures dininishing by 1 , until as many are set down as the number of the few things to be taken in each combination. Then beginning under the last one set down said number of few things; then going backward set down a series diminishing by 1 until arriving under the first of the upper numbers. Multiply together all the upper numbers to form one product, and all the lower numbers to form anotlier; divide the upper product by the lower one.

How many combinations of 9 things can be made, taking 3 in each combination?

$$
\frac{9 \times 8 \times 7}{1 \times \frac{8}{2 \times 3}}=\frac{504}{6}=84
$$

ARITHIMETICAL PROGRESSION,

in a series of numbers, is a progressive increase or decrease in each successive number by the addition or subtraction of the same amount at each step, as $1,2,3,4,5$, etc., or $15,12,9,6$, etc. The numbers are called terms, and the equal increase or decrease the difference. Examples in arithmetical progression may be solved by the following formulæ:
Let $a=$ first term, $l=$ last term, $d=$ common difference, $n=$ number of terms, $s=$ sum of the terms:

$$
\begin{aligned}
l & =a+(n-1) d, & & -\frac{1}{2} d \pm \sqrt{2 d s+\left(a-\frac{1}{2} d\right)^{2}}, \\
& =\frac{2 s}{n}-a, & & =\frac{s}{n}+\frac{(n-1) d}{2} . \\
s & =\frac{1}{2} n[2 a+(n-1) d], & & =\frac{l+a}{2}+\frac{l^{2}-a^{2}}{2 d}, \\
& =(l+a) \frac{n}{2}, & & =\frac{1}{2} n[2 l-(n-1) d] . \\
a & =l-(n-1) d, & & =\frac{s}{n}-\frac{(n-1) d}{2}, \\
& =\frac{1}{2} d \pm \sqrt{\left(l+\frac{1}{2} d\right)^{2}-2 d s,} & & =\frac{2 s}{n}-l . \\
d & =\frac{l-a}{n-1}, & & =\frac{2(s-a n)}{n(n-1)}, \\
& =\frac{l^{2}-a^{2}}{2 s-l-a}, & & =\frac{2(n l-s)}{n(n-1)} . \\
n & =\frac{l-a}{d}+1, & & =\frac{d-2 a \pm \sqrt{(2 a-d)^{2}+8 d s}}{2 d}, \\
& =\frac{2 s}{l+a}, & & =\frac{2 l+d \pm \sqrt{(2 l+d)^{2}-8 d s}}{2 d} .
\end{aligned}
$$

GEOMIETRICAL PROGRESSION,

in a series of numbers, is a progressive increase or decrease in each successive number by the same multiplier or divisor at each step. as 1, 2. 4, 8, 16. etc., or $243,81,27,9$, etc. The common multiplier is called the ratio.

Let $a=$ first term, $l=$ last term, $r=$ ratio or constant multiplier, $n=$ number of terms, $n=$ any term, as 1st, 2d, etc., $s=$ sum of the terms:

$$
l=a r^{n-1}, \quad=\frac{a+(r-1) s}{r}, \quad=\frac{(r-1) s r^{n-1}}{r^{n}-1}
$$

$\log l=\log a+(n-1) \log r$,

$$
l(c-l)^{n-1}-\alpha(s-\alpha)^{n-1}=0
$$

$m=a r^{m-1} \quad \quad \log m=\log a+(m-1) \log r$.

$$
s=\frac{a\left(r^{n}-1\right)}{r-1}, \quad=\frac{r l-a}{r-1}, \quad=\frac{n-\sqrt[1]{1^{n}}-\sqrt[n-1]{a^{n}}}{n-\sqrt[1]{l}-^{n-\sqrt[1]{a}} \sqrt{a}}, \quad=\frac{l r^{n}-l}{r^{n}-r^{n-1}} .
$$

$$
\begin{array}{rlrl}
a=\frac{l}{r^{n-1}}, & =\frac{(r-1) s}{r^{n}} \frac{1}{-1} . & \log a=\log l-(n-1) \log r . \\
r=\sqrt[n-1]{\bar{a}}, & =\frac{s-a}{s-l} . & \log r=\frac{\log \frac{l-\log a}{n-1} .}{r^{n}-\frac{s}{a} r+\frac{s-a}{a}=0 .} & r^{n}-\frac{s}{s-l} r^{n-1}+\frac{l}{s-l}=0 . \\
n=\frac{\log l-\log a}{\log r}+1, & & =\frac{\log [a+(r-1) s]-\log a}{\log r}, \\
& =\frac{\log l-\log a}{\log (s-a)-\log (s-l)}+1, & =\frac{\log l-\log [l r-(r-1) s]}{\log r}+1 .
\end{array}
$$

Population of the United States.

(A problem in geometrical progression.)
Increase in 10 Annual Increase,

Year. 1860 1870 1880 1890 1895 1900

Population. 31,443,321 39.815,449* 50,155, 183 62,6:2,250
Est. 69, 733,000

- $77,652,000$

Years, per cent. per cent.

26.63	2.39
25.96	2.33
24.86	2.25
	Est. 2.174
Est. 24.0	" 2.174

Estimated Population in Each Year from 1860 to 1899.
(Based on the above rates of increase, in even thousands.)

The above table has been calculated by logarithms, as follows:

$$
\begin{aligned}
& \log r=\log l-\log a \div(n-1), \quad \log m=\log \alpha+(m-1) \log r
\end{aligned}
$$

Compound interest is a form of geometrical progression; the ratio being 1 plus the percentage.

[^0]
INTEREST AND DISCOUNT.

Interest is money paid for the use of money for a given time; the fac tors are :
p. the sum loaned. or the principal:
t, the time iu years;
r, the rate of interest;
i, the amount of interest for the given rate and time;
$a=p+i=$ the amount of the principal with interest at the end of the time.
Formulæ:

$$
\begin{aligned}
& i=\text { interest }=\text { principal } \times \text { time } \times \text { rate per cent }=i=\frac{p t r}{100} \\
& a=\text { amount }=\text { principal }+ \text { interest }=p+\frac{p t r}{100} \\
& r=\text { rate }=\frac{100 i}{p t} \\
& p=\text { principal }=\frac{100 i}{t r}=a-\frac{p t r}{100} ; \\
& t=\text { time }=\frac{100 i}{p r}
\end{aligned}
$$

If the rate is expressed decimally as a per cent,-thus, 6 per cent $=.06,-$ the formulæ becoine

$$
i=p \imath \cdot t ; a=p(1+r t) ; \quad r=\frac{i}{p t} ; \quad t=\frac{i}{p r} ; \quad p=\frac{i}{t r}=\frac{a}{1+r t}
$$

Rules for finding Interest. - Multiply the principal by the rate per annum divided by 100 , and by the time in years and fractions of a year.

If the time is given in days, interest $=\frac{\text { principal } \times \text { rate } \times \text { no } \text {. of days }}{365 \times 100}$.
In banks interest is sometimes calculated on the basis of 360 days to a year, or 12 months of 30 days each.

Short rules for interest at 6 per cent, when 360 days are taken as 1 year:
Multiply the principal by number of days and divide by 6000 .
Multiply the principal by number of months and divide by 200.
The interest of 1 dollar for one month is $1 / 2$ cent.

Interest of 100 Dollars for Different Times and Rates.

Ti	2\%	3\%	4\%	5\%	6\%	8\%	10\%
1 year	\$2.00	\$3.00	\$4.00	\$5.00	\$6.00	8.00	\$10.00
1 month	$16 \frac{2}{3}$	25	$33 \frac{1}{5}$	$41 \frac{2}{3}$	50	662	
1 day =	.0055 5°	.008:313	.01111 ${ }^{\text {² }}$. 01388	. $0166 \frac{2}{3}$.02922	
1 day $=\frac{1}{365}$ year	. 005479	. 008215	. 010950	. 01369	. 016438	. 02191	0.2\%

Discount is interest deducted for payment of money before it is due.
True discount is the difference between the amount of a debt payable at a future date without interest and its present worth. The present worth is that sum which put at interest at the legal rate wiil amount to the debt when it is due.

To find the present worth of amount due at furure date, divide the amount by the amount of $\$ 1$ placed at interest for the given time. The discount equals the amount minus the present worth.

What discount should be allowed on $\$ 103$ paid six months before it is due, interest being 6 per cent per anuum?

$$
\frac{103}{1+1 \times .06 \times \frac{1}{2}}=\$ 100 \text { present worth, discount }=3.00
$$

Bank discount is the amount deducted by a bank as interest on money loaned on promissory notes. It is interest calculated not on the actual sum loaned, hut on the gross amount of the note, from which the discount is deducted in advance. It is aiso calculated on the basis of 360 dares in the year, and for 3 (in some banks 4) days more than the time specified in the note. These are called days of grace, and the note is not payable till the last of these days. In some States days of grace have been abolished.

What discount will be deducted by a bank in discounting a note for $\$ 103$ payable 6 months hence ? Six months $=182$ days, add 3 days grace $=185$ dass ${ }^{103 \times} \frac{185}{6100}=\$ 3.1 \% 6$.

Compound Interest. - In compound interest the interest is added to the priucipal at the end of each year, (or shorter period if agreed upon).

Let $p=$ the principal, $r=$ the rate expressed decimally, $n=$ no of years, and a the amount:

$$
\begin{aligned}
& a=\text { amount }=p(1+r)^{n} ; r=\text { rate }=\sqrt[n]{\frac{a}{p}}-1 \\
& p=\text { principal }=\frac{a}{(1+r)^{n}} ; \text { no. of years }=n=\frac{\log a-\log p}{\log (1+r)}
\end{aligned}
$$

Compound Interest Table.

(Value of one dollar at compound interest, compounded yearly, at $3,4,5$, and 6 per cent, from 1 to 50 years.)

$\begin{aligned} & \dot{\oplus} \\ & \dot{\Xi} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	3\%	4\%	5\%	6\%	-	3\%	4\%	5\%	6\%
1	1.03	1.04	1.05	1.06	16	1.6047	1.8730	2.1829	2.5403
2	1.0609	1.0816	1.1025	1.1236	17	1.6528	$1.94 \% 9$	2.2920	2.6928
3	1.092\%	1.1249	$1.15 \% 6$	1.1910	18	1.7024	2.0258	2.4066	2.8543
4	1.1255	1.1699	1.2155	1.2625	19	1.7535	2.1068	25269	3.0256
5	1.1593	1.2166	1.2763	1.3382	20	1.8061	2.1911	2.6533	3.2071
6	1.1941	1.2653	1.3401	1.4185	21	1.8603	2.2787	2.7859	3.3995
7	1.2299	1.3159	$1.40 \% 1$	1.5036	22	1.9161	2.3699	2.925	3.6035
8	1.2668	1.3686	1.4774	1.5938	23	1.9736	24647	3.0715	3.8197
9	1.3048	1.4233	1.5513	1.6895	24	2.0328	2.5633	3.2251	40487
10	1.3439	1.4802	1.6289	1.15908	25	2.0937	2.6658	3.3864	4.2919
11	$1.38+2$	1.5394	1.7103	1.8983	30	$2.42 \% 2$	3.2434	4.3219	$5 \sim 435$
12	1.4258	1.6010	1.79.58	2.0122	35	2.8138	3.9460	5.5166	7.6861
13	1.4685	1.6651	1.8856	2.1329	40	3.2620	4.8009	70100	10.2858
14	1.5126	1.7317	1.9799	2.2609	45	3.7815	5.8410	8.9850	13.646
15	1.5580	1.8009	2.0189	2.3965	50	4.3838	7.1064	11.6 亿̃2	18.4190

At compound interest at 3 per cent money will double itself in $231 / 2$ years, at 4 per cent in $1 \pi 2 / 3$ years, at 5 per cent in 14.2 years, and at 6 per cent in 11.9 years.

EQUATION OF PAYMIENTS.

By equation of payments we find the equivalent or average time in which one payment should be made to cancel a number of obligations due at diffrrent dates; also the number of days upon which to calculate interest or discount upon a gross sum which is composed of several smaller sums payahle at different dates.

Rule.-Multiply each item by the time of its maturity in days from a fixed date, taken as a standard, and divide the sum of the products by the sim of the items: the result is the average time in days from the standard date.

A owes $\mathrm{B} \$ 100$ due in 30 days, $\$ 200$ due in 60 days, and $\$ 300$ due in 90 days. In how many days may the whole be paid in one sum of $\$ 600$?

$$
100 \times 30+200 \times 60+300 \times 90=42,000 ; 42,000 \div 600=r 0 \text { days, ans. }
$$

[^1]
PARTEAL PAYMENTS.

To compute interest on notes and bonds when partial payments have been made:

United States Rule.-Find the amount of the principal to the time of the first payment, and, subtracting the payment from it, find the amount of the remainder as a new principal to the time of the next payment.

It the payment is less than the interest, find the amount of the principal to the time when the sum of the payments equals or exceeds the interest due, and subtract the sum of the payments from this amount.

Proceed in this manner till the time of settlement.
Note.-The principles upon which the preceding rule is founded are:
1st. That payments must be applied first to discharge accrued interest, and then the remainder, if any, toward the discharge of the principal.

2d. That only unnaid principal can draw interest.
Mercantile Method.-When partial payments are made on short notes or interest accounts, business men commonly employ the following method:
Find the amount of the whole debt to the time of settlement; also find the amount of each payment from the time it was made to the time of settlement. Subtract the amount of payments from the amount of the debt; the remainder will be the balance due.

ANNUITIES.

An Annuity is a fixed sum of money paid yearly, or at other equal times agreed upon. The values of annuities are calculated by the principles of compound interest.

1. Let i denote interest on $\$ 1$ for a year, then at the end of. a year the amount will be $1+i$. At the end of n years it will be $(1+i)^{n}$.
2. The sum which in n years will amount to 1 is $\frac{1}{(1+i)^{n}}$ or $(1+i)^{-n}$, or the present value of 1 due in n years.
3. The amount of an annuity of 1 in any number of years n is $\frac{(1+i)^{n}-1}{i}$.
4. The present value of an annuity of 1 for any number of years n is $\frac{1-(1+i)^{-n}}{i}$.
5. The annuity which 1 will purchase for any number of years n is $\frac{i}{1-(1+i)^{-n}}$.
6. The annuity which would amount to 1 in n years is $\frac{i}{(1+i)^{n}-1}$.

Amounts, Present Values, etc., at 5\% Interest.

Years	(1) $(1+i)^{n}$	(2) $(1+i)^{-n}$	(3) $\frac{(1+i)^{n}-1}{i}$	$\left\lvert\, \begin{gathered} (4) \\ \frac{1-(1+i)^{-n}}{i} \end{gathered}\right.$	(5) $\left\|\frac{i}{1-(1+i)^{-n}}\right\|$	(6) $\frac{i}{(1+i)^{n}-1}$
1.	1.05	. 952381	1.	. 952381	1.05	
2	1.1025	. 90 ¢029	2.05	1.859410	.537805	.487805
3	1.157625	. 863838	3.1525	2.723248	. 367209	.317209
4.	1.215506	.822702	4.310125	3.545951	.282012	232012
	1.2 \%2882	. 783526	5.525631	4.329477	. 230975	1809ヶ5
6	1.340096	. 746215	6.801913	5.075692	. $19 \% 017$	$14 \% 018$
7	1.407100	. 710681	8.142008	5.7863i3	. 172820	.1228:20
8	1.474455	. $6 \sim 6839$	9.549109	6.463213	. 154722	$104 \pi 20$
9.	1.5513:8	. 644609	11.026564	7.107822	. 140690	. 090690
10.	1.628895	. 613913	12.5\%\%893	7.721735	. 129505	. 079505

ARITHMETIC.

TABLES FOR CALCULATING SINKIXG-FUNDS AND PRESENT VALUES.

Engineers and others connected with mumciual work and industrial enterprises often find it necessary to calculate payments to sinking-funds which will provide a sum of money sufficient to pay off a bond issue or other debt at the end of a given period, or to determme the present value of certain annual charges. The accompanying tables were computed by Mr. John W. Hill, of ('incinnati, Eng'g News, Jan. 25, 1894.
Table I (opposite page) shows the annual sum at various rates of interest required to net $\$ 1000$ in from 2 to 50 years, and Table II shows the present value at various rates of interest of an annual charge of $\$ 1000$ for from 5 to 50 years, at five-year intervals and for 100 years.

Table II.-Capitalization of Annuity of $\$ 1000$ for from 5 to 100 Years.

WEIGHTS AND MEASURES.

Long Measure, -Measures of Length.

| 12 inches | | 1 foot. |
| ---: | :--- | ---: | :--- |
| 3 feet | | $=1$ yard. |
| $5 \frac{1}{2}$ yards, or $16 \frac{1}{2}$ feet | | $=1$ rod, pole, or perch. |
| 40 poles, or 220 yards | | $=1$ furlong. |
| 8 furlongs, or 1760 yards. or 5280 feet | $=1$ mile. | |
| 3 miles | | $=$ league. |

Additional measures of length in occasional use : 1000 mils $=1$ inch; 4 inches $=1$ hand ; 9 inches $=1$ span ; $2 \frac{1}{2}$ feet $=1$ military pace ; 2 yards = 1 fathom.

Old Land Measure. - 7.92 inches $=1$ link; 100 links, or 66 feet, or 4 poles $=1$ chain; 10 chains $=1$ furlong; 8 furlongs $=1$ mile; 10 square chains $=1$ acre.

Nautical Measure.

$\left.\begin{array}{rl}6080.26 \text { feet, or } 1.15156 \text { stat }- \\ \text { ute miles }\end{array}\right\}$	$=1$ nautical mile, or knot.*
nautical miles 60 nautical miles, or 69.168 statute miles	
$=1$ league. 360 degrees	$=1$ degree (at the equator).
	$=$ circumference of the earth at the equator.

[^2]
Square Measure.-Measures of Surface.

144 square inches, or 183.35 circular inches
9 square feet
$30 \frac{1}{4}$ square yards, or $272 \frac{1}{4}$ square feet 40 square poles
4 roods, or 10 sq. chains, or 160 sq. poles, or 4840 sq. yards, or 43560 sq. feet,
640 acres
$\}=1$ square foot.
$=1$ square yard.
$=1$ square rod, pole, or perch.
$=1$ rood.

An acre equals a square whose side is 208.71 feet.
Circular Inch; Circular Nill. - A circular inch is the area of a circle 1 inch in diameter $=0.7854$ square inch.

1 square inch $=1.2732$ circular inches.
A circular mil is the area of a circle 1 mil, or .001 inch in diameter. 1000^{2} or $1.000,000$ circular \cdot mils $=1$ circular inch.
1 square inch $=1,2 \% 3,239$ circular mils.
The mil, and circular mil are used in electrical calculations involving the diameter and area of wires.

Solid or Cubic Measure.-Measures of Volume.

$$
1728 \text { cubic inches }=1 \text { cubic foot. }
$$

27 cubic feet $=1$ cubic yard.
1 cord of wood $=$ a pile, $4 \times 4 \times 8$ feet $=1: 8$ cubic feet. 1 perch of masonry $=16 \frac{1}{2} \times 1 \frac{1}{3} \times 1$ foot $=24 \frac{3}{4}$ cubic feet.

Liquid Measure.

| 4 gills | $=1$ pint. | |
| ---: | :--- | ---: | :--- |
| 2 pints | $=1$ quart. | |
| 4 quarts | $=1$ gallon $\left\{\begin{array}{l}\text { U. S. } 231 \text { cubic inches. } \\ \text { Eng. } 277.274 \text { cubic inches. } \\ 31 \frac{1}{2} \text { gallons }\end{array}\right.$ | $=1$ barrel. |
| 42 gallins | | $=1$ tierce. |
| 2 barres, or 63 gallous | $=1$ hogshead. | |
| 84 gallons, or 2 tierces | $=1$ puncheon. | |
| 2 hogsheads. or 126 gallons | $=1$ pipe or butt. | |
| 2 pipes, or 3 puncheons | $=1$ tun. | |

The U. S. gallon contains 231 cubic iuches; 7.4805 gallons $=1$ cubic foot. A cylinder 7 in. diam. and 6 in . high contains 1 gallon, very nearly, or 230.9 cubic inches. The British Imperial gallon contains 277.274 cubic inches $=1.20032 \mathrm{U}$. S. gallon.
The Miner's Inch.-(Western U.S. for measuring flow of a stream of water).

The term Miner's Inch is more or less indefinite. for the reason that California, water companies do not all use the same head above the centre of the aperture, and the inch varies from 1.36 to $1 . i 3$ cubic feet per minute each; but the most common measurement is through an aperture 2 inches high and whatever length is required, and through a plank $1 \frac{1}{4}$ inches thick. The lower edge of the aperture should be 2 inches above the bottom of the measuring-box, and the plank 5 inches high above the aperiure, thus making a 6 -inch head above the centre of the stream. Each square inch of this opening represents a miner`inch, which is equal to a flow of $1 \frac{1}{2}$ cubic feet per minute.

Apothecaries' Fluid Measure.

60 minims	
8 drachms, or $437^{\frac{1}{2}}$	
	$=1$ fluid drachm.
$=1$ fluid ounce.	

Dry Measure, U. S.
2 pints $=1$ quart.
8 quarts $=1$ peck.
4 pecks = 1 bushel.

[^3]The standard U. S. bushel is the Winchester bushel, which is in cylinder form, $18 \frac{1}{2}$ inches diameter and 8 inches deep, and contains $\$ 150.42$ cubic inches.

A struck bushel contains 2150.4^{2} cubic inches $=1.2445 \mathrm{cu} . \mathrm{ft} .: 1$ cubic foot $=0.803 .56$ struck bushel. A heaped bushel is a cylinder $18 \frac{1}{2}$ inches diameter and 8 inclies deep, with a heaped cone not less than 6 inches high. It is equal to $1 \frac{1}{4}$ struck bushels.

The British Imperial bushel is based on the Imperial gallon, and contains 8 such gallons, or 2218.192 cubic inches $=1.2837$ cubic feet. The English quarter $=8$ Imperial bushels.

Capacity of a cylinder in U.S. gallons $=$ square of diameter, in inches \times height in inches $\times .0034$. (Accurate within 1 part in 100,000 .)

Capacity of a cylinder in U.S. bushels = square of diameter in inches x height in inches $\times .000365 \%$.

Shipping Measure.

Register Ton.-For register tonnage or for measurement of the entire internal capacity of a vessel :

$$
100 \text { cubic feet }=1 \text { register ton. }
$$

This number is arbitrarily assumed to facilitate computation.
Shipping Ton.-For the measurement of cargo :

$$
\begin{aligned}
& 40 \text { cubic feet }=\left\{\begin{array}{l}
1 \text { U. S. shipping ton. } \\
31.16 \text { Imp. bushels. } \\
32.143 \mathrm{U} . \text {. }
\end{array}\right. \\
& 42 \text { cubic feet }=\left\{\begin{array}{l}
1 \text { British shipping ton. } \\
32.719 \text { Imp. bushels. } \\
33.75 \mathrm{U} . \text { S. }
\end{array}\right.
\end{aligned}
$$

Carpenter's Rule. - Weight a vessel will carry $=$ length of keel \times breadth at main beam \times depth of hold in feet $\div 95$ (the cubic feet allowed for a ton). The result will be the tonnage. For a double-decker instead of the depth of the hold take half the breadth of the beam.

Measures of Weight. - Avoirdupois, or Commercial Weight.

16 drachms, or $43 \pi .5$ grains $=1$ ounce, oz.
16 ounces, or $\% 00$ grains $=1$ pound, lb.
28 pounds $\quad=1$ quarter, qr
4 quarters
$=1$ hundredweight, cwt. $=112 \mathrm{lbs}$.
20 hundred weight
2000 pounds
2204.6 pounds
$=1$ ton of $2: 40$ pounds, or long ton.
$=1$ net, or short ton.
$=1$ metric ton.
1 stone $=14$ pounds ; 1 quintal $=100$ pounds.

Troy Weight.

24 grains	$=1$ pennyweight, dwt.
20 pennyweights	$=1$ ounce, oz. $=480$ grains.
12 ounces	$=1$ pound, $1 \mathrm{~b} .=5760$ grains.

Troy weight is used for weighing gold and silver. The grain is the same in Avoirdupois, Troy, and Apothecaries' weights. A carat, used in weigbing diamonds $=3.168$ grains $=.205$ gramme.

Apothecaries, Weight.

To determine whether a balance has unequal arms.After weighing an article and obtaining equilibrium, trauspose the article and the weights. If the balance is true, it will remain in equilibrium ; if untrue. the nan suspended from the longer arm will descend.

To welgh correctly on an incorrect balance.-First, by substitution. Put the article to be weighed in one pan of the balance aud
counterpoise it by any convenient heavy articles placed on the other pan. Remove the article to be weighed and substitute for it standard weights until equipoise is again established. The amount of these weights is the weight of the article.

Second, by transposition. Determine the apparent weight of the article as usual, then its apparent weight after transposing the article and the weights. If the difference is small, add half the difference to the smaller of the apparent weights to obtain the true weight. If the difference is 2 per cent the error of this method is 1 part in 10,000 . For larger differences, or to obtain a perfectly accurate result, multiply the two apparent weights together and extract the square root of the product.

Circular Measure.

$$
\begin{aligned}
60 \text { seconds, }{ }^{\prime \prime} & =1 \text { minute, }{ }^{\prime} \cdot \\
60 \text { minutes, } & =1 \text { degree, } \circ \\
90 \text { degrees } & =1 \text { quadrant. } \\
& =\text { circumference. } \\
& \text { Time. }
\end{aligned}
$$

60 seconds $=1$ minute .
60 minutes $=1$ hour.
24 hours $=1$ day.
r days $=1$ week.
365 days, 5 hours, 48 minutes, 48 seconds $=1$ year.
By the Gregorian Calendar every year whose number is divisible by 4 is a leap year, and contains 366 days, the other years containing 365 days, except that the centesimal years are leap years only when the number of the year is divisible by 400 .

The comparative values of mean solar and sidereal time are shown by the following relations according to Bessel :

> 365.24222 mean solar days $=366.24222$ sidereal days, whence
> 1 mean solar day $=1.002 \pi 3 \uparrow 91$ sidereal days;
> 1 sidereal day $=099726957$ mean solar day;
> 24 hours mean solar time $=24^{\mathrm{h}} 3^{\mathrm{m}} 56^{\mathrm{s}} .555$ sidereal time;
> 24 hours sidereal time $=23^{\mathrm{h}} 56^{\mathrm{m}} 4^{\mathrm{s}} .091$ mean solar time,
whence 1 mean solar day is $3^{\mathrm{m}} 55^{\mathrm{s}} .91$ longer than a sidereal day, reckoned in mean solar time.

BOARD AND THIHEER IIEASURE.

Board Measure.

In board measure boards are assumed to be one inch in thickness. To obtain the number of feet board measure (B. M.) of a board or stick of square timber, multiply together the length in feet, the breadth in feet, and the thickness in inches.

To compute the measure or surface in square feet. - When all dimensions are in feet, multiply the length by the breadth, and the product will give the surface required.

When either of the dimensions are in inclues, multiply as above and divide the product by 12.

When all dimensions are in inches, multiply as before and divide product by 144 .

Timber Measure.

To compute the volume of round timber.- When all dimensions are in feet, multiply the length by one quarter of the product of the mean girth and diameter, and the product will give the measurement in cubic feet. When length is given in feet and girth and diameter in inches, divide the product by 144 ; when all the dimensions are in inches, divide by 1728.

To compute the volume of square timber. - When all dimensions are in feet, multiply together the length, breadth, and depth; the product will be the volume in cubic feet. When one dimension is given in inches, divide by 12 ; when two dimensions are in inches, divide by 144 ; when all three dimensions are in inches, divide by $17: 8$.

Contents in Feet of Joists, Scantling, and Timber.
Length in Feet.

Size.	12	14	16	18	20	22	24	26	28	30

Feet Board Measure.

2×4	8	9	11	12	13	15	16	17	19	20
2×6	12	14	16	18	20	22	24	26	28	30
2×8	16	19	21	24	27	29	32	35	37	40
2×10	20	23	27	30	33	3%	40	43	47	50
2×12	24	28	32	36	40	44	48	52	56	60
2×14	28	33	37	42	47	51	56	61	65	\%0
3×8	24	28	32	36	40	44	48	52	56	60
3×10	30	35	40	45	50	55	60	65	\% 0	75
3×12	36	42	48	54	60	66	72	78	84	90
3×14	42	49	56	63	\% 0	77	84	91	98	105
4×4	16	19	21	24	27	29	$3 \cdot$	35	37	40
4×6	24	28	32	36	40	44	48	52	56	60
4×8	32	37	43	48	53	59	64	69	\% 5	80
4×10	40	47	53	60	67	T3	80	87	93	100
4×12	48	56	64	72	80	88	96	104	112	120
4×14	56	65	75	81	93	103	112	121	131	140
6×6	36	42	48	54	60	66	72	78	84	90
6×8	48	56	64	72	80	88	96	104	112	120
6×10	60	70	80	90	100	110	120	130	140	150
6×12	72	84	96	108	120	13\%	144	156	168	180
6×14	84	98	112	126	140	154	168	182	196	210
8×8	64	75	85	96	107	117	128	139	149	160
8×10	80	93	107	120	133	147	160	173	187	200
8×12	96	112	128	144	160	176	19\%	208	224	240
8×14	112	131	149	168	187	205	224	213	261	250
10×10	100	117	133	150	167	153	200	217	233	250
10×12	120	140	160	180	200	2:0	240	260	280	300
10×14	140	163	187	210	233	257	280	303	32%	350
13×12	144	168	192	216	240	264	288	312	336	360
12×14	168	196	$2 \cdot 4$	252	280	308	336	364	392	420
- 14×14	196	2:2	261	294	32%	359	39:2	425	45%	490

FRENCH OR METRIC MEASURES。

The metric unit of length is the metre $=39.3 \%$ inches.
The metric unit of weight is the gram $=15.432$ grains.
The following prefixes are used for subdivisions and multiples; Milli $=\frac{1}{1000}$, Centi $=\frac{1}{100}$, Deci $=\frac{1}{10}$, Deca $=10$, Hecto $=100$, Kilo $=1000, ~ M y r i a=10,000$.

FRENCH AND BRHTISH (AND AMERICAN) EQUIVALENT DIEASURES。

Measures of Length.

\[

\]

MIeasures of Surface.

Of Volume.

French.
1 cubic metre
.7645 cubic metre .02832 cubic metre

British and U.S.
$=\left\{\begin{array}{l}35.314 \text { cubic feet } .\end{array}\right.$
, 1.308 cubic yards.
$=1$ cubic yard.
$=1$ cubic foot.
1 cubic decimetre $=\left\{\begin{array}{l}610: 33 \text { cubic inches, } \\ .0353\end{array}\right.$ 28.32 cubic decimetres $=1$ cubic foot.
1 cubic centimetre $=.061$ cubic inch.
16.38í cubic centimetres $=1$ cubic inch.
1 cubic centimetre $=1$ millilitre $=.061$ cubic inch.
1 centilitre $=\quad=.610 " \%$
1 decilitre $=\quad=6.102 \quad$ " \quad "
1 litre $=1$ cuhic decimetre $=610 \because 3$ " \quad. $\quad=1.056 \% 1$ quarts, U.S.
1 hectolitre or decistere $=3.5314$ cubic feet $=2.8375$ bushels, $"$
1 stere, kilolitre, or cubic metre $=1.308$ cubic yards $=28.37$ bushels, "
Of Capacity.

French.	
1 litre $(=1$ cubic decimetre $)$	$=\left\{\begin{array}{l}61003 \text { cubic inches, } \\ 2.3531 \text { cubic foot, } \\ 2642 \text { gallon (American) } \\ 2.202 \text { pounds of water at } 62^{\circ} \mathrm{F} . \\ 28.317 \text { litres } \\ 4.543 \text { litres } \\ 3.785 \text { litres }\end{array}\right.$
$=1$ cubic foot.	

of Weight.

French.
1 gramme
.0648 gramme 28.35 gramme

1 kilogramme
.4536 kilogramme

British and U. S.
$=15.432$ grains .
$=1$ grain.
$=1$ ounce aroirdupois.
$=2.2046$ pounds.
$=1$ pound.
$=1$ p.9812 ton
1000 kilogrammes $\quad=\left\{\begin{array}{l}19.68 \text { cwts. }, \\ 19204 \text { poric }\end{array}\right.$
$\begin{array}{ll}1.016 \text { metric tons } & =\{1 \text { ton of } 2240 \text { pounđs. } \\ 1016 \text { kilogrammes } & =\{ \end{array}$
Mr. O. H. Titmann, in Bulletin No. 9 of the U. S. Coast and Geodetic Survey. dincusses the work of various authorities who pave compared the yard and the nsetre, and by referring all the observations to a common standard has succeeded in reconciling the discrepancies within very narrow limits. The following are his results for the number of inches in a metre according to the comparisons of the authorities named:

1817. Hassler..... 39.36994 inches.

18:35. Bailr.................................... . . 39.369% "
1866. Clarke. 39.36970 "
1885. Comsiock.......................... . 39.36984

The mean of these is
39.36982

6

METRIC CONVERSION TABLES.

The following tables, with the subjoined memoranda, were published in 1890 by the United States Coast and Geodetic Survey, office of standard weights and measures, T. C. Mendenhall, Superiutendent.

Tables for Converting U. S. Weights and MeasuresCustomary to Metric.

LINEAR.

	Inches to Millimetres.	Feet to Mecres.	Yards to Metres.	Miles to Kilometres.
$1=$	25.4001	0.304801	0.914402	1.60935
$2=$	50.8001	0.609601	1.8:8804	3.21869
$3=$	76.2002	$0.91440 \cdot 2$	2.743205	4.8:804
$4=$	101.6002	1.21920\%	3.657607	6.43 ¢39
$5=$	127.0003	1.524003	4.5\%009	$8.046{ }^{\text {a }} 4$
$6=$	152.4003	1.828804	5.486411	9.65608
$7=$	1:T. 8004	2.133604	6.400813	11.26543
$8=$	203.2004	2.438405	\%.315215	12.87478
$9=$	228.6005	2. ${ }^{\text {\% }} 43205$	8.229616	14.48412

SQUARE.

	Square Inches to Square Centimetres.	Square Feet to Square Decimetres.	Square Yards to Square Metres.	Acres to Hectares.
$1=$	6.452	9.290	0.836	0.4047
$2=$	12.903	18.581	1.672	0.8094
$3=$	19.355	27.871	2.508	1.2141
$4=$	25.807	37.161	3.344	1.6187
$5=$	32.258	46.452	4.181	2.0234
$6=$	38.10	55.742	5.017	2.4281
$7=$	45.161	65.032	5.853	2.8328
$8=$	51.613	74.323	6.689	32375
$9=$	58.065	83.613	7.525	3.6422

CUBIC.

	Cubic Inches to Cubic Centimetres.	Cubic Feet to Cubic Metres.	Cubic Yards to Cubic Metres.	Bushels to Hectolitres.
$1=$	16.38%	0.02832	0.765	0.35242
$2=$	32.744	0.05663	1.529	0.70485
$3=$	49.161	0.08495	2.294	1.1557.27
$4=$	65.549	$0.1132{ }^{\prime}$	3.058	1.40969
$5=$	81.936	0.14158	3.82 ?	1.76211
$6=$	98.323	0.16990	4.58 ir	2.11454
$7=$	114.710	0.19822	5.352	2.46696
$8=$	131.09%	0.22654	6.116	2.81938
$9=$	147.484	0.85485	6.881	3.17181

CAPACITY.

	Fluid Drachms to Millilitres or Cubic Centimetres.	Fluil Ounces to Millilitres.	Quarts to Litres.	Gallons to Litres.
$1=$	3. 70	29.57	094636	3.78544
$2=$	7.39	59.15	1.892\%	757088
$3=$	11.09	88. 22	2.883908	11.3563%
$4=$	14.79	118.30	3.78544	15.14176
$5=$	18.48	147.87	4.73180	18.927\%
$6=$	22.18	177.44	5.67816	22.71264
$7=$	25.88	207.02	6.62452	26.49808
$8=$	29.57	236.59	\%.57088	30.28352
$9=$	33.28	266.16	8.51724	34.06896

WEIGHT.

	Grains to Milligrammes.	Avoirdupois Ounces to Grammes.	Avoirdupnis Pounds to Kilogrammes.	Troy Ounces to Grammes.
$1=$	64.7989	28.3495	0.45359	31.10348
$2=$	129.5978	56.6991	0.90 ¢19	62.21696
$3=$	194.3968	85.0486	1.36078	93.31044
$4=$	259.1957	113.3981	1.81437	121.4139:
$5=$	323.9946	$141.74{ }^{6} 6$	2.26736	155.51740
$6=$	388.7935	170.0972	2.72156	186.62089
$7=$	453.5924	198.4467	3.17515	217.7243%
$8=$	518.3914	226.7962	3.62874	248.82785
$9=$	583.1903	255.1457	4.08233	279.93133

1 chain $=20.1169$ metres.
1 square mile $=259$ hectares.
1 fathom $=1.829$ metres.
1 nautical mile $=1853.27$ metres.
1 foot $=0.304801$ metre.
1 avoir. pound $=453.592427^{77}$ gram.
$1543 \cdot .3 \approx 639$ grains $=1$ kilogramme.

Tables for Converting U. S. Weights and MeasuresMetric to Customary.

LINEAR.

	Metres to Inches.	Metres to Feet.	Metres to Yards.	Kilometres to Miles.
$1=$	39.3700	3.28083	1.093611	0.6213π
$2=$	78.7400	$6.5616\}$	2.181222	$1.242 \% 4$
$3=$	118.1100	9.84250	3.280833	186411
$4=$	157.4800	13.12333	4.3 T4444	2.48548
$5=$	196.8500	16.40417	5.468056	3.10685
$6=$	236.2200	19.68500	6.561667	3.72822
$7=$	275.5900	22.96583	7. 655278	4.34959
$8=$	314.9600	26.2466 r	8.748889	4.9\%096
$9=$	354.3300	$29.52 \% 50$	9.842500	5.59233

SQUARE.

	Square Centi metres to Square Inches	Square Metres to Square Feet.	Square Metres to Square Yards	Hectares to Acres.
$1=$	0.1550	10. 764	1.196	2.471
$\stackrel{2}{3}=$	0.3100 0.4650	21.528	2.392	${ }_{7}^{4.942}$
$4=$	${ }_{0.6200}$	${ }_{43.055}$	4. 784	9.884
$5=$	0.7550	53.819	5.980	12.355
$6=$	0.9300	64.583	7.176	14.826
$7=$	1.0850	${ }^{75} 5.317$	8.372	17.297
$8=$	1.2400	86.111	9.568	19. 768
9 =	1.3950	96.874	10.764	22.239

CUBIC.

	Cubic Centi- metres to Cubic Inches.	Cubic Deci- metres to Cubic Inches.	Cubic Metres to Cubic Feet.	Cubic Metres to Cubic Yards.
$1=$	0.0610	61.023	35.314	
$2=$	0.1290	122.047	70.629	1.308
$3=$	0.1831	183.070	105.943	2.616
$4=$	0.2441	244.093	141.258	3.924
$5=$	0.3051	305.117	176.572	5.23 .2
$6=$	0.3661	366.140	211.887	6.540
$7=$	0.4272	427.163	247.801	7.848
$8=$	0.4882	488.187	282.516	9.156
$9=$	0.5192	549.210	317.830	10.464

CAPACITY.

	Millilitres or Cubic Centilitres to Fluid Drachms.	Centilitres to Fluid Ounces.	Litres to Quarts.	Dekalitres to Gallons.	Hektolitres to Bushels.
$1=$	0.27	0.338	1.0567	2.6417	2.83\%5
$2=$	0.54	$0.6 \dddot{\sim} 6$	2.1134	5.2834	$5.6 \pi 50$
$3=$	0.81	1.014	3.1700	7.9251	8.5125
$4=$	1.08	1.352	4.2267	10.5668	11.3500
$5=$	1.35	1.691	5.2834	13.2085	14.18%
$6=$	1.62	2.029	6.3401	15.8502	17.0250
$\tau=$	1.89	2.368	7.3968	18.4919	19.8625
$8=$	2.16	2.706	8.4534	21.1336	22.7000
$9=$	2.43	3.043	9.5101	23.7753	25.5375

weight.

	Milligrammes to Grains.	Kilogrammes to Grains.	Hectogrammes (100 grammes) to Ounces Av	Kilogrammes to Pounds Avoirdupois.
$1=$	0.01543	15432.36	3.5274	2.20462
2	0.03086	${ }^{30864.71}$	7.0548	4.40924
$=$	0.04630	${ }^{46297.07}$	10.5822	6.61386
$4=$	0.06173	${ }^{61729.43}$	14.1096	8.81849
$5=$	0.0 ¢776	\% 7161.78	17.6370	11.02311
$6=$	0.09959	92594.14		13.22773
\% $=$	0.10803	108026.49	24.6918	15.43:35
$8=$	0.12346	123458.85	28.2192	17.63697
$9=$	0.13889	138891.21	31.7466	19.84159

WEIGHT-(Continued).

	Quintals to Pounds Av.	Milliers or Tonnes to Pounds Av.	Grammes to Ounces, Troy.
${ }_{2}^{1}=$	220.46	2204.6	0.03215
$\stackrel{2}{3}=$	${ }_{661.38}^{440.92}$	4409.2 6613.8	0.06430 0.09645
$4=$	881.84	8818.4	0.12860
$5=$	1102.30	11023.0	0.16075
$6=$	1322.76	1322\%. 6	0.19290
$7=$	1543.22	15432.2	0.22505
	1763.68	17636.8	0.25721
$9=$	1984.14	19841.4	0.28936

The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at $59^{\circ} .62$ Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.
The only authorized material standard of customary weight is the Troy pound of the mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains $\tilde{i} 000$ grains Troy.
The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.
The metric system was legalized in the United States in 1866.
By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris.
The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau.
The International Standard Kilogramine is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

Copies of these international standards are deposited in the office of standard weights and measures of the U. S. Coast and Geodetic Survey.
The litre is equal to a cubic decimetre of water, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum; the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

COMPOUND UNITS.

Measures of Pressure and Weight.

1 lb. per square inch.

$$
\begin{aligned}
& \text { \{ } 144 \text { lbs. yer square foot. }
\end{aligned}
$$

[2116.3 lbs. per square foot. $33.94 \% \mathrm{ft}$. of water at $62^{\circ} \mathrm{F}$.
1 atmosphere (14.7 lbs . per sq. in.). $=\left\{30\right.$ ins. of mercury at $62^{\circ} \mathrm{F}$. 29.922 ins. of mercury at $33^{\circ} \mathrm{F}$. 760 millimetres of mercury at $3: 2^{\circ} \mathrm{F}$.

1 inch of water at $62^{\circ} \mathrm{F}$.

1 inch of water at $32^{\circ} \mathrm{F}$.

1 foot of water at $6 \exists^{\circ} \mathrm{F}$.

1 inch of mercury at $69^{\circ} \mathrm{F}$.
$=\left\{\begin{array}{l}.0361 \mathrm{lb} . \text { per square inch. } \\ 5.196 \mathrm{lbs} . \\ .0736 \mathrm{in} . \text { of mercury at } 6.2^{\circ} \mathrm{F} .\end{array}\right.$
$=\left\{\begin{array}{l}5.2021 \mathrm{lbs} \text {. per square foot. } \\ .036125 \text { lbs. per }{ }^{*} \text { inch. }\end{array}\right.$
$=\left\{\begin{array}{l}.433 \mathrm{lb} . \text { per square inch. } \\ 62.355 \mathrm{lbs} . \\ .88: 3 \mathrm{in} \text {. of mercury at } 62^{\circ} \mathrm{F} .\end{array}\right.$
$=\left\{\begin{array}{l}.49 \mathrm{lb} . \text { per square inch. } \\ 70.56 \mathrm{lbs} . " \\ 1.132 \mathrm{ft} . \\ 13.58 \mathrm{ins} .\end{array}\right.$

Weight of One Cubic Foot of Pure Water.

Measures of Work, Power, and Duty.

Work. - The sustained exe:tion of pressure through space.
Unit of work.-One foot-pound, i.e., a pressure of one pound exerted through a space of one foot.
Horse-power. -The rate of work. Unit of horse-power $=33,000 \mathrm{ft}$.lbs. per minute, or 550 ft .-lbs. per second $=1,980,000 \mathrm{ft}$-lbs. per hour.

Heat unit $=$ heat required to raise 1 lb . of water $1^{\circ} \mathrm{F}$. (from 39° to 40°).
Horse-power expressed in heat units $=\frac{33000}{7 \pi 8}=42.416$ heat units per minute $=.707$ heat unit per second $=2545$ heat units per hour.
1 lb . of fuel per H. I^{\prime}. per hour $=\left\{\begin{array}{l}1,980,000 \mathrm{ft} . \text {-lbs. per } \mathrm{lb} \text {. of fuel. } \\ 2,545\end{array}\right.$
$1.000,000 \mathrm{ft} .-\mathrm{lbs}$. per lb . of fuel $=1.98 \mathrm{lbs}$. of fuel per H. P. per hour.
Velocity. - Feet per second $=\frac{5280}{3600}=\frac{22}{15} \times$ miles per hour.
Gross tons per mile $=\frac{1760}{2440}=\frac{11}{14} \mathrm{lbs}$. per yard (single rail.)

French and British Equivalents of Weight and Pressure per Unit of Area.

French.
1 gramme per square millimetre
1 kilogramme per square "،
1 " " " centimetre
1.0335 kilogrammes per square centimetre
(1 atmosphere)
$0.0 \% 0308$ kilogramme per square centimetre $=1 \mathrm{lb}$. per square inch.

WHRE AND SHEETPMETAL GAUGES COMPARED.

					British Imperial Standard Wire Gauge. (Legal Standard in Great Britain since March 1, 1884.)			
	inch.	inch.	inch.	inch.	inch.	millim.	inch.	
0000000			. 49		. 500	12.7	5	$7 / 0$
000000			. 46		. 464	11.78	. 469	6/0
00000			. 43	. 45	. 432	10.97	. 438	5/0
0000	. 454	. 46	. 393	. 40	. 4	10.16	. 406	4/0
000	. 425	. 40964	. 362	. 36	. $3 \% 2$	9.45	. 375	3/0
00	. 38	. 3648	. 331	. 33	. 348	8.84	. 344	2/0
0	. 34	. 32486	. 307	. 305	. 324	8.23	. 313	0
1	. 3	. 2893	. 283	. 285	. 3	7.62	. 281	1
2	. 284	. 25763	. 263	. 265	. 276	7.01	. 266	2
3	. 259	. 22942	. 244	. 245	. 252	6.4	. 25	3
4	. 238	. 20431	. 225	. 225	. 232	5.89	. 234	4
5	. 22	. 18194	. 207	. 205	. 212	5.38	. 219	5
6	. 203	. 16202	. 192	. 19	. 192	4.88	. 203	6
7	. 18	. 14428	. 177	. 175	. 176	4.47	. 188	7
8	. 165	. 12849	. 162	. 16	. 16	4.06	. 172	8
9	. 148	. 11443	. 148	. 145	. 144	3.66	. 156	9
10	. 134	. 10189	. 135	. 13	. 128	3.26	. 141	10
11	. 12	. 09074	. 12	. 1175	. 116	2.95	. 125	11
12	. 109	. 08081	. 105	. 105	. 104	2.64	. 109	12
13	. 095	. $0 \sim 196$. 092	. 0925	. 092	2.34	. 094	13
14	. 083	. 06408	. 08	. 08	. 08	2.03	. 078	14
15	. 072	. 05707	. 072	. 07	. 07%	1.83	. 07	15
16	. 065	. 05082	. 063	. 061	. 064	1.63	. 0625	16
17	. 058	. 04526	. 054	. 0525	056	1.42	. 0563	17
18	. 049	. 0403	. 047	. 045	. 048	1.22	. 05	18
19	.042	. 03589	. 041	. 04	. 04	1.01	. 0438	19
20	. 035	. 03196	. 035	. 035	. 036	. 91	.03\%	\%0
21	. 032	. 02846	. 032	. 031	032	. 81	. 0314	$\% 1$
22	. $0 \div 8$.02535	. 028	. 028	. 028	. 71	. 0313	¢2
23	. 025	. 02257	. 025	. 025	. 024	. 61	. 0281	$2: 3$
24	. 022	. 0221	. 023	. 0225	. 022	. 56	. 025	24
25	. 02	. 0179	. 02	. 02	. 02	. 51	. 0219	25
26	. 018	. 01594	. 018	. 018	. 018	. 45	. 0188	26
27	. 016	.014:9	. 017	. 017	. 0164	.43	. 0172	27
28	. 014	. 01264	. 016	. 016	. 0148	. 38	. 0156	28
29	. 013	. 01126	. 015	. 015	. 0136	. 35	. 0141	29
30	. 012	. 01002	. 014	. 014	. $01 \% 4$. 31	. 0125	30
31	. 01	. 00893	. 0135	. 013	. 0116	. 29	. 0109	31
3 32	. 009	. 00 ¢95	. 013	. 012	. 0108	. 27	. 0101	3.2
33	. 008	. 00708	. 011	. 011	. 01	. 25	. 0094	33
34	. 007	. 0063	. 01	. 01	. 0092	. 23	. 0086	34
35	. 005	. 00561	. 0095	. 0095	. 0084	. 21	. 0078	35
36	004	. 005	. 009	. 009	. $00{ }^{2} 6$. 19	. 007	36
37		. 00445	. 0085	. 0085	. 0068	. 17	. 0066	37
38		. 00396	. 008	. 008	. $006{ }^{\circ}$. 15	. 0063	38
39		. 00353	.0075	. 0075	. 005	. 13		39
40		. 00314	. 007	. 007	. 0048	. 12		40
41					. 0044	. 11		41
42					. 004	. 10		42
4.3					.00:36	. 09		43
44					.0032	. 08		44
45					. 0028	. 07		45
46					. 0024	. 06		46
47					. 002	. 05		47
48					. 0016	. 04		48
50					. 001	. 025		50

EDISON, OR CHRCULAR MIL GAUGE, FOR ELECTRICAL WIRES.

Gange Number.	Circular Mils.	Diameter in Mils.	$\begin{gathered} \text { Gauge } \\ \text { Num- } \\ \text { Ler. } \end{gathered}$	Circular Mils.	Diameter in Mils.	Gauge Number.	Circular Mils.	Diameter in Mils.
3	3,000	54.78	70	\%0,000	264.58	190	190,000	435.89
5	5,000	70.72	\% 5	75,000	273.87	200	200,000	447.22
8	8,000	89.45	80	80,000	282.85	220	220,000	469.05
12	12,000	109.55	85	85,000	291.55	240	240,000	489.90
15	15,000	122.48	90	90,000	300.00	260	260,000	509.91
20	20,000	141.43	95	95,000	308.23	280	280,000	529.16
25	25,000	158.12	100	100,000	316.23	300	300,000	547.73
30	30,000	173.21	110	110,000	331.67	$3: 0$	320,000	565.69
35	35,000	187.09	120	120,000	346.42	340	340,000	583.10
40	40,000	200.00	130	130,000	360.56	360	360,000	600.00
45	45,000	212.14	140	140,000	374.17			
50	50,000	223.61	150	150,000	387.30			
55	55,000	234.53	160	160,000	400.00			
60	60,000	244.95	110	170,000	412.32			
65	65,000	254.96	180	180,000	424.27			

TWIST DRILL AND STEEL WIRE GAUGE.
(Morse Twist Drill and Machine Co.)

No.	Size.	No.	Size.	No.	Size.	- o o.	Size.
1	inch. . 2280	16	inch. . $17 \% 0$	31	inch. .1200	46	inch. . 0810
2	. 2210	17	. 1730	$3 \cdot$. 1160	47	. 0185
3	. 2130	18	. 1695	33	. 1130	48	. 0760
4	. 2090	19	. 1660	34	. 1110	49	. 0730
5	. 2055	20	. 1610	35	. 1100	50	. 0700
6	. 2040	21	.1590	36	. 1065	51	.06\%0
7	. 2010	22	. 15 \% 0	3π	. 1040	52	. 0635
8	. 1930	23	. 1540	38	. 1015	53	. 0595
9	. 1960	24	. $15: 0$	39	. 0995	54	. 0550
10	. 1935	25	. 1495	40	. 0980	55	.0520
11	. 1910	26	.14i0	41	. 0960	56	. 0465
12	. 1890	27	. 1440	42	.0935	57	. 0430
13	. 1850	28	. 140.5	43	. 0890	58	. $04 \div 0$
14	. 1820	29	. 1360	44	. 0860	59	. 0410
15	. 1800	30	. 1285	45	. 0820	60	. 0400

STEEL MIUSIC=WIRE GAUGE.
(Washburn \& Moen Mfg. Co.)

No.	Size.	No.	Size.	No.	Size.	No.	Size.
12	$\begin{gathered} \text { inch. } \\ .0395 \end{gathered}$	17	inch. .0378	21	inch. . 0461	25	inch ${ }_{\text {a }}$
13	0:311	18	.0395	22	$0+81$	26	. 0662
14	.03:5	19	. 0414	23	. 0506	27	. 0663
15	. 0313	20	. 043	24	. 0547	28	.0ヶ̃19
16	. 0350						

THE EDISON OR CIRCULAR MIL WIRE GAUGE.

(For table of copper wires by this.gauge, giving weights, electrical resistances, etc., see Copper Wire.)
MI. C. J. Field (Stevens Indicator; July, 188\%) thus describes the origin of the Edison gauge:

The Edison company experienced inconvenience and loss by not having a wide enough range nor sufficient number of sizes in the existing gauges. This was felt more particularly in the central-station work in inaking electrical determinations for the street system. They were compelled to make use of two of the existing gauges at least, thereby introducing a complication that was liable to lead to mistakes by the contractors and linemen.

In the incandescent system an even distribution throughout the entire system and a uniform pressure at the point of delivery are obtained by calculating for a given maximum percentage of loss from the potential as delivered from the dynamo. In carrying this out, on account of lack of regular sizes, it was often necessary to use larger sizes than the occasion dernanded, and even to assume new sizes for large underground conductors. It was also found that nearly all manufacturers based their calculation for the conductivity of their wire on a variety of units, and that not one used the latest unit as adopted by the British Association and determined from Dr. Matthiessen's experiments; and as this was the unit employed in the manufacture of the Edison lamps, there was a further reason for constructing a new gauge. The engineering department of the Edison company, knowing the requirements, have designed a gauge that has the widest range obtainable and a large number of sizes which increase in a regular and uniform manner. The basis of the graduation is the sectional area, and the number of the wire corresponds. A wire of 100,000 circular mils area is No. 100 ; a wire of one half the size will be No. 50 ; twice the size No. 200.

In the older gauges, as the number increased the size decreased. With this gauge however, the number increases with the wire, and the number multiplied by 1000 will give the circular mils.

The weight per mil-foot, $0.00000302 \% 05$ pounds. agrees with a specific gravity of 8.889 , which is the latest figure given for copper. The ampere capacity which is given was deduced from experiments made in the company's laboratory, and is based on a rise of temperature of $50^{\circ} \mathrm{F}$. in the wire.

$$
\text { In } 1893 \mathrm{Mr} \text {. Field writes. concerning gauges in use by electrical engineers: }
$$

The B. and S. gauge seems to be in general use frr the smaller sizes, up to $100.000 \mathrm{c} . \mathrm{m}$. and in some cases a little larger. From between one and two hundred thousand circular mils upwards, the Edison gauge or its equivalent is practically iu use, and there is a general tendency to designate all sizes above this in circular mils, specifying a wire as $200,000,400,000,500,-$ 000 or $1,000,000 \mathrm{c} . \mathrm{m}$.

In the electrical business there is a large use of copper wire and rod and other materials of these large sizes, and in ordering them, speaking of them, specifying, and in every other use, the general method is to simply specify the circular.milage. I think it is going to be the only system in the future for the designation of wires, and the attaining of it means practically the adoption of the Edison gauge or the method and basis of this gauge as the correct one for wire sizes.

THE U. S. STANDARD GAUGE FOR SHEET AND HLATE IRON AND STEEL, 1893.

There is in this country no uniform or standard gauge, and the same numbers in different gauges represent different thicknesses of sheets or plates. This has given rise to much misunderstanding and friction between employers and workmen and mistakes and fraud between dealers and consumers.
An Act of Congress in 1893 established the Standard Gauge for sheet iron and steel which is given on the next page. It is based on the fact that a cubic foot of iron weighs 480 pounds.
A sheet of iron 1 foot square and 1 inch thick weighs 40 pounds, or 640 ounces, and 1 ounce in weight should be $1 / 640$ inch thick. The scale has been arranged so that each descriptive number represents a certain number of ounces in weight and an equal number of 640 ths of an inch in thickness.

The law enacts that on and after July 1, 1893, the new gauge shall be used in determining duties and taxes levied on sheet and plate iron and steel; and that in its application a variation of $21 / 2$ per cent either way may be allowed.

GAUGE FOR SHEET AND PLATE IRON AND STEEL. 31
U. S. STANDARD GAUGE FOR SHEET AND PLATE HRON AND STEEL, 1893.

0000000	1-2	0.5	12.7	320	20.	9.072	97.65	215.28
000000	15-32	0.46975	11.90625	300	18.75	8.505	91.55	201.83
00000	7-16	0.4375	11.1125	280	17.50	7.9:38	8544	188.37
0000	13-3:	0.40625	10.31875	260	16.25	7.371	\%9.33	1\%4.91
000	3-8	$0.3 \% 5$	9.525	240	15.	6.804	73.24	161.46
00.	11-32	0.34375	8.73125	220	13.75	6.237	67.13	14800
0	5-16	0.3125	7.9375	200	12.50	5.67	61.03	134.55
1	9-32	0.28125	7.14375	180	11.25	5.103	24.93	121.09
2	17-64	0.265625	6.746875	$1 \% 0$	10.6:5	4.819	51.88	114.37
3	1-4	0.25	6.35	160	10.	4.536	48.82	107.64
4	15-64	0.2343\%	5.953125	150	9.375	4.252	45.77	100.91
5	ก-3?	0.21875	5.555625	140	8.15	3969	42.72	94.18
6	1:3-64	0.203125	5.1593\%5	130	8.125	3.685	39.67	87.45
\uparrow	3-16	0.18%	4.7625	1:0	7.5	$3.40{ }^{3}$	36.62	80.72
8	11-64	$0.1718 \% 5$	4.3656 .5	110	6.8\%	3.118	33.57	$\tau 4.00$
9	5-32	0.156?5	3.93875	100	6.25	-. 8.835	30.52	67.27
10	9-64	0.140625	3.5\%18\% 5	90	5.6:5	25:3	2\%. 46	60.25
11	1-8	0.125	3.175	80		-2.268	24.41	53.82
13	\%-64	0.109375	2.778125	\% 0	4.375	1.984	21.36	47.09
13	3-32	0.093\%5	2.38125	60	3.75	1.\%01	18.31	40.36
14	5-64	0.078125	1.984375	50	3.125	1.417	15.26	33.64
-15	9-128	0.07031	1.78593\%	45	2.8125	$1.2 \% 6$	13. T^{3}	30.27
16	1-16	0.0625	$1.58 \% 5$	40	2.5	1.134	12.21	26.91
17	9-160	0.05625	1.428 \% 5	36	2.25	1.021	10.99	24.22
18	1-20	0.05	1.27	3.2	2.	0.90テ̃2	9.765	21.53
19	ก-160	0.04375	1.11125	28	1.75	0.7938	8.544	18.84
20	3-80	0.03375	0.9525	24	1.50	0.6804	7.324	16.15
21	11-3:20	$0.0343 \% 5$	0.873125	22	1.375	0.6237	6.713	14.80
22	1-32	0.03125	0.793~50	20	1.25	$0.56 \hat{r}$	6.103	1346
23	8-3:0	0.028125	$0.7143 \% 5$	18	1.125	0.5103	5.493	12.11
24	1-40	0.025	0.635	16		0.4536	4.882	10.76
25	$7-3 \geqslant 0$	$0.0: 18 \% 5$	0.555625	14	0.875	0.3969	4.272	9.42
26	3-160	$0.018{ }^{\text {a }}$	0.47625	12	0.75	0.3402	3.662	8.07
27	11-640	0.0171875	0.4365625	11	$0.68 \% 5$	0.3119	3.357	7.40
28	1-64	0.015625	0.3968 r5	10	0.625	0.2835	3.05%	6.73
29	9-640	0.0140625	$0.35718 \% 5$	9	0.5625	0.2551	2.746	6.05
30	1.80	0.0125	0.31%	8	0.5	0.2268	2.441	5.38
31	7-640	0.0109375	$0.27 \% 8125$	7	0.43\%	0.1984	2.136	4.71
32	13-1:80	0.01015625	$0.25 i 96875$	61/2	0.41065	0.1843	1.983	4.37
33	3-3\%0	$0.0093 \% 5$	0.238125	6	0.3 \%	0.1701	1.831	4.04
34	11-1280	0 00859375	0.21828125	51/2	0.34.3\%5	01559	1.6r8	3%
35	5-640	$0.00 \div 8125$	0.1984375	5	$0.31 \% 5$	0.1417	1.526	336
36	9-1280	$0.00 \sim 0312{ }^{\text {a }}$	0178593%	41/2	0.281:5	0.1226	1.37:3	3.03
$3 \sim$	17-2560	0.006640625	0.16×6 ¢ $18 \% 5$	$41 / 4$	0.265625	0.1205	1297	28 \%
38	1-160	0.00625	0.158%	4	0.25	0.1134	1.221	2.69

The Decimal Gauge. -The legalization of the standard sheet-metal gauge of 1893 and its adoption by some manufacturers of sheet iron have only added to the existing confusion of gauges. A joint committee of the American Society of Mechanical Engineers and the American Railway Master Mechanics' Association in 1895 agreed to recommend the use of the decimal gauge, that is, a gauge whose number for each thickness is the number of thousandths of an inch in that thickness, and also to recommend "the abandonment and disuse of the various other gauges now in use, as tending to confusion and error." A notched gauge of oval form, as shown in the cut below, has come into general use as a standard form of the decimal gauge, but for accurate measurement its indications should be checked by the use of a micrometer gauge reading to thousandths of an inch.

Weight of Sheet Iron and Steel. Thickness by Decimal Gauge.

			Weight per Square Foot in Pounds.					Weight per Square Foot in Pounds.	
0.002		0.05	0.08	0.082	0.060	1/16	1.52	2.40	2.448
0.004	1/250	0.10	0.16	0.163	0.065	13/200	1.65	2.60	2.652
0.006	3/500	0.15	0.24	0.245	0.060	ก/100	$1 . \% 8$	2.80	2.856
0.008	1/125	0.20	0.32	0.326	0.075	$3 / 40$	1.90	3.00	3.060
0.010	1/100	0.25	0.40	0.408	0.080	2/25	2.03	3.20	3.264
0.012	3/250	0.30	0.48	0.490	0.085	17/200	2.16	3.40	3.468
0.014	\%/500	0.36	0.56	0.501	0.090	9/100	3.28	3.60	3.672
0.016	1/64 +	041	0.64	0653	0.095	19/200	2.41	3.80	3.876
0.018	9/500	0.46	0.72	0.734	0.100	1/10	2.54	4.00	4.080
0.020	1/50	0.51	0.80	0.816	0.110	11/100	2.79	4.40	4.488
0.022	11/500	0.56	0.88	0898	0.125	1/8	3.18	5.00	5.100
0.025	1/40	0.64	1.00	1.020	0.135	27/200	3.43	5.40	5.508
0.028	7/250	0.71	1.12	1.142	0.150	3/20	3.81	6.00	6.120
0.032	$1 / 32+$	0.81	1.28	1.306	0.165	3:3/200	4.19	6.60	6. 73.2
0.036	9/250	0.91	1.44	1.469	0.180	9/50	4.57	7.20	7.344
0.040	1/25	1.02	1.60	1.632	0.200	1/5	5.08	8.00	8.160
0.045	9,200	1.14	1.80	1.836	0.220	11/50	5.59	8.80	8.976
0.050	1/20	1.27	200	2.040	0.240	$6 / 25$	6.10	960	9.79\%
0.055	11/200	1.4	2.20	2.244	0.250	1/4	6.35	10.00	10.200

ALGEBRA.

Addition. - Add a and b. Ans. $a+b$. Add a, b, and $-c$. Ans. $a+b-c$. Ad川 \ddagger and $-3 a$. Ans. $-a$. Add $2 a b,-3 a b,-c,-3 c$. Ans. $-a b-4 c$.
Subtraction.-Subtract a from b. Ans. $b-a$. Subtract $-a$ from $-b$. Ans. $-b+a$.
qubtract $b+c$ from a. Ans. $a-b-c$. Subtract $3 a^{2} b-9 c$ from $4 a^{2} b+c$. Ans. $i^{2} b+10 c$. Ruile: Change the signs of the subtrahend and proceed as in addilion.
Multiplication.-Multiply a by b. Ans. $a b$. Multiply $a b$ by $a+b$. Ans. $\varkappa^{2} b+u b^{2}$.
Multiply $\alpha+b$ by $a+b$. Ans. $(a+b)(a+b)=a^{2}+2 a b+b^{2}$.
Muliply - a by - b. Ans. $a b$. Multiply $-a$ by b. Ans.- $a b$. Like signs give plus, unlike signs minus.

Powers of numbers.- The product of two or more powers of any number is the number nilh an exponent equal to the sum of the powers: $a^{2} \times a^{3}=a^{5} ; a^{2} b^{2} \times a b=a^{3} b^{3} ;-7 a b \times 2 a c=-14 a^{2} b c$.
To multipls a polynomial by a monomial. multiply each term of the poly. nomial by the monomial and add the partial products: $(6 a-3 b) \times 3 c=18$ cc c $-9 b c$.
To multiply two polynomials, multiply each term of one factor by each term of the other and add the partial products: $(5 a-6 b) \times(3 a-4 b)=$ $15 a^{2}-38 a b+24 b^{2}$.
The square of the sum of two numbers = sum of their squares + twice their product.
The square of the difference of two numbers = the sum of their squares - Iwice l heir prodnct.

The product of the sum and difference of two numbers = the difference of their squares:

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} ; \quad(a-b)^{2}=a^{2}-2 a b+b^{2} ; \\
(a+b) \dot{x}(a-b)=a^{2}-b^{2} .
\end{gathered}
$$

The square of half the sums of two quantities is equal to their product plus the square of half their difference: $\left(\frac{a+b}{2}\right)^{2}=a b+\left(\frac{a-b}{2}\right)^{2}$.

The square of the sum of two quantities is equal to four times their products, wlus the square of their difference: $(a+b)^{2}=4 a b+(a-b)^{2}$

The sum of the squares of two quantities equals twice their product, plus the square of their difference: $a^{2}+b^{2}=2 a b+(a-b)^{2}$.
The square of a trinomial = the square of each term + twice the product of each term by each of the terms that follow it: $(a+b+c)^{2}=a^{2}+b^{2}+$ $c^{2}+2 a b+2 u c+2 b c ;(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 a c+2 b c$.

The square of (any number $+1 / 2$) $=$ square of the number + the number $+1 / 4 ;=$ the number $\times($ the number +1$)+1 / 4$;
$(a+1 /)^{2}=a^{2}+a+1 / 4 .=a(a+1)+1 / 4 . \quad(41 / 2)^{2}=4^{2}+4+1 / 4=4 \times 5+1 / 4=201 / 4$.
The product of any number $+1 / 2$ by any other number $+1 / 2=$ product of the numbers + half their sum $+1 / 4 . \quad(a+1 / 2) \times b+1 / 2)=a b+1 / 2(a+b)+1 / 4$. $41 / 2 \times 61 / 2=4 \times 6+1 / 2(4+6)+1 / 4=24+5+1 / 4=291 / 4$.

Square, cube, 4th power, etc., of a binomial $a+b$.

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} ;(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} ; \\
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{gathered}
$$

In each case the number of terms is one greater than the exponent of the power to which the binomial is raised.
2. In the first term the exponent of a is the same as the exponent of the power to which the binomial is raised, and it decreases by 1 in each succeeding term.
3. b appears in the secnnd term with the exponent 1 , and its exponent increases by in each succeeding term.
4. The coefficient of the first term is 1.
5. The coefficient of the second terin is the exponent of the power to which the bitionial is raised.
6. The coefficient of each succeeding term is found from the next preceding term by multiplying its coefficipnt by the exponent of a, and dividing the product by a number greater by I than the exponent of b. (See Binumial Theorem, below.)

Parentheses. - When a parenthesis is preceded by a plus sign it may be removed without changing the value of the expression: $a+b+(a+b)=$ $2 a+2 b$. When a parenthesis is preceded by a minus sign it may be removed if we change the signs of all the terms within the parenthesis: $1-(a-b$ $-c)=1-a+b+c$. When a parenthesis is within a parenthesis remove the inner one first: $a-[b-\{c-(d-e)\}]=a-[b-\{c-d+e\}]$ $=a-[b-c+d-e]=a-b+c-d+e$.
A multiplication sign, x, has the effect of a parenthesis, in that the operation indicated by it must be performed before the operations of addition or subtraction. $a+b \times a+b=a+a b+b$; while $(a+b) \times(a+b)=$ $a^{2}+2 \alpha b+b^{2}$, and $(a+b) \times a+b=a^{2}+a b+b$.
Division.- The quotient is positive when the dividend and divisor have like signs, and negative when they have unlike signs: $a b c \div b=a c$; $a b c \div-b=-a c$.
To divide a monomial by a monomial, write the dividend over the divisor with a line between them. If the expressions have common factors, remove the common factors:

$$
a^{2} b x \div a b y=\frac{a^{2} b x}{a b y}=\frac{a x}{y} ; \quad \frac{a^{4}}{a^{3}}=a ; \quad \frac{a^{3}}{a^{5}}=\frac{1}{a^{2}}=a^{-2} .
$$

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial: $(8 a b-12 a c) \div 4 a=2 b-3 c$.
To divide a polynomial by a polynomial, arrange both dividend and divisor in the order of the ascending or descending powers of some common letter, and keep this arrangement throughout the operation.
Divide the first term of the dividend by the first term of the divisor, and write the result as the first term of the quotient.
Multiply all the terms of the divisor by the first term of the quotient and subtract the product from the dividend. If there be a remainder, consider it as a new dividend and proceed as before: $\left(a^{2}-b^{2}\right) \div(a+b)$.

$$
\begin{gathered}
a^{2}-b^{2} \mid a+b \\
\frac{a^{2}+a b \mid a-b}{-a b-b^{2}} \\
\frac{-a b-b^{2}}{} \\
\hline
\end{gathered}
$$

The difference of two equal odd powers of any two numbers is divisible by their difference and also by their sum:
$\left(a^{3}-b^{3}\right) \div(a-b)=a^{2}+a b+b^{2} ;\left(a^{3}-b^{3}\right) \div(a+b)=a^{2}-a b+b^{2}$.
The difference of two equal even powers of two numbers is divisible by their difference and also by their sum: $\left(a^{2}-b^{2}\right) \div(a-b)=a+b$.
The sum of two equal even powers of two numbers is not divisible by either the difference or the sum of the numbers; but when the exponent of each of the two equal powers is composed of an odd and an even factor. the sum of the given power is divisible by the sum of the powers expressed by the even factor. Thus $x^{6}+y^{6}$ is uot divisible by $x+y$ or by $x-y$, but is divisible by $x^{2}+y^{2}$.
Simple equations.-An equation is a statement of equality between two expressions; as, $a+b=c+d$.
A simple equation, or equation of the first degree, is one which contains only the first power of the unknown quantity. If equal changes be made (by addition, subtraction. multiplication, or division) in both sides of an equation, the results will be equal.
Any term may be changed from one side of an equation to another, provided its sign be changed: $a+b=c+a ; a=c+d-b$. To solve an equation having one unknown quantity, transpose all the terms involving; the unknown quantity to one side of the equation, and all the other terms to the other side; combine like terms, and divide both sides by the coefficient of the unknown quantity.
Solve $8 x-29=26-3 x . \quad 8 x+3 x=29+26 ; 11 x=55 ; x=5$, ans.
Simple algebraic problems containing one unknown quantity are solved by making $x=$ the unknown quantity, and stating the conditions of the problem in the form of an algebraic equation, and then solving the equation. What two numbers are those whose surn is 48 and difference 14 ? Let $x=$ the smaller number, $x+14$ the greater. $x+x+14=48$. $2 x=34, x$ $=17 ; x+14=31$, ans.
Find a number whose treble exceeds 50 as much as its double falls short of 40. Let $x=$ the number. $3 x-50=40-2 x ; 5 x=90 ; x=18$, aus. Proving, $54-50=40-36$.

Equations containing two unknown quantities.-If one equation contains two unknown quantities, x and y, an indefinite uumber of pairs of values of x and y may be found that will satisfy the equation, but if a second equation be given only one pair of values can be found that will satisfy both equations. Simultaneous equations, or those that may be satisfied by the same values of the unknown quantities, are solved by combining the equations so as to obtain a single equation containing only one unknown quantity. This process is called elimination.
Elimination by addition or subtraction.-Multiply the equation by such numbers as will make the coefficients of one of the unknown quantities equal in the resulting equation. Add or subtract the resulting equations according as they have unlike or like signs.
Solve $\left\{\begin{array}{ll}2 x+3 y=7 . & \text { Multiply by } 2: \\ 4 x-5 y=3 . & 4 x+6 y=14 \\ 4 x-5 y=3\end{array} \quad 11 y=11 ; y=1\right.$.
Substituting value of y in first equation, $2 x+3=7 ; x=2$.
Elimination by substitution.-From one of the equations obtain the value of one of the unknown quantities in terms of the other. Substitutute for this unknown quantity its value in the other equation and reduce the resulting equations.

Solve $\left\{\begin{array}{l}2 x+3 y=8 . \\ 3 x+7 y=7\end{array}\right.$ (1). From (1) we find $x=\frac{8-3 y}{2}$.
Substitute this value in (2): $3\left(\frac{8-3 y}{2}\right)+7 y=7 ;=24-9 y+14 y=14$, whence $y=-2$. Substitute this value in (1): $2 x-6=8 ; x=7$.

Elimination by comparison.-From each equation obtain the value of one of the unknown quantities in terms of the other. Form an equation from these equal values, and reduce this equation.

Solve $\left\{\begin{array}{lll}\because x-9 y=11 . & \text { (1). From (1) we find } x=\frac{11+9 y}{2} \\ 3 x-4 y=\% & \text { (2). From (2) we find } x=\frac{7+4 y}{3} .\end{array}\right.$
Equating these values of $x, \frac{11+9 y}{2}=\frac{\tau+4 y}{3} ; 19 y=-19 ; y=-1$.
Substitute this value of y in (1): $2 x+9=11 ; x=1$.
If three simultaneous equations are given containing three unknown quantities, one of the unknown quantities must be eliminated between two pairs of the equations; then a second between the two resulting equations.

Quadratic equations.-A quadratic equation contains the square of the unknown quantity, but no higher power. A pure quadratic contains the square only; au affected quadratic both the square and the first power.

To solve a pure quadratic, collect the unknown quantities on one side, and the known quantities on the other; divide by the coefficient of the unknown quantity and extract the square root of each side of the resulting equation.

Solve $3 x^{2}-15=0 . \quad 3 x^{2}=15 ; x^{2}=5 ; x=\sqrt{5}$
A root like V_{5}, which is indicated, but which can be found only approximately, is called a surd.

Solve $3 x^{2}+15=0 . \quad 3 x^{2}=-15 ; x^{2}=-5 ; x=\sqrt{-5}$.
The square root of -5 cannot be found even approximately, for the square of any number positive or negative is positive; therefore a root which is indicated, but cannot be found even approximately, is called imaginary.

To solve an affected quadratic.-1. Convert the equation into the form $a^{2} x^{2} \pm 2 a b x=c$, multiplying or dividing the equation if necessary, so as to make the coefficient of x^{2} a square number.
2. Complete the square of the first member of the equation, so as to convert it to the form of $a^{2} x^{2} \pm 2 a b x+b^{2}$, which is the square of the binomial $a x \pm b$, as follows: add to each side of the equation the square of the quotient obtained by dividing the second term by twice the square root of the first term.
3. Extract the square root of each side of the resulting equation.

Solve $3 x^{2}-4 x=32$. To make the coefficient of x^{2} a square number, multiply by $3: 9 x^{2}-12 x=96 ; 12 x \div(2 \times 3 x)=2 ; 2^{2}=4$.

Complete the square: $9 x^{2}-12 x+4=100$. Extract the root: $3 x-2= \pm$

10 , whence $x=4$ or $-22 / 3$. The square ront of 100 is either +10 or -10 ; since the square of -10 as well as $10^{2}=100$.

Problems involving quadratic equations have anparently two solutions, as a quadraic lias two routs. Sonetímés botin will bé true solutions, but gent: erally oiie only will be a sulutiou and the other be inconsistent with the conditions of he problem.

The sum of the squares of two consecutive positive numbers is 481 . Find the numbers.

Let $x=$ one number, $x+1$ the other. $x^{2}+(x+1)^{2}=481, \quad 2 x^{2}+2 x+1$ $=481$.
$x^{2}+x=240$. Completing the square. $x^{2}+x+0.25=240.25$. Extracting the root we obtain $x+0.5= \pm 15.5 ; x=15 \mathrm{or}^{\circ}-16$,
The positive ruot gives for the numbers i5 and 16 . The negative root 16 is inconsistent "ith the conditions of the problem.

Quadratic equations containing two unknoun quantities require different mel hods for their solution, according to the form of the equations. For these methods reference nust be made to works on algebra.

Theory of exponents.- $\sqrt[n]{a}$ when \ddot{n} is a positive integer is one of n equal factors of $a . \sqrt[n]{a^{m}}$ means α is to be rased to the m th power and the uth rout extracted.
$(\sqrt[n]{a})^{n}$ means that the nth root of a is to be taken and the resuit raised to the m th power.
$\sqrt[n]{a^{m}}=\left(\sqrt[n]{n^{-}}\right)^{m}=a^{m}$. When the exponent is a fraction, the numerator indicates a power, and the denominator a root. $a^{\frac{6}{2}}=\sqrt{a^{6}}=a^{\dot{8}} ; a^{\frac{8}{2}}=$ $\sqrt{11^{3}}=a^{1 \cdot 5}$.

To extract the root of a quantity raised to an indicated power, divide the exponent by the index of the required root; as,

$$
\sqrt[n]{1^{m}}=a^{\frac{m}{n}} ; \quad \sqrt[3]{a^{6}}=a^{\frac{9}{3}}=a^{2}
$$

Subtracting 1 from the exponent of a is equivalent to dividing by a :
$a^{2-1}=a^{1}=a ; \quad a^{1-1}=a^{0}=\frac{a}{a}=1 ; a^{0-1}=a^{-1}=\frac{1}{a} ; a^{-1-1}=a^{-2}=\frac{1}{a^{2}}$
A number with a negative exponent deriotes the reciprocal of the number with the corresponding positive + xponent.
A factor under the radical sign whose root, can be takeu may, by having the root taken, be removed from under the iadical sign:

$$
\sqrt{a^{2} b}=\sqrt{\overline{a^{2}}} \times \sqrt{\bar{b}}=a \dot{V} \bar{b} .
$$

A factor outside the radical sign may be raised to the corresponding póner and placed under it:

$$
\sqrt{\frac{a}{b}}=\sqrt{\frac{\overline{a b}}{b^{2}}}=\sqrt{a b \times \frac{1}{b^{2}}}=\frac{1}{b} \quad \sqrt{a b ;} \quad \sqrt{\frac{\bar{a}}{b^{2}}}=\frac{1}{b} \sqrt{\bar{a}}
$$

Binomial Theorem.-To obtain any power, as the $\ddot{\imath}$ th, of an ex: pression of the form $x+a$
$(a+x)^{n}=a^{n}+n a^{n-1} x+\frac{\ddot{n}(n-1) a^{n-2}}{1.2} x^{2}+\frac{\tilde{n}(n-1)(n-2) a^{n-4}}{1.2 .3} x^{3}+$ etc.

The following laws hold foi any term in the expansion of $(a+x)^{n}$.
The + xponent of x is less by one than the number of terms.
The exponent of a is n minus the exponent of x.
The last factor of the numerator is greater by one than the exponent of a.
The lasi factor of the denominator is the same as the exponent of x.
In the r th term the exponent of x will be $r-1$.
The expnnent of a will be $n-(r-1)$. or $n-r+1$.
The last factor of the numerator will be $n-r+2$.
The last factor of the denominator will be $=r-1$.
Hence the r th term $=\frac{n(n-1) \cdot n-2) \ldots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots(\cdot-1)} a^{n-r+1} x^{r-1}$

GEOMETRICAL PROBLEMS.

Fig. 1.

Fig. 4.

Fig. 5.

1. To bisect a straight Hine, or an arc of a circle (Hig. 3).From the ends A, B, an centres, describe arcs intersecting at C and D, and draw a line through C and D which will bisect the line at E or the arc at F.
2. To draw aperpendicular to a straight line, or a radial line to a circular are.-Same as in Problem 1. $C D$ is perpendicular to the line $A B$, and also radial to the arc.

3. To draw a perpendicular

 to a straight line from agiven point in that line (Fix. 2). With any radius, froin the given point A in the line $B C$, cut the line at B and C. With a longer radins describe arcs from B and C, cutting each other at D, and draw the perpendicular $D A$.4. From the end A of a given line $A D$ to erect a perpendicular A E (Fig. 3).-Frum ally centre F, above $A D$, descrilie a circle passing throush the given point A, and cutting the given line at D. Draw $D F$ and produce it to cut the circle at E, and draw the perpendicular $A E$.

Second Method (Fig. 4)-From the given point A set off a distance $A E$ equal to three parts, by any scale; and on the centres A and E, with radii of four and five parts respectively, describe arcsintersecting at C. Draw the perpendicular $A C$.

Note.-This method is most useful on very large scales, where straight edges are inapplicable. Any multiples of the numbers $3,4.5$ may be taken with the same effect as $6,8,10$, or 9 , $12,15$.
5. To dratw a perpendicular to a straight line from any point without it fig. 5.)-Froln the point A, with a sufficient radius cut the given line at F and G, and from these points describe arcs cutting at E. Draw the perpendicular $A E$.
6. To draw a straight line parallel to a given line, at a given distance apart (ris. 6). From thr cenlres A. B. In the given line, with the given distance as radins, descrive ares C, D. and draw the paralki lines $C D$ touching the ares.

Fig. 8.

Fig. 10.

Fig. 11.

Fig. 12.
7. To divide a straight line into a number of equal parts (Fig. 7).-T'U divide the line $A B$ into, say, five parts, draw the line $A C$ at an angle from A; set off tive equal parts; draw $B 5$ and draw parallels to it from the other points of division in $A C$. These parallels divide $A B$ as required.

Note.- By a similar process a line may be divided into a number of unequal parts; setting off divisions on $A C$, proportional by a scale to the required divisions, and drawing parallel cutting $A B$. The triangles $A 11, A \not 2$, A33, etc., are similar triangles.

8. Upon a straight line to

 draw an angle equal to a given angle (Hig. 8). -Let A be the given angle and $F G$ the line. From the point A with any radius describe the are $D E$. From F with the same radius describe $I H$. Set off the are $I H$ equal to $D E$. and draw $F H$. The angle F is equal to A, as required.9. To draw angles of 60° and $3^{\circ}{ }^{\circ}$ (Fig. 9).-From F, with any radius $F I$ describe an arc $I H$; and from I, with the same radius, cut the are at H and draw $F H$ to form the required angle $I F^{\prime} H$. Draw the perpendicular $H K$ to the base line to form the angle of $30^{\circ} \mathrm{FH}$.
10. To draw an angle of 45° (Fig. 10). Set off the distance $F I$; draw the perpendicular $I H$ equal to $I F$, and join $H F$ to form the angle at F. The angle at H is also 45°.
11. To bisect an angle (Fig. 11).-Let $A C B$ be the angle; with C as a centre draw an arc cutting the sides at A, B. From A and B as centres, describe ares cutting each other at D. Draw $C D$, dividing the angle into two equal parts.
> 12. Through two given points to describe an arc of a circle with a given radius (Fig. 12).-From the points A and B as centies, with the given radius, describe arcs cutting at C, and from C with the same radius describe an arc $A B$.

Fig. 13.
13. To find the centre of a circle or of an arc of a circle (Fig. 13).-Select three points, A, B, C, in the circumference, well apart; with the same radius describe arcs from these three points, cutting each other, and draw the two lines, $D E$, $F G$, through their intersections. The point O, where they cut, is the centie of the circle or arc.

To describe a circle passing

 through three given points. -Let A, B, C be the given points. and proceed as in last problem to find the centre O, from which the circle may be described.14. To describe an arc of a circle passing through three given points when the centre is not available (Fig.14) -From the extreme points A, B, as centres, describe arcs $A H$. $B G$. Through the third point C draw $A E, B F$, cutting the arcs. Divide $A F$ and $B E$ into any number of equal parts, and set off a series of equal parts of the same length on the upper portions of the ares beyond the points $E F$. Draw straight lines, $B L, B M$, etc., to the divisions in $A F$, and $A I, A K$, etc., to the divisions in $E G$. The successive intersections N, O, etc., of these liues are points in the

Fig. 15. circle required between the given points A and C. which may be drawn in ; similarly the remaining part of the curve $B C$ may be described. (See also Problem 54.)
15. To draw a tangent to a circle from a given point in the circumference (Fig. 15). -Through the given point A, draw the radial line $A C$. and a perpendicular to it, F^{\prime}, which is the tangent required.
16. To draw tangents to a circle from a point without it (Hig. 16).-From A, with the radius $A C$, describe an arc $B C D$, and from C. with a radius equal to the diameter of the circle, cut the arc at $B D$. Join $B C, C D$, cutting the circle at $E F^{\prime}$, and draw $A E, A F$, the tangents.

Note. - When a tangent is already drawn. the exact point of contact may be found by drawing a perpendicular to it from the centre.

Fig. 16.
17. Between two inclined lines to draw a series of circles touching these lines and touching each other (Fig. 1ô). -Bisect the inclination of the given lines $A B, C D$, by the line $N O$. From a point P in this line draw the perpendicular $P B$ to the line $A B$, and

Fig. 1 17.

Fig. 18.

Fig. 19.

Fig. 21.

on P describe the circle $B D$, touching the lines and cutting the centre line at E. From E draw $E F$ perpendicular to the centre line, cutting $A B$ at F, and from F describe an arc $E G$, cutting $A B$ at G. Draw $G H$ parallel to $B P$, giving H, the centre of the next circle, to be described with the radius $H E$, and so on for the next circle $I N$.

Inversely, the largest circle may be described first, and the smaller ones in succession. This problem is of frequent use in scroll-work.
18. Between two inclined lines to draw a circular seg. ment tangent to the lines and passing through a point F on the line $F \boldsymbol{C}$ which bisects the angle of the lines (Fig. 18). -Through F draw $D A$ at right angles to $F C$: bisect the angles A and D, as in Problem 11, by lines cutting at C, and from C with radius $C F$ diaw the arc $H F G$ required.
19. To draw a circular are that will be tangent to two given lines $A>3$ and $C D$ inclined to one another, one tangential point E being given (Fıg. 19).-Draw the centre line $G F$. From E draw $E F$ at right to angles $A B$; then F is the centre of the circle required.
20. To describe a circular arc joining two circles, and touching one of them at a given point (Fig. 20). -To join the circles $A B, F^{\prime} G$, by an arc touching one of them at F, draw the radius $E F$, and produce it both ways. Set off $F^{\prime} H$ equal to the radius $A C$ of the other circle; jnin $C H$ and bisect it with the perpendicular $L I$, cutting $E F$ at I. On the centre I, with radius $I F$, describe the arc $F^{\prime} A$ as required.
21. To draw a circle with a given radius R that will be tangent to two given circles A and \boldsymbol{B} (Fig. 21)-From centre of circle A with radius equal R plus radius of A, and from centre of B with radius equal to $R+$ radius of B, draw two arcs cutting each ot her in C, which will be the centre of the circle required.
> 22. To construct an equilateral triangle, the sides being given (Fig. $\because 2$). -On the ends of oll side, A, B. with $A B$ as radius, describe arcs cutting at O, and draw A $C, C B$.

Fig. 22.

Fig. 24.

Fig. 25.

Fig: 26.

Fig. 27.

23. To construct a triangle of unequal sides (Fiz. z3) -Un either end of the base A, "ith the side B as radius, describe an arc; and with the side C as radius. on the other end of the base as a centre, cut the arc at E. Join $A E, D E$.
24. To construct a square on a given straight line $A B$ (Fig 24).-At A erect a perpendicular $A C$. as in Problem 4. Lay off $A D$ equal to $A B$; from D and B as centres with radius equal $A B$, descrilie arcs cutting each other in E. Joiis $D E$ and $B E$.
25. To construct a rectangle with given base $\boldsymbol{E}^{\prime} \boldsymbol{F}^{\boldsymbol{\prime}}$ and height $E^{\boldsymbol{H}} \boldsymbol{H}$ (Fig. \% \% 5) - - On the base $E F$ draw the perpendiculars $E H$, ${ }_{F} G$ equal to the height, and join $G H$.

26. To describe a circle

 about a triangle (Fig. 26).Bisect two sides $A B, A C$ of the triangle at $E F$, and from these points draw perpendiculars cutting at K. On the centre K, with the radius $K A$, draw the circle $A B C$.
2\%. To inscribe a circle in

 a triangle (Fig z\%).-Bisect two of the angles A, C, of the triangle by lines cutting at D; from D draw a perpendicular $D E$ to any side, and with $D E$ as radius describe a circle.When the trianizle is equilateral, draw a perpendicular from one of the angles to the opposite side, and from the side set off one third of the perpendicular.
28. To describe a circle about a square, and to inscribe a square in a circle (Fig. 28).-To describe the circle, draw the diagonals $A B, C D$ of the square, cuttink at E. On the centre E, with the radius $A E$, describe the circle.
To inscribe the square. Draw the two diameters, $A B, C D$, at right angles, and join the points A, B, $C D$, to form the square.
Note.-In the same way a circle may be described about à rectangle.

29. To inscribe a circle in a

 square (Fig. 29). -To inscribe the circle, draw the diagonals $A B, C D$ of the square, cutting at E; draw the perpendicular $E F$ to one side, and with the radius $E F$ describe the circle.
30. To describe a square

 about a circle (Fig. 30). - Draw two diametris $A B, C D$ at right angles. With the radius of the circle and A, B, C and D as centres, draw the four half circles which cross one another in the corners of the square.
31. To inscribe a pentagon in a circle (Fig. 31).-Draw diam-

 eters $A C, B D$ at right angles. cutting at o. Bisect $A o$ at E. and from E, with radius $E B$. cut $A C$ at F; from B, with radius $B F$, cut the circumference at G, H. and with the same radius step round the circle to I and K; join the points so found to form the pentagon.32. To construct a pentagon on a given line $\boldsymbol{A} \boldsymbol{B}$ (Fig. 3\%). - From B erect a perpendicular $B C$ half the length of $A B$; join $A C$ and prolong it to D, making $C D=B C$. Then $B D$ is the radius of the circle circumscribing the pentagon. From A and B as centres. with $B D$ as radius, draw arcs cutting each other in O, which is the centre of the circle.
33. To construct a hexagon upon a given straight line (Fig. 33).-From A and B, the ends of the given line, with radius $A B$, describe arcs cutting at g; from g, with the radius $g A$, describe a circle; with the same radius set off the arcs $A G$; $G F$, and $B D . D E$. Join the points so found to form the hexagon. The side of a hexagon = radius of its circumscribed circle.
34. To inscribe a hexagon in a circle (Fig. 34).-Draw a diameter $A C B$. From A and B as centres, with the radius of the circle $A C$, cut the circumference at D, E, F, G, and draw $A D, D E$, etc., to form the hexagon. The radius of the circle is equal to the side of the hexagon; therefore the points D, E, etc., may also be found by stepping the radius six times round the circle. The angle between the diameter and the sides of a hexagon and also the exterior angle between a side and an adjacent side prolonged is 60 degrees; therefore a hexagon may conveniently be drawn by the use of a 60 -degree triangle.

Fig. 35.

Fig. 36.

Fig. 37.

Fig. 38.

Fig. 39.
35. To describe a hexagon about a circle (Fig. 35).-Draw a dameter $A \perp B$, and with the radius $A D$, on the centre A, cut the circumference at C; join $A C$. and bisect it with the radius $D E$; through E draw $F G$, parallel to $A C$, cutting the diameter at F, and with the radius $D F$ describe the circumscribing circle $F H$. Within this circle describe a hexagon by the preceding problem. A more convenient method is by use of a $60-$ degree triangle. Four of the sides make angles of 60 degrees with the diameter, and the other two are parallel to the diameter.

36. To describe an octagon

 on a given straight line H'ig. 36).-Pioduce the given line $A B$ both ways, and draw perpendiculars $A E$, $B F$; bisect the external angles A and B by the lines $A H, B C$, which make equal to $A B$. Draw $C D$ and $H G$ parallel to $A E$, and equal to $A B$; from the centres G, D, with the radius $A B$, cut the perpendiculars at E, F, and draw $E F^{\prime}$ to complete the octagon.3\%. To convert a square intoan octagon (Fig. 3\%).-Draw the diagonals of the square cutting at e; from the comers A, B, C, D, with $A e$ as radius, describe ares cutting the sides at $g n, f k, h m$, and ol, and join the points so found to form the octagon. Adjacent sides of an octagon make an angle of 135 degrees.
38. To inscribe an octagon in a circle (Fig. 38). -Draw two diameters, $A C, B D$ at right angles; bisect the arcs $A B, B C$. etc., at ef, etc., and join A e, e B, etc., to form the octagon.
39. To describe an octagon about a circle (Fig. 38). - Describe a square about the given circle $A B$; draw perpendiculars $h k$, etc. . to the diagnnals, touching the circle to form the octagon.

Fig. 41.

Fig. 42.

Fig. 43.
with the radius $A B$, describe a semicircle; divide the semi-circumference into as many equal parts as there are to be sides in the polygon-say, in this example, five sides. Draw lines from A through the divisional points D, b, and c. omitting one point a; and on the centres B. D, "ith the radius $A B$, cut $A b$ at E and $A c$ at F. Draw $D E$, $E F, F B$ to complete the polygon.
41. To inscribe a circle within a polygon (Figs. 41, 42). When the polygon has an even number of sides (Fig. 41), bi-ect two opposite sides at A and B; draw $A B$. and bisect it at C by a diagonal $D E$, and with the radius $C A$ describe the circle.

When the number of sides is odd (Fig. 4\%), bisect two of the sides at. A and B, and draw lines $A E, B D$ to the opposite angles, intersecting at C; from C. with the radius $C A$, describe the circle.

42. To describe a circle

 withont a polygon (Figs. 41. 4:). -Find the centre \mathcal{C}, as before, and with the radius $C D$ describe the circle.43. To inscribe a polygon
of any number of sides with-
in a circle (Fig. 43).-Draw the
diamter $A B$ and throngh the centre
E draw the perpendicular $E C$. cutsing
the circle at F. Divide $E F$ into four
equal parts. and set off three parts
equal to those from F to C. Divide
the diameter $A B$ into as many equal
parts as the polygon is to have sities ;
and from C draw $C D$, through the
secoud point of division. cutting the
circle at D. Then $A D$ is equal to one
side of the polvgon. and by stepping
round the circumference with the
lengith $A D$ the polygon mas be com-
pleted.

TABLE OF POLYGONAL ANGLES.

Number of Sides.	Angle at Centre.	Number of Sides.	Angle at Centre.	Number of Sides	Angle at Centre.
No.	Degrees.	No.	Degrees.	No.	Degrees.
3	120	9	40	15	24
4	90	10	36	16	$22 \frac{1}{2}$
5	72	11	32 m	17	$211^{\frac{3}{77}}$
6	60	12	$3)^{11}$	18	20^{17}
7	513	13		19	19
8	45	14	$255^{\frac{1}{3}}$	20	18

In this table the angle at the centre is found by dividing 360 degrees, the number of desrees in a cincle, by the number of sides in the polygon; aud by setting off round the centre of the circle a succession of angle: by means of the protractor. equal to the ragle in the table due to a given number of sides. the radii so drawn will divide the circumterence into the same number of parts.

44. To describe an ellipse when the length and breadth

 aregiven(tig. +1). - $A B$, trausverse

Eig. 44.

Fig. 45.

Fig. 46.

Fig. 47. axis; $C L$. conjugate axis; $F G$, toci. The sum of the disiances from C to F and G. also the sum of the distances from F^{\prime} and G to auy other point in the curve is equal to the transverse axis. From the centre C, with $A E$ as radius, cut the axis $A B$ at F and G, the foci: fix a couple of pins into the axis at H and G. and loup on a thread or cord upon them equal in length 10 the axis $A B$. so as when stretched to reach to the extremity C of the ronjngater axis. as shown in dut iuing. Hlace a pencil insiue the corn as at H, and guiding the peucil in this way, keeping the cord equaly in tellsion, carry the pencil round the pins F^{\prime}, G, and so devicribe the ellipse.
Note.-This method is employed in setting off elliptical garden-pluts, walks, etc.
$2 d$ Metliod (Fig. 45). - Alnng the straisht edge of a slip of stiff paper mark off a distance a cequal to $A C$, half the dransverse axis; and from the same point a distance ab equal to $C D$, half the conjugate axis. Place the slip so as to bring the point b on the line $A B$ of the lransverse axis, and the point c on the line $D E$: and set off on the drawing the po-ition of the point a. Shifting the slip so that the point b travels on the transverse axis. and the point c on the conjugate axis, any number of puints in the curve mar be found, through which the curve may be naced.
$3 d$ Merhed (Fig. 46).-The action of the preceding method may be emborlied sn as to afford the means of describing a large curve continuously by means of a bar $m k$, with steel points m, l, k, riveted mito hrass slides adjusted to the length of the semiaxis and fixed with set-screws A rectangular cross E ($;$, with guidingslots is placed, coinciding with the two axes of the ellipse $A C$ and $B H$. By sliding the ponts k, l in the slots, and carrying round the point m, the curve may be coutinuously described. A pen or pencil may be fixerl at m.

4th Method (Fig. 4थ). - Bisect the transverse axis at C. and through C draw the perpendicular $D E$. making $C D$ and $C E$ each equal to half the conjugate axis. From D or E, with the railins $A C$. cut the transverse axis at F^{\prime}, F^{\prime}, for the foci. Divide $A C$ intn a number of parts at the
points 1, 2, 3, etc. With the radius $A I$ on F and F^{\prime} as centres, describe arcs. and with the radius $B I$ on the same centres cut these arcs as shown.

Fig. 48.

Fig 49.

Fig. 50.

Fig. 51. Repeat the operation for the other divisions of the transverse axis. The series of intersections thus made are points in the curve, through which the curve may be traced.
5th Method (Fig. 48).-On the two axes $A B, D E$ as diameters, on centre C, describe circles; from a number of points a, b, etc., in the circumference $A F B$, draw radii cutting the inner circle at a^{\prime}, b^{\prime}, etc. From a, b, etc., draw perpendiculars to $A B$; and from a^{\prime}, b^{\prime}, etc., draw parallels to $A B$, cutting the respective perpendiculars at n, o. etc. The intersections are points in the curve. through which the curve may be traced.
6 th Method (Fig. 49). - When the transverse and conjugate diameters are given, $A B, C D$, draw the tangent $E F$ parallel to $A B$. Produce $C D$, and on the centre G with the radius of half $A B$, describe a semicircle $H D K$; from the centre G draw any number of straight lines to the points E, r, etc., in the line $E F$, cutting the circumference at l, m, n, etc.; from the centre O of the ellipse draw straight lines to the points E, r, etc.; and from the points l, m, n, etc., draw parallels to $G C$, cutting the lines $O E$, $O r$, etc., at L, M, N, etc. These are points in the circumference of the ellipse, and the curve may be traced through them. Points in the other half of the ellipse are formed by extending the intersecting lines as indicated in the figure.
45. To describe an ellipse approximately by means of circular ares.-First.-With arcs of two radii (Hig .50). -Find the difference of the semi-axes, and set it off from the centre O to α and c on $O A$ and $O C$; draw ac. and set off half $a c$ to d; draw $d i$ parallel to $a c$; set off O e equal to $O d$; join e e, and draw the parallels $e m, d m$. From m, with radius $m C$, describe an arc through C; and from i describe an arc through D; from d and e describe arcs through A and B. The four arcs form the ellipse approximately.

Note.-This method does not apply satisfactorily when the conjugate axis is less than two thirds of the transverse axis.

2d Method (by Carl G. Barth, Fig. 51). - In Fig. $51 a b$ is the major and $c d$ the minor axis of the ellipse to be approximated. Lay off b e equal to the semi-minor axis $c O$, and use a e as radius for the arc at each extremity of the minor axis. Bisect e o at f and lay off $e g$ equal to $e f$, and use $g b$ as radius for the arc at each extremity of the major axis.

The method is not considered applicable for cases in which the minor axis is less than two thirds of the major.

Fig. 52.

3d Method: With arcs of three radii (Fig. 52). - On the transverse axis $A B$ draw the rectangle $B G$ on the height $O C$; to the diagonal $A C$ diaw the perpendicular $G H D$; set off $O K$ equal to $O C$, and describe a semicurcle on $A K$, and produce $O C$ to L; set off $O M$ equal to $C L$, and from D describe an are with radius $D M$; from A, with radius $O L$, cut $A B$ at N; from H, with radius $H N$, cut arc $a b$ at a. Thus the five centres D, a, b, H, H^{\prime} are found, from which the arcs are described to form the ellipse.

This process works well for nearly all proportions of ellipses. It is used in striking out vaults and stone bridges. 4 th Method (by F. R. Honey, Figs. 53 and 54).-Three radii are employed. With the shortest radius describe the two arcs which pass through the vertices of the major axis, with the longest the two arcs which pass through the vertices of the minor axis, and with the third radius the four arcs which connect the former.

A simple method of determining the radii of curvature is illustrated in Fig. 53. Draw the straight

Fig. 53. lines $a f$ and a c, forming any angle at a. With a as a centre, and with radii αb and $a c$, respectively, equal to the semiminor and semi-major axes, draw the arcs $b e$ and $c d$. Join $e d$, and through b and c respectively draw $b g$ and $c f$ parallel to $e d$. intersecting ac at g, and $a f$ at $f ; a f$ is the radius of curvature at the vertex of the minor axis; and ag the radius of curvature at the
vertex of the major axis.
Lay off $d h$ (Fig. 53) equal to one eighth of $b d$. Join $e h$, and draw $c k$ and $b l$ parallel to $e h$. Take $a l$ for the longest radius $(=R), a l$ for the shortest radius $(=r)$, and the arithmetical mean, or one half the sum of the semi-axes, for the third radius $(=p)$, and employ these radii for the eight-centred oval as follows:

Let $a b$ and $c d$ (Fig. 54)

Fig. 54. be the major and minor axes. Lay off αe equal to r, and $a f$ equal to p; also lay off $c g$ equal to R, and $c h$ equal to p. With g as a centre and $g h$ as a radius, draw the arc $h k$; with the centre e and radius e f draw the arc $f k$, intersecting $h k$ at k. Draw the line $g l i$ and produce it, making $g l$ equal to R. Draw $k e$ and produce it, making $k m$ equal to p. With the centre g and radius $g c(=R)$ draw the arc $c l$; with the centre l and radius $k l(=p)$ draw the arc $l m$, and with the centre e and radius $e m$ ($=r$) draw the arc $m \alpha$.
The remainder of the work is symmetrical with respect to the axes.

Fig. 55.
46. The Parabola.-A parabola
 every point in the rarve is equally distant from the ditecerex $K L$ and the fictis F. Thie fucu: lit: it the axis $A B$ drawn from the veltex on head of the curs A, so as to cor ide the figure into two equal parts. The remex A is equidistanf from the directrix and the focus, or Ae $=A F_{\text {. Any line }}$ parallel to the axis is a diameter. A straight line, as $E G$ or $D C$, draun across the figure at right angles to the axis is a duable ordinate, and rither half of it is an ordinate. The ordinate to the axis $E F G$, dirawn through the focus, is called the parameter of the axis. A segment of the axis. rerkoned from the vertex. is an abscissa of the axis, and it is an abscissa of the ordinate drawn from the base of the abscissa. Thus, $A B$ is an abscissa of the ordinate $B C$.
Abscissæ of a narabola are as the squares of their ordinates.
To describe a parabola when an abscissa aid its ördinate aire given (Fig. 5j).-Bisew lhe given ordinate $B C$ at α draw A, and then " b prependicular to it, meeting the axis at b. Set off A e. $A F$, each equal to $B b$; and draw $K e L$ perpendicular to the axis Then $K L$ is the directix and F is the focus. Through F and any number of points, o, o, etc., iil the axis. draw donble ordinates, $n o n$, etc. and from the centre F, with the radni $F e$, o e, elc.: cut the respective ordinates at $E ; G, n, n$, etc. The curve may be traced through these points as shown.

Fig. 56.

FlG. 57.

2d Method: By means of a square and a cord (Fig. 5 ti)-Place a straightedge to the directrix $E N$, and apply to it a square $L E G$. Fasten to the end G one end of a thread or cord equal in length to the edge $E G$. and attach the other end to the focus F; slide ihe square along the straightedse. holding the cord taut against the e. ge of the square by a pellcil D, by which the curve is described.

3d Method: When the buight and the base are given (Fig. 5i) - Let $A B$ be the givell axis and $C D$ a double ordinate or base; to describe a parabola of which the rertex is at A. Throurh A uraw E F marallel to $C D$, and through C and D draw $C E$ and $D F$ 'parallel to the axis.. Divide $B C$ and $B D$ into anr number of equal parts. say five, at a, b. etc.. and divide $C E$ and $D F$ into the same number of parts. Through the points a.b.c.d in the base $C D$ on each side of the axis draw perpondiculars. and through $a . b, c, d$ in $C E$ and $D F$ draw lines to the vertex A. cutting the perpendiculars at e.f, g, h. These are pints in the parabola, and the curve C A D may be traced as shown; passing through thens.
47. The Hyperbola (Fig. 58).-A hyperbola is a plane curve, such that the urference of the ustances from any poine of it to two fixed points is equal to a given distance. The fixed poins are called the foci.

To construct a hyperbola.

Fig. 58.

Fig. 59. - Let $H^{\prime \prime}$ alld H^{\prime} ve he tuci, allu $H^{\prime \prime} \boldsymbol{F}^{\prime}$ the distance berween them. Trake a ruler longer than the distance $F^{*} F$, and fasten one of its extremities at the focus F^{\prime}. At the other extremity, H, ättach a thread of such a length that the length of the ruler shall exceed the lenyth of the thread by a given distance $A B$. Attach the other extremity of the thread at the focus F.

Press a pencil. P, against the ruler, aud keep the thread constantly tense, while the ruler is turned around $F^{\prime \prime}$ as a centre. The point of the pencil will describe one branch of the curve.

2d Method: By poiiuts (Fig. 59).From the focus F^{\prime} lay off a distance $F^{\prime \prime} N$ equal to the transverse axis, or distance letween the two b anches of the curve, and take any other distance, as $F^{\prime} H$, greater than $F^{\prime} N$.

With $F^{\prime \prime}$ as a centre and $F^{\prime} H$ as a radins describe the arc of a circle. Then with F as a centre and $N H$ as a radius describe an arc intersecting the arc before described at p and q. These will be points of the hyperbola, for $F^{\prime} q-F^{\prime} q$ is equal to the transverse axis $A B$.

1f, with F^{\prime} as à centre and $F^{\prime} H$ as à radius. an arc be described, and a secrind airc be described with $F^{\prime \prime}$ as a cintre and $N H$ as a radius. two points in the other bratich of the cuirve will be determined. Hence, by chauging the gelitpose ench pair if radii will determine two points in each branch.

The Equilateral Hyperbolà:-The transverse axis of a hyperbola is che distalue. on a ille jolung the foci, between the two branches of the curve. The conjugate axis is a line perpendicular to the transverse axis, drawn from its centre, and of such a length that the diagonal of the rectangle of the transverse and conjugate axes is rqual to the distance between the foci. The diagonals of this rectangle, indefinitely prolonged, are the asymptotes of the hyperbola. lines which the curve continually approaches, but touches ouly at an infinite distance. If these asymptotes are perpendicilar to each other, the hyperbola is called a rectangular or equilateral hyp \quad boln. It is a property of this hyperbola that if the asymptotes are taken as axes of a rectangular system of coördinates (see Analytical Geometryl, the product of the abscissa and ordinate of any point in the curve is equal to the product of the alsscissa and ordinate of any other point; or, if p is the ordinate of any point and v its abscissa, and p_{1} and v_{1} are the ordinate and abscissa of any other point, $p v=p_{1} v_{1}$; or $p v=$ a constant.
48. The Cycloid
 (Fig. (00),-If a circle Ad be rolled along a straight line $A 6$, ally point of the circumference as A will describe a curve, which is called a cycloid. The circle is called the generating circle, and A the generating point.

To draw a cycloid.

 -Divide the circumference of the generating circle into an even number of equal parts, as $A 1,12$, etc., and set off these distances on the base. Through the points 1, 2, 3, etc., on the circle draw horizontal lines, and on them set off distances $1 a=A 1$, $2 b=A Z .3 c=A 3$. etc. The points A, a, b, c, etc., will be points in the cycloid, through which draw the curve.

Fig. 61.

Fig. 62.

Fig. 63.
49. The Epicycloid (Fig. 61) is generated by a point D in one circle $D C$ rolling upon the circumference of another circle $A C B$, instead of on a flat surface or line; the former being the generating circle, and the latter the fundamental circle. The generating circle is shown in four positions, in which the generating point is successively marked $D, D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$. $A D^{\prime \prime \prime} B$ is the epicycloid.
50. The Hypocycloid (Fig. 62) is generated by a point in the generating circle rolling on the inside of the fundamental circle.
When the generating circle $=$ radius of the other circle, the hypocycloid becomes a straight line.

51. The Tractrix or Schiele's anti-friction curve

 (Fig. 63). $-R$ is the radius of the shaft, $C, 1,2$, etc., the axis. From O set off on R a small distance, $o \alpha$; with radius R and centre a cut the axis at 1 , join a 1, and set off a like small distance $a b$; from b with radius R cut axis at 2 , join $b 2$, and so on, thus finding points o, a, b, c, d, etc., through which the curve is to be drawn.52. The Spiral.-The spiral is a curve described by a point which moves along a straight line according to any given law, the line at the same time having a unifurm augular motion. The line is called the radius vector.

Fig. 64. If the radius vector increases directly as the measuring angle, the spires, or parts described in each revolution, thus gradually increasing their distance from each other, the curve is known as the spiral of Archimedes (Fig. 64).
This curve is commonly used for cams. To describe it draw the radius vector in several different directions around the centre, with equal angles between them; set off the distances $1,2,3,4$, etc., corresponding to the scale upon which the curve is drawn, as shown in Fig. 64.
In the common spiral (Fig. 64) the pitch is uniform; that is, the spires are equidistant. Such a spiral is made by rolling up a belt of uniform thickness.

Fig. 65.

To construct a spiral with four centres (Fig. 65).-Given the pitch of the spiral, construct a square about the centre, with the sum of the four sides equal to the pitch. Prolong the sides in one direction as shown; the corners are the centres for each arc of the external angles, forming a quadrant of a spire.
53. To find the diameter of a circle into which a certain number of rings will fit on its inside (${ }^{\prime}$ ig. $\mathbf{b i b}^{\circ}$). - For instance, what is the diameter of a circle into which twelve $1 / 2$-inch rings will fit, as per sketch? Assume that we have found the diameter of the required circle, and have drawn the rings inside

Fig. 66. of it. Join the centres of the rings by straight lines, as shown : we then obtain a regular polygon with 12 sides, each side being equal to the diameter of a given riug. We have now to find the diameter of a circle circumscribed about this polygon, and add the diameter of one ring to it; the sum will be the diameter of the circle into which the rings will fit. Through the centres A and D of two adjacent rings draw the radii $C A$ and $C D$; since the polygon has twelve sides the angle $A C D=30^{\circ}$ and $A C B=15^{\circ}$. One half of the side $A D$ is equal to $A B$. We now give the following proportion: The sine of the angle $A C B$ is to $A B$ as 1 is to the required ra- $\}$ dius. From this we get the following r::is: Divide $A B$ by the sine of the angle $A C B$; the quotient will be the radius of the circumscribed circle; add to the corresponding diameter the diameter of nne ring ; the sum will be the required diameter $F^{\prime}\left({ }_{r}\right.$.
54. To describe an arc of a circle which is too large to be drawn by a beam compass, by means of points in the are, radius being given.-Suppuse the radıus is zu feet and it is desired to obrall tive polnts in an arc whose half chord is 4 feet. Draw a line equal to the half chord, full size, or on a smaller; scale if more convenient, and erect a perpendicular at one end, thus making rectangular axes of coördinates. Erect perpendiculars at points 1, 2, 3, and 4 feet from the first perpendicular. Find values of y in the formula of the circle. $x^{2}+y^{2}=R^{2}$ by substituting for x the values $0,1,2,3$, and 4 , etc.. and for R^{2} the square of the radius, or 400 . The values will be $y=\sqrt{R^{2}-x^{2}}=\sqrt{4} \overline{00}$, $\sqrt{399}, \sqrt{396}, \sqrt{391}, \sqrt{384} ;=20, \quad 19.975, \quad 19.90,19.774,19.596$. Subtract the smallest,
or 19.596, leaving $\quad 0.404,0.3 \% 9,0.304,0.1 \% 8,0 \quad$ feet.
Lay off these distances on the five perpendiculars, as ordinates from the half chord, and the positions of five points on the arc will be found.
 Through these the curve may be drawn. (See also Problem 14.)
55. The Catenary is the curve assumed by a perfectly flexible cord when its ends are fastened at two points, the weight of a unit length being constart.

The equation of the catenary is $y=\frac{a}{2}\left(e^{\frac{x}{\alpha}}+e^{-\frac{x}{\alpha}}\right)$, in which e is the base of the Naperian system of log. arithms.

To plot the catenary.-Let 0 (Fig. $6 \tilde{\sim}$) be the orizin of coördinates. Assigning to a any value as 3 , the equation becomes

$$
y=\frac{3}{2}\left(e^{\frac{x}{3}}+e^{-\frac{x}{3}}\right)
$$

To find the lowest point of the curve.

$$
\text { Put } x=0_{i} \therefore y=\frac{3}{2}\left(e^{0}+e^{-0}\right)=\frac{3}{2}(1+1)=3
$$

$$
\begin{aligned}
& \text { Then put } x=1 ; \therefore y=\frac{3}{2}\left(e^{\frac{1}{3}}+e^{-\frac{1}{3}}\right)=\frac{3}{2}(1.306+0.717)=3.17 . \\
& \text { Fut } x=2 ; \therefore y=\frac{3}{2}\left(e^{\frac{2}{3}}+e^{-\frac{2}{3}}\right)=\frac{3}{2}(1.948+0.513)=3.69 .
\end{aligned}
$$

Put $x=3.4$. 5 . etc., etc., and find the corresponding valnes of y. For each value of y we obtain two symmetrical points, as for example p and p^{1}.

In this way, by making a successively equal to $2,3,4,5,6,7$, and 8 , the curves of Fig. 67 were plotted.

In each case the distance from the origin to the lowest point of the curve is equal to a : for putting $x=0$, the general equation redices to $y=a$.

For values of $a=6.7$, and 8 the catenary closely approaches the parabnla. For derivation of the equation of the catenary see Bowser's Analytic Mechanics. For comparison of the catenary with the parabola, see article by F R. Honev. Amer. Muchinist. Feb. 1, 1894:
56. The Involute is a name given to the curve which is formed by

Fig. 68. the end of a string which is unwound from a cylinder aud kept laut; consequently the string as it is unwound will alwars lie in the direction of a tangent to the rylinder. To describe the involute of any given circle. Fig $6 \times$. take any point A on its circuinference draw a diameter $A B$, and from B draw B hp rpendicular to $A B$. Make $B b$ equal in length to half the circumference of the circle Divide $B b$ and the semi-circumfertnce into the same number of equal parts, say six. From each point of divisir n $1,2,3$ etc., on the circumference Iraw lines to the centre C if the circle. Then draw 1 a perpendicular tי $C 1$; $2 \alpha_{2}$ perpendicular to $C: 2$ and so on. Make 1 a equal to $b b_{1} ; 2 \pi_{2}$ equal tu $b b_{2} ; 3 a_{3}$ rqual to $b b_{3}$; and so on. Join the points $A, a_{1}{ }^{1}, a_{2}, a_{3}$, etc., by a curve; this curve will be the required involute.

5\%. Method of plotting angles without using a protractor. -The radius of ercle whose circmmerence is 360 is 5 . 2 (mone accurately $5 \pi .296$). Striking a semicirce u ith a ralius 57.3 by any scale, spacers set to 10 by the same scale will divide the are into 18 spaces of 10° each, and intermediates can be measured indirectly at the rate of 1 bre scaie for each 1°, or interpolated by eye according to the degree of accuracy required. The following table shows the chords th the above-mentioned radius, for every 10 degrees from 0° up to 110°. By means of one of these,

Angle.	Chord.	Angle.	Chird.
	0999	60°	57.296
10°	9.988	70°	65.72%
20°	19.899	80°	73.658
30°	29.658	90°	81.03?
40°	39.192	100°	87.782
50°.	48.4:2	110°	93.869

a 10° point is fixed upon the paper next less than the required angle, and the remainder is laid off at the rate of 1 by scale for each degree.

GEOMETRICAL PROPOSITIONS.

In a right-angled triangle the square on the hypothenuse is equal to the sum of the squares on the other two sides.
If a triangle is equilateral, it is equangular, and vice versa.
If a straight line from the vertex of an isosceles triangle bisects the base, it bisects the vertical angle and is perpendicular to the base.
If one side of a triangle is produced, the exterior angle is equal to the sum of the two incerior and opposite angles.
If two triangles are mutually equiangular, they are similar and their corresponding sides are proportional.
If the sides of a polygon are produced in the same order, the sum of the exterior angles equals four right angles.
In a quadrilateral, the sum of the interior angles equals four right angles.
In a parallelogram, the opposite sides are equal ; the opposite angles are equal; it is bisected by its diagonal; and its diagonals bisect each other.
If three points are not in the same straight line, a circle may be passed through them.
If two arcs are intercepted on the same circle, they are proportional to the corresponding angles at the centre.
If two ares are similar, they are proportional to their radii.
The areas of two circles are proportional to the squares of their radii.
If a radius is perpendicular to a chord, it bisects the chord and it bisects the are subtended by the chiord.
A straight line tangent to a circle meets it in only one point, and it is perpendicular to the radius drawn to that point.
If from a point without a circle tangents are drawn to touch the circle, there are but two; they are equal, and they make equal angles with the chord joining the tangent points.
If two lines are parallel chords or a tangent and parallel chord, they intercept equal arcs of a circle.
If an angle at the circumference of a circle, between two chords, is subteuded by the same arc as an angle at the centre, between two radii, the angle at the circumference is equal to half the angle at the centre.
If a triangle is inscribed in a semicircle, it is right-angled.
If an angle is formed by a tangent and chord, it is measured by one half of the arc intercepted by the chord; that is, it is equal to half the angle at the centre subtended by the chord.
If two chords intersect each other in a circle, the rectangle of the segments of the one equals the rectangle of the segments of the other.

And if one chord is a diameter and the other perpendicular to it, the rectangle of the segments of the diameter is equal to the square on half the other chord, and the half chord is a mean proportional between the segments of the diameter.

MENSURATION.

PLANE SUREACES.

Quadrilateral. - A four-sided figure.
Parallelogram.-A quadrilateral with opposite sides parallel.
Varielies.-Square: four sides equal, all angles right angles. Rectangle: opposite sides equal, all angles right angles. Rhombus: four sides equal, opposite angles equal, angles not right angles. Rhomboid: opposite sides equaj, opposite angles equal, angles not right angles.
Trapezium.-A quadrilateral with unequal sides.
Trapezoid. - A quadrilateral with only one pair of opposite sides paraliel.
Diagonal of a square $=\sqrt{2 \times \text { side }^{2}}=1.4142 \times$ side.
Diag. of a rectangle $=\sqrt{\text { sum of squares of two adjacent sides. }}$
Area of any parallelogram $=$ base \times altitude.
Area of rhombus or rhomboid = product of two adjacent sides X sine of angle includet between them.
Area of a trapezium = half the product of the diagonal by the sum of the perpendicular's let fail on it from opposite angles.
Area of a trapezoid = product of half the sum of the two parallel sides by the prrpendicular distance hetwe.en them.
To find the area of any quadrilateral figure.-Divide the quadrilateral into two triangles; the sum of the areas of the triangles is the area.
Or, multiply half the product of the two diagonals by the sine of the angle at their intersection.
To find the area of a quadrilateral inscribed in a circle. - H'rom half the sum of the four sides subtract each side severally; multply the four remainders together; the square root of the product is the area.
Triangle.-A three-sided plane figure.
Varieties.-Right-angled, having one right angle; obtuse-angled, having one obtuse angle; isosceles, having two equal angles and two equal sides; equilateral, having three equal sides and equal angles.
The sum of the three angles of every triangle $=180^{\circ}$.
The two acute angles of a right-angled triangle are complements of each other.
Hypothenuse of a right-angled triangle, the side opposite the right angle.
$=\sqrt{\text { sum of the squares of the other two sides. }}$
To find the area of a triangle :
Kule 1. Multiply the base by half the altitude.
Rule 2. Multiply half the product of two sides by the sine of the inciuded angle.

RuLE 3. From half the sum of the three sides subtract each side severally; multiply together the half sum and the three remainders, and extract the square root of the product.

The area of an equilateral triangle is equal to one fourth the square of one of its sides multiplied by the square root of $3,=\frac{a^{2} V_{3}}{4}, a$ being the side; or $a^{2} \times .433013$.

Hyporhenuse and one side of right-angled triangle given, to find other side, Required side $=\sqrt{\text { hyp }^{2}-\text { given side }}{ }^{2}$.

If the two sides are equal, side $=$ hyp +1.4142 ; or hyp $\times . \% 071$.
Area of a triangle given, to find base: Base $=t w i c e$ area + perpendicular height

Area of a triangle given, to find height: Height $=$ twice area \div base.
Two sides and base giver, to find perpendicular height (in a triangle in which both of the angles at the base are acute).
Rule.-As the base is to the sum of the sides, so is the difference of the sides to the difference of the divisions of the base made by drawing the perpendicular. Half this difference being added to or subtracted from half the base will give the two divisions thereof. As each side and its opposite
division of the base constitutes a right-angled triangle, the perpendicular is ascertained by the rule perpendicular $=\sqrt{\text { hyp }^{2}}-$ base 2.
Polygon. - A plane figure having three or more sides. Regular or irregular, according as the sides or angles are equal or unequal. Polygons alre named from the number of their sides and angles.

To find the area of an irregular polygon.-Draw diagonals dividing the polygon intu triangles, and tind the sum of the areas of these triangles.
To find the area of a regular polygon :
Kule. - Muluply the length of a side by the perpendicular distance to the centre; multiply the product by the number of sides, and divide it by 2 . Or, multiply half the perimeter by the perpendicular let fall from the centre on one of the sides.
The perpendicular from the centre is equal to half of one of the sides of the polygon multiplied by the cotangent of the angle subtended by the half side.
The angle at the centre $=360^{\circ}$ divided by the number of sides.
TABLE OF REGULAR POLYGONS.

$\begin{gathered} \dot{d} \\ \stackrel{\dot{d}}{i n} \\ \stackrel{i}{2} \\ \dot{0} \\ \dot{4} \end{gathered}$			Radius of Circumscribed Circle.						
				$\begin{aligned} & \dot{+} \\ & \\| \\ & \stackrel{*}{i n} \end{aligned}$					
3	Triangle	4330127		. 5773	. 2887	1.73	120°	60°	
4	Nquare		1.414	. 7071		1.4142	90	90	
5	Peritagon	1.7204774	1.238	. 8506	${ }^{6} 8882$	1.1756	${ }_{6} 9$	108	
7	Heptagun	${ }_{3} .6339124$	1.11	1.1524	1.0383	1.867\%	${ }_{51} 66^{\prime}$	128 4-7	
8	Octagon	4.8284271	1.083	1.3066	1.2071	. 7653	5	\%	
9	Nonagon	6.181824	$1.06 \pm$	1.4619	1.37.37	. 684	40	140	
10	Decagon	7.6942088	1.051	1.618	1.5388	. 618			
11	Undecagon	9.3656399	1.042		1.70:28	. 5634	3243 '	147 3-11	
12	Dodecagon	11.19615:4	1.037	1.9319	1.866	. 5176	30	150	

To find the area of a regular polygon, when the length of a side only is given:

Kule.- Multiply the square of the side by the multiplier opposite to the name of the polygon in the table.

To find the area of an irregular figure (Fis. 69).-Draw ordinates across its breadth at equal distances apart, the first and the last ordinate each being one half space from the ends of the figure. Find the average breadth by adding together the lengths of these lines included between the boundaries of the figure, and divide by the number of the lines added; multiply this mean breadth by the length. The greater the number of lines the nearer the approximation.

Fig. 69.

In a figure of very irregular outline, as an indicator-diagram from a highspeed steam-engine, mean lines may be substituted for the actual lines of the figure, being so traced as to intersect the undulations, so that the total area of the spaces cut off may be compensated by that of the extra spaces inclosed.

2d Method: The Trapezoidal Rule. - Divide the figure into any suff. cient number of equal pairs : add half the sum of the two end ordinates to the sum of all the uther ordinates; divide by the number of spaces chat is, one less than the nimber of ordiiates) to obtäin the medn ordinate, and multiply this by the lerigth to obtain the area.
$3 d$ Method: Simpson's Rule.-bivide the length of the figure into aby even number of equal parts, at thè common distance D apart, and draw ordinates through the points of division to touch the boundary lines. Ada together the first and last ordinates and call the sum A; add together the even ordinates and call thie sum B; ădd tigethè the odd ordinates; except the first and last, and call the sum C. Then,

$$
\text { area of the figure }=\frac{A+4 B+2 C}{3} \times D
$$

4th Method: Durand's Rule.-Add together $4 / 10$ the sum of the first and last ordinates, $11 / 10$ the sum of the second and the next to the last (or the pen ltimates). and the sum of all the intermediate ordinates. Multiply the sum thas gained by the common distance between the ordinates to obtain the area, or divide this sum by the nünber of spaces to obtain the mean ordinate.

Prof. Durand describes the method of obtaining his rule in Engineering News, Jan. 18. 1894 He claims that it is noie accurate than simpson's rule, and practically as simple as the trapezoidal rule. He thus describes its application for approxiilite integration of differential equations. Any definite integral may be represented graphically by an area. Thus, let

$$
Q=\int u d x
$$

be an integral in which u is some function of x, either known or admitting of computatiou or measurement. Any curve ploted with x as abscissa and u as ordinate will then represent the variation of u with x, and the area between such curve and the axis X will represent the integral in question, no matter how simple or complex may be the real nature of the finction u.

Substituring in the rule as above given the word "volume" for "area" and the word "section" for "ordinate," it becomes applicable to the determination of volumes from equidistant sections as well as of areas from equidistant oidinates.

Having appioximately obtained an area by the trapezoidal rule, the area by Durand's rule inay be found by adding algebraically to the sum of the ordinates used in the trapezoidal rule cthat is, half the sum of the end ordinates + sum of the nther ordinates) $1 / 10$ of (sum of penultimates sum of first aid last) and multiplying by the common distance between the ordinates.
5 th Method. --Draw the figure on cross-section paper. Count the number of squares that are entirely included within the boundary; then estimate the fractional parts of squares that are cut by the boundary, add together these fractions, and add the sum to the number of whole squares: The result is the area in units of the dimensions of the squares. The finer the ruling oi the cross-section paper the more accurate the result.

6 th Method.-Use a planimeter.
rth Method.-With a chemical balance, sensitive to one inllligram, draw thr figure on paper of uniform thickness and cut it out carefully; weigh the piece cut out, and compare its weight with the weight per square inch of the paper as tested by weighing a piece of rectangular shape.

THE CIRCLE.

Circumference $=$ diameter $\times 3.1416$, nearly ; more accurately, 3.14159265359 .
Approximations, $\frac{22}{7}=3.143 ; \frac{355}{113}=3.1415929$.
The ratio of circum. to diam. is represented by the symbol π (called $P i$).

Multiples of π.

$$
\begin{aligned}
& 1 \pi=3.14159265359 \\
& 2 \pi=6.28318530718 \\
& 3 \pi=9.42477996077 \\
& 4 \pi=12.5663 \pi 061436 \\
& 5 \pi=15.707963: 6 \% 95 \\
& 6 \pi=188495559 \% .54 \\
& 7 \pi=21.99114857513 \\
& 8 \pi=25.1327412: 4372 \\
& 9 \pi=28.27433388231
\end{aligned}
$$

Multiples of $\frac{\pi}{4}$.
$\frac{1}{4}^{\pi}=.78 \boxed{4} 988$
" $\times 2=1.5007963$
$" \times 3=2.3561915$
" $\times 4=3.1415927$
" $\times 5=3.9269908$
$" \times 6=4.7123890$
" $\times 7=5.497 \pi 871$
" $\times 8=6.2831853$
" $\times 9=7.0685835$

Ratio of diam. to circumference $=$ reciprocal of $\pi=0.3183099$.

$$
\begin{array}{c|l}
\text { Reciprocal of } \frac{1}{4} \pi=1.27324 . & \frac{7}{\pi}=2.22817 \\
\text { Multiples of } \frac{1}{\pi} . & \frac{8}{\pi}=2.54648 \\
\frac{1}{\pi}=.31831 & \frac{9}{\pi}=2.86479 \\
\frac{2}{\pi}=.63662 & \frac{10}{\pi}=3.18310 \\
\frac{3}{\pi}=.95493 & \frac{12}{\pi}=3.81972 \\
\frac{4}{\pi}=1.27324 & \frac{1}{2} \pi=1.570796 \\
\frac{5}{\pi}=1.59155 & \frac{1}{3} \pi=1.04719 \pi \\
\frac{6}{\pi}=1.90986 & \frac{1}{6} \pi=0.523599
\end{array}
$$

$$
\begin{aligned}
\frac{1}{12} \pi & =0.261799 \\
\frac{\pi}{360} & =0.008 \pi 266 \\
\frac{360}{\pi} & =114.5915 \\
\pi^{2} & =9.86960 \\
\frac{1}{\pi^{2}} & =0.101321 \\
\sqrt{\pi} & =1.772453 \\
\sqrt{\frac{1}{\pi}} & =0.564189
\end{aligned}
$$

$\log _{i} \pi=0.49714987$
$\log \frac{1}{4} \pi=\overline{1} .825090$

Diam. in ins. $=13.5405 V \overline{\text { area in sq. } \mathrm{ft}}$.
Area in sq. ft. $=(\text { (liam. in inches })^{2} \times .0054542$.
$D=$ diameter,$\quad R=$ radius, $\quad C=$ circumference,$\quad A=$ area .

$$
C=\pi D ;=2 \pi R ;=\frac{4 A}{D} ;=2 \sqrt{\pi A} ;=3.545 \sqrt{A} ;
$$

$A=D^{2} \times .7854 ;=\frac{C R}{2} ;=4 R^{2} \times .7854 ;=\pi R^{2} ;=\frac{1}{4} \pi D^{2} ;=\frac{C^{2}}{4 \pi} ;=.07958 C^{2} ;=\frac{C D}{4}$.

$$
\begin{aligned}
& D=\frac{C}{\pi} ;=0.31831 G ; \quad\left[=2 \sqrt{\frac{\bar{A}}{\pi}} ;=1.12838 \sqrt{A} ;\right. \\
& R=\frac{C}{2 \pi} ;=0.159155 C ;=\sqrt{\frac{\bar{A}}{\pi}} ;=0.564189 \sqrt{A}
\end{aligned}
$$

Areas of circles are to each other as the squares of their diameters.

To find the length of an arc of a circle:

rule 1. As 360 is to the number of degrees in the are, so is the circumference of the circle to the length of the arc.
rule 2. Multiply the diameter of the circle by the number of degrees in the arc, and this product by $0.0087: 266$.

Relations of Are, Chord, Chord of Half the Arc, Versed Sine, etc.

Let $R=$ radius,$\quad D=$ diameter,$\quad A \cdot c=$ length of arc,
$C d=$ chord of the arc, $\quad c h=$ chord of half the arc,
$V=$ versed sine, $\quad D-V=$ diam. minus ver. siu.,
$A r c=\frac{8 c h-C d}{3}($ very nearly $),=\frac{\sqrt{C d^{2}+4 V^{2}} \times 10 V^{2}}{15 C d^{2}+33 V^{2}}+2 c h$, nearly.
$A \cdot c=\frac{2 c h \times 10 V}{60 D-2 \gamma V}+2 c h$, nearly.
Chord of the arc $=2 \sqrt{c^{2}-V^{2}} ;=\sqrt{D^{2}-(D-2 V)^{2}} ;=8 c h-3 A r c$.

$$
=2 \sqrt{R^{2}-(R-V)^{2}} ;=2 V(\overline{D-V) \times V} .
$$

Chord of half the arc, $c h=\frac{1}{2} \sqrt{C d^{2}+4 V^{2}} ;=\sqrt{D \times V} ;=\frac{3 A r c+C d}{8}$.

Diameter

$$
\begin{aligned}
& =\frac{c h^{2}}{V} ;=\frac{\left(\frac{1}{2} C d\right)^{2}+V^{2}}{V}- \\
& =\frac{c \hbar^{2}}{D} ;=\frac{1}{2}\left(D-\sqrt{\left.D^{2}-C d^{2}\right)}\right. \\
& \\
& =\sqrt{\frac{c h^{2}-\frac{C d^{2}}{4}}{\frac{1}{2}}\left(D+\sqrt{D^{2}-C d^{2}}\right), \text { if } V \text { is greater than radius. }}
\end{aligned}
$$

Versed sine

Half the chord of the arc is a mean proportional between the versed sine and diameter minus versed sine:

$$
\frac{1}{2} C d=\sqrt{V \times(D-V)}
$$

Length of a Circular Arc.-Huyghens's Approximation.
Let C represent the length of the chord of the arc and c the length of the chord of half the are; the length of the arc

$$
L=\frac{8 c-C}{3}
$$

Professor Williamson shows that when the arc subtends an angle of 30°, the radius being 100,000 feet (nearly 19 miles), the error by this formula is about two inches, or $1 / 600000$ part of the radius. When the length of the arc is equal to the radius, i.e., when it subtends an angle of $57^{\circ}: 3$, the error is less than $1 / 7680$ part of the radius. Therefore, if the radius is 100.000 feet, the error is less than $\frac{100000}{\tau 680}=13$ feet. The error increases rapidly with the increase of the angle subtended.
In the measurement of an arc which is described with a short radius the error is so small that it may be neglected. Describing an arc with a radius of 12 inches subtending an angle of 30°, the error is $1 / 50000$ of an inch. For $57^{\circ} .3$ the error is less than $0^{\prime \prime} .0015$.

In order to measure an arc when it subtends a large angle, bisect it and measure each half as before-in this case making $B=$ length of the chord of half the arc, and $b=$ length of the chord of one fourth the arc; then

$$
L=\frac{16 b-2 B}{3}
$$

Relation of the Circle to its Equal, Inscribed, and Circumscribed squares.

> Diameter of circle $\times . .8 \times 6 \% 3$ Circumference of circle $\times .28: 209$ Circumference of circle $\times 1.1284=$ side of equal square.
$\left.\begin{array}{lll}\text { Diameter of circle } & \times \quad .7071 \\ \text { Circumference of circle } \times .2508 \\ \text { Area of circle } \times .90031 \div \text { diaineter }\end{array}\right\}$ = side of inscribed square.

Sectors and Segments.-To find the aren of a sector of a circle.
Rule 1. Multiply the are of the sector by half its radius.
Rule 2. As 360 is to the number of degrees in the arc, so is the area of the circle to the area of the sector.

Rule 3. Multiply the number of degrees in the arc by the square of the radius and by $.008 i 27$.

To find the area of a segment of a circle: Find the area of the sector which has the same arc, and also the area of the triangle formed by the chord of the seginent and the radii of the sector.

Then take the sum of these areas, if the segment is greater than a semicircle, but take their difference if it is less.

Another Method: Area of segment $=\frac{R^{2}}{2}(\operatorname{arc}-\sin A)$ in which A is the central angle, $I R$ the radius, and arc the length of arc to radius 1.

To find the area of a segment of a circle when its chord and height or versed sine only are given. First find radius, as follows :

$$
\text { radius }=\frac{1}{2}\left[\frac{\text { square of half the chord }}{\text { height }}+\text { height }\right]
$$

2. Find the angle subtended by the arc, as follows: $\frac{\text { half chord }}{\text { radius }}=$ sine of half the angle. Take the corresponding angle from a table of sines, and double it to get the angle of the arc.
3. Find area of the sector of which the segment is a part ;

$$
\text { area of sector }=\text { area of circle } \times \frac{\text { degrees of arc }}{360}
$$

4. Subtract area of triangle under the segment:

$$
\text { Area of triangle } \left.=\frac{\text { chord }}{2} \times \text { (radius }- \text { height of segment }\right) .
$$

The remainder is the area of the segment.
When the chord, arc, and diameter are given, to find the area. From the length of the arc subrract the length of the chord. Alultiply the remsinder by the radius or one-half diameter: to the product add the chord multiplied by the height, and divide the sum by 2.

Another rule: Multiply the chord by the height and this product by . 6834 plus one tenth of the square of the height divided by the radius.

To find the chord: From the diameter subtract the height; multiply the remainder by four times the height and extract the square root.

When the chords of the arc and of half the arc and the versed sine are given: To the chord of the arc add four thirds of the chord of half the arc; multiply the sum by the versed sine and the product by . 40426 (approximate).

Circular Ring.-To find the area of a ring inciuded between the circumferences of two concentric circles: Take the difference between the areas of the two circles; or, subtract the square of the less radius from the square of the greater, and multiply their. difference by 3.14159 .

The area of the greater circle is equal to πR^{2};
and the arra of the smaller. πr^{2}.
Their difference, or the area of the ring is $\pi\left(R^{2}-r^{2}\right)$.
The Ellipse.-Area of an ellipse $=$ product of its semi-axes $\times 3.14159$ $=$ product of its $4 \times 2 \times .785398$.
The Ellipse.-Circumference (approximate) $=3.1416 \sqrt{\frac{D^{2}+d^{2}}{z}}, D$ and d being the two axes
Trautwine gives the following as more accurate: When the longer axis D is not more than fire times the length of the shorter axis, d,

$$
\text { Circumference }=3.1416 \sqrt{\frac{D^{2}+d^{2}}{2}-\frac{(D-d)^{2}}{8.8}}
$$

When D is more than $5 d$, the divisor 8.8 is to be replaced by the following divisors :
$\frac{D}{\bar{d}} \quad=6, \quad 7, \quad 8, \quad 9, \quad 10, \quad 12, \quad 14, \quad 16, \quad 18, \quad 20, \quad 30, \quad 40, \quad 50$.
Divisor $=9,9.2,9.3 ; 9.35,9.4,9.5,9.6,9.68,9.75,9.8,9.92,9.98,10$. Reuleaux gives: Circumference $=\pi(a+b)\left(1+\frac{n^{2}}{4}+\frac{n^{4}}{64}+\frac{n^{6}}{256}+\cdots\right)$, in which $n=\frac{a-b}{a+b}, a$ and b being the semi-axes.

Area of a segment of an ellipse the base of which is parallel to one or the axes of the ellipse. Divide the height of the segment by the axis of which it is part. and find the area of a circular segment. in a table of circular segments, of which the height is equal to the quotient; multiply the area thus found by the product of the two axes of the ellipse.

Cycloid.-A curve generated by the rolling of a circle on a pläré.
Length of a cycloidal curve $=4 \times$. diameter of the generating circle.

$$
\begin{aligned}
& \text { Length of the base }=\text { clrcumference of the getierating circle. } \\
& \text { Area of a cycloid }=3 \times \text { area of generating circle. }
\end{aligned}
$$

Helix (Screw). - A line generated by the progressive rotation of a point arounu an axis and equidistant from its centre.
Length of a helix.-To the square of the circumference described by the generating-point add the square of the distance advanced in one revolution, and take the square root of their sum multiplied by the number of revolutions of the generating point. Or,

$$
V\left(c^{2}+h^{2}\right) n=\text { length, } n \text { being number of revolutions. }
$$

Spirals. - Lines generated by the progressive rotation of a point around a fixed axis, with a constantly increasing distance from the axis.
A plane spircl is when the point rotates in one plane.
A conical spiral is when the point rotates around an axis at a progressing distance from its centre, and advanciug in the direction of the axis, as around a cone.

Length of a plane spiral line. - When the distance between the coils is uniform.
Rule.-Add together the greater and less diameters; divide their sum by 2: multiply the quotient by 3.1416 , and again by the number of revolutions. Or, take the mean of the length of the greater and less circumferences and multiply it by the number of revolutions. Or,

$$
\text { length }=\bar{\pi} n \frac{d+d^{\prime}}{2}, d \text { and } d^{\prime} \text { being the inner and outer diameters. }
$$

Length of a conical spiral line.- Add together the greater and less diameters; divide their sum by 2 and multiply the qitotient hy 3.1416. To the square of the product of this circumference and the number of revolutions of the spiral add the square of the height of its axis and take the square root of the sum.

$$
\text { Or; length }=\sqrt{\left(\pi n \frac{d+d^{\prime}}{2}\right)^{2}+h^{2}}
$$

SOLID BODIES.

The Prism. - To find thie surface of a right prism : Multiply the perimeter of the base by the altitude for the convex surface. To this add the areas of the two ends when the entire surface is required:

Volume of a prism $=$ area of its base \times its altitude.
The pyramid. - Convex surface of a regnlar prramid = perimeter of its base \times half the slant height. To this add area of the base if the whole surface is required.

Volume of a pyramid $=$ area of base \times one third of the altitude.

To find the surface of a frustum of a regular pyramid: Multiply half the slant height by the sum of the perimeters of the two bases for the convex surface. 'Io this add the areas of the two bases when the entire surface is required.

To fird the volume of a frustum of a pijramid: Add together the areas of the two bases and a mean proportional between thim, and multiply the sum by one third of the altitude. (Mean proportional between two numbers $=$ square root of their product.)

Wedge.-A wedge is a solid bounded by five planes, viz.: a rectangular base, two trapezoids. or two rectangles, meeting in an edge, and two triangilar end:- The altitude is the perpendicular drawn from any point in the edoe to the plane of the base.

To find the volume of a wedge: Add the length of the edge to twice the length of the base, and multiply the sum by one sixth of the product of the height of the wedge and the hreadth of the base.

Rectangular prismoid.- A rectangular prisinoid is a solid bounded by six piants. of which the two bases are rectangles, having their corresponding sides parallel, and the four upright sides of the solids are trapezoids.

To find the volume of a rectangular prismoid. Add together the areas of the two bases and four times the area of a parallel section equally distant from the hases, and multiply the sum by one sixth of the altitude.

Cylinder. - Convex surface of a cylinder $=$ perimeter of base \times altitude . To this aud the areas of the two ends when the entire sulface is required.

Volume of a cylinder $=$ area of base \times altitude.
Cone.-Convex surface of a cone $=$ circumference of base \times half the slant side. To this add the area of the base when the entire surface is required.

$$
\text { Volume of a cone }=\text { area of base } \times \frac{1}{3} \text { altitude. }
$$

To find the surface of a fristuin of a cone: Multiply half the side by the sum of the circumferences of the two bases for the convex surface; to this add the areas of the two bases when the entire surface is required.

To find the volume of a frustum of a cone: Add together the areas of the two bases and a mean proportional between them, and multiply the sum by one third of the altitude.
Sphere.-To fud the surface of a sphere: Multiply the diameter by the cinciminfence of a great circle; or, multiply the square of the diameter by $3.1+159$.

$$
\begin{aligned}
\text { Surface of sphere } & =4 \times \text { area of its great circle. } \\
6 & =\text { convex surface of its circumscribing cylinder. }
\end{aligned}
$$

Surfaces of spheres are to each other as the squares of their diameters.
to find the volitme of a sphere: Multiply the surface by one third of the ranins: or. multinly the cube of the diameter by $1 / 6 \pi$; that is, by 0.5236 .

Value of ${ }_{5}^{1} \pi$ to 10 decimal places $=.523598 i \pi 56$.
The volume of a sphere $=2 / 3$ the volume of its circumscribing cylinder.
V.lımes of spheres aie to each other as the cubes of their diameters.

Spherical triangle. - To find the area of a spherical triangle: Comput bue surface of the quadrantal triangle, or one eighth of the surface of the sphere. From the sum of the three angles subtract two right angles; divide the remainder by 90 , and multiply the quotient by the area of the quadrantal triangle.

Spherical polygon. - To find the area of a spherical polygon: Compute the surface of the quadrantal triangle. From the sum of all the angles subtract the proluct of two right angles by the number of sides less two; divide the remainder by 90 and multiply the quotient by the area of the quadrantal triangle.

The prismoid.--The prismoid is a solid having parallel end areas, and may be compused of any combination of prisems, cylinders, wedges, pyramids. or colles or frustums of the same, whose bases and apices lie in the end areas.

Ina-much as cylinders and cones are but special forms of prisms and prramids, and warped surface solids may be divided into elementary forms of them, and since frustums may also be subdivided into the elementary forms. it is sufficient to say that all prismoids may be decomposed into prisms, wedges, and pyramids. If a formula can be found which is equally applicable t" all of these forms, then it will apply to any combination of them. Such a formula is called

The Prismoidal Formula.

Let $A=$ area of the base of a prism, wedge, or pyramid;
$A_{3}, A_{2}, A m=$ the two end and the middle areas of a prismoid, or of any of its elementary solids;
$h=$ altitude of the prismoid or elementary solid;
$V=$ its volume;
$V=\frac{h}{6}\left(A_{1}+4 A_{m}+A_{2}\right)$.
For a prism $A_{1}, A m$ and A_{2} are equal, $=A ; V=\frac{h}{6} \times 6 A=h A$.
For a wedge with parallel ends, $A_{2}=0, A m=\frac{1}{2} A_{1} ; V=\frac{h}{6}\left(A_{1}+2 A_{1}\right)=\frac{h A}{2}$:
For a cone or pyramid, $A_{2}=0, A m=\frac{1}{4} A_{1} ; V=\frac{h}{6}\left(A_{1}+A_{1}\right)=\frac{h A}{3}$.
The prismoidal formula is a rigid formula for all prismoids. The only approximation involved in its use is in the assumption that the given solid may be generated by a right line moving over the boundaries of the end areas.

The area of the middle section is never the mean of the two end areas if the prismoid contains any pyramids or cones among its elementary forms. When the three sections are similar in form the dimensions of the middle area are always the means of the corresponding end dimensions. This fact of ten enables the dimensions, and hence the area of the middle section, to be computed from the end areas.

Polyedrons. - A polyedron is a solid bounded by plane polygons. A regular pols edron is one whose sides are all equal regular polygons.

To find the surface of a regular polyedron.-Multiply the area of one of the faces by the number of faces; or, multiply the square of one of the edges by the surface of a similar solid whose edge is unity.

A Table of the Regular Polyedrons whose Edges are Unity.

Names.	No. of Faces.	Surface.	Volume.
Tetraedron	. 4	1.7320508	0.1178513
Hexaedron.	6	6.0000000	1.0000000
Octaedron	8	3.4641016	0.4714045
Dodecaedron	12	20.645~288	7.6631189
Icusaedron.	20	8.6602540	2.1816950

To find the volume of a regular polyedron. - Multiply the surface by one third of the perpendicular let fall from the centre on one of the faces; or, multiply the cube of one of the edges by the solidity of a similar polyedron whose edge is unity.

Solid of revolution.-The volume of any solid of revolution is equal to the product of the area of its generating surface by the length of the path of the centre of gravity of that surface.

The convex surface of any solid of revolution is equal to the product of the perimeter of its generating surface by the length of path of its centre of gravity.

Cylindrical ring.-Let $d=$ outer diameter; $d^{\prime}=$ inner diameter ; $\frac{1}{2}\left(d-d^{\prime}\right)=$ thickness $=t ; \frac{1}{4} \pi t^{2}=$ sectional area $; \frac{1}{2}\left(d+d^{\prime}\right)=$ mean diameter $=M ; \pi t=$ circumference of section $; \pi M=$ mean circumference of ring; surface $=\pi t \times \pi M ;=\frac{1}{4} \pi^{2}\left(d^{2}-d^{\prime 2}\right) ;=9.86965 t M ;=2.46741\left(d^{2}-d^{\prime 2}\right) ;$ volume $=\frac{1}{4} \pi t^{2} M \pi ;=2.46 \pi 41 t^{2} M$.

Spherical zone.-Surfuce of a sphericat zone or segment of a sphere $=$ its altitude \times the circumference of a great circle of the sphere. Agreat circle is one whose plane passes through the centre of the sphere.

Volume of a zone of a sphere.-To the sum of the squares of the radii of the ends add one third of the square of the height ; multiply the sum by the height and by $1.55^{\%} 08$.
Spherical segment.-Volume of a spherical scgment with one base.-

Multiply half the height of the segment by the area of the base, and the cube of the height by .5236 and add the two products. Or, from three times the diameter of the sphere subtract twice the height of the segment; multiply the difference by the square of the height and by $.52: 36$. Or, to three tiines the square of the radius of the base of the segment add the square of its height, and multiply the sum by the height and by .5236 .
Spheroid or ellipsoid. - When the revolution of the spheroid is about the transverse diameter it is prolate, and when about the conjugate it is oblate.
Convex surface of a segment of a spheroid.-Square the diameters of the spheroid, and take the square root of half their sum; then as the diameter from which the segment is cut is to this root so is the height of the segment to the proportionate height of the segment to the mean diameter. Multiply the product of the other diameter and 3.1416 by the proportionate height.
Convex surface of a frustum or zone of a spheroid.-Proceed as by previous rule for the surface of a segment, and obtain the proportionate height of the frustum. Multiply the product of the diameter parallel to the base of the frustum and 3.1416 by the proportionate height of the frustum.
Volume of a spheroid is equal to the product of the square of the revolving axis by the fixed axis and by .5236. The volume of a spheroid is two thirds of that of the circumscribing cylinder.
Volume of a segment of a spheroid. -1 . When the base is parallel to the revolving axis. multiply the difference between three times the fixed axis and twice the height of the segment, by the square of the height and by .5236. Multiply the product by the square of the revolving axis, and divide by the square of the fixed axis.
2. When the base is perpendicular to the revolving axis, multiply the difference between three times the revolving axis and twice the height of the segment by the square of the height and by .5236. Multiply the product by the length of the fixed axis, and divide by the length of the revolving axis.

Volume of the middle frustum of a spheroid.-1. When the ends are circular, or parallel to the revolving axis: To twice the square of the midule diameter add the square of the diameter of one end; multiply the sum by the length of the frustum and by .2618.
2. When the ends are elliptical, or perpendicular to the revolving axis: To twice the product of the transverse and conjugate diameters of the middle section add the product of the transverse and conjugate diameters of one end; multiply the sum by the length of the frustum and by .2618.
Spindles. - Figures generated by the revolution of a plane area, when the curve is revolved about a chord perpendicular to its axis, or about its double ordinate. They are designated by the name of the arc or curve from which they are generated, as Circular, Elliptic, Parabolic, etc., etc.
Convex surface of a circular spindle, zone, or segment of it-Rule: Multiply the length by the radius of the revolving arc; multiply this are by the central distance, or distance between the centre of the spindle and centre of the revolving are ; subtract this product from the former, double the remainder, and multiply it by 3.1416
Volume of a circular spindle.-Multiply the central distance by half the area of the revolving segment; subtract the product from one third of the cube of half the length, and multiply the remainder by 12.5664.

Volume of frustum or zone of a circular spindle.-From the square of half the length of the whole spindle take one third of the square of half the length of, the frustum, and multiply the remainder by the said half length of the frustum ; multiply the central distance by the revolving area which generates the frustum ; subtract this product from the former, and multiply the remainder by 6.2832 .

Volume of a segment of a circular spindle.-Subtract the length of the segment from the half length of the spindle : double the remainder and ascertain the volume of a middle frustum of this length : subtract the result from the volume of the whole spindle and halve the remainder.
Volume of a cycloidal spindle $=$ five eighths of the volume of the circumscribing cylinder.-Multiply the product of the square of twice the diameter of the generating circle and 3.927 oy its circumference, and divide this product by 8 .
Parabolic conoid.- Volume of a parabolic conoid (generated by the revolution of a parabola on its axis).-Multiply the area of the base by half the height.

Or multiply the square of the diameter of the base by the height and by . 3927.
Volume of a frustum of a parabolic conoid.-Multiply half the sum of the areas of the two enids by the height.

Volume of a pirrabolic spindle (generated by the revolution of a parabola on its base).-Multiply the square of the middle diameter by the length and by 4189 .

The volume of a parabolic spindle is to that of a cylinder of the same height and diameter as 8 to 15 .
Volume of the middle frustum of a parabolic spindle.-Add together 8 times the square of the maximum diameter, 3 times the square of the end diameter. and 4 times the product of the diameteris. Multiply the sum by the length of the fristum and by 05236 .
This rule is applicable for calculating the content of casks of parabolic form.

Casks.-To find the volume of a cask of any form.-Add tngether 39 times ihe square of the bung diameter, 25 time's the square of the head diameter. and 26 times the product o the diaineters. Muttiply the sum by the leingth. and divide by 31,773 for the content in Imperial gallions; or by 26.470 for U. S. galloris.

This rule was framed hy Dr. Hutton, on the supposition that the middle third of the length of the cask wasi a frustuni of a parabolic spindle, and each outer thind was a frustum of a cone:
To find the ullage of it cask, the quaitity of liquor in it when it is not full. 1. For a lyiug cask: Divide the number of wet or dry inclies by the bung diameter in inches. "If the quotient is less thian . 5 , deduct from it niee fourth part of what it wants of. 5 . If it exceeds .5 , add to it one fourth part of the exc-ss aboye. 5 . Multiply the remainder or the sum by the whole content of the cask. The product is the quantity of liquor in the cask, in gallons, when the dividend is wet inches; or the eimpty space, if dry inches.
2. For a standing cask: Diviile the number of wet or dry inches by the length of the cask. If the quotient exceeds .5 , add to it one tenth of its excess above .5 ; if less than 5 . subtract from it one tenth of iwhat it wants of .5. Multiply the sum or the remainder by the whole content of the cask. The product is the quiautity of liquor in the cask, when the dividend is wet inches; or the empty space. if dry inches.

Volume of crssk (apnroximate) U. S. gallons = square of mean diam. \times length in inchés $\times .0034$. Mean diam. $=$ half the sum of the bung and hear diam's.

Yolume of an irregular solid. - Suppose it divided into parts, resemblitg prisms or other bodies measmable hy preceding rules. Find the content of each part; the sum of the conlents is the cubic contents of the solid.
The content of a small part is found nearly by multiplring half the sum of the areas of each end by the perpendicular d stance between them.

The contents of small irregular solids may sometinies be found by immersing them under water in a prismatic or cylindrical vessel, and observing the amount by which the level of the water descends when the solid is withdrawn. The sectional area of the vessel beiug multiplied by the descent of the level gives the cubic contents.

Or, weigh the solid in air and in water; the difference is the weight of water it displaces. Divide the weight in pounds ly 624 to obtain volume in cubic feet. or multiply it by $2 \tau . \hat{i}$ to obtain the voliume in cubic inches

When the solid is very large and a great degree of accuracy is not requisite, measure its length, breadih, abd depth in several ifferent places. and take the mean of the measurement for each dimensiun, and multiply the three meais togethei

When the surface of the solid is very extensive it is better to divide it into triangles, to find the area of each triangle, and to multiply it by the mean depth of the triangle for the contents of each triangular portion; the contents of the triangular sections are to be added trigether.
The mean depth of a triangular section is ohtained by measuring the depth at each angle, adding together the three measurements, and taking one third of the sum.

PLANE TRIGONOMETRY.

Trigonometrical Functions.

Every triangle has six parts-three angles and three sides. When any three of these parts are given, provided one of them is a side, the other parts may be determined. By the solution of a triangle is meant the determination of the unknown parts of a triangle when certain parts are given.

The complement of an angle or arc is what remains after subtracting the anyle or are from 9$)^{\circ}$.

In general, if we represent any arc by A, its complement is $90^{\circ}-A$. Hence the complement of an arc that exceeds 90° is negative.

Since the two acute angles of a right-angled triangle are together equal to a right angle, each of them is the complement of the other.

The supplement of an angle or arc is what remains after subtracting the angle or arc from 180°. If A is an arc its supplement is $180^{\circ}-A$. The supplement of an arc that exceeds 180° is negative.

The sum of the three angles of a triangle is equal to 180°. Either angle is the supplement of the other two. In a right-angled triangle, the right angle being equal to 90°, each of the acute angles is the complement of the other.

Iil all right-angled trianales having the same ucute angle, the sides have to erich other the same ratio. These ratios have received special names, as follows:

If A is one of the acute angles, a the opposite side, b the adjacent side, and c the hypothenuse.
The sine of the angle A is the quotient of the opposite side divided by the hypothenuse. $\operatorname{Sin} . A=\frac{a}{c}$.

The tangent of the angle A is the quotient of the opposite side divided by the adjacent side. Tang. $A=\frac{a}{b}$.
The secant of the angle A is the quotient of the hypothenuse divided by the adjacent side. Sec. $A=\frac{c}{b}$.

The cosine, cotangent, and cosecant of an angle are respectively the sine, taugent, and secant of the complement of that angle. The terms sine, cosine, etc., are called trigonometrical functions.

In a circle whose radius is unity, the sine of an arc, or of the angle at the centre measured by that arc, is the perpendicular let fall from one extremity of the arc upon the diameter passing through the other extremity.
The tangent of an arc is the line which touches the circle at one extremity of the arc. and is limited by the diameter (produced) passing through the other extremity.
The secant of an arc is that part of the produced diameter which is intorcepted between the centre and the tangent.
The versed sine of an arc is that part of the diameter intercepted between the extremity of the arc and the foot of the sine.

In a circle whose radius is not unity, the trigonometric functions of an arc will be equal to the lines here defined, divided by the radius of the circle.

If $I C A$ (Fig. 70) is an angle in the first quadrant, and $C F=$ radius,
The sine of the angle $=\frac{F G}{\operatorname{Rad} .} . \quad \operatorname{Cos}=\frac{C G}{\operatorname{Rad} .}=\frac{K F}{\operatorname{Rad}}$.
Tang. $=\frac{I A^{-}}{\text {Rad. }} \cdot$ Secant $=\frac{C I}{\text { Rad. } .} \cdot$ Cot. $=\frac{D L}{\text { Rad } .}$

$$
\text { Cosec. }=\frac{C L}{\operatorname{Rad} .} . \text { Versin. }=\frac{G A}{\operatorname{Rad} .}
$$

If radius is 1 , then Rad. in the denominator is omitted, and sine $=F$, etc.

The sine of an arc = half the chord of twice the $a \cdot c$.

The sine of the supplement of the arc is the same as that of the arc itself. Sine of arc $B D=F G=$ $\sin \operatorname{arc} F A$.

Fig. 70.

The tangent of the supplement is equal to the tangent of the arc, but with a contrary sign. 'l'ang. $B D F=B M$.
The secant of the supplement is equal to the secant of the are, but with a contrary sign. Sec. $B D F=C M$.
Signs of the functions in the four quadrants.- If we diviue a circle into four quadirants by a vertical and a horizontal diameter, the upper right-hand quadrant is called the first, the upper left the second, the lower left the third, and the lower right the fourth. The signs of the functions in the four quadrants are as follows:

First quad. Second quad. Third quad. Fourth quad.
Sine and cosecant, Cosine and secant, Tangent and cotangent, +
\mp
The values of the functions are as follows for the angles specified:

TRIGONOMETRICAL FORMULE.

The following relations are deduced from the properties of similar triangles (Radius $=1$):
$\cos A: \sin A:: 1: \tan A$, whence $\tan A=\frac{\sin A}{\cos A} ;$
$\sin A: \cos A:: 1: \cot A, \quad " \quad \operatorname{cotan} A=\frac{\cos A}{\sin A}$:
$\cos A: 1 \quad:: 1: \sec A, \quad$ " $\quad \sec A=\frac{1}{\cos A}$:
$\sin A: 1 \quad:: 1: \operatorname{cosec} A, " \operatorname{cosec} A=\frac{1}{\sin A} ;$
$\tan A: 1 \quad:=1: \cot A \quad$ " $\quad \tan A=\frac{1}{\cot A}$.
The sum of the square of the sine of an arc and the square of its cosine equals unity. $\operatorname{Sin}^{2} A+\cos ^{2} A=1$.

Also, $\quad 1+\tan ^{2} A=\sec ^{2} A: \quad 1+\cot ^{2} A=\operatorname{cosec}^{2} A$.
 Functions of the sum and difference of two angles:

Let the two augles be denoted by A and B, their sum $A+B=C$, and their difference $A-B$ by D.

$$
\begin{equation*}
\sin (A+B)=\sin A \cos B+\cos A \sin B \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \tag{2}\\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \tag{3}\\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \tag{4}
\end{align*}
$$

From these four formulæ by addition and subtraction we obtain

$$
\begin{align*}
& \sin (A+B)+\sin (A-B)=2 \sin A \cos B \tag{5}\\
& \sin (A+B)-\sin (A-B)=2 \cos A \sin B \tag{6}\\
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
& \cos (A-B)-\cos (A+B)=2 \sin A \sin B \tag{8}
\end{align*}
$$

If we put $A+B=C$, and $A-B=D$, then $A=1 / 2(C+D)$ and $B=1 / 2(C-$ D), and we have

$$
\begin{align*}
& \sin C+\sin D=2 \sin 1 / 2(C+D) \cos 1 / 2(C-D) \tag{9}\\
& \sin C-\sin D=2 \cos 1 / 2(C+D) \sin 1 / 2(C-D) \tag{10}\\
& \cos C+\cos D=2 \cos 1 / 2(C+D) \cos 1 / 2(C-D) \tag{11}\\
& \cos D-\cos C=2 \sin 1 / 2(C+D) \sin 1 / 2(C-D) \tag{12}
\end{align*}
$$

Equation (9) may be enunciated thus: The sum of the sines of any two angles is equal to twice the sine of half the sum of the angles multiplied by the cosine of half their difference. These formulæ enable us to transform a sum or difference into a product.
The sum of the sines of two angles is to their difference as the tangent of half the sum of those angles is to the tangent of half their difference.

$$
\begin{equation*}
\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{2 \sin 1 / 2(A+B)}{2 \cos 1 / 2(A+B)} \frac{\cos 1 / 2(A-B)}{\sin 1 / 2(A-B)}=\frac{\tan 1 / 2(A+B)}{\tan 1 / 2(A-B)} \tag{13}
\end{equation*}
$$

The sum of the cosines of two angles is to their difference as the cotangent of halt the sum of those angles is to the tangent of half their difference.

$$
\begin{equation*}
\frac{\cos A+\cos B}{\cos B-\cos A}=\frac{2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)}{2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)}=\frac{\cot 1 / 2(A+B)}{\tan 1 / 2(A-B)} \tag{14}
\end{equation*}
$$

The sine of the sum of two angles is to the sine of their difference as the simm of the tangents of those angles is to the difference of the tangents.

$$
\begin{equation*}
\frac{\sin (A+B)}{\sin (A-B)}=\frac{\tan A+\tan B}{\tan A-} \tag{15}
\end{equation*}
$$

$$
\begin{array}{l|l}
\frac{\sin (A+B)}{\cos A \cos B}=\tan A+\tan B ; & \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\frac{\sin (A-B)}{\cos A \cos B}=\tan A-\tan B ; & \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
\frac{\cos (A+B)}{\cos A \cos B}=1-\tan A \tan B ; & \cot (A+B)=\frac{\cot A \cot B-1}{\cot B+\cot A} \\
\frac{\cos (A-B)}{\cos A \cos B}=1+\tan A \tan B ; & \cot (A-B)=\frac{\cot A \cot B+1}{\cot B-\cot A}
\end{array}
$$

Functions of twice an angle :

$$
\begin{array}{l|l}
\sin 2 A=2 \sin A \cos A ; & \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} ; & \cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}
\end{array}
$$

Functions of half an angle :

$$
\begin{array}{l|l}
\sin 1 / 2 A= \pm \sqrt{\frac{1-\cos A}{2}} ; & \cos 1 / 2 A= \pm \sqrt{\frac{1+\cos A}{2}} \\
\tan 1 / 2 A= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} ; & \cot 1 / 2 A= \pm \sqrt{\frac{1+\cos A}{1-\cos A}}
\end{array}
$$

Solution of Plane Right-angled Triangles.

Let A and B be the two acute angles and C the right angle, and a, b, and c the sides opposite these angles, respectively, then we have

$$
\begin{array}{ll}
\text { 1. } \sin A=\cos B=\frac{a}{c} ; & \text { 3. } \tan A=\cot B=\frac{a}{b} \\
\text { 2. } \cos A=\sin B=\frac{b}{c} ; & \text { 4. } \cot A=\tan B=\frac{b}{a}
\end{array}
$$

1. In any plane right-angled triangle the sine of either of the acute angles is equal to the quotient of the opposite leg divided by the hy pothenuse.
2. The cosine of either of the acute angles is equal to the quotient of the adjacent leg divided by the hypothenuse.
3. The tangent of either of the acute angles is equal to the quotient of the opposite leg divided by the adjacent leg.
4. The cotangent of either of the acute angles is equal to the quotient of the adjacent leg divided by the opposite leg.
5. The square of the hypothenuse equals the sum of the squares of the other two sides.

Solution of Oblique-angled Triangles.

The following propositious are proved in works on plane trigonometry. In any plane triaugle-
Theorem 1. The sines of the angles are proportional to the opposite sides.
Theorem 2. The sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.
Theorem 3. If from any angle of a triangle a perpendicular be drawn to the opposite side or base, the whole base will be to the sum of the other two sides as the difference of those two sides is to the difference of the segments of the base.
Case I. Given two angles and a side, to find the third angle and the other two sides. 1. The third angle $=180^{\circ}-$ sum of the two angles. 2. The sides may be found by the following proportion :
The sine of the angle opposite the given side is to the sine of the angle opposite the required side as the given side is to the required side.

CASE II. Given two sides and an angle opposite one of them, to find the third side and the remaining angles.

The side opposite the given angle is to the side opposite the required angle as the sine of the given angle is to the sine of the required angle.

The third angle is found by subtracting the sum of the other two from 180°, and the third side is found as in Case I.

Case III. Given two sides and the included angle, to find the third side and the remaining angles.

The sum of the required angles is found by subtracting the given angle from 180°. The difference of the required angles is then found by Theorem II. Half the difference added to half the sum gives the greater angle, and half the difference subtracted from half the sum gives the less angle. The third side is then found by Theorem I.

Another method:
Given the sides c, b, and the included angle A, to find the remaining side a and the remaining angles B and C.

From either of the unknown angles, as B, draw a perpendicular $B e$ to the opposite side.

Then

$$
A e=c \cos A, B e=c \sin A, \quad e C=b-A e, \quad B e \div e C=\tan C
$$

Or , in other words, solve $B e, A e$ and $B e C$ as right-angled triangles.
Case IV. Given the three sides, to find the angles.
Let fall a perpendicular upon the longest side from the opposite angle, dividing the given triangle into two right-angled triangles. The two segments of the base may be found by Theorem III. There will then be given the nynothenuse and one side of a right-angled triangle, to find the angles.

For areas of triangles, see Mensuration.

ANALYTICAL GEOMETRY.

Analytical geometry is that branch of Mathematics which has for its object the determinatuu of the forms and magultudes of geometrical magnitudes by means of analysis.
Ordinates and abscissas. --In analytical geometry two intersecting

Fig. 71. lines $Y Y^{\prime}, X X^{\prime}$ are used as coördinate axes, $X X^{\prime}$ being the axis of abscissas or axis of X, and $Y Y$, the axis of ordinates or axis of Y. A. the intersection. is called the origin of coördinates. The distance of any point P trom the axis of Y measured parallel to the axis of X is called the abscissa of the point, as $A D$ or $C P$, Fig. 71. Its distance from the axis of X. measured parallel to the axis of Y, is called the ordincite as $A C$ or $P D$. The abscissa and ordinate taken logether are called the coördinates of the point P. The angle of intersection is usually taken as a right angle, in which case he axes of X and Y are called rectangular coördinates.
The abscissa of a point is designated by the letter x and the ordinate by y.
The equations of a point are the equalions which express the distances of the point from the axis. Thu* $x=u, y=b$ are the equations of the point P.

Equations referred to rectangular coördinates.-The equation of a hne expresses the relation which exists between the coördinates of every puint of the line.
Equation of a straight line, $y=a x \pm b$, in which a is the tangent of the angle the line makes with the axis of \bar{X}, and b the distance above A in which the line cuts the axis of Y.
Every equation of the first degree between two variables is the equation of a straight line, as $A y+B x+C=0$, which can be reduced to the form $y=$ $a x \pm b$.

Equation of the distance between two points:

$$
D=\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}}
$$

in which $x^{\prime} y^{\prime}, x^{\prime \prime} y^{\prime \prime}$ are the coördinates of the two points.
Equation of a line passing through a given point:

$$
y-y^{\prime}=a\left(x-x^{\prime}\right)
$$

in which $x^{\prime} y^{\prime}$ are the coördinates of the given point, a, the tangent of the angle the line makes with the axis of x, being undetermined, since any number of lines may be drawn through a given point.

Equation of a line passing through two given points:

$$
y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime}\right)
$$

Equation of a line parallel to a given line and through a given point:

$$
y-y^{\prime}=\alpha\left(x-x^{\prime}\right)
$$

Equation of an angle V included between two given lines:

$$
\operatorname{tang} V=\frac{a^{\prime}-a}{1+a^{\prime} a}
$$

in which a and a^{\prime} are the tangents of the angles the lines make with the axis of abscissas.

If the lines are at right angles to each other $\operatorname{tang} V=\infty$, and

$$
1+a^{\prime} a=0
$$

Equation of an intersection of two lines, whose equations are

$$
\begin{aligned}
& y=a x+b, \quad \text { and } \quad y=a^{\prime} x+b^{\prime} \\
& x=-\frac{b-b^{\prime}}{a-a^{\prime}}, \quad \text { and } \quad y=\frac{a b^{\prime}-a^{\prime} b}{a-a^{\prime}}
\end{aligned}
$$

Equation of a perpendicular from a given point to a given line:

$$
y-y^{\prime}=-\frac{1}{a}\left(x-x^{\prime}\right)
$$

Equation of the length of the perpendicular P :

$$
P=\frac{y^{\prime}-a x^{\prime}-b}{\sqrt{1 \times a^{2}}}
$$

The circle.-Equation of a circle, the origin of coördinates being at the centre, aud radius $=R$:

$$
x^{2}+y^{2}=R^{2}
$$

If the origin is at the left extremity of the diameter, on the axis of X :

$$
y^{2}=2 R x-x^{2}
$$

If the origin is at any point, and the coördinates of the centre are $x^{\prime} y^{\prime}$:

$$
\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}=R^{2}
$$

Equation of a tangent to a circle, the coördınates of the point of tangency being $x^{\prime \prime} y^{\prime \prime}$ and the origin at the centre,

$$
y y^{\prime \prime}+x x^{\prime \prime}=R^{2} .
$$

The ellipse.-Equation of an ellipse, referred to rectangular coördinates with axis at the centre:

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

in which A is half the transverse axis and B half the conjugate axis.
Equation of the ellipse when the origin is at the vertex of the transverse axis:

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x-x^{2}\right)
$$

The eccentricity of an ellipse is the distance from the centre to either focus, divided by the semi-transverse axis, or

$$
e=\frac{\sqrt{A^{2}-B^{2}}}{A}
$$

The parameter of an ellipse is the double ordinate passing through the focus. It is a third proportional to the transverse axis and its conjugate, or

$$
\gtrsim A: 2 B:: 2 B: \text { parameter } ; \text { or parameter }=\frac{2 B^{2}}{A}
$$

Any ordinate of a circle circumscribing an ellipse is to the corresponding ordinate of the ellipse as the semi-transverse axis to the semi-conjugate. Any ordinate of a circle inscribed in an ellipse is to the corresponding ordinate of the ellipse as the semi-conjugate axis to the semi-transverse.

Equation of the tangent to an ellipse, origin of axes at the centre:

$$
A^{2} y y^{\prime \prime}+B^{2} x x^{\prime \prime}=A^{2} B^{2}
$$

$y^{\prime \prime} x^{\prime \prime}$ being the coördinates of the point of tangency.
Equation of the normal, passing through the point of tangency, and perpendicular to the tangent:

$$
y-y^{\prime \prime} x x \frac{A^{2} y^{\prime \prime}}{B^{2} x^{\prime \prime}}\left(x-x^{\prime \prime}\right)
$$

The normal bisects the angle of the two lines drawn from the point of tangency to the foci.

The liles drawn from the foci make equal angles with the tangent.
The parabola.--Equation of the parabola referred to rectangular coördinates, the origin being at the vertex of its axis. $y^{2}=2 p x$, in which $2 p$ is the parameter or double ordinate through the focus.

The parameter is a third proportional to any abscissa and its corresponding ordinate, or

Equation of the tangent:

$$
x: y:: y: 2 p
$$

$$
y y^{\prime \prime}=p\left(x+x^{\prime \prime}\right)
$$

$y^{\prime \prime} x^{\prime \prime}$ being coördinates of the point of tangency.
Equation of the normal:

$$
y-y^{\prime \prime} x x-\frac{y^{\prime \prime}}{p}\left(x-x^{\prime \prime}\right)
$$

The sub-normal, or projection of the normal on the axis, is constant, and equal to half the parameter.

The tangent at any point makes equal angles with the axis and with the line drawn from the point of tangency to the focus.

The hyperbola.-Equation of the hyperbola referred to rectangular coördinates, urigin at the centre:

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

in which A is the semi-transverse axis and B the semi-conjugate axis.
Equation when the origin is at the vertex of the transverse axis:

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A \quad x x x^{2}\right)
$$

Conjugate and equilateral hyperbolas.-If on the conjugate axis, as a trausverse, and a focal distance equal to $\sqrt{A^{2}+B^{2}}$, we construct the two branches of a hyperbola, the two hyperbolas thus constructed are called conjugate hyperbolas. If the transverse and conjugate axes are equal, the hyperbolas are called equilateral, in which case $y^{2}-x^{2}=-A^{2}$ when A is the transverse axis, and $x^{2}-y^{2}=-B^{2}$ when B is the transverse axis.

The parameter of the transverse axis is a third proportional to the transverse axis and its conjugate.

$$
2 A: 2 B:: 2 B: \text { parameter }
$$

The tangent to a hyperbola bisects the angle of the two lines drawn from the point of tangency to the foci.

The asymptotes of a hyperbola are the diagonals of the rectangle described on the axes, indefinitely produced in both directions.

In an equilateral hyperbola the asymptotes make equal angles with the transverse axis, and are at right angles to each other.
The asymptotes continually approach the hyperbola, and become tangent to it at an infinite distance from the centre.

Conic sections.-Every equation of the second degree between two variables will represent either a circle, an ellipse, a parabola or a hyperbola. These curves are those which are obtained by intersecting the surface of a cone by planes, and for this reason they are called conic sections.

Logarithmic curve.-A logarithmic curve is one in which one of the coördulates of any point is the logarithm of the other.
The coördinate axis to u hich the lines denoting the logarithms are parallel is called the axis of logarithms, and the other the axis of numbers. If y is the axis of logarithms and x the axis of numbers, the equation of the curve is $y=\log x$.

If the base of a system of logarithms is a, we have $a^{y}=x$, in which y is the logarithm of x.

Each system of logarithms will give a different logarithmic curve. If $y=$ $0, x=1$. Hence every logarithmic curve will intersect the axis of numbers at a distance from the origin equal to 1.

DIFFERENTIAL CALCULUS.

The differential of a variable quantity is the difference between any two of its consecutive values; hence it is indefinitely small. It is expressed by writing d before the quantity, as $d x$, which is read differential of x.
The term $\frac{d y}{d x}$ is called the differential coefficient of y regarded as a func. tion of x.

The differential of a function is equal to its differential coefficient multiplied by the differential of the independent variable; thus, $\frac{d y}{d x} d x=d y$.

The limit of a variable quantity is that value to which it continnally approaches, so as at last to differ from it by less than any assignable quantit.c.
The differential coefficient is the limit of the ratio of the increment of the indenendent variable to the increment of the function.
The differential of a constant quantits is equal to 0 .
The differential of a product of a constant by a variable is equal to the constant multiplied by the differential of the variable.

$$
\text { If } \quad u=A v, \quad d u=A d v .
$$

In any curve whose equation is $y=f(x)$, the differential coefficient $\frac{d y}{d x}=\tan \alpha$; hence, the rate of increase of the function, or the ascension of the curve at any point, is equal to the tangent of the angle which the tangent line makes with the axis of abscissas.
All the operations of the Differential Calculus comprise but two nbjects:

1. To find the rate of change in a function wheu it passes from one state of value to another, consecutive with it.
2. To find the actual chaige in the function: The rate of change is the differential roeffici nr. and the artual change the differential.

Differentials of algebraic functions. - The differential of the sum or difference of any number of functions, dependent on the same variable, is equal to the sum or difference of their differentials taken separately:

$$
\text { If } \quad u=y+z-w, \quad d u=d y+d z-d w
$$

The differential of a product of two functions dependent on the same variable is equal to the sum of the products of each by the differential of the other:

$$
d(u v)=v d u+u d v . \quad \frac{d(u v)}{u v}=\frac{d u}{u}+\frac{d v}{v} .
$$

The differential of the product of any number of functions is equal to the sum of the products which arise by multiplying the differential of each function by the product of all the others:

$$
d(u t s)=t s d u+u s d t+u t d s
$$

The differential of a fraction equals the denominator into the differential of the numerator minus the numerator into the differential of the denominator, divided by the square of the denominator:

$$
d t=d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}
$$

If the denominator is constant, $d v=0$, and $d t=\frac{v d u}{v^{2}}=\frac{d u}{v}$.
If the numerator is constant, $d u=0$, and $d t=-\frac{u d v}{v^{2}}$
The differential of the square root of a quantity is equal to the differential of the quantity divided by twice the square root of the quantity:

$$
\text { If } v=u^{\frac{1}{2}}, \text { or } v=\sqrt{u}, \quad d v=\frac{d u}{2 \sqrt{u}} ;=\frac{1}{2} u^{-\frac{1}{2}} d u \text {. }
$$

The differential of any power of a function is equal to the exponent multiplied by the function raised to a power less one, multiplied by the differential of the function, $d\left(\iota^{n}\right)=n u^{n-1} d u$.
Formulas for lifferentiating algebraic functions.

1. $d(a)=0$.
2. $d(a x)=a d x$.
3. $d(x+y)=d x+d y$.
4. $d(x-y)=d x-d y$.
5. $d(x y)=x d y+y d x$.
6. $d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}$.
7. $d\left(x^{m}\right)=m x^{m-1} d x$.
8. $d(\sqrt{x})=\frac{d x}{2 \sqrt{x}}$.
9. $d\left(x^{-\frac{r}{s}}\right)=-\frac{r}{s} x^{-\frac{r}{s}-1} d x$.

To find the differential of the form $u=\left(a+b x^{n}\right)^{m}$:
Multiply the exponent of the parenthesis into the exponent of the variable within the parenthesis, into the coefficient of the variable, into the binomial raised to a power less 1 , into the variable within the parenthesis raised to a power less 1 , into the differential of the variable.

$$
d u=d\left(a+b x^{n}\right)^{m}=m n b\left(a+b x^{n}\right)^{m-1} x^{n-1} d x .
$$

To find the rate of change for a given value of the variable :

Find the differential coefficient, and substitute the value of the variable in the second member of the equation.

Example.-If x is the side of a cube and u its volume, $u=x^{3}, \frac{d u}{d x}=3 x^{2}$. Hence the rate of change in the volume is three times the square of the edge. If the edge is denoted by 1 , the rate of change is 3.

Application. The coefficient of expansion by heat of the volume of a body is three times the linear coefficient of expansion. Thus if the side of a cube expands .001 inch, its volume expands .003 cubic inch. $1.001^{9}=1.003003001$.

A partial differential coefficient is the differential coefficient of a function of two or more variables under the supposition that only one of them has changed its value.

A partial differential is the differential of a function of two or more variables under the supposition that only one of them has changed its value.

The total differential of a function of any number of variables is equal to the sum of the partial differentials.

If $u=f(x y)$, the partial differentials are $\frac{d u}{d x} d x, \frac{d u}{d y} d y$.
If $u=x^{2}+y^{3}-z, d u=\frac{d u}{d x} d x+\frac{d u}{d y} d y+\frac{d u}{d z} d z ;=2 x d x+3 y^{2} d y-d z$.
Integrals.-An integral is a functional expression derived from a differential. Integration is the operation of finding the primitive function from the differential function. It is indicated by the sign \int, which is read "the integral of." Thus $\int 2 x d x=x^{2}$; read, the integral of $2 x d x$ equals x^{2}.

To integrate an expression of the form $m x^{m-1} d x$ or $x^{m} d x$, add 1 to the exponent of the variable, and divide by the new exponent and by the differential of the variable: $\int 3 x^{2} d x=x^{3}$. (Applicable in all cases except when $m=-1$. For $\int x^{-1} d x$ see formula 2 page 78 .)

The integral of the product of a constant by the differential of a variable is equal to the constant multiplied by the integral of the differential:

$$
\int a x^{m} d x=a \int x^{m} d x=a \frac{1}{m+1} x^{m+1}
$$

The integral of the algebraic sum of any number of differentials is equal to the algebraic sum of their integrals:

$$
d u=2 a x^{2} d x-b y d y-z^{2} d z ; \quad \int d u=\frac{2}{3} a x^{3}-\frac{b}{2} y^{2}-\frac{z^{3}}{3}
$$

Since the differential of a constant is 0 , a constant connected with a variable by the sign + or - disappears in the differentiation; thus $d\left(a+x^{m}\right)=$ $d x^{m}=m x^{m-1} d x$. Hence in integrating a differential expression we must
annex to the integral obtained a constant represented by C to compensate for the term which may have been lost in differentiation. Thus if we have $d y=\alpha d x ; \int d y=a \int d x$. Integrating,

$$
y=a x \pm C
$$

The constant C, which is added to the first integral, must have such a value as to render the functional equation true for every possible value that may be attributed to the variable. Hence, after having found the first integral equation and added the constant C, if we then make the variable equal to zero, the value which the function assumes will be the true value of C.
An indefinite integral is the first integral obtained before the value of the constant C is determined.

A particular integral is the integral after the value of C has been found.
A definite integral is the integral corresponding to a given value of the variable.
Integration between limits.-Having found the indefinite integrat and the particular integral, the next step is to find the definite integral, and then the definite integral between given limits of the variable.
The integral of a function, taken between two limits. indicated by given values of x, is equal to the difference of the definite integrals corresponding to those limits. The expression

$$
\int_{x^{\prime}}^{\supset x^{\prime \prime}} d y=a \int d x
$$

is read: Integral of the differential of y, taken between the limits x^{\prime} and $x^{\prime \prime}$; the least limit, or the limit corresponding to the subtractive integral, being placed below.
Integrate $d u=9 x^{2} d x$ between the limits $x=1$ and $x=3, u$ being equal to 81 when $x=0$. $\int d u=\int 9 x^{2} d x=3 x^{3}+C ; C=81$ when $x=0$, then

$$
\int_{x=1}^{x=3} d u=3(3)^{3}+81, \text { minus } 3(1)^{3}+81=78 .
$$

Integration of particular forms.

To integrate a differential of the form $d u=\left(a+b x^{n}\right)^{m} x^{n-1} d x$.

1. If there is a consiant factor, place it without the sign of the integral, and omit the power of the variable without the parenthesis and the differential;
2. Augment the exponent of the parenthesis by 1 , and then divide this quantity, with the exponent so increased, by the exponent of the parenthesis, into the exponent of the variable within the parenthesis, into the coefficient of the variable. Whence

$$
\int d u=\frac{\left(a+b x^{n}\right)^{m+1}}{(m+1) n b}=C
$$

The differential of an arc is the hypothenuse of a right-angle triangle of which the base is $d x$ and the perpendicular $d y$.

$$
\text { If } z \text { is an arc, } d z=\sqrt{d x^{2}+d y^{2}} \quad z=\int \sqrt{d x^{2}+d y^{2}}
$$

Quadrature of a plane figure.
the differeutial of the area of a plane surface is equal to the ordinate into the differential of the abscissa.

$$
d s=y d x
$$

To apply the principle enunciated in the last equation, in finding the area of any purticular plane surface:

Find the value of y in terms of x, from the equation of the bounding line; substitute this value in the differential equation, and then integrate between the required limits of x.

Area of the parabola, -Find the area of any portion of the common parabola whose equation is

$$
y^{2}=2 p x ; \quad \text { whence } \quad y=\sqrt{2 p x}
$$

Substituting this value of y in the differential equation $d s=y d x$ gives

$$
\begin{gathered}
\int d s=\int \sqrt{2 p x} d x=\sqrt{2 p} \int x^{\frac{1}{2}} d x=\frac{2 \sqrt{2 p}}{3} x^{\frac{3}{2}}+C ; \\
\text { or, } \quad s=\frac{2 \sqrt{2 p x}}{3} \times x=\frac{2}{3} x y+C .
\end{gathered}
$$

If we estimate the area from the principal vertex, $x=0 . y=0$, and $C=0$; and denoting the particular integral by $s^{\prime}, s^{\prime}=\frac{2}{3} x y$.

That is, the area of any portion of the parabola, estimated from the vertex, is equal to $2 / 3$ of the rectangle of the abscissa and ordinate of the extreme point. The curve is therefore quadrable.

Quadrature of surfaces of revolution. - The differential of a surface of revolution is equal to the circumference of a circle perpendicular to the axis into the differential of the arc of the meridian curve.

$$
d s=2 \pi y \sqrt{d x^{2}+d y^{2}}
$$

in which y is the radius of a circle of the bounding surface in a plane perpendicular to the axis of revolution, and x is the abscissa, or distance of the plane from the origin of coördinate axes.

Therefore, to find the volume of any surface of revolution:
Find the value of y and $d y$ from the equation of the meridian curve in terms of x and $d x$, then substitute these values in the differential equation, and integrate between the proper limits of x.

By application of this rule we may find:
The curved surface of a cylinder equals the product of the circumference of the base into the altitude.

The convex surface of a cone equals the product of the circumference of the base into half the slant height.

The surface of a sphere is equal to the area of four great circles, or equal to the curved surface of the circumscribing cylinder.

Cubature of volumes of revolution.-A volume of revolution is a volume generated by the revolution of a plane figure about a fixed line called the axis.
If we denote the volume by $V, d V=\pi y^{2} d x$.
The area of a circle described by any ordinate y is πy^{2}; hence the differential of a volume of revolution is equal to the area of a circle perpendicular to the axis into the differential of the axis.

The differential of a volume generated by the revolution of a plane figure, about the axis of Y is $\pi x^{2} d y$.

To find the value of V for any given volume of revolution :
Find the value of y^{2} in terins of x from the equation of the meridian curve, substitute this value in the differential equation, and then integrate between the required limits of x.

By application of this rule we may find:
The volume of a cylinder is equal to the area of the base multiplied by the altitude.

The volume of a cone is equal to the area of the base into one third the altitude.

The volume of a prolate spheroid and of an oblate spheroid (formed by the revolution of an ellipse around its transverse and its conjugate axis respectively) are each equal to two thirds of the circumscribing cylinder.
If the axes are equal, the spheroid becomes a sphere and its volume $=$ $\stackrel{2}{\frac{2}{3}} \pi R^{2} \times D=\frac{1}{6} \pi D^{3} ; R$ being radius and D diameter.
The volume of a paraboloid is equal to half the cylinder having the same base and altitude.
The volume of a pyramid equals the area of the base multiplied by one third the altitude.
Second, third, etc., differentials.-The differential coefficient being a function of the indrpendent varianle, it may be differentiated, and we thus obtain the second differential coefficient:

$$
d\left(\frac{d u}{d x}\right)=\frac{d^{2} u}{d x} . \text { Dividing by } d x, \text { we have for the second difierential coeff }
$$

cient $\frac{d^{2} u}{d x^{2}}$, which is read: second differential of u divided by the square of the differential of x (or $d x$ squared).
The third differential coefficient $\frac{d^{3} u}{d x^{3}}$ is read: third differential of u divided by $d x$ cubed.
The differentials of the different orders are obtained by multiplying the differential coefficients by the corresponding powers of $d x$; thus $\frac{d^{3} u}{d x^{3}} d x^{3}=$ third differential of u.
Sign of the first differential coefficient.-If we have a curve whose equation is $y=f x$, referred to rectangular coördinates, the curve will recede from the axis of X when $\frac{d y}{d x}$ is positive, and approach the axis when it is negative, when the curve lies within the first angle of the coorrdinate axes. For all angles and every relation of y and x the curve will recede from the axis of X when the ordinate and first differential coefficient have the same sign, and approach it when they have different signs. If the tangent of the curve becomes parallel to the axis of X at any point $\frac{d y}{d x}=0$. If the tangent becomes perpendicular to the axis of X at any point $\frac{d y}{d x}=\infty$.

Sign of the second differential coefficient. -The second differential coefficient has the same sign as the ordinate when the curve is convex toward the axis of abscissa and a contrary sign when it is concave.

Maclaurin's Theorem.-For developing into a series any function of a single variable as $u=A+B x+C x^{2}+D x^{3}+E x^{4}$, etc., in which A, B, C, etc., are independent of x :
$u=(u)_{x=0}+\left(\frac{d u}{d x}\right)_{x=0} x+\frac{1}{1.2}\left(\frac{d^{2} u}{d x^{2}}\right)_{x=0} x^{2}+\frac{1}{1.2 .3}\left(\frac{d^{3} u}{d x^{3}}\right)_{x=0} x^{3}+$ etc.
In applying the formula, omit the expressions $x=0$, although the coeffcients are always found under this hypothesis.
Examples:

$$
\begin{aligned}
(a+x)^{m}=a^{m}+m a^{m-1} x+ & \frac{m}{1} \frac{(m-1)}{2} a^{m-2} x^{2} \\
& +\frac{m}{1} \frac{(m-1)}{2} \frac{(m-2)}{3} a^{m-3} x^{3}+\text { etc. } \\
\frac{1}{a-x}=\frac{1}{a}-\frac{x}{a^{2}}+\frac{x^{3}}{a^{3}}-\frac{x^{8}}{a^{4}}+\ldots & \frac{x^{n}}{a^{n+1}}, \text { etc. }
\end{aligned}
$$

Taylor's Theorem.-For developing into a series any function of the suin or differeuce of two independent variables, as $u^{\prime}=f(x \pm y)$:

$$
u^{\prime}=u+\frac{d u}{d x} y+\frac{d^{2} u}{d x^{2}} \frac{y^{2}}{1 \cdot 2}+\frac{d^{3} u}{d x^{3}} \frac{y^{3}}{1 \cdot 2 \cdot 3}+\text { etc. }
$$

in which u is what u^{\prime} becomes when $y=0, \frac{d u}{d x}$ is what $\frac{d u^{\prime}}{d x}$ becomes when $y=0$. etc.
Maxima and minima.-To find the maximum or minimum value of a function of a single variable:

1. Find the first differential coefficient of the function, place it equal to 0 , and determine the roots of the equation.
2. Find the second differential coefficient, and substitute each real ront, in succession, for the variable in the second member of the equation. Each root which gives a negative result will correspond to a maximum value of the function, and each which gives a positive result will correspond to a minimum value.
Example.-To find the value of x which will render the function y a maximum or minimum in the equation of the circle, $y^{2}+x^{2}=R^{2}$;

$$
\frac{d y}{d x}=-\frac{x}{y} ; \text { making }-\frac{x}{y}=0 \text { gives } x=0 .
$$

The second differential coefficient is: $\frac{d^{2} y}{d x}=-\frac{x^{2}+y^{2}}{y^{3}}$.
When $x=0, y=R$; hence $\frac{d^{2} y}{d x^{2}}=-\frac{1}{R}$, which being negative, y is a maximum for R positive.
In applying the rule to practical examples we first find an expression for the runction which is to be made a maximum or minimum.
2. If in such expression a constant quantity is found as a factor, it may be omitted in the operation; for the product will be a maximum or a minimum when the variable factor is a maximum or a minimum.
3. Any value of the independent variable which renders a function a maximum or a minimum will render any power or root of that function a maximum or minimum; hence we may square both members of an equation to free it of radicals before differentiating.
By these rules we may find:
The maximum rectangle which can be inscribed in a triangle is one whose altitude is half the altitude of the triangle.
The altitude of the maximum cylinder which can be inscribed in a cone is one third the altitude of the cone.
The surface of a cylindrical vessel of a given volume, open at the top, is a minimum when the altitude equals half the diameter.
The altitude of a cylinder inscribed in a sphere when its convex surface is a maximum is $r \sqrt{2} r=$ radius.
The altitude of a cylinder inscribed in a sphere when the volume is a maximum is $2 r \div \sqrt{3}$.
(For maxima and minima without the calculus see Appendix, p. 10\%0.)

Differential of an exponential function.

$$
\begin{align*}
\text { If } u & =a^{x} . \tag{1}\\
\text { then } d u & =d a^{x}=a^{x} k d x \tag{2}
\end{align*}
$$

in which k is a constant dependent on a.
The relation between a and k is $a^{\frac{1}{\bar{c}}}=e$; whence $a=e^{k}$,
in which $e=2.7182818 \ldots$ the base of the Naperian system of logarithms.
Logarithms.-The logarithms in the Naperian system are denoted by l, Nap. log or hy perbolic \log, hyp. log, or $\log _{e}$; and in the common system always by \log.

$$
\begin{equation*}
k=\text { Nap. } \log a, \quad \log a=k \log e . \tag{4}
\end{equation*}
$$

The common logarithm of $e,=\log 2.7182818 \ldots=.4342945 \ldots$ is called the modulus oi the common system, and is denoted by M. Hence, if we have the Naperian logar thm of a number we can find the common logarithm of the same number by multiplying by the modulus. Reciprocally, Nap. $\log :=c o m . \log \times 23025851$.
If in equation (4) we make $a=10$, we have

$$
1=k \log e, \text { or } \frac{1}{k}=\log e=M
$$

That is, the modulus of the common system is equal to 1 , divided by the Naperian logarithm of the common base.
From equation (2) we have

$$
\frac{d u}{u}=\frac{d a x}{a^{x}}=k d x .
$$

If we make $a=10$, the base of the common system, $x=\log u$, and

$$
d(\log u)=d x=\frac{d u}{u} \times \frac{1}{\bar{k}}=\frac{d u}{u} \times M .
$$

That is, the differential of a common lng arithm $n f$ a quantity is equal to the differential of the quantity divided by the quantity, into the modulus.
If we make $a=e$, the base of the Naperian system, x becomes the Nape-
rian logarithm of u, and k becomes 1 (see equation (3)); hence $M=1$, and

$$
d(\text { Nap. } \log u)=d x=\frac{d u}{a^{x}} ;=\frac{d u}{u}
$$

That is, the differential of a Naperian logarithm of a quantity is equal to the differential of the quantity divided by the quantity; and in the Naperian system the modulus is 1.

Since k is the Naperian logarithm of $a, d u=a^{x} l a d x$. That is, the differential of a function of the form a^{x} is equal to the function, into the Naperian logarithm of the base a, into the differential of the exponent.

If we have a differential in a fractioual furm, in which the numerator is the differential of the denominator, the integral is the Naperian logarithm of the denominator. Integrals of fractional differentials of other forms are given helow:

Differential forms which have known integrals; exw ponential functions. ($l=$ Nap. log.)
1.

$$
\int a^{x} l a d x=a^{x}+C
$$

2.

$$
\int \frac{d x}{x}=\int d x x^{-1}=l x+C
$$

3.

$$
\int\left(x y^{x-1} d y+y^{x} l y \times d x\right)=y^{x}+C
$$

4.

$$
\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=l\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}+C\right.
$$

3.

$$
\int \frac{d x}{\sqrt{x^{2} \pm 2 a x}}=l\left(x \pm a+\sqrt{x^{2} \pm 2 a x}\right)+v
$$

6. $\quad \int \frac{2 a d x}{a^{2}-x^{2}}=l\left(\frac{a+x}{a-x}\right)+C$;
\%. $\quad \int \frac{2 a d x}{x^{2}-a^{2}}=l\left(\frac{x-a}{x+a}\right)+C$;
7.

$$
\int \frac{2 a \| x}{x \sqrt{a^{2}+x^{2}}}=l\left(\frac{\sqrt{a^{2}+x^{2}}-a}{\sqrt{a^{2}+x^{2}}+a}\right)+C
$$

9.
10.

$$
\begin{aligned}
& \int \frac{2 a d x}{x \sqrt{a^{2}-x^{2}}}=l\left(\frac{a-\sqrt{a^{2}-x^{2}}}{a+\sqrt{a^{2}-x^{2}}}\right)+C \\
& \int \frac{x^{-2} d x}{\sqrt{x+x-2}}=-l\left(\frac{1+\sqrt{1+a^{2} x^{2}}}{x}\right)+C .
\end{aligned}
$$

Circular functions.-Let z denote an are in the first quadrant, y its sine, x its cosine, v its versed sine, and t its tangent; and the following notation be employed to designate an arc by any one of its functions, viz.,

$\sin ^{-1} y$ denotes an arc of which y is the sine					
$\cos ^{-1} x$	"	"	"	"	"
	x is the cosine,				
$\tan ^{-1} t$	"	"	"	"	"
t is the tangent					

(read "arc whose sine is y," etc.), -we have the following differential forms which have known integrals ($r=$ radius):

$$
\begin{aligned}
& \int \cos z d z=\sin z+C \\
& \int-\sin z d z=\cos z+C \\
& \int \frac{d y}{\sqrt{1-y^{2}}}=\sin ^{-1} y+C \\
& \int \frac{-d x}{\sqrt{1-x^{2}}}=\cos ^{-1} x+C \\
& \int \frac{d v}{\sqrt{2 v-v^{2}}}=\operatorname{ver}-\sin ^{-1} v+C ; \\
& \int \frac{d t}{1+t^{2}}=\tan ^{-1} t+C \\
& \int \frac{r d y}{\sqrt{r^{2}-y^{2}}}=\sin ^{-1} y+C ; \\
& \int \frac{-r d x}{\sqrt{r^{2}-x^{2}}}=\cos ^{-1} x+C ; \\
& \int \sin z d z=\operatorname{ver}-\sin z+C \\
& \int \frac{d z}{\cos ^{2} z}=\tan z+C \\
& \int \frac{r d v}{\sqrt{2 r v+v^{2}}}=\operatorname{ver}-\sin ^{-1} v+C ; \\
& \int \frac{r^{2} d t}{r^{2}+t^{2}}=\tan ^{-1} t+C \text {; } \\
& \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1} \frac{u}{a}+C ; \\
& \int \frac{-d u}{\sqrt{a^{2}-u^{2}}}=\cos ^{-1} \frac{u}{a}+C ; \\
& \int \frac{d u}{\sqrt{2 a u-u^{2}}}=\operatorname{ver}-\sin -1 \frac{u}{a}+C ; \\
& \int \frac{a d u}{a^{2}+u^{2}}=\tan ^{-1} \frac{u}{a}+C \text {. }
\end{aligned}
$$

The eycloid.-If a circle be rolled along a straight line, any point of the circumference, as P, will describe a curve which is called a cycloid. The circle is called the generating circle. and P the generating point.

The transcendental equation of the cycloid is

$$
x=\text { ver }-\sin ^{-1} y-\sqrt{2 r y-y^{2}}
$$

and the differential equation is $d x=\frac{y d x}{\sqrt{2 r y-y^{2}}}$.
The area of the cycloid is equal to three times the area of the generating circle.
The surface described by the arc of a cycloid when revolved about its base is equal to 64 thirds of the generating circle.
The volume of the solid generated bv revolving a cycloid about its base is equal to five eighths of the circumscribing cylinder.
Integral calculus.-In the integral calculus we have to return from the differential to the function from which it was derived A number of differential expressions are given above, each of which has a known integral corresponding to it, and which being differentiated, will produce the given differential.
In all classes of functions any differential expression may be integrated when it is reduced to one of the known forms; and the operations of the integral calculus consist mainly in making such transformations of given differential expressions as shall reduce them to equivalent oues whose integrals are known.

For methods of making these transformations reference must be made to the text-books on differential and integral calculus.

RECIPROCALS OF NUIMBERS．

No．	Recipro－ cal．	No．	Recipro－ cal．	No	Recipro－ cal．	No．	Recipro－ cal．	No．	Recipro－
	1.00	64		$12 \hat{}$		190	． 005	253	． 00395257
2	． 5000		． 0153		． 00781250		00523560		．00393701
3	． 3333333383	6	． 01515151	9	．00；75194		00520833		00392157
	． 25000000		．01492537	130	．00769：31		．00518135		00390625
	． 20000000		． 01470588		．00763：359		． 00515464		0389105
	． 1666666	9	． 014492 T5		． $0075 \sim 516$		． $0051: 8820$		00387597
τ	． 142855114	70	．014285 1		． 04751880		．00510：04		00386100
8	． 12500000	1	． 01408451		．00才46：69		．00507614	260	00384615
9	． 11111111	2	． 01388889		． 00740741		． 0050505		00：38：314
10	． 1000000	3	． 01369863		．00735：294	9	．00502513		003
11	． 09090909		． 01351351		．0072992～～	200	． 00500000		01380228
12	．0833：333：3		01333333		．00724638		．00497512		003ǐ゙\％ 88
13	．0769：308		01315i89	9	．00719424		． 00495049		003
14	． 07142855		．01298\％01	140	． 00714286		． 00492611		003ז5940
15	． 066666667		．01282		．00709220		． 00490196		003i45：32
16	． 06250000	9	． $01 \cdot 1258$		． 00704225		． 00487805		0037：313
17	． $05588: 353$	80	． 01250000		． 006999301		． 00485437		00371747
18	0555555	1	． 012334568		． 00694444		． $00+83092$	20	003
19	05：2631：		0121951		006896		． $00+80 \sim 69$		1）0369004
20	． 05000000	3	． 01204819		． 00684931	－ 9	． 004 ¢ 8469		$0036 \sim 647$
	． 04761905		． 011904 T6		．00680：22	210	． 00476190		00366300
	． 04545455	5	． 01116471		． $006756 \sim 6$	11	． 00473934		003
	．0434782	6	． $01162 \sim 91$	9	．00671141	12	． 00471698		00：363
	． 0416666		． 011494×5	150	． 00666667	13	． 00469484		00362319
	． 04000000		． 0113636	1	． 006622		．0046 2290		00361011
	． 03346154	9	． 01123595	2	．0065 889	15	． 00465116		003
	．0370：3704	90	． 01111111	3	．00653595	16	．00462963		00：358423
	．035\％14：9	1	． 01098901		． 00649351	17	．00460829	280	00357143
	．034482í6		． 01086956		． 00645161	18	．00458ז16		0035587：
30	．0：13833：333	3	． 01075026	6	． 00641026	19	． 00456621		00354619
1	． 03225846		011663830		． 00636943	220	． 0045454		003533：357
	． 03125000		．0105．3632	8	．0063：2911		．00452489		00352113
	．0：30：3030		． 0104160	9	．00628931		00450450		00350877
	02941116		． 01030928	160	．00625000		． 00448430		00349550
	． 0285714		． 01020408		．00621118		004464：		0034813
	． $0277 \% 78$	9	． 01010101	2	． $00617 \% 84$		004444		003
8	． $0: 2702 \% 03$	100	． 01000000		． 00613499		004424		00346021
8	． 026		． 00990		d0		0044052	290	． 00344828
40	． 02564103		． 0098039		．0060606		． 004385		00343613
40	． 02500000		．009i0874		． 00602410		． 004366		$00:$
1	． $0243902+$	4	． 00961538		． 00598802	230	．0043＋783		00341297
$\stackrel{2}{3}$			． 0.095		． 0059		．00432900		00．340136
3	0232．5581		．0943396	9	00591ヶ1		0043103		00338983
	．02272T2r		． 009345%	170	0058823		． 0042918		003.37838
	． 0322 y 2 y	8	．009359：26		． 0058		00427．350		003.3600
	． 02	${ }^{9}$	． 010917431		． 0058139		． 004×5532		0033555\％
	．0212ヶ66	110	． 00909091	3	$005 \% 803$		．00123729		003：34448
8	02083333	11	．00300901		．00574713		．004219	300	00：333：333
50	． 02040815	12	．0089：857		． 00571429		． $00+20168$		0332 226
50	．02000000	13	．00884956		．00558182	9	． 00118410		0033311：26
1	． 01960 r84	14	0877193		．005649T－	240	． 0041666		00．3330033
	．01923077	15	100		．0056179		．004149：		103：28947
	01886 92	16	00862069	9	． 00558659		． $004132 \cdot$		0032＊869
	． 01851852	17	． 00854 \％01	180	0055555	3	． 0041152		00326697
	．0181818＊	18	． 0081745		． 0055248		． 00409836		00325：33
	． 017857	19	． 00840336		． 0054945		． 0040816		O324675
	． 01754386	120	． 00833		C05 4644		． 004065	9	，
8	$01 \sim 24138$		．008－64		． 00543478		． 0040485	310	0032－258
60	． 01694915		． 00819		． 00540540		．0040：322	11	032154
60	． 01666667		． 00813		．00537634	9	． 00401606	12	00320513
1	． 01639314		80		． 0053475	250	0040000	13	00：31948
2	． 01612903		． 000		00．53191	1	00339810	14	00：31817
	． $01588 \div 30$				05．911	2	． 00.96		

RECIPROCALS OF NUMBERS．

No	Recipro－ cal．	No．	$\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$						
316	．00816456	381	00262467	446	．00224215	511	． 00195695	576	． 00173611
17	． 00315457	，	． 00261780	T	．002．3314	12	． 00195312		．001：3310
18	． 00314465	3	．00261097	8	．00223214	13	． 00194932	8	．00173010
19	． 00313480	4	．0026041～	9	．00：22717	14	． 00194552	9	．00172\％12
3：0	．0031：500	5	．00259740	450	．0022222：	15	． 00194175	580	． 00172414
	．00311526	6	．00259067	1	．00221729	16	．00193\％98	1	． 001 20117
	．00310559	7	． 00258398	2	．002：1239	17	． 00193424	2	． 00171821
3	$0030959 \sim$	8	0025\％732	3	00220751	18	． 00193050	3	． 00171527
	．00308642	9	．00257069	4	．002：0264	19	．0019：6678	4	． 00171233
5	．00307692	390	． 00256410	5	．00219780	$5: 0$	． 00192308	5	． $001 \sim 0940$
	00306748		．00255754	6	．00219298	1	． 00191939		． 00170648
	． 00305510	2	00255102	7	．00218818	2	． 001915 r1		． 00110358
	．00304878	3	00254453	8	． 00218341	3	． 00191205		00170068
9	． 00303951	4	．00253807	9	． $0021 \sim 865$		． 00190840	9	． $001697 \% 9$
330	． 00303030	5	．00253165	460	．00217391		． 00190476	590	.00169491
	．00302115	6	．00：52525	1	． 00216920		． 00190114		．00169：05
2	． 00301205	7	．00251889	2	．0021645\％	7	． 00189 ¢53	2	． 00168919
3	． 00300300	8	． 00251256	3	． 00215983	8	． 00189394		． 00168634
4	．00\％99401	9	．00250627	4	． 00215517	9	． 00189036		． 00168350
5	．00：98507	400	．00250000	5	． 00215054	530	． $001886 \% 9$	5	． 00168067
6	．00297619	1	．00249377	6	． 00214592	1	． 00188324		．00167～85
7	．00296736	2	．00248756	7	．00214133	2	． $001879 \% 0$		．00167504
8	．00：298858	3	．00248139	8	．002136\％5	3	． 0018 \％617		． $00167 \% 24$
	．00：294985	4	． 0024 T525	9	．00：13：20		．00187：26		． 00166945
340	．00294118	5	． 00246914	4%	． $00212 \sim 66$	5	． 00186916	600	． 00166667
	．00293255	6	． 00246305		．00：312：314	6	． 00186567		． 00166389
2	．00292398	7	．00245700	2	． 00211864		．00186220		． 00166113
3	．00291545	8	． 00245098	3	． 00211416		． $001858 \sim 4$		． 00165837
4	．00290698	9	． 00244499	4	． 00210970	9	． 00185528	3	． 00165563
5	． 00289855	410	．00：43902	5	． 00210526	540	． 00185185	5	． 00165289
6	． 00289017	11	．00243309	6	． 00210084		． $00184: 43$	6	． 00165016
7	（10288184	12	．00242 18	7	．00209644	2	． 00184502		． 00164745
8	00287356	13	． 00242131	8	．00\％09205	3	． 00184162		． 00164474
9	00286533	14	． 00241546	9	． 00208768		． 00183823		． 00164204
350	00285714	15	．00240964	480	．00：08333	5	． 00183486	610	．00163934
1	． 00284900	16	． 00240385	1	． 00207900		． 00183150	11	． 00163666
2	． 00284091	17	． 00239808	2	． 00207469	7	．0018：815	12	． 00163399
3	．00283286	18	． $00 \div 39234$	3	．00207039	8	．0018．248\％	13	． 00163132
4	．00282486	19	． 00238663	4	．00206612	9	． 00182149	14	． 00162866
5	． 00281690	420	．00238095		． $00 \div 06186$	550	． 00181818	15	． 00162602
6	．00280899	1	．00237530	6	．00205～61		． 00181488	16	． 00162338
7	． 00280112	2	．0023696～～	7	． 00205339	2	． 00181159	17	． 00162075
8	．002\％9330	3	．00233640	8	． 00204918	3	． 00180832	18	． 00161812
9	．002～8551	4	．00235849	9	．00：04499	4	． 00180505	19	． 00161551
360	．002ก 7778	5	．0023．3294	490	．00204082	5	． 00180180	620	． 00161290
1	．002it008	6	．00こ34742	1	．00：03666	6	． 00179856		． 00161031
2	002\％6243	7	．002344192	2	．00203252	7	．001\％9533		． 00160 \％ 2
3	．002\％5482	8	． 012233645	3	．00202840	8	．001～9211	3	． 00160514
4	．002\％4～25	9	．00233100		．00202429	9	． $001 \sim 8891$		． $00160: 56$
5	．00：273973	430	．00232558	5	．00：202020	560	． 00178571		． 00160000
6	． 00.273224	1	．002232019	6	．00201613	1	． 001 \％8253	6	． 00159744
7	．002\％2480	$\stackrel{2}{3}$	．00231481	7	． 0020120	2	． 001717936	8	． 00159490
8	．002ヶ1739	3	．00：23094\％	8	． $00 \div 00803$	3	． 001 \％ 620		00159：36
9	．002 $\sim_{1} 1003$	4	．002：30415	9	．00200401	4	． 00177305	9	． 00158982
370	． 00270270	5	．00229885	500	．00200000	5	00176991	630	． 00158730
$\stackrel{1}{2}$	． 002669542	6	． 00.3293388	1	． 00199601	6	． $001766 \sim 8$		．00158479
2	．0026881\％	7	．00ㄹ28833		．00199203		． 001 \％ 6367	2	．00158228
3	．00：268096	8	．00228810	3	． $0019880 \sim 1$	8	． 00176056	3	．00157978
4	．00267380	9	．0022 $\mathrm{r}^{\text {a }} 90$	4	． 00198413	9	．001 50 ¢ 4	4	． 0015 Tr：9
5	． 00266667	440	．0022 2 2is	5	． 001980 20	$5 \% 0$	． 00175439		． 00157480
6	．0026595	1	．0022675\％	6	． 00197628	1	． 00175131	6	． $0015 \% 233$
7	00：26525：	2	． 00226244		．00197239	2	．00174825		． 00156986
8	． 00264550	3	． 00225734	8	． 00196800	3	． $001 \% 4520$	8	． $00156 \pi 40$
	．00263852		．00225225	9	． 00196464	4	． $001 \sim 4216$	9	． 00156494
380	． C 0263158	5	．00224～19	510	． 001960 ¢ 8	5	．001ヶ3913	640	．00156250

No.	Reciprocal.	No.	Reciprocal.	No.	Reciprocal. .	No.	Reciprocal.	No.	Reciprocal.
641	. 00156006	-06	. 00141643	$7 \% 1$.00129\%02	836	. 00119617	901	. 00110988
2	. 00155 \%63	7	. 00141443	2	. 00129534	7	. $001194{ }^{4} 4$	2	. 00110865
3	. $00555: 1$	8	. 00141243	3	. 00129366	8	. 00119332	3	.00110742
	.00155279	9	. 00141044	4	. 00129199	9	. 00119189	4	. 00110619
5	. 00155039	710	. 00140845	5	. 00199032	840	. 00119048	5	. 00110497
6	. 00154799	11	. 00140647	6	. 00128866	1	. 00118906	6	. 00110375
7	. 00154559	12	. 00140449	7	. 00128700	2	. 00118765	7	.00110254
8	.001.54321	13	. 00140252	8	.00128535	3	. 00118624	8	. 00110132
9	. 00154083	14	. 00140056	9	. 001283%	4	. 00118483	9	. 00110011
650	. 00153846°	15	. 00139860	\%80	. $00128 \div 05$	5	. 00118343	910	. 00109890
1	. 00153610	16	.00139665	1	. 00128041	6	.00118203	11	.00109~69
2	. 001533 \% 4	17	. 00139470	2	.00127877	7	. 00118064	12	. 00109649
3	. 00153140	18	.001392~6	3	. 00127714		. 00117924	13	. 00109529
	. 00152905	19	.00139082	4	. 00127551	9	. $00117 \% 8$	14	. 00109409
5	.0015:672	720	. 00138889	5	. 00127388	850	.0011764'	15	. 00109290
6	. 00152439	1	. 00138696	6	. 0012 2226	1	. $0011750 ?$	16	. 00109170
-	.0015:20\%	2	. 0013850.4	7	.0012~065	2	.001173\%1	18	. 00109051
8	.001519\%5	3	. $00138: 313$	8	. 00126904	3	0011 1233	18	.00108932
9	00151745	4	. 00138121	9	. 00126743		. 00117096	19	. 00108814
660	. 00151515	5	.001:3r931	790	. 00126582	5	. $00116!59$	920	. 00108696
1	. 00151286	6	. 00137741	1	. 00126422	6	. 00116822	1	. 00108578
2	.00151057	7	. 00137552	2	. 00126263	7	. 00116686		. 00108460
3	. $001508: 30$	8	. 00137363	3	. $001 \geqslant 6103$	8	. 00116550	3	. 00108342
4	. 00150602	9	. 00137174	4	.001:25945	9	. 00116414	4	. 00108.25
5	.001503i6	730	. 00136986	5	.00125:86	860	.001162\%9	5	. 00108108
6	. 00150150	1	.00136799	6	. 00125628	1	. 00116144	6	. 00107991
7	. $001499 \div 5$	2	. 00136612	7	.00125470	2	.001160(19	7	. 00107875
8	. 00149701	3	. 00136426	8	. 00125313	3	. 00115875	8	. 00107759
9	. 00149477	4	. 00136240	9	.00125156		.00115 41	9	. 00107643
670	. 00149254	5	. 00136054	800	. 00125000	5	. $0011560 \sim$	930	. 00107527
1	. 00149031	6	. 00135870	1	.001:34844	6	. 00115473	1	. 00107411
2	. 00148809	7	.00135685	2	. 00124688		. 00115340	2	. 00107296
3	. 00148588	8	.00135501	3	.0012453:3	8	. 0011520%	3	. 00107181
4	. 00148368	9	.001:35318	4	.00124378	9	. 00115075	4	. $0010 \% 066$
5	. 00148148	740	.00135135	5	.00124224	870	. 00114942	5	. 0010695
	. 001.7929	1	. 00134953	6	. 00124069	1	. 00114811	6	00106838
7	. $0014 \% 710$	2	.00134~71	7	.0012:3916	2	. 00114679	7	.00106\%24
8	. $0014 \sim 493$	3	. 00134589	8	.0012:3762	3	. 00114547	8	00106610
9	.00147275	4	.00134409	9	.001:3609	4	. 00114416	9	. 00106496
680	.00147059	5	. 00134228	810	.001:3457	5	. 00114286	940	. 00106383
1	. 00146843	6	. 00134048	11	. 00123305	6	. 00114155	1	. $00106{ }^{\text {a }} 0$
2	. $001466 \cdot 8$	\%	. 00133869	12	.00123153		. 00114025	2	. 00106157
3	. 00146413	8	.00133690	13	. 001:3001		. 00113895	3	. 00106044
4	. 00146199	9	.0013:3511	14	. 00122850	9	. $00113 \% 66$	4	. 0010.5932
5	. 00145985	750	.0013:3333	15	. 00122699	880	. 0011.3636	5	. 00105820
6	. 00145 \%73	1	.00133156	16	. 00122549	1	. 00113507	6	. $00105 \% 08$
\%	. 00145560	2	.00132979	17	. 00122399	2	. 001133 9 9		. 01105597
8	. 00145349		. $0013: 2802$	18	.00122?49	3	. 00113250	8	. 00105485
9	. 00145137		.001:32626	19	. $00: 22100$	4	. 00113122	9	. 0010.3 亿 4
690	. 00144938	5	. 00132450	8:0	. 00121951	5	. 00112991	950	. 0010.5263
,	. $00144 \sim 18$	6	.00132275	1	. 00191803	6	. 00112867		. 0010515
2	. 00144509	¢	. 00132100	2	. 00121654	\%	.0011:て40		. 00105042
3	. 00144300	8	00131926	3	. $0012150 \sim$	8	. 00112613	3	. 00104932
	. 00144092	9	.00131\%'52	4	. 00121359	9	. 00112486		. 00104822
5	. 00143885	760	.001315~̃9	5	. $0012121 ?$	890	.00112:360	5	. $00104{ }^{\text {12 }}$
6	.001436\%8	1	. 00131406	6	. 00121065	1	. 1011223.3	6	. 0010460
$\stackrel{\square}{\square}$. $0014344^{\circ} 2$	2	. 00131234	\%	.0U, $\because 0919$	2	. 00112108	¢	. 00104493
8	$0014: 3266$	3	.00131062	8	. 00120773	3	. 00111982	8	. 00104384
9	.00143061	4	.00130890	9	.0012062	4	.0011185~		. 00104275
700	.0014:857	5	.001:30719	830	. $001 \because 0482$	5	. 00111732	960	. 00104167
	. $0014: 65.3$	6	. 00130548	,	. 0012033 r	6	. 00111607	1	. 00104058
2	. 00142450		.00130.378	2	. 00120192	7	. 00111483	2	. 00103950
3	. $0014 \geq 2 \%$	8	. $00130 \div 08$	3	. 00120048	8	. 00111359	3	. 00103842
4	. 00142045	9	. 001300389	4	00119904	9	.00111235	4	. 00103734
5	(11) 11414	740	0129870	5	00119\%60	900	. 00111111	5	. 00103627

No．	Recipro－ cal．								
266	．001035：20	1031	． 000969932	1096	000912409	1161	． 000861326	1226	． 000815661
	． 00103413		．00096899：		000911577		． 000860585		． 000814996
8	． 001033306	3	． 0009608054		． 000910 ¢74	3	． 000859845	8	． 000814332
9	． 00103199		． 000967118		． 000909918		． 000859106	9	． 000813670
970	．00103093	5	． 000966184	1100	． 000909091	5	． 000858369	1230	． 000813008
	． 00102987		． $000965 \% 51$		．000908265		． 000857633		． 000812348
2	． 00102881		．000964320		000907441	7	． 000856598	2	000811688
3	． 00102 2\％ 5		．000963391	3	． 000906618		． 000856164	3	000811030
4	． 00102669	9	． 000962464		．000905797	9	． 000855432		000810373
5	． 00102564	1040	． 000961538	5	． 000904977	1170	． 000854701	5	$0008 \mathrm{C9717}$
6	． 00102459		． 000960615		006904159		． 000853971		000809061
7	．00102； 34		． 000959693		． 000903342		． $000853: 42$	7	000808407
8	0010：2250		．000958\％74		．0009025：77		． 000852515		00080 \％ 754
	． 00102145		000957854		． 000901713		． 000851189		00080 102
80	． 00102041		000956938	1110	． 000900901		． 000851064	1240	C00806452
	． 00101937		．00095602：3	11	U00900090		． 000850340		000805802
2	． 00101833		． 0009555110	12	． 000899281		． 000849618		000805153
	． $00101 \div 29$		000954198	13	． 000898473		． 000848896		000804505
	00101626	9	． 0009 533289	14	． 000899666	9	． 000848156		000¢0 03858
	． 00101523	1050	．000952381	15	． 000896861	1180	．000847457		000803：213
6	．001014：20		． 000951475	16	． 000896057		． 000846740		000802568
	． 00101317		． 0009505 \％ 0	17	． 0008959255		． 000846024		0008019：5
	． 00101215		． 000949668	18	． 000894454		． 000845308		000801282
9	．0010i112		000948767	19	． 000893655		． 000844595	9	000800640
990	00101010		000947867	1120	． 000892857		．000843882	1250	000800000
	． 00100908		000946970		． 000892061		．000＜431\％0		000\％99360
2	00100806		0009－60～4		． 000891266		． 000842460		000798\％22
3	． 00100705		．000945180		． $00088904{ }^{2}$		． 000841751		$000 \sim 98085$
	． 00100604		． 00094428 r		． 000889680		．00084104：3		000ヶ97448
	． 00100502	1060	． 000943396		． 000888889	1190	． 00084033 C		0007：46813
	．00100102		． 000942507		． 000888899		． 000839631		． 000 ¢96178
	00100301		． 000941620		． 000887311		． 000838926		． 000 ¢95545
	．00100200		．000940734		． 000886525		． 000838822.2		． $000 \div 94913$
	． 00100100		．0009393850		． 000885 \％ 40		． $0008375 \% 1$		000デ94き81
1000	． 00100000		．0009：3896\％	1130	． 000884956		． 000836820	1260	000ヶ93651
	． 0009999001		0c09388086		． 000884173		． 000836120		000～93021
	． 0009988004		．000933\％207		.000883392		． 00083.4222		000：92393
	000997009		．0000936330		．00088：2612		． $0000834 \% 24$		． $000791 \% 66$
	． 000996016		． 0009335454		． 000881834		． 000834028		000¢91139
5	． 0009995025	1070	． 00093345 ¢ 9		． 00088105 r	1200	000833333		000～90514
	． 0009944036		.000933707		.000880282		． 000 ¢ $3: 26639$		000：89889
	． 0009993049		． 0009332836		．0008ヶ9508		$.00083194 \pi$		000～～9266
	． 0009992063		．000931966		． 000878735		． 0008331255		000i88643
	． 000991080		．000931099		．00087963		． $000830 \sim 65$		00cis80\％2
1010	． 000990099	5	．000930233	1140	． 000871193		． $0008: 298 \% 5$	$12 \pi 0$	000787402
11	． 000989120		． 0009292368		．0008 76424		． $0008 \% 918$ r		．000786：82
12	． 0009888142		． 0009288505		．0008 57565%		． 0008288500		． 000786163
13	． 000988167		． 00092 T 644		．000874891		．000827815		． $000 \sim 85$ 546
14	000986193		． 000926 \％ 84		．000874126		．0008221130		0007449：29
15	． $0009852 \cdot 2$	1080	． 000925926		．0008 73362	1210	． 000886446		． 000 ¢¢84314
16	． 0109894×52		． 000925059	6	． 000872600	11	．0008：25：64		．0007883699
17	．000983：84		．000924：14		． 000871840	12	． 0008825082		．000783085
18	．0009882：318		．0009223361		． 000871080	13	． 000824402		
19	． 0009813854		．000922209		． 000800382	14	．000823）：23		000781861
1020	000980392	5	． 000921659	1150	． 000869565	15	．000823045	1280	000781250
	． 000979732		． 0009220810		． 000868810	16	． $000822: 368$		． 000 त́ヶ0640
	0009 98474		． 0009199963		． 0008688056	17	． 000821693		．000i80031
3	．00097\％51～		． 0000919118		． 000867303	18	． 0008821018		． 0007194283
5	．0009\％6562		000918274		． 0008666551	19	． 0008200314		． 000778816
	． 000975.5610	1090	． 000917431		． 0008665801	1220	． $0008196 \% 2$		． 000 \％ 78210
	．000974659		． 000916590		．000－65052		． 000819001		． 000 TTri605
	．0009\％3710	$\stackrel{2}{3}$	． 000915751		． 000864304		． 000818331		． 0007 Tri001
8	．000972～63		． 000914913		． 000863.558		． 000817661		．000 7639 \％
	00097181\％		． 000914077		． 000562813		． 000816993		． 000 T 75 ¢95
1030	．000970874		． 000913242	1160	．000862069		． 000816326		． $000 \sim 75194$

No．	Recipro－ cal．	No．	Recipro－ cal．	No	Recipro－ cal．	No．	Recipro－ cal．	No．	$\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$
1291	．000774	1356		14		1486	0006i：2948	1551	$.00$
	000773994		000ヶ゙36920		000703235		0006 2495		0006
	000773395		000736377		000\％0\％741		000672043		0006439
	0007 \％2797		000735835		000702247		000671592		000643501
	000772：01	1360	000735294		000701754	1490	000671141		000643087
	000771605		000734754		．000～01262		．0006i0691		00064：673
	000it1010	2	000734214		000～00771		000670241		000642
	0007 20416	3	．00073：36r6		000～00：280		000669792		000641848
	0007698：3		000i33138		000699790		000669314	9	000641437
1300	000：6923		000 23.601	1430	000699301		000668896	1560	000641026
	000768639		00073：064		000698812		． 000668449		0006
	000i68049		000731529		000698324		000668003		000640：25
	000767459		．000730994		00069r83i		000667557		000639795
	000766871	9	000ヶ30460		000697350	9	000667111		000639386
	00076628	1370	．0007：29：27		000696864	1500	．00066666～		0006389\％8
	000～65697		000729395		0006963 ¢9		000666223		0006385.0
	000165111		000テ28863		000695894		0006657\％9		00063S162
	000764526		000i28332		000595410		． 000665336		000637455
9	000763942		000べ2i802		000694927		000664894	9	000637319
10	． 0007633359		$000 \uparrow ะ 7273$	1440	． 000694444		． 000664452	1570	． 0006336943
	．000 62776	6	000726i44		000693962		000664011		000636537
12	．00076：195		000ヶ26216	2	000693341		0006635\％0		000636132
13	000761615		000725689		．000693001		000663130		000635728
14	000r6103	9	000＾25163		00069：521		．000662691		0006353：2
15	000760456	1380	000 21638		000692041	1510	00066 2252		0006349：1
16	00075987	1	000724113		000691563	11	000661813		000634518
17	000759301		000ヶ23589		000691085	12	000661376		000634115
18	000 i58725	3	000723066	8	． 000690608	13	000660939		000633714
19	000758150		00072：2543	9	． 000690131	14	000660502		000633312
320	． 000757576		000122022	1450	000689655	15	000660066	1580	00063：911
	000i57002	6	．000721501		． 000689180	16	000659631		0006332511
	000456430	7	000720980		000688705	17	000659196		00063\％111
3	000i5585	8	000720461	3	000688：231	18	000658761		000631712
	000755：87	9	000419942		000687758	19	000658328		000631313
	000 ²5 ${ }^{\text {a }} 17$	1390	000¢194：4		． 000687285	15：0	00065\％ 895		000630915
	000754148		$00071890 \sim 7$		000686813		000657462		000630517
	000i53579	2	000718391		000686341		00065\％ 030		．000630120
	000\％53012	3	000 1178 25		000685871		000656598		000629\％2
	000752445		000717360		． 000685401		000656168		00062932i
30	000\％51880		．000716846	1460	．00068493？		000655738	1590	000628931
	000 ¢51315		000～16332		． 000684463		000655308		．0006：28：336
2	000i50750	7	0007158：20	2	000683994		$0006548 i 9$		0006：8141
3	000750187		． 000715308		00068352π		． 000654450		00062\％T46
	000¢496：5		．000714796		000683060	9	． 000654022		0006：7353
	00074906	1400	000714286		00068：594	1530	000653595		000626959
	000748503	1	000713\％r6		000682128		． 000653168		000626566
	$0007479+3$	2	00071326	7	000681663		000652742		000626174
8	00074 384		．000712i58	8	000681199		． 000652316		000625\％82
	000746826		000712 251		． 000680735		． 000651890		0006：5391
40	000746269		． 000711744	1470	0006802r2		． $00065146 E$	1600	000625000
	．000745712	6	． 000711238	1	0006í9810		000651042		0006：4：19
	000745156		0000110732		000679348		． 000650618		0006223441
3	．000i44602		．000710227		．000678887	8	． 000650195		0006：2665
	000\％44048		600709723		．0006r8426		000649773		000621890
5	000743494	1410	000709220	5	00067\％966	1540	000649：351	1610	000621118
6	000742942	11.	000：08717		．000677507		．000648929		00062034
	000742390	12	$000 \sim 08215$		000677048		． 000648508		0006195\％8
	000741840	13	000707714		． 000676590		． 000648088		000618812
9	000；41290	14	000707214		．0006 76132		． 00064 亿668		000618047
50	000740741	15	000706 14	1480	0006 50616		$00064 \% 249$	1620	000617284
	000\％40192	16	000i06215		． 000675219		000646830	．	$0006165 \geq 3$
	000739645	17	000\％05716		．0006：4～64		000646412		000615i63
	000739098	18	000705219		． $0006 \pi 4309$		000645.995		000615006
	000738552	19	． 000704722		． 0106138354		．000645578	8	．000614250
	000738007	1420			0006 ${ }^{\text {¢ }} 34$	1550	0645	1630	． 000613497

No	Reciprocal.	No.	$\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$	No.	$\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$	No	Reciprocal.	No.	Reciprocal.
1632	. 000612745	1706		1780		1854		28	2
	. 000611995		. 000585480		000561167		000538793	1930	. 000518135
	. 000611247	1710	. 000584795		000.560538		000538:13		. 0005115599
8	000610500	12	000584112	6	. 000559910	1860	000537634		$00051 \sim 063$
10	000609756	14	000583430	8	.000559284		.00053i05i		. 000516528
	000609013	16	000582750	1790	000558659		000536480		000515996
	$0006082 \mathrm{~T}^{2}$	18	000582072		0005580.35		000535905	1940	000515464
6	000607533	1720	000581395		.000557413		.000535:332		000514933
8	000606796	2	000580720		. 00005556793	1870	. 000534759		000514403
1650	. 000606061	4	000580046	8	. 000555174		. 000534188		000513874
2	. 000805327	6	000579374	1800	. 000555556		000533618		000513347
4	. 000604595	8	000578704	2	000554939		. 000533049	1950	000512820
6	. 000603865	1730	0005 ¢8035	4	.0005543:4		. 000532481		000512295
8	. 000603136	2	000577367	6	000553710	1880	000531915		000511710
1660	. 0006032410	4	$0005 \sim 6701$	8	.000553097		. 000531350		000511247
	. 000601635	6	0005:60:37	1810	. 000552486		.000530785		000510 ¢25
4	. 0011600962	8	0005 ¢\%3374	12	. 000551876	6	000530\%22	1¢60	000510204
6	000600240	1740	$000574 \sim 13$	14	. 000551268	8	. 000529661		000509684
8	.000599520	2	0005T405.3	16	000550661	1890	000529100		000509165
16.0	. 000598802	4	0005 T3394	18	. 000550055		. 000528541		000508647
2	. 000598086	6	000.572737	1820	. 000549451		.000527983		000508130
4	000597371	8	0005\%2082	2	.000548848		00052T426	1970	00050i6614
6	000596658	1750	000571429	4	. 000548246		0005268i0		000507099
	000595947	2	0005707\%6	6	. 000547645	1900	000526316		000506585
880	. 000595938	4	000570125	8	000547046		000525if62		$0005060 \% 3$
2	. 000594530	6	000569476	1830	000546448		.0005 $25 \% 10$		000505561
4	. 0005938324	${ }^{8} 8$	000568828	2	000545851		. 000524659	1980	000505051
6	. 0005933120	11760	000568182	4	. 000545253	8	000524109		000504541
	. 000592417	2	$00056753 \sim$	6	. 000544662	1910	000523560		000504032
1690	. 000591716	4	000566893		. 000544069	12	000523012		. 000503524
2	. 000591017	6	000566:51	1840	. 000543478	14	. 000522466	8	000503018
4	. 000590319		000565611	2	.000542888	16	0005:1920	1990	000502E13
6	. 000588962	$17 \pi 0$.000564972	4	000542299	18	000521376	2	000502008
	. 000588928	2	000564334	6	. 000541711	1920	.000520833		000501504
00	. 000588235	4	000563698	8	.000541125	2	000520291		000501002
	. 000587544		000563063	1850	000540540		000519ヶ50	8	000500501
	. 000586854		000562430		. 00053995		000519211	2000	000500000

Use of reciprocals.-Reciprocals may be conveniently used to facilitate computations in long division. Instead of dividing as usual, multiply the dividend by the reciprocal of the divisor. The method is especially useful when many different dividends are required to be divided by the same divisor. In this case find the reciprocal of the divisor, and make a small table of its multiples up to 9 times, and use this as a multiplicationtable instead of actually performing the multiplication in each case.

Example. - 9871 and several other numbers are to be divided by 1638. The reciprocal of 1638 is .000610500 .
Multiples of the
reciprocal:

1. . 0006105
2. . 0012210
3. . $0018: 315$
4. . 0024420
5. . $00305: 25$
6. . 0036630
7. . 0042735
8. . 0048840
9. . 0054945
10. . 0061050

The table of multiples is made by continuous addition of 6105 . The tenth line is written to check the accuracy of the addition, but it is not afterwards used.

Operation:
Dividend $98 \% 1$
Take from table 1........ . 0006105
$0.042 \% 35$

$$
\begin{aligned}
& \text { Quotient........ } \\
& \text { Correct quotient by direct division......... } 6.0262455 \\
& 6.02515
\end{aligned}
$$

The result will generally be correct to as many figures as there are significant figures in the reciprocal, less one, and the error of the next figure will in general not exceed one. In the above example the reciprocal has six sig. nificant figures, 610500 , and the result is correct to five places of figures.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUIIRERS FROMI . 1 TO 1600.

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square	Cube.	Sq. Root.	Cube Root.
. 1	. 01	. 001	. 3162	. 4642	3.1	9.61	29.791	1.761	1.458
. 15	. 0225	. $003 \frac{1}{1}$. 3873	. 53313	. 2	10.24	32.768	1.789	1.474
. 2	. 04	. 008	.447.	. 5848	. 3	10.89	35937	$1.81{ }^{\circ}$	1.489
. 25	. 0625	. 0156	. 500	. 6300	. 4	11.56	39.304	1.844	1.504
. 3	. 09	027	. 54 гิ ${ }^{\text {\% }}$. 6699	. 5	12.25	42.8 \% 5	1.871	1.518
. 35	. 1225	. 0429	5916	. 7047	6	12.96	46.656	1.897	1.533
. 4	16	. 064	63:25	. 7368	. 7	13.69	50.653	1.924	1.547
. 45	.20:25	. 0911	. 6108	. 7663	. 8	14.44	54.872	1.949	1.560
. 5	. 25	. 125	. 7071	. 7937	. 9	15.21	59.319	1.975	$1.5 \uparrow 4$
. 55	. 3025	. 1664	. 7416	. 8193	4.	16.		2.	1.5874
. 6	. 36	. 216	. 7746	. 8434	1	16.81	68.921	2.025	1.601
. 65	. 4225	. 2 ก46	. 8062	. 8662	. 2	17.64	74.088	2.049	1.613
. 7	. 49	. 343	.83667	. 8879	. 3	18.49	79.507	2.074	1.626
. 75	.5625	.4:19	. 8660	. 9086	. 4	19.36	85.184	2.098	1.639
. 8	. 64	. 512	. 8944	. 9283	. 5	20.25	91.125	2.121	1.651
. 85	.7225	. 6141	. 9219	. 9173	6	21.16	97.336	2.145	1.663
. 9	. 81	. 729	. 9487	. 9655	. 7	2:. 09	103.823	2.168	1.675
. 95	. 9025	.85\% 4	.9\%47	9830	. 8	23.04	110.592	2.191	1.687
				1.	. 9	24.01	117.649	2.214	1.698
1.05	1.1025	1.158	1.025	1.016	5.	25.	125.	2.2361	1.7100
1.1	1.21	1.331	1.049	1.032	1	26.01	132651	2.258	1. 721
1.15	1.3225	1.521	1.072	1.048	. 2	27.04	140.608	2.280	1.732
1.2	1.44	1.728	1.095	1.063	. 3	28.09	148.817	2.30\%	1.744
1.25	1.56:5	1.953	1.118	1.077	4	29.16	15\%.464	2.324	1.754
1.3	1.69	2.197	1.140	1.091	. 5	30.25	166.375	2.315	1.765
1.35	1.8225	2.460	1.162	1.105	6	31.36	175.616	2.366	1.976
1.4	1.96	2.744	1.183	1.119	.	32.49	185.193	2.387	1.786
1.45	2.1025	3.049	1.204	1.132	8	33.64	195.112	2.408	1.797
1.5	2.25	3.335	1.2247	1.144"	9	34.81	205.379	2.429	1.807
1.55	2.4025	3.724	1.245	1.157	6.	36.	216.	2.4495	1.8171
1.6	2.56	4.096	1.265	1.170	. 1	37.21	226.981	2.470	1.827
1.65	2.7225	4.49:	1.285	1.182	. 2	38.44	238.328	2.490	1.837
1.7	2.89	4.913	1.304	1.193	. 3	39.69	250.047	2.510	1.847
1.75	3.0625	5.359	1.323	1.205	4	40.96	262.144	2.530	1.857
1.8	3.24	5.832	1.342	1.216	5	42.25	2T4.625	2.550	1.866
1.85	3.4225	6.332	1.360	1.228	. 6	43.56	287.496	2.569	$1.8 \% 6$
1.9	3.61	6.859	1.3ヶ\%	1.239	. 7	44.89	300.763	2.588	1.885
1.95	3.8025	7.415	1.396	1.249	. 8	46.24	314432	2.608	1.895
2.	4.		1.4142	1.2599	9	47.61	328.509	2.627	1.904
. 1	4.41	9.261	1.449	1.281	\%.	49.	343.	2.6458	1.9129
. 2	4.84	10.648	1.483	1.301	1	50.41	357.911	2.665	1.922
. 3	5.29	12167	1.517	1.3:0	. 2	51.84	373.248	2.683	1.931
. 4	5.76	13.8:4	1.549	1.339	. 3	53.29	389.017	2.02	1.940
. 5	6.25	$15.6 \cdot 5$	1.581	1.357	. 4	54.76	405.224	2.720	1.949
. 6	6.76	17.5i6	1.61\%	1.375	5	56.25	$421.8 \% 5$	2.739	1.957
. 7	\%. 29	19.68:3	1.643	1.392	6	5\%.76	$438.9 \% 6$	2.757	1.966
. 8	7.84	21.95:3	1.673	1.409	7	59.29	456.533	2.745	1.975
. 9	8.41	24.389	1.i03	1.4\%6	8	60.84	$474.55 \cdot 2$	2.793	1.983
3.	9.	27.	1.7321	1.44:2	9	62.41	493.039	2.811	1.992

SQUARES，CUBES，SQUARE AND CUBE ROOTS．

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
8.	64.	512.	2．8284		45	2085	91125	6．7082	3.5569
． 1	65.61	531.441	$\because .846$	2008	46	2116	97336	6.1823	3．5830
． 2	67.24	551.368	2.864	2.017	47	2：09	10：3523	6.855 ก̃	3.6088
． 3	68.89	571.75 i	2.881	20.5	48	2304	$1105!2$	6.9288	3.63342
． 4	\％ 0.56	592.704	2.898	2.033	49	2401	117649		3．6593
． 5	โ2． 25	614.195	2.915	2.041	50	2500	125000	7.0711	3.6810
． 6	73．96	636.056	2．93：3	2.049	51	2601	132651	7.1414	3． .084
． 7	75.69	658.503	2.950	2.05 r	5\％	$2 \hat{04}$	140608	72111	3．7325
． 8	77.44	681.40	2.966	2.065	53	2809	148877	7.2801	3．7563
． 9	79.21	\％ 04.969	2． 983	2.072	54	2916	157464	7.3485	3．7798
9.	81.	729.	3.	2.0801	55	3025	1663 \％ 5	7.4162	3.8030
． 1	82.81	753.571	3.017	2.088	56	3136	1 15616	$7.48: 33$	3.8259
． 2	84.64	7\％8．688	3.033	2.095	57	3249	185193	7.5498	3.8485
． 3	86.49	$804.35 \hat{1}$	3.050	2.103	58	33644	19.5112	\％．6158	3．8i09
． 4	88.36	830.584	3.066	2.110	59	3481	$2053 \% 9$	7.6811	3．89：30
． 5	90.25	857.375	3.082	2.118	60	3600	216000	7.7460	3.9149
． 6	92.16	884.736	3.098	2．125	61	37：1	226981	7.8102	3．9365
． 7	94.09	912.673	3.114	2133	62	3844	2383：8	\％．8T40	3．95 9
． 8	96.04	941.192	3.130	2.140	63	3969	250047	7.9373	3．9\％91
． 9	98.01	970.299	3.146	2.147	64	4096	26：214		
10	100	1000	3.1623	2.1544	65	4225	2\％4625	8.0623	4．0207
11	121	1331	3.3166	2.2240	66	4356	$23^{*} 496$	8.1240	4.0412
12	144	1728	3.4641	2.2894	67	4489	300\％63	8.1854	4.0615
13	169	219%	3.6056	2.3513	68	$46 \% 4$	31.4432	$8.2+62$	4.0517
14	196	2144	3．7417	2.4101	69	4761	3：8509	8.3066	4.1016
15	225	3375	3.8730	2.4662	\％ 0	4900	343000	8.3666	4.1213
16	256	4096		2.5198	71	$50+1$	$35 \% 911$	84261	4.1408
17	239	4913	4.1231	2．5713	72	5184	373948	8.485 .3	4．1602
18	324	5832	4.2426	2.6207	73	5329	389017	8.5440	$4.1 \hat{1} 93$
19	361	6859	4.3589	2.6684	74	$54 \sim 6$	$405 \because 24$	8.6023	4.1983
20	400	8000	4.4721	2．7144	75	5625	421875	8.6603	$421 \% 2$
21	441	9261	4.5826	27589	76	$57 \% 6$	438976	87178	4.2358
22	484	10648	4.6904	2．80：0	77	$59: 9$	4565333	8．7750	4.2543
23	529	12167	4.7958	2.8439	78	6084	4 74.552	8.8318	4.2727
24	576	13824	4.8990	2.8845	\％9	6241	493039	8．888i	4.29018
25	625	15625		2.9240	80	6400	512000	8.9443	4.3089
26	$6 \sim 6$	17576	5.0990	2．9625	81	6561	531441	9.	4.326%
27	729	19683	5．196：		$8:$	67.4	551368	90554	4.3445
28	784	21952	5.2915	30.366	83	6889	57178\％	9.1104	$4.36: 1$
29	841	24389	5．385\％	3.0723	84	7056	59：r04	9.1652	4.3595
30	900	$2 \% 000$	54772	3．10\％2	85	7225	6141：5	9．2195	4.3968
31	961	29i91	5．56i8	3.1414	86	7396	636056	9．2べ36	4.4140
32	1024	32ヶ68	5.6569	3.1748	8 \％	\％．569	658503	9 3：～ヶ6	4.4310
33	1089	35937	5.7446	3． $20 \pi 5$	88	7 794	6－14i2	9.3808	4.4480
34	1156	39304	5.8310	3.2396	89	7921	704969	9.4340	4.464
35	1225	42875	5.9161	3.2711	90	8100	T29000	9.4868	4.4814
36	1：96	46656		3.3019	91	8281	\％535\％1	9.5394	4．49ヶ9
$3{ }^{3}$	1369	50653	6.0828	3．332\％	92.	8464	тT8688	9591%	4.5144
38	1444	$548 \% 2$	6.1644	13．3620	93	8649	804：357	9643 亿	4.530 \％
39	$15 \geqslant 1$	59319	6.2450	3．3912	94	8836	830584	9.6954	4.5468
40	1600	64000	6． 3246	34200	95	90：5	857375	97468	4.5689
41	1681	689：1	6.40 .31	3．448：	96	9216	$884 \sim 36$	9.7980	4．5789
42	1764	74088	6.480%	$3.4 \% 60$	97	9409	9126 i3	9.8189	$4.594 \hat{}$
43	$18{ }^{182}$	79507	＇6．55，4	3.5034	98	9604	941192	9.8995	4.6104
44	669.	85184	6.6332	3.5303	99	9801	9\％0：99	9.9499	4.8261

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
100	10000	1000000	10.	4.6416	155	240.25	3723845	12.4499	5.3\%17
101	10201	1030301	10.0499	4.6570	156	243:36	3796416	12.4900	5.3832
10\%	10404	1061208	10.0995	$4.6 \uparrow 23$	157	24649	3869893	12.5300	5.3947
103	10609	1092\%27	10.1489	4.6875	158	24964	3944312	12.5698	5.4061
104	10816	1124864	10.1980	4.7027	159	25:81	4019679	12.6095	5.4175
105	11025	1157625	10.2470	4.7177	160	25600	4096000	12.6491	5.4288
106	1126	1191016	10.2956	4.7326	161	25921	4173281	12.6886	5.4401
107	11449	1225043	10.3441	4.7475	162	26244	4251528	12.72 79	54514
108	11664	1259712	10.3923	4.762\%	163	26569	$4330 i 47$	12.7671	5.4626
109	11881	12950:29	10.4403	4.7769	164	26896	4410944	12.8062	5.4737
110	12100	1331000	10.4881	4. 7914	165	27225	4492125	12.8452	5.4848
111	12321	$136 i 631$	$10.535 \overline{7}$	4.8059	166	27556	$45 \% 4296$	12.8841	5.4959
112	12544	14049:28	10.5830	4.8203	167	21889	4657463	12.9228	5.5069
113	12 1269	1442897	10.6301	4.8346	168	28224	4741632	12.9615	$5.51 \% 8$
114	12996	1481544	$10.67 \% 1$	4.8488	169	28561	4826809	13.0000	5.5288
115	132:25	1520875	10.7238	4.8629	170	28900	4913000	13.0384	5.5397
116	13456	1560896	10.7703	4.8750	171	29241	5000211	13.076%	5.5505
117	13689	1601613	10.8167	4.8910	172	29584	5088448	13.1149	5.5613
118	13924	1643032	10.8628	4.9049	173	29929	517 T717	13.1529	$5.5 \hat{21}$
119	14161	1685159	10.9087	4.9187	174	302\%6	5268024	13.1909	5.5888
120	14400	1728000	10.9545	4.9324	175	30625	5359375	13.2288	5.5934
121	14641	1771561	11.0000	4.9461	176	30916	5451\% 76	13.2665	5.6041
12\%	14884	1815848	11.0454	4.9597	177	31329	5545233	13.3041	5.6147
123	15129	1860867	11.0905	4.9732	178	31684	5639 i52	13.3417	5.6252
124	15376	1906624	11.1355	4.9866	179	32041	5\%35339	13.3791	5.6357
12.5	15625	1953125	11.1803	5.0000	180	32400	583:000	13.4164	5.6462
126	15876	2000376	11.2250	5.0133	181	32 T 61	5929\%41	13.4536	5.6567
12i'	16129	2018383	11.2694	50265	182	33124	602ヶ568	$13.490{ }^{\text {r }}$	5.6671
128	16384	2097152	11.3137	5.0397	183	33489	6128487	$13.52 \% 7$	$5.6 ז 74$
129	16641	2146689	11.3578	5.0528	184	33856	6:2:9504	13.5647	$5.68 \% 7$
130	16900	2197000	11.4018	5.0658	185	342:5	6331625	13.6015	5.6980
131	17161	2248091	11.4455	5.0788	186	34596	6434856	13.6382	5. 7083
132	17424	2299968	11.4891	5.0916	187	34969	6539203	13.6748	5.7185
133	17689	2352637	11.5326	5.1045	188	35344	6644672	13.7113	5.7287
134	17956	2406104	11.5758	5.1172	189	35721	6751269	13.7477	5.7388
135	18225	2460375	11.6190	5.1299	190	36100	-6859000	13.7840	5.7489
136	18496	2515456	11.6619	5.1426	191	36481	6967871	13.8203	5.7590
137	$18 \sim 69$	2571353	11.7047	5.1551	192	36864	\%077888	13.8564	5.7690
138	19044	2628072	11.74i3	5.1676	193	$3 \% 249$	\%189057	13.8924	57790
139	19321	2685619	11.7898	5.1801	194	$3 \% 636$	7301384	13.9284	5.7890
140	13600	2744000	11.8322	5.1925	195	38025	7414875	13.9642	5.7989
141	19881	2803.21	11.8 ¢43	5.2048	196	38116	7529536	14.0000	5.8088
142	20164	2863:88	11.9164	5.2171	197	38809	7645373	14.0357	5.8186
143	20449	2994207	11.9583	5.229:3	198	39204	7762392	14.0712	5.8285
144	$20 \sim 36$	2985984	12.0000	5.2415	199	39601	7880599	14.106	5.8383
145	21025	3048625	12.0416	5.2536	200	40000	8000000	14.1421	5.8480
146	21316	3112136	12.08:30	5.2656	201	40401	8120601	14.1774	5.85\%8
147	21609	31~65:3	12.1244	5.2776	202	40804	8242408	14.2124	$5.86 \pi 5$
148	21904	3241192	12.1655	5.2896	203	41209	8365127	14.24\%8	$5.87 \pi 1$
149	2201	3307949	12.2066	5.3015	204	41616	8489664	14.28\%9	5.8868
150	22500	3375000	12.2474	5.3133	205	42025	8615125	14.3178	5.8964
151	23801	3442951	12.2882	5.1251	206	42436	8741816	14.352 T	59059
152	23104	3511808	12.3288	5.3368	207	42849	8869743	14.3875	5.9155
15.3	23409	3581577	12.3693	5.3485	208	43264	8998912	14.4222	-. 9250
154	23316	36522664	12419 á	5.3601	209	43681	9129329	144568	9345

SQUARES，CUBES，SQUARE AND CUBE ROOTS． 89

No．	Square	Cube．	sq． Rout．	Cube Kool．	No．	Square．	Cube．	Sq． Kout	Cube Koot．
210	44100	9261000	14.4914	5.9439	265	\％0：25	1×609625	16．2ベャ 8	64232
211	$445: 1$	939：3931	$145: 58$	5． 5.533	266	1076	188：109ti	16.3095	6.4312
21：	449＋4	95088	$1+56{ }^{\text {c }}$	5962	267	11：89	19034．63	16.3401	6.4393
213	45369	96133597	$14.59+5$	5 9id	－68	71504	1：12488：$:$	16．3íu	$6.44 \% \cdot 3$
214	45.96	9800344	14．6：28í	5.9814	269	T2361	19465109	16.4012	6.4553
215	46：25	993833 5	14．6629	$5990{ }^{\text {9 }}$	2 2\％	72900	19683000	16 431：	6.1633
216	46656	100 ¢r696	14.6969	6.0000	271	73441	19902511	16．4621	$6.4 \tilde{1}_{13}$
217	4 ¢ 0×9	10218：313	14.7309	6009 ：	22^{2}	73984	20123648	16．49：4	6．4\％92
218	405%	10360：3：	14．7648	60185	$2 i 3$	－4529	203340417	10.502%	6．48 i^{2}
219	49961	10503559	14.7986	$60: \begin{gathered}1 \\ \\ 6\end{gathered}$	$2 i 4$	¢5Ui6	2 2อัก0824	16．5529	6.4951
220	48400	10648000	14．83：4	6．0368	2\％	\％56：5	20ヶ96875	16．5831	6.5030
$2: 1$	48841	10：93801	14.8661	6.0459	： 26	Tulit	21024576	16．613：	6.5108
2 2	49：234	10941048	14．8997	60550	\because	\％$\quad 29$	21：53993：3	16．6453	6.5187
$22: 3$	19%	11059.6 a	149332	$6.06+1$	2＊8	TR	2148495：	16.60	6．5：6．5
U4	5ulic	112394：4	14.9666	6.0752	$2 \% 9$	－1841	$21 \% 17639$	16．1033	6．5343
25	51625	11390625	15.0000	6.082%	280	78400	2195：000	16．733：	6.5421
246	5116	1154．3176	$15.033: 33$	6092	281	7×961	$2: 3188041$	16． 1631	6.5499
S2：	51.529	11697118：3	15.0665	6100%	18：	\％95\％4	2：423i68	16．\％929	6.55%
2：8	21984	1195：3．3：	15． 09.97	6． 1091	－83	80089	3260．5187	16．8\％26	6.56 .54
224	． 5444	1：0u8989	15．132i	6.1180	－84	800 ¢ 6	229U6．304	16．85：3	6．5\％31
2：30	529	1216\％000	15．1658	6.1269	285	81225	23149125	16.8819	6.5808
231	，53：361	12326391	15．198	6．135\％	286	81796	23：39：3665	16.9115	6.5885
23.3	538\％4	1248i：68	15．2315	61446	28 \％	82：369	23639403	16.9411	6 5962
23：3	i） 4289	$1 \because 649333$	52613	6.15 .34	－88	82944	2：388i8\％2	16．9\％${ }^{\text {a }}$	6．6039
234	54756	1：812904	$15.29 \% 1$	6.162%	\％ 29	833⁄21	24137569	17.0000	6.6115
235	55225	129\％	15 3329～	6．1710	290	84100	24389000	17．0294	6.6191
236	35696	131442.56	15.3623	$6.169 i$	2.1	84681	24640161	17058%	6．6126 ${ }^{\text {a }}$
233	$56: 69$	13：312053	153948	6.1885	292	85.264	24897088	17．0580	6.6343
2：38	56644	134812\％	$1.542 \hat{\imath}^{2}$	$6.19{ }^{2}$	29：3	85849	$2515: 375 \%$	17．11i2	6.6419
239	5：121	1：3651919	15.4596	6.2058	294	86436	25412184	17.1464	6.6494
240	57600	13824000	15.4919	6.2145	295	87025	256\％：375	17．1756	6.6569
241	58081	139975：21	15．5242	6．22：31	296	$8 \sim 616$	259343：36	17． $20+5$	6．66i44
242	58564	14172488	15．556：	6．231\％	297	88：09	$261980 \div 3$	17．23：3	66 ¢19
243	59049	1434890～	15.5885	6．240：3	$\because 98$	88804	2646359：	17． 262 c	$6.6 \% 94$
244	59536	145：26\％84	15.6205	6.2488	299	89401	267830899	17.2916	6.6869
245	60025	14706125	15.6525	$6.25 \pi 3$	300	90000	$2 \pi 000000$	17．3205	6.6943
246	60516	14886936	15.6814	6.2658	301	90601	$2 \tau 2 \pi 0901$	1\％．3491	6． 7018
$24 i$	61009	15069：233	15.7162	$6.2 \pi 43$	：30．	91204	2 2\％43608	17．3481	6．7032
248	61504	1525\％99：	15．7480	6．28\％8	303	91809	$2 \% 818127$	17．406？	6.7166
249	62001	15438249	15.7797	6.2912	304	92416	28094464	174356	6.7240
250	62500	15625000	15.8114	6.2996	305	93025	28370625	17.4642	6． 7313
251	6：3001	15813：51	15．8130	6.3080	306	93636	2865：2616	17．4929	6． 1357
252	63504	16003008	15.8745	6.3164	307	942＋9	28934443	17．5：14	6． 1460
25：3	64009	16191：${ }^{\text {\％}}$	15.9060	6．324～	308	94864	29218112	1\％．5499	6． 2.533
254	64516	1638\％064	15．93i4	6.3330	309	95481	295036：2	$17.5 \div 84$	6． 7606
255	65025	165813i5	$15.968{ }^{\text {a }}$	6.3413	310	96100	29791000	1～． 6068	6． $76 \pi 9$
256	65536	16777216	16.0000	6.3496	311	96\％ 21	30080：31	17．63552	67752
25%	66049	16974593	16．031：2	6．35\％9	312	97344	303713：8	17．6635	6．$\% 824$
258	66564	17173512	16．06：24	6.3661	313	97969	$30661 \approx 97$	17.6918	6． 789%
259	6i081	173\％3979	16.0935	6.3743	314	98596	30959144	17．7\％00	6． 7969
260	67600	175\％6000	16.1245	6.3825	315	99225	3120．58\％5	17．7482	6.8041
261	68121	1 \％ 79581	16．1555	6.390 т	316	99856	31554496	17． 7 \％ 64	6.5113
26.	68614	17984728	16.1864	6.3988	31%	100489	31855013	17.8045	6.8185
263	¢9169	18191447	16.2173	6．4070	318	101124	$3 \geqslant 157432$	17．83：6	6．8＊56
264	69696	18399744	16.2481	6.4151	319	101\％61	$32461 \% 59$	17.8606	6．83： 28

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
$3 \cdot 0$	10：400	32ヶ68000	17.8585	6.8399	$3{ }^{3} 5$	140695	52734375	19.3649	7.2112
321	103041	330：6161	179165	68470	376	141376	5315T356	$19.390 \sim$	7．2177
3\％2	103684	333386：48	17.9444	6.8541	377	1421：9	5358：2633	19.4165	7.2240
3：3	$10+3: 29$	33698267	17．97\％2	6.8612	378	14：884	54010152	19.4422	7．2304
324	10496	3401224	18.0000	6.8683	$3{ }^{1} 9$	143641	54439939	$19.46 \pi 9$	7.2368
325	1056：5	34328125	18．0278	6.8753	380	144400	54872000	19.4936	7.2432
3：6	106：ヶ6	34645976	18.0555	6.8824	381	145161	55306341	19.5192	7．2495
$3: 2 \%$	106929	34965 ¢83	18.0831	6.8894	382	1459：4	557 42968	19.5448	7.2558
3：2	10i584	3528 T552	18.1108	6.8964	383	146659	56181887	$19.5{ }^{\text {cou }}$	7． 26.2
329	108\％41	35611289	18.1384	6.9034	384	14 ก456	56623104	19.5959	7.2685
3.30	108900	3593，7000	18.1659	6.9104		148225	57066625	19.6214	7.2748
$3: 31$	109561	36254691	18.1934	6.9174	386	148996	57512456	19.6469	7.2811
3：32	$110 \% 24$	36594368	18．2209	6.9244	38 ri	$149 \sim 69$	57960603	19．6テ：23	7.2874
333	110889	36ヶ26037	18.2483	6.9313	388	150544	58411072	19．697\％	7.2936
334	111556	3ヶ259004	18.2757	6.9382	389	151321	28863869	19.7231	\％．2999
335	112225	375953\％5	18.3030	6.9451	390	152100	59319000	19．7484	73061
336	112896	37933056	18．3303	6.9521	391	152881	597．6471	19．7737	7.3124
337	113569	382へ2T53	18．35\％6	6.9589	392	153664	602：36：888	19． \％ $990^{\text {d }}$	7.3186
338	114244	386144i：	18.3848	6.9658	393	154449	60698457	19 8：42	7．3：48
339	114921	38958：19	18.4120	6.9127	394	155\％36	61162984	19.8494	7.3310
340	115600	39304000	18.4391	6.9795	395	156025	61629875	19.8746	$7.33{ }^{2} 2$
341	$1!6: 81$	39651821	18．4662	6.9864	396	156816	62099136	19.8997	7.3434
342	116964	40001688	18.4932	6 993：	39 т	$15 \sim 609$	625i0ヶ73	19．9249	7.3496
343＇	$11 \sim 649$	403．5．3607	18.5203	7.0000	398	158404	63044792	19.9499	7.3558
344	118336	4070i584	18．54\％2	7.0068	399	159201	63521199	19．9i50	7.3619
3	119025	41063625	18.5742	7.0136	400	160000	64000000	200000	7.3681
346	119716	414：1736	18.6011	7.0203	401	160501	$64+81201$	200250	7．3742
347	120409	41\％8：9：3	18．6：79	7.0271	402	161604	64964808	20.0499	\％． 3803
348	121104	42144192	186548	7．0338	403	16：409	6545082%	200749	¢． 3864
349	121801	42508549	18.6815	7.0406	404	163216	$65 ¢ 39264$	$: 0.0948$	7.3925
350	122500	42875000	18.083	7．04\％3	405	164025	66430125	20.1246	7.3986
351	123：01	43：4：3551	18． 1355	7.0540	406	164836	66923416	20.1494	7.4047
35%	12：3904	4．3614：08	18.617	7.0607	407	165649	6 6419143	20.1742	7.4108
35：3	124609	4：39869\％7	18．78＊3	$7.06 i 4$	408	166464	6r91ヶ312	20.1990	7.4169
354	125316	44361864	18.8149	7.0 ru0	409	167281	68417929	$20.2 \div 37$	7.4229
35.5	126025	44738875	18.8414	7.0807	410	168100	68921000	20.2485	7.4290
3.6	1266436	45118016	18.8680	7.0873	411	1689：2	69426531	20.2731	7.4350
357	12 т449	45499293	18.8944	7.0940	412	169744	69934528	20.2978	7.4410
3.58	128164	4588：212	189209	7．1006	413	170569	70444997	20.3224	7．4470
359	128881	$462682 \sim 9$	18.9473	7．1072	414	171396	r0957944	20.3470	7．4530
360	129600	$46 ¢ 50000$	18.9737	7.1138	415	172225	71473375	20.3715	7.4590
361	131321	$44^{0} 045881$	19.0000	7.1204	416	173056	71991296	20.3961	7.4650
362	131044	47437928	190263	7.1269	417	173889	72511713	20.4206	7.4710
$36: 3$	131769	4783：2147	170526	${ }^{7} 7.1335$	418	174724	73034632	20.4450	7.4770
364	13：496	$48 \div 28544$	19.0 r88	7.1400	419	175561	73560059	20.4695	7.4829
365	133225	48627125	19.1050	7.1466	420	176400	\％4088000	20.4939	7.4889
366	13：3956	$4902 \sim 896$	19.1311	7.1531	421	17\％：41	74618461	20.5183	7.4948
367	134689	49430863	19．15\％	7． 1596	422	178084	75151448	20.5426	7.5007
368	1354：4	498360：32	19．1833	7.1661	423	1789：9	7568696π	$20.56 \pi 0$	7.5067
369	130161	50243409	19.2094	7.1526	424	179776	\％6225024	20.5913	7.5126
310	1366900	50653000	19．23354	7．1ヶ91	425	180625	$76 \pi 65625$	206155	7.5185
371	$13 \sim 641$	51064811	19.2614	7.1855	426	$1814 \% 6$	\％7308776	20.6398	7.5244
$3{ }^{\text {and }}$	138384	51478848	19．2873	7.1920	427	$1823: 29$	77854483	206640	7.5302
13	139129	51895117	19.3132	7.1984	428	183184	$78402 \sim 52$	20.6882	7.5361
374	1398\％6	52313624	19.3391	7.2018	$4 \div 9$	184041	78953589	20.7123	7.5120

SQUARES，OUBES，SQUARE AND CUBE ROOTS．

No．	Square．	Cube．	Sq． Rout．	Cube Root．	No．	Square．	Cube．	Sq． Rout．	Cube Kuot．
430	184900	79.07000	20.7364	7.5478	485	23．5225	1140841：25	22．0227	7.8568
$4: 31$	$185 \hat{61}$	8006：2991	20.7605	7．55：3\％	486	2366196	1147912．56	$2 \% 0454$	7．86\％2
432	186624	806：1568	$\because 0.7846$	7．55：5	487	$2: 3 \uparrow 169$	115501303	22．0681	7.8676
433	18 ¢ 489	S118．7．37	$20.80 \leq 7$	7.5654	488	2：38144	16：142t	$22.090 \hat{1}$	7．8i．30
434	188356	81ヶ46504	20.8327	7．5712	489	$2391 \% i$	116930169	22.1133	7.8784
435	189\％25	82312875	20.8567	7．5～T0	490	240100	117649000	22.1359	7.8837
436	190096	8：8881856	20.8806	7．58：3	191	241081	118：370ヶ̃ 1	≈ 2.1585	\％． 8891
437	190969	83453453	20.9045	7.58 S 6	＋92	$2+2064$	119095488	22.1811	\％． 8944
4：38	191844	$84 \cup 270{ }^{\text {a }}$－	20．9284	\％．59．14	493	243049	1198：3157	22．2036	7.8998
439	19：べセ1	84604519	20．95：3	7.6001	494	244036	120553784	22．2261	7.9051
440	193600	85184000	20.9762	7．6059	495	245025	1212873\％5	22． 2486	7.9105
441	194481	85ハ66121	21.0000	7．611	496	246016	12：202：39：36	$22.2 \sim 11$	7.9158
442	195364	86350888	21．02：38	7．61T4	497	$24 \tilde{009}$	122：63473	22 2935	ก． 9211
443	196249	86938307	$21.04 \% 6$	7．623：	498	248004	123505992	22． 3159	7．9264
444	197136	875٪8：384	21.0713	7．6289	499	249001	$12+251499$	2233383	7．9317
44	198025	88121	21.0950	7.6346	500	250000	125000000	22.360%	7.9870
446	198916	88i16．536	21.118 亿	7.6403	501	251001	125751501	22． 38430	79423
447	199809	89：3146：2	21.1424	7.6460	502	25：2004	126506008	\％2．4054	$7.94 \sim 6$
448	200：04	89915392	21.1660	7.6517	50：3	253009	1272635：27	22．427\％	7．9528
449	201601	－ 90518349	21.1896	7．6574	504	254016	128024064	$\because 2.4499$	7.9581
450	202500	91125000	21.2132	7.6631	505	255025	128787625	22．4722	7.9634
451	203401	$91 \approx 33851$	21.2368	7.6688	506	256036	12955 4216	22.4944	7.9686
452	204304	9：3345408	21.2603	7．6744	507	257049	13032384？	22.516π	7.9739
453	$205 \div 09$	929．996T	21.2833	7.6800	508	258064	131096512	22.5389	7.9791
454	206116	$935756{ }^{\text {a }}$－ 4	21.3073	7．685\％	509	259081	1318 亿2229	22.5610	\％． 9843
455	207025	941963\％ 5	21.330%	7.6914	510	260100	132651000	22.5832	7.9896
456	207936	94818816	21.3542	7．6970	51	261121	1：3843：2831	22.6053	7.9948
457	208549	95443993	21．3i76	7．7026	512	262144	13421\％T2S	22．62i4	8.0000
458	209764	960＾1912	21.4009	7．108\％	513	26：3169	135005697	2U．649．5	8．005\％
459.	210681	96i025 ${ }^{\text {a }}$	21.4243	7.7138	514	264196	135796744	22.6716	8.0104
460	211600	97336000	$21.44 \% 6$	7.7194	515	265225	136590875	22.6936	8.0156
461	21：521	9i9¢2181	21.4709	7．2250	516	266256	137388096	22.7156	8．0208
462	21344	98611128	21.4942	7.7306	517	26\％289	138188413	$2: .73 i 6$	8.0260
463	214：369	99：25：2847	21.5174	7．7362	518	$26: 33: 4$	13צ99183：2	22.7596	8.0311
464	215296	99897344	21.5407	7.7418	519	269：361	139：98359	23.7816	8．0363
465	216225	100544625	21.5639	7.7473	520	$2 \sim 0400$	140608000	22.8035	8.0415
466	217156	101194696	$2158{ }^{2} 0$	\％．75 29	521	271441	1414：20～61	22．8254	8.0466
467	218089	10184i56：3	21.6102	7．7584		272484	14：236648	22.8473	8.0517
468	219024	102503：33：	21.6333	7．7639	523	$2 \sim 3529$	14305566 亿	22．8692	8．0．69
469	219961	103161\％09	21.6564	7：7695	524	$2745 \% 6$	143	22．8910	8．06：0
4%	220900	103823000	21.6795	7.7750	525	275625	144703125	22．9129	8．06\％1
$4 \pi 1$	221841	104487111	21．7025	7． 7805	526	2T6676	145531576	22.934%	8.0223
47.2	22：2784	105154048	21．7256	S． 8860	527	$277 \% 28$	146：36：3183	229565	8．0Tit
$4 \% 3$	223ヶ29	10．88\％3317	21.7486	7．7915	528	278184	14\％9795：	22.978 .3	8.0825
474	$2 \% 46 \% 6$	106496424	21.7 \％15	7．7970	529	279841	148035889	23.0000	8.0876
475	225625	1071～18i5	21．7945	7.8025		280900	$14887 \% 000$	23．021～	8．0927
476	2265\％6	10ヶ850176	21.8174	7.8079	531	281961	149\％21：91	23.0434	8．09～8
497	2：27529	1085：31：33：3	｜21．8403	78134	532	283004	150568768	23.0651	8.1028
$4 \% 8$	248484	109：15：352	218632	7．8188	533	284089	15141943 \％	23.0568	8．10：9
479	229＋41	10990：239	21.8861			285156	152：233：304	23.1084	8.1130
480	230400	110592000	219089	7829%	535	286225	1531303 \％	23.130	8.1180
481	2：31361	111284641	21．9317	7835%	． 336	28.296	153990656	23.1517	8.1231
48.2	2：32：324	111980168	21.9545	7.8406	537	288369	154854153	23．173．3	8．1281
483	233 289	1126\％ 8587	21.9773	7．8460	：538	289444	1557208i2	23．1948	8.1332
484	$23+256$	1133i9904	22.0000	7．8514	539	290521	¡56590819	23.2164	8.1382

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Square．	Cube，	Sq． Root．	Cube Root．
540	291600	$15 \sim 464000$	23．2379	8.1433	595	354025	210644875	24.3926	8.4108
541	292681	1583404：1	23.2594	8.1483	596	355：16	211：08736	244131	8.4155
542	293764	159220088	23.2509	8.1533	597	356409	212：76173	24.4336	8.4202
543	294849	160103007	$23.30 \because 4$	8.1583	598	35i604	21384ヶ192	24.4540	8.4249
544	295936	160989184	23.3238	8.1633	599	358801	$2149: 1799$	24.4445	8.4296
545	297025	161878625	23.3452	8.1683	$6{ }^{6} 0$	360000	216000000	24.4949	84343
546	298116	$162 \sim 71336$	2.33666	8．1733	601	361201	217081801	24.5153	8.4390
547	299209	16：366732：3	23．3880	8.1783	60：2	36：2404	21816 208	24．535i	8.4437
548	300304	16／566592	23.4094	8.1833	603	363609	219256\％2\％	24.5561	8.4484
549	301401	165469149	23.4307	8．1882	604	364816	220348864	$24.5 \sim 764$	8.4530
5	302500	166375000	23.4521	8.1932	605	3660：5	221445125	24596%	8.4577
551	30：60！	16～284151	234734	8.1982	606	367：36	2？2545016	24.6171	84623
55：	314，04	168196608	234947	8.2031	607	368449	2：3648543	24.6314	8．46．0
553	305809	16911：377	2：3．5160	8.2181	608	369664	2：4755\％1：	$2+65 i \sim$	$8.4 \pi 16$
554	306916	170031464	$23.53 \% 2$	8.2130	609	$3{ }^{3} 0881$	$2 \div 5866529$	24.6 ¢̂9	8．4i63
555	308025	1709538%	235584	8.2180	610	3 32100	226981000	246982	8.4809
556	309136	171879616	$23.5 \pi 9 \uparrow$	8．2：29	611	3\％3321	2 2×4099131	24.7184	84856
557	310：49	1ヶ2808693	23．6008	82.18	612	374544	2：99：20928	24 T386	8.4902
558	311364	17：3741112	$\because 3.6 \because 0$	8．23：\％	613	3กโก69	230346：39\％	24 ก588	8.4948
559	312481	1ヶ46î68\％9	23.6432	8．23ǐ	614	376996	2314i5544	24.7790	8.4994
560	313600	175616000	23.6643	8.2426	615	378225	23.2608375	24.7992	8.5040
561	$31+7 \times 1$	176558181	23．6854	8.24%	616	379456	233へ44896	24．819：3	8.5086
562	315844	17T504328	23.1065	825.24	617	380689	234885113	24 $\$ 395$	8.5132
563	316969	17840．354\％	23．72ז 6	8.2573	618	381924	236029032	24.8596	8.5178
564	318096	179406144	23.1487	8．2621	619	383161	237176659	24．8i9\％	8.5224
565	319225	180362125	23．7697	8．26r0	620	384400	238328000	24.8998	8．5270
566	320356	1813：1496	23.7908	8.2719	621	385641	239483061	24.9199	8.5316
56%	321489	18？284263	23.8118	8.2768	622	3－6884	240641848	24.9399	8.5362
568	322624	183：5043：	23.8328	8.2×16	623	388129	241804367	24.9600	8.5408
569	$323 / 61$	1842：0009	23.8537	8.2865	624	3893 \％ 6	24：970624	24.9800	8.5453
5	324900	185193000	23.8847	8.2913	625	390625	244140625	25.0000	8.5499
$5{ }^{\text {¢ }} 1$	326041	186169411	23.8956	$8.296 \cdot$	626	391876	｜245314376	25．0：00	8.5544
57.	327184	187149：48	23.9165	8.3010	627	393129	216191888	25.0400	8.5590
573	3288：29	18813：517	23．93i4	8.3059	628	394384	247673152	25.0599	8.5635
574	329476	189119224	23	8.3107	629	395641	248858189	25.0 \％99	8.5681
575	330625	190109375	$23.9 \pi 92$	8.3155	630	396900	250047000	25.0998	8.5726
576	331776	191102976	24.0000	8.3203	631	398161	2512：39591	25.1197	8．57\％2
57%	332929	19：100033	24.0208	8.3251	632	399424	252435968	25.1396	8.5817
578	334084	19310055\％	24.0416	8.3300	633	400689	25363613i	25.1595	8.5862
579	$335: 41$	194104539	24.0624	8.3348	634	401956	254840104	25.1794	8.5907
580	336400	195112000	24.0832	8.3396	635	403225	25604i875	25.1992	8.5952
581	337561	19612：941	24.1039	8.3443	636	404496	$25 \sim 259456$	25.2190	85997
582	338724	197137368	24.1247	8.3491	637	$405 \% 69$	2584i485：3	25.2389	86043
583	339889	198155287	24.1454	8．35：39	638	40r044	259694072	25.2587	8.6088
584	341056	1991\％6\％04	24.1661	8.3587	639	408321	260917119	25.2 \％ 84	8.6132
595	342225	200201625	24.1868	8.3634	640	409600	262144000	25.2982	6177
580	3＋3396	201230056	24.2074	8.3682	641	410881	2633：4\％21	25.3180	8.6222
587	344569	20226：20n3	24.2281	8．3730	642	412164	264609288	25．337\％	8.626 ¢
588	345744	203．994 42	$24.248 i$	8．377	643	413449	26584ir0	25．35\％4	8．6312
589	346921	204336469	24.2693	8．3825	644	414736	$26 \sim 089984$	25.3 \％72	8.6357
590	348100	2053～9000	24.2899	8.38%	645	416025	268336125	25.3969	8.6401
591	349281	206425071	243105	8．3919	646	417316	269586136	25.4165	86446
2	350464	207474688	24.3311	8．3．96\％	647	418609	270840023	25.4362	8.6490
593	351649	20852\％8：37	24.3516	8.4014	648	419904	2テ2097792	25.4558	8.6535
594	352836	2095．84584	$24.3 \% 21$	8.4061	649	421201	2～3359449	125.4 \％ 5	$8.65 \% 9$

SQUARES，CUBES，SQUARE AND CUBE ROOTS．

No．	Squ	Cu	Sq． Roo		0.	Squar＇e．	ub	Sq． Root	Cube Root．
	423500	274625000	25		70	49\％035	350402625	26.5518	
6	4～3ヶ01	275894451	25.5147	8.6668	70	498436	351895816		8.9043
6	4：25104	2\％ 167808	25.5343	8.6713	\％07	499849	353：393：43	26.5895	8.9085
653	4：6409	$2784+50 \% 7$	25.5539		708	50126	354894912		8.9127
654	42\％\％16	$2 \sim 9 \% 26264$	．25．5734	8.6801	r09	50：681	356400829	26．6\％\％1	8.9169
					， 1		3．37911000		． 9211
65	430：336	28：2：300416	$25.61: 25$	86890	711	$5055 \% 1$	$3594: 5131$	26.6646	89253
	431649	$2 \times 359: 3393$	$25.63: 0$	8．69：34	712	506944	360944128	$\because 6.6833$	8.9295
655	43：964	284890：312	25.6515	86978	713	508369	36．246\％09～	$26 . \% 021$	8.9337
659	434281	286191179	25.6710	8.7022	714	509796	363994344	26.1208	$8.93 \% 8$
				8 r06	\％		36	26.4395	8.9420
	436921	$288801 \% 81$	25.7099	8.7110	716	51：656		26．7582	8．946\％
66\％	438．24	290117528	25.7294	8.7154	717	514089	368601813	$26 . \% 69$	8.9503
66.3	439569	$291434: 47$	25.7488	8 \％118	＇18	515524	370146：32	26.8955	8.9545
664	440896	292i54914	25.7682	8.7241	719	516961	3\％1694959	26.8142	8.9587
					－	8			8.9628
	44：3	295408296	25．80\％ 0		－	5198	374805：361		89670
667	444889	296740963	25．8：63	8．\％is	T2\％	521284	3：6：36\％048	26.8701	8.9711
663	446： 4	2980～76：32	25.8457	8.7416	723	522～29	$3 \sim 793306$ r	26.888 í	8.9752
669	447561	299418309	25.8650	8.7460	724	5：34176	$3 \sim 9503424$	$26.90{ }^{2}$	8.9794
	448900	300163000			\％	5，	3810781		
671	450241	302211711	－5．90：37	8.7547	「26	5：\％0～6	38：65゙¹	26.9444	$8.98 \% 6$
6%	451584	30：3464448	25．9230	8.7590	72%	528529	38424058	$26.96 \cdot 29$	8.9918
673	45\％！）29	304821217	－25．942\％	8.6634	728	52.9984	385828352	26.9815	8.9959
6i4	4542r＇6	$30618: 2024$	25.9615	$8.76 \% 7$	729	531441	387420489	27.0000	9.0000
	455	3075468			730			27.	90041
6	4569 ¢	$308915 \sim 76$	26.0000	8.7664	\％31	534：361	390617891	27．03：0	9.0082
6	4583：9	310288～33	2660192	8．1807	732	5358\％4	392223168	$2 \sim .0555$	9.1123
618	459684	$3116655 \sim 52$	26.0384	8.7850	T33	53゙249	39：38：32837	27.0740	9.0164
$6 \% 9$	461011	313046839	26.0576		¢34	538750	395446904	27．09：24	9．0205
	46：3i61	315821：41	26.0960	8.7980	736	5 ± 1696	398688256	27.1293	90287
	465124	317214568	26.1151	8．8023	$\uparrow 37$	54：3169	40031555；3	2 \％．14\％	
6	466489	318611987	26.1343	8.8066	Ti38	544644	40194～2\％	271662	9.0369
684	$46 \% 1556$	3：0013504	26.1534	8.8109	739	$5161 \geqslant 1$	403583119	27.1846	9.0410
	469225	321419125			，		40524000		
	$4 \% 0.96$	3：22828856	26.1916		741	549801	406869021	27.2213	9.0491
	471969	324242\％03	26.2107	8.8	r42	550564	408518488	27.239%	9.0532
688	473：344	3．55660672	26．2\％98	8．828	T＋3	55：049	$4101 \% 2407$	27.2580	9.0572
689	$474 \% 21$	32\％08．2～69	$\because 6.2488$	8．832	744	553536	$411830 \% 84$	27．2764	9.0613
690	456100	328509000	26.2679	8.8366	145	ออ5025	413493625	27.2946	9.0654
	$47 \% 151$	3：9939：371	26.2869	8.8408	746	555 6516	415160936	27.3130	9.069 ！
69\％	478864	3313～3888	26.3059	8.8451	＇47	555009	4168：32\％ 23	27.3313	9．0735
$6!13$	480249	3：3：381：55 7	26．3249	8.8493	748	559504	418508992	27.3496	9．0ヶ75
694	4816：36	3：34255384	26.3139	8.8533	749	561001	420189749	27.3679	9.0816
		335102360	26.3629	8.857	750	562500	421875000	27.3861	9.0856
696	$48+416$	337153536	26.3818	8．86：21	751	564001	423564751	27.4044	9.0896
697	485809	338608873	26.4008	8.8663	75	565504	425259008	27．4：26	9.0937
693	$48 \% 204$	34006839\％	26.4197	8．8\％06	753	567009	42695～ヘึ่า	27.4408	$9.097 \hat{\imath}$
699	485601	3i1532099	26.4356	8．8\％48	754	568516	$4 \rightleftharpoons 8661064$	27.4591	9.1017
100	490000	343000000	26.45%	8．8～90	755	570025	$430: 36 \leq 875$	$27.47 \% 3$	9.1057
01	491401	$3444 \% 2101$	26.4764	8．8833	756	5\％15：36	43：081216	27.495	9.1098
70：	$49: 304$	34．5948408	26.4953	8．88～5	\％．57	$5 \sim 3049$	433798093	27.5136	9.1138
r03	494：09	347428927	26.5141	8.8917	758	5T4564	435519512	27.5318	9.1178
TO4	495616	$31891: 3664$	26.5330	8.8959	$\uparrow 59$	$5 \sim 6081$	437245479	27．5500	9.1218

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
760	577600	438976000	27.5681	9.1258	815	664225	541343375	28.5482	9.3408
\％61	579121	4407110S1	27.5862	9.1298	816	665856	543338496	$28.565 \hat{}$	9.3447
762	580644	442＋50728	27.6043	9.1338	817	$66 ז 489$	545338513	28.5832	9.3485
763	582169	444194947	27.6225	$9.13 i 8$	818	669124	547343432	28.6007	9．35\％23
764	583696	445943744	27.6405	9.1418	819	670761	549353259	28.6182	9.3561
765	585225	44～69	27．6586	9.1458	820	$6 \pi 2400$	551368000	28.6356	9.3599
766	586756	449455096	27.6767	9.1498	821	674041	55338\％661	28.6531	9.3637
76	588：89	45121 亿663	27.6948	9.1537	822	675684	$555412 \cdot 248$	28.6705	9．36\％5
768	5898：4	45：984832	27．7128	9．15 ${ }^{\text {rí }}$	823	677329	55i441767	28.6880	9.3713
769	591361	454756609	27.7308	9．161\％	$8: 4$	$6 \approx 89 \sim 6$	5594 ¢76224	28.7054	9.3751
7\％	592900	456533000	27.7489	9.1657	895	680625	561515625	28．7228	9.3789
$7 \% 1$	594441	458314011	27.7669	9.1696	326	6822＇6 6	5635599～6	28.7402	9．3827
772	595984	460099648	27.7849	9.1736	827	683929	565609283	28． 25.5	9．3865
\％	5975\％2	46189991%	27.8029	9.175	828	685584	$56 ; 663552$	28．7550	9.3902
$7 \% 4$	5990 ¢6	463684824	27.8209	9.1815	8：2	687241	569722789	28.7924	9.3940
775	600625	$4654843{ }^{\text {r }}$	27.8388	9.1855	830	688900	$57178 \% 000$	28.8097	9．3978
776	60こ1\％6	46ז2885i6	27.8568	9.1894	831	690561	573856191	28．82त1	9.4016
\％7\％	$603 \% 29$	46909 433	27．874	9.1933	832	69：2224	575930368	28.8444	94053
778	605：24	4 $091095{ }^{2}$	27.8927	9.1973	83：3	693889	$57800953{ }^{\text {r }}$	28．861	9.4091
779	606841	$4 \% 2 \sim 29139$	27.9106	9.2012	834	6955556	580093i04	28.8791	9.4129
78	608	4\％4552000	27.928	9.2052	83.5	69\％2	582182875	28.8964	9.4166
781	609961	4 76379541	27.9464	9.2091	836	698896	5842 Tr056	28.9137	9．4：04
782	611594	478211768	27．9643	9.2130	$83 \sim$	700569	5863i̋3253	28.9310	9.4241
783	613089	48004868 亿	27．98：1	9．21\％0	838	702244	5884804 T2	28.9482	9．42r9
784	614656	481890304	28.0000	9．2209	839	703921	590589\％19	28.9655	9.4316
785	616225	483\％	28.0179	9.2248	840	r05600	592～04000	28.9828	9.4354
786	$61 \% 96$	485587656	28.035 \％	9.228%	841	\％0ヶ281	59182332：1	29.0000	9.4391
787	619369	48ז44：3403	28.0535	92326	842	708964	5969476：8	29.0172	9 4429
788	6：0944	4893038\％2	28.0 ¢13	9.2365	843	710649	5990 ${ }^{\text {r }} 110 \hat{\sim}$	29.0345	9.4466
789	$6225 \% 1$	491169069	28.0891	9.2404	844	\％12336	601211584	29.051 r	9.4503
790	624100	493039000	28.1069	9.2443	845	714025	603351125	29.0689	9.4541
791	625681	$4949136{ }^{\text {c }} 1$	28.1247	9．248．2	846	715716	605495736	29.0861	$9.45 \pi 8$
792	$62{ }^{\text {c20 }} 64$	496\％9：3088	28．1425	9.2521	84%	717409	60ヶ645423	29．103：3	9.4615
793	628849	$49867 \% 25 \sim 1$	28.1603	9.2560	848	719104	609800192	29.1204	9.4652
$\tau 94$	630436	500566184	28.1750	9．2599	849	720801	611960049	$29.13 \sim 6$	9.4690
795	632025	5024	8．19	9.2638	850	722500	6141	29.1548	9．4ヶ27
\％9	633616	5043583336	28.2135	9．$\because 6$ ¢ ${ }^{\text {c }}$	851	724201	616295051	29.1719	9.4764
79%	635209	50¢2615 ${ }^{\text {a }}$	25．2312	$9.2 \pi 16$	852	โ25904	618470208	29.1890	9.4801
798	636804	508169592	28.2489	9.2754	853	727609	620650477	29.2062	9.4838
$\tau 99$	638401	510082399	28.2666	$9.2 \% 93$	854	\％29316	628835864	29.2233	9.4875
800	640000	512000000	28.2843	9.2832	855	731025	625026375	29.2404	9.4912
801	641601	513922401	28.3019	9.2880	856	732736	6： $22: 2016$	2925%	9.4949
812	643204	515849608	28.3196	9.2909	85%	734449	$629422 \div 93$	29．2ヶ46	9 4986
803	644809	51\％ 8162 \％	$28.33 \% 3$	9.2948	858	736164	631628712	29.2916	9 502：3
804	646416	519 亿18464	28.3549	9.2986	859	737881	633839\％79	29.308%	9.5060
80	648025	521660125	28.3 225	9.3025	860	T39600	636056000	29．3258	9.5097
806	649636	5थ3606616	28.3901	9．306：3	861	\％ 41321	6382＇T7381	$\because 934 \geq 8$	9.5134
8	651249	525557943	28.4077	9.3102	$86 \cdot$	743044	640503928	29.3598	95171
808	65：2864	52 \％514112	28.4253	9.3140	863	744769	6427．3564	$29.3 \div 69$	9.5207
809	654481	529475129	28.4429	9.3179	864	\％46496	644972544	29.3939	9．5\％44
810	656100	531441000	28.4605	93217	865	\％48225	64\％214625	29.4109	9.5281
811	$65 \hat{721}$	5334111731	$28.4{ }^{\text {2 }} 81$	9.3255	866	\％49956	649461896	29.42 ¢9	9．5317
812	659344	53え38～328	28.4956	9．3：94	867	751689	$651 \sim 14363$	29.4449	9.5354
813	660969	53T36ヶヶ97	28.5132	9．33332	868	753424	653972032	29.4618	9.5391
14	66：596	53935遃	28．530\％	9．33\％ 0	869	755161	65623490	$29.4 \% 88$	9.5427

No．	Square．	Cube		Cube Root．	No．	Square．	Cube	Sq． Root．	Cube Root．
				9.	925				35
			$\therefore 9$		926				
	760：384	663054	$\div 9.5 \div 96$	9.5537	927	8593：9	\％9659	0.4467	05
	7621：9	665	29.5466	$9.55 \sim 4$	928	861184	79.1	631	7540
87	7634i6	$66 \overline{6} 62762$	29.5635	9.5610	929	863041		30．4ז95	9．i5\％
					30	864900			
	\％67376	6ヶ\％ 213	$2959 \sim 3$	9.56	931	866761	8069	．51	5
	ヶ69129	67452613	29．6142	9.5719	9382	868624	8095	30．52	9． 7680
	Tr0884	6 6\％83	29.6311	9.5756	9：33	870489	812166：	30.5450	9．$\% 115$
$8{ }^{19}$	$7 \uparrow 2641$	61915143	$29.64 \tau 9$	9．5i92	934	$8 \div 2356$	－814\％8050	30.5614	9．7750
	7 T				935				
	\％7616	68379	29.681	9.5	936	$8{ }^{4} 60$	8：200：58．56	30.5941	19
	\％ 79.4	686128	29.6985	9.5901	93	871969	8\％2	30.61	
	ก 96689	68846	：9．7153	9.5937	9：38	8i9844	825：	626	
884	\％ 71456	69030	29．7321		939	881721			9.19 .4
					940	883600			
	\％ 84	695．50	29．765	9.6046	941	885481			
		6978611	29．7825	9．608：	942	887364	8355	0.6	28
	788．54	T00こ2：	7993	9.6118	943	889249	$8: 385$	T	63
	2903\％1				944	891136			
	\％92			9.6190	975	8930			
	；938	\％	29.8	9.6	946	8949	8＋6：900．36	T1	
	\％9566	т0973：	29.866	9．6262	947	896809	8492T8	0．7734	
	т9\％449	T	29．88．31	9.6298	948	$89 \stackrel{1}{0} 4$	85		
894	－992336		29.8998	9.6834	949	900601	－		
		93.3		96406	951	904401	861085：	30.8	
	804609	173	29.9	9.6442	95.2	906304	86280140	308545	
	806404	\cdots	299666	$964 \sim \sim$	953	908：09	8655	308 8 0 ŕ	
	808：21			96513	954	910116			
	81000								
	811501	73143	30.01	9．65	956	91：3936	$873 \uparrow$	309192	
	S13604	т $3 \cdot 338$ \％	300 03：	9.66	95	915849	87646 ¢	30.99354	
	\＄15409	736314	30.0500	9.	9.5	91 TT64	879：17912	309516	9.8580
	81			9	㖪	91			
	81		30	9	960			30	
	$8: 28336$	т 436 \％T4	30.09	9．67	961	92355	88\％50：3681	31.0000	
	8i2649	74614	30.116	$9.6 \tau 99$	96	925	8902in1 28	31.0161	$8 \pi 17$
	824464	\％4861		9.6534		92is6	－	1.	9.875
909	8：2\％81	\％5108	30.14	9.68	964	929296		31.	9.8485
					965				
	$8 \div 9921$	756058031	30.182	9．694	966	933156	901428696	31.080	
	83174	758550528	30.199	9.697	$96 \uparrow$	93.5089	9042：31063	31.0966	
913	83：3569	$76104849 \sim$	30.2159	9．7012	968	$93 \sim 024$	90：039：32	31．112	
914	835396		30.23		969	938961		31.12	
					\％	9409	$9126 \sim 3000$	31.1448	8990
	839056	7685752	30.2655	9.7118	9 â 1	942841	915498611	31．1609	9．30：4
	840889	771095213	30．28：2	9 \％153	972	944784	918330048	31.1 \％69	9.9058
918	$842 \sim \cdot 2$	T746：063：2	30.2985	9． 1188	9 9\％3	946～29	$9 \geqslant 116 \sim 31 \tau$	31．1929	99092
919	844561	T7615	30.3	9．7224	97	948	924010424	31.2090	9．91：2
92	846400	778688000	30.3315	9．7259	975	950625	96\％593ı5	1．2250	9.9160
	$8482+1$	\％812：9961	30.3480	9． 7294	${ }_{97} 6$	95：55\％6	$929 \sim 14176$	31.24	9.9194
	850084	т837Tก448	30．3645	9． 73.99	974	95452．9	9325 44833	31.25	922%
92：3	851929	\％	30	9.	978	95648	935．441352	31.2 \％30	9.9261
						958441			

No．	Square．	Cube．	Sq． Root．	Cube． Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
980	960400	941192000	31.3050	99329	1035	10ヶ12，5	11087178\％5	32.1714	10．115s
98	96： 2361	944076141	31．3：09	9 93363	10：36	1073296	111193465	$32.18: 0$	10.1186
98	9643\％4	946966168	31.3369	9.9396	1037	1075369	111515765	32．2025	10．12：8
83	966\％ 29	9498621487	31．35：28	9.9430	1038	1077444	1118.886	32.2180	10．1251
984	968\％ 26	$952 \sim 63904$	31.3688	9.9464	1039	10ヶ95：21	11216٪2319	32.2335	10.1283
	970225	95	31.38	9.9497	1040	1081600	1124864000	32.2490	16
	$97: 196$	958585：56	31.4006	9.9531	1041	1083681	112811192	32.2645	10.1348
98 亿̂	974163	961504803	31.4166	9.9565	1042	$1085 \sim 464$	113136608	32.2800	10.1381
988	9 9\％144	964430272	31.4325	9.9598	1043	1087849	113462650	32.2955	10.1413
989	978121	967361669	31.4484	9．963：	1044	10s9936	1137893184	32.3110	10.1446
990	980100	970：99000	31.4643	9.9666	1045	1092025	1141166	323265	10．14\％
991	98：081	473：4	31.4802	9.9699	$10+6$	1094116	11444453	32.3419	10.1510
99：	984064	976191488	31.4960	9．9733	104a	1096209	$114 \sim$ T3082	$3235 i 4$	10.1543
99：3	986049	9 9 9146657	31.5119	9．9766	1048	1098304	115102\％59	32．3ヶ28	$10.15 \% 5$
994	980036	98\％10ヶ～84	31．52\％8	9.9800	1049	1100401	1154320649	32.3883	10.1607
995	9900 25	985074875	31.5436	99833	1050	1102500	11576	32403%	101640
	992016	9×804 9336	31.5595	9.9866	105！	1104601	1160935651	32.4191	10.16%
997	994009	9910：6973	31.5 T53	9.9900	105：	$1106 \sim 04$	1164：5260	32.4345	10.1704
998	996004	991011992	31.5911	999333	10．33	1108809	$116 i 5758 i$	32.4500	101136
999	99800：	99700：999	$31.60 i 0$	9.9967	1054	1110916	11\％0905464	324654	$10.1 \% 69$
1000	1000000	1000000000	31.6228	10.0000	1055	1113025	11742	32.4808	10.1801
1001	1002001	1003003001	31.6386	10.0033	1056	1115136	117958361	32．496：	10．183：3
1002	1044004	1006012008	316544	10．006i	105i	1117249	$118093: 19$	32.5115	10.1865
1003	1006009	10090\％ 022 亿	31．6\％\％	10.0100	1058	1119364	118428711	3 3． $5 \because 69$	10．1897
1004	1008016	1012048064	31.6860	10.0133	1059	1121481	187648379	32.5423	10．19：9
1005	1010025	1015075125	31.2017	10.0166	1060	1123600	119101600	$3255 \% 6$	In 1961
1006	10120：36	1018108：16	31.11%	10．0200	1061	1125 T21	1194：389981	32．5730	11． 1993
1007	1014049	10211473 3	31.7333	$100: 33$	106：	$112 \% 844$	119 atcose	3.5883	10．2025
1008	1016064	10：419：512	31.7490	10．0\％66	106	1129969	120115 04	3268036	0 205\％
1009	1018081	102\％243729	31.7648	10．0299	1064	113：2096	1204550144	32.6190	10.2089
1010	10：2100	1030301000	31.7805	10.0332	1065	1134225	120ヶ949625	32.6343	102121
1011	10：22121	10333364331	31.7962	10.0365	1066	1136356	1211355496	32.6497	10．2153
1012	1024144	10364337728	31.8119	10.0398	1067	1138489	1214\％6ar63	326650	02185
1013	10：6169	0339509197｜	31．82it	10.0431	1068	1140624	1218186432	32.6803	10.221%
1014	1028196	1042590744	31.8434	10.0465	1069	1142：61	1221611509	32.6956	10． 2249
1015	1030225	1045678375	31.8591	10.0498	10\％0	1144900	1225043000	32.7109	10.2281
1016	$103: 256$	1048772096	$31.8{ }^{\text {® }} 48$	10．05：31	1071	$114 \% 041$	1228480911	32．7261	10．2313
1017	1034：89	10518 1913	31.8904	10.0563	10ヶ゙2	1149184	1231925248	3\％．7414	10.2345
1018	10363：4	1054977832	31.9061	10.0596	1073	1151329	1235376017	$32.756 \hat{1}$	10．23：6
1019	1038361	1058089859	31.9218	10．06\％9	107	$11534 \% 6$	1238833224	32.7719	10.2408
1020	1040400	1061208000	31．9374	10.0662	1075	1155625	1242296875	32.7872	10.2440
1021	1042441	10643332261	31.9531	10.0695	1076	11577 6	$1245 \sim 66976$	32.8024	10.24%
1022	1044484	1067462648	$31.968{ }^{\text {d }}$	10.0728	1077	11599：29	1249243533	32.8177	10.2503
1023	1046529	10 ¢0．59916\％	31.9844	$10.0 \hat{6} 61$	1078	1162084	125\％ 26552	32．8329	10.2535
1024	10485 \％ 6	1073741824	32.00	10	10	11	1256216039	32.848	10.2567
1025	1050625	1076890625	32.0156	10.0826	1080	1166400	1259712000	32.8634	10.2599
1026	1052676	10800455 ¢ 6	32．0312	10.0859	1081	1168561	1263214441	32．8786	10.2630
1027	1054729	1083：06683	32.0468	10．0892	1082	11107：24	1266723368	32.8938	10.2662
1028	1056 84	1086373952	3：．0624	10.0925	1083	1172889	1270238787	32.9090	10．2693
1029	1058841	1089547389	32.0780	10．095	1084	1175056	$12 \% 3760704$	32.9242	10.2725
1030	1060900	1092\％2\％000	32.0936	10.0990	1085	1177225	1277289125	32.9393	10．2\％57
1031	1062961	1095912791	32.1092	101023	1086	1179396	1280824056	32.9545	10.2788
1032	10650：24	1099104 T68	32.1248	10.1055	1087	1181569	1284365503	32.9697	10.2820
10．33	106\％089	1102：3099337	32.1403	10.1088	1088	1183744	1287913472	32.9848	10.2851
10：34	1069156	110550i304	32.15	10.1121	1089	1185921	129146\％969	33.0000	10.2883

No．	Square．	Cube．	Sq． Root．	Cube Ruot．	No．	Square．	Cube．	Sq． Root．	Cube Root．
1090	1188100	1295029000	33.0	10.	1145	1311025	15011236：5		10.4617
1091	1190281	12995596．571	33 0：303	10．2946	1146	1313：316	15050601.36	33．85：6	10．464 $\%$
1092	119：46t	130217U688	33．0454	10．2977	114	1315609	15090035 z 23	33． $86{ }^{\text {a }}$	$10.46{ }^{\text {i }} 8$
1093	1194649	$105 \% 5135 \tilde{4}$	33.0606	10．3009	1148	$131790 t$	15129583792	33．8821	$10.4 \% 08$
1094	11968＊36	1309338584	33.0757	10.3040	1149	13：20：21	$15169109+9$	33.8969	10.4739
10	1199025		33.0908	10.	20	1322500	$15 ? 0875000$		69
1096	1201216	1：316．53：2736	33．1059	10.3103	1151	1324801	1524845951	33.9264	10.4 ก99
1097	1：20：3409	13201396i3	33.1210	10.3134	115：	13：710t	15288\％23808	33．9411	0.4830
1098	$120560+$	1323 253192	33.1361	10.3165	1153	13：29409	15324085iへ	33．95．59	$10.48{ }^{8} 0$
1099	120i801	1327373299	33.1512		1154	1331716	1536800：264	83．9\％06	10.4890
1100	1210000	1331000000	33.1662		11	13340\％5	1540～988ヶ5	33．985：3	10.4921
1101	121：201	$1: 34163: 3301$	33．1813	10.3259	1156	13：363：36	$15+480+416$	34.0000	10.49 .51
110：2	1214404	13388：$\sim 3 \geqslant 03$	33.1964	10．3：90	115	13：38649	1548816893	$34.014 \sim$	10.4981
110：3	1216609	1341919\％2\％	33． 2114	10．332：3	1158	1340964	15528：36312	$3+.0294$	10．5011
1104	1218816	1355572864	33.2264	10．3353	1159	1343281	155686： 2 ¢9	34.0441	10.5042
	1221025			10.		1345600			
1100	1：2：32：36	1352899016	3：3．2566	10.3415	1161	$134 \sim 921$	$156+9366281$	34.0735	10．510
1107	1225449	$1: 356.7720+3$	33.2716	$10.3+47$	116：	1350：44	15659835：8	34.0881	105132
1108	1226664	1360：251112	33．2866	10.3478	1163	13.52569	15\％303 $774{ }^{\text {a }}$	34.1028	10.5162
1109	1224881	136：39330\％9	33.3017	10.3509	1164	1354896	15～70989＋4	34.1174	10．5192
1110	$123: 100$	1367631000	33． 3167	10.3540	1165	135722．5	1581167125	34.1321	105223
1111	12：31321	1311330631	33．3．331	10.3571	1166	13.59556	15＊5：42296	$34.146 \dot{1}$	10.5253
1112	1236544	13150369：8	33．3467	$10.360{ }^{2}$	116 ${ }^{\text {a }}$	1361889	15893344633	34.1614	10.5283
1113	1：38\％69	13ヶ8\％ 4939%	33．361\％	10．36：33	1168	1354\％ 4	1593413632	$34.1 \% 60$	10.5313
1114	1240996	138：469544	33.3 ¢ 66	10.3664	1169	1366561	159 ¢509809	341906	10.5343
1115	124.3225	13861	33.3916	103695	$11 \% 0$	1368900	1601613000		
1116	124545	138992S	33.4066	$10.3 \sim^{2} 26$	1171	13：1：41	16057－23：11	34.21.	
17	1247689	1：39：3ט́68613	33.4215	10.3757	1172	1373584	1609840448	34.2345	10．5433
1118	12499：24	1397415032	33．4365	10.3788	1173	1375929	$1613964 \sim 17$	34.2491	10.5463
1119	125：2161	1401168159	33.4515	10.3819	11ヶ4	13：8276	1618096024	34.2637	10.5493
	1254400	1404928000	33.4664	10．3850		13806：25			
21	1256641	1108694561	33．4813	10.3881	$11 \% 6$	138：976	16：6379べ～6	34.29	10.5553
112：	1258884	141246 88	3．3．496：3	10.3912	11示	13 3 ² $3: 9$	16：3053：3233	$34.30 \hat{1}$	10.555%
1123	1261129	1＋16247867	33．5112	$10.39+3$	1178	138i684	1631691 T52	31.3020	10.5612
11：4	126	14200346：24	$33.5 \div 61$	10．39\％3	1179	1390	1638858339	34.33	10.5642
1125	1265625		335110	10.4004	1180	1392400	1643032000	34.3511	10．56i2
11：26	12じ¢ ${ }^{\text {¢ }} 6$	$142 \% 628376$	3：3．5559	10．40：35	1181	1394\％61	164 212% ¢1	34.36 .5 r	10．5T0：
1127	12\％01：9	$1+3143.5383$	33．5708	10.4066	118	13971：4	1651400568	343802	10．5432
11：28	1：72384	143524915\％	3：3．5857	10.4097	118：3	1399489	165559．548	34.3945	05762
$11: 29$	$127+6 \pm 1$	1439069689	33.6006	10.4127	1184	$14018=6$	1659 ¢9\％504	34.4093	$10.5 \sim 91$
1130	$12 \sim 6900$	$144289 \sim 000$	33.6155		1185	14042：5	1664006625	34.	105821
1131	$12 \sim 9161$	1446731091	133．630：3	10.4189	1186	1406596	1668：32856	34.4384	10.5851
113	1281424	1450571968	3：3．645：2	10．4：19	1187	1408969	1672＋46：03	34．45：29	10.5881
113：3	128：3689	1454419637	33.6601	10．4250	1188	1411344	$16765766 \mathfrak{r}$	$34.46 i 4$	10.5910
1134	1205956	1458：74104	$33.0 \% 49$	10.4281	1189	$1413 \% 21$	1680914：69	34.4819	10.59 ± 0
113	12882	$14621353 \% 5$	33.6898	10.4311	1190	1416100	1685159000		10．59\％0
1130	$1290+96$	1466003456	33.1046	$10.43+2$	1191	1418 ¢81	$168994108 \mathrm{~T}^{\text {1 }}$	$3+.5109$	10.6000
$113 i$	1：99：769	$1469 \sim 7 ¢ 3.53$	33．71ז4	10.4353	1192	142086．	16936698888	34.5354	10．60：29
1138	129．5044	14i3i6007：	33．7342	104404	1193	$1423: 249$	169\％9：3605\％	34．539：	10．60．59
1139	1297321	14\％7648619	33.7491	10.4434	1194	1425636	1702：09384	34.5543	10.6088
1140	1299600	1481544000	33． 7639	10.4464	1195	1428025	17064898\％5	31.5688	10.6118
1141	1301881	148．5446：21	33．7487	10.449 .5	1196	14310416	$1710 \% 17536$	$34.583:$	10.6148
1142	$130+164$	14893．3．5：288	3：3．7935	10．45－5	119i	143：2809	171507．23\％ 3	34.597π	106177
1143	1306449	1493：7120i	33．8083	10.4556	1195	1435：0＋	1719334392	34.6121	10．6：07
F144	130873				1193	$1+3$			0．6236

No．	Square．	Cube．	Sq. Root．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
1200	1440000	1728000000	34.6410	10.6266	1255	1575025	19\％6656375	35.4260	10．\％865
1201	1442401	17323236601	34.6554	10．6295	1256	1577536	1981385216	35.4401	10． 7894
$120 \cdot$	1444804	1ヶ3665¢4408	34.6699	10.6385	1257	1580049	1986121593	35.4542	10． 7922
1203	1447209	1T4099242\％	34.6843	10.6354	1258	15S：564	1990865512	35.4683	10．7951
1204	1449616	1745337664	4.6987	10.6384	1259	1585081	19956169 9	35.4824	10．7980
1205	145：2025	1749690125	． 1131	10.6413	1260	1587600	$20003 \sim 6030$	35.4965	10.8008
1206	1454436	1754049816	34.7275	10.6443	1261	i1590121	2005142581	35.5106	10.8037
120%	1456849	1758416743	34.7419	10.6472	126.2	159：644	2009916т28	3.5 .5246	10.5065
1208	1459：64	1762\％90912	34.7563	10.6501	1263	1595169	201469844 í	35.538%	10.8094
1209	1461681	1767172329	34.7 \％07	10.6530	1264	1597696	$2019487 \% 44$	35．5528	10.8122
				10.6560	1265	1600225	20	35.5668	10.8151
1211	1466521	$17 \uparrow 5956931$	34.7994	10.6590	1266	1602756	2029089096＇	＇35． 5809	$10.81 \tau 9$
1212	1458944	1780360128	34.8138	10.6619	126\％	1605：289	2033901163	35.5949	108208
121.3	$14 \sim 1369$	1784750597	34.8281	10.6648	1268	16078：4	2038\％20832	356090	10.8236
1214	1473796	1\％89188344	34.8425	$10.66{ }^{\text {r }} 8$	1269	1610361	2043518109	35.6230	10．8：265
1215	1476225	1793613375	34.8569	10.6707	1270	1612900	2048383000	35.6371	10.8293
1216	1478656	$1 \tau 98045696$	34.8712	10.6736	1271	1615441	20532225511	356511	10832.3
121 \uparrow	1481089	1802485313	34.8855	10.6765	12\％2	1617984	20580 T5648	35.6651	10．83350
1218	1483524	1806932：32	4.8999	10.6795	1273	16205\％9	2062933417	35． $6: 91$	10 8：3ǐ8
1219	1485961	1811386459	34.9142	10.6824	12：＇4	16230 6	2067798824	35.6931	10．840\％
12	1488400	1815848000	34.9285	10.6	12	1625625	2072671875	35．$\sim 0 \sim 1$	10.8435
1221	1490841	1820316861	34.9428	10.6882	1276	1628176	$20745525 \% 6$	35.1211	10.8463
122：2	1493284	$18: 4793048$	34.9571	10.6911	1277	1630 r29	2082440933	35.1351	10.8492
1223	1495 T29	182927656\％	34.9714	10.6940	1278	1633：284	2087336952	35.7491	10.8520
1224	14981ז6	1833r6ヶ424	34.9857	10．69\％0	1279	1635841	2092240639	35． 6631	$10.85 \ddagger 8$
1225			35.0000	10.6999	1280	1638400	2097152000	35．77\％1	10．85：7
1226	$15030 \sim 6$	1842771176	35.0143	10.7028	1281	1640961	2102071041	35． 9911	10.8605
12： 2	15055 29	1847284083	35.0286	10．\％057	1282	1643524	210699～r68	35.8050	10.8633
122	1507984	1851804352	35.0428	10.7086	1283	1646089	211193：187	35.8190	10.8661
$12: 9$	1510441	1856331989	35.0571	10.7115	1284	1648656	21168ז4304	35.8329	10.8690
1230	1512900	1860867000	35.0714	10.7144	1285	1651225	2121824125	35.8469	$10.8 \% 18$
1231	1515361	1865409391	35.0856	10．71\％3	1286	1653796	2126781656	35.8608	10.8 T46
1232	1517824	1869959168	35.0999	10．7202	1287	1656369	21：31746903	3 3 .8748	10.87%
1233	1520289	187451633 亿	35.1141	10．7231	1288	1658944	2136\％198i2	35.588%	10.8502
1234	1522756	1879080904	35.1283	10． 7260	1289	1661521	2141,00569	35.9026	10.8831
1235	1525225	18836528875	35.1426	10．7289	1290	1664100	2146689000	35.9166	10.8859
1236	152\％696	1888232256	35.1568	10.7318	1291	1666681	2151685171	35．930．5	10．888
1234	1530169	1892819053	35.1710	10．734\％	1292	1669264	2156689088	35.9444	10.8915
1238	153：2644	1897413272	35.1859	10.7376	1293	1671849	$2161 \% 0075 \%$	$35.958: 3$	10.8943
1239	1535121	1902014919	35.1994	10.7405	1294	1674436	2166～20184	35.9722	10.8971
1240	153	1906624000	35.2136	10．7434	1295	16ヶ\％025		35.9861	10.8999
1241	1540081	1911240521	$35.22 \sim 18$	10.7463	1296	$16 \mathfrak{9 6 1 6}$	21ヶ6ヶ82336	360000	10.902%
1212	1542564	1915864458	35.2420	10．7491	1297	168：2209	2181825073	36.0139	10.9055
1243	1545049	1920495907	35.2562	10．7520	12.98	1684804	21868 55592	$36.02 \% 8$	10.9083
1244	1547	1925134784	35.2704	10． 7549	1299	1687401	2191933899	36.0416	10.9111
1245	1550025	1929781125	35.2846	10．75\％8	1300	1690000	219\％000000	36.0555	10.9139
1246	155：516	1934434936	35.298τ	10．7607	1301	1692601	220：2073901	36.0694	10.9167
1247	1555009	1939096223	35.3129	10.7635	1302	1695204	$220 \sim 155608$	36.0832	10.9195
1248	1557504	1943764992	$35.32 \sim 0$	10．7664	1303	$169 \% 809$	22.2245127	36.0971	10．9223
1249	1560001	1948441249	35.3412	10.6693	1304	1700416	2217342464	36.1109	10.9251
1250	1562500	1953125000	35.3553	10.7722	1305	1703025	2222447625	36.1248	10．92\％9
1251	1565001	195\％816：51	35.3695	10．7\％50	1306	1705636	$222 \sim 560616$	36.1386	10.9307
1252	1567504	1962515008	35.3836	10． T \％ 9	1307	1708249	22.32681443	36．15：25	10.9335
1253	15\％0009	196～2212～7	35.39 ¢̃	10．7808	1308	1710864	$223 \% 810112$	36.1663	10.9363 －
1254	15\％2516	1971935064	35.4119	107837	1309	$1 \% 13481$	22429466291	36.1801	10.9391

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
1310	1716100				1365	1863：22	2543302125		
1311	1718721	$2353: 432: 31$	36．207\％	10.9446	1366	186.59 .56	2548895896	36.9594	11.
1312	17：1：344	2255403328	36．2215	10.9474	1367	1868689	$255449 \uparrow 86{ }^{\text {c }}$	3：36．9T30	11.0983
1313	$1 \uparrow 23969$	226357129\％	36.2353	10．950：	136	18 \％1424	256010803	36．986ó	11.1010
$131+$	$1 \tau \div 6596$	迆68ヶ4 144	36.2491	10.9530	1369	1874161	2565726	27． 0000	1.1037
1315	1720	2273	36.2629	10.0	13～0	1876900	2571353000	37.0135	
1316	1731856	22ז9122496	36．2i6\％	10.9585	1371	1879641	25\％6987811	37． $02 \begin{gathered}\text { a } \\ 0\end{gathered}$	11.1091
1317	1 134189	225432：013	36.2905	10.9613	1372：	188：384	2582630818	37． 0405	11.1118
1318	1737124	2：2895：2943：	36.3043	10.9640	1373	1885129	2588282117	37.0540	11.1145
1319	1739761	$2294744 \% 59$	36.3180		13	1887876	2593941624	3\％．0＇tis	11.11%
13					5				
$13: 2$	1745041	12305199161	36.3456	10．97：24	$13 \% 6$	18933： 6	205985376	37 09	
132	$1 \tau 47684$	2310438248	36．3593	10．975\％	1377	1896129	2610969633	37.108	25：3
13：	1\％503：29	－3156852 66	36.3131	10.9779	137	1898884	261666：15：	3\％．121	11．1280
13：4	1\％ว29i6	23：209 10224	36.3868		1379	1901641	$262236: 2939$	37.1349	11.1307
1325			36.4005		1380	1904400	26：280ヶ2000		
13	17582 i 6	2331473976	36.4143	10	1381	190）161	2633\％ 89341	3र． 16	11．1361
13	17609：29	2336\％52\％83	36.4280	10.9890	1382	19099：4	2639514968	3\％．175	1.1387
1.208	1763584	2：34203955\％	36.4417	10.9917	1383	191：689	2645		1
13：9	1766：41	2347334289	30.4555	10.9945	1384	1915456	2650991104	37.2021	11.141
1331	1 171561	235\％914691	36.4829	11.0000	1356	1920996	662500456	37.2290	
133：	1\％742：2	2363：663368	36.4966	11.0028	1387	1923 769	266826 603	37.2424	1.
$13: 3$	1776889	$236859303 \uparrow$	36.5103	11.0055	13	1926544	$26 \% 4043072$	37.2559	11.1548
1334	1 1ヶ95̄5	2373927704	36.5240	11.0083	138	1929321	26ヶ9826869	37.2693	
	1782225			11.0110	1390	1932100			
13	1781896	23846：1056	36.5513	11.0138	1391	1934881	$26914194 \sim 1$	37.2961	$11.16 \cdot 9$
13	1787569	23899379753	36.5650	11.0165	139	1937664	2697228288	37.3095	11.1655
1338	1790\％44	23．53464～2	$36.5 \uparrow 5 \%$	110193	1393	1940449	$2 \sim 03045457$	37．3\％29	11.1682
$13: 39$	179\％921	2400 21212	36.5923	11．02：20	1394	1943236	2\％088：0984	37．3363	
1340	1～95600	2406104000		11.0247	1395	1946025	$2714 \% 04875$	37.3497	
	$1798: 281$	2 $21114948 \cdot 21$	36.6197	11.02 T 5	1396	1948816	2テ2054～136	37.3631	
	1800964	2416893688	36.6333	11．030：	1397	1951609	2\％26397\％\％3	7．3765	
$13+3$	1803649	－2422300607	36.6469	11.0330	1398	1954404	2732256792	37.3898	1616
1344	180633 ${ }^{6}$	242i゙115584	36.6606	11.0357	1339	1957201	2 T38124199	37.4032	
	180					1960000	2744000000	166	
	1811716	24：38569736	$36.68{ }^{\text {a }}$	11.0412	1401	1962801	2749881201	37.4299	
134	1814409	2444008923	36.7015	11.0439	140：2	1965604	$2755 \% 76808$		
1348	$181 \% 104$	－449 5 ¢ั6192	36.7151	11.0466	1403	1968409	$2 \sim 616 \sim \sim 827$	3）． 4566	1949
1349	1819301	2454911549		11.0494	1404	$19 \% 1216$	$2 \sim 67587264$		
1351	1825：01	2465846551	36． 2560	11.0548	1406	1976836	$271913141{ }^{\circ}$	．	
135	182：904	$24 \uparrow 1326208$	36． 6696	11.0575	140î	19ヶ9649	2785366143	3i． 5100	205
1353	1830609	－4768139\％	36.7831	11．0603	1408	198：2464	2791309312	37．525：3	11．2082
1354	1833316	$248: 3309864$	36.7967	11.0630	14	1985281	2テ97260929	37.5366	
1355	1836025	248\％8138\％	36.8103	11.0657	1410	1988100	2803221000	27．5500	，
135	1838i36	249：33：6016	36.8239	11.0384	1411	19909：1	2809189531	37.	1.2101
135 ？	1841449	2498846293	$36.83 \pi 5$	11.0712	1412	1993744	2815166528	$37.5 \sim 66$	11.2188
1358	1844164	$25043 \pi 4 \sim 12$	36.8511	11.0739	1413	1996569	2821151997	37.5899	2214
1359	1846881	2509911279	36.8646	11.0766	1414	1999396	2827145914	37.6032	1.2240
1360	1849600	2515456000			1415				11．2ミ6
1361	18523：1	2521008481	$36.891 \sim$	$11.08: 2$	1416	2005056	2839159296	37． 6298	112293
1362	1855044	－ 226569928	36.905 .3	11．0847	1417	200i\％89	2845178713	37.6431	1．23：0
1：363	$185 \sim \sim 69$	$2533213914 \sim$	36.9188	$11.08 \pi 5$	1418	$2010{ }^{2} 24$	28.51206632	37.65563	11.2346
1364	1860496	253\％7		11.0902	1419		$285 \sim 243059$		11.23

No．	Square	Cube．	Sq． Rout．	Cube Root．	No．	Square．	Cube．	Sq． Root．	Cube Root．
1420	2016400	28		11.2399	1475	2175625	3209046875	38．405～	
1421	2019：41	28699：3＋1461	37.6962	11.2425	$14 \sim 6$	$217 \times 5 \sim 6$	3215578176	38．418i	11.3858
14\％2	20：208 4	2875403448	37． 7094	11.2452	14\％	2181529	322 221183333	38．43！8	11.3883
1423	20：249：29	2881473 ！ 6 T	37.7227	$11.24 \% 8$	1478	2184484	－ 222866 ¢352	38.4448	11.3909
14：4	$202 \% 776$	2887553024	37． 7359	11.2505	1479	218 r441	3235225239	$38.45 \% 8$	11.3935
	2030625			11.2531	1480	2190400	3241 ¢92000	38.4708	11.3960
1426	20：3：3476	2899テ36ĩ6	37.7624	11.2557	1481	$2193: 361$	324836i643	38.4838	11.3986
1427	20：36：329	2905841483	$37.7 \% 7$	11.2583	148．2	21963：24	3254952168	384968	11.4012
1428	2039184	2911954752	37.7889	11.2610	1483	2199289	32661545587	38509 i	11.4037
1429	2042041	2918076589	37．8021	11.2636	1484	2202：256	3268147904	$38.5 \times 2 \hat{1}$	11.4063
1430					1485	22052：5	3274759195	38.535 r	
14：31	$204 T \sim 61$	29：30315991	3～． 8286	11.2689	1486	2208196	［32813i92．56	38．548	11.4114
1432	20506：4	：936493568	37.8418	11.2 T15	1487	2211169	32248008303	38.5616	11.4140
143：3	2053489	2942649ヶ3ヶ	37.8550	11．2\％41	1488	2214144	$329+6462 \sim^{2}$	38.5746	11.4165
1434	2056356	2948814504	37.8682	11.2767	1489	2217121	3301293169	38.58 \％ 6	11.4191
14	2059225	295			1490	2220100	$330 \sim 949000$	38.6005	11.4216
1436	2062096	2961169856	37.8946	11．28\％0	1491	$2 \because 23081$	3314613 ĩ1	38.6135	11.4242
1437	2064969	2967360453	37.9078	11.2846	1492	$222606+$	$33 \cdot 1287488$	38.6264	11.4268
14：88	206\％844	29\％35596～i	37.9210	$1128 \uparrow 2$	1493	2229049	：332 3970157	38.6394	11.4293
1439	20ヶ0721	2979 ¢67519	37．934z	11.2898	1494	2232036	3634661784	$38.65: 23$	1.4319
1440	2073600		3		1495	2235025	3341362375		
1441	$20 \sim 6481$	2992：09121	37.9605	11.2950	1496	2238016	$33+8071936$	$38.6 \begin{array}{r} \\ \hline\end{array}$	$11.43 \% 0$
1442	$20 \sim 9364$	299844：888	37.9737	11.2977	1497	2241009	3354 ¢00473	38.6911	11.4395
1443	208：249	3004685307	37．9868，	，11．3003	1498	2244004	3361517992	38．r040	11．4421
1444	2085136	3010936384	38．0000	3020	1499	224～001	3368254499	38.7169	11.4446
1445	2088025	301	38.0132		15	2250000	3375000000	38．7298	
1446	2090916	30：2346453	88．0263	11.3081	1501	2253001	：3381\％54501	38．7427	11.4497
1447	2093809	30：29ヶ41623	38.0395	11．310	1502	2256004	3388518008	38.7556	$11.45 \% 2$
1448	209604	3033602：392	38.0526	11.3133	1503	2259009	．3395290527	38.7685	11.4548
1449	2099601	30423：1849	38.0657	11.3159	1504	2202016	34020 2064	38.7814	$11.45 \% 3$
1450	2102500	3048625000	38.0789	11.3185	1505	2265025	3408862625		11.4598
1451	2105401	：30－549：368．51	38．09：0	$11.3 \% 11$	1506	2268036	3415662216	38	$11.46 \% 4$
1452	2108304	3061 25 4408	38.1051	11．32：37	1507	$2: 71049$	342247084．3	38.8201	11.4649
145.3	2111209	306i586677	38.1182	11.3263	1508	2274064	3429288512	38.8330	11.46 \％
1454	2114116	3073924664	38.1314	$11.3 \geqq 89$	1509	$2: 77081$	3436115229	38.8458	11.4700
	2117025			11.3315					11.4825
1456	2119936	：30866：6816	38.1576	11.3341	1511	2283121	3449795831	38.8716	$11.4 \% 51$
145 i	212：8849	3092990993	38.1 \％ 0 －	11.3367	1512	2286144	3456649728	388844	11．9\％\％ 6
14.5	2125 564	30993663912	38.1838	11.3393	1512	2289169	3463512697	38.8973	11.4801
1459	2128681	$31057455{ }^{\circ} 9$	38.1969	11.3419	1514	2292196	34\％0384744	38．910：	11.4826
1460	2131600	3112136000	38.2099	11.3445	1515	2295225	$34 \sim 7265875$	38.9230	$11.485 ?$
1461	$21345: 1$	3118535181	38．2230	11.3471	1516	2298256	3484156096	38．9358	11.4877
146	213 T 444	3124943128	38.2361	11.3496	151 ＇	2：301289	3491055413	38.948 r	11．4902
1463	2140369	3131359847	38.2492	11.3522	1518	2304324	3597963832	38.9615	11.4927
1464	2143296	3137785344	38.2623	11.3548	1519	$230 \% 361$	3504881859	38.9744	11.4953
1465	2146225	3144219625	38.2753	11.3574	1520	2310400	3511808000	38.9872	11.4978
1466	2149156	$315066 \div 696$	3．3． 2884	11.3600	1521	2313441	$3518743 \sim 61$	39.0000	11.5003
1467	2152089	3157114563	38.3014	11.3626	1522	2316484	35：25688648	39.0128	11．5028
1468	2155024	3163575232	$3 \times .3145$	11.3652	152.3	2319599	353：642667	39.0256	115054
1469	215i961	$3170044 \% 09$	38.3275	$11.36 \sim 7$	1524	2322576	3539605824	39.0384	11.5079
1470	2160900	3176523000	38.3406	11．3～03	1525	2325625	3546578125	39.0512	11.5104
1471	2163841	3183010111	38.3536	11.3729	1526	$23286 \sim 6$	3553559．～～6	39.0640	11.51×9
14\％2	2166784	3189506048	38．3667	11.3755	152π	2331729	3560.50183	39.0768	11.5154
1473	2169729	3196010817	38．3\％97	11．3：80	1528	$2334 \div 84$	$356 \% 549952$	39.0896	$11.51 \tau 9$
1474	$21 \% 267$	3202524424	38.3927	11.3806	152 ？	2337841	3574558889	39.10	11.5204

SQUARES，CUBES，SQUARE AND CUBE ROOTS． 101

No．	Square．	Cube．	Sq． Root．	Cube Root．	No．	Squar	Cube．	Sq． Root．	Cube Root．
1530	2340900				1565		5	39.5601	
	2：343961	35888604291	39.1280	11.5255	1566	245：355 ：	3840389496	$39.57: 7$	11.
153：	$234 \% 024$	3595640 テ̈68	39.1408	11．5280	156 ¢	2455	$384 \sim \tau 51: 63$	39.5854	11.6151
1533	2350089	．36020884437	39.1535	11.5305	1568	$24586: 4$	3855123432	39.5980	11.6176
1534	235：3156	3609741304	39.1663	11.5330	1569	246， 761 ：	3886：50：3009	39.6106	11.6200
	2356225	361680 ¢ั375	39.1791	11.	1570	246			
153	2359：96	3623ST8656	39.1918	11.5380	1571	246804	3877292411		11.6250
$15: 3$	2362：369	3630961153	39.2046	11.5405	1572	$24 \sim 1184$	3884～01248	39.6485	11．62\％＇4
1538	2365444		$39.21 \% 3$	11.5430	157	2474329 ：	：389：119517	39.6611	
1539	23685521	3645153819	39.2301	11.5455	1574	$24774 \% 6$	389954 ¢2\％4	39.6737	11．6：3\％4
1540	$23 \% 1$								
1541	23.34681	365938：3421	39.2556		－				
42	23 TT．64	3666512088	39.2683		1577				
543	2380849	：36736．50007	39.2810		\％	249008	－		
44	23833936	$3680 \uparrow 97184$			15\％9		3930827539		
46	2390116	36951193：36	39.319	11.56330	1581	$2{ }^{2} 9561$			
1547	23933209	：370：294323	39.331	11.5655					65．3
48	2396304	$37094 \sim 8592$	39.344	11.5650					
19	2339401						3974344704		
1550	2102500				15				
	2405601	3731087151	39．3						
	$2408{ }^{\text {2 }} 01$	3738303608	39.3954						
53	2411809	$3 \pi 455$	39.4081	11.5804					
1554	2414916	3752779464	39.4208	11．58：9	15	25249214	2099469		
	2421130	：376723\％616	39.4462	$11.58 \% 9$	1591	25312814	40272680 11		
155	2424249	3774555693	39.4588	11.5903	1592	2534464	4034866688	39.	\％ 6
15	2427364	3781833112	39.4715	11.5928	1593	2537649	4042474857	39.9124	11.6790
1559	243	3ヶ89119879	39.4812	11.5953	1594	2540836	405009：584	39．9：49	11.68
	243.3600								
	$2+36 \sim 21$	3803721481	3950	11.6003	1596	$25+\sim 216$	4065356 ¢36	39.95	1．6383
	2439844	38110	$39.52 \% 1$	11.6027	159 亿̃	2550409	－		11.6888
0．3	2442969	3818360547	39.5348	11.605%	1598	2553604	4080659192	39.	912
1564	2446	38：ご694144	$39.51{ }^{1} 4$	$11.60 \% 7$			40883：4ヶ99		

SQUARES AND CUBES OF DECIMALS．

No．	Square	Cube．	No．	Square．	be	No．	Square．	Cube．
． 1	． 01	． 001	． 01	． 0001	． 000001	． 001	． 000001	． 000000
． 2	． 04	． 008	． 02	． 0001	． 000008	．002	． 000004	． 00000000
． 3	． 09	． 027	． 03	． 0009	． 00002%	．003	． 000009	． 0000000 0
． 4	． 16	． 064	． 04	． 0016	． 000064	． $00 \pm$	． 000016	． 00000006
． 5	． 25	．125	． 05	． 0025	． 0000125	． 005	－000025	． 00000012
． 6	． 36	． 216	． 06	． 0036	． 000216	006	． 000036	． $000600 \stackrel{1}{2}$
． 7	． 49	． 343	． 07	． 0049	． 000343	007	． 000049	． 00000031
，	． 61	． 512	． 08	． 0064	． 000512	008	． 000064	． 000000512
9	． 81	． 72	． 09	． 0081	． 000729	． 009	． 000081	． $000000{ }^{2} 29$
1.0	1.00	1.000	． 10	． 0100	． 001000	． 010	． 000100	． 000001000
1.2	1.44	1．728		0144	． 001728	12	000144	． 000001 \％

Note that the square has twice as many decimal places，and the cube three times as many decimal places，as the root．

FIFTH ROOTS AND FIFTH POWERS．

（Auriuged f：om Trautwine．）

	Power．		Power．		Power．	$\left\|\begin{array}{rr} \dot{0}+\stackrel{0}{0} \\ \dot{0} \dot{0} \\ \dot{Z} \dot{\sim} \end{array}\right\|$	Power．	安言	Power．
． 10	． 000010	3.7	693.440	9.8	90392	21	492：3597	40	102400000
．	． 000075	3.8	792．35：	9.9	95099	22.0	515．3632	41	115856：01
	．0003\％0	3.9	90\％．242	10.0	100000	2.2	539：186	42	130691232
． 25	．00097	4.0	1024．00	10 \％	110408	22.4	5639493	43	14,008443
． 30	．00：430	4.1	1158.56	10.4	121665	22.6	5895793	44	1649162：
． 3	．005\％2\％	4.2	1306.91	10.6	$13: 3823$	22.8	6161327	45	184528125
	．010240	4.3	1470.08	10.8	146933	23.0	64363343	46	2059629 \％
． 45	． 018453	4.4	164916	11.0	161051	23.2	6.21093	47	22934500%
． 5	．031250	45	1845.28	11.2	176234	23.4	\％0158：34	48	254803968
． 55	．0503：8	4.6	2059.63	11.4	19：541	23.6	$73: 0825$	49	282475：49
60	． 0 ãtib0	4.7	2293.45	11.6	210131	23.8	r63633：	50	312500000
	1160：2	4.8	2548.04	11.8	228 Tr6	24.0	796： 624	51	3450：25251
． 70	1680 \％	4.9	2824.75	12.0	248832	24.2	8：2999i6	52	380204032
． 75	2：3T305	5.0	3125.00	12.2	270271	24.4	8648666	53	418195493
． 80	． $3: 7680$	5.1	3450.25	12.4	29：3163	24.6	90089i8	54	459165024
	443i05	5.2	380204	12.6	317580	24.8	9381200	55	503\％ 243%
90	． 590490	5.3	4181.95	12.8	343597	25.0	9765625	56	550731\％\％
95	． 7 \％3781	5.4	4591.65	13.0	3 31293	25.2	10162550	57	60169205 ？
1.00	1.00000	5.5	5032.84	13.2	$400 \sim 46$	25.4	105T2ur8	58	656：356r68
1.05	1.27628	5.6	550% ． 2 2	13.4	432040	25.6	10995116	59	714924299
1.10	1.61051	5.7	6016.92	136	465259	25.8	11431377	60	\％r7600000
1.15	2.01135	5.8	6563.57	13.8	500490	26.0	11881376	61	844．596301
1.20	$2.4883 \cdot 2$	5.9	7149.24	14.0	537824	26.2	12345437	62	91613.883
1.25	3．0．5176	6.0	\％ 7776.00	14.2	$5 \uparrow 1353$	26.4	12823886	63.	992436543
1.30	3.71293	6.1	8445.96	14：4	61917	26.6	13317055	64	10：3741822
1.35	4.48403	6.2	9161.33	146	663383	26.8	1382：281	65	11602906：2
1.40	$5.378 \cdot 4$	6.3	9924.37	14.8	710082	2\％	14348907	66	12523325
1.45	6．40973	64	10737	15.0	759：375	27.2	14888280	67	135012510^{*}
1.50	7.59375	6.5	11603	152	811368	27.4	15443752	68	145393
1.55	8.94661	6.6	125：3	15.4	866171	27.6	16015681	69	156403134
1.60	10.4858	6.7	13501	15.6	923896	27.8	16604430	\％ 0	1680，0000
1.65	12.2298	6.8	14539		989658	28.0	17210368	71	180422935
1.70	14.1986	6.9	15640	16.0	10485 ¢ 6	28.2	17 ¢33868	72	193491：63
1.75	$16.41: 31$	$\bigcirc 0$	16807	16.2	11157T1	28.4	18475309	73	20730ヶ159
1.80	18.8957	7.1	18042	16.4	1186367	28.6	$191350: 5$	${ }_{4}$	22190066\％
1.8	$21.6 \% 00$	7.2	19349	16	1260493	28.8	1981355\％	75	23：30468
90	24.6610	7.3	20731	16	13：38：278	$\because 9.0$	20511149	76	25355\％53i
1.95	28.1951	7.4	22190	17.0	1419857	29.2	212：8253	$7{ }^{2}$	2r06：8415
2.00	32.000	7.5	23 230	17.2	1505366	29.4	21965275	78	$288 \pi 17436$
2.15	36.2051	7.6	25355	17.4	1594947	29.6	2272：628	ז9	30ヶ̃ 056399
2.10	408410	7.8	27068	17	1688742	20	23500728	80	32i680000
2.15	45.9101	7.8	$288{ }^{2}$	17.8	1786599	30.0	24300000	81	3480
$2: 20$	51.5363	7.9	30771	18.0	1889568	30.5	26393634	82	370î39843
2.25	57.6650	8.0	$32{ }^{2} 68$	18.2	1996903	31.0	286：9151	83	392904064
2.30	64.3634	8.1	34868	18	2109061	31.5	31013642	84	418211942
2.35	71.6703	82	$3 i 074$	18.6	2226：23	32.0	313554432	85	443705312
2.40	79．6：62	8.3	39390	18.8	2348493	39.5	36259082	86	47042i01\％
2.45	88.2735	8.4	41821	190	2476099	33.0	39135393	$8{ }^{1}$	4984209：0
2.50	97．6562	8.5	$443 \% 1$	19.2	2609193	33.5	4×191410	88	52でィ31916
2.55	107．8：0	8.6	47043	19.4	2747949	34.0	45435424	89	558405944
2.60	118.814	8.15	49842	19.6	289：547	34.5	488515980	90	590490000
2.70	143.489	8.8	52Tr3	19.8	304：3168	35.0	525：21875	91	6240322145
2.80	12．2．104	8.9	55841	20.0	3：00000	35.5	5638：167	92	6599081523
2.90	205.111	9.0	59049	20.2	：336323：3	36.0	60466176	93	695688369
3.00	243000	9.1	6：403	20.4	35．53059	365	64：83487	94	2．339040\％2
3.10	236.292	9.2	6.5908	20.6	3iv96it	37.0	69343957	95	773：80937
3.20	3335．544	9.3	69.569	20.8	3：93289	37.5	［415T15	96	815372697
3.30	391.354	94	－3390	21.0	40¢4101	38.0	79235168	97	8587340：5
3.40	454．354	9.5	77378	21.2	42×2322	38.5	84587005	98	903920：46
3.50	525．219	9.6	815：37	21.4	4488166	39.0	90224199	9	950990049
3.60	604.662	9.7	85873	21.6	4701：50	39	96158012		

CIRCUMFERENCES AND AREAS OF CIRCLES.

Diam.	Circum.	Area.	Diam.	CIrcum.	Area.	Diam.	Circum.	Area.
1	3.1416	0.7854	65	204.20	3318.31	129	405.27	13069.81
2	6.2832	3.1416	66	207.34	34:1 19	130	408.41	13:73.23
3	9.4248	7.0686	67	210.49	35.55 .65	131	41155	13478.22
4	12.5664	125664	68	213.63	3631.68	132	414.69	13684 78
5	15.7080	19.635	69	216.77	$3 \% 39.28$	1:33	41783	13892.91
6	18.850	28 274	70	219.91	$38+8.45$	134	4:0.97	1410: 61
7	21.991	38.485	71	203 05	39.59 .19	13.5	4:4.12	14313.88
8	25.133	50.266	72	226.19	$40 \sim 1.50$	136	427.26	14526. 12
9	28.274	63.617	. 3	229.34	4185.39	137	430.40	14741.14
10	31.416	78.510	74	232.48	430084	138	433.54	$14!55 \% .12$
11	34.558	95.033	75	235.62	4417.86	139	436.68	15174.68
12	37.693	113.10	76	238.76	45:36.46	140	439.82	15393.80
13	40.841	132.73	77	241.90	4656.63	141	442.96	15614.50
14	43.98\%	153.94	78	245.04	4778.36	142	446.11	15836.71
15	47.124	176.71	79	248.19	4901.6	143	449.25	16060.61
16	50.265	201.06	80	251.33	50\%6. 55	144	45:. 39	16:286.02
17	53.307	$2 \div 6.98$	81	254.47	5153.00	145	455.53	16513.00
18	56.549	254.47	82	257.61	5:81.02	146	458.6\%	16ヶ41.55
19	59.690	28:3.53	83	260.75	5410.61	147	461.81	1697167
20	62.8:3:	314.16	84	263.89	5541.77	148	464.96	17203.36
21	65.973	346.36	85	26\%. 04	$56 \% 450$	149	468.10	1743662
22	69.115	380.13	86	$2 \% 0.18$	5808.80	150	$4 \% 1.24$	17671.46
23	72.257	415.48	$8{ }^{\prime \prime}$	273.32	5944.68	1.5	$4 \pi 4.38$	1790\% 86
24	75.398	45:. 39	88	276.46	60s\%.12	152	477.52	18145.84
25	78.540	490.87	89	279.60	6221.14	153	480.66	18385. 39
26	81.681	530.93	90	282.74	6361.73	154	483.81	18626.50
27	84.823	57:. 56	91	285.88	6503.88	155	486.95	18869.19
28	87. 965	61.5 .75	9:	289 0:3	6647.61	156	490.09	19113.45
29	91.106	$66^{\circ} 0.5$	93	292.17	6792.91	157	493.23	19359.28
30	94248	\%06.86	94	295.31	69:39.'8	158	496.37	19606.68
31	97.389	754.75	95	298.45	7088.22	159	499.51	19855.65
32	100.53	804.25	96	301.59	7238.23	160	50: 65	20106.19
33	103.67	855.30	97	304.13	738981	161	505.80	20358.31
34	106.81	907.9:	98	307.88	754.26	162	508.94	20611.99
35	109.96	96:. 11	99	311.02	7697.69	163	512.08	20867.24
36	113.10	101\%.88	100	314.16	7853.98	164	515.22	2119407
37	11624	$10 \% 5.21$	101	31730	8011.85	165	518.36	21382.46
38	119.38	1134.11	102	$3: 2044$	$81 \% 1.28$	166	521.50	21642.43
39	122.52	1194.59	103	3:23. 58	8332.29	163	5:4.65	2190397
40	125.66	1256.64	104	326.73	$8494.8 \sim$	168	527. 99	2216708
41	128.81	$13: 205$	10.5	3:99 87	8659.01	169	530.9:3	22431.76
42	13195	1385.44	106	333.01	$88: 2.73$	170	534.0 \%	22698.01
43	135.09	1452.20	107	336.15	8992.02	171	537.21	22965.83
44	138.23	1520.53	108	339.29	9160.88	$1 \% 2$	540.35	2:3235. 23
45	141.37	1590.43	109	342.43	9331.32	113	543.50	23506.18
46	14451	1661.96	110	345.58	9503 3:	174	546.64	$23 \% 8.61$
47	147.65	1734.94	111	348.72	$96 \% 6.89$	175	549 \%	24052.82
48	150.80	1809.56	112	35186	9852.03	176	55:.9\%	24328.49
49	15394	1885.74	113	355.00	$100 \div 8.75$	17%	556.06	24605.74
50	$15 \% .08$	1963.50	114	358.14	10:27.03	178	559.20	24884.56
51	160.22	2042.82	115	361.28	1038689	$1 \% 9$	56: 35	25164.94
5.	16336	2123.72	116	364.42	10.568 .32	180	565.49	2.544690
53	166.50	2206.18	117	367.57	10\%\%1.32	181	568.63	$25 \% 30.43$
54	169.65	229022	118	$3 \pi 0.71$	1093588	182	$5 \% 1.17$	26015.53
55	112.79	$23 \% 5.83$	119	318.85	11122.02	183	$5 \% 4.91$	26:30:20
56	175.93	2463.01	120	$3 \sim 6.99$	11309.73	184	5\%8.C5	26:590.44
57	$1 \% 9.07$	2551.76	121	380.13	11499.01	185	581.19	26880.25
58	18: 21	2642.08	122	383.27	11689.87	186	584.34	$2 \% 1 \% 163$
59	18.5.35	$2 \sim 33.97$	123	386.42	1188*. 29	18 i	587.48	2~464.59
60	188.50	$28 \% 7.43$	124	38956	120ヶ6.28	188	590.62	2\%\%99.11
61	191.64	2922.47	125	392.70	12.2 ¹. 85	189	59:3.6	28055.21
$6 \cdot$	194.78	3019.07	126	397.84	$1 \cdot 468.98$	190	59690	28:352 8 \%
63	19\%.92	$311 \% .25$	$1 \cdot 7$	398.98	121667. 69	191	600.04	28652.11
64	1201.06	3216.99	128	402.12	12867.96	192	603.19	28952.92

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
193	606.33	29255.30	260	816.81	53092.92	327	1027.30	83981.84
194	609.47	29509.25	261	819.96	53502. 11	328	1030.44	84496.28
195	612.61	29864.77	262	823.10	53912. 87	329	1033.58	85012.28
196	615.75	$301 \% 1.86$	263	8\%6.24	54325.21	330	1036 \%3	85529.86
197	618.89	30480.52	264	829.35	54739.11	331	1039.87	86049.01
198	622.04	30790.75	265	83:2.52	55154.59	332	1043.01	86569.73
199	$6 \div 5.18$	3110:. 55	266	8:35.66	55571.63	333	1046.15	87092.02
200	628.32	31415.93	267	838.81	55990.25	334	1049.29	8 8 615.88
201	631.46	31730.87	268	841.95	56410.44	335	1052.43	88141.31
20%	634.60	32047.39	269	845.09	56832.20	336	10.55.58	88668.31
203	637.74	32365.47	270	848.23	57.255 .53	337	105872	89196.88
204	640.88	32685.13	271	851.37	51680.43	338	1061.86	84\% 27.03
205	644.03	33006.36	27.	854.51	58106.90	339	1065.00	90258.64
206	$64 \% 17$	333:29.16	273	857.65	58534.94	340	1068.14	90 ¢92. 03
207	$6 \overline{0.01}$	3:3653.53	244	860.80	58964.55	341	10:1.28	913\%6.88
208	653.45	33979.47	275	863.94	59395. ${ }^{4}$	342	1074.42	91863.31
209	656.59	34306.98	276	867.08	59828.49	343	1077.57	92401.31
210	659.73	34636.06	2ir	870.22	60262.8\%	344	1080. 71	924940.88
211	662. 88	34966.71	278	873.36	60698.71	345	1083.85	9348\%.0\%
212	fi66.02	3Ј゙298.94	$2 \div 9$	876.50	61136.18	346	1086.99	940.24. 73
213	669.16	3563\%.73	280	8 89.65	6157522	347	1090.13	94569.01
214	672.30	3.5968 .09	281	882. 79	62015.82	348	1193.2 î	95114.66
215	$6 i 5.44$	36305.03	$28:$	885.93	62458.00	349	1096.42	95662. 28
216	$6{ }^{\text {r }} 8.58$	36643.54	283	889.07	62901.75	350	1099.56	96211.28
217	681.73	36983.61	284	892.21	63:347.07	351	110\%. 70	$96 \hat{61.84}$
218	684.87	373:25. 26	285	895.35	63i93.97	352	1105.84	91313.97
219	688.01	37568.48	286	898.50	64242.43	353	1108.98	9\%86\%. 68
220	6491.15	38013.27	287	901.64	64692.46	354	1112.12	984\%2. 96
221	694. 29	38359.63	288	904.78	65144.07	355	1115.27	989\%9.80
$2 \% 2$	697.43	38707.56	289	90%	65597.21	356	1118.41	99538.22
223	r00.58	39057.07	290	911.06	66051.99	357	1121.55	100098.21
224	703.72	39408.14	291	914.20	66508.30	358	1124.69	$100659 . \% 7$
225	706.86	39760.78	292	917.35	66966.19	359	$112 \% .83$	101®ン2.90
226	\%10.00	40115.00	293	320.49	$6 \approx 4: 5.65$	360	1130.97	101r87. 60
227	713.14	404\%0.78	294	923.63	67886.68	361	1134.11	102353.8\%
2:8	${ }_{7} 716.28$	408:28.14	295	926.77	68349.28	362	1137.26	102421.72
229	719.42	41187.07	296	929.91	68813.45	363	1140.40	103491.13
230	\%22. 57	41547.56	29 T	${ }^{933} 3.05$	$692 \% 9.19$	364	1143.54	10406\%.12
231	\%25. 71	41909.63	298	9:36.19	69746.50	365	1146.68	104634.67
233	728.85	4 $2: 2$ \% 3.27	299	$9: 39.34$	70215.38	365	1149.82	105208.80
233	731.99	42638.48	300	942.48	\% 20685.83	367	1152.96	105 ¢84.49
234	735.13	43005.26	301	945.62	\%115i.86	368	1156.11	106361 66
235	738.27	43373.61	3012	948.76	¢1631.45	369	1159.25	10694060
236	\% 41.42	43 ¢ 43.54	303	951.90	T2106.62	370	1162.39	$10 \hat{5} 51.01$
237	744.56	44115.03	304	955.04	72583.36	311	1165.53	108102.99
238	\%47. 0	44488.09	305	958.19	¢3061.66	372	1168.67	108686.54
239	750.84	44863.73	306	961.33	73511.54	$3 \uparrow 3$	1171.81	109271.66
240	75398	452:38.93	307	964.47	\% $402 \% .99$	374	1174.96	109858.35
241	757.12	45616.71	308	967.61	\%4506.01	375	$11 \% 8.10$	110446.62
242	760.27	45996.06	309	970.75	T4990.60	376	1181.24	111036.45
243	763.41	$46: 376.98$	310	973.89	75476.76	377	1184.38	1116:7.86
244	766.55	46759.47	311	977.04	75964.50	$3 \uparrow 8$	118\%.52	112220.83
245	¢69.69	47143.52	312	980.18	$76+53.80$	379	1190.66	112815.38
246	772.83	47529.16	313	983.32	r6944.67	380	1193.81	113411.49
247	775.97	47916.36	314	986.46	7\%437.12	381	1196.95	114009.18
248	779.11	48305.13	315	989.60	77931.13	382	1200.09	114608.44
249	782.26	48695.47	316	992.74	784:6.72	383	1203.23	115:09.2\%
250	785.40	49087.39	317	995.88	¢8923.88	384	$1206.3 i$	115811.67
251	\%88.54	$49+80.87$	$3: 8$	999.03	$794 \div 20$	295	1209.51	116415.64
25:	791.68	49875.92	319	1002.1î	7992\%. 90	386	1212.65	117021.18
253	¢91.8\%	502\%2. 55	320	1005.31	80424.7i	387	1215.80	117628.30
254	ז97.96	$506 \pi 0.75$	321	1008.45	809:8.21	388	1218.94	118236.98
255	801.11	510:0.52	322	1011.59	8143:3 22	389	1222. 08	118847.24
256	804.25	51471.85	323	1014.73	819:39.80	390	1225.22	119459.06
257	807.39	51874.76	$3 \geqslant 4$	1017.88	82447.96	391	1228.36	120072.46
258	810.53	$522 \% 9.24$	325	1021.02	8:957. 68	392	1231.50	120687.42
259	813.67	52685.29	326	1024.16	83468.98	393	1234.65	121303.96

CIRCUMFERENCES AND AREAS OF CIRCLES． 105

Dia	Circum	Area．	m．		ea	Diam．	Ci	Area．
394	1237． 79	12192	461	1448.27	166913.60	528	1658.16	
395	1240．93	122541．75	46%	1451.42	167638.53	529	1661.90	219786.61
	1244．0í	123163．00	463	1454.56	168365． 02	530	1665.04	220618.34
39%	1247．21	1237785．82	464	1457.70	169093.08	531	1668.19	$2 \cdot 1451.65$
398	12950．35	1：4410．21	465	1460.84	16932\％．72	53：	16i1．33	224286.53
399	125：3 50	125036．17	466	146：3．95	170553.92	533	1674.47	223122.98
400	1：56． 64	125663．71	467	1467.12	171286．70	534	1677.61	22396
401	1259． 8	$1: 6292.81$	468	1470.27	1120\％1．05	535	1680．\％ 5	224800.59
402	1262．92	12692：3． 48	469	147341	172\％56．97	536	1683.89	225641.75
403	1266.06	127555.73	470	1476.55	173494.45	53%	1687.04	226484.48
404	1269．20	128189.55	$4 \% 1$	1479.69	1742：33．51	533	1690.18	227328．79
405	$122^{2} 2.35$	128824．93	47：	1482． 83	$1 ¢ 4974.14$	539	1693．32	228174.66
406	1275.49	129461．89	473	1485.97	175\％16．35	540	1696.46	$2290 \% 2.10$
407	12\％8．63	130100.42	$4 i 4$	1489.11	1ז6460 12	541	1699.60	229871.12
408	1281.7 T	130ヶ40．52	$4 \pi 5$	1492.26	1ヶT205．46	542	170\％．74	：30i21
409	1：84．91	131382． 19	\％	1495.40	17ヶ952．37	543	1 T 15.88	2：315i3．86
410	1288.05	13：0025．43	47%	1498.54	$178 \% 00.86$	544	1709.03	232＋2\％． 59
411	1291.19	$13: 660.24$	$4 \% 8$	1501.68	179450.91	545	171217	2333282． 89
412	1294.34	133316．63	479	1504.82	180202．54	546	1715.31	234139.76
413	1297.48	133964．58	480	1507.96	180955．74	547	1718.45	234998.20
414	1300.62	134614.10	481	1511.11	181710.50	548	$1 \tau 21.59$	235858.21
415	1303.76	135255.20	482	1514.25	182466.84	549	1ヶ24．73	$236 \sim 19 . \% 9$
416	1306.90	135917.86	483	1517.39	183：24． is 5	550	1227.88	23758\％． 94
417	1310.04	1365 \％̌2． 10	484	1520.53	183984．23	551	1731．02	238447.67
418	1313.19	137227.91	485	152\％ 2.67	$184 \% 45.28$	552	1734.16	239313.96
419	1316.33	1：37885．29	486	1526．81	185507.90	553	173\％．30	240181.83
420	1319.47	138544.24	487	15：9．96	1862\％2． 10	55	1740.44	241051.26
421	13322.61	139：204．76	488	1533.10	187037.86	555	1743.58	241922．27
42：	13325． 75	139866.85	489	15：36．24	187805.19	556	1746.73	242794.85
423	13323.89	1405．30．51	490	1539.38	185574.10	557	1749.87	243668.99
424	1332 04	141195．7t	491	1542．52	189344	558	1753.01	244514.7
425	1335． 18	14186254	492	1545．66	190116.62	559	1756.15	24
426	13：38．32	142530.92	493	1548.81	190890.24	560	1759.29	246300.86
427	1341.46	143：200 86	494	1551.95	191665.43	561	1762.4	247181.30
428	1344.60	1438 T2． 38	495	155509	19：342．18	562	1765.58	248063.30
429	1347.74	144545.46	496	1558.23	193220．51	563	1763.7	245946.87
430	1350.88	145 220.12	497	1561.3 T	194000.	564	1771.86	2498：32． 01
431	13.54 .03	145896.35	498	1564.51	$19+781.89$	565	$17 \pi 5.00$	250718
43：	1357.17	14657415	499	1.567 .65	195564.93	566	1778.14	2.51607 .01
433	1360.31	14i253．52	500	1570.80	196349.54	56 亿	1781．28	252496.87
434	1363.45	$14 \sim 934.46$	501	1573.94	197135．72	568	1784．42	253388.30
435	1366.59	148616.97	502	1577.08	197923．48	569	1887.5π	254281.29
436	1369.73	149301.05	503	1580.92	198712.80	570	1790.71	255175.86
437	1372.88	149986.70	504	1583.36	199503． 70	571	1 193．85	2560 т2．00
438	1376．02	1506 т\％． 93	505	1586.50	200296．17	5%	1 1796．99	256969.71
439	13 亿9．16	151362．72	5	1589.65	201090．20	573	1800.13	$25 \% 868.99$
440	138\％． 30	152053．08	50	159\％．79	201885.81	$5 \% 4$	1803.2 ir	$255 \% 69.85$
441	1385.44	15：T45．02	508	1595.93	202682．99	5%	1806.42	259672．27
442	1383.58	15343853	509	1599.07	203481.64	576	1809.56	260
443	1391． 73	154133.60	510	1602． 21	201288．0í	574	1812． 70	261
444	1394.87	154830.25	511	160535	205083.95	578	181584	262388.96
	139801	155528.47	512	1608.50	205887.42	5 T 9	1818.98	263297.67
446	1401.15	$1562 \cdot 8.26$	513	1611.64	206693.45	580	1822． 12	264207．94
447	1404．29	156929.62	514	1614．78	207499.05	581	1825.27	265119.79
448	1407.43	15＇632． 55	515	1617．92	208.307 .23	58.2	1828.41	266033.21
449	1410.58	158337.06	516	1621.06	209116.97	583	1831.55	266918.20
450	1413.72	159043.13	517	1624．20	209923．29	584	1834.69	26ヶ864．${ }^{6}$
451	1416.86	159750.77	518	1627．34	$210 ヶ 41.18$	585	1837.83	268782.89
452	1420.00	160459.99	519	1630.49	211555.63	586	1840.97	269502．59
453	14：3．14	161170.77	520	1633.63	$21 \cdot 371.66$	587	1844.11	270623．86
454	14：6．28	161883.13	521	1636.77	213189.26	588	1847.26	271546.70
455	1429.42	16：2597． 05	522	1639.91	214008.43	589	1850.40	2 24 $^{\text {2 }} 1.12$
456	1432．57	163312.55	523	1643．05	2148：29．17	ธ90	1853.54	273397． 10
457	1435.71	164029.62	524	1676.19	215651.49	591	1856.68	274324.66
458	1438.85	164748.26	525	1649.34	216475.37	59.2	1850.82	275253．78
459	1441.99	165468．47	526	1652.48	217300.82	593	1862.96	$2 \pi 6184.48$
460	1445.13	166190.25	527	1655.62	218127.8	594	1866.11	$27 \% 116.75$

						73	2249.65	
59\％	1875.53	2\％99：2．9\％	665	2059.16	3＋デ3\％\％ 10	733	230：． 39	． 79
598	18786	280861．5\％	666	2092.30	348368.07	734	230593	423134.97
	1881.81	28180165	667	2095.44	349415.00	T35	2309.07	424：91． 2
600	1884.96			2098.58		736		
601	1888.10	283686.60	65	2101 T3	35151359	73	2315.35	426603． 94
602	1891.24	284631.44	670	$2104.8{ }^{\text {¢ }}$	35：2565．24	738	2318.50	42：－6\％2．40
60：3	1894.38	285517.84	$6{ }^{6} 1$	2108.01	3536．8．45	739	2321.64	289：2．43
		2	6r	2111.15		740		
605	1900	28 T4i5． 36	6 \％	2114.29	$355 \div 29.60$	\％41	2327.92	431247．21
606	1903.81	288426.48	$6 \uparrow 4$	2117 4：	3556～87． 54	\％4：	2：31．06	432411.95
	1906.95	289379.17	$6 \pi 5$	2120.58	$35 \sim 1847.04$	74	2334． 20	4335 \％ 8.2 \％
	1910	2903．．	676	$2123 . \mathrm{it}$	358	64		
60	13	291：289．26		21：26．86	3599＾0．	\％ 4	2310.49	435915.62
610	$1916.3 \uparrow$	292246.66	6i8	2130.00	361034.97	\％4	$23+3.63$	43 2086．64
611	191951	293245.63	$6{ }^{6} 9$	2133.14	36：2100． 75	74	2346.76	438259.24
	192：2	294166	680	2136.28	36316	\％ 48	2349.91	439433.41
，	1925	51：8．2				749	23：53： 05	44060916
14	19：28．44	296091.97	68.	2142.	365307.54	750	2356.19	441×186.47
615	1932．0	$29 \% 05 \sim .22$	683	2145.	3663	75	2359.31	4＋1965． 35
	$19: 35$	2980：24． 05	68	2148.85	$36{ }^{\text {a }}$	\％5	23662．48	444145.80
	19938．36					75	2：36	40.32153
	1941.50	299962.41	68	2155.13	369605.23	15	2368	446511.42
619	1914.65	3009：33．95	68	$2158.2 \hat{1}$	3テ̈0683．59	755	23 ¹．90	44～696．59
20	1947	301907	688	2161.	$3{ }^{1763}$	\％ 56	$23 i 5.04$	448883.32
	1950．9：3				372845		2378.19	4500 11．6：3
682	1954	303857\％．98	690	216\％． 0	$3 \div 3928$ 0 ${ }^{\text {¢ }}$	758	2381.33	51261.51
623	19.57	30483580	691	$21 \% 0$	$3 i 5012.50$	759	23384	524：2．96
624	1960	305815． 20	69	2173	3＇6098．91	860	238	98
	，	306i	69	12	371186	961		
626	1966.64		69	$2180.2{ }^{2}$	$378: 26603$	\％ 6	2393． 89	． 3
62 ชิ	1969.78	308i6？．79	695	2183.41	379366.95	：63	239\％． 04	
	19T2	309148.4	696	2186.55	3804 ¢5	r6	2400	
		0 T35			；381	76		
630	$19 \% 9$	$311 ヶ 2453$	698	2192.83	38：649．	\％6	2406.46	$6183 \% .08$
631	198\％．35	312 c 14.92	699	$\because 195.9 \sim$	383＇46． 33	\％ 6	2409.60	$6: 041.10$
	198549	$313 i 06.88$	700	2199.11	384845.10	\checkmark	2412	
	1988.63	314：00．40	\％01	2202． 26	3859	169	2415	81
	991	315695.50	\％		$38 i$	70	41	
	1994． 91	316692 17	803	2208	388150.	71	2422.17	668\％：． 8 \％
	1998.05	$31 \pi 590.42$	70	2211	389255．	\％ 7		
	2001	31869023	\％05	221	39036：．	7%		
		－	\％06		$3914 \sim 0$	\％ĭ	2431.59	
639	2010.4	320694.56	707	221.11	392580.49	975	243	
640	2010.62	3：1699．09	708		393691．82	\％ 7		
	13	3：	\％	$2222 \% .39$	394804	7		
		323 \％12．85	710		39：2919．21	\％ 78		
	2020．04	324Tごり． 09	\％11	2：233． 621	397035 26	$7 \% 9$	244\％．30	4T66611．81
644	2023.19	325 33.89	712	$22: 36.81$	398152． 89	780	2450.44	
	20：6．33	3：6i45	713	2239.96	399 2r2	\％ 81	245	47906\％．25
	2029.45	327\％59	714	2t	$4(1039$	\％8	¢456． 73	48028
	－				401515		459	15
	2035． 75	329ヶ91．83	16	2449.38	4026390	\％	2463.01	紜ヶ9969
	2038.89	3：30810．49	717	225\％．5：	40：3ヶ64．56	¢85	2466.15	88981.98
55	20	331830.7	718	2：5	4048	78	2469	485：15．84
			19		4060：0．22	78	24 20． 43	－101．28
	2048.32	3338 í	220	2261.95	40ヶ150．4	78	2475.58	80．688．28
	2051.46	334900	721	2365.09	40828\％． 11	\％89	2478	4889\％6．85
	205	33592	722	2268	409415.	790		4901
	2057	3：3695	22：	22 T 1	410550.	991	2485.00	491408． 11
	206	3．3985	\％2t		411686.87	\％92	2488.14	492651.99
657	2064.03	3：39016．33	$2 \overline{5}$	2：77．65	41：28：24．91	\％93	2191.	493896.85
	2067	340049	26	2288080	413964．5\％	r9	249	495143.28
59		34		S3．94	415105． 61	795	2497．5？	496：391．27
66	200.45		728		41243.46	796	0．71	$49 \% 640.84$
601	2076．59	343156	2	2290．22	417392．79	¢97	2503.85	498891.98
66.2	2079	34419	0	2293.36	418538	\％98	2506.99	500144.69

CIRCUMFERENCES AND AREAS OF CIRCLES． 10%

D	Cir	Area．	Diam．			Diam．		Area．
799	251		867	2723.66	590375．16	935	． 39	686614.71
800	2513.27	50：654．8：	865			9.3		688084
	2516.42	50：391\％．25	869	27．30． 04	593102 06	937	2943．67	
802	2519.56	505171．24	870	2733.19	594667.87	938	294681	6910：7．86
803	25：2． 70	506431．80	871	2736.33	595835．25	939	2949.96	69：50\％．05
804	$25 \cdot 55.84$	507693．9t	$8{ }^{2}$	2739.47	597：24．20	940	2953.10	69397\％．82
	$25: 8.98$	50895T． 64	873	2742． 61	5985\％ 4.72	941	29.56 .24	695455.15
806	$253 \% .12$	510% \％ 92	874	$2 \pi 45.75$	599946.81	942	2959.38	696934．06
807	2335.2τ	511489.77	Si5	$2 \pi 48.89$	$6013: 047$	943	2962．52	698414.53
808	2538.41	512\％58．19	$8 \pi 6$	$2{ }^{2} 52.04$	60：2695． 70	944	2965.66	699896.58
	$25+1.55$	5140：2． 18	8 8	2755.18	6040积． 50	945	2968.81	¢01：380．19
810	2544.69	515299． 44	878	2758.32	605450.88	$9+6$	2971.95	ז02865．38
811	2547.83	5165%	879	2761.46	6068830．82	94%	2975.09	\％0435 2． 14
812	2550.97	517847．57	880	2764.60	608：12．34	948	2978.23	т05S40．4 ${ }^{\text {r }}$
813	2554.11	519123.84	801	2167.74	6095.95 .42	949	2981.37	20ヶ3330．3
814	2557.26	520401．68	88.2	2T\％0．88	610980.08	950	$\because 954.51$	
815	2560.40	521681．10	883	274.03	611.366 .31	951	2987.65	\％10：3
816	256：3．54	5\％2962． 08	884	2\％7\％．17	613 To5 4.11	952	2990.80	โ11809．50
17	2566.68	$5 \cdot 424.63$	885	$2 \sim 80.31$	615143.	953	2993.94	¢13：U5．1i8
	2569	5\％5528． 6	886	2783.45	616.534 .42	9.4	2997.08	714＾03．43
819	$25 \% 2.96$	5：6514．46	887	2786.59	61ヶ926．93	955	3000.22	\％16302． 6
820	25 T 6.11	5：8101．73	888	$2 \% 89.73$	619321.01	956	3003.36	¢11803．66
1	2579． 25	5：29390．56	889	2793．88	$620 \sim 1666$	95 \％	3006.50	7193061
	2582.39	530680．97	890	$2 \% 96.02$	$6 \because 2113.89$	958	300965	T20810．16
	2585.53	531972．95	891	$2 \pi 99.16$	623.512 .63	959	3012． 99	ก2： 2313.7
824	2588.6π	5333：66．50	892	2812.30	$6: 4913.04$	960	301593	\％238＊2．95
825	2.591 .81	$53+561.6 \pm$	893	2805.44	626：314．98	961	3019.0 ar	\％ 25331.70
826	2594.96	535858.32	894	2508.58	62TT18 49	962	$30 \% 2.21$	T26842．02
	2.598 .10	537156．58	895	2811.73	6：29123．56	963	3025.35	
8	2601.24	53855641	896	2814.8 ¢	6：305：30．21	964	3028.50	โ2986\％．3i
8：29	2604.38	539757.82	897	2318.01	631938．43	96	3031.64	7．3138\％． 40
830	$260 \mathrm{i} .5 \geqslant$	541060.79	895	28.11 .15	63333448．22	966	3034． 78	732899.01
	2610.66	5 +2.365 .34	9	28.24 .29	6：34759．53	96%	3036	\％34417．18
㖪	2613.81	543671.46	900	28：7．43	636172.51	968	3041.06	735
833	2610 ． 95	5449 ¢9．15	901	283058	6：37587． 01	969	3044.20	73ヶ458．24
834	2620.09	546－388．40	902	2833． \％2	63900：3． 09	970	3047.34	¢ 38981.13
	26：3．23	547599.23	903	2836.86	$640+20.73$	$9{ }^{1} 1$	3050.49	740505.59
	$26 \cdot 6.37$	548911.63	904	2840.00	641839.95	972	3053.	742031．62
837	2629.51	550：2．2． 61	905	2813.14	643：200．73	973	3056.77	743359.23
$8:$	26.33 .65	551541.15	9	2816.28	644683.09	974	3059.91	745088.39
839	263．3． 80	55：858．26	907	2849.42	646107.01	975	3063	746619.13
840	2638.94	$55+1166.94$	900	2852.54	6 tiju3． 51	976	3066.19	\％48151．44
1	2642.08	55．5497．20	909	2855.71	648959.58	977	3069.34	
842	2645.22	556819．02	910	2858.85	650388.	978	3072.48	\％512：2． 78
843	264836	558142.42	911	2861.99	651818.43	979	30ヶ5．62	\％52i5\％． 80
844	2651.50	559467.39	912	2865.13	6533250． 21	980	3078.76	75429
	2654.65	560～93．92	913	2868.27	65.4683 .56	$98 i$	305190	T5583
846	$2657 . \pi 9$	56：2122．03	914	28 \％1．42	656118.48	982	3085.04	ก5～3へ8．30
847	2660.93	$563451 . \pi 1$	915	2874.56	657554.98	983	3088.19	¢58921．61
848	$2664.0 \hat{1}$	564\％8． 96	916	$28 \% 78$	658993.	98	3091.33	760466 48
89	2061.21	566115.78	91	2880.84	6	985	3094.47	\％62012．93
850	2610.35	$56 \pi 450.17$	918	2883.98	661833.88	986	3197.61	
851	26 テ3． 50	568 \％ 86.14	919	2887.12	66331666	987	$3100 . \pi 5$	¢65110
852	2676.64	5\％01：3．6\％	920	2890.24	661 ¢ 61.01	989	3103.89	¢66661．
853	2619.78	5i1146．$\frac{71}{1}$	$9 \% 1$	2893.41	666206.92	959	3107． 04	¢68214．4
	26529	5ヶ：2033．45	$9 \because 2$	2896.55	66.6654 .41	990	3110.18	т69\％68．
85.5	2656.06	5i4145．69	929	2899.69	669103.4%	991	3113.32	T113
856	2689． 20	$5 \pi 5489.51$	924	？903．83	$6 \pi 0554.10$	992	3116.46	7T2882．06
	2692．34	5．6834．90	925	$2905.9 \tilde{1}$	$6 \% 2006.30$	993	3119.60	กT4441．07
858	2695.49	578181．85	926	2909.11	$6: 3460.08$	994	3122.74	Tr6001．66
859	2698.63	579．530．38	$9: 27$	2912.26	$6 \pi 1915.42$	995	3125.88	
860	2～01． 1 亿	580880.48	928	2915.40	$6763 \% 2.33$	996	3129.03	11912.0
861	2704.91	5822．32． 15	929	2918.54	6 6\％ 230.82	997	3132.17	\％ 06692.8
862	$2 \pi 08.05$	58，3585． 39	930	29：11．68	679290.8π	998	3135.31	\％8ㄹ．59． 11
863	2711.19	584940.20	931	2924.82	$680 \sim 552.50$	999	3138.45	¢83828．1
865	2714.34	5862．96．59	9332	292\％．96	$6 \times 2.215 .69$	1000	3141.59	785398.1
865 866	$2 \sim 17.48$	58，654．54	933 934	$29: 31.11$ $293+25$	68.3680 .46			
866	$2 \sim 2062$	589014.0 ã	334	2934.25	685146.80			

CIRCUMFERENCES AND AREAS OF CHRCEES

Advancing by Eighths．

Diam．	Circum．	Area．	Diam．	Circum．	Area．	Diam．	Circum．	Area．
1／64	． 04909	． 00019	$\begin{gathered} 23 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \\ 15 / 16 \end{gathered}$	74613	4.4301		19.242	29.465
1／3／2	． 09818	． 00077		7.6576	4.6664		19.635	30680
3／64	． $14 \sim 26$	． 00173		7.8540	4.9087		20.028	31.919
1／16	． 19635	． 00307		8.0503	5.1512		20.420	33.183
3／32	． 29452	． 00690		8.2467	5.4119		20.813	34.472
	．392\％ 0	． 0122 T		8.4430	5.6727		21206	35.785
5／32	． 49087	． 0191 亿		8.6394	5.9396		21.598	37.122
$3 / 16$	． 589095	．02r61		8.8357	6.2126		21.991	38.485
7／32	． $68 \% 2$	． $03 \% 758$		9.0321 9.2384	6． 6.7918	$\begin{aligned} & 10 \\ & 3 \\ & 3 \end{aligned}$	22． 384	39.871
	．	． 0			6.771170686		22． 2 in 6 23．169	41.282
$9 / 3 \cdot 2$	． 88357	．06：13	3.	9.4248			23．56：2	$44.1 \tau 9$
5／16	98175	07670	3. $1 / 16$	96211	7．366：2		23.955	45664
11／32	1.0799	．09281		9.8175	7． 66.99		24.34%	47.173
	1.1781	．11045	$\begin{gathered} 3 / 16 \\ 1 / 4 \end{gathered}$	10.014	\％．9ヶ98	\％ 8	24.740	48.707
13／32	1.2763	．1296．		10.210	8．2958	8	25.133	50.265
7／16	1．3744	． 151433	$\begin{gathered} 1 / 4 \\ 5 / 16 \end{gathered}$	10.407	8.6179	$\begin{aligned} & 1 / 8 \\ & 1 / 4 \\ & 38 \end{aligned}$	25.918	51.849
15／3：	1.4726	． 17257	$\begin{aligned} & 3 / 8 \\ & 7 / 16 \end{aligned}$	10.603	8.9462			53.456
				10． 749	9． 2806		26.311	55088
	$15 r 08$	． 19635	$\begin{aligned} & 1 / 2 \\ & 9 / 16 \end{aligned}$	10.996	$9.6 \because 11$	$\begin{aligned} & 1 / 2 \\ & 5 \\ & 5 \end{aligned}$	26．6．04	50.74558.426
17／32	1.6690	221166		11.192	9．96\％8		27.096	
9／16	1． $.76 \pi 1$	24850	$\begin{array}{r} 9 / 16 \\ 5 / 8 \end{array}$	11.388	10.321	$\begin{aligned} & 5 \% \\ & 38 \\ & 8 / 8 \end{aligned}$	27.489	60.132
19／3：	1.8653	27688	$\begin{gathered} 11 / 16 \\ 3 / 4 \end{gathered}$	11.585	10.680		27.88%	61.86°
	1.9635	． 30680		11.781	11.045		28.244	${ }^{63.61 \%}$
21／3？	2.0617	． 338.24	$\begin{gathered} 3 / 4 \\ 13 / 16 \end{gathered}$	$11.9 \uparrow$	11.416	$1 / 8$$1 / 4$	28.667	
11／16	2.1598	． 37122	7／8	12．124	11.793		29.060	67.20169.029
23／3：	2.2580	．405゙̃4	$4^{15 / 16}$	12.370	12.177	$\begin{aligned} & 18 \\ & 38 \\ & 18 \\ & \hline 2 \end{aligned}$	29.452	
				12.566	12.566		29.845	\％0．882
	2． 3562	411	$1 / 16$	12．763	12.962		30.238	\％2．7C0
25／32	2． 4544	47937	$1 / 8$	12.959	13.364		$\begin{aligned} & 30.631 \\ & 31.02: 3 \end{aligned}$	\％4．662
13／16	2．55\％	51849	3／16	13.155	13.75	\％$\%$		76.58978.540
2\％／32	2． 650 ir	55914	1／46	13．35\％	$14.18{ }^{\text {d }}$	10.	31.416	
	2． 7489	．60132		13.548	14.60 \％		31．809	80.516
29／3：	2．84\％1	64504	5／16	13．744	15.033	1／8		
15／16	2.9752	． 69029	$r / 16$	13.941	15.466	38	$3 \times .594$	84.541
31／32	3.0434	． 73608	$\begin{aligned} & 1 / 2 \\ & 9 / 16 \end{aligned}$	14．13ir	15.904	$1 / 2$$5 / 8$	$\begin{aligned} & 33.98 \% \\ & 33.3 i 9 \end{aligned}$	86.59088.664
1.	3.1416			14.334	16.349			
		． 7854		14.530	16.800	18／8	33.79	88.664 90.64
1／16	3．3379	． 8866	$\begin{gathered} 11 / 16 \\ 3 / 4 \end{gathered}$	14.726	17． 257		34.16 .5	92． 886
1／8	3.5343	． 9940		14.923	17．728	11.	34.558	95.033
3／16	3．7306	1．10\％5	13／16	15.119	18.190	$1 / 8$$1 / 4$	34.950	97.205
1	3．9270	1．23\％2	$7 / 8$$15 / 16$	15.315	18.665		35.343	99.402101.62
5／16	4．1233	1．3530		15.512	19.147	112	35.736	
	4.319 T	1.4849		15． 008	19.635		36.12836.521	103.87
$7 / 16$	4.5160	1．6230		15.904	20.129	5 3		106.14
	4． 5124	1．76\％1	1／16	16.101	$20.6 \div 9$		36.91437.306	108.43
9	4.9087	1.9175	$\begin{aligned} & 3 / 16 \\ & 1 / 4 \end{aligned}$	16.297	21.135	．7／8		110.75
	5.1051	2.0739		16.493	21.648		37.699	113.10
11／16	5.3014	2.2365	5／16	16.690	22.166		38.092	$\begin{aligned} & 115.4 \% \\ & 11 \% .86 \end{aligned}$
	5．4978	2.4053		16.886	22.691		38.48 .5	
$13 /$	5.6941	2.5402	$3 / 8$ $7 / 16$	17．08．2	23.221	1841818	$38.8{ }^{\text {r }}$	120.28
	5.8905	2．r612	1／2	17.279	23.758		$39.2 \pi 0$	122.72
15／16	6.0868	2．9483	$\begin{aligned} & 9 / 16 \\ & 5 / 8 \end{aligned}$	17．4\％5	24.301	$\begin{aligned} & 5 \% \\ & 3 \end{aligned}$	39.663	125.19
				17．6～1	24.850		40.055	127.68
	6．2832	3.1416	11／16	17.868	25.406		40.448	130.19
1／16	6.4795	3.3110		18.064	25.96 \％	13.	$\begin{aligned} & 41.233 \\ & 41.626 \\ & 42.019 \\ & 42.412 \end{aligned}$	$\begin{aligned} & 135.30 \\ & 137.89 \\ & 140.50 \\ & 143.14 \end{aligned}$
	6.6759	3.5466	13－16	18． 261	26．59，5			
3／16	6.8722	3．7583	，	18.457	27.109			
1／4	7．0686	3.9761	15－16	18.653	27.688			
5／16	\％． 2649	4.2000	6． 18.880		28.234			

CIRCUMFERENCES AND AREAS OF CIRCLES． 109

Diam．	Circum．	Area．	Diam．	Circum．	Area．	Diam．	Circum．	Area．
	42.804	145.80	$217 / 8$	68．722	375.83	$301 / 8$	91.640	712.76
	43.197 43.590	14849	22.	69.115 69.508	380.13 381.46	1／4	95.033 95.426	118.69 64
	43.98%	153.94		69.900	388．8\％		${ }_{95} 9.819$	730.62
	44.375	156 \％ 0		\％0．293	393．20		96.211	\％36．62
	44.768	159.48		70.686	397.61		96.604	\％42．64
	45.160	16：．30		\％1．0ヶ9	40\％． 04		96.997	\％ 48.69
	45.553	165）．13		\％1．471	406.49		97.389	754.77
	45.916	167.99		โ1．864	410.97		97．78\％	260．87
	46.338	170.87		72.257	415.48		98.1 \％	\％66．99
	46.731	173．78		72.649	120．00		98.567	77.3 .14
	47.124	176.71		73.042	424.56		98.960	ก̂9．31
	47.517	179.67		73.435	$4: 9313$		99.353	ก85． 51
	47.909	1826.5		73．8\％7	4．33． 74		99.746	\％91．73
	48．30\％	185.66		\％4．220	＋38．36		100． 138	797.93
	48695	183.69		\％4．61：3	＋4i3． 01		100．531	804．is
	49.087	191.75		75.006	147．69		100．9\％4	\＄10．54
	49.480	194.83		25.393	452.39		101.316	816.86
	49.873	197．93	1／8	75.591	457.11		101．709	823． 21
	50.26 ¢	201.06		\％6．184	461.86		10：． 102	$8: 9.58$
	50.658	201．23		ก6．5\％6	466.64		102．494	835．97
	51.051	207.39		76.969	471.44		10：． 887	84：39
	51.414	210.60		\％7．362	476：26		103． 280	848.83
	51.836	213.82		77.754	481.11	3.	103．6\％3	855.30
	52．2：29	217.08		78.147	485.98		104065	861.79
	52．6\％2	220.35	5．	78.540	490.87		104.458	868.31
	53.014	$2 \because 23.65$	1／8	โ8．933	495． 99		104.851	$8 \% 485$
	53407	2：6．98		79.325	500.74		105．243	881.41
	53.800	2：30．33		79.718	50571		105.636	888.00
	54.192	23.3 .71		80.111	510.71		106．0：9	894.62
	54.585	23710		80.503	515.72		106．4：1	901.26
	24．9ǐ	240.53		80.896	520． 77	34.	106.814	907.92
	55.371	243.98		81.289	5.584		107.207	914.61
	55.763	247.45		81.681	530．93		10\％．600	$9: 1.32$
	56.156	25095	$1 / 8$	83．074	5 363.05		10ヶ．992	9：8．06
	56.549	$25+47$	$1 / 4$	82．467	54119		108．385	9：34．82
	$56.9+1$	258.0%		82860	$5+6.35$		108．738	$9+1.61$
	57．334	261.59		83.25%	55155		109．1：0	943.42
	54．727	26． 18		83.645	556.76		109．56：3	955.25
	58.119	268.80		84.038	562.00		109.956	96211
	58.512	24.45		84.430	$56 \mathfrak{6} .27$		110.358	969.00
	58.305	276.12	27.	84.893	5 5\％2． 56		110．it1	915.91
	59.298	27981		85.216	577.8 \％		111.134	942.81
	59.690	28.3 .53		85.608	583．3．21		$11152 \sim$	989.80
	60 08：3	287． 27		86.001	$588.5 \hat{\sim}$		111.919	9：16． 18
	60.456	291.04		86.394	593． 96		112．312	1003.8
	60.853	294.83		86786	599.37		112.705	1010.8
	61.261	298.60	\％	$87.1 \% 9$	604.81	36.	$11: 3097$	1017.9
	61.654	342.49		8 t 512	610.27	1／8	113．490	$10 \% 0$
	62.046	30635	8.	87965	615.75		11388	10：32． 1
	$6 \cdot .439$	310.24		88355	6：1．26		114.275	11：39．2
	62.83 .32	314.16		88.750	62680		114.668	1046.3
	63．205	318.10		89.143	63：3． 36		115061	1053．5
	63.617	3.2 .06		89．535	63\％ 3.91		115.454	1060.7
	64.010	$3 \div 6.05$		89．908	613.55		115.816	106\％． 0
	64.403	3：30．06		90.321	649.18		116．239	1075.2
	64．795	334.10		90） 713	6.54 .84		116.632	108：． 5
	65188	3：38．16	9.	91.106	660.58		117.024	1089.8
	65.581	342.25	1／8	91.499	666.23		117.417	1097.1
	65.973	346．36		91.892	$6 \pi 1.96$		11 ¢ 810	1104.5
	66.366	350.50		$9 \cdot .284$	$6 \pi 7.71$		118.202	1111.8
	66.759	351.66		92．6\％7	683.49		118.596	1119.2
	67．15\％	358.84		93.0 \％ 0	6ヶ9．30		118.988	1126.7
	67.544	36：3．0．5		$93.46{ }^{2}$	695.13	38	119.381	1134.1
	67．93i	36\％． 28		93．8．5	¢00．98		119．7T3	1141.1
	68．330	$3 \pi 1.54$	30.	91.248		14	120.166	1149.1

Diam．	Circum．	Area．	Diam．	Circum．	Area．	Diam．	Circum．	Area．
$\begin{array}{r} 383 / 8 \\ 1 / 8 \\ 5 / 8 \\ 3 / 4 \\ 7 / 8 \\ 39 . \end{array}$	120.559	1156.6		146.477	1r0\％．4	547／8	112.395	2365.0
	120.951	1164.2		146.869	1716.5		1 12． 148	2375.8
	121.344	1171.7		147． 262	17．25．7	$1 / 8$	173.180	2386.6
	121.137	1179.3		147.655	1734.9	14	173.573	2397.5
	122．129	1186.9	$1 / 8$$1 / 4$	148.048	1744.2	$3 / 8$	113.966	2408.3
	122．52\％	$119+6$		148440	1753.5	5／8	174.358	2419.3
$39 .$	1ヶ2．915	1202．3		148.833	1762.7		174.751	
	123．308	1210.0	18	$149.2 \div 6$	1772.1	7／8	175.144	
	123.700	1217．7	5／8	149.618	1781．4		$1 \pi 5.536$	2441.1
	124．093	$12 \cdot 25.4$		150.011	1790.8		175.929	2463.0
	124.486	1233.2		150.404	1800.1	$1 / 8$$1 / 4$	1\％6．322	24740
	124.878	1241.0	48	150.796	1809.6		176．715	2485.0
	125.261	1248.8	$1 / 8$	151.189	1819.0	38	177.107	$\begin{aligned} & 2196.1 \\ & 2507.2 \end{aligned}$
	125.664	1256.6		151.582	1828．5	$1 / 2$	177.500	
	126.056	1264.5	$1 / 8$$1 / 2$	151.975	183\％．9	588	177893	2518.3
	126.449	12 亿2． 4		152．367	1847.5		178.285	2529.42540.6
	126．842	1280.3	1／2	152． 760	185\％．0	$5^{8 / 8}$	178.648	
	127.235	1288.2		153.153	1866.5		179.0 ¢1	2540.6 2551.8
	127．627	12：96．2	8	153．545	1876.1		$1{ }_{1} 9.463^{3}$	2563.0$25 \sim 4.2$
	128．0：0	1304.2	49.	153.938	1885.7	11／4	179.856	
8／8	128.413	1312.2		154.331	1895.4		180.249	2585.4
	128．805	13：20． 3	14 3 8	154.723	1905.0	3／8	180.642	$\begin{aligned} & 2596.7 \\ & 2608.0 \end{aligned}$
	129.198	13：28．3		155.116	1914．${ }^{\text {¢ }}$	5／8	181.034	
	$1: 9.591$	13：36．4	$1 / 2$	155.509	1924．4	3848	181.427	2619.4
	129.983	1344.5		155.902	19342		181.820	2630.7
	130.356	135\％． 7	3848	156.294	1943.9	58.	182．212	
	130.769	1360.8		156687	1953.7		182．605	2642.1 2653.5
	131.161	1869.0	50	157． 080	1963.5		182．998	2664.9
	131.554	1377.2		15T． 47 \％	1973.3	38	183.390	26.6 .4
	131.947	1385 4	$1 / 4$$1 / 4$$3 / 8$$1 / 2$5$3 / 4$$7 / 8$51.8	15\％．865	1983.2	1／2	183.183	2687.8
	132． 340	$1393 . \%$		158.258	1993.1		184.176	2 2）10．9
	132． 732	1402.0		158.650	2003.0	384	184.569	
	133.125	1410.3		159.043	2012.9		184.961	27：2．22734.0
	133.518	1418.6		159.436	20\％2．	ธ9	185.354	
	133．910	142\％． 0		159.829	20332． 8		185.747	2745.62757.2275
	134.303	1435.4		160.221	2042.8	14	186.139	
8	134.696	1443.8	51．8	160.614	20528		186．532	2T65． 8
43.	135.088	1452．${ }^{\text {2 }}$	14	161.007	2062.9		186.925	$2 \hat{180.5}$
	135.481	1460.7	$1 / 8$$1 / 2$	161.399	2073.0	5%	187.317	2792.2
	135.874	1469.1		161．792	2083.1	3／4	187.710	2803.72815.7
	1336.267	1477.6	5／8	162.185	2093．2		188.103	
	136.659	1486.2		16：． 577	2103.3	60.	188.496	2827． 4
	137．052	$149+7$	8	16：．9\％0	2113.5	$1 / 4$	188.888	2839.22851.0
	137.445	1503.3	52.	163.363	21：3．${ }^{\text {¢ }}$		189.281	
	137.837	1511.9	1	163.756	2133.9	$3 / 8$	189.674	2862.9
44.	138．230	15：20．5	$1 / 4$388	164.148	2144.2		190.066	$28 \sim 4.8$2886.6
	138．623	15：99．2		164.541	2154.5		190.459	
	139.015	1537．9	$1 / 2$	164.934	2164.8	3848	190.852	2898.6
	139.408	15456		165．326	2175.1		191.244	2910.5$29 * 2.5$
	139.801	1555.3		165.719	2185.4	61.	191.637	
	140194	1564.0	8／8	166．112	2195.8		192．030	29.34 .52946.5
	140.586	1572.8	53.	166.504	2206．2	$1 / 4$	192．42：3	
	140．9デ9	1581.6		166.897	2216.6		192.815	2958.5
45.	$141.3 \chi^{2}$	1590.4		167． 290	2227.0	3／8	193.208	298\％． 4
	141.764	1599.3	$3 / 8$	167683	2：237．5	58	193． 601	
	142． 157	1608．2		168.0 ¢̃	2：248 0		193.993	2994.8
	142．550	1617.0	5／8	168.468	2258.5	$60^{1 / 8}$	194.386	30069
	14：．942	16：6．0		168.861	2269.1		194．779	3019.1
	143.335	1634.9		169.253	2： 29.6	1／8	195.171	3031.3
	143．7：8	1643.9		169.646	2290.2	$1 / 4$ $3 / 8$	195.564	3043．5
	144.121	165\％．9		170．039	2300.8		195．95\％	3055.7
46.	144.513	1661.9	$\begin{aligned} & 18 \\ & 3 \\ & 18 \\ & 18 \\ & 5 / 8 \\ & 3 / 4 \\ & \hline \end{aligned}$	170.431	2311.5	$\begin{array}{r} 1 / 2 \\ 5 / 8 \\ 3 / 4 \\ 63.8 \\ 63 . \end{array}$	$\begin{aligned} & 196350 \\ & 196.742 \end{aligned}$	3068.0
	144.906	1650.9		$1 \% 0.8 \% 4$	$23 \cdot 22.1$			308 n． 330923
	145.299	1680.0		171.217	23：33． 8		197.135	
	145.691	1689.1		171.609	2343．5		197．5：8	3104.9 3117.
1／2	146.084	1698.2		17：．00\％	2354.3		19\％\％ 920	

CIROUMFERENCES AND AREAS OF CIRCLES．

Diam．	Circum．	Area．	Diam．	Circum．	Area．	Diam．	Circum．	Area．
$\begin{array}{r} 631 / 8 \\ 1 / 4 \\ 3 / 8 \\ 1 / 8 \\ 5 / 8 \\ 3 / 4 \\ 74 . \\ 74.8 \end{array}$	198.313	3129.6	$\begin{array}{r} 713 / 8 \\ 1 / 2 \\ 5 / 8 \\ 3 / 4 \\ 72^{7 / 8} \end{array}$	224.231	4001.1	$\begin{array}{r} 795 / 8 \\ 3 / 4 \\ 70 \\ 80 \end{array}$	250.149	49ヶ9．5
	193． 206	3142．0		2\％4．6：4	4015.2		250542	4995.2
	199.098	3154.5		225：017	40：9．2．		250.935	5010.9
	199.491	3166.9		225.409	4043.3		251.720	5026.5
	199.884	$31 \sim 9.4$		$2 \% 5.802$	405 T． 4	$1 / 8$		5042.3
	200.277	3191.9		226.195	4071.5		25：． 113	5058.0
	200.669	3204． 4		226.587	40857		252.506	5073.8
	201.062	$3 \geqslant 17.0$	$\begin{aligned} & 14 \\ & 38 \\ & 18 \\ & 18 \end{aligned}$	226.980	4099.8	12	252．898	5089.6
	201.455	32：29．6		227.373	4114.0	$\begin{aligned} & 3 / 4 \\ & 8 / 8 \end{aligned}$		5105.45121.2
	201.847	3.42 .2		${ }_{2}^{227.765}$	4128.2		253.684	
	202．240	3254．8	$\begin{aligned} & 188 \\ & 5 / 2 \end{aligned}$	228.158	4142.5		254.086	5137.1
	202.633	3267．5		228.551	4156.8	81	254．86？	
	203.025	3280.1	8	224.944	4171.1	$\begin{aligned} & 1 / 8 \\ & 1 / 4 \end{aligned}$		5168.95184.9
	203.418	3292.8	73.	249．336	4185.4		255.254	
	203．811	3305.6	1／8	2\％9．729	4199.7	$3 / 8$	255.647	5184.9 5200.8
	204.204	3318.3	3／8	230.12%	4214.1		256.040	$\begin{aligned} & 0200.8 \\ & 5 \because 16.8 \end{aligned}$
	204.596	3331.1		230.514	$42 \cdot 8.5^{\text {² }}$	1／2	256.433	$\begin{aligned} & 5 \because 16.8 \\ & 5 \because 3 \% .8 \end{aligned}$
	204.989	3343.9	12	230.907	424． 9		25 5 .218	5248.9
	$205.38{ }^{2}$	3355.7	$5 / 8$$3 / 4$$7 / 8$	231.300	4257.4			$5 \because 64.9$5281.0
	205.774	3369.6		231.692	4271．8	82	257.611	
	$\because 06.167$	33882.4		232．085	4286.3		258.003	$5: 97.1$$5: 313.3$
	206.560	3395.3	$74^{7 / 8}$	232．4i8	4300	$\begin{aligned} & 10 \\ & 14 \\ & \hline \end{aligned}$	258.396	
	206.95 2	3408.2		23\％．871	4315	$\begin{aligned} & 28 \\ & 18 \\ & 18 \end{aligned}$	258.789	5329.4
	207.345	34.	$\begin{aligned} & 34 \\ & 18 \\ & 18 \end{aligned}$	233.263	9		259.181	$\begin{aligned} & 5345.6 \\ & 5361.8 \end{aligned}$
		3434.2		233			$259.5 \mathrm{r}^{2}$	
	208	3460.2	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \end{aligned}$	234.441	43 43． 8	$\begin{aligned} & 38 \\ & 84 \\ & 88 \end{aligned}$	259.967	$\begin{aligned} & 5361.8 \\ & 53 \uparrow 8.1 \end{aligned}$
	208.916	3473.2		234.883	4388.5	83.8	260.752	5394.3 54106
	209.309	3486.3		235．227	4403.1		261.145	54：6．
	209.601	3499.4	75.	235.619	4417.9		261.538	5443.3
	210.094	3512.5	\％	236．012	4432． 6		261.930	54.59 .6
67	210.487	3525 7	3／8	236.405	4447.4	$3 / 8$ $1 / 8$	262．323	54.6 .05492.4
	210.879	3538.8		236.798	4462.2	$\begin{aligned} & 1 / 8 \\ & 5 / 8 \\ & \% / 8 \end{aligned}$	262.76	
	211.27 .2	3552.0		237.190	4477.0		263.108	5508.8
	211.665	3.565 .2		237.583	4491.8	84.8	263.501	5525.3
	212.058	3518.5		237.996	4506		263.894	5541.8
	212.450	3591.7	$\begin{array}{r} 30 \\ -38 \\ \hline \end{array}$	238.368	4521.5	84.	264.286	555．3． 3
	212.843	36：05． 0	76	238.761	4536.5		264.6 ¢9	5554.8
	213.236	3618.3		2：39．154	4551.4	$\begin{aligned} & 1 / 4 \\ & 3 / 8 \end{aligned}$	$265.0 \sim^{2}$	5591.4
68.	213.628	36：31．7	$1 / 8$$1 / 4$3	239.546	4566.4	1／2		5607.9
	214．0\％1	3645.0		23.39 .939	4581.3		265.857	56.4 .5
	214.414	3658.4	388	240.332	4506.3	$\begin{aligned} & 52 \\ & 58 \\ & 3 / 4 \\ & 78 \end{aligned}$	266.250	5641.2
	214.806	$36{ }^{36} 1.8$		240.725	4611.4		266.643	5657.8
	215.199	3685.3		241.117	4626.4	$85^{7 / 8}$	$\begin{aligned} & 267.035 \\ & 267.428 \end{aligned}$	$56 \pi 4.5$5691.2
	215.592	3698.7	$\begin{aligned} & 3 / 4 \\ & 8 / 8 \end{aligned}$	241.510	4641.5			
	215.984	3712.2	78.	241.903	4656.6		$26 \% .821$268.213	5707.9
	216.377	3725.7	$1 / 8$$1 / 4$	242.295	4671.8	38		
69.	216.770	3739.3		242.688	4686.9	1／8	268.606	574
	217.163	3 \％52．8	$\begin{aligned} & \frac{3}{3 / 8} \\ & 1 / 8 \end{aligned}$	243.081	4702.1		268.949	5758.3
	217.555	376 b .4		243.473	4717.3	迷	269.392	
	217.918	$3{ }^{3} 80.0$	$\begin{aligned} & 5 \% \\ & \frac{6}{3} \\ & \frac{3}{4} \end{aligned}$	243.866	4732.5		269． 784	5ヶ91．9
	218.341	3 393．7		244.259	4 \％47．8	86.	$2 \pi 0.17 \%$	802． 7
	218.733	3807.3		244.652	$4 \tau 63.1$		270.570	
	219.126	38．21．0		245.044	4778.4	$1 / 4$	2～0．96：	5842． 6
	219.519	3834.7		245.437	4793.7	3／8	$2 \pi 1.355$	
70.	219.911	$3 \checkmark 48.5$	$\begin{aligned} & 10 \\ & 3 \\ & 8 \end{aligned}$	245.830	4809.0		271.748	58 ¢\％． 6
	220.304	3862． 2		$246.22 \cdot$	48：2．4	58	2ัน． 140	3.5
	220.697	3876.0	$\begin{aligned} & 3 / 8 \\ & 1 / 2 \end{aligned}$	246.615	48398	$\begin{aligned} & 38 \\ & 3 \\ & 3 / 8 \end{aligned}$	272.533	5410.6
	$2 \cdot 1.090$	3889.8	5\％	247.008	4855.2		27．2． 926	592\％．6
	2：21．48：	3903.6		247.400	48i0．7	87.	2 23．319	
	221.875	3917.5		247．793	4856.2		273.711	
	$2 \cdots 2.263$	3931.4		248.186	4901.7	3／8	$2 \pi 4.104$	5918.9
7188	222.660	3945.3	$1 / 8$$1 / 4$	248.579	4917.2.		274.497	
71	223.053	39．59．2		248.971	4932．7		2\％4．889	6013.2
	223.446	3973.1	$\begin{aligned} & 64 \\ & 1 / 8 \\ & \hline 18 \end{aligned}$	249.364	$\begin{aligned} & 4948.3 \\ & 4963.9 \end{aligned}$	5888		$\begin{aligned} & 6030.4 \\ & 6047.6 \end{aligned}$
4	223.838	3987.		249.757				

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
88.	$2 \sim 6.067$$2 \sim 6.4150$	60649	92	289.02\%	664T. 6	$961 / 8$	301986	225\%.1
		608: 1		259.419	6665.7		302. $3 \hat{1} 8$	72.6 .0
	276.853	6099.4		289.812	6683.8		302. 7 \% 1	T294.9
	$2 \% 7246$	6116.7		290.205	6701.9		30:3 164	T313.8
	277.638	6134.1		290.597	67:0.1		303.3. 556	7332
	278.0 .31	6151.4		290.990	6738.2		313949	7351.
	278.424	6168.8		291.383	6756.4		304.342	$73 \% 0.8$
	278.816	6186.2		291.715	$67 \% \pm .7$		304.734	7389.8
	279209	6203.7		292.168	6 6¢92.9	1/8	315.127	T408.9
89	279602	$62 \% 1.1$	1/8	292.561	6811.2		305.520	7428.0
	279.994	62:38.6		292.954	68:29.5	$3 / 8$	305.913	\% 447
	280.387	6256.1		293.316	6847.8	18	306.305	746
	280780	62 \%3.7		293.739	6866.1		306.698	T48.
	281.173	6291.2		294.13\%	6884.5		307.091	\% 50
	281.065	608.8		294.524	69029		30it. 483	75
	281.958	6.326.4	8	294.91 \%	6921.3	98.	30\%.8r6	\% 54.
	242. 351	$6: 3+4.1$	94.	295310	6939.8	1/8	308269	7:6
	2 282 243	63617	1/8	295. 202	6958.2		308.661	7581
	283.136	63i9 4		296095	6976.7		309054	7600
	283.5\%9	6397. 1		236.488	6995.3	$1 / 2$	309.447	7620.1
	28:3. 921	6414.9		296.881	T013.8		309840	T639.5
	284.314	6432.6		297.213	\%03. 24		310.23%	\%658
	284.707	6450.4		297. 666	\% 051.0	3/8	310.625	7618.
	245.100	6468.2		298.059	\% 1069.6	99	311.018	7697.7
9188	285. 49%	6486.0	5.	298.451	7088.2	$1 / 8$	311.410	\% $71 \% .1$
91.	285.885	6503.9		298.844	\%106.9	1	311.803	77736.6
	286.278	65\%1.8		299.237	\%125.6		312.196	T¢56.1
	286.670	6539.7		299.629	7144.3	12	312.588	โ 175.6
	287.063	$655 \% .6$	12	300.022	7163.0		312. 981	7795.2
	287.456	6575.5		300.415	\%181.8		313.3ヶ4	7814.
	247.818	6593.5		$300.80 \hat{1}$	\%200.6	7/8	313 767	7834.4
	288.241	6611.5		301.200	T219.4	100.	314.159	7854.0
7/8	288.634	6629.6	96.	301.593	7238.2			

DECIMALS OF A FOOT EQUEVALENT TO INCHES AND FRACTIONS OF AN INCH.

Inches.	0	1/8	$1 / 4$	3/8	$1 / 2$	5/8	$3 / 4$	$7 / 8$
0	0	. 01042	. 02083	. 03125	. 04166	. 05208	. 06250	. 01292
1	. 0833	.09:37	. 1042	. 1146	. 1250	.1354	. 1459	. 1513
2	. 1667	. 1731	. 1875	. 1979	. 2083	. 2188	. 2292	2396
3	. 2700	. 2604	. 2708	. 2813	.291\%	. 3021	. 3125	. $3 \% 29$
4	. $3: 333: 3$. $34 \cdot 3$. $354{ }^{3}$. 3646	. 3750	. 38 ¢ ${ }^{\text {a }} 4$. 3958	. 4063
5	. 4167	. $42 \% 1$. 4375	. 44 ¢9	. 4583	. 4688	. 4792	. 4896
6	. 5010	. 5104	. 5208	. 5313	. 5417	. 5521	. $56 \cdot 25$. $57 \% 9$
7	. 5833	. 5937	. 6042	. 6146	. 6250	. 63.54	. 6459	. 6563
8	. 6663	. $67 \% 1$. 6875	. 6979	. 7083	. 1188	.7292	. 7396
9	. 7500	. .7604	. 6708	. 7813	. 81917	. 8021	. 8123	.8229
10	. 8:33:3	. $84: 37$. 8512	. 86446	. 8750	. 8854	. 8958	. 9063
11	. 9167	. $92 \% 1$. 9375	. 9479	. 9583	. 9688	.979:	. 9896

』

 घ－$x^{-1} \pi \infty \infty \infty$ घ－

घ घ
 घ－

[^4]
LENGTHS OF CERCULAR ARCS. (Degrees being given. Radius of Circle $=1$.)

Formula.-Length of arc $=\frac{31415927}{180} \times$ radius \times number of degrees.
Rule.-Multiply the factor in table for any given number of degrees by the radius.

Example.-Given a curve of a radius of 55 feet and an angle of $78^{\circ} 20^{\prime}$. What is the length of same in feet?

> Factor from table for 78°........................ 1.3613568
> Factor from table for 20^{\prime}........................ . . . $00581 \div 8$
> Factor...................................... . . 1.3671746
$1.36 \% 1746 \times 55=\% 5.19$ feet .

Degrees.						Minutes.	
1	. 0174533	61	1.0646508	121	2.1118484		. 0002909
2	. 0349066	62	1.0821041	122	2.1293017	2	. 0005818
3	. 0523599	63	1.0995574	123	2.1467550	3	. $000878{ }^{7}$
4	. 0698132	64	1.1170107	124	2.1642083		. 0011636
5	. 0872665	65	1.1344640	125	2.1816616	5	. 0014544
6	. 1047198	66	1.1519173	126	2.1991149	6	. 0017453
7	. 1221730	67	1.1693706	127	2.2165682	7	. 0020362
8	. 1396263	68	1.1868239	128	2.2340214	8	. 0023271
9	. 1570796	69	1.2042772	129	2.2514747	9	. 0026180
10	. 1745329	70	1.2217305	130	2.2689280	10	. 0029089
11	. 1919862	71	1.2391838	131	2.2863813	11	. 0031998
12	. 2094395	72	1.2566371	132	2.3038346	12	. 0034907
13	. 2668928	73	1.2740904	133	2.3212879	13	. 0037815
14	. 2443461	74	1.2915436	134	2.3387412	14	. 0040724
15	. 2617994	75	1.3089969	135	2.3561945	15	. 0043623
16	. 2792527	76	1.3261502	136	2.3736478	16	. 0016542
17	. 2967060	77	1.3439035	137	2.3911011	17	. 0049451
18	. 3141593	78	1.3613568	138	2.4085544	18	. 00523360 .
19	. 3316126	79	1.3788101	139	2.4260077	19	. 0055269
20	. 3490659	80	1.3962634	140	2.4434610	20	. 00.58178
21	. 3665191	81	1.4137167	141	2.4609142	21	. 0061087
22	. 38.39724	82	1.4311700	142	2.4783675	22	.006399 ${ }^{5}$
23	. 4014257	83	1.4486233	143	2.4958208	23	. 0066904
24	. 4188790	84	1. 4660766	144	2.5132741	24	. 0069813
25	. 4363323	85	1.4835299	145	2.5807274	25	. $007272{ }^{\text {a }}$
26	. 4537856	86	1.5009832	146	2.5481807	26	. 00756 ?
27	. 4712389	87	1.5184364	147	2.5656340	27	. $0078541 /$
28	. 4886922	88	1.5358897	148	2.5830873	28	. 008144.1
29	. 5061455	89	1.5533430	149	2.6005406	29	. 0084358
30	. 5235988	90	1.5707963	150	2.6179939	30	. 0087266
31	. 5410521	91	1.5882496	151	2.6354472	31	. 0090175
32	. 5585054		1.6057029	152	2.6529005	32	. 0093084
33	. 5759587	93	1.6231562	153	2.6703538	33	. 0095993
34	. 5934119	94	1.6406095	154	2.6878070	34	. 0098902
35	. 6108652	95	1.6580628	155	2.7052603	35	. 0101811
36	. 6283185	96	1.6755161	156	2.7227136	36	. 0104720
37	. 6457718	97	1.6929694	157	2.7401669	37	. 0107629
38	. 6632251	98	1.7104227	158	2.7576202	38	. 0110538
39	. 6806784	99	1.7278760	159	2.7750735	39	. 0113446
40	. 6981317	100	1.7453293	160	2.7925268	40	. 0116355
41	. 7155850	101	1.7627825	161	2.8099801	41	. 0119264
42	. 7330383	102	1.7802358	162	2.8274334	42	. 0122173
43	. 7504916	103	1.7976891	163	2.8448867	43	. 012501882
44	. 7679449	104	1.8151424	164	2.8623400	44	. 0127991
45	. 7853982	105	1.8325957	165	2.8797933	45	. 0130900
46	. 8028515	106	1.8500490	166	2.8972466	46	. 0133809
47	. 8203047	107	1.8675023	167	2.9146999	47	. 0136717
48	. 8377580	108	1.8949556	168	2.9321531	48	. 0139626
49	. 85552113	109	1.9024089	169	2.9496064	49	. 0142535
50	. 8726646	110	1.9198622	170	2.9670597	50	. 0145444
51	. 8901179	111	1.9373155	171	2.9845130	51	. 0148355
52	. 9075712	112	1.9547688	172	3.0019663	52	. 0151262
53	. 9250245	113	1.9722221	173	3.0194196	53	. 0154171
54	. 9424778	114	1.9896753	174	3.0368729	54	. 0157080
55	. 9599311	115	2.0071286	175	3.0543262	55	. 0159989
56	. 9773844	116	2.0245819	176	3.0717795	56	. 0162897
57	. 9948377	117	20420352	177	3.0892328	57	. 0165806
58	1.0122910	113	2.0594885	178	3.1066861	58	. 0168715
59	1.0297443	119	2.0769418	179	3.1241394	59	. 0171624
60	1.0471976	120	2.0943951	180	3.1415927	60	. 0174533

LENGTHS OF CIRCULAR ARCS.

(Diameter $=1$. Given the Chord and Height of the Are.)

Rule for Use of the Table.-Divide the height by the chord. Findin the column of heights the number equal to this quotieut. Take out the corresponding number from the column of lengths. Multipiy this last number by the length of the given chord; the product will be length of the arc.

If the arc is greater than a semicircle. first find the diameter from the formula, Diam. $=($ square of half chord \div rise $)+$ rise; the formula is true whether the arc exceeds a semicircle or not. Then find the circumference. From the diameter subtract the given height of arc, the remainder will be height of the smaller arc of the circle; find its length according to the rule, and subtract it from the circumference.

Hgts.	Lgths.	Hgts.	Lgths.	Hgts.	Lgths.	Hgts .	Lgths.	Hgts.	Lg
. 001	1.00002	. 15	1.05896	238	1.14480	. 326	1.26288	. 414	1.40i
005	1.00007	. 152	1.06051	. 24	1.14714	. $3: 3$	1.26588	416	1.4114
01	1.000:2\%	. 154	1.06209	242	1.14951	. 33	1.26892	. 418	1.41503
015	1.00061	. 156	1.06368	244	$1.1518{ }^{\text {c }}$. 332	1.2ヶ196	. 42	1.4186
02	1.00107	. 158	1.06530	246	$1.154: 8$. 334	1.27502	422	1.4222
$0: 5$	1.00167	. 16	1.06693	. 248	$1.156{ }^{2} 0$. 336	$1.2 \sim 810$	424	1.4258
03	1.00240	. 162	1.06858	25	1.15912	. 338	1.28118	. 426	1.4:94
. 035	1.0032 T	. 164	$1.070 \div 5$. 252	1.16156	. 34	1.28428	. $4: 2$	1.4330
04	1.00426	. 166	107194	2.254	1.16402	342	1.28739	43	$1.436{ }^{\text {r }}$
. 045	1.00539	. 168	1.0 亿365	256	1.16650	. 34	1.2905:	432	1.4403
. 05	1.00665	. 17	1.07537	258	1.16899	. 316	129366	434	1.4440
. 0.55	1.00805	.172	$1.0 \% 711$	26	1.17150	. 318	1.29681	436	1.44
06	1.0095 \%	174	1.07988	262	1.17403	. 35	1.29997	438	1.4514
065	1.01123	.176	1.08066	. 264	1.17657	. 352	1.30315	. 44	1.4551
01	1.01302	. 178	1.08246	266	1.17912	. 354	1.30634	442	1.45
0 Ois	1.01493	. 18	1.08428	268	1.18169	. 356	1.30954	. 444	1.4625
08	1.01698	. 182	1.08611	. 27	1.18429	. 358	$1.312 \% 6$. 446	1.466
085	1.01916	. 184	$1.08 i 9 \sim$. $2 \sim 2$	1.18689	. 36	1.31599	. 448	1.4700
09	1.02146	. 186	1.0898	. 274	1.18951	. 362	1.31923	. 45	1.473
095	1.02389	. 158	1.09174	276	1.19214	. 364	1.32249	. 452	1.
10	1.02646	19	1.09365	. 278	1.19479	366	1.325 ${ }^{\text {a }}$. 454	
102	1.02752	. 192	$1.0955 \sim$. 28	1.19746	368	1.32905	. 456	. 485
104	1.02860	. 194	1.09752	. 282	1.20014	. 37	1.332:34	. 458	1.4888
. 106	1.02970	. 1.96	1.09949	284	1.20284	37	1.33564	. 46	
108	1.03082	. 198	1.10147	286	1.20555	374	1.33896	. 462	
11	1.03196	. 20	$1.1034 \hat{\sim}$. 288	1.2082\%	$3 \sim 6$	1.342:29	. 464	1.500
. 112	1.0.3312	. 212	1.10548	. 29	1.21102	378	1.34563	. 466	1.504
. 114	1.03430	. 204	1.100^{52}	292	$1.213 \sim 7$. 38	1.34899	. 468	1.5
. 116	1.0:3551	206	1.10958	294	1.21654	38.2	1.3503	. 47	1.5
. 118	1.03ciz	. 208	1.11165	. 296	1.21933	384	1.35575	. 4%	
12	$1.0339 \sim$. 21	1.11374	. 298	1.22213	. 386	1.35914	. 474	1.519
122	1.03923	212	1.11584	30	1.22495	. 38	1.36254	. 476	1.523
. 124	1.04051	214	1.11796	302	1.22ir8	39	1.36596	. 48	
. 126	1. 04181	216	1.12011	. 304	1.23063	392	1.36939	. 48	1.531
. 128	1.04313	.218	1.12225	. 306	1.23349	. 394	1.37283	. 482	1.535
. 13	$1.0444{ }^{\circ}$. 22	1.12444	. 308	1. 23636	. 396	1.37528	. 484	$1 . ? 39$
. 132	1.04584	$2 \cdot 2$	1.1266	31	1.23926	. 398	1.37974	486	1.543
. 134	1.04722	$2: 4$	1.12885	. 312	1.24216	40	1.38322	488	1.5469
. 136	1.04862	226	1.13108	. 314	1.24507	402	1.33tiot 1	49	1.5509
. 138	1.05003	. 228	1.13331	. 316	1.24801	. 404	1.39021	492	1.554
14	1.05147	23	1.13557	318	1.25095	406	$1.393 \% 2$	494	1.5
142	$1.05: 293$	232	1.13785	32	1.25391	. 408	1.39724	. 496	1.5
. 144	1.05441	234	1.14015	322	1.25689	. 41	$1.400 \pi \frac{1}{4}$	49	1.5
.146 .148	1.05591 $1.05 \% 43$. 236	1.1424π	. 324	1.25988	. 412	1.40432	. 5	1.5\%08

AREAS OF THE SEGMENTS OF A CIROLE．

（Diameter $=1$ ；Rise or Versed Sine in parts of Diameter being given．）

Rule for Use of the Table，－Divide the rise or height of the segment by the diameter to obtain the versed sine．Multiply the area in the table cor－ responding to this versed sine by the square of the diameter．

If the segment exceeds a semicircle its area is area of circle－area of seg－ ment whose rise is（diam．of circle－rise of giveu segment）．

Given chord and rise，to find diameter．Diam．＝（square of half chord + rise）+ rise．The half chord is a mean proportional betweell the two parts into which the chord divides the diameter which is perpendicular to it．

$\begin{aligned} & \text { Yersed } \\ & \text { Sine. } \end{aligned}$	Area．	$\begin{aligned} & \text { Versed } \\ & \text { Sine. } \end{aligned}$	Area．	Versed Sine．	Area，	Versed Sine．	Area．	$\begin{aligned} & \text { Versed } \\ & \text { Sine. } \end{aligned}$	Area．
． 001	00004	． 054	． 01646	． 107	． 04514	． 16	． 08111	． 213	．192：35
． 002	． 00012	． 055	． 01691	． 108	． $045 \sim 6$	． 161	． 08185	214	． 12317
． 003	． $000 \% 2$	． 056	． 01737	． 109	． 04638	． 162	． $08 \cdot 558$	． 215	12399
004	． 00034	． 057	． 01783	． 11	． 04701	． 163	． 08332	． 216	． 12481
． 005	． 00047	． 058	．01830	． 111	． 04763	． 164	． 08406	217	．12563
． 006	． 00006	． 059	． 01877	． 112	． 04826	． 165	． 08480	218	． 12646
． 007	．000i8	． 06	． 01924	． 113	． 04889	． 166	． 08554	． 219	．12\％29
． 008	． 00095	． 061	．019～2	． 114	． 04953	． 167	．0－6：9	22	． 12811
． 009	． 00113	． 062	． 02020	． 115	． 05016	． 168	． 08 ¢04	221	． 12894
． 01	． 00133	． 063	． $0: 068$	． 116	． 05080	． 169	．087\％9	222	． 129×7
． 011	． 00153	． 064	． $0 \cdot 2117$	． 117	． 05145	． 17	． 08854	． 223	13060
012	． 00175	． 065	． 02166	． 118	． 05209	． 171	． 08929	224	． 13144
． 013	． 00197	． 066	． 02315	． 119	． 05274	． 172	． 09004	2：5	． 13227
014	． 002%	． 067	． $0 \geqslant 2265$	． 12	． 05338	． 173	． 09080	2：26	． 13311
015	． 00244	． 068	． 02315	． 121	． 05404	． 174	． 09155	． 227	． 13395
016	．00：26	． 069	．02366	． 122	． 05169	． 175	． 09231	．228	． $134 \% 8$
． 017	． 00294	． 07	． $02+17$	． 123	． 05535	176	．0930	229	． 13568
． 018	． 0032	． 071	． $0 \because 468$	． 124	． 05500	． 137	． 09384	23	． 13646
． 019	．00347	． 072	． $0 \cdot 5 \cdot 20$	125	． 05666	． 178	． 09460	231	．13\％．31
． 02	．003i5	． 0 ¢ 3	．02571	． 126	． 05 T33	．179	．09537	232	． 13815
． 021	． 00403	． 074	． $0: 2624$	127	． 05799	18	．0961：3	． 233	． 13900
． $02 \cdot 3$	． 00432	． 075	． $0 \div 666$	． 128	． 05866	． 181	． 09690	．234	． 133984
． 023	． 0046	． $0 \sim$ \％ 6	． 02729	． 129	． 05933	． 182	．09767	． 235	． 14069
． 024	． 00492	． 077	．02782	． 13	． 06000	． 183	．09845	． 236	． 14154
．025	． 00523	． 078	． 028836	． 131	． $0606 \hat{1}$	184	．09923	． 237	． 14239
． $0: 3$	． 00555	．0ヶ9	． 02889	． 132	． 06135	． 185	． 10000	． 238	． $143: 4$
． 027	． 00587	． 08	． $029+3$	． 133	． 06203	． 186	． 100 ir	． 239	． 14409
． $0: 8$	． 00619	． 081	． 03998	． 134	．062 11	． 187	． 10155	24	． 14494
． 029	．0065\％	．08：	． 03053	． 135	．063：39	． 188	．1023：3	241	． 14580
． 03	． 00687	． 083	． 03108	． 136	． 06407	． 189	． 10312	． 242	． 14666
． 031	．00721	． 084	． 03163	． 137	． $064 \% 6$	． 19	． 10390	． 24.3	． 14 \％ 51
．0．3\％	． 00756	． 085	．03219	． 138	． 06545	． 191	． 10469	． 244	． 14837
．033	． 00791	． 086	．032\％5	． 139	． 06614	． 192	． 10547	． 245	．14923
． 034	． $008 \% 7$	． 087	． 03331	． 14	．0668：3	． 193	． 10626	． 246	． 15009
． 035	． 00864	． 088	． 03387	． 141	．06753	． 194	． 10 ¢05	． 247	． 15095
． 0.36	． 00901	． 089	． 03444	． 142	． 06822	． 195	． 10784	． 248	． 15182
． 037	．009：38	． 09	． 03.501	． 143	． 06892	． 196	． 10864	． 249	． $15 \% 68$
． 038	． 00976	． 091	．035．59	． 144	． 06963	． 197	． 10943	． 25	． 15355
． 039	． 01015	． 093	． 03616	． 145	．07033	． 198	． 11023	． 251	15441
． 04	． 01054	． 093	．03674	． 146	．0\％103	． 199	． 11102	． 252	． 15528
． 041	． 01093	． 094	． 03732	． 147	．0ヶ174	． 2	． 11188	． 253	． 15615
． 042	． 01133	． 095	． 03791	． 148	． 0 T245	． 201	． 11262	． 254	．15\％02
．043	． 01173	． 096	． 03850	． 149	． 0 T316	． 202	． 11343	． 255	． 15789
． 044	．01214	． 097	． 03909	． 15	． 07387	． 203	． $1142 \cdot 3$	． 256	． 15876
． 045	． 01255	． 098	． 03968	． 151	． 074.59	． 204	． 11504	． 255	． 15.64
． 046	．01：29	． 099	． 04028	． 152	． 0 Ta31	． 205	． 11584	． 258	． 16051
． 047	． 01339	． 1	． 04087	153	．07603	． 206	． 11665	． 259	16139
． 048	． 01382	． 101	． 04148	． 154	．0ヶ6\％5	． 207	．11746	． 26	16226
． 049	． 01425	． 102	． 04208	． 155	． 0 Tr 47	． 208	． $118: 27$	． 261	．16：314
． 05	． 01468	．103	．04：69	156	． 07819	． 29	． 11908	． 26.2	．1640\％
． 051	． 01512	． 104	．04：330	． 157	．07592	． 21	． 11990	263	． 16490
22	． 01556	． 105	． 04391	． 158	． 0 ¢965	． 211	． 12071	． 264	165\％8
． 053	． 01601	． 106	0445\％	． 159	． 0803	． 212	． 12153	265	16666

AREAS OF THE SEGMENTS OF A CIRCLE.

$\begin{aligned} & \text { Versed } \\ & \text { Sine. } \end{aligned}$	Area.	Versed Sine.	Area.	Versed Sine	Area,	Vers®d Sine	Area.	(Versed Siue.	Area.
. 266	.16\%55	. 313	. 21015	. 36	. 25455	407	. $300 \% 4$. 454	. 34676
. 267	. 16843	. 314	. 21108	. 361	. 25551	. 408	. 30122	. 455	. 34 \% 76
. 268	. 16932	. 315	. 21201	. 362	. $2564 i$. 409	. $30 \div 20$. 456	. 34886
. 269	. 170020	. 316	. 21294	. 363	.25743	. 41	. 30319	. 457	. 34975
. 27	. 17109	. 317	. 21387	. 364	. 25839	. 411	. 3041 r	. 458	. 35075
. 271	. 17198	. 318	. 21480	. 365	. 25936	. 412	. 30516	. 459	. 35175
. 272	. 1728%	. 319	. 21573	. 366	. 26032	. 413	. 30614	. 46	. $352 \% 4$
.2\%3	. 17376	. 32	. 21667	. 367.	. 26128	. 414	. 30712	. 461	. 25374
. 274	. $1 \sim 465$. 321	. 21760	. 368	. 26225	. 415	. 30811	. 462	. 35474
. 275	. 17554	. 322	. 21853	. 369	. 26321	. 416	. 30910	. 463	. 35573
.2\%6	. 17644	. 323	. 21947	. 37	. 26418	. 417	. 31008	. 464	. 356 ¢ 3
. 27%	. 17733	. 324	. 22040	. 371	. 26514	. 418	.31107	. 465	. 35173
.278	. 17823	. 325	. 22134	. 372	. 26611	. 419	.31205 .31304	. 466	. 35873
. 279	. 18912	. 326	. 212228		. 26808	. 421	. 31304	. 468	. $3590{ }^{\text {a }}$ -
.281	. 18092	. 328	. 22415	. 375	. 26901	. 422	. 31502	. 469	. 3612
$\therefore 88$. 18182	. 329	. 22509	. 376	. 26998	. 423	. 31600	. 47	. 36.272
. 283	. $18: \% 2$. 33	. 22603	. 377	. 27095	. 424	. 31699	. 471	. 36372
. 284	. 18362	. 331	. 22697	. 378	. $2 \pi 192$. 425	. 31798	. 472	. 36411
. 285	.18452	. 332	. $22 \sim 92$. 319	. 27289	.426	. 31097	. 473	. 36571
. 286	. 18542	. 333	. 22888	. 38	. 27386	. 427	. 31996	. 474	. 36611
. 287	. 18633	. 334	. 22980	. 381	. 27483	. 428	. 32095	. 475	. 36771
. 288	. 18723	. 335	. 23074	. 382	. 27580	. 429	. 32194	. 476	. 36881
. 289	. 18814	. 336	.23169	. 383	. 27678	. 43	. 32293	. 47	. 36971
. 29	. 18905	. 337	. 23263	. 384	. 277%	. 431	. 32392	. 478	. 37071
. 291	. 18996	. 338	. 23358	. 385	. 27872	. 432	. 32491	. 479	. $3 \sim 171$
. 292	. 19086	. 339	. 23453	. 386	. 27969	. 433	. 32590	. 48	. 3 2\% 20
. 293	. 191 \% 7	. 34	. 23547	. 387	. 28067	. 434	. 32689	. 481	. 37370
. 294	. 19268	. 341	. 23642	. 388	. 28164	. 435	.32788	. 48.2	. 37470
. 295	. 19360	. 342	.2373\%	. 389	. 28262	. 436	. 32887	. 483	. 3750
. 296	. 19451	. 343	. 23832	. 39	. 28359	. 437	. 32987	. 484	. 3 \% 670
. 297	. 19542	. 344	. 23927	. 391	. 28457	. 438	. 33086	. 485	. 3 กr
. 298	. 19634	. 345	. 24022	. 392	. 28554	. 439	. 33185	. 486	. 37880
. 299	. $19 \% 25$. 346	. 24117	. 393	. 28652	. 44	. 33284	. 487	. 37970
. 3	. 19817	. 347	. 24212	. 394	. 28750	. 441	.333384	. 488	. 380 an0
. 301	. 19308	. 348	. 24307	. 395	. 28848	. 442	. 33183	. 489	. $381 \% 0$
. 30%	. 20000	. 349	. 24403	. 396	. 28945	. 443	. 3358.2	. 49	. $382 \pi 0$
. 303	. 20092	. 35	. 24498	. 397	. 29043	. 444	. 3.3682	. 491	. 38830
. 304	. 20184	. 351	. 24593	. 398	. 29141	. 445	. $33 \sim 81$. 492	. 384%
. 305	. 20276	. 352	. 24689	. 399	. 29239	. 446	. 33880	. 493	. 385 \% 0
. 306	. 20368	. 353	. 24784	. 4	.2933\%	. 447	. 33990	. 494	. 386 \% 0
. 307	. 20460	. 354	. 24880	. 401	. 29435	. 448	. $340 \% 9$. 495	. 38170
. 303	. 205553	. 355	. 24976	. 402	. 29533	. 449	. 34119	. 496	. 38880
. 309	. 20645	. 3.6	. 250 T 1	. 403	. 29631	. 45	. 342 \% 8	. 497	. 38970
. 31	. 20738	. 357	. 25167	. 404	. 29729	. 451	. 34378	. 498	. 39000
. 311	. 20830	. 358	. 25263	. 405	. 298827	. 452	. 34447	. 499	. 39170
. 312	.20923	. 359	. 25359	. 406	. 29926	453	. 34577	. 5	392\%

For rule for finding the area of a segment see Mensuration, page 59.

SPHERES.

(Some errors of 1 in the last figure only. From Trautwine.)

Diam.	Surface.	Solidity.	Diam.	Surface.	Solid. ity.	Diam.	Surface.	$\begin{gathered} \text { Solid- } \\ \text { ity. } \end{gathered}$
1-3	. 003	. 00002		33.183	17.974	$97 / 8$	306.36	504.21
1-16	. 01227	. 00013	5-16	34.472	19.0:31	10.	314.16	523.60
3-32	.02361	. 00043	3/8	35.784	20.129	$1 / 8$	322. 06	543.48
$1 / 8$. 04909	.00102	7-16	37.122	21.268		${ }^{3} 30.06$	563886
5-32	. 07670	. 00200	$1 / 2$	38.484	22.449		3:38.16	584.74
3-16	. 11045	.00345	9-16	$39.8 \uparrow 2$	23.674		346.36	606.13
7-3.2	. 15033	. 00548	5/8	41.283	${ }^{24.942}$		354.66	$6: 8.04$
	. 19635	. 00818	11-16	42.719	26.254		363.05	650.46
9-32	. 24851	. 01165		44.179	27.611		3 3i1.54	673.42
5-16	. 30680	. 01598	13-16	45.664	29.016	11	380.13	696.91
11-32	. 37123	0212~	7/8	47.173	30.466		388.83	720.95
	. 4417	02761	15-16	48.708	31.965		397. 61	745.51
13-32	. 518	. 03511	4.	50.265	33.510		406.49	\% 0.64
7-16	. 60132	. 04385		53.456	36.751		415.48	ז96.33
15-32	. 69028	. 05393		56.745	40.195		424.50	$8 \% 2.58$
	. 7854	. 06545	3	60.133	43847		433.73	849.40
$9-1$. 9940	. 09319		63.617	4~.713		443.01	8\%6.79
	1.22\% ${ }^{2}$.12783		67.201	51.801		452.39	904.78
11-16	1.4849	. 12014		\%0 883	56.116		$4 \pi 1.44$	962.52
	1.7671	.22049	$7 / 8$	\%4.663	60.663		$4908{ }^{7}$	102\%.7
13	2.0739	. 28084	5.	78.540	65.450		510.71	1085.3
	2.4053	. 35077		82.516	\%0.482		530.93	1150.3
15-1	2.7611	. 43143		86.591	75.767		551.55	1218.0
	3.1416	52:360		90.763	81.308		572.55	1288.3
1-16	$3.5+66$. 62804	12	95.033	87.113	13/4	593.95	1361.2
	3.9761	. 74551		99.401	93.189	14.	615.75	1436.8
3-16	4.4301	. 8 ¢681		103.87	99.541		${ }^{637}$. 95	1515.1
	4.9088	1.02: 27	$7 / 8$	108.44	106.18		660.52	1596.3
5-16	5.4119	1.1839	6.	11310	113.10		683.49	1680.3
	5.9396	1.3611	$1 / 8$	117.87	120.31	15.	70685	1767.2
7-16	6.4919	1.5553		12.72	12 T .83		730.63	185\%.0
	7.0686	1. $\cdot 671$		12 T .68	135.66		754.77	$19+9.8$
9-16	7.6¢99	1.99\%4		132. 73	113.79		¢79.32	2045. 7
5/8	82957	2.2468		137.89	152.25	16.	804.25	2144.7
11-16	8.9461	2.5161		143.14	161.03		829.5T	2246.8
	9.6211	2.806 ${ }^{2}$		148.49	170.14		855.29	$235 \% .1$
13-16	10.321	3.1177	7.	153.94	179.59		${ }^{881.42}$	$2+60.6$
7/8	11.044	3.4514		159.49	189.39	17.	907.93	$25{ }^{\text {2 }}$ 2. 4
15-16	11.793	3.8083		165.13	19953		934.83	$\therefore 68 \mathrm{~T} .6$
2.	12.566	4.1888		110.87	210.03		96\%.12	$\because 806.2$
1-16	13.364	4.5939		176.71	220.89		989.80	2928.2
18	14186	5.0243		182.66	$23 \% .13$	18.	1017.9	30:3.6
3-16	15.033	5.4809	-	188.69	$\stackrel{213.73}{ }$	1/4	1046.4	318:. 6
	1594	5.9641		194.83	255.72		10\%5.2	3315.3
5-16	16.800	6.4751	8.	201.06	268.08		1104.5	3451.5
-	17821	7.0144		207.39	280.85	19.	1134.1	3591.4
7-16	18.666	7.5829		${ }_{2}^{213.82}$	294.01		1164.:	${ }^{3735} 0$
	19.635	8.1813		$\because 20.35$	307.58		1194.6	388\%.5
9-16	20.629	8.8103		$\because 206.98$	321.56		1225.4	4033.7
5/8	21.648	9.4708		233. 11	3335.95	20.	1256.7	4188.8
11-16	22.691	10.164		$\stackrel{240.53}{ }$	350.77		1288.3	4347.8
	23.758	10.889		247.45	360.02		1320.3	4510.9
13-16	24.850	11.649	9.	254.47	381.70		1352.	4671.9
15-16		12.443		${ }^{261.59}$	39\%.83	21.	1385.5	48491
3.	28.244	14.137		2080.12	414.41 431.44		1418.6 1452.2	5024.3
1-16	29.465	15.039		1283.5.53	448.92		1486.2	538\%. 4
	30.680	15.979		291.04	466.87	22.	15:2.5	$55 \hat{5.3}$
3-16	31.919	16.957	3/4	1298.65	485.31	1/4	1555.3	5i67.6

SPHERES-(Continued.)

CONTENTS IN CUBIC FEET AND U. S. GALLONS OF PIPES AND CYLINDERS OF VARIOUS DIAMETERS ANDONE FOOTIN LENGTHH.

1 gallon $=231$ cubic inches. 1 cubic foot $=7.4805$ gallons.

	For 1 Foot in Length.			For 1 Foot in Length.			For 1 Foot in Length.	
	Cubic Ft. also Area in Sq. Ft.	U.S. Gals. 231 Cu. In.		Cubic Ft. also Area in Sq. Ft.	U.S. Gals., 231 Cu In.		Cubic Ft. also Area in Sq. Ft.	U.S. Gals. Cu. In
$1 / 4$.0003	.0025	63	. 2485	1.859	19	1.969	14.73
5-16	. 0005	. 004		. 2673	1.999	191/2	2.074	15.51
3/8	. 0008	. 0057	$71 / 4$.2867	2.145	20	2.182	16.32
\%-16	. 001	.00ı̃	$71 / 2$. 3068	2.295	201/2	2.292	17.15
$1 / 2$. 0014	. 0102	r3/4	. 3276	2.45	21	2.405	17.99
9-16	. 0017	. 0129	8	. 3491	2.611	2112	2.521	18.86
5/8	. 0021	. 0159	$81 / 4$. 3712	2.777	22	2640	19.75
11-16	. $00 \div 6$. 0193	$81 / 2$. 3941	2.948	2:1/2	2.761	20.66
$3 / 4$. 0031	.0230	83/4	. 4176	3.125	23	2.885	21.58
13-16	. 0036	.0269		. 4418	3.305	231/2	3.012	22.53
7/8	. 0042	.0312	$91 / 4$. 4667	3.491	24	3.142	23.50
15-16	. 0048	. 0359	$91 / 2$.49\%2	3.682	25	3.409	25.50
	. 0055	. 0408	934	. 5185	3.879	26	3.687	27.58
11/4	. 0085	. 0638	10	. 5454	4.08	27	3.9ヶ6	29.74
$11 / 2$. 0123	. 0918	101/4	.5\%30	4.286	28	$4.2 \% 6$	31.99
13/4	. 0167	. 1249	101/2	. 6013	4.498	29	4.587	34.31
2	. 0218	. 1633	103/4	. 6303	4.715	30	4.909	$36{ }^{212}$
$21 / 4$. 0276	. 2066	11	. 66	4.937	31	5.241	39.21
21.2	. 0341	. 25050	1114	. 6903	5.164	32	5.585	41.is
23/4	. 0412	. 3085	111/2	. 7213	5.396	33	5.940	44.43
3	. 0491	. 3672	113/4	. 7530	5.633	34	6.305	47.16
$31 / 4$. 0576	. 4309	12	. 78.54	5.8\%5	35	6.681	49.98
312	. 0668	. 4998	121/2	. 85.2	$6.3 \pi 5$	36	7.089	52.88
$33 / 4$.0ヶ67	. 5738	13	. 9218	6.895	37	7.467	55.86
4	.08\%3	. $65 \geqslant 8$	131/2	. 994	7.436	38	7.8i6	58.92
41/4	. 0985	. 7369	14	1.069	7.99\%	39	8.296	62.06
$41 / 2$. 1134	.8263	141/2	1147	8.578	40	8.727	65.28
$43 / 4$. 1231	. $9: 206$	15	1.227	9.180	41	9.168	68.58
5	. 1364	1.020	151/2	1.310	9.801	42	9.6:1	\%1.97
$51 / 4$. 1503	1.125	16	1.396	10.44	43	10.085	75.44
51/2	. 1650	1.234	161/2	1.485	11.11	44	10.559	78.99
$53 / 4$. 1803	1.349	17	$1.5 i{ }^{1} 6$	11. 19	45	11.045	82.62
6	.1963	1.469	171/2	$1.6{ }^{1} 0$	12.49	46	11.541	86.33
61/4	. 2131	1.594	18	1.768	13.22	47	12.048	90.13
$61 / 2$. 2304	1.724	181/2	1.867	13.96	48	12.566	94.00

To find the capacity of pipes greater than the largest given in the table, look in the table for a pipe of one half the given size, and multiply its capacity by 4; or one of one third its size, and multiply its capacity by 9 , etc.

To find the weight of water in any of the given sizes multiply the capacity in cubic feet by $621 / 4$ or the gallons by $81 / 3$, or, if a closer approximation is required, by the weight of a cubic foot of water at the actual temperature in the pipe.
Given the dimensions of a cylinder in inches, to find its capacity in U. S. gallons: Square the diameter, multiply by the length and by .0034. If $d=$ diameter, $l=$ length, gallons $=\frac{d^{2} \times .7854 \times l}{231}=.0034 d^{2} l$.

CYLINDRICAL VESSELS, TANKS, CISTERNS, ETC.

Diameter in Feet and Inches, Area in Square Feet, and

 U. S. Gallons Capacity for One Footin Depth.1 gallon $=231$ cubic inches $=\frac{1 \text { cubic foot }}{7.4 \times 05}=0.13368$ cubic feet.

Diam.	Area.	Gals.	Diam.	Area.	Gals.	Diam.	Area.	Gals.
Ft. In.	Sq. ft.	1 foot depth.	Ft. In.	Sq. ft.	1 foot depth.	Ft. In.	Sq. ft.	1 foot depth.
1	. 785	5.87	58	25.2.	18866	19	283.53	2120.9
11	.9:3	6.89	59	25.9 \%	194.25	193	291.04	$21 \% 1 \%$
12	1.069	8.00	510	26 \%3	199.92	196	298.65	22,4.0
13	1.227	9.18	511	27.49	205.67	199	306.35	$2291 . \%$
14	1.396	10.44	6	28.18	211.51	20	314.16	2350.1
15	1.5 ¢ 6	11.79	63	30.68	229.50	$20 \quad 3$	322. 06	2409.2
16	1.767	13.22	66	3:3.18	248.23	206	330.06	2469.1
17	1.969	14.73	69	35.78	267.69	$20 \quad 9$	33816	2529.6
18	2.182	16.32	7	38.48	$28 \uparrow .88$	21	34636	2591.0
19	2.405	17.99	73	41.28	30.81	213	354.66	2653.0
110	2.640	19.15	76	44.18	3330.48	216	363.05	2715.8
111	2.885	21.58	79	47.17	352.88	219	$3 \% 1.54$	$27 \% 9.3$
2	3.14:	23.50	8	50.:7	$3{ }^{\text {r }} 6.01$	22	380.13	2843.6
21	3.409	25.50	83	53.46	399.88	223	388.82	2908.6
22	3.687	27,58	86	56.75	424.48	226	397.61	$29 \% 4.3$
23	3.96	29.64	89	60.13	449.82	$22 \quad 9$	406.49	3040.8
24	4.2~6	81.99	9	6362	47589	23	415.48	3108.0
25	4.58 r	3431	93	6720	502.70	233	424.56	$31 \% 5.9$
26	4.909	36.72	96	70.88	53024	236	433.74	3244.6
27	5.241	39.21	99	74.66	558.51	$23 \quad 9$	44301	3314.0
28	5.585	41.78	10	78.54	587.52	24	452.39	3384.1
29	5.940	44.43	103	8..52	617.26	243	461.86	3455.0
210	6.305	47.16	106	86.59	647.74	246	471.44	3526.6
: 11	6.681	49.98	109	90.76	$6 \% 8.95$	$24 \quad 9$	481.11	3598.9
3	7.069	5288	11	95.03	r10.90	25	490.87	$36 \% 2.0$
31	7.467	55.86	113	99.40	T43 58	253	500.74	3745
32	7.876	58.92	116	103.87	\%r6.99	205	510.71	3820.3
33	8.296	62.06	119	108.43	811.14	$25 \quad 9$	520.77	3895.6
34	8.727	65.28	12	113.10	846.03	26	530.93	39\%1.6
35	9.168	68.58	123	117.86	881.65	$26 \quad 3$	541.19	4048.4
36	9.621	71.97	126	122.72	918.00	$26 \quad 6$	551.55	41×5.9
37	10.085	75.44	129	12 \%. 68	95509	$26 \quad 9$	562.00	4204.1
38	10.559	78.99	13	13273	992.91	27	572.56	$4 \% 83.0$
39	11.045	8262	13 3	13 \%. 89	1031.5	273	583.21	436:2. 1
310	11.541	86.33	136	14:3.14	$10 \% 0.8$	276	593.96	4443.1
311	12.048	90.13	139	148.49	1110.8	$27 \quad 9$	604.81	45:24.3
4	12.566	94.00	14	153.94	1151.5	28	615.75	4606.2
41	13.095	97.96	143	159.48	1193.0	283	626.80	4688.8
42	13.6:35	102.00	146	165.13	1235.3	286	637.94	$47 \% 2.1$
43	14.186	106.12	149	170.8 \%	1278.2	289	649.18	4856.2
44	14.748	110.3)	15	176.71	1321.9	29	660.5²	4941.0
45	15.321	114.61	15 3	18265	1366.4	293	6 \%1.96	5026.6
46	15.90	118.97	156	188.69	1411.5	296	683.49	5112.9
47	16.50	123.42	159	194.8:3	1457.4	$29 \quad 9$	695.13	5199.9
48	17.10	127.95	16	201.06	1504.1	30	\%06.86	5\%8\%.7
49	17.72	132.56	163	207.39	1551.4	30	718.69	5376.2
410	18.35	137.25	166	21382	1.599 .5	306	730.62	5465.4
411	18.99	14202	169	220.35	1648.4	$30 \quad 9$	74:. 64	5555.4
5	19.63	146.88	17	2:6.98	169\%.9	31	754.77	5646.1
51	20.29	1518.	17 3	233.71	$1 \% 48.2$	313	\%66.99	573\%.5
52	20.97	156.83	176	240.5:3	17993	316	779.31	5829.7
53	21.65	161.93	179	247.45	1.51 .1	319	791.73	5922.6
54	22.34	$16 \% .12$	18	25447	1903.6	32	80425	6016.2
55	23.04	17. 2.38	18 ?	261.59	1956.8	323	816.86	6110.6
56	23.76	177.62	186	268.80	2010.8	326	829.58	$6: 05 . \%$
57	24.48	183.15	189	$2 \% 6.10$	2065.5	329	842.39	6301.5

GALLONS AND CUBIC FEET.

United States Gallons in a given Number of Cubic Feet.
1 cubic foot $=\approx .480519 \mathrm{U}$. S. gallons; 1 gallon $=231 \mathrm{cu} . \mathrm{in} .=.13368056 \mathrm{cu} . \mathrm{ft}$.

Cubic Ft.	Gallons.	Cubic Ft.	Gallons.	Cubic Ft.	Gallons.
0.1	0.75	50	374.0	8,000	59,844.2
02	1.50	60	448.8	9,000	67,324.7
0.3	2.24	70	5:23.6	10,000	74,805.2
0.4	2.99	80	598.4	20,000	149,610.4
0.5	3.74	90	6 63.2	30,000	224,415.6
0.6	4.49	100	748.0	40,000	299,220.8
0.7	5.24	200	1,496.1	50,000	374,025.9
0.8	5.98	300	2,244.2	60,000	448,831.1
0.9	6. 13	400	2,992.2	\%0,000	52:3,636.3
1	7.48	500	3,140.3	80,000	598,441.5
2	14.96	600	4,488.3	90,000	673,246.7
3	22.44	700	5,236.4	100,000	748,051.9
4	29.92	800	5.984.4	200,000	1,496,103.8
5	3740	900	6,732.5	300,000	2.:244,155.7
6	44.88	1,000	7,480.5	400,000	2,992,207.6
7	52.36	2,000	14,961.0	500,000	3,740.259.5
8	59.84	3,000	22,441.6	600,000	4.488,311.4
9	67.32	4,000	29,922. 1	700.000	5,236,363 3
10	74.80	5,000	37.402.6	800,010	5,984,415.2
20	149.6	6,000	44,883.1	900,000	6,73:,46\%.1
30 40	$\begin{aligned} & 224.4 \\ & 299.2 \end{aligned}$	7,000	52,363.6	1,000,000	7,480,519.0

Cubic Feet in a given Number of Gallons.

Gallons.	Cubic Ft.	Gallons.	Cubic Ft.	Gallons.	Cubic Ft.
1	. 134	1,000	133.681	1,000,000	133,680. 6
2	. 267	2,000	267.361	2,000.000	26\%.361.1
3	. 401	3,000	401.04:	3,001, 000	401.041.7
4	. 53.35	4.000	534.722	4,000.000	534.722 .2
5	. 668	5,000	668.403	5,000,000	668,402.8
6	. 802	6,000	80\%.083	6,000,000	802,083 3
τ	. 936	7,000	9:35.764	7,000,000	935, 763.9
8	1.069	8,000	1,069.444	$8,000.000$	1,069,444.4
9	1.203	9,000	1,203.125	9,000,000	1,20)3,125.0
10	1.337	10,000	1,386.806	10,000,000	1,336,805.6

NUMBER OF SQUARE FEET IN PLATES 3 TO 32 FEET LONG, AND 1 INCH WIDE.

For other widths, multiply by the width in inches. $1 \mathrm{sq} . \mathrm{in} .=.0069 \frac{4}{9} \mathrm{sq} . \mathrm{ft}$.

$\begin{gathered} \text { Ft. and } \\ \text { In. } \\ \text { Long. } \end{gathered}$	Ins.	Square Feet.	Ft. and Ins. Long.	Ins. Long.	Square Feet.	Ft. and Ins. Long.	Ins. Long.	Square Feet.
3. 0	36	. 25	7.10	94	. 6528	12. 8	152	1.056
	$3{ }^{3}$. 2569	11	95	. 6597		153	1.063
2	38	. 2639	8. 0	96	. 6667	10	154	1.069
3	39	.2~08	1	9 97	.67:36	11	155	1.076
4	40	. 2778	2	98	. 6806	13. 0	156	1.083
5	41	. 2847	3	99	. $68 \% 5$	1	157	1.09
	42	. 2917	4	100	. 6944	2	158	1.09%
7	43	. 2986	5	101	. 01014	,	159	1.104
8	44	. 3056	6	102	. 7083	4	160	1.114
9	45	. 3125	7	103	. 7153	5	161	1.118
10	46	. 3194	8	104	.722:	$\stackrel{6}{7}$	162	1.125
11	47	. 3264	9	105	. 2292	7	16.3	1.132
4. 0	48	. 3333	10	106	. 7361	8	164	1.139
	49	. 3403	11	107	. 7431	9	165	1.146
2	50	. 34 \%2	9. 0	108	. 15	10	166	1.153
3	51	. 3542	1	109	. 7569	11	167	1.159
4	52	. 3611	2	110	. 7639	14.0	168	1.167
5	53	. 3681	3	111	. 7708	1	169	1.174
6	54	. 375	4	112	. $77 \% 8$	2	170	1.181
7	55	. 3819	5	113	. 7847	3	171	1.188
8	56	. 3889	6	114	. 7917	4	120	1.194
9	57	. 3958	7	115	. 9986	5	173	1.201
10	58	. 4028	8	116	. 8056	6	174	1.208
11	59	. 4097	9	117	.8125	7	175	1.215
5. 0	60	. 4167	10	118	. 8194	8	176	1.222
	61	. 4236	11	119	. 8264	9	1.7	1.229
2	62	. 4306	10. 0	1:0	. 8333	10	178	1.236
3	63	. 4375	1	121	. 8403	11	179	1.213
4	64	. 4444	2	122	. 84%	15. 0	180	1.25
5	65	. 4514	3	123	. 8542	1	181	1.257
6	66	. 4583	4	124	. 8611	2	182	1.264
7	67	. 4653	5	125	. 8681	3	183	1.271
8	68	. 4 т22	6	126	. 815	4	184	1.278
9	69	. 4792	7	127	. 8819	5	185	1.285
10	70	. 4861	8	1:3	. 8889		186	1.292
11	71	. 4931	9	129	. 8958	7	187	1.299
6. 0	72	. 5	10	130	. 9028	8	188	1.306
1	73	. 5069	11	131	. 9097		189	1.313
2	74	. 5139	11.0	132	916\%	10	190	1.319
3	75	. 5208	1	133	.92336	11	191	1.326
4	76	.5278	2	134	.9:306	16. 0	192	1.333
5	77	. 5347		135	. 9375		193	1.34
6	78	. 5417	4	136	. 9444	2	194	1.347
7	79	. 5486	5	137	. 9514	3	195	1.354
8	80	. 5556	6	138	. 9583	4	196	1361
9	81	. 5625	7	139	. 9653	5	197	1.368
10	$8{ }^{8}$. 5694	8	140	. 99.22	6	198	1.375
11	83	. 5764	9	141	.9792	7	199	1.382
7. 0	84	. 5834	10.	142	. 9861	8	200	1.389
1	85	. 5903	11	143	. 9931	9	201	1396
$\stackrel{2}{2}$	86	. 599^{2}	12. 0	144	1.000	10	203	1.403
3	87	. 6042	1	145	1.007	11	203	1.41
4	88	. 6111	2	146	1.014	17.0	201	1.417
5	89	. 6181	3	147	1.021	1	20.5	1.4:4
6	90	. 625		148	1028	2	206	1.431
7	91	. 6319	5	149	1.035	3	207	1.438
8	92	.6389	6	150	1.042	4	20.5	1.444
9	93	. 6458	7	151	1.049	5	209	1.451

SQUARE FEET IN PLATEES-(Continued.)

Ft. and Ins. Long.	Ins. Long.	Square Feet.	Ft. and Ins. Long.	Lns.	Square Feet.	Ft. and Ins. Long.	Ins. Long.	Square Feet.
17.6	210	1.458	22.5	269	1.868	27.4	328	2.278
	211	1.465		270	1.875		329	2.285
8	212	$1.4{ }^{\text {\% }}$	7	271	1.882	6	330	2.292
9	213	1.479	8	272	1.889	7	331	2.299
10	214	1.486	9.	273	1.896	8	332	2.306
11	215	1.493	10	274	1.903	9	333	2.313
18. 0	216	1.5	11	275	1.91	10	334	2.319
1	217	1.507	23.0	276	1.917	11	335	2.326
2	218	1.514		277	1.924	28.0	3.36	2.333
3	219	1.521	2	278	1.931		337	2.34
4	220	1.528	3	279	1.938	2	338	2.347
5	221	1.535	4	280	1.944	3	339	2.354
6	222	1.542	5	281	1.951	4	340	2.361
7	223	1.549	6	282	1958	5	341	2.368
8	$2 \% 4$	1.556	7	28.3	1.965	6	342	2. 375
9	225	1.563	8	284	1.972	7	343	2382
0	226	1.569	9	285	1.979	8	344	2.389
11	227	1.576	10	286	1.986	9	345	2.396
19.0	228	1.583	11	287	1.993	10	346	2.403
	229	1.59	24.0	288	2.	11	347	2.41
2	230	1.597	1	289	2.007	29.0	348	2.417
3	231	1.604	2	290	2.014		349	2.424
4	232	1.611	3	291	2.021	2	350	2.421
5	233	1.618	4	292	2028	3	351	2.438
6	234	1.635	5	293	2.035	4	352	2.444
7	235	1.632	6	294	2.042	5	353	2.451
8	236	1.639	7	295	2.049	6	354	2.458
9	237	1.645	8	296	2.056	7	355	2.465
10	238	1.653	9	297	2063	8	356	2.472
11	239	1.659	10	298	2.069	9	357	$2.4 \% 9$
20. 0	240	1.667	11	299	2.076	10	358	2.486
	241	$1.6 \% 4$	25.0	300	2.083	11	359	2.483
2	242	1.681	1	301	2.09	30.0	360	2.5
3	243	1.688	2	302	2.097		361	2.507
4	244	1.694	3	303	2.104	2	362	2.514
5	245	1.701	4	304	2.111	3	363	2.521
6	246	1.708	5	305	2.118	4	364	2.528
7	247	1.715	6	306	2.125	5	365	2.535
8	248	1.722		307	2.132	6	366	2.542
9	249	1.729	8	308	2.139	7	367	2.549
10	250	1.736	9	309	2.146	8	368	2.556
11	251	1. 743	10	310	2.153		369	2.563
21.0	252	1.75	11	311	2.16	10	$3{ }^{\text {\% }} 0$	2.569
1	253	1.757	26. 0	312	2.167		371	2.576
2	254	1.764	1	313	2.174	31.0	372	2.533
3	255	1.771	2	314	2.181	1	373	2.59
4	256	1.778	3	315	2.188	2	374	2.597
5	$25 \hat{1}$	1.785	4	316	2.194	3	375	2.604
6	258	1.792	5	317	2.201	4	376	2.611
7	259	1.799	6	318	2.208	6	377	2.618
8	260	1.806	7	319	2.215	$\stackrel{6}{7}$	378	2.635
9	261	1.813	8	3:0	2.222	7	379	2.63:
10	262	1.819	9	321	2.229	8	380	2.639
11	263	1.826	10	322	2.236		381	2.646
22.0	264	1.833	11	323	2.243	10	382	2653
1	265	1.84	27. 0	324	2.25	11	383	266
2	266	1.847		335	2.257	32.0	384	2.667
3	267	1.854		326	2.264		385	2.674
4	268	1.861	3	327	2.271	2	386	2.681

CAPACITIES OF RECTEANGULAR TANKS IN U. S. GALLONS, FOR EACH FOOT IN DEPTH.

1 cubic foot $=7.4805 \mathrm{U}$. S. gallons.

Width of Tank.	Length of Tank.										
		ft. in.	feet.								
	${ }_{2}$	${ }_{2} 6$	(${ }_{3} 6$	4	46	${ }_{5}$	56	6	66	7
ft. in.											
2	29.92	37.40	44.88	52.36	59.84	67.32	74.81	82.29	89.77	97.25	104.73
26		46.\%	56.10	65.45	74.80	84.16	93.51	102.86	112.21	121.56	130.91
			67.3:	78.54	89.77	100.99	112.21	123.43	13465	145.87	157.09
36				91.64	104.73	117.82	130.91	144.00	15 T 09	170.18	183.27
4					119.69	,134.65	149.61	164.5̂́	179.53	194.49	209.45
						151.48	168.31	185.14	201.9*	219.80	235.63
							187.01	205. 11	$\stackrel{24.41}{ }$	243.11	261.82
56								226.28	246.86	-26\%.43	288.00
									269.30	291.74	314.18
66										316.05	340.36
7											366.54

Width of Tank.	Length of Tank.									
	ft. in.	feet.								
	76	8	86		96	10	106	11	116	12.
ft. in.										
2	112.21	119.69	127.17	134.65	14213	149.61	15̇.09	164.57	172.05	17953
2	140.26	149.61	158.96	168.31	177.66	187.01	196.36	205.71	21506	224.41
3	168.51	179.53	190.75	202.97	213.19	22441	235.63	246.86	258.07	269.30
36	19636	20945	22254	235.63	248.73	261.82	274.90	288.00	301.09	314.18
	2\%4.41	239.37	254.34	269.30	284.26	299.22	314.18	329.14	344.10	359.06
46	252.47	269.30	236.13	302.96	319.79	336.62	353.45	370.28	387.11	403.94
5	280.52	299.22	317.92	336.62	355.32	374.03	392.ヶ2	411.43	43013	448.83
	308.57	$3 \geqslant 9.14$	349.71	3 0 0.28	390.85	411.43	432.00	452.57	$4 \% 3.14$	493.71
6	336.62	359.06	381.50	403.94	426.39	448.83	471.27	493.71	516.15	538.59
$6 \quad 6$	364.67	388.98	413.30	437.60	461.92	486.23	510.54	534.85	559.16	583.47
\because	39272	418.91	44509	47127	497.45	523.64	549.81	57599	60218	62836
r	420.78	448.83	476.88	504.93	533.98	56104	589.08	61714	645.19	673.24
8		478.75	508.67	538.59	568.51	599.44	628.36	658.28	688.20	718.12
8			540.46	512.25	604.05	635.84	66763	699.42	T31.21	763.09
9				605.92	639.58	673.25	706.90	740.56	774.23	807.89
06					$6 \% 5.11$	71065	746.17	781.71	81724	852.77
10						748.05	785.45	822.86	860.26	897. 66
10							824.73	864.00	903. 26	942. 56
11								905.14	946.27	987.43
116									989.29	1032.3
12										10ヶ\%.

NUMBER OF HARRELS (31 1-2 GALLONS) IN CISTERNS AND TANKS.

1 Barrel $=311 / 2$ gallons $=\frac{31.5 \times 231}{1728}=4.21094$ cubic feet. Reciprocal $=.237477$.

Depth Feet.	Diameter in Feet.										
	5	6	7	8	9	10	11	12		13	14
1	4.663	6.714	9.13	3911.937	15.108	18.652	22.569	26.8		31.52	$3655 i$
5	23.3	33.6	45.7	7159.7	75.5	93.3	112.8	134.		$15 \% .6$	182.8
6	28.0	40.3	54.8	871.6	90.6	111.91	135.4	161.		189.1	2193
7	32.6	47.0	64.0	0 83.6	105.8	130.61	158.0	188.		2:2.7	255.9
8	37.3	53.7	73.1	1 95.5	120.9	149.21	180.6	214.		252.2	29:2. 5
9	42.0	60.4	82.3	3 107.4	136.0	167.92	203.1	241.		283.1	329.0
10	46.6	67.1	91.4	4119.4	151.1	186.5	225.7	268.		315.2	365.6
11	51.3	73.9	1005	$5{ }^{5} 131.3$	166.2	205.2	2483	295.		346.7	402.1
12	56.0	80.6	109.7	7 143.2	181.3	223.8 2	270.8	32\%.		378.3	438.7
13	60.6	87.3	118.8	8155.2	196.4	242.52	293.4	349.		409.8	$4{ }^{4} 5.2$
14	65.3	94.0	127.9	9 167.1	211.5	261.1	316.0	$3 \% 6$.		441.3	511.8
15	69.9	100.7	137.1	1179.1	226.6	$\because 89.8$	338.5	402.		47:. 8	548.4
16	74.6	107.4	146.2	2191.0	241.7	$\because 98.4$	361.1	429.		504.4	534.9
17	79.3	114.1	155.4	4202.9	256.8	317.1	383.7	456.		535.9	621.5
18	83.9	120.9	164.5	5214.9	271.9	335.7 4	406.2	483.		567.4	658.0
19	88.6	127.6	173.6	6 226.8	287.1	354.4	428.8	510.		598.9	694.6
20	933	134.3	182.8	8 238.7	302.2	373.0 4	451.4	537.		630.4	731.1
$\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	Diameter in Feet.										
	15	16		17	18	19	20		21		22
1	41.966	647.748		53.903	60.431	67.332	74.606		82.253		90.273
5	209.8	238.7		269.5	302.2	$33.36 . \tilde{i}$404.0	3 3.3.0		411.3493.5		451.4541.6
6	251.8	334.2		323.4	3626		52\%. 2				
7	293.8			377.3	423. 0	$4 \pi 1.3$538.7			575.8		631.9
8	335.7	382.0		431.2	483.4		596	. 8	658		722.2
9	317.7	429.7		4851	543.9	606.0$6 \uparrow 3.3$	671.5		740.3		812.5902.7093.0
10	419.7			539.0	604.3		746.1		822.5		
11	461.6	525.2		592.9	664.7725.2	740.7808.0					
12	503.6	573.0		646.8					1069.3		993.0 1083.3
13	545.6	620.7		700.7	785.6	$8 \% 5.3$	969.9				11 r3.5
14	587.5	668.5		754.6	846.0	942.6	1044.5		1151.5		1263.8
15	6×9.5	716.2764.0881.7		808.5	$\begin{aligned} & 906.5 \\ & 966.9 \end{aligned}$	$\begin{aligned} & 1010.0 \\ & 107 \uparrow .3 \end{aligned}$	1119.11193.7		11233.81316.0		$\begin{aligned} & 1354.1 \\ & 1444.4 \end{aligned}$
16	$6 \pi 1.5$			86.4							
17	713.4	$\begin{aligned} & 811.7 \\ & 859.5 \end{aligned}$		916.4	$\begin{aligned} & 1027.3 \\ & 1087.8 \end{aligned}$	$\begin{aligned} & 1144.6 \\ & 1212.0 \end{aligned}$	1268.31342.9		1398.3		$\begin{aligned} & 1534.5 \\ & 1624.9 \end{aligned}$
18	755.4			970.3					1480		
19	797.4	$\begin{aligned} & 907.2 \\ & 955.0 \end{aligned}$		1024.2	$\begin{aligned} & 1148.2 \\ & 1208.6 \end{aligned}$	$\begin{aligned} & 12 ヶ 9.3 \\ & 1346.6 \end{aligned}$	1417.51492.1		1562.8		$\begin{aligned} & 1715.2 \\ & 1805.5 \end{aligned}$
20	839.3			10ヶ8.1					1645		

NUMBER OF BARRELS (31 1-2 GALLONS) IN CISTERNS AND TANKS.-Coutinued.

$\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	Diameter in Feet.							
	23	24	25	26	2\%	28	29	30
1	98.666	107.432	116.571	126.083	135.968	146.226	157.858	16T. 86 \%
5	493.3	537.2	582.9	630.4	679.8	731.1	784.3	839.3
6	5920	644.6	699.4	756.5	815.8	877.4	941.1	1007.2
7	690.7	752.0	8160	882.6	951.8	1023.6	1098.0	$11 \% 5$
8	789.3	859.5	932. 6	1008.7	1087.7	1169.8	1254.9	1342.9
9	888.0	966.9	1049.1	1134.7	1223.7	1316.0	14117	1510.8
10	986.7	1074.3	1165.7	1260.8	1359.7	1462.2	1568.6	16786
11	1085.3	1181.8	128.2. 3	1386.9	1495.6	1608.5	1725.4	1846.5
12	1184.0	1289.2	1398.8	1513.0	1631.6	$1 \% 54.7$	188\%. 3	2014.4
13	1282. 7	1396.6	1515.4	1639.1	1767.6	1900.9	2039.2	2182.2
14	1381.3	15040	1632.0	1165.2	1903.6	2047.2	2196.0	2350.1
15	1480.0	1611.5	1748.6	1891.2	2039.5	2193.4	235\% 29	2517.9
16	15\%8.7	1718.9	1865.1	2017.3	$21 \% 5.5$	23339.6	2509.7	26858
17	$16 \sim 7.3$	1826.3	1981.7	2143.4	2311.5	2485.8	2666.6	285:3.7
18	$17 \% 0.0$	1933.8	2098.3	2269.5	2447.4	263:. 0	2823.4	3021.5
19	1874.7	2041.2	2214.8	2395.6	2583.4	2\%\%8.3	2980.3	3189.4
20	1973.3	2148.6	2321.4	2521.7	2719.4	2924.5	3137.2	3357.3

LOGARITHIMS.

Logarithmas (abbreviation log).-The \log of a number is the exponent of the μ ower to which it is necessary to raise a fixed number to produce the given number. The fixed number is called the base. Thus if the base is 10 , the lng of 1000 is 3 , for $10^{3}=1000$. There are two systems of logs in general use, the common, in which the base is 10, and the Naperian, or hyperbolic, in which the base is $2.718281828 \ldots$. . The Naperian base is commonly denoted by e, as in the equation $e^{y}=x$, in which y is the Nan. \log of x.

In any system of logs, the \log of 1 is 0 ; the \log of the base, taken in that system, is 1 . In any system the base of which is greater than 1 , the logs of all numbers greater than 1 are positive and the logs of all numbers less than 1 are negative.

The modulus of any system is equal to the reciprocal of the Naperian log of the base of that system. The mudulus of the Naperian system is 1, that of the common system is .4342945 .

The log of a number in any system equals the modulus of that system \times the Naperian log of the number.

The hyperbolic or Naperian log of any number equals the common \log $\times 2.3025851$.

Every log consists of two parts, an entire part called the characteristic, or index, and the decimal part, or mantissa. The mantissa only is given in the usual tables of common logs, with the decimal point ornitted. The characteristic is found by a simple rule, viz., it is one less than the number of figures to the left of the decimal point in the number whose log is to be found. Thus the characteristic of numbers from 1 to $9.99+$ is 0 , from 10 to 99.99 + is 1 , from 100 to $999+$ is 2 , from .1 to $.99+$ is -1 , from .01 to $.099+$ is -2 , etc. Thus

\log of 2000 is 3.30103 ;	\log of	. 2 is - $1.30 \mathrm{M03}$;
200 " 2.30103;		.02 " - 2.30103;
" " 20 " 1.30103;	" 6	. 002 " - 3.30103;
" ${ }^{\text {c }}$ " 0.30103;		.0002 " - 4.30103.

The minus sign is frequently written above the characteristic thus: $\operatorname{lng} .002=\overline{3} 30103$. The characteristic only is negative, the decimal part, or mantissa, being always positive.

Whell a log consists of a negative index and a positive mantissa, it is usual to write the negative sign over the index, or else to add 10 to the index, and to indicate the subtraction of 10 from the resulting logarithm.

Thus $\log .2=\overline{1} .3010: 3$, and this may be written $9.30103-10$.
In tables of logarithmic sines, etc., the - 10 is generally omitted, as being in inerviood.

Hules for use of the table of Logarithms.-To find the log of any whole number.-For 1 to 100 inclusive the \log is given complete in the small table ou page $1: 9$.

For 100 to 999 inclusive the decimal part of the log is given opposite the given number in the column headed 0 in the table (including the two figures to the left, making six figures). Prefix the characteristic, or index, 2.

For 1000 to 9999 inclusive: The last four figures of the log are found opposite the first three figures of the given number and in the vertical column headed with the fourth figure of the given number ; prefix the two figures under column 0 , and the index, which is 3.

For numbers over 10,000 having five or more digits: Find the decimal part of the \log for the first four digits as above, multiply the difference figure in the last column by the remaining digit or digits, and divide by 10 if there be only one digit more, by 100 if there be two more, and so on; add the quotient to the \log of the first four digits and prefix the index, which is 4 if there are five digits, 5 if there are six digits, and so on. The table of proportional parts may be used, as shown below.

To find the log of a decimal fraction or of a whole number and a decimal. - First find the \log of the quantity as if there were no decimal point, then prefix the index according to rule; the index is one less than the number of figures to the left of the decimal point.

Required log of 3.141593.

To find the number corresponding to a given \log. - Find m the table the log nearest to the decimal part of the given \log and take the first four digits of the required number from the column N and the top or foot of the column containing the log which is the next less than the given log. To find the 5 th and 6 th digits subtract the \log in the table from the given log, multiply the difference by 100 , and divide by the figure in the Diff. column opposite the \log; annex the quotient to the four digits already found, and place the decimal point according to the rule; the number of figures to the left of the decimal point is one greater than the index.

$$
\begin{aligned}
& \text { Find number corresponding to the log.......... } 0.497150 \\
& \text { Next lowest log in table corresponds to } 3141 . \ldots \ldots \text {.49i068 } \\
& \text { Diff. }=\frac{82}{}
\end{aligned}
$$

$$
\text { Tabular diff. }=138 ; 82 \div 138=.59+
$$

The iadex being 0 , the number is therefore $3.14159+$.
To multiply two numbers by the use of logarithms. Add together the logs of the two numbers, and find the number whose log is the sum.

To divide two numbers. - Subtract the log of the less from the log of the greater, and find the number whose log is the difference.

To raise a number to any given power. - Multiply the log of the number by the exponent of the power, and find the number whose \log is the product.

To find any root of a given number.-Divide the log of the number br the index of the rout. The quotient is the log of the root.

To find the reciprocal of a number. - Subtract the decimal part of the log of the number from 0 , add 1 to the index and change the sign of the index. The result is the log of the reciprocal.

Required the reciprocal of 3.141593 .

> Log of $3.14159: 3$, as found above 0.4971498
> Subtract decinal part from 0 gives
> 0.5028502
> Add 1 to the index, aud changing sign of the index gives... $\overline{1} .5028502$
> which is the lng of 0.31831 .

To find the fourth term of a proportion by logaritimas. - Add the logarithms of the second and third terms, aud from their sum subtract the logarithm of the first term.
When one logarithm is to be subtracted from another, it may be pore convenient to convert the subraction into an addition, which may be done by first subtracting the given logarithm from 10 , adding the difference th, the other lotarithm, and afterwards rejecting the 10.
The difference between a given logarithm and 10 is called its aritimetical complement, or cologa`ithm.
To subtract one logarithın from another is the same as to add its complement and then reject 10 from the result. For $a-b=10-b+a-10$.
To work a proportion, then, by logarithms, add the complement of the logarithm of the first term to the logarithms of the second and third terms. The characteristic must afterwards be diminished by 10 .
Example in logarithms with a negarive inclex. -Solve by logarithms $\left(\frac{525}{1011}\right)^{2.45}$, which means divide 526 by 1011 and raise the quotient to the 2.45 power.

$$
\begin{aligned}
\log 526 & =2.720986 \\
\log 1011 & =33.004 \pi 51 \\
\log \text { of quotient } & =-1.716235 \\
\text { Multiply by } & \frac{2.45}{-2.5811 \% 5} \\
& -1.864940 \\
& =1.4324 \% 0 \\
& -1.304 \% \% 55
\end{aligned}=.20173, \text { Ans. } .
$$

In multiplying - 1.7 by 5. we say: $5 \times 7=35,3$ to carry; $5 \times-1=-5$ less $+:$ carried $=-2$. In adding $-2+8+3+1$ carried from previous column, we say: $1+3+8=12$, minus $2=10$, set down 0 and carry $1 ; 1+4-2=3$.

Logarithms of ${ }^{\circ}$ NTmbers from 1 to 100.

N.	Log.								
1	0.000000	ก1.	1.222819	41	1.612\%84	61		81	1.908485
2	0.301030	22	1.342423	42	1.623249	62	1. 192392	82	1.913814
3	0.477121	23	1.361728	43	1.633468	63	1. 799341	83	$1.9190 \sim 8$
4	0.602060	2	1.380211	44	$1.643+53$	64	1.806180	84	1.9242:9
5	0.698970	25	1.397940	45	1.653213	65	1.812913	85	1.929419
6	0.778151	26	1.414973	46	1.662758	66	1.819544	86	1.934498
8	0.845098	27	1.431364	47	1.672098	6 \%	$1.8260 \% 5$	87	1.939519
8	0.903030	28	1.447158	48	1.681241	68	1.832509	88	1.944483
9	0.954243	29	1.462398	49	1.690196	69	1.838849	89	1.949390
10	1.000000	30	1.477121	50	$1.6989 \sim 0$	\% 8	1.845098	95	1.954243
		31 32	1.491362	51	1. 707570	71	1.851258	91	1.9.59041
12	1.079181	32 33	1.505150 1.518514	52	1. 716003	\%	1.857332	92	$1.963 \sim 88$
14	1.146128	34	1.5185147	53	1.724276	$\begin{aligned} & 73 \\ & 74 \end{aligned}$	1.863323	93	1.968183
15	1.176091	35	1.544068	55	1.730363	$\begin{aligned} & 74 \\ & 75 \end{aligned}$	1.869232	94	1.978128
16	1.201120	36	1.556303	56	1.748188	76			
17	1.230449	37	1.568202	57	1.755875	77	1.886491	$\begin{aligned} & 96 \\ & 97 \end{aligned}$	
18	1.255273	38	1.579784	58	1.763428	78	1.892095	98	1.9861, 1.991226
19	1.278754	39	1.591065	59	1. \uparrow ¢ 0852	\%9	1.897627	99	1.995635
20	1.301030	40	1.602060	60	1.778151	80	1.903090	100	2.000000

No. 100 L .000.$]$									[No. 109 L. 040.		
N.	0	1	2	8	4	5	6	7	8	9	Diff.
$\begin{array}{r} 100 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 000000 \\ 4321 \\ 8600 \end{array}$	$\begin{aligned} & 0434 \\ & 4751 \\ & 90: 26 \end{aligned}$	$\begin{aligned} & 0868 \\ & 5181 \\ & 9451 \end{aligned}$	$\begin{aligned} & 1301 \\ & 5609 \\ & 9876 \end{aligned}$	$\begin{aligned} & 1734 \\ & 6038 \end{aligned}$	$\begin{aligned} & 2166 \\ & 6466 \end{aligned}$	$\begin{aligned} & 2598 \\ & 6894 \end{aligned}$	$\begin{array}{r} 3029 \\ 7321 \end{array}$	$\begin{aligned} & 3461 \\ & 7 \pi 48 \end{aligned}$	$\begin{aligned} & 3891 \\ & 81 \% 4 \end{aligned}$	432438
					$\begin{aligned} & 0300 \\ & 4521 \\ & 8700 \end{aligned}$	$\begin{aligned} & 0724 \\ & 4940 \\ & 9116 \end{aligned}$	$\begin{aligned} & 1147 \\ & 5360 \\ & 9532 \end{aligned}$	$\begin{aligned} & 1570 \\ & 5779 \\ & 9947 \end{aligned}$	$\begin{aligned} & 1993 \\ & 6197 \end{aligned}$	$\begin{aligned} & 2415 \\ & 6616 \end{aligned}$	424
34	$\begin{array}{r} 012837 \\ 7033 \end{array}$	$\begin{aligned} & 3259 \\ & 7451 \end{aligned}$	$\begin{aligned} & 3680 \\ & 7868 \end{aligned}$	$\begin{aligned} & 4100 \\ & 8284 \end{aligned}$							
5	$\begin{array}{r} 021189 \\ 5306 \\ 9384 \end{array}$	$\begin{aligned} & 1603 \\ & 5715 \\ & 9789 \end{aligned}$	$\begin{aligned} & 2016 \\ & 6125 \end{aligned}$	$\begin{aligned} & 2428 \\ & 6533 \end{aligned}$	$\begin{aligned} & 2841 \\ & 6942 \end{aligned}$	$\begin{array}{r} 3252 \\ 7350 \end{array}$	$\begin{aligned} & 3664 \\ & 7757 \end{aligned}$	$\begin{aligned} & 4075 \\ & 8164 \end{aligned}$	$\begin{aligned} & 0361 \\ & 4486 \\ & 85 \div 1 \end{aligned}$	$\begin{aligned} & 07 \pi 5 \\ & 4896 \\ & 89 \pi 8 \end{aligned}$	416
6											408
7			$\begin{aligned} & 0195 \\ & 4227 \\ & 8223 \end{aligned}$	$\begin{aligned} & 0600 \\ & 4628 \\ & 8620 \end{aligned}$	$\begin{aligned} & 1004 \\ & 5029 \\ & 9017 \end{aligned}$	$\begin{aligned} & 1408 \\ & 5430 \\ & 9414 \end{aligned}$	$\begin{aligned} & 1812 \\ & 5830 \\ & 9811 \end{aligned}$	$\begin{aligned} & 2216 \\ & 6230 \end{aligned}$	$\begin{aligned} & 2619 \\ & 6629 \end{aligned}$	$\begin{aligned} & 3021 \\ & r 028 \end{aligned}$	404
8	$\begin{array}{r} 033424 \\ 7426 \end{array}$	$\begin{aligned} & 3826 \\ & 7825 \end{aligned}$									
9								0207	0602	0998	397

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
434	43.4	86.8	130.2	173.6	217.0	260.4	303.8	347.2	390.6
433	43.3	86.6	129.9	173.2	216.5	259.8	303.1	346.4	389.7
432	43.2	86.4	129.6	172.8	216.0	259.2	302.4	345.6	388.8
431	43.1	86.2	129.3	172.4	215.5	258.6	301.7	341.8	387.9
430	43.0	86.0	129.0	172.0	215.0	258.0	301.0	344.0	387.0
429	42.9	85.8	128.7	171.6	214.5	257.4	300.3	343.2	386.1
428	42.8	85.6	128.4	171.2	214.0	256.8	299.6	342.4	385.2
427	42.7	85.4	128.1	170.8	213.5	256.2	298.9	341.6	384.3
426	42.6	85.2	127.8	170.4	213.0	2556	295.2	340.8	383.4
425	42.5	85.0	127.5	$1 \% 0.0$	212.5	255.0	297.5	340.0	382.5
424	42.4	84.8	127.2	169.6	212.0	254.4	296.8	339.2	381.6
423	42.3	84.6	126.9	169.2	211.5	253.8	296.1	338.4	380.7
422	42.2	84.4	126.6	168.8	211.0	253.2	295.4	337.6	3ก9.8
421	42.1	84.2	126.3	168.4	210.5	252.6	294.7	336.8	378.9
420	42.0	84.0	126.0	168.0	210.0	252.0	294.0	336.0	378.0
419	41.9	83.8	125.7	167.6	209.5	251.4	293.3	335.2	$3{ }^{3} 7.1$
418	41.8	83.6	125.4	167.2	209.0	250.8	292.6	334.4	376.2
417	41.7	83.4	125.1	166.8	208.5	250.2	291.9	333.6	375.3
416	41.6	83.2	124.8	166.4	208.0	249.6	291.2	332.8	374.4
415	41.5	83.0	124.5	166.0	$20 \% .5$	249.0	290.5	332.0	373.5
414	41.4	82.8	124.2	165.6	207.0	248.4	289.8	331.2	$3{ }^{\sim} 2.6$
413	41.3	82.6	123.9	165.2	206.5	247.8	289.1	330.4	371.7
412	41.2	82.4	123.6	164.8	206.0	247.2	288.4	329.6	$3 \% 0.8$
411	41.1	82.2	123.3	164.4	205.5	246.6	287.7	328.8	369.9
410	41.0	82.0	123.0	164.0	205.0	246.0	287.0	328.0	369.0
409	40.9	81.8	122.7	163.6	204.5	245.4	286.3	327.2	368.1
408	408	81.6	122.4	163.2	204.0	244.8	285.6	326.4	367.2
407	40.7	81.4	122.1	162.8	203.5	244.2	284.9	325.6	366.3
406	40.6	81.2	121.8	162.4	203.0	2436	284.2	324.8	365.4
405	40.5	81.0	121.5	162.0	202.5	243.0	283.5	324.0	364.5
404	40.4	80.8	121.2	161.6	202.0	212.4	282.8	323.2	363.6
403	40.3	80.6	120.9	161.2	201.5	241.8	288.1	322.4	362.7
402	40.2	80.4	120.6	160.8	201.0	2412	281.4	321.6	361.8
401	40.1	80.2	120.3	160.4	200.5	240.6	280.7	320.8	360.9
400	40.0	80.0	120.0	160.0	200.0	240.0	280.0	320.0	360.0
399	39.9	79.8	119.7	159.6	199.5	239.4	279.3	319.2	359.1
398	39.8	79.6	119.4	159.2	199.0	238.8	278.6	318.4	358.2
397	39.7	79.4	119.1	158.8	198.5	238.2	277.9	317.6	$35 \% .3$
396	39.6	79.2	118.8	158.4	198.0	237.6	277.2	316.8	356.4
385	39.5	79.0	118.5	158.0	197.5	237.0	276.5	3160	355.5

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 110 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 041393 \\ 5323 \\ 9218 \end{array}$	$\begin{aligned} & 1787 \\ & 5714 \\ & 9606 \end{aligned}$	$\begin{aligned} & 2182 \\ & 6105 \\ & 9993 \end{aligned}$	$\begin{aligned} & 2576 \\ & 6495 \end{aligned}$	$\begin{aligned} & 2969 \\ & 6885 \end{aligned}$	$\begin{aligned} & 3362 \\ & 7275 \end{aligned}$	$\begin{aligned} & 3755 \\ & 7664 \end{aligned}$	$\begin{aligned} & 4148 \\ & 8053 \end{aligned}$	$\begin{aligned} & 4540 \\ & 8442 \end{aligned}$	$\begin{aligned} & 4982 \\ & 8850 \end{aligned}$	393390
				$\begin{aligned} & 0380 \\ & 4230 \\ & 8046 \end{aligned}$	$\begin{aligned} & \hline 0766 \\ & 4613 \\ & 84 \approx 8 \end{aligned}$	$\begin{aligned} & \hline 1153 \\ & 4996 \\ & 8805 \end{aligned}$	$\begin{aligned} & 1538 \\ & 5388 \\ & 9185 \end{aligned}$	$\begin{aligned} & 1924 \\ & 5760 \\ & 9563 \end{aligned}$	$\begin{aligned} & \hline 2309 \\ & 6142 \\ & 9942 \end{aligned}$	$\begin{aligned} & 2694 \\ & 6524 \end{aligned}$	386383
3	053078	3463	3846								
4	6905	7286	7666								
5	$\begin{array}{r} 060698 \\ 4458 \\ 8186 \end{array}$	$\begin{aligned} & 1075 \\ & 4832 \\ & 8557 \end{aligned}$	$\begin{aligned} & 1452 \\ & 5206 \\ & 8008 \end{aligned}$	$\begin{aligned} & 1829 \\ & 5580 \\ & 9298 \end{aligned}$	$\begin{aligned} & 2206 \\ & 5953 \\ & 9668 \end{aligned}$	$\begin{aligned} & 2582 \\ & 6326 \end{aligned}$	$\begin{aligned} & 2958 \\ & 6699 \end{aligned}$	$\begin{aligned} & 33,33 \\ & 7071 \end{aligned}$	$3 \pi 09$	$\begin{aligned} & 1083 \\ & 40815 \\ & 78 \end{aligned}$	376373
6											
7						$\begin{aligned} & 0038 \\ & 3718 \\ & 7368 \end{aligned}$	$\begin{aligned} & 0407 \\ & 4085 \\ & 7731 \end{aligned}$		$\begin{aligned} & 1145 \\ & 4816 \\ & 8457 \end{aligned}$	$\begin{aligned} & 1514 \\ & 5182 \\ & 8819 \end{aligned}$	$3 \pi 0$366363
8	$\begin{array}{r} 071882 \\ 5547 \end{array}$	$\begin{aligned} & 2250 \\ & 5912 \end{aligned}$	$\begin{aligned} & 2617 \\ & 6276 \end{aligned}$	$\begin{aligned} & 2985 \\ & 6640 \end{aligned}$	$\begin{aligned} & 3352 \\ & 7004 \end{aligned}$			$\begin{aligned} & 07 \pi 6 \\ & 4451 \\ & 8094 \end{aligned}$			
9											

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
395	39.5	79.0	118.5	158.0	197.5	237.0	276.5	316.0	355.5
394	39.4	78.8	118.2	157.6	197.0	236.4	275.8	315.2	354.6
393	39.3	78.6	117.9	157.2	196.5	235.8	275.1	314.4	3 303.7
392	39.2	78.4	117.6	156.8	196.0	235.2	274.4	313.6	352.8
391	39.1	78.2	117.3	156.4	195.5	234.6	273.7	312.8	351.9
390	39.0	r8.0	117.0	156.0	195.0	234.0	273.0	312.0	351.0
389	38.9	77.8	116.7	155.6	194.5	233.4	272.3	311.2	350.1
388	38.8	77.6	116.4	155.2	194.0	232.8	271.6	310.4	349.2
387	38.7	77.4	116.1	154.8	193.5	232.2	270.9	309.6	\%48.3
386	38.6	77.2	115.8	154.4	193.0	231.6	270.2	308.8	347.4
385	38.5	77.0	115.5	154.0	192.5	231.0	269.5	308.0	346.5
384	38.4	76.8	115.2	153.6	192.0	230.4	268.8	307.2	345.6
383	38.3	76.6	114.9	153.2	191.5	229.8	268.1	306.4	344.7
382	38.2	76.4	114.6	152.8	191.0	229.2	267.4	305.6	343.8
381	38.1	76.2	114.3	152.4	190.5	228.6	266.7	304.8	342.9
380	38.0	76.0	114.0	152.0	190.0	228.0	266.0	304.0	342.0
379	37.9	75.8	113.7	151.6	189.5	227.4	265.3	303.2	341.1
378	3 \%. 8	\% 7.6	113.4	151.2	189.0	226.8	264.6	302.4	340.2
374	37.7	75.4	113.1	150.8	188.5	226.2	263.9	301.6	339.3
376	37.6	75.2	112.8	150.4	188.0	225.6	263.2	300.8	338.4
375	37.5	75.0	112.5	150.0	187.5	225.0	262.5	300.0	337.5
374	37.4	74.8	112.2	149.6	187.0	224.4	261.8	299.2	336.6
373	37.3	74.6	111.9	149.2	186.5	223.8	261.1	298.4	335.7
372	37.2	74.4	111.6	148.8	186.0	223.2	260.4	297.6	334.8
371	37.1	74.2	111.3	148.4	185.5	222.6	259.7	296.8	333.9
370	37.0	74.0	111.0	148.0	185.0	222.0	259.0	296.0	333.0
369	36.9	33.8	110.7	147.6	184.5	221.4	258.3	295.2	332.1
368	36.8	73.6	110.4	147.2	184.0	220.8	257.6	294.4	331.2
367	36.7	73.4	110.1	146.8	183.5	220.2	256.9	293.6	330.3
366	36.6	73.2	109.8	146.4	183.0	219.6	256.2	292.8	329.4
565	36.5	73.0	109.5	146.0	182.5	219.0	255.7	292.0	328.5
364	36.4	T2.8	109.2	145.6	182.0	218.4	2.34 .8	291.2	327.6
363	36.3	72.6	108.9	145.2	181.5	217.8	254.1	290.4	326.7
362	36.2	72.4	108.6	144.8	181.0	217.2	253.4	289.6	325.8
361	36.1	72.2	108.3	144.4	180.5	216.6	252.7	288.8	324.9
360	36.0	72.0	108.0	14\%.0	180.0	216.0	252.0	288.0	324.0
359	35.9	71.8	107.7	143.6	179.5	215.4	251.3	287.2	- 23.1
358	35.8	71.6	107.4	143.2	179.0	214.8	250.6	286.	322.2
357	35.7	71.4	107.1	148.8	- 78.5	214.2	249.9	285.6	521.3
356	35.6	71.2	106.8	142.4	78.0	213.6	249.2	284.8	320.4

No. 120 L. 079.]									[No. 134 L. 130.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
120	079181	9543	9904	0266	0626	0987	1347	1707	2067	2426	360
$\begin{aligned} & 1 \\ & \underset{2}{2} \\ & 3 \end{aligned}$	$\begin{array}{r} 082785 \\ 6360 \\ 9905 \end{array}$	$\begin{aligned} & 3144 \\ & 6716 \end{aligned}$	$\begin{aligned} & 3503 \\ & 70 \pi 1 \end{aligned}$	$\begin{aligned} & 3961 \\ & 7426 \end{aligned}$	$\begin{aligned} & 4219 \\ & 7781 \end{aligned}$	$\begin{aligned} & 4576 \\ & 8136 \end{aligned}$	$\begin{aligned} & 4934 \\ & 8490 \end{aligned}$	$\begin{aligned} & 5291 \\ & 8845 \end{aligned}$	$\begin{aligned} & 5647 \\ & 9198 \end{aligned}$	$\begin{aligned} & 6004 \\ & 9552 \end{aligned}$	357355
		$\begin{aligned} & \hline 0258 \\ & 3 \% 72 \\ & 72 \overline{y y} \end{aligned}$	$\begin{aligned} & 0611 \\ & 412.2 \\ & 7604 \end{aligned}$	$\begin{aligned} & 0963 \\ & 44 \pi 1 \\ & 7951 \end{aligned}$	$\begin{aligned} & 1315 \\ & 4820 \\ & 8: 98 \end{aligned}$	$\begin{aligned} & 1667 \\ & 5169 \\ & 8644 \end{aligned}$	$\begin{aligned} & 2018 \\ & 5518 \\ & 8990 \end{aligned}$	$\begin{aligned} & 2370 \\ & 5866 \\ & 9335 \end{aligned}$	$\begin{aligned} & 2721 \\ & 6215 \\ & 9681 \end{aligned}$	$\begin{aligned} & 30 i 1 \\ & 6562 \end{aligned}$	352349
5	093422										
5	6910										
$\left.\begin{aligned} & 6 \\ & 6 \\ & 8 \end{aligned} \right\rvert\,$	$\begin{array}{r} 100.371 \\ 3801 \\ \tau 210 \end{array}$	$\begin{aligned} & 0715 \\ & 4146 \\ & 7549 \end{aligned}$	$\begin{aligned} & 1059 \\ & 4487 \\ & 7888 \end{aligned}$	$\begin{aligned} & 1403 \\ & 4828 \\ & 8227 \end{aligned}$	$\begin{aligned} & 1747 \\ & 5169 \\ & 8565 \end{aligned}$	$\begin{aligned} & 2091 \\ & 5510 \\ & 8903 \end{aligned}$	$\begin{aligned} & 2434 \\ & 5851 \\ & 9241 \end{aligned}$	$\begin{aligned} & 2777 \\ & 6191 \\ & 95 \% 9 \end{aligned}$	$\begin{aligned} & 3119 \\ & 6531 \\ & 9916 \end{aligned}$	$\begin{aligned} & 0026 \\ & 3462 \\ & 68 \pi 1 \end{aligned}$	346343311
										$\begin{aligned} & 0253 \\ & 3609 \end{aligned}$	
9	$\overline{110590}$	0926	$\begin{aligned} & \hline 1263 \\ & 4611 \\ & 7934 \end{aligned}$	$\begin{aligned} & 1599 \\ & 4944 \\ & 8265 \end{aligned}$	$\begin{aligned} & 1934 \\ & 52 \pi 8 \\ & 8595 \end{aligned}$	$\begin{array}{r} \hline 2270 \\ 5611 \\ 8926 \\ \hline \end{array}$	$\begin{aligned} & 2605 \\ & 5943 \\ & 9256 \end{aligned}$	$\begin{aligned} & 2940 \\ & 62 \tau 6 \\ & 9586 \end{aligned}$	$\begin{aligned} & \hline 32 \pi 5 \\ & 6608 \\ & 9915 \end{aligned}$		338
130	3943	$\begin{aligned} & 4277 \\ & \tau 603 \end{aligned}$								6940	3:33
1	7271										
2	120574$13^{7105}$	$\begin{aligned} & 0903 \\ & 4178 \\ & 7429 \end{aligned}$	$\begin{aligned} & 1231 \\ & 4504 \\ & 7753 \end{aligned}$	$\begin{aligned} & 1560 \\ & 4830 \\ & 80 \pi 6 \end{aligned}$	$\begin{aligned} & 1888 \\ & 5156 \\ & 8399 \end{aligned}$	$\begin{aligned} & 2216 \\ & 5461 \\ & 8722 \end{aligned}$	$\begin{aligned} & 2544 \\ & 5806 \\ & 9045 \end{aligned}$	$\begin{aligned} & 2871 \\ & 6131 \\ & 9368 \end{aligned}$	$\begin{aligned} & 3198 \\ & 6456 \\ & 9690 \end{aligned}$	$\begin{aligned} & 0210 \\ & 3525 \\ & 6 \div 81 \end{aligned}$	323
3											
4										0012	323

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
355	35.5	71.0	106.5	142.0	177.5	2130	248.5	284.0	319.5
354	35.4	70.8	106.2	141.6	177.0	212.4	247.8	283.2	318.6
353	35.3	70.6	105.9	141.2	176.5	211.8	247.1	282.4	317.7
352	35.2	70.4	105.6	140.8	176.0	211.2	246.4	281.6	316.8
351	35.1	70.2	105.3	140.4	175.5	210.6	245.7	230.8	315.9
3.50	35.0	70.0	105.0	140.0	175.0	210.0	245.0	280.0	315.0
349	34.9	69.8	104.7	139.6	174.5	209.4	244.3	279.2	314.1
348	34.8	69.6	104.4	139.2	174.0	208.8	243.6	278.4	313.2
347	34.7	69.4	104.1	138.8	173.5	208.2	242.9	277.6	312.3
346	34.6	69.2	103.8	138.4	173.0	207.6	242.2	276.8	311.4
345	34.5	69.0	103.5	138.0	172.5	207.0	241.5	$2 \sim 6.0$	310.5
314	34.4	68.8	103.2	137.6	172.0	206.4	240.8	275.2	309.6
343	34.3	68.6	102.9	137.2	171.5	205.8	240.1	274.4	308.7
312	31.2	68.4	102.6	136.8	171.0	205.2	239.4	273.6	307.8
341	34.1	68.2	102.3	136.4	$1 \% 0.5$	204.6	238.7	$2 \pi 2.8$	306.9
310	34.0	68.0	102.0	136.0	$1 \% 0.0$	204.0	238.0	272.0	306.0
339	33.9	67.8	101.7	135.6	169.5	203.4	237.3	271.2	$305 . .1$
338	33.8	67.6	101.4	135.2	169.0	202.8	236.6	270.4	304.2
337	33.7	67.4	101.1	134.8	168.5	202.2	235.9	269.6	303.3
336	33.6	67.2	100.8	134.4	168.0	201.6	235.2	268.8	302.4
335	33.5	67.0	100.5	134.0	167.5	201.0	234.5	268.0	301.5
334	23.4	66.8	100.2	133.6	167.0	200.4	233.8	20\%. 2	300.6
333	33.3	66.6	99.9	133.2	166.5	199.8	233.1	266.4	299.7
332	33.2	664	99.6	132.8	166.0	199.2	232.4	265.6	298.8
331	33.1	66.2	99.3	132.4	165.5	198.6	231.7	264.8	297.9
330	33.0	66.0	99.0	132.0	165.0	198.0	231.0	264.0	297.0
329	32.9	65.3	98.7	131.6	164.5	197.4	230.3	263.2	296.1
328	32.8	65.6	98.4	131.2	164.0	196.8	229.6	262.4	295.2
327	32.7	65.4	98.1	130.8	163.5	196.2	228.9	261.6	294.3
326	32.6	65.2	97.8	130.4	163.0	195.6	228.2	260.8	293.4
325	32.5	65.0	97.5	130.0	162.5	195.0	227.5	260.0	292.5
324	32.4	64.8	97.2	120.6	162.0	194.4	220.8	259.2	291.6
323	32.3	64.6	96.9	129.2	161.5	193.8	226.1	258.4	290.7
322	32.2	64.4	96.6	128.8	161.0	193.2	225.4	257.6	289.8

No. 135 L. 130.]
[No. 149 L. 175.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
	$\begin{array}{r} 130334 \\ 3539 \\ 6 \% 21 \\ 98 \% 9 \end{array}$	$\begin{aligned} & 0655 \\ & 3858 \\ & 7037 \end{aligned}$	$\begin{aligned} & 0977 \\ & 4177 \\ & 7354 \end{aligned}$	1298	1619	1939	2260	2580	2900	3219	321
				4496	4814	5133	5451	5769	6086	6403	318
				7671	7987	8303	8618	8934	9249	9564	316
		$\begin{aligned} & 0194 \\ & 33: 27 \end{aligned}$	$\begin{aligned} & 0508 \\ & 3639 \end{aligned}$	0822	1136	1450	1763	2076	2389	2702	314
9	143015			3951	4263	45 \% 4	4885	5196	5507	5818	311
140	$\begin{aligned} & 6128 \\ & 9219 \end{aligned}$	$\begin{aligned} & 6438 \\ & 9527 \end{aligned}$	$\begin{aligned} & 6748 \\ & 9835 \end{aligned}$	7058	7367	7676	7985	8294	8603	8911	309
				0142	0449		1063	1370			
$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 152: 288 \\ 5336 \\ 8362 \end{array}$	$\begin{aligned} & 2594 \\ & 5640 \\ & 8664 \end{aligned}$	$\begin{aligned} & 2900 \\ & 5943 \\ & \hline 065 \end{aligned}$	3205	3510	3815	4120	4424	4728	1982	${ }_{305}^{307}$
				6246	6549	$68 \% 2$	7154	7457	7759	8061	303
				9266	9567	9868					
$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 161368 \\ 4353 \\ 7317 \end{array}$	1667	1967	2266	2564	2863	0168 3161	0469 3460	0769 $3 \% 58$	1068	301
		4650	4947	5244	5541	$58: 38$	6134	6430	$6{ }^{\text {¢ }} 26$	r022	297
		7613	7908	8203	8497	8792	9086	9380	9674	9968	295
8	$\begin{array}{r} 170262 \\ 3186 \end{array}$	0555	0848			1726					293
		3478	3769	4060	4351	4641	4932	52\%	5512	5802	201

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
321	32.1	64.2	96.3	128.4	160.5	192.6	$2: 24.7$	256.8	288.9
320	32.0	64.0	96.0	128.0	160.0	192.0	224.0	255.0	288.0
319	31.9	63.8	95.7	127.6	159.5	191.4	223.3	255.2	287.1
318	31.8	63.6	95.4	127.2	159.0	190.8	222.6	254.4	286.2
317	31.7	63.4	95.1	126.8	158.5	190.2	221.9	253.6	285.3
316	31.6	63.2	94.8	126.4	158.0	189.6	221.2	252.8	284.4
315	31.5	63.0	94.5	126.0	157.5	189.0	220.5	252.0	283.5
314	31.4	62.8	94.2	125.6	$15 \% .0$	188.4	219.8	251.2	282.6
313	31.3	62.6	93.9	125.2	156.5	187.8	219.1	250.4	281.7
312	31.2	62.4	93.6	124.8	156.0	187.2	218.4	249.6	280.8
311	31.1	62.2	93.3	124.4	155.5	186.6	217.7	248.8	279.9
310	31.0	62.0	93.0	124.0	155.0	186.0	217.0	248.0	279.0
309	30.9	61.8	92.7	123.6	154.5	185.4	216.3	247.2	278.1
308	30.8	61.6	92.4	123.2	154.0	184.8	215.6	246.4	2π 2. 2
307	30.7	61.4	92.1	122.8	153.5	184.2	214.9	245.6	276.3
306	30.6	61.2	91.8	122.4	153.0	183.6	214.2	244.8	275.4
305	30.5	61.0	91.5	122.0	152.5	183.0	213.5	244.0	274.5
304	30.4	60.8	91.2	121.6	152.0	182.4	212.8	243.2	273.6
303	30.3	60.6	90.9	121.2	151.5	181.8	212.1	242.4	272.7
302	30.2	60.4	90.6	120.8	151.0	181.2	211.4	241.6	271.8
301	30.1	60.2	90.3	120.4	150.5	180.6	210.7	240.8	270.9
300	30.0	60.0	90.0	120.0	150.0	180.0	210.0	240.0	270.0
299	29.9	59.8	89.7	119.6	149.5	179.4	209.3	239.2	269.1
298	29.8	59.6	89.4	119.2	149.0	178.8	208.6	238.4	268.2
297	29.7	59.4	89.1	118.8	148.5	178.2	207.9	237.6	267.3
296	29.6	59.2	88.8	118.4	148.0	177.6	207.2	236.8	266.4
295	29.5	59.0	88.5	118.0	147.5	177.0	206.5	236.0	265.5
294	29.4	58.8	88.2	117.6	147.0	176.4	205.8	235.2	264.6
293	29.3	58.6	87.9	117.2	146.5	175.8	205.1	234.4	263.7
292	29.2	58.4	87.6	116.8	146.0	175.2	204.4	233.6	262.8
291	29.1	58.2	87.3	116.4	145.5	174.6	203.7	232.8	261.9
290	29.0	58.0	87.6	116.0	145.0	174.0	203.0	232.0	261.0
239	28.9	57.8	86.7	115.6	144.5	173.4	202.3	231.2	260.1
288	28.8	57.6	86.4	115.2	144.0	172.8	201.6	230.4	259.2
287	28.7	57.4	86.1	114.8	143.5	172.2	200.9	229.6	258.3
286	28.6	57.2	85.8	114.4	143.0	171.6	200.2	228.8	257.4

No. 150 L. 176.$]$
[No. 169 L. 230.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
1501	$\begin{array}{r}176091 \\ 89 \% \\ \hline\end{array}$	$\begin{aligned} & 6381 \\ & 9264 \end{aligned}$	$\begin{aligned} & 6,70 \\ & 9552 \end{aligned}$	$\begin{aligned} & 6959 \\ & 9839 \end{aligned}$	7248	7536	7825	8113	8401	8689	289
					$\begin{aligned} & \hline 0126 \\ & 2985 \end{aligned}$	0413320	0699				287
234	181844	21294975	2415	2700			- 3 ¢59	3889	127%		285283
	$\begin{aligned} & 4691 \\ & 7521 \end{aligned}$		5259	5542	58:25	6108	Ci091	6674	6956	4407 7239	
		4975 7803	8084	8366	8647	89:28	9209	9490	$9 \% 71$		
5	190332	0612	0892	11\%1	1451	1730	2010	2289	256 r	$\begin{aligned} & 0051 \\ & 2846 \\ & 5623 \\ & 8382 \end{aligned}$	281279378276
6	3125	3403	3681	3959	4237	4514	4792	5069	5346		
\%	5900 6176 8657 8932		$\begin{aligned} & 6453 \\ & 6406 \\ & 9206 \end{aligned}$	$\begin{aligned} & 6729 \\ & 9481 \end{aligned}$	$\begin{aligned} & 7005 \\ & 9755 \\ & \hline \end{aligned}$	7281	7556	7832	8107		
8			2761			$\begin{aligned} & 0303 \\ & 3033 \end{aligned}$	$\begin{aligned} & 0576 \\ & 3305 \end{aligned}$	$\begin{aligned} & 0850 \\ & 35 \% \end{aligned}$	$\begin{aligned} & 1124 \\ & 5848 \end{aligned}$	$\begin{aligned} & 274 \\ & 272 \end{aligned}$	
9	201397	16%		1943	2216						2488
160	$\begin{aligned} & 4120 \\ & 6826 \\ & 9515 \end{aligned}$	$\begin{aligned} & 4391 \\ & 7096 \\ & 9783 \end{aligned}$	$\begin{aligned} & 4663 \\ & 7365 \end{aligned}$	$\begin{array}{r} 4934 \\ 7634 \end{array}$	$$	$\begin{aligned} & 54 \pi 5 \\ & 81 \% 3 \end{aligned}$	$\begin{aligned} & 5746 \\ & 8441 \end{aligned}$	$\begin{aligned} & 6016 \\ & 8710 \end{aligned}$	$\begin{aligned} & 6286 \\ & 8979 \end{aligned}$	$\begin{aligned} & 6556 \\ & 9247 \end{aligned}$	271269
1											
,			$\begin{aligned} & 0051 \\ & 2720 \\ & 5373 \\ & 8010 \end{aligned}$	$\begin{aligned} & \hline 0319 \\ & 2986 \\ & 5638 \\ & 8273 \end{aligned}$	$\begin{aligned} & 0586 \\ & 3252 \\ & 5902 \\ & 8536 \end{aligned}$	$\begin{aligned} & \hline 0853 \\ & 3518 \\ & 6166 \\ & 8 \pi 98 \end{aligned}$	$\begin{aligned} & \hline 1121 \\ & 3 \uparrow 83 \\ & 6430 \\ & 9060 \end{aligned}$	$\begin{aligned} & 1388 \\ & 4049 \\ & 6694 \\ & 9323 \end{aligned}$	$\begin{aligned} & 1654 \\ & 4314 \\ & 6957 \\ & 9585 \end{aligned}$	$\begin{aligned} & 1921 \\ & 4579 \\ & 7921 \\ & 9846 \end{aligned}$	267266264262
3	212188	2454									
4	4844	5109									
5	7484	r747									
6	$\begin{array}{r} 220108 \\ 2716 \\ 5309 \\ 7887 \\ 23 \end{array}$	$\begin{aligned} & 0370 \\ & 29 \% 6 \\ & 5568 \\ & 8144 \end{aligned}$	$\begin{aligned} & 0631 \\ & 3236 \\ & 5826 \\ & 8400 \end{aligned}$	$\begin{aligned} & 0892 \\ & 3496 \\ & 6084 \\ & 8657 \end{aligned}$	$\begin{aligned} & 1153 \\ & 3 \% 55 \\ & 6342 \\ & 8913 \end{aligned}$	$\begin{aligned} & 1414 \\ & 4015 \\ & 6600 \\ & 9170 \end{aligned}$	$\begin{aligned} & 16 \pi 5 \\ & 42 \pi 4 \\ & 6858 \\ & 9426 \end{aligned}$	$\begin{aligned} & 1936 \\ & 4533 \\ & 7115 \\ & 9682 \end{aligned}$	$\begin{aligned} & 2196 \\ & 4792 \\ & 73 \uparrow 2 \\ & 9938 \end{aligned}$	$\begin{array}{r} 2456 \\ 5051 \\ 7630 \\ \hline \end{array}$	261 259 258 256
7											
8											
9											

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
285	28.5	57.0	85.5	114.0	142.5	171.0	199.5	228.0	256.5
284	28.4	56.8	85.2	113.6	142.0	170.4	198.8	$22 \% .2$	255.6
283	28.3	56.6	84.9	113.2	141.5	169.8	198.1	226.4	254.7
282	28.2	56.4	84.6	112.8	141.0	169.2	197.4	225.6	253.8
281	28.1	56.2	84.3	1124	140.5	168.6	196.7	224.8	252.9
280	28.0	56.0	84.0	112.0	140.0	108.0	156.0	224.0	252.0
279	27.9	55.8	83.7	111.6	139.5	167.4	195.3	223.2	251.1
278	27.8	55.6	83.4	111.2	139.0	166.8	194.6	222.4	250.2
$2{ }^{2} 7$	27.7	55.4	83.1	110.8	138.5	166.2	193.9	221.6	249.3
276	27.6	55.2	82.8	110.4	138.0 .	165.6	193.2	220.8	248.4
275	27.5	55.0	82.5	110.0	137.5	165.0	192.5	220.0	$24 \% .5$
274	27.4	54.8	82.2	109.6	137.0	164.4	191.8	219.2	246.6
273	27.3	54.6	81.9	109.2	136.5	163.8	191.1	218.4	245.7
272	27.2	54.4	81.6	108.8	136.0	163.2	190.4	217.6	244.8
271	27.1	54.2	81.3	108.4	135.5	162.6	189.7	216.8	243.9
270	27.0	54.0	81.0	108.0	135.0	1620	189.0	216.0	243.0
269	26.9	53.8	80.7	$10 \% .6$	134.5	161.4	188.3	215.2	242.1
268	26.8	53.6	80.4	107.2	134.0	160.8	187.6	214.4	241.2
267	26.7	53.4	80.1	106.8	133.5	160.2	186.9	213.6	240.3
266	26.6	53.2	79.8	106.4	133.0	159.6	186.2	212.8	239.4
265	26.5	53.0	79.5	106.0	132.5	159.0	185.5	212.0	238.5
264	26.4	52.8	79.2	105.6	132.0	158.4	184.8	211.2	237.6
263	26.3	52.6	78.9	105.2	131.5	157.8	184.1	210.4	236.7
262	26.2	52.4	78.6	104.8	131.0	157.2	183.4	209.6	235.8
261	26.1	52.2	78.3	104.4	130.5	156.6	182.7	208.8	234.9
260	26.0	52.0	78.0	104.0	130.0	156.0	$18 \% .0$	208.0	234.0
259	25.9	51.8	77.7	103.6	129.5	155.4	181.3	207.2	233.1
258	25.8	51.6	77.4	103.2	129.0	154.8	180.6	206.4	232.2
257	25.7	51.4	87.1	102.8	128.5	154.2	179.9	205.6	231.3
256	25.6	51.2	76.3	102.4	128.0	153.6	179.2	204.8	23 . 4
255	25.5	51.0	76.5	102.0	187.5	153.0	178.5	204.0	229.5

No. 190 L. 278.]
[No. 214 L. 332.

N.	0	1	2	3	4	5	6	,	8	9	Diff.
190	$2 \% 8754$	8982	9211	9439	9667	9895	0123	0351	0578	0806	228
1	281033	1261	1488	1715	1912	2169					
$\begin{aligned} & 2 \\ & 3 \end{aligned}$		352\%	3753	39%	4:205	4431	4656	4882	510%	5332	226
		5182	6007	6232	6456	6681	695	7130	7354	7578	225
4	780:2	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
5678	2900	02	0480	0702	092	1147	180	1591	1813	2034	222
	2256	24:8	2699	2920	3141	3363	3584	3804	40:25	4246	221
	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
	$\begin{aligned} & 6665 \\ & 8853 \end{aligned}$	$\begin{aligned} & 6884 \\ & 90 \pi 1 \end{aligned}$	$\begin{aligned} & 7104 \\ & 9209 \end{aligned}$	$\begin{aligned} & 7323 \\ & 9507 \\ & 9501 \end{aligned}$	$\begin{aligned} & 7541 \\ & 7542 \\ & 9720 \end{aligned}$	$\begin{aligned} & 7761 \\ & 99 \nmid 3 \end{aligned}$	7979	8198	8416	8635	219
$\begin{aligned} & 8 \\ & 9 \end{aligned}$							0161				
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980	217
1	$\begin{aligned} & 3196 \\ & 5351 \end{aligned}$	${ }^{3412}$	- 5781	38946	40, 611	6425	$\begin{aligned} & 4491 \\ & 6639 \end{aligned}$	$\begin{aligned} & 4706 \\ & 6854 \end{aligned}$	$\begin{aligned} & 49: 1 \\ & 7068 \end{aligned}$	51367288	$\stackrel{216}{215}$
2											
3	$\begin{aligned} & 7496 \\ & 9630 \end{aligned}$	$\begin{aligned} & 7710 \\ & 9843 \end{aligned}$	7924	8137	8351	8564	$87{ }^{\text {c }}$	8991	9204	9417	213
4			2177	02c82889	04812600	06932812	09063023	1118$3: 34$	1330	1542	212
5	$311 \% 5$	1966							3445	3656	211210209208
6	$\begin{aligned} & 3867 \\ & 5970 \end{aligned}$	$\begin{aligned} & 4078 \\ & 6180 \end{aligned}$	$\begin{aligned} & 4289 \\ & 6390 \end{aligned}$	$\begin{aligned} & 4499 \\ & 6599 \end{aligned}$	$\begin{aligned} & 4710 \\ & 6809 \end{aligned}$	$\begin{aligned} & 4920 \\ & r 018 \end{aligned}$	$\begin{aligned} & 5130 \\ & 7227 \end{aligned}$	$\begin{aligned} & 5340 \\ & 5436 \\ & 7436 \end{aligned}$	$\begin{aligned} & 5 \pm 51 \\ & 5651 \\ & 7646 \\ & 9730 \end{aligned}$	$\begin{aligned} & 5000 \\ & 5760 \\ & 7854 \\ & 9938 \end{aligned}$	
8											
8	8063	8272	8481	8089	8898	9106	9314	9522			
9	320146	0354	0562	0769	0977	1184	1391	1508	1805	2012	207
210	$\begin{aligned} & 2219 \\ & 4282 \\ & 6336 \\ & 8380 \end{aligned}$	$\begin{aligned} & 2426 \\ & 4488 \\ & 6541 \\ & 8583 \end{aligned}$	$\begin{aligned} & 2633 \\ & 4694 \\ & 6745 \\ & 8 \div 87 \end{aligned}$	$\begin{aligned} & 2839 \\ & 4899 \\ & 6950 \\ & 8991 \end{aligned}$	$\begin{aligned} & 3046 \\ & 5105 \\ & 7155 \\ & 9194 \end{aligned}$	$\begin{aligned} & 3252 \\ & 5310 \\ & 7359 \\ & 9398 \end{aligned}$	$\begin{aligned} & 3458 \\ & 5516 \\ & 7563 \\ & 9601 \end{aligned}$	$\begin{aligned} & 3665 \\ & 5 \uparrow 21 \\ & 7767 \\ & 9805 \end{aligned}$	$\begin{aligned} & 3871 \\ & 5926 \\ & 7972 \end{aligned}$	$\begin{aligned} & 4077 \\ & 6131 \\ & 81 \% 6 \end{aligned}$	206205204
1											
,											
3									$\begin{aligned} & 0008 \\ & 2034 \end{aligned}$	$\begin{array}{r} 0211 \\ 2236 \\ \hline \end{array}$	
4	330414	0617	0819	1022	1225	1427	1630	1832			$\begin{aligned} & 203 \\ & 212 \\ & \hline \end{aligned}$

Proportional Parts.

Diff.	1	2	3	4	5	6	γ	8	9
225	22.5	45.0	67.5	90.0	112.5	135.0	$15 \% .5$	180.0	202.5
224	22.4	44.8	67.2	89.6	112.0	134.4	156.8	179.2	201.6
223	22.3	44.6	66.9	89.2	111.5	133.8	156.1	178.4	200.7
222	22.2	44.4	66.6	88.8	111.0	133.2	155.4	177.6	199.8
221	22.1	44.2	66.3	88.4	110.5	132.6	154.7	176.8	198.9
2:20	22.0	44.0	66.0	88.0	110.0	132.0	154.0	176.0	198.0
219	21.9	43.8	65.7	87.6	109.5	131.4	153.3	175.2	197.1
218	21.8	43.6	65.4	87.2	109.0	130.8	152.6	174.4	196.2
217	21.7	43.4	65.1	86.8	108.5	130.2	151.9	173.6	195.3
216	21.6	43.2	64.8	86.4	108.0	129.6	151.2	172.8	. 194.4
215	21.5	43.0	64.5	86.0	107.5	129.0	150.5	172.0	-193.5
214	21.4	42.8	64.2	85.6	107.0	128.4	149.8	171.2	192.6
213	21.3	42.6	63.9	85.2	106.5	127.8	149.1	170.4	191.7
212	21.2	42.4	63.6	84.8	106.0	127.2	148.4	169.6	190.8
211	21.1	42.2	63.3	84.4	105.5	126.6	147.7	168.8	189.9
210	21.0	42.0	63.0	84.0	105.0	126.0	147.0	168.0	189.0
209	20.9	41.8	62.7	83.6	104.5	125.4	146.3	167.2	
208	20.8	41.6	62.4	83.2	104.0	124.8	145.6	1664	187.2
20%	20.7	41.4	62.1	82.8	103.5	124.2	144.9	165.6	186.3
206	20.6	41.2	61.8	82.4	103.0	123.6	144.2	164.8	185.4
205	20.5	41.0	61.5	82.0	102.5	123.0	143.5	164.0	184.5
204	20.4	40.8	61.2	81.6	102.0	122.4	142.8	163.2	183.6
203	20.3	40.6	60.9	81.2	101.5	121.8	142.1	162.4	182.7
202	20.2	40.4	60.6	0.8	101.0	121.2	141.4	161.6	181.8

No. 215 L. 332.]									[No. 239 L. 380.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{\|r} 215 \\ 6 \\ 7 \\ 8 \end{array}$	$\begin{array}{r} 332438 \\ 4454 \\ 6460 \\ 8456 \end{array}$	$\begin{aligned} & 2640 \\ & 4655 \\ & 6660 \\ & 8656 \end{aligned}$	$\begin{aligned} & 2842 \\ & 4856 \\ & 6860 \\ & 8855 \end{aligned}$	$\begin{aligned} & 3044 \\ & 5057 \\ & r 060 \\ & 9054 \end{aligned}$	$\begin{aligned} & 3246 \\ & 5257 \\ & 7260 \\ & 9250 \end{aligned}$	$\begin{aligned} & 3447 \\ & 5458 \\ & 7459 \\ & 9451 \end{aligned}$	$\begin{aligned} & 3649 \\ & 5658 \\ & 7659 \\ & 9650 \end{aligned}$	$\begin{aligned} & 3850 \\ & 5859 \\ & 7858 \\ & 9849 \end{aligned}$	$\begin{aligned} & 4051 \\ & 6059 \\ & 8058 \end{aligned}$	$\begin{aligned} & 4253 \\ & 6260 \\ & 8257 \end{aligned}$	202201200
									$\begin{aligned} & 0047 \\ & 2028 \end{aligned}$	$\begin{aligned} & 0246 \\ & 2225 \end{aligned}$	$\begin{aligned} & 109 \\ & 198 \end{aligned}$
9	340444	0642	0841	1039	1237	1435	1632	1830			
$\begin{array}{r} 220 \\ 1 \\ 2 \\ 3 \end{array}$	$\begin{aligned} & 2423 \\ & 4392 \\ & 6353 \\ & 8305 \end{aligned}$	$\begin{aligned} & 2620 \\ & 4589 \\ & 6549 \\ & 8500 \end{aligned}$	$\begin{aligned} & 2817 \\ & 4785 \\ & 6 r 44 \\ & 8694 \end{aligned}$	$\begin{aligned} & 3014 \\ & 4981 \\ & 6939 \\ & 8889 \end{aligned}$	$\begin{aligned} & 3212 \\ & 5178 \\ & r 135 \\ & 9083 \end{aligned}$	$\begin{aligned} & 3409 \\ & 53.4 \\ & 7330 \\ & 9278 \end{aligned}$	$\begin{aligned} & 3606 \\ & 5500 \\ & 7525 \\ & 94 \tilde{2} 2 \end{aligned}$	$\begin{aligned} & 3802 \\ & 5766 \\ & 7720 \\ & 9666 \\ & \hline \end{aligned}$	$\begin{aligned} & 3999 \\ & 5962 \\ & 7915 \\ & 9860 \end{aligned}$	$\begin{aligned} & 4196 \\ & 6157 \\ & 8110 \end{aligned}$	197196195
566789	$\begin{array}{r} 350248 \\ \approx 183 \\ 4108 \\ 6026 \\ \tau 935 \\ 9835 \end{array}$	$\begin{aligned} & 0442 \\ & 23 \% 5 \\ & 4301 \\ & 6217 \\ & 8125 \end{aligned}$	$\begin{aligned} & 0636 \\ & 2568 \\ & 4493 \\ & 6408 \\ & 8316 \end{aligned}$	$\begin{aligned} & \hline 0829 \\ & 2761 \\ & 4685 \\ & 6599 \\ & 8506 \end{aligned}$	$\begin{aligned} & 1023 \\ & 2954 \\ & 4876 \\ & 6790 \\ & 8696 \end{aligned}$	$\begin{aligned} & 1216 \\ & 3147 \\ & 5068 \\ & 6981 \\ & 8886 \end{aligned}$	$\begin{aligned} & 1410 \\ & 3339 \\ & 5260 \\ & 7172 \\ & 9076 \end{aligned}$	$\begin{aligned} & 1603 \\ & 3532 \\ & 5452 \\ & 7363 \\ & 9266 \end{aligned}$	$\begin{aligned} & 1796 \\ & 3 \uparrow 24 \\ & 5643 \\ & 7554 \\ & 9456 \end{aligned}$	$\begin{aligned} & 0054 \\ & 1989 \\ & 3916 \\ & 5834 \\ & 7744 \\ & 9646 \end{aligned}$	194193193192191190
		$\begin{aligned} & 0025 \\ & 1917 \\ & 3800 \\ & 5675 \\ & 7542 \\ & 9401 \end{aligned}$	$\begin{aligned} & 0215 \\ & 2105 \\ & 3988 \\ & 5862 \\ & 7 \uparrow 29 \\ & 9587 \end{aligned}$	0404	0593	0783	09\%2	1161	1350	1539	189
	$\begin{array}{r} 361728 \\ 3612 \\ 5488 \\ 7356 \\ 9216 \end{array}$			2294	$\begin{aligned} & 2482 \\ & 4363 \\ & 6236 \\ & 8101 \\ & 9958 \end{aligned}$	$\begin{aligned} & 26 \pi 1 \\ & 4551 \\ & 6423 \\ & 8287 \end{aligned}$	$\begin{aligned} & 2859 \\ & 4739 \\ & 6610 \\ & 84 \tilde{7} 3 \end{aligned}$	$\begin{aligned} & 3048 \\ & 4926 \\ & 6 ז 96 \\ & 8659 \end{aligned}$	$\begin{aligned} & 3236 \\ & 5113 \\ & 6983 \\ & 8845 \end{aligned}$	$\begin{aligned} & 3424 \\ & 5301 \\ & 7169 \\ & 9030 \end{aligned}$	188188187186
				$\begin{aligned} & 2 \approx 94 \\ & 41 \tau 6 \\ & 6049 \\ & \tau 915 \\ & 97 \tau 2 \end{aligned}$							
								$\begin{aligned} & \hline 0513 \\ & 2360 \\ & 4198 \\ & 6029 \\ & 7852 \\ & 9668 \end{aligned}$	$\begin{aligned} & \hline 0698 \\ & 2544 \\ & 4382 \\ & 6212 \\ & 8034 \\ & 9849 \end{aligned}$	0883 $2 \psi 28$ 4565 6394 8216 0030	$\begin{aligned} & 185 \\ & 184 \\ & 184 \\ & 183 \\ & 182 \\ & 181 \end{aligned}$
¢6789	$\begin{array}{r} 3 \uparrow 1068 \\ 2912 \\ 4748 \\ 6577 \\ 8398 \\ 38 \end{array}$	$\begin{aligned} & \hline 1253 \\ & 3096 \\ & 4932 \\ & 6759 \\ & 8580 \end{aligned}$	$\begin{aligned} & 1437 \\ & 3280 \\ & 5115 \\ & 6942 \\ & 8761 \end{aligned}$	$\begin{aligned} & 1622 \\ & 3464 \\ & 5298 \\ & 7124 \\ & 8943 \end{aligned}$	$\begin{aligned} & 1806 \\ & 3647 \\ & 5481 \\ & 7306 \\ & 9124 \end{aligned}$	0143199138315664748889306	$\begin{aligned} & 0328 \\ & 2175 \\ & 4015 \\ & 5846 \\ & 7670 \\ & 9487 \end{aligned}$				

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
202	20.2	40.4	60.6	80.8	101.0	121.2	141.4	161.6	181.8
201	20.1	40.2	60.3	80.4	100.5	120.6	140.7	160.8	180.9
200	20.0	40.0	60.0	80.0	100.0	120.0	140.0	160.0	180.0
199	19.9	39.8	59.7	79.6	99.5	119.4	139.3	159.2	179.1
198	19.8	39.6	59.4	79.2	99.0	118.8	138.6	158.4	178.2
197	19.7	39.4	59.1	78.8	98.5	118.2	137.9	157.6	177.3
196	19.6	39.2	58.8	78.4	98.0	117.6	137.2	156.8	176.4
195	19.5	39.0	58.5	78.0	97.5	117.0	136.5	156.0	175.5
194	19.4	38.8	58.2	78.6	97.0	116.4	135.8	155.2	174.6
193	19.3	38.6	57.9	77.2	96.5	115.8	135.1	154.4	173.7
192	19.2	38.4	57.6	76.8	96.0	115.2	134.4	153.6	$1 \tau 2.8$
191	19.1	38.2	57.3	76.4	95.5	114.6	133.7	152.8	171.9
190	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0
189	18.9	37.8	56.7	75.6	94.5	113.4	132.3	151.2	170.1
188	18.8	37.6	56.4	75.2	94.0	112.8	131.6	150.4	169.2
187	18.7	374	56.1	74.8	93.5	112.2	130.9	149.6	168.3
186	18.6	37.2	55.8	74.4	93.0	111.6	130.2	148.8	167.4
185	18.5	37.0	55.5	74.0	92.5	111.0	129.5	148.0	166.5
184	18.4	36.8	55.2	73.6	92.0	110.4	128.8	147.2	165.6
183	18.3	36.6	54.9	73.2	91.5	109.8	128.1	146.4	164.7
182	18.2	36.4	54.6	72.8	91.0	109.2	127.4	145.6	163.8
181	18.1	36.2	54.3	72. 4	90.5	108.6	126.7	144.8	162.9
180	18.0	36.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0
179	17.9	35.8	53.7	71.6	89.5	107.4	125.3	143.2	161.1

No. 240 L. 380.]
[No. 269 L. 431.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 240 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \end{array}$	380211	0392	$05 \% 3$	0754	0934	1115	1296	1476	1656	1837	181
	2017	2.97	2377	2557	2737	2917	3097	3277	3456	3636	180
	3815	3995	4174	4353	4533	4712	4891	5070	5219	C428	179
	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212	178
	7390	7568	7746	7924	8101	8279	8456	8634	8811	8989	1%
	9166	43	95	969	\%						
	90935	1112	1288	146	1641	0051	${ }^{0} 2028$	0405 2169	${ }_{2}^{0582}$	0759 2521	177 176
7	2697	2873	3048	3224	3400	3575	3751	3926	4101	4277	176
8	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	17
9	6199	6374	6548	6722	6896	'70\%1	7245	7419	7592	7766	$1 \% 4$
$\begin{array}{r} 250 \\ 1 \end{array}$	$\begin{aligned} & 7940 \\ & 9674 \end{aligned}$	$\begin{aligned} & 8114 \\ & 9847 \end{aligned}$	8287	8461	8634	8808	8981	9154	9328	9501	$1 \% 3$
			0020	0192	0365	0538	0711	0883	1056	1228	173
677	401401	15\%3	1745	1917	2089	2261	2433	2605	2 2\%	2949	172
	3121	3292	3464	3635	. 3807	3978	4149	4320	4492	4663	171
	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370	17
	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070	170
	$\begin{aligned} & 0240 \\ & 8240 \\ & 9933 \end{aligned}$	8410	8579	8749	8918	9087	925\%'	9426	9595	$9 \underset{64}{ }$	169
		02	0271	0440	0609	0777	0946	1114	1283	1451	169
8	411620	1788	1956	2124	2293	2461	2629	2796	2964	3132	168
9	3300	34	3635	3803	3970	4137	4305	4472	4639	4806	167
260	$\begin{aligned} & 4973 \\ & 6641 \\ & 8301 \\ & 9956 \end{aligned}$	5140	5307	5474	5641	5808	5974	6141	6308	6474	167
		6807	6973	7139	7306	7472	7638	ri804	7970	8135	166
		8467	8633	8798	8964	9129	9295	9460	9625	9791	165
		0121	0286	0451	0616	0781	0945	1110	1275	1439	165
456789	$\begin{array}{r} 421604 \\ 3246 \\ 4882 \\ 6511 \\ 8135 \\ 9752 \end{array}$$43$	1768	1933	2097	2261	2426	2590	2754	2918	3082	164
		3410	3574	373%	3901	4065	4228	4392	4555	4718	16
		5045	5208	53ヶ1	5534	5697	5860	6023	6186	6349	163
		6674	6836	6999	7161	7324	7486	7648	7811	7973	162
		8297	8459	8621	8783	8914	9106	9268	9129	9591	162
			0075	0236	0398	05.59	0720	0881	1042	1203	16

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
178	17.8	35.6	53.4	71.2	89.0	106.8	124.6	142.4	160.2
177	17.7	35.4	53.1	70.8	88.5	106.2	123.9	141.6	159.3
176	17.6	35.2	52.8	70.4	88.0	105.6	123.2	140.8	158.4
175	17.5	35.0	52. 5	70.0	87.5	105.0	122.5	140.0	157.5
174	17.4	34.8	52.2	69.6	87.0	104.4	121.8	139.2	156.6
173	17.3	34.6	51.9	69.2	86.5	103.8	121.1	138.4	155.7
172	17.2	34.4	51.6	68.8	86.0	103.2	120.4	137.6	154.8
171	17.1	34.2	51.3	68.4	85.5	102.6	119.7	136.8	153.9
170	17.0	34.0	51.0	68.0	85.0	102.0	119.0	136.0	153.0
169	16.9	33.8	50.7	67.6	84.5	101.4	118.3	135.2	152.1
168	16.8	33.6	50.4	67.2	84.0	100.8	117.6	134.4	151.2
167	16.7	33.4	50.1	66.8	83.5	100.2	116.9	133.6	150.3
166	16.6	33.2	49.8	66.4	83.0	99.6	116.2	132.8	149.4
165	16.5	33.0	49.5	66.0	82.5	99.0	115.5	132.0	148.5
164	16.4	32.8	49.2	65.6	82.0	98.4	114.8	131.2	147.0
163	16.3	32.6	48.9	65.2	81.5	97.8	114.1	130.4	146.7
162	16.2	32.4	48.5	64.8	81.0	97.2	112.4	129.6	145.8
161	16.1	32.2	48.3	64.4	80.5	96.6	112.7	128.8	144.9

No. 270 L. 431.$]$

[No. 293 L. 476.

N.	0	1	2	3	4	5	6	7	8	9	Liff.
$2 \% 0$	431364	1525	1685			2167370	$2 ? 28$$3930$		2649	2809	161
	29694569	3130$4: 29$	3290							44096004	
			4888	3450 5048	$\begin{aligned} & 3610 \\ & 5207 \end{aligned}$	$3 \% 10$ 5367	$\begin{aligned} & 5526 \\ & 7116 \end{aligned}$	4090			160 159
3	6163	${ }^{6322}$	6481	5048 6640	5207 $6 \sim 99$	6957		\%275			159 159
4	7751	9491	8067	${ }^{822} 28$	89649964	8542	8701	88.59	9017	9175	158
	9333		9648			0122	02\%9	0437	0.594	0452	
	440909	1066	1224	1381	1538				2166	2323	158
7		$\begin{aligned} & 2637 \\ & 4201 \end{aligned}$		2950	3106	3263	3419	$35 \sim 6$	3732	3889	157
8				4513	4669	$\begin{aligned} & 4825 \\ & 6382 \end{aligned}$	$\begin{aligned} & 4981 \\ & 6537 \end{aligned}$	$\begin{aligned} & 5137 \\ & 6692 \end{aligned}$	$\begin{aligned} & 5203 \\ & 6848 \end{aligned}$	$\begin{aligned} & 5449 \\ & 7003 \end{aligned}$	156155
9	5604	5760	5915	6071							
2801	$\begin{aligned} & r 158 \\ & 8 \div 06 \end{aligned}$	$\begin{aligned} & 7313 \\ & 8861 \end{aligned}$	$\begin{aligned} & 7468 \\ & 9015 \end{aligned}$	$\begin{aligned} & 7623 \\ & 91 \% 0 \end{aligned}$	$\begin{aligned} & 7778 \\ & 9324 \end{aligned}$	$\begin{aligned} & 7933 \\ & 94 \approx 8 \end{aligned}$	$\begin{aligned} & 8088 \\ & 9633 \end{aligned}$	$\begin{aligned} & 8242 \\ & 978 \% \end{aligned}$	$\begin{aligned} & 8307 \\ & 9941 \end{aligned}$	85.2	155
										0055	
2	450249	0403	0557	$0 \sim 11$	0865	1018	11\%2	$13 \geqslant 6$	1479		154 154 154
3	1786	1910	2693	2247	2400	2553	$2 \sim 06$	2859	3012	1633 3165	153153
4	33184845	3471		3777	3930	4082	4235	4387	4540	4692	
5		4997	5150	5302	5454	5606	575	5910	6062	214	153152152
6	6366	6518	$66 \div 0$	6821	69i3	7125	7276	7428	\%5i9	$\begin{aligned} & 7731 \\ & 9242 \end{aligned}$	
7	$\begin{aligned} & 7882 \\ & 7892 \\ & 9392 \end{aligned}$	$\begin{aligned} & 8033 \\ & 9543 \end{aligned}$	$\begin{aligned} & 81010 \\ & 81894 \\ & 9694 \end{aligned}$	$\begin{aligned} & 0021 \\ & 8336 \\ & 9845 \end{aligned}$	$\begin{aligned} & 8487 \\ & 9995 \end{aligned}$	8638	8789	8940	9091		152
8						$\begin{aligned} & 0146 \\ & 1649 \end{aligned}$	$\begin{aligned} & 0 \approx 96 \\ & 1 \approx 99 \end{aligned}$	$\begin{aligned} & 0447 \\ & 1948 \end{aligned}$	$\begin{aligned} & 0597 \\ & 2098 \end{aligned}$	$\begin{aligned} & 0718 \\ & 2248 \end{aligned}$	151
9	460898	1048	1198	1348	1499						151 150
	$\begin{aligned} & 2398 \\ & 3893 \\ & 5383 \\ & 6868 \\ & 8347 \\ & 9822 \end{aligned}$	$\begin{aligned} & 2548 \\ & 4042 \\ & 5532 \\ & 7016 \\ & 8495 \\ & 9969 \end{aligned}$	$\begin{aligned} & 2697 \\ & 4191 \\ & 5680 \\ & 7164 \\ & 8643 \end{aligned}$	$\begin{aligned} & 2847 \\ & 4340 \\ & 5829 \\ & 7312 \\ & 8790 \end{aligned}$	$\begin{aligned} & 2997 \\ & 4490 \\ & 5977 \\ & 7460 \\ & 8938 \end{aligned}$	$\begin{aligned} & 3146 \\ & 4639 \\ & 6126 \\ & 7608 \\ & 9085 \end{aligned}$	$\begin{aligned} & 3296 \\ & 4788 \\ & 62 \pi 4 \\ & 7 \uparrow 56 \\ & 9233 \end{aligned}$	$\begin{aligned} & 3445 \\ & 4936 \\ & 6423 \\ & 7904 \\ & 9350 \end{aligned}$	$\begin{aligned} & 3594 \\ & 5085 \\ & 6571 \\ & 8052 \\ & 9527 \end{aligned}$	$\begin{aligned} & 3744 \\ & 5 \approx i \\ & 6 i 19 \\ & 8 \approx 0 \\ & 96 \% 0 \end{aligned}$	150149149148148
			$\begin{aligned} & 0116 \\ & 1585 \\ & 3049 \\ & 4508 \\ & 5962 \end{aligned}$	$\begin{aligned} & 0263 \\ & 1732 \\ & 3195 \\ & 4653 \\ & 6107 \end{aligned}$	$\begin{aligned} & 0410 \\ & 18 i 8 \\ & 3341 \\ & 4 \uparrow 99 \\ & 6252 \end{aligned}$	$\begin{aligned} & 0557 \\ & 2025 \\ & 3487 \\ & 4944 \\ & 6397 \end{aligned}$	$\begin{aligned} & \hline 0104 \\ & 2171 \\ & 3633 \\ & 5090 \\ & 6542 \end{aligned}$	$\begin{aligned} & 0851 \\ & 2318 \\ & 3 \uparrow \% \\ & 3 \approx 35 \\ & 665 \% \end{aligned}$	$\begin{aligned} & 0598 \\ & 2464 \\ & 3925 \\ & 5381 \\ & 6832 \end{aligned}$	$\begin{aligned} & 1145 \\ & 2610 \\ & 40 \because 1 \\ & 5 \approx 26 \\ & 6976 \end{aligned}$	147146146146145
6	$\begin{array}{r} 4 \pi 1292 \\ 2 \pi 56 \\ 4216 \\ 5671 \end{array}$	$\begin{aligned} & 1438 \\ & 2903 \\ & 4362 \\ & 5816 \end{aligned}$									
7											
8											
8											

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
161	16.1	32.2	48.3	64.4	80.5	96.6	112.7	128.8	144.9
160	16.0	32.0	48.0	640	80.0	96.0	112.0	128.0	144.0
159	15.9	31.8	47.7	63.6	79.5	95.4	111.3	127.2	143.1
158	15.8	31.6	4 4 .4	63.2	79.0	94.8	110.6	126.4	142.2
157	15.7	31.4	$4{ }^{\text {in }}$. 1	62.8	78.5	94.2	109.9	125.6	141.3
156	15.6	31.2	46.8	62.4	ז8.0	93.6	109.2	124.8	140.4
155	15.5	31.0	46.5	62.0	77.5	93.0	108.5	124.0	139.5
154	15.4	30.8	46.2	61.6	77.0	92.4	$10 \% .8$	123.2	138.6
153	15.3	30.6	45.9	61.2	76.5	91.8	107.1	122.4	137.7
152	15.2	30.4	45.6	60.8	76.0	91.2	106.4	121.6	136.8
151	15.1	30.2	45.3	60.4	75.5	90.6	105.7	1208	135.9
15 C	15.0	30.0	45.0	60.0	75.0	90.0	$\because 05.0$	120.0	135.0
149	14.9	29.8	44.7	59.6	74.5	89.4	104.3	119.2	134.1
148	14.8	29.6	44.4	59.2	74.0	88.8	103.6	118.4	133.2
147	14.7	29.4	44.1	58.8	73.5	88.2	102.9	117. 6	132.3
146	146	29.2	43.8	58.4	73.0	87.6	102.2	116.8	131.4
145	14.5	29.0	43.5	58.0	72.5	87.0	101.5	116.0	130.5
144	14.4	28.8	43.2	57.6	72.0	86.4	100.8	115.2	129.6
143	14.3	28.6	42.9	57.2	71.5	85.8	100.1	114.4	128.7
142	14.2	28.4	42.6	56.8	71.0	852	99.4	113.6	127.8
141	14.1	28.2	42.3	56.4	\%0.5	84.6	98.8	112.8	126.9
140	14.0	28.0	42.0	56.0	70.0	31.0	$98 . \mathrm{C}$	112.0	126.0

N.	0	1	2	3	4	5	6	7	8	9	Diff.
300	477121	7266	7411	7555	r700	7844	7989	8133	8278	8422	145
1	8566	8711	8855	8999	9143	9287	9431	9575	9719	9863	144
9	48000	0151	0294	0438	0582	0725	0869	1012	1156	1299	144
	1443284	1586	1 129	$18{ }^{2} 2$	2016	2159	2302	2445	2588	2731	143
		3016	3159	3302	3445	3587	3730	3872	4015	4157	143
	2874 4300	4442	4585	4\%27	4869	5011	5153	5295	5437	$55 \% 9$	142
	4300 5721	5863	6005	6147	6289	6430	6572	6714	6855	6997	142
	T138	7280	7421	7563	ri04	7845	7986	8127	8269	8410	141
	8551	8692	8833	8974	9114	9255	9396	9537	9677	9818	141
	950	0099	239	0380	0ご20	0661	0801	0941	1081	1222	140
310	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621	140
1	2160	2900	3040	3179	3319	3458	3597	3737	$38 \% 6$	4015	139
	4155	4294	4433	45\%2	$4 \pi 11$	4850	4989	5128	5267	5406	139
3	5544	5683	5822	5960	6099	6238	6316	6515	6653	6791	139
* ${ }_{5}^{4}$	69308311	\%068	.7206	\%'344	7483	7621	${ }^{7} 759$	7897	8035	8173	$1 £ 8$
		9824	$\begin{aligned} & 8586 \\ & 9962 \end{aligned}$	8724	8862	8999	9137	$92{ }^{2} 5$	9412	9550	188
	9687			0099	36	02.4	11	8	0785	2	\%
	501059	11	1333	1470	1607	$1 \% 44$	1880	2017	2154	2291	137
8	$\begin{aligned} & 2427 \\ & 3791 \end{aligned}$	2564	2700	2837	2973	3109	3246	$3 ¢ 82$	3518	3655	126
9		392%	4063	4199	4335	4471	4607	$4{ }^{4} 43$	$48 \% 8$	5014	186
320123	$\begin{aligned} & 5150 \\ & 6505 \\ & 7856 \\ & 9203 \end{aligned}$	$\begin{aligned} & 5286 \\ & 6640 \\ & 7991 \\ & 9337 \end{aligned}$	5421	5557	5693	5828	5964	6099	6234	$63 \% 0$	126
			$6{ }^{\text {rit6 }}$	6911	7046	7181	7316	7451	rec6	\% \%21	185
			8126	8260	8395	8530	8664	8799	8934	3068	155
			9471	9606	9740	98					34
5	510545	0679	0813	0947	1081	1215	1349	1482	1616	1750	134
	1883	2017	2151	2284	2418	2551	8684	2818	2951	2084	133
6	3218	3351	3484	3617	3750	3883	4016	4149	4282	4415	133
7		4681	4813	4946	50 ${ }^{\circ} 9^{\circ}$	5211	5344	5476	5609	$5 \% 41$	133
	4548 5874	6006	6139	6271	6403	6535	6668	6800	6932	r.064	132
9	7196	7328	7460	7592	r724	7855	7987	8119	8251	8¿82	132
330	$\begin{aligned} & 8514 \\ & 9828 \end{aligned}$	$\begin{aligned} & 8646 \\ & 9959 \end{aligned}$	8777	8909	9040	9171	9303	9434	9566	969%	131
											131
2	521138	1259	1400	1530	1661	1792	1922	2053	2183	2314	131
3	$\begin{aligned} & 2444 \\ & 3746 \end{aligned}$	2575	2.05	2835	2966	3096	3226	3256	3486	3616	130
4		38\%6	4006	4136	4266	4396	4526	$4 \mathrm{CE6}$	4 4 ¢5	4915	150
.	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210	129
6	63397630	6469	6598	6727	68.56	6985	7114	\%243	73\%2	r501	129
\%		7759	7888	8016	8145	8274	8402	8531	8660	8788	129
8	8917	9045	2174	9:02	9430	9559	9687	9815	9943		
9	530200	0328	0456	0584	0712	0840	0968	1096	1223	$\begin{aligned} & 0072 \\ & 1351 \end{aligned}$	128

Proportional Parts.

Diff.	2	2.	3	4	5	6	7	8	9
139	13.9	27.8	41.7	55.6	69.5	83.4	97.3	111.2	125.1
138	13.8	27.6	41.4	55.2	69.0	82.8	96.6	110.4	124.2
137	13.7	27.4	41.1	54.8	68.5	82.2	95.9	109.6	123.3
136	13.6	27.2	40.8	54.4	68.0	81.6	95.2	108.8	122.4
135	13.5	27.0	40.5	54.0	67.5	81.0	94.5	108.0	121.5
134	13.4	26.8	40.2	¢3.6	67.0	80.4	93.8	107.2	120.6
183	13.3	26.6	39.9	53.2	66.5	79.8	93.1	106.4	119.7
132	13.2	26.4	39.6	52.8	66.0	79.2	92.4	105.6	118.8
131	13.1	26.2	39.3	52.4	65.5	78.6	91.7	104.8	117.9
130	13.0	26.0	39.0	52.0	65.0	78.0	91.0	104.0	117.0
129	12.9	25.8	38.7	51.6	64.5	77.4	90.3	103.2	116.1
128	12.8	25.6	38.4	51.2	64.0	76.8	89.6	102.4	115.2
127	127	25.4	38.1	50.8	63.5	76.2	88.9	101.6	114.3

No. 340 L. 531.]
[No. 3\%2 L. 5.9.

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 123 | 12.8 | 25.6 | 38.4 | 51.2 | 64.0 | 76.8 | 89.6 | 102.4 | 115.2 |
| 127 | 12.7 | 25.4 | 38.1 | 50.8 | 63.5 | 76.2 | 88.9 | 101.6 | 11.3 |
| 126 | 12.6 | 25.2 | 37.8 | 50.4 | 63.0 | 75.6 | 88.2 | 10.8 | 113.4 |
| 125 | 12.5 | 25.0 | 37.5 | 50.0 | 62.5 | 75.0 | 87.5 | 10.0 | 112.5 |
| 124 | 12.4 | 24.8 | 37.2 | 49.6 | 62.0 | 74.4 | 86.8 | 99.2 | 11.6 |
| 123 | 12.3 | 24.6 | 36.9 | 49.2 | 61.5 | 73.8 | 86.1 | 98.4 | 110.7 |
| 122 | 12.2 | 24.4 | 36.6 | 48.8 | 61.0 | 73.2 | 85.4 | 97.6 | 10.8 |
| 121 | 12.1 | 24.2 | 36.3 | 48.4 | 60.5 | 72.6 | 84.7 | 96.8 | 108.9 |
| 120 | 12.0 | 24.0 | 36.0 | 48.0 | 60.0 | 72.0 | 84.0 | 96.0 | 108.0 |
| 119 | 11.9 | 23.8 | 35.7 | 47.6 | 53.5 | 71.4 | 83.3 | 95.2 | 107.1 |

No. 380. L. 579.]
[No. 414 L. 61 .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline N. \& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& Diff.

\hline 380 \& 579784 \& 9898 \& 0012 \& 0126 \& 0241 \& 0355 \& 0469 \& 0583 \& 0697 \& 0811 \& \multirow[t]{2}{*}{114}

\hline 1 \& \& 1039 \& 1153 \& 1267 \& 1381 \& 1495 \& 1608 \& 1722 \& $18: 36$ \& 1950 \&

\hline 2 \& 580925
2063 \& 2177 \& 2:31 \& 2404 \& 2518 \& 2631 \& 2.45 \& 2858 \& 2972 \& 3685 \&

\hline 3 \& \& $3: 312$ \& 3426 \& 3539 \& 3652 \& 3765 \& 3879 \& 3992 \& 4105 \& 4218 \&

\hline 4 \& \& 4444 \& 4557 \& 4670 \& $4 \pi 83$ \& 4896 \& 5009 \& 5122 \& 5235 \& 5348 \& 113

\hline 5 \& 5461 \& $55 \% 4$ \& 5686 \& 5799 \& 5912 \& 6024 \& 6137 \& 6250 \& 6362 \& 64:5 \&

\hline 6 \& \multirow[t]{2}{*}{6587
7711} \& $6{ }^{\text {co }} 0$ \& 6812 \& 6925 \& 7037 \& 7149 \& 7262 \& 7374 \& 7486 \& 75.9 \&

\hline 7 \& \& 78:23 \& \%935 \& 8047 \& 8160 \& 8272 \& 8384 \& 8496 \& 8608 \& 8720 \& 112

\hline \multirow[t]{2}{*}{8
9} \& 7711 \& 8944 \& 9056 \& 9167 \& 92゙9 \& 9391 \& 9503 \& 9615 \& 9726 \& 9838 \&

\hline \& 9950 \& 0061 \& 0173 \& 0284 \& 0396 \& 0507 \& 0619 \& 0730 \& 0842 \& 0953 \&

\hline \& \& $11 \% 6$ \& 1287 \& 1399 \& 1510 \& 1621 \& 1732 \& 1843 \& 1955 \& 2066 \&

\hline 390
1 \& 591065 \& 2288 \& 2399 \& 2510 \& 2621 \& 2732 \& 2843 \& 2954 \& 3064 \& 31% \& 111

\hline \multirow[t]{2}{*}{2
3
3} \& 3286 \& 3397 \& 3508 \& 3618 \& 3729 \& 3840 \& 3950 \& 4061 \& 4171 \& 4282 \&

\hline \& $$
\begin{array}{r}
3280 \\
4393
\end{array}
$$ \& 4503 \& 4614 \& 4724 \& 4834 \& 4945 \& 5055 \& 5165 \& $52 \sim 6$ \& 5386 \&

\hline 4 \& 5496 \& 5606 \& 5717 \& 5827 \& 5937 \& 6047 \& 6157 \& 6267 \& 63 \% \& 6487 \& 10

\hline \multirow[t]{2}{*}{5} \& \multirow[t]{2}{*}{6597

7695} \& 6707 \& 6317 \& 6927 \& 7037 \& 7146 \& 7256 \& 7366 \& 7476 \& 7586 \& 110

\hline \& \& 7805 \& 7914 \& 8024 \& 8134 \& 8243 \& 8353 \& 8462 \& 8572 \& 8681 \&

\hline \multirow[t]{2}{*}{7

8} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 8791 \\
& 9883
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 8900 \\
& 9992
\end{aligned}
$$
\]} \& 9039 \& 9119 \& 9228 \& 9337 \& 9446 \& 9556 \& 9665 \& $9{ }^{\text {cid }} 4$ \&

\hline \& \& \& 0101 \& 0210 \& C319 \& 0428 \& 0こ37 \& 0646 \& 0705 \& 0864 \& 109

\hline 9 \& 600973 \& 1082 \& 1191 \& 1299 \& 1408 \& 1517 \& 1625 \& 1734 \& 1843 \& 1951 \&

\hline 400 \& \& 2169 \& 22~17 \& 2386 \& 2494 \& 2603 \& $2 \sim 11$ \& 2819 \& 2928 \& 3036 \&

\hline 1 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 2050 \\
& 3144 \\
& 4226
\end{aligned}
$$} \& \multirow[t]{2}{*}{21253} \& 3361 \& 3469 \& 3577 \& 3686 \& 3ส94 \& 3902 \& 4010 \& 4118 \& 108

\hline 2 \& \& \& 4442 \& 4550 \& 4658 \& 4766 \& 4874 \& 4982 \& 5089 \& 5197 \&

\hline 3 \& $$
\begin{array}{r}
4216 \\
5305 \\
5
\end{array}
$$ \& 5413 \& $55 \% 1$ \& 5628 \& 5736 \& 5844 \& 5951 \& 6059 \& 6166 \& 6274 \&

\hline 4 \& 6381 \& 6489 \& 6596 \& 6704 \& 6811 \& 6919 \& 7026 \& 7133 \& 7241 \& 7348 \&

\hline 5 \& \multirow[t]{2}{*}{7455
8526} \& 7562 \& 7669 \& 7717 \& 7884 \& 7991 \& 8098 \& 8205 \& 8312 \& 8419 \& 107

\hline 6 \& \& 8633 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 8740 \\
& 9808
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 8847 \\
& 9914
\end{aligned}
$$
\]} \& 8954 \& 9061 \& 9167 \& 92\%4 \& 9381 \& 9488 \&

\hline 7 \& 9594 \& $9{ }^{6} 01$ \& \& \& \& \& 0234 \& 034 \& \& \&

\hline 8 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
610660 \\
1723
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0 \sim C 7 \\
& 18 z 9
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0, \pi 3 \\
& 1936
\end{aligned}
$$
\]} \& 0979 \& 1086 \& 1192 \& 1298 \& 10.55 \& 1511 \& 1617 \&

\hline 9 \& \& \& \& 2042 \& 2148 \& 2254 \& 2360 \& 2466 \& 25\%2 \& 2678 \& 106

\hline \multirow[t]{5}{*}{41} \& \multirow[t]{5}{*}{| $2 r 84$ |
| :--- |
| 3842 |
| 4897 |
| 5950 |
| 7000 |} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 2890 \\
& 3947 \\
& 5003 \\
& 6055 \\
& 7105
\end{aligned}
$$
\]} \& 2996 \& 3102 \& 3207 \& 3313 \& 3419 \& 3525 \& 3630 \& 3736 \&

\hline \& \& \& 4053 \& 4159 \& 4261 \& 4370 \& 4475 \& 4581 \& 4686 \& $4{ }^{4} 92$ \&

\hline \& \& \& 5108 \& 5213 \& 5319 \& 5424 \& 5529 \& 5634 \& 5740 \& 6845 \&

\hline \& \& \& 6160 \& 6265 \& $63 \% 0$ \& $64 \% 6$ \& 6581 \& 6686 \& 6790 \& 6895 \& 105

\hline \& \& \& 7210 \& 7315 \& r420 \& 7525 \& 7629 \& $7{ }^{7} 34$ \& r839 \& r943 \&

\hline
\end{tabular}

Proportional Parts.

Difin.	1	2	3	4	5	6	7	8	9
113	11.8	23.6	35.4	47.2	59.0	70.8	82.6	94.4	106.2
117	11.7	23.4	35.1	46.8	58.5	70.2	81.9	93.6	105.3
116	11.6	23.2	34.8	46.4	58.0	69.6	81.2	92.8	104.4
115	11.5	23.0	34.5	46.0	57.5	69.0	80.5	92.0	103.5
11.4	11.4	22.8	84.2	45.6	57.0	68.4	79.8	91.2	102.6
113	11.3	22.6	33.9	45.2	56.5	67.8	79.1	90.4	101.7
112	11.2	22.4	33.6	44.8	56.0	67.2	78.4	89.6	100.8
111	11.1	22.2	33.3	44.4	55.5	66.6	77.7	88.8	99.9
110	11.0	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0
105	10.9	21.8	32.7	43.6	54.5	65.4	76.3	87.2	98.1
108	10.8	21.6	32.4	43.2	54.0	64.8	75.6	86.4	97.2
107	10.7	21.4	32.1	42.8	53.5	64.2	\%4.9	85.6	96.3
106	10.6	21.2	31.8	42.4	53.0	63.6	74.2	84.8	95.4
105	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.6
104	10.4	20.8	31.2	41.6	52.0	62.4	72.8	83.2	93 f

LOGARITHMS OF NUMBERS.

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
105	10.5	21.0	31.5	42.0	59.5	63.0	73.5	84.0	94.5
104	10.4	20.8	31.2	41.8	52.0	62.4	72.	83.2	93.6
103	10.3	20.6	30.9	41.2	51.5	61.8	72	1	82.4
102	10.2	20.4	30.6	40.8	51.0	61.2	714	81.6	91.8
101	10.1	20.2	20.3	40.4	50.5	60.6	70	7	80.8
100	10.0	20.0	20.0	40.0	50.0	60.0	70	0	80.0
99	9.9	10.8	29.7	39.0	49.5	50.4	69.3	79.2	89.1

No. 460 L. 662.]
[No. 499 L. 698.

N	0	1	2	3	4	5	6	7	8	9	Diff.
460	662~58	2852	. 2947	3041	3135	3230	3324	3418	3512	3607	
1	3701	3795	3889	3983	$40 \% 8$	41:2	4266	4330	4454	4548	
2	4612	4736	4830	4924	5018	5112	5206	5299	5393	5487	94
3	5581	5675	$5 \sim 69$	5862	5956	6050	6143	6:337	6331	6424	
4	6518	6612	$6 \sim 05$	6799	6892	6986	7079	71\%3	\%266	7360	
5	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	
6	8386	8479	$85 \% 2$	8665	8759	8852	8945	9038	9131	9224	
7	031%	9410	9503	9596	9689	9782	$9{ }^{8} 75$	9967			
8	6.0246	0339	0431	0524	0617	$0 \% 10$	0802	0895	0988	1080	
9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	
${ }_{2}^{170}$	2098	2190	2283	2375	2467	2560	2652	$2 \sim 44$	2836	2929	
1	3021	3113	$3: 05$	3297	3390	3482	$35 \% 4$	3666	3758	3350	
2	3942	4034	4126	4218	4310	4402	4494	4586	46~r7	4769	92
3	4861	4953	5045	5137	5228	5320	5412	5503	5595	568i	
4	$57 \% 8$	5870	5962	6053	6145	6236	6328	6419	6511	6602	
5	6694	6785	$68 \sim 6$	6968	7059	7151	7242	7333	7424	7516	
6	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427	
7	8518	8609	8700	8791	8882	8973	9064	9155	9246	9337	91
8	9428	9519	9610	$9 \% 00$	9791	9882	99%				
9	680336	0426	0517	0607	0698	0789	$08 \% 9$	09\%0	1060	1151	
480	1241	1332	1422	1513	1603	1693	1784	1874	1964	2055	
1	2145	2235	2326	2416	2506	2596	2686	27%	2867	2957	
2	3047	3137	3227	3317	340%	3497	$358{ }^{7}$	36%	3767	3857	90
3	3947	4037	4127	4217	430%	4396	4486	4576	4666	4756	
4	4845	4935	5025	5114	5204	5294	5383	5473	5563	5652	
5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	
6	6636	6726	6815	6904	6994	7083	$71 \% 2$	7261	7351	7440	
7	$75: 29$	7618	7407	7796	7886	79%	8064	8153	8242	8331	89
8	8420	8509	8598	8687	$87 \% 6$	8865	8953	9042	9131	9220	
9	9309	9338	9486	9575	9664	9753	9841	9930			
490	690196	0285	0373	0462	0550	0639	0728	0816	0905	0993	
1	1081	1170	1258	1347	1435	1524	1612	$17 C 0$	1789	$18 \sim 7$	
2	1965	2053	214:	2:30	2318	2406	2494	2583	2671	2759	
3	2347	2935	302:3	3111	3199	328%	3375	3463	3551	3639	88
4	$3 \% 27$	3815	3903	3991	$40 \hat{1} 8$	4166	4254	4342	4430	4517	
5	4605	4693	$4 \pi 81$	4868	4956	5044	5131	5219	5307	5394	
6	5482	55¢9	5657	$5 \% 14$	5832	5919	6007	6094	6182	6269	
7	6350	6444	65.31	6618	6706	6793	6880	6968	7055	7142	
8	7229	7317	r 401	\%491	7578	7665.	775	7839	7926	8014	
9	8100	8188	8275	836:	8449	8535	8622	$8{ }^{6} 09$	8796	8883	87

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
98	9.8	19.6	29.4	39.2	49.0	58.8	68.6	78.4	88.2
97	9.7	19.4	29.1	38.8	48.5	58.2	67.9	77.6	87.3
96	9.6	19.2	28.8	38.4	48.0	57.6	67.2	76.8	86.4
95	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5
94	9.4	18.8	28.2	37.6	47.0	56.4	65.8	75.2	84.6
93	9.3	18.6	27.9	37.2	46.5	55.8	65.1	74.4	83.7
92	9.2	18.4	27.6	36.8	46.0	55.2	64.4	73.6	32.8
91	9.1	18.2	27.3	36.4	45.5	54.6	63.7	\%2.8	81.9
90	9.0	18.0	27.0	36.0	45.0	54.0	63.0	\%2.0	81.0
99	89	17.8	26.7	35.6	44.5	53.4	62.3	71.2	80.1
88	88	17.6	26.4	35.2	44.0	52.8	61.6	70.4	79.2
8	8.7	17.4	23.1	34.8	43.5	52.2	60.9	69.6	78.3
86	8.6	17.2	25.8	34.4	43.0	51.6	60.2	68.8	77.4

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 500 \\ 1 \end{array}$	698970	$\begin{aligned} & 9057 \\ & 9924 \end{aligned}$	9144	9231	9317	9404	9491	$95 \% 8$	9664	$9 \% 1$	
			0011	$\begin{aligned} & 0098 \\ & 0963 \end{aligned}$	0184	02\%1	0358	0444	05:31	0617	
2	700704	0790			1050	1136	1222	1309	1395	1482	
,	1568	1654	1741	1827	1913	1999	2086	2172	2258	2344	
4	2431	${ }_{2517}^{16.4}$	2603	2689	2775	2861	2947	3033	3119	3205	
5	3291		3463	3549	3635	3721	3807	3893	3979	4065	$\varepsilon 6$
6	4151		4322	4408	4494	4579	4665	4751	4837	4922	
7	5008	$\begin{aligned} & 4236 \\ & 5094 \end{aligned}$	5179	5265	5350	5436	5522	560%	5693	5778	
8	5864	$\begin{aligned} & 5094 \\ & 5949 \end{aligned}$	6035	6120	6206	6291	6376	6462	6547	6632	
9	6718	$\begin{aligned} & 5949 \\ & 6803 \end{aligned}$	6888	6974	7059	7144	T229	7315	7400	7485	
510	7570		7740	\%826	7911	7996	8081	8166	8251	8336	85
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	8421	7655 8506	8591	8676	$8 \% 61$	8846	8931	9015	9100	9185	85
	$92 \% 0$	9355	9440	9524	9609	9694	9 9\%9	9863	9948		
3	\%10117	0202	0287	03\%1	0456	0540	0625	0710	0794	08 9 9	
4	0963		1132	1217	1301	1385	$14 \% 0$	1554	1639	$1 \% 23$	
5	1807	1048 1892	$19 \% 6$	2060	2144	2229	2313	2397	2481	2566	
6	2650		2818	2902	2986	3070	3154	3238	3323	3407	84
8	3491	35\%5	3659	3742	3826	3910	3994	4018	4162	4246	8
8	4330		4497	4581	4665	4749	4833	4916	5000	5084	
,	5167	4414	5335	5418	5502	5586	5669	5753	- 5836	5920	
520	6003		$61 \% 0$	6254	6337	6421	6504	6588	6671	$6 \pi 54$	
1	6838	$\begin{aligned} & 6087 \\ & 6921 \end{aligned}$	${ }_{5} 5004$	7088	\%171	7254	7338	7421	7504	7587	
2	7671	77548585	7837	\%920	8003	8086	8169	8253	8336	8419	
3	8502		8668	8751	8834	8917	9000	9083	9165	9248	83
4	9331	$\begin{aligned} & 8585 \\ & 9414 \end{aligned}$	9497	9580	9663	9745	9828	9911	9994		
	720159		0325	0407	0490	0วัว 3	0655	0738	0821	0903	
	0986	1068	1151	1233	1316	1398	1481	1563	1646	1728	
	1811	1893	1975	2058	2140	2222	2305	2387	2469	2552	
	2634		2798	2881	2963	3045	3127	3209	3291	3374	
	3456	$\begin{aligned} & 2716 \\ & 3538 \end{aligned}$	3620	3702	3784	3866	3948	4030	4112	4194	82
530	4276	4358	4440	4522	4604	4685	4767	4849	4931	5013	
1	5095	51765993	5258	5340	5422	5503	5585	5667	5748	5830	
2	5912		6075	6156	6238	6320	6401	6483	6564	6646	
3	6727	$\begin{aligned} & 5993 \\ & 6809 \end{aligned}$	6890	6972	7053	7134	7216	7297	7379	7460	
4	7541	680976238435	7704	T785	7866	7948	8029	8110	8191	8273	
$\begin{aligned} & 0 \\ & 6 \\ & 7 \end{aligned}$	8354		8516	8597	8678	8759	8841	8922	9003	9084	
	9165	$\begin{aligned} & 8435 \\ & 9246 \end{aligned}$	9327	9408	9489	95%	9651	9732	9813	9893	81
		$\begin{aligned} & 0055 \\ & 0863 \end{aligned}$	0136		0298	0378	0459				
8	730782		0944	1024	1105	1186	1266	1347	1428	1508	
9	1589	1669	1750	1830	1911	1991	$20 \% 2$	2152	2233	2313	
540	2394	$24 \% 4$	2555	2635	2715	$2 \% 96$	2876	2955	3037	3117	
1	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919	
2	3999	4079	4160	4240	4320	4400	4480	4560	4640	4720	
3	4800	4880	4960	5040	5120	5200	52\%9	5359	5439	5519	80
4	5599	5679	5759	5838	5918	5998	$60 \% 8$	6157	6237	6317	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
87	8.7	17.4	26.1	34.8	43.5	52.2	60.9	69.6	78.3
86	8.6	17.2	25.8	34.4	43.0	51.6	60.2	68.8	74.4
85	8.5	17.0	25.5	34.0	42.5	51.0	59.5	68.0	76.5
84	8.4	16.8	25.2	33.6	42.0	50.4	58.8	67.2	75.6

No. 545 L. 736.]
LNo. 584 L. 767.

Proportional Parts。

Diff.	1	2	3	4	5	6	7	8	9	
83	8.3	16.6	24.9	33.2	41.5	49.8	58.1	66.4	74.7	
82	8.2	16.4	24.6	32.8	41.0	49.2	57.4	65.6	73.8	
81	8.1	16.2	24.3	32.4	40.5	48.6	56.7	64.8	72.9	
80	8.0	16.0	24.0	32.0	40.0	48.0	56.0	64.0	72.0	
79	7	9	15.8	23.7	31.6	39.5	47.4	55.3	63.2	71.1
78	7	8	15.6	23.4	31.2	39.0	46.8	54.6	62.4	70.2
7γ	7.7	15.4	23.1	30.3	38.5	46.2	53.9	61.6	69.3	
76	7	6	15.2	22.8	30.4	38.0	45.6	53.2	60.8	68.4
75	7.5	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5	
74	7.4	14.8	22.2	29.6	37.0	44.4	51.8	59.2	66.6	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
75	7.5	10.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5
74	7.4	14.8	22.2	29.6	37.0	44.4	51.8	59.2	66.6
73	7.3	14.6	21.9	29.2	36.5	43.8	51.1	58.4	65.7
72	7.2	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8
71	7.1	14.2	21.3	28.4	35.5	42.6	49.7	56.8	63.9
70	7.0	14.0	21.0	23.0	35.0	42.0	49.0	56.0	63.0
69	6.9	13.8	20.7	27.6	34.5	41.4	48.3	55.2	62.1

No. 630 L. 799.]									[No. 674 L. 829.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
630	799341	9409	94ヶ8	9547	9616	9685	9754	9823	9892	0961	
1	800029	0098	0167	0236	0305	0373	0442	0511	0580	0648	
2	$0 \pi 17$	0786	0854	0923	0992	1061	1129	1198	1266	1335	
3	1404	14\%2	1541	1609	16ヶ8	1747	1815	1884	1952	2021	
4	2089	2158	2226	2295	2363	2432	2500	2568	2637	$2 \% 05$	
5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	
6	3457	3525	3594	3662	3730	3798	3867	3935	4003	4071	
7	4139	4208	$42 \sim 6$	4344	4412	4480	4548	4616	4685	4753	
$\begin{array}{r} 30 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \end{array}$. 806180	6248	6316	6384	6451	6519	6587	6655	6723	6790	
	6858	6926	6994	7061	7129	7197	7264	7332	7400	7467	
	7535	7603	r670	7738	7806	7873	7941	8008	8076	8143	
	8211	8279	8346	8414	8481	8549	8616	8684	$8 \% 51$	8818	
	8886	8953	9021	9088	9156	9223	9290	9358	9425	9492	
	9560	9627	9694	9762	9829	9896	9964				
6	3	0300	7	34	501			0031	0098	0165	
	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	
	2245	2312	2379	2445	2512	25 \%	2646	2713	2780	2847	
350	2918	2980	3047	3114	3181	3247	3314	3381	3448	3514	
1	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	
3	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	
5	0241	6308	6374	6440	6506	6573	6639	6705	6771	6838	
6	6904	6970	7036	7102	7169	7235	\%301	7367	7433	7499	
r	7565	\%631	7698	7764	7830	7896	7962	8028	8094	8160	
8	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
9	-8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
660	9544	9610	9676	9741	9807	9873	9939				
	820201	0267	0333	0399	0464	0530	0595	0661	0727	0792	
2	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	
3	1514	1579	1645	1\%10	1775	1841	1906	19\%2	2037	2103	
4	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756	
5	2822	288\%	2952	3018	3083	3148	3213	3279	3344	3409	
${ }_{7}^{6}$	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061	
7	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
8	4776	4811	4906	4971	5036	5101	5166	5231	5296	5361	65
9	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	
$6 \% 0$	6075	6140	6204	6269	6334	6399	6464	6528	6593	6658	
1	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305	
2	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	
3	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595	
4	8660	8724	8789	8853	8918	8982	9046	9111	9175	9239	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
68	6.8	13.6	20.4	27.2	34.0	40.8	47.6	54.4	61.2
67	6.7	13.4	20.1	26.8	33.5	40.2	46.9	53.6	60.3
66	6.6	13.2	19.8	26.4	33.0	39.6	46.2	52.8	59.4
65	6.5	13,0	19.5	26.0	32.5	39.0	45.5	52.0	58.5
64	6.4	18.8	19.2	25.6	32.0	38.4	44.8	51.2	57.6

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 675 \\ 6 \end{array}$	$\begin{array}{r} 829304 \\ 9947 \end{array}$	9368	9432	949\%	9561	9625	9690	9754	9818	9882	
		$\begin{aligned} & 0011 \\ & 0653 \end{aligned}$	$\begin{aligned} & 0075 \\ & 0717 \end{aligned}$	0139	0204	0268	0332	0396	0460	0525	
789	830589			0781	0845	0909	0973	1037	1102	1166	
	$\begin{array}{r} 1230 \\ 1870 \end{array}$	1294	1358	1422	1486	1550	1614	16.8	1742	1806	64
		1934	1998	2062	2126	2189	2253	2317	2381	2445	
680		2573	2637	2700	$2 \% 64$	2828	2892	2956	3020	3083	
122	$\begin{aligned} & 2509 \\ & 3147 \end{aligned}$	3211	3275	3338	3402	3466	3530	3593	3657	3721	
	3784	3848	3912	39\%5	4039	4103	4166	4230	4294	4357	
3	4421	4484	4548	4611	$46 \% 5$	4739	4802	4866	4929	4993	
4 5	50 ¢ 6	5120	5183	5247	5310	5373	5437	5500	5564	5627	
	56916324	5754	5817	5881	5944	6007	6071	6134	6197	6261	
6		6387	6451	6514	657%	6641	$6 \hat{1} 04$	6767	6830	6894	
789	$\begin{aligned} & 6324 \\ & 6957 \end{aligned}$	7020	r083	7146	7210	7273	7336	7399	¢462	7525	
	$\begin{aligned} & 7501 \\ & 7588 \\ & 8219 \end{aligned}$	7652	7715	7778	7841	\%904	7967	8030	8093	8156	
		8282	8345	8408	8471	8534	8597	8660	8723	8786	63
690	$\begin{aligned} & 8849 \\ & 9478 \end{aligned}$	$\begin{aligned} & 8912 \\ & 9541 \end{aligned}$	$\begin{aligned} & 89 \% 5 \\ & 9604 \end{aligned}$	$\begin{aligned} & 9038 \\ & 9667 \end{aligned}$	$\begin{aligned} & 9101 \\ & 9729 \end{aligned}$	$\begin{aligned} & 9164 \\ & 9 \approx 92 \end{aligned}$	$\begin{aligned} & 9227 \\ & 9855 \end{aligned}$	$\begin{aligned} & 9289 \\ & 9918 \end{aligned}$	$\begin{aligned} & 9352 \\ & 9981 \end{aligned}$	9415	
										004	
2	840106	0169	0232	0294	0357	0420	0482	0545	0608	0671	
3	0733	0796	0859	0921	0984	1046	1109	$11^{7} 2$	1234	1297	
4	1359	1422	1485	1547	1610	$16 \% 2$	1735	1797	1860	1922	
5	1985	2047	2110	2172	$2: 235$	2297	2360	2422	2484	2547	
6	2609	$26{ }^{2} 2$	2734	2796	2859	2921	2983	3046	3108	31\%0	
7	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793	
8	3855	3918	3980	4042	4104	4136	4229	4291	4353	4415	
9	447.7	4539	4604	4664	4726	4788	4850	4912	4974	5036	
700		5160	5222	5284	5346	5408	5470	5532	5594	5656	62
1	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275	
2	6337	6399	6461	6523	6585	6646	$6{ }^{2} 08$	6750	6832	6894	
3	6955	\% 017	7079	7141	\%'02	\%264	7326	7388	7449	7511	
4	75738189	7634	r696	7758	7819	r881	7943	8004	8066	8128	
5		8251	8312	8374	8435	8497	8559	8620	8682	8743	
7	88059419	8866	8928	8989	9051	9112	9174	9235	9297	9358	
		9481	9542	9604	9665	9726	9788	9849	9911	9972	
8	$\begin{array}{r} 850033 \\ 0846 \end{array}$	$\begin{aligned} & 0095 \\ & 0 \% 07 \end{aligned}$	$\begin{aligned} & 0156 \\ & 0769 \end{aligned}$	$\begin{aligned} & 0217 \\ & 0830 \end{aligned}$	$\begin{aligned} & 0279 \\ & 0891 \end{aligned}$	$\begin{aligned} & 0340 \\ & 0952 \end{aligned}$	$\begin{aligned} & 0401 \\ & 1014 \end{aligned}$	$\begin{aligned} & 0462 \\ & 10 \% 5 \end{aligned}$	$\begin{aligned} & 0524 \\ & 1136 \end{aligned}$	$\begin{aligned} & 0585 \\ & 1197 \end{aligned}$	
9											
710	1258	1320	1381	1442	1503	1564	1625	1686	1747	1809	61
1	$18 \% 0$	1931	1992	2053	2114	21%	2236	2297	2358	2419	
2	2480	2541	2 ¢02	2663	2124	2785	2846	2907	2968	3029	
3	3090	3150	3211	$32 \% 2$	8333	3394	3455	3516	$35 \% \%$	3637	
4	3698	3759	3820	3881	3941	4002	4063	4124	4185	4245	
5	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852	
6	4913	4974	5034	5095	5156	5216	$52{ }^{17}$	5337	5398	5459	
7	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064	
8	6124	6185	6245	6306	6366	6427	6487	6548	6608	6668	
9	$6 \tau 29$	6789	6850	6910	6970	r031	r091	7152	r212	72\%2	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
		65	13.0	19.5	26.0	32.5	39.0	45.5	52.0
64	6.4	12.8	19.2	25.6	32.0	38.4	44.8	51.2	58.5
63	6.3	12.6	18.9	25.2	31.5	33.8	44.1	50.4	56.7
62	6.2	12.4	18.6	24.8	31.0	37.2	43.4	49.6	55.8
61	6.1	12.2	18.3	24.4	30.5	36.6	42.7	48.8	54.9
60	6.0	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0

No. 720 L. 857.]									[No. 764 L. 883.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\% 20$	857332	7393	7453	7513	7574	7634	7694	7755	7815	7875	
1	7935	7995	8056	8116	8176	-8236	8297	8:357	8417	8477	
2	8537	8597	8657	8718	$87 \sim 8$	8838	8898	8958	9018	9078	
3	9138	9198	9258	9318	9379	9439	9499	9559	9019	9679	60
4	9739	9799	9859	9918	9978						
						0038	0098	0158	0218	0278	
5	860338	0398	0458	0518	05r8	0637	0697	0757	0817	0877	
6	0937	0996	1056	1116	1176	1235	1295	1355	1415	1475	
7	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072	
8	2131	2191	2251	2310	2570	2430	2489	2549	2608	2668	
9	2728	$2 \% 87$	2847	2906	2966	3025	3085	3114	3204	3263	
730	3323	3382	3442	3501	3561	3620	3680	3739	3799	3858	
1	3917	3977	4036	4096	4155	4214	$42 \mathrm{r}_{4}$	4333	4392	4452	
2	4511	4570	4630	4689	4748	4808	4867	4926	4985	5045	
3	5104	5163	5222	5282	5341	5400	5459	5519	5578	5637	
4	5696	5755	5814	58\%4	5933	5992	6051	6110	6169	6228	
5	6287	6346	6405	6465	6524	6583	6642	6701	6760	6819	
6	6878	6937	6996	r05	7114	7173	7232	7291	7350	7409	59
7	7467	7526	7585	7644	7703	7762	7821	7880	7939	7998	
8	8056	8115	8174	8233	8292	8350	8409	8468	8527	8586	
9	8644	8703	8762	8821	8879	8938	8997	9056	9114	91, 3	
740	9232	9290	9349	9408	9466	9525	9584	9642	9701	9760	
1	9818	98\%7	9935	9994							
					0053	0111	0170	0228	0287	0345	
2	870404	0462	0521	0579	0638	0696	0755	0813	0872	0930	
	0989	1047	1106	1164	1223	1281	1339	1398	1456	1515	
4	1573	1631	1690	1748	1806	1865	1923.	1981	2040	2098	
5	2156	2215	2273	2331	2389	2448	2506	2564	2622	2681	
6	2739	2797	2855	2913	2972	3030	3088	3146	3204	3262	
7	3321	3379	3437	3495	3553	3611	3669	3727	3785	3844	
8	3902	3960	4018	4076	4134	4192	4250	4308	4366	4424	58
,	4482	4540	4598	4656	4714	$4 \% 72$	4830	4888	4945	5003	
750	5061	5119	5177	5235	5293	5351	5409	5466	5524	5582	
1	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160	
2	6218	$62 i 76$	6333	6391	6449	6507	6564	6622	6680	6737	
3	6795	6853	6910	6968	7026	r083	7141	7199	7256	7314	
4	7371	7429	7487	7644	7602	7659	7717	7774	7832	7889	
5	r947	8004	8062	8119	8177	8234	8292	8349	8407	8464	
6	8522	85\%9	8637	8694	8752.	8809	8866	8924	8981	9039	
7	9096	9153	9211	9268	9325	9383	9440	9497	9555	9612	
8	9669	9726	9784	9841	9898	9956	0013	0070	0127	0185	
9	880242	0299	0356	0413	0471	0528	0585	0642	0699	0756	
760	0814	0871	0928	0985	1042	1099	1156	1213	1271	1328	
1	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898	
2	1955	2012	2069	2126	2183	2240	2297	2354	2411	2468	57
3	2525	2581	2638	2695	2752	2809	2866	2923	2980	3037	
4	3093	3150	3207	3264	3321	3377	3434	3491	3548	3605	

Proportional Parts.

Diff.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
59	5.9	11.8	17.7	23.6	29.5	35.4	41.3	47.2	53.1
58	5.8	11.6	17.4	23.2	29.0	34.8	40.6	46.4	52.2
57	5.7	11.4	17.1	22.8	28.5	34.2	39.9	45.6	51.3
56	5.6	11.2	16.8	22.4	28.0	33.6	39.2	44.8	50.4

N.	0	1	2	3	4	5	6	7	8	9	Diff.
765	883661	3718	3775	3832	3888	3945	4002	4059	4115	4172	
6	4229	4285	4342	4399	4455	4512	4569	4625	$468{ }^{\prime} 2$	4739	
7	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305	
8	5361	5418	5474	5531	5587	5644	5700	5757	5813	5870	
9	5926	5983	6039	6096	6152	6209	6265	6321	$63 \sim 8$	6434	
7%	6491	6547	6604	6660	6716	$67 \% 3$	6829	6885	6942	6993	
1	r054	7111	7167	7223	7280	7336	7392	7449	7505	7561	
2	7617	7674	7730	7756	7842	7898	7955	8011	8067	8123	
3	8179	8236	8292	8348	8404	8460	8516	85 \% 3	8629	8685	
4	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246	
5	9302	9358	9414	$94 \% 0$	9526	9582	9638	9694	9750	9806	56
6	9862	9918	$99 \% 4$								
	890421	01477	0533	0589	0645	0700	0756	0812	0868	0361	
8	0980	1035	1091	1147	1203	1259	1314	$13 \% 0$	1426	1482	
9	1537	1593	1649	1705	1760	1816	$18{ }^{1} 2$	1928	1983	2039	
\% 80	2095	2150	2206	2262	2317	2373	2429	2484	2540	2595	
1	2651	2707	$2 \sim 62$	2818	$28 \% 3$	2029	2985	3040	3096	5151	
2	3207	3262	3318	33\%3	3429	3484	3540	3595	3651	3706	
3	3762	3817	$38 \% 3$	3928	3984	4039	4094	4150	4205	4261	
4	4316	43 T 1	4427	4482	4538	4593	4648	4704	4759	4814	
5	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	
6	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920	
7	5975	6030	6085	6140	6195	6251	6306	6361	6416	$64 \% 1$	
8	6526	6581	6636	6692	6.47	6802	6857	6912	6967	r022	
9	7077	7132	7187	7242	7297	7352	7407	7462	7517	$75 \% 2$	5
$\pi 90$	7627	7682	7737	7792	7847	7902	7957	8012	8067	8122	53
1	$81 \% 6$	8231	8286	8341	8396	8451	8506	8561	8615	8670	
2	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	
3	0273	9328	9383	9437	9492	9547	9602	9656	9711	9766	
4	9821	98%	9530	9985							
5	500367	0422	0476	0531	0039 0586	0094 0640	0149 0695	0203 0649	0258 0804	0312 0859	
6	0913	0968	1022	10\%7	1131	1186	1240	1295	1349	1404	
7	1458	1513	1567	1622	$16 \% 6$	1731	1785	1840	1894	1948	
8	2003	2057	2112	2166	2221	22%	2829	2384	2438	2492	
9	2547	2601	2655	2710	2764	2818	$28 \% 3$	2927	2981	3036	
800	3090	3144	3199	3253	3307	3361	3416	3470	3524	3578	
1	3633	3687	$3 \sim 41$	3795	3849	3904	3958	4012	4066	4120	
2	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661	
3	4716	47%	48\%4	4878	4932	4986	5040	5094	5148	5202	54
4	5256	5310	5364	5418	54%	5 5ั26	5580	5634	5688	5742	04
5	5796	5850	5904	5958	6012	6066	6119	61 \% 3	6227	6281	
6	6335	6389	6443	6497	6551	6604	6658	6712	6~66	6820	
7	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358	
8	r411	7465	7519	7573	7626	7680	7734	$7 \% 87$	7841	7895	
9	7949	8002	8056	8110	8163	8217	82\%0	8324	8378	8431	

Proportional Parts.

Diff.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
57									
5.7	11.4	17.1	22.8	23.5	34.2	39.9	45.6	51.3	
56	5.6	11.2	16.8	22.4	28.0	33.6	39.2	44.8	50.4
55	5.5	11.0	16.5	22.0	27.5	33.0	38.5	44.0	49.5
54	5.4	10.8	16.2	21.6	27.0	32.4	37.8	43.2	48.6

No. 810 L .908.$]$
[No. 854 L. 931.

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
-									
53	5.3	10.6	15.9	21.2	26.5	31.8	37.1	42.4	47.7
52	5.2	10.4	15.6	20.8	26.0	31.2	36.4	41.6	46.8
51	5.1	10.2	15.3	20.4	25.5	30.6	35.7	40.8	45.9
50	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0

No． 855 L． 931.$]$［No． 899 L． 954.

N．	0	1	2	3	4	5	6	7	8	9	Diff．
355	931966	2017	2068	2118	2169	2220	$22 \% 1$	2322	2372	2423	50
6	$24 \% 4$	2524	2575	2626	2677	2727	2778	2829	2879	2930	
7	2981	3031	3082	3133	3183	3234	3285	3385	3386	343 亿	
8	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	
9	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953	
1	5003	5054	5104	5154	5205	5255	5.306	5356	5406	5457	
2	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	
3	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	
4	6514	6564	6614	6665	6715	6765	6815	6865	6916	6366	
5	7016	7066	\％116	7167	7217	7267	7317	F367	7418	「468	
6	7518	7568	「618	r668	7718	7769	7819	7869	7919	7969	
7	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	
8	8500	8570	8620	86\％	$8 \% 0$	87%	8820	8870	8920	8970	
9	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469	
870	9519	9569	9619	9669	9719	9769	9819	9869	9918	9968	
1	940018	0068	0118	0168	0218	0267	031%	0.367	0417	0467	
2	0516	0566	0616	0666	$0 \% 16$	0765	0815	0865	0915	0964	
3	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	
4	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	
5	2008	2058	2107	2157	$2: 07$	2256	2306	2355	2405	2455	
6	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	
7	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445	
8	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939	
9	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433	
880	4483	4532	4581	4631	4680	$4 \% 9$	4779	4828	$48 \% 7$	4927	49
1	4976	5025	5074	5124	5173	5222	52\％	5321	$53 \% 0$	5419	
2	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912	
3	5961	6010	6059	6108	6157	6207	6256	6305	6354	6403	
4	6452	6501	6551	6600	6649	6698	6747	6796	6845	6894	
5	6943	6992	7041	7090	7139	7189	7238	7287	r＇336	7385	
6	7434	7483	7532	7581	7630	7679	$7 \% 28$	$77 \% 7$	7826	7875	
7	7924	7973	8022	$80 \% 0$	8119	8168	8217	8266	8315	8364	
8	8413	8462	8511	8560	8608	8657	$8 \% 06$	8155	8804	8853	
9	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341	
8901	9390	$\begin{aligned} & 9439 \\ & 9926 \end{aligned}$	$\begin{aligned} & 9488 \\ & 99 \% \end{aligned}$	9536	9505	9634	9683	9731	9780	9829	
	$98 \% 8$										
				0024	0073	0121	0170	0219	0267	0316	
2	950365	0414	0462	0511	0560	0608	0655	$0 \% 06$	0754	0803	
3	0851	0900	0949	0997	1046	1095	1143	1192	1240	1289	
4	1338	1386	1435	1483	1532	1580	1629	1677	1726	1775	
5	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	
6	2308	2356	2405	2453	2502	2550	2599	264%	2696	2744	
7	2792	2841	2889	2938	2986	3034	3083	3131	3180	3228	
8	3276	3325	3373	3421	3470	3518	3566	3615	3663	3711	
9	3760	3808	3856	3905	3953	4001	4049	4098	4146	4194	

Proportional Parts．

Diff．	1	2	3	4	5	6	7	8	9
51	5.1	10.2	15.3	20.4	25.5				
50	5.0	10.0	15.0	20.0	25.0	30.0	33.0	40.8	45.0
49	4.9	9.8	14.7	19.6	24.5	29.4	31.3	39.2	44.1
48	4.8	9.6	14.4	19.2	24.0	28.8	33.6	38.4	43.2

No 900 L. 954.$]$									[No. 944 L. 975.			
N.	0	1	2	3	4	5	6	7	8	9	Diff.	
900	954243	4291	4339	4387	4435	4484	4532	4580	4628	4677		
1	4725	4773	4821	4869	4918	4966	5014	5062	5110	5158		
2	5207	5255	5303	5351	5399	5447	5495	5543	5592	5640		
3	5688	5736	5784	5832	5880	5928	5976	6024	$60 \% 2$	6120		
4	6168	6216	6265	6313	6361	6409	6457	6505	6553	6601		
5	6649	6697	6745	6793	6840	6888	6936	6984	7032	r080	48	
6	7128	7176	7224	72%	7320	7368	7416	7464	7512	7559		
7	7607	7655	7703	7751	7799	7847	7894	7942	7990	8038		
8	8086	8134	8181	8229	8277	8325	8373	8421	8468	8516		
9	8564	8612	8659	8707	8755	8803	8850	8898	8946	8994		
910	$\begin{aligned} & 9041 \\ & 9518 \\ & 9995 \end{aligned}$	9089	9137	9185	9232	9280	9328	9375	9423	9471		
1		9566	9614	9661	9709	9757	9804	9852	9900	9947		
2		0042	0090	0138	0185	0233	0280	0328	0376	0423		
3	960471	0518	0566	0613	0661	0709	0756	0804	0851	0899		
	0946	0994	1041	1089	1136	1184	1231	1279	1326	1374		
5	1421	1469	1516	1563	1611	1658	1706	1753	1801	1848		
6	1895	1943	1990	2038	2085	2132	2180	2227	$22 \% 5$	2322		
78	2369	2417	2464	2511	2559	2606	2653	2201	2748	2795		
	2845	2390	2937	2985	3032	3079	3126	3174	32:21	3268		
8	3316	3363	3410	3457	3504	3552	3599	3646	3693	3741		
	3788	3835	3882	3929	3977	4024	4071	4118	4165	4212		
920 1	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684		
2	4731	4778	4825	48\%2	4919	4966	5013	5061	5108	5155		
3	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625		
4	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095	47	
5	6142	6189	6236	6283	6329	$63 \% 6$	6423	6470	6517	6564		
6	6611	6658	Cr05	6752	6799	6845	6892	6939	6956	7033		
	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501		
7 8	7548	7595	$764 ?$	7688	7735	$7{ }^{\text {7 }} 88$	7829	78%	7922	7969		
8	8016	8062	8109	8156	8203	8249	8296	8343	8290	8436		
930	8483	8530	8576	8623	8670	8716	8763	8810	8856	8903		
1	8950	8596	9043	9090	9136	9183	9229	92r6	9332	9369		
233	9416	9463	9509	9556	9602	9649	9695	9742	9 9\%89	9835		
	9882	9928	99%									
4	970347	0393	0440	0486	0068	0114	0161	02072	${ }^{0} 2719$	0300 0765		
5	0812	0858	0904	0951	0997	1044	1090	1137	1183	1229		
${ }^{6}$	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693		
7	1740	1786	1832	18*9	1925	1971	2018	2064	2110	2157		
8	2203	2249	2295	2342	2388	2434	2481	2527	2573	2619		
9	2666	2712	2 \% 58	2804	2851	2897	2943	2989	3035	3082		
$\begin{array}{r} 940 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	$\begin{aligned} & 3128 \\ & 3590 \\ & 4051 \\ & 4512 \\ & 4972 \end{aligned}$	3174	3220	3266	3313	3359	3405	3451	3497	3543		
		3636	3682	3728	$37 \% 4$	3820	3866	3913	3959	4005		
		4097	4143	4189	4235	4281	4327	4374	4420	4466		
		4558	4604	4650	4696	4742	4788	4834	4880	4926		
		5018	5064	5110	5156	5202	5248	5294	5340	5386	16	
Proportional Parts.												
Diff.	1	2	3		4	5	6			8	9	
47	4.7	9.4	14.1		18.8	23.5	28.2			37.6	42.3	
46	4.6	9.2	13.8		18.4	23.0	27.6			36.8	41.4	

N.	0	1	2	3	4	5	6	7	8	9	Diff.
945	975432	5478	5524	5570	5616	5662	5707	5753	5799	5845	
6	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	
8	6350	6396	6442	6488	6533	6579	6625	6671	6717	6763	
8	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	
9	7266	7312	7358	7403	\%449	「495	7541	7586	7632	7678	
950	7\%24	r769	7815	7861	\%906	7952	7998	S043	8089	8135	
1	8181	8226	82\%	8317	8363	8409	8454	\&500	8546	8591	
2	8637	8683	8728	$8{ }^{\sim} 74$	8819	8865	8911	8956	9002	9047	
3	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	
4	9548	9594	9639	9685	9 9730		9821	9867	9912	9958	
5	980003	0049	0094	0140	0185	0231	$02 \% 6$	0:22	0367	0412	
$\stackrel{6}{7}$	C.458	0503	0549	0594	0640	0685	0 0i30	$0 \cdot 76$	0821	086i	
7	0912	0957	1003	1048	1093	1139	1184	1229	$12 \pi 5$	1320	
8	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678	
1	2723	$2{ }^{2} 69$	2814	2859	2904	2949	2994	3040	2085	3130	
2	3175	3220	3265	3310	3356	3401	3446	3491	35\%6	3581	
3	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	
4	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	
5	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	45
6	4977	5022	5067	5112	5157	5202	5247	$5 \therefore 92$	5327	5382	
7	5426	5471	5516	5561	5606	5651	5696	$5 \% 41$	5786	5830	
8	5875	5920	5965	6010	6055	6100	6144	6189	6234	6ٌ279	
9	6324	6369	6413	6458	6503	6548	6593	663%	6682	$6 \pi 27$	
970	$67 \% 2$	6817	6861	6906	6951	6996	7040	7085	\%130	7175	
1	7219	7264	7309	7353	7398	7443	7488	7532	757	\%622	
2	7666	T711	r'56	\%800	ז845	7890	7934	79\%9	5024	8068	
3	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514	
4	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	
5	9005	9049	9094	9138	9183	9227	$92 \% 2$	9316	9361	9405	
6	9450	9494	9539	9583	9628	$96 \% 2$	9717	9761	9806	9850	
7	9895	9939	9983								
8	99033G	0.383	0428	0028 0472	0072 0516	0117 0561	${ }_{0}^{0161}$	$\begin{aligned} & 0206 \\ & 0650 \end{aligned}$	$\begin{aligned} & 0250 \\ & 0694 \end{aligned}$	0294 0 0138	
9	0783	082\%	$08{ }^{\text {a }} 1$	0916	0960	1004	1049	1093	1137	1182	
980	1226	12%	1315	1359	1403	1448	1492	1536	1580	1625	
1	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	
2	2111	2156	2200	2244	2288	2333	2277	2421	2465	2509	
3	2554	2598	2642	2686	$2 \sim 30$	$2 \% 74$	2819	2863	2907	2951	
4	2995	3039	3083	312i	$31 \% 2$	3216	3260	3304	3348	3392	
5	3436	3480	3524	3568	3613	3657	$3 \% 01$	3745	3789	3833	
6	3877	3921	3965	4009	405:3	4097	4141	4185	4229	42\%3	
7	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713	44
8	4757	4801	4845	4889	4933	4977	5021	5065	5108	5152	
9	$E 196$	5240	5884	5328	$53 \% 2$	5416	5460	5504	5547	5591	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
46	4.6	9.2	13.8	18.4	23.0	27.6	32.2	$36.8{ }^{\circ}$	41.4
45	4.5	9.0	13.5	18.0	22.5	27.0	31.5	36.0	40.5
44	4.4	8.8	13.2	17.6	22.0	26.4	30.8	35.2	39.6
43	4.3	8.6	12.9	17.2	21.5	25.8	30.1	34.4	38.8

No. 990 L. 995.$]$

N:	0	1	2	3	4	5	6	7	8	9	Diff.
990	905635	5679	$5 \sim 23$	5767	5811	5854	5898	5942	5986	6030	
1	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	44
2	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	
3	6949	6993	7037	7080	7124	7168	7212	7255	「299	7343	
4	7386	7430	7474	7517	7561	7605	7648	7692	7736	\%7\%9	
5	\%823	7867	7910	7954	7998	8041	8085	8129	8172	8216	
6	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652	
7	8695	8739	8782	8826	8869	8913	8956	9000	904:3	9087	
8	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522	
9	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957	43

No.	Log.								
1.01	. 0099	1.45	. 3 r16	1.89	. 6366	2.33	. 8458	2.17	1.0188
1.02	. 0198	1.46	. $3 \sim 84$	1.90	. 6419	2.34	. 8502	2.78	1.0225
1.03	.0296	1.47	. 3853	1.91	. 6471	2.35	. 8514	$2 . \% 9$	1.0:60
1.04	.0392	1.48	. 3920	1.92	. 6523	2.36	. 858%	2.80	1.0296
1.05	. 0488	1.49	. 3988	1.93	. 6575	2.37	. 8629	2.81	1.0332
1.06	. 0583	1.50	. 4055	1.94	. 6627	2.38	.8671	2.52	1.0367
1.07	. 067%	1.51	. 4121	1.95	. $66 \% 8$	2.39	. 8713	2.83	1.0403
1.08	.0\%\%	1.52	. 4187	1.96	. 6 斤29	2.40	. 8755	2.14	1.0438
1.09	. 0862	1.53	. 4253	1.97	. 6180	2.41	. 8796	2.85	1.0473
1.10	. 0953	1.54	. 4318	1.98	. 6831	2.42	. 8838	2.86	1.0508
1.11	. 1044	1.55	. 4383	1.99	. 6881	2.43	. 88 ¢79	2.87	1.0543
1.12	. 1133	1.56	. 4447	2.00	. 6931	2.44	. 8920	2.88	$1.05 \% 8$
1.13	.1222	1.57	. 4511	2.01	. 6981	2.45	. 8961	2.89	1.0613
1.14	. 1310	1.58	. 4574	2.02	. 7031	2.46	. 9002	2.90	$1.064 \sim$
1.15	. 1398	1.59	. 4637	2.03	. 7080	2.47	. 9042	2.91	1.068:
1.16	. 1484	1.60	. 4700	2.04	. 7129	2.48	. 9083	2.92	1.0716
1.17	. 15 ̃0	1.61	. 4162	2.05	.7178	2.49	.9123	2.93	$1.0 \% 50$
1.18	. 1655	1.62	. 4824	2.06	.7227	2.50	. 9163	2.94	$1.0 \% 84$
1.19	.1740	1.63	. 4886	2.07	.72\%5	2.51	. 9203	2.95	1.0813
1.20	. 1823	1.64	. $494{ }^{7}$	2.08	.7324	2.52	. $9: 243$	2.96	1.0852
1.21	. 1906	1.55	. 5008	2.09	.73\%2	2.53	. 9282	2.97	1.0886
1.22	. 1988	1.66	. 5068	2.10	. 7419	2.54	.9:322	2.98	1.0919
1.23	. 2070	1.67	. 5128	2.11	. 7467	2.55	. 9361	2.99	1.0953
1.94	. 2151	1.68	. 5188	2.12	. 1514	2.56	. 9400	3.00	1.0986
1.25	.2231	1.69	. 5247	2.13	. 7561	2.57	. 9439	3.01	1.1019
1.26	. 2311	1.70	. 5306	2.14	. 7608	2.58	. 9478	3.02	1.1053
1.25	. 2390	1.71	. 5365	2.15	.7655	2.59	. 9517	3.03	1.1086
1.28	. 2465	1.72	. 5423	2.13	.7701	2.60	. 9555	3.04	1.1119
1.29	. 2546	1.73	. 5481	2.17	.7647	2.61	. 9594	3.05	1.1151
1.30	.26:24	1.74	. 5539	2.18	. 7793	2.62	. 9632	3.06	1.1184
1.31	. $6^{\mu} 00$	1.75	. 5596	2.19	. 8839	2.63	.96\%	3.0 ir	1.121%
1.32	. 276	1.76	. 5653	2.20	. 8885	2.64	. 9708	3.08	1.1249
1.33	. 2852	1.77	. $5 \sim 10$	2.21	. 19330	2.65	. 9746	3.09	1.1282
1.34	. 2927	1.78	. 5766	2.22	.7975	2.66	. 9783	3.10	1.1314
1.35	. 3001	1.79	. $58 \geqslant 2$	2.23	. 8020	2.67	. 9821	3.11	1.1346
1.36	. 3075	1.80	. 5878	2.24	. 8065	2.68	. 9858	3.12	$1.13 i 8$
1.37	. 3148	1.81	. 5933	2.25	. 8109	2.69	. 9895	3.13	1.1410
$1: 8$. $3 \cdot 21$	1.82	. 5988	2.26	. 8154	2.50	. 9933	3.14	1.1442
1.35	. $3 \div 93$	1.83	. 6043	2.27	. 8198	2.71	. 9969	3.15	$1.14 \% 4$
$\because .40$. 3365	1.84	. 6098	2.28	. 8242	2.72	1.0006	316	1.1506
1.41	. $34: 36$	1.85	. 6152	2. $\because 9$. 8286	2.73	1.0043	3.17	1.153%
1.42	. 3507	1.86	. 6206	2.50	. 8329	2.74	1.0080	3.18	1.1569
1.43	. 3507	1.8 r	. $6: 59$	2.31	. 83%	2.75	1.0116	3.19	1.1600
1.44	. 3646	1.88	. 6313	2.3	. 8416	2.76	1.015\%	3.20	1.1632

No.	Log.								
3.21	1.1663	3.87	1.35 .33	4.53	1.5107	5.19	1.6467	5.85)	1.7664
3.22	1.1694	3.88	1.3558	4.54	1.5129	5.20	1.6487	5.86	1.7681
3.23	1.1ヶ25	3.89	1.3584	4.55	1.5151	5.21	1.6506	5.87	1.7699
3.24	1.1756	3.90	1.3610	4.56	1.5173	5.12	1.6525	5.88	1.7716
3.25	1.1787	3.91	1.3635	4.57	1.5195	5.23	1.6514	5.89	1.7733
3.26	1.1817	3.92	1.3661	4.58	1.5217	5.24	1.656:3	5.90	$1.7 \% 50$
3.27	1.1848	3.93	1.3686	4.59	1.5239	5.25	1.6582	5.91	1.7166
3.28	1.18 18	3.94	1.371%	4.60	$1.5 \geqslant 61$	5.26	1.6601	5.92	1.7\%83
3.29	1.1909	3.95	1.3737	4.61	1.5282	5.27	$1.66: 0$	5.93	1.7800
3.30	$1.193!$	3.96	1.3162	4.62	1.5304	5.28	1.6639	5.94	1.781\%
3.31	11939	3.97	1.3788	4.63	$1.53: 6$	5.29	1.6658	5.95	1.78:34
3.132	1.1999	3.98	1.3813	4.64	1.534%	5.30	1.00677	5.96	1.7851
3.33	1.20:30	3.99	$1.38: 38$	4.65	1.5369	5.31	1.6696	5.97	$1.1886 \hat{\prime}$
3.34	1.2060	4.00	1.3863	4.66	1.5390	5.32	1.6715	5.98	1.7884
3.35	1.2090	4.01	1.3888	4.67	1.5112	5.3.3	1.6734	5.99	1.7901
3.36	1.9119	4.02	1.3913	4.68	1.5433	5.34	1.6752	6.00	1.7918
3.3 \%	1.2149	4.03	1.3938	4.69	1.5454	5.35	1.6751	6.01	1.7931
3.38	1.2179	4.04	1.3962	4.70	1.5176	5.36	1.6790	6.02	1.7951
3.39	1.2:08	4.05	1.3987	4.71	1.5497	5.37	1.6808	6.03	1. $796{ }^{\prime}$
3.40	1. $\cdot 2 \cdot 38$	4.06	1.401%	4.72	1.5518	5.33	1.6827	6.04	1.7981
3.41	1.2:67	4.07	1.4036	4.73	1.5539	5.39	1.6845	6.05	1.8001
3.42	1.2296	4.08	1.4061	4.74	1.5560	5.40	1.6864	6.06	1.8017
3.4:3	1.23:2	4.09	1.4085	4.75	1.5581	5.41	1.6882	6.07	$1.80: 34$
3.44	1.2355	4.10	1.4110	4.76	1.5602	5.4%	1.6901	6.08	1.8050
3.45	1.2384	4.11	1.4134	4.76	1.5523	5.43	1.6919	6.09	1.8066
3.46	1.:413	4.12	1.4159	4.78	1.5644	5.44	1.6938	6.10	1.8083
$3+7$	1.2142	4.13	1.4183	4.79	1.5665	5.45	1.6956	6.11	1.8099
3.48	1.2470	4.14	1.4207	4.80	1.5686	5.46	1.6974	6.12	1.8116
3.49	1.2499	4.15	1.4231	4.81	1.5\%07	5.47	1.6993	6.13	1.8132
3.50	$1.25: 3$	4.16	1.4255	4.83	$1.5 \sim 28$	5.48	1.7011	6.14	1.8148
3.51	1.255 6	4.17	$1.42 \sim 9$	4.83	1.5 ¢ 18	5.49	1.7029	6.15	1.8165
3.52	1.2585	4.18	1.4303	4.84	1.5 \%89	5.50	1.704%	6.16	1.8181
3.53	1.2613	4.19	1.4327	4.85	1.5790	5.51	1.7066	6.17	1.8197
3.54	1.2641	4.20	1.4351	4.86	1.5810	5.52	1.7084	6.18	1.8213
3.55	1.2669	4.21	1.43\%	4.87	1.5831	5.53	1.7102	6.19	1.82:9
3.56	1.2698	4.22	1.4398	4.88	1.5851	5.54	1.7120	6.20	1.8245
3 5 \%	1.2'26	4.23	1.4422	4.89	1.58\%\%	5.55	1.71:38	6.21	1.826:
-3 58	1.2754	4.24	1.4446	4.90	1.5892	5.56	1.7156	6.22	1.8.2\%
359	1.2782	4.25	1.4469	4.91	1.5913	5.57	1.7174	6.23	$1.8 \div 9) 4$
3.60	1.2809	4.26	1.4193	4.93	1.5933	5.58	1.7192	6.24	1.8310
3.61	1. 2837	4.27	1.4516	4.93	1.595:3	5.59	1.7210	6.25	1.8326
3.62	1.2565	4.28	1.4540	4.94	1.59\%4	5.60	1.7228	6.26	1.8342
3.63	1.2892	4.29	1.4563	4.95	1.5994	5.61	1.7246	6.2 \%	1.83 .58
3.64	1.2920	4.30	1.4586	4.96	1.6014	5.62	1.7263	6.28	1.83\% 4
3.65	1.2917	4.31	1.4609	4.97	1.6034	5.63	1.7281	6.29	1.8390
3.66	1.295	4.32	1.4633	4.98	1.6054	5.64	1.7299	6.30	1.8405
3.57	1.3002	4.33	1.4656	4.99	$1.60 \sim 4$	5.65	1.731\%	6.31	1.8421
3.58	1.3029	4.34	1.46\%9	5.00	1.6094	5.66	1.73:34	6.32	1.8437
3.59	1.30 .56	4.35	1.4702	5.01	1.6114	5.67	1.7352	6.33	1.845\%
3. 0	1.3083	4.36	1.4725	5.02	1.6134	5.68	1.73\%0	6.34	1.8469
311	1.3110	4.37	1.4748	5.03	1.6154	5.69	1.7387	6.35	1.8485
312	$1.31: 37$	4.38	1.4~\%	5.04	$1.61{ }^{14}$	5.70	1.7405	6.36	1.8500
3	1.3164	4.39	$1.4 \% 93$	5.05	1.6194	5.71	1.7422	6.37	1.8516
3 i4	1.3191	4.40	1.4816	5.06	1.6914	5.72	1.7440	6.38	1.8 ³ 3
33	$1.3 \cdot 18$	4.41	1.4839	5.07	1.6233	5.73	1.745\%	6.39	1.8547
$3 \% 6$	1.3244	4.42	1.4861	5.05	1.6253	5.74	$1.74 \% 5$	6.40	1.8563
377	1.3271	4.43	1.4884	5.09	1.6.273	5.75	1.7492	6.41	18.579
378	1.3297	4.44	1.4907	5.10	1.6:992	5.76	1.7509	6.42	1.8594
$3 \% 9$	1.33:3	4.45	1.4929	5.11	1.6312	5. ${ }^{2}$	1.6527	6.43	1.8610
330	1.3350	4.46	1.4951	5.12	1.63322	5.18	1.3544	6.44	1.8625
381	1.3376	4.47	1.49~4	5.13	1.63.31	5.79	1.1561	6.45	1.8641
382	1.340:3	4.48	1.4996	5.14	1.63\%1	5.80	$1.75 \% 9$	6.46	1.8656
3.83	1.3429	4.49	1.5019	5.15	1.6390	5.81	1.7596	6.47	1.86i2
3.84	1.345%	4.50	1.5041	5.16	1.6409	5.82	1.7613	6.48	1.868%
3.85	1.3481	4.51	1.5063	5.17	$1.64: 29$	5.83	1.7630	6.49	1.8703
3.86	1.350%	4.5:	1.5085	5.18	1.6448	5.84	1.7647	6.50	$1.8 \% 18$

No.	Log.								
6.51	1.8733	7.15	1.96\%1	7.79	2.0528	8.66	2.1587	9.94	2.2966
6.52	$1.8 \pi 49$	7.16	1.9685	7.80	2.0541	8.68	2.1610	9.96	2.2986
6.53	1.8 r64	7.17	1.9699	7.81	2.0554	8.70	2.1633	9.98	2.3006
6.54	$1.87 \% 9$	7.18	1.9713	7.82	2.0567	8.72	2.1656	10.00	2.30\%6
6.55	1.8795	7.19	1.9727	7.83	2.0580	8.74	$2.16 \hat{9}$	10.25	2.32\% 9
6.56	1.8810	7.20	1.9\%41	7.84	2.0592	8.16	2.1\%02	10.50	2.3513
6.57	1.8825	7.21	1.9754	7.85	2.0605	8.18	2.1725	10.75	$2.3 i 49$
6.58	1.8840	7.22	1.9769	7.86	2.0618	8.80	2.1748	11.00	2.3979
6.59	1.8856	7.23	1.9782	7.87	2.0631	8.82	2.170	11.25	2.4201
6.60	$1.88 \% 1$	7.24	1.9796	7.88	2.0643	8.84	2.1593	11.50	2.4430
6.61	1.8886	7.25	1.9810	7.89	2.0656	8.86	2.1815	11.75	2.4636
6.62	1.8901	7.26	1.9824	7.90	2.0669	8.88	2.1838	12.00	2.4849
6.63	1.8916	7.27	1.9838	7.91	2.0681	8.90	2.1861	12.25	2.5052
6.64	1.8931	7.28	1.9851	7:92	2.0694	8.92	2.1883	12.50	2.526
6.65	1.8946	7.29	1.9865	7.93	2.070 ¢	8.94	2.1905	12.75	2.5455
(6.66	1.8961	7.30	1.9879	7.94	2.0719	8.96	2.1928	13.00	2.5649
(i.67	1.89\% 6	7.31	1.9892	7.95	2.0732	8.98	2.1950	13.25	2.5840
6.68	1.8991	\%.32	1.9906	7.96	$2.0 \pi 44$	9.00	2.1972	13.50	2.60\%
6.69	1.9006	\%.33	1.9920	\%.97	2.0057	9.02	2.1994	13.75	2.1.211
6. 10	1.9021	7.34	1.9933	7.98	2.0669	9.04	2.2017	14.0	2.6391
6.71	1.9036	7.35	1.9947	7.99	2.0782	9.06	2.2039	14.25	2.6567
6.72	1.9051	7.36	1.9961	8.00	2.0\%94	9.08	2.2061	14.5	2.6740
6.73	1.9066	7.37	1.99 T4	8.01	2.0807	910	2.2083	14.7	2.6913
6.74	1.9081	7.38	1.9988	8.02	2.0819	9.12	2.2105	15.0	2.7081
6.75	1.9095	7.39	2.0001	8.03	2.0832	9.14	2.2127	15.5	27408
6.6	1.9110	7.40	2.0015	8.04	2.0844	9.16	2.2148	16.00	2.7\%26
6.17	1.9125	7.41	2.0028	8.05	2.0857	918	$2.21 \% 0$	16.50	2.8034
6.78	1.9140	7.42	2.0041	8.06	2.0869	9.20	2.2192	1700	2.8332
6.79	1.9155	7.43	2.0055	8.07	2.0882	9.2%	2.2214	17.50	2.8621
6.80	1.9169	7.44	2.0069	8.08	2.0894	9.24	2.2235	18.00	28904
6.81	1.9184	7.45	2.0082	8.09	2.0906	9.26	2.2257	18.5	29173
6.82	1.9199	\%.46	2.0096	8.10	2.0919	9.28	$2.2 \% 79$	19.00	2.9444
6.83	1.9213	\% 6.47	2.0108	8.11	2.0931	9.30	2.2300	19.50	2.9703
6.84	1.9228	\%.48	$2.012{ }^{2}$	8.12	2.0943	9.32	2.2332	20.00	2.995%
6.85	1.9242	7.49	2.0136	8.13	2.0956	9.34	2.2343	21	3.0445
6.86	1.9257	7.50	2.0149	8.14	2.0963	9.36	2.2364	2.2	3.0910
6.87	1.92T:	7.51	2.0162	8.15	2.0980	9.38	2.2386	23	3.1355
6.88	1.9286	7.52	2.0176	8.16	2.0992	9.40	2.240	24	3.1:81
6.89	1.9301	7.53	2.0189	8.17	2.1005	9.42	2.2428	25	3.2189
6.90	1.9315	7.54	2.0202	8.18	2.1017	9.44	2.2450	26	3.2581
6.91	1.93:30	7.55	2.0215	8.19	2.1029	9.46	$2.24 \pi 1$	27	3.2958
6.92	1.9344	7.56	2.0229	8.20	2.1041	9.48	2.2492	28	$3.332 \cdot 2$
6.933	1.9359	7.57	2.0242	8.02	2.1066	9.50	2.2513	29	$3.36 \uparrow 3$
6.94	1.93373	7.58	2.0255	8.24	2.1090	9.52	2.2534	30	3.4012
6.95	1.9387	7.59	2.0268	8.26	2.1114	9.54	2.2555	31	3.4340
6.96	1.9402	7.60	2.0281	8.28	2.1138	9.56	$2.25 \% 6$	32	3.465%
6.9 \%	1.9416	\%.61	2.0295	8.30	2.1163	9.58	2.2597	33	3.4965
6.98	1.9430	\%.62	2.0308	8.32	2.1187	9.60	2.2618	34	3.5263
6.99	1.9445	\%. 63	2.0531	8.34	2.1211	9.62	2.2638	35	3.5553
7.00	1.9459	7.64	2.03:34	8.36	2.1235	9.64	2. $\because 659$	36	3.5835
\%. 01	$1.94 \sim 3$	7.65	2.034 7	8.38	2.1258	9.66	2.2680	37	3.6109
7.02	1.9488	\% 7.66	2.0360	8.40	2.1282	9.68	$2.2 \uparrow 01$	38	$3.63 i 6$
7.03	1.950\%	\%.67	2.03:3	8.42	2.1306	$9 . \% 0$	2.2021	39	3.66336
7.04	1.95. 16	\%.68	2.0386	8.44	2.1330	9.72	2.2742	40	3.6889
7.05	1.9530	7.69	2.0399	8.46	2.1353	9.74	2.2762	41	3.7136
7.06	1.9544	7.70	2.0412	8.48	2.13 Tr	9.76	2.2783	42	3.737\%
7.0 \%	1.9559	7.71	2.0425	8.50	2.1401	9.78	2. $\because 803$	43	3.7612
\%. 08	$1.95 i 3$	7.72	2.0438	8.52	2.1424	9.80	2.28:4	44	$3.784{ }^{2}$
7.09	1.9587	\%.73	2.0451	8.54	2.1448	9.82	2.2844	45	3.806 亿
7.10	1.9601	7.74	2.0464	8.56	$2.14 \sim 11$	9.84	2.2865	46	3.8286
7.11	1.9615	7. 5.5	2.04 \% 7	8.58	2.1494	9.86	2.2845	47	3.8501
7.12	$1.96 \div 9$	7. 76	2.0490	8.60	2.1518	9.88	2.2905	48	3.8 ¢12
\% 14	1.9643 1.9657	-7.77	2.0503		2.1 .54	9.90	2.2925	49	3.8918
. 14	1.9657	7. 78	2.0516	$8.6 \frac{1}{4}$	$\therefore .1564$	9.92	2.2946	50	3.9120

NATURAL TREGONOMETRECAL FUNCTIONS．

0	M．	Sine．	Co－Vers．	Cosec．	Tang．	Cotan．	Secant．	t．	u．		
0	0	． $0 \div 10001$	1.0000 I	Infinite	． 00000 I	Infinite	1.0000	． 00000	． 0000	90	0
	15	． 004 4：36	． 935 564	229.15	． 004336	－ 29.18	1.0000	． 00001	． 99999		45
	30	． $003 \% 3$	． 99127	114.59	．008ï3 1	114.59	1.0000	． 0000 ；	．99！96		30
	45	． $01: 309$	． 98691	\％6．39i	．01309	76.390	1.0001	． 00009	． 99991		15
1	0	． $01 \% 4.5$	． 98255	57.299	． 0174	57．290	1.0001	． 00015	．9998．）	89	0
	15	． 02181	． 97819	45.840	．0118：	$45.6 \div 9$	$1.000:$	． 00004	． 99946		45
	30	． $0 \div 618$	．97332	33．20：	． $0 \div 615$	38.188	1.0003	．000：34	． 99966		30
	45	．U．30．） 4	． 90945	32.746	． 03050	3： 3.730	1.0005	．0004	． 9995		15
2	0	． $0: 3190$	． 96.710	23．（i．） 4	． 03493	28.630°	1.0000	． 00061	． 99939	88	0
	15	． 033926	． $960 \% 4$	25.451	． 03323	25.452	1.0008	． 000 亿í	． 99923		45
	30	． 04362	． 9.5633	2．2．9：6	． 04.366	22.904	1.0009	． 00095	． 99905		30
	45	．04～98	． 9.500	20．843	． $0480 \cdot 3$	20.819	1.0011	． 00115	． 99885		15
3	0	． 0.9234	．94\％66	19.10 亿	． 05241	19.081	1.0014	．0013î	．9986：3	87	0
	15	． 05669	． 91331	17.639	． 056 \％ 8	17.611	1.0016	． 00161	． 99839		45
	30	． 05105	． 933895	16.330	． 06116	16.350	1.0019	． 0018 if	． 99813		30
	45	． 065511	． 93460	15.290	． 0655.51	$15.85 \sim$	1.0021	． $00 \% 14$	． 99 \％86		15
4	0	．069i6	． $930 \cdot 4$	14．336	．0699：3	14.301	1.0024	． $00 \div 44$	． 99 ioz6	S6	0
	15	． $0 i+11$	． 93589	13.494	．07431	13．4．）	1.0028	．00：25	． 99 \％25		45
	30	． 07846	． 921.54	12.745	．078．0	12.706	1.0031	． 00308	．9969		30
	45	．08．31	． 91719	12.076	．0830）	12．0：35	1.0034	． 00313	．996．5		15
5	0	． 08716	． 91.884	11.474	． 08 ã 9	11.430	1．00：38	． 00381	． 9961.9	85	0
	15	． 09150	． 9085 U	10.929	． 09159	10.883	$1.00+2$	． $004: 0$	．99580		45
	30	．09．）E5	． 90415	10．433	． $096 \cdot 9$	10.385	1.0046	． 00460	． 99540		30
	45	． 10019	． 89981	9.9512	． 10069	9．9：310	1.0051	． $0050: 3$	． 99497		15
6	0	． 10453	．8954～	9.5668	． 10510	9.5141	1.0055	． 00548	． 99452	S4	0
	15	． 10387	． 89113	9.1505	－109．52	9.1309	1.0060	． 00594	． 99406		45
	30	．11320	． 88630	8.833 T	． 11393	8.7369	1.0065	． 00643	．9935í		30
	45	．11754	． $83: 46$	8.5079	． 11836	8.4490	1．00\％0	． 00693	． 98330		15
8	0	． $1 \geqslant 187$	． $8 \sim 813$	8．20．5	．12275	8.1413	$1.00 \% 5$	． 00745	． 99255	S3	0
	15	． $126 \cdot 0$	． 87.380	7．9\％40	－12\％？	7.8606	1.0081	． 00800	． $89: 00$		45
	30	．130．j：3	． 8694	7.6613	． 1316.5	7.5958	1.0086	． 008.5	． 99144		30
	45	．13455	． 86.515	\％．4156	．1：3009	$7.34 \% 9$	$1.009 ?$	． 00913	． 99086		15
8	0	．13917	． 86083	7.1853	． 14054	7.1154	1.0098	． 00973	． $990:$ 亿	82	0
	15	． 14349	． 85651	6.9690	． 14499	6.8969	1.0105	．01035	． 98965		45
	30	． $14 \sim 151$	． 85319	6.6655	14945	6.6912	1.0111	． 01098	． 98902		30
	45	．15212	． 84 ¢78	6.5 \％36	15391	6.49 \％ 1	1.0118	． 01164	． 98886		15
9	0	． 15643	． 813.3 .57	6.392 t	． 15833	6.3138	1.0125	． 01231	． 98769	S1	0
	15	．160：4	．83：3：3	6.2 .211	． $16 \geqslant 336$	6.1402	1.013%	． 01300	．98：00		45
	30	．16505	． 8349.5	6.0589	．16\％3！	5.9758	1.0139	． 01371	． $986 \cdot 9$		30
	45	． 1693.5	．8：3065	$5.904: 1$	．1～183	5.819 \％	1.014%	． 01444	． 98556		15
10	0	． 173 35	．826：35	5.7535	． 17633	5．6．13	1.01 .54	． 01.519	． 98481	80	0
	15	． $17 \% 94$	． 82206	5.6198	．18083	5.5301	1.0162	． 01596	． 98404		45
	30	．182．24	． 81736	5.4874	－185：34	5.3955	$1.01 \% 0$	． 016 in	． $94 \times 3 \cdot 5$		8
	45	．1865：	．81343	$5.361:$	． 18986	5.269%	1.01 ¢ 9	． 01755	．98245		15
11	0	． 19081	． 80919	5.2408	． 19438	5.1446	1.018 í	． 01837	． 98163	79	0
	15	． 19.509	． 80491	$5.1 \div 58$	－ 19891	5．0．2～3	1.0196	． 01921	．980ヶ\％ 9		45
	30	．199：3～1	． 80063	5.01 .58	． 20345	4.915%	1.0205	． $0: 208$	． $9 \% 992$		30
	45	． 20364	． 79636	4.9106	－ 20800	$4.80 \% \sim 1$	1.0214	． $0: 095$	． 97905		15
12	0	－$\because \sim 791$	． $79 \cdot 009$	4.8097	.212 .56	4.7046	1．022：3	． 02185	． 97815	78	0
	15	． 21218	． 7878 ：	4.7130	－ 21712	$4.605 \sim$	1.0233	．020\％	． 9 Tr23		45
	30	． 21644	．78356	4.6202	－22169	4.5107	1．0\％4：3	．02370	．9\％6：30		30
	45	． 22010	． 77930	4.5311	－ $2: 2688$	4.419	1．025：3	． 02466	． 97534		15
13	0	． 22495	． 77505	4.44 .54	． 233037	4.3315	1．026：3	． $0: 2563$	． 9 \％＋3	7%	0
	15	． 22930	． 77080	4.3630	． $2354{ }^{2}$	4.2468	$1.0 \div 73$	． 02662	．913．38		45
	30	．233：34	． 76655	$4.253 \sim$	． 24008	4.1653	1．0：284	． 02763	．9i23i		30
	45	．23\％69	． 760331	4.2072	． 2440	4.0867	1.0295	． 02866	． 97134		15
14	0	． 24192	． 75808	4.1336	． 24933	4.0108	1.0306	．029\％0	．9i030	76	0
	15	． 24615	．75：385	4．06：25	． 2.5397	3．9：3\％	1.0317	．030\％	． 96923		45
	30	．25038	． 74962	3.9939	． 25562	3．8667	1.0329	．03185	． 96815		30
	45	． 25460	． 74.40	3．9．2～	．26328	3．798：3	1.0341	．03：95	． 95705		15
15	0	． 25882	74118	3．86：37	$\therefore 6 \% 95$	，3．73\％0	1．0：553	． 0340%	． 96503	85	0
		Cosin	Ver．Sin．	Secant．	Cotan．	Tang．	Cosec．	Co－Vers．	Sine．	－	M．

From 75° to 90° nead frova bottom of table upwards．

-	M.	Sine.	Co-Ver	Cose	Tang.	Cotar	Secant.	Ver. Sin.	Cosin		
15	0	. 25882	. 74118	3.8	26 \%	3.7320	1.0353	. $0340 \sim$.96593	75	
	15	. 26303	. 73697	3.80	2に26	3.6680	1.0365	. 03521	. $964 \% 9$		45
	30	. $26 \sim 24$. $732 \% 6$	3.7420		3.6059	1.03ir	. 033637	. 96363		3
	45	. 27144	. 72856	3.6840	. $28: 03$	3.545%	1.0390	. 03754	. $96: 46$		15
16	-	. 27564	. 72436	3.6240	.286i4	3.48 \% 4	1.0403	.03874	. 96126	74	0
	15	- 27983	. 72017	3.5736	. 2914%	3.4308	1.0416	. 03995	. 96005		45
	30	. 28402	. 71598	3.5109	. 29601	3.3759	1.0429	. 04118	. 95882		30
	45	.288:0	. 11180	3.4699	. 30096	3.3226	1.0443	. 04243	. 95 Tิ ${ }^{\text {a }}$		15
17	0	. 292237	.10763	$3.420: 3$. $305 \% 3$	3.2709	1.0457	. $0+3$ 30	. 95630	73	
	15	. 296654	. 20346	3.3722	. 31051	3.2205	1.04 ¢1	. 04498	.95502		45
	30	. 30070	. 69929	3.3255	. 31530	3.1116	1.0485	. 04628	. 9533 s		30
	45	. 30486	. 69514	3.2801	-3:010	3.1240	1.0500	.04\%60	.95240		15
18	0	. $3090 \cdot 2$. 69098	3.2361	. $3: 492$	3.0157	1.0515	. 04894	. 95106	72	
	15	. 31316	. 68684	3.1932	-32975	3.0326	1.0530	. 05030	. 94970		45
	30	. 31730	. $68: 20$	3.1515	. 33459	2.988í	1.0545	. 05168	. 94832		30
	45	. 32144	. $6 \uparrow 1856$	3.1110	. 33945	2.9159	1.1560	. 05307	. 94693		15
19	0	. 3255	. 67443	3.0115	.344333	2.5042	$1.05 \% 6$. 05448	. 94552	71	
	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$.3296$	$.6 \div 031$	3.0381 2.9957	. 34921	2.8636 2.8239	1.0592 1.0605	. 05591	. 944409		45 30
	45	. 33 ¢92	. 662	2.9593	. 35904	2. 7852	1.0625	.0588:	. $9+118$		15
20	0	. $3420 \cdot 3$. 65 ¢ 9	2.92:38	. 36397	2. 24×5	3.0642	.06031	. 93969	70	
	15	. 34612	. 6538	2.8892	. 36892	2. 1106	1.0659	. 06181	. 93819		45
	30	. 35021	. 6499 ¢9	2.8554	. 37388	2.6746	1.0676	.06833	. 93667		30
	45	. $354 \div 9$. $645 \% 1$	2.8 .25	. 3788	2.6395	1.0694	. 06486	. 93514		15
21	0	.3583i	. 64163	2.7904	. 3838	2.6051	1.0711	.06642	. 93358	69	
	15	. $36 \cdot 44$.63\%56	2.5591	. 38 ± 88	$2.5 \% 15$	1.0729	.06799	.93201		45
	30	. 36650	. 63350	2.728	. 39391	2.5386	$1.0 \pi 48$. 06958	. 93042		30
	45	. 3 r056	. $6: 2944$	2.6986	. 39896	2.5065	1.0766	. 07119	. 92881		15
22	0	. 37461	. 62539	2.669 .5	. 40403	2.4 E 1	1.0785	. 07282	. $9: \% 18$	68	0
	15	. 37865	. 621135	2.6410	. 40911	2.4443	1.0804	. 07446	. 92554		45
	30	. $38: 68$.6173	2.6131	. 41421	2.414:	1.0824	. $0: 612$. 92388		30
	45	. 38671	. 61329	2.5859	. 41933	$2.384 \sim$	1.0844	$0 \sim 180$. 92220		15
28	0	. 39073	.6092~	25593	. 4244	2.3559	1.0864	Or950	. 92050	67	
	15	. 39474	. 6052	2.5333	. 42963	2.3276	1.0884	.08121	.918i9		45
	30	. 39875	6012	2.50	. 43481	2. 2998	1.0904	. 08294	91.06		30
	45	. $402 \pi 5$.59~25	${ }_{2}^{2.4829}$. 44001	22%	1.0925	. 08469	91531		15
24	0	. $406 \pi 4$. 593326	2.4586	. 44523	2.2460	1.0946	. 08645	91355	66	
	15	.410\%2	. 58328	2.4348	4504र̂	2.2199	1.0968	. 08824	91176		45
	30	. 41469	. 58581	2.4114	. 45513	2.1943	1.0989	. 09004	90996		30
	45	- 41866	. 58134	2.3886	. 46101	2.169 2.144	1.1011 1.1034	. 09186	90814 90631	65	15
25	15	.4265'	. $5 \uparrow$ ¢ 34	2.34	47163	2.120	1.1056	. 09554	. 90446		45
	30	. 431151	. 56949	2.3228	. $4769 \sim$	2.0965	$1.10 \sim 9$. 09741	90:59		30
	45	. $4: 3445$. 56555	2.3018	. 48234	2.0732	1.1102	. 09930	900\%		15
26	0	. 433537	. 56163	2.2812	. 48 Ti3	2.0503	1.1120	10121	898\%9	64	
	15	. 44229	. $55 \% 1$	2.2610	. 4931	2.027	1.1150	10313	89		5
	30	. 44620	55380	2.2412	. 49858	2.0057	$1.11{ }^{\text {r }} 4$	10507	89493		36
	45	. 45010	. 54990	2.2217	. 50404	1.9840	1.1198	100	89298		
27	15	. $45 \sim 8$. 54421	2.1840	. 5150	1.941 '	1.1248	. 11098	88902		
	30	. 46175	. 53825	2.1655	.5205r	1.9210	$1.12 \pi 4$. 11299	88i0		30
	45	. 46561	. 53433	2.1474	. 52612	1.900 ¢	1.1300	. 11501	88499		15
28	0	. $469+4$. 53053	2.1300	. 53171	$1.880 \hat{}$	1.1326	. 11705	88295	62	
	15	. 47333	. 5266	$2.112 i$. 53732	1.8611	1.1352	11911	88089		45
	30	. 47716	. 52284	2.095 F	. 5429	1.8418	$1.13{ }^{\text {a }} 9$. 12118	$8{ }^{1} 88$		30
	45	. 48099	. 51901	${ }^{2.0690}$. 51862	1.8228	1.1406	.1232亿	$876{ }^{8}$		15
29	-	. 48481	. 51519	2.062%	. 55431	1.8040	1.1433	. 12538	$8 \pi 462$	61	0
	15	. 4886	.511:3	2.0466	5600	1.7856	1.146	. 12750	8\% 25		45
	30	. 4934	. 5075	2.0308	. 565 f	1.76\%	1.1490	. 12064	87036		30
	45	. $4962 \cdot 2$	503r8	2.0152	. 57155	1.7496	1.1518	13180	88:0		15
30	0	. 50000	000	2.0100	. 57735	1.73:	1.151%	13397	661	60	
			Ver. Sin.	cant.	tan	Tang.	sec	Co-Ver	sine.	-	

-	M.	Sine.	Co-Vers.	Cos	Tang.	Cotan.	Secant.	Ver. Sin.	Cosine.		
30	0	. 50000	50000	2.0000	.5in35	1.73:0	1.154i	.13397	. 86603	60	0
	15	. $503 \% 7$. 496	1.9850	. 58318	1.7147	$1.15 \% 6$. 13616	. 86384		45
	30	. 50 Tj 5	. 49246	1.9703	. 58904	1.69\%	1.1606	.138:37	86163		30
	45	. 51129	. 488 \% 1	1.9558	. $5949+$	1.680	1.16"3	. 14059	85941		15
31	0	. 51504	. 48496	1.9416	. 60086	1.6643	1.1666	. 14283	. $85 \% 11$	59	0
	15	. 51817	.48123	$1.92{ }^{6} 6$. 60681	$1.64 \% 9$	1.1697	. 14509	. 85491		45
	30	. 53250	.4TT50	1.9139	. 61280	1.6319	1.1728	.14i36	.85264		30
	45	.526:1	. 4 т3 ${ }^{\text {a }}$	1.9004	. 61882	1.6160	1.1160	. 14365	8503:		15
32	0	. 52992	. 4 \%008	$1.88 \% 1$. 6248	1.6003	1.1792	. 15195	8 8805	58	0
	15	. 53331	. 46639	1.8740	. 63095	1.5849	1.18*4	.1542\%	. 81553		45
	30	. 53730	.462 0	1.8612	. 63.07	1.5697	1.185π	. 15661	. 84339		30
	45	. 5409 a	. 45903	1.8485	. 64322	1.5547	1.1890	. 15896	84104		15
33	0	. 54464	. 45536	1.8361	. 64941	1.5399	11924	.16:33	.8386i	5%	0
	45	. 55	. 4444	1.7999	-66818	1.4966	1.2027	. 16853	.8314\%		15
34	0	. 55919	. 44081	1.7883	. 67451	1.4826	1.2062	. 17096	. $\downarrow 2904$	56	0
	15	. 56280	. 43720	1.7r68	. 6808	1.4687	1.2098	. 17341	. 82659		45
	30	. 56641	. 43359	1.7655	. 687	1.4550	1.2134	. 1758 i	. 82413		30
	45	. 57000	. 43000	1.7544	.6930	1.4415	1.2171	.17835	8:165		15
35	0	. 57358	. 42642	1.7434	. 70021	1.4281	1.2208	1808:	. 81915		5
	15	. 57715	. 42285	1.73.3;	. 70673	1.4150	1.2445	. 183336	. 81664		45
	45	. $580 \sim 0$. 41.930	$1.72: 0$ 1.7116	71329 $\% 1990$	1.4019	1.2283	. 185888	. $81+12$		30
36	0	.58ĩ9	. $412 \geqslant 1$	1.7013	. 7265	1.3 T6	1.2361	. 19098	80902	54	0
	15	. 59131	. 40869	1.6912	.73323	1.3638	1.2400	. 19356	. 806		45
	30	. 59482	. 40518	1.6812	. 73996	1.3514	$1.24+0$. 19614	. 80338		30
	45	.5983:2	. 40168	1.6113	746:3	1.33992	1.2480	.198\%5	.801:2		15
37	,	. 60181	. 39819	1.6616	. 753.55	$132 \% 0$	1.2521	20136	. 79864	53	0
	15	. 60529	. 39471	1.6551	. 76042	1.3151	1.2563	20400	. 79600		45
	30	. 0	. 39124	1.642 T	. 76733	1.3032	$1.260 \pm$	20665	. 933 3,		30
38	4	. 6	. 384134	1.6243	. 78129	1.2919	1.2646	. 21199	. 78069	52	150
	15	. 61909	. 38091	1.615	. 78883	1.2685	1.2734	21468	. 78.53		45
	30	. 62.51	. 37449	1.6064	. 79543	1.2572	$12 \pi 78$	21.\%39	78261		
	45	. 6.59 .9	. 37408	1.5976	.80558	1.2660	1.288	2:012	. 77988		15
39	0	. 69932	. 37068	1.589 .3	.80978	1.2349	1.2858	2285	. $7 \% 715$	51	
	15	. 633211	. 36729	1.5805	.81703	1.2239	1.2913	.22561	. 7439		45
	30	. 63608	. 36393	$1.572 \cdot 1$. 824.34	1.2131	1.2960	2:2838	. 77168		30
	45	. $6: 3914$	360:6	1.56 .39	83169 83910	$1.20 \cdot 24$	1.3007	23116	. 76884		15
40	1.5	. 64612	. 35.38	1.54	. $8+655$	1.1812	1.3102	236:-	. 76332		
	30	. 64945	. 35055	1.5398	. 85408	1.1708	1.3151	. 23959	. T 6041		30
	45	. 65276	.34ヶ24	1.5330	. 86165	1.1606	1.3200	.24:44	75i56		15
41	0	. 6.5606	. 31394	15242	. 86929	1.1504	1.3:50	. 24529	\% 5471	49	
	15	. 65933	. 3406	1.5166	. 8 \%6!	1.1403	1.3301	. 24816	. 7184		45
	30	. $66 \cdot 6$. 33 i3	15092	. 844π	1.1303	1.3352	. 25104	. 74896		30
	45	. 6358	. 33412	1.5018	.892:3	1.1201	1.3404	25.394	. 14606		15
42	15	- 66913	. 3.3081	1.4945	- 900834	1.1106 1.1009	1.3456 1.3509	25686 25978	.14314 $.7402 \%$		45
	30	. 6755	. 32441	1.48	9163:	1.0913	$1.3 \div 6: 3$	26?	.73\%		30
	45	67\%80	. $321: 0$	1.473:2	. $9: 439$	1.0818	1.3618	. 266568	. 7343		5
43	-	. 63200	. 31800	1.4663	93.551	1.0724	1.367%	. 26865	. 73135	47	
	15	. 68518	. 31482	1.4595	. 940 a	1.0630	1.3i2.	. 2 亿163	.728:3		45
	30	.68835	3116	1.45	. 94898	1.0538	1.3786	. $2 \sim 463$. 72532		30
	45	.69151	. 30849	$1.4+61$.95\%20	1.0441	1.394:	. 2 Tru4	.72:36		5
44	0	. 69166	. 30534	1.4396	. 36569	1.0355	1.3902	. 280 ¢66	71934	46	0
	15	.69~~9	. $30 \cdot 31$	1.4331	.97416	1.0265	1.3961	. 24330	.71630		45
	30	. 20091	. 29909	1.4267	.982\%	$1.01 \% 6$	1.40\%0	286\%	. 71325		30
	45	. 70401	- 29959	1.4204	- 99131.	1.10	1.4081	. 28981	. 71019		15
45	0	. 70711	$.29: 89$	1.414	1.0000	1.0000	1.41	.2928:7	0ı̃11	45	0
		Cosine.	Sin.	Secant.	Cotan.	Tang.	osec.	Co-Vers.	Sine.	-	M.

From 45° to 60° read from bottom of table upwards.

LOGARITHIMIC SINES, ETC.

Deg.	Sine	Cosec.	Versin.	Tangent.	Cotan	Covers.	Secant.	Cosine.	Deg.
0	In.Neg.	Infinite.	In. Neg.	In. Neg.	Infinite.	10.00000	10.00000	10.00000	90
1	8.24186	11.75814	ט.18271	8.24192	11.75808	9.99235	10.00007	9.99993	89
2	8.54282	$11.45{ }^{\prime} 18$	6.78474	8.54308	1145692	9.98457	10.00026	9.699\%4	88
3	8.71880	11.28120	7.13687	8.71940	11.28060	9.97665	10.00060	9.99940	$8{ }^{\text {i }}$
4	8.84358	11.15642	7.3866%	. 8.84464	11.15536	9.96860	10.00106	9.99894	86
5	8.94030	11.05970	7.58039	8.94195	11.05805	9.96040	10.00166	9.99834	85
6	9.01923	10.980\%	7.73863	9.02162	10.97838	9.95205	10.00239	9.99'61	84
7	9.08589	10.91411	7.87238	9.08914	10.91086	9.94356	10.00325	9.996\%	83
8	9.14356	10.85644	7.98820	9.14780	$10.85 \geqslant 20$	9.93492	10.00425	9.995 ¢5	82
9	9.19433	$10.8056{ }^{\circ}$	8.09032	9.19971	10.80029	9.92612	10.00538	9.99462	81
10	9.2396	10.76033	8.18162	9.24632	10.75368	$9.917{ }^{17}$	10.00665	9.99335	80
11	9.28060	$10 . \% 1940$	8.26418	9.28865	10.71135	9.90805	10.00805	9.99195	79
12	9.31788	10.68212	8.33950	9.32747	10.6\% 253	9.898 ${ }^{\text {r }}$ \%	10.00960	9.99040	78
13	9.35209	$10.64 \% 91$	8.40875	9.36336	10.63664	9.88933	10.01128	9.988 \%2	76
14	9.38368	10.61632	8.47282	$9.396 \% 7$	10.60323	9.8\%9\%1	10.01310	9.98690	76
15	9.41300	10.58700	8.53243	9.42805	$10.5 \sim 195$	9.86992	10.01506	9.98494	75
16	9.44034	10.55966	8.58814	$9.45 \sim 50$	10.54250	9.85996	10.01716	9.98284	74
17	9.46594	10.53406	8.64043	9.48534	10.51466	9.84981	10.01940	9.98060	73
18	9.48998	$10.510{ }^{2} 2$	8.68969	9.51178	10.48822	9.83947	10.02179	9.978\%1	72
19	9.51:264	10.48\%36	8.73625	9.53697	10.46303	9.82894	10.02433	9.97567	71
20	9.53405	10.46595	8.78037	9.5610%	10.43893	9.81821	$10.02 \sim 01$	9.97299	0
21	9.55433	10.44567	8.82230	9.58418	10.41582	9.80\%\%9	10.0298	9.97015	69
22	9.57358	10.42642	8.86223	9.60641	10.39359	9.79615	10.03283	$9.96 \% 17$	68
23	9.59188	10.40812	8.90034	$9.62 \% 85$	10.37215	9.78481	10.03597	9.96403	67
24	9.60931	10.39069	8.93679	9.64858	10.35142	9.77325	10.03927	$9.960{ }^{\circ} 3$	66
25	9.62595	$10.3 \sim 405$	$8.971 \% 0$	$9.6686{ }^{\text {r }}$	$10.3313 \dot{3}$	9. $7614 ¢$	10.04272	$9.95 \% 28$	65
26	9.64184	10.35816	9.00521	9.68818	10.31182	9.74945	10.04634	9.95366	64
27	9.65705	10.34295	9.03140	9. 0 \% 17	10.29283	9. $73 \sim 20$	10.05012	9.94988	63
28	9.67161	10.32839	9.06838	9.7256' ${ }^{\prime}$	10.2743:3	$9.724 \% 1$	10.0540%	9.94593	62
29	9.68557	10.31443	9.09823	9.74375	10.256:5	9.71197	10.05818	$9.9418{ }^{\text {2 }}$	61
30	9.6989%	10.30103	9.12702	9.r6144	10.23856	9.69897	10.06247	9.93753	60
31	9.71184	10.28816	9.15483		10.22123	$9.685{ }^{\text {r'1 }}$	10.06693	$9.9330{ }^{7}$	59
32	9.72421	10.27579	9.18171	9.79579	10.20421	9.6721\%	10.07158	9.92842	58
33	9.73611	10.26389	9.20\% 71	9.81252	10.18748	9.65830^{3}	10.07641	9.92359	$5{ }^{7}$
34	9.74756	10.25244	9.23:290	9.82899	$10.1 \% 101$	9.64425	10.08143	9.9185%	56
3.	9.75859	10.24141	9.25121	9.8452 .3	10.1547%	9.62984	10.08664	9.91336	55
36	9.76922	10.23078	9.28099	9.86126	$10.138 \sim 4$	9.61512	10.09204	$9.90 \sim 96$	54
S?	9. 71946	10.22054	9.30398	9.87711	10.12289	9.60008	10.09~65	9.90235	53
38	9.78934	10.21066	9.32631	9.89281	$10.10 \sim 19$	$9.584 \% 1$	10.10347	9.89653	52
39	9. ${ }^{\text {\% }} 9888$	10.20113	9.34802	9.9083%	10.09163	9.56900	10.10950	9.89050	51
40	$9.8080 \sim$	10.19193	9.36913	9.92381	$10.0 \% 619$	9.55293	10.11575	9.88425	50
41	9.81694	$10.183 \cap 6$	9.38968	9.93916	10.06084	9.53648	10.12222	$987 \% r 8$	49
42	9.82551	10.17449	9.40969	9.95444	10.04556	9.51966	10.12893	9.87107	48
43	9.838178	10.16622	9.42918	9.96966	10.03034	9.50243	10.13587	9.86413	47
44	9.84177	10.15823	9.44818	9.98484	10.01516	9.48479	10.14307	9.85693	46
45	9.84949	10.15052	9.46671	10.00000	10.00000	9.46871	10.15052	9.84949	45
	Cosine.	Secant.	Covers.	Cotan.	Tangent.	Versin.	Cosec.	Sine.	

MATERIALS．

THE CHEMLCAL ELEMENTS．

Thiz Common Elements（42）．

	Name．	$\begin{aligned} & 0 \\ & 0.5 \\ & 0.00 \\ & 48 \end{aligned}$		Name．	$\begin{aligned} & \text { 总淢 } \\ & \text { 4. } \end{aligned}$		Name．	
Al	Aluminum	27.1	F	Fluorine	19.	Pd	Palladium	106.
Sb	Antimony	120.4	Au	Gold	197.2	P	Phosphorus	31.
As	Arsenic	75.1	H	Hydrogen	1.01	Pt	Platinum	194.9
Ba	Barium	137.4	1	Iodine	126.8	K	Potassium	39.1
Bi	Bismuth	208.1	Ir	Iridium	193.1	Si	Silicon	28.4
B	Boron	10.9	Fe	Iron	56.	Ag	Silver	10ヶ\％．9
Br	Bromine	79.9	Pb	Lead	206.9	Na	Sodium	23.
Cd	Cadmium	111.9	Li	Lithium	7.03	Sr	Strontium	87.6
Ca	Calcium		Mg	Magnesium	24.3		Sulphur	32.1
C	Carbon	12.	Mn	Manganese	55.	Sn	Tin	119.
Cl	Chlorine	35.4	Hg	Mercury	203.	Ti	Titanium	48.1
Cr	Chromium	52.1	Ni	Nickel	58.7	W	Tungsten	184.8
Co	Cobalt		N	Nitrogen	14.	Va	Vanadium	51.4
Cu	Copper ${ }^{\text {P }}$	63.6	0	Oxygeu	16.	Zn	Zinc	65.4

The atomic weights of many of the elements vary in the decimal place as given by different authorities．The above are the most recent values re－ ferred to $O=16$ and $H=1.008$ ．When H is taken as $1, O=15.8 \% 9$ ，and the other figures are diminished proportionately．（See Jour．Am．Chem．Soc．， Mirch，1896．）

写he Rare Elements（2\％）．

Beryllium，Be． Cæsium，Cs． Cerium，Ce． Didymium，D． Erbium，E． Gallium，Ga． Germanium， Ge ．

Glacinum，G． Indium，In． Linthanum，La． Molybdenum，Mo． Niobium，Nh． Osmium，Os． Rhodium，R．

Rubidium，Rb． Ruthenium，Ru． Samarium，Sm． Scandium，Sc． Selenium，Se． Tantalum，Ta． Tellurium，Te．

Thallium，Tl．
Thorium，Th．
Uranium，U．
Ytterbium，Yr．
Yttrium，Y．
Zirconium，Zr．

SPECIEIC GRAVITY．

The specific gravity of a substance is its weight as compared with the weight of an equal bulk of pure water．

To find the specific gravity of a substance．
$W=$ weight of body in air；$u=$ weight of body submerged in water．

$$
\text { Specific gravity }=\frac{W}{W-w}
$$

If the substance be lighter than the water，sink it by means of a heavier substance，and deduct the weight of the heavier substance．

Specific－gravity determinations are usually referred to the standard of the weight of water at $62^{\circ} \mathrm{F} ., 62.355 \mathrm{lbs}$ ．per cubic foot．Some experimenters have used $60^{\circ} \mathrm{F}$ ．as the standard，and others 32° and $39.1^{\circ} \mathrm{F}$ ．There is $n 0$ general agreement．

Given sp．gr．referred to water at $39.1^{\circ} \mathrm{F}$ ．，to reduce it to the standard of $62^{\circ} \mathrm{F}$ ．multiply it by 1.00112.

Given sp．gr．referred to water at $62^{\circ} \mathrm{F}$ ．，to find weight per cubic foot mul－ tiply by 62.355 ．Given weight per cubic foot，to find sp．gr．multiply by 0,016037 ．Given sp．gr．，to find weight per cubic inch multiply by .036085.

Weight and Specific Gravity of Metals.

	Specific Gravity. Range according to several Authorities.	Specific Gravity. Approx. Mean Value, used in Calculation of Weight.	Weight per Cubic Foot, lbs.	Weight per Cubic Inch, lbs.
Aluminum	2.56 to 2.71	2.6 \%	166.5	. 0963
Antimony	6.66 to 6.86	6.76	421.6	. 2439
Bismuth	9.74 to 9.90	9.82	$61 \% .4$. 3544
Brass: Copper + Zinc $\left.\begin{array}{rl}80 \\ 70 & 20 \\ 60 & 40 \\ 50 & 50\end{array}\right\}$	7.8 to 8.6	$\left\{\begin{array}{l}8.60 \\ 8.40 \\ 8.36 \\ 8.20\end{array}\right.$	$\begin{aligned} & 536.3 \\ & 523.8 \\ & 521.3 \\ & 511.4 \end{aligned}$	$\begin{array}{r} .3103 \\ .3031 \\ .3017 \\ .2959 \end{array}$
Brouze $\left\{\begin{array}{l}\text { Copper, } 95 \text { to } 80 \\ \text { Tin, } \\ 5 \text { to } 20\end{array}\right\}$	8.52 to 8.96	8.853	552.	. 3195
Cadmiuın..................	8.6 to 8.7	8.65	539.	. 3121
Calcium.	1.58			
Chromium	5.0			
Cobalt	8.5 to 8.6			
Gold, pur	19.245 to 19.361	19.258	1200.9	. 6949
Copper	8.69 to 8.92	8.853	552.	. 3195
Iridium	22.38 to 23.		1396.	. 8076
Iron. Cast	6.85 to 7.48	7.218	450.	. 2604
" Wrought	7.4 to 7.9	\%. 70	480.	. $2 \hat{119}$
Lead	11.07 to 11.44	11.38	709:7	. 4106
Manganese.	7.0 to 8 .	8.	499.	. 2887
Magnesium........... . .		1.75	109.	. 0641
$\left\{32^{\circ}\right.$	13.60 to 13.62	13.62	849.3	. 4915
Mercury............ $\left\{\begin{array}{r}60^{\circ} \\ 0120^{\circ}\end{array}\right.$	13.58	13.58	846.8	. 4900
(2120	13.37 to 13.38	13.38	834.4	. 4828
Nickel.	8.279 to 8.93	8.8	548.7	. 315
Platinum	20.33 to 22.07	21.5	1347.0	. 7 \%อั
Potassium	0.865 0.0.			
Silver..	10.474 to 10.511	10.505	655.1	. 3791
Sodium Steel	7.69* to ${ }^{0.97}$	7.854	489.6	2834
Tin.	7.291 to 7.409	7.350	458.3	. 2652
Titanium	5.3			
Tungsten..................	17. to 17.6			
Zinc	6.86 to 7.20	7.00	436.5	2526

* Hard and burned.
+ Very pure and soft. The sp. gr. decreases as the carbon is increased.
In the first column of fignres the lowest are usually those of cast metals, which are mure or less porous; the highest are of metals finely rolled or drawn into wire.

Specific Gravity of Liquids at $60^{\circ} \mathrm{F}$.

Oil, Olive 92
" Palm 97
" Prtroleum........... .78 to 88
Rape
، Whale.................. 08
Tar 1.
Vinegar...................... 1.08
Water....................... 1.
sea................... 1.026 to 1.03

Oil, Linseed.. 94
Compression of the following Fluids under a Pressure of 15 lbs. per Square likeh.
Water................ . 00004663

Alcohol............. . $0000: 16$$|$| Ether............... . 00006158 |
| :--- |
| Mercury 00000265 |

The Hydrometer.

The hydrometer is an instrument for determining the density of liquids. It is usually made of glass, and consists of three parts: (1) the upper part, a graduated stem or fine tube of uniform diameter; (2) a bulb. or enlargement of the tube, containing air ; and (3) a sniall bulb at the bottom, containing shot or mercury which causes the instrument to float in a vertical posilion: The graduations are figures representinm either specific gravities, or the numbers of an arbitrary scale, as in Baume's, Twaddell's, Beck's, and other hydrometers.
There is a tendency to discard all hydrometers with arbitrary scales and to use only those which read in terms of the specific gravity directly.

Baume's Hydrometer and Specific Gravities Compared.

	Liquids Heavier than Water, sp. gr.	Liquids Lighter than Water, sp. gr.		Liquids Heavier than Water, sp.gr.	Liquids Lighter than Water, sp. gr.		Liquids Heavier than Water, sp. gr.	Liquids Lighter than Water, sp. gr.
0	1.000		19	1.143	. 942	38	1.333	. 8.39
1	1.007		20	1.15%	. 936	39	1.345	. 834
2	1.013		21	1.160	.930	40	1.357	. $8: 30$
3	1.020		22	1.169	. 924	41	1.369	. 825
4	1.02%		23	1.178	. 918	43	1.382	. 820
5	1.034		24	1.188	. 913	44	1.407	. 811
6	1.041		25	1.197	. 907	46	1.434	.802
7	1.048		26	1.206	. 901	48	1.462	. 994
8	1056		27	1.216	. 896	50	1.490	. 785
9	1.063		28	1. 226	. 890	52	1.520	. 777
10	1.070	1.000	29	1.236	. 885	54	1.551	. 768
11	1.078	. .993	30	1.246	. 880	56	1.583	. 760
12	1.086	986	31	1.256	. 874	58	1.617	. 753
13	1.094	. 980	$3 \cdot 2$	1.267	. 869	60	1.652	. 745
14	1.101	. 973	33	1.2\%7	. 864	65	1. .447	
15	1.109	. 967	34	1.288	. 859	70	1.854	
16	1.118	. 960	35	1.299	. 854	75	1.974	
17	1.126	. 954	36	1.310	. 849	r6	2.000	
18	1.134	948	37	1.32\%	. 844			

Specific Gravity and Weight of Wood.

	Specific Grav	ity.	Weight per Cubic Foot, lbs.		Specific Gravity.		
Alder	0.56 to 0.80		42	Hornbeam	. 76	Avge ${ }_{\sim}^{\text {a }}$	47
Apple.	.in to . 99	.16	47	Junipe	. 56	. 56	35
Ash	. 60 to . 84	. $\%$	45	Larch	. 56	. 56	35
Bamboo..	. 31 to . 40	. 35	22	Lignum vitæ	. 65 to 1.33	1.00	62
Beech.	.62 to . 85	.73	46	Linden.	. 604		37
Birch	. 56 to . 74	. 65	41	Locust.	. 728		46
Box	. 91 to 1.33)	1.12	70	Mahogany.	. 56 to 1.06	. 81	51
Cedar	. 49 to .75	.62	39	Maple.	. 5 í to . 79	. 68	4:
Cherry.	.61 to .i2	. 66	41	Mulberry	. 5610 10 . 90	. 73	46
Chestnut	. 46 to . 66	. 56	35	Oak, Live	. 96 to 1.26	1.11	69
Cork.	. 24	. 24	15	" White	. 69 to . 86	. 71	48
Cypress.	.41 to . 66	. 53	33	Red.	. 73 to . T 5	. 74	46
Dingwood	- 6	. 76	47	Pine, White	. 35 to . 55	. 45	28
Ebony	1.13 to 1.33	1.2:3	76	". Yellow.	. 45 to . 66	. 61	38
Elm..	. 55 to . 78	. 61	38	Poplar.	. 38 to . 58	. 48	30
Fir	.48 to . 70	.59)	37	Spruce.	.40 to .50	4.5	28
Gum.	. \times to 1.00	. 92	57	Sycamore	. 59 to . 62	. 60	37
Hackmatack	. 59	. 59	37	Trak	. 66 to . 98	.8:2	51
Hemlock	. 36 to . 41	.3s	24	Walnut	. 50 to . 67	. 58	36
Hickory..	. 6.9 to . 94	.	43	Willow.	.49 to . 59	. 54	34
Holly	.i6	. 66	4 \%				

Weight and Specific Gravity of Stones, Brick, Cement, etc.

	Pounds per Cubic Foot.	Specific Gravity.
Asphaltum	87	1.39
Brick, Soft	100	1.6
. Common	112	1.79
" Hard	125	2.0
" Pressed	135	2.16
" Fire.	140 to 150	2.24 to 2.4
Brickwork in mortar	100	1.6
" ". cernent.	112	1.79
Cement, Rosendale, loose	60	. 96
" ${ }^{\text {c }}$ Portland,	78	1.25
Clay Concrete	120 120 to 150 140	1.92 to 2.4 1.92 to 2.24
Earth, loose	72 to 80	1.15 to 1.28
.. rammed	90 to 110	1.44 to 1.76
Emery	250	
Glass.	156 to 172	2.5 to 2.75
" flint	180 to 196	2.88 to 3.14
$\left.\begin{array}{l}\text { Gneiss } \\ \text { Granite }\end{array}\right\}$	160 to 170	2.56 to 2.72
Gravel .	100 to 120	1.6 to 1.92
Gypsum	130 to 150	2.08 to 2.4
Hornblende	200 to 220	3.2 to 3.52
Lime, quick, in bulk.	50 to 55	: 8 to .88
Limestone...	170 to 200	2.72 to 3.2
Magnesia, Carbonate.	150	
Marble	160 to 180	2.56 to 2.88
Masonry, dry rubble.	140 to 160	2.24 to 2.56
" dressed.	140 to 180	2.24 to 2.88
Mortar.	90 to 100	1.44 to 1.6
Pitch		1.15
Plaster of Paris.	\% 4 to 80	1.18 to 1.28
Quartz.	165	2.64
Sand.	90 to 110	1.44 to 1.76
Sandstone	140 to 150	2.24 to 2.4
Slate	170 to 180	2.72 to 2.88
Stone, various	135 to 200	2.16 to 3.4
Trap...	170 to 200	2.72 to 3.4
Tile..	110 to 120	1.76 to 1.92
Soapstone	166 to 175	2.65 to 2.8

Specific Gravity and Weight of Gases at Atmospheric Pressure and 32° F.

(For other temperatures and pressures see pp. 459, 479.)

	Density, $\text { Air }=1$	Grammes per Litre.	Lbs. per Cu. Ft.	Cubic Ft. per Lb.
Air..	1.0000	1.2931	0.080728	12.387
Oxygen	1.1051	1.4290	$0.089 \% 1$	11.209
Hydrogen	0.0695	0.08987	0.00561	178.23
Nitrogen..	0.9714	1.2561	0.078 .42	12.752
Carbonic oxide, CO	0.9674	1.251	0.07810	12.804
Carbonic acid, $\mathrm{CO}_{2} \ldots \ldots \ldots$	1.59290	1.97%	0.12343	8.102
$\underset{\text { Marsh }}{ }$ grss, methane, $\mathrm{CH}_{4} .$.	0.5560 0.9847			${ }_{12}^{22.501}$
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4} \ldots \ldots$. .	0.9847	1.273	0.01949	12.580

PROPERTIES OF THE USEFUL METALS.

Aluminum, A1.-Atomic weight 27.1. Specific gravity 2.6 to 2.7. The lightest of all the useful metals except magnesium. A soft, ductile, malleable metal, of a white color, approaching silver, but with a bluish cast. Very non-corrosive. Tenacity about one third that of wrought-iron. Formerly a rare metal, but since 1890 its production and use have greatly increased on account of the discovery of cheap processes for reducing it from the ore. Melts at abnut $1160^{\circ} \mathrm{F}$. For further description see Aluminum, under Strength of Materials.
Antimony (Stibium), Sb.-At. wt. 120.4. Sp. gr. 6.7 to 6.8 . A brittle metal of a bluish-white color and highly crystalline or laminated structure. Melts at $842^{\circ} \mathrm{F}$. Heated in the open air it buins with a bluish-white flame. Its chief use is for the manufacture of certain alloys, as type-metal (antimony 1, lead 4), britannia (antimony 1, tin 9), and various anti-friction metals (see Alloys). Cubical expansion by heat from 32° to $212^{\circ} \mathrm{F} ., 0.0070$. Specific heat 050.

Bismuth, Bi.-At. wt. 208.1. Bismuth is of a peculiar light reddish color. highly crystalline. and so brittle that it can readily be pulverized It melts at $510^{\circ} \mathrm{F}$., and boils at about 2:300 ${ }^{\circ} \mathrm{F}$. Sp. gr. 9.823 at $54^{\circ} \mathrm{F}$., and 10.055 just above the melting-point. Specific heat about .0301 at ordinary temperatures. Coefficient of cubical expansion from 32° to $21: 2^{\circ}, 00040$. Conductivity for heat about $1 / 56$ and for elnctricity only about $1 / 80$ of that of silver. Its tensile strength is about 6400 lbs . per square inch. Bismuth expands in cooling, and Tribe has shown that this expansion does not take place until after solidification. Bismnth is the most diamagnetic element known, a sphere of it being repelled by a magnet.
Cadmium, Cd.-At. wt. 112. Sp. gr. 8.6 to 8.7. A bluish-white metal, lusir,us, with a fibrous fracture. Melts below $500^{\circ} \mathrm{F}$. and volatilizes at about $680^{\circ} \mathrm{F}$. It is used as an ingredient in some fusible alloys with lead, tin. and ismuth. Cubical expansion from 32° to $21 \not 2^{\circ} \mathrm{F}$., 0.0094 .
Copper, Cu.-At. wt. 63.2. Sp. gr. 8.81 to 8.95 . Fuses at about 1930° F. Distinguished from all oiher metals by its reddish color. Very ductile and malleable, and its tenacity is next to iron. Tensile strength 20.000 to $30,000 \mathrm{lbs}$ per square inch. Heat conductivity 73.6% of that of silver, and superior to that of other metals. Electric conductivity equal to that of gold and silver. Expansion by heat from 32° to $212^{\circ} \mathrm{F}$., 0.0051 of its volume. Sperific heat .093. (See Copper under Strength of Materials: also Alloys.)
Gold (Aurum). Au.-At. wt. 197.2. Sp. gr., when pure and pressed in a die, 19.34. Melts at about $1915^{\circ} \mathrm{F}$. The most malleable and ductile of all metals. One ounce Troy may be beaten so as to cover 160 sq . ft . of surface. The average thickness of gold-leaf is $1 / 28: 2000$ of an inch, or 100 sq. ft. per ounce. One grain may be drawn into a wire 500 ft . in length. The ductility is destroyed by the presence of $1 / 2000$ part of lead, bismuth, or an imonf. Gold is hardeued by the addition of silver or of copper. In U S. gold coin there are 90 parts gold and 10 parts of alloy, which is chiefly copper with a little silver. By jewelers the fineness of gold is expressed in carats, pure gold being 24 carats, three fourths fine 18 carats, ete.
Iridium.-Iridium is one of the rarer metals. It has a white lustre, resembling that of steel; its hardness is about equal to that of the ruby; in the cold it is quite brittle, but at a white heat it is somewhat malleable. It is one of the Reaviest of metals, having a specitic gravity of $\%, .38$. It is extremely infusible and almost absolutely inoxidizable.
For uses of iridium, methods of manufacturing it, etc., see paper by W.D. Dudley on the "Iridium Industry." Trans. A. I. M. E. 1881.

Hrom (Ferrum), Fe.-At. wt. 56 . Sp. gr.: Cast, $6.85 \cdot$ to 748 ; Wrought, 7.4 to 7.9. Pure iron is extremely infusible, its melting point being above $3000^{\circ} \mathrm{F}$., but its fusibility increases with the addition of carbon, cast iron fusing about $2500^{\circ} \mathrm{F}$. Conductivity for heat 11.9 , and for electricity 12 to 14.8 , silver being 100. Expansion in bulk by heat: cast iron . 00333 , and wrought iron .0035 , from 32° to $212^{\circ} \mathrm{F}$. Specific heat: cast iron .1298 . wrought iron .1138, steel .1165. Cast iron exposed to continued heat becomes permanently expanded $11 / 2$ to 3 per cent of its length. Grate-bars should therefore be allowed about 4 per cent play. (For other properties see Iron and Steel under Strength of Materials.)

Lead (Plumbum), Pb.-At. wt. 206.9. Sp. gr. 11.07 to 11.44 by different authorities. Melts at about $625^{\circ} \mathrm{F}$., softens and becomes pasty at about $61 i^{\circ} \mathrm{F}$. If broken by a sudden blow when just below the melting-point it is quite brittle and the fracture appears crystalline. Lead is very malleable
and ductile, but its tenacity is such that it can be drawn into wire with great difficulty. Tensile strength, 1600 to 2400 lbs. per square inch. Its elasticity is very low, and the metal flows under very slight strain. Lead dissolves to some extent in pure water, but water containing carbonates or sulphates forms over it a film of insoluble salt which prevents further action.

Magnesium, MIg.-At. wt. 24. Sp. gr. 1.69 to 1.75. Silver-white, brilliant, malleable, and ductile. It is one of the lightest of metals, weighing only about two thirds as much as aluminum. In the form of filings, wire, or thin ribbons it is highly combustible, burning with a light of dazzling brilliancy, useful for signal-lights and for flash-lights for photographers. It is nearly non-corrosive, a thin film of carbonate of magnesia forming on exposure to damp air, which protects it from further corrosion. It may be alloyed with aluminum, 5 per cent $M g$ added to Al giving about as much increase of strength and hardness as 10 per cent of copper. Cubical expansion by heat 0.0083 , from 322° to $212^{\circ} \mathrm{F}$. Melts at $1200^{\circ} \mathrm{F}$. Specific heat . 25 .

Manganese, Mn.-At. wt. 55. Sp. gr. 7 to 8. The pure metal is not used in the arts, but alloys of manganese and iron, called spiegeleisen when containing below 25 per cent of manganese, and ferro-manganese when containing from 25 to 90 per cent, are used in the manufacture of steel. Metallic manganese, when alloyed with iron, oxidizes rapidly in the air, and its function in steel manufacture is to remove the oxygen from the bath of steel whether it exists as oxide of iron or as occluded gas.

Mercury (Hydrargyrum), Hg.-At. wt. 199.8. A silver-white metal, liquid at temperatures above- $34^{\circ} \mathrm{F}^{\prime}$., and boils at $680^{\circ} \mathrm{F}$. Unchangeable as gold, silver, and platinum in the atmosphere at ordinary temperatures, but oxidizes to the red oxide when near its boiling-point. Sp. gr.: when liquid 13.58 to 13.59 , when frozen 14.4 to 14.5. Easily tarnished by sulphur fumes, also by dust, from which it may be freed by straining through a cloth. No metal except iron or platinum should be allowed to touch mercury. The smallest portions of tin, lead, zinc, and even copper to a less extent, cause it to tarnish and lose its perfect liquidity. Coefficient of cubical expansion from 32° to 212° F. .0182; per deg. . 000101.
Nickel, Ni.-At. wt. 58.3 . Sp. gr. 8.2% to 8.93 . A silvery-white metal with a strong lustre, not tarnishing on exposure to the air. Ductile, hard, and as tenacious as iron. It is attracted to the magnet and may be made magnetic like iron. Nickel is very difficult of fusion, melting at about $3000^{\circ} \mathrm{F}$. Chiefly used in alloys with copper, as german-silver, nickel-silver, etc., and recently in the manufacture of steel to increase its hardness and strength, also for nickel-plating. Cubical expansion from 32° to $212^{\circ} \mathrm{F}$., 0.0038 . Specific heat .109.

Platinum, Pt.-At. wt. 195. A whitish steel-gray metal, malleable, very ductile, and as unalterable by ordinary agencies as gold. Wheu fused and refined it is as soft as copper. Sp. gr. 21.15. It is fusible only by the oxyhydrogen blowpipe or in strong electric currents. When combined with iridium it forms au alloy of great hardness, which has been used for gunvents and for standard weights and measures. The most important uses of platinum in the arts are for vessels for chemical laboratories and manufactories, and for the connecting wires in incandescent. electric lamps. Cubical expansion from $3 \%^{\circ}$ to $212^{\circ} \mathrm{F}$., 0.002 , less than that of any other metal except the rare metals, and almost the same as glass.

Silver (Argentum), Ag.-At. wt. 107.7. Sp. gr. 10.1 to 11.1, according to condition and purity. It is the whitest of the metals, very malleable and ductile, and in harduess intermediate between gold and copper. Melis at
 0.0058 . As a conductor of electricity it is equal to copper. As a conductor of heat it is superior to all other metals.

Tin (Stannum) Sn.-At. wt. 118. Sp. gr. 7. 293. White, lustrous, soft, malleable, of little strength, tenacity about 3500 lbs . per square inch. Fuses at $442^{\circ} \mathrm{F}$. Not sensibly volatile when melted at ordinary heats. Heat conductivity 14.5 , electric conductivity 12.4 ; silver being 100 in each case. Expansion of volume by heat .0069 from $3 z^{\circ}$ to $212^{\circ} \mathrm{F}$. Specific heat .055 . Its chief uses are for cuating of sheet-iron (called tin plate) and for making alloys with copper and other metals.

Zinc, Zn.-At. wt. 65. Sp. gr. 7.14. Melts at 780° F. Volatilizes and burus in the air when melted, with bluish-white fumes of zinc oxide. It is ductile and malleable, but to a much less extent than copper, and its tenacity, about 5000 to 6000 lbs per square inch, is about one tenth that of wrought iron. It is practically non-corrosive in the atmosphere, a thin film of carbonate of zinc forming upon it. Cubical expansion between 32° and $212^{\circ} \mathrm{F}$,,

MEASURES AND WEIGHTS OF VARIOUS MATERIALS. 169
0.0088 . Specific heat .096 . Electric conductivity 29 , heat conductivity 36 , silver being 100. Its principal uses are for coating iron surfaces, called "galvanizing," and for making brass and other alloys.

Table Showing the Order of
Malleability. Ductility, Tenacity. Infusibility.

Gold Silver Aluminum Copper, Tin Lead Zinc Platinum Iron

Platinum Silver Iron Copper Gold Aluminum Zinc Tin Lead

Iron Copper Aluninum Platinum Silver Zinc Gold Tin Lead

Platinuin
Iron
Copper
Gold
Silver
Aluminum
Zinc
Lead
Tin

FORMULAE AND TAHLE FOR CALCULATING THE WEIGHT OF RODN, HARS, PLATES, TUBES, AND SPHERES OF DIFFEIREN'T MATERIALS.

Notation : $b=$ breadth, $t=$ thickness, $s=$ side of square, $d=$ external diameter, $d_{1}=$ internal diameter, all in inches.
Sectional areas: of square bar's $=s^{2}$; of flat bars $=b t$; of round rods $=$ $.7854 d^{2} ;$ of tubes $=.7854\left(d^{2}-d_{1}{ }^{2}\right)=3.1416\left(d t-t^{2}\right)$.
Volume of 1 foot in length: of square bars $=12 s^{2}$; of flat bars $=12 b t$; of round bars $=9.4248 d^{2} ;$ or tuves $=9.4248\left(.^{2}-d_{1}{ }^{2}\right)=37.699\left(d t-1^{2}\right)$, in cu. in.
Weight per foot length $=$ volume \times weisht per cubic inch of the material. Weight of a sphere $=$ diam. ${ }^{3} \times .5236 \times$ weight per cubic inch.

Material.									
Cast iron	7.218	450.	37.5	$31 / 8.8{ }^{2}$	$31 / 8 b t$	2604	15-16	$2.454 d^{2}$	$1363 d^{3}$
Wrought Iron	7.7	480.	40.	$31 / 3{ }^{\text {s }}$	31/3 bt	. $2 \sim 19$		2. $618 \mathrm{~d}^{2}$. $1455{ }^{3}$
Steel....	7.854	489.6	40.8	$3.4 s^{2}$	$3.46 t$. 2833	1.02	$2.670 d^{2}$. $1484 d^{3}$
Copper \& Bronze $\}$ (copper and tin) $\}$	8.855	552.	46.	$3.833 s^{2}$	$3.833 b t$. 3195	1.15	$3.011 d^{2}$	$1673 d^{3}$
Brass $\left\{\begin{array}{l}65 \text { Copper.. } \\ 35 \text { Zinc.... }\end{array}\right.$	8.393	523.2	43.6	$3.633 s^{2}$	$3.633 b t$. 3029	1.09	$2.854 d^{2}$	$1586 d^{3}$
Lead.... .	11.38	ז09.6	59.1	4.93.3 s^{2}	4.93bt	. 4106	1.48	$3.870 d^{2}$	$2150 d^{3}$
Aluminu	2.67	166.5	13.9	$1.16 s^{2}$	$1.16 b t$. 0963	0.347	$0.908 d^{2}$.0504d ${ }^{3}$
Glass	2.62	163.4	13.6	$1.13 s^{2}$	$1.13 b t$. 0945	0.34	0.891d ${ }^{2}$.0495 d^{3}
Pine Wood, dry	0.481	30.0	2.5	$0.21 s^{2}$	$0.11 b t$. 0174	1-16	$0.164 d^{2}$. $0091 d^{3}$

Weight ner cylindrical in.. 1 in . long, = coefficient of l^{2} in ninth col. $\div 12$.
For tubes use the coefficient of d^{2} in minth columm, as for rods. and multiply it into $\left(d^{2}-d_{1}{ }^{2}\right)$; or take four times this coefficient and multiply it into ($d t-t^{2}$).
For hollow spheres use the coefficient of d^{3} in the last column and multiply it into $\left(d^{3}-d_{1}{ }^{3}\right)$.

MEASURES AND WEGGHITS OF VARIOUS HRATEREALS (APRBEXIMATE)。

Brickwork.-Brickwork is estimated by the thousand, and for various thicknesses of wall runs as follows:

An ordinary brick measures about $81 / 4 \times 4 \times 2$ inches, which is equal to 66 cubic inches, or 26.2 bricks to a cubic forot. The average weight is $41 / \mathrm{lbs}$.

Fuel.-A bushel of bituminous coal weighs 76 pounds and contains 2688 cubic inches $=1.554$ cubic feet. 29.47 bushels $=1$ gross ton.

A bushel of coke weighs 40 lbs . (35 to 42 lbs .).
One aere of bituminous coal contains 1600 tons of 2240 lbs . per foot of thickness of coal worked. 15 to 25 per cent must be deducted for waste in mining.
41 to 45 cubic feet bituminous coal when broken down $\ldots . .=1$ ton, 2240 lbs. 34 to 41 "، " anthracite, prepared for market......... $=1$ ton, 2240 lbs . 123 " " of charcoal.................................... . $=1$ ton, 2240 lbs. r0.9 " " "coke.. $=1$ ton, 2240 lbs. 1 cubic foot of anthracite coal (see also page $6 \cdot 5$)............ $=55$ to 66 lbs .
1 " " " bituminous" $=50$ to 55 lbs.

1 " " Cumberland coal
" " Cannel coal $=53 \mathrm{lbs}$.
" " charcoal (hardwood)
(pıne) $\ldots \ldots . \ldots \ldots \ldots \ldots \ldots \ldots . .$.
A bushel of charcoal.-In 1881 the American Charcoal-Iron Workers' Association adopted for use in its official publications for the standard bushel of charcoal $2 \mathscr{2} 48$ cubic inches, or 20 pounds. A ton of charcoal is to be taken at 2000 pounds. This figure of 20 pounds to the bushel was taken as a fair average of different bushels used throughout the country, and it has since been established by law in some States.

Ores, Earths, etc.

13 cubic feet of ordinary gold or silver ore, in mine...... = 1 ton $=2000 \mathrm{lbs}$.
20 " "، broken quartz................................... $=1$ ton = 2000 lbs .
18 feet of gravel in bank............................... $=1$ ton.
27 cubic feet of gravel when dry.. $=1$ ton.
25 " "، "sand .. $=1$ ton.
18 " "، " earth in bank ... $=1$ ton.
27 " " "، " wheu dry... $=1$ ton ${ }^{\text {r }}$
17 "، " clay........ ... $=1$ ton.
Cement.-English Portland, sp. gr. 1.25 to 1.51, per bbl.... 400 to 430 lbs.

$$
\text { Rosendale, U. S., a struck bushel } 62 \text { to } 70 \text { lbs. }
$$

Lime.-A struck bushel.... 72 to 75 lbs.
Grain. - A struck bushel of wheat $=60 \mathrm{lbs}$.; of corn $=56 \mathrm{lbs}$.; of oats $=$ 30 lbs.

Salt.-A struck bushel of salt, coarse, Syracuse, N. Y. $=56 \mathrm{lbs} . ;$ Turk's Island $=76$ to 80 lbs .

> Weight of Earth Filling.
> (From Howe's "Retaining Walls.")

Average weight in lbs. per cubic foot.

Earth, common loam	$\begin{aligned} & \text { 1c } \\ & 80 \end{aligned}$
	shaken....................... 88 to 92
" ،	rammed moderately......... 90 to 100
Gravel	90 to 106
Sand	90 to 106
Soft flowing mud	104 to 120
Sand, perfectly wet.	118 to 129

COMIIERCIAL SHZES OF IRON BARE. Flats.

Width.	Thickness.	Width.	Thickness.	Width.	Thickness.
$3 / 4$	$1 / 8$ to $5 / 8$	$17 / 8$	$1 / 2$ to $11 / 2$	11/	$1 / 4$ to 2
$1^{7 / 8}$	1/8 to $3 / 4$.	${ }_{21}^{2}$	1/8 to $13 / 4$	${ }_{5} 1 / 2$	$1 / 4$ to 2
$11 / 8$	$1 / 8$ to 1	238	$1 / 4$ to 118	$51 / 3$	$14 / 4$ to 2
11/4	$1 / 8$ to $11 / 8$	21%	$3 / 16$ to $13 / 4$	6	$14 / 4$ to 2
$13 / 8$	$1 / 8$ to 118	$25 / 8$	$1 / 4$ to $11 / 8$	61/2	$1 / 4$ to 2
11.	$1 / 8$ to $11 / 4$	$29 / 4$	$1 / 4$ to 11/8	7	$1 / 4$ to 2
15\%	1/4 to 134	8	$1 / 4$ to 2	71/2	$1 / 4$ to 2
13/4	$3 / 16$ to $11 / 8$	316	14 to 2		

Rounds： $1 / 4$ to $18 / 8$ inches，advancing by 16 ths，and $13 / 8$ to 5 inches by 8ths．
Squares： $5 / 16$ to $1 \frac{1}{4}$ inches，advancing by 16ths，and $1 \frac{1}{4}$ to 3 inches by 81 h
Hialf rounds： $7 / 16,1 / 2,5 / 8,11 / 16,3 / 4,1,11 / 8,11 / 4,11 / 2,13 / 4,2$ inches．
Hexagons： $3 / 4$ to $11 / 2$ inches，advalting by 8 this．
Ovals： $1 / 2 \times 1 / 4.5 / 8 \times 5 / 16,3 / 4 \times 3 / 8,7 / 8 \times 7 / 16 \mathrm{inch}$ ．
Half ovals： $1 / 2 \times 1 / 8,5 / 8 \times 5 / 32,3 / 4 \times 3 / 16,7 / 8 \times 7 / 32,11 / 2 \times 1 / 2,13 / 4 \times 5 / 8$ ， $178 \times 5 / 8 \mathrm{inch}$ ．
Round－edge flats： $11 / 2 \times 1 / 2,13 / 4 \times 5 / 8,17 / 8 \times 5 / 8 \mathrm{inch}$ ．
Bands： $1 / 2$ to $11 / 8$ inches，advanciug by 8 ths，τ to 16 B ．W．gauge．
$11 / 4$ to 5 incilies，advancing by 4 ths， 7 to 16 gauge up to 3 inches， 4 to 14 gange， $31 / 4$ to 5 inches．

WEIGHTS OF SQUARE AND ROUND BARS OF WROUGHIL IRON IN POUNDS PER LINEAL FOOT．

Iron weighing 480 lbs ．per cubic foot．For steel add 2 per cent．

0			11／16	24.08	18.91	3／8	96.30	75.64
1／16	． 013	． 010		25.21	19.80	$7 / 16$	98.55	77.40
	． 053	． 041	13／16	26.37	20.71		100.8	79.19
3，16	． 117	． 092	7／8	27.55	21.64	$9 / 16$	103.1	81.00
$1 / 4$	． 208	． 164	15／16	28.76	22.59	5／8	105.5	82.83
$5 / 1$	． 326	． 256		30.00	23.56	11／16	107.8	84.69
3／8	． 469	． 36 S	1／16	31.26	24.55	3／4	110.2	86.56
$7 / 1$	． 638	． 501		32.55	25.57	13／16	112.6	88.45
	． 833	． 654	3／16	33.87	26.60	7／8	115.1	90.36
$9 / 1$	1.055	． 828	$1 / 4$	35.21	27.65	15／16	117.5	92.29
5／8	$1.30 \cdot$	1.023	5／16	36.58	28.73	6	120.0	94.25
11／16	1.506	1.237	3／8	37.97	29.82	1／8	125.1	98.22
	1.875	1.473	7／16	39.39	30.94		130.9	102．3
13／16	2.201	1．7：8	12	40.83	$3: .07$	$3 / 8$	135.5	106.4
7／8	2.552	2.004	$9 / 16$	42.30	33.23	1%	140.8	110.6
15／16	2.930	2．301	5／8	43.80	34.40	8	146.3	114.9
1	3.333	2.618	11／16	45.33	35.60	$3 / 4$	151.9	119.3
1／16	3.763	2．9．5	$3 / 4$	46.88	36.82	\％8	1556	123.7
	4.219	3.313	13／16	48.45	35.05	7	163.3	128.3
3／16	4.701	3.692	7／8	50.05	39.31	1／8	169.2	132.9
$1 / 4$	5.208	4.091	15／16	51.68	40.59	$1 / 4$	175.2	137.6
5／16	5.742	4.510		53.33	41.89		181.3	14.2 .4
$3 / 8$	6.302	4.950	1／16	55.01	45.21	$1 / 2$	117.5	147.3
$7 /$	6.888	5.410	1／8	56．7．	44.55	5／8	193.8	15.2
	7.500	5.890	3／16	58.45	45.91	$3 / 4$	200.2	157．2
97	8.138	6.392	$5 / 10$	60.21	47.29	7／8	206.7	162.4
5／8	8.802	6.913	5／16	61.99	48.69	8	213.3	16T．6
11／16	9．492	\％．455	3／8	63.80	$\stackrel{50.11}{51}$		226.9	$1 \sim 8.2$
3／4	10.21	8.018	$7 / 16$	65.64	51.55	$1{ }^{1}$	240.8	189.2
13／	10.95	8.601		67.50	53.01	$3 / 4$	255.2	200.4
78	11.72	9.204	$9 / 16$	69.39	54.50		$2 \pi 0.0$	212.1
15／16	12.51	9.828		71.30	56.00		$\because 85.2$	$\because 24.0$
2.	13.33	10.47	11／16	73.24	5 5 .50	1	300.8	$\because 36.3$
1／16	14.18	11.14		75.21	59.0 ir	$3 / 4$	316.9	¿48．9
1／8	15.05	$11.8{ }^{2}$	13／16	77.20	60.63	10	3333.3	261.8
$3 / 16$	15.95	12.53		79.22	62.22	$1 / 4$	350.2	275.1
$1 / 4$	16.88	13.25	15／16	81.26	63.82		36 T .5	288.6
5／16	17.83	14.00		83.33	65.45	$3 / 4$	385.2	302.5
3／8	18.80	14.17	1／16	85.43	67.10	11	403.3	316.8
7／16	19.80	15.55		87.55	65． 16	$1 / 4$	421.9	331.3
$1 / 2$	20.83	16.36	3／16	89.70	70.45		440.8	346.2
$8 / 8$	22.97	18.04	5／16	94.88	72.16 73.89	12	460.2 480.	361．4

飛

 -

\qquad

 Gर

这

F

Thick-
Inches.
Widths．

シ̀	
$\stackrel{\square}{\square}$	
ㅎ．	
ठें	
ミ̊	
$\cdots{ }^{\circ}$	
E®	
E	
言	
－¢	15た
－i＊	
Ei	
言	
－－	
Eix	
io	
－	

Thus，for example，－Weight of other sizes can easily be obtained from the above table by means of combinations or divisions． 88.8 웅ํํ

WEIGHT OF IRON AND STEEL SHEETS.

 Weights per square Foot.(For weights by Decimal Gauge, see page 32.)

Thickness by Birmingham Gauge.				Thickness by American (Brown and Sharpe's) Gauge.			
No. of Gauge.	Thickness in Inches.	Iron.	Steel.	No. of Gauge.	Thickness in Inches.	Iron.	Steel.
0000	. 454	18.16	18.52	0000	. 46	18.40	18.77
000	. 425	17.00	17.34	000	. 4096	16.38	16.71
00	. 38	15.20	15.30	00	. 3648	14.59	14.88
0	. 34	13.60	13.87	0	. 3249	13.00	13.26
1	. 3	12.00	12.24	1	. 2893	11.57	11.80
2	. 284	11.36	11.59	2	. 2576	10.30	10.51
3	. 259	10.36	10.5\%	3	. 2294	9.18	9.36
4	. 238	9.52	9.71	4	. 2043	8.17	8.34
5	. 22	8.80	8.98	5	. 1819	7.28	7.42
6	. 203	8.12	8.28		. 1620	6.48	6.61
7	. 18	7.20	7.34	7	. 1443	5.76	5.89
8	. 165	6.60	6.73	8	. 1285	5.14	5.24
9	. 148	5.92	6.04	9	. 1144	4.58	4.67
10	. 134	5.36	5.47	10	. 1019	4.08	4.16
11	. 12	4.80	4.90	11	. 0907	3.63	3.70
12	. 109	4.36	4.45	12	. 0808	3.23	3.30
13	. 095	3.80	3.88	13	. 0720	2.88	2.94
14	. 083	3.32	3.38	14	. 0641	2.56	2.62
15	.0\%2	2.88	2.94	15	.05i1	2.28	2.33
16	. 065	2.60	2.65	16	. 0508	2.03	2.07
17	. 058	2.32	2.37	17	. 0453	1.81	1.85
18	. 049	1.96	2.00	18	. 0403	1.61	1.64
19	. 042	1.68	1.71	19	. 0359	1.44	1.46
20	. 035	1.40	1.43	20	. 0320	1.28	1.31
21	. 032	1.28	1.31	21	. 0285	1.14	1.16
22	. 028	1.12	1.14	22	. 0253	1.01	1.03
23	. 025	1.00	1.02	23	.0226	. 904	. 922
24	. 022	. 88	. 898	$\stackrel{24}{2}$. 0201	. 804	. 820
25	. 02	. 80	. 816	25	. 0179	. 716	.730
26	. 018	. 72	. 734	26	. 0159	. 636	. 649
27	. 016	. 64	. 653	27	. 0142	. 568	. 579
28	. 014	. 56	. 571	28	. 0126	. 504	. 514
29	. 013	. 52	. 530	29	. 0113	. 452	. 461
30	. 012	. 48	. 490	30	. 0100	. 400	. 408
31	. 01	. 40	. 408	31	. 0089	. 356	. 363
32	. 009	. 36	. 367	32	. 0080	. 320	. $3: 6$
33	. 008	. 32	. 326	33	. $00 \% 1$. 284	. 290
34	. 007	. 28	. 286	34	. 0063	. 252	. 257
35	. 005	. 20	. 204	35	. 0056	. 224	. 228

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wires should always state the weight per square foot, or the thickness in thousandths of an inch.
 8
 －

x

8088808808880880888808888800000000000
कम

$\stackrel{0}{3}$

10∞

© ぞに

$-$

∞
\vdots
i

$\stackrel{0}{1}$

8雨

$\stackrel{\rightharpoonup}{\square}$

ㅍ․․․․ ．

WEEGHTS OF STEEL BLOOMS.

Soft steel. 1 cubic inch $=0.284 \mathrm{lb} .1$ cubic foot $=490.75 \mathrm{lbs}$.

Sizes.	Lengths.											
	1'	$6{ }^{\prime \prime}$	$12^{\prime \prime}$	$18^{\prime \prime \prime}$	$24^{\prime \prime}$	$30^{\prime \prime}$	36"	$42^{\prime \prime}$	48'	$54^{\prime \prime}$	$60^{\prime \prime}$	66'
$12^{\prime \prime}$11	13.63	82	164	24.5	327	409	491	573	654	T36	818	900
	18.15	113	225	338	450	553	675	r88	910	101:3	1125	1238
	15.62	94	188	281	315	469	562	656	750	843	$9: 37$	1031
	12.50	75	150	225	300	$3 \sim 5$	450	525	600	675	r50	825
10	19.88	120	239	358	477	596	715	835	955	1074	1193	1312
	17.04	102	204	307	409	511	613	716	818	9:0	1022	1125
	14.20	85	$1 \% 0$	256	$3+1$	426	511	596	682	$76 \tilde{1}$	85.	937
	11.36	68	136	20.5	$2 \div 3$	341	409	477	516	614	682	750
	8.52	51	10\%	153	204	255	306	358	409	460	511	562
9	17.89	107	215	323	-430	537	644	751	859	966	1073	1181
	1534	92	184	276	368	460	55:2	614	736	828	920	1012
	12.8	77	15.3	230	307	383	460	537	614	690	767	844
	10.22	61	123	184	245	307	368	429	490	552	613	674
	18.18	109	218	327	436	545	655	764	873	982	1091	1200
	15.9	95	191	286	382	$4{ }^{17}$	572	668	76:3	8.59	954	1049
	13.63	82	164	245	327	409	491	573	654	i36	818	900
	11.36	68	136	205	$2 \sim 3$	341	409	477	546	614	68%	\% 50
	9.09	55	109	164	218	273	327	38:	$4: 36$	491	545	600
7	13.92	83	167	251	334	418	501	585	668	752	835	919
	11.93	72	143	215	286	358	430	501	573	644	716	788
	${ }_{7}^{9.94}$	60	119	179	238	298	358	417	477	536	596	656
	7.95	48	96	143	191	239	286	$3: 34$	382	429	450	525
	5.96	36	72	107	143	179	214	250	286	322	358	393
$61 / 2 \times 61 / 2$	12.	72	144	216	288	360	432	504	576	648	720	792
$6 \times$	7.38	44	89	133	127	221	266	310	$3 \mathrm{3}, 4$	399	44:3	487
	10.22	61	123	184	245	307	368	429	490	5.1	613	674
	8.52	51	102	153	204	255	307	358	409	460	511	562
	6.82	41	82	123	164	204	24.5	286	327	368	409	450
	5.11	31	61	92	123	153	184	214	245	$2 \sim 6$	307	337
$51 / 2 \times 51 / 2$	8.59	52	103	155	206	258	309	361	412	464	515	567
5$\times 4$$\times 5$	6.25	37	75	112	150	188	225	26.	300	337	375	412
	7.10	43	85	128	170	21.3	$\because 56$	298	341	383	426	469
	5.68	34	68	102	136	$1 \% 0$	205	239	2 \% 2	307	341	375
$41 / 2 \times 41 / 2$	5.75	35	69	104	138	173	207	242	276	311	315	380
$\times 4$$4 \times 4$	5.11	31	61	92	123	153	184	215	246	$2 \sim 6$	${ }^{30} 1$	338
	4.54	27	55	89	109	136	184	191	218	246	272	300
	3.97	24	48	72	96	119	143	167	181	215	238	262
	3.40	20	41	61	8.2	102	122	143	163	184	204	224
$31 / 2 \times 31 / 2$	3.48	21	42	63	84	104	125	146	167	188	209	230
+ $\times 3$	2.98	18	36	54	72	89	107	125	14:?	161	179	197
3×3	2.56	15	31	46	61	7%	92	108	123	138	154	169

SHZES AND WEIGHTS OF S'RRUCTURAL SHAPES. Ninimum, Naximum, and Intermediate Weights and Dimensions of Carnegie Steel I-Beams.

$\begin{gathered} \text { Sec- } \\ \text { tiou } \\ \text { Index } \end{gathered}$	Depth of Beam	Wright per Foot.	Flange Width.	Web Thickness.	$\begin{aligned} & \text { Sec. } \\ & \text { tion } \\ & \text { Index } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Beam. } \end{aligned}$	Weight pel Foot	Flange Width.	$\begin{aligned} & \text { Web } \\ & \text { Thick- } \\ & \text { ness. } \end{aligned}$
	ins.	lbs.	ins.	ins.	B19	ins.	Ibs.	ins.	ins.
B1	24	10095	7. 25	0.75		6	17,25	3.58	048
			7.19	0.69		"	14.75	345	0.35
6	"	95 90	\%.13	0.63	"	"	12. 25	3.33	0.23
"	"	85	7.07	0.57	B21	5	14.75	3.29	0.50
"	"	80	7.00	0.50		"	12. 25	3.15	0.36
B3	20	\%	640	0.65	"	"	9.75	3.00	0.21
		\%0	633	0.58	B23	4	10.5	2.88	0.41
6		65	6.25	0.50		"	9.5	2.81	0.34
B80	18	10656	6 - 26	0.72	"	"	85	2.73	026
			6.18	0.64	'6	"	7.5	2.66	0.19
"	"	60	6.10	0.56	B77	3	7.5	2.52	0.36
B7	"	55	6.00	046		"	6.5	2.42	0.26
	15	55	5. $\%$	0.16		\because	5.5	233	017
-	\%	50	5.65	0.56	B2	20	100	7.28	0.88
"		45	5.55	0.46			95	7.21	0.81
"	"	42	5.50	041	"	"	90	7.14	0.74
B9	12	35	5.09	044	"	"	85	\%. 06	0.66
		31.540	5.00	035		'6	80	7.00	0.60
B11	10		5.10	0.75	B4	15	100	6.77	1.18
	10	3530	4.95	0.60			95	6.68	1.09
"	"		4.81	0.46	"	"	90	6.58	099
"	"	20	4.6 .5	0.31	\cdots	'6	85	6.48	0.89
B13	9	35	4.77	0.73	"	"	80	6.40	0.81
		30	4.61	0.57	B5	15	75	6.29	088
'6	،	25	4.45	0.41			\% 0	6.19	0.78
"	"		4.333	0.29	.	"	65	6.10	0.69
B15	8	25.5	4.27	0.54		*	60	6.00	0.59
	"	23	418	0.45	B8	12	55	5.61	0.82
"		205	4.09	0.36	4	"	50	5.49	0.70
B17	7	18	4.00	027	"	"	45	5.37	0.58
		20	3.87	046	'6		40	5.25	0.46
	\% 6		3.76	0.35					
			3.66	0.25	$\begin{aligned} \therefore \mathrm{Se} \\ \because \mathrm{spt} \\ \because \mathrm{sia} \end{aligned}$	ectial" andard	beams,	he othe	$\begin{aligned} & \text { B8 are } \\ & \text { rs are } \end{aligned}$

Sectional area $=$ weight in lbs. per ft. $\div 3.4$, or $\times 0.2941$.
Werght inlbs. per foot $=$ sectional area $\times 3.4$.

Maximum and Minimum Weights and Dimensions of

 Carnegie Steel Deck Beams.| Section Index. | DepthofBram.inches. | Wright per Font, lbs. | | Flange Width. | | Web Thickness. | | Increase of Web and Flange per lb. increase of 11 eight. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min. | Max. | Min. | Max. | Min. | Max. | |
| B100 | 10 | 27.23 | 35. 00 | 5.25 | 5.50 | . 38 | . 63 | . $0: 2$ |
| B101 | 9 | 26.00 | 31.00 | 4.9 | 5.0 \% | . 44 | 57 | .033 |
| B102 | 8 | 20.15 | 24.48 | 5.00 | 5.16 | 31 | . 47 | . 037 |
| B103 | 7 | 18.11 | 22.46 | 4.8 亿 | 510 | 31 | . 54 | . 042 |
| B105 | 6 | 15.30 | 18.36 | 4.38 | 4.53 | . 28 | . 43 | . 049 |

Minimum, Maximum, and Intermediate Weights and Dimensions of Carnegie Standard Channels.

C1	15	55	3.82	0.82	C5	8	16.25	2.44	0.40
	'6	50	3. ${ }^{2}$	0.72		"	13.75	2.35	0.31
"	"	45	3.62	0.62	،	"	11.25	2.26	0.22
"	"	40	3.52	0.52	C6	7	19.\%5	2.51	0.63
"	"	35	3.43	0.43		"	1\%.25	2.41	0.53
\bullet	"	33	3.40	0.40	"	"	14.75	2.30	0.42
C2	12	40	3.42	0.66	"	"	12.25	2.20	0.32
		35	3.30	0.64	'6	"	9.75	2.09	0.21
"	"6	30	3.17	0.51	C^{7}	6	15.50	2.28	0.56
"	"	25	3.05	0.39		"	13.5	2.16	0.44
"	'6	20.5	2.94	0.28	\%	"	10.50	2.04	0.32
C: 3	10	35.	3.18	0.82	"	"	8	1.92	0.20
	"	30	3.04	0.68	C8	5	11.50	2.04	0.48
"	"	25	2.89	0.53		"	9	1.89	0.33
"	"	20	2.74	0.38	"	\%	6.50	1.75	0.19
"	"	15	2.60	0.24	C9	4	7.25	1.73	0.33
C4	9	25	2.82	0.62	\%	،	6.25	1.65	0.25
	"	20	2.65	0.45	-	"	5.25	1.58	0.18
"	"	15	2.49	0.29	C7\%	3	6	1.60	0.36
"	"	13.25	2.43	0.23		"	5	1.50	0.26
C5	8	21.25 18.75	2.62	0.58	6	،	4	1.41	0.17

Weights and Dimensions of Carnegie Steel Z-Bars.

		Size.					Size.		
			$$					E	
Z1	$3 / 8$	$31 / 2$	6	15.6	Z6	$3 / 4$	$35 / 16$	$51 / 16$	26.0
	$7 / 16$	$39 / 16$	$61 / 16$	18.3		13/16	$3 \mathrm{3} / 8$	$51 / 8$	28.3
	1/9	$3 \mathrm{5} / 8$	$61 / 8$	21.0	Z7	1/4	$31 / 16$		8.2
Z:	$9 / 16$	3112		22.7		5/16		$41 / 16$	10.3
	$5 / 8$	3 9/16	${ }_{6}^{6} 1 / 16$	25.4	"	$3 / 8$	$\begin{array}{lll}3 & 3 / 16\end{array}$	$41 / 8$	12.4
"	11/16	$35 / 8$	${ }^{6}$ 1/8	28.0	Z8	7/16	3 $31 / 16$		13.8
Z3	3/4	$31 / 2$		$\stackrel{29.3}{ }$		$1 / 2$	$31 / 8$	$41 / 16$	15.8
	13/16	$39 / 16$	${ }_{6} 61 / 16$	32.0		$9 / 16$	3 3 3/16	$41 / 8$	17.9
"	7/8	$3 \mathrm{5} / 8$	$61 / 8$	34.6	Z9	5/8	$\begin{array}{ll}3 & 1 / 16\end{array}$	4 1/16	18.9
7.4	5/16	$31 / 4$	5	11.6		11/16	$3{ }^{3} 1 / 8$	$41 / 16$	20.9
	3/88	3 $5 / 1 / 16$	$\begin{array}{lll}5 & 1 / 16 \\ 5 & 16\end{array}$	13.9 16.4		$3 / 4$	$\begin{array}{lll}3 & 3 / 16 \\ 2 & 11 / 16\end{array}$	${ }_{3}^{4} 11 / 8$	22.9
Z5	7/16	3 3 3	5 1/8	16.4	Z10	546	${ }_{2}^{2} 11 / 16$		6.7
Z5		$31 / 4$		17.8		5/16	$2{ }^{2} 31 / 4$	${ }_{3} 1 / 16$	8.4
	$9 / 16$	${ }_{3}^{3} 5$ 5/16	${ }_{5}^{5} 1 / 16$	20.2	Z11	\%	${ }_{2}^{2} 11 / 16$	3	9.7
Z6	11/16	$\begin{array}{ll}3 & 3 / 8 \\ 3 & 1 / 4\end{array}$		23.7	Z12	\%/1/2	$\begin{array}{ll}2 & 1 / 4 \\ 2 & 11 / 16\end{array}$		11.4 12.5
						9/16	2 314	$31 / 16$	14.2

Pencoyd Steel Angles.
EVEN LEGS.

	Approximate Weight in Pounds per Foot for Various Thicknesses in Inches.														
Inches.	$1 / 8$	$\begin{array}{r} 3 / 16 \\ 5.1875 \end{array}$		5/16\|		$7 / 16$.4375	1/2	$\left\|\begin{array}{l}9 / 16 \\ .5625\end{array}\right\|$	$\begin{aligned} & 5 / 8 \\ & .625 \end{aligned}$	$\left\|\begin{array}{c} 11 / 16 \\ .6875 \end{array}\right\|$	$\begin{aligned} & 3 / 4 \\ & .75 \end{aligned}$	$\left.\begin{array}{r} 13 / 16 \\ .8125 \end{array} \right\rvert\,$	$\left.\begin{array}{\|l\|} \hline 7 / 8 \\ .875 \end{array} \right\rvert\,$	$\begin{array}{r} 15 / 16 \\ .9375 \end{array}$	$\begin{array}{l\|l} 5 & 1 \\ 5 & 1.00 \end{array}$
8×8							26.4	29.8	33.2	36.6	39.0	42.4	45.8	49.3	52.8
6×6					14.8	17.3	19 ก	22.0	244		$2 \% .8$	31.0	33.4	35.9	
5×5					12.3	14.3	16.3	18.2	20.1		23.8	25.6		29.4	
4×4					9.8	11.3	12.8	14.5	15.8	17.2	18.6				
$31 / 2 \times 31 / 2$				7.1	8.5	98	11.1	12.4	13.7						
3×3				6.1		8.3	9.4	10.4	11.5						
$23 / 4 \times 23 / 4$				5.5											
$21 / 2 \times 21 / 2$				5.0											
$2{ }^{21 / 4} \times 21 / 4$				4.5	5.4 4.8										
$13 / 4 \times 13 / 4$		2.1		3.5											
$11 / 2 \times 11 / 2$	1.2	1.8		2.8											
$11 / 4 \times 11 / 4$	10	1.5													
1×1	0.8		1.5												

UNEVEN LEGS.

ze in	Approximate Weight in Pounds per Foot for Various Thicknesses in Inches.														
Iuches.	1/8	$3 / 16$.1875	1/4	$5 / 16$.3125	$\begin{aligned} & 3 / 8 \\ & .375 \end{aligned}$	\sim 1616	1/2	$\left\|\begin{array}{\|} 9 / 16 \\ .5625 \end{array}\right\|$	5/8	$\begin{array}{\|r\|} 11 / 16 \\ .6875 \\ \hline \end{array}$	3/75	$\left\|\begin{array}{r} 13 / 16 \\ .8125 \end{array}\right\|$	$\begin{aligned} & 7 / 8 \\ & .875 \end{aligned}$	$\left.\begin{array}{\|r} 15 / 16 \\ .9375 \end{array} \right\rvert\,$	$\begin{gathered} 1 \\ 1.00 \end{gathered}$
							23.0	25.8	28.7	31.7	33.8	36.6	39.5	42.5	4.6
$7 \times 31 / 2$							11.0	19.0	21.0	23.0	24.8	26.7	:8.6	30.5	38.5
$61 / 2 \times 4$					12.9	15.0	17.0	19.0	21.2	23.4	25.6	27. 8	$\because 9.8$	31.9	
6×4					$12 . \%$	14.3	16.3	18.1	$\because 0.1$	22.0	$\because 3.8$	25.6	27	29.4	
$6 \times 31 / 2$					11.6	13.6	15.5	17.1	19.0	20.8	$\because 2.6$	24.5	$\therefore 6.5$	28.6	
$51 / 2 \times 31 / 2$					11.0	12.8	14.6	16.2	17.9						
5×4					11.0	12.8	14.6	16.2	17.9		21.3				
$5 \times 31 / 2$				8.7 8.2	10.3	12.0	13.6	15.2	16.8	18.4	20.0				
5×3 $41 / 2 \times 3$				8. 7.7 7.7	9.7	11.2	12.8	14.2	15.	17.2	18.7				
$41 / 2 \times 3$					9.1	10.5	11.9	13.3	14.	16.6	17. 4				
$4 \times 31 / 2$				7.7	9.1	10.5	11.9	13.3	14. ${ }^{\text {¢ }}$	16.0	17.4				
4 1				7.1	8.5	9.8	11.1	12.4	13.8						
$31 / 2 \times 3$				6.6	7.8	8.1	10.3 9.4	11.6	12.9						
31/2 $\times 21 / 2$				6.1	7.2	8.3	9.4								
$31 / 2 \times 2$				5.5	6.6										
$\begin{array}{ll}3 & \times 21 / 2 \\ 3 & \times 2\end{array}$				5.5	6.6 5.9	7.7	8.7 7.9								
$21 / 2 \times 2$		2.7	3.6	4.5	5.4	6.2	7.0								
$21 / 4 \times 11 / 2$			3.9	3.7	4.4										
2×112			$\stackrel{.}{9}$	3.6	4.3										
$2 \times 11 / 4$				3.3	3.9										

A NGLE-COVERS.

Size in Inches.	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8
3×3		4.8	5.9	7.1	8.2	9.3	10.4	11.5
$23 / 4 \times 23 / 4$		4.4	5.5	6.6	\% 7.7	8.8		
$21 / 2 \times 21 / 2$	3.0	4.0	5.0	6.0	7.0	8.1		
$21 / 4 \times 214$	2.6	3.5	4.4	53				
2×2	2.4	3.2	4.0	4.8				

SQUARE-ROOT ANGLES.

Size in Inches	Approximate Weight in Pounds pei Fout for Various Thicknesses in Iuches.						size in Inches.	A pproximate Weight in Ponnds per Foot for Various rhicknesses in incles				
	1/4	$5 / 14$.3125	$3 / 8$ $3 / 5$	$7 / 16$.4375	1/2	$\left\lvert\, \begin{array}{cc}9 / 16 & 5 / 8 \\ .5625 & .685\end{array}\right.$		$1 / 8$.125	$3 / 13$ $.18 i 5$	$1 / 4$.25	5/16 .3125	$3 / 6$ 375
4×4			9.8	11.4		14.616 .2	2×2			3.3	4.1	. 9
$31 / 2 \times 31 / 2$		7.1	8.5	9.9	11.4		$13 / 4 \times 13 / 4$			2.9	36	4.4
3×3	4.9	6.1	7.2	8.3	9.4		$11 / 2 \times 11 / 2$		1.80	2.4	3.0	
$23 / 4 \times 23 / 4$	4.5	5.6	6.7	7.8	8.9		$11 / 4 \times 11 / 4$		1.53	2.04	2.55	
$21 / 2 \times 21 / 2$	4.1	5.1	6.1	7.1	8.2		1×1	0.82	1.16	1.53		
$21 / 4 \times 21 / 4$	3.6	4.5	5.4									

Pencoyd Tees.

Pencoyd Miscellaneous Shapes.

Sectinn Number.	Section.	Size in Iuches.	Weight per Foot in Pounds.
$\begin{aligned} & 21 \mathrm{H} \\ & 20 \mathrm{M} \\ & 260 \mathrm{M} \end{aligned}$	Heavy rails. Floor-bars.	$\begin{aligned} & 31 / 16 \times 4 \times 31 / 16 \times 1 / 4 \text { to } 1 / 2 \\ & 21 / 2 \times 6 \times 21 / 2 \times 1 / 4 \text { 10 } 3 / 8 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 7.1 \text { to } 14.3 \\ & 9.8 \text { to } 14.7 \end{aligned}$

SIRES AND WEIGHTS OF ROOFING MATERIALS.
Corrugated Iron. (The Cucimatị Corrugating ('o.)
SCHEDULE OF WEIGHTS.

	Thickness in decimal parts of an inch. Flat.	Weight per 100 sq. ft. Flat, Painted.	Weight per 100 sq. ft. Corrugated and Painted.	Weight per 100 sq. ft. Cormyated and Galvanized.	Weight in oz. per sq. ft. Flat, Galvanized.
No. 28	. 015625	$6.1 / 2 \mathrm{lbs}$.	70 lbs .	86 l lbs .	121/2
No. 26	. 01845		81	99 "	$11 / 2$
No. 24	. 025	100	111 "	127 "	181/2
No. $2 \cdot$. 03125	125	138 "	154 '	$221 /{ }^{\prime \prime}$
No. 20	.03\%5	150	16.5 "	182 "	261/2
No. $1 \times$. 05	200	220 "	$2 ? 6$	$341 / 2$ "
No. 16	. 0625	2.50	2%	291	$421 / 2{ }^{\prime}$

The above table is on the basis of sheets rolled according to the U. S. Standard Sheet-metal (iauge of 1893 (see page 31). It is also ou the basis of $24 \not 2 \times 5 / 8 \mathrm{in}$. corrugations.
To estimate the weight per 100 sq . ft . on the roof when lapped one corrugation ht sides and 4 in . at ends, add approximately $121 / 2 \%$ to the weights per 100 sq. ft., re pectively, given above.
Currusations $21 / 2$ in wide by $1 / 205 / 8 \mathrm{in}$. deep are recngnized generally as the standard size for both roofing and siding; sheets are manufactured usually in lengths $6,7,8,9$, and 10 ft ., and have a wiuth of $261 / 2$ or 26 in . outside width-ten corrugations,-and will cover 2 ft . wheu lapped one corrugation at sides.

Ordinary corrugated sheets should have a lap of $11 / 2$ or 2 corrugations sidelap for roofing in order to secure water-tight side seams; if the roof is rather steep $11 / 2$ corrugations will answer.

Some manufacturers make a special high-edge corrugation on sides of sheets (The Cincinnati Corrugating Co), and thereby are enabled to secure a water-proof side-lap with one corrugation only, thus saving from 6% to 12% of material to cover a given ares.
The usual width of flat sheets used for making the above corrugated material is $281 / 4$ inches.

No. 28 gauge corrugated iron is generally used for applying to wooden buildings; but for applying to iron framework No. 24 gauge or heavier should be adopted.

Few manufacturers are prepared to corrugate hearier than No. 20 gauge, but some have facilities for corrugating as heavy as No. 12 gauge.

Ten fret is the limit in length of corrugated sheets.
Galvanizing sheer iron adds about $21 / 2 \mathrm{oz}$. to its weight per square foot.

Corrugated Arches.

For corrugated curved sheets for floor and ceiling construction in fireproof buildings, No. 16, 18, or 20 gauge iron is commonly used, and sheets may be curved from 4 to 10 in . rise-the higher the rise the stronger the arch.

By a series of tests it has been demonstrated that corrugated arches give the most satisfactory results with a base length not exceeding 6 ft ., aud 5 ft . or even less is preferable where great strength is required.

These corrusated arches are usually made with $21 / 2 \times 5 / 8$ in. corrugations, and in same width of sheet as above mentioned.

Terra=Cotta.

Porous terra-cotta roofing $3^{\prime \prime}$ thick weighs 16 lbs . per square foot and $2^{\prime \prime}$ thick, 12 lbs. per square foot.

Ceiling made of the same material $2^{\prime \prime}$ thick weighs 11 lbs . per square foot.

Tiles.

Flat.tiles $61 / 4^{\prime \prime} \times 101 / 2^{\prime \prime} \times 5 / 8^{\prime \prime}$ weigh from 1480 to 1850 lbs. per square of roof (100 square feet). the lap being one-half the length of the tile.

Tiles with grooves and fillets weigh from $\tilde{4} 40$ to 925 lb s. per square of roof.
Pan-tiles $141 / 2^{\prime \prime} \times 101 / 2^{\prime \prime}$ laid $10^{\prime \prime}$ to the weather weigh 850 lbs . per square.

Tin Plate-Tinned Sheet Steel.

The usual sizes for roofing tin are $1 t^{\prime \prime} \times 20^{\prime \prime}$ and $20^{\prime \prime} \times 28^{\prime \prime}$. Withnut allnwance for lip or waste, tin roofing weighs from 50 to 62 lbs . per square.

Tin on the roof weighs from 6.2 to 75 lbs . per square.
Roofing plates or terne plates (steel plates coated with an alloy of tin and lead) are made only in IC and IX thickuesses (27 and 29 Birmingham gauge). "Coke" and "charcoal" tin plates, oid names used when iron made with coke and charcoal was used for the tinned plate, are still used in the trade, although steel plates have been substituted for iron: a coke plate now commonly meaning one made of Bessemer steel, and a charcoal plate one of open-hearth steel. The thickness of the tin coating on the plates varies with different " brands."

For valuable information on Tin Roofing, see circu!ars of Merchant \& Co., Philadelphia.

The thickness and weight of tin plates were formerly designated in the trade, both in the United States and England, by letters, such as I.C., D.C., I.X., D.X., etc. A new system was introduced in the United States in 1898, known as the "American base-box system." The base-box is a package containing $3:, 000$ square inches of plate. The actual boxes used in the trade contain $60,1: 0$, or 240 sheets, according to the size. The number oi square inctes in any given box divided by 32,000 is known as the "box ratio." This ratio multiplied by the weight or price of the base-box gives the weight or price of the given box. Thus the ratio of a box of 120 sheets $14 \times 20 \mathrm{in}$. is $33,600 \div 32,000=1.05$. and the price at $\$ 3.00$ base is $\$ 3.00 \times 1.05=\$ 3.15$. The following tables are furnished by the American Tin Plate Co.. Chicago, Ill.

Comparison of Gauges and Weights of rin Plates.

(Based on U. S. Standard Sheet-metal Gauge.)

AMERICAN BASE-BOX. ($32,000 \mathrm{sq} . \mathrm{in}$.)	
Weight.	Gauge.
55 los	No. 38.00
60 "	36.72
65 "	" 35.64
\%0 ${ }^{\text {a }}$	" 34.92
75	" 3420
80 "	" 33.48
85 "	" 3.2.76
90 "	" 32.04
95	" 31.32
100	" 30.80
110 "	" 30.08
130 "	" 28.64
140 "	" 27.92
160 "	" 26.48
180	" 25.50
200 "	" 24.80
220	" 24.08
240 "	" 23.36
260	" 22.64
280	" 21.92
140 "	27.93
180 "	" 25.59
220 "	" 24.08
240 "	" 23.36
280 "	" 21.92

ENGLISH BASE-BOX.
$(31,360$ Sq. in)
Weight.

American Packages Tin Plate.

Inches Wide.	Length.	sheets per Box	In hes Wille.	Length.	Sheets per Box
		240	12	171/4 and longer.	120
		120	113 " $133 / 4$	To 16 in. long. in	240
		60	13 to $13.3 / 4$	$161 / 4$ and longer	1:0
		240	14.61434	To 15 in. long, incl	240
		240	14 "143/4	$151 / 4$ and longer.	120
		$1: 0$	$\|$15 6 253 1	All lengths.	0
		240	26 " 30	11 lengths.	

Small sizes of light base weights will be packed in double boxes.

Slate.
Number and superficial area of slate required for one square of roof.
(1 square $=100$ square feet.)

$\begin{gathered} \text { Dimensions } \\ \text { in } \\ \text { Inches. } \end{gathered}$	Number per Square.	Superficial Area in Sq. Ft.	Dimensions in Inches.	Number per Square.	Superficial Area in Sq. Ft.
6×12 7×12	533 4.7	267	12×18 10×20	160 169	$\begin{aligned} & 240 \\ & 235 \end{aligned}$
8×12	400		11×20	154	
9×12	355		12×20	141	
7×14	$3{ }^{3} 4$	254	14×20	121	
8×14	327		16×20	137	
9×14	$\stackrel{291}{9}$		12×2	129	231
10×14 8×16	261	246	14×22 12×24	114	228
9 9×16	246		14×24	98	
10×16	221		16×24	86	
9×18	213	240	14×26	89	225
10×18	192		16×26	78	

As slate is usually laid, the number of square feet of roof covered by one slate can be obtained from the following formula:
$\frac{\text { width } \times(\text { length }-3 \text { inches) }}{288}=$ the number of square feet of roof covered.
Weight of slate of various lengths and thicknesses required for one square of roof :

$\begin{aligned} & \text { Length } \\ & \text { in } \\ & \text { Inches. } \end{aligned}$	Weight in Pounds per Square for the Thickness.							
	$1 / 8^{\prime \prime}$	3-16"	1/4"	$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$
12	483	724	967	1450	1936	2419	${ }_{2}^{2902}$	38\%2
14	460	688	920	$13{ }^{139}$	1842	2301	2 2\%60	3683
16	445	667	890	1336	1784	$2 \cdot 29$	${ }_{2607}$	3.67 3480
18	434	650	869	1303	1740	2174	2607	3480 3408
20	425	637	851 836	1276	1764	2129	2508	33.50
22 24	418	${ }^{626}$	885	12:38	1653	2066	2478	3306
26	407	610	815	1222	1631	2039	2445	3263

The weights given above are based ou the number of slate required for one square of roof, taking the weight of a cubic foot of slate at 175 pounds.

Pine Shingles.

Number and weight of pine shingles required to cover one square of roof:

Number of Inches Exposed to Weather.	Number of Shingles per Square of Roof.	Weight in Pounds of Shingle on One-square of Roofs.	Remarks.
4	900	216	The number of shingles per square is
412	800	192	for common gable roofs. For hip-
5	720	173	roofs add five per cent. to these figures.
$51 / 2$	655	157	The weights per square are based on
6	6p0	144	the number per square.

Skylight Glass.

The weights of various sizes and thicknesses of fluted or rough plate-glass required for one square of roof.

Dimensions in Inches.	Thickness in Inches.	Area in Square Feet.	Weight in Lbs. per Square of Roof.
12×48	$3-16$	3.997	250
15×60	144	6.246	350
20×100	$3 / 8$	13.880	500
94×156	$1 / 2$	101.768	700

In the above table no allowance is made for lap.
If ordinary window-glass is used, single thick glass (about 1-16") will weigh about $8: 2$ lbs. per square, and double thick glass (about $1 / 8^{\prime \prime}$) will weigh about $16+\mathrm{lbs}$. per square, no allowance being made for lap. A box of ordinary window-glass contains as nearly 50 square feet as the size of the panes will admit of. Panes of any size are made to order by the manufacturers, but great variety of sizes are usually kept in stock, ranging from 6×8 inches to 36×60 inches.

APPROXIMATE WEIGHTS OF VARIOUS ROOF COVERINGS.

For preliminary estimates the weights of various roof coverings may 0 takeu as tabulated below (a square of roof $=10 \mathrm{ft}$. square $=100 \mathrm{sq}$. ft^{2}.;:

> Name. \quad Weight in Lbs. per
> Sauare of Rone Square of Roof.
Cast-iron plates ($3 / 8^{\prime \prime}$ thick) 1500
Copper.
80-125
Felt and asphalt. 100
Felt and gravel $800-1000$
Iron, corrugated 100-375
Iron, galvanized, flat.............................. $100-350$
Lath and plaster..... $900-1000$
Sheathing, pine, $1^{\prime \prime}$ thick yellow, northern.. 300
Spruce, $1^{\prime \prime}$ thick $\quad 200$
Sheathing, chestnut or maple, $1^{\prime \prime}$ thick...... 400 ash, hickory, or oak, $1^{\prime \prime}$ thick.... 500
Sheet irnn ($1-16^{\prime \prime}$ thick)....................... 30.
". "، and laths............. 500
Shingles pine....................................... 200
Slates (1/4" thick).. $9(11)$
Skylights (glass $3-16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ thick)........... 250-700
Sheet lead.. 500-809
Thatch... 650
Tin. 70 . 125
Tiles, flat... . 1500-2000
" (grooves and fillets)...................... \quad r00-1000
" pan... 1000
" with mortar... 2000-3000
Zinc.. $100-200$

Approximate Loads per Square Foot for Roofs of Sparis under 75 Feet, Including Weight of Truss.

Roof covered with slate, on laths 13
Same, on boards, $11 / 4 \mathrm{in}$, thick 16 6
Roof covered with shingles, on laths 10
Add to above if plastered below rafters 10 "
Snow, light, weighs per cubic foot 5 to 12 "

For spans over $\% 5$ feet add 4 lbs. to the above loads per square foot.
It is customary to add 30 lbs . per square foot to the above for snow and wind when separate calculations are not made.

WEIGHT OF OAST-IRON PIPES OR COLUMNS.

In Libs. per Lineal Foot.
Cast iron $=450 \mathrm{lbs}$. per cubic foot.

Bore.	Thick. of Metal	Weight per Foot.	Bore.	Thick. of Metal	Weight per Foot.	Bore.	Thick. of Metal.	Weight per Foot
${ }_{3}^{\text {Ins. }}$	Ins. 	Lbs.	Ins.	Ins.	Lbs.	Ins.	Ins.	Lbs.
		12.4	10	$3 / 4$	79.2	22	$3 / 4$	167.5
		17.2	101/8	$1 / 2$	54.0		88	196.5
		22.2		5/8	68.2	23	3	174.9
31/2		14.3		$3 / 4$	82.8		7/8	205.1
		19.6	11	$1 / 2$	56.5			235.6
		25.3		5/8	71.3 86.5	24	$3 / 4$	182.2
4		${ }_{2}^{16.1}$	111/2	3	86.5 58.9		$7 / 8$	213.7 245.4
		28.4		5	74.4	25	$3 / 4$	189.6
41/2		17.9		$3 / 4$	90.2		$7 / 8$	22.3
		24.5	12	18	61.3			255.3
		31.5		588	77.5	26	34	197.0
5		19.8 27.0	121/2	$3 / 4$	93.9 63.8		\%	230.9
		34.4		5	80.5	27		204.3
51/2		21.6		$3 / 4$	97.6		8	239.4
		29, ${ }_{3}$	13		66.3			234.9
6		37.6 23,5		5/8	83.6 101.2	28	34	211.7
		31.8	14	1	71.2			284.7
		40.7		5/8	89.7	29	$3 / 4$	219.1
61/2		25.3			108.6		18	256.6
		34.4	15	888	95.9		18	294.5
7		43.7 27.1		384	116.0 136.4	30	8/8	265.2
		37.1	16	5	136.4 102.0		$11 / 8$	304.3
71/2		46.8		$3 / 4$	123.3	31	8	$2 \tau 3.8$
		39.0			145.0		11	314.2
		39.3 49.9	17	\% 3	108.2	32	11/8	354.8 28.4
8		30.8		8	153.6	32		2824.0
		41.7	18	5/8	114.3		11/8	365.8
81/2		52.9		34	138.1	33	7/8	291.0
		44.2 56.0	19	7/8	16.2 .1 120.4		1	3913.8 376.9
9		681	19	38	120.4	34	/8	310.9 299.6
		46,6		78	170.7		1	343.7
		59.1	20	5/8	126.6		11/8	388.0
91/2		\%1.8		34	159.8	35	7/8	308.1
		49.1		7/8	179.3		11	353.4
		6.2 .1 75.5	21	9/8	132.7 160.1		$11 / 8$	399.0
		51.5		84	160.1 187.9	36	$1^{7 / 8}$	316.6 363.1
		65.2	22	5/8	148.8		11/8	410.0

The weight of the two flanges may be reckoned $=$ weight of one foot.

WEIGHTS OF CAST-IRON PIPE TO LAY 12 FEET LENGTH.

Weights are Gross Weights, including Hub.

(Calculated by F. H. Lewis.)

CAST-IRON PIPE FITTINGS. Approximate Weight.

(Addyston Pipe and Steel Ci., Cincinnati, Ohin.)

Size in Inches.	elgul Lbs.	Dize Inches.	leight n Lus	Dize 111 Inches.	ещ!й in Lbs.	Size in Inches.	Veight Lbs.	
CROSSES.		TEES		SLEEVES.		REDUCERS.		
2	4)	8×4	2:0	2	10	8×3	116	
3	110	8×3	220	3	25	10×8	$21:$	
3×2	93	10	390	4	45	10×6	170	
4	120	10×8	330	6	65	10×4	160	
4×3	114	10×6	370	8	80	12×10	3:0	
4×2	90	10×4	350	10	140	12×8	250	
6	200	10×3	310	12	190	12×6	250	
6×1	160	1\%	600	14	208	12×4	250	
6×3	160	12×10	555	16	3.50	14×12	475	
8	325	12×8	515	18	$3 \% 5$	14×10	440	
8×6	280	12×6	550	20	500	14×8	390	
8×4	265	12×4	525	24	$\uparrow 10$	11×6	285	
8×3	225	14×12	6.5	30	965	16×12	475	
10	575	14×10	650	36	1200	16×10	435	
10×8	415	14×8	$5{ }^{5} 5$	90° ELBOWS.		20×16	690	
10×6	450	14×6	545			20×14	575	
10×4	390	14×4	525	$\stackrel{3}{3}$	14	20×12	540	
10×3	350	14×3	490	3	34	20×8	400	
12:	'40	16	790	4	55	24×20	990	
12×10	6.50	16×14	850	6	120	30×24	1305	
12×8	$6: 20$	16×12	850	8	150	30×18	1355	
12×6	540	16×10	850	10	260	36×30	1730	
12×4	525	16×8	\% 55	12	370	ANGLE REDUCERS FOR GAS.		
12×3	495	16×6	680	14	450			
14×10	¢50	16×4	655	16	660			
14×8	635	18	1235	18	850	6×4	95	
14×6	570	20	$14 \% 5$	20	900	S PIPES.		
16	1100	20×16	1115	24	1400	S PIPES.		
16×14	10,0	20×12	1025	30	3000			
$16 \times 1,2$	1000	20×10	1090 900	1/8 or 45° BENDS.		6	105 190	
16×10	1010	20×8 20×6	900 875 8	3-30				
16×6	700	20×4	8	$4{ }^{4}$		PLUGS.		
16×4	650	20×10	1465	6	95	2 l		
18	1560	24	2000	$8 \quad 150$		3×10		
20	1\%90	24×12	1425	$10 \quad 200$		$4 \quad 10$		
20×12	1370	24×8	$13 \% 5$	$12 \quad 290$		8		
20×10	1225	24×6	1450	$16 \quad 510$		8		
20×8	1000	30	3025	18 280		$10 \quad 46$		
20×6	1000	30×24	2640	$20 \quad 780$		$12 \quad 66$		
${ }_{24}^{20 \times 4}$	1000 2400	30×20 30×12	2200 2035	$24 \quad 1425$		$14 \quad 90$		
$\stackrel{24}{24 \times 20}$	2400 2020	30×12 30×10	$20: 55$ 2050		$30 \quad 2000$	18 20 130 150		
24×20 24×6	$20: 0$ 1340	30×10 2050 30×6 1825		$1 / 16$ or 2212°BENDS.				
30×20	2635	${ }_{36} 0 \times 6$	18140	BENDS.		34 30	185360	
30×12	2250	36×30	4200	${ }_{8}$	150			
30×8	1995	36×12	4050	$8 \quad 155$		CAPS.		
TEES.		$\begin{aligned} & 45^{\circ} \text { BRANCH } \\ & \text { PIPES. } \end{aligned}$		$\begin{aligned} & 12 \\ & 16 \\ & 24 \\ & 30 \end{aligned}$	260450	30		
2	28			4		25		
3	80			1280	6	60		
3×2	\%6	3	90		2000	8	75	
4	100	4	125		REDUCERS.		$\begin{aligned} & 10 \\ & 1: 2 \\ & \hline \end{aligned}$	100
4×3	90	${ }_{6}^{6} \times 6 \times 4$	205					120
${ }_{6} \times 2$	87 150	$\underset{8}{6 \times 6 \times 4}$	145	3×2 4×3	420	DRIP BOXES.		
6×4	145	8×6	3:30	4×3 40 4×2 95 6×4 95 6×3 10 8×6 126 8×4 116		4681020	295	
6×3	145	24	2765			330		
6×2	75	$24 \times 24 \times 20$	2145			375		
8	300	30	4170			$8 i 5$		
8×6	270	36	10:300			1420		

WEIGHTS OF CAST-IRON WATER- AND GAS-PIPE.

(Addyston Pipe and Steel Co., Cincinnati, Ohio.)

$\begin{aligned} & \equiv \dot{0} \\ & \dot{0} 0 \\ & \dot{U} \tilde{U} \end{aligned}$	Standard Water-pipe.				Standard Gas-pipe.		
	Per Foot.	Thickness.	Per Length.		Per Foot.	Thickness.	Per Length.
2	7	5/16	63	2	6	1/4	48
3	15	$3 / 8$	180	3	121/2	5/16	150
3	17	$1 / 2$	204				
4	23	/3	264	6	17 20		204 360
6	33	/2	396	${ }_{8}^{6}$	30	$r / 16$	360
8	42	$1 / 2$	504	8	40	\%/16	480
10	60	$91 / 16$	540	10	50		
12	\%5	$9 / 16$	900	12	$\%$	1/2	840
14	117	$3 / 4$	1400	14	84	9/16	1000
16	125	34	1500	16	100	$9 / 16$	1200
18	167	7/8	2000	18	134	11/16	1600
20	200	15/16	2400	20	150	11/16	1800
24	250	1	3000	24	184	$3 / 4$	2200
30	350	$11 / 8$	4:00	30	250	3	3000
36	$4 \% 5$	$13 / 8$	5700	36	3.50	7/8	4200
42	600	$13 / 8$	7200	42	417	15/16	5000
48	2T5	11/2	93310	48	542	11/8	6500
60	1330	2	15960	60	900	$13 / 8$	10800
72	18:35	$21 / 4$	2:0:0	72	1 250	11/2	15000

THECKNESS OF CAST-IRON WATER-PIPES.

P. H. Baermann, in a paper read before the Engineers' Club of Philadelphia in $188:$, gave twenty different formulas for determining the thick. ness of cast-iron pipes under pressure. The formulas are of three classes:

1. Depending upon the diameter only.
2. Those depending upon the diameter and head, and which add a constant.
3. Those depending upon the diameter and head, contain an additive or subtractive term depending upon the diameter. and add a constant.
The more modern formulas are of the third class, and are as follows:

$$
\begin{aligned}
& t=.00008 h d+.01 d+.36 \ldots \ldots \ldots \text {.......Shedd, } \quad \text { No. } 1 . \\
& t=.00106 h d+.0133 d+.296 \ldots \ldots . . \text {.......Warren Foundry, No. 2. } \\
& t=.000058 h d+.0152 d+.312 \ldots . \text {.........Francis, No. } 3 . \\
& t=.000048 \iota d+.013 d+32 \ldots \text {. Dupuit, No. } 4 . \\
& t=.00004 h d+.1 \sqrt{d}+.15 \ldots . . \text {....... Box, No. } 5 . \\
& t=.000135 \mathrm{~h} d+.4-.0011 d \ldots \ldots \ldots . . . \text {. Whitman, } \quad \text { No. } 6 . \\
& t=.00006(h+230) d+.333-.0033 d \ldots . . \text { Fanning, No. } 7 . \\
& t=.00015 h d+.25-.0052 d \ldots \text { Meggs, No } 8 .
\end{aligned}
$$

In which $t=$ thickness in inches, $h=$ head in feet, $d=$ diameter in inches.
Rankine, "Civil Engineering," p. 721, says: "Cast-iron pipes should be made of a soft and tough quality of iron. Great attention should be paid to moulding them correctly, so that the thickness may be exactly uniform all round. Each pipe shonld be tested for ir-bubbles and flaws by ringing it with a hammer, and for sitrength by exposing it to roulle the intended greatest working pressure." The rule for computing the thickness of a pipe to resist a given working pressure is $t=\frac{r p}{f}$, where r is the radius in inches, p the pressure in pounds per square inch, and f the tenacity of the iron per square inch. When $f=18000$, and a factor of safety of 5 is used, the above expressed in terms of d and h becomes

$$
t=\frac{.5 \lambda .433 h}{3600}=\frac{d h}{166288}=.00006 d h .
$$

"There are limitations, however, arising from difficulties in casting, and by the strain produced by shocks, which cause the thickness to be made greater than that given by the above formula."

Thickness of Metal and Welght per Length for Different Sizes of Cast-iron Pipes under Various Heads of Water.

(Warren Foundry and Machine Co.)

Size.	$\text { Ft. } \stackrel{50}{\text { Head. }}$		$\begin{gathered} 100 \\ \text { Ft. Head. } \end{gathered}$		150 Ft. Head.		$\begin{gathered} 200 \\ \text { Ft. Head. } \end{gathered}$		$\begin{aligned} & \text { Ft. Head. } \\ & \text { 250 } \\ & \text {. } \end{aligned}$		$\begin{gathered} 300 \\ \text { Ft. Head. } \end{gathered}$	
	$\begin{aligned} & \text { n } \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$											$\begin{aligned} & \text { an } \\ & \text { an } \\ & \text { an } \\ & 0.0 \\ & 0 \end{aligned}$
3	. 344	144	35, 3	149	. 362	153	. 371	$15 \sim$. 380	161	. 390	166
4	. 361	197	373	204	. 385	211	. 397	218	. 409	226	. 421	235
5	. 3 \% 8	254	:393	265	. 408	275	. 423	286	. 438	298	. 453	309
6	. 393	315	. 411	3:30	. 429	345	. 447	361	. 465	377	. 483	393
8	.422	445	. 450	475	. 474	$50 ?$	498	529	. 522	557	. 546	584
10	. 459	600	. 489	641	. 519	682	. 549	723	. 579	766	. 609	808
12	. 491	768	. 527	826	. 563	885	. 699	944	. 635	1004	. 671	1064
14	. 524	952	. 566	1031	. 608	1111	. 650	1191	. 692	$12 \sim 2$. 734	1352
16	. 5.57	1152	. 604	1253	. 652	1360	. 700	1463	. 448	1568	. 796	1673
18	. 589	1370	. 643	1500	. 697	1630	. 751	1761	. 805	1894	. 8.53	2026
20	. $6: 2$	1603	. 682	1763	. 442	1924	. 802	2086	. 862	2248	. 922	2412
24	. 687	21:0	. 759	2349	. 831	2580	. 903	2811	975	3045	1.047	3279
30	. 785	3020	. 875	3376	. 965	3735	1.055	4095	1.145	4458	1.235	4822
36	. 88.2	4070	. 990	45 S1	1.098	5096	1.206	5613	1.314	6133	1.422	6656
42	. 980	5265	1.106	5058	123.3	$665 \sim$	1.358	7360	1.484	80\%0	1.610	8804
48	1.018	6616	1.222	7521	1.366	8131	1.510	9340	1.654	10269	1.798	11195

All pipe cast vertically in dry sand; the 3 to 12 inch in lengths of 12 feet, all larger sizes in lengths of 12 feet 4 inches.

Safe Pressures and Equivalent Heads of Water for Castiron Pipe of Different Sizes and Thicknesses.

(Calculated by F. H. Lewis, from Fanning's Formula.)

Safe Pressures, etc., for Cast-iron Pipe.-(Continued.)

Thickness.	Size of Pipe.																
	22'	$24^{\prime \prime}$		$27^{\prime \prime}$		30"		33'		36 ${ }^{\prime \prime}$		$42^{\prime \prime}$		48'		60"	
11-16																	
$\begin{gathered} 3-4 \\ 13-16 \end{gathered}$	$\begin{array}{l\|l\|} 60 & 138 \\ 80 & 184 \\ \hline \end{array}$		$\begin{aligned} & 113 \\ & 157 \end{aligned}$	$\begin{gathered} 36 \\ 52 \\ 52 \end{gathered}$	$\begin{array}{r} 83 \\ 120 \end{array}$	24 39											
${ }_{7-8}$	101233	${ }^{86}$	198	69	159	54	124	42	97	32	74						
15-16	$\begin{array}{llll}121 & 279\end{array}$	105	242	85	196	${ }_{89}^{69}$	159	55	127	44	101						
1 1-8	${ }_{182}^{142} 424$	161	${ }_{371}$	135	311	114	${ }_{263}^{194}$	${ }_{96}^{69}$		527		$\stackrel{38}{59}$	138	${ }_{43}^{24}$	${ }_{99}^{55}$		
$11-4$	224516	199	458	169	389	144	332	124	286	107	247	81	187	62	143	Ss.	78
1 3-8		237	546				401	151	348	132	304	103	237	${ }_{89}^{81}$	187	49	113
$1{ }^{1} 1$ 1-2				236	544	204 204	470	178	410	157	346	114	288	${ }^{99}$	228	64	147
- 1 1-8						234	538	${ }_{23}^{205}$	537	${ }_{207}^{182}$	477	145	385	118	373	79 94	${ }_{21}^{182}$
1 7-8												188	433	155	357	109	${ }_{251}^{217}$
												210	$48 \pm$	174	401	124	286
2 1-8	-													19	445	139	320
$2{ }^{2} 1-4$													212	488	154	355
${ }_{2}^{23-4}$																214	484 482

Note.-The absolute safe static pressure which may be put upon pipe is given by the formula $P=\frac{2 T}{D} \times \frac{S}{5}$, in which formula P is the pressure per square inch; T, the thickness of the shell; S, the ultimate strength per square inch of the metal in tension; and D, the inside diameter of the pipe. In the tables S is taken as 18000 pounds per square inch, with a working strain of one fifth this amount or 3600 pounds per square inch. The formula for the absolute safe static pressure then is: $P=\frac{7200 T}{D}$.
It is, however, usual to allow for "water-ram" by increasing the chickness enough to provide for 100 pounds additional static pressure, and, to insure sufficient metal for good casting and for wear and tear, a further increase equal to $.333\left(1-\frac{D}{100}\right)$.
The expression for the thickness then becomes:

$$
T=\frac{(P+100) D}{7^{2} 00}+.333\left(1-\frac{D}{100}\right),
$$

and for safe working pressure

$$
P=\frac{7200}{D}\left(T-.333\left(1-\frac{D}{100}\right)\right)-100 .
$$

The additional section provided as above represents an increased value under static pressure for the different sizes of pipe as follows (see table in margin). So that to test the pipes up to one fifth of the ultimate strength of the material, the pressures in the marginal table should be added to the pressure-values given in the table above.

Size of Pipe.	Lbs.
$4^{\prime \prime}$	$6 \pi 6$
6	476
8	346
10	316
12	276
14	248
16	226
18	209
20	196
22	185
24	176
27	165
30	156
33	149
36	143
42	133
48	126
60	116

SHEET-IRON HYDRAULIC PIPE.

(Pelton Water-Wheel Co.)
Weight per foot, with safe head for various sizes of double-riveted pipe.

	鿖。								
in.	sq.in.	B.W.G.	feet.	lbs.	in.	sq.in.	B.G.W.	feet.	lbs.
3	7	18	400	2	18	254	16	165	161/2
4	12	18	350	21/4	18	254	14	$25: 2$	$2 \mathrm{n} 1 / 2$
4	12	16	525	3	18	254	12	385	$271 / 4$
5	20	18	325	31/6	18	254	11	424	30
5	20	16	500	$41 / 4$	18	254	10	505	34
5	20	14	675	5	20	314	16	148	18
6	28	18	296	41/4	20	314	14	$2 \cdot 7$	$221 / 2$
6	28	16	487	53	20	314	12	346	30
6	28	14	743	7112	20	314	11	380	3215
7	38	18	254	$51 / 4$	20	314	10	456	361/2
7	38	16	419	$63 / 4$	22	380	16	135	20
7	38	14	640	$81 / 2$	22	380	14	206	2434
8	50	16	367	71/2	22	380	12	316	$3: 39$
8	50	14	560	$91 / 2$	22	380	11	347	3534
8	50	12	854	13	22	380	10	415	40
9	63	16	32 \%	81/2	24	452	14	188	$2 \pi 1 / 4$
9	63	14	499	$103 / 4$	24	45.2	12	290	3512
9	63	12	761	1414	24	45:2	11	318	39
10	78	16	295	$91 / 4$	24	452	10	319	431/2
10	78	14	450	113/4	24	45%	8	466	53
10	\%8	12	687	$153 / 4$	26	530	14	175	2914
10	78	11	754	171\%	26	530	12	267	381/2
10	\% 8	10	900	191/4	26	530	11	$29+$	42
11	95	16	269	$93 / 4$	26	530	10	35%	47
11	95	14	412	13.	26	530	8	43%	$5 \pi 1 / 4$
11	95	12	626	1714	28	615	14	162	3114
11	95	11	687	183/4	28	615	12	247	4114
11	95	10	820	21	28	615	11	273	45
12	113	16	246	$111 / 4$	28	615	10	32%	501/4
12	113	14		14	28	615	8	400	611/4
12	113	12	574	181/2	30	706	12	231	44
12	113	11	630	$193 / 4$	30	706	11	254	48
12	113	10	753	$223 / 4$	30	706	10	304	54
13	13:	16	$2: 8$	12	30	$\tau 06$	8	$3 \% 5$	65
13	132	14	348	15	30	706	7		\%4
13	$13 \cdot$	12	533	20	36	1017	11		58
13	132	11	583	22	36	1017	10		$6 \hat{1}$
13	13.2	10	696	241/2	36	101\%	8		78
14	153	16	211	13	36	101\%	7		$\varepsilon 8$
14	153	14	$3: 4$	16	40	1256	10		71
14	153	12	494	213!	40	1250	8		86
14	153	11	543	$231 / 2$	40	1:56	7		9%
14	153	10	648	26	40	1:56	6		108
15	176	16	197	133/4	40	12.56	4		126
15	176	14	302	$17{ }^{1}$	42	1385	10		741/2
15	176	12	460	23	42	1385	8		91
15	176	11	507	241/2	42	1385	7		102
15	176	10	606	28	42	1385	6		114
16	201	16	185	1412	42	1385			133
16	201	14	283	$171 / 4$	42	1385	1/4		137
16	201	12	432	2414	42	1385	3		145
16	201	11	474	$261 / 2$	42	1385	5-16		$1 \% 7$
16	201	10	567	$291 / 2$	42	1385	3/8		216

STANDARD PIPE FLANGES.

Adopted July 19, 1894 , at a conference of committres of the American Society of Mechanical Engineers, and the Master Steam and Hut Water Fitters' Association, with representatives of leading manufacturers and users of pipe. (The standard dimensions given have not yet, 1898. been adnpted by some manufacturers on account of their unwillingness to make a change in their patterns.)

The list is divided into two groups; for medinm and high pressures, the first ranging up to 75 lbs . per square inch, and the second up to 200 lbs ,

							H 0 0 0 0 0 0 0 0 E 0 0 0 0 E E									
2	. 409		460	18		6				2						
21	. 429	$\frac{7}{16}$	550			7				21/4		$51 /$				10
3	. 449	$\frac{7}{16}$	690	$1 / 8$		71/2		16 $3 / 4$		$21 / 4$				45	21	$13:$
31/2	. 466	3	700	8		$81 / 2$		${ }^{13}$		$21 / 2$		7		45	21	2530
4	. 486		800	8		9				$21 / 2$		$71 /$		$43 / 4$	23/4	2100
41	. 498	$1 / 2$	900	8		91/4		熍		23\%		53/4		$8 \quad 3 / 4$		1430
5	. 525	1.	1000			10				2112		81		$8 \quad 3 / 4$) 3	1630
6	. 563	$\frac{9}{16}$	1060	8		11				21		908		$83 / 4$	3	2360
7	. 60	58	1120	1/8		1212		$1 \frac{1}{16}$		23/4		103/4		83	4,31/4	$3: 00$
8	. 639	5/8	1280	1/8		13122		11/8		23/4		113/4		8 3/4	312	4190
	. $6 \uparrow 8$	$\frac{11}{16}$	1310	- ${ }^{\frac{3}{16}}$		15		11/8		3		1314			$4.31 / 2$	3610
10	. 713	$3 / 4$	1330	- ${ }^{3}$		16		$1_{16}{ }^{3}$		3		141/4		278	135/8	$29 \% 0$
12	. 79	16	1470	${ }^{\frac{3}{16}}$		19		11/4		3112		17		$27 / 8$	/33/4	4280
14	. 864	78	1600	${ }^{\frac{3}{16}}$		21		13\%		$31 /$		183/4		21	41/4	4:80
15	. 904	${ }^{15}$	1600	${ }^{\frac{3}{16}}$		2.214		1388		35		20		61	$11 / 4$	3660
16	. 946		1600	咅		2318		$1{ }^{7}$		$33 / 4$		$211 / 4$		61 :	114	4210
18	1.02	$1{ }_{1}^{16}$	1690	${ }^{\frac{3}{16}}$		25		$1{ }^{\circ}$		31%		2:3/4		$611 / 8$	8 $43 / 4$	4.40
20	1.09	$11 / 8$	1780	${ }^{\frac{3}{16}}$		2112		${ }_{1}^{11}$		33/4		25		$011 / 8$		4490
22	1.18	$1{ }_{1} \frac{3}{16}$	1850	1/4		$291 / 2$		$1{ }_{1}^{13}$		334		$211 / 4$		$011 / 4$	51/2	4320
24	1.25	11/4	1920	1	311/2	32		17/8	$33 / 4$	4	291	14 291/3		$011 / 4$	4	5130
26	1.30	${ }_{1}{ }^{5}$	1980	$1 / 4$	3:3\%/4	3414	13/8	2	13\%	$41 / 8$	311	$1 / 4313 / 4$		$411 / 4$	[53/4	5030
28	1.38	$13 / 8$	2040	$1 / 4$	36	3612	$1{ }^{7}$	216		41/4	:331	1234		$811 / 4$		5000
30	1.48	$11 / 2$	2000	$1 / 4$	138	3834	11/2	21/8	4	43/8	351	1236		$813 / 8$	61	4590
36	1.71	$13 / 4$	$19: 0$	$1 / 4$	441/2	$453 / 4$	$13 / 4$	238	41/4	478		4:3/4		${ }^{2} 13 /$	66	5\%90
48	1.87	2	2100	1	51	$5: 3 / 4$	17/8	25/8				$1 / 2491 / 2$		$611 /$	$21 / 4$	5000 6090
48	2.17	1214	$21: 30$	$1 / 4$	5\%1/2	5912		23/4	43/4	53/4	543	\% 56		$411 / 2$	23/4	6090

Notes.-Sizes up to 24 inches are designed for 200 lbs. or less.
Sizes from 24 to 48 inches are divided into two scales, one for 200 lbs , the other for less.

The sizes of bolts given are for high pressure. For medium pressures the diameters are $1 / 8 \mathrm{in}$. less for pipes 2 to 20 in . diameter inclusive, and $1 / 4 \mathrm{in}$. less for larger sizes, except 48-in. pipe, for which the size of bolt is $13 / 8$ in.

When two lines of figures occur under one heading, the single culunns are for both medium and high pressures. Beginning with 24 inches, the left-hand columns are for medium and the right-hand lines are for high pressures.

The sudden increase in diameters at 16 inches is due to the possible insertion of wrought-iron pipe, making with a nearly constant width of gasket a grealer diameter desirable.

Whell wrought-irnn pipe is used, if thinner flanges than those given are sufficient, it is moposed that bussts be used to bring the muts up to the standard lengths. This avoids the use of a reinforcement around the pipe.

Figures in the $3 d, 4 t h, 51 \mathrm{~h}$, and last columns refer only to pipe for high pressure.

In drilling valve flanges a rertical line parallel to the spindles should be midway between two holes on the upper side of the flanges.

DHMENSIONS OF PHPE FLANGES AND CAST-IRON PIPES.
(J. E. Codman, Engineer's' Club of Philadelphia, 1889.)

						Thickness of Pipe.			
						Frac.	Dec.		
2	61	$43 /$		4	5/8	$3 / 8$.3\%3	6.96	41
3	r1	5%	34	4	\% 8	13-32	. 396	11.16	5.93
4	9		$3 / 4$	6	11-16	7-16	. 420	15.84	7.66
5	$93 / 4$	8	3	6	$3 / 4$	7-16	. 443	21.00	9.63
6	103/4	$91 / 8$	3	8	\%	15-32	. 466	26.64	11.82
8	131/4	113/8	$3 / 4$	8	13-16		. 511	39.36	16.91
10	151/4	1314	$3 / 4$	10	7/8	9-16	. 557	54.00	23.00
12	173/4	153/4	\%	12	15-16	19-32	. 603	7056	30.13
14	20	18		14		21-32	. 649	89.04	38.34
16	23	20	8	16	1 1-16	11-16	. 695	109.44	4T. 70
18	24	$221 / 4$	7/8	16	11/8		. 741	131.66	58.23
20	27	$241 / 2$	1	18	$1: 3-16$	25-32	. 787	156.00	r0.00
22	283/4	261/2	1	20	11/4	2T-32	. 833	182.16	83.05
24	3114	283/4	1	22	15 5-16	7/8	. 819	210.24	97.42
26	331/4	31	1	24	13/8	15-16	. 925	240.24	113.18
28	351/2	$331 / 4$	1	24	1 $\boldsymbol{\tau}$-16	31-32	. 971	$2 \sim 216$	130.35
30	38	$3.1 / 2$	11	$\stackrel{26}{ }$	1 19-16		1.017	306.00	149.00
32	40	$3{ }^{1} 1 / 2$	$11 / 8$	28	15/8	1 1-16	1.063	341.76	169.15
34	4:21/4	40	$11 / 8$	30	$1{ }^{11-16}$	$11 / 8$	1.109	3~9.44	190.90
36	45	42	$11 / 8$	32		1 1 5-32	1.155	419.04	214.26
38	47	44	11/8	32	1 13-16	13 -16	1.201	460.56	239.27
40	49	46	11/8	34	$17 / 8$	$11 / 4$	1.247	504.00	266.00
42	5114	481/4	$11 / 8$	34	1 15-16	15 5-16	1.293	549.36	294.49
44	$531 / 2$	$501 / 4$	$11 / 4$	36	$\stackrel{2}{2}$	$111-32$	1.339	596.64	324.78
46	553/4	523/4	$11 / 4$	38	2 1-16	$13 / 8$	1.385	645.84	356.94
48	58	55	11/4	40	21/8	$17-16$	1.431	696.96	391.00

$D=$ Diameter of pipe. All dimensions in inches.
Formulex.-Thickness of flange $=0.033 D+0.56$.
Thickness of pipe $=002: 3 D+033: \tilde{\sim}$.
Weight of pipe per foot $=0.24 D^{2}+3 D$:
Weight of flange $=.001 D^{3}+0.1 D^{2}+D+2$.
Diamrter of flange $=1.125 D+4.25>$
Diameter of bolt-circle $=1.09 \because D+2.566$.
Diameter of bolt $=0.011 D+0.73$.
Number of bolts $=0 . \tilde{i} 8 D+2.56$.
PIPE FLANGES FOR HIGH STEAM-PRESSURE.
(Chapman Valve Mfg. Co.)

Size of Pipe.	Diameter of Flange.	Number of Bolts.	Diameter of Bolts.	Diameter of Bolt Circle.	Length of Pipe-Thread
Inches.	Inches.		Inches.	Inches.	Inches.
21/2	71/2	6	5/8	57/8	$11 / 8$
3	9	r	$3 / 4$	65/8	${ }^{13 / 8}$
31/2	9	8	$3 / 4$	714	${ }_{1} 17-16$
4	10	8	34	$77 / 8$	$1{ }^{1} 9-16$
41/2	101/2	8	3	$81 / 2$	$\begin{array}{ll}1 & 11-16 \\ 1 & 13-16\end{array}$
5	11	9 10	8	914	$113-16$
7	14	12	78	$11 \% / 8$	$115-16$
8	15	12	88	$13{ }^{\circ}$	2
9	16	13	88	14	
10	171/2	15	$8 / 8$	151/4	21/8
12	20	18	7/8	$1.3 / 4$	$21 / 4$
14	23	18	1	2014	21 \%
15	231/2	18	1	211/4	25/8

	 为10 テ
－ 7 •ทว ad！d Jo प7ถ゙ルวT	
－əวษj．ıns əpiszno － $7 \mathrm{j} \cdot \mathrm{bs} . ı \partial \mathrm{~d}$ ədid jo บาภึนว่า	
－əo飞ృ．n̆S әp！suI －7y－bs ıad adId jo ч7．0̈யə I	－
－əวนə －дəృuиว 	
－əวนว．เə． －uıนวป！ витəұนІ	
－「етә行 jo ssizu －НР！̣̆	
＇UR！ өpisuI ［8กาว	
$\begin{aligned} & \text { cur!a } \\ & \text { op!sjng } \\ & \text { [Bnาov } \end{aligned}$	
－WU B！ 1 epịsuI IBU！̧ION	

For discussion of the Briggs Standard of Wrought-iron Pipe Dimensions, see $R \rightarrow$ port of the Committee of the A. S. M. E in "Standard Pipe and Pipe Threads," 1886 . Traus., Vol. VIII, p. 29. The diameter of the bottom of the thread is derived from the formula $D-(0.05 D+1.9) \times \frac{1}{n}$, in which $D=$ nutside diameter of the tubes, and n the number of threads to the inch. The diameter of the top of the thread is derived from the formula $0.8 \frac{1}{n} \times 2+d$, or $1.6 \frac{1}{n}+d$, in which d is the diameter at the bottom of the thread at the end of the pipe.

Morris, Tasker \& Cu,'s sizes for the diameters at the bottom and top of the thread at the end of the pipe are as follows:

Diam. of lipe Nominal	Diam. at Butioll of Thread.	Diam. at Top of Thread.	Diam. of Pipe, Nominal.	Diam. at Buttom of Thread.	Diam. at Top of Thread.	Diam. of l'ipe, Nom. inal.	Diam. at Bot tom of Thread.	Diam. at Top of Thread
in.								
1/8	. 334	. 393	$21 / 2$	2.6:0	2.820	8	8.334	8.534
$1 / 4$	4.33	. 52%	3	3.241	3.441	9	9.382r	9.52 T
$3 / 8$. 568	. 658	$31 / 2$	3.738	3.9:38	10	10.445	10.645
112	. 701	. 815		4.234	4.434	11	11.439	11.639
$3 / 4$. 911	1.025	41/2	4.7.31	4.931	12	12.4333	12.633
1	1.144	1.283	5	5.290	5.490	13	13.6\%5	13.815
11/4	1488	$1.6 \cdot 27$	6	6.346	6546	14	14.669	14869
11/2	1. $\cdot 2.27$	1.866	7	7.310	\%.540	15	15.663	15.563
2	2.223	2.3:39						

Having the taper, length of full-threaded portion, and the sizes at bottom and top of thread at the eud of the pipe, as given in the table. taps and dies can be made to secure these points correctly, the length of the imperfect threaded portious on the pipe, and the length the tap is ruu into the fittings beyond the point at which the size is as given, or, in other werds, beyond the end of the pipe, having no effect upon the standard. The angle of the thread is 60° and it is slightly rounded off at top and bottom, so that, instead of its depth being equal to its pitch, as is the case with a full V-thread, is is $4 / 5$ the pitch, or equal to $0.8 \div n, n$ being the number of threads per inch.

Taler of conical tube ends, 1 in 32 to axis of tube $=3 / 4$ inch to the foot total taper.

WROUGHT-IRON WELDED TUBES, EXTRA STRONG. Standard Dimensions.

Nominal Diameter.	Actual Outside Diameter.	Thickness, Extra Strong.	Thickness, Double Extra Strong.	Actual Inside Diameter, Extra Strong.	Actual Inside Diameter, Double Extra Strong.
	Inches.	Inches.	Inches.	Inches.	Inches.
		0.100		0.205	
	0.54	0.123		0.294	
	0.675	0.127		0.421	
	0.84	0.149	0.298	0.542	0.244
	1.05	0.157	0.314	0.736	0.422
	1.315	0.182	0.364	0.951	0.587
11/4	1.66	0.194	0.388	1.272	0.884
11/2	1.9	0.203	0.406	1.494	1.088
$?$	2.375	0.221	0.442	1.933	1.491
$21 / 2$	2.875	0.280	0.560	2.315	1.755
3	3.5	0.304	0.608	2.892	2.284
$31 / 2$	4.0	0.321	0.642	3.358	2.716
4	4.5	0.341	0.68%	3.818	3.136

STANDARD SIZES, ETC., OF LAP-WELDED CHAR-COAL-IRON BOILER-TUBES.
(Morris, Tasker \& Co.. Inc., Philadelphia, Pa.)

					Interr Ared	$\begin{aligned} & \text { nal } \\ & \text { ta. } \end{aligned}$	$\begin{aligned} & \text { Exter } \\ & \text { Are } \end{aligned}$	rnal ea.				
in.	in.	in.	in.	in.	sq. in	sq.ft.	sq. in	sq.ft.	It.	-	ft .	lbs.
1	. 810	. 095	2.545	3.142	. 515	. 0036	. 785	. 0055	4.479	3.8\%0	4.149	. 90
1 1-4	1.060	. 095	3.330	3.927	. 882	. 0061	1.297	. 0085	3.604	3.056	$3.3 \bigcirc 0$	1.15
1 1-2	1.310	. 095	4.115	4.712	1.348	. 0094	1.767	. 0123	2.916	2.547	2.732	1.40
$13-4$	1.560	. 095	4.901	5.498	1.911	. 0133	2.405	. 0167	2.448	2.183	2.316	1.65
2	1.810	. 095	5.686	6.283	2.573	0179	3.142	. 0218	2.110	1.910	2.010	1.91
2 1-4	2.060	. 095	6.472	7.069	3.333	. 0231	3.976	0276	1.854	1.698	1.776	2.16
$21-2$	2.282	. 309	7.169	7.854	4.090	. 0284	4.909	. 0341	1.674	1.528	. 601	2.75
2 3-4	2.532	. 109	7.955	8.639	5.035	. 0350	5.940	. 0412	1.508	1.389	1.449	3.04
3	2.782	109	8.740	9.425	6.079	. 0422	7.069	0491	1.373	1.273	1.324	3.33
3 1-4	3.010	. 120	9.456	10.210	7.116	. 0494	8.296	. 0576	1.269	1.175	1.22%	3.96
$31-2$	3.260	. 120	10.242	10.996	8.347	0580	$9.6 \div 1$. 0668	1.172	1.091	1.132	4.28
3 3-4	3.510	120	11.027	11.781	9.676	0672	11.045	. 0767	1.088	1.019	$1.05 t$	4.60
4	3.732	. 134	11.724	12.566	10.939	0760	12.566	0873	1.024	. 955	. 990	5.47
4 1-2	4.232	. 131	13.295	14.137	14.066	. 0977	15.901	. $110 \pm$. 903	. 849	. 876	6.17
5	$4.70 \pm$. 148	14.778	15.708	17.379	. 1207	19.635	. 1364	.81\%	. 764	. 788	7.58
6	5.670	. 165	17.813	18.850	25.250	. 1750	28. 74	. 1963	. 674	. 637	. 656	10.16
7	6.670	. 165	20.954	21.991	34.942	2427	38.485	. 26073	. 573	. 546	. 560	11.90
8	7.670	. 165	24.036	25.133	46.204	. 2209	50.266	3491	. 498	. 977	. 488	13.65
9	8.640	. 180	27.143	28.274	58.630	. 4072	63.617	. 4418	. 442	. 424	. 433	16.70°
10	$9.59 t$. 203	30.141	31.416	72.292	. $50 \% 0$	78.540	. 5454	. 398	. 382	. 390	21.00
11	10.560	. 220	33.175	34.558	87.583	. $608{ }^{\circ}$	95.033	6600	. 36	. 347	. 355	25.00
12	11.54\%	.2\%9	36.260	37.699	104.629	. 7266	113.098	. 7854	. 331	. 318	. 325	28.50
13	12.524	. 233	39.345	40.8 - 1	123.190	. 8555	132.7.3	. 9217	. 305	. 294	. 300	32.06
14	13.504	. 248	42.42t	43.982	143.254	. 99 ± 6	153.938	1.0690	. 283	. 273	. 278	36.00
15	14.482	. 259	45.497	47.124	164.721	1.1439	176.715	1.2272	. 264	. 255	260	40.60
16	15.458	. 271	48.563	50.266	187.671	1.3033	201.062	1.3963	247	. 239	. 243	$45.2 v$
17	16.43\%	. 284	51.623	53.407	212.066	1.4727	246.981	+1.5763	. 232	. 225	.269	49.91
18	17.416	. 292	54.714	56.549	2:38.225	1.6543	254.470	1.7671	.219	.212	. 216	54.82
19	18.400	. 300	57.805	59.690	265.905	1.8466	283.529	1.9690	. 208	. 201	. 205	59.48
20	19.360	. 320	(i0.821	62.832	294. 75	2.0443	314.159	2.1817	. 197	. 191	. 194	66.77
21	20.320	. 340	6,3.8:37	65.974	324.294	$\because .25 \because 0$	346.361	2.4053	. 188	. 182	. 185	73.40

In estimating the effective steam-heating or boiler surface of tubes, the surface in contact with arr or gases of combustion (whether internal or external to the tubes) is to be take:

For heating liquids by steam, superheating steam, or transferring heat from one liquid or gas to another, the mean surface of the tubes is to be taken.

To find the square feet of surface, S, in a tube of a given length, L, in feet, and diameter, d, in inches, multiply the length in feet by the diameter in inches and by .2618. Or, $S=\frac{3.1416 d L}{12}=.2618 d L$. For the diameters in the table below, multiply the length in feet by the figures given opposite the diameter.

Inches, Diameter.	Square Feet per Foot Length.	Inches, Diameter.	Square Feet per Foot Length.	Inches, Diameter.	Square Feet per Foot Length.
1/4	. 0654	$21 / 4$. 5890	5	1.3090
$1 / 2$. 1309	$21 / 2$. 6545	6	1.5708
$3 / 4$. 1963	$23 / 4$. 7199	7	1.8326
	. 2618	3	. 7854	8	2.0944
$11 / 4$. 3272	$31 / 4$. 8508	9	2.3562
11.2	. 3927	$31 / 2$. 9163	10	2.6180
$13 / 4$. 4581	$33 / 4$. 9817	11	2.8798
2	. 5236	,	$1.04 \% 2$	12	3.1416

RIVETED IRON PIPE.

(Abendroth \& Root Mfg. Co.)
Sheets punched and rolled, ready for riveting, are packed in convenient form for shipment. The fcllowing table shows the iron and rivets required for punched and formed sheets.

Number Square Feet of Iron required to make 100 Lineal Feet Punched and FormedSheets when put together.				Number Square Feet of Iron required to make 100 Lineal Feet Punched and FormedSheets when put together.			
Diameter in Inches.	Width of Lap in Inches.	Square		Diameter in Inches	Width of Lap in Inches.	Square Feet.	
3	1	90	1,600	14	11/2	397	2,800
4	1	116	1,700	15	11/2	423	2,900
5	11/2	150	1.800	16	11/2	$45 \cdot$	3.000
6	11/2	178	1,900	18	11\%	506	3,200
7	11/2	206	2,000	20	11\%	56%	3,500
8	11/2	234	2,200	22	11/2	61%	3,700
9	112	258	2,300	24	11/2	$6{ }^{6}$	3.900
10	11/2	289	2.400	26	11%	725	4,100
11	11/2	314	2.500	28	11%	TT9	4.400
12	11\%	343	2,600	30	$11 / 2$	836	4.600
13	11/2	369	2,\%00	36	11/2	998	5,200

WEEGHT OF ONE SQUARE FOOT OF SHEETEIRON FOR RIVETED PLPE.

Thickness by the Birmingham Wire-Gauge.

No. of Gauge.	Thickness in Decimals of an Inch.	Weight in lbs., Black.	Weight in lbs., Galvanized.	No. of Gauge.	Thickness in Decimals of all Inch.	Weight in lbs., Black.	Weight in lbs., Galvanized.
26	. 018	80	91	18	. 049	1.82	2.16
24	. $0: 2$	1.00	1.16	16	. 065	2.50	2.67
22	. $0: 28$	1.25	1.40	14	. 083	3.12	3.34
20	. 035	1.56	1.67	12	. 109	4.37	4.73

SPIRAL RIVETED PIPE.

(Abendroth \& Root Mfg. Co.)

Thickness.		$\begin{aligned} & \text { Diam- } \\ & \text { eter, } \\ & \text { Inches. } \end{aligned}$	Approximate Weight in lbs. per Fuot in Leugth.		Approximate Burst ing Pressure in lbs. per Square Inch.		
$\begin{aligned} & \text { B. W. G. } \\ & \text { No. } \end{aligned}$	Inches.						
26	. 018	3 to 6	HSs. $=$				
24	. $0 \cdot 2$	3 to 12	$\because=1 / 3$	diam. in ins.			
2	. $0: 8$	3 to 14	$\because=.4$	"			
20	. 0.35	3 to 24	$"=.5$	"6 6	$2 \pi 00 \mathrm{lb}$	iam	n ins
16	. 065	6 to 24	$\cdots=.8$	"	4800 "	"	"
14	.08:3	8 to 24	" $=1.1$	" 6	6400 "	"	'6
12	109	9 to 24	" $=1.4$	" "6	8000 "	"	"

The above are black pipes. Galvanized weighs 10 to 30% heavier.
Double Galvanized Spiral Riveted Flanged Pressure Pipe, tested to 150 lbs . hydraulic pressure.

DIMENSIONS OF SPIRAL PIPE FITTINGS.

Inside Diameter.	Outside Diameter Flanges.	Number Bolt-holes	Diameter Bolt-holes.	Diameter Circles on which Boltholes are Drilled.	Sizes of Bolts.
ins.			ins.	ins.	ins.
${ }^{3}$	6.	4	1/1	43/4.	$7 / 16 \times 13 / 4$
4	7	8	$1 / 2$	$515 / 16$	$7 / 16 \times 13 / 4$
5	8	8	12	615/16	$7 / 16 \times 13 / 4$
6 7	$10^{87 / 8}$	8	5	$7_{9} 7 / 8$	1/2 $\times 13 / 4$
8	11	8	\% 8	10	11/ $\times 2$
9	13	8	5/8	111/4	$1 / 2 \times 2$
10	14	8	5/8	$121 / 4$	$1 / 2 \times 2$
11	15	12	5/8	1338	$1 / 2 \times 2$
12	16	12	5/8	1414	$1 / 2 \times 2$
13	17	12	$5 / 8$		$1 / 2 \times 2$
14 15	$17^{7 / 8}$	12	58	$161 / 4$	$1 / 2 \times 01 / 2$
15 16	19	12	5/8	17\%/16	$112 \times 21 / 2$
18	213/16	12 16	11/86	$191 / 4$ $211 / 4$	12×212
20	$251 / 8$	16	11/16	$231 / 8$	1%
22	$281 / 4$	16	$3 / 4$	26	5%
24	30	16	$3 / 4$	273/4	$5 / 8 \times 21 / 2$

SEAMLESS BRASS TUBE. IRON-PIPE SIZES.
(For actual dimensions see tables of Wrought-iron Pipe.)

Nominal Size.	Weight per Fool.	Nom.	Weight per Foot.	Nom. Size.	Weight per Foot.	Nom. Size.	Weight per Foot
ins.	lbs.	ins.	lbs.	ins.	lbs.	ins.	lbs.
1/8	. 25	$3 / 4$	1.25	2	4.0	4	12.70
14	. 43	1	1. 0	21/2	5 \%	41/2	13.90
$3 / 8$. 62	11/4	2.50	3	8.30	5	15. $\mathrm{\sim} 5$
1/2	. 90	11/2	3.	$31 / 2$	1090	6	18.31

SEAMLESS DRAWN BRASS TUBING.

(Kandulpt \& Clowes, Waterbury, Conu.)
Outside diameter $3 / 16$ to $\tilde{3} / 4$ inches. Thickness of walls 8 to 25 Stubs' Gange, length 12 feet. The following are the standard sizes:

Outside Diameter.	Length Feet.	Stubbs' or Old Gauge.	Outside Diameter.	Length Feet	Stubbs' or Old Gauge	Outside Diameter.	Length Feet.	Stubbs' or Old Gauge.
$1 / 4$	12	20	13/8	12	14	25/8	12	11
5-16	12	19	11\%	12	14	$23 / 4$	12	11
3/8	12	19	15/8	12	13	3	12	11
18	12	18	$13 / 4$	12	13	$31 / 4$	12	11
5/8	12	18	1 13-16	12	13	$31 / 2$	12	11
	12	17	178	12	12	4		11
13-16	12	17	${ }_{1} 15-16$	12	12	5	10 to 12	11
$7 / 8$ $15-16$	12	17	${ }_{21 / 8}$	12	12	$51 / 4$ $51 /$	10 10 to 12	11
15-16	12	17	$21 / 8$	12	12	51/2	10 10 10 to 12	11
11/8	12	16	$23 / 8$	12	12	6	10 to 12	11
$11 / 4$	12	15	21/2	12	11			

BENT AND COILED PIPES.
(National Pipe Bending Co., New Haven, Conn.) COILS AND BENDS OF IRON AND STEEL PIPE.

Size of pipe............Inches Least outside diameter of coil.....Inches	${ }^{1 / 4}$	$3 / 8$ $21 / 2$	$1 / 2$ $31 / 2$	3/4	1	$11 / 4$ 8	11/2	2 16	$21 / 2$ 24	32
Size of pipe..............Inches Least outside diameter of coil......................Inches	$31 / 2$ 40	4 48	41/2	5	6 66	\%	8 92	105	10 130	12 156

Lengths continuous welded up to $3-1 \mathrm{n}$. pipe or coupled as desired. COILS AND BENDS OF DRAWN BRASS AND COPPER TUBING.

Size of tube, outside diameter.....Inches	$1 / 4$	8	1/2		$3 / 4$	1		$1 / 4$	
Least outside diameter of coil.....Inches		$11 / 2$	2	$21 / 2$	3	4			

| Size of tube, outside diameter.....Inches | $11 / 2$ | $15 / 8$ | $13 / 4$ |
| :--- | :--- | :--- | :--- | :--- |

| Least outside diameter of coil.....Inches | 8 | 9 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| $21 / 4$ | $23 / 8$ | $\underset{18}{21 / 2}$ | $23 / 4$ |
| :---: | :---: | :---: | :---: | :---: |
| 20 | | | |

Lengths continuous brazed, soldered, or coupled as desired.
90° BENDS. EXTRA-HEAVY WROUGHT-IRON PIPE.

The radii given are for the centre of the pipe. "Centre to end " means the perpendicular distance from the centre of one end of the bent pipe to a plane passing across the other end. Standard iron pipes of sizes 4 to 8 in . are bent to radii 8 in . larger than the radii in the above table; sizes 9 to 12 in . to radii 12 iי. larger.

Welded Solid Drawn-steel Tubes, imported by P. S. Justice \& Co.. Philadelphia, are made in sizes from $1 / 2$ to $41 / 2$ in. external diameter. varying by $1 / 8$ ths, and with thickness of walls from $1 / 16$ to $11 / 16 \mathrm{in}$. The maximum length is 15 feet.

WEIGHT OF BRASS, COPPER, AND ZINC TUBING. Per Foot.

Thickness by Brown \& Sharpe's Gauge.

Brass, IVo. 17.		Brass, No. 20.		Copper Lightning-rod Tube, No. 23.	
Inch.	Lbs.	Inch.	Lbs.	Inch.	
5-16	. 107	$1 / 8$ $3-16$. 032	${ }_{9}^{1 / 2}$.169 $.1 \sim 6$
3/8	. 185	1/4	. 063	$5 / 8$. 186
\bigcirc	. 234	5-16	. 106	11-16	. 211
1/2	. 266	$3 / 8$. 126	$3 / 4$. 229
9-11	. 318	$7-16$. 158	Zinc, No. 20.	
5/8	. 3.373	${ }_{9-16}^{1 / 2}$. 189		
\% 8	. 46	$5 / 8$. 220		
1.	. 542		. 25.2		
$11 / 8$. 675	7/8	. 284		
$11 / 4$ 11	.740 .915	11	.378 .500 .580	5/8	. 185
11/2	. 915	$11 / 4$ $11 / 2$. 500	3 $7 / 8$ 78	. 234
${ }_{2}{ }^{1 / 4}$	1.90	173	. 58	1^{18}	311
$21 / 2$	1.506			$11 / 4$. 380
3	2.188			11/2	. 452

LEAD PIPE IN LENGTHS OF 10 FEET.

In.	3-8 Thick.		5-16 Thick.		1/4 Thick.		3-16 Thick.	
	lb.	oz.	1 b .	oz.	1 b .	oz.	lb.	oz.
21/2	17	0	14	0	11	0	8	0
	20	0	16	0	12	0	9	0
31/2	22	0	18	0	15	0	9	8
4	25	0	21	0	16	0	12	8
$41 / 2$	31	0			18 20	0	14	0

LEAT WASTE-PIPE.

11/2 in., 2 lbs. per foot.
2 " 3 and 4 lbs . per foot.
3 " $31 / 2$ and 5 lbs. per foot.
$31 / 2$ in., 4 lbs. per foot. 4 " 5,6 , and 8 lbs.
$41 / 2$ " 6 and 8 lbs .
12 lbs .

LEAD AND TIN TUBING.

$1 / 8 \mathrm{inch}$.
$1 / 4$ inch.

SHEETC LEAD.

Weight per square foot, $21 / 2,3,31 / 2,4,41 / 2,5,6,8,9,10 \mathrm{lbs}$. and upwards. Other weights rolled to order.

BLOCK-TIN PIPE.

1 in., 15 , and 18 oz. per foot.
$11 / 4 \because 114$ and $11 / 2$ lbs.
$11 / 2$
2
2

LEAD AND TIN-LINED LEAD PIPE.
(Tatham \& Bros., New York.)

	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{\Phi}{\Phi} \end{aligned}$	Weight per Foot and Rod.		$\begin{aligned} & \text { O゙ँ } \\ & \text { שٍ } \\ & \hline \end{aligned}$		Weight per Foot and Rod.		
$3 / 8 \mathrm{in}$.	E	7 lbs. per rod		1 in.	E	11/2	r foot	10
:6	D	10 oz. per foot	6		D			11
\%	B	1 lb	12	"	B	31/2 ${ }^{1}$		14
"	A	11/4 "6	16	"	A	${ }_{4} 1$	،	16
"	AA	11/2 "	19	"	AA	$43 / 4$	"	24
"	AAA	13/4 "	27	'6	AAA	$6{ }^{4}$	"	30
${ }_{6}^{7}-16 \mathrm{in}$.		13 oz. "		11/4is in .	E	${ }_{2}^{2}{ }^{6}$	"6	10
	E	${ }_{9} 1$ lib. lbs . per rod	7	"	D	${ }_{3}^{21 / 2}{ }^{6}$	" 6	12
	D	$3 / 4 \mathrm{lb}$. per foot	9	"	B		"	14
"	C	$1{ }^{1 / 4}$ "pe "	11	6	A	$43 / 4$	"	19
"	B	11/4 " ${ }^{\text {c }}$	13	"	AA	$53 / 4$	"	25
"		11/2" "		'6	AAA	$63 / 4$	"	
"	A	$13 / 4{ }^{\prime \prime}$	16	11/2 in.	E	$3{ }^{4}$ ،	"	12
" 6	AA	$2{ }^{2}{ }^{6}$	19		D	$31 / 2$ "	"	4
"		21/2 "، "	23	"	C	$41 / 4$ "	16	17
"	AAA	$3{ }^{3} 6$ "	25	${ }^{\prime}$	B	5 "	"	19
5/86in.	E	12 "، per rod	8	"6	A	61/2"		23
،	D		9 13	" 6	AA	$8{ }^{8}$	" 6	27
"	B	${ }_{2}^{1 / 2}{ }^{\prime}$	16	13/4in.	AAA	9 ،	'6	
"	A	21/2" "	20	${ }^{6}{ }^{\text {\% }}$	B	5 5	"	17
"	AA	$23 / 4{ }^{\text {" }}$	22	'6	A	61/ "	"	21
'،	AAA	31/2" "	25	" ${ }^{\text {c }}$	AA	81/2 "	"	
$3 / 4.6$	E	1 :" per foot	8	2 in.	C	$43 / 4$	"	15
	D	11/4 " ${ }^{\text {" }}$ " ${ }^{\text {c }}$	10	"	B	6 ،	"	18
"	C	${ }_{21}^{13} 4$ " ${ }^{1}$ 6 6	12	، 6	A	7 "	" 6	22
"	A	$3{ }^{1 / 4}$ ، 6	20	"	AAA	113/4 ،		27
" 6	AA	31/2" "	23					
"	AAA	$43 / 4{ }^{\text {6 }}$ 6	30					

WEIGHT OF LEAD PIPE WHICES SHOULD BE USED FOR A GIVEN HEAD OF WATERE.
(Tatham \& Bros., New York.)

Head or	Pressure per sq. inch.	Calibre and Weight per Foot.						
of Feet Fall.		Letter.	$3 / 8$ inch.	$1 / 2$ inch.	5/8 inch.	$3 / 4$ inch.	1 inch.	11/4 in.
30 ft .	15 lbs .	D	10 oz .	$3 / 4 \mathrm{lb}$.	1 lb .	$11 / 4 \mathrm{lbs}$.	2 lbs.	$21 \% \mathrm{lbs}$.
50 ft .	25 lbs .	C	12 oz .	1 lb .	$11 / 2 \mathrm{lbs}$.	$13 / 4 \mathrm{lbs}$.	$21 / 2 \mathrm{lbs}$.	3 lbs .
75 ft .	38 lbs .	B	1 lb .	$11 / 4 \mathrm{lbs}$.	2 lbs .	$21 / 4 \mathrm{lbs}$.	31/4 lbs.	$33 / 4 \mathrm{lbs}$.
100 ft .	50 lbs .	A	$11 / 4 \mathrm{lbs}$.	$13 / 4 \mathrm{lbs}$.	$21 / 2 \mathrm{lbs}$.	3 lbs .	4 lbs .	434 lus.
150 ft .	75 lbs .	AA	$11 / 2 \mathrm{lbs}$.	21 lbs .	$23 / 4 \mathrm{lbs}$	312 lbs .	$43 / 4$ lbs.	6 lbs.
200 ft .	100 lbs	AAA	$13 / 4 \mathrm{lbs}$.	3 lbs.	$31 / 2 \mathrm{lbs}$.	$43 / 4 \mathrm{lbs}$.	6 lbs.	$63 / 4 \mathrm{lbs}$.

To find the thickness of lead pipe required when the head of water is given. (Chadwick Lead Works).

RuLe.-Multiply the head in feet by size of pipe wanted, expressed decimally, and divide by 750; the quotient will give thickness required, in onehundredths of an inch.
Example.-Required thickness of half-inch pipe for a head of 25 feet.

$$
25 \times 0.50 \div 750=0.16 \text { inch }
$$

(From tables of leading manufacturers.)

No. of Gauge.	Size of Each No.	Weight of Wire per 1000 Lineal Feet.		Weight of Plates per Square Foot.		No. of Gauge.	Size of Each No.	Weight of Wire per 1,000 Lineal Feet.		Weight of Plates per Square Foot.	
		Copper.	Brass.	Copper.	Brass.			Copper.	Brass.	Copper.	Brass.
0000	${ }_{4}$ Inch.	Lbs. (i40.5	Lbs.	Lbs. 20.84	Lbs. 19.69	21	Inch. . 02846	${ }_{2.45}^{\text {Lbs. }}$	${ }_{2}^{\text {Lbs. }}$	${ }_{1.29}^{\text {Lbs. }}$	Lbs.
000	. 40964	508.0	479.91	18.55	17.53	${ }_{2} 2$. 0225347	1.94	1.838	1.15	1.08
00	. 36180	402.0	380.77	1652	15.61	23	.02:2571	1.54	1.457	102	. 966
0	. 32486	319.5	301.82	14.72	13.90	24	. 020100	1.22	1.155	. 911	. 860
1	. 28930	253.3	239.45	13.10	12.38	25	. 017900	. 970	. 916	. 811	. 766
2	.25i63	200.9	189.82	11.67	11.03	26	. 01594	. 769	. 727	. 72	. 682
3	.22942	1593	150.52	10.39	9.82	27	. 014195	. 610	. 576	${ }^{.613}$. 608
4	. 20431	126.4	119.38	9.25	8.74	28 29	. 012641	. 4848	. 458	. 573	. 482
5	. 18194	100.2 79.46	94.67 75.08	8.24 7.34	7.79 6.93	29 30	. 011257	. 383	. 288	. .154	. 429
7	. 14448	63.01	59.55	6.54	6.18	31	. 008928	. 241	. 228	. 404	. 38.2
8	. 12849	49.98	47.22	5.82	5.50	32	. 007950	. 191	. 181	. 360	. 340
9	. 11443	39.64	37.44	5.18	4.90	33	. 007080	. 152	. 143	. 321	. 303
10	. 10189	31.43	29.69	4.62	4.36	34	.006304	. 120	. 114	. 286	. 270
11	. 090742	24.92	23.55	4.11	3.88	35	. 005614	. 096	. 0902	. 254	. 240
12	. 080808	19.77	18.68	3.66	3.46	36	. 005000	. 0757	. 0715	. 2026	. 2191
13	. 071961	15.65	14.81	3.26	3.08	37	. 0004453	. 0600	. 056450	. 2180	. 170
14	$.06 \downarrow 084$ $.05 \sim 068$	12.44 986	11.75 9.32	2.90 2.59	2.74 244	39 39	. .0039531	. 04.6	. 0357	. 160	. 151
16	.0508:2	7.82	7.59	2.30	2.18	40	. 003144	.0299	. 0283	. 142	. 135
17	.045257	620	5.86	2.05	1.94						8.218
18	. 040.303	4.92	4.65	1.83	1.72	Specific	ravity....	8.880	3.386	8.698	8.218
19 20	$.035 \times 90$.031961	3.90 3.09	3.68 2.92	1.63	1.37	Weight	er cubic Ft.	555.	524.16	543.6	513.6

WEIGHT OF ROUND BOLT COPPER.

Per Foot.

Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.
	. 425	1	3.02		\%. 99
$\frac{18}{5}$. 756	$11 / 8$	3.83	$13 / 4$	9.27
$\begin{aligned} & 5,5 \\ & 58 \end{aligned}$	1.18	114	4. \% $_{\text {\% }}$	$2_{2}^{17 / 8}$	10.64
$3 / 4$ $8 / 8$	1.70 2.31	$13 / 8$ $11 / 2$	5. ${ }^{\text {\% }}$ (2 6.81		12.10

WEIGHT OF SHEET AND BAE BREASS.

Thickness. Side or Diam.	Sheets pe: sq. ft.	$\begin{gathered} \text { Square } \\ \text { Bars 1 } \\ \text { ft.long. } \end{gathered}$	Roind Bars 1 ft.lung.	Thickness, Side or Diam.	Sheets per sq.ft.	Square Bars 1 ft. long.	Round Bars 1 ft.long
Inches.				Inches.			
1-16	2.72	. 014	. 011	1 1-16	46.32	4.10	3.23
1/8	5.45	. 056	. 045	11/8	49.05	4.59	3.61
3-16	8.17	. 124	. 100	$13-16$	51.77	5.12	4.02
1/4	1090	.2.27	. $1 \sim 8$	11/4	54.50	5.67	4.45
5-16	13.62	.35.5	.2\%8	$15-16$	57.22	626	4.91
3/8	16.35	. 510	. 401	$13 / 8$	59.95	6.66	5.39
$7-16$	1907	.695	. 545	1 \%-16	62.67	7.50	5.89
1/2	21.80	. 907	. 112	11/2	65.40	8.16	6.41
9-16	24.52	1.15	. 90%	1 9-16	68.12	8.86	6.95
	27.25	1.42	1.11		70.85	9.59	7.53
11-16	2997	1.72	1.35	$111-16$	73.5 \%	10.34	812
$3 / 4$	3.2. 0	2.04	160	13/4	76.30	1112	8. 3
13-16	35.48	2.40	1.88	1 13-16	7!) (1)	11.93	9.36
7/8	3 3 .15	2.78	2.18	$17 / 8$	81.75	12.76	10.01
15-16	40.87	3.19	2.50	11516	84.47	13.63	10.10
1	43.60	3.63	2.85	2	87.20	14.5\%	11.40

COMLPOSITION OF VARIOUS GRADES OF ROLLED BRASS, ETCG.

Trade Name.	Copper	Zinc.	Tin.	Lead.	Nickel.
Common high brass.	61.5	38.5			
Yellow metal........	60	40			
Cartridge brass	$662 / 3$ 80	$3: 31 / 3$			
Low brass.	80	40			
Drill rod.	60	40		$11 / 2$ to 2	
Spring brass.	662/3	$3.31 / 3$	11/2		
18 per cent German silver	$611 / 2$	201/2			18

The above table was furnished by the superintendent of a mill in Connecticut in 1894. He says: While each mill has its own proporions for various mixtures. depending upon the purposes for which the product is intended, the figures given are about the average standard. This, between cartridge brass with $331 / 3$ per cent zinc and common high brass with $381 / 2$ per cent zinc, there are any number of different mixtures known generally as "high brass," or specifically as "spinning brass," "drawing brass," etc., wherein the amount of zinc is dependent upon the amount of scrap used in the mixture, the degree of working to which the metal is to be subjected, etc.

AMERICAN STEANARD SIZES OF DROP-SHOT.

	Diameter.			Diameter.			Diam. eter.	
Fine Dust.	3-100'1	10784	No. 8	Trap Shot	472	No. 2.	15-100'	86
Dust......	4-100	4565	" 8	9-100 ${ }^{\prime}$	399	1.	16-100	71
No. 12.	5-100	2326	" 7	Trap Shot	338	$\because \mathrm{B}$	17-100	59
11.	6-100	1346	" 7	$10-100^{\prime \prime}$	291	" BB.	18-100	50
" 10.	Trap Shot	1056	" 6	11-100	218	" BBB	19-100	42
" 10.	7-100' ${ }^{\prime \prime}$	848	" 5	12-100	168	" T .	20-100	36
	Trap Shot	688	"6 4	13-100	132	" TT..	21-100	31
" 9....	$8-100^{\prime \prime}$	568		14-100		" $\begin{array}{ll}\text { F } \\ \text { F }\end{array}$	$2: 2-100$ $23-100$	$\stackrel{27}{24}$

COMPRESSED BUCK-SHOT.

	Diameter.	No. of Balls to the lb.		Diameter.	No. of Balls to the lb .
No. 3.	$25-100^{\prime \prime}$	284	No. 00.... ...	34-100"	115
2.	$27-100$	232	" $000 . . .$.	こ5-100	98
" 1.	30-100	173	Balls	38-100	85
" 0.	32-100	140		44-100	50

SCREW-THREADS, SEELERS OREU. S. STANDARD.

In 1864 a committee of the Franklin Institute recommended the adoptions of the system of screw-threads anc? bolts which was devised by Mr. William Sellers, of Philadolphia. This same system was subsequently adopted ar the standard by both lie Airmy and Navy Departments of the United States, and by the Master Mechanics' and Master Car Builders' Associations, so that it may now be regarded, and in fact is called, the United States Stan dard.
The fule given by Mr. Sellers for proportioning the thread is as follows: Divide the pitch, or, what is the same thing, the side of the thread, into eight equal parts; take off one part from the top and fill in one part in the bottom of the thread; then the flat top and bottom will equal one eighth of the pitch, the wearing sirface will be three quarters of the pitch, and the diameter of screw at bottom of the thread will be expressed by the for mula

$$
\text { diameter of bolt }-\frac{1.299}{\text { no. threads per inch }}
$$

For a sharp V thread with angle of 60° the formula is

$$
\text { diameter of }{ }^{-} \text {bolt }-\frac{1.733}{\text { no. of threads per inch }}
$$

The angle of the thread in the Sellers'system is 60°. In the Whitworth or English system it is 55°, and the point and ront of the thread are rounded.

Screw-Threads, United States Standard.

氐	$\begin{aligned} & \text {. } \mathrm{j} \\ & \text {. } \end{aligned}$	$\stackrel{\text { g̈ }}{\text { ®. }}$	¢ ¢ ¢						¢ ¢ \#
$1 / 4$	20	$3 / 4$	10	$11 / 4$	7	${ }_{2} 15-16$	5	2_{3}^{13-16}	31/2
5-16	18	13-16	i0	1.5-16	6		412		31/2
$3 / 8$	16	8/8	9	13/8	6	$21 / 4$	41/2	$31 / 4$	$31 / 2$
7-16	14	15-16	9	112	6	$2{ }^{2} 516$	4112	3 5-16	$31 / 4$
1/2	13	1	8	15/8	51/2	$23 / 8$	4	$31 / 2$	$31 / 4$
9-16	12	111-16	7	$13 / 4$	5	$21 / 2$	4	$33 / 4$	3^{3}
$5 / 8$ $11-16$	11	11/8	7	17/8	5	$23 / 4$		4	3

Ư．S．OR SELLERS SYSTEM OF SCREW－THREADS． 205
Screw－Threads，Whitworth（English）Standard．

$\begin{aligned} & \dot{\sim} \\ & \stackrel{\text { g. }}{\circ} \end{aligned}$	¢ í A	$\begin{aligned} & \text { घं } \\ & \stackrel{\text { ® }}{\text { ® }} \end{aligned}$	¢ ¢ ¢	$\stackrel{.}{\substack{\mathrm{E}}}$	－	$\stackrel{\text { E }}{\text { E }}$	亏	岸	－
1／4	20	5／8	i1	1	8	13／4	5	3	31／2
5－16	18	11－16	11	11／8	7	$17 / 8$	41／2	$31 / 4$	$31 / 4$
3／8	16	$3 / 4$	10	11／4	7	2	$41 / 2$	31.2	$31 / 4$
\％－16	14	13－16	10	13／8	6	21／4	4	$33 / 4$	3
1／2	12	7／8	9	112	6	21／2		4	3
9－16	12	15－16	9	15／8	5	$23 / 4$	31／2		

U．S．OR SELLERS SYSTEMI OF SCREW－THREADS．

BOLTS AND THREADS．						HEX．NUTS AND HEADS．					
Ins．		Ins．	Ins．			Ins．	In	Ins	Ins．	Ins	Ins．
	20		． 00	． 049	2r		\％－16	3\％－64			
	18	． 2	． 0074	． 0 \％	． 045	19－32	1ヶ－32	11－16			10－12
	16	． 294	．0078	． 110	． 05	11－16		51－64		5	63－64
	14	． 314	． 0089	． 150	． 093	25－32	23－32	9－10	7－16		$17-64$
	13	． 400	． 0096	． 196	． 126					年－16	$115-64$
9－16	12	． 454	． 0104	． 249	． 162	31－32	29－32	11／8			$123-64$
	11	． 507	． 0113	． 307	$\therefore 32$	11－16		$17-32$		9－16	11／2
	10	． 620	． 0125	． 442	． 302	$11 / 4$	$1: 3-16$	$1{ }_{1} \uparrow-10$		11－16	1 49－64
	9	． 731	． 01.08	C001	． 420	$1{ }^{\text {r }}$－16	$13 / 8$	$121-32$		13－16	$21-32$
	8	．837	． 0156	． 785	．5－0	15／3	$19-16$			15－16	2 19－64
11	7	． 940	． 0173	． 904	． 694	$1{ }^{13}-16$	13 1	$23-32$	11／8	$11-16$	2 9－16
		1.065	． $01 \% 8$	$1.22 i$	． 893		110－16	2 5－16	11／4	13 －16	2 53－64
	6	1.160	． $0: 208$	$1 .{ }^{\prime \prime}$	1.05 \％	2 3－16		$21 \tau-32$		15 －16	3 3－32
	6	1.284	． 0208	，	1.295	23／8	2		$11 / 2$	17 －16	3 23－64
	51／2	1.389	． 0227	2． i^{4}	1.515	2 9－16		$231-3.2$		$1{ }^{1}$ 亿－16	35／8
	5	1.491	．0250	2.405	3． 746	$23 / 4$	2 11－16	33	13／4	$111-16$	$35 \%-64$
	5	1.616	．0250	2． 761	2.051	$215-16$		313－32	$11 / 8$	1 13－16	$45-32$
	$41 / 2$	1.712	．02ĩ	3.142	2.302		3 1－16	35／8		$115-16$	$42 \hat{-}$－64
	41122	1.962	． $0: 27 \%$	3．9\％6	4.023	31／2	3\％－16	$\leq 1-1$	$21 / 4$	23 316	4 61－64
	4	2.176	． 0312	4.909	3.71.	378	3 13－16	41／2	$21 / 2$	$27-16$	$531-64$
	，	2.426	． 0312	5.940	4.620	4	4 3－16	4 29－3	$23 / 4$	－2 11－16	
	31／2	2.629	．0357	7.069	5.428	45／8	4 9－16			$215-16$	6 1r－3：2
	$31 / 2$	2.879	．0：357	8.296	6.510		$4{ }^{\text {15－16 }}$	5 13－16	$31 / 4$	3：－16	${ }_{7}^{7} 1-16$
	314	3.110	． 0384	$9.6: 21$	7.548	53	5 5－16	C 7 －64		3 $\uparrow-16$	\％39－64
	3	3.317	． 0113	11.045	8.641	53	5 11－1C	6 $21-32$		3 11－16	81／8
		3.567	． 0413	12.556	9.943		6 1－16	\％3－32		$315-16$	841－64
	27	3．798	． 0435	14.186	11.329	硡	6 \％－16	ก 9－16	$41 / 4$	4 3－16	93－16
		4．028	．0454	15.904	12.743	6%	6 13－16	\％31－32	412	4 \uparrow ¢－16	$93 / 4$
$43 / 4$		4.256	．04\％6	1， 7.21	14.226		\％3－16	－13－3：	434	4 11－16	101／4
		4.480	． 0500	，19．635	15．i6：3	75／8	\％9．16	－ $27-32$		$415-16$	10 49－64
	21	4．730	． 0500	21.648	17．5T2	8	$\therefore 15-16$	－9－3－3	$51 / 4$	5 3－16	$11 \geqslant 3-64$
		4.953	． 0526	23．758	19．26～		8 5－16	9 203－32		）7－16	
$6^{53 / 4}$		5．203	． 0526	$25.96 i$	21．262	91／	8 8 11－16	$105-32$	53／4	5 11－16	1.8
	214	5.423	． 0555	$28.2 \pi 4$	23.098	91／8	$91-16$	10 19－3：		5 15－16	$1: 15-16$

HIMIT GAUGES FOR ERON FORR SCEEW THREADS．

In adopting the Sellers，or Franklin Institut，，ir United States Standard， as it is varionsly called，a difficulty arose from the fact that it is the habit of iron manufacturers to make iron over－size，and as there are no over－size
screws in the Sellers system, if iron is too large it is necessary to cut it away with the dies. So great is this difficulty, that the practice of making taps and dies over-size has become very general. If the Sellers system is adıpted it is essential that iron shonld be obtained of the correct size, or very nearly so. Of course no high degree of precision is possible in rolling iron, and when exact sizes were demanded, the question arose how much allowable variation there should be from the true size. It was proposed to make limitgauges for inspecting iron with two openings, one larger and the other sinaller than the standard size, and then specify that the irn should piter the large end and not enter the small one. The following table of dimensions for the limit-ganges was recommended by the Master Car-Builders' Association and adopted by letter ballot in 1883.

Size of Iron.	Size of Large End of Gauge.	Size of Small End of Gauge.	Differ- ence.	Size of Iron.	Size of Large Lnd of Gauge.	Size of Small End of Gauge.	Differ- ence.
$1 / 4 \mathrm{in}$.	0.2550	0.2450	0.010	$5 / 8 \mathrm{in}$.	0.6330	0.6170	0.016
$5-16$	0.3180	$030 \pi 0$	0.011	334	0.7585	0.715	0.017
$3 / 8$	0.3810	036990	0.012	$7 / 8$	0.8840	0.8660	0018
$7-16$	0.4440	0.4310	9013	18	1.0095	0.9905	0.019
$1 / 2$	$0.50 \uparrow 0$	0.4930	0.014	$11 / 8$	1.1950	1.150	0.020
$9-16$	0.5700	0.5550	0.015	$11 / 4$	1.2605	1.2395	0.021

Caliper ganges with the above dimensions, and standard reference gauges for testing them, are made by The Pratt \& Whitney Co.

THE MAXIMUM VARIATION IN SIZE OF ROUGH IRON FOR U. S. STANDARI BOLTS.

Am. Mach., May 12, 1892.
By the adontion of the Sellers or U. S. Standard thread taps and dies keep their size much longer in use when flatted in accordance with this sristem than when made sharp "V," thongh it has hern found advisable in practice in most cases to make the taps of somewhat larger out-ide diameter than the nominal size, thus carrying the threads further towards the V-shape and giving corresponding clearance to the tops of the threads when in the nuts or tapped holes.

Makers of taps and dies often have calls for taps and dies, U. S. Standaid, "for rough iron"

An examination of rough iron will show that much of it is rolled out o! round to an amount exceeding the limit of variation in size allowed.

In view of this it may be desirable to know what the extreme variation in iron may be, comsistent with the maintenance of U.S. Standard threads, i.e., threads which are standard when measured upon the angles, the only place where it seems advisable to have them fit closely. Mr. Chas. A. Bauer, the general manager of the Warder. Bushnell \& Glessner Co., at Springfield, Ohio, in $188 t$ adopted a plan which may be stated as follows: All bolts, whe' her cut from rough or tinished stock, are standard size at the buttom and at the sides or angles of the threads, the variation for fit of the nut and allowance for wear of taps being made in the machine taps. Nuts are punched with holes of such size as to give 85 per cent of a full thread, experience showing that the metal of wrought nuts will then crowd into the threads of the taps sufficiently to give practically a full thread, while if punched smaller some of the metal will be cut out by the tap at the bottom of the threads, which is of course undesirable. Machine taps are made enough larger than the nominal to bring the tops of the threads up sharp, plus the amount allowed for fit and wear of taps. This allows the iron to be enough above the nominal diamerer to bring the threads up full (sharp) at top, while if it is small the only effect is to give a flat at top of threads; neilher condition affecting the actual size of the thread at the point at which it is intended to bear. Limit ganges are furnished to the mills, by which the iron is rolled, the maximum size being shown in the third colnmn of the table. The minimum diameter is not given, the tendency in rolling being nearly always to exceed the nominal diameter.

In making the taps the threaded portion is turned to the size given in the eighth column of the table, which gives 6 to 7 thousaudths of an inch allowance for fit and wear of tap. Just above the threaded portion of the tap a
place is turned to the size given in the ninth column, these sizes being the same as those of the regular U. S. Standard bolt, at the bottom of the thread, plus the amount allowed for fit and wear of tap; or, in other words, $d^{\prime}=\mathrm{U}$. S. Standard $d+\left(D^{\prime}-D\right)$. Ganges like the one in the cut, Fig. i2, are furnished for this sizing. In finishng the threads of the tap a tool

Fig. 72.
is used which has a removable cutter finished accurately to gauge by grinding, this tool being correct U. S. Standard as to angle, and flat at the point. It is fed in and the threads chased until the flat point just tonches the portion of the tap which has been turned to size d^{\prime}. Care having been taken with the form of the tool, with its grinding on the top fac - (a fixture being proviled for this to insure its being ground properly), and also with the setting of the tool properly in the lathe. the result is that the threads of the tap are correctly sized without further attention.

It is evident that one of the points of advantage of the Sellers system is sacrificed. i.e., instead of the taps being flatted at the top of the threads they are sharp, and are consequently not so durable as they otherwise would be ; but practically this disadvantage is not found to he serinus, and is far overbalanced by the greater ease of getting iron within the prescribed limits; while any rough bolt when reduced in size at the top of the threads, by filing or otherwise, will fit a hole tapped with the U.S. Standard hand taps, thus affording prof that the two kinds of bolts or screws made for the two different kind of work are practically interchangeable. By this system $t^{\prime \prime}$ iroll can be $.005^{\prime \prime}$ smaller or $.0108^{\prime \prime}$ larger than the nominal diameter. or, in vther words, it may have a total variation of $0158^{\prime \prime}$, while $1 \frac{1}{4}{ }^{\prime \prime}$ iron can be $.0105^{\prime \prime}$ smaller or $.0309^{\prime \prime}$ larger than nominal-a total variation of $.0414^{\prime \prime}-$ and within these limits it is found practicable to procure the inon.
STRANDARD SIZES OF SCREW-THREADS FOR BOLTS AND TAPS.
(Chas. A. Bauer.)

1	2	3	4	5	6	7	8	9	10
A	n	D	d	h	f	$D^{\prime}-D$	D^{\prime}	d^{\prime}	H
	20	Inches.	Inches	Inches. 0.3~9	Inches.	Inches.	Inches. . 2668	Inches	Inches.
5-16	18	. 3245	. 2403	.0421	.00\%0	. 006	. 3.305	. 2463	. 2589
3/8	16	. 3885	. 2.938	. 0174	. $00 \stackrel{0}{8}$. 006	. 3945	. 2998	. 3139
7-16	14	. 45.30	. 344 î	. $05+1$.0089	. 006	. 4590	. 3 ¢ू()	. $36 \pi 0$
12	13	. 5166	. 4000	.0582	. 0096	. 006	. $5 \geqslant 20$.4 $6^{\prime \prime}$. 4236
9-16	12	. 5805	. 4543	.0631	. $0: 04$. 007	.5875	. 4613	.4802
5/8	11	. 6447	. 5069	. 0689	. 0114	. 007	. 6517	. 5139	. 5346
9	10	. 7 \%1\%	. $6: 201$. 0758	. 0125	. 007	. 7787	. 6271	. 6499
$7 / 8$	9	. 8991	. $730 \sim$. 0842	. 0139	. 007	. 9061	. 73%	. 7630
1	8	1.02π	.8376	. 0947	. 0156	. 017	1.0341	. 8446	. 8 t 31
11/8	τ	1.1559	. 9394	. 1083	. 0179	. 007	1.1629	9464	9789
11/4	7	1.2809	1.0644	. 1083	. 0179	. 007	1.28\%9	1.0 114	1.1039

$A=$ nominal diameter of bolt.
$D=$ actual diameter of bolt.
$d=$ diameter of bolt at bottom of thread.
$n=$ number of threads per inch.
$f=$ flat of bottom of thread.
$h=$ depth of thread.
D^{\prime} and $d^{\prime}=$ diameters of tap.
$\boldsymbol{H}=$ hole in nut before tapping.

$$
\begin{aligned}
& D=A+\frac{.2165}{n} . \\
& d=A-\frac{1.29904}{n} . \\
& h=\frac{.757 \%}{n}=\frac{D-d}{2} . \\
& f=\frac{.125}{n} . \\
& H=D^{\prime}-\frac{1.288}{n}=D^{\prime}-.85\left(2 h_{1}\right)
\end{aligned}
$$

STANDARD SET-SCREWS AND CAP-SCREWS.

American, Hartford, and Worcester Machine-Screw Companies.
(Compiled by W. S. Dix.)

	(A)	(B)	(C)	(D)	(E)	(F)	(G)
Diameter of Screw	1/8	3-16	$1 / 4$	5-16	$3 / 8$	ก-16	$1 / 2$
Threads per Inch....	40	24	20	18	16	14	
Size of 「ap Drill*....	No. 43	No. 30	No. 5	1\%-64	21-64	$3 / 8$	27-64
Diameter of Screw Threads per Inch.... Size of Tap Drill*....	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	9-16.	5/8	3/4	7/8		11/8	11/4
	12	11	10	${ }^{9}$	8	${ }^{7}$	
	31-64	17-32	21-32	49-64	7/8	63-64	11/8

* For cast iron. For numbers of twist-drills see p. 29.

Threads are U. S. Standard. Cap screws are threaded $3 / 4$ length up to and including $1^{\prime \prime}$ diam. $\times 4^{\prime \prime}$ long, and $1 / 2$ length above. Lengths increase by $14^{\prime \prime}$ each regular size between the limits given. Lengths of heads, except flat and button, equal diam. of serews.
The angle of the cone of the flat-head screw is 76°, the sides making angles of 52° with the top.

STANDARD MACHINE SCREWS.

No.	Threads per Inch.	Diam. of Body.	Diam. of Flat Head.	Diam. of Round Head	Diam. of Filister Head.	Lengths.	
						From	To
2	56	.0842	. 1631	. 1544	. 1332	3-16	1/2
3	48	. 0973	. 1894	. 1786	. 1545	3-16	5/8
4	$32,36,40$. 1105	. 2158	. 2028	. 174 \%	3-16	$3 / 4$
5	$3 \cdot 2,36,40$. 1236	. 2421	.22\%0	. 1985	3-16	7/8
6	30, 32	. 1368	. 2684	. 2512	. 21 \% 5	3-16	
7	30, $3:$. 1500	. 2947	. 2754	. 2392	$1 / 4$	$11 / 8$
8	30, 32	. 1631	. 3210	. 2936	. 2610	$1 / 4$	$11 / 4$
9	24, 30, 32	. 1163	. 3474	. 32388	.2805 .3035	14	138
10	24.30,32	. 1894	. 3737	. 3480	. 3035	1	$11 / 8$
12	20, 24	. 2158	.4263 .4790	. 4324	. 3445	$3 / 8$ $3 / 8$	${ }_{2}^{13 / 4}$
16	16, 18, 20	. 2684	. 5316	. 4866	. 4300	$3 / 8$	21/4
18	16, 18	. 2947	.584:	. 5248	. 4710	$1 / 2$	$21 / 2$
20	16, 18	. $3 \cdot 110$. 6368	. 5690	. 5200	$1 / 2$	23/4
$2 \cdot 3$	16, 18	. 3474	. 6894	. 6106	. 5557	$11 / 2$	3
24	14, 16	. 3737	. 7420	. 6522	. 6005	$1 / 2$	3
26	14, 16	. 4000	. 7420	. 6938	. 6425	$3 / 4$	3
28	14, 16	. 4263	. 7946	. 7354	. 6920	7/8	3
30	14, 16	. $45 \div 0$.84i3	. 270	. 7240		3

Lengths vary by 16 ths from $3-16$ to $1 / 2$, by Sths from $1 / 2$ to $11 / 2$, by 4 ths from 11/2 to 3 .

SEZES AND WEIGHTS OF SQUARE AND HEXAGONAL NUTS.

United States Standard Sizes. Chamafered and trimmed. Punched to suit U. S. Standard Taps.

		$\begin{aligned} & \dot{p} \\ & \text { W } \\ & \text { E } \\ & \text { E } \\ & \text { En } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & \text { H } \\ & 0 \\ & \dot{0} \\ & \dot{g} \\ & \dot{\theta} \end{aligned}$			Square.		Hexagon.	
						$\begin{aligned} & 8 \\ & \pm \underset{\circ}{8} \\ & \dot{8} \end{aligned}$			
		1	13-64	11-16	$9-$	7270	. 0138	7615	013
5-16	19-32	5-16	$1 / 4$	13-16	11-16	$4 * 00$.0231	5200	. 19
9/8	11-16	988	19-64	1	13-16	$2: 350$. 0426	3000	033
7-16	25-32	\%-16	11-32	$11 / 8$	7/8	1630	. 0613	2000	. 050
		$1 / 2$	25-64	$11 / 4$		1120	. 0893	1430	. 070
9-16	31-32	9-16	29-64	$13 / 8$	$11 / 8$	890	. 1124	1100	. 091
	${ }_{1} 1-16$	5/8	33-64	11%	11/4	640	. 156	740	. 135
	$11 / 4$	8	39-64	$13 / 4$	$1^{7} 716$	380	. 263	450	. 222
8	$1{ }_{1}^{1}-16$	7/8	47-6t	$2^{1 / 16}$	111-16	280	. 357	309	. 324
\%	15/8	$1{ }^{1}$	53-64	2 5-16		170	. 588	216	. 403
-1/8	$113-16$	$11 / 8$	59-64	2 ${ }_{2} 9-16$	$2^{2} 1-16$	130	. 769	148	. 6 r6
11	${ }^{2}$	$11 / 4$	$\begin{array}{ll}1 & 1-16\end{array}$	$2{ }^{13-16}$	$2{ }^{5-16}$	96	1.04	111	. 901
$13 / 8$	2 3-16	138	1 1-3-32	$31 / 8$	$21 / 2$	70	1.43	85	1.18
11/3	23/8	$11 / 2$	$1 \begin{aligned} & 1 \\ & 1 \\ & 9\end{aligned}$	$33 / 8$		58	1.72	68	1.47
198	$2{ }^{2} 9$	$15 / 8$	1 13-32	35%	${ }_{2}{ }^{2} 15-16$	44	2.27	56	1.79
13	$23 / 4$	134	$11 / 2$	378	3 3-16	34	2.94	40	2.50
17/8	$215-16$	178	$15 / 8$	418	$33 / 8$	30	3.33	37	2. 80
$\stackrel{2}{2}$	$31 / 8$	$\stackrel{2}{2}$	${ }^{1}$ 23-32	4 \%-16		23	4.35	29	3.45
1	31.	21	$1 \begin{array}{ll}1 & 15-16\end{array}$	$415-16$	$41-16$	19	5.26	21	4.76
,	37/8	21	$2{ }^{2} \quad 3-16$	$51 / 2$		12	8.33	15	6.67
$3_{3}^{23 / 4}$	414 458	$3_{3}^{23 / 4}$		${ }^{6} 61 / 2$	4 $15-16$ 5 $5-16$	$\stackrel{9}{71 / 3}$	11.11 13.64	${ }^{11} 81$	9.09 11.76
									11.86

\bigcirc	
水	
\pm	
¢	
$\stackrel{ \pm}{2}$	
$\stackrel{\sim}{\sim}$	
\square	
$\underbrace{\infty}$	
が	
$\stackrel{\infty}{2}$	
$\stackrel{0}{0}$	
$\stackrel{\square}{2}$	\|
$\stackrel{e}{i}$	
$\stackrel{\infty}{\infty}$	
$\underset{12}{6}$	
$\stackrel{\pi}{\square}$	

TRACK BOLTS．

With United States Standard Hexagon Nuts．

Rails used．	Bolts．	Nuts．	No．in Keg， 200 Jbs．	Kegs per Mile．
45 to 85 lbs ．	$3 / 4 \times 41 / 4$	$11 / 4$	230	6.3
	$3 / 4 \times 4$	$11 / 4$	240	6.
	$3 / 4 \times 31 / 2$	11／4	260	5.7
	$3 / 4 \times 31 / 4$	$11 / 4$	266	5.4
	$3 / 4 \times 3$	11／4	283	5.1
30 to $40 \mathrm{lbs} . . .\{$		1 1－16	375	4.
	$58 / 8$	$11-16$	410	3.7
	$58 \times 23 / 4$	$11-16$	435	3.3
	1 $\times 3$	1 1－16	465	3.1
20 to 30 lbs ．． 2	1／2 $\times 3$	7／8	715	2.
	$1{ }^{12} \times 2 \times 21 / 4$	88	800	2.
	12×2	\％／8	880	$\stackrel{2}{2}$

CONE-HEAD BOILER RIVETS, WEIGRT PER 100.

(Hoopes \& Townsend)

Diam., in.. Scan.	1/2	9/16	5/8	11/16	$3 / 4$	13/16	7/8	1	11/8*	11/4*
Length	Ib	lbs.	lbs	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs
$3 / 4$ inch		13.	16.20							
	9.45 10.00	14.4 15.2	$\begin{aligned} & 1 \pi \cdot 20 \\ & 18.25 \end{aligned}$	21.00	26.55					
11/8	10.70	16.0	19.28	23.10	28.00					
$11 / 4$	11.40	16.8	20.31	24.50	29.45	37.0	46	60		
13/8	12.10	17.6	21.34	25.90	30.90	38.6	48	63	95	
$11 / 2$	12.80	184	22.37	2 z .30	3.2.35	40.2	50	65	98	133
$15 / 8$	13.50	19.2	23.40	28.70	33.80	41.9	$5 \cdot$	67	101	137
$13 / 4$	14.20	$\because 0.0$	24.43	30.11	3.5 .25	43.5	54	69	104	141
$17 / 8$ "	1490	20.8	${ }^{2} 5.40$	31.50	36.70	45.2	56	71	$10 \hat{\sim}$	145
	15.60	21.6	26.49	32.90	3815	47.0	58	74	110	149
21/8	16.30	22.4	27.52	34.30	39.60	48.7	60	7	114	$15: 3$
$21 / 4$	17.00	23.2	28.55	35. 0	41.05	50.3	62	80	118	157
$23 / 8$	1-. 0	24.0	29.58	3710	42.50	519	64	83	121	161
21.2	18.40	24.8	30.61	38.50	43.95	53.5	66	86	124	165
25/8 "	19.10	25.6	3164	39.90	45.40	55.1	68	89	127	169
$23 / 4$	19.80	26.4	32.67	41.31	46.85	56.8	70	92	130	1173
$27 / 8$	20.50	27.2	33.70	42. 00	48.30	58.4	\%	95	$13: 3$	17%
	21.20	280	34.73	44.10	49.75	60.0	74	98	137	181
$31 / 4$	22.60	29.7	36.79	46.90	52.65	63.3	78	103	144	189
$31 / 2$	24.00	315	38.85	49.70	55.55	665	82	108	151	197
$33 / 4$	25.40	33.3	40.91	59.50	58.45	69.8	86	113	158	205
$4{ }^{*}$	26.80	35.2	42.97	55.30	61.35	T3.0	90	118	165	213
$41 / 4$	28.20	36.9	45.03	58.10	64. 25	¢6.3	94	124	172	$2 \because 1$
$41 / 2$	29.60	38.6	47.09	60.90	67.15	79.5	98	130	179	229
$43 / 4$	31.00	40.3	49.15	63.70	20.05	82.8	102	136	186	237
5 "	32.40	42.0	51.21	66.50	T2.95	86.0	106	$14 \cdot 3$	193	24.5
$51 / 4$	33.80	4:3.7	53.2í	69.20	75.85	89.3	110	148	200	254
51.6	35.20	45.4	55.33	72.00	78.75	92.5	114	154	206	263
	36.60	47.1	57.39	\%4.80	81.65	95.7	118	160	21.	27.2
6	$3 \times .00$	48.8	59.45	\%7.60	84.55	99.0	122	166	218	281
$61 / 2$	40.80	5.). 0	63.57	8.3.30	90.35	105.5	130	17%	231	29%
$7{ }^{1 /}$	43.60	55.2	67.69	88.90	96.15	112.0	138	188	245	814
Heads..	5.50	8.40	11.50	13.20	18.00	23.0	29.0	38.0	56.0	7\%. 5

[^5]
TURNBUCKLES.

(Cleveland City Forge and Iron Co.)
Standard sizes made with right and left threads. $D=$ outside diameter

Fig. 73.
of screw. $A=$ length in clear between heads $=6$ ins. for all sizes. $B=$ length of tapped heads $=11 / 2 D$ nearly. $L=6$ ins. $+3 D$ nearly.

SIZES OF WASHERS.

Diameter in inches.	Size of Hole, in inches.	Thickness, Birmingham Wire-gauge.	Bolt in inches.	No. in 100 lbs .
5/8	5-16	No. 16	$1 / 4$	29,300
3/4	$3 / 8$	"16	5-16	18,000
1	7-16	6 14	3/8	7,600
11/2	9-16	6 11		3,300
11%	$5 / 8$	" 11	9-16	2,180
11/2	11-16	" 11		2,350
$13 / 4$	13-16	" 11	$3 / 4$	1,680
2	31-32	[10	$7 / 8$	1,140
212	11/8	" 8	1	580
23/4			11/8	470
3^{4}	$13 / 8$	" 7	$11 / 4$	360
3	11/2	" 6	13/8	360

TRACK SPIKES.

Rails used.	Spikes.	Number in Keg, 200 lbs.	Kegs per Mile, Ties 24 in . between Centres.
45 to 85	$51 / 2 \times 9-16$	380	30
40×52	$5 \times 9-16$	400	27
35 ' 40	$5 \times 1 / 2$	490	22
24 " 35	$41 / 2 \times 1 / 2$	550	20
24 " 30	$41 / 2 \times 7-16$	725	15
18 " 24	$4 \times 7-16$	820	13
16 " 20	$31 / 2 \times 3 / 8$	1250	9
14 "16	3×38	1350	8
8 " 12	$21 / 2 \times 3 / 8$	15.0	7
8 " 10	$21 / 2 \times 5-16$	$2 \div 60$	5

STREET RAKLWAY SPIKES.

Spikes.	Number in Keg, 200 lbs.	Kegs per Mile, Ties 24 in. between Centres.
$51 / 2 \times 9-16$ $5 \times 1 / 2$ $41 / 2 \times \tau-16$	400	30

BOAT SPIKES.

Number in Keg of 200 1bs.

WROUGHT SPIKES．
 Number of Nails in Keg of 150 Pounds．

WIRE SPIKES．

LENGTHI AND NUMPER OF CUT NAILS TO THE
POUND．

Size．	$\begin{aligned} & \stackrel{1}{5} \\ & \underset{0}{0} \\ & \underset{\sim}{む} \end{aligned}$	E है हु O		¢		邑			第	$\begin{aligned} & \dot{0} \\ & \text { U0 } \\ & \text { E} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
	3／4in．						800 500				
		800			1100	1000	376				
3 d	$11 / 4$	480		\cdots	720	760	224				
4d．	11／2	288			523	368	180	398			
5 d	${ }_{2}^{13 / 4}$	200			410	．．．．．．	．．．．．			130	
	${ }_{21 / 4}^{2}$	168	95 74	84	268			224	126	96	
8d．	21／2	88	62	48	186			128	75	88	
9 d ．	$23 / 4$	70	53	36	130			110	65		
10d．		58	46	30	102			91	55		28
12d．	$31 / 4$	44	42	24	76			71	40		
16d．	31／2	34	38	20	62			54	27		22
20 d ．		23	33	16	54			40			143
30d．	41／2	18	20					33			121
40d． 50 d		14						27			91
50d．	51／2	10									8

（John A．Roebling＇s Sons Co．）

－Səz！S	
＇səy！¢S ә．！！M	
－8u！̣u！	$\left\lvert\, \begin{aligned} & 888 \\ & \text { 8®8 } \\ & \text { R } \\ & \sim\end{aligned}\right.$
－${ }^{\text {O－0rqol }}$	
$\cdot 2[80!4!$	
－suyoor paŋ．ıед	
－Зแ！ฺษIS	
＇sprexg \％in！．00\％	
－xog pą．rеg pue yrooms pue＂oulseo	京吹
－－3．1eg	
－θ a！	
－әэиәя	$\vdots \vdots \vdots \vdots \vdots$ 或
＇ч0и！${ }^{\text {a }}$	
－uoumod paq．reg	
spe．ig pro 	
＇səuวu！＇प1．8：na＇	
－səz！S	

approximate number of Wire nails per pound. 215

APPROXIMATE NUMBER OF WIRE NAILS PER POUND.

Wire Gauge. B. W. G.	Length, inches.																						
	3/4	3/8	1/2	5/8	3/4	1	11/4	11/2	$13 / 4$	2	21/2	3	$31 / 2$	4	41/2	5	6	7	8	9	10	11	12
00							33	27			16	14.		10		8							
0							${ }_{45}^{34}$	$\stackrel{29}{38}$	$\stackrel{25}{3.2}$	$\stackrel{21}{28}$	${ }_{23}^{17}$	15	13	11	10	9	8	7	51/2		41/3		$31 / 2$
$\frac{1}{2}$						${ }_{6} 6$	52	44	${ }_{37}^{32}$	3.	26	\%2	19	14	13	${ }_{13}^{11}$	11	8		${ }_{7}$	51	5	$41 / 3$
3					100	${ }_{76} 6$	60	50	43	38	30	${ }_{25}$	22	19	17	15	13	11		8			
4					120	90	72	60	51	45	36	30	26	23	20	18	15	13			9		
5			211	169	141	106		71	60	53	42	35	30	26			18	15					
6			247	197	164	123	99	82	71	62	50	41	35	31			21	18					
7			299	239	200	149	120	100	85	75	60	50	43	37		30	25						
8			345	275	229	12.2	137	115	98	86	69	57	49	43		35	29						
$9 .$			414	331	276	207	165	138	118	103	82	69	59	52		41							
10		663	496	397	333	248	198	165	142	124	99	83	71	62									
11		837	628	50:	418	314	251	209	179	157	125	105	90	79									
		1096	$8: 2$	658	548	411	329	244	235	204	164	13%	117	103									
13		1429	10\%2	857	714	536	429	357	306	268	214	178											
$14 .$	2840	1893	1420	1136	947	710	568	473	406	350	284												
	${ }_{4} 3504$	${ }^{2336}$	1752	1402	1168	816	\%01	584	500	438	350												
	${ }^{45 \% 1}$	4156	2280		${ }^{2077}$	1143 1558	$\begin{array}{r}913 \\ 1246 \\ \hline\end{array}$	${ }^{1038}$		${ }_{7}^{571}$													
	8:276	5517	4138	3310	2758	2069	1655	1379	1182				dhe	fig	res	give	ma	y be	vari	d	ither		
	10668	7112	5334	4267	35.56	2667	2133	1778						in	the	dir	nsio						
	15000	10000	7500	6000	5000	3ヶ50	3000						ads	nd		sh	ails,	dill		ore	to th	ro	
	17777	11850		7111	5926	4444							ils w	will rum	n les.	Sho	s,					-hea	
	22856	15237	11428	9143	r618																		

SIZE，WEIGHT，LENGTH，AND STRENGTH OF IRON WIRE．

（Trenton Iron Co．）

No．by Wire Gauge．	Diamı． in Deci－ mals of One Inch．	Area of Section in Decimals of One Iuch．	Feet to the Pound．	Weight of One Mile in pounds．	Tensile Strength（Ap． proximate）of Charcoal Iron Wire in Pounds．	
					Bright．	Annealed．
00000	． 450	． 15904	1.863	2833.248	12598	9449
0000	． 400	． 12566	2.358	2239.878	9955	7466
000	． 360	． 10179	2.911	$1813.5 \overline{4} 4$	8124	6091
00	． 330	． 08553	3.465	1523.861	6880	5160
0	． 305	． 07306	4.057	1301.678	5926	4445
1	． 285	．063i9	4.645	1136.648	5226	3920
2	． 265	． 05515	5.374	982555	$45 \% 0$	3425
3	． 245	． 04714	6.286	839.942	3948	2960
4	． 225	． 03976	7.454	\％ 08.365	3374	2530
5	． 205	． 03301	8.976	588.139	2839	2130
6	． 190	． 02835	10.453	505.084	$24 i 6$	1860
7	． 175	． 02405	12.322	$428.4 \pi 2$	2136	1600
8	． 160	．02011	14.736	358.3008	1813	1360
9	． 145	． 01651	17.950	294.1488	1507	1130
10	． 130	． 01327	22.333	236.4384	1233	925
11	． 1175	． 01084	27.340	193.1424	1010	758
12	． 105	．00866	34.219	154.2816	810	607
13	． 0925	． 00672	44092	119.7504	631	473
14	． 080	．00503	58.916	89.6016	474	356
15	． 070	． 00385	76.984	68.5872	372	280
16	． 061	． 00292	101.488	52.0080	292	220
17	． $05 \% 5$	． 00216	137.174	38.4912	222	165
18	． 045	． 00159	186.335	28.3378	169	127
19	． 040	． 0012566	235.084	22．3872	137	103
20	． 035	． 0009661	308.079	17.1389	107	80
21 22	.031 .028	.0007547 .0006157	392.75% 481.234	13.4429		
${ }_{23}^{22}$	． .028	． 00001969	481． 603.863	10．9718		\％
24	．0225	． 0003976	745.710	7.0805	－	
25	． 020	． 0003142	943.396	5.5968	式枵？	²
26	． 018	．000：545	1164.689	4.5334	93 \％	）
27	． 017	． 0002220	1305.670	4.0439		울ํㅐ․
28	． 016	．0002011	1476.869	3.5819	¢0\％	號
29	． 015	． 0001167	1676.989	3.1485		
30	． 014	． 0001539	1925．321	2.7424	$\xi_{0}^{n} \underline{y}$	E.
31 32	.013 .012	.0001327 .0001131	2223.653 26.067	2．3649	of	İ ive
33	． 011	． 0000950	3119.092	1.6928	\％	I
34	． 010	． 00007854	3773.584	1.3992	${ }_{4}$	近
35	． 0095	． 0000 ¢088	4182.508	1.2624	\bigcirc	近
36	． 009	． 00006362	4657.728	1.1336	－\％	Red
37	． 0085	． 000055675	5222． 035	1.0111	สิ \％	¢゙ส్
38 39	． 008	． 000005027	5896.147	． 89549	9.	\％
39 48	.0075 .007	． 00004418	6724.291 7698.253	.78672 .68587	E\％	\％${ }^{\text {E }}$

GALVANIZED IRON WIPAE FOR TELEGRAPH AND TELEPHONE LINES.

(Trenton Iron Co.)

Weight per Mile-Ohm.-This term is to be muderstood as distinguishing the resistance of material only, and means the weight of such material required per mile to give the resistance of one ohm. To ascertain the mileage resistance "f any wire, divide the "weight per mile-ohm" by the weight of the wire per mile. Thus in a grade of Extra Best Best, of which the weight per mile-olim is 5000 , the mileage resistance of No. 6 (weight per mile 525 lbs.) would be about $91 / 2$ olims; and No. 14 steel wire. 6500 lbs. weight per mile-ohm (9.5 lbs . weigh per mile), would show about $69 \mathrm{nhms}$.

Sizes of Wire used in Telegraph and Telephone Lines.

No. 4. Has not been much used until revently; is now used on important lines where the muliiplex systems are applied.

No. 5. Little used in the United States.
No. 6. Used for important circuits between cities.
No. 8. Medium size for circuits of 400 miles or less.
No. 9. For similar locations to No. 8. but on somewhat shorter circuits ; until lately was the size most largely used in this country.

Nos. 10, 11. For shorter circuits, railway telegraphs, private lines, police and fire-alarm lines, etc.

No. 12. For telephone lines, police and fire-alarm lines, etc.
Nos. 13, 14. For telephone lines and short private lines: steel wire is used most generally in these sizes.

The coating of telegraph wire with zinc as a protection against oxidation is now generally admitted to be the most efficacious method.

The grades of line wire are generally known to the trade as "Extra Best Best" (E. B. B.), "Best Best" (B. B.), and "Steel."
"Extra Best Best" is made of the very best iron, as nearly pure as any commercial iron, soft, tough, uniform, and of very high conductivity, its weight per mile-ohm being about 5000 lbs .

The "Best Best" is of iron, showing in mechanical tests almost as good results as the E. B. B., but not quite as soft, and being somewhat lower in conductivity; weight per mile-ohm about $5 \pi 00$ lbs.

The Trenton "Steel" wire is well suited for telephone or short telegraph lines. and the weight per mile-ohm is about 6500 lbs .
The following are (approximately) the weights per mile of various sizes of galvanized telegraph wire, drawn by Trenton Iron Co.'s gauge:

No.	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14.
Lbs.	720,	610,	525,	450,	$3 \pi 5$,	310,	250,	200,	160,	125,	95.

TESTS OF TELEGRAPH WIRE.
The following data are taken from a table given by Mr. Prescott relating to tests of E. B. B. galvanized wire furuished the Western Union Telegraph Co.:

$\begin{gathered} \text { Size } \\ \text { of } \\ \text { Wire. } \end{gathered}$	Diam. Parts of One Inch	Weight.		Length. Feet per pound.	Resistance. Temp. 75.8° Fahr.		Ratio of Breaking Weight to Weight per mile
		Grains. per foot.	Pounds per mile.		Feet per ohm.	Ohms per mile.	
4	. 238	1043.2	886.6	6.00	9.58	5.51	
5	. 220	891.3	673.0	7.85	\%2\%	7.26	
6	. 203	\%58.9	$5 \% .2$	9.20	618	8.54	3.05
7	. 180	596.7	449.9	11. 70	578	10.86	3.40
8	. 165	501.4	$3 \uparrow 8.1$	14.00	409	12.92	3.07
9	. 148	403.4	304.2	17.4	328	16.10	3.38
10	. 134	330.7	249.4	21.2	269	19.60	3.37
11	. 120	265.2	200.0	26.4	216	24.42	2.97
12	. 109	218.8	165.0	32.0	179	29.60	3.43
14	. 083	126.9	95.7	55.2	104	51.00	3.05

[^6]TABLE OF DIMENSIONS, WEIGHT, AND RESISTANCE OF COPPER WIRE.

$\stackrel{\text { Sauger }}{\text { Number. }}$	Diameter,	Sectional Areain CircularNisis.	weigh		Length.		Resistance.		(Gauge
			Lbs. per Foot.	Lbs. per Ohm.	Feet per Lb.	Feet per Ohm.	Ohms per Lb.	Ohms per	
						19966.55 1774,515 10 $\underset{\substack{7813.15 \\ 6,50.15}}{\substack{7.15 \\ \hline}}$ 3138.29 2637.29 2192.82 1739.4 1394.53 1150.91 874.25 667.338 502.21 502.21 409.276 325.87 232.585 170.879 118.666 99.195 75.946 			

DIMENSIONS, WEIGHT, RESISTANCE OF COPPER WIRE. 219

E. S. G. Gauge	Circular Mils.	Maximum Amperes.	Diameter in Mils.	Weight. S	p. gr. 8.889.	Le	th.	Resistance. 75°	cegal Ohms at ahr.	E. S. G.
Number.		$\sqrt[4]{\left(\frac{\mathrm{C.M}}{104}\right)^{3}}$	$\mathrm{Mil}=.001 \mathrm{in}$.	Lbs. per Foot.	Lbs. per Ohm.	Feet per Lb.	Feet per Ohm.	Ohms per Lb.	Ohms per Ft.	Gauge Number.
3	3000	12.5	54.78	. 009084	2.597	110.087	285.9	. 3850405	. 003497600	3
5	5000	18.3	70.72	. 015139	7.214	66.054	476.5	. 1386225	.002098640	3
8	8000	26.0	89.45	. 024220	18.464	41.288	762.3	. 0651602	. 001311780	8
12 15	12000	35.2	109.55	. 036328	41.538	27.527	1143.4	. 0210743	. 000874578	12
15 20	15000	41.6	122.48	. 045410	64.902	22.022	1429.2	. 0154178	. 000699663	15
20 25	20000 25000	51.6	141.43	. 060548	115.372	16.516	1905.7	. 0086664	. 000524745	20
25 30	25000 30000	61.0 70.0	158.12	.075682	180.278	13.913	2382.0	. 0055470	.000419807	25
35	35000	78.6	187.09	. 105955	359.7240	11.011 9.4381	2859.9 3331.9	. 0038522	. 000349840	30
40	40000	86.8	200.00	. 121082	461.440	8.2589	38311.0	. .0021671	. 0000299863	35
45	45000	94.9	212.14	.136227	584.098	7.3407	4287.7	. 0017120	. 000233227	45
50	50000	102.7	223.61	. 151357	721.026	6.6069	4763.8	. 0013868	. 000209914	50
55	55000	110.3	234.53	. 166501	872.547	6.0060	5240.5	. 0011467	. 000190821	55
60	60000	117.7	244.95	.181625	1038.258	5.5059	5716.5	.00096315	. 000174931	60
65	65000	125.0	254.96	.196772	1218.586	5.0820	6192.9	. 00082057	. 000161465	65
70 75	70000	132.1	264.58	. 211901	1413.264	4.7192	6669.4	. 00070758	.000149937	70
75 80	75000 80000	139.1	273.87 28285	. 2272173	1622.457	4.4044	7146.0	.00061635	. 000139938	75
85	85000	146.0 152.8	282.85 291.55	. 242176	1845.952	4.1292	7622.3	. 00054172	.000131193	80
90	90000	159.5	300.00	.279434	2336405	3.8865 3.6706	8098.4	. 00047990	. 000123480	85
95	95000	166.1	308.23	. 287587	2603.046	3.4773	9051.6	. 000038415	. 0000110622	90
100	100000	172.6	31623	. 302709	2884.082	3.3035	9527.6	. 00034673	. 000104960	100
110	110000	185.4	331.67	. 332991	3489.958	3.0031	10480.6	. 00028656	. 000095410	110
120	120000	198.0	346.42	. 363267	4153.433	2.7528	11433.6	. 00024070	. 000084460	120
130	130000	210.2	360.56	. 393527	4874.226	2.5411	12386.0	.00020514	. 000080730	130
140	140000	222.2	374.17	. 423797	565\%.899	2.3596	13338.7	. 00017690	. 000074970	140
150	150000	234.0	387.30	. 454061	6484.573	2.2023	14291.3	. 00015409	. 000069997	150
160 170	160000	245.6	400.00	. 484328	7383.042	2.0647	15243.9	. 00013544	. 000065600	160
170 180	170000	257.0	412.32	. 514622	8335.525	1.9432	16197.4	. 00011995	. 000061735	170
180 190	180000	268.3	424.27	. 544884	9344.686	1.8353	17149.9	. 00010701	. 000058309	180
190 200	190000 200000	279.4	435.89	. 575140	10411.241	1.7387	18102.1	. 00009604	. 000055942	190
200 220	200000 220000	290.4 312.0	447.22 469.05	.605427 .665975	11536.681	1.6517	19055.4	. 00008667	.00005,2478	200
240	240000	312.0 333.0	469.05 489.90	. 665975	13959.567 16612.114	1.5016 1.3765	20961.1	. 00007163	. 000047707	220
260	260000	353.5	509.91	. 787058	19496.997	1.2706	24772.1	. .00005129	. 0000040368	240 260
280	280000	373.7	529.16	. 847605	22612.233	1.1798	26677.8	. 00004422	. 000037484	280
300	300000	393.6	547.73	. 908140	25957.464	1.1012	28583.1	. 00003852	. 0000034986	300
320	320000	413.1	565.69	. 968672	29533.696	1.0323	30488.3	.00003386	. 000032799	320
340	340000	432.3	583.10	1.029214	33340.181	. 9716	32393.8	. 00002999	.000030870	340
360	360000	451.3	600.00	1.089738	37376.652	. 9177	34298.7	. 00002675	. 000029155	360

auge	Diameter	Sect. Area	Weight.		Length.-Feet.		Resistance.-Ohms.		Gauge Number.
Number.	Inch.	Mils.	Lbs. per Foot.	$1 \mathrm{ks}$. per Ohm.	Per Itb.	Per Ohm.	Per Font.	Per Lb.	
0000	. 46	211600.	. 640525	13129.29	1.56122	20497.7	.000048786	${ }^{.00000761656}$	$\begin{gathered} 0000 \\ 000 \end{gathered}$
000	.40964 .3648	167805. 133079.	.507955 .40284	8256.95 5193.13	1.9687 2.4824	16255.27 12891.37	. 0000061519	.00012111	$\begin{gathered} 000 \\ 00 \end{gathered}$
00 0	. 36488	10.5534.	. 319457	${ }_{3265.84}$	3.1303	10223.08	. 000097818	. 0003062	0
1	. 2893	83694.	. 253348	2054.015	3.94714	8107.49	. 000123342	. 000476866	1
2	. 25763	66373.	. 200915	1291.80	4.97722	6429.58	. 00015553	. 000774113	2
3	. 22942	52634.	. 159325	812.709	6.2765	5098.61	. 000196132	. 00123102	3
4	. 20131	41743.	. 126357	522.839	7.9141	4043.6	. 000247304	. 00191263	4
5	. 18191	33102.	. 10022	321.309	9.97983	3206.61	. 000311856	. 00311227	5
6	. 16202	26251.	. 0794616	202.062	12.5847	2542.89	. 0003932555	. 00494898	${ }_{7}$
7	. 14428	2817.	. 06301.34	127.07	15.8696	2015.51	. 000495905	. 00785156	7
8	. 12849	16510.	. 04999757	79.9258	20.0097	1599.3	.000625276	. 012125116	
10	. 110189	13094.	. 0396337	50.2886 31.6036	25.229 31.8212	1268.44 1055.66	. 000078983737	. 0319842	10
11	. 090742	8234.	. 024925	19.882	40.1202	797.649	. 0012537	. 0502987	11
12	. 080808	6530.	. 0197665	12.5034	50.5906	632.555	0015809	. 0799783	12
13	. 071961	5178.	. 0156753	7.86319	63.7948	501.63	. 0019935	. 127172	13
14	. 064084	4107.	. 0124314	4.51033	80.4415	397.822	. 0025137	. 221713	14
15	. 057068	3257.	. 0098584	3.11015	101.4365	315.482	. 00316975	. 321528	15
16	. 05082	2583.	.0018179	1.95501	127.12	250.184	. 00399707	. 511507	16
17	. 045257	2048.	. 0062	1.23013	161.29	198.409	. 0050401	. 812918	17
\%	. 040303	1624.	. 004917	. 773677	203.374	157.35	. 0063553	1.29253	18
13	. 03589	1288.	. 00388991	. 4865924	256.468	124.777	.00801426 .0101058	2.0554	
20	. 031961	1021.	. 000230922	.305979 .192429	323.399 407.815	98.9533 78.473	. 010121058	3.2682 5.19671	20 21
21 22	. 02854634	810. 642.	. 00024522	. 192429	407.815 514.193	78.473 62.236	.0127432	5.19671 8.26197	21 22
23	. 022571	509.	. 0015421	. 076105	648.452	49.3504	.0202633	13.13974	23
24	. 0201	404.	. 001223	. 0478624	817.688	39.1365	. 0255516	20.89323	24
25	. 0179	320.	. 0009699	. 0301038	1031.038	31.0381	. 0322184	33.2184	25
26	. 01594	254.	. 0007691	. 0168719	1300.180	24.6131	. 0406288	53.8247	26
27	. 014195	201.	. 0006099	. 0119056	1639.49	19.5191	. 0512318	83.994	27
28	. 012641	159.8	. 0004837	. 0071748	2067.364	15.4793	. 0646023	133.5563	28
29	. 011257	126.7	. 0003836	. 0047087	2606.959	12.2854	. 081464	212.373	29
30	. 0100025	100.5	. 00003042	. 000296174	3287.084	9.7355	. 102717	${ }_{536} 38.639$	
31	. 0008928	79.7	. 0002413	. 000117306	4414.49 5226.915	7.72143 6.12243	. 12295163	${ }_{853.732} 5315$	31
33	. 00708	50.1	. 0001517	. 000736789	6590.41	4.85575	. 205942	1357.241	33
34	. 006304	39.74	. 0001203	. 0004631	8312.8	3.84966	. 25976	2159.361	34
35	. 005614	31.5	. 0000954	. 000291272	10481.77	305305	. 327541	3433.21	35
36	. 005	25.	. 00007568	. 000183269	13214.16	2,4217	. 41293	5456.45	36
37	. 004453	19.8	. 00006003	. 000115298	16659.97	1.92086	. 520601	8673.2	37
38	. 003965	15.72	. 00004759	. 00000724741	${ }_{21013.25}$	1.52292	.656635	13798.04	38
10	. 06.3144	12.48	. 00002992	. 00000369803	33420.63	0.97984	1.04435	27041.4	40

HARD-DRAWN COPPER TELEGRAPH WIRE.

(J. A. Roebling's Sons Co.)

Furnished in half-mile coils, either bare or insulated.

Size, B. \& S. Gauge.	Resistance in Ohins per Mile.	Breaking Strength.	Weight per Mile.	Approximate Size of E B. B. Iron Wire equal to Copper.
9	4.30	625	209	2 -
10	5.40	525	166	
11	6.90	420	131	4
12	8.70	330	104	6 .
13	10.90	20	83	61/2\%
14	13.70	213	66	8 8
15	17.40	170	59	9 き
16	22.10	130	41	

In handing this wire the greatest care should be observed to avoid kinks, beuds, scratches, or cuts. Joints should be made only with MeIntire Connectors.

On account of its conductivity being about five times that of Ex. B. B. Iron Wire, and its breaking strength over three times its weight per mile, copper may be used of which the section is smaller and the weight less than an equivalert iron wire, allowing a greater number of wires to be strung on the poles.

Besides this advantage, the reduction of section materially decreases the elect.ostatic capacity, while its non-magnetic character lessens the self-induction of the line, both of which features tend to increase the possible speed of signalling in telegraphing. and to give greater clearness of enunciation over telephone lines, especially those of great length.
INSULATED COPPER WIRE, WEATHERPROOF INSULATTION。

Numbers, B. \& S. Gauge.	Double Braid.			Triple Braid.			Approximate Weights, Pounds.	
	Ontside Diameters in 32ils Inch.	Weights, Pounds.		Outside Diame- ter's in $3 \because d s$ Inch.	Weights, Pounds.			
		$\begin{aligned} & 1000 \\ & \text { Feet. } \end{aligned}$	Mile.		$\begin{aligned} & 1000 \\ & \text { Feet. } \end{aligned}$	Mile.	Reel.	Coil.
0000	20	716	3781	24	775	4092	2000	250
000	18	$5 \pi 5$	3036	$2 \cdot$	630	33.26	2000	250
00	17	465	2455	18	490	2587	500	250
0	16	375	-1980	17.	400	2112	500	250
1	15	285	1505	16	306	1616	500	250
2	14	245	1294	15	268	1415	500	250
3	13	190	1003	14	210	1109	500	250
4	11	159	803	12.	164	. 866	250	125
5	io	120	634.	11.	145	- 766	260	130
6	9	98	518	10	-112	591.	$2 \% 5$	140
8	8	$6 \hat{6}$	349	9	- 78	412	200	100
10	7	45	238	8	55	290	200	100
12	6	30	158	7	35	185	\ldots	25
14	5	20	106	6	- 26	- 137	\cdots	25
16	4	14	74	5	20	106	...	25
18	3	10	53	4	16	85		25

Power Cables. Lead Incased, Jute or Paper Insulated.

 (Juhn A. Roebling's Sons Co.)| Nos,.
 B.\&S. G. | Circular Mils. | Outside Diam. Inches. | Weights. 1000 feet. Pounds. | Nos. B. \& S.G. | Circular Mils. | Outside
 Diam.
 Inches. | Weights, 1000 feet. Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1000000 | $113 / 16$ | 6685 | | 300000 | 11/4 | 3060 |
| | 900000 | $123 / 3 \cdot 2$ | $62: 8$ | | 250000 | $13 / 16$ | $2 \div 32$ |
| | 800000 | $121 / 32$ | 57:3 | 0000 | 211600 | $13 / 3: 2$ | 2533 |
| | 750000 | 15/8 | 5543 | 000 | 168100 | $11 / 16$ | 2300 |
| | 200000 | 1 19/32 | 5315 | 00 | 133225 | | 2021 |
| | 650000 | $19 / 16$ | 5083 | 0 | 1056:5 | 15/16 | 17T2 |
| | 600000 | $117 / 32$ | 4857 | 1 | 83521 | $29 / 32$ | 163:3 |
| | 550000 | 11/2 | 4630 | 2 | 66564 | | 1482 |
| | 500000 | $17 / 16$ | $42 \pi 8$ | | 52441 | 25/32 | 1360 |
| | 450000 | $13 / 8$ | 3923 | | 41616 | | 1251 |
| | 400000 | $111 / 32$ | 3619 | | 26244 | 11/16 | 1046 |
| | 350000 | $15 / 16$ | 3416 | | | | |

Stranded Weather-proof Feed Wire.

Circular Mils.	Outside Diam. Inches.	Weights. Pounds.			Circular Mils.	Outside Disin. Inches.	Weights. Pounds.		
		$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.				$\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$	Mile.	
1000000	11.2	3550	18i	800	550000	$13 / 1$	2043	10ヶ87	1200
900000	${ }_{1} 13 / 32$	3215	169 ¢5	800	500000	$11 / 8$	$18: 5$	9900	13:2
800000	$111 / 32$	2880	15206	850	450000	$13 / 3.2$	1703	8992	1400
750000	$15 / 16$	2713	143:5	850	400000	$11 / 16$	1530	80ı8	1450
\% 00000	$19 / 32$	2545	134:38	900	350000		1358	7170	1500
650000		2348	12556	900	300000	15/16	1185	6254	1600
600000	$17 / 32$	2210	11668	1000	250000	29/32	1012	5343	. 1600

The table is calculated for concentric strands. Rope-laid strands are larger.

GALVANIZED STEEL-WIRE STRAND.

For Smokestack Guys. Signal Strand, etc.
(J. A. Roebling's Sons Co.)

This strand is composed of 7 wires, twisted together into a single strand.

in.	lbs.	lbs.	in.	lbs.	lbs.	in.	lbs.	
1/2	51	8.330	9/32	18	2,600	5/3?	$41 / 2$	700
15/3.2	48	7.500	17/64	15	2,250	9/64	$31 / 2$	52.5
\%/16	31	6,000	1/4	111/2	1.750	1/8	$21 / 4$	315
3/8	30	4,700	7/32	$83 / 4$	1.300	3/32	2	320
5/16	21	3,300	3/16	$61 / 2$	1,000			

For special purposes these strands can be made of 50 to 100 per cent greater tensile strength. When used to run over sheaves or pulleys the use of soft-iron stock is advisable.

FLEXIBLE STEEL-WIRE CABLES FOR VESSELS.

> (Treuton Iron Co., 1886.)

With numerous disadvantages, the system of working ships' anchors with chain cables is still in vogue. A heavy chain cable contributes to the hold-ing-power of the anchor, and the facility of increasing that resistance by paying out the cable is prized as an advantage. The requisite holdingpower is obtained, however, by the combined action of a comparatively light anchor and a correspondingly great mass of chain of little service in proportion to its weight or to the weight of the anchor. If the weight and size of the anchor were increased so as to give the greatest holding-power required, and it were attached by means of a light wire cable, the combined weight of the cable and anchor would be much less than the total weight of the chain and anchor, and the facility of handling would be much greater. English shipbuilders have taken the initiative in this direction, and many of the largest and most serviceable vessels afloat are fitted with steel-wire cables They have given complete satisfaction.
The Trenton Iron Co.'s cables are made of crucible cast-steel wire, and guaranteed to fulfil Lloyd's requirements. They are composed of 72 wires subdivided into six strands of twelve wires each. In order to obtain great flexibility, hempen centres are introduced in the strands as well as in the completed cable.

FLEXIBLE STEEL-WHRE HAWSERS.

These hawsers are extensively used, They are made with six strands of twelve wires each. hemp centres being inserted in the individual strands as well as in the completed rope. The material employed is crucible cast steel, galvanized, and guaranteed to fulfil Lloud's requirements. They are only one third the weight of hempen hawsers; and are sufficiently pliable to work round any bitts to which hempen rope of equivalent strength call be applied.
13 -in h tarred Russian hemp hawser weighs about 39 lbs. per fathum.
10 -inch white manila hawser weighs about 20 lbs . per fathom.
$11 / 8$-inch stud chain weighs about is lbs, per fathom.
4 -inch galvanized steel hauser weighs about $121 b s$. per fathom.
Each of the above named has about the same tensile strength.

SPECIFICATIONS FOR GALVANIZEDIRON WIRE． Hssued by the British Postal Telegraph Authorities．

Weight per Mile．			Diameter．			Tests for Strength and Ductility．							
	All	ed．		All	ed．		$\begin{aligned} & \frac{2}{3} \\ & \frac{2}{3} \\ & 3 \\ & 30 \\ & 0 . \\ & 0 . \\ & 0 \\ & 84 \end{aligned}$						
	E			E.E.			哥		雼		豆		
lbs．	1 b	lb		mils．	mil							ohms．	
800	767	833		$23 i$	247		15		14	2620	13	6.75	540
600	571	629	209	204	214	1860	17	1910	16	1960	15	9.00	500
450	424	477	181	1.6	186	1390	19	14：5	18	1460	17	12.00	540
400	377	424	171	166	176	1240	21	12\％0	20	1300	19	13.50	540
200	0	21	121	118	125	620	30	6：38	28	655	26	27.00	540

STREENGTH OF PIANO－WHRE，
The average strength of English piano－wire is given as follows by Web ster，Horsfals \＆Lean：

Numbers in Music－ wire Gauge．	Equivalents in Fractions of Inclres in Diameters．	Ultimate Tensile Strength in Pounds．	Numbers in Music－ wire Gange．	Equivalents in Fractions of inches in Diameters．	Ultimate． Tensile Strength in Pounds．
12	． 0.99	225	18	． 041	395
13	． 0.31	250	19	． 043	425
14	． 033	285	20	． 045	500
15	． 035	305	21	． 047	540
16	．037	340	22	． 052	650
17.	． 039	360			

These strengths range from 300,000 to $340,000 \mathrm{lbs}$ ．per sq．in．The com）， sition of this wire is as follows：Carbon， $0.5 \pi 0$ ；silicon， 0.090 ；sulphur， $0 . \mathcal{L}_{2}$ ， phosphorus， 0.018 ；manganese， 0.425 ．
${ }^{66}$ PLOUGH 9 －STEEEL WIRE．
The term＂plough．＂giren in England to steel wire of high quality，was derived from the fact that such wire is used for the construction of ropes used for ploughing purposes．It is to be hoped that the term will not be used in this country，as it tends to confusion of terms．Plough－steel is known here in some steel－works as the quality of plate steel used for the mould－boards of ploughs，for which a very ordinary grade is good enough．

Experiments by Dr．Percy on the English plough－steel（so－called）gave the following results：Specific gravity， 7.814 ；carbon， 0.828 per cent；manga－ nese， 0.587 per cent；silicon， 0.143 per cent；sulphur， 0.009 per cent；phos－ phorus，nil；copper， 0.030 per cent．No traces of chromium，titanium，or tungsten were found．The breaking strains of the wire were as follows：

> Diameter, inch............. . 093
> .132
> . 159
> .191
> Pounds per sq. inch......... 344,960 257,600 224,000 201,600

The elongation was only from 0.75 to 1.1 per cent．

WIRES OF DIEFERENT MIETALS AND ALLOYS．

（J．Bucknall Smith＇s＇Treatise on Wire．）
Brass Wire is commonly composed of an alloy of $1: 3 / 4$ to 2 parts of mpper to 1 part of zinc．The t nsile strength ranges from $\geqslant 0$ to 40 tuns per square inch，increasing with the rrecentage of zinc in the alloy

German or Nickel Silver，an alloy of couper，zinc．and nickel，is practically brass whitened uy the addition of nickel．It has been drawn into wire as fine as $.002^{\prime \prime}$ diam．

Platinum wire may be drawn in＇o the fincst sizes．On acconnt of its high price its use is practically confined to pecia sci－ntific instruments and electrical appliances in which resistances to high temperature，oxygen．and acids are essential．It expands less than other metals when heatrd，whicn property permits its bem－sealed in gla－s without fear ol cracking．It is therefore used in incandescent plectrle lamps．

Phosphor－bronze Wire contains from 2 to 6 per cent of tin and from $1 / 20$ to $1 / 8$ per cent if hosphorus．The presence of phosphorus is detrimental to plectric conductivitr．
${ }^{66}$ Delta－metal 99 wire is made from an alloy of copper，irnn，and zinc． Its strength ranges from 45 to 62 tons per square inch．It is used or some linds of wire rope，also for wire gauze．It is not subject to deposits of ver－ digris．It has great toughness，even when its tensile strengih is over ou tons per square inch．

Alnminnm Wire．－Specific gravity ．268．T nsile strength only abour 10 tons per square inch．It has beeu drawn as fine as 11,400 yards to the nunce，or .042 grains per yard

Aluminum Bronze， 90 copper， 10 aluminum，has＂igh strength and ductility；is inoxidizable，sunorous．Its electric conductivity is $12.6 \mathrm{p} \cdot \mathrm{p}$ cent of that of pure copper．

Silicon Bronze，patented in 1882 by L．Weiler of Paris，is made as follws：F＇mosilicate of potash，pounded glass，chlorid of sodium anit cal－ rium，carbonate of soda and lime，are heated in a plumbago cucible，and ffter the reaction takes place the contents are thrown into the molten Pronze to be treated．Silicon－bronze wire has a conductivity of from 40 to 12 per cent of that of copper wire and four times more than that of iron， while its tensile strength is nearly that of steel，or 88 to 55 tous per square $i a \cdot \cdot n$ of section．The condurtivity decreases as the tensile str．ngth in－ creases．Wire whose conductivity equals per cent of that of pure copper gives a tensile strength of 28 tons per square inch but when its conductivity is 34 per cent of pure copper，its strength is 50 tons per square inch．It is being larg ly used for telegraph wires．I＇？spreat resistance to oxidation．

Ordinary Drawn and Annealed Copper Wire has a strength
f from 15 to 20 tons per square inch．

SPECIFICATIONS FOR HARD－DRAWN COPPER WHRE．

The British Post Office authorities require that hard－drawn copper wire supplied to them shall be of the lengths，sizes，weights，strengths，and con－ ductivities as set forth in the annexed table．

Weight per Statute Mile．			Approximate Equiva－ lent Diameter．						
	$\begin{aligned} & \text { 追 } \\ & \text { g } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { Ey } \\ & \text { A } \\ & \text { డ్స } \end{aligned}$		药	关 药 范				
lbs．	lbs．	lbs．	mils．	mils．	mils．	lbs．		ohins．	bs．
100	9 $11 / 2$	10：1／2	79	ก8．	80	3：30	30	9.10	50
150	1461／4	15：33／4	97	951／2	98	490	25	6.05	50
200	19．5		112	1101／2	1131／4	6.50	20	4.53	50
400	390	410	158	1551／2	1601／4	1300	10	2.27	50

WHRE ROPES．

List adopted by manufacturers in 1892 ．See pamphlets of John A． Roebling＇s Sons Co．，Trenton Irou Co．，and other makers．

Pliable Hoisting Rope．

With 6 strands of 19 wires each．
IRON．

					$\stackrel{8}{\varepsilon}$ 镸 B． 告会 がに		
1	$21 / 4$	63／4	8.00	74	15	14	13
2	2	6	6.30	65	13	13	12
3	13／4	$51 / 2$	5.25	54	11	12	10
4	15／8	5	4.10	44	9	11	81／2
5	$11 / 2$	$43 / 4$	3.65	39	8	10	$71 / 2$
$51 / 2$	$13 / 8$	$43 / 8$	3.00	33	$61 / 2$	91／2	7
6	114	4	2.50	$\stackrel{20}{0}$	51／2	$81 / 3$	$61 / 2$
7	11／8	$31 / 2$	2.00	20	4	$71 / 2$	6
8	1	318	1.58	16	3	$61 / 2$	$51 / 4$
9		$23 / 4$	1.20	11.50	212	$51 / 2$	$41 / 2$
10	3	$21 / 4$	0.88	8.64	$13 / 4$	$43 / 4$	$4{ }^{4}$
101／4	58	2	0.60	5.13	$11 / 4$	$33 / 4$	$31 / 2$
101／2	$9-16$	$15 / 8$ 112	0.48 0.39	4.2γ 3.48	3／4	$3_{3}^{31 / 2}$	2314
$10 a$	7－16	13／8	0.29	3.00	$3 / 8$	$23 / 4$	${ }^{2}$
10\％／8	3／8	11／4	0.23	2.50	14	$21 / 2$	112
Cast steel．							
1	$21 / 4$	63／4	8.00	155	31	．．．．．	81／2
2	2	6	6.30	125	25	．．．．．	8
3	$13 / 4$	51／2	5.25	106	21		714
4	1588	5	4.10	86	17		$61 / 4$
5	$11 / 2$	$43 / 4$	3.65	77	15	14	$53 / 4$
$51 / 2$	13／8	$43 / 8$	3.00 2.50	63 52	12	13	$51 / 2$
$\stackrel{6}{7}$	1118	$31 / 2$	2.00	42	8	11	$41 / 2$
8	1	$31 / 8$	1.58	33	6	91／2	4
9	7／8	$23 / 4$	1.20	25	5	$81 / 2$	3112
10	$3 / 4$	$21 / 4$	0.83	18	$31 / 2$	7	3
$101 / 4$	$5 / 8$	2	0.60	12	$21 / 2$	$53 / 4$	$21 / 4$
101／2	9－16	15／8	0.48	9	$13 / 4$	5	13／4
$103 / 4$ $10 a$	1／2 $7-16$	$11 / 2$	0.39 0.29	$51 / 2$	$11 / 2$	41／2	$11 / 2$
107／8	$3 / 8$	114	0.23	4123	$8 / 8$	31／2	$1{ }^{1 / 4}$

Cable－Traction RRopes．

According to English practice，cable－traction ropes，of about $3 \frac{1}{2} \mathrm{in}$ ．in circumference，are commonly constructed with six strands of seven or fif－ teen wires，the lays in the strands varying from，say， 3 in ．to $31 / 2 \mathrm{in}$ ，and the lays in the ropes from，say， $71 / 2 \mathrm{in}$ ．to 9 in ．In the United States，however， strands of nineteen wires are generally preferred as being more flexible； but，on the other hand，the smaller external wires wear cut more rapidly． The Market street Street Railway Company，Snn Francisco．has used ropes $11 / 4 \mathrm{in}$ ．in diameter，composed of six strands of nineteen steel wires，weighing $21 / 2 \mathrm{lbs}$ ．per foot，the longest continuous length being $24,125 \mathrm{ft}$ ．The Chicago City Railroad Company has employed cables of $\mathrm{r}^{\prime \prime}$ entical construction，the longest length being $27,700 \mathrm{ft}$ ．On the New York and Jicoklyn Bridge cable－ railway steel ropes of $11,500 \mathrm{ft}$ ．long，containing 114 wires，have been used．

Transmission and Standing Rope．

With 6 strands of 7 wires each．
IRON．

11	11／2	43／4	3.37	36	9	10	13
12	13／8	$43 / 8$	2.77	30	$71 / 2$		12
13	$11 / 4$	4	2.28	25	$61 / 4$	81／2	103／4
14	118	$31 / 2$	1.82	20	5	71／2	$91 / 2$
15	1	$31 / 8$	1.50	16	4	$61 / 2$	$81 / 2$
16	7／8	23／4	1.12	12.3	3	53／4	7112
17	$3 / 4$	$21 / 4$	0.92	8.8	$21 / 4$	434	$63 / 1$
18	11－16	2118	0.70	7.6	2	442	6
19	5／8	2	0.57	5.8	11／2	4	$51 / 4$
20	9－16	15／8	0.41		1		$41 / 2$
21	$1 / 2$	$11 / 2$	0.31	2.83	$\frac{3}{17}$	$23 / 4$	$4{ }_{3}^{1 / 4}$
$\stackrel{22}{23}$	\％－16	13／8	0.23 0.21	2.13 1.65	12	$21 / 2$ $21 / 4$	$31 / 4$ $23 / 4$
23 24	3／8 ${ }_{5}$	$11 / 4$	0.21 0.16	1.65 1.38		$2_{2}^{1 / 4}$	23／4
25	$9-32$	7／8	0.125	1.03		13／4	$21 / 4$

CAST STEEL．

11	11／3	43／4	3.37	62	12	13	81／2
12	138	438	$2 . \% 7$	52	10	12	8
13	114	4	2.28	44	9	11	$71 / 4$
14	$11 / 8$	316	1.82	36	71／2	10	$61 / 4$
15	1	$31 / 8$	1.50	30	6	9	53／4
16	7／8	2384	1.12	22	41／2	8	5
17	$3 / 4$	$21 / 4$	0.92	17	$31 / 2$	7	41／2
18	11－16	$21 / 8$	0.60	14	3	6	4
19	5／8	\because	0.5 \％	11	214	$51 / 2$	$31 / 2$
20	9－16	19\％	0.41	8	$13 / 4$	$43 / 4$	3
21							
22	ก－16	13\％	0.23	$41 / 2$	$11 / 4$	$31 / 2$	$21 / 4$
23	$3 / 8$	$11 / 4$	0.21	4	1	314	2
24	5－16	1	0.16	3	34	$23 / 4$	13／4
25	9－32	\％／8	0.12	2	$1 / 2$	$21 / 4$	11\％

Plough－Steel Rope．

Wire ropes of very high tensile strength，which are ordinarily called
＂Plongh－steel Rones，＂are made of a high grade of crucible steel，which． when put in the form of wire，will bear a strain of from 100 to 150 tons per square inch．

Where it is necessary to use very long or rery heavy ropes，a reduction of the dead weight of ropes becomes a matter of serious consideration．
It is advisable to reduce all bends to a minimum，and to use somewhat larger drums or sheaves than are suitable for an ordinary crucible rope hav－ ing a strength of 60 to 80 tons per square inch．Before using Plough－steel Ropes it is best to have advice on the subject of adaptability．

Plough-Steel Rope.

With 6 strands of 19 wires each.

Trade Number.	Diameter in inches.	Weight per foot in pounds.	Breaking Strain in tons of 2000 lbs .	Proper Work ing Load.	Min. Size of Drum or Sheave in feet.
1	$21 / 4$	8.00	240	46	9
2	2	6.30	189	37	8
3	13/4	5.25	157	31	$71 / 2$
4	15/8	4.10	123	25	6
5	11\%	3.65	110	22	51/3
$51 / 8$	$13 / 8$	3.00	90	18	$51 / 4$
6	$11 / 4$	2.50	75	15	5
7	11/8	2.00	60	12	4122
8	1	1.58	47	9	41/4
9					
10	58	0.88	27	${ }_{31}$	$31 / 3$
101/7	${ }_{9-16}^{5 / 8}$	0.60 0.44	18 13	$31 / 2$	3
103	1/3	0.39	10	${\underset{2}{21 / 2}}^{2}$	$2^{1 / 3}$

With 7 Wires to the Strand.

15	1	1.50	45	9	51/2
16	7/8	1.12	33	61/2	5
17	$3 / 4$	0.92	25	5	4
18	11-16	0.70	21	4	$31 / 2$
19		0.57	16	33/4	3
20	9-16	0.41	12	21%	$23 / 4$
21 2.2	1/20	0.31	9 5	11/8	$2_{2}^{21 / 2}$
2.2 23	3/88	0.23 0.21	5 4	$1_{1}^{11 / 8}$	11/3

Galvanized Iron Wire Rope.

For Ships' Rigging and Guys for Derricks.
CHARCOAL ROPE.

Circumference in inches.	Weight per Fathom in pounds.	Cir. of new Manila Rope of equal Streugth.	Breaking Strain in tons of 2000 pounds	Circumference in iuches	Weight per Fathom iu pomnds.	Cir. of new Manila Rope of equal Strength.	Break ing Strain in tolis of 2000 pounds
51/2	261/2	11	43	21.	51/2	5	9
$51 / 4$	241/2	101/2	40	$21 / 4$	41%	43/4	8
5	22	10	35		$31 / 2$	41/2	7
$43 / 4$	21	9112	33	13/4	21/2	$33 / 4$	5
419	19	9	30	$11 / 3$	2	3	$31 / 2$
$41 / 4$	161/2	81/3	26	$11 / 4$	$13 / 4$	$81 / 2$	$21 / 2$
4	1414	8	23	11/8	$11 / 4$	$21 / 4$	$21 / 4$
$33 / 4$	123/4	712	20	1	7/8	2	2
$31 / 2$	103/4	61/2	16	7/8	34	$13 / 4$	13
$31 / 4$	${ }_{8}^{91 / 3}$	6	14	3	8	$11 / 2$	$3 / 4$
23/4	63/4	51/4	10	$1 / 2$	$1 / 4$	$11 / 8$	3/8

Galvanized Cast-steel Yacht Rigging.

Circum- ference in inches.	Weight om in pounds.	ne $\begin{gathered}\text { nin } \\ \text { Ma } \\ \text { Rop } \\ \text { eq } \\ \text { Stre } \\ \text { d }\end{gathered}$	r. of new nilla pe of qual ength	$\left\lvert\, \begin{array}{l\|} \text { Break- } \\ \text { ing } \\ \text { Strain } \\ \text { in tons } \\ \text { of 2000 } \\ \text { pounds } \end{array}\right.$	Circum- ference in inches	Weight per Fathom pounds.	Cir In Ma Rop eq Stre	ir. of new anilla ope of equal rength	$\begin{aligned} & \text { Break } \\ & \text { ing } \\ & \text { Strain } \\ & \text { in tons } \\ & \text { of } 2000 \\ & \text { pounds } \end{aligned}$
$\begin{aligned} & 4 \\ & 31 / 2 \\ & 3 \\ & 231 \\ & 21, \\ & 21 / 4 \\ & 21 / 4 \end{aligned}$	$\begin{gathered} 1414 \\ 103 \\ 103 \\ 83 \\ 634 \\ 519 \\ 419 \end{gathered}$			$\begin{aligned} & 66 \\ & 43 \\ & 32 \\ & 27 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 2 \\ & 134 \\ & 114 \\ & 13 \\ & 118 \\ & 11 / 4 \\ & 14 \end{aligned}$	$\begin{aligned} & 31 / 818 \\ & 21 / 2 \\ & 21 / 8 \\ & 13 \\ & 13 \\ & 18 \\ & 78 \end{aligned}$		$\begin{aligned} & 61 / 2 \\ & 51 / 2 \\ & 543 \\ & 414 \\ & 43 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 14 \\ & 10 \\ & 8 \\ & 61 / 2 \\ & 51 / 2 \\ & 31 / 2 \end{aligned}$
Steel Hawsers. For Monring, Sea, and Lake Towing.									
Circumfer	$\begin{array}{\|c\|c} \text { Breaking } \\ \text { Strength } \end{array}$		Size of Manilla Hawser of equal Strength.		Circumfer ence.	Breaking Strength.		$\|$Size of Manilla Haw ser of equal Strength.	
Inches. $21 / 2$ ${ }_{3}^{23} 4$ 3	$\begin{gathered} \text { Tons. } \\ 15 \\ 18 \\ 22 \end{gathered}$		$\begin{gathered} \text { Inches. } \\ 61 / 2 \\ 7 \\ 81 / 2 \end{gathered}$		$\begin{aligned} & \text { Inches. } \\ & 31 / 2 \\ & 4 \end{aligned}$	$\begin{gathered} \text { Tons. } \\ 29 \\ 35 \end{gathered}$		$\begin{gathered} \text { Inches. } \\ 9 \\ 10 \end{gathered}$	

Steel Flat Ropes.

(J. A. Koebling's Sons Co.)

Steel-wire Flat Ropes are composed of a number of strands, alternately twisted to the riuht and left, laid alongside of each other, and sewed together with soft iron wires. These ropes are used at times in place of round ropes in the shafts of mines. They wind upon themselves on a narrow windinछdrum, which takes up less room than one necessary for a round rope. The soft-iron sewing-wires wear out sooner than the steel strands, and then it bronmes necassary to sew the rope with new iron wires.

Width and Thickness in inches.	Weight per foot in pounds.	Strength in pounds.	Width and Thickness in inches.	Weight per foot in pounds.	Strength in pounds.
$3 / 8 \times 2$	1.19	35,700	$1 / 2 \times 3$	2.38	71,400
$38 \times 21 / 2$	1.86	55. 800	120 $\times 1 / 2$	2.97	${ }_{99} 8.000$
$38 \times 31 / 2$	2.50	\%5.000	1\% $\times 41 / 2$	4.00	120,000
38×4	2.86	85,400	$1 / 2 \times 5$	4.2 \%	128,000
$3 / 8 \times 41 / 2$	3.12	93,600	1/2x $\times 1 / 2$	4.82	144.600
38×5	3.40 3.90	100,000 110,000	- $1 \times \times 6$	5.10 5.90	153,000
$3 / 8 \times 54 / 2$	3.90	110,000	$1{ }^{2 \times 7}$	5.90	177,000

For safe working load allow from one fifth to one seventh of the breaking stress.

${ }^{66}$ Lang Lay ${ }^{\prime}$ Rope.

In wire rope, as ordinarily made, the component strands are laid up into rope in a direction opposite to that in which the wires are laid into strands; that is, if the wires in the strands are laid from right to left, the strands are laid into rope from left to right. In the "Lang Lay," sometimes known as "Universal Lav," the wires are laid into strands and the strands into rope in the same direction; that is, if the wire is laid in the strands from right to left, the strands are also laid into rope from right to left. Its use has been found desirable under certain conditions and for certain purposes, mostly for hanlage plants, inclined planes, and street railway cables, although it has also been used for vertical hoists in mines, etc. Its advantages are that

GALVANIZED STEEL CABLES.

For Suspension Bridges. (Roebling's.)

					$\begin{aligned} & \stackrel{+}{0} \\ & \stackrel{1}{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & 25 / 8 \\ & 21 \% \\ & 23 / 8 \end{aligned}$	$\begin{aligned} & 220 \\ & 200 \\ & 180 \end{aligned}$	13 11.3 10	$\begin{aligned} & 21 / 4 \\ & 17 / 8 \end{aligned}$	155 110 100	8.64 6.5 5.8	$13 / 4$ $15 / 8$ $11 / 2$	$\begin{aligned} & 95 \\ & 75 \\ & 65 \end{aligned}$	5.6 4.35 3.7

COMPARATIVE STRENGTHS OF FLEXIBLE GAL-
VANIZED STEEL-WIRE HAWSERS,
With Chain Cable, Tarred Russian Hemp, and White Manila Ropes.

Patent Flexible Steel-wire Hawsers and Cables.				Chain Cable.				Tarred Russian Hemp Rope.			White Manilla Ropes.		
Size, Circumference.				$\stackrel{\dot{N}}{\dot{\sim}}$		0 0 0 0 0 0 0 0 0 0 0 0		$\stackrel{. N}{\dot{N}}$			¢		
	3/4	13/1	${ }_{7}^{6}$		14							$1 / 4$	
$11 / 4$				12	17	41	6		${ }_{3}^{31}$			${ }_{2} 13$	23/4
13%	$2{ }^{1}$	$51 / 2$	101/3	9-16	17	51/3	$71 / 4$	5	6		4		5
2	$23 / 4$	7	12					53/4	8	7		41/2	79,4
$21 / 4$	334	9	131/2	10-16	21	7	91/2	612	10	9			
$21 / 2$	415	12	15					7112	13	111/2	$61 / 4$	7	$121 / 4$
$23 / 4$	$7^{51 / 2}$	15	161/2	11-16	25	$81 / 3$	$123 / 4$	${ }_{9}^{81 / 2}$	16			83/4	15
31/4	8	18	181/2	$12-16$ $13-16$	30		$151 / 8$ 178 810	$\stackrel{9}{9}$	19				
$31 / 2$	9	26	11^{12}	15-16	¢8	15 8-10	$23 \%-10$	11	28	2412	${ }^{1}$	141/2	25
4	12	33	24	1	54	18	27	12	33	29	10	18	311/2
41/2	15	39	27	11/8	$68 \mid$	1203/4	341/8	13	39	34	11	22	381\%
5	-31/2	64	30	$1117-22$	112	$371 / 8$	551/2	15	56	50	123/4	$291 / 4$	51
51/2	23	74	3.3	15/8	14.3	471/2	6.61\%	17	67	60	131/2	$351 / 2$	
1	33	88	36	13/4	166	$5.51 / 8$		19	84	\%	15	42	731/8
61/2	37	102	¿\%	$115-16$	204	671%	$941 / 2$	21	106	89			
7	11	116	42	$2 \quad 1-16$:3, !	$7 \mathrm{Fi1}$ \%	10\% 1-10	23	12:3	106			
71/2	17	130	45	2 3-16	236	861/8	1201/2	-4	134	115			
8	53	150	48	2 5-16	240	961/4	1343/4	25	146	125			

Note.-This is an old table, and its authority is uncertain. The figures in the fourth column are probably much too small for durability.
it is somewhat more flexible than rope of the same diameter and composed of the same number of wires laid up in the ordinary manner; and (especially) that owing to the fact that the wires are laid more axially in the rope, longer surfaces of the wire are exposed to wear, and the endurance of the rope is thereby increased. (Trenton Iron Co.)

Notes on the Use of Wire Rope.

(J. A. Roebling's Sons Co.)

Several kinds of wire rope are manufactured. The most pliable variety contains nineteen wires in the strand, and is generally used for hoisting and runuing rope. The ropes with twelve wires and seven wires in the strand are stiffer, and are better adapted for standing rope, guys, and rigying. Orders should state the use of the rope, and advice will be given. Ropes are made up to three inches in diameter, upon application.

For safe working load, allow one fifth to one seventh of the ultimate strength, according to speed, so as to get good wear from the rope. When substituting wire rope for hemp rope, it is good economy to allow for the former the same weight per foot which experience has approved for the latter.

Wire rope is as pliable as new hemp rope of the same strength; the for mer will cherefore run over the same-sized sheaves and pulleys as the latter. But the greater the diameter of the sheaves, pulleys, or dru"s, the longer wire rope will last. The minimum size of drum is given in the table.

Experience has demonstrated that the wear increases with the speed. It is, therefore, better to incrrase the load than the speed.

Wire rope is manufactured either with a wire or a hemp centre. The latter is more pliable than the former, and will wear better where there is short bending. Orders should specify what kind of centre is wanted.

Wire rope must not be coiled or uncoiled like hemp rope.
When mounted on a reel, the latter should be mounted on a spindle or flat turn-table to pay off the rope. When forwarded in a small coil, without reel, roll it over the ground like a wheel, and run off the rope in that way. Ali untwisting or kinking must be avoided.
To preserve wire rope, apply raw linseed-nil with a piece of sheepskin, wool inside; or mix the oil with equal parts of Spanish brown or lamp-black.
To preserve wire rope under water or under ground, take mineral or vegetable tar, and add one bushel of fresh-slacked lime to one barrel of tar, which will nentralize the acid. Buil it well, and saturate the rope with the hot tar. To give the mixture body, add some sawdust.
The grooves of cast-ir.nn pulleys and sheaves should be filled with wellseasoned blocks of hard wood, set on end, to be renewed when worn out. This end-wood will save wear and increase adhesion. The smaller pulleys or rollers which support the ropes on inclined planes should be constructed on the same plan. When large sheaves run with very great velocity, the grooves should be lined with leather. set on end, or with India rubber. This is done in the case of sheaves used in the transmission of power between distant points by means of rope, which frequently runs at the rate of 4000 feet per minute.
Steel ropes are taking the place of iron ropes, where it is a special object to combine lightness with strenyth.

But in substituting a steel rope for an iron running rope, the object in view should be to gain an increased wear from the rope rather than to reduce the size.

Locked Wire Rope.

Fig 74 shows what is known as the Patell Locked Wire Rope, made by the Trenton Iron Co. It is claimed to wear two to three times as long as an

Fig. 74.
ordinary wire rope of equal diameter and of like material. Sizes made are from $1 / 2$ to $11 / 2$ inches diameter.

CRANE CHAINS.

(Pencoyd Iron Works.)

"D. B. G." Special Crane.							Crane.		
	25-32				4	1288	1680	3360	20
	2 ,-32		11-16	2898	$5 \uparrow 96$	1982	2520	$50+0$	680
$3 / 8$	31-32	1 \%-10	11/4	4186	83%	$2 \% 90$	3640	T280	24:7
7-16	15-32		$13 / 8$	$5{ }^{186}$	11593	3864	5040	10080	3:360
1/2	111-32	$21 /$	$111-16$	7728	15456	5182	$6 \mathfrak{}$	13440	4480
9-16	$115-32$	3: $: 10$	17/8	¢660	19:320	6440	8400	16800	5600
	$123-3 \%$	$41 / 8$	$21-16$	11914	$238 \% 8$	\%942	10360	20720	6907
11-16	$12 \pi-32$	5	$21 / 4$	14490	28980	9660	12600	25:00	8400
	$131-32$	$5 \% / 8$	$21 / 2$	17388	$34 \sim 46$	11592	15120	30240	10080
13-16	$23-32$	$6^{7}-10$	$211-16$	20:86	$405 \tilde{\sim}$	$135 \% 4$	$1 \% 640$	35280	11760
	$2 \tau-32$		$27 / 8$	$2 \cdot 484$	44968	14983	20440	40880	$136: 27$
15-16	2 15-32	9	3 1-16	$258 \mathrm{~T}^{2}$	$51 \% 44$	17.44	233520	$4: 040$	15680
	$219-32$	$107-10$	$31 / 4$	29568	59136	19~12	26880	53360	17920
1 1-16	2 23-32	$112-10$	3 5-16	3:3264	66538	$221 \% 6$	$30: 40$	60480	20160
$11 / 8$	2 2~-32	121/2	$33 / 4$	37516	75152	25050	34160	683:0	2273
13 -16	3 5-32	13 \uparrow-10	$37 / 8$	41888	83776	2,925	38080	76160	25987
	3 \uparrow-32		41/8	46200	92400	30800	4:000	84000	28800
$15-16$	3 15-32	161/2	$43 / 8$	50.12	101024	33664	45920	91840	30613
13/8	35/8	18 4-10	49-16	$55 i 48$	111496	31165	50680	101360	335187
17 7-16	3 25-32	$19 \%-10$	$43 / 4$	60368	$120 \sim 36$	40345	54880	109760	36587
11/2	3 31-32	21 7-10	5	66528	133055	44352	60480	1:0960	40320

The distance from centre of one link to centre of next is equal to the inside length of link, but in practice $1 / 32$ inch is allowed for weld. This is approximate, and where exactness is required, chain should be made so.

For Chain Sheaves. - The diameter, if possible, should be not less than twenty times the diameter of chain used.

Example.-For 1 -inch chain use 20 -inch sheaves.

WEIGHTS DF LOGS, LUMBER, ETC.

Weight of Green Logs to Scale 1,000 Feet, Board Measure.
Yellow pine (Sonthern).
8,000 to $10,000 \mathrm{lbs}$.
Norway pine (Michigan) 7,000 to 8.000 "
White pine (Michigan) $\{$ off of stump...................................000 to 7,000
Whit pin 1
White pine (Pennsylvania), bark off......................... 5.000 to 6,000
Hemlock (Pennsylvania), bark off 6,000 to 7,000 "
Four acres of water are required to store $1,000,000$ feet of logs.
Weight of 1,000 Feet of Lumber, Hoard Measure.
Yellow or Norway pine.................... Dry, 3.000 lbs . Green, 5.000 lbs .
White pine
". ${ }^{6}$, 3.000 lbs . 2,500 4,000

Weight of 1 Cord of Seasoned Wood, 128 Cubic Feet per Cord.

SHZES OF FIRE-BRICK.

9 -inch straight.............. $9 \times 41 / 2 \times 21 / 2$ inches.
Soap....................... $9 \times 21 / 2 \times 21 / 2$ "

Split... $9 \times 41 / 2 \times 11 / 4$ "
Jamb_..................... $9 \times 41 / 2 \times 21 / 6 \quad$ "
No. 1 key.................... $9 \times 21 / 2$ thick $\times 41 / 2$ to 4 inches wide.

No. 2 key 113 bricks to circle 12 feet inside diam. inches wide.

63 bricks to circle 6 ft . inside diam.
No. 3 key.................. $9 \times 21 / 2$ thick $\times 41 / 2$ to 3 inches wide.

38 bricks to circle 3 ft . inside diam.
No. 4 key................. $9 \times 21 / 2$ thick $\times 41 / 2$ to $21 / 4$ inches wide.

25 bricks to circle $11 / 2 \mathrm{ft}$. inside diam.
No. 1 werlge (or bullhead). $9 \times 41 / 2$ wide $\times 21 / 2$ to 2 in . thick, tapering lengthwise.

98 bricks to circle 5 ft . inside diam.
No. 2 wedge............. $9 \times 41 / 2 \times 21 / 2$ to $11 / 2$ in. thick. 60 bricks to circle $21 / 2 \mathrm{ft}$. inside dian.
No. 1 arch.............. $9 \times 41 / 2 \times 21 / 2$ to 2 in. thick, tapering breadthwise.

72 bricks to circle 4 ft . inside diam.
No. 2 arch
No. 1 skew 42 bricks to circle 2 ft inside diam.
............ 9 to $\tilde{\gamma} \times 41 / 2$ to $21 / 2$ Bevel on one end.
No. 2 skew............... $9 \times 21 / 2 \times 41 / 2$ to $21 / 2$. Equal bevel on both edges.
No. 3 skew.... $9 \times 21 / 2 \times 41 / 2$ to $11 / 2$. Taper on one edge.
24 inch circle $\ldots \ldots81 / 4$ to $51 / 8 \times 41 / 2 \times 21 / 2$.
Edges curred, 9 bricks line a 24 -inch circle.
36 -inch circle $\ldots \ldots \ldots \ldots . .83 / 4$ to $61 / 2 \times 41 / 2 \times 21 / 2$
13 bricks line a 36 -inch circle.
48 -inch circle $\ldots \ldots83 / 4$ to $71 / 4 \times 41 / 2 \times 21 / 2$. 17 bricks line a 48 -inch citcle.
$131 / 2$-inch straight. $131 / 2 \times 21 / 2 \times 6$.
$131 / 2$-inch key No. $1 \ldots . . .131 / 2 \times 21 / 2 \times 6$ to 5 inch. 90 bricks turn a $1 \%-\mathrm{ft}$. circle.
$131 / 2$-inch key No. $2 \ldots . . .131 / 2 \times 21 / 2 \times 6$ to $43 / 8$ inch. 52 bricks turn a 6 -ft. circle.
Bridge wall, No. 1 $13 \times 61 / 2 \times 6$.
Bridge wall, No. 2.......... $13 \times 61 / 2 \times 3$.
Mill tile18, 20 , or $24 \times 6 \times 3$.
Stock-hole tiles.............. 18 , 20 , or $24 \times 9 \times 4$.
18 -inch block $18 \times 9 \times 6$.
Flat back... $9 \times 6 \times 21 / 2$.
Flat back arch............. $9 \times 6 \times 31 / 2$ to $21 / 2$.
22 -inch radius, 56 bricks to circle.
Locomotive tile
$32 \times 10 \times 3$.
$34 \times 10 \times 3$.
$34 \times 8 \times 3$.
$36 \times 8 \times 3$. $40 \times 10 \times 3$.
Tiles, slabs, and blocks, varions sizes 12 to 30 inches long, 8 to 30 inches wide, 2 to 6 incbes thick.
Cupola brick, 4 and 6 inches high, 4 and 6 inches radial width, to line shells 23 to 66 in diameter.

A 9 -inch straight brick weighs 7 lbs . and contains 100 cubic inches. $(=120$ lbs. per cubic foot. Specific gravity 1.93.)

One culic foot of wall requires 1%-inch bricks, one cubic yard requires 460. Where keys, wedges, and other "shapes " are used, add 10 per cent in estimating the number required.

One ton of fire-clay should be sufficient to lay 3000 ordinary bricks. To secure the best results. fire-bricks should be laid in the same clay from which they are manufactured. It should be used as a thin paste, and not as mortar. The thimer the joint the better the furnace wall. In ordering bricks the service for which they are required should be stated.

NUIMBER OF FIRE-RBREK REQUIRED FOR VARIOUS CIRCLES.

	KEY BRICKS.					ARCH BRICKS.				WEDGE BRICKS.			
	$\begin{aligned} & \dot{\sigma} \\ & \dot{\circ} \\ & \dot{Z} \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \dot{8} \\ & \dot{z} \end{aligned}$	$\begin{aligned} & \dot{\alpha} \\ & \dot{8} \\ & \dot{z} \end{aligned}$	$\stackrel{\square}{8}$	-	$\begin{aligned} & \dot{\alpha} \\ & \dot{8} \\ & \dot{z} \end{aligned}$	$\dot{+}$ $\dot{\circ}$ $\stackrel{8}{4}$	¢\%			$\begin{aligned} & \dot{+} \\ & \dot{\circ} \\ & \dot{Z} \end{aligned}$	бे	\#
ft. in.													
$\underline{1} 6$	25				25								
	17	13			30	42			42				
	9	25			34	31	18		49	60			60
		38			38	21	36		57	48	20		68
36		32	10		42	10	54		64	36	40		76
40		25	21		46		72		\%2	24	59		83
46		19	32		51		T2		80	12	T9		91
50		13	42		55		T2	15	87		98		98
		6	53		59		T2	23	9.5		98	8	106
60			63		63		72	30	102	\cdots	98	15	11:3
66			58	9	67		72	35	110		98	23	121
70			52	19	r 1		72	45	117		98	30	128
76			47	29	76		\%	53	125		98	38	136
80			42	38	80		T2	60	132		98	46	144
86		\cdots	3 3	$4{ }^{3}$	84		72	68	140		98	53	151
90			31	57	89		72	75	147		98	61	159
96			26	66	92		T:	83	155		98	64	166
100			21	r6	9 9\%		T2	90	162		98	76	174
106			16	85	101		T2	98	170		98	83	181
110			11	94	10.5		T2	105	1%		98	91	189
116			5	104	109		\%	113	185		98	98	196
120			..	113	113		T2	121	193		98	106	$\stackrel{3}{2}$
126				113	117								

For larger circles than 12 feet use 113 No. 1 Key, and as many 9 -inch bricik as may be needed in addition.

ANALYSES OF MIT. SAVAGE FIRE-CHAY.

MIAGNESIA BRICKS.

"Foreign Abstracts" of the Institution of Civil Engineers, 1893. gives a paper by C. Bischof on the production of magnesia bricks. The material most in favor at present is the magnesite of Styria, which, although less pure considered as a source of magnesia than the Greek. has the property of fritting at a high temperature without melting. The composition of the two substances, in the natural and burnt states, is as follows:

Magnesite.	Styrian.	Greek.
Carbonate of magnesia.	90.0 to 96.0%	94.46\%
" lime.	0.5 to 2.0	4.49
" " iron	3.0 to 6.0	FeO 0.08
Silica.	1.0	0.52
Manganous oxide	0.5	Water 0.54
Burnt Magnesite.		
Magnesia.		82.46-9.5.36
Lime.	7.3	0.83-10.92
Alumina and ferric oxide	13.0	0.56-3.54
Silica	1.2	0.73-7.98

At a red leat magnesium carbonate is decomposed into carbonic acid and caustic magnesia, which resembles lime in becoming hydrated and recarbonated when exposed to the air, and possesses a certain plasticity, so that it can be moulded when subjected to a heavy pressure. By long-continued or stronger heating the material becomes dead-burnt, giving a form of magnesia of high density. sp. gr. 3.8, as compared with 3.0 in the plastic form, which is unalterable in the air but devoid of plasticity. A mixture of two volumes of dead-burnt with one of plastic maguesia can be moulded into bricks which contract but little in firing. Other binding materials that have been used are: clay up to 10 or 15 per cent; gas-tar, perfectly freed from water, soda, silica, vinegar as a solution of magnesium acetate which is readily decomposed by heat, and carbolates of alkalies or lime. Among magnesium compounds a weak solntion of magnesium chloride may also be used. For setting the bricks lightly burnt, caustic magnesia, with a small proportion of silica to render it less refractory, is recommended. The strength of the bricks may be increased by adding iron. either as oxide or silicate. If a porous product is required, sawdust or starch may be added to the mixture. Whell dead-burnt magnesia is used alone, soda is said to be the best binding material.
See also papers by A. E. Hunt, Trans. A. I. M. E., xvi, $7: 20$, and of T. Egleston. Traus. A. I. M. E.. xiv. 458.

Asbestos.-J. 'T. Donald, Eng. and M. Jour., June 27, 1891.

Analysis.

	Italian.	Canadian. Broughton. Templet	
Silica.	40.30\%	40.5i\%	40.52\%
Magnesia	43.37	41.50	42.05
Ferrous oxide	.87	2.81	1.97
Alumina	2.27	. 00	210
Water.	. 13.72	13.55	13.46
	100.53	99.33	100.10

Chemical analysis throws light upon an important point in connection with asbestos. i.e., the cause of the harshness of the fibre of some varieties. Asbestos is pincipally a hydrous silicate of magnesia, i.e.. silicate of magnesia combined with water. When harsh fibre is analyzed it is found to contain less water than the soft fibre. In fibre of vers fille quality from Black Lake analysis showe 14.38% of water. while a harsh-fibred sample gare only $11 . \tilde{i} 0 \%$. If soft fibre be heated in a temperature that will drive off a portion of the combined water, there results a substance so brittle that it may be crumbled between thumb and finver. There is evidently some connection between the consistency of the fibre and the amount of water in its composition.

STRENGTH OF MATERIALS.

Stress and Strain.-There is much confusion amo:ng writers on strength of materials as to the definition of these terms. An external force applied to a body, so as to pull it apart, is resisted by an internal force, or resistance, and the action of these forces causes a displacement of the molecules, or deformation. By some writers the external force is called a stress, and the internal force a strain; others call the external force a strain, and the internal force a stress: this confusion of terms is not of importance, as the words stress and strain are quite commonly used synonymously, but the use of the word strain to mean molecular displacement, deformation, or distortion, as is the custom of some, is a corruption of the language. See Engineering News, June 23, 1892. Definitions by leading authorities are given below.

Stress.-A stress is a force which acts in the interior of a body, and resists the external forces which tend to change its shape. A deformation is the amount of change of shape of a body caused by the stress. The word strain is often used as synonymous with stress and sometimes it is also used to designate the deformation. (Merriman.)
The force by which the molecules of a body resist a strain at any point is called the stress at that point.
The summation of the displacements of the molecules of a body for a given point is called the distortion or strain at the point considered. (Burr).

Stresses are the forces which are applied to bodies to bring into action their elastic and cohesive properties. These forces cause alterations of the forms of the bodies upon which they act. Strain is a name given to the kind of alteration produced by the stresses. The distinction between stress and strain is not always observed, one being used for the other. (Wood.)
Stresses are of different kinds, viz. : tensile, compressive, transverse, torsional, and shearing stresses.
A tensile stress, or pull. is a force tending to elongate a piece. A compressive stress, or push, is a force tending to shorten it. A transverse stress teuds to bend it. A torsional stress tends to twist it. A shearing stress tends to force one part of it to slide over the adjacent part.
Tensile, compressive, and shearing stresses are called simple stresses. Transverse stress is compounded of tensile and compressive stresses, and torsional of tensile and shearing stresses.

To these five varieties of stresses might he added tearing stress, which is either tensile or shearing. but in which the resistance of different portions of the material are brought into play in detail, or one after the other, instead of simultanrously, as in the siniple stresses.

Effects of Stresses. -The following general laws for cases of simple tension or compression have been established by experiment. (Merriman):

1. When a small stress is applied to a body, a small deformation is produced, and on the removal of the stress the body springs back to its original form. For small stresses, then, materials may be regarded as perfectly elastic.
2. Under small stresses the deformations are approximately proportional to the forces or stresses which produce them, and also approximately proportional to the length of the bar or body.
3. When the stress is great enough a deformation is produced which is partly permanent, that is, the body does not spring back entirely to its original form on removal of the stress. This permanent part is termed a set. In such cases the deformations are not proportional to the stress.
4. When the stress is greater still the deformation rapidly increases and the body finally ruptures.
5. A sudden stress, or shock, is more injurious than a steady stress or than a stress giadually applied.
Elastic Limit.-The elastic limit is defined as that point at which the deformations cease to be proportional to the stresses. or, the point at which the rate of stretch (or other deformation) begins to increase. It is also defined as the point at which the first permanent set becomes visible. The last definition is not considered as good as the first. as it is found that with some materials a set occurs with any load, no matter how small, and that with others a set which might be called permantnt vanishes with lapse of time, and as it is impossible to get the point of first set without removing
the whole load after each increase of load, which is frequently inconvenient. The elastic limit, defined, however, as the point at which the extensions begin to increase at a higher ratio than the applied stresses, usually corresponds verv nemly with the point of first measurable permanent set.

Yield-point. - The term yield point has recently been introduced into the hiterature of the strength of materials. It is defined as that point at which the rate of stretch suddenly increases rapidly. The difference between the elastic limit, strictly defined as the point at which the rate of stretch begins to increase, and the yield-point, at which the rate increases suddenly, may in some cases be considerable. This difference, huwever, will not be discovered in short test-pieces unless the readings of elongations are made by an exceedingly fine instrument, as a micrometer reading to $\frac{1}{10000}$ of an inch. In using a coarser instrument, such as calipers reading to $1 / 100$ of an inch, the elastic limit and the field-point will appear to be simultaneous. Unfortunately for precision of language, the tern yield-point was not introduced until long after the term elastic iimit had been almostuniversally adopted to signify the same physical fact which is now defined by the term yield-point, that is, not the point at which the first change in rate, observable Guly by a microscope, occurs, but that later point (more or less indefnite as to its precise position) at which the increase is great enough to be seen by the naked eye. A most convenient method of determining the point at whicn a sudden increase of rate of stretch occurs in shirt specimens, when a testing-machine in which the pulling is done by screws is used, is to note the weight on the beam at the instant that the beam "drops." During the earlier portion of the test, as the extension is steadily increased by the aniform but slow rotation of the screws, the poise is moved stradily along the beam to keep it in equipoise; suddenly a point is reached at which the Gean drops, and will not rise until the elongation has been considerably increased by the further rotation of the screws, the advancing of the poise meanwhile being suspended. This point corresponds practically to the point at which the rate of elongation suddenly increases, and to the point at which an appreciable permanent set is first found. It is also the point which has bitherto been called in practice and in text-books the elastic limit, and it will probably continue to be so called, although the use of the newer term "yield-point" for it, and the restriction of the term elastic limit to mean the earlier point at which the rate of stretch begins to increase, as determinable only by micrometric neasuremeuts, is more precise and scientific.

In tables of strength of materials hereafter given, the term elastic limit is used in its customary meaning, the point at which the rate of stress has begun to increase, as observable by ordinary instruments or by the clrop of the beam. With this definition it is practically synonymous with yieldpoint.

Coefficient (or DIodulus) of Elasticity.-This is a term expressing the relation between the amount of extension or compression of a material and the load producing that extension or compression.

It may be defined as the load per unit of section divided by the extension per unit of length; or the reciprocal of the fraction expressing the elongation per inch of length, divided by the pounds per square inch of section producing that elongation.

Let P be the applied load, k the sectional area of the piece, l the length of the part extended, λ the amount of the extension, and E the coefficient of elasticity. Then

$$
\begin{aligned}
& \frac{P}{k}=\text { the load on a unit of section; } \\
& \frac{\lambda}{l}=\text { the elongation of a unit of length. } \\
& E=\frac{P}{k} \div \frac{\lambda}{l}=\frac{P l}{k \lambda}
\end{aligned}
$$

The coefficient of elasticity is sometimes defined as the figure expressing

Within the elastic limit, when the deformations are proportional to the
stresses, the coefficient of elasticity is constant, but beyond the elastic limit it decreases rapidly.
In cast iron there is generally no apparent limit of elasticity, the deformations increasing at a faster rate than the stresses, and a permanent set being produced by small loads. The coefficient of elasticity therefore is not constant during any portion of a test, but grows smaller as the load increases. The same is true in the case of timber. In wrought, iron and steel. however, there is a well-defined elastic limit, and the coefficient of elasticity within that limit is nearly constant.

Resilience, or Work of Resistance of a RIaterial.-Within the elastic limit, the resistance increasing uniformly from zero stress to the stress at the elastic limit, the work done by a load applied gradually is equal to one half the product of the final stress by the extension or other deformation. Beyond the tlastic limit, the extensions increasing more rapidly than tie loads, and the strain diagram approximating a parabolic form, the work is approximately equal to two thirds the product of the maximum stress by the extension.
The amount of work required to break a bar, measured usually in inchnounds, is called its resilience; the work required to strain it to the elastic limit is called its elastic resilience.

Under a load applied suddenly the momentary elastic distortion is equal to twice that caused by the same load applied gradually.

When a solid material is exposed to percussive stress, as when a weight falls upon a beam transversely, the work of resistance is measured by the product of the weight into the total fall.

Elevation of Ultimate Resistance and Elastic Limit.-It was first observed by Pruf. R. H. Thurston, and Commauder L. A. Beardslee, U. S. N., independently, in 1873, that if wrought iron be subjected to a stress beyond its elastic limit, but not beyond its ultimate resistance, and then allowed to "rest" for a definite interval of time, a considerable increase of elastic limit and ultimate resistance may be experienced. In other words, the application of stress and subsequent "rest" increases the resistance of wrought iron.

This "rest" may be an entire release from stress or a simple holding the test-piece at a given intensity of stress.

Commander Beardslee prepared twelve specimens and subjected them to an intensity of stress equal to the ultimate resistance of the material. without breaking the specimens. These were then allowed to rest, entirely free from stress, from 24 to 30 hours, after which period they were again stressed until broken. The gain in ultimate resistance by the rest was found to vary from 4.4 to 17 per cent.

This elevation of elastic and ultimate resistance appears to be peculiar to iron and steel: it has not been found in other metals.
Relation of the Elastic Himit to Endurance under Repeated Stresses (condensed from Engineering, August 7, 1891) When engineers first began to test materials, it was soon recognized that if a specimen was loaded beyond a certain point it did not recover its original dimensions on removing the load, but took a permanent set; this point was called the elastic limit. Since below this point a bar appeared to recover completely its original form and dimensions on removing the ioad, it appeared obvious that it had not been injured by the load, and hence the working load might be deduced from the elastic limit by using a small factor of safety.

Experience showed, however, that in many cases a bar would not carry safely a stress any where near the elastic limit of the material as determined by these experiments, and the whole theory of any connection between the elastic limit of a bar and its working load became almost discredited, and engineers employed the ultimate strength only in deducing the safe working load to which their structures might be subjected. Still, as experience accumulated it was observed that a higher factor of safety was required for a live load than for a dead one.

In 18 $\boldsymbol{r} 1$ Wöhler published the results of a number of experiments on bars of iron and steel subjected to live loads. In these experinents the stresses were put on and removed from the specimens without impact, but it was, nevertheless, found that the breaking stress of the materials was in every case much below the statical breaking load. Thus, a bar of Krupp's axle steel having a tenacity of 49 tons per square inch broke with a stress of 28.6 tous per square inch. when the load was completely removed and replaced without impact 170,000 times. These experiments were made on a large
number of different brands of iron and steel, and the results were concordant in showing that a bar would break with an alternating stress of only, say, one third the statical breaking strength of the material, if the repetitions of stress were sufficiently numerous. At the same time, however, it appeared from the general trend of the experiments that a bar would stand an indefinite number of alternations of stress, provided the stress was kept below the limit.

Prof. Bauschinger defines the elastic limit as the point at which stress ceases to be sensibly proportional to strain, the latter being measured with a mirror apparatus reading to $\frac{1}{5000}$ th of a millimetre, or about $\frac{1}{100000}$ in. This limit is always below the yield-point, and may on occasion be zero. On loading a bar above the yield-point, this point rises with the stress, and the rise continnes for weeks, months, and possibly for years if the bar is left at rest under its load. On the other hand, when a bar is loaded beyond its true elastic limit, but below its yield-point, this limit rises, but reaches a maximum as the yield-point, is approached, and then falls rapidly, reaching even to zero. On leaving the bar at rest under a stress exceeding that of its primitive breaking-down point the elastic limit begins to rise again, and may, if left a sufficient time, rise to a point much exceeding its previous value.

This property of the elastic limit of changing with the history of a bar has done more to discredit it than auything else, nevertheless it now seems as if it, owing to this very property, were once more to take its former place in the estimation of engineers, and this time with fixity of tenure. It had long been known that the limit of elasticity might be raised, as we have said, to almost any point within the breaking load of a bar. Thus, in some experiments by Professor Styffe, the elastic limit of a puddled-steel bar was raised $16,000 \mathrm{lbs}$. by subjecting the bar to a load exceeding its primitive elastic limit.

A var has two limits of elasticity, one for tension and one for compression. Bauschinger loaded a number of bars in tensinn until stress ceased to be sensibly proportional to strain. The load was then removed and the bar tested in compression until the elastic limit in this direction had been exceeded. This process raises the elastic limit in compression, as would be found on testing the bar in compression a second time. In place of this, however, it was now again tested in tension, when it was found that the artificial raising of the limit in compression had lowered that in tension below its previons value. By repeating the process of alternately testing in tension and compression, the two limits took up points at equal distances from the line of no load, buth in tension and compression. These limits Bauschinger calls natural elastic limits of the bar, which for wrought iron correspond to a stress of about $81 / 2$ tons per square inch, but this is practically the limiting load to which a bar of the same material can be strained alternately in tension and compression, without breaking when the loading is repeated sufficiently often, as determined by Wöhler's method

As received from the rolls the elastic limit of the bar in tension is above the natural elastic limit of the bar as defined by Bauschinger, having been artificially raised by the deformations to which it has been subjecter in the process of manufacture. Hence, when subjected to alternating stresses, the limit in tension is immediately lowered, while that in compression is raised until they both correspond to ecral loads. Hence, in Wöhler's expriments, in which the bars broke at loads nominally below the elastic limits of the material, there is every reason for concluding that the loads were really greater than true elastic limits of the material. This is confirmed by tests on the connecting-rods of engines, which of course work under alternating stresses of equal intensity. Careful experiments on old rods show that the elastic limit in compression is the same as that in tension, and that both are far below the tension elastic limit of the material as received from the rolls.

The common opinion that straining a metal beyond its elastic limit injures it appears to be untrue. It is not the mere straining of a metal beyond one elastic limit that injures it. but the straining, many times repeated, beyond its two elastic limits. Sir Benjamin Baker has shown that in bending a shell plate for a boiler the metal is of necessity strained beyond its elastic limit, so that stresses of as much as 7 tons to 15 tons per square inch may obtain in it as it comes from the rolls, and unless the plate is annealed, these stresses will still exist after it has been built into the boiler. In such a case, however, when exposed to the additional stress due to the pressure inside
the boiler, the overstrained portions of the plate will relieve themselves by stietchmg and laking a permaneut set, so that probably after a year's working very litule difference could be detected in the stresses in a plate built into the bonler as it came from the beuding rolls, and in one which had been annealed, before riveting into place, and the first, in spite of its having been strained beyond its elastic limits, and not subsequently annealed, would be as strong as the other.

Resistance of Metals to Repeated Shocks.

More than twelve years were spent by Wöhler at the instance of the Prussian Guvernment in experimenting upou the resistance of iron and steel to repeated stresses. The results of his experiments are expressed in what is known as Wöhler`s law, which is given in the following words in Dubois's translation of Weyrauch:
" Rupture may be caused not only by a steady load which exceeds the carring strength, but also by repeated applications of stresses, none of which are equal to the carrying strength. The differences of these stresses are m asures of the disturbance of continuity. in so far as by their increase the minimum stress which is still necessary for rupture diminishes."

A practical illustration of the meaning of the first portion of this law may te given thus: If 50,000 pounds once applied will just break a bar of iron or ste 1 , a stress very much less than 50,000 pounds will break it if repeated sufficiently often.

This is fully confirmed by the experiments of Fairbairn and Spangenberg, as well as those of Wöhler; and, as is remarked ly Weyrauch, it may be considered as a loug-known result of common experience It partially accounts for what Mr . Holley has called the "intrinsically ridiculous factor of Safety of six."

A wother "long-known result of experience" is the fact that rupture may be caused by a succession of shocks or impacts, none of which alone worald be sufficient to cause it. Iron axles, the piston-rods of steam hammers. and other pieces of metal subject to continuously repeated shocks. invariably break after a certain leugth of service. They have a "life" which is limited.

Several jears ago Fairbairn wrote: "We know that in some cases wrought iron subjected to continuous vibration assumes a crystalline structure, and that the cohesive powers are much deteriorated, but we are ignorant of the causes of this change." We are still iguorant, not only of the causes of this change, but of the conditions under which it takes place. Who knows whether wrought iron subjected to very slight continuous vibration will endure forever? or whether to insure final rupture each of the continuous small shocks must amount at least to a certain percentage of single heary shock (both measured in foot pounds), which would cause rupture with one application? Wöhler found in testing iron by repeated stresses (not impacts) that in one case 400,000 applications or^{2} a stress of 500 centners to the square inch caused rupture, while a similar bar remained sound after 48,000,000 applications of a stress of 300 centners to the square inch (1 centner $=110.2 \mathrm{lbs}$.).

Who knows whether or not a similar law holds true in regard to repeated shocks? Suppose that a bar of iron would break under a single impact of 1000 font-pounds, how many times would it be likely to bear the repetition of 100 foot pounds, or would it be safe to allow it to remain for fifty years subjected to a continual succession of blows of even 10 foot-pounds each ?

Mr. William Metcalf published in the Metallurgicul Review, Dec. 18ir7, the results of some tests of the life of steel of different percentages of carbor under impact. Some small steel pitmans were made, the sprcifications for which required that the unloaded machine should run $41 / 2$ hours at the rate of 1200 revolutions per minute before breaking.
The sterl was all of uniform quality, except as to carbon. Here are the results: The
$.30 \mathrm{C} . \operatorname{ran} 1 \mathrm{~h} .21 \mathrm{~m}$. Heated and bent before breaking.
$.49 \mathrm{C} . " 1 \mathrm{~h} .28 \mathrm{~m}$.,
$.43 \mathrm{C} . " 4 \mathrm{~h} .5 \hat{\mathrm{r}} \mathrm{m}$. Broke without heating.
.65 C . " 3 h .50 m . Broke at weld where imperfect.
.80 C . " 5 h .40 m .
.84 C . " 18 h .
.8~ C. Broke in weld near the end.
.96 C. Ran 4.55 m ., and the machine broke down.
Some other experiments by Mr. Metcalf confirmed is conclusion, viz.
that high-carbon steel was better adapted to resist repeated shocks and vibrations than low-carbou steel.

These results, however, would scarcely be sufficient to induce any engineer to use $.8 t$ carbun steei in a car-axle or a bridge-rod. Further experiments ure needed to confirm or overthrow them.
(See description of proposed apparatus for such an investigation in the author's paper in Trans. A. I. M. E., vol. viii., p. ז6, from which the above extract is taken.)

Stresses Produced by Suddenly Applied Forces and Shocks.

(Mansfield Merriman, R. R. \& Eng. Jour., Dec. 1889.)

Let P be the weight which is dropped from a height h upon the end of a bar, and let y be the maximum elongation which is produced. The work performed by the falling weight, then, is

$$
W=P(h+y)
$$

and this must equal the internal work of the resisting molecular stresses. The stress in the bar, which is at first 0 , increases up to a certain limit Q, which is greater than P; and if the elastic limit be not exceeded the elongation increases uniformly with the stress, so that the internal work is equal to the mean stress $1 / 2 Q$ multiplied by the total elongation y, or

$$
W=1 / 2 Q y
$$

Whence, neglecting the work that may be dissipated in heat,

$$
1 / 2 Q y=P h+P y
$$

If e be the elongation due to the static load P, within the elastic limit $y=\frac{Q}{P} e ;$ whence

$$
\begin{equation*}
Q=P\left(1+\sqrt{1+2 \frac{h}{e}}\right) \tag{1}
\end{equation*}
$$

which gives the momentary maximum stress. Substituting this value of Q, there results

$$
\begin{equation*}
y=e\left(1+\sqrt{1+2 \frac{h}{e}}\right) \tag{2}
\end{equation*}
$$

which is the value of the momentary maximum elongation.
A shock results when the force P, before its action on the bar, is moving with velocity, as is the case when a weight P falls from a height h. The above formulas show that this height h may be small if e is a small quantity, and yet very great stresses and deformations be produced. For instance, let $h=4 e$, then $Q=4 P$ and $y=4 e ;$ also let $h=12 e$, then $Q=6 P$ and $y=6 e$. Or take a wrought-iron bar 1 in . square and 5 ft . long: under a steady load of 5000 lbs . this will be compressed about 0.012 in ., supposing that no lateral flexure occurs; but if a weight of 5000 lbs . drops upon its end from the small height of 0.048 in . there will be produced the stress of 20,000 lbs.

A suddenly applied force is one which acts with the uniform intensity P upon the end of the bar, but which has no velocity before acting upon it. This corresponds to the case of $h=0$ in the above formulas, and gives $Q=$ $2 P$ and $y=2 e$ for the maximum stress and maximum deformation. Probably the action of a rapidly-moving train upon a bridge produces stresses of this character.

Tncreasing the Tensile Strength of Iron Bars by Twisting them.-Ernest L. Ransome of San Francisco has obtaiued an English Pacent, No. $162 \% 1$ of 1888 , for an "improvement in strengtheuing and testing wrought metal and steel rods or bars, consisting in twisting the same in a cold state. Any defect in the lamination of the metal which would otherwise be concealed is revealed by twisting, and imperfections are shown at once. The treatment may be applied to bults, suspension-rods or bars subjected to tensile strength of any description."

Results of tests of this process were reported by Lieutenant F. P. Gilmore, U. S. N., in a paper read before the Technical Society of the Pacific Coast, published in the Transactions of the Society for the month of December, 1883. The experiments include trials with thirty-nine bars, twenty-nine of which were variously twisted, \mathfrak{r} rom three-eighths of one turn to six turns per foot. The test-pieces were cut from one and the same bar, and accurately
measured and numbered. From each lot two pieces without twist were tested for tensile strength and ductility. One gronp of each set was twisted until the pieces broke, as a guide for the amount of twist to be given those to be tested for tensile strain.

The following is the result of one set of Lieut. Gilmore's tests, on iron bars 8 in. long, $\tilde{\text { t }} 19 \mathrm{in}$. diameter.

No. of Bars.	Conditions.	$\begin{aligned} & \text { Twists } \\ & \text { in } \\ & \text { Turns. } \end{aligned}$	Twists per ft.	Tensile Strength.	Tensile per sq. in.	Gain per cent.
	Not twisted.			22,000	54,180	
2	Twisted cold.	1/2	$3 / 4$	23,900	59,0:0	9
2	" ${ }^{6}$	1	$11 / 2$	25,800	63,500	17
	" 6	2	3	26,300	64,750	19
1	" ،	21/2	$33 / 4$	26,400	65,000	20

Tests that corroborated these results were made by the University of California in 1889 and by the Low Moor Iron Works, England, in 1890.

TEENSHLE STRENG'THI.

The following data are usually obtained in testing by tension in a testing. machine a sainple of a material of construction:
The load and the amount of extension at the elastic limit.
The maximum load applied before rupture.
The elongation of the piece, measured between gauge-marks placed a stated distance apart before the test; and the reduction of area at the point of fracture.

The load at the elastic limit and the maximum load are recorded in pounds per square inci of the original area. The elongation is recorded as a percentage of the stated length between the gauge-marks, and the reduction area as a percentage of the original area. The coefficient of elasticity is calculated from the ratio the extension within the elastic limit per inch of length bears to the load per square inch producing that extension.

On account of the difficulty of making accurate measurements of the fractured area of a test-piece, and of the fact that elongation is more valuable than reduction of area as a measure of ductility and of resilience or work of resistance before rupture, modern experimenters are abandoning the custom of reporting reduction of area. The "strength per square inch of fractured section" formerly frequently used in reporting tests is now almost entirely abandoned. The data now calculated from the results of a tensile test for commercial purposes are: 1. Tensile strength in puunds per square inch of original area. 2. Elongation per cent of a stated length between gauge-marks, usually 8 inches. 3. Elastic limit in pounds per square inch of original area.

The short or grooved test specimen gives with most metals, especially with wrought iron and steel, an appaient tensile strength much higher than the real strength. This form of test-piece is now almost entirely abandoned.

The following results of the tests of six specimens from the same $114^{\prime \prime}$ steel bar illustrate the apparent elevation of elastic limit and the changes in other properties due to change in length of stems which were turned down in each specimen to $.798^{\prime \prime}$ diameter. (Jas. E. Howard, Eng. Congress 1893 Section G.)

Description of Stem.	Elastic Limit, Lbs. per Sq. In.	Tensile Strength, Lbs. per Sq. In.	Contraction of Area, per cent.
$1.00^{\prime \prime}$ loug	64,900	94,400	49.0
. 50 "	65, 320	97,800	43.4
.25 " ${ }^{\text {a }}$	68,000	102,420	39.6
Semicircular groove, . $4^{\prime \prime}$ radius.	75,000	116,380	31.6
Semicircular groove, 1/8" radius	86,000, about	134,960	23.0
V-shaped groove....	90,000, about	117,000	Indeterminate.

Tests plate made by the anthor in 1879 of straight and grooved test-pieces of boiler-plate steel cut from the same gave the following results:

> 5 straight pieces, 56,605 to $59,012 \mathrm{lbs}$. T. S. A ver. $57,566 \mathrm{lbs}$.
> 44,341 to $6 \boldsymbol{6 r}, 400$

Excess of the short or grooved specimen, 21 per cent, or $12,114 \mathrm{lbs}$.
Heasurement of Clongation. - In order to be able to compare records of elongation, it is uecessary not only to have a uniform length of section between gauge-marks (say 8 inches), but to adopt a uniform method of measuring the elongation to compensate for the difference between the apparent elongation when the piece breaks near one of the pauge-marks, and when it breaks midway between them. The following method is recommended (Trans. A. S. M. E., vol. xi., p. 622):
Mark on the specimen divisions of $1 / 2$ inch each. After fracture measure from the point of fracture the length of 8 of the marked spaces on each fractured portion (or $7+$ on one side and $8+$ on the other if the fracture is not at one of the inarks). The sum of these measurements, less 8 inches, is the elongation of 8 inches of the original length. If the fracture is so near one end of the specimen that 7 + spaces are not left on the shorter portion, then take the measurement of as many spaces (with the fractional part next to the fracture) as are left, and for the spaces lacking add the measurement of as many corresponding spaces of the longer portion as are necessary to make the + spaces.
Shapes of Specimens for Tensile Tests. - The shapes shown in Fig. $\hat{75}$ were recommended by the aunior in 188% when he was connected

No. 1. Square or flat bar, as rolled.

No. 2. Round bar, as rolled.

No. 3. Standard shape for flats or squares. Fillets $1 / 2$ inch radius.

No. 4. Standard shape for rounds. Fillets $1 / 2 \mathrm{in}$. radius.

No. 5. Government shape for marine boiler-plates of iron. Not recommended for other tests, as results are generally in error.
Fig. 75.
with the Pittsburgh Testing Laboratory. They are now in most general use, the earlier forms, with 5 inches or less in length between shoulders, being almost entirely abandoned.
Precantions Required in making Tensile Tests.-The testing-machine itself should be tested, to determine whether its weighing apparatus is accurate, and whether it is so made and adjusted that in the test of a properly made specimen the line of strain of the testing-machine is alsolutely in line with the axis of the specimen.
The specimen should be so shaped that it will not give an incorrect record of strength.
It should be of uniform minimum section for not less than five inches of its length.
Regard must be had to the time occupied in making tests of certain materials. Wrought iron and soft steel can be made to show a higher than their actual apparent strength by keeping them under strain for a great length of time.

In testing soft alloys, copper, tin, ziuc, and the like, which flow under constant strain their highest apparent strength is obtained by testing them rapidly. In recording tests of such materials the length of time occupied in the test should be stated.

For very accurate measurements of elongation, corresponding to increments of load during the tests, the electric contact micrometer, described in Trans. A. S. M. E., vol. vi., p. 479, will be found convenient. When readings of elongation are then taken during the test, a strain diagram may be plotted from the reading, which is useful in comparing the qualities of different specimeus. Such strain diagrams are made automatically by the new Olsen testing-machine, described in Jour. Frank. Inst. 1891.
The coefficient of elasticity should be deduced from measurement observed between fixed increments of load per unit section, say between 2000 and 12,000 pounds per square inch or between 1000 and 11,000 pounds instead of between 0 and 10,000 pounds.

COIIPRESSIVE STRENGTH.

What is meant by the term "compressive strength" has not yet been settled by the authorities, and there exists more confusion in regard to this term than in regard to any other used by writers on strength of materials. The reason of this may be easily explained. The effect of a compressive stress upon a material varies with the nature of the material, and with the shape and size of the specimen tested. While the effect of a tensile str-ss is to produce rupture or separation of particles in the direction of the line of strain, the effect of a compressive stress on a piece of material may be either to cause it to fly into splinters, to separate into two or more wedge-shaped pieces and fly apart, to bulge, buckle, or bend, or to flatten out and utterly yesist rupture or separation of particles. A piece of speculum metal under compressive stress will exhibit no change of appearance until rupture takes place, and then it will fiy to pieces as suddenly as if blown apart by gunpowder. A piece of cast iron or of stone will generally split into wedgeshaped fragments. A piece of wrought iron will buckle or bend. A piece of wooll or zinc may bulge, but its action will depend upon its shape and size. A piece of lead will flatten out and resist compression till the last degree; that is, the more it is compressed the greater becomes its resistance.

Air and other gaseous bodies are compressible to any extent as long as they retain the gaseous condition. Water not confined in a vessel is compressed by its own weight to the thickness of a mere film, while when confined in a vessel it is almost incompressible.

It is probable, although it has not been determined experimentally. that solid bodies when confined are at least as incompressible as water. When they are not confined, the effect of a compressive stress is not only to shorten them, but also to increase their lateral dimensions or bulge them. Lateral strains are therefore induced by compressive stresses.

The weight per square inch of original section required to produce any given amount or percentage of shortening of any material is not a constant quantity, but varies with both the length and the sectional area, with the shape of this scctional area, and with the reiation of the area to the length. The " compressive strength" of a material, if this term be supposed to mean the weight in pounds per square inch necessary to cause rupture, may vary with every size and shape of specimen experimented upon. Still more difficult would it be to state what is the "compressive strength " of a material which does not rupture at all, but flattens out. Suppose we are testing a cylinder of a soft metal like lead, two inches in length and one inch in diameter, a certain weight will shorten it one per cent, another weight ten per cent, another fifty per cent, but no weight that we can place upon it will rupture it, for it will flatien out to a thin sheet. What, then, is its compressive strength? Again, a similar cylinder of soft wrought iron would probably compress a few per cent, bulging evenly all around; it would then commence to bend, but at first the bend would be imperceptible to the eye and too small to be measured. Soon this bend would be great enough to be noticed, and finally the piece might be bent nearly double, or otherwise distorted. What is the "compressive strength" of this piect of iron? Is it the weight per square inch which compresses the piece one per cent or five per cent, that which causes the first bending (impossible to be discovered), or that which causes a perceptible bend?

As showing the confusion concerning the definitions of compressive strength. the following statements from different authorities on the strength of wrought iron are of interest.

Wood's Resistance of Materials states, "comparatively few experiments have been made to determine how much wrought iron will sustain at the point of crushing. Hodgkinson gives 65,000 , Rondulet 70,800 , Weisbach $\boldsymbol{\tau} 2,000$

Rankine 30,000 to 40,000 . It is generally assumed that wrought iron will resist abuut two thirds as much crushing as to tension, but the experiments fail to give a very definite ratio."
Mr. Whipple, iu his treatise on bridge-building, states that a bar of good wrought iron will sustain a tensile strain of about 60,000 pounds per square inch, and a compressive strain, in pieces of a length not exceeding twice the least diameter, of about 90,000 pounds.
The following values, said to be deduced from the experiments of Major Wade, Hodgkinson. and Capt. Meigs, are given by Haswell :

Stoney states that the strength of short pillars of any given material, all having the same diameter, does not vary much, provided the length of the piece is not less than one and does not exceed four or five dianeters, and that the weight which will just crush a short prism whose base equals one square meh, and whose height is not less than 1 to $11 / 2$ and does not exceed 4 or 5 diameters, is called the crushing strength of the material. It would be sell if experimenters would all agree upon some such definition of the term "crushing strength," and insist that all experiments which are made for the purpose of testing the relative values of different materials in compression be made on specimens of exactly the same shape and size. An arbitrary size and shape should be assumed and agreed upon for this purpose. The size mentioned by Stoney is definite as regards area of section, viz.. one square inch, but is indefinite as regards length, viz., from one to five diameters. In some metals a specimen five diameters long would bend, and give a much lower apparent strength than a specimen having a leugth of one diameter. The words "will just crush " are also indefinite for ductile materials, in which the resistance increases without limit if the piece tested does not bend. In such cases the weight which causes a certain percentage of compression, as five, ten, or fifty per cent, should be assumed as the crushing strength.
For future experiments on crushing strength three things are desirable : First, an arbitrary standard shape and size of test specimen for comparison of all materials. Secondly, a standard limit of compression for ductile materials, which shall be considered equivalent to fracture in brittle materials. Thirdly, an accurate knowledge of the relation of the crushing strength of a specimen of standard shape and size to the crushing strength of specimens of all other shapes and sizes. The latter can only be secured by a very extensive and accurate series of experiments upon all kinds of materials, and on specimens of a great number of different shapes and sizes.

The author proposes, as a standard shape and size, for a compressive test specimen for all metals, a cylinder one inch in length, and one half square inch in sectional area, or 0.198 iuch diameter; and for the limit of compression equivalent to fracture, ten per cent of the original length The term "compressive strength," or "compressive strength of standard specimen," would then mean the weight per square inch required to fracture by compressive stress a cylinder one inch long and 0.698 inch diameter, or to tion in length is to 0.9 inch if fracture does not take place before that reduchad been used by leached. If such a standard, or any standard size whatever, never would have had earlier authorities on the strength of materials, we the compressive strength of discrepancies in their statements in regard to
The reasons why this particular size is recommended are : that the sectional area. ont-half square inch, is as large as can be taken in the ordinary test-ing-machines of 100,000 pounds capacity, to include all the ordinary metals of construction, cast and wronght iron, and the softer steels; and that the length, one inch, is convenient for calculation of percentage of compression. If the length were made two inches, many materials would bend in testing, and give incorrect results. Even in cast irou Hodgkinson found as the mean of several experiments on various grades. testell in specimens $3 / 4$ inch in height, a compressive strength per square inch of $94, \% 30$ pounds, while the mean of the same number of specimens of the same irons tested in pieces 11/2 inches in he ght was only 88,500 pounds. The best size and shape of standard specimen should, however, be settled upon only after consultation and agreement among several authorities.

The Committee on Standard Tests of the American Society of Mechanical Engineers say (vol. xi.. p. 62t):
"Althongh compli ssion tests I ave heretofore been made on diminutive sample meces, it is highly desirable that tests be also made on long pieces from 10 to 20 diametens in leugth, correspondng mone ntarly with actual practice, in order that elastic strain and change of shape may be determined by using proper measuring apparatus.

The elastic limit, modulus or corfficient of elasticity, maximum and ultimate resistances, should be determined, as well as the increase of section at various points, viz., at bearing surfaces and at crippling point.

The use of long compression-test pieces is recommended, becanse the investigation of short cubes or cylinders has led to no direct application of the constants obtained by their use in computation of actual structures, which have always been and are now designed according to empirical formulæ obtained from a few tests of long columns."

COLUINS, PILLARS, OIE STRUTS.

Hodgkinson's Formula for Columns.

$P=$ crushing weight in pounds; $d=$ exterior diameter in inches; $d_{1}=$ interior diameter in inches; $L=$ length in feet.

Both ends rounded, the
Kind of Column. length of the column exceeding 15 times its diameter.

Solid cylindrical col- $\}$ umns of cast iron..... $\}$

$$
P=33,380 \frac{d^{3 \cdot 76}}{L^{1 \cdot 7}}
$$

$$
P=29,120 \frac{d^{3.76}-d_{1}^{3.76}}{L^{1 \cdot 7}}
$$

$$
P=95,850 \frac{d^{3 \cdot 76}}{L^{2}}
$$

Solid square pillar of
Dantzic oak (dry).... $\}$
Solid square pillar of $\}$ red deal (drs).......... $\}$

Both ends flat, the length of the column exceeding 30 times its diameter.

$$
\begin{aligned}
& P=98,920 \frac{d^{3 \cdot 55}}{L^{1 \cdot 7}} \\
& P=99,320 \frac{t^{3 \cdot 55}-d_{1}^{3 \cdot 5 E}}{L^{1 \cdot 7}} \\
& P=299,600 \frac{d^{3 \cdot 55}}{L^{2}} \\
& P=24,540 \frac{d^{4}}{L^{2}} \\
& P=17,510 \frac{d^{4}}{L^{2}}
\end{aligned}
$$

The above formulæ apply only in cases in which the length is so great that the column breaks by bending and not by simple crushing. If the column be shorter than that given in the table. and more than four or five times its diameter, the strength is found by the following formula:

$$
W=\frac{P C K}{P+3 / 4 C K},
$$

in which $P=$ the value given by the preceding formulæ, $K=$ the transverse section of the column in square inches. $C=$ the ultimate compressive resistance of the material, and $W=$ the crushing strength of the column.

Hodgkinsou's experiments were made upon comparatively short columns, the greatest length of cast-iron columns being $601 / 2$ inches, of wrought irou $903 / 4$ inches.

The following are some of his conclusions:

1. In all long pillars of the same dimensions, when the force is applied in the direction of the axis, the strength of one which has flat ends is about three times as great as one with roun led ends.
2. The strength of a pillar with \sim ne nd rounded and the other flat is an arithmetical mean between the two given in the preceding case of the same dimensi ns.
3. The strength of a pillar having both ends firmly fixed is the same as one of half the length with both ends rommded.
4. The strength of a pillar is not increased more than one seventh by enlarging it at the middle.

Gordon's formula deduced from Hodgkinson's experiments are more generally used than Hodgkinson's own. They are:

$$
\text { Columns with both ends fixed or flat, } P=\frac{f S}{1+a \frac{l^{2}}{r^{2}}} \text {; }
$$

Columns with one end flat, the other end round, $P=\frac{f S}{1+1.8 a \frac{r^{2}}{r^{2}}}$;
Columns with both ends round, or hinged, $P=\frac{f S}{1+4 a \frac{l^{2}}{r^{2}}}$;
$S=$ area of cross-section in inches;
$P=$ ultimate resistance of column, in pounds;
$f=$ crushing strength of the material in lbs. per square ivch;
$r=$ least radius of gyration, in inches, $r^{2}=\frac{\text { Moment of inertia }}{\text { area of section }}$;
$l=$ length of column in inches;
$a=$ a coefficient depending upon the material;
f and a are usually taken as constants: thry are really empirical variables, dependent upon the dimensions and character of the column as well as upon the material. (Burr.)
For solid wrought-iron columns, values commonly taken are: $f=36,000$ to 40,000: $\quad \tau=1 / 36,000$ to $1 / 40.000$.

For solid cast-iron columns, $f=80,000, a=1 / 6400$.
For hollow cast-iron columns, fixed ends, $p=\frac{80.000}{1+\frac{1}{800} \frac{l^{2}}{d^{2}}}, l=$ length and $a=$ diameter in the same unit, and $p=$ strength in lbs. per square inch.

The coefficinnt of l^{2} / d^{2} is given various values, as $1 / 400,1 / 500$. $1 / 600$, and $1 / 800$. by different writers. The use of Gordon's formula, with any coefficiens derived from Hodgkinson's experiments, for cast-iron columns is to be deprecated. See Strength of Cast-iron Columns, pp. 2j0, 251.

Sir Benjamin Baker gives,
For mild steel, $\quad f=67,000 \mathrm{lbs}$., $a=1 / 22,400$.
For strong steel, $f=114.000 \mathrm{lbs}, a=1 / 14,400$
Prof. Burr considers these only loose approximations for the ultimate resistances. See his formulæ on p. 259.

For dry timber Rankine gives $f=7200 \mathrm{lbs} ., a=1 / 3000$.

MOMENT OF INERTEA AND RADIUS QF GYRATEON.

The moment of inertia of a section is the sum of the products of each + lementary area of the section into the square of its distance from an as-lmed axis of rotation, as the neutral axis.
The radius of gyration of the sectinn equals the square ront of the quotient of the moment of inertia divided by the area of the section. If $R=$ radius of gyration, $I=$ moment of inertia and $A=$ area,

$$
R=\sqrt{\frac{I}{A}} . \quad \frac{I}{A}=R^{2} .
$$

The moments of inertia of various sections are as follows:
$d=$ diameter, or outside diameter; $d_{1}=$ inside diameter $; b=$ breadth; $h=$ depth: b_{1}, h_{1}. inside breadth and diameter;

Solid rectangle $I=1 / 1: 2 b h^{3} ;$		Hollow rectangle $I=1 / 12\left(b h^{3}-b_{1} h_{1}{ }^{3}\right) ;$
Solid square $I=1 / 12 b^{4} ;$	Hollow square $I=1 / 21 b^{4}-b_{1}^{4}, 1 ;$	
Solid cylinder $I=1 / 64 \pi d^{4} ;$		Hollow cylinder $I=1 / 64 \pi\left(d^{4}-d_{1}^{4}\right)$.

Moments of Inertia and Radius of Gyration for Various Sections, and their Use in the Formulas for Strength of Girders and Columns.-The strengih of sections to resist strains, either as girlers or as columns. depends not only on the area but also on the form of the section, and the property of the section which forms the basis of the constants used in the formulas for strength of girders and columns to express the effect of the form, is its moment of inertia about its neutral axis. The modulus of resistance of any section to transverse beuding is its
moment of inertia divided by the distance from the neutral axis to the fibres farthest removed from that axis; or

$$
\text { Section modulus } \quad=\frac{\text { Moment of inertia }}{\text { Distance of extreme fibre from axis }} \cdot \quad Z=\frac{I}{y} .
$$

Moment of resistance $=$ section modulus \times unit stress on extreme fibre.
Moment of Inertia of Compound Shapes. (Pencosd Iron Works. - The monment of inertia of any section about any axis is equal to the I about a parallel axis passing through its centre of gravity + (the area of the section \times the square of the distance between the axes).
By this rule, the moments of inertia or radii of gyration of any single sections being known, corresponding values may be obtained for auy combiation of these sections.

Radius of Gyration of Compound Shapes,--In the case of a parr of any shape without a web the value of R can always be found without considering the moment of inertia.
The radius of gyration for any section around an axis parallel to another axis passing through its centre of gravity is found as follows:
Let $r=$ radius of gyration around axis through centre of gravity; $R=$ radius of gyration around another axis parallel to above; $d=$ distance between axes: $R=\sqrt{d^{2}+r^{2}}$.
When r is small, R may be taken as equal to d without material error.
When r is small, R mar be taken as rqual to d without material error.
Graphical Method for Finding Radius of Gyration.-Benj. F. La Rue, Eng. News, Feb. 2, 1893, gives a short graphical method for finding the radius of gyration of hollow, cylindrical, and rectangular columns, as follows:

For cylindrical columns:
Lav off to a scale of (or 40) a right-angled triangle, in which the base equals the outer diameter, and the altitude equals the inner diameter of the column or vice versa. The hypothenuse, measured to a scale of unity (or 10), will be the radius of gyration sought.

This depends upon the formula

$$
G=\sqrt{\frac{\text { Mom. of Inertia }}{\text { Area }}}=\frac{\sqrt{D^{2}+d^{2}}}{4}
$$

in which $A=$ area and $D=$ diameter of outer circle, $\alpha=$ area and $d=$ diameter of inner circle, and $G=$ radius of gyration. $\sqrt{D^{2}+d^{2}}$ is the expression for the hypothenuse of a right-angled triangle, in which D and d are the base and altitude.

The sectional area of a hollow round column is . $7854\left(D^{2}-d^{2}\right)$. By constructing a right-angled triangle in which D equals the hypothenuse and d equals the altitude, the base will equal $\sqrt{D^{2}-d^{2}}$. Calling the value of this expression for the base B, the area will equal $.7854 B^{2}$.

Value of G for square columns:
Lay off as before, but using a scale of 10, a right-angled triangle of whici. the base equals D or the side of the outer square, and the altitude equals d, the side of the inner square. With a scale of 3 measure the hypothenuse, which will be, approximately, the radius of gyration.
This process for square columns gives an excess of slightly more than 4%. By deducting 4\% from the result, a close approximation will be obtained.

A very close result is also obtained by measuring the hypothenuse with the sume scale by which the base and altitude were laid off, and multiplying by the decimal 0.29 ; more exactly, the decimal is 0.28867 .
The formula is

$$
G=\sqrt{\frac{\text { Mom. of inertia }}{\text { Area }}}=\frac{1}{\sqrt{12}} \sqrt{D^{2}+d^{2}},=0.28867 \sqrt{D^{2}+d^{2}} .
$$

This may also be applied to any rectangular column by using the lesser diameters of an unsupported column, and the greater diameters if the column is supported in the direction of its least dimensions.

ELEMENTS OF USUAL SECTIIONS.

Moments refer to hormontal axis through centre of gravity. Thls table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked * are correct. Values for radius of gyration in flanged beains apply to standard minimum sections only. $A=$ area of section; $\bar{b}=\operatorname{breadth} ; h=\operatorname{depth} ; D=\operatorname{diameter}$.

Shape	of Section.	Moment of Inertia.	Section Modulus.	Square of Least Radius of Gyration.	Least Radius of Gyration.
	Solid Rectangle.	$\frac{b h^{3}}{12}$	$\frac{b h^{2} *}{6}$	$\frac{\left(\text { Least side) }{ }^{\text {2* }}\right.}{12}$	$\frac{\text { Least side * }}{3.46}$
	Hollow Rectangle.	$\frac{b h^{3}-b_{1} h_{1}{ }^{3}}{12}$	$\frac{b h^{3}-b_{1} h_{1}{ }^{3}}{6 h}$	$\frac{h^{2}+h_{1}^{2}}{12}$ *	$\frac{h+h^{1}}{4.89}$
0	Solid Circle.	$\frac{A D^{2}}{16}$	$\frac{A D}{8}$	$\frac{D}{16}^{*}$	$\frac{D}{4}^{*}$
	Hollow Circle. A, area of large section; a, area of small section	$\frac{A D^{2}-a d^{2}}{16}$	$\frac{A D^{2}-\alpha d^{2}}{8 D}$	$\frac{D^{2}+d^{2}}{16}$	$\frac{D+d}{5.64}$
$\frac{-\cdots-1}{-b-1}$	Solid Triangle.	$\frac{b h^{3}}{36}$	$\frac{b h^{2}}{24}$	$\begin{aligned} & \text { of the two: } \\ & h^{2} \text { or } \frac{b^{2}}{24} \\ & 18 \end{aligned}$	The least of $\begin{aligned} & \text { the two: } \\ & \frac{h}{4.24} \text { or } \frac{b}{4.9} \end{aligned}$
	Even Angle.	$\frac{A h^{2}}{10.2}$	$\frac{A h}{7.2}$	$\frac{b^{2}}{25}$	$\frac{b}{5}$
	Uneven Augle.	$\frac{A h^{2}}{9.5}$	$\frac{A h}{6.5}$	$\frac{(h b)^{2}}{13\left(h^{2}+b^{2}\right)}$	$\frac{h b}{2.6(h+b)}$
	Even Cross.	$\frac{A h^{2}}{19}$	$\frac{A h}{9.5}$	$\frac{h^{2}}{22.5}$	$\frac{h}{4.74}$
$\int \begin{gathered} -1 \\ C \sim \end{gathered}$	Even Tee.	$\frac{4 h^{2}}{11.1}$	$\frac{A h}{8}$	$\frac{b^{2}}{22.5}$	$\frac{b}{4.74}$
	I Beam.	$\frac{A h^{2}}{6.66}$	$\frac{A h}{3.2}$	$\frac{b^{2}}{21}$	$\frac{b}{4.58}$
$\sqrt[1]{1 r}$	Channel.	$\frac{A h^{2}}{7.34}$	$\frac{A h}{3.67}$	$\frac{b^{2}}{12.5}$	$\frac{b}{3.54}$
	Deck Beam.	$\frac{A h^{2}}{6.9}$	$\frac{A h}{4}$	$\frac{b^{2}}{36.5}$	$\frac{b}{6}$

Distance of base from centre of gravity, solid triangle, $\frac{h}{3}$; even angle, $\frac{h}{3.3}$; uneven angle, $\frac{h}{3.5}$; even tee, $\frac{h}{3.3}$; deck beam, $\frac{h}{2.3}$; all other shapes given in the table, $\frac{h}{2}$ or $\frac{D}{2}$.

The Strength of Cast-iron Columns.

Hodgkinson's experiments (first published in Phil. Trans. Royal Socy, 1840, and condensed in Tredgold on Cast Iron, 4th ed., 1846), and Gordon's formula, based upon them, are still used (1898) in designing cast-iron columus. That they are entirely inadequate as a basis of a mactical formula suitable to the present methods of casting columns will be evident from what follows.

Hodgkinson's experiments were made on nine " long "pillars, about r1/2 ft . long, whose external diameters ranged from 1.74 to 2.23 in., and average thickness from 0.29 to 0.35 in., the thickness of each column also varying, and on 13 "short" pillars, 0733 ft . to 2.251 ft . long, with external diameters from 1.08 to 1.26 in .. all of them less than $1 / 4 \mathrm{in}$. thick. The iron used was Low Moor, Yorkshire, No. 3, said to be a good iron, not very hard, earlier experiments on which had given a tensile strength of 14,535 and a crushing strength of $109,801 \mathrm{lbs}$. pel sq. in. The results of the experiments on the "long" pillars were reduced to the equivalent breaking weight of a solid pillar 1 in. diameter and of the same length, $11 / 2 \mathrm{ft}$., which ranged from 2969 to :3587 lbs. per sq. in., a range of over 12 per cent, although the pillars were made from the same iron and of nearly uniform dimensions. From the 13 experiments on "short" pillars a formula was derived, and from it were obrained the "calculated " breaking weights, the actual breaking weights ranging from about 8 per cent above to about 8 per cent below the calculateil weights, a total range of about 16 per cent. Modern cast-iron columns, such as are used in the construction of buildings. are very different in size, proportions, and quality of iron from the slender "long" pillars used in Hodgkinson's experiments. There is usually no check, by actual tests or by disinterested inspection, upon the quality of the material. The tensile, compressive. and 1, eansverse strength of cast iron varies through a great range (the tensile strensth ran:ging from less than 10.000 to over 40.000 lbs . per sq. in.), with varrations in the chemical composition of the iron, according to laws wh chare as yet very imperfectly understond, and with variations in the method of melting and of casting. There is also a wide variation in the strength of iron of he same melt when cast into bars of different thicknesses. It is therefore impossible to predict even approximately, from the data given liy llodgkinson of the strength of columns of Low Moor iron in pillars $\quad 1 / 2 \mathrm{ft}$. $\operatorname{long}, \gtrsim \mathrm{in}$. diam., and $1 / 3$ in. thick, what will he the strength of a column made of American cast iron, of a quality not stated, in a cr lumn 16 ft long, $1: 315 \mathrm{ill}$. diam., and from $3 / 4 \mathrm{in}$. to $11 / 2 \mathrm{in}$. thick.

Another difficulty in obtaining a practical formula for the strength of castiron columns is due to the uncertainty of the quality of the casting, and the danyer of hidden defects, such as internal stresses due to unequal cooling, cinter ir dirt, how-holes, "cold-shuts," and cracks on the inner surfare, which cannot be discovered by external inspection. Variation in thickness, due 10 rising of the core during casting, is also a common defect.

In addition to the above theoretical or a prori objections to the use of Gordon's fommula, based on Hodykinson's experiments, for cast-iron colmmns, we have the data of recent experiments on full-sized columns. made by the Builiing Department of New York City (Eng'g Nerrs, Jan. 13 and 20,1819$)^{\circ}$. Ten columus in all were tested, six 15 -inch, $190 \pm$ inches long, two 8 -inch, $1 ; 0$ inches long, and two 6 -inch, 120 inches long. The tests were made on the large hydraulic machine of the Phœnix Bridge Co., of 2,000,000 pounds capacity, which was calibrated for frictional error by the repeated testing within the elastic limit of a large Phoenix colmmn, and the comparison of these lests with others made on the government machine at the Watertown Arsenal. The average frictional error was calculated to be 15.4 per ('en', but Engineering Neu's. revising the data, makes it $1 \pi .1$ per cent, with a variation of 3 per cent either way from the average with different londs. The results of the tests of the volumes are given on the opposite page.

Column No. 6 was not broken at the highest load of the testing inachine.
Columns Nos. 3 and 4 were takrn from the Ireland Building, which collapsed on A ngust 8, 1895; the other four 15 -inch columns were made from dranings prepared by the Building Derartment. as nearly as possible duplicates of Nos. 3 and 4. Nus. 1 and 2 were made by a foundry in New York with no knowledge of thrir ultimate use. Nos. 5 and 6 were made by a foundry in Brookly with the knowledge that they were to be tested. Nos. 7 to 10 were made from drawings furnished by the Department.

TESTS OF CAST-IRON COLUMNS.

Number.	Diain. Inches.	Thickness.			Breaking Load.	
		Max.	Min.	Average.	Pounds.	Pounds per sq. in.
1	15	1	1	1	1,356,000	30,830
2	15	15/16	1	11/8	1.3330.000	27,700
3	15	11/4	1	$11 / 8$	1,198,000	24.900
4	151/8	1 \%/32	1		1,246,00n	25.200
5	15	111/16	1	$111 / 64$	1,632,000	32.100
${ }_{7}$	$\stackrel{15}{15}$ to $81 / 4$	$11 / 4$ 11	$11 / 8$	$13 / 16$	2,118:2,000 +	${ }_{30}^{40.400}+$
7	i3/4 to $81 / 4$	$11 / 4$ $13 / 32$	$1^{5 / 8}$	$13 / 6$	651.000 612800	31.900 26.800
8	${ }_{6}^{8} 1 / 16$	$13 / 32$ $15 / 32$		$13 / 64$ $19 / 64$	612,800 400.000	26.800 22.500
10	$63 / 32$	11/8	${ }_{1}^{11 / 8} 1 / 16$	1 1 \%/64	455,200	$\stackrel{22.300}{26}$

Applying Gordon's formula, as used by the Building Department, $S=\frac{80000 a}{1+\frac{1}{400} \frac{l^{2}}{d^{2}}}$, to these columns gives for the breaking strength per square inch of the 15 -inch columns 57,143 pounds, for the 8 -inch columns 40.000 pounds. and for the 6 -inch columus 40,000 . The strength of columns Nos. 3 and 4 as calculated is 128 per cent more than their actual strength; their actual strength is less than 44 per cent of their calculated strength; and the factor of safety, surposed to be 5 in the Building Law, is only 2.2 for central loading, 110 account being taken of the likelihood of eccentric loading.

Prof. Lanza, in his Applied Mechanics, p. 3T2, quotes the records of 14 tests of cast-iron mill columns. made on the Watertown testing-machine in 188i-88, the breaking strength per square inch ranging from 25. 100 to 63.310 pounds. and showing no relation between the breaking strength per square inch and the dimensions of the columns. Only 3 of the 14 columns had a strength exceeding $: 33,500$ pounds per square inch. The average strength of the other 11 was 92,600 pounds per square inch. Prof. Lanza says that it is evident that in the case of such columns we cannot rely upon a crushing strength of greater than 25,000 or 30,000 pounds per square inch of area of section.

He recommends a factor of safety of 5 or 6 with these figures for crushing strength, or 5000 pounds per square inch of area of section as the highest allowable safe load, and in addition makes the conditions that the length of the column shall not be greatly in excess of 20 times the diameter, that the thickness of the metal shall he such as to insure a good sirong casting, and that the sectional area should be increased if nece-sary to insure that the extr me fibre stress due to probable eccentric loading shall not be greater than 5000 pounds per square inch.

Prof. W. H. Burr (Eng'! News, June 30, 1898) gives a formula derived from plotting the results of the Watertown and Phœnixville tests, above described, which represents the average strength of the columns in younds per square inch. It is $p=30,500-160 l / d$. It is to he noted that this is an average value, and that the actual strength of many of the colmmns was much lower. Prof. Burr says: "If cast-ir"n columns are designell with anything like a reasonable and real margin of safety, the amount of metal required dissipates any sunposed economy orer colimens of mild steel."

Transverse Strength of Cast-iron Water-pipe. ('Techmology Quuterly, Sept. 189\%.)-Tests of 31 cast-iron pipes by transverse stress gave a maximum outside fibre stress, calculated from maximum lnad. assuming each half of pipe as a beam fixed at the ends, ranging from 12,800 lbs. to $26,300 \mathrm{lhs}$. per kq . in.

Bars 2 in. wide cut fiom the pipes gave modnli of rupture ranging from 28.400 to $51,400 \mathrm{lbs}$. per sq. in. F our of the tests, hars and pipes:

| Moduli of rupture of bar.......... 28.400 | 34.400 | 40.000 | 51,400 |
| :--- | :--- | :--- | :--- | :--- |
| Fibre stress of pipe... 18,300 | 12,400 | 14,500 | 26,300 |

These figures show a girat variation in the strength of both hars and pipes. and also that the strength of the bar does not bear any definite relation to the strength of the pipe.

Safe Load, in Tons of 2000 Lbs., for Round Cast-iron Columns, with Trurned Capitals and Bases.

Loids being not eccentric, and length of colmmn not excrealing 20 times the diameter. Based on ultimate crushing strength of $25,000 \mathrm{lbs}$. per sq. in. and a factor of safety of 5 . (For eccentric loads see page 254.)

Thick-	Diameter, inches.											
	6	7	8	9	10	11	12	13	14	15	16	18
5/8	26.4	31.3										
84	30.9	36.8	42.7	48.6	54. 5	69.6						
$1{ }^{18}$	39.24	47.1	55.0	55. 8	62.	78.5	86.4	94.2	103.1			
11/8	,	.	60.8			87.2	96.1	104.9	113.8	122.6	131.4	
$11 / 4$				ז6.1	85.9	95.7	105.5	115.3	125.2	135.0	144.8	164.4
$13 / 8$..			93.1	103.9	$114 . \tilde{7}$	125.5	136.3	14\%.1	157.9	179.5
119							123.7	135.5	147.8	159.0	110.8	194.4
194									168.4	18:2. 1	195.8	$2 \because 3.3$
2										204.2	219.9	251.3

For lengths greater than 20 diameters the allowable loads should be decreased. How much they should be decreased is uncertain, since sufficient data of experiments on full-sized very long columns, from which a formula for the strength of such columns might be derived, are as yet lacking. There is, however, rarely, if ever, any need of proportioning castiron columns with a length exceeding 20 diameters.

Safe Loads in Tons of 2000 Pounds for Cast-iron Columne.

(By the Building Laws of New York City, Boston, and Chicago, 189\%.)

$$
\begin{aligned}
& \text { New York. Boston. Chicago. } \\
& \text { Square columns.......\{\{ } \frac{8 a}{1+\frac{l^{2}}{500} \overline{d^{2}}} \quad \frac{5 a}{1+\frac{l^{2}}{106 \pi l^{2}}} \quad \frac{5 a}{1+\frac{l^{2}}{800 l^{2}}} \\
& \text { Round columns........\{\{ } \frac{8 a}{1+\frac{l^{2}}{400 d^{2}}} \quad \frac{5 a}{1+\frac{l^{2}}{800 d^{2}}} \quad \frac{5 a}{1+\frac{l^{2}}{600 d^{2}}}
\end{aligned}
$$

$a=$ sectional area in square inches; $l=$ unsupported length of column in inches; $d=$ side of square column or diameter of round column in inches.
The safe load of a 15 -inch romind column $1 \frac{1}{2}$ inches diameter. 16 feet long, according to the laws of these cities would be, in New York, 361 tons; in Boston. 264 inns; in Chicago, 250 tons.
The allowable stress per square inch of area of such a column would be, in New York, 11,3:0 pounds; in Boston, 8300 pounds: in Chicago, 7850 pounds. A safe stress of 5000 pounds per square inch would give for the safe load on the column 159 tons.

Strength of Brackets on Cast-iron Columns. -The columns tested by the New York Building Department referred to above had brackets cast upon them, each bracket consisting of a rectangular shelf supported by one or two triangular ribs. These were tested after the columms had bern broken in the principal tests. In 17 out of 22 cases the brackets broke by tearing a hole in the body of the column, instead of by shearing or transverse breaking of the bracket itself. The results were surprisingly low and veryirregniar. Reducing them to strength per square inch of the total vertical section through the shelf and rib or ribs. they ranged from 2450 to $5600 \mathrm{lbs} .$. averaging 4200 lbs ., for a load concentrated at the end of the shelf, and 4100 to $10,900 \mathrm{lbs}$., averaging 8000 lus ., for a distributed load. (Eng'g News, Jan. 20, 1898.)

Safe Loads, in Tons, for Round Cast Columns.
(hatcordance with the Buikding Laws of Chicago.*)

Diametar in Inches	Thickness in Inches.	Unsupported Lengh in Feet.																		
		6	8	10	12	14	16	18	20	22	24	26		30						
67	$\begin{aligned} & 9 / 4 \\ & 7 / 8 \end{aligned}$	50	43	37	32	27			Formula: $w=$											
		57	50	42	36	31			Formula: $w=\frac{l^{2}}{1+\frac{1}{2}}$											
	$3 / 4$	62	56	49	43	38	33	39					$v=$ safe load in tous of 2000 pounds:							
	7/8	71	64	$5 \hat{1}$	49	43	35													
	$3 / 4$	75	69	$6:$	56	50	44													
8	7/8	86	79	71	64	$5 \sim$	50	$\begin{aligned} & 44 \\ & 50 \end{aligned}$	$a=$ cross-section of col											
	1	97	89	81	72	63	56		umn;											
	7/8	101	94	86	78	70	63	$\begin{aligned} & 57 \\ & 64 \\ & 71 \\ & 11 \end{aligned}$	$\begin{aligned} & l=\text { unsupported length } \\ & \text { in inches; } \\ & d=\text { diameter in inches. } \end{aligned}$											
9	1	113	105	$9 \uparrow$	88	79	71													
	11/8	126	117	10ヶ\%	97	88	79													
$10\}$	7/8	116	109	101	9:3	85	78	71	64											
	1	130	122	114	105	96	88	80	72											
	11/8	145	136	126	117	10%	97	88	80											
	11/4	158	149	139	1:8	117	107	92	88											
11 1	1	14\%	139	131	122	113	104	96	88	80										
	118	163	155	$1+6$	136	126	116	106	9\%	89										
	11/4	179	140	160	$14!$	138	$12 \sim$	11%	107	98										
	13/8	195	185	114	16:	150	138	12\%	${ }_{1} 17$	106										
$12\{$	11/8	181	$1 \sim 4$	165	15t	145	135	125	115	106	98									
	$11 / 4$	199	$1!91$	181	170	159	148	13 1	$12 \sim$	117	108									
	13/8	21%	$20 \sim$	19~	18.5	173	161	149	138	127	116									
	13/8	234	224	21:	200	18%	1.3	161	${ }^{1} 49$	13i	$1 \because 6$									
13	11/8	200	192	81	$1 \sim 4$	164	154	144	134	125	116	10%								
	13/4	219	211	$\because 0 \%$	191	180	169	158	14%	137	$12 \sim$	11%								
	13/8	$\stackrel{2}{29}$	230	220	208	196	184	172	160	149	138	$1: 8$								
	11/2	$\because 58$	248	$23 i$	225	212	199	186	1\%3	161	149	138								
$14\}$	$11 / 4$		23:	2:3	213	20%	191	180	168	157	14T	13\%	128							
	13/8		253	24.3	235	$2: 0$	$20 \sim$	195	183	171	160	149	139							
	$11 / 2$		273	263	2.51	238	224	211	198	185	173	161	150							
	15/8		293	28:	269	255	241	221	212	198	185	17:3	161							
152	13/8			$\because 66$	25.5	24.3	231	219	206	194	18:	171	160	150						
	11%			$28 i ̂$	$2 \sim 6$	263	250	2:36	203	210	19	185	173	162						
	15/8			309	296	28:3	268	251	$2: 39$	22\%	211	198	186	174						
	$13 / 4$			$3: 9$	316	301	286	.271	255	240	225	211	198	185						
16	11/2				301	288	275	262	248	235	222	209	197	$1-5$						
	-5/8				$3 \because 3$	310	$2!6$	$25 \cdot$	267	25.3	239	${ }^{2} 2$	$\stackrel{12}{ }$	199						
	13/4				345	331	316	300	$285{ }^{\prime}$	$2 \hat{0}$	254	2:39	$\because 25$	212						
20	15/8					366	351	3:3\%	$3 \cdot 2$	30π	29.3	2,9	264	251						
	$13 / 4$					391	375	360	344	$3: 8$	313	298	282	268						
	$17 / 8$					415	399	383	366	349	333	31ヶ	300	285						
	13/4						435	420	404	38.	$3 \% 3$	3ก\%	341	326						
	17/8						463	41%	431	414	39\%	380	36:3	347						
	2						490	$4 i 3$	456	438	420	40\%	384	367						
	21/8						517	499	481	462	$44: 3$	4 \sim	406	387						
$22\{$	13/4							4.50	464	448	43:	416	400	384						
	$17 / 8$							511	494	$4 \% 8$	461	44.3	$4 \because 6$	409						
	2							541	524	506	488	$4 \% 0$	45%	434						
	21/8							581	$56: 1$	543	$5: 4$	504	485	465						
24									$6 \cdot 6$	608	559	570	550	531						
	$21 / 4$								668	63,	$6 \cdot 0$	600	579	559						
	23/8								691	$6{ }^{1} 1$	6.0	$6: 9$	608	5×7						
	21/2								7:34	\%0:3	681	659	6:3i	614						

From tables published by The Expanded Metal Co., Chicago, 189\%.)

ECCENTRIC LOADING OF COLUMNS.

In a given rectangular cross-section, such as a masonry joint under pressure, the stress will be distributed uniformly over the section only when the resultant passes through the centre of the section; any deviation from such a central position will bring a maximum unit pressure to one edge and a minimum to the other; when the distance of the resultant from one edge is one third of the entire width of the joint, the pressure at the nearer edge is twice the mean pressure, while that at the farther edge is zero, and that when the resultant approaches still nearer to the edge the pressure at the farther edge becomes less than zero; in fact becomes a tension, if the material (mortar, etc., there is capable of resisting tension. Or, if, as usual in masonry joints, the material is practically incapable of resisting tension, the pressure at the nearer edge, when the resultant approaches it nearer than one third of the wisth, increases very rapidly and dangerously, becoming theoretically infinite when the resultant reaches the edge.

With a given position of the resultant relatively to one edge of the joint or section, a similar redistribution of the pressures throughout the section may be brought about by simply adding to or diminishing the width of the section.

Let $P=$ the total pressure on any section of a bar of uniform thickness.
$w=$ the width of that section $=$ area of the section, when thickness $=1$.
$p=P / w=$ the mean unit pressure on the section.
$M=$ the maximum unit pressure on the section.
$m=$ the minimum unit pressure on the section.
$d=$ the eccentricity of the resultant $=$ its distance from the centre of the section.
Then $M=p\left(1+\frac{6 d}{w}\right)$ and $m=p\left(1-\frac{6 d}{w}\right)$.
When $d=\frac{1}{6} w$ then $M=2 p$ and $m=0$.
When d is greater than $1 / 6 w$, the resultant in that case being less than one third of the width from one edge, p becomes negative. (J. C. Trautwine, Jr., Engineering News, Nov. 23, 1893.)

Eccentric Loading of Cast-iron Columns. - Prof. Lanza writes the author as tollows: The table on page 25: applies when the resultant of the luads upon the column acts along its central axis, i.e., passes through the centre of gravity of every section. In buildings and other constructions, however, cases frequently occur when the resultant load does not pass through the centre of gravity of the section; and then the pressure is not evenly distributed over the section, but is greatest on the side where the resultant acts. (Examples occur when the loads on the floors are not uniformly distributed.) In these cases the outside fibre stresses of the column should be computed as follows, viz.:
Let $P=$ total pressure on the section;
$d=$ eccentricity of resultant $=$ its distance from the centre of gravity of the section;
$A=$ area of the section, and I its moment of inertia about an axis in its plane, passing through its centre of gravity, and perpendicular to d (see page $26 i$);
$c_{1}=$ distance of most compressed and $c_{2}=$ that of least compressed fibre from above stated axis;
$s_{1}=$ maximum and $s_{2}=$ minimum pressure per unit of area. Then

$$
s_{1}=\frac{P}{A}+\frac{(P d) c_{1}}{I} \quad \text { and } \quad \varepsilon_{2}=\frac{P}{A}-\frac{(P d) c_{2}}{I} .
$$

Having assumed a certain trial section for the column to be designed, s_{1} should the computed, and, if it exceed the proper safe value, a different section should be used for which s_{1} does not exceed this value.

The proper safe value, in the case of cast-iron columns whose ratio of length to diameter does not greatly exceed 20 , is 5000 pounds per square inch when th. eccentricity used in the computation of s_{1} is liable to occur frequently in the ordinary uses of the structure; but when it is one which can ouly "ccur in rare cases the value rovo pounds per square inch may be used.

A long cap on a column is more conducive to the production of eccentricity of loading than a short one, hence a long cap is a source of weakness in a column.

ULTIMATE STRENGTH OF WROUGHT-IRON COLUMNS.

ULTMMATE STRENGTH OF WROLGHT-IRON COLUMNS.

(Pottsville Iron and Steel Co.)

$$
\text { Computed by Gordon's formula, } p=\frac{f}{1+C\left(\frac{l}{r}\right)^{2}}
$$

$p=$ ultimate strength in lbs. per square inch;
$l=$ length of column in inches:
$r=$ least radius of gyration in inches;
$f=40.000$;
$C=1 / 40,000$ for square end-hearings; $1 / 30,000$ for one pin and one square bearing; $1 / 20,000$ for two piu-bearings.
For safe working load on these columms use a factor of 4 when used in buildings, or when subjected to dead load only; but when used in bridges the factor should be 5 .

WROUGHT-IRON COLUMNS.

$\frac{l}{r}$	Ultimate Strength in lbs. per square inch.			$\frac{l}{r}$	Safe Strength in lbs per square inch-Factor of 5 .		
	Square Ends.	Pin and Square End.	Pin Ends.		Square Ends.	Pin and Square End.	Pin Euds.
10	39944	39866	39800	10	7989	\%973	7960
15	39\%T6	$39 \% 02$	39554	15	7955	¢940	7911
20	39604	$394{ }^{2}$	39214	20	T921	7894	284, 3
25	39384	39182	$38 \% 88$	25	7877	7836	\% 158
30	39118	38834	38:278	30	\%821	\%)67	r656
35	38810	38430	37690	35	762	7686	75.38
40	38460	37974	31036	40	7692	7595	\%407
45	$380 \uparrow 2$	$3 \pi 4 \% 0$	36352	45	7614	7494	T264
50	$3 \div 646$	36928	355:5	50	\%529	7386	7105
55	31156	363:36	34744	55	\%437	T267	6949
60	36697	35714	33898	60	7.339	$\tau 143$	6780
65	36182	$344 \% 8$	33024	65	7236	6896	6605
\ldots	35634	34384	32128	70	7127	68 ¢7	6426
75	35076	3:3682	31218	75	7015	6136	6244
80	3448.	32956	30288	80	6896	6593	6058
85	33883	32236	29384	85	$6 \% 7$	6447	58.7
90	$33: 34$	31496	28470	90	6653	6299	5694
95	32636	$30 \% 50$	$2 \pi 562$	95	652%	6150	5512
100	32000	30000	26666	100	6400	6000	5333
105	31357	29250	$25 \% 86$	105	6271	5850	515%

Maximum Permissible Stresses in columns used in buildings. (Building Ordinances of City of Chicago, 1893.)
For riveted or other forms of wrought-iron columns:

$$
S=\frac{12000 r}{1+\frac{l^{2}}{36000 r^{2}}} \quad \begin{aligned}
& l \doteq \text { length of column in inches; } \\
& r=\text { least radius of gyration in inches } \\
& u=\text { area of columm in square inches. }
\end{aligned}
$$

For riveted or other steel columns, if more than $60 r$ in length:

$$
S=1 \pi, 000-\frac{60 l}{r}
$$

If less than $60 r$ in length: $S=13,500 a$.
For wooden posts:

$$
\begin{aligned}
S=\frac{c c}{1+\frac{l^{2}}{250 d^{2}}} & \begin{aligned}
a & =\text { area of post in square inches; } \\
d & =1 \text { least side of rectangular post in inches; } \\
l & =\text { length of post in inches; } \\
c & =\left\{\begin{array}{l}
600 \text { for white or Norwas pine } ; \\
80 \text { for oak; } \\
900 \text { for long-leaf yellow pine }
\end{array}\right.
\end{aligned} \\
&
\end{aligned}
$$

BUILT COLUMNS.

From experiments by T. D. Lovett. discussed by Burr, the values of f and a in several cases are determine giviug empirical forms of Gordou's formula as follows: $p=$ pounch erushing strengin per square inch of section, $l=$ length of column in inches, $r=$ radius of gyration in inches.

Incystono

Phocnix

Fig. ${ }^{7} 6$.

Flat Ends.

$p=\frac{$| Kevstone |
| :---: |
| Columns. |}{| Square |
| :---: |
| Columns. |} | Phœnix |
| :---: |
| Columns. |\quad| American Bridge |
| :---: |
| Co. Columns. |

Flat Ends, Swelled.

$p=\frac{36.000}{1+\frac{1}{18,300} \frac{l^{2}}{r^{2}}}(2)$
Pin Ends.

Round Ends.

$p=\ldots \ldots \ldots . \quad \ldots \ldots \ldots \ldots \quad \frac{42.000}{1+\frac{1}{12,500} \frac{l^{2}}{r^{2}}}(8) \quad \frac{36.000}{1+\frac{1}{11,500} \frac{l^{2}}{r-2}}$

With great variations of stress a factor of safety of as high as 6 or 8 may be used. or it may be as low as 3 or 4, if the condition of stress is uniform or essentiallv so.

Burr gives the following general principles which govern the resistance of built columis:

The material should be disposed as far as possible from the neutral axis of the cross-section, thereby increasing r;

There shonld be no initial internal stress;
The individual portinas of the column should be mutually supporting;
The individual nortions of the colnmn should be so firmly secured to each other that no relative motion can take place, in order that the column may fail as a whole, thus maintaining the original value of r.

Stnner says: "When the length of a rectangular wrought-iron tubular column does not excred 30 times its least breadrh, it fails by the bulging or buckling of a short portion of the plates, not by the flexure of the pillar as a whole."

In Trans. A. S. C. E., Oct. 1880, are given the following formulæ for the ultimate resistance of wrought-iron columns designed by C. Shaler Smith :

Flat Ends.

$$
\begin{array}{cccc}
\begin{array}{c}
\text { Square } \\
\text { Column. } \\
38.500
\end{array} & \begin{array}{c}
\text { Phenix } \\
\text { Column. }
\end{array} & \begin{array}{c}
\text { American Bridge } \\
\text { Co. Column. }
\end{array} & \begin{array}{c}
\text { Common } \\
\text { Column. }
\end{array} \\
1+\frac{1}{5820} \frac{l^{2}}{d^{2}}
\end{array}(12) \frac{42.500}{1+\frac{1}{4500} \frac{l^{2}}{d^{2}}} \text { (15) } \frac{36.500}{1+\frac{1}{3 \pi 50} \frac{l^{2}}{d^{2}}} \text { (18) } \frac{36,500}{1+\frac{1}{2700} \frac{l^{2}}{d^{2}}}
$$

One Rin End.

$$
\begin{equation*}
p=\frac{38,500}{1+\frac{1}{3000} \frac{l^{2}}{d^{2}}} \text { (13) } \frac{40,000}{1+\frac{1}{2250} \frac{l^{2}}{d^{2}}} \text { (16) } \frac{36,500}{1+\frac{1}{2250} \frac{l^{2}}{d^{2}}} \tag{13}
\end{equation*}
$$

Two Pin Ends.

$p=\frac{37,500}{1+\frac{1}{1900} \frac{l^{2}}{d^{2}}}(14)$

$$
\begin{equation*}
\frac{36.600}{1+\frac{1}{1500} \frac{l^{2}}{d^{2}}} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{36,500}{1+\frac{1}{1750} \frac{l^{2}}{d^{2}}}(20) \frac{36,500}{1+\frac{1}{1200} \frac{l^{2}}{d^{2}}} \tag{23}
\end{equation*}
$$

The "common" column consists of two channels, opposite, with flanges ontward, with a plate on one side and a lattice on the other.

The formula for "square" columns may be used without mueh error for the common-chord section composed of two channel-bars and plates, with the axis of the pin passing through the centre of gravity of the crosssection. (Burr).

Compression members composed of two channels connected by zigzag bracing may be treated by formulæ 4 and 5 , using $f=36,000$ instead of 39,000.

Experiments on full-sized Phœenix columns in 18i3 showed a close agreement of the results with formulæ 6-8. Experiments on full-sized Phœenix columns on the Watertown testing-machine in 1881 showed considerable discrepancies when the value of $l \div r$ became comparatively small. The following modified form of Gordon's formula gave tolerable results through the whole range of experiments :

Phœenix columns, flat end, $p=\frac{40,000\left(1+\frac{2 r}{l}\right)}{\frac{1}{1+50,000} \frac{l^{2}}{r^{2}}}$.
Plotting results of three series of experiments on Phœenix columns, a more simple formula than Gordon's is reached as follows :

Phœnix columns, flat ends, $p=39,640-46 \frac{l}{r}$, when $l \div r$ is from 30 to 140 ;

$$
p=64,700-4600 \sqrt{\frac{\bar{l}}{r}} \text { when } l \div r \text { is less than } 30
$$

Dimensions of Phonix Columns.

(Phœnix Iron Co.)

The dimensions are subject to slight variations, which are unavoidable in rolling iron shapes
The weights of columns given are those of the 4.6 , or 8 segments of which they are composed. The rivet hereds add from 2% to 5% to the weights given. Rivets are spaced 3,4 . or 6 in . apart from centre to centre. and somewhat more clo-ely at the ends than towards the centre of the column.
G columus have 8 segments, E colmmis if segments, $C, B^{2} . B^{1}$, and A have 4 segments. Least radius of !!mration $=D \times .3636$.

The safe loads givell are computed as heing one-fourth of the breaking load, and as producing a maximum stress, in an axialdirection, on a squareend column of not more than $14,000 \mathrm{lbs}$. per sq. in. for lengths of 90 radii and under.

Dimensions of Phonix Steel Columns．

（Least radius of gyration equals $D \times .36336$ ．）

One Segment．		Diameters in Inches．			One Column．			
3／16	9.7		4	$61 / 16$	3.8	12.9	1.45	18.2
1／4	12.2	A	41／8	$63 / 16$	4.8	16.3	1.50	23．9
5／16	14.8	$3 \% / 8$	$41 / 4$	$65 / 16$	5.8	19.7	1.55	30.0
$3 / 8$	17.3		$43 / 8$	6 \％／16	6.8	23.1	1.59	35.9
$1 / 4$	16.3		53／8	81／8	6.4	21.8	1.95	36.4
5／16	19.9		$51 /$	$83 / 16$	7.8	26.5	2.00	45.1
$3 / 8$	23.5		50，8	$85 / 16$	9.2	31.3	2.04	54.4
\％116	$2{ }^{2} .0$	B．1	$53 / 4$	$8 \% / 16$	10.6	36.0	2.09	63.9
$1 / 2$	30.6		$57 / 8$	81／2	12.0	40.8	2.13	73.3
$9 / 16$	34.2		6	8 9／16	134	45.6	2.18	¢3．2
5／8	37.7		61／8	$811 / 16$	14.8	50.3	2.23	93.1
1／4	18.9		$69 / 16$	$91 / 4$	7.4	25.2	2.39	48.3
5／16	22.9		6 11／16	$93 / 8$	9.0	30.6	2.43	59.5
3／8	27.0		${ }_{6} 613 / 16$	9 \％／16	10.6	36.0	2.48	70%
T／16	31.1	${ }_{6} \begin{aligned} & \text { B．} \\ & 1 / 16\end{aligned}$	${ }_{6}^{6} 15 / 16$	$91 / 2$	12.2	41.5	$\stackrel{2}{2}$	82． 3
	35.2		$\bigcirc 1 / 16$	95／8	13.8	46.9	2.50	93．9
$9 / 16$	39.3		¢ 3／16	$43 / 4$	15.4	59.4	2.61	10.8
5／8	43.3		$75 / 16$	$913 / 16$	$1 \% .0$	5＾． 8	266	111.9
$1 / 4$	2．51／2		$713 / 16$	11 11／16	10.0	34.0	284	r0．0
5／16	31		${ }_{5} 15 / 16$	11\％／4	12.1	41.3	2.88	85.1
3／8	36		$81 / 16$	$1113 / 16$	14.1	48.0	2．93	98.8
\％／16	41		$83 / 16$	117／8	16.0	54.6	2.97	112．5
1／2	46		$85 / 16$	$1115 / 16$	18.0	613	301	126.3
$9 / 16$	51		8 7／16	12	19.9	68.0	3.06	1411.0
5／8	56	C	$89 / 16$	$121 / 16$	21.9	\％4．6	3.11	153.7
11／16	62	$73 / 8$	$811 / 16$	12 3／16	24.3	826	3.16	170.2
$3 / 4$	68		$813 / 16$	$125 / 16$	26.6	90.6	3.20	186.7
13／16	73		$815 / 16$	12 7／16	28.6	97.3	3.24	200.3
\％／8			$91 / 16$		30.6	104.0	3.29	214.2
1	89		9 5／16	125\％	34.8	118.6	3.34	$\because 44.3$
11／8	99		$9 \mathrm{9} / 16$	12 13／16	38.8	13！．0	3.48	$2 \sim 1.7$
11／4	109		9 13／16		42． 7	145.3	3.57	29！． 2
1／4	28		11 9／16	151／2	16.5	56.0	4.20	115.3
5／16	$32 y^{\prime}$		$11111 / 16$	$155 / 8$	19.1	65.0	4.25	133.8
$3 / 8$	37		$1113 / 16$	$153 / 4$	$21 . \%$	74.0	4.29	152.4
$7 / 16$	42		$1115 / 16$	1578	24.7	S4．0	4.34	173.0
1／2	47		$121 / 16$	15 15／16	27.6	94.0	4.38	1936
9／16	52		$123 / 16$	16 1／16	30.6	104.0	4.43	214.1
5／8	57	E	$125 / 16$	$163 / 16$	33.5	114.0	4.48	234.7
11／16	62	11 1／16	$125 / 16$	$165 / 16$	36.4	124.0	4.52	255.3
	68		$129 / 16$	$16^{7} / 16$	40.0	136.0	4.56	280.0
13／16	73		12 11／16	16 9／16	43.0	146.0	4.61	3006
7／8	\％ 8		$1213 / 16$	16 11／16	45.9	156.0	4.66	321.2
1	88		$131 / 16$	16 13／16	51.7	176.0	4.3	$36: .4$
$11 / 8$	98		$135 / 16$	17 1／16	57.6	196.0	4.84	403．6
11／4	108		$139 / 16$	17 5／16	63.5	216.0	4.93	444.7
5／16	31			193／8	24.2	¢2． 6	5.54	1\％0．2
3／8	36	G	153／8	191／2	28.1	96.0	5.59	19\％．${ }^{\text {\％}}$
\％／16	41	145／8	$151 / 2$	195／8	32.0	109.3	5.64	225.1
1／2	46		1．5／8	19 11／16	36.0	122．6	5.68	252.6

One Segment．		Diameters in Inches．			One Column．			
		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\sim}{x} \\ & \underset{\sim}{z} \end{aligned}$						
$9 / 16$					399	136.0	5．73	280.0
$5 / 8$	56		157／8	19178	438	149.3	5.17	$30 \% .4$
11／16	61		16	20°	47.7	16.6	5.82	3344
$33 / 4$	66		161／8	201／8	51.7	176.0	5.88	362.4
1：3／16	71	G	161／2	201／4	55.6	189.3	5.91	389.8
7／8	76	145／8	163／8	203／8	59.6	20.26	5.95	417.3
18	86		165\％	21158	67.4	2993	6.04	42.1
$11 / 8$	96		16\％ 8	2078	75.3	2.56 .0	6.13	5ะヶ．3
11／4	106		$171 / 8$ 173	21	83.1 90.9	29：26	6.17 $6: 37$	58\％．0
13／8	116		$1: 3 / 8$	211／4	90.9			6？6．9

Working Formulæ for Wrought－iron and Steel Struts of various Forms．－Burr gives the following practical formulæ，which he believes to possess advantages over Gordon＇s：

$$
\begin{array}{cc}
p=\text { Ultimate } & p_{1}=\text { Working } \\
\text { Strengh }= \\
\text { Strength, } & 1 / 5 \text { UItimate, } \\
\text { los. per s. in. } & \text { lbs. per sq. } \\
\text { of Section. } & \text { in. of Section. }
\end{array}
$$

Flat and fixed end iron angles and tees 44000－140 $\frac{l}{r}$（1）

$$
\begin{equation*}
8800-28 \frac{l}{r} \tag{2}
\end{equation*}
$$

Hinged－end iron angles and tees．．．．．．．46000－175 $\frac{l}{r}$（3）
Flat－end iron channels and I beams．．．．40000－110 $\frac{l}{r}$（5）

$$
\begin{equation*}
9200-35 \frac{l}{r} \tag{4}
\end{equation*}
$$

Flat－end mild－steel angles．．．．．．．．．．．．．．．52000－180 $\frac{l}{v}$
（）

$$
\begin{equation*}
\text { (7) } 10400-36 \frac{l}{r} \tag{6}
\end{equation*}
$$

Flat－end high－steel angles．

$$
\begin{equation*}
.76000-290 \frac{l}{r} \tag{8}
\end{equation*}
$$

Pin－end solid wrought－iron columns．．．．32000－80 $\left.\left.\frac{l}{r}\right\} \begin{array}{r}6400-16 \frac{l}{r} \\ 32000-277 \frac{l}{d}\end{array}\right\}$（11） $\left.\begin{array}{r}6400-55 \frac{l}{d}\end{array}\right\}$（12）
Equations（1）to（4）are to be used only between $\frac{l}{r}=40$ and $\frac{l}{r}=200$

Steel columns，properly made，of steel ranging in specimens from 65，000 to 73.000 lhs ．per square inch shonld give a resistance 25 to $3: 3$ per cent in ex－ cess of that of wrought－iron columns with the same value of $l \div r$ ，provided that ratio does not exceed 140.

The unsupported widrh of a plate in a compression member should not exceed 30 times its thickness．

In built columns the transverse distance between centre lines of rivets securing plates to angles or chamels，etc．，should not exceed 35 times the plate thickness．If this width is exceeded，longitudinal buckling of the

$$
\begin{aligned}
& \text { " (11) and (12) " " } 6.6 \quad \text { " } \quad \text { 汽 }=20 \quad \text { " }=200 \\
& \text { or } \frac{l}{d}=6 \text { and } \frac{l}{d}=65
\end{aligned}
$$

plate takes place, and the column ceases to fail as a whole, but yields in detail.
The same tests show that the thickness of the leg of an angle to which latticing is rireted should not be less than $1 / 9$ of the length of that leg or side if the column is purely and wholly a compression member. The above limit may be passed somewhat in stiff ties and compression members designed to carry transverse loads.
The panel points of latticing should not be separated by a greater distance than 60 times the thickness of the angle-leg to which the latticing is riveted, if the column is wholly a compression member.
The rivet pitch should never exceed 16 times the thickness of the thinnest metal pierced by the rivet, and if the plates are very thick it should never nearly equal that value.
Merriman's Rational Formula for Columns (Eng. News, wuly 19,1894$)$.

$$
\begin{align*}
C & =\frac{B}{1-\frac{n B}{\pi^{2} E} \frac{l^{2}}{r^{2}}} \tag{1}\\
B & =\frac{C}{1+\frac{n C}{\pi^{2} E} \frac{l^{2}}{r^{2}}} \tag{2}
\end{align*}
$$

$B=$ unit-load on the column $=$ total load $P \div$ area of cross-section $A ;$ $C=$ maximurn compressive unit-stress on the concave side of the column: $l=$ length of the column; $r=$ least radius of gyration of the cross-section $E=$ coefficient of elasticity of the material; $n=1$ for both ends round: $n=4 / 9$ for one end round and one fixed; $n=1 / 4$ for both ends fixed. This formula is for use with strains within the elastic limit only: it does not hold good when the strain C exceeds the elastic limit.

Prof. Merrimau takes the mean value of E for timber $=1,500,000$, for cast iron $=15,000,000$, for wrought-iron $=25,000,000$, and for steel $=30,000,000$, and $\pi^{2}=10$ as a close enough approximation. With these values he computes the following tables from formula (1):

I.-Wrought-iron Columns with Round Ends.

Unitload.	Maximum Compressive Unit-stress C.							
$\frac{P}{A}$ or B.	$\frac{l}{r}=20$	$\frac{l}{r}=40$	$\frac{l}{r}=60$	$\frac{l}{r}=80$	$\frac{l}{r}=100$	$\frac{l}{r}=120$	$\frac{l}{x}=140$	$\frac{l}{r}=160$
5,000	5,040	5,170	5,390	5,730	6,250	6.980	8,220	10.250
6,000	6,055	6,240	6.560	7,090	7.890	9,090	11,330	15,560
7,000	7,080	7,330	7,480	8,530	9.720	11.610	15.510	24,720
8,000	8,100	8,430	9.040	10,060	11,660	14,640	21,460	
9,000	9,130	9.550	10,340	11,690	14.060	18,380		
10,000	10,160	10,680	11,680	13.440	16,670	23,090		
11.000	11,200	11,750	13.070	15.310	19,640			
12,000	12,240	13,000	14.500	17,320	23,080			
13,000	13,280	14,180	15,990	19,480				

STRENGTH OF WROUGHT IRON AND STEEL COLUMNS. 261
H. - Wrought-iron Columns with Fixed Ends.

Unitload.	Maximum Compressive Unit-stress C.							
$\frac{P}{A}$ or B.	$\frac{l}{1}=20$	$\frac{l}{r}=40$	$\frac{l}{r}=60$	$\frac{l}{r}=80$	$\frac{l}{r}=100$	$\frac{l}{r}=120$	$\frac{l}{r}=140$	$\frac{l}{r}=160$
6.000	6,010	6,060	6,130	6,240	6,380	6,570	6,800	7,090
7,000	7,020	7,080	7,180	7,330	7,530	7, 480	8,110	8,530
8.000	8,025	8,100	8,240	8,430	8,700	9,040	9,490	10,060
9,000	9,030	9,130	9,300	9,550	9,890	10,340	10,9:30	11,690
10,000	10,040	10,160	10,3i0	10,710	11,110	11,680	12,440	13.440
11,000	11,050	11,200	11,450	11,830	12.360	13,0i0	14,020	15,310
12,000	12,060	12,240	12.540	13,000	13,640	14,510	15,690	$17.3: 0$
13,000	13,0ヶ0	13,280	13,640	14,210	14.940	15,990	17,440	19,480
14,000	14,080	14,320	14,740	15,380	16,280	17,530	19,290	21,820

1II.-Steel Columns with Round Ends.

Unitload.	Maximum Compressive Unit-stress C.							
$\frac{P}{A} \text { or } B$	$\frac{l}{r}=20$	$\frac{l}{r}=40$	$\frac{l}{r}=60$	$\frac{l}{r}=80$	$\frac{l}{r}=100$	${ }_{r}^{l}=120$	$\frac{l}{r}=140$	$\frac{l}{r}=160$
6,000	6,050	6,200	6,4\%0	6,880	\%,500	8,430	9,8\%0	12,300
7,000	7,0i0	7,270	7,650	8,230	9,130	10,540	12,900	17,400
8,000	8.090	8,380	8,770	9,650	10,8i0	12,990	16,760	24,590
9,000	9,110	9,450	10,090	11,140	12.850	15.850	20,930	
10,000	10,130	10,560	11,360	12.710	15,000	19,230	28,850	
11,000	11,160	11,690	12.670	14,370	17,370	23,300		
12,000	12.200	12,820	14,020	16,130	20,000	28,300		
13,000	13,330	13,9\%0	15,400	18,000	22,940			
14,000	14,250	15,130	16,830	19,960	26,250			

IV.-Steel Columns with Fixed Ends.

Unitload.	Maximum Compressive Unit-stress C.							
$\frac{P}{A} \text { or } B$	$\frac{l}{r}=20$	$\frac{l}{r}=40$	$\frac{l}{r}=60$	$\frac{l}{r}=80$	$\frac{l}{r}=100$	$\frac{l}{r}=120$	$\frac{l}{r}=140$	$\frac{l}{r}=160$
7,000	7,020	7,070	7,150	7,2ヶ0	7,430	7,650	7,900	8,230
8,000	8,020	8,090	8,200	8,380	8,570	8,770	9,200	9,650
9,000	9,030	9,110	9,250	9,450	9,730	10,090	10,550	11,140
10,000	10,030	10,120	10.310	10,560	10,910	11,360	11,810	12,710
11,000	11,040	11,160	11,380	11,690	12,110	12,6\%0	13,410	14,370
12,000	12.050	12,200	12,450	12.820	13,330	14,020	14.930	16,130
13,000	13,060	13,230	13,530	13,970	14,580	15,400	16,500	17.990
14,000	14,070	14,250	14,610	15,130	15,850	16,830	18,150	19,960
15,000	15,080	15,310	15,710	16,310	17,140	18,290	19,8i0	22,060

The design of the cross-section of a column to carry a given load with maximum unit-stress C may be made by assuming dimensions, and then
computing C by formula (1). If the agreement between the specified and computed values is not sufficiently close, new dimensions must be chosen, alld the compulation be repeated. By the use of the above tables the work will be shortened.
The formula (1) may be put in another form which in some cases will ab. breviate the mumerical work. For B substitute its value $P \div A$, and for $A r^{2}$ write I, the least moment of inertia of the cross-section; then

$$
\begin{equation*}
I-\frac{P}{C} r^{2}=\frac{n P l^{2}}{\pi^{2} E} \tag{3}
\end{equation*}
$$

in which I and r^{2} are to be determined.
For example, let it be required to find the size of a square oak column wilh fixed ends when loaded with 24.000 hbs , and 16 ft . long, so that the maxinum compressive stress C shall be 1000 lbs. per square inch. Here $I=24,000, C=1000, n=1 / 4, \pi^{2}=10, E=1,500,000, l=16 \times 12$, and (3) becomes

$$
I-24 r^{2}=14.75
$$

Now let x be the side of the square; then

$$
I=\frac{x^{4}}{12} \quad \text { and } \quad r^{2}=\frac{x^{2}}{12}
$$

so that the equation reduces to $x^{4}-24 x^{2}=177$, from which x^{2} is found to be 29.92 sq. in., and the side $x=5.47 \mathrm{in}$. Thus the unit-load B is about 802 lbs. per square iuch.

WOREING STRAINS ALLOWED IN HREIDGE MIEMBERS.

Theodore Cooper gives the following in his Bridge Specifications:
Compression members shall be so proportioned that the maxirnum load shall in no case cause a greater strain than that determined by the follow. ing formula :

$$
\begin{aligned}
& P=\frac{8000}{1+\frac{l^{2}}{40,000 r^{2}}} \text { for square-end compression members; } \\
& P=\frac{80 n 0}{1+\frac{l^{2}}{30.000 r^{2}}} \text { for compression members with one pin and one square end; } \\
& P=\frac{8000}{1+\frac{l^{2}}{20,000 r^{2}}} \text { for compression members_with pin-bearings; }
\end{aligned}
$$

(These values may be increased in bridges over 150 ft . span. See Cooper's Specifications.)
$P=$ the allowed compression per square inch of cross-section;
$l=$ the length of compression member, in inches;
$r=$ the least radius of gyration of the section in inches.
No compression member, however, shall have a length exceeding 45 times its least width.

Tension Members.-All parts of the structure shall be so proportioned that the maximum ioads shall in no case cause a greater tension than the following (except in spans exceeding 150 feet) :

	$\begin{aligned} & \text { sq. in. } \\ & .15,000 \end{aligned}$
On	9,000
On bottom chords and main diagonals (forged ey	10,000
On bottom chords and main diagonals (plates or shapes), net section	8,000
On counter rods and long verticals (forged eye-bars)	8,000
On counter and long verticals (plates or shapes), net section..	6.500
On bottoin flange of riveted cross-girders, net section	8,000
n bottom flange of riveted longitudinal plate girders over	
20 ft . long, net secti	8,00

On bottom flange of riveted longitudinal plate girders under 20 ft . long, net section
 7,000
 On floor-beam hangers, and other similar members liable to sudden loading (bar iron with forgerl ends)
 On floor beam hangers, and other similar members liable to sudden loading (plates or shapes), net section
 5,000

Members subject to alternate strains of tension and compression shall be proportioned to resist each kind of strain. Both of the strains shall, however, be considered as increased by an amount equal to $8 / 10$ of the least of the two strains, for determining the sectional area by the above allowed strains.

The Phœnix Bridge Co. (Standard Specificatious, 1895) gives the following :

The greatest working stresses in pounds per square inch shall be as follows:

Tension.

Steel.
Iron.

$P=9,000\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right]$For bars, forged ends.$\quad P=\pi, 500\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right]$
$P=8,500\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right]$Plates or shapes net.

10.000 " Lower flanges of rolled beams. 8.000

20,000 " Outside fibres of pins............................. 15, 15000
31,000 " Pins for wind-bracing................. 22,500
20,000 " Lateral bracing 15,000

Shearing.

Bearing.
16,000 pounds. Projection semi-intrados pins and rivets.... 12,000 pounds. Hand-drivell rivets 20\% less unit stresses. For bracing increase unit stresses 50%.

Compression.
Lengths less than forty times the least radius of gyration, P previously found see Tension.

Lengths more than forty times the least radius of gyration, P reduced by following formulæ:

$$
\begin{array}{ll}
\text { For both ends fixed, } & b=\frac{P}{1+\frac{1^{2}}{36,000 r^{2}}} \\
\text { For one and hinged, } & b=\frac{P}{1+\frac{1^{2}}{24,000 r^{2}}} .
\end{array}
$$

$$
\text { For both ends hinged, } \quad b=\frac{P}{1+\frac{1^{2}}{18,000 r^{2}}} .
$$

$P=$ permissible stress previously found (see 'I ensinn); $b=$ allowable working stress per square inch; $l=$ length of member in inches: $r=$ least radius of gyration of section in inches. No compression member, however, shall have a lenyth exceeding 45 times its least width.

For spans over 200 feet in length the greatest allowed working stresses per square inch, in lower-chord and end main-web eye-bars, shall be taken at

$$
10,000\left(1+\frac{\min . \text { total stress }}{\text { max. total stress }}\right)
$$

whenever this quantity exceeds 13,200 .
The greatest allowable stress in the main-web eye-bars nearest the centre of such spans shall be taken at 13,200 pounds per square inch; and those for the intermediate eye-bars shall be found by direct interpolation between the preceding values.

The greatest allowable working stresses in steel plate and lattice girders and rolled beams shall be taken as follows :
Pounds per
sq. in.

RESISTANCE OF HOLLOW CYLINDERS TO COLLAPSE.

Fairbairn's empirical formula (Phil. Trans. 1858) is

$$
\begin{equation*}
p=9,6 \pi 5,600 \frac{t^{2 \cdot 19}}{l \cdot x^{-}} \tag{1}
\end{equation*}
$$

where $p=$ pressure in lbs. per square inch, $t=$ thickness of cylinder, $d=$ diameter, and $l=$ length, all in inches ; or,

$$
\begin{equation*}
p=806,600 \frac{t^{2 \cdot 19}}{L d}, \text { if } L \text { is in feet. } \tag{2}
\end{equation*}
$$

He recommends the simpler formula

$$
\begin{equation*}
p=9,6 \pi 5,600 \frac{t^{2}}{l \bar{d}} \tag{3}
\end{equation*}
$$

as sufficiently accurate for practical purposes, for tubes of considerable diameter and length.

The diameters of Fairbairn's experimental tubes were $4^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$, and $12^{\prime \prime}$, and their lengths, between the cast-iron ends, ranged between 19 inches and 60 inches.

His formula (3) has been generally accepted as the basis of rules for ascertaining the strength of boiler flues. In some cases, however, limits are fixed to its application by a supplementary formula.
lloyd's Register contains the following formula for the strength of circular boiler-flues, viz.,

$$
\begin{equation*}
P=\frac{89.600 t^{2}}{L d} \tag{4}
\end{equation*}
$$

The English Board of Trade prescribes the following formula for circular flues, when the longitudinal joints are welded, or made with riveted buttstraps, viz.,

$$
\begin{equation*}
P=\frac{90,000 t^{2}}{(L+1) d} \tag{5}
\end{equation*}
$$

For lap-joints and for inferior workmanship the numerical factor may be reduced as low as 60,000 .

The rules of Lloyd's Register, as well as those of the Board of Trade, prescribe further, that in no case the value of P must exceed the amount given by the following equation, viz.,

$$
\begin{equation*}
P=\frac{8000 t}{d} \tag{6}
\end{equation*}
$$

In formulæ (4), (5), (6) P is the highest working pressure in pounds per square inch, t and d are the thickness and diameter in inches, L is the length of the flue in feet measured between the strengthening rings, in case it is fitted with such. Formula (4) is the same as formula (3), with a factor of safety of 9 . In formula (5) the length L is increased by 1 ; the influence which this addition has on the value of P is, of course, greater for short tubes than for long ones.
Nystrom has deduced from Fairbairn's experiments the following formula for the collapsing strength of flues :

$$
\begin{equation*}
p=\frac{4 T t^{2}}{d \sqrt{L}} \tag{"}
\end{equation*}
$$

where p, t, and d have the same meaning as in formula (1), L is the length in feet, and T is the tensile strength of the metal in pounds per square inch.
If we assign to T the value 50,000 , and express the length of the flue in inches, equation (7) assumes the following form, viz.,

$$
\begin{equation*}
p=692,800 \frac{t^{2}}{d \sqrt{l}} \tag{8}
\end{equation*}
$$

Nystrom considers a factor of safety of 4 sufficient in applying his formula. (See "A New Treatise on Steam Engineering," by J. W. Nystrom, p. 106.)
Formula (1), (4), and (8) have the common defect that they make the collapsing pressure decrease indefinitely with increase of length, and vice versa. M. Love has deduced from Fairbairn's experiments an equation of a different form, which, reduced to English measures, is as follows, viz.,

$$
\begin{equation*}
p=5,358,150 \frac{t^{2}}{l d}+41,906 \frac{t^{2}}{d}+1323 \frac{t}{d^{\prime}} \tag{9}
\end{equation*}
$$

where the notation is the same as in formula (1).
D. K. Clark, in his "Manual of Rules," etc., p. 696, gives the dimensions of six flles, selected from the reports of the Manchester Steam-Users Association, 186:-69, which collapsed while in actual use in boilers. These flues varied from 24 to 60 inches in diameter, and from $3-16$ to $3 / 8$ inch in thickness. They consisted of rings of plates riveted together, with one or two longitudinal seams, but all of them unfortified by intermediate flanges or strengthening rings. At the collapsing pressures the flues experienced compressions ranging from 1.53 to 2.17 tons, or a mean compression of 1.8% tons per square inch of section. From these data Clark deduced the following formula "for the average resisting force of common boiler-flues," viz.,

$$
\begin{equation*}
p=t^{2}\left(\frac{50,000}{d}-500\right), \tag{10}
\end{equation*}
$$

where p is the collapsing pressure in pounds per square inch, and d and t are the diameter and thickness expressed in inches.
C. R. Roelker, in Van Nostrand's Magazine, March, 1881, discussing the above and other formnlæ, shows that experimental data are as yet insuffcient to determine the value of any of the formulæ. He says that Nystrom's formula, (8), gives a closer agreement of the calculated with the actual collapsing pressures in experiments on flues of every description than any of the other formulæ.

Collapsing Pressure of Plain Iron Tubes or Flues.

> (Clark, S. E., vol. i. p. 643.)

The resistance to collapse of plain-riveted flues is directly as the square of the thickness of the plate, and inversely as the square of the diameter. The support of the two ends of the flue does not practically extend over a length of tube greater than twice or three times the diameter. The collapsing pressure of long tuves is therefore practically independent of the length.

Instances of collapsed flues of Cornish and Lancashire boilers collated by Clark, showed that the resistance to collapse of fues of $3 / 8$-inch plates, 18 to 43 feet long, and 30 to 50 inches diameter, varied as the 1.75 power of the diameter. Thus,

For collapsing pressures of plain iron flue-tubes of Cornish and Lanca shire steam-boilers, Clark gives:

$$
P=\frac{200,000 t^{2}}{d^{1.75}}
$$

$P=$ collapsing pressure, in pounds per square inch;
$t=$ thickness of the plates of the furnace tube, in inches.
$d=$ internal diameter of the furnace tube, in inches.
For short lengths the longitudinal tensile resistance may be effective in augmenting the resistance to collapse. Flues efficiently fortified by flangejoints or hoops at intervals of 3 feet may be enabled to resist from 50 lbs . to 60 lbs . or $\% 0 \mathrm{lbs}$. pressure per square inch more than plain tubes, according to the thickness of the plates.

Strength of Small Tubes.-The collapsing resistance of soliddrawn tubes of small diameter, and from .134 inch to .109 inch in thickness, nas been tested experimentally by Messrs. J. Russell \& Sons. The results for wrought-iron tubes varied from 14.33 to 20.07 tons per square-inch section of the metal, averaging 18.20 tons, as against 17.57 to 24.28 tons, averag. ing 22.40 tons, for the bursting pressure.
(For strength of. Segmental Crowns of Furnaces and Cylinders see Clark, S. E., vol. i, pp. 649-651 and pp. 627, 628.)

Forminia for Coriugated Furnaces (Eng'g, July 24, 1891, p. $502)$. - As the result of a series of experiments on the resistance to collapse of Fox's corrugated furnaces, the Board of Trade and Lloyd's Registry altered their formuiæ for these furnaces in 1891 as follows:
Board of Trade formula is altered from

$$
\frac{12,500 \times T}{D}=W P \text { to } \frac{14,000 \times T}{D}=W P .
$$

$T=$ thickness in inches;
$D=$ mean diameter of furnace;
$W P=$ working pressure in pounds per square inch.
Lloyd's formula is altered from

$$
\frac{1000 \times\left(T^{2}\right)}{D}=W P \text { to } \frac{1234 \times\left(T^{2}\right)}{D}=W P
$$

$T=$ thickness in sixteenths of an inch;
$D=$ greatest diameter of furnace;
$W P=$ working pressure in pounds per square inch.

TRANSVERSE STRENGTH.

In transverse tests the strength of bars of rectangular section is found to vary directly as the breadth of the specimen tested, as the square of its depth, and inversely as its length. The deflection under any load varies as the cube of the length, and inversely as the breadth and as the cube of the depth. Represented algebraically, if $S=$ the strength and D the deflection, l the length, b the breadth, and d the depth,

$$
S \text { varies as } \frac{b d^{2}}{l} \text { and } D \text { varies as } \frac{l^{3}}{b d^{3}} .
$$

For the purpose of reducing the strength of pieces of various sizes to a common standard, the term modulus of rupture (represented by R) is used. Its value is obtained by experiment on a bar of rectangular section
supported at the ends and loaded in the middle and substituting numerical values in the following formula :

$$
R=\frac{3}{2} \frac{P l}{b d^{2}}
$$

in which $P=$ the breaking load in pounds, $l=$ the length in inches, b the breadth, and d the depth.
The modulus of rupture is sometimes defined as the strain at the instant of rupture upon a unil of the section which is most remote from the neutral axis on the side "hich first ruptures. This definition, however, is based unon a theory which is yet in dispute among authorities, and it is better to define it as a numerical value or experimental constant, found by the application of the formula above given.

From the above formula, making $l 12$ inches, and b and d each 1 inch, it follows that the modulus of rupture is 18 times the load required to break a bar one inch square, supported at two points one fuot apart, the load being applied in the midule.

$$
\begin{aligned}
\text { Coefficient of transverse strength }= & \frac{\text { span in feet } \times \text { load at middle in lbs. }}{\text { breadth in inches } \times(\text { lepih in inches })^{2}} . \\
& =\frac{1}{18} \text { th of the modulus of rupture. }
\end{aligned}
$$

Fundamental Formulæ for Flexure of Beams (Merriman).
Renisting shear $=$ vertical shear';
Resisting moment = bending moment;
Sum of tensile stresses = suin of compressive stresses;
Re-isting shear = algebraic sum of all the vertical components of the internal stresses at any section of the beam.

If A be the area of the section and sis the shearing unit stress, then resisting shear $=A S_{s}$; and if the vertical shear $=V$, then $V=A S$ s.

The verticul shear is the algebraic sum of all the external vertical forces on one side of the section consilered. It is equal to the reaction of one support, considered as a force acting upward. monus the sum of all the vertical downward forces acting between the support and the section.

The resisting moment = algebraic sum of all the moments of the internal horizuntal stresses at any section with reference to a point in that section, $=\frac{s I}{c}$, in which $S=$ the horizontal unit stress, tensile or compressive as the case may be, upon the fibre most remote from the neutral axis, $c=$ the shortest distance from that fibre to said axis. and $I=$ the moment of inertia of the cross-section with reference to that axis.

The bending moment M is the algebraic sum of the moment of the external forces on one side of the section with reference to a point in that section = moment of the reaction of one support minus sum of moments of loads between the support and the section considered.

$$
M=\frac{S I}{c}
$$

The bending moment is a compound quantity = product of a force by the distance of its point of application from the section considered, the distance being measured on a line drawn from the section perpendicular to the direction of the action of the force.
Concerning the above furmula, Prof. Merriman, Eng. Nerr:, July 21, 1894. says: The formula just quoted is true when the unit-stress S on the part of the bram farthest from the neutral axis is within the elastic limit of the material. It is not true when this limit is exceeded, because then the ueutral axis does not pass throngh the centre of gravity of the cross-section, and because also the different longitudinal stresses are not proportional to their distances from that axis, these two requirements being involved in the deduction of the formula. But in all cases of design the permissible unitstresses should not exceed the elastic limit, and hence the formula applies rationally, without regarding the ultimate, strength of the material or any of the circumstances regarding rupture. Indeed so great reliance is placed upon this formula that the practice of testing beams by rupture has been almost entirely abandoned, and the allowable unit-stresses are mainly de-
GENERAL FORMULRE FOR TRRANSVERSE STRENGTH OF BEATES OF UNIFORII CROSS-

Beam.	Rectangular Beam.		Beam of any Section.		
	Breaking Load.	Deflection for Load P or W.	Maximum Moment of Stress.	Moment of Rupture.	$\begin{gathered} \text { Deflection. } \\ \Delta \end{gathered}$
Fixed at one end, load at the other...........	$P=\frac{1}{6} \frac{R b d^{2}}{l}$	$\frac{4 P l^{3}}{E b d^{3}}$	$\mathrm{Pl}=$	$\frac{R I}{c}$	$\begin{aligned} & 1 P / 3 \\ & 3 E I \end{aligned}$
Same with load distributed uniformly.........	$W=\frac{1}{3} \frac{R b d^{2}}{l}$	$\frac{3}{2} \overline{E l b l^{3}}$	$\frac{1}{2} W l=$	$\frac{R I}{c}$	$\frac{1}{8} \frac{W l^{3}}{E I}$
Supported at ends, loaded in middle..........	$P=\frac{2}{3} \frac{R b d^{2}}{l}$	$\frac{P l^{3}}{4 E b d^{3}}$	$\frac{1}{4} \dot{P l}=$	$\frac{R I}{c}$	${ }_{\frac{1}{48}} \mathrm{P}^{\mathbf{4}} \mathrm{Fl}$
Same loaded uniformly........................	$W=\frac{4}{3} \frac{R b d^{2}}{l}$	$\frac{5}{32} \frac{W /^{3}}{E b d^{3}}$	$\frac{1}{8} W l=$	$\frac{R I}{c}$	$\frac{5}{384} \frac{W l^{3}}{E I}$
Same, loaded at middle, and also \} with uniform load, \qquad	$2 P+W=\frac{4}{3} \frac{R b d^{2}}{l}$	$\frac{1}{4}\left(P+\frac{1}{8} W\right) \frac{l^{3}}{E b d^{3}}$	$\left(\frac{1}{4} P+\frac{1}{8} W\right) l=$	$\begin{gathered} \frac{R I}{c} \\ R I \end{gathered}$	$\frac{1}{48}\left(P+\frac{5}{8} W\right)_{E I}^{13}$
Fixed at both ends, loaded in middle.........	$P=\frac{4}{3}-\frac{R b d^{2}}{l}$	$\frac{1}{16} \frac{P l^{3}}{E b d^{3}}$	$\frac{1}{8} P l=$	$\frac{R I}{c}$	$\frac{P}{192} \frac{l^{3}}{E I}$
Same, Barlow's Experiments..................	$P=\frac{R b d^{2}}{l}$		$\frac{1}{6} P l=$	$\frac{R I}{c}$	
Same, uniformly loaded.......................	$W=\frac{2 R b d^{2}}{l}$	$\frac{1}{32} \frac{W l^{3}}{E b d^{3}}$	$\frac{1}{12} W l=$	$\frac{R I}{c}$	$\frac{W}{384} \frac{l^{3}}{E l}$
Fixed at one end, supported at the \} other, loaded at . $634 l$ from fixed end, $\} \ldots \ldots$		$\frac{.1148 P l^{3}}{E b d^{3}}$	$\frac{3}{8}(2 \sqrt{3}-3) P l=$	$\frac{R I}{c}$	$\frac{P}{105} \frac{l^{3}}{E I}$
Same uniformly loaded.........................	$W=\frac{4}{3} \frac{R b d^{2}}{l}$	$\frac{.0648 W l^{3}}{E b d^{3}}$	$\frac{1}{8} W l=$	$\frac{R I}{c}$	$\underset{\text { (nearly). }}{\frac{W}{185}} \frac{p^{3}}{E I}$

Formula for Transverse Strength of Beams.-Referring to table on pıecedıng page,
$P=$ load at middle;
$W=$ total load, distributed uniformly;
$l=$ length,$b=$ breadth, $d=$ depth, in inches;
$E=$ modulus of elasticity;
$R=$ modulus of rupture, or stress per square inch of extreme fibre;
$I=$ moment of inertia;
$c=$ distance between neutral axis and extreme fibre.
For breaking load of circular section, replace $b d^{2}$ by $0.59 d^{3}$.
For good wrought iron the value of R is about 80,000 , for steel about 120,000 , the percentage of carbon apparently having no influence. (Thurston, Iron and Steel, p. 491).
For cast iron the value of R varies greatly according to quality. Thurston found 45,740 and 67,980 in No. 2 and No. 4 cast iron, respectively.

For beams fixed at both ends and loaded in the middle, Barlow, by experiment, found the maximum moment of stress $=1 / 6 \mathrm{Pl}$ instead of $1 / 8 \mathrm{Pl}$, the result given by theory. Prof. Wood (Resist. Matls. p 155) says of this case: The phen \quad mena are of too complex a character to admit of a thorough and exact analysis, and it is probably safer to accept the results of Mr. Barlow in practice than to depend upon theoretical results.

APPROXIMATE GREATEST SAFE LOADS IN LIBS. ON STEELESEAKS. (Pencoyd Iron Works.)

Based on fibre strains of $16,000 \mathrm{lbs}$. for steel. (For iron the loads should be one-eighth less, corresponding to a fibre strain of 14.000 lbs . per square inch.) $L=$ length in feet between supports; $\quad a=$ interior area in square
$A=$ sectional area of beam in square inches;
$D=$ depth of beam in inches.
inches;
$d=$ interior depth in inches.
$w=$ working load in net tons.

Shape of Section.	Greatest Safe Load in Pounds.		Deflection in Inches.	
	Load in Middle.	Load Distributed.	Load in Middle.	Load Distributed.
Solid Rectangle.	$\frac{890 A D}{L}$	$\frac{1780 A D}{L}$	$\frac{w L^{3}}{3: A D^{2}}$	$\frac{w L^{3}}{52 A D^{2}}$
Hollow Rect angle.	$\frac{890(A D-(r a))}{L}$	$\frac{1780(A D-a d)}{L}$	$\frac{w L^{3}}{32\left(A D^{2}-a d^{2}\right)}$	$\frac{w L^{3}}{52\left(A D^{2}-a d^{2}\right)}$
Solid Cylinder.	$\frac{66 \sim A D}{L}$	$\frac{1333 A D}{L}$	$\frac{u L^{3}}{24 A D^{2}}$	$\frac{w L^{3}}{38 A D^{2}}$
Hollow Cylinder.	$\frac{65 i(A D-a d)}{L}$	$\frac{1333(A D-a d)}{L}$	$\frac{w L^{3}}{24\left(A D^{2}-a d^{2}\right)}$	$\frac{w L^{3}}{38\left(A D^{2}-a d^{2}\right)}$
Even-legged Angle or Тее.	$\frac{885 A D}{L}$	$\frac{1760 A D}{L}$	$\frac{w L^{3}}{32 A D^{2}}$	$\frac{w L^{3}}{52 A D^{2}}$
Channel or Z bar.	$\frac{1525 A D}{L}$	$\frac{3050 A D}{L}$	$\frac{w L^{3}}{53 A D^{2}}$	$\frac{w L^{3}}{85 A D^{2}}$
Deck Beam.	$\frac{1380 \mathrm{~A} D}{L}$	$\frac{2 \% 60 A D}{L}$	$\frac{w L^{3}}{50 A D^{2}}$	$\frac{w L^{3}}{80 A D^{2}}$
I Beam.	$\frac{1695 A D}{L}$	$\frac{3390 \text { AD }}{L}$	$\frac{w L^{3}}{58 A D^{2}}$	$\frac{w L^{3}}{93 A D^{2}}$
I	II	III	IV	V

The above formulæ for the strength and stiffness of rolled beams of various sections are intended for convenient application in cases where strict accuracy is not required.

The rules for rectangular and circular sections are correct, while those for the flanged sections are approximate, and limited in their application to the standard shapes as given in the Pencoyd tables. When the section of any beam is increased above the standard minimum dimensions, the flanges remaining unaltered, and the web alone being thickened, the tendency will be for the load as found by the rules to be in excess of the actual; but within the limits that it is possible to vary any section in the rolling, the rules will apply without any serious inaccuracy.

The calculated safe loads will be approximately one half of loads that would injure the elasticity of the materials.

The rules for deflection apply to any load below the elastic limit, or less than double the greatest safe load by the rules.

If the beams are long without lateral support, reduce the loads for the ratios of width to span as follows:

Length of Beam.
20 times flange width.

30	6	6	6
40	6	6	6
50	6	6	6
60	6	6	6
70	6	6	6

Proportion of Calculated Load forming Greatest Safe Load.

Whole calculated load.

$9-10$	6	"
$8-10$	6	6
$7-10$	$" 6$	$"$
$6-10$	6	6

These rules apply to beams supported at each end. For beams supported otherwise, alter the coefficients of the table as described below, referring to the respective columns indicated by number.

Changes of Coefficients for Special Forms of Heams.

Kind of Beam.	Coefficient for Safe Load.	Coefficient for Deflec. tion.
Fixed at one end, loaded at the other.	One fourth of the coefficient, col. II.	One sixteenth of the coefficient of col. IV.
Fixed at one end, load evenly distributed.	One fourth of the coefficient of col. III.	Five forty-eighths of the coefficient of col. V.
Both ends rigidly fixed, or a continuous beam, with a load in middle.	Twice the coefficient of col. II.	Four times the coefficient of col. IV.
Both ends rigidly fixed, or a continuous beam, with load evenly distributed.	One and one-half times the coefficient of col. III.	Five times the coefficie of col. V.

EHASTHC RESILTENCE.

In a rectangular beam tested by transverse stress, supported at the ends and loaded in the middle,

$$
\begin{aligned}
& P=\frac{2}{3} \frac{R b d^{2}}{l} \\
& \Delta=\frac{1}{4} \frac{P l^{3}}{E b d^{3}}
\end{aligned}
$$

in which. if P is the load in pounds at the plastic limit, $R=$ the modulus of transverse strength, or the strain on the extreme fibre, at the elastic limit, $E=$ modulus of elasticity. $\Delta=$ deflection, $l . b$, and $d=$ length. breadth, and depth in inches. Substituting for P in (2) its value in (1), we have

$$
\Delta=\frac{1}{6} R l^{2}
$$

The elastic resilience $=$ half the product of the load and deflection $=1 / 2 P \Delta$, and the elastic resilience per cubic inch

$$
=\frac{1}{2} \frac{P \Delta}{l b d} .
$$

Substituting the values of P and Δ, this reduces to elastic resilience per cubic inch $=\frac{1}{18} \frac{R^{2}}{E}$, which is independent of the dimensions; and therefore the elastic resilience per cubic inch for transverse strain may be used as a modulus expressing one valuable quality of a material.

Similarly for tension:
Let $P=$ tensile stress in pounds per square inch at the elastic limit;
$e=$ elongation per unit of length at the elastic limit;
$E=$ modulus of elasticity $=P \div e ;$ whence $e=P \div E$.
Then elastic resilience per cubic inch $=1 / 2 P e=\frac{1}{2} \frac{P^{2}}{E}$.

BEAMS OF UNIFORME STRENGTH THROUGHOUT THERR LENGTH.

The section is supposed in all cases to be rectangular throughout. The beains shown in plan are of uniform depth throughout. Those shown in glevation are of uniform breadth throughout.
$B=$ breadth of beam. $D=$ depth of beam.

Fixed at one end, loaded at the other; curve parabola, vertex at loaded end; $B D^{2}$ proportional to distance from loaded end. The beam may be reversed, so that the upper edge is parabolic, or both edges may be parabolic.

Fixed at one end, loaded at the other; triangle, apex at loaded end; $B D^{2}$ proportional to the distance from the loaded end.

Fixed at one end; load distributed; triangle, apex at unsupported end; $B D^{2}$ proportional to square of distance from unsupported end.

Fixed at one end; lnad distributed; curves two parabolas, vertices touching each other at unsupported end; $B D^{2}$ proportional to distance from unsupported end.

Supported at both ends: road at any one point; two parabolas, vertices at the points of support, bases at point loaded; $B D^{2}$ proportional to distance from nearest point of support. The upper edge or both edges may also be parabolic.

Supported at both ends; load at any one point; two triangles. apices at points of support, bases at point loaded; $B D^{2}$ proportional to distance from the nearest point of support.

Sumported at both ends; load distributed; curv s two parabolas, verlices at the middle of t ' a beam; bases centre line of beam; $B D^{2}$ pro ortional to product of distances from poi its of support.

Supported at both ends; load distributed; curve semi-ellipse; $B D^{2}$ proportional to the product of the distances from the points of support.

PROPERTIES OF ROLLED STRUCTURAL STEEL.

Explanation of Tables of the Properties of 1 Beams, Channels, Angles, Deck-Beams, Rulb Angles, Z Bars; Tees, Trough and corrugated Plates.

(The Carnegie Steel Co., Limited.)

The tables for I beams and channels are calculated for all standard weights to which each pattern is rolled. The tables for deck-beams and angles are calculated for the minimum and maximum weights of the various shapes. while the properties of Z bars are given for thicknesses differing by $1 / 16$ inch.

For tees, each shape can be rolled to one weight only
Column 12 in the tables for I beams and channels, and column 9 for deck-beams, give coefficients by the help of which the safe, uniformly distributed load may be readily determined. To do this, divide the coefficient given by the span or distance between supports in feet. If the weight of the deck beams is intermediate between the minimum and maximım weights given, add to the coefficient for the minimum weight the value given for one pound increase of weight multiplied by the number of pounds the section is heavier than the minimum.

If a section is to be selected (as will usually be the case), intended to carry a certain load fur a length of span already determined on, ascertain the coefficient which this load and span will require, and refer to the table for a section having a coefficient of this value. The coefficient is ohtained by mul. tiplying the load, in pounds uniformly distributed, by the span length in feet.

In case the load is not unifurmly distributed, but is concentrated at the middle of the span, multiply the load by 2 , and then consider it as uniformly distributed. The deflection will be $8 / 10$ of the deflection for the latter load.

For other cases of loading obtain the bending moment in ft.-lbs.; this multiplied by 8 will give the coefficient required.

If the loads are quiescent, the coefficients for a fibre stress of $16,000 \mathrm{lbs}$. per square inch for steel may be used; but if moving loads are to be provided for, a coefficient of 12.500 lbs . should be taken. Inasmuch as the effects of impact may be very considerable (the stresses produced in an unyielding inelastic material by a load suddenly applied being double those produced by the same load in a quiescent state), it will sometimes be advisable to use still smaller fibre stresses than those given in the tables. In such cases the coefficients may be determined by proportion. Thus, for a fibre stress of 8000 lis . per square inch the coefficient will equal the coefticient for 16,000 lbs. fibre stress, from the table, divided by 2.

The section moduli, columu 11, are used to determine the fibre stress per square inch in a beam, or other shape, subjected to bending or transverse stresses, by simply dividing the bending moment expressed in inch-pounds by the section modulus.

In the case of T shapes with the neutral axis parallel to the flange, there will be two section moduli, and the smaller is given. The fibre stress calculated from it will, therefore, give the larger of the wo stresses in the extreme fibres, since these stresses are equal to the bending moment divided by the section modnlus of the section.

For Z bars the coefficients (C) may be applied for cases where the bars are subjected to transverse loading, as in the case of roof-purlins.

For angles, there will be two section molulifor each position of the nentral axis, since the distance between the neutral axis and the extreme fibres has a different value on one side of the axis from what it has ou the other. The section modulus given in the table is the smaller of these two values.

Column 12 in the table of the properties of standard channels, giving the distance of the center of gravity of chanuel from the outside of web, is used to obtain the radius of gyration for columns or struts consisting of two channels latticed, for the case of the neutral axis passing through the centre of the cross-section parallel to the webs of the channels. This radius of gyration is equal to the distance betwem the centre of gravity of the channel and the centre of the section, i.e., neglecting the moments of inertia of the channels around their own axes, thereby introducing a slight error on the side of safety.
(Fur much other important information concerning rolled structural shapes, see the " Pocket Companion" of The Carnegie Steel Cu., Limited, Pittsburg, Pa, price ©.)

PROPERTIES OF ROLLED STRUCIURAL SHAPES. 273
Properties of Carnegie Standard Beams-Steel.

1	2	3	4	5	6	7	8	9	10	11	12
				0 							
		00			$\begin{gathered} \text { in } \\ 7.25 \end{gathered}$	$\begin{gathered} I \\ 2380.3 \end{gathered}$	$I_{48}^{\prime \prime}$	$\stackrel{r}{r} 9$	$\begin{array}{r} r^{\prime \prime} \\ 1.28 \end{array}$	$\begin{gathered} S \\ 198.4 \end{gathered}$	C
		95	27.9	0.69	7.19	2309.6	47.10	9.09	1.30	192.5	205:2900
		90	26.47	0.63	7.13	2239.1	45.70	9.20	1.31	186.6	1990:300
		85	25.00	. 57	т.0ヶ	21 il .6	44.35	9.31	1.33	180.7	19:\%600
		80	23.3)	. 507	\%. 00	2087.9	42.86	9.46	1.36	124.0	1855900
B3	20	\%	22.06	0.65	6.40	1268.9	30.25	7. 58	1.17	126.9	13.353500
		70	20.59	0.55	6.32	1219.9	29.04	7.70	1.19	122.0	1301200
		65	19.05	0.50	6.25	1169.6	27.86	7.83	1.21	117.0	124:600
B80	18	\% 0	20.59	9.í 6	$6{ }^{6} 6$	921.3	24.62	6. 69	1.09	102.4	1091900
		65	19.12	0.64	6.18	881.5	23.47	6.79	1.11	97.9	1044800
"	"	60	17.65	0.55	6.09	841.8	22.38	6.91	1.13	93.5	$997 \% 00$
"		55	15.93	0.46	6.00	\%95.6	21.19	7.07	1.15	88.4	94:3000
Bí	15	55	16.18	0.66	5.75	511.0	17.06	5.23	0.95	681	T26800
		50	14.61	0.66	565	483.4	16.04	5.73	1.04	64.5	$68 i 500$
6		45	13.24	0.46	5.55	455.8	15.09	5.87	1.07	60.8	648200
		43	12.48	. 415	5.50	441.7	14.62	5.95	108	53.9	$6: 24300$
B9	12	35	10.29	0.44	5.09	228.3	10.07	4.71	0.99	38.0	405800
		31.5	9.26	.35	5.00	215.8	950	4.83	1.01	36.0	383i00
B11	10	40	11.76	0.75	5.10	158.7	9.50	3.67	0.90	31.7	338500
		35	10.29	0.60	4.95	146.4	8.52	377	0.91	29.3	$31: 400$
"	"	30	8.83	045	4.80	134.2	7.65	3.90	0.93	$\because 6.8$	286300
		25	7.37	0.31	4.66	122.1	6.89	4.07	0.97	24.4	260500
B13	9	35	10.29	0.73	4.77	111.8	7.31	3.29	0.84	24.8	265000
		30	8.82	0.55	4.61	101.9	6.42	3.40	0.85	22.6	241500
"		25	7.35	0.41	4.45	91.9	5.65	3.54	0.88	20.4	$21 \% 900$
		21	6.31	0.29	4.33	84.9	5.16	3.67	0.90	18.9	201:300
B15	8	25.5		0.54		68.4	4.105	3.02	0.80	17.1	18:2500
	"	23.3	6.76	0.45	4.18	64.5	4.39	3.09	0.81	161	1 T 2000
"	"	205	6.03	0.36	4.09	61.6	40%	317	0.82	15.1	161600
	"	18	5.33	0.20	4.00	56.9	3.78	3.27	0.84	14.2	151700
B1\%	\therefore	20	588	0.46	3.87	43.2	3.24	2.68	0.74	12.1	128600
	\checkmark	17.5	5.15	0.35	3.76	$39 . \%$	2.91	$\stackrel{2}{2.76}$	0.76	11.2	119400
B19	6	15	4.42	0.25	3.66	36.2	$\stackrel{2}{2} .67$	2.86	0.78	10.4	110400
		$1+3 / 4$	4.34	0.35	3.45	24.0	2.09	2.35	0.69	8.0	93100 85300 8
"	'	121/4	3.61	0.23	3.33	21.8	1.85	2.46	0.72	7.3	\%T500
B21	5	143/4	4.31	0.50	3.29	15.2	1.70	1.87	0.63	6.1	64610
	"	1214	3.60	0.36	3.15	13.6	1.45	1.94	0.63	5.4	58100
	,	$93 / 4$	2.8 ĩ	0.21	3.00	12.1	1.23	2.05	0.65	4.8	51600
B23	4	10.5	3.09	0.41	$\because .88$	7.1	1.01	1.52	0.57	3.6	38100
		9.5	2.19	0.34	2. 80	6.7	0.93	1.55	0.58	3.4	36000
'6		8.5	2.50	0.26	2.73	6.4	0.85	1.59	058	3.2	33900
	"	7.5	2.21	0.19	2.66	6.0	0.17	1.64	0.59	3.0	31800
Brir	3	7.5	2.21	0.36	2.52	2.9	0.60	1.15	0.52	1.9	2000
		6.5	1.91	0.26	2.42	2.7	0.53	1.19	0.5 ?	1.8	19100
"	\cdots	55	1.13	ก. 17	2.33	25	046	1.23	0.53	1.7	17600

$L=$ safe loads in lbs., uniformly distributed: $l=$ span in feet;
$M=$ moment of forces in ft.-lbs.; $C=$ cnefficient given above.
$L=\frac{C}{l} ; \quad M=\frac{C}{8} ; \quad C=L l=8 M=\frac{8 f S}{12} ; \quad f=$ fibre stress.

Properties of Special Beams-Steel.

1	2	3	4	5	6		8			11	12
				$$	Widih of Flange.						
	in.	lbs.									${ }^{C}$
	\because	10.5				16	52.65 50.78	$\checkmark .58$	1.35		\%66100
	'	9)	26.4	0 \%	\%.14	$155 \sim .8$	48.98	7.67	1.36	1558	661600
		85	25.01	0.66	\%. 06	1508.7	47.25	7.77	1.37	150.9	16U9:300
		80		. 60	00	1466.5	45.81	\%. 86	1.39	146.7	15.4330
B4	15	1110	29.4	1.18	6. 77	900.5	50.98	5.53	1.31	120.1	280
		95	2\%. $9+$	1.08	6.67	$8 \pi \sim .9$	$48: 37$	5.69	1.32	116.4	1241500
		90	26, 47	0.99	6.58	845.4	45.91	5.65	1.32	112. 亿	120:300
		85	25.0 C	0.89	6.48	817.8	43.57	5.72	1.32	109.0	1163000
		80	23.81		5.40	795.5	41.76	5.78	1.32	106.1	1:31:300
B5	15	75	$2 \geqslant .06$	0.88	6.29	691.2	30.68	560	1.18	92.2	98300
		70	20.59	0 \%8	6.19	6153.6	29.00	5.68	1.19	88.5	9438800
		63	19.12	0.69	6.10	6336.0	27.42	5 \% 7	1.20	84.8	914600
		60	17.67	0.59	6.00	609.0	25.96	5.87	1.21	81.2	866100
B8	12	55	16.18	0.82	5.61	331.0	17.46	4.45	1.04	53.5	\%0600
		50	14.71	0. 20	549	303.3	16.12	4.54	1.05	50.6	539200
6		4.5	13.24	0.58	5.37	285.1	$14 . \kappa 9$	4.65	1.06	4 4. 6	50 T! 900
	'	40	11.84	0.46	5.25	268.9	13.81	4.77	1.08	44.8	478100

Properties of Carnegie Trough Plates-Steel.

Section Index.	$\begin{gathered} \text { Size, } \\ \text { in } \\ \text { Inches. } \end{gathered}$	Weight per Foot	Area of Section.	Thickness in Inches.	Moment of Inertia, Neutral Axis Parallel to Length.	Section Modulus. Axic as before.	Radius of (iyla tion, Axis as before.
		lbs.	sq. 1		I	S	
M10	$91 / 2 \times 33 / 4$	16.32	4.8		3.68	1.38	0.91
M11	$91 / 2 \times 33 / 4$	18.02	5.3	$9 / 16$	4.13	1.57	0.91
M1:	$91 / 2 \times 334$	19.72	5.8	5/8	4.57	1.77	0.90
M'3	919×334	21.42	6.3	11/16	5.02	1.96	090
1114	$11 / 2 \times 33 / 4$	23.15	6.8	3/4	5.46	2.15	0.90

Properties of Carnegie Corrugated Plates-Steel.

Section Index.	$\begin{gathered} \text { Size, } \\ \text { n } \\ \text { Inches. } \end{gathered}$	Weight per Fuot.	Area of Sec tion.	Thickness in Inches.	Moment of Inertia, Neutral Axis Parallel to Length.	Section Modulus, Axivas before.	Radius of Gyration, Axis as before.
		lbs.	sq. in.		0.64	S	9
M30	$83 / 4$ $\times 11 / 2$ 83 $811 / 4$	8.06 10.10	2.4 3.0		0.64 0.95	0.80	0.52
M	$83 / 4$ $\times 11 / 2$ $83 / 4$ 11% 18	10.10	3.0	5/16	095	1.	0.57
M3:3	$1 \because 3 / 16 \times 2$	17. 75	5.2	8	4.19	1.43	0.96
M 34	$123 / 16 \times 23 / 4$	20.71	6.1	\%/16	5.81	3.90	098
M35	$123 / 16 \times 23 / 4$	23.67	70	1/2	6.82	4.46	0.99

- -	$\begin{aligned} & 29 \dot{n} \dot{0} \\ & 20 \end{aligned}$	
$\begin{aligned} & \text { - } \\ & \text { シ } \end{aligned}$	${ }^{20}$	
$\begin{aligned} & \text { - } \\ & \text { is } \end{aligned}$	$\begin{aligned} & 10 \dot{n} \\ & \dot{c}= \end{aligned}$	
-i		
$\begin{aligned} & \text { に } \\ & \text { ミ } \end{aligned}$	$\stackrel{0}{0}$	
$\stackrel{-1}{i}$	$\stackrel{0}{0}$	
st．roduns иләмұว9 วอแหาร！（I		
$\begin{aligned} & \text { - } \\ & \text { ¿ } \end{aligned}$	$\stackrel{\dot{\mathscr{n}}}{\stackrel{\rightharpoonup}{\gtrless}}$	
$\stackrel{-1}{\dot{\circ}}$	¢	
$\begin{aligned} & \text { - } \\ & \stackrel{\text { cize }}{2} \end{aligned}$	$\stackrel{2 ?}{2}$	

－дәәㅂ U！ st．roduns แəəルเวq
 วอนв¥S！

$\stackrel{\text {－}}{\text { i }}$		 	
	Bex		
		F－	

$\xrightarrow[\sim]{\sim}$	$\stackrel{10}{10}$	

Sl． $10 \mathrm{~d} d \mathrm{n}$ S
иәдルдә

STRENGTH OF MATERIALS．
Spacing of Carnegie I－Beams for Uniform Load of 100 lbs．per Square Foot． （Proper distance in feet，centr

$\begin{aligned} & \text { ـُ } \\ & \text { iे } \end{aligned}$	120	$\begin{array}{cc\|ccc} 0 & 0 & \infty & \infty & 6 ? \end{array}$	$\begin{array}{llll} \infty & 10 & 0 & 0 \\ \cdots & \cdots & 0 \\ \cdots i & 0 \end{array}$	：：	$\vdots: \vdots$
$\begin{aligned} & \text { - } \\ & \text { 之 } \end{aligned}$	20． 20	$\begin{array}{lll\|ll} i- & \infty & 10 & 0 & 0 \\ G 2 & \infty & 0 & 10 & 0 \\ \hline 1 \end{array}$		$\underset{\sim}{\square} \because \stackrel{\infty}{\infty}$	$\vdots \vdots \vdots$
$\begin{aligned} & \text { - } \\ & =1 \end{aligned}$	10．			$$	
－ \vdots				$\begin{array}{ccc} \pi i & 0 \\ \infty & \pi \\ \infty \end{array}$	$0,0: \infty$ Qiनiniri
$\stackrel{\sim}{\text {－}}$	$\stackrel{10}{20}$		$\because \underset{\square}{\because} \div\left.\right\|_{10} ^{10} 00$	$\begin{array}{llll} \infty & \infty \\ \forall \\ \forall & \infty \\ \sim \end{array}$	－ 0 12 0 が
$\stackrel{\text {－}}{\text {－}}$	$\stackrel{\substack{0 \\ 0 \\ \sim}}{ }$	$\underset{i}{\circ} \dot{N}$		$\begin{array}{llll} i= & 0 & \infty \\ 0 & 10 & 10 \\ 4 \end{array}$	cuco
$\begin{aligned} & \text { - } \\ & \text { ¿े } \end{aligned}$	$\stackrel{セ}{\square}$	$\begin{array}{llll} 20 & 0 \\ \infty & 10 \\ \hline \end{array}$	$\begin{array}{ll} \because 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{l\|lll} 0 & 0 & 0 & 6 ? \\ 0 & \therefore & i & 0 \end{array}$.
	$\begin{aligned} & \pi \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	120 －		$\stackrel{10}{\sim} \underbrace{\infty}_{\sim}$	OOCGE2
í	$\begin{aligned} & \dot{2} \\ & 0 \\ & 10 \\ & 0 \end{aligned}$		$\begin{array}{cccc} 0 & 0.6 & 20 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 10 \end{array}$		
	$\begin{gathered} 20 \cdot \dot{0} \\ \cdots=0 \end{gathered}$	$\begin{array}{llll} 0 & 0- & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & i & 0 \\ \hline \end{array}$	$$	$\begin{aligned} & 0 x 9 \pi \\ & i=0 \end{aligned}$	
$\stackrel{1}{4}$			$\begin{array}{lll\|l} 10 & \infty & a z & 0 \\ 0 & 0 & \infty \\ 0 & \cdots & 0 \\ \hline \end{array}$	$\begin{aligned} & 0.00:-1 \\ & 0000 \\ & 0.0 \end{aligned}$	
				$\begin{array}{lll} 000 & 0 \\ \stackrel{0}{0}=\dot{0} & 0 \end{array}$	
$\begin{aligned} & \text {-i } \\ & \text { in } \end{aligned}$				$\begin{aligned} & 0, \pi 00: \infty \\ & i=0.0 \\ & i=0 \end{aligned}$	$\begin{aligned} & 0000 \\ & =-0.0 \end{aligned}$
		$\begin{array}{ll} 0 & 0 \\ \infty & 0 \\ 0 & 0 \\ i n & 8 \end{array}$			
－ － －	10 2 10 10	$\begin{array}{ll} \therefore \infty \\ 10 & \infty \\ 10 & \infty \\ 0 \end{array}$	－ーー－H 		$\begin{aligned} & 0.0210 \\ & \operatorname{cisin}=0 \end{aligned}$
－	$\xrightarrow{80}$	$\begin{array}{llll} 0 & \infty & i v \\ \dot{\infty} \\ \infty \end{array}$			
¢े	隹		¥iccurio		
$\begin{aligned} & H \\ & \text { - } \\ & \underset{y}{*} \end{aligned}$	会	$\begin{array}{lllll} 0 & \infty & 1- & 10 & 1 \\ \infty & 0 & 0 & 0 \\ \cdots & \text { on } \\ \cdots & \infty & 0 \end{array}$			
				そただった	Кֹ\％\％

[^7]Properties of Standard Channels－Steel．

1	2	3	4	5	6	7	8	9	10	11	12
			0 0 0 0 0 0 0 0 0 0 0 3 3								
$\overline{\mathrm{in}} .$	lbs．	sq．in．				I^{\prime}					
15	55.	16.18	082	3.82	430.2	12.19	5.16	． 868	57.4	611900	．823
	50.	14.71	0．72	3．72	402.7	11.22	5.23	． 873	$53 . \tilde{1}$	572i00	． 803
	45.	13.24	0.62	3.62	375.1	10.29	5.32	． 832	50.0	53.3500	
	40.	$11 . \sim 6$	0.52	3．52	347.5	9.39	5.43	． 893	40.3	494：00	． 783
	35.	10.29	0.43	3.43	$3: 0.0$	8.48	5.58	． 908	42.7	45.5000	． 88
	33.	9.90	0.40	3.40	312.6	8.23	5.62	． 912	41.7	444500	「＇94
12	40.	11.76	0.76	3.42	197.0	6.63	4.09	． 751	32.8	350200	． 722
	35.	10.29	0.64	3.30	179.3	5.90	4.17	． 757	29.9	318800	694
	30.	8．82	0.51	3.1τ	161.7	5.21	4.28	． 768	26.9	28 ¢ 400	． 677
	25.	7.35	0.39	3.05	144.0	4.53	4.43	． 785	24.0	256100	． 678
	20.5	603	0.28	2.94	128.1	3.91	4.61	． 805	21.4	22\％800	． 704
10	35.	10.29	0.82	3.18	115.5	4.66	3.35	． 672	23.1	246400	． 695
	30.	8.82	0.68	3.04	103.2	3.99	3.42	． 672	20.6	220300	． 651
，	25.	7.35	0.53	2.89	91.0	3.40	3.52	． 680	18.2	194100	． 620
	20.	5.88	0.38	2.74	78.7	2.85	3.66	696	15.7	168000	． 609
	15.	4.46	0.24	2.60	66.9	2.30	3.87	． 718	13.4	142 200	． 639
9	25.	\％．35	0.61	2.81	70.7	2.98	3.10	． 637	15.7	167600	． 615
	20.	5.88	0.45	2.65	60.8	2.45	3.21	． 646	13.5	144100	． 585
	15.	4.41	0.29	2.49	50.9	1.95	3.40	． 665	11.3	120500	． 590
	$131 / 4$	3.89	0.23	2.43	47.3	1.77	3.49	． 674	10.5	112200	． 607
	$211 / 4$	6.25	0.58	2.62	47.8	2.25	2.71	． 600	11.9	$12 \sim 400$	． 587
	183／4	5.51	0.49	2.53	43.8	2.01	2.82	． 603	11.0	116900	． 567
	$161 / 4$	4.78	0.10	2.44	39.9	1．78	\bigcirc	． 610	10.0	106400	． 556
	$133 / 4$	4.01	0.31	2.35	36.0	1.55	2.98	． 619	9.0	96000	．557
	19			2.51	33.2	1.85	2.39	56	． 5		576
	171	5.07	0.53	2.41	30.2	1.62	2.44	． 564	8.6	92000	55
	$143 / 4$	4.34	0.42	2.30	27.2	1.40	2.50	． 568	7.8	82800	535
	1214	3.60	0.32	2.20	24.2	1.19	2.59	． 575	6.9	$73 \% 00$	． 528
	93	2.85	0.212	2.09	21.1	0.98	2.72	． 586	6.0	66800	． 546
6	15.5	4.56	0.56	2.28	19.5	1.29	2.07	． 529	6.5	69500	． 546
	13.	3.82	0.44	2.16	17.3	1.07	2.13	． 529	5.8	61600	． 517
	10.5	3.09	0.32	． 04	15.1	0.88	2.21	． 534	5.0	53800	．503
	8.	2.38	0.20	． 92	13.0	0.70	2.34	． 542	4.3	46：00	． 517
5	11.5	3.38	0.48	2.04	10.4	0.83	1．75	． 493	4.2	44400	． 508
	9.	2.65	0.33	1.89	8.9	0.64	1.83	． 493	3.5	37900	． 481
	6.5	1.95	0.19	1． 5	7.4	0.48	1.95	． 498	3.0	31600	． 489
	714	2.13	0.32	1．72	4.6	0.44	1.46	． 455	2.3	24400	． 463
	614	1.84	0.251	1.65	4.2	0.38	1.51	． 454	2.1	22300	． 458
	51／4	1.55	0.181	1.58	3.8	0.32	1.56	． 453	1.9	20200	． 464
	6.	1.76	0.36	1.60	2.1	0.31	1.08	． 421	1.4	14700	． 459
	5.	1.47	0.26	1.50	1.8	0.25 0.20	1.12	.415 409	1.2	13100	． 4443
	4.	1.19	0.17	1.41	1.6	0.20	1.17	． 409	1.1	11600	． 443

$L=$ safe load in lbs．，uniformly distributed；$l=$ span in feet；
$M=$ moment of forces in ft．－lbs．；$C=$ coefficient given above．
$L=\frac{C}{l} ; \quad M=\frac{C}{8} ; \quad C=L l=8 M=\frac{8 f S}{12} ; \quad f=$ fibre stress.

Carnegie Deck－beams．

1	2	3	4	5	6	7	8	9	10	11
	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & . \\ & .0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$							
in．	lbs．	sq．in．	in．	in．	I	S	r	C	${ }^{\prime}$	$r^{\prime \prime}$
10	35． 00	10.5	． $6: 3$	5.50	139.9	25.7	3.64	274100	\％． 41	0.84
10	－27．23	8.0	． 38	5.25	118.4	21.2	3.83	226100	6.12	0.87
9	3000	8.8	． $5 \sim$	5.07	93.2	19.6	3.25	208500	5.18	0.75
9	26.00	T． 6	． 44	4.94	85.2	17.7	3.35	189100	4.61	0.76
8	24.48	7.2	4	5.16	62.8	14.1	2.97	150100	4.45	0.79
8	20.15	5.9	31	5.00	$5 \overline{5} .6$	12.2	3.08	129800	3.90	0.83
\％	23.46	6.9	． 54	5.10	45.5	11.7	2.57	124600	4.30	0.79
7	18.11	5.3	． 31	4.87	38.8	9.7	2.60	103000	3.55	0.82
6	18．36	5.4	． 43	4.53	26.8	8.2	2.25	8 8700	2.73	0.72
6	15.36	4.5	28	4.38	24.0	7.3	2.33	r7400	2.38	0.13

Add to coefficient C for every lb．increase in weight of beam，for $10-\mathrm{in}$ ． beams， $4900 \mathrm{lbs} . ; 9$－in．， $4500 \mathrm{lbs} . ; 8$－in．， 4000 lbs ； 7 －in．， $3400 \mathrm{lbs} ., 6$－in．， 3000 lbs.

Carnegie Bulb Angles．

	［26．50］	7.80	48	3.5	104.2	19.9	3.66	$211 \% 0$		
	2180	（6．41	44	3.5	69.3	14.5	3.33	154：00		
8	19．233	5.66	． 41	3.5	48.8	11.7	2.95	124800		
7	18.25	5.3 un	． 44	3.0	34.9	9.6	2.56	102300		
6	$1 \hat{1} 20$	5.06	50	30	23.9	7.6	2.16	80500		
6	13．75	4.04	． 38	3.0	20.1	6.6	2.21	r0400		
6	12.30	3.62	． 31	3.0	18.6	5.7	2.28	60400		
5	10.00	2.94	． 31	2.5	10.2	4.1	1.86	43360		

Carnegie T Shapes．

1	2	3	4	5	6	$\%$	8	9	10	11
$\stackrel{\mathrm{in}}{\times 3}$	1bs．	$\begin{array}{r} \text { sq.in. } \\ 3.99 \end{array}$	in．	1 2.6	${ }_{1.18}^{\text {S }}$	${ }_{0}^{2 .} 8$	I^{\prime} 5.6	L＇${ }^{\prime \prime}$	$\frac{r^{\prime}}{1.19}$	$\underset{9410}{C}$
$\times 21 / 2$	11.0	2． 24	0.65	1.6	0.86	0.71	4.3	1.70	1.16	6900
$41 / 2 \times 31 / 2$	15.8	4.65	1.11	5.1	2.13	1.04	3.7	1.65	0.90	17020
$41 \% \times 3$	8.5	2.55	0．73	1.8	0.81	0.87	2.6	1.16	1.03	6490
$41 / 2 \times 3$	10.0	3.00	0.15	2.1	0.94	0.86	3.1	1.38	1.04	\％ 540
$41 \% \times 12$	8.0	2.40	0.58	1.1	056	0.69	2.6	1.16	1.07	45：0
$41 / 2 \times 21 / 2$	9.3	2.69	0.60	1.2	0.65	0.68	3.1	1.38	1.08	$5 \because 30$
4×5	15.6	4.56	1.56	10.7	3.10	1.54	2.8	1.41	0.79	24800
4×5	12.0	3.54	1.51	8.5	2.43	1.56	2.1	1.06	0.78	19410
$4 \times 41 / 2$	14.6	4.29	1.37	8.0	2.55	1.37	2.8	1.41	0.81	20400
$1 \times 41 / 2$	11.4	3.36	1.31	6.3	1.98	1．38	2.1	1.06	0.80	15840
4×4	$13 . \tilde{1}$	4.02	1.18	5.7	2.02	1.20	2.8	1.40	0.84	16190
4×4	10.9	3.21	1.15	4.7	1.64	1.23	2.2	1.09	0.84	13100
4×3	9.3	2.73	0.78	2.0	0.88	0.86	2.1	1.05	0.88	roio
$4 \times 21 / 2$	8.	$2.5 \geqslant$	0.63 ］	1.2	0．6：	0.69	2.1	1.05	0.92	4880

Carnegie T Shapes-(Continued).

1	2	3	4	5	6	7	8	9	10	11	
	$\stackrel{3}{0}$ 0 0 0 0 0 0 0 0 0 0										
in.	lbs.	. 16	1	I	S'	T	$1{ }^{\prime}$	$5^{\prime \prime}$	r^{\prime}	0	
4×212	T. 3	2.16	0.60	1.0	0.55	0.70	1.8	0.88	0.91	4380	
$4 \times 21 / 2$	5.8	1.71	0.56	0.81	0.42	0.71	1.4	0.71	0.94	3:350	
4×2	7.9	2.31	0.48	0.60	0.40	0.52	2.1	1.05	0.96	3180	
4×2	6.6	1.95	0.51	0.54	0.34	0.51	1.8	088	0.95	2i00	
$31 / 2 \times 4$	1:8	3.15	1.25	5.5	1.98	1.21	1.89	1.08	0.12	15570	
$31 / 2 \times 4$	9.9	2.91	1.19	4.3	1.55	1.22	1.42	0.81	0 ¢ 0	1:380	
$316 \times 31 / 2$	11.7	3.45	1.06	3.7	1.52	1.04	1.89	1.08	0.74	12000	
$31 / 2 \times 31 / 2$	9.2	2.30	1.01	3.0	1.19	1.05	1.42	081	0.73	9830	
$31 / 2 \times 31 / 2$	6.8	2.04	0.98	2.3	0.93	1.19	1.07	0.61	0.73	\% 1450	
$31 / 2 \times 3$	11.73	3.45	1.01	2.9	1.43	0.92	1.74	1.00	0.72	114%	
$31 / 2 \times 3$	10.9	3.21	0.88	2. 4	1.13	0.8 r	1.88	1.08	0.75	90.50	
$31 / 2 \times 3$	8.5	2.49	0.83	1.9	0.88	0.88	1.41	0.81	0.75	. 040	
$31 / 2 \times 3$	7.8	2.28	0.78	1.6	0.72	0.89	1.18	0.68	0.66	$5 \sim 90$	
3×4	11.8	3.48	1.32	5.2	1.94	1.23	1.21	0.81	0.59	1.5480	
3×4	10.6	3.12	1.32	4.8	1.78	1.25	1.09	0.72	0.60	142\%0	
3×4	9.3	2.73	1.29	4.3	1.57	$1 . \therefore 6$	0.93	0.62	0.59	12540	
$3 \times 31 / 2$	109	3.21	1.10	3.5	1.49	1.06	1.20	0.80	0.6\%	119:0	
$3 \times 31 / 2$	9.8	2.88	1.11	3.3	1.37	1.08	1.31	0.88	0.68	11490	
$3 \times 31 / 2$	8.5	2.49	109	2.9	1.21	1.09	0.93	0.62	0.61	9680	
3×3	10.0	2.94	0.9:3	2.3	1.10	0.88	120	0.80	0.64	$8: 80$	
3×3	9.1	2.67	0.92	2.1	1.01	0.90	1.08	0.12	0.64	8110	
3×3	7.8	2.28	0.88	1.8	0.86	0.90	0.90	0.60	0.63	6900	
3×3	6.6	1.95	0.86	1.6	0.74	0.90	0.75	0.50	0.62	$5!00$	
$3 \times 21 / 2$	7.2	2.10	0.71	1.1	0.60	0.72	0.89	0.60	0.66	4800	
$3 \times 21 / 2$	6.1	1.80	0.68	0.94	0.52	0.73	0.75	0.50	0.65	4100	
$23 / 4 \times 2$	\%. 4	2.16	0.53	1.1	0.75	0.71	$0.6{ }^{2}$	0.45	0.54	6000	
$23 / 4 \times 13 / 4$	6.6	1.95	0.64	0.56	0.50	0.53	0.61	0.44	0.56	4000	
$21 / 2 \times 3$	7.2	2.10	0.97	1.8	0.87	0.92	0.54	0.43	0.51	6980	
21/2×3	6.1	1.80	0.92	1.6	0.76	0.94	0.44	0.35	051	6110	
$21 / 2 \times 23 / 4$	6.7	1.98	0.87	1.4	0.13	0.84	0.66	053	0.58	5860	
$21 / 2 \times 23 / 4$	5.8	1.71	0.83	1.2	0.60	0.83	0.44	0.35	0.51	4830	
$21 / 2 \times 21 / 2$	6.4	1.89	1). 76	1.0	0.59	0.74	0.52	0.42	0.53	4700	
$21 / 2 \times 21 / 2$	5.5	1.62	0.74	087	0.50	0.74	0.44	0.35	0.52	4000	
$21 / 2 \times 11 / 4$	2.9	0.84	0.29	0.094	0.09	0.31	0.29	0.23	0.58	T00	
$21 / 4 \times 21 / 4$	4.9	1.44	0.69	0.66	0.42	0.68	0.33	0.30	0.48	33360	
$21 / 4 \times 21 / 4$	4.1	1.20	O.66	0.51	0.32	0.67	0.25	0.22	0.47	2600	
2×2	4.3	1.26	063	0.45	0.33	0.60	0.23	0.23	0.43	2610	
2×2	3.7	1.08	0.59	0.36	0.05	0.60	0.18	0.18	0.42	2000	
$2 \times 11 / 2$	3.1	0.90	0.42	0.16	0.15	0.42	0.18	0.18	0.45	1:00	
$13 / 4 \times 13 / 4$	3.1	0.90	0.51	0.23	0.19	0.51	0.12	0.14	0.37	1550	
$13 / 4 \times 11 / 4$	3.6	1.05	0.91	0.12	0.15	0.3:3	0.19	0.22	0.41	1150	
$13 / 4 \times 11 / 4$	1.94	0.5π	0.33	0.02	0.08	0.35	0.09	0.11	040	6:0	
$11 / 2 \times 11 / 2$	2.6	0.75	0.42	0.15	0.14	0.49	0.08	0.10	0.34	11:0	
$11 / 2 \times 11 / 2$	1.81	0.54	0.44	0.11	0.11	0.45	0.06	0.07	0.31	860	
$11 / 2 \times 11 / 4$	3.0	0.87	0.40	0.10	0.12	0.35	0.10	0.13	0.34	940	
$11 / 3 \times 11 / 4$	2.24	0.66	0.38	0.09	0.10	0.36	008	0.10	0.34	¢85	
$11 / 2 \times 11 / 4$	1.73	0.51	0.35 !	0.07	0.08	0.36	0.06	0.07	0.33	C00	
$11 / 2 \times 11 / 8$	1.33	0.39	0.35	0.04	0.05	0.33	0.03	004	0.29	420	
$11 / 2 \times 3 / 4$	1.33	0.39	'0.20	0.01	0.03	0.19	0.05	0.0 \%	0.37	210	
$11 / 4 \times 11 / 4$	2.04	0.60	\|0.40		0.08	0.10	0.36	005	0.07	$0.2 \sim$	\% 60
$11 / 4 \times 11 / 4$	1.53	0.45	0.38	0.06	00%	037	0.03	0.05	0.26	5×0	
$1 \times 11 / 2$	1.12	0.33	0.50	008	0.08	0.48	0.01	$0.0{ }^{3}$	0.19	605	
1×1	1.23	0.36	$0.3:$	0.03	0.05	$0 . \therefore 9$	0.02	0.04	0.21	350	
1×1	$0.8 i$	026	0. 29	0.02	0.03	0.29	0.01	0.02	0.21	270	

Properties of Standard and Special Angles of Minimum and Maximum Thicknesses and Weights.

ANGLES VITH EQUAL LEGS.

1	2	3	4	5	6	7	8	9
	$\begin{aligned} & \dot{n} \\ & 0 \\ & 0 \\ & \tilde{E} \\ & .0 \\ & \dot{E} \\ & E \end{aligned}$							
in.	in.		sq. in.	in.	I	S	r	\boldsymbol{r}^{\prime}
6×6	7/8	33.1	9.74	1.82	31.92	7.64	1.81	1.17
6×6	7/16	17.2	5.06	1.66	17.68	4.07	1.87	1.19
*5 $\times 5$	8/8	2\%. 2	7.99	1.57	17.75	5.17	1.49	0.98
*5 $\times 5$	3/8	12.3	3.61	1.39	8.74	$2.4{ }^{2}$	1.56	0.99
4×4	13/16	19.9	5.84	1.29	8.14	3.01	1.18	0.80
4×4	5/16	8.2	2.40	1.12	3.71	1.29	1.24	0.82
$31 / 2 \times 31 / 2$	13/16	1~. 1	5.03	1.17	5.25	2.25	1.02	0.69
$31 / 2 \times 31 / 2$	$3 / 8$	8.5	2.48	1.01	2.87	1.15	1.07	0.70
3×3	5/8	11.4	3.36	0.98	2.62	1.30	0.88	0.59
3×3	$1 / 4$	4.9	1.44	0.84	1.24	0.58	0.93	0.60
*23/4 $\times 23 / 4$	$1 / 2$	8.5	2.50	0.87	1.67	0.89	0.82	0.54
*23/4 $\times 23 / 4$	$1 / 4$	4.5	1.31	0.18	0.93	0.48	0.85	0.55
$21 / 2 \times 21 / 2$	1/2	7.7	2.25	0.81	1.23	0.73	$0 \% 4$	0.49
$21 / 2 \times 1 / 2$	$1 / 4$	4.1	1.19	0.72	0.70	0.40	0%	0.50
*21/4 $\times 21 / 4$	1/2	6.8	2.00	0.74	08%	0.58	0.66	0.48
*21/4 $\times 21 / 4$	$1 / 4$	3.7	1.06	0.66	0.51	0.32	0.69	0.46
2×2	$7 / 16$	5.3	1.56	0.66	0.54	0.40	0.59	0.39
2×2	$3 / 6$	2.5	0.72	0.57	0.28	0.19	0.62	0.40
$13 / 4 \times 13 / 4$	-1/16	4.6	1.30	0.59	0.35	0.30	0.51	0.35
$13 / 4 \times 13 / 4$	$3 / 16$	2.1	0.62	0.51	0.18	0.14	0.54	0.36
$11 / 2 \times 11 / 0$	3/8	3.4	0.99	0.51	0.19	0.19	0.44	0.31
$11 / 2 \times 11 / 2$	$3 / 16$	1.8	0.53	044	0.11	0.104	0.46	0.32
$11 / 1 \times 11 / 4$	$5 / 16$	2.4	0.69	0.42	0.09	0.109	0.36	0.25
$11 / 4 \times 11 / 4$	1/8	1.0	0.30	0.35	0.044	0.049	0.38	0.26
* $11 / 8 \times 11 / 8$	5/16	2.1	0.61	0.39	0.063	0.087	0.32	0.24
*11 $8 \times 11 / 8$	$1 / 8$	0.9	0.27	0.33	0.032	0.039	0.34	0.23
1×1	$1 / 4$	1.5	0.44	0.34	0.037	0.056	0.29	0.20
1×1	1/8	0.8	0.24	0.30	0.023	0.031	0.31	0.21
* $7 / 8 \times 7 / 8$	$3 / 16$	1.0	0.29	0.29	0.019	0.0333	0.26	0.18
*7/8× $7 / 8$	1/8	0.7	0.21	0.26	0014	0023	0.26	0.19
$3 / 4 \times 3 / 4$	3/16	0.8	0.25	0.26	0.012	0024	0.22	016
$3 / 4 \times 3 / 4$	$1 / 8$	0.6	0.17	0.23	0.009	0017	0.23	$0.1{ }^{\prime \prime}$
*5/8×5/8	1/8	$1 . .5$	0.14	0.20	0.005	0.011	0.18	0.13

Properties of Standard and Special Angles of Minimum and Maximum Thickness and Weights．

ANGLES WITH UNEQUAL IEGS．

1	2	3	4	5	6	7	8	9	10	11
				Moments of Inertia． I		Section Modulus． S		Radii of Gyration． r		
inc＇ies．	inch		0． 50							
${ }^{*}{ }_{\sim}^{1} \times 31 / 2$		$3 \cdot 3$		7.53 3.95	45．37	2.96 1.47	－10．58	0.89 0.95	2.19 2.26	88
$* 7$ 6 6 $\times 4$	\％／16	15.0 27.2	4.40	3．95 9.15	－	1.47 3.39	7	0.85 1.11	2.26 1.86	
6×4	3／8	12.3	3.61	4.90	13.47	1.60	3.32	1.1 r	1.93	． 88
$6 \times 31 / 2$	7／8	25．7	7． 55	6.55	2638	2.59	6.98	0.93	1.87	\％
$6 \times 31 / 2$	3／8	11．	3.42	3.34	12.86	123	3.25	0.99	1.94	． 77
＊5 $\times 4$	7／8	24．2	7.11	9.23	16.42	3.31	4.99	1.14	1.52	． 88
＊5 $\times 4$	3／8	11.0	3.23	4.67	8.14	1.57	2.34	1.20	1.59	． 86
5×312	$7 / 8$	22.7	667	6.21	15.67	2.52	4.88	0.96	1.53	\％ 7
5×312	8	104	3.05	3.18	778	1.91	2.29	1.02	1.60	． 76
5×3	13／16	19.9	584	3.71	13.98	1.74	4.45	0.80	1.55	． 66
5×3	5／16	8．2	2.40	1.50	6.26	0.75	1.89	0.85	1.61	66
＊ $41 / 2 \times 3$	13／16	18.5	5.43	3.60	10.33	1.71	3.62	0.81	1.38	67
＊ 412×3	3／8	91	2.67	1.98	5．50	0.88	1.83	0.86	1.44	． 66
$*_{1} \times 31 / 2$	13／16	185	5.43	5.49	\％．74	2.30	2.93	1.01	1.19	． 74
${ }^{1}{ }_{1} \times 31 / 2$	$3 / 8$	9.1	2.67	2.99	4.18	1.18	1.50	1.06	1.25	． 73
4×3	13／16	171	5.03	3.44	734	1.68	2.87	0.83	1.21	． 66
4×3	5／16	7.1	2.19	1.65	3.38	0.14	1．23	0.89	1.27	． 65
$31 / 2 \times 3$	13／16	15．${ }^{\text {a }}$	4.62	3.33	4.98	1.65	2.20	0.85	1.04	65
$31 / 2 \times 3$	5／16	6.6	1.93	1.58	2．33	0.72	0.96	0.90	1.10	． 63
$316 \times 31 / 2$	11／16	12.4	3.65	1.72	4.13	0.99	1．85	$0.6 \hat{1}$	1.06	． 58
31／2x $\times 1 / 2$	1／4	4.9	1.44	0.18	1.80	0.41	0．75	0.14	1.12	． 55
＊314×	9／16	9.0	2.64	085	2.64	0.53	1.30	053	1.00	． 45
＊314×2	1／4	4.3	1.25	0.40	1.36	0.26	0．63	0.54	1.04	． 44
$3 \times 21 / 2$	$9 / 16$	9.5	2.78	1.42	2.28	0.82	1.15	0.72	0.91	． 54
${ }_{3} 3 \times 21 / 2$	$1 / 4$	4.5	131	0.14	1.17	0.40	0.56	0.75	0.95	． 53
＊3 $\times 2$	$1 / 2$	77	2.25	0.61	1.92	0.47	1.00	0.55	0.92	． 41
＊3 \times ¢	$1 / 4$	4.0	1.19	0.39	1.09	0.25	0.54	0.56	0.95	． 46
$21 / 2 \times 2$	1／2	6.8	2.00	0.64	1.14	046	0.70	0.56	$0 . \%$	． 44
$21 / 2 \times 2$	3／16	2.8	0.81	0.29	0.51	0.20	0.29	0.60	0.79	．4：3
＊ $11 / 4 \times 11 / 2$	1／2	5.5	1.63	0.16	0.82	0.26	0.59	0.40	0.71	． 39
＊ $21 / 4 \times 1 / 2$	3／16	2.3	0.67	0.12	0.34	0.11	0.23	0.43	0．72	． 40
＊2．$\times 13 / 8$		2.71	0.18	0.12	0.37	0.12	0.23	0.39	0.63	． 30
＊2 $\times 13 / 8$	3／16	21	0.60	009	$\bigcirc .24$	0.09	0.18	0.40	0.63	． 29
＊13／8×1	$1 / 4$	1.8	0.53	0.04	009	0.05	0.09	$0.2 \mathrm{\%}$	0.41	$\therefore 5$
＊ $3 / 8 \times 1$	1／8	1.0	0.28	0．02	0.05	0.03	0.06	0.29	0.44	． 22

Properties of Carnegie Z Bars.

(For dimensions see table on page 178.)

1	2	3	4	5	6	7	8	9	10	11	12
						$\begin{aligned} & 7.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					
			,	I	S	\%	r	,	${ }^{1}$,	,
	15.6	4.59	$\because 5.32$	9.11	8.44	2.\%	2.35	1.41	0.83	90.000	67,500
	18.3	5.39	29.80	10.95	9.43	3.27	2.35	1.43	0.84	104,800	¢8,600
	21.0	6.19	34.36	12.85	11.2\%	3.81	2.36	1.44	0.84	119,\%00	89,800
$\begin{gathered} \text { Z2 } \\ 6 \end{gathered}$	$\therefore 2.7$	6.68	34.64	12.59	11.55	3.91	2.28	$1.3 \hat{1}$	0.81	123,200	92,400
	25.4	7.46	33.86	14.42	12.82	4.43	2.28	1.39	0.82	1:36,700	102,600
	28.0	8.25	43.18	16.34	14.10	4.98	2.29	1.41	0.84	150,400	112,800
$\begin{aligned} & Z: 3 \\ & \because: \\ & \because \end{aligned}$	$\because 9.3$	8.63	49.12	15.44	14.04	4.94	2.21	1.34	0.81	149,800	112,300
	32.0	9.40	46.13	$11.2 \hat{1}$	15.22	5.47	2.22	1.36	0.83	16:.300	121.500
	34.6	10.1ヶ	50.22	19.18	16.40	6.02	2.22	1.37	0.83	1ז4,900	131,200
Z4	11.6	3.40	13.36	¢. 18	5.34	2.00	1.98	1.35	0.75	57.000	42,\%00
	13.9	4.10	1618	7.65	6.39	2.45	1.99	1.37	0.76	68, 200	51,100
	16.4	4.81	19.0 ${ }^{\text {i }}$	9.20	7.44	2.92	1.99	1.38	0.17	\%9,400	59,500
Z.5	1\%.	52.	1919	9.05	7.68	3.02	1.91	1.31	0.74	81.900	61,4C0
	20.2	5.94	21.83	10.51	8.62	3.47	1.91	1.33	0.75	91,900	69.000
	23.6	6.64	24.53	12.06	9.5 亿	3.94	1.92	1.35	0.76	10:, 100	76,600
Z6	23. 5	6.96	23.68	11.37	$9.4{ }^{\text {i }}$	3.91	1.84	1.88	0.73	101.000	\%5,800
	26.0	T.64	26.16	12.83	10.34	4.37	1.85	1.30	$0 . i 5$	110,300	82,00
	28.3	8.33	23.70	1436	11.20	4.84	1.86	1.31	0.76	119,500	89,600
$\underset{\bullet}{\mathrm{Z}}$	82	2.41	6.28	4.23	3.14	1.44	1.62	1.33	0.6 i	33.500	25.100
	10.3	$30: 3$	\% 97	5.46	3.91	1.84	$1.6{ }^{3}$	1.34	0.68	41.700	31.300
	12.4	3.66	9.63	6.76	$4.6 i$	2.26	1.62	1.36	0.69	49,800	3î,400
Z8	13.5	4.05	9.66	6.73	4.83	2.37	1.55	1.29	066	51,500	38,600
	15.8	4.66	11.18	7.96	5.50	3.10	1.55	1.31	0.67	59.700	44,000
	17.9	5.27	12. 74	9.26	6.18	3.19	1.55	1.33	0.69	65,900	49,400
Z9	18.9	5.55	12.11	8.73	6.05	3.18	1.48	1.25	0.66	64,500	48,400
	20.9	6.14	13.52	9.95	6.65	3.58	1.48	1.27	0.67	r0,900	53,200
	$\bigcirc 2.9$	6.75	$14.9 \hat{}$	11.24	7.26	4.00	1.49	1.29	0.69	77,400	58,100
Z10	6.6	97	$2.8 \uparrow$	2.81	1.92	1.10	1.21	1.19	0.55	20500	15,400
	8.4	2.48	3.64	3.64	2.38	1.40	1.21	1.21	0.56	25,400	19,000
Z11	$9 . \%$	2.86	3. 85	3.92	$2.5 \hat{1}$	1.57	1.16	1.17	0.55	27,400	20,600
	11.4	3.36	4.57	4 \% 5	2.98	1.88	1.17	1.19	0.56	31,800	23,800
Z12	12.5	3.69	4.59	48.5	3.06	1.99	1.12	1.15	0.55	3?,600	24,500
	14.2	4.18	5.26	5.70	3.43	2.31	1.12	1.17	0.56	36,600	27,400

Dimensions of lightest weight bars of each size: ZI, Z: , and Z3, depth of web 6 in., width of flange $31 / 2$ in.. thickness of metal respectively $3 / 8.9 / 16$. and $3 / 4 \mathrm{in}$.; Z4. Z5. $\mathrm{Zb}, 5 \times 31 / 4 \times 5 / 16.1 / 2$, and $11 / 16 \mathrm{in} . ; \mathrm{Z7}, \mathrm{Z} 8, \mathrm{Z} 9,4 \times 31 / 16$ $\times 1 / 4, \tau / 16$, and $5 / 8$ in : Zi0, Z11, Z12. $3 \times 2 \times 11 / 16 \times 1 / 4,3 / 8$, and $1 / 2$ in. Each dimension is increased $1 / 16$ in. in the next heavier weight.

FLOORING MATERIAL.

For fire-proof flooring, the space betwern the floor-beams may be spanned with brick arches, or with hollow brick made especially for the purpose, the latter being much lighter than ordinary brick.

Arches 4 inches deep of solid brick weigh about 70 lhs . per square foot, including the concrete levelling material, and substantial floors are thus made up to 6 feet span of arch, or much greater span if the skew backs at the springing of the arch are made deeper, the rise of the arch being preferably not less than $1 / 10$ of the span. Hollow brick for floors are usually in depth about $1 / 8$ of the span, and are used up to, and even exceeding, spans of 10 feet. The weight of the latter material will vary from 20 lbs . per square foot for 3 -foot spans up to 60 lbs . per square foot for spans of 10 feet. Full particulars of this construction are given by the manufacturers. For supporting brick floors the beams should be securely tied with rods to resist the lateral pressure.
In the following cases the loads, in addition to the weight of the floor itself, may be assumed as:

Roofs, allowing thirty pounds per square foot for wind and snow:
For corrugated iron laid directly on the purlins... 3í lbs. per sq. ft.

If plastered below the rafters, the weight will be about ten pounds per square foot additional.

THE-RODS FOR BEAIIS SUPPORTING BRICK ARCHES.

The horizontal thrust of brick arches is as follows:

$$
\begin{aligned}
\frac{1.5 W S^{2}}{R} & =\text { pressure in pounds. per lineal foot of arch: } \\
W & =\text { load in pounds. per square foot } \\
S & =\text { span of arch in feet; } \\
R & =\text { rise in inclies. }
\end{aligned}
$$

Place the tie-rods as low through the webs of the beams as possible and spaced so that the pressure of arches as obtained above will not produce a greater stress than $15,000 \mathrm{lbs}$. per square inch of the least section of the bolt.

TORSIONAE STRENETHE.

Let a horizontal shaft of diameter $=d$ be fixed at one end, and at the other or free end, at a distance $=l$ from the fixed end, let there be fixed a horizontal lever arm with a weight $=P$ acting at a distance $=a$ from the axis of the shaft so as to twist it; then $P a=$ moment of the applied force.

Resisting moment $=$ twisting moment $=\frac{S J}{c}$, in which $S=$ unit shearing resistance, $J=$ polar moment of inertia of the section with respect to the axis, and $c=$ distance of the most remote fibre from the axis, in a crosssection. For a circle with diameter d,

$$
\begin{gathered}
J=\frac{\pi d^{4}}{32} ; \quad c=1 / 2 d ; \\
P a=\frac{S J}{c}=\frac{\pi d^{3} S}{16}=\frac{d^{3} S}{5.1}=.1963 d^{3} S ; \quad d=\sqrt[3]{\frac{5.1 P a}{S}}
\end{gathered}
$$

For hollow shafts of external diameter d and internal diameter d_{1},

$$
P a=.1963 \frac{d^{4}-d_{1}{ }^{4}}{d} S ; \quad d=\sqrt[3]{\frac{5.1 P a}{\left(1-\frac{d_{1}{ }^{4}}{d^{4}}\right) S}} .
$$

For a square whose side $=d$,

$$
J=\frac{d^{4}}{6} ; \quad c=d \sqrt{1 / 2} ; \quad \frac{S J}{c}=P a=\frac{d^{3} S}{4.2426}=0.236 d^{3} S .
$$

For a rectangle whose sides are b and d,

$$
J=\frac{b d^{3}}{12}+\frac{b^{3} d}{12} ; \quad c=1 / 2 \sqrt{b^{2}+d^{2}} ; \quad \frac{S J}{c}=P a=\frac{\left(b d^{3}+b^{3} d\right) S}{6 \sqrt{b^{2}+d^{2}}} .
$$

The above formulæ are based on the supposition that the shearing resistance at any point of the cross-section is proportional to its distance from the axis; but this is true only within the elastic limit. In materials capable of flow, while the particles near the axis are strained within the elastic limit those at some distance within the circumference may be strained nearly to the ultimate resistance, so that the total resistance is something greater than that calculated by the formulæ. (See Thurston, "Matls. of Eng.," Part II. p. 527.) Saint Venant finds for square shafts $P a=0.208 d^{3} S$ (Cotterill, "Applied Mechanics," pp. 348, 355). For working strength, however, the formulæ may de used, with S taken at the safe working uuit resistance.
For a rectangle, sides b (longer) and d (shorter) and area A,

$$
P a=\frac{S A^{2}}{3 b+1.8 a}
$$

The ultimate torsional shearing resistance S is about the same as the direct shearing resistance. and may be taken at 20,000 to $25,000 \mathrm{lbs}$. per square inch for cast iron, $45,000 \mathrm{lbs}$. for wrought iron, and 50,000 to $150,000 \mathrm{lbs}$. for steel, according to its carbon and temper. Large factors of safety should be taken, especially when the direction of stress is reversed, as in reversing engines, and when the torsional stress is combined with other stresses, as is usual in shafting. (See "Shafting.")
Elastic Resistance to Torsion.- Let $l=$ length of bar being twisted, $d=$ diameter, $P=$ force applied at the extremity of a lever arm of length $=\alpha, P a=$ twisting moment, $G=$ torsional modulus of elasticity, $\theta=$ angle through which the free end of the shaft is twisted, measured in are of radius $=1$.
For a cylindrical shaft

$$
P a=\frac{\pi \theta G d^{4}}{32 l} ; \quad \theta=\frac{32 P a l}{\pi d^{4} G} ; \quad G=\frac{32 P a l}{\theta \pi d^{4}} ; \quad \frac{32}{\pi}=10.186 .
$$

If $\alpha=$ angle of torsion in degrees,

$$
\theta=\frac{a \pi}{180} ; \quad \alpha=\frac{180 \theta}{\pi}=\frac{180 \times 32 \mathrm{Pal}}{\pi^{2} d^{4} G}=\frac{583.6 \mathrm{Pal}}{d^{4} G} .
$$

The value of G is given by different authorities as from $1 / 3$ to $2 / 5$ of E, the modulus of elasticity for tension.

COMIRINED STRESSES.

(From Merriman's "Strength of Materials.")

Combined Tension and Flexure.-Let $A=$ the area of a bar subjected to both tension and flexure, $P=$ tensile stress applied at the ends, $P \div A=$ unit tensile stress, $S=$ unit stress at the fibre on the tensile side most remote from the neutral axis, due to flexure alone, then maximum tensile unit stress $=(P \div A)+S$. A beam to resist combined tension and flexure should be designed so that $(P \div A)+S$ shall not exceed the proper allowable working unit stress.
Combined Compression and Flexure. - If $P \div A=$ unit stress due to compression alone, and $S=$ unit compressive stress at fibre most remote from neutral axis, due to flexure alone, then maximum conpressive unit stress $=(P \div A)+S$.
combined Tension (or compression) and Shear. - If ap-
plied tension (or compression) unit stress $=p$, applied shearing unit stress $=v$, then from the combined action of the two forces

Max. $S= \pm \sqrt{v^{2}+1 / 4 p^{2}}, \quad$ Maximum shearing unit stress; Max. $t=1 / 2 p+\sqrt{v^{2}+1 / 4 p^{2}}$, Maximum tensile (or compressive) unit stress.

Combined Flexure and Torsion.-If $S=$ greatest unit stress due to flexure alone, and $\stackrel{s}{ }=$ greatest torsional shearing unit stress due to torsiou alone, then for the combined stresses

$$
\begin{aligned}
& \text { Max. tension or compression unit stress } t=1 / 2 S+\sqrt{\sqrt[S s^{2}+1 / 4 S^{2}]{ }} ; \\
& \text { Max. shear } s= \pm \sqrt{S s^{2}+1 / 4 S^{2}} .
\end{aligned}
$$

Formula for diameter of a round shaft subjected to transverse load while transmitting a given horse-power (see also Shafts of Engines):

$$
d^{3}=\frac{16 M}{\pi t}+\frac{16}{t} \sqrt{\frac{M^{2}}{\pi^{2}}+\frac{402,500,000 H^{2}}{n^{2}}}
$$

where $M=$ maximum bending moment of the transverse forces in poundinches, $H=$ horse-power transmitted, $n=$ No. of revs. per minute, and $t=$ the safe allowable tensile or compressive working strength of the material.
combined Compression and Torsion.-For a vertical round shaft carrying a load and also transmitting a given horse-power, the resultant maximum compressive unit stress

$$
t=\frac{4 P}{\pi d^{2}}+\sqrt{321,000^{2} \frac{H^{2}}{\pi^{2} d^{6}}+\frac{16 P^{2}}{\pi^{2} l^{4}}}
$$

in which P is the load. From this the diameter d may be found when t and the other data are given.
Stress due to Temperature. - Let $l=$ length of a bar, $A=$ its sectional area, $c=$ coefficient of linear expansion for one degree, $t=$ rise or fall in temperature in degrees, $E=$ modulus of elasticity, λ the change of length due to the rise or fall t; if the bar is free to expand or contract, $\lambda=$ ctl.

If the bar is held so as to prevent its expansion or contraction the stress produced by the change of temperature $=S=A c t E$. The following are average values of the coefficients of linear expansion for a change in temperature of one degree Fahrenheit:

$$
\begin{aligned}
& \text { For brick and stone.... } a=0.0000050, \\
& \text { For cast iron.......... } a=0.0000062, \\
& \text { For wrought iron...... } a=0.0000067,1 \\
& \text { For steel.......................... }
\end{aligned}
$$

The stress due to temperature should be added to or subtracted from the stress cansed by other external forces according as it acts to increase or to relieve the existing stress.

What stress will be caused in a steel bar 1 inch square in area by a change of temperature of $100^{\circ} \mathrm{F}$.? $S=$ Act $E=l \times .0000065 \times 100 \times 30,000,000=$ 19,500 !bs. Suppose the bar is under tension of $19,500 \mathrm{lbs}$. between rigid abutments before the change in temperature takes place, a cooling of $100^{\circ} \mathrm{F}$. will double the tension, and a heating of 100° will reduce the tension to zero.

STRENGTHI OF FLAT PLATES.

For a circular plate supported at the edge, uniformly loaded, according to Grashof,

$$
f=\frac{5}{6} \frac{r^{2}}{t^{2}} p ; \quad t=\sqrt{\frac{5 r^{2} p}{6 f}} ; \quad p=\frac{6 f t^{2}}{5 r^{2}}
$$

For a circular plate fixed at the edge, uniformly loaded,

$$
f=\frac{2}{3} \frac{r^{2}}{t^{2}} p ; \quad t=\sqrt{\frac{2 r^{2} p}{3}} ; \quad p=\frac{3 f t^{2}}{2 r^{2}}
$$

in which f denotes the working stress; r, the radius in inches; t, the thick ness in inches; and p, the pressure in pounds per square inch.

For mathematical discussion, see Lanza, "Applied Mechanics," p. 900, etc.
Lanza gives the following table, using a factor of safety of 8 , with tensile strength of cast iron 20,000 , of wrought iron 40,000 , and of steel 80,000 :

Supported.
Fixed.

$$
\begin{array}{ll}
\text { Cast iron..........t }=.01885 \pi 0 r \sqrt{p} & t=.0163300 r \sqrt{p} \\
\text { Wrought iron......t }=.0117850 r \sqrt{p} & t=.0105410 r \sqrt{p} \\
\text { Steel..............t }=.009128 \pi r \sqrt{p} & t=.0081649 r \sqrt{p}
\end{array}
$$

For a circular plate supported at the edge, and loaded with a concentrated load P applied at a circumference the radius of which is r_{0} :

$$
\begin{array}{rl}
f & =\left(\frac{4}{3} \log \frac{r}{r_{0}}+1\right) \frac{P}{\pi t^{2}}=c \frac{P}{\pi t^{2}} \\
\text { for } \quad \frac{r}{r_{0}} & =10 \quad 20 \quad 30 \quad 40 \\
c & =4.07 \quad 5.00 \\
t & 5.53 \\
t & =\sqrt{\frac{c P}{\pi f}} ; \quad
\end{array} \quad P=\frac{5.92}{} \quad 6.22 ;
$$

The above formulæ are deduced from theoretical considerations, and give thicknesses much greater than are generally used in steam-engine cylinderheads. (See empirical formulæ under Dimensions of Parts of Engines.) The theoretical formulæ seem to be based on incorrect or incomplete hypotheses. but they err in the direction of safety.

The Strength of Unstayed Flat Surfaces.-Robert Wilson ($\operatorname{Eng} \dot{\theta}^{\circ} g$. Sept. 24, 187\%) draws attention to the apparent discrepancy between the resilts of theoretical investigations and of actual experiments on the strensth of unstayed flat surfaces of boiler-plate, such as the unstayed flat crowns of domes and of vertical boilers.

Rankine's "Civil Engineering "gives the following rules for the strength of a circular plate supported all round the edge, prefaced by the remark that "the formula is founded on a theory which is only approximately true, but which nevertheless may be considered to involve no error of practical importance:"

$$
M=\frac{\dot{W b}}{6 \pi}=\frac{P b^{3}}{24}
$$

Here
$M=$ greatest bending moment ;
$W=$ total load uniformly distributed $=\frac{\mathrm{Pb}^{2} \pi}{4} ;$
$b=$ diameter of plate in inches ;
$P=$ bursting pressure in pounds per square inch.
Calling t the thickness in inches, for a plate supported round the edges,

$$
M=\frac{1}{6} 42,000 b t^{2} ; \quad \therefore \frac{P b^{2}}{24}=r 000 t^{2}
$$

For a plate fixed round the edges,

$$
\frac{2}{3} \frac{P b^{2}}{24}=7000 t^{2} ; \text { whence } P=\frac{t^{2} \times 63,000}{r^{2}}
$$

where $r=$ radius of the plate.
Dr. Grashof gives a formula from which we have the following rule:

$$
P=\frac{t^{2} \times r^{2}, 000}{r^{2}}
$$

This formula of Grashof's has been adopted by Professor Unwin in his "Elements of Machine Design." These formulæ by Rankine and Grashof may be regarded as being practically the same.

On tryng to make the rules given by these authorities agree with the results of his experience of the strength of unstayed flat ends of cylindrical boilers and domes that had given way after long use, Mr'. Wilson was led to believe that the above rules give the breaking strength much lower than it
actually is. He describes a number of experiments made by Mr. Nichols of Kirkstall, which gave results varying widely from each other, as the method of supporting the edges of the plate was varied, and also varying widely from the calculated bursting pressures, the actual results being in all cases very much the higher.
Some conclusions drawn from these results are:

1. Although the bursting pressure has beeu found to be so high, boilermakers must be warned against attaching any importance to this, since the plates drflected almost as soon as any pressure was put upou them and sprang back again on the pressure being taken off. This springing of the plate in the course of time inevitably results in grooving or channelling, which, especially when aided by the action of the corrosive acids in the water or steam, will in time reduce the thickness of the plate, and bring about the destruction of an unstayed surface at a very low pressure.
2. Since flat plates commence to deflect at ver 5 low pressures, they should never be usen without stays; but it is better to dish the plates when they are not stayed by flues, tubes, etc.
3. Against the commonly accepted opinion that the limit of elasticity should never be reached in testing a boiler or other structure, these experiments show that an exception should be made in the case of an unstajed flat end-plate of a boiler, which will be safer when it has assumed a permanent set that will prevent its becoming grooved by the contiuual variation of pressure in working. The hydranlic pressure in this case simply does what should have been done before the plate was fixed, that is. dishes it.
4. These experiments appear to show that the mode of attaching by flange or by an inside or outside angle-iron exerts an important influence on the manner in which the plate is strained by the pressure.

When the plate is secured to an angle iron, the stretching under pressure is, to a certain extent, concentratel at the line of rivet-holes, and the plate partakes rather of a beam supported than fixed round the ellge. Instead of the strength increasing as the square of the thickness., when the plate is aitached by an an-le-iron, it is probable that the strength does not increase even directly as the thickness, since the plate gives way simply by stretching at the rivet-holes, and the thicker the plate, the less uniformly is the strain borne by the different layers of which the plate may be conisidered to be made up. When the plate is flanged, the flange becomes compressed by the pressure against the body of the plate, and near the rim, as shown by the contrary flexure, the inside of the plate is stretched more than the outside, and it may be liy a kind of shearing action that the plate gives way along the line where the crushing and stretc ing meet.
5. These tests appear to show that the rules deduced from the theoretical investigations of Lamé, Rankine, and Grashof are not confirmed by experiment, and are therefore not trustworthy.

Unbraced Wroughtiron Heads of Boilers, etc. (The Locomotive, Feb. 1890). -Frw experiments have been made on the strength of flat heads, and our knowledge of them comes largely from theory. Experiments have been made on small plates 1-16 of an inch thick. yet the data so obtained cannot be considered satisfactory when we consider the far thicker heads that are used in practice, althongh the results agreed well with Rankine's formula. Mr. Nichols has made experiments on larger heads. and from them he has deduced the following rule: "To find the proper thickness for a flat unstayed head, multiply the area of the head by the pressure per square inch that it is to bear safely, and multiply this by the desired factor of safety (say 8); then divide the product by ten times the tensile strength of the material used for the head." His rule for finding the bursting pressure when the dimensions of the head are given is: "Multiply the thickness of the end-plate in inches by ten times the tensile strength of the material user, and divide the product by the area of the head in inches."

In Mr. Nichols's experiments the arerage tensire strength of the iron insed for the heads was 44.800 pounds. The results he obtained are given below, with the calculated pressure, by his rule. for comparison.

1. An unstayed flat boiler-head is $3+1 / 2$ inches in diameter and $9-16$ inch thick. What is its bursting prevsure? The area of a circle $341 / 2$ inche in diameter is 935 square inches; then $9-16 \times 44.800 \times 10=25 \%, 000$, and $2.52,000 \div$ $9: 35=270$ pounds, the calculated bursting pressure. The head actually burst at 280 pounds.
2. Head $311 / 2$ inches in diameter and $3 / 8$ inch thick. The area $=935$ square inches; then, $3 / 8 \times 44,800 \times 10=168.000$, and $168,000 \div 9: 35=180$ pounds, calculated bursting pressure. This head actually burst at 200 pounds.
3. Head $261 / 4$ inches in diameter, and $3 / 8$ inch thick. The area 541 square inches. Then, $3 / 8 \times 41,800 \times 10=168,000$, and $168,000 \div 541=311$ pounds. This head burst at $3 \pi_{0}$ pounds.
4. Head $281 / 2$ inches in diameter and $3 / 8$ inch thick. The area $=638$ square inches; then, $3 / 8 \times 44,800 \times 10=168,000$, and $168,000 \div 638=263$ pounds. The actual bursting pressure was 300 pounds.

In the third experiment, tile amount the plate bulged under different pressures was as follows:

At pounds per sq. in.... 10	20	40	80	120	140	170	200
Plate bulged........... $1 / 32$	$1 / 16$	$1 / 8$	$1 / 4$	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$

The pressure was now reduced to zero, "and the end sprang back $3-16$ inch, leaving it with a permanent set of $9-16$ inch. The pressure of 200 lbs . was again applied on 36 separate occasions during an interval of five days, the bulging and permanent set being noted on each occasion, but without any appreciable difference from that noted above.
The experiments described were confined to plates not widely different in their dimensions, so that Mr. Nichols's rule cannot be relied upon for heads that depart much from the proportions given in the examples.
Thickness of Flat Cast-iron Plates to resist Bursting Pressures. -Capt. Juhn Ericsson (Church's Lite ot Erlcinou) \%ave hut following rules: The proper thickness of a square cast-iron plate will be obtained by the following: Multiply the side in feet (or decimals of a foot) by $1 / 4$ of the pressure in pounds and divide by 850 times the side iu inches; the quotient is the square of the thickness in inches.
For a circular plate, multiply $11-14$ of the diameter in feet by $1 / 4$ of the pressure on the plate in pounds. Divide by 850 times 11-14 of the diameter in inches. [Extract the square root.]

Prof. Wm. Harkness, Eng'g News. Sept. 5, 1895, shows that these rules can be put in a more convenient form, thus:

$$
\begin{aligned}
& \text { For square plates } T=0.00495 S \sqrt{p} \text {, } \\
& \text { and }
\end{aligned}
$$

$$
\text { For circular plates } T=0.00439 D \sqrt{p}
$$

where $T=$ thickness of plate, $S=$ side of the square, $D=$ diameter of the circle, and $p=$ pressure in lbs. per sq. in. Professor Harkness, however, doubts the value of the rules, and says that no satisfactory theoretical solution has yet been obtained.

Strength of Stayed Surfaces.-A flat plate of thickness \boldsymbol{t} is supported umformly by stays whose distance from centre to centre is a, uniform load $p \mathrm{lbs}$. per square inch. Each stay supports $p a^{2}$ lbs. The greatest stress on the plate is

$$
f=\frac{2}{9} \frac{a^{2}}{t^{2}} p .(\mathrm{Unwin})
$$

SPHERICAL SHELLS AND DOVIED BOILER-HEADS.

To find the Thickness of a Spherical Shell to resist a given Pressure.-Let $d=$ diameter in inches, and p the internal pressure per square inch. The total pressure which tends to produce rupture around the great circle will be $1 / 4 \pi d^{2} p$. Let $S=$ safe tensile stress per square inch, and t the thickness of metal in inches; then the resistance to the pressure will be $\pi d t S$. Since the resistance must be equal to the pressure.

$$
1 / 4 \pi d^{2} p=\pi d t S . \quad \text { Whence } t=\frac{p d}{4 S} .
$$

The same rule is used for finding the thickness of a hemispherical head to a cylinder, as of a cylindrical boiler.

Thickness of a Donned Head of a boiler.-If $S=$ safe tensile stress per square inch, $d=$ diameter of the shell in inches, and $t=$ thickness of the shell, $t=p d \div 2 S$; but the thickness of a hemispherical head of the same dianeter is $t=p d \div 4 S$. Hence if we make the radins of curvature of a domed head equal to the diameter of the boiler, we shall have $t=$ $\frac{2 p d}{4 S}=\frac{p d}{2 S}$, or the thickness of such a domed head will be equal to the thickness of the shell.

Stresses in Steel Plating due to Water-pressure, as in plating of vessels and bulkneans, Engmeering, Miny $2: 1891$, paye 629!.
Mr. J. A. Yates has made calculations of the stresses to which sterl plates are subjected by external water-pressure, and arrives at the folluwing conclusions:
Assume $2 a$ inches to be the distance between the frames or other rigid supports. and let d represent the depth in feet, below the surface of the water, of the plate under consideration, $t=$ thickness of plate in inches, D the deflection from a straight line under pressure in inches, and $P=$ stress per square inch of section.
For outer bottom and ballast tank plating, $a=420 \frac{t}{d}, D$ should not be greater than $.05 \frac{2 a}{12}$, and $\frac{P}{2}$ not greater than 2 to 3 tons; while for bulkheads, etc., $a=2352 \frac{t}{d}$. D should not be greater than $.1 \frac{2 n}{12}$, and $\frac{P}{2}$ not greater than \boldsymbol{i} tons. To illustrate the application of these formulæ the following cases have been taken :

For Outer Bottom, etc.

Thickness of Plating.	I)enth helow Water.	Spacing of Frames should not exceed	Thickness of Plating	Depth of Water.	Maximum Spac ing f Rigid Stiffemers.
$\begin{aligned} & \mathrm{in} . \\ & 1 / 3 \\ & 1 / \\ & 3 / 8 \\ & 3 / 8 \\ & 18 \\ & 1 / 4 \end{aligned}$	ft. 20 10 18 9 10 5	in. $\begin{array}{cc}\text { About } & 21 \\ \text { ". } & 42 \\ \text { " } & 18 \\ \text { " } & 36 \\ \text { " } & 20 \\ & 40\end{array}$	$\begin{aligned} & \text { in. } \\ & 1 / 2 \\ & 38 \\ & 3 / 8 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 8 \end{aligned}$	ft 20 20 10 20 10 10	

It would appear that the course which shnuld be followed in stiffening bullkheads is to fit substantially rigid stiffening frames at comparatively wide intervals, and only work such light angles between as are necessary for making a fair job of the bulkhead.

THICK HOLLOW CYLINDERS UNDER TENSION.

Burr, "Elasticity and Resistance of Materials," p. 36, gives

$$
t=r\left\{\left(\frac{h+p}{h-p}\right)^{\frac{1}{2}}-1\right\} \cdot \begin{aligned}
& t=\text { thickness; } r=\text { interior radins } \\
& h=\text { maximumallowable hoop tension interior of the cylinder; } \\
& p=\text { intensity of interior pressure }
\end{aligned}
$$

Merriman gives

$$
\begin{align*}
& s=\text { unit stress at inner edge of the aunulus; } \\
& r=\text { interior radius } ; t=\text { thickness } ; \\
& l=\text { length. } \tag{1}
\end{align*}
$$

The total stress over the area $2 t l=2 s l \frac{r t}{r+t}$.
The total interior pressure which tends to rupture the cylinder is $2 r l \times p$. If p be the unit pressure, then $p=\frac{s t}{v+t}$, from which one of the quantities s, p, r, or t can be found when the other three are given.

$$
s=\frac{p(r+t)}{t} ; \quad r=\frac{(s-p) t}{p} ; \quad t=\frac{r p}{s-p}
$$

In eq. (1), if t be neglected in comparison with r, it reduces to $2 s l t$, which is the same as the formula for thin cylinders. If $t=r$, it becomes slt, or only half the resistance of the thin cylinder.
The formulæ given by Burr and by Merriman are quite different, as will be seen by the following example : Let maximum unit stress at the inner edge of the annulus $=8000 \mathrm{lbs}$. per square inch, radius of cylinder $=4$ inches, interior pressure $=4000$ lbs. per square inch. Required the thickness.

$$
\text { By Burr, } \quad t=4\left\{\left(\frac{8000+4000}{8000-4000}\right)^{\frac{1}{2}}-1\right\}=4(\sqrt{3}-1)=2.928 \text { inches. }
$$

By Merriman, $t=\frac{4 \times 4000}{8000-4000}=4$ inches.
Limit to Useful Thickness of Hollow Cylinders (Eng' g, Jan. 4, 1884).-Professor Barlow lays down the law of the resisting powers of thick cylinders as follows:
"In a homogeneous cylinder, if the metal is incompressible, the tension on every concentric layer, caused by an internal pressure, varies inversely as the square of its distance from the centre."
Suppose a twelve-inch gun to have walls 15 inches thick.

$$
\frac{\text { Pressure on exterior }}{\text { Pressure on interior }}=\frac{6^{2}}{21^{2}}=1: 12.25 .
$$

So that if the stress on the interior is $121 / 4$ tons per square inch, the stress on the exterior is ouly 1 ton.
Let $s=$ the stress on the inner layer, and s_{1} that at a distance x from the axis ; $r=$ internal radius, $R=$ external radius.

$$
s_{1}: s:: r^{2}: x^{2}, \text { or } s_{1}=s \frac{r^{2}}{x^{2}}
$$

The whole stress on a section 1 inch long, extending from the interior to the exterior surface, is $S=s r \times \frac{R-r}{R}$.

In a 12 -inch gun, let $s=40$ tons, $r=6 \mathrm{in}$., $R=21 \mathrm{in}$.

$$
S=40 \times 6 \times \frac{21-6}{21}=172 \text { tons. }
$$

Suppose now we go on adding metal to the gun outside: then R will b come so large compared with r, that $R-r$ will approach the value R, sc that the fraction $\frac{R-r}{R}$ becomes nearly unity.

Hence for an infinitely thick cylinder the useful strength could never exceed $S 1$. (in this case 240 tons).

Barlow's formula agrees with the one given by Merriman.
Another statement of the gun problem is as follows: Using the formula

$$
p=\frac{s t}{r+t}
$$

$s=40$ tons, $t=15$ in., $r=6$ in., $p=\frac{40 \times 15}{21}=28 \frac{4}{7}$ tons per sq. in., $28 \frac{4}{7} \times$ radius $=1 \%$ tons, the pressure to be resisted by a section 1 inch long of the thickness of the gun on one side. Suppose thickness were doubled, making $t=30$ in.: $p=\frac{40 \times 30}{36}=331 / 3$ tons, or an increase of only 16 per cent.

For short cast-iron cylinders, such as are used in hydraulic presses, it is doubtful if the above formulæ hold true, since the strength of the cylindrical portion is reinforced by the end. In that case the bursting strength would be higher than that calculated by the formula. A rule used in practice for such presses is to make the thickness $=1 / 10$ of the inner circumference, for pressures of 3000 to 4000 lbs . per square inch. The latter pressure would bring a stress upon the inner layer of $10,350 \mathrm{lbs}$. per square inch, as calculated by the formula; which would necessitate the use of the best charcoal-iron to make the press reasonably safe.

HOLDING-POWER OF NAILS, SPIKES, AND SCREWS. 289

THIN CYLINDERS UNDER TENSION.

Let $p=$ safe working pressure in lbs. per sq. in.;
$d=$ diameter in inches;
$T=$ tensile strength of the material, lbs. per sq. in.;
$t=$ thickness in inches;
$f=$ factor of safety;
$c=$ ratio of strength of riveted joint to strength of solid plate.

$$
f p d=2 T t c ; \quad p=\frac{2 T t c}{d f} ; \quad t=\frac{f p d}{2 T c} .
$$

If $T^{\prime}=50000, f=5$, and $c=0.7$; then

$$
p=\frac{14000 t}{d} ; t=\frac{d p}{14000}
$$

The above represents the strength resisting rupture along a longitudinal seam. For resistance to rupture in a circumferential seam, due to pressure on the ends of the cylinder, we have $\frac{p \pi d^{2}}{4}=\frac{T t \pi d c}{f}$;

$$
\text { whence } p=\frac{4 T t c}{d f}
$$

Or the strength to resist rupture around a circumference is twice as great as that to resist rupture longitudinally; hence boilers are commonly singleriveted in the circumferential seams and double-riveted in the longitudinal seams.

HOLEOW CORPER BALLS.

Hollow copper balls are used as floats in boilers or tanks, to control feed and discharge valves, and regulate the water-level.

They are spun up in halves from sheet copper, and a rib is formed on one half. Into this rib the other half. fits, and the two are then soldered or brazed together. In order to facilitate the brazing, a hole is left on one side of the ball, to allow air to pass freely in or out; and this hole is made use of afterwards to secure the float to its stem. The original thickness of the metal may be ansthing up to about $1-16$ of an inch, if the spinning is done on a hand lathe, though thicker metal may be used when special machinery is provided for forming it. In the process of spinning, the metal is thinned down in places by stretching; but the thinnest place is neither at the equator of the ball (i.e., along the rib) nor at the poles. The thinnest points lie along two circles, passing around the ball parallel to the rib, one on each side of it, from a third to a half of the way to the poles. Along these lines the thickness may be 10,15 , or 20 per cent less than elsewhere, the reduction depend ing somewhat on the skill of the workman.

The Locomotive for October, 1891, gives two empirical rules for determining the thickness of a copper ball which is to work under an external pressure, as follows:

1. Thickness $=\frac{\text { diameter in inches } \times \text { pressure in pounds per sq. in. }}{16,000}$.
2. Thickness $=\frac{\text { diameter } \times \sqrt{\text { pressure }}}{1240}$.

These rules give the same result for a pressure of 166 lbs . only. Example: Required the thickness of a 5 -inch copper ball to sustain

,	$50 \quad 100$	150	166	200	250 lbs. per sq. in.
Answer by first rule	. $0156{ }^{\circ} .0312$. 0469	. 0519	. 0625	$0 \sim 81$ inch.
Answer by second rul	. 0285.0403	. 0494	0518	.05i0	063

HOLDING-POWER OF NALLS, SPIKES, AND SCREWS.

(A. W. Wright, Western Society of Engineers, 1881.)

Spikes.-Spikes driven into dry cedar (cut 18 months):

S	$5 \times 1 / 4 \mathrm{in} . \mathrm{sq} .6 \times 1 / 46 \times 1 / 25$			
Length driven	$41 / 4 \mathrm{in}$.	5 in .	5 in .	41/4
Pounds resistance to drawing. Av'ge, lbs.	8.57	821	1691	1202
From 6 to 9 tests each...... $\{$ N	1159	923	2129	1556
Min.	\%66	766	1120	68

A. M. Wellington found the force required to draw spikes $9 / 16 \times 9 / 16$ in., driven $41 / 4$ inches into seasoned oak, to be 4281 lbs ; same spikes, etc., in unseasoned oak, 65×3 lus.
"Professor' W. K. Johnson found that a plain spike $3 / 8$ inch square driven $33 / 8$ inches into seasoned Jersfy yellow pine or unseasoned chestmut required about 200 u lbs. force to extract it; from seasoned white oak about 4000 and from well-seasoned locust 6000 lbs ."

Experiments in Germany, by Funk, give from 2465 to 3940 lhs. (mean of many experiments about 3000 libs.) as the force necessary to extract a plain $1 / 2$-nch square iron spike 6 inches long, wedge-puinted for one inch and driven $41 / 2$ inches into white or jellow pine. When driven 5 inches the force requirel was about $1 / 10$ part greater. Similar spikes $9 / 16$ inches square, τ inches long, driven 6 inches deep, required from $3\{00$ to $6 i 45$ lis. to extract them from pine; the mean of the results being 48 i 3 lbs In all cases about twice as much force was required to extract them from oak. The spikes were all driven across the grain of the wood. When driven with the grain, spikes or nails do not hold with more than half as much force.

Boards of oak or pine nailed together by from 4 to 16 teqpenny common cut nails and then pulled apart in a direction lengthwise of the boards, and across the "ails, tending to break the latter in two by a shearing action, avernged ahout 300 to 400 lbs . per nail to separate them, as the result of many trials.

Resistance of Drift-bolts in Timber., Tests made by Rust and Coulluge, iu 1878.

Note - In test No. 6 drift-bolts were not driven properly, holes not being in line, and a piece of timher split out in driving.

Force required to draw Screws out of Norway Pine.

Force required to drasw Wood Scirews out of Bry Wood.

-Tests mate by Mr. Bevan. The serews were ahout wo inches in length, .22 diameter at the exterior of the threads, .15 diameter at the bottom, the depth of the worm or thread being .035 and the number of threads in one inch equal 12. They were passed through pieces of wood half an inch in thickness and drawn out by the weights stated: Beech, 460 lbs.: ash, $\uparrow 90$ lbs.: oak. 760 lbs. mahogany, 770 lbs ; elm , 665 lbs .: sycamore, 830 lbs .

Tests of Lagascrews in Warious Woods were made by A. J. Cox, University of Iowa, 1891:

In figuring area for lag-screws, the surface of a cylinder whose diameter is equal to that of the screw was taken. The length of the screw part in each case was 4 inches. - Encineering News, 1891.

Cut versus Wire Nails.-Experiments were made at the Watertown Arsenal in 1893 on the comparative direct tensile adhesion, in pine and spruce, of cut aud wire nails. The results are stated by Prof. W. H. Burr as follows:

HOLDING-POWER OF NAILS, SPIKES, AND SCREWS. 291

There were 58 series of tests, ten pairs of nails (a cut and a wire nail in each) being used, making a total of 1160 nails drawn. The tests were made in spruce wood in most instances but some extra ones were made in white pine. with "box nails." The nails were of all sizes, varying from $11 / 8$ inches to 6 inches in length. In every case the cut nails showed the superior holding strength by a large percentage. In spruce, in nine different sizes of nails, both standard and light weight, the ratio of tenacity of cut to wire nail was about 3 to 2 , or, as he terms it, "a superiority of $4 \pi .45 \%$ of the former." With the "finishing " nails the ratio was roughly 3.5 to 2 ; superiority 72%. With box nails ($11 / 4$ to 4 inches long) the ratio was roughly 3 to 2 : superiority 51%. The mean superiority in spruce wood was 61%. In white pine, cut nails, driven with taper along the grain, showed a superiority of 100%, and with taper across the grain of 133%. Also when the nails were driven in the end of the stick, i.e., along the grain, the superiority of cut nails was 100%, or the ratio of cut to wire was 2 to 1 . The total of the results showed the ratio of tenacity to be about 3.2 to 2 for the harder wood, and about 2 to 1 for the softer. and for the whole taken together the ratio was 3.5 to 2 . We are led to conclude that under these circumstances the cut nail is superior to the wire nail in direct tensile holding-power by $72 . \hbar 4 \%$.

Nailolnolding Power of Various Woods.

(Watertown Experiments.)
Holding-power per square inch of
Kind of Wood.

Nail-holding Power of Various Woods.
(F. W. Clay's Experiments. Eng'g News, Jan. 11, 1894.) Wood.
White pine
Yellow pine
Basswood
White

Tests made at the Uuiversity of Illinois gave the resistauce of a 1-in. round rod in a $1.5 / 16$-inch hole perpendicular to the grain, as 6000 lbs . per lin. ft. in pine and 15.600 lbs. in oak. Experiments made at the East River Bridge gave resistances of 12,000 and 15.000 lbs . per lin. ft. for a 1 -in. round rod in holes $15 / 16-\mathrm{in}$. and $14 / 16-\mathrm{in}$. diameter, respectively, in Georgia pine.

Holding-power of Bolts in White Pine.
(Eıg'g News, September $26,1891$.

	Round.	Square.
A verage of all plain 1-in bolts	Lbs.	Lbs.
A verage of all plain bolts, $5 / 8$ to $11 / 8$ in	\%805	8110
Average of all bolts....	8383	8593

Round drift-bolts should be driven in holes $13 / 16$ of their diameter, and square drift-bolts in holes whose diameter is $14 / 16$ of the side of the square.

STRENGTH OF WROUGHTT IRON BOLTS.
(Computed by A. F. Nagle.)

				Stress upon Bolt upon Basis of					
	13	. 38	. 12	350	460	580	810	11	00
9-16	12	. 44	. 15	450	600	$\tau 50$	1050	1500	7500
	11	. 49	. 19	560	750	930	1310	$18 \% 0$	9000
	10	. 60	. 28	750	1130	1410	1980	¢830	14000
8	9	. 71	. 39	1180	$15 \% 0$	19\%0	2760	3940	19000
1	8	. 81	. 52	1550	2070	2600	3630	5180	25000
11	7	. 91	. 65	1950	2600	32.50	4560	6510	30000
$11 /$	7	1.04	. 84	25\%0	3360	4200	5900	8410	39000
13/8	6	1.12	1.00	3000	4000	5000	7000	10000	46000
11.2	6	1.25	1.23	3680	4910	$\stackrel{6140}{ }$	8600	12280	56000
158	51/2	1.35	1.44	4300	5740	T180	10000	14360	65000
13	5	1.45	1.65	4950	6600	8250	11560	16510	T 4000
1788	5	1.57	1.95	5840	7800	9800	13640	19500	8.000
2	41/2	1.66	2.18	6540	8720	10900	15260	21800	95000
$21 / 4$	$41 / 2$	1.92	2.88	8650	11530	14400	20180	28800	125000
2	4	2.12	3.55	10640	14200	$17 \% 30$	24830	35500	150000
$23 / 4$	4	2.37	4.43	13290	17720	22150	31000	44300	186000
,	$31 / 2$	2.57	5.20	15580	2076	26000	36360	5:000	213000
$31 / 2$	$31 / 4$	3.04	7.25	21760	29000	36260	50:60	¢2500	290000
4	-	3.50	9.62	28860	38500	48100	6 ¢ 350	96200	385000

When it is known what load is to be put upon a bolt, and the judgment of the engineer has determined what stress is safe to put upon the iron, look down in the proper columin of said stress until the required load is found. The area at the bottom of the thread will give the equivalent area of a flat bar to that of the bolt.

Effect of Initial Strain in Bolts.-Suppose that bolts are used to connect two parts of a machine and that they are screwed up tightly before the effective load comes on the connected parts. Let $P_{3}=$ the initial tension on a bolt due to screwing up. and $P_{2}=$ the load afterwards added. The greatest load may vary but little from P_{1} or P_{2}, according as the former or the latter is greater. or it may approach the value $P_{1}+P_{2}$, depending upon the relative rigidity of the bolts and of the parts connected. Where rigid flanges are bolted together, metal to metal, it is probable that the extension of the bolts with any additional tension relieves the initial tension, and that the total tension is P_{1} or P_{2}. but in cases where elastic packing, as india rubber, is interposed, the extension of the bolts may rery little affect the initial tension, and the total strain may be nearly $P_{1}+P_{2}$. Since the latter assumption is more unfavorable to the resistance of the holt, this contingency should usually be provided for. (See Unwin, "Elements of Machine Design " for demonstration.)

STAND-PIPES AND THELR DESHGN.

(Freeman C. Coffin. New England Water Works Assoc., Ena. News. March 16, 1893) See also papers by A. H. Howland, Eng. Club of Phil. 1887; B F. Stephens, Amer. Water Works Assoc., Eng News, Oct. 6 and 13, 1848: W. Kiersterl, Rensselaer Soc. of Civil Eng., Eng'g Record. April 25 and May 2 , 1891, and W. D. Pence, Eng. News, A pril and May, 1894.

The question of diameter is almost entirely independent of that of height. The efficient capacity must be measured by the length from the high-water line to a point helow which it is undesirable to draw the water on account of luss of pressure for fire-supply. Whether that point is the actual bottom of the stand-pipe or above it. This allowable fluctuation ought not to exered 50 ft ., in most cases. This makes the diameter dependent upon two condị-
tions, the first of which is the amount of the consumption during the ordinary interval between the stopping and starting of the pumps. This should never draw the water brlow a point that will give a good fire stream and leave a margin for still further draught fur fires. The second condition is the maximum number of fire streams and thrir size which it is considered necessary to provide for, and the maximum length of time which they are liable to have to run before the pumps can be relied upon to reinforce them.

Another reason for making the diameter large is to provide for stability against wind-pressure when empty.
The following table gives the height of stand-pipes beyond which they are not safe against wind pressures of 40 and 50 lbs . per square foot. The area of surface taken is the height multiplied by one half the diameter.

Heights of Stand-pipe that will Resist Wind-pressure by its Weight alone, when Empty.

Diameter,	Wind, 40 lbs .	Wind, 50 lbs .
feet.	per sq. ft.	per sq. ft.
20.	45	35
25	70	55
30.	150	S0
35		160

To have the above degree of stability the stand-pipes must be designed with the outside angle-iron at the bottom connection.

Any form of anchorage that depends upon connections with the sid 3 plates near the bottom is unsafe. By suitable guys the wind-pressure is resisted by tension in the guys, and the stand-pipe is relieved from wind strains that tend to overthrow it. The guys should be attached to a band of angle or other shaped iron that completely encircles the tank, and rests upon some sort of bracket or projection, and not be riveted to the tank. They should be anchored at a distance from the base equal to the height of the point at which they are attached, if possible.

The best plan is to build the stand-pipe of such diameter that it will resist the wind by its own stability.

Thickness of the Side Plates.

The pressure on the sides is outward, and due alone to the weight of the water, or pressure per square iuch, and increases in direct ratio to the height, and ulso to the diameter. The straiu upon a section 1 inch in height at any point is the total strain at that point divided by two-for each side is supposed to bear the strain equally. The total pressure at any point is equal to the diameter in inches, multiplied by the pressure per square inch, due to the height at that point. It may be expressed as follows:
$H=$ height in feet, and $f=$ factor of safety;
$d=$ diameter in inches;
$p=$ pressure in lbs. per square inch;
$.434=p$ for 1 ft . in height;
$s=$ tensile strensth of material per square inch;
$T=$ thickness of plate.
Then the total strain on each side per vertical inch

$$
=\frac{.434 H d}{2}=\frac{p d}{2} ; \quad T=\frac{.434 H d f}{2 s}=\frac{p d f}{2 s}
$$

Mr. Coffin takes $f=5$ not counting reduction of strength of joint, equiv. illent to an actual factor of safety of 3 if the strength of the riveted joint is taken as 60 per cent of that of the plate.
The amount of the wind strain per square inch of metal at any joint can be found by the following formula, iu which
$H=$ height of stand-pipe in feet above joint;
$T=$ thickness of plate in inches;
$p=$ wind pressure per square foot:
$W=$ wind pressure per foot in height above joint;
$W=D p$ where D is the diameter in feet;
$m=$ average leverage or movement aboit neutral axis
or central points in the circumference; or,
$m=$ sine of 45°, or . $\tilde{0}$ an times the radius in feet.

Then the strain per square inch of plate

$$
=\frac{(H w) \frac{H}{2}}{\text { circ. in ft. } \times m T}
$$

Mr. Coffin gives a number of diagrams useful in the lesign of stand-pipes, together with a number of instances of failures, with discussion of their probable causes.

Mr. Kiersted's paper contains the following : Among the most prominent strains a stand-pipe has to bear are: that due to the static pressure of the water, that due to the overturning effect of the wind on an empty standpipe, and that due to the collapsing effect, on the upper rings, of violent wind storms.

For the thickness of metal to withstand safely the static pressure of water, let

$$
\begin{aligned}
t & =\text { thickness of the plate iron in inches; } \\
H & =\text { height of stand-pipe in feet; } \\
D & =\text { diaineter of stand-pipe in feet. }
\end{aligned}
$$

Then, assuming a tensile strength of $48,000 \mathrm{lbs}$ per square inch, a factor of safety of 4 , and efficiency of double-riveted lap-joint equalling 0.6 of the strength of the solid plate,

$$
t=.00036 H \times D ; \quad H=\frac{10,000 t}{3.6 D}
$$

which will give safe heights for thicknesses up to $5 / 8$ to $3 / 4$ of an inch. The same formula may also apply for greater heights and thicknesses within practical limits, if the joint efficiency be increased by triple riveting.
The conditions for the severest overturning wind strains exist when the stand pipe is empty.
Formula for wind-pressure of 50 pounds per square foot, when

$$
\begin{aligned}
& d=\text { diameter of stand-pipe in inches; } \\
& x=\text { any unknown height of stand-pipe; } \\
& x=\sqrt{80 \pi d t}=15.85 \sqrt{d t}
\end{aligned}
$$

The following table is calculated by these formulæ. The stand-pipe is intended to be self-sustaining; that is, without guys or stiffeners.

Heights of Stand pipes for Various Diameters and Thicknesses of Plates.

Thickness of Plate in Fractions of an Inch.	Diameters in Feet.												
	5	6	7	8	9	10	12	14	15	16	18	20	25
3-16.	50	55	60	65	55	50							
ก-32.	55				65	60		40	40				
4-16.	60	65	70	75	\% 5	r0	55	50	45	40	35	35	25
5-16	\% 0	\% 5	80	85	90	85	70	60	55	50	45	40	35
6-16	75	80	90	95	100	100	85	75	70	65	55	50	40
7-16.	80	90	95	100	1.0	115	100	85	80	75	65	60	45
8-16	85	95	100	110	115	120	115	100	90	85	75	70	55
9-16				115	125	130	130	110	100	95	85	80	60
10-16.					130	135	145	120	115	105	95	85	65
11-16.						145	155	135	125	120	105	95	75
12-16.				...	\ldots	150	165	145	135	130	115	105	80
13-16.							...	160	150	140	125	110	90
14-16.									160	150	135	120	95
15-16.										160	145	130	105
16-16.	155	140	110

Heights to nearest 5 feet. Rings are to build 5 feet rertically.
Failures of Stand-pipes have been numerous in recent years. A list showing 23 infortant failures inside of nine years is given in a paper by Prof. W. D. Pence, Eng'g News, April 5, 12, 19 and 26, May 3. 10 and 24, and June 7, 1894. His discussion of the probable causes of the failures is most valuable.

Kenneth Allen, Engineers Club of Philadelphia, 1886, gives the following rules for thickness of plates for stand pipes.

Assume: Wrought iron plate 'I. S. 48.000 pounds in direction of fibre, and T. S. 45,000 pounds across the fibre. Strength of single riveted joint .4 that of the plate, and of double riveted joint, it that of the plate ; wind pressure $=50$ pounds per square fort; safety factor $=3$.
Let $h=$ total height in feet ; $r=$ outer radins in feet ; $r^{\prime}=$ inner radins in feet $; p=$ pressure per square inch $; t=$ thickness in inches $; d=$ outer diameter in feet.
Then for pipe filled and longitudinal seams double riveted

$$
t=\frac{p r \times 12}{48,000 \times . \tau \times 1 / 3}=\frac{h d}{4301}
$$

and for pipe empty and lateral seams, single riveted, we have by equating moments :

$$
50 \times 2 r\left(\frac{h}{2}\right)^{2}=144 \times 6000\left(r^{4}-r^{\prime 4}\right) \frac{.7854}{r}, \text { whence } r^{4}--r^{\prime 4}=\frac{\hbar^{2} r^{2}}{2 \pi 144} .
$$

Table showing required Thickness of Bottom Plate.

Height in Feet.	Diameter.					
	5 feet.	10 feet.	15 feet.	20 feet.	25 feet.	30 feet.
	\%.	"	"	"	"	"
50	+ 「-64*	1/8*	11-64*	15-64	19-64	23-64
60	+11-64*	9-64*	7-32	9-32	23-64	2 -64
70	+ 7-32	11-64*	1/4	21-64	13-32	31-64
80	+19-64	3-16	9-32	3/8	15-32	9-16
90		7-32	5-16	2\%-64	1\%-32	$5 / 8$
100	+29-64	+15-64	23-64	15-32	3i-64	45-64
125		+2:3-64	7-16	37-64	4i-64	7/8
150		+3:3-64	$1 i-3 \cdot$	45-64	7/8	13 3-64
175		+11-16	39-64	13-16	1 1-32	1 7-32
200		+29-32	45-64	15-16	111-64	$125-64$

*The minimum thickness should $=3-16^{\prime \prime}$.
N.B.-Dimensions marked \dagger ctetermined by wind-pressure.

Water Tower at Yonkers, N. Y.-This tower, with a pipe 122 feet high and 20 feet diameter, is described in Engineering News, May 18, 1892.

The thickness of the lower rings is 11-16 of an inch, based on a tensile strength of $60,000 \mathrm{lbs}$. per square inch of metal, allowing 65% for the strength of riveted joints, using a factor of safety of $31 / 2$ and adding a constant of $1 / 8$ inch. The plates diminish in thickness by $1-10$ inch to the last four plates at the top, which are $1 / 4$ inch thick.

The contract for steel requires an elastic limit of at least $33,000 \mathrm{lbs}$. per square inch ; an ultimate trusile strength of from 56.000 to 66.000 lbs. per square inch ; an elongation in 8 inches of at least 20%, and a reduction of area of at least 45%. The inspection of the work was made by the Pittsburgh Testing Laboratory. According to their report the actual conditions developed were as follows: Elastic limit from 34,020 to 39.420 ; the tensile strength from 58,330 to 65,390 ; the elongation in 8 inches from $221 / 2$ to 32%; reduction in area from 5.2% to $\% 1.32 \%$; 17 plates out of 141 were rejected in the inspection.

WROUGHETERON AND STEEH WATER-PIPES.

Riveted Steel Water-pipes (Engineering Neus, Oct. 11, 1890, and Ang. 1, 1syl.)-The use of liveted wrought-iron pipe has been common in the Pacific States for many year's, the largest being a 44 -inch conduit in connection with the works of the Spring Valley Water Co., which supplies Sau Francisco. The use of wrought iron and steel pipe has been necessary in the West, owing to the extremely high pressures to be withstood and the difficulties of transportation. As an example : In connection with
the water supply of Virginia City and Gold Hill, Nev., there was laid in $18 \pi 2$ an 1112 -inch riveted wrought-iron pipe, a part of which is under a head of $1: 20$ feet.

In the East, the most important example of the use of riveted steel water pipe is that of the East Jersey Water Co., which supplies the city of Newark. The contract provided for a maximum high service supply of $25,000,000$ gallons daily. In this case $\geqslant 1$ mues of 48 -inch pipe was laid, some of it under 340 feet head. The plates from which the pipe is made are alout 13 feet long by \tilde{f} feet wide. open-hearth steel. Four plates are used to make one section of pipe about 27 feet long. The pipe is riveted longitudinally with a double row, and at the end j ints with a single row of tivets of varying diameter, corresponding to the thickness of the steel plates. Before being rolled into the trench. two of the $2 \tilde{\imath}$-feer lengths are riveted together, thus diminishing still further the number of joints to be made in the trench and the extra excavation to give room for jointing. All changes in the grade of the pipeline are made by 10° curves and all changes in line by $21 / 2,5, \hat{2} / 2$ and 10° curves. Tי lay on curved lines a standard bevel was used, and the different curves are secured by varying the number of beveled joints used on a certain length of pipe.

The thickness of the plates varies with the pressure. but only three thicknesses are used, $1 / 4,5-16$, and $3 / 8$ inches, the pipe made of these thicknesses having a weight of 160,185 , and 225 lbs . per foot, respectively. At the works all the pipe was tested to pressure $11 / 2$ times that to which it is to be subjected when in place.

Mannesmann Tubes for High Pressures.-At the Mannesmann Works at Komotau. Hungary, more than 600 tons or 25 miles of 3 -inch and 4 -inch tubes averaging $1 / 4$ inch in thickness have been successfully tested to a pressure of 2000 lbs . per square inch. These mb: s were intended for a high-pressure water-main in a Chilian nitrate clistrict.

This great tensile strength is probably due to the fact that, in addition to being much more worked than most metal, the fibres of the metai run spiraliy, as has been proved by microscopic examination. While cast-iron tui, es will hardly stand more than 200 lbs . per square inch, and welded tubes are not safe above 1000 lbs. per square inch, the Mannesmann tube easily withstands 2000 lbs . per square inch. The length up to which they can be readily made is shown by the fact that a coil of 3 -inch tube 0 feet long was made recently.

For description of the process of making Mannesmann tubes seestrans. A. I. M. E, vol xix., 384.

STRENGTH OF VARHOUS IRATERIALS. EX'RRACTS FROMIKIREALDY:S TESTS.

The recent publication, in a buok by W. G. Kirkaldy, of the results of many thousand tests made during a quarter of a century by his father, David Kirkaldy, has made an important contribution to our knowledge concerning the range of variation in strength of numerous materials. A condensed abstract of these results was published in the American Muchinist. May 11 and 18, 189:3, from which the following still further condensed extracts are taken:

The figures for tensile and compressive strength, or, as Kirkaldy calls them, pulling and thrusting stress, are given in pounds per square inch of original section, and for bending strength in pounds of actual stress or pounds per $B D^{2}$ (breadth x square of depth) for length of 36 inches between supports. The contraction of area is given as a percentage of the original area, and the extension as a percentage in a length of 10 inches. except when otherwise stated. The abrreviations T. S., E. I.., Contr., and Ext. are used for the sake of brevity, to represent tensile strength, elastic limit, and percentages of enntraction of area. and elongation, respectively.

Cast Iron. -44 tests: T. S. 15.468 to 28,740 pounds; 17 of these were unsnillil. the strength ranging from 15,468 to $24,35 \%$ pounds. Average of all, 23.80 - pounds.

Thrusting stress, specimens 2 inches long, 134 to 1.5 in , diameter: 43 tests, all sound, 94.35: to 131.912: one, unsound. 93, 159 ; average of all, $113.82 \overline{5}$.

Bending stress, bars ahout 1 in . wide by 2 in deep, cast on edge. Ultimate stress 2876 to 3854: stress per $B D^{2}=725$ to 892; average, 820. Average modulus of rupture, $R,=$ stress per $B D^{2} \times$ length, $=29,520$. Uitimate deHection, .29 to 40 in.; average .34 inch.

Other tests of cast iron, 460 tests, 16 lots from various sources, gave re.
sults with total range as follows: Pulling stress, 12,688 to 33,616 pounds; thrusting stress, 66,363 to 175,950 pounds: bending stress, per $B D^{2} .505$ to 1128 pounds; modulus of rupture, $R, 18,180$ to 40,608 . Ultimate deflection, .21 to .45 inch.
The specimen which was the highest in thrusting stress was also the highest in bending, and showed the greatest deflection, but its tensile strength was only 26,502 .
The specimen with the highest tensile strength had a thrusting stress of 143,939 , and a bending strength, per $B D^{2}$, of $9 \tau 9$ pounds with 0.41 deflection. The specimen lowest in T. S. was also lowest in thrusting and bending, but gave .38 deflection. The specimen which gave . 21 deflection liad T. S., 19,188: thristing. 10t.281: and bending, 561 .
Iron Castings. -69 tests; tensile strength, 10,416 to 31,652 ; thrusting strws.s, ultimare per square inch, 53,502 to 132,031 .

Channel Irons.-Tests of 18 pieces cut from channel irons. T. S. 40,693 to 53,141 pounds per square inch; contr. of area from 3.9 to 32.5%. Ext. in 10 in. from 2.1 to $2 \% .5 \%$. The fractures ranged all the way from 100% fibrous to 100% crystalline. The highest T. S., 53,141 . with 8.1% contr. and 5.3% ext., was 100% crystalline; the lowest T. S., 40,693 , with 3.9 contr. and 2.1% ext., was $\%$ \% crystalline. All the fibrous irons showed from 12.2 to $2.2 \% \%$ ext., 17.3 to 32.5 contr., and T. S. from 43.426 to 49.615 . The fibrous irons are therefore of medium tensile strength and high ductility. The crystalline irons are of variable T. S., highest to lowest. and low ductility.

Lowmoor Lron Bars. - Three roliel bars $21 / 2$ inches diameter; tensile tests: elastic, $\because 3.200$ to $\because 4,200$; ultimate, $50.8 \% 5$ to 51,905 : contraction, 44.4 to 42.5 ; extensiun, 29.2 to 24.3 . Three hammered bars, $41 / 2$ inches diameter, elastic 25,100 to 24.200 ; ultimate, 46.810 to 49,223 ; contraction, 20.7 to 46.5 ; extension, 10.8 to 31.6 . Fractures of all, 100 per cent fibrous. In the hammured hars the Inwest. T. S. was accompanied by lowest ductility.

Iron Bars, Various. - Of a lot of 80 bars of various sizes, some rolled. antl some hammered (the above Lowmoor bars included) the lowest T. S. (except one) 40.803 pounds per square inch, was shown by the Swedish "hoop L" bar $31 / 4$ inches diameter, rolled. Its elastic limit was 19,150 pounds; contraction 68.7% and extension 37.7% in 10 inches. It was also the most ductile of all the bars tested, and was 100% fibrous. The highest T. S., 60, , 80 pounds, with elastic limit, 29,400 ; coutr., 36.6 ; and ext., $24: 3 \%$, was shown by a "Farnley" 2 -inch bar, rolled. It was also 100% fibrous. The lowest ductiliry 2.6% contr., and 4.1% ext., was shown by a $33 / 4$-inch liammered bar. without brand. It also had the lowest T. S., 40,278 pounds, but rather high elastic limit, 25,700 pounds. Its fracture was 95% crystalline. Thus of the two bars showing the lowest T. S., one was the most ductile and the other the least ductile in the whole series of 80 bars.
Generally, high ductility is accompanied by low tensile strength, as in the Swedish bars. but the Farnley bars showed a combination of high ductility and hirh rensile streneth

Locomotive Forgings, Hron. -17 tests: average, E. L., 30,420; T. S., 50.5 1: contr. 34.5: ext 11111 in hes. $\because: 38$.

Broken Anchor Forgings, Iron.-4 tests: average, E. L., 23,825; T. S, 40.03.3: cnutr.. 3.0; ext. in 10 inches, 3.8.

Kirkality places these two irons in contrast to show the difference between good and bad work. The broken anchor material, he says, is of a most treachpronc character. and a disgrace to any manufacturer.
Iron Plate Girder. - Tensile tests of pieces cut from a riveted iron girder after twenty yerrs' service in a railway bridge. Top plate, average of 3 tests. E. L.. 26,600 ; T. S., 40.805 ; contr. 161 ; ext. in 10 inches, 78. Bottom plate, average of 3 tests, E. L., 31,200; T. S., 44,288; cnntr, 13.3; ext. in 10 inches, 6.3. Web-plate, average of 3 tests, E. L., 28.000; T.S , 45.902 ; contr., 159 ; ext. in 10 inches, 8.9. Fractures all fibrous. The results of 30 *ests from different parts of the girder prove that the iron has undergone so change huring twenty years of use.
Steel Plates.-Six plates 100 inches long, 2 inches wide, thickness varions. 36 to 9 ." inch T. S., 55,485 to 60,805 ; E. L , 29,600 to 33,200 ; contr., 52.9 to 59.5; ext. $1 \sim 05 \mathrm{t} 0185 \hat{\mathrm{i}}$.

Steel Bridge Hinks.-40 links from Hammersmith Bridge, 1886.

	シ்	$\stackrel{\text { H }}{\text { Hi }}$	－	$\begin{aligned} & \dot{B} \\ & \text { B } \\ & \text { B } \\ & \text { H } \\ & \text { H } \end{aligned}$	Fracture．	
					室	
Average of all．	67.294	38.294	34．5\％	14．11\％		
Lowest T．S．．	60，753	36，030	30.1	15.51	30\％	70\％
Highest T．S．and E．L	r5，9：36	44，166	31.2	12.42	15	85
Lowest E．L ．．．．．．．．．	64.044	32，441	34.7	13.43	30	ro
Greatest Contraction	63.745	38.118	52.8	15.46	100	0
Greatest Extension．	65，980	36，792	40.8	17．78	35	65
Least Contr．and Ext．	63，980	39，017	6.0	6.62		100

The ratio of elastic to ultimate strength ranged from 50.6 to 65.2 per cent： average， 56.9 per cent．

Extension in lengths of 100 inches．At 10.000 lbs ．per sq．in．， 018 to 024 ； mean， $0: 0$ inch；at $火 0.000 \mathrm{lbs}$ ．per sq．in． .049 to $.063 ;$ mean， 055 inch；at $30,000 \mathrm{lbs}$ ．per sq．in．，． 083 to ．100；mean，． 090 ；set at 30,000 pounds per sq．in．， 0 to 002 ；mean． 0 ．

The mean extension between 10,000 to $30,000 \mathrm{lbs}$ ．per sq．in increased regu－ larly at the rate of .007 inch for each 2000 lbs ．per sq．in．increment of strain． This corresponds to a modulus of tlasticity of $28,5: 1,4: 9$ ．The least increase of extension for an increase of load of $20,000 \mathrm{lbs}$ ．per sq．in．，． 065 inch，cor－ responds to a modulus of elasticity of $30,669,231$ ，and the greatest， $0 \tilde{6} 6$ inch， to a mod川lus of $26.315,789$ ．

Steel Rails．－Bending tests， 5 feet between supports， 11 tests of flange rails fin pounds per yard， 4.63 inches high．

	Elastic stress．	Ult	fle	Ultimate
	Pounds．	Pounds．	Pounds．	Deflection．
Hardest．	34，200	60，960	3.24 ins．	ins
Softest	32，000	56.540	3.66	8 ＇
Mean．	32， 663	59，209	3.53	8 ،

All uncracked at 8 inches deflection．
Pulling tests of pieces cut from same rails．Mean results．

	Elastic Stress． per sq．in．	Ultimate Pounds． per sq．in．	Contraction of area of frac－		
ture．				\quad	Extension
:---:					
in 10 ins．					

Steel Tires．－Tensile tests of specimens cut from steel tires．
Krupp Steel．－262 Tests．

			Ext．in	
	E．L．	T．S．	Contr．	5inches．
Highest．．．．．．．	69,250	$119,0 \sim 9$	31.9	18.1
Mean．．．．．．．．	52,869	104,112	29.5	19
Lowest．．．．．．．	$41, \% 00$	90,523	45.5	23.7

Vickers，Sons \＆Co．－r0 Tests．

				Ext．in
	E．L．	T．S．	Contr．	5 inches．
Highest．．．．．．．．	58,600	120,789	11.8	8.4
Mean．．．．．．．．．	51.066	101,264	17.6	12.4
Lowest．．．．．．．	48,600	$8 \pi, 697$	24.7	16.0

Note the correspondence between Krupp＇s and Vickers＇steels as to ten－ sile strength and elastic limit．and their great difference in contraction and elongation．The fractures of the Krupp steel averaged 2．2 per cent silky， 78 per cent granular；of the Vicker steel， 7 per cent silky， 93 per cent granu－ lar．

Steel Axles.-Tensile tests of specimens cut from steel axles. Patent Shaft and Axle Tree Co.- 157 Tests.

Highest. Mran...		T S	Contr.	Ext. in 5 inches.
	$\frac{\text { E. L. }}{49,800}$	99,009		5 16.0
	36. $\because 6 \%$	\%2,099	33.0	23.6
Lowest.	31,800	61,38:	34.8	25.3
Vickers, Sons \& Co.-120 Tests.				
	E. L	T. S.	Contr.	5 inches.
Highest.	42.600	83,701	18.9	13%
Mean.	37,618	\%0,5\%2	41.6	27.5
Lowest.	30,250	56,388	49.0	37.2

The average fracture of Patent Shaft and Axle Tree Co. steel was 33 per cent silky, 67 per cent granular.

The average fracture of Vickers' steel was 88 per cent silky, 12 per cent granular.

Tensile tests of specimens cut from locomotive crank axles.
Vickers'.-8: Tests, $18 \uparrow 9$.

	E. L.	T. S.	Contr.
Highest.	26,400	68,057	28.3
Mean	24,146	57.922	329
Lowest	21,00	50,195	52.7
	Vicierss'.- \%8 Tests, 1884.		

Ext. in
5 inches.
184
24.0

Viciems'.- $\ddagger 8$ Tests, 1884.

Steel Propeller Shafts.-Tensile tests of pieces cut from two shafts, mean of fur tests eacn. Hollow shaft, Whitworth. 'I. S. 61,290; E. L., $30,5 \tilde{5}$; contr., 52.8 ; ext. in 10 inches, 286 . Solid Shaft, Vickers', T. S., 46.8 ĩ ; E. L. 20,425; contr., 44.4; ext. in 10 inches, 30.7.

Thrusting tests, Whitworth, ultimate, 56,201 ; elastic, 29,300; set at 30.000 Ibs., 0.18 per cent; set at $40,000 \mathrm{lbs}$., 2.04 per cent; set at $50,000 \mathrm{lbs}$., 3.8% per cent.

Thrusting tests, Vickers', ultimate, 44.602 ; elastic, 22,250 ; set at $30,000 \mathrm{lbs}$., 2.29 per cent; set at $40,000 \mathrm{lbs} ., 4.69$ per cent.

Shearing strength of the Whitworth shaft, mean of four tests, was 40.654 lbs. per square inch, or 66.3 per cent of the pulling stress. Specific gravity of the Whitworth steel, 7.86% : of the Vickers,$~ \% .856$.

Spring Steel.-Untempered, 6 tests, average, E. L., 67.916: T. S., 115,6it'; contr., 37.8; ext. in 10 juches. 16.6. Spring steel uniempered. 15 tests. average, E. L., 38.785; T. S., 69.496 ; contr., 19.1; ext. in 10 inches, 298. These two lots were shipped for the same purpose, viz., railway carriage leaf sprines.

Steel Castings. - 44 tests, E. L., 31.816 to $35.56 \sim$; T. S., 54,928 to 63,840; contr., 1.67 to 15.8 ; ext., 1.45 to 15.1 . Note the great variation in ductility. The steel of the bighest strength was also the most ductile.

Riveted Joints, Pulling Tests of Riveted Steel Plates, Triple Riveted Lap Joints, Machine Riveted, Holes Drilled.

Plates, width and thickn"ss, inches :
$13.50 \times .25 \quad 13.00 \times .51 \quad 1.75 \times .78 \quad 12.25 \times 1.01 \quad 14.00 \times .77$
Plates, gross sectional area square inches: $\begin{array}{lll}3.3 \% & 6.63 & 9.165\end{array}$
Stress, total, pounds :
199,320
332,640
423,180
$12.3 \% 2$
10. $\% 80$

Stress per square inch of gross area, joint:	42,696	42,227
Stress per square inch of plates, solid :		
70,665 65,300 64,050	62,280	68,045
Ratio of strength of joint to solid plate :		
83.46 \% 76.83 \% 72.09	68.55	62.06
Ratio net area of plate to gross : 73.4 65.5 62.7	64.7	\%2.9
Where fractured :		
plate at plate at plate at	plate at	rivets
Rivets, diameter, area holes. number: holes.	holes.	sheared.
. $45, .159,24 \quad .64, .321,21 \quad .95, .708,12$	1.08, . 916,12	. $95, .708,12$
Rivets, total area: $\quad 6.741 \quad 8.496$	10.992	8.496

Strength of Welds. -Tensile tests to determine ratio of strength of weld to solid bar.

Iron Tie Bars.-28 Tests.
Strength of solid bars varied from........ 43,201 to 57,065 lbs.
Strenth of welded bars varied from........................... 17, 816 to 44,586 lbs.
Ratio of weld to solid varied from
3 .0 to 79.1%
Iron Plates.-7 Tests.
Strength of solid plate from.................................. . 44, 851 to $47,451 \mathrm{lbs}$.
Strength of welded plate from................................. 26,442 to 38,931 lbs.
Ratio of weld to solid.
57.7 to 83.9%

Chain Links.-216 Tests.
Strength of solid bar from 49,122 to 57,8i5 lbs.
Strength of welded bar from............................. $39,5 \% 5$ to 48,824 lbs.
Ratio of weld to solid
\%2. 1 to 95.4%
Iron Bars.-Hand and Electric Machine Welded.
32 tests, solid iron, average..................................... 52, 444
17 " ${ }^{17}$ electri welded, average.............................. 46,836 ratio 89.1%
19 " hand
46,899 " 89.3\%
Steel Bars and Plates.- 14 Tests.
Strength of solid
54,226 to 64,580
Strength of weld
28,553 to 46,019
Ratio weld to solid
$5 \% .6$ to 82.1%
The ratio of weld to solid in all the tests ranging from 37.0 to 95.4 is proof of the great variation of workmanship in welding.

Cast Copper. -4 tests, average, E. L., 5900 ; T. S., 24 , 781 ; ccatr., 24.5; ext., 21.8.

Copper Plates.-As rolled, 22 tests, . 26 to .75 in. thick; E. L., 9;66 to 18,650 ; T. S., 30,$94 ; 3$ to 34,281 ; contr., 31.1 to 57.6 ; ext., 39.9 to 52.2 . The variation in elastic limit is due to difierence in the heat at which the plates were finished. Annealing reduces the T. S. only about 1000 pounds, but the E. L. from 3000 to 7000 pounds.

Annther series, .38 to .52 thick; 148 tests, T. S., 29,099 to 31,924 ; contr., 28.7 to 56.7 ; ext. ia 10 inches, 28.1 to 41.8 . Note the uniformity in tensile strength.
Drawn Copper. -74 tests (0.88 to 1.08 inch diameter); T. S., 31,634 to 40,557 ; contr.. $3 \overline{1} .5$ to 64.1 ; ext. in 10 inches. 5.8 to 48.2.

Bronze from a Propeller Blade.-Meaus of two tests each from centre and edge. Central portion (sp. gr. 8.320). E. L., 7550; T. S., 26,312 ; contr., 2̄̃.4; ext. in 10 inches, 32.8. Edge portion (sp. gr. S550). E. L., 8950; 'Т. S. 35.960 : contr., 378 ; ext. in 10 inches, 47.9.
Cast German Silver. -10 tests: E. L., 13,400 to 29,100; T. S., 23,714 to 46,510 ; contr., 3.2 to 21.5 ; ext. in 10 inch $5,0.6$ to 10.2 .

Thin Sheet Metal.-Tensile Strength.

German silver, 2 lots
75. 816 to 87,129

Bronze, 4 lots.. . . . 73,380 to 92.086
Brass, 2 lots
44.398 to 58.188

Iron, 13 lots, lengthway 44,331 to 59.484
Iron, 13 lots, crossway
39,838 to 57,350

Steel, 6 lots, crossway . 55,918 to 80,799

Wire.-Tensile Strength.

n sil	81,735 to 92,224
Bronze, 1 lo	78,049
Brass, as drawn, 4 lots	81,114 to $98,5 \% 8$
Copper, as drawn, 3 lots	37,60ヶ to 46,494
Copper annealed, 3 lots	34,936 to 45,210
Copper (another lot), 4 lots	35,05\% to 62,190
Copper (extension 36.4 to 0.6%).	
Iron, 8 lots	59,246 to 97,908
Iron (extension 15.1 to 0.7%).	
Steel, 8 lots	103,272 to 318,823

The Steel of $318,823 \mathrm{~T}$. S. was . 047 inch diam., and had an extension of only 0.3 per cent; that of $103,2 \tau 2$ T. S, was. 107 inch diam. and had an extension of 2.2 per cent. One lot of .044 inch diam. had 266,114 T. S., and 5.2 per cent extension.

Wire Ropes.

Selected Tests Showing Range of Variation.

Description.			Strands.			Hemp Core.	
			$\left\|\begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$				
Galvanized.	7.70	53.00	6	19	. 1563	Main	339,780
Ungalvanized	7.00	53.10	7	19	. 1495	Main and Strands	314,860
Ungalvanized	6.38	42.50	7	19	.134a	Wire Core	295,920
Galvanized..	7.10	37.57	6	30	. 1004	Main and Strands	27e, 250
Ungalvanized	6.18	40.46	7	19	.130:	Wire Core	268,470
Ungalvanized	6.19	40.33	7	19	. 1316	Wire Core	2\%1,820
Galvanized.	4.92	20.86	6	30	. 0728	Main and Strands	190,890
Galvanized.	5.36	18.94	6	12	. 1104	Main and Strands	136,550
Galvanized	4.8:	$\because 1.50$	6	r	.1693	Main	1 129,710
Ungalvanized	3.65	12.21	6	19	. 0755	Main	110,180
Ungalvanized	3.50	12.65	-	7	. 122	Wire Core	101,440
Ungalvanized	3.81	14.12	6	7	. 135	Main	98,6i0
Galvanized.	4.11	11.35	6	12	. 080	Main aud Strands	\%5,110
Galvanized.	3.31	7.27	6	12	. 065	Main aud Strands	55.095
Ungalvanized	3.02	8.62	6	-	. 105	Main	49,555
Ungalvanized	2.68	6.26	6	6	. 0963	Main and Strands	41.205
Galvanized..	2.87	5.43	-	12	. 0560	Main and Strands	38,555
Galvanized	2.46	3.85	6	12	. 0422	Main and Strands	28,075
Ungalvanize	1.75	2.80	6		. 0619	Main	24,552
Galvanized.	2.04	2.72	6	12	.0378	Main and Strands	20,415
Galvanized.	1.76	1.8	6	12	. 0305	Main	14,634

Hemp Ropes, Untarred. -15 tests of ropes from 1.53 to 6.90 inches circumference, weighing 0.42 to 7.77 pounds per fathom, showed an ultimate strength of from $16 \gamma 0$ to 33,808 pounds, the strength per fathom weight varying from $28 \tilde{T}_{2} 2$ to 55.34 pounds.

Hemp Ropes, Tarred. - 15 tests of ropes from 1.44 to 7.12 inches circumference, weighing from 0.38 to 10.39 pounds per fathom, showed an ultimate strength of from 1046 to 31,549 pounds, the strength per fathom weight varying from 1767 to 5149 pounds.

Cotton Repes. -5 ropes, $\dot{2} .48$ to 6.51 inches circumference, 1.08 to 8.1% pounds per fathom. Strength 3089 to 23,258 pounds, or 2474 to 3346 pounds per fathom weight.
Manila Ropes. -35 tests: 1.19 to 8.90 inches circumference, 0.20 to 11.40 pounds per fathom. Strength 1280 to 65,550 pounds, or 3003 to 7394 pounds per fathom weight.

No. of lots.

Belting.

11 Leather, single, ordinary tanned
Tensile strength
per square inch.
$3: 48$ to 4824
4 Leather, single, Helv \uparrow tia .. $56: 31$ to 5944
7 Lrather, double, nrlinary tanned..................................... . . 2160 to 35 5í
8 Leather, double Helvetia... 41 . 8 to 5412
6 Cotton, solid woven.............. 5648 to $8 \star 69$

1 Flax, solid, woven 9946
1 Flax, folded. stitched .
6 Hair, solid, woven 3852 to 5159
2 Rubber, solid, woven.... 4271 to 4343
Canvas. - 35 lots: Strength, lengthwise, 113 to 408 pounds per inch; crossways, 191 to 468 pounds per inch.

The giades are numbered 1 to 6 , but the weights are not given. The strengths var \bar{y} considerably, even in the same number.

Irarbles.-Crushing strength of various marbles. 58 tests, 8 kinds. Specimen: were 6 -inch cubes, or columns 4 to 6 inches diameter, and 6 and 12 inches high. Range \%i54: to 13,720 pounds per square inch.

Granite.-Crusbing strength, 17 tests; square columns 4×4 and 6×4, 4 to 24 inches high, 3 kinds. Crushing strength ranges 10,026 to $13,2 \pi 1$ pounds per square inch. (Very uniform.)

Stomes.-(Probably sandstone, local names only given.) 11 kinds, 42 tests. 6×6, columns 12,18 and 24 inches high. Crushing strength ranges from 2105 to $12,1 \geqslant 2$. The strength of the colnmn 24 inches long is generally from 10 to 20 per cent less than that of the 6 -inch cube.

Stones.-(Probably sandstone) tested for London \& Northwestern Railway 16 lots, 3 to 6 tests in a lot. Mean results of each lot ranged from 3785 to 11.956 ponnds. The variation is chiefly due to the stones being from different lots. The different specimens in each lot gave results which generally agreed within 30 per cent.

Rricks. - Crushing strength, 8 lots; 6 tests in each lot; mean results ranged from 1835 to 9209 pounds per square inch. The maximum variation in the specimens of one lot was over 100 per cent of the lowest. In the most uniform lot the variation was less than 20 per cent.

Wood.-Transverse and Thrusting Tests.

		Sizes abt. in square.	Span, inches.	Ultimate Stress.	$\frac{\stackrel{S}{L} \overline{\bar{W}}}{\underline{L}}$.	Thrusting Stress per sq. in.
Pitch pine........	10	111/2 to 121/2	144	45.856	1096	3586
				to	to	to
				80.520	1403	5438
		12 to 13	144	3ヶ,948	657	$24 \% 8$
Dantzic fir........	12			to	to	to
				54.152	790	3423
				32,856	1505	$24 \% 3$
English oak.......	3	$41 / 2 \times 12$	120	to	to	to
American white oak				39,084 23.664	1779	4437
	5	$41 / 2 \times 12$	120	23.664 to	1190 to	2656 to
		412 $\times 12$		26,952	13T2	3899

Demerara greenheart, 9 tests (thrusting) 8169 to 10,795
Oregon pine, 2 tests 5888 and 7284
Honsluras mahogany, 1 test $6 \pi 69$
Tobasco mahogany, 1 test. 5978
Norway spruce, 2 tests 52:59 and 5494
American yellow pine, 2 tests $38 i 5$ and 3993
English ash, 1 test 3025

Portland Cement.- (Austrian.) Cross-sections of specimens $2 \times 21 / 2$ inches for pulling tests only; cubes, 3×3 inches for thrusting tests; weight,

988 pounds per imperial bushel: residue, 0. $\boldsymbol{\tau}$ per cent with siere 2500 meshes pur square inch: 388 per cent by volume of water required for mixing; time of setting, \tilde{i} days; 10 tests to each lot. The mean results in lbs. per sq. in. were as follows:

Cement alone,	Cement alone,	1 Cement, 2 Sand,	1 Cement, 3 Sand,	1 Cement, 4 Sand,
Pulling.	Thrusting.	Thrusting.	Thrusting.	Thrusting.
376	2910	893	407	228
420	3342	1023	494	275
451	3724	1172	594	338

Portland Cement.-Various samples pulling tests, $2 \times 21 / 2$ inches cross-section, all aged 10 days, 180 tests; ranges 8π to 643 pounds per square inch.

TENSILE S'RRENGTRI OF WHRE.

(From J. Bucknall Smith's Treatise on Wire.)
Tons per sq.
in. sectional area.
Black or annealed iron wire......................... 25

Bright hard drawn... 35
Bessemer, steel wire. 40
Mild Siemens-Martin steel wire........................ . . . 60

High carbon ditto (or "improred ") 80
Crucible cast-steel "improved " wire... 100
"Improved" cast-steel "plough "..... 120
Pounds per sq. in. sectional area. 56,000
78.400
89.600

134,000
179.200

2:24,000
268,800
Special qualities of tempered and improved caststeel wire may attain

150 to $1 \% 0336,000$ to 380,800
MISCELLANEOUS TESTS OF MHTERIALS. Reports of Work of the Watertown resting-machine in 1883.

TESTS OF RIVETED JOINTS, IRON AND STEEL PLATES.

*		11-16	$3 / 4$	10	6		39,300	47.180	$47.0 \pm$
*	38	11-16	$3 / 4$	101\%	6	$13 / 4$	41,000	47,180	49.0 \ddagger
*	$1 / 2$	$3 / 4$	13-16	10^{2}	5	$2{ }^{-4}$	35.650	44,615	$45.6 \pm$
*	1/2	$3 / 4$	13-16	10	5	2	35,150	44,615	$44.9 \pm$
*	3/8	11-16	$3 / 4$	10	5	2	46.360	47,180	59.9 §
*	3/8	11-16	34	10	5	2	468 \%	47,180	60.5 §
*	1%	$3 / 4$	13-16	10	5	2	46,400	44,615	59.4 §
*	$1 / 2$	$3 / 4$	13-16	10	5	2	46,140	44,615	59.2 §
*	5/8	$1{ }^{1}$	1116	101/2	4	25/8	44,260	44,635	57.2 §
	5\%	1	$1 \begin{array}{ll}1 & 1-16\end{array}$	101/2	4	25\%	42,350	44,635	549 §
*	$3 / 4$	11/8	13 -16	11.9	4	2.9	42,310	46.590	52.1 §
*	3	11/8	$13-16$	11.9	4	2.9	41,920	46.590	51.7
*	38	$3 / 4$	13-16	101/2	6	$13 / 4$	61,2\%0	5:3.330	59.5
+	3/8	$3 / 4$	13-16	101/2		$13 / 4$	60.830	53,330	591
		15-16		10^{2}	5	2^{18}	4 4,530	5 7,215	40.2
+	1%	$15-16$	1	10	5	$\stackrel{2}{2}$	49.840	57.215	4 4. 3
+	3/8	11-16	$3 / 4$	10	5	2	62,\%\%0	53,330	71.7
t	3/8	11-16	$3 / 4$	10	5	2	61.210	53.330	69.8 §
	1\%	15-16	$1{ }^{4}$	10	5	2	68.920	5\%.215	571 §
\dagger	1/2	15-16	1	10	5	2	66.710	57.215	55.0 8
+	5/8		1 1-16	91/2	4	23/8	62.180	52.445	63.4
+	5\%8	1	1 1-16	91/2	4	23/8	62.590	52,445	63.8 §
+	38	11/8	1 3-16	10	4	21/2	54.650	51,545	540 §
	$3 / 4$	11/8	1 3-16	10	4	21/2	54.200	51,545	53.4 §

* Iron.
\dagger Steel.
\ddagger Lap-joint. § Butt-joint.

The efficiency of the joints is found by dividing the maximum tensile stress on the gross sectional area of plate by the tensile strength of the material.

COMPRESSION TESTS OF 3×3 INCH WROUGHT-IRON BARS.

TENSILE TEST OF SIX STEEI, EYE-BARS.

COMPARED WITH SMALL TEST INGOTS.

The steel was made by the Cambria Iron Company, and the eye-bar heads made by Keystone Bridge Company by upsetting and hammering. All the bars were made from one ingot. Two test pieces, $3 / 4$-inch round. rolled from a test-ingot, gave elastic limit 48,040 and 42.210 pounds; tensile strength, 73,150 and $69,4 i 0$ pounds, and elongation in 8 inches, 22.4 and 25.6 per cent. respectively. The ingot from which the eye-bars were made was 14 inches square, rol ed to billet, 7×6 inches. The eye-bars were rolled to $61 / 2 \times 1$ inch. Cuemical tests gave carbon . 27 to . 30 ; manganese, .61 to .73 ; phosphorus, $.0 ヶ 4$ to 098 .

Gauged Length, inches.	Elastic limit, lbs. per sq. in.	Tensile strength per sq. in., lbs.	Elongation per cent, in Gauged Length.
160	37.480	67,800	15.8
160	36,650	64,000	6.96
160	$\boxed{37,600}$	71,560	8.6
200	35,100	68,720	12.3
200	33.230	65,800	12.0
200	$3 \pi, 640$	64,410	16.4
200		68,290	13.9

The average tensile strength of the $3 / 4$-inch test pieces was $71,310 \mathrm{lbs}$., that of the eye-bars $67,230 \mathrm{lbs}$., a decrease of 5.7%. The average elastic limit of the test pieces was $45,150 \mathrm{lbs}$., that of the eye-bars $36,402 \mathrm{lbs}$., a decrease of 19.4%. The elastic limit of the test pieces was 633% of the ultimate strength, that of the eye-bars 54.2% of the ultimate strength.

COMPRESSION OF WROUGHT－IRON COLUMNS，LATTICED BOX AND SOLID WEB．

ALL TESTED WITH PIN ENDS．

Columns made of				
6 inch channel，solid we	10.0	9.831	432	30，2：0
	150	9.97 i	592	21，050
8 ＂＂،＂	20.0	9．62	755	16，2：0
8 ＂	20.0	16281	1，230	22，540
8 ＂	26.8	16.141	1，645	1 $7,5 \%$
8 －inch chaunels，with $5-16-\mathrm{in}$ ．continuous plates	26.8	19．41\％	1，940	25，200
5－16－inch continuous plates and angles． Width of plates， $12 \mathrm{in}, 1 \mathrm{in}$ ．and 7.35 in.	26.8	16.168	1，765	28，020
$\tilde{\gamma}-16$－inch continuons plates and angles． Plates 12 in．wide．	26.8	20954	2，242	25， 270
8 －inch channels，lattice	13.3	7．628	，6テ9	33.910
8 ＂	20.0	\％．621	924	34.120
8 \％＂${ }^{6}$	26.8	\％．6\％3	1，255	29．8ヶ0
8 －inch channels，latticed，swelled sides．．	134	\％ 6.694	684	3：3，5：30
	200	\％．517	921	33．390
8 ＂＂．	26.8	7．102	1，280	30．r̃0
10 ＂	16.8	11.944	1，470	3：3． 240
10 ＂	25.0	12.175	1.926	32．440
10－inch channels，latticed，swelled sides．	16．${ }^{2}$	12．366	1，549	31.130
＊ 10 －inch channels．latticed one side；con－ tinuous plate one side	25.0	11．932	1，962	32,140 26,190
＋ 10 inch channels，latticed one side；con－ tinuous plate one side．．	25.0	1\％．20	1．8？7	17．2\％0

[^8]
EFFECT OF COLD－DRAIVING ON STEEL．

Three pieces cut from the same bar of hot－rolled steel：
1．Original bar： 2.03 in．diam．．gauged length 30 in．，tensile strength 55,400 Ibs．per square in．elongation $2: 3.9 \%$ ．
2．Diameter reduced in compression dies（one pass） .094 in．；T．S． 00,420 ；el． 2.7% in 20 m.
．2さ2 in．；＇I＇．S．81，©90；el． 0.0% in in 20 in ．
Compression test of cold－drawn bar（same as No．3），length 4 in．，diam． 1.508 in．：Compressive strength per sq．in ， 75.000 lbs．；amount of compres－ sion ． 0 jí in．；set .04 in ．Diameter increased by compression to $1.8: 2 \mathrm{in}$ ．in the mildle；to $1.81: 3 \mathrm{in}$ ．at the ends．

Tests of Cold－rolled and Cold－drawn Steel，made by the Cambria Iton Co，in 189\％，gave the following resuits（aveane of 12 tests of each）：
Before cold－rolling，E．L． 35.390 T．S． 59,980 El．in Sin． 28.3% Red． 58.5%
 After cold－drawing，＂$\quad 6.350$＂ 83,860 ＂＂ 8.9 ＂＂ 34.2 ＂
The original bars were 2 in．and $7 / 8$ in．diameter．The test pieces cut from the bars were $3 / 4 \mathrm{in}$ ．diam．， 18 in ．long．The reduction in diameter from the hot－rulled to the cold－rolled or cold－drawn bar was $1 / 16$ in．in each case．

TESTS OF AMERICAN WOODS. (See also page 309.)

In all cases a large number of tests were made of each wond. Minimum and maximum results only are given. All of the test specimens had a sectional area of $1.5 \% \times 1.5 \% 5$ inches. The transverse test specimens were 39.37 inches between supports, and the compressive test specimens were 12.60 inches long. Modulus of rupture calculated from formula $R=\frac{3}{2} \cdot \frac{P l}{b d^{2}} ; P=$ load in pounds at the middle, $l=$ length in inches, $b=$ breadth, $d=$ depth:

Name of Wood.	Transverse Tests. Modulus of Rupture.		Compression Parallel to Grain, pounds per square inch.	
	Min.	Max.	Min.	Max.
Cucumber tree (Magnolia acuminata)..	r,440	12,050	4,560	7,410
Yellow poplar white wood (Liviodendron tulipifera)	6,560	11,756	4,150	5,790
White wood, Basswood (Tilia Americana)	6,720	11,530	3,810	6,480
Sugar-maple, Rock-maple (Acer saccharinum.	9,680	20,130	7,460	9.940
	8,610	13,450	6,010	7.500
Locust (Robinia pseudacacia)	12,200	21,730	8,330	11.940
Wild cherry (Prmus serotina)	8,310	16,800	5,830	9,120
Sweet gum (Liquidambar styraciflua).	7.470	11,130	5,6:30	7,620
Dogwood (Cornus florida)..............	10,190	14.560	6,250	9,400
Sour gum, Pepperidge (Nyssa sylvatica).	9,830	14,300	6,240	7,480
Persimmon (Diospyros Virginiana). ...	10,290	18,500	6,650	8,080
White ash (Fraxunis Americana).	5,950	15,800	4,520	8,830
Sassafras (Sassafras officinale).	5,180	10,150	4,050	5,970
Slippery elm (Ulmus fulva).	10,220	13,952	6,980	8,790
White elm (Ulmus Americana)..	8,250	15,070	4,960	8,040
Sycamore; Buttonwood (Platanus occidentalis).	6,720	11,360	4,960	7,340
Butternut; white walnut (Juglans cinerea)..	4,700	11,740	5.480	6,910
Black walnut (Jıglans nigra).	8,400	16,320	6,910	8,850
Shellbark hickory (Carya alba)	14,8i0	20,710	7,650	10,280
Pignut (Carya porcina)...	11.560	19,430	7,460	8,4\%0
White oak (Quercus alba)	\%.010	18,360	5,810	9,0i0
Red oak (Quercus rubra)	9.760	18,3\%0	4,960	8,970
Black oak (Quercus tinctorio)	7,900	18.420	4.540	8,550
Chestnut (Castanea vulgaris)	5,950	12.8i0	3,680	6,650
Beech (Fagus ferruginea)	13,850	18,840	5,\%\%0	7,840
Canoe-birch, paper-birch (Betula papyracea)..	11,710	17,610	5.7\%0	8,590
Cottonwood (Populus monilifera)	8.390	13,430	3.790	6,510
White cedar (Thuja occidentalis)	6,310	9,530	2.660	5,810
Red cedar (Juniperus Virginiana)	5,640	15,100	4,400	7.040
Cypress (Saxodium Distichum)	9,530	10.030	5,060	7.140
White pine (Pinus strobus).	5,610	11.530	3.150	5.600
Spruce pine (Pinus glabra)..	3,780	10,980	2,580	4,680
Long-leaved pine, Southern pine (Pinus prlustris)	9,220	21,060	4,010	10,600
White spruce (Picea alba,	9,900	11,650	4,150	5. 300
Hemlock (Tsuga Cancodensis)..........	7,590	14,680	4,500	7,420
Red fir, yellow fir (Pseudotsuga Douglasii).	8,220	17.920	4,880	9,800
Tamarack (Larix Americana)	10,080	16.\%\%0	6,810	10,700

SHEARING STRENGTH OF IRON AND STEEL.

H. V. Loss in American Engineer and Railroad Journal, March and April, 1893, describes an extensive series of experiments on the shearing of iron and steel bars in shearing machines. Some of his results are :

Depth of penetration at point of maximum resistance for soft steel bars is independent of the width, but varies with the thickness. If $d=$ depth of peuetration and $t=$ thickness, $d=.3 t$ for a flat knife, $d=.25 t$ for a 4° bevel knife, and $d=.16 \sqrt{t^{3}}$ for an 8° bevel knife. The ultimate pressure per inch of width in flat steel bars is approximately $50,000 \mathrm{lbs} . \times t$. The energy consumed in foot pounds per inch width of steel bars is. approximately: $1^{\prime \prime}$ thick, $1300 \mathrm{ft} .-\mathrm{lbs}$. $112^{\prime \prime}, 2500 ; 13 / 4^{\prime \prime}, 3700 ; 17 / 8^{\prime \prime}, 4500$; the energy increasing at a slower rate than the thickness. Iron angles require more energy than steel angles of the same size; steel breaks while iron has to be cut off. For hot-rolled steel the resistance per square inch for rectangular sections varies from 4400 lbs , to $20,500 \mathrm{lbs}$., depending partly upon its hardness and partly upon the size of its cross-area. Which latter element indirectly but greatly indicates the temperature, as the smaller dimensions require a considerably louger time to reduce them down to size, which time again means loss of heat.

It is not probable that the resistance in practice can be brought very much below the lowest figures here given-viz., 4400 lbs . per square inchas a decrease of 1000 lbs will henceforth mean a considerable increase in cross-section and temperature.

HOLDING-POWER OF RORLER-TUBES EXPANDED INTO TUBE-SHEETS.

Experiments by Chief Engineer W. H. Shock, U. S. N., on brass tubes, $21 / 2$ inches diameter, expanded into plates $3 / 4$-inch thick, gave results ranging from 5850 to 46.000 lbs . Out of 48 tests 5 gave figures under $10,000 \mathrm{lbs}$., 12 betweell 10.000 and 20.000 lbs ., 18 between 20,000 and $30,000 \mathrm{lbs}$., 10 between 30.000 and 40.000 lbs ., and 3 over $40,000 \mathrm{lbs}$.

Experiments by Yarrow \& Co., on steel tuhes, 2 to $21 / 4$ inches diameter, gave results similarly varying. ranging from $\tau 900$ to $41,715 \mathrm{lbs}$., the majority langing from 20.600 to 30.000 lbs . In 15 experiments on 4 and 5 inch tubes the strain ranged from $20, \% 20$ to $68,040 \mathrm{lbs}$. Beading the tube does not necessarily give increased resistance, as some of the lower figures were obtained with beaded tubes. (See paper on Rules Governing the Construction of Steam Boilers, Trans. Engineering Congress, Section G, Chicago, 1893.)

CHAENS.

Weight per Foot, Proof rest and Breaking Weight.
(Pennsylvania Railroad Specifications.)

Nominal Diameter of Wire, inches.	Description.	Specifications.		
		Weight per foot, lbs.	Pronf Test, lbs.	Breaking Weight, lbs.
5/32	Lock-chain ...	0.20		
3/16	Fire-door chain.	0.35		
$1 / 4$	Crossing-gate chain	0.70	1500	8000
$5 / 16$	Sprocket-wheel chain.	1.10	3000	5500
$3 / 8$	Brake-chain	1.50	3500	r000
	Crane-chain	1.50	4000	7500
$7 / 16$	Drop-hottom branch chain.	1.90	5000	9500
7/16	Crane-chain	1.90	5500	10.000
$1 / 2$	Drop-bottom main chain..	2.50	\%000	12.500
1/2	Crane-chain	2.50	r'500	13,000
$5 / 8$	Safety "	4.00	11,000	20,000
$\frac{5}{3}$	Crane	4.00	11,000	20.000
$3 / 4$	Crane "	5.50	16.000	29.000 29.000
$7 / 8$	" "	\%. 40	23.000	40,000
1	"	9.50	30,000	55,000
$11 / 8$	"6 6	12.00	40,000	66.000
$11 / 4$	"، ${ }^{6}$	15.00	50,000	82.000
112	'6	21.00	¢0,000	116,000

Elongation of all sizes, 10 per cent. All chain must stand the prescribed proof test without deformation.

British Admiralty Proving Tests of Chain Cables.-Stud. links. Minmmum size in inches and l6ths. Proving test m tons of 2240 lbs .

 $\begin{array}{lllllllllllll}\text { Min. Size: } & 1^{8} & 1^{9} & 1^{10} & 1^{11} & 1^{12} & 1^{13} & 1^{14} & 1^{15} & 2 & 2^{1} & 2^{2} & 2^{3} .\end{array}$

Wrought-iron Chain Cables. - The strength of a chain link is less than uwice that of a straght bar of a sectinnal area equal to that of one side of the link. A weld exists at one end and a bend at the other. each requiring at least one heat, which produces a decrease in the strength. The report of the committee of the U. S. Testing Board, on tests of wrought-iron and chain cables contains the following conclusions. That beyond doubt, when made of American bar iron, with cast-iron studs, the studded link is inferior in strength to the unstudded one.
"That when proper care is exercised in the selection of material, a variation of 5 to 17 per cent of the strongest may be expected in the resistance of cables. Without this care, the variation may rise to 2.5 per cent.
". That with prop ${ }^{r}$ material and construction the ultimate resistance of the chain may be expected to vary from 155 to $1 \% 0$ per cent of that of the bar used in making the links, and show an average of about 163 per cent.
"That the proof test of a chain cable should be about 50 per cent of the ultimate resistance of the weakest link."

The decrease of the resistance of the studded below the unstudded cable is probably due to the fact that in the former the sides of the link do not remain parallel to each other up to failure, as they do in the latter. The result is an increase of stress in the studded link over the unstudded in the proportion of unity, to the secant of half the inclination of the sides of the former to each other.

From a great number of tests of bars and unfinished cables, the committee considered that the average ultimate resistance, and proof tests of chain cables made of the bars, whose diameters are given, should be such as are shown in the accompanying table.

ULTIMATE RESISTANCE AND PROOF TESTS OF CHAIN CABLES.

Diam. of Bar.	Average resist $=163 \%$ of Bar.	Proof Test.	Diam. of Bar.	Average resist $=163 \%$ of Bar.	Proof Test.
Inches.	Pounds.	Pounds.	Inches.	Pounds.	Pomis.
$11 / 16$	71,172	33,840	19/16	16.283	\%7,159
$11 / 16$	79,544	37,8:0	15/8	174.475	82.956
11/8	88.445	42.053	$111 / 16$	187,0ヶ5	88,94\%
$13 / 16$	97.731	46,468	$13 / 4$	$200.0 \sim^{4}$	95,128
$11 / 4$	107.440	51,084	$113 / 16$	$213.4 \% 5$	101.499
$15 / 16$	11.577	55,903	$17 / 8$	$22 \pi .2 \pi 1$	109.058
$13 / 8$ $17 / 16$	$1: 28,1: 29$ $1: 99,103$	$60,9 \cdot 0$ 66.138	${ }_{2}^{115 / 16}$	241,463 256,040	114,806 121,737
11/2	150,485	71,550		25,040	121

STRENGTHE OF GLASS.
(Fairbairn's "Useful Information for Engineer's," Second Series.) Flint Glass Green Glass. Extra White

	Flint Gla	GreenGla	rown Glass
Mean specific gravity	3.0ヶ̈8	$2.5 \geqslant 8$	2.450
Mean teusile strength, lbs. per sq. in., b	2,413	2,896	2,516
do.	. $\quad 4.200$	4,800	6.000
Mean crush'g strength, lbs. p. sq.iu., cyl'drs.	. 27,582	39.8 ¢6	31.013
do. cubes.	. 13,130	20,206	21,867

The bars in tensile tests were about $1 / 2$ inch diameter. The crushing tests were made on cylinder's about $3 / 4$ inch diameter and from 1 to 2 inches high, and on cubes approximately 1 inch on a side. The mean transverse strength of glass, as calculated by Fairbairn from a mean tensile strength of $2 \overline{5} 60$ lbs. and a mean compressive strength of $30,150 \mathrm{lbs}$. per sq. in., is, for a bar supported at the ends and luaded in the middle,

$$
w=3140 \frac{b d^{2}}{l}
$$

in which $v=$ breaking weight in lbs., $b=$ breadth, $d=$ depth, and $l=$ length, in incues. Actual tests will probably show wide variations in both directions from the mean calculated strength.

STREENGTH OF COPPER AT HHGH TEEMPERATURES.

The British Admiralty conducted some experiments at Portsmouth Duckyard in 18\% \boldsymbol{r}, on the effect of increase of temperature on the tensile strength of copper and various bronzes. The copper experimented upon was in rods .id in. diameter, having a tensile strength of about 85 tons per square inch.
The following table shows some of the results:

Temperature Fahr.	Tensile in lbs. per sq. in.	Temperature Fahr.	Tensile Strength in lus. per sq. in.
Atmospheric.	23.115	Atmospheric.	
1100°	23,366	400°	21,105
200°	22,110	500°	19,597
300°	21.607		

Up to a temperature of $400^{\circ} \mathrm{F}$. the loss of strength was only about 10 per cent, and at $510^{\circ} \mathrm{F}$. the loss was 16 per cent. The lemperature of steam at 200 lbs pressuie is $38 \%^{\circ}$ F., so that according to these experiments the luss of strength at this point would not be a serious matter. Above a temperature of 500° the strength is seriously affected.

STRENGTE OF THMEER.

Strength of Long-leaf Pine (Yellow Pine, Pinus Palustris) from Alaban a (Bulletin No. 8, Forestry Div., Dept. of Agriculture, 1893. Tests by Prof. J. B. Johnson.)
The following is a condensed table of the range of results of mechanicai tests of over 2000 specimens, from 26 trees from four different sites in Alabama; reduced to 15 per cent moisture :

	Butt Logs.	Middle Logs.	Top Logs.	$\begin{aligned} & \text { Av'g of } \\ & \text { all Butt } \\ & \text { Logs. } \end{aligned}$
Specific gravity	0.449 to 1.039	0.575 to 0.859	0.484 to 0.	0.767
Transversestrength, $\frac{2}{2} \frac{W L}{b / h^{2}}$	1,762 to 16,200	7,640 te 17,128	4,268 to 15,554	12,614
do do. at elast limit	4,930 to 13.110	5,540 to 11, 190	2,553 to 11.950	9.460
Mod. nf elast., thous. lbs.	1,119 to 3,11 r	1,136 to 2,982	842 to 2,697	1,926
Relative elast. resilience, inch-pounds per cub. in	0.23 to 4.69	1.34 to 4.21	へ 09 to 4.65	98
Crushing end wise, str. per sq. in.-1bs.	4,881 to 9,850	5,030 to 9,300	4,587 to 9,100	\%,45\%
Crushing across grain strength per sq. in..lbs.				
Tensile strength per sq in Shearing strength (with grain), mean per sq. in	8,600 to 31,890 464 to 1,299	6,3:30 to 29,500	4,170 to 23,280	17,359

Some of the deductions from the tests were as follows :

1. With the exception of tensile strength a reduction of moisture is accompanied by an increase in strength, stiffness. and coughness.
2. Variation in strength gnes generally hand-in-hand with specific gravity.
3. In the first 20 or 30 feet in height the values remair constant: then occurs a decrease of strength which amounts at $\pi 0$ feet to 20 to 40 per cent of that of the butt-lng.
4. In shearing parailel with the grain and crushing across and parallel with the grain, practically no difference was found.
5. Large beams appear 10 to 20 per cent weaker than small pieces.
6. Compression tests endwise seem to furnish the best average statement of the value of wood, and if one test ouly can be made, this is the safest, as was also recognized by Bauschinger.
7. Bled timber is in no respect inferior to unbled timber.

The figures for crushing across the grain represent the load required to cause a compression of 15 per cent. The relative elastic resilience. in inchpounds per cubic inch of the material, is obtained by measmring the area of the piotted-strain diagram of the transverse test from the origin to the point in the curve at which the rate of deflection is 50 per cent greater than the rate in the earlier part of the test where the diagram is a straight line. This point is arbitrarily chosen since there is no definite "elastic limit" in timber as there is in iron. The "strength at the elastic limit" is the strength taken at this same point. Timber is not perfectly elastic for any load if left on any great lengih of time.

The long-leaf pine is found in all the Southern coast states from North Carolina to Texas. Prof. Johnson says it is probably the strongest timber in large sizes to be had in the United States. In small selected specimens, other species, as oak and hickory, may exceed it in strength and toughness. The other Southern yellow pines, viz., the Cuban, short-leaf and the loblolly pines are inferior to the long-leaf about in the ratios of their specific gravities; the long leaf being the heaviest of all the pines. It averages (kiln-dried) 48 pounds per cubic foot, the Cuban 47, the short-leaf 40 , and the loblolly 34 poinds.

Strength of Spruce Timber.-The modulus of rupture of spruce is given as follows by different authors: Hatfield, 9900 lbs . per square inch ; Rankine, 11,100 ; Laslett, 9045 ; Trautwine, 8100 ; Rodman, 616 S . Trautwine advises for use to deduct one-third in the case of knotty and poor timber.
Prof. Lanza, in 25 tests of large spruce beams, found a modulus of rupture from 2995 to 5666 lbs ; the average being 4613 lbs . These were average beams, ordered from dealers of good repute. Two beams of selected stock, seasoned four years, gave 7562 and $8 \uparrow 48 \mathrm{lbs}$. The modulus of elasticity ranged from 897,000 to $1,588,000$, averaging $1,294,000$.
Tme tests show much smaller values for both modulus of rupture and modulus of elasticity. A beam tested to 5800 lbs in a screw machine was left over night, and the resistance was found next morning to have dropped to about 3000, and it broke at 3500 .
Prof. Lanza remarks that while it was necessary to use larger factors of safety, when the moduli of rupture were determined from tests with smaller pieces, it will be sufficient for most timber constructions. except in factories, to use a factor of four. For breaking strains of beams, he states that it is better engineering to determine as the safe load of a timber beam the load that will not deflect it more than a certain fraction of its span, say about $1 / 300$ to $1 / 400$ of its length.

Properties of reimber.

(N. J. Steel \& Iron Co.'s Book.)

Description.	Weight per cubic foot, in lbs.	Tensile Strength per sq. inch, in lbs.	$\begin{aligned} & \text { Crushing } \\ & \text { Strength per } \\ & \text { sq. inch, } \\ & \text { iu lbs. } \end{aligned}$	Relative Strength for Cross Breaking. White Pine $=100$.	Shearing Strength with the Grain, lbs. per sq. inch
Ash	43 to 55.8	11.000 to 17.20%	4,400 to 9,363	130 to 180	458 to 700
	43 to 53.4	11,500 to 18,000	5,800 to 9,363	100 to 14t	
Cedar	50 to 56.8	10,300 to 11,400	5,600 to 6,000	55 tn 63	
Cherry				130	
Chestur	33	10,500	5, 350 to 5,600	96 to 123	
Elm	34 to 36.7	13,400 to 13,48?	6,831 to 10,331		
Hemloc				88 to 95	
Hickory		12.800 to 18,000	8.925	150 to 210	
Locust	44	20,500 to 24,800	9,113 to 11, ${ }^{\text {r }} 00$	132 to 227	
Maple	49	10,500 to 10.584	8,150	1122 to 220	$36{ }^{\text {a }}$ to 647
Oak, White	45 to 54.5	10,253 to 19,500	4,684 to 9,509	130 to 17%	752 to 966
Oak, Live	rio		6,850	155 to 189	
Pine, White.	30	10.000 to 12.000	5,000 to 6.650	100	225 to 423
Pine, Yellow.	28.8 to 33	12.600 to 19,200	5.400 to 9.500	98 to 170	286 to 415
Spruce.......		10,000 to 19,500	5,050 to $\tau, 850$	86 to 110	253 to 374
Walnut, Black.	42	9.286 to 16.000	7,500		

The above table should be taken with cantion. The range of variation in the species is apt to be much greater than the fig' res indicate. See Jolinson's tests on long-l eaf pine, and Lanza's on spruce, above. The weight of yellow pine in the tahle is much less than that given hy Johneon. (W. K)
Compressive Strengths of American Woods, when slowly and curfully secusomed. - Approximate arerages. deduced from many experiments male with the U. S. Government texting-machine at Waterioun, Mass., by Mr. S P. Sharpless, for the Census of 1880. Seasoned woods resist crushing much better than green ones; in many cases, twice as well. Different specimens of the same woud vary greatly The strengths may readily vary as much as one-third part more or less from the average.

	Endwise * lbs. per sq. in.	Sidewise, \dagger lbs. per sq. in.			Endwise.* lbs. per sq. in.	Sidewise, \uparrow sq. persq.	
		. 01	. 1			. 01	1
Ash, red and white	6800	1300	3000	Maple:			
Aspen....	4400	800	1400	sugar and black	8000		4300
Beech	7000	1100	1900	white and red.	6800	1300	2900
Birch	8000	1300	2600	Oak:			
Buckeye	4400	600	1400	white, post (or			
Buttrimut.	5400	T00	1600	iron), s w a mp			
Buttonu:ood (sycamore)				white, red, and black...	r000	1600	4000
Cedar, red.........	6000	\% 20	1000	scrub and basket.	6000	1100	4200
Cedar, white (arbor-				chesturt and live	7500	1f.00	4:00
vitie).	4400	500	900	pin	6500	1300	3000
Catctpa (Ind. bean)	5000	700	$13!0$	Pine :			
Cherry, wild.	8000	$1 \pi 00$	2600	white......... ...	5400	$\therefore 600$	1200
Chestunt..	5300	900	1600	red or Norway...	6300	600	1400
Coffee-tree, Ky	5200	1300	2600	pitch and Jersey			
Cypress, bald. .i..	6000	500	1200	scrub...........	5000	1000	2000
Elim, Am. or white	6800	1300	2600	Georgia	8500	1300	$\because 600$
red	7200	1300	2600	Poplar.	5000	60 n	1100
Hemlock	5300	600	1100	Sassafras.	5000	1300	2100
Hickory.	8000	2000	4000	Spruce, black	57.00	con	1300
Lignum-vitor.....	10000	1600	13000	" white	4500	600	1200
Liuden, American.	5000	500	900	Sycamore (button-			
Locust:				wood).	6000	1300	2600
black and yellow.	9800	1900	4400	Wraluut :			
honey.	\%000	1600	2600	black.	8000	1300	2600
Mrhogany	9000	1700	5:300	white (butternut).	5400	700	1600
Maple: broad-leafed, Ore.	5300	1400	2600	Willow	4400	roo	1400

* Specimens 1.5 r ins. square $\times 12.6$ ins. long.
+ Specimens 1.5 rins. square $\times 6.3$ ins. long. Pressure applied at mid-length by a punch covering one-fourth of the length. The first column gives the loads producing an indentation of .01 inch, the second those producing an indentation of .1 inch. (See also page 306).

Expansion of rimber Due to the Absorption of Water.

(De Volson Wood, A. S. M. E., vol. x.)
Pieces $36 \times 5 \mathrm{in}$., of pine, oak, and chestnut, were dried thoroughly, and then immersed in water for 37 days.

The mean per cent of elongation and lateral expansion were:
Elongation. ner cent
Pine.
0.065
Lateral expansion, per cent.. . 2.6
Oak.
0.085
3.5
Chestnut.
0.165
3.65

Expansion of Wood by Heat. - Trantwine gives for the expansion of white pine for 1 degree Fahr. 1 part in 440.530 , or for 180 degrees 1 part ir 2447, or about one-third of the expansion of iron.

Shearing Strength of American Woods, adapted for Pins or Treenails.

J. C. Trautwine (Jour. Franklin Inst.). (Shearing across the grain.)

Ash	$\begin{gathered} \text { per sq. in. } \\ 6280 \end{gathered}$	Hickory.	per sq. in. per... 6045
Beech	5223		. r 285
Birch	5595	Maple.	6355
Cedar (white)	1372	Oak.	4425
	. ${ }_{3}^{1519}$	Oak (live) Pine (white)	8480 2480
Cedar (Central	$\begin{aligned} & .3410 \\ & \therefore \quad 2945 \end{aligned}$	Pine (white).............	$\begin{aligned} \because 2480 \\ \because 4 \end{aligned}$
Cherrstnut	$\begin{aligned} & 2945 \\ & \cdots 1536 \end{aligned}$	Pine (Northern yellow. Pine (Southern yellow)	(. 4340
Dogwoo	6510	Pine (very resinous yell	v)..... 5053
Ebony	TiJ0	Poplar	. 4418
Gum.	5890	Spruce.	.. 3255
Hemlock	. 2750	Walnut (black)	$4 \% 8$
Locust	. 7166	Walnut (common).	.. 2830

TEHE STRENGTHE OF BRHCK, STENE, ETCC.

A great advance has recently been made in the manufacture of brick, in the direction of increasing their strength. Chas. P. Chase, in Engineering News, says: "Taking the tests as given in standard engineering books eight or ten years ago, we find in Trautwine the strength of brick given as 500 to 4200 lbs . per sq. in. Now, taking recent tests in experiments made at Watertown Arsenal, the strength ran from 5000 to $22,000 \mathrm{lbs}$ per sq. in. In the tests on Illinois paving brick, by Prof. I. O. Baker, we find an average strength in hard paving brick of over 5000 lbs . ner square inch. The average crushing strength of ten varieties of paving-brick much used in the West, I find to be 7150 lbs . to the square inch."

A recent test of brick made by the dry-clay process at Watertown Arsenal, according to Paving, showed an average compressive strength of $39{ }^{2} 2 \mathrm{lbs}$. per sq. in. In one instance it reachcd 4973 lbs. per sq. in. A test was made at the same place on a "fancy pressed brick." The first crack developed at a pressure of 305.1100 lbs ., and the brick crushed at $364,300 \mathrm{lbs}$., or 11,130 lbs. per sq. in. This indicates almost as great compressive strength as granite paving-blocks, which is from $12,0001020,000 \mathrm{lbs}$, per sq. in.
The following notes on bricks are from Trautwine's Engineer's Pocketbook:
Strength of Brick. -40 to 300 tons per sq. ft., 622 to 4668 lbs. per sq. in. A soft brick will crush under 450 to 600 lbs . per sp. in., or 30 to 40 tons per square foot, but a first-rate machine-pressed brick will stand 200 to 400 tons per sq. ft. (3112 to 6224 lbs . per sq. in.).

Weight of Bricks.-Per cubic foot, hest pressed brick, 150 lbs ; good pressed brick, 131 lbs.; common hard brick, 125 lhs.; good commou brick, 118 lbs. ; soft inferior brick. 100 lbs .
Absorption of Water. - A brick will in a fewm minutes absorb $1 / 2$ to $3 / 4 \mathrm{lb}$. of water, the last being $1 / \tau$ of the weight of a hand-moulded one, or $1 / 3$ of its bulk.
Tests of Bricks, full size, on flat side. (Tests made at Watertown Arsenal in 1883.)-The bricks were tested betwaen flat steel buttresses. Compressed surfaces (the largest surface) ground approximately flat. The bricks were all about 2 to 2.1 inches thick, 7.5 to 8.1 inches long, and 3.5 to $3 . \pi 6$ inches wille. Crushing strength per square inch: One lot ranged from 11,056 to $16,434 \mathrm{lbs}$.: a second, 12,995 to 22,351 ; a third, 10,390 to 12,609 . Other tests gave results from 5960 to 10.250 lbs . per sq. in.
Crushing strength of Masoniy Materials. (From Howe's "Retaining.Walls.")

	tons per sq. ft.	tons per sq. ft.
Brick, best pressed	. 40 to 300	Limestones and marbles. 250 to 1000
Chalk.	$\therefore 0$ to 30	Sandstone................ 150 to 550
Granite	300 to 1200	Soapstone................ 400 to 800

Strength of Granite. - The crushing strength of granite is commonly rated at $1:, 000$ to 15,000 lbs. per sq. in. when tested in two-inch cubes, and only the hardest and toughest of the commonly used varieties reach a strength above $20,000 \mathrm{lbs}$. Samples of granite from a quarry on the Con-
necticut River, tested at the Watertown Arsenal, have shown a strength of $85,96 \mathrm{lbs}$. per sq. in. (Engineering News, Jan. 12, 1893).
Strength of Avondale, Pa., Limestone-(Engineering News, Feb. 9, 1893).-Crushing strength of 2-in. cuves: light stone 12,112, gray stone 18,040 . lbs. per sq. in.

Transverse test of lintels, tool-dressed, 42 in . between knife-edge bearings, load with knife-edge brought upon the middle between bearings: Gray stone, section 6 in . wide $\times 10 \mathrm{in}$. high, broke under a load of $20,950 \mathrm{lbs}$. Modulus of rupture Light stone. section $81 / 4 \mathrm{in}$. wide $\times 10 \mathrm{in}$. high, broke under........ 14, $\mathfrak{i} 20$ "

Modulus of rupture.. 1,170
Absorption.-Gray stone....... 051 of 1%
Light stone.
.052 of 1%

Transverse Strength of Flagging.

(N. J. Steel \& Iron Co.'s Book.)

Experiments made by R. G. Hatfield and Others.
$b=$ width of the stone in inches; $d=$ its thickness in inches; $l=$ distance between bearings in inches.

The breaking loads in tons of 2000 lbs ., for a weight placed at the centre of the space, will be as follows:
Bluestone flagging............. .r44 Dorchester freestone........... $\frac{b d^{2}}{l} \times$.264

$$
\text { Quincy granite................. } 624 \text { Aubigny freestone................. } 216
$$

$$
\text { Little Falls freestone............. . } 516 \text { Caen freestone........................... } 144
$$

Belleville, N. J., freestone....... . 480 Glass...................................... 1.000
Granite (another quarry)........ . 432 Slate................................ 1.2 to 2.7 Connecticut freestone........... . .312

Thus a block of Quincy granite 80 inches wide and 6 inches thick, resting on beams 36 inches in the clear, would be broken by a load resting midway between the beams $=\frac{80 \times 36}{36} \times .624=49.92$ tons .

STRENGTH OF LIME AND CEMIENTE IMORTAR.

(Engineering, October 2, 1891.)
Tests made at the University of Illinois on the effects of adding cement to lime mortar. In all the tests a good quality of ordinary fat lime was used, slaked for two days in an earthenware jar;, adding two parts by weight of water to one of lime, the loss by evaporation being made up by fresh additions of water. The cements used were a German Portland, Black Dia mond (Louisville), and Rasendale. As regards fineness of grinding, 85 per cent of the Portland passed through a No. 100 sieve, as did $\mathfrak{r} 2$ per cent of the Rosendale. A fairly sharp sand, thoroughly washed and dried, passing through a No. 18 sieve and canght on a No. 30, was used. The mortar in all cases consisted of two volumes ồ sand to one of lime paste. The following results were obtained on adding various percentages of cement to the mortar:

Tensile Strength, pounds per square inch.

Age........ . $\{$				$\stackrel{4}{\text { Days. }}$	$\left\lvert\, \begin{gathered} 7 \\ \text { Days. } \end{gathered}\right.$	$\begin{gathered} 14 \\ \text { Days. } \end{gathered}$	$\begin{gathered} 21 \\ \text { Days. } \end{gathered}$	$\begin{gathered} 28 \\ \text { Days. } \end{gathered}$	$\begin{gathered} 50 \\ \text { Days. } \end{gathered}$	$\begin{gathered} 84 \\ \text { Days. } \end{gathered}$
Lime mortar				4	8	10	13	18	21	26
	jer	ent	Rosendale.	5	81/3	91\%	12	17	17	18
	،		Portland...	5	$81 / 2$	14	20	25	24	26
30	"		Rosendale.:	7	11	13	181⁄2	21	221/2	23
	"	"	Portland..	8	16	18	22	25	28	2π
40	"	"	Rosendale..	10	12	161/2	211/2	2112	24	36
40	"	"	Portland.	27	39	38	43	47°	59	$5 \sim$
60	"		Rosendale..	9	13	20	16	2	221/2	23
60	"	"	Portland..	45	58	55	68	67	10:	78
80	"	"	Rosendale..	12	18122	221/2	27	20	311/2	33
80	"	"	Portland....	87	91	103	124	94	210	145
100	"	"	Rosendale..	18	23	26	31	34	46	48
100	'6	"	Portland....	90	120	146	152	181	205	$20: 2$

MODULI OF ELASTICITY OF VARIOUS MATERIALS.

The mudulus of elasticity determined from a tensile test of a bar of any material is the quotient obtained by dividing the tensile stress in pounds per square inch at any point of the test by the elongation per inch of length produced by that stress; or if $P=$ pounds of stress applied, $K=$ the sectional area, $l=$ length of the portion of the bar in which the measurement is made, and $\lambda=$ the elongation in that length, the modulus of elasticity $E=\frac{P}{K} \div \frac{\lambda}{l}=\frac{P l}{K \lambda}$. The modulus is generally measured within the elastic limit only, in materials that have a well-defined elastic limit, such as iron and steel, and when not otherwise stated the modulus is understood to be the modulus within the elastic limit. Within this limit, for such materials the modulus is practically constant for any given bar, the elongation being directly proportional to the stress. In other materials, such as cast iron, which have no well-defined elastic limit, the elongations from the beginning of a test increase in a greater ratio than the stresses, and the modnlus is therefore at its maximum near the beginning of the test, and contiaually decreases. The moduli of elasticity of various materials have alrearly been given above in treating of these materials, but the following table gives some additional values selected from different sources :

The maximum figures given by many writers for iron and stecl, viz., $40,000,000$ and $41,000,000$, are undoubtedly erroneous. The modulus of elasticity of steel (within the elastic limit) is remarkably constant, notwithstauding yreat variations in chemical analysis, temper, etc. It rarely is found below $29,001,000$ or above $31,000,000$. It is generally taken at $30,000,000$ in engintering alculations. Prof. J. B. Johnson, in his report on Long-leaf Pine, r59:3, says: "The mudulus of elasticity is the most constant and reliable property of all enginerring materials. The wide range of value of the modulus of elasticity of the various metals found in puivic records must be explained by erroneous methods of testing."

In a.tensile test of cast iron by the author (Van Nostrand's Science Series, No. 41 , page 45). in which the ultimate strength "as $23,285 \mathrm{lbs}$. per sq. in., the measurements of elongation were made to .0001 inch, and the modulus of elasticity was found to decrease from the beginning of the test, as follows: At 1000 lbs . per sq. i11., $25.000,000$; at $2000 \mathrm{lbs} . .16 .666,000$; at 4000 lbs., $15.384,000$; at 6010 lbs.. $13,636,000$; at 8000 lbs., 12.500 .000 ; at 13,040 lbs., $11,250,000$; at $15,000 \mathrm{lbs} ., 10,000,000$; at $20,000 \mathrm{lbs} ., 8,000,000$; at $23,000 \mathrm{lbs.}$, 6,140,000.

FACTOES OF SAENTY.

A factor of safety is the ratio in which the load that is just sufficient to overcome instantly the strength of a piece of material is greater than the greatest safe ordiinary working load. (Rankine.)

Rankine gives the following "examples of the values of those factors which occur in machines":

Iron and steel	Dead Load.	Live Load, Greatest.	Live Load, Mean.
Timber...	4 to 5	8 to 10
Masonry..		8

The great factor of safety, 40 , is for shafts in millwork which transmit very variable efforts.
Unwin gives the following "factors of safety which have been adopted in certain cases for different materials." They "include an allowance for ordinary contingencies."

Dead In Temporary In Permanent In Structures

Wrought iron and steel	3	Structures. 4	Structures. 4 to 5	subj. to Shocks. 10
Cast ironl...	3	4	5	10
Timber.		4	10	
Brickwork			6	
Masonry..	20		20 to 30	...

Unwin says says that " these numbers fairly represent practice based on experience in many actual cases, but they are not very trustworthy."
Prof. Wood in his "Resistance of Materials" says: "In regard to the margin that should be left for safety, much depends upon the character of the loading. If the load is simply a dead weight, the margin may be comparatively small; but if the structure is to be sulijected to percussive forces or shocks, the margin should be comparatively large on account of the indeterminate effect produc-d by the force. In machines which are subjected to a constant jar while in use, it is very difficult to determine the proper margin which is consistent with economy and safety. Indeed, in such cases, economy as well as safety generally consists in making them excessively strong, as a single breakage may cost much more than the extra material necessary to fully insure safety."

For discussion of the resistance of materials to repeated stresses and shocks, see pages 238 to 240 .
Instead of using factors of safety it is becoming customary in designing to fix a certain number of pounds per square inch as the maximum stress which will be allowed on a piece. Thus, in designing a boiler, instead of naming a factor of safety of 6 for the plates and 10 for the stay-bolts, the ultimate ter sile strength of the steel being from 50,000 to $60,000 \mathrm{lbs}$. per sq. in., an allowable working stress of $10,000 \mathrm{lbs}$. per sq. in. on the plates and 6000 lbs. per sq. in. on the stay-bolts may be specified instead. So also in Merriman's formula for columns (see page 260) the dimensions of a column are calculated after assuming a maximum allowable compressive stress per square inch on the concave side of the columu.

The factors for masonry under dead load as given by Rankine and by Unwin, viz., 4 and 20 , show a remarkable difference, which may possibly be explained as follows: If the actual crushing strength of a pier of masonry is known from direct experiment, then a factor of safety of 4 is sufficient for a pier of the same size and quality under a steady load; but if the crushing strength is merely assumed from figures given by the authorities (such as the crushing strength of pressed brick, quoted above from Howe's Retaining Walls, 40 to 300 tons per square foot. average 1,10 tons), then a factor of safety of 20 may be none too great. In this case the factor of safety is really a "factor of ignorance."
The selection of the proper factor of safety or the proper maximum unit stress for any given case is a matter to be largely determined by the judg. ment of the engineer and by experience. No definite rules can be given. The customary or advisable factors in many particular cases wiil be found where these cases are considered throughout this book. In general the following circumstances are to be taken into account in the selection of a factor :

1. When the ultimate strength of the material is known within narrow limits, as in the case of structural steel when tests of samples have been made, when the load is entirely a steady one of a known amount, and there is no reason to fear the diterioration of the metal by corrosion, the lowest factor that should be adopted is 3 .
2. When the circumstances of 1 are modified by a portion of the load being variable. as in floors of warehouses, the factor should be not less than 4.
3. When the whole load, or nearly the whole, is apt to be alternately nut ou and taken off, as in suspension rods of floors of bridges, the factor should be 5 or 6 .
4. When the stresses are reversed in direction from tension to compression, as in some bridge diagonals and parts of machines, the factor should be not less than 6 .
5. When the piece is subjected to repeated shocks, the factor should be not less than 10 .
6. When the piece is subject to deterioration from corrosion the section shonld be sufficiently increased to allow for a definite amount of corrosion before the piece be so far weakened by it as to require removal.
7. When the strength of the material, or the amount of the load, or both are uncertain, the factor should be increased by an allowance sufficient to cover the amount of the uncertainty.
8. When the =trains are of a complex character and of uncertain amount, such as those in the crank-shaft of a reversing engine, a very high factor is necessary, possibly even as high as 40, the figure given by Rankine for shafts in millwork.

THE MECHANECAL PROPERTEES OF CORK.

Cork possesses qualities which distinguish it from all other solid or liquid bodies, namely, its power of altering its volume in a very marked degree in consequence of change of pressure. It consists, practically, of an aggregation of minute air-vessels, having thin, water-tight, and very stroug walls, and hence, if compressed, the resistance to compression rises in a manner more like the resistance of gases than the resistance of an elastic solid such as a spring. In a spring the pressure increases in proportion to the distance to which the spring is compressed, but with gases the pressure increases in a much more rapid manner; that is, inversely as the volume which the gas is made to occupy. But from the permeability of cork to air, it is evident that, if subjected to pressure in one direction only, it will gradually part with its occluded air by effusion, that is, by its passage through the porous walls of the cells in which it is contained. The gaseous part of cork constitutes 53% of its bulk. Its elasticity has not only a very considerable range, but it is very persistent. Thus in the better kind of corks used in bottling the corks expand the instant they escape from the bottles. This expansion may amount to an increase of volume of 75%, even after the corks have been kept in a state of compression in the bottles for ten years. If the cork be steeped in hot water, the volume continues to increase till it attains nearly three times that which it occupied in the neck of the bottle.

When cork is sulojected to pressure a certain amount of permanent deformation or "permanent set" takes place very quickly. This property is common to all solid elastic substances when strained beyond their elastic limits, but with cork the limits are comparatively low. Besides the permanent set, there is a certain amount of sluggish elasticity-that is, cork on being released from pressure springs back a certain amount at once, but the complete recovery takes an appreciable time.

Cork which had been compressed and released in water many thousand times had not changed its mnlecular structure in the least, and had continued perfectly serviceable. Curk which has been kept under a pressure of three atmospheres for many weeks appears to have shrunk to from 80% to 85% of its original volume.-Van Nostrand's Eng'g Mag. 1886, xxxv. 307.

TESTS OF VULCANIZED INDIA=REEBEER.

Lieutenant L. Vladomiroff, a Russian naval officer, has recently carried out a series of tests at the St. Petersburg Technical Institute with a view to establishing rules for estimating the quality of vulcanized india-rubber. The following, in brief, are the conclusions arrived at, recourse being had to physical properties, since chemical analysis did not give any reliable result: 1. India-rubber should not give the least sign of superficial cracking when bent to an angle of 180 degrees after five hours of exposure in a closed air-bath to a temperature of $125^{\circ} \mathrm{C}$. The test-pieces should be 2.4 inches thick. 2. Rubber that does not contain more than half its weight of metallic oxides should stretch to five times its length without breaking. 3. Rubber free from all foreign matter, except the sulphur used in vulcanizing it, should stretch to at least seven times its length without rupture. 4. The extension measured immediately after rupture should not exceed 12% of the original length, with given dimensions. 5. Suppleness may bs determined by measuring the percentage of ash formed in incineration. This may form the basis for deciding between different grades of rubber for certain purposes. 6. Vulcaniz d rubber should not harden under cold. These rules have been adopted for the Russian navy.-Iron Age, June 15, 1893.

XYLOLITH, OR WOODSTONE

is a material invented in 1883, but only lately introduced to the trade by Otto Serrig \& Co., of Pottschappel, near Dresden. It is made of magnesia
cement, or calcined magnesite, mixed with sawdust and saturated with a solution of chloride of calcium. This pasty mass is spread out into sheets and submitted to a pressure of about 1000 libs. to the square inch, and then simply dried in the air. Specific gravity 1.553. The fractured surface shows a uniform close grain of a yellow color. It has a tensional resistance when dry of 100 lbs . per square inch, and when wet about 66 lbs . When immersed in water for 12 hours it takes up 2.1% of its weight, and 3.8% when immersed 216 hours.

When treated for several days with hydrochloric acid it loses 2.3% in weight, and shows no loss of weight under boiling in water, brine, soda-lye, and solution of sulphates of iron, of copper, and of ammonium. In hardness the material stands between feldispar and quartz, and as a nun-conductor of heat it ranks between asbestos and cork.

It stands fire well, and at a red heat it is rendered brittle and crumbles at the edges, but retains its general form and cohesion. This xylolith is supplied in sheets from $1 / 4 \mathrm{in}$. to $11 / 2 \mathrm{in}$. thick, and up to one metre square. It is extensively used in Germany for floors in railway stations, hospitals. etc., and for decks of vessels. It can be sawed, bored, and shaped with ordinary woodworking tools. Putty in the joints and a good coat of paint make it entirely water-proof. It is sold in Germany for flooring at about f cents per square foot, and the cost of laying adds about 4 cents more.-Eng'g News, July 28, 1892, and July 2 $2,1893$.

ALUIIINUIR-ITS RROPERTEES AND USES.

(By Alfred E. Hunt, Pres't of the Pittsburgh Reduction Co.)
The specific gravity of pure aluminum in a cast state is 2.58 ; in rolled bars of large section it is 26 ; in very thin sheets subjected to high compression under chilled rolls, it is as much as 2.7. Taking the weight of a given Lulk of cast aluminum as 1 , wrought iron is 2.90 times heavier ; structural steel, 2.95 times ; copper, 3.60 ; ordinary high brass. 3.45. Most wood suitable for use in structures has about one third the weight of aluminum, which weighs 0.092 lb . to the cubic inch.

Pure aluminum is practically not acted upon by boiling water or steam. Carbonic oxide or hydrogen sulphide does not act upon it at any temperature under $600^{\circ} \mathrm{F}$. It is not acted upon by most organic secretions.

Hydrochloric acid is the best solvent for aluminum, and strong solutions of caustic alkalies readily dissolve it. Ammonia has a slight solvent action, and concentrated sulphuric acid dissolves aluminum upon heating, with evolution of sulphurous acid gas. Dilute sulphuric acid acts but slowly on the metal, though the presence of any chlorides in the solution allow rapid decomposition. Nitric acid, either concentrated or dilute, has very little action upon the metal, and sulphur has no action unless the metal is at a red heat. Sea-water has very little effect on aluminum. Strips of the metal placed on the sides of a wooden ship corroded less than $1 / 1000$ inch after six months' exposure to sea-water, corroding less than copper sheets similarly placed.

In malleability pure aluminum is only exceeded by gold and silver. In ductility it stands seventh in the series, being exceeded by gold, silver. platinum, iron, very soft steel, and copper. Sheets of aluminum have been rolled down to a thickness of 0.0005 inch, and beaten into leaf nearly as thin as gold leaf. The metal is most malleable at a temperature of between 400° and $600^{\circ} \mathrm{F}$, and at this temperature it can be drawn down between rolls with nearly as much draught upon it as with heated steel. It has also been drawn down into the very finest wire. By the Mannesmann process aluminum tubes have been made in Germany.

Aluminum stands very high in the series as an electro-positive metal, and contact with other metals should be avoided, as it would establish a galvanic couple.

The electrical conductivity of aluminum is only surpassed by pure copper. silver, and gold. With silver taken at 100 the electrical conductivity of aluminum is 54.20 ; that of gold on the same scale is 78 ; zinc is 29.90 ; iron is only 16, and platinum 10.60. Pure aluminum has no polarity, and the metal in the market is absolutely non-magnetic.

Sound castings can be made of aluminum in either dry or "green" sand moulds, or in metal "chills." It must not be heated much beyond its melting-point, and must be poured with care, owing to the ready absorption of occluded gases and air. The shrinkage in cooling is $1 \tau / 64$ inch per foo: or a little more than ordinary brass. It should be melted in plumbago crucibles, and the metal becomes molten at a temperature of $1120^{\circ} \mathrm{F}$. according to Professor Roberts-Austen, or at 13300° F. according to Richards.

The coefficient of linear expansion, as tested on $3 / 8$-inch round aluminun. rods, is $0.0000 \% 295$ per degree centigrade between the freezing and boiling point of water. The mean sperific heat of almminum is higher than that of any other metal, excepting only magnesinm and the alkali metals. From zero to the melting-point it is 0.2185 ; water being taken as 1 , and the latent heat of fusion at 28.5 heat units. The coefficient of thermal conductivity of unannealed aluminum is 37.96 ; of annealed alıminum, 38.37. As a conductor of heat aluminum rauks fourth, being exceeded only by silver, copper, and gold.

Aluminum, under tension, and section for section, is about as strong as cast iron. The tensile strength of aluminum is increased by cold rolling or cold forging. and there are alloys which add considerably to the tensile strength without increasing the specific gravity to over 3 or 3.25.

The strength of commercial aluminum is given in the following table as the result of many tests :

Form.	Elastic Limit per sq. in. in Tension,	Ultimate Strength per sq. in. in Tension,	Percentage of Reduct'n of Area in
1bs.	$1 \mathrm{lbs}$.	$1 \mathrm{bs}$.	Tension.

The elastic limit per square inch under compression in cylinders, with length iwice the diameter is 3500 . The ultimate strength per square inch under compression in cylinders of same form is 12.000 . The modulus of elasticity of cast aluminum is about $11,000,000$. It is rather an open metal in its texture. and for cylinders to stand pressure an increase in thickness must be given to allow for this porosity. Its maximum shearing stress in castings is about 12.000 , and in forgings about 16.000 , or about that of pure copper.

Pure aluminum is too soft and lacking in tensile strength and rigidity for many purposes. Valuable alloys ar now being made which seen to give great promise for the future. They are alloys containing from 2% to $\% \%$ or 8% of copper, manganese, iron, and nickel. As nickel is one of the principal constituents, these alloys have the trade name of "Nickel-aluminum."

Plates and bars of this nickel alloy have a tensile strength of from 40.000 to 50.000 pounds per square inch, an elastic limit of 55% to 60% of the ultimate tensile strength, an elongation of 20% in 2 inches, and a reduction of area of 25%.

This metal is especially capable of withstanding the punishment and distortion to which structural material is ordinarily subjected. Nickelaluminum alloys have as much resilience and spring as the very hardest of hard-drawn brass.

Their specific gravity is about 2.80 to 2.85 , where pure aluminum has a specific gravity of 2.12.

In castings, more of the hardening elements are necessary in order to give the maximum stiffuess and rigidity, together with the strength and ductility of the metal; the favorite alloy material being zinc, iron, manganese. and copper. Tin added to the alloy reduces the shrinkage, and alloys of aluminum and tin can be made which have less shrinkage than cast iron.

The tensile strength of hardened aluminum-alloy castings. is from 20,000 to 25.000 pounds per square inch.

Alloys of aluminum and copper form two series, both valuable. The first is aluminum bronze. containing from 5% to $111 / 2 \%$ of aluminum; and the second is copper-hardened aluminum, containing from 2% to 15% of copper. Aluininum-bronze is a verv clense, fine-grained, and strong alloy, having good ductility as compared with tensile strength. The 10% bronze in forged bars will give $100,000 \mathrm{lbs}$. tensile strength per square inch, with $60,000 \mathrm{lbs}$. elastic limit per square inch, and 10% elongation in 8 inches. The 5% to $\% 1 / 2 \%$ bronze has a specific gravity of 8 to 8.30 , as compared with $\% .50$ for the 10% to $111 / 2 \%$ bronze, a tensile strength of $\tilde{0} 0,000$ to 80.000 lbs ., an elastic limit of 40,000 lbs . per square inch, and an elongation of 30% in 8 inches.

Aluminum is used by steel manufacturers to prevent the retention of the occluded gases in the steel, and thereby produce a solid ingot. The proportions of the dose range from $1 / 2 \mathrm{lb}$. to several pounds of aluminum per ton of steel. Aluminum is also used in giving extra fluidity to steel used in castings, making them sharper and sounder. Added to cast iron, aluminum canses the iron to be softer, free from shrinkage, and lessens the tendency to "chill."

With the exception of lead and mercury, aluminum unites with all metals,
beneath it, leaving a rough surface; or the tool would sometimes, apparently, crush off portions of the metal, grinding it to powder. Beyond 40% tin the hardness decreased so that the bars could be easily turned.

ALLOYS OR COPPEFR AND ZINC. (U.S. Test Board).

No.	Mean Composition by Analysis.		Tensile Strength lbs. per sq. in.			Trans- verse Test Modulus of Rир. ture.		Crushing Str"gth per sq. in., lbs		
	Copper.	Zinc.								
1	97.83	1.88	27,240						130	$35 \sim$
2	8. 8.93	16.98	3:2,600	26.1	$26 . \%$	23,197	Bent		155	329
3	81.91	17.99	32.6\%0	30.6	31.4	21,193			166	345
4	T7.39	22.45	35,630	20.0	35.5	25,314	'6		169	311
5	76.65	23.08	30,520	24.6	35.8	22, 32\%	،	42,000	165	$\because 67$
6	$73 . \therefore 0$	26.41	31,580	23.7	88.5	25.891	6		168	293
7	\%1.20	28.54	30,510	29.5	29.2	24,468	"		164	269
8	69.14	30.06	28,120	28.7	2.7	26,930	،		143	202
9	66.2π	33.50	37,800	25.1	37.7	28,459			176	2
10	63.44	36.36	48,300	32.8	51.7	43,216	'6		202	230
:1	60.94	38.65	41,065	40.1	20.7	38,968	'6	5,000	194	202
-	58.49	41.10	50,450	54.4	$1 . .1$	63, 04			$2: 7$	-
- 3	55.15	44.44	44,280	44.0	15.0	42,463	6	-8,000	209	109
24	54.86	44.78	46,400	53.9	8.0	47,955			$2 \cdot 23$	2
15	49.66	50.14	30.990	54.5	5.0	33,467	1.26	117	172	38
16	48.99	50.8:	26,050	100.	0.8	40,189	0.61		176	16
17	47.56	52.28	24.150	100.	0.8	48,471	1.17	121,000	155	13
18	43.36	56.2 ?	9,170	100.		17,691	0.10		88	
19	41.30	58.12	3,727	100.		\%,761	0.04		18	
20	32.94	66.23	1,\%\%4	100.		8,296	0.04		29	
21	$29 . \therefore 0$	\%0.17	6,414	100.		16,5i9	0.04		40	
2	20.81	77.63	9.000	100.	0.2	2\%9\%	0.13	52,152	65	
23	12.12	86.67	12,413	100.	0.4	35,026	0.31		82	
2	4.35	94.59	18,065	100.	0.5	26,162	0.45		81	-
25	Cast	Zinc.	5.400	75.	0.	7.539	0.12	22,00	37	14%

Variation in Strength of Gun-bronze, and Means of Emproving the Strength. - The fipures obtained for allys of from T.b\% to $1 \lesssim . \% \%$ tin, viz., from $: \stackrel{6}{6}, 860$ to 29.430 pounds, are much less than are usually given as the strength of gun-metal. Bronze guns are usually cast under the pressure of a head of metal, which tends to increase the strength and density. The strength of the upper part of a gun casting, or sinking head, is not greater than that of the small bars which have been tested in these esperiments. The following is an extract from the report of Major Wade concerning the strength and density of gun-bronze (1850):-Extreme variation of six samples from different parts $n f$ the same gun (a 32 pounder howitzer): Specific gravity, 8.487 to 8.835 ; tenacity, $26,4: 8$ to 52,192 . Extreme variation of all the samples tested: Specific gravity, 8.308 to 8.550 ; tenacity, $2: 3,108$ to 54,531 . Extreme variation oí al! the samples from the gun heads: Specific gravity, 8.308 to 8.556 ; tenacity, $23,5 \div 9$ to 35,484 .

Major Wade says: The general results on the quality of bronze as it is found in guns are mostly of a negative character. They expose defects in density and strength, develop the heterogeneous texture of the metal in different parts of the same gun, and show the irregularity and uncertainty of quality which attend the castir,g of all guns, although made from s milar materials, treated in like manner.

Navy ordnance bronze containing 9 parts copper and 1 part tin, tested at Washington. D. C., in 18:5-6, showed a variation in tensile strength from 29,800 to $51,400 \mathrm{lbs}$. per square inch, in elongation frem 3% to 58%, and in specific gravity from 8.39 to 8.88 .

That a great improvement may be made in the density and tenacity of gun-bronze by compression has been shown by the experiments of Mr. S. B. Dean in Boston, Mass., in 1'69, and hy those of General Uchatius in Austria in $18 \% 3$. The former increased the density of the metal next the bore of the gun from $8.3: 1$ to $8.8 i 5$, and the tenacity from $2 \pi, 238$ to $41,4 \% 1$ pounds per
square inch. The latter, by a similar process, obtained the following figures for tenacity:

Pounds per sq. in.

ALKOYS OP COPPERE, TEN, ANS KENE.
(Report of U. S. Test Board, Vol. II, 1881.)

$\begin{gathered} \text { No. } \\ \text { in } \\ \text { Report. } \end{gathered}$	Analysis, Original Mixture.			Transverse Streng th.		Tensile Strength per square inch.		Elongation per cent in 5 inches.	
	Cu.	Sn.	Zn.	Modulus of Rupture	Deflection, ins.	A.	B.	A.	B.
T	90	5	5	41,334	2.63	23,660	30,640	2.34	9.68
5	¢8.14	1.86	10	31,986	367	3:,000	33,000	17.6	19.5
\% 0	85	5	10	44,45\%	2.85	28,840	28,560	6.80	5.28
\%1	85	10	5	6., 4\%0	2.56	35,680	36,000	2.51	2.25
89	85	12.5	2.5	62,405	2.83	34,500	32,800	1.29	2.79
88	82.5	12.5	5	6ぇ,960	1.61	36,000	34,000	. 86	. 92
\% 7	8.2 .5	15	2.5	69,045	1.09	3:3,600	33,800		. 68
67	80	5	15	42,618	3.88	37,560	32,300	11.6	3.59
68	80	10	10	67,117	2.45	32.830	31,950	1.57	1.67
69	80	15	5	54,476	. 44	32,350	30. 660	. 55	. 44
86	27. 5	10	$1 \cdot .5$	63,849	1.19	35,500	36,000	1.00	1.00
87	77.5	12.5	10	31.705	. 71	36,000	32,500	. 72	. 59
63	\% 5	5	20	55,355	2.91	33,140	34,960	2.50	3.19
85	75	7.5	17.5	62,607	1.39	33,700	3, 3,300	1.56	1.53
64	75	10	15	58,345	. 73	35,320	3+,000	1.13	1.25
65	75	15	10	51,109	. 31	35,440	28.000	. 59	. 54
66	\% 5	20	5	40,235	. 21	23, 140	27.660	. 43	
83	72.5	7.5	20	51,839	2.86	32,60	34,800	3.73	3.18
84	72.5	10	17.5	53,230	. 74	30,000	30,000	. 48	. 49
59	70	5	25	57,349	1.37	38,000	3:,940	2.06	. 99
82	70	\%. 5	22.5	48,886	. 36	38,000	32.400	. 84	. 40
60	70	10	20	36,520	. 18	33.140	26.300	. 31	
61	\%0	15	15	37.924	. 20	33.440	2~,800	. 25	
62	\%0	$\because 0$	10	15,126	. 08	17,000	12,900	. 03	
81	$6 \pi .5$	2.5	30	58,344	2.91	34, 720	45.850	7.27	3.09
74	$6 \pi .5$	5	$2 \sim 1.5$	55,976	. 49	34.000	34,460	1.06	. 43
\% 5	67.5	7.5	25	46.875	. 32	29,500	$\therefore 0,000$. 36	. 26
80	63	2.5	32.5	56.949	2.36	41,350	38.300	3.26	3.02
55	65	5	30	51369	. 56	3i,140	36,000	1.21	. 61
56	65	10	25	27.075	. 14	25.720	22.500	. 15	. 19
57	65	15	20	13.591	. 07	$6.8: 0$	\% 2,231		
58	65	20	15	11,93\%	. 05	3,665	2,665		
79	62.5	2.5	35	69.255	2.34	44.400	45.000	2.15	2.19
\% 8	60	2.5	37.5	69,508	1.46	54,400	52.900	4.87	3.03
59	60		35	46,076	. 28	41,160	38,330	. 39	. 40
53	60	10	30	24,699	. 13	21.780	21.210	. 15	
54	60	15	2.5	18,248	. 09	18.020	12,400		
12	58.20	2.30	39.48	9.5. 6.3	1.99	66,500	6 6.600	3.13	3.15
3	58.75	8.75	$3 \cdot .5$	35,753	. 18	Broke	beforet	est; ver	brittle
73	57.5	21.25	21.25	2,752	. $0 \cdot$	225	1.300		
73	55	0.5	44.5	\% 2.308	3.05	68,900	68.900	9.43	2.88
50	55	5	40	32.174	. 22	27.400	30.500	. 46	. 43
51	55	10	35	28.258	. 14	25,460	18.500	. 29	. 10
49	50	5	45	20,814	. 11	23,000	31,300	. 66	. 45

The transverse tests were made in bars 1 in . square, $2 \mathscr{2}$ in. between supports. The tensile tests were made on bars 0.798 in . diam. turned from the two halves of the transverse-test bar, one half being marked A and the other B.

Ancient Bronzes. - The usual composition of anciert bronze was the same as that of modern gun-metal-90 copper, 10 tin; but the proportion of till varies from 5% to 15%, and in some cases lead has been found. Some ancierit, Eryptian tools contained 88 copper, 12 tin.
Strength of the Copper-zinc Alloys.-The alloys containing less than 15% of zinc by original mixture were generally defective. The bars were full of blow-holes, and the metal showed signs of oxidation. To insure good castings it appears that copper-zinc alloys should contain more than 15% of zinc.
From No. 2 to No. 8 inclusive, 16.98 to 30.06% zinc the bars show a remarkable similarity in all their properties. They have all nearly the same strength and ductility, the latter decreasing slightly as zinc increases, and are nearly alike in color and appearance. Berween Nos. 8 and $10,30.06$ and 36.36% zinc, the strength by all methods of test rapidly increases. Between No. 10 and No. $15,36.36$ and 50.14% zinc, there is another group, distinguished by high strength and diminished ductility. The alloy of maximum tonsile, transverse and torsional strength ccntains about 41% of zinc.
The alloys containing less than 55% of zinc are $=11$ sellow metals. Beyond 55% the color changes to white, and the alloy becomes weak and brittle. Between 70% and pure zinc the color is bluish gray, the brittleness decreases and the strength increases, but not to such a degree as to make them useful for ronstructive purposes.

Difference between Composition by Mixture and by Analysis.-There is in every ase a smaller percentage of zinc in the average analysis than in the original mixture, an 1 a larger percentage of copper. The loss of zinc is variable, but in goneral averages from 1 to 2%.

Liquation or Separation of the Mitals.-In several of the bars a considerable amount of liquation took place, analysis showing a difference in composition of the two ends of the bar. In such cases the change in composition was gradual from one end of the bar to the other, the upper end in general containing the higher percentage of copper. A notable instance was bar No. 13, in the above table, turnings from the upper end containing 40.36% of zinc, and from the lower end 48.52%.

Specific Gravity.-The specific gravity follows a definite law. varying with the composition, and decreasing with the addition of zinc. From the plotted curve of specific gravities the following mean values are taken:

Per cent zinc.........	0	10	20	30	40	50	60	70	80	90	100
Specific gravity.......	8.80	8.72	8.60	8.40	8.36	8.20	8.00	7.72	7.40	7.20	7.14.

Graphic Representation of the Law of Variation of Strength of Copper-Tin-Zinc Alloys. - In an equilateral triangle the sum of the perpendicular distances from any point within it to the three sides is equal to the altitude. Such a triangle can therefore be used to show graphically the percentage composition of any compound of three parts, such as a triple alloy. Let one side represent 0 copper, a second 0 tin, and the third 0 zinc, the vertex opposite each of these sides representing 100 of each element respectively. On points in a triangle of wood representing different alloys tested, wires were erected of lengths proportional to the tensile strengths, and the triangle then built up with plaster to the height of the wires. The surface thus formed has a characteristic topography representing the variations of strength with variations of composition. The cut shows the surface thus made. The vertical section to the left represents the law of tensile strength of the copper-tin alloys. the one to the right that of tin-zinc alloys, and the one at the rear that of the copper-zinc alloys. The high point represents the strongest possible alloys of the three metals. Its composition is copper 55 , zinc 43 , $\operatorname{tin} 2$, and its strength about $\pi 0,000 \mathrm{lbs}$. The high ridge from this point to the point of maximum height of the section on the left is the line of the strongest alloys, represented by the formula zinc $+(3 \times \operatorname{tin})=55$.

All alloys lying to the rear of the ridge, containing more copper and less tin or zinc are alloys of greater ductility than those on the line of maximum strength, and are the valuable commercial alloys; those in front on the declivity toward the central valley are brittle, and those in the valley are both brittle and weak. Passing from the valley toward the section at the right the alloys lose their brittleness and become soft, the maximum softness being at tin $=100$, but they remain weak, as is shown by the low elevation of the surface. This model was planned and constructed by Prof. Thurston in 1877. (See Trans. A. S. C. E. 1881, Report of the U. S. Board appointed to

AJLOYS.

test Iron, Steel, etc., vol. ii., Washington, 1881, and Thurston's Materials of Enqineering. vol. iii.)
The best alloy obtained in Thurston's research for the U. S. Testing Board has the composition, Copper 55, Tin 0.5. Zinc 445 The tensile streng h in a cast bar was 68.900 lbs . per sq. in., two specimens giving the same result; the elongation was 4% to 51 per cent in 5 inches. Thurston's formula for copper-iin-zinc alloys of maximum strength (Trans. A. S. C. E., 1881) is $z+3 i=55$,

Fig. 77.
in which z is the percentage of zinc and t that of tin. Allors proportioned according to this formula should have a strength of about $40,000 \mathrm{lbs}$. per sq. in. $+500 z$. The formula fails with alloys containing less than 1 per cent of tin.

The following would be the percentage composition of a number of alloys made according to this formula, and their corresponding tensile strength in castings:

Tin.	Zinc.	Copper.	Tensile Strength, lbs. per sq. in.	Tin.	Zinc.	Copper.	Tensile Strength lbs. per sq. in.
-1	52	47	66,000	8	31	61	55,500
2	49	49	64,500	-	28	63	54,000
3	46	51	63,000	10	25	65	52,500
4	43	53	61,500	12	19	69	49,500
5	40	55	60,000	14	13	73	46,500
6	37	57	58.500	16	7	\% 8	43,500
7	34	59	57,000	18	1	81	40,500

These alloys, while possessing maximum tensile strength, would in general be ton hard for easy working by machine tools. Another series made on the formula $z+4 t=50$ would have greater ductility, together with censidrrable strength, as follows, the strength being calciianced as joters tensile strengh in lbs. per sq. in. $=40,00 \mathrm{u}+500 z$.

Tin.	Zinc.	Copper.	Tensile Strength, lbs. per sq. in.	Tin.	Zinc.	Copper.	Tensile Strength lbs. per sq. in.
1	46	53	63,000	7	22	71	51,000
2	42	56	61,000	8	18	74	49.000
3	38	59	59,000	9	14	77	47.000
4	34	$6 \cdot$	57.000	10	10	80	45,000
5	30	65	55,000	11	6	83	43.000
6	26	68	53,000	12	2	86	41,000

Composition of Alloys in Every-day Use in Brass Foundries. (Americun Machinist.)

Gurley's Pronze. -16 parts copper, 1 tin, 1 zinc, $1 / 2$ lead, used by W. \& L. E. Gurley of Troy for the framework of their engineer's transits. Tensile strength 41,114 lbs. per sq. in., elongation $2 \tilde{\%} \%$ in 1 inch, sp. gr. 8.696. (W. J. Keep, Trans. A. I. M. E. 18y0.)

Useful Alloys of Copper, Tin, and Zinc.

(Selected from numerous sources.)

Copper-Nickel Alloys, German Silver.

A iefined copper-nickel alloy containing 50% copper and 49% nickzl, with very small amounts of iron, silicon and carbon, is produced direct from Bessemer matte in the Sudbury (Canada) Nickel Works. German silver manufacturers purchase a ready-male alloy, which melts at a low heat and requires simple addition of zinc, insteal of buying the n ckel and conper separately. This alloy, " $50-50$ " as it is callerl, is almost imdistinguishable from pure nickel. Its cost is less than nickel. its melting point much lower, it can be cast colid in any form desired, and furnishes a casting which works easily in the lathe or planer, yielding a silvery white surface unchanged by air or moisture. For bullet casings now used in varions British and coutineutal rifles, a special alloy of 80% copper and 21% nickel is made.

Special Alloys. (Engineer, March 24, 1893.)
Japanese Alloys for art work:

	Copper.	Silver.	Gold.	Lead.	Zinc.	Iron.
Shaku-do.....	$9+.50$ 67.31	1.55 Shibu-ichi.....	3.73 traces.	0.11 .52	trace.	trace.

Gilbert's Alloy for cera-perduta process, for casting in plaster-of-paris \cdot Copper 91.4 Tin 5.7 Lead 2.9 Very fusible.

COPPERE-ZRC=HRON ALLOYE.

(F. L. Garrison, Jour. Frank. Inst., June and July, 1891.)

Delta Metal. - This allov, which was formerly known as sterro-metrl, is composed of about 60 copper, from 34 to 44 zinc, 2 to 4 iron, and 1 to 2 tin.

The peculiarity of all these alloys is the content of iron, which appears to have the property of increasing their strength to an unusual degree. In making delta metal the iron is previously alloyed with zinc in known and definite proportions. When ordinary wronght-iron is introduced into molten zinc, the latter readily dissolves or absorbs the former, and will take it up to the extent of about 5% or more. By adding the zinc-iron alloy thus obtained to the requisite amount of copper, it is possible to introduce any definite quantity of iron up to 5% into the copper alloy. Garrison gives the following as the range of composition of copper-zinc-iron, and copper-zinc-tin-iron alloys :
I.

Per cent.
Iron....................... 01 to 5
Copper.................... 50 to 65
Zinc.................... . 49.9 to 30
II.

Per cent.
Iron......................... 0.1 to 5
Tin....... 0.1 to 10
Zinc. 1.8 to 45
Copper..................... 98 to 40

The advantages claimed for delta metal are great strength and toughness. It produces sound castings of close grain. It can be rolled and forged hot and can stand a certain amount of drawing and hammering when cold. It takes a high polish, and when exposed to the atmosphere tarmishes less than brass.

PHOSPHOR-BRONZE AND OTHER SPECIAL BRONZES. 327

When cast in sand delta metal has a tensile strength of about 45,000 pounds per square inch, and about 10% elongation; when rolled, tensile strength of 60,000 to $\% 5,000$ pounds per square inch, elongation from 9% to 1% on bars 1.128 inch in diameter and 1 inch area.

Wallace gives the ultimate tensile strength 33,600 to 51,520 pounds per square inch, with from 10% to 20% elongation.

Delta metal can be forged, stamped and rolled hot. It must be forged at a dark cherry-red heat, and care taken to avoid striking when at a black heat.

According to Lloyd's Proving House tests, made at Cardiff, December 20, 1887, a half-inch delta metal-rolled bar gave a tensile strength of 88,400 pounds per square inch, with an elongation of 30% in three inches.

Tobin Bronze.-This alloy is practically a sterro or delta metal with the addition of a small amount of lead, which tends to render copper softer and more ductile.

The following analyses of Tobin bronze were made by Dr. Chas. B. Dudley:

| | Pig Metal,
 per
 cent. |
| ---: | :--- | | Test Bar (Rolled). |
| :---: |
| per cent. |

Dr. Dudley writes, "We tested the test bars and found 78,500 tensile strength with 15% elongation in two inches, and $401 / 2 \%$ in eight inches. This high tensile strength can only be obtained when the metal is manipulated. Such high results could hardly be expected with cast metal."

The original Tobin bronze in 1875 , as described by Thurston, Trans. A. S. C. E 1881, had, composition of copper 58.22 , tin 2.30 , zinc 39.48 . As cast it had a tenacity of $66,000 \mathrm{lbs}$. per sq. in., and as rolled $79,000 \mathrm{lbs}$; cold rolled it gave $104,000 \mathrm{lbs}$.

A circular of Ansonia Brass \& Copper Co. gives the following :-The tensile strength of six Tobin bronze one-inch round rolled rods, turned down to a diameter of $5 / 8$ of an inch, tested by Fairbanks, averaged 79.600 lbs . per sq. in., and the elastic limit obtained on three specimens averaged $54,257 \mathrm{lbs}$. per sq. in.

At a cherry-red heat Tobin bronze can be forged and stamped as readily as steel. Bolts and nuts can be forged fiom it, either by hand or by machinery, with a marked degree of economy. Its great tensile strength, and resistance to the corrosive action of sea-water, render it a most suitable metal for condenser plates, steam-launch shafting, ship sheathing and fastenings. nails, hull plates for steam yachts, torpedo and life boats, and ship deck fittings.

The Navy Department has specified its use for certain purposes in the machinery of the new cruisers. Its specific gravity is 8.071 . The weight of a cubic inch is . 291 lb .

PHOSPHOR-RRONRE AND OTHER SPECLAL
 \section*{BRONZES.}

Phosphor-bronze, - In the year 186S, Montefiore \& Kunzel of Liège, Belgium. found by adding small proportions of phosphorus or "phosphoret of tin or copper" to copper that the oxides of that metal, nearly always present as an impurity, more or less, were deoxilized and the copper much improved in strength and ductility, the grain of the fracture became finer, the color brighter, and a greater fluidity was attained.

Three samples of phosphor-bronze tested by Kirkaldy gave :

| Elastic limit, lbs. per sq. in | 23.800 | $24 . \tilde{100}$ | 16,100 |
| :--- | :---: | :---: | :---: | ---: |
| Tensile strength, lbs. per sq. in. | 52,625 | 46.100 | 44.448 |
| Elongation, per cent............... | 8.40 | 1.50 | 33.40 |

The strength of phosphor-bronze varies like that of ordinary bronze according to the percentages of copper, tin, zinc, lead, etc., in the alloy.

Deoxidized Bronze. - This alloy resembles phosphor bronze somewhat in composition and also delta metal, in containing zinc and iron. The following analysis gives its average composition:

Comparison of Copper, Silicon-bronze, and Phosphorbronze Wries.
 (Engineerluy, Not. 23, i883.)

Description of Wire.	Tensile Strength.	(Relative Condu
Pure	39,8:2r lbs. per sq. in.	100 per cent
Silicon bronze (te		$\begin{array}{ll} 96 \\ 34 & \therefore \end{array}$
Phosphor bronze (telephont)..	102,390	

Silicon Eronze. (Aluminum World. May, 1897.)
The most useful of the silicon bronzes are the 3% ($9 \% \%$ copper, 3% silicon) and the 5% (95% copper, 5% silicon), although the harduess and strength of the alloy can be increased or decreased at will by increasing or decreasing silicon. A 3% silicon bronze has a tensile strength, in a casting, of about $55,000 \mathrm{lbs}$. per sq. in., and from 50% to 60% elongation. The 5% bronze has a tensile strength of about $\% 5,000 \mathrm{lbs}$. and about 8% elongation. More than 5% or $51 / 2 \%$ of silicon in copper makes a brittle alloy. In using silicon, either as a flux or' for making silicon bronze, the rich alloy of silicon and copper which is now on the narket should be used. It should be free from iron and other metals if the best results are to be obtained. Ferro-silicon is not suitable for use in copper or bronze mixtures.

AKUIIENUIR ALHOS.

Aluminum Rronze. (Cowles Electric smelting and Al. Co.'s circular:)
'The standard A No. 2 grade of aluminum bronze, containing 10% of aluminum and 90% of copper, has many remarkable characteristics which distinguish it from all other metals.
The tenacity of castings of A No. 2 grade metal varies between 75,000 and $90,000 \mathrm{lbs}$. to the square inch, with from 4% to 14% elongation.
Increasing the proportion of aluminum in bronze beyond 11% produces a brittle alloy; therefore nothing higher than the A No. 1, which contains 11%, is made.
The B, C, D, and E grades, containing $71 \% \%, 5 \%, 21 / 2 \%$, and $11 / 4 \%$ of alumirum, respectively, decrease in tenacity in the order named, that of the former being about 65,000 pounds, while the latter is 25,000 pounds. While there is also a proportionate decrease in transverse and torsional strengths, elastic limit, and resistance to compression as the percentage of aluminum is lowered and that of copper raised, the ductility on the other hand increases in the same proportion. The specific gravity of the A No. 1 grade is 7.56 .
Bell Bros., Newcastle, gave the specific gravity of the aluminum bronzes as follows:

$$
3 \%, 8.691 ; \quad 4 \%, 8.621 ; \quad 5 \%, 8.369 ; \quad 10 \%, 7.689
$$

Casting.-The melting point of aluminum bronze varies slightly with the amount of aluminum contained, the higher grades melting at a somewhat lower temperature than the lower grades. The A No. 1 grades melt at about $1700^{\circ} \mathrm{F}$, a little higher than ordinary bronze or brass.

Aluminum bronze shrinks more than ordinary brass. As the metal solidifies rapidly it is necessary to pour it quickly and to make the feeders amply large, so that there will be no "freezing" in them before the casting is properly fed. Baked-sand moulds are preferable to green sand, except for small castings, and when fine skin color:s are desired in the castings. (See paper by Thos. D. West, Trans. A. S. M. E. 1886, vol. viii.)
All grades of aluminum bronze can be rolled, swedged, spun, or drawn cold except A 1 and A2. They can all be worked at a bright red heat.
In rolling, swedging, or spinning cold, it should be annealed ver'y often, and at a brighter red heat than is used for annealing brass.

Brazing.-Aluminum bronze will braze as well as any other metal, using one quarter brass solder (zinc 500, copper 500 (and three quarters borax, nr, hetter, three quarters cryolite.

Soldering.-To solder aluminum bronze with ordinary soft (pewter) solder: Cleanse well the parts to be joined free from grease and dirt. Then place the parts to be soldered in a strong solution of sulphate of copper and place in the bath a rod of soft iron touching the parts to be joined. After a while a coppery-like surface will be seen on the metal. Remove from bath, rinse quite clean, and brighten the surfaces. These surfaces can then be tinned by using a fluid consisting of zinc dissolved in hydrochloric acid, in the ordinary way, with common soft solder.
Mierzinski recommends ordinary hard solder, and says that Hulot uses an alloy of the usual half-and-half lead-tin solder, with $12.5 \%, 25 \%$ or 50% of zinc amalgam.

Tests of Aluminum Bronzes.

(By John H. J. Dagger, in a paper read before the British Association, 1889.)

Per cent of Aluminum.	Tensile Strength.		Elongation, per cent.	Specific Gravity.
	Tons per square inch.	Pounds per square inch.		
11.	40 to 45	89.600 to 100,800	8	7.93 7.69
10.	$\begin{array}{llll}3: 3 & \\ 20 & 40 \\ 20\end{array}$	$\begin{array}{llll}73,930 & & 89 & 8900 \\ 56.000 & & 67.200\end{array}$	14 40	8.00
\%1/2,.......	25 15×30	30,600 " 310,320	40	8.37
	13 " 15	29,120 " 33.600	50	8.69
	11 " 13	24.640 " 29,120	55	. ..

Both physical and chemical tests made of samples cut from various sections of $312 \%, 5 \%, 712 \%$ or 10% aluminized copper castings tend to prove that the alnminum unites itself with earch particle of copper with uniform proportion in each case. so that we have a product that is free from liquation and highlv homngenenus. (R. C. Cole, Iron Age, Jan. 16. i890.)
Aluminum-Rrass (E. H. Cowles, Trans. A. I. II. E, vol. xviii.)Cowles alummum-urass is made by fusing together equal weishts of A 1 aluminum-bronze, copper, and zinc. The copper and bronze are first thoroughly melted and mixed, and the zinc is finally add $+d$. The material is left in the furnace until small test-bars are taken from it and broken. When these bars show a tensile strengilh of $£ 0.000$ pounds or over, with 2 or 3 per cent ductility, the metal is ready to be poured. Tests of this brass, on small bars. have at times shown as high as 100,000 pounds tensile strength.
The screw of the United States gunboat Petrel is cast from this brass, mixed with a trifle less zinc in order to increase its ductility.

Tests of Amminmm-Brass.

(Cowles E. S. \& Al. Co.)

Specimen (Castings.)	Diameter of Piece, Inch.	Area. sq.in.	Tensile Strength, los. per sq. in.	Elastic Limit. lbs. per sq. in.	Elongation. perct.	Remarks.
	.465 .465 .460	.1693 .1698 .1661	$\begin{aligned} & 41,225 \\ & 78,327 \\ & 72,246 \end{aligned}$	$17,658$	$\begin{aligned} & 411 / 2 \\ & 21 / 2 \\ & 21 / 2 \end{aligned}$	

The first brass on the above list is an extremelr tough metal with low elastic limit, made purposely so as to "upset" easily. The other, which is called Aluminum-brass No 2 , is very hard.
We have not in this country or in England any official standard by which to judge of the physical characteristics of cast metals. There are two conditions that are absolutely necessary to be known before we can make a fair comparison of different materials: namely, whether the casting was made in dre or green sand or in a chill, and whether it was attached to a largel casting or cast by itself. It has also been found that chill castings give ligher results than sand-castings, and that bars cast by themselves purposely for testing almost invariably run higher than test bars atiached to castings. It is also a fact that hars cut out from castings are generally weaker than bars cest alnue. (F.. H. Cnwles.)
Caution as to Reported strenoth of Alloys. - The same
variation in strength which has been fomid in tests of gun-metal (copper and (in) noted above. must be expected in tests of aluminum bronze and in fact of all alloys. Ther are exceedingly subject to variatio.. in density and in grain, caused by differences in method of molding and casting, temperature of pouring, size and shape of casting, depth of "sinking head," etc.

Aluminum Hardened by Addition of Copper Rolled Sheets . 04 Inch Thick. (The Engineer, Jaı 2, 1591.)

Al. Per cent. 100 98 96 96 94 92	Cu Per cent. $\begin{aligned} & \ddot{2} \\ & 4 \\ & 6 \\ & 8 \end{aligned}$		Sp. Gr: Calculated.$\begin{aligned} & \ddot{2 .} \ddot{8} \\ & 2.90 \\ & 3.02 \\ & 3.14 \end{aligned}$		$\begin{gathered} \text { Sp. Gr. } \\ \text { Determined. } \\ 2.67 \\ 2.71 \\ 2.77 \\ 2.82 \\ 2.85 \\ 2.85 \end{gathered}$		Tensile Strength in pounds per square inch. 26.535 43,563 44,130 54,773 50,374	
Composition.					Tensile Strength, per sq. in. lbs.	Elastic Limit, lbs. per sq. in.	$\begin{gathered} \text { Elonga- } \\ \text { tion, } \\ \text { per ct. } \end{gathered}$	Reduc. tion of Area, per ct.
Copper.	Aluminum.	Silicon.	Zinc.	Iron.				
91.50\%	6.50\%	1.75\%		- 0.25%	60,\%00	18,000	23.2	30.7
88.50	9.33	1.66		0.50	66,000	27.000	3.8	7.8
91.50	6.50	1.75		0.25	67,600	24,000	13.	21.62
90.00	9.00	1.00			72,830	33,000	2.40	5.18
63.00	3.33	0.33	33.33\%		8.2,200	60,000	2.33	9.88
63.00	3.33	0.33	33.33		\%0,400	55,000	0.4	4.33
91.50	6.50	1.75		0.25	59,100	19,000	15.1	23.59
93.00	6.50	0.50			53,000	19,000	6.2	15.5
88.50	9.33	1.66		0.50	69,930	33,000	1.33	3.30
92.00	6.50	0.50			46,530	17,000	7.8	19.19

For comparison with the above 6 tests of "Navy Yard Bronze," Cu 88 , $\operatorname{Sn} 10, \mathrm{Zn} 2$, are given in which the T. S. ranges from 18,000 to $24,590, \mathrm{E} . \mathrm{L}$. from 10,000 to 13.000 , El. 2.5 to 5.8%, Red. 4.7 to 10.89.

Alloys of Aluminum, Silicon and Iron.

M. and E. Bernard have succeeded in obtaining through electrolysis, by treating directly and without previous purification, the aluminum earths (red and white bauxites) the following:

Alloys such as ferro-aluminum, ferro-silicon-aluminum and silicon-aluminum, where the proportion of silicon may exceed 10% which are employed in the metallurgy of iron for refining steel and cast-iron.

Also silicon-aluminum, where the proportion of silicon does not exceed 10%, which may be employed in mechanical constructions in a rolled or hammered condition, in place of steel, on account of their great resistance, especially where the lightuess of the piece in construction constitutes one of the main conditions of success.

The following analyses are given:

1. Alloys applied to the metallurgy of iron, the refining of steel and cast iron: No. 1. Al, 70%; $\mathrm{Fe}, 25 \%$; Si, 5%. No. 2. Al, $70 ; \mathrm{Fe}, 20 ; \mathrm{Si}, 10$. No. 3. Al, $70 ; \mathrm{Fe}, 15: \mathrm{Si}_{1} 15 . \mathrm{No}. \mathrm{4}. \mathrm{Al} ,\mathrm{r} 0 ; \mathrm{Fe}, 10 ; \mathrm{Si}, 20$. No. 5. Al, $70 ; \mathrm{Fe}, 10 ; \mathrm{Si}, 10$; Mn, 10. No. 6. Al. $\% 0 ; \mathrm{Fe}$, trace; Si, $0 ; \mathrm{Mn}, 10$.
2. Mechanical alloys: No. 1. Al, 92; Si, 6.t5; Fe, 1.25. No. 2. Al, 90; Si, $9.25 ; \mathrm{Fe}, 0.25$. No. 3. Al, 90; $\mathrm{Si}, 10$; Fe, trace. The best results were with alloys where the proportion of iron was very low, and the proportion of silicon in the neighborhood of 10%. Above that proportion the allor becomes crystalline and cau no longer be employed. The density of the alloys of silicon is approximately the same as that of aluminum.-La Metallurgie, $189 \cdot$

Tungsten and Aluminum. -Mr. Leinhardt Mannesmann says that the addici,n of a little tungsten to pure aluminum or its alloys communicates a remarkable resistance to the action of cold and hot water, salt water and other reagents. When the proportion of tungsten is sufficient the alloys offer great resistance to tensile strains.

Aluminum, Copper, and Tin.-Prof. R. C. Carpenter, Trans. A.S. M. E., vol. xix., finds the following alloys of maximum strength in a series in which two of the three metals are in equal proportions:

Al. 85; Cu, $\boldsymbol{7 . 5}$; Sn, 7.5; tensile strength, 30.000 lbs . per sq. in.; elongation in $6 \mathrm{in}, 4 \%$: sp. gr, 3.03. Al, 6.25; Cu. 87.5: Sı. 6.2í: 'T'. S.. 63,000; El., 3.8;

Aluminum and Zinc.-Prof. Carpenter fints that the strongest alloy of these melais cmaists of two parts of aluminum and nne part of zinc. Its tensie strensth is 24.C00 t. 26.000 lbs . per sq. in.; has but little ductility, is readily cut with machine-tools, and is a good substitute for hard cast brass.

Aluminum and Tin.-II. Bourbouze has compounded an alloy of aluminum and tin, by fusing together 100 parts of the former with 10 parts of the latter. This alloy is paler than aluminum, and has a specific gravity of 2.85. The ailoy is not as easily attacked by several reagents as aluminum is, and it can also be worked more readily. Another advantage is that it can be soldered as easily as bronze, without further preliminary preparations.

Aluminumbintimony Alloys.-Dr. C. R. Alder Wright describes some almminum-antimony alloys in a communication read before the Society of Chemical Industry. The results of his researches do not disclose the existence of a commercially useful alloy of these two metals, and have greater scientific than practical interest. A remarkable point is that the alloy with the chemical composition $A l S b$ has a higher melting point than either aluminum or antimony alone, and that when aluminum is added to pure antimony the melting-point goes up from that of antimony ($450^{\circ} \mathrm{C}$.) to a certain temperature rather above that of silver ($1000^{\circ} \mathrm{C}$.).

ALKOESOF PYNGANESEANTCOPPER.

Various Manganese Moys.-E. H. Cowles, in Trans. A. I. MI. E., vol. Xriii, p. 495, states that as the result of numerous experiments on mixtures of the several metals, copper, zinc, tin, lead, aluminum, iron, and manganese, and the metalloid silicon, and experiments upon the same in ascertaining tensile strength, ductility, color, etc., the most important determinations appear to be about as follows:

1. That pure metallic manganese exerts a bleaching effect upon copper more radical in its action even than nickel. In other words, it was found that $181 / 2 \%$ of manganese present in copper produces as white a color in the resulting alloy as 25% of nickel would do, this being the amount of each required to remove the last trace of red.
2. That upwards of 20% or 25% of manganese may be added to copper without reducing its ductility, although doubling its tensile strength and changing its color:
3. That manganese, copper, and zinc when melted together and poured into moulds behave very much like the most " yeasty" German silver, producing an ingot which is a mass of blow-holes, aud which swells up above the mould before cooling.
4. That the alloy of manganese and copper by itself is very easily oxidized.
5. That the addition of 1.25% of aluminum to a manganese-copper alloy converts it from one of the most refractory of metals in the casting proce-s into a metal of superior casting qualities, and the non-corrodibility of which is in many instances greater than that of either German or nickel silver.
A "silver-bronze" alloy especially designed for rods, sheets, and wire has the following composition : Manganese, 18 ; aluminum, 1.20 ; silicon, 0.5 ; zinc, 13 ; aud copper, $6 \pi .5 \%$. It has a tensile strength of about $5 \pi, 000$ pounds on small bars, and 20% elongation. It has been rolled into thin plate and drawn into wire .008 inch in diameter. A test of the electrical conductivity of this wire (of size No. 3?) shows its resistance to be 41.44 times that of pure copner. This is far lower conductivity than that of German silver.
Manganese Bronze. (F. L. Garrison, Jour. F. I., 1891.)-This alloy has been used extensively tor casting propeller-blades. Tests of some made by B. H. Cramp \& Co., of Philadelphia, gave an average elastic limit of 30,000 pounds per square inch, tensile strength of abont 60,000 pounds per square inch. with an elongation of 8% to 10% in sand castings. When rolled, the elastic limit is about 80,000 pounds per square inch, tensile strength 95,000 to 106,000 pounds per square inch, with an elongation of 12% to 15%.

Compression tests made at United States Nary Department from the metal in the pouring-gate of propeller-hub of U.S. S. Maine gave in two tests a crushing stress of 126.450 and 135.250 lbs . per sq. in. The specimens were 1 inch high by 0.7×0.7 inch in cross-section $=0.49$ square inch. Both speci-
mens gave war by shearing, on a plane making an angle of nearly 45° with the direction of stress.

A test on a specimen $1 \times 1 \times 1$ inch was made from a piece of the same pouring-gate. Under stress of 150,000 pomids it was flattened to 0 tiz inch high by about $11 / 4 \times 1 \frac{1}{4}$ inches, but without rupture or any sign of distress.

Oue of the great objections to the use of manganese bronze, or in fact any alloy except iron or steel. for the propellers of iron ships is on account of the galvanic action set up between the propeller and the stern-posts. This difficulty has in great measure been overcome by putling strips of rolled zinc around the propeller apertures in the stern-frames.

The following analysis of Parsons' manganese bronze No. 2 was made from a chip from the propeller of Mr. W. K. Vanderbilt's yacht Alva.

Copper.	88.644
Zinc	$15 \hat{0}$
Tin	8 亿00
Iron	0.1020
Lead	0.295
Phosphorus	trace

$$
\overline{90 .(2)}
$$

It will be observed there is no manganese present and the amount of zinc is very small.
E. H. Cowles. Trans. A. I. M. E.. vol. xviii, says: Manganese bronze, so called, is in reality a manganese brass, for zinc instead of tiu is the chief element added to the copper. Mr. P. M. Parsons, the proprietor of this brand of metal, has claimed for it a tensile strength of from 24 to 路 tons on small bars when cast in sand. Mr. W. C. Wallace states that brass-founders of high repute in England will not admit that manganese bronze has more than from 12 to $1 \hat{i}$ tons tensile strength. Mr. Horace See found tensile strength of 45,000 pounds, and from 6% to $121 / 2 \%$ elongation.

GERTEAN-SILUER AND OTHERE NHCEEH ALKOYS.

For analyses of some Gernıan-silvers see pace 326.
Greman Silver.-The composition of Germall silver is a very uncertain thing and depends largely on the honesty of the manufacturer and the price the purchaser is willing to pay. It is composed of copper, zinc. and nickel in varying proportions. The best varieties contain from 18% to 25% of nickel and from 20% to 30% of zinc, the remainder being copper. The more expensive nickel silver contains from 25% to 33% of vickel and from 75% to 66% of copper. The nickel is used as a whitening element; it also strengthens the alloy and reuders it harder and more non-corrodible than the brass made withont it, of copper and zinc. Of all troublesome alloys to handle in the foundry or rolling-mill, German silver is the worst. It is unmanageable and refractory at every step in its transition from the crude elements into rods, sheets, or wire. (E. H. Cowles, Trans. A. I. M. E., vol. xviii. p. 494.)

By arding a small amount of bismuth to lead that metal may be hardened and tonghened. An alloy consisting of three parts of lead and two of bismuth has ten times the hardness and twenty times the tenacity of leari. The alloys of bismuth with both in and lead are extremely fusille, and take fine impressions of casts and moulds. An alloy of one part bismuth, two parts tin, and one part lead is used by pewter-workers as a soft solder, and by soap-makers for monlils. An alloy of five parts bismuth, two parts tin, and three parts lead melts at $199^{\circ} \mathrm{F}$, and is comewhat used for stereotyping, and for metallic writing-pencils. Thorpe gives the following proportions for the better-known fusible metals:

Name of Alloy.	Bismuth.	Lead.	Tin.	Cad-	Mer. cury.	Meltingpoint.
Newton's	50	31.25	18.75			$202^{\circ} \mathrm{F}$.
Rose's.	50	28.10	24.10			$20: 3{ }^{\circ}$
D'Arcet's	50	25.00	25.00			2010 ${ }^{\circ}$
D'Arcet's with mercury.	50	25.10	25.00		2500	113° "
Wood's...	50	${ }^{2} 5.00$	12.50	12.50		149° "
Lipowitz's $\ldots \ldots$.	50	26.90	12.7'8	10.40		"1490 " ${ }^{\text {" }}$
Guthrie's "Entectic "...	50	20.55	21.10	14.03		"Very low."

The action of heat upon some of these alloys is remarkable. Thus, Lipowitz's allor, which solidifies at 149° Fah., contracts very rapidly at first, as it cools from this point. As the cooling goes on the contraction becomes slower and slower, until the temperarure falls to 1013° Fah. From this point the alloy expands as it cools, until the temperature falls to about T° Fah., after which it again contracts, so that at $3 z^{\circ} \mathrm{F}$. a bar of the alloy has the same longth as at $115^{\circ} \mathrm{F}$.

Alloys of bismuth have been used for making fusible plugs for boilers, but it is found that they are altered by the continued action of heat, so that one caunot rely upon them to melt at the proper temperature. Pure Banca tin is used by the U.S. Government for fusible plugs.

FUSEBLE ALLOYS. (From various sources.)

Sir Isaac Newton's. bismuth is, lead 3, tin 2 , melts at.................. $210^{\circ} \mathrm{F}$.

Rose's, bismuth 2 , lead 1, tin 1, melts at
200 "

Wood's, cadmium 1, bismuth 4, lead 2. tin 1. melts at....................... 165
Guthrie's, cadmium 13. 29 , bismuth 47.38 , lead 19.36, tin 19.97 , melts at. 160 "
Lead 3, tin 5. bismuth 8. melts at... 208
Lead 1, tin 3, bismuth 5. melts at .. 212
Lead 1, tin 4, bismuth 5, melts at..... 240
Tin 1, bisinuth 1, melts at...................................... 286
L.pad 2 , tin 3. melts at............... 334

Tin 2, bismuth 1, melts at......... 333
Lead 1, tin 2. melts at...... 360

Lead 2, tin 1, melts at $4 \pi 5$
Lead 1, tin 1, melts at 466
Lead 1. in 3, melts at.. 334
Tin 3, bismuth 1, melts at. .. 392
Lead 1, bismuth 1, melts at 2.25
Lead 1, Tin 1. bismuth 4, melts at.. 201
Lead 5, tin 3, bismuth \&, nıelts at... 202
Tin 3, bismuth 5, melts at.. 202

BEARING.NETAL ALLOYS.

(C B. Dudley, Jour. F. I., Feb. and March, 1892.)

Alloys are used as bearings in place of wronght iron, rast irnn, or steel, partly because wear and friction are believed to he more rapid when two metals of t e same kind work tngether, partly because the soft merals are more easily worked and got into proper shape, aid partly becanse it is desirable to use a soft metal which will take the wear rather than a hard metal. which will wear the jurnal more rapidly.

A gond bearing-metal must have five characteristics: (1) It must he strong enongh to carre the load without distortion. Pressures on car-journals are frequently as high as 350 to 400 lbs . per square inch.
(2) A good bearing-metal should not heat readily. The old conper-tin bearing, made of seven parts copper to ohe part tin, is more apt th heat than some other allows. In genmeral, reswareh seems to show that the harder the bearing-metal, the more likely it is to hear
(3) Good bearing-metal should work well in the foundry. Oxidation while melting causes spongy castings. It can he proveluted br a liberal use of powdered charcoal while melting. The alldition of 1% to 2% of zinc or a smill amount of phosphorus grearly aids in the production of sound castings. This is a principal element of value in phosphor-bronze.
(4) Good bearing-metals should show small friction. It is true that friction is almost wholly a question of the lubricant used; but the metal of the bearing has certainly some influeuce.
(5) Other things being equal, the best bearing-metal is that winich wears slowest.

The principal constituents of bearing-metal alloys are copper, tin, lead, zinc, antimony, iron, and aluminum. The following table gives the constituents of most of the proninent bearing-metals as analyzed at the Pennsylvania Railroad laboratory at Altoona.

Analyses of Bearingmetal Alloys.

Other constituents:
(1) No graphite.
(2) Possible trace of carbon.
(©) No manganese.
(6) Phosphorus or arsenic, 0.3%.
(3) Trace of phosphorus.
(7) Phosphorus, 0.94.
(4) Possible trace of bismuth.
(8) Phosphorus, 0.20.

* Dr. H. C. Torrey says this analysis is erroneous and that Magnolia metal always contains tin.

As an example of the influence of minute changes in an alloy, the Harrington bronze, which consists of a minute proportion of iron in a copperzine allny, showed after rolling a tensile strength of $\% 5,000 \mathrm{lbs}$. and 20% elongation in 2 inches.
In experimenting on this subject on the Pennsylvania Railroad, a certain number of the bearings were made of a standard bearing-mptai. and the same number were made of the metal to be tested. These bearings were placed on opposite ends of the same axle, one side of the car having the standard bearings. the other the experimental. Before going into service the hearings were carefully weighed, and after a sufficient time they were again weighed.
The standurd bearing-metal used is the "S bearing-metal" of the Phns-phor-trunze Smelting Co. It contains abont ri9. \boldsymbol{i} (\% copper, 9.50% lead. 10% tia. anci 0.80% phosphorus. A large number of experiments have shown that the lusan weight of a hearing of this metal is 1 lb . to each 18,000 to 25,000 miles tratrelled. Besides the measiarement of wear, obse:vations were made on the frequency of "hot hnxes" with the different metals.

The resultas of the sests for wear, so far as given, are condensed into the following taibs:

Metal.	Composition.					Rateof Wear	
	Copper.	Tin.	Lead.	Phos.	Arsenic.		
Standard	79.70	10.00	9.50	0.80		100	
Copper-tin	87.50	12.50				148	
Copper-tin, second experiment, same metal.............................. . 153							
Copper-tin, third experiment, same metal.................. 147							
Arsenic-bronze	. 89.20	10.00			0.80	142	
Arsenic-bronze	. 79.20	10.00	7.00	0.80	115	
Arsenic-bronze.	. $79 . \mathrm{i} 0$	10.00	9.50		0.80	101	
"K" bronze, second experiment, same metal 92.7							
Alloy "B"	77.00	8.00	15.00			86.5	

The old copper-tin alloy of 7 to 1 has repeatedly proved its inferiority to the phosphor-bronze metal. Many more of the copper-tin bearings heated than of the phosphor-bronze. The showing of these tests was so satisfactory that phosphor-bronze was adopted as the standard bearing-metal of the Pennsylvania R.R., and was used for a long time.
The experiments, however, were continued. It was found that arsenic practically takes the place of phosphorus in a copper-tin alloy, and three tests were made with arsenic-bronzes as noted above. As the proportion to lead is increased to correspond with the standard, the durability increases as well. In view of these results the " K " bronze was tried, in which neither phosphorus nor arsenic were used, and in which the lead was increased above the proportion in the standard phosphor-bronze. The result was that the metal wore 7.30% slower than the phosphor-bronze. No trouble from heating was experienced with the " K " bronze more than with the standard. Dr. Dudley continues:

At about this time we began to find evidences that wear of bearing-metal ailoys varied in accordance with the following law: "That alloy which has the greatest power of distortion without rupture (resilience). will best resist wear." It was now attempted to design an alloy in accordance with this law, taking first the proportions of copper aud tin, $91 / 2$ parts copper to 1 of tin was settled on by experiment as the standard, although some evidence since that time tends to show that 12 or possibly 15 parts copper to 1 of tin might have been better. The influence of lead on this copper-tin alloy seems to be much the same as a still further diminution of tin. However, the tendency of the metal to yield under pressure increases as the amount of tin is diminished, and the amount of the lead increased, so a limit is set to the use of lead. A certain amount of tin is also necessary to keep the lead alloyed with the copper.
Bearings were cast of the metal noted in the table as alloy "B," and it wore 13.5% slower than the standard phosphor-bronze. This metal is now the standard bearing-metal of the Pennsylvania Railroad, being slightly changed in composition to allow the use of phosphor-bronze scrap. The formula adopted is: Copper, 105 lbs ; phosphor-bronze, 60 lbs .; tin. 93.4 lbs .; lead, $251 / 4 \mathrm{lbs}$. By using ordinary care in the foundry, keeping the metal well covered with charcoal during the melting, no tronble is found in casting good bearings with this metal. The copper and the phosphor-bronze can be put in the pot before putting it in the melting-hole. The tin and lead should be added after the pot is taken from the fire.
It is not known whether the use of a little zinc, or possibly some other combination, might not give still better results. For the present, however, this alloy is considered to fulfil the various conditions required for good bearing-metal better than any other alloy. The phosphor-bronze had an ultimate tensile strength of $30,000 \mathrm{lbs}$., with 6% elongation, whereas the alloy "B" had 24,000 lbs. tensile strength and 11% elongation.
(For other bearing-metals, see Alloys containing antimony, on next page.

ALLOYS CONTAINING ANTHIMONY.

Various Analyses of Babbitt Metal and other Alloys containing Antimony.

[^9]| Number. | Lead. | Antimony. | Tin. | Copper. |
| :---: | :---: | :---: | :---: | :---: |
| $1 \ldots \ldots \ldots \ldots$ | 65 | 25 | 0 | 10 |
| $2 \ldots \ldots \ldots \ldots \ldots$ | 0 | 11.12 | 83.33 | 5.55 |
| $3 \ldots \ldots \ldots \ldots \ldots .80$ | 20 | 10 | 0 | |
| $4 \ldots \ldots \ldots \ldots$. | 80 | 8 | 12 | 0 |

No. 1 is used for lining cross-head slides, rod-brasses and axle-bearings: No. 2 for lining axle-bearings and comnecting-rod brasses of heavy engines; No. 3 for lining eccentric straps and for bronze slide-valves; and No. 4 for metallic rod-packing.

Some of the best-known white-metal alloys are the following (Circular of Hoveler \& Dieckhaus, London, 1893):

| | | Tin. | Antimony. | Lead. | Copper. |
| :--- | :--- | :---: | :---: | :---: | :---: | Zinc.

"There are engineers who object to white metal containing lead or zinc. This is. lowever, a prejudice quite unfounded, inasmuch as lead and zinc of ten liave properties of great use in white allors."
It is a further fact that an "easy liquid" alloy must not contain more than 18% of animony, which is an invaluable ingredint of white metal for improving its hardness; but in no case must it excerd that margin, as this would reduce the plasticity of the compound and make it brittle.
Hardest alloy of tin and lead: 6 tin , 4 lead. Hardest of all tin alloys (?): 74 tin, 18 antimony, 8 copper.

Alloy for thin open-work, ornamental castings: Lead 2, antimony 1. White metal for patterns: Lead 10, bismuth 6, autimony 2, common brass 8 , $\operatorname{tin} 10$.
Typemmetal is made of various proportions of lead and antimouy, from $1 \% \% \omega \sim \omega \%$ anti umy according to the harduess desired.

Babbitt Metals. (C. R. Tompkins, Mechunical News, Jan. 1891.)
The practice of lining journal-boxes with a metal that is sufficiently fusible to br melted in a common ladle is not always so much for the purpose of spcuring anti-friction properties as for the convenience and cheapness of forming a perfect bearing in line with the shaft without the necessity of
boring them. Boxes that are bored, no matter how accurate, require great calre in fitting and attaching them to the frame or other parts of il machine.
It is not good practice, however, to use the shaft for the purpose of casting the bearings, especially if the shaft be steel, for the reason that the bot metal is apt to spring it; the better plan is to use a mandrel of the same size or a trifl larger for this purpuse. For slow-running journals, where the load is moderate, almost any metal that may be conveniently melted and will run free will answer the purpose. For wearing properties, with a moderate speed. there is probably nothing superior to pure zinc, but when not combined with some other met it shrinks so much in cooling that it cannot be hel 4 firmly in the recess, and soon works loose: and it lacks those anti-fricion properties which are necessary in order to stand high speed.

For line-shafing, and all work where the speed is not over 300 or $400 r p$. m., au alloy of 8 parts zinc and 2 parts block-tin will not only wear longer than any composition of this class, but will successfully resist the force of a heavy load. The tin counteracts the shrinkage, so that the metal, if not overheated, will firmly adhere to the box until it is worn out. But this mixture does not possess sufficient anti-friction properties to warrant its use in fast-running journals.
Among all the soft metals in use there are none that possess greater antifric ion properties than pure lead; hut lead alone is impracticable, for it is so soft that it cannot be retained in the recess. But when by any process lead can be sufficiently hardened to be retained in the boxes without materially injuring its anti-friction properties, there is no metal that will wear longer in livht fast-running journals. With most of the best and most popular anti-friction metals in use and sold under the name of the Babbitt metal, the basis is lead.
Lead and antimony have the property of combining with each other in all proportions without impairing the anti friction properties of either. The antimony hardens the lead, and when mixed in the proportion of 80 parts lead by weight with 20 parts antimony, no other known composition of metals possesses greater anti-friction or wearing properties, or will stand a higher speed without heat or abrasion. It runs fiee in its melted state, has no shrinkage, and is better adapted to light high-speeded machinery than any other known metal. Care, however, should be manifested in using it, and it should never be heated beyond a temperature that will scorch a dry pine stick.

Many different compositions are sold under the name of Babbitt metal. Some are good, but more are worthless; while but rery little genuine Babbitt metal is sold that, is made strictly according to the original formula. Most of the metals sold under that name are the refuse of type-foundries and other smelting-works, melted and cast into fancy ingots with special brands, and sold innler the name of Babbitt metal.

It is difficult at the present time to determine the exact formulas used by the original Babbitt, the inventor of the recessed box, as a number of differ. ent formulas are given for that composition. Tin, copper, and antimony were the ingredients, and from the best sources of information the original proportions were as follows :

Another writer gives:

 4 parts antimony..................$=\%$	

83.3\%

2 parts copper......................... $=3.6 \%$ 8.3\%

4 parts antimony..................... $=\% 1 \%$
8.3\%

The copper was first melted, and the antimony added first and then about ten or fifteen pounds of tin, the whole kept at a dull-red heat and constantly stirred until the metals were thoroughiy incorporated, after which the balance of the tin was adiled, and after being thoroughly stirred again it was then cast into ingots. When the copper is thoroughly melted, and befnre the antimony is added, a handful of powdered charcoal should be thrown into the crucible to form a flux. in order to exclude the air and prevent the antimony from vaporizing; otherwise much of it will escape in the form of a vapor and consequently be wasted. This metal. when carefully prepared, is probably one of the best metals in use for lining boxes that are subjected to a heavy weight and wear; but for light fast-running journals the copper renders it more susceptible to frection, and it is mure liable to heat than the metal composed of lead and antimony in the proportions just given.

SOLDERS.

Common solders, equal parts tin and lead; fine solder, 2 tin to 1 lead; cheas solder, 2 lead, 1 tin.
Fusing-point of tin-lead alloys:

Common pewter contains 4 lead to 1 tin.
Gold solder: 14 parts gold, 6 silver, 4 copper. Gold solder for 14 -carat gold: 25 parts gold, 25 silver, $121 / 2$ brass, 1 zinc.
Silver solder: Yellow brass 10 parts, zinc 7, tin 111/3. Another: Silver 145 parts, brass (3 copper, 1 zinc) 73 , zinc 4.

German-silver solder: Copper 38, zinc 54, nickel 8.
Novel's solders for aluminum:

Novel's solder for aluminum bronze: Tin 900 parts, copper 100, bismath 2 to 3. It is claimed that this solder is also suitable for joining aluminum to copper, brass, zinc, iron, or nickel.

ROPES AND CABLES.
 STRENGTH OF ROPES.

(A S. Newell \& Co., Birkenhead. Klein's Translation of Weisbach, vol. iii, part 1, sec. 2.)

Hemp.		Iron.		Steel.		Tensile Strength.
Girth.	Weight per Fathom.	Girth.	Weight per Fathom	Girth.	Weight per Fathom	
Inches. $23 / 4$	Pounds. 2	Inches.	Pounds.	Inches.	Pounds.	Gross tons.
			$\begin{aligned} & 11 / 2 \end{aligned}$	1	1	${ }_{3}^{2}$
33/4	4	15\%	${ }_{2}$			4
41/3	5	$13 / 4$	$3_{3}^{21 / 2}$	11/2	11/2	5 6
		2	31/2	15/8	2	7
51/2	7	$21 / 8$	4	13/4	21/2	8
6	9	$21 / 4$	$51 / 2$	17/8	3	9 10
		$21 / 3$	$51 / 3$			11
61/2	10	2988	61	$\stackrel{2}{21 / 8}$	4_{4}^{312}	12 13
7	12	$27 / 8$	7	$21 / 4$	41/2	14
		3	712			15
712	14	$31 / 8$ $31 / 4$	$81 / 2$	23/8	5	16 17
8	16	$33 / 8$	$9{ }^{1 / 2}$			18
		$31 / 2$	10	25\%	6	20
$81 / 2$	18	358 33	11	$23 / 4$	61/2	22
91/2	22	$37 / 8$	13	$31 / 4$	8	26
10^{2}	26	4	14			28
11	30	$41 / 4$	15	33/8	9	30
		$43 / 8$	16			32
		41/2	18	$31 / 2$	10	36
12	34	45/8	20	$33 / 4$	12	40

Flat Ropes.

Hemp.		Iron.		Steel.		Tensile Strength.
Girth.	Weight per Fathom.	Girth.	Weight. per Fathom.	Girth.	Weight per Fathom.	
Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.	Gross tons.
4×118	20	214 $\times 1 / 2$	11			20
	24 26	21/2 $\times 1 / 3$	13 15			23 23
$53 / 4 \times 11 / 2$	28	$3{ }^{3} \times 5 \times 8$	16	$2 \times 1 / 2$	10	28
$6 \times 11 / 2$	30	$31 / 4 \times 5 / 8$	18	$21 / 4 \times 1 / 2$	11	32
$7 \times 17 / 8$	36	$31 / 2 \times 5 / 8$	20	$21 / 4 \times 1 / 3$	12	36
$81 / 4 \times 218$	40	$33 / 4 \times 11 / 16$	22	$21 / 2 \times 1 / 2$	13	40
$81 / 2 \times 21 / 4$	45	$4 \times 11 / 16$	25	$23 / 4 \times 3 / 8$	15	45
$9 \times 21 / 2$	50	$41 / 4 \times 3 / 4$	28	$3 \times 3 / 4$	16	50
$91 / 2 \times 23 / 4$	55	$41 / 2 \times 3 / 4$	32	$31 / 4 \times 3 / 8$	18	56
$10 \times 21 / 2$	60	$45 / 8 \times 3 / 4$	34	$31 / 2 \times 3 / 8$	20	60

Working Load, Diameter, and Weight of Ropes and Chains. (Klein's Weisbach, vol. iii, part 1, sec. 2, p. 561.)

Hemp ropes: $d=$ diam. of rope. Wire rope: $d=$ diam. of wire, $n=$ number of wires, $G=$ weight per running foot, $k=$ permissible load in pounds per square inch of section, $P=$ permissible load on rope or chain.
Oval chains: $d=$ diam of iron used ; inside dimensions of oval $1.5 d$ and 2.6d. Each link is a piece of chain 2.6 d long. $G_{0}=$ weight of a single link $=$ $2.10 d^{3} \mathrm{lbs} . ; G=$ weight per running foot $=9 . \pi 3 d^{2} \mathrm{lbs}$.

Stud Chains $4 / 3$ times as strong as open-link variety. [This is contrary to the statements of Capt. Beardslee, U. S. N., in the report of the U. S. Test Board. He holds that the open link is stronger than the studded link. See p. 308 ante].

STRENGTH AND WEIGHT OF WIRE ROPE, HEMPEN ROPE, AND CHAIN CABLES. (Klein's Weisbach.)

Breaking Lnad in tons of 2240 lbs.	Kind of Cable.	Girth of Wire Rope and of Hemp Rope Diameter of Iron of Chain, inches.	Weight of One Foot in length. Pounds.
1 Ton.	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope } \\ \text { Chain } \\ \text { Wire Rope }\end{array}\right.$	1.0	0.125
		2.0	0.177
		${ }^{1 / 4}$	0.500
		2.0	0.438 0.978
8 Ton	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$	5.0	0.978 2.667
12 Tons.........	S Wire Rope	2.5	0.753
	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$	7.0	2.036
		11/16	4.502
			1.136
16 Tons...........	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$	8.0	2.365 6.169
20 Tons....... ...	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope } \\ \text { Chain }\end{array}\right.$	3.59.0	1.5463.225
		9.0 29/32	7.674
21 Tuns...........	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$	4.0 10	
	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Cuain }\end{array}\right.$	10.0 $31 / 32$	4.166 8.836
30 Tons.....	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$	4.5	8.836 2.725
		11.1/16	10.335
	Chain		
36 Tons.	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$	5.0 12.5	3.723
	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$	12.5 $1.3 / 16$	5.940 13.01
44 Tons....	$\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Heinp Rope }\end{array}\right.$	5.5	4.50
		14.0$1.5 / 16$	6.94
51 Tons...........	$\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$		16.00
	$\left\{\begin{array}{l} \text { Wire Rope } \\ \text { Hemp Rope } \\ \text { Chain } \end{array}\right.$	${ }^{6} .0$	5.67
		15.0	\%.92 19.16

Length sufficient to provide the maximum working stress :

Sometimes, when the depths are very great, ropes are given approximately the form of a body of uniform strength, by making them of separate pieces, whose diameters diminish towards the lower end. It is evident that by this means the tensions in the fibres caused by the rope's own weight can be considerably diminished

Rope for Hoisting or reansmission. Manila Rope(C. W. Hunt Company, New York.)-Rope used for hoisting or for trausmission of power is subjected to a very severe test. Ordinary rope chafes and grinds to powder in the centre, while the exterior may look as though it was little worn.
In bending a rope over a sheave. the strands and the yarns of these strands slide a small distance upon each other, causing friction, and wear the rope internally.

The "Stevedore" rope used by the C. W. Hunt Co. is made by lubricating the fibres with plumbago, mixed with sufficient tallow to hold it in position. This lubricates the yarns of the rope, and prevents internal chafing and wear. After rumning a short time the exterior of the rope gets compressed and coated with the lubricant.

In manufacturing rope, the fibres are first spun into a yarn, this yarn being twisted in a direction called "right hand." From 20 to 80 of these yarns, depending on the size of the rope, are then put together and twisted in the opposite direction, or "left hand," into a strand. Three of these
strands, for a 3 -strand, or four for a 4 -strand rope, are then twisted together, the twist being again in the "right hand " direction. When the strand is twisted, it untwists each of the threads, and when the three strands are twisted together into rope, it untwists the strands, but again twists up the threads. It is this opposite twist that keeps the rope in its proper form. When a weight is hung on the end of a rope, the tenduncy is for the rope to untwist, and become longer. In untwisting the rope, it would twist the threads up, and the weight will revolve unil the strain of the untwisting strands just equals the strain of the threads being twisted tighter. In making a rope it is impossible to make these strains exactly balance each other. It is this fact that makes it necessary to take out the "turns" in a new rope, that is, untwist it when it is put at work. The proper twist that should be put in the threads has been ascertained approximately by experience.

The amount of work that the rope will do varies greatly. It depends not only on the quality of the fibre and the method of laying up the rope, but also on the kind of weather when the rope is used, the blocks or sheaves over which it is run, and the strain in proportion to the strain put upon the rope. The principal wear comes in practice from defective or badly set sheaves, from excess of load and exposure to storms.

The loads put upon the rope should not exceed those given in the tables, for the most economical wear. The indications of excessive load will be the twist coming out of the rope, or one of the strands slipping ont of its proper position. A certain amount of twist comes out in using it the first day or two, but after that the rope should remain substantially the same. If it does not, the load is too great for the durability of the rope. If the rope wears on the outside, and is good on the inside, it shows that it has been chafed in running over the pulleys or sheaves. If the blocks are very small, it will increase the sliding of the strands and threads, and result in a more rapid internal wear. Rope made for hoisting and for rope transmission is usually made with four strands, as experience has shown this to be the most serviceable.

The strength and weight of "stevedore" rope is estimated as follows:
Breaking strength in pounds $=\% 20$ (circumference in inches) ${ }^{2} ;$ Weight in pounds per foot $=.032$ (circumference in inches) ${ }^{2}$.

The Technical Words relating to Cordage most frequently heard are:

Yarn.-Fibres twisted together.
Thread.-Two or more small yarns twisted together.
String.-The same as a thread but a little larger yarns.
Strand.-Two or more large yarus twisted together.
Cord.-Several threads twisted together.
Rope.-Several strands twisted together.
Hawser.-A rope of three stiands.
Shroud-Laid. - A rope of four strands.
Cable - Three hawsers twisted together.
Yarns are laid up left-handed into strands.
Strands are laid up right-handed into rope.
Hawsers are laid up left-handed into a cable.
A rope is:
Laid by twisting strands together in making the rope.
Spliced by joining to another rope by interweaving the strands.
Whipped. -By winding a string around the end to prevent untwisting.
SERVED.-When covered by winding a yarn continuously aud tightly around it.

Parceled.-By wrapping with canvas.
Seized. - When two parts are bound together by a yarn, thread or string.
Payed.-When painted, tarred or greased to resist wet.
Haul. - To pull on a rope.
Taur - Drawn tight or strained.
Splicing of Ropes.-The splice in a transmission rope is not only the weakest part of the rope but is the first part to fail when the roue is worn out. If the rope is larger at the splice, the projecting part will wear on the pulleys and the rope fail from the cuting off of the strands. The following directions are given for splicing a 4 -strand rope.

The engravings show each successive operation in splicing a $13 / 4 \mathrm{inch}$ manila rope. Each engraving was made from a full-size specimen.

FIG. 78.

Fig. 79.

Fig. 80.

Tie a piece of twine, 9 and 10, around the rope to be spliced, about 6 feet from each eud. Then unlay the strands of each end back to the twine.

Butt the ropes togetker and twist each corresponding pair of strands loosely, to keep them from being tangled, as shown in Fig. \%8.
The twine 10 is now cut, and the strand 8 unlaid and strand $\tilde{\tau}$ carefully laid in its place for a distance of four and a half feet from the junction.

The strand 6 is next unlaid about one and a half feet and strand 5 laid in ts place.
The ands of the cores are now cut off so they just meet.
Unlay strand 1 four and a half feet, laying strand 2 in its place.
Unlay strand 3 one and a half feet, laying in strand 4.
Cut all the strands off to a length of about twenty inches, for convenience in manipulation.

The rope now assumes the form shown in Fig. 79 with the meeting points of the strands three feet apart.
Each pair of strands is successively subjected to the following operation:
From the point of meeting of the strands 8 and τ, unlay each one three turns; split both the strand 8 and the strand 7 in halves as far back as they are now unlaid and "whip" the end of each half strand with a small piece of twine.
The half of the strand 7 is now laid in three turns and the half of 8 also laid in three turns. The half strands now meet and are tied in a simple knot, 11, Fig. 80, making the rope at this point its original size.
The rope is now opened with a marlin spike and the half strand of γ worked around the haif strancl of 8 by passing the end of the haif strand 7 through the rope, as shown in the engraving, drawn tant and again worked around this half strand until it reaches the half strand 13 that was not laid in. This half strand 13 is now split, and the half strand 7 drawn through the opening thus made, and then tucked under the two adjacent strands, as shown in Fig. 81. The other half of the strand 8 is now wound around the other half strand 7 in the same manner. After each pair of strands has been treated in this manner, the ends are cut off at $1 \approx$, leaving them about four inches long. After a few days' wear they will draw into the body of the rope or wear off. so that the locality of the splice can scarcely be detected.
Coal Hoisting. (C. W. Hunt Co.).-The amount of coal that can be hoisted wich a rope varies greatly. Under the ordinary conditions of use a rope hoists from 5000 to 8000 tons. Where the circumstances are more favorable, the amounts run up frequently to 12,000 or 15,000 tons, occasionally to 20,000 and in one case 32,400 tons to a single fall.

When a hoisting rope is first putin use, it is likely from the strain put upon it to twist up when the block is loosened from the tub. This occurs in the first day or two only. The rope should then be taken down and the "turns" taken out of the rope. When put up again the rope should give no further trouble until worn out.

It is necessary that the rope should be much larger than is needed to bear the strain from the load.

Practical experience for many years has substantially settled the most economical size of rope to be used which is given in the table below.

Hoisting ropes are not spliced, as it is difficult to make a splice that will not pull out while running over the sheaves, and the increased wear to be obtained in this way is very small.

Coal is usually hoisted with what is commonly called a "double whip:" that is, with a running block that is attached to the tub which reduces the strain on the rope to approximately one half the weight of the load hoisted. The following table gives the usual sizes of hoisting rope and the proper working strain:

Stevedoie Hoisting-rope.

C. W. Hunt Co.

Circumference of the rope in ins.	Proper Working Strain on the Rope in lbs.	Nominal size of Coal tubs. Double whip.	Approximate Weight of a Coil, in lbs.
3	350	$1 / 6$ to $1 / 5$ tons.	360
31/2	500	$1 / 5$ "1/4 "	480
4	650	1/4 "1/3. ${ }^{\text {a }}$	650
41/2	800	$\begin{array}{llll}1 / 2 & 6 & 3 / 4 & \text { ، }\end{array}$	830
5	1000	$3 / 4{ }^{1} 1{ }^{6}$	960

Hoisting rope is ordered by circumference, transmission rope by diameter.

Weight and Strength of Manila Rope.

Spencer Miller (Eng'g News, Dec. 6. 1890) gives a table of breaking strength of manila rope, which he considers more reliable than the strength computed by Mr. Hunt's formula: Breaking strength $=\uparrow=0 \times(\text { circumference in inches })^{2}$. Mir. Miller's formulais: Breaking weight lbs $=$ circumference ${ }^{2} \times$ a coefficient which varies from 900 for $1 / 2^{\prime \prime}$ to 700 for $2^{\prime \prime}$ diameter rope, as below:

Circumference	$.11 / 2$	2	$21 / 2$	$23 / 4$	3	$31 / 2$	33				
Cuefficient	$41 / 4$	$41 / 2$	5	$51 / 2$	6						
900	845	820	790	780	765	760	$7 / 45$	735	725	712	100

The following table gives the breaking strength of manila rope as calculated by MI : Hunt's formula, and also by Mr. Miller's, using in the latter the coefficient 900 for size: \mathbf{b} low 11/2 in. circumference and 700 for sizes above 6 in. The differences letween the figures for any given size are probably not greater than the difference in acual strength of samples from different maker. Buh sets of figures are considerably lower than those given in tabtes published by some makers of rope, but they are believed to be more reliable. The figures for weight per 100 ft . are from manufacturers' tables.

			Ultimate Strength of Rope in lbs.					Ultimate Strength of Rope in lbs.	
			Hunt.	Miller.				Hunt.	Miller.
3/16	$9 / .6$	2	230	280	$15 / 16$	4	52	11,500	12,000
1/4	$3 / 4$	3	400	500	13/8	41/4	58	13,100	13,500
$5 / 1$		4	630	790	$11 / 2$	$41 / 2$	65	14,600	14,900
	11/8	5	900	1,140	1.9/16	$43 / 4$	$721 / 2$	16,200	16.500
6	$11 / 4$	-	1,240	1,550	$15 / 8$		80	18.000	18.100
	11/2	i2/3	1,6:0	2,0:0	$133 / 4$	51/2	97	21.800	21.500
	$13 / 4$	11^{3}	2,050	$2.4 \div 0$	12		113	25,900	25,200
		1:31/3	$2,8 \times 0$	3.380	121/8	61/2	133	311.400	$\because 9.600$
	21/4	161/3	3.6111	4,150	1114	7	153	35.300	$3+.300$
13/1;	219	20	4.5010	5.030	121	$71 / 4$	184	40,500	39,400
$7 / 8$	$23 / 4$	23:3/3	5.410	5.950	$1 \sim 8$	8	211	46.100	44,800
	3	$2-1 / 3$	6, 819	7020	$27 / 8$	$81 / 2$	23 \%	5\%.000	50.600
11/16	$31 / 4$	3:31/3	\%,600	8.160		9	26.	54.300	56.00
11/8	$311 / 2$	35	8.8 .1	9.3 .0	$31 / 8$	$91 / 2$	293	65,010	63, 200
$11 / 4$	$33 / 4$	45	10, 1:0	10.690	$31 / 4$	10	$3 \% 5$	72,000	70,000

For rope-driving Mr. Hunt recommends that the working strain should not exceed $1 / 20$ of the ultimate breaking strain. For further data on ropes see "Rope-d iving."

Knots.--A great number of knots have been devised of which a few only are illusirated, but those selected are the most frequently used. In the cuts. Fig. 82, they are shown pen, or before being drawn taut, in order to show the position of the parts. The names usually given to them are:
A. Bight of a rone.
B. Simple or Overhand knot.
C. Figure 8 knot.
D. Double knot.
E. Boat knot.
F. Bowline, first step.
G. Bowline, second step.
H. Bowline completed.
I. Square or reef knot.
J. Sheet bend or weaver's knot.
K. Sheet bend with a toggle.
L. Carrick bend.
M. Stevedore knot completed.
N. Stevedore knot commenced.
O. Slip knot.
P. Flemish loop.
Q. Chain knot with toggle.
R. Half-hitch.
S. Timber-hi ch.
T. Clove hitch.
U. Rolling-hitch.
V. Timber-hitch and half-hitch.
W. Blackwall-hiteh.
X. Fisherman's bend.
Y. Round turil and half-hitch.
Z. Wall knot commenced.

A A. .".
B B. Wall knot crown commenced.
C C. " " " completed.

The principle of a knot is that no two parts, which would move in the same direction if the rope were to slip, should lay along side of and touching each other.

The bowline is one of the most useful knots, it will not slip, and after being strained is easily untied. Commence by making a bight in the rope, then put the end through the bight and under the standing part as shown in G, then pass the end again through the bight. and hanl tight.

The square or reef knot must not be mistaken for the "granny" knot that slips under a strain. Knots $H . K$ and M are easily untied after bring under strain. The knot M is useful when the rope passes through an eye and is held by the knot, as it will not slip and is easily untied after being strained.

The timber hitch S looks as though it would give way, but it will not; the greater the strain the tighter it will hold. The wall knot looks complicated, but is easily made by proceeding as follows: Form a bight with strand 1 and pass the strand 2 around the end of it, and the strand 3 round the end of 2 and then through the bight of 1 as shown in the cut Z. Haul the ends taut when the appearance is as shown in $A A$. The end of the strand 1 is now laid over the centre of the knot, strand 2 laid over 1 and 3 over 2 . when the end of 3 is passed through the bight of 1 as shown in $B B$. Haul all the strands taut as shown in CC.

To Splice a Wire Rope. - The tools required will be a small marline spike, nipping cutters, and either clamps or a small hemp-rope sling with which to wrap around and untwist the rope. If a bench-vise is accessible it will be found convenient.
In splicing rope, a certain length is used up in making the splice. An allowance of not less than 16 feet for $1 / 2$ inch rope, and proportionately longer for larger sizes, must be added to the length of an endless rope in ordering.
Having measured, carefully, the length the rope should be after splicing, and marked the points M and M^{\prime}, Fig. 83, unlay the strands from each end E and E^{\prime} to M and M^{\prime} and cut off the centre at M and M^{\prime}, and then:
(1). Interlock the six uulaid strands of each end alternately and draw them together so that the points M and M^{\prime} meet, as in Fig. 84.
(2). Unlay a strand from one end, and following the unlay closely, lay into the seam or groove it opens, the strand opposite it belonging to the other end of the rope, until within a length equal to three or four times the length of one lay of the rope, and cut the other strand to about the same length from the point of meeting as at A, Fig. 85.
(3). Unlay the adjacent strand in the opposite direction, and following the unlay closely, lay in its place the corresponding opposite strand, cutting the ends as described before at B. Fig. 85.
There are now four strands laid in place terminating at A and B, with the eight remaining at $M M^{\prime}$, as in Fig. 85.
It will be well after laying each pair of strands to tie them temporarily at the points A and B.
Pursue the same course with the remaining four pairs of opposite strands,

Splicing Wire Rope.

stopping each pair about eight or tell turns of the rope short of the preced. ing pair, and cutting the ends as before.

We now have all the strands laid in their proper places with their respective ends passing each other, as in Fig. 86.

All methods of rope-splicing are identical to this point; their variety consists in the method of tucking the ends. The one given below is the one most generally practiced.

Clamp the rope either in a vise at a point to the left of A, Fig. 86, and by a hand-clamp applied near A, open up the rope by untwisting sufficiently to cut the core at A, and seizing it with the nippers. let an assistant draw it out slowly, you following it closely, crowding the strand in its place until it is all laid in. Cut the core where the strand ends, and push the end back into its place. Remove the clamps and let the rope close together around it. Draw out the core in the opposite direction and lay the other strand in the centre of the rope, in the same manner. Repeat the operation at the five remaining points, and hammer the rope lightly at the points where the ends pass each other at A, A, B, B, etc., with small wooden mallets, and the splice is complete, as shown in Fig. 87.

If a clamp and vise are not obtainable, two rope slings and short wooden levers may be used to untwist and open up the rope.

A rope spliced as above will be nearly as strong as the original rope and smooth everywhere. After rnnning a few days, the splice, if well made, cannot be found except by close examination.

The above instructions have been adopted by the leading rope manufacturers of America.

SPRINGS.

Definitions.-A spiral spring is one which is wound around a fixed point or centre, and continually receding from it like a watch spring. A helical spring is one which is wound around an arbor, and at the same time advancing like the thread of a screw. An elliptical or laminated spring is mate of flat bars, plates, or "leares," of regularly varying leugths, superposed one unon the other.

Laminated Steel Springs.-Clark (Rules, Tables and Data) gives the following from his work on Railway Machinery, 1855:

$$
\Delta=\frac{1.66 L^{3}}{b t^{3} n} ; \quad s=\frac{b t^{2} n}{11.3 L} ; \quad n=\frac{1.66 L^{3}}{\Delta b t^{3}} ;
$$

$\Delta=$ elasticity, or deflection, in sixteenths of an inch per ton of load, $s=$ working strength, or load, in tons (2:40 lbs.),
$L=$ span, when loaded, in inches,
$b=$ breadth of plates, in inches, taken as uniform,
$t=$ thickness of plates, in sixteenths of an inch,
$n=$ number of plates.
Note.-The span and the elasticity are those due to the spring when weighted.
2 When extra thick back and short plates are used, they must be replaced by an equivalent number of plates of the ruling thickness, prior to the employment of the first two formulæ. This is found by multiplying the number of extra thick plates by the cube of their thickness, and dividing by the cube of the ruling thickness. Conversely, the number of plates of the ruling thickness given by the third formula, required to be deducted and replaced by a given number of extra thick plates, are found by the same calculation.
3. It is assumed that the plates are similarly and regularly formed, and that they are of uniform breadth, and but slightly taper at the ends.

Reuleaux's Constructor gives for semi-elliptic springs:

$$
P=\frac{S n b h^{2}}{6 l} \text { and } \quad f=\frac{6 P l^{3}}{E n b h^{3}}
$$

$S=$ max. direct fibre-strain in plate; $\quad b=$ width of plates;
$n=$ number of plates in spring;
$l=$ one half length of spring;
$h=$ thickness of plates;
$P=$ load on one end of spring;

$$
f=\text { deflection of end of spring; }
$$

$$
E=\text { modulus of direct elasticity. }
$$

The above formula for deflection can be relied upon where all the plates of the spring are regularly shortened; but in semi-elliptic springs, as used, there are generally several plates extending the full length of the spring, and the proportion of these long plates to the whole number is usually about one fourth. In such cases $f=\frac{5.5 P l^{3}}{E n b h^{3}}$. (G. R. Henderson, Trans. A. S. M. E., vol. xvi.)
In order to compare the formulæ of Reuleaux and Clark we may make the following substitutions in the latter: s in tons $=P$ in lbs. $\div 1120 ; \Delta s=$ $16 f ; L=2 l ; t=16 h$; then

$$
\Delta s=16 f=\frac{1.66 \times 8 l^{3} \times P}{4096 \times 11: 0 \times n b l^{3}}, \quad \text { whence } \quad f=\frac{P l^{3}}{5,52 \tau, 133},
$$

which corresponds with Reuleaux's formula for deflection if in the latter we take $E=33,162,800$.
Also $\quad s=\frac{P}{1120}=\frac{256 n b h^{2}}{11.3 \times 22}$, whence $\quad P=\frac{12.68 \pi n b h^{2}}{l}$,
which corresponds with Reuleaux's formula for working load when S in the latter is taken at $76,120$.

The value of E is usually taken at $30,000,000$ and S at 80,000 , in which case Reuleaux's formulæ become

$$
P=\frac{13,333 n n b h^{2}}{l} \quad \text { and } \quad f=\frac{P l^{3}}{5,000,000 n b h^{3}}
$$

Helical Steel Springs.-Clark quotes the following from the report on Safety Valves ('Trans. Inst. Engrs. and Shipbuilders in Scotland, 18ז4-5):

$$
E=\frac{d^{3} \times w}{D^{4} \times C}
$$

$E=$ compression or extension of one coil in inches,
$d=$ dianeter from centre to centre of steel bar constituting the spring, in inches,
$v=$ weight applied, in pounds ,
$D=$ dianteter, or side of the square, of the steel bar, in sixteenths of an inch,
$C=$ a constant, which may be taken as 22 for round steel and 30 for square steel.
Note.-The deflection E for one coil is to be multiplied by the number of free coils, to obtain the total drflection for a given spring.
The relation between the safe load, size of steel, and diameter of coil, may be taken for practical purposes as follows:

$$
\begin{aligned}
& D=\sqrt[3]{\frac{w d}{3}}, \text { for round steel; } \\
& D=\sqrt[3]{\frac{w d}{4.29}}, \text { for square steel. }
\end{aligned}
$$

Rankine's Machinery and Millwork, p. 390, gives the following:

$$
\begin{gathered}
\frac{W}{v}=\frac{c d^{4}}{64 n r^{3}} ; \quad W_{1}=\frac{.196 f d^{3}}{r} ; \quad v_{1}=\frac{12.566 n f r^{2}}{c d} \\
\frac{W_{1}}{2}=\text { greatest safe sudden load. }
\end{gathered}
$$

In which d is the diameter of wire in inches; c a co-efficient of transverse elasticity of wire, say $10,500,000$ to $12,000.000$ for charcoal iron wire and steel; r radius to centre of wire in coil; n effective number of coils; f greatest safe shearing stress, say 30,$000 ; W$ any load not exceeding greatest safe load; v correspouding extension or compression; W_{1} greatest safe load; and v_{1} greatest safe steady extension or compression.
If the wire is square, of the dimensions $d \times d$, the load for a given deflection is greater than for a round wire of the diameter d in the ratio of 2.81 to 1.96 or of 1.43 to 1 , or of 10 to \tilde{T}, nearly.

Wilson Hartnell (Proc. Inst. M. E., 1882, p. 426), says: The size of a spiral spring may be calculated from the formula on page 304 of "Rankine's Useful Rules and Tables "; but the experience with Salter's springs has shown that the safe limit of stress is more than twice as great as there given, namely 60,000 to $70,000 \mathrm{lbs}$. per square inch of section with $3 / 8$ inch wire, and about 50,000 with $1 / 2$ inch wire. Hence the work that can be done by springs of wire is four or five times as great as Rankine allows.

For $3 / 8$ inch wire and under,

$$
\begin{gathered}
\text { Maximum load in lbs. }=\frac{12,000 \times(\text { diam. of wire })^{3}}{\text { Mean radius of springs }} ; \\
\text { Weight in lbs. to deflect spring } 1 \mathrm{in} .=\frac{180,000 \times(\text { diam. })^{4}}{\text { Number of coils } \times(\mathrm{rad} .)^{3}}
\end{gathered}
$$

The work in foot-pounds that can be stored up in a spiral spring would lift it above 50 ft .

In a few rough experiments made with Salter's springs the coefficient of rigidity was noticed to be $12,600,000$ to $13,700,000$ with $1 / 4$ inch wire; $11,000,000$ for $11 / 32$ inch: and $10,600,000$ to $10.900,000$ for $3 / 8$ inch wire.

Helical Springs.-J. Begtrup, in the American Machinist of Ang. 18, 189:, gives formulas for the deflection and carrying capacity of helical springs of round and square steel, as follow:

$$
\left.\begin{array}{rl}
W & =.39: 7 \frac{S d^{3}}{D-d}, \\
F^{\prime} & =8 \frac{P(D-d)^{3}}{E\left(l^{4}\right.},
\end{array}\right\} \text { for round steel. }
$$

though it unites with antimony with great difficulty. A small percentage of silver whitens and hardens the metal, and gives it added strength; and this alloy is especially applicable to the numufacture of fine insimments and apparatus. The following alloys have been found recently to be useful in the arts: Nickel-aluminmm, composed of 20 parts nickel 10 do of aluminum; rosine, made of 40 parts nickel, 10 parts silver, 30 parts aluminum, and 20 parts tin, for jewellers' work; mettaline. made of 35 parts cobalt, 25 parts aluminum, 10 parts iron, and 30 parts copper. The aluminum-bourbounz metal, shown at the Paris Exposition of 1889, has a specific gravity of 29 to 2.96 , and can be cast in verr soidd shapes, as it has very little shrinkage. From analysis the following composition is deduced: Aluminum, 85.74%; tin, 12.94%; silicon, 1.32%; iron, none.

The metal can he readily elecirically welded, but soldering is still not satisfactory. The high heat conductivity of the aluminum withdraws the heat of the molten solder so rapidly that it "freezes" before it can flow sufficiently. A German solder said to give goorl results is made of 80% tin to 20% zinc, using a flux composed of 80 parts stearic acid, 10 parts chloride of zine, and 10 parts of chloride of tin. Pure tin, fusing at $250^{\circ} \mathrm{C}$.. has also been used as a solder. The use of chloride of silver as a finx has been patented, and used with ordinary soft solder has given some success. A pure nickel soldering-bit should be used, as it does not discolor aluminum as copper bits do.

ALLOYS.

ALLONS CF COPBER ANF TEN.
(Extract from Report of U. S. Test Board.*)

	Mean Composition by Analysis.								Tnision Tesis.	
	$\begin{aligned} & \mathrm{C}^{-} \rho- \\ & \mathrm{B} \geq \mathrm{e} . \end{aligned}$	Tin.							$\begin{aligned} & =0 \\ & 0 \\ & \text { en } \end{aligned}$	
1	100.		S\%	14.	0.47	29.848	bent.	42.000	143	153
$1 a$	100.		12,760	11.000	0.4%	21,251	2.31	39.000	65	40
2	9\%. 89	1.90	24.580	10.000	13.33			34,000	150	31%
3	96.06	3.66	32,000	16,000	14.29	33.232	bent.	42,048	157	24%
4	94.11	5.43				38,659				
5	92.11	\%. 80	25.540	19.000	5.53	43.731		42,000	160	126
${ }_{\sim}^{6}$	90.2τ	9.58	26,860	15,250	3.66	49,400		38,000	175	114
8	88.41	11.59				60,403 34,531				
8	87. 8.15	12.73 17.34			3.33	34,531 $6 \tau .930$	4.00 0.63		182	
10	80.95	18.84	32,		0.0	56.115	0.49		190	16
11	17.56	22.25			0.	29,9:2	0.16			
12	\%6.63	23.24	22	22,010	0.	32.210	0.19	114	122	
13	\%2.89	26.85			0.	9.512	0.05			
14	69.84	29.88	5,585	5,585	0.	$12.0{ }^{2} 6$	0.06	14\%,000	18	
15	68.58	31.26			0.	9,159	0.04			
16	67.8π	32. 10			0.	9,4~へ	005			
17	65.34	34.47	2,201	2,201	0.	4, 116	0.02	84,	16	1
18	56.0	43.17	1.455	1,455	.	2,126	0.03			
19 20	44.52 34.22	55.28 65.80	3.010 $3,3 \pi 1$	1.010 3,371	0.	4, $5,0.6$	0.03 0 0	35.800 19,600	17	
21	23.35	76.39	6,675		0.	12.408	0.27			
2	15.08	84.62				9.063	0.86	6.500	23	兂
23	11.49	88.47	6.380	3.500	4.10	10,\%06	5.85	10,100	23	62
24	$8.5 \hat{7}$	91.39	6,450	3.560	6.87	5,305	bent.	9.800	23	132
25	3.72	96.31	4. $\mathrm{n}^{5} 9$	2,150	13.32	6,9:5		9,800	23	220
26	0.	100.	3.50		3.) 51	3.i40	"	6,400	12	55

* The tests of the allors of copper and tin and of copper and zinc, the results of which are publiched in the Report of the U. S. Board appointed to trst Iron, Steel, and other Metals, Vols. I and II, $18 \tilde{\sigma}^{9} 9$ and 18S1, were made by the author under direction of Prof. R. H. Thurston, chairman of the Committee on Alloys. See preface to the repurt of the Committee, in Vol.I.

Nos. $1 a$ and 2 were full of blow-holes.
Tests Nos. 1 and $1 a$ show the variation in cast copper due to varying conditions of casting. In the crushing tests Nos. 12 to 20 , inclusive, crusied and broke under the strain, but all the others bulged and flattened out. In these cases the crushing strength is taken to be that which caused a decrease of 10% in the length. The test-pieces were 2 in . long and $5 / 8 \mathrm{in}$. diameter. The torsional tests were made in Thurston's torsion-machine, on pieces $5 / 8$ in. diameter and 1 in . long betwren heads.
Specific Gravity of the Copper-tin Alloys.-The specific gravity of copper, as found in these tests, is $8.8 \% 4$ (tested in turuings from the ingot, and reduced to $39.1^{\circ} \mathrm{F}$.). The alloy of maximum sp. gr. 8.956 contained 62.42 copper, 37.48 tin , and all the alloys containing less than 33% tin varied irregularly in sp . gr. between 8.65 and $8.9:$, the density depending not on the composition, but on the porrsity of the casting. It is probable that the actual sp.gr. of all these alloys containing less than $3 \% \%$ tin is about 8.95, and any smaller figure indicates porosity in the specimen.

From 3 3\% to 100% tin, the sp. gr. decreases regularly from the maximum of 8.956 to that of pure tin, 7.293 .

Note on the Strength of the Copper-tin Alloys.

The bars containing from 2% to 24% tin, inclusive, hare considerable strength, and all the rest are practicaliy worthless for purposes in which strength is required. The dividing line between the strong and brittle alloys is rircisely that at which the color changes from golden yellow to silverwhite, viz, at a composition containing between 24% and 30% of tin.
It appears that the tensile and compressive strengths of these alloys are in no way related to each other, that the torsional strength is closely proportional to the tensile strength, and that the transverse strength may de$\mathrm{p} \leftrightarrow \mathrm{nd}$ in some deyree upon the compressive strength, but it is much more nearly related to the tensile strength. Tine modulus of rupture, as obtained by the transverse tests, is, in general, a figure between those of tensile and compressive strengths per square incl, but there are a few exceptions in which it is larger than either.
The strengths of the alloys at the copper end of the series increase rapidly with the addition of tin till about 4% of tin is reached. The transverse strength continues regularly to increase to the maximum, till the alloy containing about $1,1 / 2 \%$ of tin is reached, while the tensile and torsional strengths also increase, but irregularly, to the same point. This irregularity is probably due to porosity of the metal, and might possibly be removed by any means which would make the castings more compact. The maximum is reached at the alloy containing $82 . \% 0$ copper, $1 \% .34$ tin, the transverse strength, however, being very much greater at this point than the tensile or torsional strength. From the point f maximum strength the figures drop rapidly to the alloys containing about $2 \% .5 \%$ of tin, and then more slowly to 37.5%, at which point the minimum (or nearly the minimum) strength, by all three methods of test, is reached. The alloys of minimum strengrth are found from $3 \hat{i} .5 \%$ tin to $5: .5 \%$ tin. The absolute minimum is probably about 45\% of tin .

From 5.2% of tin to about 77.5% tin there is a rather slow and irregular increase in strength. From 77.5% tin to the end of the series, or all tin, the strengths slowly and somewhat irregularly decrease.

The results of these tests do not seem to corroborate the theory given by some writers, that peculiar properties are possessed by the alloys which are compounded of simple multiples of their atomic weights or chemical equivalents, and that these properties are lost as the compositions vary more or less from this definite constitution. It does appear that a certain percentage composition gives a maximum strength and another certain percentage a minimum, but neither of these compositions is represented by simple multiples of the atomic weights.
There appears to be a regular law of decrease from the maximum to the minimum strength which does not seem to have any relation to the atomic menortions, but only to the percentage compositions.
Hardness. - The pieces containing less than 24% of tin were turned in the lathe without difficulty, a gradually increasing hardness being noticed, the last named giving a very short chip, and requiring frequent sharpening of the tool.
With the most brittle alloys it was found impossible to turn the test-pieces in the lathe to a smooth surface. No. 13 to No. 17 (26.85 to 34.47 tin) could not be cut with a tool at all. Chips would fly off in advance of the tool and

```
\(W=\) carrying capacity in pounds,
\(S=\) greatest tensile stress per square inch of material,
\(d=\) diameter of steel,
\(\nu=\) outside diameter of coil,
\(F=\) deflection of one coil,
\(E=\) torsional modulus of elasticity,
\(P=\) load in pounds.
```

From these formulas the following table has been calculated by Mr. Begtrup. A spring being made of an elastic material, and of such shape as to allow a great amount of deflection, will not be affected by sudden slocks or blows to the same extent as a rigid body, and a factor of safety very much less than for rigid coustructions may be used.

HOW TO USE THE TABLE.

When designing a spring for continuous work, as a car spring, use a greater factor of safety than in the table; for intermittent working, as in a steam-engine governor or safety valve, use figures given in table; for square steel multiply line W by 1.2 and line F by .59 .
Example 1.-How much will a spring of $3 / 8^{\prime \prime}$ round steel and $3^{\prime \prime}$ outside diameter carry with safety? In the line headed D we find 3 , and right underneath fir3, which is the weight it will carry with safety. How many coils must this spring have so as to deflect $3^{\prime \prime}$ with a load of 400 pounds? Assuming a modulus of elasticity of $1: 2$ millions we find in the centre line headed F the figure 0610 ; this is deflection of oue coil for a load of 100 pounds; therefore $.061 \times 4=.244^{\prime \prime}$ is deflection of one coil for $4(10$ punnds load, and 3 $\div .24+=121 / 2$ is the number of coils wanted. This spring will therefore be $43 / 4^{\prime \prime}$ loug when closed, counting working coils only, and stretch to $i 3 / 4^{\prime \prime}$.

Example 2.-A spring $31 / 4^{\prime \prime}$ outside diameter of ${ }^{\prime} / 16^{\prime \prime}$ sterl is womn close; how much can it be extended without exceeding the limit of safety? We find maximum safe load for this spring to be fuz pounds, and deflection of one coil for 100 pnunds load .0405 inches; therefore $7.02 \times .0405=.284^{\prime \prime}$ is the greatest adinissible opening between coils. We may thus, without knowing the luad, ascertain whether a spring is overloaded or not.

Carrying Capacity and Deflection of Helical Springs of Round Steel.

$d=$ diame ρ er of stepl. $D=$ outside diameter of coil. $W=$ safe working load in pouind--lensile stress not exceeding 60.000 pounds per square inch. $F=$ deflection hy a load of 100 pounds of one coil, and a modulus of elasticity of 10,12 and 14 millions respectively. The ultimate carrying capacity will be about t wice the safe load.

	W $\begin{gathered}D \\ \text { W }\end{gathered}$	$\begin{aligned} & .25 \\ & 35 \\ & .02 \pi 6 \\ & .0236 \\ & .0194 \end{aligned}$	$\begin{aligned} & .50 \\ & 15 \\ & .3583 \\ & .3055 \\ & .256: \end{aligned}$	$\begin{aligned} & .75 \\ & 9 \\ & 1.433 \\ & 1.228 \\ & 1.023 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 7 \\ & 3.56 \cdot \\ & 3.053 \\ & 2544 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 5 \\ & 7.250 \\ & 6.214 \\ & 5.178 \end{aligned}$	$\begin{gathered} 1.50 \\ 4.5 \\ 10.88 \\ 11.04 \\ 9.200 \end{gathered}$	$\begin{gathered} 1.75 \\ 30.8 \\ 20.85 \\ 17.87 \\ 14.89 \end{gathered}$	$\begin{gathered} 2.00 \\ 3.3 \\ 31.5 \pi \\ 2 \pi \\ 2.06 \\ 22.55 \end{gathered}$		
	F $\begin{gathered}D \\ W\end{gathered}$	$\begin{aligned} & .50 \\ & 10 \pi \\ & .0206 \\ & .0176 \\ & .014 \sim \end{aligned}$	$\begin{aligned} & .75 \\ & 6.5 \\ & .0937 \\ & .0004 \\ & .06040 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 46 \\ & .2556 \\ & .2191 \\ & .182 \end{aligned}$	$\begin{aligned} & 1.25 \\ & .36 \\ & .5412 \\ & .4639 \\ & .3866 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 29 \\ & .9456 \\ & .844 \\ & .7040 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 2.5 \\ & 1.6 \cdot 4 \\ & 1.39 \cdot \\ & 1.160 \end{aligned}$	200 2.2 $2.49 \cdot$ 2.136 1.780	$\begin{aligned} & 2.95 \\ & 19 \\ & 3.625 \\ & 3.107 \\ & 2.589 \end{aligned}$	$\begin{gathered} 2.50 \\ 17 \\ 5.056 \\ 4.334 \\ 3.612 \end{gathered}$	
	F\{ $\begin{gathered}D \\ \\ \\ \end{gathered}$	$\begin{gathered} \hline 75 \\ 241 \\ .01: 37 \\ .0118 \\ .0098 \end{gathered}$	$\begin{aligned} & 1.00 \\ & 167 \\ & .0408 \\ & .03 .50 \\ & .0 .92 . \end{aligned}$	$\begin{gathered} 1.85 \\ 128 \\ .090 \pi \\ .0 \uparrow \pi \\ .0648 \end{gathered}$	$\begin{gathered} 1.50 \\ 104 \\ .103 \\ .160 \\ .1617 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 88 \\ & .2866 \\ & .245 \pi \\ & .2048 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 75 \\ & .4+66 \\ & .3828 \\ & .3190 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 66 \\ & .651 \\ & .663 .2 \\ & .4693 \end{aligned}$	$\begin{gathered} 2.50 \\ 59 \\ .9249 \\ .7938 \\ .6607 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 53 \\ & 1.256 \\ & 1.075 \\ & 1.0975 \end{aligned}$	$\begin{gathered} 3.00 \\ 49 \\ 1.660 \\ 1.4 \div 3 \\ 1.186 \end{gathered}$
$\begin{aligned} & \text { Eस } \\ & \text { II } \end{aligned}$	$\begin{gathered} D \\ F \\ F \end{gathered}$	$\begin{gathered} 1.25 \\ 368 \\ .0199 \\ .0171 \\ .0142 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 291 \\ & .0389 \\ & .03 ; 3 \\ & .0278 \end{aligned}$	$\begin{gathered} 1 \% 5 \\ 250 \\ .05 i 2 \\ .05 \% 6 \\ .0480 \end{gathered}$	$\begin{gathered} 2.00 \\ 210 \\ .1061 \\ .0914 \\ .0762 \end{gathered}$	$\begin{gathered} 2.25 \\ 184 \\ .159 .3 \\ .1365 \\ .113 \% \end{gathered}$	$\begin{gathered} 2.50 \\ 164 \\ .2020 \\ .1944 \\ .1610 \end{gathered}$	$\begin{gathered} 2.75 \\ 14 \% \\ .3109 \\ .2665 \\ .2821 \end{gathered}$	$\begin{gathered} 3.00 \\ 134 \\ .4139 \\ .3548 \\ .295 \pi \end{gathered}$	$\begin{aligned} & 3.25 \\ & 123 \\ & .5350 \\ & .460 \% \\ & .3839 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 113 \\ & .6435 \\ & .5859 \\ & .4883 \end{aligned}$

Carrying Capacity and Deflection of Helical Springs of Round Steel.-(Continued).

The formulæ for deflection or compression given by Clark, Hartnell. and Begtrup. although very different in form, show a substantial agreement when reduced to the same form. Let $d=$ diameter of wire in inches, $D_{1}=$ mean diameter of coil, n the number of coils, w the applied weight in pounds, and C a coefficient, then

$$
\begin{array}{r}
\text { Compression or extension of one coil }=\frac{w D_{1}^{3}}{C d^{4}} \\
\text { Weight in pounds to cause comp. or ext. of } 1 \mathrm{in} .
\end{array}=\frac{C d^{4}}{n D_{1}^{3}} .
$$

The coefficient C reduced from Hartnell's formula is $8 \times 180,000=1,440,000$; according to Clark, $16^{4} \times 22=1,441,792$, and according to Begtrup (using $12,000,000$ for the torsional modulus of elasticity) $=12,000,000 \div 8=1,500,000$.

Rankine's formula for greatest safe extension, $v_{1}=\frac{12,566 \mathrm{nfr}}{\mathrm{cd}}$ may take the form $v_{1}=\frac{.7854 n D_{1}{ }^{2}}{100 d}$ if we use 30,000 and $12,000,000$ as the values for f and c respectively.

The scveral formulæ for safe load given above may be thus compared, letting $d=$ diameter of wire, and $D_{1}=$ mean diameter of coil, Rankine, $W=\frac{.196 f d^{3}}{j} ;$ Clark, $W=\frac{3(d \times 16)^{3}}{D_{1}} ;$ Begtrup, $W=\frac{.3927 S d^{3}}{D_{1}} ;$ Hartnell, $W=\frac{12000 d^{3}}{r}$. Substituting for f the value 30,000 given by Rankine, and for $S, 60,000$ as given by Begtrup, we have $W=11,760 \frac{d^{3}}{D_{1}}$ Rankine ; 12,288 $\frac{d^{9}}{D_{1}}$ Clark; $23,562 \frac{d^{3}}{D_{1}}$ Begtrup; 24,000 $\frac{d^{3}}{D_{1}}$ Hartnell.

Taking from the Pennsylvania Railroad specifications the capacity when closed of the following springs, in which $d=$ diameter of wire, D diameter outside of coil. $D_{1}=D-d, c$ capacity, H height when free, and h height when closed, all in inches.

$\text { No. } T .$	$d=1 / 4$	$D=\frac{11}{3}$	$D_{1}=11 / 4$			
$\underset{K}{S}$	$\frac{1}{3}$	$\begin{aligned} & 3 \\ & 53 / 4 \end{aligned}$	$\frac{21 / 2}{5}$	$\begin{aligned} & 1,900 \\ & 2,100 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 5 \\ & 41 / 4 \end{aligned}$
D.	1	5	4	8,100	101/2	2
1.	11/4	8	63/4	10,000	9	53
C.	11/8	47/8	$33 / 4$	16,000	43/8	\% 33/8

Taking 12,000 as the coefficient of $\frac{d^{3}}{D_{1}}$ according to Rankine and Clark for safe load, and 24,000 as the coefficient according to Begtrup and Hartnell, we have for the safe load on these springs, as we take oue or the other coefficient,

-	T.	S.	K.	D.	1.	C.
Kankine and Clark	150	600	1,012	3,000	3,750	5,400 lbs.
Hartuel	300	1.200	2.024	6,000	7,500	10,800 ${ }^{\text {" }}$
Capacity when closed, as above	400	1,900	2,100	8,100	10,000	16,000

J. W. Cloud (Trans. A. S. M. E., v. 173) gives the following:

$$
P=\frac{S \pi d^{3}}{16 R} . \quad \text { and } \quad f=\frac{32 P R^{2} l}{G \pi d^{4}}
$$

$$
\begin{aligned}
& P=\text { load on spring; } \\
& S=\text { maximum shearing fibre-strain in bar; } \\
& d=\text { diameter of steel of which spring is made; } \\
& R=\text { radius of centre of coil; } \\
& l=\text { length of bar before coiling; } \\
& G=\text { modulus of shearing elasticity; } \\
& f=\text { deflection of spring under load. }
\end{aligned}
$$

MIr. Cloud takes $S=80,000$ and $G=12,600,000$.
The stress in a helical spring is almost wholly one of torsion. For method of deriving the formulæ for springs from torsional furmula see Mr. Cloud's paper, above quoted.

ELLIPTICAL SPRINGS, SHZES, AND PROOF TESTS.
Pennsylvania Railroad Specifications, 1889.

Class.

* A. p. t., auxiliary plates touching.

PHOSPHOR-BRONZE SPRINGS.
Wilfred Lewis (Engineers' Club, Philadelphia, 188\%) made some tests with phosphor-bronze wire, . 12 in . diameter, coiled in the form of a spiral spring; $11 / 4$ in. diameter from centre to centre, making 52 coils.
This spring was loaded gradually up to a tension of 30 lbs ., but as the load was removed it became evident that a permanent set had taken place. Such a spring of steel, according to the practice of the P. R. R., might bo used for 40 lbs . A weight of 21 lbs . was then suspended so as to allow a small amount of vibration, and the length measured from day to day. In 3.5 hours the spring lengthened from $205 / 8$ inches to $211 / 8$ inches, and in 200 hours to $211 / 4$ inches. It was concluded that 21 lbs . was too great for durability, and that probably 10 lbs. was as much as could be depended upon with safety.

For a given load the extension of the bronze spring was just double the extension of a similar steel spring, that is, for the same extension the steel spring is twice as strong.

SPREINGS TO RESIST TORESONAL FORCE.
(Reuleaux's Constructor.)
Flat spiral or helical spring... $P=\frac{S}{6} \frac{b h^{2}}{R} ; \quad f=R \vartheta=12 \frac{P l R^{2}}{E b h^{3}}$.
Round helical spring $\ldots \ldots \ldots . . P=\frac{S \pi}{32} \frac{d^{3}}{R} ; \quad f=R \vartheta=\frac{64}{\boxed{ } \pi} \frac{P l}{E} \frac{R^{2}}{d^{4}}$.
Round bar, in torsion.......... $P=\frac{S \pi}{16} \frac{d^{3}}{R} ; \quad f=R \vartheta=\frac{32}{\pi} \frac{P}{G} \frac{R^{2} l}{d^{4}}$.
Flat bar, in torsion............ $P=\frac{S}{3 R} \frac{b^{2} h^{2}}{\sqrt{b^{2}+h^{2}}} ; f=R \vartheta=\frac{3 P R^{2} l}{G} \frac{b^{2}+h^{2}}{b^{3} h^{3}}$.
$P=$ force applied at end of radius or lever-arm $R ; \vartheta=$ augular motion at end of radius $R ; S=$ permissible maximum stress, $=4 / 5$ of permissible stress in flexure; $E=$ modulus of elasticity in tension; $G=$ torsional modulus, $=2 / 5 E ; l=$ developed length of spiral, or length of bar; $d=$ diameter of wire; $b=$ breadth of flat bar; $h=$ thickness.

~i. in	Bar.			Spring.						
	Diameter.	Length.	Length after Tapering.	Weight.		Diam. Outside of Coil.	Height.		Capacity.	Capacity, partly closed.
				Normal.	Minimum		Free.	Closed.		
	inches. $9 / 64$	inches. 571/2			lbs. 7/32	iuches. 1	inches. 53/4	inches. 3		lbs. at height. 110 at $31 / 4$ in.
$\underset{\mathbf{E}}{\mathbf{Z}}$	$\begin{gathered} 9 / 64 \\ 114 \end{gathered}$	$571 / 2$ $251 / 4$		$\begin{aligned} & 1 / 4 \\ & 1 / 3 \end{aligned}$	7/32	$\stackrel{1}{21 / 4}$	$\begin{aligned} & 53 / 4 \\ & 21 / 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 11 / 8 \end{aligned}$	$\begin{aligned} & 130 \\ & 240 \end{aligned}$	110 at $31 / 4$ in.
R	11/64	${ }^{7} 5$		$11 / 2$	$\cdots 7 / 16$	$1{ }^{1 / 4}$	${ }^{2} 4$	5	270	170 at 6
T	$1 / 4$	947/8		$11 / 4$	$13 / 16$	11/2	9	6	400	300 at $63 / 4$
$\stackrel{\text { A }}{ }$	14	$451 / 2$		5/8	9/16	$11 / 4$	$51 / 8$	35/8	500	
$\underset{K}{\text { S }}$	15	781% 881%	8	$13 / 8$	41/8	3	8	5	1,900	1,200 at 6
\%	$3 / 4$ $15 / 16$	885	927/8	11.	${ }_{16}^{105 / 8}$	$53 / 4$	8	${ }_{5}^{41 / 4}$	2,100 6,000	1,230 at $53 / 8$ 3,600 at 6
J	1	85	92	181/2	18	$51 / 2$	81/2	6	7,500	4,500 at ${ }^{7}$
D	1	1001/2	1063/4	22	213/8		$101 / 2$	8	8,100	
I	11/4	971	108	331/3	321/2	8	9	$53 / 4$	10,000	4,000 at 71/2
N	; 1	$523 / 4$	$\left.\begin{array}{l}605 / 8 \\ 601 / 8\end{array}\right\}$	161/2	16	$\left\{\begin{array}{l}6 \\ 3 / 8\end{array}\right\}$	51/8	33/8	10,000	6,000 at 4
H	${ }^{1} 5 / 16$	96	1061\%	361/2	$351 / 3$	88888888	9	6	11,000	6,000 at $71 / 4$
0	$\left\{\begin{array}{l}11 / 8 \\ 5 / 8\end{array}\right.$	56 62	$\left.\begin{array}{c} 6358 \\ 6638 \end{array}\right\}$	203/4	20	$\left\{\begin{array}{l}6 \\ 35 / 8\end{array}\right\}$	53/4	41/8	13,000	6,000 at $415 / 16$
Q) $15 / 16$	96	$1061 / \%$	51			9	6		
C) $13 / 16$	$993 / 4$	1061/2			\{ $51 / 8\}$				
	13/8		917	91/8	91/2	88	43/8	33/8	16,000	
L	$\left\{\begin{array}{l}3 / 8\end{array}\right.$	85	$911 / 8$	501/2	49	$\left\{\begin{array}{l}8 \\ 5\end{array}\right\}$	8	53/4	16.000	7,000 at 7
X	$\left\{\begin{array}{l}11 / 4 \\ 3 / 4\end{array}\right.$	$751 / 4$ $721 / 4$	$\left.\begin{array}{l}831 / 8 \\ 763\end{array}\right\}$	35	34	$\left\{\begin{array}{l}61 / 4 \\ 35 / 8\end{array}\right\}$	8	6	19,000	7,000 at $71 / 4$
Y	$\left\{\begin{array}{l}1 / 4 \\ 11 / 4 \\ 4\end{array}\right.$	561/2	6438	261/4		$\left\{\begin{array}{l}3018 \\ 61 / 4 \\ 95\end{array}\right\}$	6		19,000	\%,000 at 5
B	$4 \mathrm{bars} 15 / 16$	$541 / 4$ 46	5834 ,		2	$\{35 / 8$			13,000	r,000 at 5
U	4 ، $15 / 16$	56	693		34			3	28,000	13,000 at 412
V	4 " $11 / 16$	513/4	583/8	$51{ }^{2}$		5 5/16				13,500 at 538
G	$\left\{\begin{array}{llll}4 & \prime 6 & 15 / 16 \\ 4 & 6 & 19 / 32\end{array}\right.$	$721 / 2$ 401	79	73	71		$1 / 16\} 71 / 8$	over plates	42,000	21,000 at 5 27/32
W	$4{ }_{4}$ "1 1/16	$61^{1 / 2}$	671/2	601/2	59	5 5/16	51/8		42,000	18,500 at $65 / 16$

[^10]
RIVETED JOINTS.

Fairbairn's Experiments. (From Report of Committee on Riveted Joints, Proc. Inst. M. E., April, 1881.)
The earliest published experiments on riveted joints are contained in the memoir by Sir W. Fairbairn in the Transactions of the Royal Society. Making certain empirical allowances, he adopted the following ratios as expressing the relative strength of riveted joints:

$$
\begin{aligned}
& \text { Solid plate................................. } 100 \\
& \text { Double-riveted joint } 70 \\
& \text { Single-riveted joint......................... } 56
\end{aligned}
$$

These well-known ratios are quoted in most treatises on riveting, and are still sometimes referred to as having a considerable authority. It is singular, however, that Sir W. Fairbairn does not appear to have been aware that the proportion of metal punched out in the line of fracture ought to be different in properly designed double and single iiveted joints. These celebrated ratios would therefore appear to rest on a very unsatisfactory analysis of the experiments on which they were based.

Loss of Strength in Punched Plates.-A report by Mr. W. Parker and Mr. John, made in 1878 to Lloyd's Committee, on the effect of punching and drilling, showed that thin steel plates lost comparatively little from punching, but that in thick plates the loss was very considerable. The following table gives the results for plates punched and not aunealed or reamed:

Thickness of	Material of	Loss of Tenacity,
Plates.	Plates.	per cent.
$1 / 4$	Steel	8
$3 / 8$	6	18
$1 / 2$	6	26
$3 / 4$	6	33
$3 / 4$	Iron	18 to 23

The effect of increasing the size of the hole in the die-block is shown in the following table:

Total Taper of Hole	Material of	Loss of Tenacity due to
in Plate, inches.	Plates.	Punching, per cent.
$1 / 16$	Steel	17.8
$1 / 3$	$"$	12.3
$1 / 4$	(Hole ragged) 24.5	

The plates were from 0.675 to 0.712 inch thick. When $8 / 8$-in. punched holes were reamed out to $11 / 8 \mathrm{in}$. diameter, the loss of tenacity disappeared, and the plates carried as high a stress as drilled plates. Annealing also restores to punched plates their original tenacity.

Strength of Perforated Plates.

$$
\text { (P. D. Bennett, Eng'g, Feb. } 12,1886 \text {, p. 155.) }
$$

Tests were made to determine the relative effect produced upon tensile strength of a flat bar of iron or steel : 1. By a $3 / 4$-inch hole drilled to the required size; 2. by a hole punched $1 / 8$ inch smaller and then drilled to the size of the first hole; and, 3, by a hole punched in the bar to the size of the drilled bar. The relative results in strength per square inch of original area were as follows :

In tests 2 and 4 the holes were filled with rivets driven by hydraulic pressure. The increase of strength per square inch caused by drilling is a phenomenon of similar nature to that of the increased strength of a grooved bar over that of a straight bar of sectional area equal to the smallest section of the grooved bar. Mr. Benrett's tests on an iron bar 0.84 in . diameter, 10 in .
long, and a similar bar turned to 0.84 in . diameter at one point only, showed that the relative strength of the latter to the former was 1.323 to 1.000 .

Riveted Joints.-Drilling versus Punching of Holes.

The Report of the Research Committee of the Institution of Mechanical Engineers, on Riveted Joints (1881), and records of investigations by Prof. A. B. W. Kennedy (1881, 1882, and 1885), summarize the existing information regarding the comparative effects of punching and drilling upon iron and steel plates. From an examination of the voluminous tables given in Professor Uuwin's Report, the results of the greatest number of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet in those of $1 / 2$-inch thickness and upwards the loss of tenacity due to punching ranges from 10% to 23% in iron plates, and from 11% to 33% in the case cf mild steel. In drilled plates there is no appreciable loss of strength. It is possible to remove the bad effects of punching by subsequent reaming or annealing: but the speed at which work is turned out in these days is not favorable to multiplied operations, and such additional treatment is sellom practised. The introduction of a practicable method of drilling the plating of ships and other structures, after it has been bent and shaped, is a matter of great importance. If even a portion of the deterioration of tenacity can be prevented, a much stronger structure results from the same material and the same scantling. This has been fully recognized in the modern English practice (188i) of the construction of steam-boilers with steel plates; punching in such cases being almost entirely abolished, and all rivet-holes being drilled after the plates have been bent to the desired form.

Comparative Efficiency of Riveting done by Different Methods.

The Reports of Professors Unwin and Kennedy to the Institution of Mechanical Engineers (Proc. 1881, 1882, and 1885) tend to establish the four following points:

1. That the shearing resistance of rivets is not highest in joints riveted by means of the greatest pressure;
2. That the ultimate strength of joints is not affected to an appreciable extent by the mode of riveting; and, therefore,
3. That very great pressure upon the rivets in riveting is not the indispensable requirement that it has been sometimes supposed to be;
4. That the most serious defect of hand-riveted as compared with machineriveted work consists in the fact that in hand-riveted joints visible slip commences at a comparatively small load, thus giving such joints a low value as regards tightness, and possibly also rendering them liable to failure under sudden strains after slip has once commenced.
The following figures of mean results, taken from Prof. Kennedy's tables (Pioceedings 1885, pp. 218-225), give a comparative riew of hand and hydraulic riveting, as regards their ultimate strengths in joints, and the periods at which in both cases visible slip commenced.

Total Breaking Load.		Load at which Visible Slip began.	
IIand-riveting.	Hydraulic Riveting.	Hand-riveting.	Hydraulic Riveting.
$\begin{aligned} & \text { Tons. } \\ & 86.01 \end{aligned}$	Tons 85.85 77.00	Tons. 21.7	$\begin{gathered} \text { Tons. } \\ 47.5 \\ 35.0 \end{gathered}$
\&2.16	82.70	25.0	53.7
149.2	${ }^{78.58} 14.5$	31.7	54.0 49.7
193.6	140.2	23.0	46.7 56.0
......	183.7

In these figures hand-riveting appears to be rather better than hydraulic riveting, as far as regards ultimate strength of joint; but is very much inferior to hydraulic work, in view of the small proportion of load borne by it before visible slip commenced.

Some of the Conclusions of the Committee of Research on Riveted Joints.

> (Proc. Inst. M. E., Apl. 1885.)

The conclusions all refer to joints made in soft steel plate with steel rivets, the holes all drilled, and the plates in their natural state (unannealed). In every case the rivet or shearing area has been assumed to be that of the holes, not the nominal (or real) area of the rivets themselves. Also, the strength of the metal in the joint has been compared with that of strips cut from the same plates, and not merely with nominally similar material.
The metal between the rivet-holes has a considerably greater tensile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than 20%, both in $3 / 8$-inch and $3 / 4$-inch plates, when the pitch of the rivet was about 1.9 diameters. In other cases $3 / 8$-inch plate gave an excess of 15% at fracture with a pitch of 2 dianreters, of 10% with a pitch of 3.6 diameters, and of 6.6%, with a pitch of 3.9 diameters; and $3 / 4$-inch plate gave 7.8% excess with a pitch of 2.8 diameters.
In single-riveted joints it may be taken that about 22 tons per square inch is the shearing resistance of rivet steel, when the pressure on the rivets does not exceed about 40 tons per square inch. In double-riveted joints, with rivets of about $3 / 4$ inch diameter, most of the experiments gave about 24 tons per square inch as the shearing resistance, but the joints in one series weut at 23 tons.
The ratio of shearing resistance to tenacity is not constant, but diminishes very markedly and not very irregularly as the tenacity increases.
The size of the rivet heads and ends plays a most important part in the strength of the joints-at any rate in the case of single-riveted joints. An increase of about one third in the weight of the rivets (all this increase, of course, going to the heads and ends) was found to add about $81 / 2 \%$ to the resistance of the joint, the plates remaining unbroken at the full shearing resistance of 22 tons per square inch, instead of tearing at a shearing stress of only a little over 20 tons. The additional strength is probably due to the prevention of the distortion of the plates by the great tensile stress in the rivets.
The intensity of bearing pressure on the rivet exercises, with joints proportioned in the ordinary way, a very important influence on their strength. So long as it does not exceed 40 tons per square inch (measured on the projected area of the rivets), it does not seem to affect their strength ; but pressures of 50 to 55 tons per square inch seem to cause the rivets to shear in most cases at stresses varying from 16 to 18 tons per square inch. For ordinary joints, which are to be made equally strong in plate and in rivets, the bearing pressure should therefore probably not exceed 42 or 43 tons per square inch. For double-riveted butt-joints perhaps, as will be noted later, a higher pressure may be allowed, as the shearing stress may probably not be more than 16 or 18 tons per square inch when the plate tears.
A margin (or net distance from outside of holes to edge of plate) equal to the diameter of the drilled hole has been found sufficient in all cases hitherto tried.
To attain the maximum strength of a joint, the breadth of lap must be such as to prevent it from breaking zigzag. It has been found that the net metal measured zigzag should be from 30% to 35% in excess of that measured straight across, in order to insure a straight fracture. This corresponds to a diagonal pitch of $2 / 3 p+d / 3$, if p be the straight pitch and d the diameter of the rivet-hole.
Visible slip or "give" occurs always in a riveted joint at a point very much below its breaking load, and by no means proportional to that load. A collation of the results obtained in measuring the slip indicates that it depends upon the number and size of the rivets in the joint, rather than upon anything else ; and that it is tolerably constant for a given size of rivet in a given type of joint. The loads per rivet at which a joint will commence to slip visibly are approximately as follows :

Diameter of Rivet.	Type of Joint.	Riveting.	Slipping Load per Rivet.
$3 / 4{ }^{\text {inch }}$	Single-riveted	Hand	2.5 tons
3/4	Double-riveted	Hand	3.0 to 3.5 tons
1 inch	Double-riveted	Machine	7 tons
$1{ }^{1}$	Single-riveted	Hand	3.2 tons
1 ،	Double-riveted	Machine	${ }_{8} 8$ to 10 tons

To find the probable load at which a joint of any breadth will commence to slip, multiply the number of rivets in the given breadth by the proper figure taken from the last column of the table above. It will be understood that the above figures are not given as exact; but they represent very well the results of the experiments.

The experiments point to simple rules for the proportioning of joints of maximum strength. Assuming that a bearing pressure of 43 tons per square inch may be allowed on the rivet, and that the excess tenacity of the plate is 10% of its original strength, the following table gives the values of the ratios of diameter d of hole to thickness t of plate $(d+t)$, and of pitch p to diameter of hole $(p \div d)$ in joints of maximum strength in $3 / 8$-inch plate.

For Single-riveted Plates.

Original Tenacity of Plate.		Shearing Resistance of Rivets.		Ratio.$d \div t$	$\begin{aligned} & \text { Ratio } \\ & p \div d \end{aligned}$	Ratio. Plate Area Rivet Area
Tons per sq. in.	Lbs. per sq. in.	Tons per sq. in.	Lbs. per sq. in.			
30	6\%. 200	22	49,200	2.48	2.30	0.667
28	62.\%20	22	49.200	2.48	2.40	0.785
30	67,200	24	53, 60	2.28	2.27	0.713
28	62, $\uparrow \cdot 0$	24	53,760	2.28	2.36	0.690

This table shows that the diameter of the hole (not the diameter of the rivet) should be $21 / 3$ times the thickness of the plate, and the pitch of the rivets $23 / 8$ times the diameter of the hole. Also, it makes the mean plate area 71% of the rivet area.

If a smaller rivet be used than that here specified, the joint will not be of uniform, and therefore not of maximum, strength; but with any other size of rivet the best result will be got by use of the pitch obtained from the simple formula

$$
p=a \frac{d^{2}}{t}+d
$$

where, as before, d is the diameter of the hole.
The value of the constant α in this equation is as follows:

Cr, in the mean, the pitch $p=0.56 \frac{d^{2}}{t}+d$.
It should be noticed that with too small rivets this gives pitches often considerably smaller in proportion than $23 / 8$ times the diameter.
For double-riveted lap-joints a similar calculation to that given above, but with a somewhat smaller allowance for excess tenacity, on account of the large distance between the rivet-holes, shows that for joints of maximum strength the ratio of diameter to thickness should remain precisely as in single-riveted joints; while the ratio of pitch to diameter of hole should be 3.64 for 30 -ton plates and 22 or 24 ton rivets, and 3.82 for 28 -ton plates with the same rivets.

Here, still more than in the former case, it is likely that the prescribed size of rivet may often be inconveniently large. In this case the diameter of rivet should be taken as large as possible; and the strongest joint for a given thickness of plate and diameter of hole can then be obtained by using the pitch given by the equation

$$
p=a \frac{d^{2}}{t}+d
$$

Where the values of the constant a for different strengths of plates and civets may be taken as follorm:

Table of Proportions of Double-riveted Lap-joints, in which $p=a \frac{d^{2}}{t}+d$.

Thickness of Plate. $\begin{array}{ll}3 / 8 & \text { inch } \\ 3 / 8 & 6 \\ 38 & 6 \\ 38 & 16 \\ 3 / 4 & 16 \\ 34 & 6 \\ 3 & 10 \\ 3 / 4 & 6\end{array}$

Original tenacity Shearing Resistof Plate,
Tons per sq. in. Tons per sq. in.
30
28
30
28
30
28
30
28

Value of Constant.
a
1.15
1.22
1.05
1.12
1.17
1.25
1.07
1.14

Practically, having assumed the rivet diameter as large as possible, we can fix the pitch as follows. for any thickness of plate from $3 / 8$ to $3 / 4 \mathrm{inch}$:

$$
\begin{aligned}
& \text { For } \left.{ }_{28}^{30-t o n} \text { plate and } \underset{\sim 4}{24} \underset{\sim 2}{ }{ }_{20} \text {-ton rivets }\right\} p=1.16 \frac{d^{2}}{t}+d \text {; } \\
& \text { " } 30 \text { " " " } 22 \text { " " } p=1.06 \frac{d^{2}}{t}+d \text {; } \\
& \text { " } 28 \text { " " " } 24 \text { " " } p=1.24 \frac{d^{2}}{t}+d \text {. }
\end{aligned}
$$

Hin double-riveted butt-joints it is impossible to develop the full shearing resistance of the joint without getting excessive bearing pressure, because the shearing area is doubled without increasing the area on which the pressure acts. Considering only the plate resistance and the bearing pressure, and taking this latter as 45 tons per square inch, the best pitch would be about 4 times the diameter of the hole. We may probably say with some certainty that a pressure of from 45 to 50 tons per square inch on the rivets will cause shearing to take place at from 16 to 18 tons per square inch. Working out the equations as before, but allowing excess strength of only 5% on account of the large pitch, we find that the proportions of doubleriveted butt-joints of maximum strength, under given conditions, are those of the following table:

Double-riveted Butt-joints.

Original Tenacity of Plate, Tons per sq. in.	Shearing Resistance of Rivets, Tons per sq. in.	Bearing Pressure, Tons per sq. in.	$\begin{gathered} \text { Ratio } \\ \frac{d}{t} \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & \qquad \frac{p}{d} \end{aligned}$
30	16	45	1.80	3.85
28	16	45	1.80	4.66
30	18	48	1.60	4.03
28	18	48	1.70	4.27
30	16	50	2.00	4.20
28	16	50	2.00	4.42

Practically, therefore, it may be said that we get a double-riveted butt-joint of maximum strength by making the diameter of hole about 1.8 times the thickness of the plate, and making the pitch 4.1 times the diameter of the hole.

The proportions just given belong to joints of maximum strength. But in a boiler the one part of the joint, the plate, is much more affected by time than the other part, the rivets. It is therefore not unreasonable to estimate the percentage by which the plates might be weakened by corrosion, etc., before the boiler would be unfit for use at its proper steam-pressure, and to add correspondingly to the plate area. Probably the best thing to do in this case is to proportion the joint, not for the actual thickness of plate, but for a nominal thickness less than the actual by the assumed percentage. In this case the joint will be approximately one of uniform strength by the time it has reached its final workable condition; up to which time the joint as a whole will not really have been weakened, the corrosion only gradually bringing the strength of the plates down to that of rivets.

Effiencies of Joints.

The average results of experiments by the committee gave: For doubleriveted lap-joints in $3 / 8$-inch plates, efficiencies ranging from 67.1% to 81.2%. For double-riveted butt-joints (in double shear) 61.4% to 71.3%. These low results were probably due to the use of very soft steel in the rivets. For singleriveted lap-joints of various dimensions the efficiencies varied from 54.8% to 60.8%.

The experiments showed that the shearing resistance of steel did not increase nearly so fast as its tensile resistance. With very soft steel, for instance, of only 26 tons tenacity, the shearing resistance was about 80% of the tensile resistance, whereas with very hard steel of 52 tons tenacity the shearing resistance was only somewhere about 65% of the tensile resistance.

Proportions of Pitch and Overlap of Plates to Diameter of Rivet-Hole and Thickness of Plate.

(Prof. A. B. W. Kennedy, Proc. Inst. M. E., April, 1885.)
$t=$ thickness of plate;
$d=$ diameter of rivet (actual) in parallel hole;
$p=$ pitch of rivets, centre to centre;
$s=$ space between lines of rivets;
$l l=$ overlap of plate.
The pitch is as wide as is allowable without imparing the tightness of the joint under steam.
For single-riveted lap-joints in the circular seams of boilers which have double-riveted longitudinal lap joints,

$$
\begin{aligned}
& d=i \times 2.25 \\
& p=d \times 2.25=t \times 5 \text { (nearly) } \\
& l=t \times 6 .
\end{aligned}
$$

For double-riveted lap-joints:

$$
\begin{aligned}
& d=2.25 t ; \\
& p=8 t ; \\
& s=45 t ; \\
& l=10.5 t .
\end{aligned}
$$

Single-riveted Joints.				Double-riveted Joints.				
t	d	p	l	t	d	p	δ	l
3-16	7-16	15-16						
1/4	9-16	11/4	11/2	1/4	9-16	${ }_{2}^{1 / 2}$	${ }_{1}{ }^{7 / 8} 8$	23/4
	11-16	${ }_{17 / 8}^{19-16}$	$17 / 8$	5-16	11-16	$21 / 2$	11/2	$33 / 8$
\%-16	1^{13-16}	17/8-16	$21 / 4$ $25 / 8$	$3 / 8$ $7-16$	13-16	3	13/4	4
1/2	$11 / 8$	21/2	${ }_{3}^{25 / 8}$	7-16		31/2	2	45/8
9-16	11/4	$213-16$	$33 / 8$	9-16	11/4	$41 / 2$	21/4	$\begin{aligned} & 514 \\ & 574 \end{aligned}$

With these proportions and good workmanship there need be no fear of leakage of steam through the riveted joint.

The net diagonal area, or area of plate, along a zigzag line of fracture should not be less than 30% in excess of the net area straight across the joint, and 35% is better.

Mr. Theodore Cooper (R. R. G'azette, Aug. 22, 1890) referring to Prof. Kennedy's statement quoted above, gives as a sufficiently approximate rule for the proper pitch between the rows in staggered riveting, one half of the pitch of the rivets in a row plus one quarter the diameter of a rivet-hole.
Apparent Excess in Strength of Perforated over Unpere forated Plates. (Proc. Inst. M. E., October, 1888.)
The metal between the rivet-holes has a considerably greater tensile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than 20%, both in $3 / 8$-inch and $3 / 4$-inch plates, when the pitch of the rivets was about 1.9 diameters. In other cases $3 / 8$ inch plate gave an excess of 15% at fracture with a pitch of 2 diameters, of 10% with a pitch of 3.6 diameters, and of 6.6% with a pitch of 3.9 diameters; and $3 / 4$-inch plate gave 7.8% excess with a pitch of 2.8 diameters.
（1）The＂excess strength due to perforation＂is increased by anything which tends to make the stress in the plate uniform，and to diminish the effect of the narrow strip of metal at the edge of the specimen．
（2）It is diminished by increase in the ratio of p / d ，of pitch to diameter of hole，so that in this respect it becomes less as the efficiency of the joint increases．
（3）It is diminished by any increase in hardness of the plate．
（4）For a given ratio p / d ，of pitch to diameter of hole，it is also apparently diminished as the thickness of the plate is increased．The ratio of pitch to thickness of plate does not seem to affect this matter directly，at least within the limits of the experiments．

Test of Double－riveted Lap and Butt Joints．
 （Proc．Inst．M．E．，October，1888．）

Steel plates of 25 to 26 tons per square inch T．S．，steel rivets of 24.6 tons shearing－strength per square inch．

Kind of Joint． \begin{tabular}{c}
Thickness of

Plate．

\quad

Diameter of

Rivet－holes．

Ratio of Pitch

to Diameter．

Comparative

Efficiency of

Loint．
\end{tabular}

Some Rules which have been Proposed for the Diameter
of the Rivet in Single Nhear．（Iron，June 18， 1880 ）
Browne．．．．．．．．．．．．．．．．．．．$d=2 t$（with double covers $11 / 4 t$ ）
Fairbairn．．．．．．．．．．．．．．．．．$d=2 t$ for plates less than $3 / 8$ in．
، $\ldots \ldots \ldots \ldots \ldots . . d=11 / 2 t$ for plates greater than $3 / 8 \mathrm{in}$ ．
Lemaitre
$d=1.5 t+0.16$
Antoine．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$d=1.1 \sqrt{t}$
Pohlig．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$=2 t$ for boiler riveting
＂
Redtenbacher．．．．．．．．．．．．．．．$d=3 / 5 t$ to $2 t$
Unwin．．．．．．．．．．．．．．．．．．．．．
$=16$ to $7 / 8 t+3 / 8$
＂$\ldots \ldots \ldots . \ldots \ldots \ldots . d=1.2 \sqrt{t}$
The following table contains some data of the sizes of rivets used in practice，and the corresponding sizes given by some of these rules．
Diameter of Rivets for Different Thicknesses of Plates．

Thick－ ness of inches．	Diameter of Rivets，in inches．									
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			就	$\begin{aligned} & \text { 0in } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	， 튼 를 ๔	越		苞	O 0 0 0
$\begin{aligned} & 5 / 16 \\ & 3 / 8 \\ & 7 / 16 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \\ & 3 / 4 \\ & 13 / 16 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \\ & 3 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \end{aligned}$	5／88 $3 / 4{ }^{\text {a }}$	$\begin{aligned} & 5 / 8 \\ & 3 / 4 \\ & 31 / 32 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 23 / 32 \\ & 13 / 16 \\ & 15 / 16 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 11 / 16 \\ & 334 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 11 / 16 \\ & 3 / 4 / 16 \\ & 13 / 1 \\ & 78 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 11 / 16 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$
$\begin{gathered} 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 34 \\ & 7 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 13 / 16 \\ & 7 / 8 \\ & 7 / 8 / 16 \\ & 15 / 16 \end{aligned}$	$\begin{aligned} & 7 / 8 \\ & 7 / 8 \\ & 1 / 8 \end{aligned}$	$3 / 4$ 13.16 $7 / 8$	$\begin{aligned} & 11 / 8 \\ & 11 / 4 \end{aligned}$	$\begin{aligned} & 2 \pi / 32 \\ & 15 / 16 \\ & 11 / 32 \\ & 11 / 8 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 11 / 8 \\ & 13 / 16 \\ & 11 / 4 \end{aligned}$	$\begin{aligned} & 13 / 16 \\ & 7 / 8 \\ & 15 / 16 \\ & 15 / 16 \end{aligned}$		$\begin{aligned} & 7 / 8 \\ & 7 / 8 \\ & 1^{7 / 8} \end{aligned}$
$\begin{gathered} 13 / 16 \\ 7 / 8 \\ 15 / 16 \\ 1 \\ \hline \end{gathered}$	7／8	1 $11 / 8$ $13 / 16$ $11 / 4$	$\begin{aligned} & 111 / 8 \\ & 118 \\ & 11 / 8 \\ & \hline \end{aligned}$	$11 / 16$	，	$17 / 32$	13／8	1 1 1 $11 / 16$ $11 / 8$	$\begin{aligned} & 13 / 32 \\ & 11 / 8 \\ & 13 / 16 \\ & 11 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 11 / 8 \\ & 118 \\ & \hline \end{aligned}$

Strength of Double-riveted Seams, Calculated. - W. B. Ruggles, Jr., in Power for June, 1890, gives tables of relative strength of rivets and parts of sheet between rivets in double-riveted seams, compared with strength of shell, based on the assumption that the shearing strength of rivets and the tensile strength of steel are equal. The following figures show the sizes in his tables which show the nearest approximation to equality of strength of rivets and parts of plates between the rivets, together with the percentage of each relative to the strength of the solid plate.

	Pitch of Rivets, inches.	Size of Rivetinches.	Percentage of Strength of Plate.			Pitchof Rivets,inches	Size of Rivetholes, inches	Percentage of Strength of Plate.	
			Rivets.	Plate.				Rivets.	Plate.
		12	. 739	. 765	7/16			. 734	T28
$1 / 4$	21/2	9/16	. 795	. 7 \%	$7 / 16$	$31 / 8$	$13 / 16$. 758	. 740
$1 / 4$	$31 / 8$	5/8	. 885	. 800	7/16	35/8	7/8	. 758	. 759
1/4	35/8	11/16	. 819	. 810	7/16	$41 / 8$	15/16	. 665	. 773
5/16	$21 / 8$	9/16	. 749	. 735	1/2	$21 / 2$	$3 / 4$. 00 ¢	. 00
$5 / 16$	$25 / 8$. 748	. 762	1/2	278	13/1	. 721	. 718
5/16	$31 / 8$	11/16	. 761	. 780	1/2	314	7/8	. 740	. 731
$5 / 16$	$35 / 8$	$3 / 4$. 780	. 93	$1 / 2$	334	15/16	. 736	. 750
3/8	$21 / 4$	$5 / 8$. 727	. 722	1\%	$41 / 8$	1	. 761	. 758
3/8	$25 / 8$	11/16	. 755	. 738	$9 / 16$	$25 / 8$	13/16	. 701	. 690
3/8	$31 / 8$. 754	. 760	9/16	3	\%/8	. 714	. 08
3/8	$30 / 8$	1:3/1	. 62	. 76	9/16	$33 / 8$	15/16	. 727	. 22
\%	$41 / 8$. 77	. 78	9/16	$33 / 4$	1	. 745	. 73
- /16	23/8	11/16	. 114	. 11	9/16	41/4	$11 / 16$. 742	. 750

H. De B. Parsons (Am. Engr. \& $R . R$. Jour., 1893) holds that it is an error to assume that the shearing strength of the rivet is equal to the tensile strength. Also, referring to the apparent excess in strength of perforated over unperforated plates, he claims that on account of the difficulty in properly matching the holes, and of the stress caused by forcing, as is too often the case in practice, this additional strength cannot be trusted much more than that of friction.
Adopting the sizes of iron rivets as generally used in American practice for steel plates from $1 / 4$ to 1 inch thick: the tensile strength of the plates as $60,000 \mathrm{lbs}$. ; the shearing strength of the rivets as 40,000 for single-shear and 35,500 for double - shear, Mr. Parsons calculates the following table of pitches, so that the strength of the rivets against shearing will be approximately equal to that of the plate to tear between rivet-holes. The diameter of the rivets has in all cases been taken at $1 / 16$ in. larger than the nominal size, as the riret is assumed to fill the hole under the power riveter.

Riveted Joints.

Lap or Butt with Single Welt-Steel Plates and Iron Rivets.

Thickness of Plates	Diameter of Rivets.	Pitch.		Efficiency.	
		Single.	Double.	Single.	Double.
in.	in.	in.			
1/4	1/2	$\begin{aligned} & 13 / 16 \\ & 111 / 16 \end{aligned}$	${ }_{2}^{17 / 8} 11 / 16$	55. 5.7	68.6\%
$\begin{aligned} & 3 / 8 \\ & 18 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 8 / 8 \end{aligned}$	17/8	$23 / 4$	49.0	65.9
門8	88	$111 / 16$	$2 \% / 16$	43.6	60.4
3		17/8	25/8	42.0	59.5
78		13/4	$27 / 16$	38.6	55.4
1	$11 / 8$	$23 / 16$	25/8	38.1	54.9

Calculated Efficiencies-Steel Plates and Steel Rivets.-
The differences between the calculated efficiencies given in the two tables above are notable. Those given by Mr. Ruggles are probably too high, since he assumes the shearing strength of the rivets equal to the tensiie strength of the plates. Those given by Mr. Parsons are probably lower than will be obtained in practicc, since the figure he adopts for shearing strength is rather low, and he makes no allowance for excess of strength of the perforated over the unperforated plate. The following table has been calculated by the author on the assumptions that the excess strength of the perforated plate is 10%, and that the shearing strength of the rivets per square inch is four fifths of the tensile strength of the plate. If $t=$ thickness of plate, $d=$ diameter of rivet-hole, $p=$ pitch, and $\eta^{\prime}=$ tensile strength per square inch, then for single-riveted plates

$$
(p-d) t \times 1.10 T=\frac{\pi}{4} d^{2} \times \frac{4}{5} T, \text { whence } p=.5 \pi 1 \frac{d^{2}}{t}+d
$$

For double-riveted plates, $p=1.142 \frac{d^{2}}{t}+d$.
The coefficients .571 and 1.142 agree closely with the averages of those given in the report of the committee of the Institution of Mechanical Engineers, quoted on pages 357 and 358 , ante.

		Pitch.		Efficiency.		$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$		Pitch.		Efficiency.	
			$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & 0.8 \\ & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$		
in.	in.	in.	in.	\%	\%	n.	in.	in.	in.	\%	\%
3/16	$7 / 16$	1.020	1.603	57.1	72.7	1/2	$3 / 4$	1.392	2.035	46.1	63.1
	$1 / 2$	1.261	$2.0 \div 3$	60.5	75.3		$7 / 8$	1.r49	2.624	50.0	66.6
$1 / 4$		1.071	1.642	53.3	69.6		1	2.142	3.284	53.3	r0.0
4	$9 / 16$	1.285	2.008	56.2	个2.0		11/8	2.570	4.016	56.2	72.0
5/16	$9 / 16$	1.13π	1.712	50.5	67.1	9/16	$3 / 4$	1.321	1.892	43.2	60.3
	5/8	1.339	2.053	53.3	69.5		8	1.652	2.429	47.0	64.0
	$11 / 16$	1.551	2.415	55.7	71.5		。	2.015	3.030	50.4	67.0
3/8	5/8	1.218	1.810	48.7	65.5		11/8	2.410	3.694	53.3	69.5
	$3 / 4$	$1.60{ }^{1}$	2.453	53.3	69.5		$11 / 4$	2.836	4.422	55.9	ก1. 5
	$8 / 8$	2.041	3.206	57.1	72.7	5/8	34	1.264	1.778	40.7	57.8
7/16	$5 / 8$	1.136	1.647	45.0	62.0		7/8	1.575	2.274	44.4	61.5
	$3 / 4$	1.484	2. 218	49.5	66.2	"	1	1.914	2.827	47.7	64.6
،	7/8	1.869	2.864	53.2	69.4	"	11/8	2.281	3.438	50.7	67.3
'	1	2.305	3.610	56.6	72.3	"	11/4	2.658	4.105	53.3	69.5

Hiveting Pressure Required for Bridge and Boiler Work.

(IWilfred Lewis, Engineers' Club of Philadelphia, Nov., 1893.)

A number of $3 / 8$-inch rivets were subjected to pressures between 10,000 and 60.000 lbs . At $10,000 \mathrm{lbs}$. the rivet swelled and filled the hole without forming i head. At $20,000 \mathrm{lbs}$. the head was formed and the plates were slightly pinched. At 30.000 lbs . the rivet was well set. At $40,000 \mathrm{lbs}$. the metal in the plate surrounding the rivet began to stretch, and the stretching became inore and more apparent as the pressure was increased to 50,000 and 60,000 lbs. From these experiments the conclusion might be drawn that the pressure required for cold riveting was about 300,000 lbs. per square inch of rivet section. In hot riveting, until recently there was never any call for a pressure exceeding 60,000 lbs., but now pressures as high as $150,000 \mathrm{lbs}$. are not uncommon, and even $300,000 \mathrm{lbs}$. have been contemplated as desirable.

SHEARING RESISTANCE OF RIVET IRON AND STEEL. 363

Apparent Shearing Resistance of Rivet Iron and Steel.

(Proc. Inst. M. E., 18î9, Engineering, Feb. 20, 1880.)

The true shearing resistance of the rivets cannot be ascertained from experiments on riveted joints (1) because the uniform distribution of the load to all the rivets cannot be insured: (2) because of the friction of the plates, which has the effect of increasing the apparent resistance to shearing in an element uncertain in amount. Probably in the case of singleriveted joints the shearing resistance is not much affected by the friction.

Ultimate Shearing Stress
Tons per sq. in. Lbs. per sq. in.

Iron, single shear (12 bars).	24.15		54.096)	
"" double shear (8 bars).	$2 \% .10$		49.504	
" " 0	22.62		50.669	Barnaby
" " ${ }^{6}$	22.30		49.952	Rankin
$3 / 4$-in. rivets.	23.05 to 25.57	51.639 to	57.277	
$5 / 8-\mathrm{in}$. rivets.	24.32 to 2 \% .94	54.47% to	62.362	Riley.
" mean value	25.0		56.000	
" 5/8-in. rivets.	19.01		42.58:	Greig an
Steel	17 to 26	38.080 to	58.240	
Landore steel, $3 / 4$-in. rivets.	31.67 to 33.69	70.941 to	75.466	
" ${ }^{\text {\% }}$ " $5 / 8$-in. rirets.	30.45 to $\begin{gathered}35.73 \\ 3.3 .3\end{gathered}$	68.208 to	$\left.\begin{array}{r} 80.035 \\ 74592 \end{array}\right\}$	Riley.
Brown's steel.............	22.18		49.683	Greig an

Fairbairn's experiments show that a rivet is $61 / 2 \%$ weaker in a drilled than in a punched hole. By rounding the edge of the rivet-hole the apparent shearing resistance is increased 12\%. Mr. Maynard found the rivets 4\% weaker in drilled holes than in punched holes. But these results were obtained with riveted joints, and not by direct experiments on shearing. There is a good deal of difficulty in determining the true diameter of a punched hole, and it is doubtful whether in these experiments the diameter was very accurately ascertained. Messrs. Greig and Eyth's experiments also indicate a greater resistance of the rivets in punched holes than in drilled holes.
If, as appears above, the apparent shearing resistance is less for doable than for single shear, it is probably due to unequal distribution of the stress on the two rivet sections.

The shearing resistance of a bar, when sheared in circumstances which prevent friction, is usually less than the tenacity of the bar. The following results show the decrease :

	Tenacity of Bar.	Shearing Resistance	Ratio.
Harkort, iron.........	26.4	16.5	0.62
Lavalley, iron.........	25.4 22.2	20.2 19.0	0.79 0.85
	28.8	22.1	${ }_{0.77}$

In Wöhler's researches (in 18\%0) the shearing strength of iron was found to be four-fifths of the tenacity. Later researches of Bauschinger confirm this result generally, but they show that for iron the ratio of the shearing resistance and tenacity depends on the direction of the stress relatively to the direction of rolling. The above ratio is valid only if the shear is in a plane perpendicular to the direction of rolling, and if the tension is applied parallel to the direction of rolling. The shearing resistance in a plane parallel to the direction of rolling is different from that in a plane perpendicular to that direction, and again differs according as the plane of shear is perpendicular or parallel to the breadth of the bar. In the former case the resistance is 18 to 20% greater than in a plane perpendicular to the fibres, or is equal to the tenacity. In the latter case it is only half as great as in a plane perpendicular to the fibres.

IRON AND STEEL.

CLASSIFICATION OF IRON AND STEEEL.

CLASSIFICATION OF IRON AND STEEL.
(W. Kent, Railroad \& Engineering Journal, April, 188\%.)

Generic Term.	IRON.				
How Obtained.	CAST, Or obtained from a fluid mass.			WROUGHT, Or welded from a pasty mass.	
Distinguishing Quality.	Non-malleable.	Malleable.		Will Not Harden.	Will Harden.
Species.	Cast Iron.		Cast Steel.	(7) Wrought Iron.	(8+) Wrought Steel.
Varieties.	(1) Ordinary castings.	(2) Malleable cast iron, obtained from No. 1 by annealing in oxides.	(3) Crucible, (4) Bessemer, and (5) Open-hearth steels. (6) Mitis.*	a. Obtained by direct process from ores, as Catalan, Chenot, and other process irons. b. Obtained by indirect process from cast iron, as finery-hearth and puddled irons.	Obtained by direct or indirect process, as German, shear, blister, and puddled steels.

* No. 6. Mitis is the name given to a new product (having the same general properties and produced by the same processes as soft cast steels) made by adding an alloy of aluminum to melted wrought iron or soft steel before pouring. Sub-varieties of Nos. 3, 4, and 5, soft, mild, medium, and hard steels, according to percentage of carbon, the divisions Cast iron usually contains over 3% of carbon; cast steel anywhere from 0.06% to 1.50%, according to the purpose for which it is used; wrought iron from 0.02% to 0.10%. The quality of hardening and tempering which formerly distinguished steel nary blacksmith's tests, will not harden. All products of the crucible, Bessemer, and open-hearth processes are now commercially known as steel.

CAST IRON.

Grading of Pig Iron.-Pig iron is commonly graded according to its fracture, the number of grades varying in different districts. In Eastern Pennsylvania the principal grades recognized are known as No. 1 and 2 foundry, gray forge or No. 3, mottled or No. 4, and white or No. 5. Intermediate grades are sometimes made, as No. 2 X , between No. 1 and No. 2, and special names are given to irons more highly silicized than No. 1, as No. 1 X, silver-gray, and soft. Charcoal foundry pig iron is graded by numbers 1 to 5 , but the quality is very different from the corresponding numbers in anthracite and coke pig. Southern coke pig iron is graded into ten or more grades. Grading by fracture is a fairly satisfactory method of grading irons made from uniform ore mixtures and fuel, but is unreliable as a means of determining quality of irons produced in different sections or from different ores. Grading by chemical analysis, in the latter case, is the only satisfactory method. The following analyses of the five standard grades of northern foundry and mill pig irons are given by J. M. Hartman (Bull. I. \& S. A., Feb., 1892):

	No. 1.	No. 2.	No. 3.	No. 4.	No. 4 B	No. 5.
Iron	92.37	92.31	94.66	94.48	94.08	94.68
Graphitic carbon .	3.52	2.99	2.50	2.02	2.02	
Combined carbon..	. 13	. 37	1.52	1.98	1.43	3.83
Silicon	2.44	2.52	. 72	. 56	. 92	. 41
Phosphorus.... ...	1.25	1.08	. 26	. 19	. 04	. 04
Sulphur.	. 02	. 02	trace	. 08	. 04	. 02
Manganes	. 28	. 72	. 34	. 67	2.02	. 98

Characteristics of These Irons.

No. 1. Gray.-A large, dark, open-grain iron, softest of all the numbers and used exclusively in the foundry. Tensile strength low. Elastic limit low. Fracture rough. Turns soft and tough.

No. 2. Gray.-A mixed large and small dark grain, harder than No. 1 iron, and used exclusively in the foundry. Tensile strength and elastic limit higher than No. 1. Fracture less rough than No. 1. Turns harder, less tough, and more brittle than No. 1.

No. 3. Gray.-Small, gray, close grain, harder than No. 2 iron, used either in the rolling-mill or foundry. Tensile strength and elastic limit higher than No. 2. Turns hard, less tough, and more brittle than No. 2.

No. 4. Mottled.-White background, dotted closely with small black spots of graphitic carbon; little or no grain. Used exclusively in the rolling-mill. Tensile strength and elastic limit lower than No. 3. Turns with difficulty; less tough and more brittle than No. 3. The manganese in the B pig iron replaces part of the combined carbon, making the iron harder and closing the grain, notwithstanding the lower combined carbon.

No. 5. White. -Smooth, white fracture, no grain, used exclusively in the rolling mill. Tensile strength and elastic limit much lower than No. 4. Too hard to turn and more brittle than No. 4.

Southern pig irons are graded as follows, beginning with the highest in silicon: Nos. 1 and 2 silvery, Nos. 1 and 2 soft, all containing over 3% of silicon; Nos. 1, 2, and 3 foundry, respectively about $2.75 \%, 2.5 \%$ and 2% silicon; No. 1 mill, or "foundry forge;" No. 2 mill, or gray forge; mottled; white.

Good charcoal chilling iron for car wheels contains, as a rule, 0.56 to 0.95 silicon, 0.08 to 0.90 manganese, 0.05 to 0.75 phosphorus. The following is an analysis of a remarkably strong car wheel: $\mathrm{Si}, 0.734 ; \mathrm{Mn}, 0.438 ;$ P. 0.428 , S, 0.08 ; Graphitic C, 3.083; Combined C, 1.247; Copper, 0.029. The chill was very hard $-1 / 4 \mathrm{in}$. deep at root of flange, $1 / 2 \mathrm{in}$. deep on tread. A good ordnance iron analyzed: Si, 0.30; Graphitic C. 2.20; Combined C. $1.70 ;$ P, 0.44 ; Mn, 3.55 (?). Its specific gravity was 7.22 and tenacity 31 , 734 lbs. per sq. in.
Infuence of Silicon, Phosphorus, Sulphur, and Manganese upon Cast Irom.-W. J. Keep, of Detroit, in several papers (Trans. A. I. M. E., 1889 to 1893), discusses the influence of various chemical elements on the quality of cast iron. From these the following notes have been condensed:
Silicon.-Pig iron contains all the carbon that it could absorb during its reduction in the blast-furnace. Carbon exists in cast iron in two distinct forms. In chemical union, as "combined" carbon, it cannot be discerned. ezcept as it may increase the whiteness of the fracture, in so-called white
iron. Carbon mechanically mixed with the iron as graphite is visible, varying in color from gray to black, while the fracture of the iron ranges from a light to a very dark gray.

Silicon will expel carbon, if the iron, when melted, contains all the carbon that it can hold and a portion of silicon be added.

Prof. Turner concludes from his tests that the amount of silicon producing the maximum strength is about 1.80%. But this is only true when a white base is used. If an iron is used as a base which will produce a sound casting to begin with, each addition of silicon will decrease strength. Silicon itself is a weakening agent. Variations in the percentage of silicon added to a pig iron will not insure a given strength or physical structure, but these results will depend upon the physical properties of the original iron.

After enough silicon has been added to cause solid castings, any further addition and consequent increase of graphite weakens the casting. The softness and strength given to castings by a suitable addition of silicon is, by a further increase of silicon, changed to stiffness, brittleness, and weakness.

As strength decreases from increase of graphite and decrease of combined carbon, deflection increases; or, in other words, bending is increased by graphite. When no mole graphite can form and silicon still increases, deflection diminishes, showing that high silicon not only weakens iron, but makes it stiff. This stiffness is not the same strength-stiffness which is caused by compact iron and combined carbon. It is a brittle-stiffiness.

In pig irons which received their silicon while in the blast-furnace the graphite more easily separates, and the shrinkage is less than in any mixture. As silicon increases, shrinkage also increases. Silicon of itself increases shrinkage, though by reason of its action upon the carbon in ordinary practice it is truly said that silicon "takes the shrinkage out of castiron." The slower a casting crystallizes, the greater will be the quantity of graphite formed within it.
Silicon of itself, however small the quantity present, hardens cast-iron; but the decrease of hardness from the change of the combined carbon to graphite, caused by the silicon, is so much more rapid than the hardening produced by the increase of silicon, that the total effect is to decrease hardness, until the silicon reaches from 3 to 5%.

As practical foundry-work does not call for more than 3\% of silicon, the ordinary use of silicon does reduce the hardness of castings; but this is produced through its influence on the carbon, and not its direct influence on the iron.

When the change from combined to graphite carbon has ceased to diminish hardness, say at from 2% to 5% of silicon, the hardening by the silicon itself becomes more and more apparent as the silicon increases.

Shrinkage and hardness are almost exactly proportional. When silicon varies, and other elements do not vary materially, castings with low shrinkage are soft; as shrinkage increases, the castings grow hard in almost, if not exactly, the same proportion. For ordinary foundry-practice the scale of shrinkage may be made also the scale of hardness, provided variations in sulphur, and phosphorus especially, are not present to complicate the result.

The term "chilling" irons is generally applied to such as, cooled slowly, would be gray, but cooled suddenly, become white either to a depth sufficient for practical utilization (e.g., in car-wheels) or so far as to be detrimental. Many irons chill more or less in contact with the cold surface of the mould in which they are cast, especially if they are thin. Sometimes this is a valuable quality, but for general foundry purposes it is desirable to have all parts of a casting an even gray.

Silicon exerts a powerful influence upon this property of irons, partially or entirely removing their capacity of chilling.

When silicon is mixed with irons previously low in silicon the fluidity is increased.

It is not the percentage of silicon, but the state of the carbon and the action of silicon through other elements, which causes the iron to be fluid.

Silicon irons have always had the reputation of imparting fuidity to other irons. This comes, no doubt, from the fact that up to 3% or 4% they increase the quantity of graphite in the resulting casting.

From the statement of Prof. Turner, that the maximum strength occurs with just such a percentage of silicon, and his statement that a founder can, with silicon, produce just the quality of iron that he may need, and from his naming the composition of what he calls a typical foundry-iron, some
founders have inferred that if they knew the percentages of silicon in their irons and in their ferro-silicon, they need only mix so as to get 2% of silicon in order to obtain, always and with certainty, the maximum strength. The solution of the problem is not so simple. Each of the irons which the founder uses will have peculiar tendencies, given them in the blast-furnace, which will exert their influence in the most unexpected ways. However, a white iron which will invariably give porous and brittle castings can be made solid and strong by the addition of silicon; a further addition of silicon will turn the iron gray; and as the grayness increases the iron will grow weaker. Excessive silicon will again lighten the grain and cause a hard and brittle as well as a very weak iron. The only softening and shrinkage-lessening influence of silicon is exerted during the time when graphite is being produced, and silicon of itself is not a softener or a lessener of shrinkage; but through its influence on carbon, and only during a certain stage, does it produce these effects.
Phosphorus. - While phosphorus of itself, in whatever quantity present, weakens cast-iron, yet in quantities less than 1.5% its influence is n.t sufficiently great to overbalance other beneficial effects, which are exerted before the perceutage reaches 1%. Probably no element of itself weakens cast iron as much as phosphorus, especially when present in large quantities.
Shrinkage is decreased when phosphorus is increased. All high-phosphoms pig irons have low shrinkage. Phosphorus does not ordinarily harden cast iron, probably for the reason that it does not increase combined carbon.
The fluidity of the metal is slightly increased by phosphorus, but not to anj such great extent as has been ascribed to it.

The property of remaining long in the fluid state must not be confounded with fluidity, for it is not the measure of its ability to make sharp castings, or to run into the very thin parts of a mould. Generally speaking, the statement is justified that, to some extent, phosphorus prolongs the fluidity of the iron while it is filling the mould.
The old Scotch irons contained about 1% of phosphorus. The foundry-irous which are most sought for for small and thin castings in the Eastern States contain, as a general thing, over 1\% of phosphorus.
Certain irons which contain from 4% to $\% \%$ silicon have been so much used on account of their ability to soften other irons that they hare come to be known as "softeners" and as lesseners of shrinkage. These irons are valuable as carriers of silicon; but the irons which are sold most as softeners and shrinkage-lesseners are those containing from 1% to 2% of phosphorus. We must therefore ascribe the reputation of some of them largely to the phosphorus and not wholly to the silicon which they contain.
From 112% to 1% of phosphorus will do all that can be done in a beneficial way, and all above that amount weakens the iron, without corresponding benefit. It is not necessary to search for phosphorus-irons. Most irons contain more than is needed, and the care should be to keep it within limits.

Sulphur.- Only a small percentage of sulphur can be made to remain in carbonized iron, and it is difficult to introduce sulphur into gray cast iron or into any carbonized iron, although gray cast iron often takes from the fuel as much more sulphur as the iron originally contained. Percentages of sulphur that could be retained by gray cast iron cannot materially injure the iron except through an increase of shrinkage. The higher the carbon, or the higher the silicon, the smaller will be the inflience exerted by sulphur.
The influence of sulphur on all cast iron is to drive out carbon and silicon and to increase chill, to increase shrinkage, and, as a general thing, to decrease strength; but if in practice sulphur will not enter such iron, we shall not have any cause to fear this tendency. In every-day work, however, it is found at times that iron which was gray when put into the cupola comes out white, with increased shrinkage and chill, and often with decreased strength. This is caused by decreased silicon, and can be remedied by an increase of silicon.

Mr. Keep's opinion concerning the influence of sulphur, quoted above, is disagreed with by J. B. Nau (Iron Age, March 29, 1894). He says :
"Sulphur, in whatever shape it may be present, has a deleterions influence on the iron. It has the tendency to reuder the iron white by the influence it exercises on the combination between carbon and iron. Pig iron containing a certain percentage of it becomes porous and full of holes, and castings made from sulphurous iron are of inferior qualit5. This happens especially when the element is present in notable quantities. With foundry-iron containing as high as 0.1% of sulphur, castings of greater strength may be ob-
tained than when no sulphur is present. Thus, in sometests on this element quoted by R. Akerman, it is stated that in the foundry-iron from Finspong, used in the manufacture of cannons, a percentage of 0.1% to 0.14% of sulphur in the iron increased its strength to a considerable extent. The percentage of sulphur found originally in the iron put in the cupola is liable to be further increased by part of the sulphur that is invariably found in the coke used. It is seldom that a coke with a small percentage of sulphur is found, whereas coke containing 1% of it and over is very common. With such a fuel in the cupola, if no special precautions are resorted to, the percentage of sulphur in the metal will in most cases be increased."

That the sulphur contents of pig iron may be increased by the sulphur contained in the coke used, is shown by some experiments in the cupola, reported by Mr. Nau. Seven consecutive heats were made.

The sulphur content of the coke was 1%, and 11.7% of fuel was added to the charge.

Before melting, the silicon ranged from 0.320 to 0.830 in the seven heats; after melting, it was from 0.110 to 0.534 , the loss in melting being from .100 to .375 . The sulphur before melting was from $.0 \% 6$ to .090 , and after melting from .132 to .174 , a gain from $.0 \not 4$ to .098 .

Froin the results the following conclusions were drawn :

1. In all the charges, without exception, sulphur increased in the pig iron after its passage through the cupola. In some cases this increase more than doubled the original amount of sulphnr found in the pig iron.
2. The increase of the sulphur contents in the iron follows the elimination of a greater amount of silicon from that same iron. A larger amount of limestone added to these charges would have produced a more basic cinder, and undoubtedly less sulphur would have been incorporated in the iron.
3. This coke contained 1% of sulphur, and if all its sulphur had passed into the iron there would have been an average increase of 0.12 of sulphur for the seven charges, while the real increase in the pig iron amounted to only 0.081 . This shows that two thirds of the sulphur of the coke was taken up by the iron in its passage through the cupola.

Manganese.-Manganese is a nearly white metal, having about the same appearance when fractured as white cast iron. Its specific gravity is about 8, while that of white cast iron, reasonably free from impurities, is but a little above 7.5 . As produced commercially, it is combined with iron, and with small percentages of silicon, phosphorus, and sulphur.

It is generally produced in the blast-furnace. If the manganese is under 40% with the remainder mostly iron, and silicon not over 0.50%, the alloy is called spiegeleisen, and the fracture will show flat reflecting surfaces, from which it takes its name.

With manganese above 50%, the iron alloy is called ferro-manganese.
As manganese increases beyond 50%, the mass cracks in cooling, and when it approaches 98% the mass crumbles or falls in small pieces.

Manganese combines with iron in almost any proportion, but if an iron containing manganese is remelted, more or less of the manganese will escape by volatilization, and by oxidation with other elements present in the iron. If sulphur be present, some of the manganese will be likely to unite with it and escape, thins reducing the amount of both elements in the casting.

Cast iron, when free from manganese, cannot hold more than 4.50% of carbon, and 3.50% is as much as is generally present; but as manganese increases, carbon also increases, until we often find it in spiegel as high as 5%, and in ferro-manganese as high as 6%. This effect on capacity to hold carbon is peculiar to manganese.

Manganese renders cast iron less plastic and more brittle.
Manyanese increases the shrinkage of cast iron. An increase of 1\% raised the shrinkage 20\%. Judging from some test records, manganese does not influence chill at ail; but other tests show that with a given percentage of silicon the carbon may be a little more inclined to remain in the combined form, and therefore the chill may be a little deeper. Hence, to cause the chill to be the same, it would seem that the percentage of silicon should be a little higher with manganese than without it.

An increase of 1% of manganese increased the hardness 40%. If a hard chill is required, manganese gives it by adding hardness to the whole casting.
J. B. Nau (Iron Age, March 29, 1894), discussing the influence of manganese on cast iron, says:

Manganese favors the combination between carbon and iron. Its influence, when present in sufficiently large quantities, is even great enough not only to keep the carbon which would be naturally found in pig iron com-
bined, but it increases the capacity of iron to retain larger amounts of carbon and to retain it all in the combined state.
Manganese iron is often used for foundry purposes when some chill and harduess of surface is required in the casting. For the rolls of steel-rail mills we always put into the mixture a large amount of manganiferous iron, and the rolis so obtained always presented the desired hardness of surface and in general a mottled structure on the outside. The inside, which always cooled much slower, was gray iron. One of the standard mixtures that invariably gave good results was the following:
50% of foundry iron with 1.3% silicon and 1.5% manganese;
3.5% of foundry iron with 1% silicon and 1.5% manganese;
15% steel (rail ends) with about 0.35% to 0.40% carbon.
The roll resulting from this mixture contained about 1% of silicon and 1% of manganese.

Another mixture, which differed but little from the preceding, was as follows:

45\% foundry iron with about 1.3% silicon and 1.5% manganese;
30% foundry iron with about 1% silicon and 1.5% manganese;
10% white or mottled iron with about 0.5% to $0.6 \% \mathrm{Si}$. and $1.2 \% \mathrm{Mn}$.
15% Bessemer steel-rail ends with about 0.35% to 0.40% C. and 0.6% to $1 \% \mathrm{Mn}$.
The pig iron used in the preceding mixtures contained also invariably from 1.5% to 1.8% of phosphorus, so that the rolls obtained therefrom carried about 1.3% to 1.4% of that element. The last mixture used produced rolls containing on the average 0.8% to 1% of silicon and 1% of manganese. Whenever we tried to make those rolls from a mixture containing but 0.2% to 0.3% manganese our rolls were invariably of inferior quality, grayer, and consequently softer. Manganese iron cannot be used indiscriminately for foundry purposes. When greater softness is required in the castings manganese has to be avoided, but when hardness to a certain extent has to be obtained manganese iron can be used with advantage.
Manganese decreases the magnetism of the iron. This characteristic increases with the percentage of manganese that enters into the composition of the iron. The iron loses all its magnetism when manganese reaches 25% of its composition. This peculiarity has been made use of by French metallurgists to draw a clear line between spiegel and ferro-manganese. When the pig contains less than 25% of manganese it is classified as spiegel, and when it contains more than $25 \mathrm{it} \mathrm{\%}$ is classified as ferro-manganese. For this reason manganese iron has to be aroided in castings of dynamo flelds and other pieces belonging to electric machinery, where maguetic conductibility is one of the first considerations.

Irregular Distribution of Silicon in Pig Hron.-J. W. Thomas (Iron Age, Nov. 1:, 1891) finds in analyzing samples taken from every other bed of a cast of pig iron that the silicon varies considerably, the irou coming first from the furnace having generally the highest percentage. In one series of tests the silicon decreased from 2.040 to $1 . \% 13$ from the first bed to the eleventh. In another case the third bed had $1.260 \mathrm{Si} .$. the seventh 1.718 , and the eleventh 1.101. He also finds that the silicon varies in each pig, being higher at the point than at the butt. Some of his figures are: point of pig 2.328 Si .. butt of same 2.157 ; point of pig 1.834 , butt of same 1.88%.
Some Tests of Cast Iron. (G. Lanza, Trans. A. S. M. E., x., 18\%.)The chemical analyses were as follows:

The test specimens were 26 inches long and square in section; those tested with the skin on being very nearly one inch square, and those tested with the skin removed being cast nearly one and one quarter inches square, and afterwards planed down to one inch square.

$$
\begin{array}{cl}
\text { Tensile } & \text { Elastic } \\
\text { Strength. } & \text { Limit. }
\end{array}
$$

Unplaned common. 20,200 to 23,000 T. S. Av. $=22,066$ 6,500
Planed common.... 20,300 to 20,800
Unplaned gun..... 27,000 to 28,175
Planed gun.......... 29, 2900 to 31,000

\because	$=20,520$	5,833
\because	$=28,175$	11,000

13,194,233
11,943.953
$\begin{array}{llllll} & =30,500 & 8,500 & 15,932,880\end{array}$

The elastic limit is not clearly defined in cast iron, the elongations increasing faster than the increase of the loads from the beginning of the test. The modulus of elasticity is therefore variable, decreasing as the loads increase. For example, see the results of test of a cast-iron bar on p. 314 .
The Strength of Cast Iron depends on many other things besides its chemical composition. Among them are the size and shape of the casting, the temperature at which the metal is poured, and the rapidity of cooling. Internal stresses are apt to be induced by rapid cooling, and slow cooling tends to cause segregation of the chemical constituents and opening of the grain of the metal, making it weak. The relation of these variable conditions to the strength of cast iron is a complex one and as yet but imperfectly understood. (See "Cast-iron Columns," p. 250.)
The author recommends that in making experiments on the strength of cast iron, bars of several different sizes, such as $112,1,112$, and 2 in . square (or round), should be taken, and the results compared. Tests of bars of one size only do not furnish a satisfactory criterion of the quality of the iron of which they are made. See Trans. A. I. M. E., xxvi., 1017.

CHEMISTRE OF FOUNDRY IRONS.

(C. A. Meissner, Columbia College Q'ly, 1890 ; Iron Age, 1890.)

Silicon is a very important element in foundry irons. Its tendency when not above $21 / 2 \%$ is to cause the carbon to separate out as graphite, giving the casting the desired benefts of graphitic iron. Between 21\%\% and 31/2\% silicon is best adapted for iron carrying a fair proportion of low silicon scrap and close iron. for ordinarily no mixture should run below $11 / 2 \%$ silicon to get good castings.
From 3% to 5% silicon, as occurs in silvery iron, will carry heavy amounts of scrap. Castings are liable to be brittle, however, if not handled carefully as regards proportion of scrap used.
From 11/2\% to 2% silicon is best adapted for machine work ; will give strong clean castings if not much scrap is used with it.
Below 1\% silicon seems suited for drills and castings that have to stand great variations in temperature.
Silicon has the effect of making castings fluid, strong, and open-grained ; also sound, by its tendency to separate the graphite from the total carbon, and consequent slight expansion of the iron on cooling, causing it to fill out thoroughly. Phosphorus, when high, has a tendency to make iron fluid, retain its heat longer, thereby helping to fill out all small spaces in casting. It makes iron brittle, however, when above $3 / 4 \%$ in castings. It is excellent when high to use in a mixture of low-phosphorus irons, up to $11 / 2 \%$ giving good resuits, but, as said before, the casting should be below 34%. It has a strong tendency when above 1% in pig to make the iron less graphitic, preventing the separation of graphite.
Sulphur in open iron seldom bothers the founder, as it is seldom present to any extent. The conditions causing open iron in the furnace cause low sulphur. A little manganese is an excellent antidote against sulphur in the furnace. Irons above 1% manganese seldom have any sulphur of any consequence.
Graphite is the all-important factor in foundry irons; unless this is present in sufficient amount in the casting, the latter will be liable to be poor. Graphite causes iron to slightly expand on cooling, makes it soft, tough and fluid. (The statement as to expansion on cooling is denied by W. J. Keep.)
Relation of the Appearance of Fracture to the Chemical Composition.-S. H. Chauvenet says when run [from the blast-furnace] the lower bed is almost always close grain, but shows practically the same analysis as the large grain in the rest of the cast. If the iron runs rapidly, the lower bed may have as large grain as any in the cast. If the iron runs rapidly, for, say six beds and some obstruction in the tap-hole causes the seventh bed to fill up slowly and sluggishly, this bed may be close-grain, although the eighth bed, if the obstruction is removed will be open-grain. Neither the graphitic carbon nor the silicon seems to have any influence on the fracture in these cases, since by analysis the graphite and silicon is the same in each. The question naturally arises whether it would not be better to be guided by the analysis than by the fracture. The fracture is a guide, but it is not an infallible guide. Should not the open- and the close-grain iron of the same cast be numbered under the same grade when they have the same analysis?
Mr. Meissner had many analyses made for the comparison of fracture
with analysis, and unless the condition of furnace, whether the iron ran fast or slow, and from what part of pig bed the sample is taken, are known, the fracture is often very misleading. Take the following analyses:

-	A.	B.	C.	D.	E.	F.
Silicon.	4.315	4.818	$4.2)^{0}$	3.3308	3.869	3.861
Sulphur	0.008	0.008	U.00)	0.0 .33	0.006	0.006
Graphitic car.	3.010	2.i.in	$\because 680$	2.243	$3.0 \% 0$	3.100
Comb. carbon.					0.108	0.096

A. Very close-grain iron, dark color, by fracture, gray forge.
B. Open-grain, dark color, by fracture, No. 1.
C. Very close-grain, by fracture, gray forge.
D. Medium-grain, by fracture, No. 2, but much brighter and more open than A, C, or F.
E. Very large, open-grain, dark color, by fracture, No. 1.
F. Very close-grain, by fracture, gray forge.

By comparing analyses A and B , or E and F , it appears that the closegrain iron is in each case the highest in graphitic carbon. Comparing A and E, the graphite is about the same, but the close-grain is highest in silicon.

Analyses of Foundry Irons. (C. A. Meissner.)
Scotch Irons.

Name.	Grade.	Silicon.	Phosphorus.	Manganese.	Sulphur.	Graphite.	Com. Carbon.
Summerlee.	1	2.10	0.515	1.80	0.01	3.09	0.25
	1	2.4π	0.760	2.51	0.015		
"	1	3.44	1.000	$1 . \% 0$	0.015		
"	2	2. i_{0}	0.810	2.90	0.02	9.00	0.80
Eglinton	,	2.15	0.618	2.80	0.025	3. 6	0.21
Coltness.	1	2.59	0.840	1.70	0.010	3.75	3.75
Carnbroe	1	1.70	1.100	1.83	0.008	3.50	0.40
Glengarnock.	1	3.03	1.200	2.85			
Glengarnock said to carry $2 / 3$ scrap	2	4.00	0.900	3.41	0.010	$1 . \% 8$	0.90

American Scotch Irons.

No. Sample	Silicon.	Phosphorus.	Manganese	Sulphus:	No. Grade.	
1	6.00	0.430	1.00	1	
2	1.67	1.920	1.90			casting.
3	2.40	1.000	1.70		\%	
4	$1 . \because 8$	0.690	1.40		2
$5 a$	3.50	0.613	2.51		1	
56	2.90	0.733	1.40			casting.
$6 a$	3.44	1.000	1. 10	0.015	1	
${ }_{7}^{6 b}$	3.35	1.300	1.50	0.012	1	
τ	3.68	0.503	2.96		1	

Description of Samples. - No. 1. Well known Ohio Scotch iron, almost silvery, but carries two-thirds scrap; made from part black-band ore. Very successful brand. The high silicon gives it its scrap-carrying capaclty.

No. 2. Brier Hill Scotch castings, made at scale works ; castings demanding more fluidity than strength.

No. 3. Formerly a famous Ohio Scotch brand, not now in the market Made mainly from black-band ore.
No. 4. A good Ohio Scotch, very soft and fluid; made from black-band ore-mixture.
Nos. 5α and $5 b$. Brier Hill Scotch iron and casting; made for stove purposes; 350 lbs . of iron used to 150 lbs . scrap gave very soft fluid iron; worked well.
No. $6 a$. Shows comparison between Summerlee (Scotch) ($6 a$) and Brier Hill Scotch (6b). Drillings came from a Cleveland foundry, which found both irons closely alike in physical and working quality.
No. 7. One of the best southern brands, very hard to compete with, owing to its general qualities and great regularity of grade and general working.

Machine Irons.

Sample No.	Silicon.	Phosphorus.	Manganese.	Sulphur.	Graphite.	Comb. Carbon.	$\begin{aligned} & \text { Grade } \\ & \text { No. } \end{aligned}$
8	2.80	0.492	0.61	0.015			1
9	1.30	0.262	0.70	0.030			3
$10 a$	2.66	0.750	1.20	0.020	2.51		2
10 b	3.63	0.411	1.25	0.014	3.05		1
11	2.10	0.415	0.60	0.050			2
12	1.37	0.294	1.51	0.080	2.31	$0 . \% 8$	2
13	3.10	0.124	trace	0.021			
14	2.12	0.610	0.80				
15	1.70	0632	1.60				
$16 a$	1.45	0.470	1.25	0.009			2
16 b	1.40	0.316	1.37	0.008			
17 18	3.26 0.80	0.426 0.164	1.25 0.90	0.015			1

Description of Samples. - No. 8. A famous Southern brand noted for fine machine castings.
No. 9. Also a Southern brand, a very good machine iron.
Nos. $10 a$ and $10 b$. Formerly one of the best known Ohio brands. Does not shrink; is very fluid and strong. Foundries having used this have reported very favorably on it.

No. 11. Iron from Brier Hill Co., made to imitate No. 3 ; was stronger than No. 3; did not pull castings; was fluid and soft.

No. 12. Copy of a very strong English machine iron.
No. 13. A Pennsylvania iron, very tough and soft. This is partially Bessemer iron, which accounts for strength, while high silicon makes it soft.
No. 14. Castings made from Brier Hill Co.'s machine brand for scale works, very satisfactory, strong, soft and fluid.

No. 15. Castings made from Brier Hill Co.'s one half machine brand, one half Scotch brand, for scale works, castings desired to be of fair strength, but very fluid and soft.
No. 16a. Brier Hill machine brand made to compete with No. 3.
No. 16b. Castings (clothes-hooks) from same, said to have worked badly, castings being white and irregular. Analysis proved that some other iron too high in manganese had been used, and probably not weili mixed.

No. 17. A Pennsylvania iron, no shrinkage, excellent machine iron, soft and strong.

No. 18. A very good quality Northern charcoal iron.

${ }^{66}$ Standard Grades' of the Brier Hill Iron and Coal Company.

Brier Hill Scotch Iron.-Standard Analysis, Grade Nos. 1 and 2.

> Silicon
> 2.00 to 3.00
> Phosphorus
> 0.50 to 0.75
> Manganese
> 2.00 to 2.50

Used successfully for scales, mowing-machines, agricultural implements, novelty hardware, sounding-boards, stoves, and heavy work requiring no special strength.
Brier Hill Silvery Iron.-Standard Anulysis, Grade No. 1.Silicon3.50 to 5.50
Phosphoris. 1.00 to 1.50Manganese2.00 to 2.25

Used successfully for hollow-ware, car-wheels, etc., stoves, bumpers, and similar work, with heavy amounts of scrap in all cases. Should be mainly used where fluidity and no great strength is required, especially for heavy work. When used with scrap or close pig low in phosphorus, castings of considerable strength and great fluidity can be made

Fairly Heavy Machine Iron.-Standard Analysis, Grade No. 1.

Silicon
1.75 to 2.50
Phosphorus
0.50 to 0.60
Manganese
1.20 to 1.40

The best iron for machinery, wagon-boxes, agricultural implements, pump-works, hardware specialties, lathes, stoves, etc., where no large amounts of scrap are to be carried, and where strength, combined with great fluidity and softness, are desired. Should not have much scrap with it.

Regular Machine Iron.-Standard Analysis, Grade Nos. 1 and 2.

Silicon
1.50 to 2.00
Phosphorus
0.30 to 0.50
Manganese
0.80 to 1.00

Used for hardware, lawn-mowers, mower and reaper works, oil-well machinery, drills, fine machinery, stoves, etc. Excellent for all small fine castings requiring fair fluidity, softness, and mainly strength. Cannot be well used alone for large castings, but gives good results on same when used with above-mentioned heavy machine grade; also when used with the Scotch in right proportion. Will carry but little scrap, and should be used alone for good strong castings.

For Axles and Materials Requiving Great Strength, Grade No. 2.
Silicun
1.50

Manganese
0.80

This gave excellent results.
A good neutral iron for guns, etc., will run about as follows:
Silicon.... ... 1.00
Phosphorus............. ... 0.25
Sulphur ... 0.20
Manganese....................... none.
It should be open No. 1 iron.
This gives a very tough, elastic metal. More sulphur would make tough but decrease elasticity.
For fine castings demanding elegance of design but no strength, phosphorus to 3.00% is good. Can also stand 1.50% to 2.00% manganese. For work of a hard, abrasive character manganese can run 2.00% in casting.

Analyses of Castings.

Sampie No.	Silicon.	Phosphorus.	Manganese	Sulphur.	Graphite.	Comb Carbon.
31	2.50	1.400	2.20			
$3 \cdot$	0.85	0.351	0.92	0.030		
$3: 3$	1.53	0.327	1.08	0.040	3.10	0.58
34 a	1.84	0.577	1.04			
$3 \pm b$	2.20	0.742	1.10	.		
34 c	2.50	1.208 0.418	1.16 0.54
$35 a$ $35 b$	2.80 3.10	0.418 1.280	0.54 1.14
35 c	3.30	0.879	0.80			
$35 d$	2.88	0.408	1.10			
35 e	4.50	0.660	0.78			
${ }_{3 \%}^{36}$	3.43 2.68	1.439 0.900	0.90 1.30	0.025		
$87{ }^{3}$	1.90	0:980	1.20			

No. 31. Serwing-machine casting, said to be very fluid and good casting. This is an odd analysis. I should say it would have been too hard and brittle, yet no complaint was made.

No. 32. Very good machine casting, strong, soft, no shrinkage.
No. 33. Drillings from an annealer-box that stood the heat very well.
No. $34 a$. Drillings from door-hinge, very stroug and soft.
No. 34b. Drillings from clothes-hooks, tough and soft, stood severe hammering.

No. 34c. Drillings from window-blind hinge, broke off suddenly at light strain. Too high phosphorus.

No. $35 a$. Casting for heavy ladle support, very strong.
Nos. $35 b$ and 35 c. Broke after short usage. Phosphorus too high. Carbumpers.

No. 35 d. Elbow for steam heater, very tough and strong.
No. 36. Cog-wheels, very good, shows absolutely no shrinkage.
No. 37. Heater top network, requiring fluidity but no strength.
No. 37a. Gray part of above.
No. 37b. White, honeycombed part of above. Probably bad mixing and got chilled suddenly.

STRENGTH OF CAST IRON.

Rankine gives the following figures:

Various qualities, T. S......	13,400 to	29,000,	average	16,500
Compressive strength......	82,000 to	145,000,	"	112,000
Modulus of elasticity.....	$14,000,000$ to $22,900,000$,	"	$17,000,000$	

specific Gravity and Strength. (Major Wade, 1856.)
Third-class guns: Sp. Gr. 7.087, T. S. 20,148. Another lot: least Sp. Gr. 7.163, T. S. 22,402.

Second-class guns: Sp. Gr. \%.154, T. S. 24,767. Another lot: mean Sp. Gr. 7.302, T. S. 27,232.

First class guns: Sp. Gr. 7.204, T. S. 28,805. Another lot. greatest Sp. Gr. 7.402, T. S. 31,027.

Strength of Charcoal Pig Tron. - Pig iron made from Salisbury ores, in furnaces at Wassaic and Millerton, N. Y., has shown over 40,000 lbs. T. S. per square iuch, one sample giving 42,281 lbs. Muirkirk, Md, iron tested at the Washington Navy Yard showed: average for No. Ziron, 21,601 lbs.; No. 3, $23,959 \mathrm{lbs}$. ; No. 4, 41,329 lbs.; average density of No. 4, 7.336 (J.C. I. W., v. p. 44.)

Nos. 3 and 4 charcoal pig iron from Chapinville, Conn., showed a tensile strength per square inch of from $34,761 \mathrm{lbs}$. to $41,882 \mathrm{lbs}$. Charcoal pig iron from Shelby, Ala. (tests made in August, 1891), showed a strength of $34,800 \mathrm{lbs}$. for No. 3 ; No. $4,39,675 \mathrm{lbs}$. ; No. $5,46,450 \mathrm{lbs}$. ; and a mtxture of equal parts of Nos. 2, 3, 4, and 5, 41.470 lbs . (Bull.I. \& S. A.)

Variation of Density and Tenacity of Gun-irons.-An increase of density invariably follows the rapid cooling of cast iron, and as a general rule the tenacity is increased by the same means. The tenacity generally increases quite uniformly with the density, until the latter ascends to some given point; after which an increased density is accompanied by a diminished tenacity.

The turning-point of density at which the best qualities of gun-iron attain their maximum tenacity appears to be about 7.30. At this point of density, or near it, whether in proof-bars or gun-heads, the tenacity is greatest.

As the density of iron is increased its liquidity when melted is diminished. This causes it to congeal quickly, and to form cavities in the interior of the casting. (Pamphlet of Builders' Iron Foundrv, 1893.)

Specifications for Cast Tron for the WWorld's Fair Buildinge, 1892.--Except where chilled iron is specified, all castings shall be of tough gray iron, free from injurious cold-shuts or blow-holes, true to pattern, and of a workmanlike finish. Sample pieces 1 in . square, cast from the same heat of metal in sand moulds, shall be capable of sustaining on a crear span of 4 feet 6 inches a central load of 500 lbs . when tested in the rougn bar.
Specifications for Tests of Cast Iron in 12" B. H. IMortars. (Pamphlet of Builders Iron Foundry, 1893.)-Charcoal Gun Iron.- The tensile sirength of the metal must average at each end at least $30,000 \mathrm{lbs}$. per square inch; no specimen to be over $37,000 \mathrm{lbs}$. per square inch ; but one specimen from each end may be as low as $28,000 \mathrm{lbs}$. per square inch. The
long extension specimens will not be considered in making up these averages, but must show a good elongation and an ultimate strength, for each specimen, of not less than $24,000 \mathrm{lbs}$. The density of the metal must be such as to indicate that the metal has been sufficiently refined, but not carried so high as t, impair the other qualities.
Specifications for Grading Pig Iron for Car Wheels by Chill Tests made at the Furnace. (Penna. R. R. Specifications, 1883.) - The chill cup is to be filled, even full, at about the middle of every cast from the furnace. The test-piece so made will be $71 / 2$ inches long, $31 / 2$ inches wide, and $13 / 4$ inches thick, and is to be broken across the centre when entirely cold. The depth of chill will be shown on the bottom of the testpiece, and is to be measured by the clean white portion to the point where gray specks begin to show in the white. The grades are to be by eighths of an inch, viz., $1 / 8,1 / 4,3 / 8,1 / 2,5 / 3,3 / 4,7 / 8$, etc., until the iron is mottled ; the lowest grade being $1 / 8$ of an inch in depth of chill. The pigs of each cast are to be marked with the depth of chill shown by its test-piece, and each grade is to be kept by itself at the furnace and in forwarding.

Mixture of Cast Iron with Steel. - Car wheels are sometimes made from a mixture of charcoal iron, anthracite iron, and Bessemer steel. The following shows the tensile strength of a number of tests of wheel mixtures, the average tensile strength of the charcoal iron used being 22,000 lbs.:
lbs. per sq. in.
Charcoal iron with ${ }_{6}{ }_{6}^{21 / 2 \%}$ steel. 22,467
" " $" \frac{33 / 4 \%}{}$ steel.......................... 26,733
" "" " \quad "1/\% steel and $71 / 2 \%$ anthracite 24,400
" 6
" 1 "
" "
" '
" 5% steel, 5% wro't iron, and 10% anth..... 26,500
(Jour. C. I. W., iii. p. 184.)
Cast Iron Partially Bessemerized.-Car wheels made of partially Bessemerized iron (blown in a Bessemer converter for $31 / 2$ minutes), chilled in a chill test mould over an inch deep, just as a test of cold blast charcoal iron for car wheels would chill. Car wheels made of this blown iron have run 250,000 miles. (Jour. C. I. W., vl. p. 77.)

Bad Cast Iron.-On October 15, 1891, the cast-iron fly-wheel of a large pair of Corliss engines belonging to the Amoskeag IIfg. Co., of Manchester, N. H., exploded from centrifugal force. The fly-wheel was 30 feet diameter and 110 inches face, with one set of 12 arms , and weighed $116,000 \mathrm{lbs}$. After the accident, the rim castings, as well as the ends of the arms, were found to be full of flaws. caused chiefly by the drawing and shrinking of the metal. Specimens of the metal were tested for tensile strength, and varied from $15,000 \mathrm{lbs}$. per square inch in sound pieces to 1000 lbs . in spongy ones. None of these flaws showed on the surface, and a rigid examination of the parts before they were erected failed to give any cause to suspect their true nature. Experiments were carried on for some time after the accident in the Amoskeag Company's foundry in attempting to duplicate the flaws, but with no success in approaching the badness of these castings.

MALLEABLE CAS' IRON.

Malleableized cast iron, or malleable iron castings, are castings made of ordinary cast iron which have been subjected to a process of decarbonization, which results in the production of a crude wrought iron. Handles, latches, and other similar articles, cheap harness mountings, plowshares, iron handles for tools, wheels, and pinions, and many small parts of machinery, are made of malleable cast iron. For such pieces charcoal cast iron of the best quality (or other iron of similar chemical composition), should be selected. Coke irons low in silicon and sulphur have been used in place of charcoal irons. The castings are made in the usual way, and are then imbedded in oxide of ircn, in the form, usually, of hematite ore, or in peroxide of manganese, and exposed to a full red-heat for a sufficient length of time, to insure the nearly complete removal of the carbon. This decarbonization is conducted in cast-iron boxes, in which the articles, if small, are packed in alternate layers with the decarbonizing material. The largest pieces require the longest time. The fire is quickly raised to the maximum temperature, but at the close of the process the furnace is cooled very slowly. The operation requires from three to five days with ordinary small castings, and may take two weeks for large pieces.

Rules for Use of Malleable Castings, by Committee of Master

 Carbuilders' Ass'n, 1890.1. Never run abruptly from a heary to a light section.
2. As the strength of malleable cast iron lies in the skin, expose as much surface as possible. A star-shaped section is the strongest possible from which a casting can be made. For brackets use a number of thin ribs instead of one thick one.
3. Avoid all round sections; practice has demonstrated this to be the weakest form. Avoid sharp angles.
4. Shrinkage generaily in castings will be $3 / 16$ in. per foot.

Strength of Malleable Cast Iron.-Experiments on the strength of malleable cast iron, made in 1891 by a committee of the Master Carbuilders' Association. The strength of this metal varies with the thickness, as the following results on specimens from $1 / 4 \mathrm{in}$. to $11 / 2 \mathrm{in}$. in thickness show:

Dimensions.		Tensile Strength.	Elongation.	Elastic Limit.
in.	in.	lb. per sq. in. 34.20	per cent in 4 in.	lb. per sq. in.
1.52 \%	. 39	34,400 33,00	- ${ }_{2}^{2}$	21,,260
1.53 "	. 5	32,800	2	17,000
1.53 "	. 64	32,100	2	19,400
2.	. 78	25,100	11/2	15,400
1.54 "	. 88	33,600	11/2	19.300
1.06 "	1.02	30,600	1	17,600
1.28 "	1.3	27,400	1	
1.52 "	1.54	28,200	11/2	

The low ductility of the metal is worthy of notice. The committee gives the following table of the comparative tensile resistance and ductility of malleable cast iron, as compared with other materials:

	Ulimate Strength, lb. per sq. in	Comparative Strength; Cast Iron I 1.	Elongation Per Cent in 4 in.	Comparative Ductility; Malleable Cast Iron $=1$.
Cast iron	20,000			
Malleable cast iron.	32,000	1	0.35	0.17
Wrought iron	50,000	1.6	2.00	1
Steel castings	60,000	3	20.00	10

Another series of tests, reported to the Association in 1892, gave the following:

Thickness.	Width.	Area.	Elastic Limit.	Ultimate Strength.	Elongation in 8 in.
in.	in.	sq in.	lb. per sq.	1b. per sq. in.	percent.
. 271	2.81	. 7615	23.520	33.6:0	1.5
. 293	2.78	. 8145	22,650	28,160	. 6
. 39	2.82	1.698	20,595	32,060	1.5
. 41	2.59	1.144	20,230	28,850	1.11
. 529	2.76	1.46	19,520	27,875	1.1
. 661	2.81	1.857	18,840	25,700	. ${ }^{1}$
. 8	2.66	2.208	18.390	25,120	1.1
1.025	2.82	2.890	18,220	28,720	1.5
1.117	2.81	3.138	17,050	25,510	1.3
1.021	2.82	2.879	18,410	26,950	1.3

WROUGRT IRON.

Infuence of Chemical Composition on the Properties of Wrought Iron. (Beardslee on Wrought Iron and Chain Cables. Abridgement by W. Kent. Wiley \& Sons, 1879.)-A series of 2000 tests of specimens from 14 brands of wrought iron, most of them of high repute, was made in 1877 by Capt. L. A. Beardslee, U.S.N., of the United States Testing Board. Forty-two chemical analyses were made of these irons, with a view to determine what influence the chemical composition had upon the strength, ductility, and welding power. From the report of these tests by A. L. Holley the following figures are taken :

Brand.	Average Tensile Strength.	Chemical Composition.					
		S.	P.	Si.	C.	Mn.	Slag.
L	66,598	trace	$\left\{\begin{array}{l}0.065 \\ 0.084\end{array}\right.$	0.080	0.212	0.005	0.192
		$\{0.009$	0.084 0.250	0.105 0.182	0.512 0.033 0.068	0.029	0.452
P	54,363	$\left\{\begin{array}{l}0.001\end{array}\right.$	0.095	0.028	0.066	0.009	1.214
B	52,764	0.008	0.231	0.156	0.015	0.017	
		$\{0.003$	0.140	0.182	0.027	trace	$0.6 \sim 8$
J	51,154	\{ 0.005	0.291	0.321	0.051	0.053	1.724
O	51,134	$\left\{\begin{array}{l}0.004 \\ 0.005\end{array}\right.$	0.067	0.065	0.045	0.007	1.168
0		$\{0.005$	0.078	0.073	0.042	0.005	0.9\%4
C	50,765	0.007	0.169	0.154	0.042	0.021	

Where two analyses are given they are the extremes of two or more analyses of the brand. Where one is given it is the only analysis. Brand L should be classed as a puddled steel.

Order of Qualities Graded from No. 1 to No. 19.

Brand.	Tensile Strength.	Reduction of Area.	Elongation.	Welding Power.
L	1	18	19	most imperfect.
P	6	6	3	badly.
B	12	16	15	best.
J	16	19	18	rather badly.
O	18	1	4	very good.
C	19	12	16	

The reduction of area varied from 54.2 to 25.9 per cent, and the elongation from 29.9 to 8.3 per cent.
Brand O, the purest iron of the series, ranked No. 18 in tensile strength, but was one of the most ductile; brand B, !quite impure, was below the average both in strength and ductility, but was the best in welding power; P, also quite impure, was one of the best in every respect except welding, while L, the highest in strength, was not the most pure, it had the least ductility, and its welding power was most imperfect. The evidence of the influence of chemical composition upon quality, therefore, is quite contradictory and confusing. The irons differing remarkably in their mechanical properties, it was found that a much more marked influence upon their qualities was caused by different treatment in rolling than by differences in composition.
In regard to slag Mr. Holley says: "It appears that the smallest and most worked iron often has the most slag. It is hence reasonable to conclude that an iron may be dirty and yet thoroughly condensed."
In his summary of "What is learned from chemical analysis," he says: "So far, it may appear that little of use to the makers or" users of wrought iron has been learned.

The character of steel can be surely predicated on the analyses of the materials; that of wrought iron is altered by subtle and unobserved causes."

Infuence of Reduction in Rolling from Pile to Bar on the Strength of Wrought Iron. - The teusile strength of the irons used in Beardslee's tests ranged from 46,000 to $62,700 \mathrm{lbs}$. per sq. in., brand L, which was really a steel, not being considered. Some specimens of L gave figures as high as $70,000 \mathrm{lbs}$. The amount of reduction of sectional
area in rolling the bars has a notable influence on the strength and elastic limit; the greater the reduction from pile to bar the higher the strength.

The following are a few figures from tests of one of the brands:

Size of bar, in. diam. Area of pile, sq. in.:	$\begin{gathered} 4 \\ 80 \end{gathered}$	$\begin{array}{r} 3 \\ \text { so } \end{array}$	$\underset{\sim 2}{2}$	$\begin{array}{r} 1 \\ 25 \end{array}$	${ }_{9}^{1 / 2}$	$\frac{1}{3}$
Bar per cent of pile:	15. ${ }^{\text {r }}$	8.83	4.36	3.14	2.17	1.6
Tensile strength, lb .:	46,3®2	47, 761	48,280	51,128	52,2\%5	59,585
Elastic limit, lb.:	23,430	26,400	31,892	36,46\%	39,126	

Specifications for Wrought Iron (F. H. Lewis, Engineers' Club of Philadelphia, 1891).-1. All wrought iron must be tough, ductile, fibrous, and of uniform quality for each class, straight, smooth, free from cinderpockets, flaws, buckles, blisters, and injurious cracks along the edges, and must have a workmanlike finish. No specific process or provision of manufacture will be demanded, provided the material fulfils the requirements of these specifications.
2. The tensile strength, limit of elasticity, and ductility shall be determined from a standard test-piece not less than $1 / 4$ inch thick, cut from the full-sized bar, and planed or turned parallel. The area of cross-section shall not be less than $1 / 2$ square iuch. The elongation shall be measured after b:eaking on an original length of 8 inches.
3. The tests shall show not less than the following results:

4. When full-sized tension members are tested to prove the strength of their convections, a reduction in their ultimate strength of ($500 \times$ width of bar) pounds per square inch will be allowed.
5. All iron shall bend, cold, 180 degrees around a curve whose diameter is twice the thickness of piece for bar iron, and three times the thickness for plates and shapes.
6. Iron which is to be worked hot in the manufacture must be capable of bending sharply to a right angle at a working heat without sign of fracture.
\%. Specimens of tensile iron upon being nicked on one side and bent shall show a fracture nearly all fibrous.
8. All rivet iron must be tough and soft, and be capable of bending cold until the sides are in close contact without sign of fracture on the convex side of the curve.

Pennsylvania Railroad Specifications for Merchant Bar Iron or Steel.-Miscellaneous merchant bar iron or steel for which no special specifications defining shapes and uses are issued, should have a tensile strength of 50,000 to $55,000 \mathrm{lbs}$. per square inch and an elongation of 20% in a section originally 2 inches long.

No iron or steel will be accepted under this specification if tensile strength falls below $48,000 \mathrm{lbs}$. or goes above $60,000 \mathrm{lbs}$. per square inch, nor if elongation is less than 15% in 2 inches, nor if it shows a granular fracture covering more than 50% of the fractured surface, nor if it shows any difficulty in welding.
In preparing test-pieces from round or rectangular bars, they will be turned or shaped so that the tested sections may be the central portion of the bar, in all sizes up to $13 / 4$ inches in any diametrical or side measurement. In larger sizes test-pieces will be made to fall about half-way from centre to circumference.

Bars of iron $1 / 2$ in. thick or less, or tortured forms of iron, such as angle, tee or channel bar's, will be accepted if tensile strength is above 45.000 lbs . and elongation above 12\%; but the testing of such sizes and sections is optional.

FORMULE FOR UNIT STRAINS FOR IRON AND STEEL. 379

Specifications for Wronght Iron for the World's Fair Buildings. (Eng'g News, March 26, 1892.)-All iron to be used in the tensile members of open trusses, laterals, pins and bolts, except plate iron over 8 inches wide, and shaped iron, must show by the standard test-pieces a tensile strength in lbs. per square inch of :

$$
52,000-\frac{7,000 \times \text { area of original bar in sq. in. }}{\text { circumference of original bar in inches }}
$$

with an elastic limit not less than half the strength given by this formula, and an elongation of 20% in 8 in .
Plate iron 24 inches wide and under, and more than 8 inches wide, must show by the standard test-pieces a tensile strength of $48,000 \mathrm{lbs}$. per sq. in. with an elastic limit not less than $26,000 \mathrm{lbs}$. per square inch, and an elongation of not less than 12%. All plates over 24 inches in width must have a tensile strength not less than $46,000 \mathrm{lbs}$. with an elastic limit not less than $26,000 \mathrm{lbs}$. per square inch. Plates from 24 inches to 36 inches in width must have an elongatton of not less than 10%; those from 36 inches to 48 inches in width, 8%; over 48 inches in width. 5%.

All shaped iron, flanges of beams and channels, and other iron not hereinbefore specified, must show by the standard test-pieces a tensile strength in lbs. per square inch of :

$$
50,000-\frac{7,000 \times \text { area of original bar }}{\text { circumference of original bar }}
$$

with an elastic limit of not less tban half the strength given by this formula, and an elongation of 15% for bars $5 / 8$ inch and less in thickness, and of 12% for bar's of greater thickness. For webs of beams and chanuels, specifications for plates will apply.

All rivet iron must be tough and soft, and pieces of the full diameter of the rivet must be capable of bending cold, until the sides are in close contact, without sign of fracture on the convex side of the curve.

Stay-bolt Iron.-Mr. Vauclain, of the Baldwin Locomotive Works, at a meeting of the American Railway Master Mechanics' Association, in 1892, says: Many advocate the softest iron in the market as the best for stay-bolts. He believed in an iron as hard as was consistent with heading the bolt nicely. The higher the tensile strength of the iron, the more vibrations it will stand, for it is not so easily strained beyond the yield-point. The Baldwin specifications for stay-bolt iron call for a tensile strength of 50,000 to $52,000 \mathrm{lbs}$. per square inch, the upper figure being preferred, and the lower being insisted upon as the minimum.

FORMIULE FORE UNET STRAKNS FOR IREN AND STEEL IN STREUCURES.

(F. H. Lewis, Engineer's' Club of Philadelphia, 1891.)

The following formulæ for unit strains per square inch of net sectional area shall be used in determining the allowable working stress in each member of the structure. (For definitions of soft and medium steel see Specifications for Steel.)

Tension Hembers.

	Wrought Iron.	Soft Steel.	Medium Steel.
Floor-beam hangers or			
suspenders, forged bars	Will not be used	Will not be used	7000
Counter-ties..........		"4 ${ }^{\text {ch }}$	7000
Suspenders, hanger's			
and counters, riveted			
tion	5000	5500	
Solid rolled beams.	8000	8000	Will not be used
Riveted truss members			
and tension flanges of girders, net section	$r 000\left(1+\frac{\min .}{m o v}\right)$	8% greater than iron	$9000\left(1+\frac{\text { min. }}{110 \mathrm{x}}\right)$
Forged eyebars......	Will not be used	Will not be used	$9000\left(1+\frac{\text { min }}{\text { max }}\right.$)
Lateral or cross-section rods.	15,000	16,000	$\binom{\text { For eyebars }}{\text { only, } 17,000}$

Shearing.

	Wrought Iron.	Soft Steel.	Medium Steel.
On pins and shop rivets	6000	6600	7200
On field rivets.	4800	5200	Will not be used
In webs of girders.	Will not be used	5000	6000

Bearing.

	Wrought Iron.	Soft Steel.	Medium Steel.
On projected semiintrados of main-pin holes.	12,000	13,200	
			14,500
On projected semi-intrados of rivet-holes*	12,00	13,20	14,500
	12,000	13,200	
On lateral pins.... ... Of bed-plates on masonry	15,000	16,500	18,000
	250 lbs . per sq. in.		

[^11]
Bending.

On extreme fibres of pins when centres of bearings are considered as points of application of strains:

Wrought Iron, 15,000. Soft Steel, 16,000. Medium Steel, 17,000.

Compression Miembers.

	Wrought Iron.	Soft Steel.	Medium Steel.
Chord sections:			
Flat ends...	$7000\left(1+\frac{\min }{\max .}\right)-30 \frac{l}{r}$		
One flat and one pin end..	$7000\left(1+\frac{\min .}{\max .}\right)-35 \frac{l}{r}$		
Chords with pin ends and all end-posts	$0000\left(1+\frac{\min .}{\max .}\right)-40 \frac{l}{v}$	10% greater	20\% greater
All trestle-posts...........	$7000\left(1+\frac{\max }{\max }\right)-35 \frac{l}{r}$	than	than iron
Intermediate posts........	$7500-40 \frac{6}{v}$		
Lateral struts, and compression in collision struts, stiff suspenders			
and stiff chords...........	10,500-50 $\frac{2}{r}$		

In which formulæ $l=$ length of compression member in inches, and $r=$ least radius of gyration of member in inches. No compression member shall have a length exceeding 45 times its least width, and no post should be used in which $l \div r$ exceeds 125 .

Members Subject to Alternate Tension and Compression.

	Wrought Iron.	Soft Steel.	Medium Steel.
For compression ouly... Use the formulæ above For the greatest stress.. $7000\left(1-\frac{\text { max. lesser }}{2 \text { max. greater. }}\right)$	8% greater than iron	20\% greater than iron	

Use the formula giving the greatest area of section.
The compression flanges of beams and plate girders shall have the same cross-section as the tension flanges.
W. H. Burr, discussing the formulæ proposed by Mr. Lewis, says: "Taking the results of experiments as a whole, I am constrained to believe that they indicate at least 15% increase of resistance for soft-steel columns over those of wrought iron, with from 20% to 25% for medium steel, rather than 10% and 20% respectively.
"The high capacity of soft steel for enduring torture fits it eminently for alternate and combined stresses, and for that reason I would give it 15% increase over iron, with about 22% for medium steel.
"Shearing tests on steel seem to show that 15% and 22% increases, for the two grades respectively, are amply justified.
"I should not hesitate to assign 15% and 22% increases over values for iron for bearing and bending of soft and medium steel as being within the safe limits of experience. Provision should also be made for increasing pinshearing, bending and bearing stresses for increasing ratios of fixed to moving loads"
Maximum Permissible Stresses in Structural Materials usedin Buildings. (Building Ordinances of the City of Chicago, 1893.) Cast iron, crushing stress: For plates, 15,000 lbs. per square inch; for lintels, brackets, or corbels, compression $13,500 \mathrm{lbs}$. per square inch, and tension 3000 lbs. per square inch. For girders, beams, corbels, brackets, and trusses, 16,000 lbs. per square inch for steel and $12,000 \mathrm{lbs}$. for iron.
For plate girders :

$$
\text { Flange area }=\frac{\text { maximum bending moment in } \mathrm{ft} .-\mathrm{lbs} .}{C D .}
$$

$D=$ distance between centre of gravity of flanges in feet.
$C=\left\{\begin{array}{l}13,500 \text { for steel. } \\ 10,000 \text { for iron. }\end{array}\right.$

$$
\text { Web area }=\frac{\text { maximum shear }}{C} . C=\left\{\begin{array}{l}
10,000 \text { for steel }, \\
6,000 \text { for iron. }
\end{array}\right.
$$

For rivets in single shear per square inch of rivet area:

	Stee	Ir
If shop-driven	9000 lbs .	\%500 lbs.
If field-driven	7500 "	6000

For timber girders :

$$
S=\frac{c b d^{2}}{l} . \quad \begin{array}{ll}
d & =\text { depth of beam in inches. } \\
l & =\text { length of beam in feet. } \\
& c
\end{array}=\left\{\begin{array}{l}
160 \text { for long-leaf yellow pine } \\
100 \text { for oak, } \\
100 \text { for white or Norway pine. }
\end{array}\right.
$$

Proportioning of Materials in the Memphis Bridge (Geo. S. Morison, Truns. A. S. C. E., 1893).-The entire superstructure of the Memphis bridge is of steel and it was all worked as steel, the rivet-holes being drilled in all principal members and punched and reamed in the lighter members.
The tension members were proportioned on the basis of allowing the dead load to produce a strain of $20,000 \mathrm{lbs}$. per square inch, and the live load a strain of $10,000 \mathrm{lbs}$. per square inch. In the case of the central span, where the dead load was twice the live load, this corresponded to $15,000 \mathrm{lbs}$. total strain per square inch, this being the greatest tensile strain.
The compression members were proportioned on a somewhat arbitrary basis. No distinction was made between live and dead loads. A maximum strain of $14,000 \mathrm{lbs}$. per square inch was allowed on the chords and other large compression members where the length did not exceed 16 times the least transverse dimension, this strain being reduced 750 lbs . for each additional unit of length. In long compression members the maximum length was limited to 30 times the least transverse dimension, and the strains limited to $6,000 \mathrm{lbs}$. per square inch, this amount being increased by 200 lbs. for each unit by which the length is decreased.

Wherever reversals of strains occur the member was proportioned to resist the sum of compression and tension on whichever basis (tension or compression) there would be the greatest strain per square inch; and, in addition, the net section was proportioned to resist the maximum tension, and the gross section to resist the maximum compression.
The fioor beams and girders were calculated on the strain being limited to $10,000 \mathrm{lbs}$. per square inch in extreme fibres. Rivet-holes in cover-plates and flanges were deducted.

The rivets of steel in drilled or reamed holes were proportioned on the basis of a bearing strain of $15,000 \mathrm{lbs}$. per square inch and a shearing strain of 7500 lbs . per square inch, and special pains were taken to get the double shear in as many rivets as possible. This was the requirement for shop rivets. In the case of field rivets, the number was increased one-half.

The pins were proportioned on the basis of a bearing strain of $18,000 \mathrm{lbs}$. per square inch and a bending strain of $20,000 \mathrm{lbs}$. per square inch in extreme fibre, the diameters of the pins being never made more than one inch less than the width of the largest eye-bar attaching to them.
The weight on the rollers of the expansion joint on Pier II is 40,000 lhs. per linear foot of roller, or $3,333 \mathrm{lbs}$. per linear inch, the rollers being 15 ins . in diameter.

As the sections of the superstructure were unusually heavy, and the strains from dead load greatly in excess of those from moving load, it was thought best to use a slightly higher steel than is now generally used for lighter structures, and to work this steel without punching, all holes being drilled. A somewhat softer steel was used in the floor-system and other lighter parts.

The principal requirements which were to be obtained as the results of tests on samples cut from finished material were as follows:

	Max. Ultimate Strength, lbs. per sq. inch.	Min. Ultimate Strength, lbs. per sq. inch.	Min. Elastic Limit, lbs, per sq. in.	Min. per- centage of Elongation in 8 inches.	Min. Per- centage of Reduction at Fracture
High-grade steel.	78,500	69,000	40,000	18	
Eye-bar steel....	75,000	66,000	38,000	20	38
Medium steel....	72,500	64.000	37,000	22	40
Soft steel........	63,000	55,000	30,000	28	54

TENACETY OF METEALS AT VAREOUS TEIMPERATURES.

The British Admiralty made a series of experiments to ascertain what loss of strength and ductility takes place in gun-metal compositions when raised to high temperatures. It was found that all the varieties of gun-metal suffer a gradual but not serious loss of strength and ductility up to a certain temperature, at which, within a few degrees, a great change takes place, the strength falls to about one half the original, and the ductility is wholly gone. At.temperatures above this point, up to 500 , there is little, if any, further loss of strength; the temperature at which this great change and loss of strength takes place, although uniform in the specimens cast from the same pot, varies about 100° in the same composition cast at different temperatures, or with some varying conditions in the foundry process. The temperature at which the change took place in No. 1 series was ascertained to be about 370°, and in that of No. 2, at a little over 250°. Whatever may be the cause of this important difference in the same composition, the fact stated may be taken as certain. Rolled Muntz metal and copper are satisfactory up to 500°, and may be used as securing-bolts with safety. Wrought iron, Yorkshire and remanufactured, increase in strength up to 500°, but lose slightly in ductility up to 300°, where an increase begins and continues up to 500°, where it is still less than at the ordinary temperature of the atmosphere. The strength of Landore steel is not affected by temperature up to 500°, but its ductility is reduced more than one half. (Iron, Oct. 6,1877 .)

Tensile Strength of Hron and Steel at High Tempera-tures.-James E. Howard's tests (Iron Age, April 10, 189(1) show that the tensile strength of steel diminishes as the temperature increases from 0° until a minimum is reached between 200° and $300^{\circ} \mathrm{F}$., the total decrease being about 4000 lbs . per square inch in the softer steels, and from 6000 to 8000 lbs . in steels of over $80,000 \mathrm{lbs}$. tensile strength. From this minimum point the strength increases up to a temperature of 400° to $650^{\circ} \mathrm{F}$., the maximum being reached earlier in the harder steels, the increase amounting to from 10,000 to $20,000 \mathrm{lbs}$. per square inch above the minimum strength at from 200°
to 300°. From this maximum, the strength of all the steel decreases steadily at a rate approximating $10,000 \mathrm{lbs}$. decrease per 100° increase of temperature. A strength of $20,000 \mathrm{lbs}$. per square inch is still shown by . 10 C . steel at about $1000^{\circ} \mathrm{F}$., and by . 60 to 1.00 C . steel at about $1600^{\circ} \mathrm{F}$.

The strength of wrought iron increases with temperature from 0° up to a maximum at from 400 to $600^{\circ} \mathrm{F}$., the increase being from 8000 to $10,000 \mathrm{lbs}$. per square inch, and then decreases steadily till a strength of only 6000 lbs . per square inch is shown at $1500^{\circ} \mathrm{F}$.

Cast iron appears to maintain its strength, with a tendency to increase, unt 1900° is reached, beyond which temperature the strength gradually diminishes. Under the highest temperatures, 1500° to $1600^{\circ} \mathrm{F}$., numerous cracks on the cylindrical surface of the specimen were developed prior to rupture. It is remarkable that cast iron, so much inferior in strength to the steels at atmospheric temperature, under the highest temperatures has nearly the same strength the high-temper steels then have.
Strength of Iron and Steel Boiler-plate at High Tem-
peratures. (Chas. Huston, Jour. F. I., 187\%.)
Average of Three Tests of Each.

Temperature F.	68°	$575{ }^{\circ}$	925 ${ }^{\circ}$
Charcoal iron plate, tensile strength, lb	55.366	$\begin{gathered} 63.080 \\ 23 \end{gathered}$	$\begin{gathered} 65,343 \\ 21 \end{gathered}$
Soft open-hearth steel, tensile strength	54,600	66,083	64,350
con	47	38	33
" Crucible steel, tensile strength, lbs	64,000	69,266	68,600
" " '6 contr.\%	36	30	21

Strength of Wrought Iron and Steel at High Temper-

 atures. (Jour. F. I., cxii., 1881, p. 241.) Kollmann's experiments at Oberhausen included tests of the tensile strength of iron and steel at temperatures ranging between 70° and $2000^{\circ} \mathrm{F}$. Three kinds of metal were tested, viz., fibrous iron having an ultimate tensile strength of $52,464 \mathrm{lbs}$., an elastic strength of $38,280 \mathrm{lbs}$., and an elongation of 17.5%; fine-grained iron having for the same elements values of $56.892 \mathrm{lbs} ., 39,113 \mathrm{lbs}$., and 20%; and Bessemer steel having values of $84,826 \mathrm{lbs} ., 55,029 \mathrm{lbs}$., and 14.5%. The mean ultimate tensile strength of each material expressed in per cent of that at ordinary atmospheric temperature is given in the following table, the fifth column of which exhibits, for purposes of comparison, the results of experiments carried on by a committee of the Franklin Institute in the years 1832-36.| | Fibrous | Fine-grained | Bessemer | Franklin |
| :---: | :---: | :---: | :---: | :---: |
| Temperature | Wrought | Iron, | Steel, | Institute, |
| Degrees F. | Iron, p. c. | per cent. | per cent. | per cent. |
| | 100.0 | 100.0 | 100.0 | 96.0 |
| 100 | 100.0 | 100.0 | 100.0 | 102.0 |
| 200 | 100.0 | 100.0 | 100.0 | 105.0 |
| 300 | 97.0 | 100.0 | 100.0 | 106.0 |
| 400 | 95.5 | 100.0 | 100.0 | 106.0 |
| 500 | 92.5 | 98.5 | 98.5 | 104.0 |
| 600 | 88.5 | 95.5 | 92.0 | 99.5 |
| \%00 | 81.5 | 90.0 | 68.0 | 92.5 |
| 800 | 67.5 | 77.5 | 44.0 | 75.5 |
| 900 | 44.5 | 51.5 | 36.5 | 53.5 |
| 1000 | 26.0 | 36.0 | 31.0 | 36.0 |
| 1100 | 20.0 | 30.5 | 26.5 | \% |
| 1200 | 18.0 | 28.0 | 22.0 | |
| 1300 | 16.5 | 23.0 | 18.0 | |
| 1400 | 13.5 | 19.0 | 15.0 | |
| 1500 | 10.0 | 15.5 | 12.0 | |
| 1600 | 7.0 | 12.5 | 10.0 | |
| 1700 | 5.5 | 10.5 | 8.5 | |
| 1800 | 4.5 | 8.5 | 7.5 | |
| 1900 | 3.5 | 7.0 | 6.5 | ... |
| 2000 | 3.5 | 5.0 | 5.0 | |

The Eftect of Cold on the Strength of Iron and Steel.The following conclusions were arrived at by Mr. Styffe in 1865 :
(1) That the absolute strength of iron and steel is not diminished by cold, but that even at the lowest temperature which ever occurs in Sweden it is at least as great as at the ordinary temperature (about 60° F.).
(2) That neither in steel nor in iron is the extensibility less in severe cold than at the ordinary temperature.
(3) That the limit of elasticity in both steel and iron lies higher in severe cold.
(4) That the modulus of elasticity in both steel and iron is increased on reduction of temperature, and diminished on elevation of temperature; but that these variations never exceed 0.05% for a change of temperature of 1.8° F., and therefore such variations, at least for ordinary purposes, are of no special importance.

Mr. C. P. Sandberg made in 186π a number of tests of iron rails at various temperatures by means of a falling weight, since he was of opinion that, although Mr. Styffe's conclusions were perfectly correct as regards tensile strength, they might not apply to the resistance of iron to impact at low temperatures. Mr. Sandberg convinced himself that "the breaking strain" of iron, such as was usually employed for rails, "as tested by sudden blows or shocks, is considerably influenced by cold ; such iron exhibiting at $10^{\circ} \mathrm{F}$. only from one third to one fourth of the strength which it possesses at 84° F." Mr. J. J. Webster (Inst. C. E., 1880) gives reasons for doubting the accuracy of Mr. Sandberg's deductions, since the tests at the lower temperature were nearly all made with $21-\mathrm{ft}$. lengths of rail, while those at the higher temperatures were made with short lengths, the supports in every case being the same distance apart.
W. H. Barlow (Proc. Inst. C. E.) made experiments on bars of wrought iron, cast iron, malleable cast iron, Bessemer steel, and tool steel. The bars were tested with tensile and transverse strains, and also by impact; one half of them at a temperature of $50^{\circ} \mathrm{F}$., and the other half at $5^{\circ} \mathrm{F}$. The lower temperature was obtained by placing the bars in a freezing mixture, care being taken to keep the bars covered with it during the whole time of the experiments.

The results of the experiments were summarized as follows :

1. When bars of wrought iron or steel were submitted to a tensile strain and broken, their strength was not affected by severe cold ($5^{\circ} \mathrm{F}$.), but their ductility was increased about 1% in iron and 3% in steel.
2. When bars of cast iron were submitted to a transverse strain at a low temperature, their strength was diminished about 3% and their flexibility about 16%.
3. When bars of wrought iron, malleable cast iron, steel, and ordinary cast iron were subjected to impact at a temperature of $5^{\circ} \mathrm{F}$., the force required to break them, and the extent of their flexibility, were reduced as follows, viz.:

Reduction of Force Reduction of Flexiof Impact, per cent. bility, per cent.
Wrought iron, about....................... 3^{3} 18
Steel (best cast tool), about.............. $31 / 2$
Malleable cast iron, about................. 41/2
Cast iron, about
.21
Cast iron. about.............................. 21 not taken
The experience of railways in Russia, Canada, and other countries where the winter is severe is that the breakages of rails and tires are far more numerous in the cold weather than in the summer. On this account a softer class of steel is employed in Russia for rails than is usual in more temperate climates.

The evidence extant in relation to this matter leaves no doubt that the capability of wrought iron or steel to resist impact is reduced by cold. On the other band, its static strength is not impaired by low temperatures.
Effect of Low Temperatures on Strength of Railroad Axles. (Thos. Andrews, Proc. Inst. C. E., 1891.)-Axles 6 ft. 6 in. long between centres of journals, total length 7 ft . $31 / 2$ in., diameter at middle $41 / 3$ in., at wheel-sets $51 / 8$ in., journals $33 / 4<7$ in. were tested by impact at temperatures of 0° and $100^{\circ} \mathrm{F}$. Between the blows each axle was half turned over, and was also replaced for 15 minutes in the water-bath.
The mean force of concussion resulting from each impact was ascertained as follows :

Let $h=$ height of free fall in feet, $w=$ weight of test ball, $h w=W=$ "energy," or work in foot-tons, $x=$ extent of deflections between bearings,

$$
\text { then } F(\text { meas force })=\frac{W}{x}=\frac{h w}{x}
$$

The results of these experiments show that whereas at a temperature of 0° F. a total average mean force of 179 tons was sufficient to cause the breaking of the axles, at a temperature of $100^{\circ} \mathrm{F}$. a total average mean force of 428 tons was requisite to produce fracture. In other words, the resistance to concussion of the axles at a temperature of $0^{\circ} \mathrm{F}$. was only about 42% of what it was at a temperature of $100^{\circ} \mathrm{F}$.

The average total deffection at a temperature of $0^{\circ} \mathrm{F}$. was 6.48 in , as against $15.06^{\circ} \mathrm{in}$. with the axles at $100^{\circ} \mathrm{F}$. under the conditions stated; this represents an ultimate reduction of flexibility, under the test of impact, of about $5 \% \%$ for the cold axles at 0° F., compared with the warm axles at $100^{\circ} \mathrm{F}$.

EXPANSION OF IRON AND STEEL BY HEAT.

James E. Howard, engineer in charge of the U.S. testing-machine at Watertown, Mass., gives the following results of tests made on bars 35 inches long (Iron Age, April 10, 1890):

Metal.	Marks.	Chemical composition.				Coefficient of Expausion. Per degree F. per unit of length.
		C.	Mu.	Si.	Fe by difference.	
Wrought iron..... Steel		. 09	. 11	99.80	. $000006730 \cdot 3$
	12					.0000067561
	2a	. 20	. 45		99.35	. 00000666259
"	$3 \mathrm{3a}$. 31	. 70		99.12 98	. 00000065149
،	5a	. 51	. 58	. 02	98.89	.0000066697
'6	6 a	. 210	.113	. 0 亿	98.43	. 0000063891
"	ca	$\ldots 1$. 58	. 08	98.63	. 0000064716
'6	8 a	. 81	. 56	. 17	98.46	. $000006216{ }^{\circ}$
"	9 a	. 89	. 57	. 19	98.35	. 0000062335
" ${ }^{\text {c.......... }}$	10a	. 97	. 80	. 28	97.95	.000)(1061700
Cast (gun) iron						. 0000059261
Drawn copper.						. 0000091286

DURABILITY OF IRON, CORROSHON, ETC.

Durability of Cast Iron.-Frederick Graff, in an article on the Philadelphia water-supply, says that the first cast-iron pipe used there was laid in 1820. These pipes were made of charcoal iron, and were in constant use for 53 years. They were uncoated, and the inside was well filled with tubercles. In salt water good cast iron, even uncoated, will last for a century at least; but it often becomes soft enough to be cut by a knife, as is shown in iron cannon taken up from the bottom of harbors after long submersion. Close-grained, hard white metal lasts the longest in sea water.Ena'g News. April 23, 1887, and March 26. 189\%.
Tests of Iron after Forty Years' Service.-A square link 12 inches broad. 1 inch thick and about 12 feet long was taken from the Kieff bridge, then 40 years old, and tested in comparison with a similar link which had been preserved in the stock-house since the bridge was built. The following is the record of a mean of four longitudinal test-pieces, $1 \times 11 / 8 \times 8$ inches, taken from each link (Stahl und Eisen, 1890):

$$
\begin{array}{cc}
\text { Old Link taken } & \text { New Link from } \\
\text { from Bridge. } & \text { Store-house. }
\end{array}
$$

Tensile strength per square inch, tons	21.8	22.2
Elastic limit	11.1	11.9
Elongation, per cent.	14.05	13.42
Contraction, per cent.	17.35	18.75

Durability of Iron in Bridges. (G. Lindenthal. Eng'g, May 2, 188t, p. 139.)-The Old Monongahela suspension bridge in Pittsburgh, built in 1845, was taken down in 1882. The wires of the cables were frequently strained to half of their ultimate strength, yet on testing them after 37 years'
use they showed a tensile strength of from $\tau 2, i 00$ to $100,000 \mathrm{lbs}$. per square inch. The elastic limit was from $6 \tau, 100$ to $\tau 8,600$ lbs. per square inch. Reduction at point of fracture, 35% to 75%. Their diameter was 0.13 inch.
A new ordinary telegraph wire of same gauge tested for comparison showed: T. S., of 100,000 lbs.; E. L., 81,550 lbs.; reduction, $5 \% \%$ Iron rods used as stays or suspenders showed: T. S., 43,770 to $49,720 \mathrm{lbs}$. per square inch; E. L., 26,380 to 29,200 . Mr. Lindenthal draws these conclusions from his tests:
"The above tests indicate that iron highly strained for a long number of years, but still within the elastic limit, and exposed to slight vibration, will not deteriorate in quality.
"That if subjected to only one kind of strain it will not change its texture, even if strained beyond its elastic limit, for many years. It will stretch and behave much as in a testing-machine during a long test.
"That iron will change its texture ouly when exposed to alternate severe straining, as in bending in different directions. If the bending is slight but very rapil, as in violent vibrations, the effect is the same."
Corrosion of Iron Bolts.-On bridges over the Thames in London, bolts exposed to the action of the atmosphere and rain-water were eaten a way in 25 years from a diameter of $7 / 8 \mathrm{in}$. to $1 / 2 \mathrm{in}$., and from $5 / 8 \mathrm{in}$. diameter to $5 / 16$ inch.
Wire ropes exposed to drip in colliery shafts are very liable to corrosion.
Corrosion of Mron and Steel.-Experiments made at the Riverside Iron Works, Wheeling, W. Va., on the comparative liability to rust of iron and soft Bessemer steel: A piece of iron plate and a similar piece of steel, both clean and bright, were placed in a mixture of yellow loam and sand, with which had been thoroughly incorporated some carbonate of soda, nitrate of soda, ammoniun chloride, and chloride of magnesium. The earth as prepared was kept moist. At the end of 33 days the pieces of metal were taken out, cleaned, and weighed, when the iron was found to have lost 0.84% of its weight and the steel 0.72%. The pieces were replaced and after 28 days weighed again, when the iron was found to have lost 2.06% of its original weight and the steel 1.79%. ($E^{\prime} g^{\prime}$ g, June 26, 1891.)

Corrosive Agents in the Atmosphere. The experiments of F. Crace Calvert (Chemical News, March 3, 1571) show that carbonic acid, in the presence of moisture, is the agent which determines the oxidation of iron in the atmosphere. He subjected iperfectly cleaned blades of iron and steel to the action of different gases for a period of four months, with results as follows:
Dry oxygen, dry carbonic acid, a mixture of both gases, dry and damp oxygen and ammonia: no oxidation. Damp oxygen: in three experiments one blade only was slightly oxidized.
Damp carbonic acid: slight appearance of a white precipitate upon the iron, found to be carbonate of iron. Damp carbonic acid and oxygen: oxidation very rapid. Iron immersed in water containing carbonic acid oxidized rapidly.
Iron immersed in distilled water deprived of its gases by boiling rusted the iron in spots that were found to contain impurities.
Galvanic Action is a most active agent of corrosion. It takes place when two metals, one electro-negative to the other, are placed in contact and exposed to dampness.
Sulphurous acid (the product of the combustion of the sulphur in coal) is an exceedingly active corrosive agent, especially when the exposed iron is coated with soot. This accounts for the rapid corrosion of iron in railway bridges exposed to the smoke from locomotives. (See account of experiments by the author on action of sulphurous acid in Jour Frank Inst., June, 1875, p. 437.) An analysis of sooty iron rust from a railway bridge showed the presence of sulphurous, sulphuric, and carbonic acids, chlorine, and ammonia. Bloxam states that ammonia is formed from the nitrogen of the air during the process of rusting.

Corrosion in Steammboilers. - Internal corrosion may be due either to the use of water containing free acid, or water containing sulphate or chloride of magnesium, which decompose when heated, liberating the acid, or to water containing air or carbonic acid in solution. External corrosion rarely takes place when a boiler is kept hot, but when cold it is apt to corrode repidly iu those portions where it adjoins the brickwork or where it may be covered by dust or ashes, or wherever dampness may lodge. (See Impurities of Water, p. 551, and Incrustation and Corrosion, p. 716.)

PRESERVATIVE COATINGS.

(The following notes have been furnished to the author by Prof. A. H. Sabin.)

Cement,-Iron-work is sometimes protected by bedding in concrete, in which case it is first cleaned and then washed with neat cement before being imbedded.

Asphaltum.-This is applied hot either by dipping (as water-pipe) or by pouring it on (as bridge floors). The asphalt should be slightly elastic when cold, with a high melting-point, not softening much at $100^{\circ} \mathrm{F}$., applied at 300° to 400°; surface must be dry and should be hot; coating should be of considerable thickness.

Paint.-Composed of a vehicle or binder, usually linseed oil or some inferior substitute, or varnish (enamel paints); and a pigment which is a more or less inert solid in the form of powder, either mixed or ground together. The principal pigments are white lead (carbonate) and white zinc (oxide), red lead (peroxide), oxides of iron, hydrated and dehydrated, graphite, lamp-black, chrome yellow, ultramarine and Prussian blue, and various tinting colors. White lead has the greatest body or opacity of white pigments; three coats of it equal five of white zinc; zinc is more brilliant and permanent, but it is liable to peel, and it is customary to mix the two. These are the standard white paints for all uses and the basis of all lightcolored paints. Anhydrous iron oxides are brown and purplish brown. hydrated iron oxides are yellowish red to reddish yellow, with more or less brown; most iron oxides are mixtures of both sorts. They also contain frequently manganese and clay. They are cheap, and are serviceable paints for wood, and are often used on iron, but for the latter use are falling into disrepute. Graphite used for painting iron contains from 10 to 90% foreign matter, usually silicates and iron oxides. It is very opaque, hence has great covering power, and may be applied in a very thin coat which should be avoided. It retards the drying of oil, hence the necessity or using dryers; these are lead and manganese compounds dissolved in oil and turpentine or benzine, and act as carries of oxygen; they are necessary in most paints, but should be used as little as possible. There are many grades of lamp-black; as a rule the cheaper sorts contain oily matter and are especially hard to dry; all lamp-black is slow to dry in oil. It is the principal black on wood, and is used some on iron, usually in combination with varnish or varnish-like compounds. It is very permanent on wood. A gallon of oil takes only a pound of lamp-black to make a paint, while the same amount of oil requires about 40 lbs . of red lead. On this account red-lead paint, which weighs about 30 lbs . per gallon. is the most expensive of all comon paints. It does not dry slowly like other oil paints, but combines with the oil to make a sort of cement; on this account it is used on the joints of steam-pipes. etc. To prevent the mixture of red lead and oil setting into a cake, and also to cheapen it, it is often adulterated with whiting or sometimes with white zinc, the proportion of adulterant being sometimes double the lead. Red lead has long had a high reputation as a paint for iron and steel and is still used very extensively; but of late years some of the new paints and varnish-like preparations have displaced it to some extent even on the most important work.

Varnishes. - These are made by melting fossil resin, to which is then added from half its weight to three times its weight of refined llnseed oil, and the compound is thinned with turpentine; they usually contain a little dryer. They are chiefly used on wood, being more durable and more brilliant than oil, and are often used over paint to preserve it. Asphaltum is sometimes substituted in part or in whole for the fossil resin, and in this way are made varuishes which have been applied to iron and steel with good results. Asphaltum and animal and vege able tar and pitch have also been simply dissolved in solvents, as benzine or carbon disulphide, and used for the same purpose.

All these preservative coatings are supposed to form impervious films, keeping out air and moisture; but in fact all are somewhat porous. On this account it is necessary to have a film of appreciable thickness, best formed by successive coats, so that the pores of one will be closed by the next. The pigment is used to give an agreeable color, to help fill the pores of the oil film, to make the paint harder so that it will resist abrasion, and to make a thicker film. In varnishes these results are sought to be attained by the resin which is dissolved in the oil. There is no sort of agreement among
practical men as to which is the best coating for any particular case; this is probably because so much depends on the preparation of the surface and the care with which the coating is applied, and also because the conditions of exposure vary so greatly.

Methods of Application.-Too much care cannot be given to the preparation of the surface. If it is wood, it should be dry, and the surface of knots should be coated with some preparation which will keep the tarry matter in the wood from the coating. All old paint or varnish should be removed by burning and scraping. Metallic surfaces should be cleaned by wire brushes and scrapers. and if the permanence of the work is of much importance the scale and oxide should be completely removed by acid pickling or by the sand-blast or some equally efficient means. Pickling is usually done with a 10% solution of sulphuric acid; as the solution becones exhausted it may be made more active by heating. All traces of acid must be removed by washing and the metal must be rapidly dried and painted before it becomes in the slightest degree oxidized. The sand-blast, which has been applied to large work recently and for many years to small work with good results, leaves the surface perfectly clean and dry; the paint must be applied immediately. Plenty of time should always be allowed. usually about a week, for each coat of paint to dry before the next coat is applied; less than two coats should uever be used. Two will last three times as long as one coat. Benzine should not be an ingredient in coatings for iron-work, because its rapid evaporation lowers the temperature of the iron and may cause formation of dew on the sirlface adjacent to the paint which is immediately to be painted.

Cast-iron water-pipes are usually coated by dipping in a hot mixture of coal-tar and coal-tar pitch; riveted steel pipes by dipping in hot asphalt or by a japan enamel which is baked on at about $400^{\circ} \mathrm{F}$. Ships bottoms are usually coated with some sort of paint to prevent rusting, over which is spread, hot, a poisonous, slowly solinble compound, usually a copper soap, to prevent adhesion of marine growths.

Galvanized-iron and tin surfaces should be thoroughly cleaned with benzine and scrubbed before painting. When new they are covered with grease and chemicals used in coating the plates, and these must be removed or the paint will be destroyed.

Quantity of Paint for a Given Surface.-One gallon of paint will cover 250 to 350 sq. ft. as a first coat, depending on the character of the surface, and from 350 to $450 \mathrm{sq} . \mathrm{ft}$. as a second coat.

Qualities of Paints.-The Railroad and Engineering Journal, vols. liv and lv, 1890 and 1891, has a series of articles on paint as applied to wooden structures, its chemical nature, application, adulteration, etc., by Dr. C. B. Dudley, chemist, and F. N. Pease, assistant chemist, of the Penna. R. R. They give the results of a long series of experiments on paint as applied to railway purposes.

Rustless Coatings for Hron and Steel.-Tinning, enamelling, lacquering, galvanizing, electro-chemical painting, and other preservative methods are discussed in two important papers by M. P. Wood, in Trans. A. S. M. E.. vols. xv and xvi.

A Method of Producing an Inoxidizable Surface on iron and steel by means of electricity has been developed by M. A. de Meritens (Engineering). The article to be protected is placed in a bath of ordinary or distilled water, at a temperature of from 158° to $1766^{\circ} \mathrm{F}$., and au electric current is sent through. The water is decomposed into its elements, oxygen and hydrogen, and the oxygen is deposited on the metal, while the hydrogen appears at the other pole, which may either be the tank in which the operation is conducted or a plate of carbon or metal. The current has only sufficient electromotive force to overcome the resistance of the circuit and to decompose the water; for if it be stronger than this, the oxygen combines with the iron to produce a pulverulent oxide, which has no adherence. If the conditions are as they should be, it is only a few minutes after the oxygen appears at the metal before the darkening of the surface shows that the gas has united with the iron to form the magnetic oxide $\mathrm{Fe}_{3} \mathrm{O}_{4}$, which will resist the action of the air and protect the metal beneath it. After the action has continued an hour or two the coating is sufficiently solid to resist the scratch-brush, and it will then take a brilliant polish.
If a piece of thickly rusted iron be placed in the bath, its sesquioxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$) is rapidly transformed into the magnetic oxide. This outer layer
has no adhesion, but beneath it there will be found a coating which is actually a part of the metal itself.
In the early experiments M. de Meritens employed pieces of steel only, but in wrought and cast iron he was not successful, for the coating came off with the slightest friction. He then placed the iron at the negative pole of the apparatus, after it had been already applied to the positive pole. Here the oxide was reduced, and hydrogen was accumulated in the pores of the metal. The specimens were then returned to the anode, when it was found that the oxide appeared quite readily and was very solid. But the result was not quite perfect, and it was not until the bath was filled with distilled water, in place of that from the public supply, that a perfectly satisfactory result was attained.
Manganese Plating of Hron as a Protection from Rust.
--According to the Italian Progreso, articles of iron can be protected against rust by sinking them near the negative pole of an electric bath composed of 10 litres of water, 50 grammes of chloride of manganese, and 200 grammes of nitrate of ammonium. Under the influence of the current the bath deposits on the articles a protecting film of metallic manganese.
A Non=oxidizing Process of Annealing is described by H. P. Jones, in Eng'g News, Jan. 2, 1892. The new process uses a non-oxidizing gas, and is the invention of Mr. Horace K. Jones, of Hartford, Conn. Its principal feature consists in keeping the annealing retort in communication with the gas-holder or gas-main during the entire process of heating and cooling, the gas thus being allowed to expand back into the main, and being, therefore, kept at a practically constant pressure.
The retorts are made from wrought-iron tubes. The gas is taken directly from the niains supplying the city with illuminating gas. If metal which has been blued or slightly oxidized is subjected to the annealing process it comes out bright, the oxide being reduced by the action of the gas.

Comparative tests were made of specimens of steel wire annealed in illuminating gas, in nitrogen, and in an open fire and cooled in ashes, and of specimens of the unannealed metal. The wires were . 188 in . in diameter and were turned down to .150 in .

The average results were as follows:
Unannealed, two lots, 5 pieces each, tensile strength av. 9\%,120 and 80, 190 lbs. per sq. in., elongation 7.12% and 8.80%. Annealed in open fire, 8 tests, av. t. s. 63,090 , el. 26.76%. Annealed in nitrogen, av. of 3 lots, 13 pieces, t. s. 59,820 , el. 29.33%. Annealed in illuminating gas. av. of 3 lots, 13 pieces, $t . s$. 60,180 , el. 28.29%. The elongations are referred to an original length of 1.15 ins.

STEEL.

RELATION BET WWEN THE CHEMICAL COMPOSITION AND PHYSICAL CHARACTER OF S'TEEL.

W. R. Webster (see Trans. A. I. M. E., vols. xxi and xxii, 1893-4) gives results of several hundred analyses and tensile tests of basic Bessemer steel plates, and from a study of them draws conclusions as to the relation of chemical composition to strength, the chief of which are condensed as follows:
The indications are that a pure iron, without carbon, phosphorus, manganese, silicon, or sulphur, if it could be obtained, would have a tensile strength of $34, \% 50 \mathrm{lbs}$. per square inch, if tested in a $3 / 8$-inch plate. With this as a base, a table is constructed by adding the following hardening effects, as shown by increase of tensile strength, for the several elements named.
Carbon, a constant effect of 800 lbs . for each 0.01%.
Sulphur, " $\quad 0 \quad 500$ " 0.01%.
Phosphorus, the effect is higher in high-carbon than in low-carbon steels. $\begin{array}{lllllllllll}\text { With carbon hundreths } \% & \% & \ldots & \ldots & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 16 & 17\end{array}$
Each . 01% P has an effect of lbs. 90010001100120013001400150015001500
Manganese, the effect decreases as the per cent of manganese increases.
Mn being per cent...... $\left\{\begin{array}{rrrrrrrrrr}.00 & .15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & .55 \\ \text { to } & \text { to } \\ .15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & .55 & .65\end{array}\right.$

Total incr. from 0 Mn... $3600480059006900 \approx 800$ S600 93009900 10,400 11,400

Silicon is so low in this steel that its hardening effect has not been considered.
With the above additions for carbon and phosphorus the following table has been constructed (abridged from the original by Mr. Webster). To the figures given the additions for sulphur and manganese should be made as above.
Estimated Ulimate Strengths of Basic Bessemer Steel Plates.
For Carbon, .06 to .24 ; Phosphorus, 00 to .10 ; Manganese and Sulphur, .00 in all cases.

	. 06									24
						48,300		51,500	53	
. 01	40,350	41,95	43,750	45,550	47,350	49,050	50,650	52,250	53	
. 02	41,150	42,750	44, 750	46,750	48,750	50,550	52,150	53,750	55,350	56.950
. 03	41,950	43,550	45,750	47,950	50,150	52,050	53,650	55,250		58.450
. 04	42,750	44,350	46,750	49,150	51,550	53,550	55,150	56,750		59,950
. 05	43,	45,150	47,750	50,350	52,950	55,050	56,650	58,250		61.450
. 06	44,	45,950	48, \%50	51,550	54,350	56,550	58,150	59,750	61,350	62
"6.07								0		64.
" . 09								64,250		
. 10	47,	49,150	52,7	56,	59,	62,550	150	65.750	, 350	68.950
01 Phos $=$										1501 b

In all rolled steel the quality depends on the size of the bloom or ingot from which it is rolled, the work put on it, and the temperature at which it is finished, as well as the chemical composition.
The above table is based on tests of plates $3 / 8$ inch thick and under 70 inches wide; for other plates Mr. Webster gives the following corrections for thickness and width. They are made necessary only by the effect of thickness and width on the finishing temperature in ordinary practice. Steel is frequently spoiled by being finished at too high a temperature.

Corrections for Size of Plates.

Plates.
Inches thick.
$3 / 4$
$11 / 16$
$5 / 8$
$9 / 16$
$1 / 3$
$7 / 16$
$3 / 8$
$5 / 16$
ver.

Up to 70 ins. wide. Over 70 ins. wide.

Lbs.	Lbs.
$=2000$	-1000
$=1500$	$=750$
$=1500$	$=500$
-12090	-250
-1000	± 500
-500	± 1000
+3000	+5000

Comparing the actual result of tests of 408 plates with the calculated results, Mr. Webster found the variation to range as in the table below.
Summary of the Differences Between Calculated and Actual Results in 408 Tests of Plate Steel.
In the first three columns the effects of sulphur were not considered; in the last threo columns the effect of sulphur was estimated at 500 lbs for each $.01 \%$ of S.

Per cent within		$1000 \mathrm{lbs} .$.	23.4	02.1	28.4	24.6	27.0	26.0	28.4
		2000 "..	40.9	48.9	45.6	48.5	54.9	52.2	55.1
"	"6	3000 "..	62.5	71.3	67.6	67.8	73.0	\%0.8	74.7
$\stackrel{16}{ }$	" 6	4000 "..	755	81.0	\%8.7	82.5	85.2	84.1	89.9
	" 6	5000 "..	89.5	91.1	90.4	93.0	92.8	92.9	94.9

STRENGTH OF BESSEMER AND OPEN-HEARTH STEELS. 391

The last figure in the table would indicate that if specifications were drawn calling for steel plates not to vary more than 5000 lbs . T. S. from a specified figure (equal to a total range of $10,000 \mathrm{lbs}$.), there would be a probability of the rejection of 5% of the blooms rolled, even if the whole lot was made from steel of identical chemical analysis. In 1000 heats only 2% of the heats failed to meet the requirements of the orders on which they were graded; the loss of plates was much less than 1%, as one plate was rolled from each heat and tested before rolling the remainder of the heat.
R. A. Hadfield (Jour. Iron and Steel Inst., No. 1, 1894) gives the strength of very pure Swedish iron, remelted and tested as cast, 20.1 tons ($45,024 \mathrm{lbs}$.) per sq. in.; remelted and forged, 21 tons ($4 \pi, 040 \mathrm{lbs}$.). The analysis of the cast bar was: C, 0.08 ; Si, $0.04 ;$ S, $0.02 ; \mathrm{P}, 0.02 ; \mathrm{Mn}, 0.01 ; \mathrm{Fe}, 99.82$.

Effect of Oxygen upon Strength of Steel.-A. Lantz, of the Peine works, Germany, in a letter to Mr. Webster, says that oxygen plays an important rôle-such that, given a like content of carbon, phosphorus, and manganese, a blow with greater oxygen content gives a greater hardness and less ductility than a blow with less oxygen content. The method used for determining oxygen is that of Prof. Ledebur, given in Stahl und Eisen, May, 1892, p. 193. The variation in oxygen may make a difference in strength of nearly $1 / 2$ ton per sq. in. (Jour. Iron and Steel Inst., No. 1, 1894.)

RANGEOF VARIATIONIN STRENGTH OF BESSEMER AND OPEN-HEARTH STEELS.

The Carnegie Steel C'o. in 1888 published a list of 1057 tests of Bessemer and open-hearth steel, from which the following figures are selected:

Requirements of Specifications.

(a) Elastic limit, 35.000 ; tensile strength, 62,000 to 70,000 ; elong. 22% in 8 in.
(b) Elastic limit, 40,000 ; tensile strength, 67,000 to $\tilde{5}, 000$.
(c) Elastic limit, 30,000 ; tensile strength, 56,000 to 64,000 ; elong. 20% in 8 in .
(d) Tensile strength 50,000 to 62,000 ; elong. 26% in 4 in.
(e) Tensile strength. 64,000 to 70,000 ; elong. 20% in 8 in.

Strength of Open-hearth Structural Steel. (Pencoyd Iron Works.)-As a general rule, the percentage of carbon in steel determines its hardness and strength. The higher the carbon the harder the steel, the higher the tenacity, and the lower the ductility will be. The foliowing list exhibits the average physical properties of good open-hearth basic steel :

				$\begin{aligned} & 0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.4 \end{aligned}$					
. 08	54	32500	32	60	. 17	61600	370	$\%$	50
. 09	54800	33000	31	58	. 18	62500	37500	27	49
.10	55700	33500	31	57	.19	63300	38000	26	48
. 11	56500	34000	30	56	. 20	64200	38500	26	4π
. 12	57400	34500	30	55	. 21	65000	39000	25	46
. 13	58200	35000	29	54	. 22	65800	39500	25	45
. 14	59100	35500	29	53	. 23	66600	40000	24	44
. 15	60000	36000	28	52	. 24	67400	40500	24	43
. 16	60800	36500	28	51	. 25	68200	41000	23	42

[^12]proximation in single instances, when the variation from the average may be considerable. Steel below .10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of .15 carbon will occasionally submit to the same treatment, but will usually bend around a curve whose radius is equal to the thickness of the specimen ; about 90% of specimens stand the latter bending test without fracture. As the steel becomes harder its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes . 20 , little over 25% of specimens will stand the last-described bending test. Steel having about $.40 \%$ carbon will usually harden sufficiently to cut soft iron and maintain an edge.

Mehrtens gives the following tables in Stahl und Eisen (Iron Age, April 20, 1893) :

Basic Bessemer Steel. 680 Charges.

Elastic Limit,	Charges within
pounds per	Range, per cent
sq. in.	of total number

Tensile Strength, Charges within pounds per Range, per cent of total number. sq. in.
18.67

55,600 to 56,900
38.67

56,900 to 58,300

61,200 to 62,300
3.53

Structural Steel.
Charges within

Elongation. per cent. 25 to 26 8.53
26 to 27 17.35
27 to 28 26.76
28 to 29 23.68
29 to 30 14.41
30 to 32.5 6.62
Rivet Steel.
25.2 to 26...................... 20.0

27 to 28............................ . . 25.0

29 to 29.8........................... 15.0

Basic Open-hearth Struc= tural Steel. 489 Charges.

Elastic Limit, Charges within pounds per sq. in. Range, per cent of total charges
34,400 to 37,000 12.3
37,000 to $38,400 \ldots$. 15.6
38,400 to 39,800....................... . 20.3
39,800 to 41,200 17.4

44,100 to $48,400 \ldots \ldots$. 8.5
Tensile Strength.
55,800 to $56,900 \ldots$. . . . 8.0
56,900 to 58,300 26.4
58,300 to 59,700 25.4
59,700 to 61,200 19.6
61,200 to 62,600 11.2
62,600 to $65,100 \ldots$. 9.04
Elongation,
per cent.
20 to 25 21.7
25 to 26 7.7
28 to 27 10.0
27 to 28 11.0
28 to 29 . $1 \% .0$
29 to $30 \ldots .$.
30 to 37.1 24.3
Rivet Steel, 19 Charges.
Tensile Strength.
$51,800 \ldots .$. . 5.3
51,900 to 53,300 26.3
53,300 to 54,900 21.0
54,900 to $56,300 \ldots$. 21.0
56.300 to 56.900 26.4

Elongation all above 25 per cent.

In the basic Bessemer steel over 90% was below 0.08 phosphorus, and all were below 0.10 ; manganese was below 0.6 in over 90%, and below 0.9 in all; sulphur was below 0.05 in 84%, the maximum being 0.071 ; carbon was below 0.10 , and silicon below 0.01 in all. In the basic open-hearth steel phosphorus was below 0.06 in 96%, the maximum being 0.08 ; manganese below 0.50 in $9 \% \%$; sulphur below 0.07 in 88%, the maximum being 0.1%. The carbon ranged from 0.09 to 0.14 .

Low Tensile Strength of Very Pure Steel. -Swedish nail-rod open-hearth steel, tested by the author in 1881, showed a tensile strength of only $42,591 \mathrm{lbs}$. per sq. in. A piece of American nail-rod steel showed 45,021 lbs. per sq. in. Both steels contained about. 10 carbon and .015 phosphorus, and were very low in sulphur, manganese, and silicon. The pieces tested were bars about $2 \times 3 / 8 \mathrm{in}$. section.

Low Strength Due to Insufficient Work. (A. E. Hunt, Trans. A. I. M. E., 1880.)-Soft steel ingots, made in the ordinary way for boiler plates, have only from 10,000 to 20,000 lbs. tensile strength per sq. in., an elongation of only about 10% in 8 in ., and a reduction of area of less than 20\%. Such ingots, properly heated and rolled down from 10 in . to $1 / 2 \mathrm{in}$.

STRENGTH OF BESSEMER AND OPEN-HEARTH STEELS. 393

thickness, will give from 55,000 to $65,000 \mathrm{lbs}$. tensile strength, an elongation in 8 in . of from 23% to 33%, and a reduction of area of from 55% to $\% 0 \%$. Any work stopping short of the above reduction in thickness ordinarily yields intermediate results in its tensile tests.

Hardening of Soft Steel.-A. E. Hunt (Trans. A. I. M. E., 1883, vol. xii), says that soft steel, no matter how low in carbon, will harden to a certain extent upon being heated red-hot and plunged into water, and that it hardens more when plunged into brine and less when quenched in oil.

An illustration was a heat of open-hearth steel of 0.15% carbon and 0.29% of manganese, which gave the following results upon test-pieces from the same $1 / 4$ in. thick plate.

	Maximum Load.	Elongation in 8 in.	Reduction of Area.
lbs. per sq. in.	Per cent.	Per cent.	

While the ductility of such hardened steel does not decrease to the extent that the increased tenacity would indicate, and is much superior to that of normal steel of the high tenacity, still the greatly increased tenacity after hardening indicates that there must be a considerable molecular change in the steel thus hardened, and that if such a hardening should be created locally in a steel plate, there must be very dangerous internal strains caused thereby.

Effect of Cold Rolling.-Cold rolling of iron and steel increases the elastic limit and the ultimate strength, and decreases the ductility. Major Wade's experiments on bars rolled and polished cold by Lauth's process showed an average increase of load required to give a slight permanent set as follows: Transverse, 162%; torsion, 130%; compression, 161% on short columns $11 / 2 \mathrm{in}$. long, and 64% on columns 8 in . long; tension, 95%. The hardness, as measured by the weight required to produce equal indentations, was increased 50%; and it was found that the hardness was as great in the centre of the bars as elsewhere. Sir W. Fairbairn's experiments showed an increase in ultimate tensile strength of 50%, and a reduction in the elongation iu 10 in . of from 2 in . or 20%, to 0.79 in . or 7.9%.
Comparison of Tests of Full-size Eyebbars and Sample Test-pieces of Same Steel Used in the Memphis Bridge.
(Geo. S. Morison, Trans. A. S. C. E., 1893.)

Full-Sized Eyebars,
Sections $10^{\prime \prime}$ wide $\times 1$ to $23 / 16^{\prime \prime}$ thick.

Sample Bars from Same Melts, about 1 in. area.

Reduc tion of Area, p.c.	Elongation.		Elastic Limit, lbs. per	Max. Load, sq. in.	Reduction, p.c.	Elongation, p.c.	Elastic Limit, lbs. per	Max. Load, sq. in.
	Inches.	p.c.						
39.6	20.2	16.8	35.100	67,490	47.5	2~. 5	41,580	73,050
39.7	26.6	8.2	37,680	\%0,160	52.6	24.4	42,650	75.620
44.4	36.8	11.8	39,700	65,500	47.9	23.8	40,280	\%0.280
38.5	38.5	17.3	33,140	65, 060	47.5	27.5	41,580	73.050
40.0	22.5	13.5	32,860	65,600	44.5	20.0	43, \%20	\%5,000
39.4	36.8	15.3	31,110	61,060	42.7	28.8	42,210	69,730
34.6	83.9	13.7	33,990	63,220	52.2	28.1	40.230	69,720
$3 \cdot 6$	13.0	13.5	29,330	63,100	48.3	28.8	38.090	71,300
\%. 3	208	6.9	28,080	55.160	43.2	24.2	38,320	\%0,220
38.1	28.9	14.1	29,6\%0	62,140	59.6	26.3	40,200	71,080
31.8	24.0	11.8	32.700	65,400	40.3	25.0	39,360	69,360
48.6	39.4	19.3	30,500	58,8i0	40.3	25.0	40,910	70,360
10.3	11.8	12.3	3:3,360	\%3,550	51.5	25.5	40,410	69,900
44.6	3.0	15.7	32,520	60,710	43.6	27.0	40,400	\%0.490
46.0	35.8	14.9	28,000	58,7:0	44.4	29.5	40,000	66,800
41.8	23.5	13.1	32,290	62, 2 \% 0	42.8	$21.3=$	40,5:30	- 2,240
41.2	47.1	15.1	29,970	5*,680	45.7	27.0	40,610	\%0,480

The average strength of the full-sized eye-bars was about 8000 lbs. per sq. iu., or about 12\%. less than that of the sample test-pieces.

TREATMENT OF STRUCTURAL STEEL.

(James Christie, Trans. A. S. C. E., 1893.)

Effect of Punching and Shearing.-There is no doubt that steel of higher tensile strength than is now accepted for structural purposes should not be punched or sheared, or that the softer material may contain elements prejudicial to its use however treated, but especially if punched. But extensive evidence is on record indicating that steel of good quality, in bars of moderate thickness and below or not much exceeding $80,000 \mathrm{lbs}$. tensile strength, is not any more, and frequently not as much, injured as wrought iron by the process of punching or shearing.
The physlcal effects of punching and shearing as denoted by tensile test are for iron or steel:

Reduction of ductility; elevation of tensile strength at elastic limit; reduction of ultimate tensile strength.
In very thin material the superficial disturbance described is less than in thick; in fact, a degree of thinness is reached where this disturbance practically ceases. On the contrary, as thickness is increased the injury becomes more evident.
The effects described do not invariably ensue; for unknown reasons there are sometimes marked deviations from what seems to be a general result.

By thoroughly annealing sheared or punched steels the ductility is to a large extent restored and the exaggerated elastic limit reduced, the change being modified by the temperature of reheating and the method of cooling.
It is probable that the best results combined with least expenditure can be obtained by punching all holes where vital strains are not transferred by the rivets; and by reaming for important joints where strains on riveted joints are vital, or wherever perforation may reduce sections to a minimum. The reaming should be sufficient to thoroughly remove the material disturbed by punching; to accomplish this it is best to enlarge punched holes at least $1 / 8$ in. diameter with the reamer.

Riveting.-It is the current practice to perforate holes $1 / 16 \mathrm{in}$. larger than the rivet diameter. For work to be reamed it is also a usual requirement to punch the holes from $1 / 8$ to $3 / 16 \mathrm{jn}$. less than the finished diameter, the holes being reamed to the proper size after the various parts are assembled.

It is also excellent practice to remove the sharp corner at both ends of the reamed holes, so that a fillet will be formed at the junction of the bodv and head of the finished rivets.

The rivets of either iron or mild steel should be heated to a bright red or yellow heat and subjected to a pressure of not less than 50 tons per square inch of sectional area.

For rivets of ordinary length this pressure has been found sufficient to completely fill the hole. If, however, the holes and the rivets are exceptionally long, a greater pressure and a slower movement of the closing tool than is used for shorter rivets has been found advantageous in compelling the more sluggish flow of the metal throughout the longer hole.

Welding.-No welding should be allowed on any steel that euters into structures.

Upsetting. - Enlarged ends on tension bars for screw-threads, eyebars, etc., are formed by upsetting the material. With proper treatment and a sufficient increment of enlarged sectional area over the body of the bar the result is entirely satisfactory. The upsetting process should be performed so that the properly heated metal is compelled to flow without folding or lapping.

Annealing. - The object of annealing structural steel is for the purpose of securing homogeneity of structure that is supposed to be impaired by unequal heating, or by the manipulation necessarily attendant on certain processes. The objects to be annealed should be heated throughout to a uniform temperature and uniformly cooled.

The physical effects of annealing, as indicated by tensile tests, depend on the grade of steel, or the amount of hardening elements associated with it; also on the temperature to which the steel is raised, and the method or rate of cooling the heated material.

The physical effects of annealing medium-grade steel, as indicated by tensile test, are reported very differently by different observers, some claiming directly opposite results from others. It is evident, when all the attendant conditions are considered, that the obtained results must vary both in kind and degree.

The temperatures employed will vary from 1000° to $1500^{\circ} \mathrm{F}$.; possibly even a wider range is used. In some cases the heated steel is withdrawn at full temperature from the furnace and allowed to cool in the atmosphere ; in others the mass is removed from the furnace, but covered under a muffle, to lessen the free radiation; or, again, the charge is retained in the furnace, and the whole mass cooled with the furnace, and more slowly than by either of the other methods.
The best general results from annealing will probably be obtained by introducing the material into a uniformly-heated oven in which the temperature is not so high as to cause a possibility of cracking by sudden and unequal changing of temperature, then gradually raising the temperature of the material until it is uniformly about $1201^{\circ} \mathrm{F}$., then withdrawing the material after the temperature is somewhat reduced and cooling under shelter of a muffle, sufficiently to prevent too free and unequal cooling on the one hand or excessively slow cooling on the other.
G. G. Mehrtens, Trans. A. S. C. E. 1893, says: "Annealing is of advantage to all steel above $64,000 \mathrm{lbs}$. strength per square inch, but it is questionable whether it is necessary in softer steels. The distortions due to heating cause trouble in subsequent straightening, especially of thin plates.
'In a generai way all unannealed mild' steel for a strength of 56,000 to $64,000 \mathrm{lbs}$. may be worked in the same way as wrought iron. Rough treatment or working at a blue heat must, however, be prohibited. Shearing is to be avoided, except to prepare rough plates, which should afterwards be smoothed by machine tools or files before using. Drifting is also to be avoided, because the edges of the holes are thereby strained beyond the yield point. Reaming drilled holes is not necessary, particularly when sharp drills are used and neat work is done. A slight countersinking of the edges of drilled holes is all that is necessary. Working the material while heated should be avoided as far as possible, and the engineer should bear this in mind when designing structures. Upsetting, cranking, and bending ought to be avoided, but when necessary the material should be annealed after completion.
"The riveting of a mild-steel rivet should be finished as quickly as possible, before it cools to the dangerous heat. For this reason machine work is the best. There is a special advantage in machine work from the fact that the pressure can be retained upon the rivet until it has cooled sufficiently to prevent elongation and the consequent loosening of the rivet."
Punching and Drilling of Steel Plates. (Proc. Inst. M. E., Aug. 1887, p. $3 \div 6$.)-In Prof. Unwin's report the results of the greater number of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet in those of $1 / 2 \mathrm{in}$. thickness and upwards the loss of tenacity due to punching ranges from 10% to 23% in iron plates and from 11% to 33% in the case of mild steel. Mr. Parker found the loss of tenacity in steel plates to be as high as fully one third of the original strength of the plate. In drilled plates, on the contrary, there is no appreciable loss of strength. It is even possible to remove the bad effects of punching by subsequent reaming or annealing.

Working Steel at a Blue Heat.-Not only are wrought iron and steel much more brittle at a blue heat (i.e., the heat that would produce an oxide coating ranging from light straw to blue on bright steel, 430° to 600° F.), but while they are probably not seriously affected by simple exposure to blueness, even if prolonged, yet if they be worked in this range of temperature they remain extremely brittle after cooling, and may indeed be more brittle than when at blueness ; this last point, however, is not certain. (Howe, "Metallurgy of Steel,"'p. 534.)
Tests by Prof. Krohn, for the German State Railways, show that working at blue heat has a decided influence on all materials tested, the injury done being greater on wrought iron and harder steel than on the softer steel. The fact that wrought iron is injured by working at a blue heat was reported by Stromeyer. (Engineering News, Jan. 9, 1892.)
A practice among boiler-makers for guarding against failures due to working at a blue heat cousists in the cessation of work as soon as a plate which had been red-hot becomes so cool that the mark produced by rubbing a hammer-handle or other piece of wood will not glow. A plate which is not hot enough to produce thls effect, yet too hot to be touched by the hand, is most probably blue hot, and should under no circumstances be hammered or bent. (C. E. Stromeyer, Proc. Inst. C. E. 1886.)

Welding of Steel.-A. E. Hunt (A. I. M. E., 1892) says: I have never seen so-called "welded "pieces of ster I | ulle. 1 apart in a testing-machine or
otherwise broken at the joint which have not shown a smooth cleavageplane, as it were, such as in iron would be condemned as an imperfect weld. My experience in this matter leads me to agree with the position taken by Mr. William Metcalf in his paper upon Steel in the Trans. A. S. C. E., vol. xvi., p. 301. Mr. Metcalf says, "I do not believe steel can be welded."
oil-tempering and Annealing of Steel Forgings.-H. F. J. Porter says (189%) that all steel forgiugs above 0.1% carbon should be annealed, to relieve them of forging and annealing strains, and that the process of annealing reduces the elastic limit to $4 \% \%$ of the ultimate strengtl. Oil-tempering should only be practised on thin sections, and large forgings sinould be hollow for the purpose. This process raises the elastic limit above 50% of the ultimate tensile strength, and in some alloys of steel, notably nickel steel. will bring it up to 60% of the ultimate
Frydraulic Forging of Steel. (See pages 618 and 619.)

INFLUENCE OF ANNEALING UPON IIAGNETEC CAPACITY.

Prof. D. E. Hughes (Eng'g, Feb. 8. 1884, p. 130) has invented a "Magnetic Balance," for testing the condition of iron and steel, which consists chiefly of a delicate magnetic needle suspended over a graduated circular index, and a magnet coil for magnetizing the bar to be tested. He finds that the following laws hold with every variety of iron and steel:

1. The magnetic capacity is directly proportional to the softness, or molecular freedom.
2. The resistance to a feeble external magnetizing force is directly as the hardness, or molecular rigidity.

The magnetic balance shows that annealing not only produces softness in iron, and consequent molecular freedom, but it entirely frees it from all strains previously introduced by drawing or hammering. Thus a bar of iron drawn or hammered has a peculiar structure, say a fibrous one, which gives a greater mechanical strength in one direction than another. This bar, if thoroughly annealed at high temperatures, becomes homogeneous in all directions, and has no longer even traces of its previous strains, provided that there has been no actual separation into a distinct series of fibres.

Effect of Annealing upon the Magnetic Capacity of Different Wires; Tests by the Magnetic Halance.

SPECIFICATIONS FOR STEEL.

Structural Steel. -There has been a change during the ten years from 1880 to 1890 , in the opinions of engineers, as to the requirements in specifications for structural steel, in the direction of a preference for metal of low tensile strength and great ductility. The following specifications of different dates are given by A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. 1890, xix, $9 \because 6$:

Tension Members.	$18 \% 9$.	1881.	188.	1885.	188\%.	1888.
Elastic limit	50,000	40@45,000	40.000	40,000	40,000	38.000
Teusile strength	80,000	70@80,000	\%0.000	70,000	6~@:5,00	3(6)0.000
Elongation in S in	12\%	18\%	18\%	18\%	20\%	W\%
Reduction area.	20\%	30\%	45\%	42\%	42\%	45\%
Kind of steel..	O.H.	O.H. or B.	O.H.	Not	O.H. or	H.or B

Compression Members:

| Elastic limit $\ldots \ldots . .$. Same | $50 @ 55,000$ | 50.000 | 50,000 | Same as tension |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Tensile strength........ as | $80 @ 90,000$ | 80,000 | 80.00 | members. |
| Elongation in 8 in....... ten- | 12% | 15% | 15% | 6 |
| Reduction area sion. | 20% | 35% | 35% | .6 |

F. H. Lewis (Iron Age, Nov. 3, 1892) says: Regarding steel to be used under the same conditions as wrought iron, that is, to be punched without reanting, there seems to be a decided opinion (and a growing one) among engineers, that it is not safe to use steel in this way, when the ultimate tensile strength is above $65,000 \mathrm{lbs}$. The reason for this is, not so much because there is any marked change in the material of this grade, but because all steel, especially Bessemer steel, has a tendency to segregations of carbon and phosphorus, producing places in the metal which are harder than they normally should be. As long as the percentages of carbon and phosphorus are kent low, the effect of these segregations is inconsiderable; but wher these percentages are increased, the existence of these hard spots in the metal becomes more marked, and it is therefore less adapted to the treatment to which wrought iron is subjected.

There is a wide cousensus of opinion that at an ultimate of 64,000 to 65,000 lbs. the percentages of carbon and phosphorus (which are the two hardening elements) reach a point where the steel has a tendency to become tender, and to crack when subjected to rough treatment.

A grade of steel, therefore, running in ultimate strength from 54,000 to $62,000 \mathrm{lbs}$, or in some cases to $64,000 \mathrm{lbs}$., is now generally considered a proper inaterial for this class of work.

Millard Hunsicker, engineer of tests of Carnegie, Phipps \& Co., writes as follows concerning grades of structural steel (Eng'g News, June 2. 189:2):

Grade of Steel.-Steel shall be of three grades-soft, medium, high.
Soft Steel.-Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of from 54,000 to $62,000 \mathrm{lbs}$. persq. in.; elastic limit one half the ultimate strength; minimum elongation of 26% in 8 in .; minimum reduction of area at fracture 50%. This grade of steel to bend cold 180° flat on itself, without sign of fracture on the outside of the bent portion.

Medium Steel.-Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of 60,000 to 68,000 lbs. p $\mu \mathrm{r}$ sq. in.; elastic limit one half the ultimate strength; minimum elongation 20% in 8 in .; minimum reduction of area at fracture, 40%. This grade of stee i to bend cold 180° to a diameter equal to the thickness of the piece tested, without crack or flaw on the outside of the bent portion.

High Steel.-Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of 66000 to $\tau 4,000 \mathrm{lbs}$. per sq. in ; elastic limit one half the ultinate strength: minimum elongation. 18% in 8 in.; minimum reduction of area at fracture, 35%. This grade of steel to bend cold 180° to a diameter equal to three times the thickness of the test-piece, without crack or flaw on the outside of the bent portion.
F. H. Lewis, Engineers' Club of Phila., 1891, gives specifications for structural steel as follows: The phosphorus in acid open-hearth steel must be less than 0.10%, and in all Bessemer or basic steel must be less than 0.08%
The material will be tested in specimens of at least one half square inch section, cut from the finished material. Each melt of steel will be tested and each section rolled, and also widely differing gauges of the same section.

Requirements.
Elastic limit, lbs. per sq. in., at least.........
Ultimate strength, lbs. per' sq.in.
Elongation in 8 in., at least.
Reduction of area, per cent, at least.........

Soft Steel.
32,000
54,000 to 62,000
25%
45\%

Medium Steel.
35,000
60,000 to 70,000 20% 40\%

In soft steel for web-plates over 36 in . wide the elongation will be reduced to 20% and the reduction of area to 40%.
It must bend cold 180 degrees and close down on itself without cracking on the outside.
$7 / 8$-inch holes pitched $3 / 4$ inch from a roll-finished or machined edge and 2 inches between centres must not crack the metal; and $7 / 8$-inch holes pitched $11 / 8$ inches between centres and $11 / 2$ inches from the edge must not split the metal between the holes.

Medium steel must bend 180 degrees on itself around a 11/2-inch round bar.
Full-sized eye-bars, when tested to destruction, must show an ultimate strength of at least $56,000 \mathrm{lbs}$., and stretch at least 10% in a length of 10 feet.
A. E. Hunt, in discussing Mr. Lewis's specifications, advises a requirement as to the character of the fracture of tensile tests being entirely silky in sections of less than 7 square inches, and in larger sections the test specimen not to contain over 25% crystalline or granular fracture. He also advises the drifting test as a requirement of both soft and medium steel; the requirement being worded about as follows: "Steel to be capable of having a hole, punched for a $3 / 4^{\prime \prime}$ rivet, enlarged by blows of a sledge upon a drift-pin until the hole (which in the first case should be punched $11 / 3^{\prime \prime}$ from the rollfinish or machined edge) is $112^{\prime \prime}$ diameter in the case of soft steel, and $114^{\prime \prime}$ diameter in the case of medium steel, without fracture." This drifting test is an excellent requirement, not only as a matter of record, but as a meas ure of the ductility of the steel.
H. H. Campbell, Trans. A. I. M. E. 1893, says: In adhering to the safest course, engineers are continually calling for a metal with lower phosphorus The limit lias been 0.10%; it is now 0.08%; soon it will be 0.06%; it should be 0.04%.
A. E. Hunt, Trans. A. I. M. E. 1892, says: Why should the tests for steel be so much more rigid than for iron destined for the same purpose? Somel of the reasons are as follows: Experience shows that the acceptable qualities of one melt of steel offer no absolute guarantee that the next melt to it, even though made of the same stock, will be equally satisfactory.

Again, good wrought iron, in plates and angles, has a narrow range (from 25,000 to $27,000 \mathrm{lbs}$.) in elastic limit per square inch, and a tensile strength of from 46,000 to $52,000 \mathrm{lbs}$. per square inch; whereas for steel the range in elastic limit is from 27,000 to $80,000 \mathrm{lbs}$., and in tensile strength from 48,000 to $120,000 \mathrm{lbs}$. per square inch, with corresponding variations in ductility. Moreover, steel is much more susceptible than wrought iron to widely vary ing effects of treatment, by hardening, cold rolling, or overheating.

It is now almost universally recognized that soft steel, if properly made and of good quality, is for many purposes a safe and satisfactory substitute for wrought iron, being capable of standing the same shop-treatment as wrought iron. But the conviction is equally general, that poor steel, or an unsuitable grade of steel, is a very dangerous substitute for wrought iron even under the same unit strains.

For this reason it is advisable to make more rigid requirements in selecting material which may range between the brittleness of glass and a ductility greater than that of wrought iron.

Specifications for Steel for the World's Fair Buildings, Chicago, 1892.-No steel shall contain more than . 08% of phosphorus. From three separate ingots of each cast a round sample bar, not less than $3 / 4 \mathrm{in}$. in diameter, and having a length not less than twelve diameters between jaws of testing machine, shall be furnished and tested by the manufacturer. From these test-pieces alone the quality of the material in the steel works shall be determined as follows:

All the test-bars must have a tensile strength of from 60,000 to $68,000 \mathrm{ibs}$. per square inch, an elastic limit of not less than half the tensile strength of the test-bar, an elongation of not less than 24%, and a reduction of area of not less than 40% at the point of fracture. In determining the ductility, the elongation shall be measured after breaking on an original length of ten times the shortest dimension of the test-piece.
Rivet steel shall have a tensile strength of from 52,000 to $58,000 \mathrm{lbs}$. per square inch, and an elastic limit, elongation, and reduction of area at the
point of fracture as stated above for test-bars, and be capable of bending double flat, without sign of fracture on the convex surface of the bend.

Boiler, Ship, and Tank Plates. W. F. Mattes (Iron Age, July 9,1893) recommends that the different qualities of steel plates be classified as follows :

	Tank.	Ship.	Shell.	Fire-box.
Tensile test, longitudinal coupon.	$\left\{\begin{array}{l} \text { Limit, } \\ 75,000 \end{array}\right.$	$\left\{\begin{array}{c} 55,000 \\ \text { to } 65,000 \end{array}\right.$	$\left\{\begin{array}{c} 55,000 \\ \text { to } 65,000 \end{array}\right.$	$\left\{\begin{array}{c} 55,900 \\ \text { to } 60,000 \end{array}\right.$
Elongation in 8 in. longitudinal coupon, per cent..		20	221/2	25
Bending test, longitudinal coupon.		Flat.	Flat	Flat.
Bending test, transverse coupon \qquad		$\left\{\begin{array}{c} \text { Over 1 in. } \\ \text { diam. } \end{array}\right.$	$\left\{\begin{array}{c} \text { Over } 1 / 2 \ln . \\ \text { diam. } \end{array}\right.$	$\text { \} Flat. }$
Phosphorus limit	0.15	0.10	0.06	0.045
Sulphur limit.			0.065	0.05
Surface inspection..........	Easy.	\{ Careful.	Close.	Rigid.

A steel-manufacturing firm in Pittsburgh advertises six different grades of steel as follows :
Extra fire-box. Fire-box. Extra flange. Flange. Shell. Tank. The probable average phosphorus content in these grades is, respectively: .02
.04
0.8
. 10 .
Different specifications for steel plates are the following (1889):
United States Navy.-Shell: Tensile strength, 58,000 to $67,000 \mathrm{lbs}$. per sq. in.; elongation, 22% in 8 -in. transverse section, 25% in 8 -in. longitudinalsection. Flange: Tensile strength, 50,000 to 58,000 lbs.; elongation, 26% in 8 inches.
Chemical requirements : P. not over $.035 \%$; S. not over $.040 \%$.
Cold-bending test: Specimen to stand being bent flat on itself.
Quenching test: Steel heated to cherry-red, plunged in water $82^{\circ} \mathrm{F}$., and to be bent around curve $11 / 2$ times thickness of the plate.
British Admiralty.-Tensile strength, 58,240 to $67,200 \mathrm{lbs}$.; elongation in 8 in , 20%; same cold-bending and quenching tests as U. S. Navy.

American Boiler-makers' Association. -Tensile strength, 55,000 to 65,000
lbs.; elongation in 8 in ., 20% for plates 3% in. thick and under ; 22% for plates $3 / 8 \mathrm{in}$. to $9 / 4 \mathrm{in}$. 25% for plates $3 / 4 \mathrm{in}$. and over.

Cold-bending test: For plates $1 / 2$ in. thick and under, specimen must bend back on itself without fracture; for plates over $1 / 2 \mathrm{in}$. thick, specimen must withstand bending 180° around a mandril, $11 / 2$ times the thickness of the plate.
Chemical requirements : P. not over . 040%; S. not over . 030%.
American Shipmasters' Association.-Tensile strength, 62,000 to 72,000 lbs.: elongation, 16% on pieces 9 in . long.

Strips cut from plates, heated to a low red and cooled in.water the temperature of which is $82^{\circ} \mathrm{F}$., to undergo without crack or fracture being doubled over a curve the diameter of which does not exceed three times the thickness of the piece tested.

Boiler Shell-plates, Front Tube-plate, and Butt-strips. (Penna. R. R., 1892.)-The metal desired is a homogeneous steel having a tensile strength of $60,000 \mathrm{lbs}$. per sq. in., and an elongation of 25% in a section originally 8 in . long. These plates will not be accepted if the testpiece shows-

1. A tensile strength of less than $55,000 \mathrm{lbs}$. per sq. in. ; 2. An elongation in section originally 8 in. long less than 20%; 3. A tensile strength over $65,000 \mathrm{lbs}$. per sq. in. ; should, however, the elongation be $2 \pi \%$ or over, plates will not be rejected for high strength.
Inside Fire-box Plates, including Back Tube-plate. (Penna. R. R., 1892.)-The metal should show a tensile strength of $60,000 \mathrm{lbs}$. per sq. in., and an elongation of 28% in a test section originally 8 in . long.

Chemical Composition. Desired. Will be Rejected.
Carbon... 0.18 per cent. over 0.25 , below 0.15
Phosphorus, not above........ 0.03 "
Manganese, not above..... . . 0.40
Silicon, not above.............. 0.02
Sulphur, not above.......... .. 0.02
Copper, not above............... 0.03
66
"، over 0.04
". over 005
" over 0.05

These plates will not be accepted if the test-piece shows: 1. A tensile strength of less than 55,000 lbs. per sq. in.; 2. An elongation in section originally 8 in. long, less than 22% (20% in plates $1 / 4$ inch thick) ; 3. A tensile strength over $65,000 \mathrm{lbs}$. per sq. in. (68,000 for plates $1 / 4 \mathrm{in}$. thick); should, however, the elongation be 30% or over, plates will not be rejected for high strength; 4. Any single sean or cavity more than $1 / 4 \mathrm{in}$. long in either of the three fractures obtained on test for homogeneity, as described below.
Homogeneity test : A portion of the test-piece is nicked with a chisel, or grooved on a machine, transversely about a sixteenth of an inch deep, in three places about $11 / 4 \mathrm{in}$. apart. The first groove should be made on one side, $11 / 4 \mathrm{in}$. from the square end of the piece; the second, $11 / 4 \mathrm{in}$. from it on the opposite side; and the third, $11 / 4 \mathrm{in}$. from the last, and on the opposite side from it. The test-piece is then put in a vise, with the first groove about $1 / 4 \mathrm{in}$. above the jaw, care being taken to hold it firmly. The projecting end of the test-piece is then broken off by means of a hammer, a number of light blows being used, and the bending being away from the groove. The piece is broken at the other two grooves in the same way. The object of this treatnent is to open and render visible to the eye any seams due to failure to weld up, or to foreign interposed matter, or cavities due to gas bubbles in the ingot. After rupture, one side of each fracture is examined, a pocket lens being used if necessary, and the length of the seams and cavities is determined. The length of the longest seam or cavity determines the acceptance or rejection of the plate.
Dr. (C. B. Dudley, chemist of the Penna. R. R. (Trans. A. I. M. E. 1892, vol. $\mathrm{xx} . \mathrm{p}$. $\mathbf{7} 09$), gives as an example of the progressive improvement in specifications the following: In the early days of steel boilers the specification in force called for steel of not less than $50,000 \mathrm{lbs}$. tensile strength and not less than 25% elongation. Some metal was received having $\tau 5.000 \mathrm{lbs}$. tensile strength, and as the elongation was all right it was accepted; but when those plates were being flanged in the boiler-shop they cracked and went to pieces. As a result, an upper limit of 65,000 lbs. tensile strength was established.

Am. Ry. Master Mechanics' Assn., 1894.-Same as Penna. R. R. Specifications of 1892, including homogeneity test.
Plate, Tank, and Sheet Siteel. (Penna. R. R., 1888.*)-A test strip taken lengthwise of each plate, $1 / 8$ in. thick and over, without annealing. should have a tensile strength of $60,000 \mathrm{lbs}$. per sq. in., and an elongation of 25% in a section originally 2 in. long.
Sheets will not be accepted if the tests show the tensile strength less than $55,000 \mathrm{lbs}$. or greater than $\tau 0,000 \mathrm{lbs}$. per sq. in., nor if the elongation falls below 20%.
Steel Billets for Main and Parallel Rods. (Penna. R. R., 1884.) -One billet from each lot of 25 billets or smaller shipment of steel for main or parallel rods for locomotives will have a piece drawn from it under the hammer and a test-section will be turned down on this piece to $5 / 8 \mathrm{in}$. in diameter and 2 in. long. Such test-piece should show a tensile strength of $85,000 \mathrm{lbs}$. and an elongation of 15%.
No lot will be acceptable if the test shows less than $80,000 \mathrm{lbs}$. tensile strength or 12% elongation in 2 in.
Locomotive Spring Steel。 (Penna. R. R., 1887.)-Bars which vary more than 0.01 in . in thickness, or more than 0.02 in . in width, from the size ordered, or which break where they are not nicked, or which, when properly nicked and held, fail to break square across where they are nicked, will be returned. The metal desired has the following composition: Carbon, 1.00%; manganese, 0.25%; phosphorus, not over 0.03%; silicon, not over 0.15%; sulphur, not over 0.03%; copper, not over 0.03%.
Shipments will not be accepted which show on analysis less than 0.90% or over 1.10% of carbon, or over 0.50% of manganese, 0.05% of phosphorus, 0.25% of silicon, 0.05% of sulphur, and 0.05% of copper.

Steel for Locomotive Driving-axles. (Pemna. R. R., 1883.)Steel for driving-axles should have a tensile strength of $85,000 \mathrm{lbs}$. per sq. in. and an elongation of 15% in section originally 2 in . long and $5 / 8 \mathrm{in}$. diameter, taken midway between centre and circumference of the axle.

Axles will not be accepted if tensile strength is less than $80,000 \mathrm{lbs}$., nor if elongation is below 12\%.

Steel for Crank-pins. (Penna. R. R., 1886.)-Steel ingots for crank-
*The Penna. R. R. specifications of the several dates given are still in force, July, 189\%.
pins must be swaged as per drawings. For each lot of 50 ingots ordered, 51 must be furnished, from which one will be taken at random, and two pieces, with test sections $5 / 8 \mathrm{in}$. diameter and 2 in . long, will be cut from any part of it, provided that centre line of test-pieces falls $11 / 2 \mathrm{in}$. from centre line of inछot. Such test-pieces should have a tensile strength of $85,000 \mathrm{lbs}$. per sq. in. ind an elongation of 15%. Ingots will not be accepted if the tensile strength is less than $80,000 \mathrm{lbs}$. nor if the elongation is below 12%.

Dr. Chas. B. Dudley, Chemist of the P. R. R. (Trans. A. I. M. E. 1892), referring to this specification, says: In testing a recent shipment, the piece from one side of the pin showed $88,000 \mathrm{lbs}$. strength and 22% elongation, and the piece from the opposite side showed $106,000 \mathrm{lbs}$. strength and 14% elongation. Each piece was above the specified strength and ductility, but the lack of uniformity between the two sides of the pin was so marked that it was finally determined not to put the lot of 50 pins in use. To guard against trouble of this sort in future, the specifications are to be amended to require that the difference in ultimate strength of the two specimens shall not be more than 3000 lbs .

Steel Car-axles. (Penna. R. R., 1891.)-For each 100 axles ordered 101 must be furnished, from which one will be taken at random, and subjected to tests prescribed.

Axles for passenger cars and passenger locomotive and tender trucks must be made of steel and be rough turned throughout. Two test-pieces will be cut from an axle, and the test sections of $5 / 8 \mathrm{in}$. diameter by 2 in . long may fall at any part of the axle provided that the centre line of the testsection is 1 in . from the centre line of the axle. Such test-pieces should have a tensile strength of 80.000 lbs . per sq. in. and an elongation of 20%. Axles will not be accepted if the tensile strength is less than $\% 5,000 \mathrm{lbs}$. or the elongation below 15\%, nor if the fractures arc irregular.

Axles for freight cars and freight-locomotive tender trucks must be made of steel, and will be subjected to the following test, which they must stand without fracture :
Axles 4 in. Diameter at centre - Five blows at 20 ft . of a $1640-\mathrm{lb}$. weight, striking midway between supports 3 ft . apart; axle to be turned over after each blow.

Axles $43 / 8$ In. diameter at centre-Five blows at 25 ft . of a $1640-\mathrm{lb}$. weight, striking nidway between supports 3 ft . apart: axles to be turned over after each blow.
Steel for Rails.-P. H. Dudley (Trans. A. S. C. E. 1893) recommends the following chemical composition for rails of the weights specified :

$$
\text { Weights per yard..... 60, 65, and } 70 \mathrm{lbs} . \quad 75 \text { and } 80 \mathrm{lbs} .100 \mathrm{lbs} \text {. }
$$

Carbon................ . 45 to $.55 \%$ 施 50 to 60%. 65 to $.75 \%$
For all weights: Manganese, $.80 \%$ to 1.00%; silicon, $.10 \%$ to $.15 \%$; phosphorus, not over $.06 \%$; sulphur, not over . $0 \% \%$.
Carbon by itself up to or over 1% increases the hardness and tensile strength of the iron rapidly, and at the same time decreases the elongation. The amount of carbon in the early rails ranged from 0.25 to 0.5 of 1%, while in recent rails and very heavy sections it has been increased to $0.5,0.6$, and 0.75 of 1%. With good irons and suitable sections it can run from 0.55 to 0.75 of 1%, according to the section, and obtain fine-grain tough rails with low phosphorus.

Manganese is a necessary ingredient in the first place to take up the oxide of iron formed in the bath of molten metal during the blow. It also is of great assistance to check red shortness of the ingots during the first passes in the blooming train. In the early rails 0.4 to 0.5 of 1% was sufficient when the ingots were hammered or the reductions in the passes in the trains were very much lighter than to day. With the more rapid rolling of recent years the manganese is very often increased to 1.25% to 1.5%. It makes the rails hard with a coarse crystallization and with a decided tendency to brittleness Rails high in manganese seem to flow quite easily, especially under severe service or the use of sand, and oxidize rapidly in tunnels. From 0.80 to 1.00% seems to be all that is necessary for good rolling at the present time.

Steel Rivets. (H. C. Torrance, Amer. Boiler Mfr's. Assu., 1890.)-The Government requirements for the rivets used in boilers of the cruisers built in 1890 are: For longitudinal seams, 58,000 to $6 \pi, 000$ lbs. tensile strength; elongation, not less than 26% in 8 in., and all others a tensile strength of 50,000 to $58,000 \mathrm{lbs}$., with an elongation of not less than 30%. They shall be capable of being flattened out cold under the hammer to a thickness of one half the diameter, and of being flattened out hot to a thickness of one third
the diameter without showing cracks or flaws. The steel must not contaln more than .035 of 1% of phosphorus, nor more than .04 of 1% of sulphir.
A lot of 20 successive tests of rivet steel of the low tensile strength quality and 12 tests of the higher tensile strength gave the following results:

	Low Steel	Higher.
Tensile strength, lbs. per sq	51,2:30 to 54,100	59,100 to 61,850
Elastic limit, lbs. per sq. in	31,050 to 33,190	32,080 to 33,070
Elongation in 8 in., per cent.	30.5 to 35.25	28.5 to 31,75
Carbon, per	. 11 to . 14	. 16 to . 18
Phosphorus	. 027 to . 029	
Sulphur..	.0.33 to . 035	033 to . 03

The safest steel rivets are those of the lowest tensile strength, since they are the least liable to become hardened and fracture by hammering, or to break from repeated concussive and vibratory strains to which they are subjected in practice. For calculations of the strength of riveted joints the tensile strength may be taken as the average of the figures above given, or $5:, 665 \mathrm{lbs}$., and the shearing strength at $45,000 \mathrm{lbs}$. per sq. in.

MISCELLANEOUS NOTES ON STEEL.

May Carbon be Burned Out of Steel?-Experiments made at the Laboratory of the Penna. Railroad Co. (Specifications for Springs, 1888) with the steel of spiral springs, show that the place from which the borings are taken for analysis has a very important influence on the amount of carbon found. If the sample is a piece of the round bar, and the borings are taken from the end of this piece, the carbon is always higher than if the borings are taken from the side of the piece. It is common to find a difference of 0.10% between the centre and side of the bar, and in some cases the difference is as high as 0.23%. Furthermore, experiments made with samples taken from the drawn out end of the bar show, usually, less carbon than samples taken from the round part of the bar, even though the borings may be taken out of the side in both cases.
Apparently during the process of reducing the metal from the ingots to the round bar, with successive heatings, the carbon in the outside of the bar is burned out.
${ }^{6}$ Recalescence", of Steel. - If we heat a bar of copper by a flame of constant strength, and note carefully the interval of time occupied in passing from each degree to the next higher degree, we find that these intervals increase regularly, i e., that the bar heats more and more slowly, as its temperature approaches that of the flame. If we substitute a bar of steel for one of copper, we find that these intervals increase regularly up to a certain point, when the rise of temperature is suddenly and in most cases greatly retarded or even completely arrested. After this the regular rise of temperature is resumed, though other like retardations may recur as the temperature rises farther. So if we cool a bar of steel slowly the fall of temperature is greatly retarded when it reaches a certain point in dull redmess. If the steel contains much carbon, and if certain favoring conditions be maintained, the temperature, after descending regularly, suddenly rises spontaneously very abruptly, remains stationary a while, and then redescends, This spontaneous reheating is known as "recalescence."

These retardations indicate that some change which absorbs or evolves heat occurs within the metal. A retardation while the temperature is rising points to a change which absorbs heat; a retardation during cooling points to some change which evolves heat. (Henry MI. Howe, on "Heat Treatment of Sterl," Trans. A. I. M. E., vol. xxii.)

Effect of Nicking a Steel Bar. -The statement is sometimes made that, owing to the homogeneity of steel, a bar with a surface crack or nick in one of its edges is liable to fail by the gradual spreading of the nick, and thus break under a very much smaller load than a sound bar. With iron it is contended this does not occur, as this metal has a fibrous structure. Sir Benjamin Baker has, however, shown that this theory, at least so far as statical stress is concerved, is opposed to the facts, as he purposely made nicks in specimens of the mild steel used at the Forth Bridge, but found that the teusile strength of the whole was thus reduced by only about one ton per square inch of section. In an experiment by the Union Bridge Company a full-sized steel counter-bar, with a screw-turned buckle connection, was tested under a heavy statical stress, and at the same time a weight weighing 1040 lbs. was allowed to drop on it from various heights. The bar was fiust broken by ordinary statical strain, and showed a breaking stress of
$65,800 \mathrm{lbs}$. per square inch. The longer of the broken parts was then placed in the machine and put under the following loads, whilst a weight, as already mentioned, was dropped on it from various heights at a distance of five feet from the sleeve-nut of the turn-buckle, as shown below:

Stress in pounds per sq. in	50,000	55,000	60,000	63,000	65,000
Height of fall.	ft. in.	ft. in.	$\stackrel{\text { ft. in }}{3} \mathrm{O}$	ft. in.	ft. in.

The weight was then shifted so as to fall directly on the sleeve-nut, and the test proceeded as follows:

Stress on specimen in lbs. per square inch......	65,350	65,350	68,800
Height of fall, feet.....................................	3	6	6

It will be seen that under this trial the bar carried more than when originally tested statically, showing that the nicking of the bar by screwing had not appreciably weakened its power of resisting shocks.-Eng'g News.

Electric Conductivity of Steel.-Louis Campredon reports in Le Génie Civil the results of experiments on the electric resistance of steel wires of different composition. The wires were 3 mm . diameter. The results are given below, the resistance being that of 1 kilometre of wire 1 square mm . in section.

	Carbon.	Silicon.	Sulphur.	Phosphorus.	$\begin{aligned} & \text { Manga- } \\ & \text { nese. } \end{aligned}$	Total.	Electric Resistance, Ohms.
1.	0.090	0.020	0.050	0.030	0.210	0.410	127.7
2	0.100	0.020	0.050	0.040	0.240	0.450	133.0
3.	0.100	0.020	0.060	0.040	0.260	0.480	137.5
4	0.100	0.020	0.050	0.050	0.310	0.530	140.3
5.	0.120	0.030	0.070	0.050	0.330	0.600	142.7
6.	0.110	0.030	0.060	0.060	0.350	0.610	144.5
7	0.100	0.020	0.070	0.040	0.400	0.630	149.0
8	0.120	0.020	0.070	0.070	0.400	0.680	150.3
9.	0.110	0.030	0.060	0.060	0.490	0.750	156.0
10.	0.140	0.030	0.060	0.080	0.540	0.850	173.0

An examination of these series of figures shows that the purer and softer steel the better is its electric conductivity, and, furthermore, that manganese is the element which most influences the conductivity.
Specific Gravity of Soft Steel. (W. Kent, Trans. A. I. M. E., xiv. $58 j$.$) -Five specimens of boiler-plate of C. 0.14, P. 0.033 gave an average s p$. gr. of 7.932, maximum variation 0.008 . The pieces were first planed to remove all possible scale indentations, then filed smooth, then cleaned in dilute sulphuric acid, and then boiled in distilled water, to remove all traces of air from the surface.
The figures of specific gravity thus obtained by careful experiment on bright, smooth pieces of steel are, however, too high for use in determining the weights of rolled plates for commercial purposes. The actual average thickuess of these plates is always a little less than is shown by the calipers, on account of the oxide of iron on the surface, and because the surface is not perfectly smooth and regular. A number of experiments on commercial plates, and comparison of other authorities, led to the figure 7.854 as the average specific gravity of open-hearth boiler-plate steel. This figure is easily remembered as being the same figure with change of position of the decimal point (.7854) which expresses the relation of the area of a circle to that of its circumscribed square. Taking the weight of a cubic foot of water at $62^{\circ} \mathrm{F}$. as 62.36 lbs . (average of several authorities), this figure gives $489.7 \% 5$ lbs . as the weight of a cubic foot of steel, or the even figure, 490 lbs ., may be taken as a convenient figure, and accurate within the limits of the error of observation.

A common method of approximating the weight of iron plates is to consider them to weigh 40 lbs. per square font one inch thick. Taking this weight and adding 2% gives almost exactly the weight of steel boiler-plate given above ($40 \times 12 \times 1.02=489.6 \mathrm{lbs}$. per cubic foot $)$.

Occasional Failures of Bessemer Steel.-G. H. Clapp and A. E. Hunt, in their paper on "The Inspection of Materials of Construction in
the United States " (Trans. A. I. M. E., vol. xix), say! Numerous instances could be cited to show the unreliability of Bessemer steel for structural purposes. One of the most marked, however, was the following: A 12-in. I-beam weighing 30 lbs . to the foot, 20 feet long, on being unloaded from a car broke in two about 6 feet from one end.

The analyses and tensile tests made do not show any cause for the failure.
The cold and quench bending tests of both the original $3 / 4-\mathrm{in}$. round testpieces, and of pieces cut from the finished material, gave satisfactory results; the cold-bending tests closing down on themselves without sign of fracture.

Numerous other cases of angles and plates that were so araid siaces as to break off short in punching, or, what was worse, to break the punches, have come under our observation, and although makers of Bessemer steel claim that this is just as likely to occur in open-hearth as in Besseme: steel, we have as yet never seen an instance of failure of this kind in open-hearth zteel having a composition such as C 0.25%, $\mathrm{Mn} 0.70 \%, \mathrm{P} 0.80 \%$.
J. W. Wailes, in a paper read before the Chemical Section of the British Association for the Advancement of Science, in speaking of mysterious failures of steel, states that investigation shows that "these failures occur in steel of nne class, viz., soft steel made by the Bessemer process."

Segregationin Steel Ingotso (A. Pourcel, Trans, A. I. M. E. : 893.) -H. M. Howe, in his "Merallurgy of Steel," gives a résumé of observations, with the results of numerous analyses, bearing upon the phenomena o. segregation.
In 188: Mir. Stubbs, of Manchester, showed the heterogeneous result of analyses made upon different parts of an ingot of large section.

A test-piece taken 24 inches from the head of the ingot 7.5 feet in length gave by analysis very different results from those of a test-piece taken 30 inches from the bottom.

	C.	Mn.	Si.	S.	P.
Top. $\ldots \ldots \ldots \ldots$	0.92	0.535	0.043	0.161	$0.2 \dot{21}$
Bottom $\ldots \ldots \ldots \ldots$	0.37	0.498	0.006	0.025	0.096

Windsor Richards says he had often observed in test-pieces taken from different points of one plate variations of 0.05% of carbon. Segregation is specially pronounced in an ingot in its central portion, and around the space of the piping.

It is most observable in large ingots, but in blocks of smaller weight and limited dimensions, subjected to the influence of solidification as rapid as casting within thick walls will permit, it may still be observed distinctly. An ingot of Martin steel, weighing about $1000 \mathrm{lbs} .$, and having a height oi 1.10 feet and a section of 10.24 inches square, gave the following:

1. Upper section:	C.	S.	P.	Mn.
Border	0.330	0.040	0.033	0.420
Centre	0.530	0.077	0.057	0.430
2. Lower section:	C.	S.	P.	Mn.
Border	0.280	0.0\%9	0.016	0.390
Centr	0.290	0.030	0.038	0.390
3. Middle section:	C.	S.	P .	Mn.
Border	0.390	0.025	0.025	0.400
Centre.	0.320	0.048	0.048	0.40 m

Segregation is less marked in ingots of extra-soft metal cast in cast-iron moulds of considerable thickness. It is, however, still important and explains the difference often shown by the results of tests on pieces taken from different portions of a plate. Two samples, taken from the sound pait, of a flat ingot. one on the outside and the other in the centre, 7.9 inches from the upper edge, gave:

	C.	S.	P.	Mn .
Centre.	0.14	0.058	0.072	$0.57{ }^{\circ}$
Exterior.	0.11	0.036	0.027	0.610

Manganese is the elenient most uniformly disseminated in hard or sofi steel.

For cannon of large calibre, if we reject, in addition to the part cast in sand and called the masselotte (sinking-head), one third of the upper part of the ingot, we can obtain a tube practically homogeneous in composition, because the central part is naturally removed by the boring of the tube. With extra-soft steels, destined for ship- or boiler-plates, the solution for practically pelfect homogeneity lies in the obtaining of \curvearrowleft metal more clos $\wedge \frac{1}{y}$ deserving its name of extra-soft metal.

The injurious consequences of segregation must be suppressed by reducing. as far as possible, the elements subject to liquation.
Earliest Uses of Steel for Structural Purposes. (G. G. Mehrtens, Trans. A. S. C. E. 1893).-The Pennsylvania Railroad Company first introduced Bessemer steel in America in locomotive boilers in the year 1863, but the steel was too hard and brittle for such use. The first plates made for steel boilers had a tenacity of 85,000 to $92,0 C 0 \mathrm{lbs}$. and an elongation of but $\% \%$ to 10%. The results were not favorable, and the steel works were soon forced to offer a material of less tenacity and more ductility. The requirements were therefore reduced to a tenacity of 78.000 lbs . or less, and the elongation was increased to 15% or more. Even with this, between the years $18 \tilde{\tau}_{0}$ aud 1880 , many explosions occurred and many careful exarninations were made to determine their cause. It was found on examining the rivet-holes that there were incipient changes in the metal, many cracks around them, and points near them were corroded with rust, all caused by the shock of tools in manufacturing. It was evident that the material was unsuitable, and that the treatment must be changed. In the beginning of 1878, Mr. Parker, chief engineer of the Lloyds, stated that there was then but one English steamer in possession of a steel boiler; a year later there were 120. In $18 \% 8$ there were but five large English steamer's built of steel, while in 1883 there were 116 building. The use of Bessemer steel in bridgebuilding was tried first on the Dutch State railways in 1863-64, then in Eng. land and Austria. In 1874 a bridge was built of Bessemer steel in Austria. The first use of cast steel for bridges was in America, for the St. Louis Arch Bridge and for the wire of the East River Bridge. These gave an impetus to the use of ingot metal, and before 1880 the Glasgow and Plattsmouth Bridges over the Missouri River were also built of ingot metal. Steel eyebars were applied for the first time in the Glasgor Bridge. Since 1880 the introduction of mild steel in all kinds of engineering structures has steadily increased.

STEEL CASTHNGS.

(E. S. Cramp, Engineering Congress, Dept. of Marine Eng'g, Chicago, 1893.)

In 1891 American steel-founders had successfully produced a considerable variety of heavy and difficult castings, of which the following are the most noteworthy specimens:
Bed-plates up to $24,000 \mathrm{lbs}$.; stern-posts up to $54,000 \mathrm{lbs}$.; stems up to $21,000 \mathrm{lbs} . ;$ hydraulic cylinders up to $11,000 \mathrm{lbs}$. ; shaft-struts up to $32,000 \mathrm{lbs}$. ; hawse-pipes up to 7500 lbs.; sterv-pipes up to 8000 lbs.

The percentage of success in these classes of castings since 1890 has ranged from 65% in the more difficult forms to 90% in the simpler ones: the tensile strength has been from 62,000 to $78,000 \mathrm{lbs}$., elongation from 15% to 25%. The best performance recorded is that of a guide, cast in January, 1893, which developed $84,000 \mathrm{lbs}$. tensile strength and 15.6% elongation.
The first steel castings of which anything is generally known were crossing-frogs made for the Philadelphia \& Reading R. R. in July, 1867, by the William Butcher Steel Works, now the Midvale Steel Co. The moulds were made of a mixture of ground fire-brick, black-lead crucible-pots ground fine, and fire-clay, and washed with a black-lead wash. The steel was melted in crucibles, and was about as hard as tool steel. The surface of these castings was very smooth, but the interior was very much honeycombed. This was before the day's when the use of silicon was known for solidifying steel. The sponginess, which was almost universal, was a great obstacle to their general adoption.

The next step was to leave the ground pots out of the moulding mixture and to wash the mould with finely ground fire-brick. This was a great improvement, especially in very heavy castings: but this mixture still clung so strongly to the casting that only comparatively simple shapes could be made with certainty. A mould made of such a mixture became almost as hard as fire-brick, and was such an obstacle to the proper shrinkage of castings, that, when at all complicated in shape, they had so great a tendency to crack as to make their successful manufacture almost impossible. By this time the use of silicon had been discovered, and the only obstacle in the way of making good castings was a suitable moulding mixture. This was ultimately found in mixtures having the various kinds of silica sand as the principal constituent.

One of the most fertile sources of defects in castings is a bad design. Very intricate shapes can be cast successfully if they are so designed as to
cool uniformly. Mr. Cramp says while he is not yet prepared to state that anything that can be cast successfully in iron can be cast in steel, indications seem to point that way in all cases where it is possible to put on suitable sinking-heads for feeding the casting.
H. L. Gantt (Trans. A. S. M. E., xii. 710) says: Steel castings not only shrink much more than iron ones, but with less regularity. The amount of shrinkage varies with the composition and the heat of the metal; the hotter the metal the greater the shrinkage; and, as we get smoother castings from hot metal, it is better to make allowance for large shrinkage and pour the metal as hot as possible. Allow $3 / 16$ or $1 / 4 \mathrm{in}$. per ft . in length for shrinkage, and $1 / 4 \mathrm{in}$. for finish on machined surfaces, except such as are cast "up." Cope surfaces which are to be machined should, in large or hard castings, have an allowance of from $3 / 8$ to $1 / 2 \mathrm{in}$. for finish, as a large mass of metal slowly rising in a mould is apt to become crusty on the surface, and such a crust is sure to be full of imperíections. On small, soft castings $1 / 8 \mathrm{in}$. on drag side and $1 / 4 \mathrm{in}$. on cope side will be sufficient. No core should have less than $1 / 4 \mathrm{in}$. finish on a side and very large ones should have as much as $1 / 2 \mathrm{in}$. on a side. Blow-holes can be entirely prevented in castings by the addition of manganese and silicon in sufficient quantities; but both of these cause brittleness, and it is the object of the conscientious steelmaker to put no more manganese and silicon in his steel than is just sufficient to make it solid. The best results are arrived at when all portions of the castings are of a uniform thickness, or very nearly so.

The following table will illustrate the effect of annealing on tensile strength and elongation of steel castings :

Carbon.	Unannealed.		Annealed.		
	Tensile Strength.	Elongation.	Tensile Strength.	Elongation.	
$.23 \%$	68,738	22.40%	67,210	31.40%	
$.3 \%$	85,540	8.20	82,228	21.80	
.53	90,121	2.35	106,415	9.80	

The proper annealing of large castings takes nearly a week.
The proper steel for roll pinions, hammer dies, etc., seems to be that containing about $.60 \%$ of carbon. Such castings, properly annealed, have worn well aud seldom broken. Miscellaneous gearing should contain carbon . 40% to 60%, gears larger in diameter being softest. General machinery castings should, as a rule, contain less than $.40 \%$ of carbon, those exposed to great shocks containing as low at. 20% of carbon. Such castings will give a tensile strength of from 60,000 to 80,000 lbs. per sq. in. and at least 15% extension in a 2 in. long specimen. Machinery and hull castings for war-vessels for the United States Navy, as well as carriages for naval guns, contain from $.20 \%$ to . 30% of carbon.

The following is a partial list of castings in which steel seems to be rapidly taking the place of iron: Hydraulic cylinders, crossheads and pistons for large engines, roughing rolls, rolling-mill spindles, coupling-boxes, roll pinions, gearing, hammer-heads and dies, riveter stakes, castings for ships, car-couplers, etc.

For description of methods of manufacture of steel castings by the Bessemer, open-hearth, and crucible processes, see paper by P. G. Salom, Trans. A. I. M. E. xiv, 118.

Specifications for steel castings issued by the U. S. Navy Department, 1889 (abridged): Steel for castings must be made by either the open-hearth or the crucible process, and must not show more than $.06 \%$ of phosphorus. All castings must be annealed, unless otherwise directed. The tensile strength of steel castings shall be at least $60,000 \mathrm{lbs}$., with an elongation of at least 15% in 8 in . for all castings for moving parts of the machinery, and at least 10% in 8 in . for other castings. Bars 1 in . sq. shall be capable of bending cold, without fracture, through an angle of 90°, over a radius not greater than $11 / 2 \mathrm{in}$. All castings must be sound, free from injurious loughness, sponginess, pitting, shrinkage, or other cracks, cavities, etc.

Pennsylvania Railroad specificatious, 1888: Steel castings should have a tensile strength of 70,000 lbs. per sq. in. and an elongation of 15% in section originally 2 in. long. Steel castings will not be accepted if tensile strength

MANGANESE, NICKEL, AND OTHER "ALLOY" STEELS. 40%

falls below 60,000 lbs., nor if the elongation is less than 12%, nor if castings have blow-holes and shrinkage cracks. Castings weighing 80 lbs. or more must have cast with them a strip to be used as a test-piece. The dimensions of this strip must be $3 / 4 \mathrm{in}$. sq. by 12 in . long.

MANGANESE, NICKEL, AND OTHER "ALLOY" S'TEELS.

Manganese Steel. (H. M. Howe, Trans. A. S. M. E., vol. xii.)-Manganese steel is an alloy of iron and manganese, incidentally, and probably unavoidably, containing a considerable proportion of carbon.

The effect of small proportions of manganese on the hardness, strength, and ductility of iron is probably slight. The point at which manganese begins to have a predominant effect is not known : it may be somewhere about 2.5%. As the proportion of manganese rises above 2.5% the strength and ductility diminish, while the hardness increases. This effect reaches a maximum with somewhere about 6% of manganese. When the proportion of this element rises beyond 6% the strength and ductility both increase. while the hardness diminishes slightly, the maximum of both strength and ductility being reached with about 14\% of manganese. With this proportion the metal is still so hard that it is very difficult to cut it with steel tools. As the proportion of manganese rises above 15% the ductility falls off abruptly, the strength remaining nearly constant till the manganese passes 18%, when it in turn diminishes suddenly.

Steel containing from 4% to 6.5% of manganese, even if it have but 0.37% of carbon, is reported to be so extremely brittle that it can be powdered under a hand-hammer when cold; yet it is ductile when hot.

Manganese steel is very free from blow-holes; it welds with great difficulty; its toughness is increased by quenching from a yellow heat; its electric resistance is enormous, and very constant with changing temperature; $\mathrm{i} 1 /$ is low in thermal conductivity. Its remarkable combination of great hardhess, which cannot be materially lessened by annealing, and great tensile strength, with astonishing toughness and ductility, at once creates and limits its usefulness. The fact that manganese steel cannot be softened, that it ever remains so hard that it can be machined only with great diffipulty, sets up a barrier to its usefulness.

The following comparative results of abrasion tests of manganese and nther steel were reported by T. T. Morrell :

> Abrasion by Pressure Against a Revolving Hardened-Steel Shaft. Loss of weight of manganese steel

The hardness of manganese steel seems to be of an anomalous kind. The alloy is hard, but under some conditions not rigid. It is very hard in its resistance to abrasion ; it is not always hard in its resistance to impact.

Manganese steel forges readily at a yellow heat, though at a bright white heat it crumbles under the hammer. But it offers greater resistance to deformation, i.e., it is harder when hot, than carbon steel.

The most important single use for manganese-steel is for the pins which hold the buckets of elevator dredges. Here abrasion chiefly is to be resisted.

Another important use is for the links of common chain-elevators.
As a material for stamp-shoes, for horse-shoes, for the knuckles of an automatic car-coupler, manganese steel has not met expectations.

Manganese steel has been regularly adopted for the blades of the Cyclone pulverizer. Some manganese-steel wheels are reported to have run over 300.000 miles each without turning, on a New England railroad.

Nickel Steel. - The remarkable tensile strength and ductility of nickel steel, as shown by the test-bars and the behavior of nickel-steel armorplate under shot tests, are witness of the valuable qualities conferred upon steel by the addition of a few per cent of nickel.

The following tests were made on nickel steels by Mr. Maunsel White of the Bethlehem Iron Company (Eng. \& M. Jour., Sept. 16, 1893.) :

* Forged from 6 -in. ingot to $5 / 8 \mathrm{in}$. diam., with conical heads for holding.
+ Showing the effect of varying carbon.
\ddagger Rolled down from $14-\mathrm{in}$. ingot to $11 / 4-\mathrm{in}$. square billet, and turned to size.
\S Rolled down from $14-\mathrm{in}$. ingot to $1-\mathrm{in}$. round, and turned to size.
Nickel steel has shown itself to be possessed of some exceedingly valuable properties; these are, resistance to cracking, high elastic limit, and homogeneity. Resistance to cracking, a property to which the name of non fissibility has been given, is shown more remarkably as the percentage of nickel increases. Bars of 27% nickel illustrate this property. A $11 / 4-\mathrm{in}$. square bar was nicked $1 / 4 \mathrm{in}$. deep and bent double on itself without further fracture than the splintering off, as it were, of the nicked portion. Sudden failure or rupture of this steel would be impossible ; it seems to possess the toughness of rawhide with the strength of steel. With this percentage of nickel the steel is practically non-corrodible and non-magnetic. The resistance to cracking shown by the lower percentages of nickel is best illustrated in the many trials of nickel-steel armor.

The elastic limit rises in a very marked degree with the addition of about 3% of nickel, the other physical properties of the steel remaining unchanged or perhaps slightly increased.

In such places (shafts, axles, etc.) where failure is the result of the fatigue of the metal this higher elastic limit of nickel steel will tend to prolong indefinitely the life of the piece, and at the same time, through its superior toughness, offer greater resistance to the sudden strains of shock.
Howe states that the hardness of nickel steel depends on the proportion of nickel and carbon jointly, nickel up to a certain percentage increasing the hardness, beyond this lessening it. Thus while steel with 2% of nickel and 0.90% of carbon cannot be machined, with less than 5% nickel it can be worked cold readily, provided the proportion of carbon be low. As the proportion of nickel rises higher, cold-working becomes less easy. It forges easily whether it contain much or little nickel.

The presence of manganese in nickel steel is most important, as it appears that without the aid of manganese in proper proportions, the conditions of treatment would not be successful.

Tests of Nickel Steel.-Two heats of open-hearth steel were made by the Cleveland Rolling Mill Co., one ordinary steel made with 9000 lbs . each scrap and pig, and 165 lbs. ferro-manganese, the other the same with the addition of 3%, or 540 lbs of nickel. Tests of six plates rolled from each heat., 0.24 to 0.3 in. thick, gave results as follows :
Ordinary steel, T. S. 52,500 to 56,500 ; E.'L. 32,800 to 37,900 ; elong. 26 to 32%. Nickel steel, "6 $63,3 \% 0$ to $6 \tilde{3}, 100 ; \quad$ " 47,100 to 48,$200 ; \quad$ " $231 / 4$ to 26%.

MANGANESE, NICKEL, AN゙D OTHER "ALLOY" STEELS. 409

The nickel steel averages 31\% higher in elastic limit, 20% higher in ultimate tensile strength, with but slight reductiors in ductility. (Eng. \& M. Jour., Feb. 25, 1893.)

Aluminum Steel.-R. A. Hadfield (Trans. A. I. M. E. 1890) says: Aluminum appears to be of service as an addition to baths of molten iron or steel unduly saturated with oxides, and this in properly regulated steel manufacture should not often occur. Speaking generally, its rôle appears to be similar to that of silicon, though acting more powerfully. The statement that aluminum lowers the melting-point of iron seems to have no foundation in fact. If any increase of heat or fluidity takes place by the addition of small amounts of aluminum, it may be due to evolution of heat, owing to oxidation of the almminum, as the calorific value of this metal is very high-in fact, higher than silicon. According to Berthollet, the conversion of aluminum to $\mathrm{Al}_{2}()_{3}$ equals 9900 cal.; silicon to SiO_{2} is stated as 8800 .
The action of aluminum may be classed along with that of silicon, sulphur, phosphorus, arsenic, and copper, as giving no increase of hardness to iron, in contradistinction to carbon, manganese, chromium, tungsten, and nickel. Therefore, whilst for some special purposes aluminum may be employed in the manufacture of iron, at any rate with our present knowledge of its properties, this use camnot be large, especially when taking into consideration the fact of its comparatively high price. Its special advantage seems to be that it combines in itself the adrantages of both silicon and manganese ; but so long as alloys containing these metals are so cheap and aluminum dear, its extensive use seems hardly probable.
J. E. Stead, in discussion of Mr. Hadfield's paper, said: Every one of our trials has indicated that aluminum can kill the most fiery steel, providing, of course, that it is added in sufficient quantity to combine with all the oxygen which the steel contains. The metal will then be absolutely dead, and will pour like dead-melted silicon steel. If the aluminum is added as metallic aluminum, and not as a compound, and if the addition is made just before the steel is cast, $1 / 10 \%$ is ample to obtain perfect solidity in the steel.

Chrome Steel. (F. L. Garrison, Jour. F. I., Sept. 1891.)-Chromium increases the hardness of iron, perhaps also the tensile strength and elastic limit, but it lessens its weldibility.

Ferro chrome. according to Berthier, is made by strongly heating the mixed oxides of iron and chromium in brasqued crucibles, adding powdered charcoal if the oxide of chrominn is in excess, and flluxes to scorify the earthy matter and prevent oxidation. Chromium does not appear to give steel the power of becoming harder when quenched or chilled. Howe states that chrome steels forge more readily than tungsten steels, and when not containing over 0.5 of chromium nearly as well as ordinary carbon steels of like percentage of carbon. On the whole the status of chrome steel is not satisfactory. There are other steel alloys coming into use, which are so much better, that it would seem to be only a question of time when it will drop entirely out of the race. Howe states that many experienced chemists have found no chromium, or but the merest traces, in chrome steel sold in the markets.
J. W. Langley (Trans. A. S. C. E. 189:) says: Chromium, like manganese, is a true hardener of iron even in the absence of carbon. The addition of 1% or 2% of chromium to a carbon steel will make a metal which gets excessively hard. Hitherto its principal employment has been in the production of chilled shot and shell. Powerful molecular stresses result during cooling, and the shells frequently break spontaneously months after they are made.

Tungsten Steel-Mushet Steel. (J. B. Nau, Iron Age, Feb. 11, 1892.) -By incorporating simnltaneously carbon and tungsten in iron, it is possible to obtain a much harder steel than with carbon alone, without danger of an extraordinary brittleness in the cold metal or an increased difficulty in the working of the heated metal.

When a special grade of hardness is required, it is frequently the custom to use a high tungsten steel, known in England as special steel. A specimen from Sheffield, used for chisels, contained 9.3% of tungsten, $0 . \% \%$ of silver, and 0.6% of carbon. This steel, though used with advantage in its untempered state to turn chilled rolls, was not brittle ; nevertheless it was hard enough to scratch glass.

A sample of Mushet's special steel contained 8.3% of tungsten and 1.73% of manganese. The hardness of tungsten steel cannot be increased by the ordinary process of hardening.

The only operation that it can be submitted to when cold is grinding. It has to be given its final shape through hammering at a red heat, and even
then, when the percentage of tungsten is high, it has to be treated very carefully; and in order to avoid breaking it, not only is it necessary to reheat it several times while it is being hammered, but when the tool has acquired the desired shape hammering must still be continued gently and with numerous blows until it becomes nearly cold. Then only can it be cooled entirely.

Tungsten is not only employed to produce steel of an extraordinary hardness, but more especially to obtain a steel which, with a moderate hardness, allies great toughness, resistance, and ductility. Steel from Assailly, used for this purpose, contained carbon, 0.52%; silicon, 0.04%; tungsten, 0.3%; phosphor'us, 0.04%; sulphur, 0.005%.

Mechanical tests made by Styffe gave the following results :
$\begin{array}{ll}\text { Breaking load per square inch of original area, pounds.. } & 1 \% 2,424 \\ \text { Reduction of area, per cent... } & 13 \\ \text { Average elongation after fracture, per cent }\end{array}$
According to analyses made by the Duc de Luynes of ten specimens of the celebrated Oriental damasked steel, eight contained tungsten, two of them in notable quantities (0.518% to 1%), while in all of the samples analyzed nickel was discovered ranging from traces to nearly 4\%.

Stein \& Schwartz of Philadelphia, in a circular say: It is stated that tungsten steel is suitable for the manufacture of steel magnets, since it retains its magnetism longer than ordinary steel. Mr. Kniesche has made tungsten up to 98% fine a specialty. Dr. Heppe, of Leipsig, has written a number of articles in German publications on the subject. The following instructions are given concerning the use of tungsten: In order to produce cast iron possessing great hardness an addition of one half to one and one half of tungsten is all that is needed. For bar iron it must be carried up to 1% to 2%, but should not exceed $21 / 2 \%$. For puddled steel the range is larger, but an addition beyond $31 / 2 \%$ only increases the hardness, so that it is brought up to 112% only for special tools, coinage dies, drills, etc. For tires $21 / 2 \%$ to 5% have proved best, and for axles $1 / 2$ to $11 / 2 \%$. Cast steel to which tungsten has been added needs a higher temperature for tempering than ordinary steel, and should be hardened only between yellow, red, and white. Chisels made of tungsten steel should be drawn between cherry-red and blue, and stand well on iron and steel. Tempering is best done in a mixture of 5 parts of yellow rosin, 3 parts of tar, and 2 parts of tallow, and then the article is once more heated and then tempered as usual in water of about $15^{\circ} \mathrm{C}$.

Fluid-compressed ISteel by the 66 Whitworth Process. 9 (Proc. Inst. M. E., May, 1887, p. 167.)-In this s5stem a gradually increasing pressure up to 6 or 8 tons per square inch is applied to the fluid ingot, and within half an hour or less after the application of the pressure the column of fluid steel is shortened $11 / 2$ inch per foot or one-eighth of its length; the pressure is then kept on for several hours, the result being that the metal is compressed into a perfectly solid and homogeneous material, free from blow-holes.
In large gun-ring ingots during cooling the carbon is driven to the centre, the centre containing 0.8 carbon and the outer ring 0.3 . The centre is bored out until a test shows that the inside of the ring contains the same percentage of carbon as the outside

Fluid-compressed steel is made by the Bethlehem Iron Co.for gun and other heavy forgings.

CRUCHBLE STEEEL.

Selection of Grades by the Eye, and Effect of Heat Treatment. (J. W. Langley, Amer. Chenist, November, 18\%6.)-In 18\%4, Miller, Metcalt \& Parkin, of Pittsburgh, selected eight samples of steel which were believed to form a set of graded specimens, the order being based on the quantity of carbon which they were supposed to contain. They were numbered from one to eight. On analysis, the quantity of carbon was found to follow the order of the numbers, while the other elements present-silicon, phosphorus, and sulphur-did not do so. The method of selection is described as follows :
The steel is melted in black-lead crucibles capable of holding about eighty pounds; when thoroughly fluid it is poured into cast-iron moulds, and when cold the top of the ingot is broken off, exposing a fresily-fractured surface. The appearance presented is that of confused groups of crystals, all appearing to have started from the outside and to have met in the centre; this general form is common to all ingots of whatever composition, but to the trained eye, and only to one loug and critically exercised, a minute but in-
describable difference is perceived between varying samples of steel，and this difference is now known to be owing almost wholly to variations in the amount of combined carbon，as the following table will show．Twelve sam－ ples selected by the eye alone，and analyses of drillings takeu direct from the iugot before it had been heated or hammered，gave results as below：

$\begin{aligned} & \text { Ingot } \\ & \text { Nos. } \end{aligned}$	Iron by Diff．	Carbon．	Diff．of Carbon．	Silicon．	Phos．	Sulph．
1	99.614	． 302		． 019	． 047	． 018
2	99.455	． 490	188	． 034	． 005	． 016
3	99.363	．5：9	． 039	． 043	． 047	． 015
4	99．200	． 649	． 120	．039	． 030	． 012
5	99.119	． 801	． 152	． 023	． 035	． 016
$\stackrel{6}{\sim}$	99086	． 841	． 040	．039	． 024	． 010
\％	99.044	． 85 亿	． 026	． 057	． 014	． 018
8	99.040	． 811	． 004	．05：3	． 024	．012
9	98.900	． 955	． 084	． 0.59	． 0 テิ0	． 016
10	98.861	1.005	． 050	． 088	． 034	． 01%
11	98.752	1.058	． 053	． 120	． 064	． 006
12	98.834	1．0ヶ9	． 021	．0：39	． 044	． $00+$

Here the carbon is seen to increase in quantity in the order of the num－ bers，while the other elements，with the exception of total iron，bear no rela－ tion to the numbers on the samples．The mean difference of carbon is $.0 \% 1$ ．

In mild steels the discrimination is less perfect．
The appearance of the fracture by which the above twelve selections were made can only be seen in the cold ingot before any operation，except the original one of casting，has been performed upon it．As soon as it is hainmered，the structure changes in a remarkable manner，so that all trace of the primitive condition appears to be lost．

Another method of rendering visible to the eye the molecular and chemi－ cal changes which go on in steel is by the process of hardening or temper－ ing．When the metal is heated and plunged into water it acquires an increase of hardness，but a loss of ductility．If the heat to which the steel has been raised just before plunging is too high，the metal acquires intense hardness，but it is so brittle as to be worthless；the fracture is of a bright， granular，or sandy character．In this state it is said to be burned，and it cannot again be restored to its former strength and ductility by annealing； it is ruined for all practical purposes，but in just this state it again shows differences of structure corresponding with its content in carbon．The nature of these changes can be illustrated by plunging a bar highly heated at one end and cold at the other into water，and then breaking it off in pieces of equal length，when the fractures will be found to show appear－ ances characteristic of the temperature to which the sample was raised．

The specific gravity of steel is influenced not only by its chemical analy－ sis，but by the heat to which it is subjected，as is shown by the followiny table（densities referred to $60^{\circ} \mathrm{F}$ ．）：
Specific gravities of twelve samples of steel from the ingot；also of si．x hammered bars，each bar being overheated at one end and cold cit the other，in this state plunged into water，and then broken into pieces of equal length．

	1	2	3	－ 4	5	6	\uparrow	8	9	10	11	12
Ingot．．	\％．855	7.836	7.841	7.829	7.838	7.834	7.819	7.818	\％．813	7．80ヶ	7．803	7.805
＊Burned 1 ．			7.818	7.791		7． 889		7．752		ก． 144		． 690
			\％． 814	7． 811		\％． 784		\％ 7.755		7． 749		7． 741
			\％ 7.823	7.830		7．i80		\％． 558		7． 55		\％． 769
5.			7.831	7.806		7.808		－ 7.790		7．812		\％．$\% 181$
Cold 6.			7.844	7.824		7．8？9		\％．825		\％．826		\％．82

＊Order of samples from bar．

Effect of Heat on the Grain of Steel．（W．Metcalf，－Jeans on Steel，p．642．）－A simple experiment will show the alteration produced in a high－carbon steel by different methods of hardening．If a bar of such steel be nicked at about 9 or 10 places，and about half an inch apart，a suitable specimen is obtained for the experiment．Place one end of the bar in a good fire，so that the first vicked piece is heated to whiteness，while the rest of the bar，being out of the fire，is heated up less and less as we approach the other end．As soon as the first piece is at a good white heat，which of course burns a high carbon steel，and the temperature of the rest of the bar gradually passes down to a very dull red，the metal should be taken out of the fire and suddenly plunged in cold water，in which it should be left till quite cold．It should then be taken out and carefully dried．An examina－ tion with a file will show that the first piece has the greatest hardness， while the last piece is the softest，the intermediate pieces gradually passing from one condition to the other．On now breaking off the pieces at each nick it will be seen that very considerable and characteristic changes have been produced in the appearance of the metal．The first burnt piece is very open or crystalline in fracture；the succeeding pieces become closer and closer in the grain until one piece is found to possess that perfectly even grain and velvet－like appearance which is so much prized by experi－ enced steel users．The first pieces also，which have been too much hard－ ened，will probably be cracked；those at the other end will not be hardened through．Hence if it be desired to make the steel hard and strong，the temperature used must be high enough to harden the metal through，but not sufficient to open the grain．

Changes in thtimate Strength and Elasticity due to Hammering，Annealing，and Tempering．（J．W．Langley， Trans．A．S．C．E．1892．）－The following table gives the result of tests made on some round steel bars，all from the same ingot，which were tested by tensile stresses，and also by bending till fracture took place：

$\begin{aligned} & \dot{0} \\ & \stackrel{0}{3} \\ & \ddot{B} \\ & \text { B. } \end{aligned}$	Treatment．		$\frac{\text { Carb }}{}$						
1	Cold－hammered bar	15.3	1.25	． 4%		93．420	141，500	2.00	2.42
2	Bar drawn black．．．	\％ 5	1.25	． 47	． 5 ¢7	114，700	138，400	6.00	12.5
2	Bar annealed ．．．．．．．．	1\％5	1.31	． 70	． 580	68，110	98，410	10.00	11.69
4	Bar hardened and drawn black ．．．．．．	30	1.09	． 36	． 578	152，800	248，700	8.33	17.9

The total carbon given in the table was found by the color test，which is affected，not only by the total carbon，but by the condition of the carbon．
The analysis of the steel was：
Silicon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 242
Phosphorus．．．．．．．．．．．．．．．．．．．．．．．． 02
Sulphur ．．．．．．．．．．．．．．．．．．．．．．．．．．． 009
 .24

Heating Tool Steel．（Crescent Steel Co．，Pirtsburg．Pa．）－－There are three distinct stages or times of heating：First，for forging；second，for hardening；third，for tempering．
The first requisite for a good heat for forging is a clean fire and plenty of fuel，so that jets of hot air will not strike the corners of the piece；next，the fire should be regular，and give a good uniform heat to the whole part to be forged．It should be keen enough to heat the piece as rapidly as may be， and allow it to be thoroughly heated through，without being so fierce as to overheat the corners．
Steel should not be left in the fire any longer than is necessary to heat it clear through，as＂soaking＂in fire is very injurious；and，on the other hand， it is necessary that it should be hot through，to prevent surface cracks．
By observing these precautions a piece of steel may always be heated safely，up to even a bright yellow heat，when there is much forging to bo done on it．

The best and most economical of welding fluxes is clean, crude borax, which should be first thoroughly melted and then ground to fine powder.

After the steel is properly heated, it should be forged to shape as quickly as possible; and just as the red heat is leaving the parts intended for cutting edges, these parts should be refined by rapid, light blows, continued until the red disappears.
For the second stage of heating, for hardening, great care should be used: first, to protect the cutting edges and working parts from heating more rapidly than the body of the piece: next, that the whole part to be hardened be heated uniformly through, without any part becoming visibly hotter than the other. A uniform heat, as low as will give the required hardness, is the best for hardening.
For every variation of heat, which is great enough to be seen, there will result a variation in grain, which may be seen by breaking the piece: and for every such variation in temperature, there is a very good chance for a crack to be seen. Many a costly tool is ruined by inattention to this point.
The effect of too high heat is to open the grain: to make the steel coarse. The effect of an irregular heat is to cause irregular grain, irregular strains, and cracks.

As soon as the piece is properly heated for hardening, it should be promptly and thoroughly quenched in plenty of the cooling medium, water, brine. or oil, as the case may be.

An abundance of the cooling bath, to do the work quickly and uniformly all over, is very necessary to good and safe work.
To harden a large piece safely a running stream should be used.
Much uneren hardening is caused by the use of too small baths.
For the third stage of heating, to temper. the first important requisite is again uniformity. The next is time; the more slowly a piece is brought down to its temper, the better and safer is the operation.

When expensive tools are to be made it is a wise precaution to try small pieces of the steel at different temperatures, so as to find out how low a heat will give the necessarr hardness. The lowest heat is the best for any steel.

Heating to Forge.-The trouble in the forge fire is usually uneven heat, and not too high heat. Suppose the piece to be forged has been put into a very hot fire, and forced as quickly as possible to a high yellow heat, so that it is almost up to the scintillating point. If this be done, in a few minutes the outside will be quite soft and in a nice condition for forging, while the middle parts will not be more than red-hot. Now let the piece be placed under the hammer and forged, and the soft outside will yield so much more readily than the hardinside, that the outer particles will be torn asunder, while the inside will remain sound.

Suppose the case to be reversed and the inside to be much hotter than the outside; that is, that the inside shall be in a state of semi-fusion. while the outside is hard and firm. Now let the piece be forged, and the outside will be all sound and the whole piece will appear perfectly good until it is cropped, and then it is found to be hollow inside.

In either case, if the piece had been heated soft all through, or if it had been only red-hot all through, it would have forged perfectly sound.

In some cases a high heat is more desirable to save heavy labor but in every case where a fine steel is to be used for cutting purposes it must be borne in mind that very heavy forging refines the bars as they slowly cool, and if the smith heats such refined bars until they are soft. he raises the grain, makes them coarse, and he cannot get them fine again unless he has a very heavy steam-hammer at command and knows how to use it well.

Annealing. (Crescent Steel Co.)-Annealing or softening is accomplished by heating steel to a red heat and then cooling it very slowly, to prevent it from getting hard again.

The higher the degree of heat, the more will steel be softened, until the limit of softness is reached, when the steel is melted.

It does not follow that the higher a piece of steel is heated the softer it will be when cooled, no matter how slowly it may be cooled: this is prored by the fact that an ingot is always harder than a rolled or hammered bar made from it.
Therefore there is nothing gained by heating a piece of steel hotter than a good, bright, cherry-red; on the contrary, a higher heat has several disadvantages: First. If carried too far, it may leave the steel actually harder than a good red heat would leave it. Second. If a scale is raised on the steel, this scale will be harsh, granular oxide of iron, and will spoil the tools used to cut it. Third. A high scaling heat continued for a little time
changes the structure of the steel, makes it brittle, liable to crack in hardening, and impossible to refine.
To anneal any piece of steel, heat it red-hot; heat it uniformly and heat it through, taking care not to let the ends and corners get too hot.

As soon as it is hot, take it out of the fire, the sooner the better, and cool it as slowly as possible. A good rule for heating is to heat it at so low a red that when the piece is cold it will still show the blue gloss of the oxide that was put there by the hammer or the rolls.
Steel annealed in this way will cut very soft ; it will harden very hard, without cracking; and when tempered it will be very strong, nicely refined, and will hold a keen, strong edge.
Tempering.-Tempering steel is the act of giving it, after it has been shaped, the harduess necessary for the work it has to do. This is done by first hardening the piece, generally a good deal harder than is necessary, and then toughening it by slow heating and gradual softening until it is just right for work.
A piece of steel properly tempered should always be finer in grain than the bar from which it is made. If it is necessary, in order to make the piece as hard as is required, to heat it so hot that after being hardened the grain will be as coarse as or coarser than the grain in the original bar, then the steel itself is of too low carbon for the desired work.
If a great degree of hardness is not desired, as in the case of taps, and most tools of complicated form, and it is found that at a moderate heat the tools are too hard and are liable to crack, the smith should first use a lower heat in order to save the tools already made, and then notify the steelmaker that his steel is too high, so as to prevent a recurrence of the trouble.
For descriptions of various methods of tempering steel, see "Tempering of Metals," by Joshua Rose, in App. Cyc. Mech., vol. ii. p. 863 ; also, "Wrinkles and Recipes," from the Scientific American. In both of these works Mr. Rose gives a "color scale," lithographed in colors, by which the following is a list of the tools in their order on the color scale, together with the approximate color and the temperature at which the color appears on brighteued steel when heated in the air :

Scrapers for brass ; very pale yellow, $430^{\circ} \mathrm{F}$.
Steel-engraving tools.
Slight turning tools. .
Hammer faces.
Planer tools for steel.
Ivory-cutting tools.
Planer tools for iron.
Paper-cutters.
Wood-engraving tools.
Bone cutting tools.
Milling-cutters; straw yellow, $460^{\circ} \mathrm{F}$.
Wire-drawing dies.
Boring-cutters.
Leather-cutting dies.
Screw-cutting dies.
Inserted saw-teeth.
Taps.
Rock-drills.
Chasers.
Punches and dies.
Penknives.
Reamers.
Half-round bits.
Planing and moulding cutters.
Stone-cutting tools ; brown yellow, $500^{\circ} \mathrm{F}$.
Gouges.

Hand-plane irons.
Twist-drills.
Flat drills for brass.
Wood-boring cutters.
Drifts.
Coopers' tools.
Edging cutters ; light purple, $530^{\circ} \mathrm{F}$. Augers.
Dental and surgical instruments.
Cold chisels for steel.
Axes; dark purple, $550^{\circ} \mathrm{F}$.
Gimlets.
Cold chisels for cast iron.
Saws for bone and ivory.
Needles.
Firmer-chisels.
Hack-saws.
Framing-chisels.
Cold chisels for wrought iron.
Moulding and planing cutters to be filed.
Circular saws for metal.
Screw-drivers.
Springs.
Saws for wood.
Dark blue, $570^{\circ} \mathrm{F}$.
Pale blue, 610°.
Blue tinged with green, 630°.

MECHANICS.

FORCE, STATICAL MOMENT, EQUILIBRTUMI, ETC.

Mechanics is the science that treats of the action of force upon bodies.
A Force is anything that tends to change the state of a body with respect to rest or motion. If a body is at.rest, anything that tends to put it in motion is a force; if a body is in motion, anything that tends to change either its direction or its rate of motion is a force.

A force should always mean the pull. pressure, rub, attraction (or repulsion) of one body upon another, and always implies the existence of a simultaneous equal and opposite force exerted by that other body on the first body, i.e.. the reaction. In no case should we call anything a force unless we can conceive of it as capable of measurement by a spring-balance, and are able to say from what other body it comes. (I P. Church.)

Forces may be divided into two classes, extraneous and molecular: extraneous forces act on bodies from without; molecular forces are exerted bet,ween the neighboring particles of bondies.
Extralleous forces are of two kinds, pressures and moving forces: pres-
Ires simply tend to produce motion; moving forces actually produce rotion. Thus, if gravity act on a fixed body, it creaies pressure; if on a free oody, it pruduces motion.
Molecular Sorces are of two kinds, attractive and repellent: attractive forces tend to bind the particles of a body together; repellent forces tend to thrust them asunder. Both kinds of molecular forces are continually exerted between the molecules of bodies, and on the predominance of one or the other depends the pliysical state of a body, as solid. liquid. or gaseons.
The Unit of Force used in enginerring, by Enylish writers, is the pound avoirdupois. (For some scientific purposes, as in electro-dynamics, forces are sometimes expressed in "absolute units." The absolute unit of force is that force which acting on a unit of mass during a unit of time produces a unit of velrcty; in English measures, that force which acting on the mass whose weight is one pound in London will in one second produce a velocity of one font per second $=1 \div 32.187$ of the weight of the standard pound avoirdupois at London. In the French C. G. S. or centimetre-gramme second system it is the force which acting on the mass whose weight is one gramme at Paris will produce in one second a velocity of olle centimetre per secnnd. This unit is called a "dyne" $=1 / 981$ gramme at. Paris.)

Inertia is that property of a body by virtue of which it tends to continue in the state of rest or motion in which it may be placed, until acted on by some force.
Newton's Laws of Motion.-1st Law. If a body be at rest, it will xemain at rest; or if in motion, it will move uniformly in a straight live till acted on by some force.
2d Law. If a body be acted on by several forces, it will obey each as though the others did not exist, and this whether the body be at rest or in motion.
3d Law. If a force act to change the state of a body with respect to rest or motion, the body will offer a resistance equal and directly opposed to the force. Or, to every action there is opposed an equal and opposite reaction.
Graphic Representation of a Force.-Forces may be represented geometrically uy suraight lines, proportional to the forces. A furce is given when we know its intensity, its point of application, and the direction in which it acts. When a force is represente. by a line, the length of the line represents its intensity; one extremity represents the point of application; and an arrow-head at the other extremity shows the direction of the force.

Composition of Forces is the operation of finding a single force whose effect is the same as that of two or more given forces. The required force is called the resultant of the given forces.

Resolution of Forces is the operation of finding two or more forces whose combined effect is equivalent to that of a given force. The required forces are called components of the given force.

The resultant of two forces applied at a point, and acting in the same direction, is equal to the sum of the forces. If two forces act in opposite directions, their resultant is equal to their difference, and it acts in the direction of the greater.

If any number of forces be applied at a point, some in one direction and others in a contrary direction, their resultant is equal to the sum of those that act in one direction, diminished by the sum of those that act in the opposite direction; or, the resultant is equal to the algebraic sum of the components.

Parallelogram of Forces.-If two forces acting on a point be represented in direction and intensity by adjacent sides of a parallelogram, their resultant will be represented by that diagonal of the parallelogram,

Fig. 88. which passes through the point. Thus OR, Fig. 88 , is the resultant of $O Q$ and $O P$.

Polygon of Forces.-If several forces are applied at a point and act in a single plane, their resultant is found as follows:

Through the point draw a line representing the first force ; through the extremity of this draw a line representing the second force; and so on, throughout the system; finally, draw a line from the starting-point to the extremity of the last line drawn, and this will be the resultant required.

Suppose the body A, Fig. 89, to be urged in the directions $A 1, A 2, A 3, A 4$, and $A 5$ by forces which are to each other as the lengths of those lines. Suppose these forces to act successively and the body to first move from A to 1: the second force $A 2$ then acts and finding the body at 1 would take it to 2^{\prime}; the third force would then carry it to 3^{\prime}, the fourth to 4^{\prime}, and the fifth to 5^{\prime}. The line $A 5^{\prime}$ represents in magnitude and direction the resultaut of all the forces considered. If there had been an additional force, $A x$, in the group. the body would be returned by that force to its original position, supposing the forces to act successively, but if they had acted simultaneously the body would never have moved at all; the tendencies to motion balancing each other.

It follows, therefore, that if the several forces which tend to move a body can be represented in magnitude and direction by the sides of a closed polygon taken in order, the body will remain at rest; but if the forces are represented by the sides of

Fig. 89. an open polygon, the body will move and the direction will be represented by the straight line which closes the polygon.
Twisted Polygon.-The rule of the polygon of forces holds true even when the forces are not in one plane. In this case the lines $A 1,1-2^{\prime}, 2^{\prime}-3^{\prime}$, etc.. form a twisted polygon, that is, one whose sides are not in one plane.
Parallelopipedion of Forces.- If three forces acting on a point be represented by three edges of a parallelopipedon which meet in a common point, their resultant will be represented by the diagonal of the parallelopipedon that passes through their common point.
Thus $O R$, Fig. 90, is the resultant of $O Q, O S^{\prime}$, and $U P . O M$ is the result. ant of $O P$ and $O Q$. and $O R$ is the resultant of $O M$ and $O S$.
Moment of a Force.-The moment of a force (sometimes called statical moment), with respect to a point, is the product of the force by the perpendicular distance from the point to the direction of the force. The fixed point is called the centre of mo-

Fict. 90.

Fig. 91.
ments ; the perpendicular distance is the lever-arm of the force; and the moment itself measures the tendency of the force to produce rotation about the centre of moments.
If the force is expressed in pounds and the distance in feet, the moment is expressed in foot-pounds. It is necessary to observe the distinction between foot-pounds of statical moment and foot-pounds of work or energy. (See Work.)
In the bent lever, Fig. 91 (from Trautwine), if the weights n and m represent forces, their moments about the point f are respectively $n \times a f$ and $m \times f c$. If instead of the weight m a pulling force to balance the weight n is applied in the direction $b s$, or by or $b d, s, y$, and d being the amounts of these forces, their respective moments are $s \times f t, y \times f b, d \times f h$.
If the forces acting on the lever are in equilibrium it remains at rest, and the moments on each side of f are equal, that is, $n \times a f=m \times f c$, or $s \times f t$, or $y \times f b$, or $d \times h f$.
The moment of the resultant of any number of forces acting together in the same plane is equal to the algebraic sum of the moments of the forces taken separately.
Statical Moment. Stability. - The statical moment of a body is the product of its weight by the distance of its line of gravity from some assumed line of rotation. The line of gravity is a vertical line drawn from its centre of gravity through the body. The stability of a body is that resistance which its weight alone enables it to oppose agaiust forces tending to overturn it or to slide it along its foundation.

To be safe against turning on an edge the moment of the forces tending to overturn it, taken with reference to that edge, must be less than the statical moment. When a body rests on an inclined plane, the line of gravity being vertical, falls toward the lower edge of the body, and the condition of its not being overturned by its own weight is that the line of gravity must fall within this edge. In the case of an inclined tower resting on a plane the same condition holds-the line of gravity must fall within the base. The condition of stability against sliding along a horizontal plane is that the horizontal component of the force exerted tending to cause it to slide shall be less than the product of the weight of the body into the coefficient of friction between the base of the body and its supporting plane. This coefficient of friction is the tangent of the angle of repose, or the maximum angle at which the supporting plane might be raised from the horizontal before the body would begin to slide. (See Friction.)

The Stability of a Dam against overturning about its lower edge is calculated by comparing its statical moment referred to that edge with the resultant pressure of the water against its upper side. The horizontal pressure on a square foot at the bottom of the dam is equal to the weight of a column of water of one square foot in section, and of a height equal to the distance of the bottom below water-level; or, if H is the height, the pressure at the bottom per square foot $=60.4 \times H$ lbs. At the water-level the pressure is zero, and it increases uniformly to the bottom, so that the sum of the pressures on a vertical strip one foot in breadth may be represented by the area of a triangle whose base is $62.4 \times H$ and whose altitude is H, or $624 H^{2}+2$. The centre of gravity of a triangle being $1 / 3$ of its altitude, the resultant of all the horizontal pressures may be taken as equivalent to the sum of the pressures acting at $1 / 3 H$, and the moment of the sum of the pressures is therefore $6 ? .4 \times H^{3} \div 6$.

Parallel Forces.-If two forces are parallel and act in the same direction, their resultant is parallel to both, and lies between them, and the intensity of the resultant is equal to the sum of the intensities of the two forces. Thus in Fig. 91 the resultant of the forces n and m acts vertically downward at f, and is equal to $n+m$.
If two parallel forces act at the extremities of a straight line and in the same direction, the resultant divides the line joining the points of application of the components, inversely as the components. Thus in Fig. $91, n 2: n::$ $a f: f c$; and in Fig. 92, $P: Q:: S N: S M$.

The resultant of two parallel forces acting in opposite directions is parallel to both, lies without both, on the side and in the direction of the greater, and its intensity is equal to the difference of the intensities of the two forces.

Fig. 92.

Thus the resultant of the two forces Q and P. Fig. 93 , is equal to $Q-P=$

Fig. 93. R. Of any two parallel forces and their resultant each is proportional to the distance between the other two; thus in both Figs 92 and $93, P: Q: R:: S N: S M: M N$.

Couples.-If P and Q be equal and act in oppusite directions. $R=0$; that is, they have no irsultant. Two such forces constitute what is called a couple.

The tendency of a couple is to produce rotation; the measure of this teudency, called the momient of the couple, is the product of one of the forces by the distance between the two.

Since a couple has no single resultant, no single force can balance a couple. To prevent the rotation of a body acted on by a couple the application of two other forces is required. forming a second couple. Thus in Fig. $94, P$ and Q forming a couple, may be balanced by a second couple formed by R and s. The point of application of either R or s^{\prime} may be a fixed pivot or axis.

Moment of the couple $P Q=P(c+b+a)=$ moment of $R S=R b$. Also, $P+R=Q+S$.

The forces R and s need not be parallel to P and Q. but if not, then their components parallel to $P Q$ are to be taken instead of the forces themselves.

Equilibrium of Forces.-A system of forces applied at poiuts of a solid body will be in equilibrium when they have no tendency to produce motion, either of translation or of rota-
 tion.

The conditions of equilibrium are: 1. The algehraic sum of the components of the forces in the direction of any three rectangular axes must be separately equal to 0 .
2. The algebraic sum of the moments of the forces, with respect to any three rectangular axes, must be separately equal to 0 .

If the forces lie in a plane: 1 . The algebraic sum of the components of the forces. in the direction of any two rectangular axes, must be separately equal to 0 .
2. The algebraic sum of the moments of the forces, with respect to any point in the plane, must be equal to 0 .
If a body is restrained by a fixed axis, as in case of a pulley, or wheel and axle, the forces will be in a equilibrium when the algebraic sum of the moments of the forces with respect to the axis is equal to 0 .

CENTRE OF GRAVITY.

The centre of gravity of a bndy, or of a system of bodies rigidly connected together, is that point about which, if suspended, all the parts will be in equilibrium, that is, there will be no tendency to rotation. It is the point through which passes the resultant of the efforts of gravitation on each of the elementaly particles of a body. In bodies of equal heaviness throughout, the centre of gravity is the centre of magnitude.
(The centre of magnirude of a figure is a point such that if the figure be divided into equal parts the distarce of the centre of magnitude of the whole figure from any given plane is the mean of the distances of the centres of magnitude of the several equal parts from that plane.)

If a body be suspended at its centre of gravity, it will be in equilibrium in all positions. If it be suspended at a point out of its centre of gravity, it will swing into a positiou such that its centre of gravity is vertically beneath its point of suspension.
To find the centre of gravity of any plane figure mechanically, suspend the figure by any point near its edge, and mark on it the direction of a plumb-line hung from that point ; then suspend it from some other point, and again mark the direction of the plumb-line in like manner. Then the centre of gravity of the surface will be at the point of intersection of the two marks of the plumb-line.

The Centre of Gravity of Regular Figures, whether plane or solid, is the same as their geometrical centre ; for iustance, a straight line,
parallelogram, regular polygon, circle, circular ring, prism, cylinder, sphere, spheroid, middle frustums of spheroid, etc. Of a triungle: On a line drawn from any angle to the middle of the opposite side, at a distance of oue third of the line from the side; or at the intersection of such lines drawn from any two angles.
Of a trapezium or trapezoid : Draw a diagonal, dividing it in to two triangles. Draw a line joining their centres of gravity. Draw the other diagonal, making two other triangles, and a line joining their centres. The intersection of the two lines is the centre of gravity required.
Of a sector of a circle: On the radius which bisects the arc, $2 c r \div 3 l$ from the centre, c being the chord, r the radius, and l the arc.

Of a semicircle? On the middle radius, $.4244 r$ from the centre.
Of a quadrant: On the middle radius, $.600 \%$ from the centre.
Of a segment of a circle : $c^{3} \div 12 a$ from the centre. $c=$ chord, $a=$ area. Of a parabolic surface : In the axis, $3 / 5$ of its length from the vertex.
Of a semi-purabola (surface) : 3/5 length of the axis from the vertex, and $3 / 8$ of the semi-base from the axis.

Of a cone or pyrcumid: In the axis, $1 / 4$ of its length from the base.
Of a parrtboloid: In the axis, $2 / 3$ of its length from the vertex.
Of a cylinder, or regulur prisn : In the middle point of the axis.
Of a fiustum of a cone or pyramid: Let $a=$ length of a line drawn from the vertex of the cone when complete to the centre of gravity of the base, and a^{\prime} that portion of it between the vertex and the top of the frustum; then distance of centre of gravity of the frustum from centre of gravity of its base $=\frac{a}{4}-\frac{3 a^{\prime 3}}{4\left(a^{2}+\alpha a^{\prime}+a^{\prime 2}\right)^{\circ}}$.

For two bodies, fixed one at each end of a straight bar, the common ceutre of gravity is in the bar, at that point which divides the distance between their respective centres of gravity in the inverse ratio of the weights. In this solution the weight of the bar is neglected. But it may be taken as a third body, and allowed for as in the following directions:
For more than two bodies connected in one system: Find the common centre of gravity of two of them; and find the common centre of these two jointly with a third body, and so on to the last body of the group.

Allother method, by the principle of moments: To find the centre of gravity of a system of bodies, or a body consisting of several parts, whose several centres are known. If the bodies are in a plane, refer their several centres to two rectangular co-ordinate axes. Multiply each weight by its distance from one of the axes, add the products, and divicle the sum by the sum of the weights: the result is the distance of the centre of gravity from that axis. Do the same with regard to the other axis. If the bodies are not in a plane, refer them to three planes at right angles to each other, and determine the mean distance of the sum of the weights from each of the three planes.

MEOTENTOF INERTRA.

The moment of inertia of the weight of a body with respect to an axis is the algebraic sum of the products obtained by multiplying the weight of each elementary particle by the square of its distance from the axis. If the moment of inertia with respect to any axis $=I$, the weight of any element of the body $=w$, and its distance from the axis $=r$, we have $I=\Sigma\left(w r^{2}\right)$.
The monent of inertia varies, in the same body, according to the position of the axis. It is the least possible when the axis passes through the centre of gravity. To find the moment of inertia of a body, referred to a given axis, divide the body into small parts of regular figure. Multiply the weight of each part by the square of the distance of its centre of gravity from the axis. The sum of the products is the moment of inertia. The value of the moment of inertia thus obrained will be more nearly exact, the smaller and more numerous the parts into which the body is divided.
Moments of Inertia of Regular Solids.-Rod, or bar, of uniform thickness, with respect to an axis perpendicular to the length of the rod,

$$
\begin{equation*}
I=W\left(\frac{l^{2}}{3}+d^{2}\right) \tag{1}
\end{equation*}
$$

$W=$ weight of rod, $2 l=$ length, $d=$ distance of centre of gravity from axis. Thin circular plate, axis in its $\}$
own plane,

$$
\begin{equation*}
I=W\left(\frac{r^{2}}{4}+d^{2}\right) \tag{?}
\end{equation*}
$$

```
\(\left.\begin{array}{l}\text { Circular plate, axis perpendicular } \\ \text { to the plate, }\end{array}\right\} I=W\left(\frac{r^{2}}{2}+d^{2}\right)\).
\(\left.\begin{array}{l}\text { Circular ring, axis perpendicular } \\ \text { to its own plane, }\end{array}\right\} I=W\left(\frac{r^{2}+r^{\prime 2}}{2}+d^{2}\right)\),
\(r\) and \(r^{\prime}\) are the exterior and interior radii of the ring.
\(\left.\begin{array}{l}\text { Cylinder, axis perpendicular to } \\ \text { the axis of the cylinder, }\end{array}\right\} I=W\left(\frac{r^{2}}{4}+\frac{l^{2}}{3}+d^{2}\right)\),
\(r=\) radius of base, \(2 l=\) length of the cylinder.
By maiking \(d=0\) in any of the above formulæ we find the moment of inertia for a parallel axis through the centre of gravity.

The moment of inertia. \(\Sigma w r^{2}\), numerically equals the weight of a body which, if concentrated at the dintance unity from the axis of rotation, would require the same work to produce a given increase of angular velocity that the actual body requires. It bears the same relation to angular acceleration which weight does to linear acceleration (Rankine). The term moment of inertia is also used in regard to areas, as the cross-sections of beams under strain. In this case \(I=\Sigma a r^{2}\), in which \(\alpha\) is any elementary area, and \(r\) its distance from the centre. (See Moment of Inertia, under Strength of Materials, p. 247.)

\section*{CENTRE AND RADIUS OF GYRATION.}

The centre of gyration, with reference to an axis, is a point at which, if the entire weight of a body be concentrated, its moment of inertia will remain unchanged; or, in a revolving body, the point in which the whole weight of the body may be conceived to be concentrated, as if a pound of platinum were substituted for a pound of revolving feathers, the angular velocity and the accumulated work remaining the same. The distance of' this point from the axis is the radius of gyration. If \(W=\) the weight of a body, \(I=\Sigma_{\iota u} r^{2}=\) its moment of inertia, and \(k=\) its radius of gyration,
\[
I=W k^{2}=\Sigma w r^{2} ; k=\sqrt{\frac{\Sigma w r^{3}}{W}} .
\]

The moment of inertia \(=\) the weight \(\times\) the square of the radius of gyration.
To find the radius of gyration divide the body into a considerable number of equal small parts-the more numerous the more nearly exact is the re-sult.- then take the mean of all the squares of the distances of the parts from the axis of revolution, and find the square loot of the mean square. Or, if the moment of inertia is known, divide it by the weight and extract the square root. For radius of gyration of an area, as a cross-section of a beam, divide the moment of inertia of the area by the area and extract the square root.
The radius of gyration is the least possible when the axis passes through the centre of gravity. This minimum radius is called the principal radius of gyration. If we denote it by \(k\) and any other radius of gyration by \(k^{\prime}\), we have for the five cases given under the head of moment of inertia abore the following values :
\(\left.\begin{array}{l}\text { (1) Rod, axis perpen.to } \\ \text { length, }\end{array}\right\}=l \sqrt{\frac{1}{3}} ; k^{\prime}=\sqrt{\frac{l^{2}}{3}+d^{2}}\).
\(\left.\begin{array}{l}\text { (2) Circular plate, axis } \\ \text { in its plane, }\end{array}\right\} k=\frac{r}{2} ; k^{\prime}=\sqrt{\frac{r^{2}}{4}+d^{2}}\).
\(\left.\begin{array}{l}\text { (3) Circular plate, axis } \\ \text { perpen. to plane, }\end{array}\right\} k=r \sqrt{\frac{1}{2}} ; k k^{\prime}=\sqrt{\frac{r^{2}}{2}+d^{2}}\).
\(\left.\begin{array}{l}\text { (4) Circular ring, axis } \\ \text { perpen. to plane, }\end{array}\right\} k=1 \sqrt{\frac{r^{2}+r^{\prime 2}}{2}} ; k^{\prime}=\sqrt{\frac{r^{2}+r^{\prime 2}}{2}+d^{2}}\). (5) Cylinder, axis per-
pen. to lengih,
\(k=\sqrt{\frac{r^{2}}{4}+\frac{l^{2}}{3}} ; k^{\prime}=\sqrt{\frac{r^{2}}{4}+\frac{l^{2}}{3}+d^{2}}\).

\title{
Principal Radii of Gyration and Squares of Radil of Gyration.
}
(For radii of gyration of sections of columns, see page 249.)

\section*{Surface or Solid.}

Parallelogram: \}axis at its base height \(\ell \quad\) \} mid-height Straight rod: \(\left.\begin{array}{l}\text { length l, or thin } \\ \text { rectang. plate }\end{array}\right\} \stackrel{\text { aris at end........ }}{\text { an }}\) mid-length..\(~\) Rectangular prism:
axes \(24,2 b, 2 c\), referred to axis \(2 a \ldots\)
Parallelopiped: lenyth \(l\), base \(b\), axis \} at one end, at mid-breadth......... \}
Hollow square tube:
out. side \(h\), inn'r \(h^{\prime}\), axis mid-length.. very thin, side \(=h\), "
Thin rectangular tube: sides \(b, h\), axis mid-length
Thincirc.plate: rad. \(r\),diam. \(h\), ax. diam Flat circ. ring: diams. \(h, h^{\prime}\), axis diam.
Solid circular cylinder: length \(l\), \} axis diameter at mid-length.
Circular plate: solid wheel of uniform thickness, or cylinder of any length, referred to axis of cyl.....
Hollow circ. cylinder, or flat ring: \(l\), length; \(R, r\), outer and inner radii. Axis, 1, longitudinal axis; 2, diam. at mid-length.
Same: very thin, axis its diameter.
" radins \(r\); axis, longitud'laxis.
Circumf. of circle, axis its centre.
Sphere: radius \(r\). axis its diam..
Spher ind: equatorial radius \(r\), revolving polar axis \(a\).
Paraboloid: \(r=\) rad. of base rew oll axis
Ellipsuid: semi-axes \(a, b, c\); revolving on axis \(2 a\)..
Spherical shell: radii \(R, r\), revolving on its diam
Same: very thin, radius \(r\)
Solid cone: \(r=\) rad. of base, rev. on \(\}\) axis
\begin{tabular}{|c|c|}
\hline Rad. of Gyration. & Square of \(R\). of Gyration. \\
\hline \[
\begin{aligned}
& .5 \pi 73 h \\
& .2886 h
\end{aligned}
\] & \[
\begin{gathered}
1 / 3 h^{2} \\
1 / 12 h^{2}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& .57 \pi 3 l \\
& .2886 l
\end{aligned}
\] & \[
\begin{gathered}
1 / 3 l^{2} \\
1 / 12 l l^{2}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& .577 \sqrt{b^{2}+c^{2}} \\
& .288 \sqrt{4 l^{2}+b^{2}}
\end{aligned}
\] & \[
\begin{gathered}
\left(b^{2}+c^{2}\right) \div 3 \\
\frac{4 l^{2}+b^{2}}{12}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& .289 \sqrt{h^{2}+h^{\prime 2}} \\
& .408 \hbar
\end{aligned}
\] & \[
\begin{gathered}
\left(h^{2}+h^{\prime 2}\right) \div 12 \\
h^{2} \div 6
\end{gathered}
\] \\
\hline \[
.289 h \sqrt{\frac{\sqrt{h+3 b}}{h+b}}
\] & \(\frac{h^{2}}{12} \cdot \frac{h+3 b}{h+b}\) \\
\hline \[
\begin{aligned}
& 1 / 4 \frac{1 / 2 r}{\sqrt{l^{2}+l^{\prime 2}}} \\
& .289 \sqrt{l^{2}+3 r^{2}}
\end{aligned}
\] & \[
\begin{gathered}
1 / 4 r^{2}=h^{2} \div 16 \\
\left(h^{2}+h^{\prime 2}\right) \div 16 \\
\frac{12}{12}+\frac{r^{2}}{4}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
. \% 0 \% 1 r \\
. \% 0 \approx 1 / \overline{R^{2}+r^{2}}
\end{gathered}
\] & \[
\begin{gathered}
1 / 2^{2} \\
\left(R^{2}+r^{2}\right)+2 \\
R^{2}+r^{2}
\end{gathered}
\] \\
\hline \[
\begin{gathered}
.289 \sqrt{l^{2}+3\left(R^{2}+r^{2}\right)} \\
.289 \sqrt{l^{2}+6 R^{2}}
\end{gathered}
\] & \(\overline{12}\)
\[
\frac{+\frac{l^{2}}{12}+\frac{R^{2}}{2}}{}
\] \\
\hline \(r\) & \[
\begin{aligned}
& r^{2} \\
& r^{-2}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& .7071 r \\
& .6325 r
\end{aligned}
\] & \[
\begin{gathered}
1 / 2 r^{2} \\
2 / 5 r^{2}
\end{gathered}
\] \\
\hline . \(63.55 r\) & \(2 / 5 r^{2}\) \\
\hline \(.5 \pi 73 r\)
\[
.44 \tau 2 \sqrt{b^{2}+c^{2}}
\] & \[
\begin{gathered}
\frac{1 / 3 r^{2}}{} \\
\frac{b^{2}+c^{2}}{5} \\
\hline
\end{gathered}
\] \\
\hline \[
.6325 \sqrt{\frac{R^{5}-r^{5}}{R^{3}-r^{3}}}
\] & \[
\frac{2}{5} \frac{R^{5}-r^{5}}{R^{3}-r^{3}}
\] \\
\hline . \(8165 r\) & \(2 / 3{ }^{2}\) \\
\hline \(54 \%\) \% & \(0.3 r^{2}\) \\
\hline
\end{tabular}

\section*{CENTRES OF OSCILLATION AND OF PERCUSSION.}

Centre of Oscillation. - If a body oscillate about a fixed horizontal axis, not passing throngls its centre of gravity, there is a point in the line drawn from the centre of gravity perpendicular to the axis whose motion is the same as it would be if the whole mass were collected at that point and allowed to vibrate as a pendulum about the fixed axis. This point is callerl the cenrre of nscillation.

The Radius of Oscillation, or distance of the centre of oscillation from the pornt of suspension \(=\) the square of the radius of gyration \(\div\) distance of the centre of gravity from the point of suspension or axis. The centres of oscillation and suspension are convertible.
If a straight line, or uniform thin bar or cylinder, be suspended at one end, oscillating about it as an axis, the centre of oscillation is at \(2 / 6\) the length of
the rod from the axis. If the point of suspension is at \(1 / 3\) the length from the end, the centre of oscillation is also at \(2 / 3\) the length from the axis, that is. it is at the other end. In both cases the oscillation will be performed in the same time. If the point of suspension is at the centre of gravity, the length of the equivalent simple peudulum is infinite, and therefore the time of vibration is infinite.

For a sphere suspended by a cord, \(r=\) radius, \(h=\) distance of axis of motion from the centre of the sphere, \(h^{\prime}=\) distance of centre of oscillation from centre of the sphere, \(l=\) radius of oscillation \(=h+h^{\prime}=h+\frac{2}{5} \frac{r^{2}}{h}\).

If the sphere vibrate about an axis tangent to its surface, \(h=r\), and \(l=r\) \(+2 / 5 r\). If \(h=10 r, l=10 r+\frac{r}{25}\).

Lengths of the radius of oscillation of a few regular plane figures or thin plates. suspended by the vertex or uppermost point.

1st. When the vibrations are flatwise, or perpendicular to the plane of the figure:

In an isosceles triangle the radius of oscillation is equal to \(3 / 4\) of the height of the triangle.
In a circle, \(5 / 8\) of the diameter.
In a parabola, \(5 / 7\) of the height.
2d. When the vibrations are edgewise, or in the plane of the figure:
In a circle the radius of oscillation is \(3 / 4\) of the diameter.
In a rectangle suspended by one angle, \(2 / 3\) of the diagonal.
In a parabola, suspended by the vertex, \(5 / 7\) of the height, plus \(1 / 3\) of the parameter.

In a parabola, suspended by the middle of the base, \(4 / 7\) of the height plus \(1 / 2\) the narameter.

Centre of Percussion. - The centre of percussion of a body oscillating about a fixed axis is the point at which, if a blow is struck by the body, the percussive action is the same as if the whole mass of the borly were concentrated at the point. This point is identical with the centre of oscillation.

\section*{THEE PENDULUNI.}

A body of any form suspended from a fixed axis about which it oscillates by the force of gravity is called a compound pendulum. The ideal body concentrated at the centre of oscillation suspended from the centre of suspension by a string without weight, is called a simple pendulum. This equivalent simple pendulum has the same weight as the given body, and also the same moment of inertia, referred to an axis passing through the point of suspension. aud it oscillates in the same time.
The ordinary pendulum of a given length vibrates in equal times when the angle of the vibrations does not exceed 4 or 5 degrees, that is. \(2^{\circ}\) or \(21 / 2^{\circ}\) each side of the vertical. This property of a pendulum is calied its isochronism.
The time of vibration of a pendulum varies directly as the square root of the length, and inversely as the square root of the acceleration due to gravity at the given latitude and elevation above the earth's surface.
If \(T=\) the time of vibration, \(l=\) length of the simple pendulum, \(g=\) acceleration \(=32.16, T=\pi \sqrt{\frac{l}{g}} ;\) since \(\pi\) is constant, \(T \propto \frac{\sqrt{l}}{\sqrt{g}}\). At a given location \(g\) is constant and \(T \propto \sqrt{l}\). If \(l\) be constant, then for any location \(T \propto \frac{1}{\sqrt{g}}\). If \(T\) be constant, \(g T^{2}=\pi^{2} l ; l \propto g ; g=\frac{\pi^{2} l}{T^{2}}\). From this equation the force of gravity at any place may be determined if the length of the simple pendulum. vibrating seconds. at that place is known. At New York this length is 39.1017 inches \(=32585 \mathrm{ft}\)., whence \(g=32.16 \mathrm{ft}\). At London the length is 39.1393 inches. At the equator 39.0152 or 39.0168 inches, according to different authorities.

Time of vibration of a pendulum of a given length at New York
\[
=t=\sqrt{\frac{l}{39.1017}}=\frac{\sqrt{l}}{6.253},
\]
\(t\) being in seconds and \(l\) in inches. Length of a pendulum having a given time of vibration, \(l=t^{2} \times 39.1017\) inches.

The time of vibration of a pendulum may be varied by the addition of a weight at a pont above the centre of suspension, which counteracts the lower weight, and lengthens the period of vibration. By varying the height of the uppre weight the time is varied.

To find the weight of the upper bob of a compound pendulum, vibrating seconds, when the weight of the lower bob, and the distances of the weights from the point of suspension are given:
\[
w=W \frac{(39.1+D)-D^{2}}{(39.1+d)+d^{2}} .
\]
\(W=\) the weight of the lower bob, \(w=\) the weight of the upper bob; \(D=\) the distance of the lower bob and \(d=\) the distance of the upper bob from the point of suspension, in inches.

Thus, by means of a secoud bob, short pendulums may be constructed to vibrate as slowly as longer pendulums.
By increasing \(w\) or \(d\) until the lower weight is entirely counterbalanced, the time of vihration may be made infinite.
Conical Pendulum. - A weight suspended by a cord and revolving at a uniform speed in the circumference of a circular horizontal plane whose radius is \(r\), the distance of the plane below the point of suspension being \(h\), is held in equilibrium by three forces-the tension in the cord, the centrifugal force, which tends to increase the radius \(r\), and the force of gravity acting downward. If \(v=\) the velocity in feet per second, the centre of gravity of the weight, as it describes the circumference, \(g=32.16\), and \(r\) and \(h\) are taken in feet, the time in seconds of performing one revolution is
\[
t=\frac{2 \pi r}{v}=2 \pi \sqrt{\frac{h}{g}} ; \quad h=\frac{g t^{2}}{4 \pi^{2}}=.8146 t^{2} .
\]

If \(t=1\) second, \(h=.8146\) font \(=9.7 \%\) inches.
The principle of the conical pendulum is used in the ordinary fly-ball governor for'steam-engines. (See Governors.)

\section*{CENTREFUGAL FORCE.}

A body revolving in a curved path of radius \(=R\) in feet exerts a force, called centrifugal force, \(F\), upon the arm or cord which restrains it from moving in a straight line, or "flying off at a tangent." If \(W=\) weight of the body in pounds, \(N=\) number of revolutions per minute, \(v=\) linear velocity of the centre of gravity of the body, in feet per second, \(g=32.16\), then
\(v=\frac{2 \pi R N}{60} ; F=\frac{W v^{2}}{g R}=\frac{W v^{2}}{32.16 R}=\frac{W 4 \pi^{2} R N^{2}}{3600 g}=\frac{W R N^{2}}{2933}=.0003410 W R N^{2} \mathrm{lbs}\).
If \(n=\) number of revolutions per second, \(F=1.22 \pi 6 W R n^{2}\).
(For centrifugal force in fly-wheels, see Fly-wheels.)

\section*{VEHOCLTY, ACCELERATHON, FALLING HODIES.}

Velocity is the rate of motion, or the distance passed over by a body in a given time.
If \(s=\) space in feet passed over in \(t\) seconds, and \(v=\) velocity in feet per second, if the velocity is uniform,
\[
v=\frac{s}{t} ; \quad s=v t ; \quad t=\frac{s}{v}
\]

If the velocity varies uniformly, the mean velocity \(v_{0}=\frac{v_{1}+v_{2}}{2}\), in which \(v_{1}\) is the velocity at the beginning and \(v_{2}\) the velocity at the end of the time \(t\).
\[
\begin{equation*}
s=\frac{v_{1}+v_{2}}{2} t \tag{1}
\end{equation*}
\]

Acceleration is the change in velocity which takes place in a unit of time. Unit of acceleration \(=a=1\) foot per second in one second. For uniformly varying velocity, the acceleration is a constant quantity, and
\[
\begin{equation*}
a=\frac{v_{2}-v_{1}}{t} ; \quad v_{2}=v_{1}+a t ; \quad v_{1}=v_{2}-a t ; \quad t=\frac{v_{2}-v_{1}}{a} . \text {...(2) } \tag{2}
\end{equation*}
\]

If the bod, start from rest, \(v_{1}=0\); then
\[
v_{0}=\frac{v^{2}}{2} ; \quad v_{2}=2 v_{0} ; \quad a=\frac{v_{2}}{t} ; \quad v_{2}=a t ; \quad v_{2}-a t=0 ; \quad t=\frac{v_{2}}{a} .
\]

Combining (1) and (2), we have
\[
s=\frac{v_{2}^{2}-v_{1}^{2}}{2 a} ; s=v_{1} t+\frac{a t^{2}}{2} ; \quad s=v_{2} t-\frac{a t^{2}}{2}
\]

If \(v_{1}=0, s=\frac{v_{2}}{2} t\).
Retarded Motion.-If the body start with a velocity \(v_{1}\) and come to rest, \(v_{2}=0\); then \(s=\frac{v_{1}}{2} t\).

In any case, if the change in velocity is \(v\),
\[
s=\frac{v}{2} t ; \quad s=\frac{v^{2}}{2 a} ; \quad s=\frac{a}{2} t^{2}
\]

For a body starting from or ending at rest, we have the equations
\[
v=a i ; \quad s=\frac{v}{2} t ; \quad s=\frac{a t^{2}}{2} ; \quad v^{2}=2 \alpha s
\]

Falling Bodies. - In the case of falling bodies the acceleration due to gravity is \(3: .16\) feet per second in one second. \(=g\). Then if \(v=\) velocity acquired at the end of \(t\) seconds, or final velocity, and \(h=\) height or space in feet passed over in the same time,
\[
\begin{aligned}
& v=g t=32.16 t=\sqrt{2 g h}=8.02 \sqrt{h}=\frac{2 h}{t} \\
& h=\frac{g t^{2}}{2}=16.08 t^{2}=\frac{v^{2}}{2 g}=\frac{v^{2}}{64.32}=\frac{v t}{2} \\
& t=\frac{v}{g}=\frac{v}{32.16}=\sqrt{\frac{2 h}{g}}=\frac{1 / \bar{h}}{4.01}=\frac{2 h}{v}
\end{aligned}
\]
\(u=\) space fallen through in the \(T\) th second \(=g(T-1 / 2)\).
From the above formula for falling bodies we obtain the foliowing:
During the first second the body starting from a state of iest (resistance of the air neglected) falls \(g \div 2=16.08\) feet; the acquired velocity is \(g=\) 32.16 ft . per sec.; the distance fallen in two seconds is \(h=\frac{g t^{2}}{2}=1608 \times 4=\) 64.32 ft . ; and the acquired velocity is \(v=g t=64.32 \mathrm{ft}\). The acceleration, or increase of velocity in each second, is constant, and is 32.16 ft . per sec. Solving the equations for diflerent times, we find for

Talue of \(g\).-The value of \(g\) increases with the latitude, and decreases with the elevation. At the latitude of Philadelphia, \(40^{\circ}\), its value is 32.16 . At the sea-level, Everett gives \(g=32.1 \% 3-.082\) cos 2 lat. -.000003 height in fert. At Paris, lat. \(4 S^{\circ}\) En' N., \(g=n^{\circ} n_{0}\) ст \(\mathrm{cm} .=32.181 \mathrm{ft}\).

Values of \(\sqrt{2 g}\), calculated hy an equation given by C. S. Pierce, are given in a table in Smith's Hydraulics, from which we take the following:
 \(\begin{array}{llllllll}\text { Value of } & \sqrt{2 g} . .8 .0112 & 8.0118 & 8.0137 & 8.0165 & 8.0199 & 8.0235 & 8.0269\end{array}\) The value of \(\sqrt{2 g}\) decreases about .0004 for every 1000 feet increase in elevation above the sea-level.
For all ordinary calculations for the United States, \(g\) is generally taken at 32.16 , and \(\sqrt{2 g}\) at 8.02 . In England \(g=32.2, \sqrt{2 g}=8.025\). Practical limiting values of \(g\) for the United States, according to Pierce, are :


Fig. 95 represents graphically the velocity, space, etc., of a body falling for six seconds. The vertical line at the left is the time in seconds, the herizontal lines represent the acquired velocities at the end of each second \(=32.16 t\). The area of the small triangle at the top represents the height fallen throug in the first second \(=1 / 2 g=16.08\) feet. and each of the other triangles is an equa. space. The number of triangles between each pair of horizontal lines represents the height of fall in each second, and the number of triangles between any horizontal line and the top is the total height fallens during the time. The figures under \(h, u\). and \(v\) adjoining the cut are to be multiplied by 16.08 to obtain the actual velocities and beights for the given times.
Angular and Linear Velocity of a 'Turning Body,-Let \(r=\) radius of a 36 turning body in feet, \(n=\) number of revolutions per minute, \(v=\) linear velocity of

fig. 95. a point on the circumference in feet per second, and \(60 v=\) velocity in feet per minute.
\[
v=\frac{2 \pi r n}{60}, 60 v=2 \pi r n
\]

Angular velocity is a term used to denote the angle through which any radius of a bods turns in a second, or the rate at which any point in it having a radius equal to unity is moving, expressed in feet per second. The nnit of angular velocity is the angle which at a distance = radius from the centre is subtended by an arc equal to the radius. This unit angle \(=\frac{180}{\pi}\) degrees \(=57.3^{\circ} .2 \pi \times 57.3^{\circ}=360^{\circ}\), or the circumference. If \(A=\) angular velocity, \(v=A r, A=\frac{v}{r}=\frac{2 \pi n}{60}\). The unit angle \(\frac{180}{\pi}\) is called a radian.

Heighs Corresponding to a Given Acquired Velocity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 5 \\
& \stackrel{5}{0} \\
& \frac{0}{0} \\
& 5
\end{aligned}
\] &  & \[
\begin{aligned}
& \dot{0} \\
& \dot{0} \\
& \dot{0} \\
& \dot{D}
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { io } \\
& \text { 合 } \\
& 0
\end{aligned}
\] &  &  &  &  & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{x} \\
& \stackrel{B 0}{E} \\
& \underline{E}
\end{aligned}
\] \\
\hline feet & feet. & feet & feet. \\
\hline p.sec. & feet. & p.sec. & 2.62 & p sec. & 17.9 & p.sec. & 47.0 & p.sec. & 89.8 & p.sec. & 146 \\
\hline . 50 & . 0033 & 14 & 3.04 & 35 & 19.0 & 56 & 48.8 & 77 & 92.2 & 98. & 149 \\
\hline . 75 & .008i & 15 & 3.49 & 36 & 20.1 & 57 & 50.5 & 78 & 94.6 & 99 & 152 \\
\hline 1.00 & . 016 & 16 & 3.98 & 37 & 21.3 & 58 & 52.3 & 79 & 97.0 & 100 & 155 \\
\hline 1.25 & . 024 & \(1 \%\) & 4.49 & 38 & 22.4 & 59 & 54.1 & 80 & 99.5 & 105 & 171 \\
\hline 1.50 & .0:35 & 18 & 5.03 & 39 & 23.6 & 60 & 56.0 & 81 & 102. 0 & 110 & 188 \\
\hline 1.15 & . 048 & 19 & 5.61 & 40 & 24.9 & 61 & 57.9 & 82 & 104.5 & 115 & 205 \\
\hline 2 & . 062 & 20 & 6.22 & 41 & 26.1 & 62 & 59.8 & 83 & 107.1 & 120 & 224 \\
\hline 2.5 & . 097 & 21 & 6.85 & 42 & 27.4 & 63 & 61.7 & 84 & 109.7 & 130 & 263 \\
\hline 3 & . 140 & 22 & \%.5: & 43 & 28.7 & 64 & 63.7 & 85 & 112.3 & 140 & 304 \\
\hline 3.5 & . 190 & 23 & 8.21 & 44 & 30.1 & 65 & 65.7 & 86 & 115.0 & 150 & 350 \\
\hline 4 & . 248 & 24 & 8.94 & 45 & 31.4 & 66 & 67.7 & 87 & 117.7 & 175 & 456 \\
\hline 4.5 & . 314 & 25 & 9.71 & 46 & 32.4 & 67 & 69.8 & 88 & 120.4 & 200 & 622 \\
\hline 5 & . 388 & 26 & 10.5 & 47 & 34.3 & 68 & 71.9 & 89 & 123.2 & 300 & 1390 \\
\hline 6 & . 559 & 27 & 11.3 & 48 & 35.8 & 69 & \%4.0 & 90 & 125.9 & 400 & 2488 \\
\hline 7 & . 761 & 28 & 12.2 & 49 & \(3 \sim .3\) & \% 0 & 76.2 & 91 & 128.7 & 500 & 388 \\
\hline 8 & . 994 & 29 & 13.1 & 50 & 38.9 & 71 & 78.4 & 92 & 131.6 & 600 & 559 í \\
\hline 9 & 1.26 & 30 & 14.0 & 51 & 40.4 & \% & 80.6 & 93 & 134.5 & \%00 & 7618 \\
\hline 10 & 1.55 & 31 & 14.9 & 53 & 42.0 & 73 & 82.9 & 94 & 137.4 & 800 & \(995 \%\) \\
\hline 11 & 1.88 & \(3 \cdot 2\) & 15.9 & 53 & 43.7 & 74 & 85.1 & 95 & 140.3 & 900 & 12093 \\
\hline 12 & 2.24 & 33 & 16.9 & 54 & 45.3 & 75 & 87.5 & 96 & 143.3 & 1000 & \(1554 \%\) \\
\hline
\end{tabular}

\section*{Falling Bodies：Velocity Acquized by a Body Falling a Given Height．}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  & \[
\begin{aligned}
& \dot{0} \\
& \stackrel{0}{0} \\
& \stackrel{0}{0} \\
& i
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { © } \\
& \stackrel{0}{0} \\
& \stackrel{0}{0} \\
& \nabla
\end{aligned}
\] &  & ¢
0
0
0
0 &  & 感 & ＋ & 产 \\
\hline feet． & fee & feet． & f & et． & & feet． & fee & feet． & feet & feet． & feet \\
\hline & ． 57 & ． 39 & 5.01 & 1.20 & 8.79 & & p．sec． & 23. & p sec． & \(\stackrel{r}{1}\) & \begin{tabular}{l}
p sec． \\
68.1
\end{tabular} \\
\hline ． 010 & ． 80 & ． 40 & 5.07 & 1.22 & 8.87 & ． 2 & 18.3 & ． 5 & 38.9 & 73 & 68.5 \\
\hline ． 015 & ． 98 & ． 41 & 5.14 & 1.24 & 8.94 & ． 4 & 18.7 & 24. & 39.3 & r4 & 69.0 \\
\hline ． 020 & 1.13 & ． 42 & 5.20 & 1.26 & 9.01 & ． 6 & 19.0 & ． 5 & 39.7 & 75 & 69.5 \\
\hline ． 025 & 1.27 & ． 43 & 5.26 & 1.28 & 9.08 & ． 8 & 19.3 & 25 & 40.1 & 76 & 69.9 \\
\hline ． 030 & 1.39 & ． 44 & 5.32 & 1.30 & 9.15 & 6. & 19.7 & 26 & 40.9 & 77 & r0．4 \\
\hline 035 & 1.50 & ． 45 & 5.38 & 1.32 & 9.21 & ． 2 & 20.0 & \(2 \%\) & 41.7 & 78 & 70.9 \\
\hline ． 040 & 1.60 & ． 46 & 5.44 & 1.34 & 9.29 & 4 & 20.3 & 28 & 42.5 & 79 & 71.3 \\
\hline ． 045 & 1.70 & ． 47 & 5.50 & 1.36 & 9.36 & ． 6 & 206 & 29 & 43.2 & 80 & 71.8 \\
\hline ． 050 & 1.79 & ． 48 & 5.56 & 1.38 & 9.43 & ． 8 & 20.9 & 30 & 43.9 & 81 & \％2． 2 \\
\hline ． 055 & 1.88 & ． 49 & 5.61 & 1.40 & 9.49 & & 21.2 & 31 & 44.7 & 82 & 72.6 \\
\hline ． 060 & 1.97 & ． 50 & 5.67 & 1.42 & 9.5 r & ． 2 & 21.5 & 32 & 45.4 & 83 & 73.1 \\
\hline ． 065 & 2.04 & ． 51 & 5.73 & 1.44 & 9.62 & ． 4 & 21.8 & 33 & 46.1 & 84 & 73.5 \\
\hline ． 070 & 2.12 & ． 52 & 5.78 & 1.46 & 9 ro & 6 & 2\％．\({ }^{\text {a }}\) & 34 & 46.8 & 85 & \％4．0 \\
\hline ． 015 & 2.20 & ． 53 & 5.84 & 1.48 & 9．1ヶ & 8 & 22.4 & 35 & 4 4 .4 & 86 & 74.4 \\
\hline ． 080 & 2.27 & ． 54 & 5.90 & 1.50 & 9.82 & & 22.7 & 36 & 48.1 & 87 & \％4．8 \\
\hline ． 085 & 2.34 & ． 55 & 5.95 & 1.52 & 9.90 & 2 & 23.0 & 37 & 48.8 & 88 & 75.3 \\
\hline ． 090 & 2.41 & ． 56 & 6.00 & 1.54 & 9.96 & ． 4 & 23.3 & 38 & 49.4 & 89 & 75.7 \\
\hline ． 095 & 2.47 & ． 57 & 6.06 & 1.56 & 10.0 & 6 & 23.5 & 39 & 50.1 & 90 & 76.1 \\
\hline ． 100 & 2.54 & ． 58 & 6.11 & 1.58 & 10.1 & 8 & 23.8 & 40 & 50.7 & 91 & 76.5 \\
\hline ． 105 & 2.60 & ． 59 & 6.16 & 1.60 & 10.2 & 9. & 24.1 & 41 & 51.4 & 92 & r6．9 \\
\hline ． 110 & 2.66 & ． 60 & 6.21 & 1.65 & 10.3 & ． 2 & 24.3 & 42 & 52.0 & 93 & \％ri． 4 \\
\hline ． 115 & \(2 . \% 2\) & ． 62 & 6.32 & 1.60 & 10.5 & 4 & 24.6 & 43 & 52.6 & 94 & \％7．8 \\
\hline ． 120 & 2.78 & 64 & 6.42 & 1.75 & 10.6 & ． 6 & 24.8 & 44 & 53.2 & 95 & 78.2 \\
\hline ． 125 & 2.84 & ． 66 & 6.52 & 1.80 & 10.8 & ． 8 & 25.1 & 45 & 53.8 & 96 & ¢8．6 \\
\hline ． 130 & 2.89 & ． 68 & 6.61 & 1.90 & 11.1 & & 25.4 & 46 & 54.4 & 97 & 79．0 \\
\hline ． 14 & 3.00 & ． 70 & 6.71 & 2. & 11.4 & & 26.0 & 47 & 55.0 & 98 & \％9．4 \\
\hline ． 15 & 3.11 & ． 7 & 6.81 & 2.1 & 11.7 & & 26.6 & 48 & 55.6 & 99 & 79．8 \\
\hline ． 16 & 3.21 & ． 14 & 6.90 & 2.2 & 11.9 & & 27.2 & 49 & 56.1 & 100 & 80.2 \\
\hline ． 17 & 3.31 & ． 76 & 6.99 & 2.3 & 12.2 & & 27.8 & 50 & 56.7 & 125 & 89.7 \\
\hline ． 18 & 3.40 & ． 78 & 7.09 & 2.4 & 12.4 & & 28.4 & 51 & 57.3 & 150 & 98.3 \\
\hline ． 19 & 3.50 & ．\({ }^{0}\) & 7.18 & 2.5 & 12.6 & & 28.9 & 52 & 57． 8 & 175 & 106 \\
\hline ． 20 & 3.59 & ． 82 & 7.26 & 2.6 & 12.0 & & 29.5 & 53 & 58.4 & 200 & 114 \\
\hline ． 21 & 3.68 & ． 84 & 7.35 & 2.8 & 13.2 & & 30.0 & 54 & 59.0 & 225 & 120 \\
\hline ． 22 & 3.16 & ． 86 & \％ & 2.8 & 13.4 & & \(3 / 5\) & 55 & 53.5 & 250 & 126 \\
\hline ． 23 & 3.85 & ． 88 & \％．53 & 2.9 & 13.7 & & 31.1 & 56 & 60.0 & \(2 \%\) & 133 \\
\hline ． 24 & 3.93 & ． 90 & 7.61 & 3. & 139 & & 31.6 & 57 & 60.6 & 300 & 139 \\
\hline ． 25 & 4.01 & ． 92 & 7.69 & 3.1 & 14.1 & & 32.1 & 58 & 61.1 & 350 & 150 \\
\hline ． 26 & 4.09 & ． 94 & 7.18 & 3.2 & 14.3 & & 32.6 & 59 & 61.6 & 410 & 160 \\
\hline ． 27 & 4.17 & ． 96 & \％．86 & 3.3 & 14.5 & & 53.1 & 60 & \(6 \cdot .1\) & 450 & \(1 \% 0\) \\
\hline ． 28 & 425 & 98 & 7.94 & 3.4 & 14.8 & & 33.6 & 61 & 62.7 & 500 & 179 \\
\hline ． 29 & 4.32 & 1.00 & 8.02 & 3.5 & 15.0 & & 34.0 & 92 & 65.2 & 550 & 188 \\
\hline ． 30 & 4.39 & 1.00 & 8.10 & 3.6 & 15.2 & & 34.5 & ¢ 3 & 63.7 & 600 & 197 \\
\hline ． 31 & 4.47 & 1.04 & 8.18 & 3.7 & 15.4 & 19 & 35.0 & 64 & 64.2 & r00 & 212 \\
\hline ． 32 & 4.54 & 1.06 & 8.26 & 3.8 & 15.6 & & 35.4 & 65 & 64.7 & 800 & 227 \\
\hline ． 33 & 4.61 & 1.08 & 8.34 & 3.9 & 15.8 & & 3\％． 9 & 66 & 65.2 & 900 & 241 \\
\hline ． 34 & 4.68 & 1.10 & 8.41 & ， & 16.0 & & 36.3 & 67 & \(65 . \hat{1}\) & －1000 & 254 \\
\hline ． 35 & 4.74 & 1.12 & 8.49 & ． 2 & 16.4 & & 36.8 & 68 & 66.1 & 2000 & 359 \\
\hline ． 36 & 4.81 & 1.14 & 8.57 & 4 & 16.8 & & 37.2 & 69 & 66.6 & －3000 & \(4: 39\) \\
\hline ． 37 & 4.88 & 1.16 & 8.64 & ． 6 & 17.2 & & 37.6 & r0 & 67.1 & 4000 & 507 \\
\hline ． 38 & 4.94 & 1.18 & 8．in & ． 8 & 17.6 & ． 5 & 38.1 & 71 & 67.6 & 5000 & 567 \\
\hline
\end{tabular}

Parallelogram of Velocities．－The principle of the composition and resolution of forces may also be applied to velocities or to distances moved in given intervals of time．Referring to Fig．88．page 416．if a body at \(O\) has a force applied 10 it which acting alone wonld give it a velocity represented by OQ per secord；and at the same time it is acted on by
another force which acting alnne would give it a velocity \(O P\) per second, the result of the two forces acting together for one second will carry it to \(R, O R\) being the diagonal of the parallelogram of \(O Q\) and \(O P\) and the resultant velocity. If the two compunent velocities are uniform, the resultant will be uniform and the line \(O R\) will be a straight line; but if either velocity is a varying one, the line will be a curve. Fig. 96 shows the resultant velocities, also the path traversed by a hody acted on by two forces. one of which would carry it at a uniform velocity over the intervals \(1,2.3, B\), and the other of which would carry it by an accelerated motion over the intervals \(a . b, c, D\) in the same times. At the end of the respective intervals the body will be found at \(C_{1}, C_{2}, C_{3}, C\), and the mean velocity during rach interval is represented by the distances between these points. Such a curved nath is traversed by a shot, the impelling force from the gun giving it a uniform velocity in the direction the gun is aimed, and gravity giving it an accelerated velocity downward.
 The puth of a projectile is a parabola. The distance it will travel is greatest when its initial direction is at an angle \(45^{\circ}\) above the horiznntal.

Mass-Force of Acceleration. - The mrss of a body, or the quantity of matter it contains, is a coustanı quantity, while the weight varies according to the variation in the force of gravity at different places. If \(g=\) the acceleration due to gravity, and \(w=\) weight, then the mass \(m=\frac{w}{g}, w=m g\). Weight here means the resultant of the force of gravity on the particles of a body, such as may be measured by a spring balance, or by the extension or deflecrion of a rod of metal loaded with the given weight.

Furce has been defined as that which causes. or tends to cause, or to destroy, motion. It may also be defined (Kennedy's Mechanics of Machinery! as the cause of acceleration; and the unir of force as the force required to produce unit acceleration in a unic of free mass.

Force equals the product of the mass by the acceleration, or \(f=m a\).
Also. if \(v=\) the velocity acquired in the time \(t, f t=m v ; f=m v \div t\); the acceleration being uniform.

The force required to produce an acceleration of \(g\) (that is, 32.16 ft . per sec.) in one second is \(f=m g=\frac{w}{g} g=v\), or the weight of the body. Also, \(f=m a=m \frac{v_{2}-v_{1}}{t}\), in which \(v_{2}\) is the velocity at the end, and \(v_{1}\) the velocity at the beginning of the time \(t\), and \(f=m g=\frac{v}{g} \frac{\left(v_{2}-v_{1}\right)}{t}=\frac{w}{g} a\); \(\frac{f}{w}=\frac{a}{a}\); or, the force required to give any acceleration to a body is to the weight of the body as that acceleration is to the acceleration produced by gravity. (The weight \(w\) is the weirht where \(g\) is measmred.)

Example. - Tenvion in a cord lifting a weight. A weight of 100 Jbs . is lifter vertically by a cord a distance of 80 fert in 4 seconds, the relocity uniformly increasing from 0 to the end of the time. What tension must be maintained in the cord? Mean velocity \(=v_{0}=20 \mathrm{ft}\). per sec.; final velocity \(=v_{2}=2 v_{0}=40\); accele \(\cdots\) ation \(a=\frac{v_{2}}{t}=\frac{40}{4}=10\). Force \(f=m a=\frac{\psi \alpha}{g}=\frac{100}{3!.16} \mathrm{x}\) \(10=31.1 \mathrm{lbs}\). This is the force required to produce the acceleration only; to it must be added the force required to lift the weight without acceleration, or 100 llis., making a total of 131.1 liss.

The Resistance to Accelerntion is the same as the force required to produce the acceleration \(=\frac{w}{g} \frac{\left(v_{2}-v_{1}\right)}{t}\).

Formulæ for Accelerated Motion.-For cases of uniformly accelerated motiou other llan lhose of aling bodies, we have the furmulæ already given, \(f=\frac{w}{g} a,=\frac{w}{g} \frac{v_{2}-v_{1}}{t}\). If the body starts from rest, \(v_{1}=0, v_{2}\)
\(=v\), and \(f=\frac{v}{g} \frac{v}{t}, f g t=w v . \quad\) We also have \(s=\frac{v t}{2}\). Transforming and sub. stituting for \(g\) its value 32.16, we obtain
\[
\begin{array}{ll}
f=\frac{w v^{2}}{64.32 s}=\frac{w v}{32.16 t}=\frac{w s}{16.08 t^{2}} ; \quad w=\frac{32.16 f t}{v}=\frac{64.3: f s}{v^{2}} ; \\
s=\frac{w v^{2}}{64.32 f}=\frac{16.08 f t^{2}}{2 v}=\frac{v t}{2} ; \quad v=8.02 \sqrt{\frac{f s}{v}}=\frac{32.16 f t}{w} ; \\
t=\frac{w v}{32.16 f}=\frac{1}{4.01} \sqrt{\frac{2 u s}{f}}
\end{array}
\]

For any change in velocity \(f=w\left(\frac{v_{2}^{2}-v_{1}^{2}}{64.32 s}\right)\).
(See also Work of Acceleration, under Work.)
Motion on Inclined Planes. -The velocity acquired by a body desceudmg an inclined plane by the force of gravity (friction neglected) is equal to that acquired by a body falling freely from the height of the plane.
The times of descent down different inclined planes of the same height vary as the length of the planes.
The rules for uniformly accelerated motion apply to inclined planes. If \(\alpha\) is the angle of the plane with the horizontal, sin \(c=\) the ratio of the height to the length \(=\frac{h}{l}\), and the constant accelerating force is \(g \sin a\). The final velocity at the end of \(t\) seconds is \(v=g t \sin \alpha\). The distance passed over in \(t\) secouds is \(l=\frac{1}{2} g t^{2} \sin a\). The time of descent is
\[
t=\sqrt{\frac{2 l}{g \sin a}}=\frac{l}{4.01 \sqrt{h}}
\]

\section*{MIOMENTUIV, VIS-VIVA.}

Momentum, or quantity of motion in a body, is the product of the mass by the velocity at any instant \(=m v=\frac{w}{g} v\).
Since the moving force \(=\) product of mass by acceleration, \(f=m a\); and if the velocity acquired in \(t\) seconds \(=v\), or \(a=\frac{v}{t}, f=\frac{m v}{t}\); \(f t=m v\); that is, the product of a constant force into the time in which it acts equals numer. ically the momentum.
Since \(f t=m v\), if \(t=1\) second \(m v=f\). whence momentum might be defined as numerically equivalent to the number of pounds of force that will stop a moving body in 1 second, or the number of pounds of force which acting during 1 second will give it the given velocity.

Vis-viva, or living force, is a term used by early writers on Mechanics to derute the energy siored in a moving body. Some defined it as the product of the mass into the square of the velocity, \(m v^{2},=\frac{w}{g} v^{2}\) others as one half of this quantity or \(1 / 2 m v^{2}\), or the same as what is now known as energy. The term is now practically obsolete, its place being taken by the word energy.

\section*{WORE, ENERGY, POWER.}

Work is the overcoming of resistance through a certain distance. It is measured by the product of the resistance into the space through which it is overcome. It is also measured by the product of the moving force into the distance through which the fonce acts in overcoming the resistance. Thus in lifting a body from the earth against the attraction of gravity, the resistance is the weight of the body, and the product of this weight into the height the body is lifted is the work done.

The Unit of Work, in British measures, is the fcot-pound, or the amount of work done in overcoming a pressure or weight equal to one pound through one foot of space.

The work performed by a piston in driving a fluid before it, or by a fluid In driving a piston before it, may be expressed in either of the following ways:
\[
\begin{aligned}
& \text { Resistance } \times \text { distance traversed } \\
= & \text { intensity of pressure } \times \text { area } \times \text { distance traversed ; } \\
= & \text { intensity of pressure } \times \text { volume traversed. }
\end{aligned}
\]

The work performed in lifting a body is the product of the weight of the body into the height through which its centre of gravity is lifted.

If a machine lifts the centres of gravity of several bodies at once to heights either the same or different, the whole quantity of work performed in so doing is the sum of the several products of the weights and heights; but that quantity can also be computed by multiplying the sum of all the weights into the height through which their common centre of gravity is lifted. (Rankine.)

Power is the rate at which work is done, and is expressed by the quotient of the work divided by the time in which it is done, or by units of work per second, per minute, etc., as foot-pounds per second. The most common unit of power is the horse-power, established by James Watt as the power of a strong London draught-horse to do work during a short interval. and used h,y him to measure the power of his steam-engines. This unit is 33,000 footpounds per minute \(=550\) foot-pounds per second \(=1,980,000\) foot-pounds per hour.

\section*{Expressions for Force, Work, Power, etc.}

The fundamental conceptions in Dynamics are:
Mass, Force, Time, Space, represented by the letters \(M, F, T, S\).
Mass \(=\) weight \(\div g\). If the weight of a body is determined by a spring balance standardized at Loudon it will vary with the latitude, and the value of \(g\) to be taken in order to find the mass is that of the latitude where the weighing is done. If the weight is determined by a balance or by a platform scale. as is customary in engineering and in commerce, the London value of \(a=33.2\), is to be taken.

Velocity = space divided by time, \(V=S \div T\), if \(V\) be uniform.
Work = force multiplied by space \(=F S=1 / 2 M V^{2}=F V T_{\dot{T}}\). ( \(V\) uniform.) Power = rate of work = work divided by time \(=F ' S \div T=P=\) product of force into velocity \(=F V\).

Power exerted for a certain time produces work; \(P T=F S=F V T\).
Effort is a force which acts on a body in the direction of its motion.
Resistance is that which is opposed to a muving force. It is equal and opnosite force.
Horse-power Hours, an expression for work measured as the product of a power into the time during which it acts = PT. Sometimes it multinlied by the time.

Eneryy, or stored work, is the capacity for performing work. It is measured oy the same unit as work, that is, in foot-pounds. It may be capable of doing as in the case of a body of water stored in a reservoir, called kinetic, which is the means of a water-wheel, or actucrl, sometimes measured by the product of the weight of the stored body into the distance through which it is capable of acting, or by the product of the pressure it exerts into the distance through which tisut pressure is capable of acting. Potential energy may also exist as stored heat, or as stored chemical energy, as in fuel, gunpowder, etc., or as electrical energy, the measure of these energies being the amount of work that they are capable of performing. Actual energy of a moving body is the work which it is capable of perforining against a retarding resistance before being brought to rest, and is equal to the work which must be done upon it to bring it from a state of rest to its actual velocity.
The measure of actual energy is the product of the weight of the body into the height from which it must fall to acquire its actual velocity. If \(v=\) the velocity in feet per second, according to the principle of falling bodies, \(h\), the height due to the velocity \(=\frac{v^{2}}{2 g}\), and if \(w=\) the weight, the energy \(=\) \(\frac{7}{1} m v^{2}=w v^{2} \div 2 g=w h\). Since energy is the capacity for performing work, the units of work and energy are equivalent, or \(F S=1 / 2 n v^{2}=w h\). Energy exerted = work done.

The actual energy of a rotating body whose angular velocity is \(A\) and moment of inertia \(\Sigma w r^{2}=I\) is \(\frac{A^{2} I}{2 g}\), that is, the product of the moment of inertia into the height due to the velocity, \(A\), of a point whose distance from the axis of rotation is unity; or it is equal to \(\frac{w v^{2}}{2 g}\), in which \(w\) is the weight of the horly and \(v\) is the velocity of the centre of gyration.
Work of Acceleration. - The work done in giving acceleration to a body is equal to the product of the force producing the acceleration, or of the resistance to acceleration, into the distance moved in a given time. This force, as already stated equals the product of the mass into the acceleration, or \(f=m a=\frac{w}{g} \frac{v_{2}-v_{1}}{t}\). If the distance traversed in the time \(t=s\), then work \(=f s=\frac{w}{q} \frac{v_{2}-v_{1}}{t} s\).
Example. - What work is required to move a body weighing 100 lbs . horizontally a distance of 80 ft . in 4 seconds, the velocity uniformly increasing, frictinn neglected?
Mean velocity \(v_{0}=20 \mathrm{ft}\). per second; final velocity \(=v_{2}=2 v_{0}=40\); initial velocity \(v_{1}=0\); acceleration, \(\alpha=\frac{v_{2}-v_{3}}{t}=\frac{40}{4}=10\); force \(=\frac{w}{g} a=\frac{100}{3 . .16} \times\) \(10=31.1 \mathrm{lbs}\); distance \(80 \mathrm{ft} . ;\) work \(=f_{s}=31.1 \times 80=2488\) foot-pounds.
The energy stored in the body moving at the final velocity of 40 ft . per second is
\[
\frac{3}{2} m v^{2}=\frac{1}{2} \frac{w}{g} v^{2}=\frac{100 \times 40^{2}}{2 \times 32.16}=2488 \text { foot-pounds, }
\]
which equals the work of acceleration,
\[
f_{s}=\frac{w}{g} \frac{v_{2}}{t} s=\frac{w}{g} \frac{v_{2}}{t} \frac{v_{2}}{2} t=\frac{1}{2} \frac{w}{g} v_{2}{ }^{2} .
\]

If a body of the weight \(W\) falls from a height \(H\), the work of acceleration is simply \(W H\), or the same as the work required to raise the body to the same height.

Work of Accelerated Rotation. - Let \(A=\) angular velocity of a solid body rotating about an axis, that is, the velocity of a particle whose radius is unity. Then the velocity of a particle whose radius is \(r\) is \(v=A r\). If the angular velocity is accelerated from \(A_{1}\) to \(A_{2}\), the increase of the velocity of the particle is \(v_{2}-v_{1}=r\left(A_{1}-A_{2}\right)\), and the work of accelerating it is
\[
\frac{w}{g} \times \frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2}=\frac{w r^{2}{ }^{2}}{g} \frac{A_{2}{ }^{2}-A_{1}{ }^{2}}{2},
\]
in which \(w\) is the weight of the particle.
The work of acceleration of the whole body is
\[
\Sigma\left\{\frac{w}{g} \times \frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2}\right\}=\frac{A_{2}{ }^{2}-A_{1}{ }^{2}}{2 g} \times \Sigma w r^{2} .
\]

The term \(\Sigma \ln r^{2}\) is the moment of inertia of the hory.
'6 Force of the Blow 9 of a Steam Hammer or Other Falling Weight.-The question is oftell asked: "With what force does a fallug liammer strike ?" The question cannot he answered directly, and it is based upon a misconception or ignorance of fundamental mechanical laws. The energy, or capacity of doing work. of a body raised to a given height and let fall cannot be expressed in pounds, simply, but only in footpominds, which is the product of the weight into the height through which it falls, or the product of its weight \(\div 64.3 \%\) into the square of the velocity, in feet per second, which it acquires after falling through the given heisht. If \(F=\) weight of the body. \(M\) its mass. \(g\) the acceleration due to gravity, \(S\) the height of fall, and \(v\) the velocity at the end of the fall, the eniergy in the body just hefort striking, is \(F N=1 / 2 M v^{2}=W v^{2}+2 q=W v^{2} \div 64.32\), which is the general equation of energy of a moving body. Just as the energy of the body is a product of a force into a distance. so the work it dors when it strikes is not the manifestation of a force, which can be expressed simply in pounds, but it is the overcoming of a resistance through a certain distance, which is expressed as the product of the average resist
ance into the distance through which it is exerted. If a hammer weighing 100 lbs. falls 10 ft .. its emergy is 1000 foot-ponnds. Before being brought to rest it must do 1000 foot-pounds of work against one or more resistances. These are of various kinds, such as that due to motion imparted to the body struck. penetration against friction, or against resistance to shearing or other deformation, and crushing and heating of both the falling body and the body struck. The distance throngh which these resisting forces act is generally indeterminate, and therefore the average of the resisting forces, which themselves generally vary with the distance is also indeterminate.

Impact of Bodies.-If two inelastic bodies collide, they will move on together as one mass, with a common velocity. The momentum of the combined mass is equal to the sum of the momenta of the two bodies before impact. If \(m_{1}\) and \(m_{2}\) are the masses of the two bodies and \(v_{1}\) and \(v_{2}\) their respective velocities before impact, and \(v\) their common velocity after impact, \(\left(m_{1}+m_{2}\right) v=m_{1} v_{1} \times m_{2} v_{2}\),
\[
v=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+} \cdot *
\]

If the bodies move in opposite directions \(v=\frac{m_{1} v_{1}-m_{2} v_{3}}{m_{1}+m_{2}}\), or, the velocity of two inelastic bodies after impact is equal to the algebraic sum of their momenta before impact, divided by the sum of their masses.
If two inelastic bodies of equal momenta impinge directly upon one another from opposite directions they will be brought to rest.
Impact of Inelastic Bodies Causes a Loss of Energy, and this liss is equal to the sum of the energies due to the velocities lost and gained by the bodies, respectively.
\[
1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}-1 / 2\left(m_{1}+m_{2}\right) v^{2}=1 / 2 m_{1}\left(v_{1}-v\right)^{2}+1 / 2 m_{2}\left(v_{2}-v\right)^{2} .
\]

In which \(v_{1}-v\) is the velocity lost by \(m_{1}\) and \(v-v_{2}\) the velocity gained by \(m_{2}\). Example-Let \(m_{1}=10, m_{2}=8, v_{1}=12, v_{1}=10^{2}\).
If the bodies collide the \(y\) will come to rest, for \(v=\frac{10 \times 12-8 \times 15}{10+8}=0\).
The energy loss is
\(1 / 210 \times 144+1 / 28 \times 225-1 / 218 \times 0=1 / 210(12-0)^{2}+1 / 28(15-0)^{2}=1620 \mathrm{ft} . \mathrm{lbs}\).
What becomes of the energy lost? Ans. It is used doing internal work on the bodies themselves, changing their shape and heating them.
Foi imperfectly elastic bodies, let \(e=\) the elasticity, that is, the ratio which the force of restitution, or the internal force tending to restore the shape of a body after it has been compressed, bears to the force of compression; and let \(m_{1}\) and \(m_{2}\) be the masses, \(v_{1}\) and \(v_{2}\) their velocities before impact, and \(v_{1}{ }^{\prime} v_{2}^{\prime}\) their velocities after impact: then
\[
\begin{aligned}
& v_{1}^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}-\frac{m_{2} e\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}} ; \\
& v_{2}^{\prime}=\frac{m_{1} v_{1}+\frac{m_{2}}{m_{1}+v_{2}} m_{2}}{+\frac{m_{1} e\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}}} .
\end{aligned}
\]

If the bodies are perfectly elastic, their relative velocities before and after impact are the same. That is: \(v_{1}^{\prime}-v_{2}^{\prime}=v_{2}-v_{1}\).
In the impact of bodies, the sum of their momenta after impact is the same as the sum of their momenta before impact.
\[
m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=m_{1} v_{1}+m_{2} v_{2}
\]

For demonstration of these and other laws of impact, see Smith's Mechanics: also. Weisbach's Mechanics.
Energy of Recoil of Guns. - (Eng'g, Jan. 25, 1884, p. 72.)
Let \(W=\) the weight of the gun and carriage;
\(V=\) the maximmm velocity of recoil;
\(w=\) the weight of the projectile;
\(v=\) the muzzle velocity of the projectile.
Then, since the momentum of the gun and carriage is equal to the momentum of the projectile, we have \(W V=w v\), or \(V=w v \div W\).

\footnotetext{
*The statement by Prof. W. D. Marks, in Nystrom's Mechanics, 20th edition, p. 454, that this formula is in error is itself erroneous.
}

Taking the case of a 10 -inch gun firing a \(400-\mathrm{lb}\). projectile with a muzzle velocity of 1400 feet per second, the weight of the gun and carriage being 22 tons \(=49,280\) lbs., we find the velocity of recoil \(=\)
\[
V=\frac{1400 \times 400}{49,280}=11 \text { feet per second. }
\]

Now the energy of a body in motion is \(W V^{2} \div 2 g\).
Therefore the energy of recoil \(=\frac{49,280 \times 11^{2}}{2 \times 32.2}=92,593\) foot-pounds.
The energy of the projectile is \(\frac{400 \times 1400^{2}}{2 \times 32.2}=12,1 \% 3,913\) foot-pounds.
Conservation of Energy.-No form of energy can ever be pro dnced except by the expenditure of some other form, nor annihilated excrept by being reproduced in anuther form. Consequently the sum total of energy in the universe, like the sum total of matter, must always remain the same. (S. Newcomb.) Energy can never be destroyed or lost; it can be transformed, can be transferred from one body to another, but no matter what transformations are undergone, when the total effects of the exertion of a given amount of energy are summed up the result will be exactly equal to the amount originally expended from the source. This law is called the Conservation of Energy. (Cotterill and Slade.)

A heavy body sustained at an elevated position has potential energy. When it falls, just before it reaches the earth's surface it has actual or kinetic energy, due to its relocity. When it strikes it may penetrate the earth a certain clistance or may be crushed. In either case friction results by which the energy is converted into heat, which is gradually radiated into the earth or into the atmosphere, or both. Mechanical energy and heat are mutually convertible. Electric energy is also convertible into heat or mechanical energy, and either kind of energy may be converted into the other.

Sources of Energy.-The principal sources of energy on the earth's surface are the muscular energy of men and animals, the energy of the wind, of flowing water, and of fuel. These sources derive their energ \(y\) from the rays of the sun. Under the influence of the sun's rays vegetation grows and wood is formed. The wood may be used as fuel under a steam boiler, its carbon being burned to carbonic acid. Three tenths of its hear, energy escapes in the chimney and by radiation, and seven tenths appear:; as potential energy in the steam. In the steam-engive, of this seven tenth; six parts are dissipated in heating the condensing water and are wasted; the remaining one tenth of the original heat energy of the wood is converted into mechanical work in the steam-engine, which may be used to drive machinery. This work is finally, by friction of various kinds, or possibly after transformation into electric currents, transformed into heat, which is radiated into the atmosphere, increasing its temperature. Thus all the potential heat energy of the wood is, after various transformations, converted into heat, which, mingling with the store of heat in the atmosphere, apparently is lost. But the carbouic acid generated by the combustion of the wood is, again, under the influence of the sun's rays, absorbed by vegetation, and more wood may thus be formed having potential energy equal to the original.

Perpetual Motion. - The law of the conservation of energy, than which no law of mechanics is more firmly established, is an absolute barrier to all schemes for obtaining by mechanical means what is called "perpetual motion," or a machine which will do an amount of work greater than the equivalent of the energy, whether of heat, of chemical combinatiou, of electricity. or mechanical energy, that is put into it. Such a result would be the creation of an additional store of energy in the universe, which is not possible by any human agency.

The Efficiency of a Machine is a fraction expressing the ratio of the useful work to the whole work performed, which is equal to the energy expended. The limit to the efficiency of a machine is unity, denoting the efficiency of a perfect machine in which no work is lost. The difference between the energy expended and the useful work done, or the loss, is usually expended either in overcoming friction or in doing work on bodies surrounding the machine from which no useful work is received. Thus in an engine propelling a vessel part of the energy exerted in the cylinder
does the useful work of giving motion to the vessel, and the remainder is spent in overcoming the friction of the machinery and in making currents and eddies in the surrounding water.

\section*{ANEMALPOWER.}

Work of a Man against Known Resistances. (Rankine.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kind of Exertion. & \(\stackrel{R}{R}\) lbs. & ft. per sec. & \[
\left|\begin{array}{c}
\frac{T^{\prime \prime}}{3600} \\
\text { (hours } \\
\text { per } \\
\text { day). }
\end{array}\right|
\] & \[
\begin{aligned}
& R V, \\
& \text { ft.-lbs. } \\
& \text { per sec. }
\end{aligned}
\] & \begin{tabular}{l}
\(R V T\). \\
ft.-lbs. per day.
\end{tabular} \\
\hline 1. Raising his own weight up stair or ladder & 143 & 0.5 & 8 & 72.5 & 2,088,000 \\
\hline 2. Hauling up weights with rope, and lowering the rope unloaded & 40 & 0.75 & 6 & 30 & 648,000 \\
\hline 3. Lifting weights by hand...... & 44 & 0.55 & 6 & 24.2 & 522,720 \\
\hline 4. Carrying weights up-stairs and returning unloaded.... & 143 & 0.13 & 6 & 18.5 & 399,600 \\
\hline 5. Shovelling up earth to a height of 5 ft .3 in & 6 & 1.3 & 10 & 7.8 & 280,800 \\
\hline 6. Wheeling earth in barrow up slope of 1 in \(12,1 / 2\) horiz. veloc. 0.9 ft . per sec. and returning unloaded & 132 & 0.075 & 10 & 9.9 & 380,800
356,400 \\
\hline 7. Pushing or pulling horizontally (capstan or oar) & & 2.0
5.0 & 8 & & 1,526,400 \\
\hline 8. Turning a crank or winch & \(\left\{\begin{array}{l}12.5 \\ 18.0\end{array}\right.\) & 5.0
2.5 & ? 8 & \({ }_{45}^{62.5}\) & \(1,296,000\) \\
\hline & 120.0 & 14.4 & 2 min . & 288 & \\
\hline 9. Working pump.. & 13.2 & 2.5 & 10 & 33 & 1,188,000 \\
\hline 10. Hammering & 15 & ? & 8 ? & ? & 480,000 \\
\hline
\end{tabular}

Explanation. \(-R\), resistance; \(V\), effective velocity = distance through which \(R\) is overcome - total time occupied, including the time of moving unloaded, if any; \(T^{\prime \prime}\), time of working, in seconds per day; \(T^{\prime \prime} \div 3600\), same time, in hours per day; \(R V\), effective power, in foot-pounds per secoud; RVT, daily work.

\section*{Performance of a Man in Transporting Loads Horizontally. (Rankiue.)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kind of Exertion. & L L, & \[
\begin{gathered}
V, \\
\mathrm{ft} \cdot \mathrm{sec} .
\end{gathered}
\] & \[
\begin{gathered}
\frac{T}{3600} \\
\text { (hours } \\
\text { per } \\
\text { day). }
\end{gathered}
\] & LV, lbs. con. veyed 1. foot. & \[
\begin{gathered}
L V T, \\
\text { lbs. con- } \\
\text { veyed } \\
1 \text { foot. }
\end{gathered}
\] \\
\hline 1. Walking unloaded.transporting his own weight & 140 & 5 & 10 & 700 & 25,200,000 \\
\hline 12. Wheeling load \(L\) in 2 -whtd. barrow, return unloaded.. & 224 & 12/3 & 10 & 373 & 13,428.000 \\
\hline 13. Ditto in 1-wh. barrow, ditto.. & 132 & 12\% & 10 & 220 & 7,920,000 \\
\hline 14. Travelling with burden.. & 90 & \(21 \%\) & 7 & 225 & 5,6\%0,000 \\
\hline 15. Carrying burden, returning unloaded .... ............... & & 12/3 & 6 & & 5,032,800 \\
\hline 16. Carrying burden, for 30 seconds only & \(\left\{\begin{array}{r}25 \cdot 2 \\ 126 \\ 0\end{array}\right.\) & 0
11.7
23.1 & & \(\stackrel{0}{1474.2}\) & \\
\hline
\end{tabular}

Explanation.- \(L\), load; \(V\), effective velocity, computed as before; \(T^{\prime \prime}\), time of working, in seconds per day; \(T^{\prime \prime \prime} \div 3600\), same time in hours per day; \(L V\), transport per second, in lbs. conveyed one foot; LVT, daily transport.

In the first line only of each of the two tables above is the weight of the man taken into account in computing the work done.

Clark says that the average net daily work of an ordinary laborer at a


Fig. 97. pump, a winch, or a crane may be taken at 3300 foot-pounds per minute, or one-renth of a horse-power, for 8 hours a day; but for shorter periods from four to five times this rate may be exerted.

Mr. Glyun says that a man may exert a force of 25 lbs . at the handle of a crane for short periods; but that for continuous work a force of 15 lbs . is all that should be assumed, moving through 220 feet per minute.

Man-wheel.-Fig. 97 is a sketch of a very efficient man-power hoist-ing-machine which the author saw in Berne, Switzerland, in 1889. The face of the wheel was wide enough for three men to walk abreast, so that nine men could work in it at one time.
Work of a Horse against a Known Resistance. (Rankine.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kind of Exertion. & \(R\). & \(V\). & \(\frac{T}{3600}\) & \(R V\). & \(R \nabla T\). \\
\hline 1. Cantering and trotting. drawing a light railway carriage (thoroughbred) & \[
\left\{\begin{array}{c}
\min .221 / 2 \\
\text { mean } 301 / 2 \\
\max .50
\end{array}\right.
\] & \(\int^{14 \%}\) & 4 & 44112 & 6,444,000 \\
\hline 2. Horse drawing cart or boat, walking (draught-horse). & 120 & 3.6 & 8 & 432 & 12,441,600 \\
\hline 3. Horse drawing a gin or mill, walking & 100 & 3.0 & 8 & 300 & 8,640,000 \\
\hline 4. Ditto, trotting & 66 & 6.5 & 41/2 & 429 & 6,950,000 \\
\hline
\end{tabular}

Explanation. \(-R\), resistance, in lbs.; \(V\), velocity, in feet per second; \(T^{\prime \prime \prime}\) \(\div 3600\), hours work per day; \(R V\), work per second; \(R V T\) ' work per day.

The average power of a draught-horse, as given in line 2 of the above table, being \(43 \%\) foot-pounds per second, is \(43 \% / 550=0 . i 85\) of the conventional value assigned by Watt to the ordinary unit of the rate of work of prime movers. It is the mean of several results of experiments. and may be considered the average of ordinary performance under favorable circuinstances.

Performance of a Horse in Transporting Loads
Horizontally. (Rankine.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kind of Exertion. & \(L\). & \(V\). & \(T\). & \(L V\). & LVT. \\
\hline 5. Walking with cart, always loaded & 1500 & 3.6 & 10 & 5400 & 194,400.000 \\
\hline 6. Troting, ditto............... & 750 & 7.2 & 41/2 & 5400 & 87,480,000 \\
\hline 7. Walking with cart, going loaded, returning empty; \(V\), mean velocity. & 1500 & 2.0 & 10 & 3000 & 108.000,000 \\
\hline 8. Carrying burden, walking... & 270 & 3.6 & 10 & \(9{ }^{\text {a }}\) & 34,992,000 \\
\hline 9. Ditto, trotting & 180 & 7.2 & 7 & 1296 & 32,659,200 \\
\hline
\end{tabular}

Explanation. \(-L\), load in lbs.; \(V\), velocity in feet ner seconcl; \(T \div 3600\), working hours per day; \(L V\), transport per second; \(I, V T\), transport per day.

This table has reference to conveyance on common roads only, and those evidently in had order as respects the resistance to traction upon them.

Horse Gin.-In this machine a horse works less advantageously thau in drawing a carriage aloug a straight track. In order that the best
possible results may be realized with a horse-gin, the diameter of the circular track in which the horse walks should not be less than about forty feet.
Oxen, Mules, Asses.-Authorities differ considerably as to the power of these animals. The following may be taken as an approximative comparison between them and draught-horses (Rankine):
Ox.-Load. the same as that of average draught-horse; best velocity and work, two thirds of horse.
Mule.-Load, one half of that of average draught-horse; best velocity, the same with horse; work one half.
Ass.-Load. one quarter that of average draught-horse; best velocity the same: work one quarter.
Reduction of Draught of Horses by Increase of Grade of Roads. (Enyineeriny Record, Prize Essays on Roads, 189\%.)-Experiments on English roads by Gayffier \& Parnell:

Cailitig load that can be drawn on a level 100:
On a rise of. ........ 1 in 100. 1 in 50.1 in 40.1 in 30.1 in 26.1 in 20. 1 in 10. A horse can draw only \(90 . \quad 81 . \quad 72 . \quad 64 . \quad 54 . \quad 40 . \quad 25\).
The Resistance of Carriages on Roads is (according to Gen. Morin) given approximately by the following empirical formula:
\[
R=\frac{W}{r}[a+b(u-3.28)]
\]

In this formula \(R=\) total resistance; \(r=\) radius of wheel in inches; \(W=\) gross load; \(u=\) velocity in feet per second; while \(a\) and \(b\) are constants, whose values are: For good broken-stone road, \(a=.4\) to \(.55, b=.024\) to .026 ; for paved roads, \(a=.27, b=.0684\).

Rankine states that on gravel the resistance is about double, and on sand five times, the resistance on good broken-stone roads.

\section*{ELEMENTS OF MKACHINES.}

The object of a machine is usually to trausform the work or mechanical energy exerted at the point where the machine receives its motion into work at the point where the final resistance is overcome. The specific end may be to change the character or direction of motion, as from circular to rectilinear, or vice versa, to change the velocity, or to overcome a great resistance by the application of a moderate force. In all cases the total emergy exerted equals the total work done the latter including the overcoming of all the frictional resistances of the machine as well as the useful work performed. No increase of power can be obtained from any machine, since this is impossible according to the law of conservation of energy. In a frictionless machine the product of the force exerted at the drivingpoint into the velocity of the driving-point, or the distance it moves in a given interval of time, equals the product of the resistance into the distance through wh ch the resistance is overcome in the same time.

The most simple machines, or elementary machines, are reducible to three classes, viz., the Lever, the Cord, and the Inclined Plane.

The first class includes every machine consisting of a solid body capable of revolving on an axis, as the Wheel and Axle.

The sucond class includles every machine in which force is transmitted by means of flexible threads, ropes, etc., as the Pulley.

The third class includes every machine in which a hard surface inclined to the direc-


Fig. 99.


Fig. 100. tion of motion is introduced, as the Wedge and the Screw.

A Lever is an inflexible rod capable of motion about a fixed point, called a fulcrum. The rod may be straight or bent at any allgle, or curved.

It is generally regarded, at first, as without weight, but its weight may be
considered as another force applied in a vertical direction at its centre of gravity.

The arms of a lever are the portions of it intercepted between the force, \(P\), and fulcrum, \(C\), and between the weight, \(W\), and fulcrum.

Levers are divided into three kinds or orders, according to the relative positions of the applied force, weight, and fulcrum.

In a lever of the first order, the fulcrum lies between the points at which the force and weight act. (Fig. 98.)

In a lever of the second order, the weight acts at a point between the fulcrum and the point of action of the force. (Fig. 99.)

In a lever of the third order, the point of action of the force is between that of the weight and the fulcrum. (Fig. 100.)

In all cases of levers the relation between the force exerted or the pull, \(P\), and the weight lifted, or resistance overcome, \(W\), is expressed by the equation \(P \times A C=W \times B C\), in which \(A C\) is the lever-arm of \(P\), and \(B C\) is the lever-arm of \(W\), or moment of the force \(=\) the moment of the resistance. (See Moment.)

In cases in which the direction of the force (or of the resistance) is not at right angles to the arm of the lever on which it acts, the "lever-arm" is the length of a perpendicular from the fulcrum to the line of direction of the force (or of the resistance). \(W: P:: A C: B C\), or, the ratio of the resistance to the applied force is the inverse ratio of their lever-arms. Also, if Vw is the velocity of \(W\), and \(V p\) is the velocity of \(P, W: P:: V p: V w\), and \(P \times V p\) \(=W \times V w\).

If \(S p\) is the distance through which the applied force acts, and \(S w\) is the distance the weight is litied or through which the resistavce is overcome. \(W: P:: S p: S w: W \times S w=P \times S p\), or the weight into the distance it is lifted equals the force into the distance through which it is exerted.

These equations are general for all classes of machines as well as for levers, it being understood that friction, which in actual machines increases the resistance, is not at present considered.

The Bent Lever. - In the bent lever (see Fig. 91, page 416) the leverarm of the weight \(m\) is \(c f\) instead of \(b f\). The lever is in equilibrium when \(n \times a f=m \times c f\), but it is to be observed that the action of a bent lever mav be very different from that of a straight lever. In the latter: so long as this force and the resistance act in lines parallel to each other, the ratio of the lever-arms remains constant, allhough the lever itself changes its inclination with the horizontal. In the bent lever, however, this ratio changes: thus, in the cut, if the arm bf is depressed to a horizontal direction, the distance \(c f\) lengthens while the horizontal projection of \(a f\) shortens, the latter becoming zero when the direction of af becomes vertical. As the arm af approaches the vertical, the weight \(m\) which may be lifted with a given force \(s\) is very great, but the distance through which it may be lifted is very small. In all cases the ratio of the weight \(m\) to the weight \(n\) is the inverse ratio of the horizontal projection of their respective lever-arms.

The Moving Sirut (Fig. 101) is similar to the bent lever, except that one of the arms is missing, and that the force and the resistance to be overcome act at the same end of the single arm. The resistance in the


Fig. 101.
.-- case shown in the cut is not the weight \(W\), but its resistance to being moved, \(R\), which may be simply that due to its friction on the horizoutal plane, or some other opposing force. When the angle between the strut and the horizontal plaue changes, the ratio of the resistance to the applied force changes. When the angle becomes very small, a moderate force will overcome a very great resistance, which tends to become infinite as the angle approaches zero. If \(\alpha=\) the angle, \(P \times \cos a=R \times \sin a\). If \(a=5\) degrees, \(\cos a=.99619, \sin a=.08 \% 16, R=11.44 P\).

The stone-crusher (Fig. 10\%) shows a practical example of the use of twe, moving struts.

The Toggle-joint is an elbow or knee-joint consisting of two bars sc, connected that they may be brought into a straight line and made to produce great endwise pressure when a force is applied to bring them into this
position. It is a case of two moving struts placed end to end, the moving force being applied at their point of junction. in a direction at right angles to the direction of the resistance, the other end of one of the struts resting against a fixed abutment, and that of the other against the body to be moved. If \(u=\) the angle each strut makes with the straight line joining the points about which their outer ends rotate, the ratio of the resistance to the applied force is \(R: P:: \cos a: 2 \sin a ; 2 R \sin a \doteq P \cos a\). The


Fig. 102.


Fig. 103.
ratio varies when the angle varies, becoming infinite when the angle becomes zero.
The toggle-joint is used where great resistances are to be overcome thrnugh verv small distances, as in stone-crushers (Fig. 103).
The Inclined Plane, as a mechanical element, is supposed perfectly hard and smooth, unless friction be considered. It assists in sustainiug a heavy hody hy its reaction. This reaction, however, being normal to the plane. cannot entirely comnteract the weight of the body, which acts vertifally downward Some other force must therefore be made to act upon the body, in order that it may be sustained.
If the sustaining force act parallel to the plane (Fig. 10t). the force is to the weight, as the height of the plane is to its length, measured on the incline.

If the force act parallel to the base of the plane, the power is to the weight as the height is to the base.
If the force act at any other angle, let \(i=\) the angle of the plane with the horizon, and \(e=\) the


Fig. 104. angle of the direction of the applied force with the angle of the plane. \(P: W:: \sin i: \cos e ; P \times \cos e=W \sin i\).
Problems of the inclined plane may be solved by the parallelogram of forces thus :

Let the weight \(W\) be kept at rest on the incline by the force \(P\), acting in the line \(b P^{\prime}\), parallel to the plane. Draw the vertical line ba to represent the weight : also \(b b^{\prime}\) perpendicular to the plane, and commlete the parallelogram \(b^{\prime} c\). Then the vertical weight \(b r e\) is the resultant of \(b b^{\prime}\), the measure of support given by the plan to the weight, and bc, the force of gravity tending to draw the weiglit down the plane. The force required to maintain the weight in equilibrinm is represented by this force bc. Thus the force and the weight are in the ratio of \(b c\) to \(b a\). Since the triangle of forces \(a b r\) is similar to the triangle of the incline \(A B C\), the latrer may be substituted for the former in determining the relative magnitude of the forces, and
\[
P: W:: b c: a b:: B C: A B
\]

The Wedge is a pair of inclined planes united by their bases. In the application of pressure to the head or butt end of the wedge. to cause it to penetrate a resisting body, the applied force is to the resistance as the thickness of the wedge is to its longth. Lrt \(t\) be the thickness, \(l\) the length, \(W\) the resistance, and \(P\) the applied force or pressure on the head of the wedge. Then, friction neglected, \(P: W:: t: l ; P=\frac{W t}{l} ; \quad W=\frac{P l}{t}\).

The Screw is an inclined plane wrapped arounc a cylinder in such a way that the height of the plane is parallel to the axis of the cylinder If the screw is formed upon the internal surface of a hollow cylinder, it is usually called a nut. When force is applied to raise a weight or overcome a resistance by means of a screw and nut, either the screw or the nut may
be fixed, the other being movable. The force is generally applied at the end of a wrench or lever-arm, or at the circunference of a wheel. If \(r=\) radius of the wheel or lever arm, and \(p=\) pitch of the screw, or distance between threads, that is, the height of the inclined plane for one revolution of the screw, \(P=\) the applied for \(\because e\), and \(W=\) the resistance overcome. then, neglecting resistance due to friction, \(: \pi r \times P=W p\); \(W=6.283 \mathrm{Pr} \div p\). The ratio of \(P\) to \(W\) is thus independent of the diameter of the screw. In actual screws. much of the power transmitted is lost through friction.

Fig. 105.


Fig. 100.

The Cam is a revolving inclined plane. It may be either an inclined plane wrapped around a cylinder in such a way that the height of the plane is radial to the cylinder, such as the ordinary liftingcam, used in stamp-mills (Fig. 105), or it may be an inclined plane curved edgew'se, and rotating in a plane parallel to its base (Fig. 106). The relation of the weight to the applied force is calculated in the same manner as in the case of the serew.

A.,

B.

C.


Fig. 107.
Pulleys or Blocks. \(-P=\) force applied, or pull ; \(W=\) weight lifted or resistance. In the simple pulley \(A\) (Fig. 107) the point \(P\) on the pulling rope descends the same amount that the weight is lifted, therefore \(P=W\). In \(B\) and \(C\) the point \(P\) moves twice as far as the weight is lifted, therefore \(W=2 P\). In \(B\) and \(C\) there is one movable block, and two plies of the rope engage with it. In \(D\) there are three sheaves in the movable block, each with two plies engaged, or six in all. Six plies of the rope are therefore shortened by the same amount that the weight is lifted, and the point \(P\) moves six times as far as the weight, consequently \(W=6 P\). In general, the ratio of \(W\) to \(P\) is equal to the number of plies of the rope that are shortened, and also is equal to the number of plies that engage the lower block. If the lower block has 2 sheaves and the upper 3 , the end of the rope is fastened to a hook in the top of the lower block, and then there are 5 plies shortened instead of 6 , and \(W=5 P\). If \(V=\) velocity of \(W\). and \(v=\) velocity of \(P\), then in all cases \(V W=v P\), whatever the number of sheaves or their arrangement. If the hauling rope, at the pulling end, passes first around a sheave in the upper or stationary block, it makes no difference in what direction the rope is led from this block to the point at which the puil on the rope is applied; but if it first passes around the movable block, it is necessary that the pull he exerted in a direction parallel to the line of action of the resistance. or a line joining the centres of the two blocks, in order to obtain the maximum effect. If the rope pulls on the lower block at an angle, the block will be pulled out of the line drawn between the weight and the upper block, and the effective pull will be less than the actual pull
on the rope in the ratio of the cosine of the angle the pulling rope makes with the vertical, or line of action of the resistance, to unity.
Differential Pulley. (Fig. 108.)-Two pulleys, \(B\) and \(C\), of different radii, rotale as oue plece ahout a fixed axis, \(A\). An endless chain. BDECLKH, passes over both pulleys. The rims of the pulleys are shaped so as to hold the chain and prevent it from slipping. One of the bights or loops in which the chain hangs, \(D E\), passes under and supports the ruuning block \(F\). The other loop or bight, \(H K L\), hangs freely, and is called the hauling part. It is evideut that the velocity of the hauling part is equal to that of the pitch-circle of the pulley \(B\).

In order that the velocity-ratio may be exactly uniform, the radius of the sheave \(F^{\top}\) should be an exact mean between the radii of \(B\) and \(C\).
Consider that the point \(B\) of the cord \(B D\) moves through an arc whose length \(=A B\), during the same time the point \(C\) or the cord \(C E\) will move downward a distance \(=\) \(A C\). The length of the bight or loop \(B D E C\) will be shortened by \(A B-A C\), which will cause the pulley \(F^{\top}\) to be raised half of this amount. If \(P=\) the pulling force on the cord \(H K\), and \(W\) the weight lifted at \(F\), then \(P \times\) \(A B=W \times 1 / 2(A B-A C)\).
To calculatethe length of chain required for a differential pulley, take the foliowing sum: Half the circuinference of \(A+\) half the circumference of \(B+\) half the circumference of \(F+\) twice the greatest distance of \(F\) from \(A+\) the least length of loop \(H K L\). The last quantity is fixed according ton convenience.


Fig. 108.

The Differential Windlass (Fig. 109) is identical in principle with the differential pulley, the difference in construction being that in the differential windlass the running block hangs in the bight of a rope whose two parts are wound round, and have their ends respectively made fast to two barrels of different radii, which rotate as one piece about the axis \(A\). The differential windlass is little used in practice, because of the great length of rope which it requires.

The Diferential Screw (Fig. 110) is a compound surew of different pitches, in which the threads wind the same way. \(N_{1}\) and \(N_{2}\) are the two nuts; \(S_{1} S_{1}\), the longer-pitched thread; \(\stackrel{s}{2}_{2} S_{2}\), the shorter-pitched thread: in the figure both these threads are left-handed. At each turn of the screw the nut \(N_{2}\) advances relatively to \(N^{2}\) through a distance equal to the difference of the pitch. The use of the differential screw is to combine the slowness
ine pitch with the streugth of thread which can be Fig. 109. of advance due to a fine pitch with the
AWheel and Axle, or Windlass, resembles two pulleys on one axis, having differeut diameters. If a weight te lifted by means of a rope wound over the axle, the force being applied at the rim of the wheel, the action is like that of a lever of which the shorter arm is equal to the radius of the axle plus half the thickness of the rope, and the longer arm is eciual to the radius of the wheel. A wheel and axle is therefore sometimes classed


Fig. 110. as a perpetual lever. If \(P=\) the applied force,\(D=\) diameter of the wheel, \(W=\) the weight lifted, and \(d\) the diameter of the axle + the diameter of the rope, \(P D=W d\).

Toothed-wheel Gearing is a combination of two or more wheels and axles (f'ig. 111). If a series of wheels and pinions gear into each other, as in the cut, friction neglected, the weight lifted, or resistance overcome, is to the force applied inversely as the distances thrugh which they act in a given time. If \(R, R_{1}, R_{2}\) be the radii of the successive wheels, measured to the pitch-line of the teenll, and \(r_{2} r_{1}, r_{2}\) the radii of the cor:responding pinions, \(P\) the applied force, and \(W^{2}\) the weight lifted, \(P \times\)
\(R \times R_{1} \times R_{2}=W \times r \times r_{1} \times r_{2}\), or the applied force is to the weight as the product of the radii of the pinious is to the product of the radii of the wheels; or, as the product of the numbers expressing the teeth in each pinion is to the product of the numbers expressing the teeth in each wherl.
Endless Screw, or Worm-gear. (Fig. 112.)-This gear is commonly used to convert motion at high speed into motion at very slow


Fig. 111.


Fig. 112.
speed. When the handle \(P\) describes a complete circumference, the - pitchline of the cog-wheel moves through a distance equal to the pitch of the screw, and the weight \(W\) is lifted a distance equal to the pitch of the screw multiplied by the ratio of the diameter of the axle to the diameter of the pitch-circle of the wheel. The ratio of the applied furce to the weight lifted is inversely as their velocities, friction not being considered; but the friction in the worm-gear is usually very great, amounting sometimes to three or four times the useful work done.
If \(v=\) the distance through which the force \(P\) acts in a given time, say 1 second, and \(V=\) distance the weight \(W\) is lifted in the same time, \(r=\) radius of the crank or wheel through which \(P\) acts, \(t=\) pitch of the screw, and also of the teeth on the cog-wheel, \(d=\) diameter of the axle. and \(D=\) diameter of the pitch-line of the cog-wheel, \(v=\frac{6.283 r}{t} \frac{D}{d}\) \(\times V ; V=v \times t d \div 6.283 r d\). \(P v=W V+\) friction.

\section*{STRESSES IN FRAMED STRUCTURES.}

Framed structures in general consist of one or more triangles, for the reason that the triangle is the one polygonal form whose slape caunot be changed without distorting one of its sides. Problems in stresses of simple framed structures may generally be solved either by the application of the triangle. paralellogram, or polygon of forces, by the principle of the lever, or by the method of moments. We shall give a few examples. referring the student to the works of Burr, Dubois, Johnson, and others for more elaborate treatment of the subject.
1. A Simple Crane. (Figs. 113 and 114.) \(-A\) is a fixed mast, \(B\) a brace or boom, l' a tue, and \(P\) the load. Required the strains in \(B\) and \(T\). The weight \(P\) considered as acting at the end of the boom, is held in equilibrium by three forces: first, gravity acting downwards; second, the tension in \(T\) : and third, the thrust of \(B\). Let the length of the line \(p\) represent the magnitude of the downward force exerted by the load, and draw a parallelogram with sides bt parallel, respectively, to \(B\) and \(T\), such that \(p\) is the diagonal of the parallelogram. Then \(b\) and \(t\) are the components drawn to the same scale as \(p . p\) being the resultant. Then if the length \(p\) represents the load, \(t\) is the tension in the tie, and \(b\) is the compression in the brace.

Or. more simply. T', \(B\), and that portion of the mast included between them or \(A^{\prime}\) may represent a triangle of forces, and the forces are proportional to the length of the sides of the triangle; that is, if the height of the triangle \(A^{\prime}\) \(=\) the load, then \(B=\) the compression in the brace, and \(T=\) the tension in the tie; or if \(P=\) the load in pounds, the tension in \(T=P \times \frac{T}{A^{\prime \prime}}\), and the com.
pression in \(B=P \times \frac{B}{A^{\prime}}\). Also, if \(a=\) the angle the inclined member makes with the mast, the other member being horizontal, and the triangle bring right-angled, then the length of the inclined member \(=\) height of the triangle \(X\) secant \(a\), and the strain in the inclined member \(=P\) secant \(a\). Also, the strain in the horizontal member \(=\mu \tan a\).

The solution by the triangle or parallelogram of forces, and the equations Tension in \(T^{\prime}=P \times T^{\prime} / A^{\prime}\), and Compression in \(B=P \times B / A^{\prime}\), hold true even if the triangle is uot right-angled, as in Fig. 115; but the trigonometrical rela-

tlons above given do not hold, except in the case of a right-angled triangle. lit is evident that as \(A^{\prime}\) decreases, the strain in both \(T\) and \(B\) increases, iending to become infinite as \(A^{\prime}\) approaches zero. If the tie \(T\) is not attached to the mast, but is extended to the ground, as shown in the dotted line, the rensirn in it remains the same.
2. A Guyed Crane or Derrick. (Fig. 116.)-The strain in \(B\) is, as before, \(P \times B / A^{\prime}, A^{\prime}\) being that portion of the vertical included between \(B\) and \(T\), wherever \(T\) may be attached to \(A\). If, however. the tie \(T\) is attached to \(B\) beneath its extremity. there may be in addition a bending strain in \(B\) due to a tenilency to tirn about the noint of attachment of \(T\) as a fulcrum.

The strain in \(T\) may be calculated by the principle of moments. The moment of \(P\) is Pc, that is, its weight \(\times\) its perpendicular distance from the point of rotation of \(B\) on the mast. The moment of the strain on \(T\) is the product of the strain into the perpendicular distance from the line of its


Fig. 116.
direction to the same point of rotation of \(B\). or \(T d\). The strairs in \(T\) therefore \(=P c \div d\). As \(d\) decreases the strain on \(T\) increases, tending to infinity as \(d\) approaches zero.

The strain on the gur-rope is also calculated by the method of inoments. The moment of the load about the bottom of the mast \(O\) is, as liefore, Pc. If the guy is horizontal the strain in it is \(F\) and its moment is \(F f\), and \(F=\) \(P c \div f\). If it is inclined. the moment is the strain \(G \times\) the perpendicular distance of the line of its direction from \(O\), or \(G g\). and \(G=P c \div g\).

The guy-rope having the least strain is the horizontal one \(F\), and the strain


Fig. 117.
in \(G=\) the strain in \(F \times\) the se cant of the angle between \(F\) and \(G\). As \(G\) is made more nearly vertical \(g\) decreases, and the strain increases, vecoming inflnite when \(g=0\).

\section*{3. Sheajrpoleswith}

Guys. (Fig. 117.)- Kesultant of strall in both masts \(=P \times B D\) \(\div B C\). Resultant strain in both guy: \(=P \times A B+B C\). The strain on each mast (or guy) will be half the above, multiplied by the secant of half the angle the masts (or gilss) make with each other. Two Diagonal Braces and a Tie-rod. (Fig. 118.)--Suppose the braces are used to sustain a single load \(P\). Compressive stress on \(A D=\) \(1 / 2 P \times \frac{A D}{A B}\); on \(C A=1 / 2 P \times \frac{C A}{A B}\). This is true only if \(C B\) and \(B D\) are of equal length. in which case \(1 / 2\) of \(P\) is supported by each abutment \(C\) and \(D\). If they are unequal in length (Fig. 119), then, by the principle of the lever, find the reactions of the abutments \(R_{1}\) and \(R_{2}\). If \(P\) is the load applied at the point \(B\) on the lever \(C D\), the fulcrum being \(D\), then \(R_{1} \times\) \(C D=P \times B D\) and \(R_{2} \times C D=P \times B C ;\) \(\kappa_{1}=P \times B D \div C D ; R_{2}=P \times B C \div C D\).

The strain on \(A C=R_{1} \times A C \div A B\), and on \(A D=R_{2} \times A D \div A B\).
The strain on the tie \(=R_{1} \times C B \div A B\) \(=R_{2} \times B D \div A B\).


Fig. 118.

Fig. 119.


When \(C B=B D, R_{1}=R_{2}\). The strain on \(C B\) and \(B D\) is the same, whether the braces are of equal length or not, and is equal to \(1 / 2 P \times 1 / 2 C D \div A B\).

If the braces support a uniform load. as a pair of rafters, the strains cansed by such a load are equivalent to that caused by one half of the load applied at the centre. The horizontal thrust of the braces against ench other at the apex equals the tensile strain in the tie.

King-post Truss or Bridge. (Fig. 120.)-If the load is distributed over the whole length of the truss, the effect is the same as if half the load were placed at the centre, the other half being carried by the abutments. Let \(P=\) one half the load on the truss, then tension in the vertical tie \(A B=P\). Compression in each of the inclined braces \(=\) \(1 / 2 P \times A D \div A B\). Tension in the tie \(C D\) \(=1 / 2 P \times B D \div A B\). Horizontal thrust of inclined brace \(A D\) at \(D=\) the tension in the tie. If \(W=\) the total load on one truss uniformly distributed, \(l=\) its length and \(d=\) its depth, then the tension on the horizontal tie \(=\frac{W}{8 \pi}\).


FIG. 120.

Inverted King-post Truss. (Fig. 121.)--If \(P=\) a lnad applied at \(B\), or one half of a uniformly disulibuted load, then compression on \(A B=P\)


Fra. 122 (the floor-beam \(C D\) not being considered to have any resistance to a slight bending). Tension on \(A C\) or \(A D=1 / 2 P \times A D \div A B\). Comnression on \(C n=1 / 2 P \times B D \div A B\).

Queen-post Truss. (Fig. 122)-If unitwinly loaded. and the queen-posts divide the length into three equal bars, the load may be considered to be divided into three equal parts, two parts of which, \(P_{1}\) and \(P_{2}\), are concentrated at the panel joints
and the remainder is equally divided between the abutments and supported by them directly. The two parts \(P_{1}\) and \(P_{2}\) only are considered to affect


FIG. 122.


Fig. 123. the members of the truss. Strain in the vertical ties \(B E\) and \(C F\) each equals \(P_{1}\) or \(P_{2}\). Strain on \(A B\) and \(C D\) each \(=P_{1} \times C D+C F\). Strain on the tie \(A E\) or \(E F\) or \(E D=P_{1} \times\) \(F D \div C F\). Thrust on \(B C^{\prime}=\) tension on \(E F\).

For stability to resist heavy unequal luads the queen-post truss should have diagonal braces from \(B\) to \(F\) and from \(C\) to \(E\).
Inverted aueen-post Truss. (Fig. 123.)-C'ompression on \(E^{\prime} B\) and \(F C\) rach \(=P_{1}\) or \(P_{2}\). Compression on \(A B\) or \(B C^{1}\) or \(C D \stackrel{2}{=}\). \(P_{3} \times A B \div W: B\). Tension on \(A E\) or \(F D=P_{1} \times A E \div E B\). Tellsion on \(E F=\) compression on \(B C\). For stability to resist unequal loads, ties should be run from \(C\) to \(E\) and from \(B\) to \(F\).
Burr Truss of Five Panels. (Fig. 124.)-Fonr fifths of the load may be taken as concentrated at the points \(E, K, L\) and \(F\), the other fifth being


FIG. 124.
supported directly by the two abutments. For the strains in \(B A\) and \(C D\) the truss may be considered as a queen-post truss, with the loads \(P_{1}, P_{2}\) concentrated at \(E\) and the loads \(P_{3}, P_{4}\) concentrated at \(F\). Then, compressive strain on \(A B=\left(P_{1}+P_{2}\right) \times A B \div B E\). The strain on \(C D\) is the same if the loads and panel lengths are equal. The tensile strain on \(B E\) or \(C F=\) \(P_{1}+P_{2}\). That portion of the truss between \(E\) and \(F\) may be considered as a sinaller queen-post truss, supporting the loads \(P_{2}, P_{3}\) at \(K\) and \(L\). The strain on \(E G\) or \(H F=P_{2} \times E G \div G K\). The dagonals \(G L\) and \(K H\) receive no strain unless the truss is unequally loaded. The verticals GK and \(H L\) each receive a tensile strain equal to \(P_{2}\) or \(P_{3}\).

For the strain in the horizontal members: \(B G\) and \(C H\) receive a thrust equal to the horizontal component of the thrust in \(A B \operatorname{rrCD},=\left(P_{1}+P_{3}\right)\) \(\times\) tan angle \(A B E\), or \(\left(P_{1}+P_{2}\right) \times A E \div B E\). \(G H\) receives this thrust and also, in addition, a thrust equal to the horizontal component of the thrust in \(E G\) or \(H F\), or, in all, \(\left(P_{1}+P_{2}+P_{3}\right) \times A E \div B E\).

Tl:s tension in \(A E\) or \(F D\) equals the thrust in \(B G\) or \(H C\), and the tension in \(E K\). \(K L\). and \(L E\). equals the thrust in \(G H\).

Pratt or Whipple Truss. (Fig. 120.)-In this truss the diagonals are ties, and the vericals are struts or columns.

Cilculation by the method of distribution of strains: Consider first the load \(P_{1}\). The truss having six bays or panels, \(5 / 6\) of the load is transmitted to the abutment \(H\), and \(1 / 6\) to the abutment \(O\), on the principle of the lever. As the five sixths must be transmitied through \(J A\) and \(A H\), write on these members the figure 5 . The one sixth is transmitted successively through \(J C, C K\). \(K D, D L\), etc., passing alternately through a tie and a strut. Write on these members. up to the strut \(G O\) inclusive, the figure 1. Then consider the load \(P_{2}\), of which \(4 / 6\) goes to \(A H\) and \(\dot{Z} / 6\) to \(G O\). Write on \(K B, B J, J A\), and \(A H\) the figure 4 , and ou \(K D, D L, L E\), etc., the figure 2. The load \(P_{2}\)
transmit \(3 / 6\) in each direction; write 3 on each of the members through which this stress passes, and so on for all the loads, when the figures on the several members will appear as on the cut. Adding them up, we have the following tutals:
Tension on diagonals \(\left\{\begin{array}{cccccccccccc}A J & B H & B K & C J & C L & D K & D M & E L & E N & F M F & F O & G N \\ 15 & 0 & 10 & 1 & 6 & 3 & 3 & 6 & 1 & 10 & 0 & 15\end{array}\right.\)
Compression on verticals \(\left\{\begin{array}{ccccccccc}A H & B J & C K & D L & E M & F N & G O \\ 15 & 10 & 7 & 6 & 7 & 10 & 15\end{array}\right.\)
Each of the figures in the first. line is to be multiplied by \(1 / 6 P \times\) secant of angle \(H A J\), or \(1 / 6 P \times A J \div A H\), to obtain the tension, and each figure in the lower line is to be multiplied by \(1 / 6 P\) to obtain the compression. The diag. onals \(X B\) and \(F O\) receive no strain.


Fig. 125.
It is common to build this truss with a diagonal strut at \(H B\) instead of the post \(H A\) and the diagnal \(A J\); in which case \(5 / 6\) of the load \(P\) is carried through \(J B\) and the strut \(B H\), which latter then receives a strain \(=15 / 6 P \times\) secant of \(H B J\).

The strains in the upper and lower horizontal members or chords increase from the ends to the centre, as shown in the case of the Burr truss. \(A F\); receives a thrust equal to the horizontal component of the tension in \(A J\), or \(15 / 6 P \times \tan A J B\). \(B C\) receives the same thrust + the horizontal component of the tension in \(B K\), and so on. The tension in the lower chord of each panel is the same as the thrust in the upper chord of the same panel. (For calcu lation of the chord strains by the method of moments. see below.)
The maxinum thrust or tension is at the centre of the chords and is equas to \(\frac{W L}{8 D}\), in which \(W\) is the total load supported by the truss, \(L\) is the length, and \(D\) the depth. This is the formula for maximum stress in the chords of a truss of any form whatever.
The above calculation is based on the assumption that all the loads \(P_{1}, P_{2}\), etc., are equal. If they are unequal the value of each has to be taken into account in distributing the strains. Thus the tension in \(A J\), with unequal loads, instead of being \(15 \times 1 / 6 P\) secant \(\theta\) would be \(\sec \theta \times\left(5 / 6 P_{1}+4 / 6 P_{2}+\right.\) \(3 / 6 P_{3}+2 / 6 P_{4}+1 / 6 P_{5}\).) Each panel load, \(P_{1}\) etc., includes its fraction of the weight of the truss.
General Formula for Strains in Diagonals and Verticals.
-Let \(n=\) total number of panels, \(x=\) number of any vertical considered from the nearest end, counting the end as \(1, r=\) rolling load for each panel, \(P=\) trotal load for each panel,
\[
\text { Strain on verticals }=\frac{\left[(n-x)+(n-x)^{2}-(x-1)+(x-1)^{2}\right] P}{2 n}+\frac{r(x-1)+(x-1)^{2}}{2 n}
\]

For a uniformly distributed load, leave out the last term,
\[
\left[r(x-1)+(x-1)^{2}\right] \div 2 n
\]

Strain on principal diagonsls = strain on verticals \(\times\) secant \(\theta\), that is secant of the angle the diagonal makes with the vertical.
Strair on the counterbraces: The strain on the counterbrace in the first panel is 0 , if the load is uniform. On the 2d, \(3 \mathrm{~d}, 4\) th, etc., it is \(P\) secant \(\theta\) \(\times \frac{1}{n}, \frac{1+2}{n}, \frac{1+2+3}{n}\), etc., \(P\) being the total load in one panel.

Strainin the Chords-Method of Moments.-Let the truss be uniformly loaded, the tuti!! load acting on it \(=W\). Weight supported at each end, or reaction of the abutment \(=W / 2\). Length of the truss \(=L\). Weight on a unit of leligth \(=W / L\). Horizontal distance from the nearest abutment to the point ( \(: a y\) M in Fig. 125) in the chord where the strain is to be determined \(=x\). Horizontal strain at that point (tension on the lower chord, compression in the upper) \(=H\). Depth of the truss \(=D\). By the meihod of moments we take the difference of the moments, about the point \(M\), of the reaction of the abutment and of the load between and the abutments, and equate that clifference with the moment of the resistance, or of the strain in the horizontal chord, considered with reference to a point in the opposite chord, about which the truss would turn if the first chord were severed at \(M\).
The moment of the reaction of the abutment is \(W x / 2\). The moment of the load from the abutinent to \(M\) is \(W / L x \times\) the distance of its cent:e of gravity from \(M\), which is \(x / 2\), or moment \(=W x^{2} \div \check{\dot{W}} 2\). Moment of the stress in the chord \(=H D=\frac{W x}{2}-\frac{W x^{2}}{2 L}\), whence \(H=\frac{W}{2 D}\left(x-\frac{x^{2}}{L}\right)\). If \(x=0\) or \(L\), \(H=0\). If \(x=L / 2, H=\frac{W L}{8 D}\), which is the horizontal strain at the middle of the chords, as before given.

The Howe Truss. (Fig. 126.)-In the Howe truss the diagnnals are struts, and the verticals are ties. The calculation of strains may be made


Fig. 126.
in the same method as described above for the Pratt truss.
The Warren Girder. (Fig. 127.) - In the Warren girder, or triangular truss, there are no vertical struts, and the diagonals may transmit either


Fig. \(12 \%\).
tension or compression. The strains in the diagonals may be calculated hy the method of distribution of strains as in the case of the rectangular truss.

On the principle of the lever, the load \(P_{1}\) being \(1 / 10\) of the length of the span from the line of the nearest support \(a\), transmits \(9 / 10\) of its weight to \(a\) and \(1 / 10\) to \(g\). Write 9 n the right hand of the strut \(1 a\), to represent the compression, and 1 on the right hand of \(1 b\). \(2 c, 3 d\). etc., to represent compression, and on the left hand of \(b 2, c 3\), etc., to represent tension. The load \(P_{2}\) transmits \(7 / 10\) of its weight to \(a\) and \(3 / 10\) tn \(g\). Write 7 on pach member from 2 to \(a\) and 3 on each member from 2 to \(g\), placing the figures representing compression on the right hand of the member, and those representing tension on the left. Proceed in the same manner with all the loads, then
sum up the figures on each side of each diagonal, and write the difference of each sum benrath, and on the side of the greater sum, to show whether the difference represents tension or compression. The results are as follows: Compression, \(12.25 ; 2 b, 15 ; 3 c, 5: 3 d, 5 ; 4 e, 15 ; 5 g\), 25. Tensinn, \(1 b, 15 ; 2 c\), 5: \(4 d, 5 ; 5\) e. 15. Each of these figures is to be multiplied by \(1 / 10\) of one of the loads as \(P_{1}\), and by the secant of the angle the diagonals make with a vertical line.
The strains in the horizontal chords may be determined by the method of moments as in the case of rectangular trusses.
Roof-truss.-Solution by Method of Moments.-The calculation of strains in structures by the method of statical moments consists in taking a crosssection of the structure at a point where there are not more than three members (struts, braces. or chords).
To find the strain in either one of these members take the moment about the intersection of the other two as an axis of rotation. The sum of the moments of these members must be 0 if the structure is in equilibrinm. But the moments of the two members that pass through the point of reference or axis are both 0 , hence one equation containing one unknown quantity can be found for each cross-section.


Fig. 128.
In the truss shown in Fig. 128 take a cross-section at \(t s\), and determine the strain in the three members cut by it, viz., \(C E, E D\). and \(D F\). Let \(X=\) force exerted in direction \(C E, Y=\) force exerted in direction \(D E, Z=\) force exerted in direction FD.
For \(X\) take its moment about the intersection of \(Y\) and \(Z\) at \(D=X x\). For \(Y\) take its moment abont the intersection of \(X\) and \(Z\) at \(A=Y y\). For \(Z\) take its moment about the intersection of \(X\) and \(Y\) at \(E=Z z\). Let \(z=15, x=\) 18.6, \(y=384 . A D=50, C D=20 \mathrm{ft}\). Let \(P_{1}, P_{2}, P_{3}, P_{4}\) be equal loads, as shown. and \(31 / 2 P\) the reaction of the abutment \(A\).
The sum of all the moments taken about \(D\) or \(A\) or \(E\) will be 0 when the structure is at rest. Then \(-X x+3.5 P \times 50-P_{3} \times 12.5-P_{2} \times 25-P_{1} \times\) \(37.5=0\).
The + .signs are for moments in the direction of the hands of a watch or "clockwise " and - signs for the reverse direction or anti-clockwise. Since \(P=P_{1}=P_{3}=P_{3},-18.6 X+1 i 5 P-i 5 P=0 ;-18.6 X=-100 P ; \quad X=\) \(100 P \div 18.6=5.3 \div 6 \mathrm{P}\).
\(-Y y+P_{3} \times 37.5+P_{2} \times 25+P_{1} \times 12.5=0 ; 38.4 Y=75 P ; Y=45 P \div 38.4\) \(=1.953 P\).
\(-Z z+\frac{1.5 P}{\substack{2.5}} \times 37.5-P_{1} \times 25-P_{2} \times 12.5-P_{3} \times 0=0 ; 15 Z=93.75 P ; Z=\)
In the same manner the forces exerted in the other members have heen found as follows: \(E G=6.73 P: G J=8.07 P ; J A=9.42 P ; J H=1.35 P ; G F=\) 1.59P: \(A H=8.75 P: H F=7.50 P\).

The Fink Koof-truss. (Fig. 129.)-An analysis by Prof. P. H. Philbrick (Van N. Mag.. Aug. 1880) gives the following results:


Fig. 129.
\(W=\) total load on roof;
\(N=\) No. of panels on both rafters;
\(W / N=P=\) load at each joint \(b, d . f\), etc.;
\(V=\) reaction at \(A=1 / 2 W=1 / 2 N P=4 P ;\)
\(A D=S ; \quad A C=L ; C D=D ;\)
\(t_{1}, t_{2}, t_{3}=\) tension on De, ea. gA, respectively;
\(c_{1}, c_{2}, c_{3}, c_{4}=\) compression on \(C b, b d, d f\), and \(f \dot{A}\).
Strains in

7, or \(b C=c_{1}=7 / 2 P L / D-3 P D / L\) :
8 , " \(\quad b c\) or \(f g=P S \div L\);
9, " de \(=2 P S \div L\);
10 , " cd or \(d g=1 / 2 P S \div D\);
\(=3 / 2\) PS \(\div D\).
Example.-Given a Fink roof-truss of span 64 ft ., depth 16 ft ., with four panels on each side, as in the cut; total load \(3: 2\) tons. or 4 tons each at the points \(f, d, b, C\), etc. (and 2 tons each at \(A\) and \(B\), which transmit no strain to the truss members). Here \(W=3:\) tons, \(P=4\) tons, \(S=32 \mathrm{ft}\)., \(D=16\) ft., \(L=\sqrt{ } S^{2}+D^{2}=2.236 \times D . L \div D=2.236, D \div L=.44 \approx 2, S \div D=2\), \(S+L=.8944\). The strains on the numbered members then are as follows:


The Economical Angle.-A structure of tri. angular form, His. \(1: 2 y a\), is supported at \(a\) and \(b\). It sustains any load \(L\), the elements ce being in compression aud \(t\) i:1 tension. Required the angle \(\theta\) so that the total weight of the structure shall be a minimum. F. R. Honey (Sci. Am. Supp., Jan. 17, 1895) give: a solution of this problem, with the result \(\tan \theta=\sqrt{\frac{\bar{C}+T}{T}}\), in which \(C\) and \(T\) represent the crushing and the tensile strength respectively of the material employed. It is applicable to any material. For \(C=T, \tan \theta=\)


Fig. 129a. \(54_{4}^{3 \circ}\). For \(C=0.4 T\) (yellow pine), \(\tan \theta=499_{4}^{\circ}\). For \(C=0.8 T\) (soft steel), \(\tan \theta=53 \frac{1}{4}^{\circ}\). For \(C=67^{\prime}\) (cast irou), \(\tan \theta=69 \frac{1}{4}^{\circ}\).

\section*{HEAT.}

\section*{THERTIONLETERS.}

The Fahrenheit thermometer is generally used in English-speaking coun: tries, and the Centigrade, or French thermometer, in countries that use the metric system. In many scientific treatises in English, however, the Centigrade temperatures are also used, either with or without their Fahrenheit equivalents. The Réaumur thermometer is used in Russia, Sweden, Turkey, aud Egypt. (Clark.)

In the Fahrenheit thermometer the freezing-point of water is taken at \(32^{\circ}\), and the hoiling-point of water at mean atmospheric pressure at the sealevel, \(14 . \%^{[ } \mathrm{lbs}\). per sq. in., is taken at \(212^{\circ}\), the distance between these two points being divided into \(180^{\circ}\). In the Centigrade and Réaumur thermometers the freezing-point is taken at \(0^{\circ}\). The boiling-point is \(100^{\circ}\) in the Centigrade scale, and \(80^{\circ}\) in the Réauniur.

1 Fahrenheit lesree \(=5 / 9 \mathrm{deg}\). Centigrade \(=4 / 9 \mathrm{deg}\). Réaumur.
1 Centigrade degree \(=9 / 5 \mathrm{deg}\). Fahrenheit \(=4 / 5 \mathrm{deg}\) Réaumur.
1 Réaumur degree \(=9 / 4 \mathrm{drg}\). Fahrenheit \(=5 / 4 \mathrm{deg}\). Centigrade.
Temperature Fahrenheit \(=9 / 5 \times\) temp. C. \(+32^{\circ}=9 / 4 \mathrm{R} .+32^{\circ}\).
Temperature Centigrade \(=5 / 9\left(\right.\) temp. F. \(-32^{\circ}\) ) \(=5 / 4 \mathrm{R}\).
Tempratıe Kénmи \(=4 / 5 \mathrm{t}-\mathrm{mp} \mathrm{C} . \quad=4 / 9\left(\mathrm{~F} .-32^{\circ}\right)\).
Mercurial Thermometer. (Rankine. S. E., p 2:34.)-The rate of expanswin of mercuiy "un rise of temperature increases as the temperature becomes higher ; from which it follows. \(t\) at if a thermometer showing the dilatation of mercury simply were made to agree with an air thermometer at \(32^{\circ}\) and \(\because 1 \because^{\circ}\). the mercurial thermometer would show lower temperatures than the air thermometer between thuse standard points, and higher temperatures bey ond them.

For example, according to Regnanlt, when the air thermometer marked \(350^{\circ} \mathrm{C}\). \(\left(=662^{\circ} \mathrm{F}\right.\) ). the mercurial thermometer would mark \(362.16^{\circ} \mathrm{C}\). (= \(683.59^{\circ} \mathrm{F}\).), the error of the latter being in excess \(12.15^{\circ} \mathrm{C}\). ( \(=21.89^{\circ} \mathrm{F}\).).

Actual mercurial the mometers indicate intervals of temperature proportional to the difference between the expansion of nercury and that of glass.

The inequalities in the rate of expansion of the glass (which are verg different for different kinds of glass) correct, to a greater or less extent. the errors arising from the inequalities in the rate of expansion of the mercury.

For practical purposes cunnected with heat engines, the mercurial thermometer made of common glass may be considered as sensibly coinciding with the air-thermometer at all temperatures not exceeding \(500^{\circ} \mathrm{F}\).

\section*{PEROMETRY.}

Principles Used in Various Pyrometers.-Contraction of clay bv heat, as in the Wedgwood pyrometrr used by potters. Not accurate, as the contraction varies with the quality of the clay.

Expansion of air, as in the air-thermometers, Wiborgh's pyrometer, Uehling and Steinbart's pyrometer, etc.
Specific heat of solids, as in the copper-ball, platinum-ball, and fire-clay pyrometers.

Relative expansion of two metals or other substances, as copper and iron, as in Brown's and Bulkley's pyrometers, etc.

Melting-points of metals, or other substances, as in approximate determinations of temperature by melting pieces of zinc. lead, etc.
Measurement of strength of a thermo-electric current produced by heating the junction of two metals, as in Le Chatelier's pyrometer.

Changes in electric resistance of platinum, as in the Siemens pyrometer.
Mixture of hot and cold air, as in Hubsun's hot-blast pyrometer.
Time required to heat a weighed quatity of water enclosed in a vessel. as in the water prommer.

Thermometer for Temperatures up to \(950^{\circ}\) F.-Mercury with compressed nitrogen in the tube above the mercury. Made by Queen \& Co., Philadelphia.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C． & F． & C． & F． & C． & \(F\). & C． & F． & C． & F． & C． & F． & C． & F． \\
\hline －40 & －40 & 26 & 78.8 & 92 & 197.6 & 158 & 316.4 & 224 & 435.2 & 290 & 554 & 950 & 1742 \\
\hline －39 & －38．2 & 27 & 80.6 & 93 & 199.4 & 159 & 318.2 & 225 & 437 & 300 & 572 & 960 & 1760 \\
\hline ；38 & －36．4 & 28 & 82.4 & 94 & 201．2 & 160 & 320. & 226 & 438.8 & 310 & 590 & 9 T 0 & 1\％\({ }^{\text {\％}}\) \\
\hline 3 1 & －34 & 29 & 84.2 & 95 & 203 & 161 & 321.8 & 227 & 440.6 & 320 & ¢08 & 980 & \(1 \tau 96\) \\
\hline －36 & －3\％．3 & 30 & 86 & 96 & \(2{ }^{2} 4.8\) & 162 & 32：3． 6 & 228 & 44：． 4 & 330 & 626 & 990 & 1814 \\
\hline －35 & \(-31\). & 31 & 87.8 & 97 & 206.6 & 163 & 325.4 & \(2: 9\) & 444.2 & 340 & 614 & 1000 & 1832 \\
\hline －34 & －29．2 & 32 & 89.6 & 98 & 208.4 & 164 & 327.2 & 2：30 & 446. & 33：0 & 662 & 1010 & 1＊50 \\
\hline －3：3 & －27．4 & 33 & 91.4 & 99 & 210． & 165 & \(3: 9\). & 231 & 447.8 & 360 & 680 & 10：20 & 1868 \\
\hline －32 & －25．6 & 34 & 9：3．2 & 100 & \(21 \%\) ． & 166 & 330.8 & 2 & 449.6 & 350 & 698 & 10：30 & 1886 \\
\hline 31 & －23．8 & 35 & 95. & 101 & 213.8 & \(16 i\) & 333： 3 & 23.3 & 451.4 & 380 & \％16 & 1040 & 1904 \\
\hline 30 & \(-22\) & 36 & 96.8 & 102 & 215.6 & 163 & 3：34．4 & 234 & 453.2 & 390 & 734 & 1050 & 1922 \\
\hline 29 & －20．2 & 37 & 98.6 & 103 & 217.4 & 169 & 336.2 & 235 & 455. & 400 & \％52 & 1060 & 1940 \\
\hline 28 & －18．4 & 38 & 100.4 & 104 & 219.2 & 170 & 338． & 236 & 456.8 & 410 & 770 & 10ヶ0 & 1958 \\
\hline 27 & －16．6 & 39 & 102.2 & 105 & 221. & 171 & 339.8 & 233 & 458.6 & 4：0 & 788 & 1080 & \(19 \sim 6\) \\
\hline 26 & －14．8 & 40 & 104. & 106 & \(\div 22.8\) & 172 & 341.6 & \({ }_{2}^{238}\) & 460.4 & 430 & 806 & 1090 & 1994 \\
\hline 25 & －13． & 41 & 105.8 & 107 & \(2: 24.6\) & 173 & 343．4 & 239 & \(46: 2\) & 440 & 824 & 1100 & 2012 \\
\hline 24 & －11．2 & 42 & 107.6 & 108 & 226.4 & 174 & 345．2 & 3 & 464 & 450 & 84.2 & 1110 & 20：30 \\
\hline 23 & － 9.4 & 43 & 109.4 & 109 & 228.2 & 175 & 347. & 241 & 465. & 460 & 860 & 1120 & \(\because 048\) \\
\hline 22 & － 7.6 & 44 & 111.2 & 110 & 230. & 176 & 348.8 & 24.2 & \(46 \%\). & \(4{ }^{0} 0\) & 878 & 1130 & 2066 \\
\hline －21 & － 5.8 & 45 & 113. & 111 & 2：31．8 & 117 & 350.6 & 243 & 469.4 & 480 & 896 & 1140 & 2084 \\
\hline 20 & － 4 ． & 46 & 114.8 & 112 & 2336 & 178 & 352.4 & 244 & 4712 & 490 & 914 & 115 & 2103 \\
\hline 19 & －2．2 & 4 r & 116.6 & 113 & \(\stackrel{35}{2} .4\) & 179 & 354.2 & 245 & \(4 \div 3\). & 500 & 93： & 116 & 2120 \\
\hline －18 & －0．4 & 48 & 118.4 & 114 & 237．2 & 180 & 3.56. & 246 & 4：4．8 & 510 & 950 & \(11 \%\) & 2138 \\
\hline －17 & ＋1．4 & 49 & 120．2 & 115 & 239. & 181 & 357.8 & 247 & 476. & 520 & 968 & 1180 & 2156 \\
\hline －16 & 3.2 & 50 & \(12 \%\). & 116 & 240.8 & 182 & 359.6 & 248 & 478. & 530 & 986 & 1190 & 2174 \\
\hline －15 & & 51 & 123．8 & 117 & 242.6 & 183 & 361.4 & 249 & 480. & 540 & 1004 & 1200 & 92 \\
\hline －14 & 6.8 & 52 & 125.6 & 118 & 244.4 & 184 & 36：3．2 & 250 & \(48 \%\). & 550 & 102： & 121 & 10 \\
\hline －13 & 8.6 & 53 & 127.4 & 119 & 246.2 & 185 & 365. & 251 & 483.8 & 560 & 1040 & 122 & \(22 \cdot 28\) \\
\hline －12 & 10.4 & 54 & 129.2 & 120 & 248. & 186 & 366.8 & 252 & 485.6 & \(5 \% 0\) & 1058 & \(12: 30\) & 46 \\
\hline －11 & 12． 2 & 55 & 131. & \(1: 1\) & 249.8 & 18 ¢ & 368.6 & 253 & 487. & 580 & \(10 \stackrel{1}{6}\) & 1240 & \(\because 264\) \\
\hline 10 & 14. & & 13\％．8 & 122 & 251.6 & 188 & 370.4 & 254 & 489.2 & 590 & 1094 & 1250 & \(\cdots 28\) \\
\hline －9 & 15.8 & 57 & 134.6 & 123 & 253.4 & 189 & \(3 \pi .2\) & 255 & 491. & 600 & ：112 & 1260 & 2300 \\
\hline －8 & 17.6 & 58 & 136.4 & \(1: 2\) & 255.2 & 190 & \(3 \pi 4\). & \(\stackrel{25}{2}\) & 49：2． 8 & 610 & 1130 & 1270 & 2：318 \\
\hline \(-7\) & 19.4 & 59 & 138．2 & 125 & 257 & 191 & 3ก⿹． 8 & 25 in & 494.6 & 620 & 1148 & 1280 & 2336 \\
\hline －6 & 21.2 & 60 & 140. & 126 & 258.8 & 192 & \(37 \sim .6\) & 258 & 4964 & 6：30 & 1166 & 1290 & 2：354 \\
\hline & & & 141.8 & 127 & 260.6 & 19：3 & \(3 \uparrow 9.4\) & 2.59 & 493．2 & 640 & 1184 & 1300 & －3\％2 \\
\hline & 24.8 & & 143．6 & 128 & 26：． & 194 & 381.2 & 260 & 500 & 650 & 1：02 & \(1: 310\) & 23.90 \\
\hline & & & 145． 4 & 129 & 264.2 & 195 & \({ }^{38} 384.8\) & 261 & \({ }_{503}^{501.8}\) & 660 & 12：0 & 13\％0 & 2408 \\
\hline 1 & 30.2 & 65 & 149. & 131 & 267.8 & 197 & 386．6 & 263 & 505.4 & 680 & 1256 & \(13+0\) & －244 \\
\hline 0 & \(3 \%\) ． & 66 & 150.8 & \(13 \%\) & 269.6 & 198 & 388.4 & 264 & \(50 \div .2\) & 690 & \(1: \tau 4\) & 135 & －462 \\
\hline \(+1\) & 33.8 & 67 & 15\％．6 & 1.33 & \(2 \sim 1.4\) & 199 & 3 50.2 & 265 & 509 & 710 & 129： & 1360 & \(2+80\) \\
\hline & 35.6 & 68 & 154.4 & 134 & 27．3．2 & 200 & 392． & 266 & 5108 & 710 & 1310 & 137 & 2498 \\
\hline 3 & 37.4 & 9 & 156.2 & 135 & 275. & 201 & 393.8 & 267 & 512． 6 & \％ & 13：4 &  & 2516 \\
\hline 4 & 39.2 & & 158. & 136 & \(2 \tilde{6} 6.8\) & 2 & 39.5 .6 & 268 & 514.4 & 130 & 1346 & 139 & －534 \\
\hline & 41. & \({ }_{1}\) & 159.8 & 137 & 278.6 & 203 & 297.4 & 269 & 516．2 & \％40 & 1364 & 1400 & －255： \\
\hline 6 & 42.8 & & 161.6 & 138 & 280.4 & 204 & 399.2 & 270 & 518. & & 138\％ & 141 & 250 \\
\hline & 44.6 & T3 & 16：3．4 & 139 & 282．2 & \(\because 05\) & 401. & \(2{ }^{2} 1\) & 519.8 & ¢ 60 & 1400 & 142 & 2588 \\
\hline 8 & 46.4 & 4 & 165.2 & 140 & 284. & 206 & 402.8 & \(2 \sim^{2}\) & 521.6 & \％ 20 & 1418 & 143 & 2606 \\
\hline 9 & 48.2 & & 167. & 141 & 285.8 & 20ヶ & 404.6 & \(2 \tau 3\) & 523.4 & \％ 80 & 1436 & 1440 & 2524 \\
\hline 10 & 50. & 6 & 168.8 & 142 & 287.6 & \(\because 08\) & 406.4 & 274 & 525．2 & 790 & 1454 & 145 & －642 \\
\hline 11 & 51.8 & & 170.6 & 143 & 289.4 & \(\because 09\) & 408.2 & 2 25 & 527. & 800 & \(147 \cdot\) & 1460 & 2660 \\
\hline 12 & 53.6 & & 172．4 & 144 & \(\because 91.2\) & \(\because 10\) & 410. & \(2 \div 6\) & \(5: 8.8\) & 810 & 1490 & 1470 & \(26 \mathfrak{8}\) \\
\hline 13 & 55.4 & & 1\％4．2 & 145 & 29：3． & \(\cdots 11\) & 411.8 & \(2{ }^{2}\) & 5：30．6 & \(8: 0\) & 1508 & 148 & －669 \\
\hline 14 & 57.2 & & \(1 \tau 6\). & 146 & 294.8 & 212 & 413.6 & \(2 \sim 8\) & 53\％．4 & 8.30 & 15־6 & 14. & 2：14 \\
\hline 10 & & & 1\％\％．8 & 148 & 296.6 & 213 & 415.4 & 2.9 & 534.2 & & 1544 & 1.500 & 2732 \\
\hline 16 & 60.8 & & 179.6 & 148 & 298.4 & 214 & 417.2 & 280 & 536. & & 1562 & 1510 & \(2 \% 50\) \\
\hline 17 & 62.6 & & 181.4 & 149 & 300.2 & 215 & 419. & 281 & 535． 8 & & 1580 & 15：0 & － 268 \\
\hline 18 & 64.4 & & 183.2 & 150 & 30\％． & 216 & 420.8 & \(\because 82\) & 5：39．6 & & 1598 & 15：30 & －2786 \\
\hline 19 & 66.2 & & 185. & 151 & 303．8 & \(\because 11\) & 42： 2.6 & \(28: 3\) & 541.4 & 880 & 1616 & 1540 & － 2804 \\
\hline 20 & 68. & & 186.8 & 152 & \({ }^{305.6}\) & \(\because 18\) & 42－4 4 & 284 & 513.2 & 890 & 1634 & 1550 & 2 2？ \\
\hline 21 & 69.8 & 8 \％ & 188.6 & 153 & 307． 4 & 219 & 426.2 & 285 & 545. & 900 & 1652 & 1600 & 2．91：3 \\
\hline 22 & T1．6 & 88 & 190.4 & 154 & 309．2 & 2：20 & 428. & 286 & 546.8 & 910 & 16i0 & 1650 & 3102 \\
\hline 23 & 73.4 & & 192．： & 155 & 311. & 221 & 429.8 & 287 & 548.6 & 920 & 1688 & 1：00 & 3093 \\
\hline 24 & 75.2 & & 194. & 156 & 312.8 & \(2 \geqslant 2\) & 431.6 & 238 & 550.4 & \(9: 30\) & 1706 & 17 （\％） & ：318？ \\
\hline 25 & 77. & 91 & 195. & 157 & 3 & \(22:\) & 433.4 & 289 & 55\％．2 & 940 & 1724 & 1800 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F． & C． & F． & C． & F． & & & & & & F． & C． & F． & C． \\
\hline － & － & 26 & － 3.3 & 92 & 33.3 & 158 & 70 & 224 & 106.7 & 290 & 143.3 & 50 & 182.2 \\
\hline － & －39． & 27 & －2．8 & 93 & 33.9 & 159 & 70.6 & 225 & 107.2 & 291 & 143.9 & \(3: 0\) & 1878 \\
\hline & \(-38.9\) & 28 & －22 & 94 & 34.4 & 160 & 71.1 & 226 & 107.8 & 29：2 & 144.4 & 80 & 193． \\
\hline & －．38．3 & 29 & － 1.7 & 95 & 35. & 161 & 71.7 & \(22 \sim 1\) & 108.3 & 293 & 145. & 90 & 198. \\
\hline & －－37．8 & 30 & \(-1.1\) & 96 & 35.6 & 162 & 72.2 & 228 & 108.9 & 294 & 145.6 & 400 & 204. \\
\hline －35 & \(-37.2\) & 31 & － 0.6 & 97 & 36.1 & 163 & \(7 \cdot .8\) & 229 & 109.4 & 295 & 146.1 & 410 & 210. \\
\hline －34 & －36．7 & 32 & & 98 & 36.7 & 164 & 73.3 & 230 & 110. & 296 & 146.7 & 420 & 15. \\
\hline －33 & －36．1 & \(3: 3\) & \(+0.6\) & 99 & 37.2 & 165 & 73.9 & 231 & 110.6 & 297 & \(14 \pi .2\) & 430 & 221. \\
\hline －32 & －35．6 & 34 & & 100 & 37.8 & 166 & 74.4 & 232 & 111.1 & 298 & 147.8 & 440 & \(\because 26.7\) \\
\hline －31 & 35. & 35 & ． 7 & 101 & 38.3 & \(16 \%\) & 75. & 233 & 111.7 & 299 & 148.3 & 450 & 232 \\
\hline －30 & －34．4 & 36 & 2.2 & 102 & 38.9 & 168 & 75.6 & 234 & 112.2 & 300 & 148.9 & 460 & 23 T .8 \\
\hline & －33．9 & 37 & 2.8 & 103 & 39.4 & 169 & r6．1 & 235 & 112.8 & 30 & 149.4 & 40 & 243． \\
\hline & －33．3 & 38 & 3.3 & 104 & & 170 & \％6．7 & 236 & 113.3 & 30. & 150. & 480 & 48 \\
\hline & \(-32.8\) & 39 & 3.9 & 105 & 40.6 & 171 & \(7{ }^{7} .2\) & 237 & 113.9 & 30 & 150.6 & 49 & 254.4 \\
\hline & －3．2． 2 & 40 & 4.4 & 106 & 41.1 & 172 & 778 & 238 & 114.4 & 30 & 151.1 & 50 & 60. \\
\hline & －31．7 & 41 & 5 & 107 & 41.7 & 173 & 78.3 & ， & 115. & 305 & 151.7 & 51 & 5. \\
\hline & －31．1 & 42 & 5.6 & 108 & 42.2 & 174 & 78.9 & 240 & 115.6 & 30 & 152.2 & 520 & 271. \\
\hline & －30．6 & 43 & 6.1 & 109 & 42.8 & 175 & \％9．4 & 2 1 & 116.1 & 30 & 152.8 & 530 & \％．7 \\
\hline & 30 & 44 & 6.7 & 110 & 43.3 & 176 & 80. & 242 & 116.7 & 30 & 153.3 & 540 & 28． \\
\hline & 29 & 45 & 7.2 & 111 & 43.9 & 177 & 80.6 & 243 & 117.2 & 309 & 15 15．9 & 55 & \(28 \%\) \\
\hline & －28 & 46 & 7.8 & 112 & 44.4 & 178 & 81.1 & 244 & 117.8 & 310 & 154.4 & 56 & 293.3 \\
\hline & －28 & 47 & 8.3 & 113 & 45 & 179 & 81.7 & & 118.3 & 311 & 155. & \(5 \%\) & 298. \\
\hline －18 & －27． & 48 & 8.9 & 114 & 45.6 & 180 & 82． 2 & 24 & 118.9 & 312 & 155.6 & 58 & 04 \\
\hline －17 & & 49 & 9.4 & 115 & 46.1 & 181 & 82.8 & \(\because 4\) & 119.4 & 31 & 156.1 & 59 & 310. \\
\hline －16 & 26.7 & 50 & 10. & 116 & 46.7 & 182 & 83.3 & 248 & 120. & 31 & 156.7 & 60 & 15. \\
\hline & －26．1 & 51 & 10.6 & 117 & 47．2 & 183 & 83.9 & 249 & 120.6 & 31 & 157.2 & 61 & 21 \\
\hline －14 & －25．6 & 52 & 11.1 & 118 & 47\％．8 & 184 & 81.4 & 250 & 121.1 & 31 & 157.8 & 62 & 26.7 \\
\hline －13 & －25． & 53 & \(11 . \%\) & 119 & 48.3 & 185 & 85. & 25 & 121.7 & 31 & 158.3 & 63 & 332. \\
\hline －12 & －24．4 & 54 & 12.2 & 120 & 48.9 & 186 & 85.6 & & 122.2 & 31 & 158.9 & 64 & \\
\hline 11 & －23．9 & 55 & 12.8 & 121 & 49.4 & 187 & 86.1 & & 122.8 & 319 & 159.4 & 65 & 3.3 \\
\hline －10 & －23．3 & 56 & 13.3 & 122 & 50 & 188 & 86.7 & & 123.3 & 320 & 160. & 66 & 48.9 \\
\hline & －22．8 & 57 & 13. & 123 & 50.6 & 189 & 87.2 & & 123.9 & 32 & 160.6 & \({ }^{\text {m }}\) & 4. \\
\hline & －22． & 58 & 14.4 & 124 & 51.1 & 190 & 87.8 & 25 & 124.4 & 32 & 161.1 & 68 & 360. \\
\hline & 21.7 & 59 & 15. & 125 & 51.7 & 191 & 88.3 & 25 & 125. & 3 & 161.7 & 69 & 365.6 \\
\hline & 21.1 & 60 & 15.6 & 126 & 52.2 & 192 & 88.9 & 2 & 125.6 & 32 & 162.2 & ro & ， \\
\hline & －20．6 & 61 & 16.1 & 12 r & \(5 \% .8\) & 193 & 89.4 & 25 & 126.1 & & 162.8 & 71 & ） \\
\hline & －20 & 62 & 16.7 & 128 & 53.3 & 194 & & 26 & 126.7 & 3 & 163.3 & & 38\％． \\
\hline & －19． & 63 & 1～． 2 & 129 & 53.9 & 195 & 90.6 & 26 & 127.2 & 32 & 163.9 & 73 & 387. \\
\hline －2 & －189 & 64 & 17.8 & 130 & 54.4 & 196 & 91.1 & 26 & \(12 \% .8\) & 32 & 164.4 & r 40 & 393. \\
\hline －1 & －18 3 & 65 & 183 & 131 & 55 & 197 & 91.7 & 263 & 128.3 & 3 & 165. & \％ 7 & 998． \\
\hline 0 & －17．8 & 66 & 18.9 & 132 & 55.6 & 198 & 9：2．2 & 264 & 128.9 & 3 & 165.6 & r & 44. \\
\hline ＋1 & －17．2 & 67 & 19 & 1.3 .3 & 56.1 & 19 & 92.8 & & 129.4 & 3 & 1 ¢6．1 & \(7{ }^{\text {r }} 0\) & 10． \\
\hline & －16． & 68 & 20. & 134 & 56.7 & 200 & 93.3 & 帾 & 130. & & 166.7 & 780 & 415.6 \\
\hline & －16．1 & 69 & 20.6 & 135 & 57.2 & 201 & 93.9 & 267 & 130.6 & 33 & 167.2 & \％ 9 & 21. \\
\hline & －15．6 & \％0 & 21.1 & 136 & 57.8 & \(\because 02\) & 34.4 & 26 & 131.1 & 析 & 16 1． 8 & S00 & 6． \\
\hline & －15． & \％1 & \(21 . \%\) & 137 & 58.3 & 203 & 95 & 26！） & 131.7 & & 168.3 & & ， \\
\hline & －14．4 & 72 & \(2 . .2\) & 138 & 58.9 & 204 & 95.6 & \(2 \pi 0\) & 132.2 & 3.3 & 168.9 & 8 & \％ \\
\hline & －13．9 & 73 & \(2 \% .8\) & 139 & 59.4 & 205 & 96.1 & 271 & 132.8 & 33 & 169.4 & 83 & 443.3 \\
\hline & －13．3 & 74 & 23.3 & 140 & 60. & 206 & \(96 . \hat{1}\) & \(2 \%\) & 133.3 & 33 & 170. & 840 & 44.9 \\
\hline 9 & －12．8 & \％ 5 & 23.9 & 141 & 60.6 & \(20 \%\) & 97. & 2 & 133.9 & 3 & 170.6 & 85 & 454. \\
\hline 10 & －12．2 & 76 & 24 & 14 & 61.1 & 208 & 97.8 & 274 & 134. & 340 & 171.1 & 帾 & 460. \\
\hline 11 & －11．7 & 77 & 25. & 143 & 61.7 & 209 & 98.3 & 2 & 135. & & 171.7 & \(8 i 0\) & 45. \\
\hline 12 & －11．1 & ：8 & 25.6 & 144 & 62.2 & 210 & 98.9 & 27 & 135.6 & 34 & 1～2．2 & 88 & \(4 i 1.1\) \\
\hline 13 & －－10．6 & 79 & 26.1 & 145 & 62.8 & 211 & 99.4 & 27 & 136.1 & 34 & \(1{ }^{2} 2.8\) & 89 & 476.7 \\
\hline 14 & －10． & 80 & 26.7 & 146 & 63.3 & 212 & 100. & 278 & 136.7 & 34 & 173.3 & ， & 482. \\
\hline 15 & － 9.4 & 81 & 27.2 & 146 & 63.9 & 213 & 100.6 & 2 & 137.2 & 34 & 173.9 & 91 & 81.8 \\
\hline 15 & －8．9 & 82 & 27.8 & 148 & 64.4 & 214 & 101.1 & －81 & 13\％．8 & 34 & 174.4 & 92 & 493.3 \\
\hline 18 & －8．3 & 83 & 28.3 & 149 & 65 & 215 & 101．7 & 281 & 138.3 & & 175. & 930 & 498.9 \\
\hline 18 & － 7.8 & 84 & 28.9 & 150 & 65.6 & 216 & 102． 2 & \(\because 8\) & 138.9 & 34 & 175.6 & 940 & 504. \\
\hline 19 & － 7.2 & 85 & 29. & 151 & 66.1 & 217 & 102.8 & 28.3 & 139.4 & 34 & 176.1 & 95 & 10. \\
\hline 20 & －6．7 & 86 & 30. & 152 & 66.7 & 218 & 103.3 & 284 & 140. & 35 & 176.7 & 9 & 15.6 \\
\hline 21 & 6.1 & 87 & 30.6 & 153 & 67.2 & 219 & 103．9 & 28. & 140.6 & 351 & 177.2 & 970 & 521.1 \\
\hline \(2 \cdot 2\) & － 5.6 & 88 & 31.1 & 154 & 67.8 & 220 & 104.4 & 286 & 141.1 & 35 & 177.8 & 980 & 526.7 \\
\hline 23 & － 5 ． & 89 & 317 & 155 & \(68: 3\) & \(2 \because 1\) & 10.5. & 287 & 141.7 & 353 & 178.3 & 99 & 532．2 \\
\hline 24 & － 4.4 & 90 & 32.2 & 156 & 68.9 &  & 105.6 & & 142.2 & 35 & 178.9 & 1000 & 537.8 \\
\hline 25 & －3． & 91 & 32. & 157 & & 22 & 106. & 289 & 142.8 & 355 & 179.4 & & \\
\hline
\end{tabular}

Platinum or Copper Ball Pyrometer.-A weighed piece of platmum, copper, or iron is allowed to remain in the furnace or heated chamber till it has attained the temperature of its surroundings. It is then suddenly taken out and dropped into a vessel containing water of a known weight and temperature. The water is stirred rapidly and its maximum temperature taken. Let \(W=\) weight of the water, \(w\) the weight of the ball, \(t=\) the original and \(T\) the final heat of the water, and \(S\) the specific heat of the metal; then the temperature of fire may be found from the formula
\[
x=\frac{W(T-t)}{w S}+T
\]

The mean specific heat of platinum between \(32^{\circ}\) and \(446^{\circ} \mathrm{F}\). is .03333 or \(1 / 30\) that of water, and it increases with the temperature about. 000305 for each \(100^{\circ}\) F. For a fuller description, by J. C. Hoadley, see Trans. A. S. M. E., vi. 70\%. Compare also Henry M. Howe, Trans. A. I. M. E., xviii. 7:8.

For accuracy corrections are ranured for variations in the specific heat of the water and of the metal at different temperatures, for loss of heat by radiation from the metal during the transfer from the furnace to the water, and from the apparatus during the heating of the water; also for the heatabsorbing capacity of the vessel containing the water.

Fire-clay or fire-brick may be used instead of the metal ball.
Le Chatelier's Thermo-electric Pyrometer.-For a very full description see paper by Joseph Struthers, School of Mines Quarterly, vol. xii, 1891 ; also, paper read by Prof. Roberts-Austen before the Iron and Steel Institute, May 7, 1891.

The principle upon which this pyrometer is constructed is the measurement of a current of electricity produced by heating a couple composed of two wires, one platinum and the other platinum with \(10 \%\) rhodium-the current produced being measured by a galvanometer.

The composition of the gas which surrounds the couple has no influence on the indications.

When temperatures above \(2500^{\circ} \mathrm{F}\). are to be studied, the wires must have an isolating support and must be of good length, so that all parts of a furnace can be reached.

For a Siemens furnace, about \(111 / 2\) feet is the general length. The wires are supported in an iron tube, \(1 / 2\) inch interior diameter and held in place by a cylinder of refractory clay having two holes bored through, in which the wires are placed. The shortness of time (five seconds) allows the temperature to be taken without deteriorating the tube.

Tests made by this pyrometer in measuring furnace temperatures under a great variety of conditious show that the readings of the scale uncorrected are alwars within \(45^{\circ} \mathrm{F}\). of the correct temperarure, and in the majority of industrial measurements this is sufficiently accurate. Le Chatelier's pyrometer Is soll by Queen \& Co., of Philadelphia.

Graduation of Le Chatelier's Pyrometer. - W. C. RobertsAusten in his Researches on the Properties of Alloys, Proc. Inst. M. E. 1892, says: The electromotive force produced by heating the thermo-junction to any given temperature is measured by the morement of the spot of light on the scale graduated in millimetres. A formula for converting the divisions of the scale into thermometric degrees is given by M. Le Chatelier; but it is better to calibrate the scale by heating the thermo-junction to temperatures which have been very carefully determined by the aid of the airthermometer, and then to plot the curve from the data so obtained. Many fusion and boiling-points have been established by concurrent evidence of various kinds, and are now very generally accepted. The following table contains certain of these :
\begin{tabular}{ccl} 
Deg. & F. Deg. & C. \\
212 & 100 & Water boils. \\
618 & 336 & Lead melts. \\
676 & 358 & Mercury boils. \\
779 & 415 & Zinc melts. \\
838 & 448 & Sulphur boils. \\
1157 & 625 & Alnminum melts. \\
1229 & 665 & Selenium boils.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Deg. F. Deg. C.} \\
\hline 17.33 & 945 & Silver melt \\
\hline 1859 & 1015 & Potassium sulphate melts. \\
\hline 1913 & 1045 & Gold melts. \\
\hline 1929 & 1054 & Copper me \\
\hline \(2 \% 3\) & 1500 & Palladium me \\
\hline 3227 & 1 1\%5 & Platinum melts \\
\hline
\end{tabular}

The Temperatures Developed in Industrial Furnaces. M. Le Chatelier states that by means of his pyrometer he has discovered that the temperatures which occur in melting steel and in other industrial operations have been hitherto overestimated.
M. Le Chatelier finds the melting heat of white cast iron \(1135^{\circ}\left(2075^{\circ} \mathrm{F}\right.\).). and that of gray cast iron \(1220^{\circ}\left(22: 8^{\circ} \mathrm{F}\right.\).). Mild steel melts at \(14 \pi 5^{\circ}\left(2687^{\circ}\right.\) F.), semi-mild at \(1455^{\circ}\) ( \(2651^{\circ} \mathrm{F}\) ), and hard steel at \(1410^{\circ}\) ( \(2570^{\circ} \mathrm{F}\).). The furnace for hard porcelain at the end of the baking has a heat of \(13.0^{\circ}\) ( \(2498^{\circ} \mathrm{F}\).). The heat of a normal incandescent lamp is \(1800^{\circ}\left(32 \tau^{\circ} 2^{\circ} \mathrm{F}\right.\).), but it may be pushed to beyond \(2100^{\circ}\) ( \(381 \%^{\circ} \mathrm{F}\).).
Prof. Roberts-Austen (Recent Advances in Pyrometry. Trans. A. I. M. E., Chicago Meeting, \(1 \cdot 0.3\) ) gives an excellent description of modern forms of pyrometers. The following are some of his temperature determinations.


\section*{Bessemer Process.}

Six-ton Converter.


\section*{Open-hearth Furnace (Siemens). Semi-Mild Steel.}
A. Fuel gas near gas generator ..... 1328
B. Fuel gas entering into bottom of regenerator chamber ..... 752
C. Fuel gas issuing from regenerator chamber ..... 2192
Air issuing from regenerator chamber ..... 1832
Chimuey gases. Furnace in perfect condition ..... 590
End of the melting of pig charge ..... 2588
Completion of conversion ..... 2î3!
Molteu steel. In the ladle-Commencement of casting.. 1580 ..... 28.6
End of casting. ..... 2714
In the moulds. ..... 2~68For very mild (soft) steel the temperatures are higher by \(50^{\circ} \mathrm{C}\).
Siemens Crucible or Pot Furnace.\(1600^{\circ} \mathrm{C} ., 2912^{\circ} \mathrm{F}\).
Rotary Puddling Furnace.
Degrees C. Degrees FBlast-furnace (Gray-Bessemer Pig).
Opening in face of tuyere ..... 3506
Molten metal-(Yommencement of fusion ..... 1400
255\%
255\%
End, or prior to tapping ..... 2858
Hoffman Red-brick Kila.Burning temperatures11002012

Hobson's Hot-blast Pyrometer consists of a brass chamber having three hollow arms and a handle. The hot blast enters one of the arms and induces a current of atmospheric air to flow into the second arm. The two currents mix in the chamber and flow ont through the thind arm, in which the temperature of the mixture is taken by a mercury themometer. The openings in the arms are adjusted so that the proportion of hot blast to the atmospheric air remains the same.
The Wiborgh Air-pyrometer. (E. Trotz, Trans. A.I. M. E. 1892.)-The inventor using the expansiou-coefficient of air, as determined by Gay-Lussac, Dulon, Rudberg, and Regnault, bases his construction on the following theory: If an air-volume, \(V\), enclosed in a porcelain globe and connected through a capillary pipe with the outside air, be heated to the temperature \(T\) (which is to be determined) and thereupon the connection be discontinued, and there be then forced into the globe containing \(V\) another volume of air \(V^{\prime}\) of known temperature \(t\), which was previously under atmospheric pressure \(H\), the additional pressure \(h\), due to the addition of the air-volume \(V^{\prime}\) to the air-volune \(V\), can be measured by a manometer. But this pressure is of course a function of the temperature \(7^{\prime}\). Before the introduction of \(V^{\prime}\), we have the two separate air-volumes, \(V\) at the temperature \(T\) and \(V^{\prime}\) at the temperature \(t\), both under the atmospheric pressure \(H\). After the forcing in of \(V^{\prime}\) into the globe, we have, on the contrary, only the volume \(V\) of the temperature \(T\), but under the pressure \(H+h\).

The Wiborgh Air-pyrometer is adapted for use at blast-furnaces, smeltingworks, hardening and tempering furnaces, etc., where determinations of temperature from \(0^{\circ}\) to \(2400^{\circ} \mathrm{F}\). are required.

Seger's Fire-clay Pyrometer. (H. M. Howe, Eng. and Mining Jour.. June 7, 1890.)-Professor Seger uses a series of slender triangular fire-clay pyramids, about 3 inches high and \(5 / 8\) inch wide at the base, and each a little less fusible than the next : these he calls "normal pyramids" ("normal-kegel"). When the series is placed in a furnace whose temperature is gradually raised, one after another will bend over as its rauge of plasticity is reached ; and the temperature at which it has bent, or "wept," so far that its apex touches the hearth of the furnace or other level surface on which it is standing, is selected as a point on Seger's scale. These points may be accurately determined by some absolute method, or they may merely serve to give comparative results. Unfortunately, these pyramids afford no indications when the temperature is stationary or falling.

Mesuré and Nouel's Pyrometric Telescope. (Ibid.)-Mesuré and Nouel's pyrometric telescope gives us an immediate determination of the temperature of incandescent bodies, and is therefore much better adapted to cases where a great number of observations are to be inade, and at short intervals, than Seger's. Such cases arise in the careful heating of steel. The little telescope, carried in the pocket or hung from the neck, can be used by foreman or heater at any moment.

It is based on the fact that a plate of quartz, cut at right angles to the axis, rotates the plane of polarization of polarized light to a degree nearly inversely proportional to the square of the length of the waves; and, further, on the fact that while a body at dull redness merely emits red light, as the temperature rises, the orange, yellow, green, and blue waves successively appear.

If, now, such a plate of quartz is placed between two Nicol prisms at right angles, "a ray of monochromatic light which passes the first, or polarizer, and is watched through the second, or analyzer, is not extinguisned as it was before interposing the quartz. Part of the light passes the analyzer, aud, to again extinguish it, we must turn one of the Nicols a certain angle," depending on the length of the waves of light, and hence ou the temperature of the incandescent object which emits this light. Hence the angle through which we must turn the analyzer to extinguish the light is a measure of the temperature of the object observed.

For illustrated descriptions of different kinds of pyrometers see circular issued by Queen \& Co., Philadelphia.

The Uehling and Steinbart Ryrometer. (For illustrated description see Engineering, Aug. 24, 1894.)-The actiun of the pyrometer is based on a principle which involves the law of the flow of gas through minute apertures in the following manuer: If a closed tube or chamber be supplied with a minute inlet and a minute outlet aperture and air be caused by a constant suction to flow in through one and ont through the other of these apertures, the tension in the chamber between the apertures will vary with
the difference of temperature hetween the inflowing and outflowing air. If the inflowing air be made to vary with the temperature to be measured, and the outflowing air be kept at a certain constant temperature, then the tension in the space or chamber between the two apertures will be an exact measure of the temperature of the inflowing air, and hence of the temperature to be measured.

In operation it is necessary that the air be sucked into it through the first minute aperture at the temperature to be measured, through the second aperture at a lower but constant temperature, and that the snction be of a constant tension. The first aperture is therefore located in the end of a platinum tube in the bulb of a porcelain tube over which the hot blast swerps, or inserted into the pipe or chamber containing the gas whose tem perature is to be ascert ined.

The second apercure is located in a coupling, surrounded by boiling water, and the suction is ohtained by an aspirator aud regulated by a column of watre of constant height.

The tension in the chamber between the apertures is indicated by a mannmater.

The Air-thermometer. (Prof. R. C. Carpenter. Eng'g News, Jan. 5, in9.1-An is a perfect thermometric substance, and if a given mass of air be considered, the product of its pressure and volume divided by its absolute temperature is in every case constant. If the volume of air remain constant, the temperature will vary with the pressure; if the pressure remain constant the temperature will vary with the volume. As the former condition is more easi-j attained air-thermometers are usually constructed of constant volume, in which case the absolute temperature will vary with the pressure.

If we denote pressure by \(p\) and \(p^{\prime}\), the correspondirg absolute temper. qtures by \(T\) and \(T^{\prime}\), we shoud have
\[
p: p^{\prime}:: T: T^{\prime} \quad \text { ans } \quad T^{\prime}=p \frac{T}{p}
\]

The absolute temperature \(T\) is to be considered in every case 460 highes than the thermometer-reading expressed in Fahrenheit degrees. From the form of the above equation, if the pressure \(p\) corresponding to a known absolute temperature \(T\) be known, \(T^{\prime}\) can be found. The quotient \(T / p\) is a constant which may be used in all determinations with the instrument. The pressure on the instrument can be expressed in inches of mercury, and is evidently the atmospheric pressure \(b\) as shown by a barometer, plus or minus an additional amount \(h\) shown by a manometer attached to the air thermometer. That is. in general, \(p=b \pm h\).

The temperature of \(32^{\circ} \mathrm{F}\). is fixed as the point of melting ice. in which case \(T=460+3 \cdot=492^{\circ} \mathrm{F}\). This temperature can be produced by surromding the bulb in melting ce and leaving several minutes, so that the temperature of the confined air shall acquire that of the surrounding ice. When the air is at that temperature, note the reading of the attached manometer \(h\), and that of a barometer; the sum will be the value of \(p\) corresponding to the absolute temperature of \(49: \jmath^{\circ} \mathrm{F}\). The constant of the instrument, \(K=492 \div p\), once obtained, can be used in all future determinations.

High Temperatures judged by Color. -The temperature of a bodr jan be approximately judged by the experienced eye unaided, and M. Pouillet has constructed a table, which has been generally accepted, giving the colors and their corresponding temperature as below:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Deg. \({ }_{\text {5 }}\) & \(\underset{9}{\text { Deg. }}\) F. & & Deg. C. 1100 & \[
\text { Deg. } F \text {. }
\]
\[
2021
\] \\
\hline Dull red heat.. & r00 & 1292 & Clear orange & 1200 & 2192 \\
\hline Incipient cherry-r & & & White heat & 1300 & \(23 \% 2\) \\
\hline heat. & 800 & 1472 & Bright white heat. & 1400 & 2552 \\
\hline Cherry-red heat & 900 & 1652 & & 1500 & 2732 \\
\hline Clear cherry-re & & & Dazzling white heat & to & to \\
\hline heat............ & 1000 & 1832 & & 1600 & 2912 \\
\hline
\end{tabular}

The results obtained, however, are unsatisfactory, as much depends on the susceptibility of the retina of the observer to light as well as the degree of illumination under which the observation is made.

A bright bar of iron, slowly heated in contact with air, assumes the following tints at annexed temperatures (Claudel):


BOLLING POINTS AT ATMOSPHERIC PRESSURE.
14.7 lbs. per square inch.


The boiling points of liquids increase as the pressure increases. The boiling point of water at any given pressure is the same as the temperature of saturated steam of the same pressure. (See Steam.)

\section*{MIELTING-POINTS OF VARIOUS SUBSTANCES.}

The following figures are given by Clark (on the authority of Pouillet, Claudel, and Wilson), except those marked *, which are given by Prof. Rob-erts-Austen in his description of the Le Chatelier pyrometer. These latter are probably the most reliable figures.
\begin{tabular}{|c|c|}
\hline Sulphurous acid .......... - \(148^{\circ} \mathrm{F}\). & Alloy, 1 tin, 1 lead.. 370 to \(466^{\circ} \mathrm{F}\). \\
\hline Carbonic acid............. - 108 & Tin ....... ........ 442 to 446 \\
\hline Mercury................... - 39 & Cadmium................. . 442 \\
\hline Bromine.................. . +9.5 & Bismuth............ 504 to 507 \\
\hline Turpentine ................... 14 & Lead................ 608 to 618* \\
\hline Hyponitric acid.............. 16 & Zinc .. ............ 680 to 7\%9* \\
\hline Ice ......... .. ............... 32 & Antimony .......... 810 to 1150 \\
\hline Nitro-glycerine.............. 45 & Aluminum........ . . . . . . . . 1157** \\
\hline Tallow........................ 92 & Magnesium.................. 1200 \\
\hline Phusphorus ........ . . . . . . . . 112 & Calcium ......... Full red heat. \\
\hline Acetic acid. ...... ......... 113 & Bronze .... . . . . . . ... ... 1692 \\
\hline Stearine . . . . . . . . . . . . . 109 to 120 & Silver . . . . . . . . . . . . 1733* to 1873 \\
\hline Spermaceti................... 120 & Potassium sulphate........ 1859* \\
\hline Margaric acid ........ 131 to 140 & Gold . . . . . . . . . . . . 1913* to 2282 \\
\hline Potassium ....... .... 136 to 144 & Copper .... ....... 1929* to 1996 \\
\hline Wax................. 142 to 154 & Cast iron, white... 1922 to 2075* \\
\hline Stearic acid ... ............. 158 & " gray 2012 to \(27862228 *\) \\
\hline Sodium ............... 194 to 208 & Steel .............. 23\%2 to 2532 \\
\hline Alloy, 3 lead, 2 tin, 5 bismuth 199 & " hard ...... 25\%0*; mild, 268i* \\
\hline Iodine ........................ . 225 & Wrought iron...... 2732 to 2912 \\
\hline Sulphur ..................... 239 & Palladium ................... \(273{ }^{\text {2 }}\) * \\
\hline Alloy, 11/2 tin, 1 lead......... 333 & Platinum......... . . . . . . . . \(3222^{7}{ }^{*}\) \\
\hline
\end{tabular}

For melting-point of fusible alloys, see Alloys.
Cobalt, nickel, and manganese, fusible in highest heat of a forge. Tungsten and chromium, not fusible in forge, but soften and agglomerate. Platinum and iridium, fusible only before the oxyhydrogen blowpipe.

\section*{QUANTITATIVE MEASUREIEENT OF HEAT.}

Unit of Heat.-The British unit of heat, or British thermal unit (B. T. U.), is that quautity of heat which is required to raise the temperature of 1 lb . of pure water \(1^{\circ}\) Fahr., at or near \(39^{\circ} .1\) F., the temperature of maximum density of water.

The French thermal unit, or calorie, is that quantity of heat which is required to raise the temperature of 1 kilogramme of pure water \(1^{\circ}\) Cent., at or about \(4^{\circ} \mathrm{C}\)., which is equivalent to \(39^{\circ} .1^{\circ} \mathrm{F}\).

1 French calorie \(=3.968\) British thermal units; 1 B. T. U. \(=.252\) calorie. The "pound calorie" is sometimes used by English writers; it is the quan-
tity of heat required to raise the temperature of 1 lb . of water \(1^{\circ} \mathrm{C} .1 \mathrm{lb}\). calorie \(=9 / 5\) B.T.U. \(=0.4536\) calorie. The heat of combustion of carbon, to \(\mathrm{CO}_{2}\), 1 s said to be 8080 calories. This figure is used either for French calories or for pound calories, as it is the number of pounds of water that can be raised \(1^{\circ} \mathrm{U}\). by the complete comustion of 1 lb . of carbon, or the number of kilogrammes of water that can be raised \(1^{\circ} \mathrm{C}\). by the combustion of 1 kilo. of carbon; assumiug in each case that all the heat generated is transferred to the water.

The Mechanical Equivalent of Heat is the number of footpounds of mechanical energy equivalent to one British thermal unit, heat and mechanical energy being mutually convertible. Joule's experiments, 1843-50, gave the figure \(\uparrow 72\), which is known as Joule's equivalent. More recent experiments by Prof. Rowland (Proc. Am. Acad. Arts and Sciences, 1880; see also Wood's Thermodynamics) give higher figures, and the most probable average is now considered to be 778.

1 heat-unit is equivalent to \(778 \mathrm{ft} .-\mathrm{lbs}\). of energy. \(1 \mathrm{ft} . \mathrm{lb} .=1 / 778=.0012852\) heat-units. 1 horse-power \(=33,000 \mathrm{ft}\).-lbs. per minute \(=2545\) heat-uuits per hour \(=42.416+\) per minute \(=.70694\) per second. 1 lb . carbon burned to \(\mathrm{CO}_{2}\) \(=14,544\) heat-units. 1 lb . C. per H.P. per hour \(=2545 \div 14544=1 \% \frac{1}{2} \%\) efficiency (.174986).

\section*{Heat of Combustion of Various Substances in oxygen.}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Heat-units.} & \multirow{2}{*}{Authority.} \\
\hline & Cent. & Fahr. & \\
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Hydrogen to liquid water at \(0^{\circ} \mathrm{C} \ldots\) \\
" to steam at \(100^{\circ} \mathrm{C} . . . . . .\).
\end{tabular}} & ( 34,462 & 62,032 & Favre and Silbermann. \\
\hline & \(\{33,808\) & 60,854 & Andrews. \\
\hline & \(\left\{\begin{array}{r}34,342 \\ 28,732\end{array}\right.\) & 61,816 & Thomsen. \\
\hline & \(\left(\begin{array}{r}28,732 \\ 8,080\end{array}\right.\) & 51,717
14 & Farre and Silbermann. \\
\hline \multirow[t]{2}{*}{Carbon (wood charcoal) to carbonic acid, \(\mathrm{CO}_{2}\); ordinary temperatures.} & \(\left\{\begin{array}{l}7,900\end{array}\right.\) & 14,220 & Andrews. \\
\hline & \{ 8,137 & 14,647 & Berthelot. \\
\hline \multirow[t]{4}{*}{} & 7,859 & 14,146 & '، \\
\hline & 7,861 & 14,150 & " \\
\hline & 7,901 & 14,222 & Fowre and Silberman \\
\hline & 2,473
2,403 & 4,451 & Favre and Silbermann. \\
\hline \multirow[t]{2}{*}{Carbonic oxide to \(\mathrm{CO}_{2}\), per unit of CO} & \(\{2,431\) & 4,376 & Andrews. \\
\hline & | 2,385 & 4, 293 & Thomsen. \\
\hline CO to \(\mathrm{CO}_{2}\) per unit of \(\mathrm{C}=21 / 3 \times 2403\) & 5.607 & 10,093 & Favre and Silbermann. \\
\hline \multirow[t]{2}{*}{Marsh-gas, Methane, \(\mathrm{CH}_{4}\) to water and \(\mathrm{CO}_{2}\)} & \(\left\{\begin{array}{l}13,120 \\ 13,108\end{array}\right.\) & 23,616 & Thomsen.
Andrews. \\
\hline & \(\left\{\begin{array}{l}13,063\end{array}\right.\) & 2:3,513 & Favre and Silbermann. \\
\hline \multirow[t]{2}{*}{Olefiant gas, Ethylene, \(\mathrm{C}_{2} \mathrm{H}_{4}\) to water and \(\mathrm{CO}_{2}\)} & \(\left\{\begin{array}{l}11,858 \\ 11,942\end{array}\right.\) & 21,344 & \\
\hline & \(\left\{\begin{array}{l}11,95 \\ 11,957\end{array}\right.\) & 21,523 & Thomsen. \\
\hline Benzole gas, \(\mathrm{C}_{6} \mathrm{H}_{6}\) to water and \(\mathrm{CO}_{2}\) & \(\left\{\begin{array}{r}10,10 \% \\ 9015\end{array}\right.\) & 18,184 & \\
\hline
\end{tabular}

In burning 1 pound of hydrogen with 8 pounds of oxygen to form 9 pounds of water, the unis of heat evolved are 62,032 (Favre and S.); but if the resulting product is not cooled to the initial temperature of the gases, part of the heat is rendered latent in the steam. The total heat of 1 lb . of steam at \(212^{\circ} \mathrm{F}\). is 1146.1 heat-units above that of water at \(3 \ni^{\circ}\), and \(9 \times 11461=10,315\) heat-units, which deducted from 62,032 gives \(51,71 \%\) as the heat evolved by the combustion of 1 lb . of hydrogen and 8 lbs . of oxygen at \(3 z^{\circ} \mathrm{F}\). to form steam at \(21 \varkappa^{\circ} \mathrm{F}\).
By the decomposition of a chemical compound as much heat is absorbed or rendered latent as was evolved when the compound was formed. If 1 lb . of carbon is burned to \(\mathrm{CO}_{2}\), generating \(14,544 \mathrm{~B} . \mathrm{T} . \mathrm{U}\)., and the \(\mathrm{CO}_{2}\) thus formed is immediately reduced to CO in the presence of glowing carbon, by the reaction \(\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}\), the result is the same as if the 2 lbs . C had been burned directly to 2 CO , generating \(2 \times 4451=8902\) heat-units; consequently \(14,544-8902=5642\) heat-units have disappeared or become latent, and the
"unburning " of \(\mathrm{CO}_{2}\) to CO is thus a cooling operation. (For heats of combustion of various fuels, see Fuel.)

\section*{SPECIFIC HEAT.}

Thermal Capacity. - The thermal capacity of a body is the quantity of heat required to raise its temperature one degree. The ratio of the heat required to raise the temperature of a given sul)stance one degree to that required to raise the temperature of water one degree from the temperature of maximum density 39.1 is commonly called the specific heut of the substance. Some writers object to the term as being an inaccurate use of the words "specific" and "heat." A more correct name would be "coefficient of thermal capaciry."

Determination of Specific Heat.-Method by Mixture.-The bony whose specitic beat is to be determined is raised to a known temperature, and is then immersed in a mass of liquid of which the weinht, specific heat, and temperature are known. When both the body and the liquid have attanned the same temperature, this is carefully ascertained.

Now the quantity of heat lust by the body is the same as the quantity of heat absorbed by the liquid.

Let \(c, w\), and \(t\) be the specific heat, weight, and temperature of the hot body, and \(c^{\prime}, w^{\prime}\), and \(t^{\prime}\) of the liquid. Let \(T\) be the temperatule the mixture assumes.

Then, by the definition of specific heat, \(c \times w \times\left(t-T^{\prime}\right)=\) heat-units lost by the hot body, and \(c^{\prime} \times w^{\prime} \times\left(T-t^{\prime}\right)=\) heat-units gained by the cold liquid. If there is no heat lost by radiation or conduction, these must be equal, and
\[
c w(t-T)=c^{\prime} w^{\prime}\left(T-t^{\prime}\right) \quad \text { or } \quad c=\frac{c^{\prime} w^{\prime}\left(T-t^{\prime}\right)}{w\left(t-T^{\prime}\right)}
\]

\section*{Specific Heats of Various Substances.}

The specific heats of substances, as given by different authorities, show considerable lack of agreempnt, especially in the case of gases.
The following tables give the mean specific hrats of the substances named according to Regnaul.. (From Rontgen's Thermodynamics, p. 134 ) These specific heats are average valnes, taken at temperatures which usually come under observation in technical application. The actual specific heats of all substances, in the solid or liquid state, increase slowly as the body expands or as the temperature rises. It is probable that the specific heat of a body when liquid is greater than when solid. For many bodies this has been verified by experiment.

Solids.
\begin{tabular}{|c|c|c|c|}
\hline Antimony. & 0.0508 & Steel (soft). & 0.1165 \\
\hline Copper.... & \(0 . c 951\) & Steel (hard) & 01175 \\
\hline Gold & 0.03.24 & & 009.56 \\
\hline Wrought iron. & 0.1138 & Brass & 0.09:39 \\
\hline Glass & 0.19:37 & Ice & 0.5040 \\
\hline Cast iron & 0.1298 & Sulphur & \(0 . \therefore 0 \div 6\) \\
\hline Lear & 0.0314 & Charcoal. & 0.2410 \\
\hline Platinum & 0.033:4 & Alumina & \(0.19 \pi 0\) \\
\hline Silver. & \(0.05 \% 0\) & Phosphorus & 0.1887 \\
\hline Tin & 0.0562 & & \\
\hline \multicolumn{4}{|c|}{Liquids.} \\
\hline Water & 1.0000 & Mercui & 0.0333 \\
\hline Lead (melted). & 0.0402 & Alcohol (absolute) & \(0.60 \times 9\) \\
\hline Sulphur " & 0.2340 & Fusel oil............ & 0.5640 \\
\hline Bismuth " & 00308 & Benzine & 0.4500 \\
\hline Tin \({ }^{\prime}\) & 0.0637 & Ether. & 0.5034 \\
\hline Sulphuric acid & 0.3350 & & \\
\hline
\end{tabular}

\section*{Gases.}

Constant Pressure。 Constant Volume.
\begin{tabular}{|c|c|c|}
\hline Air. & 0.2:351 & 0.16847 \\
\hline Oxygen & \(0.21 \% 1\) & 0.15507 \\
\hline Hydrogen & 3.40900 & 2.41226 \\
\hline Nitrogen. & 0.24380 & 0.17273 \\
\hline Superheated steam & 0.4805 & 0.346 \\
\hline Carbonic acid & 0.217 & 0.1535 \\
\hline Olefiant Gas ( \(\mathrm{CH}_{2}\) ) & 0.404 & 0.173 \\
\hline Carbonic oxide.. & 0.2479 & 0.1758 \\
\hline Ammonia & 0.508 & 0.299 \\
\hline Ether & \(0.4 \sim 97\) & 0.3411 \\
\hline Alcohol & 0.4534 & 0.3200 \\
\hline Acetic acid. & 0.4125 & \\
\hline Chloroform. & 0.1567 & \\
\hline
\end{tabular}

In addition to the above, the [following are given by other authorities. (Selected from various sources.)

\author{
Metals.
}
\begin{tabular}{|c|c|}
\hline atinum, \(32^{\circ}\) to \(446^{\circ} \mathrm{F}\). ....... 0333 & " \\
\hline (increased . 000305 for each \(100^{\circ} \mathrm{F}\). ) & " \(32^{\circ}\) to \(212^{\circ}\). \\
\hline Cadmium. .. . . . . . . . . . . ... . 0567 & \(32^{\circ}\) to \(39 z^{\circ}\). . . . . . . 115 \\
\hline Brass.... . . . . . . . . . . . . . . . . . . . 0939 & \(32^{\circ}\) to 5 \(52^{\circ}\). . . . . . . 1218 \\
\hline Copper, \(32^{\circ}\) to \(2122^{\circ} \mathrm{F}\)........... . . 094 & \(32^{\circ}\) to \(662^{\circ}\)....... . 1255 \\
\hline \(32^{\circ}\) to \(5{ }^{120}{ }^{\circ} \mathrm{F}\). . . . . . . . . . . 1013 & Wrought iron (J. C. Hoadley, \\
\hline Zinc \(3^{3} 2^{\circ}\) to 2120 \({ }^{\circ} \mathrm{F}\).... ...... . 0927 & A. S. M. E., vi. ©13), \\
\hline "\% \(32^{\circ}\) to \(5 \uparrow 2^{\circ} \mathrm{F}\)........... . 1015 & Wrought iron, \(32^{\circ}\) to \(200^{\circ}\).. . . 1129 \\
\hline Nickel...................... . 1086 & \(32^{\circ}\) to \(600^{\circ}\). . . . 1327 \\
\hline Aluminum, \(0^{\circ}\) F. to meltingpoint (A E Hunt) & \(32^{\circ}\) to \(2000^{\circ}\). . . . . 2619 \\
\hline
\end{tabular}

Brickwork and masonry, about. . 20 Coal ..... 20 to 241
Marble ..... 210
Chalk ..... 215
Quicklime ..... 217
Magnesian limestone .....  217
Silica ..... 191
Corundum ..... 198
Stones generally. . 2 to 22
Coke .....  203
Graphite .....  202
Sulphate of lime ..... 197
Magnesia. .....  222
Soda
Soda .....  231 .....  231
Quartz ..... 188 ..... 188
Woods.
Pine (turpentine). Oak ..... 570
Fir .650 Pear .....  500
Liquids.
Alcohol, density .793............. .622 Olive oil. ..... 310
Sulphuric acid, density \(1.8 \pi . .\). . . 335 Benzine ..... 393
Hydrochloric acid
Turpentine, density . 872 ..... \(.4 \tilde{i}^{2}\)
Bromine ..... 1.111Gases.

Specific Heat of Salt Solution. (Schuller.)
\begin{tabular}{llccccc} 
Per cent salt in solution......... & 5 & 10 & 15 & 20 & 25 \\
Specific heat.................... .9306 & .8909 & .8606 & .8490 & \(.80{ }^{2} 3\)
\end{tabular}

Specific Heat of Air. - Regnault gives for the mean value
\[
\begin{aligned}
& \text { Between }-30^{\circ} \mathrm{C} \text {. and }+10^{\circ} \mathrm{C} \text {. } \\
& 0.237 \% 1 \\
& \\
& 0.23741 \\
& 0^{\circ} \mathrm{C} \text {. " } 200^{\circ} \mathrm{C} \\
& 0.23751
\end{aligned}
\]

Hanssen uses 0.1686 for the specific heat of air at constant volume. The value of this constant has never been found to any degree of accuracy by direct experiment. Prof. Wood gives \(0 . \because 3 \% 5 \div 1.406=0.1689\). The ratio of
the specific heat of a fixed gas at constant pressure to the sp. ht. at constant volume is given as follows by different writers (Eng'g, July 12, 1889): Reguault, 1.395:3; Moll and Beck, 1.4085 ; Szathmari, \(1.40: 4\); J. Macfarlane Gray, 1.4. The first three are obtained from the velocity of sound in air. The fourth is derived from theory. Prof. Wood says: The value of the ratio for air, as found in the days of La Place, was 1.41 , and we have \(0.23 \% 7 \div 1.41\) \(=0.1686\), the value used by Clausius, Hanssen, and many others. But this ratio is not definitely known. Rankine in his later writings used 1.408, and Tait in a recent work gives 1.404 , while some experiments gives less than 1.4 and others more than 1.41. Prof. Wood uses 1.406.

Specific Heat of Gases.-Experiments by Mallard and Le Chatelier indicate a continuous increase in the specific lieat at constant volume of steam, \(\mathrm{CO}_{2}\), and even of the perfect gases, with rise of temperature. The variation is inappreciable at \(100^{\circ} \mathrm{C}\)., but increases rapidly at the high temperatures of the gas-engiue cylinder. (Robinson's Gas and Petroleum Engines.)

\section*{Specific Heat and Latent Heat of Fusion of Iron and Steel. (H. H. Camplell, Trans. A. I. M. E., xix. 181.)}

Akerman. Troilius.
Specific heat pig iron,


Calculating by both sets of data we have :
Akerman. Troilius.
Heating from 0 to \(1800^{\circ}\) C. ........ 318 . 330 calories per kilo.
Hence probable value is about........... 325 calories per kilo.
Specific heat, steel (probably high carbon)....(Troilius)..... . . 1175
soft iron............................ 6 ..... . . 1081
Hence probable value solid rail steel.......................... .... . . 1125
- melted rail steel
.12\%
Akerman. Troilius.
Latent heat of fusion, pig iron, calories per kilo.. 46
". " "، gray pig

From which we may assume that the truth is about: Steel, 20 ; pig iron, 30.

\section*{CXPANSION HY HEAT.}

In the centigrade scale the coefficient of expansion of air per degree is \(0.003665=1 / 273\); that is, the pressure being constant, the volume of a perfect gas increases \(1 / 2 \pi 3\) of its volume at \(0^{\circ} \mathrm{C}\). for every increase in temperature of \(1^{\circ} \mathrm{C}\). In Falrenheit units it increases \(1 / 491.2=.002036\) of its volume at \(3: 2^{\circ} \mathrm{F}\). for every increase of \(1^{\circ} \mathrm{F}\).
Expansion of Gases by Heat from \(32^{\circ}\) to \(212^{\circ} \mathrm{F}\). (Regnault.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Increase in Volume, Pressure Constant. Volume at \(32^{\circ}\) Fahr. \(=1.0\), for} & \multicolumn{2}{|l|}{Increase in Pressure Volume Constant. Pressure at \(3 z^{\circ}\) Fahr. = 1.0, for} \\
\hline & \(100^{\circ} \mathrm{C}\). & \(1{ }^{\circ} \mathrm{F}\). & \(100^{\circ} \mathrm{C}\). & \(1^{\circ} \mathrm{F}\). \\
\hline Hydrogen. & 0.3661 & 0.0020:34 & 0.3067 & 0.002037 \\
\hline Aimospheric air & \(0.36 \% 0\) & \(0.00: 1039\) & 0.3665 & 0.002036 \\
\hline Nitrogen & \(0.36 \% 0\) & 0.00:2039 & 0.3668 & 0.00:2139 \\
\hline Carbonic oxide & 0.3669 & 0.0022138 & 0.3667 & 0.002037 \\
\hline Carbonic acid & 0.3710 & 0.002061 & 0.3688 & 0.002039 \\
\hline Sulphurous acid & 0.3903 & 0.00:2168 & 0.3845 & 0.002136 \\
\hline
\end{tabular}

If the volume is kept constant, the pressure varies directly as the absolute temperature.

\section*{Lineal Expansion of Solids at Ordinary Temperatures.}

\section*{(British Board of Trade; from Clark.)}
\begin{tabular}{|c|c|c|c|c|}
\hline & For \(1^{\circ}\) Fahr. & For
10
Cent. & Coef-
ficient
of
Expan-
sion
from
\(3: 2^{\circ}\) to
\(2120^{\circ} \mathrm{F}\). & According to Other Authorities. \\
\hline & Length \(=1\) & Length \(=1\) & & \\
\hline Aluminum (ca & . 00001234 & .000022:21 & . 002221 & \\
\hline Antimony (cryst.) & .000106:27 & . 00001129 & . 001129 & . 001083 \\
\hline Brass, cast... ... & .00000995\% & . 0000128 & . 001722 & . 001868 \\
\hline Brick plate & . 00001052 & . 00001894 & . 001894 & \\
\hline Brick................................ & 00000306 & . 00000550 & . 000550 & \\
\hline Bronze (Copper, 17 ; Tin, 212 ; Zinc 1). & . 040000986 & . \(000017 \% 4\) & .001574 & \\
\hline Bismuth & .00000975 & . 00001755 & . 001755 & . 001392 \\
\hline Cement. Portland (mixed), pure & .0c000594 & . \(0000100_{0} 0\) & . \(0010{ }^{\text {a }} 0\) & \\
\hline Concrete:cement, mortar, and pebbles & .00000:95 & . 00001430 & .001430 & \\
\hline Copper ............... ............... & :00001887 & . 00001596 & . 001596 & . \(001 \% 18\) \\
\hline Ebonite & . 00004278 & . 0100 arrou & 007\%00 & \\
\hline Glass, English flint & . 00000451 & .0000081: & .000 12 & \\
\hline " thermomete & . \(00000+99\) & . 00000897 & . 000897 & \\
\hline hard & .01000397 & .00010 14 & . 000 ¢14 & \\
\hline Granite, gray, dry & . 00000438 & . 00100789 & . 000 ¢\% 89 & \\
\hline " red, dry & . 00000498 & . 000011897 & .00089 & \\
\hline Gold, pure & .00000is6 & . 000011415 & . 001415 & \\
\hline Iridiun, pur & . 00000356 & . 00000641 & . 000641 & \\
\hline Iron, wrough & . 00000648 & . 00001166 & . 001160 ô & . 001235 \\
\hline " cast & . 000000556 & . 00011001 & . 001001 & . 001110 \\
\hline Magnesium & & & .00:828 & . 002694 \\
\hline & . 000000308 & . 0000055 & 000554 & \\
\hline Harbles, various ito & . 00000786 & . 00001415 & . 001415 & \\
\hline Masonry, brick \(\{\) from & . 000002256 & . 00000460 & . 000460 & \\
\hline Mercury (cubic expa & . 00000494 & . 10000880 & .000890 & \\
\hline Mercury (cubic expa & . 000099984 & .0001i9i1 & . 017471 & . 018018 \\
\hline Nickel & . 00000695 & . \(00001 \cdot 51\) & . 001251 & .0012 9 \\
\hline Pewter & . \(000011: 9\) & . 000002033 & .00:033 & \\
\hline Plaster, & .000009:2 & . 00001660 & . 0016611 & \\
\hline Platinum & .00000ta 9 & . 00000863 & . 000863 & \\
\hline \begin{tabular}{l}
Plaıinum, 85 per cent \\
Iridium 15 ". "
\end{tabular} & . 00000453 & . 00000815 & . 000815 & . 000884 \\
\hline Porcelain... & .00000:200 & . 00000360 & . 000360 & \\
\hline Quartz, parallel to major axis, \(t 0^{\circ}\) to \(40^{\circ} \mathrm{C}\). & . 00000434 & . \(00000 \% 81\) & .000\%81 & \\
\hline Quartz, perpendicular to major axis, \(t 0^{\circ}\) to \(40^{\circ} \mathrm{C}\) & .00000i88 & . 00001419 & . 001419 & \\
\hline Silver, pure & . 000010 ar9 & . 0000194.3 & . 001913 & . 001908 \\
\hline Nlate & .00000577 & . 00 ¢01033 & . 001038 & \\
\hline Sterl, cas & .000006:36 & . 00001144 & . 001144 & . \(0010 \sim 9\) \\
\hline - tempered & 00000689 & . 00001240 & . \(001: 40\) & \\
\hline Stone (sandstone), dry & . 00000652 & . 00001174 & . \(0011 \% 4\) & \\
\hline ." " Rauville & . 00000417 & .00000 50 & . 000 C 50 & \\
\hline Tin & . 100001163 & . 00002094 & .002094 & . 001938 \\
\hline Wedgwond & . 00000489 & . 000000881 & . 000881 & \\
\hline Wood, pine & . 00010026 & . 010000496 & . 000496 & \\
\hline Zinc..... & . 00001407 & .0000\%53\% & .0025:3\% & . 002942 \\
\hline \[
\left.\begin{array}{l}
\text { Zinc, } 8 \\
\text { Tin. }
\end{array}\right\}
\] & . 00001196 & .00002692 & .002692 & \\
\hline
\end{tabular}

Cubical expansion, or expansion of volume \(=\) linear expansion \(\times 3\).

Absolute Temperature-Absolute Zero.-The absolute zero of a gas is a theoretical consequence of the law of expansion by heat, assuming that it is possible to continue the coolng of a perfect gas until its volume is diminished to nothing.
If the volume of a perfect gas increases \(1 / 2 \tau: 3\) of its volume at \(0^{\circ} \mathrm{C}\). for every incrase of temperature of \(1^{\circ} \mathrm{C}\), and decreases \(1 / 2 \operatorname{lig}_{3}\) of its volume for every decrease of temperature of \(1^{\circ} \mathrm{C}\)., then at \(-2 \tilde{F}^{\circ} 3^{\circ} \mathrm{C}\) the volume of the imaginary gas would be reducerl to nothing. This point - \(2 \pi 3^{\circ} \mathrm{C}\). or \(491.2^{\circ}\) F. below the melting-point of ice on the air thermometer. or \(49.66^{\circ} \mathrm{F}\). below on a perfect gas thermometer \(=-459.2^{\circ} \mathrm{F}\). (or \(\left.-460.66^{\circ}\right)\), is called the absolute zero; and absolute temperatures are temperatures measured, on either the fahrenheit or centigrade scale. from this zero. The freezing point, \(3 \Re^{\circ} \mathrm{F}\).. corresponds to \(491.2^{\circ} \mathrm{F}\). absolute. If \(p_{0}\) be the pressure and \(\tau_{0}^{\prime}\) the volume of a gas at the temperature of \(32^{\circ} \mathrm{F} .=491.2^{\circ}\) on the absolute s ?ale \(=T_{0}\), and \(p\) the pressure, and \(v\) the volume of the same quantity of gas at any other absolute temperature \(T\) ', then
\[
\frac{p v}{p_{0} v_{0}}=\frac{T}{T_{0}}=\frac{t+459.2}{491.2} ; \quad \frac{p v}{T}=\frac{p_{0} v_{0}}{T}
\]

The value of \(p_{0} v_{0} \div T_{0}\) for air is \(53.3 \%\), and \(p v=53.37 T\), calculated as folInws by Prof. Wood:

A cubic foot of dry air at \(32^{\circ} \mathrm{F}\). at the sea-level weighs \(0.080 \sim 2 \mathrm{lb}\). The volume of one pound is \(v_{0}=\frac{1}{.0807 \% 3}=12.387\) cubic feet. The pressure per square foot is 2116.2 lbs .
\[
\frac{p_{0} v_{0}}{T_{0}^{\prime}}=\frac{2116.2 \times 12.387}{491.13}=\frac{26214}{491.13}=53.3 \%
\]

The figure 491.13 is the number of degrees that the absolute zero is below the melting-point of ice, by the air thermometer. On the absolute scale, whose divisions would be indicated by a perfect gas thermometer, the calsulated value approximately is \(49: 66\), which would make \(p v=53.21\) ' 1 . Prof. Thomson cousiders that \(-2 \tilde{i}^{2} 1^{\circ} \mathrm{C} . .=-459.4^{\circ} \mathrm{F}\)., is the most probable value of the absolnte zero. See Herit in Ency. Brit.
Expansion of Liquids from \(32^{\circ}\) to \(212^{\circ}\) F.-Apparent expansion in glass (Clark). Volume at \(212^{\circ}\), volume at \(3 \%^{\circ}\) being 1 :
Water....................... 1.0466 Nitric acid......................... 1.11

Water saturated with salt.... 1.05 Olive and linseed oils................ 1.08
Mercury......................... 1.0182 Turpentine and ether............ 1.07
Alcohol ............................. 11
Hydrochlor. and sulphuric acids 1.06
For water at various temperatures, see Water.
For arr at various temperatures. ses Air.

\section*{LATENT HEATS OF FUSION AND EVAPORATION.}

Latent Heat means a quantity of heat which has disappeared, having oeen employel to prodice some change other than elevation of temperature. By exactly reversing that change, the quantity of heat which has disappeared is reproduced. Maxwell defines it as the quantity of heat which must be communicated to a body in a given state in order to convert it into another state without changing its temperature.
Latent Fieat of Fusion.-When a body passes from the solid to the liquid state, its temperature remains stationary, or nearly stationary. at a certain melting point during the whole operation of melting; and in order to make that operation go on, a quantity of heat must be transferred to the subsiance melted, being a certain amount for each unit of weight of the substance. This quantity is called the latent heat of fusion.

When a body passes from the liquid to the solid state, its temperature remains stationary or nearly stationary during the whole operation of freezing; a quantity of heat equal to the latent heat of fusion is produced in the body and rejected into the atmosphere or other surrounding bodies.
The following are examples in British thermal units per pound, as given by Rankine:


Prof. Wood considers 144 heat units as the most reliable value for the latent heat of fusion of ice. Box gives only 26.6 for tiu. Clements gives 233 for cast iroll.

Latent Heat of Evaporation. - When a body passes from the solid or liquid to the gaseous state, its temperature during the operation remains stationary at a certain boiling point, depending on the pressure of the vapor produced; and in order to make the evaporation go on, a quantity of heat must be transferred to the substance evaporated, whose amount for each unit of weight of the substance evaporated depends on the temperature. That heat does not raise the temperature of the substance, but disapprars in causing it to assume the gaseous state, and it is called the latent heat of evaporation.

When a body passes from the gaseous-state to the liquid or solid state. its temperature remains stationary, during that operation, at the boiling-point corresponding to the pressure of the vapor: a quantity of heat equal to the latent heat of evaporation at that temperature is produced in the body; and in order that the operation of condensation may go on. that heat must be transferred from the body condensed to some other body.
The following are examples of the latent heat of evaporation in British thermal units, of one pound of certain substances, when the pressure of the vapor is one atmosphere of 14.7 lbs . on the square inch:

> Substance.

Boiling-point under one atm. Fahr.
Water 212.0

Alcohol 1 12.2
Ether
Bisulphide of carbon.
95.0
114.8

Latent Heat in
British units.
965.7 (Regnault.)
364.3 (Andrews.)
162.8 "
156.0 "

The latent heat of evaporation of water at a series of boiling-points ex tending from a few degrees below its treezing-point up to about 375 degree Fahrenheit has been determined experimentally by M. Regnault. The re sults of those experiments are represented approximately by the formula in British thermal units per pound,
\[
l \text { nearly }=1091.7-0.7\left(t-32^{\circ}\right)=965.7-0.7\left(t-212^{\circ}\right)
\]

The Total Heat of Evaporation is the sum of the heat whic disappears in evaporating one pound of a given substance at a given ten। perature (or latent heat of evaporation) and of the heat required to raise its temperature, before evaporation, from some fixed temperature up to th: temperature of evaporation. The latter part of the total heat is called thr sensible heat.
In the case of water, the experiments of M. Regnault show that the total heat of steam from the temperature of melting ice increases at a uniform rate as the temperature of evaporation rises. The following is the formuly in British thermal units per pound:
\[
h=1091.7+0.305\left(t-32^{\circ}\right)
\]

For the total heat, latent heat, etc., of steam at different pressures, see table of the Properties of Saturated Steam. For tables of total heat, latent beat, and other properties of steams of ether, alcohol, acetone, chloroform, chloride of carbon. and bisulphide of carbon, see Rontgen's Thermodynamics (Dubois's translation.) For ammonia and sulphur dioxide. see Wood's Therınodynamics; also, tables under Refrigerating Machinery, in this book.

\section*{EVAPORATION AND DREYNG.}

In evaporation, the formation of vapor takes place on the surface; in boiling, within the liquid: the former is a slow, the latter a quick, method of evaporation.
If we bring an open vessel with water under the receiver of an air-pump and exhaust the air the water in the vessel will commence to boil, and if we keep up the vacuum the water will actually boil near its freezing point. The formation of steam in this case is due to the heat which the water takes out of the surroundings.

Steam formed under pressure has the same temperature as the liquid in which it was formed, provided the steam is kept under the same pressure.
By properly cooling the rising steam from boiling water, as in the multiple. effect evaporating systems, we can regulate the pressure so that the water buils at low temperatures.

Evaporation of Water in Reservoirs.-Experiments at the Momut Hope Reservoir, Rochester, N. Y., in 1891, gave the following results:
\begin{tabular}{|c|c|c|c|c|}
\hline & July. & Aug. & Sept. & O \\
\hline Mean temperature of air in shade & & 70.3 & 68.7 & 533 \\
\hline " "water in rese & 68.2 & \%0. \({ }^{\text {\% }}\) & 66.1 & 54. \\
\hline humidity of air, per cent & 67.0 & \%4.6 & 75.2 & 74.7 \\
\hline Evaporation in inches during in & 5.59 & 4.93 & 4.05 & 3.2 \\
\hline Rainfall in inches during month & 3.44 & 2.95 & 1.44 & 2. \\
\hline
\end{tabular}

Evaporation of Water from Open Channels. (Flynn's Irrigation Canals and Flow of Water.)-Experments from 1881 to 1885 in Tulare County, California, showed an evaporation from a pan iu the river equal to an average depth of one eighth of an inch per day throughout the year.

When the pan was in the air the average evaporation was less than \(3 / 16\) of an inch per day. The average for the month of August was \(1 / 3\) inch per day, and for March and April \(1 / 12\) of an inch per day. Experiments in Colorado show that evaporation ranges from .058 to .16 of an inch per day during the irrigating season.
In Northern Italy the evaporation was from \(1 / 12\) to \(1 / 9\) inch per day, while in the south, under the influence of hot winds, it was from \(1 / 6\) to \(1 / 5\) inch per day.
In the hot season in Northern India, with a decidedly hot wind blowing, the average evaporation was \(1 / 2\) inch per day. The evaporation increases with the temperature of the water.

Evaporation by the RIultiple System.-A multiple effect is a series of evaporating vessels each having a steam chamber, so connected that the heat of the steam or vapor produced in the first vessel heats the second, the vapor or steam produced in the second heats the third, and so oll. The vapor from the last vessel is condensed in a condenser. Three vessels are generally used, in which case the apparatus is called a Triple Effect. In evaporating in a triple effect the vacuum is graduated so that the liquid is boiled at a coustant and low temperature.
Resistance to Boiling.-Hirine. (Rankine.)-The presence in a liquid of a substance dissolved in it (as salt in water) resists ebullition, and raises the temperature at which the liquid boils, under a given pressure; but unless the dissolved substance enters into the composition of the vapor, the relation between the temperature and pressure of saturation of the vapor remains unchanged. A resistance to ebullition is also offered by a vessel of a material which attracts the liquid (as when water bcils in a glass vessel). and the boiling take place by starts. To avoid the errors which causes of this kind produce in the measurement of boiling-points, it is advisable to place the thermoneter, not in the liquid, but in the vapor, which shows the true boiling-point, freed from the disturbing effect of the attractive nature of the vessel. The boiling-point of saturated brine under one atmosphere is \(2 \because 6^{\circ}\) Fahr., and that of weaker brine is higher than the boiling-point of pure water by \(1.2^{\circ}\) Fahr., for each \(1 / 32\) of salt that the water contains. Average sea-water contains \(1 / 32\); and the brine in marine boilers is not suffered to contain more than from \(2 / 3: 2\) to \(3 / 32\).
Methods of Evaporation Employed in the Manufacture of Salt. (F. E. Engelhardt, Chemist Unondaga Salt Springs; Report for 1889.)-1. Solar heat-solar evaporation. 2. Direct fire, applied to the heatirg surface of the vessels containing brine-kettle and pan methods. 3. The steam-grainer system-steam-pans, steam-kettles, etc. 4. Use of steam and a reduction of the atmospheric pressure over the boiling brine-vacuum system.

When a saturated salt solution boils, it is immaterial whether it is done under ordinary atmospheric pressure at \(2: 8^{\circ} \mathrm{F}\)., or under four atmospheres with a temperature of \(3: 0^{\circ} \mathrm{F}\)., or in a vacuum under \(1 / 10\) atmosphere, the result will always be a fine-grained salt.

The fuel consumption is stated to be as follows: By the kettle method, 40 to 45 bu . of salt evaporated per ton of fuel, anthracite dust burned on perforated grates; evaporation, 5.53 lbs . of water per pound of coal. By the pan method, 70 to 75 bu. per ton of fuel. By vacuum pans, single effect, 86 lbs. per ton of anthracite dust (2000 lbs.). With a double effect nearly double that amount can be produced.


According to Poggial， 100 parts of water dissolve at \(229.66^{\circ} \mathrm{F}\) ．， 40.3 s parts of salt，or in per cent of brine， \(28 . i 49\) ．Gay Lussac found that at \(29.02^{\circ} \mathrm{F}\) ．， 100 parts of pure water would dissolve 40.38 parts of salt，in per cent of brine， 28.764 parts．
The solutilit！of salt at \(2 \% 9^{\circ} \mathrm{F}\) ．is only \(2.5 \%\) greater than at \(32^{\circ}\) ．Hence we cannot，as in the case of alum，separate the salt from the water by allowing a saturated solution at the boiling point to cool to a lower temperature．
Solubility of Sulphate of Lime in Pure Water．（Marignac．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Temperature F．degrees． & 32 & 64.5 & 89.6 & 100.4 & 105.8 & 127.4 & 186.8 & 21 \\
\hline \begin{tabular}{l}
Parts water to dissolve \(\}\) \\
1 part，gypsum
\end{tabular} & 415 & 386 & 371 & 368 & 370 & 375 & 417 & \\
\hline Parts water to dissolve part anhydrous CasO & 525 & 488 & 470 & 466 & 468 & 474 & 52 & \\
\hline
\end{tabular}

In salt brine sulphate of lime is much more soluble than in pure water． In the evaporation of salt brine the accumulation of sulphate of lime tends to stop the operation，and it must be removed from the paus to avoid waste of fuel．
The average strength of brine in the New York salt districts in 1889 was 69．38 degrees of the salinometer．
Strength of Salt Brines．－The following table is condensed from one given in U．S．Mineral Kesıurces for 1888，on the authority of Dr． Euglehardt．

Relations between Salinometer Strenoth，Specific Gravity，
Solid Contents，etc，of Brimes of Difierent Strengths． Solid Contents，etc．，of Brines of Difierent Strengths．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  &  \\
\hline 1 & ． 26 & 1.002 & ． 265 & 8．54i & ． 022 & 2，531 & 21，0ヶ6 & 3.513 & ． 569 \\
\hline 2 & ． 52 & 1.003 & ． 530 & 8.356 & ． 044 & 1，264 & 10.510 & 1，759 & 1.141 \\
\hline 4 & 1.04 & 1.017 & 1.060 & 8.384 & ． 088 & 629.7 & 5，2：7 & 8 \％ 1.2 & 2.295 \\
\hline & 1.56 & 1.010 & 1590 & 8.414 & ． 133 & 418.6 & 3.466 & 577.5 & 3.462 \\
\hline 8 & 2.08 & 1.014 & 2.120 & 8447 & ． 179 & 312.7 & 2，585 & 430.9 & 4.641 \\
\hline 10 & 2.60 & 1.017 & 2650 & 8.452 & ． 224 & 249.4 & 2.057 & 342.9 & 5833 \\
\hline 12. & 3.12 & 1．021 & 3.180 & 8.506 & ．2\％0 & 207.0 & 1， 1.05 & 284．2 & 7038 \\
\hline 14 & 3.64 & 1．025 & 3.710 & 8539 & ． 316 & 176.8 & 1，453 & 242.2 & 3．256 \\
\hline 15 & 4.16 & 1028 & 4.240 & 8.564 & ． 364 & 154.2 & 1，265 & 214.8 & 9488 \\
\hline 18 & 4.68 & 1．03： & 4.750 & 8.597 & ． 410 & 136.5 & 1，118 & 186.3 & 10．73 \\
\hline 20 & 5.20 & 1.035 & 5.300 & 8622 & ． 457 & 12： 2.5 & 1，001 & 176.8 & 11.99 \\
\hline 30 & 7.80 & 1.054 & 7.950 & 8． 781 & ． 698 & 80.21 & 648.4 & 108.1 & 18.51 \\
\hline 40 & 1040 & 1.073 & 10.600 & 8.939 & ． \(9+5\) & 59.09 & 472.3 & 7871 & 25.41 \\
\hline 50. & 1300 & 1.093 & 13.250 & 9.10 .5 & 1.206 & 4641 & 3666 & 61.10 & \(32 \% 3\) \\
\hline 60. & 1560 & 1.114 & 15.900 & 9．2\％0 & \(1.4 \% 5\) & 37.94 & 296.2 & 49.36 & 40.51 \\
\hline \％ 0 & 18.20 & 1.136 & 18.550 & 9.464 & 1.155 & 31.89 & 245.9 & 40.9 S & 48.80 \\
\hline 80 & 20.80 & 1.158 & 21.200 & 9.647 & 2.045 & \(2 \% .38\) & 208.1 & 34．69 & 57.65 \\
\hline 90 & 23.40 & \(1.18{ }^{2}\) & 23.850 & 9.847 & 2.348 & 23.84 & 178.8 & 29.80 & 6711 \\
\hline 100 & 26.00 & 1.205 & 26.500 & j0．039 & 2.660 & 21.04 & 155.3 & 25.88 & 77.26 \\
\hline
\end{tabular}

Concentration of Sugar Solutionso* (From "Heating and Concentrating Liquids by Steam,' by John G. Hudson; The Engineer, June 13, 1890.)--In the early stages : \(f\) the process. when the liquor is of low density. the evaporatise duty will be high, say two to three (British) gallons per square Goot of heating surface with 10 lbs . steam pressure, hut will gradually tall to an almost nominal amount as the final stage is approached. As a generally safe basis for derigning, Mr. Hudson takes an evaporation of olle gallon per hour for each square foot of gross heatiug surface, with steam of the pressure of about 10 lbs .
As examples of the evaporative duty of a vacumm pan when performing the earlier stages of concentration, during which all the heating surface can be employed, he gives the following:

Coil Vacuum Pan.-43/4 in. copper coils. 528 square feet of surface; steam in coils, 15 lbs ; temperature in pan, \(141^{\circ}\) to \(148^{\circ}\); density of feed, \(25^{\circ}\) Beaumé, and concentrated to \(31^{\circ}\) Beauné.
Fir:st Trial.-Evaporation at the rate of 2000 gallons per hour \(=3.8\) gallons per square foot; transmission, \(3 \pi 6\) units per degree of difference of temperature.
Second Trirt.-Evaporation at the rate of 1503 gallons per hour \(=2.8\) gal lons per square foot; transmission, 265 units per degree.

As regards the total time needed to work up a charge of massecuite from liquor of a given density, the following figures, obtained by plotting the results from a large number of pans, form a guide to practical working. The pans were all of the coil type, some with and some without jackets, the gross heating surface probably averaging, and not greatly differiug fromı, 25 square foot per gallon capacity, and the steam pressure 10 lbs per. square inch. Both plantation and refining pans are included, mahing various grades of sugar:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Density & of F & (deg & Beal & 6). \\
\hline \multirow[b]{2}{*}{evaporation required per gallon massecuite discharged.} & \(10^{\circ}\) & \(15^{\circ}\) & \(20^{\circ}\) & & \\
\hline & 6.123 & 3.6 & 2.26 & 1.5 & . 97 \\
\hline Average working hours required per charge & 12. & 9. & 61/2 & 5. & 4. \\
\hline Equivalent average evaporation per hour per square foot of gros surface, assuming \(\therefore \begin{gathered}\text { s } \\ \text { sq. ft. per gallon capacity } .\end{gathered}\) & 2.04 & 1.6 & 1.39 & 1.2 & . 97 \\
\hline Fastest working bours required per charge & 8.5 & 5.5 & 3.8 & 2.75 & 2.0 \\
\hline Equivalent average evaporation per hour per square foot. & 2.88 & 2.6 & 2.38 & 2.18 & 1.9 \\
\hline
\end{tabular}

The quantity of heating steain needed is practically the same in vacurim ns in open pans. The advantages proper to the vacuum system are primarily the rednced temperature of boiling, and incidentally the possibility of using heating steam of low pressure.

In a solution of sugar in water, each pound of sugar adds to the volume of the water to the extent of .0611 gallon at a low density to .0638 gallon at high densities.

A Method of Evaporating by Exhanst Stearm is described by A bert siedrus in 'Trans. A. S. M E., vol. vini. A pan \(1 \hat{\imath}^{\prime} 6^{\prime \prime} \times 11^{\prime} \times 1^{\prime} 6^{\prime \prime}\), fitted with cast-iron condensing pipes of about 250 sq ft . of surface. evanorated 120 gallons per hour from clear water, condensing only about one half of the steam supplied by a plain slide valve engine of \(14^{\prime \prime} \times 3 z^{\prime \prime}\) cylinder, making \(6 \check{0}\) revs per min., cutting off about two thirds stroke, with steam at 75 lbs. boiler pressure.

It was found that keeping the pan-room warm and letting only sufficient air in to carry the vapor up ont of a ventilator adds to its efficiency, as the arerame temperature of the water in the pan was ouly about \(165^{\circ} \mathrm{F}\).

Experiments were made with coils of pipe in a small pau, first with no agitator, then with one having straight blades, and lastly with troughed blades; the evaporative results being about the proportions of one, two, and three respectively.

In evaporating liquors whose boiling point is \(220^{\circ}\) F. or much above that of water, it is found that exhaust steam can do but little more than bring them up to saturation strength, but on weak liquol's, syrups, glues, etc., it should he very useful.

Drying in Vacuum.-An apparatus for drying grain and other substances in vacuum is described by Mr. Emil Passburg in Proc. Inst. Mech. Engrs., 1889. The three essential requirements for a successf 1 and economical process of drying are: 1. Cheap evaporation of the moisture; 2. Quick drying at a low temperature; 3. Large capacity of the apparatus employed.

The removal of the moisture can be effected in either of two ways: either by slow evaporation, or by quick evaporation-that is, by boiling.

Slow Evaporation.-The principal idea carried into practice in machines acting by slow evaporation is to bring the wet substance repeatedly into contact with the inner surfaces of the apparatus, which are heated by steam, while at the same time a current of hot air is also passing through the substances for carrying off the moisture. This method requires much heat, because the hot-air current has to move at a considerable speed in order to shorten the drying process as much as possible; consequently a great quantity of heated air passes through and escapes unused. As a carlier of moisture hot air cannot in practice be charged beyond half its full saturation; and it is in fact considered a satisfactory result if even this proportion be attained. A great amount of heat is here produced which is not used; while, with scarcely half the cost for fuel, a much quicker removal of the water is obtained by heating it to the boiling point.

Quick Evaporation by Boiling.-This does not take place until the water is brought up to the boiling point and kept there, namely, \(212^{\circ}\) F., under atmospheric pressure. The vapor generated then escapes freely. Liquids are easily evaporated in this way, because by their motion consequent on boiling the heat is continuously conveyed from the heating surfaces through the liquid, but it is different with solid substances, and many more difficulties have to be overcome, oecause convection of the heat ceases entirely in solids. The substance remains motionless, and consequently a much greater quantity of heat is required than with liquids for obtaining the same results.
Evaporation in Vacuum.-All the foregoing disadvantages are avoided it the boiling-point of water is lowered, that is, if the evaporation is carried out under vacuum.

This plan has been successfully applied in Mr. Passburg's vacuum drying apparatus, which is designed to evaporate large quantities of water contained in solid substances.

The drying apparatus consists of a top horizontal cylinder, surmounted by a charging vessel at one end, and a bottom horizontal cylinder with a discharging vessel beneath it at the same end. Both cylinders are encased in steam-jackets heated by exhaust steam. In the top cyliuder works a revolving cast-iron screw with hollow blades, which is also heated by exhaust steam. The bottom cylinder contains a revolving drum of tuhes, consisting of one large central tube surrounded by 24 smaller ones, all fixed in tube. plates at both ends; this drum is heated by live steam direct from the boiler. The substance to be dried is fed into the charging vessel through two man. holes, and is carried along the top cylinder by the screw creeper to the back end, where it drops through a valve into the bottom cylinder, in which it is lifted by blades attached to the drum and travels forwards in the reverse direction: from the front end of the bottom cylinder it falls into a discharging vessel through another valve, having by this time become dried. The vapor arising during the process is carried off by an air-pump, through a dome and air-valve on the top of the upper cylinder, and also through a throttle-valve on the top of the lower cylinder; both of these valves are supplied with strainers.

As soon as the discharging vessel is filled with dried material the valve connecting it with the bottom cylinder is shut, and the dried charge taken out without impairing the vacuum in the apparatus. When the charging vessel requires replenishing, the intermediate valve between the two cylinders is shut, and the charging vessel filled with a fresh supply of wet material; the vacuum still remains unimpaired in the bottom cylinder, and has to be restored only in the top cyliuder after the charging vessel has been closed again.

In this vacuum the boiling-point of the water contained in the wet material is bronght down as low as \(110^{\circ} \mathrm{F}\). The difference between this temperature and that of the heating surfaces is amply sufficient for obtaining good results from the emplorment of exhanst steam for heating all the surfaces except the revolving drum of tubes. The water contained in the solid substance to be dried evaporates as soon as the latter is heated to about \(110^{\circ} \mathrm{F}_{9}\) :
and as long as there is any moisture to be removed the solid substance is not heated above this temperature.
Wet grains from a brewery or distillery, containing from \(75 \%\) to \(78 \%\) of water, have by this drying process been converted in some localities from a worthless incumbrance into a valuable food-stuff. The water is removed by evaporation only, no previous mechanical pressing being resorted to.
At Messrs. Guinness's brewery in Dublin two of these machines are employed. In each of these the top cylinder is \(20^{\prime} 4^{\prime \prime}\) long and \(2^{\prime} 8^{\prime \prime}\) diam., and the screw working inside it makes \(\gamma\) revs. per min.; the bottom cylinder is \(19^{\prime} 2^{\prime \prime}\) long and \(5^{\prime} 4^{\prime \prime}\) diam., and the drum of the tubes inside it makes 5 revs. per min. The drying surfaces of the two cylinders amount together to a total area of about 1000 sq . ft., of which about \(40 \%\) is heated by exhaust steam direct from the boiler. There is only one air-pump, which is made large enough for three machines; it is horizontal, and has only one air-cylinder, which is double-acting, \(173 / 4 \mathrm{in}\). diam. and \(1 \tau 3 / 4 \mathrm{in}\). stroke; and it is driven at about 45 revs. per min. As the result of about eight months' experience, the two machines have been drying the wet grains from about 500 cwt . of malt per day of 24 hours.
Roughly speaking, 3 cwt. of malt gave 4 cwt . of wet grains, and the latter yield 1 cwt. of dried grains; 500 cwt . of malt will therefore yield about \(6 \tilde{\tau} 0\) cwt. of wet grains, or 335 cwt . per machine. The quantity of water to be evaporated from the wet grains is from \(75 \%\) to \(78 \%\) of their total weight, or say about 512 cwt . altogether, being 256 cwt . per machine.

\section*{RADIATION OF HEAT.}

Radiation of heat takes place between bodies at all distances apart, and follows the laws for the radiation of light.
The heat rays proceed in straight lines, and the intensity of the rays radiated from any one source varies inversely as the square of their distance from the source.
This statement has been erroneously interpreted by some writers, who have assumed from it that a boiler placed two feet above a fire would receive by radiation only nne fourth as much heat as if it were only one foot above. In the case of boiler furnaces the side walls reflect those rays that are received at an angle-following the law of optics, that the angle of incidence is equal to the angle of reflection,-with the result that the intensity of heat two feet above the fire is practically the same as at one foot above, instead of only one-f, arth as much.
The rate at which 9 hotter body radiates heat, and a colder body absorbs heat, depends upon :lie state of the surfaces of the bodies as well as on their temperatures. Thrs rate of radiation and of absorption are increased by darkness and roughness of the surfaces of the bodies, and diminished by smoothness and folish. For this reason the covering of steam pipes and boilers should be smooth and of a light color: uncovered pipes and steamcylinder covers should be polished.

The quantity of heat radiated by a body is also a measure of its heatabsorbing power, under the same circumstances. When a polished body is struck by a ray of heat, it absorbs part of the heat and reflects the rest. The reflecting power of a body is therefore the complement of its absorbing power, which latter is the same as its radiating power.
The relative radiating and reflecting power of different bodies has been determined by experiment, as shown in the table below, but as far as quantities of heat are concerned, says Prof. Trowbridge (Johuson's Cyclopædia, art. Heat), it is doubtful whether anything further than the said relative determinations can, in the present state of our knowledge, be depended upon, the actual or absolute quantities for different temperatures being still uncertain. The authorities do not even agree on the relative radiating powers. Thus, Leslie gives for tin plate, gold, silver, and copper the figure 12, which differs considerably from the figures in the table below, given by Clark, stated to be on the authority of Leslie, De La Provostaye and Desains, and Mielloni.

\section*{Relative Radiating and Reflecting Power of Different Substances.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline &  &  & &  &  \\
\hline Lampblack ........... & 100 & 0 & Zinc, polished. & 19 & 81 \\
\hline Water. & 100 & 0 & Steel, polished & 17 & 83 \\
\hline Carbonate of lead... & 100 & 0 & Platinum, polished.. & 24 & r6 \\
\hline Writing-paper...... & 98 & 2 & " in sheet.. & 17 & 83 \\
\hline Ivory, jet, marble.. & 93 to 98 & 7 to 2 & Tin_... ............. & 15 & 85 \\
\hline Ordinary glass....... & \begin{tabular}{l}
90 \\
85 \\
\hline 8
\end{tabular} & 10
15 & Brass, cast, dead polished & 11 & 89 \\
\hline Gum lac. & 72 & 28 & Brass, bright pol- & & 8 \\
\hline Silver-leaf on glass.. & 27 & 73 & ished............. & 7 & 93 \\
\hline Cast iron, bright polished & 25 & 75 & Copper, varnished... & 14 & 86 \\
\hline Mercury, about...... & 23 & 77 & Gold, plated.... .. & 5 & 95 \\
\hline Wrought iron, polished. & 23 & 77 & " on polished steel \(\qquad\) & 3 & 97 \\
\hline & & & Silver,
bright............ & 3 & 97 \\
\hline
\end{tabular}

Experiments of Dr. A. M. Mayer give the following: The relative radiations from a cube of cast iron, having faces rough, as from the foundry, planed, "drawfiled," and polished, and from the same surfaces oiled, are as below (Prof. Thurston, in Trans. A. S. M. E., vol. xvi.) :
\begin{tabular}{|c|c|c|}
\hline Surface. & Oiled. & Dry. \\
\hline Rough. & 100 & 100 \\
\hline Planed & 60 & 32 \\
\hline Drawfiled & 49 & 20 \\
\hline Polished...... . ... & 45 & 18 \\
\hline
\end{tabular}

It here appears that the oiling of smoothly polished castings, as of cylin-der-heads of steam-engines, more than doubles the loss of heat by radiation, while it does not seriously affect rough castings.

\section*{CONDUCTION AND CONVECTION OF HEAT。}

Conduction is the transfer of heat between two bodies or parts of a body which tonch each other. Internal conduction takes place betweeu the parts of one continuous body, and external conduction through the surface of contact of a pair of distinct bodies.

The rate at which conduction, whether internal or external, goes on, being proportional to the area of the section or surface through which it takes place, may be expressed in thermal units per square foot of area per linur

Internal Conduction varies with the heat conductivity, which depends upun the nature of the substance, and is directly proportional to the difference between the temperatures of the two faces of a layer, and inversely as its thickness. The reciprocal of the conductivity is called the internal thermal resistance of the substance. If \(r\) represents this resistance, \(x\) the thickness of the layer in inches, \(T^{\prime \prime}\) and \(T\) the temperatures on the two faces, and \(q\) the quantity in thermal units transmitted per hour per square foot of area, \(q=\frac{T^{\prime \prime}-T}{r x}\). (Rankine.)

Péclet gives the following values of \(r\) :
Gold, platiuum, silver......... 0.0016
Copper.............................. 0.0018
Lead
0.0090
Irou.................................. . . 0.0043
Marble
0.0716
Brick
0.1500

Zinc

\section*{Relative Heat-conducting Power of Metals.}
(* Calvert \& Juhnson ; † Weidemann \& Franz.)


The Rate of External Conduction through the bounding surface between a solid body and a fluid is approximately proportional to the difference of temperature, when that is small; but when that difference is considerable the rate of conduction increases faster than the simple ratio of that difference. (Rankine.)

If \(r\), as before, is the coefficient of internal thermal resistance, \(e\) and \(e^{\prime}\) the coefficient of external resistance of the two surfaces, \(x\) the thickness of the plate, and \(T^{\prime}\) and \(T\) the temperatures of the two fluids in contact with the two surfaces, the total thermal resistance is \(q=\frac{T^{\prime}-T}{e+e^{\prime}+r x}\). According to Peclet, \(e+e^{\prime}=\frac{1}{A\left[1+B\left(T^{\prime}-T\right)\right]}\), in which the constants \(A\) and \(B\) have the following values :
\(B\) for polished metallic surfaces .................................... . 0028
\(B\) for rough metallic surfaces and for non-metallic surfaces. . . 0033
A for polished metals, about ............................................ . 90
A for glassy and varnished surfaces...................... ......... 1.34
A for dull metallic surfaces ......... ................................. . . 1.58
\(A\) for lamp-black .......................................................... 1 . 8
When a metal plate has a liquid at each side of it, it appears from experiments by Peclet that \(B=.058, A=8.8\).

The results of experiments on the evaporative power of boilers agree very well with the following approximate formula for the thermal resistance of boiler plates and tubes:
\[
e+e^{\prime}=\frac{a}{\left(T^{\prime}-T\right)}
\]
which gives for the rate of conduction, per square foot of surface per iour,
\[
q=\frac{\left(T^{\prime}-I^{\prime}\right)^{2}}{a}
\]

This formula is proposed by Rankine as a rough approximation, near enough to the truth for its purpose. The value of a lies between 160 and 200 .

Convection, or carrying of heat, means the transfer and diffusion of the heat in a fluid mass by means of the motion of the particles of that miass.

The conduction, properly so called, of heat througin a stagnant mass of fllid is very slow in liquids, and almost, if not wholly, insppreciable in grses. It is only by the coutinual circulation and mixture of the particles of tre fluid that uniformity of temperature can be maintained in the fluid mass, or heat transferred between the fluid mass and a solid body.

The free circulation of each of the fluids which touch the side of a solid plate is a necessary condition of the correctness of Rankine's formulæ for the conduction of heat through that plate; and in these formulæ it is im-
plied that the circulation of each of the fluids by currents and eddies is such as to prevent any considerable difference of temperature between the fluid particles in contact with one side of the solid plate and those at considerable distances from it.
When heat is to be trausferred by convection from one fluid to another, through an intervening layer of metal, the motions of the two fluid masses should, if possible, be in opposite directions, in order that the hottest particles of each fluid may be in communication with the hottest particles of the other, and that the minimum difference of temperature between the adjacent particles of the two fluids may be the greatest possible.
Thus, in the surface condensation of steam, by passing it through metal tubes immersed in a current of cold water or air, the cooling fluid should be made to move in the opposite direction to the condensing steam.

Steam-pipe Coverings.
(Experiments by Prof. Ordway, Trans. A. S. M. E., vi, 168: also Circular No. 27 of Boston Mfrs. Mutual Fire Ins. Co., 1890.)
\begin{tabular}{|c|c|c|c|c|}
\hline Substance 1 inch thick. Heat applied, \(310^{\circ} \mathrm{F}\). & Pounds of Water heated \(10^{\circ}\) F., per hour, through 1 sq. ft. & British Thermal Units per sq. ft. per minute. & Solid Matter in 1 sq . ft. 1 inch thick, parts in 1000. &  \\
\hline 1. Loose wool. & 8.1 & 1.35 & 56 & 944 \\
\hline 2. Live-geese feathers & 9.6 & 1.60 & 50 & 950 \\
\hline 3. Carded cotton wool & 10.4 & 1.73 & 20 & 980 \\
\hline 4. Haiv felt.. & 10.3 & 1.72 & 185 & 815 \\
\hline 5. Loose lampblack. & 9.8 & 1.63 & 56 & 944 \\
\hline 6. Compressed lampblack........... & 10.6 & 1.77 & 244 & T56 \\
\hline 7. Cork charcoal. & 11.9 & 1.98 & 53 & 947 \\
\hline 8. White-pine charcoal & 13.9 & 2.32 & 119 & 881 \\
\hline 9. Anthracite-coal powder & 35.7 & 5.95 & 506 & 494 \\
\hline 10. Loose calcined magnesia & 12. 4 & 2.07 & 23 & 977 \\
\hline 11. Compressed calcined magnesia.. & 42.6 & 7.10 & 285 & 715 \\
\hline 12. Light carbonate of magnesia.. & 13.7 & 2.28 & 60 & 940 \\
\hline 13. Compressed carb. of magnesia.. & 15.4 & 2.5 亿 & 150 & 859 \\
\hline 14. Loose fossil-meal. & 14.5 & 2.42 & 60 & 940 \\
\hline 15. Crowded fossil-meal. & 15. & 2.62 & 112 & 88 \\
\hline 16. Ground chalk (Paris white) & 20.6 & 3.43 & 253 & 747 \\
\hline 17. Dry plaster of Paris. & 30.9 & 5.15 & 368 & \(68: 3\) \\
\hline 18. Fine asbestos..... & 49.0 & 8.17 & 81 & 919 \\
\hline 19. Air alone.. & 48.0 & 8.00 & 0 & 1000 \\
\hline 20. Sand. & 62.1 & 10.35 & 529 & 471 \\
\hline 21. Best slag-woo & 13. & 2.17 & & \\
\hline 22. Paper. & 14. & 2.33 & & \\
\hline 23. Blotting-paper wound tight..... & 21. & 3.50 & & \\
\hline 24. Asbestos paper wound tight..... & 21.7 & 3.62 & & \\
\hline 25. Corle strips bound on... & 14.6 & 2.43 & & \\
\hline 26. straw rope wound spirally. & 18. & 3. & & \\
\hline 27. Loose rice chaff.. & 18.7 & 3.12 & & \\
\hline 28. Paste of fossil-meal with hair.. & 16.7 & 2.78 & & \\
\hline 29. Paste of fossil-meal with asbestos & 22. & 3.67 & & \\
\hline 30. Loose bituminous-coal ashes . & 21. & 3.50 & & \\
\hline 31. Loose anthracite-coal ashes & 27. & 4.50 & & \\
\hline 32. Paste of clay and vegetahle fibre & 30.9 & 5.15 & & \\
\hline
\end{tabular}

It will be observed that several of the incombustible materials are nearly as efficient as wool cotton, and feathers, with which they may be compared in the preceding table. The materials which may be considered wholly free from the danger of being carbonized or ignited by slow contact with pipes or boilers are printed in Roman type. Thuse which are more or less liable to be carbonized are printed in italics.

The results Nos. 1 to 20 inclusive were from experiments with the various non-conductors each used in a mass nee inch thick, placed on a flat surface of iron kept heated by steam to \(310^{\circ} \mathrm{F}\). The substances Nos. 21 to

32 were tried as coverings for two－inch steam pipe；the results being re－ duced to the same terms as the others for convenience of comparison．
Experiments on still air gave results which differ little from those of Nos． 3,4 ，and 6 ．The bulk of matter in the best non－conductors is relatively too small to have any specific effect except to trap the air and keep it stagnant． These substances keep the air still by virtue of the ruughness of their tibres or particles．The asbestos，No．1s，had smooth fibres．Asbestos with ex－ ceeding！y fine fibre made a somewhat better showing，but asbestos is really one of the poorest non－conductors．It may be used advantagewusls to hold Ingether other incombustible substances，but the less of it the better．A ＂magnesia＂covering，made of carbonate of magnesia with a small per－ centage of good asbectos fibre and containing 0.25 of solid matter，trans－ mittell 2.5 B．T．U．per square foot per minute，and one containing 0.396 of solid matter transmitted 3．33 B．T．U．

Any suitable substance which is used to prevent the escape of steam heat should not be less than one inch thick．

Any covering should be kept perfectly dry，for not only is water a good carrier of heat，but it has been fomd that still water conducts heat about eiylit times as rapidly as still air．
Tests of Commercial Coverings were made by Mr．Geo．M．Brill and reported in Timns．A．S．M．E．，xvi．oz7．A length of 60 feet of 8 －inch steam pipe was used in the tests，and the heat loss was determined by the condensation．The steam pressure was from 109 to 117 lbs．gauge，aud the temperature of the air from \(58^{\circ}\) to \(31^{\circ} \mathrm{F}\) ．The difference between the tem－ perature of steam and air ranged from \(263^{\circ}\) to \(286^{\circ}\) ，averaging \(2 \hat{F}^{\circ}\) ．

The following are the principal results ：
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Kind of Covering． &  &  &  &  &  &  &  \\
\hline Bare pipe & & ． 816 & \(12.2 \hat{}\) & 2．706 & & 100. & 2.819 \\
\hline Magnes & 1.25 & ． 120 & 1.74 & ． 384 & T26 & 14.2 & 400 \\
\hline Rock wool． & 1.60 & ． 080 & 1.16 & ． 256 & ． 766 & 9.5 & \({ }^{207}\) \\
\hline Mineral wool & 1.30 & ． 089 & 1.29 & ． 285 & ． 75 \％ & 10.5 & 297 \\
\hline Fire－felt．． & 1.30 & ． 15 T & 2.28 & ． 502 & ． 689 & 18.6 & ． 523 \\
\hline Manville secti & 1.10 & ． 109 & 1.59 & ． 350 & ． 737 & 12.9 & ． 564 \\
\hline Manv．sect．\＆hair－felt． & 2.40 & ． 066 & 0.96 & ． 212 & ．780 & 7.8 & ． 221 \\
\hline Munville wool－cement． & 2.20 & ． 108 & 1.56 & ． 315 & ．138 & 12.7 & ． 339 \\
\hline Champion mineral wool
Hair－felt ．．
a ．． & \(\begin{array}{r}1.44 \\ .8 .2 \\ \hline\end{array}\) & ． 0139 & 1.44
1.91 & ． 3172 & ． 8147 & 11.7
15.6 & .330
.439 \\
\hline Riley cemen & ． 75 & ． 298 & 4.32 & ． 953 & ． 548 & 35.2 & ． 993 \\
\hline Fossil－meal． & ．\(\%\) & ． 2 2\％ & 3.99 & ．879 & ． 5 T1 & 32.5 & 916 \\
\hline
\end{tabular}

Transmission of Heat，through solid Plates，from Water to Water．（Clark，S．E．）．－M．Pêclet found，from experiments made with plates of wrought iron，cast iron，copper，lead，zinc，and tin， that when the fluid in contact with the surface of the plate was not circu－ lated by artificial means，the rate of conduction was the same for different metals and for plates of the same metal of different thicknesses．But when the water was thoroughly circulated over the surfaces，and when these were perfectly clean，the quantity of transmitted heat was inversely proportional to the thickness，and directly as the difference in temperature of the two faces of the plate．When the metal surface became dull，the rate of transmission of heat through all the metals was very nearly the same．
It follows，says Clark，that the absorption of heat through metal plates is more active whilst evaporation is in progress－when the circulation of the water is more active－than while the water is being heated up to the boiling point．

Transmission from Steam to Water.-M. Péclet's principle is supported by the results of experiments made in 1867 by Mr. Isherwood on the conductivity of different metals. Cylindrical pots, 10 inches in diameter, \(211 / 4\) inches deep inside, and \(1 / 8 \mathrm{inch}, 1 / 4 \mathrm{inch}\), and \(3 / 8\) inch thick, turned and bored, were formed of pure copper, brass ( 60 copper and 40 zinc), rolled wrought iron, and remelted castiron. They were immersed in a steam bath, which was varied from \(220^{\circ}\) to \(3: 0^{\circ} \mathrm{F}\). Water at \(21 ⿻^{\circ}\) was supplied to the pots, which were kept filled. It was ascertained that the rate of evaporation was in the direct ratio of the difference of the temperatures inside and outside of the pots; that is, that the rate of evaporation per degree of difference of temperatures was the same for all temperatures; and that the rate of evaporation was exactly the same for different thicknesses of the metal. The respective rates of conductivity of the several metals were as follows expressed in weight of water evaporated from and at \(212^{\circ} \mathrm{F}\). per square foot of the interior surface of the pots per degree of difference of temperature per hour, together with the equivalent quantities of heat-units:

Water at \(212^{\circ}\). Heat-units. Ratio.


Whitham, "Steam Engine Design," p. 283, also Trans. A. S. M. E. ix, 425, in using these data in deriving a formula for surface condensers calls these figures those of perfect conductivity, and multiplies them by a coefficient \(C\), which he takes at 0.323 , to obtain the efficiency of condeuser surface in ordinary use, i.e., coated with saline aud greasy deposits.
Transmission of Heat from Steam to Water through Coils of Iron Pipe.-H. G. C. Kopp and F. J. Meystre (Stevens Indicator, Jan , 1894), give an account of some experiments on transmission of heat through coils of pipe. They collate the results of earlier experiments as follows, for comparison:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Steam Condensed per Square foot per degree difference of temperature per hour.} &  & \begin{tabular}{l}
trans- \\
d per oot per differ-temperr hour
\end{tabular} & \multirow[t]{2}{*}{Remarks.} \\
\hline & &  &  &  &  & \\
\hline Laurens & Copper coils... & . 292 & . 981 & 315 & 974

1120 & \\
\hline Havrez. & - Copper coils. & . 268 & 1.20 & 280 & 1120
1200 & \\
\hline Perkins. & Iron coil.... & \(\ldots\) & . 24 & .... & 215 & \(\{\) Steam pressure \\
\hline ، & " 6 ....... & & . 22 & & 208.2 & \{Steam pressure \\
\hline Box. & Iron tube & . 235 & & 230 & & \\
\hline & " & .196 & & \(20 \%\) & & \\
\hline & & . 206 & & 210 & & \\
\hline Havrez. & Cast-iron boiler & .07\% & . 105 & 82 & 100 & \\
\hline
\end{tabular}

From the above it would appear that the efficiency of iron surfaces is less than that of copper cols, plate surfaces being far inferior.
In all experiments made up to the present time, it appears that the temperature of the condensing water was allowed to rise, a mean between the initial and final temperatures being accepted as the effective temperature. But as water becomes warmer it circulates more rapidly, thereby causing the water surrounding the coil to become agitated and replaced by coole: water, which allows more heat to be transmitted.

Again, in accepting the mean temperature as that of the condensing medium, the assumption is made that the rate of condensation is in direct proportion to the temperature of the coudensing water.

In order to correct and avoid any error arising from these assumptions and approximations, experiments were undertaken, in which all the couditions were constant during each test.

The pressure was maintained uniform throughout the coil, and provision was made for the free outflow of the condensed ste:m, in order to obtain at all times the full efficiency of the condensing surface. The condensing water was contimully stirred to secure uniformity of temperature, which was regulated by means of a steam-pipe and a cold-water pipe entering the tank in which the coil was placed.
The following is a condensed statement of the results
Heat Transmitted per Square Foot of Cooling Surface, per Degree of Difference of Temperature. (British Thermal Units.)
\begin{tabular}{|c|c|c|c|c|}
\hline Temperature of Condensing Water. & 1-in. Iron Pipe; Steam inside, (60 lbs. Gange Pressure. & 112 in. Pipe: Steam inside, 10 lbs. Pressure. & 112 in. Pipe: Steam iuside 10 lbs. Pressure. & 11/2 in. Pipe: Steam inside 60 lbs. Pressure. \\
\hline 80 & 265 & 128 & 200 & \\
\hline 100 & 269 & 130 & 230 & 239 \\
\hline 120 & 2\% & 137 & 260 & \(24 \%\) \\
\hline 140 & 277 & 145 & 267 & 246 \\
\hline 160 & 281 & 158 & 271 & 306 \\
\hline 180 & 299 & 174 & 270 & 349 \\
\hline 200 & 313 & \(\ldots\) & \(\ldots\) & 419 \\
\hline
\end{tabular}

The results indicate that the heat transmitted per degree of difference of remperature in general increases as the temperature of the condensing water is increased.
The amount transmitted is much larger with the steam on the outside of the coil than with the steam inside the coil. This may be explained in part by the fact that the condensing water when inside the coil flows over the surface of conduction very rapidly, and is more efficient for cooling than when contained in a tank outside of the coil.
This result is in accordance with that found by Mr. Thomas Ciaddock, which indicated that the rate of cooling by transmission of heat through metallic surfaces was almost wholly dependent on the rate of circulation of the cooling medium over the surface to be cooled.
Transmission of Heat in Condenser Tubes. (Eng'g, Dec. 10,1875, p. 449. ). -In 1874 B . C. Nichol made experiments for determining the rate at which heat was transmitted through a condenser tube. The results went to show that the amount of heat transmitted through the walls of the tube per estimated degree of mean difference of temperature increased considerably with this difference. For example:

Estimated mean difference of Vertical Tube.
temperature between inside and outside of tube, degrees Fahr. .
Heat-units transmitted per hour per square foot of surface per \(\begin{array}{llllllll}\text { degree of mean diff, of temp.... } & 422 & 531 & 561 & 610 & 73 \% & 823\end{array}\)
These results seem to throw doubt upon Mr. Isherwood's statement that the rate of evaporation per degree of difference of temperature is the same for all temperatures.

Mr. Thomas Craddock found that water was enormously more efficient than air for the abstraction of heat through metallic surfaces in the process of cooling. He proved that the rate of cooling by transmission of heat through metallic surfaces depends upon the rate of circulation of the cooling medium over the surface to be cooled. A tube filled with hot water, moved by rapid rotation at the rate of 59 ft . per second, through air, lost as much heat in one minute as it did in still air in 12 minutes. In water, at a velocity of 3 ft . per second, as much heat was abstracted in half a minute as was abstracted in one minute when it was at rest in the water. Mr. Craddock concluded, further, that the circulation of the cooling fluid became of
greater importance as the difference of temperature on the two sides of the plate became less. (Clark, R. T. D.. p. 461.)
Heat Transmission through Cast-iron Plates Pickled in Nitric Acid.-Experiments by R. C. Carpenter (Trans. A. S. M. E., xii 1г9) show a marked change in the conducting power of the plates (from steam to water), due to prolonged treatment with dilute nitric acid.
The action of the nitric acid, by dissolving the free iron and not attacking the carbon, forms a protecting surface to the iron, which is largely composed of carbon. The following is a summary of results:
\begin{tabular}{|c|c|c|c|}
\hline Character of Plates, each plate 8.4 in. by 5.4 in., exposed surface \(2 \tau\) sq. ft. & \begin{tabular}{l}
Increase in \\
Temperature of \\
3.125 lbs . of Water each Minute.
\end{tabular} & Proportionate Thermal Units Transmitted for each Degree of Difference of Temperature per Square Foot per Hour. & Relative Trans. mission of Heat. \\
\hline Cast iron-untreated skin on, but clean, free from rust. & 13.90 & 113.2 & 100.0 \\
\hline Cast iron-nitric acid, \(1 \%\) sol., 9 days . & 11.5 & 97.7 & 86.3 \\
\hline " 6 1\% sol., 18 days. & 9.7 & 80.08 & 70.7 \\
\hline " "6 1\% sul., 40 days. & 9.6 & 77.8 & 68.7 \\
\hline " 6 5\% sol., 9 days . & 9.93 & 87.0 & 76.8 \\
\hline " " 5\% sol., 40 days. & 10.6 & 77.4 & 68.5 \\
\hline Plate of pine wood, same dimensions as the plate of cast iron........... & 0.33 & 1.9 & 1.6 \\
\hline
\end{tabular}

The effect of covering cast-iron surfaces with varnish has been investigated by P. M. Chamberlain. He subjected the plate to the action of strong acid for a few hours, and then applied a non conducting varnish. One surface only was treated. Some of his results are as follows:


> 1\%0. As finished-greasy.
> washed with benzine and dried.
169. Oiled with lubricating oil.
162. After exposure to nitric acid sixteen hours, then oiled (linseed nil.)
166 After exposure to hydrochloric acid twelve hours, then oiled (linseed oil.)
113. (After exposure to sulphuric acid 1, water 2, for 48 hours, 117. \(\int\) then oiled, varnished, and allowed to dry for 24 hours.

Transmission of Heat through Solid Plates from Air or other Dry Gases to Water. (From Clark on the Steam Engive.) -The law of the transmission of heat from hot air or other gases to water, through metallic plates, has not been exactly determined by experiment. The general results of experiments on the evaporative action of different portions of the heating surface of a steam-boiler point to the general law that the quantity of heat transmitted per degree difference of temperature is practically uniform for various differences of temperature.

The communication of heat from the gas to the plate surface is much accelerated by mechanical impingement of the gaseous products upon the surface.

Clark says that when the surfaces are perfectly clean, the rate of transmission of heat through plares of metal from air or gas to water is greater for copper, next for brass, and next for wrought iron. But when the surfaces are dimmed or coated, the rate is the same for the different metals.

With respect to the inflitence of the conductivity of metals and of the thickness of the plate on the transmission of heat from burnt gases to water, Mr. Napier made experiments with small boilers of iron and copper placed over a gas-flame. The vessels were 5 inches in diameter and \(21 / 2\) inches deep. From three vessels, one of iron, one of copper, and one of iron sides and copper bottom, each of them \(1 / 30\) inch in thickness, equal quantities of water were evaporated to dryness, in the times as follows:
\begin{tabular}{clcc} 
Water. & Iron Vessel. & Copper Vessel. & Iron and Copper \\
Vessel.
\end{tabular}

Two other vessels of iron sides \(1 / 30\) inch thick, one having a \(1 / 4\)-inch copper oottom and the other a \(1 / 4\)-inch lead bottom, were tested against the iron and copper vessel, \(1 / 30\) inch thick. Equal quantities of water were evaporated iu 54,55 , and \(531 / 2\) minutes respectively. Taken generally, the results of these experiments show that there are practically uut slight differences between iron, copper, and lead in evaporative activity, and that the activity is not affected by the thickness of the bottom.
Mr. W. B. Johnson formed a like conclusion from the results of his observations of two boilers of 160 horse-power each, made exactly alike, except that one had iron flue-tubes and the other copper flue-tubes. No difference could be detected between the performances of these boilers.
Divergencies between the results of different experimenters are attributable probably to the difference of conditions under which the heat was transmitted, as between water or steam and water, and between gaseous matter and water. On one point the divergence is extreme: the rate of transmission of heat per degree of difference of temperature. Whilst from 400 to 600 units of heat are transmitted from water to water through iron plates, per degree of difference per square foot per hour, the quantity of heat transmitted between water and air, or other dry gas, is only about from 2 to 5 units, according as the surrounding air is at rest or in movement. In a locomotive boiler, where radiant heat was brought into play, 17 units of heat were transmitted through the plates of the fire-box per degree of difference of temperature per square foot per hour.
Transmission of PHeat through Plates and Tubes from Steam or Hot Water to Air. -The transfer of heat from steam or water through a plate or tube into the surrounding air is a complex operation, in which the internal and external conductivity of the metal, the radiating power of the surface, and the convection of heat in the surrounding air are all concerned. Since the quantity of heat radiated from a surface varies with the condition of the surface and with the surroundings, according to laws not yet determined, and since the heat carried away by convection varies with the rate of the flow of the air over the surface, it is evident that \(n o\) general law can be laid down for the total quantity of heat emitted.
The following is condensed from an article on Loss of Heat from Steampipes, in The Locomotive, Sept. and Oct., 1892.
A hot steam pipe is radiating heat constantly off into space, but at the same time it is cooling also by convection. Experimental data on which to base calculations of the heat radiated aud otherwise lost by steam-pipes are neither numerous nor satisfactory.
In Box's Practical Treatise on Heat a number of results are given for the amount of heat radiated by different substances when the temperature of the air is \(1^{\circ}\) Fahr. lower than the temperature of the radiating body. A portion of this table is given below. It is said to be based on Péclet's experiments.

\section*{Heat Units Radiated per Hour, per Square Foot of Surface, for \(1^{\circ}\) Fahrenheit Excess in Temperature.}

\begin{abstract}
Copper, polished . . . . . . . . . . . . . . 0327 | Sheet-iron, ordinary.............. . 5662
Tin, polished ...................... . 0440 Glass.................................. . . 5948
Zinc and brass, polished......... . 0491 Cast iron, new................. ... . 6480
Tiuner iron, polished.............. .0S58 | Common steam-pipe, inferred.. . 6400
Sheet-iron, polished .............. .0920 Cast and sheet iron, rusted .... .686s
Sheet lead ....................... . 1329 Wood, building stone, and brick . 3358
When the temperature of the air is about \(50^{\circ}\) or \(60^{\circ} \mathrm{Fahr}\)., and the radiating body is not more than about \(30^{\circ}\) hotter than the air, we may calculate the radiation of a given surface by arsuming the amount of heat given off by it in a given time to be proportional to the difference in temperature between the rudiating body and the air. This is "Newton's law of cooling." But when the difference in temperature is great, Newton's law does not hold good; the radiation is no onger proportional to the difference in temperature, but must be calculated by a complex formula established experiment. ally by Duloug and Petit. Box has computed a table from this formula, which greatly facilitates its application, and which is given below :
\end{abstract}

Factors for Reduction to Dulong's Law of Radiation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Differences in Temperature between Radiating Body and the Air.} & \multicolumn{12}{|r|}{Temperature of the Air on the Fahrenheit Scale.} \\
\hline & \(3 \overbrace{}^{\circ}\) & \(50^{\circ}\) & \(59^{\circ}\) & \(68^{\circ}\) & \(86^{\circ}\) & \(104{ }^{\circ}\) & \(122{ }^{\circ}\) & \(140^{\circ}\) & \(158^{\circ}\) & & 194* & \(1212^{\circ}\) \\
\hline Deg. Fahr. & & & & & & & & & & & & \\
\hline & 1.00 & 1.07 & 1.12 & 1.16 & 1.25 & 1.36 & 1.47 & 1.58 & \(1 . \% 0\) & 1.85 & 1.09 & 2.15 \\
\hline 36 & 1.03 & 1.08 & 1.16 & 1.21 & 1.30 & 1.40 & 1.52 & 1.68 & 1.76 & 1.91 & 2.06 & 2.23 \\
\hline 54 & 1.07 & 1.16 & 1.20 & 1.25 & 1.35 & 1.45 & 1.58 & 1.70 & 1.83 & 1.99 & 2.14 & 2.31 \\
\hline 72 & 1.12 & 1.20 & 1.25 & 1.30 & 1.40 & 1.52 & 1.64 & 1.76 & 1.90 & 2.07 & 2.23 & 2.40 \\
\hline 90 & 1.16 & 1.25 & 1.31 & 1.36 & 1.46 & 1.58 & 1.71 & 1.84 & 1.98 & 2.15 & 2.33 & 2.51 \\
\hline 108 & 1.21 & 1.31 & 1.36 & 1.42 & 1.52 & 1.65 & 1.78 & 1.92 & 2.07 & 2.28 & 2.42 & 2.62 \\
\hline 126 & 1.26 & 1.36 & 1.42 & 1.48 & 1.50 & 1.72 & 1.86 & 2.00 & 2.16 & 2.34 & 2.52 & 2.72 \\
\hline 144 & 1.32 & 1.42 & 1.48 & 1.54 & 1.65 & 1.79 & 1.94 & 2.08 & 2.24 & 2.44 & 2.64 & 2.83 \\
\hline 162 & 1.37 & 1.48 & 1.54 & 1.60 & 1.73 & 1.86 & 2.02 & 2.15 & 2.34 & 2.54 & 2.74 & 2.96 \\
\hline 180 & 1.44 & 1.55 & 1.61 & 1.68 & 1.81 & 1.95 & 2.11 & 2.2ir & 2.46 & 2.66 & 2.8 í & 3.10 \\
\hline 198 & 1.50 & & 1.69 & 1.75 & 1.89 & \(\because .04\) & 2.21 & 2.38 & 2.56 & 2.78 & 3.00 & 3.24 \\
\hline 216 & 1.58 & 1.69 & 1.76 & 1.83 & 1.97 & \(\because .13\) & 2.32 & 2.48 & 2. 68 & 2.91 & & 3.38 \\
\hline 234 & 1.64 & 1.77 & 1.84 & 1.90 & 2.06 & 2.28 & 2.43 & 2.52 & 2.80 & 3.03 & 3.28 & 3.46 \\
\hline 252 & 1.71 & 1.85 & 1.92 & 2.00 & 2.15 & 2.33 & 2.52 & 2.71 & 2.92 & 3.18 & 3.43 & 3.70 \\
\hline 270 & 1.79 & & 2.01 & 2.09 & 2.22 & 2.44 & 2.64 & 2.84 & 3.06 & 3.32 & 3.58 & 3.87 \\
\hline 288 & 1.89 & 2.03 & 2.12 & 2.20 & 2.37 & 2.56 & 2. 78 & 2.99 & 3.22 & 3.50 & 3.17 & 4.07 \\
\hline 306 & 1.98 & 2.13 & 2.22 & 2.31 & 2.49 & 2.69 & 2.90 & 3.12 & \(3.3 r\) & 3.66 & 3.95 & 4.26 \\
\hline \(3: 4\) & 2.07 & 2.23| & 2.33 & 2.42 & 2.62 & 2.81 & 304 & \(3.2 ¢\) & 3.53 & 3.84 & 4.14 & 4.46 \\
\hline 342 & 2.17 & 2.34 & 2.44 & 2.54 & 2.73 & 2.95 & 3.19 & 3.44 & 3. 70 & 4.02 & 4.34 & 4.68 \\
\hline 360 & 2.24 & 2.45 & 2.56 & 2.66 & 2.86 & 3.09 & 3.35 & 3.60 & 3.88 & 4.22 & & 4.91 \\
\hline 378 & 2.39 & 2.57 & 2.68 & 2. 99 & 3.00 & 3.24 & 3.51 & 3.78 & +. 08 & 4.42 & 4. 77 & 5.15 \\
\hline 396 & 2.50 & 2.70 & 2.81 & 2.93 & 3.15 & 3.40 & 3.68 & 3.97 & 4.28 & 4.64 & 5.01 & 5.40 \\
\hline 414 & 2.63 & 3.84 & 2.95 & 3.0 ar & 3.31 & 3.51 & 3.87 & 4.12 & 4.48 & 4.87 & 5.26 & 5.67 \\
\hline 432 & 2.76 & 2.98 & 3.10 & 3.23 & \(3.4 \pi\) & 3.76 & 4.10 & 4.32 & 4.61 & 5.12 & 5.33 & 1.04 \\
\hline
\end{tabular}

The loss of heat by convection appears to be independent of the nature of the surface, that is, it is the same for iron, stone, wood, and other materials. It is different for bodies of different shape, however, and it varies with the position of the body. Thus a vertical steam-pipe will not lose so much heat by convection as a horizontal one will; for the air heated at the lower part of the vertical pipe will rise along the surface of the pipe, protecting it tc some extent from the chilling action of the surrounding cooler air. For a similar reason the shape of a body has an important influence on the result, those bodies losing most heat whose forms are such as to allow the cool air free access to every part of their surface. The following table from Box gives the number of heat units that horizontal cylinders or pipes lose by convection per square foot of surface per hour, for one degree difference in temperature between the pipe and the air.
Heat Units Lost by ('onvection from Horizontal Pipes, per Square Foot of Surface per Hour, for a Temperature Difference of \(1^{\circ}\) Fahr.
\begin{tabular}{c|c|c|c|c|c}
\hline \begin{tabular}{c} 
External \\
Diameter of \\
Pipe \\
in inches.
\end{tabular} & \begin{tabular}{c} 
Heat Units \\
Lost.
\end{tabular} & \begin{tabular}{c} 
External \\
Diameter \\
of Pipe \\
in inches.
\end{tabular} & \begin{tabular}{c} 
Heat Units \\
Lost.
\end{tabular} & \begin{tabular}{c} 
External \\
Diameter \\
of Pipe \\
in inches.
\end{tabular} & \begin{tabular}{c} 
Heat Units \\
Lost.
\end{tabular} \\
\hline & & & & \\
2 & 0.728 & 7 & 0.509 & 18 & 0.455 \\
3 & 0.626 & 8 & 0.498 & 24 & 0.447 \\
4 & \(0.5 \% 4\) & 9 & 0.489 & 36 & 0.433 \\
5 & 0.544 & 10 & 0.482 & 48 & 0.434 \\
6 & 0.523 & 12 & 0.472 & \(\cdots\) & \(\cdots \cdots\) \\
\hline
\end{tabular}

Dulong and Péclet show that this is not exactly true, and we may here also resort to a table of factors fur correcting the results obtained by simple proportion.

Factors for Reduction to Dulong's Law of Convection.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Difference ill Temp. between Hot Body and Air. & Factor. & Difference in Temp. between Hot Body and Air. & Factor. & Difference in Temp. between Hot Body and Air. & Factor. \\
\hline \(18{ }^{\circ} \mathrm{F}\). & 0.94 & \(180^{\circ} \mathrm{F}\). & 1.62 & \(312^{\circ} \mathrm{F}\). & 1.87 \\
\hline \(36^{\circ}\) & 1.11 & \(198{ }^{\circ}\) & 1.65 & \(360^{\circ}\) & 1.90 \\
\hline \(54^{\circ}\) & 1.22 & \(216^{\circ}\) & 1.68 & \(378{ }^{\circ}\) & 1.92 \\
\hline \(70^{\circ}\) & 1.30 & \(234{ }^{\circ}\) & 1.72 & \(396{ }^{\circ}\) & 1.94 \\
\hline \(90^{\circ}\) & 1.37 & \(252^{\circ}\) & 1.74 & \(414^{\circ}\) & 1.96 \\
\hline \(108^{\circ}\) & 1.43 & \(270{ }^{\circ}\) & 1.77 & \(432{ }^{\circ}\) & 1.98 \\
\hline \(126^{\circ}\) & 1.49 & \(288{ }^{\circ}\) & 1.80 & \(450^{\circ}\) & 2.00 \\
\hline \(144^{\circ}\) & 1.53 & \(306^{\circ}\) & 1.83 & \(468{ }^{\circ}\) & 2.02 \\
\hline \(16 .{ }^{\circ}\) & 1.58 & \(324^{\circ}\) & 1.85 & & .... \\
\hline
\end{tabular}

Example in the Use of the Tables.-Required the total loss of heat by both radiation and convection, per foot of length of a steam-pipe 211/32 in. extrrnal diameter, steam pressure 60 lbs ., temperature of the air in the room \(68^{\circ}\) Fihr.

Temperarure corresponding to 60 lbs . equals \(30 \pi^{\circ}\); temperature difference \(=307^{-}-68=2: 39^{\circ}\).
Area of one foot length of steam-pipe \(=211 / 32 \times 3.1416 \div 12=0.614\) sq. ft.

Heat radiated per hour per square foot per degree of difference, from table, 0.64.
Radiation loss per hour by Newton's law \(=239^{\circ} \times .614 \mathrm{ft} . \times .64=93.9\) heat units. Same reduced to conform with Dulong's law of radiation: factor from table for temperature difference of \(239^{\circ}\) and temperature of air \(68^{\circ}=\) 1.93. \(93.9 \times 1.93=181.2\) heat units, total loss by radiation.

Convection loss per square foot per hour from a \(211 / 32\)-inch pipe: by interpolation from table, \(2^{\prime \prime}=.728 .3^{\prime \prime}=.6 \cdot 6,211 / 3 \cdot 2^{\prime \prime}=.693\).
Area, \(.614 \times .693 \times 239^{\circ}=101.7\) heat units. Same reduced to conform with Dulong's law of convection: \(101.7 \times 1.73\) (from table) \(=175.9\) heat units per hour. Total loss by radiation and convection \(=181.2+175.9=35 \pi .1\) heat units per hour. Loss per degree of difference of temperature per linear foot of pipe per hour \(=357.1 \div 239=1.494\) heat units \(=2.433\) per sq. ft .

It is nut claimed, says The Locomotive, that the results obtained by this method of calculation are strictly accurate. The experimental data are not sufficient to allow us to compute the heat-loss from steam-pipes with any great deyree of refinement; yet it is believed that the results obtained as indicated above will be sufficiently near the truth for most purposes. An experiment by Prof. Ordway, in a pipe \(211 / 32 \mathrm{int}\) diam. under the above conditions (Trans. A. S. M. E., v. 73), showed a condensation of steam of 181 grammes per hour. which is equivalent to a loss of heat of 358.7 heat units per hour, or within half of one per cent of that given by the above calculation.

According to different authorities, the quantity of heat given off by steam and hot-water radiators in ordinary practice of heating of buildings by direct radiation varies from 1.8 to about 3 heat units per hour per square foot per degree of difference of temperature.

The lowest figure is calculated from the following statement by Robert Briggs in his paper on "American Practice in Warming Buildings by Steam" (Proc. Inst. C. E., 188\%. vol. lxxi): "Each 100 sq. ft. of radiating surface will give off 3 Fahr. heat units per minute for each degree \(F\). of difference in temperature between the radiating surface and the air in which it is exposed."

The figure \(21 / 2\) heat units is given by the Nason Manufacturing Company in their catalogue, and 2 to \(21 / 4\) are given by many recent writers.

For the ordinary temperature difference in low-pressure steam-heating. say \(212^{\circ}-\gamma 0^{\circ}=142^{\circ}\) F., 1 lb . steam condensed from \(212^{\circ}\) to water at the
same temperature gives up 965.7 heat units. A loss of 2 heat units per sq. ft . per hour per degree of difference, under these conditions, is equiralent to \(2 \times 142 \div 965=0.3 \mathrm{lbs}\). of steam condensed per hour per sq. ft . of heating surface. (See also Heating and Ventilation.)
Transmission of Fileat through Walls, etc., of Buildings (Nason Manufacturing Co.). (See also Heating and Ventilation.)-Heat has the remarkable property of passing throngh moderate thicknesses of air and gases without appreciable loss, so that air is not warmed by radiant heat, but by contact with surfaces that have absorbed the radiation.

\section*{Powers of Different Substances for Transmitting Heat.}


A square foot of glass will cool \(1.2 \div 9\) cubic feet of air from the temperature inside to that outside per minute, and outside wall surface is generally estimated at one fifth of the rate of glass in cooling effect.

Box, in his "Practical Treatise on Heat," gives a table of the conducting powers of materials prepared from the experiments of Péclet. It gives the quantity of heat in units transmitted per square foot per hour by a plate 1 inch in thickness, the two surfaces differing in temperature 1 degree:

Fine-grained gray marble.......................... .. ... 28.00
Coarse-grained white marble..................................... 22.4
Stone, calcareous, fine .......................................... 16.7
Stone, calcareous, ordinary.......................................... 13.68
Baked clay, brickwork ...................... ................... 4.83
Brick-dust, sifted..................................... ............ 1.33
Hood, in his "Warming and Ventilating of Buildings." p. 249, gives the results of M. Depretz, which, placing the conducting power of marble at 1.00, give . 483 as the value for firebrick.

\section*{THERMODYNAMICS.}

Thermodymamics, the science of heat considered as a form of energy, is useful in advanced studies of the theory of steam, gas, and air engines, refrigerating machines, compressed air, etc. The method of treatment adopted by the standard writers is severely mathematical, involving constant application of the calculus. The student will find the subject thorougly treated in the recent works by Rontgen (Dubois's translation), Wood, and Peabody.
First Law of Thermodynamics.-Heat and mechanical energy are mutually convertible in the ratio of about \(\% 78\) foot-pounds for the British thermal unit. (Wood.) Heat is the living force or vis viva due to certain molecular motions of the molecules of bodies, and this living force may be stated or measured in units of heat or in foot-pounds, a unit of heat in British measures being equivalent to riv [\%i8] foot-pounds. (Trowbridge, Trans. A. S. M. E., vii. "2i.)

Second Lav of Thermodynamics.-The second law has by different writers been stated in a variety of ways, and apparently with ideas so diverse as not to cover a common principle. (Wood, Therm., p. 389.)

It is impossible for a self-acting machine, unaided by any external agency to convert heat from one body to another at a higher temperature. (Clausius.)

If all the heat absorbed be at one temperature, and that rejected be at one lower temperature, then will the heat which is transmuted into work be to the entire heat absorbed in the same ratio as the difference between the absolute temperature of the surce and refrigerator is to the absolute temperature of the source. In other words, the second law is an expression for the efficiency of the perfect elementary engine. (Wood.)

The living force, or vis viva, of a body (called heat) is always proportional to the absolute temperature of the body. (Trowbridge.)

The expression \(\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}\) may be called the symbolical or algebraic enunciation of the second law. -the law which limits the efficiency of heat engines, and which does not depend on the nature of the working medium employed. (Trowbridge.) \(Q_{1}\) and \(T_{1}=\) quantity and absolute
temperature of the heat received, \(Q_{2}\) and \(T_{2}=\) quantity and absolute temperature of the heat rejected.
The expression \(\frac{T_{1}-T_{2}}{T_{1}^{\prime}}\) represents the efficiency of a perfect heat engine which receives all its heat at the absolute temperature \(T_{1}\), and rejects heat at the temperature \(T_{2}\), converting into work the difference between the quantity received and rejected.

Example.-What is the efficiency of a perfect heat engine which recrives heat at \(388^{\circ} \mathrm{F}\). (the temperature of steam of 200 lbs . gauge pressure) and rejects heat at \(100^{\circ} \mathrm{F}\). (temperature of a condenser, pressure 1 lb . above vacuum).
\[
\frac{388+459.2-(100+459.2)}{388+459.2}=34 \%, \text { nearly. }
\]

In the actual engine this efficiency can never be attained, for the difference between the quantity of heat received into the cylinder and that rejected into the condenser is not all converted into work, much of it being lost by radiation, leakage, etc. In the steam engine the phenomenon of cylinder condensation also tends to reduce the efficiency.

\section*{PHYSICAL PROPERTIES OF GASES.}
(Additional matter on this subject will be found under Heat, Air, Gas, and Steam.)

When a mass of gas is enclosed in a vessel it exerts a pressure against the walls. This pressure is uniform on every square inch of the surface of the vessel; also, at any point in the fluid mass the pressure is the same in every direction.

In small vessels containining gases the increase of pressure due to weight may be neglected, since all gases are very light; but where liquids are concerned, the increase in pressure due to their weight must always be taken Into account.

Expansion of Gases, Hifarriotte's Law. - The volume of a gas diminishes in the same ratio as the pressure upon it is increased.
This law is by experiment iound to be very nearly true for all gases, and is known as Boyle's or Mariotte's law.

If \(p=\) pressure at a volume \(v\), and \(p_{1}=\) pressure at a volume \(v_{1}, p_{1} v_{1}=\) \(p v ; p_{1}=\frac{v}{v_{1}} p ; p v=a\) constant.

The constant, \(C\), varies with the temperature, everything else remaining the sams.

Air compressed by a pressure of seventy-five atmospheres has a volume about \(2 \%\) less than that computed from Boyle's law, but this is the greatest diveryence that is found below 160 atmospheres pressure.

Law of Charles. - The volume of a perfect gas at a constant pressure is proportonal to its absolute temperature. If \(v_{0}\) be the volume of a gas at \(3 \not 2^{\circ} \mathrm{F}\)., and \(v_{1}\) the volume at any other temperature, \(t_{1}\), then
\[
\begin{aligned}
v_{1}= & v_{0}\left(\frac{t_{1}+459.2}{491.2}\right) ; \quad v_{1}=\left(1+\frac{t_{1}-32^{\circ}}{491.2}\right) v_{0} \\
& \text { or } \quad v_{1}=\left[1+0.002036\left(t_{1}-32^{\circ}\right)\right] v_{0}
\end{aligned}
\]

If the pressure also change from \(p_{0}\) to \(p_{1}\),
\[
v_{1}=v_{0} \frac{p_{0}}{p_{1}}\left(\frac{t_{1}+459.2}{491.2}\right) .
\]

The Densities of the elementary gases are simply proportional to their atonic weighos. The density of a compound gas, referred to hydrogen as 1 , is one half its molecular weight; thus the relative density of \(\mathrm{CO}_{2}\) is \(12(12+3:)=\because 2\).

Avogadro's Law. - Equal volumes of all gases, under the same conditions of temperature and pressure, contain the same number of molecules.
To find the weight of a gas in pounds per cuhic foot at \(3: \because^{\circ}\). F.. multiply half the molecular weight of the gas by .00559 . Thus \(1 \mathrm{cu} . \mathrm{ft}\). marsh-gas, \(\mathrm{CH}_{4}\),
\[
=12(12+4) \times .00559=.0447 \mathrm{lb}
\]

When a certain volume of hydrogen combines with one half its volume of oxygen, there is produced an amount of water vapor which will occupy the same volume as that which was occupied by the hydrogen gas when at the same temperature and pressure.
Saturation-point of Vapors. - A vapor that is not near the satura-tion-point behaves like a gas under changes of temperature and pressure; but if it is sufficiently compressed or cooled, it reaches a point where it begins to condense: it then no longer obeys the same laws as a gas, but its pressure cannot be increased by diminishing the size of the vessel containing it, but remains constant, except when the temperature is changed. The only gas that (an prevent a liquid evaporating seems to be its own vapor.

Dalton's Haw of Gaseous Pressures.-Every portion of a mass of gas inclosed in a ressel contributes to the pressure against the sides of the vessel the same amount that it would have exerted by itself had no other gas been present.

Mixtures of Vapors and Gases.-The pressure exerted against the interior of a vessel by a given quantity of a perfect gas enclosed in it is the sum of the pressures which any number of parts into which such quantity might be divided would exert separately, if each were enclosed in a vessel of the same bulk alone, at the same temperature. Although this law is not exactly true for any actual gas, it is very nearly true for many. Thus if 0.080728 lb . of air at \(32 \circ \mathrm{~F}\)., being enclosed in a vessel of one cubic foot capacity, exerts a pressure of one atmosphere or 14.7 pounds. on each square inch of the interior of the vessel, then will each additional 0.080 i2 2 lb . of air which is enclosed, at \(32^{\circ}\), in the same vessel, produce very nearly an additional atmosphere of pressure. The same law is applicable to mixtures of gases of different kinds. For example, \(0,12344 \mathrm{lb}\). of carbonic-acid gas, at \(32^{\circ}\), being enclosed in a vessel of one cubic foot in capacity, exerts a pressure of one atmosphere; consequently, if \(0.080 \sim 28 \mathrm{lb}\). of air and 0.12344 lb . of carbonic acid, mixed, be enclosed at the temperature of \(32^{\circ}\), in a vessel of one cubic foot of capacity, the mixture will exert a pressure of two atmos pheres. As a second example: Let \(0.080 \% 28 \mathrm{lb}\). of air, at \(212^{\circ}\), be enclosed in a vessel of one cubic foot; it will exert a pressure of
\[
\frac{212+459.2}{32+459.2}=1.366 \text { atmospheres. }
\]

Let 0.03797 lb . of steam, at \(212^{\circ}\), be enclosed in a vessel of one cubic foot; it will exert a pressure of one atmosphere. Consequently, if 0.080 in 28 lb . of air and 0.03797 lb . of steam be mixed and enclosed together, at \(212^{\circ}\), in a vessel of one cubic foot, the mixture will exert a pressure of 2.366 atmospheres. It is a common but erroneous practice, in elementary books on physics, to de.. scribe this law as constituting a difference between mixed and homogeneous gases; whereas it is obvious that for mixed and homogeneous gases the law of pressure is exactly the same, viz., that the pressure of the whole of कs gaseous mass is the sum of the pressures of all its parts This is one of the: laws of mixture of gases and vapors.

A second law is that the presence of a foreign gaseous substance in con tact with the surface of a solid or liquid does not affect the density of the vapor of that solid or liquid unless there is a tendency to chemical combination between the two substances. in which case the density of the vanor is slightly increased. (Rankine, S. E., p. 239.)

Flow of Gases. - By the principle of the conservation of energy, it may be shown that the velocity with which a gas under pressure will escape into a vacuum is inversely proportional to the square root of its density; that is, oxygen, which is sixteen times as heavy as hydrogen, would, under exactly the same circumstances, escape through an opening only one fourth as fast as the latter gas.

Absorption of Gases lyy Hiquids.-Many gases are readily absorbed by water. Other liquids also possess this power in a greater or less degree. Water will for example, absorb its own volume of carbonic-acid gas, 430 tinies its volume of ammonia, \(21 / 3\) times its volume of chlorine, and only about \(1 / 20\) of its volume of oxygen.

The weight of gas that is absorbed by a given volume of liquid is proportional to the pressure. But as the volume of a mass of gas is less as the pressure is greater, the volume which a given amount of liquid can absorb at a certain temperature will be constant, whatever the pressure. Water, for example, can absorb its own volume of carbonic-acid gas at atmospheric pressure; it will also dissolve its own volume if the pressure is twice as great, but in that case the gas will be twice as dense, and consequently twice the weight of gas is dissolved.

\section*{AIR.}

Properties of Air. - Air is a mechanical mixture of the gases oxygen and nitrogen; \(: 0.7\) parts \(O\) and 79.3 parts \(N\) by volume, 20 parts \(O\) and \(\tilde{2}\) parts N by weight.
The weight of pure air at \(32^{\circ} \mathrm{F}\). and a barometric pressure of 29.92 inches of mercury, or 14.6963 lbs . per sq. in., or 2116.3 lbs . per sq. ft ., is \(.080 \sim 28 \mathrm{lb}\). per cubic foot. Volume of \(1 \mathrm{lb} .=12.38 \mathrm{i} \mathrm{cu} . \mathrm{ft}\). At any other temperature and barometric pressure its weight in lbs. per cubic foot is \(W=\frac{1.325 .3 \times B}{459.2+T}\). where \(B=\) height of the barometer, \(T=\) temperature Fahr., and \(1.3253=\) weight in lbs. of 459.2 c . ft . of air at \(0^{\circ} \mathrm{F}\). and one inch barometric pressure. Air expands \(1 / 491.2\) of its volume at \(3 \geqslant \vartheta^{\circ} \mathrm{F}\). for every increase of \(1^{\circ} \mathrm{F}\)., and its volume varies inversely as the pressure.

Volume, Density, and Pressure of Air at Various
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Fahr.} & \multicolumn{2}{|l|}{Volume at Atmos. Pressure.} & \multirow[t]{2}{*}{Density. lbs. per Cubic Foot at Atmos. Pressure.} & \multicolumn{2}{|l|}{Pressure at Constant Volume.} \\
\hline & Cubic Feet in 1 lb . & Comparative Vol. & & Lbs. per Sq. In. & Comparative Pres. \\
\hline 0 & 11.583 & . 881 & . 086331 & 12.96 & . 881 \\
\hline 32 & 12.387 & . 943 & .080728 & 13.86 & . 943 \\
\hline 40 & 12.586 & . 958 & . 079439 & 14.08 & . 958 \\
\hline 50 & 12.840 & . 977 & . 077884 & 14.36 & . 977 \\
\hline 62 & 13.141 & 1.000 & .0i6097 & 14.70 & 1.000 \\
\hline 70 & 13.342 & 1.015 & .074950 & 14.92 & 1.015 \\
\hline 80 & 13.593 & 1.034 & . 073565 & 15.21 & 1.034 \\
\hline 90 & 13.845 & 1.054 & . 0102230 & 15.49 & 1.054 \\
\hline 100 & 14.096 & 1.073 & . 070942 & 15.77 & 1.073 \\
\hline 110 & 14.344 & 1.092 & . 069721 & 16.05 & 1.092 \\
\hline 120 & 14.592 & 1.111 & . 062500 & 16.33 & 1.111 \\
\hline 130 & 14.840 & 1.130 & . 067361 & 16.61 & 1.130 \\
\hline 140 & 15.100 & 1.149 & . 066221 & 16.89 & 1.149 \\
\hline 150 & 15.351 & 1.168 & . 065155 & 17.19 & 1.168 \\
\hline 160 & 15.603 & 1.187 & . 064088 & 17.50 & \(1.18 \%\) \\
\hline 170 & 15.854 & 1.206 & . 063089 & 17.76 & 1.206 \\
\hline 180 & 16.106 & 1.226 & .062090 & 18.02 & 1.226 \\
\hline 200 & 16.606 & 1.264 & . 060210 & 18.58 & 1.264 \\
\hline 210 & 16.860 & 1.283 & . 059313 & 18.86 & 1.283 \\
\hline 212 & 16.910 & 1.287 & . 059135 & 18.92 & 1.287 \\
\hline
\end{tabular}

The Air-manometer consists of a long vertical glass tube, closed at the upp \(\neq 1\) end, open at the lower end, containing air, provided with a scale, and immersed, along with a thermometer, in a transparent liquid, such as water or oil, contained in a strong cylinder of glass, which communicates with the vessel in which the pressure is to be ascertained. The scale shows the volume occupied by the air in the tube.
Let \(v_{0}\) be that rolume, at the temperature of \(32^{\circ}\) Fahrenheit, and mean Lressure of the atmosphere, \(p_{0}\); let \(v_{1}\) be the volume of the air at the temperature \(t\), and under the absolute pressure to be measured \(p_{1}\); then
\[
p_{1}=\frac{\left(t+459.2^{\circ}\right) p_{0} v_{0}}{491.2^{\circ} v_{1}}
\]

Pressure of the Atmosphere at Different Altitudes.
At the sea-level the pressure of the air is 14.7 pounds per square inch; at \(1 / 4\) of a mile above the sea-level it is 14.02 pounds; at \(1 / 2\) mile. 13.33; at \(3 / 4\) mile, 12.66; at 1 mile, 12.02; at \(11 / 4\) mile, 11.42 ; at \(11 / 2\) mile, 10.88 ; and at 2
miles, 9.80 pounds per square inch. For a rough approximation we may assume that the pressure decreases \(1 / 2\) pound per square inch for every 1000 feet of ascent.

It is calculated that at a height of about \(31 / 2\) miles above the sea-level the weight of a cubic foot of air is ouly one half what it is at the surface of the earth, at seven miles only one fouith. at fourteen miles only one sixteenth, al twenty-one miles only ons sixty-fourth, and at a height of over fortyfive miles it becomes so attenuated as to have no appreciable weight.

The pressure of the atmosphere increases with the depth of shafts, equal to about one inch rise in the barometer for each 900 fert increase in depth: this may be taken as a rough-and-ready rule for ascertaining the depth of shafts.

\section*{Pressure of the Atmosphere per Square Inch and per Square Foot at Various Readings of the Barometer.}

Rule.-Barometer in inches \(\times .4908=\) pressure per square inch; pressure per square inch \(\times 144=\) pressure per square foot.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Barometer. & Pressure per Sq. In. & Pressure per sq. Ft. & Barometer. & Pressure per Sq. In & Pressure per Sq. Ft. \\
\hline in. & lbs. & lbs.* & in. & lbs. & lbs.* \\
\hline 28.00 & 13.74 & 19i8 & 29. 5 & 14.60 & 2102 \\
\hline 28.25 & 13.86 & 1995 & 30.00 & 14.72 & 2119 \\
\hline 28.50 & 13.98 & 2013 & 30.25 & 14.84 & 2136 \\
\hline 28.75 & 14.11 & 2031 & 30.50 & 14.96 & 2154 \\
\hline 29.00 & 14.23 & 2049 & 30.75 & 15.09 & 2172 \\
\hline 29.25 & 14.35 & 2066 & 31.00 & 15.21 & 2190 \\
\hline 29.50 & 14.47 & 2083 & & & \\
\hline
\end{tabular}
* Decimals omitted.

For lower pressures see table of the Properties of Steam.

\section*{Barometric Readings corresponding with Different Altitudes, in French and English Measures.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Altitude. & Read-
ing of
Barom-
eter. & Altitude. & Reading of Barometer. & Altitude. & Reading of Barom. eter: & Altitude. & Reading of Barom. eter. \\
\hline meters & mm . & feet. & inches. & meters. & mm. & feet. & inches. \\
\hline 0 & 762 & 0. & 30. & 1117 & 660 & 3763.2 & 25.98 \\
\hline 21 & 760 & 68.9 & 29.92 & 1269 & 650 & 4163.3 & 25.59 \\
\hline 127 & 750 & 416.7 & 29.52 & 1393 & 640 & 4568.3 & 25.19 \\
\hline 234 & 740 & 767.7 & 29.13 & 1519 & 630 & 498:3.1 & 24.80 \\
\hline \(34 \cdot\) & 730 & 1122.1 & 28.74 & 1647 & \(6: 0\) & 5403.2 & 24.41 \\
\hline 453 & 720 & 1486.2 & 28.35 & \(17 \% 7\) & 610 & 58.30 .2 & 24.01 \\
\hline 564 & 710 & 1850.4 & 2 2i.95 & 1909 & 600 & 6243. & 23.62 \\
\hline 678 & 700 & 2\% 2.5 & 27.55 & 2043 & 590 & 6702.9 & 23.22 \\
\hline 793 & 690 & 2599.7 & \(2 \tau .16\) & 2180 & 580 & 7152.4 & 22.83 \\
\hline 909 & 680 & 2962.1 & 26.77 & 2318 & 570 & 7605.1 & 22.44 \\
\hline 1027 & 670 & 3:369.5 & 26.38 & 2460 & 560 & 80 ก1. & 22.04 \\
\hline & & & & & & & \\
\hline
\end{tabular}

Levelling by the Barometer and by Boiling Water. (Trautwine.)-Dlany circumstances combine to render the results of this kind of levelling unreliable where great accuracy is required. It is difficult to read off from an aneroid (the kind of barometer usually employed for engineering purposes) to within from two to five or six feet, depending on its size. The moisture or dryness of the air affects the results; also winds, the vicinity of mountains, and the daily atmospheric tides, which cause incessant and irregular fluctuations in the barometer. A barometer hanging quietly in a room will often vary \(1 / 4\) of an inch within a few hours, correiponding to a difference of elevation of nearly 100 feet. No formula can possibly be devised that shall embrace these sources of error.

To Find the Difference in Altitude of Two Places.-Take from the table the altitudes opposite to the two boiling temperatures, or to the two barometer readings. Subtract the one opposite the lower reading from that opposite the upper reading. The remainder will be the required height, as a rough approximation. To correct this, add together the two thermometer readings, and divide the sum by 2, for ther mean. From table of corrections for temperature, take out the number under this mean. Multiply the approximate height just found by this number.
At \(\approx 0^{\circ} \mathrm{F}\). pure water will boil at \(1^{\circ}\) less of temperature for an average of about 550 feet of elevation above sea-level, up to a height of \(1 / 2\) a mile. At the height of 1 mile, \(1^{\circ}\) of boiling temperature will correspond to about 560 feet of elevation. In the table the mean of the temperatures at the two stations is assumed to be \(32^{\circ} \mathrm{F}\)., at which no correction for temperature is necessary in using the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  & \[
\left\lvert\, \begin{gathered}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
4 \\
\hline
\end{gathered}\right.
\] &  &  & \[
\begin{array}{|cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
4 & 0 \\
4 & 0 \\
0 & 0 \\
0
\end{array}
\] \\
\hline \(184^{\circ}\) & 16.79 & 15,221 & 196 & 21.71 & 8,481 & 208 & 27.73 & 2,063 \\
\hline 185 & 17.16 & 14,649 & 197 & 22.17 & 7,932 & 208.5 & 28.00 & 1,809 \\
\hline 186 & 17.54 & 14,075 & 198 & 22.64 & 7,381 & 209 & 28.29 & 1,539 \\
\hline 187 & 17.93 & 13,498 & 199 & 23.11 & 6,843 & \(209.5^{\circ}\) & 28.56 & 1,290 \\
\hline 188 & 18.32 & 12.934 & 200 & 23.59 & 6,304 & 210 & 28.85 & 1,025 \\
\hline 189 & 18.72 & 12,367 & 201 & 24.08 & 5,764 & 210.5 & 29.15 & 754 \\
\hline 190 & 19.13 & 11,799 & 202 & 24.58 & 5,225 & 211 & 29.42 & 512 \\
\hline 191 & 19.54 & 11,24.3 & 203 & 25.08 & 4,697 & 211.5 & 29.71 & 255 \\
\hline 192 & 1996 & 10,685 & 204 & 25.59 & 4,169 & 212 & 30.00 & S.L. \(=0\) \\
\hline 193 & 20.39 & 10,127 & 205 & 26.11 & 3,642 & 212.5 & 30.30 & -261 \\
\hline 194 & 20.82 & 9,579 & 206 & 26.64 & 3,115 & 213 & 30.59 & -511 \\
\hline 195 & 21.26 & 9,031 & 207 & 27.18 & 2,589 & & & \\
\hline
\end{tabular}

Corrections for Temperature.


Moisture in the Atmosphere.-Atmospheric air always contains a small quantity of carboric acid (see Ventilation, p. 528) and a varying quantity of aqueous vapor or moisture. The relative humidity of the air at any time is the percentage of moisture contained in it as compared with the amount it is capable of holding at the same temperature.

The degree of saturation or relative humidity of the air is determined by the use of the slry and wet bulb thermometer. The degree of saturation for a number of different readings of the thermometer is given in the following table, condensed from one published by the U.S. Weather Bureau, 189\%:

Relative Humidity, Per Cent.


\section*{Weights of Air, Vapor of Water, and Saturated Mixtures of Air and Vapor at Different Temperatures, under the Ordinary Atmospheric Pressure of 29.921 inches of Nercury.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{Elastic Force of Vapor,
Inches of Mercury.} & \multicolumn{5}{|l|}{Mixtures of Air Saturated with Vapor.} \\
\hline & & & \multirow[t]{3}{*}{Elastic Force of the Air in Mixture of Air and Vapor, Inches of Mercury.} & \multicolumn{3}{|l|}{Weight of Cubic Foot of the Mixture of Air and Yapor.} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Weight } \\
& \text { of } \\
& \text { Vapor } \\
& \text { mixed } \\
& \text { with 1lb. } \\
& \text { of Air, } \\
& \text { pounds. }
\end{aligned}
\]} \\
\hline & & & & & eight & Total & \\
\hline & & & & & & & \\
\hline \(0^{\circ}\) & . 0864 & . 044 & \(29.8{ }^{7 \%}\) & . 0863 & .000079 & . 086379 & . 00092 \\
\hline 12 & . 0542 & . 074 & 29849 & . 0840 & . 000130 & . 084130 & . 00155 \\
\hline 22 & . 0824 & . 118 & 29.803 & . \(08 \% 1\) & .000:202 & . 08.3302 & .00245 \\
\hline 32 & . 0807 & . 181 & 29.740 & .080: & .000304 & . 080504 & .003ĩ9 \\
\hline 42 & . 0791 & . 267 & 29.654 & .0784 & . 000440 & .078840 & . 00561 \\
\hline 52 & . 0106 & . 388 & 29.533 & . 0 T66 & . 000627 & . 0 ¢¢ \(2 \cdot 27\) & . 00819 \\
\hline 62 & . 0161 & . 556 & 29.365 & . 0747 & . 000881 & . 075581 & . 01179 \\
\hline 72 & . 0 ¢ 47 & . 785 & 29.136 & . 0727 & . 001221 & . \(01392 \% 1\) & . 01680 \\
\hline 82 & . 0733 & 1.092 & 28.829 & . 08.06 & . 001667 & . 0 ¢22267 & .02361 \\
\hline 92 & . 04.20 & 1.501 & 28.420 & . 0684 & .002\%50 & .0r0i17 & .033289 \\
\hline 102 & . 0 ก̃07 & 2.036 & 27.885 & . 0659 & .00:2997 & . 068897 & . 04547 \\
\hline 112 & . 0694 & 2. 731 & 27.190 & . 0631 & . 003946 & . 065046 & .06253 \\
\hline 122 & . 0683 & 3.621 & 26.300 & . 0599 & . 005142 & .06504* & . 08584 \\
\hline 132 & . 0647 & 4.752 & 25.169 & . 0564 & . 006639 & . 063039 & . 11771 \\
\hline 142 & . 0660 & 6.165 & 23.756 & . \(05 \% 4\) & . 008473 & .060873 & . 16170 \\
\hline 152 & . 0649 & \%.930 & 21.991 & . 0477 & . 010716 & . 058416 & . 22465 \\
\hline 162 & . 0638 & 10.099 & 19.822 & . 0423 & . 013415 & . 055 T15 & . 31713 \\
\hline 172 & . \(06: 8\) & 12.758 & 17.163 & . 0360 & . 016682 & . 052682 & . 46338 \\
\hline 182 & . 0618 & 15.960 & 13.961 & . 0288 & .020536 & . 0493336 & . 11300 \\
\hline 192 & . 0609 & 19.8:28 & 10.093 & .0205 & . 025142 & . 045642 & 1.22643 \\
\hline 202 & . 0600 & 24.450 & \(5.4 \% 1\) & . 0109 & . 030545 & . 041445 & 2.80230 \\
\hline 212 & . 0591 & 29921 & 0.000 & . 0000 & . 036820 & . 036820 & Infinite \\
\hline
\end{tabular}

The weight in lbs. of the vapor mixed with 100 lbs . of pure air at any given temperature and pressure is given by the formula
\[
\frac{62.3 \times E}{29.92-E} \times \frac{29.92}{p}
\]
where \(E=\) elastic force of the vapor at the given temperature, in inches of mercury; \(p=\) absolute pressure in inches of mercury, \(=29.92\) for ordinary atmospheric pressure.

Specific Heat of Air at Constant Volume and at Constant E"essure. - Volume of 1 lb . of air at \(3 \%^{\circ} \mathrm{F}\). and pressure of 14.7 lbs . per sq.
 ature \(1^{\circ} \mathrm{F}\). expands it \(\frac{1}{491.2}\), or to 12.4122 ft . high-a rise of .02522 foot.

Work done \(=2116\) lbs. per sq, ft. \(\times .02522=53.37\) foot-pounds, or \(53.37 \div 778\) \(=.0686\) heat units.
The specific heat of air at constant pressure, according to Regnault, is \(023 \% 5\); but this includes the work of expansion, or 0686 heat units; hence the specific heat at constant volume \(=0.23 \pi 5-.0686=0.1689\).

Ratio of specific heat at constant pressure to specific heat at constant volume \(=.23\) 等 \(+.1689=1.406\). (Spr Specific Heat, p. 458.)

Flow of Air through Orifices. - The theoretical velocity in feet per second of How of any fluid, liquid, or gas through an orifice is \(v=\) \(\sqrt{2 g h}=8.02 \sqrt{h}\), in which \(h=\) the "head" or height of the fluid in feet required to produce the pressure of the fluid at the level of the orifice. (For gases the formula holds good only for small differences of pressure on the two sides of the orifice.) The quantity of flow in cubic feet per seeond
is equal to the product of this velocity by the area of the orifice, in square feet, multiplied by a "coefficient of flow," which takes into account the contraction of the vein or fluwing stream, the friction of the orifice, etc.

For air flowing through an orifice or short tube, from a reservoir of the pressure \(p_{1}\) into a reservoir of the pressure \(p_{2}\). Weisbach gives the following values for the coefficient of flow, obtained from his experiments.

Flow of Air through an Orifice.
Coefficient \(c\) in formula \(v=c \sqrt{2 g h}\).


\section*{Flow of Air through a Short Tube.}


Fliegner's Equations for Flow of Air from a Reservoir through an Orifice. (Peabody's Thermodynamics, p. 135.)
\[
\begin{aligned}
& \text { For } p_{1}>2 p_{a}, \quad G=0.530 F \frac{p_{1}}{\sqrt{T_{1}}} \\
& \qquad \begin{aligned}
& \\
& p_{1}<2 p_{a}, G
\end{aligned}=1.060 F \sqrt{\frac{p_{a}\left(p_{1}-p_{a}\right)}{T_{1}}}
\end{aligned}
\]
\(G=\) flow of air through the orifice in lbs. per sec., \(F=\) area of orifice in \(s q_{\text {. }}\). in., \(p_{1}=\) absolute pressure in reservoir in lbs. per sq. in., \(p_{a}=\) pressure of atmosphere, \(T_{1}=\) absolute temperature, Fahr.. of air in reservoir.

Clark (Rules. Tables, and Data, p. 891) gives, for the velocity of flow of air through an orifice due to small differences of pressure,
\[
V=C \sqrt{\frac{2 g h}{12} \times 7 \pi 3.2 \times\left(1+\frac{t-32}{493}\right) \times \frac{29.92}{p}}
\]
or, simplified,
\[
V=352 C \sqrt{\left(1+.00203(t-32) \frac{h}{p}\right.}
\]
in which \(V=\) velocity in feet per second; \(2 g=64.4 ; h=\) height of the column of water in inches, measuring the difference of pressure; \(t=\) the temperature Fahr.; and \(p=\) barometric pressure in inches of mercury. Tis. 2 is the volume of air at \(3 \not 2^{\circ}\) under a pressure of 29.92 inches of mercury when that of an equal weight of water is taken as 1.

For \(62^{\circ} \mathrm{F}\)., the formula becomes \(V=363 \mathrm{C} \sqrt{\frac{h}{p}}\), and if \(p=29.92\) inches \(V=\) \(66.35 C 1 / \bar{h}\)

The coefficient of efflux \(C\), according to Weisbach, is:
For conoidal mouthpiece, of form of the contracted vein, with pressures of from .23 to 1.1 atmospheres............ \(C=.97\) to .99
Circular orifices in thin plates.................................................. \(C=.56\) to . 99
Short cylindrical mouthpieces............................................ \(C=.81\) to . 84
The same rounded at the inner end.................................... \(C=.92\) to . 93
Conical converging mouthpieces ............................................ \(C=.90\) to. 99
Flow of Air in Pipes.-Hawksley (Proc. Inst. C. E.. xxxiii, ह5.) states that his formula for flow of water in pipes \(v=48 \sqrt{\frac{H D}{L}}\) may also be empluyed for flow of air. In this case \(H=\) height in feet of a column of air required to produce the pressure causing the flow, or the loss of head
for a given flow; \(v=\) velocity in feet per second, \(D=\) diameter in feet, \(L=\) length in feet.

If the head is expressed in inches of water, \(h\), the air being taken at \(62^{\circ}\) F., its weight per cubic foot at atmospheric pressure \(=.0 \hat{i} 61 \mathrm{lb}\). Then \(H=\frac{62.36}{.0 \hat{r} 61 \times 12}=68.3 \mathrm{~h}\). If \(d=\) diameter in inches, \(D=\frac{d}{12}\), and the formula becomes \(v=114.5 \sqrt{\frac{h d}{L}}\), in which \(h=\) inches of water column, \(d=\) diameter in inches and \(L=\) length in feet; \(h=\frac{L v^{2}}{13110 d} ; d=\frac{L v^{2}}{13110 h}\).

The quantity in cubic feet per second is
\[
Q=.7854 \frac{d^{2}}{144} v=.6245 \sqrt{\frac{\overline{h d^{5}}}{L}} ; \quad d=\sqrt[5]{\frac{Q^{2} L}{.39 h}} ; \quad h=\frac{Q^{2} L}{.39 d^{5}} .
\]

The horse-power required to drive air through a pipe is the volume \(Q\) in cubic feet per second multiplied by the pressure in pounds per square foot and divided by 550. Pressure in pounds per square foot \(=P=\) inches of water column \(\times 5.196\), whence horse-power \(=\)
\[
H P .=\frac{Q P}{550}=\frac{Q h}{105.9}=\frac{Q^{3} L}{41.3 d^{5}} .
\]

If the head or pressure causing the flow is expressed in pounds per square inch \(=p\), then \(h=27.71 p\), and the above formulæ become
\[
\begin{aligned}
v & =60 . .7 \sqrt{\frac{p d}{L}} ; \quad p=\frac{L v^{2}}{363,300 d} ; \quad d=\frac{L v^{2}}{363,300 p} ; \\
Q & =3.28 \tau \sqrt{\frac{p d^{5}}{L}} ; \quad p=\frac{Q^{2} L}{10.806 d^{5}} ; \quad d=\sqrt[5]{\frac{Q^{2} L}{10.806 p}} ; \\
H P . & =\frac{Q 144 p}{550}=.2618 Q p=.02421 \frac{Q^{3} L}{d^{5}} .
\end{aligned}
\]

Volume of Air Transmitted in Cubic Feet per Minute in Pipes of Various Diameters.

Formula \(Q=\frac{.6 \times 54}{144} d^{2} v \times 60\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& A B \\
& 0 B \\
& 00
\end{aligned}
\] & \multicolumn{12}{|c|}{Actual Diameter of Pipe in Inches.} \\
\hline  & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 10 & 12 & 16 & 20 & 24 \\
\hline 1 & . 327 & 1.31 & 2.95 & 5.24 & 8.18 & 11.78 & 20.94 & 32.73 & 47.12 & 83.77 & 130.9 & 188.5 \\
\hline 2 & . 655 & 2.62 & 5.89 & 10.47 & 16.36 & 23.56 & 4189 & 65.45 & 94.25 & 167.5 & 261.8 & \(3 \pi 7\) \\
\hline 3 & . 982 & 3.93 & 8.84 & 15.7 & 24.5 & 35.3 & 62.8 & 98.2 & 141.4 & 251.3 & 392.7 & 565.5 \\
\hline 4 & 1.31 & 5.24 & 11.78 & 20.9 & 3: 3.7 & 47.1 & 83.8 & 131 & 188 & 335 & 523 & 754 \\
\hline 5 & 1.64 & 6.54 & 14.7 & 26.2 & 41 & 59 & 104 & 163 & 235 & 419 & 654 & 942 \\
\hline 6 & 1.96 & 7.85 & 17.7 & 31.4 & 49.1 & r0.7 & 125 & 196 & 283 & 502 & 785 & 1131 \\
\hline 7 & 2.29 & 9.16 & 206 & 36.6 & 57.2 & 82.4 & 146 & \(2: 29\) & 330 & 586 & 916 & 1319 \\
\hline 8 & 2.62 & 10 3 & 23.5 & 41.9 & 65.4 & 94 & 167 & 262 & 377 & 670 & 1047 & 1508 \\
\hline & 2.95 & 11.78 & 26.5 & 47 & 73 & 106 & 188 & 294 & 424 & \% 7 & 11:8 & 1696 \\
\hline 10 & 3.27 & 13.1 & 29.4 & \(5:\) & 8: & 118 & \(\because 09\) & 327 & 471 & 838 & 1309 & 1885 \\
\hline 12 & 3.93 & 15.7 & 35.3 & 63 & 98 & 141 & 251 & 393 & 565 & 1005 & \(15 \% 1\) & \(2: 62\) \\
\hline 15 & 4.91 & 19.6 & 44.2 & \%8 & 12\% & 176 & 314 & 491 & r07 & 1256 & 1963 & \(282 \%\) \\
\hline 18 & 5.89 & 23.5 & 53 & 94 & 147 & 212 & 347 & 589 & 848 & 1508 & 2356 & 33:93 \\
\hline 20 & 6.54 & 26.2 & 59 & 105 & 164 & 235 & 419 & 654 & 942 & \(16 \% 5\) & 2618 & 3ヶ\%0 \\
\hline 24 & 7.85 & 31.4 & 71 & 125 & 196 & 28.3 & 503 & 785 & \(11: 31\) & 2010 & 3141 & 45.4 \\
\hline 25 & 8.18 & 32. 7 & 73 & 131 & 204 & 294 & 523 & 818 & 1178 & 2094 & 32~2 & \(4 \pi 12\) \\
\hline 28 & 9.16 & 36.6 & 82 & 146 & 229 & 330 & 586 & 916 & 1319 & 2346 & 3665 & 5278 \\
\hline 30 & 9.8 & 39.3 & 88 & 157 & 245 & 335 & 16:8 & 982 & 1414 & 12513 & 3927 & 5655 \\
\hline
\end{tabular}

In Hawksley's formula and its derivatives the numerical coefficients are constant. It is scare?ly possible, however, that they can be accurate except within a limired range of conditions. In the case of water it is found that the coefficient of friction, on which the loss of head depends, varies with the length and diameter of the pipe, and with the velocity, as well as with the condition of the interior surface. In the case of air and other gases we have, in addition, the decrease in densit, and consequent increase in volume and in velocity due to the progressive loss of head from one end of the pipe to the other.

Clark states that according to the experiments of D'Aubuisson and those of n Sardinian commission on the resistance of air through long conduits or pipes, the diminution of pressure is very nearly directly as the length, and as the square of the velocity and inversely as the diameter. The resistance is not varied by the density.

If these statements are correct, then the formulæ \(h=\frac{L v^{2}}{c d}\) and \(h=\frac{Q^{2} L}{c^{\prime} d^{5}}\) and their derivatives are correct in form, and they may be used when the numerical coefficients \(c\) and \(c^{\prime}\) are obtained by experiment.

If we take the forms of the above formule as correct. and let \(C\) be a variable coefficient, depending upon the length, diameter, and condition of surface of the pipe, and possibly also upon the velocity, the temperature and the density, to be determined by future experiments, then for \(h=\) head in inches of water, \(d=\) dameter in inches, \(L=\) length in feet, \(v=\) velocity in \&eet per second, and \(Q=\) quantity in cubic feet per second:
\[
\begin{array}{ccc}
v=C \sqrt{\frac{h d}{L}} ; & d=\frac{L v^{2}}{C^{2} h} ; & h=\frac{L v^{2}}{C^{2} d} ; \\
Q=.005454 C \sqrt{\frac{h d^{5}}{L}} ; & d=\sqrt[5]{\frac{33683 Q^{2} L}{C^{2} h}} ; & h=\frac{33683 Q^{2} L}{C^{2} d^{5}}
\end{array}
\]

For difference or loss of pressure \(p\) in pounds per square inch,
\[
\begin{aligned}
& h=27.71 p \\
& \sqrt{h}=5.264 \sqrt{p} ; \\
& v=5.264 C \sqrt{\frac{p d}{L}} ; \quad \alpha=\frac{L v^{2}}{27.71 C^{2} p} ; \quad p=\frac{L v^{2}}{27.71 C^{2} d} ; \\
& Q=.028 \% 1 C \sqrt{\frac{p d^{5}}{L}} ; \quad d=\sqrt[5]{\frac{1213 Q^{2} L}{C^{2} p}} ; \quad p=\frac{1213 Q^{2} L}{C^{2} d^{5}} .
\end{aligned}
\]
(For other formulæ for flow of air, see Mine Ventilation.)
Loss of Pressure in Ounces per Square Inch.-B. F. Sturte. vant Company uses the following formulæ:
\[
p_{1}=\frac{L v^{2}}{25000 c l} ; \quad v=\sqrt{-\frac{2000 d p_{1}}{L}} ; \quad \bar{i}=\frac{L v^{2}}{25000 p_{1}} ;
\]
in which \(p_{1}=\) loss of pressure in ounces per square inch, \(v=\) velocity of air in feet per second, and \(L=\) length of pipe in feet. If \(p\) is taken in pounds per square inch, these formulæ reduce to
\[
p=.0000025 \frac{L v^{2}}{d} ; \quad v=632.5 \sqrt{\frac{d p_{1}}{L}} ; \quad d=\frac{.0000025 L v^{2}}{p}
\]

These are deluced from the common formula (Weisbach's), \(p=f \frac{l}{d} \frac{v^{g}}{2 g}\), in which \(f=.0001608\).

The following table is condensed from one given in the catalogue of B. F. Sturtevant Company.

Loss of pressure in pipes 100 feet long, in ounces per square inch. For any other length, the loss is proportional to the length.

Loss of Pressure in Ounces.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline . 400 & . 200 & 33 & 00 & S0 & 67 & 05\% & & 044 & 040 & 036 & . 033 \\
\hline 1.600 & . 800 & 5:33 & . 400 & . \(3: 0\) & 267 & . \(2: 9\) & 200 & . \(1 \sim 8\) & 160 & . 145 & 133 \\
\hline 3.600 & 1.800 & 1.200 & . 900 & . 220 & 600 & 514 & . 450 & . 400 & 360 & . \(3: 37\) & 300 \\
\hline 6.400 & 3.200 & 2.133 & 1.600 & 1.280 & 1.067 & . 914 & 800 & 711 & . 640 & . 582 & 53:3 \\
\hline 10. & 5. & 3.333 & 2.5 & 2. & 1.667 & \(14 \times 9\) & 1.250 & 1.111 & 1.000 & . 909 & 8:33 \\
\hline 14.4 & 7.2 & 4.8 & 3.6 & 288 & 2.4 & 2.057 & 1.8 & 1.6 & 1.44 & 1.309 & 1.200 \\
\hline & 98 & 6.553 & 4.9 & 3.92 & \(3.26 \%\) & 2.8 & 2.45 & 2.178 & 1.96 & 1.782 & 1.633 \\
\hline & 12.8 & 8.533 & 6.4 & \(5.1 \%\) & 4. \(\because 67\) & \(3.65{ }^{\text {a }}\) & 3.2 & 2.844 & 2.56 & 2.327 & 2.133 \\
\hline & 0. & 13.333 & 10.0 & 8.0 & \(6.6{ }^{\prime}\) & & 5.0 & 4.444 & 4.0 & 13636 & 3.333 \\
\hline
\end{tabular}
Diameter of Pipe in Inches.
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l}
\hline 14 & 16 & 18 & 20 & 22 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\
\hline
\end{tabular}
Loss of Pressure in Ounces.
600
120
1800
2400
3600
4200
4800
6000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline . \(0 \cdot 9\) & . 026 & . 022 & . 020 & . 018 & . 017 & . 014 & . 012 & . 011 & . 010 & . 009 & 008 \\
\hline . 114 & . 100 & . 089 & .080 & . 073 & . 0667 & . 057 & . 050 & 044 & . 040 & . 036 & .0:33 \\
\hline . 257 & . \(2: 25\) & . 200 & . 180 & . 161 & . 156 & .129 & .11: & . 100 & . 090 & .082 & . 0 ¢ 5 \\
\hline .45\% & . 400 & . 356 & . \(3 \because 0\) & . 291 & . \(26 \frac{1}{}\) & . 239 & . 200 & .178 & . 160 & . 145 & . 133 \\
\hline 1.0\%9 & . 900 & . 800 & . 720 & . 655 & 600 & . 514 & . 450 & . 400 & . 360 & . \(32 \sim\) r & . 300 \\
\hline 1.400 & 1.225 & 1.089 & . 950 & . 891 & \(81 \%\) & . 00 & . 612 & . 544 & . 490 & . 445 & . 408 \\
\hline \(1.8 \% 9\) & 1.60 & \(1.42 \cdot\) & 1.280 & 1.164 & 1.067 & . 914 & 80' & . 711 & 640 & 58. & . 533 \\
\hline 2.85 i & 2.500 & \(2.2 \% 2\) & 2.000 & 1.818 & 1.66 \% & 1.429 & . 251 & 1.111 & 1.000 & 909 & . 233 \\
\hline
\end{tabular}

\section*{Effect of Bends in Pipes. (Norwalk Iron Works Co.)}

Radius of elbow, in diameter of pipe \(=\begin{array}{llllllll}5 & 3 & 2 & 11 / 2 & 11 / 4 & 1 & 3 & 1 / 2\end{array}\) Equivalent lgths. of straight pipe, diams \(7.858 .249 .0: 310.3612 .7217 .5135 .09121 .2\)

Compressed-air Transmission. (Frank Richards. Am. Mach., March 8, 1894 )-The volume of free alr transmitred may be assumed to be directly as the number of atmospheres to which the air is compressed. Thus, if the air transmitted be at 75 pounds gauge-pressure, or six atmospheres, the onlume of free air will be six times the amonnt given in the table (page 486). It is generally considered that for economical transmission the velocity in main pipes should not exceed 20 feet per second. In the smaller distributing pipes the velocity should be decidedly less than this.

The loss of power in the transmission of compressed air in general is not a serious one, or at all to be compared with the lnsses of power in the operation of compression aud in the re-expansion or final application of the air.

The formulas for los by friction are all unsatisfactory. The statements of observed facts in this line are in a more or less chaotic state, and selfevidently unreliable.

A statement of the friction of air flowing through a pipe involves at least all the following factors: Unit of time, volume of air, pressure of air, diameter of pipe, length of pipe, and the difference of pressure at the ends of the pipe or the head required to maintain the flow. Neither of these factors can be allowed its independent and absolute value, but is subject to modifications in deference to its associates. The flow of air being assumed to be uniform at the entrance to the pipe. the volume and flow are not uniform after that. The air is constantly losing some of its pressure and its volume is constantly increasing. The velocity of flow is therefore also somewhat accelerated contimally. This also modifies the use of the leugth of the pipe as a constant factor.

Then, besides the fluctuating valu's of these factors, there is the condition of the pipe itself. The actual diameter of the pipe, especially in the smaller sizes. is different from the nominal diameter. The pipe may be straight, or it may be crooked and have mumerous elbows. Mr. Richards considers one elbow as equivalent to a length of pipe.

Formulx for Hlow of Compressed Air in Pipes. - The formulæ on pages \(48^{\circ}\) and \(48^{\circ}\) are for air at or near atmospherlcpressure. For compressed air the density has to be taken into account. A common formula for the flow of air, gas, or steam in pipes is
\[
Q=c \sqrt{\frac{p d^{5}}{w L}}
\]
in which \(Q=\) volume in cubic feet per minute, \(p=\) difference of pressure in lbs. per sq. in. causing the flow, \(d=\) diameter of pipe in in., \(L=\) length of pipe in \(\mathrm{ft} ., w=\) density of the entering gas or steam in lbs per cu. ft. and \(c=\) a coefficient found by experiment. Mr. F. A. Halsey in calculating a table for the Rand Drill Co.'s Catalogue takes the value of cat 58 , basing it unon the experiments made by order of the Italian government preliminary to boring the Mt. Cenis tumnel. These experiments were made with pipes of \(3: 81\) feet in length and of approximately 4,8 , and 14 in . diameter. The volumes of compressed air passed rauged between 16.64 and \(1200 \mathrm{cu} . \mathrm{fr}\). per minute. The value of \(c\) is quite constant throughout the range and shows little disposition to change with the varying diameter of the pipe. It is of course probable, says Mr. Halsey, that \(c\) would be smaller if determined for smaller sizes of pipe, but to offset that the actual sizes of small commercial pipe are considerably larger than the nominal sizes, and as these calculations are commonly made for the nominal diameters it is probable that in those small sizes the loss would really be less than shown by the table. The formula is of course strictly applicable to fluids which do not change their density, but within the cliange of density admissible in the transmission of air for power purposes it is probable that the errors introduced by this change are less than those due to errors of observation in the present state of knowledge of the subject. Mr. Halsey's table is condensed below.


To apply the formula given above to air of different pressures it may be givell other forms, as follows:
Let \(Q=\) the volume in cubic feet per minute of the compressed air; \(Q_{1}=\) the volume before compression. or "free air," both being taken at mean atinospheric temperature of \(6 \because{ }^{\circ} \mathrm{F}\). ; \(v_{1}=\) weight per cubic foot of \(Q_{1}=\) \(0.0661 \mathrm{lb} . ; r=\) atmospheres or ratio of absolute pressures, \(=\) (gauge-nressure +14.7\() \div 14.7 ; v=\) weight per cu. ft . of \(Q ; p=\) difference of pressure. in lbs. per sq, in., causing the flow; \(d=\) diam. of pipe in in.; \(L=\) length of pipe in ft.; \(c=\) experimental constant. Then
\[
\begin{gathered}
Q=c \sqrt{\frac{p d^{5}}{w L}} ; \quad Q_{1}=r Q ; \quad w=m w_{1}=.0661 r ; \\
Q=3.625 c \sqrt{\frac{p d^{5}}{r L}} ; \quad Q_{1}=3.625 c \sqrt{\frac{p d^{5} r}{L}} ; \\
d=\sqrt[5]{.0761 \frac{L Q^{2} r}{c^{2} p}}=0.597 \sqrt[5]{\frac{L Q^{2} v}{c^{2} p}}=\sqrt[5]{.0 r 61 \frac{L Q_{1}^{2}}{c^{2} p r}}=0.597 \sqrt[5]{\frac{L Q_{1}^{2}}{c^{2} p r} ;} \\
p=.0661 \frac{L Q^{2} r}{c^{2} d^{5}}=.0 r 61 \frac{L Q_{1}{ }^{2}}{c^{2} d^{5} r^{2}}
\end{gathered}
\]

The value of \(c\) according to the Mt. Cenis experiments is about 58 for pipes 4, 8 , and 14 in . diameter, 3281 ft . long. In the St. Gothard experiments it ranged from 62.8 to 73.2 (see table below) for pipes 5.91 and \(7.8 \%\) in. diameter. 1713 and \(15,092 \mathrm{ft}\). long. Values derived from D'Arcy's formula for fluw of water in pipes, ranging from 45.3 for 1 in . diameter to 632 for 24 in ., are given under "Flow of Steam," p. 671. For approximate calculations the value 60 may be used for all pipes of 4 in . diameter and upwards. Using \(c=60\), the above formulæ become
\[
\begin{aligned}
& Q=217.5 \sqrt{\frac{p d^{5}}{r L}} ; \quad Q_{1}=217.5 \sqrt{\frac{p d^{5} r}{L}} ; \\
& {\left[d=0.1161 \sqrt[5]{\frac{L Q^{2} r}{p}}=0.1161 \sqrt[5]{\frac{\overline{L Q_{1}^{2}}}{p r}}\right.} \\
& p=0.00002114 \frac{L Q^{2} r}{d^{5}}=0.00002114 \frac{L Q_{1}{ }^{2}}{d^{5} r}
\end{aligned}
\]

Loss of Pressure in Compressed Air Pipe-maing, at
St. Gothard Tunnel.
(E. Stockalper.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{o.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{4}{|l|}{Observed Pressures.} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & &  &  & \[
\begin{aligned}
& \text { Los } \\
& \text { Pre }
\end{aligned}
\] & & & \\
\hline & & cu.ft. & & & & & & & lbs.
per
sq.in. & & & \\
\hline & \%. 8. & & & . 00650 & 2.669 & 19.3. & 5.60 & 5.24 & 5.292 & 6.4 & & 73.2 \\
\hline & - \({ }^{\text {a }}\). 91 & 33.050 & C. 063 & . 00603 & 2669 & 37.14 & 5.24 & 5.00 & 3.5:8 & 4.6 & & 63.9 \\
\hline & ․ 8 \% & & 5509 & . 00514 & 1.T̂6 & 16.30 & 4.35 & 4.13 & 3.234 & 5.1 & & 70.7 \\
\hline & 5.91 & & 5.863 & . 00482 & 1.756 & & 4.13 & & & & & \\
\hline & ก.87 & & 5.262 & . 00443 & 1.483 & 15.58 & 3.84 & 3.65 & & 5.0 & & \\
\hline & 5.91 & \(i^{18.364}\) ) & 5.580 & .00423 & 1.483 & 29.34 & 3.65 & 3.54 & 1.617 & 3.0 & & \[
62.8
\] \\
\hline
\end{tabular}

The length of the pipe 7.87 in diameter was 15.092 ft ., and of the smaller pipe 1712.6 ft . The mean temperature of the air in the large pipe was \(70^{\circ} \mathrm{F}\). and in the small pipe \(80^{\circ} \mathrm{F}\).

Equation of Pipes. - It is frequeutly desired to know what number of pipes of a given size are equal in carrying capacity to one pipe of a larger size. At the same velocity of flow the volume delivered by two pipes of different sizes is proportional to the squares of their diameters; thus, one 4 -inch pipe will deliver the same volume as four 2 -inch pipes With the same head, however, the velocity is less in the smaller pipe, and the volume delivered varies about as the square root of the fifth power (i.e., as the 2.5 power). The following table has been calculated on this basis. The figures opposite the intersection of any two sizes is the number of the smaller-sized pipes required to equal one of the larger. Thus, one 4 -inch pipe is equal to 5.7 2-inch pipes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline . & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 14 & 16 & 18 & 20 & 24 \\
\hline 2 & 5.7 & \({ }_{1}^{1}\) & & & & & & & & & & & & & & \\
\hline 4 & 15.6 & 5.7 & \({ }_{2} 1\) & 1 & & & & & & & & & & & & \\
\hline 5 & 55.9 & 9.9 & 3.6 & 1.7 & 1 & & & & & & & & & & & \\
\hline 6 & 88.2 & 15.6 & 57 & 2.8 & 1.6 & , & & & & & & & & & & \\
\hline 7 & 130 & -22.9 & 83 & 4.1 & 2.3 & 1.5 & 1 & & & & & & & & & \\
\hline \[
\begin{aligned}
& 8 \\
& 9
\end{aligned}
\] & 181 & \(3{ }^{32}\) & 11.8 & 5. \({ }^{7}\) & 3.2 & & & 1. & & & & & & & & \\
\hline 10 & 216 & 55. 9 & 20.3 & 9.9 & 5.7 & 3.6 & 2.4 & 1.7 & 1.3 & 1 & & & & & & \\
\hline 11 & 401 & \%0.9 & 25.7 & 12.5 & 7.2 & 4.6 & 3.1 & 2.2 & 1.7 & 1.3 & & & & & & \\
\hline 12 & 499 & 88.2 & 32 & 15.6 & 8.9 & 5.7 & 3 \& & 2.8 & 2.1 & 1.6 & 1 & & & & & \\
\hline 13 & 609 & 108 & 39.1 & 19 & 10.9 & 7.1 & 4.7 & 3.4 & 2.5 & 1.9 & 1.2 & & & & & \\
\hline 14 & 733 & 130 & 47 & 22.9 & 13.1 & 8.3 & 5.7 & 4.1 & 3.0 & 2.3 & 1.5 & 1 & & & & \\
\hline 15 & \(3 \pi 1\) & 154 & 55.9 & 27.2 & 15.6 & 9.9 & 6.1 & 4.8 & 3.6 & 28 & 1.7 & 1.2 & & & & \\
\hline 16 & & 181 & 65. \({ }^{1}\) & 32 & 18.3 & 11.7 & 7.9 & 5.7 & 4.2 & 3.2 & 2.1 & 1.4 & & & & \\
\hline 17 & & 211 & \%6.4 & \(3 \hat{3} .2\) & 21.3 & 13.5 & 9.2 & 6. 6 & 49 & 3.8 & 2.4 & 1.6 & & & & \\
\hline 18 & & -43 & 88:2 & 43 & 24.6 & 15.6 & 106 & & & 4.3 & 2.8 & 1.9 & 1.3 & & & \\
\hline 19 & & 278 & 101 & +9 1 & 28.1 & 17.8 & 12.1 & 8.7 & 6.5 & 5 & 3.2 & 2.1 & 1.5 & 1.1 & & \\
\hline 20 & & 316 & 115 & 55.9 & \(3 \cdot\) & 20.3 & 138 & 9.9 & 7.4 & 5.7 & 3.6 & 2.4 & 1.7 & 1.3 & & \\
\hline 22 & & 401 & 116 & 70.9 & 40.6 & 25.7 & 17.5 & 12.5 & 9.3 & 7.2 & 4.6 & 3.1 & 2.2 & 1.7 & 1.3 & \\
\hline 24 & & 199 & 181 & 88.2 & & & 21.8 & 15.6 & 11.6 & 8.9 & 5.7 & 38 & 28 & & & \\
\hline 26 & & :09 & 221 & 108 & 61.7 & 39.1 & 26.6 & 19. & 14.2 & 10.9 & 7.1 & 4.7 & 3.4 & 2.5 & 1.9 & 1.5 \\
\hline 28 & & -3:3 & 266 & 130 & T4.2 & 47 & 32 & 22.9 & 17.1 & 13.1 & 8.3 & 5.7 & 4.1 & & 2.3 & 1. \\
\hline 30 & & \(8{ }^{1} 1\) & 316 & 154 & 88.2 & 55.9 & 38 & \(\cdots 7.2\) & 20.3 & 15.6 & 9.9 & 6.7 & 4.8 & 3.0 & 2.8 & 1.7 \\
\hline 36 & & & 199 & 243 & 130 & 88.2 & 60 & 43 & 32 & 24.6 & 15.6 & 10.6 & 7.6 & 5.7 & 4.3 & 2.8 \\
\hline 42 & & & T33 & 35 r & 205 & 130 & 88.2 & 63.2 & 47 & 36.2 & 19 & 15.6 & 11.2 & 8.3 & 6.4 & 4. \\
\hline 48 & & - & & 499 & 286 & 181 & 123 & 88.2 & 62.7 & 50.5 & 32 & 21.8 & 15.6 & 11.6 & 8.9 & 5. \\
\hline 54 & & & & \(6{ }^{6} 0\) & . 383 & 243 & 165 & 118 & 88.2 & 67.8 & 43 & 23.2 & 20.9 & 15.6 & & 7.6 \\
\hline 60 & & & & \(8{ }^{1} 1\) & 499 & 316 & 215 & 154 & 115 & 188.2 & 55.9 & 38 & 2 27. 2 & 20.3 & 15.6 & 9.9 \\
\hline
\end{tabular}

Measurement of the Velocity of Air in Pipes by an Anemometer. -Tests were made by B. Donkin, Jr. (Iust. C'ivıl E'ıgi's. 18y:), to compare the velocity of air in pipes from 8 in , to 24 in . diam., as shown by an anemometer \(23 / 4 \mathrm{in}\). diam. with the true velocity as measured by the time of descent of a gas-holder holding \(162: 2\) cubic feet. A table of the results with discussion is given in Eng'g News, Dec. 22.1892 . In pipes from 8 in. to 20 in. diam. with air velocities of from 140 to 690 feet per minute the anemometer showed errors varying from \(14.5 \%\) fast to \(10 \%\) slow. With a 24 -inch pipe and a velocity of \(i 3 \mathrm{ft}\). per minute, the anemometer gave from 44 to 63 feet, or from 13.6 to \(39.6 \%\) slow. The practical conclusion drawn from these experiments is that anemometers for the measurement of velocities of air in pipes of these diameters should be used with great caution. The percentage of error is not constant, and varies considerably with the diameter of the pipes and the speeds of air. The use of a baffle, consisting of a perforated plate, which tended to equalize the velocity in the centre and at the sides in some cases diminished the error.

The impossibility of measuring the true quantity of air by an anemometer held stationary in one position is shown by the following figures, given by Wm. Daniel (Proc. Inst. M. E., 1875), of the velocities of air found at different points in the cross-sections of two different airways in a mine.

Differences of Anemometer Readings in Airwats.
S ft. square.
\begin{tabular}{|c|c|c|c|}
\hline 1712 & 1795 & 1859 & 1329 \\
\hline 1622 & 1655 & 1782 & 1091 \\
\hline 1477 & 1344 & 1524 & 1049 \\
\hline 1262 & 1356 & 1293 & 1333 \\
\hline
\end{tabular}

Average 1469.


Average 1132.

WIND.
Eorce of the Wind.-Smeaton in 1759 published a table of the velocity and pressure of wind, as follows:

Velocity and Force of Wind, in Pounds per Square Inch.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  & Common Appellation of the Force of Wind. &  &  &  & Common Appella tion of the Force of Wind. \\
\hline 1 & 1.47 & 0.005 & \{ Hardly percepti- & \[
\begin{aligned}
& 18 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 26.4 \\
& 29.34
\end{aligned}
\] & \[
\begin{aligned}
& 1.55 \\
& 1.968
\end{aligned}
\] & Very \\
\hline 2 & 2.93 & 0.020 & & 25 & 36.67 & 3.075 & \\
\hline 3 & 4.4 & 0.044 & \}Just perceptible. & 30 & 44.01 & 4.429 & High wind. \\
\hline 4 & 5.87 & 0.079 & & 35 & 51.34 & \(6.02 \tilde{4}\) & High wind. \\
\hline 5 & 7.3:3 & 0.123 & Gentle pleasant & 40 & 58.68 & 7.873 & \\
\hline 6 & 8.8
10.25 & 0.177
0.241 & wind. & 45 & \[
66.01
\] & 9.963
12.30 & Very high storm \\
\hline 8 & 10.25 & 0.241
0.315 & & \[
\begin{aligned}
& 50 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 73.3 .5 \\
& 80.7
\end{aligned}
\] & 12.30
14.9 & Very high storm. \\
\hline 9 & 13.2 & 0.400 & & 60 & 88.02 & 17.71 & \\
\hline 10 & \(14.6{ }^{\text {a }}\) & \(0.49 ?\) & & 66 & 95.4 & 20.85 & Great Storm. \\
\hline 12 & 17.6 & 0.708 & & \% 0 & 102.5 & 24.1 & \\
\hline 14 & 20.5 & 0.964 & & \% 5 & 110. & \(2 \sim .7\) & \\
\hline 15 & 22.00 & 1.107 & & 80 & 117.36 & 31.49 & Hurricane. \\
\hline 16 & 23.45 & 1.25 & J & 100 & 146.67 & 49.2 & \[
\left\{\begin{array}{l}
\text { Immense hurri- } \\
\text { cane. }
\end{array}\right.
\] \\
\hline
\end{tabular}

The pressures per square foot in the above table correspond to the formula \(P=0.005 V^{2}\), in which \(V\) is the velocity in miles per hour. Eng'g News. Feb. 9, 1893, says that the formula was never well established, and has floated chiefly on Smeaton's name and for lack of a better. It was put forward only for surfaces for use in windmill practice. The trend of modern evidence is that it is approximately correct only for such surfaces, and that for large solid bodies it often gives greatly too large results. Observations by others are thus compared with Smeator's formula:

> Old Smeaton formula........................................ \(P=.005 V^{2}\)
> As determined by Prof. Martin.............................. \(P=.014 V^{2}\) Whipple and Dines.................... \(P=.0029 V^{2}\)

At 00 miles per hour these formulas give for the pressure per square foot, 18, 14.4 and 10.44 lbs ., respectivelr, the pressure varring by all of them as the square of the velocity. Lirut. Crosby's experiments (Eng'g, June 13, 1890), claiming to prove that \(P=f V\) instead of \(P=f V^{2}\), are discredited.
A. R. Wolff (The Windmill as a Prime Mover, p. 9) gives as the theoretical pressure per sq. ft . of surface, \(P=\frac{d Q v}{g}\), in which \(d=\) density of air in pounds per cu. ft. \(=\frac{.018 \approx 43(p+F)}{t} ; p\) being the barometric pressure per square foot at any level, and temperature of \(32^{\circ} \mathrm{F} ., t\) any absolute temperature, \(Q=\) volume of air carried along per square foot in one second, \(v=\) velocity of the wind in feet per sec., \(g=32.16\). Since \(Q=v\) cu. ft. per sec., \(P=\frac{d v^{Z}}{g}\). Multiplying this by a coefficient 0.93 found by experiment, and substituting the above value of \(d\), he obtains \(P=\frac{0.017431 \times p}{\frac{t \times 3.16}{v^{2}}-.018743}\), and when \(p\)
\(=2116.5 \mathrm{lbs}\). per sq ft. or average atmospheric pressure at the sea-level, \(P=\frac{36.8929}{\frac{t \times 32.16}{v^{2}}-0.18743}\), an expression in which the pressure is shown to vary with the temperature; and he gives a table showing the relation between velocity and pressure for temperatures from \(0^{\circ}\) to \(100^{\circ} \mathrm{F}\)., and velocities from 1 to 80 miles per hour. For a temperature of \(45^{\circ} \mathrm{F}\). the pressures agree with those in Smeaton's table, for \(0^{\circ} \mathrm{F}\). they are about 10 per cent greater, and for \(100^{\circ} 10\) per cent less. Prof. H. Allen Hazen, Eng'g News, July 5, 1890, says that experiments with whirling arms, by exposing plates to direct wind, and on locomotives with velocities running up to 40 miles per hour, have invariably shown the resistance to vary with \(V^{2}\). In the formula \(P=.005 S V^{2}\), in which \(P=\) pressure in pounds, \(S=\) surface in square feet, \(V=\) velocity in miles per hour, the doubtful question is that regarding the accuracy of the first two factors in the second member of this equation. The first factor has been variously determined from .003 to .005 [it has been determined as low as .0014.-Ed. Eng'g News].

The second factor has been found in some experiments with very short whirling arms and low relocities to vary with the perimeter of the plate, but this entirely disappears with longer arms or straight line motion, and the only question now to be determined is the value of the coefficient. Perhaps some of the best experiments for determining this value were tried in France in 1886 by carrying flat boards on trains. The resulting formula in this case was, for 44.5 miles per hour, \(p=.00535 S^{2}\).

Mr. Crosby's whirling experiments were made with an arm 5.5 ft . long. It is certain that most serious effects from centrifugal action would be set up by using such a short arm, and nothing satisfactory can be learned with arms less than 20 or 30 ft . long at velocities above 5 miles per hour.

Prof. Kernot, of Melbourne (Engineering Record, Feb. 20, 1894), states that experiments at the Forth Bridge showed that the average pressure on surfaces as large as railway carriages, houses, or bridges never exceeded two thirds of that upon small surfaces of one or two square feet, such as have been used at observatories, and also that an inertia effect, which is frequently overlooked, may cause some forms of anemometer to give false results enormously exceeding the correct indication. Experiments of Mr. O. T. Crosby showed that the pressure varied directly as the velocity, whereas all the early investigators. from the time of Smeaton onwards, inade it vary as the square of the velocity. Experiments made by Prof. Kernot at speeds varying from 2 to 15 miles per hour agreed with the earlier authorities, and tended to negative Crosby's results. The pressure upon one side of a cube, or of a block proportioned like an ordinary carriage, was found to be . 9 of that upon a thin plate of the same area. The same result was obtained for a square tower. A square pyramid, whose height was three times its base, experienced .8 of the pressure upon a thin plate equal to one of its sides, but if an angle was turned to the wind the pressure was increased by fully \(20 \%\). A bridge consisting of two plate-girders connected by a deck at the top was found to experience .9 of the pressure on a thin plate equal in size to one girder, when the distance between the girders was equal to their depth, and this was increased by one fifth when the distance between the girders was
double the depth. A lattice-work in which the area of the openings wal \(55 \%\) of the whole area experienced a pressure of \(80 \%\) of that upon a plate of the same area. The pressure upon cylinders and cones was proved to be equal to half that upon the diametral planes, aud that upon an octagonal prism to be \(20 \%\) greater than upon the circumscribing cylinder. A sphere was subject to a pressure of .36 of that upon a thin circular plate of equal diameter. A hemispherical cup gave the same result as the sphere; whenits concavity was turned to the wind the pressure was 1.15 of that on a flat plate of equal diameter. When a plane surface parallel to the direction of the wind was brought nearly into contact with a cylinder or sphere, the pressure on the latter bodies was augmented by about \(20 \%\), owing to the lateral escape of the air being checked. Thus it is possible for the security of a tower or chimney to be impaired by the erection of a building nearly touching it on one side.

Pressures of Wind Registered in Storms. -Mr. Frizell has examined the published records of Greenwich Observatory from 1849 to 1869 , and reports that the highest pressure of wind he finds recorded is 41 lbs . per sq. ft., and there are numerous instances in which it was between 30 and 40 lbs. per sq. ft. Prof. Henry says that on Mount Washington, N. H., a velocity of 150 miles per hour has been observed, and at New York City 60 miles an hour, and that the highest winds observed in \(18 \% 0\) were of 72 and 63 miles per hour, respectively.

Lieut Dunwoody, U. S. A., says, in substance, that the New England coast is exposed to storms which produce a pressure of 50 lbs . per sq. ft. Engineering News, Aug. 20, 1881).

\section*{WINDIILLLS.}

Power and Efficiency of Windmills.-Rankine, S. E., p. 215, gives the following: Let \(Q=\) volume of air which acts on the sail, or part of a sail, in cubic feet per second, \(v=\) velocity of the wind in feet per second, \(s=\) sectional area of the cylinder, or annular cylinder of wind, through which the sail, or part of the sail, sweeps in one revolution. \(c=a\) coefficient to be found by experience; then \(Q=c v s\). Rankine, from experimental data given by Smeaton, and taking \(c\) to include an allowance for triction, gives for a wheel with four sails, proportioned in the best manner, \(c=0.75\). Let \(A=\) weather angle of the sail at any distance from the axis, i.e., the angle the portion of the sail considered makes with its plane of revolution. This angle gradually diminishes from the inner end of the sail to the tip; \(u=\) the velocity of the same portion of the sail, and \(E=\) the efficiency. The efficiency is the ratio of the useful work performed to whole energy of the stream of wind acting on the surface \(s\) of the wheel, which energy is \(\frac{D s v^{3}}{2 g}, D\) being the weight of a cubic foot of air. Rankine's formula for efficiency is
\[
\left.E=\frac{R u}{\frac{D s v^{3}}{2 g}}=c\left\{\frac{u}{v} \sin 2 A-\frac{u^{2}}{v^{2}}(1-\cos 2 A+f)-f\right)\right\},
\]
in which \(c=0.75\) and \(f\) is a coefficient of friction found from Smeaton's data \(=0.016\). Rankine gives the following from Smeaton's data:
\[
\begin{aligned}
& A=\text { weather-angle.................. }=7^{\circ} \quad 13^{\circ} \quad 19^{\circ} \\
& V \div v=\text { ratio of speed of greatest effi- } \\
& \boldsymbol{E}=\text { efficiency } \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots=0.24 \quad 0.29 \quad 0.31
\end{aligned}
\]

Rankine gives the following as the best values for the angle of weather at different distances from the axis:


But Wolff ( \(p\). 125) shows that Smeaton did not term these the best angles, but simply says they " answer as well as any," possibly any that were in existence in his tıme. Wolff says that they "cannot in the nature of things be the most desirable angles." Mathematical considerations, he says, conclusively show that the angle of impulse depends on the relative velocity of each point of the sail and the wind, the angle growing larger as the ratio becomes greater. Smeaton's angles do not fulfil this coudition. Wolff devel-
ops a theoretical formula for the best angle of weather, and from it calculates a table for different relative velocities of the blades (at a distance of one seventh of the total length from the centre of the shaft) and the wind, from which the following is condensed:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Ratio of the Speed of Blade at \(1 / \hat{i}\) of Radius to Velocity of Wind.} & \multicolumn{7}{|l|}{Distance from the axis of the wheel in sevenths of radius.} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & \multicolumn{7}{|c|}{Best angles of weather.} \\
\hline 0.10 & \(42^{\circ} \quad 9 \quad 1\) & \(39^{\circ} 21^{\prime}\) & \(36^{\circ} 39^{\prime}\) & \(34^{\circ} 6^{\prime}\) & \(31^{\circ} 43^{\prime}\) & \(29^{\circ} 31{ }^{\prime}\) & \(27^{\circ} 30\) \\
\hline 0.15 & \(40 \quad 44\) & \(36 \quad 39\) & \(32 \quad 53\) & \(29 \quad 31\) & \(26 \quad 34\) & \(24 \quad 0\) & 2148 \\
\hline 0.20 & \(\begin{array}{ll}39 & 21\end{array}\) & 346 & \(29 \quad 31\) & 2540 & \(\because 2\)
20 & 1954 & 1746 \\
\hline 0.25 & \(37 \quad 59\) & \(36 \quad 43\) & \(26 \quad 34\) & \(22 \quad 30\) & \(19 \quad 20\) & \(16 \quad 51\) & 1452 \\
\hline 0.30 & \(\begin{array}{ll}36 & 39\end{array}\) & \(\begin{array}{ll}29 & 31\end{array}\) & 240 & 1954 & \(16 \quad 51\) & \(14 \quad 32\) & 1244 \\
\hline 0.35 & \(35 \quad 21\) & \(27 \quad 30\) & 2148 & \(17 \quad 46\) & 14 & 1244 & \(11{ }^{6}\) \\
\hline 0.40 & \(34 \quad 6\) & 2540 & \(19 \quad 54\) & 160 & 1317 & \(11 \quad 19\) & 950 \\
\hline 0.45 &  & & \(18 \quad 16\) & \(14 \quad 32\) & \(11 \quad 59\) & 1010 & 848 \\
\hline 0.50 & \(31 \quad 43\) & \(22 \quad 30\) & \(16 \quad 51\) & \(13 \quad 17\) & \(10 \quad 54\) & \(9 \quad 13\) & \(7 \quad 58\) \\
\hline
\end{tabular}

The effective power of a windmill, as Smeaton ascertained by experiment, varies as \(s\), the sectional area of the acting stream of wind; that is, for similar wheels, as the squares of the radii.

The value 0.75 , assigued to the multiplier \(c\) in the formula \(Q=c v s\), is founded on the fact, ascertained by Smeaton, that the effective power of a windmill with sails of the best form, and about \(151 / 2 \mathrm{ft}\). radius, with a breeze of 13 ft . per second, is about 1 horse-power. In the computations founded on that fact, the mean angle of weather is made \(=13^{\circ}\). The efficiency of this wheel, according to the formula and table given, is 0.29 , at its best speed, when the tips of the sails move at a velocity of 2.6 times that of the wind.

Merivale (Notes and Formulæ for Mining Students), using Smeaton's coefficient of efficiency, 0.29 , gives the following:
\(U=\) units of work in foot-lbs. per sec.;
\(W=\) weight, in pounds, of the cylinder of wind passing the sails each second, the diameter of the cylinder being equal to the diameter of the sails;
\(V=\) velocity of wind in feet per second;
H.P. \(=\) effective horse-power:
\(\mathcal{U}=\frac{W V^{2}}{64} ; \quad H . P .=\frac{0.29 W V^{2}}{64 \times 550}\).
A. R. Wolff, in an article in the American Engineer, gives the following (see also his treatise on Windinills):

Let \(c=\) velocity of wind in feet per second;
\(n=\) number of revolutions of the windmill per minute;
\(b_{0}, b_{1}, b_{2}, b_{x}\) be the breadth of the sail or blade at distances \(l_{0}, l_{1}, l_{2}\), \(l_{3}\). and \(l\), respectively, from the axis of the shaft;
\(l_{0}=\) distance from axis of shaft to beginning of sail or blade proper;
\(l=\) distance from axis of shaft to extremity of sail proper;
\(v_{0}, v_{1}, v_{2}, v_{3}, v_{x}=\) the velocity of the sail in feet per second at distances \(l_{0} . l_{1}, l_{2}, l\), respectively, from the axis of the shaft;
\(a_{0}, a_{1}, a_{2}, a_{3}, a_{x}=\) the angles of impulse for maximum effect at distances \(l_{0}, l_{1}, l_{2}, l_{3}, l\) respectively from the axis of the shaft;
\(a=\) the angle of impulse when the sails or blocks are plane surfaces, so that there is but one angle to be considered;
\(N=\) number of sails or blades of windmill;
\(K=.93\).
\(d=\) density of wind (weight of a cubic foot of air at average tempera. ture and barometric pressure where mill is erected);
\(W=\) weight of wind-wheel in pounds;
\(f=\) coefficient of friction of shaft and bearings;
\(D=\) diameter of bearing of windmill in feet.

\section*{496}
[ The effective horse-power of a windmill with plane sails will equal
\[
\begin{aligned}
& \frac{\left(l-l_{0}\right) K c^{2} d N}{550 g} \times \text { mean of }\left(v_{0}\left(\sin a-\frac{v_{0}}{c} \cos a\right) b_{0} \cos a\right. \\
& \left.v_{x}\left(\sin a-\frac{v_{x}}{c} \cos a\right) b_{x} \cos a\right)-\frac{f W \times .05236 n D}{550}
\end{aligned}
\]

The effective horse-power of a windmill of shape of sail for maximum effect equals
\[
\begin{gathered}
\frac{N\left(l-l_{0}\right) K d c^{3}}{2200 g} \times \text { mean of }\left(\frac{2 \sin ^{2} a_{0}-1}{\sin ^{2} a_{0}} b_{0}, \quad \frac{2 \sin ^{2} a_{1}-1}{\sin ^{2} a_{1}} b_{1} \ldots\right. \\
\left.\ldots \frac{2 \sin ^{2} a_{x}-1}{\sin _{2} a_{x}} b_{x}\right)-\frac{f W \times .05236 n D}{550}
\end{gathered}
\]

The mean value of quantities in brackets is to be found according to Simpson's rule. Dividing \(l\) into 7 parts, finding the angles and breadths corresponding to these divisions by substituting them in quantities within brackets will be found satisfactory. Comparison of these formulæ with the only fairly reliable experiments in windmills (Coulomb's) showed a close agreement of results.

A pproximate formulæ of simpler form for windmills of present construction can be based upon the above, substituting actual average values for a, \(c, d\), and \(e\), but since improvement in the present angles is possible, it is better to give the formulæ in their general and accurate form.

Wolff gives the following table based on the practice of an American manufacturer. Since its preparation, he says, over 1500 windmills have been sold on its guaranty (1885), and in all cases the results obtained did not vary sufficiently from those presented to cause any complaint. The actual results obtained are in close agreement with those obtained by theoretical analysis of the impulse of wind upon windmill blades.

Capacity of the Windmill.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \stackrel{.0}{\boxed{0}} \\
& \stackrel{0}{0} \\
& \stackrel{1}{\circ}
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{6}{|l|}{Gallons of Water raised per Minute to an Elevation of -} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 10 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & \multirow[t]{2}{*}{} \\
\hline & & & \[
\begin{gathered}
25 \\
\text { feet. }
\end{gathered}
\] & \[
\begin{gathered}
50 \\
\text { feet. }
\end{gathered}
\] & \[
\begin{gathered}
75 \\
\text { feet. }
\end{gathered}
\] & \[
\begin{gathered}
100 \\
\text { feet. }
\end{gathered}
\] & \[
\begin{gathered}
150 \\
\text { feet. }
\end{gathered}
\] & \[
\begin{gathered}
200 \\
\text { feet. }
\end{gathered}
\] & & \\
\hline wheel & & & & & & & & & & \\
\hline \(81 / 2 \mathrm{ft}\). & 16 & 70 to 75 & 6.162 & 3.016 & & & & & 0.04 & \\
\hline & 16 & 60 to 65
55
50 & 19.179
33.941 & 9.563
17.952 & \({ }_{11}^{6.651}\) & 8.785 & 5.680 & & 0.12 & \\
\hline & 16 & 50 to 55 & 45.139 & 22.569 & 15.304 & 11.246 & 7.80 \% & 4998 & 0.28 & \\
\hline 16 & 16 & 45 to 50 & 64600 & 31.654 & 19.542 & 16.150 & 9. 7 T1 & 8.075 & 0.41 & \\
\hline 18 " & 16 & 40 to 45 & 97.682 & 52.165 & 32.513 & 24.421 & 17.485 & 12.211 & 0.61 & \\
\hline 20 " & 16 & 35 to 40 & 124.950 & 63.750 & 40.800 & 31.248 & 19.281 & 15.938 & 0.78 & \\
\hline & 16 & 130 to 35 & 212.381 & 106.964 & 71.604 & 49.725 & 37.349 & 26.741 & 1.34 & 8 \\
\hline
\end{tabular}

These windmills are made in regular sizes, as high as sixty feet diameter of wheel; but the experience with the larger class of mills is too limited to enable the presentation of precise data as to their performance.

If the wind can be relied upon in exceptional localities to average a higher velocity for eight hours a day than that stated in the above table, the performance or horse-power of the mill will be increased, and can be obtained by multiplying the figures in the table by the ratio of the cube of the higher average velocity of wind \(t n\) the cube of the velocity above recorded.

He also gives the following table showing the economy of the windmill. All the items of expense, including both interest and repairs. are reduced to the hour by dividing the costs per annum by \(365 \times 8=2920\); the interest,
etc., for the twenty-four hours being charged to the eight hours of actual work. By multiplying the figures in the 5 th column by 584 , the first cost of the windmill, in dollars, is obtained.

\section*{Economy of the Windmill.}


Lieut. I. N. Lewis (Eng'g Mag., Dec. 1894) gives a table of results of ex periments with wooden wheels, from which the following is taken:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Diameter of wheel, Feet.} & \multicolumn{7}{|c|}{Velocity of Wind, miles per hour.} \\
\hline & 8 & 10 & 12 & 16 & 20 & 25 & 30 \\
\hline & \multicolumn{7}{|c|}{Actual Useful Horse-power developed.} \\
\hline & 0 & & & & 1 & & 2 \\
\hline 12 & \(1 / 8\) & 1/8 & 3/4 & \(11 / 2\) & \(21 / 4\) & \(12 / 3\)
314 & 4 \\
\hline 20 & 3/4 & \(11 / 4\) & \(2^{2}\) & 3 & 4 & \(51 / 2\) & 7 \\
\hline 25 & 114 & \(13 / 4\) & 3 & 41/2 & \({ }_{\sim}^{6}\) & 8 & 10 \\
\hline 30 & 2 & 3 & 4 & \(51 / 2\) & r & 9 & 12 \\
\hline
\end{tabular}

The wheels were tested by driving a differentially wound dynamo. The "useful horse-power" was measured by a voltmeter and ammeter. allowing 500 watts per horse-power. Details of the experiments, including the means used for obtaining the velocity of the wind, are not given. The results are so far in excess of the capacity claimed by responsible manufacturers that they should not be given credence until established by further experiments.

A recent article on windmills in the Iron Age contains the following: According to observations of the United States Signal Service, the average velocity of the wind within the range of its record is 9 miles per hour for the year along the North Atlantic horder and Northwestern States, 10 miles on the nlains of the West. and 6 miles in the Gulf States.
The horse-powers of windmills of the best ennstruction are proportional to the squares of their diameters and inversely as their velocities; for example, a 10 -ft. mill in a 16 -mile breeze will develop 0.15 horse-power at 65 revolutions per minute; and with the same breeze

A \(20-\mathrm{ft}\). mill, 40 revolutions, 1 horse-power.
A \(25-\mathrm{ft}\). mill, 35 revolutions, \(13 / 4\) horse-power.
A \(30-\mathrm{ft}\). mill, 28 revolutions, \(31 / 2\) horse-power.
A \(40-\mathrm{ft}\). mill, 22 revolutions. \(71 / 2\) horse-power.
\[
\text { A } 50-\mathrm{ft} \text {. mill, } 18 \text { revolutions, } 12 \text { horse-power. }
\]

The increase in power from increase in velocity of the wind is equal to the square of its proportional velocity; as for example, the \(25-\mathrm{ft}\). mill rated

\section*{AIR.}
above for a \(16-\mathrm{mile}\) wind will, with a \(3 \%\)-mile wind, have its horse-power increased to \(4 \times 13 / 4=7\) horse-power, a \(40-\mathrm{ft}\). mill in a \(3:-\) mile wind will run up to 30 horse-power, and a \(50-\mathrm{ft}\). mill to 48 horse-power, with a small de duction for increased friction of air on the wheel and the machinery.

The modern mill of medium and large size \(u\) ill run and produce work in a 4 -mile breeze, becoming very efficient in an 8 to 16 -mile breeze. and increase its power with safety to the running-gear up to a gale of 45 miles per hour.

Prof. Thurston, in an article on morern uses of the windmill, Engineering Magazine, Feb. 1893, says : The best mills cost from about \(\$ 600\) for the \(10-\mathrm{ft}\). wheel of \(1 / 8\) horse-power to \(\$ 1200\) for the \(25-\mathrm{ft}\). Wheel of \(11 / 2\) horse-power or less. In the estimates a working-day of 8 hours is assumed; but the machine, when used for pumping, its most common application, may actually do its work 24 hours a day for days, weeks, and even months together, whenever the wind is "stiff" enough to turn it. It costs, for work done in situations in which its irregularity of action is no objection, only one half or one third as much as steam, hot-air, and gas engines of similar power. At Faversham, it is said, a 15 -horse-power mill raises \(2,000,000\) gallons a month from a depth of 100 ft ., saving 10 tons of coal a month, which would otherwise be expended in doing the work by steam.

Electric storage and lighting from the power of a windmill has been tested on a large scale for several years by Charles F. Brush, at Cleveland, Ohio. In 1887 he erected on the grounds of his dwelling a windmill 56 ft . in diameter, that operates with ordinary wind a dynamo at 500 revolutions per minute, with an output of 12,000 watts- 16 electric horse-power-charging a storage system that gives a constant lighting capacity of 10016 to 20 candle-power lamps. The current from the dynamo is a tomatically regulated to commence charging at 330 revolutions and \(\% 0\) volts, and cutting the circuit at 75 volts. Thus, by its 24 hours' work, the storage system of 408 cells in 12 parallel series, each cell having a capacity of 100 ampère hours, is kept in constant readiness for all the requirements of the establishment, it being fitted up with 350 incandescent lamps, about 100 being in use each evening. The plant runs at a mere nominal expense for oil, repairs, and attention. (For a fuller description of this plant, and of a more recent one at Marblehead Neck, Mass., see Lieut. Lewis's paper in Engineering Magazine, Dec. 1894, p. 475.)

\section*{COMPRESSED ATR.}

Heating of Air by Compression.-Kimball, in his treatise on Physical Properties of Gases, says: When air is "compressed, all the work which is done in the compression is converted into heat, and shows itself in the rise in temperature of the compressed gas. As the gas becomes hotter it is compressed with more difficulty; so in practice many devices are employed to carry off the heat as fast as it is developed, and keep the temperature down. But it is not possible in any way to totally remove this difficulty. But, it may be objected, if all the work done in compression is converted into heat, and if this heat is got rid of as soon as possible, then the work may be virtually thrown away, and the compressed air can have no more energy than it, had before compression. It is true that the compressed gas has no more energy than the gas had before compression, if its temperature is no higher, but the advantage of the compression lies in bringing its energy into more available form.

The total energy of the compressed and uncompressed gas is the same at the same temperature, but the available energy is nuch greater in the former.

The rise in temperature due to compression is so great that if a mass of air at \(32^{\circ} \mathrm{F}\). is compressed to one fourth its original volume, its temperature will be raised \(386^{\circ} \mathrm{F}\)., if no heat is allowed to escape.

When the compressed air is used in driving a rock-drill, or any other piece of nachinery, it gives up energy equal in amount to the work it does, and its temperature is accordingly greatly reduced.

Causes of Loss of Energy in Use of Compressed Air. (Zahner, on Transmission of Power by Compressed Air.) - 1. The compression of air always develops heat, and as the compressed air always cools down to the temperature of the surrounding atmosphere before it is used, the mechanical equivalent of this dissipated heat is work lost.
2. The heat of compression increases the volume of the air, and hence it is necessary to carry the air to a higher pressure in the compressor in order that we may finally have a given volume of air at a given pressure, and at the temperature of the surrounding atmosphere. The work spent in effecting this excess of pressure is work lost.
3. The great cold which results when air expands against a resistance forbids expausive working, which is equivalent to saying, forbids the realization of a high degree of efficiency in the use of compressed air.
4. Friction of the air in the pipes, leakage, dead spaces, the resistance of fered by the valves, insufficiency of valve-area, inferior workmanship, and slovenly attendance, are all more or less serious causes of loss of power.

The first canse of loss of work, namely, the heat developed by compression. is entirely unavoidable. The whole of the mechanical energy which the compressor-piston spends upon the air is converted into heat. This heat is dissipated by conouction and radiation, and its mechanical equivalent is work lost. The compressed air, having again reached thermal equilibrium with the surrounding atmosphere, expands and does work in virtue of its intrinsic energy.

The intrinsic energy of a fluid is the energy which it is capable of exerting against a piston in changing from a given state as to temperature and volume, to a total privation of heat and indefinite expansion.
Volumes, Mean Pressures per Stroke, Temperatures, etc., in the operation of Air-compressionfrom 1 Atmosphere and \(60^{\circ}\) Fahr. (F. Richards, Am. Mach., Minch 30, 1893.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \[
4
\] &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & & & 3 & 4 & 5 & 6 & \% \\
\hline & , & & 1 & & & \(60^{\circ}\) & & 6.4 & .155: & \({ }^{2} 266\) & 27.38 & 36.64 & \(43 \sim\) \\
\hline 1 & & & 95 & & & & & & & 2566 & 28.16 & 3.194 & \(44 \pi\) \\
\hline 3 & 31.204 & . 8305 & \({ }_{8} 96\) & \({ }_{2}^{1.82}\) & 2.8 & 88.9 & 95 & \%.462 & 134 & . & \({ }_{29}^{29.59}\) & 49 & T2 \\
\hline 4 & 1.2T & . 2861 & 84 & . 53 & 3.6 r & 98 & 100 & T. 802 & 1281 & 23?4 & 30.21 & 41.6 & 5 \\
\hline & 1.34 & T462 & 81 & 3 & 4.5 & 106 & 105 & 8.142 & \(1 \stackrel{2}{1}\) & 2 & 30.81 & 42. 58 & 496 \\
\hline 10 & 1.68 & . \(595 \%\) & . 69 & \%.62 & 8.27 & 145 & 110 & 8. 483 & \(11 \% 8\) & 2189 & 31.39 & 43.91 & 50 \\
\hline 15 & \(\because .02\) & . 495 & . 606 & 10.3:3 & 11.51 & \(1 \% 8\) & 115 & \(88: 3\) & 1132 & \(21 \div 9\) & 31.98 & 44.08 & 51 \\
\hline 20 & -2. 36 & . 4233 & 543 & 12.6: & 14.4 & \(20 \sim 1\) & 120 & 9.163 & 1091 & 20.3 & 32.54 & 46.04 & \(5 \cdots 9\) \\
\hline & - \(\because\) r & . 3103 & 494 & 14.59 & 17.01 & 23 & 125 & 9.503 & . 1052 & 20:0 & 33.0 ィ & \(4 \pi .06\) & 540 \\
\hline & 3.04 & \(3: 889\) & .4538 & 16.34 & 19.4 & 25.2 & 130 & 9.843 & 1015 & 1969 & 33.54 & 48.1 & 550 \\
\hline 35 & 5.3.3:1 & .295 & 42 & 17.92 & 21.6 & \(\because 81\) & 135 & 10.183 & . 0981 & . 1922 & 34.05 & 49.1 & 5 \\
\hline 40 & 3. 3.1 & \(\because 68 \sim\) & 393 & 19.3: & 23.66 & \(30 \cdot 3\) & 140 & 10.5:3 & . 095 & . 1878 & 34.5 r & 50.02 & \(5{ }^{\text {\% }}\) \\
\hline 45 & +. 061 & \(246:\) & 37 & \(20.5 \pi\) & \(\stackrel{2}{2} .59\) & \(3: 1\) & 145 & 10.864 & 0921 & 183í & 35.09 & & 580 \\
\hline 50 & + 4.401 & Nan & . 35 & 21.69 & 27.39 & 339 & 150 & 11.204 & 0892 & . 1796 & 35.48 & 5188 & 589 \\
\hline 5. & 4.i41 & . 2109 & 331 & 22.76 & -9.11 & \(35 \hat{}\) & 160 & 11.58 & . 0841 & 112 & 36.29 & 53.65 & 607 \\
\hline 0 & 15.081 & .1968 & . 3144 & 23.7S & 30.75 & 3 3 5 & & 12.56 & \(00^{96}\) & 1654 & 37. \({ }^{3}\) & 55.39 & 62 \\
\hline 65 & 15.422 & . 1844 & . 301 & 24.85 & 32.32 & 389 & & 13.24 & . 0755 & . 1595 & 37. 96 & 5i. 01 & 640 \\
\hline T0 & |5. 662 & . 1735 & 288 & 2567 & 33.83 & 405 & 190 & 13.93 & . 0718 & . 154 & 38.68 & 5R.5i & \(65 \%\) \\
\hline is & 6.102 & . 163.9 & 26 & 26.55 & 35.20 & 4:0 & 200 & 14.61 & . 0685 & 149 & 39.42 & 60.14 & \(6{ }^{2}\) \\
\hline
\end{tabular}

Column 3 gives the volume of air after compression to the given pressure and after it is conled to its initial temperature. After compression air loses its heat very rapidly, and this column may be taken to represent the volume of air after compression arailable for the purpose for which the air has been compressed.

Column 4 gives the volume of air more nearly as the compressor has to deal with it. In any compressor the air will lose some of its heat during compression. The slower the compressor runs the cooler the air and the smaller the volume.

Column 5 gives the mean effective resistance to be overcome by the aircylinder piston in the stroke of compression, supposing the air to remain constantly at its initial temperature. Of course it will not so remain, but this column is the ideal to be kept in view in economical air-compression.

Column 6 gives the mean effective resistance to be overcome by the piscon, supposing that there is no cooling of the air. The actual mean effective pressure will be somewhat less than as given in this column; but for computing the actual power required for operating air-compressor cylinders the figures in this column may be taken and a certain percentage addedsay 10 per cent-and the resulu will represent very closely the power required by the compressor.

The mean pressures given being for compression from one atmosphere upward, they will not be correct for computations in compound compression or for any other initial pressure.
Loss Due to Excess of Pressure caused by Heating in the Compression-cylinder.-If the air during compression were kept at a constant temperature, the compression-curve of an indicator-diagram taken from the cylinder would be an isothermal curve, and would follow the law of Boyle and Marriotte, \(p v=\) a constant, or \(p_{1} v_{1}=p_{0} v_{0}\), or \(p_{1}=p_{0} \frac{v_{0}}{v_{1}}, p_{0}\) and \(v_{0}\) being the pressure and volume at the beginning of compression, and \(p_{1} v_{1}\) the pressure and volume at the end, or at any intermediate point. But as the air is heated during rompression the pressure increases faster than the volume decreases, caus.ag the work required for any given pressure to be increased. If none of the heat were abstracted by radiation or by injection of water, the curve of the diagram would be an adiabatic curve, with the equation \(p_{1}=p_{0}\left(\frac{v_{0}}{v_{1}}\right)^{1.405}\). Cooling the air during compression, or compressing it in two cylinders, called compounding, and cooling the air as it passes from one cylinder to the other. reduces the exponent of this equation, and reduces the quantity of work necessary to effect a given compression. F. T. Gause (Am. Much., Oct. 20, 189\%), describing the operations of the Popp air-compressors in Paris, says: The greatest saving realized in compressing in a single cylinder was 33 per cent of that theoretically possible. In cards taken from the \(2000 \mathrm{H} . \mathrm{P}\). compound compressor at Quai De La Gare. Paris, the saving realized is 85 per cent of the theoretical amount. Of this amount only 8 per cent is due to cooling during compression, so that the increase of economy in the compound compressor is mainly due to cooling the air between the two stages of compression. A compression-curve with exponent 1.25 is the best result that was obtained for compression in a single cylinder and cooling with a very fine spray. The curve with exponent 1.15 is that which must be realized in a single cylinder to equal the present economy of the compound compressor at Quai De La Gare.

\section*{Horse-power required to Horse-power required to} compress and deliver one compress and deliver one cubic foot of Free Air per. monute to a given pressure with no cooling of the air during the compression; also the horse-power required, supposing the air to be mainlained at constant temperature during the compresion.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Gange- & Air not & Air constant & Gauge- & Air not cooled & Air constant temperature \\
\hline 5 & . 0196 & .018* & 5 & .0:63 & .0251 \\
\hline 10 & .0361 & .01333 & 10 & . 0606 & . 0559 \\
\hline 20 & .06:8 & . 0551 & 20 & .1483 & . 1300 \\
\hline 30 & . 0846 & . 0713 & 30 & . \(25 \% 3\) & . 2168 \\
\hline 40 & .1032 & .0843 & 40 & . 3842 & . 3138 \\
\hline 50 & . 1195 & . 0946 & 50 & .5261 & . 4166 \\
\hline 60 & . 1312 & .10:36 & 60 & . 6818 & .5266 \\
\hline \%0 & . 14 \% 6 & . 1120 & \%0 & . 8508 & . 6456 \\
\hline 80 & . 1599 & . 1195 & 80 & 1.030:2 & . 7700 \\
\hline 90 & . 1710 & .1\%61 & 90 & \(1.21 \%\) & .89:9 \\
\hline 100 & . 1815 & . 1318 & 100 & 1.4171 & 1.0291 \\
\hline
\end{tabular}

The horse-power given above is the theoretical power, no allowance being made for friction of the compressor or other losses, which may amount to 10 per cent or more.

\section*{Formula for Adiabatic Compression or Expansion of Air (or other sensibly perfect gas).}

Let air at an absolute temperature \(T_{1}\), absolute pressure \(p_{1}\), and volume \(v_{1}\) be compressed to an absolute pressure \(p_{2}\) and corresponding volume \(v_{2}\) and absoluce temperature \(T_{2}\); or let compressed air of an initial pressure, volume, and temperature \(p_{2}, v_{2}\), and \(T_{2}\) be expanded to \(p_{1}, v_{1}\), and \(T_{1}\), there being no transmission of heat from or into the air during the operation. Then the following equations express the relations between pressure, volume, and temperature (see works on Thermodynamics):
\[
\begin{array}{lll}
\frac{v_{1}}{v_{2}}=\left(\frac{p_{2}}{p_{1}}\right)^{0.71} ; & \frac{p_{2}}{p_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{1.41}, & \frac{v_{1}}{v_{2}}=\left(\frac{T_{2}}{T_{1}}\right)^{2.46} ; \\
\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{0.41} ; & \frac{T_{2}}{T_{1}^{\prime}}=\left(\frac{p_{2}}{p_{1}}\right)^{0.29} ; & \frac{p_{2}}{p_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{3.46}
\end{array}
\]

The exponents are derived from the ratio \(c p \div c v=k\) of the specific heats of air at constaut pressure and constant voluine. Taking \(k=1.406,1 \div k=\) \(0.711 ; k-1=0.406 ; 1 \div(k-1)=2.463 ; k \div(k-1)=3.463 ;(k-1) \div k=\) 0.289 .

Work of Adiabatic Compression of Air.-If air is compressed in a cylinder witnout clearance from a volume \(v_{1}\) and pressure \(p_{1}\) to a smaller volume \(v_{2}\) and higher pressure \(p_{2}\), work equal to \(p_{1} v_{1}\) is done by the external air on the piston while the air is drawn into the cylinder. Work is then done by the piston on the air, first. in compressing it to the pressure \(v_{2}\) and volume \(v_{2}\), and then in expelling the volume \(v_{3}\) from the cylinder against the pressure \(p_{2}\). If the compression is adiabatic, \(p_{1} v_{1} k=\) \(p_{2} v_{2}{ }^{k}=\) constant. \(k=1.41\).

The work of compression of 1 pound of air is
\[
\frac{p_{1} v_{1}}{k-1}\left\{\left(\frac{v_{1}}{v_{2}}\right)^{k-1}-1\right\}=\frac{p_{1} v_{1}}{k-1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right\}
\]
or
\[
2.463 p_{1} v_{1}\left\{\left(\frac{v_{1}}{v_{2}}\right)^{0.41}-1\right\}=2.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
\]

The work of expulsion is \(p_{2} v_{2}=p_{1} v_{1}\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\).
The total work is the sum of the work of compression and expulsion less the work done on the piston during admission, and it equals
\[
\left.p_{1} v_{1}\left\{\frac{k}{k-1}\right\}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right\}=3.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
\]

The mean effective pressure during the stroke is
\[
p_{1} \frac{k}{k-1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right\}=3.463 p_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
\]
\(p_{1}\) and \(p_{2}\) are absolute pressures above a vacuum in atmospheres or in pounds per square inch or per square foot.

Example. - Required the work done in compressing 1 cubic foot of air per second from 1 to 6 atmospheres, including the work of expulsion from the cylinder.
\(p_{2} \div p_{1}=6 ; 60.29--1=0.681 ; 3.463 \times 0.681=2.358\) atmospheres, \(\times 14.7=\) 34.06 ibs. per sq. in. mean effective pressure, \(\times 144=4991 \mathrm{lbs}\). per sq. ft., \(\times 1\) ft. stroke \(=4991 \mathrm{ft} .-\mathrm{lbs} ., \div 550 \mathrm{ft}\). -lbs. per second \(=9.08 \mathrm{H}\). P.

If \(R=\) ratio of pressures \(=p_{2} \div p_{1}\), and if \(v_{1}=1\) cubic foot, the work done in compressing 1 cubic foot froin \(p_{1}\) to \(p_{2}\) is in foot-pounds
\[
3.463 p_{1}\left(R^{0 \cdot 29}-1\right),
\]
\(p_{1}\) being taken in lbs. per sq. ft. For compression at the sea-level \(p_{1}\) may be taken at 14 lbs. per sq. in. \(=2016\) lbs. per sq. ft., as there is some luss of pressure due to friction of valves and passayes.

Indicator-cards from compressors in guod condition and under workingspeeds usually follow the adiabatic liue closely. A low curve indicates piston leakage. Such cooling as there may be from the cylinder-jacket and the re-expansion of the air in clearance-spaces tends to reduce the mean effective pressure, while the "camel-backs" in the expulsion-line, due to resistance to opening of the discharge-valve, tend to increase it.

Work of one stroke of a compressur, with adiabatic compression, in footpounds,
\[
W=3.463 P_{1} V_{1}\left(R^{0.29}-1\right)
\]
in which \(P_{1}=\) initial absolute pressure in lbs. per sq. ft. and \(V_{1}=\) volume traversed by piston in cubic feet.

The work done during adiabatic compression (or expansion) of 1 pound of air from a volume \(v_{1}\) and pressure \(p_{1}\) to another volume \(v_{2}\) and pressure \(p_{2}\) is equal to the mechanical equivalent of the heating (or cooling). If \(t_{1}\) is the higher and \(t_{2}\) the lower temperature, Fahr., the work done is \(c_{v} J\left(t_{1}-t_{2}\right)\) foot-pounds, \(c_{v}\) being the specific heat of air at constant volume \(=0.1689\) and \(J=\tau \sim 8, c_{v} J=131.4\).

The work during compression also equals
\[
\frac{c_{v} J}{R a} p_{1} v_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right]=2.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
\]
\(R a\) being the value of \(p v \div\) absolute temperature for 1 pound of air \(=53.3 \%\).
The work during expansion is
\[
2.463 p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]=2.463 p_{2} v_{2}\left[\left(\frac{p_{1}}{p_{2}}\right)^{0.29}-1\right]
\]
in which \(p_{1} v_{1}\) are the initial and \(p_{2} v_{2}\) the final pressures and volumes.
Compressed-air Engines, Adiabatic Expansion. - Lê̂ the inidial pressure and vomme taken into the cylinder we \(p_{\mathrm{l}}\) lbs. pei sq. ft. and \(v_{1}\) cubic feet; let expansion take place to \(p_{2}\) and \(v_{2}\) according to the adiabatic law \(p_{1} v_{1}^{1.41}=p_{2} v_{2}{ }^{1.41}\); then at the end of the stroke let the pressure drop to the back-pressure \(p_{3}\), at which the air is exhansted. Assuming no clearance, the work done by one pound of air during admission, measured above vacuum, is \(p_{1} v_{1}\), the work during expansion is \(2.463 p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]\), and the negative or back-pressure work is \(-p_{3} v_{2}\). The total work is \(p_{1} v_{1}+2.463 p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]-p_{3} v_{2}\), and the mean eff tive pressure is the total work divided by \(v_{2}\).

If the air is expanded down to the back-pressure \(p_{3}\) the total work is
\[
3.463 p_{1} v_{1}\left\{1-\left(\frac{p_{3}}{p_{1}}\right)^{0.29}\right\}
\]
or, in terms of the final pressure and volume,
\[
3.463 p_{8} v_{2}\left\{\left(\frac{p_{1}}{p_{3}}\right)^{0.29}-1\right\},
\]
and the mean effective pressure is
\[
3.463 p_{3}\left\{\left(\frac{p_{1}}{p_{3}}\right)^{0.29}-1\right\}
\]

The actual work is reduced by clearance. When this is considered, the product of the initial pressure \(p_{1}\) by the clearance volume is to be subtracted from the total work calculated from the initial volume \(v_{1}\) including clearance. (See p. 744, under "Steam-engite.")

Mean Eftective Pressures of Air Compressed Adiabatically. (AI, Mach., Mar. 10, 18y8.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(R\) & \(R^{0.29}\) & MEP from 14 lbs. Initial & \(R\) & \(R^{0.28}\) & MEP from 14 lbs. Initial. \\
\hline 1.25 & 1.067 & 3.24 & 4.75 & 1.570 & 27.5 \\
\hline 1.50 & 1.125 & 6.04 & 5. & 1.594 & 28.7 \\
\hline 1.75 & 1.176 & 8.51 & 5.25 & 1.617 & 29.8 \\
\hline 2. & 1.223 & 10.8 & 5.5 & 1.639 & 30.8 \\
\hline 2.25 & 1.265 & 12.8 & 5.75 & 1.660 & 31.8 \\
\hline 2.5 & 1.304 & 14.7 & & 1.681 & \(3 \% .8\) \\
\hline 2.75 & 1.341 & 16.4 & 6.25 & 1. 701 & 33.8 \\
\hline 3. & 1.375 & 18.1 & 6.5 & 1.720 & 34.7 \\
\hline 3.25 & 1.407 & 19.6 & 6.75 & 1.739 & 35.6 \\
\hline 3.5 & 1.438 & 21.1 & \(\%\) & 1.757 & 36.5 \\
\hline 3.75 & 1.467 & 22.5 & 7.25 & 1.775 & 37.4 \\
\hline 4. & 1.495 & 23.9 & 7.5 & 1.795 & 38.3 \\
\hline 4.25 & \(1.5 \div 1\) & 25.2 & 8. & 1.8:7 & 39.9 \\
\hline 4.5 & 1.546 & 26.4 & & & \\
\hline
\end{tabular}
\(R=\) final \(\div\) initial absolute pressure.
\(M E P=\) mean effective pressure, lbs. per sq. in., based on 14 lbs . initial.
Compound Compression, with Air cooled between the Two Cylinders. (Am. Mach., Jarch 10 and 31, 1898.)-W Wrk in low-pressure cylinder \(=W_{1}\), in high-pressure cylinder \(W_{2}\). Total work
\[
W_{1}+W_{2}=3.46 P_{1} V_{1}\left[r_{1} \cdot 29+R \cdot 29 r_{1}-\cdot 29-2\right] .
\]
\(r_{1}=\) ratio of pressures in 1. p. cyl., \(r_{2}=\) ratio in h. p. cyl., \(R=r_{1} r_{2}\). When \(r_{1}=r_{2}=\sqrt{R}\), the sum \(W_{1}+W_{2}\) is a minimum. Hence for a given total ratio of pressures, \(R\), the work of compression will be least when the ratios of the pressures in each of the two cylinders are equal.

The equation may be simplified, when \(r_{1}=\sqrt{R}\), to the following:
\[
W_{1}+W_{2}=6.92 P_{1} V_{1}\left[R^{0.145}-1\right] .
\]

Dividing by \(V_{1}\) gives the mean effective pressure reduced to the low-pressure cylinder \(M E P=6.9: 2 P_{1}\left[R^{0 \cdot 145}-1\right]\).

In the above equation the compression in each cylinder is supposed to be adiabatic, but the intercooler is supposed to reduce the temperature of the air to that at which compression began.
Mean Effective Pressures of Air Compressed in Two Stages, asnuming the Intercooler to Reduce the Temperature to That at which Compression Began. (Am. Much., Mar. 31, 1898.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(R\) & \(R^{0.145}\) & from 14 lbs. Initial. & Ultimate Saving by Com-pounding, \% & \(R\) & \(R^{0.145}\) & \[
\begin{aligned}
& M E P \\
& \text { from } \\
& 14 \mathrm{lbs} . \\
& \text { Initial. }
\end{aligned}
\] & Ultimate Saving by Com-pounding, \% \\
\hline 5.0 & 1.263 & 25.4 & 11.5 & 9.0 & 1.375 & 36.3 & \\
\hline 5.5 & 1.280 & 27.0 & 12.3 & 9.5 & 1.386 & 87.3 & \\
\hline 6.0 & 1.296 & 28.6 & 12.8 & 10 & 1.396 & 38.3 & \\
\hline 6.5 & 1.312 & 30.1 & 13.2 & 11 & 1.416 & 40.2 & \\
\hline 7.0 & 1.326 & 31.5 & 13.7 & 12 & 1.434 & 41.9 & \\
\hline \%.5 & 1.336 & \(3 \cdot .8\) & 14.3 & 13 & 1.451 & 43.5 & \\
\hline 8.0 & 1.352 & 34.0 & 14.8 & 14 & 1.466 & 45.0 & \\
\hline 8.5 & 1.364 & 35.2 & & 15 & 1.481 & 46.4 & \\
\hline
\end{tabular}

\footnotetext{
\(R=\) final \(\div\) initial absolute pressure.
}
\(M E P=\) mean effective pressure lbs. per sq. in. based on 14 lbs . absolute initial pressure reduced to the low-rressure cylinder.
To Find the Index of the Curve of an Air-diagram.If \(P_{1} V_{1}\) be pressure and volunte at one point on the curve, and \(P V\) the pres. sure and volume at another point, then \(\frac{P}{P_{1}}=\left(\frac{V_{1}}{V}\right)^{x}\), in which \(x\) is the index to be found. Let \(P \div P_{1}=R\), and \(V_{1} \div V=r\); then \(R=r^{x} \log R=x \log r\), whence \(x=\log R \div \log r\).

Table for Adiabatic Compression or Expansion of Air.
(Proc. Inst. M.E., Jan. 1881, p. 123.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Pressure.} & \multicolumn{2}{|l|}{Absolute Temperature.} & \multicolumn{2}{|c|}{Volume.} \\
\hline Ratio of Greater to Less. (Expansion.) & Ratio of Less to Greater. (Compression.) & Ratio of Greater to Less. (Expansion.) & Ratio of Less to Greater. (Compression.) & Ratio of Greater to Less. (Compression.) & Ratio of Less to Greater. (Expansion.) \\
\hline 1.2 & . 833 & 1.054 & . 948 & 1.138 & . 879 \\
\hline 1.4 & . 714 & 1.102 & . 907 & 1.270 & . 788 \\
\hline 1.6 & . 625 & 1.146 & . 873 & 1.396 & . 116 \\
\hline 1.8 & . 556 & 1.186 & . 843 & 1.518 & . 659 \\
\hline 2.0 & . 500 & 1.222 & . 818 & 1. 636 & . 611 \\
\hline 2.2 & . 454 & 1.257 & . 796 & 1.750 & . 571 \\
\hline 2.4 & . 417 & 1.289 & . 766 & 1.862 & . 537 \\
\hline 2.6 & . 385 & 1.319 & . 758 & 1.971 & . 507 \\
\hline 2.8 & . 357 & 1.348 & . 742 & 2.077 & . 481 \\
\hline 3.0 & . 333 & 1.375 & . 727 & 2.182 & . 458 \\
\hline 3.2
3.4 & .312
.294 & 1.401
1.426 & . 714 & 2.284
2.384 & .438
.419 \\
\hline 3.4
3.6 & . 294 & 1.426 & . 701 & 2.384 & . 419 \\
\hline 3.8 & . 263 & 1.4:3 & . 679 & 2.580 & . 388 \\
\hline 4.0 & . 250 & 1.495 & . 669 & \(2.6{ }^{6} 6\) & . 374 \\
\hline 4.2 & . 238 & 1.516 & . 660 & 2. 710 & . 361 \\
\hline 4.1 & . 227 & 1.537 & . 651 & 2.863 & . 349 \\
\hline 4.6 & . 217 & 1.557 & . 642 & 2.955 & . 338 \\
\hline 4.8 & . 208 & 1.5:6 & . 635 & 3.046 & . 328 \\
\hline 5.0 & . 200 & 1.595 & . 627 & 3.135 & . 319 \\
\hline 6.0 & . 167 & 1.681 & . 595 & 3569 & . 280 \\
\hline 7.0
8.0 & . 143 & 1. 1.858 & . 569 & 3.981
\(4.3 \hat{7}\) & . 251 \\
\hline 8.0
9.0 & . 1111 & 1.828
1.891 & . 5429 & 4.377
4.759 & . 228 \\
\hline 10.0 & . 100 & 1.950 & . 513 & 5.129 & . 195 \\
\hline
\end{tabular}

Mean Effective Pressures for the Compression Part only of the Stroke when compressing and delivering Air from one Atmosphere to given Gauge-pressure in a Single Cylinder. (f. Richards, Am. Mach., Dec. 14, 1893.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Gaugepressure. & Adiabatic Compression & Isothermal Compression & Gaugepressure. & Adiabatic Compression. & Isothermal Compression. \\
\hline 1 & . 44 & . 43 & 45 & 13.95 & 12.62 \\
\hline 2 & . 96 & . 95 & 50 & 15.05 & 13.48 \\
\hline 3 & 1.41 & 1.4 & 55 & 1598 & 14.3 \\
\hline 4 & 1.86 & 1.84 & 60 & 16.89 & 15.05 \\
\hline 5 & 2.26 & 2.22 & 65 & 17.88 & 15.76 \\
\hline 10 & 4.26 & 4.14 & 70 & 18.74 & 1643 \\
\hline 15 & 5.99 & 5.77 & 75 & 19.54 & 17.09 \\
\hline 20 & 7.58 & 7.2 & 80 & 20.5 & 17.7 \\
\hline 25 & 9.05 & 8.49 & 85 & 21.22 & 18.3 \\
\hline 30 & 10.39 & 9.66 & 90 & 22 & 18.87 \\
\hline 35 & 11.59 & 10.72 & 9. & 22.77 & 194 \\
\hline 40 & 12.8 & 11.7 & 100 & 23.43 & 19.92 \\
\hline
\end{tabular}

The mean effective pressure for compression only is always lower than the mean effective pressure for the whole work

\section*{Mean and Terminal Pressures of Compressed Air used Expansively for Gauge-pressures from 60 to 100 lbs.}
(Frank Richards, Am. Much., April 13, 1893.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Initial Pressure. & \multicolumn{2}{|r|}{60.} & \multicolumn{2}{|r|}{70.} & \multicolumn{2}{|l|}{80.} & \multicolumn{2}{|l|}{90.} & \multicolumn{2}{|l|}{100.} \\
\hline  &  &  &  &  &  &  &  &  &  &  \\
\hline . 25 & 23.6 & 10.65 & 28.74 & 12.07 & 33.89 & 13.49 & 3904 & 14.91 & 44.19 & . 33 \\
\hline . 30 & 28.9 & 13.77 & 34.75 & . & 40.61 & 2.44 & 46.46 & 4.24 & 53.32 & 6.11 \\
\hline 1/3 & \(3 \% .13\) & . 96 & 38.41 & 3.09 & 44.69 & 5.22 & 50.98 & 7.35 & 5\%.26 & \\
\hline . 3 & 33.66 & 2.33 & 40.15 & 4.38 & 46.64 & 6.66 & 53.13 & 8.95 & 59.62 & 11.23 \\
\hline & 3i. 85 & 3.85 & 42.63 & 6.36 & 49.41 & 7.88 & 56.2 & 11.39 & 62.98 & 13.89 \\
\hline . 40 & 37.93 & 564 & 44.99 & 8.39 & 52.05 & 11.14 & 59.11 & 13.88 & 66.16 & 16.64 \\
\hline . 45 & 41.75 & 10.71 & 4931 & 12.61 & 56.9 & 15.86 & 6445 & 19.11 & 72.02 & 22.36 \\
\hline . 50 & 45.14 & 13.26 & 53.16 & 17. & 61.18 & 20.81 & 69.19 & \(\stackrel{24}{ }\). 6 & TT. 21 & 28.33 \\
\hline . 60 & 50.75 & 21.53 & 59.51 & 26.4 & 68.28 & 31.27 & 77.05 & 36.14 & 85.82 & 41.01 \\
\hline 5/8 & 51.92 & 23. 69 & 60.84 & 28.85 & 69. 16 & 34.01 & 78.69 & 39.16 & 8 8 .61 & 44.32 \\
\hline & 53.67 & 27.94 & 6283 & 33.03
3644 & 71.99 & 38.68
42.49 & 81.14
82 & 44.33
48.54 & 90.32. & 49.97 \\
\hline \(\ldots\) & 56.52 & 30.39 & 64.25 & 36.44
41.68 & 73.59 & 48.49
48.35 & 85.12 & 48.54 & 92.22 & 54.59
61.69 \\
\hline . 80 & \(5 \% .79\) & 39.78 & \(6 \sim .5\) & 47.08 & 77.2 & 54.38 & 86.91 & 61.69 & 96.61 & 68.9 \\
\hline 8 & 59.15 & \(4 \sim .14\) & 69.03 & 55.43 & 7893 & 63.81 & 88.81 & Ti. & \(9 \mathrm{Sa} \cdot \tilde{\sim}\) & 80. \\
\hline 90 & 59.46 & 49.65 & 69.38 & 58.2 亿 & 7931 & 66.89 & 89.24 & 75.52 & \(99.1 \%\) & 87.8 \\
\hline
\end{tabular}

The pressures in the table are all gauge-pressures except those in italics, which are absolute pressures (above a vacuum).

Air-compressors. Ingersoll-Sergeant Drill Co.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CLASS H. DUPLEX.} & \multicolumn{4}{|l|}{CLASS H. DUPLEX. Compound Air-cylinders.} \\
\hline Size, inches. & Revs. per minute. & \[
\left|\begin{array}{c}
\text { Cu. Ft. } \\
\text { Free } \\
\text { Air per } \\
\text { minute }
\end{array}\right|
\] & Air-pressure, lbs. per sq. in. & Size, inches. & \[
\begin{gathered}
\text { Revs. } \\
\text { per } \\
\text { minute. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Cu. Ft. } \\
\text { Free } \\
\text { Air per } \\
\text { minnte. }
\end{gathered}
\] & Air-pressure, lbs. per sq. in. \\
\hline \multirow[t]{14}{*}{\[
\begin{array}{r}
6 \times 6 \times 6 \\
6 \times 8 \times 6 \\
6 \times 10 \times 6 \\
8 \times 8 \times 8 \\
8 \times 10 \times 8 \\
8 \times 1 \geqslant 8 \\
8 \times 14 \times 8 \\
10 \times 10 \times 10 \\
10 \times 12 \times 12 \\
10 \times 14 \times 10 \\
10 \times 16 \times 10 \\
12 \times 12 \times 12 \\
12 \times 14 \times 12 \\
12 \times 16 \times 12 \\
12 \times 15 \times 12
\end{array}
\]} & 150 & \multirow[t]{2}{*}{56
102} & \multirow[t]{2}{*}{60-100
\(30-60\)} & \multirow[t]{2}{*}{} & 150 & 80 & 80-100 \\
\hline & \multirow[t]{2}{*}{'6} & & & & & 210 & \\
\hline & & \multirow[t]{2}{*}{162
138} & 15-30
\(60-100\) & \(10 \times 16 \& 10 \times 10\) & " & 372 & " \\
\hline & \[
\begin{aligned}
& 16 \\
& \\
& \hline
\end{aligned}
\] & & 60-100 & \(12 \times 18 \& 12 \times 12\) & " & 519 & " \\
\hline & \multirow[t]{2}{*}{"6} & \[
\begin{aligned}
& 214 \\
& 310
\end{aligned}
\] & \(30-60\)
\(20-30\) & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CLASS A. PISTON INLET. Straifht Line.}} \\
\hline & & \(4 \cdot 7\) & 10-20 & & & & \\
\hline & 6 & 268 & \%0-100 & & 160 & \(17 \%\) & 100 \\
\hline & "6 & 388
530 & 40-i0 & \(1: 2 \times 1: 1 / 4 \times 14\) & 155 & 285 & 100 \\
\hline & " & \({ }^{\text {r }}\) & 15-25 & \(14 \times 1+1 / 4 \times 18\) & 120 & 38. & I \\
\hline & " & 474 & 80-100 & \(16 \times 161 / 4 \times 18\) & 190 & 498 & ، \\
\hline & " & 640 & 50-80 & \(18 \times 181 / 4 \times 24\) & 94 & 657 & " \\
\hline & " & \(8: 0\) & 30-50 & \(20 \times 2(1) 4 \times 24\) & 94 & 809 & " \\
\hline & '6 & 1059 & 15-30 & \(22 \times 2 \cdot 21 / 4 \times 24\) & 84 & -960 & "، \\
\hline & & & & \(24 \times 241 / 4 \times 24\)
\(24 \times 261 / 4 \times 24\) & 80 & \(12: 5\) & 80 \\
\hline
\end{tabular}

The size first given is the diam. of the steam cylinder, then the diam. of the air-cylinder, and last the stroke. The cu. ft. of free air per miuute is the theoretical quantity. The air-pressure is by gauge.

Meyer cut off valve-gears are on steam-cylinders 14 in , and larger in Class A, and on 12-in. in Class H .

\section*{Standard Air－compressors driven by Steam．}

\section*{（Norwalk Iron Works Co．）}

In the following list the large air－cylinder gives the capacity of the ma－ chine．For actual capacity，allowance of 10 per cent may be made for contingencies．The small piston only encounters the pressure of the final compression．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  &  &  \\
\hline 8 & 10 & 5 & 8 & 200 & 116 & 2 & 21／2 & 2 & \(1 / 2\) & 15 \\
\hline 10 & 12 & 63／4 & 10 & 190 & 207 & 21／2 & 3 & 21／2 & \(3 / 4\) & 28 \\
\hline 14 & 16 & \(91 / 2\) & 14 & 150 & 427 & 3 & 4 & ， & \(1{ }^{4}\) & 55 \\
\hline 20 & 24 & 131\％ & 20 & 110 & 960 & 5 & 6 & 5 & 11／4 & 125 \\
\hline 26 & 30 & 171／2 & 24 & ． 90 & 1659 & 6 & 8 & 6 & \(11 / 4\) & 215 \\
\hline 32 & 36 & 2112 & 30 & 80 & 2686 & 7 & 10 & 8 & 1112 & 350 \\
\hline
\end{tabular}

Double＝compound Compressors．
（Norwalk Iron Works Co．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Air－ cylin－ ders， Diam． &  &  & Revs． per min． &  & Air－ cylin－ ders， Diam． & Steam－ cylin－ ders， Diam． &  & Revs． per min． &  \\
\hline 10\＆ 5 & 120 & 12 & 190 & 207 & 20\＆ 1 & \(14 \& 22\) & 24 & 110 & 960 \\
\hline 12\＆ 5 & 7112 & 12 & 190 & 298 & \(22.2131 / 2\) & \(14 \& 22\) & 24 & 110 & 1160 \\
\hline 14 \＆ \(91 / 2\) & 10 \＆ 16 & 16 & 150 & 427 & 26\＆1\％ & 18 \＆ 28 & 30 & 90 & 1659 \\
\hline 16 \＆ \(91 / 2\) & 10 \＆ 16 & 16 & 150 & 558 & \(28 \times 17\) & 18 \＆ 28 & 30 & 90 & 1924 \\
\hline \(20 \& 131 / 2\) & \(14 \quad 2\) & 20 & 120 & 8 \％2 & \(32 \& 211 / 2\) & 22 \＆ 35 & 36 & 80 & 268 \\
\hline
\end{tabular}

Mountain or High－altitude Compressors．
（Norwalk Iron Works Co．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{At Sea－ level．} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { At } 2000 \\
\text { feet. }
\end{gathered}
\]} & \multicolumn{2}{|l|}{At 6000 feet．} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { At } 10,000 \\
& \text { feet. }
\end{aligned}
\]} \\
\hline & & & & &  &  &  &  & \[
\begin{aligned}
& \text { ※్ల్ } \\
& \text { だ } \\
& \text { だ }
\end{aligned}
\] &  & ్ &  \\
\hline 12 & 12 & & 10 & 190 & 99 & 35 & 280 & 34 & 4 & 22 & 14 & 30 \\
\hline 16 & 16 & \(91 / 2\) & 14 & 150 & 558 & 70 & 524 & 68 & 462 & 64 & 405 & 60 \\
\hline 20 & 20 & & 18 & 1：0 & 870 & 110 & 819 & 107 & \(7 \cdot 2\) & 100 & 634 & 4 \\
\hline 2 & 24 & \(131 / 2\) & 20 & 110 & 1160 & 145 & 1090 & 140 & 960 & 132 & 843 & 12 \\
\hline 26 & 30 & 171／2 & 24 & 90 & 1659 & 215 & 1560 & 207 & 1373 & 195 & 1200 & 18 \\
\hline
\end{tabular}

As the capacity decreases in a greater ratio than the power necessary to compress，it follows that operations at a high altitude are more expensive than at sea－level．At 10,000 feet this extra expense amounts to over 20 per cent．
Compressors at High Altitudes．（Ingersoll－Sergeant Drill Cn．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{10002000} & \multicolumn{2}{|l|}{30004000} & 5000 & \multicolumn{2}{|l|}{6000－000} & 8000 & 9000 & \multirow[t]{2}{*}{10000} \\
\hline Barometer，in．mercury & 30.0 & & 27.8 & 26.8 & 25.8 & 24. & 23.9 & 23.0 & 22.1 & 21.3 & \\
\hline 1 bs & 14.7 & 142 & 13.7 & 13.2 & 12.1 & 12. & & 1.3 & 10.9 & 10.5 & 10 \\
\hline Air delivered，\％ & 100 & 9 9 & 93 & 90 & 87 & 84 & & & 76 & 4 & ro \\
\hline Loss of capacit & 0 & 3 & 7 & 10 & 13 & 10 & & & 24 & \(2 \pi\) & \\
\hline Decreased power re－ quired，\％．．．．．．．．．．．．． & 0 & ． 8 & 3.5 & 5.2 & 6.9 & 8.5 & & & 13.1 & 14.6 & 16 \\
\hline
\end{tabular}

\section*{Rand Drill Co.'s Air-compressors.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Class.} & \multirow{3}{*}{Dimensions of Aircylinders ill inches.} & \multirow[t]{3}{*}{} & \multicolumn{7}{|l|}{Theoretical Volume of Air delivered in cubic feet per minute, at Sea-level.} \\
\hline & & & \multirow{2}{*}{Free.} & \multicolumn{6}{|l|}{Compressed to a Gauge-pressure of -} \\
\hline & & & & 10 & 20
lbs. & 40
l
bs. & 60
lus. & 80
lbs. & 100
lbs. \\
\hline \multirow[b]{3}{*}{B} & \(10 \times 16\) & 100 & 145.44 & 86.56 & 61.61 & 39.08 & 28.62 & 22.57 & 18 \\
\hline & D* & 100 & 290.88 & 173.12 & 123.23 & 78.17 & 57.24 & 45.15 & 37.2 \\
\hline & \{ & 85 & 3333.20 & 198.31 & 141.10 & 89.51 & 65.54 & 51.93 & 42.6 \\
\hline \multirow{8}{*}{\[
\underset{\substack{\text { and } \\ \text { and }}}{ }
\]} & & 75 & 656.83 & 396.61
331.39 & 235.89 & 149.61 & \({ }^{109.5}\) & 103.86
86.43 & 85.3 \\
\hline & \(161 / 2 \times 30\) & 75 & 1113.66 & 662. \(\uparrow 9\) & 471.79 & 299.28 & 219.15 & \(1{ }^{12} 2.86\) & \\
\hline & & 75 & 662.68 & 394.39 & 280.73 & 178.08 & 130.40 & 102.86 & 84.9 \\
\hline & D & 75 & 13\%5.36 & 788.78 & 561.46 & 356.17 & -260.81 & 205. 22 & 169.8 \\
\hline & S & 50 & 8T2. 66 & 519.36 & 36969 & 234.51 & 1i1. 72 & 135.46 & 111.5 \\
\hline & & 50 & 1745.32 & 1038.72 & 739.38 & 469.03 & 343.45 & 220.92 & 223.6 \\
\hline & S & 40 & 1368.31 & 814.36 & 5ヶ9.67 & 367. T \(^{2}\) & 269.24 & 21: 40 & \(1 i 5.3\) \\
\hline & D & 40 & 2736.68 & 1628.71 & 1159.34 & 735.45 & 538.54 & 424.80 & 350.6 \\
\hline & \(32 \times 48\) & 40 & 178\%.2: & 1063.65 & 757.12 & 480.29 & 351.70 & 2T\%.42 & 229.0 \\
\hline and & \(32 \times 18\) D & 40 & 35\%7.44 & 2127.30 & 1514.24 & 960.58 & \%03.40 & 554.85 & 458.1 \\
\hline and & \(\left\{\begin{array}{l}\text { S } \\ \text { S }\end{array}\right.\) & 35 & 1954.77 & 1163.37 & 828.10 & 525.32 & 384.6a & 30:3.43 & 250.5 \\
\hline B & D & 35 & 3909.55 & 2326.13 & 1656.20 & 1050.63 & 769.34 & 606.86 & 501.0 \\
\hline \multirow[t]{2}{*}{Geared} & \(36 \times 60\) & 30 & 2120.61 & 1262.0 \({ }^{\text {a }}\) & 898.35 & 572.07 & 417.72 & \(3 \div 9.16\) & 2\% 8 \\
\hline & & 30
120 & 4241.2: & \(25 \% 4.14\) & 1796.70 & 1144.14 & 835.44 & 658.32 & 545.6 \\
\hline \multirow{6}{*}{C} & \(10 \times 1\) & 120 & 83.78
139.95 & 49.86 & \(\begin{array}{r}35.49 \\ \hline 9.29 \\ \hline 8.8\end{array}\) & \({ }_{37}^{22.51}\) & 16.49
27 & 13.00 & 17.9 \\
\hline & \(12 \times 16\) & 100 & 209.44 & 124.65 & 88.73 & 56.28 & 41.22 & 3:.51 & 26.6 \\
\hline & \(14 \times\) & 95 & 3 \%2.40 & \(2 \cdot 1.64\) & 15\%.70 & 100.04 & 73.25 & 58.04 & 47.6 \\
\hline & & 90 & 502.66 & 299.15 & 212.94 & 13508 & 98.92 & 78.0:3 & 64. \\
\hline & \(171 / 2 \times\) & 90 & 601.29 & 357.85 & 254.95 & 161.60 & 11833 & 93.33 & T7.0 \\
\hline & \(120 \times 30\). & 80 & 8it. 67 & 519.36 & 369.69 & 234.52 & 171.73 & 135 & 11.8 \\
\hline
\end{tabular}
* S, Single; D, Duplex.

Practical Results with Compressed Air.-Compressed-air System "t the Chupon Mines. Iron Mountain, Mich.-These mines are three miles from the falls which supply the power. There are four turbines at the falls, one of 1000 horse-power and three of 900 horse-power each. The pressure is 60 pounds at \(6 u^{\circ}\) Fahr. Each turbine runs a pair of compressors. The pipe to the mines is 24 inches in diameter. The power is applied at the mines to Corliss engines, runniug pumps, hoists, etc., and direct to rockdrills.

A test made in 1888 gave 1430.27 horse-power at the compressors, and 390.17 horse-power as the sum of the horse-power of the engines at the mines. Therefore, only \(27 \%\) of the power generated was recovered at the mines. This includes the loss due to leakage and the loss of energy in heat, but not the friction in the engines or compressors. (F. A. Pocock, Trans. A.I. M. E., 1890.)
W. L. Saunders (Jour. F. I. 1892) says: "There is not a properly designed compressed-air installation in operation to-day that loses over \(5 \%\) by transmission alone. The question is altogether one of the size of pipt; and if the pipe is large enough, the friction loss is a small item. At the Chapin Mines, where power is transmitted three miles, the loss of pressure as shown by the gauge is only \(: 2\) lbs., and this is the loss which may be laid strictly to transmission.
* The loss of power in common practice, where compressed air is used to drive machinery in mines and tunnels, is about \(i 0 \%\). I refer to cases where common American air-compressors are used, and where the air is transmitted far enough to luse its heat of compression and is exhausted withont reheating. In the best practice, with the best air-compressors, and without reheating, the loss is about \(60 \%\).
"These losses may be reduced to a point as low as \(20 \%\) by combining the best sy'stems of reheating with the best air-compressors."

Prof. Kennedy says compressed air transmissin system is now being carried on, on a large commercial scale, in such a fasion that a small motor four miles away from the central station can indicate in round numbers 10 horse-power, for 20 horse-power at the station itself, allowing for the value of the coke used in heating the air.
The limit to successful rehrating lies in the fact that air-engines cannot work to advantage at temperatures over \(350^{\circ}\).
The efficiency of the common system of reheating is shown by the results obrained with the Popp system in Paris. Air is admitted to the reheater at about \(83^{\circ}\). and passes to the engine at about \(315^{\circ}\), thus being increased in volume about \(4 \% \%\). The air used in Paris is about 11 cubic feet of free air per minute per horse-power. The ordinary practice in America with cold air is from 15 to 25 cubic feet per minute per horse-power. When the Paris engines were worked without reheating the air consumption was increased to about 15 cubic feet per horse-power per minute. The amount of fuel consumed during reheating is trifling.

Efficiency of Compressed-air Engines. - The efficiency of an air-ellgine, that is, the percentage which the power given out by the air-engine bears to that required to compress the air in the compressor, depends on the loss by friction in the pipes, valves, etc., as well as in the engine itself. This question is treated at length in the catalogue of the Norwalk lron Works Co., from which the following is condensed. As the friction increases the most economical pressure increases. In fact, for any given friction in a pipe, the pressure at the compressor must not be carried below a certain limit. The following table gives the lowest pressures which should be used at the compressor with varying amounts of friction in the pipe:
\begin{tabular}{lrrrrrrrrrr} 
Friction, lbs. .......... & 2.9 & 5.8 & 8.8 & 11.7 & 14.7 & 17.6 & 20.5 & 23.5 & 26.4 & 29.4 \\
Lhs. at Compressor... & 20.5 & 29.4 & 38.2 & 47. & 52.8 & 61.7 & 70.5 & 76.4 & 82.3 & 88.2 \\
Efficiency \%. ........ & 70.9 & 64.5 & 60.6 & 57.9 & 55.7 & 54.0 & 52.5 & 51.3 & 50.2 & 49.2
\end{tabular}

An increase of pressure will decrease the bulk of air passing the pipe and its velocity. This will decrease the loss by friction, but we subject ourselves to a new loss, i.e. the diminishing efficiencies of increasing pressures. Yet as each cubic foot of air is at a higher pressure and therefore carries more power, we will not need as many cubic feet as before, for the same work. With so many sources of gain or loss, the question of selecting the proper pressure is not to be decided hastily.

The losses are, first, friction of the compressor. This will amount ordinarily to 15 or 20 percent, and cannot probably be reduced below 10 per cent. Second, the loss occasioned by pumping the air of the engine-room, rather than the air drawn from a cooler place. This loss varies with the season and amounts from 3 to 10 per cent. This can all be saved. The third loss, or series of losses, arises in the compressing cylinder, viz., insufficient supply, difficult discharge, defective cooling arrangements, poor lubrication, etc. The fourth loss is found in the pipe. This loss varies with the situation, and is subject to somewhat complex influences. The fifth loss is chargeable to fall of temperature in the cylinder of the air-engine. Losses arising from leaks are often serious.

Air should be drawn from outside the engine-room, and from as cool a place as possible. The gain amounts to one per cent for every five degrees that the air is taken in lower than the temperature of the engine-room. The inlet conduit should have an area at least \(50 \%\) of the area of the air: piston, and should be made of wood, brick, or other non-conductor of heat.

Discharge of a compressor having an intake capacity of 1000 cubic feet pur minute, and volumes of the discharge reduced to cubic feet at atmospheric pressure and at temperature of 62 degrees Fahrenheit:


Requirements of Rock-drills Driven by compressed
Air. (Norwalk lron Works Co. - The speed of the drill, the pressure of air and the nature of the rock affect the consumption of power of rockdrills.

A three-inch drill using air at 30 lbs. pressure made 200 blows per minnte and consumed the equivalent of 64 cubic feet of free air per minute. The same drill, with air of 58 lbs pressure, made 450 blows per minute and consumed 160 cubic feet of free air per minute. At Hell Gate different
machines doing the same work used from 80 to 150 cubic feet free air per minute.

An average consumption may be taken generally from 80 to 100 cubic feet per minute. according to the nature of the work.

The Popp Compressed-air System in Paris.-A most extensive system of distribution of power by means of compressed air is that of M. Popp, in Paris. One of the central stations is laid ont for 24,000 horsepower. For a very complete description of the system, see Engineering, Feb. 15, June 7, :21, and 28, 1889, and March 13 and ( 2 '), April 10, and May 1. 1891. Also Proc. Inst. M. E., July, 1889. A condensed description will be formd in Modern Mechanism. p. 12.

Utilization of Compressed Air in Small Motors. - In the earliest stages of the Popp system in Paris it was recognized that no goor results could be obtained if the air were allowed to expand direct into the motor; not only did the formation of ice due to the expansion of the air rapidly accumulate and choke the exhaust, but the percentage of useful work obtained, compared with that put into the air at the central station, was so small as to render commercial results hopeless.

After a number of experiments M. Popp adopted a simple form of castiron stove hned with fire-clay, heated either by a gas jet or by a small coke fire. This apparatus answered the desired purpose until some better arravgement was perfected, and the type was accordingly adopted throughout the whole system. The economy resulting from the use of an improved form was very marked, as will be seen from the following table.

Efficiency of Air-heating Stoves.
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Cast-iron Box Stoves.} & Wroughtiron Coiled Tubes. \\
\hline Heating surface, sq. ft. & 14 & 14 & 46.3 \\
\hline Air heated per hour, cu. ft & 20,342 & 11,054 & 38,428 \\
\hline Temp. of air admitted to oven, deg. F.......... & 45 & 45 & 41 \\
\hline " "، "* at exit, deg. F..... . ........... & 215 & 364 & \({ }^{347}\) \\
\hline Total heat absorbed per hour, calories... & 17,900 & 17,200 & 39,200 \\
\hline Do. per sq. ft . of heating surface per hour, cals & 1,278 & 1,228 & 830 \\
\hline Do. per lb. of coke................. ... ......... & 2,032 & 2,058 & 2,545 \\
\hline
\end{tabular}

The results given in this table were obtained from a large number of trials. From these trials it was found that more than \(\% 0 \%\) of the total number of calories in the fuel employed was alusorbed by the air and transformed into useful work. Whether gas or coal be employed as the fuel, the amount required is so small as to be scarcely worth consideration; according to the experiments carried out it does not exceed 0.2 lb . per horse-power per hour, but it is scarcely to be expected that in regular practice this quantity is not largely exceeded. The efficiency of fuel consumed in this way is at least six times greater than when utilized in a boiler and stean-engine.

According to Prof. Riedler, from \(15 \%\) to \(20 \%\) above the power at the central station can be obtained by means at the disposal of the power users, and it has been shown by experiment that by heating the air to \(480^{\circ} \mathrm{F}\). an increased efficiency of \(30 \%\) can be obtained.

A large number of motors in use among the subscribers to the Compressed Air Company of Paris are rotary engines developing 1 horse-power and less. and these in the early times of the industry were very extravagant in their consumption. Small rotary engines, working cold air without expansion. used as high as \(23: 30 \mathrm{cu}\). ft. of air per brake horse-power per hour, and with heated air \(16: 4 \mathrm{cu}\). ft. Working expansively, a 1 horsepower rotary engine used 1469 cn . ft . of cold air, or \(960 \mathrm{cu} . \mathrm{ft}\). of heated air, and a \(\because\)-horse-power rotary ellgine \(1059 \mathrm{cu} . \mathrm{ft}\). of cold air, or 847 cu . ft . of air, heated to about \(50^{\circ} \mathrm{C}\).

The efficiency of this type of rotary motors, with air heated to \(50^{\circ} \mathrm{C}\)., may now be assumed at \(43 \%\). With such an efficiency the use of small motors in many industries becomes possible, while in cases where it is necessary to have a constant supply of cold air economy ceases to be a matter of the first importance.

Tests of a small Riedinger rotary engine, used for driving sewing-machines and indicating about \(0.1 \mathrm{H} . \mathrm{P}\). showed an air-consumption of \(13 \% \tilde{\sim} \mathrm{cu} . \mathrm{ft}\). per
H.P. per hour when the initial pressure of the air was 86 lbs . per sq.in. and its temperature \(54^{\circ} \mathrm{F}\)., and \(988 \mathrm{cu} . \mathrm{ft}\). when the air was heated to \(338^{\circ} \mathrm{F}\)., its pressure being \(72^{\circ} \mathrm{lbs}\). With a one-half horse-power variable-expansion rotary engine the air-consumption was from 800 to 900 cu .ft. per H.P. per hour for initial pressures of 54 to 85 lbs . per sq. in. with the air heated from \(336^{\circ}\) to \(388^{\circ} \mathrm{F}\)., and 1143 cu . ft. with cold air, \(46^{\circ} \mathrm{F}\)., and an initial pressure of 72 lbs. The volumes of air were all taken at atmospheric pressure.
Trials made with an old single-cylinder 80-horse-power Farcot steam-en gine, indicating 72 horse-power, gave a consumption of air per brake horsepower as low as 465 cu . ft. per hour. The temperature of admission was \(320^{\circ} \mathrm{F}\)., and of exhaust \(95^{\circ} \mathrm{F}\).

Prof. Elliott gives the following as typical results of efficiency for various systems of compressors and air-motors:

Simple compressor and simple motor, efficiency ............... 39.1\%
Compound compressor and simple motor, " \({ }_{6}\).................. 44.9
Triple compressor and triple motor,
The efficiency is the ratio of the indicated horse-power in the motor cylinders to the indicated horse-power in the steam-cylinders of the compressor. The pressure assumed is 6 atmospheres absolute, and the losses are equal to those found in Paris over a distance of 4 miles.

\section*{Summary of Efficiencies of Compressed-air Transmission at Paris, between the Central Station at St. Fargeau and a 10-horse-power Fiotor Working with Pressure Reduced to \(41 / 2\) Atmospheres.}
(The figures below correspond to mean results of two experiments cold and two heated.)
1 indicated horse-power at central station gives 0.845 indicated horse-power in compressors, and corresponds to the compression of 348 cubic feet of air per hoir from atmospheric pressure to 6 atmospheres absolute. (The weight of this air is about 25 pounds.)
0.845 indicated horse-power in compressors delívers as much air as will do 0.52 indicated horse-power in adiabatic expansion after it has fallen in temperature to the normal temperature of the mains.
The fall of pressure in mains between central station and Paris (say 5 kilometres) reduces the possibility of work from \(0.5 \%\) to 0.51 indicated horsepower.

The further fall of pressure through the reducing valve to \(41 / 2\) atmospheres (absolute) reduces the possibility of work from 0.51 to 0.50 .
Incomplete expansion, wire-drawing, and other such causes reduce the actual indicated horse-power of the motor from 0.50 to 0.39 .

By heating the air before it enters the motor to about \(320^{\circ} \mathrm{F}\)., the actual indicated horse-power at the motor is, however, increased to 0.54 . The ratio of gain by heating the air is, therefore, \(0.54 \div 0.39=1.35\).
In this process additional heat is supplied by the combustion of about 0.39 pounds of coke per indicated horse-power per hour, and if this be taken into account, the real indicated efficiency of the whole process becomes 0.47 instead of 0.54 .

Working with cold air the work spent in driving the motor itself reduces the available horse-power from 0.39 to 0.26 .
Working with heated air the work spent in driving the motor itself reduces the available horse-power from 0.54 to 0.44 .
A summary of the efficiencies is as follows :
Efficiency of main engines 0.845 .
Efficiency of compressors \(0.52 \div 0.845=0.61\).
Efficiency of transmission through mains \(0.51 \div 0.52=0.98\).
Efficiency of reducing valve \(0.50 \div 0.51=0.98\).
The combined efticiency of the mains and reducing valve between 5 and \(41 / 2\) atmospheres is thus \(0.98 \times 0.98=096\). If the reduction had been to 4 , \(31 / 2\), or 3 aimospheres, the corresponding efficiencies would have been 0.93 , 0.89 , and 0.85 respectively.

Indicated efficiency of motor \(0.39 \div 0.50=0.78\).
Indicated efficiency of whole process with cold air 0.39. Apparent indicated efficiency of whole process with heated air 0.54.

Rral indicated efficiency of whole process with heated air 0.47.
Mechanical efficiency of motw, cold, 0.67 .
Mechanical efficiency of motor, hot, 0.81 .

Most of the compressed air in Paris is used for driving motors, but the work done by these is of the most varied kind. A list of motors driven from St. Fargeau station shows \(2 \% 5\) installations, nearly all motors working at from \(1 / 8\) horse-power to 50 horse-power, and the great majority of them more than two miles away from the station. The new station at Quai de la Gare is much larger than the one at St. Fargeau. Experiments on the Riedler air-compressors at Paris, made in December, 1891, to determine the ratio between the indicated work done by the air-pistons and the indicated work in the steam-cylinders, showed a ratio of 0.8997 . The compressors are driven by four triple-expansion Corliss engines of 2000 horse-power each.

Shops operated by Compressed Air.-The Iron Age, March 2, 1893, describes the shops of the Wuerpei Switch and Signal Co., East St. Louis, the machine tools of which are operated by compressed air, each of the larger tools having its own air engine, and the smaller tools being belted from shafting driven by an air engine. Power is supplied by a conıpound compressor rated at 55 horse-power. The air engines are of the Kriebel make, rated from 2 to 8 horse-power.

Pneumatic Postal Transmisision.-A paper by A. Falkenau, Eug'r's Club of Philadelphia, April 1894, entitled the "First United States Pneumatic Postal System," gives a description of the system used in London and Paris, and that recently introduced in Philadelphia between the main post-office and a substation. In London the tubes are \(21 / 4\) and 3 inch lead pipes laid in cast-iron pipes for protection. The carriers used in \(21 / 4\)-inch tubes are but \(11 / 4\) inches diameter, the remaining space being taken up by packing. Carriers are despatched singly. First, vacuum alone was used; later, vacuum and compressed air. The tubes used in the Continental cities in Europe are wrought iron. the Paris tubes being \(21 / 2\) inches diameter. There the carriers are despatched in trains of six to ten, propelled by a piston. In Philadelphia the size of tube adopted is \(61 / 8\) inches, the tubes being of cast iron bored to size. The lengths of the outgoing and return tubes are 2928 feet each. The pressure at the main station is \(7 \mathrm{lbs} .\), at the substation 4 lbs., and at the end of the return pipe atmospheric pressure. The compressor has two air-cylinders \(18 \times 24 \mathrm{in}\). Each carrier holds about 200 letters, but 100 to 150 are taken as an average. Eight carriers may be despatched in a minute, giving a delivery of 48.000 to 72,000 letters per hour. The time required in transmission is about 57 seconds.

Pneumatic postal transmission tubes were laid in 1898 by the Batcheller Pneumatic Tube Co. between the general post-offices in New York and Brooklyn. crossing the East River on the bridge. The tubes are cast iron, \(1 \gtrless-\mathrm{ft}\). lengths, bored to \(81 / 8 \mathrm{in}\). diameter. The joints are bells, calked with lead and yarn. There are two tubes, one operating in each direction. Both lines are operated by air-pressure above the atmospheric pressure. One tube is operated by an air-compressor in the New York office and the other by one located in the Brooklyn office.

The carriers are 24 in . long, in the form of a cylinder 7 in . in diameter, and are made of steel, with fibrous bearing-rings which fit the tube. Each carrier will contain about 600 ordinary letters. and they are despatched at intervals of 10 seconds in each direction, the time of transit between the two offices being \(31 / 2\) minutes, the carriers travelling at a speed of from 30 to 35 miles per homr.

The air-compressors were built by the Rand Drill Cn. and the IngersollSergeant Drill Co. The Rand Drill Co. compressor is of the duplex type and has two steam-cylinders \(10 \times 20 \mathrm{in}\). and two air-cylinders \(24 \times 20 \mathrm{in}\)., delivering \(15 \% 0 \mathrm{cu} . \mathrm{ft}\). of free air per minute, at 75 revclutions, the power heing about 50 H.P. Corliss valve-gear is on the steam cylinders and the Rand mechanical valve-gear on the air-cylinders.

The Ingersoll-Sergeant Drill Co. furnished two duplex Corliss air-compressors, with mechanically moved valves on air-cylinders. The steamcylinders are \(14 \times 18 \mathrm{in}\). and the air-cylinders \(261 / 4 \times 18 \mathrm{in}\). They are designed for 80 to 90 revs. per min. and to compress to 20 lbs . per sq. in.

Another double line of pneumatic tubes lias been laid between the main office and Postal Station H, Lexington Ave, and 44th St., in New I ork City. This line is about \(31 / 2\) miles in length. There are three intermediate stations: Third Are. and Sth St., Madison Square, and Third Ave. alld 28th St. The carriers can be so adjusted when they are put into the tube that they will traverse the line and be discharged automatically from the tube at the station for which they are intended. The tubes are of the same size as those of the Brooklyn line and are operated in a similar manner. The initial aircompression is about 12 to 15 lbs . On the Brooklyn line it is about \(\% \mathrm{lbs}\).

There is also a tube system between the New York Post-office and the Produce Exchange. For a very complete descrintion of the system and its machinery see "The Pneumatic Despatch Tube System," by B. C. Batcheller J. B. Lippinentt Co., Philadelnhia. \(189 \pi_{\text {a }}\).
The Miekarski Compressednair Tramway at Berne, Switzerland. (Eng'g News. April:0, 1893.)-The Mekarski system has been mtroduced in Berne, Switzerland, on a line about two miles long, with grades of \(0.25 \%\) to \(3 . \% \%\) and \(5.2 \%\). The air is heated by passing it through superheated water at \(380^{\circ} \mathrm{F}\). It thus becomes saturated with steam, which subsequently partly condenses, its latent heat being absorbed by the expanding air. The pressure in the car reservoirs is 440 lbs . per sq. in.
The engine is constructed like an ordinary steam tramway locomotive, and drives two coupled axles, the wheel-base being 5.2 ft . It has a pair of outside horizontal cylinders, \(5.1 \times 8.6 \mathrm{in}\); four coupled wheels, 27.5 in . diameter. The total weight of the car including compressed air is 7.25 tons, and with 30 passengers, including the driver and conductor, about 9.5 tons.

The authorized speed is about 7 miles per hour. Taking the resistance due to the grooved rails and to curves under unfavorable conditions at 30 lbs. per ton of car weight, the engine has to overcome on the steepest grade, \(5 \%\), a total resistance of about 0.63 ton, and has to develop 25 H.P. At the maximum authorized working pressure in cylinders of 176 lbs . per sq. in. the motors can develop a tractive force of 0.64 ton . This maximum is, therefore, just sufficient to take the car up the \(5.2 \%\) grade, while on the flatter sections of the line the working pressure does not exceed 73 to 147 lbs . per sq. in. Sand has to be frequently used to increase the adhesion on the \(2 \%\) to 5\% grades.

Between the two car frames are suspended ten horizontal compressed-air storage-cylinders, varying in length according to the available space, but of uniform inside diameter of 17.7 in., composed of riveted \(0.2 \%\)-in. sheet iron, and tested up to 588 lbs. per sq. in. These cylinders have a collective capacity of 64.25 cu . ft., which, according to Mr. Mekarski's estimate, should have been sufficient for a double trip, \(33 / 4\) miles. The trial trips, however, showed this estimate to be inadequate, and two further small storage-cylinders had therefore to be added of 5.3 cu . ft. capacity each, bringing the total cubic contents of the 12 storage-cylinders per car up to \(75 \mathrm{cu} . \mathrm{ft} .\), divided into two groups, the working and the reserve battery, the former of \(49 \mathrm{cu} . \mathrm{ft}\). the latter of \(26 \mathrm{cu} . \mathrm{ft}\). capacity.

From the results of six official trips, the pressure and the mean consumption of air during a double journey per motor car are as follows:

Pressure of air in storage-cylinders at starting 440 lbs . per sq. in.: at end of up-journey 176 lbs ., reserve 260 lbs ; ; at end of down-journey 103 lbs ., reserve \(1 \pi 6 \mathrm{lbs}\). Consumption of air during up-journey 92 lbs., during downjourney 31 lbs .

The working experience of 1891 showed that the air consumption per motor car for a domble journey was from 103 to 154 lbs ., mean 123 lbs ., and per car mile from 28 to 42 lbs ., mean 35 lbs .
The principal advantages of the compressed-air system for urban and suburban tramway traffic as worked at Berne consist in the smooth and noiseless motion; in the absence of smoke, steam, or heat, of overhead or underground conductors, of the more or less griuding motion of most electric cars, and of the jerky motion to which underground cable traction is subject. On all these grounds the system has vindicated its claims as being preferable to any other so far known system of mechanical traction for street tramways. Its disadvantages. on the other hand, consist in the extremely delicate adjustment of the different parts of the system, in the comparatively small supply of air carried by one motor car, which necessitates the car returning to the depot for refilling after a run of only four miles or 40 minutes, although on the Nogent and Paris lines the cars, which are, moreover, larger, and carry outside passengers on the top, run seven miles, and the loading pressure is 517 lbs. per sq. in. as against only 440 lbs . at Berne.

Longer distances in the same direction would involve either more powerful motors, a larger number of storage-cylinders, and consequently heavier cars, or loading stations every four or seven miles; and in this respect the system is manifestly inferior to electric traction. which easily admits of a line of 10 to 15 miles in length being continuously fed from one central station without the loss of time and expense caused by reloading.

The cost of working the Berne line is compared in the annexed table
with some other tramways worked under similar conditions by horse and mechanical traction for the year 1891.
For description of the Mekarski system as used at Nantes, France, see paper br Prof. D. S. Jacnibus. Traus. A I. M. E., xix. 553.

American Experiments on Compressed Air for Street
Railways. - Experiments have been made recently in Washington, D. C., and in New York City on the use of compressed air for street-railway traction. The air was compressed to 2000 lbs. per sq. in. and passed through a reducing-valve and a heater before being admitted to the engine. For an extended discussion of the relative merits of compressed air and electric traction, with an account of a test of a four-stage compressor giving a pressure of 2500 lbs . per sq. in., see Eug'g News, Oct. 7 and Nov. 4, 1897. A summarized statement of the probable efficiency of compres:ed-air traction is given as follows: Efficiency of compression to 2000 lbs. per sq. in. \(65 \%\). By wire-drawing to \(100 \mathrm{lbs} .57 .5 \%\) of the available energy of the air will be lost, leaving \(65 \times .425=2 \pi .625 \%\) as the net efficiency of the air. This may be doubled by hearing, making \(5525 \%\), and if the motor has an efficiency of \(80 \%\) the net efficiency of traction by compressed air will be \(55.25 \times .80=44.2 \%\). For a description of the Hardie compressed-air locomotive, designed for street-railway work, see Eng'g News, June '24, 1897. For use of compressed air in mine haulage, see Eng'g News, Feb. 10, 1898.
Compressed Air for Working Underground Pumps in Mines.-Eng'g Record, May 19, 1894, describes an installarion of compressors for working a number of pumps in the Nottingham No. 15 Mine, Plymouth, Pa., which is claimed to be the largest in America. The compressors develop above 2:300 H.P., and the piping, horizontal and vertical, is 6000 feet in length. About 25,000 gallons of water per hour are raised.

\section*{FANS AND BLOWERS.}

Centrifugal Fans.-The ordinary centrifugal fan consists of a number of blades tixed to arms, revolving on a shaft at high speed. The width of the blade is parallel to the axis of the shaft. Most engineers' reference books quote the experiments of W. Buckle, Proc. Inst. M.E., 1847, as still standard. Mr. Buckle's conclusions are given below, together with data of more recent experiments.

Experiments were made as to the proper size of the inlet openings and on the proper proportions to be given to the vane. The inlet openings in the sides of the fan-chest were contracted from \(171 / 2 \mathrm{in}\)., the original diameter, to 12 and 6 in . diam., when the following results were obtained:

First, that the power expended with the opening contracted to 12 in . diam. was as \(21 / 2\) to 1 compared with the opening of \(1 \pi 1 / 2 \mathrm{in}\). diam.; the velocity of the fan being nearly the same, as also the quantity and density of air delivered.

Second, that the power expended with the opening contracted to 6 in . diam. was as \(21 / 2\) to 1 compared with the opening of \(171 / 2 \mathrm{in}\). diam.; the velocity of the fan being nearly the same, and also the area of the efflux pipe, but the density of the air decreased one fourth.

These experiments show that the inlet opening: must be made of sufficient size, that the air may have a free and uninterrupted action in its passage to the blades of the fan; for if we impede this action we do so at the expense of power.

With a vane 14 in . long, the tips of which revolve at the rate of 236.8 ft . per second, air is condeused to 9.4 ounces per square inch above the pressure of the atmosphere, with a power of 9.6 H . P.; but a vane 8 inches long. the diameter at the tips being the same, and having, therefore, the same velocity, condenses air to 6 ounces per square inch only, and takes \(12 \mathrm{H} . \mathrm{P}\).
Thus the density of the latter is little better than six tenths of the former, while the power absorbed is uearly 1.25 to 1 . Although the velocity of the tips of the vanes is the same in each case, the velocities of the heels of the respective blades are very different. for, while the tips of the blades in each case move at the same rate, the velocity of the heel of the 14 -inch is in the ratio of 1 to 1.67 to the velocity of the heel of the 8 -inch blade. The longer, blades appruaching nearer the centre, strikes the air with less velocity, and allows it to enter on the blade with greater freedom, and with considerably less force than the shorter one. The inference is, that the short blade must take more power at the same time that it accumulates a less quantity of air. These experiments lead to the conclusion that the length of the vane demands as great a consideration as the proper diameter of the inlet opening. If there were no other object in view, it
would be useless to make the vanes of the fan of a greater width than the inlet opening can freely supply. On the proportion of the length and width of the vane and the diameter of the inlet opening rest the three most important points, viz., quantity and density of air, and expenditure of power.
In the 14 -inch blade the tip has a velocity 2.6 times greater than the heel; and, by the laws of centrifugal force, the air will have a density 2.6 times greater at the tip of the blade than that at the heel. The air cannot enter on the heel with a density higher than that of the atmosphere; but in its passage along the vane it becomes compressed in proportion to its centrifugal force. The greater the length of the vane, the greater will be the difference of the centrifugal force between the heel and the tip of the blade; consequently the greater the density of the air.
Reasoning from these experiments, Mr. Buckle recommends for easy reference the following proportions for the construction of the fan:
1. Let the width of the vanes be one fourth of the diameter; 2. Let the diameter of the inlet openings in the sides of the fan-chest be one half the diameter of the fan; 3. Let the length of the vanes be one fourth of the diameter of the fan.
In adopting this mode of construction, the area of the inlet openings in the sides of the fan-chest will be the same as the circumference of the heel of the blade, multiplied by its width; or the same area as the space described by the heel of the blade.

\section*{Best Proportions of Fans. (Buckle.)}

Pressure from 3 ounces to 6 ounces Per Square inch; or 5.2 inches to 10.1 INCHES OF WATER.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Diameter of F'an.} & \multicolumn{2}{|r|}{Vanes.} & \multirow[t]{2}{*}{Diameter of Inlet, Openings.} & \multirow[t]{2}{*}{Diameter of Fan.} & \multicolumn{2}{|r|}{Vanes.} & \multirow[t]{2}{*}{Diameter of Inlet Openings.} \\
\hline & Width. & Length. & & & Width. & Length. & \\
\hline ft. ins. & ft. ins. \\
\hline 30 & \(0 \quad 9\) & 09 & 16 & 46 & \(111 / 2\) & \(1 \quad 11 / 2\) & \\
\hline 36 & 0 101\% & 0 1012 & 19 & 50 & & \(1{ }^{1} 3^{1}\) & \\
\hline 40 & & 10 & 20 & & & & \\
\hline
\end{tabular}

Pressure from 6 ounces to 9 ounces per square inch, and upwards, or 10.4 inches to 15.6 inches of Water.
\begin{tabular}{ll|ll|ll|ll|ll|lc|cc|cc}
\hline 3 & 0 & 0 & 7 & 1 & 0 & 1 & 0 & 4 & 6 & 0 & \(101 / 2\) & 1 & \(41 / 2\) & 1 & 9 \\
3 & 6 & 0 & \(81 / 2\) & 1 & \(11 / 2\) & 1 & 3 & 5 & 0 & 1 & 0 & 1 & 6 & 2 & 0 \\
4 & 0 & 0 & \(91 / 2\) & 1 & \(31 / 2\) & 1 & 6 & 6 & 0 & 1 & 2 & 1 & 10 & 2 & 4 \\
\hline
\end{tabular}

The dimensions of the above tables are not laid down as prescribed limits, but as approximations obtained from the best results in practice.

Experiments were also made with reference to the admission of air into the transit or outlet pipe. By a slide the width of the opening into this pipe was varied from 12 to 4 inches. The object of this was to proportion the opening to the quantity of air required, and thereby to lessen the power necessary to drive the fan. It was found that the less this opening is made, provided we produce sufficient blast, the less noise will proseed from the fan; and by making the tops of this opening level with the tips of the vane, the column of air has little or no reaction on the vanes.

The number of blades may be 4 or 6 . The case is made of the form of an arithmetical spiral, widening the space between the case and the revolving blades, circumferentially, from the origin to the opening for discharge.

The following rules deduced from experiments are giveu in Spretson's treatise on Casting and Founding:
The fan-case should be an arithmetical spiral to the extent of the depth of the blade at least.

The diameter of the tips of the blades should be about double the diameter of the hole in the centre; the width to be about two thirds of the radius of the tips of the blades. The velocity of the tips of the blades should be rather
more than the velocity due to the air at the pressure required, say one eighth more velocity.
In some cases, two fans mounted on one shaft would be more useful than one wide one, as in such an arrangement twice the arra of inlet opening is obtained as compared with a single wide fan. Such an arrangement may be adopted where occasionally half the full quantity of air is required, as one of them may be put out of gear, thus saving power.
Pressure due to Velocity of the Fan-blades.-"By increasing the number of revolutious of the fan the head or pressure is increased, the law being that the total head produced is equal (in centrifugal fans) to twice the height due to the velocity of the extremities of the blades, or \(H=\frac{v^{2}}{g}\) approximatelyin practice" (W. P. Trowbridge, Trans. A. S. M. E., vii. 536 .) This law is analogous to that of the pressure of a jet striking a plane surface. T. Hawksley, Proc. Inst. M. E., 1882, vol. lxix.. says: "The pressure of a fluid striking a plane surface perpendicularly and then escaping at right angles to its original path is that due to twice the height \(h\) due the velocity."
(For discussion of this question, showing that it is an error to take the pressure as equal to a column of air of the height \(h=v^{2} \div 2 g\), see Wolff on Windmills, p. 17.)

Buckle says: "From the experiments it further appears that the velocity of the tips of the fan is equal to nine tenths of the velocity a body would acquire in falling the height of a homogeneous column of air equivalent to the density." D. K. Clark (R. T. \& D., p. 924), paraphrasing Buckle, appar ently, says: "It further appears that the pressure generated at the circum ference is one ninth greater than that which is due to the actual circumferential velocity of the fan." The two statements, however, are not in harmony, for if \(v=0.9 \sqrt{2 g H}, H=\frac{v^{2}}{0.81 \times 2 g}=1.234 \frac{v^{2}}{2 g}\) and not \(1 \frac{1}{9} \frac{v^{2}}{2 g}\).

If we take the pressure as that equal to a head or column of air of twice the height due the velocity, as is correctly stated by Trowbridge the paradoxical statements of Buckle and Clark-which would indicate that the actual pressure is greater than the theoretical-are explained, and the formula becomes \(H=.61 ; \frac{v^{2}}{g}\) and \(v=1.273 \sqrt{g H}=0.9 \sqrt{2 g H}\), in which \(H\) is the head of a column producing the pressure, which is equal to twice the theoretical head due the velocity of a falling body (or \(h=\frac{v^{2}}{2 g}\) ), multiplied by the coefficient .61\%. The difference between 1 and this coefficient expresses the loss of pressure due to friction, to the fact that the inner portions of the blade have a smaller velocity than the outer edge, and probably to other causes. The coefficient \(1.2 \% 3\) means that the tip of the blade must be given a velocity \(1.2 \% 3\) times that theoretically required to produce the head \(H\).

To convert the head \(H\) expressed in feet to pressure in lbs. per sq. in. multiply it by the weight of a cubic foot of air at the pressure and temperature of the air expelled from the fan (about .08 lb . usually) and divide by 144. Multiply this by 16 to obtain pressure in ounces per sq. in. or by 2.035 to obtain inches of mercury, or by 27.71 to obtain pressure in inches of water column. Taking .08 as the weight of a cubic foot of air,
\[
\begin{array}{lll}
p \text { lbs. per sq. in. } & =.00001066 v^{2} ; & v=310 \sqrt{p} \text { nearly; } \\
p_{1} \text { ounces per sq. in. } & =.0001706 v^{2} ; & v=80 \sqrt{p_{1}} \\
p_{2} \text { inches of mercury } & =.00002169 v^{2} ; & v=220 \sqrt{p_{3}} \\
p_{3} \text { inches of water } & =.0002954 v^{2} ; & v=60 \sqrt{p_{3}}
\end{array}
\]
in which \(v=\) velocity of tips of blades in feet per second.
Testing the above formula by the experiment of Buckle with the vane 14 inches long, quoted above, we have \(p=.00001066 v^{2}=9.56 \mathrm{oz}\). The experiment gave 9.4 oz .

Testing it by the experiment of H. I. Snell, given below, in which the circumferential speed was about 150 ft . per second, we obtain 3.85 ounces, while the experiment gave from 2.38 to 3.50 ounces. according to the amount of opening for discharge. The numerical coefficients of the above formulæ are all based on Buckle's statement that the velocity of the tips of the fan is equal to nine tenths of the velocity a body would acquire in falling the
height of a homogeneous column of air equivalent to the pressure. Should other experiments show a different law, the coefficients can be corrected accordingly. It is probable that they will vary to some extent with different proportions of fans and different speeds.

Taking the formula \(v=80 \sqrt{p_{1}}\), we have for different pressures in ounces per square inch the following velocities of the tips of the blades in feet per second:
\[
\begin{aligned}
& \begin{array}{llllllllllll}
p_{1}=\text { ounces per square inch.... } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 12 & 14
\end{array} \\
& v_{v}=\text { feet per second.............. } 113139160179196212 \quad 226 \quad 253 \quad 277 \quad 299
\end{aligned}
\]

A rule in App. Cyc. Mech, article "Blowers," gives the following velocities of circumference for different densities of blast in ounces: \(3,1 \% 0 ; 4,180 ; 5\), 195; 6, 205; 7, 215.

The same article gives the following tables, the first of which shows that the density of blast is not constant for a given velocity, but depends on the ratio of area of nozzle to area of blades:
\[
\begin{aligned}
& \text { Velocity of circumference, feet per second. } 150 \\
& 150 \\
& \text { Area of nozzle } \div \text { area of blades............... } \\
& \hline
\end{aligned}
\]

Quantity of Air of a Given Density Delivered by a Fan.
Total area of nozzles in square feet \(\times\) velocity in feet per minute corresponding to density (see table) = air delivered in cubic feet per minute.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Density, ounces per sq.in. & Velocity, feet per minute. & Density, ounces per sq. in. & Velocity, feet per min. & Density, ounces per sq. in & Velocity, feet per minute. \\
\hline per sq. in. & 5000 & per sq. in. & 11,000 & per sq. & 15,000 \\
\hline 2 & 7000 & 6 & 12,250 & 10 & 15.800 \\
\hline 3 & 8600 & 7 & 13,200 & 11 & 16,500 \\
\hline 4 & 10,000 & 8 & 14,150 & 12 & 17,300 \\
\hline
\end{tabular}

Experiments with Blowers. (Henry I. Snell. Trans. A. S. M. E. ix. 51.)-The following tables give velocities of air discharging through an aperture of any size under the given pressures into the atmosphere. The volume discharged can be obtained by multiplying the area of discharge opening by the velocity, and this product by the coefficient of contraction: .65 for a thin plate and .93 when the orifice is a conical tube with a convergence of about 3.5 degrees, as determined by the experiments of Weisbach.

The tables are calculated for a barometrical pressure of 14.69 lbs . ( \(=\) 235 oz .), and for a temperature of \(50^{\circ}\) Fahr., from the formula \(V=\sqrt{2 g h}\).

Allowances have been made for the effect of the compression of the air, but none for the heating effect due to the compression.

At a temperature of 50 degrees, a cubic foot of air weighs .078 lbs ., and calling \(g=32.1602\), the above formula may be reduced to
\[
\nabla_{1}=60 \sqrt{31.5812 \times(235+P) \times P},
\]
where \(V_{1}=\) velocity in feet per minute.
\(P=\) pressure above atmosphere, or the pressure shown by gauge, in oz. per square inch.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pressure per sq. in. in inches of water. & Corresponding Pressure in oz. per sq. inch. & Velocity due the Pressure in feet per minute. & Pressure per sq.in. in inches of water. & Corresponding Pressure in oz per sq. inch. & Velocity due the Pressure in feet per minute. \\
\hline 1/32 & . 01817 & 696.78 & 5/8 & . 36340 & 3118.38 \\
\hline 1/16 & . 03634 & 98 T .66 & 34 & . 43608 & 3416.64 \\
\hline \(1 / 8\) & . 07268 & 1393.75 & \(7 / 8\) & . 50870 & 3690.62 \\
\hline 3/16 & .10902 & 1\%0\%.00 & & . 58140 & 3946.17 \\
\hline & . 14536 & 1971.30 & \(11 / 4\) & . 2267 & 4362.62 \\
\hline 5/16 & . 18170 & 2204.16 & \(11 / 2\) & .8721 & 4836.06 \\
\hline 3/8 & . 21804 & 2414.70 & \(13 / 4\) & 1.0174 & 5:24.98 \\
\hline 18 & . 29072 & 2788.74 & & 1.1628 & 5587.58 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Press－ ure in oz． per sq． inch． & Velocity due the Pressure in ft．per minute． & Press－ ure in oz ． per sq inch． & Velocity due the Pressure in ft．per minute． & Press－ ure in oz ． per sq． inch． & Velocity due the Pressure in ft．pel minute． & Pressure in oz． per sq．in． & Velocity due the Pressure in ft．per minute． \\
\hline ． 25 & 2，582 & 2.25 & 7，787 & 5.50 & 12，259 & 11.00 & 17，534 \\
\hline ． 50 & 3，658 & 2.50 & 8，213 & 6.00 & 12，817 & 12.00 & 18，350 \\
\hline ． 75 & 4.482 & 2.75 & 8，618 & 6.50 & 13.354 & 13.00 & 19，138 \\
\hline 1.00 & 5，178 & 3.00 & 9，006 & 7.00 & 13.873 & 14.00 & 19，901 \\
\hline 1.25 & 5，792 & 3.50 & 9，739 & 7.50 & 14.374 & 15.00 & 20.641 \\
\hline 1.50 & 6,349 & 4.00 & 10，421 & 8.00 & 14，861 & 16.00 & 21，360 \\
\hline 1.75 & 6，861 & 4.50 & 11，065 & 9.00 & 15，795 & & \\
\hline 2.00 & 7，338 & 5.00 & 11，676 & 10.00 & 16，684 & & \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Pressure in ounces \\
per square inch．
\end{tabular} & \begin{tabular}{c} 
Velocity in feet \\
per minute．
\end{tabular} & \begin{tabular}{c} 
Pressure in ounces \\
per square inch．
\end{tabular} & \begin{tabular}{c} 
Velocity in feet per \\
ninute．
\end{tabular} \\
& .01 & 516.90 & .06 \\
.02 & .022 .64 & .07 & 126624 \\
.03 & 895.26 & .08 & \(136 \pi .76\) \\
.04 & 1033.86 & .09 & 1462.20 \\
.05 & 1155.90 & .10 & 150.70 \\
\hline
\end{tabular}

\section*{Expeximents on a Fan with Varying Dischargeopening． Revolutions nearly constant．}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  \\
\hline 1519 & 0 & 3.50 & 0 & 80 & & 1048 & \\
\hline 14\％9 & 6 & 3.50 & 406 & 1.15 & 353 & 1048 & ． \(33 \%\) \\
\hline 1480 & 10 & 3.50 & 676 & 1.30 & 520 & 1048 & ． 496 \\
\hline \(14 \%\) & 20 & 3.50 & 1353 & 1.95 & 694 & 1048 & ． 66 \\
\hline 1485 & 28 & 3.50 & 1894 & 2.55 & \％42 & 1048 & ． 709 \\
\hline 1485 & 36 & 3.40 & 2400 & 3.10 & 774 & 1078 & ． 718 \\
\hline 1485 & 40 & 3.25 & 2605 & 3.30 & 790 & 1126 & ． 70 \\
\hline 1468 & 44 & 3.00 & 2752 & 3.55 & 775 & 12.22 & ． 635 \\
\hline 1500 & 48 & 3.00 & 3002 & 3.80 & 790 & 1222 & ． 646 \\
\hline 1426 & 89.5 & 2.38 & 3972 & 4.80 & 827 & 1544 & ． 536 \\
\hline
\end{tabular}

The fan wheel was 23 inches in diameter， \(65 / 8\) inches wide at its periphery， and had an inlet of \(121 / 2\) inches in diameter on either side，which was partially obstructed by the pulieys，which were \(59 / 16\) inches in diameter．It had eight blades，each of an area of 45.49 square inches．

The discharge of air was through a conical tin tube with sides tapered at an angle of \(31 / 2\) degrees．The actual area of opening was \(7 \%\) greater than given in the tables．to compensate for the vena contracta．

In the last experiment， 89.5 sq ．in．represents the actual area of the mouth of the blower less a deduction for a narrow strip of wood placed across it for the purpose of holding the pressure－gauge．In calculating the volume of air discharged in the last experiment the value of vena contracta is taken at． 80.

Experiments were undertaken for the purpose of showing the results obtained by running the same fan at different speeds with the discharge-opening the same throughout the series.
The discharge-pipe was a conical tube \(81 / 2\) inches inside diameter at the end, having an area of 56.74 , which is \(7 \%\) larger than 53 sq. inches; therefore 53 square inches, equal to . 368 square feet. is called the area of discharge, as that is the practical area by which the volume of air is computed.

Experiments on a Fan with Constant Dischargeopening and Varying Speed.-The first four columns are given by Mr. Snell, the others are calculated by the author.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& \text { Pressure in ounces, } \\
& p
\end{aligned}
\] &  &  &  &  &  &  &  &  \\
\hline 600 & . 50 & 1336 & . 25 & 60.2 & 56.6 & 85.1 & 3.630 & . 182 & 73 \\
\hline 800 & . 88 & 1787 & .70 & 803 & 75.0 & 85.6 & 4,856 & . 429 & 61 \\
\hline 1000 & 1.38 & 2:45 & 1.35 & 100.4 & 94. & 85.4 & 6,100 & . 845 & 63 \\
\hline 1200 & 2.00 & 2712 & 2.20 & 120.4 & 113. & 85.1 & т,3i0 & 1.479 & 67 \\
\hline 1400 & 2.75 & 3177 & 3.45 & 140.5 & 133. & 84.8 & 8,633 & 2.283 & 66 \\
\hline 1600 & 3.80 & 36i0 & 5.10 & 160.6 & 156. & 82.4 & 9,973 & 3.803 & 74 \\
\hline 1800 & 4.80 & \(41 \% 2\) & 8.00 & 180.6 & 175. & 82.4 & 11,337 & 5.462 & 68 \\
\hline 2000 & 595 & 4674 & 11.40 & 200.7 & 195. & 85.6 & 12,\%01 & 7.586 & 67 \\
\hline
\end{tabular}

Mr. Snell has not found any practical difference between the efficiencies of hlowers with curved blades and those with straight radial ones
From these experiments. says Mr. Snell, it appears that we may expect to receive back \(65 \%\) to \(75 \%\) of the power expended, and no more.

The great amount of power often used to run a fan is not due to the fan itself. but to the method of selecting, erecting, and piping it.
(For opinions on the relative merits of fans and positive rotary blowers, see discussion of Mr. Srell's paper. Trans. A. S. M E., ix. 66, etc.)

Comparative Efficiency of Fans and Positive Hiowers.(H. M Howe, Trans. A. I. M. E., x. 48\% ) -Experiments with fans and pusitive (Baker) blowers working at moderately low pressures, under 20 ounces, show that they work more efficiently at a given pressure when delivering large volnmes (ie., when working nearly up to their maximum capacity) than when delivering comparatively small volumes. Therefore, when great variations in the quantity and pressure of blast required are liable to arise, the highest efficiency would be ohtained by having a number of blowers, always driving them up to their full capacity, and regulating the amount of blast by altering the number of blowers at work, instead of having one or two very large blowers and regulating the amount of blast by the speed of the blowers.

There appears to be little difference between the efficiency of fans and of Baker blowers when each works under favorable conditions as regards quantity of work, and when each is in good order.

For a given speed of fan, any diminution in the size of the blast-orifice decreases the consumption of power and at the same time raises the pressure of the blast; but it increases the consumption of power per unit of orifice for a given pressure of blast. When the orifice has beell reduced to the normal size for any given fan, further diminishing it causes but slight elevation of the blast pressure; and. when the orifice becomes comparatively small, further diminishing it causes no sensible elevation of the blast pressure, which remains practically constant, even when the orifice is entirely closed.

Many of the failures of fans have been due to too low speed, to too small pulleys, to improper fastening of belts, or to the belts being too nearly vertical; in brief, 10 bad mechanical arrangement, rather than to inherent defects in the principles of the machine.

If several fans are used, it is probably essential to high efficiency to provide a separate blast-pipe for each (at least if the fans are of different size or speed), while any number of positive blowers may deliver into the same pipe without lowering their efficiency.

\section*{Capacity of Fans and Blowers.}

The following tables show the guaranteed air-supply and air-removal of leading forms of blowers and exhaust fans. The figures given are often exceeded in practice, especially when the blowers and fans are driven at higher speeds than stated. The ratings, particularly of the blowers, are below those generally given in catalogues, but it was the desire to present only conservative and assured practice. (A. R. Wolff on Ventilation.)
Quantity of Air supplied to Buildings by Blowers of Various Sizes.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DiamWheel in feet & Ordinary Number of Revs. per min. & Horsepower to Drive Blower. & Capacity cu. ft. per min. against a Pressure of 1 ounce per sq. in & Diameter of Wheel in feet & Ordinary Number of Revs. per min. & Horse power to Drive Blower. & Capacity cu. ft. per min. against a Pressure of 1 ounce per sq.in. \\
\hline 4 & 350 & 6. & 10,635 & 9 & 175 & 29 & 56,800 \\
\hline 5 & 325 & 9.4 & 17,000 & 10 & 160 & 35.5 & 70,340 \\
\hline 6 & 275 & 13.5 & 29.618 & 12 & 130 & 49.5 & 102,000 \\
\hline 7 & 230 & 18.4 & 42,700 & 14 & 110 & 66 & 139,000 \\
\hline 8 & 200 & 24 & 46,000 & 15 & 100 & \% 7 & 160,000 \\
\hline
\end{tabular}

If the resistance exceeds the pressure of one ounce per square inch. of above table, the capacity of the blower will be correspondingly decreased, or power increased, and allowance for this must be made when the distrib. uting ducts are small, of excessive length, and contain many contractions and bends.
Quantity of Air moved by an Approved Form of Exhaust Fan, the fan discharging directly from room intu the atmosphere.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter of Wheel in feet. & Ordinary Number of Revs. per min. & Horsepower to Drive Fan. & Capacity in \(\mathrm{cu} . \mathrm{ft}\). per min. & Diameter of Wheel in feet. & Ordinary Number of Revs. per min. & Horse power to Drive Fan. & Capacity in cu. ft. per min. \\
\hline 2.0 & 600 & 0.50 & 5,000 & 4.0 & 475 & 3.50 & 28,000 \\
\hline 2.5 & 550 & 0.75 & 8.000 & 5.0 & 350 & 4.50 & 35,000 \\
\hline 3.0 & 500 & 1.00 & 12,000 & 6.0 & 300 & 7.00 & 50,000 \\
\hline 3.5 & 500 & 2.50 & 20,000 & 7.0 & 250 & 9.00 & 80,000 \\
\hline
\end{tabular}

The capacity of exhaust fans here stated, and the horse-power to drive them, are for free exhaust from room into atmosphere. The capacitr decreases and the horse-power increases materially as the resistance, resulting from lengths, smallness and bends of ducts, enters as a factor. The difference in pressures in the two tables is the main cause of variation in the respecive records. The fan referred to in the second table could not be used with as high a resistance as one ounce per square inch, the rated resistance of the blowers.
Caution in Regard to Use of Fan and Blower Tables. Many engineers reprit that manufacturers' tables overrate the capacity of their fans and underestimate the horse-power required to drive them. In some cases the complaints may be due to restricted air outlets, long and crooked pipes, slipping of belts, too small engines, etc.

\section*{CENTRIFUGAL FANS．}

Flow of Air through an Orifice．
VELOCITY，VOLUME，AND H P．REQUIRED WHEN AIR UNDER GIVEN PRESSURE IN OUNCES PER SQ．IN．IS ALLOWED TO ESCAPE INTO THE ATMOSPHERE．
（B．F．Sturtevant Co．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
む \\
\(\stackrel{\leftrightarrow}{4}\) \\

\end{tabular} &  &  &  &  &  &  &  &  \\
\hline & & 12 & ． 00043 & ． 03 & & \％，2 & 50.5 & ． 02759 & \\
\hline & & 17.95 & ． 0012 & ． 0680 & 21 & 7，50 & 52.13 & 03021 & \\
\hline & 3，1 & 21.9 & ．0022 & ．1022 & & 7，722 & 53.63 & ． 03291 & ． 6136 \\
\hline & 3.6 & 25.3 & ． 0034 & ． 1 P， & & 7，9 & 55.08 & ． 03568 & 6476 \\
\hline & 4， & 28.36 & 0048 & ．1703 & & 8.136 & 56.5 & 03852 & 退 \\
\hline & 4，4 & 31.06 & ． 00635 & ． 2044 & 25 & 8，334 & 57.88 & ． 04144 & T160 \\
\hline & 4，830 & 33.54 & ． 00800 & ． 238 & 23 & 8，528 & 59.22 & ． 04442 & \(\bigcirc 500\) \\
\hline & 5，16 & 35.85 & ．00978 & ． 2028 & 27 & 8，718 & 60.54 & ． 04747 & 7841 \\
\hline 11 & 5，473 & 38.01 & ． 01166 & ． 3068 & & 8，903 & 61.83 & ． 05058 & 8180 \\
\hline & 5，768 & 40.06 & ． 01366 & ． 3410 & 31 & 9，084 & 63.08 & ．053：6 & 852 \\
\hline & 6，048 & 42.00 & ． 01515 & ． 3750 & \(31 /\) & 9，262 & 64.32 & ． 05 201 & 8863 \\
\hline 11.2 & 6，315 & 43.86 & ． 01794 & .4090 & 33 & 9，435 & 65.52 & ． 06031 & ． 9205 \\
\hline & 6，571 & 45.63 & ． 02022 & ． 4431 & 31 & 9，606 & 66.71 & ．06：368 & ． 9546 \\
\hline & 6，818 & 47.34 & ．0226 & ． 4 \％ 12 & & 9，773 & 67.87 & ．06\％10 & ． 988 \％ \\
\hline 7／8 & & 49.0 & & ． 5112 & & 9，938 & 69.01 & ． 07058 & 1．022\％ \\
\hline & & & & & \(3 \%\) & 10，100 & \％0．14 & ． 07412 & 1.0567 \\
\hline
\end{tabular}

The headings of the 2d and 3d columns in the above table have been abridged from the original，which read as follows：Velocity of dry air， \(50^{\circ}\) F．，escaping into the atmosphere through any shaped orifice in any pipe or reservoir in which the given pressure is maintained．Volume of air in cubic feet which may be discharged in one minute through an orifice having an effective area of discharge of one square inch．The 5th column，not in the original，has been calculated by the author．The figures represent the horse－power theoretically required to move \(1000 \mathrm{cu} . \mathrm{ft}\) ．of air of the given pressures through an orifice，without allowance for the work of compression or for friction or other losses of the fan．These losses may amount to frim \(60 \%\) to \(100 \%\) of the given horse－power．

The change in density which results from a change in pressure has been taken into account in the calculations of the table．The volume of air at a given velocity discharged through au orifice depends upon its shape，and is always less than that measured by its full area．For a given effective area the volume is proportional to the velocity．The power required to move air through an orifice is measured by the product of the velocity and the total resisting pressure．This power for a given orifice varies as the cube of the velocity．For a given volume it varies as the square of the velocity．In the movement of air by means of a fan there are unavoidable resistances which，in proportion to their amount，increase the actual power consider－ ably above the amount here given．

For any size of centrifugal fan there exists a certain maximum area over which a given pressure may be maintained，dependent upon and propor－ tional to the speed at which it is operated．If this area，known as its ＂capacity area，＂or square inches of blast，be increased，the pressure is lowered（the volume being increased），but if decreased the pressure remains constaut．The revolutions of a given fan necessary to naintain a given pressure under these conditions are given in the table on p．519．which is based upon the abve table．The pressure produced by a given fan and its effective capacity area being known，its nominal capacity and the horse－ power required，without allowance for frictional losses，may be determined from the table above．

In practice the outlet of a fan greatly exceeds the capacity area；hence the volume moved and the horse－power required are in excess of the amounts determined as above．

Steel-plate Full Housing Fans. (Buffalo Forge Co.)
Capacities in cubic feet of air per minute. (See also table on p. 525.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size, in.} & \multicolumn{11}{|c|}{Revolutions per Minute.} \\
\hline & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 \\
\hline 50 & 1650 & \(24 \% 5\) & 3300 & 4125 & 4950 & 5 775 & 6600 & \%425 & 8:50 & 90\% & 9900 \\
\hline 60 & 2480 & 3720 & 4960 & \(6 \div 00\) & 7440 & 8680 & 99:20 & 11160 & 12400 & 13640 & 14880 \\
\hline 70 & 4500 & 6750 & 9000 & 11250 & 13500 & 15750 & 18000 & 20250 & 2:2500 & & \\
\hline 80 & 7070 & 10605 & 14140 & 1;675 & 21210 & 24745 & 28880 & 31815 & & & \\
\hline 90 & 10400 & 15600 & 20800 & 26000 & \(31: 200\) & 35400 & 41600 & & & & \\
\hline 100 & 14280 & 21420 & 28560 & 35700 & 42N40 & 49980 & 57120 & & & & \\
\hline 110 & 18960 & 28440 & 3i9:0 & 47400 & 56880 & 66360 & & & & & \\
\hline 120 & 24800 & 37200 & 43600 & \(6 \div 100\) & 74400 & & & & & & \\
\hline 130 & 31200 & 46800 & 62400 & 78000 & 109200 & & & & & & \\
\hline 140 & 38354 & 57531 & \%6708 & 95885 & & & & & & & \\
\hline 150 & 49200 & \%3890 & 98520 & 123150 & & & & & & & \\
\hline
\end{tabular}

The Sturtevant Steel Pressurembower Applied to Cupola Furnaces and Forges.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Number of Blower.} & \multicolumn{4}{|c|}{Cupola Furnaces.} & \multicolumn{2}{|r|}{Forges.} \\
\hline & Diameter of Cupola inside of Lining, in. & Melting Capacity of c'upola per hour in lbs. & Blastpressure required in Windbox in ounces persq.in. & Rev. per min. of Blower vecessary to produce required pressure. & Number of Forges supplied by Blower. & Rev. per min. Blower necessary to produce pressure for forge fire. \\
\hline \(4 / 0\)
\(2 / 0\)
0
1
2
3
4
5
6
7
8
9
10 & \[
\begin{array}{r}
22 \\
26 \\
30 \\
-\quad 35 \\
-40 \\
46 \\
53 \\
60 \\
70 \\
84
\end{array}
\] & 1,200
1,900
2,900
4,200
6,500
8,000
12,500
16,500
24.000
34.000 & \[
\begin{array}{r}
5 \\
6 \\
7 \\
8 \\
8 \\
10 \\
12 \\
14 \\
14 \\
16 \\
16
\end{array}
\] & 3,569
3,282
3,030
2,818
2,690
2,670
2,316
2,023
1,854
1,627 & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
6 \\
8 \\
8 \\
10 \\
14 \\
19 \\
25 \\
35 \\
45 \\
60 \\
\hline
\end{array}
\] & 5,548
4,294
3,645
3,199
2,691
2,305
2,009
1,722
11,567
1,264
1,104
950
834 \\
\hline
\end{tabular}

The above table relates to common cupolas under ordinary conditions and to forges of medium size. The diameter of cupola given opposite each size blower is the greatest which is recommended; in cases where there is a surplus of power one size larger blower may be used to advantage. I he melting capacity per hour is based upon an average of tests on some of the best cupolas found, and is reliable in cases where the cupola is well constructed and carefully operated. The blast-pressure required in wind-box is the maximum under ordinary conditions when coal is used as fuel. When coke is employed the pressure may be lower.

The cupola pressures given are those in the wind-box, while the basis pressure for forges is 4 ounces in the tuyere pipe. The corresponding revolutions of fan given are in each case sufficient to maintain these pressures at the fan outlet when the temperature is \(50^{\circ}\). The actual speed must be higher than this by an amount proportional in the resistance of pipes and the increase of temperature, and can only be determined by a knowledge of the existing conditions.
(For other data concerning Cupolas see Foundry Practice.)

\section*{Diameters of Blast-pipes Required for Steel Pressureblowers. (B. H. Sturtevant Co.)}

Based on the loss of pressure resulting from transmission being limited to one-half ounce per square inch.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Length of Pipe in ft .} & \multicolumn{13}{|c|}{Number of Blower,} \\
\hline q. in & & 4/0 & 2/0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 100 & 43/4 & 53/4 & 61/4 & 65/8 & 71/8 & 81/8 & \(83 / 8\) & \(91 / 8\) & 1014 & 121/4 & 143/8 & 151/4 & 2014 \\
\hline 囚̇ઠ & 200 & 538 & \(61 / 2\) & F1/4 & 75 & 81/8 & \(91 / 4\) & 958 & \(101 / 2\) & 1134 & 1418 & 161.2 & 1712 & 231 \\
\hline & 300 & 578 & 718 & \(73 / 4\) & 81/4 & 878 & 101/8 & \(103 / 8\) & 111/4 & 1234 & 1514 & \(117 / 8\) & 19 & 2514 \\
\hline & 400 & 61188 & \(71 / 2\) & \(81 / 4\) & 83/4 & \(93 / 8\) & 103/4 & & & \(131 / 2\) & 161/4 & & 201/8 & 2634 \\
\hline & 100 & \(53 / 8\) & 61/2 & 718 & [12 & 81/8 & \(91 / 4\) & \(91 / 2\) & 103/8 & 113/4 & 141/8 & 163/8 & \(1 \sim 1 / 2\) & 231 \\
\hline ถ̇ & 200 & \(61 / 8\) & [12 & \(81 / 4\) & 834 & \(93 / 8\) & 105/8 & 11 & 12 & \(131 / 2\) & \(161 / 8\) & 187/8 & 20 & 261 \\
\hline \(\infty\) & 300 & 658 & 8 & \(87 / 8\) & 93/8 & 10 & \(111 / 2\) & \(113 / 8\) & 13 & 1412 & \(171 / 2\) & \(201 / 2\) & 215/8 & 28 \\
\hline & 400 & \(71 / 8\) & 85\% & 912 & 10 & 1058 & 121/4 & 125/8 & 133/4 & 151/2 & 181/2 & 215/8 & 23 & 01 \\
\hline & 100 & 53/4 & 71/8 & \(73 / 4\) & 81/8 & 83/4 & 10 & 1038 & 111/4 & 125/8 & 151/4 & 173/4 & 187/8 & \\
\hline N & 200 & \(65 / 8\) & 81/8 & 878 & 93/8 & 10 & 1112 & 1178 & 12Y/8 & \(141 / 2\) & \(173 / 8\) & 203\% & 215 & 283 \\
\hline \(\stackrel{92}{1}\) & 300 & \(71 / 4\) & 83/4 & 95\% & \(101 / 8\) & 107/8 & \(121 / 2\) & 1278 & 14 & 1534 & \(187 / 8\) & 22.8 & 2308 & 31 \\
\hline & 400 & 75/8 & \(93 / 8\) & 101/4 & \(103 / 4\) & 115/8 & 1314 & 135/8 & 147/8 & 163/4 & 201/8 & \(231 / 2\) & 247/8 & 33 \\
\hline & 100 & 61/8 & \(71 / 2\) & 81/4 & 85/8 & \(91 / 4\) & 105/8 & 107/8 & 113/8 & 133/8 & & 183/4 & 197/8 & 263 \\
\hline ถั่ & 200 & 7 & 85,8 & 938 & 97/8 & 105/8 & \(121 / 8\) & \(121 / 2\) & 135/8 & \(155 / 8\) & 183/8 & 211/2 & 227/8 & 301 \\
\hline - & 300 & 75/8 & 938 & 1014 & 103/4 & \(111 / 2\) & \(131 / 4\) & 13.8 & \(147 / 8\) & \(163 / 4\) & -0 & 2338 & 2478 & 33 \\
\hline & 400 & 81/8 & & 103/4 & 113/8 & 121/4 & 141/2 & 1412 & 153/4 & 155/8 & 211/4 & 243/4 & 261/4 & 35 \\
\hline
\end{tabular}
"The above table has been constructed on the following basis: Allowing a loss of pressure of \(1 / 2 \mathrm{oz}\). in the process of transmission through any length of pipe of any size as a standard, the increased friction due to lengthening the pipe has been compensated for by an enlargement of the pipe sufficient to keep the loss still at \(1 / 2 \mathrm{oz}\). Thus if air under a pressure of 8 oz . is to be delivered by a No. 6 blower, through a pipe 100 ft . in length, with a loss of \(1 / 2 \mathrm{oz}\). pressure, the diameter of the pipe must be \(113 / 4 \mathrm{in}\). If its length is increased to 400 ft . its diameter should also be increased to \(151 / 2 \mathrm{in}\)., or if the pressure be increased to 12 oz . the pipe, if 100 ft . long, must be \(1: 5 / 8 \mathrm{in}\). in diameter, providing the loss of \(1 / 2 \mathrm{oz}\). is not to be exceeded. This loss of \(1 / 2 \mathrm{oz}\). is to be added to the pressure to be maintained at the fan if the tabulated pressure is to be secured at the other end of the pipe."

Efficiency of Fans.-Much useful information on the theory and practice of fans and blowers, with results of tests of various forms, will be found in Heating and Ventilation, June to Dec. 1597, in papers by Prof. R. C. Carpenter and Mr. W. G. Walker. It is shown by theory that the volume of air delivered is directly proportional to the speed of rotation, that the pressure varies as the square of the speed, and that the horsepower varies as the cube of the speed. For a given volume of air moved the horse-power varies as the square of the speed, showing the great advantage of large fans at slow speeds over small fans at high speeds delivering the same volume. The theoretical values are greatly modified by variations in practical conditions. Prof. Carpenter found that with three fans running at a speed of 6200 ft . per minute at the tips of the vanes, and an airpressure of \(21 / 2 \mathrm{in}\), of water column, the mechanical efficiency, or the horsepower of the air delivered divided by the power required to drive the fan, ranged from \(32 \%\) to \(4 \%\), under different conditions, but with slow speeds it was much less, in some cases being under \(20 \%\). Mr. Walker in experiments on disk fans found efficiencies ranging all the way from \(7.4 \%\) to \(43 \%\). the size of the fans and the speed being constant, but the shape and angle of the blades varying. It is evident that there is a wide margin for improvements in the forms of fans and blowers, and a wide field for experiment to determine the conditions that will give maximum efficiency.

Centrifugal Ventilators for Mines.-Of different appliances for ventilating mines various forms of centrifugal machines having proved their efficiency have now lmost completely replaced all others. Most if not all of the machines in use in this country are of this class, being cither openperiphery fans, or closed, with chimney and spiral casing, of a more or less modified Guibal type. The theory of such machines bas been demonstrated by Mr. Daniel Murgue in "Theories and Practices of Centrifugal Ventilating Machines," translated by A. L Sterenson, and is discussed in a paper by R. Van A. Norris, Trans. A. I. M. E. xx. 637. From this paper the following formulæ are taken:

Let \(a=\) area in sq. ft . of an orifice in a thin plate, of such area that its resistance to the passage of a given quantity of air equals the resistance of the mine;
\(o=\) orifice in a thin plate of such area that its resistance to the passage of a given quantity of air equals that of the machine;
\(Q=\) quantity of air passing in cubic feet per minute;
\(V=\) velocity of air passing through \(\alpha\), in feet per second;
\(\Gamma_{0}=\) velocity of air passing through \(o\) in feet per second;
\(h=\) head in feet air-column to produce velocity \(V\);
\(h_{0}=\) head in feet air-column to produce velocity \(V_{0}\).
\[
\begin{aligned}
& Q=0.65 a V ; \quad V=\sqrt{2 g h} ; \quad Q=0.65 a \sqrt{2 g h} ; \\
& a=\frac{Q}{0.65 \sqrt{2 g h}}=\text { equivalent orifice of mine; }
\end{aligned}
\]
or, reducing to water-gauge in inches and quantity in thousands of feet per minute,
\[
\begin{gathered}
a=\frac{.403 Q}{\sqrt{W \cdot G}} ; \quad Q=0.650 \nabla_{0} ; \quad \nabla_{0}=\sqrt{2 g h_{0}} ; \quad Q=0.650 \sqrt{2 g h_{0}} ; \\
o=\sqrt{\frac{Q^{2}}{0.65^{2} h_{0} 2 g}}=\text { equivalent orifice of machine. }
\end{gathered}
\]

The theoretical depression which can be produced by any centrifugal ventilator is double that due to its tangential speed. The formula
\[
H=\frac{T^{2}}{2 g}-\frac{V^{2}}{2 g}
\]
in which \(T\) is the tangential speed, \(\nabla\) the velocity of exit of the air from the space between the blades, and \(H\) the depression measured in feet of aircolumn, is an expression for the theoretical depression which can be produced by an uncovered ventilator; this reaches a maximum when the air leares the blades without speed, that is, \(V=0\). and \(H=T^{2} \div ? g\).

Hence the theoretical depression which can be produced by any uncovered? rentilator is equal to the height due to its tangential speed, and one halfthat which can be produced by a covered ventilator with expanding climner.

Sio long as the condition of the mine remains constant:
The volume produced by any ventilator varies directly as the speed of rotation.

The depression produced by any ventilator varies as the square of the speed of rotation.

F'or the same tangential speed with decreased resistance the quantity of air increases and the depression diminishes.

The following table shows a few results, selected from Mr. Norris's paper, giving the range of efficiency which may be expected under different cir: cumstances. Details of these and other fans, with diagrams of the results are given in the paper.

Experiments on Mine-ventilating Fans.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 毞 &  &  &  &  &  &  &  &  &  &  &  \\
\hline \multirow{4}{*}{A \(\{\)} & 84 & 5517 & 236,68 & 2818 & 30 & 4290 & 1.80 & 67. & 88.40 & 9 & \\
\hline & 100 & 6282 & 336,862 & 3369 & 3040 & 5393 & 2.50 & 132.70 & 155.43 & 85.4 & \\
\hline & 111 & 6973 & 347,396 & 3130 & 3040 & 5002 & 3.20 & 175.17 & 209.64 & 83.6 & \\
\hline & 123 & 7727 & 394,100 & 3204 & 3040 & 5100 & 3.60 & 223.56 & 295.21 & 75.7 & \\
\hline & 100 & 6.82 & 188,888 & 1889 & 15:0 & 3007 & 1.40 & 41.67 & 97.99 & 42.5 & \\
\hline & 130 & 8167 & 274,8i6 & 2114 & 1520 & 3366 & 2.00 & 86.63 & 194.95 & 44.6 & 22 \\
\hline & 59 & 3 3 02 & 59,587 & 1010 & 1520 & 1610 & 1.20 & 11.27 & 16.76 & \(6 \pi .83\) & \\
\hline & 83 & 5:08 & 82,969 & 1000 & 1520 & 1593 & 2.15 & 27.86 & 48.54 & 5r 38 & \\
\hline \multirow[t]{3}{*}{D} & 40 & 3140 & 49,61i & 1240 & 3096 & 1580 & 0.87 & 6.80 & 13.8: & 49.2 & 32 \\
\hline & 70 & 5495 & 137, 660 & 1825 & 3096 & 2507 & 2.55 & 55.35 & 67.44 & 8:. 07 & \\
\hline & 50 & 2749 & 147,232 & 2944 & 1522 & 5356 & 0.50 & 11.60 & 28.55 & 40.63 & \\
\hline \multirow[t]{2}{*}{E} & 69 & 3793 & 205,761 & 2982 & 1522 & 5451 & 1.00 & 32.42 & 45.98 & 70.50 & 83 \\
\hline & 96 & 5:そั8 & 299,600 & 3121 & 1522 & 5676 & 2.15 & 101.50 & 120.6 & 84.10 & \\
\hline \multirow{3}{*}{F} & 200 & 7540 & 133,198 & 666 & 746 & 1767 & 3.35 & 70.30 & 102. 79 & 68.40 & 26.9 \\
\hline & & 7540 & 180,809 & 904 & 746 & 2398 & 305 & 86.89 & 129.07 & 67.30 & 38.3 \\
\hline & 200 & 7540 & 209,150 & \(10+6\) & 746 & 2774 & 2.80 & 92.50 & 150.08 & 61.70 & 46.3 \\
\hline \multirow{10}{*}{G} & 10 & 785 & 28.896 & 2890 & 3022 & 3680 & 0.10 & 0.45 & 1.30 & 35. & \\
\hline & 20 & 1570 & 57,1:0 & 2856 & 3022 & 3637 & 0.20 & 1.80 & 3. 16 & 49. & \\
\hline & 25 & 1962 & 66,640 & 2665 & 3022 & \(3: 399\) & 0.29 & 2.90 & 6.10 & 48. & \\
\hline & 30 & 2355 & 73,080 & 2436 & 3022 & 3103 & 0.40 & 4.60 & 9 \% 0 & 47. & 52 \\
\hline & 35 & 2747 & 94.080 & 2688 & 3 n 22 & 3125 & 0.50 & 7.40 & 15.00 & 48. & \\
\hline & 40 & 3140 & 112.000 & 2800 & 3022 & 3567 & 0.70 & 12.30 & 24.90 & 49. & \\
\hline & 50 & 3925 & 132,700 & 2654 & 3022 & 23881 & 0.90 & 18.80 & 38.80 & 48. & \\
\hline & 60 & \(4 \pi 10\) & 173,600 & 2893 & 3022 & 3686 & 1.35 & 36.90 & 66.40 & 55. & \\
\hline & 70 & 5495 & 203,280 & 2904 & 3002 & 3118 & 1.80 & 57.70 & \(10 \% .10\) & 54. & \\
\hline & 80 & 6:80 & 222,320 & 2 279 & 3022 & 3540 & 2.25 & 78.80 & 152.60 & 52. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type of Fan. & Diam. & Width. & No. Inlets. & \multicolumn{2}{|l|}{Diam. Inlets.} \\
\hline A. Guibal double. & 20 ft . & 6 ft . & 4 & & t. 10 in . \\
\hline B. Same, only left hand & 20 & 6 & 4 & 8 & 10 \\
\hline C. Guibal & 20 & 6 & 2 & 8 & 10 \\
\hline D. Guibal. & 25 & 8 & 1 & 11 & 6 \\
\hline E. Guibal, double & 171/2 & 4 & 4 & 8 & \\
\hline F. Capell. & 12 & 10 & 2 & 7 & \\
\hline G. Guibal. & & 8 & 1 & 12 & \\
\hline
\end{tabular}

An examination of the detailed results of each test in Mr. Norris's table sbows a mass of contradictions from which it is exceedingly difflcult to draw any satisfactory conclusions. The following, he states, appear to be more or less warranted by some of the figures :
1. Influence of the Condition of the Airworys on the Fan.-Mines with varying equivalent orifices give air per 100 feet periphery-motion of fan, within limits as follows, the quantity depending on the resistance of the mine :
\begin{tabular}{|c|c|c|c|c|c|}
\hline Equivalent Orifice. & Cu Ft. Air per 100 ft . Peripheryspeed. & \[
\begin{aligned}
& \text { Aver- } \\
& \text { age. }
\end{aligned}
\] & Equivalent Orifice. & Cu. Ft. Air per 100 ft . Peripheryspeed. & Aver-
age. \\
\hline Under 20 sq. ft. & 110 to 1700 & 1300 & 60 to ro & 3300 to 5100 & 4000 \\
\hline 20 to 30 & 1300 to 1800 & 1600 & 70 to 80 & 4000 to 4700 & 4400 \\
\hline 30 to 40 & 1500 to 2500 & 2100 & 80 to 90 & 3000 to 5600 & 4800 \\
\hline 40 to 50 & 2300 to 3500 & 2700 & 90 to 100 & & \\
\hline 50 to 60 & 2700 to 4800 & 3500 & 100 to 114 & 5200 to 6:00 & 5700 \\
\hline
\end{tabular}

The influence of the mine on the efficiency of the fan does not seem to be very clear. Eight fans, with equivalent orifices over 50 square feet, give
efflciensies over 70\% ; four, with smaller equivalent mine-oriffces, give about the same figures; while, on the contrary, six fans, with equivalent orifices of over 50 square feet. give lower efficiencies, as do ten fans, all drawing from mines with small equivalent orifices
It would seem that, on the whote, large airways tend to assist somewhat in attaining large efficiency.
2. Influence of the Diameter of the Fan.-This seems to be practically nil, the only advantage of large fans being in their greater width and the lower speed required of the engines.
3. Influence of the Width of a Fan.-This appears to be small as regards the efficiency of the machine ; but the wider fans are, as a rule, exhausting more air.
4. Influence of Shape of Blades.-This appears, within reasonable limits, to be practically wil. Thus, six fans with tips of blades curved forward, three fans with flat blades, and one with blades curved back to a tangent with the circumference, all give very high efficiencies- over \(70 \%\).
5. Influence of the Shape of the S'piral Casing. - This appears to be considerable The shapes of spiral casing in use fall into two classes, the first presenting a large spiral, beginning at or near the point of cut-off, and the second a circular casing reaching around three quarters of the circumterence of the fan, with a short spiral reaching to the evasée chimney.

Fans having the first form of casing appear to give in almost every case large efficiencies.

Fans that bave a spiral belonging to the first class, but very much contracted, give only medium efficiencies. It seems prohable that the proper shape of spiral casing would be one of such form that the air between each pair of blades could constantly and freely discharge into the space between the fan and casing, the whole being swept along to the evrtsée chimney. This would require a spiral beginning near the point of cut-off, enlarging by gradually increasing increments to allow for the slowing of the air caused by its friction against the casing, and reaching the chimney with an area such that the air could make jis exit with its then existing speed-somewhat less than the periphery-speed of the fan.
6. Influence of the Shutter:-This certainlv appears to be an adrantage, as by it the exit area can be regulated to suit the varying quantity of air given by the fan. and in this way re-entries can be prevented. It is not uncommon to find shutterless fans into the chimneys of which bits of paper may be dropped, which are drawn into the fan, make the circuit, and are again thrown out. This peculiarity has not been noticed with fans provided with shutters.
7. Influence of the Speed at which a Fan is Run.-It is noticeable that most of the fans giving high efficiency were running at a rather high periphery velocity. The best speed seems to be between 5000 and 6000 feet per minute.

The fans appear to reach a maximum efficiency at somewhere about the speed given, and to decrease rapidly in efficiency when this maximum point is passed.

In discussion of Mr. Norris's paper, Mr. A. H. Storrs says: From the "cubic feet per revolution " and "cubical contents of fan-blades, \({ }^{\text {, }}\) as given in the table, we find that the enclosed fans empty themselves from one half to t,wice per revolution, while the open fans are emptied from one and threequarter to nearly three times. This for fans of both types, on mines corering the same range of equivalent orifices. One open fan, on a very larys orifice, was emptied nearly four times, while a closed fan, on a still larger orifice, only shows one and one-half times. For the open fans the "cubic feet per 100 ft . motion " is greater, in proportion to the fan width and equivalent orifice, than for the errclosed type. Notwithstanding this apparently free discharge of the open fans, they show very low efficiencies.

As illustrating the very large capacity of centrifugal fans to pass air, if the conditions of the mine are made farorable. a \(16-\mathrm{ft}\). diam. fan, 4 ft .6 in . wide, at 130 revolutions, passed \(360,000 \mathrm{cu}\). ft. per min., and another. of same diameter, but slightly wider and with larger intake circles, passed \(500,000 \mathrm{cu}\). ft , the water-gauge in both instances being about \(1 / 2 \mathrm{in}\).
T. D Jones says: The efficiency reported in some cases by Mr. Norris is larger than I have ever been able to determine by experiment. My own experiments. recorded in the Pennsylvania Mine Inspectors' Reports from 1875 to 1881, did not show more than \(60 \%\) to \(65 \%\).

\section*{DISK FANS.}

Experiments made with a Blackman Disk Fan, 4 ft . diam, by Geo. A. Suter, to determine the volumes of air delivered under various conditions, and the power required; with calculations of efficiency and ratio of increase of power to increase of velocity, by G. H. Babcock. (Trans. A. S. M. E., vii. 54\%) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  & \[
\begin{aligned}
& \text { \#ै } \\
& \text { y } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  &  &  &  \\
\hline 350 & 25.797 & 0.65 & & & & & & & 析 \\
\hline 440 & 32.5\% & 2.29 & & 1.257 & 1.262 & 3.523 & 5. & & 9553 \\
\hline 534 & 41,929 & 4.42 & & 1.186 & 1.287 & 1.843 & 2.4 & & 1.062 \\
\hline 612 & 47,756 & 7.41 & & 1.146 & 1.139 & 1.677 & 3.97 & & . 9355 \\
\hline & For & series & & \(1 . \% 49\) & 1.851 & 11.140 & 4. & & \\
\hline 340 & 20,312 & 0.76
1 & & & & & & & \\
\hline 453
536 & 26,660
31,649 & 1.99
3.86 & & 1.332
1.183 & 1.308
1.187 & 2.618
1.940 & \begin{tabular}{l}
3.55 \\
3.86 \\
\hline
\end{tabular} & & . 6063 \\
\hline 627 & 36,543 & 6.47 & & 1.167 & 1.155 & 1.676 & 3.59 & & . 4802 \\
\hline & For & series & & 1.761 & 1.794 & 8.513 & 3.63 & & \\
\hline 34 & 9.983 & 1.12 & 0.28 & & & & & & \\
\hline 430 & 13,017 & 3.17 & 0.47 & 1.265 & 1.304 & 2.837 & 3.93 & 1.95 & 3046 \\
\hline 534 & 17,018 & 6.07 & 0.\%5 & 1.242 & 1.307 & 1.915 & 2.25 & 1.74 & . 3319 \\
\hline 570 & 18,649 & 8.46 & 0.87 & 1.068 & 1.096 & 1.394 & 3.63 & 1.60 & . 3027 \\
\hline & For & series & & 1.6 í6 & 1. \(\% 04\) & 7.554 & 3.24 & 1.81 & \\
\hline 330 & 8,399 & 1.31 & 0.26 & & & & & & 2631 \\
\hline 437 & 10,071 & 3.27 & 0.45 & 1.324 & 1.199 & \[
\dddot{3.142}
\] & 6.31 & 3.06 & . 2188 \\
\hline 516 & 11,157 & 6.00 & 0.75 & \[
1.181
\] & 1.108 & \[
1.457
\] & \[
3.66
\] & 4.96 & .2202 \\
\hline & For & series & & \[
1.563
\] & 1.3:9 & \[
4.580
\] & 5.35 & 3.72 & \\
\hline
\end{tabular}

Nature of the Experiments.-First Series: Drawing air through 30 ft . of 48 -in. diam. pipe on inlet side of the fan.
Secoud Series: Forcing air througb 30 ft . of 48 -in. diam. pipe on outlet side of the fan.
Third Series: Drawing air through 30 ft . of \(48-\mathrm{in}\). pipe on inlet side of the fan-the pipe being obstructed by a diaphragm of cheese-cloth

Fourth Series: Forcing air through 30 ft . of 48 -in. pipe on outlet side of fan -the pipe being obstructed by a diaphragm of cheese-cloth.
Mr. Babcock says concerning these experiments: The first four experiments are evidently the subject of some error, because the efficiency is such as to prove on an average that the fan was a source of power sufficient to overcome all losses and help drive the engine besides. The second series is less questionable, but still the efficipncy in the first two experiments is larger than might be expected. In the third and fourth series the resistance of the cheese-cloth in the pipe reduces the efficiency largely, as would be expected. In this case the value bas been calculated from the height equivalent to the water-pressure, rather than the actual velocity of the air.
This record of experiments made with the disk fan shows that this kind of fan is not adapted for use where there is any material resistance to the flow of the air. In the centrifugal fan the power used is nearly proportioned to the amount of air moved under a given head, while in this fan the power required for the same number of revolutions of the fan increases very materially with the resistance, notwithstanding the quantity of air moved is at the same time considerably reduced. In fact, from the inspection of the third and fourth series of tests, it would appear that the power required is very nearly the same for a given pressure, whether more or less air be in motion. It would seem that the main advantage, if any, of the disk fan over the centrifugal fan for slight resistances consists in the fact that the delivery is the full area of the disk, while with centrifugal fans intended to move the same quantity of air the opening is much smaller.

It will be seen by columns \(e^{8}\) and 9 of the table that the power used increased much more rapidly than the cube of the velocity, as in centrifugal fans. The different experiments do not agree with each other, but a general average may be assumed as about the cube root of the eleventh power.
Full and Threequarter Housing Fans. (Buffalo Forge Co.) Capacities at different velocities and pressures. (See also table on p. 519.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \dot{\Xi} \\
& \stackrel{N}{\Omega}
\end{aligned}
\]} & \multirow{3}{*}{Size of Outlet.} & \multirow[b]{3}{*}{} & \multicolumn{2}{|l|}{Pulleys.} & \multicolumn{6}{|l|}{Velocities in cubic feet per minute; Pressures in ounces at Fan Outlets.} \\
\hline & & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { gig } \\
& \text { än }
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{3654 ft. per min, \(1 / 2 \mathrm{oz}\).} & \multicolumn{2}{|l|}{4482 ft . per \(\min ., 3 / 4 \mathrm{Oz}\).} & \multicolumn{2}{|l|}{5175 ft . per \({ }^{\circ}\) min., 1 oz .} \\
\hline & & & & & Capacity. & Revs. per min. & Capacity. & Revs. per min. & Capacity. & Revs. per min. \\
\hline 50 & 181/2 \(\times 181 / 2\) & 243/4 & 9 & 7 & 8,140 & 492 & 9,900 & 600 & 11,440 & 693 \\
\hline 60 & \(2 \cdot 1 / 4 \times 231 / 4\) & 265/8 & 10 & 8 & 11,470 & 46. & 13,950 & 562 & 16.120 & 650 \\
\hline \%0 & \(26 \times 26\) & 341/4 & 11 & - & 16,280 & 361 & 19,800 & 441 & 20,880 & 509 \\
\hline 80 & \(293 / 4 \times 293 / 4\) & 391/8 & 12 & 10 & 21,460 & 303 & 26,100 & 369 & 30,160 & 426 \\
\hline 90 & \(331 / 2 \times 331 / 3\) & 43 & 14 & 11 & 27,750 & 266 & 33,250 & 325 & 39,000 & 3 3)6 \\
\hline 100 & \(3{ }^{1} 114 \times 311 / 4\) & 453/4 & 16 & 12 & 34,410 & 242 & 41,850 & 294 & 48,360 & 340 \\
\hline 110 & \(41 \times 41\) & 511\% & 18 & 13 & 41,540 & 217 & 50,400 & 265 & 58,240 & \(30 \hat{1}\) \\
\hline 120 & \(443 / 4 \times 443 / 4\) & 545/8 & 20 & 14 & 49,580 & 195 & 60,300 & 243 & 69,680 & 280 \\
\hline 130 & \(481 / 2 \times 481 / 2\) & 61 & 22 & 15 & 58,460 & \(18 \pi\) & 71,100 & 227 & 82,160 & 263 \\
\hline 110 & \(5 \cdot 1 / 4 \times 511 / 4\) & 643 亿 & 24 & 16 & 67,710 & 172 & 82,350 & 214 & 95, 160 & 248 \\
\hline 150 & \(56 \times 56\) & 6912 & 26 & 17 & \%7,700 & 161 & 94,500 & 196 & 109,200 & 20\% \\
\hline 160 & \(593 / 4 \times 593 / 4\) & \(741 / 4\) & 28 & 18 & 88,800 & 149 & 108,000 & 181 & 124.860 & 209 \\
\hline 170 & \(6311 / 2 \times 631 / 2\) & 79 & 30 & 19 & 100,270 & 140 & 121,950 & 171 & 140,920 & \(19 \%\) \\
\hline 180 & & & & & 112,480 & 136 & 136,800 & 165 & 158,080 & 191 \\
\hline
\end{tabular}

For \(1 / 4\) oz. pressure, speed 2584 ft . per minute, the capacity and the revolutions are each one-half of those for 1 oz . pressure.

Efficiency of Disk Fans.-Prof. A. B. W. Kennedy (Industries, Jan. 17, 1890) made a series of tests on two disk fans, 2 and 3 ft . diameter, known as the Verity Silent Air-propeller. The principal results and conclusions are condensed below.
In each case the efficiency of the fan, that is, the quantity of air delivered per effective horse-power, increases very rapidly as the speed diminishes, so that lower speeds are much more economical than higher ones. On the other hand, as the quantity of air delivered per revolution is very nearly constant, the actual useful work done by the fan increases almost directly with its speed. Comparing the large and small fans with about the same air delivery, the former (running at a much lower speed, of course) is much the more economical. Comparing the two fans running at the same speed, however, the smaller fan is very much the more economical. The delivery of air per revolution of fan is very nearly directly proportional to the area of the fan's diameter.
The air delivered per minute by the 3 -ft. fan is nearly \(12.5 R\) cubic feet ( \(R\) being the number of revolutions made by the fan per minute). For the \(2-\mathrm{ft}\). fan the quantity is \(5 . \% R\) cubic feet. For either of these or any other similar fans of which the area is \(A\) square feet, the delivery will be about \(1.8 A R\) cubic feet. Of course any change in the pitch of the blades might entirely change these figures.

The net H.P. taken up is not far from proportional to the square of the number of revolutions above 100 per minute. Thus for the \(3-\mathrm{ft}\). fon the net H.P. is \(\frac{(R-100)^{2}}{200,000}\), while for the 2 -ft. fan the net H.P. is \(\frac{(R-100)^{2}}{1,000,000}\).

The denominators of these two fractions are very nearly proportional inversely to the square of the fan areas or the fourth power of the fan diameters. The net H.P. required to drive a fan of diameter \(D\) feet or area \(A\) square feet, at a speed of \(R\) revolutions per minute, will therefore be approximately \(\frac{D^{4}(R-100)^{2}}{17,000,000}\) or \(\frac{A^{2}(R-100)^{2}}{10,400,000}\).

The 2 -ft. fan was noiseless at all speeds. The \(3-\mathrm{ft}\). fan was also noiseless up to over 450 revolutions per minute.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Propeller, 2 ft . diam.} & \multicolumn{3}{|c|}{Propeller, 3 ft . diam.} \\
\hline Speed of fan, revolutions per minute. & 750 & \(6 \pi 6\) & 577 & \(5 \sim 6\) & 459 & 373 \\
\hline Net H.P. to drive fan and belt. & 0.42 & 0.32 & 0.227 & 1.02 & \(0.5 \% 5\) & 0.324 \\
\hline Cubic feet of air per minute. & 4,183 & 3,830 & 3,410 & 7,400 & 5,800 & 4,4i0 \\
\hline Mean velocity of air in \(3-\mathrm{ft}\). flue, feet per minute & 593 & 543 & 482 & 1,046 & 820 & 632 \\
\hline Mean velocity of air in flue, same diameter as fan. & 1,3.30 & 1,220 & 1,085 & & & \\
\hline Cu.ft. of air per min.per effective H.P. & 9,980 & 11,970 & 15,000 & 7,250 & 10,070 & 13,800 \\
\hline Motion given to air per rev. of fan, ft. & 1. \({ }^{7}\) & 1.81 & 1.88 & 1.82 & 1.79 & 1.0 \\
\hline Cuhic feet of air per rev. of fan........ & 5.58 & 5.606 & 5.90 & 12.8 & 12.6 & 12.0 \\
\hline
\end{tabular}

\section*{POSITIVE ROTNATE BHOWERS. (P. H. \& F. M. Roots.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Size number . . . . . . . ........ \(1 / 4\) & 1/2 & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline Cubic feet per revol & 11/2 & 3 & 5 & 8 & 13 & 22 & 37 & \\
\hline volutions per minute, \(\{300\) & 250 & 225 & 200 & 175 & 150 & 125 & 100 & \\
\hline Smith fires............... , to & \\
\hline 350 & 300 & 275 & 250 & 225 & 200 & 175 & 150 & \\
\hline rnishes blast for Smith to \(^{2}\) & 6 & 10 & 16 & 24 & 32 & 47 & \% & \\
\hline fires blast for Smith \(\{\) & to & to & to & to & to & - & to & \\
\hline & & & & & & & & \\
\hline r & & to & to & to & to & to & 50 & \\
\hline la, melt & & 375 & 325 & 300 & 275 & 250 & 200 & \\
\hline & & 18 & 24 & 30 & 36 & 42 & 50 & \\
\hline side lining..... & & to & to & to & to & to & & \\
\hline & & 24 & 30 & 36 & 42 & \({ }^{8}\) & & \\
\hline Will melt iron per ho & & to & to & to & to & to & to & \\
\hline & & & 3 & 3 & 7 & 12 & \% & \\
\hline & , & \(31 / 2\) & \(51 /\) & 8 & 111/2 & 173/4 & 27 & \\
\hline
\end{tabular}

The amount of iron melted is based on 30.000 cubic feet of air per ton of iron. The horse-power is for maximum speed and a pressure of \(3 / 4\) pound, ordinary cupola pressure. (See also Foundry Practice.)

\section*{BLOWING-ENGINES.}

Corliss Horizontal Crossecompound Condensing Blowing-engines. (Yhiladelpha Engineerng Works.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Indicated \\
Horse-power.
\end{tabular}} & \multirow{4}{*}{Revs. per min.} & \multirow{4}{*}{\begin{tabular}{l}
Cu . Ft. \\
Free min.
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Blast- } \\
& \text { pres- } \\
& \text { sure } \\
& \text { per } \\
& \text { sq.in., } \\
& \text { los. }
\end{aligned}
\]} & \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} \\
\hline 15Exp. & 13Exp. & & & & & & & & & \\
\hline 12.5 lbs. & 100 lbs . & & & & & & & & & \\
\hline Steain. & Steam. & & & & & & & & & \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& 1,050 \\
& 1,596
\end{aligned}
\]} & 1,572 & 40 & 30,400 & 15 & 44 & 78 & (2) 84 & co & 505,000 & 605,000 \\
\hline & 2,280
\(1, \because 29\) & 60
40 & 45,600
30,400 & & & & & & & \\
\hline & 2,060 & 60 & 45, 640 & , & 42 & \%2 & (2) 84 & 60 & 475,000 & 550,000 \\
\hline & & 40 & 30,400 & \} 10 & 32 & 60 & (2) 84 & 60 & 355,000 & 436,000 \\
\hline & 1,340 & 60
40 & 45.600
26,800 & & & & & & & \\
\hline & 1.980 & 60 & 39,600 & \} 15 & 40 & \%2 & (2) 78 & 60 & 445,000 & 545,000 \\
\hline & 1.152 & 40 & 26.800 & \} 12 & 38 & 70 & (2) 78 & 60 & 425,000 & \\
\hline & 1,702
938 & 60
40 & 39.600 & \} 12 & 38 & 10 & (2) 78 & 60 & 425,000 & 491,000 \\
\hline & 1,938
1,386 & 40
60 & 26,800
39.600 & \(\} 10\) & 36 & 66 & (2) 78 & 60 & 415,000 & 450,000 \\
\hline & , 780 & 40 & 15.680 & \} 15 & 34 & 60 & (2) 72 & 60 & 340,00 & 430,000 \\
\hline & 1,175 & 60 & 23.500 & \(\} 15\) & 34 & 60 & (2) 12 & 60 & 340,000 & 430,000 \\
\hline & 548 & 40 & 15.680
23,500 & \} 10 & 28 & 50 & (2) \(\tau^{2}\) & 60 & 270,000 & 300,000 \\
\hline
\end{tabular}

\footnotetext{
Vertical engines are built of the same dimensions as above, except that the stroke is 48 in . instead of 60, and they are run at a higher number of revolutions to give the same piston-speed and the same I. H. P.
}

The calculations of power, capacity, etc., of blowing-engines are the same as those for air-compressors. Tuey are built without any provision for cooling the air during compression. A bout 400 feet per minule is the usual piston-speed for recent forms of engines. but with positive air-valves, which have beell introduced to some extent, this speed may br increased. The efficiency of the engine, that is, the ratio of the I.H.P. of the air cylinder to that of the steam cylinder, is usually taken at 90 per cent, the lusses by friction, leakage, etc., being taken at 10 per cent.

\section*{STEAMI-JET BLOWER AND EXHAUSTER.}

A blower and exhauster is made by L. Schutte \& Co., Philadelphia, on the principle of the steam-jet ejector. The following is a table of capacities:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l}
Size \\
No.
\end{tabular}} & \multirow[t]{2}{*}{Quantity of Air per hour in cubic feet.} & \multicolumn{2}{|l|}{Diameter of Pipes in inches.} & \multirow{2}{*}{Size
No.} & \multirow[t]{2}{*}{Quantity of Air per hour in cubic feet.} & \multicolumn{2}{|l|}{Diameter of Pipes in inches.} \\
\hline & & Steam. & Air. & & & Steam. & Air. \\
\hline 000 & 1,000 & \(1 / 2\) & 1 & 5 & 30.000 & 21/2 & 5 \\
\hline 00 & 2,000 & \(3 / 4\) & 112 & 6 & 36,000 & 21/2 & 6 \\
\hline 0 & 4,000 & 1 & 2 & 7 & 42,000 & 3 & 6 \\
\hline 1 & 6,000 & \(11 / 4\) & 21/2 & 8 & 48.000 & 3 & 7 \\
\hline 2 & 12.000 & \(11 / 2\) & & 9 & 54,000 & \(31 / 2\) & 7 \\
\hline 3 & 18.000 & \(2^{2}\) & \(31 / 2\) & 10 & 60,000 & 31/2 & 8 \\
\hline 4 & 24,000 & 2 & & & & & \\
\hline
\end{tabular}

The admissible vacuum and counter pressure, for which the apparatus is constructed, is up to a rarefaction of 20 inches of mercury, and a counterpressure up to one sixth of the steam-pressure.

The table of capacities is based on a steam-pressure of about 60 lbs. and a counter-pressure of about 8 lbs. With an increase of steam-pressure or decrease of counter-pressure the capacity will largely increase.

Another steam-jet blower is used for boiler-firing, ventilation, and similar purposes where a low counter-pressure or rarefaction meets the requireinents.

The volumes as given in the following table of capacities are under the supposition of a steam-pressure of 45 lbs . and a counter-pressure of, say, 2 inches of water :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\[
\begin{aligned}
& \text { Size } \\
& \text { No. }
\end{aligned}
\]} & \multirow[t]{2}{*}{Cubic feet of Air delivered per hour.} & \multirow[t]{2}{*}{Diameter of Steampipe in inches.} & \multicolumn{2}{|l|}{Diameter in inches of-} & \multirow{2}{*}{Size No.} & \multirow[t]{2}{*}{Cubic feet of Air delivered per hour} & \multirow[t]{2}{*}{Diam. of Steampipe in inches.} & \multicolumn{2}{|l|}{Diameter in inches of -} \\
\hline & & & Inlet & Disch. & & & & Inlet. & Disch. \\
\hline 00 & 6,000 & 3/8 & 4 & 3 & 4 & 250,000 & 1 & 17 & 14 \\
\hline 0 & 12.000 & 1/2 & 5 & 4 & 6 & 500000 & 11/4 & 24 & 20 \\
\hline 1 & 30,000 & \(1 / 2\) & 8 & 6 & 8 & 1,000,000 & 11/2 & \(3:\) & \(2 \pi\) \\
\hline 2 & 60.000 & \(3 / 4\) & 11 & 8 & 10 & 2,000,000 & 2 & 42 & 36 \\
\hline 3 & 125,000 & & & 10 & & & & & \\
\hline
\end{tabular}

The Steam-jet as a Means for Ventilation.-Between 1810 and 1850 the stran jet was employed to a considerable extent for ventilating English collieries, and in \(185: 3\) a committer of the House of Commons reported that it was the most powerful and at the same time the cheapest me hod for the ventilation of mines; but experiments made shortly afterwards proved that this opinion was erronenus, and that furnace ventilation was less than half as expensive, and in consequence the jet was soon abandoned as a permanent method of ventilation.

For an account of these experimpnts see Colliery Engineer, Feb. 1890. The jet, however, is sometimes advantageously used as a substitute, for instance, in the case of a fan standing for repairs, or after an explosion, when the furnace may not be kept going, or in the case of the fan having been rendered useless.

\section*{HEATING AND VENTILATION.}

Ventilation. (A. R. Wolff, Stevens Indicator, April, 1890.)-The popular impression that the impure air falls to the bottom of a crowded room is erroneous. There is a constant mingling of the fresh air admitted with the impure air due to the law of diffusion of gases, to difference of temperature, etc. The process of ventilation is one of dilution of the impure air by the fresh, and a room is properly ventilated in the opinion of the hygienists when the dilution is such that the carbonic acid in the air does not exceed from 6 to 8 parts by volume in 10,000 . Pure country air contains about 4 parts \(\mathrm{CO}_{2}\) in 10,000, and badly-ventilated quarters as high as 80 parts.

An ordinary man exhales 0.6 of a cubic foot of \(\mathrm{CO}_{2}\) per hour. New York gas gives out 0.75 of a cubic foot of \(\mathrm{CO}_{2}\) for each cubic foot of gas burnt. An ordinary lamp gives out 1 cu . ft . of \(\mathrm{CO}_{2}\) per hour. An ordinary candle gives out 0.3 cu . ft . per hour. One ordinary gaslight equals in vitiating effect about \(51 / 2\) men, an ordinary lamp \(12 / 3\) men, and an ordinary candle \(1 / 2\) mav.

To determine the quantity of air to be supplied to the inmates of an unlighted room, to dilute the air to a desired standard of purity, we can establish equations as follows:

Let \(v=\) cubic feet of fresh air to be supplied per hour;
\[
r=\text { cubic feet of } \mathrm{CO}_{2} \text { in each } 10,000 \mathrm{cu} \text {. } \mathrm{ft} \text {. of the entering air: }
\]
\(R=\) cubic feet of \(\mathrm{CO}_{2}\) which each \(10,000 \mathrm{cu} . \mathrm{ft}\). of the air in the room may contain for proper health conditions;
\(n=\) number of persons in the room;
\(.6=\) cubic feet of \(\mathrm{CO}_{2}\) exhaled by one man per hour.
Then \(\frac{v \times r}{10,000}+.6 n\) equals cubic feet of \(\mathrm{CO}_{2}\) communicated to the room during one hour.
This value divided by \(v\) and multiplied by 10,000 gives the proportion of \(\mathrm{CO}_{2}\) in 10,000 parts of the air in the room, and this should equal \(R\), the standard of purity desired. Therefore
\[
\begin{equation*}
R=\frac{10,000\left[\frac{v \times r}{10,000}+.6 n\right]}{v}, \text { or } v=\frac{6000 n}{R-r^{\circ}} \tag{1}
\end{equation*}
\]

If we place \(r\) at 4 and \(R\) at \(6, v=\frac{6000}{6-4} n=3000 n, .\).
or the quantity of air to be supplied per person is 3000 cubic feet per hour.
If the original air in the room is of the purity of external air, and the cubic contents of the room is equal to \(100 \mathrm{cu} . \mathrm{ft}\). per inmate, only \(3000-100=2900\) cu. ft. of fresh air from without will have to be supplied the first hour to keep the air within the standard purity of 6 parts of \(\mathrm{CO}_{2}\) in 10,000 . If the cubic contents of the room equals 200 cu . ft. per inmate, only \(3000-200=2800\) cır. ft. will have to be supplied the first hour to keep the air within the standard purity, and so on.

Again, if we only desire to maintain a standard of purity of 8 parts of carbouic acid in 10,000, equation (1) gives as the required air-supply per hour
\[
v=\frac{6000}{8-4} n=1500 n, \text { or } 1500 \mathrm{cu} . \mathrm{ft} . \text { of fresh air per inmate per hour. }
\]

Cubic feet of air containing 4 parts of carbonic acid in 10,000 necessary per person per hour to keep the air in room at the composition of
\begin{tabular}{cccccccc}
6 & 7 & 8 & 9 & 10 & 15 & 20 \\
3000 & 2000 & 1500 & 1200 & 1000 & 545 & 375
\end{tabular}\(\left\{\begin{array}{l}\text { parts of carbonic acid in } \\
10,000 .\end{array}\right.\)

If the original air in the room is of purity of external atmosphere ( 4 parts of carbonic acid in 10,000 ), the amount of air to be supplied the first hour, for given cubic spaces per inmate, to have given standards of purity not exceeded at the end of the hour is obtained from the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Cubic Feet of Space in Room Individual.} & \multicolumn{7}{|l|}{Proportion of Carbonic Acid in 10,000 Parts of the Air, not to be Exceeded at End of Hour.} \\
\hline & 6 & 7 & 8 & 9 & 10 & 15 & 20 \\
\hline & \multicolumn{7}{|l|}{Cubic Feet of Air, of Composition 4 Parts of Carbonic Acid in 10,000, to be Supplied the First Hour.} \\
\hline 100 & 2900 & 1900 & 1400 & 1100 & 900 & 445 & 275 \\
\hline \({ }_{300}^{200}\) & 2800
2800 & 1800
1700 & 1300
1200 & 1000
900 & \({ }_{700}\) & 345
245 & \({ }_{75}\) \\
\hline 400 & 2600 & 1600 & 1100 & 800 & 600 & 145 & Noue \\
\hline 500 & & & 1000 & 700 & 500 & 45 & \\
\hline 600 & 2400
2300 & 1400
1300 & 900
800 & 600
500 & 400
300 & None & ........ \\
\hline 700
800 & 2300
2200 & 1300
1200 & 800 & 500
400 & 300 & ... & \\
\hline 900 & 2100 & 1100 & 600 & 300 & 100 & & \\
\hline 1000 & 2000 & 1000 & 500 & 200 & None & & \\
\hline 1500 & 1500 & 500 & None & None & & & \\
\hline 2000 & 1000
500 & None & & & & & \\
\hline 2500 & 500 & & & & & & \\
\hline
\end{tabular}

It is exceptional that systematic ventilation supplies the 3000 cubic feet per inmate per hour, which adequate health considerations demand. Large auditoriums in which the cubic space per individual is great, and in which the atmosphere is thoroughly fresh before the rooms are occupied, and the occupancy is of two or three hours' duration, the systematic air-supply may be reduced, and 2000 to 2500 cubic feet per inmate per hour is a satisfactory allowance.

Hospitals where, on account of unhealthy excretions of various kinds, the air-dilution must be largest, an air-supply of from 4000 to 6000 cubic feet per inmate per hour should be provided, and this is actually secured in some hospitals. A report dated March 15, 1880. by a commission appointed to examine the public schools of the District of Columbia, says :
"In each class-room not less than 15 square feet of floor-space should be allotted to each pupil. In each class-room the window-space should not be less than one fourth the floor-space, and the distance of desk most remote from the window should not be more than one and a half times the height of the top of the window from the floor. The height of the class room should never exceed 14 feet. The provisions for ventilation should be such as to provide for each person in a class-room not less than 30 cubic feet of fresh air per minute ( 1800 per hour). which amount must be introduced and thoroughly distributed without creating unpleasant draughts, or causing any two parts of the room to differ in temperature more than \(z^{\circ}\) Fahr., or the maximum temperature to exceed \(70^{\circ}\) Fahr."

When the air enters at or near the floor, it is desirable that the velocity of inlet should not excee: 2 feet per second, which means larger sizes of register openings and fues than are usually obtainable, and much higher velocities of inlet than two feet per second are the rule in practice. The velocity of current into vent-flues can safely be as high as 6 or even 10 feet per second, without being disagreeably perceptible.

The entrance of fresh air into a room is co-incident with, or dependent on, the removal of an equal amount of air from the room. The ordinary means of removal is the vertical vent-duct, rising to the top of the building. Sometimes reliance for the production of the current in this vent-duct is placed solely on the difference of temperature of the air in the room and that of the external atmosphere: sometimes a steam coil is placed within the flue near its bottom to heat the air within the duct; sometimes steam pipes (risers and returns) run up the duct performing the same functions; or steam jets within the flue, or exhaust fans, driven by steam or electric power, act directly as exhausters; sometimes the heating of the air in the flue is accomplished by gas-jets.

The draft of such a duct is caused by the difference of weight of the
heated air in the duct, and a column of equal height and cross-sectional area of weight of the external air.

Let \(d=\) density, or weight in pounds, of a cubic foot of the external air.
Let \(d_{1}=\) density, or weight in pounds, of a cubic foot of the heated air within the duct.

Let \(h=\) vertical height, in feet, of the vent-duct.
\(h\left(d-d_{1}\right)=\) the pressure, in pounds per square foot, with which the air is forced into and out of the vent-duct.

This pressure can be expressed in height of a column of the air of density within the vent-duct, and evidently the height of such column of equal presssure would be \(=\frac{h\left(d-d_{1}\right)}{d_{1}}\).

Or, if \(t=\) absolute temperature of external air, and \(t_{1}=\) absolute temperature of the air in vent-duct in the form, then the pressure equals
\[
\begin{equation*}
\frac{h\left(t_{1}-t\right)}{t} . \tag{4}
\end{equation*}
\]

The theoretical velocity, in feet per second, with which the air would travels through the vent-duct under this pressure is
\[
\begin{equation*}
v=\sqrt{\frac{2 g h\left(t_{1}-t\right)}{t}}=8.02 \sqrt{\frac{h\left(t_{1}-t\right)}{t}} . \tag{5}
\end{equation*}
\]

The actual velocity will be considerably less than this, on account of loss due to friction. This friction will vary with the form and cross-sectional area of the vent-duct and its connections, and with the degree of smonthness of its interior surface. On this account, as well as to prevent leakage of air through crevices in the wall, tin lining of vent-flues is desirable.

The loss by friction may be estimated at approximately \(50 \%\). and so we find for the actual velocity of the air as it flows through the vent-duct :
\[
\begin{equation*}
v=\frac{1}{2} \sqrt{2 g h \frac{\left(t_{1}-t\right)}{t}}, \text { or, approximately, } v=4 \sqrt{h \frac{\left(t_{1}-t\right)}{t}} . \tag{6}
\end{equation*}
\]

If \(V=\) velocity of air in vent-duct, in feet per minute, and the external air be at \(32^{\circ}\) Fahr., since the absolute temperature on Fahrenheit scale equals thermometric temperature plus 459.4 ,
\[
\begin{equation*}
V=240 \sqrt{h \frac{\left(t_{1}-t\right)}{491.4}} \tag{i}
\end{equation*}
\]
from which has been computed the following table:
Quantity of Air, in Cubic Feet, Discharged per Minute through a Ventilating Duct, of which the Cross-sectional Area is One Square Foot (the External Temperature of Air being \(32^{\circ}\) Fahr.).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Height of Vent-duct in feet.} & \multicolumn{9}{|l|}{Excess of Temperature of Air in Vent-duct above that of External Air.} \\
\hline & \(5^{\circ}\) & \(10^{\circ}\) & \(15^{\circ}\) & \(20^{\circ}\) & \(25^{\circ}\) & \(30^{\circ}\) & \(50^{\circ}\) & \(100^{\circ}\) & \(150^{\circ}\) \\
\hline 10 & 77 & 108 & 133 & 15.3 & 171 & 188 & 242 & 342 & 419 \\
\hline 15 & 94 & 133 & 162 & 188 & 210 & 230 & 297 & 419 & 514 \\
\hline 20 & 108 & 153 & 188 & 217 & 242 & 265 & 342 & 484 & 593 \\
\hline 25 & 121 & 171 & 210 & 24.2 & 271 & 297 & 383 & 541 & 663 \\
\hline 30 & 133 & 188 & 230 & 265 & 29\% & 325 & 419 & 59.3 & 726 \\
\hline 35 & 143 & 203 & 248 & 286 & 320 & 351 & 453 & 640 & 784 \\
\hline 40 & 153 & 217 & 265 & 306 & 342 & 375 & 484 & 656 & 838 \\
\hline 45 & 162 & 230 & 28.2 & 325 & 363 & 398 & 514 & \(4{ }^{2} 6\) & 889 \\
\hline 50 & 171 & 242 & \(29 \%\) & 342 & 383 & 413 & 541 & 278 & 937 \\
\hline
\end{tabular}

Multiplying the figures in above table by 60 gives the cubic feet of air discharged per hour per square foot of cross-section of vent-duct. Knowing
the cross-sectional area of vent-ducts we can find the total discharge; or for a desired air-removal, we can proportion the cross-sectional area of vent-ducts required.

Artificial Cooling of Air for Ventilation. (Engineering News, July \(7,189 \%\).) - A pund of coal used to make stean for a fairly efficient refrigerating-machine can produce an actual cooling effect equal to that produced by the melting of 16 to 46 lbs . of ice, the amount varying with the conditions of working. Or, 855 heat-units per lb . of coal converted into work in the refrigerating plant (at the rate of 3 lbs. coal per horsepower hour) will abstract \(2: 275\) to 6545 heat-units of heat from the refrigerated body. If we allow \(2000 \mathrm{cu} . \mathrm{ft}\). of fresh air per hour per person as sufficient for fair ventilation, with the air at an initial temperature of \(80^{\circ} \mathrm{F}\)., its weight per cubic foot will be .0736 lb .; hence the hourly supply per person will weigh \(2000 \times .0736 \mathrm{lb} .=147.2 \mathrm{lbs}\). To cool this \(10^{\circ}\), the specific heat of air being 0.238 , will require the abstraction of \(147.2 \times 0.238 \times 10=350\) heatunits per person per hour.

Taking the figures given for the refrigerating effect per pound of coal as above stated, and the required abstraction of 350 heat-units per person per hour to have a satisfactory cooling effect, the refrigeration obtained from a pound of coal will produce this cooling effect for \(22 \% 5 \div 350=61 / 2\) hours with the least efficient working, or \(6545 \div 3.50=18.7\) hours with the most efficient workiug. With ice at \(\$ 5\) per ton, Mr. Woiff computes the cost of cooling with ice at about \(\$ 5\) per hour per thousand persons, and concludes that this is too expensive for any general use. With mechanical refrigeration, however, if we assume 10 hours' cooling per person per pound of coal as a fair practical service in regular work, we have an expense of only 15 cts . per thousand persons per hour, coal being estimated at \(\$ 3\) per short ton. This is fur fuel alone, and the various items of oil. attendance, interest, and depreciation on the plant, etc., must be considered in making up the actual total cost of mechanical refrigeration.
Mine-ventilation-Friction of Air in Underground Pas-sages.-ln ventilating a mine or other underground pa:sage the ressistance to be overcome is, according to most writers on the subject, proportional to the extent of the frictional surface exposed; that is, to the product lo of the length of the gangway by its perimeter, to the density of the air in circulation, to the square of its average speed, \(v\), and lastly to a coefficient \(k\), whose numerical value varies according to the nature of the sides of the gangway and the irregularities of its course.

The formula for the loss of head, neglecting the variation in density as unimportant, is \(p=\frac{k s v^{2}}{a}\), in which \(p=\) loss of pressure in pounds per square foot, \(s=\) square feet of rubbing-surface exposed to the air, \(v\) the velocity of the air in feet per minute, \(a\) the area of the passage in square feet, and \(k\) the coefficient of friction. W. Fairley, in Colliery Engineer, Oct. and Nov. 1893, gives the following formulæ for all the quantities involved, using the same notation as the above, with these additions : \(h=\) horse-power of ventilation \(; l=\) length of air-channel ; \(o=\) perimeter of air-channel; \(q=\) quantity of air circulating in cubic feet per minute; \(u=\) units of work, in footpounds, applied to circulate the air: \(w=\) water-gauge in inches. Then,
1. \(a=\frac{k s v^{2}}{p}=\frac{k s v^{2} q}{u}=\frac{k s v^{3}}{p v}=\frac{u}{p v}=\frac{q}{v}\).
2. \(h=\frac{u}{33,000}=\frac{q p}{33,000}=\frac{5.2 q w}{33,000}\).
3. \(k=\frac{p a}{s v^{2}}=\frac{u}{s v^{3}}=\frac{p}{s v^{2} \div a}=\frac{5.2 w}{s v^{2} \div a}\).
4. \(l=\frac{s}{o}=\frac{p a}{k v^{2} O}\).
5. \(o=\frac{s}{l}=\frac{p a}{k v^{2} l}\).
6. \(p=\frac{k s v^{2}}{a}=\frac{u}{q}=5.2 v=\left(\sqrt[3]{\frac{u}{k s}}\right)^{2} \frac{k s}{a}=\frac{k s v^{3}}{q}=\frac{u}{a v}\).
7. \(p a=k s v^{2}=\left(\sqrt[3]{\frac{u}{k s}}\right)^{2} k s=\frac{u}{v} ; p a^{3}=k s q^{2}\).
8. \(q=v a=\frac{u}{p}=\frac{k s v^{3}}{p}=\sqrt{\frac{p a}{k s}} a=\sqrt{\frac{u}{k s}} a\).
9. \(s=\frac{p a}{k v^{2}}=\frac{\imath}{k v^{3}}=\frac{q p}{k v^{3}}=\frac{v p a}{k v^{3}}=l o\).
10. \(u=q p=v p a=\frac{k s v^{2} q}{a}=k s v^{3}=5.2 q w=33,000 h\).
11. \(v=\frac{u}{p a}=\frac{q}{a}=\sqrt[3]{\frac{u}{k s}}=\sqrt[3]{\frac{q p}{k s}}=\sqrt{\frac{p a}{k s}}\).
12. \(v^{2}=\frac{p \alpha}{k s}=\left(\sqrt[3]{\frac{u}{k s}}\right)^{2}\).
13. \(v^{3}=\frac{u}{k s}=\frac{q p}{k s}=\frac{v p a}{k s}\).
14. \(w=\frac{p}{5.2}=\frac{k s v^{2}}{5.2 a^{2}}\),

To find the quantity of air with a given horse-power and efficiency (e) of engine:
\[
q=\frac{h \times 33,000 \times e}{p}
\]

The value of \(k\), the coefficient of friction, as stated, varies according to the nature of the sides of the gangway. Widely divergent values have been given by different authorities (see Coilliery Engineer, Nov. 1893), the most generally accepted one until recently being probably that of J. J. Atkinson, .0000000217 , which is the pressure per square foot in decimals of a pound for each square foot of rubbing-surface and a velocity of one foot per minute. Mr. Fairley, in his "Theory and Practice of Ventilating Coal-mines," gives a value less than half of Atkinson's, or .00000001 ; and recent experiments by D. Murgue show that even this value is high under most conditions. Murgue's results are given in his paper on Experimental Iuvestigations in the Loss of Head of Air-currents in Underground Workings, Trans. A. I. M. E., 1893. vol. xxiii. 63. His coefficients are given in the following table, as determined in twelve experiments:

> Coefficient of Loss of Head by Friction. French. British.

Rock. gangways.
\begin{tabular}{|c|c|c|}
\hline Straight, normal section & 00092 & \[
.000 .000,00486
\] \\
\hline Straight, normal se & . 00094 & . \(000,000,00497\) \\
\hline Straight, large section & . 00104 & . \(000,000,00549\) \\
\hline Straight, normal section & . 00122 & . \(000,000,00645\) \\
\hline [Straight, normal section & 00030 & . \(000,000.00158\) \\
\hline Straight, normal section & . 00036 & . \(000,000.00190\) \\
\hline Continuous curve, norma & . 00062 & . 000.000 003:88 \\
\hline Sinuous, intermediate sec & . 00051 & . 000.000 00:269 \\
\hline Sinuous, small section & . 00055 & . \(000.000,00291\) \\
\hline (Straight, normal section & . 00168 & . \(000.000,00888\) \\
\hline \{ Straight, normal section & . 00144 & .000,000.00î61 \\
\hline Slightly sinuous, small sectio & . 00238 & .000,000,01257 \\
\hline
\end{tabular}

The French coefficients which are given by Murgue represent the height of water-gauge in millimetres for each square metre of rubbing-surface and a velocity of one metre per second. To convert them to the British measure of pounds per square foot for each square foot of rubbing-surface and a velocity of one foot per minute they have heen multiplied by the factor of conversion, .000005283 . For a velocity of 1000 feet per minute, since the luss of head varies as \(v^{2}\), move the decimal point in the coefficients six places to the right.

FANS AND HEATED CHIMNEYS FOR VENTILATION. 533

Equivalent Orifice. -The head absorbed by the working-chambers of a mine cannot be computed a priori, because the openings, cross-passages, irregular-shaped gob-piles, and daily changes in the size and shape of the chambers present much too complicated a network for accurate analysis. In order to overcome this difficulty Murgue proposed in \(18 \mathrm{~T}_{2}\) the method of equivalent orifice. This method consists in substituting for the mine to be considered the equivalent thin-lipped orifice, requiring the same height of head for the discharge of an equal volume of air. The area of this orifice is obtained when the head and the discharge are known, by meaus of the following formulæ, as given by Fairley:

Let \(Q=\) quantity of air in thousands of cubic feet per minute;
\(w=\) inches of water-gauge;
\(A=\) area in square feet of equivalent orifice.
Then
\[
A=\frac{0.37 Q}{\sqrt{w}}=\frac{Q}{2.7 \sqrt{w}} ; \quad Q=\frac{A \times \sqrt{w}}{0.37} ; w=0.1369 \times\left(\frac{Q}{A}\right)^{2} .
\]

\section*{Motive Column or the Head of Air Due to Differences} of Temperature, etc. (Fairley.)

Let \(M=\) motive column in feet;
\(T\) = temperature of upcast;
\(f=\) weight of one cubic foot of the flowing air;
\(t=\) temperature of downcast;
\(D=\) depth of downcast.
Then
\[
M=D \frac{T-t}{T \times 459} \text { or } \frac{5.2 \times w}{\int} ; p=f \times M ; \quad w=\frac{f \times M}{5.2}=\frac{p}{5.2} .
\]

To find diameter of a round airway to pass the same amount of air as a square airway the length and power remaining the same:

Let \(D=\) diameter of round airway; \(A=\) area of square airway; \(O=\) perimeter of square airway. Then \(D^{3}=\sqrt[5]{\frac{A^{3} \times 3.1416}{.7854^{3} \times O}}\).

If two fans are employed to ventilate a mine, each of which when worked separately produces a certain quantity, which may be indicated by \(A\) and \(B\) then the quantity of air that will pass when the two fans are worked together will be \(\sqrt[3]{A^{3}+B^{3}}\). (For mine-ventilating fans, see page 521.)

Relative Efficiency of Fans and Heated Chimneys for Ventilation.-W. P. Trowbridge, 'Traus. A. S. M. E. vii. 531, gives a theoretical solution of the relative amounts of heat expended to remove a given volume of impure air by a fan and by a chimney. Assuming the total efficiency of a fan to be only \(1 /: 5\), which is made up of an efficiency of \(1 / 10\) for the engine. \(5 / 10\) for the fan itself, and \(8 / 10\) for efficiency as regards friction, the fan requires an expenditure of heat to drive it of only \(1 / 38\) of the amount that would be required to produce the same ventilation by a chimney 100 ft . high. For a chimney 500 ft . high the fan will be 7.6 times more efficient.

In all cases of moderate ventilation of rooms or buildings where the air is heated before it enters the rooms, and spontaneous ventilation is produced by the passage of this heated air upwards through vertical flues, no special heat is required for ventilation; and if such ventilation be sufficient, the process is faultless as far as cost is concerned. This is a condition of things which may be realized in most dwelling-houses, and in many halls, schoolrooms, and public buildings, provided inlet and outlet flues of ample cross-section be provided, and the heated air be properly distributed.

If a more active ventilation be demanded, but such as requires the smallest amomit of power, the cost of this power may outweigh the advantages of the fan. There are many cases in which steam-pipes in the base of a chimney, requiring 110 care or attention, may be preferable to mechanical ventilation, on the ground of cost, and trouble of attendance, repairs, etc.
\[
\text { * Murgue gives } A=\frac{0.38 Q}{\sqrt{w}} \text {, and Norris } A=\frac{0.403 Q}{\sqrt{v}} \text {. See page } 521 \text {, ante. }
\]

The following figures are given by Atkinson (Coll. Engr., 1889), showing the minimum depth at which a furnace would be equal to a ventilatingmachine, assuming that the sources of loss are the same in each case, i.e., that the loss of fuel in a furnace from the cooling in the upcast is equivalent to the po"er expended in overcoming the friction in the machine, and also assuming that the ventilating-machive utilizes \(60 \%\) of the engine-power. The coal consumption of the engine per I.H.P. is taken at 8 lbs . per hour:

> Average temperature in upcast....... \(100^{\circ} \mathrm{F} . \quad 150^{\circ} \mathrm{F} . \quad 200^{\circ} \mathrm{F}\).
> Minimum depth for equal economy... 960 yards. 1040 yards. 1130 yards.

Heating and Ventilating of Large Buildings. (A. R. Wolff, Jour. Frank. Inst., 1893.)-The transmission of heat from the interior to the exterior of a room or building, through the walls, ceilings, windows, etc., is calculated as follows :
\(S=\) amnunt of transmitting surface in square feet;
\(t=\) temperature F. inside, \(t_{0}=\) temperature outside;
\(K=\) a coefficient representing, for various materials composing buildings, the loss by transmission per square foot of surface in British thermal units per hour, for each degree of difference of temperature on the two sides of the material;
\(Q=\) total heat transmission \(=S K\left(t-t_{0}\right)\).
This quantity of heat is also the amount that must be conveyed to the room in order to make good the loss by transmission, but it does not cover the addiitonal heat to be conveyed on account of the change of air for purposes of ventilation. The coefficients \(K\) given below are those prescribed by law by the German Government in the design of the heating plants of its public buildings, and generally used in Germany for all buildings. They have been converted into American units by Mr. Wolff, and he finds that they agree well with good American practice:

\section*{Value of \(K\) for Each Square Foot of Brick Wali.}
\(\left.\begin{array}{c}\text { Thickness of } \\
\text { brick wall. }\end{array}\right\}\)\begin{tabular}{cccccccccc}
\(4^{\prime \prime}\) & \(8^{\prime \prime}\) & \(12^{\prime \prime}\) & \(16^{\prime \prime}\) & \(20^{\prime \prime}\) & \(24^{\prime \prime}\) & \(28^{\prime \prime}\) & \(32^{\prime \prime}\) & \(36^{\prime \prime}\) & \(40^{\prime \prime}\) \\
\(\boldsymbol{0 . 6 8}\) & 0.46 & 0.32 & 0.26 & 0.23 & 0.20 & 0.174 & 0.15 & 0.129 & 0.115
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1 sq. ft., wooden-be & looring, \(K=0.083\) \\
\hline &  \\
\hline 1 sq. ft.. fireproof construction, & as flooring, \({ }^{\text {as }}=0.124\) \\
\hline 1 & \\
\hline 1 sq. ft., single skyligh & \(K=1.118\) \\
\hline 1 sq . ft., doul, \({ }^{\text {de windo }}\) & \(K=0.518\) \\
\hline ft., & \\
\hline & \(K=0.414\) \\
\hline
\end{tabular}

These coefficients are to be increased respectively as follows: \(10 \%\) when the exposure is a northerly one, and winds are to be counted on as important factors; \(10 \%\) when the building is heated during the daytime only, and the location of the building is not an exposed one; 30\% when the building is heated during the daytime only, and the location of the building is exposed; \(50 \%\) when the building is heated during the winter months intermittently, with long intervals (say days or weeks) of non-heating.
The value of the radiating-surface is about as follows: Ordinary bronzed cast-irnn radiating-surfaces, in American radiators (of Bundy or similar type), located in roms, give out about 250 heat-units per hour for each square foot of surface. with ordinary steam-pressure, say 3 to 5 lbs . per sq. in.. and about 0.6 this amount with ordinary hot-water heating.
Non-panated radiating-surfaces, of the ordinary "indirect" type (Climax or pin surfaces). give out about 400 heat-units per hour for each square foot of heating-surface, with ordinary steam-pressure, say 3 to 5 lbs . per sq. in.; and about 0.6 this amount with ordinary hot-water heating.
A person gives out about 400 heat-units per hour; an ordinary gas-burner, about 4800 heat-units per hour; an incandescent electric ( 16 candle-power) light, about 1600 heat-units per hour.
The following example is given by Mr. Wolff to show the application of the formula and coefficients:
Lecture-room \(40 \times 60 \mathrm{ft}\)., 20 ft . high, 48,000 cubic feet, to be heated to \(69^{\circ} \mathrm{F}\).; exposures as follows: North wall, \(60 \times 20 \mathrm{ft}\)., with four windows each \(14 \times 4\) feet, outside temperature \(0^{\circ} \mathrm{F}\). Room beyond west wall and

\section*{HEATING AND V ENTILATING OF LARGE BUILDINGS. 535}
room overhead heated to \(69^{\circ}\), except a double skylight in ceiling, \(14 \times 24 \mathrm{ft}\)., exposed to the outside temperature of \(0^{\circ}\). Store-room beyond east wall at \(36^{\circ}\). Door \(6 \times 12 \mathrm{ft}\). in wall. Corridor beyond south wall heated to \(59^{\circ}\). Two doors, \(6 \times 12\), in wall. Cellar below, temperature \(36^{\circ}\).

The following table shows the calculation of heat transmission:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & Kind of Transmitting Surface. &  & Calculation of Area of Transmitting Surface. &  & \begin{tabular}{c}
\(\stackrel{1}{\circ}\) \\
\(\stackrel{1}{1}\) \\
\multirow{2}{4}{}
\end{tabular} &  \\
\hline \(69^{\circ}\) & Outside wall & \(36^{\prime \prime}\) & \(63 \times 22-448\) & 938 & 9 & 8,442 \\
\hline 69 & Four windows (singlej & & \(4 \times 8\) 欠 14 & 448 & 72 & 32,256 \\
\hline 33 & Inside wall (store-room) & 36" & \(42 \times 22-72\) & 852 & 4 & 3,408 \\
\hline 33 & Door & & \(6 \times 12\) & 72 & 19 & 1,368 \\
\hline 10 & Inside wall (corridor) & \(24^{\prime \prime}\) & \(45 \times 22-72\) & 918 & 2 & 1.836 \\
\hline 10 & Door.... \({ }^{\text {a }}\).. & & \(6 \times 12\) & \%2 & 5 & 360 \\
\hline 10 & Inside wall (corridor) & \(36^{\prime \prime}\) & \(17 \times 22-72\) & \(30 \cdot\) & 1 & \(30^{\circ}\) \\
\hline 10 & Door & & \(6 \times 12\) & & 5 & 360 \\
\hline 69 & Roof & & \(32 \times 42-336\) & 1,008 & 10 & 10.080 \\
\hline 99 & Double skylig & & \(14 \times 24\) & -3.36 & 43 & 14,448 \\
\hline \multirow[t]{6}{*}{93} & \multirow[t]{2}{*}{Floor..} & & \(6.2 \times 42\) & 2,604 & 4 & 10.416 \\
\hline & & & & & & 83,2\%6 \\
\hline & \multicolumn{5}{|l|}{Supplementary allowance, north outside wall, \(10 \%\)......... north outside windows, \(10 \%\).} & \(8+4\)
3.226 \\
\hline & & & & & & 87.346 \\
\hline & \multicolumn{5}{|l|}{Exposed location and intermittent day or night use, 30\%} & 26.204 \\
\hline & \multicolumn{5}{|l|}{Total thermal units} & 113.5 \\
\hline
\end{tabular}

If we assume that the lecture-room must be heated to 69 degrees Fahi: in rhe daytime when unoccupied, so as to be at this temperature when first nersons arrive, there will be required, ventilation not being considered, and fro:mzed direct low-pressure steam-radiators being the heating media, about \(113,550 \div 250=455 \mathrm{sq}\). ft. of radiating-surface. (This gives a ratio of about \(305 \mathrm{cu} . \mathrm{ft}\). of contents of room for each sq. ft . of heating-surface.)
If we assume that there are 160 persons in the lecture-room, and we provide 2500 cubic feet of fresh air per person per hour, we will supply \(160 \times\) \(.4500=400,000\) cubic feet of air per hour (i.e., \(\frac{400.000}{48,000}=\) over eight changes of , sontents of room per hour).

To heat ihis air from \(0^{\circ}\) Fahr. to \(69^{\circ}\) Fahr. will require \(400,000 \times 0.0189 \times\) \(B 9=5: 1,640\) thermal units per hour ( 0.0189 being the product of a weight of is cubic foot by the specific heat of air). Accordingly there must be provided \(621,640 \div 400=1304 \mathrm{sq}\). ft. of indirect surface, to heat the air required for ventilation, in zero weather. If the room were to be warmed entirely indirectly, that is, by the air supplied to room (including the heat to be conveyed to cover loss by transmission through walls, etc.), there would have to he conveyed to the fresh-air supply \(521,640+113,550=635.190\) heat-units. This would imply the provision of an amount of indirect heating-surfare of the "Climax" type of \(635.190 \div 400=1589\) sq. ft ., and the fresh air entering the room would have to be at a temperature of about \(84^{\circ}\) Fahr., viz., \(69^{\circ}=\) 113.550
\(\overline{400}, 000 \times 0.0189\), or \(69+15=84^{\circ}\) Fahr.
The above calculations do not, however, take into account that 160 par, sons in the lecture-room give out \(160 \times 400=64.000\) thermal units per hour; and that, say, 50 electric lights give out \(50 \times 1600=80.000\) thermal units per hour; or, say, 50 gaslights, \(50 \times 4800=240,000\) thermal units per hour. The presence of 160 people and the gas-lightiug would diminish considerably the amount of heat required. Practically, it appears that the heat gencrated by the presence of 160 people, 64,000 heat-units, and by 50 electric lights, 80,000 heat-units, a total of 144,000 heat-units, more than covers the amount of heat transmitted through walls, etc. Moreover, that if the 50 gaslights give out 240,000 thermal units per hour, the air supplied for ventilation must enter considerably below \(69^{\circ}\) Fahr., or the room will be heated to an unbearably high temperature. If 400,000 cubic feet of fresh air per hour
are supplied, and 240,000 thermal units per hour generated by the gas must be abstracted, it means that the air must, under these conditions, enter \(\frac{240,000}{400.000 \times .0189}=\) about \(32^{\circ}\) less than \(84^{\circ}\), or at about \(52^{\circ}\) Fahr. Furthermore, the additional vitiation due to gaslighting would necessitate a much larger supply of fresh air than when the vitiation of the atmosphere by the people alone is considered, one gaslight vitiating the air as much as five men.

Various Rules for Computing Radiating-surface. -The following rules are compiled from various sources. They are more in the nature of "rule-of-thumb" rules than those given by Mr. Wolff, quoted above, but they may be useful for comparison.
Divide the cubic feet of space of the room to be heated, the square feet of wall surface, and the square feet of the glass surface by the figures given under these headings in the following table, and add the quotients together; the result will be the square feet of radiating-surface required. (F. Schumann.)

Space, Wall and Glass Surface which One Square Foot of Radiatingsurface will Heat.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{6}{|c|}{Exposure of Rooms.} \\
\hline & & & \multicolumn{2}{|r|}{All Sides.} & \multicolumn{2}{|l|}{Northwest.} & \multicolumn{2}{|l|}{Southeast.} \\
\hline & & & Wall Surface, sq. ft. & Glass Surface, sq. ft. & Wall Surface, sq. ft. & Glass Surface, sq. ft. & Wall Surface, sq. ft. & Glass Surface, sq. ft. \\
\hline Once & 1 & 190 & 13.8 & 7 & 15.87 & 8.05 & 16.56 & 8.4 \\
\hline per & 3 & 210 & 15.0 & 7.7 & 17.25 & 8.85 & 18.00 & 9.24 \\
\hline hour. & 5 & 225 & 16.5 & 8.5 & 18.97 & 9.77 & 19.80 & 10.20 \\
\hline Twice & 1 & 75 & 11.1 & 5.7 & 12.76 & 6.55 & 13.22 & 6.84 \\
\hline per & 3 & 82 & 12.1 & 6.2 & 13.91 & 7.13 & 14.52 & 7.44 \\
\hline hour. & 5 & 90 & 13.0 & 6.7 & 14.52 & 7.60 & 15.60 & 8.04 \\
\hline
\end{tabular}

Emission of Heat-units per square foot per Hour from Cast-iron Pipes or Rafiators. Temp. of Air in Room, \(0^{\circ}\) F. (F. Schumann.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Mean Temperature of Heated Pipe, Radiator, etc.} & \multicolumn{2}{|l|}{By Contact.} & \multirow[b]{2}{*}{By Radiation.} & \multicolumn{2}{|l|}{By Radiation and Contact.} \\
\hline & Air quiet. & Air moving. & & Air quiet. & Air moving. \\
\hline Hot water......... . \(140^{\circ}\) & 55.51 & 92.52 & 59.63 & 115.14 & 152.15 \\
\hline . \(150^{\circ}\) & 65.45 & 109.18 & 69.69 & 135.14 & 178.87 \\
\hline . \(160^{\circ}\) & 75.68 & 126.13 & 80.19 & 155.87 & 206.32 \\
\hline " 6 . \({ }^{\text {c......... } 170^{\circ}}\) & 86.18 & 143.30 & 91.12 & 17 \%. 30 & 234.42 \\
\hline  & 96.93 & 161.55 & 102.15 & 199.43 & 264.05 \\
\hline " 6 "..... . . . \(1900^{\circ}\) & 107.90 & 179.83 & 114.45 & 222.35 & 294.28 \\
\hline ........... \(200^{\circ}\) & 119.13 & 198.55 & 127.00 & 246.13 & 3\%5.55 \\
\hline ، or steam.. \(210^{\circ}\) & 130.49 & 217.48 & 139.96 & 270.49 & 357.48 \\
\hline Steam. .............220 \({ }^{\circ}\) & 142.20 & 2337.00 & 155.27 & 297.47 & 392.27 \\
\hline .230 \({ }^{\circ}\) & 153.95 & 256.58 & 169.56 & 323.51 & 426.14 \\
\hline  & 165.90 & \(2 \pi 9.83\) & 184.58 & 350.48 & 464.41 \\
\hline " 6 ............... \(250^{\circ}\) & 178.00 & 296.65 & 200.18 & 378.18 & 496.81 \\
\hline " \({ }^{\text {c..... } . . . . . . . . ~} 2600^{\circ}\) & 189.90 & 316.50 & 214.36 & 404.26 & 530.86 \\
\hline  & 202. 70 & 337.83 & 233.42 & 436.12 & 571.25 \\
\hline " \({ }^{6}\) & 215.30 & 358.85 & 251.21 & 466.51 & 610.06 \\
\hline  & 228.55 & 380.91 & 267.73 & 496.28 & 648.64 \\
\hline \({ }^{6} \quad . . . . . . . . . . . .300^{\circ}\) & 240.85 & 401.41 & 279.12 & 519.97 & 680.53 \\
\hline
\end{tabular}

\section*{Radiating-surface required for Different Kinds of Buildings.}

The Nason Mifg. Co.'s catalogue gives the following: One square foot of surface will heat from 40 to 100 cu ft . of space to \(75^{\circ} \mathrm{in}-10^{\circ}\) latitudes. This range is intended to meet couditions of exposed or corner rooms of buildings, and those less so, as intermediate ones of a block. As a general rule, 1 sq . ft. of surface will heat 70 cu . ft . of air in outer or front rooms and \(100 \mathrm{cu} . \mathrm{ft}\). in inner rooms. In large stores in cities, with buildings on each side, 1 to 100 is ample. The following are approximate proportions:

Oue square foot radiating-surface will heat:
\begin{tabular}{ccc}
\begin{tabular}{c} 
In dwellings, \\
schoolrooins,
\end{tabular} & \begin{tabular}{c} 
In hall, stores, \\
lofts, factories, \\
offices, etc.
\end{tabular} & \begin{tabular}{c} 
In churches, large \\
auditoriums,
\end{tabular} \\
60 to 80 ft. & 75 to 100 ft & etc. \\
\hline
\end{tabular}

By direct radiation... By indirect radiation.

60 to 80 ft . 40 to 50 "
lofts, factories,

Isolated buildings exposed to prevailing north or west winds should have a generous addition made to the heating-surface on their exposed sides.

The following rule is given in the catalogue of the Babcock \& Wilcox Co., and is also recommended by the Nason Mfg. Co.:

Radiating surface may be calculated by the rule: Add together the square feet of glass in the windows, the number of cubic feet of air required to be changed per minute, and one twentieth the surface of external wall and roof; multiply this sum by the difference between the required temperature of the room and that of the external air at its lowest point, and divide the product by the difference in temperature between the steam in the pipes and the required temperature of the room. The quotient is the required radiating-surface in square feet.

Prof. R. C. Carpenter (Heating and Ventilation, Feb. 15, 1897), gives the following handy formula for the amount of heat required for heating building's by direct radiation:
\[
h=\frac{n}{55} C+G+1 / 4 W,
\]
in which \(W=\) wall-surface, \(G=\) glass- or window-surface, both in sq. ft., \(C^{C}=\) contents of building in cu. ft., \(n=\) number of times the air must be changed per hour, and \(h=\) total heat units required per degree of difference of temperature between the room and the surrounding space. To heat the building to \(70^{\circ} \mathrm{F}\). when the outside temperature is \(0^{\circ}, 70\) times the above quantity of heat will be required. Under ordinary conditions of pressure aud temperature 1 sq . ft . of steam-heating surface will supply 280 heat units per hour, and 1 sq. ft. of hot-water heating surface 175 heat units per hour. The square feet of radiating-surface required under these conditions will be \(R=0.25 / h\) for steam-heating, and \(R=0.4 / h\) for hot-water heating. Prof. Carpenter says that for residences it is safe to assume that the air of the principal living-rooms will change twice in an hour, that of the halls three times and that of the other rooms once per hour, under ordinary conditions.

Overhead Steam-pipes. (A. R. Wolff, Stevens Indicator, 1887.)When the overhead system of steam-heating is employed, in which system direct radiating pipes. usually \(11 / 4 \mathrm{iv}\). in diam., are placed in rows overhead, suspended upon horizontal racks, the pipes running horizontally, and side by side, around the whole interior of the building, from 2 to 3 ft . from the walls, and from 2 to 4 ft . from the ceiling, the amount of \(11 / 4 \mathrm{in}\). pipe required, according to Mr. C. J. H. Woodbury, for heating mills (for which use this system is deservedly much in vogue), is about 1 ft . in length for every 90 cu . ft. of space. Of course a great range of difference exists, due to the special character of the operating machinery in the mill, both in respect to the amount of air circulated by the inachinery, and also the aid to warming the room by the friction of the journals.

Indirect Heatingesurface.-J. H. Kinealy, in Heating and Ventilation, May 15, 1894, gives the following formula, deduced from results of experiments by C. B. Richards, W. J. Baldwin, J. H. Mills, and others, upon indirect heaters of various kinds, supplied with varying amounts of air per hour per square foot of surface:
\[
N=\frac{35.04}{\frac{T_{2}-T_{1}}{T_{0}-T_{1}}-0.369} ; \quad T_{2}=\left(T_{0}-T_{1}\right)\left(0.369+\frac{35.04}{N}\right)+T_{1}
\]
\(N=\) cubic feet of air, reduced to \(70^{\circ} \mathrm{F}\)., supplied to the heater per square foot of heating-surface per hour; \(T_{0}=\) temperature of the steam or water in the heater: \(T_{1}=\) temperature of the air when it enters the heater; \(T_{2}=\) temperature of the air when it leaves the heater.

As the formula is based upon an average of experiments made unon all sorts of indirect heaters, the results obtained by the use of the equation may in some cases be slightly too small and in others slightly too lar although the error will in no case be great. No single formula ought to be expected to apply equally well to all dispositions of heating-surface in indirect heaters, as the efficiency of such heater can be varied between such wide limits by the construction and arrangement of the surface.
In indirect heating, the efficiency of the radiating-surface will increase, and the temperature of the air will diminish, when the quautity of the air caused to pass through the coil increases. Thus \(1 \mathrm{sq} . \mathrm{ft}\). radiating-surface, with steam at \(212^{\circ}\), has been found to heat 100 cul . ft . of air per hour from zero to \(150^{\circ}\), or 300 cu . ft. from zero to \(100^{\circ}\) in the saine time. The best results are attained by using indirect radiation to supply the necessary ventilation, and direct radiation for the balance of the heat. (Steam.)

In indirect steam-heating the least flue area should be 1 to \(11 / 4 \mathrm{sq}\). in. to every square foot of heating-surface, provided there are no long horizontal reaches in the duct, with little rise. The register should have twice the area of the duct to allow for the fretwork. For hot water heating from 25\% to \(30 \%\) more heating-surface and flue area should be given than for lowpressure stram. (Engineering Record, May 26, 1891.)

Boiler Heating-surface Fequired. (A. R. Wolff, Stevens Indicator, 1887.)-When the direct system is used to heat buildings in which the street floor is a store, and the upper floors are devoted to sales and stockrooms and to light manufacturing, and in which the fronts are of stone or iron, and the sides and the rear of building of brick-a safe rule to follow is to supply 1 sq . ft . of boiler heating-surface for each 700 cu . ft ., and 1 sq . ft . of radiating-surface for each 100 cu . ft . of contents of building.

For heating mills, shops, and factories, 1 sq . ft . of boiler heating-surface should be supplied for each \(4 \pi 5 \mathrm{cu}\). ft. of contents of building; and the same allowance should also be made for heating exposed wooden dwellings. For heating foundries and wooden shops, \(1 \mathrm{sq} . \mathrm{ft}\). \(\mathrm{or}^{2}\) boiler heating-surface should be prorided for each 400 cu. ft. of contents; and for structures in which glass enters very largely in the construction-such as conservatories, exhibition buildings, and the like -1 sq . ft . of boiler heating-surface should be provided for each 275 cu . ft . of contents of building.

When the indirect system is employed, the radiator-surface and the boiler capacity to be provided will each have to be, on an average, about \(25 \%\) more than where direct radiation is used. This percentage also marks approximately the increased fuel consumption in the indirect system.

Steam (Babcock \& Wilcox Co.) has the following: 1 sq. ft. of boiler-surface will supply from 7 to 10 sq . ft. of radiating-surface, depending upon the size of boiler and the efficiency of its surface, as well as that of the radiatingsurface. Small boilers fur house use should be much larger proportionately than large plants. Each horse-power of boiler will supply from 240 to 360 ft . of 1 -in. steam-pipe, or 80 to 120 sq . ft. of radiating surface. Cubic feet of space has little to do with amount of steam or surface required, but is a convenient factor for rugh calculations. Uuder ordinary conditions 1 horse-power will heat, approximately, in-


Steam-consumption in Car-heating.

\section*{C., M. \& St. Paul Railway Tests. (Engineering, June 27, 1890, p. 764.) \\ Outside Temperature. 40 30 10 \\ Inside Temperature. 70 \\ \(\%\) \\ 70}

\section*{Enternal Diameters of Steam Supply-mains, with Total Resistance equal to 2 inches of Water-column.*}

Steam, Pressure 10 lbs . per square inch above atm., Temperature \(239^{\circ} \mathrm{F}\).
Formula, \(d=0.5374 \sqrt{\frac{Q^{2} l}{h}} ; \quad\) where \(d=\) internal diameter in inches; \(\psi-0.2\) cubic feet of steam per minute per 100 sq . ft. of radiating-surface; \(l=\) iength of mains in feet: \(h=159.3\) feet head of steam to modnce flow.

* From Robert Briggs's paper on American Practice of Warming Buildings by Stean (Proc. Inst. C. E.; 1882, vol. lxxi).

For other resistances and pressures above atmosphere multiply by the respective factors below : Water col . 6 in. \(12 \mathrm{in} .24 \mathrm{in} . \mid\) Press. ab. atm. 0 lbs. 3 lbs. 30 lbs .60 lbs. Multiply by \(0.8027 \quad 0.6988 \quad 0.6084 \mid\) Multiply by \(\quad 1.0231 .015 \quad 0.973 \quad 0.948\)

\section*{Registers and Cold-air Ducts for Indirect Steam Heating.} -The Locomotive gives the following table of openings for registers and cold-air ducts, which has been found to give satisfactory results. The coldair boxes should have \(11 / 2 \mathrm{sq}\). in. area for each square foot of radiator suface, and never less than \(3 / 4\) the sectional area of the hot-air ducts. The hot air ducts should have 2 sq . in. of sertional area to each square foot of radiator surface on the first floor, and from \(11 / 2\) to 2 inches nu the second floor.


The sizes in the table approximate to the rules given, and it will be found that they will allow an easy flow of air and a full distribution throughout the room to be heated.

\section*{Physical Properties of Steam and Condensed Water, under Conditions of Ordinary Practice in Warming by steam. (Brigys.)}


Size of Steam Pipes for Stemm Heating. (See also Flow of Stean in Pipes.)-Sizes of vertical main pipes. Direct radiation. (J. R. Willett, Heating and Ventilation, Feb., 1894.)
Diameter of pipe, inches. \(1 \begin{array}{llllllllll}11 / 4 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 5 & 6\end{array}\) Sq. ft. of radiator surface \(40 \begin{array}{llllllllll}70 & 110 & 220 & 360 & 560 & 810 & 1110 & 2000 & 3000\end{array}\) A horizontal branch pipe for a given extent of radiator surface should be une size larger than a vertical pipe for the same surface.
The Nason Mfg. Co. gives the following:

Radiator surface sq ft . (maximum).. \(12.5 \quad 20005001000 \quad 1500 \quad 2500\)
When mains and surtaces are very much above the boiler the pipes need not. be as large as given above; under very favorable circumstances and
conditions a 4 -inch pipe may supply from 2000 to 2500 sq . ft. of surface, a 6 inch pipe for 5000 sq . ft, and a 10 inch pipe for 15,000 to \(\because 0000 \mathrm{sq}\) ft., if the distance of run from boiler is not too great. Less than \(11 / 2\)-inch pipe should not be used horizoutally in a main unless for a single radiator colnnection.

Steam, by the Babcock \& Wilcox Co., says: Where the condensed water is returned to the boiler, or where low pressure of steam is used, the diameter of mains leading from the boiler to the radiating-surface should be equal in inches to one tenth the square root of the radiating-surface, mains included, in square feet. Thus a 1 -inch pipe will supply 100 square feet of surface, itself included. Return-pipes should be at least \(3 / 4\) inch in diameter, and never less than one half the diameter of the main-longer returns requiring larger pipe. A thorongh drainage of steam-pipes will effectually prevent all cracking and pounding noises therein.
\(A\). \(R\). Wolff's Practice.-Mr, Wolff gives the following figures showing his present practice (1897) in proportioning mains and returns. They are based on an estimated loss of pressure of \(2 \%\) for a length of 100 ft . of pipe, not including allowance for bends and valves (see p. 6i8). For longer runs divide the thermal units given in the table by \(0.1 \sqrt{\text { length in ft. Besides giving the }}\) thermal units the table also indicates the amount of direct radiating surface which the steam-pipes can supply, on the basis of an emission of 250 thermal units per hour for each squaie foot of direct radiating surface.

Size of Pipes for Steam Heating.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{2lbs. Pressure 5} & \multicolumn{2}{|l|}{\(5 \mathrm{lbs}\). Pressure} \\
\hline & & &  & E &  & &  & \[
\left\lvert\, \begin{aligned}
& 1 \\
& 0.0 \\
& =0 \\
& 0 \\
& 0
\end{aligned}\right.
\] &  &  \\
\hline 1 & -9 & 36 & 15 & 60 & & & 9.30 & \(3 \sim 20\) & 1550 & 6200 \\
\hline \(1 / 41\) & 18 & 72 & 30 & 120 & & \(31 / 2\) & 1500 & 6000 & 2500 & 10000 \\
\hline 11 & 30 & 120 & 50 & 20 & & 4 & 22.50 & 9000 & \(3 \%\) & 15000 \\
\hline \(11 /\) & \% & 280 & 120 & 480 & 8 & 4 & 3200 & 12800 & 5400 & 21600 \\
\hline \(21 / 2\) & 132 & 528 & 220 & 880 & 9 & 41/2 & 4450 & 17800 & 7500 & 30000 \\
\hline & 225 & 900 & 375 & 1500 & 10 & 5 & 5800 & 23200 & 9750 & 39000 \\
\hline \(31 / 21 / 2\) & 330 & 13:0 & 550 & 2200 & 12 & 6 & 9250 & 3in00 & 15500 & 62000 \\
\hline & 480 & 19:20 & 80 & 3200 & 14 & 7 & 13500 & 54000 & 23.300 & \(9 \cdot \mathrm{n} 00\) \\
\hline \(41 / 2.3\) & 690 & \(2 \sim 160\) & 1150 & 4 6 00 & 16 & 8 & 19000 & \%6000 & 32500 & 130000 \\
\hline
\end{tabular}

耳最eating a Greenhouse by Steam.-Wm. J. Baldwin answers a question in the American Muchinist as below: With five pounds steampressure, how many square feet or inches of heating-surface is necessary to heat 100 square feet of glass on the roof, ends, and sides of a greenhouse in order to maintain a night heat of \(55^{\circ}\) to \(65^{\circ}\), while the thermometer outside ranges at from \(15^{\circ}\) to \(20^{\circ}\) below zero; also, what boiler-surface is necessary ? Which is the best for the purpose to use- \(2^{\prime \prime}\) pipe or \(11 / 4^{\prime \prime}\) pipe?

Ans.-Reliable authorities agree that 1.25 to 1.50 cubic feet of air in an enclosed space will be cooled per minute per sq. ft. of glass as many degrees as the internal temperature of the house exceeds that of the air outside. Between \(+65^{\circ}\) and - \(20^{\circ}\) there will be a difference of \(85^{\circ}\), or, say, one cubic foot of air cooled \(127.5^{\circ} \mathrm{F}\). for each sq ft . of glass for the most extreme condition mentioned. Multiply this by the number of square feet of glass and by 60, and we have the number of cubic feet of air cooled \(1^{\circ}\) per hour within the building or house. Divide the number thus found by 48 , and it gives the units of heat required, approximately. Divide again by 95:3, and it will give the number of pounds of steam that must be condensed from a pressure and temperature of five pounds above atmosphere to water at the same temperature in an hour to maintain the heat. Each square foot of surface of pipe will condense from \(1 / 4\) to nearly \(1 / 2 \mathrm{lb}\). of steam ner hour, according as the coils are exposed or well or poorly arranged, for which an average of \(1 / 3 \mathrm{lb}\). may be taken. According to this. it will require \(3 \mathrm{sq} . \mathrm{ft}\). of pipe surface per lb . of steam to be conlensed. Pinportion the heatingsurface of the boiler to have about one fifth the actual radiating-surface, if you wish to keep steam over night, and propnrtion the grate to burn not more than six pounds of coal per sq ft . of grate per hour. With very slow combustion. such as takes place in base-burning boilers. the grate might be proportioned for four to five pouncis of coal per hour. It is cheaper to make coils of \(11 / 4^{\prime \prime}\) pipe than of \(2^{\prime \prime}\), and there is notbing to be gained by using \(2^{\prime \prime}\) pipe unless the coils are very long. The pipes in a greenhouse should be
under or in front of the benches, with erery chance for a good circulation of air. "Header" coils are better than "return-bend" coils for this purpose.

Mr. Bald win's rule may be given the following form: Let \(H=\) heat-units transferred per hour, \(T=\) temperature inside the greenhouse, \(t=\) temperature outside, \(S=\mathrm{sq}\). ft. of glass surface; then \(H=1.5 S(T-t) \times 60 \div 48\) \(=1.8 \% 5 S(T-t)\). Mr. Wolff's coefficient \(K\) for single skylights would give \(H=1.118 S(T-t)\).

Heating a Greenhouse by Hot Water.-W. M. Mackay, of the Richardson \& Boynton Co., in a lecture before the Master Plumbers' Association, N. Y., 1889, says: I find that while greenhouses were formerly heated by 4 -inch and 3-inch cast-iron pipe, on account of the large body of water which they contained, and the suppositinn that they gave better satisfaction and a more even temperature, florists of long experience who have tried 4 -inch and 3 -inch cast-iron pipe, and also 2-inch wrought-iron pipe for a number of years in heating their greenhouses by hot water, and who have also tried steam-heat. tell me that they get better satisfaction, greater economs, and are able to maintain a more even temperature with 2inch wrought-iron pipe and hot water than by any other system they have used. They attribute this result principally to the fact that this size pipe contains less water and on this account the heat can be raised and lowered quicker than by any other arrangement of pipes, and a more uniform temperature maintained than by steam or any other system.

\section*{HOT-WATEER HEATENG.}

\author{
(Nason Mfg. Co.)
}

There are two distinct forms or modifications of hot-water apparatus, depending upon the temperature of the water.
In the first or open-tank system the water is never above \(212^{\circ}\) temperature, and rarely above \(200^{\circ}\). This method always gives satisfaction where the surface is sufficiently liberal, but in making it so its cost is considerably greater than that for a steam-heating apparatus.

In the second method, sometimes called (erroneously) high-pressure hotwater heating, or the closed-system apparatus, the tank is closed. If it is provided with a safety-valve set at 10 lbs . it is practically as safe as the opentank system.

Law of Velocity of Flow. - The motive power of the circulation in a hot-water apparatus is the difference between the specific gravities of the ascending and the descending pipes. This effective pressure is very small, and is equal to about one grain for each foot in height for each degree difference between the pipes; thus, with a height of 12 " in "up" pipe, and a difference between the temperatures of the \(u p\) and down pipes of \(8^{\circ}\), the difference in their specific gravities is equal to 8.16 grains on each square inch of the section of return-pipe, and the velocity of the circulation is proportioned to these differences in temperature and beight.

To Calculate Velocity of Flow.-Thus, with a height of ascending pipe equal to \(10^{\prime}\) and a differeuce in temperatures of the flow and return pipes of \(8^{\circ}\), the difference in their specific gravities will equal 816 grains, or \(\div 7000=.01166 \mathrm{lbs}\)., or \(\times 2.31\) (feet of water in one pound) \(=.0269 \mathrm{ft}\)., and by the law of falling bodies the velocity will be equal to \(8 \sqrt{.0 \div 69}=1.312 \mathrm{ft}\). per second, or \(\times 60=78.7 \mathrm{ft}\). per minute. In this calculation the effect of friction is entirely omitted. Considerable deduction must be made on this account. Even in apparatus where length of pipe is not great, and with pipes of larger areas and with few bends or angles, a large deduction for friction must be made from the theoretical velocity, while in large and complex apparatus with small head, the velocity is so much reduced by friction that sometimes as much as from \(50 \%\) to \(90 \%\) must be deducted to obtain the true rate of circulation.

Main flow-pipes from the heater, from which branches may be taken, are to be preferred to the practice of taking off nearly as many pipes from the heater as there are radiators to supply.

It is not necessary that the main flow and return pipes should equal in capacity that of all their branches. The hottest water will seek the highest level, while gravity will cause an even distribution of the heated water if the surface is properly proportioned.
It is good practice to reduce the size of the vertical mains as they ascend, say at the rate of one size for each floor.
As with steam, so with hot water. the ninac mist be unconfined to allow
for expansion of the pipes consequent on having their temperatures increased.

An expansion tank is required to keep the apparatus filled with water, which latter expands \(1 / 24\) of its bulk on being heated from \(40^{\circ}\) to \(212^{\circ}\), and the cistern must have capacity to hold certainly this increased bulk. It is recommended that the supply cistern be placed on level with or above the highest pipes of the apparatus, in order to receive the air which collects in the mains and radiators, and capable of holding at least \(1 / 20\) of the water in the entire apparatus.

\section*{Approximate Proportions of Radiating-surfaces to Cubic Capacities of Space to be Heated.}
\begin{tabular}{|c|c|c|c|}
\hline One Square Foot of Pa-diating-surface will heat with- & In Dwellings, School-1.0oms, Offices, etc. & In Halls, Stores, Lofts, Factories, etc. & In Churches, Large Auditoriums, etc. \\
\hline High temperature direct hot-water radiation & 50 to \(70 \mathrm{cu} . \mathrm{ft}\). & 65 to \(90 \mathrm{cu} . \mathrm{ft}\). & 130 to \(180 \mathrm{cu} . \mathrm{ft}\). \\
\hline Low temperature direct hot-water radi ation & 30 to 50 " " & 35 to 65 " 6 & \%0 to 130 " \\
\hline High temperature indirect hot-water radiation & 30 to 60 " " & 35 to 75 " " & roto 150 " " \\
\hline \(\left.\begin{array}{r}\text { Low temperature in- } \\ \text { direct hot-water ra- } \\ \text { diation ................ }\end{array}\right\}\) & 20 to 40 " " & 25 to 50 " " & 50 to 100 ، ، \\
\hline
\end{tabular}

Diameter of Main and Branch Pipes and square feet of coil surface they will supply, in a low-pressure hot-water apparatus ( \(212^{\circ}\) ) for direct or indirect radiation, when coils are at different altitudes for direct radiation or in the lower story for indirect radiation:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  & \multicolumn{10}{|l|}{Direct Radiation. Height of Coil above Bottom of Boiler, in feet.} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & \(\%\) & 80 & 90 & 100 \\
\hline & \[
\mathrm{sq.}_{49}^{\mathrm{ft} .}
\] & sq. ft. & sq. ft. & sq. ft. & \[
\mathrm{sq} \cdot \mathrm{ft} .
\] & sq. ft. & sq. ft. & sq. ft. & \[
\text { sq. } \mathrm{ft} .
\] & \[
{ }_{65}
\] & \[
\text { sq. ft. } 68
\] \\
\hline & 87 & 89 & 92 & 95 & 98 & 101 & 103 & 108 & 112 & 116 & 121 \\
\hline & 136 & 140 & 144 & 149 & 153 & 158 & 161 & 169 & 175 & 182 & 189 \\
\hline 11/2 & 196 & 202 & 209 & 214 & 222 & 228 & 235 & 243 & 252 & 261 & 271 \\
\hline 2 & 349 & 359 & 370 & 380 & 393 & 405 & 413 & 433 & 449 & 465 & 483 \\
\hline 21 & 546 & 561 & \(5 \% 7\) & 595 & 613 & 633 & 643 & 678 & \% 01 & 727 & 755 \\
\hline & 785 & 807 & 835 & 856 & 838 & 912 & 941 & \(9 \% 4\) & 1009 & 1046 & 1086 \\
\hline & 1069 & 1099 & 1132 & 1166 & 1202 & 1241 & 1283 & 1327 & 1374 & 1425 & 1480 \\
\hline 4 & 1395 & 1436 & 1478 & 1520 & 1571 & 1621 & 1654 & 1733 & 1795 & 1861 & 1933 \\
\hline 41/2 & 1767 & 1817 & \(18 \pi 1\) & 1927 & 1988 & 2052 & 2120 & 2193 & \(22 \% 2\) & 23.56 & 2445 \\
\hline 5 & 2185 & 2244 & 2309 & 2376 & 2454 & 2531 & 25.4 & \(2 \sim 13\) & 2805 & 2907 & 3019 \\
\hline 6 & 3140 & 32:28 & 3341 & 3424 & 3552 & 3648 & \(3 \% 63\) & 3897 & 4036 & 4184 & 4344 \\
\hline - & 42 T 6 & 4396 & 4528 & 4664 & 4808 & 4964 & 5132 & 5308 & 5496 & 5700 & 5920 \\
\hline 8 & 5580 & 5744 & 5912 & 6050 & 6284 & 6484 & 6616 & 6932 & 7180 & 7444 & \%735 \\
\hline - & 7068 & 7268 & 7484 & 7 708 & 7952 & S208 & 8482 & \(8{ }^{10} 4\) & 9088 & 9424 & 9780 \\
\hline 10 & \(8{ }^{2} 40\) & 89\%6 & 9236 & 9516 & 9816 & 10124 & 102:9 & 1085\% & 112:0 & 116:28 & \(120 \sim 6\) \\
\hline 11 & 10559 & 10860 & 11180 & 11519 & 118 T 9 & 1226:3 & 12666 & 13108 & 135 \% 6 & 14078 & 14620 \\
\hline 12 & 12560 & 12912 & 13364 & 13696 & 14208 & 14592 & 15052 & 15588 & 16144 & 16736 & \(173 \sim 36\) \\
\hline 13 & 14748 & 15169 & 15615 & 16090 & 16591 & 17126 & 17697 & 18307 & 18961 & 19633 & 20420 \\
\hline 14 & 17104 & 17584 & 18109 & 18656 & 19232 & 19856 & 20528 & 21232 & 21984 & 22800 & 23680 \\
\hline 15 & 19634 & 20195 & 20ヶ89 & 21419 & 22089 & 22801 & 23561 & 24373 & 25244 & 26179 & \(2 \pi 168\) \\
\hline 16 & 22320 & 229i8 & 23643 & 24320 & 25136 & 25936 & 26464 & \(27 \% 28\) & \(28 \% 0\) & 29\%\%6 & 309:8 \\
\hline
\end{tabular}

The best forms of hot-water-heating boilers are proportioned about as follows:


Rules for Hot-water Heating.-J. L. Saunders (Heating and Ventılation, Dec 15, 1894) gives the following: Allow 1 sq . ft. of radiating surface for every 3 ft . of glass surface. and 1 sq . ft . tor every 30 sq . ft . of wall surface, also 1 sq . ft. for the following numbers of cubic feet of space in the several cases mentioned.


To find the necessary amount of indirect radiation required to heat a room: Find the required antount of direct radiation according to the foregoing method and add \(50 \%\). This if wrought-iron pipe coil surface is used; if castiron pin indirect-stack surface is used it is advisable to add from \(70 \%\) to \(80 \%\).
sizes of hot-air flues, cold-air ducts, and registers for indirect work.-Hot-air flues, first floor: Make the net internal area of the flue equal to \(3 / 4 \mathrm{sq}\). in. to every square foot of radiating surface iu the indirect stack. Hotair flues, second floor: Make the net internal area of the flue equal to \(5 / 8 \mathrm{sq}\). in. to every square foot of radiating surface in the indirect stack.

Cold-air ducts, first floor: Make the net internal area of the duct equal to \(\overline{5 /} \mathrm{sq}\). in. to every square foot of radiating surface in the indirect stack. Cold air ducts, second floor: Make the net internal area of the duct equal to \(1 / 2 \mathrm{sq}\). in. to every square foot of radiating surface in the indirect stack.

Hot-air registers should have their net area equal in full to the area of the hot-air flues. Multiply the length by the width of the register in inches ; \(2 / 3\) of the product is the net area of register.

Arrangement of Mains for Hot-water Heating. (W. M. Mackay, Lecture betore Master Plumbers' Assoc., N. Y., 1889) -There are two different systems of mains in general use, either of which, if properly placed, will give good satisfaction. One is the taking of a single large-flow main from the heater to supply all the radiators on the several floors, with a corresponding return main of the same size. The other is the taking of a number of \(>\)-inch wrought-iron mains from the heater, with the same number of return mains of the same size, branching off to the several radiators or coils with \(11 / 4\)-inch or 1 -inch pipe, according to the size of the radiator or coil. A 2 inch main will supply three \(11 / 4\)-inch or four 1 -inch branches and these branches should be taken from the top of the horizontal main with a nipple and elbow, except in special cases where it is found necessary to retard the flow of water to the near radiator, for the purpose of assisting the circulation in the far radiator; in this case the branch is taken from the side of the horizontal main. The flow and return mains are usually run side br side, suspended from the basement ceiling, and should have a gradual ascent from the heater to the radiators of at least 1 inch in 10 feet. It is customary, and an advantage where 2 -inch mains are used, to reduce the size of the main at every point where a branch is taken off.

The single or large main system is best adapted for large buildings; but there is a limit as to size of main which it is not wise to go beyond-generally 6 -inch, except in special cases.

The proper area of cold-air pipe necessary for 100 square feet of indirect radiation in hot-water heating is 75 square inches. while the hot-air pipe should have at least 100 square inches of area. There should be a damper in the cold-air pipe for the purpose of controlling the amount of air admitted to the radiator, depending on the severity of the weather.

\section*{THE BLOWER SYS'EEM OT HEATHNG AND VENTILATING.}

The system provides for the use of a fan or blower which takes its supply of fresh air from the ontside of the building to be heated, forces it over steam cuils, located either centrally or divided up into a number of independent groups, and then into the several ducts or flues leading to the various rooms. The movement of the warmed air is positive, and the delivery of the air to the various points of supply is certain and entirely independent of atmospheric conditions. For engines, fans, and steam-coils used with the blower scstem, spe page 519.
Experiments with Radiators of 60 sq. ft. of Surface. (Mech. News, Dec., 15y3.)-After having determined the volume and temperature of the warm air passing through the flues and radiators from natural causes, a fan was applied to each flue, forcing in air, and new sets of measurements were made. The results showed that more than two and onethird times as much air was warmed with the fans in use, and the falling off in the temperature of this greatly increased air-volume was only about \(12.6 \%\). The condensation of stean in the radiators with the forced-air circulation also was only \(66 \% / 3 \%\) greater than with natural air draught. One of the several sets of test figures obtained is as follows:
\begin{tabular}{|c|c|c|}
\hline Cubic feet of air per minute & 457.5 & 1227 \\
\hline Condensation of steam per minute in ounces & 11.7 & 19.6 \\
\hline Steam pressure in radiator, pounds & 9 & 9 \\
\hline Temperature of air after leaving radiator & \(142^{\circ}\) & \(124^{\circ}\) \\
\hline " " before passing through & \[
61^{\circ}
\] & \(61^{\circ}\) \\
\hline Size of flue in both cases & & inches. \\
\hline
\end{tabular}

There was probably an error in the determination of the volume of air in these tests, as appear's from the following calculation. (W. K.) Assume that 1 ll . of steam in condensing from 9 lbs . pressure and cooling to the temperature at which the water may have been discharged from the radiator gave up 1000 heat-units, or \(6 ? .5 \mathrm{~h} . \mathrm{u}\). per ounce; that the air weighed .0 if 6 lb . per cubic foot, and that its specific heat is .238. We have

Natural Forced
Iraught. Draught.
Heat given up by steam, ounces \(\times 625 \ldots \ldots \ldots \ldots=731 \quad 12 . \ldots 5 \mathrm{H} . \mathrm{U}\).
Heat received by air, cu. ft. \(\times .0 \pi 6 \times\) diff. of tem. \(\times .238=6 \pi 3\) 1399

Or, in the case of forced draught the air received \(14 \%\) more heat than the steam gave out, which is impossible. Taking the heat given up by the steam as the correct measure of the work done by the radiator, the temperature of the steam at \(233^{\circ}\). and the average temperature of the air in the case of natural dranght at \(10: 2^{\circ}\) and in the other case at \(93^{\circ}\), we have for the temperature diff. rence in the two cases \(13.5^{\circ}\) and \(144^{\circ}\) respectively; dividing these into the heat-units we find that each square foot of radiating surface transmitted 5.4 heat-mints per hour per degree of difference of temperature, in the case of natural draught, and 8.5 heat-units in the case of forced draught ( \(=8.5 \times 144^{\circ}=1224\) heat-units per square foot of surface).
In the Women's Homœopathic Hospital in Philadelphia, 2000 feet of one-inch pipe heats 250.000 cubic feet of space, ventilatiug as well; this equals one square foot of pipe surface for about 350 cubic feet of space, or less than 3 square feet for 1000 cubic feet. The fan is located in a separate building about 100 feet from the hospital, and the air, after being heated to about \(135^{\circ}\), is conveyed through an underground lirick duct with a loss of onlv five or six degreesin cold weather. (H. I Snell, Trans A. S. N. F. ix. 106.

Heating a Billding to \(70^{\circ}\) F. Inside when the outside Temperature is ero.-It is customary in some contracts for heating to guarantee that the apparatus will heat the interior of the building to \(\% 0^{\circ}\) in zero weather. As it may not be practivable to obtain zero weather for the purpose of a test, it may be difficult to prove the performance of the guarantee. E. E. Macgovern, in Eugineering Record, Feb. 3. 1894, gives a calculation tending to show that a test may be made in weather of a higher temperature than zero, if the heat of the interior is raised above \(70^{\circ}\). The higher the temperature of the rooms the lower is the efficiency of the radi-ating-surface, since the efficiency depends upon the differeuce between the
temperature inside of the radiator and the temperature of the room. He concludes that a heating apparatus sufficient to heat a given building to r \(0^{\circ}\) in zero weather with a given pressure of steam will be found to heat the same building, steam-pressure constant, to \(110^{\circ}\) at \(60^{\circ}, 95^{\circ}\) at \(50^{\circ}, 82^{\circ}\) at \(40^{\circ}\), and \(74^{\circ}\) at \(3 \because^{\circ}\), outside temperature. The accuracy of these figures, however has not been tested by experiment.

The following solution of the question is proposed by the author. It gives results quite different from those of Mr. Macgovern, but, like them, lacks experimental confirmation.

Let \(S=\mathrm{sq} . \mathrm{ft}\). of surface of the steam or hot-water radiator;
\(W=\mathrm{sq} . \mathrm{ft}\). of surface of exposed walls, windows, etc.;
\(T s=\) temp. of the steam or hot water, \(T_{1}=\) temp. of inside of building or room, \(T_{0}=\) temp. of outside of building or room;
\(a=\) heat-units transmitted per sq. ft. of surface of radiator per hour per degree of difference of temperature;
- \(b=\) average heat-units transmitted per sq. ft. of walls per hour, per degree of difference of temperature, including allowance for ventilation.
It is assumed that within the range of temperatures considered Newton's law of cooling holds good, viz., that it is proportional to the difference of temperature between the two sides of the radiating-surface.
\[
\begin{aligned}
& \text { Then } a S\left(T_{s}-T_{1}\right)=b W\left(T_{1}-T_{0}\right) . \quad \text { Let } \frac{b W}{a S}=C \text {; then } \\
& \qquad T_{s}-T_{1}=C\left(T_{1}-T_{0}\right) ; \quad T_{1}=\frac{T s+C T_{0}}{1+C} ; C=\frac{T_{s}-T_{1}}{T_{1}-T_{0}}
\end{aligned}
\]

If \(T_{1}=70\), and \(T_{0}=0, C=\frac{T_{s}-\% 0}{70}\).
\[
\begin{array}{rlrr}
\text { Let } T s & =140^{\circ}, & 213.5^{\circ}, & 308^{\circ} \text {; } \\
\text { Then } C & =1, & 2.05, & 3.4
\end{array}
\]

From these we derive the following:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Temperature of & \multicolumn{7}{|c|}{Outside Temperatures, \(T_{0}\).} \\
\hline Steam or Tot & \(20^{\circ}\) & \(-10^{\circ}\) & & & \(20^{\circ}\) & \(30^{\circ}\) & \(40^{\circ}\) \\
\hline Water, \(T_{s}\). & & Insi & Tem & -atu & & & \\
\hline \(140^{\circ}\) & 60 & 65 & 70 & & 80 & 85 & 90 \\
\hline 213.5 & 56.6 & 63.3 & 70 & r6.7 & 83.4 & 90.2 & 96.9 \\
\hline 308 & 54.5 & 62.3 & 70 & 77.7 & 85.5 & 93.2 & 100.9 \\
\hline
\end{tabular}

Heating by Electricity.-If the electric currents are generated by a dyuamo driven by a steam-engine, electric heating will prove very expensive, since the steam-r ngine wastes in the exhaust-steam and by radiation about \(90 \%\) of the heat-units supplied to it. In direct steam-heating, with a gond boiler and properly covertd supply-pipes, we can utilize about \(60 \%\) of the total heat value of the fuel. One pound of coal, with a heating value of 13,000 heat-units, would supply to the radiators about \(13,000 \times .60=7800\) heat-units. In electric heating, suppose we have a first-class condensingengine developing 1 H.P. for every 2 lbs. of coal burned per hour. This would be equivalent to \(1,980,000 \mathrm{ft} .-\mathrm{lbs} .778=2545\) heat-units, or \(127^{2}\) heat-units for 1 lb . of coal. The friction of the engine and of the dynamo and the loss by electric leakage, and by heat radiation from the conducting wires, might reduce the heat-units delivered as electric current to the electric radiator, and these converted into heat to \(50 \%\) of this, or only 636 heatunits, or less than one twelfth of that delivered to the steam-radiators in direct steam-heating. Electric heating, therefore, will prove uneconomical unless the electric current is derived from water or wind power, which would otherwise be wasted. (See Electrical Engineering.)

\section*{WATER.}

Expanmion of Water. - The following table gives the relative volumes of water at different temperatures, compared with its volume at \(4^{\circ} \mathrm{C}\). according to Kopp, as corrected by Porter.
\begin{tabular}{c|c|c|c|c|c|c|c|c}
\hline Cent. & Fahr. & Volume. & Cent. & Fahr. & Volume. & Cent. & Fahr. & Volume. \\
& & & & & & \\
\hline \(4^{\circ}\) & \(39.1^{\circ}\) & 1.00000 & \(35^{\circ}\) & \(95^{\circ}\) & 1.00586 & \(70^{\circ}\) & \(158^{\circ}\) & 1.02241 \\
\hline 5 & 41 & 1.00001 & 40 & 104 & 1.00767 & 75 & 167 & 1.02518 \\
10 & 50 & 1.00125 & 45 & 113 & 1.00967 & 80 & 176 & 1.02872 \\
15 & 59 & 1.00083 & 50 & 122 & 1.01186 & 85 & 185 & 1.03213 \\
20 & 68 & 1.00171 & 55 & 131 & 1.01423 & 90 & 194 & 1.03570 \\
25 & 77 & 1.00286 & 60 & 140 & 1.01678 & 95 & 203 & 1.03943 \\
30 & 86 & \(1.004 \div 5\) & 65 & 149 & 1.01951 & 100 & 212 & 1.04332 \\
\hline
\end{tabular}

Weight of \(1 \mathrm{cu} . \mathrm{ft}\). at \(39.1^{\circ} \mathrm{F} .=62.4245 \mathrm{lb} . \div 1.04332=59.833\), weight of 1 cu . ft . at \(212^{\circ} \mathrm{F}\).

Weight of Water at Different Temperatures.-The weight of water at maximum density, \(39.1^{\circ}\). is generally taken at the figure given b子 Rankine, 62.425 lbs . per cubic foot. Some authorities give as low as 62.379 . The figure 62.5 commonly given is approximate. The highest authoritative figure is 62.425 . At \(6 \cdot 0^{\circ} \mathrm{F}\). the figures range from 62.291 to \(6 \% .360\). The figure 62.355 is generally accepted as the most accurate.

At \(32^{\circ} \mathrm{F}\). figures given by different writers range from 62.379 to 62.418 . Clark gives the latter figure, and Hamilton Smith, Jr., (from Rosetti,) gives 6:. 416.

Weight of Water at Temperatures above 2120 F。-Porter (Richards' "Steam-engine Indicator,"p. 52) says that nothing is known about the expansion of water above \(212^{\circ}\). Applying formulæ derived from experiments made at temperatures below \(21 \geqslant 0\), however, the weight and volume above \(212^{\circ}\) may be calculated, but in the absence of experimental data we are not certain that the formulæ hold good at higher temperatures.

Thurston, in his "Engine and Boiler Trials," gives a table from which we take the following (neglecting the third decimal place given by him):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  &  \\
\hline 212 & 59.71 & 280 & 5\%.90 & 350 & 55.52 & 420 & 52.86 & 490 & 50.03 \\
\hline 220 & 59.64 & 290 & 57.59. & 360 & 55.16 & 430 & 52.47 & 500 & 49.61 \\
\hline 230 & 59.3 r & 300 & 5\%.26 & \(3{ }^{3} 0\) & \(54 . \% 9\) & 440 & 52.07 & 510 & 49.20 \\
\hline 240 & 59.10 & 310 & 56.93 & 380 & 54.41 & 450 & 51.66 & 520 & 48.78 \\
\hline 250 & 58.81 & 3:0 & 56.58 & 390 & 54.03 & 460 & 51.26 & 530 & 48.36 \\
\hline 260 & 58.52 & 330 & 56.24 & 400 & 53.64 & \(4 \% 0\) & 50.85 & 540 & 47.94 \\
\hline \(2 \sim 0\) & 58.21 & 310 & 55.88 & 410 & 53.26 & 480 & 50.44 & 550 & 47.52 \\
\hline
\end{tabular}

Box on Heat gives the following :

At \(212^{\circ}\) figures given by different writers (see Trans. A. S. M. E., xiii. 409) range from 59.56 to 59.845 , averaging about \(59 . \tilde{\sim}\).

Weight of Water per Cubic Foot, from \(32^{\circ}\) to \(212^{\circ} \mathrm{F}\)., and hesj units per pound, reckoned above \(32^{\circ} \mathrm{F}\).: The following table, madu by interpolating the table given by Clark as calculated from Rankine's formula, with corrections for apparent errors, was published by the author in 1884, Trans. A. S. M. E., vi. 90. (For heat units above \(212^{\circ}\) see Steam Tables.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  &  &  &  \\
\hline 32 & 62.42 & 0. & 78 & 62.25 & 46.03 & 123 & 61.68 & 91.16 & 168 & 60.81 & 4 \\
\hline 33 & 62.42 & 1. & r9 & 62.24 & 47.03 & 124 & 61.67 & 92.17 & 169 & 60.79 & 137.45 \\
\hline 34 & 62.42 & 2. & 80 & 62.23 & 48.04 & 125 & 61.65 & 93.17 & \(1 \% 0\) & 60.79 & 138.45 \\
\hline 35 & 62.42 & 3. & 81 & 62.22 & 49.04 & 126 & 61.63 & 94.17 & 171 & 60.75 & 139.46 \\
\hline 36 & 62.42 & 4. & 82 & 62.21 & 50.04 & 127 & 61.61 & 95.18 & 172 & 60.73 & 140.47 \\
\hline 37 & 62.42 & 5. & 83 & 62.20 & 51.04 & 128 & 61.60 & 96.18 & 173 & 60.70 & 141.48 \\
\hline 38 & 62.42 & 6. & 84 & 62.19 & 52.04 & 129 & 61.58 & 97.19 & 174 & 60.68 & 142.49 \\
\hline 39 & 62.42 & 7. & 85 & 62.18 & 53.05 & 130 & 61.56 & 98.19 & 175 & 60.66 & 143.50 \\
\hline 40 & 62.42 & 8. & 86 & 62.17 & 54.05 & 131 & 61.54 & 99.20 & 176 & 60.64 & 144.51 \\
\hline 41 & 62.42 & 9. & 87 & 62.16 & 55.05 & 132 & 61.52 & 100.20 & 177 & 60.62 & 145.52 \\
\hline 42 & 62.42 & 10. & 88 & 62.15 & 56.05 & 133 & 61.51 & 101.21 & 178 & 60.59 & \(146 . \% 2\) \\
\hline 43 & 62.42 & 11. & 89 & 62.14 & 57.05 & 134 & 61.49 & 102.21 & 179 & 60.57 & 147.53 \\
\hline 44 & 62.42 & 12. & 90 & 62.13 & 58.06 & 135 & 61.47 & 103.22 & 180 & 60.55 & 148.54 \\
\hline 45 & 62.42 & 13. & 91 & 62.12 & 59.06 & 136 & 61.45 & 104.22 & 181 & 60.53 & 149.55 \\
\hline 46 & 62.42 & 14. & 92 & 62.11 & 60.06 & 137 & 61.43 & 105.23 & 182 & 60.50 & 150.56 \\
\hline 47 & 62.42 & 15. & 93 & 62.10 & 61.06 & 138 & 61.41 & 106.23 & 183 & 60.48 & 151.57 \\
\hline 48 & 62.41 & 16. & 94 & 62.09 & 62.06 & 139 & 61.39 & 107.24 & 184 & 60.46 & 152.58 \\
\hline 49 & 62.41 & 17. & 95 & 62.08 & 63.07 & 140 & 61.37 & 108.25 & 185 & 60.44 & 153.59 \\
\hline 50 & 62.41 & 18. & 96 & 62.07 & 64.07 & 141 & 61.36 & 109.25 & 186 & 60.41 & 154.60 \\
\hline 51 & 62.41 & 19. & 97 & 62.06 & 65.07 & 142 & 61.34 & 110.26 & 187 & 60.39 & 155.61 \\
\hline 52 & 62.40 & 20. & 98 & 62.05 & 66.07 & 143 & 6132 & 111.26 & 188 & \(60.3 \uparrow\) & 156.62 \\
\hline 53 & 62.40 & 21.01 & 99 & 62.03 & 67.08 & 144 & 61.30 & 112.27 & 189 & 60.34 & 157.63 \\
\hline 54 & 62.40 & 22.01 & 100 & 62.02 & 68.08 & 145 & 61.28 & 113.28 & 190 & 60.32 & 158.64 \\
\hline 55 & 62.39 & 23.01 & 101 & 62.01 & 69.08 & 146 & 61.26 & 114.28 & 191 & 60.29 & 159.6.5 \\
\hline 56 & \(6 \cdot .39\) & 24.01 & 102 & 62.00 & r0.09 & 147 & 61.24 & 115.29 & 192 & 60.27 & 160.67 \\
\hline 57 & 62.39 & 25.01 & 103 & 61.99 & 71.09 & 148 & 61.22 & 116.29 & 193 & 60.25 & 161.68 \\
\hline 58 & 62.38 & 26.01 & 104 & 61.97 & \%2.09 & 149 & 61.20 & 117.30 & 194 & 60.22 & 162. 69 \\
\hline 59 & 62.38 & 27.01 & 105 & 61.96 & 73.10 & 150 & 61.18 & 118.31 & 195 & 60.20 & 163. 70 \\
\hline 60 & 62.37 & 28.01 & 106 & 61.95 & 74.10 & 151 & 61.16 & 119.31 & 196 & 60.17 & 164.71 \\
\hline 61 & 62.37 & 29.01 & 107 & 61.93 & 75.10 & 152 & 61.14 & \(120.3 \%\) & 197 & 60.15 & 165.7. \\
\hline 62 & 62.36 & 30.01 & 108 & 61.92 & r6.10 & 153 & 61.12 & 121.33 & 198 & 60.12 & \(166{ }^{7} 3\) \\
\hline 63 & 62.36 & 31.01 & 109 & 61.91 & 77.11 & 154 & 61.10 & 122.33 & 199 & 60.10 & 16\%.74 \\
\hline 64 & 62.35 & 32.01 & 110 & 61.89 & 78.11 & 155 & 61.08 & 123.34 & 200 & 60.07 & 168.75 \\
\hline 65 & 62.34 & 33.01 & 111 & 61.88 & 79.11 & 156 & 61.06 & 124.35 & 201 & 60.05 & 169.7\% \\
\hline 66 & 62.34 & 34.02 & 112 & 61.86 & 80.12 & 157 & 61.04 & 125.35 & 202 & 60.0: & 10.78 \\
\hline 67 & 62.33 & 35.02 & 113 & 61.85 & 81.12 & 158 & 61.02 & 126.36 & 203 & 60.00 & 171.69 \\
\hline 68 & 62.33 & 36.02 & 114 & 61.83 & 82.13 & 159 & 61.00 & 127.37 & 204 & 59.97 & 19.80 \\
\hline 69 & 62.32 & 37.02 & 115 & 61.82 & 83.13 & 160 & 60.98 & 128.37 & 205 & 59.95 & 173.81 \\
\hline \% 0 & 62.31 & 38.02 & 116 & 61.80 & 84.13 & 161 & 60.96 & 129.38 & 206 & 59.92 & 174.83 \\
\hline 71 & 62.31 & 39.02 & 117 & 61.78 & 85.14 & 16.2 & 60.94 & 130.39 & 207 & 59.89 & 175.84 \\
\hline 72 & 62.30 & 40.02 & 118 & 61.77 & 86.14 & 163 & 60.92 & 131.40 & 208 & \(59.8{ }^{-1}\) & 176.85 \\
\hline 73 & 62.29 & 41.02 & 119 & 61.75 & 87.15 & 164 & 60.90 & 132.41 & 209 & 59.84 & 1 1\%. 86 \\
\hline 74 & 62.28 & 42.03 & 120 & 61.74 & 88.15 & 165 & 60.87 & 133.41 & 210 & 59.82 & \(178.8 \%\) \\
\hline 75 & 62.28 & 43.03 & 121 & 61.72 & 89.15 & 166 & 60.85 & 134.4z & \(\stackrel{211}{21}\) & 59.79 & 119.89 \\
\hline 76 & 62.27 & 44.03 & 122 & \(61 . \% 0\) & 90.16 & 167 & 60.83 & 135.43 & 212 & \(59 . \% 6\) & 180.90 \\
\hline 77 & 62.26 & 45.03 & & & & & & & & & \\
\hline
\end{tabular}

Comparison of Heads of Water in Feet with Pressures in Various Units.

One foot of water at \(39^{\circ} .1\) Fahr. \(=62.425 \mathrm{lbs}\). on the square foot;
\begin{tabular}{llll}
\("\) & \("\) & \("\) & \(=0.4335\) lbs. on the square inch; \\
\("\) & \("\) & \("\) & \(=0.0295\) atmosphere; \\
\("\) & \("\) & \("\) & \(=773.3\left\{\begin{aligned} \text { feet of air mercury at } 32^{\circ} \text { and } 32^{\circ} ; \\
\text { atmospheric pressure; }\end{aligned}\right.\)
\end{tabular}
```

One lb. on the square foot, at $39^{\circ} .1$ Fahr........ $=0.01602$ foot of water;
One lb. on the square inch $6 \quad \ldots=2.307$ feet of water;
One atmosphere of 29.922 inches of mercury $\ldots . .=33.9$ ".

```

```

One foot of average sea-water......... = 1.026 foot of pure water;
One foot of water at $62^{\circ} \mathrm{F} .=62.355 \mathrm{lbs}$. per sq. foot;

```

```

One pound of water on the square inch at $62^{\circ} \mathrm{F} .=2.3094$ feet of water.

```

\section*{Pressure in Pounds per Square Inch for Different Heads of water.}

At \(62^{\circ} \mathrm{F} .1\) foot head \(=0.433 \mathrm{lb}\). per square inch, \(.433 \times 144=62.352 \mathrm{lbs}\). per cubic foot.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Head, feet. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 0 & & 0.433 & 0.866 & 1.299 & 1.732 & 2.165 & 2.598 & 3.031 & 3.464 & 3.897 \\
\hline 10 & 4.330 & 4.763 & 5.196 & 5.629 & 6.062 & 6.495 & 6.928 & 7.361 & 7.794 & 8.2.27 \\
\hline 20 & 8.660 & 9.093 & 9.526 & 9.959 & 10.392 & 10.825 & 11.258 & 11.691 & 12.124 & 12.557 \\
\hline 30 & 12.990 & 13.423 & 13.856 & 14.259 & 14.722 & 15.155 & 15.588 & 16.021 & 16.454 & 16.88 亿 \\
\hline 40 & 17.320 & 17.753 & 18.186 & 18.619 & 19.052 & 19.485 & 19.918 & 20.351 & 20.784 & 21.217 \\
\hline 50 & 21.650 & 22.083 & 22.516 & 22.949 & 23.382 & 23.815 & 24.248 & 24.681 & 25.114 & 25.547 \\
\hline 60 & 25.980 & \(\because 6.413\) & 26.846 & 27.279 & 27.712 & 28.145 & 28.578 & 29.011 & 29.444 & 29.877 \\
\hline r0 & 30.310 & \(30 . \pi 43\) & 31.176 & 31.609 & 32.042 & 32.415 & 32.908 & 33.341 & 33.574 & 34.207 \\
\hline 80 & 34.640 & . 55.073 & 35.506 & 35.939 & 36.372 & 36.805 & 37.238 & 37.671 & 38.104 & 38.537 \\
\hline 90 & 38.970 & 39.403 & 39.836 & 40.269 & 40.\%0\% & 41.135 & 41.568 & 42.001 & 42.436 & 42.867 \\
\hline
\end{tabular}

\section*{Head in Feet of Water, Corresponding to Pressures in Pounds per Square Inch.}

1 lb . per square inch \(=2.30947\) feet head, 1 atmosphere \(=14.7 \mathrm{lbs}\). per sq. inch \(=33.94 \mathrm{ft}\). head.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Pressure. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 0 & & 2.309 & 4.619 & 6.9 \({ }^{\text {P }}\) & 9.238 & 11.547 & 13.857 & 16.166 & 18.476 & 20.785 \\
\hline 10 & 23.094\% & 25.404 & 27.714 & 30.023 & 32.333 & 34.642 & 36.95:2 & 39.261 & 41.570 & 43.880 \\
\hline 20 & 46.1894 & 48.499 & 50.808 & \({ }^{5} 3.118\) & 55.42í & 5T. 737 & 60.046 & 62.356 & 64.665 & 66.915 \\
\hline 30 & 69.2841 & 71.594 & 73.903 & ז6.213 & 78.5\%2 & 80.831 & 83.141 & 85.450 & 87.760 & 90.069 \\
\hline 40 & 92.3788 & 91.685 & 96.998 & 99.307 & 101.62 & 103.93 & 106.24 & 108.55 & 110.85 & 113.16 \\
\hline 50 & 115.4735 & 11\%. is & 120.09 & 122.40 & 124.71 & 126.02 & 129.33 & 131.64 & 133.95 & 136.26 \\
\hline 60 & 138.568 .2 & 140.88 & 143.19 & 145.50 & 147.81 & 150.12 & 152.42 & 154.73 & 157.04 & 159.35 \\
\hline 70 & 161.6629 & 163.97 & 166.28 & 168.59 & 170.90 & 17321 & 175.52 & 177.83 & 180.14 & 182.45 \\
\hline 80 & 184. \(55 \sim 6\) & 187.07 & 189.38 & 191.69 & 19400 & 196.31 & 198.61 & 200.92 & 203.2:3 & 205.54 \\
\hline 90 & 207. \(85 \times 3\) & 210.16 & 212.42 & 214.78 & 217.09 & 219.40 & 221.71 & 224.02 & 226.33 & 228.64 \\
\hline
\end{tabular}

Pressure of Water due to its Weight.-The pressure of still water in pounds per square inch against the stues of any pipe, channel, or vessel of any shape whatever is due solely to the "head," or height of the level surface of the water above the point at which the pressure is considered, and is equal to \(.43: 302 \mathrm{lb}\). per square inch for every foot of head, or 62.355 lbs . per square foot for every foot of head (at \(6 \overbrace{}^{\circ} \mathrm{F}\).).
The pressure per square inch is equal in all directions, downwards, upwards, or sideways, and is independent of the shape or size of the containing vessel.
The pressure against a vertical surface, as a retaining-wall, at any point is in direct ratio to the head above that point, increasing from 0 at the level surface to a maximum at the bottom. The total pressure against a vertical strip of a unit's breadth jncreases as the area of a right-angled triangle
whose perpendicular represeuts the height of the strip and whose base represents the pressure on a unit of surface at the bottom; that is, it increases as the square of the depth. The sum of all the horizontal pressures is represented by the area of the triangle, and the resultant of this sum is equal to this sum exerted at a point one third of the height from the bottom. (The centre of gravity of the area of a triangle is one third of its height.)
The horizontal pressure is the same if the surface is inclined instead of vertical.
(For an elaboration of these principles see Trautwine's Pocket-Book, or the chapter on Hydrostatics in any work on Physics. For dams, retainingwalls, etc., see Trautwine.)
The amount of pressure on the interior walls of a pipe has no appreciable effect upon the amount of flow.
Buoyancy. - When a body is immersed in a liquid, whether it float or sink, it is buoyed up by a force equal to the weight of the bulk of the liquid displaced by the body. The weight of a floating body is equal to the weight of the bulk of the liquid that it displaces. The upward pressure or buoyancy of the liquid may be regarded as exerted at the centre of gravity of the displaced water, which is called the centre of pressure or of buoyancy. A vertical line drawn through it is called the axis of buoyancy or of flotation. In a floating body at rest a line joining the centre of gravity and the centre of buoyancy is vertical, and is called the axis of equilibrium. When an external force causes the axis of equilibrium to lean, if a vertical line be drawn upward from the centre of buoyancy to this axis, the point where it cuts the axis is called the metacentre. If the metacentre is above the centre of gravity the distance between them is called the metacentric height, and the body is then said to be in stable equilibrium, tending to return to its original position when the external force is removed.
Boiling-point.-Water boils at \(212^{\circ} \mathrm{F}\). ( \(100^{\circ} \mathrm{C}\).) at mean atmospheric pressure at the sea-level, 14.696 lbs . per square inch. The temperature at which water boils at any given pressure is the same as the temperature of saturated steam at the same pressure. For boiling-point of water at othei pressure than 14.696 lbs . per square inch, see table of the Properties of Saturated Steam.
The Boiling-point of Water may be Raised. - When water is entirely freed of air, which may be accomplished by freezing or boiling, the cohesion of its atoms is greatly increased, so that its temperature may be raised over \(50^{\circ}\) above the ordinary boiling-point before ebullition takes place. It was found by Faraday that when such air-freed water did boil. the rupture of the liquid was like an explosion. When water is surrounded by a film of oil, its boiling temperature may be raised considerably abore its normal standard. This has been applied as a theoretical explanation in the instance of boiler-explosions.
The freezing-point also may be lowered, if the water is perfectly quiet, to \(-10^{\circ} \mathrm{C}\)., or \({ }^{18^{\circ}}\) Fahrenheit below the normal freezing-point. (Hamilton Smith, Jr., on Hydraulics, p. 13.) The density of water at \(14^{\circ} \mathrm{F}\). is . 99814 , its density at \(39^{\circ} .1\) being 1 , and at \(32^{\circ}\), .99987 .
Freezing-point.-Water freezes at \(32^{\circ} \mathrm{F}\). at the ordinary atmospheric pressure, and ice melts at the same temperature. In the melting of 1 pound of ice into water at \(32^{\circ} \mathrm{F}\). about 142 heat-units are absorbed, or become latent: and in freezing 1 lb . of water into ice a like quantity of heat is given out to the surrounding medium.
Sea-water freezes at \(2 \pi^{\circ} \mathrm{F}\). The ice is fresh. (Trautwine.)
Tce and Snow. (From Clark.) -1 cubic foot of ice at \(32^{\circ} \mathrm{F}\). weighs fi..5U lbs.; 1 pound of ice at \(32^{\circ} \mathrm{F}\). has a volume of \(.0174 \mathrm{cu} . \mathrm{ft} .=30.067 \mathrm{cu}\). in.
Relative volume of ice to water at \(32^{\circ} \mathrm{F}\)., 1.0855 , the expansion in passing into the solid state being \(8.55 \%\). Specific gravity of ice \(=0.922\), water at ( \(\because 30 \mathrm{~F}\). being 1 .
At high pressures the melting-point of ice is lower than \(32^{\circ} \mathrm{F}\)., being at the rate of \(.0133^{\circ} \mathrm{F}\). for each additional atmosphere of pressure
The specific heat of ice is .504 , that of water being 1 .
1 cubic foot of fresh snow, according to humidity of atmosphere: 5 lbs. to 12 lbs . 1 cubic foot of snow moistened and compacted by rain: 15 lbs . to 50 lbs. (Trautwine).
Specific Heat of Water. (From Clark's Steam-engine.)-Calculated by means of Regnault's formula, \(c=1+0.00004 t+0.0000009 t^{2}\), in which \(c\) is the specific heat of water at any temperature \(t\) in centigrade degrees, the specific heat at the freezing-point being 1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Temperatures.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Temperatures.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline Cent. & Fah & & & & Cent. & Fahr. & & & \\
\hline \(0^{\circ}\) & \(3{ }^{\bullet}\) & 0.000 & 1.0000 & & \(120^{\circ}\) & \(248^{\circ}\) & 217.449 & 1.0177 & 1.0067 \\
\hline 10 & 50 & 18.004 & 1.0005 & 1.0002 & 130 & 266 & 235. 991 & 1.0004 & \(1.00 \sim 6\) \\
\hline 20 & 68 & 36.018 & 1.0012 & 1.0005 & 140 & 284 & 254.18 \% & 1.0232 & 1.0087 \\
\hline 30 & 86 & 54.047 & 1.0020 & 1.0009 & 150 & 302 & 272.628 & 1.0262 & 1.0097 \\
\hline 40 & 104 & 72.090 & 1.0030 & 1.0013 & 160 & 320 & 291.132 & 1.0294 & 1.0109 \\
\hline 50 & 12: & \(90.15 \sim\) & 1.0042 & 1.0017 & 170 & 338 & 309.690 & 1.0398 & 1.0121 \\
\hline 60 & 140 & 108.247 & 1.0056 & 1.0023 & 180 & 356 & 328.320 & 1.0364 & 1.0133 \\
\hline 6 & 158 & 126.378 & 1.0072 & 1.0030 & 190 & 374 & 347.004 & 1.0401 & 1.0146 \\
\hline 80 & 176 & 144.508 & 1.0089 & 1.0035 & \(\mathfrak{2 0 0}\) & 392 & 365.760 & 1.0440 & 1.0160 \\
\hline 90 & 194 & 162.686 & 1.0109 & 1.0042 & 210 & 410 & 384.588 & 1.0481 & 1.0174 \\
\hline 100 & 212 & 180.900 & 1.0130 & 1.0050 & 220 & 428 & 403.48 & 1.0524 & 1.0189 \\
\hline 110 & 230 & 199.152 & 1.015 .3 & 1.005 & 2:30 & 446 & 4⒉4 46 & 1.0568 & 1.0204 \\
\hline
\end{tabular}

Compressibility of Water.-Water is very slightly compressible. Its compressibility is from \(.0000+0\) to .000051 for one atmosphere, decreasing with increase of temperature. For each foot of pressure distilled water will be diminished in volume .0000015 to .0000013 . Water is so incompressible that even at a depth of a mile a cubic foot of water will weigh only about half a pound more than at the surface.

\section*{THE IMPURETIES OF WATER.}

\section*{(A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. xvii. 338.)}

Commercial analyses are marle to determine concerning a given water: (1) its applicability for making steam; (2) its hardness, or the facility with which it will "form a lather" Lecessary for washing; or (3) its adaptation to other manufacturing purposes.

At the Buffalo meeting of the Chemical Section of the A. A. A. S. it was decided to report all water analyses in parts per thousand, hundred-thousand, and million.
To convert grains per imperial (British) gallons into parts per 100,000, divile by 0.7 . To convert parts per 100,000 into grains per U. S. gallon, multiply by 7/12 or .583 .
The most common commercial analysis of water is made to determine its fitness for making steam. Water containing more than 5 parts per 100,000 of free sulphuric or nitric acid is liable to cause serious corrosion, not only of the metal of the boiler itsolf, but of the pipes, cylinders, pistons, and valves with which the steam comes in contact.
:The total residue in water used for making steam causes the interior linings of boilers to become coated, and often produces a dangerous hard scale, which prevents the cooling action of the water from protecting the metal against burning.
Lime and magnesia bicarbonates in water lose their excess of carbonic acid on boiling, and often, especially when the water contains sulphuric acid, produce, with the other solid residues constantly beins formed by the evaporation, a very hard arid insoluble scale. A larger amount than 100 parts per 100,000 of total solid residue will ordinarily cause troublesome scale, and should condemn the water for use in steam-boilers, unless a better supply cannot be obtained.
The following is a tabulated form of the causes of trouble with water for steam purposes, and the proposed remedies, given by Prof. L. M. Norton.

\section*{Causes of Incrustation.}
1. Deposition of suspended matter.
2. Deposition of deposed salts from concentration.
3. Deposition of carbonates of lime and magnesia by boiling off carbonic acid, which holds them in solution.
4. Deposition of sulphates of lime, because sulphate of lime is but slightly soluble in cold water, less soluble in hot water, insoluble above \(270^{\circ} \mathrm{F}\).
5. Deposition of magnesia, because magnesium salts decompose at high temperature.
6. Deposition of lime soap, iron soap, etc., formed by saponification of grease.

\section*{Means for Preventing Incrustation.}
1. Filtration.
2. Blowing off.
3. Use of internal collecting apparatus or devices for directing the circulation.
4. Heating feed-water.
5. Chemical or other treatment of water in boiler.
6. Introduction of zinc into boiler.
7. Chemical treatment of water outside of boiler.,

Tabilar View.

Troublesome Substance. Trouble. Remedy or Palliation.
Sediment, mud, clay, etc.
Readily soluble salts.
Bicarbonates of lime, magnesia, \(\}\) iron.

Sulphate of lime.
Chloride and sulphate of magne- \(\}\) sium.
Carbonate of soda in large \(\{\) amounts.
Acid (in mine waters).
Dissolved carbonic acid and \(\}\) oxygen.

Grease (from condensed water).
Organic matter (sewage). Organic matter.

Incrustation. Filtration; blowing off. " Blowing off.

Heating feed. Addition of caustic soda, lime, or magnesia, etc.
Addition of carb. soda, barium chloride, etc. Addition of carbonate of soda, etc.
\{ Addition of barium chloride, etc.
Alkali.
Heating feed. Addition of caustic soda, slacked lime, etc.
Slacked lime and filtering. Carbonate of soda.
Substitute mineral oil. Precipitate with alum or ferric chloride and filter. Ditto.

The mineral matters causing the most troublesome boiler-scales are bicar. bonates and sulphates of lime and magnesia, oxides of iron and alumina, and silica. The analyses of some of the most common and troublesome boiler-scales are given in the following table:

Analyses of Boiler-scale. (Chandler.)


\section*{Analyses in Parts per \(\mathbf{1 0 0}, 000\) of Water giving Bad Results in Steam-boilers. (A. E. Hunt.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  & シ
플
플 &  &  &  & ¢ &  & \[
\frac{\text { gi }}{\text { gu }}
\] &  \\
\hline Coal-mine water. & 110 & 25 & 119 & 39 & 890 & 590 & \%80 & 30 & 640 & \\
\hline Salt-well... & 151 & 38 & 1.90 & 48 & 366 & 990 & 38 & 21 & 30 & 13.10 \\
\hline Spri g... & 75 & 89 & 95 & 120 & 310 & 21 & 75 & 10 & 80 & 36 \\
\hline Monougahela River & 130 & 21 & 161 & 33 & 210 & 38 & 70 & & & \\
\hline "0 \({ }^{\text {c/ }}\) & 80 & 70 & 94 & 81 & 219 & 210 & 90 & & & \\
\hline " \({ }^{\text {" }}\)......... & 32 & 82 & 61 & & 28 & 1.90 & 38 & & & \\
\hline Allegheny R., near Oil-works & 301 & 50 & 41 & 68 & 590 & 42 & 231 & & & \\
\hline
\end{tabular}

Many substances have bern added with the idea of causing chemical action which will prevent boiler-scale. As a general rule, these do more harm than good, for a boiler is one of the worst possible places in which to carry on chemical reaction, where it nearly always causes more or less corrosion of the metal, and is liable to cause dangerous explosions.
In cases where water containing large amounts of total solid residue is necessarily used, a heavy petroleum oil, free from tar or wax, which is not acted upon by acids or alkalies, not having sufficient wax in it to cause saponification. and which has a vaporizing-point at nearly \(600^{\circ} \mathrm{F}\)., will give the best results in preventing boiler-scale. Its action is to form a thin greasy film over the boiler linings, protecting them largely from the action of acids in the water and greasing the sediment which is formed, thus preventing the formation of scale and keeping the solid residue from the evaporation of the water in such a plastic suspended condition that it can be easily ejected from the boiler by the process of "blowing off." If the water is not blown off sufficiently often, this sediment forms into a "putty" that will necessitate cleaning the boilers. Any boiler using bad water should be blown off every twelve hours.

Hardness of Water.-The hardness of water, or its oppnsite quality, indicated by the ease with which it will form a lather with soap, depends almost altogether upon the presence of compounds of lime and magnesia. Almost all soaps consist, chemically, of oleate, stearate, and palmitate, of an alkaline base, usually soda and potash. The more lime and magnesia in a sample of water, the more soap a given volume of the water will decompose, so as to give insoluble oleate, palmitate, and stearate of lime and magnesia, and consequently the more soap must be added to a gallon of water in order that the necessary quantity of soap may remain in solution to form the lather. The relative hardness of samples of water is generally expressed in terms of the number of standard soap-measures consumed by a gallon of water in yielding a permanent lather.

The standard soap-measure is the quantity required to precipitate one grain of carbonate of lime.

It is commouly reckoned that one gallon of pure distilled water takes one soap-measure to produce a lather. Therefore one is deducted from the total number of soap-measures found to be necessary to use to produce a lather in a gallon of water, in reporting the number of soap-measures. or "degrees " of hardness of the water sample. In actually making tests for hardness. the "miniature gallon," or seventy cubic centimetres, is used rather thau the inconvenient larger amount. The standard measure is made by completely dissolving ten grammes of pure castile soap (containing 60 per cent olive-oil) in a litre of weak alcohol (of about 35 per cent alcohol). This yields a colution containing exactly sufficient soap in ne cubic centimeter of the solution to precipitate one milligramme of carbonate of lime, or, in other words, the staudard soap solution is reduced to terms of the "miniature gallon '' of water taken.

If a water charged with a bicarbonate of lime, magnesia, or iron is boiled,
it will, on the excess of the carbonic acid being expelled, deposit a considerable quantity of the lime, magnesia, or iron, and consequently the water will be softer. The hardness of the water after this deposit of lime, after long boiling, is called the permanent hardness and the difference between it and the total hardness is called temporary hardness.
Lime salts in water react immediately on soap-solutions, precipitating the oleate, palmitate, or stearate of lime at once. Magnesia salts, on the contrary, require some considerable time for reaction. They are, however, more powerful hardeners; one equivalent of magnesia salts consuming as much soap as one and one-half equivalents of lime.
The presence of soda and potash salts softens rather than hardens water. Each grain of carbonate of lime per gallon of water causes an increased expenditure for soap of about 2 ounces per 100 gallons of water. (Eng'g. News, Jan. 31, 1885.)
Purifying Feed-vater for Steam-boilers. (See also Incrustation and Corrosion, p. 716.)-When the water used for steam-boilers contains a large amount of scale-forming material it is usually advisable to purify it before allowing it to enter the boiler rather than to attempt the prevention of scale by the introduction of chemicals into the boiler. Carbonates of lime and magnesia may be remored to a considerable extent by simple heating of the water in an exhaust-steam feed-vater heater or, still better, by a live-steam heater. (See circular of the Hoppes Mfg. Co., Springfield, 0 .) When the water is very bad it is best treated with chemicalslime, soda-ash, caustic soda, etc.-in tanks, the precipitates being separated by settling or filtering. For a description of several systems of water purification see a series of articles on the subject by Albert A. Cary in Eng'g Mag., 1897.

Mr. W. B. Coggswell, of the Solvay Process Co.'s Soda Works in Syracuse, N. Y., thus describes the system of purification of builer feed-water in use at these works (Trans. A. S. H. E., xiii. 255):

For purifying, we use a weak soda liquor, containing about 12 to 15 grams \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) per litre. Say \(11 / 2\) to \(2 \mathrm{MI}^{3}\) (or 397 to 530 gals.) of this liquor is run into the precipitating tank. Hot water about \(60^{\circ} \mathrm{C}\). is then turned in, and the reaction of the precipitatiou goes on while the tank is filling, which requires about 15 minutes. When the tank is full the water is filtered through the Hyatt (4), 5 feet diameter, and the Jewell (1), 10 feet diameter, filters in 30 minutes. Forty tanks treated per 24 hours.

Charge of water purified at once................... \(35 \mathrm{M}^{3}, 9,2 \% 5\) gallons.
Soda in purifying reagent............................ \(15 \mathrm{kgs} . \mathrm{Na}_{2} \mathrm{CO}_{3}\).
Soda used per 1,000 gallons.
3.5 lbs .

A sample is taken from each boiler every other day and tested for deg. Baumé, soda and salt. If the deg. B. is more than 2, that boiler is blown to reduce it below 2 deg. B.

The following are some analyses given by Mr. Coggswell :
\begin{tabular}{|c|c|c|c|c|}
\hline & Lake Water, grams per litre & Mud from Hyatt Filter. & Scale from Boilertube. &  \\
\hline Calcium sulphate. & . 261 & 3.70 & 51.24 & 10.9 \\
\hline Calcium chloride... & . 185 & \(63.3{ }^{\text {r }}\) & 19.76 & 87 \\
\hline MTagnesium carbonate. & . 015 & 1.11 & 25.21 & 8. \\
\hline Magnesium chloride... & . 087 & & & \\
\hline Salt, NaCl & . 63 & & . 14 & \\
\hline Silica.. & & 15.17 & 2.29 & . 8 \\
\hline Iron and aluminum oxide.. & & 3.75 & 1.10 & 1.2 \\
\hline Total...... & 1.270 & 87.10 & 99.74 & 99.9 \\
\hline
\end{tabular}

Softening Hard Water for Locomotive Use.-A water-softening plant in operation at Fossil, in Western Wyoming, on the Union Pacific Railway, is described in Eng'g News, June 9, 1892. It is the invention
of Arthur Pennell, of Kansas City. The general plan adopted is to first dissolve the chemicals in a closed tank, and then connect this to the supply main so that its contents will be forced into the main tank, the supply-pipe being so arranged that thorough mixture of the solution with the water is obtained. A waste-pipe from the bottom of the tank is opened from time to time to draw off the precipitate. The pipe leading to the tender is arranged to draw the water from near the surface.
A water-tank 24 feet in diameter and 16 feet high will contain about 46,600 gallons of water. About three hours should be allowed for this amount of water to pass through the tank to insure thorough precipitation, giving a permissible consumption of about, 15,000 gallons per hour. Should more than this be required, auxiliary settling-tanks should be provided.
The chemicals added to precipitate the scale-forming impurities are sodium carbonate and quicklime, varying in proportions according to the relative proportions of sulphates and carbonates in the water to be treated. Sufficient sodium carbonate is added to produce just enough sodium sulphate to combine with the remaining lime and magnesia sulphate and produce glauberite or its corresponding magnesia salt, thereby to get rid of the sodium sulphate, which produces foaming, if allowed to accumulate.

For a description of a purifying plant established by the Southern Pacific R. R. Co. at Port Los Angeles, Cal., see a paper by Howard Stillmann in Trans. A. S. M. E., vol. xix, Dec. 1897.

\section*{HYDRAULICS-FLOW OF WATER.}

Formulx for Discharge of Water though Orifices and Weirs.-For rectangular or circular orifices, with the head measured from centre of the orifice to the surface of the still water in the feeding reservoir.
\[
\begin{equation*}
Q=C \sqrt{2 g H} y_{.} a \tag{1}
\end{equation*}
\]

For weirs with no allowance for increased head due to velocity of approach:
\[
\begin{equation*}
Q=C 2 / 3 \sqrt{2 g H} \times L H \tag{2}
\end{equation*}
\]

For rectangular and circular or other shaped vertical or inclined orifices; formula based on the proposition that each successive horizontal layer of water passing through the orifice has a velocity due to its respective head:
\[
\begin{equation*}
Q=c L^{2} / 31 / \sqrt{2 g} \times\left(\sqrt{H b^{3}}-\sqrt{H t^{3}}\right) . \tag{3}
\end{equation*}
\]

For rectangular vertical weirs:
\[
\begin{equation*}
Q=c \frac{2}{3} \sqrt{2 g H} \times L h . \tag{4}
\end{equation*}
\]
\(Q=\) quantity of water discharged in cubic feet per second; \(C=\) approximate coefficient for formulas (1) and (2); c= correct coefficient for (3) and (4).

Values of the coefficients \(c\) and \(C\) are given below.
\(g=32.16 ; \sqrt{2 g}=8.02 ; H=\) head in feet measured from centre of orifice to level of still water; \(H b=\) head measured from bottom of orifice; \(H t=\) head measured from top of orifice; \(h=H\), corrected for velocity of approach, \(V a=H+\frac{4}{3} \frac{V a^{2}}{2 g} ; a=\) area in square feet; \(L=\) length in feet.

\section*{Flow of Water from Orifices.-The theoreticai velocity of water} flowing from an orifice is the same as the velocity of a falling body which has fallen from a height equal to the head of water, \(=\sqrt{2 g H}\). The actual velocity at the smaller section of the rena contracta is substantially the same as the theoretical, but the velocity at the plane of the orifice is \(C 1 \overline{2 g H}\), in which the coefficient \(C\) has the nearly constant value of 62 . The smallest diameter of the vena contracta is therefore about. 79 of that of the orifice. If \(C\) be the approximate coefficient \(=.62\), and \(c\) the correct coeff.
cient, the ratio \(\frac{C}{c}\) varies with different ratios of the head to the diameter of the vertical orifice, or to \(\frac{H}{D}\). Hamilton Smith, Jr., gives the following:
For \begin{tabular}{rl}
\(\frac{H}{D}\) & \(=.5\) \\
\(\frac{C}{c}\) & \(=.875\) \\
.9604 & .9849 \\
.9918 & .9965 \\
\hline
\end{tabular}

For vertical rectangular orifices of ratio of head to width \(W\) :
\[
\begin{array}{rl}
\text { For } \frac{H}{W} & =.5 \\
\frac{C}{c} & =.6 \\
& .9428 \\
.9657 & .9823 \\
.9890 & .9953 \\
.9974 & .9988 \\
.9993 & .9996
\end{array} .9998
\]

For \(H \div D\) or \(H \div W\) over \(\mathrm{S}, C=c\), practically.
Weisbach gives the following values of \(c\) for circular orifices in a thin wall. \(H=\) measured head from centre of orifice.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(D \mathrm{ft}\).} & \multicolumn{7}{|c|}{\(H \mathrm{ft}\).} \\
\hline & . 066 & . 33 & . 82 & 2.0 & 3.0 & 45. & 340. \\
\hline .033
.066
.10
.13 & . 711 & . 665 & \(.63 \%\)
.629
.622
.614 & .628
.621
.614
.607 & . 641 & . 632 & . 600 \\
\hline
\end{tabular}

For an orifice of \(D=.033 \mathrm{ft}\). and a well-rounded mouthpiece, \(H\) being th \(\in\) effective head in feet,
\begin{tabular}{ccccc}
\(H=.066\) & 1.64 & 11.5 & 56 & 338 \\
\(c=.959\) & .967 & .975 & .994 & .994
\end{tabular}

Hamilton Smith, Jr., found that for great heads, 312 ft . to 336 ft ., with con. verging mouthpieces, \(c\) has a value of about one, and for small circular orifices in thin plates, with full contraction, \(c=a b o u t .60\). Some of Mr. Smith's experimental values of \(c\) for orifices in thin plates discharging into air are as follows. All dimensions in feet.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Circular, in steel, \(D=.020,\{\) & \[
\begin{aligned}
H & =.739 \\
c & =.6495
\end{aligned}
\] & \[
\begin{gathered}
2.43 \\
.6298
\end{gathered}
\] & \[
\begin{aligned}
& 3.19 \\
& .6 \div 64
\end{aligned}
\] & & & \\
\hline Circular, in brass, \(D=.050\), & \(H=.185\) & . 536 & 1.74 & 2.73 & 3.57 & 4.63 \\
\hline Circular, in brass, \(D=.050\), & \(\begin{gathered}c \\ H\end{gathered}=.6525\) & . 6265 & . 6113 & 1.73 & 2.6060 & 3.18 \\
\hline ass, \(D=.100\), & \(c=.6337\) & . 6155 & . 6096 & 1.6042 & \(\stackrel{.6038}{ }\) & 3.6025 \\
\hline Circular, in iron, \(D=.100\), & \[
H=1.80
\]
\[
\begin{aligned}
H & =1.80 \\
c & =.6061
\end{aligned}
\] & \[
\begin{aligned}
& 1.81 \\
& .6041
\end{aligned}
\] & 2.81 .6033 & \[
\begin{gathered}
.60 \\
.6026
\end{gathered}
\] & & \\
\hline Square, in brass, \(05 \times .05\), & \(H=.313\) & . 8787 & 1.79 & 2.81 & 3.70 & 4.63 \\
\hline Square, in brass, \(05 \times .05\), & \(c=.6410\)
\(H=.181\) & \({ }_{9} .639\) & \({ }^{.} 6157\) & . 6127 & \({ }^{.} 6113\) & . 6097 \\
\hline Square, in brass, \(.10 \times .10\), & \(\begin{aligned} H & =.181 \\ c & =.6292\end{aligned}\) & . 6139 & \[
\begin{aligned}
& 1.71 \\
& .6084
\end{aligned}
\] & \[
\begin{array}{r}
2.75 \\
.60 \pi 6
\end{array}
\] & \[
\begin{aligned}
& 3.74 \\
& .6060
\end{aligned}
\] & \[
\begin{gathered}
4.59 \\
.6065
\end{gathered}
\] \\
\hline Rectangular, in brass, & \(H=.261\) & . 917 & 1.82 & 2.83 & 3.75 & 4.70 \\
\hline \(L=.300, W=.050 \ldots\). & \(c=.64{ }^{\text {r }} 6\) & . 6280 & . 6203 & . 6180 & . 6176 & . 6168 \\
\hline
\end{tabular}

For the rectangular orifice, \(L\), the length, is horizontal.
Mr. Smith. as the result of the collation of much experimental data of others as well as his own, gives tables of the value of \(c\) for vertical orifices, with full contraction, with a free discharge into the air, with the inner face of the plate. in which the orifice is pierced, plane, and with sharp inner corners, so that the escaping vein only tonches these inner edges. These tables are abridged below. The coefficient \(c\) is to be used in the formulæ (3) and (4) above. For formulæ (1) and (i) use the coefficient \(C\) found from the values of the ratios \(\frac{C}{c}\) above.

Values of Coefficient for Vertical Orifices with Sharp Edges, Full Contraction, and Free Discharge into Air. , Hamiton Smith, Jr.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
=08
\] & \multicolumn{4}{|r|}{Square Orifices.} & \multicolumn{9}{|l|}{Length of the Side of the Square, in feet.} \\
\hline \% & . 02 & . 03 & . 04 & . 05 & . 07 & . 10 & . 12 & . 15 & . 20 & . 40 & 60 & . 80 & 1.0 \\
\hline . 4 & & & . 643 & . 637 & . 628 & . 691 & . 616 & . 611 & & & & & \\
\hline . 6 & . 660 & . 645 & . 636 & . 630 & . 623 & . 617 & . 613 & . 610 & . 605 & . 601 & . 598 & . 596 & \\
\hline 1.0 & . 648 & . 636 & . 628 & . 622 & . 618 & . 613 & . 610 & . 608 & . 605 & . 603 & . 601 & . 600 & . 599 \\
\hline 3.0
6.0 & -633 & .622
616 & . 616 & . 612 & . 609 & . 607 & . 606 & . 606 & . 605 & . 605 & . 604 & . 603 & 603 \\
\hline 10. & . 616 & . 611 & . 608 & . 606 & . 605 & . 604 & . 604 & . 603 & . 603 & . 603 & . 602 & . 602 & 602 \\
\hline 20. & . 606 & . 605 & . 604 & . 603 & . 602 & . 602 & . 602 & . 602 & . 602 & . 601 & . 601 & . 601 & 600 \\
\hline 100.(?) & . 599 & . 598 & . 598 & . 598 & . 598 & . 598 & . 598 & . 598 & . 598 & 598 & . 593 & . 598 & . 598 \\
\hline \multirow{2}{*}{H.} & \multicolumn{13}{|c|}{Crrcular Orifices. Diameters, in feet.} \\
\hline & . 02 & . 03 & . 04 & . 05 & . 07 & . 10 & . 12 & . 15 & . 20 & . 40 & . 60 & . 80 & 1.0 \\
\hline . 4 & & & & . 6.37 & . 623 & . 618 & . 612 & . 606 & & & & & \\
\hline 1.0 & . 654 & . 631 & . 633 & . 612 & . 612 & . 613 & . 605 & . 603 & . 600 & . 598 & . 595 & . 590 & \\
\hline 2. & . 632 & . 621 & . 614 & . 610 & . 60 ก̂ & . 604 & . 601 & . 600 & . 599 & . 599 & . 597 & . 596 & . 595 \\
\hline 4. & . 623 & . 614 & . 609 & . 605 & . 603 & . \(60 \cdot 2\) & . 600 & . 599 & . 599 & . 598 & . 597 & . 59 \% & . 596 \\
\hline 6. & . 618 & . 611 & . 607 & . 604 & . 602 & . 600 & . 599 & . 599 & . 598 & . 598 & . 597 & . 596 & . 596 \\
\hline 10. & . 611 & . 606 & . 603 & . 601 & . 599 & . 598 & 598 & . 597 & . 597 & . 597 & . 596 & . 596 & . 595 \\
\hline 20. & . 601 & . 600 & . 599 & . 598 & . 59 r̃ & . 596 & . 596 & . 596 & . 596 & . 596 & 596 & . 595 & . 594 \\
\hline 50.(?) & . 596 & . 596 & . 595 & . 595 & . 594 & 594 & . 594 & . 594 & . 594 & . 594 & 594 & . 593 & . 593 \\
\hline \(100 .(?)\) & . 593 & . 593 & . 592 & . 592 & . 592 & 592 & . 592 & . 592 & . 592 & . 592 & . 592 & . 592 & . 592 \\
\hline
\end{tabular}

\section*{HYDRATLIC FORMULAE, -FLOW OF WATER IN OPEN AND CLOSED CHANNELS.}

Flow of Water in Pipes.-The quantity of water discharged through a pipe depends on the "head;" that is, the vertical distance be\(t\) ween the level surface of still water in the chamber at the entrance end of the pipe and the level of the centre of the discharge end of the pipe; also upon the length of the pipe, upon the character of its interior surface as to smonthness. and upon the number and sharpness of the bends: but it is independent of the position of the pipe, as horizontal, or inclined upwards or downwards.
The head, instead of being an actual distance between levels, may be caused by pressure, as by a pump. in which case the head is calculated as a \(\nabla\) rrtical distance corresponding to the pressure 1 lb . per \(\mathrm{sq} . \mathrm{in} .=2.309 \mathrm{ft}\). head, or 1 ft . head \(=.433 \mathrm{lb}\). per sq. in.

The total head operating to cause flow is divided into three parts: 1. The velocity head, which is the height through which a body must fall in vacuo to acquire the velocity with which the water flows into the pipe \(=v^{2} \div 2 g\), in which \(v\) is the velocity in ft. per sec. and \(2 g=64.32 ; 2\). the entry-head. that required to overcome the resistance to entrance to the pipe. With sharpedged entracce the entry-head = about \(1 / 2\) the velocity-head; with smooth rounded entrance the entry-head is inappreciable; 3. the friction-head, due to the frictional resistance to fl w within the pipe.
In ordinary cases of pipes of considerable length the sum of the entry and velocity heads required scarcely exceeds 1 foot. In the case of long pipes with low heads the sum of the velocity and entry heads is generally so small that ir may be neglected.

General Formula for Flow or Waterin Pipes or Conduits.
Meau velocity in ft . per sec. \(=c 1\) mean hydraulic radius \(\times\) slope
\[
\text { Do. for pipes running full }=c \sqrt{\frac{\text { dianeter }}{4} \times \text { slope }}
\]
in which \(c\) is a coefficient determined by experiment. (See pages 559-564.)

The mean hydraulic radius \(=\frac{\text { zrea of wet cross-section }}{\text { wet perimeter. }}\).
In pipes running full, or exactly half full, and in semicircular open channels running full it is equal to \(1 / 4\) diameter.
The slope \(=\) the head (or pressure expressed as a head, in feet)
\(\div\) length of pipe measured in a straight line from end to end.
In open channels the slope is the actual slope of the surface, or its fall per unit of length, or the sine of the angle of the slope with the horizon.
If \(r=\) mean hydraulic radius, \(s=\) slope \(=\) head \(\div\) length, \(v=\) velocity in feet per second (all dimensions in feet), \(v=c \sqrt{r} \sqrt{s}=c \sqrt{r s}\).

Quantity of Water Discharged. -If \(Q=\) discharge in cubic feet per second and \(\alpha=\) area of channel, \(Q=a v=a c \sqrt{r} s\).
\(a \sqrt{r}\) is approximately proportional to the discharge. It is a maximum at \(308^{\circ}\), corresponding to \(19 / 20\) of the diameter, and the flow of a conduit 19/20 full is about 5 per cent greater than that of one completely filled.

Table giving Fall in Feet per Hile, the Distance on Slope corresponding to a Fall of 1 Ft., and also the Values of \(s\) and \(\sqrt{s}\) for Use in the Formula \(v=c \sqrt{\boldsymbol{r} s}\).
\(s=H \div L=\) sine of angle of slope \(=\) fall of water-surface \((H)\), in any dis tance ( \(L\) ), divided by that distance.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fall in Feet per Mi & \begin{tabular}{l}
Slope, \\
1 Foot in
\end{tabular} & Sine of Slope, \(s\). & \(\sqrt{s}\) & Fall in Feet per Mi & \begin{tabular}{l}
Slope, \\
1 Foot in
\end{tabular} & Sine of Slope, \(s\). & \(\sqrt{s}\) \\
\hline 0.25 & 21120 & . 0000473 & . 006881 & 17 & 310.6 & . 0032197 & .05674\% \\
\hline . 30 & 17600 & . 0000568 & . 007538 & 18 & 293.3 & . 0034091 & . 058888 \\
\hline . 40 & 13200 & . 0000758 & . 008704 & 19 & 277.9 & . 0035985 & . 059988 \\
\hline . 50 & 10550 & . 0000947 & . 009731 & 20 & 264 & . 00378 \% 9 & . 061546 \\
\hline . 60 & 8800 & . 0001136 & . 010660 & 22 & 240 & . 0041667 & . 064549 \\
\hline . 702 & 7520 & . 0001330 & . 011532 & 24 & 220 & . 0045455 & . \(06 \% 419\) \\
\hline . 805 & 6560 & . 0001524 & . 012347 & 26 & 203.1 & . 0049242 & . 070173 \\
\hline . 304 & 5840 & . 0001712 & . 013085 & 28 & 188.6 & . 0053030 & . 072822 \\
\hline & 5280 & . 0001894 & . 013762 & 30 & 176 & . 0056818 & . 075378 \\
\hline 1.25 & 42.24 & . 0002367 & . 015386 & 35.20 & 150 & . 0066667 & . 081650 \\
\hline 1.5 & 3520 & . 0002841 & . 016854 & 40 & 132 & . 0075758 & . 087039 \\
\hline 1.75 & 3017 & . 0003314 & . 018205 & 44 & 120 & . 0083333 & . 091287 \\
\hline 2. & 2640 & . 000:3788 & . 019463 & 48 & 110 & . 0090909 & . 095346 \\
\hline 2.25 & 2347 & . 0004261 & . 020641 & 52.8 & 100 & . 010 & \\
\hline 2.5 & 2112 & . 0004735 & . 021760 & 60 & 88 & . 0113636 & . 1066 \\
\hline 2.75 & 19:0 & . 0005208 & . 022822 & 66 & 80 & . 0125 & . 111803 \\
\hline 3. & 1760 & . 0005682 & . 023837 & 70.4 & 75 & . 0133333 & . 115470 \\
\hline 3.25 & 1625 & . 0006154 & . 024807 & 80 & 66 & . 0151515 & . 123091 \\
\hline 3.5 & 1508 & . 00066331 & . 025751 & 88 & 60 & . 0166667 & . 1291 \\
\hline 3.75 & 1408 & . 0007102 & . 026650 & 96 & 55 & . 0181818 & . 134839 \\
\hline & 1320 & . 0007576 & . 027524 & 105.6 & 50 & . 02 & . 141421 \\
\hline 5 & 1056 & . 0009470 & .030773 & 120 & 44 & .0227273 & . 150756 \\
\hline 6 & 880 & . 0011364 & . 03371 & 132 & 40 & . 025 & . 158114 \\
\hline 7 & 754.3 & . 0013257 & . 036416 & 160 & 33 & .0303030 & . \(1740{ }^{7} 7\) \\
\hline 8 & 660 & . 0015152 & . 038925 & 220 & 24 & . 0416667 & . 204124 \\
\hline 9 & 586.6 & . 0017044 & . 041286 & 264 & 20 & . 05 & . 223607 \\
\hline 10 & 528 & . 0018939 & . 043519 & 330 & 16 & . 0625 & \\
\hline 11 & 443.6 & . 0020833 & . 045643 & 440 & 12 & . 0833333 & . 288675 \\
\hline 12 & 440 & . 0022727 & . 047673 & 528 & 10 & & . 316228 \\
\hline 13 & 406.1 & . 0024621 & .04962 & 660 & 8 & . 125 & . 353553 \\
\hline 14 & 377.1 & . 0026515 & . 051493 & 880 & 6 & . 1666667 & . 408248 \\
\hline 15 & 352 & . 0028409 & .0533 & 1056 & 5 & & . 447214 \\
\hline 16 & 330 & . 0030303 & . 055048 & 1320 & 4 & . 25 & \\
\hline
\end{tabular}

\section*{Values of \(\sqrt{v}\) for Circular Pipes, Sewers, and Conduits of different Diameters.}
\(r=\) mean hydraulic depth \(=\frac{\text { area }}{\text { perimeter }}=1 / 4\) diam. for circular pipes running full or exactly half full.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Diam., \\
ft. in.
\end{tabular} & \[
\text { in } \frac{\sqrt{7}}{\text { Feet. }}
\] & \[
\begin{aligned}
& \text { Diam., } \\
& \text { ft. in. }
\end{aligned}
\] & \[
\text { in } \frac{\sqrt{r}}{\text { Feet. }}
\] & Diam. ft. in. & \[
\text { in } \stackrel{\sqrt{r}}{\text { Feet. }}
\] & \[
\begin{aligned}
& \text { Diam., } \\
& \text { ft. in. }
\end{aligned}
\] & in Feet. \\
\hline \(3 / 8\) & . 088 & \(\stackrel{2}{2}\) & 707 & & 1.061 & 9 & 1.500 \\
\hline 3/4 & . 102 & \(\begin{array}{ll}2 \\ 2 & 1 \\ 2\end{array}\) & - & \begin{tabular}{l}
4 \\
4 \\
4 \\
\hline
\end{tabular} & \(1.0)^{1} 0\)
1.080 & 9 & \({ }_{1}^{1.521}\) \\
\hline 4 & . 144 & \({ }_{2}{ }^{2}\) & . 50 & 4 & 1.089 & 9 & 1.561 \\
\hline 11/4 & . 161 & \(\stackrel{2}{2}\) & . 764 & \(\begin{array}{ll}4 & 10\end{array}\) & 1.099 & 10 & 1.581 \\
\hline \(11 / 2\) & . 197 & \begin{tabular}{ll}
2 & 5 \\
2 & 6 \\
\hline
\end{tabular} & \({ }^{7} 780\) & \({ }_{5}^{4} 11\) & 1.109 & 10 & 1.601 \\
\hline \({ }_{2}\) & . 204 & & . 804 & & 1.127 & 10 & 1.639 \\
\hline 21/2 & 228 & & . 817 & & 1.137 & 11 & 1.658 \\
\hline 3 & 251 & 29 & . 829 & & 1.146 & 11 & 1.6 ì \\
\hline 4 & . 290 & 210 & 842 & & 1.155 & 11 & 1.696 \\
\hline 5 & . 323 & \({ }_{3}^{2} 11\) & .854 & \(\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\) & 1.164 & \({ }_{12}^{11}\) & 1. 114 \\
\hline 7 & . 882 & 1 & .878 & & 1.181 & 12 & 1.750 \\
\hline 8 & . 408 & & 890 & & 1.190 & 12 & 1.768 \\
\hline & . 433 & & 901 & & 1.199 & 12 & 1.785 \\
\hline 10 & . 456 & 4 & 913 & 5 & 1.208 & 13 & 1.083 \\
\hline 1 & . 500 & 6 & 935 & & 1.225 & 13 & 1.880 \\
\hline 1 & . 520 & & 946 & \(6{ }^{6}\) & 1.250 & 14 & 1.871 \\
\hline \({ }_{3}^{2}\) & . 540 & \(\begin{array}{ll}3 & 8 \\ 3 & 8 \\ 3\end{array}\) & \({ }_{9} 95\) & \({ }_{6}^{6} \quad 6\) & 1.275 & 14 & 1.904 \\
\hline 3 & . 559 & & \({ }_{979}^{968}\) & \(\begin{array}{ll}6 & 9\end{array}\) & 1.299 & 15
15 & 1.936
1.968 \\
\hline 5 & 595 & 311 & . 990 & & 1,346 & 16 & \\
\hline 16 & . 612 & 4 & & & 1.369 & 16 & 2.031 \\
\hline 7 & . 629 & \(4 \quad 1\) & 1.010 & 79 & 1.392 & 17 & 2.061 \\
\hline & . 646 & \(4 \quad 2\) & 1.021 & 8 & 1.414 & 17 & 2.091 \\
\hline \(1{ }^{1} 9\) & . 661 & \(\begin{array}{lll}4 & 3 \\ 4 & 4\end{array}\) & 1.031
1.041
1 & & 1.436 & \({ }_{19}^{18}\) & \({ }_{2}^{2.121}\) \\
\hline 1111
1 & . 697 & 45 & 1.051 & \begin{tabular}{l}
8 \\
8 \\
8 \\
\hline
\end{tabular} & \(1.4 \pm 9\) & 20 & \({ }_{2} 2.236\) \\
\hline
\end{tabular}

Values of the Coefficient \(c\). (Chiefly condensed from P. J. Flynn on Flow of Water.)-Almost all the old hydraulic formulæ for finding the mean velocity in open and closed channels have constant coefficients, and are therefore correct for only a small range of channels. They have often been found to give incorrect results with disastrous effects. Ganguillet and Kutter thoroughly investigated the American, French, and other experiments, and they gave as the result of their labors the formula now generally known as Kutter's formula. There are so many varying conditions affecting the flow of water, that all hydraulic formulæ are only approximations to the correct result.
When the surface-slope measurement is good, Kutter's formula will give results seldom exceeding \(712 \%\) error, provided the rugosity coefficient of the formula is known for the site. For small open channels D'Arcy's and Bazin's formulæ, and for cast-iron pipes D'Arcy's formulæ, are generally accepted as being approximately correct.
Kutter's Formula for measures in feet is
\[
v=\left\{\frac{\frac{1.811}{n}+41.6+\frac{.00281}{s}}{1+\left(41.6+\frac{.00281}{s}\right) \times \frac{n}{\sqrt{r}}}\right\} \times \sqrt{r s}
\]
in which \(v=\) mean velocity in feet per second ; \(r=\frac{a}{p}=\) hydraulic mean
depth in feet \(=\) area of cross-section in square feet divided by wetted perimeter in lineal feet ; \(s=\) fall of water-surface ( \(h\) ) in any distance ( \(l\) ) divided by that distance, \(=\frac{h}{l},=\) sine of slope \(; n=\) the coefficient of rugosity, depeuding on the nature of the lining or surface of the channel. If we let the first term of the right-hand side of the equation equal \(c\), we have Chezy's formula, \(v=c \sqrt{r s}=c \times \sqrt{r} \times \sqrt{s}\).

Values of \(n\) in Kutter's Formula.-The accuracy of Kutter's formula depends, in a great measure, on the proper selection of the coefficient of roughness \(n\). Experience is required in order to give the right value to this coefficient, and to this end great assistance can be obtained, in making this selection, by consulting and comparing the results obtained from experiments on the flow of water already made in different chanuels.

In some cases it would be well to provide for the contingency of future deterioration of channel, by selecting a high value of \(n\), as. for instance, where a dense growth of weeds is likely to occur in small channels, and also where channels are likely not to be kept in a state of good repair.

The foliowing table, giving the value of \(n\) for different materials, is compiled from Kutter, Jackson, and Hering, and this value of \(n\) applies also in each instance, to the surfaces of other materials equally rough.

\section*{Value of \(u\) in Kutter's Formula for Different Channels.}
\(n=.009\), well-planed timber, in perfect order and alignment ; otherwise, perhaps .01 would be suitable.
\(n=.010\), plaster in pure cement ; planed timber ; glazed, coated, or enamelled stoneware and iron pipes; glazed surfaces of every sort in perfect order.
\(n=.011\), plaster in cement with one third sand, in good condition ; also for iron, cement, and terra cotta pipes, well joined, and in best order.
\(n=.012\), unplaned timber, when perfectly continuous on the inside; flumes.
\(n=.013\), ashlar and well-laid brickwork; ordinary metal ; earthen and stoneware pipe in good condition, but not new ; cement and terra-cotta pipe not well jointed nor in perfect order, plaster and planed wood in imperfect or inferior condition ; and, generally, the materials mentioned with \(n=.010\), when in imperfect or inferior condition.
\(n=.015\), second class or rough-faced brickwork; well-dressed stonework ; foul and slightly tuberculated iron; cement and terra-cotta pipes, with iniperfect joints and in bad order ; and canvas lining on wooden frames.
\(u=.017\), brickwork, ashlar, and stoneware in an inferior condition; tuberculated iron pipes : rubble in cement or plaster in good order ; fine gravel, well rammed, \(1 / 3\) to \(2 / 3\) inch diameter ; and, generally, the materials mentioned with \(n=.013\) when in bad order and condition.
\(n=.020\), rubble in cement in an inferior condition; coarse rubble, rough se in a normal condition; coarse rubble set dry ; ruined brickwork and masonry ; coarse gravel well rammed. from 1 to \(11 / 3\) inch diameter; canals with beds and banks of very firm, regular gravel, carefully trimmed and rammed in defective places ; rough rubble with bed partially covered with silt and mud; rectangular wooden troughs. with battens on the inside two inches apart ; trimmed earth in perfect order.
\(n=.0225\), canals in earth above the average in order and regimen.
\(n=.0 \% 5\), canals and rivers in earth of tolerably uniform cross-section ; slope and direction, in moderately good order and regimen, and free from stones and weeds.
\(u=.0: 75\), canals and rivers in earth below the average in order and regimen.
\(n=030\), canals and rivers in earth in rather bad order and regimen, having stones and weeds occasionally, and obstructed by detritus.
\(u=.035\), suitable for rivers and canals with earthen beds in bad order and regimen, and liaving stones and weeds in great quantivies.
\(n=.05\), torrents encumbered with detritus.
Kutter's formula has the advantage of being easily adapted to a change in the surface of the pipe exposed to the flow of water, by a change in the value of \(n\). For cast-iron pipes it is usual to use \(n=.013\) to provide for the future deterioration of the surface.

Reducing Kutter's formula to the form \(v=c \times \sqrt{r} \times \sqrt{s}\), and taking \(n\), the coefficient of roughness in the formula \(=.011, .012\), and .013 , and \(s=.001\), we have the followivg values of the coefficient \(c\) for different diameters of conduit.

Values of \(c\) in Formula \(v=c \times \sqrt{v} \times \sqrt{s}\) for Metal Pipes and Moderately Smooth Conduits Generally.

By Kutter's Formula. ( \(s=.001\) or greater.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter. & \(n=.011\) & \(n=.012\) & \(n=.013\) & Diameter. & \(n=.011\) & \(n=.012\) & \(n=.013\) \\
\hline ft. in. & \(c=\) & \(c=\) & \(c=\) & ft . & \(c=\) & \(c=\) & \(c=\) \\
\hline & 47.1 & & & 7 & 152.7 & 139.2 & 127.9 \\
\hline & 61.5 & & & 8 & 155.4 & 141.9 & 130.4 \\
\hline 4 & 77.4 & & & 9 & \(15 \%\). 7 & 144.1 & \(13 \cdot .7\) \\
\hline 6 & 87.4 & 77.5 & 69.5 & 10 & 159.7 & 146 & 134.5 \\
\hline 1 & 105.7 & 94.6 & 85.3 & 11 & 161.5 & 147.8 & 136.2 \\
\hline 6 & 116.1 & 104.3 & 94.4 & 12 & 163 & 149.3 & 137.7 \\
\hline 2 & 123.6 & 111.3 & 101.1 & 14 & 165.8 & 152 & 140.4 \\
\hline 3 & 133.6 & 120.8 & 110.1 & 16 & 168 & 154.2 & 142.1 \\
\hline 4 & 140.4 & 127.4 & 116.5 & 18 & 169.9 & 156.1 & 144.4 \\
\hline 5 & 145.4 & 132.3 & 121.1 & 20 & 171.6 & 157.7 & 146 \\
\hline 6 & 149.4 & 136.1 & 124.8 & & & & \\
\hline
\end{tabular}

For circular pipes the hydraulic mean depth \(r\) equals \(1 / 4\) of the diameter.
According to Kutter's formula the value of \(c\), the coefficient of discharge, is the same for all slopes greater than 1 in 1000 ; that is, within these limits \(c\) is constant. We further find that up to a slope of 1 in 2640 the value of \(c\) is, for all practical purposes, constant, and even up to a slope of 1 in 5000 the difference in the value of \(c\) is very little. This is exemplified in the following :
Value of \(c\) for Different Values of \(\sqrt{r}\) and \(s\) in Kutter's Formula, with \(n=.013\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(\sqrt{2}\)} & \multicolumn{5}{|c|}{Slopes.} \\
\hline & 1 in 1000 & 1 in 2500 & 1 in 3333.3 & 1 in 5000 & 1 in 10,000 \\
\hline . 6 & 93.6 & 91.5 & 90.4 & 88.4 & 83.3 \\
\hline 1 & 116.5 & 115.2 & 114.4 & 113.2 & 109.7 \\
\hline 2 & 142.6 & 142.8 & 143.0 & 143.1 & 143.8 \\
\hline
\end{tabular}

The reliability of the values of the coefficient of Kutter's formula for pipes of less than 6 in . diameter is considered doubtful. (See note under table on page 564.)
Walues of c for Earthen Channels, by Kutters Formula, for Use in Hormula \(v=c \sqrt{r s}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{5}{|r|}{Coefficient of Roughness,
\[
n=.0225 .
\]} & \multicolumn{5}{|r|}{Coefficient of Roughness,
\[
n=.035
\]} \\
\hline & \multicolumn{5}{|c|}{\(\sqrt{r}\) in feet.} & \multicolumn{5}{|c|}{\(\sqrt{r}\) in feet.} \\
\hline & 0.4 & 1.0 & 1.8 & 2.5 & 4.0 & 0.4 & 1.0 & 1.8 & 2.5 & 4.0 \\
\hline Slope, 1 in & c & \(c\) & c & \(c\) & c & \(c\) & c & c & c & c \\
\hline 1000 & 35.7 & 62.5 & 80.3 & 89.2 & 99.9 & 19.7 & 37.6 & 51.6 & 59.3 & 69.2 \\
\hline 1250 & 355 & 62.3 & 80.3 & 89.3 & 100.2 & 19.6 & 37.6 & 51.6 & 594 & 69.4 \\
\hline 1667 & 35.2 & 62.1 & 80.3 & 89.5 & 1006 & 19.4 & 37.4 & 51.6 & 59.5 & 69.8 \\
\hline 2500 & 34.6 & 61.7 & 80.3 & 89.8 & 101.4 & 19.1 & 37.1 & 51.6 & 59.7 & T0.4 \\
\hline 33.33 & 34. & 61.2 & 80.3 & 90.1 & 102.2 & 18.8 & 36.9 & 51.6 & 59.9 & 71.0 \\
\hline 5000 & 33. & 60.5 & 80.3 & 90.7 & 103.7 & 18.3 & 36.4 & 51.6 & 60.4 & 72. 2 \\
\hline 7500 & 31.6 & 59.4 & 80.3 & 91.5 & 106.0 & 17.6 & 35.8 & 51.6 & 60.9 & 73.9 \\
\hline 10000 & 30.5 & 58.5 & 80.3 & 92.3 & 107.9 & 17.1 & 35.3 & 51.6 & 60.5 & 75.4 \\
\hline 15840 & 28.5 & 56.7 & 80.2 & 939 & 112.2 & 16.2 & 34.3 & 51.6 & 62.5 & 78.6 \\
\hline 20000 & 27.4 & 55.7 & 80.2 & 94.8 & 115.0 & 15.6 & 33.8 & 51.5 & 63.1 & 80.6 \\
\hline
\end{tabular}

Mr. Molesworth, in the 22d edition of his "Pocket-book of Engineering Formulæ," gives a modification of Kutter's formula as follows: For flow in cast-iron pipes, \(v=c \sqrt{r v}\), in which
\[
c=\frac{181+\frac{.00281}{s}}{1+\frac{.026}{\sqrt{d}}\left(41.6+\frac{.00281}{s}\right)}
\]
in which \(d=\) diameter of the pipe in feet.
(This formula was given incorrectly in Molesworth's 21st edition.)
Molesworth's Formula. \(-v=\sqrt{k r} s\), in which the values of \(k\) are as follows :
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Nature of Channel.} & \multicolumn{2}{|l|}{Values of \(k\) for Velocities.} \\
\hline & Less than 4 ft . per sec. & More than 4 ft . per sec. \\
\hline Brickwork. & 8800 & 8500 \\
\hline Earth.. & 7200 & 6800 \\
\hline Shingle & 6400 & 5900 \\
\hline Rough, with bowlders....... & 5300 & \(4 i 00\) \\
\hline
\end{tabular}

In very large channels, rivers, etc., the description of the channel affects the result so slightly that it may be practically neglected, and \(k\) assumed \(=\) from 8500 to 9000 .

Flynn's Formula.-Mr. Flynn obtains the following expression of the value of Kutter's coefficient for a slope of .001 and a value of \(n=.013\) :
\[
c=\frac{183.72}{1+\left(44.41 \times \frac{.013}{\sqrt{r}}\right)}
\]

The following table shows the close agreement of the values of \(c\) obtained from Kutter's, Molesworth's, and Flynn's formulæ :
\begin{tabular}{lcccr} 
Diameter. & Slope. & Kutter. & Molesworth. & Flynn. \\
6 inches & 1 in 40 & 71.50 & 71.48 & 69.5 \\
6 inches & 1 in 1000 & 69.50 & 69.79 & 69.5 \\
4 feet & 1 in 400 & 117. & 116.5 \\
4 feet & 1 in 1000 & 116.5 & 117.50 & 116.5 \\
8 feet & 1 in 700 & 130.5 & 130.68 & 130.5 \\
8 feet & 1 in 2600 & 129.8 & 129.93 & 130.5
\end{tabular}

Mr. Flynn gives another simplified form of Kutter's formula for use with different values of \(n\) as follows:
\[
v=\left(\frac{K}{1+\left(44.41 \times \frac{n}{\sqrt{r}}\right)}\right) \sqrt{r s}
\]

In the following table the value of \(K\) is given for the several values of \(n\) :
\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
\hline\(n\) & \(K\) & \(n\) & \(K\) & \(n\) & \(K\) & \(n\) & \(K\) & \(n\) & \(K\) \\
\hline .009 & 245.63 & .012 & 195.33 & .015 & 165.14 & .018 & 145.03 & .021 & 130.65 \\
.010 & 225.51 & .013 & 183.72 & .016 & 157.6 & .019 & 139.73 & .022 & 126.73 \\
.011 & 209.05 & .014 & 137.77 & .017 & 150.94 & .020 & 144.96 & .0225 & 124.9 \\
\hline
\end{tabular}

If in the application of Mr. Flynn's formula given above within the limits of \(n\) as given in the table, we substitute for \(n, K\), and \(\sqrt{r}\) their values, wo have a simplified form of Kutter's formula.

For instance, when \(n=.011\), and \(d=3\) feet, we have
\[
v=\frac{209.05}{1+\left(44.41 \times \frac{.011}{.866}\right)} \times \sqrt{r s} .
\]

Bazin's Formulæ:
For very even surfaces, fine plastered sides and bed, planed planks, etc.,
\[
v=\sqrt{1 \div .0000045\left(10.16+\frac{1}{r}\right)} \times \sqrt{r s}
\]

For even surfaces such as cut-stone, brickwork, unplaned planking, mortar, etc. :
\[
v=\sqrt{1 \div .000013\left(4.354+\frac{1}{r}\right)} \times \sqrt{r s}
\]

For slightly uneven surfaces, such as rubble masonry:
\[
v=\sqrt{1 \div .00006\left(1.219+\frac{1}{r}\right)} \times \sqrt{r s .}
\]

For uneven surfaces, such as earth :
\[
v=\sqrt{1 \div .00035\left(0.2438+\frac{1}{r}\right)} \times \sqrt{r s}
\]

A modification of Bazin's formula, known as D'Arcy's Bazin's :
\[
v=r \sqrt{\frac{1000 s}{.08534} r+0.35}
\]

For small channels of less than 20 feet bed Bazin's formula for earthen channels in good order gives very fair results, but Kutter's formula is superseding it in almost all countries where its accuracy has been investigated.

The last table on p. 561 shnws the value of \(c\), in Kutter's formula, for a wide range of channels in earth, that will cover anything likely to occur in the ordillary practice of an engiveer.
D'Arcy's Formula for clean iron pipes under pressure is
\[
v=\left\{\frac{r s}{.0000 \pi \tau 26+\frac{.00000162}{r}}\right\}^{1 / 2}
\]

Flynn's modification of D'Arcy's formula is
\[
v=\left(\frac{155256 d}{12 d+1}\right)^{1 / 2} \times \sqrt{r s}
\]
in which \(d=\) diameter in feet.
D'Arcy's formula, as given by J. B. Francis, C.E., for old cast-iron pipe, lined with deposit and under pressure, is
\[
v=\left(\frac{144 d^{2} s}{.0082(12 d+1}\right)^{1 / 2}
\]

Flynn's modification of D'Arcy's formula for' old cast-iron pipe is
\[
v=\left(\frac{70243.9 d}{12 d+1}\right)^{1 / 2} \times \sqrt{r s}
\]

For Pipes Less than 5 inches in Diameter, coefficients (c) in the formula \(v=c \sqrt{r s}\), from the formula of D'Arcy, Kutter, and Fanning.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diam.
in
inches. & D'Arcy, for Clean Pipes. & \[
\begin{aligned}
& \text { Kutter, } \\
& \text { for } \\
& n=.011 \\
& s=.001
\end{aligned}
\] & Fanning, for Clean Iron Pipes & \[
\left\lvert\, \begin{gathered}
\text { Diam } \\
\text { in } \\
\text { inches }
\end{gathered}\right.
\] & D'Arcy, for Clean Pipes. & \[
\begin{aligned}
& \text { Kutter, } \\
& \text { for } \\
& n=.011 \\
& s=.001
\end{aligned}
\] & Fanning, for Clean lron Pipes. \\
\hline 3/8 & 59.4 & 32. & & 13/4 & 90.7 & 58.8 & 92.5 \\
\hline 1/2 & 65.7 & 36.1 & & 2 & 92.9 & 61.5 & 94.8 \\
\hline \(3 / 4\) & 74.5 & 42.6 & & 21/2 & 96.1 & 66. & \\
\hline 1 & 80.4 & 47.4 & 80.4 & 3 & 98.5 & \%0.1 & 96.6 \\
\hline 11/4 & 84.8 & 51.9 & & 4 & 101.7 & 77.4 & 103.4 \\
\hline 11/2 & 88.1 & 55.4 & 88. & 5 & 103.8 & 82.9 & \\
\hline
\end{tabular}

Mr. Flynn, in giving the above table, says that the facts show that the coefficients diminish from a diameter of 5 inches to smaller diameters, and it is a safer plan to adopt coefficients varying with the diameter than a constant coefficient. No opinion is advanced as to what coefficients should be used with Kutter's formula for small diameters. The facts are simply stated. giving the results of well-known authors.

Older Formulæ. - The following are a few of the many formulæ for flow of water in pipes given by earlier writers. As they have constant coefficients, they are not considered as reliable as the newer formulæ.
\[
\begin{array}{ll}
\text { Prony, } & v=97 \sqrt{r s}-.08 ; \\
\text { Eytelwein, } & v=50 \sqrt{\frac{d h}{l+50 d}}, \text { or } \quad v=108 \sqrt{r s}-0.13 ; \\
\text { Hawksley, } & v=48 \sqrt{\frac{d h}{l+54 d}} ; \quad \text { Neville, } v=140 \sqrt{r s}-11 \sqrt[3]{r s} .
\end{array}
\]

In these formulæ \(d=\) diameter in feet; \(h=\) head of water in feet; \(l=\) leusth of pipe in feet; \(s=\) sine of slope \(=\frac{h}{l} ; r=\) mean hydraulic depth, \(=\) area \(\div\) wet perimeter \(=\frac{d}{4}\) for circular pipe.
Mr. Santo Crimp (Eng'g, August 4, 1893) states that observations on flow in brick sewers show that the actual discharge is \(33 \%\) greater than that calculated by Eytelwein's formula. He thinks Kutter's formula not superior to D'Arcy's for brick sewers, the usual coefficient of roughness in the former, viz., .013 , being too low for large sewers and far too small in the case of small sewers.
D'Arcy's formula for brickwork is
\[
v=\frac{\sqrt{2 g}}{m} r s ; \quad m=a\left(1+\frac{B}{r}\right) ; \quad a=.0037285 ; \quad B=.229663 .
\]

\section*{VELOCITY OF WATER IN OPEN CHANNELS.}

Hrigation Canals.-The minimum mean velocity required to prevent the deposit of silt or the growth of aquatic plants is in Northern India taken at \(11 / 2\) feet per second. It is stated that in America a higber velocity is required for this purpose, and it varies from 2 to \(31 / 2\) feet per second. The maximum allowable velocity will vary with the nature of the soil of the bed. A sandy bed will be disturbed if the velocity exceeds 3 feet per second. Good loam with not too much sand will bear a velocity of 4 feet per second. The Cavour Canal in Italy, over a gravel bed, has a velocity of about 5 per second. (Flynn's "Irrigation Canals.")

Mean Suriace and Bottom Velocities.-According to the formula of Bazin,
\[
v=v \max -25.4 \sqrt{r s} ; v=v b+10.8 \pi \sqrt{r} \bar{s}
\]
\(\therefore v b=v-10.87 \sqrt{r}\), in which \(v=\) mean velocity in feet per second, \(v_{\text {max }}=\) maximum surface velocity in feet per second, \(v b=\) bottom velocity in feet per second, \(r=\) hydraulic mean depth in feet \(=\) area of cross-section in square feet divided by wetted perimeter in feet, \(s=\) sine of slope.

The least velocity, or that of the particles in contact with the bed, is almost as much less than the mean velocity as the greatest velocity is greater than the mean.

Rankine states that in ordinary cases the velocities may be taken as bearing to each other nearly the proportions of 3,4 , and 5 . In very slow currents they are nearly as 2,3 , and 4.

Safe Bottom and Miean Velocities.-Ganguillet \& Kutter give the following table of safe bottom and mean velocity in channels, calculated from the formula \(v=v b+10.87 \sqrt{r s}\) :
\begin{tabular}{|c|c|c|}
\hline Material of Channel. & Safe Bottom Veloc ity \(v b\), in feet per second. & Mean Velocity \(v\), in feet per second. \\
\hline Soft brown earth & 0.249 & 0.338 \\
\hline Soft loam... & 0.499 & 0.656 \\
\hline Sravel. & 1.000
1.993 & \({ }_{2}^{1.312}\) \\
\hline Pebbles. & 2.999 & 3.938 \\
\hline Broken stone, flint & 4.003 & 5.5ヶ9 \\
\hline Conglomerate, soft slate. & 4.988 & 6.564 \\
\hline Stratifie, rock........... & 6.006 & 8.204 \\
\hline Hard rock ... ............... & 10.009 & 13.127 \\
\hline
\end{tabular}

Ganguillet \& Kutter state that they are unable for want of observations to judge how far these figures are trustworthy. They consider them to be rather disproportionately small than too large, and therefore recommend them more confidently.

Water flowing at a high velocity and carrying large quanties of silt is very destructive to channels, even when constructed of the best masonry.

Resistance of Soils to Erosion by Water.-W. A. Burr, Eng'g News, Feb. 8, 1894, gives a diagram showing the resistance of various soils to erosion by flowing water.

Experiments show that a velocity greater than 1.1 feet per second will erode saud, while pure clay will stand a velocity of 7.35 feet per second. The greater the proportion of clay carried by any soil, the higher the permissible velocity. Ntr. Burr states that experiments have shown that the line describing the power of soils to resist erosion is parabolic. From his diagram the following figures are selected representing different classes of soils:


Abrading and Fransporting Power of Water,-Prof. J. LeConte, in his "Elements of Geology," states:

The erosive power of water, or its power of overcoming cohesion, varies as the square of the velocity of the current.
The transporting power of a current varies as the sixth power of the velocity. ** * If the velocity therefore be increased ten times, the transporting power is increased \(1,000,000\) times. A current running three feet per second, or about two miles per hour. will bear fragments of stone of the size of a hen's egg, or about three ounces weight. A current of ten miles an hour will bear fragments of one and a half tons, and a torrent of twenty miles an hour will carry fragments of 100 tons.
The transporting power of water must not be confounded with its erosive power. The resistance to be overcome in the one case is weight, in the other, cohesion; the latter varies as the square : the former as the sixth power of the velocity.
In many cases of removal of slightly cohering material, the resistance is a
mixture of these two resistances, and the power of removing material will vary at some rate between \(v^{2}\) and \(v^{6}\).
Baldwin Latham has found that in order to prevent deposits of sewage silt in small sewers or drains, such as those from 6 inches to 9 inches diameter, a mean velocity of not less than 3 feet per second should be produced. Sewers from 12 to 24 inches diameter should have a velocity of not less than \(21 / 2\) feet per second, and in sewers of larger dimensions in no case should the velocity be less than 2 feet per second.

The specific gravity of the materials has a marked effect upon the mean velocities necessary to move them. T. E. Blackwell found that coal of a sp gr. of 1.26 was moved by a current of from 1.25 to 1.50 ft . per second, while stones of a sp. gr. of 2.32 to 3.00 required a velocity of 2.5 to 2.75 ft . per second.

Chailly gives the following formula for finding the velocity required to move rounded stones or shingle :
\[
v=5.67 \sqrt{a g}
\]
in which \(v=\) velocity of water in feet per second. \(a=\) average diameter in feet of the body to be moved, \(g=\) its specific gravity.

Geo. Y. Wisner, Eng'g News, Jan 10, 1895, doubts the general accuracy of statements made by many authorities concerning the rate of flow of a current and the size of particles which different velocities will move. He says:

The scouring action of any river, for any given rate of current, must be an inverse function of the depth. The fact that some engineer has found that a given velocity of current on some stream of unknown depth will move sand or gravel has no bearing whatever on what may be expected of currents of the same velocity in streams of greater depths. In channels 3 to 5 ft . deep a mean velocity of 3 to 5 ft . per second may produce rapid scouring. while in depths of 18 ft . and upwards current velocities of 6 to 8 ft . per second often have no effect whatever on the channel bed.

Grade of Sewers. - The following empirical formula is given in Baumeister's "Cleaning and Sewerage of Cities," for the minimum grade for a sewer of clear diameter equal to \(d\) inches, and either circular or oval in section :
\[
\text { Minimum grade, in per cent, }=\frac{100}{5 d+50^{\circ}}
\]

As the lowest limit of grades which can be flushed, 0.1 to 0.2 per cent may be assumed for sewers which are sometimes dry, while 0.3 per cent is allowable for the trunk sewers in large cities. The sewers should run dry as rarely as possible.

Relation of Diameter of Pipe to Quantity Discharged.In many cases which arise in practice the information sought is the dianeter necessary to supply a given quantity of water under a given head. The diameter is commonly taken to vary as the two-fifth power of the discharge. This is almost certainly too large. Hagen's formula, with Prof. Unwin's coefficients, gived \(=c\left(\frac{Q}{\left(\frac{h}{l}\right)^{\frac{1}{2}}}\right)^{.387}\), where \(c=.239\) when \(d\) and \(Q\) are in feet and cubic feet per second.

Mr. Thrupp has proposed a formula which makes \(d\) vary as the .383 power of the discharge, and the formula of M. Vallot, a French engineer, makes \(d\) vary as the .375 power of the discharge. (Engineering.)

\section*{FLOW OF WATER-EXPERIMENTS AND TABLES.}

The Flow of Water through New Cast-iron Pipe was recently measured by S. Bent Russell, of the St. Louis, Mo., Water-works. The pipe was 12 inches in diameter, 1631 feet long, and laid on a uniform grade from end to end. Under an average total head of 3.36 feet the flow was 43,200 cubic feet in seven hours; under an average head of 3.37 feet the flow was the same; under an average total head of 3.41 feet the flow was 46,700 cubic feet in 8 hours and 35 minutes. Making allowance for loss of head due to entrance and to curves, it was found that the value of \(c\) in the formula \(v=c \sqrt{r s}\) was from 88 to 93. (Eng'g Record, April 14, 1894.

Flow of Water in a 20-inch Pipe 75,000 Feet Long.-A comparison of experimental data with calculations by different formulæ is

\title{
FLOW OF WATER-EXPERIMENTS AND TABLES. \(56 \%\)
}
given by Chas. B. Brush, Trans. A. S. C. E., 1888. The pipe experimented with was that supplying the city of Hoboken, N. J.

Results Obtained by the Hackensack Water Company, from 1882-188\%, in Pumping Through a \(20-\mathrm{in}\). Cast-iron Main 75,000 Feet Long.
Pressure in lbs. per sq. in. at pumping-station:
\[
\begin{array}{llllllll}
95 & 100 & 105 & 110 & 115 & 120 & 125 & 130
\end{array}
\]
\(\begin{array}{cccccccc}\text { Total effective head in feet : } \\ \underset{55}{25} & \underset{7}{2} & 89 & 100 & 112 & 123 & 135\end{array}\)
Discharge in U. S. gallons in 24 hours, \(1=1000\) :
\[
\begin{array}{llllllll}
2,848 & 3,165 & 3,354 & 3,566 & 3,804 & 3,904 & 4,116 & 4,255
\end{array}
\]

Actual velocity in main in feet per second :
2.00
2.24
2.36
2.52
2.68
\(2.76 \quad 2.92\)
3.00

Cost of coal consumed in delivering each million gals. at given velocities : \(\begin{array}{llllllll}\$ 3.40 & \$ 8.15 & \$ 8.00 & \$ 8.10 & \$ 8.30 & \$ 8.60 & \$ 9.00 & \$ 9.60\end{array}\)
Theoretical discharge by D'Arcy's formula :
2,743
3,004
3,244
3,488
3,699
3,915 4,102
4,297

\section*{Velocities in Smooth Cast-iron Water-pipes from 1 Foot to 9 Feet in Diameter, on Hydraulic Grades of 0.5 Foot to 8 Feet per Mile; with Corresponding Values of \(c\) in \(V=c \sqrt{r \boldsymbol{s}}\). (D. M. Greene, in Eng'g News, Feb. 24, 1894.)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{Hydraulic Grade; Feet per Mile \(=h\).} \\
\hline & & \[
\begin{array}{r}
h=0.5 \\
s=0.0000
\end{array}
\] & \[
\begin{gathered}
1.0 \\
0.0001894
\end{gathered}
\] & \[
\begin{aligned}
& 1.5 \\
& 0.000: 2841
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
0.0003788
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
0.0005682
\end{gathered}
\] & \[
\begin{aligned}
& 4.0 \\
& 0.0007576
\end{aligned}
\] \\
\hline & & 0.4 & 0.6 & 0.8 & 0.9 & 1.2 & 1.4402 \\
\hline & 0.2 & 92.7 & 97.0 & 99.1 & 100.7 & 103.0 & 104.7 \\
\hline & & \(V=0.7359\) & 1.0793 & 1.3516 & 1.58 & 1.98 & 2.3294 \\
\hline & & \(c=106.6\) & 110.9 & 113.4 & 115.2 & 117.9 & 119.7 \\
\hline & & \(V=0.9733\) & 1.4298 & 1.7906 & 2.1017 & 2.630 & 3.0860 \\
\hline & 0. & \(c=115.5\) & 119.9 & 122.6 & 124.4 & 127.5 & 129.5 \\
\hline . & 1.0 & \(V=1.1883\) & 1.745 & 2.1861 & 2.5645 & 3.21 & 3.76\%6 \\
\hline & & \(\begin{aligned} & c \\ & V \\ & V\end{aligned}=122.1882\) & 126.8
\(2.03 \% 9\) & \begin{tabular}{l}
129.7 \\
2.5521
\end{tabular} & 131.8
2.9939 & 134.7
3.7493 & 136.9 \\
\hline 5. & 1.25 & \(V=1.3822\)
\(c=127.5\) & 132.4 & 135.5 & \({ }_{137.6}{ }^{2.9939}\) & \({ }^{3.7493}\) & 142 \\
\hline & & \(V=1.57\) & 2.3126 & 2.8961 & 3.39\%5 & 4.2548 & 4.9913 \\
\hline & 1.5 & \(c=132.1\) & 137.8 & 140.3 & 142.6 & 145.8 & 148.1 \\
\hline & & \(V=1.75\) & 2.5736 & 3.2230 & 3.7809 & 4.7350 & 5.5546 \\
\hline & & \(c=135.9\) & 141.4 & 146.0 & 146.8 & 150.2 & 152.5 \\
\hline & & \(V=1.9218\) & 2.8234 & 3.5358 & 4.1479 & 5.19 & 6.09 \\
\hline & & \(c=139.7\) & 14.5 & 148.4 & 150.7 & 154.1 & 156.5 \\
\hline & & & 3.0638 & 3.8368 & 4.5010 & 5.6368 & 6.6 \\
\hline & ح & \[
c=142.9
\] & 148.4 & 151.7 & 154.2 & 157.6 & 160.1 \\
\hline
\end{tabular}

The velocities in this table have been calculated by Mr. Greene's modification of the Chezy formula, which modification is found to give results which differ by from 1.29 to - 2.65 per cent (average 0.9 per cent) from very carefully measured flows in pipes from 16 to 48 inches in diameter, on grades from 1.68 feet to 10.296 feet per mile, and in which the velocities ranged from 1.577 to 6.195 feet per second. The only assumption made is that the modified formula for \(V\) gives correct results in conduits from 4 feet to 9 feet in diameter, as it is known to do in conduits less than 4 feet in diameter.

Other articles on Flow of Water in long tubes are to be found in Eng'g News as follows: G. B. Pearsons, Sept. 23, 18;6; E. Sherman Gould, Feb. 16, 23, March 9, 16, and 23, 1889; J. L. Fitzgerald, Sept. 6 and 13, 1890; Jas. Duane, Jan. 2, 1892; J. T. Fanning, July 14, 1892; A. N. Talbot, Aug. 11, 1892.

\section*{Flow of Water in Circular Pipes, Sewers, etc., Flowing Full. Based on Kutter's Formula, with \(u \xlongequal[=]{=.013 .}\)}

Discharge in cubic feet per second.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Diam. eter.} & \multicolumn{8}{|c|}{Slope, or Head Divided by Length of Pipe.} \\
\hline & 1 in 40 & 1 in 70 & 1 in 100 & 1 in 200 & 1 in 300 & 1 in 400 & 1 in 500 & 1 in 600 \\
\hline 5 in & . 456 & . 344 & . 288 & . 204 & . 166 & . 144 & . 137 & 118 \\
\hline 6 & . 762 & . 576 & . 482 & . 341 & . 278 & . 241 & . 230 & . 197 \\
\hline \(7{ }^{6}\) & 1.17 & . 889 & . 744 & . 526 & . 430 & . 372 & . 355 & . 304 \\
\hline 8 & 1.50 & 1.29 & 1.08 & . 765 & . 624 & 54 & . 516 & . 441 \\
\hline 9 6 & 2.37 & 1.79 & 1.50 & 1.06 & . 868 & . 75 & 717 & . 613 \\
\hline Slope & 1 in \(6 r\) & 1 in 80 & 1 in 100 & 1 in 200 & 1 in 300 & 1 in 400 & 1 in 500 & 1 in 600 \\
\hline 10 in . & 2.5 ! & 2.24 & 2.01 & 142 & 1.16 & 1.00 & . 90 & . 82 \\
\hline 11 ' & 3.34 & 294 & 2.63 & 1.86 & 1.52 & 1.31 & \(1.1 \%\) & 1.07 \\
\hline 12 & 4.32 & 3.74 & 3.35 & 2.37 & 1.93 & 1.67 & 1.5 & 1.37 \\
\hline 13 " & 5.38 & 4.66 & 4.16 & 2.95 & 2.40 & 2.08 & 1.86 & 1.\% \({ }^{\circ}\) \\
\hline 14 " & 6.60 & 5.72 & 5.15 & 3.62 & 2.95 & 2.57 & 2.29 & 2.09 \\
\hline Slope & 1 in 100 & 1 in 200 & 1 in 300 & 1 in 400 & 1 in 500 & 1 in 600 & 1 in 700 & 1 in 800 \\
\hline 15 in. & 6.18 & 437 & 3.57 & 3.09 & 2.77 & 2.52 & 2.34 & 2.19 \\
\hline 16 " & 7.38 & 5.2\% & 4.26 & 3.69 & 3.30 & 3.01 & 2.79 & 2.61 \\
\hline 18 " & 10.21 & 722 & 5.89 & 5.10 & 4.56 & 4.17 & 3.86 & 3.61 \\
\hline 20 ' & 13.65 & 9.65 & 7.88 & 6.82 & 6.10 & 5.57 & 5.16 & 4.83 \\
\hline 22 " & 1\%.\% & 12.52 & 10.22 & 8.85 & 7.92 & 7.23 & 6.69 & 6.26 \\
\hline Slope & 1 in 200 & 1 in 400 & 1 in 600 & 1 in 800 & 1 in 1000 & 1 in 1250 & 1 in 1500 & 1 in 1800 \\
\hline 2 ft . & 15.88 & 11.23 & 9.17 & 7.94 & ก. 10 & 6.35 & 580 & 5.29 \\
\hline 2 ft .2 in. & 19.73 & 13.96 & 11.39 & 9.87 & 8.82 & 7.89 & 7.20 & 6 ¢8 \\
\hline 2 " 4 " & 24.15 & 17.07 & 1394 & 12.07 & 10.80 & 966 & 8.82 & 8.05 \\
\hline 2" 6 " & 29.08 & 20.56 & 16.79 & 14.54 & 13.00 & 11.63 & 10.62 & 9.69 \\
\hline 2 " 8 " & 34.71 & 24.54 & 20.04 & 16.35 & 15.52 & 13.88 & 12. 67 & 11.57 \\
\hline Slope & 1 in 500 & 1 in 750 & 1 in 1000 & 1 in 1250 & 1 in 1500 & 1 in 1750 & 1 in 2000 & 1 In 2500 \\
\hline 2 ft .10 in. & 25.84 & 21.10 & 18.27 & 16.34 & 14.92 & 13.81 & 12.92 & 11.55 \\
\hline 3 ، & 30.14 & 24.61 & 21.31 & 19.06 & 17.40 & 16.11 & 15.07 & 13.48 \\
\hline 3 "2 in. & 34.90 & 28.50 & 24.68 & 22.07 & 20.15 & 18.66 & 1745 & 15.61 \\
\hline 3"4 & 40.08 & 327. & 2834 & 25.35 & 23.14 & 21.42 & 20.04 & 17.93 \\
\hline 3 " 6 " & 45.66 & 37.28 & 32.28 & 28.87 & 26.36 & 24.40 & 22.83 & 20.41 \\
\hline Slope & 1 in 500 & 1 in 750 & 1 in 1000 & 1 in 1250 & 1 in 1500 & 1 in 1750 & 1 in 2000 & 1 in 2500 \\
\hline 3 ft . 8 in . & 51.74 & 42.52 & 36.59 & 32.72 & 29.87 & 27.66 & 25.87 & 23.14 \\
\hline 3"10 " & 58.36 & 47.65 & 41.27 & 3691 & 33.69 & 31.20 & 29.18 & 26.10 \\
\hline 4 " & \(6 \mathrm{6E} .47\) & 53.46 & 46.30 & 41.41 & 37.80 & 34.50 & 32.74 & 29.28 \\
\hline 4 " 6 in . & 89.75 & 73.28 & 63.47 & 56.76 & 51.82 & 47.97 & 44.88 & 40.14 \\
\hline 5 " & 118.9 & 97.09 & 84.08 & 75.21 & 68.65 & 63.56 & 59.46 & 53.18 \\
\hline Slope & 1 in 750 & 1 in 1000 & 1 in 1500 & 1 in 2000 & 1 in 2500 & 1 in 3000 & 1 in 3500 & 1 in 4000 \\
\hline 5 ft .6 in. & 125.2 & 108.4 & 88.54 & \%6.67 & 68.58 & 62.60 & 57.96 & 54.21 \\
\hline 6 " & 157.8 & 136.7 & 1116 & 96.66 & 86.45 & 78.92 & ris.0\% & 68 35 \\
\hline 6 " 6 " & 195.0 & 168.8 & 137.9 & 119.4 & 106.8 & 97.49 & 90.26 & 84.43 \\
\hline \(7 \times\) & 237.7 & 205.9 & 168.1 & 145.6 & 130.2 & 118.8 & 110.00 & 102.9 \\
\hline 7"6" & 285.3 & 247.1 & 201.7 & 174.7 & 156.3 & 142.6 & 132.1 & 123.5 \\
\hline Slope & 1 in 1500 & 1 in 2000 & 1 in 2500 & 1 in 3000 & 1 in 3500 & 1 in 4000 & 1 in 4500 & 1 in 5000 \\
\hline 8 ft & 239.4 & 207.3 & 195. 4 & 169.3 & 156.7 & 146.6 & 138.2 & 131.1 \\
\hline 8 " 6 in. & 281.1 & 243.5 & 217.8 & 198.8 & 184.0 & \(1 \% 2.2\) & 16:2.3 & 154.0 \\
\hline 9 " & 3.7 .0 & 283.1 & 253.3 & 231.2 & 214.0 & 200.2 & 188.7 & 1.99 .1 \\
\hline \(9{ }^{\prime \prime} 6\) " & \(3 \sim 6.9\) & 326.4 & 2919 & 266.5 & 246.7 & 230.8 & 217.6 & \(20 \% 5.4\) \\
\hline 10 " & 431.4 & \(3 \uparrow 3.6\) & 334.1 & 305.0 & 28.4 & 264.2 & 249.1 & 256.3 \\
\hline
\end{tabular}

For U. S. gallons multiply the figures in the table by 7.4805.
For a given diameter the quantity of flow varies as the square root of the sine of the slope. From this principle the flow for other slopes than those
given in the table may be found. Thus, what is the flow for a pipe 8 feet diameter, slope 1 in 125 ? From the table take \(Q=207.3\) for slope 1 in 2000. The given slope 1 in 125 is to 1 in 2000 as 16 to 1 , and the square root of this ratio is 4 to 1. Therefore the flow required is \(207.3 \times 4=829.2 \mathrm{cu} . \mathrm{ft}\).

\section*{Circular Pipes, Conduits, etc., Flowing Full.}

Values of the factor \(a c \sqrt{r}\) in the formula \(Q=a c \sqrt{r} \times \sqrt{s}\) corresponding to different values of the coefficient of roughness, \(n\). (Based on Kutter's formula.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline દ & \multicolumn{6}{|c|}{Value of ac \(\sqrt{r}\).} \\
\hline ft. in. & \(n=.010\). & \(n=.011\). & \(n=.012\). & \(n=.013\). & \(n=.015\) & \(n=.017\) \\
\hline 6 & 6.906 & 6.0627 & 5.3800 & 4.8216 & 3.9604 & 3329 \\
\hline 9 & 21.25 & 18.742 & 16.708 & 15.029 & 12.421 & 10.50 \\
\hline 1 & 46.93 & 41.487 & 37.149 & 33.497 & 27.803 & 2360 \\
\hline 13 & 86.05 & r6.347 & 68.44 & 61.86\% & 51.600 & 43.93 \\
\hline 16 & 141.2 & 125.60 & 112.79 & 102.14 & 85.496 & 72.99 \\
\hline 19 & 214.1 & 190.79 & 171.66 & 155.68 & 130.58 & 111.8 \\
\hline 2 & 307.6 & 274.50 & 247.33 & 224.63 & 188.17 & 164 \\
\hline 23 & 421.9 & 3.7 .07 & 340.10 & 309.23 & 260.47 & 223.9 \\
\hline 26 & 559.6 & 500.78 & 452.07 & 411.27 & 347.28 & 299.3 \\
\hline 29 & 722.4 & 647.18 & 584.90 & 53\%. 76 & 451.23 & 388.8 \\
\hline 3 & 911.8 & 817.50 & 739.59 & 6 6i4.09 & 570.90 & 493.3 \\
\hline 33 & 1128.9 & 1013.1 & 917.41 & 836.69 & 709.56 & 613.9 \\
\hline 36 & 1374.7 & 1234.4 & 1118.6 & 1021.1 & 866.91 & \% 50.8 \\
\hline 39 & 1652.1 & 1484.2 & 1345.9 & 1229.7 & 1045 & 906 \\
\hline 4 & 1962.8 & 1764.3 & 1600.9 & 1463.9 & 1245.3 & 1080.7 \\
\hline 6 & 2682.1 & 2413.3 & 2193 & 2007 & 1711.4 & 1487.3 \\
\hline 5 & 3543 & 3191.8 & 2903.6 & 2659 & 22T2.7 & 1977 \\
\hline 56 & 4557.8 & 4111.9 & 3742.7 & 3429 & 2934.8 & 2557.2 \\
\hline 6 & 5 5i31.5 & 5176.3 & 4713.9 & 4322 & 3702.3 & 3232.5 \\
\hline 66 & 7075.2 & 6394.9 & 5825.9 & 5339 & 4588.3 & 4010 \\
\hline 7 & 8595.1 & 7774.3 & 7087 & 6510 & 5591.6 & 4893 \\
\hline 76 & 10296 & 9318.3 & 8501.8 & 7814 & \(6 \pi 17\) & 5884.2 \\
\hline 8 & 12196 & 11044 & 10083 & 9272 & 7978.3 & 6995.3 \\
\hline 86 & 14:98 & 12954 & 11832 & 10889 & \(93 \% 7.9\) & 82:26.3 \\
\hline 9 & 16604 & 15049 & 13751 & 12663 & 10917 & 9580.7 \\
\hline 6 & 19118 & 17338 & 15847 & 14597 & 12594 & 11061 \\
\hline 10 & 21858 & 19834 & 18134 & 16709 & 14426 & \(126 \% 8\) \\
\hline 106 & 24823 & 24534 & 20612 & 18996 & 16412 & 14434 \\
\hline 11 & 280:20 & 25444 & \(23: 85\) & 21464 & 18555 & 16333 \\
\hline 116 & 31482 & 28593 & 26179 & 24139 & 208\% & 1839a \\
\hline 12 & 35156 & 31937 & 29254 & 26981 & 23352 & 20584 \\
\hline 126 & 39104 & 35529 & 32558 & 30041 & 26012 & 22938 \\
\hline 13 & 43307 & 39:358 & \(360{ }^{7}\) & 33301 & 28853 & 25451 \\
\hline 136 & 47751 & 43412 & 39802 & 36752 & 31860 & 28117 \\
\hline 14 & 52491 & 47739 & 43773 & 40432 & 35073 & 30965 \\
\hline 146 & 57496 & 52308 & 47969 & 44322 & 38454 & 33975 \\
\hline 15 & \(62 \% 48\) & 57103 & 52382 & 48413 & 42040 & 37147 \\
\hline 16 & โ4191 & 67557 & 62008 & \(5 \% 343\) & 498.3 & 44073 \\
\hline 17 & \(86 \sim 69\) & 79050 & 72594 & 67140 & 58387 & 51669 \\
\hline 18 & 100617 & 91711 & 84247 & 77932 & 67839 & 60067 \\
\hline 19 & \(115 \% 69\) & 105570 & 96991 & 89759 & \%8201 & 69301 \\
\hline 20 & 132133 & \(1205 \% 0\) & 110905 & 102559 & 89423 & \%9259 \\
\hline
\end{tabular}

\section*{Flow of Water in Circular Pipes, Conduits, etc., Flowing under Pressure.}

Based on D'Arcy's formulæ for the flow of water through cast-iron pipes. With comparison of results obtained by Kutter's formula, with \(n=.013\) (Condeused from Flynn on Water Power.)
Values of \(a\), and also the values of the factors \(c \sqrt{r}\) and \(a c \sqrt{r}\) for use in the formulæ \(Q=a v ; \quad v=c \sqrt{r} \times \sqrt{s}\), and \(Q=a c \sqrt{r} \times \sqrt{s}\).
\(Q=\) discharge in cubic feet per second, \(a=\) area in square feet,\(v=\) veloc. ity in feet per second, \(r=\) mean hydraulic depth, \(1 / 4\) diam. for pipes running full, \(s=\) sine of slope.
(For values of \(\sqrt{s}\) see page 558.)


FLOW OF WATER IN CIRCULAR PIPES, ETC. 571
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Size of Pipe.} & \multicolumn{2}{|l|}{Clean Cast-iron Pipes.} & \multirow[b]{2}{*}{Value of \(a c \sqrt{r}\) by Kutter's Formula, when \(n=.013\)} & \multicolumn{2}{|l|}{Old Cast-iron Pipes Lined with Deposit.} \\
\hline & \[
\begin{aligned}
& \text { diam. } \\
& \text { in } \\
& \text { in. }
\end{aligned}
\] & \[
\begin{aligned}
& a=\text { area } \\
& \text { in } \\
& \text { square } \\
& \text { feet. }
\end{aligned}
\] & For Velocity, \(c \sqrt{r}\). & For Discharge, ac \(\sqrt{r}\). & & For Velocity, \(c \sqrt{r}\). & For Discharge, ac \(\sqrt{r}\). \\
\hline 10 & 6 & 86.590 & 183.6 & 15893 & 18996 & 123.4 & 10690 \\
\hline 11 & & 95.033 & 187.9 & 17855 & 21464 & 126.3 & 12010 \\
\hline 11 & 6 & 103.869 & 192.2 & 19966 & 24139 & 129.3 & 13429 \\
\hline 12 & & 113.098 & 196.3 & 22204 & 26981 & 132 & 14935 \\
\hline 12 & 6 & 122. 719 & 200.4 & 24598 & 30041 & 134.8 & 16545 \\
\hline 13 & & 132.733 & 204.4 & 27134 & 33301 & 137.5 & 18252 \\
\hline 13 & 6 & 143.139 & 208.3 & 29818 & 36752 & 140.1 & 20056 \\
\hline 14 & & 153.938 & 219.2 & 32664 & 40432 & 142. 7 & 219\%1 \\
\hline 14 & 6 & 165.130 & 216.0 & 35660 & 44322 & 145.2 & 23986 \\
\hline 15 & & 176.715 & 219.6 & 38807 & 48413 & 147.7 & 26103 \\
\hline 15 & 6 & 188.692 & 223.3 & 42125 & 52 T53 & 150.1 & 28335 \\
\hline 16 & & 201.062 & 226.9 & 45621 & 57343 & 152.6 & 30686 \\
\hline 16 & 6 & 213.825 & 230.4 & 49273 & 62132 & 155 & 33144 \\
\hline 17 & & 226.981 & 233.9 & 53082 & 67140 & 157.3 & 35704 \\
\hline \(1 \%\) & 6 & 240.529 & 237.3 & 57074 & 72409 & 159.6 & 38389 \\
\hline 18 & & \(254.4{ }^{\text {r }} 0\) & 240.7 & 61249 & 77932 & 161.9 & 41199 \\
\hline 19 & & 283.5:9 & 247.4 & \%0154 & 89759 & 166.4 & 47186 \\
\hline 20 & & 314.159 & 253.8 & 179736 & 102559 & 170.7 & 153633 \\
\hline
\end{tabular}

Wlow of Water in Circular Pipes from \(3 / 8\) inch to 12 inches Diameter.
Based on D'Arcy's formula for clean cast-iron pipes. \(Q=a c \sqrt{r} \sqrt{s}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Value of ac \(\sqrt{r}\).} & \multirow{2}{*}{Dia.} & \multicolumn{8}{|c|}{Slope, or Head Divided by Length of Pipe.} \\
\hline & & 1 in 10. & 1 in 20. & 1 in 40. & 1 in 60. & 1 in 80. & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 100 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \text { in } \\
& 150 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \text { in } \\
& 200 .
\end{aligned}
\] \\
\hline & & & Quan & tity in & cubic & feet p & er sec & ond. & \\
\hline . 000914 & 38 & . 000289 & .000:04 & . 00064 & . 000118 & . 00045 & . 000090 & .00033 & . 000028 \\
\hline . \(0: 2855\) & \(3 / 4\) & . 00903 & . 00638 & . \(00+51\) & . 00369 & . 00319 & . 00286 & . 00233 & .00:0:2 \\
\hline . 06334 & 1 & . 02003 & . 01416 & . 01001 & . 00818 & .00708 & . 00633 & . 00517 & . 00448 \\
\hline . 11659 & 11/4 & . 03687 & . 02607 & . 01843 & . 01505 & . 01303 & . 01166 & .00952 & . 00824 \\
\hline . 19195 & 11/2 & . 06044 & .04274 & .03022 & . 02468 & . 02137 & . 01912 & . 01561 & . \(0135{ }^{2}\) \\
\hline . 2893.36 & \({ }_{2}^{13 / 4}\) & . 09140 & .06470 & .045i5 & . 03736 & .03235 & . 02894 & .02363 & .02046 \\
\hline . 74786 & 216 & . 23647 & . \(16 \sim 2\) & . 11824 & . 09655 & . 08361 & . 07479 & . 06106 & . 052288 \\
\hline 1.2089 & 3 & . 38225 & . 27031 & . 19113 & . 15607 & . 13515 & . 12089 & . 09881 & . 08548 \\
\hline 2.5630 & 4 & . 81042 & . 57309 & . 40521 & . 33088 & . 28654 & . 25630 & . 20927 & . 18123 \\
\hline 4.5610 & 5 & 1.4422 & 1.0198 & . 72109 & . 58882 & . 50992 & . 45610 & . 37241 & . \(3 \geqslant 251\) \\
\hline 7.3068 & 6 & 2.3104 & 1.6338 & 1.1552 & . 94331 & . 81690 & .73068 & . 59660 & . 51666 \\
\hline 10.852 & r & 3.4314 & 2.4265 & 1.715\% & 1.4110 & 1.2132 & 1.0852 & .8860ヶ & . 66734 \\
\hline \(15.2 \pi 0\) & 8 & 4.8284 & 3.4143 & 2.4141 & 1.9713 & 1.7072 & \(1.52 \pi 0\) & 1.2468 & 1.079\% \\
\hline 20.652 & 9 & 6.5302 & 4.6178 & 3.2651 & 2.6662 & 2.3089 & 2.0652 & 1.6862 & 1.4603 \\
\hline 26.952 & 10 & 8.5222 & -. 0265 & 4.2611 & 3.4795 & 3.0132 & 2.6952 & 2.2006 & 1.9058 \\
\hline 34.428 & 11 & 10.886 & 7.6981 & 5.4431 & 4.4447 & 3.8491 & 3.4428 & 2.8110 & 24344 \\
\hline 42.918 & 12 & 13.571 & 9.5965 & 6.7853 & 5.5407 & 4.7982 & 4.2918 & 3.5043 & 3.0347 \\
\hline Value of & = & . 3162 & . 2236 & . 1581 & . 1291 & . 1118 & . 1 & . 08165 & .0n0\%1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Value of ac \(\sqrt{r}\).} & \multirow[b]{2}{*}{Dia. in.} & \multicolumn{8}{|c|}{Slope, or Head Divided by Length of Pipe.} \\
\hline & & 1 in 250. & \[
\begin{aligned}
& 1 \text { in } \\
& 300 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 350 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 400 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 450 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 500 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \text { in } \\
& 550 .
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{in} \\
& 600 .
\end{aligned}
\] \\
\hline . 00403 & & . 00025 & . 00023 & .00022 & . 00020 & . 00019 & . 00018 & . 00017 & . 00016 \\
\hline . 00914 & & . 00058 & . 00053 & . 00049 & . 00016 & . 00043 & . 00041 & . 00039 & 00037 \\
\hline . 02855 & & . 00181 & . 00165 & . 00153 & . 00143 & . 00134 & . 00128 & .00122 & 00117 \\
\hline .06:334 & & .0040 ( & . 00366 & .00:339 & . 00317 & . \(00: 98\) & . 00283 & . 00320 & .00259 \\
\hline . 11659 & 114 & . 0073í & .00673 & . 00623 & . 00583 & . 00519 & . 00521 & .0049i & . 00476 \\
\hline . 19115 & \(11 / 2\) & . 01209 & . 01104 & .01022 & . 00956 & . 00901 & . 00855 & . 00815 & .00180 \\
\hline . 28936 & 13/4 & . 018830 & . 01671 & . 01547 & . \(0144{ }^{\text {a }}\) & . 01363 & . 01229 & .012:34 & 0118 \\
\hline . 41357 & \(\stackrel{2}{21}\) & . 02615 & .02338 & .03211 & . 02068 & . 01948 & . 01849 & . 01763 & . 016388 \\
\hline 1.2089 & \(3^{3 / 2}\) & . 07645 & . 06980 & . 06462 & . 06045 & . 05695 & . 05406 & . 05155 & . 0493 \\
\hline 2.5630 & 4 & . 16208 & . \(14 \% 99\) & . 13699 & . 12815 & .12074 & . 11461 & . 10929 & . 1046 \\
\hline 4.5610 & 5 & . 28843 & . 26335 & . 24379 & . 22805 & . 21487 & . 20397 & . 19448 & . 19620 \\
\hline 7.3068 & 6 & . 46.08 & . 42189 & . 39055 & . 36534 & . 34422 & 32676 & . 31156 & . 29830 \\
\hline \(10.85 \%\) & 7 & . 68628 & . 62660 & . 58005 & . 54260 & . 51124 & . 48530 & . \(4622^{2} 3\) & . 44303 \\
\hline \(15.2 \pi 0\) & 8 & . 96567 & . 88158 & . 81617 & . 76350 & . 71936 & . 68286 & . 65111 & . 62340 \\
\hline 20.652 & 9 & 1.3060 & 1.1924 & 1.1038 & 1.0326 & .97292 & . 92356 & . 88060 & . 84310 \\
\hline 26.952 & 10 & 1.7044 & 1.5562 & 1.4405 & \(1.34 \sim 6\) & 1.2697 & 120.33 & 1.1492 & 1.1003 \\
\hline 34.428 & 11 & 2.1572 & \(1.98 \div 8\) & \(1.840 \cdot 2\) & 1.7214 & 1.6219 & 1.5396 & 1.4680 & 1.4055 \\
\hline 42.918 & 12 & 2.7141 & 2.4781 & 2.2940 & 2.1459 & 2.0219 & 1.9193 & 1.8300 & 1.7521 \\
\hline \multicolumn{2}{|l|}{Value of \(\sqrt{\bar{s}}=\)} & . 06324 & .05i74 & . 05345 & . 05 & .04711 & . 04472 & . 04264 & . 0408 \\
\hline
\end{tabular}

For \(U_{i 6}\) S. gals. per sec., multiply the figures in the table by.


For any other slope the flow is proportional to the square root of the slope; thus, flow in slope of 1 in 100 is double that in slope of 1 in 400.

Flow of Water in Pipes from \(3 / 8\) Inch to 12 Inches Diameter for a Uniform Velocity of 100 Ft. per Min.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Diameter } \\
& \text { in } \\
& \text { Inches. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\text { in } \\
\text { Square Feet. }
\end{gathered}
\] & Flow in Cubic Feet per Minute. & Flow in U. S Gallons per Minute. & Flow in U. S. Gall ns per Hour. \\
\hline 3/8 & .00077 & 0.077 & . 57 & 34 \\
\hline \(1 \%\) & . 00136 & 0.136 & 1.02 & 61 \\
\hline \(3 / 4\) & .00307 & 0.307 & 2.30 & 138 \\
\hline 1 & . 00545 & 0.545 & 4.08 & 245 \\
\hline \(11 / 4\) & . 00852 & 0.852 & 6.38 & 383 \\
\hline \(11 / 2\) & . 01227 & 1.227 & 9.18 & 551 \\
\hline \(13 / 4\) & . 01616 & 1.670 & 12.50 & 750 \\
\hline \(\underset{\sim}{2}\) & . 02182 & 2.182 & 16.32 & 979 \\
\hline 21/ & . 0341 & 3.41 & 25.50 & 1,530 \\
\hline 3 & . 0491 & 4.91 & 36.72 & 2,203 \\
\hline 4 & . 0873 & 8.73 & 65.28 & 3,917 \\
\hline 5 & . 136 & 13.6 & 10:. 00 & 6,120 \\
\hline 6 & . 196 & 19.6 & 146.88 & 8,813 \\
\hline 7 & . 267 & 26.7 & 199.92 & 11,995 \\
\hline 8 & . 349 & 34.9 & 261.12 & 15.667 \\
\hline 9 & . 442 & 44.2 & 3:30.48 & 19,829 \\
\hline 10 & . 545 & 54.5 & 408.00 & 24,480 \\
\hline 11 & . 660 & 66.0 & 493.68 & 29.621 \\
\hline 12 & . 785 & 78.5 & 58\%. 52 & 35,251 \\
\hline
\end{tabular}

Given the diameter of a pipe, to find the quantity in gallons it will deliver, the velocity of flow being 100 ft . per minute. Square the diameter in inches and multiply by 4.08 .

If \(Q^{\prime}=\) quantity in gallons per minute and \(d=\) diameter in inches, then
\[
Q^{\prime}=\frac{d^{2} \times .7854 \times 100 \times 7.4805}{144}=4.08 d^{2} .
\]

For any other velocity. \(V^{\prime}\), in feet per minute, \(Q^{\prime}=4.08 d^{2} \frac{V^{\prime}}{100}=.0408 d^{2} V^{\prime}\).
Given diameter of pipe in inches and velocity in feet per second, to find discharge in cubic feet aud in gallons per minute.
\[
\begin{aligned}
Q^{\prime} & =\frac{d^{2} \times .7854 \times v \times 60}{144}=0.32 \pi 2 \Sigma d^{2} v \text { cubic feet per minute. } \\
& =.32 \tau 25 \times 7.4805 \text { or } 2.448 d^{2} v \text { U. S. gallons per minute. }
\end{aligned}
\]

To find the capacity of a pipe or cylinder in gallons, multiply the square of the diameter in inches by the length in inches and by .0034. Or multiply the square of the diameter in inches by the length in feet and by .0408.
\[
Q=\frac{.7854 d^{2} l}{231}=.0034 d^{2} l \text { (exact) } .0034 \times 12=.0408
\]

\section*{LOSS OF HEAD.}

The loss of head due to friction when water, steam, air, or gas of any kind flows through a straight tube is represented by the formula
\[
h=f \frac{4 l}{d} \frac{v^{2}}{2 g} ; \quad \text { whence } v=\sqrt{\frac{64.4}{4 f} \frac{h d}{l}},
\]
in which \(l=\) the length and \(d=\) the diameter of the tube, both in feet; \(v=\) velocity in feet per second, and \(f\) is a coefficient to be determined by experiment. According to Weisbach, \(f=.006 \pm 4\), in which case
\[
\sqrt{\frac{64.4}{4 f}}=50, \text { and } v=50 \sqrt{\frac{h d}{l}}
\]
which is one of the older formulæ for flow of water (Downing's). Prof. Unwin says that the value of \(f\) is possibly too small for tubes of small bore, and he would put \(f=.006\) to .01 for 4 -inch tubes, and \(f=.0084\) to .012 for 2 inch tubes. Another formula by Weisbach is
\[
h=\left(.0144+\frac{.01716}{\sqrt{v}}\right) \frac{l}{d} \frac{v^{2}}{2 g} .
\]

Rankine gives
\[
f=.005\left(1+\frac{1}{12 d}\right)
\]

From the general equation for velocity of flow of water \(v=c \sqrt{r} \sqrt{s},=\) for round pipes \(c \sqrt{\frac{d}{4}} \sqrt{\frac{h}{l}}\), we have \(v^{2}=c^{2} \frac{d}{4} \frac{h}{l}\) and \(h=\frac{4 l v^{2}}{c^{2} d}\), in which \(c\) is the coefficient \(c\) of D'Arcy's, Bazin's, Kutter's, or other formula, as found by experiment. Since this coefficient varies with the condition of the inner surface of the tube, as well as with the velocity, it is to be expected that values of the loss of head given by different writers will vary as much as those of quantity of flow. Two tables for loss of head per 100 ft . in length in pipes of different diameters with different velocities are givell below. The first is given by Clark, hased on Ellis' and Howland's experiments; the second is from the Pelton Water-wheel Co.'s catalogue, authority not stated. The loss of head as given in these two tables for any given diameter and velocity differs considerably. Either table should be used with caution and the results compared with the quantity of flow for the given diameter and head as given in the tables of flow based on Kutter's and D'Arcy's formula.

Relative Loss of Head by Friction for each 100 Feet Length of Clean Cast-iron Pipe.
(Based on Ellis and Howland's experiments.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Velocity in Feet per Second.} & \multicolumn{10}{|c|}{Diameter of Pipes in Inches.} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 14 \\
\hline & \multicolumn{10}{|c|}{Loss of Head in Feet, per 100 Feet Long.} \\
\hline Feet & \[
\left|\begin{array}{c}
\text { Feet } \\
\text { of } \\
\text { ead }
\end{array}\right|
\] & Feet of Head & \[
\left\lvert\, \begin{aligned}
& \text { Feet } \\
& \text { of } \\
& \text { Head }
\end{aligned}\right.
\] & \[
\left|\begin{array}{c}
\text { Feet } \\
\text { of } \\
\text { Head }
\end{array}\right|
\] & \[
\begin{aligned}
& \text { Feet } \\
& \text { of } \\
& \text { Head }
\end{aligned}
\] & \[
\left|\begin{array}{c}
\text { Feet } \\
\text { of } \\
\text { Head }
\end{array}\right|
\] & \[
\left|\begin{array}{c}
\text { Feet } \\
\text { of } \\
\text { Head }
\end{array}\right|
\] & Feet of Head & \[
\begin{aligned}
& \text { Feet } \\
& \text { of } \\
& \text { Head }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \text { Feet } \\
& \text { of } \\
& \text { Head }
\end{aligned}\right.
\] \\
\hline 2 & . 97 & . 55 & . 41 & . 32 & . 27 & . 23 & . 19 & . 18 & . 15 & . 12 \\
\hline 2.5 & 1.49 & . 92 & . 64 & . 50 & . 43 & . 36 & . 30 & . 27 & . 23 & . 19 \\
\hline 3 & 1.9 & 1.2 & . 82 & . 72 & . 61 & . 51 & . 44 & . 39 & . 33 & . 27 \\
\hline 3.5 & 2.6 & 1.6 & 1.2 & 1.0 & . 7 & . 71 & . 61 & . 52 & . 45 & . 37 \\
\hline 4 & 3.3 & 2.2 & \(1 . \%\) & 1.3 & . 9 & . 92 & . 79 & . 69 & . 59 & . 49 \\
\hline 4.5 & .... & ..... & & 1.6 & 1.2 & 1.2 & 1.01 & . 87 & . 75 & . 61 \\
\hline 5
5.5 & & & & & & & 1.2 & 1.1 & . 90 & . 76 \\
\hline \multicolumn{11}{|l|}{6} \\
\hline & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36 & 42 & 48 \\
\hline 2 & . 11 & . 095 & . 075 & . 065 & . 055 & . 052 & . 049 & . 047 & . 036 & . 030 \\
\hline 2.5 & . 17 & . 147 & . 117 & . 109 & . 088 & . 085 & . 076 & . 067 & . 056 & . 046 \\
\hline 3 & . 25 & . 21 & . 17 & . 15 & . 13 & . 12 & . 108 & . 10 & . 081 & . 067 \\
\hline 3.5 & . 34 & . 29 & . 23 & . 20 & . 18 & . 16 & . 15 & . 14 & . 111 & . 092 \\
\hline 4 & . 44 & . 36 & . 31 & . 27 & . 23 & . 23 & . 20 & . 17 & . 14 & . 116 \\
\hline 4.5 & . 56 & . 46 & . 39 & . 34 & . 30 & . 28 & . 25 & . 22 & . 18 & . 15 \\
\hline 5 & . 70 & . 58 & . 48 & . 41 & . 37 & . 34 & . 30 & . 27 & . 22 & . 18 \\
\hline \({ }_{6} 5\) & . 84 & . 70 & . 59 & .50
.59 & . 53 & .39
.49 & \(\stackrel{.}{43}\) & . 32 & . 27 & . 22 \\
\hline
\end{tabular}

Loss of Head in Pipe by Friction.-Loss of head by friction in each 100 feet in length of different diameters of pipe when discharging tha following quantities of water per minute (Pelton Water-wheel Co.):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{12}{|c|}{Inside Diameter of Pipe in Inches.} \\
\hline & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{3} & \multicolumn{2}{|c|}{4} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{6} \\
\hline &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline 2.0 & 2.3 r & . 6 & 1.185 & 2.62 & 791 & 5.89 & 593 & 10.4 & 4\%4 & 16.3 & 395 & 23.5 \\
\hline 3.0 & 4.89 & . 99 & 2.44 & 3.92 & 1.62 & 8.83 & 1.22 & 15.7 & . 978 & 24.5 & 815 & 35.3 \\
\hline 4.0 & 8.20 & 1.32 & 4.10 & 5.23 & 2.73 & 11.80 & 2.05 & 20.9 & 1.64 & 32.7 & 1.37 & 47.1 \\
\hline 5.0 & 12.33 & 1.65 & 6.17 & 6.54 & 4.11 & 14.70 & 3.08 & 26.2 & 2.46 & 40.9 & 2.05 & 58.9 \\
\hline 6.0 & 17.23 & 1.98 & 8.61 & 7.85 & 5.74 & 17.70 & 4.31 & 31.4 & 3.45 & 49.1 & 2.87 & r0.7 \\
\hline 7.0 & 22.89 & 2.31 & 11.45 & 9.16 & 7.62 & 20.6 & 5.72 & 36.6 & 4.57 & 57.2 & 2.81 & 82.4 \\
\hline
\end{tabular}

Flow of Water in Riveted Steel Pipes. - The laps and rivets tend to decrease the carrying copacity of the pipe. See paper on "New Formulas for Calculating the Flow of Water in Pipes and Channels," by W. E. Foss, Jour. Assoc. Eng. Soc., xiii, 295. Also Clemens Herschel's book on " 115 Experiments on the Carrying Capacity of Large Riveted Metal Conduits," Johu Wiley \& Sons, 189\%.


Inside Diameter of Pipe in Inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{13} & \multicolumn{2}{|c|}{14} & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{16} & \multicolumn{2}{|c|}{18} & \multicolumn{2}{|c|}{20} \\
\hline V & h & \(Q\) & \(h\) & \(Q\) \\
\hline 2.0 & . 183 & 110 & . 169 & 128 & . 158 & \(14 \%\) & . 147 & 167 & . 132 & 212 & . 119 & 26.2 \\
\hline 3.0 & . 375 & 166 & . 349 & 193 & . 325 & 221 & . 306 & 251 & . 211 & 318 & . 245 & 393 \\
\hline 4.0 & .632 & 221 & . 587 & 256 & . 548 & 294 & . 513 & 335 & . 456 & 424 & . 410 & \(5: 3\) \\
\hline 5.0 & . 949 & 276 & . 881 & 321 & . \(8 \% 2\) & 368 & . 770 & 419 & . 685 & 530 & . 616 & 654 \\
\hline 6.0 & 1.325 & 33\% & 1.229 & 385 & 1.148 & 442 & 1.076 & 502 & . 95 j & 636 & . 861 & 785 \\
\hline T. 0 & 1.75 & 387 & 1.63 & 449 & 1.52 & 515 & 1.43 & 586 & 1.27 & 742 & 1.143 & 916 \\
\hline
\end{tabular}

Inside Diameter of Pipe in Inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{V} & \multicolumn{2}{|c|}{22} & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{26} & \multicolumn{2}{|c|}{28} & \multicolumn{2}{|l|}{30} & \multicolumn{2}{|c|}{36} \\
\hline & \(h\) & \(Q\) & \(h\) & \(Q\) & \(\hbar\) & \(Q\) & \(h\) & \(Q\) & h & \(Q\) & \(h\) & \(Q\) \\
\hline 2.0 & . 108 & 316 & . 098 & 377 & . 091 & 442 & . 084 & 513 & . 079 & 589 & . 066 & 8 \\
\hline 3.0 & . \(2 \times 2\) & 475 & . 204 & 565 & . 188 & 663 & . 114 & 770 & .163 & 883 & . 135 & 127 \\
\hline 4.0 & . 373 & 633 & . 342 & 754 & . 315 & 885 & . 293 & 1026 & . 273 & 1178 & . \(2: 28\) & 169 \\
\hline 5.0 & . 561 & 792 & . 513 & 942 & . 474 & 1106 & . 440 & 1283 & . 411 & 1472 & . 342 & 2121 \\
\hline 6.0 & .782 & 950 & . 717 & 1131 & .662 & 1327 & . 615 & 1539 & . 574 & 1767 & . 479 & 2545 \\
\hline 7.0 & 1.040 & 1109 & . 95 5 & 1319 & . 819 & 1548 & . 817 & 1796 & . 762 & 2061 & . 636 & 2868 \\
\hline
\end{tabular}

Example.-Given 200 ft . head and 600 ft . of 11 -inch pipe, carrying 119 cubic leet of water per minute. To find effective head: In right-band column, meder 11-inch pipe, find 119 cubic ft.: opposite this will be found the loss by friction in 100 ft . of length for this amount of water, which is .444. Multiply this by the number of hundred feet of pipe, which is 6 , and we have \(\therefore .66 \mathrm{ft}\). , which is the loss of head. Therefore the effective head is \(200-2.66\) \(:=197.34\).
Explanation.-The loss of head by friction in pipe depends not only upon diameter and length, but upon the quantity of water passed through it. Th. head or pressure is what would be indicated by a pressure-gauge attached to the pipe near the wheel. Readings of gauge should be taken while the water is flowing from the nozzle.

To reduce heads in feet to pressure in pounds multiply by .433. To reduce counds pressure to feet multiply by 2.309 .

Cox's Formula.-Weisbach's formula for loss of head caused by the friction of water in pipes is as follows :
\[
\text { Friction-head }=\left(0.0144+\frac{0.01 \tau 16}{\sqrt{V}}\right) \frac{L . V^{2}}{5.36 \tau d}
\]
\[
\text { where } \begin{aligned}
L & =\text { length of pipe in feet: } \\
V & =\text { velocity of the water in feet per second } \\
d & =\text { diameter of pipe in inches. }
\end{aligned}
\]

William Cox (Amer: Mach., Dec. 28,1893 ) gires a simpler formula which gives almost identical results :
\[
\begin{gather*}
H=\text { friction-head in feet }=\frac{L}{d} \frac{4 V^{2}+5 V-2}{1200}  \tag{1}\\
\frac{H d}{I}=\frac{4 V^{2}+5 V-2}{1 \vdots 00} \tag{¿}
\end{gather*} .
\]

He gives a table by means of which the value of \(\frac{4 V^{2}+5 V-2}{1 \approx 00}\) is at once obtained when \(V\) is known, and vice versa.

Values of \(\frac{4 V^{2}+5 V-2}{1200}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\nabla\) & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\
\hline 1 & . 00583 & . 00695 & . 00813 & . 00938 & . 01070 & . 01208 & . 01353 & . 01505 & . 01663 & . 01828 \\
\hline 2 & . 02000 & .02178 & .02363 & . 02555 & . 02753 & .02958 & . 03170 & .03388 & . 03613 & . 03845 \\
\hline 3 & . 04082 & .04328 & . 04580 & . 04838 & .05103 & .05375 & .05653 & . 05938 & .06230 & 06528 \\
\hline & . 06833 & . 07145 & . 07463 & . 07788 & . 08120 & . 08458 & . 08803 & . 09155 & . 09513 & .09878 \\
\hline & . 10250 & . 10628 & . 11013 & . 11405 & . 11803 & . 12208 & . 12620 & . 13038 & . 13463 & . 1389 \\
\hline 6 & .14333 & . 14778 & . 15230 & . 15688 & . 16153 & . 16625 & . 17103 & 17588 & . 18080 & \(185 \hat{i}\) \\
\hline & . 19083 & . 19595 & . 20113 & . 20638 & . 21110 & . 21708 & . 22253 & . 22805 & . 22363 & 23928 \\
\hline & . 24500 & . 25018 & . 25663 & . 26255 & . 26853 & . 27458 & . 28070 & 28688 & . 29313 & 29945 \\
\hline 9 & . 30583 & . 31228 & . 31880 & . 32538 & . 33203 & . 33875 & . 34553 & . 35238 & . 35930 & 366 \\
\hline 10 & . 37333 & . 38045 & . 38763 & . 39488 & . 40220 & . 40958 & . 41703 & . 42455 & . 43213 & 4397 \\
\hline 11 & . 44750 & . 45528 & . 46313 & . 47105 & .4ヶ903 & . 48 T08 & . 49520 & . 50338 & . 51163 & . 5199 \\
\hline 12 & . 52833 & . 53678 & . 54530 & . 55388 & . 56253 & . 57125 & . 58003 & . 5888 & . 59780 & .606r \\
\hline 13 & . 61583 & . 62495 & . 63413 & . 64338 & . 652 r0 & . 66208 & . 67153 & . 68105 & . 69063 & T0028 \\
\hline 14 & . 71000 & . 71978 & . 72963 & . 73955 & . 74953 & . 75958 & . 69970 & . 77988 & . 79013 & 8004 \\
\hline 15 & . 81083 & . 82128 & . 83180 & . 84238 & . 853303 & . 86375 & . 87453 & . 88538 & . 898630 & . 9072 \\
\hline 16 & . 91833 & . 92945 & . 94063 & . 95188 & . 96320 & . 97458 & . 98603 & . 99755 & 1.00913 & 1.02078 \\
\hline 17 & \(1.03 \geqslant 50\) & 1.04428 & 1.05613 & 1.06805 & 1.08003 & 1.09208 & 1.10420 & 1.11638 & 1.12863 & 1.14095 \\
\hline & 1.15333 & 1.16578 & 1.17830 & 1.19088 & 1.2035 & 1.21625 & 1.22903 & 1.24188 & 1.25480 & . \(267 \%\) \\
\hline 19 & 1.28 ¢83 & 1.29395 & 1.30713 & 1.32038 & 1.33370 & 1.34708 & 1.36053 & 1.37405 & 1.38763 & 1.4012 \\
\hline 20 & 1.41500 & 1.42878 & 1.44263 & 1.45655 & \(1.4 \% 053\) & 1.48458 & \(1.498{ }^{1} 0\) & 1.51288 & 1.52713 & 1.54145 \\
\hline 01 & 1.55583 & 1.57028 & 1.58480 & 1.59938 & 1.61403 & 1.62875 & 1.64353 & 1.65838 & 1.67330 & 1.68828 \\
\hline
\end{tabular}

The use of the formula and table is illustrated as follows:
Given a pipe 5 inches diameter and 1000 feet long, with 49 feet head, what will the discharge be?
If the velocity \(V\) is known in feet per second, the discharge is \(0.32725 d^{2} \mathrm{~V}\) cubic foot per minute.
By equation 2 we have
\[
\frac{4 V^{3}+5 V-2}{1200}=\frac{H d}{L}=\frac{49 \times 5}{1000}=0.245
\]
whence, by table, \(V=\) real velocity \(=8\) feet per second.
The discharge in cubic feet per minute, if \(V\) is velocity in feet per second and \(d\) diameter in inches, is \(0.32725 d^{2} V\), whence, discharge
\[
=0.32725 \times 25 \times 8=65.45 \text { cubic feet per minute }
\]

The velocity due the head, if there were no friction, is \(8.0251 / \bar{H}=56.175\) feet per second, and the discharge at that velocity would be
\[
0.32 \tau 25 \times 25 \times 56.175=460 \text { cubic feet per minute }
\]

Suppose it is required to deliver this amount, 460 cubic feet, at a velocity of 2 feet per second, what diameter of pipe will be required and what will be the loss of head by friction?
\[
d=\text { diameter }=\sqrt{\frac{Q}{V \times 0.327 \% 5}}=\sqrt{\frac{460}{2 \times 0.32 \% 25}}=\sqrt{\boxed{\% 0}}=26.5 \text { inches. }
\]

Having now the diameter, the velocity, and the discharge, the friction-head is calculated by equation 1 and use of the table; thus,
\[
H=\frac{L}{d} \frac{4 V^{2}+5 V-2}{1200}=\frac{1000}{26.5} \times 0.02=\frac{20}{26.5}=0.75 \text { foot, }
\]
thus leaving \(49-0.75=\) say 48 feet effective head applicable to power-producing purposes.
Problems of the loss of head may be solved rapidly by means of Cox's Pipe Computer, a mechanical device on the principle of the slide-rule, for sale by Keuffel \& Esser, New York.

\section*{Frictional Heads at Given Rates of Discharge in Clean Cast-iron Pipes for Euch 1000 Feet of Length.}
(Condensed from Ellis and Howland's Hydraulic Tables.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{4-inch Pipe.} & \multicolumn{2}{|l|}{6-inch Pipe.} & \multicolumn{2}{|l|}{8-inch Pipe.} & \multicolumn{2}{|l|}{10-inch Pipe.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
12-inch \\
Pipe.
\end{tabular}} & \multicolumn{2}{|l|}{14-inch Pipe.} \\
\hline  &  &  & \[
\begin{aligned}
& \equiv 0 \\
& 0 \\
& \text { U } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  &  &  &  & \[
\left\lvert\,\right.
\] &  & \[
\left\lvert\,\right.
\] &  \\
\hline 25 & . 64 & 9 & 28 & 11 & . 16 & 4 & 0 & 2 & 07 & 01 & & \\
\hline 50 & 1.28 & 2.01 & 57 & . 32 & . 32 & . 10 & . 20 & . 04 & . 14 & . 02 & 10 & 01 \\
\hline 100 & 2.55 & 7.36 & 1.13 & 1.08 & . 64 & . 29 & . 41 & . 11 & . 28 & . 05 & . 21 & 03 \\
\hline 150 & 3.83 & 16.05 & 1.70 & 2.28 & . 96 & . 60 & . 61 & . 22 & . 43 & . 10 & . 31 & 05 \\
\hline 200 & 5.11 & 28.09 & 2.27 & 3.92 & 1.28 & 1.01 & . 82 & . 36 & . 57 & . 16 & . 42 & 08 \\
\hline 250 & 6.3 \% & 43.47 & 2.84 & 6.00 & 1.60 & 1.52 & 1.02 & . 54 & . 71 & . 24 & . 52 & 12 \\
\hline 300 & \%.66 & 6.20 & 3.40 & 8.52 & 1.91 & 2.13 & 1.23 & .75 & . 85 & . 32 & . 63 & 16 \\
\hline 350 & 8.94 & 84.26 & 3.97 & 11.48 & 2.23 & 2.85 & 1.43 & . 99 & . 99 & . 43 & . 73 & 21 \\
\hline 400 & 10.21 & 109.68 & 4.54 & 14.89 & 2.55 & 3.68 & 1.63 & 1.27 & 1.13 & . 54 & . 83 & 27 \\
\hline 500 & 12. \(7 \uparrow\) & 170.53 & 5.67 & 23.01 & 3.19 & 5.64 & 2.04 & 1.93 & 1.42 & . 81 & 1.04 & 40 \\
\hline 600 & 15.32 & 244.76 & 6.81 & 32.89 & 3.83 & 8.03 & 2.45 & 2.72 & 1.70 & 1.14 & 1.25 & 55 \\
\hline 700 & 17.87 & 332.36 & \(\because .94\) & 44.54 & 4.47 & 10.83 & 2.86 & 3.66 & 1.98 & 1.52 & 1.46 & 73 \\
\hline 800 & & & 9.08 & 57.95 & 5.09 & 14.05 & 3.27 & 4.73 & 2.27 & 1.96 & 1.67 & . 94 \\
\hline 000 & & & 10.21 & 73.12 & 5.74 & 17.68 & 3.68 & 5.93 & 2.55 & 2.45 & 1.88 & 1.17 \\
\hline 1000 & & & 1135 & 90.05 & 6.38 & 21.74 & 4.08 & 7.28 & 2.84 & 3.00 & 2.08 & 1.43 \\
\hline 1200 & & & 13.61 & 129.20 & 7.66 & 31.10 & 4.90 & 10.38 & 3.40 & 4.26 & 2.50 & 2.02 \\
\hline 1400 & & & 15.88 & 175.38 & 8.94 & 42.13 & 5.72 & 14.02 & 3.97 & 5.74 & 291 & 2.72 \\
\hline 1600 & & & 18.15 & 2:8 62 & 10.21 & 54.84 & 6.53 & 18.22 & 4.54 & 7.44 & 3.33 & 3.51 \\
\hline 1800 & & & 20.42 & 288.90 & 11.47 & 69.22 & 7.35 & 22.96 & 5.11 & 9.36 & 3.75 & 4.41 \\
\hline 2000 & & & 22.69 & 356.22 & \(12.7 \%\) & 85.27 & 8.17 & 28.25 & 5.67 & 11.50 & 4.17 & 5.41 \\
\hline 2500 & & & & & 15.96 & \(132 . \%\) & 10.21 & 43.87 & 7.09 & 17.82 & 5.21 & 8.35 \\
\hline 3000 & & & & & & & 12.25 & 62.92 & 8.51 & 25.51 & 6 , & 1.93 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{16-inch Pipe.} & \multicolumn{2}{|l|}{18-inch Pipe.} & \multicolumn{2}{|l|}{20 -inch Pipe.} & \multicolumn{2}{|l|}{24-inch Pipe.} & \multicolumn{2}{|l|}{30-inch Pipe.} & \multicolumn{2}{|l|}{36-inch Pipe.} \\
\hline &  &  & \[
\begin{aligned}
& \text { घ } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { 』 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\begin{array}{|l|}
\hline \pi \\
\text { A } \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\] &  & \[
\left|\begin{array}{ll}
\hline & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & \\
0 & 4
\end{array}\right|
\] &  & \[
\begin{aligned}
& 50 \\
& =0 \\
& 00 \\
& 0.0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  \\
\hline 500 & 80 & 22 & 63 & 13 & 51 & . 08 & 35 & . 04 & . 23 & 01 & 16 & 01 \\
\hline 1000 & 1.60 & 76 & 1.26 & 44 & 1.02 & . 27 & 71 & . 12 & . 45 & . 04 & . 32 & 02 \\
\hline 1500 & 2.39 & 1.63 & 1.89 & 93 & 1.53 & . 56 & 1.06 & . 24 & 68 & . 09 & . 47 & 04 \\
\hline 2000 & 319 & 2.82 & 2.52 & 1.60 & 2.04 & . 96 & 1.42 & . 41 & . 91 & . 15 & . 63 & 06 \\
\hline 2500 & 3.99 & 4.34 & 3.15 & 245 & 2.55 & 1.47 & 1.7 T & . 62 & 1.13 & . 22 & . 79 & . 09 \\
\hline 3000 & 4.79 & 6.19 & 3.78 & 3.48 & 3.06 & 2.09 & 2.13 & . 87 & 1.36 & . 30 & . 95 & . 13 \\
\hline 3500 & 5.59 & 8.37 & 4.41 & 4.70 & 3.57 & 2.81 & 2.48 & 1.16 & 1.59 & . 40 & 1.10 & . 17 \\
\hline 4000 & 6.38 & 10.87 & 5.04 & 6.09 & 4.08 & 3.64 & 2.84 & 1.50 & 1.82 & . 52 & 1.26 & . 22 \\
\hline 4500 & 7.18 & 13.\%0 & 5.67 & 7.67 & 4.59 & 4.58 & 3.19 & 1.88 & 2.04 & . 64 & 1.42 & . 27 \\
\hline 5000 & 7.98 & 16.85 & 6.30 & 9.43 & 5.11 & 5.62 & 3.55 & 2.31 & 2.27 & . 78 & 1.58 & . 33 \\
\hline 6000 & & & 7.57 & 13.49 & 6.13 & 8.03 & 4.26 & 3.28 & 2.72 & 1.11 & 1.89 & . 46 \\
\hline 7000 & & & & & 7.15 & 10.86 & 4.96 & 4.43 & 3.18 & 1.49 & 2.21 & . 62 \\
\hline 8000 & & & & & & & 5.67 & 5.75 & 3.63 & 1.93 & 2.52 & 80 \\
\hline 9000 & & & & & & & 6.38 & 7.25 & 4.08 & 2.43 & 2.84 & 1.00 \\
\hline 10000 & & & & & & & & & 4.54 & 2.98 & 3.15 & 1.23 \\
\hline 12000 & & & & & & & & & 5.44 & 4.25 & 3.78 & 1.74 \\
\hline 14000 & & & & & & & & & 6.36 & 5.75 & 4.41 & 2.35 \\
\hline 16000 & & & & & & & & & & & 5.05 & 3.04 \\
\hline 18000 & & & & & & & & & & & 5.68 & 3.83 \\
\hline 20000 & & & & & & & & & & & 6.30 & 4.71 \\
\hline
\end{tabular}

Effect of Bends and Curves in Pipes. - Weisbach's rule for bends: Loss of head in feet \(=.131+1.84 \pi\left(\frac{r}{R}\right)^{\frac{7}{2}} \times \frac{v^{2}}{64.4} \times \frac{a}{180}\), in which \(r\) = internal radius of pipe in feet, \(R=\) radius of curvature of axis of pipe, \(v\) \(=\) velocity in feet per second, and \(a=\) the central angle, or angle subtended by the bend.
Hamilton Smith, Jr., in his work on Hydraulics, says: The experimental data at hand are entirely insufficient to permit a satisfactory analysis of this quite complicated subject; in fact, about the only experiments of value are those made by Bossut and Dubuat with small pipes.

Curves.-If the pipe has easy curves, say with radius not less than 5 diameters of the pipe, the flow will not be materially diminished, provided the tops of all curves are kept below the hydraulic grade-line and provision be made for escape of air from the tops of all curves. (Trautwine.)

Hydraulic Grade-lime. -In a straight tube of uniform diameter throughout, running full and discharging freely into the air, the hydraulic grade-line is a straight line drawn from the discharge end to a point immediately over the entry end of the pipe and at a depth below the surface equal to the entry and velocity heads. (Trautwine.)
In a pipe leading from a reservoir, no part of its length should be above the hydraulic grade-line.

\section*{Flow of Water in House-service Pipes.}

Mr. E. Kuichling, C.E., furnished the following table to the Thomson Meter Co.:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\[
\begin{aligned}
& \text { Condition } \\
& \text { of } \\
& \text { Discharge. }
\end{aligned}
\]} & \multirow[t]{3}{*}{} & \multicolumn{9}{|l|}{Discharge, or Quantity capable of being delivered, in Cubic Feet per Minute, from the Pipe, under the conditions specified in the first column.} \\
\hline & & \multicolumn{9}{|l|}{Nominal Diameters of Iron or Lead Service-pipe in Inches.} \\
\hline & & 1/2 & 5/8 & \(3 / 4\) & & 11/2 & 2 & 3 & 4 & 6 \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
'Through 35 \\
feet of servicepipe, no back pressure.
\end{tabular}} & 30 & 1.10 & 1.92 & 3.01 & \({ }_{\sim}^{6.13}\) & 16.58 & 33.34 & 88.16 & 173.85 & 444.63 \\
\hline & 50 & 1.27 & 2.22 & 3.48 & \({ }^{7} .08\) & 19.14 & 38.50 & 101.80, & 200.75 & 513.42 \\
\hline & 60 & 1.42 & 2.48 & 3.89
4.26 & 7.92
8.67 & 21.40
23.44 & 43.04
47.15 & 124.68 & 224.44 & 5T4.0\%
628.81 \\
\hline & 75 & 1.04 & 3.013 & 4.77 & 9.70 & 26.21 & 52.71 & 139.39 & 274.89 & \%03.03 \\
\hline & 100 & 2.01 & 3.50 & 5.50 & 11.20 & 30.27 & \(60.8{ }^{7}\) & 160.96 & 317.41 & 811.79 \\
\hline & 130 & 2.29 & 3.99 & 6.28 & 12.77 & 34.51 & 69.40 & 183.52 & 361.91 & 925.58 \\
\hline \multirow[t]{6}{*}{Through 100 feet of servicepipe, no back pressure.} & 30 & 0.66 & 1.16 & 1.84 & 3.78 & 10.40 & 21.30 & 58.19 & 118.13 & 317 \\
\hline & 40 & 0.77 & 1.34 & \({ }_{2} 2.12\) & 4.36 & 12.01 & 24.59 & 67.19 & 136.41 & 366.30 \\
\hline & 50 & 0.86 & 1.50 & 2.37 & 4.88 & 13.43 & 27.50 & 75.13 & 152.51 & 409.54 \\
\hline & 75 & 1.05 & 1.85 & \(\stackrel{2}{2 .} 91\) & 5. 5.94 & 14.11
16.45 & \begin{tabular}{l}
30.12 \\
33 \\
\hline 8
\end{tabular} & 92. 01 & 167.06 & 501.58 \\
\hline & 100 & 1.22 & 2.13 & \(\stackrel{3}{3.36}\) & 6.90 & 18.99 & 38.89 & 106.24 & 215.68 & 5\%9.18 \\
\hline & 130 & 1.39 & 2.42 & 3.83 & 7.86 & 21.66 & 44.34 & 121.14 & 245.91 & 660.36 \\
\hline \multirow[t]{7}{*}{Through 100 feet of servicepipe and 15 feet vertical rise.} & 30 & 0.55 & 0.96 & 1.52 & 3.11 & \(8.5 \pi\) & 17.55 & 47.90 & 97.17 & 260.56 \\
\hline & 40 & 0.66 & 1.15 & 1. 81 & 372 & 10.24 & 20.95 & 57.20 & 116.01 & 311.09 \\
\hline & 50 & 0.75 & 1.31 & 2.06 & 4.24 & 11.67 & 23.87 & 65.18 & 132.20 & 354.49 \\
\hline & 60 & 0.83 & 1.45 & 2.29 & 4.80 & 1:. 94 & 26.48 & 72.28 & 14661 & 393. 13 \\
\hline & 75 & 0.94 & 1.64 & 2.59 & 5.32 & 14.64 & 20.96 & 81.79 & 165.90 & 444.85 \\
\hline & 100 & 1.10 & 1.92 & 3.02 & 6.21 & 17.10 & 35.00 & 95.55 & 193.82 & 519.72 \\
\hline & 130 & 1.26 & 2.20 & 3.48 & 7.14 & 19.66 & 40.23 & 109.82 & 222.75 & 597.31 \\
\hline \multirow[t]{7}{*}{Through 100 feet of servicepipe, and 30 feet vertical rise.} & 30 & 0.44 & 0.77 & 1.22 & 2.50 & 6.80 & 14.11 & 38.63 & r8.54 & 211.54 \\
\hline & 40 & 0.55 & 0.97 & 1.53 & 3.15 & 8.68 & 17.79 & 48.68 & 98.98 & 266.59 \\
\hline & 50 & 0.65 & 1.14 & 1. \(\% 9\) & 3.69 & 10.16 & 20.82 & 56.98 & 115.87 & 312.08 \\
\hline & 60 & 0.73 & 1.28 & 2.02 & 4.15 & 11.45 & 23.47 & 64.22 & 130.59 & \(351 . \% 3\) \\
\hline & 75 & 0.84 & 1.47 & 2.32 & 4.77 & 1315 & 26.95 & 73.76 & 149.99 & 403.98 \\
\hline & 100 & 1.00 & 1.r4 & 2.75 & 5.65 & 15.58 & 31.93 & 87. 38 & 177.67 & \(4 \pi 8.55\) \\
\hline & 130 & 1.15 & 2.02 & 3.19 & 6.55 & 18.07 & 37.02 & 101.33 & 206.04 & 554.96 \\
\hline
\end{tabular}

In this table it is assumed that the pipe is straight and smooth inside; that the friction of the main and meter are disregarded; that the inlet from the main is of ordinary character, sharp, not flaring or rounded, and that the outlet is the full diameter of pipe. The deliveries given will be increased if, first, the pipe between the meter and the main is of larger diameter than the outlet; second, if the main is tapped, say for 1-inch pipe, but is enlarged from the tap to \(11 / 4\) or \(11 / 2 \mathrm{inch}\); or, third, if pipe on the outlet is larger than that on the inlet side of the meter. The exact details of the conditions given are rarely met in practice; consequently the quantities of the table may be expected to be decreased, because the pipe is liable to be throttled at the joints, additional bends may interpose, or stop-cocks may be used, or the back-pressure may be increased.

Air"hound Pipes.-A pipe is said to be air-bound when, in consequence of air being entrapped at the hign points of vertical curves in the line, water will not flow out of the pipe, although the supply is higher than the outlet. The remedy is to provide cocks or valves at the high points, through which the air may be discharged. The valve may be made automatic by means of a float.

Vertical Jets. (Molesworth.) \(-H=\) head of water, \(h=\) height of jet, \(d=\) diameter of jet, \(K=\) coefficient, varying with ratio of diameter of jet to head; then \(h=K H\).


Water Delivered throngh Meters. (Thomson Meter Co.).-The best modern practice limits the velocity in water-pipes to 10 lineal feet per second. Assume this as a basis of delivery, and we find, for the several sizes of pipes usually metered, the following approximate results:
Nominal diameter of pipe in inches:
\[
\begin{array}{lllllllll}
3 / 8 & 5 / 8 & 3 / 4 & 1 & 11 / 2 & 2 & 3 & 4 & 6
\end{array}
\]

Quantity delivered, in cubic feet per minute, due to said velocity:
\[
\begin{array}{lllllllll}
0.46 & 1.28 & 1.85 & 3.28 & 7.36 & 13.1 & 29.5 & 52.4 & 117.9
\end{array}
\]

Prices Charged for Water in Different Cities (National Meter Co.):
 Extremes, \(21 / 2\) cents to ............ ........ .............. . ............... 100 "

\section*{FHRE-STHREMS.}

Discharge from Nozzles at Different Pressures.
(J. T. Fanning, Am. Water-works Ass'n, 189:2, Eng'g Newus, July 14, 1892.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Nozzle diam., in. &  & Pressure at Playpipe, lbs. & Horizontal Projection of Streams, ft. & Gallons per minute. & Gallons per 24 hours. & Friction per 100 ft. Hose, lbs. & \begin{tabular}{l}
Friction \\
per 100 \\
ft. Hose, Net \\
Head, ft.
\end{tabular} \\
\hline 1 & 70 & 46.5 & 59.5 & 203 & 292.298 & 10.75 & 24.77 \\
\hline 1 & 80 & 59.0 & 67.0 & 230 & 331,200 & 13.00 & 31.10 \\
\hline 1 & 90 & 79.0 & 76:6 & 267 & 384.500 & 17.70 & 40.78 \\
\hline 1 & 100 & 130.0 & 88.0 & 311 & 447.900 & 22.50 & 54.14 \\
\hline 11/8 & 70 & 44.5 & 61.3 & 249 & 358,520 & 15.50 & 35.71 \\
\hline 11/8 & 80 & 55.5 & 69.5 & 281 & 404, 600 & 19.40 & 44.70 \\
\hline 11/8 & 90 & 72.0 & 78.5 & 324 & 466,600 & 25.40 & 58.52 \\
\hline 11/8 & 100 & 103.0 & 89.0 & 376 & 541,500 & 33.80 & \%7.88 \\
\hline \(11 / 4\) & 70 & 43.0 & 66.0 & 306 & 440.613 & 22.75 & 52.42 \\
\hline \(11 / 4\) & 80 & 53.5 & 72.4 & 343 & 493.900 & 28.40 & 65.43 \\
\hline \(11 / 4\) & 90 & 68.5 & 81.0 & 388 & 558,800 & 35.90 & S2. 71 \\
\hline 11/4 & 100 & 93.0 & 92.0 & 460 & 662,500 & 57.75 & 86.98 \\
\hline 13/8 & 70 & 41.5 & 77.0 & 368 & 530,149 & 32.50 & \%4.88 \\
\hline 13/8 & 80 & 51.5 & 74.4 & 410 & 590,500 & 40.00 & 92.16 \\
\hline 13/8 & 90 & 65.5 & 82.6 & 468 & 674.000 & 51.40 & 118.43 \\
\hline 13/8 & 100 & 88.0 & 92.0 & 540 & \%\%ส,\%00 & 72.00 & 165.89 \\
\hline
\end{tabular}

Friction Losses in Hose. - In the above table the volumes of water discharged per jet were for stated pressures at the play-pipe.

In providing for this pressure due allowance is to be made for friction losses in each hose, according to the streams of greatest discharge which are to be used.
The loss of pressure or its equivalent loss of head (h) in the hose may be found by the formula \(h=v^{2}(4 m) \frac{l}{2 g d}\).
In this formula, as ordinarily used, for friction per 100 ft . of \(21 / 2-\mathrm{in}\). hose there are the following constants : \(21 / 2 \mathrm{in}\). diameter of hose \(d=.20833 \mathrm{ft}\).; length of hose \(l=100 \mathrm{ft}\)., and \(2 g=64.4\). The variables are: \(v=\) velocity in feet per second; \(h=\) loss of head in feet per 100 ft . of hose; \(m=\) a coefficient found by experiment; the velocity \(v\) is found from the given discharges of the jets through the given diameter of hose.
Head and Pressure Losses by Friction in 100-ft. Lengths of Rubber-lined Smooth \(212-12^{-1}\). Hose.
\begin{tabular}{c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Discharge \\
per minute, \\
gallons.
\end{tabular} & \begin{tabular}{c} 
Velocity \\
per second, \\
ft.
\end{tabular} & \begin{tabular}{c} 
Coefficient, \\
\(m\).
\end{tabular} & \begin{tabular}{c} 
Head Lost, \\
ft.
\end{tabular} & \begin{tabular}{c} 
Pressure \\
Lost, lbs. \\
per sq. in.
\end{tabular} & \begin{tabular}{c} 
Gallons per \\
24 hours.
\end{tabular} \\
\hline 200 & 13.072 & .00450 & 22.89 & 9.93 & 288.000 \\
250 & 16.388 & .00446 & 35.55 & 15.43 & 360,000 \\
300 & 18.858 & .00442 & 46.80 & 20.31 & 432.000 \\
347 & 21.677 & .00439 & 61.53 & 26.70 & 499,680 \\
350 & 22.873 & .00439 & 68.48 & 29.73 & 504,000 \\
400 & 26.144 & .00436 & 88.83 & 38.55 & 576.000 \\
450 & 29.408 & .00434 & 111.80 & 48.52 & 648.000 \\
500 & \(32.6 \pi 5\) & .00432 & 137.50 & 59.67 & 720,000 \\
520 & 33.982 & .00431 & 148.40 & 6440 & 748,800 \\
\hline
\end{tabular}

These frictions are for given volumes of flow in the hose and the velocities respectively due to those volumes, and are independent of size of nozzle. The changes in nozzle do not affect the friction in the hose if there is no change in velocity of flow, but a larger nozzle with equal pressure at the nozzle augments the discharge and velocity of flow, and thus materially increases the friction loss in the hose.
Loss of Pressure ( \(p\) ) and Head ( \(h\) ) in Rubber-lined Smooth \(21 / 2^{-i n}\). Hose may be found approximately by the formulæ \(p=\frac{l q^{2}}{4150 d^{5}}\) and \(h=\frac{l q^{2}}{1801 d^{5}}\), in which \(p=\) pressure lost by friction, in pounds per square inch; \(l=\) length of hose in feet; \(q=\) gallons of water discharged per minute: \(d=\) diam. of the hose in inches, \(21 / 2\) in.; \(h=\) frictionhead in feet. The coefficient of \(d^{5}\) would be decreased for rougher hose.
The loss of pressure and head for a \(11 / 8-\mathrm{in}\). stream with power to reach a height of 80 ft . is, in each 100 ft . of \(21 / 2-\mathrm{in}\). hose, approximately 20 lbs ., or 45 ft . net, or, say, including friction in the hydrant, \(1 / 2 \mathrm{ft}\). loss of head for each foot of hose.

If we change the nozzles to \(11 / 4\) or \(13 / 8 \mathrm{in}\). diameter, then for the same 80 ft . height of stream we increase the friction losses on the hose to approximately \(2 / 3 \mathrm{ft}\). and 1 ft . head, respectively, for each foot-length of hose.
These computations show the great difficulty of maintaining a high stream through large nozzles unless the hose is very short, especially for a gravity or direct-pressure system.

This single \(11 / 8-\mathrm{in}\). stream requires approximately 56 lbs . pressure, equivalent to 129 ft . head, at the play-pipe, and 45 to 50 ft . head for each 100 ft . length of smooth \(21 / 2-\mathrm{in}\). hose, so that for 100,200 , and 300 ft . of hose we must have available heads at the hydrant or fire-engine of 106, 156, and 206 ft.. respectively. If we substitute \(11 / 4-\mathrm{in}\). nozzles for same height of stream we must have available heads at the hydrants or engine of 185,255 and 325 ft., respectively, or we must increase the diameter of a portion at least of the long hose and save friction-loss of head.

Rated Capacities of Steam Fire-engines, which is perhaps one third greater than their ordinary rate of work at fires, are substantially as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3d size, & \multicolumn{7}{|l|}{550 gals. per min., or 792,000 gals \({ }_{6}\) per 24 hours.} \\
\hline 1 st & 900 & '6 & 6 & 1,296,000 & 6 & & \\
\hline 1 ext., & 1,100 & 6 & \({ }^{6}\) & 1,584,000 & 6 & & \\
\hline
\end{tabular}

\title{
Pressures required at Nozzle and at Pump, with Quantity and Pressure of Water Necessary to throw Water Various Distances through Different-sized Nozzlesusing \(21 / 2-i n c h\) Rubber Hose and Smooth Nozzles.
}
(From Experiments of Ellis \& Leshure, Fanning's "Water Supply.")
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Size of Nozzles. & \multicolumn{4}{|c|}{1 Inch.} & \multicolumn{4}{|c|}{11/8 Inch.} \\
\hline Pressure at nozzle, lbs. per sq. in & 40 & 60 & 80 & 100 & 40 & 60 & 80 & 100 \\
\hline * Pressure at pump or hydrant with & & & & & & & & \\
\hline \(100 \mathrm{ft} 21 /\).2 -inch rubber hose............ & 48 & 73 & 97 & 121) & 54 & 81 & 108 & 135 \\
\hline Gallons per minute. & 155 & 189 & 219 & 245 & 196| & 240 & \(2 \pi\) & 310 \\
\hline Horizontal distance thrown, feet & 109 & 142 & 168 & 186 & 113 & 148 & 175 & 193 \\
\hline Vertical distance thrown, feet & 79 & 108 & 131 & 148 & 81 & 112 & 134 & \(15 \%\) \\
\hline Size of Nozzles. & \multicolumn{4}{|c|}{11/4 Inch.} & \multicolumn{4}{|c|}{13/8 Inch.} \\
\hline \multirow[t]{3}{*}{Pressure at nozzle, lbs. per sq. in.......... 100 feet \(21 / 2\)-inch rubber hose...........} & 40 & \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{100} & \multirow[t]{3}{*}{70} & \multirow[t]{3}{*}{60
\(10 \sim\)} & \multirow[t]{2}{*}{80} & \multirow[t]{2}{*}{100} \\
\hline & 61 & & & & & & & \\
\hline & 61 & 92 & 123 & 154 & & & 144 & 180 \\
\hline Gallons per minute. & 242 & 297 & 342 & 383 & 293 & 358 & 413 & 462 \\
\hline Horizontal distance thrown, fee & 118 & 156 & 186 & 207 & 124 & 166 & 200 & 224 \\
\hline Vertical distance thrown, feet............ & 82 & 115 & 142 & 164 & 85 & 118 & 146 & 169 \\
\hline
\end{tabular}

\footnotetext{
* For greater length of \(21 / 2\)-inch hose the increased friction can be obtained by noting the differences between the above given "pressure at nozzle" and "pressure at pump or hydrant with 100 feet of hose." For instance, if it requires at hydrant or pump eight pounds more pressure than it does at nozzle to overcome the friction when pumping through 100 feet of \(21 / 2\)-inch hose (using 1 -inch nozzle, with 40 -pound pressure at said nozzle) then it requires 16 -pounds pressure to overcome the friction in forcing through 200 feet of same size hose.
Decrease of Flow due to Increase of Length of Hose. (J. R. Freeman's Experiments, Trans. A. S. C. E. 1889.)-If the static pressure is 80 lbs . and the hydrant-pipes of such size that the pressure at the hydrant is 70 lbs ., the hose \(21 / 2 \mathrm{in}\). nominal diam., and the nozzle \(11 / 8 \mathrm{in}\). diam., the height of effective_fire-stream obtainable and the quantity in gallons per minute will be:


With 500 ft . of smoothest and best rubber-lined hose, if diameter be exactly \(21 / 2 \mathrm{in}\)., effective height of stream will be 39 ft . ( 177 gals.); if diameter be \(1 / 8 \mathrm{in}\). larger, effective height of stream will be 46 ft . (192 gals.)

\section*{THE SLPHON.}

The Siphon is a bent tube of unequal branches,"open at both ends, and is used to convey a liquid from a higher to a lower level, over an intermediate point higher than either. Its parallel branches being in a vertical plane and plunged into two bodies of liquid whose upper surfaces are at different levels, the fluid will stand at the same level both within and without each branch of the tube when a vent or small opening is made at the bend. If the air be withdrawn from the siphon through this vent, the water will rise in the branches by the atmospheric pressure without, and when the two columns unite and the vent is closed, the liquid will flow from the upper reservoir as long as the end of the shorter branch of the siphon is below the surface of the liquid in the reservoir.

If the watei was free from air the height of the bend above the supply level might be as great as 33 feet.

If \(A=\) area of cross-section of the tube in square feet, \(H=\) the difference in level between the two reservoirs in feet, \(D\) the density of the liquid in pounds per cubic foot, then \(A D H\) measures the intensity of the force which causes the movement of the fluid, and \(V=\sqrt{2 g H}=8.02 \sqrt{\bar{H}}\) is the theoretical velocity, in feet per second, which is reduced by the loss of head ior entry and friction, as in other cases of flow of liquids through pipes. In the case of the difference of level being greater than 33 feet, however, the velocity of the water in the shorter leg is limited to that due to a height of 33 feet, or that due to the difference oetween the atmospheric pressure at the entrance and the vacuum at the bend.
Leicester Allen (Am. Mach., Nov. 2, 1893) says: The supply of liquid to a siphon must be greater than the flow which would take place from the discharge end of the pipe, provided the pipe were filled with the liquid, the supply end stopped, and the discharge end opened when the discharge end is left free, unregulated, and unsubmerged.
To illustrate this principle, let us suppose the extreme case of a siphon having a calibre of 1 foot, in which the difference of level, or between the point of supply and discharge, is 4 inches. Let us further suppose this siphon to be at the sea-level, and its highest point above the level of the supply to be 27 feet. Also suppose the discharge end of this siphon to be unregulated, unsubmerged. It would be inoperative because the water in the longer leg would not be held solid by the pressure of the atmosphere against it, and it would therefore break up and run out faster than it could be replaced at the inflow end under an effective head of only 4 inches.
Long Siphons.-Prof. Joseph Torrey, in the Amer. Machinist, describes a long siphon which was a partial failure.
The length of the pipe was 1792 feet. The pipe was 3 inches diameter, and rose at one point 9 feet above the initial level. The final level was 20 feet below the initial level. No automatic air valve was provided. The highest point in the siphon was about one third the total distance from the pond and nearest the pond. At this point a pump was placed, whose mission was to fill the pipe when necessary. This siphon would flow for about two hours and then cease, owing to accumulation of air in the pipe. When in full operation it discharged \(431 / 2\) gallons per minute. The theoretical discharge from such a sized pipe with the specified head is \(551 / 2\) gallons per minute.
Siphon on the Water-supply of Mount Vernon, \(N\). \(Y\). (Eng'g News, May 4, 1893.)-A 12-inch siphon, 925 feet long, with a maximum lift of 22.12 feet and a \(45^{\circ}\) change in alignment, was put in use in 1892 by the New York City Suburban Water Co., which supplies Mount Vernon, N. Y.
At its summit the siphon crosses a supply main, which is tapped to charge the siphon.

The air-chamber at the siphon is 12 inches by 16 feet long. A \(1 / 2\)-inch tap and cock at the top of the chamber provide an outlet for the collected air.
It was found that the siphon with air-chamber as desc.ibed would run until 125 cubic feet of air had gathered, and that this took place oniy half as soon with a 14 -foot lift as with the full lift of 23.12 feet. The siphon will operate about 12 hours without being recharged, but more water can be gotten over by charging every six hours. It can be kept running 23 hours out of 24 with only one man in attendance. With the siphon as described above it is necessary to close the valves at each end of the siphon to recharge it.
It has been found by weir measurements that the discharge of the siphon before air accumulates at the summit is practically the same as through a straight pipe.

\section*{IIEASUREIIENT OF FLOWING WATER.}

Piezometer.-If a vertical or oblique tube be inserted into a pipe containing water under pressure, the water will rise in the former, and the vertical height to which it rises will be the head producing the pressure at the point where the tube is attached. Such a tube is called a piezometer or pressure measure. If the water in the piezometer falls below its proper level it shows that the pressure in the main pipe has been reduced by an obstruction between the piezometer and the reservoir. If the water rises above its proper level, it indicates that the pressure there has been increased by an obstruction beyond the piezometer.

If we imagine a pipe full of water to be provided with a number of piezometers, then a line joining the tops of the columns of water in them is the hydraulic grade-line.

Pitot Tube Gauge.-The Pitot tube is used for measuring the velocfty of fluids in motion. It has been used wirh great success in measuring the flow of natural gas. (S. W. Robinson, Report Ohio Geol. Survey, 1890.) (See also Van Nostrand's Mag., vol. xxxv.) It is simply a tube so bent that a short leg extends into the current of fluid flowing from a tube, with the plane of the entering orifice opposed at right angles to the direction of the current. The pressure caused by the impact of the current is transmitted through the tube to a pressure gauge of any kind, such as a column of water or of mercury, or a Bourdon spring-gauge. From the pressure thus indicated and the known density and temperature of the flowing gas is obtained the head corresponding to the pressure, and from this the velocity. In a modification of the Pitot tube described by Prof. Robinson, there are two tubes inserted into the pipe conveying the gas, one of which has the plane of the orifice at right angles to the current, to receive the static pressure plus the pressure due to impact; the other has the plane of its orifice parallel to the current, so as to receive the static pressure cnly. These tubes are connected to the legs of a \(U\) tube partly filled with mercury, which then registers the difference in pressure in the two tubes, from which the velocity may be calculated. Comparative tests of Pitot tubes with gasmeters, for measurement of the flow of natural gas, have shown an agreement within \(3 \%\).

The Venturi Meter, invented by Clemens Herschel, and described in a pamphlet issued by the Builders' Iron Foundry of Providence, R. I., is named from Venturi, who first called attention, in 1 996 , to the relation between the velocities and pressures of fluids when flowing through converging and diverging tubes.
It consists of two parts-the tube, through which the water flows, and the recorder, which registers the quantity of water that passes through the tube.
The tube takes the shape of two truncated cones joined in their smallest diameters by a short throat-piece. At the up-stream end and at the throat there are pressure-chambers, at which points the pressures are taken.
The action of the tube is based on that property which causes the small section of a gently expanding frustum of a cone to receive, without material resultant loss of head, as much water at the smallest diameter as is discharged at the large end, and on that further property which causes the pressure of the water flowing through the throat to be less, by virtue of its greater velocity, than the pressure at the up-stream end of the tube. each pressure being at the same tirne a function of the velocity at that point and of the hydrostatic pressure which would obtain were the water motionless within the pipe.
The recorder is connected with the tube by pressure-pipes which lead to it from the chambers surrounding the up-stream end and the throat of the tube. It may be placed in any convenient position within 1000 feet of the tube. It is operated by a weight and clockwork.
The difference of pressure or head at the entrance and at the throat of the meter is balanced in the recorder by the difference of level in two columns of mercury in cylindrical receivers, one within the other. The inner carries a float, the position of which is indicative of the quantity of water flowing through the tube. By its rise and fall the float varies the time of contact between an integrating drum and the counters by which the successive readings are registered.
There is no limit to the sizes of the meters nor the quantity of water that may be measured. Meters with 24 -inch, 36 -inch, 48 -inch, and even 20 -foot tubes can be readily made.
RIeasurement by Venturi Tubes. (Trans. A. S. C. E., Nov., 1887, and Jan., 1888.)-Mr. Herschel recommends the use of a Venturi tube, inserted in the force-main of the pumping engine, for determining the quantity of water discharged. Such a tube applied to a 24 -inch main has a total length of about 20 feet. At a distance of 4 feet from the end nearest the engine the inside diameter of the tube is contracted to a throat having a diameter of about 8 inches. A pressure-gauge is attached to each of two chambers, the one surrounding and communicating with the entrance or main pipe, the other with the throat. According to experiments made upon two tubes of this kind, one 4 in . in diameter at the throat and 12 in . at the entrance, and the other about 36 in . in diameter at the throat and 9 feet at its entrance, the quantity of water which passes through the tube is very nearly the theoretical discharge through an opening having an area equal to that of the throat, and a velocity which is that due to the difference in head sinown
by the twogauges. Mr. Herschel states that the coefficient for these two widely-varying sizes of tubes and for a wide range of velocity through the pipe, was found to be within two per cent, either way, of \(98 \%\). In other words, the quantity of water flowiug through the tube per second is expressed within two per cent by the formula \(W=0.98 \times A \times \sqrt{2 g h}\), in which \(A\) is the area of the throat of the tube, \(h\) the head, in feet, corresponding to the difference in the pressure of the water entering the tube and that found at the throat, and \(g \equiv 32.16\).
Measurement of Discharge of Pumping-engines by MIeans of Nozzles. (Trans. A. S. M. E., xiii, 557 ). - The measurement of water by computation from its discharge through orifices, or through the nozzles of fire-hose, furnishes a means of determining the quantity of water delivered by a pumping-engine which can be applied without much difficulty. John R. Freeman, Trans. A. S. C.E., Nov., 1889, describes a series of experiments covering a wide range of pressures and sizes, and the results showed that the coefficient of discharge for a smooth nozzle of ordinary good form was within one half of one per cent, either way, of 0.977 ; the diameter of the nozzle being accurately calipered, and the pressures being determined by means of an accurate gauge attached to a suitable piezometer at the base of the play-pipe.

In order to use this method for determining the quantity of water discharged by a pumping-engine, it would be necessary to provide a pressurebox, to which the water would be conducted, and attach to the box as many nozzles as would be required to carry off the water. According to Mi. Freeman's estimate, four 11/4-inch nozzles, thus connected, with a pressure of 80 lbs . per square inch, would discharge the full capacity of a two-and a-half-million engine. He also suggests the use of a portable apparatus with a single opening for discharge, consisting essentially of a Siamese nozzle, so-called, the water being carried to it by three or more lines of fire-hose.

To insure reliability for these measurements, it is necessary that the shutoff valve in the force-main, or the several shut-off valves, should be tight, so that all the water discharged by the engine may pass through the nozzles.
Flow through Rectangular Orifices. (Approximate. See p. 556.)
Cubic Feet of Water Discharged per Minute through an Orifice One Inch Square, under any Head of Water from 3 to 72 Inches.

For any other orifice multiply by its area in square inches.
Formula, \(Q^{\prime}=.624 \sqrt{h^{\prime \prime}} \times a . Q^{\prime}=\) cu. ft. per min.; \(a=\) area in sq. in.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\bar{z}
\] & &  &  &  & \[
x_{0}^{2}
\] & \[
\left\lvert\, \begin{aligned}
& 20 \\
& 0 \\
& 0
\end{aligned}\right.
\] & & &  & \[
\left\{\begin{array}{l}
\text { and } \\
0 \\
0 \\
0 \\
0
\end{array}\right.
\] & & \[
\left\{\begin{array}{l}
\text { E. } \\
0 \\
\text { ex } \\
0
\end{array}\right.
\] \\
\hline & & 13 & 2.20 & 23 & & 33 & & & & & & & \\
\hline 4 & 1.27 & 14 & 2. & 24 & 2.97 & 34 & 3.52 & 44 & 4.00 & 54 & 4.42 & 64 & \\
\hline 5 & 1.40 & 15 & 2.36 & 25 & 3.03 & 35 & 3.57 & 45 & 405 & 55 & 4.46 & 65 & 4.85 \\
\hline 6 & 1.52 & 16 & \({ }_{2}^{2.43}\) & & \({ }_{3}^{3.08}\) & 96 & 3.62 & 46 & 4.09 & \({ }_{5}^{56}\) & 4. & 67 & 4.89 \\
\hline 8 & 1.64 & 17 & 2.5 & \({ }_{28}^{27}\) & 3.14
3.20 & \({ }_{38}^{37}\) & \(3{ }^{3}\) & 48 & 4.12
4.18 & 58 & 4. & 67
68 & 4.93
4.97 \\
\hline 9 & 1.84 & 19 & 2.64 & 29 & 3.25 & 39 & 3 & 49 & 4.21 & 59 & 4.63 & 69 & 5.00 \\
\hline 10 & 1. & 20 & 2.7 & 30 & 3.31 & 40 & 3.8 & 50 & 4.27 & 60 & 4.65 & 70 & 5.03 \\
\hline 11 & 2.03 & 21 & 2.78 & 31 & 3.36 & 41 & 3.86 & 51 & 4.30 & 61 & 4.72 & & \\
\hline 12 & 2.12 & 22 & 2.84 & 22 & 3.41 & d & 3.91 & 52 & 4.34 & 62 & 4.74 & \%2 & 5.09 \\
\hline
\end{tabular}

Measurement of an Open Stream by Velocity and Cross-section.-Measure the depth of the water at from 6 to 12 points across the stream at equal distances between. Add all the depths in feet together and divide by the number of measurements made; this will be the average depth of the stream, which multiplied by its width will give its area or crosssection. Multiply this by the velocity of the stream in feet per minute, and the result will be the discharge in cubic feet per minute of the stream.

The velocity of the stream can be found by laying off 100 feet of the bank and throwing a float into the middle, noting the time taken in passing over the 100 ft . Do this a number of times and take the average; then, dividing
this distance by the time gives the velocity at the surface. As the top of the stream flows faster than the bottom or sides-the average velocity being about \(83 \%\) of the surface velocity at the middle-it is convenient to measure a distance of 120 feet for the float and reckon it as 100 .


Fig. 130.
Miners' Inch IMeasurements. (Pelton Water Wheel Co.)
The cut, Fig. 130, shows the form of measuring-box ordinarily used, and the following table gives the discharge in cubic feet per minute of a miner's inch of water, as measured under the various heads and different lengths and heights of apertures used in California.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Length of Opening in inches.} & \multicolumn{3}{|l|}{Openings 2 Inches High.} & \multicolumn{3}{|l|}{Openings 4 Inches High.} \\
\hline & Head to Centre, 5 inches & Head to Centre, 6 inches. & Head to Centre, 7 inches. & Head to Centre, 5 inches. & Head to Centre, 6 inches. & Head to Centre, 7 inches. \\
\hline & Cu. ft. & \(\mathrm{Cu} . \mathrm{ft}\). & Cu.ft. & Cu.ft. & Cu. ft. & Cu. ft. \\
\hline 4 & 1.348 & 1.473 & 1.589 & 1.330 & 1.450 & 1.5.0 \\
\hline 6 & 1.355 & 1.480 & 1.596 & 1.3336 & \(1.4 \% 0\) & 1.595 \\
\hline 8 & 1.359 & 1.484 & 1.600 & 1.344 & 1.481 & 1.608 \\
\hline 10 & 1.361 & 1.485 & 1.602 & 1.349 & 1.487 & 1.615 \\
\hline 12 & 1.363 & 1.487 & 1.604 & 1.352 & 1.491 & 1.620 \\
\hline 14 & 1.364 & 1.488 & 1.604 & 1.354 & 1.491 & 1.623 \\
\hline 16 & 1.365 & 1.489 & 1.605 & 1.356 & 1.496 & 1.626 \\
\hline 18 & 1.365 & \(1 \cdot 489\) & 1.606 & 1.357 & 1.498 & 1.628 \\
\hline 20 & 1.365 & 1.490 & 1.606 & 1.359 & 1.499 & 1.630 \\
\hline 22 & 1.366 & 1.490 & 1.607 & 1.359 & 1.500 & 1.631 \\
\hline 24 & 1.366 & 1.490 & \(1.60{ }^{\text {a }}\) & 1.360 & 1.501 & 1.632 \\
\hline 26 & 1.366 & 1.490 & 1.607 & 1.361 & \(1.50 \%\) & 1.633 \\
\hline 28 & 1.367 & 1.491 & 1.607 & 1.361 & 1.503 & 1.634 \\
\hline 30 & 1.367 & 1.491 & 1.608 & 1.362 & 1.503 & 1.635 \\
\hline 40 & 1.367 & 1.492 & 1.608 & 1.363 & 1.505 & 1.637 \\
\hline 50 & 1.368 & 1.493 & 1.609 & 1.364 & 1.507 & 1.639 \\
\hline 60 & 1.368 & 1.493 & 1.603 & 1.365 & 1.508 & 1.640 \\
\hline 70 & 1.368 & 1.493 & 1.609 & 1.365 & 1.508 & 1.641 \\
\hline 80 & 1.368 & 1.493 & 1.609 & 1.366 & 1.509 & 1.641 \\
\hline 90 & 1.369 & 1.493 & 1.610 & 1.366 & 1.509 & 1.641 \\
\hline 100 & 1.369 & 1.494 & 1610 & 1.366 & 1.509 & 1.642 \\
\hline
\end{tabular}

Note.-The apertures from which the above measurements were obtained
were through material \(11 / 4\) inches thick, and the lower edge 2 inches above the bottom of the measuring-box, thus giving full contraction.
Flow of Water over Weirs. Weir Dam IMezsurement. (Pelton Water Wheel Co.)-Place a board or plank in the stream, as shown


Fig. 131.
in the sketch. at some point where a pond will form above. The length of the notch in the dam should be from two to four times its depth for small quantities and longer for large quantities. The edges of the notch should be bevelled toward the intake side, as shown. The overfall below the notch should not be less thạ twice its depth. [Francis says a fall below the crest equal to one-half the head is sufficient, but there must be a free access of air under the sheet.]

In the pond, about 6 ft . above the dam, drive a stake, and then obstruct the water until it rises precisely to the bottom of the notch and mark the stake at this level. Then complete the dam so as to cause all the water to flow through the notch, and, after time for the water to settle, mark the stake again for this new level. If preferred the stake can be driven with its top precisely level with the bottom of the notch and the depth of the water be measured with a rule after the water is flowing free, but the marks are preferable in most cases. The stake can then be withdrawn; and the distance between the marks is the theoretical depth of flow corresponding to the quantities in the table on the following page.

\section*{Francis's Formula for Weirs.}
\begin{tabular}{|c|c|c|}
\hline & As given by Francis. & As modified by Smith. \\
\hline Weirs with both end contractions suppressed & \(Q=3.33 l h^{\frac{3}{2}}\) & \[
3.29\left(l+\frac{h}{7}\right) l^{\frac{3}{2}}
\] \\
\hline \(\left.\begin{array}{c}\text { Weirs with one end contraction } \\ \text { suppressed............................ }\end{array}\right\}\) & \(Q=3.33(l-.17) h^{\frac{3}{2}}\) & 3. \(297 h^{\frac{3}{2}}\) \\
\hline Weirs with full contract & \(Q=3.33(l-.2 h) h^{\frac{3}{2}}\) & \(3.29\left(l-\frac{h}{10}\right) h^{\frac{3}{2}}\) \\
\hline
\end{tabular}

The greatest variation of the Francis formulæ from the values of \(c\) given by Smith amounts to \(31 / 2 \%\). The modified Francis formulæ, says Smith, will give results sufficiently exact, when great accuracy is not required, within the limits of \(h\), from .5 ft , to \(2 \mathrm{ft}, l\) being not less than \(3 h\).
\(Q=\) discharge in cubic feet per second, \(l=\) length of weir in feet, \(h=\) effective head in feet, measured from the level of the crest to the level of still water above the weir.
If \(Q^{\prime}=\) discharge in cubic feet per minute, and \(l^{\prime}\) and \(h^{\prime}\) are taken in inches, the first of the above formulæ reduces to \(Q^{\prime}=0.4 l^{\prime} h^{\frac{3}{2}}\). From this formula the following table is calculated. The values are sufficiently accurate for ordinary computations of water-power for weirs without end contraction, that is, for a weir the full width of the channel of approach, and are approximate also for weirs with end contraction when \(l=\) at least \(10 h\), but about \(6 \%\) in excess of the truth when \(l=4 h\).

\section*{Weir Table.}

Giving Cubic Feet of Water per Minute that will Flow over a Weir ONE INCH WIDE AND FROM \(1 / 8\) TO \(20 \pi / 8\) iNCHES DEEP.

For other widths multiply by the width in inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & 1/8 in. & \(1 / 4 \mathrm{in}\). & \(3 / 8\) in. & 1/2 in. & \(5 / 8 \mathrm{in}\). & 3/4in. & 7/8in. \\
\hline in. & cu. ft. & \(\mathrm{cu} . \mathrm{ft}\). & cu. ft. & cu. ft. & cu. ft. & cu. ft. & cu.ft. & \(\mathrm{cu} . \mathrm{ft}\). \\
\hline 0 & . 00 & . 01 & . 05 & . 09 & . 14 & . 19 & . 26 & . 32 \\
\hline 1 & . 40 & . 47 & . 55 & . 64 & . 7.3 & . 82 & . 92 & 1.02 \\
\hline 2 & 1.13 & 1.23 & 1.35 & 1.46 & 1.58 & 1.7 & 1.8 & 1.95 \\
\hline 3 & 2.07 & 2.21 & 2.34 & 2.48 & 2.61 & 2.66 & 2.90 & 3.05 \\
\hline 4 & 3.20 & 3.35 & 3.50 & 3.66 & 3.81 & 3.97 & 4.14 & 4.30 \\
\hline 5 & 4.47 & 4.64 & 4.81 & 4.98 & 5.15 & 5.33 & 5.51 & 5.69 \\
\hline 6 & 5.87 & 6.06 & 6.25 & 6.44 & 6.69 & 6.82 & 7.01 & \%. 21 \\
\hline 7 & \%. 40 & 7.60 & \%. 80 & 8.01 & 8.21 & 8.42 & 8.63 & 8.83 \\
\hline 8 & 9.05 & 9.26 & 9.47 & 9.69 & 9.91 & 10.13 & 10.35 & 10.57 \\
\hline 9 & 10.80 & 11.02 & 11.25 & 11.48 & 11.71 & 11.94 & 12.17 & 12.41 \\
\hline 10 & 12.64 & 12.88 & 13.12 & 13.36 & 13.60 & 13.85 & 14.09 & 14.34 \\
\hline 11 & 14.59 & 14.84 & 15.09 & 1534 & 15.53 & 15.85 & 16.11 & 16.36 \\
\hline 12 & 16.62 & 16.88 & 17.15 & 17.41 & 17.67 & 17.94 & 18.21 & 18.47 \\
\hline 13 & 18.74 & 19.01 & 19.29 & 19.56 & 19.84 & 20.11 & 20.39 & 20.67 \\
\hline 14 & 20.95 & 21.23 & 21.51 & 21.80 & 22.08 & 22.37 & 22.65 & 22.94 \\
\hline 15 & 23.23 & 23.52 & 23.82 & 24.11 & 24.40 & 24.0 & 25.00 & 25.30 \\
\hline 16 & 25.60 & 25.90 & 26.20 & 26.50 & 26.80 & 27.11 & 27.42 & 27.12 \\
\hline 17 & 28.03 & 28.34 & 28.65 & 28.97 & 29.28 & 29.59 & 29.91 & 30.22 \\
\hline 18 & 30.54 & 30.86 & 31.18 & 31.50 & 31.82 & 32.15 & 32.47 & 32.80 \\
\hline 19 & 33.12 & 33.45 & 33.78 & 3411 & 34.44 & \(34 . \mathrm{it}\) & 3.5 .10 & 35.44 \\
\hline 20 & 35.17 & 36.11 & 36.45 & 36.78 & 37.12 & 37.46 & 37. 80 & 38.15 \\
\hline
\end{tabular}

For more accurate computations, the coefficients of flow of Hamilton Smith, Jr., or of Bazin should be used. In Smith's hydraulics will be found a collection of results of experiments on orifices and weirs of various shapes made by many different authorities, together with a discussion of their several formulæ. (See also Trautwine's Pocket Book.)

Bazin's Experiments.-M. Bazin (Annales des Ponts et Chaussées, Oct., 1888, translated by Marichal and Trautwine, Proc. Engis. Club of Phila., Jan., 1890), made an extensive series of experiments with a sharp-crested weir without lateral contraction, the air being admitted freely behind the falling sheet, and found values of \(m\) varying from 0.42 to 0.50 , with variations of the length of the weir from 1934 to \(783 / 4 \mathrm{in}\)., of the height of the crest above the bottom of the channel from 0.79 to 2.46 ft ., and of the head from 1.97 to 23.62 in. From these experiments he deduces the following formula :
\[
Q=\left[0.425+0.21\left(\frac{H}{P+H}\right)^{2}\right] L H \sqrt{2 g H},
\]
in which \(P\) is the height in feet of the crest of the weir above the bottom of the channel of approach, \(L\) the length of the weir, \(H\) the head, both in feet, and \(Q\) the discharge in cu. ft . per sec. This formula, says M. Bazin, is entirely practical where errors of \(2 \%\) to \(3 \%\) are admissible. The following table is condensed from M. Bazin's paper :

Values of the Coefficient \(m\) in the Formula \(Q=m L H \sqrt{2 g H}\), for a Sharp-crested Weir without lateral Contraction ; the Air being Admitted F'reely Behind the Falling Sheet.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Head, H.} & \multicolumn{10}{|c|}{Height of Crest of Weir Above Bed of Channel.} \\
\hline & Feet ...0.66 & 0. & 31 & 1.64 & 1.9 & & & & & \\
\hline & Inches 7.87 & 11.81 & 15.75 & 19.69 & 23.62 & 31.50 & 39.38 & 59.07 & 78.76 & \(\infty\) \\
\hline Ft. \({ }^{\text {In }}\) & m & & & & m & m & & & & \\
\hline . 1641.97 & 0.458 & 0.453 & 0.451 & 0.450 & 0.449 & 0.449 & 0.449 & 0.448 & 0.448 & 0.4481 \\
\hline . 230 2.76 & 0.455 & 0.448 & 0.445 & 0.443 & 0.442 & 0.441 & 0.440 & 0.440 & 0.439 & 0.4391 \\
\hline . 2953.54 & 0.457 & 0.447 & 0.442 & 0.440 & 0.438 & 0.436 & 0.436 & 0.435 & 0.434 & 0.4340 \\
\hline . 3944.72 & 0.462 & 0.448 & 0.442 & 0.438 & 0.436 & 0.433 & 0.432 & 0.430 & 0.430 & 0.4291 \\
\hline .525 6.30 & 0.471 & 0.453 & 0.444 & 0.438 & 0.435 & 0.431 & 0.429 & 0.427 & 0.426 & 0.4246 \\
\hline \begin{tabular}{l|l|l|}
.656 \\
.78 .87 \\
\hline 9.45
\end{tabular} & 0.480
0.488 & \(\left\lvert\, \begin{aligned} & 0.459 \\ & 0.465\end{aligned}\right.\) & 0.447
0.452 & 0.440 & 0.436 & 0.431 & 0.428 & 0.425 & 0.423 & 0.4215 \\
\hline . 91911.02 & 0.496 & \(0.4 \pi 2\) & 0.457 & 0.448 & 0.441 & 0.433 & 0.429 & 0.424 & 0.422
0.422 & 0.4194
0.4181 \\
\hline 1.050112 .60 & & 0.478 & 0.462 & 0.452 & 0.444 & 0.436 & 0.430 & 0.424 & 0.421 & 0.4168 \\
\hline 1.18114 .17 & & 0.483 & 0.467 & 0.456 & 0.448 & 0.438 & 0.432 & 0.424 & 0.421 & 0.4156 \\
\hline 1.31215 .75 & & 0.489 & 0.472 & 0.459 & 0.451 & 0.440 & 0.433 & 0.424 & 0.421 & 0.4144 \\
\hline 1.444 17.32 & & 0.494 & 0.476 & 0.463 & 0.454 & 0.442 & 0.435 & 0.425 & 0.421 & 0.4134 \\
\hline 1.57518 .90 & & & 0.480 & 0.467 & 0.457 & 0.444 & 0.436 & 0.425 & 0.421 & 0.4122 \\
\hline 1.706 20.47 & & & 0.483 & 0.470 & 0.460 & 0.446 & 0.438 & 0.426 & 0.421 & 0.4112 \\
\hline 1.837122 .05 & & & 0.487 & 0.473 & 0.463 & 0.448 & 0.439 & 0.427 & 0.421 & 0.4101 \\
\hline 1.969 |23.62 & & & 0.490 & 0.476 & 0.466 & 0.451 & 0.441 & 0.427 & 0.421| & 0.4092 \\
\hline
\end{tabular}

A comparison of the results of this formula with those of experiments, says M. Bazin, justifies us in believing that, except in the unusual case of a very low weir (which should always be avoided), the preceding table will give the coefficient \(m\) in all cases within \(1 \%\); provided, however, that the arrangements of the standard weir are exactly reproduced. It is especially important that the admission of the air behind the falling sheet be perfectly assured. If this condition is not complied with, \(n\) may vary within much wider limits. The type adopted gives the least possible variation in ths coefficient.

\section*{WATER-POWER.}

Power of a Fall of Water-Efficiency.-The gross power of a fall of water is the product of the weight of water discharged in a unit of time into the total head. i.e., the difference of vertical elevation of the upper surface of the water at the points where the fall in question begins and ends. The term "head" used in connection with water-wheels is the difference in height from the surface of the water in the wheel-pit to the surface in the pen-stock when the wheel is running.

If \(Q=\) cubic feet of water discharged per second, \(D=\) weight of a cubic foot of water \(=62.36 \mathrm{lbs}\). at \(60^{\circ} \mathrm{F}\)., \(H=\) total head in feet; then
\[
D Q H=\text { gross power in foot-pounds per second, }
\] and \(D Q H+550=.1134 Q H=\) gross horse-power
If \(Q^{\prime}\) is taken in cubic feet per minute, H. P. \(=\frac{Q^{\prime} H \times 62.36}{33,000}=.00189 Q^{\prime} H\).
A water-wheel or motor of any kind cannot utilize the whole of the head \(H\), since there are losses of head at both the entrance to and the exit from the wheel. There are also losses of energy due to friction of the water in its passage through the wheel. the ratio of the power developed hy the wheel to the gross power of the fall is the efficiency of the wheel. For \(\% 5 \%\) efficiency, net horse-power \(=.00142 Q^{\prime} H=\frac{Q^{\prime} H}{70{ }^{\prime}}\).

A head of water can be made use of in one or other of the following ways viz.

1st. By its weight, as in the water-balance and overshot-wheel.
2d. By its pressure, as in turbines and in the hydraulic engine, hydraulic press, crane, etc.
3d. By its impulse, as in the undershot-wheel, and in the Pelton wheel.
4th. By a combination of the above.
Horsepower of a Running Stream. - The gross horse-power is, \(H . P_{\iota}=Q H \times 62.3 t^{6} \div 550=.1134 Q H\), in \(w\) hich \(Q\) is the discharge in cubic feet per second actually impinging on the float or bucket, and \(H=\) theoretical head due to the velocity of the stream \(=\frac{v^{2}}{2 g}=\frac{v^{2}}{64.4}\), in which \(v\) is the velocity in feet per second. If \(Q^{\prime}\) be taken in cubic feet per minute, H. P. \(=.00189 Q^{\prime} H\).

Thus, if the floats of an undershot-wheel driven by a current alone be 5 feet \(\times 1\) foot, and the velocity of stream \(=210 \mathrm{ft}\). per minute, or \(31 / 2 \mathrm{ft}\). per sec., of which the theoretical head is \(.19 \mathrm{ft} ., Q=5 \mathrm{sq} . \mathrm{ft} . \times 210=1050 \mathrm{cu} . \mathrm{ft}\). per minute; \(H=.19 \mathrm{ft} \cdot ; \mathrm{H} . \mathrm{P}=1050 \times .19 \times .00189=.377 \mathrm{H} . \mathrm{P}\).

The wheels would realize only about .4 of this power, on account of friction and slip, or .151 H. P., or about .03 H.P. per square foot of float, which is equivalent to 33 sq . ft . of float per H. P.

Current Motors.-A current motor could only utilize the whole power of a running stream if it could take all the velocity out of the water, so that it would leave the floats or buckets with no velocity at all; or in other words, it would require the backing up of the whole volume of the stream until the actual head was equivalent to the theoretical head due to the velocity of the stream. As but a small fraction of the velocity of the streami can be taken up by a current motor, its efficiency is very small. Current motors may be used to obtain small amounts of power from large streams, but for large powers they are not practicable.

Horse-power of Water Flowing in a Tube. - The head due to the veiocity is \(\frac{v^{2}}{2 g}\); the head due to the pressure is \(\frac{f}{w}\); the head due to actual height above the datum piane is \(h\) feet. The total head is the sum of these \(=\) \(\frac{v^{2}}{2 g}+h+\frac{f}{w}\), in feet, in which \(v=\) velocity in feet per second, \(f=\) pressure in lbs. per sq. ft., \(\boldsymbol{v}=\) weight of 1 cu . ft . of water \(=62.36 \mathrm{lbs}\). If \(p=\) pres sure in lbs. per sq. in., \(\frac{f}{w}=2.309 p\). In hydraulic transmission the velocity and the height above datum are usually small compared with the pressurehead. The work or energy of a given quantity of water under pressure = its volume in cubic feet \(\times\) its pressure in lbs. per sq. ft.; or if \(Q=\) quantity in cubic feet per second, and \(p=\) pressure in lbs. per square inch, \(W=\) \(144 p Q\), and the H. P. \(=\frac{144 p Q}{550}=.2618 p Q\).

Maximum rificiency of a Long Conduit.-A. L. Adams and R. G. Gemmel (Eng'g News, May 4, 1893), show by mathematical analysis that the conditions for securing the maximum amount of power through a long conduit of fixed diameter, without regard to the economy of water, is that the draught from the pipe should be such that the frictional loss in the pipe will be equal to one third of the entire static head.

MIII-Power.-A " mill-power" is a unit used to rate a water-power for the purpose of renting it. The value of the unit is different in different localities. The following are exanıples (from Emerson):

Holyoke, Mass. - Each mill-power at the respective falls is declared to be the right during 16 hours in a day to draw \(38 \mathrm{cu} . \mathrm{ft}\). of water per second at the upper fall when the head there is 20 feet, or a quantity proportionate to the height at the falls. This is equal to 86.2 horse-power as a maximum.

Lowell, Mass.-The right to draw during 15 hours in the day so much water as shall give a power equal to \(25 \mathrm{cu} . \mathrm{ft}\). a second at the great fall, when the fall there is 30 feet. Equal to 85 H. P. maximum.

Litwrence, Mass.-The right to draw during 16 hours in a day so much water as shall give a power equal to \(30 \mathrm{cu} . \mathrm{ft}\). per second when the head is 25 feet. Equal to 8. H.P. maximum.

Minneapolis, Minn. -30 cu . ft . of water per second with head of 22 feet. Equal to \(74.8 \mathrm{H} . \mathrm{P}\).

Manchester, N. H.-Divide 725 by the number of feet of fall minus 1 , and
the quotient will be the number of cubic feet per second in that fall. For 20 feet fall this equals 38.1 cu . ft., equal to 86.4 H . P. maximum.

Cohoes, N. Y.-"Mill-power" equivalent to the power given by \(6 \mathrm{cu} . \mathrm{ft}\). per second, when the fall is 20 feet. Equal to 13.6 H . P., maximum.

Passaic, N. J.-Mill-power: The right to draw \(81 / 2 \mathrm{cu} . \mathrm{ft}\). of water per sec., fall of \(2 \%\) feet, equal to 21.2 horse-power. Maximum rental \(\$ \% 00\) per year for each mill-power \(=\$ 33.00\) per H. P.
The horse-power maximum above given is that due theoretically to the weight of water and the height of the fall, assuming the water-wheel to have perfect efficiency. It should be multiplied by the efficiency of the wheel. say \(\% 5 \%\) for good turbines, to obtain the H. P. delivered by the wheel.
Value of a Water-power.-In estimating the value of a waterpower, especially where such value is used as testimony for a plaintiff whose water-power has been diminished or confiscated, it is a common custom for the person making such estimate to say that the value is represented by a sum of money which, when put at interest, would maintain a steam-plant of the same power in the same place.
Mr. Charles T. Main (Trans. A. S. M. E. xiii. 140) points out that this system of estimating is erroneous; that the value of a power depends upon a great number of conditions, such as location, quantity of water, fall or head, uniformity of flow, conditions which fix the expense of dams, canals, foundations of buildings, freight charges for fuel, raw materials and finished product, etc. He gives an estimate of relative cost of steam and water-power for a \(500 \mathrm{H} . \mathrm{P}\). plant from which the following is condensed:
The amount of heat required per H. P. varies with different kinds of business, but in an average plain cotton-mill, the steam required for heating and slashing is equivalent to about \(25 \%\) of steam exhausted from the highpressure cylinaer of a compound engine of the power required to run that mill, the steam to be taken from the receiver.
The coal consumption per H. P. per hour for a compound engine is taken at \(13 / 4 \mathrm{lbs}\). per hour, when no steam is taken from the receiver for heating purposes. The gross consumption when \(25 \%\) is taken from the receiver is about 2.06 lbs.
\(75 \%\) of the steam is used as in a compound engine at \(1_{66} .75 \mathrm{lbs}=1.31 \mathrm{lbs}\).
\(25 \%\) "6 " 6 high-pressure \({ }^{6} \quad 3.00 \mathrm{lbs}=.75 \%\)
\[
2.06 \text { " }
\]

The running expenses per H. P. per year are as follows:
2.06 lbs . coal per hour \(=21.115 \mathrm{lbs}\). for \(101 / 4\) hours or one day \(=6503.42\)
lbs. for 308 days, which, at \(\$ 3.00\) per long ton \(=\)
Attendance of boilers, one man @ \$2.00, and one man @ \(\$ 1.25=1200\)
"، "engine, " " "\$3.50.
Oil, waste, and supplies.
The cost of such a steam-plant in New England and vicinity of 500
H. P. is about \$65 per H. P. Taking the fixed expenses as \(4 \%\) on engine, \(5 \%\) on boilers, and \(2 \%\) on other portions, repairs at \(2 \%\), interest at \(5 \%\), taxes at \(116 \%\) on \(3 / 4\) cost, an insurance at \(1 / 2 \%\) on exposed portion, the total average per cent is about \(121 / 2 \%\), or \(\$ 65 \times .121 / 2=\)

Gross cost of power and low-pressure steam per H. P. \(\$ 2180\)
Comparing this with water-power, Mr. Main says: "At Lawrence the cost of dan and canals was about \(\$ 650,000\), or \(\$ 65\) per H. P. The cost per H. P. of wheel-plant from canal to river is about \(\$ 45\) per H. P. of plant, or about \(\$ 65\) per H. P. used, the additional \(\$: 0\) being caused by making the plant large enough to compensate for fluctuation of power due to rise and fall of river. The total cost per H. P. of developed plant is then about \(\$ 1: 30\) ner H. P. Placing the depreciation on the whole plant at \(2 \%\), repairs at \(1 \%\), ulerest at \(5 \%\), taxes and insurance at \(1 \%\), or a total of \(9 \%\), gives:
Fixed expenses per \(\mathrm{H}_{6} . \mathrm{P} . \underset{\text { (Estimated) }}{\$ 130 \times .09}=\)\begin{tabular}{r}
\(\$ 1170\) \\
Running \\
200 \\
\(\$ 1370\)
\end{tabular}

\footnotetext{
"To this has to be added the amount of steam required for heating purposes, said to be about \(25 \%\) of the total amount used, but in winter months the consumption is at least \(371 / 2 \%\). It is therefore necessary to have a boiler plant of about \(371 / 2 \%\) of the size of the one considered with the steam-plant,
}
costing about \(\$ 20 \times .375=\$ 7.50\) per H. P. of total power used. The expense of running this boiler-plant is, per H. P. of the the total plant per year:
\[
\text { Fixed expenses } 121 / 2 \% \text { on } \$ 7.50, \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ \$ 0.94
\]

Coal
3.26

Labor.
1.23

Total
\(\$ 5.43\)
Making a total cost per year for water-power with the auxiliary boiler plant \(\$ 13.70+\$ 5.43=\$ 19.13\) which deducted from \(\$ 21.80\) make a difference in favor of water-power of \(\$ 2.67\), or for \(10,000 \mathrm{H} . \mathrm{P}\). a saving of \(\$ * 6, \% 00\) per year.
"It is fair to say," says Mr. Main," that the value of this constant power is a sum of money which when put at interest will produce the saving; or if \(6 \%\) is a fair interest to receive on money thus invested the value would be \(\$ 26.700 \div .06=\$ 445,000 . "\)

Mr. Main makes the following general statements as to the value of a water-power: "The value of an undeveloped variable power is usually nothing if its variation is great, unless it is to be supplemented by a steam-plant. It is of value then only when the cost per horse-power for the double-plant is less than the cost of steam-power under the same conditions as mentioned for a permanent power, and its valuecan be represented in the same manner as the value of a permanent power has been represented.
"The value of a developed power is as follows: If the power can be run cheaper than steam, the value is that of the power, plus the cost of plant, less depreciation. If it cannot be run as cheaply as steam, considering its cost, etc., the value of the power itself is nothing, but the value of the plant is such as could be paid for it new, which would bring the total cost of running down to the cost of steam-power, less depreciation."

Mr. Samuel Webber, Iron Age, Feb. and March, 1893, writes a series of articles showing the development of American turbine wheels, and incidentally criticises the statements of Mr. Main and others who have made comparisons of costs of steam and of water-power unfarorable to the latter. Hesays: "Thes have based their calculations on the cost of steam, on large compound engines of 1000 or more H. P. and 120 pounds pressure of steam in their boilers, and by careful 10 -hour trials succeeded in figuring down steam to a cost of about \(\$ 20\) per H. P., ignoring the well-known fact that its average cost in practical use, except near the coal mines, is from \(\$ 40\) to \(\$ 50\). In many instances dams, canals, and modern turbines can be all completed for a cost of \(\$ 100\) per H. P.; and the interest on that, and the cost of attendance and oil, will bring water-power up to but about \(\$ 10\) or \(\$ 12\) per annum; and with a man competent to attend the dynamo in attendance, it can probably be safely estimated at not over \$15 per H. P."

\section*{TURBINE WHEELS.}

Proportions of Turbines.-Prof. De Volson Wood discusses at length the theory of turbines in his paper on Hydraulic Reaction Motors, Trans. A. S. M. E. xiv. 266. His principal deductions which have an immediate bearing upon practice are condensed in the following :

\section*{Notation.}
\(Q=\) volume of water passing through the wheel per second,
\(h_{1}=\) head in the supply chamber above the entrance to the buckets,
\(h_{2}=\) head in the tail-race above the exit from the buckets,
\(z_{1}=\) fall in passing through the buckets.
\(H=h_{1}+z_{1}-h_{2}\), the effective head,
\(\mu_{1}=\) coefficient of resistance along the guides,
\(\mu_{2}=\) coefficient of resistance along the buckets,
\(r_{1}=\) radius of the initial rim,
\(r_{2}=\) radius of the terminal rim,
\(V=\) velocity of the water issuing from supply chamber,
\(v_{1}=\) initial velocity of the water in the bucket in reference to the bucket,
\(v_{2}=\) terminal velocity in the bucket,
\(\omega=\) angular velocity of the wheel,
\(\alpha=\) terminal angle between the guide and initial rim \(=C A B\), Fig. 132,
\(\gamma_{1}=\) angle between the initial element of bucket and initial rim \(=E A D\).
\(\gamma_{2}=G F^{\prime} I\), the angle between the terminal rim and terminal element of
the bucket.
\(a=e, b\), Fig. \(133=\) the arc subtending one gate opening,
\(a_{1}=\) the arc subtending one bucket at entrance. (In practice \(a_{1}\) is larger than \(a\),)
\(\alpha_{2}=g h\), the arc subtending one bucket at exit,
\(K=b f\), normal section of passage, it being assumed that the passages and buckets are very narrow,
\(k_{1}=b d\), initial normal section of bucket,
\(k_{2}=g i\), terminal normal section,
\(\omega r_{1}=\) velocity of initial rim,
\(\omega r_{2}=\) velocity of terminal rim,
\(\theta=H F I\), angle between the terminal rim and actual direction of the water at exit,
\(Y=\) depth of \(K_{,} y\), of \(a_{1}\), and \(y_{2}\) of \(K_{2}\), then
\(K=Y a \sin a ; K_{1}=y_{1} a_{1} \sin \gamma_{1} ; K_{2}=y_{2} a_{2} \sin \gamma_{2}\).


Fig. 132.
Fig. 133.
Three simple systems are recognized, \(r_{i}<r_{2}\), called outward flow; \(r_{1}>r_{2}\), called inward flow; \(r_{1}=r_{2}\), called parallel flow. The first and second may be combined with the third, making a mixed system.

Value of \(\gamma_{2}\) (the quitting angle).-The efficiency is increased as \(\gamma_{2}\) decreases, and is greatest for \(\gamma_{2}=0\). Hence, theoretically, the terminal element of the bucket should be tangent to the quitting rim for best efficiency. This, however, for the discharge of a finite quantity of water, would require an infinite depth of bucket. In practice, therefore, this angle must have a finite value. The larger the diameter of the terminal rim the smaller may be this angle for a given depth of wheel and given quantity of water discharged. In practice \(\gamma_{2}\) is from \(10^{\circ}\) to \(20^{\circ}\).

In a wheel in which all the elements except \(\gamma_{2}\) are fixed, the velocity of the wheel for best effect mustincrease as the quitting angle of the bucket decreases.

Values of \(a+\gamma\), must be less than \(180^{\circ}\), but the best relation cannot be determined by analysis. However, since the water should be deflected from its course as much as possible from its entering to its leaving the wheel, the angle a for this reason should be as small as practicable.

In practice, a cannot be zero, and is made from \(20^{\circ}\) to \(30^{\circ}\).
The value \(r_{1}=1.4 r_{2}\) makes the width of the crown fcr internal flow about the same as for \(r_{1}=r_{2} \sqrt{1 / 2}\) for outward flow, being approximately 0.3 of the external radius.

Values of \(\mu_{1}\) and \(\mu_{2}\).-The frictional resistances depend upon the construction of the wheel as to smoothness of the surfaces, sharpness of the angles,
regularity of the curved parts, and also upon the speed it is run. These values cannot be definitely assigned beforehand, but Weisbach gives for good conditions \(\mu_{1}=\mu_{2}=0.05\) to 0.10 .

They are not uecessarily equal, and \(\mu_{1}\) may be from 0.05 to \(0.0 \% 5\), and \(\mu_{2}\) from 0.06 to 0.10 or even larger.
Values of \(\gamma_{1}\) must be less than \(180^{\circ}-a\).
To be on the safe side, \(\gamma_{1}\) may be 20 or 30 degrees less than \(180^{\circ}-2 a\), giving
\[
\gamma_{1}=180^{\circ}-2 a-25 \text { (say) }=155-2 a .
\]

Then if \(a=30^{\circ}, \gamma_{1}=95^{\circ}\). Some designers make \(\gamma_{1} 90^{\circ}\); others more, and still other's less, than that amount. Weisbach suggests that it be less, so that the bucket will be shorter and friction less. This reasoning appears to be correct for the inflow wheel, but not for the outflow wheel. In the Tremont turbines, described in the Lowell Hydraulic Experiments, this angle is \(90^{\circ}\), the angle a \(20^{\circ}\), and \(\gamma_{2} 10^{\circ}\), which proportions insured a positive pressure in the wheel. Fourneyron made \(\gamma_{1}=90^{\circ}\), and a from \(30^{\circ}\) to \(33^{\circ}\), which values made the initial pressure in the wheel near zero.

Form of Bucket.-The form of the bucket cannot be determined analytically. From the initial and terminal directions and the volume of the water flowing through the wheel, the area of the normal sections may be found.

The normal section of the buckets will be:
\[
K=\frac{Q}{V} ; \quad k_{1}=\frac{Q}{v_{1}} ; \quad k_{2}=\frac{Q}{v_{2}} .
\]

The depths of those sections will be:
\[
Y=\frac{K}{a \sin a} ; \quad y_{2}=\frac{k_{1}}{a_{1} \cdot \sin \gamma_{1}} ; \quad y_{2}=\frac{k_{2}}{a_{2} \sin \gamma_{2}} ;
\]

The changes of curvature and section must be gradual, and the general form regular, so that eddies and whirls shall not be formed. For the same reason the wheel must be run with the correct velocity to secure the best effect. In practice the buckets are made of two or three arcs of circles, mutually tangential.

The Value of \(\omega\).-So far as analysis indicates, the wheel may run at any speed; but in order that the stream shall flow smoothly from the supply chamber into the bucket, the velocity \(V\) should be properly regulated.

If \(\mu_{1}=\mu_{2}=0.10, \gamma_{2} \div r_{1}=1.40, a=25^{\circ}, \gamma_{1}=90^{\circ}, \gamma_{2}=12^{\circ}\), the velocity of the initial rim for outward flow will be for maximum efficiency 0.614 of the velocity due to the head, or \(\omega r_{1}=0.614 \sqrt{2 g H}\).

The velocity due to the head would be \(\sqrt{2 y H}=1.414 \sqrt{g H}\).
For an inflow wheel for the case in which \(r_{2}{ }^{2}=2 r_{2}{ }^{2}\), and the other dimen sions as given above, \(\omega r_{1}=0.682 \sqrt{2 g H}\).

The highest efficiency of the Tremont turbine, found experimentally, was \(0 . \tilde{2} 9375\), and the corresponding velocity, 0.62645 of that due to the head, and for all velocities above and below this value the efficiency was less.
In the Tremont wheel \(a=20^{\circ}\) instead of \(25^{\circ}\), and \(\gamma_{2}=10^{\circ}\) instead of \(12^{\circ}\). These would make the theoretical efficiency and velocity of the wheel somewhat greater. Experiment showed that the velocity might be considerably larger or smaller than this amount without much diminution of the efficiency.

It was found that if the velocity of the initial (or interior) rim was not less than \(44 \%\) nor more than \(75 \%\) of that due to the fall, the efficiency was \(75 \%\) or more. This wheel was allowed to run freely without any brake except its own friction, and the velocity of the initial rim was observed to be \(1.335 \sqrt{2 g H}\), half of which is \(0.6675 \sqrt{2 g H}\), which is not far from the velocity giving maximum effect; that is to say, when the gate is fully raised the coefficient of effect is a maximum when the wheel is moving with about half its maximum velocity.

Number of Buckets.-Successful wheels have been made in which the distance between the buckets was as small as 0.75 of an inch, and others as much as 2.75 inches. Turbines at the Centennial Exposition had buckets from \(41 / 2\) inches to 9 inches from centre to centre. If too large they will not work properly. Neither should they be too deep. Horizontal partitions are sometimes introduced. These secure more efficient working in case the gates are only partly opened. The form and number of buckets for commercial purposes are chiefly the result of experience.

Ratio of Radii.-Theory does not limit the dimensions of the wheel. In practice,
for outward flow, \(r_{2} \div r_{2}\) is from 1.25 to 1.50 ;
for inward flow, \(r_{2} \div r_{1}^{2}\) is from 0.66 to 0.80 .
It appears that the inflow-wheel has a higher efficiency than the outwardflow wheel. The inflow-wheel also runs :omewhat slower for best effect. The centrifugal force in the outward-flow wheel tends to force the water outward faster than it would otherwise flow; while in the inward-flow wheel it has the contrary effect, acting as it does in opposition to the velocity in the buckets.

It also appears that the efficiency of the outward-flow wheel increases slightly as the width of the crown is less and the velocity for maximum efficiency is slower ; while for the inflow-wheel the efficiency slightly increases for increased width of crown, and the velocity of the outer rim at the same time also increases.
Efficiency. - The exact value of the efficiency for a particular wheel must be found by experiment.

It seemis harilly possible for the effective efficiency to equal, much less exceed, \(86 \%\) and all claims of 90 or more per cent for these motors should be discarded as improbable. A turbine yielding from \(55 \%\) to \(80 \%\) is extremely good. Experiments with higher efficiencies have been reported.
The celebrated Tremont turbine gave \(791 / 4 \%\) without the "diffuser," which might have added some \(2 \%\). A Jonval turbine (parallel flow) was reported as yielding \(0 . \tilde{T}\) to 0.90 , but Morin suggested corrections reducing it to 0.63 to 0.71 . Weisbarch gives the results of many experiments, in which the efficiency ranged from \(50 \% 1084 \%\). Numerous experiments give \(E=0.60\) to 0.65 . The efficiency, considering only the energy imparted to the wheel, will exceed by several per cent the efficiency of the wheel, for the latter will include the friction of the support and leakage at the joint between the sluice and wheel, which are not included in the former ; also as a plant the resistances and losses in the supply-chamber are to be still further deducted.
The Crowns.-The crowns may be plane annular disks, or conical, or curved. If the partitions forming the buckets be so thin that they may be discarded, the law of radial flow will be determined \(b\) the form of the crowns. If the crowns be plane, the radial flow (or radial component) will diminish, for the outward flow-wheel, as the distance from the axis increases -the buckets being full-for the angular space will be greater.

Prof. Wood deduces from the formulæ in his paper the tables on page 595.
It appears from these tables: 1. That the terminal angle, \(a\), has frequently been made too large in practice for the best efficiency.
2. That the terminal angle, \(a\), of the guide should be for the inflow less than \(10^{\circ}\) for the wheels here considered, but when the initial angle of the loucket is \(90^{\circ}\), aud the terminal angle of the guide is \(5^{\circ} 28^{\prime}\), the gain of eff.ciency is not \(2 \%\) greater than when the latter is \(25^{\circ}\).
3. That the initial angle of the bucket should exceed \(90^{\circ}\) for best effect for outflow-wheels.
4. That with the initial angle between \(60^{\circ}\) and \(120^{\circ}\) for best effect on inflow wheels the efficiency varies scarcely \(1 \%\).
5. In the outflow-wheel, column (9) shows that for the outflow for best effect the direction of the quitting water in reference to the earth should be nearly radial (from \(76^{\circ}\) to \(9 \%^{\circ}\) ), but for the inflow wheel the water is thrown forward in quitting. This shows that the velocity of the rim should somewhat exceed the relative final velocity backward in the bucket, as shown in columus ( \(\mathbf{4}^{2}\) ) and (5).
6. In these tables the velocities given are in terms of \(\sqrt{2 g h}\). and the coefficients of this expression will be the part of the head whicli would produce that velocity if the water issued treely. There is only one case, column (5), where the coefficient exceeds unity, and the excess is so small it may be discarded; and it may be said that in a properly proportioned turbine with the conditions here given none of the velocities will equal that due to the head in the sulply-chamber when ruming at best effect.
7. The inflow turbine presents the best conditions for construction for producing a given effect, the only apparent disadvantage being an increased first cost due to an increased depth, or an increased diameter for producing a given amount of work The larger efficiency should, however, more than neutı alize the increased first cont.
Ontward-flow Turbine.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(r_{1}=r_{2} \sqrt{\frac{1}{2}}\).} & \multicolumn{2}{|l|}{\(\mu_{1}=\mu_{2}=0.10\).} & \multicolumn{2}{|l|}{\(\gamma_{2}=12^{\circ} . \quad\) Pa} & arallel Crowns. & \multicolumn{4}{|l|}{\(k_{1} v_{1}=l_{2} v_{2}=K V=Q=1\).} \\
\hline Initial Angle. \(\gamma_{t}\) & \[
\begin{gathered}
\text { Effi- } \\
\text { ciency. } \\
E
\end{gathered}
\] & Velocity Outer Rim. \(r_{2} \omega^{\prime}\) & Velocity Inner Rim. \(r_{1} \omega^{\prime}=1 / \frac{1}{2} r_{2} \omega^{\prime}\) & Relative Velocity of Exit. \(v_{2}\) & Relative Velocity of Entrance. \(v_{1}\) & Velocity of Exit from supply\(\underset{V}{\text { Chamber. }}\) & \begin{tabular}{l}
Termi- \\
nal \\
Angle of Guide. \(a\)
\end{tabular} & Direction of quitting Water. \(\theta\) & Head Equivalent of Energy in quitting Water. \(\frac{v^{2}}{2 g}\) & \(k_{2} \sqrt{g H}\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline \(60^{\circ}\) & 0.804 & \(0.972 \sqrt{2 g \cdot H}\) & \(0.687 \sqrt{ } \sqrt{2(g H}\) & \(1.048 \sqrt{2 g H}\) & \(0.356 \sqrt{2 g H}\) & \(0.595 \sqrt{2 g H}\) & \(31^{\circ} 17^{\prime}\) & \(76^{\circ}\) & 0.051 H & 0.67 \\
\hline \(90^{\circ}\) & 0.828 & \(0.874 \sqrt{2 g H}\) & \(0.619 \sqrt{2 g H}\) & \(0.931 \sqrt{2 g H}\) & \(0.274 \sqrt{2 g H}\) & \(0.676 \sqrt{2 g H}\) & \(23^{\circ} 56^{\prime}\) & \(79^{\circ}\) & \(0.039 H\) & 0.76 \\
\hline \(120^{\circ}\) & 0.839 & \(0.798 \sqrt{2 g H}\) & \(0.565 \sqrt{2 g H}\) & \(0.843 \sqrt{2 g H}\) & \(0.286 \sqrt{2 g H}\) & \(0.749 \sqrt{2 g H}\) & \(19^{\circ} \quad 5^{\prime}\) & \(82^{\circ}\) & \(0.031 H\) & 0.84 \\
\hline \(150^{\circ}\) & 0.921 & \(0.609 \sqrt{ } \overline{2 g H}\) & \(0.501 \sqrt{2 g H}\) & \(0.707 \sqrt{2 g H}\) & \(0.416 \sqrt{2 g H}\) & \(0.886 \sqrt{2 g H}\) & \(13^{\circ} 31^{\prime}\) & \(97^{\circ}\) & \(0.022 H\) & 1.00 \\
\hline \multicolumn{11}{|l|}{Hnward-flow rerbine.} \\
\hline \(r_{1}=\) & \(\sqrt{2} r_{2}\). & \multicolumn{2}{|l|}{\(\mu_{1}=\mu_{2}=0.10\).} & \(\gamma_{2}=12^{\circ}\). & \multicolumn{2}{|l|}{Parallel Crowns.} & \multicolumn{4}{|l|}{\(k_{1} v_{1}=k_{2} v_{2}=K V=Q=1\).} \\
\hline \(\gamma_{1}\) & \(E\). & Velocity Outer \(\operatorname{Rim}_{\gamma_{1} \omega^{\prime}}\). & Velocity Inner \(\underset{\gamma_{2} \omega^{\prime}}{\operatorname{Rim}^{\prime}}\). & \(v_{2}\) & \(v_{1}\) & \(V\) & \(a\) & \(\theta\) & \(\frac{w^{2}}{2 g}\) & \(k_{2} \sqrt{g \bar{H}}\) \\
\hline \(60^{\circ}\) & 0.920 & \(0.609 \sqrt{2 g H}\) & \(0.501 \sqrt{2 g H}\) & \(0.476 \sqrt{2 g H}\) & \(0.089 \sqrt{2 g H}\) & \(0.672 \sqrt{2 g H}\) & \(7{ }^{70} 0\) & \(110^{\circ}\) & \(0.010 H\) & 1.48 \\
\hline \(90^{\circ}\) & \(0.9 \div 0\) & \(0.688 \sqrt{2 g H}\) & \(0.487 \sqrt{2 g H}\) & \(0.470 \sqrt{2 g H}\) & \(0.069 \sqrt{2 g H}\) & \(0.691 \sqrt{2 g H}\) & \(5^{\circ} 28^{\prime}\) & \(106^{\circ}\) & 0.010 H & 1.50 \\
\hline \(120^{\circ}\) & 0.919 & \(0.668 \sqrt{2 g H}\) & \(0.4 \% 3 \sqrt{2 g H}\) & \(0.456 \sqrt{\underline{\partial g H}}\) & 0.0774 & 0. \(009 \sqrt{\underline{2 g H}}\) & \(4^{\circ} 46^{\prime}\) & \(105^{\circ}\) & 0.010 H & 1.55 \\
\hline \(150^{\circ}\) & 0.918 & \(0.634 \sqrt{2 g H}\) & \(0.448 \sqrt{2 g H}\) & \(0.429 \sqrt{2 g H}\) & \(0 . 1 2 6 4 \longdiv { 2 g H }\) & \(0.743 \sqrt{2 g H}\) & \(3^{\circ} 08^{\prime}\) & \(107^{\circ}\) & \(0.009 H\) & 1.65 \\
\hline
\end{tabular}

Tests of Turbines.-Emerson says that in testing turbines it is a rare thing to find two of the same size which can be made to do their best at the same speed. The best speed of one of the leading wheels is invariably wide from the tabled rate. It was found that a \(54-\mathrm{in}\). Leffel wheel under 12 ft . head gave much better results at 78 revolutions per minute than at 90 .

Overshot wheels have been known to give \(75 \%\) efficiency, but the average performance is not over \(60 \%\).
A fair a verage for a good turbine wheel may be taken at \(75 \%\). In tests of 18 wheels made a \({ }^{+}\), the Philadelphia Water-works in 1859 and 1860, one wheel gave less than \(50 \%\) efficiency, two between \(50 \%\) and \(60 \%\), six between \(6 . \%\) and \(70 \%\), seve: " etween \(71 \%\) and \(7 \% \%\), two \(82 \%\), and one \(87.7 \% \%\). (Emerson.)

\section*{Tests of Trurbine Wheels at the Centennial Exhibition,} 18\%6. (From a paper by R. H. Thurston on The Systematic Testing of Turbine Wheels in the United States, Trans. A. S. M. E., viii. 359.)-In 1878 the judges at the International Exhibition conducted a series of trials of turbines. Many of the wheels offered for tests were found to be more or less defective in fitting and workmanship. The following is a statement of the results of all turbines entered which gave an efficiency of over 75\%. Seven other wheels were tested, giving results between \(65 \%\) and \(\% \%\).

Maker's Name, or Name the Wheel is Known By.
!
\begin{tabular}{|c|}
\hline Risdon \\
\hline National \\
\hline Geyelin (single) \\
\hline Thos. Tait \\
\hline Goldie \& McCullou \\
\hline Rodney Hunt Mac \\
\hline Tyler Wheel \\
\hline Geyelin (duplex) \\
\hline Knowlton \& Dolan \\
\hline E. T. Cope \& Sons. \\
\hline Barber \& Harris. \\
\hline York Manufactu \\
\hline W. F. Mosser \& C \\
\hline
\end{tabular}


The limits of error of the tests, says Prof. Thurston, were very uncertain; they are undoubtedly considerable as compared with the later work done in the permanent flume at Holyoke-possibly as much as \(4 \%\) or \(5 \%\).
Experiments with "draught-tubes," or "suction-tubes," which were actually "diffusers" in their effect, so far as Prof. Thurston has analyzed them, indicate the loss by friction which should be anticipated in such cases, this loss decreasing as the tube increased in size, and increasing as its diameter approached that of the wheel-the minimum diameter tried. It was sometimes found very difficult to free the tube from air completely, and next to impossible, during the interval, to control the speed with the brake. Several trials were often necessary before the power due to the full head could be obtained. The loss of power by gearing and by belting was variable with the proportions and arrangement of the gears and pulleys, length of belt, etc., but averaged not far from \(30 \%\) for a single pair of bevelgears, uncut and dry, but smooth for such gearing, and but \(10 \%\) for the same gears, well lubricated, after they had been a short time in operation. The amount of power transmitted was, however, small, and these figures are probably much higher than those representing ordinary practice. Introducing a second pair-spur-gears-tho best figures were but little changed, although the difference between 1 le case in which the larger gear was the driver, and the case in \(w^{1 \cdots} \cdot{ }^{\star}\) he small wheel was the driver, was perceivable, and was in favor of the former arrengement. A single straight belt gave a loss of but \(2 \%\) or \(3 \%\), c crossed belt \(6 \%\) to \(8 \%\), when transmitting 14
horse-power with maximum tightness and transmitting power. A "quarter turn" wasted about 10\% as a maximum, and a "quarter twist" about \(5 \%\).
Dimensions of Turbines.-For dimensions, power, etc., of standard makes of turbines consult the catalogues of different manufacturers. The wheels of different makers vary greatly in their proportions for any given canacity.
The Pelton Water-wheel.-Mr. Ross E. Browne (Eng'g News, Feb. 20, 1892) thus ouilines the principles upon which this water-wheel is constructed:
The function of a water-wheel, operated by a jet of water escaping from a nozzle, is to convert the energy of the jet, due to its velocity, into useful work In order to utilize this energy fully the wheel-bucket, after catching the jet, must bring it to rest before discharging it, without inducing turbulence or agitation of the particles.
This cannot be fully effected, and unavoidable difficulties necessitate the loss of a portion of the energy. The principal losses occur as follows: First, in sharp or angular diversion of the jet in entering, or in its course through the bucket, causing impact, or the conversion of a portion of the energy into heat instead of useful work. Second, in the so-called frictional resistance offered to the motion of the water by the wetted surfaces of the buckets, causing also the conversion of a portion of the energy into heat instead of useful work, Third, in the velocity of the water, as it leaves the bucket, representing energy which has not been converted into work.

Hence, in seeking a high efficiency: 1. The bucket-surface at the entrance should be approximately : arallel to the relative course of the jet, and the buciret should be curved in such a manner as to avoid sharp angular deflection of the stream. If, tor examlle, a jet, strikes surface. an angle and is sharply deflected, a portion of the water is barked, the smoothness of the stream is disturbed, und \(\hat{}\) h re results considerable loss by impact and otherwise. The entrance and deflection in the Pelton bucket are such as to avoid


Fig. 134.


Fig. 135. these losses in the main. (Nee Fig. 136.)
2. The number of buckets should be small, and the path of the jet in the bucket short; in other words, the total wetted surface should be small, as the loss hy friction will be proportional to this.
3. The discharge end of the bucket should be as nearly tangential to the wheel periphery as compatible with the clearance of the bucket which follows; and great differences of velocity in the parts of the escaping water should be avoided. In order to bring the water to rest at the discharge end of the bucket, it is shown, mathematically, that the velocity of the bucket should be one half the velocity of the jet.
A bucket, such as shown in Fig. 135, will cause the heaping of more or less dead or turbulent water at the point indicated by dark


Fig. 136. shading. This dead water is subsequently thrown from the wheel with considerable velocity, and represents a large loss of energy. The introduction of the wedge in the Pelton bucket (see Fig. 134) is an efficient means of avoiding this loss.
\(\Lambda\) wheel of the form of the Pelton conforms closely in construction to each of these requirements.

In a tesi made by the proprietors of the Idaho mine, near Grass Valley, Cal., the dimensions and results were as follors: Main supply-pipe, 22 in . diameter, 6900 ft . long, with a. head of \(3561 / 2\) feet above centre of nozzle. The loss by friction in the pipe was 1.8 ft ., reducing the effective head to 384.7 ft . The Pelton wheel used in the 1 st was 6 ft . in diameter and the nozzle was 1.89 in . diameter. The work done was mcasured by a Prony brake, and the mean of 13 tests showed a useful effect of \(87.3 \%\).

The Pelton wheel is also used as a motor for small powers. A test by M. E. Cooley of a 12 -inch wheel, with a \(3 / 8\)-inch nozzle, under 100 lbs. pressure, gave 1.9 horse-power. The theorntical discharge was .0935 cubic feet per second, and the theoretical horse-power 2.45; the efficiency being 80 per cent. Twr other styles of water-motor tested at the same time each gave efficiencies of 55 per cent.

Pelton Water-wheel Tables. (Abridged.)
The smaller figures under those denoting the various heads give the spouting velocity of the water in feet per minute. The cubic-feet measurement is also based on the flow per minute.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Head in ft. & Size of Wheels. & \[
\begin{gathered}
6 \\
\text { in. } \\
\text { No. } 1
\end{gathered}
\] & \[
\begin{gathered}
12 \\
\text { in. } \\
\text { No. } 2
\end{gathered}
\] & 18
in.
No. 3 & \[
\begin{gathered}
18 \\
\text { in. } \\
\text { No. } 4
\end{gathered}
\] & \[
\begin{gathered}
24 \\
\operatorname{in}_{\text {No. }}
\end{gathered}
\] & 3
ft. & 4
ft. & 5
ft. & 6.
ft. \\
\hline 20 & Hor & 05 & 12 & 20. & 7 & 66 & 1.50 & 2.64 & 4.18 & \\
\hline & Cubic fee & 1.67 & 3.91 & 6.62 & 11.72 & 20.83 & 46.93 & 83.32 & 130.36 & 7. \({ }^{\text {\% }}\) \\
\hline 2151.97 & Revolutions.. & 684 & 342 & 228 & \(2: 8\) & 171 & 114 & 85 & 70 & 57 \\
\hline 30 & H & 10 & :23 & 38 & 69 & 1.22 & 2.76 & 4.88 & 7.69 & 11.04 \\
\hline & & 2.05 & 4.79 & 8.11 & 14.36 & 25.51 & 5\%.44 & 102.04 & 159.66 & 229.76 \\
\hline \(2635.6 \bigcirc\) & Revolutions.. & 837 & 418 & 279 & 279 & 209 & 139 & 104 & 83 & 69 \\
\hline 0 & & . 15 & . 3.5 & 59 & 1.06 & 1.89 & 4.24 & 7.58 & 11.85 & \\
\hline & Cubic feet & 2.37 & 5.53 & 9.37 & 16.59 & 29.46 & 66.36 & 107.84 & 184.36 & \[
265.44
\] \\
\hline \(304 ? .39\) & Revolutions.. & 969 & 484 & 323 & 323 & 242 & 161 & 121 & 96 & 80 \\
\hline 50 & & & & 84 & 1.49 & 2.65 & 5.98 & 10.60 & 6.63 & 3.93 \\
\hline & Cubic feet & 2.64 & 6.18 & \(10.4 \pi\) & 18.54 & 32.93 & 74.17 & 131.72 & 206.13 & 96.70 \\
\hline 3402.61 & Revolutions.. & 1083 & 541 & 361 & 361 & \(2{ }^{2} 0\) & 180 & 135 & 108 & 90 \\
\hline 60 & Hor & 8 & 65 & 1.10 & 1.96 & 3.48 & r. 84 & 13.94 & 21. & 31.36 \\
\hline & Cubic feet & 2.90 & 6.77 & 11.47 & 20.31 & 36.08 & 81.25 & 144.32 & 225.80 & 25.00 \\
\hline \(3727.3 \%\) & Revolutions.. & 1185 & 592 & 395 & 395 & 296 & 197 & 148 & 118 & 98 \\
\hline 70 & Horse & . 35 & & 1.39 & 2.47 & 4.39 & 9.88 & 17.58 & 27.51 & 39.52 \\
\hline & Cubic fee & 3.13 & 7.31 & 12.39 & 21.94 & 38.97 & 87. 76 & 155.88 & 243.89 & 351.04 \\
\hline 4026.00 & Revolutions.. & 1281 & 640 & 427 & 427 & 320 & 213 & 160 & 130 & 106 \\
\hline 80 & H & . 43 & 1.00 & \(1 . \% 0\) & 3.01 & 5.36 & 12.04 & 21.44 & 33.54 & 48.16 \\
\hline & Cubic feet. & 3.35 & \%.82 & 1325 & 23.46 & 41.66 & 9384 & 166.64 & 260.73 & \%. 36 \\
\hline 4303.99 & Revolutions.. & 1368 & 684 & 456 & 456 & 342 & 228 & 171 & 137 & 114 \\
\hline 90 & & 51 & 1.20 & 2.03 & 3.60 & 6.39 & 14.40 & 25.59 & 40.04 & 5T. 60 \\
\hline & Cubic feet & 3.55 & 8.29 & 14.05 & 24.88 & 44.19 & 99.52 & 176.75 & 26.65 & 398.08 \\
\hline 4565.04 & Revolutions. . & 1452 & 726 & 484 & 484 & 363 & 242 & 181 & 145 & 121 \\
\hline 100 & H & 60 & 1.40 & 2.32 & 4.21 & 7.49 & 16.84 & 29.93 & 46.85 & 67.36 \\
\hline & Cubic feet.... & 13.74 & 8.74 & 14.81 & 26.22 & 46.58 & 104.88 & 186.32 & 291.51 & 419.52 \\
\hline 4812.00 & Revolutions.. & 1530 & 765 & 510 & 510 & 382 & 255 & 191 & 15: & 127 \\
\hline 120 & Hors & . 79 & 1.84 & 3.12 & 5.54 & 9.85 & 22.18 & 32.41 & 61.66 & 88.75 \\
\hline & Cubic feet. & 4.10 & 9.57 & 16.21 & 28.72 & 51.02 & 114.91 & 204.10 & 319.33 & 459.64 \\
\hline 5271.30 & Revolutions.. & \(16{ }^{7}\) & 838 & 559 & 559 & 419 & \(2 \% 9\) & 209 & 167 & 139 \\
\hline 140 & Hors & . 99 & 2.33 & 3.94 & 6.99 & 12.41 & 27.96 & 49.64 & \%7.71 & 111.85 \\
\hline & Cubic feet & 4.43 & 10.34 & 17.53 & 31.03 & 55.11 & 124.12 & 220.44 & 344.92 & 496.48 \\
\hline 5693.65 & Revolutions.. & 1812 & 906 & 604 & 604 & 453 & 302 & \(2 \because 6\) & 181 & 151 \\
\hline 60 & Horse-pow & 1.22 & 2.84 & 4.82 & 8.54 & 15.17 & 34.16 & 60.68 & 94.34 & 136.65 \\
\hline & Cubic feet. & 4.73 & 11.05 & 18.74 & 33.17 & 58.92 & 132.68 & 235.68 & 368.73 & 530.75 \\
\hline 6086.74 & Revolutions.. & 1938 & 969 & 646 & 646 & 484 & 323 & 242 & 193 & 161 \\
\hline 150 & Hor & 1.45 & 3.39 & 5.75 & 10.19 & 18.10 & 40.74 & 72.41 & 113.30 & 163.08 \\
\hline & Cubic feet. & 5.02 & 11.72 & 19.87 & 35.18 & 62.49 & 140.74 & 249.97 & 391.10 & 562.96 \\
\hline 6455.97 & Revolutions.. & 2049 & 1024 & 68. & 683 & 513 & 342 & 256 & 206 & \(1 \% 1\) \\
\hline 200 & & 1.70 & 3.97 & 6.74 & 11.93 & 21.20 & 47.75 & 84.81 & 132.70 & \\
\hline & Cubic feet. & 5.29 & 12.36 & 20.94 & 37.08 & \(65.8 \hat{1}\) & 148.35 & 263.49 & 41225 & 593.40 \\
\hline 6805.17 & Revolutions.. & 2160 & 1080 & 720 & 720 & 540 & 360 & \(2 \sim 0\) & 216 & 180 \\
\hline 250 & Horse-power. & 2.38 & 5.56 & 9.42 & 16.68 & 29.63 & & 118.54 & & \\
\hline & Cubic feet. & 5.92 & 13.82 & 23.42 & 41.46 & 73.64 & 165.86 & 291.59 & 460.91 & 663.45 \\
\hline \%608.44 & Revolutions.. & 2418 & | 1209 & -806| & 806 & 605 & 403 & 302 & 241 & 202 \\
\hline
\end{tabular}

Pelton Water-wheel Tables.-Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Head in ft . & Size of Wheels. & \[
\underset{\text { in. }}{6} \text { in }
\] & \[
\begin{gathered}
12 \\
\text { in. } \\
\text { No. } 2
\end{gathered}
\] & \[
\begin{gathered}
18 \\
\text { in. } \\
\text { No. }
\end{gathered}
\] & \[
\underset{\substack{18 \\ \text { in. } \\ \text { No. } 4}}{ }
\] & \[
\underset{\substack{24 \\ \text { in. } \\ \text { No. }}}{\substack{\text { n }}}
\] & \[
\begin{gathered}
3 \\
\mathrm{ft} .
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\mathrm{ft} .
\end{gathered}
\] & 5 & \[
\begin{gathered}
6 \\
\mathrm{f} .
\end{gathered}
\] \\
\hline 300 & Horse & 3.13 & 7.31 & 12.38 & 21.93 & 38.95 & 87.73 & 155.83 & 243.82 & 350.94 \\
\hline & Cubic feet & 6.48 & 15.13 & 25.66 & 45.42 & 80.67 & 181.69 & 322.71 & 504.91 & 726.76 \\
\hline S334.62 & Revolutions & 2652 & 1326 & 884 & 884 & 663 & 442 & 331 & 265 & 221 \\
\hline 350 & Horse-pow'r & 3.94 & 9.21 & 15.61 & 27.64 & 49.09 & 110.56 & 196.38 & 307.25 & 442.27 \\
\hline & Cubic feet & 7.00 & 16.35 & 27.71 & 49.06 & 87.14 & 196.25 & 348.57 & 545.36 & 785.00 \\
\hline 9002.43 & Revolutions & 2865 & 1432 & 955 & 955 & 716 & \(4{ }^{7} 7\) & 358 & 285 & 238 \\
\hline 400 & Horse & 4.8\% & 11.25 & 19.0 & 33.77 & 59.98 & 135.08 & 239.94 & 375.40 & 540.35 \\
\hline & Cubic feet & 7.49 & 17.48 & 2963 & 52.45 & 93.16 & 209.80 & 372.64 & 583.02 & 839.20 \\
\hline 9624.00 & Revolutions & 3063 & 1531 & 1021 & 1021 & 765 & 510 & 382 & 306 & 255 \\
\hline 450 & H & 5.75 & 13.43 & 22.76 & 40.29 & 71.57 & 161.19 & 286.31 & 447.95 & 644.78 \\
\hline & Cubic feet. & 7.94 & 18.54 & 31.42 & 55.63 & 98.81 & 222.52 & 395.24 & 618.38 & 890.11 \\
\hline 10207. 79 & Revolutions & 3949 & 16.2 & 1083 & 1083 & 812 & 541 & 406 & 324 & 210 \\
\hline 500 & Horse-pow'r & 6.74 & 15.73 & 26.66 & 47.20 & 83.83 & 188.80 & 335.34 & 524.66 & 5.20 \\
\hline & Cubic feet... & 8.37 & 19.54 & 33.12 & 58.64 & 104.15 & 234.56 & 416.62 & 651.83 & 938.25 \\
\hline 10759.96 & Revolutions & 3426 & 1713 & 1142 & 1142 & 856 & 571 & 428 & 342 & 285 \\
\hline 600 & Horse-pow'r & & & & 62.04 & 110.19 & 248.16 & 440.77 & 689.63 & 992.65 \\
\hline & Cubic feet. & & & & 64.24 & 114.09 & 256.95 & 456.38 & 714.05 & 102\%.80 \\
\hline 11\%86.94 & Revolutions & & & & 1251 & 938 & 625 & 469 & 375 & 31: \\
\hline 6 อ 0 & Horse-pow'r & & & & 69.95 & 124.25 & 279.82 & 497.01 & 777.62 & 1119.29 \\
\hline & Cubic feet & & & & 66.86 & 118.75 & 267.44 & 475.02 & 743.21 & 1069.77 \\
\hline 12268.24 & Revolutions & & & & 1302 & 976 & 651 & 488 & 390 & 325 \\
\hline 700 & & & & & 78.18 & 138.86 & 312.73 & 555.46 & 869.06 & 1250.92 \\
\hline & Cubic feet... & & & & 69.38 & 123.23 & 277.54 & 492.95 & 771.26 & 1110.16 \\
\hline 12\%31.34 & Revolutions & & & & 1351 & 1013 & 675 & 506 & 405 & 337 \\
\hline 750 & Horse-pow'r & & & & 86.70 & 154.00 & 346.83 & 616.03 & 963.82 & 1387.34 \\
\hline & Cubic feet... & & & & 71.82 & \(12 \% .56\) & 287.28 & 510.25 & 798.33 & 1149.13 \\
\hline 13178.19 & Revolutions & & & & 1399 & 1049 & 699 & 524 & 419 & 349 \\
\hline 800 & & & & & 95.52 & 169.66 & 382.09 & 678.66 & 1061.81 & 36 \\
\hline & Cubic feet.. & & & & 74.17 & 131.74 & 296.10 & 526.99 & 824.51 & 1186.81 \\
\hline 13610.40 & Revolutions & & & & 1444 & 1083 & 722 & 542 & 433 & 361 \\
\hline 900 & & & & & 113.98 & 202.45 & 455.94 & 809.82 & 126\%. 02 & 1823.76 \\
\hline & Cubic feet... & & & & \%8.67 & 139.74 & 314.70 & 558.96 & 874.53 & 1258.81 \\
\hline 14436.00 & Revolutions & & & & 1532 & 1149 & 766 & 574 & 459 & 383 \\
\hline 1000 & Horse-pow'r & & & & 133.50 & 237.12 & 534.01 & 948.48 & 1483.97 & 2136.04 \\
\hline & Cubic feet... & & & & 82.93 & 147.30 & 331.52 & 589.19 & 921.83 & 1326.91 \\
\hline 5216.89 & Revolutions & & & & 1615 & 1210 & 807 & 605 & 484 & 40. \\
\hline
\end{tabular}

\section*{THE POWER OF OCEAN WAVES.}

Albert W. Stahl, U. S. N. (Trans. A. S. M. E., xiii. 438), gives the following formulæ and table, based upon a theoretical discussion of wave motion:

The total energy of one whole wave-length of a wave \(H\) feet high, \(L\) feet long, and one foot in breadth, the length being the distance between successive crests, and the height the vertical distance between the crest and the trough, is \(E=8 L H^{2}\left(1-4.935 \frac{H^{2}}{L^{2}}\right)\) foot-pounds.
The time required for each wave to travel through a distance equal to its own length is \(P=\sqrt{\frac{L}{5.123}}\) seconds, and the number of waves passing anv
given point in one minute is \(N=\frac{60}{P}=60 \sqrt{\frac{\overline{5.123}}{L}}\). Hence the total energy of an indefinite series of such waves, expressed in horse-yower per foot of breadth, is
\[
\frac{E \times N}{33000}=.0329 H^{2} L\left(1-4.935 \frac{H^{2}}{L^{2}}\right)
\]

By substituting various values for \(H \div L\), within the limits of such values actually occurring in nature, we obtain the following table of

Total Energy of Deep-sea Waves in Terms of Horse-power per Foot of BREADTH.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ratio of Length of Waves to Height of Waves.} & \multicolumn{8}{|c|}{Length of Waves in Feet.} \\
\hline & 25 & 50 & 75 & 100 & 150 & 200 & [300 & 400 \\
\hline 50 & . 04 & . 23 & . 64 & 1.31 & 3.62 & 7.43 & 20.46 & 42.01 \\
\hline 40 & . 06 & . 36 & 1.00 & 2.05 & 5.65 & 11.59 & 31.95 & 65.58 \\
\hline 30 & . 12 & . 64 & 1.77 & 3.64 & 10.02 & 20.57 & 56.70 & 116.38 \\
\hline 20 & . 25 & 1.44 & 3.96 & 8.13 & 21.9 & 45.98 & 12..70 & 260.08 \\
\hline 15 & . 42 & 2.83 & 6.97 & 14.31 & 39.43 & 80.94 & 223.06 & 45 í 89 \\
\hline 10 & . 98 & 5.53 & 15.24 & 31.29 & 86.22 & 177.00 & 487.75 & 1001.25 \\
\hline 5 & 3.30 & 18.68 & 5148 & 105.68 & 291.20 & 597.78 & 1647.i1 & 3381.60 \\
\hline
\end{tabular}

The figures are correct for trochoidal deep-sea waves only, but they give a close approximation for any nearly regular series of waves in deep water and a fair approximation for waves in shallow water.

The question of the practical utilization of the energy which exists in ocean waves divides itself into several parts:
1. The various motions of the water which may be utilized for power purposes.
2. The wave motor proper. That is, the portion of the apparatus in direct contact with the watcr, and receiving and transmitting the energy thereof ; together with the mechanism for transmitting this energy to the machinery for utilizing the same.
i. Regulating devices, for obtaining a uniform motion from the irregular and more or less spasmodic action of the waves, as well as for adjusting the apparatus to the state of the tide and condition of the sea.
4. Storage arrangements for insuring a continuous and uniform output of power during a calm, or when the waves are comparatively small.

The motions that may be utilized for power purposes are the following: 1. Vertical rise and fall of particles at and near the surface. 2. Horizontal to-and-fro motion of particles at and near the surface. 3. Varying slope of surface of wave. 4. Impetus of waves rolling up the beach in the form of breakers. 5. Motion of distorted verticals. All of these motions, except the last one mentioned, have at various times been proposed to be utilized for power purposes; and the last is proposed to be used in apparatus described by Mr. Stahl.
The motion of distorted verticals is thus defined: A set of particles, originally in the same vertical straight line when the water is at rest, does not remain in a vertical line during the passage of the wave; so that the line connecting a set of such particles, while vertical and straight in still water, becomes distorted, as well as displaced, during the passage of the wave, its upper portion moving farther and more rapidly than its lower portion.

Mr. Stahl's paper contains illustrations of several wave-motors designed upon various principles. His conclusions as to their practicability is as follows: "Possibly none of the methods described in this paper may ever prove commercially successful; indeed the problem may not be susceptible of a financially successful solution. My own investigations, however, so far as I have yet been able to carry them, incline me to the belief that wave-power can and will be utilized on a paying basis."

Continuous Utilization of Tidal Power. (P. Decœur, Proc. Inst. C. E. 1890.) - In connection with the training-walls to be constructed in
the estuary of the Seine, it is proposed to construct large basins, by means of which the power available from the rise and fall of the tide could be utilized. The method proposed is to have two basins separated by a bank rising above high water, within which turbines would be placed. The upper basin \%ould be in communication with the sea during the higher one third of the tidal range, rising, and the lower basin during the lower one third of the idal range, falling. If \(H\) be the range in feet, the level in the upper basin would never fall below \(2 / 3 H\) measured from low water, and the level in the lower basin would never rise above \(1 / 3 H\). The available head varies between \(0.53 H\) and \(0.80 H\), the mean value being \(2 / 3 H\). If \(S\) square feet le the area of the lower basin, and the above conditions are fulfilled, a quantity \(1 / 3 S H\) cu. ft . of water is delivered through the turbines in the space of \(91 / 4\) hours. The mean flow is, therefore, \(S H \div 99,900 \mathrm{cu}\). ft. per sec., and, the mean fall being \(2 / 3 H\), the available gross horse-power is about \(1 / 30 S^{\prime} H^{2}\), where \(S^{\prime}\) is measured in acres. This might be increased by about one third ji: riation of level in the basins amounting to \(1 / 2 H\) were permitted. But to reach this end the number of turbines would have to be doubled, the mean head being reduced to \(1 / 2 H\), and it would be more difficult to transmit a constant power from the turbines. The turbine proposed is of an improved model designed to utilize a large flow with a moderate diameter. One has been designed to produce 300 horse-power, with a minimum head of 5 ft .3 in. at a speed of 15 revolutions per minute, the vanes having 13 ft . internal diameter. The speed would be maintained constant by regulating sluices.

\section*{PUMPS AND PUMPING ENGINES.}

Theoretical Capacity of a Pump.-Let \(Q^{\prime}=\mathrm{cu}\). ft. per min.; \(G^{\prime}=\) Amer. gals. per min. \(=7.4805 Q^{\prime} ; d=\) diam. of pump in inches; \(l=\) stroke in inches; \(N=\) number of single strokes per min.

Capacity in cu.ft. per min. \(=Q^{\prime}=\frac{\pi}{4} \cdot \frac{d^{2}}{144} \cdot \frac{l N}{12}=.0004545 \mathrm{Nd}^{2} l ;\)
Capacity in gals. per min. \(G^{\prime}=\frac{\pi}{4} \cdot \frac{N d^{2} l}{231} \ldots \ldots \ldots .=.0034 \mathrm{Nd}^{2} l\); Capacity in gals. per hour ........................... \(=.204 \mathrm{Na}^{2} 2\).
\(\left.\begin{array}{c}\text { Diameter required for a } \\ \text { given capacity per min. }\end{array}\right\} d=46.9 \sqrt{\frac{Q^{\prime}}{N l}}=17.15 \sqrt{\frac{G^{\prime}}{N l}}\). If \(v=\) piston speed in feet per min., \(d=13.54 \sqrt{\frac{Q^{\prime}}{v}}=4.95 \sqrt{\frac{G^{\prime}}{v}}\).
If the piston speed is 100 feet per min.:
\[
N l=1200, \text { and } d=1.354 \sqrt{Q^{\prime}}=.495 \sqrt{G^{\prime}} ; \quad G^{\prime}=4.08 d^{2} \text { per min. }
\]

The actual capacity will be from \(60 \%\) to \(95 \%\) of the theoretical, according to the tightness of the piston, valves, suction-pipe, etc.
Theoretical Horse-power required to raise Water to a
given Height.-Horse-power \(=\)
\(\frac{\text { Volume in cu. ft. per min. } \times \text { pressure per sq. ft. }}{33,000}=\frac{\text { Weight }}{} \frac{\times \text { height of lift }}{33,000}\).
\(Q^{\prime}=\mathrm{cu} . \mathrm{ft}\). per min. ; \(G^{\prime}=\) gals. per min.; \(W=w \mathrm{t}\). in \(\mathrm{lbs} . ; P=\) pressure in lbs. per sq. ft.; \(p=\) pressure in lbs. per sq. in.; \(H=\) height of lift in ft.; \(W=62.36 Q^{\prime}, P=144 p, p=.433 H, H=2.309 p, G^{\prime}=7.4805 Q^{\prime}\).
\[
\begin{aligned}
& \mathrm{HP}=\frac{Q^{\prime} P}{33,000}=\frac{Q^{\prime} H \times 144 \times .433}{33,000}=\frac{Q^{\prime} H}{529.2}=\frac{G^{\prime} H}{3958.7} ; \\
& \mathrm{HP}=\frac{W H}{33,000}=\frac{Q^{\prime} \times 62.36 \times 2.309 p}{33,000}=\frac{Q^{\prime} p}{229.2}=\frac{G^{\prime} p}{1714.5^{\circ}}
\end{aligned}
\]

For the actual horse-power required an allowance must be made for the friction, slips, etc., of engine, pump, valves, and passages,

Depth of Suction. - Theoretically a perfect pump will draw water from a height of nearly 34 feet, or the height corresponding to a perfect vacuum ( \(14.7 \mathrm{lbs} . \times 2.309=33.9 \mathrm{j}\) feet); but since a perfect vacuum cannot be obtained, on account of valve-leakage, air contained in the water, and the vapor of the water itself, the actual height is generally less than 30 feet. When the water is warm the height to which it can be lifted by suction decreases, on account of the increased pressure of the vapor. In pumping hot water, therefore, the water must flow into the pump by gravity. The following table shows the theoretical maximum depth of suction for different temperatures, leakage not considered:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Temp. & Absolute Pressure of Vapor, lbs. per sq. in. & Vacuum
in
Inches of
Mercury & \begin{tabular}{l}
Max. \\
Depth of Suction, feet.
\end{tabular} & Temp. & Absolute Pressure of Vapor, lbs. per sq. in. & \begin{tabular}{l}
Vacuum in \\
Inches of Mercury.
\end{tabular} & Max. Depth of Suction, feet. \\
\hline 101.4 & 1 & 27.88 & 31.6 & 183.0 & 8 & 13.63 & 15.5 \\
\hline 126.2 & 2 & 25.85 & 29.3 & 188.4 & 9 & 11.59 & 13.2 \\
\hline 144.7 & 3 & 23.81 & 27.0 & 193.2 & 10 & 9.55 & 10.9 \\
\hline 153.3 & 4 & 21.77 & 24.7 & 197.6 & 11 & 7.51 & 8.5 \\
\hline 162.5 & 5 & 19.74 & 22.4 & 201.9 & 12 & 5.48 & 6.2 \\
\hline 170.3 & 6 & 17.70 & 20.1 & 205.8 & 13 & 3.44 & 3.9 \\
\hline 177.0 & 7 & 15.66 & 17.8 & 209.6 & 14 & 1.40 & 1.6 \\
\hline
\end{tabular}

Amount of Water raised by a Single-acting Lift-pump. -It is common to estimate that the quantity of water raised by a single-acting bucket-valve pump per minute is equal to the number of strokes in one direction per minute, multiplied by the volume traversed by the piston in a single stroke, on the theory that the water rises in the pump only when the piston or bucket ascends; but the fact is that the column of water does not cease flowing when the bucket descends, but flows on continuously through the valve in the bucket, so that the discharge of the pump, if it is operated at a high speed, may amount to nearly double that calculated from the displacement multiplied by the number of single strokes in one direction.

\section*{Proportioning the Steam-cylinder of a Direct-acting}

\section*{Pump.-Let}
\(A=:\) area of steam-cylinder; \(\quad \alpha=\) area of pump-cylinder;
\(D=\) diameter of steam-cylinder; \(\quad d=\) diameter of pump-cylinder;
\(P=\) steam-pressure, lbs. per sq. in. \(; p=\) resistance per sq. in. on pumps;
\(H=\) head \(=2.309 p ; \quad, \quad\), \(433 H\);
\(E=\) efficiency of the pump \(=\frac{\text { work done in pump-cylinder }}{\text { work done by the steam-cylinder. }}\).
\[
\begin{gathered}
A=\frac{a p}{E P} ; \quad a=\frac{E A P}{p} ; \quad D=d \sqrt{\frac{p}{E P}} ; \quad d=D \sqrt{\frac{\overline{E P}}{p} ; \quad P=\frac{a p}{E A} ; p=\frac{E A P}{a} .} \\
\frac{A}{a}=\frac{p}{E P}=\frac{.433 H}{E P} ; \quad H=2.309 E P \frac{A}{a} ; \quad \text { If } E=\% 5 \%, H=1.732 P \frac{A}{a} .
\end{gathered}
\]
\(E\) is commonly taken at 0.7 to 0.8 for ordinary direct-acting pumps. For the highest class of pumping-engines it may amount to 0.9. The steampressure \(P\) is the mean effective pressure, according to the indicator-diagram; the water-pressure \(p\) is the mean total pressure acting on the pump plunger or piston, including the suction, as could be shown by an indicatordiagram of the water-cylinder. The pressure on the pump-piston is frequently much greater than that due to the height of the lift, on account of the friction of the valves and passages, which iucreases rapidly with velocity of flow.

Speed of Water through Pipes and Pump-passages.The speed of the water is commonly from 100 to 200 feet per minute. If 200 feet per minute is exceeded, the loss from friction may be considerable.

The diameter of pipe required is \(4.95 \sqrt{\frac{\text { galloris per minute }}{\text { velocity in feet per minute }}}\).
For a velocity of 200 feet per minute, diameter \(=35 \times \sqrt{\text { gallons per min. }}\)

Sizes of Direct－acting Pumps．－The tables on this and the next page are selected from cataloques of manufacturers，as representing the two common types of direct－acting pump，viz．，the single－cylinder and the duplex．Both tynes are now made by most of the leading manufacturers．

The Deane Single Boiler－feed or Pressure Pump．－Suitable for pumping clear hquids at a pressure not exceeuing 150 lbs ．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { む. } \\
\frac{2}{3} \\
\text { B }
\end{gathered}
\]} & \multicolumn{3}{|c|}{Sizes．} & \multirow[b]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Capacity per min． at Given speed．}} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{4}{|c|}{Sizes of Pipes．} \\
\hline & \[
\dot{8}
\] & ஃ & \[
\stackrel{0}{0}
\] & & & & & & & & & \\
\hline &  &  &  & &  &  & & & \[
\] &  &  & \％ \\
\hline 0 & 31 & 2 & 5 & 07 & 150 & 10 & 291／2 & ， & 1／2 & \(3 / 4\) & 11／4 & 1 \\
\hline 1 & \(31 / 2\) & \(21 / 4\) & 5 & ． 09 & 150 & 13 & 3：31／2 & \(71 / 2\) & \(1 / 2\) & \(3 / 4\) & \(11 / 4\) & 1 \\
\hline 11／2 & 4 & 23／8 & 5 & ． 10 & 150 & 15 & \(3331 / 2\) & r1／2 & \(1 / 2\) & \(3 / 4\) & \(11 / 4\) & 1 \\
\hline \(\stackrel{2}{2}^{2}\) & 4 & 21／2 & 5 & ． 11 & 150 & 16 & \(331 / 2\) & 71\％ & 1／2 & \(3 / 4\) & \(11 / 4\) & 1 \\
\hline \(21 / 5\) & \(43 / 4\) & 3 & 5 & ． 15 & 150 & 22 & 34 & \(81 / 2\) & 12 & \(3 / 4\) & \(13 / 2\) & \(11 /\) \\
\hline 3 & 5 & \(31 / 4\) & 7 & ． 25 & 125 & 31 & 431／2 & \(91 / 4\) & \(3 / 4\) & 1 & 2 & 11 \\
\hline 4 & 51／2 & \(33 / 4\) & 7 & ． 33 & 125 & 42 & 431／2 & \(91 / 4\) & \(3 / 4\) & 1 & 2 & 11／2 \\
\hline 41／2 & 7 & \(41 / 4\) & 8 & .49 & 120 & 58 & 511／2 & \(12^{4}\) & & 11／2 & 3 & \\
\hline 5 & 7 & 41／2 & 10 & ． 69 & 100 & 69 & 55 & 12 & 1 & 11／2 & 3 & 2 \\
\hline 6 & 71／2 & & 10 & ． 85 & 100 & 85 & 55 & 12 & 1 & \(11 / 2\) & 3 & 2 \\
\hline 61／2 & 8 & 5 & 12 & 1.02 & 100 & \(10 \cdot\) & 63 & 14 & & 11／2 & 3 & 21／2 \\
\hline 2 & 10 & 6 & 12 & 1.47 & 100 & 147 & 69 & 19 & 11／2 & 2 & 4 & 4 \\
\hline 8 & 12 & 7 & 12 & 2.00 & 100 & 200 & 69 & 19 & 2 & 21／2 & 5 & 4 \\
\hline 9 & 14 & 8 & 12 & 2.61 & 100 & 261 & 69 & 21 & 2 & 21／3 & 5 & 5 \\
\hline
\end{tabular}

The Deane Single Tank or Light－service Pump．－These pumps will all stand a constant working pressure of \(i 5 \mathrm{lbs}\) on the water－ cylinders．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Sizes．} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Capacity per min． at Given Speed．}} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{4}{|c|}{Sizes of Pipes．} \\
\hline & & & & & & & & & & & \\
\hline  & 告 & \[
\begin{aligned}
& 0.0 \\
& 50 \\
& 50 \\
& 0.0 \\
& 0.0 \\
& H
\end{aligned}
\] & &  &  & & &  & \[
\begin{aligned}
& \dot{\vec{v}} \\
& \stackrel{\rightharpoonup}{E} \\
& \stackrel{\rightharpoonup}{E} \\
& \stackrel{y}{x}
\end{aligned}
\] & \[
\begin{aligned}
& \dot{0} \\
& \stackrel{0}{3} \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { ơ } \\
& \stackrel{0}{0} \\
& \stackrel{3}{0} \\
& \stackrel{2}{\theta}
\end{aligned}
\] \\
\hline 4 & 4 & 5 & ． 27 & 130 & 35 & 33 & 91／2 & \(1 / 2\) & \(3 / 4\) & 2 & \\
\hline 5 & 4 & 7 & ． 38 & 125 & 48 & 451／2 & 15 & \(3 / 4\) & & 3 & 析 \\
\hline 51／2 & 51\％ & 7 & ． 72 & 125 & 90 & 451／2 & 15 & \(3 / 4\) & 1 & 3 & \(21 / 2\) \\
\hline 71／2 & \％1／2 & 10 & 1.91 & 110 & 210 & 58 & \(1 \widetilde{1}\) & & 11／2 & 5 & \\
\hline 8 & 6 & 12 & 1.46 & 100 & 146 & 67 & 201／2 & 1 & 11\％ & 4 & 4 \\
\hline 6 & 7 & 12 & 2.00 & 100 & 200 & 66 & 17 & \(3 / 4\) & & 4 & 4 \\
\hline 8 & 7 & 12 & 2.00 & 100 & 200 & 67 & 201／2 & & 11／2 & 5 & 4 \\
\hline 8 & 8 & 12 & 2.61 & 100 & 261 & 68 & 30 & & 11／2 & 5 & 5 \\
\hline 10 & 8 & 12 & 2.61 & 100 & 261 & 681／2 & 30 & 11／2 & \({ }^{2}\) & 5 & 5 \\
\hline 8 & 10 & 12 & 4.08 & 100 & 408 & 68 & 201／2 & 1 & 11／2 & 8 & 8 \\
\hline 10 & 10 & 12 & 4.08 & 100 & 408 & 681／2 & 30 & 11／2 & 2 & 8 & 8 \\
\hline 12 & 10 & 12 & 4.08 & 100 & 408 & 64 & 24 & & 2112 & 8 & 8 \\
\hline 10 & 12 & 12 & 5.87 & 100 & \(58 \%\) & 681／2 & 30 & 11／2 & 2 & 8 & 8 \\
\hline 12 & 12 & 12 & \(5.8 \uparrow\) & 108 & \(58 \%\) & 64 & 281／2 & 2 & \(21 / 2\) & 8 & 8 \\
\hline 10 & 12 & 18 & 8． 19 & \％0 & 616 & 95 & 25 & 112 & 2 & 8 & 8 \\
\hline 12 & 12 & 18 & 8． 79 & \％0 & 616 & 95 & 281任 & & 21／2 & 8 & 8 \\
\hline 12 & 14 & 18 & 12.00 & \％ 0 & 840 & 95 & 281／2 & 2 & \(21 / 2\) & 8 & 8 \\
\hline 14 & 16 & 18 & 15.66 & \％ 0 & 1096 & 95 & 34 & 2 & 216 & \(1:\) & 10 \\
\hline 16 & 16 & 18 & 15.66 & \％ 0 & 1096 & 95 & 34 & 2 & 21／2 & 12 & 10 \\
\hline 18 & 16 & 18 & 15.66 & \％ 0 & 1096 & 97 & 34 & 3 & \(31 \%\) & 12 & 10 \\
\hline 16 & 18 & 24 & 26.42 & 50 & \(13: 1\) & 115 & 40 & \(\stackrel{1}{2}\) & 21／2 & 14 & 12 \\
\hline 18 & 18 & 24 & 26.42 & 50 & 1321 & 135 & 40 & 3 & 31／2 & 14 & 12 \\
\hline
\end{tabular}

Efficiency of Small Directwacting Pumps.-Chas. E. Emery, in Reports of Judges of Philadelphia Exhibition, 1876, Group xx., says: "Experiments made with steanı-pumps at the American Institute Exhibition of 1867 showed that average-sized steam-pumps do not, on the average, utilize more than 50 per cent of the indicated power in the steam-cylinders, the remainder being absorbed in the friction of the engine, but more particularly in the passage of the water through the pump. It may be safely stated that ordinary steam-pumps rarely require less than \(1: 20\) pounds of steam per hour for each horse-power utilized in raising water, equivalent to a duty of only \(15,000,000\) foot-pounds per 100 pounds of coal. With larger steampumps, particularly when they are proportioned for the work to be done, the duty will be materially increased."

The Worthington Duplex Pump.
Standard Sizes for Ordinary Service.


Speed of Piston.-A piston speed of 100 feet per minute is commonly assumed as correct in practice, but for short-stroke pumps this gives too high a speed of rotation, requiring too frequent a reversal of the valves. For long stroke pumps, 2 feet and upward, this speed may be considerably exceeded, if valves and passages are of ample area.

\section*{Number of Strokes required to Attain a Piston Speed trom 50 to 125 Feet per Minute for Pumps having Strokes from 3 to 18 Inches in Length.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{10}{|c|}{Length of Stroke in Inches.} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 12 & 15 & 18 \\
\hline & \multicolumn{10}{|c|}{Number of Strokes per Minute.} \\
\hline 50 & 200 & 150 & 120 & 100 & 86 & 75 & 60 & 50 & 40 & 33 \\
\hline 55 & 220 & 165 & 132 & 110 & 94 & 82.5 & 66 & 65 & 44 & 37 \\
\hline 60 & 240 & 180 & 144 & 120 & 103 & 90 & 72 & 60 & 48 & 40 \\
\hline 65 & 260 & 195 & 156 & 130 & 111 & 97.5 & 78 & 65 & 52 & 43 \\
\hline 70 & 280 & 210 & 168 & 140 & 120 & 105 & 84 & 70 & 56 & 47 \\
\hline \(\%\) & 300 & 225 & 180 & 150 & 128 & 112.5 & 90 & 75 & 60 & 50 \\
\hline 80 & 320 & 240 & 192 & 160 & 137 & 120 & 96 & 80 & 64 & 53 \\
\hline 85 & 340 & 255 & 204 & 170 & 146 & 127.5 & 102 & 85 & 68 & 57 \\
\hline 90 & 360 & 270 & 216 & 180 & 154 & 135 & 108 & 90 & 72 & 60 \\
\hline 95 & 380 & 285 & 228 & 190 & 163 & 142.5 & 114 & 95 & 76 & 63 \\
\hline 100 & 400 & 300 & 240 & 200 & 171 & 150 & 120 & 100 & 80 & 67 \\
\hline 105 & 420 & 315 & 252 & 210 & 180 & 157.5 & 126 & 105 & 84 & 70 \\
\hline 110 & 440 & 330 & 264 & 220 & 188 & 165 & 132 & 110 & 88 & 73 \\
\hline 115 & 460 & 345 & 276 & 230 & 197 & 172.5 & 138 & 115 & 92 & 77 \\
\hline 120 & 480 & 360 & 288 & 240 & 206 & 180 & 144 & 120 & 96 & 80 \\
\hline 125 & 500 & 375 & 300 & 250 & 214 & 187.5 & 150 & 125 & 100 & 83 \\
\hline
\end{tabular}

Piston Speed of Pumping-engines. (John Birkinbine, Trans. A.I. M. E., v. 459. )-In dealing with such a ponderous and unyielding substance as water there are many difficulties to overcome in making a pump work with a high piston speed. The attainment of moderately high speed is, however, easily accomplished. Well-proportioned pumping-engines of large capacity, provided with ample water-ways and properly constructed valves. are operated successfully against heavy pressures at a speed of 250 ft . per minute, without "thug," concussion, or injury to the apparatus, and there is no doubt that the speed can he still further increased.
Speed of Water through Valves.- If areas through valves and water passages are sufficient to give a velocity of 250 ft . per min. or less, they are ample. The water should be carefully guided and not too abruptly deflerted (F. W. Dean. Eng. News, Aug. 10, 1893.)
Boiler-feed Pumps.-Practice has shown that 100 ft . of piston speed per minute is the limit, if excessive wear and tear is to be avoided.

The velocity of water through the suction-pipe must not exceed 200 ft . per minute, else the resistance of the suction is too great.

The approximate size of suction-pipe, where the length does not exceed 25 ft . and there are not more than two elbows, may be found as follows:
\(\tau / 10\) of the diameter of the cylinder multiplied by \(1 / 100\) of the piston speed in feet. For duplex pumps of small size, a pipe one size larger is usually employed. The velocity of flow in the discharge-pipe should not exceed 500 ft . per minute. The volume of discharge and length of pipe vary so greatly in different installations that where the water is to be forced more than 50 ft . the size of discharge-pipe should be calculated for the particular conditions, allowing no greater velocity than 500 ft . per minute. The size of discharge-pipe is calculated in single-cylinder pumps from 250 to 400 ft . per minute. Greater velocity is permitted in the larger pipes.

In determining the proper size of pump for a steamboiler. allowances must be made for a supply of water sufficient to cover all the demands of engines, steam-heating, etc., up to the capacity of generator, and should not be calculated simply according to the requirements of the engine. In practice engines use all the way from 12 up to 50 , or more, pounds of steam per H.P. per hour when being worked up to capacity. When an engine is overloaded or underloaded more water per H.P. will be required than when operating at its rated capacity. The average run of hurizontal tubular
boilers will evaporate from 2 to 3 lbs . of water per sq. ft. of heating-surface per hour, but may be driven up to 6 lbs. if the grate-surface is too large or the draught too great for economical working.

Pump-Valves.-A. F. Nagle (Trans. A. S. M. E., x. 521) gives a number of designs with dimensions of double-beat or Cornish valves used in large pumping-engines, with a discussion of the theory of their proportions. The following is a summary of the proportions of the valves described.

Summary of Valve Proportions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location of Engine. &  &  &  &  & 宮 \\
\hline Providence high-service engine ....... & 12 & \[
\begin{aligned}
& 1 \mathrm{lb} . \\
& \text { reduced to } \\
& .66 \mathrm{lb} .
\end{aligned}
\] & 16\% & \(3 \% \mathrm{flbs}\). & Good \\
\hline Providence CornishSt. Louis Water Wks. & \({ }_{16}^{16}\) & 1.28
1.86 & 12
67 & \[
\begin{aligned}
& 680 \\
& 250
\end{aligned}
\] & \(\underset{\text { Someod noise }}{\text { Goin }}\) \\
\hline Milwaukee " " & 7 & . 40 & 88 & 120 & \(\left\{\begin{array}{l}\text { Some noise at } \\ \text { high speed. }\end{array}\right.\) \\
\hline  & 25
15 & \({ }_{1}^{1.41}\) & 75
85 & \[
\begin{aligned}
& 151 \\
& 140
\end{aligned}
\] & Noisy \\
\hline ( \(\begin{gathered}\text { wood seats........ } \\ \text { Chicago Water Wis. }\end{gathered}\) & 15 & 1.16
.96 & \({ }_{75}^{94}\) & 132
151 & " \\
\hline
\end{tabular}

Mr. Nagle says: There is one feature in which the Cornish valves are necessarily defective, namely, the lift, must always be quite large, unless great power is sacrificed to reduce it. It is undeniable that a small lift is preferable to a great one, and hence it naturally leads to the suibstitution of numerous small valves for one or several large ones. To what extreme reduction of size this view might safely lead must be left to the judgment of the engineer for the particular case in hand, but certainly, theoretically, we must adopt small valves. Mr. Corliss at one time carried the theory so far as to make them only \(13 / 8\) inches in diameter, but from 3 to 4 inches is the more common practice now. A small valve presents proportionately a larger surface of discharge with the same lift than a larger valve, so that whatever the total area of valve-seat opening, its full contents can be discharged with less lift through numerous small valves than with one large one.

Henry R. Worthington was the first to use numerous small rubber valves in preference to the larger metal valves. These valves work well under all the conditions of a city pumping-engine. A volute spring is generally used to limit the rise of the valve.

In the Leavitt high-duty sewerage-engine at Boston (Am. Machinist, May 31. 1884), the valves are of rubber, \(3 / 4\)-inch thick, the opening in valve-seat being \(131 / 2 \times 41 / 2\) inches. The valves have iron face and back-plates, and form their own hinges.

\section*{CENTRRIFUGAL PUMES.}

Relation of Height of Lift to Velocity. -The height of lift depends only on the tangential velocity of the circumference, every taugential velocity giving a constant height of lift-sometimes termed "head"whether the pump is small or large. The quantity of water discharged is in proportion to the area of the discharging orifices at the circumference, or in proportion to the square of the diameter, when the breadth is kept the same. R. H. Buel (App. Cyc. Mech., ii, 606) gives the following:

Let \(Q\) represent the quantity of water, in cubic feet, to be pumped per minute, \(h\) the height of suction in feet, \(h^{\prime}\) the height of discharge in feet, and d the diameter of suction-pipe, equal to the diameter of discharge-pipe, in
feet; then, according to Fink, \(d=0.36 \sqrt{\frac{Q}{\sqrt{2 g\left(h+h^{\prime}\right)}}}, g\) being the accel. eration due to gravity.
If the suction takes place on one side of the wheel, the inside diameter of the wheel is equal to \(1.2 d\), and the outside to \(2.4 d\). If the suction takes place at both sides of the wheel. the inside diameter of the wheel is equal to \(0.85 d\), and the outside to \(1.7 d\). Then the suction-pipe will have two branches, the area of each equal to half the area of \(d\). The suction-pipe should be as short as possible, to prevent air from entering the pump. The tangential velocity of the outer edge of wheel for the delivery \(Q\) is equal to \(1.25 \sqrt{2 g\left(h+h^{\prime}\right)}\) feet per second.

The arms are six in number, constructed as follows: Divide the central angle of \(60^{\circ}\), which incloses the outer edges of the two arms, into any number of equal parts by dividing the radii, and divide the breadth of the wheel in the same manner by drawing concentric circles. The intersections of the several radii with the corresponding circles give points of the arm.
In experiments with Appold's pump, a velocity of circumference of 500 f.t. per min. raised the water 1 ft . high, and maintained it, at that level without discharging any; and double the velocity raised the water to four times the height, as the centrifugal force was proportionate to the square of the velocity; consequently,

500 ft . per min: raised the water 1 ft . Without discharge.
\begin{tabular}{lllllllll}
1000 & 6 & 6 & 6 & 6 & 6 & 4 & 6 & 6 \\
2000 & 6 & 6 & 6 & 6 & 6 & 16 & 6 & 6 \\
4000 & 6 & 6 & 6 & 6 & 6 & 64 & 6 & 6 \\
\end{tabular}

The greatest height to which the water had been raised without discharge, in the experiments with the \(1-\mathrm{ft}\). pump, was 67.7 ft ., with a velocity of 4153 ft. per min., being rather less than the calculated height, owing probably to leakage with the greater pressure. A velocity of 1128 ft . per min. raised the water \(51 / 2 \mathrm{ft}\). without any discharge, and the maximum effect from the power employed in raising to the same height \(51 / 2 \mathrm{ft}\). was obtained at the velocity of \(16 i 8 \mathrm{ft}\). per min., giving a discharge of 1400 gals . per min. from the \(1-\mathrm{ft}\). pump. The additional velocity required to effect a discharge of 1400 gals. per min., through a 1-ft. pump working at a dead level without any height of lift. is 550 ft . per min. Consequently, adding this number in each case to the velocity given above, at which no discharge takes place, the following velocities are obtained for the maximum effect to be produced in each case :
\begin{tabular}{lllllll}
1050 ft & per \\
1550 & \(\min _{66}\), & velocity for & 1 & ft . height of lift. \\
2550 & 66 & 66 & 66 & 66 & 4 & 66 \\
4550 & 66 & 66 & 66 & 66 & 64 & 66 \\
66 & 66 & 66
\end{tabular}

Or, in general terms, the velocity in feet per minute for the circumference of the pump to be driven, to raise the water to a certain height, is equal to \(550+500 \sqrt{\text { height of lift in feet. }}\)

* Without base.

The economical capacity corresponds to a flow not exceeding 10 ft . per second in the delivery-pipe. Small pipes and high rate of flow cause a great loss of power.

\section*{Size of Pulleys, Width of Belts, and Revolutions per Minute Necessary to Raise the Rated Quantity of Water to Different Heights with Pumps of Class B.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { N }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
4 \\
40 \\
5 \\
5 \\
0 \\
0 \\
0 \\
0 \\
3
\end{array}\right.
\]} & \multirow[t]{2}{*}{} & \multicolumn{9}{|l|}{Height in Feet and Revolutions per Minute.} & \multirow[b]{2}{*}{} \\
\hline & & & & & \(6^{\prime}\) & \(8^{\prime}\) & \(10^{\prime}\) & \(12^{\prime}\) & \(16^{\prime}\) & \(20^{\prime}\) & \(25^{\prime}\) & \(30^{\prime}\) & \(35^{\prime}\) & \\
\hline & 5 & & 3 & & 520 & 590 & 665 & 720 & 835 & 930 & 1045 & 1125 & 1200 & \\
\hline & 6 & 5 & 4 & 100 & 475 & 540 & 605 & 660 & 765 & 850 & 955 & 1025 & 1100 & \\
\hline 3 & 71/2 & 7 & 6 & 250 & 435 & 500 & 560 & 610 & 705 & 790 & 850 & 945 & 1000 & 3 \\
\hline 4 & 10 & 7 & 7 & 450 & 400 & 465 & 5:0 & 570 & 655 & 730 & 815 & 880 & 945 & 4 \\
\hline 5 & 14 & 11 & 8 & 700 & 355 & 410 & 454 & 595 & 575 & 640 & 715 & 765 & \(8 \cdot 5\) & 5 \\
\hline 6 & 16 & 11 & 9 & 1200 & 315 & 365 & 400 & 440 & 510 & 570 & 635 & 685 & 745 & 6 \\
\hline 8 & 20 & 12 & 10 & 2000 & 234 & 270 & 300 & 330 & 385 & 425 & 475 & 500 & 555 & 8 \\
\hline 10 & 22 & 12 & 10 & 3000 & 234 & 270 & 300 & 3:30 & 385 & 4:5 & \(4 \pi 5\) & 500 & 555 & 10 \\
\hline 12 & 30 & 14 & 12 & 4200 & 160 & 185 & 200 & 2:0 & 255 & 285 & 318 & 340 & 360 & 12 \\
\hline 15 & 36 & 16 & 1.5 & r000 & 140 & 16.5 & 180 & 198 & 228 & 255 & 285 & 305 & 330 & 15 \\
\hline 18 & 40 & 16 & 15 & 10000 & 125 & 145 & 160 & \(1 \tau 3\) & 200 & 225 & 250 & 270 & 290 & 18 \\
\hline 24 & & & & 18000 & 105 & 125 & 135 & 150 & 170 & 190 & 214 & 230 & 250 & 24 \\
\hline 30 & & & & 25000 & 95 & 106 & 118 & 130 & 148 & 165 & 185 & 204 & 215 & 30 \\
\hline 36 & & & & 35000 & 95 & 106 & 118 & 130 & 148 & 165 & 185 & 204 & 215 & 36 \\
\hline
\end{tabular}

Efficiencies of Centrifugal and Reciprocating Pumps.W. O. Webber (Trans. A. S. M. E., vii. 598) gives diagrams showing the relative efficiencies of centrifugal and reciprocating pumps, from which the following flgures are taken for the different lifts stated :
Lift, feet:
\[
\begin{array}{llllllllllllllll}
2 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 50 & 60 & 80 & 100 & 120 & 160 & 200
\end{array} 240 \quad 280
\]

Efficiency reciprocating pump: Efficiency centrifugal pump:
. 50 . 56 . 64 . 68 . 69 . 68 . 66 . 62 . 58 . 50 . 40
The term efficiency here used indicates the value of W. H. P. - I. H. P., or horse-power of the water raised divided by the indicated horse-power of the stram-engine, and does not therefore show the full efficiency of the pump, but that of the combined pump and engine. It is, however, a very simple way of showing the relative values of different kinds of pumping-engines having their motive power forming a part of the plant.
The highest value of this term. , , iven by Mr. Webber, is .9164 for a lift of \(1 \% 0 \mathrm{ft}\).. and 3615 gals. per min. This was obtained in a test of the Leavitt pumping.engine at Lawrence, Mass.. July 24, \(18 \% 9\).
With reciprocating pumps, for higher lifts than \(1 \tau 0 \mathrm{ft}\)., the curve of eff ciencies falls, and from 200 to 300 ft . lift the average value seem? about .84. Below 170 ft . the curve also falls reversely and slowly, until at about 90 ft . its descent becomes more rapid, and at 35 ft .727 appears the best recorded performance. There are not any very satisfactory records below this lift, but some figures are given for the yearly coal consumption and total number of gallons pumped by engines in Holland under a \(16-\mathrm{ft}\). lift, from which an efficiency of 44 has been deduced.
With centrifugal pumps, the lift at which the maximum efficiency is obtained is approximately 17 ft . At lifts from 12 to 18 ft . some makers of large experience claim now to obtain from \(65 \%\) to \(i 0 \%\) of useful effect, but .613 appears to be the best done at a public test under 14.7 ft . head.
The drainage-pumps constructed some years ago for the Haarlem Lake were designed to lift 70 tons per min. 15 ft ., and they weighed about 150 tons. Centrifugal pumps for the same work weigh only 5 tons. The weight of a centrifugal pump and engine to lift 10,000 gals. per min. 35 ft . high is 6 tons.

The pumps placed by Gwynne at the Ferrara Marshes, Northern Italy. in 1865, are, it is believed, capable of handling more water than other set of. pumping-engines in existence. The work performed by these pumps is the lifting of 2000 tons per min.-over \(600.000,000\) gals. per 24 hours-on a mean lift of about 10 ft . (maximum of 12.5 ft .). (See Engineering, 1876.)

The efficiency of centrifugal pumps seems to increase as the size of pump
increases, approximately as follows: A \(2^{\prime \prime}\) pump (this designation meaning always the size of discharge-outlet in inches of diameter), giving an efflciency of \(38 \%\), a \(3^{\prime \prime}\) pump \(45 \%\), and a \(4^{\prime \prime}\) pump \(5 \% \%\), a \(5^{\prime \prime}\) pump \(60 \%\), and a \(6^{\prime \prime}\) pump \(64 \%\) efficiency.

Tests of Centrifugal Pumps.
W. O. Webber, Trans. A. S. M. E., ix. 237.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Maker. & \[
\begin{aligned}
& \text { An- } \\
& \text { drews. }
\end{aligned}
\] & \[
\left|\begin{array}{c}
\text { An- } \\
\text { drews. }
\end{array}\right|
\] & \[
\begin{gathered}
\text { An- } \\
\text { drews. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Heald } \\
& \& \\
& \text { Sisco. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Heald } \\
& \& \\
& \text { Sisco. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Heald } \\
& \& \\
& \text { Sisco. }
\end{aligned}
\] & Berlin. Schwartz kopff. \\
\hline Size & No. 9. & No. 9. & No. 9. & No. 10. & No. 10. & No. 10. & No. 9. \\
\hline Diam. discharge. & \(91 / 8^{\prime \prime}\) & 91/8" \({ }^{\prime \prime}\) & \(91 /{ }^{\prime \prime}\) & & & & \\
\hline " suction ... & & 93 & & \(12^{\prime \prime}\) & \(12^{\prime \prime}\) & \(12^{\prime \prime}\) & 10. \\
\hline Rev, per mi & 191.9 & 195.5 & 200.5 & 188.3 & 20:3 & 213.7 & 500 \\
\hline Galls. per minute & 1513.12 & 2023.82 & 2499.33 & \(16 \pi 3.37\) & 2044.9 & 2371.67 & 1944.8 \\
\hline Height in feet & 12.25 & 12.62 & 13.08 & 12.33 & 12.58 & 13.0 & 16.46 \\
\hline Water H.P. & 4.69 & 6.47 & 8.28 & 5.22 & 6.51 & 7.81 & \\
\hline Dynam'eter H.P. & 10.09 & 12.2 & 14.38 & 8.11 & \(10 \% 4\) & 14.02 & \\
\hline Efficiency. & 46.52 & 53.0 & 57.57 & 64.5 & 60.74 & 55.72 & 73.1 \\
\hline
\end{tabular}

Vanes of Centrifugal Pumps.-For forms of pump vanes, see paper by W. O. Webber, Trans. A. S. M. E., ix. 228, and discussion thereon by Profs. Thurston, Wood, and others.

\section*{The Centrifugal Pump used as a Suction Dredge.-The} Andrews centrifugal pump was used by Gen. Gillmore, U. S. A., in 18:1, in deepening the channel over the bar at the mouth of the St. John's River, Florida. The pump was a No. 9, with suction and discharge pipes each 9 inches diam. It was driven at 300 revolutions per minute by belt from an eugine developing 26 useful horse-power.

Although 200 revolutions of the pump disk per minute will easily raise 3000 gallons of clear water 12 ft . high, through a straight vertical 9 -inch pipe, 300 revolutions were required to raise 2500 gallons of sand and water 11 ft . high, through two inclined suction-pipes having two turns each, discharged through a pipe having one turn.

The proportion of sand that can be pumped depends greatly upon its specific gravity and fineness. The calcareous and argillaceous sands flow more freely than the silicious, and fine sands are less liable to choke the pipe than those that are coarse. When working at high speed, \(50 \%\) to \(55 \%\) of sand can be raised through a straight vertical pipe, giving for every 10 cubic yards of material discharged 5 to \(51 / 2\), cubic yards of compact sand. With the appliances used on the St. John's bar, the proportion of sand seldom exceeded \(45 \%\), generally ranging from \(30 \%\) to \(35 \%\) when working under the most favorable conditions.

In pumping 2500 gallnns, or 12.6 cubic yards of sand and water per minute, there would therefore be obtained from 3.7 to 4.3 cubic yards of sand. During the early stages of the work, before the teeth under the drag had been properly arranged to aid the flow of sand into the pipes, the rield was considerably below this average. (From catalogue of Jos. Edwards \& Co., Mfrs. of the Andrews Pump, New York.)

\section*{DUTY TRIALS OF PUMPING-ENGINES.}

A committee of the A. S. M. E. (Trans., xii. 530) reported in 1891 on a standard method of conducting duty trials. Iustead of the old unit of duty of foot-pounds of work per 100 lbs . of coal used, the com nittee recommend a new unit, foot-pounds of work per million heat-units furnished by the boiler. The variations in quality of coal make the old standard unfit as a basis of duty ratings. The new unit is the precise equivalent of 100 lbs . of coal in cases where each pound of coal imparts 10,000 heat-units to the water in the boiler, or where the evaporation is \(10.000 \div 965.7=10.355 \mathrm{lbs}\). of water from and at \(21 \omega^{\circ}\) per pound of fuel. This evaporative result is readily obtained from all grades of Cumberland bituminous coal, used in horizontal return tubular boilers, and. in many cases, from the best grades of anthra. cite coal,

The committee also recommend that the work done be determined by plunger displacement, after making a test for leakage, instead of by measurement of flow ky weirs or other apparatus, but advise the use of such apparatus when practicable for obtaining additional data. The following extracts are taken from the report. When important tests are to be made the complete report should be consulted.

The necessary data having been obtained, the duty of an engine, and other quantities relating to its performance, may be computed by the use of the following formulæ:
\[
\text { 1. } \begin{aligned}
\text { Duty } & =\frac{\text { Foot-pounds of work done }}{\text { Total number of heat-units consumed }} \times 1,000,000 \\
& =\frac{A(P \pm p+s) \times L \times N}{H} \times 1,000,000 \text { (foot } \cdot \text { pounds). }
\end{aligned}
\]
2. Percentage of leakage \(=\frac{C \times 144}{A \times L \times N} \times 100\) (per cent).
3. Capacity \(=\) number of gallons of water discharged in 24 hours
\[
=\frac{A \times L \times N \times 7.4805 \times 24}{D \times 144}=\frac{A \times L \times N \times 1.24675}{D} \text { (gallons). }
\]
4. Percentage of total frictions,
\[
\begin{aligned}
& =\left[\frac{\text { I.H.P. }-\frac{A(P \pm p+s) \times L \times N}{D \times 60 \times 33,000}}{\text { I.H.P. }}\right] \times 100 \\
& =\left[1-\frac{A(P \pm p+s) \times L \times N}{A s \times \text { M.E.P. } \times L s \times N s}\right] \times 100(\text { per cent })
\end{aligned}
\]
or, in the usual case, where the length of the stroke and number of strokes of the plunger are the same as that of the steam-piston, this last formula becomes:
\[
\text { Percentage of total frictions }=\left[1-\frac{A(P \pm p+s)}{A s \times \text { M.E.P. }}\right] \times 100 \text { (per cent). }
\]

In these formulæ the letters refer to the following quantities:
\(A=\) Area, in square inches, of pump plunger or piston, corrected for area of piston rod or rods;
\(P=\) Pressure, in pounds per square inch, indicated by the gauge on the force main;
\(p=\) Pressure, in pounds per square inch, corresponding to indication of the vacuum-gauge on suction-main (or pressure-gauge, if the suctionpipe is under a head). The indication of the vacuum-gauge, in inches of mercury, may be converted into pounds by dividing it by 2.035;
\(s=\) Pressure, in pounds per square inch, corresponding to distance between the centres of the two gauges. The computation for this pressure is made by multiplying the distance, expressed in feet, by the weight of one cubic foot of water at the temperature of the pump-well, and dividing the product by 144 ;
\(L=\) Average length of stroke of puinp-plunger, in feet;
\(N=\) Total number of single strokes of pump-plunger made during the trial; \(A s=\) Area of steam-cylinder, in square inches, corrected for area of pistonrod. The quantity \(A s \times M . E . P\)., in an engine having more than one cylinder, is the sum of the various quantities relating to the respective cylinders;
\(L_{s}=\) Average length of stroke of steam-piston, in feet;
\(N s=\) Total number of single strokes of steam-piston during trial;
M.E.P. = Average mean effective pressure, in pounds per square inch, measured from the indicator-diagrams taken from the steam-cylinder;
I H.P. = Indicated horse-power developed by the steam-cylinder;
\(C=\) Total number of cubic feet of water which leaked by the pump-plunger during the trial, estimated from the results of the leakage test;
\(D=\) Duration of trial in hours;
\(H=\) Total number of heat-units (B.T. U.) consumed by engine \(=\) weight of water supplied to boiler by main feed-pump \(\times\) total heat of steam of boiler pressure reckoned from temperature of main feed-water + weight of water supplied by jacket-pump \(\times\) total heat of steam of boiler-pressure reckoned from temperature of jacket-water + weight, of any other water supplied \(\times\) total heat of steam reckoned from its temperature of supply. The total heat of the steam is corrected for the moisture or superheat which the steam may contain. No allowance is made for water added to the feed water, which is derived from any source, except the engine or some accessory of the engine. Heat added to the water by the use of a flue-heater at the boiler is not to be deducted. Should heat be abstracted from the flue by means of a steam reheater connected with the intermediate receiver of the engine, this heat must be included in the total quantity supplied by the boilel.
Leakage Test of Pump. -The leakage of an inside plunger (the only type which requires testing) is most satisfactorily determined by making the test with the cylinder-head removed. A wide board or plank may be temporarily bolted to the lower part of the end of the cylinder, so as to hold back the water in the manner of a dam, and an opening made in the temporary head thus provided for the reception of an overflow-pipe. The plunger is blocked at some intermediate point in the stroke (or, if inis position is not practicable, at the end of the stroke), and the water from the force main is admitted at full pressure behind it. The leakage escapes through the overflow-pipe, and it is collected in barrels and measured. The test should be made, if possible, with the plunger in various positions.
In the case of a pump so planued that it is difficult to remove the cylinderhead, it may be desirable to take the leakage from one of the openings which are provided for the inspection of the suction-valves, the head being allowed to remain in place.
It is assumed that there is a practical absence of valve leakage. Examination for such leakage should be made, and if it occurs, and it is found to be due to disordered valves, it should be remedied before making the plunger test. Leakage of the discharge valves will be shown by water passing down into the empty cylinder at either end when they are under pressure. Leakage of the suction-valves will be shown by the disappearance of water which covers them.
If valve leakage is found which cannot be remedied the quantity of water thus lost should also be tested. One method is to measure the amount of water required to maintain a certain pressure in the pump cylinder when this is introduced through a pipe temporarily erected, no water being allowed to enter through the discharge valves of the pump.

Table of Data and Pesults. - In order that uniformity may be secured, it is suggested that the data aud results, worked out in accordance with the standard method. be tabulated in the manner indicated in the following scheme:

\section*{DUTY TRIAL OF ENGINE.}

\section*{DIMENSIONS.}
1. Number of steam-cylinders
\(\because\) Diameter of steam-cylinders ..... ins.
3. Diameter of piston-rods of stean-cylinders ..... ins.
4. Nominal stroke of steam-pistons ..... ft.
5. Number of water-plungers
ins.
ins.
6. Diameter of plungers
6. Diameter of plungers ..... ins.
\%. Diameter of piston-rods of water-cylinders
ft.
ft.
9. Net area of steam-pistons ..... sq. ins.
10. Net area of plungers ..... sq. ins.
11. Average length of stroke of steam-pistons during trial ..... ft .
12. Average length of stroke of plungers during trial ..... ft.
(Give also complete description of plant.)
TEMPERATURES.
13. Temperature of water in pump-well ..... degs.
14. Temperature of water supplied to boiler by main feed-pump. ..... degs.
15. Temperature of water supplied to boiler from various otherdegs.

FEED-WATER.
16. Weight of water supplied to boiler by main feed-pump ..... lbs.
17. Weight of water supplied to boiler from various other sources. ..... lbs.
18. Total weight of feed-water supplied from all sources ..... lbs.
PRESSURES.
19. Boiler pressure indicated by gauge ..... lbs.
20. Pressure indicated by gauge on force main. ..... lbs.
21. Vacuum indicated by gauge on suction main ..... ins.
22. Pressure corresponding to vacuum given in preceding line ..... lbs.
〔3. Vertical distance between the centres of the two gauges ..... ins.
24. Pressure equivalent to distance luetween the two gauges ..... lbs.
MISCELLANEOUS DATA.
25. Duration of trial ..... hrs.
26. Total number of single strokes during trial
27. Percentage of moisture in steam supplied to engine, or number of degrees of superheating\% or deg.
28. Total leakage of pump during trial, determined from results ofleakage test29. Mean effective pressure, measured from diagrams taken fromsteam-cylindersM.E.P.
PRINCIPAL RESULTS.
30. Duty ..... ft. lbs.
31. Percentage of leakage ..... \%
32. Capacity ..... gals.
33. Percentage of total friction ..... \%
ADDITIONAL RESULTS.
34. Number of double strokes of steam-piston per minute
35. Indicated horse-power developed by the various steam-cylinders I.H.P.
36. Feed-water consumed by the plant per hourlbs.
37. Feed-water consumed by the plant per indicated horse-powerper hour, corrected for moisture in steam.lbs.
38. Number of heat units consumed per indicated horse-power per hour39. Number of heat units consumed per indicated horse-powerper minuteB.T.U.
40. Steam accounted for by indicator at cut-off and release in the various steam-cylinders ..... lbs.
41. Proportion which steam accounted for by indicator bears to the feed-water consumption42. Number of double strokes of pump per minute
43. Mean effective pressure, measured from puinp diagrams ..... M.E.P.
44. Indicated horse-power exerted in pump-cylinders ..... I.H.P.
45. Work done (or duty) per 100 lbs . of coal ..... ft. lbs.
SAMPLE DIAGRAM TAKEN FROM STEAM-CYLINDERS.(Also, if possible, full measurement of the diagrans, embracing pressuresat the initial point, cut-off, release, and compression ; also back pressure,and the proportions of the stroke completed at the various points noted.)
SAMPLE DIAGRAM TAKEN FROM PUMP-CYLINDERS.

These are not necessary to the main object, but it is desirable to give them.

DATA AND RESULTS OF BOILER TEST.
(In accordance with the scheme recommended by the Boiler-test Committee of the Society.)

\section*{VACUUN PUMPS-AIR-LIFT PUMP.}

The Pulsometer. - In the pulsometer the water is raised by suction into the pump-chamber by the condensation of steam within it, and is then forced into the delivery-pipe by the pressure of a new quantity of steam on the surface of the water. Two chambers are used which work alternately, one raising while the other is discharging.
Test of ir Pulsometer.-A test of a pulsometer is described by De Volson Wond in Trans. A. S. M. E. xiii. It had a \(31 / 2-\) inch suction-pipe, stood 40 in . high, and weighed 695 lbs .

The steam-pipe was 1 inch in diameter. A throttle was placed about 2 feed
from the pump, and pressure gauges placed on both sides of the throttle, and a mercury well and thermoneter placed beyond the throttle. The wire drawing due to throttling caused superheating.

The pounds of steam used were computed from the increase of the tem perature of the water in passing through the pump.
lounds of steam \(\times\) loss of heat \(=\mathrm{lbs}\). of water sucked in \(\times\) increase of temp.
Thき loss of heat in a pound of steam is the total heat in a pound of saturated steam as found from "steam tables" for the given pressure, plus the heat of superheating, minus the temperature of the discharged water ; or
\[
\text { Pounds of steam }=\frac{\text { lbs. water } \times \text { increase of temp. }}{H-0.48 t-T}
\]

The results for the four tests are given in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Data and Results.} & \multicolumn{4}{|c|}{Number of Test.} \\
\hline & 1 & 2 & 3 & 4 \\
\hline Strokes per minute & 71 & 60 & 57 & 64 \\
\hline Steam press.in pipe before throtil'g & 114 & 110 & 127 & \\
\hline Steam press. in pipe after throttl'g & 19 & 30 & 43.8 & 26.1 \\
\hline Steam temp. after throttling, deg.F. & 270.4 & 277 & 309.0 & 20.1 \\
\hline Steam am'nt of superheat'g.deg.F. & 3.1 & 3.4 & 17.4 & 1.4 \\
\hline Steam used as det'd from temp.,1bs. & 1617 & 931 & 1518 & 1019.9 \\
\hline Water pumped, lbs.................. & 404.786 & 186.362 & 228,425 & 248.053 \\
\hline Water temp.before entering pump, & 75.15 & 80.6 & 76.3 & \%0.25 \\
\hline Water temp, rise of............ & 4.47 & 5.5 & 7.49 & 4.55 \\
\hline Water head by gauge on lift, ft.... & 29.90 & 54.05 & 54.05 & 29.90 \\
\hline Water head by gauge on suction... & 12.26 & 12.26 & 19.67 & 19.67 \\
\hline Water head by gauge, total ( \(H\) ).. & 42.16 & 66.31 & 73.72 & 49.57 \\
\hline Water head by measure, total ( \(h\) ) & 32.8 & 57.80 & 66.6 & 41.60 \\
\hline Coeff. of friction of plant ( \(h\) ) \(\div(H)\) & 0.747 & 0.877 & 0.911 & 0.839 \\
\hline Efficiency of pulsometer..... & 0.012 & 0.0155 & 0.0126 & 0.0138 \\
\hline Effic. of plant exclusive of boiler. & 0 O,093 & 0.0136 & 0.0115 & 00116 \\
\hline Effic. of plant if that of boiler be 0.7 & 0.0065 & 0.0095 & 0.0080 & 0.0081 \\
\hline Duty, if 1 lb. evaporates 10 lbs. water & 10,511,400 & 13,391,000 & 11.059,000 & 12,036,300 \\
\hline
\end{tabular}

Of the two tests having the highest lift ( 54.05 ft .), that was more efficient which had the smaller suction ( 12.26 ft .), and this was also the most efficient of the four tests. But, on the other hand, the other two tests having the same lift ( 29.9 ft .), that was the more efficient which had the greater suction (19.6 ), so that no law in this regard was established. The pressures used, \(19,30,43.8,26.1\), follow the order of magnitude of the total heads, but are not proportional thereto. No attempt was made to determine what pressure would give the best efficiency for any particular head. The pressure used was intrusted to a practical runner, and he judged that when the pump was running regularly and well, the pressure then existing was the proper one. It is peculiar that, in the first test, a pressure of 19 lbs . of steam should produce a greater number of strokes and pump over \(50 \%\) more water than 26.1 lins.. the lift being the same, as in the fourth experiment.

Chas. E. Emery in discussion of Prof. Wood's paper says, referring to tests made by himself and others at the Centennial Exhibition in \(18 \% 6\) (see Report of the Judges, Group xx.), that a vacuum-pump tested by him in 1871 gave a duty of 4.7 millions; one tested by J. F. Flagg, at the Cincinnati Exposition in 1875, gave a maximum duty of 3.25 millions. Several vacuum and small steam-pumps, compared later on the same basis, were reported to have given duties of 10 to 11 millions, the steam-pumps doing no better than the vacuum-pumps. Injectors, when used for lifting water not required to be heated, have an efficiency of 2 to 5 millions; vacuum-pumps vary generally between 3 and 10; small steam-pumps between 8 and 15; largel steam-pumps, between 15 and 30 , and pumping-engines between 30 and 140 millions.

A very high record of test of a pulsometer is given in Eng'g. Nov. 24, 1893, p. 639 , viz. : Height of suction \(11.2 \tau \mathrm{ft}\). ; total height of lift, 102.6 ft . ; horizontal length of delivery-pipe, 118 ft ; quantity delivered per hour, 26,188 British gallons. Weight of steam used per H. P. per hour, 9... 66 lbs.; work
done per pound of steam 21,345 foot-pounds, equal to a duty of \(21,345,000\) foot-pounds pe 100 lbs . of coal, if 10 lbs of steam were generated per pound of coal.
The Jet-pump.-This machine works by means of the tendency of a stream or jet of fluid to drive or carry contiguous particles of fluid along with it. The water-jet pump, in its present form, was invented by Prof. James Thomson, and first described in 1852. In some experiments on a small scale as to the efficiency of the jet-pump, the greatest efficiency was found to take place when the depth from which the water was drawn by the suction-pipe was about nine tenths of the height from which the water fell to form the jet; the flow up the suction-pipe being in that case about one fifth of that of the jet, and the efficiency, consequently, \(9 / 10 \times 1 / 5=0.18\). This is but a low efficiency; but it is probable that it may be increased by improvements in proportions of the machine. (Rankine, S. E.)
The Injector when used as a pump has a very low efficiency. (See Injectors, under Steam-boilers.)
Air-lift Pump. - The air-lift pump consists of a vertical water-pipe with its lower end submerged in a well, and a smaller pipe delivering air into it at the bottom. The rising column in the pipe consists of air mingled with water, the air being in bubbles of various sizes, and is therefore lighter than a column of water of the same height; consequently the water in the pipe is raised above the level of the surrounding water. This method of raising water was proposed as early as 1997, by Loescher, of Freiberg, and was mentioned by Collon in lectures in Paris in 1876, but its first practical application probably was by Werner Siemens in Berlin in 1885. Dr. J. G. Pohle experimented on the principle in California in 1886, and U. S. patents on apparatus involving it were granted to Pohle and Hill in the same year. A paper describing tests of the air-lift pump made by Randall, Browne and Behr was read before the Technical Society of the Pacific Coast in Feb. 1890
The diameter of the pump-column was 3 in., of the air-pipe 0.9 in ., and of the air-discharge nozzle \(5 / 8 \mathrm{in}\). The air-pipe had four sharp bends and a length of 35 ft . plus the depth of submersion.
The water was pumped from a closed pipe-well ( 55 ft . deep and 10 in . is, (liameter). The efficiency of the pump was based on the least work theoretically required to compress the air and deliver it to the receiver. If the efficiency of the compressor be taken at \(70 \%\), the efficiency of the pump and compressor together would be \(70 \%\) of the efficiency found for the pump alone.
For a given submersion ( \(h\) ) and lift \((H)\), the ratio of the two being kept within reasonable limits, \((H)\) being not much greater than ( \(h\) ), the efficiency was greatest when the pressure in the receiver did not greatly exceed the head due to the submersion. The smaller the ratio \(H \div h\), the higher was the efficiency.
The pump, as erected, showed the following efficiencies :
\begin{tabular}{lllll} 
For \(H \div h=\) & 0.5 & 1.0 & 1.5 & 2.0 \\
Efficiency & \(=\) & \(50 \%\) & \(40 \%\) & \(30 \%\) \\
\(25 \%\)
\end{tabular}

The fact that there are absolutely no moving parts makes the ptam especially fitted for handling dirty or gritty water, sewage, mine water, and acid or alkali solutions in chemical or metallurgical works.
In Newark, N. J., pumps of this type are at work having a total capacityof \(1,000,000\) gallons daily, lifting water from three \(8-\mathrm{in}\). artesian wells. The Newark Chemical Works use an air-lift pump to raise sulphuric acid of \(1.72^{\circ}\) gravity. The Colorado Central Consolidated Mining Co., in one of its mines at Georgetown, Colo., lifts water in one case 250 ft ., using a series of lifts.
For a full account of the theory of the pump, and details of the tests above referred to, see Eng'g Neiws, June 8, 1893.

\section*{THE HYDRAULIC RAM.}

Effieiency.-The hydraulic ram is used where a considerable flow of water with a moderate fall is available, to raise a small portion of that flow to a height exceeding that of the fall. The following are rules given by Eytelwein as the results of his experiments (from Rankine):
Let \(Q\) be the whole supply of water in cubic feet per second, of which \(q\) is lifted to the height \(h\) above the pond, and \(Q-q\) runs to waste at the depth \(H\) below the poind; \(L\), the length of the supply-pipe, from the pond to the waste-clack ; \(D\), its diameter in feet; then
\[
D=\sqrt{(1.63 Q)} ; \quad L=H+h+\frac{h}{H} \times 2 \text { feet } ;
\]
Volume of air vessel = volume of feed pipe;
\[
\text { Efficiency, } \frac{q h}{(Q-q) H}=1.12-0.2 \sqrt{\frac{h}{H}} \text { when } \frac{h}{H} \text { does not exceed } 20
\]
or
\[
1 \div\left(1+\frac{h}{10 \bar{H}}\right) \text { nearly, when } \frac{h}{H} \text { does not exceed } 12
\]

D'Aubuisson gives \(\quad \frac{q(H+h)}{Q H}=1.42-.28 \sqrt{\frac{\bar{h}}{H}}\).
Clark, using five sixths of the values given by D'Aubuisson's formula, gives:
Ratio of lift to fall... \(.4 \begin{array}{lllllllllll}4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\ 26\end{array}\)
Efficiency per cent.... \(72 \begin{array}{llllllllllll}61 & 52 & 44 & 37 & 31 & 25 & 19 & 14 & 9 & 4 & 0\end{array}\)
Prof. R. C. Carpenter (Eng'g Mechanics, 1894) reports the results of four tests of a ram constructed by Rumsey \& Co., Seneca Falls. The ram was fitted for pipe connection for \(11 / 4\)-inch supply and \(1 / 2\)-inch discharge. The supply-pipe used was \(11 / 2\) inches in diameter, about 50 feet long, with 3 elbows, so that it was equivalent to about 65 feet of straight pipe, so far as resistance is concerned. Each run was made with a different stroke for the waste or clack-valve, the supply and delivery head being constant; the oliject of the experiment was to find that stroke of clack-valve which would give the highest efficiency.
\begin{tabular}{|c|c|c|c|c|}
\hline Length of stroke, per cent & 100 & 80 & 60 & 46 \\
\hline Number of strokes per minute. & 52 & 56 & 61 & 66 \\
\hline Supply head, feet of water & 5.67 & 5.77 & 5.58 & 5.65 \\
\hline Delivery head, feet of water & 19.75 & 19.75 & 19.75 & 19.75 \\
\hline Total water pumped, pounds & 297 & 296 & 301 & 297.5 \\
\hline Total water supplied, pounds & 1615 & 1567 & 1518 & 1455.5 \\
\hline Efficiency, per cent. & 64.9 & 66 & 74.9 & 70 \\
\hline
\end{tabular}

The efficiency, 74.9 , the highest realized, was obtained when the clack-valve travelled a distance equal to \(60 \%\) of its full stroke, the full travel being \(15 / 16\) of one inch.
Quantity of Water Delivered by the Hydraulic Ram. (Chadwick Lead Works.)-From 80 to 100 feet conveyance, one seventh of supply from spring can be discharged at an elevation five times as high as the fall to supply the ram; or, one fourteenth can be raised and discharged say ten times as high as the fall applied.

Water can be conveyed by a ram 3000 feet, and elevated 200 feet. The drive-pipe is from 25 to 50 feet long.

The following table gives the capacity of several sizes of rams, the dimensions of the pipes to be used, and the size of the spring or brook to which they are adapted:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size of Ram.} & \multirow[b]{2}{*}{Quantity of Water Furnished per Min. by the Spring or Brook to which the Ram is Adapted.} & \multicolumn{2}{|l|}{Caliber of Pipes.} & \multicolumn{3}{|l|}{Weight of Pipe (Lead), if Wrought Iron, then of Ordinary Weight.} \\
\hline & & \(\stackrel{\circ}{\text { ® }}\) &  & Drive-pipe for head or fall not over 10 ft . & Dischargepipe for not over 50 ft . rise. & Discharge pipe for over 50 ft and not ex ceeding 100 ft . in height. \\
\hline & Gals. per min. & inch. & inch. & per foot. & per foot. & per foot. \\
\hline No. \({ }^{\text {a }}\) & \(\begin{array}{ccc}31 \\ 11 & \text { to } & 2 \\ 4 & \end{array}\) & \(1^{3 / 4}\) & \[
3 / 8
\] & \({ }_{3}^{2} \mathrm{lbs}\). & \[
10 \mathrm{ozs} .
\] & 1 lb . \\
\hline \begin{tabular}{l} 
" \\
\hline 1 \\
\hline 4
\end{tabular} & \(\begin{array}{llll}11 / 2 & \text { ، } & 4 \\ 4\end{array}\) & \(11 / 4\) & \[
\begin{aligned}
& 1 \% \\
& 1 \%
\end{aligned}
\] & 3
5
5 & \[
\begin{aligned}
& 126 \\
& 12
\end{aligned}
\] & \(\begin{array}{ll}1 & 6 \\ 1 & 6 \\ 4 \\ 4 \\ 4 \\ \text { ozs }\end{array}\) \\
\hline & & \({ }_{2}\) & \(3 / 4\) & & 1 lb .4 6 & \({ }_{2}{ }^{1} 64\) \\
\hline " 6 & 12 " 25 & \(21 / 2\) & & 13 " & 2 " & 3 " \\
\hline " 7 & 20 " 40 & 21/2 & 11/4 & 13 " & 3 " & 4 " \\
\hline \({ }^{6} 10\) & 25 " 75 & 4 & , & & & \(8^{6}\) \\
\hline
\end{tabular}

\section*{HYDRAULIC-PRESSURE TRANSMISSION.}

Water under high pressure ( 700 to 2000 lbs. per square nch and upwards) affords a very satisfactory method of transmitting power to a distance, especially for the movement of heary loads at small velocities, as by cranes and elevators. The system consists usually of one or more pumps capable of developing the required pressure; accumulators, which are vertical cylinders with heavily-weighted plungers passing through stuffing-boxes in the upper end, by which a quantity of water may be accumulated at the pressure to which the plunger is weighted; the distributing-pipes; and the presses, cranes, or other machinery to pe operated.

The earliest important use of hydraulic pressure probably was in the Bramah hydraulic press, patented in 1796. Sir W. G. Armstrong in 1846 was one of the pioneers in the adaptation of the hydraulic system to cranes. The use of the accumulator by Armstrong led to the extended use of hydraulic machinery. Recent developments and applications of the system are largely due to Ralph Tweddell, of London, and Sir Joseph Whitworth. Sir Henry Bessemer, in his patent of May 13, 1856, No. 1292, first suggested the use of hydraulic pressure for compressing steel ingots while in the fluid state.
The Gross Amount of Energy of the water under pressure stored in the accumulator, measured in foot-pounds, is its volume in cubic feet \(\times\) its pressure in pounds per square foot. The horse-power of a given quantity steadily flowing is H.P. \(=\frac{144 p Q}{550}=.2618 p Q\), in which \(Q\) is the quantity flowing in cubic feet per second and \(p\) the pressure in pounds per square inch.
The loss of energy due to velocity of flow in the pipe is calculated as fol lows (R. G. Blaine, Eng'g, May \(2: 2\) and June 5, 1891):
According to D'Arcy, every pound of water loses \(\frac{\lambda 4 L}{D}\) times its kinetic ellergy, or energy due to its velocity, in passing along a straight pipe \(L\) feet in length and \(D\) feet diameter, where \(\lambda\) is a variable coefficient. Hor clean cast-iron pipes it may be taken as \(\lambda=.005\left(1+\frac{1}{12 D}\right)\), or for diameter in inches \(=d\).
\begin{tabular}{lccccccccccc}
\(d=\) & \(1 / 2\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\(\lambda=\) & 12 \\
\hline 15 & .01 & \(.00 \% 5\) & .00667 & .00625 & .006 & .00583 & .00571 & .00563 & .00556 & .0055 & .00542
\end{tabular}

The loss of energy per minute is \(60 \times 62.36 Q \times \frac{\lambda 4 L}{D} \frac{v^{2}}{2 g}\), and the horsepower wasted in the pipe is \(W=\frac{.6363 \lambda L(H . P .)^{3}}{p^{3} D^{5}}\), in which \(\lambda\) varies with the diameter as above, \(p=\) pressure at entrance in pounds per square inch. Values of . \(6363 \lambda\) for different diameters of pipe in inches are: \(d=\)\begin{tabular}{ccccccccccc}
\(1 / 2\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 0 & 12
\end{tabular}
.00954 .00636 .00477 .00424 .00398 .00382 .00371 . 00363.00358 .00353 .00350 .00345
Effiency of Hydraulic Apparatus.-The useful effect of a direct hydraulic plunger or rain is usually taken at \(93 \%\). The following is given as the efficiency of a ram with chain-andopulley multiplying gear properly proportioned and well lubricated:
Multiplying.... 2 to 14 to 16 to 18 to 110 to \(1 \quad 12\) to 14 to 16 to 1 \(\begin{array}{llllllllllll}\text { Efficiency } \% . . . & 80 & 76 & 72 & 67 & 63 & 59 & 54 & 50\end{array}\)

With large sheaves, small steel pins, and wire rope for multiplying gear the efficiency has been found as high as \(66 \%\) for a multiplication of 20 to 1.
Henry Adams gives the following formula for effective pressure in cranes and hoists:
\(P=\) accumulator pressure in pounds per square inch;
\(m=\) ratio of multiplying power:
\(E=\) effective pressure in pounds per square inch, including all allowances for friction;
\[
E=P(.84-.02 m)
\]
J. E. Tuit (Eng'g, June 15, 1888) describes some experiments on the friction of hydraulic jacks from \(31 / 4\) to \(135 / 8\)-inch diameter, fitted with cupped leather packings. The friction luss varied from \(56 \%\) to \(18.8 \%\) according to the condition of the leather, the distribution of the load on the ram, etc. 'The friction increased considerably with eccentric luads. With hemp packing a plinger, 14 -inch dianeter, showed a friction loss of from \(11.4 \%\) to \(3.4 \%\), the load being central, and from \(15.0 \%\) to \(7.6 \%\) with eccentric load, the percentage of loss decreasing in both cases with increase of load.

Thickness of Hydraulic Cylinders.-From a table used by Sir w. G. Armstrong we take the following, for cast-iron cylinders, for an interior pressure of 1000 lbs . per square inch: \(\begin{array}{lllllllll}\text { Diam. of cylinder, inches. } & 2 & 4 & 6 & 8 & 10 & 12 & 16 & 20 \\ 24\end{array}\) Thickness, inches........... \(0.8321 .1461 .5521 .875 \quad 2.222 \quad 2.578 \quad 3.19\) 3.69 4.11 For any other pressure multiply by the ratio of that pressure to 1000 . These figures correspond nearly to the formula \(t=0.175 d+0.48\), in which \(t=\) thickness and \(d=\) diameter in inches, up to 16 inches diameter, but for 20 inches diameter the addition 0.48 is reduced to 0.19 and at 24 inches it disappears. For formulæ for thick cylinders see page 287, ante.
Cast iron should not be used for pressures exceeding 2000 lbs . per square inch. For higher pressures steel castings or forged steel should be used. For working pressures of 750 lbs . per square inch the test pressure should be 2500 lbs. per square inch, and for 1500 lbs. the test pressure should not be less than \(3: 500\) lbs.
Speed of Hoisting by Hydraulic Pressure. - The maximum allowable speed for warehouse craues is 6 feet per second; for platform cranes 4 feet per second; for passenger and wagon hoists, heavy loads, 2 feet per second. The maximum speed under any circumstances should never exceed 10 feet per second.

The Speed of Water Through Valves should never be greater than 100 feet per second.
Speed of Water Through Pipes.-Experiments on water at 1600 lbs. pressure per square inch flowing into a flanging-machine ram, 20 -inch diameter, through a \(1 /\)-inch pipe contracted at one point to \(1 / 4\)-inch, gave a velocity of 114 feet per second in the pipe, and 456 feet at the reduced section. Through a \(1 / 2\)-inch pipe reduced to \(3 / 8\)-inch at one point the velocity was 213 feet per second in the pipe and 381 feet at the reduced section In a \(1 / 2\)-inch pipe without contraction the velocity was 355 feet per second.
* For many of the above notes the author is indebted to Mr. John Platt, consulting engineer, of New York.
Highopressure Hydraulic Presses in Iron-works are described by R. M. Daelen, of Germany, in Trans. A. I. M. E. 1892. The following distinct arrangements used in different systems of high-pressure hydraulic work are discussed and illustrated:
1. Steam-pump, with fly-wheel and accumulator.
2. Steam pump, without fly-wheel and with accumulator.
3. Steam-pump, without fly-wheel and without accumulator.

In these three systems the valve-motion of the working press is operated in the high-pressure column. This is avoided in the following:
4. Single-acting steam-intensifier without accumulator.
5. Steam-pump with fly-wheel, without accumulator and with pipe-circuit.
6. Steam-pump with fly-wheel, without accumulator and without pipecircuit.

The disadvantages of accumulators are thus stated: The welghted plungers which formerly served in most cases as accumulators, cause violent shocks in the pipe-line when changes take place in the movement of the water, so that in many places, in order to avoid bursting from this cause, the pipes are made exclusively of forged and bored steel. The seats and cones of the metallic valies are cut by the water (at high speed), and in such cases only the most careful maintenance can prevent great losses of power.

Hydraulic Power in London. - The general principle involved is pumping water into mains laid in the streets, from which service-pipes are carried into the houses to work lifts or three-cylinder motors when rotatory power is required. In some cases a small Pelton wheel has been tried, working under a pressure of over 700 lbs . on the square inch. Over 55 miles of hydraulic mains are at present laid (1892).

The reservoir of power consists of capacious accumulators, loaded to a pressure of 800 lbs . per square inch, thus producing the same effect as if large supply-tanks were placed at \(1 \% 00\) feet above the street-level. The water is takell from the Thames or from wells, and all sediment is removed therefrom by filtration before it reaches the main engine-pumps.

There are over 1,50 machines at work, and the supply is about \(6,500,000\) gallons per week.

It is essential that the water used should be clean. The storage-tank ex. tends over the whule boiler-house and coal-store. The tank is divided, and a certain amount of mud is deposited here. It then passes through the surface condenser of the engines, and it is turned into a set of filters, eight in number. The body of the filter is a cast-iron cylinder, containing a layer of
granular filtering material resting upon a false bottom; under this is the distributing arrangement, affording passage for the air, and under this the real bottom of the tank. The dirty water is supplied to the filters from an overhead tank. After passing through the filters the clean effluent is pumped into the clean-water tank, from which the pumping-engines derive their supply. The cleaning of the filters, which is done at intervals of 24 hours, is effected so thoroughly in situ that the filtering material never requires to be removed.
The engine-house contains six sets of triple-expansion engines. The cylinders are 15 -iuch, 22 -inch. 36 -inch \(\times 24\)-inch. Each cylinder drives a single plunger-pump with a 5 -inch ram, secured directly to the cross-head, the connecting-rod being double to clear the pump. The boiler-pressure is 150 lbs. on the square inch. Each pump will deliver 300 gallons of water per minute under a pressure of 800 lbs . to the square inch, the engines making about 61 revolutions per minute. This is a high velocity, considering the heavy pressure; but the valves work silently and without perceptible shock.
The consumption of steam is 14.1 pounds per horse per hour.
The water delivered from the main pumps passes into the accumulators. The rams are 20 inches in diameter, and have a stroke of 23 feet. They are each loaded with 110 tons of slag, contained in a wrought-iron cylindrical box suspended from a cross-head on the top of the ram.
One of the accumulators is loaded a little more heavily than the other, so that they rise and fail successively; the more heavily loaded actuates a stopvalve on the main steam-pipe. If the engines supply more water than is wanted, the lighter of the two rams first lises as far as it can go; the other then ascends, and when it has nearly reached the top, shuts off steam and checks the supply of water automatically.
The mains in the public streets are so constructed and laid as to be perfectly trustworthy and free from leakage.
Every pipe and valve used throughout the system is tested to 2500 lbs . per square inch before being placed on the ground and again tested to a reduced pressure in the trenches to insure the perfect tightness of the joints. The jointing material used is gutta-percha.
The average rate obtained by the company is about 3 shillings per thousand gallous. The principal use of the power is for intermittent work in cases where direct pressure can be employed, as, for instance, passenger elevators, cranes, presses, warehouse hoists, etc.
An important use of the hydraulic power is its application to the extinguishing of fire by means of Greathead's injector hydrant. By the use of these hydrants a contimons fire-engine is available.

Hydraulic Rivetimgmachines.-Hydraulic riveting was introduced in England by Mr. R. H. Tweddell. Fixed riveters were first used about 1868. Portable riveting-machines were introduced in \(18 \pi 2\).

The riveting of the large steel plates in the Forth Bridge was done by small portable machines working with a pressure of 1000 lbs . per square inch. In exceptional cases 3 tons per inch was used. (Proc. Inst. MI. E., May, 1889.)

An application of hydraulic pressure invented by Andrew Higginson, of Liverpool, dispenses with the necessity of accumulators. It consists of a three-throw pump driven by shafting or worked by steam, and depends partially upon the work accumulated in a heavy fly-wheel. The water in its passage from the pumps and back to them is in constant circulation at a very feeble pressure, requiring a minimum of power to preserve the tube of water ready for action at the desired moment, when by the use of a tap the current is stopped from going back to the pumps, and is thrown upon the piston of the tool to be set in motion. The water is now confined, and the driving-belt or steam-engine, supplemented by the momentum of the heavy fly-wheel, is employed in closing up the rivet, or bending or forging the object subjected to its operation.

Hydraulic Forging.- In the production of heavy forgings from cast ingots of mild steel it is essential that the mass of metal should be operated on as equally as possible throughout its entire thickness. When employing a steam-hammer for this purpose it has been found that the external surface of the ingot absorbs a large proportion of the sudden impact of the blow, and thint a comparatively small effect only is produced on the central portions of the ingot, owing to the resistance offered by the inertia of the mass to the rapid motion of the falling hammer-a disadvantage that is entirely overcome by the slow, though powerful, compression of the hydraulic forging-press, which appears destined to supersede the steamhammer for the production of massive steel forgings.

In the Allen forging-press the force-pump and the large or main cylinder of the press are in direct and constant communication. There are no intermediate valves of any kind, nor has the pump any clack-valves, but it simply forces its cylinder full of water direct into the cylinder of the press, and receives the same water, as it were, back again on the return stroke. Thus, when both cylinders and the pipe connecting them are full, the large ram of the press rises and falls simultaneously with each stroke of the, pump, keeping up a continuous oscillating motion, the ram, of course, travelling the shorter distance, owing to the larger capacity of the pres: cylinder. (Journal Iron and Steel Institute, 1891. See also illustrated article, In "Modern Mechanism," page 668.)

For a very complete illustrated account of the development of the hy. draulic forging-press, see a paper by R. H. Tweddell in Proc. Inst. C. E., vol. cxvii. 1893-4.

Hydraulic Forging-press.-A 2000-ton forging-press erected at the Couillet forges in Belgium is described in Eng. and M. Jour., Nov. 25, 1893.

The press is composed essentially of two parts-the press itself and the compressor. The compressor is formed of a vertical steam-cylinder and a hydraulic cylinder. The piston-rod of the former forms the piston of the latter. The hydraulic piston discharges the water into the press proper. The distribution is made by a cylindrical balanced valve; as soon as the pressure is released the steam-piston falls automatically under the action of gravity. During its descent the steam passes to the other face of the piston to reheat the cylinder, and finally escapes from the upper end.

When steam enters under the piston of the compressor-cylinder the piston lises, and its rod forces the water into the press proper. The pressure thus exerted on the piston of the latter is transmitted through a cross-head to the forging which is upon the anvil. To raise the cross-head two small single-acting steam-cylinders are used, their piston-rods being connected to the cross-head; steam acts only on the pistons of these cylinders from below. The admission of steam to the cylinders, which stand on top of the press frame, is regulated by the same lever which directs the motions of the compressor. The movement given to the dies is sufficient for all the ordinary purposes of forging.

A speed of 30 blows per minute has been attained. A double press on the same system, having two compressors and giving a maximum pressure of coon tons. has been erected in the Krupp works, at Essen.

The Aiken Intensifier. (Iron Age, Aug. 1890.)-The object of the machine is to increase the pressure obtained by the ordinary accumulator which is necessary to operate powerful hydraulic machines requiring very high pressures, without increasing the pressure carried in the accumulator and the general hydraulic system.

The Aiken Intensifier consists of one outer stationary cylinder and one inner cylinder which moves in the outer cylinder and on a fixed or stationary hollow plunger. When operated in connection with the hydraulic bloomshear the method of working is as follows: The inner cylinder having been filled with water and connected through the hollow plunger with the hydraulic cylinder of the shear, water at the ordinary accumulator-pressure is admitted into the outer cylinder, which being four times the sectional area of the plunger gives a pressure in the inner cylinder and shear cylinder connected therewith of four times the accumulator-pressure-that is, if the ac-cumulator-pressure is 500 lbs . per square inch the pressure in the intensifier will be 2000 lbs. per square inch.

Hydraulic Engine driving an Airacompressor and a Forging-hammar. (Iron. Age, May 12, 1892.)-The great hammer in Terni, near Rome, is one of the largest in existence. Its falling weight amounts to 100 tons, and the foundation belonging to it consists of a block of cast iron of 1000 tons. The stroke is 16 feet \(43 / 4\) inches; the diameter of the cylinder 6 feet \(31 / 2\) inches; diameter of piston-rod \(133 / 4\) inches; total height of the hammer, 62 feet 4 inches. The power to work the hammer, as well as the two cranes of 100 and 150 tons respectively, and other auxiliary appliances belonging to it, is furnished by four air-compressors coupled together and driven directly by water-pressure engines, by means of which the air is compressed to 73.5 pounds per square inch. The cylinders of the waterpressure engines, which are provided with a bronze lining, have a \(133 / 4\)-inch bore. The stroke is \(473 / 4\) inches, with a pressure of water on the piston amounting to 264.6 pounds per square inch. The compressors are bored out to \(311 / 2\) inches diameter, and have \(4 \pi 3 / 4\)-inch stroke. Each of the four cylinders requires a power equal to 280 horse-power. The compressed air is de-
livered into huge reservoirs, where a uniform pressure is kept up by means of a suitable ater-colnm.
The Hydraulic Forging Plant at Bethlehem, Pa.g is described in a paper oy \(K\) W. Davenpurt, read brture me veiely of Naval Engineers and Marine Architects, 189:3 It includes two hydraulic forging. presses complete, with engines and pumps, one of 1500 and one of 4500 tons capacity, together with two Whitworth hydranlic travelling forging-cranes and other necessary appliances for each press; and a complete fluid-compression plant, including a press of \(\gamma 000\) tons capacity and a \(1 \% 5\) ton hydraulic travelling crane for serving it (the upper and lower heads of this press weighing respectively about 135 and 120 tons).

A new forging-press has been designed by Mr. John Fritz, for the Bethlehem Works, of 14,000 tons capacity, to be run by engines and pumps of 15,000 horse power. The plant is served by four open-hearth steel furnaces of a united capacity of \(1: 20\) tons of steel per heat.
Some References on Hydraulic Transmission.-Reuleaux's "Constructor:" "Hydraulic Motors, Turbines, and Pressure-engines," G. Bodmer, London, 1889 ; Robinson's "Hydraulic Power and Hydraulic Machinery," London, 1888; Colyer's "Hydraulic Steam, and Hand-power Lifting and Pressing Machinery," London, 1881. See also Engineering (London), Aug. 1, 1881, p. 99, March 13, 1885, p. 262; May 22 and June 5, 1891, pp. 612, 665 ; Feb. 19, 1892, p. 25 ; Feb. 10, 1893, p. 170.

\section*{FUEL.}

Theory of Combustion of Solid Fuel. (From Rankine, somewhat altered.)-The ingredients of every kind of fuel commonly used may be thus classed: (1) Fixed or free carbon, which is left in the form of charcoal or coke after the volatile ingredients of the fuel have been distilled away. These ingredients burn either wholly in the solid state ( C to \(\mathrm{CO}_{2}\) ) or part in the solid state and part iu the gaseous state \(\left(\mathrm{C} \cap+0=\mathrm{CO}_{2}\right)\), the latter part being first dissolved by previously formed carbonic acid by the re-. action \(\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}\). Carbonic oxide, CO , is produced when the supply of air to the fire is insufficient.
(2) Hydrocarbons, such as olefiant gas, pitch, tar, naphtha, etc., all of which must pass into the gaseous state before being burned.
If mixed on their first issuing from amongst the burning carbon with a large quantity of hot air, these inflammable gases are completely burned with a transparent blue flame, producing carbonic acid and steam. When mixed with cold air they are apt to be chilled and pass off unburned. When raised to a red heat, or thereabouts, before being mixed with a sufficient quantity of air for perfect combustion, iney disengage carbon in fine powder, and pass to the condition partly of marsh gas, and partly of free hydrogen; and the higher the temperature, the greater is the proportion of carbun thus disengaged.

If the disengaged carbon is cooled below the temperature of ignition before coming in contact with oxygen, it constitutes, while floating in the gas, smoke. and when deposited on solid bodies, soot.

But if the disengaged carbon is maintained at the temperature of ignition, and supplied with oxygen sufficient for its combustion, it burns while float. ing in the inflammable gas. and forms red, yellow, or white flame. The flame from fuel is the larger the more slowly its combustion is effected. The flame itself is apt to be chilled by radiation, as into the heating surface of a steam-boiler, so that the combustion is not completed, and part of the gas and smoke pass off unburned.
(3) Oxygen or hydrogen either actually forming water, or existing in combination with the other constituents in the proportions which form water. Such quantities of oxygen and hydrogen are to left be out of account in determining the heat generated by the combustion. If the quantity of water actually or virtually present in each pound of fuel is so great as to make its latent heat of evaporation worth considering, that heat is to be deducted from the total heat of combustion of the fuel.
(4) Nitrogen, either free or in combination with other constituents. This substance is simply inert.
(5) Sulphuret of iron, which exists in coal and is detrimental, as tending to cause spontaneous combustion.
(6) Other mineral compounds of various kinds, which are also inert, and form the ash left after complete combustion of the fuel, and also the clinker or glassy material produced by fusion of the ash, which tends to choke the grate.

Total Heat of Combustion of Fuels. (Rankine.)-The following tavie shows the total heat of combushun "ith oxygen of one pound of each of the substances named in it, in British thermal units, and alsu in lbs. of water evaporated from 212 . It also shows the weight of oxygen required to combine with each pound of the combustible aud the weight of air necessary in order to supply that oxygen. The quantities of heat are given on the auchority of MM. Favre and silbermann.
\begin{tabular}{|c|c|c|c|c|}
\hline Combustible. & Lbs. Oxygen per lb. Combustible. & Lb. Air (about). & Total British Heatunits. & Evaporative Powe from \(212^{\circ}\) F., lbs. \\
\hline Hydrogen gas..................... & 8 & 36 & 62,032 & 64.2 \\
\hline Carbon imperfectly burned so as to make carbonic oxide.. & 11/3 & 6 & 4,400 & 4.55 \\
\hline Carbon perfectly burned so as to make carbonic acid.. & & 12 & 14,500 & 15.0 \\
\hline Oiefiant gas, 1 lb ....... & \(33 / 7\) & \(153 / 7\) & \[
\begin{array}{r}
21,344 \\
\text { from } 21.500
\end{array}
\] & \(\xrightarrow{22.1}\) \\
\hline Various liquid hydrocarbons, 1 lb . & & & \[
\left\lvert\, \begin{gathered}
\text { from } 21,000 \\
\text { to } 19,000
\end{gathered}\right.
\] & \[
\begin{aligned}
& \text { from } 221, x^{\prime} \\
& \text { to } 20
\end{aligned}
\] \\
\hline Carbonic oxide, as much as is made by the imperfect combustion of 1 lh ) of rarbon, viz., \(21 / 3 \mathrm{lbs}\) & 11/2 & 6 & 10,000 & 10.45 \\
\hline
\end{tabular}

The imperfect combustion of carbon, making carbonic oxide, produces sess than one third of the heat which is yielded by the complete conibustion.

The total heat of combustion of any compound of hydrogen and carbou is nearly the sum of the quantities of heat which the constituents would produce separately by their combustion. (Marsh-gas is an exception.)

In computing the total heat of combustion of compounds containing oxy\(f \in n\) as well as hydrogen and carbon, the following principle is to be bbserved: When hydrogen and oxygen exist in a compound in the proper proportion to form water (that is, by weight one part of hydrogen to eight of oxygen), these constituents have no effect on the total heat of combusllon. If hydrogen exists in a greater proportion, only the surplus of hydrogen above that which is required by the oxygen is to be taken into account.
The following is a general formula (Dulong's) for the total heat of combustion of aly compound of carbon, hydrogen, and oxygen:

Let \(C\). \(H\), and \(O\) be the fractions of one pound of the compound, which ronsists respectively of carbon, hydrogen, and oxygen, the remainder being nitrosen, ash, and other impurities. Let \(h\) be the total heat of combustion of one pound of the compound in British thermal units. Then
\[
h=14,500\left\{C+4.28\left(H-\frac{O}{8}\right)\right\}
\]

The following table shows the composition of those compounds which are of importance, either as furnishing oxygen for combustion, as entering into the composition, or as being produced by the combustion of fuel :


Since each lb. of C requires \(22 / 2 \mathrm{lbs}\). of O to burn it to \(\mathrm{CO}_{2}\), and air contains \(23 \%\) of O, by weight, \(2 \% / 3 \div 0.23\) or 11.6 lbs . of air are required to burn 1 lb . of C .

Analyses of Gases of Combustion.-The following are selected from a large number of analyses of gases from locomotive boilers, to show the range of composition under different circumstances (P. H. Dudley, Trans. A. I. M. E., iv. 250):
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test. & \(\mathrm{CO}_{2}\) & CO & 0 & N & \\
\hline 1 & 12.8 & - 5 & 2.5 & 81.6 & No smoke visible. \\
\hline , & 11.5 & & 6 & 82.5 & Old fire, escaping gas white, engine working hard. \\
\hline 3 & 8.5 & & 8 & 83 & Fresh fire, much black gas, "* " \\
\hline 4 & 2. 3 & & 17.2 & 80.5 & Old fire, damper closed, engine standing still. \\
\hline 5 & 5.7 & & 14.7 & 79.6 & " \({ }^{6}\) smoke white, engine working hard. \\
\hline 6 & 8.4 & 1.2 & 8.4 & 82 & New fire, engine not working hard. \\
\hline \% & 12 & 1 & 4.4 & \(8 . .6\) & Smoke black, erıgine not working hard. \\
\hline 8 & 3.4 & & 16.8 & 76.8 & " dark, blower on, engine standing still. \\
\hline 9 & 6 & & 13.5 & 81.5 & white, engine working hard. \\
\hline
\end{tabular}

In analyses on the Cleveland and Pittsburgh road, in every instance when the smoke was the blackest, there was found the greatest percentage of unconsumed oxygen in the product, showing that something besides the mere presence for oxygen is required to effect the combustion of the volatile carbon of fuels.
J. C. Hoadley (Trans. A. S. M. E., vi. 749) found as the mean of a great number of analyses of flue gases from a boiler using anthracite coal:
\[
\mathrm{CO}_{2}, 13.10 ; \mathrm{CO}, 0.30 ; \quad 0,11.94 ; \mathrm{N}, 74.66
\]

The loss of heat due to burning C to CO instead of to \(\mathrm{CO}_{2}\) was \(2.13 \%\). The surplus oxygen averaged \(113.3 \%\) of the \(O\) required for the \(C\) of the fuel, the average for different weeks ranging from \(88.6 \%\) to \(13 \% \%\).

Analyses made to determine the CO produced by excessively rapid firing gave results from \(254 \%\) to \(4.81 \% \mathrm{CO}\) and 5.12 to \(8.01 \% \mathrm{CO}_{2}\); the ratio of C in the CO to total carbon burned being from \(43.80 \%\) to \(48.55 \%\), and the number of pounds of air supplied to the furnace per pound of coal being from 33.2 to 19.3 lbs. The loss due to burning C to CO was from \(27.84 \%\) to 30.86 of the full power of the coal.

Temperature of the Fire. (Rankine, S. E., p. 283.)-By temper. ature of the fire is meant the temperature of the products of combustion at the instant that the combustion is complete. The elevation of that temperature above the temperature at which the air and the fuel are supplied to the furnace may be computed by dividing the total heat of combustion of one lb. of fuel by the weight and by the mean specific heat of the whole products of combustion, and of the air employed for their dilution under constant pressure. The specific heat under constant pressure of these prod ucts is about as follows:

Carbonic-acid gas, \(0.21 \%\); steam, \(0.4 \%\); nitrogen (probably), 0.245 ; air, 0.238 ; ashes, probably about 0.200 . Using these data, the following results are obtained for pure carbon and for olefiant gas burned, respectively, first, in just sufficient air, theoretically, for their combustion, and, second, when an equal amount of air is supplied in addition for dilution.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Fuel.} & \multicolumn{2}{|l|}{Products undiluted.} & \multicolumn{2}{|l|}{Products diluted.} \\
\hline & Carbon. & Olefiant Gas. & Carbon. & Olefiant Gas. \\
\hline Total heat of combustion, per lb. & 14,500 & 21,300 & 14,500 & 21,300 \\
\hline Wt of products of combustion, lbs. & 13 & 16.43 & 25 & 31.86 \\
\hline Their mean specific heat.... ..... & 0.237 & 0.257 & 0.238 & 0.248 \\
\hline Specific heat \(\times\) weight... & 3.08 & 4.22 & 5.94 & 7.9 \\
\hline Elevation of temperature, F. & \(4580^{\circ}\) & \(5050^{\circ}\) & \(2440^{\circ}\) & \(2710^{\circ}\) \\
\hline
\end{tabular}
[The above calculations are made on the assumption that the specific heats of the gases are constant. but they probably increase with the increase of temperature (see Specific Heat), in which case the temperature would be less than those above given. The temperature would be further
reduced by the heat rendered latent by the conversion into steam of any water present in the fuel.]

Rise of temperature in Combustion of Gases. (Eng'g, March 12 and April 2, 1886.)-It is found that the temperatures obtained by experiment fall short of those obtained by calculation. Three theories have been given to account for this: 1. The cooling effect of the sides of the containing vessel; 2. The retardation of the evolution of heat caused by dissociation; 3. The increase of the specific heat of the gases at very high temperatures. The calculated temperatures are obtainable only on the condition that the gases shall combine instantaneously and simultaneously throughout their whole mass. This condition is practically impossible in experiments. The gases formed at the beginning of an explosion dilute the remaining combustible gases and tend to retard or check the combustion of the remainder.

\section*{CLASSIFICATION OF SOLID FUELS.}

Gruner classifies solid fuels as follows (Eng'g and M'g Jour., July, 18r4) :
\begin{tabular}{|c|c|c|}
\hline Name of Fuel. & Ratio \(\frac{\mathrm{O}}{\mathrm{H}}\) or \(\mathrm{O}+\mathrm{N}\) *. & Proportion of Coke ol Charcoal yielded by the Dry Pure Fuel. \\
\hline Pure cellulose & \({ }_{8}^{\mathrm{H}}\) & \\
\hline Wood (cellulose and encasing matter) & 7 & . 30 @ . 35 \\
\hline Peat and fossil fuel .. & 6 @ 5 & . 35 @ . 40 \\
\hline Lignite, + or brown coal & 5 & . 40 @ . 50 \\
\hline Bituminous coals & 4 @ 1 & . 50 @ . 90 \\
\hline Anthracite.. & 1 @ 0.75 & . 90 @ . 92 \\
\hline
\end{tabular}

The bituminous coals he divides into five classes as below:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{- Name of Type.} & \multicolumn{3}{|c|}{Elementary Composition.} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Ratio } \frac{\mathrm{O}}{\mathrm{H}} \\
& \text { or } \frac{\mathrm{O}+\mathrm{N}^{*}}{\mathrm{H}}
\end{aligned}
\]} & \multirow[t]{2}{*}{Proportion of Coke yielded by Distilla. tion.} & \multirow[t]{2}{*}{Nature and Appearance of Coke.} \\
\hline & C. & H. & O. & & & \\
\hline 1. oong flaming dry & \%0.80 & 5.5@4.5 & 19.5@15 & 4@3 & 0.50@.60 & \[
\left\{\begin{array}{c}
\text { Pulveru- } \\
\text { lent. }
\end{array}\right.
\] \\
\hline 2. Lon: flaming fat \(0^{\text {r }}\) :oking coals, or e . 3 coals, & 80@85 & 5.8@5 & 14.2@10 & 3@2 & .60@.68 & \(\left\{\begin{array}{l}\text { Melted } \\ \text { but } \\ \text { friable. }\end{array}\right.\) \\
\hline 3. Caking fat coals, or hacksmiths? coals, & 84@88 & 5 @4.5 & 11 @ 5.5 & 2 (1)1 & .68@.r4 & \(\left\{\begin{array}{l}\text { Inelted; } \\ \text { some } \\ \text { what } \\ \text { com- } \\ \text { pact }\end{array}\right.\) \\
\hline 4. Short flaming ent \(\left.\begin{array}{l}\text { or caking coals. } \\ \text { coking coals, }\end{array}\right\}\) & 88@91 & 5.5@4.! & 6.5@5.5 & 1 & .r4@.82 & \(\left\{\begin{array}{l}\text { Melted; } \\ \text { very } \\ \text { com- } \\ \text { pact }\end{array}\right.\) \\
\hline 5. Lean or an'hra-\} citic coals, & 90@93 & 4:5@4 & 5.5@3 & 1 & .82@.90 & \[
\left\{\begin{array}{l}
\text { Pilveru- } \\
\text { lent. }
\end{array}\right.
\] \\
\hline
\end{tabular}

\footnotetext{
* The nitrogen rarely exceeds 1 per cent of the weight of the fuel.
\(\dagger\) Not including bituminous lignites, which resemble petroleums.
Rankine gives the following: The extrome differences in the chemical composition aud properties of different kinds of coal are very great. The proportion of free carbon ranges from 30 to 93 per cent; that of hydrocarbons of various kinds from 5 to 58 per cent; that of water, or oxygen and hydrogen in the proportions which form water, from an inappreciably small quantity to 27 per cent: that of ash, from \(11 / 2\) to 26 per cent.

The numerous varieties of coal may be divided into principal classes as follows: 1, anthracite coal; 2, semi-bituminous coal; 3, bituminous coal; 4 , long flaming or cannel coal; 5 , lignite or brown coal.
}

\title{
Diminution of \(H\) and 0 in Series from Wood to Anthraclite.
}

\section*{(Groves and Thorp's Chemical Technology, vol. i., Fuels, p. 58.)}
\begin{tabular}{|c|c|c|c|}
\hline Substance. & Carbon. & Hydrogen. & Oxygen. \\
\hline Woody fibre. & 52.65 & 5.25 & 42.10 \\
\hline Peat from Vulcaire & 5957 & 5.96 & 34.47 \\
\hline Lignite from Cologne & 66.04 & 5.27 & 28.69 \\
\hline Earthy brown coal & 73.18 & 5.88 & 21.14 \\
\hline Coal from Belestat, secondary & 75.06 & 5.84 & 19.10 \\
\hline Coal from Rive de Gier & 89.29 & 5.05 & 5.66 \\
\hline Anthracite, Mayenne, transition formation & 91.58 & 3.96 & 4.46 \\
\hline
\end{tabular}

\section*{Progressive Change from Wood to Graphite.}
(J. S. Newberry in Johnson's Cyclopedia.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Wood. Loss.} & Lig. nite. & \multicolumn{3}{|r|}{Bitumi. ous coal. Loss.} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Anthra- Loss. } \\
& \text { cite. }
\end{aligned}
\]} & \multirow[t]{2}{*}{Graph ite.} \\
\hline Carbon. & 49.1 & 18.65 & 30.45 & 12.35 & 18.10 & \(3.5 \%\) & 14.53 & 1.42 & \\
\hline Hydrogen & 6.3 & 3.25 & 3.05 & 1.85 & 1.20 & 0.93 & 0.27 & 0.14 & 0.13 \\
\hline Oxygen. & 44.6 & 24.40 & 20.20 & 18.13 & 2.07 & 1.32 & 0.65 & 0.65 & 0.00 \\
\hline & 100.0 & 4630 & 53.70 & 32.33 & 21.37 & 5.82 & 15.45 & 2.21 & 13.24 \\
\hline
\end{tabular}

Classification of Coals, as Anthracite, Bituminous, etc.Prof. Persifer Frazer (Traus. A. I. M. E., vi, 430) pruposes a classification of coals according to their "fuel ratio," that is, the ratio the fixed carbon bears to the volatile hydrocarbon.
In arranging coals under this classification, the accidental impurities, such as sulphur, earthy matter, and moisture, are disregarded, and the fuel constituents alone are considered.
\begin{tabular}{cccc} 
& \begin{tabular}{c} 
Carbon \\
Ratio.
\end{tabular} & \begin{tabular}{c} 
Fixed \\
Carbon.
\end{tabular} & \begin{tabular}{c} 
Volatile \\
Hydrocarbon.
\end{tabular} \\
I. Hard dry anthracite. & 100 to 12 & 100. to \(92.31 \%\) & 0. to \(769 \%\)
\end{tabular}

It appears to the author that the above classification does not draw the line at the proper point between the semi-bituminous and the bituminnus coals. viz., at a ratio of \(\mathrm{C} \div\) V.H.C. \(=5\), or fixed carbon \(83.33 \%\), volatile hydrocarbon \(16.6 \pi \%\), since it would throw many of the steam coals of Clearfield and Somerset counties, Penn., and the Cumberland, Md., and Pocahontas, Va., coals, which are practically of one class, and properly rated as semi-bituminous coals, into the bituminous class. The dividing line between the semi-anthracite and semi-bituminous coals, \(C+\) V.H.C. \(=8\), would place several coals known as semi-anthracite in the semi-bituminous class. The following is proposed by the author as a better classification :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multirow[t]{2}{*}{Carbon Ratio. .. 100 to 12} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Fixed Carbon. \\
100 to \(92.31 \%\)
\end{tabular}}} & \multicolumn{2}{|l|}{Vol. H.C.} \\
\hline & Hard dry anthracite. & & & & & 7.69 \\
\hline & Semi-anthracito. & 12 to 7 & 92.31 & to 87.5 & 7.69 to & 12.5 \\
\hline & Semi-bitumi & 7 to 3 & 87.5 & to 75 & 12.5 & 25 \\
\hline & Bituminous & 3 to 0 & 75 & to & 25 & 100 \\
\hline
\end{tabular}

Rhode Island Graphitic Anthracite. - A peculiar graphite is found at Cranston, near Providence, R. I. It resembles both graphite and anthracite coal, and has about the following composition (A. E. Hunt. Trans. A. I. M. E., xvii., 6i8): Graphitic carbon, \(78 \%\); volatile matter, \(2.60 \%\); silica, \(15.06 \%\); phosphorus, \(.045 \%\). It burns with extreme difficulty.

\section*{ANALYSES OF COALS.}

Composition of Pennsylvania Anthracites. (Trans. A. I.
 of 100 to 200 tons as shipped to market, and reduced by proper methods to laboratory samples. Thirty-three samples were analyzed by McCreath, giving results as follows. They show the inean character of the coal of the more important coal-beds in the Northern field in the vicinity of Wilkesbarre, in the Eastern Middle (Lehigh) field in the vicinity of Hazleton, in the Western

Middle field in the vicinity of Shenandoah, and in the Southern field between Manch Chunk and Tamaqua.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  & 年 &  &  &  \\
\hline Wharton. & E. Middle & 3.71 & 3.08 & 86.40 & 6.22 & . 58 & 3.44 & \(28.0 \%\) \\
\hline Mammoth.. & E. Middle & 4.12 & 3.08 & 86.38 & 5.92 & . 49 & 3.45 & 27.99 \\
\hline Primrose.. & V. Middle & 3.54 & 3.72 & 81.59 & 10.65 & . 50 & 4.36 & 21.93 \\
\hline Mammoth. & W. Middle & 3.16 & 3.72 & 81.14 & 11.08 & . 90 & 4.38 & 21.83 \\
\hline Primrose F & Southern & 3.01 & 4.13 & 87.98 & 4.38 & . 50 & 4.48 & 21.32 \\
\hline Buck Mtn.. & W. Middle & 3.04 & 3.95 & 82.66 & 9.88 & . 46 & 4.56 & 20.93 \\
\hline Seven Foot & W. Middle & 3.41 & 3.98 & 80.87 & 11.23 & . 51 & 4.69 & 20.32 \\
\hline Mammoth. & Southern & 3.09 & 4.28 & 83.81 & 8.18 & . 64 & 4.85 & 19.62 \\
\hline Mammoth. & Northern & 3.42 & 4.38 & 83.27 & 8.20 & . 73 & 5.00 & 19.00 \\
\hline B. Coal Bed & Loyalsock & 1.30 & 8.10 & 83.34 & 6.23 & 1.03 & 8.86 & 10.29 \\
\hline
\end{tabular}

The above analyses were made of coals of all sizes (mixed). When coal is screened into sizes for shipment the purity of the different sizes as regards ash varies greatly. Samples from oue mine gave results as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Name of
Coal.} & \multicolumn{2}{|c|}{Screened} & \multicolumn{2}{|c|}{Analyses.} \\
\hline & Through & Over & Fixed & \\
\hline & inches. & inches. & Carbon. & Ash. \\
\hline Egg & 2.5 & 1.75 & 88.49 & 5.66 \\
\hline Stove & 1.75 & 1.25 & 83.67 & 1017 \\
\hline Chestnut. & 1.25 & . 75 & 80.72 & 12.67 \\
\hline Pea... & . 75 & . 50 & 7905 & 14.66 \\
\hline Buckwheat. & . 50 & . 25 & \%6.92 & 16.62 \\
\hline
\end{tabular}

\section*{Bernice Basin, Ra., Coals.}


This coal is on the dividing-line between the anthracites and semi-anthravites, and is similar to the coal of the Lykens Valley district.

More recent analyses (Trans. A. I. M. E., xiv. 721) give:


The first is a semi-anthracite, the second a semi-bituminous.
Space occupied by Anthracite Coal. (J. C.I. W., vol. iii.)-The cubic contents of \(2: 40 \mathrm{lbs}\). of hard Lehigh coal is a little over 36 feet; an average Schuylkill W. A., 37 to 38 feet ; Shamokin, 38 to 39 feet; Lorberry, nearly 41.

According to measurements made with Wilkesbarre anthracite coal from the Wyoming Valley, it requires 32.2 cu . ft . of lump, \(33.9 \mathrm{cu} . \mathrm{ft}\). broken, \(34.5 \mathrm{cu} . \mathrm{ft} . \mathrm{egg}, 34.8 \mathrm{cu} . \mathrm{ft}\). of stove, \(35.7 \mathrm{cu} . \mathrm{ft}\). of chestnut, and \(36.7 \mathrm{cu} . \mathrm{ft}\). of pea, to make one ton of coal of 2240 lbs ; while it requires \(28.8 \mathrm{cu} . \mathrm{ft}\). of \(l_{\text {lump, }} 30.3 \mathrm{cu} . \mathrm{ft}\). of broken, \(30.8 \mathrm{cu} . \mathrm{ft}\). of egg, \(31.1 \mathrm{cu} . \mathrm{ft}\). of stove, 31.9 cu . ft . of chestnut. and 32.8 cu . ft. of pea, to make one ton of 2000 lbs .

Composition of Anthracite and Semi-bituminous Coals. (Trans. A. I. M. E., vi. 430.)-Hard dry anthracites, 16 analyses by Rogers, show a range from 94.10 to 82.47 fixed carbon, 1.40 to 9.53 rolatile matter, and 4.50 to 8.00 ash, water, and impurities. Of the fuel constituents alone, the fixed carbon ranges from 98.53 to \$9.63, and the volatile matter from 1.47 to 10.37 , the corresponding carbon ratios, or \(\mathrm{C} \div\) Vol. H.C. being from 67.02 to 8.64.

Semi-anthracites. -12 analyses by Rogers show a range of from 90.23 to '74.05) fixed carbon, 7.07 to 13.15 volatile matter, and 2.20 to 12.10 water, ash, and impurities. Excluding the ash, etc., the range of fixed carbon is 92.75 to 84.42 , and the volatile combustible 7.27 to 15.58 , the corresponding carbon ratio being from 12.75 to 5.41.

Semi-bituminous Coals. - 10 analyses of Penna. and Maryland coals give fixed carbon 68.41 to 84.80 , volatile matter 11.2 to 1 i.28, and ash, water, and impurities 4 to 13.99. The percentage of the fuel constituents is fixed carbon ז9.84 to 88.80, volatile combustible 11.20 to 20.16, and the carbon ratio 11.41 to 3.96.

\section*{American Semi-bituminous and Bituminous Coals.}
(Selected chiefly from various papers in Trans. A. I. M. E.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Moisiure. & \begin{tabular}{l}
Vol. \\
Hydro- \\
arbon
\end{tabular} & \begin{tabular}{l}
Fixed \\
Carbon
\end{tabular} & Ash. & Sulphur. \\
\hline \multicolumn{6}{|l|}{Penna. Semi-bituminous : \(\quad\) - 080} \\
\hline Broad Top, extremes of 5 & . 79 & 13.84 & 78.46 & 6.00 & . 91 \\
\hline & 11.27 & 14.33 & 77.77 & \({ }_{6}^{4.63}\) & 0.68 \\
\hline Somerset Co., extremes of & \(\left\{\begin{array}{l}1.89 \\ 1.89\end{array}\right.\) & 18.51 & 65.90 & 10.62 & \({ }_{3} .08\) \\
\hline Blair Co., average of 5 & \(1.0 \%\) & 26.72 & 60.77 & 9.45 & \(\stackrel{3}{2.20}\) \\
\hline Cambria Co., average of 7 , lower bed, B. & 0.74 & 21.21 & 68.94 & \%. 51 & 1.98 \\
\hline ambria Co., 1, upper bed & 1.14 & 17.18 & 73.42 & 6.58 & 1.41 \\
\hline Cambria Co., South For & & 15.51 & 78.60 & 5.84 & \\
\hline Centre Co., 1 & 0.60 & 22.60 & 68.71 & 5.40 & 2.69 \\
\hline Clearfield Co., average of 9 , upper bed, C . & 0.70 & 23.94 & 69.28 & 4.62 & 1.42 \\
\hline Clearfield Co., average of 8 , lower bed, D. & 0.81 & 21.10 & 74.08 & 3.36 & 0.42 \\
\hline & ( 0.41 & 20.09 & 66.69 & 265 & 0.43 \\
\hline Clearfield Co., range of 17 anal.. & \(\{\) to & to & to & to & to \\
\hline & 1.94 & 25.19 & 74.02 & 7.65 & 1.79 \\
\hline \multicolumn{6}{|l|}{Bituminous :} \\
\hline Jefferson Co., average of 26 . & 1.21 & 32.53 & 60.99 & 3.76 & 1.00 \\
\hline Clarion Co., average of 7. & 1.97 & 38.60 & 54.15 & 4.10 & 1.19 \\
\hline Armstrong Co., 1. & 1.18 & 42.50 & 49.69 & 4.58 & 2.00 \\
\hline Connellsville Coal. & 1.26 & 30.10 & 59.61 & 8.23 & . 78 \\
\hline Coke from Conn'ville (Standard) & . 49 & 0.01 & 87.46 & 11.32 & . 69 \\
\hline Youghiogheny Coal. & 1.03 & 36.49 & 59.05 & 2.61 & . 81 \\
\hline Pittsburgh, Ocean Mine & 28 & 39.09 & 57.33 & 3.30 & \\
\hline
\end{tabular}

The percentage of volatile matter in the Kittaning lower bed B and the Freeport lower bed D increases with great uniformity from east to west; thus
\begin{tabular}{|c|c|c|}
\hline & Volatile Matter. & Fixed Carbon. \\
\hline Clearfield Co, bed D. & . 20.09 to \(: 5.19\) & 68.73 to 74.76 \\
\hline " B & 22.56 to 26.13 & 64.3 to 69.63 \\
\hline Clarion Co., "B. & 35.70 to 42.55 & \(4 \pi .51\) to 55.44 \\
\hline D & 37.15 to 40.80 & 51.39 to 56.36 \\
\hline
\end{tabular}

Conneilsville Coal and Coke. (Trans. A. I. M. E., xiii. 33.) The Connellsville coal-field, in the southwestern part of Pennsylvania, is a strip about 3 miles wide and 60 miles in length. The mine workings are confined to the Pittsburgh seam, which here has its best development as to size, and its quality best adapted to coke-maicing. It generally affords from 7 to 8 feet of coal.

The following analyses by T. T. Morrell show about its range of composition :

Moisture. Vol. Mat. Fixed C. Ash. Sulphur. Phosph's.
\begin{tabular}{lllllll} 
Herold Mine \(\ldots .\). & 1.26 & 28.83 & 60.79 & 8.44 & .67 & .013 \\
Kintz Mine. ..... & 0.79 & 31.91 & 56.46 & 9.52 & 1.32 & .02
\end{tabular}

In comparing the composition of coals across the Appalachian field, in the western section of Pennsylvania, it will be noted that the Connellsville variety occupies a peculiar position between the rather dry semi-bituminous coals eastward of it and the fat bituminous coals flanking it on the west.

Beneath the Connellsville or Pittsburgh coal-bed occurs an interval of from 400 to 600 feet of "barren measures," separating it from the lower productive coal-measures of Western Pennsylvania. The following tables
show the great similarity in composition in the coals of these upper and lower coal-measures in the same geographical belt or basin.

\section*{Analyses from the Upper Coal-measures (Penna.) in a Westward Order.}

Localities. Moisture. Vol. Mat. Fixed Carb. Ash. Sulphur.


Salisbury, Pa......... 1.66 Connellsvile Pa....
Greensburg, Pa....... 1.02
Irwin's, Pa............. . 1.41
Analyses from the Lower Coal-measures in a Westward Order.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Localities. & Moisture. & Vol. Mat. & Fixed Carb. & Ash. & Sulphur. \\
\hline Anthracite & 1.35 & 3.45 & 89.06 & 5.81 & 030 \\
\hline Broad Top & 0.77 & 18.18 & 73.34 & 6.69 & 1.0: \\
\hline Bemnington.. & . 1.40 & 27.23 & 61.84 & 6.93 & 2.60 \\
\hline Johustown. & .. 1.18 & 16.54 & \%4.46 & 5.96 & 1.86 \\
\hline Blairsville & . 0.92 & 24.36 & 62.20 & \%. 69 & 4.93 \\
\hline Arinstrong Co.. & .. 0.96 & 38.20 & 52.03 & 5.14 & 3.66 \\
\hline
\end{tabular}

Pennsylvania and Ohio Bituminous Coals. Variation in Character of coals of the same Beds in different Dis-triets.-From 50 analyses in the reports of the Pennsylvania Geological Survey, the following are selected. They are divided into different groups, and the extreme analysis in each group is given, ash and other impurities beting neglected, and the percentage in 100 of combustible matter being qlene considered.
\begin{tabular}{|c|c|c|c|c|}
\hline & No. of Analyses & Fixed Carbon & \begin{tabular}{l}
Vol. \\
H. C.
\end{tabular} & Carbon Ratio. \\
\hline Waynesburg coal-bed, upper ben & 5 & & & \\
\hline Jefferson township, Greene Co. & & 59. 22 & 40.28 & 1.48 \\
\hline Hopewell township, Washington Co & & 53.2\% & \(16 . \% 8\) & 1.13 \\
\hline Waynesburg coal-bed, lower bench & 9 & & & \\
\hline Morgan township, Greene Co. & & 60.69 & 39.31 & 1.54 \\
\hline Pleasant Valley, Washington Co. & & 54.31 & 45.69 & 1.19 \\
\hline Sewickley coal-bed..... ......... & 3 & & & \\
\hline Whitely Creek. Greene Co & & 64.39 & 35.61 & 1.80 \\
\hline Gray's Bank Creek, Greene Co. & & 60.35 & 39.65 & 1.52 \\
\hline Pittsburgh coal-bed: & & & & \\
\hline Upper bench, Washington Co & & \(\left\{\begin{array}{l}60.8 \pi \\ 59.11\end{array}\right.\) & 39.13
40.89 & 1.65
1.20 \\
\hline & & \(\{63.54\) & 36.46 & 1.14 \\
\hline Lower bench, & 5 & \(\{50.9 \pi\) & 49.03 & 1.14 \\
\hline Main bench, Greene Cc & 3 & \(\{61.80\) & 38.20 & 1.61 \\
\hline Frick \& Co., Washington Co., average & & 154.33
66.44 & \(45.6 \%\)
33.56 & 1.19
1.98 \\
\hline Lower bench, Greene Co............. & 1 & \(5 \% .83\) & 42.1\% & 1.3 \% \\
\hline Somerset Co, semi-bituminous (showing & \} 8 & \(\left\{\begin{array}{c}79.73\end{array}\right.\) & \(20.2 \sim\) & 393 \\
\hline decrease of vol. mat. to the eastward). & \(\}\) & \{ \(\% 5.4 \%\) & 24.53 & 3.0 亿̃ \\
\hline Beaver Co., Pa. & \% & & & \\
\hline Diehl's Bank, Georgetown. & & 40.68 & 59.32 & 0.65 \\
\hline Bryan's Bank, Georgetown.............. & & \(62.5 \%\) & 37.43 & 1.66 \\
\hline Оніо. & & & & \\
\hline Pittsburgh coal-bed in Ohio: & & & & \\
\hline Jefferson Co., Ohio.. & & & & \\
\hline Belmont Co., Ohio.. & & \(\left\{\begin{array}{l}63.46 \\ 66.14\end{array}\right.\) & 36.54
33.86 & 1.73
1.95 \\
\hline n & & \(\{63.46\) & 36.54 & 1.73 \\
\hline , & & \{ 64.93 & 35. 07 & 1.85 \\
\hline Pomeroy Co., Ohio & & \(\left\{\begin{array}{l}60.82 \\ 6 \cdot .33\end{array}\right.\) & 39.08
37 & 1.65 \\
\hline
\end{tabular}

Analyses of Southern and Western Coals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Moisture. & Vol. Mat. & Fixed C. & Ash. & Sulphur \\
\hline \begin{tabular}{l}
Оніо. \\
Hocking Valley.
\end{tabular} & 5.00 & 32.80 & 53.15 & 9.05 & 0.44 \\
\hline  & 7.40 & 29.20 & 60.45 & 2.95 & 0.93 \\
\hline Cumberlan & 95 & 19.13 & 72.70 & 6.40 & 0.78 \\
\hline & 1.23 & 15.47 & 73.51 & 9.09 & 0.70 \\
\hline Virginia.
South of James River, 23 anal- & f from 0.67 & 27.28 & 46.70 & 2.00 & 0.58 \\
\hline yses, range & to 2.46 & 38.60 & 67.83 & 15.76 & 2.89 \\
\hline Average of 23........... & 1.48 & 32.24 & 58.89 & 7.72 & 1.45 \\
\hline North of James River, eastern
outcrop, & 0.40 & 18.60 & 71.00 & 10.00 & \\
\hline outcrop, & 1.79 & 23.96 & 59.98 & 14.28 & \\
\hline Carbonite or Natural Co & 1.57 & 9.64 & 79.93 & 8.86 & \\
\hline Western outcrop, 11 analyses, & from \({ }^{1.56}\) & \({ }_{21} 14.26\) & 81.61 & 2.24 & 0.23 \\
\hline & \(\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.\) & 21.33
30.50 & 54.97
\(70: 80\) & 32.35
22.60 & \\
\hline Average of & & 26.06 & 63.75 & 10.06 & \\
\hline Pocahontas Flat-top* & 0.52 & 23.90 & 74.20 & 1.38 & 0.52 \\
\hline \begin{tabular}{l}
(Castner \& Curran's Circular) \\
West Virginia (New River.)
\end{tabular} & 0.62 & 18.48 & 75.22 & 5.68 & 0.28 \\
\hline & \(\left\{\right.\) from 0. \(\mathrm{r}_{6}\) & 17.57 & 75.89 & 1.11 & 0.23 \\
\hline & \{ to 0.94 & 18.19 & 79.40 & 4.92 & 0.30 \\
\hline Nuttalburgh \(\dagger\). & 0.34
1.35 & 29.59 & 69.00 & 1.07 & \\
\hline Virginia and Kentucky. & & 25.35 & \%0. & 2.10 & . 08 \\
\hline Big Stone Gap Field, \(\ddagger 9\) anal- & f from 0.80 & 31.44 & 54.80 & 1.73 & 056 \\
\hline yses, range & to 2.01 & 36.27 & 63.50 & 8.25 & 1.72 \\
\hline Kentucry. & from 1.26 & 35.15 & 60.85 & 1.23 & 0.40 \\
\hline ulaski Co., 3 analyses, range & \(\{\) to 1.32 & 39.44 & 52.48 & 5.53 & 1.00 \\
\hline Muhlenberg Co., 4 analyses, & \(\{\) from 3.60 & 30.60
38.70 & 58.80 & 3.40 & 0. \({ }^{19}\) \\
\hline Kentucky Cannel Coals, \(\$ 5\) an- & fo to 7.06 & 38.70
40.20 & 59.83. \({ }^{50} 0\) & 6.50
8.81 & 3.16
0.96 \\
\hline Kentucky Cannel Coals,§5 analyses, range & \(\left\{\begin{array}{c}\text { from } \\ \text { to }\end{array}\right.\) & \(40.20|\mid\)
\(60.30 \|\) & 59.80 coke
\(33 . \% 0\) coke & 8.81
4.80 & 0.96
1.32 \\
\hline Tennessee. & f from 70 & 32.33 & 46.61 & 16.94 & \\
\hline Scott Co., Range of several.f.. & \(\left\{\begin{array}{c}\text { fom } 1.83\end{array}\right.\) & 41.29 & 61.66 & 16.94 & 3.77 \\
\hline Roane Co., Rockwood. & 1.75 & 26.62 & 60.11 & 11.52 & 1.49 \\
\hline Hamilton Co., Melville & 2.74 & 26.50 & 67.08 & 3.68 & 91 \\
\hline Marion Co., Etna & 94 & 23.72 & 63.94 & 11.40 & 1.19 \\
\hline Sewanee Co., Tracy City & 1.60 & 29.30 & 61.00 & 7.80 & \\
\hline Kelly (oo., Whiteside............ Georgia. & 1.30 & 21.80 & 74.20 & 2.70 & \\
\hline Dade Co.... & 1.20 & 23.05 & 60.50 & 15.16 & 0.84 \\
\hline \begin{tabular}{l}
Alabama. \\
Warren Field:
\end{tabular} & & & & & \\
\hline Jefferson Co., Birmingham.. & 3.01 & 42.76 & 48.30 & 3.21 & 2.72 \\
\hline " " Black Creek & . 12 & 26.11 & 71.64 & 2.03 & . 10 \\
\hline Tuscaloosa Co........ & 1.59 & 38.33 & 54.64 & 5.45 & 1.33 \\
\hline Cahaba Field, (Helena Vein. & 2.00 & 32.90 & 53.08 & 11.34 & . 68 \\
\hline Bibb Co .... , Coke Vein.... & 1. 18 & 30.60 & 66.58 & 1.09 & . 04 \\
\hline
\end{tabular}

\footnotetext{
* Analyses of Pocahontas Coal by John Pattinson, F.C.S., 1889:
}
\(\qquad\)
\(\begin{array}{llllllllll}\text { Lumps... } 86.51 & 4.44 & 4.95 & 0.66 & 0.61 & 1.54 & 1.29 & 78.8 & 21.2\end{array}\)
\(\begin{array}{llllllllll}\text { Small } \ldots . & 83.13 & 4.29 & 5.33 & 0.66 & 0.56 & 4.63 & 1.40 & 79.8 & 20.2\end{array}\) Calorific value, by Thomson's Calorimeter: Lumps \(=15.4 \mathrm{lbs}\). of. water evaporated from and at \(21 \approx^{\circ}\); small \(=14.7\) lbs.
+ These coals are coked in beehive ovens, and yield from \(63 \%\) to \(64 \%\) of coke. \(\ddagger\) This field covers about 120 square miles in Virginia, and about 30 square miles in Kentucky.

8 The principal use of the cannel coals is for enriching illuminating-gas. || Volatile matter including moisture.
TI Single analyses from Morgan, Rhea, Anderson, and Roane counties fall within this range.

Alabama Coals. (W. B. Phillips, Eng. \& M. J., June 3, 1893.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Name of Seam.} & \multirow[b]{2}{*}{Location.} & \multicolumn{2}{|l|}{Proximate.} & \multicolumn{7}{|c|}{Ultimate.} \\
\hline & &  &  & \[
\begin{aligned}
& \text { घं } \\
& \text { ¢ } \\
& \text { تू }
\end{aligned}
\] &  & \[
\begin{aligned}
& \dot{\tilde{0}} \\
& \text { \&o } \\
& \text { x. } \\
& 0
\end{aligned}
\] &  & ¢ & \(\frac{3}{4}\) &  \\
\hline Wadsworth & Helena & 34.30 & 60.50 & 13.23 & 7.98 & 11.92 & 1.07 & 0.60 & 3.50 & 1.70 \\
\hline Pratt... & Pratt mines.. & 33.45 & 63.20 & 75.82 & 10.52 & 7.51 & & 1.06 & 2.00 & 1.35 \\
\hline Brookwood & Brookwood. & 27.80 & 58.70 & 72.47 & 10.38 & 1.60 & 0.40 & 1.65 & 11.90 & 1.60 \\
\hline Woodstock. & Blocton & 34.80 & 60.60 & 72.75 & 8.61 & 11.12 & 1.48 & 1.44 & 2.65 & 1.95 \\
\hline Underwood & " .... & 35.65 & 57.30 & -0.8? & 10.19 & 9.95 & 1.31 & 0.68 & 5.25 & 1.80 \\
\hline Pratt... & Pratt mines.. & 31.55 & 64.95 & 75.05 & 9.91 & 8.95 & 1.62 & 0.9 \% & 2.35 & 1.15 \\
\hline Milldale & Brookwood. & 30.50 & 66.30 & 73.96 & 10.50 & 9.57 & 1.62 & 1.15 & 2.20 & 1.00 \\
\hline & Blue Creek & 25.80 & 69.90 & 72.68 & 10.77 & 9.83 & 1.39 & 1.03 & 2.80 & 1.50 \\
\hline & Coalburg ... & 32.55 & 65.57 & \%4.59 & 10.58 & 9.48 & 1.31 & 1.32 & 1.90 & 0.82 \\
\hline Cahaba & & 30.15 & 52.90 & 60.37 & 10.70 & 9.00 & 1.26 & 1.72 & 16.30 & 0.65 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Moisture. & Vol. Mat. & Fixed C. & Ash. & Sulphur \\
\hline Eagle Mine Texas. & 3.54 & 30.84 & 50.69 & 14.93 & \\
\hline Sabinas Fiel \(\mathfrak{d}\), Vein & 1.91 & 20.04 & \(6 \cdot .71\) & 15.35 & \\
\hline "6 "، "، II & 1.37 & 16.42 & 68.18 & 13.02 & \\
\hline " " " III. & 0.84 & 29.35 & 50.18 & 19.63 & \\
\hline " " " IV & 0.45 & 21.6 & 45.75 & 29.1 & 3.15 \\
\hline Indiana. & & & & & \\
\hline Block coal, average.*. & 2.10 & 3\%.35 & 57.95 & 2.60 & \\
\hline Lafayette & 13.05 & 32.34 & 48. \({ }^{\text {\% }}\) & 5.81 & \\
\hline " " Sand Creek \(\dagger\). & 4.50 & 91 & & 4.50 & \\
\hline La Salle............... & 8.22 & 39.40 & 43.95 & 8.43 & \\
\hline Streator & 7.20 & 38.88 & 45.30 & 8.60 & \\
\hline Danville. & 11.00 & 32.55 & 53.00 & 3.65 & \\
\hline & 5.78 & 43.10 & 45.37 & 6.15 & \\
\hline Lincoln & 845 & 34.99 & 44.50 & 12.06 & \\
\hline Barclay & 10.80 & 27.32 & 41.78 & 17.10 & \\
\hline Carbondale & 6.36 & 26.40 & 59.84 & 7.40 & \\
\hline Du Qunin & 8.86 & 23.54 & 60.60 & 7.00 & \\
\hline Mit. Carbon & 6.12 & 24.68 & 66.50 & 2.70 & \\
\hline Staunton & 6.27 & 57.11 & 26.30 & 10.32 & \\
\hline
\end{tabular}

\footnotetext{
* Indiana Block Coal (J. S. Alexander, Trans. A. I. M. E., iv. 100).-The typical block coal of the Brazil (Indiana) district differs in chemical composition but little from the coking coals of Western Pennsylvania. The physical difference, however, is quite marked; the latter has a cubuid structure made up of bituminous particles lying against each other, so that under the action of heat fusion throughout the mass readily takes place, while block coal is formed of alternate layers of rich bituminous matter and a charcoal-like substance, which is not only very slow of combustion, but so retards the transmission of heat that agglutination is prevented, and the coal burns away lajer by layer, retaining its form until consumed.
+ Analysis by E. T. Cox: C, 72.94; H, 4.50; O, 11.77; N, 1.79; ash, 4.50; moisture, 4.50.
\(\ddagger\) The Illinois coals are extremely variable in character. The above analyses are given in D. L. Barnes's paper on "A merican Locomotive Practice." Trans. A. S. C. E. 1893. excent the last, the Staunton coal, which is by Hunt and Clapp (Trans. A. S. MI. E., v. 266). The Staunton coul is remarkable for the high percentage of volatile matter, but it is excelled in this respect by
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Moisture. & Vol. Mat. & Fixed C. & Ash. & Sulphur. \\
\hline Iowa.* & & & & & \\
\hline Heb & 4.99 & 37.27 & 25.37 & \({ }^{34.37}\) & \\
\hline Flaglers & 9.84 & 40.16 & 37.69 & 1231 & \\
\hline Chisholm & 9.18 & 40.42 & 39.58 & 10.32 & \\
\hline Missouri.* & & & & & \\
\hline Brookfield. & 4.34 & 40.27 & 50.60 & 4.79 & \\
\hline Mendota. & 9.03 & 37.48 & 46.24 & 7.25 & \\
\hline Hamilton & 5.06 & 34.24 & 47.69 & 13.01 & \\
\hline Lingo.. & 7.33 & 38.29 & 47.24 & 7.14 & \\
\hline Hastings ............... & 0.21 & 27.82 & 60.88 & 11.09 & \\
\hline Cambria Wyoming.* & & & & & \\
\hline Cambria & 4.2 & 40.6 & 41.5 & 13.7 & \\
\hline Goose Creek & 9.7 & 40.2 & 46.3 & 3.8 & \\
\hline  & 13.92 & 36.18 & 42.03 & 7.29 & \\
\hline Deek Creek. & 12.8 & 35.0 & 47.7 & 3.6 & \\
\hline Sheridan & 6.04 & 42.37 & 35.57 & 16.02 & \\
\hline \begin{tabular}{l}
Colorado \(\ddagger\) \\
Sunshine, Colo, average.
\end{tabular} & 2.8 & 36.3 & 37.1 & 23.8 & \\
\hline Newcastle, ", ". & 1.7 & 37.95 & 48.6 & 11.6 & \\
\hline El Moro, " & 1.32 & 38.23 & 55.86 & 3.59 & \\
\hline Crested Buttes, " ... & 1.10 & 23.20 & \%2.60 & 3.10 & \\
\hline Utah (Southern).
Castledale . & 3.43 & 42.81 & \(47.81+\) & 9.73 & \\
\hline Cedar City & 3.50 & 43.66 & \(43.11+\) & 5.95 & \\
\hline Oregon. & & & & & \\
\hline Coos \({ }_{\text {، }}\) Bay & 15.45 & 41.55 & 34.95 & 8.05 & 2.53 \\
\hline & 17.27 & 44.15 & 32.40 & 6.18 & 1.37 \\
\hline Yaquina Bay & 13.03 & 46.20 & 32.60 & 7.10 & 1.07 \\
\hline John Day River & 4.55 & 40.00 & 48.19 & 7.26 & . 60 \\
\hline Vancouver Island. & 6.54 & 34.45 & 52.41 & 5.95 & . 65 \\
\hline Vancouver Island. Comox Coal... ........... & 1.7 & 27.17 & 68.27 & 2.86 & \\
\hline
\end{tabular}
the Boghead coal of Linlithgowshire. Scotland, an analysis of which by Dr. Penny is as follows: Proximate-moisture 0.84; vol. 67.95; fixed C, 9.5 , ash, 21.4: Ultimate-C,63.94; H, 8.86; \(\mathrm{O}, 4 . \pi 0 ; \mathrm{N}, 0.96\); which is remarkable for the high percentage of H .
* The analyses of Iowa, Missoiri, Nebraska, and Wyoming coals are selected from a paper on The Heating Value of Western Coals, by Wm. Forsyth, Mech. Engr. of the C., B. \& Q. R. R.. Eng'g Neus, Jan. 17, 1895.
\(\dagger\) Includes sulphur, which is very high. Coke from Cedar City analyzed : Water and volatile matter, 1.42; fixed carbon, 76.70; ash, 16.61 ; sulphur, 5.27.
\# Colorado Coals.-The Colorado coals are of extremely variable composition, ranging all the way from lignite to anthracite. G. C. Hewitt (Trans. A. I. M. E., xvii. 377) says: The coal seams, where unchanged by heat and flexure, carry a lignite containing from \(5 \%\) to \(20 \%\) of water. In the south-eastern corner of the field the same have been metamorphosed so that in four miles the same seams are an anthracite, coking, and dry coal. In the basin of Coal Creek the coals are extremely fat, and produce a hard, bright, sonorous coke. North of coal basin half a mile of development shows a gradual change from a good coking coal with patches of dry coal to a dry coal that will barely agglutinate in a beehive oven. In another half mile the same seam is dry. In this transition area, a small cross-fault makes the coal fat for twenty or more feet on either side. The dry seams also present wide chemical and physical changes in short distances. A soft and loosely bedded coal has in a hundred feet become compact and hard without the intervention of a fault. A couple of hundred feet has reduced the water of combination from \(12 \%\) to \(5 \%\).

Western Arkansas and Indian Territory. (H. M. Chance, Traus. A. I. M. E. 1890.)-The Choctaw coal-field is a direct westward exten-
sion of the Arkansas coal-field, but its coals are not like Arkansas coals, except in the country immediately adjoining the Arkansas line.

The western Arkansas coals are dry semi-bituminous or semi-anthracitie coals, mostly non-coking, or with quite feeble coking properties, ranging from \(14 \%\) to \(16 \%\) in volatile matter, the highest percentage yet found, according to Mr. Winslow's Arkansas report, being 17.655.

In the Mitchell basin, about 10 miles west from the Arkansas line, coal recently opened shows \(19 \%\) volatile matter; the Mayberry coal, about 8 miles farther west, contains \(23 \%\) volatile matter; and the Bryan Mine coal, about the same distance west, shows \(26 \%\) volatile matter. About 30 miles farther west, the coal shows from \(38 \%\) to \(411 / 2 \%\) volatile matter, which is also about the percentage in coals of the McAlester and Lehigh districts.
Western Lignites. (R. W. Raymond, Trans. A. I. M. E., vol. ii. 18\%3.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & C. & H. & N. & 0. & S. & Moisture. & 安 & Calorific Power, calories. \\
\hline Monte Diabolo & 59.72 & 5.08 & 1.01 & 15.69 & 3.92 & 8.94 & 5.64 & 5157 \\
\hline Weber Cañon, Utah & 64.84 & 4.34 & 1.29 & 15.5\% & 1.60 & 941 & 3.00 & 5912 \\
\hline Echo Cañon, Utah & 69.84 & 3.90 & 1.93 & 10.99 & 0.79 & 9.11 & 3.40 & 6400 \\
\hline Carbon Station, Wyo & 64.99 & 3.76 & 1.74 & 15.20 & 1.04 & 11.56 & 1.68 & 5738 \\
\hline "' \({ }^{\text {c }}\) & 69.14 & 4.36 & 1.25 & 9.54 & 1.03 & 8.06 & 6.62 & 6578 \\
\hline Coos Bay, Oregon. & 56.24 & 3.38 & 0.42 & 21.82 & 0.81 & 13.28 & 4.05 & 4565 \\
\hline Alaska........... & 55.79 & 3.26 & 0.61 & 19.01 & 0.63 & 16.52 & 4.18 & 4610 \\
\hline & 67.67 & 4.66 & 1.58 & 12.80 & 0.92 & 3.08 & 9.28 & 6428 \\
\hline Canon City, Colo & & & & 13.42 & 0.63 & 5.18 & 5.77 & 7330 \\
\hline Baker Co., Ore & 60.72 & 4.30 & & 14.42 & 2.08 & 14.68 & 3.80 & 5602 \\
\hline
\end{tabular}

The calorific power is calculated by Dulong's formula,
\[
8080 \mathrm{C}+34462\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)
\]
deducting the heat required to vaporize the moisture and combined water. that is, \(53 \%\) calories for each unit of water. 1 calorie \(=1.8\) British thermal mnits.
Anaiyses of Foreign Coals. (Selected from D. L. Barnes's paper on American Locomotive Practice, A. S. C. E., 1893.)
\begin{tabular}{|c|c|c|c|c|}
\hline & Volatile Matter. & Fixed Carbon. & Ash. & \\
\hline Great Britain : & & & & \\
\hline South Wales. & 8.5 & 88.3 & 3.2 & \\
\hline & 6.2 & 92.3 & 1.5 & \\
\hline Lancashire, Eng. & 17.2 & 80.1 & 2.7 & \\
\hline Derbyshire, "6 & 17.7
1505 & 79.9
86.8 & 2.4
1.1 & Semi-bit. coking coal. \\
\hline Scotland. & 17.1 & 63.1 & 19.8 & Boghead cannel gas coal. \\
\hline & 17.5 & 80.1 & 2.4 & Semi-bit. steam-coal. \\
\hline Staffordshire, Eng & 20.4 & 78.6 & 1.0 & \\
\hline South America:
Chili, Conception Bay & & & & \\
\hline Chili, Conception Bay & 21.93
24.11 & 70.55
38.98 & 7.52
36.91 &  \\
\hline Patagonia.............. & 24.35 & 62.25 & 13.4 & \\
\hline Brazil.... & 40.5 & 57.9 & 1.6 & \\
\hline Canada: & & & & \\
\hline Nova Scotia. & 26.8 & 60.7 & 12.5 & \\
\hline Cape Breton. & 26.9 & 67.6 & 5.5 & \\
\hline Australia............. & & & & \\
\hline Australian lignite.. & 15.8 & 64.3 & 10.0 & \\
\hline Sydney, South Wales.. & 14.98 & 82.39 & 2.04 & \\
\hline Borneo................... & 26.5 & 70.3 & 14.2 & \\
\hline Van Diemen's Land..... & 6.16 & 63.4 & 30.45 & \\
\hline
\end{tabular}

An analysis of Pictou, N. S., coal, in Trans. A. I. M. E., xiv. 560, is: Vol., 29.63; carbon. 56.98; ash, 13.39; and one of Sydney, Cape Breton, coal is: vol., 34.07 ; carbon, 61.43 ; ash, 4.50 .

Nixon's Navigation Welsh Coal is remarkably pure, and contains not more than 3 to 4 per cent of ashes, giving 88 per cent of hard and lustrous coke. The quantity of fixed carbon it contains would classify it among the dry coals, but on account of its coke and its intensity of combustion it belongs to the class of fat, or long-flaming coals.

Chemical analysis gave the following results: Carbon, 90.27 ; hydrogen, 4.39; sulphur, .69; nitrogen, .49; oxygen (difference), 4.16.

The analysis showed the following composition of the volatile parts: Carbon, 22.53; hydrogen, \(34.96 ; \mathrm{O}+\mathrm{N}+\mathrm{S}, 42.51\).

The heat of combustion was found to be, as a result of several experiments, 8864 calories for the unit of weight. Calculated according to its composition, the heat of combustion would be 8805 calories \(=15,849\) British thermal units per pound.

This coal is generally used in trial-trips of steam-vessels in Great Britain.
Sampling Coal for Analysis.-J. P. Kimball, Trans. A. I. M. E., xii. 317, says : The unsuitable sampling of a coal-seam, or the improper preparation of the sample in the laboratory, often gives rise to errors in determinations of the ash so wide in range as to vitiate the analysis for all practical purposes; every other single determination, excepting moisture, showing its relative part of the error. The determination of sulphur and ash are especially liable to error, as they are intimately associated in the slates.

Wm. Forsyth, in his paper on The Heating Value of Western Coals (Eng'g News, Jan. 17, 1895), says : This trouble in getting a fairly average sample of anthracite coal has compelled the Reading \(R\). R. Co., in getting their samples, to take as much as 300 lbs . for one sample, drawn direct from the chutes, as it stands ready for shipment.

The directions for collecting samples of coal for analysis at the C., B. \& Q. laboratory are as follows:

Two samples should be taken, one marked "average," the other "select." Each sample should contain about 10 lbs., made up of lumps about the size of an orange taken from different parts of the dump or car, and so selceted that they shall represent as nearly as possible, first, the average lot; second, the best coal.

An example of the difference between an "average" and a "select" sample, taken from Mr. Forsyth's paper, is the following of an Illinois coal: Moisture. Vol. Mat. Fixed Carbon. Ash.
\begin{tabular}{llllll} 
& & 1.36 & 27.69 & 35.41 & 35.54 \\
Average.......... & 1.30 & 34.70 & 48.23 & 15.17
\end{tabular}

The theoretical evaporative power of the former was 9.13 lbs . of water from and at \(212^{\circ}\) per lb. of coal, and that of the latter 11.44 lbs .

Relative Value of Fine Sizes of Anthracite.-For burning on a grate ccal-dust is commercially valueless, the finest commercial anthracites being sold at the following rates per ton at the mines, according to a recent address by Mr. Eckley B. Coxe (1893):

Size. Range of Size.
\begin{tabular}{|c|c|c|}
\hline Size. & Range of Size. & at Mis \\
\hline Chestnut. & \(11 / 2\) to 7/8 inch & \$2.75 \\
\hline Pea & 7/8 to 9/16 & 1.25 \\
\hline Buckwheat & 9/16 to \(3 / 8\) & 0.75 \\
\hline Rice. & \(3 / 8\) to \(3 / 16\) & 0.25 \\
\hline Barley. & \(3 / 16\) to \(2 / 32\) & 0.10 \\
\hline
\end{tabular}

But when coal is reduced to an impalpable dust, a method of burning it becomes possible to which even the finest of these sizes is wholly unadapted; the coal may be blown in as dust, mixed with its proper proportion of air. and no grate at all is then required.

Pressed Fuel. (E. F. Loiseau, Trans. A. I. M. E., viii. 314.)-Pressed fuel has been made from anthracite dust by mixing the dust with ten per cent of its bulk of diy pitch, which is prepared by separating from tar at a temperature of \(572^{\circ} \mathrm{F}\). the volatile matter it contains. The mixture is kept heated by steam to \(212^{\circ}\), at which temperature the pitch acquires its cementing properties, and is passed between two rollers, on the periphery of which are milled out a series of semi-oval cavities. The lumps of the mixture, about the size of an egg, drop out under the rollers on an endless belt which carries them to a screen in eight minutes, which time is sufficient to conl the lumps, and they are then ready for delivery.

The enterprise of making the pressed fuel above described was not commercially successful, on account of the low price of other coal. In France, however, "briquettes" are regularly made of coal-dust (bituminous and semi-bituminous),

\section*{RELATIVE VALUE OF STEAM COALS.}

The heating value of a coal may be determined, with more or less approximation to accuracy, by three different methods.

1st, by chemical analysis ; 2d. by combustion in a coal calorimeter; 3d, by actual trial in a steam-boiler. The first two methods give what may be called the theoretical heating value, the third gives the practical value.
The accuracy of the first two methods depends on the precision of the method of analysis or calorimetry adopted, and upon the care and skill of the operator. The results of the third method are subject to numerous sources of variation and error, and may be taken as approximately true only for the particular conditions under which the test is made. Analysis and calorimetry give with considerable accuracy the heating value which may be obtained under the conditions of perfect combustion and complete absorption of the heat produced. A boiler test gives the actual result under conditions of more or less imperfect combustion, and of numerous and variable wastes. It may give the highest practical heating value, if the conditions of grate-bars, draft, extent of heating surface, method of firing, etc., are the best possible for the particular coal tested. and it may give results far beneath the highest if these conditions are adverse or uusuitable to the coal.
The results of boiler tests being so extremely variable, their use for the purpose of determining the relative steaming values of different coals has frequently led to false conclusions. A notable instance is found in the record of Prof. Johnson's tests, made in 1844, the only extensive series of tests of American coals ever made. He reported the steaming value of the Lehigh Coal \& Navigation Co.'s coal to be far the lowest of all the anthracites, a result which is easily explained by an examination of the conditions under which he made the test, which were entirely unsuited to that coal. He also reported a result for Pittsburgh coal which is far beneath that now obtainable in every-day practice, his low result being chiefly due to the use of an improper furnace.
In a paper entitled Proposed Apparatus for Determining the Heating Power of Different Coals (Trans. A. I. M. E., xiv. \({ }^{727}\) ) the author described and illustrated an apparatus designed to test fuel on a large scale, avoiding the errors of a steam-boiler test. It consists of a fire-brick furnace enclosed in a water-casing, and two cylindrical shells containing a great number of tubes, which are surrounded by cooling water and through which the gases of combustion pass while being cooled. No steam is generated in the apparatus, but water is passed through it and allowed to escape at a temperature below \(200^{\circ} \mathrm{F}\). The product of the weight of the water passed through the apparatus by its increase in temperature is the measure of the heating value of the fuel.
There has been much difference of opinion concerning the value of chemical analysis as a means of approximating the heating power of coal. It was found by Scheurer-Kestner and Meunier-Dollfus, in their extensive series of tests, made in Europe in 1868, that the heating power as determined by calorimetric tests was greater than that given to chemical analysis according to Dulong's law.
Recent tests made in Paris by M. Mahler, however, show a much closer agreement of analysis and calorimetric tests. A brief description of these tosts, translated from the French, may be found in an article by the author in The Mineral Industry, vol. i. page 97.
Dulong's law may be expressed by the formula,
Heating Power in British Thermal Units \(=14,500 \mathrm{C}+62,500\left(\mathrm{H}-\frac{0}{8}\right)\),* in which \(\mathrm{C}, \mathrm{H}\), and O are respectively the percentage of carbon, hydrogen, and oxygen, each divided by 100. A study of M. Mahler's calorimetric tests shows that the maximum difference between the results of these tests and the calculated heating power by Dulong's law in any single case is only a little over \(3 \%\), and the results of 31 tests show that Dulong's formula gives an average of only 47 thermal units less than the calorimetric tests, the average total heating value being over 14,000 thermal units, a difference of less than \(4 / 10\) of \(1 \%\).

\footnotetext{
* Mahler gives Dulong's formula with'Berthelot's figure for the heating value of carbon, in British thermal units,
}
\[
\text { Heating Power }=14,650 \mathrm{C}+62,025\left(\mathrm{H}-\frac{(\mathrm{O}+\mathrm{N})-1}{8}\right)
\]

Mahler's calorimetric apparatus consists of a strong steel vessel or " bomb" immersed in water, proper precaution being taken to prevent radiation. One gram of the coal to be tested is placed in a platinum boat within this bomb, oxygen gas is introduced under a pressure of 20 to 25 atmospheres, and the coal ignited explosively by an electric spark. Combustion is complete and instantaneous, the heat is radiated into the surrounding water, weighing \(2: 200\) grams, and its quantity is determined by the rise in temperature of this water, due corrections being made for the heat capacity of the apparatus itself. The accuracy of the apparatus is remarkable, duplicat tests giving results varying only about 2 parts in 1000.
The close agreement of the results of calorimetric tests when properly conducted, and of the heating power calculated from chemical analysis, indicates that either the chemical or the calorimetric method may be accepted as correct enough for all practical purposes for determining the total heating power of coal. The results obtained by either method may be taken as a standard by which the results of a boiler test are to be compared, and the difference between the total heating power, and the result of the boiler test is a measure of the inefficiency of the boiler under the conditions of any particular test.
In practice with good anthracite coal, in a steam-boiler properly proportioned. and with all conditions favorable, it is possible to obtain in the steam \(80 \%\) of the total heat of combustion of the coal. This result was nearly obtained in the tests at the Centennial Exhibition in 1876, in five different boilers. An efficiency of \(70 \%\) to \(75 \%\) may easily be obtained in regular practice. With bituminous coals it is difficult to obtain as close an approach to the theoretical maximum of economy, for the reason that some of the volatile combustible portion of the coal escapes unburned, the difficulty increas. ing rapidly as the content of volatile matter increases beyond \(20 \%\). With most coals of the Western States it is with difficulty that as much as \(60 \%\) or \(65 \%\) of the theoretical efficiency can be obtained without the use of gas-producers.
The chemical analysis heretofore referred to is the ultimate analysis, or the percentage of carbon, hydrogen, and oxygen of the dry coal. It, is found. however, from a study of Mahler's tests that the proximate analysis, which gives fixed carbon, volatile matter, moisture, and ash, may be relied on as giving a measure of the heating value with a limit of error of only about \(3 \%\). After deducting the moisture and ash, and calculating the fixed carbon as a percentage of the coal dryand free from ash, the author has constructed the following table :

Approximate Heating Value of Coals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Percentage F. C. in Coal Dry and Free from Ash. & Heating Value B.T.U. per lb. Comb'le. & Equiv. Water Evap. from and at \(212^{\circ}\) per lb. Combustible. & Percentage F. C. in Coal Dry and Free from Ash. & Heating Value B.T.U. per lb. Comb'le. & Equiv. Water Evap. from and at \(212^{\circ}\) per 1 l . Combustible. \\
\hline 100 & 14500 & 15.00 & 68 & 15480 & 16.03 \\
\hline 97 & \(14 \% 60\) & 15.28 & 63 & 15120 & 15.65 \\
\hline 94 & 15120 & 15.65 & 60 & 14580 & 15.09 \\
\hline 90 & 15480 & 16.03 & 57 & 14040 & 14.53 \\
\hline 87 & 15660 & 16.21 & 54 & 13320 & 13.59 \\
\hline 80 & 15840 & 16.40 & 51 & 12600 & 13.04 \\
\hline 72 & 15660 & 16.21 & 50 & 12240 & 12.67 \\
\hline
\end{tabular}

Below \(50 \%\) the law of decrease of heating-power shown in the table apparently does not hold, as some cannel coals and lignites show much higher heating-power than would be predicted from their chemical constitution.

The use of this table may be shown as follows:
Given a coal containing moisture \(2 \%\), ash \(8 \%\), fixed carbon \(61 \%\), and volatile matter \(29 \%\) what is its probable heating value? Deducting moisture and ash we find the fixed carbon is \(61 / 90\) or \(68 \%\) of the total of fixed carbon and volatile matter. One pound of the coal dry and free from ash would, by the table, have a heating value of 15,480 thermal units, but as the ash and moisture, having no heating value, are \(10 \%\) of the total weight of the coal, the coal would have \(90 \%\) of the table value, or 13,932 thermal units. This divided by 966 . the latent heat of steam at \(212^{\circ}\) gives an equivalent evaporation per ili) of coal of \(14.4 \% 1 \mathrm{se}\).

The heating value that can be obtained in practice from this coal would depend upon the efficiency of the boiler, and this largely upon the difficulty of thoroughly burning its volatile combustible matter in the boiler furnace. If a boiler efficiency of \(65 \%\) could be obtained, then the evaporation per lb . of coal from and at \(212^{\circ}\) would be \(14.42 \times .65=9.37 \mathrm{lbs}\).

With the best anthracite coal, in which the combustible portion is, say, \(9 \%\) fixed carbon and \(3 \%\) volatile matter. the highest result that can be expected in a boiler-test with all conditions favorable is 12.2 lbs . of water evaporated from and at \(212^{\circ}\) per lb . of combustible, which is \(80 \%\) of 15.28 lbs . the theoretical heating-power. With the best semi-bituminous coals, such as Cumberland and Pocahontas, in which the fixed carbon is \(80 \%\) of the total combustible, 125 lbs , or \(\mathrm{r} 6 \%\) of the theoretical 16.4 lbs ., may be obtained. For Pittsburgh coal, with a fixed carbon ratio of \(68 \%, 11 \mathrm{lbs}\)., or \(69 \%\) of the theoretical 16.03 lbs ., is about the best practically obtainable with the best boilers. With some good Ohio coals, with a fixed carbon ratio of \(60 \%, 10 \mathrm{lbs}\), or \(66 \%\) of the theoretical 15.09 lbs ., has been obtained, under favorable conditions, with a fire-brick arch over the furnace. With coals mined west of Ohio, with lower carbon ratios, the boiler efficiency is not apt to be as high as \(60 \%\).

From these figures a table of probable maximum boiler-test results from coals of different fixed carbon ratios may be constructed as follows: Fixed carbon ratio.............. \(97 \quad 80 \quad 68 \quad 60 \quad 54 \quad 50\) Evap. from and at \(21 \% 0^{\circ}\) per lb, combustible, maximum in boiler-tests: \(\begin{array}{lllllll} & & 12.2 & 12.5 & 11 & 10 & 8.3 \\ \text { Boiler efficiency, per cent........ } & 80 & 76 & 69 & 66 & 60 & 55 \\ \text { Loss, chimney, radiation, imperfect combustion, } & \text { etc : } & & & & \\ & 20 & 24 & 31 & 34 & 40 & 45\end{array}\)

The difference between the loss of \(20 \%\) with anthracite and the greater losses with the other coals is chiefly due to imperfect combustion of the bituminous coals, the more highly volatile coals sending up the chimney the greater quantity of smoke and unburned hydrocarbon gases. It is a measure of the inefficiency of the boiler furnace and of the inefficiency of heatingsurface caused by the deposition of soot, the latter being primarily caused by the imperfection of the ordinary furnace and its unsuitability to the proper burning of bituminous coal. If in a boiler-test with an ordinary furnace lower results are obtained than those in the above tatle, it is an indication of unfavorable conditions, such as bad firing, wrong proportions of boiler, defective draft, and the like, which are remediable. Higher results can be expected only with gas-producers, or other styles of furnace especially designed for smokeless combustion.

Kind of Furnace Adapted for Different Coals. (From the author's paper on "The Evaporative Power of Bituminous Coals," Trans. A.S. MI. E., iv, 257.)-Almost any kind of a furnace will be found well adapted to burning anthracite coals and semi-bituminous coals containing less than \(20 \%\) of volatile matter. Probably the best furnace for burning those coals which contain between \(20 \%\) and \(40 \%\) volatile matter, including the Scotch, English, Welsh, Nova Scotia, and the Pittsburgh aud Monongahela river coals, is a plain grate-bar furnace with a fire-brick arch thrown over it, for the purpose of keeping the combustion-chamber thoroughly hot. The best furnace for coals containing over \(40 \%\) volatile matter will be a furnace surrounded by fire-brick with a large combustion-chamber, and some special appliance for introducing very hot air to the gases distilled from the coal. or, preferably, a separate gas-producer and combustion-chamber, with facilities for heating both air and gas before they unite in the combustionchamber. The character of furnace to be especially avoid d in burning all bituminous coals containing over \(20 \%\) of volatile matter is the ordinary furnace, in which the boiler is set directly above the grate bars, and in which the heating-surfaces of the boiler are directly exposed to radiation from the coal on the grate. The question of admitting air above the grate is still unsettled. The London Engineer recently said: "All our experience, extending over many years, goes to show that when the production of smoke is prevented by special devices for admitting air, either there is an increase in the consumption of fuel or a diminution in the production of steam. * * * The best smoke-preventer yet devised is a good fireman."

Downward-draught Furnaces.-Recent experiments show that with bituminous coal considerable saving may be made by causing the draught to go downwards from the freshly-fired coal through the hot coal on the grate. Similar good results are also obtained by the upward draught by feeding the fresh coal under the bed of hot coal instead of on top. (See Boilers.)

Calorimetric Tests of American Coals.-From a number of tests of American and foreign coals, made with an oxygen calorimeter, by Geo. H. Barrus (Trans. A. S. M. E., vol. xiv. 816), the following are selected, showing the range of variation:
\begin{tabular}{|c|c|c|c|}
\hline & Percentage of Ash. & Total Heat of Combustion. B. T. U. & Total Heat reduced to Fuel free from Ash. \\
\hline Semi-bituminous. & & 14,217 & 15,141 \\
\hline George's Cr'k, Cumberl'd, MId., 10 tests & \(\{8.6\) & 12,874 & 14,085 \\
\hline Pocahontas, Va., 5 tests. & \(\left\{\begin{array}{l}3.2 \\ 6.2\end{array}\right.\) & 14,603
13 & 15,086 \\
\hline & \(\left\{\begin{array}{l}6.2 \\ 3.5\end{array}\right.\) & 13,608 & 14.507 \\
\hline New River, Va., 6 tests. & \(\left\{\begin{array}{l}3.5 \\ 5.7\end{array}\right.\) & \begin{tabular}{l}
13,922 \\
13,858 \\
\hline
\end{tabular} & 14.427
14.696 \\
\hline Elk Garden, Va., 1 test. & 7.8 & 13,180 & 14.295 \\
\hline Welsh, 1 test............ & 7.7 & 13,581 & 14, \({ }^{\text {¹4 }}\) \\
\hline Bituminous. & & & \\
\hline Youghiogheny, Pa., \(\operatorname{lump}_{61}\)....... ..... & 5.9 & 12,941 & 13,752 \\
\hline Frontenac, Kansas slack. & 17.7 & 11,664
10,506 & 12,988 \\
\hline Cape Breton, (Caledonia) & 8.7 & 12,420 & 13,602 \\
\hline Lancashire, Eng ......... & 6.8 & 12,122 & 13.006 \\
\hline Anthracite, 11 tests & \(\left\{\begin{array}{r}10.5 \\ 9.1\end{array}\right.\) & 11,521
13,189 & 12,873
14,509 \\
\hline
\end{tabular}

\section*{Evaporative Power of Bituminous Coals.}
(Tests with Babcock \& Wilcox Boilers, Trans. A. S. M. E., iv. 267.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Coal. & \[
\left\lvert\, \begin{gathered}
\text { Dura- } \\
\text { tion of } \\
\text { Test. }
\end{gathered}\right.
\] &  &  &  &  &  &  &  & \[
\begin{gathered}
\dot{0} \\
0 \\
\dot{0} \\
0 \\
0 \\
\dot{1} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
\] & Horse-power developed \\
\hline 1. Welsh & 1/2 & 40 & 16\%9 & 7.5 & 6.3 & 2.07 & 11 & 12 & 146 & 6 \\
\hline 2. Anthracite scr's 1/5 & & & & & & & & & & \\
\hline Powelton, Pa, & & 60 & 31 & 8.8 & 17.6 & 4.32 & 11.32 & 12 & 272 & 448 \\
\hline 3. Pittsbg'h fine sla & & & & & & & & & & \\
\hline " 3 S Pool lump & & 43.5 & \(2 i 60\) & 4.8 & 27.5 & 4.76 & 10.47 & 11.00 & 40 & 10 \\
\hline 4. Castle Shannon, nr & & & & & & & & & & \\
\hline Pittsb'gh, \(3 / 8\) nut, & & 69.1 & 4784 & 10.5 & 27.9 & 4.13 & 10.00 & 11.17 & 416 & 570 \\
\hline 5/8 lump, & & & & & & & & & & \\
\hline 11. "run of min & & & & & & & & & & \\
\hline good" & & & 1196 & & & 2.95 & . 47 & & 104 & 111 \\
\hline 6. Jackson, O. nut .. & 8 hrs. & 48 & 3358 & & & 4.11 & 8.93 & & 292 & \\
\hline "Staunton, Ill., nut.. & 8 " & 60 & 3:358 & 17.7 & 25.1 & 2.27 & 5.09 & 6.19 & 292 & 246 \\
\hline 7. Renton screenings. & 5 h 50 m & 21.2 & 1564 & 13.8 & 31.5 & 2.95 & 6.88 & 7.98 & 136 & 151 \\
\hline " Wellington scr'gs.. & 6 h 30 m & 21.2 & 1564 & 18.3 & 27 & 2.93 & 7.89 & 9.66 & 136 & 150 \\
\hline " Black Dianı. scr'gs & 5 h 58 m & 21.2 & 1564 & 19.3 & 36.4 & 3.11 & 6.29 & 7.80 & 136 & 160 \\
\hline "Seattle screenings. & 6 h 24 & 21.2 & 1564 & 13.4 & 31.3 & 2.91 & 6.86 & 7.92 & 136 & 151 \\
\hline "Wellington lump. & 6 h 19 & 21.2 & 1564 & 13.8 & 28.2 & 3.51 & 9.02 & 10.46 & 136 & 171 \\
\hline " Cardiff lump & 6 h 47 & 21 & 1564 & 11. & & 3. & 10.07
9.62 & 11.40 & & \\
\hline "South Paine lump. & 6 h 35 m & 21.2 & 15 & 13.9 & 28.9 & 3.53 & 8.96 & 10.41 & 136 & 182 \\
\hline "Seattle lump & 16 h 5 m & & & 9.5 & & 3.57 & 7.68 & 8.49 & 136 & 184 \\
\hline
\end{tabular}

Place of Test: 1. London, England; 2. Peacedale, R. I.; 3. Cincinnati, O.; 4. Pittsburgh, Pa.; 5. Chicago, Ill.; 6. Springfield, O.; 7. San Francisco, Cal.
In all the above tests the furnace was supplied with a fire-brick arch for preventing the radiation of heat from the coal directly to the boiler.

Weathering of Coal. (I. P. Kimball, Trans. A. I. M. E., viii. 204.)The practical effect of the weathering of coal, while sometimes increasing its absolute weight, is to diminish the quantity of carbon and disposable hydrogen and to increase the quantity of oxygen and of indisposable hydrogen. Hence a reduction in the calorific value.

An excess of pyrites in coal tends to produce rapid oxidation and mechanical disintegration of the mass, with development of heat, loss of coking power, and spontaneous ignition.

The only appreciable results of the weathering of anthracite within the ordinary limits of exposure of stocked coal are confined to the oxidation of its accessory pyrites. In coking coals, however, weathering reduces aud finally destroys the coking power, while the pyrites are converted from the state of bisulphide into comparatively innocuous sulphates.

Richters found that at a temperature of \(158^{\circ}\) to \(180^{\circ}\) Fahr., three coals lost in fourteen days an average of \(3.6 \%\) of calorific power. (See also paper by R. P. Rothweli, Trans. A. I. M. E., iv. 55 .)

\section*{COKE.}

Coke is the solid material left after evaporating the volatile ingredients of coal, either by means of partial combustion in furnaces called coke ovens, or by distillation in the retorts of gas-works.

Coke made in ovens is preferred to gas coke as fuel. It is of a dark-gray color, with slightly metallic lustre, porous, brittle, and hard.

The proportion of coke yielded by a given weight of coal is very different for different kinds of coal, ranging from 0.9 to 0.35 .

Being of a porous texture. it readily attracts and retains water from the atmosphere, and sometimes, if it is kept without proper shelter, from 0.15 to 0.20 of its gross weight consists of moisture.

\section*{Analyses of Coke.}
(From report of John R. Procter, Kentucky Geological Survey.)


Experiments in Coking. Connellsville Region.
(John Fulton, Amer. Mfr., Feb. 10, 1893.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{g} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{4}{|l|}{Per cent of Yield.} & \multirow[t]{2}{*}{} \\
\hline & & & & & & & 药 &  &  &  & \\
\hline & \({ }_{6} \mathrm{~h} . \mathrm{m}\). & & lb. & 1 b . & 1 b . & lb. & & & & & \\
\hline 1 & \(67 \quad 00\) & 12,420 & 9 & 35 & 7,518 & 7,903 & 00.80 & 310 & 60.53 & 63.63 & \(35.5 \%\) \\
\hline & 6800 & 11,090 & 90 & 359 & 6,580 & 6,939 & 00.81 & 3.24 & 59.33 & 62.57 & 36.62 \\
\hline & \(45 \quad 00\) & 9,120 & 97 & \(2 \tau\). & 5,418 & 5.690 & 00.84 & 2.98 & 59.41 & 62.39 & 36 \% \\
\hline 4 & 4500 & 9,020 & 74 & 349 & 5,334 & 5,683 & 00.82 & 3.87 & 59.13 & 63.00 & 36.18 \\
\hline & & 41,650 & 340 & 1365 & 24,850 & 26,215 & 00.82 & 3.28 & 59.66 & 62.94 & 36.24 \\
\hline
\end{tabular}

These results show, in a general average, that Connellsville coal carefully coked in a modern beehive oven will yield \(66.1 \% \%\) of marketable coke, \(2.30 \%\) of small coke or braize, and \(0.82 \%\) of ash.

The total average loss in volatile matter expelled from the coal in coking amounts to \(30.71 \%\).
The modern beehive coke oven is 12 feet in diameter and 7 feet high at crown of dome. It is used in making 48 and 72 hour coke.

In making these tests the coal was weighed as it was charged into the oven; the resultant marketable coke, small coke or braize and ashes weighed dry as they were drawn from the oven.

Coal Washing. - In making coke from coals that are high in ash and sulphur, it is advisable to crush and wash the coal before coking it. A coalwashing plant at Brookwood, Ala., has a capacity of 50 tons per hour. The average percentage of ash in the coal during ten days' run varied from \(14 \%\) to \(21 \%\), in the washed coal from \(4.8 \%\) to \(8.1 \%\), and in the coke from \(6.1 \%\) to \(10.5 \%\). During three months the average reduction of ash was \(60.9 \%\). (Eng. and Mining Jour., March 25, 1893.)

Recovery of By-products in Coke Manufacture. -In Germany considerable progress has been made in the recovery of by producis. The Hoffman-Otto oven has been most largely used, its principal feature being that it is connected with regenerators. In 188440 ovens on this system were running, and in 1892 the number had increased to 1209.

A Hoffman-Otto oven in Westphalia takes a charge of \(61 / 4\) tons of dry coal and converts it into coke in 48 hours. The product of an oven annually is 1025 tons in the Ruhr district, 1170 tons in Silesia, and 960 tons in the Saar district. The yield from dry coal is \(75 \%\) to \(77 \%\) of coke, \(2.5 \%\) to \(3 \%\) of tar, and \(1.1 \%\) to \(1.2 \%\) of sulphate of ammonia in the Ruhr district; \(65 \%\) to \(\% \%\) of coke, \(4 \%\) to \(4.5 \%\) of tar, and \(1 \%\) to \(1.25 \%\) of sulphate of ammonia in the Upper Silesia region and \(68 \%\) to \(\% \%\) of coke, \(4 \%\) to \(4.3 \%\) of tar and \(1.8 \%\) to \(1.9 \%\) of sulphate of ammonia in the Saar district. A group of 60 Hoffman ovens, therefore, yields annually the follo wing:

District.

Saar.............. ... ......... . ............

Coke, Tar, \(\begin{array}{ll}51,200 & 1860 \\ 48,000 & 3000\end{array}\) \(40,500 \quad 3400\)

Sulphate Ammonia, tons. 780 840 492

An oven which has been introduced lately into Germany in connection with the recovery of by-products is the Semet-Solvay, which works hotter than the Hoffman-Otto, and for this reason \(\% 3 \%\) to \(7 \% \%\) of gas coal can be mixed with \(23 \%\) to \(2 \% \%\) of coal low in volatile matter, and yet yield a good coke. Mixtures of this kind yield a larger percentage of coke, but, on the other hand, the amount of gas is lessened, and therefore the yield of tar and ammonia is not so great.
In the manufacture of coke from soft coal in retort ovens, particularly in those constructed so as to save the by-products formed in the coking operations, the coke has the disadvantage of being more porous, softer, with more easily crushed cell-walls than when the same coal is coked in the ordinary beehive-oven.
References: F.W. Luerman, Verein Deutscher Eisenhuettenleute 1891, Iron Age, March 31, 1892 ; Amer. Mfr., April 28, 1893. An excellent series of articles on the manufacture of coke, by Jolnn Fulton, of Johnstown, Pa., is nublished in the Colliery Engineer, beginning in January, 1893.
Making Hard Coke.-J. J. Fronheiser and C. S Price, of the Cambria Iron Co., Johnstown, Pa., have made an improvement in coke mannfacture by which coke of any degree of hardness may be turned out. It is accomplished by first grinding the coal to a coarse powder and mixing it with a hydrate of lime (air or water slacked caustic lime) before it is charged into the coke-ovens. The caustic lime or other fluxing material used is mechanically combined with the coke, filling up its cell-walls. It has been found that about \(5 \%\) by weight of caustic lime mixed with the fine coal gives the best results. However, a larger quantity of lime can be added to coals containing more than \(5 \%\) to \(\% \%\) of ash. ( \(A m e r . ~ M f r\).)
Generation of Steam from the Waste Heat and Gases of Coke-ovens. (Erskine Ramsey, Amer. Mfr., Feb. 16, 1894.) -The gases from a number of adjoining ovens of the beehive type are led into a long horizontal flue, and thence to a combustion-chamber under a battery of boilers. Two plants are in satisfactory operation at Tracy City, Tenn., and two at Pratt Mines. Ala.
A Bushel of Coal.-The weight of a bushel of coal in Indiana is 70 lbs ., in Penna. \(\mathfrak{r} 6\) lbs.; in Ala., Colo., Ga., Ill., Ohio, Tenn., and W. Va. it is 80 lbs . \(\mathbb{A}\) Bushel of Coke is almost uniformly 40 lbs ., but in exceptional
cases, when the coke is very light, 38,36 , and 38 lbs . are regarded as a bushel. In others, from 42 to 50 lbs . are given as the weight of a bushel ; in this case the coke would be quite heavy.

Products of the Distillation of Coal.-S. P. Sadler's Handbook of Industrial Organic Chemistry gives a diagram showing over 50 chemical products that are derived from distillation of coal. The first derivatives are coal-gas, gas-liquor, coal-tar, and coke. From the gas-liquor are derived ammonia and sulphate, chloride and carbonate of ammonia. The coal-tar is split up into oils lighter than water or crude naphtha, oils heavier than water-otherwise dead oil or tar, commonly called creosote,-and pitch. From the two former are derived a variety of chemical products.

From the coal-tar there comes an almost endless chain of known combinations. The greatest industry based upon their use is the manufacture of dyes, and the enormous extent to which this has grown can be judged from the fact that there are over 600 different coal-tar colors in use, and many more which as yet are ton expensive for this purpose. Many medicinal preparations come from the series, pitch for paving purposes, and chemicals for the photorrapher, the rubber manufacturers and tanners, as well as for preserving timber and cloths.

The composition of the hydrocarbons in a soft coal is uncertain and quite complex; but the ultimate analysis of the average coal shows that it approaches quite nearly to the composition of \(\mathrm{CH}_{4}\) (marsh-gas). (W. H. Blauvelt, Trans. A. I. M. E., xx. 625.)

\section*{WOOD AS FUEL.}

Wood, when newly felled, contains a proportion of moisture which varies very much in different kinds and in different specimens, ranging between \(30 \%\) and \(50 \%\), and being on an average about \(40 \%\). After 8 or 12 months' ordinary drying in the air the proportion of moisture is from 20 to \(25 \%\). This degree of dryness, or almost perfect dryness if required, can be produced by a few dass' drying in an oven supplied with air at about \(240^{\circ} \mathrm{F}\). When coal or coke is used as the fuel for that oven, 1 lb . of fuel suffices to expel about 3 lbs . of moisture from the wood. This is the result of experiments on a large scale by Mr. J. R. Napier. If air-dried wood were used as fuel for the oven, from 2 to \(21 / 2 \mathrm{lbs}\). of wood would probably be required to produce the same effect.

The specific gravity of different kinds of wood ranges from 0.3 to 1.2.
Perfectly dry wood contains about \(50 \%\) of carbon, the remainder consisting almost entirely of oxygen and hydrogen in the proportions which form water. The coniferous family contain a small quantity of turpentine, which is a hydrocarbon. The proportiou of ash in wood is from \(1 \%\) to \(5 \%\). The total heat of combustion of all kinds of wood, when dry, is almost exsctly the same, and is that due to the \(50 \%\) of carbon.

The above is from Rankine; but according to the table by S. P. Sharpless in Jour. C.I. W., iv. 36, the ash varies from \(0.03 \%\) to \(1.20 \%\) in American woods, and the fuel value, instead of being the same for all woods, ranges from 3667 (for white oak) to 5546 calories (for long-leaf pine) \(=6600\) to 9883 British thermal units for dry wood, the fuel value of 0.50 lbs . carbon being \(72 \% 2\) B. T. U.

Heating Value of Wood.-The following table is given in several books of reference. authority and quality of coal referred to not stated.

The weight of one cord of different woods (thoroughly air-dried) is about as follows:

Referring to the figures in the last column, it is said :
From the above it is safe to assume that \(21 / 4 \mathrm{lbs}\). of dry wood are equal to 1 lb . average quality of soft coal and that the full value of the same weight of different woods is very nearly the same-that is, a pound of hickory is worth no more for fuel than a pound of pine, assuming both to be dry. It is important that the wood be dry, as each \(10 \%\) of water or moisture in wood will detract about \(12 \%\) from its value as fuel.

Taking an average wood of the analysis \(\mathbf{C} 51 \%, \mathrm{H} 6.5 \%, \mathrm{O} 42.0 \%\), ash \(0.5 \%\), perfectly dry, its fuel value per pound, according to Dulong's formula, \(V=\) ordinarily dried in air, contains \(25 \%\) of moisture, then the heating value of a pound of such wood is three quarters of \(81 \% 0=6127\) heat-units, less the heat required to heat and evaporate the \(1 / 4 \mathrm{lb}\). of water from the atmospheric temperature, and to heat the steam made from this water to the temperature of the chimney gases, say 150 heat-units per pound to heat the water to \(212^{\circ}, 966\) units to evaporate it at that temperature, and 100 heat-units to raise the temperature of the steam to \(420^{\circ} \mathrm{F}\)., or 1216 in all \(=? 04\) for \(1 / 4 \mathrm{lb}\)., which subtracted from the 6127 , leaves 5824 heat-units as the net fuel value of the wood per pound, or about 0.4 that of a pound of carbon.

Composition of Wood.
(Analysis of Woods, by M. Eugene Chevandier.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Woods.} & \multicolumn{5}{|c|}{Composition.} \\
\hline & Carbon. & Hydrogen. & Oxygen. & Nitrogen. & Ash. \\
\hline Beech & 49.36\% & 6.01\% & 42.69\% & & \\
\hline Oak. & 49.64 & 5.92 & 41.16 & 1.29 & 1.97 \\
\hline Birch... & 50.20
49.37 & 6.20 & 41.62
41.60 & \({ }_{0}^{1.15}\) & 0.81 \\
\hline Poplar & 49.37
49.96 & 6.21
5.96 & 41.60
39.56 & 0.96
0.96 & 1.86
3.37 \\
\hline Average & 49.70\% & 6.06\% & 41.30\% & 1.0.5\% & 1.80\% \\
\hline
\end{tabular}

The following table, prepared by M. Violette, shows the proportion of water expelled from wood at gradually increasing temperatures:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Temperature.} & \multicolumn{4}{|l|}{Water Expelled from 100 Parts of Wood.} \\
\hline & Oak. & Ash. & Elm. & Walnut. \\
\hline \(255^{\circ} \mathrm{Fahr}\) & 15.26 & 14.78 & 15.32 & 15.55 \\
\hline \(302^{\circ}\) Fahr. & 17.93 & 16.19 & 17.02 & 17.43 \\
\hline \(347^{\circ}\) Fahr. & 32.13 & 21.22 & 36.91 ? & 21.00 \\
\hline 39.20 Fahr. & 35.80 & 27.51 & 33.38 & 41.77? \\
\hline \(437^{\circ}\) Fahr. & 44.31 & 33.38 & 40.56 & 36.56 \\
\hline
\end{tabular}

The wood operated upon had been kept in store during two years. When wood which has been strongly dried by means of artificial heat is left exposed to the atmosphere, it reabsorbs about as much water as it contains in its air-dried state.
A cord of wood \(=4 \times 4 \times 8=128 \mathrm{cu} . \mathrm{ft}\). About \(56 \%\) solid wood and \(44 \%\) interstitial spaces. (Marcus Bull, Phila., 1829. J. C. I. W., vol. i. p. 293.)
B. E. Fernow gives the per cent of solid wood in a cord as determined offcially in Prussia (J. C. I. W., vol. iii. p. 20):

Timber cords, \(74.0 \% \%=80 \mathrm{cu}\). ft. per cord;
Firewood cords (over \(6^{\prime \prime}\) diam.), \(69.44 \%=75 \mathrm{cu} . \mathrm{ft}\). per cord;
"Billet" cords (over 3" diam.), \(55.55 \%=60 \mathrm{cu} . \mathrm{ft}\). per cord;
"Brush" woods less than 3 " diam., \(18.52 \%\); Roots, \(37.00 \%\).

\section*{CHARCOAL.}

Charcoal is made by evaporating the volatile constituents of vood and peat, either by a partial combustion of a conical heap of the material to be charred, covered with a layer of earth, or by the combustion of a separate portion of fuel in a furnace, in which are placed retorts containing the milterial to be charged.

According to Peclet, 100 parts by weight of wood when charred in a heap yield from 17 to \(2 \%\) parts by weight of charcoal, and when charred in a retort from 28 to 30 parts.

This has reference to the ordinary condition of the wood used in charcoalmaking, in which 25 parts in 100 consist of moisture. Of the remaining 75 parts the carbon amounts to one half, or \(3 \tilde{r}_{1} / 2 \%\) of the gross weight of the wood. Hence it appears that on an average nearly half of the carbon in the
wood is lost during the partial combustion in a heap, and about one quarter during the distillation in a retort.

To char 100 parts by weight of wood in a retort, \(121 / 2\) parts of wood must be burned in the furnace. Hence in this process the whole expenditure of wood to produce from 28 to 30 parts of charcoal is \(1121 / 2\) parts; so that if the weight of charcoal obtained is compared with the whole weight of wood expended, its amount is from \(25 \%\) to \(2 \% \%\); and the proportion lost is on an average \(111 / 2 \div 3 \pi 1 / 2=0.3\), nearly.

According to Peclet, good wood charcoal contains about 0.07 of its weight of ash. The proportion of ash in peat charcoal is very variable, and is estimated on an average at about 0.18. (Rankine.)

Much information concerning charcoal may be found in the Journal of the Charcoal-iron Workers' Assn., vols. i. to vi. From this source the following notes have been taken:

Yield of Charcoal from a Cord of Wood.-From 45 to 50 bushels to the cord in the kiln, and from 30 to 35 in the meiler. Prof. Egleston in Trans. A. I. M. E., viii. 395, says the yield from kilns in the Lake Champlain region is often from 50 to 60 bushels for hard wood and 50 for soft wood; the average is about 50 bushels.

The apparent yield per cord depends largely upon whether the cord is a full cord of \(128 \mathrm{cu} . \mathrm{ft}\). or not.

In a four months' test of a kiln at Goodrich, Tenn., Dr. H. M. Pierce found results as follows: Dimensions of kiln-inside diameter of base, 28 ft .8 in. diam. at spring of arch, 26 ft .8 in .; height of walls, 8 ft .; rise of arch, 5 ft .; capacity, 30 cords. Highest yield of charcoal per cord of wood (measured) \(59.2 \tau\) bushels, lowest 50.14 bushels, average 53.65 bushels.

No. of charges 12 , length of each turn or period from one charging to another 11 days. (J. C. I. W., vol. vi. p. 26.)

\section*{Results from Different Methods of Charcoal-making.}
\begin{tabular}{|c|c|c|c|c|}
\hline Coaling Methods. & Character of Wood used. &  &  &  \\
\hline Odelstjerna's experiments & Birch dried at 230 F... & 35.9 & & \\
\hline Mathieu's retorts, fuel excluded. & \{ Air dry, av. good yel- & 77.028 .3 & 63.4 & 15.7 \\
\hline Mathieu's retorts, fuel included & low pine weighing abt. 28 lbs. per cu. ft. & 65.824 .2 & 54.2 & 15.7 \\
\hline Swedish ovens, av. results & \(\left\{\begin{array}{l}\text { Good dry fir and pine, } \\ \text { mixed. }\end{array}\right\}\) & 81.027 .7 & 66.7 & 13.3 \\
\hline Swedish ovens, \(\mathrm{ar}^{\text {r }}\), results & Poor wood, mixed fir and pine & \%0.025 8 & 62.0 & 13.3 \\
\hline Swedish meilers exceptional & \(\{\) Fir and white-pine \(\}\) & 72.2247 & 59.5 & 13.3 \\
\hline Swedisb meilers, av. results & lbs. per cu. ft. & 52.5183 & 43.9 & 13.3 \\
\hline American kilns, av. results & \{ Av. good yellow pine & 54.722 .0 & 45.0 & 175 \\
\hline American meilers, av. results & \(\left\{\begin{array}{l}\text { weighing abt. } 25 \mathrm{lbs} . \\ \text { per cul.ft. }\end{array}\right\}\) & 42.917 .1 & 350 & 17.5 \\
\hline
\end{tabular}

Consumption of Charcoal in Blast-furnaces per Ton of Pig Iron; average cousumption according to census of 1880, 1.14 tons charcoal per ton of pig. The consumption at the best furnaces is much below this average. As low as 0853 ton, is recorded of the Morgan furnace; Bay furnace. 0.858; Flk Ranids. 0.884 . (1892.)

Absorption of Water and of Gases by Charcoal. -Svedlius, in his hand-book for charcoal-burners, prepared for the Swedish Government, says: Fresh charcoal, also reheated charcoal, contains scarcely any water but when cooled it absorbs it very rapidly, so that after twenty-four hours, it may contain \(4 \%\) to \(8 \%\) of water. After the lapse of a few weeks the moisture of charcoal may not increase perceptibly, and may be estimated at \(10 \%\) to \(15 \%\), or an average of \(12 \%\). A thoroughls charred piece of charcoal ought, then, to contain about 84 parts carbon, 12 parts water, 3 parts ash, and 1 part hydrogen.
M. Saussure, operating with blocks of fine boxwood charcoal, freshly burnt, found that by simply placing such blocks in contact with certain gases they absorbed them in the following proportion:

Volumes.

Ammonia......................... 90.00
Hydrochloric-acid gas.......... 85.00
Sulphurous acid.................. 65.00
Sulphuretted hydrogen ....... 55.00
Nitrous oxide (laughing-gas).. 40.00
Carbonic acid.
35.00

Volumes.
Carbonic oxide..................... 9.4.
Oxygen.......... .................... 9.25
Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . 6.50
Carburetted hydrogen.......... 5. 110
Hydrogen............................ . \(1 . i 5\)

It is this enormous absorptive power that renders of so much value a comparatively slight sprinkling of charcoal over dead animal matter, as a preventive of the escape of odors arising from decomposition.
In a box or case containing one cubic foot of charcoal may be stored without mechanical compression a little over nine cubic feet of oxygen. representing a mechanical pressure of one hundred and twenty-six pouncls to the square inch. From the store thus preserved the oxygen can be drawn by a small hand-pump.

Composition of Charcoal Produced at Various Temperatures. (By M. Violette.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{Temperature of Car bonization.}} & \multicolumn{5}{|c|}{Composition of the Solid Product.} \\
\hline & & & Cairbon. & Hydro- & Oxygen. & Nitrogen & Ash. \\
\hline & Cent. & Fahr. & Per cent. \\
\hline 1 & \(150^{\circ}\) & \(302^{\circ}\) & 47.51 & 6.12 & 46.29 & 0.08 & 47.51 \\
\hline 2 & 200 & 392 & 51.82 & 3.99 & 43.98 & 0.23 & 39.88 \\
\hline & 250 & 482 & 65.59 & 4.81 & 28.97 & 0.63 & 32.93 \\
\hline 4 & 300 & 593 & 73.24 & 4.25 & 21.96 & 0.57 & 24.61 \\
\hline 5 & 350 & 662 & 76.64 & 4.14 & 18.44 & 0.61 & 22.42 \\
\hline 6 & \(43 \%\) & 810 & 81.64 & 4.96 & 15.24 & 1.61 & 15.40 \\
\hline 7 & 1023 & \(18 \% 3\) & 81.97 & 2.30 & 14.15 & 1.60 & 15.30 \\
\hline
\end{tabular}

The wood experimented on was that of black alder, or alder buckthorn, which furnishes a charcoal suitable for gunpowder. It was previously dried at 150 deg. C. \(=302\) deg. F .

\section*{MISCELLANEOUS SOLID FUELS.}

Dust Fuel-Dust Explosions. - Dust when mixed in air burns wits such extreme rapidity as in some cases to cause explosions. Explosions of flour-mills have been attributed to ignition of the dust in confined passages. Experiments in England in 1876 on the effect of coal-dust in carrying flame in mines showed that in a dusty passage the flame from a blown-out shot may travel 50 yards. Prof. F. A. Abel (Trans. A. I. M. E., xiii. 260) says that coaldust in mines much promotes and extends explosions, and that it may readily be brought into operation as a fiercely burning agent which will carry flame rapidly as far as its mixture with air extends, and will operate as an explosive agent though the medium of a very small proportion of fire-damp in the air of the mine. The explosive violence of the combustion of dust is largely due to the instantaneous heating and consequent expansion of the air. (See also paper on "Coal Dust as an Explosive Agent," by Dr. R. W. Raymond, Trans. A. I. M. E. 1894.) Experiments made in Germany in 1893. show that pulverized fuel may be burned without smoke, and with high economy. The fuel, instead of being introduced into the fire-box in the ordinary manner, is first reduced to a powder by pulverizers of any construction. In the place of the ordinary boiler fire-box there is a combustion chamber in the form of a closed furnace lined with fire-brick and provided with an air-injector similar in construction to those used in oil-burning furnaces. The nozzle throws a constant stream of the fuel into the chamber. This nozzle is so located that it scatters the powder throughout the whole
space of the fire-box. When this powder is once ignited, and it is very readily done by first raising the lining to a high temperature by an open fire, the combustion continues in an intense and regular manner under the action of the current of air which carries it in. (Mfrs. Record, April, 1893.)

Powdered fuel was used in the Crompton rotary puddling-furnace at Woolwich Arsenal, England, in 18\%3. (Jour. I. \& S. I., i. 1873, p. 91.)

Peat or Turf, as usually dried in the air, contains from \(25 \%\) to \(30 \%\) of water, which must be allowed for in estimating its heat of combustion. This water having been evaporated, the analysis of M. Regnault gives, in 100 parts of perfectly dry peat of the best quality: C \(58 \%, \mathrm{H} 6 \%, \mathrm{O} 31 \%\), Ash \(5 \%\).

In some examples of peat the quantity of ash is greater, amounting to \(\%\) and sometimes to \(11 \%\).

The specific gravity of peat in its ordinary state is about 0.4 or 0.5 . It can be compressed by machinery to a much greater density. (Rankine.)

Clark (Steam-engine, i. 61) gives as the average composition of dried Irish peat: C \(59 \%\), H \(6 \%\), O \(30 \%\), N \(1.25 \%\), Ash \(4 \%\).

Applying Dulong's formula to this analysis, we obtain for the heating value of perfectly dry peat 10,260 heat-units per pound, and for air-dried peat containing \(25 \%\) of moisture, after making allowance for evaporating the water. 7391 heat-units per pound.

Sawdust as Fuel.-The heating power of sawdust is naturally the same per pound as that of the wood from which it is derived, but if allowed to get wet it is more like spent tan (which see below). The conditions necessary for burning sawdust are that plenty of room should be given it in the furnace, and sufficient air supplied on the surface of the mass. The same applies to shavings, refuse lumber, etc. Sawdust is frequently burned in saw-mills, etc., by being blown into the furnace by a fan-blast.

Horse-manure has been successfully used as fuel by the Cable Raitway Co. of Chicago. It was mixed with soft coal and burned in an ordinary urnace provided with a fire-brick arch.

Wet Tan Bark as Fuel.-Tan, or oak bark, after having been used in the processes of tanning, is burned as fuel. The spent tan consists of the fibrous portion of the bark. According to MI. Peclet, five parts of oak bark produce four parts of dry tan; and the heating power of perfectly dry tan, eontaining \(15 \%\) of ash, is 6100 English units; whilst that of tan in an ordinary state of dryness, containing \(30 \%\) of water, is only 4284 English units. The weight of water evaporated from and at \(212^{\circ}\) by one pound of tan, equivalent to these heating powers, is, for perfectly dry tan, 5.46 lbs ., for tan with \(30 \%\) moisture. 3.84 lbs . Experiments by Prof. R. H. Thurston (Jour. Frark. Inst., 1874) gave with the Crockett furnace, the wet tan containing \(59 \%\) of water, an evaporation from and at \(212^{\circ} \mathrm{F}\). of 4.24 lbs . of water per pound of the wet tan, and with the Thompson furnace an evaporation of 3.19 lbs . per pound of wet tan containing \(55 \%\) of water. The Thompson furnace consisted of six fire-brick ovens, each 9 feet \(\times 4\) feet 4 inches, containing 234 square feet of grate in all, for three boilers with a total heating surface of 2000 square feet, a ratio of heating to grate surface of 9 to 1 . The tan was fed through holes in the top. The Crockett furnace was an ordinary firebrick furnace, \(6 \times 4\) feet, built in front of the boiler, instead of under it. the ratio of heating surface to grate being 14.6 to 1 . According to Prof. Thurston the conditions of success in burning wet fuel are the surrounding of the mass so completely with heated surfaces and with burning fuel that it may be rapidly dried, and then so arranging the apparatus that thorough combustion may be secured, and that the rapidity of combustion be precisely equal to and never exceed the rapidity of desiccation. Where this rapidity of combustion is exceeded the dry portion is consumed completely, leaving an uncovered mass of fuel which refuses to take fire.

Straw as Fuel. (Eng'g Mechanics, Feb., 1893, p. 55.)-Experiments in Russia showed that winter-wheat straw, dried at \(230^{\circ} \mathrm{F}\)., had the following composition: C. \(46.1 ; \mathrm{H}, 5.6 ; \mathrm{N}, 0.42: \mathrm{O}, 43 . \tilde{7}\); Ash. 4.1. Heating vaiue in British thermal units: dry straw, \(6: 90\); with \(6 \%\) water, 5 \%ro; with \(10 \%\) water, 5448. With straws of other grains the heating value of dry straw ranged from 5590 for buckwheat to \(6 \tilde{50}\) for flax.

Clark (S. E., vol. 1. p. 62) gives the mean composition of wheat and barley straw as C. 36 ; H. 5 ; O. 38 ; O. 0.50 ; Ash, 4.75 ; water, \(15 . \tilde{5}\), the two straws varying less than \(1 \%\). The heating value of straw of this composition, according to Dulong's formula, and deducting the heat lost in evaporating the water. is 5155 heat mits. Clark erroneously gives it as \(814 t\) heat units.

Ragasse as Fuel in Sugar Manufacture.--Bagasse is the name given to refuse sugar-cane, after the juice has been extracted. Prof. L. A.

Becuel, in a paper read before the Louisiana Sugar Chemists' Association, in 1892, says: "With tropical cane containing \(12.5 \%\) woody fibre, a juice containing \(16.13 \%\) solids, and \(83.3 i \%\) water, bagasse of, say, \(66 \%\) and \(\uparrow 2 \%\) mill extraction would have the following percentage composition:
\begin{tabular}{|c|c|c|c|}
\hline & Woody Fibre. & Combustible Salts. & Water. \\
\hline 66\% bagasse. & 37 & 10. & 53 \\
\hline 72\% bagasse. & 45 & , & 46 \\
\hline
\end{tabular}
"Assuming that the woody fibre contains \(51 \%\) carbon, the sugar and other combustible matters an average of \(42.1 \%\), and that 12,906 units of heat are generated for every ponnd of carbon consumed, the \(66 \%\) bagasse is capable of generating 297,834 heat units as against 345,200, or a difference of 47,366 units in favor of the \(72 \%\) bagasse.
"Assuming the temperature of the waste gases to be \(450^{\circ} \mathrm{F}\)., that of the surrounding atmosphere and water in the bagasse at \(86^{\circ} \mathrm{F}\)., and the quantity of air necessary for the combustion of one pound of carbon at 24 lbs ., the lost heat will be as follows: In the waste gases, heating air from \(86^{\circ}\) to \(450^{\circ} \mathrm{F}\)., and in vaporizing the moisture, etc., the \(66 \%\) bagasse will require 112,546 heat units, and 116,150 for the \(\tau 2 \%\) bagasse.
"Subtracting these quantities from the above, we find that the \(66 \%\) bagasse will produce 185,288 available heat units, or nearly \(38 \%\) less than the \(72 \%\) bagasse, which gives 299,050 units. Accordingly, one tnn of cane of 2000 lbs . at \(66 \%\) mill extraction will produce 680 lbs. bagasse, equal to \(125,995,840\) available heat units, while the same cane at \(72 \%\) extraction will produce 560 lbs . bagasse, equal to \(167,468,000\) units.
"A similar calculation for the case of Louisiana cane containing \(10 \%\) woody fibre, and \(16 \%\) total solids in the juice, assuming \(75 \%\) mill extraction, shows that bagasse from one ton of cane contains \(157,395,640\) heat units, from which \(56,146,500\) have to be deducted.
"This would make such bagasse worth on an average nearly 92 lbs . coal per ton of cane ground. Under fairly good conditions, 1 lb , coal will evap orate \(71 / 2 \mathrm{lbs}\). water, while the best boiler plants evaporate 10 lbs . Therefore, the bagasse from 1 ton of cane at \(75 \%\) mill extraction should evaporate from 689 lbs . to 919 lbs . of water. The juice extracted from such cane would under these conditions contain 1260 lbs . of water. If we assume that the water added during the process of manufacture is \(10 \%\) (by weight) of the juice made, the total water handled is 1410 lbs . From the juice represented in this case, the commercial massecuite would be about \(15 \%\) of the weight of the original mill juice, or say 225 lbs. Said mill juice 1500 lbs ., plus \(10 \%\), equals 1650 lbs . liquor handled; and \(1650 \mathrm{lbs} .\). minus 225 lbs ., equals 1425 lbs ., the quantity of water to be evaporated during the process of manufacture. To effect a \(71 / 2-\mathrm{lb}\). evaporation requires 190 lbs . of coal, and \(1421 / 2 \mathrm{lbs}\). for a \(1 \mathrm{C}_{\mu}\) lb. evaporation.
"To reduce 1650 lbs . of juice to syrup of, say, \(2 \tau^{\circ}\) Baumé, requires the evaporation of 1770 lbs . of water, leaving 480 lbs . of syrup. If this work be accomplished in the open air, it will require about 156 lbs . of coal at \(71 / 2 \mathrm{lbs}\). boiler evaporation, and 117 at 10 lbs . evaporation.
"With a double effect the fuel required would be from 59 to 78 lbs ., and with a triple effect, from 36 to 52 lbs.
"To reduce the above 480 lbs . of syrup to the consistency of commercial massecuite means the further evaporation of 255 lbs . of water, requiring the expenditure of 34 lbs . coal at \(\% 1 / 2 \mathrm{lbs}\). boiler evaporation, and \(251 / 2 \mathrm{lbs}\). with a \(10-\mathrm{lb}\). evaporation. Hence, to manufacture one toll of cane into sugar and molasses, it will take from 145 to 190 lbs . additional coal to do the work by the open evaporator process; from 85 to 112 lbs. with a double effect, and only \(71 / 2 \mathrm{lbs}\). evaporation in the boilers, while with 10 lbs . boiler evaporation the bagasse alone is capable of furnishing \(8 \%\) more heat than is actually required to do the work. With triple-effect evaporation depending on the excellence of the boiler plant, the 1425 lbs . of water to be evaporated from the juice will require between 62 and 86 lbs . of coal. These values show that from 6 to 30 lbs . of coal can be spared from the value of the bagasse to run engines, grind cane, etc.
"It accordingly appears," says Prof. Becuel, "that with the best boiler plants, those taking up all the available heat generated, by using this heat economically the bagasse can be made to supply all the fuel required by our sugar-houses."

\section*{PETROLEUM.}

\section*{Products of the Distillation of Crude Petroleum.}

Crude American petroleum of sp. gr. 0.800 may be split up by fractional distillation as follows (Robinson's Gias and Petroleum Engines):
\begin{tabular}{|c|c|c|c|c|}
\hline Temp. of Distillation Fahr. & Distillate. & Percentages. & Specific Gravity. & Flashing Point. Deg. F. \\
\hline \[
\begin{gathered}
113^{\circ} \\
113 \text { to } 140^{\circ}
\end{gathered}
\] & Rhigolene. & traces. & . 590 to .625 & \\
\hline 140 to \(158^{\circ}\) & Gasolene (petroleum spirit)... & 1.5 & . 636 to .65\% & \\
\hline 158 to \(248^{\circ}\) & Benzine, naphtha C, benzolene. & 10. & . 680 to .700 & 14 \\
\hline \(248^{\circ}\) & \{ Benzine, waphtha B & 2.5 & . 714 to . 718 & \\
\hline \[
\begin{gathered}
\text { to } \\
347^{\circ}
\end{gathered}
\] & Polishing oils. & 2. & . 725 to . 737 & 32 \\
\hline \(338^{\circ}\) and \(\}\) & Kerosene (lamp-oil) & 50. & . 802 to . 820 & 100 \\
\hline upwards.
\[
48 \%
\] & Lubricating & 15. & . 850 to . 915 & 10 \\
\hline & Paraffine waz & 2. & & \\
\hline
\end{tabular}

Lima Petroleum, produced at Lima, Ohio, is of a dark green color, very fluid, and marks \(48^{\circ}\) Baumé at \(15^{\circ} \mathrm{C}\). (sp. gr., 0.792).
The distillation in fifty parts, each part representing \(2 \%\) by volume, gave the following results :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Per & Sp. & Per & Sp. \\
\hline cent & G1. & cent. & Gr. \\
\hline 2 & 0.680 & 18 & 0.720 & 34 & 0.764 & 50 & 0.802 & 68 & 0.820 & 88 & 0.815 \\
\hline 4 & . 683 & 20 & . 728 & 36 & . 68 & \(52)\) & & 70 & . 825 & 90 & . 815 \\
\hline 6 & . 685 & 22 & . 730 & 38 & . 772 & to \(\}\) & . 806 & \%2 & . 830 & & \\
\hline 8 & . 690 & 24 & . 735 & 40 & .78 & 58 & & 73 & . 830 & \(92)\) & \\
\hline 10 & . 694 & 26 & . 740 & 42 & . 783 & 60 & . 800 & 76 & . 810 & to & ] \\
\hline 12 & . 698 & 28 & . 742 & 44 & . 788 & 62 & . 804 & 78 & . 820 & 100 & \% \\
\hline 14 & . 200 & 30 & . 746 & 46 & . 792 & 64 & . 808 & 82 & . 818 & & - \\
\hline
\end{tabular}

16 per cent naphthe \(70^{\circ}\) Bammeturns. 68 " burning oil. 10 " residuum.
The distillation started at \(23^{\circ} \mathrm{C}\)., this being due to the large amount of naphtha present, and when \(60 \%\) was reached, at a temperature of \(310^{\circ} \mathrm{C}\)., the hydrocarbons remaining in the retort were dissociated, then gases escaped, lighter distillates were obtained, and, as usual in such cases, the temperature decreased from \(310^{\circ} \mathrm{C}\). down gradually to \(200^{\circ} \mathrm{C}\)., until \(75 \%\) of oil was obtained, and from this point the temperature remained constant until the end of the distillation. Therefore these hydrocarbons in statu moriendi absorbed much heat. (Jour. Am. Chem. Soc.)

Value of Petroleum as Fuel. Thos. Urquhart, of Russia (Proc. Inst. M. E., Jan. 1889), gives the following table of the theoretical evaporative power of petroleum in comparison with that of coal, as determined by Messrs. Favre \& Silbermann:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Fuel.} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Specific } \\
\text { Gravity } \\
\text { at } \\
32^{\circ} \mathrm{F} ., \\
\text { Water } \\
=1.000 .
\end{gathered}\right.
\]} & \multicolumn{3}{|l|}{Chem. Comp.} & \multirow[t]{2}{*}{Heatingpower, British Thermal Units.} & \multirow[t]{2}{*}{Theoret. Evap., lbs. Water per lb. Fuel, from and at \(212^{\circ} \mathrm{F}\).} \\
\hline & & C. & H. & O. & & \\
\hline & S. G. & & & & Units. & lbs. \\
\hline Penna. heavy crude oil.... & 0.886 & 84.9 & 13.7 & 1.4 & 20,736 & 21.48 \\
\hline Caucasian light crude oil. & 0.884 & 86.3 & 13.6 & 0.1 & 22,0.27 & 22.79 \\
\hline " heavy " ".. & 0.938
0.928 & 86.6
87.1 & 12.3 & 1.1
1.2 & 20,138
19,832 & 20.85
20.53 \\
\hline Petroleum refuse.........
Good English Coal, & 0.928 & 87.1 & 11.7 & 1.2 & 19,83 & 20.53 \\
\hline of 98 Sainples........... & 1.380 & 80.0 & 5.0 & 8.0 & 14,112 & 14.61 \\
\hline
\end{tabular}

In experiments on Russian railways with petroleum as fuel Mr. Urquhart obtained an actual efficiency equal to \(82 \%\) of the theoretical heating-value. The petroleum is fed to the furnace by means of a spray-injector driven by steam. An induced current of air is carlied in around the injector-nozzle, and additional air is supplied at the bottom of the furnace.
Oil vs. Coal as Fuel. (Iron Age, Nov. 2. 1893.)-Test by the Twin City Rapid Transit Company of Minneapolis and St. Paul. This test showed that with the ordinary Lima oil weighing \(66 / 10\) pounds per gallon, and costing \(21 / 4\) cents per gallon, and coal that gave an evaporation of \(71 / 2 \mathrm{lbs}\). of water per pound of coal, the two fuels were equally economical when the price of coal was \(\$ 385\) per ton of 2000 lbs . With the same coal at \(\$ 2.00\) per ton, the coal was \(3 \%\) more economical, and with the coal at \(\$ 4.85\) per ton, the coal was \(20 \%\) more expensive than the oil. These results include the difference in the cost of handling the coal, ashes, and oil.

In 1892 there were reported to the Engineers' Club of Philadelphia some comparative figures, from tests undertaken to ascertain the relative value of coal, petroleum, and gas.

> Lbs. Water, from and at \(212^{\circ} \mathrm{F}\). \(\ldots . .9 .70\)

1 lb . anthracite coal evaporated
1 lb. bituminous coal.................................................... 10.14
1 lb fuel oil, \(36^{\circ}\) gravity .......................................... . 16.48
1 cubic fout gas, 20 C. P......................................... 1.28
The gas used was that obtained in the distillation of petroleum, having about the same fuel-value as natural or coal-gas of equal candle-power.

Taking the efficiency of bituminous coal as a basis, the calorific energy of petroleum is more than \(60 \%\) greater than that of coal; whereas, theoretically, petroleum exceeds coal only about \(45 \%\)-the one containing 14,500 heat-units, and the other 21,000.

Crude Petroleum Vs. Indiana Block Coal for Steam' raising at the South Chicago Steel Works. (E. C. Potter, Trans. A. I. M. E., xvii, 807.)-With coal, 14 tubular boilers \(16 \mathrm{ft} . \times 5 \mathrm{ft}\). re. quired 25 men to operate them; with fuel oil, 6 men were required, a saving of 19 men at \(\$ 2\) per day, or \(\$ 38\) per day.

For one week's work 2i3l barrels of oil were used, against 848 tons of coal required for the same work, showing \(3.2 i\) barrels of oil to be equivalent to 1 ton of coal. With oil at 60 cents per barrel and coal at \(\$ 2.15\) per ton, the relative cost of oil to coal is as \(\$ 1.93\) to \(\$ 2.15\). No evaporation tests were made.

Petroleum as a Metallurgical Fuel.-C. E. Felton (Trans. A. 1 . M. E., xvii, 809) reports a series of trials with oil as fuel in steel-heating and open-hearth steel-furnaces, and in raising steam with results as follows: 1. In a run of six weeks the consumption of oil, partly refined (the paraffine and some of the naphtha being removed), in heating 14-inch ingots in Siemens furnaces was about \(61 / 2\) gallons per ton of blooms. . 2. In melting in a 30 -ton open-hearth furnace 48 gallons of oil were used per ton of ingots. 3. In a six weeks' trial with Lima oil from 47 to 54 gallons of oil were required pir ton of ingots. 4. In a six months' trial with Siemens heating-furnaces the consumption of Lima oil was 6 gallons per ton of ingots. Under the most favorable circumstances, charging hot ingots and running full capacity, 41/2 to 5 gallons per ton were required. 5. In raising steam in two 100-H.P. tubular boilers, the feed-water being supplied at \(160^{\circ} \mathrm{F}\)., the average evap)oration was about 12 pounds of water per pound of oil, the best 12 hours' work being 16 pounds.

In all of the trials the oil was vaporized in the Archer producer, an apparatus for mixing the oil and superheated steam, and heating the mixture to a high temperature. From 0.5 lb . to 0.75 lb . of pea-coal was used per gallon of oil in the producer itself.

\section*{FUEL GAS.}

The following notes are extracted from a paper by W. J. Taylor on "The Energy of Fuel" (Trans. A. I. M. E., xviii. 205):

Carbon Gas. - In the old Siemens producer, practically, all the heat of primary combustion-that is, the burning of solid carbon to carbon monoxide, or about \(30 \%\) of the total carbon energy-was lost, as little or no steam was used in the producer, and nearly all the sensible heat of the gas was dissipated in its passage from the producer to the furnace, which was usually placed at a considerable distance.
Modern practice has improved on this plan, by introducing steam with the
air blown into the producer, and by utilizing the sensible heat of the gas in the combustion-furnace. It ought to be possible to oxidize one out of every four lbs. of carbon with oxygen derived from water-vapor. The thermic reactions in this operation are as follows:

Heat-units.
4 lbs . C burned to CO ( 3 lbs . gasified with air and 1 lb . with water) develop.............................................................................. 1 1.5 lbs . of water (which furnish 1.33 lios. of oxygen to combine with 1
lb. of carbon) absorb by dissociation.

The gas, consisting of 9.333 lbs . CO, \(0.167 \mathrm{lb} . \mathrm{H}\), and 13.39 lbs . N, heated \(600^{\circ}\), absorbs

3,748
Leaving for radiation and loss ... .......... ................................ 3,519
17,600
The steam which is blown into a producer with the air is almost all condensed into finely-divided water before entering the fuel, and consequently is considered as water in these calculations.
The 1.5 lbs . of water liberates .167 lb . of hydrogen, which is delivered to the gas, and yields in combustion the same heat that it absorbs in the producer by dissociation. According to this calculation. therefore, \(60 \%\) of the heat of primary combustion is theoretically recovered by the dissociation of steam, and, even if all the sensible heat of the gas be counted, with radiaiion and other minor items, as loss, yet the gas must carry \(4 \times 14,500-\) \((3748+3519)=50,733\) heat-units, or \(8 \% \%\) of the calorific energy of the carbon. This estimate shows a loss in conversion of \(13 \%\), without crediting the gas with its sensible heat, or charging it with the heat required for generating the necessary steam, or taking into account the loss due to oxidizing some of the carbon to \(\mathrm{CO}_{2}\). In good producer-practice the proportion of \(\mathrm{CO}_{2}\) in the gas represents from \(4 \%\) to \(7 \%\) of the C burned to \(\mathrm{CO}_{2}\). but the extra heat of this combustion should be largely recovered in the dissociation of more water-vapor, and therefore does not represent as much loss as it would indicate. As a conveyer of energy, this gas has the advantage of carrying 4.46 lbs. less nitrogen than would be present if the fourth pound of coal had been gasified with air; and in practical working the use of steam reduces the amount of clinkering in the producer.

Anthracite Gas.-In anthracite coal there is a volatile combustible varying in quantity from \(1.5 \%\) to over \(7 \%\). The amount of energy derived from the coal is shown in the following theoretical gasification made with coal of assumed composition: Carbon, \(85 \%\); vol. HC, \(5 \%\); ash, \(10 \%\); 80 lbs . carbon assumed to be burned to \(\mathrm{CO} ; 5 \mathrm{lbs}\). carbon burned to \(\mathrm{CO}_{2}\); three fourths of the necessary oxygen derived from air, and one fourth from water.
\begin{tabular}{|c|c|c|c|}
\hline & & - Products & \\
\hline \begin{tabular}{l}
Process. \\
80 lbs . C burned to ......... . . .... CO
\end{tabular} & Pounds. & Cubic Feet. 2529.24 & Anal. by Vol. 33.4 \\
\hline \(5 \mathrm{lbs} .\mathrm{C} \mathrm{burned} \mathrm{to} \mathrm{......}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{CO}_{2}\) & 18.33 & 157.64 & 2.0 \\
\hline \(5 \mathrm{lbs}\). vol. HC (distilled) .............. & 5.00 & 116.60 & 1.6 \\
\hline 120 lbs oxygen are required, of which & & & \\
\hline \({ }^{3} 30 \mathrm{lbs}\) from \(\mathrm{H}_{2} \mathrm{O}\) liberate \(\ldots . . . . . . \mathrm{H}\) & 3.75 & \({ }^{712.50}\) & 9.4 \\
\hline 90 lbs . from air are associatied with N & 301.05 & 4064.17 & 53.6 \\
\hline & 514.19 & 7580.15 & 100.0 \\
\hline Energy in the above gas obtained from & m 100 lbs . & anthracite: & \\
\hline 186.66 lbs. CO.... ..... &  & heat-units. & \\
\hline \({ }_{3.75}^{\text {j. }}\) " \({ }^{\text {H }}\) & \[
\begin{aligned}
& 232,500 \\
& \hline 237
\end{aligned}
\] & " & \\
\hline & & & \\
\hline Total energy in gas per lb. & 1,157, \({ }_{2}, 248\) & " & \\
\hline "" "100 lbs. of coal. & 1,349,500 & " & \\
\hline Efficiency of the conversion.... & ......... 8 & & \\
\hline The sum of CO and H exceeds the re sible heat of the gas will probably acco fore, it is safe to assume the possibil energy of the anthracite. & sults obta ity of deli & ained in prac is discrepan vering at le
\(\qquad\) & ice. The sency, and, thereast \(82 \%\) of the \\
\hline Bituminous Gas.-A theoretical & 1 gasifica & tion of 100 lb & . of coal, con- \\
\hline f Pittsburgh coa & & & \\
\hline that 50 lbs . of C are burned to CO and 5 & lbs. to & \(\mathrm{O}_{2}\); one fourt & h of the \(O\) is \\
\hline
\end{tabular} sible heat of the gas will probably account for this discrepancy, and, therefore, it is safe to assume the possibility of delivering at least \(82 \%\) of the energy of the anthracite.

Bituminous Gas.-A theoretical gasification of 100 lbs . of coal, conaverage of Pittsburgh coal), is made in the following table. It is assumed that 50 lbs . of C are burned to CO and 5 lbs . to \(\mathrm{CO}_{2}\); one fourth of the O is
derived from steam and three fourths from air; the heat value of the volatile combustible is taken at 20,000 heat-units to the pound. In computing volumetric proportions all the volatile hydrocarbons, fixed as well as condensing, are classed as marsh-gas, since it is only by some such tentative assumption that even an approximate idea of the volumetric composition can be formed. The energy, however, is calculated from weight:
\begin{tabular}{|c|c|c|c|}
\hline Process. & Pounds. & \multicolumn{2}{|l|}{Cubic Feets. Anal. by Vol.} \\
\hline 50 lbs. C burned to.................. CO & \[
116.66
\] & 1580.7 & 27.8 \\
\hline 5 lbs. C burned to .......... . . . . . . \(\mathrm{CO}_{2}\) & 18.33 & 157.6 & 2.7 \\
\hline \(32 \mathrm{lbs}\). vol. HC (distilled)................ & 32.00 & 746.2 & 13.2 \\
\hline 80 lbs . O are required, of which 20 lbs ., derived from \(\mathrm{H}_{2} \mathrm{O}\), liberate....... H & 2.5 & 475.0 & 8.3 \\
\hline 60 lbs . O, derived from air, are associated with. & 200.70 & 2709.4 & 47.8 \\
\hline & 370.19 & 5668.9 & 99.8 \\
\hline Energy in \({ }_{66} 116.66 \mathrm{lbs}\). CO. & 504,5 & 54 heat-units. & \\
\hline \begin{tabular}{rl} 
" \\
" & 32.00 lbs. \\
\(2.50 \mathrm{lbs} . \mathrm{H} . \mathrm{HC} . .\).
\end{tabular} & \[
\begin{array}{r}
640,0 \\
-\quad 155,0
\end{array}
\] & 00 ، & \\
\hline & 1,299,5 & 54 & \\
\hline Energy in coal..... ....... & . 1,43í,5 & 00 & \\
\hline Per cent of energy delivere & in gas. & . 90.0 & \\
\hline Heat-units in 1 lb. of gas.. & . & . .3,484 & \\
\hline
\end{tabular}

Water-gas.-Water-gas is made in an intermittent process, by blowing up the fuel-bed of the producer to a high state of incandescence (and in some cases utilizing the resulting gas, which is a lean producer-gas), then shutting off the air and forcing steam through the fuel, which dissociates the water into its elements of oxygen and hydrogen, the former combining with the carbon of the coal, and the latter being liberated.
This gas can never play a very important part in the industrial field, owing to the large loss of energy entailed in its production, yet there are places and special purposes where it is desirable, even at a great excess in cost per unit of heat over producer-gas; for inslance, in small high-temperature furnaces, where much regeneration is impracticable, or where the "blow-up" gas can be used for other purposes instead of being wasted.
The reactions and energy required in the production of 1000 feet of watergas. composed, theoretically, of equal volumes of CO and H , are as follows:
\[
\begin{aligned}
& 500 \text { cubic feet of } \mathrm{H} \text { weigh. } \\
& 2.6: 35 \mathrm{lbs} \text {. } \\
& 500 \text { cubic feet of CO weigh. } \\
& \text { Total weight of } 1000 \text { cubic feet } \\
& 39.52 \mathrm{lbs} \text {. }
\end{aligned}
\]

Now, as CO is composed of 12 parts C to 16 of O, the weight of C in 36.89 lbs is 15.81 lbs . and of 021.08 lbs . When this oxygen is derived from water it liberates, as above, 2.635 lbs . of hydrogen. The heat developed and absorbed in these reactions (roughly, as we will not take into account the energy required to elevate the coal from the temperature of the atmosphere to say \(1800^{\circ}\) ) is as follows:

Heat-units.
2.635 lbs . H absorb in dissociation from water \(2.635 \times 62,000 . .=163.370\)
15.81 lbs . C burned to CO develops \(15.81 \times 4400 \ldots \ldots . . . . . .\).

Excess of heat-absorption over heat-development ........ \(=93,806\)
If this excess could be made up from \(C\) burnt to \(\mathrm{CO}_{2}\) without loss by radiation, we would only have to burn an additional 4.83 lbs . C to supply this heat, and we conld then make 1000 feet of water-gas from 20.64 lbs . of carbon (equal 24 lbs . of \(85 \%\) coal). This would be the perfection of gas-making, as the gas would contain really the same energy as the ccal; but instead, we require in practice more than double this amount of coal. and do not deliver more than \(50 \%\) of the energy of the fuel in the gas, because the supporting heat is obtained in an indirect way and with imperfect combustion. Besides this, it is not often that the sum of the CO and H exceed \(90 \%\), the balance being \(\mathrm{CO}_{3}\) and N . But water-gas should be made with much less loss of energy by burning the "blow-up" (producer) gas in brick regenerators, the stored-up heat of which can be returned to the producer by the air used in blowing-up.

The following table shows what may be considered average volumetric
analyses, and the weight and energy of 1000 cubic feet, of the four types of gases used for heating and illuminating purposes:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\left|\begin{array}{c}
\text { Natural } \\
\text { Gas. }
\end{array}\right|
\] & Coalgas. & Watergas. & \multicolumn{2}{|l|}{Producer-gas.} \\
\hline CO & 0.50 & 6.0 & 45.0 & Anthra & \(\underset{2}{\text { Bitu. }}\) \\
\hline H & 2.18 & 46.0 & 45.0 & 12.0 & 12.0 \\
\hline \(\mathrm{CH}_{4}\) & 92.6 & 40.0 & 2.0 & 1.2 & 2.5 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}\) & 0.31 & 4.0 & & & 0.4 \\
\hline \(\mathrm{CO}_{2}\) & 0.26 & 0.5 & 4.0 & 2.5 & 2.5 \\
\hline N & 3.61 & 1.5 & 2.0 & \(5 \uparrow .0\) & 56.2 \\
\hline O. & 0.34 & 0.5 & 0.5 & 0.3 & 0.3 \\
\hline Yapor & & 1.5 & 1.5 & & \\
\hline Pounds in 1000 cubic feet. & \%45.6 & 32.0 & 45.6 & 65.6 & 65.9 \\
\hline Heat units in 1010 cubic feet & 1,100,000 & \% 35,000 & 32:, 000 & 13\%,455 & 156.91 \\
\hline
\end{tabular}

Natural Gas in Ohio and Indiana.
(Eng. and M. J., April 21, 1894.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Description.} & \multicolumn{3}{|c|}{Ohio.} & \multicolumn{4}{|c|}{Indiana.} \\
\hline & Fostoria. & Findlay & \[
\text { St. } \begin{gathered}
\text { St. } \\
\text { Mary's. }
\end{gathered}
\] & Muncie. & \[
\begin{aligned}
& \text { Ander- } \\
& \text { son. }
\end{aligned}
\] & Kokomo. & Marion. \\
\hline Hydrogen. & 1.89 & 1.64 & 1.94 & 2.35 & 1.86 & 1.42 & 1.20 \\
\hline Marsh-gas. & 92.84 & 93.35 & 93.85 & 92.67 & 93.07 & 94.16 & 93.57 \\
\hline Olefiant gas.. & . 20 & . 35 & . 20 & . 25 & . 47 & . 30 & . 15 \\
\hline Carbon monoxide.. & . 55 & . 41 & . 44 & . 45 & . 73 & . 55 & . 60 \\
\hline Carbon dioxide & . 20 & . 25 & . 23 & . 25 & . 26 & . 29 & . 30 \\
\hline Oxygen & . 35 & . 39 & . 35 & . 35 & . 42 & . 30 & . 55 \\
\hline Nitrogen. & 3.82 & 3.41 & 2.98 & 3.53 & 3.02 & 2.80 & 3.42 \\
\hline Hydrogen sulphide & . 15 & . 20 & . 21 & . 15 & . 15 & . 18 & . 20 \\
\hline
\end{tabular}

Approximately 30,000 cubic feet of gas have the heating power of one ton of coal.

Producer-gas from One Ton of Coal.
(W. H. Blauvelt, Trans. A. I. M. E., xviii. 614.)
\begin{tabular}{|c|c|c|c|c|}
\hline Analysis by Vol. & Per Cent. & Cubic Feet. & Lbs. & Equal to - \\
\hline CO & 25.3 & 33,213.84 & 2451.20 & \(1050.51 \mathrm{lbs} . \mathrm{C}+1400.7 \mathrm{lbs} .0\). \\
\hline H & 9.2 &  & 63.56 & 63.56 " H. \\
\hline CH & 3.1 & 4,069.68 & 174.66 & 174.66 " \(\mathrm{CH}_{4}\). \\
\hline \(\mathrm{C}_{2} \mathrm{H}\) & 0.8 & 1,050.24 & 7\%.78 & 77.78 " \(\mathrm{C}_{2} \mathrm{H}_{4}\). \\
\hline CO..... \(\ldots\)...... & 3.4 & 4,463.52 & 519.02 & \({ }_{\sim}^{141.54}\) " \(\mathrm{C}^{2}+37 \% .44 \mathrm{lbs}\) O. \\
\hline N (by difference. & 58.2 & r6,404.96 & 5659.63 & \%350.17 " Air. \\
\hline & 100.0 & 131,280.00 & 8945.85 & \\
\hline
\end{tabular}

Calculated upon this basis, the \(131,280 \mathrm{ft}\). of gas from the ton of coal contained \(20,311,162\) B.T.U., or \(15 \check{5}\) B.T.U. per cubic ft., or \(2: 2 \pi 0\) B.T.U. per lb.

The composition of the coal from which this qas was made was as follows: Water. \(1.20 \%\); volatile matter, \(36.22 \%\); fixed carbon, \(5 \tilde{\tau} .98 \%\); sulphur, \(0 . \tilde{0} 0 \%\); ash, \(3.78 \%\). One ton contains 1159.6 lbs carbon and 7.4 .4 lins . volatile combustible, the energy of which is \(31,302,200\) B.T.U. Hence, in the processes of gasification and purification there was a loss of \(35.2 \%\) of the energy of the coal.

The composition of the hydrocarbons in a soft coal is uncertain and quite compl-x; but the ultimate analysis of the average coal shows that it approaches quite nearly to the composition of \(\mathrm{CH}_{4}\) (marsh-gas).

Mr. Blauvelt emphasizes the following points as highly important in softcoal producer-practice:

First. That a large percentage of the energy of the coal is lost when the gas is made in the ordinary low producer and cooled to the temperature of the air before being used. To prevent these sources of loss, the producer should be placed so as to lose as little as possible of the sensible heat of the gas, and prevent condensation of the hydrocarbon vapors. A high fuel-bed should be carried, keeping the producer cool on top, thereby preventing the breaking-down of the hydrocarbons and the deposit of soot, as well as keeping the carbonic acid low.

Second. That a producer should be blown with as much steam mixed with the air as will maintain incandescence. This reduces the percentage of nitrogen and increases the hydrogen, thereby greatly enriching the gas. The temperature of the producer is kept down, diminishing the loss of heat by radiation through the walls, and in a large measure preventing clinkers.
The Combustion of Producer-gas. (H. H. Campbell, Trans. A. I. M. E., xix, 1:8.)-The combustion of the components of ordinary pro-ducer-gas may be represented by the following formulæ:
\[
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{4}+6 \mathrm{O}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; & 2 \mathrm{H}+\mathrm{O}=\mathrm{H}_{3} \mathrm{O} ; \\
\mathrm{CH}_{4}+4 \mathrm{O}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; & \mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2} .
\end{array}
\]

Average Composition by Volume of Producer-gas: A, made with Open Grates, no Steam in Blast; B, Open Grates, Steam-Jet in Blast. 10 Samples of Each.
\begin{tabular}{llllllll} 
& \(\mathrm{CO}_{2}\). & O, & \(\mathrm{C}_{2} \mathrm{H}_{4}\). & CO & H. & \(\mathrm{CH}_{4}\). & N. \\
A min \(\ldots \ldots\). & 3.6 & 0.4 & 0.2 & 20.0 & 5.3 & 3.0 & \(58 . \dot{7}\) \\
A max...... & 5.6 & 0.4 & 0.4 & 24.8 & 8.5 & 5.2 & 64.4 \\
A average... & 4.84 & 0.4 & 0.34 & 22.1 & 6.8 & 3.74 & 61.78 \\
B min \(\ldots \ldots\) & 4.6 & 0.4 & 0.2 & 20.8 & 6.9 & 2.2 & \(5 . .2\) \\
B max \(\ldots \ldots\) & 6.0 & 0.8 & 0.4 & 24.0 & 9.8 & 3.4 & 62.0 \\
B average... & 5.3 & 0.54 & 0.36 & 22.74 & 8.37 & 2.56 & 60.13
\end{tabular}

The coal used contained carbon \(82 \%\), hydrogen \(4.7 \%\).
The following are analyses of products of combustion :
\begin{tabular}{lcccccc} 
& \(\mathrm{CO}_{2}\). & O & CO & \(\mathrm{CH}_{4}\). & H. & N. \\
Minimum \(\ldots \ldots\). & 15.2 & 0.2 & trace. & trace. & trace. & 80.1 \\
Maximum \(\ldots \ldots\). & 17.2 & 1.6 & 2.0 & 0.6 & 2.0 & 83.6 \\
Average \(\ldots . .\). & 16.3 & 0.8 & 0.4 & 0.1 & 0.2 & 82.2
\end{tabular}

Use of Steam in Producers and in Hoiler-furnaces. (R.
W. Kaymond, T'rans. A. I. M. E., xx. 6:35.)-No possible use of steam can cause a gain of heat. If steam be introduced into a bed of incandescent carbon it is decomposed into hydrogen and oxygen.
The heat absorbed by the reduction of one pound of steam to hydrogen is much greater in amount than the heat generated by the union of the oxygen thus set free with carbon, forming either carbonic oxide or carbonic acid. Consequently, the effect of steam alone upon a bed of incandescent fuel is to chill it. In every water-gas apparatus, designed to produce by means of the decomposition of steam a fuel-gas relatively free from nitrogen. the loss of heat in the producer must be compensated by some reheating device.
This loss may be recovered if the hydrogen of the steam is subsequently burned, to form steam again. Such a combustion of the hydrogen is contemplated, in the case of fuel-gas, as secured in the subsequent use of that gas. Assuming the oxidation of \(H\) to be complete, the use of steam will cause neither gain nor loss of heat, but a simple transference, the heat absorbed by steam decomposition being restored by hydrogen combustion. In practice, it may be doubted whether this restoration is ever complete. But it is certain that an excess of steam would defeat the reaction altogether, and that there must be a certain proportion of steam, which permits the realization of important advantages, without too great a net loss in heat.
The advantage to be secured (in boiler furnaces using small sizes of anthracite) consists principally in the transfer of heat from the lower side of the fire, where it is not wanted, to the upper side, where it is wanted. The decomposition of the steam below cools the fuel and the grate-bars, whereas a blast of air alone would produce, at that point, intense combustion (forming at first \(\mathrm{CO}_{2}\) ), to the injury of the grate, the fusion of part of the fuel, etc.
The proportion of steam most economical is not easily determined. The temperature of the steam itself, the nature of the fuel mixture, and the use or non-use of auxiliary air-supply, introduced into the gases above or
beyond the fire-bed, are factors affecting the problem. (See Trans. A. I. M. E., xx. 625.)

Gas Analyses by Volume and by Weight.-To convert an analysis of a muxed gas by volume into analysis by weight: Multiply the percentage of each constituent gas by the density of that gas (see p. 166). Divide each product by the sum of the products to obtain the percentages by weight.

Gas-fuel for Small Furnaces.-E. P. Reichlielm (Am. Mrich., Jan. 10, 1895) discusses the use of gaseous fuel for forge fires, for dropforging, in annealing-ovens and furnaces for melting brass and copper, for case-hardening, muffle-furnaces, and kilns. Under ordinary conditions. in such furnaces he estimates that the loss by draught, radiation, and the heating of space not occupied by work is, with coal, \(80 \%\), with petroleum \(i 0 \%\), and with gas above the grade of producer-gas \(25 \%\). He gives the following table of comparative cost of fuels, as used in these furuaces:
\begin{tabular}{|c|c|c|c|c|}
\hline Kind of Gas. &  &  &  &  \\
\hline Natural gas & 1,000,000 & 750.000 & & \\
\hline Coal-gas, 20 candle-powe & 675,000 & 506,250 & \$1.25 & \$2.46 \\
\hline Carburetted water-gas. & 646,000 & 484,500 & 1.00 & 2.06 \\
\hline Gasoleue gas, 20 candle-po & 690,000 & 517,500 & . 90 & 1.73 \\
\hline Water-gas from coke. & 313,000 & 231,750 & . 40 & 1.80 \\
\hline Water-gas from bituminous coal & 317,000 & 282, 750 & . 45 & 1.59 \\
\hline Water-gas and producer-gas mixed. & 185,000 & 138, 50 & . 20 & 1.44 \\
\hline Producer-gas ...................... & 150,000 & 112,500 & . 15 & 1.33 \\
\hline Naphtha-gas, fuel \(21 / 2\) gals. per 1000 ft . & 306,36:- & 229,i74 & 15 & 65 \\
\hline \multicolumn{4}{|l|}{Coal, \(\$ 4\) per ton, per \(1,000,000\) heat-units utilized .. .................} & . 73 \\
\hline \multicolumn{4}{|l|}{Crude petroleum, 3 cts. per gal., per 1,000,000 heat-units. .........} & . 73 \\
\hline
\end{tabular}

Mr. Reichhelm gives the following figures from practice in melting brass with coal and with naphtha converted into gas: 1800 lbs . of metal require 1080 lbs . of coal, at \(\$ 4.65\) per ton, equal to \(\$ 2.51\), or, say, 15 cents per 10 u lbs . Mr. T.'s report : 2500 lbs . of metal require 4 gals. of naphtha, at 6 cents per g'al., equal to \(\$ 2.82\), or, say, \(111 / 4\) cents per 100 lbs .

\section*{ILLUMINATING-GAS.}

Coal-gas is made by distilling bituminous coal in retorts. The retort is usually a long horizontal semi-cylindrical or a shaped chamber, holding from 160 to 300 lbs . of coal. The retorts are set in "benches" of from 3 to 9 , heated by one fire, which is generally of coke The vapors distilled from the coal are converted into a fixed gas by passing through the retort, which is heated almost to whiteness.
The gas passes out of the retort through an "ascension-pipe " into a long horizontal pipe called the hydraulic main, where it deposits a portion of the tar it contains; thence it goes into a condenser, a series of iron tubes surrounded by cold water, where it is freed from condensable vapors, as ammonia-water, then into a washer, where it is exposed to jets of water, and into a scrubber, a large chamber partially filled with trays made of wood or iron, containing coke, fragments of brick or paving-stones, which are wet with a spray of water. By the washer and scrubber the gas is fueed from the last portion of tar and ammonia and from some of the sulphur compounds. The gas is then finally purified from sulphur compounds by passing it through lime or oxide of iron. The gas is drawn from the hydraulic main and forced through the washer, scrubber, etc., by an exhauster or gas pump.

The kind of coal used is generally caking bituminous, but as usually this coal is deficient in gases of high illuminating power, there is added to it a portion of cannel coal or other euricher.
The following table, abridged from one in Johnson's Cyclopedia, shows the analysis, candle power, etc., of some gas coals and enrichers:

Gas coals, etc.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{永} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Coke per ton of 2240 lbs.} & \multirow[t]{2}{*}{} \\
\hline & & & & & lbs. & bu & \\
\hline 36.76 & 51.93 & 7.0\% & & & & & \\
\hline 36.00 & 58.00 & 6.00 & 10,642 & 16.62 & 1544 & 40 & 420 \\
\hline 37.50 & 56.90 & 5.60 & 10,528 & 18.81 & 1480 & 36 & 993 \\
\hline 40.00 & 53.30 & 6.70 & 10,765 & 20.41 & 1540 & 36 & 2494 \\
\hline 43.00 & 40.00 & 17.00 & 9,800 & 34.98 & 1320 & 32 & 2806 \\
\hline 46.00 & 41.00 & 13.00 & 13,200 & 42.79 & 1380 & 32 & 4510 \\
\hline 53.50 & 44.50 & 2.00 & 15,000 & 28.70 & 1056 & 44 & \\
\hline
\end{tabular}

The products of the distillation of 100 lbs . of average gas-coal are about as follows. They vary according to the quality of coal and the temperature of distillation.

Coke, 64 to \(6.5 \mathrm{lbs} . ;\) tar, 6.5 to 7.5 lbs .; ammonia liquor, 10 to 12 lbs.; purified gas, 15 to 12 lbs ; ; impurities and loss, \(4.5 \%\) to \(3.5 \%\).

The composition of the gas by volume ranges about as follows: Hydrogen, \(38 \%\) to \(48 \%\); carbonic oxide, \(2 \%\) to \(14 \%\); marsh-gas (Methane, \(\mathrm{CH}_{4}\) ), \(43 \%\) to \(31 \%\); heavy hydrocarbons ( \(\mathrm{C}_{n} \mathrm{H}_{2} n\), ethylene, propylene, benzole vapor, etc.), \(7.5 \%\) to \(4.5 \%\); nitrogen, \(1 \%\) to \(3 \%\).

In the burning of the gas the nitrogen is inert; the hydrogen and carbonic oxide give heat but no light. The luminosity of the flame is due to the decomposition by heat of the heavy hydrocarbons into lighter hydrocarbons and carbon, the latter being separated in a state of extreme subdivision. By the heat of the flame this separated carbon is heated to intense whiteness, and the illuminating effect of the flame is due to the light of incandescence of the particles of carbon.

The attainment of the highest degree of luminosity of the flame depends upon the proper adjustment of the proportion of the heavy hydrocarbons (with due regard to their individual character) to the nature of the diluent mixed therewith.

Investigations of Percy F. Frankland show that mixtures of ethylene and hydrogen cease to have any luminous effect when the proportion of ethylene does not exceed \(10 \%\) of the whole. Mixtures of ethylene and carbonic oxide cease to have any luminous effect when the proportion of the former does not exceed \(20 \%\), while all mixtures of ethylene and marsh-gas have more or less luminous effect. The luminosity of a mixture of \(10 \%\) ethylene and \(90 \%\) marsh gas being equal to about 18 candles, and that of one of \(20 \%\) ethylene: and \(80 \%\) marsh-gas about 25 candles. The illuminating effect of marsh-gas alone, when burned in an argand burner, is by no means inconsiderable.

For further description. see the Treatises on Gas by King. Richards, and Hughes; also Appleton's Cyc. Mech., vol. i. p. 900.

Water-gas.-Water-gas is obtained by passing steam through a bed of coal, coke, or charcoal heated to redness or beyond. The steam is decomposed, its hydrogen being libelated and its oxygen burning the carbon of the fuel, producing carbonic-oxide gas. The chemical reaction is, \(\mathrm{C}+\mathrm{H}_{2} \mathrm{O}\) \(=\mathrm{CO}+2 \mathrm{H}\), or \(2 \mathrm{C}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}+\mathrm{CO}_{2}+4 \mathrm{H}\), followed by a splitting up of the \(\mathrm{CO}_{2}\), making \(2 \mathrm{CO}+4 \mathrm{H}\). By weight the normal gas \(\mathrm{CO}+2 \mathrm{H}\) is composed of \(\mathrm{C}+\mathrm{O}+\mathrm{H}=28\) parts CO and 2 parts H , or \(93.33 \% \mathrm{CO}\) and \(6.6 \% \mathrm{H}\); \(12+16+2\)
by volume it is composed of equal parts of carbonic oxide and hydrogen. Water-gas produced as above described has great heating-power, but no illuminating-power. It may, however, be used for lighting by causing it to heat to whiteness some solid substance, as is done in the Welsbach incandescent light.

An illuminating-gas is made from water-gas by adding to it hydrocarbon gases or vapors, which are usually obtained from petroleum or some of its products. A history of the development of modern illuminating water-gas processes, together with a description of the most recent forms of apparatus, is given by Alex. C. Humphreys, in a paper on "Water-gas in the United States," read before the Mechanical Section of the British Association for Allvancement of Science, in 1889. After describing many earlier patents, bo states that success in the manufacture of water-gas may be said to dato
from 18\%4, when the process of T.S. C. Lowe was introduced. All the later most successful processes are the modifications of Lowe's, the essential features of which were " an apparatus consisting of a generator" and superheater internally fired; the superheater being heated by the secondary combustion from the generator, the heat so stored up in the loose brick of the superheater berng used, in the second part of the process, in the fixing or rendering permanent of the hydrocarbon gases; the second part of the process consisting in the passing of steam through the generator fire, and the admission of oil or hydrocarbon at some point between the fire of the generator and the loose filling of the superlieater."

The water-gas process thus has two periods: first the "blow," during which air is blown through the bed coal in the generator, and the partially burned gaseous products are completely burned in the superheater, giving up a great portion of their heat to the fire-brick work contained in it, and then pass out to a chimney; second, the "run" during which the air blast is stopped, the opening to the chimney closed, and steam is blown through the incandescent bed of fuel. The resulting water-gas passing into the carburetting chamber in the base of the superheater is there charged with hydrocarbon vapors, or spray (such as naphtha and other distillates or crude oil) and passes through the superheater, where the hydrocarbon vapors become converted into fixed illuminating gases. From the superheater the combined gases are passed, as in the coal-gas process, through washers, scrubbers, etc., to the gas-holder. In this case, however, there is no ammonia to be removed.

The specific gravity of water-gas increases with the increase of the heavy hydrocarbons which give it illuminating power. The following figures, taken from different authorities, are given by F. H. Shelton in a paper on Waterras, read before the Ohio Gas Light Association, in 1894:



\section*{Analyses of Water-gas and Coal-gas Compared.}

The following analyses are taken from a report of Dr. Gideon E. Moore on the Granger Water-gas, 1885:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|l|}{Composition by Volume.} & \multicolumn{3}{|l|}{Composition by Weight.} \\
\hline & \multicolumn{2}{|l|}{Water-gas.} & \multirow[t]{2}{*}{Coal-gas. Heidelberg.} & \multicolumn{2}{|l|}{Water-gas.} & \multirow{2}{*}{Coalgas.} \\
\hline & Worcester. & Lake. & & Worcester. & Lake. & \\
\hline Nitrogen.... & 2.64 & 3.85 & 2.15 & 0.04402 & 0.06175 & 0.04559 \\
\hline ( \({ }^{\text {arbonic acid }}\) & 0.14 & 0.30 & 3.01 & 0.00365 & 0.00753 & 0.09992 \\
\hline Oxygen. & 0.06 & 0.01 & 0.65 & 0.00114 & 0.00018 & 0.01569 \\
\hline Ithyleue. & 11.29 & 12.80 & 2.55 & 0.18\%59 & 0.20454 & 0.05389 \\
\hline Propylene & 0.00 & 0.00 & 1.21 & & & 0.03834 \\
\hline 3enzole vapor. & 1.53 & 2.63 & 1.33 & 0.07077 & 0.11700 & \(0.078 \% 5\) \\
\hline Carbonic oxid & 28.26 & 23.58 & 8.88 & 0.46934 & 0.37664 & 0.18758 \\
\hline Hydrogen & 37.20 & 35.88 & 46.20 & 0.04421 & 0.04103 & 0.06987 \\
\hline & 100.00 & 100.00 & 100.00 & 1.00000 & 1.00000 & 1.00000 \\
\hline Density : Theory. Practice. & \[
\begin{aligned}
& 0.58 \% 5 \\
& 0.5915
\end{aligned}
\] & \[
\begin{aligned}
& 0.6057 \\
& 0.6018
\end{aligned}
\] & 0.4580 & & & \\
\hline B. T. U. from 1 cu . ft.: Water liquid. " vapor. & \[
\begin{aligned}
& 650.1 \\
& 59 \% .0
\end{aligned}
\] & \[
\begin{aligned}
& 688.7 \\
& 646.6
\end{aligned}
\] & \[
\begin{aligned}
& 642.0 \\
& 577.0
\end{aligned}
\] & & & \\
\hline Flame-temp.. & \(5311.2^{\circ} \mathrm{F}\). & \(5281.1^{\circ} \mathrm{F}\). & 5202.9\({ }^{\circ} \mathrm{F}\). & & & \\
\hline Av. candle-power. & 22.06 & 26.31 & & & & \\
\hline
\end{tabular}

The heating values (B. T. U.) of the gases are calculated from the analysis by weight, by using the multipliers given below (computed from results of
J. Thomsen), and multiplying the result by the weight of \(1 \mathrm{cu} . \mathrm{ft}\). of the gas at \(62^{\circ} \mathrm{F}\)., and atmospheric pressure.

The flame temperatures (theoretical) are calculated on the assumption of complete combustion of the gases in air, without excess of air.
The candle-power was determined by photometric tests, using a pressure of \(1 / 2-\mathrm{in}\). water-column, a candle cousumption of 120 grains of sperinaceti per hour, and a meter rate of \(5 \mathrm{cu} . \mathrm{ft}\). per hour, the result being corrected for a temperature of \(6 \%^{\circ} \mathrm{F}\). and a barometric pressure of 30 in . It appears that the candle-power may be regulated at the pleasure of the person in charge of the apparatus, the range of candle-power being from 20 to 29 candles, according to the manipulation employed.

\section*{Calorific Equivalents of Constituents of Illuminatinggas.}

Heat-units from 1 lb .
\begin{tabular}{ccccc}
\multicolumn{2}{c}{ Heat-units from 1 lb. } & \multicolumn{2}{c}{ Heat-units from 1 lb. } \\
Water & Water & \multicolumn{2}{c}{ Water } & Water \\
& Liquid. & Vapor. & \multicolumn{2}{c}{ Liquid. }
\end{tabular} Vapor.

Efficiency of a Water-gas Plant.-The practical efficiency of an illuminating water-gas setting is discussed in a paper by A. G. Glasgow (Proc. Am. Gaslight Assn., 1890), from which the following is abridged :

The results refer to \(1000 \mathrm{cu} . \mathrm{ft}\). of unpurified carburetted gas, reduced to \(60^{\circ} \mathrm{F}\). The total anthracite charged per \(1000 \mathrm{cu} . \mathrm{ft}\). of gas was 33.4 lbs ., ash and unconsumed coal removed 9.9 lbs ., leaving total combustible consumed 23.5 lbs ., which is taken to have a fuel-value of 14500 B . T. U. per pound, or a total of 340,750 heat-units.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Composition by Volume. & Weight per \(100 \mathrm{cu} . \mathrm{ft}\). & Composition by Weight. & Speciflc
Heat. \\
\hline \multirow{7}{*}{I. Carburettei \({ }_{\text {Water-gas. }}\)} & \(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{~S} .\). & 3.8 & . 465842 & . 09647 & . 02088 \\
\hline & \(\mathrm{C}_{n} \mathrm{H}_{2 n} \ldots \ldots\). & 14.6 & 1.139968 & . 23607 & . 0 STz 20 \\
\hline & CO & 28.0 & 2.1568 & . 45285 & . 11226 \\
\hline & \(\mathrm{CH}_{4}\) & 17.0 & . 75854 & . 15110 & . 09314 \\
\hline & H & 35.6 & . 1991464 & . 01124 & . 14041 \\
\hline & & 1.0 & .0ヶ\%8596 & . 01627 & . 00397 \\
\hline & & 100.0 & 4.8288924 & 1.00000 & . \(45 \% 86\) \\
\hline \multirow{5}{*}{II. Uncarburetted} & \(\mathrm{CO}_{2}\) & 3.5 & . 429065 & . 1019 & . 03205 \\
\hline & CO. & 43.4 & 3.389540 & . 8051 & . 19958 \\
\hline & H & 51.8 & . 289821 & . 0688 & . 23424 \\
\hline & & 1.3 & . 102175 & . 0242 & . 00591 \\
\hline & & 100.0 & 4.210601 & 1.0000 & . \(461 \% 8\) \\
\hline \multirow{4}{*}{III. Blast products} & \(\mathrm{CO}_{2}\) & 17.4 & 2.133066 & . 2464 & . 05342 \\
\hline & & 3.2 & . 2856096 & .03:29 & . 00718 \\
\hline & & 79.4 & 6.2405924 & . 2207 & . 17585 \\
\hline & & 100.0 & 8.6591980 & 1.0000 & . 23645 \\
\hline \multirow{4}{*}{IV. Generator blast-gases.} & & 9.7 & 1.189123 & . 1436 & .031075 \\
\hline & CO & 17.8 & 1.390180 & . 1680 & . 04164 亿 \\
\hline & & 72.5 & 5.698210 & . 6884 & .16\%970 \\
\hline & l & 100.0 - & 8.2\% 7513 & 1.0000 & . 240692 \\
\hline
\end{tabular}

The heat energy absorbed by the apparatus is \(23.5 \times 14,500=340,750\) heatunits \(=A\). Its disposition is as follows :
\(L\), the energy of the CO produced;
\(C\), the energy absorbed in the decomposition of the steam;
\(D\), the difference between the sensible heat of the escaping illuminating. gases and that of the entering oil;
\(E\), the heat carried off by the escaping blast products;
\(F\), the heat lost by radiation fiom the shells;
\(G\). the heat carried away from the shells by convection (air-currents);
\(H\), the heat rendered latent in the gasification of the oil;
\(I\), the sensible heat in the ash and unconsumed coal recovered from the generator.
The heat equation is \(A=B+C+D+E+F+G+H+I ; A\) being known. A comparison of the CO in Tables I and II show that \(\frac{280}{4.34}\), or \(64.5 \%\) of the volume of carburetted gas is pure water-gas, distributed thus: \(\mathrm{CO}_{2}\), \(2.3 \% ; \mathrm{CO}, 28.0 \% ; \mathrm{H}, 33.4 \% ; \mathrm{N}, 0.8 \% ;=64.5 \%\). 1 lb . of CO at \(60^{\circ} \mathrm{F} .=13.531 \mathrm{cu}\). ft . CO per \(1000 \mathrm{cu} . \mathrm{ft}\). of gas \(=280 \div 13.531=20.694 \mathrm{lbs}\). Energy of the CO \(=20.694 \times 4395.6^{\circ}=91,043\) heat-units, \(=B .1 \mathrm{lb}\). of H at \(60^{\circ} \mathrm{F} .=189.2 \mathrm{cu}\). ft. H per M of gas \(=334 \div 189.2=1.7653 \mathrm{lbs}\). Energy of the H per lb . (according to Thomsen, considering the steam generated by its combustion
 periments the steam entered the generator at \(3: 31^{\circ} \mathrm{F} . ;\) the heat required to raise the product of combustion of 1 lb . of H , viz., \(8.98 \mathrm{lbs} . \mathrm{H}_{2} \mathrm{O}\), from water at \(75^{\circ}\) to steam at \(331^{\circ}\) must therefore be deducted from Thomsen's figure, or \(61.524-(8.98 \times 1140.2)=51,285\) B. T. U. per lb. of H. Energy of the H, then, is \(1.7653 \times 51,285=90,533\) heat-units, \(=C\). The heat lost due to the sensible beat in the illuminating-gases, their temperature being \(1450^{\circ} \mathrm{F}\)., and that of the entering oil \(235^{\circ} \mathrm{F}\)., is 48.29 (weight) \(\times .45786 \mathrm{sp}\). heat \(\times 1215\) (rise of temperature) \(=26,864\) heat-units \(=D\).
(The specific heat of the entering oil is approximately that of the issuing gas.)

The heat carried off in \(1000 \mathrm{cu} . \mathrm{ft}\). of the escaping blast products is 86.592 (weight) \(\times .23645\left(\mathrm{sp}\right.\). heat) \(\times 1474^{\circ}\) (rise of temp.) \(=30,180\) heat-units: the temperature of the escaping blast gases being \(1550^{\circ} \mathrm{F}\)., and that of the entering air \(\quad 6^{\circ} \mathrm{F}\). But the amount of the blast gases, by registration of an anemometer, checked by a calculation from the analyses of the blast gases, was \(245 \tilde{i}\) cubic feet for every 1000 cubic feet of carburetted gas made. Hence the heat carried off per M. of carburetted gas is \(30,180 \times\) \(\because .457=74,152\) heat-units \(=E\).

Experiments made by a radiometer covering four square feet of the shell of the apparatus gave figures for the amount of heat lost by radiation \(=12,454\) heat-units \(=F\), and by convection \(=15,696\) heat-units \(=G\).

The heat rendered latent by the gasefication of the oil was found by taking the difference between all the heat fed into the carburetter and superheater and the total heat dissipated therefrom to be 12,841 heat-units \(=H\). The sensible heat in the ash and unconsumed coal is \(9.9 \mathrm{lbs} . \times 1500^{\circ} \times .25\) \((\mathrm{sp} . \mathrm{ht})=.3 \hat{1} 12\) heat-units \(=I\).

The sum of all the items \(B+C+D+E+F+G+H+I=327,295\) heatunits, which substracted from the heat energy of the combustible consumed, 340,750 heat-units, leaves 13,455 heat-units, or 4 per cent, unaccounted for.

Of the total heat energy of the coal consumed, or 340,750 heat-units, the energy wasted is the sum of items \(D, E, F, G\), and \(I\), amounting to \(132,8 \pi 8\) heat-units, or 39 per cent; the remainder, or \(20 \tilde{\gamma}, 8 \% 2\) heat-units, or 61 per cent, being utilized. The efficiency of the apparatus as a heat machine is therefore 61 per cent.

Five gallons, or 35 lbs . of crude petroleum were fed into the carburetter per 1000 cu . ft. of gas made; deducting 5 lbs . of tar recovered, leaves 30 lbs . \(\times 20,000=600,000\) heat-units as the net heating value of the petroleum used. Adding this to the heating value of the coal, \(340,750 \mathrm{~B}\). T. U., gives 940,750 heat-units, of which there is found as heat energy in the carburetted gas, as in the table below, 764,050 heat units, or 81 per cent, which is the commercial efficiency of the apparatis, i.e., the ratio of the energy contained in the finished product to the total energy of the coal and oil consumed.
\begin{tabular}{|c|c|}
\hline The heating power per M. cu. & The heating power per M. of \\
\hline \({ }_{2} \quad 38.0\) & \(\mathrm{CO}_{2} 35.0\) \\
\hline \(\mathrm{C}_{3} \mathrm{H}_{6} * 146.0 \times .11 \tau 220 \times 21222.0=363200\) & CO \(434.0 \times .078100 \times 4395.6=148991\) \\
\hline \(280.0 \times .0 \sim 8100 \times 4395.6=96120\) & H \(\quad 518.0 \times .005594 \times 61524.0=17827 \%\) \\
\hline \(\mathrm{CH}_{4} \quad 170.0 \times .044620 \times 24021.0=182210\) & N 13.0 \\
\hline H \(3560 \times .005594 \times 61524.0=122520\) & \\
\hline N \(\quad 10.0\) & 1000.0 \\
\hline
\end{tabular}

\section*{1000.0}

764050

\footnotetext{
*The heating value of the illuminants \(\mathrm{C}_{n} \mathrm{H}_{2 n}\) is assumed to equal that of \(\mathrm{C}_{3} \mathrm{H}_{6}\).
}

The candle-power of the gas is 31 , or 6.2 candle-power per gallon of oil used. The calculated specific gravity is .6355 , air being 1 .

For description of the operation of a modern carburetted water-gas plant, see paper by J. Stelfox, Eng'g, July 20, 1894, p. 89.

Space required for a Water-gas Plant.-Mr. Shelton, taking 15 modern plants of the form requiring the most floor-space, figures the average floor-space required per 1000 cubic feet of daily capacity as follows:
Water-gas Plants of Capacity in 24 hours of
\begin{tabular}{|c|c|}
\hline 100,000 cubic feet & 4 square feet. \\
\hline 200,000 " & 3.5 " \\
\hline 400,000 & 2.i5 \\
\hline 600,000 '6 & to 2.5 sq \\
\hline & \\
\hline
\end{tabular}

These figures include scrubbing and condensing rooms, but not boiler and engine rooms. In coal-gas plants of the most modern and compact forms one with 16 benches of 9 retorts each, with a capacity of \(1,500,000\) cubic feet per 24 hours, will require 4.8 sq . ft . of space per \(1000 \mathrm{cu} . \mathrm{ft}\). of gas, and one of 6 benches of 6 retorts each, with \(300,000 \mathrm{cu}\). ft. capacity per 24 hours will require 6 sq . ft . of space per 1000 cu . ft. The storage-room required for the gas-making materials is: for coal-gas, 1 cubic foot of room for every 232 cubic feet of gas made; for water-gas made from coke, 1 cubic foot of room for every \(373 \mathrm{cu} . \mathrm{ft}\). of gas made; and for water-gas made from anthracite, \(1 \mathrm{cu} . \mathrm{ft}\). of room for every 645 cu . ft. of gas made.

The comparison is still more in favor of water-gas if the case is considered of a water-gas plant added as an auxiliary to an existing coal-gas plant; for, instead of requiring further space for storage of coke, part of that already required for storage of coke produced and not at once sold can be cut off, by reason of the water-gas plant creating a constant demand for more or less of the coke so produced.
Mr. Shelton gives a calculation showing that a water-gas of \(.6: 25 \mathrm{sp} . \mathrm{gr}\). would require gas-mains eight per cent greater in diameter than the same quantity coal-gas of .425 sp . gr. if the same pressure is maintained at the holder. The same quantity may be carried in pipes of the same diameter if the pressure is increased in proportion to the specific gravity. With the same pressure the increase of candle-power about balances the decrease of flow. With five feet of coal-gas, giving, say, eighteen candle-power, 1 cubic foot equals 3.6 candle-power; with water-gas of 23 candle-power, 1 cubic foot equals 4.6 candle-power, and 4 cubic feet gives 18.4 candle-power, or more than is given by 5 cubic feet of coal-gas. Water-gas may be made from oven-coke or gas-house coke as well as from anthracite coal. A watergas plant may be conveniently run in connection with a coal-gas plant, the surplus retort coke of the latter being used as the fuel of the former.
In coal-gas making it is impracticable to enrich the gas to over twenty candle-power without causing too great a tendency to smoke, but water-gas of as high as thirty candle-power is quite common. A mixture of coal-gas and water-gas of a higher C.P. than 20 can be advantageously distributed.

Fuel-value of, Illuminating-gas.-E. G. Love (School of Mines Qtly, January, 1892) describes F. W. Hartley's calorimeter for determining the calorific power of gases, and gives results obtained in tests of the carburetted water-gas made by the municipal branch of the Consolidated Co. of New York. The tests were made from time to time during the past two years, and the figures give the heat-units per cubic foot at \(60^{\circ} \mathrm{F}\). and 30 inches pressure: 715, 692, 725, \(732,691,733,735,703,734,730,731,727\). Average, 721 heat units. Similar tests of mixtures of coal- and water-gases made hy other branches of the same company give \(694,715,684,692,727,665,695\), and 686 heat-units per foot, or an average of 694.7. The average of all these tests was 710.5 heat-units, and this we may fairly take as representing the calorific power of the illuminating gas of New York. One thousand feet of this gas, costing \(\$ 1.25\), would therefore yield 710,500 heat-units, which would be equivalent to 568,400 heat-units for \(\$ 1.00\).
The common coal-gas of Londou, with an illuminating power of 16 to 1 r candles, has a calorific power of about 668 units per foot, and costs from 60 to \(\% 0\) cents per thousand.
The product obtained by decomposing steam by incandescent carbon, as effected in the Motay process, consists of about \(40 \%\) of CO, and a little over \(50 \%\) of H .

This mixture would have a heating-power of about 300 units per cubic font, and if sold at 50 cents per 1000 cubic feet would furnish 600,000 units for \(\$ 1.00\), as compared with 568,400 units for \(\$ 1.00\) from illuminating gas at \(\$ 1.25\) per 1000 cubic feet. This illuminating-gas if sold at \(\$ 1.15\) per thousand would therefore be a more economical heating agent than the fuel-gas mentioned, at 50 cents per thousand, and be much more advantageous than the latter, in that one main, service, and meter could be used to furnish gas for both lighting and heating.

A large number of fuel-gases tested by Mr. Love gave from 184 to 470 heatunits per foot, with an average of 309 units.

Taking the cost of heat from illuminating-gas at the lowest flgure given by Mr. Love, viz., \(\$ 1.00\) for 600,000 heat-units, it is a very expensive fuel, equal to coal at \(\$ 40\) per ton of 2000 lbs ., the coal having a calorific power of only 12,000 heat-units per pound, or about \(83 \%\) of that of pure carbon:
\[
600,000:(12,000 \times 2000):: \$ 1: \$ 40 .
\]

\section*{FLOW OF GAS IN PIPES.}

The rate of flow of gases of different densities, the diameter of pipes required, etc., are given in King's Treatise on Coal Gas, vol. ii. 374, as follows:

Molesworth gives \(Q=1000 \sqrt{\frac{d^{6} h}{s l}}\).
J. P. Gill, Am. Gas-light Jour. 1894, gives \(Q=1291 \sqrt{\frac{d^{5} h}{s(l+d)}}\).

This formula is said to be based on experimental data, and to make allowance for obstructions by tar, water, and other bodies tending to check the fiow of gas through the pipe.

A set of tables in Appleton's Cyc. Mech. for flow of gas in 2, 6, and 12 in . pipes is calculated on the supposition that the quantity delivered varies as the square of tho diameter instead of as \(d^{2} \times \sqrt{d}\), or \(1 / \overline{d^{6}}\).
These tables give a flow in large pipes much less than that calculated by the formulæ above givon, as is shown by the following example. Length of pipe 100 yds ., specific gravity of gas .042 , pressure 1 -in. water-column.
\[
\begin{aligned}
& Q=1350 \sqrt{\frac{d^{6} h}{s l}} \ldots \ldots \ldots \ldots \ldots 1178 \quad 18,368 \quad 103,912 \\
& Q=1000 \sqrt{\frac{d^{5} h}{s l}} \ldots \ldots \ldots \ldots \ldots . \quad 873 \quad 13,606 \quad 76,9 \% 2 \\
& \begin{array}{lllll}
\boldsymbol{Q}=1291 \sqrt{\frac{d^{5} h}{s(l+d)}} \cdots \ldots \ldots . . & 1116 & 16,327 & 93,845 \\
\text { Table in App. Cyc........................ } & 1290 & 11,657 & 46,628
\end{array}
\end{aligned}
\]

An experiment made by Mr. Clegg, in london, with a 4 -in. pipe, 6 miles long, pressure 3 in . of water, specific gravity of gas .398 , gave a discharge into the atmosphere of \(852 \mathrm{cu} . \mathrm{ft}\). per hour, after a correction of \(33 \mathrm{cu} . \mathrm{ft}\). was made for leakage.

Substituting this value, \(852 \mathrm{cu} . \mathrm{ft}\)., for \(Q\) in the formula \(Q=C \sqrt{d^{3} h \div s l}\), we find \(C\), the coefficient, \(=997\), which corresponds nearly with the formula given by Molesworth.

Services for Lamps. (Molesworth.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Ft. from & Require & & Ft. from & Require \\
\hline Lamps. & Main. & Pipe-bore. & Lamps. & Main. & Pipe-bors. \\
\hline 2 & 40 & \(3 / 8 \mathrm{in}\). & 15. & 130 & 1 in . \\
\hline & 40 & 1.2 in . & & 150 & \(11 / 4 \mathrm{in}\). \\
\hline 6 & 50 & \(5 / 8 \mathrm{in}\). & 25 & . 180 & \(11 / 2 \mathrm{in}\). \\
\hline 10 & 100 & \(3 / 4 \mathrm{in}\). & 30 & 200 & \(13 / 4 \mathrm{in}\). \\
\hline
\end{tabular}
(In cold climates no service less than \(\frac{3}{4}\) in. should be used.)
Maximum Supply of Gas through Pipes in cu. ft. per Hour, Specific Gravity being taken at .45 , calculated from the Formula \(Q=1000 \sqrt{d^{5} h \div s l}\). (Molesworth.)

Length of Pipe \(=10\) Yards.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Diameter of Pipe in Inches.} & \multicolumn{10}{|c|}{Pressure by the Water-gauge in Inches.} \\
\hline & . 1 & . 2 & . 3 & . 4 & . 5 & . 6 & . 7 & . 8 & . 9 & 1.0 \\
\hline 3/8 & 13 & 18 & 22 & 26 & 29 & 31 & 34 & 36 & 38 & 41 \\
\hline 1/3 & 26 & 37 & 46 & 53 & 59 & 64 & ro & 74 & 79 & 83 \\
\hline \(3 / 4\) & 73 & 103 & 126 & 145 & 16: & 187 & 192 & 205 & 218 & 230 \\
\hline 1 & 149 & 211 & 25.9 & 298 & 333 & 365 & 394 & 422 & 447 & 471 \\
\hline 11/4 & 260 & 368 & 451 & 521 & 58.2 & 638 & 689 & 737 & 781 & 823 \\
\hline 11/2 & 411 & 581 & 711 & 8.21 & 918 & 1006 & 108\% & 1162 & 123: & 1299 \\
\hline 2 & \(8+3\) & 1192 & 1460 & 1686 & 1886 & 2066 & 2231 & 2385 & 2530 & 2667 \\
\hline
\end{tabular}

Length of Pife \(=100\) Yards.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Pressure by the Water-gauge in Inches.} \\
\hline & . 1 & . 2 & . 3 & . 4 & . 5 & . 75 & 1.0 & 1.25 & 1.5 & 2 & 2.5 \\
\hline \(1 / 2\)
\(3 / 4\) & 8
23 & 12 & 14 & 17 & 19 & \[
\begin{aligned}
& 23 \\
& 63
\end{aligned}
\] & \[
\begin{aligned}
& 26 \\
& 78
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 81
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 89
\end{aligned}
\] & \[
\begin{array}{r}
36 \\
103
\end{array}
\] & 42
115 \\
\hline 1 & 47 & \(6 \mathfrak{1}\) & 82 & 94 & 105 & 129 & 149 & \(16 \tau\) & 183 & 211 & 236 \\
\hline 11/4 & 82 & 116 & 143 & 165 & 184 & 225 & 260 & 291 & 319 & 368 & 412 \\
\hline 11/2 & 130 & 184 & 225 & 260 & 290 & 356 & 411 & 459 & 503 & 581 & 649 \\
\hline \(\stackrel{\sim}{2}\) & 267 & 377 & 462 & 533 & 596 & 730 & 843 & 943 & 1083 & 1193 & 133: \\
\hline \(21 / 2\) & 466 & 659 & \(80 \%\) & 333 & 1042 & 1276 & 1473 & 1647 & 1804 & 2083 & 2321 \\
\hline 3 & 735 & 1039 & \(12 \pi 0\) & 1450 & 1643 & 2013 & 2323 & 2598 & 2846 & 3286 & 36íd \\
\hline \(31 / 2\) & 1080 & 15:2 & 1871 & 2161 & 2416 & 2958 & 3416 & 38:20 & 4184 & 4831 & 5462 \\
\hline & 1508 & 213:3 & 2613 & 3017 & 3378 & 4131 & 4 \(\mathrm{Trio}^{0}\) & 5333 & 5842 & 6746 & 7542 \\
\hline
\end{tabular}

Length of Pipe \(=1000\) Yards.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{Pressure by the Water-gauge in Inches.} \\
\hline & . 5 & . 75 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\
\hline 1 & 33 & 41 & 47 & 58 & 67 & 75 & 82 \\
\hline 11/2 & 92 & 113 & 130 & 159 & 184 & 20.5 & 226 \\
\hline & 189 & 231 & \(26 \hat{1}\) & 327 & 377 & 422 & 462 \\
\hline 21/3 & 329 & 403 & 466 & 571 & 659 & 737 & 80 \% \\
\hline 3 & 5:0 & 6336 & 73.5 & 900 & 10:39 & 1162 & 12.3 \\
\hline 4 & 1057 & 1306 & 1508 & 1847 & 2133 & 2385 & 2613 \\
\hline 5 & 1863 & 2482 & 2635 & 3227 & 3727 & 4167 & 4564 \\
\hline 6 & 2939 & 3600 & 4157 & 5091 & 5879 & 6573 & 7200 \\
\hline
\end{tabular}

Length of Pipe \(=5000\) Yards.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Diameter of Pipe in Inches.} & \multicolumn{5}{|c|}{Pressure by the Water-gauge in Inches.} \\
\hline & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\
\hline 2 & 119 & 146 & 169 & 189 & 207 \\
\hline 3 & 329 & 402 & 465 & 520 & 569 \\
\hline 4 & 675 & 826 & 955 & 1067 & 1168 \\
\hline 5 & 1179 & 1443 & 166\% & 1863 & 2041 \\
\hline 6 & 18.59 & 2277 & 2629 & 2939 & 3220 \\
\hline 7 & 2733 & 3347 & 3865 & 4321 & 4734 \\
\hline 8 & 3816 & \(46 \sim 4\) & 5397 & 60:34 & 6610 \\
\hline 9 & 5123 & 6274 & 7245 & 8100 & 8873 \\
\hline 10 & 6667 & 8165 & \(94: 8\) & 10541 & 11547 \\
\hline 12 & 10516 & 12880 & \(148 \% 2\) & 16628 & 18215 \\
\hline
\end{tabular}

Mr. A. C. Humphreys says his experience goes to show that these tables give too small a flow, but it is difficult to accurately check the tables, on account of the extra friction introduced by rough pipes, bends, etc. For bends, one rule is to allow \(1 / 42\) of an inch pressure for each right-angle bend.
Where there is apt to be trouble from frost it is well to use no service of less diameter than \(3 / 4\) in., no matter how short it may be. In extremely cold climates this is now of en increased to 1 in ., even for a single lamp. The best practice in the U.S. now condemns any service less than \(3 / 4 \mathrm{in}\).

\section*{STEAM.}

The Temperature of Steam in contact with water depends upon the pressure under which it is generated. At the ordinary atmospheric pressure ( 14.7 lbs . per sq.in.) its temperature is \(212^{\circ} \mathrm{F}\). As the pressure is increased, as by the steam being generated in a closed vessel, its temperature, and that of the water in its presence, increases.
Saturated Steam is steam of the temperature due to its pressurenot superheated
Superheated Steam is steam heated to a temperature above that due to its pressure.
Dry Steam is steam which contains no moisture. It may be either saturated or superheated.

Wet Steam is steam containing intermingled moisture, mist, or spray. It has the same temperature as dry saturated steam of the same pressure.

Water introluced into the presence of superheated steam will flash into vapor until the temperature of the steam is reduced to that due its pressure. Water in the presence of saturated steam has the same temperature as the steam. Should cold water be introduced, lowering the temperature of the whole mass, some of the steam will be condensed, reducing the pressure and temperature of the remainder, until an equilibrinm is established.
Tomperature and Pressure of Saturated Steam. -The relation between the temperature and the pressure of steam. according to Regnault's experiments, is expressed by the formula (Buchanan's, as given by Clark) \(t=\frac{2938.16}{6.1993544-\log p}-3 \pi 1.85\), in which \(p\) is the piessure in pounds per square inch and \(t\) the temperature of the steam in Fahrenheit degrees. It applies with accuracy between \(120^{\circ} \mathrm{F}\). and \(446^{\circ} \mathrm{F}\)., corresponding to pressures of from 1.68 lbs . to 445 lbs . per square inch. (For other formulæ see Wood's and Peabody's Thermodynamics.)

Total Heat of Saturated Steam (above \(32^{\circ}\) F.).-According to Regnault's experiments, the formula fon total heat of steam is \(H=1091 . \tilde{i}+\) \(.30 \overline{5}\left(t-3 \because^{\circ}\right)\), in which \(t\) is temperature Fahr., and \(H\) the heat-units. (Raukine and many others; Clark gives 1091.16 instead of 1091.. .)

Latent Heat of Steam.-The formula for latent heat of steam, as given by Raukine and others, is \(L=1091.7-.695\left(t-32^{\circ}\right)\). Clansius's formula, iṇ Fahrenheit units, as given by Clark, is \(L=1092.6-{ }^{r} 08\left(t-32^{\circ}\right)\).

The total heat in steam (above \(32^{\circ}\) ) includes three elements:
1st. The heat required to raise the temperature of the water to the temperature of the steam.
\(2 d\). The heat required to evaporate the water at that temperature, called internal latent heat.
3d. The latent heat of volume, or the external work done by the steam in making room for itself against the pressure of the superincumbent atmosphere (or surrounding steam if inclosed in a vessel).

The sum of the last two elements is called the latent heat of steam. In Buel's tables (Weisbach, vol. ii., Dubois's translation) the two elements are given separately.

Latent Heat of Volume of Saturated Steam. (External Work.)-The following formulas are sufficiently accurate for occasional use within the given ranges of pressure (Clark, S. E.):

From 14.7 lbs . to 50 lbs . total pressure per square inch... \(55.900+.0772 t\).
From 50 lbs. to 200 lbs . total pressure per square inch.... \(59.191+.0655 t\).
Heat required to Generate \(1 \mathbf{1 b}\). of Steam from water at \(32^{\circ} \mathrm{F}\).
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Sensible heat, to raise the water from \(32^{\circ}\) to \(212^{\circ}=\ldots\).} & \multicolumn{2}{|r|}{Heat-units.} \\
\hline & 894.0 & \\
\hline 2, of expansion against the atmospheric & & \\
\hline pressure, 2116.4 lbs . per sq. \(\mathrm{ft}, \times 26.36 \mathrm{cu} . \mathrm{ft}\). \(=55,786\) foot-pounds \(\div 778=\ldots \ldots \ldots \ldots\). & 71.7 & 965.7 \\
\hline Total heat above \(32^{\circ} \mathrm{F}\). & & 1146.6 \\
\hline
\end{tabular}

The Heat Unit, or British Thermal Unit, -The definition of the heat-unit used in this work is that of Rankine, accepted by most modern writers, viz., the quantity of heat required to raise the temperature of 1 lb . of water \(1^{\circ} \mathrm{F}\). at or near its temperature of maximum density ( \(39.1^{\circ} \mathrm{F}\).). Peabody's definition, the heat required to raise a pound of water from \(62^{\circ}\) to \(65^{\circ}\) F. is not generally accepted. (See Thurston, Trans. A. S. M. E., xiii. 351.)

Specific Heat of Saturated Steam.-The specific heat of saturated steam is .305 , that of water being 1 ; or it is 1.281 , if that of air be 1 . The expression . 305 for specific heat is taken in a compound sense, relating to changes both of volume and of pressure which takes place in the elevation of temperature of saturated steam. (Clark, S. E.)

This statement by Clark is not strictly accurate. When the temperature of saturated steam is elevated, water being present and the steam remaining saturated, water is evaporated. To raise the temperature of 1 lb . of water \(1^{\circ} \mathrm{F}\). requires 1 thermal unit, and to evaporate it at \(1^{\circ} \mathrm{F}\). higher would require 0.695 less thermal unit, the latent heat of saturated steam decreasing 0.695 B.T.U. for each increase of temperature of \(1^{\circ} \mathrm{F}\). Hence 0.305 is the specific heat of water and its saturated vapor combined.

When a unit weight of saturated steam is increased in temperature and in pressure, the volume decreasing so as to just keep it saturated, the specific heat is negative, and decreases as temperature increases. (See Wood, Therm., p. 147; Peabody, Therm., p. 93.)

Density and Volume of Saturated Steam. -The density of steam is expressed by the weight of a given volume, say one cubic foot; and the volume is expressed by the number of cubic feet in one pound of steam.

Mr. Brownlee's expression for the density of saturated steam in terms of the pressure is \(D=\frac{p^{.941}}{330.36}\), or \(\log D=.941 p-2.519\), in which \(D\) is the density, and \(p\) the pressure in pounds per square inch. In this expression, \(p^{.041}\) is the equivalent of \(p\) raised to the \(16 / 17\) power, as employed by Rankine.

The volume \(v\) being the reciprocal of the density,
\[
v=\frac{330.36}{p .041}, \text { or } \log v=2.519-.941 \log p
\]

Relative Volume of Steam. -The relative volume of saturated steam is expressed by the number of volumes of steam produced from one
volume of water, the volume of water being measured at the temperature \(39^{\circ} \mathrm{F}\). The relative volume is found by multiplying the volume in cu. ft . of one lb. of steam by the weight of a cu. ft. of water at \(39^{\circ} \mathrm{F}\)., or 62.425 lbs .

Gaseous Steam.-When saturated steam is superheated, or surcharged with heat, it advances from the condition of saturation into that of gaseity. The gaseous state is only arrived at by considerably elevating the temperature, supposing the pressure remains the same. Steam thus suffciently superheated is known as gaseous steam or steam gas.

Total Heat of Gaseous Steam.-Regnault found that the total heat of gaseous steam increased, like that of saturated steam, uniformly with the temperature. and at the rate of .475 thermal units per pound for each degree of temperature, under a constant pressure.

The general formula for the total heat of gaseous steam produced from 1 pound of water at \(33^{\circ} \mathrm{F}\). is \(H=1074.6+.475 t\). [This formula is for vapor generated at \(3 \vartheta^{\circ}\). It is not true if generated at \(212^{\circ}\), or at any other temperature than \(32^{\circ}\). (Prof. Wood.)]

The Specific Heat of Gaseous Steam is .475 , under constant pressure, as found by Regranlt. It is identical with the coefficient of increase of total heat for each degree of temperature. [This is at atmospheric pressure and \(212^{\circ} \mathrm{F}\). He found it not true for any other pressure. Theory indicates that it would be greater at higher temperatures. (Prof. Wood.)]

The Specific Density of Gaseous Steam is .622 , that of air being 1. That is to say, the weight of a cubic foot of gaseous steam is about five eighths of that of a cubic foot of air, of the same pressure and temperature.

The density or weight of a cubic foot of gaseous steam is expressible by the same formula as that of air, except that the multiplier or coefficient is less in proportion to the less specific density. Thus,
\[
D^{\prime}=\frac{2.7074 p \times .622}{t+461}=\frac{1.684 p}{t+461}
\]
in which \(D^{\prime}\) is the weight of a cubic foot of gaseous steam, \(p\) the total pressure per square inch, and \(t\) the temperature Fahrenheit.

Superheated steam. -The above remarks concerning gaseous steam are taken from Clark's Steam-engine. Wood gives for the total heat (above \(32^{\circ}\) ) of superheated steam \(H=1091.7+0.48\left(t-32^{\circ}\right)\).

The foliowing is abridged from Peabody (Therm., p. 115, etc.).
When far removed from the temperature of saturation, superheated steam follows the laws of perfect gases very nearly, but near the temperature of saturation the departure from those laws is too great to allow of calculations by them for engineering purposes.

The specific heat at constant pressure, \(C p\), from the mean of three experiments by Regnault, is 0.4805 .

Values of the ratio of \(C p\) to specific heat at constant volume:
\(\begin{array}{lllllll}\text { Pressure } p \text {, pounds per square inch.. } & 5 & 50 & 100 & 200 & 300\end{array}\)
\[
\text { Ratio } C p \div C v=k=1.3351 .332 \quad 1.330 \quad 1.3 \geqslant 4 \quad 1.316
\]

Zeuner takes \(k\) as a constant \(=1.333\).
Specific Heat at Constant Volume, Superheated Steam.
\begin{tabular}{llllllll} 
Pressure, pounds per square inch..... & \(\mathbf{5}\) & 50 & 100 & 200 & 300
\end{tabular}

Specific heat \(C v . . . . . . . . . . . . . . . . . . . . . .\). . 0.351 . 348 . 346 . 344 . 341
It is quite as reasonable to assume that \(C v\) is a constant as to suppose that \(C p\) is constant, as has beeu assumed. If we take \(C v\) to be constant, then \(C p\) will appear as a variable.

If \(p=\) pressure in lbs. per sq. ft., \(v=\) volume in cubic feet, and \(T=\) temperature in degrees Fahrenheit +460.7 , then \(p v=93.5 T-971 p^{\frac{1}{4}}\).

Total heat of superheated steam, \(H=0.4805\left(T-10.35 p^{\frac{1}{6}}\right)+85 \tilde{i} .2\).
The Rationalization of Regnault's Experiments on
Steam. (J. McFarlane Gray, Proc. Inst. M. E., July, 1889.)-The formulæ constructed by Regnault are strictly empirical, and were based entirely on his experiments. They are therefore not valid beyond the range of temperatures and pressures observed.

Mr. Gray has made a most elaborate calculation, based not on experiments but on fundamental principles of thermodynamics, from which he deduces formulæ for the pressure and total heat of steam, and presents tables calcu-
lated therefrom which show substantial agreement with Regnault's figures. He gives the following examples of steam-pressures calculated for temperatures beyond the range of Regnault's experiments.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Temperature.} & \multirow[t]{2}{*}{Pounds per sq. in.} & \multicolumn{2}{|l|}{Temperature.} & \multirow[t]{2}{*}{Pounds per sq. in.} \\
\hline C. & Fahr. & & C. & Fahr & \\
\hline 230 & 446 & 406.9 & 340 & 644 & 2156.2 \\
\hline 240 & 464 & 488.9 & 360 & 680 & 2742.5 \\
\hline 250 & 482 & 579.9 & 380 & \%16 & 3448.1 \\
\hline 260 & 500 & 691.6 & 400 & r52 & 4300.2 \\
\hline 280 & 536 & 940.0 & 415 & 779 & 5017.1 \\
\hline 300 & 572 & 1261.8 & 427 & 800.6 & 5659.9 \\
\hline 320 & 608 & 1661.9 & & & \\
\hline
\end{tabular}

These pressures are higher than those obtained by Regnault's formula, which gives for \(415^{\circ} \mathrm{C}\). only \(406 \%^{\prime} 1 \mathrm{lbs}\). per square inch.

Table of the Properties of Saturated Steam.-In the table of properties of saturated steam on the following pages the figures for temperature, total heat, and latent heat are taken, up to 210 lbs. absolute pressure. from the tables in Porter's Steam-engine Indicator, which tables have been widely accepted as standard by American engineers. The figures for total heat, given in the original as from \(0^{\circ} \mathrm{F}\)., have been changed to heat above \(3 \vartheta^{\circ} \mathrm{F}\). The figures for weight per cubic foot and for cubic feet per pound have been taken from Dwelshauvers-Dery's table, Trans. A. S. M. E., vol. xi, as being probably more accurate than those of Porter. The figures for relative volume are from Buel's table, in Dubois's translation of Weisbach, vol. ii. They agree quite closely with the relative volumes calculated from weights as given by Dery. From 211 to 219 lbs. the figures for temperature, total heat, and latent heat are from Dery's table; and from 220 to 1000 lbs. all the figures are from Buel's table. The figures have not been carried out to as many decinal places as they are in most of the tables given by the different authorities: but any figure beyond the fourth significant figure is unnecessary in practice, and b-yond the limit of error of the observations and of the formulæ from which the figures were derived.

\section*{Weight of 1 Cubic Foot of Steam in Decimals of a Pound. Comparison of Different Authorities.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Weight of 1 cubic foot according to-} & \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Weight of 1 cubic foot according to-} \\
\hline & Porter. & Clark & Buel. & Dery. & Pea-
body. & & Porter. & Clark & Buel. & Dery. & Pea body \\
\hline 1 & . 0030 & . 003 & . 00303 & . 00299 & . 00299 & 120 & . 27428 & . 2738 & . 2735 & . \(2 \% 24\) & . 2695 \\
\hline 14.7 & .03\%97 & . 0380 & .0379:3 & & .03r6 & 140 & . 31386 & . 3162 & . 3163 & . 314 7 & 3113 \\
\hline 20 & . 0511 & . 0507 & . 0507 & . 0507 & . 0502 & 160 & . 35209 & . 3590 & . 3589 & . 3567 & 3530 \\
\hline 40 & . 0994 & . 0974 & .0972 & . 0972 & . 0964 & 180 & . 38895 & . 4009 & . 4012 & . 3983 & 3945 \\
\hline 60 & . 1457 & . 1425 & .1424 & . 1422 & . 1409 & 200 & . 42496 & . 4431 & . 4433 & . 4400 & 4359 \\
\hline 80 & . 19015 & . 1863 & 1866 & . 1862 & . 1843 & 220 & & . 4842 & . 4852 & & \(47 \%\) \\
\hline 100 & . 23302 & .230\% & 230 & . 22 & 22011 & 240 & & 5?48 & 5270 & . & 518 \\
\hline
\end{tabular}

There are considerable differences between the figures of weight and volume of steam as given by different anthorities. Porter's figures are based on the experiments of Fairbairn and Tate. The figures given by the other authorities are derived from theoretical formulæ which are believed to give more reliable results than the experiments. The figures for temperature, total heat, and latent heat as given by different authorities show a practical agreement, all being derived from Regnault's experiments. See Peabody's Tables of Saturated Steam; also Jacobus, Trans. A. S. M. E., vol. xii., 593.

Properties of Saturated Steanm．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{告 ஸ゙す E 룰 를} & \multirow[t]{5}{*}{} & \multirow[b]{5}{*}{Temperature
Fahrenheit．} & \multicolumn{2}{|l|}{Total Heat above \(32^{\circ} \mathrm{F}\) ．} & \multirow[b]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} \\
\hline & & & In the & In the & & & & \\
\hline & & & Water & \[
\begin{gathered}
\text { Steam } \\
H
\end{gathered}
\] & & & & \\
\hline & & & Heat－ & Heat－ & & & & \\
\hline & & & units． & units． & & & & \\
\hline 29.74 & ． 089 & 32 & 0 & 1091.7 & 1091.7 & 208080 & 3：333．3 & ． 00030 \\
\hline 29.67 & ． 122 & 40 & 8. & 1094.1 & 1086.1 & 151330 & \(24 \% 2.2\) & ． 00040 \\
\hline 29.56 & ．176 & 50 & 18. & 109\％． 2 & 1079．2 & 10\％630 & 1724.1 & ． 00058 \\
\hline 29.40 & .254 & 60 & 28.01 & 1100.2 & 1072．2 & т63\％0 & 1223．4 & ． 00082 \\
\hline 29.19 & ． 359 & \％ & 38.02 & 1103.3 & 1065.3 & 54660 & 875.61 & ． 00115 \\
\hline 28.90 & ． 502 & 80 & 48.04 & 1106.3 & 1058.3 & 39690 & 635.80 & ． 00158 \\
\hline 28.51 & ．692 & 90 & 58.06 & 1109.4 & 1051.3 & 29290 & 469.20 & ． 00213 \\
\hline 28.00 & ． 943 & 100 & 68.08 & 1112.4 & 1044.4 & 21830 & 349.70 & ．00286 \\
\hline 27.88 & 1 & 102.1 & \％0．09 & 1113.1 & 1043.0 & 20623 & 334.23 & ． 00299 \\
\hline 25.85 & 2 & 126.3 & 94.44 & 1120.5 & 1026.0 & 10 ¢30 & 173.23 & ． 00577 \\
\hline 23.83 & 3 & 141.6 & 109.9 & 1125.1 & 1015.3 & 7325 & 117.98 & ． 00848 \\
\hline \＄1．78 & 4 & 153.1 & 121.4 & 1128.6 & 1007．2 & 5588 & 89.80 & ． 01112 \\
\hline 19.74 & 5 & 162.3 & 130.7 & 1131.4 & 1000.7 & 4530 & 72.50 & ． 01373 \\
\hline 17．\％0 & 6 & 170.1 & 138.6 & 1133.8 & 995.2 & 3816 & 61.10 & ． 01631 \\
\hline 15.67 & 7 & 176.9 & 145.4 & 1135.9 & 990.5 & 3302 & 53.00 & ． 01887 \\
\hline 13.63 & 8 & 182.9 & 151.5 & 1137.7 & 986.2 & 2912 & 46.60 & ． 02140 \\
\hline 11.60 & 9 & 188.3 & 156.9 & 1139.4 & 982.4 & 2607 & 41.82 & ． 02391 \\
\hline 9.56 & 10 & 193.2 & 161.9 & 1140.9 & 979.0 & 2361 & 37.80 & ． 02641 \\
\hline 7.52 & 11 & 197.8 & 166.5 & 1142.3 & 975.8 & 2159 & 34.61 & ． 02389 \\
\hline 5.49 & 12 & 202.0 & 170.7 & 1143.5 & 972.8 & 1990 & 31.90 & ． 03136 \\
\hline 3.45 & 13 & 205.9 & 174.7 & 1144.7 & 970.0 & 1846 & 29.58 & ．03381 \\
\hline 1.41 & 14 & 209.6 & 178.4 & 1145.9 & 967.4 & 1721 & 27.59 & ．036：5 \\
\hline Gauge & & & & & & & & \\
\hline Pressure lbs．per & 14.7 & 212 & 180.9 & 1146.6 & 965.7 & 1646 & 26.36 & ．03\％94 \\
\hline sq．in． & & & & & & & & \\
\hline 0.304 & 15 & 213.0 & 181.9 & 1146.9 & 965.0 & 1614 & 25.87 & ． 03868 \\
\hline 1.3 & 16 & 216.3 & 185.3 & 1147.9 & 962.7 & 1519 & 24.33 & ． 04110 \\
\hline 2.3 & 17 & 219.4 & 188.4 & 1148.9 & 960.5 & 1434 & 22.98 & ． 04352 \\
\hline 3.3 & 18 & 222.4 & 191.4 & 11498 & 958.3 & 1359 & 21.78 & ． 04592 \\
\hline 4.3 & 19 & 225.2 & 194.3 & 1150.6 & 956.3 & 1292 & 20.70 & ． 04831 \\
\hline 5.3 & 20 & 22\％． 9 & 197.0 & 1151.5 & 954.4 & 1231 & 19.72 & ． 050 \％ 0 \\
\hline 6.3 & 21 & 230.5 & 199.7 & 1152.2 & \(95: .6\) & \(11 \% 6\) & 18.84 & ． 05308 \\
\hline \％． 3 & 22 & 233.0 & 202.2 & 1153.0 & 950.8 & 1126 & 18.03 & ． 05545 \\
\hline 8：3 & 23 & 235.4 & 204.7 & ． 7 & 949.1 & 1080 & 17.30 & ．05is？ \\
\hline 9.3 & 24 & 237.8 & 207.0 & 1154.5 & 947.4 & 1038 & 16.62 & ． 06018 \\
\hline 10.3 & 25 & 240.0 & 209.3 & 1155.1 & 945.8 & 998.4 & 15.99 & ． 06 ¢53 \\
\hline 11.3 & 26 & 242.2 & 211.5 & & 944.3 & 962.3 & 15.42 & ． 06187 \\
\hline 12.3 & 27 & 244.3 & 213.7 & 1156.4 & 942.8 & 928.8 & 14.88 & ．06～21 \\
\hline 13.3 & 28 & 246.3 & 215． 7 & 115\％．1 & 941.3 & 897.6 & 14.38 & ． 06955 \\
\hline 14.3 & 29 & 248.3 & 217.8 & \％ & 939.9 & 868.5 & 13.91 & ． 07188 \\
\hline 15.3 & 30 & 250.2 & 219.7 & 1158.3 & 938.9 & 841.3 & 13.48 & ． 0 T420 \\
\hline 16.3 & 31 & 25.1 & 221.6 & & 937.2 & 8158 & 13.0 î & ． 07652 \\
\hline 17.3 & 32 & 2540 & 2.23 .5 & 1159.4 & 9335.9 & \％91．8 & 12.68 & ． 07884 \\
\hline 18.3 & 33 & 255.7 & 225.3 & & 934.6 & 769.2 & 12.32 & ． 08115 \\
\hline 19.3 & 34 & \(25 \% 5\) & \(22 \% .1\) & 1160.5 & 933.4 & 748.0 & 11.98 & ． 08346 \\
\hline 20.3 & 35 & 259.2 & \(22^{2} 8\) & 1161.0 & 932.2 & \％2\％． 9 & 11.66 & ． \(085 \sim 6\) \\
\hline 21.3 & 36 & 260.8 & 230.5 & 1161.5 & 931.0 & \％08．8 & 11.36 & ． 08806 \\
\hline 22.3 & 37 & 262.5 & 232.1 & 1162.0 & 929.8 & 690.8 & 11.07 & ． 09035 \\
\hline
\end{tabular}

Properties of Saturated Steam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  \\
\hline 23.3 & 38 & 264.0 & 233.8 & 1162.5 & 928.7 & 673.7 & 10.79 & . 09264 \\
\hline 24.3 & 39 & 265.6 & 235.4 & . 9 & 927.6 & 657.5 & 10.53 & . 09493 \\
\hline 25.3 & 40 & 267.1 & 236.9 & 1163.4 & 926.5 & 642.0 & 10.28 & .09\%21 \\
\hline 26.3 & 41 & 268.6 & 238.5 & & 925.4 & 627.3 & 10.05 & . 09949 \\
\hline 27.3 & 42 & 270.1 & 240.0 & 1164.3 & 924.4 & 613.3 & 9.83 & . 1018 \\
\hline 28.3 & 43 & \(2 \mathrm{zr1.5}\) & 241.4 & . 7 & 923.3 & 599.9 & 9.61 & . 1040 \\
\hline 29.3 & 44 & 2 \%2. 9 & 242.9 & 1165.2 & 922.3 & 587.0 & 9.41 & . 1063 \\
\hline 30.3 & 45 & 274.3 & 244.3 & . 6 & 921.3 & 574.7 & 9.21 & . 1086 \\
\hline 31.3 & 46 & 275.7 & 245.7 & 1166.0 & 920.4 & 5630 & 9.02 & . 1108 \\
\hline 32.3 & 47 & \(27 \% .0\) & 247.0 & . 4 & 919.4 & 551.7 & 8.84 & . 1131 \\
\hline 33.3 & 48 & 278.3 & 248.4 & . 8 & 918.5 & 540.9 & 8.67 & . 1153 \\
\hline 34.3 & 49 & \(2 \sim 79.6\) & 249.7 & 1167.2 & 917.5 & 530.5 & 8.50 & . 1116 \\
\hline 35.3 & 50 & 280.9 & 251.0 & . 6 & 916.6 & 520.5 & 8.34 & . 1198 \\
\hline 36.3 & 51 & 282.1 & 252.2 & 1168.0 & 915.7 & 510.9 & 8.19 & . 1221 \\
\hline 37.3 & 52 & 283.3 & 253.5 & . 4 & 914.9 & 501.7 & 8.04 & . 1243 \\
\hline 38.3 & 53 & 284.5 & 254.7 & . 7 & 914.0 & 492.8 & 7.90 & . 1266 \\
\hline 39.3 & 54 & 285.7 & 256.0 & 1169.1 & 913.1 & 484.2 & 7.76 & . 1288 \\
\hline 40.3 & 55 & 286.9 & 257.2 & . 4 & 912.3 & \(4 \% 5.9\) & 7.63 & . 1311 \\
\hline 41.3 & 56 & 288.1 & 258.3 & . 8 & 911.5 & 467.9 & 7.50 & . 1333 \\
\hline 42.3 & 57 & 289.1 & 259.5 & 1170.1 & 910.6 & 460.2 & 7.38 & . 1355 \\
\hline 43.3 & 58 & 290.3 & 260.7 & . 5 & 909.8 & 452.7 & 7.26 & . \(1377 \%\) \\
\hline 44.3 & 59 & 291.4 & 261.8 & . 8 & 909.0 & 445.5 & 7.14 & . 1400 \\
\hline 45.3 & 60 & 292.5 & 262.9 & 1171.2 & 908.2 & 438.5 & 7.03 & . 1422 \\
\hline 46.3 & 61 & 293.6 & 264.0 & & 907.5 & 431.7 & 6.92 & . 1444 \\
\hline 47.3 & 62 & 294.7 & 265.1 & . 8 & 906.7 & 425.2 & 6.82 & . 1466 \\
\hline 48.3 & 63 & 29 n .7 & 266.2 & \(11 \% 2.1\) & 905.9 & 418.8 & 6.72 & . 1488 \\
\hline 49.3 & 64 & 296.8 & 267.2 & . 4 & 905.2 & 412.6 & 6.62 & . 1511 \\
\hline 50.3 & 65 & 297.8 & 268.3 & . 8 & 904.5 & 406.6 & 6.53 & . 1533 \\
\hline 51.3 & 66 & 298.8 & 269.3 & 1173.1 & 9037 & 400.8 & 6.43 & . 1555 \\
\hline 52.3 & 67 & 299.8 & 270.4 & .4 & 903.0 & 395.2 & 6.34 & . \(15 \hat{1}\) \\
\hline 533 & 68 & 300.8 & 271.4 & . 7 & 902.3 & 389.8 & 6.25 & . 1599 \\
\hline 54.3 & 69 & 301.8 & 272.4 & 1174.0 & 901.6 & 384.5 & 6.17 & . 1621 \\
\hline 55.3 & 70 & 302.7 & 273.4 & . 3 & 900.9 & 379.3 & 6.09 & . 1643 \\
\hline 56.3 & 71 & 303.7 & 274.4 & . 6 & 900.2 & 374.3 & 6.01 & . 1665 \\
\hline 57.3 & \% 2 & 304.6 & 275.3 & . 8 & 899.5 & 369.4 & 5.93 & . \(168 \%\) \\
\hline 58.3 & 73 & 305.6 & \(2 \sim 6\) & \(11 \% 5.1\) & 898.9 & 364.6 & 5.85 & . 1709 \\
\hline 59.3 & 74 & 306.5 & 277.2 & . 4 & 898.2 & 350.0 & 5.78 & . 1731 \\
\hline 60.3 & 75 & 307.4 & 278.2 & . 7 & 897.5 & 355.5 & 5.71 & . 1753 \\
\hline 61.3 & 76 & 308.3 & 279.1 & 1176.0 & 896.9 & 351.1 & 5.63 & . 175 \\
\hline \(6: 3\) & r & 309.2 & 280.0 & 1170 & 896.2 & 346.8 & 5.57 & . 1797 \\
\hline 63.3 & \% & 310.1 & 280.9 & . 5 & 895.6 & 342.6 & 5.50 & . 1819 \\
\hline 64.3 & \%9 & 310.9 & 281.8 & 1176.8 & 895.0 & 338.5 & 5.43 & . 1840 \\
\hline 65.3 & 80 & 311.8 & 282.7 & 1177.0 & 894.3 & 334.5 & 5.37 & . 1862 \\
\hline 66.3 & 81 & 312.7' & 283.6 & . 3 & 893.7 & 330.6 & 5.31 & . 1884 \\
\hline 67.3 & 82 & 313.5 & 284.5 & . 6 & 893.1 & \(3 \because 6.8\) & 5.25 & . 1906 \\
\hline 68.3 & 83 & 314.4 & 285.3 & - 8.8 & 892.5 & 323.1 & 5.18 & . 1928 \\
\hline 69.3 & 84 & 315.2 & 286.2 & \(11 \% 8.1\) & 891.9 & 319.5 & 5.13 & . 1950 \\
\hline 70.3 & 85 & 316.0 & 287.0 & . 3 & 891.3 & 315.9 & 5.07 & . 1971 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[b]{5}{*}{} & \multicolumn{2}{|l|}{Total Heat above \(32^{\circ} \mathrm{F}\).} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} \\
\hline & & & In the & In the & & & & \\
\hline & & & Water & Steam & & & & \\
\hline & & & Heat- & Heat- & & & & \\
\hline & & & units. & units. & & & & \\
\hline 71.3 & 86 & 316.8 & 287.9 & 1178.6 & 890.7 & 312.5 & 5.02 & . 1993 \\
\hline 72.3 & 87 & 317.7 & 288.7 & & 890.1 & 309.1 & 4.96 & . 2015 \\
\hline 73.3 & 88 & 318.5 & 289.5 & 1179.1 & 889.5 & 305.8 & 4.91 & . 2036 \\
\hline 74.3 & 89 & 319.3 & 290.4 & . 3 & 888.9 & 302.5 & 4.86 & . 2058 \\
\hline 75.3 & 90 & 320.0 & 291.2 & . 6 & 888.4 & 299.4 & 4.81 & . 2080 \\
\hline 76.3 & 91 & 320.8 & 292.0 & . 8 & 887.8 & 296.3 & 4.76 & . 2102 \\
\hline 77.3 & 92 & 321.6 & 292. 8 & 1180.0 & 887.2 & 293.2 & 4.71 & . 2123 \\
\hline 78.3 & 93 & 322.4 & 293.6 & . 3 & 886.7 & 290.2 & 4.66 & . 2145 \\
\hline 79.3 & 94 & 323.1 & 291.4 & . 5 & 856.1 & 287.3 & 4.62 & . 2166 \\
\hline 80.3 & 95 & 323.9 & 295.1 & 7 & 885.6 & 284.5 & 4.57 & . 2188 \\
\hline 81.3 & 96 & \(3 \because 4.6\) & 295.9 & 1181.0 & 885.0 & 281.7 & 4.53 & . 2210 \\
\hline 82.3 & 97 & 325.4 & 296.7 & . 2 & 884.5 & 279.0 & 4.48 & . 2231 \\
\hline 83.3 & 98 & 326.1 & 297.4 & . 4 & 884.0 & 276.3 & 4.44 & . 2253 \\
\hline 843 & 99 & 326.8 & 298.2 & . 6 & 883.4 & 273.7 & 4.40 & .2274 \\
\hline 85.3 & 100 & 3:27.6 & 298.9 & . 8 & 882.9 & 271.1 & 4.36 & . 2296 \\
\hline 86.3 & 101 & 328.3 & 2997 & 1182.1 & 882.4 & 268.5 & 4.32 & . 2317 \\
\hline 87.3 & 102 & 3:9.0 & 300.4 & . 3 & 881.9 & 266.0 & 4.28 & .2339 \\
\hline 88.3 & 103 & 329.7 & 301.1 & . 5 & 881.4 & 263.6 & 4.24 & . 2360 \\
\hline 89.3 & 104 & 330.4 & 301.9 & . 7 & 880.8 & 261.2 & 4.20 & . 2382 \\
\hline 90.3 & 105 & 331.1 & 302.6 & . 9 & 880.3 & 258.9 & 4.16 & . 2403 \\
\hline 91.3 & 106 & 331.8 & 303.3 & 1183.1 & 879.8 & 256.6 & 4.12 & . 2425 \\
\hline 92.3 & 107 & 332.5 & 304.0 & . 4 & 879.3 & 254.3 & 4.09 & . 2446 \\
\hline 93.3 & 108 & 333.2 & 304.7 & . 6 & 878.8 & 252.1 & 4.05 & . 2467 \\
\hline 94.3 & 109 & 333.9 & 305.4 & . 8 & 878.3 & 249.9 & 4.02 & . 2489 \\
\hline 95.3 & 110 & 334.5 & 306.1 & 1184.0 & 877.9 & 247.8 & 3.98 & . 2510 \\
\hline 96.3 & 111 & 335.2 & 306.8 & . 2 & 877.4 & 245.7 & 3.95 & . 2531 \\
\hline 9 9.3 & 112 & 335.9 & 307.5 & . 4 & 876.9 & 2436 & 3.92 & . 2553 \\
\hline 98.3 & 113 & 336.5 & 308.2 & . 6 & 876.4 & 241.6 & 3.88 & . 2574 \\
\hline 99.3 & 114 & 337.2 & 308.8 & . 8 & 875.9 & 239.6 & 3.85 & . 2596 \\
\hline 100.3 & 115 & 337.8 & 309.5 & 1185.0 & \(8 i 5.5\) & 23.37 .6 & 3.82 & . 2617 \\
\hline 101.3 & 116 & 338.5 & 310.2 & . 2 & 875.0 & 235.7 & 3.79 & . 2638 \\
\hline 102.3 & 117 & 339.1 & 310.8 & . 4 & 874.5 & 233.8 & 3.76 & . 2660 \\
\hline 103.3 & 118 & 339.7 & 311.5 & . 6 & 874.1 & 231.9 & 3.73 & . 2681 \\
\hline 104.3 & 119 & 340.4 & 312.1 & . 8 & 873.6 & 230.1 & 3.70 & .2ז03 \\
\hline 105.3 & 120 & 341.0 & 312.8 & . 9 & 873.2 & 228.3 & 3.67 & . 2724 \\
\hline 106.3 & 121 & 341.6 & 313.4 & 1186.1 & 8 \%2.7 & 226.5 & 3.64 & . 2745 \\
\hline 107.3 & 122 & 342.2 & 314.1 & . 3 & \(8 \% 2.3\) & 2247 & 3.62 & . 2766 \\
\hline 108.3 & 123 & 342.9 & 314.7 & . 5 & 871.8 & 223.0 & 3.59 & . 2788 \\
\hline 119.3 & 124 & 343.5 & 315.3 & . 7 & 871.4 & 221.3 & 3.56 & . 2809 \\
\hline 110.3 & 125 & 344.1 & 3160 & . 9 & 870.9 & 219.6 & 3.53 & . 2830 \\
\hline 111.3 & 126 & 344.7 & 316.6 & 1187.1 & 80.5 & 218.0 & 3.51 & . 2851 \\
\hline 112.3 & 127 & 345.3 & 317.2 & . 3 & \(8 \% 0\) & 216.4 & 3.48 & . 2872 \\
\hline 1133 & 128 & 345.9 & 317.8 & . 4 & 869.6 & 214.8 & 3.46 & . 2894 \\
\hline 114.3 & 129 & 346.5 & 318.4 & . 6 & S69.2 & 213.2 & 3.43 & . 2915 \\
\hline 115.3 & 130 & 347.1 & 319.1 & . 8 & 868.7 & 211.6 & 3.41 & 2936 \\
\hline 116.3 & 131 & 347.6 & 319.7 & 1188.0 & 868.3 & 210.1 & 3.38 & 205 I \\
\hline 117.3 & 132 & 348.2 & 320.3 & . 2 & 86 \%. 9 & 208.6 & 3.36 & . 2978 \\
\hline 118.3 & 133 & 345.8 & 3:0.8 & . 3 & 867.5 & 20 i .1 & 3.33 & . 3000 \\
\hline 119.3 & 134 & 349.4 & 321.5 & . 5 & 867.0 & 205.7 & 3.31 & . 3021 \\
\hline
\end{tabular}

Properties of Saturated Steam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[b]{5}{*}{} & \multicolumn{2}{|l|}{Total Heat above \(32^{\circ} \mathrm{F}\).} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} \\
\hline & & & In the & In the & & & & \\
\hline & & & & \[
\begin{gathered}
\text { Steam } \\
H
\end{gathered}
\] & & & & \\
\hline & & & Heat- & Heat- & & & & \\
\hline & & & units. & units. & & & & \\
\hline 120.3 & 135 & 350.0 & 322.1 & 1188.7 & 866.6 & 204.2 & 3.29 & . 3042 \\
\hline 121.3 & 136 & 350.5 & 322.6 & 9 & 866.2 & 202.8 & 3.27 & . 3063 \\
\hline 122.3 & 137 & 351.1 & 323.2 & 1189.0 & 865.8 & 2014 & 3.24 & . 3084 \\
\hline 123.3 & 138 & 351.8 & 323.8 & . 2 & 865.4 & 200.0 & 3.22 & . 3105 \\
\hline 124.3 & 139 & 352.2 & 324.4 & . 4 & 865.0 & 198.7 & 3.20 & . 3126 \\
\hline 125.3 & 140 & 352.8 & 325.0 & . 5 & 864.6 & 197.3 & 3.18 & . 3147 \\
\hline 126.3 & 141 & 353.3 & 325.5 & . 7 & 864.2 & 196.0 & 3.16 & . 3169 \\
\hline 127.3 & 142 & 353.9 & 326.1 & . 9 & 863.8 & 194.7 & 3.14 & . 3190 \\
\hline 128.3 & 143 & 354.4 & 326.7 & 1190.0 & 863.4 & 193.4 & 3.11 & . 3211 \\
\hline 129.3 & 144 & 355.0 & 327.2 & .2 & 863.0 & 192.2 & 3.09 & . 3232 \\
\hline 130.3 & 145 & 355.5 & \(32 \% .8\) & . 4 & 862.6 & 190.9 & 3.07 & .32\%3 \\
\hline 131.3 & 146 & 356.0 & 328.4 & . 5 & 862.2 & 189.7 & 3.05 & . 32 \% 4 \\
\hline 132.3 & 147 & 356.6 & 328.9 & . 7 & 861.8 & 185.5 & 3.04 & . 3295 \\
\hline 133.3 & 148 & 357.1 & 329.5 & . 9 & 861.4 & 187.3 & 3.02 & . 3316 \\
\hline 134.3 & 149 & 35\%. 6 & 330.0 & 1191.0 & 861.0 & 186.1 & 3.00 & . 3331 \\
\hline 135.3 & 150 & 358.2 & 330.6 & . 2 & 860.6 & 184.9 & 2.98 & . 3358 \\
\hline 136.3 & 151 & 358.7 & 331.1 & . 3 & 860.2 & 183.7 & 2.96 & .33\%9 \\
\hline 13 . 3 & 152 & 359.2 & 331.6 & . 5 & 859.9 & 182.6 & 2.94 & . 3400 \\
\hline 138.3 & 153 & 359.7 & 332.2 & . 7 & 859.5 & 181.5 & 2.92 & . 3421 \\
\hline 139.3 & 154 & 360.2 & 3 32.7 & . 8 & 859.1 & 180.4 & 2.91 & . 3442 \\
\hline 140.3 & 155 & 360.7 & \$333.2 & 1192.0 & \(858 . \tilde{1}\) & 1ヶ9.2 & 2.89 & . 3463 \\
\hline 141.3 & 156 & 361.3 & 333.8 & . 1 & 858.4 & 178.1 & 2.87 & . 3483 \\
\hline 142.3 & 157 & 361.8 & 334.3 & . 3 & 858.0 & 177.0 & 2.85 & . 3504 \\
\hline 143.3 & 158 & 362.3 & 334.8 & . 4 & 85\%. 6 & 175.0 & 2.84 & . 3525 \\
\hline 144.3 & 159 & 362.8 & 335.3 & . 6 & 857.2 & 174.9 & 2.82 & . 3546 \\
\hline 145.3 & 160 & 363.3 & 335.9 & .7 & 856.9 & 173.9 & 2.80 & . 3567 \\
\hline 146.3 & 161 & 363.8 & 336.4 & . 9 & 856.5 & 172.9 & 2.79 & . 3588 \\
\hline 147.3 & 162 & 364.3 & 336.9 & 1193.0 & 856.1 & 171.9 & 2.77 & . 3609 \\
\hline 148.3 & 163 & 364.8 & 337.4 & . 2 & 855.8 & 171.0 & 2.76 & . 3630 \\
\hline 149.3 & 164 & 365.3 & 337.9 & . 3 & 855.4 & 170.0 & 2.74 & . 3650 \\
\hline 150.3 & 165 & 365.7 & 338.4 & . 5 & 855.1 & 169.0 & 2.72 & . \(36 \sim 1\) \\
\hline 151.3 & 166 & 366.2 & 338.9 & . 6 & 854.7 & 168.1 & 2.71 & .369: \\
\hline 152.3 & 167 & 366.7 & 339.4 & . 8 & 854.4 & 167.1 & 2.69 & . 3713 \\
\hline 153.3 & 168 & 367.2 & 339.9 & . 9 & 854.0 & 166.2 & 2.68 & . 3721 \\
\hline 154.3 & 169 & 36\%.7 & 340.4 & 1194.1 & 853.6 & 165.3 & 2.66 & . 3 \% \({ }^{5}\) \\
\hline 155.3 & 170 & 368.2 & 340.9 & . 2 & 853.3 & 164.3 & 2.65 & . \(37 \%\) \\
\hline 156.3 & 171 & 368.6 & 341.4 & . 4 & 852.9 & 163.4 & 2.63 & . 3796 \\
\hline 157.3 & 172 & 369.1 & 341.9 & . 5 & 852.6 & 162.5 & 2.62 & . 3817 \\
\hline 158.3 & 173 & 369.6 & 342.4 & . 7 & 852.3 & 161.6 & 2.61 & . 3838 \\
\hline 159.3 & 174 & 370.0 & 342.9 & . 8 & 851.9 & 160.7 & 2.59 & . 3858 \\
\hline 1603 & 175 & 370.5 & 343.4 & . 9 & 851.6 & 159.8 & 2.58 & . 38 ¢9 \\
\hline 161.3 & 176 & 371.0 & 343.9 & 1195.1 & 851.2 & 158.9 & 2.56 & . 3900 \\
\hline 162.3 & 177 & 371.4 & 344.3 & . 2 & 850.9 & 158.1 & 2.55 & . 3921 \\
\hline 163.3 & 178 & 371.9 & 344.8 & . 4 & 850.5 & 157.2 & 2.54 & . 3942 \\
\hline 164.3 & 179 & \(3 \pi 2.4\) & 345.3 & . 5 & 850.2 & 156.4 & 2.52 & . 3962 \\
\hline 165.3 & 180 & 372.8 & 345.8 & . 7 & 849.9 & 155.6 & 2.51 & . 3983 \\
\hline 166.3 & 181 & 373.3 & 346.3 & . 8 & 849.5 & 154.8 & 2.50 & . 4004 \\
\hline 167.3 & 189 & 373.7 & 346.7 & . 9 & 849.2 & 154.0 & 2.48 & . 4025 \\
\hline 168.3 & 183 & 374.2 & 347.2 & 1196.1 & 848.9 & 153.2 & 2.47 & . 404 \\
\hline
\end{tabular}

Properties of Saturated Steam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  & \begin{tabular}{l}
Total
above \\
In the Water Heatunits.
\end{tabular} &  &  &  &  &  \\
\hline 169.3 & 184 & 374.6 & 347.7 & 1196.2 & 848.5 & 152.4 & 2.46 & . 4066 \\
\hline 170.3 & 185 & 375.1 & 348.1 & . 3 & 848.2 & 151.6 & 2.45 & . 4087 \\
\hline \(1 \% 1.3\) & 186 & 375.5 & 348.6 & . 5 & 847.9 & 150.8 & 2.43 & . 4108 \\
\hline \(1 \% 2.3\) & 187 & \(3 \% 5.9\) & 349.1 & . 6 & 847.6 & 150.0 & 2.42 & . 4129 \\
\hline 173.3 & 188 & 376.4 & 349.5 & . 7 & 847.2 & 149.2 & 2.41 & . 4150 \\
\hline 174.3 & 189 & 3 36.9 & 350.0 & . 9 & 846.9 & 148.5 & 2.40 & . 41 T 0 \\
\hline 175.3 & 190 & 377.3 & 350.4 & 1197.0 & 846.6 & 147.8 & 2.39 & . 4191 \\
\hline 176.3 & 191 & 377.7 & 350.9 & . 1 & 846.3 & 147.0 & 2.37 & . 4212 \\
\hline \(17 \% .3\) & 192 & 378.2 & 351.3 & . 3 & 845.9 & 146.3 & 2.36 & . 4233 \\
\hline 178.3 & 193 & 378.6 & 351.8 & . 4 & 845.6 & 145.6 & 2.35 & . 4254 \\
\hline 179.3 & 194 & 379.0 & 352.2 & . 5 & 845.3 & 144.9 & 2.34 & . 4275 \\
\hline 180.3 & 195 & 379.5 & 352.7 & . 7 & 845.0 & 144.2 & 2.33 & . 4296 \\
\hline 181.3 & 196 & 380.0 & 353.1 & . 8 & 844.7 & 143.5 & 2.32 & . 4317 \\
\hline 18.3.3 & 197 & 380.3 & 353.6 & . 9. & 844.4 & 142.8 & 2.31 & .433\% \\
\hline 183.3 & 198 & 380.7 & 354.0 & 1198.1 & 844.1 & 142.1 & 2.29 & . 4358 \\
\hline 184.3 & 199 & 381.2 & 354.4 & . 2 & 843.7 & 141.4 & 2.28 & . 43 亿9 \\
\hline 185.3 & 200 & 381.6 & 354.9 & . 3 & 843.4 & 140.8 & 2.27 & . 4400 \\
\hline 186.3 & 201 & 382.0 & 355.3 & . 4 & 843.1 & 140.1 & 2.26 & . 4420 \\
\hline 187.3 & 202 & 38\%. 4 & 355.8 & . 6 & 842.8 & 139.5 & 2.25 & . 4441 \\
\hline 188.3 & 203 & 38:. 8 & 356.2 & . 7 & 842.5 & 138.8 & 224 & . 4462 \\
\hline 189.3 & 204 & 383.2 & 356.6 & . 8 & 842.2 & 138.1 & 2.23 & . 4482 \\
\hline 190.3 & 205 & 383.7 & 357.1 & 1199.0 & 841.9 & 13 \%. 5 & 2.22 & . 4503 \\
\hline 191.3 & 206 & 384.1 & 357.5 & . 1 & 841.6 & 136.9 & 2.21 & . 4523 \\
\hline 192.3 & 207 & 384.5 & 357.9 & . 2 & 841.3 & 136.3 & 2.20 & . 4544 \\
\hline 193.3 & 208 & 384.9 & 358.3 & . 3 & 8410 & 135.7 & 2.19 & . 4564 \\
\hline 194.3 & 209 & 385.3 & 358.8 & . 5 & 840.1 & 135.1 & 2.18 & . 4585 \\
\hline 195.3 & 210 & 385.7 & 359.2 & . 6 & 840.4 & 134.5 & 2.17 & . 4605 \\
\hline 196.3 & 211 & 386.1 & 359.6 & . 7 & 840.1 & 133.9 & 2.16 & . \(46 \times 2\) \\
\hline 197.3 & 212 & 386.5 & 360.0 & . 8 & 8398 & 133.3 & 2.15 & . 4646 \\
\hline 198.3 & 213 & 386.9 & 360.4 & . 9 & 839.5 & 132.7 & 2.14 & . 4667 \\
\hline 199.3 & 214 & 387.3 & 360.9 & 1200.1 & 839.2 & 132.1 & 2.13 & . 468 r \\
\hline 200.3 & 215 & \(38 \% .7\) & 361.3 & . 2 & 838.9 & 131.5 & 2.12 & . 4707 \\
\hline 201.3 & 216 & 388.1 & 361.7 & . 3 & 838.6 & 130.9 & 2.12 & . 4028 \\
\hline 202.3 & 217 & 388.5 & 362.1 & . 4 & 838.3 & 130.3 & 2.11 & . \(4 \sim 48\) \\
\hline 203.3 & 218 & 388.9 & 362.5 & . 6 & 838.1 & 129.7 & 2.10 & .4\%68 \\
\hline 204.3 & 219 & 389.3 & 362.9 & . 7 & 837.8 & 129.2 & 2.09 & . \(4 \% 88\) \\
\hline 205.3 & 220 & 389.7 & 362.2* & 1200.8 & 838.6* & 128.7 & 2.06 & 4852 \\
\hline 215.3 & 230 & 393.6 & 366.2 & 1202.0 & 835.8 & 123.3 & 1.98 & . 5061 \\
\hline 225.3 & 240 & 397.3 & 370.0 & 1203.1 & 833.1 & 118.5 & 1.90 & .5270 \\
\hline 235.3 & 250 & 400.9 & 373.8 & 1204.2 & 830.5 & 114.0 & 1.83 & .54\%8 \\
\hline 245.3 & 260 & 404.4 & 377.4 & 1205.3 & 827.9 & 109.8 & 1.76 & . 5686 \\
\hline 255.3 & 270 & 407.8 & 380.9 & 1:06.3 & 825.4 & 105.9 & 1.70 & . 5894 \\
\hline 265.3 & 280 & 411.0 & 384.3 & 1207.3 & 823.0 & 102.3 & 1.64 & . 6101 \\
\hline \(2 \pi 5.3\) & 290 & 414.2 & 387.7 & 1208.3 & 8:0.6 & 99.0 & 1.585 & . 6308 \\
\hline 285.3 & 300 & 417.4 & 390.9 & 1209.2 & 818.3 & 95.8 & 1.535 & . 6515 \\
\hline 335.3 & 350 & 432.0 & 406.3 & 1213.7 & 807.5 & 82.7 & 1.325 & . 7545 \\
\hline
\end{tabular}

\footnotetext{
* The discrepancies at 205.3 lbs . gauge are due to the change from Dery's to Buel's figures.
}

Properties of Saturated Steam．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  & \begin{tabular}{l}
Total
above \\
In the Water \(\stackrel{h}{h}\) units．
\end{tabular} & \begin{tabular}{l}
Heat
\(3 \overbrace{}^{\circ} \mathrm{F}\) ． \\
In the Steam \(H\)
Heat－ units．
\end{tabular} &  &  &  &  \\
\hline 385.3 & 400 & 444.9 & 419.8 & \(121 \% .7\) & 797.9 & T2．8 & 1.167 & ．8592 \\
\hline 435.3 & 450 & 456.6 & 432.2 & 1221.3 & \％89．1 & 65.1 & 1.042 & ． 9595 \\
\hline 485.3 & 500 & 467.4 & 443.5 & 1224.5 & r81．0 & 58.8 & ． 942 & 1.062 \\
\hline 535.3 & 550 & 477.5 & 454.1 & 1227.6 & 7 7 3.5 & 53.6 & ． 859 & 1.164 \\
\hline 585.3 & 600 & 486.9 & 464.2 & 1230.5 & r66．3 & 49.3 & ． 790 & 1．26＇ \\
\hline 635.3 & 650 & 495.7 & 4 \％ 3.6 & 1233.2 & 759.6 & 45.6 & ． 731 & 1.368 \\
\hline 685.3 & \％00 & 504.1 & 482.4 & 1235.7 & 753.3 & 42.4 & ． 680 & 1.470 \\
\hline 735.3 & 750 & 512.1 & 490.9 & 12388.0 & 747.2 & 39.6 & ． 636 & 1．5in \\
\hline 785.3 & 800 & 519.6 & 498.9 & 1240.3 & 741.4 & 37.1 & ． 597 & 1．6i4 \\
\hline 835.3 & 850 & 526.8 & 506.7 & 1242.5 & 735.8 & 34.9 & ． 563 & 1.776 \\
\hline 885.3 & 900 & 533.7 & 514.0 & 1244.7 & 730.6 & 33.0 & ． 532 & \(1.8 \% 8\) \\
\hline 935.3 & 950 & 540.3 & 521.3 & 1246.7 & 725.4 & 31.4 & ． 50.5 & 1.980 \\
\hline 985.3 & 1000 & 546.8 & 528.3 & 1248.7 & 720.3 & 30.0 & ． 480 & \(2.08 \%\) \\
\hline
\end{tabular}

\section*{FLOW OF STEEAM．}

Flow of Steam through a Nozzle．（From Clark on the Steam－ engine．）－The flow of steam of a greater pressure into an atmosphere of a less pressure increases as the difference of pressure is increased，until this external pressure becomes only \(58 \%\) of the absolute pressure in the boiler． The flow of steam is neither increased nor diminished by the fall of the ex－ ternal pressure below \(58 \%\) ，or about \(4 /\) iths of the inside pressure，even to the extent of a perfect vacuum．In flowing through a nozzle of the best form， the steam expands to the external pressure，and to the volume due to this pressure，so long as it is not less than \(58 \%\) of the internal pressure．For an external pressure of \(58 \%\) ，and for lower percentages，the ratio of expansion is 1 to \(1.6: 4\) ．The following table is selected from Mr．Brownlee＇s data exem－ plifying the rates of discharge under a constant internal pressure，into rarious external pressures：

\section*{Outflow of Steam；from a Given Initial Pressure into Various Lower Pressures．}

Absolute initial pressure in boiler， 75 lbs．per sq．in．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Absolute Pressure in Boiler per square inch． & External Pressure per square inch． & Ratio of Expansion in Nozzle． & Velocity of Outflow at Constant Density． & Actual Velocity of Outflow Expanded & Discharge per square inch of Orifice ner minute． \\
\hline lbs． & lbs． & ratio． & feet per sec． & feet p．sec． & lbs． \\
\hline 75 & \％4 & 1.012 & 227.5 & 230 & 16.68 \\
\hline 75 & 72 & 1.037 & 386.7 & 401 & 28.35 \\
\hline 75 & r0 & 1.063 & 490 & 521 & 35． 93 \\
\hline 75 & 65 & 1.136 & 660 & 749 & 48.38 \\
\hline 75 & 61.62 & 1.198 & 736 & 876 & 53.97 \\
\hline 75 & 60 & 1.219 & 765 & 933 & 56.13 \\
\hline \％ & 50 & 1.434 & 873 & 1252 & \\
\hline 75 & 45 & 1.575 & 890 & 1401 & 65.24 \\
\hline 75 & \(\left\{58\right.\) ¢ \({ }^{43.46}\) cent \(\}\) & 1.624 & 890.6 & 1446.5 & 65.3 \\
\hline 75 & \(\left\{58{ }_{15}^{\text {p．cent }}\right.\)（ & 1.624 & 890.6 & 1446.5 & 65.3 \\
\hline 75 & 0 & 1.694 & 890.6 & 1446.5 & 65.3 \\
\hline
\end{tabular}

When steam of varying initial pressures is discharged into the atmos-phere-the atmospheric pressure being not more than \(58 \%\) of the initial pressure-the velocity of outflow at constant density, that is, supposing the initial density to be maintained, is given by the formula \(V=3.595 .3 \mathrm{t}\).
\(V=\) the velocity of outflow in feet per minute, as for steam of the initial density;
\(h=\) the height in feet of a column of steam of the given absolute initial pressure of uniform density, the weight of which is equal to the pressure on the unit of base.

The lowest initial pressure to which the formula applies, when the steam is discharged into the atmosphere at 14.7 lbs . per square inch, is \(14.7 \times\) \(100 / 58=\) ) 25.37 lbs . per square inch. Examples of the application of the formula are given in the table below.

From the contents of this table it appears that the velocity of outflow into the atmosphere, of steam above 25 lbs . per square inch absolute pressure, or 10 lbs . effective, increases very slowly with the pressure, obviously because the density, and the weight to be moved, increase with the pressure. An average of 900 feet per second may, for approximate calculations, be taken for the velocity of outflow as for constant density, that is, taking the volume of the steam at the initial volume.
Outfow of Stean into the Atmosphere.-External pressure per square inch 14.7 lbs . absolute. Ratio of expansion in nozzle, 1.6 24 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  &  \\
\hline lbs. & & & lbs. & H.P. & lbs. & & & lb & H.P. \\
\hline 25.3 & 9.863 & 1401 & 22.8 & 45.6 & 90 & 895 & 1454 & 77.94 & 55.9 \\
\hline 30 & 867 & 08 & 26.84 & 53.2 & 100 & 898 & 1459 & 86.34 & 12. 7 \\
\hline 40 & 874 & 19 & 35.18 & \% & 115 & 902 & 1466 & 98.76 & 197. \\
\hline & & 2129 & 44. & 88.1 & 135 & 906 & \(14 \% 2\) & 115.61 & 231.2 \\
\hline 60 & 885 & 1437 & 52.59 & 105.2 & 155 & 910 & 1478 & 132.21 & 264.4 \\
\hline 70 & 889 & 1444 & 61.07 & 122.1 & 165 & 912 & 1481 & 140.46 & 280.9 \\
\hline \% 5 & 891 & 144\% & 65.30 & 130.6 & 215 & 919 & 1493 & 181.58 & 363.2 \\
\hline
\end{tabular}

Napiers Approximate Rule. -Flow in pounds per second \(=a b\) solute pressure \(x\) area in square inches \(\div 70\). This rule gives results which closely correspond with those in the above table, as shown below.
\begin{tabular}{lcccccccc} 
Abs. press., lbs. p. sq. in. 25.37 & 40 & 60 & 75 & 100 & 135 & 165 & 215 \\
Discharge per min., by & & & & & & & & \\
table, lbs.............. & 22.81 & 35.18 & 52.59 & 65.30 & 86.34 & 115.61 & 140.46 & 181.58 \\
By Napier's rule......... \(21 . \tilde{4} 4\) & 34.23 & 51.43 & 64.29 & 85.71 & 115.71 & 141.43 & 184.29
\end{tabular}

Prof. Peabody, in Trans. A. S. M. E., xi, 187, reports a series of experiments on flow of steam through tubes \(1 / 4\) inch in diameter, and \(1 / 4,1 / 2\), and \(11 / 2\) inch long, with rounded entrances, in which the results agreed closely with Napier's formula, the greatest difference being an excess of the experimental over the calculated result of \(3.2 \%\). An equation clerived from the theory of thermodynamics is given by Prof. Peabody, but it does not agree with the experimental results as well as Napier's rule, the excess of the actual flow being \(6.6 \%\).
Flow of Steam in Pipes.-A formula commonly used for velocity of How of steam in pipes is the same as Downing's for the flow of water in smooth cast-iron pipes, viz., \(V=50 \sqrt{\frac{H}{L} D}\), in which \(V=\) velocity in feet per second, \(L=\) length and \(D=\) diameter of pipe in feet, \(H=\) height in feet of a column of steam, of the pressure of the steam at the eutrauce,
which would produce a pressure equal to the difference of pressures at the two ends of the pipe. (For derivation of the coefficient 50 , see Briggs oi: "Warming Buildings by Steam," Proc. Inst. C. E. 1882.)

If \(Q=\) quantity in cubic feet per minute, \(d=\) diameter in inches, \(L\) and \(H\) being in feet, the formula reduces to
\[
Q=4 . \%^{2} 233 \sqrt{\frac{H}{L} d^{5}}, \quad H=.0448 \frac{Q^{2} L}{d^{5}}, \quad d=.53 \pi 4 \sqrt[5]{\frac{Q^{2} \ddot{L}}{H}} .
\]
(These formulæ are applicable to air and other gases as well as steam.)
If \(p_{1}=\) pressure in pounds per square inch of the steam (or gas) at the entrance to the pipe, \(p_{2}=\) the pressure at the exit, then \(144\left(p_{1}-p_{2}\right)=\) difference in pressure per square foot. Let \(w=\) density or weight per cubic foot of steam at the pressure \(p_{1}\), then the height of column equivalent to the difference in pressures
\[
=H=\frac{144\left(p_{1}-p_{2}\right)}{w}, \text { and } Q=60 \times . .8554 \times 50 D^{2} \sqrt{\frac{144\left(p_{1}-p_{2}\right) D}{w L}} .
\]

If \(W=\) weight of steam flowing in pounds per minute \(=Q w\), and \(d\) is taken in inches, \(L\) being in feet,
\[
\begin{gathered}
W=56.68 \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}} ; \quad Q=56.68 \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{5}}{L w}} ; \\
d=0.199 \sqrt[5]{\frac{W^{2} L}{w\left(p_{2}-p_{2}\right)}}=0.199 \sqrt[5]{\frac{Q^{2} w L}{p_{1}-p_{2}}}
\end{gathered}
\]

Velocity in feet per minute \(=V=Q \div .7854 \frac{d^{2}}{144}=10392 \sqrt{\frac{\left(p_{1}-p_{2}\right) d}{w L}}\).
For a velocity of 6000 feet per minute, \(d=\frac{w L}{3\left(p_{1}-p_{2}\right)} ; p_{1}-p_{2}=\frac{w L}{3 d}\).
For a velocity of 6000 feet per minute, a steam-pressure of 1.00 lbs . gauge, or \(w=.264\), and a length of 100 feet, \(d=\frac{8.8}{p_{1}-p_{2}} ; p_{1}-p_{2}=\frac{8.8}{d}\). That is, a pipe 1 inch diameter, 100 feet long. carrying steam of 100 lbs . gauge-pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 lbs . per square inch, while steam travelling at the same velocity in a pipe 8.8 inches diameter would lose only 1 lb . pressure.
G. H. Babcock, in "Steam," gives the formula
\[
W=87 \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L\left(1+\frac{3.6}{d}\right)}}
\]

In earlier editions of "Steam" the coefficient is given as 300 ,-evidently an error,-and this value has been reprinted in Clark's Pocket-Book (1892 edition). It is apparently derived from one of the numerous formulæ for flow of water in pipes, the multiplier of \(L\) in the denominator being used for an expression of the increased resistance of small pipes. Putting this formula in the form \(W=c \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}}\), in which \(c\) will vary with the diameter of the pipe, we have,
\begin{tabular}{lccccccc} 
For diameter, inches.... & 1 & 2 & 3 & 4 & 6 & 9 & 12 \\
Value of \(c \ldots \ldots \ldots \ldots .\). & 40.7 & 52.1 & 58.8 & 63 & 68.8 & 73.7 & 79.3
\end{tabular} unstead of the constant value 56.68 , given with the simpler formula.
One of the most widely accepted formulæ for flow of water is D'Arcy's, \(V=c \sqrt{\frac{H D}{L 4}}\), in which \(c\) has values ranging from 65 for a \(1 / 2\)-inch pipe up to
111.5 for 24 -inch. Using D'Arcy's coefficients, and modifying his formula tc make it apply to steam, to the form
\[
Q=c \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{5}}{w L}}, \quad \text { or } \quad W=c \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}}
\]
we obtain,
\(\begin{array}{llllllllll}\text { For diameter, inches.... } & 1 / 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\) \(\begin{array}{lllllllllll}\text { Value of } c \ldots \ldots . . . . . . . . . . .36 .8 & 45.3 & 52 . \tilde{1} & 56.1 & 5 \pi .8 & 58.4 & 59.5 & 60.1 & 60.7\end{array}\)
\(\begin{array}{llllllllll}\text { For diameter, inches.... } & 9 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24\end{array}\)

In the absence of direct experiments these coefficients are probably as accurate as any that may be derived from formulæ for flow of water.

Loss of pressure in lbs. per sq. in. \(=p_{1}-p_{2}=\frac{Q^{2} w L}{c^{2} d^{5}}\).
Loss of Pressure due to Radiation as well as Friction.E. A. Rudiger (Mechanics, June 30, 1883) gives the following formulæ and tables for flow of steam in pipes. He takes into consideration the losses in pressure due both to radiation and to friction.

Loss of power, expressed in heat-units due to friction, \(H_{f}=\frac{W^{3} f l}{10 p^{2} d^{5}}\).
Loss due to radiation,
\[
H_{r}=0.262 r l d .
\]

In which \(W\) is the weight in lbs. of steam delivered per hour, \(f\) the coefficient of friction of the pipe, \(l\) the length of the pipe in feet, \(p\) the absolute terminal pressure, \(d\) the diameter of the pipe in inches, and \(r\) the coefficient 1)f radiation. \(f\) is taken as from .0165 to \(.01 \tilde{i} 5\), and \(r\) varies as follows:

TABLE OF VALUES FOR \(7^{\circ}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Pipe Covezing.} & \multicolumn{4}{|c|}{Absolute Pressure.} \\
\hline & 40 lbs . & 65 lbs. & 90 lbs . & 115 lbs. \\
\hline Uncovered pipe & 437 & 555 & 620 & 684 \\
\hline \({ }^{2}\)-inch cement composition & 146 & 178 & 193 & 209 \\
\hline " " asbestos " & 157 & 192 & 202 & 222 \\
\hline \(2{ }^{2}\) " asbestos flock. & 150 & 185 & 197 & 210 \\
\hline \& "، wooden log. & 100 & 12.2 & 145 & 151 \\
\hline 2 " mineral wool. & 61 & 76 & 85 & 93 \\
\hline 2 " hair felt.............. & 48 & 58 & 86 & 73 \\
\hline
\end{tabular}

The appended table shows the loss due to friction and radiation in a steampipe where the quantity of steam to be delivered is 1000 lbs . per hour, \(l=\) 1000 feet, the pipe being so protected that loss by radiation \(r=64\), and the absolute terminal pressure being 90 lbs .:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter of Pipe, inches. & Loss by Friction, Hf. & Loss by Radiation, Hr & \begin{tabular}{l}
Total \\
Loss, \(L\).
\end{tabular} & Diam. of Pipe inches. & Loss by Friction, Hf. & Loss by Radiation, Hr. & \begin{tabular}{l}
Total \\
Loss, \(L\).
\end{tabular} \\
\hline 1 & 197,531 & 16,768 & 214,300 & 31/2 & \(3{ }^{3} 6\) & 58,688 & 59,064 \\
\hline 11/4 & 64,727 & 20,960 & 85,65\% & 4 & 193 & 67,0\%2 & 67,265 \\
\hline \(11 / 2\) & 26,012 & 25,152 & 51,164 & & 63 & 83,840 & 83,903 \\
\hline \(13 / 4\) & 12,035 & 29,344 & 41,379 & 6 & 25 & 100,608 & 100,623 \\
\hline 2 & 6,173 & 33,536 & 39,709 & 7 & 12 & 117,376 & 117,388 \\
\hline 21/2 & 2,023 & 41,920 & 43,943 & 8 & & 134,144 & 134,150 \\
\hline 3 & 813 & 50,304 & 51,117 & & & & \\
\hline
\end{tabular}

If the pipes are carrying steam with minimum loss, then for same \(r, i\), and \(p\), the loss of pressure \(L\) for pipes of different diameters varies inversely as the diameters.
The general equation for the loss of pressure for the minimal loss from friction and radiation is
\[
L=\frac{0.0007023 d r l p}{W}
\]

The loss of pressure for pipes of 1 inch diameter for different absolute terminal pressures when steam is flowing with minimal loss is expressed by the formula \(L=C l \sqrt{r^{2}}\), in which the coefficient \(C\) has the following values:


In order to find the loss of pressure for any other diameter, divide the loss of pressure in a 1 -inch pipe for the given terminal pressure by the given diameter, and the quotient will be the loss of pressure for that diameter.
The following is a general summary of the results of Mr. Rudiger's investigation :
The flow of steam in a pipe is determined in the same manner as the flow of water, the formula for the flow of steam being modified only by substituting the equivalent loss of pressure, divided by the density of the steam, for the loss of head.

The losses in the flow of steam are two in number-the loss due to the friction of flow and that due to radiation from the sides of the pipe. The sum of these is a minimum when the equivalent of the loss due to friction of flow is equal to one fifth of the loss of heat by radiation. For a greater or less loss of pressure-i.e., for a less or greater diameter of pipe -the total loss increases very rapidly.

For delivering a given quantity of steam at a given terminal pressure, with minimal total loss, the better the non-conducting material employed, the larger the diameter of the steam-pipe to be used.
The most economical loss of pressure for a pipe of given diameter is equal to the most economical loss of pressure in a pipe of 1 inch diameter for same conditions, divided by the diameter of the given pipe in inches.
The following table gives the capacity of pipes of different diameters, to deliver steam at different terminal pressures through a pipe one half mile long for loss of pressure of 10 lbs ., and a mean value of \(f=0.0175\). Let \(W\) denote the number of pounds of steam delivered per hour :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Diameter of Pipe, inches.} & \multicolumn{3}{|l|}{Abs. Term. Pressure.} & \multirow[t]{2}{*}{Diameter of Pipe, inches.} & \multicolumn{3}{|l|}{Abs. Term. Pressure.} \\
\hline & 65 lbs. & 80 lbs . & 100 lbs. & & 65 lbs. & 80 lbs . & 100 lbs \\
\hline & W & W & W & & W & W & W \\
\hline 11 & 102 & 113 & 115 & 41/2 & 4,397 & 4,8\%2 & 5,390 \\
\hline & 282 & 312 & 346 & 6 & 9,024 & 10,000 & 11,063 \\
\hline 13 & 415 & 459 & 508 & & 13.268 & 14,701 & 16,265 \\
\hline 2 & 579 & 641 & 710 & & 18,526 & 20,528 & 22,711 \\
\hline 21/2 & 1,011 & 1,121 & 1,240 & 9. & 24,870 & 27,556 & 30,488 \\
\hline 3 & 1,595 & 1,768 & 1,956 & 10. & 32,364 & 35,860 & 39,675 \\
\hline 31 & 2,346 & 2,593 & 2,85\% & 11. & 41.081 & 45,507 & 50,349 \\
\hline 4 & 3,275 & 3.629 & 4,042 & 12. & 51.049 & 56,564 & 62,581 \\
\hline
\end{tabular}

Resistance to Flow by Bends, Valves, etc. (From Briggs on Warming Buildings by Steam.)-The resistance at the entrance to a tube when no special bell-mouth is given consists of two parts. The head \(v^{2} \div 2 g\) is expended in giving the velocity of flow; and the head \(0.505 \frac{v^{2}}{2 g}\) in over.
coming the resistance of the mouth of the tube. Hence the whole loss of head at the entrance is \(1.505 \frac{v^{2}}{2 g}\). This resistance is equal to the resistance of a straight tube of a length equal to about 60 times its diameter.
The loss at each sharp right-angled elbow is the same as in flowing through a length of straight tube equal to about 40 times its diameter. For a globe steam stop-valve the resistance is taken to be \(11 / 2\) times that of the right-angled elbow.
Sizes of Steam-pipes for Stationary Engines.-Authorities on the steam-engine generally agree that stean-pipes supplying engines should be of such size that the mean velocity of steam in them does not exceed 6000 feet per minute, in order that the loss of pressure due to friction may not be excessive. The velocity is calculated on the assumption that the cylinder is filled at each stroke. In very long pipes, 100 feet and upward, it is well to make them larger than this rule would give, and to place a large steam receiver on the pipe near the engine, especially when the engine cuts off early in the stroke.

An article in Power, May, 1893, on proper area of supply-pipes for engines gives a table showing the practice of leading builders. To facilitate comparison, all the engines have been rated in horse-power at 40 pounds mean effective pressure. The table contains all the varieties of simple engines, from the slide-valve to the Corliss, and it appears that there is no general difference in the sizes of pipe used in the different types.

The averages selected from this table are as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ) & 3 & \% & 4 & 41/3 & 5 & 6 & 7 & 8 & 9 & \\
\hline 25 & 39 & 56 & 77 & 100 & 126 & 6 & 5 & 6 & 400 & 506 & \\
\hline Calculated,formula (1) 23 & 36 & 51 & 70 & 91 & 116 & & 206 & 278 & 366 & 463 & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Formula (1) is: 1 H.P. requires .1375 sq. in. of steam-pipe area.
Formula (2) is: Horse-power \(=6 d^{2} . \quad d=\) diam. of pipe in inches.
The factor \(.13 \% 5\) in formula (1) is thus derived: Assume that the linear velocity of steam in the pipe should not exceed 6000 feet per minute, then pipe area \(=\) cyl. area \(\times\) piston-speed \(\div 6000(a)\). Assume that the av. mean effective pressure is 40 lbs . per sq. in., then cyl. area \(\times\) piston-speed \(\times 40 \div\) \(33,000=\) horse-power \((b)\). Dividing (a) by (b) and cancelling, we have pipe area \(\div \mathrm{H} . \mathrm{P} .=.13 \pi 5 \mathrm{sq}\). in. If we use \(8000 \mathrm{ft} . \mathrm{per}^{\circ} \mathrm{min}\). as the allowable velocity, then the factor 1375 becomes .1031 ; that is, pipe area \(\div\) H.P. \(=\) .1031 , or pipe area \(\times .97=\) horse-power. This, however, gives areas of pipe smaller than are used in the most recent practice. A formula which gives results closely agreeing with practice, as shown in the above table is
\[
\text { Horse-power }=6 d^{2}, \text { or pipe diameter }=\sqrt{\frac{\text { H.P. }}{6}}=.408 \sqrt{\text { H.P. }}
\]

Diameters of Cylinders corresponding to Various Sizes of Steampipes based on Piston-speed of Engine of 600 ft. per Minute, and Allowable Mean Velocity of Steam in Pipe of 4000 , 6000, and 8000 ft. per Min. (Steam assumed to be Admitted during Full Stroke.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Diam. of pipe, & 2 & 24.3 & 3 & 319 & 4 & 41/2 & 5 & 6 \\
\hline Vel. 4000.. & 5.2 & 6.5 & 7.7 & 9.0 & 10.3 & 11.6 & 12.9 & 15.5 \\
\hline 6000 & 6.3 & 7.9 & 9.5 & 11.1 & 12.6 & 14.2 & 15.8 & 19 \\
\hline " 8000. & 7.3 & 9.1 & 10.9 & 12.8 & 14.6 & 16.4 & 18.3 & 21.8 \\
\hline Horse-power, approx & 20 & 31 & 45 & 62 & 80 & 100 & 125 & 180 \\
\hline Diam. of pipe, inches & & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline Vel. 4000. & 18.1 & 20.7 & 23.2 & 25.8 & 28.4 & 31.0 & 33.6 & 36.1 \\
\hline " 6000. & 22.1 & 25.3 & 28.5 & 31.6 & 34.8 & 37.9 & 41.1 & 44.3 \\
\hline 8000. & 25.6 & 29.2 & 32.9 & 36.5 & 40.2 & 43.8 & 47.5 & 51.1 \\
\hline Horse-power, approx & 245 & 320 & 406 & 500 & 606 & 718 & 845 & \\
\hline
\end{tabular}

Formula. Area of pipe \(=\frac{\text { Area of cylinder } \times \text { piston-speed }}{\text { mean velocity of steam in pipe }}\).
For piston-speed of 600 ft . per min. and velocity in pipe of 4000,6000 , and 8000 ft . per min. area of pipe \(=\) respectively \(.15, .10\), and \(.075 \times\) area of cylinder. Diam. of pipe \(=\) respectively \(.3873, .3162\), and \(.2739 \times\) diam. of cylinLer. Reciprocals of these figures are 2.582, 3.162, and 3.651 .

The first line in the above table may be used for proportioning exhaust-
pipes, in which a velocity not exceeding 4000 ft . per minute is advisable. The last line, approx. H.P. of engine, is based on the velocity of 6000 ft . per min. in the pipe, using the corresponding diameter of piston, and taking H.P. \(=1 / 2(\text { diam. of piston in inches })^{2}\).

Sizes of Steam-pipes for Marine Engines. - In marine-engive practice the steam-pipes are generally not as large 2 s in stationary practice for the same sizes of cylinder: Seaton gives the following rules:

Main Steam-pipes should be of such size that the mean velocity of flow does not exceed 8000 ft . per min.
In large engines, 1000 to 2000 H.P., cutting off at less than half stroke, the steam-pipe may be desigued for a mean velocity of 9000 ft ., and \(10,000 \mathrm{ft}\). for still larger engines.

In small engines and engines cutting later than half stroke, a velocity of less than 8000 ft . per minute is desirable.
Taking 8100 ft . per min. as the mean velocity, \(S\) speed of piston in feet per min., and \(D\) the diameter of the cyl.,
\[
\text { Diam. of main steam-pipe }=\sqrt{\frac{D^{2} S}{8100}}=\frac{D}{90} \sqrt{S}
\]

Stop and Throttle Valves should have a greater area of passages than the area of the main steam-pipe, on account of the friction through the circuitous passages. The shape of the passages should be designed so as to avoid abrupt changes of direction and of velocity of flow as far as possible. Area of Steam Ports and Passages =
\[
\frac{\text { Area of piston } \times \text { speed of piston in ft. per min. }}{6000}=\frac{(\text { Diam. })^{2} \times \text { speed }}{7639} .
\]

Opening of Port to Steam.-To avoid wire-drawing during admission the area of opening to steam should be such that the mean velocity of flow does not exceed \(10,000 \mathrm{ft}\). per min. To avoid excessive clearance the width of port should be as short as possible, the necessary area being obtained by length (measured at right angles to the line of travel of the valve). In practice this length is usually 0.6 to 0.8 of the diameter of the cylinder, but in long-stroke engines it may equal or even exceed the diameter.

Exhaust Passcrges and Pipes.-The area should be such that the mean velocity of the steam should not exceed 6000 ft . per min., and the area should be greater if the length of the exhaust-pipe is comparatively long. The area of passages from cylinders to receivers should be such that the velocity will not exceed 5000 ft . per min.
The following table is computed on the basis of a mean velocity of flow of 8000 ft . per min. for the main steam-pipe, 10,000 for opening to steam, and 6000 for exhaust. \(A=\) area of piston, \(D\) its diameter.

Steam and Exhaust Openings.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pistonspeed, ft. per min. & Diain. of Steam-pipe \(\div D\). & Area of Steam-pipe \(\div A\). & Diam. of Exhaust \(\div D\). & Area of Exhaust \(+A\). & Opening to Steam \(\div A\). \\
\hline 300 & 0.194 & \(0.03 \% 5\) & 0.223 & 0.0500 & 0.03 \\
\hline 400 & \(0.2 \because 4\) & 0.0500 & 0.258 & 0.0667 & 004 \\
\hline 500 & 0250 & 0.06 .5 & 0.288 & 0.0833 & 0.05 \\
\hline 600 & \(0.2 \pi 4\) & 0.0750 & 0.316 & 0.1000 & 0.06 \\
\hline r00 & 0.296 & \(0.08 \% 5\) & 0.341 & 0.116 \% & 0.02 \\
\hline 800 & 0.316 & 0.1000 & 0.365 & 0.1333 & 0.08 \\
\hline 900 & 0.335 & 0.1125 & \(0.38 \%\) & 0.1500 & 0.09 \\
\hline 1000 & 0.353 & 0.1250 & 0.400 & 0.1667 & 0.10 \\
\hline
\end{tabular}

\section*{STEEAMI RIPES.}

Bursting-tests of Copper Steam-pipes. (From Report of Chief Engineer Melville, U.S. N., for 1892.)-Some tests were made at the New York Navy Yard which show the unreliability of brazed seams in copper pipes. Each pipe was 8 in . diameter inside and \(3 \mathrm{ft} .15 / 8 \mathrm{in}\). long. Both ends were closed by ribbed heads and the pipe was subjected to a hotwater pressure, the temperature being maintained constant at \(371^{\circ} \mathrm{F}\). Threo
of the pipes were made of No. 4 sheet copper ("Stubbs" gauge) and the fourth was made of No. 3 sheet.

The following were the results, in lbs. per sq. in., of bursting-pressure:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pipe & 1 & 2 & 3 & 4 & \(4^{\prime}\) \\
\hline Actual bursti & 835 & 785 & 950 & 1225 & 127 \\
\hline Calculated & 1336 & 1336 & 1569 & 1568 & 156 \\
\hline Difference & 501 & 551 & 619 & 343 & 29 \\
\hline
\end{tabular}

The theoretical bursting-pressure of the pipes was calculated by using the figures obtained in the tests for the strength of copper sheet with a brazed joint at \(350^{\circ} \mathrm{F}\). Pipes 1 and 2 are considered as having been annealed.
The tests of specimens cut from the ruptured pipes show the injurious action of heat upon copper sheets; and that, while a white heat does not change the character of the metal, a heat of only slightly greater degree causes it to lose the fibrous nature that it has acquired in rolling, and a serious reduction in its tensile strength and ductility results.
All the brazing was done by expert workmen, and their failure to make a pipe-joint without burning the metal at some point makes it probable that, with copper of this or greater thickness, it is seldom accomplished.
That it is possible to make a joint without thus injuring the metal was proven in the cases of many of the specimens, both of those cut from the pipes and those made senaratelv, which broke with a fibrous fracture.
Rule for Thickness of Copper Steam-pipes. (U. S. Supervising Inspectors of Steam Vessels.)-Multiply the working steam-pressure in lbs. per sq. in. allowed the boiler by the diameter of the pipe in inches, then divide the product by the constant whole number 8000 , and add .0625 to the quotient; the sum will give the thickness of material required.

Example.-Let \(1 \% 5 \mathrm{lbs}\). = working steam-pressure per sq. in. allowed the boiler, 5 in. \(=\) diameter of the pipe; then \(\frac{175 \times 5}{8000}+.0625=.1718+\) inch, thickness required.
Reinforcing Steam-pipes. (Eng., Aug. 11, 1893.)-In the Italian Navy copper pipes above 8 in. diam. are reinforced by wrapping them with a close spirai of copper or Delta-metal wire. Two or three independent spirals are used for safety in case one wire breaks. They are wound at a tension of about \(11 / 2\) tons per sq. in.

Wire-wound Steam-pipes.-The system instituted by the British Admiralty of winding all steam-pipes over 8 in . in diameter with \(3 / 16-\mathrm{in}\). copper wire, thereby about doubling the bnrsting-pressure, has within recent years been adopted on many merchant steamers using high-pressure steam, says the London Engineer. The results of some of the Admiralty tests showed that a wire pipe stood just about the pressure it ought to have stood when unwired, had the copper not been injured in the brazing.
Riveted Steel Steam-pipes have recently been used for high pressures. See paper on A Method of Manufacture of Large Steam-pipes, by Chas. H. Manning, Trans. A. S. M. E., vol. Xv.
Valves in Steam-pipes. - Should a globe-valve on a steam-pipe have the steam-pressure on top or underneath the valve is a disputed question. With the steam-pressure on top, the stuffing-box around the valve-stem cannot be repacked without shutting off steam from the whole line of pipe; on the other hand, if the steam-pressure is on the bottom of the valve it all has to be sustained by the screw-thread on the valve-stem, and there is danger of stripping the thread.

A correspondent of the American Machinist, 1892, says that it is a very uncommon thing in the ordinary globe-valve to have the thread give out, but by water-hammer and merciless screwing the seat will be crushed down quite frequently. Therefore with plants where only one boiler is used he advises placing the valve with the boiler-pressure underneath it. On plants where several boilers are connected to one main steam-pipe he would reverse the position of the valve, then when one of the valves needs repacking the ralve can be closed and the pressure in the boiler whose pipe it controls can be reduced to atmospheric by lifting the safety-rive. The repacking can then be done without interfering with the operation of the other boilers of the plant.

He proposes also the following other rules for locating valves: Place valves with the stems horizontal to avoid the formation of a water-pocket. Never put the junction-valve close to the boiler if the main pipe is above the boiler, but put it on the highest point of the junction-pipe. If the other
plan is followed, the pipe fills with water whenever this boiler is stopped and the others are running, and breakage of the pipe may cause serious results. Never let a junction-pipe run into the bottom of the main pipe, but into the side or top. Always use an angle-valve where convenient, as there is more room in them. Never use a gate valve under high pressure unless a by-pass is used with it. Never open a blow-off valve on a boiler a little and then shut it; it is sure to catch the sediment and ruin the valve; throw it well open before closing. Never use a globe-valve on an indicator-pipe. For water, always use gate or angle valves or stop-cocks to obtain a clear passage. Buy if possible valves with renewable disks. Lastly, never let a man go inside a boiler to work, especially if he is to hammer on it, unless you break the joint between the boiler and the valve and put a plate of steel between the flanges.

A Failure of a Brazed Copper Steam-pipe on the British steamer Piodano was investigated by Prof. J. O. Arnold. He found that the brazing was originally sound, but that it had deteriorated by oxidation of the zinc in the brazing alloy by electrolysis, which was due to the presence of fatty acids produced by decomposition of the oil used in the engines. A full account of the investigation is given in The Engineer, April 15, 1898.
The 'steam Loop'9 is a system of piping by which water of condensation in steam-pipes is automatically returned to the boiler. In its simplest form it consists of three pipes, which are called the riser, the horizontal, and the drop-leg. When the steam-loop is used for returning to the boiler the water of condensation and entrainment from the steam-pipe through which the steam flows to the cylinder of an engine, the riser is generally attached to a separator; this riser empties at a suitable height into the horizontal, and from thence the water of condensation is led into the drop-leg, which is connected to the boiler, into which the water of condensation is fed as soon as the hydrostatic pressure in drop-leg in connection with the steam-pressure in the pipes is sufficient to overcome the boiler-pressure. The action of the device depends on the following principles: Difference of pressure may be balanced by a water column; vapors or liquids tend to flow to the point of lowest pressure; rate of flow depends on difference of pressure and mass; decrease of static pressure in a steam-pipe or chamber is proportional to rate of condensation; in a steam-current water will be carried or swept along rapidly by friction. (Illustrated in Modern Mechanism, p. \(80 \%\).)

Loss from an Uncovered Steam-pipe. (Bjorling on Pumpingengines.) -The amount of loss by condensation in a steam-pipe carried down a deep mine-shaft has been ascertained by actual practice at the Clay Cross Colliery, near Chesterfield, where there is a pipe \(\tau 1 / 2 \mathrm{in}\). internal diam.. 1100 ft. long. The loss of steam by condensation was ascertained by direct measurement of the water deposited in a receiver, and was found to be equivalent to about 1 lb . of coal per I.H.P. per hour for every 100 ft . of steam-pipe; but there is no doubt that if the pipes had been in the upcast shaft, and well covered with a good non-conducting material, the loss would have been less. (For Steam-pipe Coverings, see p. 469, ante.)

\section*{THE STEAM-BOILER.}

The Horse-power of a Steam-boiler. - The term horse power has two meanings in engineering: First, an absolute unit or measure of the rute of work, that is, of the work done in a certain definite period of time, by a source of energy, as a stean-boiler, a waterfall, a current of air or water, or by a prime mover, as a steam-engine, a water-wheel, or a windmill. The value of this unit, whenever it can be expressed in foot-pounds of energy, as in the case of steam-engines, water-wheels, and waterfalls, is 33,000 foot-pounds per minute. In the case of boilers, where the work done, the conversion of water into steam, cannot be expressed in foot-pounds of available energy, the usual value given to the term horse-power is the evap. oration of 30 lbs . of water of a temperature of \(100^{\circ} \mathrm{F}\). into steam at \(\tau 0 \mathrm{lbs}\). pressure above the atmosphere. Both of these units are arbitrary; the first, 33,000 foot-pounds per minute, first adopted by James Watt, being considered equivalent to the power exerted by a good London draught-horse, and the 30 lbs. of water evaporated per hour being considered to be the steam requirement per indicated horse-power of an average engine.
The second definition of the term horse-power is an approximate measure of the size, capacity, value, or "rating" of a boiler, engine, water-wheel, or other source or conveyer of energy, by which measure it may be described, bought and sold, advertised, etc. No definite value can be given to this measure, which varies largely with local custom or individual opinion of makers and users of machinery. The nearest approach to uniformity which can be arrived at in the term "horse-power," used in this sense, is to say that a boiler, engiue, water-wheel, or other machine, "rated" at a certain horse-power, should be capable of steadily developing that horse-power for a long period of time under ordinary conditions of use and practice, leaving to local custom, to the judgment of the buyer and seller, to written contracts of purchase and sale, or to legal decisions upon such contracts, the interpretation of what is meant by the term "ordinary conditions of use and practice." (Trans. A. S. M. E., vol. vii. p. 226.)
The committee of the A.S. M. E. on Trials of Steam-boilers in 1884 (Trans., vol. vi. p. 265) discussed the question of the horse-power of boilers as follows:
The Committee of Judges of the Centennial Exhibition, to whom the trials of competing boilers at that exhibition were intrusted, met with this same problem. and finally agreed to solve it, at least so far as the work of that committee was concerned, by the adoption of the unit, 30 lbs . of water evaporated into dry steam per hour from feed-water at \(100^{\circ} \mathrm{F}\)., and under a pressure of \(\hat{i} 0\) lbs. per square inch above the atmosphere, these conditions being considered by them to represent fairly average practice. The quantity of heat demanded to evaporate a pound of water under these conditions is 1110.2 British thermal units, or 1.1496 units of evaporation. The unit of power proposed is thus equivalent to the development of 33,305 heat-units per hour, or 34.488 units of evaporation.

Your committee, after due consideration, has determined to accept the Centennial Standard, the first above mentioned, and to recommend that in all standard trials the commercial horse-power be taken as an evaporation of 30 lbs . of water per hour from a feed-water temperature of \(100^{\circ} \mathrm{F}\). into steam at \(\tau 0 \mathrm{lbs}\). gauge pressure, which shall be considered to be equal to \(341 / 2\) units of evaporation, that is, to \(341 / 2 \mathrm{lbs}\). of water evaporated from a feed water temperature of \(21^{\circ} \mathrm{F}\). into steam at the same temperature. This standard is equal to 33.305 thermal units per hour.

It is the opinion of this committee that a boiler rated at any stated number of horse-powers should be capable of developing that power with easy firing. moderate draught, and ordinary fuel, while exhibiting good economy ; and further. that the boiler should be capable of developing at least one third more than its rated power to meet emergencies at times when maximum ecnnomy is not the most important object to be attained.

Unit of Evaporation.- It is the custom to reduce results of boilertests to the common standard of weight of water evaporated by the unit weight of the combustible portion of the fuel, the evaporation being considered to have taken place at mean atmospheric pressure, and at the temperature due that pressure, the feed-water being also assumed to have been supplied at that temperature. This is, in technical language, said to be the equivalent evaporation from and at the boiling-point at atmospheric presRire, or "from and at \(212^{\circ} \mathrm{F}\)." This unit of evaporation, or one pound of
water evaporated from and at \(212^{\circ}\), is equivalent to 965.7 British thermal units.

INeasures for Comparing the inuty of Boilers.-The measure of the efficiency of a builer is the number of pounds of water evaporated per pound of combustible, the evaporation being reduced to the standard of "from and at \(212^{\circ}\);" that is, the equivalent evaporation from feed-water at a temperature of \(212^{\circ} \mathrm{F}\). into stean at the same temperature.

The measure of the capacity of a boiler is the amount of "boiler horsepower" developed, a horse-power being defined as the evaporation of 30 lbs . of water per hour from \(100^{\circ} \mathrm{F}\). into steam at \(\% \mathrm{lbs}\). pressure, or \(341 / 2 \mathrm{lbs}\). per hour from and at \(212^{\circ}\).

The measure of relative rapidity of steaming of boilers is the number of pounds of water evaporated per hour per square foot of water-heating surface.

The measure of relative rapidity of combustion of fuel in boiler-furnaces is the number of pounds of coal burned per hour per square foot of gratesurface.

\section*{STEAIM-HOLLELR PROPORTYONS.}

\section*{Proportions of Grate and Heating Surface required for} a given Horse-power.-The term horse-power here means capacity to evaporate 30 lbs . of "ater from \(100^{\circ} \mathrm{F}\)., temperature of feed-water, to steam of \(\% \mathrm{lbs} .\), gauge-pressure \(=34.5 \mathrm{lbs}\). from and at \(212^{\circ} \mathrm{F}\).

Average proportions for maximum economy for land boilers fired with good anthracite coal:


The rate of evaporation is most conveniently expressed in pounds evaporated from and at \(21: 2^{\circ} \mathrm{per} \mathrm{sq}\). ft. of water-heating surface per hour, and the rate of combustion in pounds of coal per sq. ft . of grate-surface per hour.

Heating-surface. -For maximum economy with any kind of fuel a boiler should be proportioned so that at least one square foot of heatingsurface should be given for every 3 lbs . of water to be evaporated from and at \(212^{\circ} \mathrm{F}\). per hour. Still more liberal proportions are required if a portion of the heating-surface has its efficiency reduced by: 1. Tendency of the heated gases to short-circuit, that is, to select passages of least resistance and flow through them with high velocity, to the neglect of cther passages. 2. Deposition of soot from smoky fuel. 3. Incrustation. If the heating-surfaces are clean, and the heated gases pass over it uuiformly, little if any increase in economy can be obtained by increasing the heating-surface beyond the proportion of 1 sq . ft . to every 3 lbs . of water to be evaporated, and with all conditions favorable but little decrease of economy will take place if the proportion is 1 sq . ft. to every 4 lbs . evaporated; but in order to provide for driving of the boiler beyond its rated capacity, and for possible decrease of efficiency due to the callses above named, it is better to adopt 1 sq. ft. to \(3 \mathrm{l} h \mathrm{~s}\). evaporation per hour as the minimum standard proportion.

Where economy may be sacrificed to capacity, as where fuel is very cheap, it is customary to proportion the heating-surface much less liberally. The following table shows approxinately the relative results that may be expected with different rates of evaporation, with anthracite coal.
 \(\begin{array}{llllllllllll}2 & 2.5 & 3 & 3.5 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\) Sq. ft. heating-surface required per horse-power:
\begin{tabular}{lllllllllll}
17.3 & 13.8 & 11.5 & 9.8 & 8.6 & 6.8 & 5.8 & 4.9 & 4.3 & 3.8 & 3.5
\end{tabular} Ratio of heating to grate surface if \(1 / 3 \mathrm{sq}\). ft. of \(G\). S. is required per H.P.: \(\begin{array}{lllllllllll}52 & 41.4 & 34.5 & 29.4 & 25.8 & 20.4 & 17.4 & 13.7 & 12.9 & 11.4 & 10.5\end{array}\)
Probable relative economy:
\begin{tabular}{lllllllllll}
100 & 100 & 100 & 95 & 90 & 85 & 80 & \(\% 5\) & 70 & 65 & 60
\end{tabular}

Probable temperature of chimney gases, degrees F.:


The relative economy will vary not only with the amount of heating-surface per horse-power, but with the efficiency of that heating-surface as regards its capacity for transfer of heat from the heated gases to the water, which will depend on its freedom from soot and incrustation, and upon the circulation of the water and the heated gases.
With bituminous coal the efficiency will largely depend upon the thoroughness with which the combustion is effected in the furnace.
The efficiency with any kind of fuel will greatly depend upon the amount of air supplied to the furnace in excess of that required to support combustion. With strong draught and thin fires this excess may be very great, causing a serious loss of economy.
Measurement of Heating-surface. - Authorities are not agreed as to the methods of measuring the heating-surface of steam-boilers. The usual rule is to consider as heating-surface all the surfaces that are surrounded by water on one side and by flame or heated gases on the other, but there is a difference of opinion as to whether tubular heating-surface should be figured from the inside or from the outside diameter. Some writers say, measure the heating-surface always on the smaller side-the fire side of the tube in a horizontal return tubular boiler and the water side in a water-tube boiler. Others would deduct from the heating-surface thus measured an allowance for portions supposed to be ineffective on account of being covered by dust, or being out of the direct current of the gases.
It has hitherto been the common practice of boiler-makers to consider all surfaces as heating-surfaces which transmit heat from the flame or gases to the water, making no allowance for different degrees of effectiveness; also, to use the external instead of the internal diameter of tubes, for greater convenience in calculation, the external diameter of boiler-tubes usnally being made in even iuches or half inches. This method, however, is inaccurate, for the true heating-surface of a tube is the side exposed to the hot gases, the inuer surface in a fire-tube boiler and the outer surface in a water-tube boiler. The resistance to the passage of heat from the hot gases on one side of a tube or plate to the water on the other consists almost entirely of the resistance to the passage of the heat from the gases into the metal, the resistance of the metal itself and that of the wetted surface being practically nothing. See paper by C. W. Baker, Trans. A. S. M. E., vol. xix.

RuLE for finding the heating-surface of vertical tubular boilers: Multiply the circumference of the fire-box (in inches) by its height above the grate ; multiply the combined circumference of all the tubes by their length, and in these two products ald the area of the lower tube-sheet; from this sum subtract the area of all the tubes, and divide by 144 : the quotient is the number of square feet of heating-surface.
Ruse for finsting the heating-surface of horizontal tubular boilers: Take the dimensions in inches. Multiply two thirds of the circumference of the Shell by its length: multiply the sum of the circumferences of all the tubes b) their common length; to the sum of these products add two thirds of the area of both tube-sheets; from this sum subtract twice the combined area of all the tube-; divide the remainder by 144 to obtain the result in square feet.
Rule for finding the square feet of heating-surface in tubes: Multiply the number of tubes by the diameter of a tube in inches, by its length in feet, and by 2618 .
Horse-power, Builder's Rating. Heating-surface per Horse-power. --It is a general practice among builders to furnish about \(1:\) square feet of heating-surface per horse-power, but as the practice is not uniform, bills and contracts should always specify the amount of heatingsurface to be firnisherl. Not less than one third square foot of grate-surface should be furnished per horsè-power.
Engineering News, July 5, 1894, gives the following rongh-and-ready rule for finding approximately the commercial horse-power of tubular or waterrube boilers: Number of tubes \(\times\) their length in feet \(\times\) their nominal diameter in inches \(\div 50=n L d \div 50\). The number of square feet of surface in the tubes is \(\frac{n \pi d L}{12}=\frac{n L d}{3.8}\), and the horse-power at 12 square feet of surface of tubes per horse-power, not counting the shell, \(=n L d \div 45.8\). If 15 square feet of surface of tubes be taken, it is \(n L d \div 57.3\). Making allowance for the heating-surface in the shell will reduce the divisor to about 50 .

Horse-power of Marine and Locomotive Boilers. -The term horse-power is not generally used in connection with boilers in marine practice, or with locomotives. The boilers are designed to suit the engines, and are rated by extent of grate and heating-surface only.

Grate-surface.-The amount of grate-surface required per horse power. and the proper ratio of heating-surface to grate-surface are extremely variable, depending chiefly upon the character of the coal and upon the rate of dranght. With good coal, low in ash, approximately equal results may be obtained with large grate-surface and light dranght and with small grate-surface and strong draught, the total amount of coal burned per hour being the same in both cases. With good bituminous coal, like Pittsburgh, low in ash, the best results apparently are obtained with strong draught and high rates of combustion, provided the grate-surfaces are cut down so that the total coal burned per hour is not too great for the capacity of the heating-surface to absorb the heat produced.
With coals high in ash, especially if the ash is easily fusible, tending to choke the grates, large grate-surface and a slow rate of combustion are required, uuless means, such as shaking grates, are provided to get rid of the ash as fast as it is made.
The amount of grate-surface required per horse-power under various conditions may be estimated from the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{9}{|l|}{Pounds of Coal burned per square foot of Grate per hour.} \\
\hline & & & 8 & 10 & 12 & 15 & 20 & 25 & 30 & 35 & 40 \\
\hline & & & & & Sq. F & t. G & rate & per & H. P. & & \\
\hline Good coal and boiler, & & 3.45
3.83 & & & & .23] & & & & & \\
\hline Fair coal or & 8.61 & 4.83 & . 48 & . 38 & . 33 & . 26 & . 19 & & & . 11 & \\
\hline boiler, & \(\left\{\begin{array}{r}8 \\ \sim \\ 8\end{array}\right.\) & 4.31 & . 54 & . 43 & . 36 & \({ }^{.26}\) & . 22 & & & \({ }^{.13}\) & . 11 \\
\hline & 6.9 & & \({ }^{\text {. } 62}\) & . 49 & . 41 & . 33 & . 24 & & . 17 & . 14 & . 12 \\
\hline boiler, & \(\left\{\begin{array}{l}6.9 \\ 5\end{array}\right.\) & 5.75 & . 72 & . 58 & . 48 & . 38 & . 29 & & & . 15 & . 13 \\
\hline Lignite and & 5 & 6.9 & . 86 & . 69 & . 58 & . 46 & . 29 & & . 219 & 22 & . 17 \\
\hline poor boiler, & ) & 10. & 1.25 & 1.00 & . 83 & 67 & . 50 & . 40 & 33 & 29 & 25 \\
\hline
\end{tabular}

In designing a boiler for a given set of conditions, the grate-surface should be made as liberal as possible, say sufficient for a rate of combustion of 10 lbs. per square foot of grate for anthracite, and 15 lbs. per square foot for bituminous coal, and in practice a portion of the grate-surface may be bricked over if it is found that the draught, fuel, or other conditions render
it advisable.

\section*{Proportions of Areas of Flues and other Gas-passages. ratio to the urealy given making the area of gas-passages bear a certain} tubular boilers is to me grate-surface; thus a common rule for horizontal surface, the flue area \(1 / 8\), and the orer the bridge wall \(1 / 7\) of the grate-
For average conditions with the chimney area \(1 / 9\). rate of combustion of 12 lbs . coal per square coal and moderate draught, say a of heating to grate surface of 30 to 1 , this root of grate per hour, and a ratio dent that if the draught were inc 1, this rule is as good as any, but it is eviof 24 lbs ., requiring the grate-surface to be cut down to a ratio of combustion areas of gas-passages should not be reduced in proportion. The amount of coal burned per hour being the same under the changed conditions, and there being no reason why the gases should travel at a higher velocity, the actual areas of the passages should remain as before, but the ratio of the area to the grate-surface would in that case be doubled.
Mr. Barrus states that the highest efficiency with anthracite coal is obtained when the tube area is \(1 / 9\) to \(1 / 10\) of the grate-surface, and with bituminous coal when it is \(1 / 6\) to \(1 / 7\), for the conditions of medium rates of combustion, such as 10 to 12 lbs . per square foot of grate per hour, and 12 square feet of heating-surface allowed to the horse-power.
so lessen the capacity of made large enough not to choike the draught, and select the passares of least resistance and in large the gases are apt to velocity and high temperature.
This condition is very commonly found in horizontal tubular boilers where
the gases go chiefly through the upper rows of tubes; sometimes also in vertical tubular boilers, where the gases are apt to pass most rapidly through the tubes nearest to the centre.
Air-passages through Grate-bars.-The usual practice is, airopening \(=30 \%\) to \(50 \%\) of area of the grate; the larger the better, to avoid stoppage of the air-supply by clinker; but with coal free from clinker much smaller air-space may be used without detriment. See paper by F. A. Scheffler, Trans. A. S. M. E., vol. xv. p. 503.

\section*{PERFORIMANCE OF BOILERS.}

The performance of a steam-boiler comprises both its capacity for generating steam and its economy of fuel. Capacity depends upon size, both of grate-surface and of heating-surface, upon the kind of coal burned, upon the draft, and also upon the economy. Econemy of fuel depends upon the completeness with which the coal is burned in the furnace, on the proper regulation of the air-supply to the amount of coal burned, and upon the thoroughness with which the boiler absorbs the heat generated in the furnace. The absorption of heat depends on the extent of heating-surface in relation to the amount of coal burned or of water evaporated, upon the arrangement of the gas-passages, and upon the cleanness of the surfaces. The capacity of a boiler may increase with increase of economy when this is due to more thorough combustion of the coal or to better regulation of the air-supply, or it may increase at the expense of economy when the increased capacity is due to overdriving, causing an increased loss of heat in the chimney gases. The relation of capacity to economy is therefore a complex one, depending on many variable conditions.
Many attempts have been made to construct a formula expressing the relation between capacity, rate of driving, or evaporation per square foot of heating-surface, to the economy, or evaporation per pound of combustible, but none of them can be cousidered satisfactory, since they make the economy depend only on the rate of driving (a few so-called "constants," however, being introduced in some of them for different classes of boilers, kinds of fuel, or kind of draft), and fail to take into consideration the numerous other conditions upon which economy depends. Such formulæ are Raukine's, Clark's, Emery's, Isherwood's, Carpenter's, and Hale's. A discussion of them all may be found in Mr. R. S. Hale's paper on "Efficiency of Boiler Heating Surface," in Trans. A. S. M. E., vol. xviii. p. 328. Mr. Hale's formula takes into account the effect of radiation, which reduces the economy considerably when the rate of driving is less than 3 lbs. per square foot of hrating-surface per hour.
Selecting the highest results obtained at different rates of driving obtained with anthracite coal in the Centennial tests (see p. 685), and the highest results with anthracite reported by Mr. Barrus in bis book on Boiler Tests, the author has piotted two curves showing the maximum results which may be expected with anthracite coal, the first under exceptional conditions such as obtained in the Centennial tests, and the second under the best conditions of ordinary practice. (Trans. A. S. M. E., xviii. 354). From these curves the following figures are obtained.

Lbs. water evaporated from and at \(212^{\circ}\) per sq. ft . heating-surface per hour:
\[
\begin{array}{llllllllllll}
1.6 & 1.7 & 2 & 2.6 & 3 & 3.5 & 4 & 4.5 & 5 & 6 & 7 & 8
\end{array}
\]

Lbs. water evaporated from and at \(212^{\circ}\) per lb . combustible:
Centennial, \(11.8 \quad 11.9 \begin{array}{llllllllll}12.0 & 12.1 & 12.05 & 12 & 11.85 & 11 . \% & 11.5 & 10 & 85 & 9.8 \\ 8.5\end{array}\)
\(\begin{array}{lllllllllllll}\text { Barrus. } & 11.4 & 11.5 & 11.55 & 11.6 & 11.6 & 11.5 & 11.2 & 10.9 & 10.6 & 9.9 & 9.2 & 8.5\end{array}\) \(\begin{array}{lllllllllllll}\text { Avg. Cent'l } & \text {... } & \text {.... } & 12.0 & 11.6 & 11.2 & 10.8 & 10.4 & 10.0 & 9.6 & 8.8 & 8.0 & 7.2\end{array}\)
The figures in the last line are taken from a straight line drawn as nearly as possible through the average of the plotting of all the Centennial tests. The poorest results are far below these figures. It is evident that no formula can be constructed that will express the relation of economy to rate of driving as well as do the three lines of figures given above.
For semi-bituminous and bituminous coals the relation of economy to the rate of driving no doubt follows the same general law that it does with anthracite, i.e., that beyond a rate of evaporation of 3 or 4 lbs . per sq. ft. of heating-surface per hour there is a decrease of economy, but the figures obtained in different tests will show a wider range between maximum and average results on account of the fact that it is more difficult with bituminous than with anthracite coal to secure complete combustion in the furnace.

The amount of the decrease in economy due to driving at rates exceeding 4 lbs . of water evaporated per square foot of heating-surface per hour differs greatly with different boilers, and with the same boiler it may differ with different settings and with different coal. The arrangement and size of the gas-passages seem to have an important effect upon the relation of economy to rate of driving. There is a large field for future research to determine the causes which influence this relation.

\section*{General Conditions which secure Economy of Steam:} boilers.-In general, the highest results are produced where the temperasure of the escaping gases is the least. An examination of this question is made by Mr. G. H. Barrus in his book on "Boiler Tests," by selecting those tests made by him, six in number, in which the temperature exceeds the average, that is, \(3 \tau^{\circ} \mathrm{F}\)., and comparing with five tests in which the temperature is less than \(3 \pi 5^{\circ}\). The boilers are all of the common horizontal type, and all use anthracite coal of either egg or broken size. The average flue temperatures in the two series was \(444^{\circ}\) and \(343^{\circ}\) respectively, and the difference was \(101^{\circ}\). The average evaporations are 10.40 lbs . and 11.02 lbs . respectively, and the lowest result corresponds to the case of the highest flue temperature. In these tests it appears, therefore, that a reduction of \(101^{\circ}\) in the temperature of the waste gases secured an increase in the evaporation of \(6 \%\). This result corresponds quite closely to the effect of lowering the temperature of the gases by means of a flue-heater where a reduction of \(10 \tau^{\circ}\) was attended by an iucrease of \(\% \%\) in the evaporation per pound of coal. A similar comparison was made on horizontal tubular boilers using Cumberland coal. The average flue temperature in four tests is \(450^{\circ}\) and the average evaporation is 11.34 lbs . Six boilers have temperatures below \(415^{\circ}\) the werage of which is \(383^{\circ}\), and these give an average evaporation of \(11.75^{\circ}\) higher by about \(4 \%\).
The wasteful effect of a high flue temperature is exhibited by other boilers than those of the horizontal tubular class. This source of waste was shown to be the main cause of the low economy produced in those vertical boilers which are deficient in heating-surface.
Relation between the Heriting-surface and Grate-surface to obtain the Highest Efficiency-A comparison of three tests of horizontal tubular boilers with anthracite coal, the ratio of heativg-surface to grate-surface being 36.4 to 1 , with three other tests of similar boilers, in which the ratio was 48 to 1 , showed practically no difference in the results. The evidence shows that a ratio of 36 to 1 provides a sufficient quantity of heating-surface to secure the full efficiency of anthracite coal where the rate of combustion is not more than 12 lbs . per sq. ft . of grate per hour.
In tests with bituminous coal an increase in the ratio from 36.8 to 42.8 secured a small improvement in the evaporation per pound of coal, and a high temperature of the escaping gases indicated that a still further increase would be beneficial. Among the high results produced on common horizontal tubular boilers using bituminous coal, the highest occurs where the ratio is 53.1 to 1. This briler gave an evaporation of 12.47 lbs . A double-deck boiler furnishes another example of high performance, an evaporation of 12.42 lbs. having been obtained with bituminous coal, and in this case the ratio is 65 to 1 . These examples indicate that a much larger amount of beatiug-surface is required for obtaining the full efficiency of bituminous coal thian for boilers using anthracite coal. The temperature of the escaping gases in the same boiler is invariably higher when bituminous coal is used than when anthracite coal is used. The deposit of soot on the surfaces when bituminous coal is used interferes with the full efficiency of the surface, and an increased area is demanded as an offset to the loss which this deposit occasions. It would seem, then, that if a ratio of 36 to 1 is sufficient for anthracite coal, from 45 to 50 should be provided when bituminous coal is burned, especially in cases where the rate of combustion is above 10 or 12 lbs. per sq.ft. of grate per hour.
The number of tubes controls the ratio between the area of grate-surface and area of tube opening. A certain minimum amount of tube-opening is required for efficient work.
The best results obtained with antliracite coal in the common horizontal boiler are in cases where the ratio of area of grate-surface to area of tubeopening is larger that 9 to The conclusion is drawn that the highest efficiency with anthracite coal is obtained when the tube-opening is from \(1 / 9\) to \(1 / 10\) of the grate-surface.

When bituminous coal is burned the requirements appear to be different. The effect of a large tube-opening does not seem to make the extra tubes inefficient when bituminous coal is used. The highest result on any boiler of the horizontal tubular class, fired with bituminous coal, was obtained where the tube-opening was the largest. This gave an evaporation of 12.47 lbs ., the 12.01 lbs ., were obtained when the average ratio was 7.1 to 1 . Without going to extremes, the ratio to be desired when bituminous coal is used is that which gives a tube-opening having an area of from \(1 / 6\) to \(1 / 7\) of the grat surface. This applies to medium rates of combustion of, say, 10 to 12 lbs. per sq. ft. of grate per hour, 12 sq . ft. of water-heating surface being allowed per horse-power.
A comparison of results obtained from different types of boilers leads to the general conclusion that the economy with which different types of boilers operate depends much more upon their proportions and the conditions under which they work, than upon their type; and, moreover, that when these proportions are suitably carried out, and when the conditions are favorable, the various types of boilers give substantially the same ecunomic result.
Efficiency of a Steam-boiler.-The efficiency of a boiler is the percentage of the total heat generated by the combustion of the fuel which is utilized in heating the water and in raising steam. With anthracite coal the heating-value of the combustible portion is very nearly 14,500 B. T. U. per lb., equal to an evaporation from and at \(212^{\circ}\) of \(14,500 \div 966\) \(=15 \mathrm{lbs}\). of water. A boiler which when tested with anthracite coal shows an evaporation of 12 lbs . of water per lb. of combustible, has an efficiency of \(12 \div 15=80 \%\), a figure which is approximated, but scarcely ever quite reached, in the best practice. With bituminous coal it is necessary to have efficiency of the boiler using it caner made by a coal calorimeter before the be made from the chemical analysis determined, but a close estimate may
The difference between the efficiency obtained by test and \(100 \%\) is the sum of the numerous wastes of heat. the chief of which is the necessary loss due to the temperature of the chimney-gases. If we have an analysis and a calorimetric determination of the heating-power of the coal (properly sampled), and an average analysis of the chimney-gases, the amounts of the several losses may be determined with approximate accuracy by the method described below.
Data given:
1. Analysis of the Coal.

Cumberland Semi-bituminous.
\begin{tabular}{|c|c|}
\hline Carbon & 80.55 \\
\hline Hydrogen & 4.50 \\
\hline Oxygen & 2.70 \\
\hline Nitrogen & 1.08 \\
\hline Moisture. & 2.92 \\
\hline Ash.... & 8.25 \\
\hline
\end{tabular}
2. Analysis of the Dry Ceimney-
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & C. & 0. & N. \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \mathrm{CO}_{2} \\
& \mathrm{CO} \\
& \mathrm{O} \\
& \mathrm{~N}
\end{aligned}
\]} & \(=13.6\) & = & 3.71 & 9.89 & \\
\hline & \(=.2\) & = & . 09 & . 11 & ..... \\
\hline & \(=11.2\) & = & .... & 11.20 & \\
\hline & \(=75.0\) & = & .... & ..... & 0 \\
\hline & 100.0 & & 3.80 & 21.20 & 75.00 \\
\hline
\end{tabular}

\subsection*{100.00}

Heating-value of the coal by Dulong's formula, 14,243 heat-units.
The gases being collected over water, the moisture in them is not deter. mined.
3. Ash and refuse as determined by boiler-test, 10.25 , or \(2 \%\) more than that found by analysis, the difference representing carbon in the ashes obtained in the boiler-test.
4. Temperature of external atmosphere, \(60^{\circ} \mathrm{F}\).
5. Relative humidity of air, \(60 \%\), corresponding (see air tables) to .007 lb . of vapor in each lb. of air.
6. Temperature of chimney-gases, \(560^{\circ} \mathrm{F}\).

Calculated results:
The carbou in the chimney-gases being \(3.8 \%\) of their weight, the total weight of dry gases per lb. of carbon burned is \(100 \div 3.8=26.32 \mathrm{lbs}\). Since the carbon burned is \(80.55-2=78.55 \%\) of the weight of the coal, the weight of the dry gases per lb . of coal is \(26.32 \times 78.55 \div 100=20.67 \mathrm{lbs}\).
Each pound of coal furnishes to the dry chimney-gases.r855 ib. C, .0108 N , and \(\left(2.70-\frac{4.50}{8}\right) \div 100=.0214 \mathrm{lb} .0\); a total of .8177 , say .82 lb . This sub-
tracted from 20.67 lbs. leaves 19.85 lbs . as the quantity of dry air (not including moisture) which enters the furnace per pound of coal, not counting the air required to burn the available hydrogen, that is, the hydrogen minus one eighth of the oxygen chemically combined in the coal. Each lb. of coal bustion. contained .045 lb . H , which requires \(.045 \times 8=.36 \mathrm{lb}\). O for its comcome from the , 027 lb . is furnished by the coal itself, leaving . 333 lb . to containing \(23 \%\) by weight of oxygen) is \(.333 \div .23=1.45 \mathrm{lb}\), whis oxygen (air the 19.85 lbs . already found gives 21.30 lbs as \(-23=1.45 \mathrm{lb}\)., which added to plied to the furnace per lb. of coal burned.
The air carried in as vapor is .0071 lb for
\(=0.15 \mathrm{lb}\). for each lb. of coal. Each for each lb. of dry air, or \(21.3 \times .0071\) ture, which was evaporated and carried into coal contained .029 lb . of moisof H per lb . of coal when burned formed the chimney-gases. The .045 lb . From the analysis of the chimney-gas it appears that lb. of \(\mathrm{H}_{2} \mathrm{O}\).
the carbon in the coal was burned to CO instepears that \(.09 \div 3.80=2.3 i \%\) of We now have the data for calculating the read of to \(\mathrm{CO}_{2}\).
for each pound of coal burned:

ined directly by radiation from the boiler and furnace is not easily determined directly, especially if the boiler is enclosed in brickwork, or is prolost by radiation by lost which is not otherwisence, that is, to charge radiation with all the heat
One method of determining the for.
of the grate-surface and bing the loss by radiation is to block off a portion fire with just enough drauph a small fire on the remainder, and drive this heat lost by radiation without allowing any steam to be discharged, weigh the ing the coal consumed for this purpose during a test of several hou's' weigh. tion.
Estimates of radiation by difference are apt to be greatly in error, as in this difference are accumulated all the errors of the analyses of the coal and of the gases. An average value of the heat lost by radiation from a boiler set in brickwork is about 4 per cent. When several boilers are in a battery and enclosed in a boiler-house the loss by radiation may be very much less, since much of the heat radiated from the boiler is returned to it in the air supplied to the furnace, which is taken from the boiler-room.
An important source of error in making a "heat balance" such as the due to the niven, especially when highly bituminous coal is used, may be the coal immediatebustion of part of the hydrocarbon gases distilled from be reduced below the point of ignition the temperature of the furnace may gen which escapes burning is equivalent to a loss of heat in the furnace of 62,500 heat-units.

In analyzing the chimney gases by the usual method the percentages of the constituent gases are obtained by volume instead of by weight. To reduce percentages by volume to percentages by weight, multiply the perand divide each product by gas by its specific gravity as compared with air, and divide each product by the sum of the products.

The pounds of air required to burn a pound of carbon may be obtained directly from the analysis by volume by the following formula:
\(\left.\begin{array}{l}\text { Lbs. of air required to burn } \\ \text { one pound of carbon }\end{array}\right\}=\frac{4}{3}\left\{\frac{2\left(\mathrm{CO}_{2}+\mathrm{O}\right)+\mathrm{CO}}{\mathrm{CO}_{2}+\mathrm{CO}}\right\}+0.23\);
In which \(\mathrm{O}, \mathrm{CO}_{2}\), and CO are the per cents, by volume, of the several constituents of the flue gases.
\(\left.\begin{array}{l}\text { Lbs. of air per pound } \\ \text { of coal }\end{array}\right\}=\left\{\begin{array}{c}\text { Lbs. of air per pound } \\ \text { of carbon }\end{array}\right\} \times\left\{\begin{array}{c}\text { Per cent of carbon } \\ \text { in coal. }\end{array}\right.\)
To reduce to volume at temperature of \(32^{\circ} \mathrm{F}\). make use of the formula \(V_{0}=12.387 \times \mathrm{lbs}\). of air per pound of coal.

\section*{TESTS OF STEAM-BOHLERS.}

Boiler-tests at the Centennial Exhibition, Philadel-
phia, \(18 \% 6\). - (See Reports and Awards Group XX, International Exhibition, Phila., 1876; also, Clark on the Steam-engine, vol. i, page 253.)

Competitive tests were made of fourteen boilers, using good anthracite coal, one boiler, the Galloway, being tested with both anthracite and semibituminous coal. Two tests were made with each boiler: one called the capacity trial, to determine the economy and capacity at a rapid rate of driving; and the other called the economy trial, to determine the economy when driven at a rate supposed to be near that of maximum economy and rated capacity. The following table gives the principal results obtained in the economy trial, together with the capacity and economy figures of the capacity trial for comparison.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{Economy Tests.} & \multicolumn{2}{|l|}{Capacity Tests.} \\
\hline \[
\begin{aligned}
& \text { Name } \\
& \text { of } \\
& \text { Boiler. }
\end{aligned}
\] &  &  &  &  &  &  &  &  &  &  &  \\
\hline Root & 34.6 & & \[
\left\lvert\, \begin{aligned}
& \text { p.ct } \\
& 10.4
\end{aligned}\right.
\] & \[
\begin{aligned}
& t \\
& \hline 1 \mathrm{lbs}, \\
& 2.25 \\
& \hline
\end{aligned}
\] & \begin{tabular}{|l}
12.094 \\
12.
\end{tabular} & \[
\left|\begin{array}{c}
\text { deg } \\
393
\end{array}\right|
\] & \% & \({ }_{\text {deg }}^{\text {de }}\) & H.P. & \[
\overline{\mathrm{H.P}} \mid
\] & \[
\begin{array}{|c|c}
\hline \mathrm{lbs} . \\
60.441
\end{array}
\] \\
\hline Firm & 64.3 & 12.0 & 10.4 & 1.68 & 11.988 & 415 & & 32.6 & 57.8 & 68.4 & 11.064 \\
\hline Lowe & 30.6 & 6.8 & 11.3 & 1.87 & 11.923 & 333 & & 9.4 & 47.0 & 69.3 & 11.163 \\
\hline Smith & 45.8 & 13.1 & 11.1 & 2.42 & 11.906 & 411 & 1.3 & & 99.8 & 125.0 & 11.925 \\
\hline Bahcock \& Wilcox & 37.7 & 10.0 & 11.0 & 2.43 & 11.8\%2 & 296 & 2.7 & & 135.6 & 186.6 & 10.330 \\
\hline Galloway. & 23.7 & 9.6 & 11.1 & 3.63 & 11583 & 303 & & 1.4 & 103.3 & 133.81 & 11.216 \\
\hline Do. semi-bit. coal & 23.7 & 7.9 & 8.8 & 3.20 & 12.125 & 325 & 0.3 & & 90.9 & 125.11 & 11.609 \\
\hline Audrews & 15.6 & 8.0 & 10.3 & 2.32 & 11.039 & 420 & & 71.7 & 42.6 & 58.6 & 9.745 \\
\hline Harrison & 27.3 & 12.4 & 8.5 & 2.75 & 10.930 & 517 & 0.9 & & 82.4 & 108.4 & 9.889 \\
\hline Wiegand. & 30.7 & 12.3 & & 3.30 & 10.834 & 524 & & 20.5 & 147.5 & 162.8 & 9.145 \\
\hline Anderson & 17.5 & 9.7 & 9.3 & 2.64 & 10.618 & 417 & & 15.7 & 98.0 & 132.8 & 9.568 \\
\hline Kelly & 20.9 & 10.8 & 9.0 & 3.82 & 10.312 & & 5.6 & & 81.0 & 99.9 & 3.397 \\
\hline Exeter & 33.5 & 9.3 & 11.4 & 1.38 & 10.041 & 430 & 4.2 & & 72.1 & 108.0 & 9.974 \\
\hline Pierce & 14.0 & 8.0 & 11.0 & 4.44 & 10.021 & 374 & 5.2 & & 51.7 & 67.8 & 9.865 \\
\hline Rogers \& Black & 19.0 & 8.6 & 9.9 & 3.43 & 9.613 & 572 & 2.1 & & 45.7 & 67.2 & 9.429 \\
\hline Averages & & & & 2.7ヶ & 11.123 & & & & 85.01 & 110.81 & 0.2 \\
\hline
\end{tabular}

The comparison of the economy and capacity trials shows that an a rerage increase in capacity of 30 per cent was attended by a decrease in economy of 8 per cent, but the relation of economy to rate of driving varied greatly in the different boilers. In the Kelly boiler an increase in capacity of 22 per cent was attended by a decrease in economy of over 18 per cent, while the Smith boiler with an increase of 25 per cent in capacity showed a slight increase in economy.

One of the most important lessons gained from the above tests is that there is no necessary relation between the type of a boiler and economy. Of the five boilers that gave the best results, the total range of variation between the highest and lowest of the five being only \(2.3 \%\), three were watertube boilers, one was a horizontal tubular boiler, and the fifth was a combination of the two types. The next boiler on the list, the Galloway, was an internally fired boiler, all of the others being externally fired. The following is a brief description of the principal constructive features of the fourteen
boilers:
Root.

\(\left\{\begin{array}{l}4 \text {-in. water-tubes, inclined } 20^{\circ}\end{array}\right.\) to horizontal; reversed draught.
Firmenich .............. 3-in. water-tubes, nearly vertical; reversed draught.
Lowe. Cylindrical shell, multitubular flue.
Smith
\{ Cylindrical shell, multitubular flue-water-tubes in side flues.
 a
Galloway...... ....... Cylindrical shell, furnace-tubes and water-tubes.
Andrews.
Square fire-box and double return multitubular flues.
Harrison.............. \(\{8\) slabs of cast-iron spheres, 8 in. in diameter; reversed draught.
\(\{4\)-in. water-tubes, vertical, with internal circulating tubes.
3-in. flue-tubes, nearly horizontal; return circulation.
\(\{3\)-in. water-tubes, slightly inclined; each divided by internal diaphragm to promote circulation.
27 hollow rectangular cast-iron slabs.
Rotating horizontal cylinder, with flue-tubes.
Vertical cylindrical boiler, with external water-tubes.
Tests of Tabulous Boilers. -The following tables are given by S. H. Leonard, Asst. Engr. U. S. N., in Jour. Am. Soc. Naval Engrs. 1890. The tests were made at different times by boards of U. S. Naval Engineers, except the test of the locomotive-torpedo boiler, which was made in England.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Type.} & \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Evaporation from and at \(212^{\circ} \mathrm{F}\).} & \multicolumn{4}{|c|}{Weights, lbs.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{(\%)} \\
\hline \[
\dot{8}
\] & & &  &  &  &  &  &  &  & & & \\
\hline 1 & Bell & 12.8 & 10.42 & 5.2 & 6.4 & \[
\left\lvert\, \begin{aligned}
& \mathrm{E} \\
& \mathrm{~S} \\
& 42,670
\end{aligned}\right.
\] & \[
204
\] & 53.2 & 10.1 & Nat'l. & 111 & B. \\
\hline & H & \(\left\{\begin{array}{r}9.3 \\ 25\end{array}\right.\) & 10.23 & 3.1 & 9.1 & S & 96 & 14 & 4.8 & Jet. & 120 & A. \\
\hline & H & - 25.8 & 8.68 & 8 & 23.8 & S 3,050 & 36 & & 1.8 & Jet. & 195 & A. \\
\hline & Tow & \{ 4.3 & 13.4 & 2.7 & 10 & E 1,380 & 172 & 21.8 & 8.1 & Nat'l. & 148 & A. \\
\hline & & \(\left\{\begin{array}{r}24.5 \\ 7.9\end{array}\right.\) & 6.77
10.77 & 8.2 & 30.4
5.8
5 & S 1,640 & & 21.8 & 2.6
7.7 & Nat'l. & 152 & A. \\
\hline & War & \(\{15.5\) & 10.01 & 3.2 & 11 & \(\underset{\mathrm{S}}{\mathrm{E}}\) 1,682 & 8 & 13.2 & 4.07 & Jet. & 17 & \\
\hline & & \(\left\{\begin{array}{l}15.5 \\ 62.5\end{array}\right.\) & 7.01 & 10 & 34.2 & S 1,930 & 26 & & 1.3 & Jet. & 161 & \\
\hline & & ) 24.8 & 9.931 & 8.6 & 11 & E 18,900 & 120 & & 4.7 & 2.08 & 77 & A. \\
\hline & & \(\{38\) & 9.06 & 12.8 & 16.3 & S 30,000 & 80 & & 3.1 & 4.01 & 78 & A. \\
\hline 6 & Locom'tive & 9 98.3 & & 17.1 & 30.5 & & 47.7 & & 1.8 & 3.13 & 125 & B. \\
\hline & torpedo, & \(\{120.8\) & & 20.05 & 36.2 & & 33.3 & & 1.2 & , & 123 & \\
\hline & Ward & 55.04 & 8.44 & 9.47 & 32.1 & \[
\left|\begin{array}{ll}
\mathrm{E} & 26,533 \\
\mathrm{~S} & 30,474
\end{array}\right|
\] & 26 & 12.3 & 1.3 & 2 & 60 & \\
\hline 8 & \[
\begin{aligned}
& \text { Thorny- } \\
& \text { croft. (U. } \\
& \text { S.S.Cush- } \\
& \text { ing.) }
\end{aligned}
\] & \[
\} 45
\] & & & & \[
\left|\begin{array}{ll}
\mathrm{S} & 30,474 \\
\mathrm{E} & 20.160 \\
\mathrm{~S} & 24,640
\end{array}\right|
\] & *31 & 10.3 & & 3 & 245 & B \\
\hline
\end{tabular}
* Approximate.

Per cent moisture in steam: Belleville, 6.31; Herreshoff (first test), 3.5 Scotch, 1st, 3.44 ; 2d, 4.29; Ward, 11.6; others not given.

Dimensions of the Boilers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - No. & 1 & 2 & 3 & 4 & 5 & 6 & \(\%\) & 8 \\
\hline Length, ft. and in.. & \(8^{\prime} 6^{\prime \prime}\) & \(4^{\prime} 9^{\prime \prime}\) & \(2^{\prime \prime} 6^{\prime \prime}\) & \(3^{\prime} 2^{\prime \prime}\) & \(9^{\prime} 0^{\prime \prime}\) & \(16^{\prime} 8\) & 10' \(3^{\prime \prime *}\) & \(10^{\prime} 0^{\prime \prime} \ddagger\) \\
\hline Width, " .. " & 70 & 38 & 26 & 17 & 90 & 64 & 46 t & \(70 \pm\) \\
\hline Height, " "6 " & 110 & 40 & 33 & 72 & & 76 & 118 & \(80 \pm\) \\
\hline Space, cu.ft. & 645.5 & 69.6 & 203 & 42.7 & 572.5 & 630.3 & 729.3 & \(560 \pm\) \\
\hline Grate-area, sq.ft. . & 34.17 & 9 & 4.25 & 3.68 & 31.16 & 28 & 66.5 & 33.3 \\
\hline Heating-surface,
sq. ft.... ....... & 804 & 205 & 75 & 146 & \(72 \%\) & 1116 & 2490 & 2375 \\
\hline Ratio H.S. - G & 23.5 & 22 & 17.6 & 39.5 & 23.3 & 39.8 & 37.4 & 62 \\
\hline
\end{tabular}
* Diameter. +Diam. of drum. \(\ddagger\) Approximate.

The weight per I.H.P. is estimated on a basis of 20 lbs . of water per hour for all cases expecting the Scotch boiler, where 25 lbs . have been used, as this boiler was limited to 80 lbs . pressure of steam.

The following approximation is made from the large table, on the assumption that the evaporation varies directly as the combustion, and 25 lbs . of coal per square foot of grate per hour used as the unit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type of Boiler. & Com bustion. & Evaporation per cu . ft . of Space. & \[
\begin{aligned}
& \text { Weight } \\
& \text { ner } \\
& \text { I.H.P. }
\end{aligned}
\] & Weight per sq. ft Heating surface. & Weight perlb. Water Evaporated. \\
\hline Belleville & 0.50 & 0.50 & 2.02 & 2.10 & 2.50 \\
\hline Herreshoff. & 1.00 & 0.95 & 0.72 & 0.60 & 0.90 \\
\hline Towne. & 1.00 & 1.20 & 1.12 & \(0.8 \%\) & 1.30 \\
\hline Scotch. & 1.00 & 0.44 & 2.40 & 1.64 & 2.30 \\
\hline Locomotive & 3.90 & 0.31 & 3.70 & 1.25 & 3.50 \\
\hline Ward & 2.20 & 0.58 & 1.27 & 0.50 & 1.53 \\
\hline
\end{tabular}

The Belleville boiler has no practical advantage over the Scotch either in space occupied or weight. All the other tubulous boilers given greatly exceed the Scotch in these advantages of weight and space.

Some High Rates of Evaporation.-Eng'g, May 9, 1884, p. 415. Locomotive. Torpedo-boat. \(\begin{array}{lllllll}\text { Water evap. per sq. ft. H.S. per hour..... } & 12.57 & 13.73 & 12.54 & 20 . \tilde{i} 4\end{array}\) Thermal units transf'd per sq. ft. of H.S. \(12,142 \quad 13,263 \quad 12,113 \quad 20,034\) Efficiency It is doubtful \(i=\) these figures were corrected for priming.
Econonuy Effected by Heating the Air Supplied to Boiler-furnaces. (Clark, S. E.)-Meunier and Scheurer-Kestner obtained about \(7 \%\) greater evaporative efficiency in summer than in winter, from the same boilers under like conditions,- an excess which had been explained by the difference of loss by radiation and conduction. But Mr. Poupardin, surmising that the gain might be due in some degree also to the greater temperature of the air in summer, made comparative trials with two groups of three boilers, each working one week with the heated air. and the next week with cold air. The following were the several efficiencies:
First Trials: Three Boilers; Ronchamp Coal.
Water per jb. of \begin{tabular}{c} 
Cor \\
Water per lb. of
\end{tabular}
Col.
Combustible.

\section*{Second Trials: Same Coal; Three Otyer Boilers.}


These results show economies in favor of heating the air of \(6 \%\) and \(712 \%\).
Mr. Poupardin believes that the gain in efficiency is due chiefly to the better combustion of the gases with heated air. It was observed that with heated air the flames were much shorter and whiter, and that there was notably less smoke from the chimney.
An extensive series of experiments was made by J. C. Hoadley (Trans. A. S. MI. E., vol. vi., \(6 ; 6\) ) on a "Warm-blast Apparatus," for utilizing the leat of the waste gases in heating the air supplied to the furnace. The apparatus, as applied to an ordinary horizontal tu ular boiler 60 in. diameter, 21 feet long, with \(6531 / 2\)-inch tubes, consisted of 2402 -inch tubes, 18 feet long, through which the hot gases passed while the air circulated around them. The net saving of fuel effected by the warm blast was from \(10.7 \%\) to \(15.5 \%\) of the fuel used with cold blast. The comparative temperatures averaged as follows, in degrees F.:
\begin{tabular}{|c|c|c|c|}
\hline & Cold-blast Boiler. & Warm-blast Boiler. & Difference. \\
\hline In heat of fire & 2493 & 2793 & 300 \\
\hline At bridge wall & 1340 & 1600 & 260 \\
\hline In smoke box. & 373 & 375 & 2 \\
\hline Air admitted to furnace & 32 & 332 & 300 \\
\hline Steam and water in boiler & 300 & 300 & 0 \\
\hline Gases escaping to chimney & 373 & 162 & 211 \\
\hline External air................ & .. 32 & 32 & 0 \\
\hline
\end{tabular}

With anthracite coal the evaporation from and at \(212^{\circ}\) per lb. combustible was, for the cold-blast boiler, days 10.85 lbs ., days and nights 10.51 ; and for the warm-blast boiler, days 11.83, days and nights 11.03 .

\section*{Results of Tests of Heine Watermtube Boilers with Different Coals.}
(Communicated by E. D. Meier, C.E., 1894.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Number & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Kind of Coal. &  & \[
\begin{array}{r}
2 \mathrm{~d} P \\
\text { Yough } \\
\text { ent }
\end{array}
\] & Pool, hioghy. &  &  &  &  &  \\
\hline Per cent ash & 5.1 & 4.89 & & 11.6 & 16.1 & 11.5 & 21.8 & 12.8 \\
\hline Heating-surface, sq. ft & 2900 & 2040 & 2040 & 2300 & 1260 & 3730 & 1168 & \(27 \%\) \\
\hline Grate-surface, sq. ft. & 54 & 44.8 & 44.8 & 50 & 21 & 73.3 & 27.9 & 50 \\
\hline Ratio H.S. to G.S... & 53.7 & 45.5 & 45.5 & 46 & 60 & 50.9 & 41.9 & 55.4 \\
\hline Coal per sq. ft. G.per hr. & 24.7 & 23.5 & 22.7 & 35 & 33.7 & 26.2 & 27.7 & 35 \\
\hline Water per sq. ft. H.S.per hr. from and at \(212^{\circ}\) & 5.03 & 5.14 & 5.24 & 5.56 & 4.26 & 4.28 & 4.86 & 5.08 \\
\hline Water evap. from and at \(212^{\circ}\) per lb. coal. & 10.91 & 9.94 & 10.51 & 7.31 & 7.59 & 8.33 & 7.36 & 7.81 \\
\hline Per lb. combustible...... & 11.50 & 10.48 & & 8.27 & 9.05 & 9.41 & 9.41 & 8.96 \\
\hline Temp. of chimney gases & \(530^{\circ}\) & & 400 & 567 & 571 & & 609 & \({ }^{2} 07\) \\
\hline Calorific value of fuel. & 13,800 & 12,936 & 12,936 & 10,487 & 11, 785 & 11,610 & ก,739 & 10,359 \\
\hline Efficiency of boiler per c. & 77.0 & \%4.3 & \%8.5 & 67.2 & 62.5 & 69.3 & 73.0 & \({ }_{2}\) \\
\hline
\end{tabular}

Tests Nos. 7 and 8 were made with the Hawley Down-draught Furuace, the others with ordinary furnaces.
These tests confirm the statement already made as to the difficulty of obtaining, with ordinary grate-furnaces, as high a percentage of the calorific value of the fuel with the Western as with the Eastern coals.
Test No 3, \(78.5 \%\) efficiency, is remarkably good for Pittsburgh (Youghiogheny) coal. If the Washington coal had given equal efficiency, the saving of fuel would be \(\frac{78.5-62.5}{78.5}=20.2 \%\). The results of tests Nos. 7 and 8 indicate that the downward-draught furnace is well adapted for burning Illinois coals.

Maximum Boiler Efficiency with Cumberland Coal.About \(1: .5 \mathrm{lbs}\). of water per lb. combustible from and at \(212^{\circ}\) is about the highest evaporation that can be obtained from the best steam fuels in the United States, such as Cumberland, Pocahontas, and Clearfield. In exceptional cases 13 lbs . has been reached, and one test is on record (F. W. Dean, Eng'g News, Feb. 1, 1894) giving 13.23 lbs. The boiler was internally fired, of the Belpaire type, 82 inches diameter, 31 feet long, with 1603 -inch tubes \(1: 11 / 2\) feet long. Heating surface, 1998 square feet; grate-surface, 45 square feet, reduced during the test to \(301 / 2\) square feet. Double furnace, with fire-brick arches and a long combustion-chamber. Feed-water heater in smoke-box. The following are the principal results:
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Dry coal burned per sq. ft. of grate per hour, lbs...... 8.85} & d Test \\
\hline & 16.06 \\
\hline Water evap. per sq. ft . of heating-surface per hour, lbs 1.63 & 3.00 \\
\hline \begin{tabular}{l}
Water evap. from and at \(212^{\circ}\) per lb . combustible, in- \\
cluding feed-water heater.
\end{tabular} & 13.23 \\
\hline Water evaporated, excluding feed-water heater......... 12.88 & 12.90 \\
\hline Temperature of gases after leaving heater, F............ \(360^{\circ}\) & \(463^{\circ}\) \\
\hline
\end{tabular}

\section*{BOLLERS USING WASTEE GASES.}

Proportioning Boilers for Blast-Furnaces.-(F. W. Gordon, Trans. A. I. M. E., vol. xii., 1883.)
Mr. Gordon's recommendation for proportioning boilers when properly set for burning blast-furnace gas is, for coke practice, 30 sq . ft . of heating-surface per ton of iron per 24 hours, which the furnace is expected to make, calculating the heating-surface thus: For double-flued boilers, all shellsurface exposed to the gases, and half the flue-surface; for the French type, all the exposed surface of the upper boiler and half the lower boilersurface; for cylindrical boilers, not more than 60 ft . long, all the heatingsurface.

To the above must be added a battery for relay in case of cleaning, repairs, etc., and more than one battery extra in large plants, when the water carries much lime.

For anthracite practice add \(50 \%\) to above calculations. For charcoal practice deduct 20\%.

In a letter to the author in May, 1894, Mr. Gordon says that the blastfurnace practice at the time when his article (from which the above extract is taken) was written was very different from that existing at the present time; besides, more economical engines are being introduced, so that less than 30 sq . ft. of boiler-surface per ton of iron made in 24 hours may now be adopted. He says further: Blast-furnace gases are seldom used for other than furnace requirements, which of course is throwing away good fuel. In this case a furnace in an ordinary good condition, and a condition where it can take its maximum of blast, which is in the neighborhood of 200 to 225 cubic ft., atmospheric measurement, per sq. ft. of sectional area of hearth, will generate the necessary H.P. with very small heating-surface, owing to the high heat of the escaping gases from the boilers, which frequently is 1000 degrees.

A furnace making 200 tons of iron a day will consume about 900 H.P. in blowing the engine. About a pound of fuel is required in the furnace per pound of pig metal.
In practice it requires \(\% 0 \mathrm{cu} . \mathrm{ft}^{2}\). of air-piston displacement per lb. of fuel consumed, or \(22,400 \mathrm{cu}\). ft. per minute for 200 tons of metal in 1400 working minutes per day, at, say, 10 lbs . discharge-pressure. This is equal to \(91 / 4 \mathrm{lbs}\). M.E.P. on the steam-piston of equal area to the blast-piston, or 900I.H.P. To this add \(20 \%\) for hoisting, pumping and other purposes for which steam is employed around blast-furnaces, and we have 1100 H.P., or say \(51 / 2\) H.P. per. ton of iron per day. Dividing this into 30 gives approximately \(51 / 2 \mathrm{sq}\). ft . of heating-surface of boiler per H.P.

Water-tube Boilers using Blast-furnace Gases.-D. S. Jacobus (Trans. A. I. M. E., xvii. 50) reports a test of a water-tube boiler using blast-furnace gas as fuel. The heating-surface was 2535 sq . ft. It developed \(3: 2\) H.P. (Centennial standard), or 5.01 lbs of water from and at \(212^{\circ}\) per sq. ft. of heating-surface per hour. Some of the principal data obtained were as follows: Calorific value of 1 lb . of the gas, 1413 B T.U., including the effect of its initial temperature, which was \(650^{\circ} \mathrm{F}\). Amount of air used to burn 1 lb . of the gas \(=0.9 \mathrm{lb}\). Chimney draught, \(11 / 3 \mathrm{in}\). of water. Area of gas inlet, 300 sq . in.; of air inlet, 100 sq . in. Temperature of the chimney
gases, \(775^{\circ} \mathrm{F}\). Efficiency of the boiler calculated from the temperatures and analyses of the gases at exit and entrance, \(61 \%\). The average analyses were as follows, hydrocarbons being included in the nitrogen :
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{By Weight.} & \multicolumn{2}{|l|}{By Volume.} \\
\hline & At Entrance. & At Exit. & At Entrance. & At Exit. \\
\hline \(\mathrm{CO}_{2}\). & 10.69 & 26.37 & \%.08 & 1864 \\
\hline CO & 20.71 & 1.78 & 27.80 & 1.98 \\
\hline Nitrogen & 62.48 & 68.80 & 65.02 & 76.42 \\
\hline C in \(\mathrm{CO}_{2}\) & 2.92 & 7.19 & & \\
\hline C in CO. & 11.45 & .66
7 & & \\
\hline
\end{tabular}

Steam-boilers Fired with Waste Gases from Puddling and Heating Furnaces.-The Iron Age, April 6, 1893, contains a report of a number of tests of steam-boilers utilizing the waste heat from puddling and heating furnaces in rolling-mills. The following principal data are selected: In Nos. 1,2 , and 4 the boiler is a Babcock \& Wilcox water-tube boiler, and in No. 3 it is a plain cylinder boiler, 42 in . diam. and 26 ft . long. No. 4 boiler was connected with a heating-furnace, the others with puddling furnaces.
\begin{tabular}{|c|c|c|c|c|}
\hline & No. 1. & No. 2. & No. 3. & No. 4. \\
\hline Heating-surface, sq. ft & 1026 & 1196 & 143 & 1380 \\
\hline Grate-surface. sq. ft & 19.9 & 136 & 13.6 & 16.7 \\
\hline Ratio H.S. to G.S. & 52 & 87.2 & 10.5 & 8.. 8 \\
\hline W ater evap. per hour, lbs................... & 3358 & 2159 & 1812 & 3055 \\
\hline " "\% per sq. ft. H.S. per hr., lus... & 3.3 & 1.8 & 12.7 & 2.2 \\
\hline " "\% per lib. coal from and at \(212^{\circ}\). & 5.9 & 6.24 & 3.76 & 6.34 \\
\hline " "6 "، comb. \({ }^{6}\) & .... & \%.20 & 4.31 & 8.34 \\
\hline
\end{tabular}

In No. 2, 1.38 lbs . of iron were puddled per lb. of coal.
In No. 3, 1.14 lbs . of iron were puddled per lb. of coal.
No. 3 shows that an insufficient amount of heating-surface was provided for the amount of waste heat available.

\section*{RULES FOR CONDUCTING BOLLER-TLESTS.}

The Committee of the A. S. M. E. on Boiler-tests, consisting of Wm. Kent (chairman), J. C. Hoadley, R. H. Thurston, Chas. E. Emery, and Chas. T. Porter, recommended the following code of rules for boiler-tests (Trans., vol. vi. p. 256):

\section*{Preliminaries to a Test.}
I. In preparing for and conducting trials of steam-boilers the specific object of the proposed trial should be clearly defined and steadily kept in view.
II. Measure and record the dimensions, position, etc., of grate and heating surfaces, flues and chimneys, proportion of air-space in the grate-surface, kind of dranght, natural or forced.
III. Put the boiler in good condition. Have heating-surface clean inside and out, grate-bars and sides of furnace free from clinkers, dust and ashes removed from back connections, leaks in masonry stopped, and all obstructious to draught removed. See that the damper will open to full extent, and that it may be closed when desired. Test for leaks in masonry by firing a little smoky fuel and immediately closing damper. The smoke will then escape through the leaks.
IV. Have an understanding with the parties in whose interest the test is to be made as to the character of the coal to be used. The coal must be dry: or, if wet, a sample must be dried carefully and a determination of the amount of moisture in the coal made, and the calculation of the results of the test corrected accordingly. Wherever possible, the test should be made with standard coal of a known quality. For that portion of the country east of the Alleghany Mountains good anthracite egg coal or Cumberland semi-bituminous coal may be taken as the standard for making tests. West
of the Alleghany Mountains and east of the Missouri River, Pittsburgh lump coal may be used.*
V. In all important tests a sample of coal should be selected for chemical analysis.
VI. Establish the correctness of all apparatus used in the test for weighing and measuring. These are: 1. Scales for weighing coal, ashes, and water. 2. Tauks, or water-meters for measuring water. Water-meters, as a imle, should only be used as a check on other measurements. For accurate work the water should be weighed or measured in a tank. 3. Thermometers and pyrometers for taking temperatures of air, steam, feed-water, waste gases, etc. 4. Pressure-gauges, draught-gauges, etc.
VII. Before beginning a test, the boiler and chimney should be thoroughly heated to their usual working temperature. If the boiler is new, it should be in continnous use at least a week before testing, so as to dry the mortar thoroughly and heat the walls.
VIII. Before beginning a test, the boiler and connections should be free from leaks. and all water connections, including blow and extra feed pipes, should be disconnected or stopped with blank flanges, except the particular pipe through which water is to be fed to the boiler during the trial. In locations where the reliability of the power is so important that an extra feedpipe must be kept in position, and in general when for any other reason water-pines other than the feed-pipes camot be disconnected, such pipes may be drilled so as to leave openings in their lower sides, which shonld be kept open throughout the test as a means of detecting leaks, or accidental or unanthorized opening of valves. During the test the blow-off pipe should remain exposed.

If an injector is used it must receive steam directly from the boiler being tested, and not from a steam-pipe or from any other boiler.
See that the steam-pipe is so arranged that water of condensation cannot run back into the boiler. If the steam-pipe has such an inclination that the water of condensation from any portion of the steam-pipe system may rim back into the boiler, it must be trapped so as to preveut this water getting into the boiler without being measured.

\section*{Starting and Stopping a Test.}

A test should last at least ten hours of continuous running, and twentyfour hours whenever practicable. The conditions of the boiler and furnace in all respects should be, as nearly as possible, the same at the end as at the beginning of the test. The steam-pressure should be the same, the water-level the same, the fire upon the grates should be the same in quantity and condition, and the walls, flues, etc., should be of the same temperature. To secure as near an approximation to exact uniformity as possible in conditions of the fire and in temperatures of the walls and flues, the following method of starting and stopping a test should be adopted:
X. Stundurd Method.-Steam being raised to the working pressure, remove rapidly all the fire from the grate, close the damper. clean the ash-pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time of starting the test and the height of the water-level while the water is in a quiescent state, just before lighting the fire.

At the end of the test remove the whole fire, clean the grates and ash-pit, and note the water-level when the water is in a quiescent state; record the time of hauling the fire as the end of the test. The water-level should be as nearly as possible the same as at the beginning of the test. If it is not the same, a correction should be made by computation, and not by operating puinp after test is completed. It will generally be necessary to regulate the discharge of steam from the boiler tested by means of the stop-valve for a time while fires are being hauled at the beginning and at the end of the test. in order to keep the steam-pressure in the boiler at those times up to the average during the test.
XI. Alteriuate Method.-Instead of the Standard Method above described, the following may be employed where local conditions render it necessary :
At the regular time for slicing and cleaning fires have them burned rather low, as is usual before cleaning, and then thoroughly cleaned; note the amount of coal left on the grate as nearly as it can be estimated; note the

\footnotetext{
* These coals are selected because they are about the only coals which contain the essentials of excellence of quality, adaptability to various kinds of furnaces, grates, boilers, and methods of firing, and wide distribution and general accessibility in the markets.
}
pressure of steam and the height of the water-level-which should be at the medium height to be carried throughout the test-at the same time ; and note this time as the time of starting the test. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave the same amount of fire, and in the same condition, on the grates as at the start. The water-level and steam-pressure should be bronght to the same point as at the start, and the time of the ending of the test should be noted just before fresh coal is fired.

\section*{During the Test.}
XII. Keep the Conditions Uniform. - The boiler should be run continuously, without stopping for meal-times or for rise or fall of pressure of steam due to change of demand for steam. The draught being adjusted to the rate of evaporation or combustion desired before the test is begun, it should be retained constant during the test by means of the damper.

If the boiler is not connected to the same steam-pipe with other boilers, an extra outlet for steam with valve in same should be provided, so that in case the pressure should rise to that at which the safety-valve is set it may be reduced to the desired point by opening the extra outlet, without checking the fires.

It the boiler is connected to a main steam-pipe with other boilers, the safety-valve on the boiler being tested should be set a few pounds higher than those of the other boilers, so that in case of a rise in pressure the other boilers may blow off, and the pressure be reduced by closing their dampers, allowing the damper of the boiler being tested to remain open, and firing as usual.

All the conditions should be kept as nearly uniform as possible, such as force of draught, pressure of steam, and height of water. The time of cleaning the fires will depend upon the character of the fuel, the rapidity of combustion, and the kind of grates. When very good coal is used, and the combustion not too rapid, a ten-hour test may be run without any cleaning of the grates, other than just before the beginning and just before the end of the test. But in case the grates have to be cleaned during the test, the intervals between one cleaning and another should be uniform.
XIII. Keeping the Records.-The coal should be weighed and delivered to the firemen in equal portions, each sufficient for about one hour's rum, and a fresh portion should not be delivered until the previous one has all been fired. The time required to consume each portion should be noted, the time being recorded at the instant of firing the first of each new portion. It is desirable that at the same time the amount of water fed into the boiler should be accurately noted and recorded, including the height of the water in the boiler and the average pressure of steam and temperature of feed during the time. By thus recording the amount of water evaporated by successive portions of coal, the record of the test may be divided into several divisions, if desired, at the end of the test, to discover the degree of uniformity of combustion, evaporation, and economy at different stages of the test.
XIV. Priming Tests.- In all tests in which accuracy of results is important, calorimeter tests should be made of the percentage of moisture in the steam, or of the degree of superheating. At least ten such tests should be made during the trial of the boiler, or so many as to reduce the probable average error to less than one per cent, and the final records of the boile."test corrected according to the average results of the calorimeter tests.

On account of the difficulty of securing accuracy in these tests, the greatest care should be taken in the measurements of weights and temperatures. The thermometers should be accurate within a tenth of a degree, and the scales on which the water is weighed to within one huudredth of a pound.

\section*{Analyses of Gases.-Measurement of Air-supply, etc.}
\(X V\). In tests for purposes of scientific research, in which the determination of all the variables entering into the test is desired, certain observations should be made which are in general not necessary in tests for commercial purposes. These are the measurement of the air-stpply, the determination of its contained moisture, the measurement and analysis of the flue gases, the determination of the amount of heat lost by radiation, of the amount of infiltration of air through the setting, the direct determination by calorimeter experiments of the absolute heating value of the fuel, and (by conden-
sation of all the steam made by the boiler) of the total heat imparted to the water.

The analysis of the flue-gases is an esrecially valuable method of determining the relative value of different methods of firing, or of different kinds of furnaces. In making these analyses great care should be taken to procure average samples-since the composition is apt to vary at different points of the flue, and the analyses should be intrusted only to a thoroughly competent chemist, who is provided with complete and accurate apparatus.

As the determinations of the other variables mentioned above are not likely to be undertaken except by engineers of high scientific attainments, and as a pparatus for making them is likely to be improved in the course of scientific research, it is not deemed advisable to include in this code any specific directions for making them.

Record of the Test.
XVr. A "log" of the test should be kept on properly prepared blanks, containing headings as follows:


\section*{Reporting the Trial.}
XVII. The final results should be recorded upon a properly prepared blank, and should include as many of the following items as are adapted for the specific object for which the trial is made. The items marked with a* may be omitted for ordinary trials, but are desirable for comparison with similar data from other sources.

Results of the trials of a
Boiler at.
To determine.


* See reference in paragraph preceding table.
+ Including equivalent of wood used in lighting fire. 1 pound of wood equals 0.4 pound coal. Not including unburnt coal withdrawn from fire at end of test.
\(\ddagger\) Corrected for inequality of water-level and of steam-pressure at beginning and end of test.
§ The following shows how some of the items in the above table are derived from others:

Item \(\Omega^{\sim}=\) Item \(\approx 6 \times\) Item 23 .
Item \(28=\) Item \(27 \times\) Factor of evaporation.
Factor of evaporation \(=\frac{H-h}{965 . \%}, H\) and \(h\) being respectively the total heatunits in steam of the average observed pressure and in water of the average observed temperature of feed, as obtained from tables of the properties of steam and water.

Item \(29=\) Item \(2 \tau \times(H-h)\).
Item \(31=\) Item \(27 \div\) Item 18.
Item \(32=\) Irem \(₫ 8 \div\) Item 18, or \(=\) Item \(31 \times\) factor of evaporation.
Item \(33=\) Item \(28 \div\) Item 20 , or \(=\) Item \(32 \div\) (per cent \(100-\) Item 19).
Items 36 to 38 . First term \(=1\) tem 涚 \(\times 6 / 5\).
Items 40 to 42 . First term \(=\) Item \(30 \times 0.5698\).
Item \(43=\) Item \(29 \times 0.00003\), or \(=\frac{\text { Item } 30}{341 / 2}\), or \(\frac{\text { Item } 29}{33,305}\).
Item \(45=\frac{\text { Difference of Items } 43 \text { and } 44}{\text { Item } 44}\).


3:. Equivalent water evaporated per pound of dry coal from and at \(212^{\circ} \mathrm{F}\). \$.
33. Equiralent water evaporated per pound of combustible from and at \(2122^{\circ} \mathrm{F}\). §..........

COMMERCIAL EVAPORATION.
*34. Equivalent water evaporated per pound of dry coal with one sixth refuse, at \(\% 0\) pounds gauge-pressure, from temperature of \(100^{\circ}\) \(\mathbf{F} .=\) Item \(33 \times 0 . \% 249\)
rate of combustion.
35. Dry coal actually burned per square foot of grate-surface per hour.
*36.
*3i.
*28. Cousumption of dry coal per hour. Coal assumed with one Pis. ft. of watersixth refuse.§ Per sq. ft. of least
area for draught.

\section*{Rate of evaporation.}
39. Water evaporated from and at \(212^{\circ} \mathrm{F}\). per sq. ft. of heating-surface per hour..
 per hour from tem-
*41. \{ perature of \(100^{\circ} \mathrm{F}\).
*4. into steam of \(\% 0 \mathrm{lbs}\). gange-pressure. § J

Per sq. ft. of grate surface.
Per sq. ft. of watelheating surface.

Persq.ft. of waterheating surface. Per sq. ft. of least area for draught.

COMMERCIAL HORSE-POWER.
43. On basis of thirty pounds of water per hour evaporated from temperature of \(100^{\circ} \mathrm{F}\). into steam of 70 pounds gange-pressure ( \(=341 / 2\) lbs. from and at \(212^{\circ}\) ) §
s..... ... ...
44. Horse-power, builders' rating, at. . ...square feet per horse-power.
45. Per cent developed above, or below, rating§.


Factors of Evaporation. - The table on the following pages was originally published by the author in Trans. A. S. MI. E., vol. vi., 1884, under the title, Tables for Facilitating Calculations of Boiler-tests. The table gives the factors for every \(3^{\circ}\) of temperature of feed-water from \(32^{\circ}\) to \(212^{\circ}\) F., and for every two pounds pressure of steam within the limits of ordinary working steam-pressures.

The difference in the factor corresponding to a difference of \(3^{\circ}\) temperature of feed is always either .0031 or .0032 . For interpolation to find a factor for a feed-water temperature between \(32^{\circ}\) and \(212^{\circ}\), not given in the table, take the factor for the nearest temperature and add or subtract, as the case may be, .0010 if the difference is .0031 , and .0011 if the difference is \(.003 \%\). As in nearly all cases a factor of evaporation to three decimal places is accurate enough, any error which may be made in the fourth decimal place byinterpolation is of no practical importance.

The tables used in calculating these factors of evaporation are those given in Charles T. Porter's Treatise on the Richards' Steam-engine Indicator. The formula is Factor \(=\frac{H-h}{965 . \tilde{1}}\), in which \(H\) is the total heat of steam at the observed pressure, and \(h\) the total heat of feed-water of the observed temperature.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Caage-pressu Absolute pre & \[
\begin{array}{r}
\text { Lbs. } \\
\text { s.... }+1 \\
\text { ures }
\end{array}
\] & \({ }_{25}^{10}+\) & \({ }_{35}^{20}+\) & \({ }_{45}^{30}+\) & \({ }_{55}^{40}+\) & \({ }_{60}^{45}+\) & 50
65 & \({ }_{67}^{52}+\) & \[
\frac{54}{69}+
\] & \({ }_{71}^{56}+\) \\
\hline Feed-water Temperature & \multicolumn{10}{|c|}{Factors of evaporation.} \\
\hline \(212^{\circ} \mathrm{F}\). & 1.0003 & 1.0088 & [1.0149 & |1.0197 & 1.0237 & 11.0254 & 1.0271 & . 027 & 1.028 & 1.0290 \\
\hline 209 & & 1.0120 & 80 & 1.0228 & & 86 & 1.0302 & 1.0309 & 1.0315 & 1.0321 \\
\hline 206 & 66 & 51 & 1.0212 & & & 1.0317 & & & 46 & 52 \\
\hline 203 & 98 & & 43 & & 1.0331 & & & & \%8 & 84 \\
\hline 200 & 1.0129 & 1.0214 & & 1.0323 & & 80 & & 1.0403 & 1.0409 & 1.0415 \\
\hline 197 & 60 & 46 & 1.0306 & & & 1.0412 & 1.0428 & 34 & 41 & 47 \\
\hline 194 & 92 & 78 & - 38 & & 1.0425 & & & & & 78 \\
\hline 191 & 1.0223 & 1.0308 & & 1.041 1 & & & & & 1.0503 & 1.0510 \\
\hline 188 & 55 & 40 & 1.0400 & & & 1.0506 & 1.0522 & 1.0528 & 35 & 41 \\
\hline 185 & 86 & 71 & 32 & 80 & 1.0519 & & & 60 & 66 & \%2 \\
\hline 182 & 1.0317 & 1.0403 & 63 & 1.0511 & & & & & 98 & 1.0604 \\
\hline 179 & 49 & 34 & 95 & 42 & & 1.0600 & 1.0616 & 1.0623 & 1.0629 & 35 \\
\hline 176 & 80 & & 1.0526 & & 1.0613 & & 48 & 54 & 60 & 66 \\
\hline 173 & 1.0411 & 97 & 57 & 1.0605 & & & & & & 98 \\
\hline 170 & 43 & 1.0528 & 89 & & & & 1.0710 & 1.0717 & 1.0723 & 1.0729 \\
\hline 167 & 74 & 59 & 1.0620 & 68 & 1.0707 & 1.0725 & 42 & 48 & 54 & 60 \\
\hline 164 & 1.0505 & 91 & 51 & & & & & & 86 & 92 \\
\hline 161 & & 1.0622 & 82 & 1.0730 & & & 1.0804 & 1.0811 & 1.0817 & 1.0823 \\
\hline 158 & 68 & & 1.0714 & 62 & 1.0801 & 1.0819 & 36 & 42 & 48 & 54 \\
\hline 155 & 99 & 84 & 45 & 93 & & & 67 & 73 & 80 & 86 \\
\hline 152 & 1.0631 & 1.0716 & 76 & 1.0824 & 64 & & 98 & 1.0905 & 1.0911 & 1.091" \\
\hline 149 & 62 & 1.076 & 1.0808 & 55 & & 1.0913 & 1.0930 & 36 & 42 & 48 \\
\hline 146 & 93 & 78 & 39 & 87 & 1.0926 & 6 44 & 61 & 67 & 73 & 79 \\
\hline 143 & 1.0724 & 1.0810 & 70 & 1.0918 & & & & & 1.1005 & 1.1011 \\
\hline 140 & 56 & 41 & 1.0901 & 49 & & 1.1007 & 1.1023 & 1.1030 & 36 & 4. \\
\hline 137 & 87 & \% 72 & 33 & 80 & 1.1020 & & 55 & 61 & 67 & 73 \\
\hline 134 & 1.0818 & 1.0903 & & 1.1012 & & & & & & 1.110先 \\
\hline 131 & 49 & 34 & 95 & 43 & & 1.1100 & 1.1117 & 1.1123 & 1.1130 & 36 \\
\hline 128 & 81 & 66 & 1.1026 & 74 & 1.1114 & 32 & 48 & 55 & 61 & \(6{ }^{\prime \prime}\) \\
\hline 125 & 1.0912 & 97 & 57 & 1.1105 & & & & & 92 & 98 \\
\hline 122 & & 1.1028 & 89 & 36 & 76 & & 1.1211 & 1.1217 & 1.1223 & 1.1228 \\
\hline 119 & 74 & 59 & 1.1120 & 68 & 1.1207 & 1.1225 & 42 & 48 & 54 & 61 \\
\hline 116 & 1.1005 & 90 & 51 & 99 & & & 73 & & & 9 \\
\hline 113 & & 1.1122 & & 1.1230 & & & 1.1204 & 1.1310 & 1.1317 & 1.1323 \\
\hline 110 & 68 & 53 & 1.1213 & 61 & 1.1301 & 1.1319 & 35 & 42 & 48 & 54 \\
\hline 107 & 99 & 84 & 45 & 92 & & & 66 & & 79 & \(8!\) \\
\hline 104 & 1.1130 & 1.1215 & & 1.1323 & & & & 1.1404 & 1.1410 & 1.1415 \\
\hline 101 & 61 & 46 & 1.1307 & 55 & & 1.1412 & 1.1429 & 35 & & \(4 \%\) \\
\hline 98 & 92 & 77 & - 38 & 86 & 1.1426 & - 43 & 60 & 66 & 73 & 79 \\
\hline 95 & 1.1223 & 1.1309 & 69 & 1.1417 & & & 91 & 97 & 1.1504 & 1.1510 \\
\hline 92 & 55 & 40 & 1.1400 & 48 & 88 & 1.1506 & 1.1522 & 1.1529 & 35 & 41 \\
\hline 89 & 86 & 71 & 31 & 79 & 1.1519 & 3 3 & 53 & 60 & 66 & 72 \\
\hline 86 & 1.1317 & 1.1402 & 63 & 1.1510 & & & & & & 1.1603 \\
\hline 83 & 48 & & & 41 & & & 1.1616 & 1.1622 & 1.1628 & 34 \\
\hline 80 & 79 & 64 & 1.1525 & 73 & 1.1612 & 1.1630 & 47 & 53 & 59 & 65 \\
\hline T & 1.1410 & 95 & 56 & 1.1604 & & & 788 & - 84 & 900 & 96 \\
\hline \[
{ }^{74}
\] & \[
41
\] & 1.1526 & & & \({ }^{75}\) & & 1.1709 & & & \\
\hline \[
\begin{aligned}
& 71 \\
& 68
\end{aligned}
\] & \[
\begin{array}{r}
7 \% \\
1.1504
\end{array}
\] & \[
\begin{array}{|}
10 \\
58 \\
89
\end{array}
\] & \begin{tabular}{|r}
1.1618 \\
49
\end{tabular} & & 1.1706
\(3 \hat{1}\) & 1.1723 & \[
\begin{array}{r}
40 \\
71
\end{array}
\] & \[
\left\lvert\, \begin{array}{r}
1.110 \\
46 \\
78
\end{array}\right.
\] & \[
\left|\begin{array}{r}
1.1 \\
53 \\
84
\end{array}\right|
\] & 1
59
90 \\
\hline 65 & 1.1507 & 1.1620 & & 1.1728 & 68 & & 1.1802 & 1.1809 & 1.1815 & 1.1821 \\
\hline 62 & 66 & 51 & 1.1711 & 59 & & \(1.181 \hat{\gamma}\) & 33 & 40 & 46 & 52 \\
\hline 59 & 97 & & 43 & & 1.1830 & 48 & 64 & & \% & 83 \\
\hline 56 & 1.1628 & 1.1713 & 74 & 1.1821 & 1. & 79 & 96 & 1.1902 & 1.1908 & 11914 \\
\hline 53 & 59 & 44 & 1.1805 & & & 1.1910 & 1.1927 & & 39 & 45 \\
\hline 50 & 90 & & & & 1.1923 & 41 & 58 & 64 & 70 & 76 \\
\hline 47 & 1.1721 & 1.1806 & & & 54 & & 89 & & 1.2001 & \(1.200 \%\) \\
\hline 44 & \[
52
\] & & 98 & 46 & & 1.2003 & 1.2020 & 1.2026 & 32 & 39 \\
\hline 41 & \[
82
\] & 68 & 1.1929 & 77 & 1.2017 & 34 & 51 & 57 & 64 & \% 0 \\
\hline 38 & 1.1814 & 1.1900 & 60 & 1.2008 & & 65 & & & & 1.2101 \\
\hline 35 & 45 & 31 & & 1. 39 & & & 1.2113 & 1.2119 & 1.2126 & 32 \\
\hline 32 & 76 & & 1.2022 & \% 0 & 1.2110 & 1.2128 & 44 & 51 & 57 & 63 \\
\hline
\end{tabular}

\title{
FACTORS OF EVAPORATION.
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Gsuge-p \\
Absolut \\
Pres
\end{tabular} & \[
\begin{aligned}
& \text { pressures } \\
& \begin{array}{c}
\mathrm{bs} ., \\
\text { te } \\
\text { sures, }
\end{array} \\
& \text { ssur }
\end{aligned}
\] & 80
95 & \(82+\)
97 & 84
99 & \[
\left\{\begin{array}{c}
86+ \\
101
\end{array}\right.
\] & \[
\begin{gathered}
58+ \\
103
\end{gathered}
\] & \(90+\)
105 & & & \[
\begin{gathered}
96+ \\
111
\end{gathered}
\] & \[
\begin{array}{r}
98 \\
113
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { Feed } \cdot w \\
& \text { Tem }
\end{aligned}
\] & 3ter 1 & & & & ACTORS & of Era & PORAT & & & & \\
\hline 212 & (1.03491 & 1.0353 & 358 & 1.0363 & \(1.036 \%\) & 1.03\%2 & & (3) & & , & 393 \\
\hline 209 & 80 & S5 & 90 & 94 & 99 & 1.0403 & 1.0408 & 1.0412 & 1.0416 & 1.0421 & 425 \\
\hline 206 & 1.0411 & 1.0416 & \(1.04: 1\) & 1.0426 & 1.0430 & 35 & 39 & 43 & 4 S & 52 & 56 \\
\hline 203 & 43 & 48 & อ\% & 57 & 62 & 66 & 71 & 15 & 79 & 83 & 88 \\
\hline 200 & 74 & \(\% 9\) & 84 & 89 & 93 & 98 & 1.0502 & 1.0506 & 1.0511 & 1.0515 & 1.0519 \\
\hline 19 r & 1.0506 & 1.0511 & 1.0515 & 1.0520 & 1.0525 & 1.05:9 & 33 & & 42 & & 50 \\
\hline 194 & 37 & 42 & 47 & 51 & 56 & 60 & 65 & 69 & ri3 & 78 & 82 \\
\hline 191 & 69 & 73 & 78 & 83 & ST & 92 & 96 & 1.0601 & 1.0605 & 1.0609 & 1.0613 \\
\hline 185 & 1.0600 & 1.0605 & 1.0610 & 1.0614 & 1.0619 & 1.0623 & \(1.06 \geq 8\) & \(3:\) & 36 & 1. 40 & 45 \\
\hline 185 & 31 & 36 & 41 & & & & & 63 & 68 & 72 & 76 \\
\hline 18. & 63 & 68 & \% & & 81 & & & 95 & 99 & \(1.0 \% 03\) & \(1.070 \sim\) \\
\hline 179 & 94 & 99 & 1.0704 & 1.0708 & \(1.0 \% 13\) & 1.0717 & \(1.0 \% 20\) & \(1.0 \% 6\) & 1.0730 & 35 & 39 \\
\hline 176 & 1.0\%25 & 1.0730 & 35 & & & & & & 62 & & 70 \\
\hline 173 & 57 & 62 & 66 & 71 & & & & 89 & 93 & & 1.0801 \\
\hline 170 & 8 S & 93 & 98 & 1. 4802 & \(1.080 \sim\) & 1.0811 & 1.0816 & \(1.08: 0\) & 1.05\%4 & 1.0829 & 33 \\
\hline 167 & 1.0819 & 1.0894 & 1.0829 & & & & & 51 & 56 & & 64 \\
\hline 164 & 51 & 56 & 60 & 65 & 69 & \% \({ }^{74}\) & ris & S3 & 8í & 91 & 95 \\
\hline 161 & 82 & \(8 i\) & 92 & 96 & 1.0901 & 1.0905 & 1.0910 & 1.0914 & 1.0918 & 1.0923 & \(1.092{ }^{7}\) \\
\hline 158 & 1.0913 & 1.0918 & 1.0923 & \(1.092 \pi\) & 32 & 37 & 41 & 45 & 50 & 54 & 58 \\
\hline 155 & 45 & 49 & 54 & & 63 & 68 & 72 & \% 7 & 81 & 85 & 89 \\
\hline 159 & 76 & 81 & 85 & 90 & 95 & 99 & 1.1004 & 1.1008 & 1.1012 & 1.1016 & 1.1021 \\
\hline 149 & \(1.100 \%\) & 1.1012 & 1.1017 & \(1.10 \geqslant 1\) & \(1.10 \cong 6\) & 1.1030 & 35 & 39 & 43 & 48 & 52 \\
\hline 146 & 38 & 43 & 48 & & & & 66 & 70 & 75 & 79 & 83 \\
\hline 143 & \({ }_{7} 0\) & 74 & 79 & 84 & S8 & 93 & 97 & \(1.110 \%\) & 1.1106 & 1.1110 & 1.1114 \\
\hline 140 & 1.1101 & 1.1106 & 1.1110 & 1.1115 & 1.1120 & 1.1124 & 1.1129 & 33 & 37 & 41 & 46 \\
\hline \(13 \%\) & 32 & 37 & 42 & & & & & 64 & 68 & T3 & \% \\
\hline 134 & 63 & 68 & 73 & TS & S2 & 8í & 91 & 95 & 1.1200 & 1.1204 & 1.120S \\
\hline 131 & 95 & 99 & 1.1204 & 1.1209 & 1.1213 & 1.1218 & 1.122: & 1:192\% & 31 & 35 & 39 \\
\hline 108 & 1.1226 & 1.1231 & 35 & 40 & 45 & 49 & & 58 & \(6 \cdot 3\) & & \({ }^{71}\) \\
\hline 125 & 57 & 62 & 67 & 71 & \%6 & 80 & 85 & 89 & 93 & 98 & 130: \\
\hline 122 & 88 & 93 & 9 S & 1.1302 & 1.1307 & 1.1311 & 1.1316 & 1.13:0 & 1.1325 & \(1.13 \geqslant 9\) & 33 \\
\hline 119 & 1.1320 & 1.1324 & 1.13シ9 & 34 & 38 & 43 & \(4 \pi\) & 51 & 56 & 60 & 6. \\
\hline 116 & 51 & 55 & 60 & 65 & 69 & 74 & 78 & 83 & 87 & 91 & 95 \\
\hline 113 & 8: & 8 İ & 91 & 96 & 1.1401 & 1.1405 & 1.1409 & 1.1414 & 1.1418 & 1.1422 & 1.1406 \\
\hline 110 & 1.1413 & 1.1418 & 1.1422 & \(1.142 \sim\) & 32 & 36 & 41 & 45 & 49 & 53 & 5 S \\
\hline 107 & 44 & & & & & & & \(\cdots\) & 80 & 85 & 89 \\
\hline 104 & 75 & 80 & 85 & 89 & 94 & 99 & 1.1503 & \(1.150{ }^{\circ}\) & 1.1512 & 1.1516 & 1.15:0 \\
\hline 101 & 1.1506 & 1.1511 & 1.1516 & \(1.15 \geqslant 1\) & 1.1525 & 1.1530 & 34 & 38 & 43 & 47 & 51 \\
\hline 98 & 38 & 42 & 47 & 52 & 56 & 61 & 65 & 70 & r4 & 78 & 89 \\
\hline 95 & 69 & 74 & 78 & 83 & \(8 \sim\) & 92 & 96 & 1.1601 & 1.1605 & 1.1609 & 1.1613 \\
\hline 92 & 1.1600 & 1.1605 & 1.1609 & 1.1614 & 1.1619 & 1.1693 & 1.1628 & 32 & 36 & & 45 \\
\hline 89 & 31 & 36 & 41 & 45 & 50 & 1. 54 & 59 & 63 & 67 & \% 2 & 76 \\
\hline 86 & 62 & \(6 \underset{1}{ }\) & r 2 & 76 & 81 & 85 & 90 & 94 & 98 & \(1 \% 03\) & \(70 \sim\) \\
\hline 83 & 93 & 98 & 1.1703 & \(1.170 \%\) & \(1.1 \% 12\) & \(1.171 \%\) & \(1.1 \% 21\) & 1.1725 & 1.1730 & 34 & 38 \\
\hline 80 & 1.1724 & 1.1709 & 34 & 39 & 43 & 48 & & \(5(1)\) & 61 & 65 & 69 \\
\hline 78 & 56 & 60 & 65 & ro & \% 4 & 79 & & 8S & 92 & & 1.1800 \\
\hline 74 & 81 & 91 & 96 & 1.1801 & 1.1805 & 1.1810 & 1.1814 & 1.1819 & 1.1823 & \(1.18:{ }^{\sim}\) & 31 \\
\hline 71 & 1.1818 & \(1.18 \% 3\) & \(1.182 \%\) & 32 & - 36 & 41 & 45 & 50 & 54 & 1. 58 & 6: \\
\hline 68 & 49 & 54 & 5 S & 63 & 68 & & & 81 & 8.5 & 89 & 94 \\
\hline 65 & 80 & 85 & 89 & 94 & & 1.1903 & 1.1908 & 1.1912 & 1.1916 & 11920 & 1.1925 \\
\hline 63 & 1.1911 & 1.1916 & 1.19 21 & 1.1925 & 1.1930 & 34 & & 43 & \(4 \sim\) & & 56 \\
\hline 59 & 42 & 47 & 52 & 56 & 61 & & & 74 & 78 & 83 & \(8 \uparrow\) \\
\hline 56 & 73 & 78 & 83 & \(8{ }^{7}\) & \(9:\) & 96 & 1.2001 & 1.2005 & 1.2010 & 1. 2014 & 1.2018 \\
\hline 53 & 1.2004 & 1.2009 & 1.2014 & 1.2018 & 1.2033 & 1.2028 & 32 & 36 & 41 & 45 & 49 \\
\hline 50 & 35 & 40 & 45 & 50 & 54 & 59 & & or & \% & 76 & 80 \\
\hline 47 & 66 & & & 81 & 85 & 90 & 94 & 98 & 1.2103 & \(1.210 \sim\) & 1.2111 \\
\hline 44 & 98 & 1.210\% & \(1.210 \sim\) & 1.2112 & 1.2116 & 1.2121 & 1.2125 & 1.2130 & 34 & 38 & 4: \\
\hline 41 & 1.2109 & 33 & 38 & 43 & 47 & 52 & 56 & 61 & 65 & 69 & 73 \\
\hline 38 & 60 & 64 & 69 & r'4 & rs & 83 & 87 & 92 & 96 & 1.2:00 & 1.2004 \\
\hline 35 & 91 & 96 & 1.2900 & 1. 2.05 & 1.2209 & 1.2214 & 1.2.218 & 1.2223 & 1.2e2 & 31 & 35 \\
\hline 32 & 1.2022 & 1.202\% & 31 & 361 & 1.41 & 1. 45 & 49 & 1. 54 & 1. 58 & 62 & 67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Gange-p Absolut &  & \[
\begin{aligned}
& 105+ \\
& 120
\end{aligned}
\] & 110
125 & \(\left\lvert\, \begin{aligned} & 115 \\ & 130\end{aligned}\right.\) & 120
135 & \[
\begin{aligned}
& 125+ \\
& 140
\end{aligned}
\] & \[
1 \begin{aligned}
& 130+ \\
& 145
\end{aligned}
\] & \(135+\)
150 & \[
\begin{aligned}
& 140+ \\
& 155
\end{aligned}
\] & \[
\begin{aligned}
& 145+ \\
& 160 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 150+ \\
& 165
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\overline{\text { Feed }-w} \\
\text { Ten }
\end{gathered}
\] & & & & & Factor & RS Of E & Evapora & ATION. & & & \\
\hline 212 & . 039 ĩ & , & & & & & & & & & \\
\hline 209 & 1.0429 & 39 & 49 & 58 & 67 & & & 93 & 1.0501 & 1.0509 & \(1.051 \%\) \\
\hline 206 & 60 & 70 & 80 & 89 & 99 & 1.0508 & 1.0516 & 1.0595 & 33 & 41 & 48 \\
\hline 203 & 92 & 1.0502 & 1.0511 & 1.0521 & 1.0530 & 39 & & 56 & 64 & \%2 & 80 \\
\hline 200 & 1.0523 & 33 & 43 & 52 & 62 & \% 0 & 79 & 8 \% & & 1.0604 & 1.0611 \\
\hline 197 & 55 & 65 & 74 & 84 & 93 & 1.0602 & 1.0610 & 1.0619 & \(1.062 \sim\) & 35 & 43 \\
\hline 194 & 86 & 96 & 1.0606 & 1.0615 & 1.0624 & 33 & & & 58 & 66 & 74 \\
\hline 191 & 1.0617 & 1.0627 & \(3 \sim\) & 47 & 56 & 65 & 733 & 8: & - 90 & 98 & 1.0\%06 \\
\hline 185 & 49 & 59 & 69 & 78 & Si & 96 & \(1.0 \% 05\) & \(1.0 \sim 13\) & \(1.0 \% 21\) & \(1.0 \% 29\) & 37 \\
\hline 185 & 80 & 90 & 1.0\%00 & \(1.0 \% 09\) & 1.0719 & 1.0727 & 36 & 44 & 53 & 61 & 68 \\
\hline 182 & \(1.0 \% 12\) & 1.0722 & 31 & 41 & & & & & 84 & 92 & 1.0500 \\
\hline 179 & & 53 & 63 & 72 & 81 & 90 & 93 & 1.0807 & 1.0815 & 1.0823 & 31 \\
\hline 176 & 74 & 84 & 94 & 1.0803 & 1.0813 & 1.0821 & 1.0830 & 39 & \(4 \pi\) & 55 & 62 \\
\hline 173 & 1.0806 & 1.0816 & 1.0825 & 35 & 44 & & & \% 0 & 78 & 86 & 94 \\
\hline 170 & \(3 \sim\) & 47 & \(5 \sim\) & 66 & 75 & 84 & 93 & 1.0901 & 1.0909 & 1.0917 & 1.0925 \\
\hline 167 & 68 & 78 & 88 & 97 & \(1.090 \%\) & 1.0915 & \(1.09 刃 4\) & 32 & 41 & 49 & 56 \\
\hline 164 & 1.0900 & 1.0910 & 1.0919 & 1.0929 & 38 & & 55 & 64 & 72 & 80 & 88 \\
\hline 161 & - 31 & 41 & 1.091 & 60 & 69 & 78 & 8î & 95 & 1.1003 & 1.1011 & 1.1019 \\
\hline 158 & 62 & 72 & \(8:\) & 91 & 1.1000 & 1.1009 & 1.1018 & 1.10 26 & 35 & 43 & 50 \\
\hline 155 & 83 & 1.1003 & 1.1013 & 1.1023 & 32 & 41 & 49 & 58 & 66 & 74 & 8\% \\
\hline 152 & 1.1025 & 35 & 44 & 54 & 63 & \% 2 & 81 & 89 & \(9 \hat{6}\) & 1.1105 & 1.1113 \\
\hline 149 & 56 & 66 & 76 & 85 & 94 & 1.1103 & 1.1112 & 1.1120 & 1.1128 & 36 & 44 \\
\hline 146 & 87 & 97 & \(1.110 \%\) & 1.1116 & 126 & 34 & 43 & 51 & 60 & 68 & \% \\
\hline 143 & 1.1118 & 1.1129 & - 38 & 48 & 5 & 66 & 74 & 83 & 91 & 99 & \(1.120 \sim\) \\
\hline 140 & 50 & 60 & 70 & 79 & 88 & 97 & 1.1206 & 1.1214 & 1.123: & 1.1230 & 38 \\
\hline \(13 \sim\) & 81 & 91 & 1.1201 & 1.1210 & 1.1219 & 1.1228 & \(3 \sim\) & 45 & 53 & 61 & 69 \\
\hline 134 & 1.1212 & 1.122? & 32 & +1 & 51 & 59 & 68 & 76 & 85 & 93 & 1.1300 \\
\hline 131 & 43 & 53 & 63 & 73 & 82 & 91 & -99 & 1.1308 & 1.1316 & 1.1324 & - 32 \\
\hline 128 & 75 & 85 & 94 & 1.1304 & 1.1313 & 1.1322 & 1.1331 & 39 & 47 & 55 & 63 \\
\hline 125 & 1.1306 & 1.1316 & 1.1326 & 35 & 44 & 53 & 62 & 70 & \%S & S6 & 94 \\
\hline 122 & \(3 \mathrm{\sim}\) & \(4{ }^{2}\) & 5 \% & 66 & 75 & 84 & 93 & 1.1401 & 1.1409 & \(1.141 \%\) & 1.1425 \\
\hline 119 & 68 & 78 & 88 & 97 & \(1.140 \sim\) & 1.1415 & 1.1424 & - 32 & 41 & - 49 & -14 56 \\
\hline 116 & 99 & 1.1409 & 1.1419 & 1.1429 & 38 & 47 & 5.5 & 64 & \%2 & 80 & 88 \\
\hline 113 & 1.1431 & 41 & - 50 & 60 & 69 & \%8 & 86 & 95 & 1.1503 & 1.1511 & 1.1519 \\
\hline 110 & 62 & 72 & 82 & 91 & 1.1500 & 1.1509 & 1.1518 & 1.1526 & 34 & - 42 & - 50 \\
\hline 107 & 93 & 1.1503 & 1.1513 & 1.1522 & 31 & 40 & & \(5 \%\) & 65 & \%3 & 81 \\
\hline 104 & 1.1524 & 3i & 44 & 53 & 62 & 71 & 80 & 88 & 97 & 1.1605 & 1.1612 \\
\hline 101 & 55 & 65 & 75 & 84 & 94 & 1.1602 & 1.1611 & 1.16:0 & \(1.16 \div 8\) & 36 & 43 \\
\hline 98 & 86 & 96 & 1.1606 & 1.1616 & 1.1625 & 34 & & 51 & 59 & 67 & 75 \\
\hline 95 & 1.1618 & \(1.16 \geqslant 8\) & \(3{ }^{\prime \prime}\) & \(4{ }^{4}\) & 56 & 65 & 73 & 82 & 90 & 98 & 1.1706 \\
\hline 92 & 49 & 59 & 68 & \%8 & \(8{ }^{1}\) & 96 & 1.1605 & 1.1713 & 1.1 \%21 & 1.1729 & 37 \\
\hline 89 & 80 & 90 & 1.1700 & 1.1709 & 1.1\%18 & \(1.170 \sim 1\) & 36 & 44 & 52 & 60 & 68 \\
\hline 86 & \(1.1 \% 11\) & 1.17\%1 & 31 & 40 & 49 & 58 & \(6 \pi\) & 75 & 83 & 91 & 99 \\
\hline 83 & 42 & 52 & 62 & 71 & S 0 & 89 & 98 & 1.1806 & 1.1815 & \(1.18 \% 3\) & 1.1830 \\
\hline 80 & 73 & 83 & 93 & 1.1802 & 1.1812 & 1.18:3 & 1.1829 & 37 & - 46 & 54 & 61 \\
\hline 77 & 1.1804 & 1.1814 & 1.1824 & 34. & 43 & 52 & 60 & 69 & \% 7 & 85 & 93 \\
\hline \% 4 & 35 & 45 & 55 & 65 & 74 & 83 & 91 & 1.1900 & 1.190S & 1.1916 & \(1.19: 4\) \\
\hline 71 & 67 & 75 & 86 & 96 & 1.1905 & 1.1914 & 1.1922 & 31 & 39 & 47 & 55 \\
\hline 68 & 98 & 1.1908 & \(1.191 \%\) & \(1.192 \hat{\sim}\) & 36 & 45 & 54 & 62 & 70 & 78 & 86 \\
\hline 65 & 1.1929 & 39 & 49 & 58 & 67 & 76 & 85 & 93 & 1.2001 & 1. 2009 & 1.2017 \\
\hline 62 & 60 & 70 & 80 & 89 & 98 & 1.200\% & 1.2016 & 1.2024 & 32 & 40 & 48 \\
\hline 59 & 91 & 1.2001 & 1.2011 & 1.20\%0 & 1.2039 & 38 & 47 & 55 & 63 & \(\pi 1\) & 79 \\
\hline 56 & 1.2092 & 32 & 42 & 51 & 60 & 69 & & S6 & 94 & 1.2102 & 1.2110 \\
\hline 53 & 53 & 63 & 73 & 82 & 91 & 1.21001 & 1.2109 & \(1.211{ }^{\prime}\) & 1.2126 & 34 & 41 \\
\hline 50 & 84 & 941 & 1.2104 & 1.2113 & 1.2123 & 31 & \[
40
\] & 48 & \(5 \%\) & 65 & 72 \\
\hline 47 & 1.2115 & 1.2125 & 35 & 44 & 54 & 63 & 71 & S0 & 88 & 96 & 1.2203 \\
\hline 44 & 46 & 56 & 66 & 76 & 85 & 941 & 1.2202 & 1.2211 & 1.2219 & 1.229\% & 35 \\
\hline 41 & 77 & \(8 \%\) & 97 & 1.220\% & 1. 2216 & 1.2235 & 33 & 42 & - 50 & 5 S & 66 \\
\hline 38 & 1.220S & 1.22191 & 1.2228 & 38 & & & & & 81 & 89 & 97 \\
\hline 35 & 40 & 50 & 59 & 69 & 78 & Sin & 95 & 1.2304 & 1.8312 & 1. 2330 & 1.2328 \\
\hline 32 & 71 & 81 & 90 & 1.2300 & 1.2309 & 1.23181 & 1.2326 & 35 & 43 & 51 & 59 \\
\hline
\end{tabular}

\section*{STRENGTH OF STEEAMEBOILERS. VARIOUS RULES FOR CONSTRUCTION.}

There is a great lack of uniformity in the rules prescribed by different writers and by legislation governing the construction of steam-boilers In the United States, boilers for merchant vessels must be constructed according to the rules and regulations prescribed by the Board of Supervising Inspectors of Steam Vessels; in the U. S. Navy, according to rules of the Navy Department, and in some cases according to special acts of Congress. On land, in some places, as in Yhiladelphia, the construction of boilers is governed by local laws; but generally there are no laws upon the subject, and boilers are constructed according to the idea of individual engineers and boiler-makers. In Europe the construction is generally regulated by stringent inspection laws. The rules of the U. S. Supervising Inspectors of Steam-vessels, the British Lloyd's and Board of Trade, the French Bureau Veritas, and the German Lloyd's are ably reviewed in a paper by Nelson Foley, MI. Inst. Naval Architects, etc., read at the Chicago Engineering Congress, Division of Marine and Naval Engineering. From this paper the following notes are taken, chiefly with reference to the U.S. and British rules:
(Abbreviations.-T. S., for tensile strength; El., elongation; Contr., contraction of area.)
Hydraulic Tests.-Board of Trade, Lloyd's, and Bureau Veritas.Twice the working pressure.

United States Statutes.-One and a half times the working pressure.
Mr. Foley proposes that the proof pressure should be \(11 / 2\) times the working pressure + one atmosphere.

Established Nominal Factors of Safety.-Board of Trade.4.5 for a boiler of moderate length and of the best construction and workmanship.

Lloyd's.-Not very apparent, but appears to lie between 4 and 5.
United States Statutes.-Indefinite, because the strength of the joint is not considered, except by the broad distinction between single and double riveting.

Bureau Veritas: 4.4.
German Lloyd's: 5 to 4.65 , according to the thickness of the plates.
Material tor Riveting.-Board of Trade.-Tensile strength of rivet bars between 26 and 30 tons, el. in \(10^{\prime \prime}\) not less than \(25 \%\), and contr. of area not less than \(50 \%\).

Lloyd's.-T. S., 26 to 30 tons; el. not less than \(20 \%\) in \(8^{\prime \prime}\). The material must stand bending to a curve, the inner radius of which is not greater than \(11 / 2\) times the thickness of the plate, after having been uniformly heated to a low cherry-red, and quenched in water at \(82^{\circ} \mathrm{F}^{\circ}\).

United States Statutes.-No special provision.
Rules Connected with Riveting.-Board of Trade.-The shearing resistance of the rivet steel to be taken at 23 tons per square inch, 5 to be used for the factor of safety indepen lently of any addition to this factor for the plating. Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2 . The diameter must not be less than the thickness of the plate and the pitch never greater than \(812^{\prime \prime}\). Th. thickness of double butt-straps (each) not to be less than \(5 / 8\) the thickness of the plate; single butt-straps not less than 9/8.

Distance from centre of rivet to edge of hole \(=\) diameter of rivet \(\times 11 / 2\).
Distance between rows of rivets
\[
\begin{aligned}
& =2 \times \text { diam. of rivet or }=[(\text { diam. } \times 4)+1] \div 2, \text { if chain, and } \\
& =\frac{\sqrt{[(\text { pitch } \times 11)+(\text { diam. } \times 4)] \times(\text { pitch }+ \text { diam. } \times 4)}}{10} \text { if zigzag. }
\end{aligned}
\]

Diagonal pitch \(=(\) pitch \(\times 6+\) diam. \(\times 4) \div 10\).
Lloyd's.-Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2. The shearing strength of rivet steel to be taken at \(85 \%\) of the T. S. of the material of shell plates. In any case where the strength of the longitudinal joint is satisfactorily shown by experiment to be greater than given by the formula, the actual strength may be taken in the calculation.

United States Statutes.-No rules.
Material for Cyindrical Shells Subject to Intermal Pres-sure.-Board of Trade.-T. S. between 27 and 32 tons. In the normal condition, el. not less than \(18 \%\) in \(10^{\prime \prime}\), but should be about \(25 \%\); if annealed, not
less than \(20 \%\). Strips \(\mathfrak{2}^{\prime \prime}\) wide should stand bending until the sides are parallel at a distance from each other of not more than three times the plate's thickness.

Lloyd's.-'T'. S. between the limits of 26 and 30 tons per square inch. El. not less than \(20 \%\) in \(8^{\prime \prime}\). Test strips heated to a low cherry-red and plunged into water at \(82^{\circ} \mathrm{F}\). must stand bending to a curve, the inner radius of which is not greater than \(11 / 2\) times the plate's thickness.
U. S. Stututes.-Plates of \(1 / 2^{\prime \prime}\) thick and under shall show a contr. of not less than \(50 \%\); when over \(1 / 2^{\prime \prime}\) and up to \(3 / 4^{\prime \prime}\), not less than \(45 \%\); when over \(3 / 4^{\prime \prime}\), not less than \(40 \%\).

Mr. Foley's comments : The Board of Trade rules seem to indicate a steel of too high T. S. when a lower and more ductile one can be got : the lower tensile liinit should be reduced, and the bending test might with advantage be made after tempering, and made to a smaller radius. Lloyd's rule for quality seems more satisfactory, but the temper test is not severe. The United States Statutes are not sufficiently stringent to insure an entirely satisfactory material.

Mr. Foley suggests a material which would meet the following : 25 tons lower limit in tension ; \(2.5 \%\) in \(8^{\prime \prime}\) minimum elongation ; radius for bending test after tempering = the plate's thickness.

Shell-plate Formulx. - Board of Trade: \(P=\frac{T \times B \times t \times 2}{D \times F}\).
\(D=\) diameter of boiler in inches ;
\(P=\) working-pressure in lbs. per square inch;
\(t=\) thickness in inches ;
\(B=\) percentage of strength of joint compared to solid plate ;
\(T=\) tensile strength allowed for the material in lbs. per square inch ;
\(F=\) a factor of safety, being 4.5 , with certain additions depending on method of construction.
Lloys's : \(P=\frac{C \times(t-2) \times B}{D}\).
\(t=\) thickness of plate in sixteenths ; \(B\) and \(D\) as before ; \(C=\) a constant depending on the kind of joint.

When longitudinal seams have double butt-straps, \(C=20\). When longitudinal seams have double butt-straps of unequal width, only covering on one side the reduced section of plate at the outer line of rivets, \(C=19.5\).

When the longitudinal seams are lap-jointed, \(C=18.5\).
U. S. Statutes.-Using same notation as for Board of Trade,
\[
P=\frac{t \times 2 \times T}{D \times 6} \text { for single-riveting ; add } 20 \% \text { for double-riveting ; }
\] where \(T\) is the lowest T. S. stamped on any plate.

Mr. Foley criticises the rule of the United States Statutes as follows: The rule ignores the riveting, except that it distinguishes between single and double, giving the latter \(20 \%\) advantage ; the circumferential riveting or class of seam is altogether ignored. The rule takes no account of workmanship or method adopted of constructing the joints. The factor, one sixth, simply covers the actual nominal factor of safety as well as the loss of strength at the joint, no matter what its percentage; we may therefore dismiss it as unsatisfactory.

Rules for Flat Plates. - Board of Trade ; \(P=\frac{C(t+1)^{2}}{S-6}\).
\(P=\) working-pressure in lbs. per square inch;
\(S=\) surface supported in square inches;
\(t=\) thickness in sixteenths of an inch;
\(C=\) a constant as per following table:
\(C=125\) for plates not exposed to heat or flame, the stays fitted with nuts and washers, the latter at least three times the diameter of the stay and \(2 / 3\) the thickness of the plate;
\(C=187.5\) for the same condition, but the washers \(2 / 3\) the pitch of stays in diameter, and thickness not less than plate;
\(C=200\) for the same condition, but doubling plates in place of washers, the width of which is \(2 / 3\) the pitch and thickuess the same as the plate;
\(C=112.5\) for the same condition, but the stays with nuts only;
\(C=75\) when exposed to impact of heat or flame and steam in coutact with the plates, and the stays fitted with nuts and washers three times the diameter of the stay and \(2 / 3\) the plate's thickness;
\(C=6 \% .5\) for the same condition, but stays fitted with nuts only;
\(C=100\) when exposed to heat or fiame, and water in contact with the plates, and stays screwed into the plates and fitted with nuts;
\(C=66\) for the same condition, but stays with riveted heads.
U. S. Statutes.-Using same notation as for Board of Trade. \(\quad P=\frac{C \times t}{p^{2}}\), where \(p=\) greatest pitch in inches, \(P\) and \(t\) as above;
\(C^{\gamma}=112\) for plates \(7 / 16^{\prime \prime}\) thick and under, fitted with screw stay-bolts and nuts, or plain bolt fitted with single nut and socket, or riveted head and socket;
\(C=120\) for plates above \(7 / 16^{\prime \prime}\), under the same conditions;
\(C=140\) for flat surfaces where the stays are fitted with nuts inside and outside:
\(C=200\) for flat surfaces under the same condition, but with the addition of a washer riveted to the plate at least \(1 / 2\) plate's thickness, and of a diameter equal to \(2 / 5\) pitch.
N.B.-Plates fitted with double angle-irons and riveted to plate, with leaf at least \(2 / 3\) the thickness of plate and depth at least \(1 / 4\) of pitch, would be allowed the same pressure as determined by formula for plate with washer riveted on.
N.B.-No brace or stay-bolt used in marine boilers to have a greater pitch than \(1012^{\prime \prime}\) on fire-boxes and back connections.

Certain experiments were carried out by the Board of Trade which showed that the resistance to bulging does not vary as the square of the plate's thickness. There seems also good reason to believe that it is not inversely as the square of the greatest pitch. Bearing in mind, says Mr. Foley, that mathematicians have signally failed to give us true theoretical foundations for calculating the resistance of bodies subject to the simplest forms of stresses, we therefore cannot expect much from their assistance in the matter of flat plates.
The Board of Trade rules for flat surfaces, being based on actual experiment, are especially worthy of respect; sound judgment appears also to have been used in framing them.
Furnace Formulæ.-Board of Trade.-Long Furnaces.-
\(P=\frac{C \times t^{2}}{(L+1) \times D}\), but not where \(L\) is shorter than (11.5t-1), at which length the rule for short furnaces comes into play.
\(P=\) working-pressure in pounds per square inch; \(t=\) thickness in inches; \(D=\) outside diameter in inches; \(L=\) length of furnace in feet up to 10 ft .; \(C=\) a constant, as per following table, for drilled holes :
\(C=99,000\) for welded or butt-jointed with single straps, doubleriveted;
\(C=88,000\) for butts with single straps, single-riveted;
\(C=99,000\) for butts with double straps, single-riveted.
Provided always that the pressure so found does not exceed that given by the following formulæ, which apply also to short furnaces:
\(P=\frac{C \times t}{D}\) for all the patent furnaces named;
\(P=\frac{C \times t}{3 \times D}\left(5-\frac{L \times 12}{67.5 \times t}\right)\) when with Adamson rings.
\(C=8,800\) for plain furnaces;
\(C=14,000\) for Fox; minimum thickness \(5 / 16^{\prime \prime}\), greatest \(5 / 8^{\prime \prime}\); plain part not to exceed \(6^{\prime \prime}\) in length;
\(C=13,500\) for Morison; minimum thickness \(5 / 16^{\prime \prime}\), greatest \(5 / 8^{\prime \prime}\); plain part not to exceed \(6^{\prime \prime}\) in length:
\(C=14,000\) for Purves-Brown; limits of thickness \(7 / 16^{\prime \prime}\) and \(5 / 8^{\prime \prime}\); plain part \(9^{\prime \prime}\) in length;
\(C=8,800\) for Adamson rings; radius of fiange next fire \(11 / 2^{\prime \prime}\).
U. S. Statutes.-Long Fiurnaces.-Same notation.
\(P=\frac{89,600 \times t^{2}}{L \times D}-\), but \(L\) not to exceed 8 ft .
N.B.-If rings of wrought iron are fitted and riveted on properly around and to the flue in such a manner that the tensile stress on the rivets shall
not exceed 6000 lbs . per sq. in., the distance between the rings shall be taken as the length of the flue in the formulæ.
Short Fiurnaces, Plain and Putent. \(-P\), as before, when not 8 ft . long \(=\frac{89,600 \times t^{2}}{L \times D}\)
\[
P=\frac{t \times C}{D} \text { when }
\]
\(C=14,000\) for Fox corrugations where \(D=\) mean diameter; \(C=14.000\) for Yurves-Brown where \(D=\) diameter of flue; \(C=56 \tilde{r}^{7}\) for plain flues over \(16^{\prime \prime}\) diameter and less than \(40^{\prime \prime}\), when not over 3 ft . lengths.
Mr. Foley comments on the rules for long furnac-s as follows: The Board of Trade general formula, where the length is a factor, has a very limited range indeed, viz., 10 ft . as the extreme length, and 135 thicknesses - \(12^{\prime \prime}\), as the short limit. The original formula, \(P=\frac{C \times t^{2}}{L \times D}\), is that of Sir W. Fairbairn, and was, I believe, never intended by him to apply to short furnaces. On the very face of it, it is apparent, on the other hand, that if it is true for moderately long furnaces, it cannot be so for very long ones. We are therefore driven to the conclusion that any formuia which iucludes simple \(L\) as a factor must be founded on a wrong basis.
With Mr. Traill's form of the formula, namely, substituting \((L+1)\) for \(L\), the results appear sufficiently satisfactory for practical purposes, and indeed, as far as can be jurlged, tally with the results obtained from experiment as nearly as could be expected. The experiments to which I refer were six in number, and of great variety of length to diameter; the actual factors of safety ranged from 4.4 to 62 , the mean being \(4 . i 8\), or practically \({ }_{5}\). It seems to me, therefore, that, within the limits prescribed, the Board of Trade formula may be accepted as suitable for our requirements.
The United States Statutes give Fairbairn's rule pure and simple, except that the extreme limit of length to which it applies is fixed at 8 feet. As far as can be seen, no limit for the shortest length is prescribed, but the rules to me are by no means clear, flues and furnaces being mixed or not well distinguished.
Material for Stays.--The qualities of material prescribed are as follows:
Board of Trade. - The tensile strength to lie between the limits of 27 and 32 tons per square inch, and to have an elongation of not less than \(20 \%\) in \(10^{\prime \prime}\). Steel stays which have been welded or worked in the fire should not be used.

Lloyd's. -26 to 30 ton steel, with elongation not less than \(20 \%\) in \(8^{\prime \prime}\).
U. S. Statutes. - The only condition is that the reduction of area must not be less than \(40 \%\) if the test har is over \(3 / 4^{\prime \prime}\) diameter.
Loads allowed on Stays. - Board of Trade. - 9000 lbs . per square inch is allowed ou the net section, provided the tensile strength ranges from \(2 \tau\) to 32 tons. Steel stays are not to be welded or worked in the fire.
Lloyd's.-For screwed and other stays, not exceeding \(11 / 2^{\prime \prime}\) diameter effective, 8000 lbs . per square inch is allowed; for stays above \(11 / 2^{\prime \prime}, 9000 \mathrm{lbs}\). No stays are to be welded.
U. S. Statutes.-Braces and stays shall not be subjected to a greater stress than 6000 lbs . per square inch.
[Rankine, S. E., p. 459, says: "The iron of the stays ought not to be exposed to a greater working tension than 3000 lbs . on the square inch, in order to provide against their being weakened by corrosion. This amounts to making the factor of safery for the working pressire about 20." It is evident, however, that an allowance in the factor of safety for corrosion may reasonably be decreased with increase of diameter. W. K.]
Girders.-Board of Trade. \(\quad P=\frac{C \times d^{2} \times t}{(W-p) D \times L} . \quad P=\) working pressure in lbs. per sq.in.; \(W=\) width of flame-box in inches; \(\bar{L}=\) length of girder in iuches; \(p=\) pitch of bolts in inches; \(D=\) distance betwe \(\in n\) girders from centre to centre in inches; \(d=\) depth of girder in inches; \(t=\) thickness of sum of same in inches; \(C=\) a coustant \(=6600\) for 1 bolt, 9900 for 2 or 3 bolts, and 11,220 for 4 bolts.

Lloyd's. -The same formula and constants, except that \(C=11,000\) for 4 or 5 bolts, 11,550 for 6 or 7 , and 11,880 for 8 or more.
U. S. Statutes.-The matter appears to be left to the designers.

Tube-Flates.-Board of Trade. \(\quad P=\frac{t(D-d) \times 20,000}{W \times D}, \quad D=\) least horizontal distance between centres of tubes in inches; \(d=\) inside diameter of ordinary tubes; \(t=\) thickness of tube-plate in inches; \(W\) = extreme width of combustion-box in inches from front tube-plate to back of firebox, or distance between combustion-box tube-plates when the boiler is double-ended and the box common to both ends.

The crushing stress on tube-plates caused by the pressure on the flamebox top is to be limited to \(10,000 \mathrm{lbs}\). per square inch.
Material for Tubes.-Mr. Foley proposes the following: If iron, the quality to be such as to give at least 22 tons per square inch as the minimum tensile strength, with an elongation of not less than \(15 \%\) in \(\mathrm{S}^{\prime \prime}\). If steel, the elongation to be not less than \(26 \%\) in \(8^{\prime \prime}\) for the material before being rolled into strips; and after tempering, the test bar to stand completely closing together. Provided the steel welds well, there does not seem to be any object in providing tensile limits.
The ends should be annealed after manufacture, and stay-tube ends should be annealed before screwing.

Holding=power of Roiler-tubes.-Experiments made in Washington Navy Yard show that with \(21 / 2\) in. brass tubes in no case was the holdingpower less, roughly speaking, than 6000 lbs ., while the average was upwards of \(20,000 \mathrm{lbs}\). It was further shown that with these tubes nuts were superfluous, quite as good results being obtained with tubes simply expanded into the tube-plate and fitted with a ferrule. When nuts were fitted it was shown that they drew off without injuring the threads.

In Messrs. Yarrow's experiments on iron and steel tubes of \(2^{\prime \prime}\) to \(21 / 4^{\prime \prime}\) diameter the first 5 tubes gave way on an average of \(23,740 \mathrm{lbs}\)., which would appear to be about \(2 / 8\) the ultimate strength of the tubes themselves. In all these cases the hole through the tube-plate was parallel with a sharp edge to it, and a ferrule was driven into the tube.
Tests of the next 5 tubes were made under the same conditions as the first 5 , with the exception that in this case the ferrule was omitted, the tubes being simply expanded into the plates. The mean pull required was \(15,2 \% 0 \mathrm{lbs}\)., or considerably less than half the ultimate strength of the tubes.
Effect of beading the tubes, the holes through the plate being parallel and ferrules omitted. The mean of the first 3, which are tubes of the same kind, gives \(26,876 \mathrm{lbs}\). as their holding-power, under these conditions. as compared with \(23,740 \mathrm{lbs}\). for the tubes fitted with ferrules only. This high figure is, however, mainly due to an exceptional case where the holdingpower is greater than the average strength of the tubes themselves.

It is disadvantageous to cone the hole through the tube-plate unless its sharp edge is removed, as the results are much worse than those obtained with parallel holes, the mean pull being but \(16,031 \mathrm{lbs}\)., the experiments being made with tubes expanded and ferruled but not beaded over.

In experiments on tubes expanded into tapered holes, beaded over and fitted with ferrules, the net result is that the holding-power is, for the size experimented ou, about \(3 / 4\) of the tensile strength of the tube, the mean pull being \(28,79 \% \mathrm{lbs}\).

With tubes expanded into tapered holes and simply beaded over, better results were obtained than with ferrules; in these cases, however, the sharp edge of the hole was rounded off, which appears in general to have a good effect.

In one particular the experiments are incomplete, as it is impossible to reproduce on a machine the racking the tubes get by the expansion of a boiler as it is heated up and cooled down again, and it is quite possible, therefore, that the fastening giving the best results on the testing-machine may not prove so efficient in practice.
N.B.-It should be noted that the experiments were all made under the cold condition, so that reference should be made with caution, the circumstances in practice being very different, especially when there is scale on the tube-plates, or when the tube-plates are thick and subject to inteuse heat.

Iron versus Steel Boiler-tubes. (Foley.) - Mr. Blechynden prefers iron tubes to those of steel, but how far he would go in attributing the leaky-tube defect to the use of steel tubes we are not aware. It appears, however, that the results of his experiments would warrant him in going a considerable distance in this direction. The test consisted of heating and cooling two tubes, one of wrought iron and the other of steel. Both tubes were \(23 / 4 \mathrm{in}\). in diameter and .16 in , thickness of metal. The tubes were
put in the same furnace, made red-hot, and then dipped in water. The length was gauged at a temperature of \(46^{\circ} \mathrm{F}\).
This operation was twice repeated, with results as follows :
\begin{tabular}{|c|c|c|}
\hline inal length & Steel. 55.495 in & \begin{tabular}{l}
Iron. \\
55.495 in
\end{tabular} \\
\hline Heated to \(186^{\circ} \mathrm{F}\).; in & . 052 & 048 '6: \\
\hline Coefficient of expansion per degree F & . 0000067 & . 0000062 \\
\hline Heated red-hot and dipped in water; decrease & . 007 in . & . 003 in . \\
\hline Second heating and cooling, decrease & . 031 in . & . 004 in . \\
\hline Third heating and cooling, decrease & . 017 in . & . 006 in . \\
\hline Total contraction & 055 in. & . 013 in . \\
\hline
\end{tabular}

Mr. A. C. Kirk writes : That overheating of tube ends is the cause of the leakage of the tubes in boilers is proved by the fact that the ferrules at present used by the Admiralty prevent it. These act by shielding the tube ends from the action of the flame, and consequently reducing evaporation, and so allowing free access of the water to keep them cool.
Although many causes contribute, there seems no doubt that thick tubeplates must bear a share of causing the mischief.
Rules for Construction of Boilers in Merchant Vessels in the United States.
(Extracts from General Rules and Regulations of the Board of Supervising Inspectors of Steam-vessels (as amended 1898).)
Tensile Strength of Plate. (Section 3.)-To ascertain the tensile strength and other qualities of iron plate there shall be taken from each
 sheet to be used in shell or other parts of boiler which are subject to tensile strain a test piece prepared in form according to the following diagram, viz.: 10 inches in length, 2 inches in width, cut out in the centre in the manner indicated.

To ascertain the tensile strength and other qualities of steel plate, there shall be taken from each sheet to be used in shell or other parts of boiler which are subject to tensile straiu a testpiece prepared in form according to the following diagram:
The straight part in centre shall be 9 inches in length and 1 inch in width, marked with light prickpunch marks at distances 1 inch apart, as shown, spaced so as to give 8 inches in lengti.

\section*{The sample must show when}
 tested an elongation of at least \(25 \%\) in a length of 2 in . for thickness up to \(1 / 4 \mathrm{in}\)., inclusive; in a length of 4 in . for over \(1 / 4\) to \(7 / 16\), inclusive; in a length of 6 in ., for all plates over \(7 / 16 \mathrm{in}\). and under \(13 / 4 \mathrm{in}\). thickness.
The reduction of area shall be the same as called for by the rules of the Board. No plate shall contain more than \(.06 \%\) of phosphorus and \(.04 \%\) of sulphur.
The samples shall also be capable of being-bent to a curve, of which the inner radius is not greater than \(11 / 2\) times the thickness of the plates after having been heated uniformly to a low cherry-red and quenched in water of \(82^{\circ} \mathrm{F}\).
[Priol to 1894 the shape of test-piece for steel was the same as that for iron, viz., the grooved shape. This shape has been condemned by authorities on strength of materials for over twenty years. It always gives results which are too high, the error sometimes amounting to 25 per cent. See pages 242, 243, ante; also, Strength of Materials, W. Kent, Van N. Science Series No. 41, and Beardslee on Wrought-iron and Chain Cables.]

Ductility. (Section 6.)-To ascertain the ductility and other lawful qualities, iron of \(45,000 \mathrm{lbs}\). tensile strength shall show a contraction of area of 15 per cent, and each additional 1000 lbs . tensile strength shall show 1 per cent additional contraction of area, up to and including 55,000 tensile strength. Iron of 55,000 tensile strength and upwards, showing 25 per cent reduction of area, shall be deemed to have the lawful ductility. All steel plate of \(1 / 2\) inch thickness and under shall show a contraction of area of not less than 50 per cent. Steel plate over \(1 / \frac{2}{9}\) inch in thickness, up to \(9 / 4\) inch in
thickness，shall show a reduction of not less than 45 per cent．All steel plate over \(3 / 4\) inch thickness shall show a reduction of not less than 40 per cent．

Humped Heads of Boilers．（Section 17 as amended 1894．）－ Pressure Allowed on Bumped Heads．－Multiply the thickness of the plate by one sixth of the tensile strength，and divide by six tenths of the radius to which head is bumped，which will give the pressure per square inch of steam allowed．

Pressure Allowable for Concaved Heads of Boilers．－Multiply the pressure per square inch allowable for bumped heads attached to boilers or drums convexly，by the constant． 6 ，and the product will give the pressure per square inch allowable in concaved heads．

The pressure on unstayed flat－heads on steam－drums or shells of boilers，when flanged and made of wrought iron or steel or of cast steel， shall be determined by the following rule：
The thickness of plate in inches multiplied by one sixth of its tensile strength in pounds，which product divided by the area of the head in square inches multiplied by .09 will give pressure per square iuch allowed．The material used in the construction of flat－heads when tensile strength has not been officially determined shall be deemed to have a tensile strength of 45，000 lbs．

\section*{Table of Pressures allowable on steam－boilers made of Riveted Iron or Steel Plates．}
（Abstract from a table published in Rules and Regulations of the U．S． Board of Supervising Inspectors of Steam－vessels．）
Plates \(1 / 4\) inch thick．For other thicknesses，multiply by the ratio of the thickness to \(1 / 4\) inch．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{50，000 Tensile Strength．} & \multicolumn{2}{|l|}{\begin{tabular}{l}
55，000 Tensile \\
Strength．
\end{tabular}} & \multicolumn{2}{|l|}{60，000 Tensile Strength．} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 65,000 Tensile } \\
& \text { Strength. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{〒0，000 Tensile Strength．} \\
\hline &  &  &  &  &  & 它: &  &  &  &  \\
\hline 36 & 115.74 & 138.88 & 127.31 & 152.77 & 138.88 & 166.65 & 150.46 & 180.55 & 162.03 & \(19+\) \\
\hline 38 & 109.64 & 131.56 & 120.61 & 144.73 & 131．5\％＇ & \(15 \%\). & 142.54 & 171.04 & 153.5 & 184．20 \\
\hline 40 & 104.16 & 124.99 & 114.58 & 137.49 & 125 & 150 & 135.41 & 162.49 & 145.83 & 1 14．99 \\
\hline 42 & 99.2 & 119.04 & 109．12 & 130.94 & 119.04 & 14281 & 128.96 & 154.75 & 138.88 & 166.65 \\
\hline 44 & 94.69 & 113.62 & 104.16 & 124.99 & 113.63 & 136.35 & 123.1 & 147.72 & 132.56 & 159.07 \\
\hline 46 & 90.57 & 108.68 & 99.63 & 119.55 & 108.69 & 130.42 & 117． 75 & 141.3 & 126.8 & 152.16 \\
\hline 48 & 86.8 & 104.16 & 95.48 & 114.57 & 104．16 & 124.99 & 112.84 & 135.4 & 121．52 & 145.82 \\
\hline 5 & 77.16 & 92.59 & 84.87 & 101.84 & 92.59 & 111.10 & 100.3 & 120.36 & 108.02 & 129.63 \\
\hline 60 & 69.44 & 83.32 & 76.38 & 91.65 & 83.33 & 99.99 & 90.27 & 108.32 & 97.22 & 116.66 \\
\hline 66 & 63.13 & 75.75 & 69.44 & 83.32 & 75.75 & 90.90 & 82.07 & 98.48 & 88.3 亿 & 106．04 \\
\hline 72 & 57.87 & 69.44 & 63.65 & 76.38 & 69.44 & 83.32 & 75.22 & 90.26 & 81.01 & 97.21 \\
\hline 8 & 53.41 & 64.09 & 58.76 & 70.5 & 64.4 & 76.92 & 69.44 & 83.32 & 74．78 & 89.73 \\
\hline 84 & 49.6 & 59.52 & 54.56 & 65.47 & 59.52 & \％1．42 & 64.48 & 77.37 & 69.44 & 83.32 \\
\hline 90 & 46.29 & 55.44 & 50.92 & 61.1 & 55.55 & 66.66 & 60.18 & \％2．21 & 64.81 & 77.77 \\
\hline 96 & 43.4 & 52.08 & 47.74 & 57.28 & 52.08 & 62.49 & 56.42 & 67.67 & 60.7 & \％2． \\
\hline
\end{tabular}

The figures under the columns headed＂pressure＂are for single－riveted boilers．Those under the columns headed＂ \(20 \%\) Additional＂are for double－ riveted．

\section*{U．S．Rule for Allowable Presstres．}

The pressure of any dimension of boilers not found in the table annexed to these rules must be ascertained by the following rule：
Multiply one sixth of the lowest tensile strength found stamped on anp plate in the cylindrical shell by the thickness（expressed in inches or parts of an inch）of the thinnest plate in the same cylindrical shell，and divide by the radius or half diameter（also expressed in inches），the qnotient will be the pressure allowable per square inch of surface for single－riveting，to which add twenty per centum for double－riveting when all the rivet－holes in the shell of such boiler have been＂fairly drilled＂and no part of such hole has been punched．

The author desires to express his condemnation of the above rule，and of the tables derived from it，as giving too low a factor of safety．（See also criticism by Mr．Foley，page \％01，ante．）

If \(E b=\) bursting-pressure, \(t=\) thickness, \(T=\) tensile strength,\(c=\) coefficient of strength of riveted joint, that is, ratio of strength of the joint to that of the solid plate, \(d=\) diameter, \(P_{b}=\frac{2 t T c}{d}\), or if \(c\) be taken for doubleriveting at \(0 . \%\), then \(P_{b}=\frac{1.4 t T}{d}\).
By the U.S. rule the allowable pressure \(P a=\frac{1 / 6 t T}{1 / 2 d} \times 1.20=\frac{0.4 t T}{d}\); whence \(P b=3.5 P a\); that is, the factor of safety is only 3.5 , provided the "tensile strength found stamped in the plate" is the real tensile strength of the material. But in the case of iron plates, since the stamped T.S. is obtained from a grooved specimen, it may be greatly in excess of the real T.S., which would make the factor of safety still lower. According to the table, a boiler 40 in . diam., \(1 / 4 \mathrm{in}\). thick, made of iron stamped 60,000 T.S., would be licensed to carry 150 lbs. pressure if double-riveted. If the real T.S. is only \(50,000 \mathrm{lbs}\). the calculated bursting-strength would be
\[
P=\frac{2 t T c}{d}=\frac{2 \times 50,000 \times .25 \times .70}{40}=437.5 \mathrm{lbs}
\]
and the factor of safety ouly \(437.5 \div 150=2.91\) !
The author's formula for safe working-pressure of externally-fired boilers with longitudinal seams double-riveted, is \(P=\frac{14000 t}{d} ; t=\frac{P d}{14000} ; P=\) gaugepressure in lbs. per sq. in.; \(t=\) thickness and \(d=\) diam. in inches.
This is derived from the formula \(P=\frac{2 t T c}{f d}\), taking \(c\) at 0.7 and \(f=5\) for steel of \(50,000 \mathrm{lbs}\). T.S., or 6 for \(60,000 \mathrm{lbs}\). T.S.; the factor of safety being increased in the ratio of the T.S., since with the higher T.S. there is greater danger of cracking at the rivet-holes from the effect of punching and riveting and of expansion and contraction caused by variations of temperature. For external shells of internally-fired boilers, these shells not being exposed to the fire, with rivet-holes drilled or reamed after punching, a lower factor of safety and steel of a higher T.S. may be allowable.
If the T.S. is 60,000 , a working pressure \(P=\frac{16000 t}{d}\) would give a factor of safety of 5.25.
The following table gives safe working pressures for different diameters of shell and thicknesses of plate calculated from the author's formula.

\section*{Safe Working Pressures in Cylindrical Shells of Boilers, Tanks, Pipes, etc., in Pounds per Square Inch.}

Longitudinal seanns double-riveted.
(Calculated from formula \(P=14,000 \times\) thickness \(\div\) diameter.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Diameter in Inches.} \\
\hline & 24 & 30 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 & 52 \\
\hline & 36 & 29.2 & 24.3 & 23.0 & 21.9 & 20.8 & 19.9 & 19.0 & 18.2 & 17.5 & 168 \\
\hline 2 & 72.9 & 58.3 & 48.6 & 46.1 & 43.8 & 41.7 & 39.8 & 38.0 & 36.5 & 35.0 & 33.7 \\
\hline 3 & 109.4 & 87.5 & 72.9 & 69.1 & 65.6 & 62.5 & 59.7 & 57.1 & 54.7 & 52.5 & 50.5 \\
\hline 4 & 145.8 & 116.7 & 9 9. 2 & 92.1 & 87.5 & 83.3 & 79.5 & 76.1 & 72.9 & \% 0.0 & 67.3 \\
\hline 5 & 182. 3 & 145.8 & 121.5 & 115.1 & 109.4 & 104.2 & 99.4 & 95.1 & 91.1 & 81.5 & 8101. 0 \\
\hline \(\stackrel{6}{6}\) & 218.7 & 175.0 & 145.8 & 138.2 & 131.3 & 125.0 & 119.3 & 114.1 & 129.4 & 120.5 & 117.8 \\
\hline 7 & 255.2 & 204.1 & 170.1 & 161.2 & 153.1 & 145.9 & 139.2 & 133.2 & 1275.6 & 120.5 & 134.6 \\
\hline 8 & \(291 . \%\) & 233.3 & 194.4 & 184.2 & 175.0
196.9 & 166.5
\(18 \%\) & 159.1 & 152.2 & 145.8 & 147.5 & 134.6
151.4 \\
\hline 9 & 328.1 & 262.5 & 218.8 & 207.2
230.3 & 196.9
218.8 & 187.5
208.3 & 179.0
198.9 & 171.2
190.2 & 189.3 & 175.0 & 168.3 \\
\hline 10 & 364.6
401.0 & 291.7 & 243.1 & 230.3
253.3 & 218.8 & 229.2 & \({ }_{218}^{18.7}\) & 209.2 & 200.5 & 192.5 & 185.1 \\
\hline 12 & 437.5 & 350.0 & 291.7 & 276.3 & 262.5 & 250.0 & 238.6 & 228.3 & 218.7 & 210.0 & 201.9 \\
\hline 13 & 473.9 & 3 \%9.2 & 316.0 & 299.3 & 281.4 & 270.9 & 258.5 & 247.3 & 337.0 & 2450 & 218.8 \\
\hline 14 & 410.4 & 408.3 & 340.3 & 32.4 & 306.3 & 291.7 & 278.4 & 266.3 & 255.2 & 246.0 & 252.4 \\
\hline 15 & 546.9 & 437.5 & 364.6 & 345.4 & 328.1 & 312.5 & 298.3 & 285.3 & \(\stackrel{\text { 273.4 }}{ }\) & 266.5
280.0 & 269.2 \\
\hline 16 & 583.3 & 466.7 & 388.9 & 368.4 & 350.0 & 333.3 & 318.2 & 304.4 & 291.7 & 280.0 & 269. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{12}{|c|}{Diameter in Inches.} \\
\hline E.E & 54 & 60 & 66 & 72 & 78 & 84 & 90 & 96 & 102 & 08 & 114 & 120 \\
\hline 1 & 16. & 14.6 & 13.3 & 12.2 & 11.2 & 10.4 & 9.7 & & 8.6 & 8.1 & & \\
\hline 3 & 32.4
48
4 & \({ }_{43}^{29.2}\) & 126.5 & 124.3
365 & \({ }_{33}^{22.4}\) & \({ }^{20.8}\) & 19.4 & 18.2 & 17.2 & 16.2 & 154 & 14.6 \\
\hline \({ }_{4}\) & 48.6
64.8 & 43.7
58.3 & 39.8
53.0 & 36.5
48.6 & 33.7
44.9 & \({ }_{41.7}^{31.3}\) & 29.2 & - 27.3 & \({ }_{34.3}^{25.7}\) & \begin{tabular}{l}
24.3 \\
32.4 \\
\hline
\end{tabular} & \({ }_{30.7}^{23.0}\) & 21.9
29.2 \\
\hline 5 & 81.0 & 72.9 & 66.3 & 60.8 & 56.1 & 52.1 & 48.6 & 45.6 & 42.9 & \({ }_{40.5}\) & 38.4 & \({ }_{36.5}\) \\
\hline 6 & & 87.5 & 79.5 & 72.9 & 67.3 & 62.5 & 58.3 & 54.7 & 51.5 & & 46.1 & 43. \\
\hline 8 & 113.4
129.6 & 102.1 & 92.8
106.1 & \({ }^{85}{ }^{85} .1\) & 78.5
89.7 & \({ }_{83}^{72.9}\) & \({ }_{77}^{68.1}\) & & 60.0
68.6 & \({ }^{56.7} 6\) & \({ }_{61.4}^{53.7}\) & 51.0
58.3 \\
\hline 9 & 145.8 & 131.2 & 119.3 & 109.4 & 101.0 & \({ }_{93.8}\) & 87.5 & \({ }_{82.0}\) & 77.2 & \({ }_{72.9}\) & \({ }_{69.1}^{61.4}\) & 65.6 \\
\hline 10 & 162.0 & 145.8 & 132.6 & 121.5 & 112.2 & 104.2 & ¢ & 91.1 & 85.8 & 81.0 & 76.8 & 72 \\
\hline 11
12 & \({ }_{1948}^{178.2}\) & 160.4
175.0 & 145.8
159.1 & \begin{tabular}{l}
133.7 \\
145 \\
\hline
\end{tabular} & \begin{tabular}{l}
123.4 \\
134 \\
\hline 1
\end{tabular} & 114.6 & 106.9 & 100.3
109.4 & \({ }^{94.4}\) & 89.1 & 84.4 & \begin{tabular}{l}
80.2 \\
87 \\
\hline
\end{tabular} \\
\hline 13 & 210.7 & 189.6 & 177.4 & 158.0 & 145.8 & 135.4 & 126.4 & 118.5 & 111.5 & \({ }_{05.3}\) & \({ }_{99.8} 8\) & 87.8 \\
\hline 14 & 226.9 & 204.2 & 185.6 & 170.1 & 157.1 & 145.8 & 136.1 & 127.6 & 120.1 & 113.4 & \(10 \%\). 5 & 102.1 \\
\hline 15 & 243.1 & 218.7 & 198.9 & 182.3 & 168.3 & 156.3 & & & 128.7 & 121.5 & 115.1 & 109.4 \\
\hline 16 & 259.3 & 233.3 & 212.1 & 194.4 & 179.5 & 166.\% & 155.6 & 145.8 & 137.3 & 129.6 & 122.8 & \[
\begin{array}{r}
116.7 \\
10.4 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Rules governing Inspection of Boilers in Philadelphia.}

In estimating the strength of the longitudinal seams in the cylindrical shells of boilers the inspector shall apply two formulæ, A and B :
A, \(\left\{\frac{\text { Pitch of rivets }- \text { diameter of holes punched to receive the rivets }}{\text { pitch of rivets }}=\right.\)
percentage of strength of the sheet at the seam.
\(\mathrm{B},\left\{\begin{array}{l}\begin{array}{l}\text { Area of hole filled by rivet } \times \text { No. of rows of rivets in seam } \times \text { shear- } \\ \text { ing strength of rivet }\end{array} \\ \text { pitch of rivets } \times \text { thickness of sheet } \times \text { tensile strength of sheet }\end{array}=\right.\)
percentage of strength of the rivets in the seam.
Take the lowest of the percentages as found by formulæ A and B and apply that percentage as the "strength of the seam" in the following formula C, which determines the strength of the longitudinal seams:
\[
\mathbf{C},\left\{\begin{array}{l}
\text { Thickness of sheet in parts of inch } \times \text { strength of seam as obtained } \\
\text { by formula A or } \mathrm{B} \times \text { ultimate strength of iron stamped on plates }
\end{array}=\right.
\] safe working pressure.
Table of Proportions and Safe Working Pressures with Formule A and C, @ 50,000 LBS., T.S.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Diameter of rivet. \(\ldots . .\).
Diameter of rivet-hole...
Pitch of rivets.........
Strength of seam, \%.....
Thickness of plate. \(\ldots .\). & \begin{tabular}{c}
\(5 / 8^{\prime \prime}\) \\
\(11 / 16^{\prime \prime}\) \\
\(2^{\prime \prime}\) \\
.656 \\
\(1 / 4^{\prime \prime}\) \\
\hline
\end{tabular} & \begin{tabular}{c}
\(11 / 16\) \\
\(3 / 4\) \\
\(21 / 16\) \\
.636 \\
\(5 / 16\) \\
\hline
\end{tabular} & \begin{tabular}{c}
\(3 / 4\) \\
\(13 / 16\) \\
\(21 / 8\) \\
.62 \\
\(3 / 8\) \\
\hline
\end{tabular} & \[
\begin{gathered}
13 / 16 \\
78 \\
23 / 16 \\
.60 \\
7 / 16 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
7 / 8 \\
1516 \\
21 / 4 \\
.1 / 8 \\
1 / 2 \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{Diameter of boiler, in...Safe Working Pressure with Longitudinal Seams, Single-riveted.} \\
\hline 24 & 137 & 165 & 193 & 220 & 242 \\
\hline 30 & 109 & 132 & 154 & 176 & 194 \\
\hline 32 & 102 & 124 & 144 & 165 & 182 \\
\hline 34 & 96 & 117 & 136 & 155 & 171 \\
\hline 36 & 91 & 110 & 129 & 147 & 161 \\
\hline 38 & 86 & 104 & 122 & 139 & 153 \\
\hline 40 & 82 & 99 & 116 & 132 & 145 \\
\hline 44 & 74 & 91 & 105 & 120 & 132 \\
\hline 48 & 68 & 83 & 96 & 110 & 121 \\
\hline 54 & 60 & 73 & 86 & 98 & 107 \\
\hline 60 & 55 & 66 & 77 & 88 & 97 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{Dianneter of rivet. Diameter of rivet-hole. Pitch of rivets. Strength of seam, \%. Thickness of plate..} & \(5 /{ }^{\prime \prime}\) & 11/16 & 3/4 & 13/16 & 7/8 \\
\hline & 11/16" & . \(3 / 4\) & 13/16 & 7/8 & 15/16 \\
\hline & \(3^{\prime \prime}\) & 31/8 & \(31 / 4\) & \(33 / 8\) & \(31 / 2\) \\
\hline & .77 & . 76 & . 75 & . 74 & . 73 \\
\hline & \(1 / 4^{\prime \prime}\) & 5/16 & 3/8 & 7/16 & 1/2 \\
\hline Diameter of boiler, in... & \multicolumn{5}{|l|}{Safe Working Pressure with Longitudinal Seams, Double-riveted.} \\
\hline 24 & 160 & 198 & 235 & 269 & 305 \\
\hline 30 & 127 & 158 & 188 & 215 & 243 \\
\hline 39 & 119 & 148 & 176 & 202 & 228 \\
\hline 34 & 112 & 140 & 166 & 190 & 215 \\
\hline 36 & 106 & 132 & 156 & 179 & 203 \\
\hline 38 & 101 & 125 & 148 & \(1 \% 0\) & 192 \\
\hline 40 & 96 & 119 & 141 & 161 & 183 \\
\hline 44 & 87 & 108 & 128 & 147 & 166 \\
\hline 48 & 79 & 99 & 118 & 135 & 152 \\
\hline 54 & 70 & 88 & 104 & 120 & 135 \\
\hline 60 & 64 & 79 & 94 & 108 & 122 \\
\hline
\end{tabular}

Flues and Twbes for Steam-boilers.-(From Rules of U. S. Supervising lnspectors. Steam-pressures per square inch allowable on riveted and lap-welded flues made in sections. Extract from table in Rules of U. S. Supervising Inspectors.)
\(T=\) least thickness of material allowable, \(D=\) greatest diameter in inches, \(P=\) allowable pressure. For thickness greater than \(T\) with same diameter \(P\) is increased in the ratio of the thickness.
\begin{tabular}{lllllllllllllllll}
\(D=\) in. & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
23
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\multirow[t]{5}{*}{\(\begin{array}{lllllllll} & 18 & .20 & .21 & .21 & .22 & .22 & .23 & .24\end{array}\)}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\(P=\) lbs. 189184179174172158152147143139136134131129126125122
\(\begin{array}{llllllllllllllllll}D=\text { in. } & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}\)
\(T=\) in. \(\quad .34\). 35 . 36 . 37 . 38 . 39 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 47 . 48 . 49 . 50
\(P=\) lbs. \(\quad 121120119117116115115114112112110110109109108108107\)
For diameters not over 10 inches the greatest length of section allowable is 5 feet; for diameters 10 to 23 inches, 3 feet; for diameters 23 to 40 inches, 30 inches. If lengths of sections are greater than these lengths, the allowable pressure is reduced proportionately.

The U. S. rule for corrugated flues, as amended in 1894, is as follows: Rule II, Section 14. The strength of all corrugated flues, when used for furnaces or steam chimneys (corrugation not less than \(11 / 2\) inches deep and not exceeding 8 inches from centres of corrugation), and provided that the plain parts at the ends do not exceed 6 inches in length, and the plates are not less than \(5 / 16\) inch thick, when new, corrugated, and practically true circles, to be calculated from the following formula:
\[
\frac{14,000}{D} \times T=\text { pressure }
\]
\(T=\) thickness, in inches; \(D=\) mean diameter in inches.
Ribbed Flues.-The same formula is given for ribbed flues, with rib projections not less than \(18 / 8\) inches deep and not more than 9 inches apart.

Flat Stayed Surfaces in Steam-boilers.-Rule II., Section 6, of the rules of the U.S. Supervising Inspectors provides as follows:

No braces or stays hereafter employed in the construction of boilers shall be allowed a greater strain than 6000 lbs . per square inch of section.

Clark, in his treatise on the Steam-engine, also in his Pocket-book, gives the following formula: \(p=40\) rts \(\div d\), in which \(p\) is the internal pressure in pounds per square inch that will strain the plates to their elastic limit, \(t\) is the thickness of the plate in inches, \(d\) is the distance between two rows of stay-bolts in the clear, and \(s\) is the tensile stress in the plate in tons of 2240 lbs. per square inch, at the elastic limit. Substituting values of \(s\) for iron, steel, and copper, 12, 14, and 8 tons respectively, we have the following :

Formulef for Ulitimate Elastic Strength of Flat Stayed Surfaces.

in which \(d^{\prime}=\) diameter of screwed bolt at bottom of thread, \(P=\) longitudinal and \(P^{\prime}\) transverse pitch of stay-bolts between centres, \(p=\) internal pressure in lbs. per sq. in. that will strain the plate to its elastic limit, \(s=\) elastic strength of the stay-bolts in lbs. per sq. in. Taking \(s=12,14\), and 8 tons, respectively for iron, steel, and copper, we have
\[
\begin{aligned}
& \text { For iron, } \quad d^{\prime}=.00069 \sqrt{P P^{\prime},}, \text { or if } P=P^{\prime}, d^{\prime}=.00069 P \sqrt{p} ; \\
& \text { For steel, } \quad d^{\prime}=.000641 / \overline{P P^{\prime} p}, \quad " \quad \text { " } d^{\prime}=.00064 P \sqrt{p} \text {; } \\
& \text { For copper, } d^{\prime}=.00084 \sqrt{P P^{\prime} p}, \quad " \quad " \quad d^{\prime}=.00084 P \sqrt{p} \text {. }
\end{aligned}
\]

In using these formulæ a large factor of safety should be taken to allow for reduction of size by corrosion. Thurston's Manual of Steam-boilers, p. 144, recommends that the factor be as large as 15 or 20. The Hartford Steam Boiler Insp. \& Ins. Co. recommends not less than 10.

Strength of Stays.-A. F. Yarrow (Engr., March 20, 1891) gives the following results of experiments to ascertain the strength of water-space stays:
\begin{tabular}{|c|c|c|c|}
\hline Description. & Length between Plates. & Diameter of Stay over Threads. & \[
\begin{gathered}
\text { Ulti- } \\
\text { mate } \\
\text { Stress. }
\end{gathered}
\] \\
\hline & & & libs. \\
\hline plates and hole expanded & 4.64 in . & 1 in.(hole \(9 / 16 \mathrm{in}\). and \(\tau / 16 \mathrm{in}\). & 20,992 \\
\hline Solid stays screwed into ) & 4.80 in . & \%/8 in. & 22,008 \\
\hline plates and riveted over. ? & 4.80 in . & 78 in . & 22,0\%0 \\
\hline
\end{tabular}

The above are taken as a fair average of numerous tests.
Stay-bolts in Curved Surfaces, as in Waterwlegs of Verti-
cal Boilers.-The rules of the U. S. Supervising Inspectors provide as follows: All vertical boiler-furnaces constructed of wrought iron or steel plates, and having a diameter of over 42 in . or a height of over 40 in . shall be stayed with bolts as provided by \(\S 6\) of Rule II, for flat surfaces; and the thickness of material required for the shells of such furnaces shall be determined by the distance between the centres of the stay-bolts in the furnace and not in the shell of the boiler; and the steam-pressure allowable shall be determined by the distance from centre of stay-bolts in the furnace and thie diameter of such stay-bolts at the bottom of the thread.

The Hartford Steam-boiler Insp. \& Ins. Co. approves the above rule (The Locomotive, March, 1892) as far as it states that curved surfaces are to be computed the same as flat ones, but prefers Clark's formulæ for flat stayed surfaces to the rules of the U. S. Supervising Inspectors.

Fusible-plugs.-Fusible-plugs should be put in that portion of the heating-surface which first becomes exposed from lack of water. The rules of the U. S. Supervising Inspectors specify Banca tin for the purpose. Its melting-point is about \(445^{\circ} \mathrm{F}\). The rule says: All steamers shall have inserted in their boilers plugs of Banca tin, at least \(1 / 2 \mathrm{in}\). in diameter at the smallest end of the internal opening, in the following manner, to wit: Cylinder-boilers with flues shall have one plug inserted in one flue of each boiler; and also one plug inserted in the shell of each boiler from the inside, immediately before the fire line and not less than 4 ft . from the forward end of the boiler. All fire-box boilers shall have one plug inserted in the crown of the back connection, or in the highest fire-surface of the boiler.

All upright tubular boilers used for marine purposes shall have a fusible plug inserted in one of the tubes at a point at least 2 in . below the lower gauge-cock, and said plug may be placed in the upper head sheet when deemed advisable by the:local inspectors.
Steam-domes.-Steam domes or drums were formerly almost universally used on horizontal boilers, but their use is now generally discontinued, as they are considered a useless appendage to a steam-boiler, and unless properly designed and constructed are an element of weakness.
Height of Furnace. - Recent practice in the United States makes the height of furnace much greater than it was formerly. With large sizes of anthracite there is no serious objection to having the furnace as low as 12 to 18 in., measured from the surface of the grate to the nearest portion of the heating-surface of the boiler, but with coal containing much volatile matter and moisture a much greater distance is desirable. With very volatile coals the distance may be as great as 4 or 5 ft . Rankine (S. E., P. 45\%) says: The clear height of the "crown " or roof of the furnace above the gratebars is seldom less than about 18 in ., and often considerabiy more. In the fire-boxes of locomotives it is on an average about 4 ft . The height of 18 in . is suitable where the crown of the furnace is a brick arch. Where the crown of the furnace, on the other hand, forms part of the heating-surface of the boiler, a greater height is desirable in every case in which it can be obtained; for the temperature of the boiler-plates, keing much lower than that of the flame, tends to check the combustion of the inflammable gases which rise from the fuel. As a general principle a high furnace is favorable to complete combustion.

\section*{IMPROVED METHODS OF FEEDING COAL,}

Mechanical Stokers. (William R. Roney, Trans. A. S. M. E., vol. xii.) - Mechanical stokers have been used in England to a limited extent since 1785. In that year one was patented by James Watt. It was a simple device to push the coal, after it was coked at the front end of the grate, back towards the bridge. It was worked intermittently by levers, and was designed primarily to prevent smoke from bituminous coal. (See D. K. Clark's Treatise on the Steam-engine.)
After the year 1840 many styles of mechanical stokers were patented in England, but nearly all were variations and modifications of the two forms of stokers patented by John Jukes in 1841, and by E. Henderson in 1843.
The Jukes stoker consisted of longitudinal fire-bars, connected by links, so as to form an endless chain, similar to the familiar treadmill horse-power. The small coal was delivered from a hopper on the front of the boiler, on to the grate, which slowly moving from front to rear, gradually advanced the fuel into the furnace and discharged the ash and clinker at the back.
The Henderson stoker consists primarily of two horizontal fans revolving on vertical spindles, which scatter the coal over the fire.
Numerous faults in mechanical construction and in operation have limited the use of these and other mechanical stokers. The first American stoker was the Murphy stoker, brought out in 1878. It consists of two coal magazines placed in the side walls of the boiler furnace, and extending back from the boiler front 6 or 7 feet. In the bottom of these magazines are rectangular iron boxes, which are moved from side to side by means of a rack and pinion, and serve to push the coal upon the grates, which incline at an angle of about \(35^{\circ}\) from the inner edge of the coal magazines, forming a V -shaped receptacle for the burning coal. The grates are composed of narrow parallel bars, so arranged that each alternate bar lifts about an inch at the lower end, while at the bottom of the \(V\), and filling the space between the ends of the grate-bars, is placed a cast-iron toothed bar, arranged to be turned by a crank. The purpose of this bar is to grind the clinker coming in contact with it. Over this V -shaped recepiacle is sprung a fire-brick arch.
In the Roney mechanical stoker the fuel to be burned is dumped into a hopper on the boiler front. Set in the lower part of the hopper is a "pusher" to which is attached the "feed-plate" forming the bottom of the hopper; The "pusher," by a vibratory motion, carrying ,with it the "feed-plate," gradually forces the fuel over the "dead-plate" and on the grate. The grate-bars, in their normal condition form a series of steps, to the top step of which coal is fed from the "dead-plate." Each bar rests in a concave seat in the bearer, and is capable of a rocking motion through an adjustable angle. All the grate-bars are coupled together "by a "rocker-bar." A variable back-and-forth motion being given to the "rocker-bar," through a con-
necting-rod, the grate-bars rock in unison, now forming a series of steps, and now approximating to an inclined plane, with the grates partly overlapping, like slingles on a roof. When the grate-bars rock forward the fire will tend to work down in a body. But before the coal can move too far the bars rock back to the stepped position, checking the downward motion, breaking up the cake over the whole surface, and admitting a free volume of air through the fire. The rocking motion is slow, being from \(\%\) to 10 strokes per aninute, according to the kind of coal. This alternate starting and checking motion is contimons, and finally lauds the cinder and ash on the dumping-grate below.

Mr. Roney gives the following record of six tests to determine the comparatire economy of the Roney mechanical stoker and hand-firing on return tubular boilers. 60 inches \(X: 0\) feet, burning Cumberland coal with natural draught. Rating of boiler at 12.5 square feet, \(105 \mathrm{H}, \mathrm{P}\).

Three tests, hand-flring. Three tests, Stoker.
Eraporation per pound, dry \(\begin{array}{lllll} & 10.36 & 10.44 & 11.00\end{array}\)
\(11.59 \quad 12.25 \quad 12.54\) \(\begin{array}{lllllllll}\text { H.P. developed above rating, } \% & 5.8 & 13.5 & 68 & 54.6 & 66 . \pi & 84.3\end{array}\)
Fesults of comparatire tests like the abore should be used with caution in drawing generalizations. It by no means follows from these results that a stoker will always show such comparatire excellence, for in this case the results of hand-firing are much below what may be obtained under favorable circumstances from hand-firing with good Cumberland coal.

The Hawley Down-draught Furnace, - A foot or more above the ordinary grate there is carried a second grate composed of a series of water-tubes, opening at both ends into stee drums or headers, through which water is circulated. The coal is fed on this upper grate, and as it is partially consumed falls through it upon the lower grate, where the combustion is completed in the ordinary mamer. The dranght through the coal on the upper grate is downward through the coal and the grate. The folatile gases are therefore carried down through the bed of coal, where they are thoroughly heated, and are bumed in the space beneath, where they meet the excess of hot air drawn through the fire on the lower grate. In tests in Chicago, from 30 to 45 lbs . of coal were burued per square foot of grate upon this system, with good economical results. (See catalogue of the Hawley Down Draurht Furnace Co., Chicago.)

Under-feed Stoters.-Results similar to those that may be obtained with downward dranght are obtained by feeding the coal at the bottom of the bed, pushing upward the coal already on the bed which has had its volatile matter distilled from it. The volatile matter of the freshly fired coal then has to pass through a body of ignited coke, where it meets a supply of hot air. (See circular of The American Stoker Co., New York, 189s.)

\section*{SHOKE PREVENTION.}

A committee of experts was appointed in St. Louis in 1891 to report on the smoke problem. A summary of its report is giveu in the Iron Age of A pril \(\hat{r}\), 1592. It describes the different means that have been tried to prevent smoke, such as gas-fuel, steam-jets, fire-brick arches and checker-work, hollow walls for preheating air, coking arches or chambers, double combustion furnaces, and automatic stokers. All of these means have been more or less effective in diminishing smoke, their effectiveness depending largely upon the skill with which they are operated: but none is entirely satisfactory. Fuel-gas is objectionable chiefly on account of its expense. The average quality of fuel-gas made from a trial rum of several car-loads of Illinois coal, in a well-designed fuel-gas plant. showed a calorific value of id3,391 heat-units per 1000 cubic feet. This is equivalent to 5052 . S heat-units per 1 lb . of coal, whereas by direct calorimeter test an arerage sample of the coal gare 11,1 te heat-units. One 16 . of the coal showed a theoretical evaporation of 11.56 lbs . water, while the gas from 1 lb , showed a theoretical eraporation of 5.23 lbs . \(48.1 \% \mathrm{lbs}\) of coal were required to furnish 1000 cubic feet of the gas. In 39 tests the smoke-preventing furnaces showed only \(74 \%\) of the capacity of the common furnaces, reduced the work of the boilers 288, and required about \(2 \%\) more fuel to do the same work. In one case with steam-jets the fuel cousumption was increased \(12 \%\) for the same work.
Prof. O. H. Landreth, in a report to the State Board of Health of Tennessee (Engincering News, June है, 1S93), writes as follows on the subject of smoke prevention:

As pertains to steam-boilers, the object must be attained by one or more of the following agencies :
1. Proper design and setting of the boiler-plant. This implies proper grate area, suflleient dranght, the necessary air-space between grate-bars and through furnace, and ample combustion-room under boilers.
2. That system of firing that is best adapted to each particular furnace to secure the perfect combustion of bituminous coal. This may be either: (a) "coke-flring," or charging all coal into the front of the furnace until partially coked, then pushing back and spreading; or (b) "alternate side-firing "; or (c) "spreading," by which the coal is spread over the whole grate area in thin, uniform layers at each charging.
3. The admission of air through the furnace-door, bridge-wall, or side walls.
4. Steam-jets and other artificial means for thoroughly mixingithe air and combustible gases.
5. Preventing the cooling of the furnace and boilers by the inrush of cold air when the furnace-doors are opened for charging coal and handling the fire.
6. Establishing a gradation of the several steps of combustion so that the coal may be charged, dried, and warmed at the coolest part of the furnace, and then moved by successive steps to the hottest place, where the final combustion of the coked coal is completed, and compeling the distilled combustible gases to pass through this hottest part of the fire.
r. Preventing the cooling by radiation of the unburned combustible gases until perfect mixing and combustion have been accomplished.
8. Varying the supply of air to suit the periodic variation in demand.
9. The substitution of a contimuous uniform feeding of coal instead of intermittent eharging.
10. Down-draught burning or causing the air to enter above the grate and pass down through the coal, carrying the distilled products down to the high temperature plane at the bottom of the fire.
The number of smoke-prevention devices which have been invented is legion. A brief classification is:
(a) Mechanical stokers. They effect a material saving in the labor of firing, and are efficient smoke-preventers when not pushed above their capacity, and when the coal does not cake badly. They are rarely susceptible to the sudden changes in the rate of firing frequently demanded in service.
(b) Air-flues in side walls, bridge-wall, and grate-bars, through which air when passing is heated. The results are always beneficial, but the flues are difficult to keep clean and in order.
(c) Coking arches, or spaces in front of the furnace arched over, in which the fresh coal is coked, both to prevent cooling of the distilled gases, and to force them to pass through the hottest part of the furnace just beyond the arch. The results are good for normal conditions, but ineffective when the fires are forced. The arches also are easily burned out and injured by working the fire.
(d) Dead-plates, or a portion of the grate next the furnace-doors, reserved for warming and coking the coal before it is spread over the grate. These give good results when the furnace is not forced above its normal capacity. This embodies the method of "coke-firing" mentioned before.
(e) Down-draught furnaces, or furnaces in which the air is supplied to the coal above the grate, and the products of combustion are taken awny from beneath the grate, thus causing a downward draught through the coal, carying the distilled gases down to the highly heated incandescent coal at the bottom of the layer of coal on the grate. This is the most perfect manner of producing combustion, and is absolutely smokeless.
( \(f\) ) Steam-jets to draw air in or inject air into the furnace above the grate, and also to mix the air and the combustible gases together. A very efficient smoke-preventer, but one liable to be wasteful of fuel by inducing too rapid a draught.
(g) Battle-plates placed in the furnace above the fire to aid in mixing the combustible gases with the air.
(h) Double furnaces, of which there are two different styles; the first of which places the second grate below the first grate; the coal is coked on the first grate, during which process the distilled gases are made to pass over the second grate, where they are ignited and burned; the coke from the first grate is dropped onto the second grate: a very efficient and economical smoke-preventer, but rather complicated to construct and maintain. In the second form the products of combustion from the first furnace pass through
the grate and fire of the second, each furnace being charged with fresh fuel when needed, the latter geuerally with a smokeless coal or coke : an irrational and unpromising method.

Mr. C. F. White, Consulting Engineer to the Chicago Society for the Prevention of Smoke, writes under date of May 4, 1893 :
The experience had in Chicago has shown plainly that it is perfectly easy to equip steam-boilers with furnaces which shall burn ordinary soft coal in such a manner that the making of smoke dense enough to obstruct the vision shall be confined to one or two intervals of perhaps a couple of minutes' duration in the ordinary day of 10 hours.

Gas-fired Steam-boilers.-Converting coal into gas in a separate producer, before burning it under the steam-boiler, is an ideal method of smoke-prevention, but its expense has hitherto prevented its general introduction. A series of articles on the subject, illustrating a great number of devices, by F. J. Rowan, is published in the Colliery Engineer, 1889-90. See also Clark on the Steam-engine.

\section*{FORCED CORIBUSTION IN STEAMIBOILERS.}

For the purpose of increasing the amount of steam that can be generated by a boiler of a given size, forced draught is of great importance. It is universally used in the locomotive, the draught being obtained by a steansjet in the smoke-stack. It is now largely used in ocean steamers, especially in ships of war, and to a small extent in stationary boilers. Economy of fuel is generally not attained by its use, its advantages being confiued to the securing of increased capacity from a boiler of a given bulk, weight, or cost. The subject of forced draught is well treated in a paper by James Howden, entitled, "Forced Combustion in Steam-boilers" (Section G, Engineering Congress at Chicago, in 1893), from which we abstract the following :

Edwin A. Stevens at Bordentown, N. J., in 1827, in the steamer "North America," fitted the boilers with closed ash-pits, into which the air of combustion was forced by a fan. In 1828 Ericsson fitted in a similar manner the steamer "Victory,' commanded by Sir John Ross.

Messrs. E. A. and R. L. Stevens continued the use of forced draught for a considerable period, during which they tried three different modes of using the fan for promoting combustion: 1, blowing direct into a closed ash-pit; 2 , exhausting the base of the funnel by the suction of the fan: 3 , forcing air into an air-tight boiler-room or stoke-hold. Each of these three methods was attended with serious difficulties.

In the use of the closed ash-pit the blast-pressure would frequently force the gases of combustion, in the shape of a serrated flame, from the joint around the furnace doors in so great a quantity as to affect both the efficiency and health of the firemen.
The chief defect of the second plan was the great size of the fan required to produce the necessary exhaustion. The size of fan required grows in a rapidly increasing ratio as the combustion increases, both on account of the greater air-supply and the higher exit temperature enlarging the volume of the waste gases.
The third method, that of forcing cold air by the fan into an air-tight boiler-room-the present closed stoke-hold system-though it overcame the difficulties in working belonging to the two forms first tried, has serious defects of its own, as it cannot be worked, even with modern high-class boiler-construction, much, if at all, above the power of a good chimney draught, in most boilers, without danaging them.
In 1875 John I. Thornscroft \& Co., of London, began the construction of torpedo-boats with boilers of the locomotive type, in which a high rate of combustion was attained by means of the air-tight boiler-room, into which air was forced by means of a fan.

In 1882 H.B.M. ships "Satellite" and "Conqueror" were fitted with this system, the former being a small ship of 1500 I.H.P., and the latter an ironclad of 4500 I.H.P. On the trials with forced draught, which lasted from two to three hours each, the highest rates of combustion gave 16.9 I.H.P. per square foot of fire-grate in the "Satellite," and 13.41 I.H.P. in the "Conqueror."
None of the short trials at these rates of combustion were made without injury to the seams and tubes of the boilers, but the system was adopted, and it has been continued in the British Navy to this day (1893).
In Mr. Howden's opinion no advantage arising from increased combustion over natural-draught rates is derived from using forced draught in a closed ash-pit sufficient to compensate the disadvantages arising from difficulties
in working, there being either excessive smoke from bituminous coal or reduced evaporative economy.

In 1880 Mr . Howden designed an arrangement intended to overcome the defects of both the closed ash-pit and closed stoke-hold systems.
An air-tight reservoir or chamber is placed on the front end of the boiler and surronnding the furnaces. This reservoir, which projects from 8 to 10 inches from the end of the boiler, receives the air under pressure, which is passed by the valves into the ash-pits and over the fires in proportions suited to the kind of fuel used aud the rate of combustion required. The air nsed above the fires is admitted to a space between the outer and imer furnace-donrs, the imner having perforations and an air-distributing box throngh which the air passes under pressure.

By means of the balance of air-pressure above and below the fires all tendency for the fire to blow out at the furnace-door is removed.

By regulating the admission of the air by the valves above and below the fires, the highest rate of combustion possible by the air-pressure used can be effected, and in same manner the rate of combustion can be reduced to far below that of natural draught, while complete and economical combustion at all rates is secured.

A feature of the system is the combination of the heating of the air of combustion by the waste gases with the controlled and regulated admission of air to the furnaces. This arrangement is effected most conveniently by passing the hot fire-gases after they leave the boiler through stacks of vertical tubes enclosed in the uptake, their lower ends being immediately above the smoke-box doors.

Installations on Howden's system have hitherto been arranged for a rate of combustion to give at full sea-power an average of from 18 to 22 I.H.P. per square foot of fire-grate with fire-bars from \(5^{\prime} 0^{\prime \prime}\) to \(5^{\prime} 6^{\prime \prime}\) in length.

It is believed that with suitable arrangement of proportions even 30 I.H.P. per square foot can be obtained.

For an account of recent uses of exhaust-fans for increasing draught, see paper by W. R. Roney, Trans. A. S. M. E., vol. XV.

\section*{FUEL ECONOIMIZERS.}

Green's Fuel Economizer.-Clark gives the following average results of comparative trials of three boilers at Wigan used with and without economizers :
\(\left.\begin{array}{lcc} & \begin{array}{c}\text { Without } \\ \text { Economizers. }\end{array} & \begin{array}{c}\text { With } \\ \text { Economizers. }\end{array} \\ \text { Coal per square foot of grate per hour...... } & 21.6\end{array}\right)\)

Showing that in burning equal quantities of coal per hour the rapidity of evaporation is increased \(9.3 \%\) and the efficiency of evaporation \(10 \%\) by the addition of the economizer.
The average temperatures of the gases and of the feed-water before and after passing the economizer were as follows:
\begin{tabular}{lccc} 
& With 6 -ft. grate. & With 4-ft. grate. \\
& Before. After. & Before. After. \\
Average temperature of gases....... & 649 & 340 & 501 \\
Average temperature of feed-water. & 47 & 157 & 412 \\
A & 137
\end{tabular}

Taking averages of the two grates, to raise the temperature of the feedwater \(100^{\circ}\) the gases were cooled down \(250^{\circ}\).

Performance of Green Economizer with a Smoky Coal. -The action of Green's Economizer was tested by M. W. Grosseteste for a period of three weeks. The apparatus consists of four ranges of vertical pipes, \(61 / 2\) feet high, \(33 / 4\) inches in diameter outside, nine pipes in each range, connected at top and bottom by horizontal pipes. The water enters all the tubes from below, and leaves them from above. The system of pipes is enveloped in a brick casing, into which the gaseous products of combustion are introduced from above, and which they leave from below. The pipes are cleared of soot externally by automatic scrapers. The capacity for water is 24 cubic feet, and the total external heating-surface is 290 square feet. The apparatus is placed in connection with a boiler having 355 square
feet of surface. feet of surface.
This apparatus had been at work for seven weeks continuously without having been cleaned, and had accumulated a \(1 / 2\)-inch coating of soot and
ash, when its performance, in the same condition, was observed for one week. During the second week it was cleaned twice every day; but during the third week, after having been cleaned on Monday morning, it was worked continuously without further cleaning. A smoke-making coal was used. The consumption was maintained sensibly constant from day to day.
Green's Economizer.-Results of Experiments on Its Efficiency as affected by the State of the Surface. (W. Grosseteste.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Time \\
(February and March).
\end{tabular}} & \multicolumn{3}{|l|}{Temperature of Feedwater.} & \multicolumn{3}{|l|}{Temperature of Gaseous Products.} \\
\hline &  & \begin{tabular}{l}
Leav- \\
ing \\
Feed- \\
heater.
\end{tabular} & Difference. &  &  & Differ ence. \\
\hline 1st Week & \begin{tabular}{l}
Fahr. \\
\(73.5^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Fahr. \\
\(1615^{\circ}\)
\end{tabular} & Fahr. & Fahr. & Fahr. & Fahr. \\
\hline 2d Week. & 77.0 & \({ }_{230} 10\) & \({ }^{88.0}{ }^{\circ}\) & \(849{ }^{\circ}\)
882 & \({ }_{291} 26{ }^{\circ}\) & \(588^{\circ}\) \\
\hline 3d Week-Monday & 73.4 & 196.0 & 123.6 & 888 & \begin{tabular}{l}
297 \\
284 \\
\hline 80
\end{tabular} & 585 \\
\hline Tuesday & r3.4 & 181.4 & 108.0 & 871 & 309 & \begin{tabular}{l}
547 \\
562 \\
\hline
\end{tabular} \\
\hline Wednesday & 79.0 & 178.0 & 99.0 & & & \\
\hline Thursday & 80.6 & 170.6 & 90.0 & 952 & 329 & 623 \\
\hline Friday... & 80.6 & 1690 & 88.4 & 889 & 338 & 551 \\
\hline Saturday..... & 79.0 & 172.4 & 93.4 & 901 & 351 & 550 \\
\hline
\end{tabular}

Coal consumed per hour
1st Week. 2d Week. 3d Week.
 It is apparent that there is a great advantage in cleaning the pipes daily -the elevation of temperature having been increased by it from \(88^{\circ}\) to \(153^{\circ}\). In the third week, without cleaning, the elevation of temperature relapsed in three days to the level of the first week; even on the first day it was quickly reduced by as much as half the extent of relapse. By cleaning the pipes daily an increased elevation of temperature of \(65^{\circ} \mathrm{F}\)., was obtained, whilst a gain of \(6 \%\) was effected in the evaporative efficiency.

\section*{INCRUSTATION AND CORRONHON.}

Incrustation and Scale.-Incrustation (as distinguished from mere sediments due to dirty water, which are easily blown out, or gathered up, by means of sediment-collectors) is due to the presence of salts in the feed-water (carbonates and sulphates of lime and magnesia for the most part), which are precipitated when the water is heated, and form hard deposits upon the boiler-plates. (See Impurities in Water, p. 551 , ante.)
Where the quantity of these salts is not very large (12 grains per gallon, say) scale preventives may be found effective. The chemical preventives either form with the salts other salts soluble in hot water; or precipitate them in the form of soft mud, which does not adhere to the plates, and can be washed out from time to time. The selection of the chemical must depend upon the composition of the water, and it should be introduced regu-

Examples. - Sulphate-of-lime scale prevented by carbonate of soda: The sulphate of soda produced is soluble in water; and the carbonate of lime falls down in grains, does not adhere to the plates, and may therefore be blown out or gathered into sediment-collectors. The chemical reaction is: Sulphate of lime + Carbonate of soda \(=\) Sulphate of soda + Carbonate of lime \(\mathrm{CaSO}_{4}\)
\(\mathrm{Na}_{2} \mathrm{CO}_{3}\)
\(\mathrm{Na}_{2} \mathrm{SO}_{4}\)
\(\mathrm{CaCO}_{3}\)
Sodium phosphate will decompose the sulphates of lime and magnesia:
Sulphate of lime + Sodium phosphate \(=\) Calcium phos. + Sulphate of soda .
\[
\mathrm{CaSO}_{4} \mathrm{Na}_{2} \mathrm{HPO}_{4} \quad \mathrm{CaHPO}_{4} \quad \mathrm{Na}_{2} \mathrm{SO}_{4}
\]

Sul. of magnesia + Sodium phosphate \(=\) Phosphate of magnesia + Sul. of snda. \(\mathrm{MgSO}_{4}\)
\(\mathrm{N} \varepsilon, \mathrm{HPO}_{4}\)
\(\mathrm{MgHPO}_{4}\)
\(\mathrm{Na}_{2} \mathrm{SO}_{4}\)

Where the quantity of salts is large, scale preventives are not of much use. Some other source of supply must be sought, or the bad water purified before it is allowed to enter the boilers. The damage done to boilers by unsuitable water is enormous.
Pure water may be obtained by collecting rain, or condensing steam by means of surface condensers. The water thus obtained should be mixed with a little bad water, or treated with a little alkali, as undiluted, pure water corrodes iron; or, after each periodic cleaning, the bad may be used for a day or two to put a skin upon the plates.
Carbonate of lime and magnesia may be precipitated either by heating the water or by mixing milk of lime (Porter Clark process) with it, the water being then filtered.
Corrosion may be produced by the use of pure water, or by the presence of acids in the water, caused perhaps in the engine-cylinder by the action of high-pressure steam upon the grease, resulting in the production of fatty acids. Acid water may be neutralized by the addition of lime.
Amount of Sediment which may collect in a \(100-\mathrm{H} . \mathrm{P}\). steam-boiler, evaporating. 3000 lbs . of water per hour, the water containing different arrounts of impurity in solution, provided that no water is blown off:
Grains of solid impurities per U. S. gallon:


In onc week of 6 days, pounds:
\(\begin{array}{llllllllll}15.43 & 30.85 & 61.7 & 92.55 & 123.4 & 154.3 & 185.1 & 216.0 & 246.8 & 277.6 \\ 308.5\end{array}\)
If a \(100-\mathrm{H} . \mathrm{P}\). boiler has 1200 sq . ft. heating-surface, one week's running without blowing off, with water containing 100 grains of solid matter per gallon in solution, would make a scale nearly . 02 in. thick, if evenly deposited all over the heating-surface, assuming the scale to have a sp. gr. of \(2.5=156 \mathrm{lbs}\). per cu. ft. \(; .02 \times 1200 \times 156 \times 1 / 12=312 \mathrm{lbs}\).
Boller-scale Compounds.-The Bavarian Steam-boiler Inspection Assn. in 1885 reported as follows:
Generally the uuusual substances in water can be retained in soluble form or precipitated as mud by adding caustic soda or lime. This is especially desirable when the boilers have sinall interior spaces.
It is necessary to have a chemical analysis of the water in order to fully determine the kind and quantity of the preparation to be used for the above purpose.

All secret compounds for removing boiler-scale should be avoided. (A list of 27 such compounds manufactured and sold by German firms is then given which have been analyzed by the association.)
Such secret preparations are either nonsensical or fraudulent, or contain either one of the two substances recommended by the association for removing scale, generally soda, which is colored to conceal its presence, and sometimes adulterated with useless or even injurious matter.
These additions as well as giving the compound some strange, fanciful name, are meant simply to deceive the boiler owner and conceal from him the fact that he is buying colored soda or similar substances, for which he is paying an exorbitant price.
The Chicago, Milwaukee \& St. P. R. R. uses for the prevention of scale in locomotive-boilers an alkaline compound consisting of 3750 gals. of water, 2600 lbs . of \(\% 0 \%\) caustic soda, and 1600 lbs . of \(58 \%\) soda-ash. Between Milwaukee and Madison the water-supply contains from 1 to \(41 / 2\) lbs. of incrusting sulids per 1000 gals., principally calcium carbonate and sulphate and magnesium sulphate. The amount of compound necessary to prevent the incrustation is \(11 / 2\) to 7 pints per 1000 gals. of water. This is really ouly one fourth of the quantity needed for chemical combination, but the action of the compound is regenerative. The soda-ash (sodium carbonate) extracts carbonic acid from the carbonates of lime and magnesia and precipitates them in a granular form. The bicarbonate of soda thus formed, however, loses its carbonic acid by the heat, and is again changed to the active carbonate form. Theoretically this action might continue indefinitely; but on
account of the loss by blowing off and the presence of other impurities in the water, it is found that the soda-ash will precipitate only about four times the theoretical quautity. Scaling is entirely prevented. One engine made 122,000 miles, and inspection of the boiler showed that it was as clean as when new. This compound precipitates the impurities in a granular form, and careful attention must be paid to washing out the precipitate. The practice is to change the water every 600 miles and wash out the boiler every 1200 miles, using the blow-off cocks also whenever there is any indication of foaming. which seems to be caused by the precipitate in the water, but not by the alkali itself. (Eng'g News, Dec. 5, 1891.)

Kerosene and other Petroleum Oils; Foaming.-Kerosene has recently been highly recommended as a scale preventive. See paper by L. F. Lyne (Trans. A. S. M. E., ix. 247). The Am. Mach., May 22, 1890, says: Kerosene used in moderate quantities will not make the boiler foam; it is recommended and used for loosening the scale and for preventing the formation of scale. Neither will a small quantity of common oil always cause foaming; it is sometimes injected into small vertical boilers to prevent priming, and is supposed to have the same effect on the disturbed surface of the water that oil has when poured on the rough sea. Yet oil in boilers will not have the same effect, and give the desired results in all cases. The presence of oil in combination with other impurities increases the tendency of many boilers to foam, as the oil with the impurities impedes the free escape of steam from the water surface. The use of common oil not only tends to cause foaming, but is dangerous otherwise. The grease appears to combine with the impurities of the water, and when the boiler is at rest this compound sinks to the plates and clings to them in a loose, spongy mass, preventing the water from coming in contact with the plates, and thereby producing overheating, which may lead to an explosion. Foaming may also be caused by forcing the fire, or by taking the steam from a point over the furnace or where the ebullition is violent; the greasy and dirty state of new boilers is another good cause for foaming. Kerosene should be used at first in small quantities, the effect carefully noted, and the quantity increased if necessary for obtaining the desired results.
R. (:. Carpenter (Trans. A. S. M. E., vol. xi.) says: The boilers of the State Agricultural College at Lansing, Mich., were badly incrusted with a hard scale. It was fully three eighths of an inch thick in many places. The first application of the oil was made while the boilers were being but little used, by inserting a gallon of oil, filling with water, heating to the boiling-point and allowing the water to stand in the boiler two or three werks before removal. By this method fully one half the scale was removed during the warm season and before the boilers were needed for heavy firing. The oil was then added in small quantities when the boiler was in actual use. For boilers 4 ft . in diam. and 12 ft . long the best results were obtained by the use of 2 qts. for each boiler per week, and for each boiler 5 ft . in diam. 3 qts . per week. The water used in the boilers has the following analysis:
\(\mathrm{CaCO}_{3}\) (carbonate calcium)................ 206 parts in 1,000,000.
 \(\mathrm{F}_{2} \mathrm{CO}_{3}\) (carbonate iron)......................... 22 "
Traces solid parts, 355 to \(1,000,000\).
Tannate of Soda Compound.-T. T. Parker writes to Am. Mach.: Should you find kerosene not doing any good, try this recipe: 50 lbs . sal-soda, 35 lbs japonica; put the ingredients in a 50 -gal. barrel, fill half full of water, and run a steam hose into it until it dissolves and boils. Remove the hose, fill up with water, and allow to settle. Use one qualt per day of ten hours for a \(40-\mathrm{H}\). P. boiler, and, if possible, introduce it as you do cylinder-oil to your engine. Barr recommends tannate of soda as a remedy for scale composed of sulphate and carbonate of lime. As the japonica yields the tannic acid, I think the resultant equivalent to the tannate of sodia.

Petroleum Oils heavier than kerosene have been used with good results. Crude oil should never be used. The more volatile oils it contains make explosive gases, and its tarry constituents are apt to form a spongy incrustation.

Removal of Hard Scale. - When boilers are coated with a hard scale difficult to remove the addition of \(1 / 4 \mathrm{lb}\). caustic soda per horse-power, and steaming for some hours, according to the thickness of the scale, just before cleaning, will greatly facilitate that operation, rendering the scale
soft and loose. This should be done, if possible, when the boilers are not otherwise in use. (istram.)
Corrosion in Marine Boilers. (Proc. Inst. M. E., Aug. 1884).-The investigations of the Committee on Boilers served to show that the internal corrosion of boilers is greatly due to the combined action of air and seawater when under steam, and when not under steam to the combined action of air and moisture upon the unprotected surfaces of the metal. There are other deleterious influences at work, such as the corrosive action of fatty acids, the galvanic action of copper and brass, and the inequalities of temperature; these latter, however, are considered to be of minor importance.
Of the several methods recomrnended for protecting the internal surfaces of boilers, the three found most effectual are: First, the formation of a thin layer of hard scale, deposited by working the boiler with sea-water; second, the coating of the surfaces with a thin wash of Portland cement. particularly wherever there are signs of decay; third, the use of zinc slabs suspended in the water aud steam spaces.

As to general treatment for the preservation of boilers in store or when laid up in the reserve, either of the two following methods is adopted, as may be found most suitable in particular cases. First, the boilers are dried as much as possible by airing-stoves, after which 2 to 3 cwt. of quicklime, according to the size of the boiler, is placed on suitable trays at the bottom of the boiler and on the tubes. The boiler is then closed and marle as air-tight as possible. Periodical inspection is made every six months, when if the lime be found slacked it is renewed. Second, the other method is to fill the boilers up with sea or fresh water, having added soda to it in the proportion of 1 lb . of soda to every 100 or 120 lbs . of water. The sufficiency of the saturation can be tested by introducing a piece of clean new iron and leaving it in the boiler for ten or twelve hours; if it shows sigus of rusting, more soda should be added. It is essential that the boilers be entirely filled, to the complete exclusion of air.

Great care is taken to prevent sudden changes of temperature in boilers. Directions are given that steam shall not be raised rapidly, and that care shall be taken to prevent a rush of cold air through the tubes by too suddenly opening the smoke-box doors. The practice of emptying boilers by blowing out is also prohibited, except in cases of extreme urgency. As a rule the water is allowed to remain until it becomes cool before the boilers are emptied.
Mineral oil has for many years been exclusively used for internal lubrication of engines, with the view of avoiding the effects of fatty acid, as this oil cloes not readily decompose and possesses no acid properties.

Of all the preservative methods adopted in the British service, the use of zinc properly distributed and fixed has been found the most effectual in saving the iron and steel surfaces from corrosion, and also in neutralizing by its own deterioration the hurtful influences met with in water as ordinarily supplied to boilers. The zinc slabs now used in the navy boilers are 12 in. long, 6 in. wide. and \(1 / 2\) inch thick; this size being found convenient for general application. The amount of zinc used in new boilers at present is one slab of the above size for every 20 I.H.P., or about one square foot of zinc surface to two square feet of grate surface. Rolled zinc is found the most suitable for the purpose. To make the zinc properly efficient as a protector especial care must be taken to insure perfect metallic contact between the slabs and the stays or plates to which they are attached. The slabs should be placed in such positions that all the surfaces in the boiler shall be protected. Each slab should be periodically examined to see that its connection remains perfect. and to renew any that may have decayed; this examination is usually made at intervals not exceeding three months. Under ordinary circuinstances of working these zinc slabs may be expected to last in fit condition from sixty to ninety days. immersed in hot sea-water; but in new boilers they at first decay more rapidly. The slabs are generally secured by means of iron straps 2 in . wide and \(3 / 8\) inch thick, and long enough to reach the nearest stay, to which the strap is firmly attached by screw-bolts.
To promote the proper care of boilers when not in use the following order has been issued to the French Navy by the Goverument: On board all ships in the reserve, as well as those which are laid up, the boilers will be completely filled with fresh water. In the case of large boilers with large tubes there will be added to the water a certain amounts of milk of lime, or a solution of soda may be used instead. In the case of tubulous boilers with small tubes milk of lime or soda may be added, but the solution will not be
so strong as in the case of the larger tube, so as to aroid any danger of contracting the effective area by deposit from the solution; but the strength of the solution will be just sufficient to neutralize any acidity of the water. (Iron Age, Nov. 2, 1893.)
Use of Zinc.-Zinc is often used in boilers to prevent the corrosive action of water on the metal. The action appears to be an electrical one, the iron being one pole of the battery and the zinc being the other. The hydrogen goes to the iron shell and escapes as a gas into the steam. The oxygen goes to the zinc.
On account of this action it is generally believed that zinc will always prevent corrosion, and that it cannot be harmful to the boiler or tank. Some experiences go to disprove this belief, and in numerous cases zinc has not only been of no use, but has even been harmful. In one case a tubular boiler had been troubled with a deposit of scale consisting chiefly of organic matter and lime, and zinc was tried as a preventive. The beneficial action of the zinc was so obvious that its continued use was advised, with frequent opening of the boiler and cleaning out of detached scale until all the old scale should be removed and the boiler become clean. Eight or ten months later the water-supply was changed, it being now obtained from another stream supposed to be free from lime and to contain only organic matter. Two or three months after its introduction the tubes and shell were found to be coated with an obstinate adhesive scale, and composed of zinc oxide and the organic matter or sediment of the water used. The deposit had become so heavy in places as to cause overheating and bulging of the plates over the fire. (The Locomotive.)

Effect of Deposit on Flues. (Rankine.)-An external crust of a carbonaceous kind is often deposited from the flame and smoke of the furnaces in the flues and tubes, and if allowed to accumulate seriously impairs the economy of fuel. It is removed from time to time by means of scrapers and wire brushes. The accumulation of this crust is the probable cause of the fact that in some steamships the consumption of coal per indicated horse-power per hour goes on gradually increasing until it reaches one and a half times its original amount, and sometimes more.
Dangerous Steam-boilers discovered by Inspection.The Hartford Steam-boiler Inspection and Insurance Co. reports that its inspectors during 1893 examined 163,328 boilers, inspected 66,698 boilers, both internally and externally, subjected \(\% 861\) to hydrostatic pressure, and found 597 unsafe for further use. The whole number of defects reported was 122,893 , of which 12,390 were considered dangerous. A summary is given below. (The Locomotive, Feb. 1894.)

Sumarary, by Defects, for the Year 1893.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nature of Defects. & Whol
No. & & Nature of Defect & Whole No. & \\
\hline D & & 548 & & & -2,909 \\
\hline Incrustation and s & 18,369 & 865 & Leakage at sea & & 82 \\
\hline Internal grooving & 1,249 & 148 & Water-gauges de & 3,6\%0 & 60 \\
\hline iterual corrosio & 6,252 & 39\% & Blow-outs defectiv & 1,620 & 42 \\
\hline External corrosion & 8,600 & 536 & Deficiency of wat & 204 & 107 \\
\hline Def'tive braces and s & ays 1,966 & 185 & Safety-valves overloa & & 203 \\
\hline Settings defectiv & 3,094 & 352 & Safety-valves defectiv & 942 & 300 \\
\hline urnaces out of shap & 4,575 & 25 & Pressure-gauges def'tir & 5,953 & \\
\hline Fractured plates & . 3,532 & 640 & Boilers without pressure & & \\
\hline Burned plates & 2,762 & 325 & gauges & & 115 \\
\hline listered plat & 3,331 & 164 & Unclassifi & & \\
\hline efective rivet & 17,415 & 1,569 & & & \\
\hline Defective heads. & 1,35\% & 35 & Cot & & \\
\hline
\end{tabular}

The above-named company publishes annually a classified list of boilerexplosions, compiled chiefly from newspaper reports, showing that from 200 to 300 explosions take place in the United States every year, killing from 200 to 300 persons, and injuring from 300 to 450 . The lists are not pretended to be complete, and may include only a fraction of the actual number of explosions.
Steam-boilors as Magazines of Explosive Cnergy.-Prof. R. H. Thurston (Trans. A. S. MI. E., vol. vi.), in a paper with the above title, presents calculations showing the stored energy in the hot water and steam of various boilers. Concerning the plain tubular boiler of the form and dimensions adopted as a standard by the Hartford Steam-boiler

Insurance Co., he says: It is 60 inches in diameter, containing 66 -inch tubes, and is 15 feet long. It has 850 feet of heating and 30 feet of grate surface; is rated at 60 horse-power, but is oftener dtiven up to 75 ; weighs 9500 pounds, and contains nearly its own weight of water, but only 21 pounds of steam when under a pressure of 75 pounds per square inch, which is below its safe allowance. It stores \(53,000,000\) foot-pounds of energy, of which but 4 per cent is in the steam, and this is enough to drive the boiler just about one mile into the air, with an initial velocity of nearly 600 feet per second.

\section*{SAFETY-VALVES.}

\section*{Calculation of Weight, etc., for Lever Safety-valves.}

Let \(W=\) weight of ball at end of lever, in pounds;
\(w=\) weight of lever itself, in pounds;
\(V=\) weight of valve and spindle, in pounds;
\(L=\) distance between fulcrum and centre of ball, in inches;
\(l=\quad\) " \(\quad\) " \(\quad\) " \(\quad\) " \(\quad\) " "valve, in inches;
\(g=\) " " " " " gravity of lever, in in.;
\(A=\) area of ralve, in square inches;
\(P=\) pressure of steam, in lbs. per sq. in., at which valve will open.
\[
\text { Then } \begin{aligned}
P A \times l & =W \times L+w \times g+V \times l ; \\
\text { whence } P & =\frac{W L+w g+V l}{A l} ; \\
W & =\frac{P A l-w g-V l}{L} ; \\
L & =\frac{P A l-w g-V l}{W}
\end{aligned}
\]

Example.-Diameter of valve, \(4^{\prime \prime}\); distance from fulcrum to centre of ball, \(36^{\prime \prime}\); to centre of valve, \(4^{\prime \prime}\); to centre of gravity of lever, \(151 / 2^{\prime \prime}\); weight of valve and spindle, 3 lbs ; weight of lever, 7 lbs ; required the weight of ball to make the blowing-off pressure 80 lbs . per sq. in.; area of \(4^{\prime \prime}\) valve \(=12.566\) sq. in. Then
\[
W=\frac{P A l-w g-V l}{L}=\frac{80 \times 12.566 \times 4-7 \times 151 / 2-3 \times 4}{36}=108.4 \mathrm{lls.}
\]

The following rules governing the proportions of lever-valves are given by the U. S. Supervisors. The distance from the fulcrum to the valve-stem must in no case be less than the diameter of the valve-opening; the length of the lever must not be more than ten times the distance from the fulcrum to the valve-stem; the width of the bearings of the fulcrum must not be less than three quarters of an inch; the length of the fulcrum-link must not be less than four inches; the lever and fulcrum-link must be made of wrought iron or steel, and the knife-edged fulcrum points and the bearings for these points must be made of steel and hardened; the valve must be guided by its spindle, both above and below the ground seat and above the lever, through supports either made of composition (gun-metal) or bushed with it; and the spindle must fit loosely in the bearings or supports.

\section*{Rules for Area of Safety-valves.}
(Rule of U. S. Supervising Inspectors of Steam-vessels (as amended 1891).)
Lever safety-valves to be attached to marine boilers shall have an area of
not less than 1 sq . in. to 2 sq . ft . of the grate surface in the boiler, and the seats of all such safety-valves shall have an angle of inclination of \(45^{\circ}\) to the centre line of their axes.

Spring-loaded safety-valves shall be required to have an area of not less than 1 sq . in. to 3 sq . ft. of grate surface of the boiler, except as hereinafter otherwise provided for water-tube or coil and sectional boilers, and each spring-loaded valve shall be supplied with a lever that will raise the valve from its seat a distance of not less than that equal to one eighth the diameter of the valve-opening, and the seats of all such safety-valves shall have an angle of inclination to the centre line of their axes of \(45^{\circ}\). All springloaded safety-valves for water-tube or coil and sectional boilers required to
carry a steam-pressure exceeding 175 lbs . per square inch shall be required to have an area of not less than 1 sq . in. to 6 sq . ft. of the grate surface of the boiler. Nothing herein shall be construed so as to prohibit the use of two safety-valves on one water-tube or coil and sectional boiler, provided the combined area of such valves is equal to that required by rule for one such valve.
Rule in Philadelphia Ordinances: Bureau of Steamengine and Boiler Hispection.--Every boiler when fired separately, and every set or series of boilers when placed over one fire, shall have attached thereto, without the interposition of any other valve, two or more safety-valves, the aggregate area of which shall have such relations to the area of the grate and the pressure within the boiler as is expressed in schedule A.
Schedule A.-Least aggregate area of safety-valve (being the least sectional area for the discharge of steam) to be placed upon all stationary boilers with natural or chimney draught [see note \(\alpha\) ].
\[
A=\frac{22.5 G}{P+8.62}
\]
in which \(A\) is area of combined safety-valves in inches; \(G\) is area of grate in square feet; \(P\) is pressure of steam in pounds per square inch to be carried in the boiler above the atmosphere.

The following table gives the results of the formula for one square foot of giate, as applied to boilers used at different pressures:
Pressures per square inch:
\begin{tabular}{cccccccccccc}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \\
Area corresponding to & one square foot of grate: \\
1.21 & 0.79 & 0.58 & 0.46 & 0.38 & 0.33 & 0.29 & 0.25 & 0.23 & 0.21 & 0.19 & 0.17
\end{tabular}
[Note \(a\).] Where boilers have a forced or artificial draught, the inspector must estimate the area of grate at the rate of one square foot of grate-surface for each 16 lbs . of fuel burned on the average per hour.
Comparison of Various Rules for Area of Lever Safetyvalves. (From an article by the author in American Machinist, May it, 1891, with some alterations and additions.)-Assume the case of a boiler rated at 100 horse-power; 40 sq . ft. grate; 1200 sq. ft. heating-surface; using 4.1 lbs . of coal per hour, or 10 lbs . per sq. ft. of grate per hour, and evaporaing 3600 lbs . of water, or 3 lbs . per sq. ft. of heating-surface per hour; stean-pressure by gauge, 100 lbs . What size of safety-valve, of the lever type, should be required?

A compilation of various rules for finding the area of the safety-valve disk, from The Locomotive of July, 1892, is given in abridged form below, together with the area calculated by each rule for the above example.

Disk Area in sq. in.
U. S. Supervisors, heating-surface in sq. ft. \(\div 25^{*} \ldots \ldots \ldots .\).

Molesworth, four fifths of grate-surface in sq. ft........................................ 32
Thurston, 4 times coal burned per hour \(\times\) (gauge pressure +10 ) \(\ldots \ldots\).............. 14.5
Thurston, \(\frac{1}{2} \frac{(5 \times \text { heating-surface })}{\text { gauge pressure }+10} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .\).
Rankine, \(.006 \times\) water evaporated per hour................................... . . . 21.6
Committee of U. S. Supervisors, \(.005 \times\) water evaporated per hour..... 18
Suppose that, other data remaining the same, the draught were increased \(s^{\prime}\) ) as to burn \(131 / 3 \mathrm{lbs}\). coal per square foot of grate per hour, and the gratesufface cut down to 30 sq . ft. to correspond, making the coal burned per hour 400 lbs .. and the water evaporated 3600 lbs ., the same as before; then the English Board of Trade rule and Molesworth's rule would give an area of disk of only 15 and 24 sq. in., respectively, showing the absurdity of making the area of grate the basis of the calculation of disk area.

Another rule by Prof. Thurston is given in American Machinist, Dec. 18\%\%, viz.:
\[
\text { Disk area }=\frac{1 / 2 \mathrm{max} . \text { wt. of water evap. per hour }}{\text { gauge pressure }+10}
\]

This gives for the example considered 16.4 sq . in.

\footnotetext{
* The edition of 1593 of the Rules of the Supervisors does not contain thrs rule, but gives the rule grate-surface \(\div 2\).
}

One rule by Rankine is \(1 / 150\) to \(1 / 180\) of the number of pounds of water evaporated per hour, equals for the above case 27 to 20 sq . in. A communition in Power, July, 1890, gives two other rules:
1 st. 1 sq. in. disk area for 3 sq . ft. grate, which would give 13.3 sq . in.
\(2 \mathrm{~d} .3 / 4 \mathrm{sq}\). in. disk area for 1 sq . ft. grate, which would give 30 sq . in.; but if the grate-surface were reduced to 30 sq . ft . on account of increased draught, these rules would make the disk area only 10 and 22.5 sq . in., respectively.
The Philadelphia rule for 100 lbs . gauge pressure gives a disk area of 0.21 sq . in. for each sq. ft. of grate area, which would give an area of 8.4 sq . in. for 40 sq . ft. grate, and only 6.3 sq . in. if the grate is reduced to 30 sq . ft .
According to the rule this aggregate area wonld have to be divided between two valves. But if the boiler was driven by forced draught, then the iuspector" "must estimate the area of grate at 1 sq . ft. for each 16 lbs . of fuel burned per hour."
Under this condition the actual grate-surface might be cut down to \(400 \div\) \(16=25\) sq. ft ., and by the rule the combined area of the two safety-valves would be only \(25 \times 0.21=5.25 \mathrm{sq}\). in.
Nystrom's Pocket-book, edition of 1891, gives \(3 / 4 \mathrm{sq}\). in. for 1 sq. ft. grate; also quoting from Weisbach, vol. ii, \(1 / 3000\) of the heating-surface. This in the case considered is \(1200 / 3000=.4 \mathrm{sq}\). ft. or 57.6 sq . in.
We thus have rules which give for the area of safety-valve of the same 100. horse-power boiler results ranging all the way from 5.25 to 57.6 sq. in.
All of the rules above quoted give the area of the disk of the valve as the thing to be ascertained, and it is this area which is supposed to bear some direct ratio to the grate-surface, to the heating-surface, to the water evaporated, etc. It is difficult to see why this area has beel considered even approximately proportional to these quantities, for with small lifts the area of actual opening bears a direct ratio, not to tne area of disk, but to the circumference.
Thus for various diameters of valve:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter . ................ & 1 & 2 & 3 & 4) & 5 & 6 & 7 \\
\hline Area & . 885 & 3.14 & 7.07 & 12.57 & 19.64 & 28.27 & 38.48 \\
\hline Circu & 3.14 & 6.28 & 9.42 & 12.57 & 15.71 & 18.85 & 21.99 \\
\hline Circum. \(\times\) lift & . 31 & . 63 & . 94 & 1.26 & 1.57 & 1.89 & 2.20 \\
\hline Ratio to are & . 4 & . 2 & . 13 & . 1 & . 08 & . 067 & .05\% \\
\hline
\end{tabular}

The apertures, therefore, are therefore directly proportional to the diameter or to the circumference, but their relation to the area is a varying one.
If the lift \(=1 / 4\) diameter, then the opening would be equal to the area of the disk, for circumference \(\times 1 / 4\) diameter \(=\) area, but such a lift is far beyond the actual lift of an ordinary safety-valve.
A correct rule for size of safetr-valves should make the product of the diameter and the lift proportional to the weight of steam to be discharged.
A "logical" method for calculating the size of safety-valve is given in The Locomotive, July, 1892, based on the assumption that the actual opening should be sufficient to discharge all the steam generated by the boiler. Napier's rule for flow of steam is taken, viz., flow through aperture of one sq. in. in lbs. per second \(=\) absolute pressure \(\div \tilde{\sigma}\), or in lbs. per hour \(=51.43\) X absolute pressure.
If the angle of the seat is \(45^{\circ}\), as specified in the rules of the \(U\). S. Supervisors, the area of opening in sq. in. = circumference of the disk \(\times\) the lift \(\times .71, .71\) being the cosine of \(45^{\circ}\); or diameter of disk \(\times\) lift \(\times 2.23\).
A. G. Brown in his book on The Indicator and its Practical Working (London, 1894) gives the following as the lift of the ordinary lever safetyvalve for 100 lbs . gauge-pressure:

Diam. of valve.. \(\begin{gathered}2 \\ 2\end{gathered} \quad 21 / 2 \quad 3 \quad 31 / 2 \quad 4 \quad 41 / 2 \quad 5 \quad 6\) inches.
Rise of valve.... . 0583 . 0523 . 0507 .0492 .0478 .0462 . 0446 . 0430 inch.
The lift decreases with increase of steam-pressure; thus for a 4-inch valre: \(\begin{array}{lllllllllll}\text { Abs. pressure, lbs. } & 45 & 65 & 85 & 105 & 115 & 135 & 155 & 175 & 195 & 215\end{array}\) \(\begin{array}{lllllllllll}\text { Gauge-press., lbs.. } & 30 & 50 & \pi 0 & 90 & 100 & 120 & 140 & 160 & 180 & 200\end{array}\)

The effective area of opening Mr. Brown takes at \(\% 0 \%\) of the rise multiplied by the circumference.
An approximate formula corresponding to Mr. Bromn's figures for diameters between \(21 / 2\) and 6 in . and gauge-pressures between \(\% 0\) and 200 lbs . is
Lift \(=(.0603-0031 d) \times \frac{115}{\text { abs. pressure }}\), in which \(d=\) diam. of valve in in.

If we combine this formula with the formulæ
Flow in lbs. per hour \(=\) area of opeuing in sq. in. \(\times 51.43 \times\) abs. pressure, and
Area \(=\) diameter of valve \(\times\) lift \(\times 2.23\), we obtain the following, which the author suggests as probably a more correct formula for the discharging capacity of the ordinary lever safety-valve than either of those above given.
Flow in lbs. per hour \(=d(.0603-.0031 d) \times 115 \times 2.23 \times 51.43=d(795-41 d)\).
From which we obtain:
\(\begin{array}{llllllllll}\text { Diameter, inches.... } & 1 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 5 & 6\end{array}\) \(\begin{array}{lllllllllll}\text { Flow, lbs. per hour... } & 754 & 1100 & 1426 & 1733 & 2016 & 2282 & 2524 & 2950 & 3294 & 3556\end{array}\) \(\begin{array}{lllllllllll}\text { Horse-power........ } 25 & 3 \pi & 47 & 58 & 67 & 76 & 84 & 98 & 110 & 119\end{array}\) the horse-power being taken as an evaporation of 30 lbs . of water per hour.
If we solve the example, above given, of the boiler evaporating 3600 lbs . of water per hour by this table, we find it requires one 7 -inch valve, or a \(21 / 2-\) and a 3 -inch valve combined. The 7 -inch valre has an area of 38.5 sq . in., and the two smaller valves taken together have an area of only \(12 \mathrm{sq} . \mathrm{in} . ;\) another evidence of the absurdity of considering the area of disk as the factor which determined the capacity of the valre.
It is customary in practice not to use safety-valves of greater diameter than 4 in . If a greater diameter is called for by the rule that is adopted, then two or more valves are used instead of one.

Spring-loaded Safety-valves.-Instead of weights, springs are sometimes employed to hold down safety-valves. The calculations are similar to those for lever safety-valves, the teusion of the spring corresponding to a given rise being first found by experiment (see Springs, page 347).
The rules of the U. S. Supervisors allow an area of 1 sq . in. of the valve to 3 sq . ft . of grate, in the case of spring-loaded valves, except in water-tube, coil, or sectional boilers, in which 1 sq . in. to 6 sq . ft. of grate is allowed.
Spring-loaded safety-valves are usually of the reactionary or "pop" type, in which the escape of the steam is opposed by a lip above the valve-seat, against which the escaping steam reacts, causing the valve to lift higher than the ordinary valve.
A. G. Brown gives the following for the rise, effective area, and quantity of steam discharged per hour" by valves of the "pop" or Richardson type. The effective is taken at ouly \(50 \%\) of the actual area due to the rise, on account of the obstruction which the lip of the valve offers to the escape of steam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Dia.value, in Lift, inches. Area, sq.in. & \[
\begin{gathered}
1 \\
.125 \\
.196
\end{gathered}
\] & \[
\begin{aligned}
& 11 / 2 \\
& .150 \\
& .354
\end{aligned}
\] & \[
\begin{array}{r}
2 \\
.175 \\
.550
\end{array}
\] & \[
\begin{aligned}
& 21 / 2 \\
& .200 \\
& .785
\end{aligned}
\] & \[
\begin{gathered}
3 \\
.225 \\
1.061
\end{gathered}
\] & \[
\begin{array}{r}
31 / 3 \\
.250 \\
1.3 \pi 5
\end{array}
\] & 4
.275
1.728 & \[
\begin{array}{r}
41 / 3 \\
.300 \\
2.121
\end{array}
\] & \[
\begin{gathered}
5 \\
.325 \\
2.553
\end{gathered}
\] & \[
\begin{array}{|c}
6 \\
.375 \\
3.535
\end{array}
\] \\
\hline Gauge-pres., & \multicolumn{10}{|c|}{Steam discharged per hour, lbs.} \\
\hline 30 lb & 474 & 85 & 1330 & 18 & 25 & 33:5 & 4178 & 5128 & 6173 & 85\%8 \\
\hline & 669 & 1209 & 1878 & 2680 & \(36: 0\) & 4695 & 5901 & 7242 & \(8{ }^{17} 18\) & \(120{ }^{2} 0\) \\
\hline \%0 & 861 & 1556 & 2417 & 3450 & 4660 & 6144 & 7596 & 9324 & 112:2 & 15535 \\
\hline 90 & 1050 & 189\% & 2917 & 4207 & 5680 & 7370 & 9260 & 11365 & 13685 & 18945 \\
\hline 100 & 1144 & 2065 & 3208 & 4580 & 6185 & 8322 & 10080 & 12375 & 14895 & 206.5 \\
\hline 120 & 1332 & 2405 & 3736 & 5332 & 2202 & 9342 & 11\%35 & 14410 & 17340 & 24015 \\
\hline 140 & 1516 & 2738 & 4254 & 60\%0 & \(8 \div 00\) & 10635 & 13365 & 16405 & 1974 4 ¢ & \(273+0\) \\
\hline 160 & 1696 & 3664 & 4760 & 6 ¢94 & 9175 & 11900 & 14955 & 18355 & 22095 & 30595 \\
\hline 180 & 1883 & 3400 & 5283 & 7540 & 10180 & 13250 & 16595 & 203\%0 & 24520 & 33950 \\
\hline 200 & 2062 & \(3{ }^{\text {r }} 4\) & 5786 & 8:35 & 11150 & 14465 & 18175 & 22310 & 26855 & 3n1 \\
\hline
\end{tabular}

If we take 30 lbs . of steam per hour, at 100 lbs . gauge-pressure \(=1 \mathrm{H} . \mathrm{P}\)., we have from the above table:
\(\begin{array}{lllllllllll}\text { Diameter, inches... } & 1 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 41 / 2 & 5 & 6\end{array}\)
\(\begin{array}{llllllllllll}\text { Horse-power....... } & 38 & 69 & 107 & 15 \tilde{3} & 206 & 277 & 336 & 41 \tilde{2} & 496 & 687\end{array}\)
A safety-valve should be capable of discharging a much greater quantity of steam than that corresponding to the rated horse-power of a boiler, since a boiler having ample grate surface and strong draught may generate more than double the quantity of steam its rating calls for.
The Consolidated Safety-valve Co.'s circular gives the following rated capacity of its nickel-seat "pop" safety-valves:
Size, in \(\ldots . .\).
Boiler \(\left\{\begin{array}{lllllclcccc} & 11 / 4 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 41 / 2 & 5 & 51 / 3 \\ \text { H.P. } & 8 & 10 & 20 & 35 & 60 & 75 & 100 & 125 & 150 & 175 \\ 200 \\ \text { to } & 10 & 15 & 30 & 50 & 75 & 100 & 125 & 150 & 175 & 200 \\ 275\end{array}\right.\)

The figures in the lower line from 2 inch to 5 inch, inclusive, correspond to the formula H.P. \(=50(\) diameter \(-1 \mathrm{inch})\).

\section*{THE INJECTOR.}

\section*{Equation of the Injector.}

Let \(S\) be the number of pounds of steam used;
\(W\) the number of pounds of water lifted and forced into the boiler;
\(h\) the height in feet of a column of water, equivalent to the absolute pressure in the boiler;
\(h_{0}\) the height in feet the water is lifted to the injector;
\(t_{1}\) the temperature of the water before it enters the injector;
\(t_{2}\) the temperature of the water after leaving the injector;
\(H\) the total heat above \(32^{\circ} \mathrm{F}\). in one pound of steam in the boiler, in heat-units;
\(L\) the lost work in friction and the equivalent lost work due to radiation and lost heat;
778 the mechanical equivalent of heat.
Then
\[
S\left[H-\left(t_{2}-32^{\circ}\right)\right]=W\left(t_{2}-t_{1}\right)+\frac{(W+S) h+W h_{0}+L}{\tau \pi 8}
\]

An equiralent formula, neglecting \(W h_{0}+L\) as small, is
\[
\begin{aligned}
S & =\left[W\left(t_{2}-t_{1}\right)+\frac{W+S}{d} \cdot p \cdot \frac{144}{.78}\right] \frac{1}{H-\left(t_{2}-3 ₹^{\circ}\right)}, \\
\text { on } S & =\frac{W\left[\left(t_{2}-t_{1}\right) d+.1851 p\right]}{H-\left(t_{2}-32^{\circ}\right) d-.1851 p},
\end{aligned}
\]
in which \(d=\) weight of 1 cu . ft . of water at temperature \(t_{2} ; p=\) absolute pressure of steam, lbs. per sq. in.
The rule for finding the proper sectional area for the narrowest part of the nozzles is given as follows by Rankine, S. E. p. 477:
\[
\text { Area in square inches }=\frac{\text { cubic feet per hour gross }}{800 \sqrt{\text { pressure in atmospheres }}}
\]

An important condition which must be fulfilled in order that the injector will work is that the supply of water must be sufficient to condense the steam. As the temperature of the supply or feed-water is higher, the amount of water required for condensing purposes will be greater.
The table below gives the calculated value of the maximum ratio of water to the steam, and the values obtained on actual trial, also the highest admissible temperature of the feed-water as shown by theory and the highest actually found by trial with several injectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Gauge-pressure, pounds per sq. in.} & \multicolumn{4}{|l|}{Maximum Ratio Water to Steam.} & \multirow{4}{*}{Gauge-pressure, pounds per sq.in.} & \multicolumn{6}{|l|}{Maximum Temperature of Feed-Water.} \\
\hline & \multirow{3}{*}{Calculated
from
Theory.} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Actual Experiment.}} & & \multicolumn{2}{|l|}{Theoretical.} & \multicolumn{4}{|l|}{Experi'tal Results.} \\
\hline & & & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow{2}{*}{H.} & \multirow{2}{*}{P.} & \multirow{2}{*}{M.} & \multirow{2}{*}{S.} \\
\hline & & H. & P. & M. & & & & & & & \\
\hline 10 & 36.5 & 30.9 & & & 10 & & & & & & \(13 .{ }^{\circ}\) \\
\hline 20 & 25.6 & 22.5 & 19.9 & 21.5 & 20 & \(1422^{\circ}\) & \(173{ }^{\circ}\) & \(135^{\circ}\) & \(100^{\circ}\) & \(130^{\circ}\) & 134 \\
\hline 30 & 20.9 & 19.0 & 17.2 & 19.0 & 30 & 132 & 162 & & & & 134 \\
\hline 40 & 17.87 & 15.8 & 15.0 & 15.86 & 40 & 126 & 156 & 140 & 113 & 125 & 13: \\
\hline 50 & 16.2 & 13.3 & 14.0 & 13.3 & 50 & 120 & 150 & & & & 131 \\
\hline 60 & 14.7 & 11.2 & 11.2 & 12.6 & 60 & 114 & 143 & & 115 & 123 & 130 \\
\hline \%0 & 13.7 & 12.3 & 11.7 & 12.9 & r0 & 109 & 139 & 141* & & 123 & 130 \\
\hline S0 & 12.9 & 11.4 & 11.2 & & 80 & 105 & 134 & 141* & 118 & 122 & 131 \\
\hline 90 & 12.1 & & & & 90 & 99 & 129 & & & & 132** \\
\hline 100 & 11.5 & & & & 100 & 95 & 125 & & & & 132* \\
\hline & & & & & 120 & 87 & 117 & & & & 134* \\
\hline & & & & & 150 & 77 & 107 & & & & 121* \\
\hline
\end{tabular}
* Temperature of delivery above \(212^{\circ}\). Waste-valve closed.

H, Hancock inspirator; P, Park injector; M, Metrovolitan injector; S, Sellers \(18 \pi 6\) injector.

Efficiency of the Injector.-Experiments at Cornell University, described by Prof. R. C. Carpenter, in Cassier's Magazine, Feb. 1892, show that, the injector, when considered merely as a pump, has an exceedingly low efficiency, the duty ranging from 161,000 to \(2,452.000\) under different circumstances of steam and delivery pressure. Small direct-acting pumps, such as are used for feeding boilers, show a duty of from 4 to 8 million los, and the best pumping-engines from 100 to 140 million. When used for feeding water into a boiler, however, the injector has a thermal efficiency of \(100 \%\), less the trifling loss due to radiation, since all the heat rejected passes into the water which is carried into the boiler.

The loss of work in the injector due to friction reappears as heat which is carried into the boiler, and the heat which is converted into useful work in the injector appears in the boiler as stored-up energy.

Although the injector thus has a perfect efficiency as a boiler-feeder, it is nevertheless not the most economical means for feeding a boiler, since it can draw only cold or moderately warm water, while a pump can feed water which has been heated by exhaust steam which would otherwise be wasted.

Performance of Injector*.-In Am. Mach., April 13, 1893, are a number of letters from different manufacturers of injectors in reply to the question: "What is the best performance of the injector in raising or lifting water to any height?" Some of the replies are tabulated below.
W. Sellers \& Co.-25.51 lbs. water delivered to boiler per lb. of steam; temperature of water, \(64^{\circ}\); steam pressure, 65 lbs .

Schaeffer \& Budenberg-1 gal. water delivered to boile" for 0.4 to 0.5 lb . steam.
Injector will lift by suction water of
\[
140^{\circ} \mathrm{F} \text {. } 136^{\circ} \text { to } 133^{\circ} \quad 122^{\circ} \text { to } 118^{\circ} \quad 113^{\circ} \text { to } 100^{\circ}
\]

If boiler pressure is. 30 to 60 lbs .60 to 90 lbs .90 to 120 lbs .120 to 150 lbs .
If the water is not over \(80^{\circ} \mathrm{F}\)., the injector will fores against a pressure \(\% 5\) lbs. higher than that of the steam.

Hancock Inspirator Co.:


The theory of the injector is discussed in Wood's, Peabody's, and Rontgen's treatises on Thermodynamics. See also "Theory and Practice of the Injector," by Strickland L. Kneass, New York, 1895.

Boiler-feeding Pumps. - Since the direct-acting pump, commonly used for feeding boilers, has a very low efficiency, or less than one tenth that of a good engine, it is generally better to use a pump driven by belt from the main engine or driving shaft. The mechanical work needed to feed a boiler may be estimated as follows: If the combination of boiler and engine is such that half a cubic foot, say 32 lbs of water, is needed per horsepower, and the boiler-pressure is 100 lbs . per sq. in., then the work of feeding the quantity of water is \(100 \mathrm{lbs} . \times 144 \mathrm{sq} . \mathrm{in} . \times 1 / 2 \mathrm{ft} .-\mathrm{lbs}\). per hour \(=120\) ft.-lbs. per min. \(=120 / 33,000=.0036\) H.P., or less than \(4 / 10\) of \(1 \%\) of the power exerted by the engine. If a direct-acting pump, which discharges its exhaust steam into the atmosphere, is used for feeding, and it has only \(1 / 10\) the efficiency of the main engine, then the steam used by the pump will be equal to nearly \(4 \%\) of that generated by the boiler.

The following table by Prof. D. S. Jacobus gives the relative efficiency of steam and power pumps and injector, with and without heater, as used upon a boiler with 80 lbs. gauge-pressure, the pump having a duty of \(10,000,000 \mathrm{ft} .-1 \mathrm{bs}\). per 100 lbs . of coal when no heater is used; the injector heating the water from \(60^{\circ}\) to \(150^{\circ} \mathrm{F}\).
Direct-acting pump feeding water at \(60^{\circ}\), without a heater. ..... 1.000
Injector feeding water at \(150^{\circ}\), without a heater ..... 985
Injector feeding water through a heater in which it is heated from \(150^{\circ}\) to \(200^{\circ}\) ..... 938
Direct-acting pump feeding water through a heater, in which it is heated from \(60^{\circ}\) to \(200^{\circ}\) ..... \(.8 \% 9\)
Geared pump, run from the engine, feeding water through a heater,
in which it is heated from \(60^{\circ}\) to \(200^{\circ}\) ..... 868

FEED-W ATER HEATERS.
Percentage of Saving for Lath Degree of Increase in Temperature of Fecd-water Heated by Waste Steam.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Initial \\
Temp. of Feed.
\end{tabular}} & \multicolumn{11}{|c|}{Pressure of Steam in Boiler, lbs. per sq. in. above Atmosphere.} & \multirow{2}{*}{Initial Temp.} \\
\hline & 0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 180 & 200 & \\
\hline \(3 \sim^{\circ}\) & . 0872 & . 0861 & . 0855 & 0851 & . 0847 & . 0844 & . 0841 & . 0839 & . 0837 & 0835 & .0833 & 30 \\
\hline 40 & . 0878 & . 0867 & . 0861 & . 0856 & . 0853 & . 0850 & .084 \({ }^{\prime}\) & . 0845 & . 0843 & . 0841 & . 0839 & 40 \\
\hline 50 & . 0886 & . 0875 & . 0868 & . 0864 & . 0860 & . 0857 & . 0854 & . 085. & . 0850 & . 0848 & . 0846 & 50 \\
\hline 60 & . 0894 & . 0883 & . 0876 & . 0872 & . 0867 & . 0864 & .0862 & . 0859 & . 0856 & . 0855 & . 085.3 & 60 \\
\hline 70 & . 0902 & . 0890 & . 0884 & . 0879 & . 0875 & . 0872 & . 0869 & . 0867 & . 0864 & . 0862 & . 0860 & 70 \\
\hline 80 & . 0910 & . 0898 & . 0891 & . 0887 & . 0883 & . 0879 & .08~7 & . \(08 \% 4\) & .0872 & .08\% 0 & . 0868 & 80 \\
\hline 90 & . 0919 & . \(090{ }^{7}\) & . 0300 & . 0895 & . 0888 & .088' & . 0884 & . 0883 & . 0879 & . 0877 & . 0875 & 90 \\
\hline 100 & .0927 & .0915 & . 0908 & . 0903 & . 0899 & . 0895 & .083? & . 0890 & . 0887 & . 0885 & . 0883 & 100 \\
\hline 110 & .09:36 & .0923 & . 0916 & . 0911 & . 0907 & . 0903 & . 0900 & . 0898 & . 0895 & . 0893 & . 0891 & 110 \\
\hline 120 & . 0945 & . 0932 & . 0925 & . 0919 & . 0915 & . 0911 & . 0908 & . 0906 & . 0903 & . 0901 & . 0899 & 120 \\
\hline 130 & . 0954 & . 0941 & . 0934 & . 0928 & .0924 & .0920 & .0917 & . 0914 & .0912 & . 0909 & . 0907 & 130 \\
\hline 140 & . 0963 & . 0950 & . 0943 & .0937 & . 0932 & . 0929 & .0925 & . 0923 & . 0920 & . 0918 & . 0916 & 140 \\
\hline 150 & . 0973 & . 0959 & . 0951 & . 0946 & . 0941 & .0937 & . 0934 & . 0931 & . 0929 & . 0926 & .0924 & 150 \\
\hline 160 & . 0982 & . 0968 & . 0961 & . 0955 & . 0950 & . 0946 & . 0943 & . 0940 & . 0937 & . 0935 & .0933 & 160 \\
\hline 170 & . 0992 & . 0978 & . 0970 & . 0964 & . 0959 & . 0955 & .0952 & . 0949 & . 0946 & . 0944 & . 0941 & 170 \\
\hline 180 & . 1002 & . 0988 & . 0981 & . 0973 & . 0969 & . 0965 & . 0961 & . 0958 & . 0955 & . 0953 & . 0951 & 180 \\
\hline 190 & . 1012 & . 0998 & . 0989 & . 0983 & . 0978 & . 0974 & . 0971 & . 0968 & . 0964 & . 0962 & 0960 & 190 \\
\hline 200 & . 1022 & . 1008 & . 0999 & . 0393 & . 0988 & . 0984 & . 0980 & . 097 ¢ & . 0974 & . 0972 & . 0969 & 200 \\
\hline 210 & . 1033 & . 1018 & . 1009 & . 1003 & . 0998 & . 0994 & . 0990 & . 0987 & . 0984 & . 0981 & . 0979 & 210 \\
\hline 220 & & . 1029 & . 1019 & . 1013 & . 1008 & . 1004 & . 1000 & . 0997 & . 0994 & . 0991 & . 0989 & 220 \\
\hline 230 & & . 1039 & . 1031 & . 1024 & . 1018 & . 1012 & . 1010 & . 1007 & . 1003 & . 1001 & . 0999 & 230 \\
\hline 240 & & . 1050 & . 1041 & . 1034 & . 1029 & .1024 & . 1020 & . 1017 & . 1014 & . 1011 & . 1009 & 240 \\
\hline 250 & & .106: & . 1052 & . 1045 & . 1040 & . 1035 & 1031 & 1027 & . 1025 & .1022 & . 1019 & 250 \\
\hline
\end{tabular}

An approximate rule for the conditions of ordinary practice is a saving of \(1 \%\) is made by each increase of \(11^{\circ}\) in the temperature of the feed-wates. This corresponds to \(.0909 \%\) per degree.
The calculation of saving is made as follows: Boiler-pressure, 100 lbs. gauge; total heat in steam above \(3 \because 0^{\circ}=1185\) B.T.U. Feed-water, original temperature \(60^{\circ}\), final temperature \(209^{\circ} \mathrm{F}\). Increase in heat-units, 150 , Heat-units above \(32^{\circ}\) in feed-water of original temperature \(=28\). Heatunits in steam above that in cold feed-water, \(1185-28=1157\). Saving by the feed-water heater \(=150 / 1157=12.96 \%\). The same result is obtained by the use of the table. Increase in temperature \(150^{\circ} \times\) tabular figure \(.0864=\) \(12.96 \%\). Let total heat of 1 lb . of steam at the boiler-pressure \(=H\); total heat of 1 lb . of feed-water before entering the heater \(=h_{1}\), and after passing through the heater \(=h_{2}\); then the saving made by the heater is \(\frac{h_{2}-h_{1}}{H-h_{1}}\).
Strains Caused by Cold Feed-water.-A calculation is made in The Locomotive of March, 1893, of the possible strains caused in the section of the shell of a boiler by cooling it by the injection of cold feed-water. Assuming the plate to be cooled \(200^{\circ} \mathrm{F}\)., and the coefficient of expansion of steel to be .0000067 per degree, a strip 10 in . long would contract .013 in ., if it were free to contract. To resist this contraction, assuming that the strip is firmly held at the euds and that the modulus of elasticity is \(29,000,000\), would require a force of \(37,600 \mathrm{lbs}\). per sq . in. Of course this amount of strain cannot actually take place, since the strip is not firmly held at the ends, but is allowed to contract to some extent by the elasticity of the surrounding metal. But, says The Locomotive, we may feel pretty confident that in the case considered a longitudinal strain of somewhere in the neighborhood of 8000 or \(10,000 \mathrm{lbs}\). per sq. in. may be produced by the feed-water striking directly upon the plates; and this, in addition to the normal strain produced by the steam-pressure, is quite enough to tax the girth-seams beyond their elastic limit, if the feed-pipe discharges anywhere near them. Hence it is not surprising that the girth-seans develop leaks and cracks in 98 cases out of every 100 in which the feed discharges directly upon the firesheetṣ.

\section*{STEAM SEPARATORS,}

If moist steam flowing at a high velocity in a pipe has its direction suddenly changed, the particles of water are by their momentum projected in their original. direction against the bend in the pipe or wall of the chamber n which the change of direction takes place. By making proper provision for drawing off the water thus separated the steam may be dried to a greater or less extent.

For long steam-pipes a large drum should be provided near the engine for trapping the water condensed in the pipe. A drum 3 feet diameter, 15 feet high, has given good results in separating the water of condensation of a steam-pipe 10 inches diameter and 800 feet long.

Efficiency of Steam Separators.-Prof. R. C. Carpenter, in 1891, made a series of tests of six steam separators, furnishing them with steam sontaining different percentages of moisture, and testing the quality of steam before entering and after passing the separator. A condensed table of the principal results is given below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Test with Steam of about \(10 \%\) of Moisture.} & \multicolumn{3}{|l|}{Tests with Varying Moisture.} \\
\hline & Quality of Steam before. & Quality of Steam after. & Efficiency per cent. & Quality of Steam before. & Quality of Steam after. & \[
\begin{aligned}
& \text { Av'ge } \\
& \text { Effi- } \\
& \text { ciency. }
\end{aligned}
\] \\
\hline B & 87.0\% & 98.8\% & 90.8 & 66.1 to \(97.5 \%\) & 9\%. 8 to \(99 \%\) & 87.6 \\
\hline A & 90.1 & 98.0 & 80.0 & 51.9 " 98 & 97.9 " 99.1 & 76.4 \\
\hline D & 89.6 & 95.8 & 59.6 & 72.2 " 96.1 & 95.5 " 98.2 & 71.7 \\
\hline C & 90.6 & 93.7 & 33.0 & 67.1 " 96.8 & 93.7 " 98.4 & 63.4 \\
\hline E & 88.4 & 90.2 & 15.5 & 68.6 " 98.1 & 79.3 " 98.5 & 36.9 \\
\hline F & 88.9 & 92.1 & 28.8 & \%0.4 ' 97.7 & 84.1 " 97.9 & 28.4 \\
\hline
\end{tabular}

Conclusions from the tests were: 1. That no relation existed between the volume of the several separators and their efficiency.
2. No marked decrease in pressure was shown by any of the separators, the most being 1.7 lbs . in E .
3. Although changed direction, reduced velocity, and perhaps centrifugai force are necessary for good separation, still some means must be provided to lead the water out of the current of the steam.
The high efficiency obtained from B and A was largely due to this feature. In \(B\) the interior surfaces are corrugated and thus catch the water thrown out of the steam and readily lead it to the bottom.
In A, as soon as the water falls or is precipitated from the steam, it comes in contact with the perforated diaphragm through which it runs into the space below, where it is not subjected to the action of the steam.
Experiments made by Prof. Carpenter on a " Stratton " separator in 1894 showed that the moisture in the steam leaving the separator was less than \(1 \%\) when that in the steam supplied ranged from \(6 \%\) to \(21 \%\).

\section*{DESERIMINATION OF THE MOISTURE IN STEAMSTEAMI CALORIMETERES.}

In all boiler-tests it is important to ascertain the quality of the steam, i.e., 1st, whether the steam is "saturated" or contains the quantity of heat due to the pressure according to standard experiments; 2d, whether the quantity of heat is deficient, so that the steam is wet; and 3d. whether the heat is in excess and the steam superheated. The best method of ascertaining the quality of the steam is undoubtedly that employed by a committee which tested the boilers at the American Institute Exhibition of 1871-2, of which Prof. Thurston was chairman, i.e., condensing all the water evaporated by the boiler by means of a surface condenser, weighing the condensing water, and taking its temperature as it enters and as it leaves the condenser; but this plan cannot always be adopted.

A substitute for this method is the barrel calorineter, which with careful operation and fairly accurate instruments may generally be relied on to give results within two per cent of accuracy (that is, a sample of steam which gives the apparent result of \(2 \%\) of moisture may contain anywhere be tween 0 and \(4 \%\) ). Shis calorimeter is described as follows: A sample of the steain is taken by inserting a perforated \(1 / 2\) - nch pipe into and through the main pipe near the boiler, and led by a hose, thoroughly felted, to a barrel, holding preferably 400 lbs. of water, which is set upon a platform scale and
provided with a cock or valve for allowing the water to flow to waste, and with a small propeller for stirring the water.

To operate the calorimeter the barrel is filled with water, the weight and temperature ascertained, steam blown through the hose outside the barrel until the pipe is thoroughly warmed, when the hose is suddenly thrust into the water, and the propeller operated until the temperature of the water is increased to the desired point, say about \(110^{\circ}\) usually. The hose is then withdrawn quickly, the temperature noted, and the weight again taken.

An error of \(1 / 10\) of a pound in weighing the condensed steam, or an error of \(1 / 2\) degree in the temperature, will cause an error of over \(1 \%\) in the calculated percentage of moisture. See Trans. A. S. M. E.. vi. 293.

The calculation of the percentage of moisture is made as below:
\[
Q=\frac{1}{H-T}\left[\frac{W}{w}\left(h_{1}-h\right)-\left(T-h_{1}\right)\right] .
\]
\(Q=\) quality of the steam, dry saturated steam being unity.
\(H=\) total heat of 1 lb . of steam at the observed pressure.
\(T="\) " " \({ }^{\prime}\) " " water at the temperature of steam of the observed pressure.
\(h=\) " \(\quad\) " \(\quad\) " \(\quad\) " \(\quad\) " condensing water, original.
\(h_{1}=\) " " " " " "
\(\stackrel{h_{1}}{W}=\) weight of condensing water, corrected for water-equivalent of the apparatus.
\(w=\) weight of the steam condensed.
Percentage of moisture \(=1-Q\).
If \(Q\) is greater than unity, the steam is superheated, and the degrees of superheating \(=9.0833(H-T)(Q-1)\).

Difficulty of Obtaining a Correct Sample. --Recent experiments by Prof. D. S. Jacobus, Trans. A. S. M. E., xvi. 1017, show that it is practically impossible to obtain a true average sample of the steam flowing in a pipe. For accurate determinations all the steam made by the boiler should be passed through a separator, the water separated should be weighed, and a calorimeter test made of the steam just after it has passed the separator.

Coil Calorimeterf. - Instead of the open barrel in which the steam is condensed, a coil acting as a surface-condenser may be used, which is placed in the barrel, the water in coil and barrel being weighed separately. For description of an apparatus of this kind designed by the author, which he has found to give results with a probable error not exceeding 1/2 per cent of moisture, see Trans. A. S. M. E., vi. 294. This calorimeter may be used continuously, if desired, instead of intermittently. In this case a continuous flow of condensing water into and out of the barrel must be established, and the temperature of inflow and outflow and of the condensed steam read at short intervals of time.

Throttling Calorimeter.-For percentages of moisture not exceeding 3 per cent the throttling calorimeter is most useful and convenient and remarkably accurate. In this instrument the steam which reaches it in a \(1 / 2\)-inch pipe is throttled by an orifice \(1 / 16\) inch diameter, opening into a chamber which has an outlet to the atmosphere. The steam in this chamber has its pressure reduced nearly or quite to the pressure of the atmosphere, but the total heat in the steam before throttling causes the steam in the chamber to be superheated more or less according to whether the steam before throttling was dry or contained moisture. The only observaions required are those of the temperature and pressure of the steam on each side of the orifice.

The author's formula for reducing the observations of the throttling calorimeter is as follows (Experiments on Throttling Calorimeters, Am. Mach., Aug. 4, 1892) : \(v=100 \times \frac{H-h-K(T-t)}{L}\), in which \(w=\) percentage of moisture in the steam; \(H=\) total heat, and \(L=\) latent heat of steam in the main pipe; \(h=\) total heat due the pressure in the discharge side of the calorimeter, \(=1146.6\) at atmospheric pressure: \(K=\) specific heat of superheated steam; \(T=\) temperature of the throttled and superheated steam in the calorimeter; \(t=\) temperature due the pressure in the calorimeter, \(=212^{\circ}\) at atmospheric pressure.
Taking \(K\) at 0.48 and the pressure in the discharge side of the calorimeter as atmospheric pressure, the formula becomes
\[
v=100 \times \frac{H-1146.6-0.48\left(T-212^{\circ}\right)}{L}
\]

From this formula the following table is calculated :

Moisture in Steam-Determinations by Throttling Calorimeter.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{12}{|c|}{Gauge-pressures.} \\
\hline & 5 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 75 & 80 & 85 & 90 \\
\hline & \multicolumn{12}{|c|}{Per Cent of Moisture in Steam.} \\
\hline \(0^{\circ}\) & 0.51 & 0.90 & 1.54 & 2.06 & 2.50 & 2.90 & 3.24 & 3.56 & 3.71 & 3.86 & 3.99 & 4.13 \\
\hline \(10^{\circ}\) & 0.01 & 0.39 & 1.02 & 1.54 & 1.97 & \(\because .36\) & 2. \(\% 1\) & 3.02 & 3.17 & 332 & 3.45 & 3.58 \\
\hline \(20^{\circ}\) & & & . 51 & 1.02 & 1.45 & 1.83 & 2.17 & 2.48 & 2.63 & 2. 75 & 2.90 & 3.03 \\
\hline \(30^{\circ}\) & & & . 00 & . 50 & & 1.30 & 1.64 & 1.94 & 2.09 & 2.23 & 2.35 & 2.49 \\
\hline \(40^{\circ}\) & & & & .... & & . 71 & 1.10 & 1.40 & 1.55 & 1.69 & 1.80 & 1.94 \\
\hline \(60^{\circ}\) & & & & & & & . 08 & .83 & 1.01
.47 & 1.15 & 1.26
.72 & 1.40 \\
\hline \(\% 0^{\circ}\) & & & & & & & & & & . 06 & . 17 & . 31 \\
\hline Dif.p.deg & .0503 & .0507 & . 0515 & . 0.521 & . 0526 & .0531 & . 0535 & .0539 & . 0.541 & . 0542 & . 0544 & . 0.546 \\
\hline \[
\dot{\Xi}
\] & \multicolumn{12}{|c|}{Gauge-pressures.} \\
\hline 世 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 & 250 \\
\hline & \multicolumn{12}{|c|}{Per Cent of Moisture in Steam.} \\
\hline \(0^{\circ}\) & 4.39 & 4.63 & 4.85 & 5.08 & 5.29 & 5.49 & 5.68 & 5.87 & 6.05 & 6.22 & 6.39 & 7.16 \\
\hline \(10^{\circ}\) & 3.84 & 4.08 & 4.29 & 4.52 & 4.73 & 4.93 & 5.12 & 5.30 & 5.48 & 5.65 & 5.82 & 6.58 \\
\hline \(20^{\circ}\) & 3.29 & 3.52 & 3.74 & 3.96 & 4.17 & 4.37 & 4.56 & 4.74 & 4.91 & 5.08 & 5.25 & 6.00 \\
\hline \(30^{\circ}\) & 2.74 & 2.97 & 3.18 & 3.41 & 3.61 & 3.80 & 3.99 & 4.1 r & 4.34 & 4.51 & 4.67 & 5.41 \\
\hline \(40^{\circ}\) & 2.19 & 2.42 & 2.63 & 2.85 & 3.05 & 3.24 & 3.43 & 3.61 & 3.78 & 3.94 & 4.10 & 4.83 \\
\hline \(50^{\circ}\) & 1.64 & 1.87 & 2.08 & 2.29 & 2.49 & 2.68 & 2.8 r & 3.04 & 3.21 & 3.37 & 3.53 & 4.25 \\
\hline \(60^{\circ}\) & 1.09 & 1.32 & 1.52 & 1.74 & 1.93 & 2.12 & 2.30 & 2.48 & 2.64 & 2.80 & 2.96 & 3.67 \\
\hline \(70^{\circ}\) & . 55 & . 77 & . 97 & 1.18 & 1.38 & 1.56 & 1.74 & 1.91 & 2.07 & 2.23 & 2.38 & 3.09 \\
\hline \(80^{\circ}\) & . 00 & . 22 & . 42 & . 63 & . 82 & 1.00 & 1.18 & 1.34 & 1.50 & 1.66 & 1.81 & 2.51 \\
\hline \(90^{\circ}\) & & & & . 07 & . 26 & . 44 & . 61 & . 78 & . 94 & 1.09 & 1.24 & 1.93 \\
\hline \(100^{\circ}\) & & & & & & & . 05 & . 21 & . \(3 \hat{1}\) & . 52 & .67
.10 & 1.34
.16 \\
\hline Dif.p.deg & . 0549 & . 0551 & . 0554 & . 0556 & . 0559 & . 0561 & . 0564 & . 0566 & . 0568 & . 0570 & 05\%2 & .0581 \\
\hline
\end{tabular}

Separating Calorimeters.-For percentages of moisture beyond the range of the throttling calorimeter the separating calorimeter is used, which is simply a steam separator on a small scale. An improved form of this calorimeter is described by Prof. Carpenter in Power, Feb. 1893.
For fuller information on various kinds of calorimeters, see papers bProf. Peabody, Prof. Carpenter, and Mr. Barrus in Trans. A. S. Mi. E., vols. x, xi, xii, 1889 to 1891; Appendix to Report of Com. on Boiler Tests, A. S. M. E., vol. vi, 1884; Circular of Schaeffer \& Budenberg, N. Y., "Calurimeters, Throttling and Separating." 1894.
Identification of Dry Steam by Appearance of a Jet. Prof. Denton (Trans. A. S. M. E., vol. X.) found that jets of steam show unmistakable change of appearance to the eye when steam varies less than \(1 \%\) from the condition of saturation either in the direction of wetness or superheating.
If a jet of steam flow from a boiler into the atmosphere under circumstances such that very little loss of heat occurs through ladiation, etc., and the jet be transparent close to the orifice, or be even a grayish-white color, the steam may be assumed to be so nearly dry that no portable condensing calorimeter will be capable of measuring the amount of water in the steam. If the jet be strongly white, the amount of water may be roughly judged up to about \(2 \%\), but beyond this a calorimeter ouly can determine the exact amount of moisture.

A common brass pet-cock may be used as an orifice, but it should, if possible, 'je set into the steam-drum of the boiler and never be placed further away from the latter than 4 feet, and then only when the intermediate reservoir or pipe is well covered.

Usual Amount of Moisture in Steam Escaping from a Boiler. - In the common forms of horizontal tubular land woilers and water-tube boilers with ample horizontal drums, and supplied with water free from substances likely to cause foaming, the moisture in the steam does not generally exceed \(2 \%\) unless the boiler is overdriven or the waterlevel is carried too high.

\section*{CHIMNEYS.}

Chimney Draught Theory. - The commonly accepted theory of chimney draught, based on Peclet's and Rankine's hypotheses (see Rankine, S. E.), is discussed by Prof. De Volson Wood in Trans. A. S. M. E., vol. xi.

Peclet represented the law of draught by the formula
\[
\hbar=\frac{u^{2}}{2 g}\left(1+G+\frac{f l}{m}\right),
\]
in which \(h\) is the "head," defined as such a height of hot gases as, if added to the column of gases in the chimney, would produce the same pressure at the furnace as a column of outside air, of the same area of base, and a height equal to that of the chimney;
\(u\) is the required velocity of gases in the chimney;
\(G\) a constant to represent the resistance to the passage of air through the coal;
\(l\) the length of the flues and chimney;
\(n\) the mean hydraulic depth or the area of a cross-section divided by the perimeter;
\(f\) a constant depending upon the nature of the surfaces over which the gases pass, whether smooth, or sooty and rough.
Rankine's formula (Steam Engine, p. 288), derived by giving certain values to the constants (so-called) in Peclet's formula, is
\[
h=\frac{\frac{\tau_{0}}{\tau_{2}}(0.0807)}{\frac{\tau_{0}}{\tau_{1}}(0.084)} H-H=\left(0.96 \frac{\tau_{1}}{\tau_{2}}-1\right) H ;
\]
in which \(H=\) the height of the chimney in feet;
\(\tau_{0}=493^{\circ} \mathrm{F}\)., absolute (temperature of melting ice);
\(\tau_{1}=\) absolute temperature of the gases in the chimney;
\(\tau_{2}=\) absolute temperature of the external air.

Prof. Wood derives from this a still more complex formula which gives the height of chimney required for burning a given quantity of coal per second, and from it he calculates the following table, showing the height of chimney required to burn respectively 24,20 , and 16 lbs . of coal per square foot of grate per hour, for the several temperatures of the chimney gases given.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Outside Air. \(\tau_{2}\)} & \multicolumn{2}{|l|}{Chimney Gas.} & \multicolumn{3}{|l|}{Coal per sq. ft . of grate per hour, lbs.} \\
\hline & \multirow[t]{2}{*}{\(\stackrel{\tau_{1}}{ }{ }^{\text {Absolute. }}\)} & \multirow[t]{2}{*}{Temp. Fahr.} & 24 & 20 & 16 \\
\hline & & & \multicolumn{3}{|c|}{Height \(H\), feet.} \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 520^{\circ} \\
& \text { absolute or } \\
& 59^{\circ} \mathrm{F} .
\end{aligned}
\]} & & & & & \\
\hline & 800
1000 & 339
539 & 179.1 & 115.8
100.0 & 55.7
48.7 \\
\hline & 1100 & 639 & 148.8 & 100.0
98.9 & 48.1 \\
\hline & 1200 & 739 & 152.0 & 100.9 & 49.1 \\
\hline & 1400 & 939 & 159.9 & \(105 . \%\) & \(51 .:\) \\
\hline & 1600
2000 & 1139 & 168.8 & 111.0 & 53.5 \\
\hline & 2000 & 1539 & 206.5 & 132.2 & 63.0 \\
\hline
\end{tabular}

Rankine's formula gives a maximum draught when \(\tau=21 / 12 \tau_{2}\), or \(622^{\circ} \mathrm{F}\)., when the outside temperature is \(60^{\circ}\). Prof. Wood says: "This result is not a fixed value, but departures from theory in practice do not affect the result largely. There is, then, in a properly constructed chimuey, properly working, a temperature giving a maximum draught,* and that temperature is not far from the value given by Rankine, although in special cases it may be \(50^{\circ}\) or \(75^{\circ}\) more or less."
All attempts to base a practical formula for chimneys upon the theoretical formula of Peclet and Rankine have failed on account of the impossibility of assigning correct values to the so-called "constants" \(G\) and \(f\). (See Trans. A. S. M. E., xi. 984.)
Force or Intensity of Draught.-The force of the draught is equal to the difference between the weight of the column of hot gases inside of the chimney and the weight of a column of the external air of the same height. It is measured by a draught-gauge, usually a U-tube partly filled with water, one leg connected by a pipe to the interior of the flue, and the other open to the external air.
If \(D\) is the density of the air outside, \(d\) the density of the hot gas inside, in lbs. per cubic foot, \(h\) the height of the chimney in feet, and .192 the factor for converting pressure in lbs. per sq. ft. into inches of water column, then the formula for the force of draught expressed in inches of water is,
\[
F=.192 h(D-d) .
\]

The density varies with the absolute temperature (see Rankine).
\[
d=\frac{\tau_{0}}{\tau_{1}} 0.084 ; \quad D=0.0807 \frac{\tau_{0}}{\tau_{2}},
\]
where \(\tau_{0}\) is the absolute temperature at \(32^{\circ} \mathrm{F}\)., \(=493 ., \tau_{1}\) the absolute temperature of the chimney gases and \(\tau_{2}\) that of the external air. Substituting these values the formula for force of draught becomes
\[
F=.192 h\left(\frac{39.79}{\tau_{2}}-\frac{41.41}{\tau_{1}}\right)=h\left(\frac{7.64}{\tau_{2}}-\frac{7.95}{\tau_{1}}\right)
\]

To find the maximum intensity of draught for any given chimney, the heated column being \(600^{\circ} \mathrm{F}\)., and the external air \(60^{\circ}\), multiply the height above grate in feet by \(.00 \% 3\), and the product is the draught in inches of water.

\section*{Height of Water Column Due to Unbalanced Pressure in} Chimney 100 Feet High. (The Locomotive, 1884.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|l|}{Temperature of the External Air-Barometer, 14.7 lbs. per sq. in.} \\
\hline & \(0^{\circ}\) & \(10^{\circ}\) & \(20^{\circ}\) & \(30^{\circ}\) & \(40^{\circ}\) & \(50^{\circ}\) & \(60^{\circ}\) & \(70^{\circ}\) & \(80^{\circ}\) & \(90^{\circ}\) & \(100^{\circ}\) \\
\hline & & & . 384 & & & & & & & & \\
\hline & \[
\begin{array}{r}
.488 \\
.520
\end{array}
\] & . 453 & \[
.419
\] & \[
.388
\] & \[
.355
\] & \[
\begin{aligned}
& .326 \\
& .359
\end{aligned}
\] & \[
\begin{array}{r}
.298 \\
.230
\end{array}
\] & 301 & . 244 & \[
\begin{aligned}
& 17 \\
& 50 \\
& 50
\end{aligned}
\] & 92 \\
\hline 260 & . 555 & . 528 & . 484 & . 453 & . 420 & . 392 & . 363 & . 334 & . 309 & . 288 & 25\% \\
\hline 280 & . 584 & . 549 & 515 & . 482 & . 451 & . 422 & . 394 & . 365 & . 340 & . 313 & 288 \\
\hline 30 & . 611 & . 576 & . 541 & . 511 & . 478 & . 449 & . 420 & . 392 & . 367 & . 340 & 315 \\
\hline 320 & . 637 & . 603 & . 568 & . 538 & . 505 & . 476 & . 447 & . 419 & . 394 & . 367 & 349 \\
\hline 340 & . 662 & . 638 & . 593 & . 563 & . 530 & . 501 & .472 & 443 & . 419 & . 392 & .367 \\
\hline 38 & . 687 & . 653 & . 618 & . 588 & . 555 & . 526 & 497 & . 468 & . 444 & . 417 & 392 \\
\hline 380 & . 710 & . 676 & . 641 & . 611 & . 578 & . 549 & 520 & 492 & . 467 & 440 & 415 \\
\hline 400 & . 733 & . 697 & . 662 & . 632 & . 598 & . 500 & 541 & . 513 & . 488 & . 461 & . 436 \\
\hline 420 & . 7 & . 7178 & . 68 & . 653 & . 620 & . 591 & .563 & 534 & . 509 & . 482 & \\
\hline 44 & .774 & . 739 & .70 & . 674 & . 641 & . 612 & . 584 & . 555 & . 530 & \({ }^{.503}\) & . 4788 \\
\hline & & & & . 710 & & . 632 & & . 574 & 549 & . 540 & . 497 \\
\hline 500 & .889 & . 79 & . 760 & . 730 & . 6 & . 649 & . 2 & S & & . 5 & . 51 \\
\hline
\end{tabular}
* Mucn confusion to students of the theory of chimneys has resulted from their understanding the words maximum draught to mean maximum intensity or pressure of draught, as measured by a draught-gauge. It here means maximum quantity or weight of gases passed up the chimney. The maximum intensity is found only with maximum temperature, but after the temperature reaches about \(622^{\circ} \mathrm{F}\). the density of the gas decreases more rapidly than its velocity increases, so that the weight is a maximum about \(622^{\circ} \mathrm{F}\)., as shown by Rankine.-W. K.

For any other height of chimney than 100 ft . the height of water column is found by simple proportion, the height of water column being directly proportioned to the height of chimney.

The calculations have been made for a chimney 100 ft . high, with various temperatures outside and inside of the flue, and on the supposition that the temperature of the chimney is uniform from top to bottom. This is the basis on which all calculations respecting the draught-power of chimneys have becu made by Rankine and other writers, but it is very far from the truth in most cases. The difference will be shown by comparing the reading of the draught-gauge with the table given. In one case a chimney 122 ft . high showed a temperature at the base of \(320^{\circ}\), and at the top of \(230^{\circ}\).

Box, in his "Treatise on Heat," gives the following table :
Drauget Powers of Chimneys, etc., with the Internal Air at 552ㅇ, and the External Air at \(62^{\circ}\), and with the Damper nearly Closed.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Theoretical Velocity in feet per second.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Theoretical Velocity in feet per second.} \\
\hline & & Cold Air Entering. & Hot Air at Exit. & & & Cold Air Entering. & Hot Air at Exit. \\
\hline 10 & . 073 & 17.8 & 35.6 & 80 & . 585 & 50.6 & 101.2 \\
\hline 20 & . 146 & 25.3 & 50.6 & 90 & . 657 & 53.7 & 107.4 \\
\hline 30 & . 219 & 31.0 & 62.0 & 100 & . 730 & 56.5 & 113.0 \\
\hline 40 & . 292 & 35.7 & 71.4 & 120 & . 876 & 62.0 & 124.0 \\
\hline 50 & . 365 & 40.0 & 80.0 & 150 & 1.095 & 69.3 & 138.6 \\
\hline 60 & . 438 & 43.8 & 87.6 & 175 & 1.204 & 74.3 & 149.6 \\
\hline 70 & . 511 & 47.3 & 94.6 & 200 & 1.460 & 80.0 & 160.0 \\
\hline
\end{tabular}

Rate of Combustion Due to Height of Chimney.Trowbridge's "Heat and Heat Engines" gives the following table showing the heights of chimney for producing certain rates of combustion per sq. ft . of section of the chimney. It may be approximately true for anthracite in moderate and large sizes, but greater heights than are given in the table are needed to secure the given rates of combustion with small sizes of anthracite, and for bituminous coal smaller heights will suffice if the coal is reasonably free from ash- \(5 \%\) or less.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Heights } \\
& \text { in } \\
& \text { feet. }
\end{aligned}
\] & Lbs. of Coal Burned per Hour per Sq. F't. of Section of Chimney. & Lbs. of Coal Burned per Sq. Ft. of Grate, the Ratio of Grate to Sec. tion of Chimney being 8 to 1 . & \[
\begin{gathered}
\text { Heights } \\
\text { in } \\
\text { feet. }
\end{gathered}
\] & Lbs. of Coal Burned per Hour per Sq. F't. of Section of Chimney. & Lbs. of Coal Burned per Sq. Ft. of Grate, the Ratio of Grate to Sec tion of Chimney being 8 to 1. \\
\hline 20 & 60 & 7.5 & 70 & 126 & 15.8 \\
\hline 25 & 68 & 8.5 & 75 & 131 & 164 \\
\hline 30 & 76 & 9.5 & 80 & 135 & 16.9 \\
\hline 35 & 84 & 10.5 & 85 & 139 & 17.4 \\
\hline 40 & 93 & 11.6 & 90 & 144 & 18.0 \\
\hline 45 & 99 & 12.4 . & 95 & 148 & 18.5 \\
\hline 50 & 105 & 13.1 & 100 & 152 & 19.0 \\
\hline 55 & 111 & 13.8 & 105 & 156 & 19.5 \\
\hline 60 & 116 & 14.5 & 110 & 160 & 200 \\
\hline 65 & 121 & 15.1 & & & \\
\hline
\end{tabular}

Thurston's rule for rate of combustion effected by a given neight of chimney 'Trans. A. S. M. E., xi. 991) is: Subtract 1 from twice the square root of the height, and the result is the rate of combustion in pounds per square foot of grate per hour, for anthracite. Or rate \(=2 \sqrt{h}-1\), in which \(h\) is the beight in feet. This rule gives the following:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(h=50\) & 60 & \% 0 & 80 & 90 & 100 & 110 & 125 & 150 & 175 & 200 \\
\hline \(2 \sqrt{h}-1=13.14\) & 14.49 & 15.73 & 16.89 & 17.97 & 19 & 19.97 & 21.36 & 23.49 & 25.45 & 27.28 \\
\hline
\end{tabular}

The results agree closely with Trowbridge's table given above. In prac-
tice the high rates of combustion for high chimneys given by the formula are not generally obtained, for the reason that with high chimneys there are usually long horizontal flues, serving many boilers, and the friction and the interference of currents from the several boilers are apt to cause the intensity of draught in the branch flues leading to each boiler to be much less than that at the base of the chimney. The draught of each boiler is also usually restricted by a damper and by bends in the gas-passages. In a battery of several boilers connected to a chimney 150 ft . ligh, the author found a draught of \(3 / 4\)-inch water-column at the boiler nearest the chimney, and only \(1 / 4\)-inch at the boiler farthest away. The first boiler was wasting fuel from too high temperature of the chimney-gases, \(900^{\circ}\), having too large a grate-surface for the draught, and the last boiler was working below its rated capacity and with poor economy, on account of insufficient draught.
The effect of changing the length of the flue leading into a chimney 60 ft . high and 2 ft .9 in . square is given in the following table, from Box on "Heat":
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Length of Flue in \\
feet.
\end{tabular} & Horse-power. & \begin{tabular}{c} 
Length of Flue in \\
feet.
\end{tabular} & Horse-power. \\
\hline 50 & 107.6 & 800 & 56.1 \\
100 & 100.0 & 1,000 & 51.4 \\
200 & 85.3 & 1,000 & 43.3 \\
400 & 60.8 & 2,000 & 38.2 \\
600 & 62.5 & 3,000 & 31.7 \\
\hline
\end{tabular}

The temperature of the gases in this chimney was assumed to be \(552^{\circ} \mathrm{F}\)., and that of the atmosphere \(6{ }^{\circ}\).
High Chimneys not Necessary.-Chimneys above 150 ft . in height are very costly, and their increased cost is rarely justified by increased ef. ficiency. In recent practice it has become somewhat common to build two or more smaller chimneys instead of one large one. A notable example is the Spreckels Sugar Refinery in Philadelphia, where three separate chimneys are used for one boiler-plant of 7500 H.P. The three chimneys are said to have cost several thousand dollars less than a single chimney of their combined capacity would have cost. Very tall chimneys have been characterized by one writer as " monuments to the folly of their builders."

Heights of Chimnoy required for Different Fuels.-The minimum height necessary varies with the fuel, wood requiring the least, then good bituminous coal, and fine sizes of anthracite the greatest. It also varies with the character of the boiler-the smaller and more circuitous the gas-passages the higher the stack required; also with the number of boilers, a single boiler requiring less height than several that discharge into a horizontal flue. No general rule can be given.

\section*{SIZE OF CHIMNEYS.}

The formula given below, and the table calculated therefrom for chimness up to 96 in . diameter and 200 ft . high, were first published by the author in 1884 (Trans. A. S. M. E. vi., 81). They have met with much approval since that date by engineers who have used them, and have been frequently published in boiler-makers' catalogues and elsewhere. The table is now extended to cover chimneys up to 12 ft . diameter and 300 ft . high. The sizes corresponding to the given commercial horse-powers are believed to be ample for all cases in which the draught areas through the boiler-fues and connections are sufficient, say not less than \(20 \%\) greater than the area of the chimney, and in which the draught between the boilers and chimney is not checked by long horizontal passages and right-angled bends.

Note that the figures in the table correspond to a coal consumption of 5 lbs . of coal per horse-power per hour. This liberal allowance is made to cover the contingencies of poor coal being used, and of the boilers being driven beyond their rated capacity. In large plants, with economical boilers and engines, good fuel and other favorable conditions, which will reduce the maximum rate of coal consumption at any one time to less than 5 lbs. per H. P. per hour, the figures in the table may be multiplied by the ratio of 5 to the maximum expected coal consumption per H.P. per hour. Thus, with conditions which make the maximum coal consumption only 2.5 lbs. per hour, the chimney 300 ft . high \(\times 12 \mathrm{ft}\). diameter should be sufficient for 6155 \(\times 2=12,310\) horse-power. The formula is based on the following data:
Formula, H.P. \(=3.33(A-0.6 \sqrt{A}) \sqrt{1 H} . \quad\) (Assuming \(1 \mathrm{H} . \mathrm{P} .=5 \mathrm{lbs}\). of coal burned per hour.)

1. The draught power of the chimney varies as the square root of the height.
2. The retarding of the ascending gases by friction may be considered as equivalent to a diminution of the area of the chimney, or to a lining of the chimuey by a layer of gas which has no velocity. The thickness of this lining is assumed to be 2 inches for all chimneys, or the diminution of area equal to the perimeter \(\times 2\) inches (neglecting the overlapping of the corners of the lining). Let \(D=\) diameter in feet, \(A=\) area, and \(E=\) effective area in square feet.
\[
\begin{aligned}
& \text { For square chimneys, } E=D^{2}-\frac{8 D}{12}=A-\frac{2}{3} \sqrt{A} \\
& \text { For round chimeys, } \quad E=\frac{\pi}{4}\left(D^{2}-\frac{8 D}{12}\right)=A-0.591 \sqrt{A}
\end{aligned}
\]

For simplifying calculations, the coefficient of \(\sqrt{A}\) may be taken as 0.6 for both square and round chimneys, and the formula becomes
\[
E=A-0.6 \sqrt{A}
\]
3. The power varies directly as this effective area \(E\).
4. A chimney should be proportioned so as to be capable of giving sufficient draught to cause the boiler to develop much more than its rated power, in case of emergencies, or to cause the combustion of 5 lbs . of fuel per rated horse-power of boiler per hour.

5 . The power of the chimney varying directly as the effective area, \(E\), and as the square root of the height, \(H\), the formula for horse-power of boiler for a given size of chimney will take the form H.P. \(=C E \sqrt{\bar{H}}\), in which \(C\) is a constant, the average value of which, obtained by plotting the results obtained from numerous examples in practice, the anthor finds to be 3.33.

The formula for horse-power then is
\[
\text { H.P. }=3.33 E \sqrt{H}, \text { or H.P. }=3.33(A-.6 \sqrt{A}) \sqrt{H}
\]

If the horse-power of boiler is given, to find the size of chimney, the height being assumed,
\[
E=\frac{0.3 \mathrm{H} . \mathrm{P}}{\sqrt{H}} ;=A-0.6 \sqrt{A} .
\]

For round chimneys, diameter of chimney \(=\) diam. of \(E+4^{\prime \prime}\).
For square chimneys, side of chimney \(=\sqrt{E}+4^{\prime \prime}\).
If effective area \(E\) is taken in square feet, the diameter in inches is \(d=\) \(13.54 \sqrt{E}+4^{\prime \prime}\), and the side of a square chimney in inches is \(s=12 \sqrt{E}+4^{\prime \prime}\).

If horse-power is given and area assumed, the height \(H=\left(\frac{0.3 \mathrm{H} . \mathrm{P}}{E}\right)^{2}\).
In proportioning chimneys the height is generally first assumed, with due consideration to the heights of surrounding buildings or hills near to the proposed chimney, the length of horizontal flues, the character of coal to be used, etc., and then the diameter required for the assumed height and horse-power is calculated by the formula or taken from the table.
The Protection of Tall Chimney-shafts from Lightning. -C. Molyneux and J. M. Wood (Industries, March 28, 1890) recommend for tall chimneys the use of a coronal or heary band at the top of the chimney, with copper points 1 ft . in height at intervals of 2 ft . throughout the circumference. The points should be gilded to prevent oxidation. The most approved form of conductor is a copper tape about \(3 / 4 \mathrm{in}\). by \(1 / 8 \mathrm{in}\). thick, weighing 6 ozs. per ft . If iron is used it should weigh not less than \(21 / 4 \mathrm{lbs}\). per ft . There must be no insulation, and the copper tape should be fastened to the chimney with holdfasts of the same material, to prevent voltaic action. An allowance for expansion and contraction should be made, say 1 in. in 40 ft . Slight bends in the tape, not too abrupt, answer the purpose. For an earth terminal a plate of metal at least 3 ft . sq. and \(1 / 16 \mathrm{in}\). thick should be buried as deep as possible in a damp spot. The plate should be of the same metal as the conductor, to which it should be soldered. The best earth terminal is water, and when a deep well or other large body of water is at hand, the conductor should be carried down into it. Right-angled bends in the conductor should be avoided. No bend in it should be over \(30^{\circ}\).

Some Tall Brick Chimneys.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Outside Diameter.} & \multicolumn{2}{|l|}{Capacity by the Author's Formula.} \\
\hline & & & \[
\begin{aligned}
& \dot{0} \\
& \text { ® } \\
& \text { ๗̈ }
\end{aligned}
\] & -i & H. P. & Pounds Coal per hour. \\
\hline 1. Hallsbrückner Hütte, Sax. & 460 & \(15.7{ }^{\prime}\) & \(33^{\prime}\) & \(16^{\prime}\) & 13,221 & 66,105 \\
\hline 2. Townsend's. Glasgow.... & 454 & 13 \(6^{\prime \prime} \cdot{ }^{\prime}\) & 32 & & & \\
\hline 3. Tennant's, Glasgow ........
4. Dobson \& Barlow, Bolton, & 435 & \(13^{\prime} 6^{\prime \prime}\) & 40 & & 9,795 & 48,975 \\
\hline 4. Dobson \& Barlow, Bolton, Eng. & 36712 & \(13^{\prime} 2^{\prime \prime}\) & \(33^{\prime} 10^{\prime \prime}\) & & 8,245 & 41,225 \\
\hline 5. Fall River Iron Co., Boston & 350 & 11 & 30 & 21 & 5,558 & 27,790 \\
\hline N. J. & 335 & 11 & \(28^{\prime \prime} 6^{\prime \prime}\) & 14 & 5,435 & 27,175 \\
\hline 7. Merrimac Mills, Low'l, Mass & \(282^{\prime} 9^{\prime \prime}\) & 12 & & & 5,980 & 29,900 \\
\hline 8. Washington Mills, Lawrence, Mass. & 250 & 10 & & & 3,839 & 19,195 \\
\hline 9. Amoskeag Mills, Manchester, N. H. & 250 & 10 & & & 3,839 & 19,195 \\
\hline 10. Narragansett E. L. Co., Providence, R. I. & 238 & 14 & & & 7,515 & 37,5\%5 \\
\hline 11. Lower Pacific Mills, Lawrence, Mass. & 214 & 8 & & & 2,248 & 11,240 \\
\hline 12. Passaic Print Works, Passaic, N. J & 200 & 9 & & & 2,771 & 13,855 \\
\hline 13. Edison Sta, B'klyn, Two e'ch & 150 & \(150^{\prime \prime} \times 120^{\prime \prime}\) & & each & 1,541 & 7,705 \\
\hline
\end{tabular}

Notes on the Above Chimneys.-1. This chimney is situated near Freiberg, on the right bank of the Mulde, at an elevation of 219 feet above that of the foundry works, so that its total height above the sea will be 7113/4 feet. The works are situated on the bank of the river, and the furnacegases are conveyed across the river to the chimney on a bridge, through a pipe 3227 feet in length. It is built throughout of brick, and will cost about \$40,000.-Mfr. and Bldr.
2. Owing to the fact that it was struck by lightning, and somewhat damaged, as a precautionary measure a copper extension subsequently was added to it, making its entire height 488 feet.
\(1,2,3\), and 4 were built of these great heights to remove deleterious gases from the neighborhood, as well as for draught for boilers.
5. The structure rests on a solid granite foundation, \(55 \times 30\) feet, and 16 feet deep. In its construction there were used 1, 700,000 bricks, 2000 tons of stone, 2000 barrels of mortar, 1000 loads of sand, 1000 barrels of Portland cement, and the estimated cost is \(\$ 40.000\). It is arranged for two flues, 9 feet 6 inches by 6 feet, connecting with 40 boilers, which are to be run in connection with four triple-expansion engines of 1350 horse-power each.
6. It has a uniform batter of 2.85 inches to every 10 feet. Designed for 21 boilers of 200 H . P. each. It is surmounted by a cast-iron coping which weighs six tons, and is composed of thirty-two sections, which are bolted together by inside flanges, so as to present a smooth exterior. The foundation is in concrete, composed of crushed limestone 6 parts, sand 3 parts, and Portlanil cement 1 part. It is 40 feet square and 5 feet deep. Two qualities of brick were used; the outer portions were of the first quality North River, and the backing up was of good quality New Jersey brick. Every twenty feet in vertical measurement an iron ring, 4 inches wide and \(3 / 4\) to \(1 / 2\) inch thick, placed edgewise, was built into the walls about 8 inches from the outer circle. As the chimney starts from the base it is double. The outer wall is 5 feet 2 inches in thickness, and inside of this is a second wall 20 inches thick and spaced off about 20 inches from main wall. From the interior surface of the main wall eight buttresses are carried, nearly touching this inner or main flue wall in order to keep it in line should it tend to sag. The interior wall, starting with the thickness described, is gradually reduced until a height of about 90 feet is reached, when it is diminished to 8 inches. At 165 feet it ceases,
and the rest of the chimney is without lining. The total weight of the chimney and foundation is 5000 tons. It was completed in September, 1888.
7. Connected to 12 boilers, with 1200 square feet of grate-surface. Draughtgange \(19 / 16\) inches.
8. Connected to 8 boilers, \(6^{\prime} 8^{\prime \prime}\) diameter \(\times 18\) feet. Grate-surface 448 square feet.
9. Connected to 64 Manning vertical boilers, total grate surface 1810 sq. ft. Designed to burn 18.00 lbs . anthracite per hour.
10. Designed for \(12.000 \mathrm{H} . \mathrm{P}\). of engines; (compound condensing).
11. Grate-surface 434 square feet; H.P. of boilers (Galloway) about 2500.
13. Eight boilers (water-tube) each 450 H.P.; 12 engines, each 300 H.P. Plant designed for 36,000 incandescent lights. For the first 60 feet the exterior wall is 28 inches thick, then 24 inches for 20 feet, 20 inches for 30 feet, 16 inches for 20 feet, and 12 inches for 20 feet. The interior wall is 9 inches thick of fire-brick for 50 feet, and then 8 inches thick of red brick for the next 30 feet. Illustrated in Iron Age, January 2, 1890.
A number of the above chimneys are illustrated in Power, Dec., 1890.
Chimney at Knoxville, Tenn., illustrated in Eng'g News, Nov. 2, 1893. 6 feet dianeter, 120 feet high, double wall:
Exterior wall, height 20 feet, 30 feet, 30 feet, 40 feet;
thickness \(211 / 2 \mathrm{in}\)., \(17 \mathrm{in} ., 13 \mathrm{in}\), \(81 / 2 \mathrm{in} . ;\)
Interior wall, height 35 ft., 35 ft ., 29 ft ., 21 ft .;
thickness \(131 / 2\) in., \(81 / 2\) in., 4 in., 0.

Exterior diameter, \(15^{\prime} 6^{\prime \prime}\) at bottom; batter, \(7 / 16\) inch in 12 inches from bottom to 8 feet from top. Interior diameter of inside wall, 6 feet uniform to top of interior wall. Space between walls, 16 inches at bottom, diminishing to 0 at top of interior wall. The interior wall is of red brick except a lining of 4 inches of fire-brick for 20 feet from bottom.

Stability of Chimneys. - Chimneys must be designed to resist the maximum force of the wind in the locality in which they are built, (sees Weak Chimneys, below). A general rule for diameter of base, of brick chimneys, approved by many years of practice in England and the United States, is to make the diameter of the base one tenth of the height. If the chimney is square or rectangular, make the diameter of the inscribed circle of the base one tenth of the height. The "batter" or taper of a chimney should be from \(1 / 16\) to \(1 / 4\) inch to the foot on each side. The brickwork should be one brick ( 8 or 9 inches) thick for the first 25 feet from the top, increasing \(1 / 2\) brick ( 4 or \(4 \frac{1}{2}\) inches) for each 25 feet from the top downwards. If the inside diameter exceed 5 feet, the top length should be \(11 / 2\) bricks; and if under 3 feet, it may be \(1 / 2\) brick for ten feet.
(From The Locomotive, 1884 and 1886.) For chimneys of four feet in diameter and one hiundred feet high, and upwards, the best form is circular, with a straight batter on the outside. A circular chimney of this size, in addition to being cheaper than any other form, is lighter, stronger, and looks much better and more shapely.

Chimneys of any considerable height are not built up of uniform thickness from top to bottom, nor with a uniformly varying thickness of wall, but the wall. heaviest of course at the base, is reduced by a series of steps.

Where practicable the load on a chimney foundation should not exceed two tons per square foot in compact sand, gravel, or loam. Where a solid rockbottom is available for foundation, the load may be greatly increased. If the rock is sloping, all unsound portions should be removed, and the face dressed to a series of horizontal steps, so that there shall be no tendency to slide after the structure is finished.

All boiler-chimneys of any considerable size should consist of an outer stack of sufficient strength to give stability to the structure, and an inner stack or core independent of the outer one. This core is by many engineers extended up to a height of but 50 or 60 feet from the base of the chimney, but the better practice is to run it up the whole height of the chimney; it may be stopped off, say, a couple feet below the top, and the outer shell contracted to the area of the core, but the better way is to run it up to about 8 or 12 inches of the top and not contract the outer shell. But under no circumstances should the core at its upper end be built into or connected with the outer stack. This has been done in several instances by bricklayers, and the result has been the expansion of the inner core which lifted the top of the outer stack squarely up and crecked the brickwork.

For a height of 100 feet we would make the outer shell in three steps, the first 20 feet high, 16 inches thick, the second 30 feet high, 12 inches thick. the
thit 50 feet high and 8 inches thick. These are the minimum thicknesser adrcissible for chimneys of this height, and the batter should be not less than 1 in 36 to give stability. The core should also be built in three steps each of which may be about one third the height of the chimney, the lowest 12 inches, the middle 8 inches, and the upper step 4 inches thick. This will insure a good sound core. The top of a chimney may be protected by a cast-fron cap; or perhaps a cheaper and equally good plan is to lay the ornamental part in some good cement, and plaster the top with the same material.

Weak Chimneys.-James B. Francis, in a report to the Lawrence Mfg. Co. in 1873 (Eng'g News, Aug. 28, 1880), gives some calculations concerning the probable effects of wind on that company's chimney as then constructed. Its outer shell is octagonal. The inner shell is cylindrical, with an air-space between it and the outer shell; the two shells not being bonded together, except at the openings at the base, but with projections in the brickwork, at intervals of about 20 ft . in height, to afford lateral support by contact of the two shells. The principal dimensions of the chimney are as follows :
Height above the surface of the ground............................. \(211 \mathrm{ft}_{\text {. }}\)
Diameter of the inscribed circle of the octagon near the ground. 15 "
Diameter of the inscribed circle of the octagon near the top.... \(10 \mathrm{ft} .11 / 2 \mathrm{in}\).
'Thickness of the outer shell near the base, 6 bricks, or.......... 231/2 in.
Thickness of the outer shell near the top, 3 bricks, or............. 111/2"
Thickness of the inner shell near the base, 4 bricks, or. ........... 15
Thickness of the inner shell near the top, 1 brick, or ............. \(33 / 4\) "
One tenth of the height for the diameter of the base is the rule commonly adopted. The diameter of the inscribed circle of the base of the Lawrence Manufacturing Company's chimuey being 15 ft ., it is evidently much less than is usual in a chimney of that height.

Soon after the chimney was built, and before the mortar had hardened, it was found that the top had swayed over about 29 in . toward the east. This \(w\) as evidently due to a strong westerly wind which occurred at that time. It was soon brought back to the perpendicular by sawing into some of the joints, and other means.

The stability of the chimney to resist the force of the wind depends mainly on the weight of its outer shell, and the width of its base. The cohesion of the mortar may add considerably to its strength; but it is too uncertain to be relied upon. The inner shell will add a little to the stability, but it may be cracked by the heat, and its beneficial effect, if any, is too uncertain to be taken into account.

The effect of the joint action of the vertical pressure due to the weight of the chimney, and the horizontal pressure due to the force of the wind is to shift the centre of pressure at the base of the chimney, from the axis toward one side, the extent of the shifting depending on the relative magnitude of the two forces. If the centre of pressure is brought too near the side of the chimney, it will crush the brickwork on that side, and the chimney will fall. A line drawn through the centre of pressure, perpendicular to the direction of the wind, must leave an area of brickwork between it and the side of the chimney, sufficient to support half the weight of the chimney; the other half of the weight being supported by the brickwork on the vindward side of the line.

Different experimenters on the strength of brickwork give very different results. Kirkaldy found the weights which caused several kinds of bricks, laid in hydraulic lime mortar and in Roman and Portland cements, to fail slightly, to vary from 19 to 60 tons (of 2000 lbs .) per sq. ft. If we take in this case 25 tons per sq. ft., as the weight that would cause it to begin to fail, we shall not err greatly. To support half the weight of the outer shell of the chimney, or \(3 \because 2\) tons, at this rate, requires an area of \(12.88 \mathrm{sq} . \mathrm{ft}\). of brickwork. From these data and the drawings of the chimney, Mr. Francis calculates that the area of 12.88 sq . ft . is contained in a portion of the chimney extending 2.428 ft . from one of its octagonal sides, and that the limit to which the centre of pressure may be shifted is therefore \(5.0 \% \mathrm{ft}\). from the axis. If shifted beyond this. he says, on the assumption of the strength of the brickwork, it will crush and the chimney will fall.

Calculating that the wind-pressure can affect only the upper 141 ft . of the chimney, the lower \(\tau 0 \mathrm{ft}\). being protected by buildings, he calculates that a wind-pressure of 44.02 lbs . per sq. ft. would blow the chimney down.

Rankine, in a paper printed in the transactions of the Institution of Engi-
neers, in Scotland, for 1867-68, says: "It had previously been ascertained by observation of the success and failure of actual chimneys, and especially of those which respectively stood and fell during the violent storms of 1856 , that, in order that a round chimney may be sufficiently stable, its weight should be such that a pressure of wind, of about 55 lbs . per sq. ft . of a plane surface, directly facing the wind, or \(2 \pi 1 / 2 \mathrm{lbs}\). per sq. ft. of the plane projection of a cylindrical surface, - . shall not cause the resultant pressure at any bed.joint to deviate from the axis of the chimney by more than one quarter of the outside diameter at that joint,"
According to Rankine's rule, the Lawrence Mfg. Co.'s chimney is adapted to a maximum pressure of wind on a plane acting on the whole height of 18.80 lbs . per sq . ft., or of a pressure of 21.60 lbs . per sq . ft. acting on the uppermost 141 ft . of the chimney.
Steel Chimneys are largely coming into use, especially for tall chimneys of iron-works, from 150 to 300 feet in height. The advantages claimed are : greater strength and safery; smaller space required; smaller cost, by 30 to 50 per cent, as compared with brick chimneys; avoidance of infiltration of air and consequent checking of the draught, common in brick chimneys. They are usually made cylindrical in shape, with a wide curved flare for 10 to 25 feet at the bottom. A heavy cast-iron base-plate is provided, to which the chimney is riveted, and the plate is secured to a massive foundation by holding-down bolts. No guys are used. F. W. Gordon, of the Phila. Engineering Works, gives the following method of calculating their resistance to wind pressure (Power, Oct. 1893) :

In tests by Sir William Fairbairn we find four experiments to determine the strength of thin hollow tubes. In the table will be found their elements, with their breaking strain. These tubes were placed upon hollow blocks, and the weights suspended at the centre from a block fitted to the inside of the tube.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Clear \\
Span, \\
ft. in.
\end{tabular} & Thickness Iron, in. & \begin{tabular}{l}
Outside \\
Diameter, in.
\end{tabular} & Sectional Area, in. & Breaking Weight, lbs. & Breaking W't, Ibs., by Clarke's Formula Constant 1.2. \\
\hline I. & 17 & . 037 & 12 & 1.3901 & 2,704 & 2,627 \\
\hline II. & 15 71/2 & . 113 & 12.4 & 4.3669 & 11,440 & 9,184 \\
\hline III. & 235 & . 0631 & 17.68 & 3.487 & 6,400 & 7,302 \\
\hline IV. & 235 & . 119 & 18.18 & 6.74 & 14,240 & 13,910 \\
\hline
\end{tabular}

Edwin Clarke has formulated a rule from experiments conducted by him during his investigations into the use of iron and steel for hollow tuba bridges, which is as follows :
\(\left.\begin{array}{c}\text { Center break- } \\ \text { ing load, in tons. }\end{array}\right\}=\frac{\text { Area of material in sq.in. } \times \text { Mean depth in in. } \times \text { Constant }}{\text { Clear span in feet. }}\).
When the constant used is 1.2, the calculation for the tubes experimented upon by Mr. Fairbairn are given in the last column of the table. D. K. Clark's "Rules, Tables, and Data," page 513, gives a rule for hollow tubes as follows : \(W=3.14 D^{2} T S \div L . W=\) breaking weight in pounds in centre; \(D=\) extreme diameter in inches; \(T=\) thickness in inches; \(L=\) length between supports in inches; \(S=\) ultimate tensile strength in pounds per sq. in.

Taking \(S\), the strength of a square inch of a riveted joint, at \(35,000 \mathrm{lbs}\). per. sq. in., this rule figures as follows for the different examples experimented upon by Mr. Fairbairn : I, 28\%0; II, 10,190; III, 7700 ; IV, 15, 320.

This shows a close approximation to the breaking weight obtained by experiments and that derived from Edwin Clarke's and D. K. Clark's rules. We therefore assume that this system of calculation is practically correct, and that it is eminently safe when a large factor of safety is provided, and from the fact that a chimney may be standing for many years without receiving anything like the strain taken as the basis of the calculation, viz., fifty pounds per square foot. Wind pressure at fifty pounds yer square foot may be assumed to be travelling in a horizontal direction, and be of the same velocity from the top to the bottom of the stack. This is the extreme assumption. If, however, the chimney is round, its effective area would be only half of its diameter plane. We assume that the entire force may be concentrated in the centre of the height of the section of the chimney under consideration.

Taking as an example a 125 -foot iron chimney at Poughkeepsie, N. Y., the arerage diameter of which is 90 inches, the effective surface in square feet upon which the force of the wind may play will therefore be \(71 / 2\) times 125 divided by 2 , which multiplied by 50 gives a total wind force of 23,437 pounds. The resistance of the chimney to breaking across the top of the foundation would be \(314 \times 168^{2}\) (that is, diameter of base) \(\times .25 \times 35,000+\) ( \(750 \times 4\) ) \(=258,486\), or 10.6 times the entire force of the wind. We multiply the half height above the joint in inches, 750 , by 4, because the chimney is tonsidered a fixed bean with a load suspended on one end. In calculating Its strength half way up, we have a beam of the same character. It is a fixed beam at a line half way up the chimney, where it is 90 inches in dianteter and .187 inch thick. Taking the diametrical section above this line, and the force as concentrated in the centre of it, or half way up from the point under consideration, its breaking strength is: \(3.14 \times 90^{2} \times .187 \times 35,0\) co \(\div(381 \times 4)=109,220\); and the force of the wind tc tear it apart through its cross-section, \(71 / 4 \times 6: 1 / 2 \times 50 \div 2=11,352\), or a little more than one tenth of the strength of the stack.

The Babcock \& Wilcox Co.'s book "Steam" illustrates a steel chimney at the works of the Maryland Steel Co., Sparrow's Point, Md. It is 225 ft . in height above the base, with internal brick lining \(13^{\prime} 9^{\prime \prime}\) uniform inside diameter. The shell is 25 ft . diam. at the base, tapering in a curve to \(1 \% \mathrm{ft}\). 25 ft . above the base, thence tapering almost imperceptibly to \(14^{\prime} 8^{\prime \prime}\) at the top. The upper 40 feet is of \(1 / 4\)-inch plates, the next four sections of 40 ft . each are respectively \(9 / 32,5 / 16,11 / 3 \cdot\), and \(3 / 8\) inch.

\section*{Sizes of Foundations for Steel Chimneys.}
(Selected from circular of Phila. Engineering Works.)
Half-Lined Chimneys.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter, clear, feet......... & 3 & 4 & 5 & 6 & 7 & 9 & 11 \\
\hline Height, feet. & 100 & 101) & 150 & 150 & 150 & 150 & 150 \\
\hline Least diameter foundation. & \(15^{\prime} 9^{\prime \prime}\) & \(16^{\prime} 4^{\prime \prime}\) & 20'4' & \(21^{\prime} 10^{\prime \prime}\) & \(22^{\prime 7} 7^{\prime \prime}\) & \(23^{\prime} 8^{\prime \prime}\) & \(24^{\prime \prime} 8^{\prime \prime}\) \\
\hline Least depth foundation. & \(6^{\prime}\) & \(6^{\prime}\) & \(9{ }^{\prime}\) & \(8{ }^{\prime}\) & \(9{ }^{\prime}\) & \(10^{\prime}\) & \(10^{\prime}\) \\
\hline Height, feet & & 125 & 200 & 200 & 250 & \(2 i 5\) & 300 \\
\hline Least diameter forndation. & & \(18^{\prime} 5^{\prime \prime}\) & \(23^{\prime \prime} 8^{\prime \prime}\) & \(25^{\prime}\) & \(29^{\prime \prime}{ }^{\prime \prime}\) & \(33^{\prime} 6^{\prime \prime}\) & \(36^{\prime}\) \\
\hline Least depth foundation...... & & \(7{ }^{\prime}\) & \(10^{\prime}\) & \(10^{\prime}\) & \(12^{\prime}\) & \(12^{\prime}\) & \(14^{\prime}\) \\
\hline
\end{tabular}

\section*{Weight of Sheet-iron Smoke-stacks per Foot.}
(Porter Mfg. Co.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Diam., inches. & Thickness W. G. & Weight per'ft. & Diam., inches. & Thickness W. G. & Weight per ft. & Diam. inches. & ThickW. G. & Weight per ft. \\
\hline 10 & No. 16 & 7.20 & 26 & No. 16 & 17.50 & 20 & No. 14 & 18.33 \\
\hline 12 & \% & 8.66 & 28 & & 18.75 & 22 & i6 & 20.00 \\
\hline 14 & " & 9.58 & 30 & 6 & 20.00 & 24 & " & 21.66 \\
\hline 16 & '6 & 11.68 & 10 & No. 14 & 9.40 & 26 & " & 23.33 \\
\hline 20 & " & 13.65 & 12 & " & 11.11 & 28 & " & 25.00 \\
\hline 2 & " & 15.00 & 14 & " & 13.69 & 30 & " & 26.66 \\
\hline 24 & " & 16.25 & 16 & , & 15.00 & & & \\
\hline
\end{tabular}

Sheet-iron Chimneys. (Columbus Machine Co.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter Shimney, inches. & Length Chimney, feet. & \begin{tabular}{l}
Thickness Iron. \\
B. W. G
\end{tabular} & Weight, lbs. & Diameter Chimney, inches. & \[
\begin{aligned}
& \text { Length } \\
& \text { Chiminey, } \\
& \text { feet. }
\end{aligned}
\] & \begin{tabular}{l}
Thickness Iron, \\
B. W. G
\end{tabular} & Weight lbs. \\
\hline 10 & 20 & No. 16 & 160 & 30 & 40 & No. 15 & 960 \\
\hline 15 & 20 & - 16 & 240 & 32 & 40 & " 15 & 1.0:0 \\
\hline 20 & 20 & " 16 & 320 & 34 & 40 & "6 14 & 1,1:0 \\
\hline 22 & 20 & " 16 & 350 & 36 & 40 & 5614 & 1.240 \\
\hline 24 & 40 & " 16 & 760 & 38 & 40 & "12 & 1, 200 \\
\hline 26 & 40 & \begin{tabular}{l}
616 \\
\hline 15
\end{tabular} & \(8: 6\) & 40 & 40 & '6 12 & 1,890 \\
\hline 28 & 40 & 15 & 900 & & & & \\
\hline
\end{tabular}

\section*{THE STEAM-ENGINE.}

Expansion of Steam. Isothermal and Adiabatic.-According to Mariotte's law, the volume of a perfect gas, the temperature being kept constant, varies inversely as its pressure, or \(p \propto \frac{1}{v} ; p v=\) a constant. The curve constructed from this formula is called the isothermal curve, or curve of equal temperatures, and is a common or rectangular hyperbola. The relation of the pressure and volume of saturated steam, as deduced from Regnault's experiments, and as given in Steam tables, is approxin:ately, according to Rankine (S. E., p. 403), for pressures not exceeding 1:0 lbs., \(p \propto \frac{1}{v^{\frac{17}{17}}}\), or \(p \propto v^{-\frac{17}{16}}\), or \(p v^{\frac{17}{16}}=p v^{1.0625}=a\) constant. Zeuner has found that the exponent 1.0646 gives a closer approximation.

When steam expands in a closed cylinder, as in an engine, according to Rankine (S. E., p. 385), the approximate law of the expansion is \(p \propto \frac{1}{v^{\frac{1}{9}}}\). or \(p \propto v^{-\frac{10}{9}}\) or \(p v^{1.111}=\) a constant. The curve constructed from this formula is called the adiabutic curve, or curve of no transmission of heat.

Peabody Themı.. p. 11:) says: "It is probable that this equation was obtained by comparing the expansion lines on a large number of indicatordiagrams. . . . There does not appear to be any good reason for using an exponential equation in this comnection, . . . and the action of a lagged steamengine cylinder is far from being adiabatic. . . For general purposes the hyperbola is the best curve for comparison with the expansion curve of an indicator-card. . . ." Wolff and Denton, Trans. A. S. M. E., ii. 1\%5, say : "From a number of cards examined from a variety of steam-engines in cur. rent use, we find that the actual expansion line varies between the 10/1 adiabatic curve and the Mariotte curve."

Prof. Thurston (A. S. M. E, ii. 203), says he doubts if the exponent eve becomes the same in any two engines, or even in the same engines at dif ferent times of the day and under varying conditions of the day.

Expansion of Steam according to Mariotte's Law and to the Adiabatic Law. ('rians. A. S. M. E., ii. 156.)-Mariotte's law \(p v=p_{1} v_{1}\); values calculated from formula \(\frac{P m}{p_{1}}=\frac{1}{R}(1+\operatorname{hyp} \log R)\), in whicl \(R=v_{2} \div v_{1}, p_{1}=\) absolute initial pressure, \(P_{m}=\) absolute mean pressure, \(v_{1}=\) initial volume of steam in cylinder at pressure \(p_{1}, v_{2}=\) final volume of steam at final pressure. Adiabatic law: \(p v^{\frac{10}{9}}=p_{1} v_{1}^{10}\); values calculated from formula \(\frac{P m}{p_{1}}=10 R-^{1}-9 R-\frac{10}{9}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ratio of Expansion \(R\).} & \multicolumn{2}{|l|}{Ratio of Mean to luitial Pressure.} & \multirow[t]{2}{*}{Ratio of Expansion \(R\).} & \multicolumn{2}{|l|}{Ratio of Mean to Initial Pressure.} & \multirow[t]{2}{*}{Ratio of Expansion \(R\).} & \multicolumn{2}{|l|}{Ratio of Mean to Initial Pressure.} \\
\hline & Mar. & Adiab. & & Mar. & Adiab. & & Mar. & Adiab. \\
\hline 1.00 & 1.000 & 1.000 & 3.7 & . 624 & . 600 & 6. & . 465 & . 438 \\
\hline 1.25 & . 978 & . 976 & 3.8 & . 614 & . 590 & 6.25 & . 453 & . 425 \\
\hline 1.50 & . 9337 & . 931 & 3.9 & . 605 & . 580 & 6.5 & .442 & . 413 \\
\hline 1.\% & . 891 & . 881 & 4. & . 597 & . 511 & 6. 5 & . 431 & . 403 \\
\hline 2. & .84\% & . 834 & 4.1 & . 588 & . 562 & & . 421 & . 393 \\
\hline 2.2 & 813 & . 798 & 4.2 & . 580 & . 554 & 7.25 & . 411 & . 383 \\
\hline 2.4 & . 881 & . 765 & 4.3 & . \(5 \% 2\) & . 546 & 7.5 & . 402 & . 374 \\
\hline 2.5 & . 766 & . 748 & 4.4 & . 564 & . 538 & 7.75 & . 393 & . 365 \\
\hline 2.6 & . 752 & . 733 & 4.5 & . 556 & . 530 & & . 385 & . 35 \% \\
\hline 2.8 & . 705 & . 704 & 4.6 & . 549 & . \(5 \cup 3\) & 8.25 & . 377 & . 349 \\
\hline 3. & . 60 & . \(6 \hat{8} 8\) & 4.7 & . 540 & . 516 & 8.5 & . 369 & . \(3+2\) \\
\hline 3.1 & . 688 & . 666 & 4.8 & . 535 & . 509 & 8.75 & . 362 & . 335 \\
\hline 3.2 & . 616 & . 654 & 4.9 & .528 & . 502 & 9. & . 355 & .3:8 \\
\hline 3.3 & . 665 & . 642 & 5.05 & . 52. & . 495 & 9.25 & . 349 & . 3.11 \\
\hline 3.4 & . 654 & . 630 & 52 & . 506 & . 479 & 9.5 & . 342 & . 315 \\
\hline 3.5 & . 644 & . \(6: 0\) & 5.5 & . 493 & . 464 & 9.\%5 & . 336 & . 309 \\
\hline 3.6 & 634 & 610 & 5.75 & . 4.8 & . 450 & 10. & 3:30 & 30.3 \\
\hline
\end{tabular}

Mean Pressure of Expanded Steam.-For calculations of engines it is generally assumed that steam expands according to Mariotte's liw, the curve of the expansion line being a hyperbola. The mean pressure, measured above vacuum, is then obtained from the formula
\[
P_{m}=p_{1} \frac{1+\operatorname{hyp} \log R}{R}
\]
in which \(P_{m}^{m i}\) is the absolute mean pressure, \(p_{1}\) the absolute initial pressure taken as uniform up to the point of cut-off, and \(k\) the ratio of expansion. If \(l=\) length of stroke to the cut-off, \(L=\) total stroke,
\[
P_{m}=\frac{p_{1} l+p_{1} l \operatorname{hyp} \log \frac{L}{l}}{L} ; \quad \text { and if } R=\frac{L}{l}, \quad P_{m}=p_{1} \frac{1+\operatorname{lyp} \log R}{R} .
\]

Mean and Terminal Absolute Pressures.-Mariotte's
Law. - The values in the following table are based on Marioties law, except those in tbe last column, which give the mean pressure of superheated steam, which, according to Rankine, expands in a cylinder according to the law \(p \propto c^{-\frac{17}{16}}\). These latter values are calculated from the formula \(\frac{P_{m}}{\prime^{\prime}}=\frac{1 \tilde{1}-16 R-\frac{1}{15}}{R} \cdot R^{-\frac{1}{16}}\) may be found by extracting the square root of \(\frac{1}{R}\) four (ince3. From the mean absolute pressures given deduct the mean back presure (absolute) to obtain the mean efective preseure.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & Cutoff. & Ratio of Mean to Initial Pressure. & Ratio of Mean to Termina? Pressure. & Ratio of Terminal to Mean Pressure & Patio of Initial to Mean Pressure. & Ratio of Mean to Initial Dry Steam. \\
\hline 30 & 0.033 & 0.1467 & 4.40 & \(0.20 \sim\) & 6.82 & 0.136 \\
\hline 只 & 0.036 & 0.1547 & 4.33 & 0.231 & 6.46 & \\
\hline 315 & 0.038 & 0.1638 & 426 & 0.235 & 6.11 & \\
\hline 94 & 0.042 & \(0.1 \tau 41\) & 4.18 & 0.239 & 5.75 & \\
\hline 3 & 0.045 & 0.1860 & d 09 & 0.244 & 5.38 & \\
\hline 30 & 0.050 & 0.1998 & 4.30 & 0.250 & 5.00 & 0.186 \\
\hline 18 & 0.055 & 0.2161 & 3.89 & 0.256 & 4.63 & \\
\hline 16 & \(0.06{ }^{3}\) & 0.2358 & 3.74 & 0.265 & 4.24 & \\
\hline 15 & 0.066 & \(0.24 \% 2\) & 3.71 & 0.269 & 4.05 & \\
\hline 14 & \(0.0 \sim_{1}\) & 0.2599 & 3.64 & 0.275 & 3.85 & \\
\hline 13.33 & 0.075 & 0.2630 & 3.59 & \(0.2 \tau 9\) & 3.72 & 0.254 \\
\hline 13 & \(0.07 \%\) & 0.5 & 3.56 & 0.280 & 3.65 & \\
\hline 12 & 0.083 & 8. 2904 & 3.45 & \(0.28 \pi\) & 3.44 & \\
\hline 11 & 0.091 & 0.3089 & 3.40 & 0.294 & 3.24 & \\
\hline 0 & 0.100 & 0.33303 & 3.30 & 0.303 & 3.03 & 0.314 \\
\hline 9 & 0.111 & 0.355 & 3.20 & 0.312 & 2.81 & \\
\hline 8 & 0.12 .5 & 0.3849 & 3.08 & \(0.3 \div 1\) & 2.60 & 0.3 \% \\
\hline T & 0.113 & \(0.4 \geqslant 10\) & 2.95 & 0.339 & 2.37 & \\
\hline 6.66 & 0.150 & 0.4347 & 2.90 & 0.345 & 2.20 & 0.417 \\
\hline 6.10 & 0.166 & 0.4653 & 2.79 & 0.360 & 2.15 & \\
\hline 551 & 0.175 & \(0.480 \sim 1\) & 2.74 & 0.364 & 2.08 & \\
\hline of.co
4.4
4.4 & 0.200
0.205 & 0.5218
0.5608 & 2.61
2.50 & 0.383
0.400 & 1.92
1.68 & 0.506 \\
\hline 4.90 & 0.250 & 0.5965 & 2. 39 & 0.419 & 1.68 & \(0.58 \%\) \\
\hline 3. 63: & \(0.2 \%\) & 0.6308 & 2.29 & 0.43 \% & 1.58 & \\
\hline 3.33 & 0.300 & 0.6615 & 2.20 & 0.454 & \(1 . \mathrm{i} 1\) & 0.648 \\
\hline 3.00 & 0.3333 & 0.6995 & 2.10 & 0.456 & 1.43 & \\
\hline 2.86 & 0.350 & \(0.71 \% 1\) & 2.05 & 0.488 & 1.39 & 0.707 \\
\hline 2.66
2.50 & 0.35
0.400 & e. 2440
0.7664 & 1.98 & 0.505
\(0.5 \because 3\) & 1.34
1.31 & \\
\hline 2.50
2.20 & 0.400
0.450 & 0.7664
0.8095 & 1.91
1.80 & 0.523
0.556 & 1.31
1.24 & 0.756
0.800 \\
\hline 2.00 & 0.500 & 0.8465 & 1.69 & 0.591 & 1.18 & 0.840 \\
\hline 1.82 & 0.550 & 0.8786 & 1.60 & \(0.6 \div 6\) & 1.14 & \(8.8{ }^{\text {a }}\) \\
\hline 1.66 & 0660 & 0.9066 & 1.51 & \(0.66 \%\) & 1.10 & 0.900 \\
\hline 1.60 & 0.625 & 0.918 亿 & 1.4 r & 0.630 & 1.09 & \\
\hline 1.54 & 0.650 & \(0.929 ?\) & 1.43 & 0.699 & 1.0 ã & 0.920 \\
\hline 1.48 & 0.675 & 0.9405 & 1.39 & 0.718 & 1.06 & . \\
\hline
\end{tabular}

Calculation of Mean Effective Pressure, Clearance and Compression Considered.-In the above tables no account is taken


Fig. 137.
Area of \(\mathrm{ABCD}=p_{1}(l+c)\left(1+\right.\) hyp \(\left.\log \frac{L+c}{l+c}\right)\);
\(\mathrm{B}=p_{b}(L-x) ;\)
\(\mathrm{C}=p_{c} c\left(1+\right.\) hyp \(\left.\log \frac{x+c}{c}\right)=p_{b}(x+c)\left(1+\right.\) hyp \(\left.\log \frac{x+c}{c}\right) ;\)
\(D=\left(p_{1}-p_{c}\right) c=p_{1} c-p_{b}(x+c)\).
Area of \(A=A B C D-(B+C+D)\)
\(=p_{1}(l+c)\left(1+\right.\) hyp \(\left.\log \frac{L+c}{l+c}\right)\)
\(-\left[p_{b}(L-x)+p_{b}(x+c)\left(1+\operatorname{hyp} \log \frac{x+c}{c}\right)+p_{1} c-p_{b}(x+c)\right]\)
\(=p_{1}(l+c)\left(1+\right.\) hyp \(\left.\log \frac{L+c}{l+c}\right)\)
\(-p_{b}\left[(L-x)+(x+c)\right.\) hyp \(\left.\log \frac{x+c}{c}\right]-p_{1} c\).
Mean effective pressure \(=\frac{\text { area of } A}{L}\).
Example.-Let \(L=1, l=0.25, x=0.25, c=0.1, p_{1}=60 \mathrm{lbs} ., p_{b}=2 \mathrm{lbs}\).
\[
\text { Area } \begin{aligned}
A= & 60(.25+.1)\left(1+\text { hyp } \log \frac{1.1}{.35}\right) \\
& \quad-2\left[(1-.25)+.35 \operatorname{hyp} \log \frac{.35}{.1}\right]-60 \times .1 \\
= & 21(1+1.145)-2[.75+35 \times 1.253]-6 \\
= & 45.045-2.377-6=36.668=\text { mean effective pressure. }
\end{aligned}
\]

The actual indicator-diagram generally shows a mean pressure considerably less than that due to the initial pressure and the rate of expansion. The causes of loss of pressure are: 1. Friction in the stop-valves and steampipes. 2. Friction or wire-drawing of the steam during admission and cutoff, due chiefly to defective valve-gear and contracted steam-passages. 3. Liquefaction during expansion. 4. Exhausting before the engine has completed its stroke. 5. Compression due to early closure of exhaust. 6. Friction in the exhaust-ports, passages, and pipes.

Re-evaporation during expansion of the steam condensed during admission, and valve-leakage after cut-off, tend to elevate the expansion line of the diagram and iucrease the mean pressure.
If the theoretical mean pressure be calculated from the initial pressure and the rate of expansion on the supposition that the expansion curve fol-
lows Mariotte's law, \(p v=a\) constant, and the necessary corrections are made for clearance and compression, the expected mean pressure in practice may be found by multiplying the calculated results by the factor in the following table, according to Seaton.

\section*{Particulars of Engine.}

Expansive engine, special valve-gear, or with a separate cut-off valve, cylinder jacketed
Expansive engine having large ports, etc., and good ordinary valves, cylinders jacketed..
Expansive engines with the ordinary valves and gear as in general practice, and unjacketed
Compound engines, with expansion valve to h.p. cylinder; cylinders jacketed, and with large ports, etc......
Compound engines, with ordinary slide-valves, cylinders jacketed, and good ports, etc.
Compound engines as in general practice in the merchant service, with early cut-off in both cylinders, without jackets and expansion-valves
Fast-running engines of the type and clesign usually fitted in war-ships

Factor.
0.94
0.9 to 0.92
0.8 to 0.85
0.9 to 0.92
0.8 to 0.85
0.7 to 0.8
0.6 to 0.8

If no correction be made for clearance and compression, and the engine is in accordance with general modern practice, the theoretical mean pressure may be multiplied by 0.96 , and the product by the proper factor in the table, to obtain the expected mean pressure.

\section*{Given the Initial Pressure and the Average Pressure, to Find the Ratio of Expansion and the Period of Admission.}
\(P=\) initial absolute pressure in libs. per sq. in.;
\(p=\) average total pressure during stroke in lbs. per sq. in.;
\(L=\) length of stroke in inches;
\(l=\) period of admission measured from beginning of stroke;
\(c=\) clearance in inches;
\(R=\) actual ratio of expansion \(=\frac{L+c}{l+c} \cdots\)
\(p=\frac{P(1+\operatorname{hyp} \log R)}{R}\)

To find average pressure \(p\), taking account of clearance,
\[
\begin{equation*}
p=\frac{P(l+c)+P(l+c) \text { hyp } \log R-P c}{L} \tag{2}
\end{equation*}
\]
whence
\[
\begin{align*}
p L+P c & =P(l+c)(1+\operatorname{hyp} \log R) \\
\operatorname{hyp} \log R & =\frac{p L+P c}{P l+P c}-1=\frac{\frac{p}{P} L+c}{l+c}-1 \tag{3}
\end{align*}
\]

Given \(p\) and \(P\), to find \(R\) and \(l\) (by trial and error). -There being two unknown quantities \(R\) and \(l\), assume one of them, viz., the period of admission \(l\), substitute it in equation (3) and solve for \(R\). Substitute this value of \(R\) in the formula (1), or \(l=\frac{L+c}{R}-c\), obtained from formula (1), and find \(l\). If the result is greated than the assumed value of \(l\), then the assumed value of the period of admission is too long; if less, the assumed value is too short. Assume a new value of \(l\), substitute it in formula (3) as before, and continue by this method of trial and error till the required values of \(R\) and \(l\) are obtained.

Example. \(-P=70, p=42.78, L=60^{\prime \prime}, c=3^{\prime \prime}\), to find \(l\). Assume \(l=21 \mathrm{in}\).
\[
\text { hyp } \log R=\frac{\frac{p}{P} L+c}{l+c}-1=\frac{\frac{42.78}{70} \times 60+3}{21+3}-1=1.653-1=.653 ;
\]
hyp \(\log R=.653\), whence \(R=1.92\),
\[
l=\frac{L+c}{R}-c=\frac{63}{192}-3=29.8
\]
which is greater than the assumed value, 21 inches.
Now assume \(l=15\) inches :
\[
\begin{aligned}
& \operatorname{byp} \log R= \frac{\frac{42.78}{\tau 0} \times 60+3}{15+3}-1=1.204, \text { whence } R=3.5 \\
& l= \frac{L+c}{R}-c= \\
& \frac{63}{3.5}-3=18-3=15 \text { inches, the value assumed. }
\end{aligned}
\]

Therefore \(R=3.5\), and \(l=15\) inches.

\section*{Period of Admission Required for a Given Actual Ratio of Expansion:}
\[
\begin{equation*}
l=\frac{L+c}{R}-c, \text { in inches } \tag{4}
\end{equation*}
\]

In percentage of stroke, \(l=\frac{100+\text { p.ct. clearance }}{R}-\mathrm{p}\). ct. clea:ance. .
Terminal pressure \(=\frac{P(l+c)}{L+c}=\frac{P}{R}\).
Pressure at any other-Point of the Expansion. - Let \(L_{1}=\) length of stroke up to the given point.

Pressure at the given point \(=\frac{P(l+c)}{L_{1}+c}\).

\section*{WORE OF S'EEAII IN A SINGLE CYLINDER.}

To facilitate calculations of steam expanded in cylinders the table on the next page is abridged from Clark on the Steam-engine. The actual ratios of expansion, column 1, range from 1.0 to 8.0 , for which the hyperbolic logarithms are given in column 2. The 3d column contains the periods of admission relative to the actual ratios of expansion, as percentages of the stroke, calculated by formula (5) above. The 4th column gives the values of the mean pressures relative to the initial pressures, the latter being taken as 1 , calculated by formula (2). In the calculation of columns 3 and 4, clearance is taken into account, and its amount is assumed at \(\% \%\) of the stroke. The final pressures, in the 5th column, are such as would be arrived at by the continued expansion of the whole of the steam to the end of the stroke, the initial pressure being equal to 1. They are the reciprocals of the ratios of expansion, column 1. The 6th column contains the relative total performances of equal weights of steam worked with the several actual ratios of expansion; the total performance, when steam is admitted for the whole of the stroke, without expansion, being equal to 1 . They are obtained by dividing the figures in column 4 by those in column 5.

The pressures have been calculated on the supposition that the pressure of steam, during its admission into the cylinder, is uniform up to the point of cutting off, and that the expansion is continued regularly to the end of the stroke. The relative performances have been calculated without any allowance for the effect of compressive action.

The calculations have been made for periods of admission ranging from \(100 \%\), or the whole of the stroke, to \(6.4 \%\), or \(1 / 16\) of the stroke. And though, nominally, the expansion is 16 times in the last instance, it is actually only 8 times, as given in the first column. The great difference between the nominal and the actual ratios of expansion is caused by the clearance, which is equal to \(\% \%\) of the stroke, and causes the nominal volume of steam admitted. namely, \(6.4 \%\). to be augmented to \(6.4+7=13.4 \%\) of the stroke, or, say, double, for expansion. When the steam is cut off at \(1 / 9\), the actual expansion is only 6 times; when cut off at \(1 / 5\), the expansion is 4 times; when cut off at \(1 / 3\), the expansion is \(22 / 3\) times; and to effect an actual expansion to twice the initial volume, the steam is cut off at \(4612 \%\) of the stroke, not at half-stroke.

\section*{Expansive Working of Steam-Actual Ratios of Expansion, with the Relative Periods of Admission, Pressures, and Performance.}

Steam-pressure 100 lbs . absolute. Clearance atjeach end of the cylinder \%\% if the stroke.
(Single Cylinder.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  \\
\hline 1 & . 0000 & 100 & 1.000 & 1.000 & 1.000 & 58,273 & 34.0 & 4.05 \\
\hline 1.1 & . 0953 & 90.3 & . 996 & . 909 & 1.096 & 63,850 & 31.0 & 4.45 \\
\hline 1.18 & . 1698 & 83.3 & . 986 & . 847 & 1.164 & 67,836 & 29.2 & 4.78 \\
\hline 1.23 & . 2070 & 80 & . 980 & . 813 & 1.206 & 70,246 & 28.2 & 4.98 \\
\hline 1.3 & 2624 & 75.3 & . 969 & . 769 & 1.261 & 73,513 & 26.9 & 5.26 \\
\hline 1.39 & . 3293 & \%0 & . 953 & . 719 & 1.325 & 7T,242 & 25.6 & 5.63 \\
\hline 1.45 & . 3716 & 66.8 & . 942 & . 690 & 1.365 & 79,555 & 24.9 & 5.87 \\
\hline 1.54 & . 4317 & 62.5 & . 925 & . 649 & 1.425 & 83,055 & 23.8 & 6.23 \\
\hline 1.6 & . \(4 \% 00\) & 59.9 & . 913 & . 625 & 1.461 & 85,125 & 23.3 & 6.47 \\
\hline 1.75 & . 5595 & 54.1 & . 883 & . 5 \%1 & 1.546 & 90,115 & 22.0 & 7.08 \\
\hline 1.88 & . 6314 & 50 & . 860 & .532 & 1.616 & 94,200 & 21.0 & 7.61 \\
\hline 2 & . 3931 & 46.5 & . 836 & . 5 & \(1.67{ }^{1}\) & 97,432 & 20.3 & 8.09 \\
\hline 2.28 & . \(8 \geqslant 41\) & 40 & . \(78 \%\) & . 439 & 1.793 & 104,466 & 19.0 & 9.23 \\
\hline 2.4 & . 8755 & 37. 6 & . 66 & . 417 & 1.837 & 10ヶ,050 & 18.5 & 9.71 \\
\hline 2.65 & . 9745 & 33.3 & .i26 & . 3 ก7 & 1.925 & 112,2:0 & 17.7 & 10.72 \\
\hline 2.9 & 1.065 & 29.9 & . 692 & . 345 & 2.006 & 116,88: & 16.9 & 11.74 \\
\hline 3.2 & 1.163 & 26.4 & . 652 & . 313 & 2.083 & 121,386 & 16.3 & 12.95 \\
\hline 3.35 & 1.209 & 25 & . 637 & . 298 & 2.129 & 124,066 & 16.0 & 13.56 \\
\hline 3.6 & 1.281 & 22.7 & . 608 & . 278 & 2.18 r & 127,450 & 15.5 & 14.57 \\
\hline 3.8 & 1.335 & 21.2 & . 589 & . 263 & 2.240 & 130,533 & 15.2 & 15.38 \\
\hline 4 & 1.386 & 19.7 & . 569 & . 250 & \(2.2)^{8}\) & 132.770 & 14.9 & 16.19 \\
\hline 4.2 & 1.435 & 18.5 & . 551 & . 238 & 2.315 & 134.900 & 14.7 & 17.00 \\
\hline 4.5 & 1.504 & 16.8 & . 526 & . 222 & 2.370 & 138, 130 & 14.34 & 18.21 \\
\hline 4.8 & 1.569 & 15.3 & . 503 & . 208 & 2.418 & 140,920 & 14.05 & 19.43 \\
\hline 5 & 1.609 & 14.4 & . 488 & .200 & 2.440 & 142,180 & 13.92 & 20.23 \\
\hline 5.2 & 1.649 & 13.6 & . 476 & . 193 & 2.466 & 143,720 & 13. 78 & 21.04 \\
\hline 5.5 & 1.705 & 12.5 & . 457 & . 182 & 2.511 & 146,325 & 13.53 & 22.25 \\
\hline 5.8 & 1. 758 & 11.4 & . 438 & . 172 & 2.545 & 148,390 & 13.34 & 23.47 \\
\hline 5.9 & 1.745 & 11.1 & . 432 & . 169 & 2.556 & 148,940 & 13.29 & 23.87 \\
\hline 6.2 & 1.825 & 10.3 & . 419 & . 161 & 2.585 & 150,630 & 13.14 & 25.09 \\
\hline 6.3 & 1.841 & 10 & . 413 & . 159 & 2.59 \% & 151,370 & 13.08 & 25. 49 \\
\hline 6.6 & 1.887 & 9.2 & . 398 & .153 & 2.619 & 152,595 & 12.98 & 26. 71 \\
\hline & 1.946 & 8.3 & . 381 & . 143 & 2.664 & 155,200 & 12.75 & 28.33 \\
\hline 7.3 & 1.988 & \(7 . \%\) & . 369 & . 137 & \(\because .693\) & 156,960 & 12.61 & 29.54 \\
\hline 7.6 & 2.028 & 7.1 & . 357 & . 132 & 2. 711 & 15\%,975 & 12.53 & 30.76 \\
\hline 7.8 & 2.054 & 6.7 & . 348 & . 128 & 2.719 & 158.414 & 12.50 & 31.57 \\
\hline 8 & 2.079 & 6.4 & . 342 & .125 & 2.736 & 159,433 & 11.83 & 32.38 \\
\hline
\end{tabular}

Assumptions of the Table.-That the initial pressure is uniform; that the expansion is complete to the end of the stroke; that the pressure in expansion varies inversely as the volume; that there is no back-pressure of exhaust or of compression, and that clearance is \(\% \%\) of the stroke at each end of the cylinder. No allowance has been made for loss of steam by cyl. inder-condensation or leakage.

Volume of 1 lb . of steam of 100 lbs . pressure per sq. in., or 14,400
lbs. per sq, ft.
\(4.33 \mathrm{cu} . \mathrm{ft}\).
Product of initial pressure and volume................... .............62,352 ft.-lbs.

Though a uniform clearance of \(7 \%\) at each end of the stroke has been assumed as an average proportion for the purpose of compiling the table, the clearauce of cylinders with ordinary slides varies considerably-say from \(5 \%\) to \(10 \%\). (With Corliss engines it is sometimes as low as \(2 \%\).) With the clearance, \(\tau \%\), that has been assumed, the table gives approximate results sufficient for most practical purposes, and more trustworthy than results deduced by calculations based on simple tables of hyperbolic logarithms, where clearance is neglected.
Weight of steam of 100 lbs . total initial pressure admitted for one stroke, per cubic foot of net capacity of the cylinder, in decimals of a pound = reciprocal of figures in column 9.
Total actual work done by steam of 100 lbs . total initial pressure in one stroke per cubic foot of net capacity of cylinder, in foot-pounds = figures in column \(7 \div\) figures in column 9 .
Rule 1: To find the net capacity of cylinder for a given weight of steam admitted for one stroke, and a given actual ratio of expansion. (Column 9 of table.)-Multiply the volume of 1 lb . of steam of the given pressure by the given weight in pounds, and by the actual ratio of expansion. Multiply the product by 100 , and divide by 100 plus the percentage of clearance. The quotient is the net capacity of the cylinder.

Rule 2: To find the net capacity of cylinder for the performance of a given amount of total actual work in one stroke, with a given initial pressure and actual ratio of expansion.-Divide the given work by the total actual work done by 1 lb . of steam of the same pressure, and with the same actual ratio of expansion; the quotient is the weight of steam necessary to do the given work, for which the net capacity is found by Rule 1 preceding.

Note.-1. Conversely, the weight of steam admitted per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per pound of steam, as obtained by Rule 1.
2. The total actual work done per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per foot-pound of work done, as obtained by Rule 2.
3. The total actual work done per square inch of piston per foot of the stroke is \(1 / 144\) th part of the work done per cubic foot.
4. The resistance of back pressure of exhaust and of compression are to be added to the net work required to be done, to find the total actual work.

Appendix to above Table-Multipliers for Net Cylinder-Capacity, and Total Actual Work done.
(For steam of other pressures than 100 lbs . per square inch.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Total Pressures per square inch} & \multicolumn{2}{|r|}{Multipliers.} & \multirow[b]{2}{*}{Total Pressures per square inch.} & \multicolumn{2}{|r|}{Multipliers.} \\
\hline & For Col. 7. Total Work by 1 lb . of Steam. & For Col. 9 Capacity of Cylinder. & & For Col. 7. Total Work by 1 lb . of Steam. & For Col. 9. Capacity of Cylinder. \\
\hline \({ }_{65} \mathrm{lbs}\). & . 975 & 1.50 & lbs.
100 & 1.000 & 1.00 \\
\hline 70 & . 981 & 1.40 & 110 & 1.009 & . 917 \\
\hline 75 & . 986 & 1.31 & 120 & 1.011 & . 843 \\
\hline 80 & . 988 & 1.24 & 130 & 1.015 & . 781 \\
\hline 85 & . 991 & 1.17 & 140 & 1.022 & . 730 \\
\hline 90 & . 995 & 1.11 & 150 & 1.025 & . 683 \\
\hline 95 & . 998 & 1.05 & 160 & 1.031 & . 644 \\
\hline
\end{tabular}

The figures in the second column of this table are derived by multiplying the total pressure per square foot of any given steam by the volume in cubic feet of 1 lb . of such steam, and dividing the product by 62,352 , which is the product in foot-pounds for steam of 100 lbs . pressure. The quotient is the inultiplier for the given pressure.

The figures in the third column are the quotients of the figures in the second column divided by the ratio of the pressure of the given steam to 100 lbs
Measures for Comparing the Duty of Engines.-Capacity is measured in horse-powers, expressed by the initials, H.P.: 1 H.P. \(=33,000\) ft.-lbs. per minute, \(=550\) ft.-lbs. per second, \(=1,980,000\) ft.-lbs. per hour.
\(1 \mathrm{ft} .-\mathrm{lb} .=\) a pressure of 1 lb . exerted through a space of 1 ft . Economy is measured, 1 , in pounds of coal per horse-power per hour; 2, in pounds of steam per horse-power per hour. The second of these measures is the more accurate and scientific, since the engine uses steam and not coal, and it is indepndent of the economy of the boiler.

In gas-engine tests the common measure is the number of cubic feet of gas (measured at atmospheric pressure) per horse-power, but as all gas is not of the same quality, it is necessary for comparison of tests to give the analysis of the gas. When the gas for one engine is made in one gas-producer, then the number of pounds of coal used in the producer per hour per horse-power of the engine is the proper measure of economy.
Economy, or duty of an engine, is also measured in the number of footpounds of work done per pound of fuel. As 1 horse-power is equal to 1,980,000 ft .-lbs. of work in an hour, a duty of 1 lb . of coal per H.P. per hour would be equal to \(1,980,000 \mathrm{ft}\).-lbs. per lb . of fuel; 2 lbs . per H.P. per hour equals \(990,000 \mathrm{ft} .-\mathrm{lbs}\). per lb . of fuel, etc.
The duty of pumping-engines is commonly expressed by the number of foot-pounds of work done per 100 lbs . of coal.

When the duty of a pumping-engine is thus given, the equivalent number of pounds of fuel consumed per horse-power per hour is found by dividing 198 by the number of millions of foot-pounds of duty. Thus a pumpingengine giving a duty of 99 millions is equivalent to \(198 / 99=2 \mathrm{lbs}\). of fuel per horse-nower per hour.

Efficiency Measured in Thermal Units per Minute.Some writers express the efficiency of an engine in terms of the number of hermal units used by the engine per minute for each indicated horse-power, Instead of by the number of pounds of steam used per hour.
The heat chargeable to an engine per pound of steam is the difference between the total heat in a pound of steam at the boiler-pressure and that in a pound of the feed-water entering the boiler. In the case of condensing engines, suppose we have a temperature in the hot-well of \(101^{\circ} \mathrm{F}\)., correeponding to a vacuum of 28 in . of mercury, or an absolute pressure of 1 lb . ker sq. in. above a perfect vacuum : we may feed the water into the boiler at that temperature. In the case of a non-condensing-engine, by using a portion of the exhaust steam in a good feed-water heater, at a pressure a trifle above the atmosphere (due to the resistance of the exhaust passages through the heater), we may obtain feed-water at \(212^{\circ}\). One pound of steam used by the engine then would be equivalent to thermal units as follows:
[ressure of steam by gauge:
\begin{tabular}{rrrrrrr} 
& 75 & 100 & 125 & 150 & 175 & 200 \\
Cotal heat in steam above & 720 & & & & \\
117.8 .8 & 1179.6 & 1185.0 & 1189.5 & 1193.5 & 1197.0 & 1200.2
\end{tabular}

Subtracting 69.1 and 180.9 heat-units, respectively, the heat above \(32^{\circ}\) in feed-water of \(101^{\circ}\) and \(212^{\circ} \mathrm{F}\)., we have-
Heat given by boiler:
\(\begin{array}{llllllll}\text { Freed at } 101^{\circ} \ldots \ldots & 1103.7 & 1110.5 & 1115.5 & 1120.4 & 1124.4 & 1127.9 & 1131.1\end{array}\)
\(\begin{array}{lllllllll}\text { Feed at } 2120 \ldots . & 991.9 & 998.7 & 1004.1 & 1008.6 & 1012.6 & 1016.1 & 1019.3\end{array}\)
Thermal units per minute used by an engine for each pound of steam used per indicated horse-power per hour:
\begin{tabular}{llllllll} 
Feed at \(101^{\circ} \ldots \ldots\) & 18.40 & 18.51 & 18.60 & 18.67 & 15.74 & 18.80 & 18.85 \\
Feed at \(212^{\circ} \ldots \ldots\). & 16.53 & 16.65 & 16.74 & 16.81 & 16.88 & 16.94 & 16.99
\end{tabular}

Examples.-A triple-expansion engine, condensing, with steam at 175 lbs ., gauge and vacuum \(28 \mathrm{in} .\), uses 13 lbs . of water per I.H.P. per hour, and a high-speed non-condensing engine, with steam at 100 lbs . gauge, uses 30 lbs. How many thermal units per minute does each consume?

Ans. \(-13 \times 18.80=244.4\), and \(30 \times 16.74=502.2\) thermal units per minute.
A perfect engine converting ail the heat-energy of the steam into work would require \(33,000 \mathrm{ft} \cdot \mathrm{lbs} . \div 7 \pi 8=42.4164\) thermal units per minute per indicated horse-power. This figure, 42.4164, therefore, divided by the number of thermal units per minute per'I.H.P. consumed by an engine, gives its efficiency as compared with an ideally perfect engine. In the examples above, 42.4164 divided by 244.4 and by 502.2 gives \(17.35 \%\) and \(8.45 \%\) efficiency, resnectively.
Gotal Work Done by One Pound of Steam Expandedin a Single Cylinder. (Column \(\tilde{r}\) of table.)-If 1 pound of water ve converted into steam of atmospheric pressure \(=2116.8 \mathrm{lbs}\). per sq. ft., it occupies a volume equal to \(26.36 \mathrm{cu} . \mathrm{ft}\). The work done is equal to 2116.8 lbs ,
\(\times 26.36 \mathrm{ft} .=55,788 \mathrm{ft} .-\mathrm{lbs}\). The heat equivalent of this work is \((55,788 \div 778\) \({ }_{=)} 71.7\) units. This is the work of 1 lb . of steam of one atmosphere acting on a piston without expansion.
The gross work thus done on a piston by 1 lb . of steam generated at total pressures varying from 15 lbs . to 100 lbs . per sq. in. varies in round numbers from 56,000 to \(62,000 \mathrm{ft}\).-lbs., equivalent to from 72 to 80 units of heat.
This work of 1 lb . of steam without expansion is reduced by clearance according to the proportion it bears to the net capacity of the cylinder. If the clearance be \(\% \%\) of the stroke, the work of a given weight of steam without expansion, admitted for the whole of the stroke, is reduced in the ratio of 107 to 100 .
Having determined by this ratio the quantity of work of 1 lb . of steam without expansion, as reduced by clearance, the work of the same weight of steam for various ratios of expansion may be found by multiplying it by the relative performance of equal weights of steam, given in the 6 th column of the table.
Quantity of Steam Consumed per Horse-power of Total Work per Hour. (Column 8 of table.)-The measure of a horse-power is the performance of \(33,000 \mathrm{ft}\).-lbs. per minute, or \(1,980,000 \mathrm{ft} .-\mathrm{lbs}\). per hour. This work, divided by the work of 1 lb . of steam, gives the weight of steam required per horse-power per hour. For example, the total actual work done in the cylinder by 1 lb . of 100 lbs . steam, without expansion and with \(7 \%\) of clearance, is \(58,273 \mathrm{ft} .-\mathrm{lbs}\). ; and \(\frac{1,980,000}{58,273}=34 \mathrm{lbs}\). of steam, is the weight of steam consumed for the total work done in the cylinder per horse-power per hour. For any shorter period of admission with expansion the weight of steam per horse-power is less, as the total work of 1 lb . of steam is more, and may be found by dividing \(1,980,000 \mathrm{ft}\).-lbs. by the respective total worlk done; or by dividing 34 lbs . by the latio of performance, column 6 in the table.

ACTUAL EXPANSIONS.
With Different Clearances and Cut-offs.
Computed by A. F. Nagle.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Cutoff.} & \multicolumn{11}{|c|}{Per Cent of Clearance.} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline . 01 & 100.00 & 50.5 & 34.0 & 25.75 & 20.8 & 17.5 & 15.14 & 13.38 & 12.00 & 10.9 & 10 \\
\hline . 02 & 50.00 & 33.67 & 25.50 & 20.60 & 17.53 & 15.00 & 13.25 & 11.89 & 10.80 & 9.91 & 8.17 \\
\hline . 03 & 33.33 & 25.25 & 20.40 & 17.16 & 14.86 & 13.12 & 11.78 & 10.70 & 9.82 & 9.08 & 8.46 \\
\hline . 04 & 25.00 & 20.20 & 17.00 & 14.71 & 13.00 & 11.66 & 10.60 & 9.73 & 9.00 & 8.39 & 7.86 \\
\hline . 05 & 20.00 & 16.83 & 14.57 & 12.8 r & 11.55 & 10.50 & 9.64 & 8.92 & 8.31 & 7.79 & 7.33 \\
\hline . 06 & 16.67 & 14.43 & 12.75 & 11.44 & 10.40 & 9.55 & 8.83 & 8.23 & 7.71 & 7.27 & 6.88 \\
\hline . 07 & 14.28 & 12.6: & 11.33 & 10.30 & 9.46 & 8.75 & 8.15 & 7.64 & 7.20 & 6.81 & 6.41 \\
\hline . 08 & 12.50 & 11.22 & 10.2 & 9.36 & 8.67 & 8.08 & 7.51 & 7.13 & 6.75 & 6.41 & 6.11 \\
\hline . 09 & 11.11 & 10.10 & 9.27 & 8.58 & 8.00 & 7.50 & 7.07 & 6.69 & 6.35 & 6.06 & 5.79 \\
\hline . 10 & 10.00 & 9.18 & 8.50 & 7.92 & 7.43 & 7.00 & 6.62 & 6.30 & 6.00 & 5.74 & 5.50 \\
\hline . 11 & 9.09 & 8.42 & 7.84 & 7.36 & 6.9.3 & 6.56 & 6.24 & 5.94 & 5.68 & 5.45 & 5.24 \\
\hline . 12 & 8.33 & 7. 88 & 7.29 & 6.86 & 6.50 & 6.18 & 5.89 & 5.63 & 5.40 & 5.19 & 5.00 \\
\hline . 14 & 7.14 & 6.73 & 6.37 & 6.06 & 5.78 & 5.53 & 5.30 & 5.10 & 4.91 & 4.74 & 4.58 \\
\hline . 16 & 6.25 & 5.94 & 5.67 & 5.4: & 5.20 & 5.00 & 4.82 & 4.65 & 4.50 & 4.36 & 4.23 \\
\hline . 20 & 5.00 & 4.81 & 4.64 & 4.48 & 4.33 & 4.20 & 4.08 & 3.96 & 3.86 & 3.76 & 3.67 \\
\hline \(\therefore 5\) & 4.00 & 3.88 & 3.77 & 3.68 & 3.58 & 3.50 & 3.42 & 3.34 & 3.27 & 3.21 & 3.14 \\
\hline . 30 & 3.33 & 3.26 & 3.19 & 3.12 & 3.06 & 3.00 & 2.94 & 2.90 & 2.84 & 2.80 & 2.75 \\
\hline . 40 & 2.50 & 2.46 & 2.43 & 2.40 & 2.36 & 2.33 & 2.30 & 2.28 & 2.25 & 2.22 & 2.20 \\
\hline . 50 & 2.00 & 1.98 & 1.96 & 1.94 & 1.92 & 1.90 & 1.89 & 1.88 & 1.86 & 1.85 & 1.83 \\
\hline . 60 & 1.67 & 1.66 & 1.65 & 1.64 & 1.63 & 1.615 & 1.606 & 1.597 & 1.588 & 1.580 & 1.571 \\
\hline . 60 & 1.43 & 1.42 & 1.42 & 1.41 & 1.41 & 1.400 & 1.395 & 1.390 & 1.385 & 1.380 & 1.375 \\
\hline . 80 & 1.25 & 1.25 & 1.244 & 1.241 & 1.238 & 1.235 & 1.233 & 1.230 & 1.227 & 1.224 & 1.222 \\
\hline .90
1.00 & 1.111
1.00 & 1.11
100 & 1.109
1.000 & 1.108
1.000 & 1.106
1.000 & 1.105
1.000 & 1.104
1.000 & 1.103
1.000 & 1.102
1.000 & 1.101
1.000 & 1.100
1.00 ? \\
\hline 1.00 & 1.00 & 100 & & & & & & & & & \\
\hline
\end{tabular}

Relative Eficiency of 1 lb , of Steam with and without Clearance; back pressure and compression not considered.
\[
\text { Mean total pressure }=p=\frac{P(l+c)+P(l+c) \text { hyp. log. } R-P c}{L}
\]

Let \(P=1 ; L=100 ; l=25 ; c=7\).
\[
p=\frac{32+32 \text { hyp. log. } \frac{107}{32}-7}{100}=\frac{32+32 \times 1.209-7}{100}=.637
\]

If the clearance be added to the stroke, so that clearance becomes zero, the same quantity of steam being used, admission \(l\) being then \(=l+c=\) 32, and stroke \(L+c=107\).
\[
p_{1}=\frac{32+32 \text { hyp. } \log \cdot \frac{107}{32}-0}{107}=\frac{32+32 \times 1.209}{107}=.707
\]

That is, if the clearance be reduced to 0 , the amount of the clearance \(\gamma\) being added to both the admission and the stroke, the same quantity of steam will do more work than when the clearance is 7 in the ratio \(707: 637\), or \(11 \%\) more.

Back Pressure Considered. -If back pressure \(=.10\) of \(P\), this amount has to be subtracted from \(p\) and \(p_{1}\) giving \(p=.537, p_{1}=.60 \dot{7}^{\text {, the }}\) work of a given quartity of steam used without clearance being greater than when clearance is 7 per cent in the ratio of \(607: 537\), or \(13 \%\) more.

Effect of Compression.-By early closure of the exhaust, so that a portion of the exhaust-steam is compressed into the clearance-space, much of the loss due to clearance may be avoided. If expansion is continued down to the back pressure, if the back pressure is uniform throughout the exhaust-stroke, and if compression begins at such point that the exhauststeam remaining in the cylinder is compressed to the initial pressure at the end of the back stroke, then the work of compression of the exhaust-steam equals the work done during expansion by the clearance-steam. The clear-ance-space being filled by the exhaust-steam thus compressed, no new steam is required to fill the clearance-space for the next forward stroke, and the work and efficiency of the steam used in the cylinder are just the same as if there were no clearance and no compression. When, however, there is a drop in pressure from the final pressure of the expansion, or the terminal pressure, to the exhaust or back pressure (the usual case), the work of compression to the initial pressure is greater than the work done by the expansion of the clearance-steam, so that a loss of efficiency results. In this case a greater efficiency can be attained by inclosing for compression a less quantity of steam than that needed to fill the clearance-space with steam of the initial pressure. (See Clark, S. E., p. 399, et seq.; also F. H. Ball, Trans. A. S. M. E., xiv. 106\%.) It is shown by Clark that a somewhat greater efficiency is thus attained whether or not the pressure of the steam be carried down by expansion to the back exhaust-pressure. As a result of calculations to determine the most efficient periods of compression for various percentages of back pressure, aud for various periods of admission, he gives the table on the next page :
Clearance in Low- and Highospeed Englnes. (Harris Tabor, Am. Mach., Sept. 17, 1891.)-The consiruction of the high-speed ongine is such, with its relatively short stroke, that the clearance must be much larger than in the releasiug-valve type. The short-stroke engine is, of necessity, an engine with large clearance, which is aggravated when a variable compression is a feature. Conversely, the releasing-valve gear is, from necessity, an engine of slow rotative speed, where great power is obtainable from long stroke, and small clearance is a feature in its construction. In one case the clearance will vary from \(8 \%\) to \(12 \%\) of the piston-displacement, and in the other from \(2 \%\) to \(3 \%\). In the case of an engins with a clearance equalling \(10 \%\) of the piston-displacemeut the waste room becomes ecormous when considered in connectiou with an early cut-off. The system of compounding reduces the waste due to clearance in proportion as the steam is expanded to a lower pressure. The farther expansion is carried through a train of cylinders the greater will be the reduction of waste due to cleararce. This is shown from the fact that the high-speed engine, expanding
steam much less than the Corliss, will show a greater gain when changed from simple to compound than its rival under similar conditions.

Compression of Steam in the Cylinder.
Best Periods of Compression; Clearance \% per cent.
\begin{tabular}{c|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Cut-off in \\
Percent- \\
ages of \\
the
\end{tabular} & \multicolumn{2}{|c}{ Total Back Pressure, in percentages of the total initial pressure. } \\
Stroke.
\end{tabular} 21/8

Notes to Table.-1. For periods of admission, or percentages of back pressure, other than those given, the periods of compression may be readily found by interpolation.
2. For any other clearance, the values of the tabulated periods of compression are to be altered in the ratio of 7 to the given percentage of clearance.

Cylinder-condensation may have considerable effect upon the best point of compression, but it has not yet (1893) been determined by experiment. (Trans. A. S. M. E.. xiv. 1078.)

Cylinder-condensation.-Rankine, S. E., p. 421, says: Conduction of heat to and from the metal of the cylinder, or to and from liquid water contained in the cylinder, has the effect of lowering the pressure at the beginning and raising it at the end of the stroke, the lowering effect being on the whole greater than the raising effect. In some experiments the quautity of steam wasted through alternate liquefaction and evaporation in the cylinder has been found to be greater than the quantity which performed the work.

Percentage of Loss by Cylinder-condensation, taken at Cut-off. (From circular of the Ashcroft Mfg. Co. on the Tabor Indicator, 1889.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & \multicolumn{3}{|l|}{Percent. of Feed-water accounted for by the Indicator diagram.} & \multicolumn{3}{|l|}{Percent. of Feed-water Consumption due to Cylinder-condensat'n.} \\
\hline  & Simple Engines. & Compound Engines, h.p. cyl. & Triple-expansion Engines, h.p. cyl. & Simple Engines. & Compound Engines, h.p. cyl. & Triple-expansion Engines, h.p. cyl. \\
\hline \({ }^{5}\) & 58 & & & 42 & & \\
\hline 15 & 71 & \({ }_{76}\) & \% & 34
29 & 24 & 22 \\
\hline 20 & 74 & 78 & 80 & \(\stackrel{2}{26}\) & 22 & 20 \\
\hline 30 & 78 & 82 & 84 & 22 & 18 & 16 \\
\hline 40 & 82 & 85 & 87 & 18 & 15 & 13 \\
\hline 50 & 86 & 88 & 90 & 14 & 12 & 10 \\
\hline
\end{tabular}

Theoretical Compared with Actual Water-consumption, Single-cylinder Automatic Cut-off Engines. (From the catalogue of the Buckeye Eugine Co.)-The following table has been prepared on the basis of the pressures that result in practice with a constant boiler-pressure of 80 lbs . and different points of cut-off, with Buckeye engines and others with similar clearance. Fractions are omitted, except in the percentage column, as the degree of accuracy their use would seem to imply is not attained or aimed at.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cut-off Part of Stroke.} & \multirow[b]{2}{*}{Mean
Effective Pressure} & \multirow[b]{2}{*}{Total
Terminal Pressure.} & \multirow[t]{2}{*}{Indicated Rate, lbs. Water, per I.H.P per hour} & \multicolumn{2}{|r|}{Assumed.} \\
\hline & & & & Act'l Rate. & Per ct. Loss. \\
\hline \[
\begin{aligned}
& .10 \\
& .15 \\
& .20 \\
& .25 \\
& .30 \\
& .40 \\
& .45 \\
& .50
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 27 \\
& 35 \\
& 42 \\
& 48 \\
& 53 \\
& 57 \\
& 61 \\
& 64
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 15 \\
& 20 \\
& 25 \\
& 30 \\
& 35 \\
& 38 \\
& 43 \\
& 48
\end{aligned}
\] & 20
19
19
20
20
21
22
23
24
24 & \[
\begin{aligned}
& 32 \\
& 27 \\
& 25 \\
& 25 \\
& 24 \\
& 25 \\
& 26 \\
& 27 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& \hline 58 \\
& 41 \\
& 31.5 \\
& 25 \\
& 21.8 \\
& 19.8 \\
& 16.7 \\
& 15 \\
& 13.6
\end{aligned}
\] \\
\hline
\end{tabular}

It will be seen that while the best indicated economy is when the cut-off is about at .15 or . 20 of the stroke, giving about 30 lbs . M.E.P., and a terminal 3 or 4 lbs . above atmosphere, when we come to add the percentages due to \& constant amount of unindicated loss, as per sixth column, the most economical point of cut-off is found to be about . 30 of the stroke, giving 48 lbs. M.E.P. and 30 lbs. terminal pressure. This showing agrees substantially rith modern experience under automatic cut-off regulation.
Experiments on Cylinder-condensation.-Experiments by Hajor Thos. English (Eng'g, Oct. 7, 1887, p. 386) with an engine \(10 \times 14\) in., jacketed in the sides but not on the ends, indicate that the net initial condensation (or excess of condensation over re-evaporation) by the clearance surface varies directly as the initial density of the steam, and inversely as the square root of the number of revolutions per unit of time. The mean results gave for the net initial condensation by clearance-space per sq. ft . of surface at one rev. per second 6.06 thermal units in the engine when run non-condensing and 5.75 units when condensing.
G. R. Bodmer (Eng'g, March 4, 1892, p. 299) says: Within the ordinary limits of expansion desirable in one cylinder the expansion ratio has practically no influence on the amount of condensation per stroke, which for simple engines can be expressed by the following formula for the weight of water condensed [per minute, probably; the original does not state]: \(W=C \frac{S(T-t)}{L \sqrt[3]{N^{2}}}\), where \(T\) denotes the mean admission temperature, \(t\) the mean exhaust temperature, \(S\) clearance-surface (square feet), \(N\) the number of revolutions per second, \(L\) latent heat of steanı at the mean admission temperature, and \(C\) a constant for any given type of engine.

Mr. Bodmer found from experimental data that for high-pressure nonjacketed engines \(C=\) about 0.11 , for condensing non-jacketed engines 0.085 to 0.11 , for coudensing jacketed engines 0.085 to 0.053 . The figures for jacketed engines apply to those jacketed in the usual way, and not at the ends.
\(C\) varies for different engines of the same class, but is practically constant for any given engine. For simple high-pressure non-jacketed engines it was found to range from 0.1 to 0.112 .

Applying Mr. Bodmer's formula to the case of a Corliss non-jacketed noncondensing engiue, 4 -ft. stroke, 24 in . diam, 60 revs. per min., initial pressure 90 lbs . gauge, exhaust pressure 2 lbs ., we have \(T-t=112^{\circ}, N=1\). \(L=880, S=7\) sq. ft. ; and, taking \(C=.112\) and \(W=1 \mathrm{bs}\). water condensed per minute, \(W=\frac{.112 \times 112 \times 7}{1 \times 880}=.09 \mathrm{lb}\). per minute, or 5.4 lbs . per hour. If the steam used per I.H.P. per hour according to the diagram is 20 lbs ., the actual water consumption is 25.4 lbs ., corresponding to a cylinder condensation of \(27 \%\).

\section*{INDICATOR-DIAGRAM OF A SINGLE-CYLINDER ENGINE.}

Definitions. - The Atmospheric Line, \(A B\), is a line drawn by the pencil of the indicator when the connections with the engine are closed and both sides of the piston are open to the atmosphere.


Fig. 138.
The Vacuum Line, \(O X\), is a reference line usually drawn about \(14 \%\) "M pounds by scale below the atmospheric line.

The Clearance Line, \(O Y\), is a reference line drawn at a distance from the end of the diagram equal to the same per cent of its length as the clearance and waste room is of the piston-displacement.

The Line of Boiler-pressure, JK, is arawn parallel to the atmospheric line, and at a distance from it by scale equal to the boiler-pressure shown by the gauge.

The Admission Line, \(C D\), shows the rise of pressure due to the admission of steam to the cylinder by opening the steam-valve.

The Steam Line, \(D E\), is drawn when the steam-valve is open and steam is being admitted to the cylinder.

The Point of Cut-off, \(E\), is the point where the admiscion of steam is stopped by the closing of the valve. It is often difficult to determine the exact point at which the cut-off takes place. It is usually located where the outline of the diagram changes its curvature from convex to concave.

The Expansion Curve, \(E F\), shows the fall in pressure as the steam in the cylinder expands doing work.
The Point of Release, \(F\), shows when the exhaust-valve opens.
The Exhaust Line, FG, represents the change in pressure that takes place when the exhaust-valve opens.

The Back-pressure Line, \(G H\), shows the pressure against which the piston acts during its return stroke.

The Point of Exhaust Closure, \(H\), is the point where the exhauat-valve closes. It cannot be located definitely, as the change in pressure is at first due to the gradual closing of the valve.

The Compression Curve, HC, shows the rise in pressure due to the sompression of the steam remaining in the cylinder after the exhaust-valve has r'osed.
The Mean Height of the Diagram equals its area divided by its length.
The Mean Effective Pressure is the mean net pressure urging the piston forward \(=\) the mean height \(\times\) the scale of the indicator-spring.
To find the Mean Effective Pressure from the Diagram.-Divide the length, \(L B\), into a number, say 10 , equal parts, setting off half a part at \(L\), half a part at \(B\), and nine other parts between; erect ordinates perpendicular to the atmospheric line at the points of division of \(L B\), cutting the diagram; add together the lengths of these ordinates intercepted between the upper and lower lines of the diagram and divide by their number. This
gives the mean height, which multiplied by the scale of the indicator-spring gives the M.E.P. Or find the area by a planimeter, or other means (see Mensuration, p. 55), and divide by the length \(L B\) to obtain the mean height.

The Initial Pressure is the pressure acting on the piston at the beginning of the stroke.

The Terminal Pressure is the pressure above the line of perfect vaciuum that would exist at the end of the stroke if the steam had not been released arlier. It is found by continuing the expansion-curve to the end of the tiagram.

\section*{INDHCATED HORSE-POWER OF ENGINES, SINGLECYLINDER.}
\[
\text { Indicated Horse-power I.H.P. }=\frac{P L a n}{33,000}
\]
in which \(P=\) mean effective pressure in lbs. per sq. in. ; \(L=\) length of stroke in feet; \(c=\) area of piston in square inches. For accuracy, one half of the sectional area of the piston-rod must be subtracted from the area of the piston if the rod passes through one head, or the whole area of the rod if it passes through both heads; \(u=\) No. of single strokes per min. \(=2 \times\) No. of revolutions.
\[
\text { I.H.Y. }=\frac{P a S}{33,000}, \text { in which } S=\text { piston speed in feet per minute. }
\]
\[
\text { I.H.P. }=\frac{F L d^{2} n}{42,01 \bar{\gamma}}=\frac{P d^{2} S}{42,01 \gamma}=.0000238 P L d^{2} n=.0000 刃 38 P d^{2} S
\]
in which \(d=\) diam. of cyl. in inches. (The figures 238 are exa3t, since \(7854 \div 33=23.8\) exactly.) If product of piston-speed \(\times\) mean effective pressure \(=42,01 \%\), then the horse-power would equal the square of the diameter in inches.

Handy Rule for Estimating the Horsemower of a Single-cylinder Engine.-Square the diameter and divide by 2 . This is correct whenever the product of the mean effective pressure and the pistonspeed \(=1 / 2\) of 42,017 , or, say, 21,000 , viz., when M.E.P. \(=30\) and \(S=\% 00\); when M.E.P. \(=35\) and \(S=600\); when M.E.P. \(=38.2\) and \(S=550\); and when M.E.P. \(=42\) and \(S=500\). These conditions correspond to those of ordinary practice with both Corliss engines and shaft-governor high-speed engines.

\section*{Given Horse-power, Mean Effective Pressure, and Piston-speed, to find Size of Cylinder. -}
\[
\text { Area }=\frac{33,000 \times \text { I.H.P. }}{P L \imath} . \quad \text { Diameter }=205 \sqrt{\frac{\overline{\text { I.H.P. }}}{P S}} . \text { (Exact.) }
\]

Brake Horse-power is the actual horse-power of the engine as measured at the fly-wheel by a friction-brake or dynamometer. It is the indicated horse-oower minus the friction of the engine.
Table for Roughly Approximating the Horsempower of a Compound Engine from the Diameter of its Lowpressure Cylinder.-The indicated horse-power of an engine being Ps \({ }^{2}{ }^{2}\) \(\frac{P s \pi^{2}}{42,017}\), in which \(P=\) mean effective pressure per sq. in., \(s=\) piston-speed in ft . per min., and \(d=\) diam. of cylinder in inches; if \(s=600 \mathrm{ft}\). per min., which is approximately the speed of modern stationary engines, and \(P=35\) lbs., which is an approximately average figure for the M.E.P. of singlecylinder engines, and of compound engines referred to the low-pressure cylinder, then I.H.P. \(=1 / 2 d^{2}\); hence the rough-and-ready rule for horse-power given above: Square the diameter in inches and divide by 2. This applies to triple and quadruple expansion engines as well as to single cylinder and compound. For most economical loading, the M.E.P. referred to the lowpressure erlinder of compound engines is usually not greater than that of simple engines; for the greater economy is obtained by a greater number of expansions of steam of higher pressures, and the greater the number of expansions for a given initial pressure the lower the mean effective pressure. The following table gives approximately the figures of mean total and effec-
tive pressures for the different types of engines, together with the factor by which the square of the diameter 'is to be multiplied to obtain the horsepower at most economical loading, for a piston-speed of 600 ft . per minute.

Type of Engine.


Non-condensing.
\begin{tabular}{l|c|c|c|c|c|c|c|c|c}
\hline Single Cylinder. & 100 & 5. & 20 & .522 & 52.2 & 15.5 & 36.7 & 600 & .524 \\
Compound ........ & 120 & 7.5 & 16 & .402 & 48.2 & 15.5 & 32.7 & 6 & .467 \\
Triple.......... & 160 & 10. & 16 & .330 & 52.8 & 15.5 & 37.3 & 6 & .53 .3 \\
Quadruple...... & 200 & 12.5 & 16 & .28 .2 & 56.4 & 15.5 & 40.9 & " & .584 \\
\hline
\end{tabular}

Condensing Engines.
\begin{tabular}{l|c|c|c|c|c|c|c|c|c}
\hline Single Cylinder. & 100 & 10. & 10 & .330 & 33.0 & 2 & 31.0 & 600 & .443 \\
Compound...... & 120 & 15. & 8 & .247 & 29.6 & 2 & 27.6 & 6 & .390 \\
Triple........ & 160 & 20. & 8 & .200 & 32.0 & 2 & 30.0 & 6 & .429 \\
Quadruple....... & 200 & 25. & 8 & .169 & 33.8 & 2 & 31.8 & 6 & .454 \\
\hline
\end{tabular}

For any other piston-speed than 600 ft . per min., multiply the figures in the last column by the ratio of the piston-speed to 600 ft .

Nominal Horsenpower. -The term " nominal horse-power" originated in the time of Watt, and was used to express approximately the power of an engine as calculated from its diameter, estimating the mean pressure in the cylinder at 7 lbs . above the atmosphere. It has long been obsolete in America, and is nearly obsolete in England.

Horse-power Constant of a given Engine for a Fixed Speed = product of its area of piston in square inches, length of stroke in feet, and number of single strokes per minute divided by 33,000 , or \(\frac{L a n}{33,000}\) \(=C\). The product of the mean effective pressure as found by the diagram and this constant is the indicated horse-power.

Horse-power Constant of a given Engine for Varying speeds = product of its area of piston and length of stroke divided by 33.000 . This multiplied by the mean effective pressure and by the number of single strokes per minute is the indicated horse-power.
Horseppower Constant of any Engine of a given Diameter of Cylinder, whatever the length of stroke \(=\) area of piston \(\div 33,000\) \(=\) square of the dianeter of piston in inches \(\times .0000238\). A table of constants derived from this formula is given below.
The constant multiplied by the piston-speed in feet per minute and by the M.E.P. gives the I.H.P.

Errors of Indicators. - The most commou error is that of the spring, which may vary from its normal rating; the error may be determined by proper testing apparatus and allowed for. But after making this correction, even with the best work, the results are liable to variable errors which may amount to 2 or 3 per cent. See Barrus, Trans. A. S. M. E., v. 310; Denton, A. S. M. E.. xi. 329; David Smith, U. S. N., Proc. Eng`g Congress, 1893, Marine Division.
Indicator "Rigs," or Reducing-motions; Interpretation of Diagrams for Errors of Steam-distribution, etc. For these see circulars of manufacturers of Indicators; also works on the Indicator.

Table of Engine Constants for Use in Figuring Horse= power. - "Horse-power constant" for cylinders from 1 inch to 60 inches in diameter, advancing by 8ths, for one foot of piston-speed per minute and one pound of M.E.P. Find the diameter of the cylinder in the column at the side. If the diameter contains no fraction the constant will be found in the column headed Even Inches. If the diameter is not in even inches, follow the line horizontally to the column corresponding to the required fraction.

The constants multiplied by the piston－speed and by the M．E．P．give the horse－power．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Diameter of Cylinder． & Even Inches． & \[
\begin{aligned}
& +1 / 8 \\
& o r \\
& \text { or }
\end{aligned}
\] & \[
\begin{gathered}
+1 / 4 \\
\text { or } \\
.25 .
\end{gathered}
\] & \[
\begin{aligned}
& +3 / 8 \\
& \text { or } \\
& .375
\end{aligned}
\] & \[
\begin{gathered}
+1 / 2 \\
\text { or } \\
.5 .
\end{gathered}
\] & \[
\begin{aligned}
& +5 / 8 \\
& \text { or } \\
& .625 .
\end{aligned}
\] & \[
\begin{gathered}
+3 / 4 \\
\text { or } \\
.75 .
\end{gathered}
\] & \[
\begin{aligned}
& +7 / 8 \\
& \text { or } \\
& .875 .
\end{aligned}
\] \\
\hline 1 & ．0000238 & 0000301 & 0000372 & ． 0000450 & ． 0000535 & 0000628 & 0000ヶ29 & 0000837 \\
\hline 2 & ． 0000952 & ． 0001074 & 0001205 & ． 0001342 & 000148 & 0001640 & 0001800 & 0001967 \\
\hline 3 & ． 0002142 & ．0002．324 & ． 0002514 & ．000：\％ 11 & ． 0002915 & 0003127 & 0003347 & \(00035 \sim 4\) \\
\hline 4 & ． 0003808 & ． 0004050 & ． 0004299 & ． 0004554 & ． 0004819 & 0005091 & ．0005370 & ． 0005656 \\
\hline 5 & ． 0005950 & ． 0006251 & ． 0006560 & ． \(00068 \pi 6\) & 0007199 & 0007530 & 0007869 & ． 0008215 \\
\hline 6 & ． 0008568 & ． \(00089 \because 9\) & ．c009297 & ．00096ir2 & 0010055 & 0010－445 & ． 0010844 & ． 0011249 \\
\hline \％ & ． 0011662 & ． 0012082 & ． 0012510 & ． 0012944 & ． 0013387 & 0013837 & ． 0014295 & 0014\％59 \\
\hline 8 & ． 0015232 & ． 0015711 & ． 0016198 & ． 0016693 & ． 0017195 & ． 0017705 & ．018222 & 0018746 \\
\hline 8 & ． 0019278 & ． 0019817 & ． 0020363 & ． 0020916 & ． 0021479 & 0022048 & 0022625 & ．0023209 \\
\hline 10 & ． 0023800 & ． 0024398 & 0025004 & ． 0025618 & ． 00262339 & 0026867 & ．002\％502 & ． 0028147 \\
\hline 11 & ．0028798 & ． 0029456 & 0030121 & 0030ヶ94 & ． 0031475 & ．003：163 & 0032859 & ．0033561 \\
\hline 12 & ．0034272 & ． 0034990 & 003514 & ． 0036447 & ． 0037187 & ．003\％934 & 0038690 & ． 0039452 \\
\hline 13 & ． 0040222 & ． 0040999 & 0041783 & 0042576 & ． 0043375 & ． 0044182 & 0044997 & ． 0045819 \\
\hline 14 & ． 0046648 & ． 0047484 & ． 0048328 & ． 0049181 & ． 0050039 & ． 0050906 & ． 0051780 & ．005：2661 \\
\hline 15 & ． 0053550 & ． 0054446 & 0055349 & ． 0056261 & ． 0057179 & ． 0058105 & 0059039 & ．00599r9 \\
\hline 16 & ． 0060928 & ． 0061884 & 006：847 & ．0063817 & ． 0064795 & ． 0065780 & ．0066774 & 0067774 \\
\hline 17 & ． 0068182 & ． 0069797 & ． 0070819 & ． 0071850 & ．0072887 & ．0073932 & ． 0074985 & ． 0076044 \\
\hline 18 & ． 00 ¢7112 & ． 0078187 & ． 0079268 & ． 0080360 & ． 0081452 & ． 0082560 & 00836 2 & ． 0084 亿91 \\
\hline 19 & ． 0085918 & ． 0087052 & ． 0088193 & ． 0059343 & ． 0090499 & ． 0091663 & ． 0092835 & 0094013 \\
\hline 20 & ． 0095200 & ． 0096393 & 0097594 & ． 0098803 & ． 0100019 & ． 0101243 & 0102474 & ． 0103712 \\
\hline 21 & ． 0104958 & ． 0106211 & ． 0107472 & ． 0108739 & ． 0110015 & ． 0111299 & ． 0112589 & ． 0113886 \\
\hline 22 & ． 0115192 & ． 0116505 & 0117825 & ． 0119152 & .0120487 & ． 0121830 & 0123179 & 0124537 \\
\hline 23 & ． 0125902 & ．01272\％4 & ． 0128654 & ． 0130040 & ． 0131435 & ． 0132837 & ． \(013424 \sim\) & 0135664 \\
\hline 24 & ． 013 2088 & ． 0138519 & ． 0139959 & ． 0141405 & ． 0142859 & ． 0144321 & ． 0145 r89 & \(014 \sim 266\) \\
\hline 25 & ． 0148750 & ． 0150241 & ． 0151739 & ． 0153246 & ． 0154759 & ． 0156280 & 015\％809 & 0159345 \\
\hline 26 & ． 0160888 & ． 0162439 & ．0163997 & ． 0165563 & ． 0167135 & ． 0168716 & ．0170304 & 0171899 \\
\hline 27 & ． 0173502 & ． 0175112 & ． 0176729 & ． 0178355 & ． 0179988 & ． 0181621 & 0183275 & 0184929 \\
\hline 28 & ． 0186592 & ． 0188262 & ． 0189939 & ． 0191624 & ． 0193316 & ． 0195015 & ． 0196722 & 0198436 \\
\hline 29 & ．0200158 & ． 0201887 & ．0203¢\％， 4 & ．0205368 & ．0207119 & ．0208879 & ． 2210645 & 0212418 \\
\hline 30 & ． 0214200 & ． 0215988 & ．0：17785 & ． 0219588 & ． 0221399 & ． 0223218 & ． 0225044 & ．02：68\％ \\
\hline 31 & ． 0222818 & ． 0230566 & ． 0232422 & ． 0234285 & ． 0236155 & ． 023880.33 & ． 0239919 & ． 0241812 \\
\hline 32 & ．0243712 & ． 0245619 & 0247535 & ． 0249457 & ． 0251387 & ． 0253325 & ． 0255269 & ．025～222 \\
\hline 33 & ． 0259182 & ． 0261149 & ． 0263124 & ． 0265106 & ．0267095 & ． 0269092 & ．0271097 & ． 0273109 \\
\hline 34 & ． 02 T5128 & ． 0277155 & 0279189 & ． 0281231 & ．02832 0 & ． 0285336 & ． 2887399 & 0289471 \\
\hline 35 & ． 0291550 & ． 0293636 & ． 0295729 & ． 0297831 & ． 0299939 & ． 0302056 & ． 0304179 & ． 0306309 \\
\hline 36 & ． 0308448 & ． 0310594 & ． 0312747 & ． 0314908 & ． 0317075 & ． 0319251 & 0：321434 & ．0323624 \\
\hline 37 & ．03325822 & ． 0328027 & ． 0330239 & ． 0332460 & ． 0334687 & ． 0336922 & ． 0339165 & ． 0341415 \\
\hline 38 & ．0343672 & ． 0345937 & ．0348209 & ． 0350489 & ．03527\％ & 0355070 & ．03573 2 & ． 0359681 \\
\hline 39 & ． 0361998 & ．0364322 & ． 0366654 & ．0368993 & ． 0371339 & ． 0373694 & ．0376055 & ．03784：4 \\
\hline 40 & ． 0380800 & ． 0383184 & 0385575 & ． 0387973 & ．0390379 & ．0392793 & ． 0395214 & ． 0397642 \\
\hline 41 & ．04000 8 & ． \(04025 \% 1\) & ．0404972 & ． 0407430 & ． 0409895 & ． 0412368 & 0414849 & ．041ヶ33 \\
\hline 42 & ． 0419832 & 0422335 & ． 0424845 & ． 0127362 & ． 0429887 & ． 0432420 & 0434959 & 043 亿507 \\
\hline 43 & ． 0440062 & ． 0442624 & ． 0445194 & ． 0447771 & ． 0450355 & ． 0452947 & \(045554 \sim\) & ． 0458154 \\
\hline 44 & ． 0460768 & ．0463389 & 0466019 & 0468655 & ． 0471299 & ．0473951 & ．046609 & 04792 \％ 6 \\
\hline 45 & ． 0481950 & ． 0484631 & ． 0487320 & 0490016 & ．0492719 & ． 0495430 & ． 0498149 & 05008\％5 \\
\hline 46 & ． 0503608 & ． 0506349 & ． 0509097 & ． 0511853 & ． 0514615 & ． 0517386 & 0520164 & U522949 \\
\hline 47 & ． 0525 542 & 0528542 & ． 0531349 & ． 0534165 & ． 0536988 & ． 0539818 & ． 0542655 & ． 0545499 \\
\hline 48 & ． 0548352 & 0551212 & ． 0554079 & ． 0555953 & ． 0559835 & 0562725 & 056562 & ．05685：2 \\
\hline 49 & ． 05 T1438 & ．0574357 & ． 0577284 & ． 0580218 & ． 0583159 & ． 0586109 & 0589065 & ．0592029 \\
\hline 50 & ． 0595000 & ．0597979 & ． 0600965 & ．0603959 & ． 0606959 & 0609969 & ．0612984 & ． 0616007 \\
\hline 51 & ． 0619038 & ．0622076 & ． 0625122 & ．0628175 & ．0632235 & 0634304 & 0637379 & 0640462 \\
\hline 52 & ． 064355 & ． 0646649 & ． 0619753 & ．0652867 & 0655987 & ． 0659115 & 0662250 & 0665392 \\
\hline 53 & ． 0668542 & 0671699 & ． 0674864 & 0678036 & ． 0681215 & 0684402 & 0687597 & 0690799 \\
\hline 54 & ． 0694008 & 0697225 & \(0 \sim 00449\) & 0703681 & 0705293 & ． 0710166 & ． 0713419 & 0716681 \\
\hline 55 & ．0719950 & ． \(07242: 3\) & ． \(0 \sim 26510\) & 07－29801 & 0733099 & ． \(0 \sim 36406\) & 0739719 & 0 443039 \\
\hline 56 & ． 0746368 & ． 0749704 & 0 053047 & 0756398 & 0759755 & 0763120 & ． 0766494 & ． 0769874 \\
\hline 57 & ． 0773262 & ． 0 T¢665\％ & 0750060 & 0テ8834 6 & 0ヶ86887 & 0790312 & 0ヶ93745 & ． \(0 \div 67185\) \\
\hline 58 & ．0800632 & ． 0804087 & 0807549 & 0811019 & 0814495 & ．0817950 & 082142 & ． 0824971 \\
\hline 59 & ．0828478 & 0831992 & ． 0835514 & ． 0839043 & 0842579 & 0846123 & ． 0849675 & ． 0553234 \\
\hline 60 & 1.0856800 & 08603 & ． 0863955 & ． 086 ĩ543 & 08\％1139 & 0874 ¢43 & 087835 & 0881973 \\
\hline
\end{tabular}

Horse-power per Pound Mean Effective Pressure. Formula, Area in sq. in. \(\times\) piston-speed.

33,000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline of & \multicolumn{9}{|c|}{Speed of Piston in feet per minute.} \\
\hline inches. & 100 & 200 & 300 & 400 & 500 & 600 & 800 & 800 & 900 \\
\hline 4 & . 0381 & . 0762 & . 1142 & . 1523 & . 1904 & - 2 & . 2666 & . 3046 & . 342 \% \\
\hline 4122 & . 0482 & . 0964 & . 1446 & . 1928 & . 2410 & . 2892 & . 3374 & . 3856 & .4333 \\
\hline & .0595 & . 1190 & . 1785 & . 2380 & - 2975 & . 35 T0 & . 4165 & . 4760 & . 5355 \\
\hline \(51 / 2\) & .0\%20 & . 1440 & . 2160 & . 2880 & . 3600 & . 4320 & 5040 & . 5760 & . 648 \\
\hline 6 & . 0857 & . 1714 & . 25.50 & . 3427 & . 4284 & . 5141 & . 5998 & . 6854 & . 71 \\
\hline & . 1006 & . 2011 & .3017 & . 4022 & . 5028 & . 6033 & . 0389 & . 8044 & 9050 \\
\hline & . 1166 & . 23332 & . 3499 & . 4665 & . 5831 & . 6997 & . 8163 & .9330 & 1.0496 \\
\hline & . 1339 & . 2678 & . 4016 & . 5355 & . 6694 & . 8033 & - 9371 & 1.0710 & 1.2049 \\
\hline & . 1523 & . 3046 & . \(45 \% 0\) & . 6093 & - . 616 & . 9139 & 1.0662 & 1.2186 & 1.3709 \\
\hline & . 1720 & . 3439 & . 5159 & . 68 \% 8 & . 8598 & 1.0317 & 1.203\% & 1.3756 & 1.54î6 \\
\hline & . 1928 & . 3856 & . 5783 & . 7711 & 1.9639 & 1.1567 & 1.3495 & 1.5422 & 1.7350 \\
\hline \(91 / 2\) & . 2148 & . 4296 & . 6444 & . 8592 & 1.0740 & 1.2888 & 150.36 & 1.7184 & 1.953:2 \\
\hline \(10^{1 /}\) & . 2380 & . 4760 & . 7140 & 9520 & 1.1900 & 1.4280 & -.6660 & 1.9040 & 2.1420 \\
\hline 11 & 2880 & . 5760 & . 8639 & 1.1519 & 9/1.4399 & 1.72\%9 & 2.0159 & 2.3038 & 2.5818 \\
\hline 12 & . 3427 & . 6854 & 1.0282 & 1.3709 & 9 1.7136 & 2.0563 & 2.3990 & 2.7418 & 3.0845 \\
\hline 13 & . 4022 & . 8044 & 1.2067 & 1.6089 & 2.0111 & 2.4133 & 2.8155 & 3.2178 & 3.6200 \\
\hline 14 & . 4665 & . 9330 & 1.3994 & 1.8659 & 92.3324 & 2.7989 & 3.2654 & 3.7318 & 4.1983 \\
\hline 15 & . 5355 & 1.0710 & 1.6065 & 2.1420 & 2.675 & 3.2130 & 3.7485 & 4.2840 & 4.8195 \\
\hline 16 & . 6093 & 1.2188 & 1.8:78 & 2.4371 & 3.0464 & 3.655 r & 4.2650 & 4.8742 & 5.4835 \\
\hline 17 & . 6878 & 1.2756 & 1.96335 & 2.6513 & 3.3391 & 4.0269 & 4.6147 & 5.4026 & 6.1904 \\
\hline 18 & . 7 T11 & 1.5422 & 2.3134 & 3.0845 & 3.8556 & 4.6267 & 5.3978 & 6.1690 & 6.9401 \\
\hline 19 & . 8592 & 1.7184 & 2.5775 & 3.4367 & 4.2959 & 5.1551 & 6.0143 & 6.8734 & 7.7326 \\
\hline 20 & . 9590 & 1.9040 & 2.8560 & 3.8080 & 4. 7600 & 5.7120 & 6.6640 & 7.6160 & 8.5680 \\
\hline 21 & 1.0496 & 2.0992 & 3.1488 & 4.1983 & 5.2479 & 6.2975 & \(7.34 \% 1\) & 8.3966 & 9.4462 \\
\hline 22 & 1.1519 & 2.3038 & 3.4558 & 4.6077 & 5.7596 & 6.9115 & 8.0634 & 9.2154 & 10.367 \\
\hline 23 & 1.2590 & 2.5180 & 3.7771 & 5.0361 & 6.2951 & 7.5541 & 8.8131 & 10.0\%2 & 11.331 \\
\hline 24 & 1.3709 & 2.7418 & 4.1126 & 5.4835 & 6.8544 & 8.2253 & 9.5962 & 10.967 & 12.338 \\
\hline 25 & \(1.48 \pi 5\) & 2.9750 & 4.4625 & 5.9500 & 7.4375 & 8.9250 & 10.413 & 11.900 & 13.388 \\
\hline 26 & 1. 6089 & \(3.21 \% 8\) & 4.8266 & 6.4355 & 8.0444 & \(9.6 \pm 34\) & 11.26: & 12.871 & 14.480 \\
\hline 27 & 1. 73.50 & \(3.4 \% 00\) & 5.2051 & \(6.9+01\) & \(8.6 \pi 51\) & 10.410 & 12.145 & 13.880 & 15.615 \\
\hline 28 & 1.86:9 9 & 3.7318 & 5.5978 & 7.4637 & 9.3296 & 11.196 & 13.061 & 14.927 & 16.593 \\
\hline 29 & 2.0016 & 4.0032 & 6.0047 & 8.0063 & 10.008 & 12.009 & 14.011 & 16.013 & 18.014 \\
\hline 30 & 2.1420 & 4.2840 & 6.4260 & 8.5680 & 10.710 & 12.85 & 14.994 & 17.136 & 19.278 \\
\hline 31 & 2.2872 & \(4.5 \% 44\) & 6.8615 & 9.1487 & 11.436 & 13.723 & 16.010 & 18.297 & 20.585 \\
\hline 32 & 2.4371 & 4.8742 & 7.3114 & 9.7485 & 12.186 & 14.623 & 17.060 & 14.497 & 21.934 \\
\hline 33 & 2.5918 & 5.1836 & 7. 7755 & 10.367 & 12.959 & 15.551 & 18.143 & 20.735 & 23.326 \\
\hline 34 & 2.7513 & 5.5026 & 8.2538 & 11.005 & 13.756 & 16.508 & 19.259 & 22.010 & 24.762 \\
\hline 35 & 2.9155 & 5.8310 & 8.7465 & 11.662 & 14.578 & 17.493 & 20.409 & 23.324 & 26.240 \\
\hline 36 & 3.0845 & 6.1690 & 9.2534 & 12.338 & 15.422 & 18.507 & 21.591 & \(24.6 \pi 6\) & 27.760 \\
\hline 37 & 3.2582 & 6.5164 & 9.774 & 13.033 & 16. 291 & 19.549 & 22.808 & 26.066 & 29.324 \\
\hline 38 & 3.436นิ & 6.8734 & 10.310 & 13.747 & 17.184 & 20.620 & 24.057 & 27.494 & 30.930 \\
\hline 39 & 3.6200 & 7.2400 & 10.860 & 14.480 & 18.100 & 21.720 & 25.340 & 28.960 & 32.580 \\
\hline 40 & 3.8080 & 7.6160 & 11.424 & 15.232 & 19.040 & 22.848 & 26.656 & 30.464 & \(34.2{ }^{2} 2\) \\
\hline 41 & 4.0008 & 8.0016 & 12.002 & 16.003 & 20.004 & 24.005 & 28.005 & 32.006 & 36.007 \\
\hline 42 & 4.1983 & 8.3866 & 12.585 & 16.783 & 20.982 & 25.180 & 29.378 & 33.577 & 37.7\%5 \\
\hline 43 & 4.4006 & 8.8012 & 13.202 & 17.602 & 22.003 & 26.404 & 30.804 & 35.205 & 39.606 \\
\hline 44 & 4.6077 & 9. 2154 & 13.823 & 18.431 & 23.038 & 27.646 & 32.254 & 36.861 & 41.469 \\
\hline 45 & 4.8195 & 9.6390 & 14.459 & 19.278 & 24.098 & 28.31\% & 33.737 & 38.556 & 43.376 \\
\hline 46 & 5.0361 & 10.072 & 15.108 & 20.144 & 12.180 & 30.216 & 35.253 & 40.289 & 45.325 \\
\hline \(4 \%\) & 5.2574 & 10.515 & 15.772 & 21.030 & 26.287 & 31.545 & 36.802 & 42.059 & 47.317 \\
\hline 48 & 5.4835 & 10.967 & 16.451 & 21.934 & 27.418 & 32.901 & 38.385 & 43.868 & 49.352 \\
\hline 49 & 5. 7144 & 11.429 & 17.14.3 & 22.858 & 28.5\%2 & 34.286 & 40.001 & 45.715 & 51.429 \\
\hline 50 & 5.9500 & 11.900 & 17.850 & 23.800 & 29.750 & 35.700 & 41.650 & 47.600 & 53.550 \\
\hline 51 & 6.1904 & 12.381 & 18.571 & 24.762 & 30.952 & 37.142 & 43.333 & 49.523 & 55.713 \\
\hline 52 & 6.4355 & 12.871 & 19.30~ & 25.742 & 32.178 & 38.613 & 45.049 & 51.484 & 57. 920 \\
\hline 53 & 6.6854 & 13.371 & 120.056 & 26.742 & 33.427 & 40.113 & 46. 798 & 53.483 & 60169 \\
\hline 54 & 6.9401 & 13.880 & 20.8:0 & 27. \({ }^{\prime} 60\) & 34. 700 & 41.640 & 48.581 & 55.521 & 62.461 \\
\hline 55 & 7.1995 & 14.399 & 21.599 & 28.798 & 33.998 & 43.197 & 50.39 \({ }^{\text {¢ }}\) & 57.596 & 64.5196 \\
\hline 56 & 7.4637 & 14.927 & 22.391 & 29.855 & 37. 318 & 41.782 & 52.246 & 59.709 & 67.173 \\
\hline 57 & 7.73:6 & 15.465 & 23.198 & 30.930 & |38.663 & 46.396 & 54.128 & 61.861 & 69.594 \\
\hline 58 & 8.0063 & 16.013 & 24.019 & 32.025 & 40.032 & 48038 & 56.044 & 64.051 & \%9. 257 \\
\hline 59 & 8.2849 & \(16.5 \pi 0\) & 24.854 & 33.139 & 41.424 & 49.709 & 57.993 & 66.278 & \%4.563 \\
\hline 60 & 8.5680 & 17.136 & 25.704 & 34.272 & 42.840 & 51.408 & |59.976 & 68.544 & 177.112 \\
\hline
\end{tabular}

To draw the Clearance-line on the Indicator-diagram, the actual clearance not being known.-The clearance-line may be obtained approximately by drawing a straight line, cbad, across the compression curve, first having drawn \(O X\) parallel to the atmospheric line and \(14 . \pi\) lbs. below. Measure from \(a\) the distance \(r d\), equal to \(c b\), and draw YO perpendicular to \(O X\) through \(d\); then will \(T B\) divided by \(A T\) be the percentage of


Fia. 139.
r.earance. The clearance may also be found from the expansion-line by (onstructing a rectangle eflig, and drawing a diagonal \(g f\) to intersect the line \(X O\). This will give the point \(O\), and by erecting a perpendicular to XO We obtain a clearance-line \(O Y\).

Both these methods for finding the clearance require that the expansion tind compression curves be hyperbolas. Prof. Carpenter (Power, Sept. 1893) says that with good diagrams the methods are usually very accurate, ond give results which check substantially.

The Buckeye Engine Co., however, say that, as the results obtained are aldom correct, being sometimes too little, but more frequently too much, and as the indications from the two curves seldom agree, the operation has little practical value, though when a clearly defined and apparently undistorted compression curve exists of sufficient extent to admit of the application of the process, it may be relied on to give much more correct results than the expansion curve.

To draw the Hyperbolic Curve on the Indicator-dia-qram.-Select any pout \(I\) in the actual curve, and from this point draw a line perpendicular to the line \(J B\), meeting the latter in the point \(J\). The line \(J^{J} B\) may be the line of boiler-pressure, but this is not material; it may be drawn at any convenient height near the top of diagram and parallel to the atmospheric line. From \(J\) draw a diagonal to \(K\), the latter point being the intersection of the vacuum and clearance lines; from \(I\) draw \(I L\) parallel with the atmospheric line. From \(L\), the point of intersection of the diagonal \(J K\) and the horizoutal line \(I L\), draw the vertical line \(L M\). The


Fig. 140. point \(M\) is the theoretical point of cut-off, and \(L M\) the cut-off line. Fix upon any number of points \(1,2,3\), etc., on the line \(J B\), and from these points draw diagonals to \(K\). From the intersection of these diagonals with \(L M\) draw horizontal lines, and from \(1,2,3\), etc., vertical lines. Where these lines meet will be points in the hyperbolic curve.

Pendulum Indicator Rig.-Pover (Feb. 1893) gives a graphical representation of the errors in indicator-diagrams, caused by the use of in-
correct form of the pendulum rigging. It is shown that the "brumbo" pulley on the pendulum, to which the cord is attached, does not gener-


Fig. 141. ally give as good a reduction as a simple pin attachment. When the end of the pendulum is slotted, working in a pin on the crosshead, the error is apt to be considerable at both ends of the card. With a vertical slot in a plate fixed to the crosshead, and a pin on the pendulum working in this slot, the reduction is perfect, when the cord is attached to a pin on the pendulum, a slight error being introduced if the brumbo pulley is used. With the connection between the peudulun and the crosshead made by means of a horizontal link, the reduction is nearly perfect, if the construction is such that the connecting link vibrates equally above and below the horizontal, and the cord is attached by a pin. If the link is horizontal at mid-stroke a serious error is introduced, which is magnified if a brumbo pulley also is used. The adjoining figures show the two forms recommended.
Theoretical Water-consumption calculated from the Indicator-card.-The following method is given by Prof. Carpenter (Power, Sept. 1893): \(p=\) mean effective pressure, \(l=\) length of stroke in feet, \(a=\) area of piston in square inches, \(a \div 144=\) area in square feet, \(c=\) percentage of clearance to the stroke, \(b=\) percentage of stroke at point where water rate is to be computed. \(n=\) number of strokes per minute, \(60 n=\) number per hour, \(w=\) weight of a cubic foot of steam having a pres.. sure as shown by the diagram corresponding to that at the point where: water rate is required, \(w^{\prime}=\) that corresponding to pressure at end of com.. pression.

Number of cubic feet per stroke \(=l\left(\frac{b+c}{100}\right) \frac{a}{144}\).
Corresponding weight of steam per stroke in lbs. \(=l\left(\frac{b+c}{100}\right) \frac{a}{144} v_{0}\)
Volume of clearance \(=\frac{l c a}{14,400}\).
Weight of steam in clearance \(=\frac{l c a u v^{\prime}}{14,400^{\circ}}\).
Total weight of \(\}=l\left(\frac{b+c}{100}\right) \frac{w a}{144}-\frac{l c a\urcorner v^{\prime}}{14,400}=\frac{l a}{14,400}\left[(b+c) w-c w^{\prime}\right]\).
Total weight of steam \(\}=\frac{60 n l a}{14,400}\left[(b+c) w-c w v^{\prime}\right]\).
The indicated horse-power is \(p l\) a \(n \div 33,000\). Hence the steam-consump. tion per indicated horse-power is
\[
=\frac{\frac{60 n l a}{14,400}\left[(b+c) w-c w w^{\prime}\right]}{\frac{p l a n}{33,000}}=\frac{137.50}{p}\left[(b+c) w-c w^{\prime}\right] .
\]

Changing the formula to a rule, we have: To find the water rate from the indicator diagram at any point in the stroke.
Rule.-To the percentage of the entire stroke which has been completed by the piston at the point under consideration add the percentage of clear.. ance. Multiply this result by the weight of a cubic foot of steam, having as pressure of that at the required point. Subtract from this the product of' percentage of clearance multiplied by weight of a cubic foot of steam having a pressure equal to that at the end of the compression. Multiply this result by 137.50 divided by the mean effective pressure.*
Note.-This method only applies to points in the expansion curve or between cut-off and release.

\footnotetext{
* For compound or triple-expansion engines read: divided by the equivalent mean effective pressure, on the supposition that all work is done in one cylinder.
}

The beneficial effect of compression in reducing the water-consumption of an engine is clearly shown by the formula. If the compression is carried to such a point that it produces a pressure equal to that at the point under consideration, the weight of steam per cubic foot is equal, and \(w=v^{\prime}\). In this case the effect of clearance entirely disappears, and the formula becomes \(\frac{137.5}{p}(b w)\).
In case of no compression, \(w^{\prime}\) becomes zero, and the water-rate \(=\)
\[
\frac{137}{p} \cdot 5[(b+c) w] .
\]

Prof. Denton (Trans. A. S. M. E., xiv. 1363) gives the following table of theoretical water-consumption for a perfect Mariotte expansion with steam at 150 lbs. above atmosphere, and 2 lbs. absolute back pressure :
\begin{tabular}{c|c|c}
\hline Ratio of Expansion, \(r\). & M.E.P., lbs. per sq. in. & \begin{tabular}{c} 
Lbs. of Water per hour \\
per horse-power, W.
\end{tabular} \\
\cline { 1 - 3 } & 10 & 52.4 \\
15 & 38.7 & 9.68 \\
20 & 30.9 & 8.74 \\
25 & 25.9 & 8.20 \\
30 & 22.2 & 7.84 \\
35 & 19.5 & 7.63 \\
\hline
\end{tabular}

The difference between the theoretical water-consumption found by the formula and the actual consumption as found by test represents "water not accounted for by the indicator," due to cylinder condensation, leakage through ports, radiation, etc.

Leakage of Steam.-Leakage of steam, except in rare instances, has so little effect upon the lines of the diagram that it can scarcely be detected. The only satisfactory way to determine the tightness of an engine is to take it when not in motion, apply a full boiler-pressure to the valve, placed in a closed position, and to the piston as well, which is blocked for the purpose at some point away from the end of the stroke, and see by the eye whether leakage occurs. The indicator-cocks provide means for bringing into view steam which leaks through the steam-valves, and in most cases that which leaks by the piston, and an opening made in the exhaust-pipe or observations at the atmospheric escape-pipe, are generally sufficient to determine the fact with regard to the exhaust-valves.
The steam accounted for by the indicator should be computed for both the cut-off and the release points of the diagram. If the expansion-line departs much from the hyperbolic curve a very different result is shown at one point from that shown at the other. In such cases the extent of the loss occasioned by cylinder condensation and leakage is indicated in a much more truthful manner at the cut-off than at the release. (Tabor Indicator Circular.)

\section*{COITPOUND ENGINES.}

\section*{Compound, Triple- and Quadruple-expansion Engines.} - A compound engine is one having two or more cylinders, and in which the steam after doing work in the first or high-pressure cylinder completes its expansion in the other cylinder or cylinders.
The term "compound" is commonly restricted, however, to engines in which the expansion takes place in two stages only-high and low pressure, the terms triple-expansion and quadruple-expansion engines being used when the expansion takes place respectively in three and four stages. The number of cylinders may be greater than the number of stages of expansion, for constructive reasons; thus in the compound or two-stage expansion engine the low-pressure stage may be effected in two cylinders so as to obtain the advantages of nearly equal sizes of cylinders and of three cranks at angles of \(120^{\circ}\). In triple-expansion engines there are frequently two low-pressure cylinders, one of them being placed tandem with the high-pressure, and the other with the intermediate cylinder, as in mill engines with two cranks at \(90^{\circ}\). In the triple-expansion engines of the steamers Campania and Lucania.
with three cranks at \(120^{\circ}\), there are five cylinders, two high, one internediate. and two low, the high-pressure cylinders being tandem with the low.

Advantages of Compounding. - The advantages secured by dividing the expansion into two or more stages are twofold: 1. Reduction of wastes of steam by cylinder-condensation, clearance, and leakage; 2. Dividing the pressures on the cranks, shafts, etc., in large engines so as to avoid excessive pressures and consequent friction. The diminished loss by cylinder-condensation is effected by decreasing the range of temperature of the metal surfaces of the cylinders, or the difference of temperature of the steam at admission and exhaust. When high-pressure steam is admitted into a singlecylinder engine a large portion is condensed by the comparatively cold metal surfaces; at the end of the stroke and during the exhaust the water is re-evaporated, but the steam so formed escapes into the atmosphere or into the condenser, doing no work; while if it is taken into a second cylinder, as in a compound engine, it does work. The steam lost in the first cylinder by leakage and clearance also does work in the second cylinder. Also, if there is a second cylinder, the temperature of the steam exhausted from the first cylinder is higher than if there is only one cylinder, and the metal surfaces therefore are not cooled to the same degree. The difference In temperatures and in pressures corresponding to the work of steam of 150 lbs . gauge-pressure expanded 20 times, in one, two, and three cylinders, is shown in the following table, by W.W. H. Weightman, Am. Mach., July 28, 1892:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Single Cylinder. & \multicolumn{2}{|l|}{Compound Cylinders.} & \multicolumn{3}{|l|}{Triple-expansion Cylinclers.} \\
\hline Diameter of cylinders, in. & 60 & 33 & 61 & 28 & 46 & 61 \\
\hline Area ratios. & & 1 & 3.416 & 1 & 2.70 & 4.743 \\
\hline Expansions & 20 & 5 & & 2.714 & 2.714 & 2.714 \\
\hline Initial steam-pressures-absolute-pounds & 165 & 165 & 33 & 165 & 60.8 & 22.4 \\
\hline Mean pressures, pounds. & 32.96 & 86.11 & 19.68 & 121.44 & 44.15 & 16.49 \\
\hline Mean effective pressures, pounds & 28.96 & 53.11 & 15.68 & 60.64 & 22.35 & 12.49 \\
\hline Steam temperatures into cylinders & \(366^{\circ}\) & \(366^{\circ}\) & \(259^{\circ} .9\) & \(366^{\circ}\) & 2930.5 & \(234{ }^{\circ} .1\) \\
\hline Steam temperatures out of the cylinders. & \(184^{\circ} .2\) & \(2599^{\circ} .9\) & \(184^{\circ} .2\) & \(293{ }^{\circ} .5\) & \(234{ }^{\circ} .1\) & \(184^{\circ} .2\) \\
\hline Difference in temperatures & 181.8 & 106.1 & 75.7 & 72.5 & 59.4 & 49.9 \\
\hline Horse-power developed. & 800 & 399 & 403 & 269 & 268 & 264 \\
\hline Speed of piston...... & 322 & 290 & 290 & 238 & 238 & 238 \\
\hline Total initial pressures on pistons, pounds.. & 455.218 & 112,900 & 84,752 & 64.162 & 63,817 & 53, 173 \\
\hline
\end{tabular}
\({ }^{6}\) Woolf " and Receiver Types of Compound Engines.--
The compound steam-engine, consisting of two cylinders, is reducible to two forms, 1 , in which the steam from the h.p. cylinder is exhausted direct into the l. p. cylinder, as in the Woolf engine; and 2, in which the steam from the h. p. cylinder is exhansted into an intermediate reservoir, whence the steam is supplied to, and expanded in, the l.p. cylinder, as in the "receiverengine."

If the steam be cut off in the first cylinder before the end of the stroke, the total ratio of expansion is the product of the ratio of expansion in the first cylinder, into the ratio of the volume of the second to that of the first cylinder: that is, the product of the two ratios of expansion.

Thus, let the areas of the first and second cylinders be as 1 to \(31 / 2\), the strokes being equal, and let the steam be cut off in the first at \(1 / 2\) stroke; then

Total or combined expansion, the product of the two ratios... 1 to 7
Woolf Engine, without Clearance-Ideal Diagrams. -
The diagrams of pressure of an ideal Woolf engine are shown in Fig. 142, as they would be described by the indicator, according to the arrows. In these diagrams \(p q\) is the atmospheric line, \(m n\) the vacuum line, \(c d\) the admissiop
line, \(d g\) the hyperbolic curve of expansion in the first cylinder, and \(g h\) the consecutive expansion-line of back pressure for the return-stroke of the first piston, and of positive pressure for the steamstroke of the second piston. At the point \(h\). at the end of the stroke of the second piston, the steam is exhausted into the condenser, and the pressure falls to the level of perfect vacuum, mu.

The diagram of the second cylinder, below \(g h\), is characterized by the absence of any specific period of admission; the whole of the steam-line gh being expansional, generated by the expansion of the initial body of steam contained in the first cylinder into the second. When the return-stroke is completed, the whole of the steam transferred from the first is shut into the second cylinder. The final pressure and volume of the steam in the second cylinder are the


Fig. 142.-Woolf Engine-Ideal Indicator-diagrams. same as if the whole of the initial steam had been admitted at once into the second cylinder, and then expanded to the end of the stroke in the manner of a single-cylinder engine.
The net work of the steam is also the same, according to both distributions.
Receiver-engine, without Clearance-Ideal Diagrams.In the ideal receiver-engine the pistons of the two cylinders are connected to cranks at right angles to each other on the same shaft. The receiver takes the steam exhausted from the first cylinder and supplies it to the second, in which the steam is cut off and then expanded to the end of the stroke. On the assumption that the initial pressure in the second cylinder is equal to the final pressure in the first, and of course equal to the pressure in the receiver. the volume cut off in the second cylinder must be equal to the volume of the first cylinder, for the second cylinder must admit as much steam at each stroke as is discharged from the first cylinder.

In Fig. 143 cd is the line of admission and hg the exhaust-line for the first


Fig. 143.--Receiver-engine; Ideal INDICATOR-DIAGRAMS.


Fig. 144.-Receiver Engine, Ideal Diagrams reduced and combined.
cylinder; and \(d g\) is the expansion-curve and \(p q\) the atmospheric line. In the region below the exhaust-line of the first cylinder, between it and the line of perfect vacuum, ol, the diagram of the second cylinder is formed; hi, the second line of admission, coincides with the exhaust-line \(h g\) of the first cylinder, showing in the ideal diagram no intermediate fall of pressure, and \(i k\) is the expansion-curve. The arrows indicate the order in which the diagrams are formed.
In the action of the receiver-engine, the expansive working of the steam, though clearly divided into two consecutive stages, is, as in the Woolf engine, essentially continuous from the point of cut-off in the first cylinder to the end of the stroke of the second cylinder, where it is delivered to the condenser; and the first and second diagrams may be placed together and
combined to form a continuous diagram. For this purpose take the second diagram as the basis of the combined diagram, namely, hiklo, Fig. 144. The period of admission, \(h i\), is one third of the stroke, and as the ratios of the cylinders are as 1 to \(3, h i\) is also the proportional length of the first diagram as applied to the second. Produce oh upwards, and set off oc equal to the total height of the first diagram above the vacuum-line; and, upon the shortened base \(h i\), and the height \(h c\), complete the first diagram with the steam-line \(c d\), and the expansion-line \(d i\).
It is shown by Clark (S. E., p. 432, et seq.) in a series of arithmetical calculations, that the receiver-engine is an elastic system of compound engine. in which considerable latitude is afforded for adapting the pressure in the receiver to the demands of the second cylinder, without considerably diminishing the effective work of the engine. In the Woolf engine, on the contrary, it is of much importance that the intermediate volume of space between the first and second cylinders, which is the cause of an intermediate fall of pressure, should be reduced to the lowest practicable amount.
Supposing that there is no loss of steam in passing through the engine, by cooling and condensation, it is obvious that whatever steam passes through the firsi cylinder must also find its way through the second cylinder. By varying, therefore, in the receiver-engine, the period of admission in the second cylinder, and thus also the volume of steam admitted for each stroke, the steam will be measured into it at a higher pressure and of a less bulk, or at a lower pressure and of a greater bulk; the pressure and density naturally adjusting themselves to the volume that the steam from the receiver is permitted to occupy in the second cylinder. With a sufficiently restricted adinission, the pressure in the receiver may be maintained at the pressure of the steam as exhausted from the frst cylinder. On the contrary, with a wider admission, the pressure in the receiver may fall or "drop" to three fourths or even one half of the pressure of the exhauststeam from the first cylinder.
(For a more complete discussion of the action of steam in the Woolf and receiver engines, see Clark on the Steam-engine.)
Combined Diagrams of Compound Engines.-The only way of makiug a correct combined diagram from the indicator-diagrams of the several cylinders in a compound engine is to set off all the diagrams on the same horizontal scale of volumes, adding the clearances to the cylinder ca-


Fig. 145.
pacities proper. When this is attended to, the successive diagrams fall exactly into their right places relatively to one another, and would compare properly with any theoretical expainsion-curve. (Prof. A. B. W. Kennedy, Proc. Inst. M. E., Oct. 1886.)

This method of combining diagrams is commonly adopted, but there are objections to its accuracy, since the whole quantity of steam consumed in the first cylinder at the end of the stroke is not carried forward to the second, but a part of it is retained in the first cylinder for compression. For a method of combining diagrams in which compression is taken account of, see discussions by Thomas Mudd and others, in Proc. Inst. M. E., Feb., 188\%, p. 48. The usual method of combining diagrams is also criticised by Frank H. Ball as inaccurate and misleading (Am. Mach., April 12, 1894; Trans. A. S. M. E., xiv. 1405, and xv. 403).
Figure 145 shows a combined diagram of a quadruple-expansion engine, drawn according to the usual method, that is, the diagrams are first reduced in length to relative scales that correspond with the relative piston-displacement of the three cylinders. Then the diagrams are placed at such distances from the clearance-line of the proposed combined diagram as to correctly represent the clearance in each cylinder.

\section*{Calculated Expansions and Pressures in Two=cylinder Compound Engines. (James 'lribe, Am. Mach., Sept. \& Oct. 1891.)}

Two-cylinder Compound Non-condiensing.
Back pressure \(1 / 2 \mathrm{lb}\). above atmosphere.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Initial gauge pressure. & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & \(1 \% 5\) \\
\hline Initial absolute & & & & & & & & & \\
\hline pressure Total expansion. & 115
7.39 & \({ }_{7}^{125}\) & 135
8.41 & 145
9 & 155
9.61 & \({ }_{10}^{165}\) & 110.8 & \[
\begin{gathered}
185 \\
11.56
\end{gathered}
\] & 190 \\
\hline Expansions in each cylinder. & 2. & 2.8 & 2.9 & 3 & 3.10 & 3.2 & 3.3 & 3.4 & 3.45 \\
\hline Hyp. log. plus 1. & 1.993 & 2.029 & 2.064 & 2.028 & 2.131 & 2.163 & 2.193 & 2.2.23 & 2.238 \\
\hline Forward \{ High. & 84.8 & 90.5 & & 101.4 & 103.5 & 111.5 & 116.3 & \(1 \geqslant 0.9\) & 123.2 \\
\hline pressures \{ Low.. & 31.3 & 3!.3 & 33.1 & 33.7 & 34.3 & 31.8 & 35.2 & \(3 ; .6\) & 35. 7 \\
\hline Back \{ High. & 42.5 & 44.6 & 46.5 & 48.3 & 50 & 51.5 & 53 & 51.4 & 55 \\
\hline pressures \{ Low.. & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 & 15.5 \\
\hline Mean ffective High. & 42.3 & 45.9 & 49.5 & 53.1 & 56.5 & 60 & 63.3 & 66.5 & 68.2 \\
\hline ressures \(\}\) Low.. & 15.8 & 16.8 & 17.6 & 18.2 & 18.8 & 19.3 & 19.7 & 20.1 & 20.2 \\
\hline Ratio-c ylinder areas \(\qquad\) & 2.67 & 2.73 & 2.81 & 2.91 & 3 & 3.11 & 3.21 & 3.31 & 3.37 \\
\hline
\end{tabular}

Two-cylinder Compound Condensing.
Back pressure, 6.5 lbs . above vacuum
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Initial gauge-pres & 90 & 100 & 110 & 120 & 130 & 140 & 150 \\
\hline Initial absolute pres & 105 & 115 & 125 & 135 & 145 & 155 & 165 \\
\hline Probable per cent of & 2.6 & 2.9 & 3.3 & 3.6 & 3.8 & 4.0 & 4 \\
\hline Total expansio & 15.7 & 17 & 18.5 & \(\mathfrak{O}\) & 21.5 & 20. 7 & 24.2 \\
\hline Exps. in each cy & 3.96 & 4.13 & 4.3 & 4.47 & 4.64 & 4.7\% & 4.92 \\
\hline Hyp. log. plus 1 & 2.376 & 2.418 & 2.458 & 2.497 & 2.534 & 2.562 & 2.59 \\
\hline Mean forward \{ High & 62.9 & 67.3 & 71.4 & 75.4 & 79.3 & 83.2 & 87 \\
\hline pressures Low & 15.25 & 15.55 & 15.9 & 16.2 & 16.5 & 16.75 & 17.05 \\
\hline Mean back \{ High & 26.5 & 27.8 & 29 & 30.2 & 31.4 & 32.4 & 33.5 \\
\hline pressures \{ Low & 4.3 & 4.3 & 4.3 & 4.3 & 4. & 4.3 & 4.3 \\
\hline Mean High & 36.4 & 39.5 & 42.4 & 45.2 & \(4 \tau .9\) & 50.8 & 53.5 \\
\hline effective \({ }^{\text {presures }}\) \{ Low & 10.95 & 11.25 & 11. & 11.9 & 12.2 & 12.45 & 12. \\
\hline Terminal High & 26.5 & 27.8 & 29.0 & 30.2 & 31.4 & 32.4 & 335 \\
\hline pressures \{ Low. & 6.4 & 6.45 & 6.45 & 6.5 & 6.55 & 6.55 & 6.6 \\
\hline Initial pressure in 1. p. cy & 25.3 & 26.6 & 27.8 & 29 & 30.2 & 31.4 & 32.4 \\
\hline Ratio of cylinder areas. & 3.32 & 3.51 & 3.66 & 3.8 & 39 9, & 4.08 & 4.19 \\
\hline
\end{tabular}

The probable percentage of loss, line 3, is thus explained: There is always a loss of heat due to condensation, and which increases with the pressure of steam. The exact percentage cannot be predetermined, as it depends largely upon the quality of the non-conducting covering used on the cylinder, receiver. and pipes, etc., hut will prohablr be about, as shown.

Proportions of Cylinders in Componnd Engines.-Authorities differ as to the proportions by volume of the high and low pressure cylinders \(v\) and \(V\). Thus Grashof gives \(V \div v=0.85 \sqrt{r}\); Hrabak, \(0.90 \sqrt{r}\);

Werner, \(\sqrt{r}\); and Rankine, \(\sqrt[3]{r^{2}}, r\) being the ratio of expansion. Busley makes the ratio dependent on the boiler-pressure thus:
\begin{tabular}{|c|c|c|c|c|}
\hline Lbs. per sq. in & 60 & 90 & 105 & 120 \\
\hline \(V \div v . .\). & 3 & 4 & 4.5 & 5 \\
\hline
\end{tabular}
(See Seaton's Manual, p. 95, etc., for analytical method; Sennett, p. 496, etc.; Clark's Steam-engine, p. 445, etc; Clark, Rules, Tables, Data, p. 849, etc.)

Mr. J. McFarlane Gray states that he finds the mean effective pressure in the compound engine reduced to the low-pressure cylinder to be approximately the square root of 6 times the boiler-pressure.

Approximate Horse-power of a Modern Compound Marine-engine. (Seaton.)-The following rule will give approximately the horse-power developed by a compound engine made in accordance with modern marine practice. Estimated H.P. \(=\frac{D^{2} \times \sqrt{p} \times R \times S}{8500}\).
\(D=\) diameter of 1.p. cylinder; \(p=\) boiler-pressure by gauge;
\(R=\) revs. per inin.; \(S=\) stroke of piston in feet.
Ratio of Cylinder Capacity in Compound Marine Engines. (Seaton.)-The low-pressure cylinder is the measure of the power of a compound engine, for so long as the initial steam-pressure and rate of expansion are the same, it signifies very little, so far as total power only is concerned. whether the ratio between the low and high-pressure cylinders is 3 or 4 ; but as the power developed should be nearly equally divided between the two cylinders, in order to get a good and steady working engine. there is a necessity for exercising a considerable amount of discretion in fixing on the ratio.

In choosing a particular ratio the objects are to divide the power evenly and to avoid as much as possible "drop" and high initial strain.

If increased economy is to be obtained by increased boiler-pressures, the rate of expausion should vary with the initial pressure, so that the pressure at which the steam enters the condenser should remain constant. In this case, with the ratio of cylinders constant, the cut-off in the high-pressure cylinder will vary inversely as the initial pressure.

Let \(R\) be the ratio of the cylinders; \(r\), the rate of expansion; \(p_{1}\) the initial pressure: then cut-off in high-pressure cylinder \(=R \div r ; r\) varies with \(p_{1}\), so that the terminal pressure \(p_{n}\) is constant, and consequently \(r=p_{1} \div p_{n}\); therefore, cut-off in high-pressure crlinder \(=R \times p_{n} \div p_{1}\).

Ratios of Cylinders as Found in Harine Practice.-The rate of expansion may be taken at one tenth of the boiler-pressure (or about one twelfth the absolute pressure), to work economically at full speed. Therefore, when the diameter of the low-pressure cylinder does not exceed 100 inches, and the boiler-pressure 70 lbs ., the ratio of the low-pressure to the high-pressure cylinder should be 3.5; for a boiler-pressure of 80 lbs ., 3.75; for 90 lbs., 4.0 ; for 100 lbs . 4.5 . If these proportions are adhered to, there will be no need of an expansion-valve to either cylinder. If, however, to avoid "drop," the ratio be reduced, an expansion-valve should be fitted to the high-pressure cylinder.

Where economy of steam is not of first importance, but rather a large power, the ratio of cylinder capacities may with advantage be decreased, so that with a boiler-pressure of 100 lbs . it may be 3.75 to 4 .

In tandem engines there is no necessity to divide the work equally. The ratio is generally 4 , but when the steam-pressure exceeds 90 lbs . absolute 4.5 is hetter, and for 100 lbs 5.0.

When the power requires that the l. p. cylinder shall be more than 100 in . diameter. it should be divided in two cylinders. In this case the ratio of the combined capacity of the twol. p. cylinders to that of the h. p. may be 3.0 for 85 lbs . absolute, 3.4 for 95 lbs ., 3.7 for 105 lbs ., and 4.0 for 115 lbs .

Receiver Space in Compound Engines should be from 1 to 1.5 times the capacity of the high-pressure cylinder, when the cranks are at an angle of from \(90^{\circ}\) to \(120^{\circ}\). When the cranks are at \(180^{\circ}\) or nearly this, the space may be very much reduced. In the case of triple-compound engines, with cranks at \(120^{\circ}\), and the intermediate cylinder leading the highpressure, a very small receiver will do. The pressure in the receiver should never exceed half the boiler-pressure. (Seaton.)

\section*{Formula for Calculating the Expansion and the Work of Steam in Compound Engines.}
(Condensed from Clark on the "Steam-engine.")
\(a=\) area of the first cylinder in square inches;
\(a^{\prime}=\) area of the second cylinder in square inches;
\(r=\) ratio of the capacity of the second cylinder to that of the first;
\(L=\) length of stroke in feet, supposed to be the same for both cylinders;
\(l=\) period of admission to the first cylinder in feet, excluding clearance;
\(c=\) clearance at each end of the cylinders, in parts of the stroke, in feer;
\(L^{\prime}=\) length of the stroke plus the clearance, in feet;
\(l^{\prime}=\) period of admission plus the clearance, in feet;
\(s=\) length of a given part of the stroke of the second cylinder, in feet;
\(P=\) total initial pressure in the first cylinder, in lbs. per square inch, supposed to be uniform during admission;
\(P^{\prime}=\) total pressure at the end of the given part of the stroke \(s\);
\(p=\) average total pressure for the whole stroke;
\(R=\) nominal ratio of expansion in the first cylinder, or \(L \div l\);
\(R^{\prime}=\) actual ratio of expansion in the first cylinder, or \(L^{\prime} \div l^{\prime}\);
\(R^{\prime \prime}=\) actual combined ratio of expansion, in the first and second cylinders together;
\(n=\) ratio of the final pressure in the first cylinder to any intermediate fall of pressure between the first and second cylinders;
\(N=\) ratio of the volume of the intermediate space in the Woolf engine, reckoned up to, and including the clearance of, the second piston, to the capacity of the first cylinder plus its clearance. The value of \(N\) is correctly expressed by the actual ratio of the volumes as stated, on the assumption that the intermediate space is a vacuum when it receives the exhaust-steain from the first cylinder. In point of fact, there is a residuum of unexhausted steam in the intermediate space, at low pressure, and the value of \(N\) is thereby practically reduced below the ratio here stated. \(\quad N=\frac{n}{n-1}-1\)
\(v=\) whole net work in one stroke, in foot-pounds.
Ratio of expansion in the second cylinder:

> In the Woolf engine, \(\frac{\left(r \frac{L}{L^{\prime}}\right)+N}{1+N}:\) In the receiver- engine, \(\frac{(n-1) r}{n}\)

Total actual ratio of expansion \(=\) product of the ratios of the thrze consecutive expansions, in the first cylinder, in the intermediate space, and in the second cylinder,

In the Woolf engine, \(R^{\prime}\left(r \frac{L}{L^{\prime}}+N\right)\);
In the receiver-engine, \(r \frac{L^{\prime}}{l^{\prime}}\), or \(r R^{\prime}\).
Combined ratio of expansion behind the pistons \(=\frac{n-1}{n} \cdot R^{\prime}=R^{\prime \prime}\).
Work done in the two cylinders for one stroke, with a given cut-off and a given combined actual ratio of expansion:
\[
\text { Woolf engine, } w=\alpha P\left[l^{\prime}\left(1+\text { hyp } \log R^{\prime \prime}\right)-c\right]
\]

Receiver engine, \(w=a P\left[l^{\prime}\left(1+\right.\right.\) hyp \(\left.\left.\log R^{\prime \prime}\right)-c\left(1+\frac{r-1}{R^{\prime}}\right)\right]\).
when there is no intermediate fall of pressure.
When there is an intermediate fall, when the pressure falls to \(3 / 4,2 / 3.1 / 2\) of the final pressure in the 1 st cylinder, the reduction of work is \(0.2 \%, 1.0 \%, \tilde{4} .6 \%\) of that when there is no fall.

Total work in the two cylinders of a receiver-engine, for one stroke for any intermediate fall of pressure,
\[
w=a P\left[l^{\prime}\left(\frac{n+1}{n}+\text { hyp } \log R^{\prime \prime}\right)-c\left(1+\frac{(n-1)(r-1)}{n R^{\prime}}\right)\right] .
\]

Example.-Let \(a=1 \mathrm{sq}\). in., \(P=63 \mathrm{lbs} ., l^{\prime}=2.42 \mathrm{ft} ., n=4, R^{\prime \prime}=5.969\), \(c=.42 \mathrm{ft} ., r=3, R^{\prime}=2.653\);
\[
w=1 \times 63\left[2.42(5 / 4 \text { hyp } \log 5.969)-.42\left(1+\frac{3 \times 2}{4 \times 2.653}\right)\right]=421.55 \mathrm{ft} .-\mathrm{lbs}
\]

Calculation of Diameters of Cylimders of a compound condensiug engine of \(2000 \mathrm{H} . \mathrm{P}\). at a speed of \(\% 00\) feet per minute, with 100 lbs . boiler-pressure.

100 lbs. gauge-pressure \(=115\) absolute, less drop of 5 lbs . between boiler and cylinder \(=110 \mathrm{lbs}\). initial absolute pressure. Assuming terminal pressure in l. p. cylinder \(=6 \mathrm{lbs}\)., and taking the expansion in each cylinder to vary as the square root of the total expansion, we have:

Total expansion of steam in both cylinders \(=110 \div 6=18.33\).
Expansion in each cylinder \(=\sqrt{18.33}=4.28\).
Point of cut-off in each cylinder, per cent of stroke, \(\frac{100}{4.28}=23.36\).
\(1+\) hyp \(\log\) of expansion in each cylinder \(=1+\) hyp \(\log 4.28=2.454\).
Terminal and back pressure of h. p. cyl. and initial of l. p. cyl., \(\frac{110}{4.23}=\) 25.70 lbs .

Average absolute pressure in \(h_{6}\) p. cylinder, \(25.7 \times 2.454={ }_{66}=63.07 \mathrm{lbs}\).


Assuming half the work, or 1000 H.P., to be done in the low-pressure cylin der,
\[
\begin{aligned}
\text { Area of l. p. cyl. } & =\frac{33000 \times \text { H.P. }}{\text { piston-speed } \times \text { av. effective pressure }} \\
& =\frac{33000 \times 1000}{700 \times 11.72}=4023 \mathrm{sq} . \mathrm{in} .=71.6 \mathrm{in} . \text { diam. }
\end{aligned}
\]

Area of h. p. cyl. \(=4023 \times \frac{11.72}{37.37}=\frac{33000 \times 1000}{700 \times 37.37}=1262\) sq. in. \(=40.1 \mathrm{in}\). diam.
Ratios of cylinder areas \(=\frac{11.72}{37.37}=1\) to 3.189.
In this calculation no account is taken of clearance, nor of drop between cylinders, nor of area of piston-rod. It also assumes that the diagrams in both cylinders are the full theoretical diagrams, with hyperbolic expansion curves, with no allowance for rounding of the corners.

Calculation of Diameters of Cylinders of a 500 H.P. Compaund Non-condensing Engine.-Assuming initial pressure 170 lbs . above atmosphere, back pressure 15.5 lbs ., absolute piston-speed 600 feet per minute.

Total Expansions
Expansions in each cylinder
Terminal pressure h. p. cyl.
Meau total pressure, "
Back pressure h. p. cyl.
Mean effective pressure
Terminal pressure l. p. cyl.
Mean total pressure \({ }^{\circ} \quad=15.5 \times 2.238=34.7 \mathrm{lbs}\)
Mean effective pressure 1. p. cyl. \(=34.7-15.5=19.2 \mathrm{lbs}\).
Ratio of areas of cylinders \(\quad=\frac{19.2}{66.4}=1\) to 3.46 .
Area of 1. p. cyl. \(=\)
\(\frac{3: 3000 \times \text { H.P. }}{\text { piston-speed } \times \text { M.E.P. }} \quad \frac{33000 \times 250}{600 \times 19.2}=716\) sq. in. \(=30.2^{\kappa}\) xiam.
Area of h. p. cyl. \(716 \div 3,46=207\) sq. in. \(=16.2 \mathrm{in}\). diameter.

\section*{TRIPLE-EXPANSION ENGINES.}

Proportions of Cylinders.-H. H. Suplee, Mechanics, Nov. 1887, gives the following method of proportioning cylinders of triple-expansion engines:

As in the case of compound engines the diameter of the low-pressure cylinder is first determined, being made large enough to furnish the entire power required at the mean pressure due to the initial pressure and expansion ratio given; and then this cylinder is only given pressure enough to perform one third of the work, and the other cylinders are proportioned so as to divide the other two thirds between them.

Let us suppose that an initial pressure of 150 lbs . is used and that 900 H.P. is to be developed at a piston-speed of 800 ft . per min., and that an expansion ratio of 16 is to be reached with an absolute back pressure of 2 lbs .

The theoretical M.E.P. with an absolute initial pressure of \(150+14.7=\) 164.7 lbs . initial at 16 expansions is
\[
\frac{P(1+\text { hyp } \log 16)}{16}=164.7 \times \frac{3.7726}{16}=38.83
\]
less 2 lbs. back pressure \(=38.83-2=36.83\).
In practice orly about \(0 . \tilde{\imath}\) of this pressure is actually attained, so that \(36.83 \times 0.7=25.731 \mathrm{lbs}\). is the M.E.P. upon which the engine is to be proportioned.

To obtain 900 H.P. we must have \(33,000 \times 900=29,700,000\) foot-pounds, and this divided by the mean pressure (25.78) and by the speed in feet (800) will give
\[
\frac{33000 \times 900}{800 \times 25.78}=1440 \text { sq. in. }
\]
for the area of the l. p. cylinder, which is about equivalent to 43 in . diam.
Now as one third of the work is to be done in the l. p. cylinder, the M.E.P. in it will be \(25.78 \div 3=8.59 \mathrm{lbs}\).

The cut-off in the high-pressure cylinder is generally arranged to cut off at 0.6 of the stroke, and so the ratio of the h. p. to the l. p. cylinder is equal to \(16 \times 0.6=9.6\), and the h. p. cylinder will be \(1440 \div 9.6=150 \mathrm{sq}\). in. area, or about 14 in. diameter, and the M.E.P. in the h . p. cylinder is equal to \(9.6 \times 8.59=82.46 \mathrm{lbs}\).

If the intermediate cylinder is made a mean size between the other two, its size would be determined oy dividing the area of the 1.p. cylinder by the square root of the ratio between the low and the high; but in practice this is found to give a result too large to equalize the stresses, so that inst \(\epsilon\) ad the area of the l. p. cylinder is found by dividing the area of the l. p. piston by 1.1 times the square root of the ratio of l. p. to h. p. cylinder, which in this case is \(1440 \div(1.1 \sqrt{9.6})=422.5\) sq. in., or a little more than 23 in . diam.

To put the above into the form of rules, we have
\[
\begin{aligned}
& \text { Area h. p. cyl. }=\frac{\text { Area of low-pressure piston }}{\text { Cut-off in h. p. cyl. } \times \text { rate of expansion. }} \\
& \text { Area intermediate cyl. }=\frac{\text { Area of low-pressure p.ston }}{1.1 \times \sqrt{\text { ratio of l.p. to h. p. cyl. }}}
\end{aligned}
\]

The choice of expansion ratio is governed by the initial pressure, and is generally chosen so that the terminal pressure in the l. p. cylinder shall be about 10 lhs . absolute.

Annular Ring Method.-Jay M. Whitham, Trans. A. S. M. E.. x. \(5 \pi \tilde{r}\), gives the following method of ascertaining the diameter of pistons of triple expansion engines:

Lay down a theoretical indicator-diagram of a simple engine for the particular expansion desired. By trial find (with the polar planimeter or otherwise) the position of horizontal lines, parallel to the back-pressure line, such that the three areas into which they divide the diagram, representing low, intermediate, and high pressure diagrams, marked respectively A, B, and C, are equal.

Find the mean ordinate of each area: that of "C " will be the mean unbalanced pressure on the small piston; that of " \(B\) " will be the mean unbalanced pressure on the area remaining after subtracting the area of the small piston from that of the intermediate; and that of the area "A" will denote
the mean unbalanced pressure on a square inch of the annular ring of the large piston obtained by subtracting the intermediate from the large piston We thus see that the mean ordinates of the two lower cards act on annular rings.

Let \(H=\) area of small piston in square inches;
\(\underline{1}=\) " " intermediate piston in square inches;
\(L=\) "" large piston in square inches;
\(p_{h}=\) mean unbalanced pressure per square inch from card "C";

\(S=\) piston-speed in feet per minute;
(I.H.P.) \(=\) indicated horse-power of engine.

Then for equal work in each cylinder we have:
Area of small piston \(=H=33,000 \times \frac{\text { I.H.P. }}{3} \div(p h \times S) ; ~ . .\). (
\(\left.\begin{array}{c}\text { Area of annular ring of } \\ \text { intermediate cylinder }\end{array}\right\}=33,000 \times \frac{\text { I.H.P. }}{3} \div\left(p_{i} \times S\right)\);
\(\left.\begin{array}{c}\text { Area of interme- } \\ \text { diate piston }\end{array}\right\}=I=H+33,000 \times \frac{\text { I.H.P. }}{3}+\left(p_{l} \times S\right) ;\).
Area of annulal ring of large piston \(=33,000 \times \frac{\text { I.H.P. }}{3} \div(p \times S)\).
Area of large piston \(=L=I+33,000 \times \frac{\text { I.H.P. }}{3} \div\left(p_{l} \times S\right)\);
This method is illustrated by the following example: Given I.H.P. \(=3600\), piston-speed \(S=900 \mathrm{ft}\). per min., ratio of expansion 10, initial steam- ressure at cylinder 127 lbs . absolute, and back-pressure in large cylinder 4 lbs . absolute. Find cylinder diameters for equal work in each.

The mean ordinate of " C " is found to be \({ }_{6} p_{6}=37.414 \mathrm{lbs}\). per sq . in.

Then by (1), (2), and (3) we have:
\[
\begin{aligned}
H & =33,000 \times \frac{3000}{3} \div 37.414 \times 900=980 \text { sq. in., diam. } 353 / 8^{\prime \prime} \\
I & =980+33,000 \times \frac{3000}{3} \div 15.782 \times 900=3303 \text { sq. in., diam. } 65^{\prime \prime} \\
L & =3303+33,000 \times \frac{3000}{3} \div 11.730 \times 900=6432 \text { sq. in., diam. } 901 / 2
\end{aligned}
\]

Mr. Whitham recommends the following cylinder ratios when the pistunspeed is from 750 to 1000 ft . per min., the terminal pressure in the large cylinder being about 10 lbs . absolute.

Cylinder Ratios recommended for Triple-expansion Engines.
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c} 
Boiler-pressure \\
(Gauge).
\end{tabular} & Small. & Intermediate. & Large. \\
\hline 130 & 1 & 2.25 & 5.00 \\
140 & 1 & 2.40 & 5.85 \\
150 & 1 & 2.55 & 6.90 \\
160 & 1 & 2.70 & 7.25
\end{tabular}

He gives the following ratios from examination of a number of actual engines:
\begin{tabular}{|c|c|c|c|c|}
\hline No. of Engines & Steam-boiler & & Cylinder Ratios. & \\
\hline Averaged. & Pressure. & h. p. & int. & 1. p. \\
\hline 9 & 130 & 1 & 2.10 & 4.88 \\
\hline 3 & 135 & 1 & 2.07 & 5.00 \\
\hline 11 & 140 & 1 & 2.40 & 5.84 \\
\hline 2 & 145 & 1 & 2.35 & 5.23 \\
\hline 28 & 150 & 1 & 2.54 & 6.50 \\
\hline 27 & 160 & 1 & 2.66 & 7.24 \\
\hline
\end{tabular}

A Common Rule for Proportioning the Cylinders of mul-tiple-expansion engines is: for two-cylinder compound engines, the cylinder ratio is the square root of the number of expansions, and for triple-expansion engines the ratios of the high to the intermediate and of the interinediate to the low are each equal to the cube root of the number of expansions, the ratio of the high to the low being the product of the two ratios, that is, the square of the cube root of the number of expansions. Applying this rule to the pressures above given, assuming a terminal pressure (absolute) of 10 lbs. and 8 lbs . respectively, we have, for triple-expansion engines:

\section*{Boiler-} pressure (Absolute).
-

Terminal Pressure, 10 lbs.
\(|\)\begin{tabular}{c}
\begin{tabular}{c} 
No. of Ex- \\
pansions.
\end{tabular} \\
\hline 13 \\
14 \\
15 \\
16
\end{tabular}

Terminal Pressure, 8 lbs .
\begin{tabular}{c|c}
\hline \begin{tabular}{c} 
No. of Ex- \\
pansions.
\end{tabular} & \begin{tabular}{c} 
Cylinder Ratios, \\
areas.
\end{tabular} \\
\cline { 2 - 3 } \(161 / 4\) & 1 to 2.53 to 6.42 \\
1712 & 1 to 2.60 to 6.74 \\
\(183 / 4\) & 1 to 2.66 to 7.06 \\
20 & 1 to 2.71 to \(7.3 \%\) \\
\hline
\end{tabular}

The ratio of the diameters is the square root of the ratios of the areas, and the ratio of the diameters of the first and third cylinders is the same as the ratio of the areas of first and second.

Seaton, in his Marine Engineering, says: When the pressure of steam employed exceeds 115 lbs. absolute, it is advisable to employ three cylinders, through each of which the steam expands in turn. The ratio of the lowpressure to high-pressure cylinder in this system should be 5 , when the steam-pressure is 125 lbs . absolute; when 135 lbs . absolute, 5.4 ; when 145 lbs. absolute, 5.8 ; when 155 lbs . absolute, 6.2 ; when 165 lbs absolute, 6.6 . The ratio of low-pressure to intermediate cylinder should be about one half that between low-pressure and high-pressure, as given above. That is, if the ratio of 1 . p. to h. p. is 6 , that of 1 . p. to int. should be about 3 , and consequently that of int. to h. p. about 2. In practice the ratio of int. to h.p. is nearly 2.25 , so that the cliameter of the int. cylinder is 1.5 that of the h.p. The introduction of the triple-compound engine has admitted of ships being propelled at higher rates of speed than formerly obtained without exceeding the consumption of fuel of similar ships fitted with ordinary compound engines; in such cases the higher power to obtain the speed has been developed by decreasing the rate of expansion, the low-pressure cylinder being only 6 times the capacity of the high-pressure, with a working pressure of \(1 \% 0 \mathrm{lbs}\). absolute. It is now a very general practice to make the diameter of the low pressure cylinder equal to the sum of the diameters of the h. p. and int. cylinders; hence,

> Diameter of int. cylinder \(=1.5\) diameter of \(\mathrm{h} . \mathrm{p}\). cylinder; Diameter of \(1 . \mathrm{p}\). cylinder \(=2.5\) diameter of \(\mathrm{h} . \mathrm{p}\). cylinder.

In this case the ratio of \(1 . p\). to h. p. is 6.25 ; the ratio of int. to h. p. is 2.25 ; and ratio of l. p. to int. is \(2 . \% 18\).

Ratios of Cylinders for Different Classes of Engines. (Proc. Inst. M. E., Feb. 1887, p. 36.)-As to the best ratios for the cylinders in a triple engine there seems to be great difference of opinion. Considerable latitude, however, is due to the requirements of the case, inasniuch as it would not be expected that the same ratio would be suitable for an economical land engine, where the space occupied and the weight were of minor importance, as in a war-ship, where the conditions were reversed. In the land engine, for example, a theoretical terminal pressure of about 7 lbs. above absolute vacuum would probably be aimed at, which would give a ratio of capacity of high pressure to low pressure of 1 to \(81 / 2\) or 1 to 9; whilst in a war-ship a terminal pressure would be required of 12 to 13 lbs . which would need a ratio of capacity of 1 to 5 ; yet in both these instances the cylinders were correctly proportioned and suitable to the requirements of the case. It is obviously unwise, therefore, to introduce any hard-andfast rule.

Types of Three-stage Expansion Engines.-1. Three cranks at 120 deg. 2. 'Iwo cranks with 1st and \(2 d\) cylnders tandem. 3. Two cranks with 1st and 3d cylinders tandem. The most common type is the first, with cylinders arranged in the sequence high, intermediate, low.

Sequence of Cranks.-Mr. Wyllie (Proc. Inst. M. E., 188\%) farors the sequence high, low, intermediate, while Mr. Mudd favors high, intermediate, low. The former sequence, high, low, intermediate, gave an approximately horizontal exhaust-line, and thus minimizes the range of temperature and the initial load; the latter sequence, high, intermediate, low, increased the range and also the load.

Mr. Morrison, in discussing the question of sequence of cranks, presented a diagram showing that with the cranks arranged in the sequence high, low, intermediate, the mean compression into the receiver was \(191 / 2\) per cent of the stroke; with the sequence high, intermediate, low, it was 5 i per cent,

In the former case the compression was just what was required to keep the receiver-pressure practically uniform; in the latter case the compression caused a variation in the receiver-pressure to the extent sometimes of 221/2 lbs.

Velocity of Steam through Passages in Compound Engines. (Proc. Inst. M. E., Feb. 1887.)-In the S. Para, taking the area of the cylinder multiplied by the piston-speed in feet per second and dividing by the area of the port the velocity of the initial steam through the high-pressure cylinder port would be about 100 feet per second; the exhaust would be about 90 . In the intermediate cylinder the initial steam had a velocity of about 180, and the exhaust of 120. In the low-pressure cylinder the initial steam entered through the port with a velocity of 250 , and in the exhaust-port the velocity was about 140 feet per second.

\section*{QUADRUPLE-EXPANSION ENGINES.}
H. H. Suplee (Trans. A. S. M. E., x. 583) states that a study of 14 different quadruple-expansion engines, nearly all intended to be operated at a pressure of 180 lbs . per sq. in., gave average cylinder ratios of 1 to 2, to 3.78 , to 7.70, or nearly in the proportions \(1,2,4,8\).

If we take the ratio of areas of any two adjoining cylinders as the fourth root of the number of expansions, the ratio of the 1 st to the 4 th will be the cube of the fourth root. On this basis the ratios of areas for different pressures and rates of expansion will be as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Gauge. pressures. & Absolute Pressures. & Terminal Pressures. & Ratio of Expansion. & Ratios of Areas of Cylinders. \\
\hline \multirow{3}{*}{160} & \multirow{3}{*}{175} & (12 & 14.6 & \(\overline{1: 1.95: 3.81: 7.43}\) \\
\hline & & \(\{10\) & 17.5 & \(1: 2.05: 4.18: 8.55\) \\
\hline & & 8 & 21.9 & 1:2.16:4.68:10.12 \\
\hline \multirow{3}{*}{180} & \multirow{3}{*}{195} & \(\{12\) & 16.2 & \(1: 2.01: 4.02: 8.07\) \\
\hline & & \(\{10\) & 19.5 & 1:2.10: \(4.42: 9.28\) \\
\hline & & 8 & 24.4 & \(1: 2.22: 4.94: 10.98\) \\
\hline \multirow{3}{*}{200} & \multirow{3}{*}{215} & 12 & 17.9 & 1:2.06: 4.23: 8.70 \\
\hline & & & 21.5 & 1: \(2.15: 4.64: 9.98\) \\
\hline & & (8) & 26.9 & 1: \(2.28: 5.19: 11.81\) \\
\hline \multirow{3}{*}{220} & \multirow{3}{*}{235} & 12 & 19.6 & 1:2.10:4.43: 9.31 \\
\hline & & \(\{10\) & 23.5 & 1:2.20:4.85: 10.67 \\
\hline & & 18 & 29.4 & 1:2.33:5.42:12.62 \\
\hline
\end{tabular}

Seaton says: When the pressure of steam employed exceeds 190 lbs . absolute, four cylinders should be employed, with the steam expanding through each successively; and the ratio of 1. p. to h. p. should be at least 7.5, and if economy of fuel is of prime consideration it should be 8 ; then the ratio of first intermediate to h. p. should be 1.8, that of second intermediate to first int. 2, and that of 1. p. to second int. 2.2.

In a paper read before the North East Coast Institution of Engineers and Shipbuilders, 1890 , William Russell Cummins advocates the use of a fourcylinder engine with four cranks as being more suitable for high speeds than the three-cylinder three-crank engine. The cylinder ratios, he claims, should be designed so as to obtain equal initial loads in each cylinder. The ratios determined for the triple engine are \(1,2.04,6.54\), and for the quadruple \(1,2.08,4.46,10.47\). He advocates long stroke, high piston-speed, 100 rev olutions per minute, and 250 lbs. boiler-pressure, unjacketed cylinders, and separate steam and exhaust, valves.

\section*{Diameters of Cylinders of Recent Triple-oxpansion Engines, Chiefly Marine.}

Compiled from several sources, 1590-1893.
Diam. in inches: \(H=\) high pressure, \(I=\) intermediate, \(L=\) low pressure.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline H & \(I\) & \(L\) & \(H\) & \(I\) & \(L\) & H & \(I\) & \(L\) & H & \(I\) & \(L\) \\
\hline 3 & 5 & 8 & 16 & 25.6 & & 22 & 36 & \(\{40\) & 36 & 58 & \\
\hline 43/4 & 7.5 & 13. & 161/4 & 237/8 & 38.5 & & 36 & \(\{40\) & 38 & 61.5 & 100 \\
\hline 5 & 8 & 12 & 16.5 & 24.5 & \(\left\{\begin{array}{l}31 \\ 31\end{array}\right.\) & 23 & 38 & 61 & 28 28 & 56 & 86 \\
\hline 6.5 & 10.5 & 16.5 & & & 131
44 & 2 & 38
38 & 60 & 28 39 & & \\
\hline \(\stackrel{\tau}{4}\) & \({ }^{9}\) & 12.5 & 17 & 27 & 44 & 24 & 37
40 & 56 & 39
40 & 61
59 & 88 \\
\hline \% 7.1 & 11.8 & 18.9 & 17 & \(\stackrel{26.5}{28}\) & 42 & 25
26 & 40 & 64
69 & 40 & 59
69
6 & 88
106 \\
\hline 7.5 & 12 & 19 & 17 & \(\stackrel{28}{27}\) & 45 & 26
26 & 42. & 69
70 & 40 & 67
66 & 106
100 \\
\hline 9 & 14.5 & 22.5 & 18 & \(\stackrel{2}{29}\) & 48 & 28 & 44 & 72 & 41 & 66 & 101 \\
\hline 9.8 & 15. 1 & 25.6 & 18 & 305. & 51 & 293/8 & 44 & \%0 & 413/8 & 67 & 1063/4 \\
\hline 10 & 16 & 25 & 18. \(\uparrow\) & 29.5 & 43.3 & 29.5 & 48 & 78 & 42 & 59 & 92 \\
\hline 11 & 16 & 24 & 183/4. & 23.6 & 35.4 & 30 & 48 & 77 & 43 & 66 & 9: \\
\hline 11 & 18 & 25 & 19.7 & 29.6 & 47.3 & 32 & 46 & \({ }^{2}\) & 43 & 68 & 110 \\
\hline 11 & 18 & 30 & 20 & 30 & 45 & 32 & 51 & 82 & 433/8 & 67 & 1061/4 \\
\hline 11.5 & 18 & 28.5 & 20 & 32.5 & \(\{36\) & 32 & 54 & \(8 \cdot\) & 45 & 71 & 113 \\
\hline 11.5 & 17. 5 & 30.5 & & & \(\{36\) & 33 & 58 & 88 & \(32.5\}\) & & \(\{85.7\) \\
\hline 12 & 19.2 & 30.1 & 20 & 33 & 5\% & 33.9 & 55.1 & 84.6 & P3. 5 \} & 68 & \{ 85.7 \\
\hline 13 & 22 & 33.5 & 21 & 32 & & 34 & 54 & 85 & & \% 5 & \{ 81.5 \\
\hline 14 & 22.4 & 36 & 21 & 36 & 51 & 34 & 50 & 90 & 4. & & \{ 81.5 \\
\hline 14.5 & 24 & 39 & 21.7 & 33.5 & 49.2 & 34.5 & 51 & 85 & 37 & \%9 & \(\{98\) \\
\hline 15 & 24 & 39 & 21.9 & 34 & 57 & 34.5 & 57 & 92 & \(37\}\) & 8 & \{98 \\
\hline 15 & 24.5 & 38 & 22 & 34 & 51 & & & & & & \\
\hline
\end{tabular}

Where the figures are bracketed there are two cylinders of a kind. Two \(28^{\prime \prime}=\) one \(39.6^{\prime \prime}\), two \(31^{\prime \prime}=\) one \(43.8^{\prime \prime}\), two \(32.5^{\prime \prime}=\) one \(46.0^{\prime \prime}\), two \(36^{\prime \prime}=\) one \(50.9^{\prime \prime}\), two \(37^{\prime \prime}=\) one \(52.3^{\prime \prime}\), two \(40^{\prime \prime}=\) one \(56.6^{\prime \prime}\), two \(81.5^{\prime \prime}=\) one \(115^{\prime \prime}\), two \(85.7^{\prime \prime}=\) one \(121^{\prime \prime}\), two \(98^{\prime \prime}=\) one \(140^{\prime \prime}\). The average ratio of diameters of cylinders of all the eugines in the above table is nearly 1 to 1.60 to 2.56 and the ratio of areas nearly 1 to 2.56 to 6.55 .

The Progress in Steam-engines between \(18 \% 6\) and 1893 is shown in the following comparison of the Corliss engine at the Centennial Exhibition in \(18 \% 6\) and the Allis-Corliss quadruple-expansion engine at the Chicago Exhibition.
\begin{tabular}{|c|c|c|}
\hline Engine & \(\left\{\begin{array}{c}1893 . \\ \text { Quadruple- } \\ \text { expansion. }\end{array}\right\}\) & \begin{tabular}{l}
1876. \\
Simple
\end{tabular} \\
\hline Cylinders, number & 4 & \({ }^{2}\) \\
\hline " \({ }^{\text {" }}\) stroke.. & \[
24,40,60,70 \mathrm{in} .
\]
\[
72 \text { in. }
\] & 40 in. 120 in. \\
\hline Fly-wheel, diameter & 30 ft . & 30 ft . \\
\hline width of face & 76 in. & 24 in . \\
\hline " weight. & 136,000 lbs. & 125,440 lbs. \\
\hline Revolutions per minute & 60 & 36 \\
\hline Capacity, economical. & 2000 H.P. & 1400 H.P. \\
\hline maximum. & 3000 H.P. & 2500 H.P. \\
\hline Total weight. & 650,000 lbs. & 1,360,588 lbs. \\
\hline
\end{tabular}

The crank-shaft body or wheel-seat of the Allis engine has a diameter of 21 inches, journals 19 inches, and crank bearings 18 inches, with a total length of 18 feet. The crank-disks are of cast iron end are 8 feet in diameter. The crauk-pins are 9 inches in diameter by 9 inches long.

A Double-tandem Tripleaexpansion Engine, built by Watts, Campbell \& Co., Newark, N. J., is described in Am. Mach., April 26, 1894. It is two three-cylinder tandem engines coupled to one shaft, cranks at \(90^{\circ}\), cylinders 21, 32 and 48 by 60 in . stroke, 65 revolutions per minute, rated H.P. 2000 ; fly-wheel 28 feet diameter, 12 ft . face, weight \(174,000 \mathrm{lbs}\); main shaft 22 in. diameter at the swell; main journals \(19 \times 38\) in.; cravk-pins \(91 / 2 \times 10\) in.; distance between ceutre lines of two engines 24 ft . \(11 / 2 \mathrm{in}\).; Corliss valves, with separate eccentrics for the exhaust-valves of the l.p. eslinder.

THE STEAM－ENGINE．
\begin{tabular}{|c|c|}
\hline  & ¢\％\％
¢\％\％
0 \\
\hline －adṭd－7sncu －x＇f ذo zZ ！ &  \\
\hline －\(\partial \mathrm{dId}\) －廿ъә7S ғо วZ！S &  \\
\hline －əฉnu！̣⿺𠃊 ．เəむ suọnnionəy &  \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
－peot uinu \\
－TxEJV＇\({ }^{\prime} \mathrm{H}^{\prime} \mathrm{I}\)
\end{tabular} &  \\
\hline  &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

\title{
ECONOTIIO PEREORIIANE OF STEATIENGINES. Economy of Expansive Working under Various Conditions, Single Cylinder.
}

\author{
(Abridged from Clark on the Steam Engine.)
}
1. Single Cylinders with Superheated Steam, Noncondensing.-Inside cylinder locomotive, cylinders and steam-pipes enveloped by the hot gases in the smoke-box. Net boiler pressure 100 lbs ; net maximum pressure in cylinders 80 lbs . per sq. in.
\(\begin{array}{llllllllll}\text { Cut-off, per cent......... } & 20 & 25 & 30 & 35 & 40 & 50 & 60 & 70 & 80\end{array}\) \(\begin{array}{llllllllll}\text { Actual ratio of expansion } & 3.91 & 3.31 & 2.87 & 2.53 & 2.26 & 1.86 & 1.59 & 1.39 & 1.23\end{array}\) Water per I.H.P. per hour,
lbs.
\[
\begin{array}{lllllllll}
18.5 & 19.4 & 20 & 21.2 & 22.2 & 24.5 & 27 & 30 & 33
\end{array}
\]
2. Single Cylinders with Superheated Steam, Condensing.-The best results obtained by Hirn, with a cylinder \(233 / 4 \times 67 \mathrm{in}\). and steam superheated \(150^{\circ} \mathrm{F}\)., expansion ratio \(33 / 4\) to \(41 / 2\), total maximum pressure in cylinder 63 to 69 lbs . were 15.63 and 15.69 lbs . of water per I.H.P. per hour.
3. Single Cylinders of Small Size, 8 or 9 in. Diam., Jacketed, Non-condensing.-The best results are ohtained at a cut-off of 20 per cent, with \(\mathfrak{T} 5 \mathrm{lbs}\). maximum pressure in the cylinder; about 25 lbs . of water per I.H.P. per hour.
4. Single Cylinders, not Steam-Jacketed, Condensing.-Best results.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Engine. & \[
\begin{gathered}
\text { Cylinder, } \\
\text { Diam. } \\
\text { and } \\
\text { Stroke. }
\end{gathered}
\] & Cut-off. & Actual ExpanRatio. & Total Maximum Pressure in Cylinder per sq. in. & \begin{tabular}{l}
Water as Steam per \\
I.H.P. per hour
\end{tabular} \\
\hline Coriiss and Wheelock... & \[
\begin{aligned}
& \text { ins. } \\
& 18 \times 48
\end{aligned}
\] & per cent. 12.5 & \begin{tabular}{l}
ratio. \\
6.95
\end{tabular} & lbs. & lbs.
19.58 \\
\hline Hirn, No. 6............. & \(233 / 4 \times 6 \pi\) & 16.3 & 5.84 & 61.5 & 19.93 \\
\hline Mair, M & \(32 \times 66\) & 24.6 & 3.84 & 54.5 & 26.46 \\
\hline Bache. & \(25 \times 24\) & 15.5 & 5.32 & 87.7 & 26.25 \\
\hline Dexter. & \(26 \times 36\) & 18.3 & 4.46 & 80.4 & 23.86 \\
\hline Dallas. & \(36 \times 30\) & 13.3 & 5.0 T & 46.9 & 26.69 \\
\hline Gallatin............. & \(30.1 \times 30\) & 15.0 & 4.94 & 81.7 & 21.89 \\
\hline
\end{tabular}

Same Engines, Average Results.
\begin{tabular}{|c|c|c|c|c|}
\hline Long Stroke. & Inches. & Cut-off, Per cent. & Lbs. & Lbs. \\
\hline Corliss and Wheelock.. & \(18 \times 48\) & 12.5 & 104.4 & 19.58 \\
\hline Hirn ............... .. & \(233 / 4 \times 6 i\) & 16.3 & 61.5 & 19.93 \\
\hline Short Stroke. & & & & \\
\hline Bache & \(25 \times 24\) & 15.5 & 8\%.7 & 26.25 \\
\hline Dexter, Nos. 20, 21, 22, 23 & \(26 \times 36\) & \(\left\{\begin{array}{l}18.3 \text { to } 33.3 \\ \text { average } 25\end{array}\right\}\) & 79.0 & 24.05 \\
\hline Dallas, Nos. 2 ̃, 28, \(29 \ldots\) & \(36 \times 30\) & \{ 13.3 to 26.4 ! & 46.8 & 26.86 \\
\hline Gallatin, Nos, 24, 25, 22, l & \(30.1 \times 30\) & \(\{12.3\) to 18.5) & \%8.2 & 23.50 \\
\hline \(26 \ldots . . . . . .\). & \(30.1 \times 30\) & \{ average 15.8 \} & 18.2 & 23.50 \\
\hline
\end{tabular}

\section*{Feed-water Consumption of Different Types of Engines.}
-The following tables are taken from the circular of the Tabor Indicator (Asheroft MIg. Co., 1889). In the first of the two columns under Feed-water required, in the tables for simple engines, the figures are obtained by computation from nearly perfect indicator diagrams, with allowance for cylinder condensation according to the table on page 752, but without allowance for leakage, with back-pressure in the non-condensing table taken at 16 lbs. above zero, and in the condensing table at 3 lbs . above zero. The compression curve is supposed to be hyperbolic, and commences at 0.91 of the return-stroke, with a clearance of \(3 \%\) of the piston-displacement.

Table No. 2 gives the feed-water consumption for jacketed compound-con-
densing engines of the best class. The water condensed in the jackets is included in the quantities given. The ratio of areas of the two cylinders are as 1 to 4 for 120 lbs. pressure; the clearance of each cylinder is \(3 \%\); and the cut off in the two cylinders occurs at the same point of stroke. The initial pressure in the \(1 . \mathrm{p}\). cylinder is 1 lb . per sq. in. below the back-pressure of the h. p. cylinder. The average back pressure of the whole stroke in the l.p. cylinder is 4.5 lbs. for \(10 \%\) cut-off; 4.75 lbs . for \(20 \%\) cut-off; and 5 lbs for \(30 \%\) cut-off. The steam accounted for by the indicator at cut-off in the \(h\). p. cylinder (allowing a small amount for leakage) is . 74 at \(10 \%\) cut-off,. 78 at \(20 \%\), and .82 at \(30 \%\) cut-off. The loss by condensation between the cylinders is such that the steam accounted for at cut-off in the 1. p. cylinder, expressed in proportion of that shown at release in the h. p. cylinder, is .85 at \(10 \%\) cut-off, .87 at \(20 \%\) cut-off, and .89 at \(30 \%\) cut-off.
The data upon which table No. 3 is calculated are not given, but the feedwater consumption is somewhat lower than has yet been reached (1894), the lowest steam consumption of a triple-exp. engine yet recorded being 11.7 lbs. TABLE No. 1 .
Feed-water Consumption, Simple Engines.
Non-condensing Engines.
Condensing Engines.


TABLE No. 2.
Feed-water Consumption for Compound Condensing Engines.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cut-off, per cent.} & \multicolumn{2}{|l|}{Initial Pressure above Atmosphere.} & \multicolumn{2}{|l|}{Mean Effective PressAtmosphere.} & \multirow[t]{2}{*}{Feed-water Required per T.H.P. per Hour, Lbs.} \\
\hline & H.P. Cyl., lbs. & L.P. Cyl., lbs. & H.P. Cyl., lbs. & L.P. Cyl., lbs. & \\
\hline 10 & \[
\begin{array}{r}
80 \\
100 \\
120
\end{array}
\] & 4.0
7.3
11.0 & \[
\begin{aligned}
& 11.67 \\
& 15.33 \\
& 18.54
\end{aligned}
\] & \[
\begin{aligned}
& 2.65 \\
& 3.87 \\
& 5.23
\end{aligned}
\] & \[
\begin{aligned}
& 16.92 \\
& 15.00 \\
& 13.86
\end{aligned}
\] \\
\hline \(20 \quad\{\) & \[
\begin{array}{r}
80 \\
100 \\
120
\end{array}
\] & \[
\begin{array}{r}
4.3 \\
8.1 \\
12.1
\end{array}
\] & \[
\begin{aligned}
& 26.73 \\
& 33.13 \\
& 39.29
\end{aligned}
\] & \[
\begin{aligned}
& 5.48 \\
& 7.56 \\
& 9.74
\end{aligned}
\] & \[
\begin{aligned}
& 14.60 \\
& 13.67 \\
& 13.09
\end{aligned}
\] \\
\hline \(30 \quad\{\) & \[
\begin{array}{r}
80 \\
100 \\
120
\end{array}
\] & \[
\begin{array}{r}
4.6 \\
8.5 \\
11.7
\end{array}
\] & \[
\begin{aligned}
& 37.61 \\
& 46.41 \\
& 56.00
\end{aligned}
\] & \[
\begin{array}{r}
7.48 \\
10.10 \\
12.26
\end{array}
\] & \[
\begin{aligned}
& 14.99 \\
& 14.21 \\
& 13.8 \%
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE No. 3.
Feed-water Consumption for Triple-expansion Condensing Engines.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sut-off, per cent} & \multicolumn{3}{|l|}{Initial Pressure above Atmosphere.} & \multicolumn{3}{|l|}{Mean Effective Pressure.} & \multirow[t]{2}{*}{Feed-water Required per I.H.P. per Hour, lbs.} \\
\hline & \[
\begin{aligned}
& \text { H.P. Cyl. } \\
& \text { libs. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { I. Cyl., } \\
& \text { lbs. }
\end{aligned}
\] & L.P. Cyl., lbs. & H.P. Cyl., lbs. & I. Cyl., lus. & L.P. Cyl., & \\
\hline 30 & \[
\begin{aligned}
& 120 \\
& 140 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& 37.8 \\
& 43.8 \\
& 49.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 2.8 \\
& 3.8
\end{aligned}
\] & \[
\begin{aligned}
& 38.5 \\
& 46.5 \\
& 55.0
\end{aligned}
\] & \[
\begin{aligned}
& 17.1 \\
& 18.6 \\
& 20.0
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 7.1 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 12.05 \\
& 11.4 \\
& 10.75
\end{aligned}
\] \\
\hline 40 & 120
140
160 & 38.8
.45 .8
51.3 & \[
\begin{aligned}
& 2.8 \\
& 3.9 \\
& 5.3
\end{aligned}
\] & 51.5
59.5
70.0 & 2.8 .8
23.7
25.5 & \[
\begin{array}{r}
8.6 \\
9.1 \\
10.0
\end{array}
\] & \[
\begin{aligned}
& 11.65 \\
& 11.4 \\
& 10.85
\end{aligned}
\] \\
\hline \(50\{\) & \[
\begin{aligned}
& 120 \\
& 140 \\
& 160
\end{aligned}
\] & 39.8
46.8
52.8 & 3.7
4.8
6.3 & 60.5
70.5
82.5 & 26.7
28.0
30.0 & 10.1
10.8
11.8 & \[
\begin{aligned}
& 12.2 \\
& 11.6
\end{aligned}
\] \\
\hline
\end{tabular}

Most Economical Point of Cut-off in Steameengines.
(See paper by Wolff and Denton, Trans. A. S. M. E., vol. ii. p. 147-281; also, Ratio of Expansion at Maximum Efficiency, R. H. Thurston, vol. ii. p. 128.) -The problem of the best ratio of expansion is not one of economy of consumption of fuel and economy of cost of boiler alone. The question of interest on cost of engine, depreciation of value of engine, repairs of engine, etc., enters as well; for as we increase the rate of expansion, and thus, within certain limits fixed by the back-pressure and condensation of steam, decrease the amount of fuel required and cost of boiler per unit of work, we have to increase the dimensions of the cylinder and the size of the engine, to attain the required power. We thus increase the cost of the engine, etc., as we increase the rate of expansion, while at the same time we decrease the fuel consumption, the cost of boiler, etc. So that there is in every engine some point of cut-off, determinable by calculation and graphical construction, which will secure the greatest efficiency for a given expenditure of money, taking into consideration the cost of fuel, wages of engineer and firemen, iuterest on cost, depreciation of value, repairs to and insurance of boiler and engine, and oil, waste, etc., used for engine. In case of freightcarrying vessels, the value of the room occupied by fuel should be considered in estimating the cost of fuel.
Sizes and Calculated Performances of Vertical Highspeed Engines.-The following tables are taken from a circular of the Field Engineering Co., New York, describing the engines made by the Lake Erie Engineering Works, Buffalo, N. Y. The engines are fair representatives of the type now coming largely into use for driving dynamos directly without belts. The tables were calculated by E. F. Williams, designer of the engines. They are here somewhat abridged to save space:

\section*{Simple Engines－Non＝condensing．}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  & 灵 & \[
\begin{gathered}
\text { H.P } \\
\text { Cut } \\
\text { at 1/ }
\end{gathered}
\] &  & hen roke． & \[
\begin{aligned}
& \text { H.P } \\
& \text { Cutt } \\
& \text { at } 1 / 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { P. wl } \\
& \text { tting } \\
& 1 / 4 \text { str }
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { P. wh } \\
& \text { titing } \\
& 1 / 3 \text { str }
\end{aligned}
\] & hen oke． & \[
\begin{aligned}
& \text { Dim } \\
& \text { sion } \\
& \text { Whe }
\end{aligned}
\] & \begin{tabular}{l}
n－ ls． \\
face
\end{tabular} &  & ¢ \\
\hline ax & O &  & （ 70 & lbs． & ［ \(\begin{gathered}90 \\ \text { lbs．}\end{gathered}\) &  & \％ 80 & 96s． & \[
\begin{gathered}
70 \\
\text { lbs. }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
80 \\
\text { lbs. }
\end{gathered}\right.
\] & \[
90
\] & Ft． & & 边 & 苗 \\
\hline & 10 & 370 & 20 & 25 & & 26 & 31 & 36 & 32 & 37 & & & & & \\
\hline & 12 & 318 & 27 & 32 & 39 & 3 & 41 & & 41 & 48 & 56 & & & & 31 \\
\hline 101 & 14 & 277 & 41 & 49 & 60 & 52 & 62 & 71 & 63 & 74 & 85 & & & 312 & \\
\hline 12 & 16 & 246 & 53 & 64 & 77 & 67 & 81 & 93 & 82 & 96 & 111 & \(6^{\prime} 8^{\prime \prime}\) & & 4 & 41／2 \\
\hline 131 & 18 & 222 & 66 & 80 & 96 & 84 & 100 & 116 & 102 & 120 & 138 & & & 4 & \\
\hline 16 & 20 & 181 & 95 & 115 & 138 & 120 & 144 & 1 C 6 & 146 & \(1 \% 2\) & 198 & & 15 & 41／2 & 6 \\
\hline 18 & 24 & 158 & 119 & 144 & 173 & 151 & 181 & 208 & 183 & 215 & 248 & 10 & 19 & 5 & \％ \\
\hline \(2:\) & 28 & 138 & 179 & 216 & 261 & \(2: 7\) & 272 & 313 & 276 & 324 & 373 & \(11^{\prime \prime} 8^{\prime \prime}\) & 28 & 6 & 8 \\
\hline 241／2 & 32 & 120 & 221 & 267 & 322 & 281 & 336 & 386 & 340 & 400 & 460 & \(13^{\prime} 4^{\prime \prime}\) & 34 & 7 & 9 \\
\hline 27 & 34 & 112 & 269 & 325 & 392 & 342 & 409 & \(4 \%\) & 414 & 487 & 560 & 14＇2 & & 8 & 10 \\
\hline \multicolumn{3}{|l|}{Mean eff．press．lb．} & & \(2 4 \longdiv { 2 9 }\) & 35 & 30.5 & 36.5 & 4 & & 43.5 & 50 & \multicolumn{4}{|l|}{Note．－The} \\
\hline \multicolumn{3}{|l|}{Ratio of expans＇n．} & \multicolumn{3}{|l|}{5} & \multicolumn{3}{|c|}{4} & \multicolumn{3}{|c|}{3} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{nominal－power
rating of the en－ gines is at 80 lbs ．}} \\
\hline Term & \[
\text { al } \mathrm{p}
\] & \[
\begin{aligned}
& \text { ssure } \\
& \text { Ibs. }
\end{aligned}
\] & \multicolumn{3}{|r|}{92022.3} & \multicolumn{3}{|l|}{22．4 25127.6} & \multicolumn{3}{|l|}{29.8|33.3|36.8} & & & & \\
\hline Cyl．co & den & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(26 \quad 26\)}} & \multirow[t]{2}{*}{26} & \multirow[t]{2}{*}{24} & \multirow[t]{2}{*}{24} & \multirow[t]{2}{*}{24} & & \multirow[t]{2}{*}{21} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
36.8 \\
21
\end{gathered}\right.
\]} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{gauge pressure steam cut－off at \(1 / 4\) stroke．}} \\
\hline Stea & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Compound Engines－Non－condensing－High－pressure} Cyliuder and Receiver Jacketed．


The original table contains figures of horse－power，etc．，for 110 and \(120 \mathrm{lbs} .\), cylinder ratio of 4 to 1 ；and 140 lbs ．，ratio \(41 / 2\) to 1.

Compound-engines-Condensing-Steam-jacketed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{3}{*}{Diam. Cylinder, Inches.}} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multicolumn{4}{|l|}{H.P.whencutting off at 14 Stroke in h.p. Cylinder.} & \multicolumn{4}{|l|}{H.P. when cutting off at \(1 / 3\) Stroke in h.p. Cylinder.} & \multicolumn{4}{|l|}{H.P.whencutting off at \(1 / 2\) Stroke in h.p. Cylinder.} \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & atio,
\[
: 1
\] \\
\hline & & & & & 80 & 110 & 115 & 125 & 80 & 10 & 115 & & 80 & 10 & 5 & \\
\hline I & & & & & lbs. & S. & lbs. & lbs. & lbs. & 1 bs. & 1 bs & lbs. & lbs. & b & lbs. & lbs. \\
\hline 6 & & & 10 & 370 & 4 & 59 & 53 & 28 & 5 & & 68 & 5 & \% & 97 & 5 & 106 \\
\hline & & 131 & 12 & 318 & 56 & 76 & 67 & 78 & 70 & 90 & 87 & & 90 & 123 & 120 & 134 \\
\hline & & 161 & 14 & 2.7 & 83 & 112 & 100 & 116 & 104 & 133 & 129 & 141 & 133 & \(18: 3\) & \(1{ }^{1} 9\) & 200 \\
\hline & & 19 & 16 & 246 & 109 & 147 & 131 & 152 & 136 & 174 & 169 & 185 & 174 & 239 & 234 & \(\stackrel{261}{ }\) \\
\hline 11 & 12 & 2:21: & 18 & 22\% & 156 & 210 & 187 & 218 & 195 & 250 & 242 & 265 & 250 & 34.3 & 335 & \(3{ }^{3} 4\) \\
\hline 121/2 & 13122 & 25 & \(\stackrel{2}{20}\) & 185 & 192 & 260 & 231 & 269 & 241 & 308 & 298 & 327 & 308 & 423 & 414 & 462 \\
\hline 14 & 151/2 & \(281 / 2\) & 24 & 158 & 258 & 348 & 310 & 361 & 323 & 413 & 400 & 439 & 413 & 568 & 555 & 619 \\
\hline 12 & 181/2 & 3:31/2 & 28 & 135 & 346 & 46 T & 415 & 484 & 433 & 554 & 536 & 58 & 554 & 761 & 744 & 4 830 \\
\hline 19 & & 38 & \(3 \times\) & 110 & 446 & 602 & 535 & 624 & 558 & 714 & 691 & 75 & 714 & 981 & 959 & 91070 \\
\hline 21 & \(2 \cdot 1 / 2\) & 4.3 & 34 & 112 & 5.2 & 771 & 686 & 801 & 715 & 915 & 887 & 972 & 915 & 1258 & 1230 & 1373 \\
\hline & \(281 / 2\) & 52 & 42 & 93 & 838 & 1131 & 1006 & 1174 & 1048 & 1341 & 1299 & 1435 & 1341 & 1844 & 1801 & 2012 \\
\hline 30 & & 60 & 48 & & 1096 & 1480 & 1316 & 15 & 1370 & \(175 \%\) & 1699 & 186 & 1757 & 211 & 2356 & -2632 \\
\hline \multicolumn{5}{|l|}{Mean effec. press..lbs.} & 20 & 27 & 24 & 28 & 25 & 32 & 31 & 34 & 32 & 44 & 43 & 48 \\
\hline \multicolumn{5}{|l|}{Ratio of Expansion...} & \multicolumn{2}{|r|}{131/2} & \multicolumn{2}{|r|}{161/4} & \multicolumn{2}{|r|}{10} & \multicolumn{2}{|r|}{121/4} & \multicolumn{2}{|r|}{63/4} & \multicolumn{2}{|r|}{81/4} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Cyl. condensation, \%. St. per I.H.P. p. hi.lbs.}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{c|c|}
\hline 18 & 18 \\
17.3 & 16.6
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|c|}
\hline 20 & 20 \\
\hline 16.6 & 15.2
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline 15 & 15 \\
\hline 17.0 & 16.4 \\
\hline
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline 18 & 18 \\
\hline 16.3 & 15.8
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{c|c}
12 \\
17.5 & 17.0
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|c|}
\hline 148 & 14 \\
16.8 & 16.0 \\
\hline
\end{array}
\]}} \\
\hline & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

The original table contains figures for 95 lbs ., cylinder ratio \(31 / 3\) to 1 ; and 120 lbs ., ratio 4 to 1.

Triple-expansion Engines, Non-condensing.-Receiver only Jacketed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Diameter Cylinders, inches.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Horse-power when Cutting off at 42 per cent of Stroke in First Cylinder.} & \multicolumn{2}{|l|}{Horse-power when Cutting off at 50 per cent of Stroke in First Cylinder.} & \multicolumn{2}{|l|}{Horse-power when Cutting off at 67 per cent of Stroke in First Cylinder.} \\
\hline H. P. & I. P. & L. P & & & 180 lbs . & 200 lbs . & 180 lbs. & 200 lbs. & 180 lbs . & 200 lbs 。 \\
\hline 43/4 & 71 & 12 & 10 & \(3 \hat{0}\) & 55 & 64 & 70 & 84 & 95 & 108 \\
\hline \(51 / 2\) & 81/2 & 131/2 & 12 & 318 & 70 & 81 & 90 & 106 & 120 & 137 \\
\hline \(61 / 8\) & 101/2 & 161/2 & 14 & 277 & 104 & 191 & 133 & 158 & 179 & 204 \\
\hline \(71 / 2\) & 12 & 19 & 16 & 246 & 136 & 158 & 174 & \(20 \tilde{\sim}\) & 234 & 267 \\
\hline & 141/2 & 221/2 & 18 & 222 & 195 & 226 & 250 & 296 & 335 & 382 \\
\hline 10 & 16 & 25 & 20 & 185 & 241 & 279 & 308 & 366 & 414 & 471 \\
\hline 111/2 & 18 & 281/2 & 24 & 158 & 323 & 374 & 413 & 490 & 555 & 632 \\
\hline 13 & 22 & 331/2 & 28 & 138 & 433 & 502 & 554 & \(65 \%\) & 744 & 848 \\
\hline 15 & 241/2 & 38. & & 120 & 558 & 647 & 714 & 847 & 95.9 & 1093 \\
\hline 17 & 27 & 43 & 24 & 112 & 715 & \(8: 9\) & 915 & 1089 & 1230 & 1401 \\
\hline 20 & 33 & 5 & 42 & 9.3 & 1048 & 1215 & 1341 & 159 & 1801 & \(\because 053\) \\
\hline 231/2 & 38 & 60 & 48 & 80 & \(13 \% 0\) & 1589 & 1754 & 2082 & 2856 & 2685 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{Mean effective press., lbs. No. of expansions. Per cent cyl. condens}} & 25 & 29 & 32 & 38 & 43 & 49 \\
\hline & & & & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{16}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{13}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10
10}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Steam p. I.H.P. p.hr., lbs. Lbs. coal at 8 lb . evap. lbs.}} & 20.76 & 19.36 & 19.25 & 17.00 & 17.89 & 17.20 \\
\hline & & & & & 2.59 & 2.39 & 2.40 & 2.12 & 2.23 & 2.15 \\
\hline
\end{tabular}

\section*{Triplevexpansion Engines-Condensing-SteamJacketed.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Diameter Cylinders, inches.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Horse-power when Cutting off at \(1 / 4\) Stroke in der.} & \multicolumn{3}{|l|}{Horse-power when Cutting off at \(1 / 3\) Stroke in First Cy
der.} & \multicolumn{3}{|l|}{Horse-power when Cutting off at \(1 / 2\) Stroke in First Cylinder.} & \multicolumn{3}{|l|}{Horse-power when Cutting off at \(3 / 4\) Stroke in der.} \\
\hline \[
\underset{i}{i}
\] & 3 & & & \[
\mathrm{lbs}
\] & & & & & \[
\begin{gathered}
160 \\
1 \mathrm{bs} .
\end{gathered}
\] & & & lbs. & 120 & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & , & 12 & & & & & & & & & & & 104 & & \\
\hline & 1012/21920 & & & & & & & & 112 & 14 & & & & & \\
\hline & & & & 125 & 1148 & & 156 & & & & & & & & \\
\hline & & 20 & & 154 & & & 192 & 231 & 260 & -250 & & & 306 & & \\
\hline & 18 & 24 & & 206 & 24 & & & 310 & 348 & 35 & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline & & & & & 543 & & & & & & & & & & \\
\hline & & & & & 796 & 22 & & & 1 & 1089 & & & & & \\
\hline & 38160 & & & & & & 109 & & 1480 & & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Mean effec. press.,lbs.}} & & 19 & & & 24 & & & & & & & \\
\hline & & & & & . 8 & & & 20.1 & & & 13. & & & 8.9 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Per cent cyl. condens. St. p. I.H.P. p. hr., lbs.}} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & 13 & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Type of Engine to be used where Exhaust-steam is} needed for Heating.-In many factories more or less of the steam exhausted from the engines is utilized for boiling, drying, heating, etc. Where all the exhaust-steam is so used the question of economical use of steam in the engine itself is eliminated, and the high-pressure simple engine is entirely suitable. Where only part of the exhaust-steam is used, and the quantity so used varies at different times, the question of adopting a simple, a condensing, or a compound engine becomes more complex. This problem is treated by C. T. Main in Trans. A. S. M. E., vol. X. p. 48 . He shows that the ratios of the volumes of the cylinders in compound engines should vary according to the amount of exhaust-steam that can be used for heating. A case is given in which three different pressures of steam are required or could be used, as in a worsted dye-house: the high or boiler pressure for the engine, an intermediate pressure for crabbing, and low-pressure for boiling, drying, etc. If it did not make too much complication of parts in the engine, the boiler-pressure might be used in the high-pressure cylinder, exhausting into a receiver from which steam could be taken for running small engines and crabbing, the steam remaining in the receiver passing into the intermediate cylinder and expanded there to from 5 to 10 lbs . above the atmosphere and exhausted into a second receiver. From this receiver is drawn the low-pressure steam needed for drying, boiling, warming mills, etc., the steam remaining in receiver passing into the condensing cylinder.

\section*{Comparison of the Economy of Compound and Single-} cylinder Corliss Condensing Engines, each expanding about Sixteen Times. (D. S. Jacobus, Trans. A. S. M. E., xii. 943.)
The engines used in obtaining comparative results are located at Stations I. and II. of the Pawtucket Water Co.

The tests show that the compound engine is about \(30 \%\) more economical than the single-cylinder engine. The dimensions of the two engines are as follows: Single \(20^{\prime \prime} \times 48^{\prime \prime}\); compound \(15^{\prime \prime}\) and \(3018^{\prime \prime} \times 30^{\prime \prime}\). The steam used per horse-power per hour was: single 20.35 lbs ., compound 13.73 lbs .
Both of the engines are steam-jacketed, practically on the barrels only \(y_{1}\) with steam at full boiler-pressure, viz. single 106.3 lbs ., compound 127.5 lbs .

The steam-pressure in the case of the compound engine is 127 lbs ., or 21 lbs. higher than for the single engine. If the steam-pressure be raised this amount in the case of the single engine, and the indicator-cards be increased accordingly, the consumption for the single-cylinder engine would be 19.97 lus. per hour pel horse-power.
Two-cylinder vs. Three-cylinder Compound Engine. A Wheelock triple-expansion engine, built for the Merrick Thread Co., Holyoke, Mass., is constructed so that the intermediate cylinder may be cut out of the circuit and the high-pressure and low-pressure cylinders run as a two-cylinder compound, using the same conditions of initial steam-pressure and load. The diameters of the cylinders are 12,16 , and \(24 \frac{13}{3} \frac{3}{2}\) inches, the stroke of the first two being 36 in . and that of the low-pressure cylinder 48 in. The results of a test reported by S. M. Green and G. I. Rockwood, Trans. A. S. M. E., vol. xiii. 647 , are as follows: In lbs. of dry steam used per I.H.P. per hour, 12 and \(24 \frac{13}{3} \frac{3}{2} \mathrm{in}\). cylinders only used, two tests 13.06 and 12.76 lbs ., average 12.91. All three cylinders used, two tests 12.67 and 12.90 lbs ., average 12. 79 . The difference is only \(1 \%\), and would indicate that more than two cylinders are unnecessary in a compound engine, but it is pointed out by Prof. Jacobus, that the conditions of the test were especialiy favorable for the two-cylinder engine, and not relatively so favorable for the three cylinders. The steam-pressure was 142 lbs and the number of expansions about 25. (See also discussion on the Rockwood type of engine, Trans. A. S. M. E., vol. xvi.)

Effect of Water contained in Steam on the Efficiency of the Steameengine. (From a lecture by Walter C. Kerr, before the Franklin Institute, 1891.).-Standard writers make little mention of the effect of entrained moisture on the expansive properties of steam, but by common consent rather than any demonstration they seem to agree that moisture produces an ill effect simply to the percentage amount of its presence. That is, \(5 \%\) moisture will increase the water rate of an engine \(5 \%\).

Experiments reported in 1893 by R. C. Carpenter and L. S. Marks, Trans. A. S. M. E., xv., in which water in varying quantity was introduced into the steam-pipe, causing the quality of the stearn to range from \(99 \%\) to \(58 \%\) dry, showed that throughout the range of qualities used the consumption of dry steam per indicated horse-power per hour remains practically constant, and indlcated that the water was an inert quantity, doing neither good nor harm.

It appears that the extra work done by the heat of the entrained water during expansion is sensibly equal to the extra negative work which it does during exhaust and compression, that the heat carried in by the entrained water performs no useful function, and that a fair measure of the economy of an engine is the consumption of dry and saturated steam.
Rolative Commercial Fconomy of Best liodern Types of Compound and Triplemexpansion Engines. (J. E. Denton, American Machinist, Dec. 17, 1891.)-The following table and deductions sliow the relative commercial economy of the compound and triple type for the best stationary practice in steam plants of 500 indicated horse-power. The table is based on the tests of Prof. Schröter, of Munich, of engines built at Augsburg, and those of Geo. H. Barrus on the best plants of America, and of detailed estimates of cost obtained from several first-class builders.

Trip motion, or Corliss engines of the twin-compound-receiver condensing type, expanding 16 times. Boiler pressure 120 lbs .
Trip motion, or Corliss engines of the triple-expansion four-cylin-der-receiver condensing type, expanding 22 times. Boiler pressure, 150 lbs .
\begin{tabular}{|c|c|c|}
\hline Lbs. water per hour per & 13 & 14.0 \\
\hline \multicolumn{3}{|l|}{\(\{\) Lbs. coal per hour per} \\
\hline H.P., assuming 8.5 lbs . & 1.60 & 1.6 \\
\hline \multicolumn{3}{|l|}{actual evaporation.} \\
\hline \multicolumn{3}{|l|}{H.P., by measurement. \(\} 12.56 \quad 12.80\)} \\
\hline Lbs. coal per hour per & & \\
\hline H.P., assuming 8.5 los. & 48 & 1.50 \\
\hline actual evaporation. & & \\
\hline
\end{tabular}

The figures in the first column represent the best recorded performance (1891), and those in the second column the probable reliable performance.

Increased cost of triple-expansion plant per horse-power, including boilers, chimney, heaters, foundations, piping and erection.
The following table shows the total annual cost of operation, with coal at \(\$ 4.00\) per ton, the plant running 300 days in the year, for 10 hours and for 24 hours per day:
\begin{tabular}{|c|c|c|}
\hline Hours running per day... & 10 & 24 \\
\hline Expense for coal. Compound plant. & Per H.P. & Per H.P. \(\$ 28.50\) \\
\hline Expeuse for coal. Triple plant.. & 9.00 & 25.92 \\
\hline Annual saving of triple plant in fuel........... & 0.90 & 2.60 \\
\hline Annual interest at \(5 \%\) on \$4.50. & \$0.23 & \$0.23 \\
\hline Annual depreciation at \(5 \%\) on \(\$ 4.50 \ldots \ldots \ldots . .\). & 0.23 & 0.23 \\
\hline Annual extra cost of oil, 1 gallon per 24 -hour day, at \(\$ 0.50\), or \(15 \%\) of extra fuel cost. & 0.15 & 0.36 \\
\hline 24 hours. & 0.06 & 0.14 \\
\hline & \$0.67 & \$0.96 \\
\hline Annual saving per H.P........................ & \$0.23 & \$1.64 \\
\hline
\end{tabular}

The saving between the compound and triple types is much less than that involved in the step from the single-expansion condensing to the compound engine. The increased cost per horse-power of the triple plant over the compound is due almost entirely to the extra cost of the triple engine and its foundations, the boilers costing the same or slightly more, owing to their extra strength. In the case of the single versus the compound. however, about one third of the increased cost of the compound engine is offset by the less cost of the latter's boilers.
Taking the total cost of the plants at \(\$ 33.50, \$ 36.50\) and \(\$ 41\) per horsepower respectively, the figures in the table imply that the total annual saving is as follows for coal at \(\$ 4\) per ton:
1. A compound 500 horse-power plant costs \(\$ 18,250\), and saves about \(\$ 1630\) for 10 hours' service, and \(\$ 4885\) for ' 24 hours' service, per year over a single plant costing \(\$ 16,750\). That is, the compound saves its extra cost in 10 -hour service in about one year, or in 24 -hour service in four months.
2. A triple 500 horse-power plant costs \(\$ 20,500\), and saves about \(\$ 114\) per year in 10-hour service, or \(\$ 826\) in 24 -hour service, over a compound plant, thereby saving its extra cost in 10-hour service in about \(193 / 4\) years, or in 24 hour service in about \(23 / 4\) years.
Triple - expansion Pumpingeengine at MilwaukeeHighest Economy on Record, 1893. (See paper ou "Maximum Contemporary Economy of the Steam-engine," by R. H. Thurston, Trans. A. S. M. E., xv. 313.)-Cylinders 28,48 and 74 in . by 60 in . stroke; ratios of volumes 1 to 3 to 7 ; total number of expansions 19.55; clearances, h.p. \(1.4 \%\); int. \(1.5 \%\); 1. p. \(0.7 \% \%\); volume of receivers: \(1 \mathrm{st}, 101.3 \mathrm{cu} . \mathrm{ft} . ; 2 \mathrm{~d}, 181 \mathrm{cu}\). ft.; steam-pressure gauge during test, average 121.5 lbs . ; vacuum 13.84 lls . absolute; revolutions 20.3 per minute; indicated horse-power, h.p. 1\%5.4, int. 169.6 , l. p. 228.9 ; total, 573.9 ; total friction, horse-power \(52.91=9.22 \%\); dry steam per I.H.P. per hour 11.678; B.T.U. per I.H.P. per min. 217.6; duty in foot-pounds per 100 lbs . of coal, \(143,306,000\); per million B.T.U., 137,656,000.
\begin{tabular}{|c|c|c|c|}
\hline Steam per I.H.P. per hour, from diagram, at at cut-off. & \({ }_{10.1}^{9.35}\) & 9.12
10.0 & 8.37
8.92 \\
\hline Steam accounted for by indicator at cut-off, per cent & 87.1 & 85.0 & r8.2 \\
\hline " "، " " "، "release, & 94.0 & 93.2 & 83.2 \\
\hline Per cent of total steam used by jacket & 9.25 & & \\
\hline
\end{tabular}

\section*{Highest Economy of the Two-cylinder Compound} Pumping-engines.-Repeated tests of the Pawtucket-Corliss engine, 15 and \(301 / 8\) by 30 in . stroke, gave a water consumption of 13.69 to 14.16 lbs . per I.H.P. per hour. Steam-pressure 123 lls . ; revolutions per min. 48 ; expansions about 16. Cylinders jacketed. The lowest water rate was with jackets in use; both jackets supplied with steam of boiler pressure. The average saving due to jackets was only about \(21 / 2\) per cent. (Trans. A. S. M. E., xi. 328 and 1038; xiii. 176.)

This record was beaten in 1894 by a Leavitt pumping-engine at Louisville, Ky. (Trans. A. S. M. E. xvi.) Cylinders 27.21 and 54.13 in . diam. by 10 ft . stroke; revolutions per min. \(18.5 \tilde{7}_{\text {; piston }}\) speed 371.5 ft . ; expansions 20.4 ; steam•pressure, gauge, 140 lbs . Cylinders and receiver jacketed, Steam
used per I.F.P. per hour, 12.223 lbs . Duty per million B.T.U. \(=138,126,000\) \(\mathrm{ft} .-1 \mathrm{bs}\).

Test of a Triple-expansion Pumpingeengino with and without Jackets, at Laketon, Ind., by Prof. J. E. Dentou ('I'rans. A. S. M. E., xiv. 1340).-Cylinders 24, 34 and 54 in . by 36 in. stroke; 28 revs. per• min.; H.P. developed about \(3: 0\); boiler-pressure 150 lbs . Tests made on eight different days with different sets of conditions in jackets. At 150 lbs . boilerpressure, aud about 20 expansions, with any pressure above 43 lbs . in all of the jackets and reheaters, or with no pressure in the high jacket, the performance was as follows: With \(2.5 \%\) of moisture in the steam entering the engine, the jackets used \(16 \%\) of the total feed-water. About \(20 \%\) of the latter was condensed during admission to the high cylindel: and about 13.85 lbs . of feed-water was consumed per hour per indicated horse-power. With no jackets or reheaters in action the feed-water consumption was 14.99 lbs ., or \(8.3 \%\) more than with jackets and reheaters. The consumption of lubricating oil was two thirds of a gallon of machine oil and one and three quarter gallons of cylinder oil per 24 hours. The friction of the engine in eight tests on different days varied from \(5.1 \%\) to \(8.7 \%\).
If we regard the measurements of indicated horse-power and water as liable to an error of one per cent, which is probably a minimum allowance for the most careful determinations, the steam economy is the same for the following conditions:
(a) Any pressure from 43 to 131 in the intermediate and low jackets and receivers.
(b) Any pressure from 0 to 151 in the jacket of high cylinder.
(c) Any cut-off from \(21 \%\) to \(23 \%\) in high cylinder, from \(39 \%\) to \(43 \%\) in intermediate cylinder, from \(40 \%\) to \(53 \%\) in low cylinder.

\section*{Water Consumption of Three Types of Sulzer Engines.}
(B. Donkin, Jr., Eng'g, Jan. 15, 1892, p. 77.)

Summary and Averages of Twenty-one Published Experiments of the Sulzer Type of Steam-engine. All Horizontal Condensing and Steam-Jacketed. From 1872 to 1891.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  &  &  & Steam Consumption, pounds per I.H.P. per hour, includingSteampipe water and Jacket Water. & Steam Consumption, pounds per I.H.P. per hour, exclud'g Steam includingJacket Water. &  \\
\hline & lbs. & \[
\begin{gathered}
\mathrm{ft} . \\
\text { per min }
\end{gathered}
\] & & lbs. & lbs. & \\
\hline Cyl. & ¢ 95 & \[
\begin{aligned}
& 272 \text { to } \\
& 433
\end{aligned}
\] & \[
\begin{gathered}
157 \text { to } \\
400
\end{gathered}
\] & \(\left\{\begin{array}{l}18.7 \text { to } 19.8 \\ \text { Mean } 19.4\end{array}\right.\) & 17.9 to 19.2
Mean 18.95 & \(\} \begin{aligned} & 5 \exp \\ & 18 \sim \sim \\ & \text { 2- }\end{aligned}\) \\
\hline Com. & 84 to & 384 to & 133 to & \(\{13.35\) to 16.0 & 13.4 to 15.5 & 10 exp. \\
\hline pound. \(\}\) & 104 & 689 & 524 & Mean 14.44 & Mean 14.3 & \} 1888-91 \\
\hline Triple.. & 104 to & 444 to & 198 to & \{ 11.85 to 12.86 & 11.7 to 12.7 & 6 exp \\
\hline Iriple.. \()\) & 156 & 607 & 615 & \{ Mean 12.36 & Mean 12.18 & 1888-89 \\
\hline
\end{tabular}

\footnotetext{
Triple-expansion Corliss engine at Narragansett E. L. Co., Providence, R. I., built by E. P. Allis Co. Cylinder 14, 25 and 33 in. by 48 in. stroke tested at 99 revs. per min.; 125 lbs steam-pressure; steam per I.H.P. per hour 12.94 lbs.; H.P. 516. A full account of this engine, with records of tests is given by J. T. Henthorn, in Trans. A. S. M. E., xii. 643.

Buckeye-cross compound engine, tested at Chicago Exposition, by Geo. H. Barrus (Eng'g Record, Feb. 17, 1894). Cylinder 14 and 28 by 24 in. stroke; tested at 165 r. p. m.; 120 lbs . steam-pressure. I.H.P. in four tests condensing and one non-condensing............ \(295 \quad 224 \quad 123 \quad 277 \quad 267\) \(\begin{array}{llllllll}\text { Steam per horse-power per hour........ } & 16.07 & 15.71 & 17.22 & 16.07 & 23.24\end{array}\)

Relative Economy of Compound Non-condensing Engines under Variable Loads.-F. M. Rites, in a paper on the Steam Distribution in a Form of Single-acting Engine (Trans. A. S. M. E. xiii. 537), discusses an engine designed to meet the following problem; Given an
}
extreme range of conditions as to load or steam-pressure, either or both, to fluctuate together or apart, violently or with easy gradations, to construct an engine whose economical performance should be as good as though the engine were specially designed for a momentary condition-the adjustment to be complete and automatic. In the ordinary non-condensing compound engine with light loads the high-pressure cylinder is frequently forced to supply all the power and in addition drag along with it the low-pressure piston, whose cylinder indicates negative work. Mr. Rites shows the peculiar value of a receiver of predetermined volume which acts as a clearance chamber for compression in the high-pressure cylinder. The Westinghouse compound single-acting engine is designed upon this principle. The following results of tests of one of these engines rated at \(1 \% 5 \mathrm{H}\).P. for most economical load are given :

Water Rates under Varying Loads, lbs. per H.P. per hour.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Horse-pow & 210 & 170 & 140 & 115 & 100 & 80 & 50 \\
\hline Non-condensin & 22.6 & 21.9 & 22.2 & 22.2 & 22.4 & 24.6 & 28 \\
\hline Condensing & 18.4 & 18.1 & 18.2 & 18.2 & 18.3 & 18.3 & 20.4 \\
\hline
\end{tabular}

Efficiency of Non-condensing Compound Engines. (W. Lee Church, Am. Mach., Nov. 19, 1891.)-The compound engine, non-condensing, at its best performance will exhaust from the low-pressure cylinder at a pressure 2 to 6 pounds above atmosphere. Such an engine will be limited in its economy to a very short range of power, for the reason that its valve-motion will not permit of any great increase beyond its rated power, and any material decrease below its rated power at once brings the expansion curve in the low-pressure cylinder below atmosphere. In other words, decrease of load tells upon the compound engine somewhat sooner, and much more severely, than upon the non-compound engine. The loss commences the moment the expansion line crosses a line parallel to the atmospheric line, and at a distance above it representing the mean effective pressure necessary to carry the frictional load of the engine. When expansion falls to this point the low-pressure cylinder becomes an air-pump over more or less of its stroke, the power to drive which must come from the high-pressure cylinder alone. Under the light loads common in many industries the low-pressure cylinder is thus a positive resistance for the greater portion of its stroke. A careful study of this problem revealed the functions of a fixed intermediate clearance, always in communication with the high-pressure cylinder, and having a volume bearing the same ratio to that of the high-pressure cylinder that the high-pressure cylinder bears to the low-pressure. Diagrams were laid out on this principle and justified untir the best theoretical results were obtained. The designs were then laid down on these lines, and the subsequent performance of the engines, of which some 600 have been built, have fully confirmed the judgment of the designers.

The effect of this constant clearance is to supply sufficient steam to the low-pressure cylinder under light loads to hold its expansion curve up to atmosphere, and at the same time leave a sufficient clearance volume in the high-pressure cylinder to permit of governing the engine on its compression under light loads.

Econdomy of Engines under Varying Loads. (From Prof. W. C. Unwin's lecture before the Society of Arts, London, 1892.)-The general resuit of numerous trials with large engines was that with a constant load an indicated horse-power should be obtained with a consumption of \(11 / 2\) pounds of coal per indicated horse-power for a condensing engine, and \(13 / 2\) pounds for a non-condensing engine, figures which correspond to about \(13 / 4\) pounds to \(21 / 8\) pounds of coal per effective horse-power. It was much more difficult to ascertain the consumption of coal in ordinary every-day work, but such facts as were known showed it was more than on trial.

In electric-lighting stations the engines work under a very fluctuating load, and the results are far more unfavorable. An excellent willans noncondensing engine, which on full-load trials worked with under 2 pounds per effective horse-power hour, in the ordinary daily working of the station used \(71 / 2\) pounds per effective horse-power hour in 1886, which was reduced to 4.3 pounds in 1890 and 3.8 pounds in 1891. Probably in very few cases were the engines at electric-light stations working under a consumption of \(41 / 2\) pounds per effective horse-power hour. In the case of small isolated motors working with a fluctuating load, still more extravagant results were obtained,

Engines in Electric Central Stations.
\begin{tabular}{|c|c|c|c|}
\hline Year. & 1886. & 1890. & 1892. \\
\hline Coal used per hour per effective & 8.4 & 5.6 & 4.9 \\
\hline indicated & 6.5 & 4.35 & 3.8 \\
\hline
\end{tabular}

At electric-lighting stations the load factor, viz., the ratio of the average load to the maximum, is extremely small, and the engines worked under very unfavorable conditions, which largely accounted for the excessive fuel consumption at these stations.
In steam-engines the fuel consumption has generally been reckoned on the indicated horse-power. At full-power trials this was satisfactory enough, as the internal friction is then usually a small fraction of the total.
Experiment has, however, shown that the internal friction is nearly constant, and hence, when the engine is lightly loaded, its mechanical efficiency is greatly reduced. At full load small engines have a mechanical efficiency of 0.8 to 0.85 , and large engines might reach at least 0.9 , but if the internal friction remained constant this efficiency would be much reduced at low powers. Thus, if an engine working at 100 indicated horse-power had an efficiency of 0.85 , then when the indicated horse-power fell to 50 the effective horse-power would be 35 horse-power and the efficiency only 0.7 . Similarly, at 25 horse-power the effective horse-power would be 10 and the efficiency 0.4.

Experiments on a Corliss engine at Creusot gave the following results :
\begin{tabular}{lllllll} 
Effective power at full load. ........... & 1.0 & 0.75 & 0.50 & 0.25 & 0.125 \\
Condensing, mechanical efficiency..... & 0.82 & 0.79 & 0.54 & 0.63 & 0.48 \\
Non-condensing, "6 & ". & \(\ldots . .\). & 0.86 & 0.83 & 0.78 & 0.67 \\
N
\end{tabular}

At light loads the economy of gas and liquid fuel engines fell off even more rapidly than in steam-engines. The engine friction was large and nearly constant, and in some cases the combustion was also less perfect at light loads. At the Dresden Central Station the gas-engines were kept working at nearly their full power by the use of storage-batteries. The results of some experiments are given below:
\begin{tabular}{cccc}
\begin{tabular}{c} 
Brake-load, per \\
cent of full
\end{tabular} & \begin{tabular}{c} 
Gas-engine, cu. ft. \\
of Gas per Brake
\end{tabular} & \begin{tabular}{c} 
Petroleum Eng., \\
Lbs.of Oil per
\end{tabular} & \begin{tabular}{c} 
Petroleum Eng., \\
Power. of Oil per
\end{tabular} \\
100 & H.P. per hour. & B.H.P. per hr. & B.H.P. per hr. \\
75 & 23.2 & 0.96 & 0.83 \\
59 & 23.8 & 1.11 & 0.99 \\
20 & 28.0 & 1.44 & 1.20 \\
\(121 / 2\) & 40.8 & 4.38 & 1.82 \\
& 66.3 & 4.25 & 3.07
\end{tabular}

Steam Consumption of Engines of Various Sizes.-W. C. Unwin (Cassier's Magazine, 1894) gives a table showing results of 49 tests of engines of different types. In non-condensing simple engines, the steam consumption ranged from 65 lbs . per hour in a 5 -horse-power engine to 22 lbs. in a 134-H.P. Harris-Corliss engine. In non-condensing compound engines, the only type tested was the Willans, which ranged from 27 lbs . in a \(10 \mathrm{H} . \mathrm{P}\). slow-speed engine, 12 ft . per minute, with steam-pressure of 84 lbs . to 10.2 lbs . in a \(40-\mathrm{H} . \mathrm{P}\). engine, 401 ft . per minute, with steam-pressure 165 lbs. A Willans triple-expansion non-condensing engine, 39 H.P., 172 lbs. pressure, and 400 ft . piston speed per minute, gave a consumption of 18.5 lbs . In condensing engines, nine tests of simple engines gave results ranging only from 18.4 to 22 lbs., and, leaving out a beam pumping-engine running at slow speed ( 240 ft . per ninute) and low steam-pressure ( 45 lbs .), the range is only from 18.4 to 19.9 lbs . In compound-condensing engines over \(100 \mathrm{H} . \mathrm{P} .\), in 13 tests the range is from 13.9 to 20 lbs . In three triple-expansion engines the figures are \(11.7,12.2\), and 12.45 lbs., the lowest being a Sulzer engine of 360 H.P. In marine compound engines, the Fusiyama and Colchester, tested by Prof. Kennedy, gave steam consumption of 21.2 and \(21 . \% \mathrm{lbs}\); and the Meteor and Tartar triple-expansion engines gave 15.0 and 19.8 lbs .

Taking the most favorable results which cau be regarded as not exceptional, it appears that in test trials, with constant and full load, the expenditure of steam and coal is about as follows:

Per Indicated Horse- Per Effective Horsepower Hour.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Kind of Engine.} & \multicolumn{2}{|l|}{power Hour.} \\
\hline & Coal, & Steam, \\
\hline Non-condensing & lbs. & lbs. 16.5 \\
\hline Condensing. & 1.50 & 13.5 \\
\hline
\end{tabular}

These may be regarded as minimum values, rarely surpassed by the most efficient machinery, and only reached with very good machinery in the favorable conditions of a test trial.

Small Engines and Engines with Fluctuating Loads are usually very wasteful of fuel. The following figures, illustrating their low economy, are given by Prof. Unwin, Cassier's Magazine, 1894.

Coal Consumption per Indicated Horse-power in Small Engines.
In Workshops in Birmingham, Eng.
Probable I.H.P. at full load... \(12 \quad 45 \quad 60 \quad 45 \quad 75 \quad 60.60\)
Average I.H.P. during obser-
vation.. \(\ldots . . . . . . . . . . . . . .\).
Coal per I.H.P. per hour dur-
ing observation, lbs......... \(36.0 \quad 21.25 \quad 22.61 \quad 18.131311 .68\)
It is largely to replace such engines as the above that power will be distributed from central stations.

\section*{Steam Consumption in Small Engines.}

Tests at Royal Agricultural Society's show at Plymouth, Eng. Engineer* ing, June 27, 1890.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rated H.P.} & \multirow[t]{2}{*}{Compound or Simple.} & \multicolumn{2}{|l|}{Diam. of Cylinders.} & \multirow[t]{2}{*}{Stroke, ins.} & \multirow[t]{2}{*}{Max. Steampressure.} & \multicolumn{2}{|l|}{Per Brake H.P., per hour.} & \multirow[t]{2}{*}{} \\
\hline & & h.p. & 1.p. & & & Coal. & Water. & \\
\hline 5 & simple & 7 & & 10 & 75 & 12.12 & 78.1 lbs . & 6.1 lb \\
\hline 3 & compound & 3 & 6 & 6 & 110 & 4.82 & 42.03 " & 8.72" \\
\hline 2 & simple & 41/2 & & 71/2 & 75 & \(11 . \% 7\) & 89.9 " & \(7.64{ }^{\prime \prime}\) \\
\hline
\end{tabular}

Steammeonsumption of Engines at Various Speeds. (Profs. Denton and Jacobus, Trans. A. S. M. E., x. 722 ) \(-17 \times 30 \mathrm{in}\). engine, non-condensing, fixed cut-off, Meyer valve.

Steam-consumption, lbs. per I.H.P. per Hour.
Figures taken from plotted diagram of results.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Revs. per min & 8 & 12 & 16 & 20 & 24 & 32 & 40 & 48 & 56 & 72 & 88 \\
\hline \(1 / 8\) cut-off, lbs. & 39 & 35 & 32 & 30 & 29.3 & 29 & 28.7 & 28.5 & 283 & 28 & 27.7 \\
\hline \(1 / 4\) & 39 & 34 & 31 & 29.5 & 29 & 28.4 & 28 & 27.5 & 27.1 & 26.3 & 25.6 \\
\hline 1/3 & 39 & 36 & 34 & 33 & 32 & 30.8 & 29.8 & 29.2 & 28.8 & 28.7 & \\
\hline
\end{tabular}

Steam-consumption of Same Engine; Fixed Speed, 60 Revs. per Min.
Varying cut-off compared with throttling-engine for same horse-power and boiler-pressures:
\(\begin{array}{lllllllllll}\text { Cut-off, fraction of stroke } & 0.1 & 0.15 & 0.2 & 0.25 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8\end{array}\)
 \(60 \mathrm{lbs} . . . \quad 39 \quad 34.2 \quad 32.2 \quad 31.5 \quad 31.4 \begin{array}{lllllllllll}31.6 & 32.2 & 34.1 & 36.5 & \dddot{3} & \dddot{9}\end{array}\)
Throttling-engine, \(7 / 8\) Cut-off, for Corresponding Horse-powers.
Boiler-pressure, \(90 \mathrm{lbs} .\).
\(60 \mathrm{lbs} . . . \quad . . . . \quad 50.1 \quad 49 \quad 46.8 \quad 44.6 \quad 41\)
Some of the principal conclusions from this series of tests are as follows :
1. There is a distinct gain in economy of steam as the speed increases for \(1 / 2,1 / 8\), and \(1 / 4\) cut-off at 90 lbs . pressure. The loss in economy for about \(1 / 4\) cut-off is at the rate of \(1 / 1 \geqslant \mathrm{lb}\). of water per H.P. for each decrease of a revolution per minute from 86 to 26 revolutions, and at the rate of \(5 / 8 \mathrm{lb}\). of water below 26 revolutions. Also, at all speeds the \(1 / 4\) cut-off is more economical than either the \(1 / 2\) or \(1 / 8\) cut-off.
2. At 90 lbs . boiler-pressure and above \(1 / 3\) cut-off, to pioduce a given H.P. requires about \(20 \%\) less steam than to cut off at \(7 / 8\) stroke and regulate by the throtule.
3. For the same conditions with 60 lbs . boiler-pressure, to obtain, by throttling, the sane mean effective pressure at \(7 / 8\) cut-off that is obtained by
cutting off about \(1 / 3\), requires about \(30 \%\) more steam than for the latter condition.
High Piston-speed in Engines. (Proc. Inst. M. E., July, 1883, p. 3:1). - The torpedo boat is an excellent example of the advance towards high speeds, and shows what can be accomplished by studying lightness and strength in combination. In running at \(221 / 2\) knots an hour, an engine with cylinders of 16 in . stroke will make 480 revolutions per minute, which gives 1280 ft . per minute for piston-speed; and it is remarked that engines running at that high rate work much more smoothly than at lower speeds, and that the difficulty of lubrication diminishes as the speed increases.
A High-speed Corliss Engine. - A Corliss engine, \(20 \times 42\) in., has been running a wire-rod mill at the Trenton Iron Co.'s works since 18i7, at 160 revolutions or 1120 ft . piston-speed per minute (Trans. A. S. MI. E., ii. 72). A piston-speed of 1200 ft . per min. has been realized In locomotive practice.
The Limitation of Engine-speed. (Chas. T. Porter, in a paper on the Limitation of Engine-speed, Trans. A. S. M. E., xiv. 806.)-The practical limitation to high rotative speed in stationary reciprocating steamengines is not found in the danger of heating or of excessive wear, nor, as is generally believed, in the centrifugal force of the fly-wheel, nor in the tendency to knock in the centres, nor in vibration. He gives two objections to very high speeds: First, that "engines ought not to be run as fast as they can be;" second, the large amount of waste room in the port, which is required for proper steam distribution. In the important respect of economy of steam, the high-speed engine has thus far proved a failure. Large gain was looked for from high speed, because the loss by condensation on a given surface would be divided into a greater weight of steam, but this expectation has not been realized. For this unsatisfactory result we have to lay the blame chiefly on the excessive amount of waste room. The ordinary method of expressing the amount of wasteroom in the percentage added by it to the total piston displacement, is a misleading one. It should be expressed as the percentage which it adds to the length of steam admission. For example, if the steam is cut off at \(1 / 5\) of the stroke, \(8 \%\) added by the waste room to the total piston displacement means \(40 \%\) added to the volume of steam admitted. Engines of four, five and six feet stroke may properly be run at from 700 to 800 ft . of piston travel per minute, but for ordinary sizes, says Mr. Porter, 600 ft . per minute should be the limit.
Infuence of the Steam-jacket.-Tests of numerous engines with and without stearn-jackets show an exceeding diversity of results, ranging all the way from \(30 \%\) saving down to zero, or even in some cases showing au actual loss. The opinions of engineers at this date (1894) is also as diverse as the results, but there is a tendency towards a general belief that the jacket is not as valuable an appendage to an engine as was formerly supposed. An extensive résumé of facts and opinions on the steam-jacket is given by Prof. Thurston, in Trans. A. S. M. E., xiv. 462. See also Trans. A. S. M. E., xiv. 873 and 1340; xiii. 176; xii. 426 and 1340; and Jour. F. I., April, 1891, p. 276. The following are a few statements selected from these papers.
The results of tests reported hy the research committee on steam-jackets appointed by the British Institution of Mechanical Engineers in 1886, indicate an increased efficiency due to the use of the steam-jacket of from \(1 \%\) to over \(30 \%\), according to varying circumstances.
Sennett asserts that "it has been abundantly proved that steamjackets are not only advisable but absolutely necessary, in order that high rates of expansion may be efficiently carried out and the greatest possible economy of heat attained."
Isherwood fiuds the gain by its use, under the conditions of ordinary practice, as a general average, to be about \(20 \%\) on small and \(8 \%\) or \(9 \%\) on large engines, varying through intermediate values with intermediate sizes, it being understood that the jacket has an effective circulation, and that both heads and sides are jacketed.
Professor Unwin considers that "in all cases and on all cylinders the jacket is useful; provided, of course, ordinary. not superheated, steam is used; but the advantages may diminish to an amount not worth the interest on extra cost."
Professor Cotterill says: Experience shows that a stean-jacket is advantageous, but the amount to be gained will vary according to circumstances. In many cases it may be that the advantage is small. Great caution is necessary in drawing conclusions from any special set of experiments on the influence of jacketing.

Mr. E. D. Leavitt has expressed the opinion that, in his practice, steam. jackets produce an increase of efficiency of trom \(15 \%\) to \(20 \%\).
In the Pawtucket pumping-engine, 15 and \(301 / 8 \times 30 \mathrm{in}\)., 50 revs. per min., steam-pressure 125 lbs. gauge, cut-off \(1 / 4\) in h.p. and \(1 / 3\) in 1.p. cylinder, the barrels only jacketed, the saving by the jackets was from \(1 \%\) to \(4 \%\).
The superintendent of the Holly Mfg. Co. (compound pumping-engines) says: "In regard to the benefits derived from steam-jackets on our steamcylinders, I am somewhat of a skeptic. From data taken on our own engines and tests made I am yet to be convinced that there is any practical value in the steam-jacket." . . . "You might practically say that there is no difference."
Professol Schrötei from his worlk on the triple-expansion engines at Augsburg, and from the results of his tests of the jacket efficiency on a small engine of the Sulzer type in his own laboratory, concludes: (1) The value of the jacket may vary within very wide limits, or even become negative. (2) The shorter the cut-off the greater the gain by the use of a jacket. (3) The use of higher pressure in the jacket than in the cylinder produces an advautage. The greater this difference the better. (4) The high-pressure cylinder may be left unjacketed without great loss, but the other's should always be jacketed.
The test of the Laketon triple-expansion pumping.engine showed a gain of \(8.3 \%\) by the use of the jackets, but Prof. Denton points out (Trans. A. .S M. E., xiv. 1412) that all but \(1.9 \%\) of the gain was ascribable to the greater range of expansion used with the jackets.
Test of a Compound Condensing Engine with and without 耳ackets at diferent Loads. (R. C. Carpenter, Trans. A. S. M. E., xiv. \(4 \% 8\).)-Cylinders 9 and \(16 \mathrm{in} . \times 14 \mathrm{in}\). stroke; 112 lbs. boiler-pressure; rated capacity 100 H.P.; 265 revs. per min. Vacuum, 23 in. From the results of several tests curves are plotted, from which the following principal figures are taken.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Indicated H.P......... \begin{tabular}{c}
30
\end{tabular}\(\quad 40 \quad 50 \quad 60\)
Steam per I.H.P. per hour:}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{With jackets, lbs... .. 22.6 21.420 .3 Without jackets, lbs..}} & 19.6 & 19 & 18.7 & 18.6 & 18.9 & 19.5 & 20.4 & 21. \\
\hline & & 22. & 20.5 & 19.6 & 19.2 & 19.1 & 19.3 & 20.1 & \\
\hline Without jackets, libs & & 10.9 & 7.3 & 4.6 & 3.1 & 1.0 & & -1.5 & \\
\hline
\end{tabular}

This table gives a clue to the great variation in the apparent saving due to the steam-jacket as reported by different experimenters. With this particular engine it appears that when running at its most economical rate of 100 H.P., without jackets, very little saving is made by use of the jackets. When running light the jacket makes a considerable saving, but when overloaded it is a detriment.

At the load which corresponds to the most economical rate, with no steam in jackets, or 100 H.P., the use of the jacket makes a saving of only \(1 \%\); but at a load of 60 H.P. the saving by use of the jacket is about \(11 \%\), and the shape of the curve indicates that the relative advantage of the jacket would be still greater at lighter loads than 60 H.P.

Counterbalancing Engines.-Prof. Unwin gives the formula for counterbalancing vertical engines:
\[
\begin{equation*}
W_{1}=W_{2} \frac{r}{p} \tag{1}
\end{equation*}
\]
in which \(W_{1}\) denotes the weight of the balance weight and \(p\) the radius to its centre of gravity, \(W_{2}\) the weight of the crank-pin and half the weight of the connecting-rod, and \(r\) the length of the crank. For horizontal engines:
\[
W_{1}=2 / 3\left(W_{2}+W_{3}\right) \frac{r}{p} \text { to } 3 / 4\left(W_{2}+W_{3}\right) \frac{r}{p}
\]
in which \(W_{3}\) denotes the weight of the piston, piston-rod, cross-head, and the other half of the weight of the connecting-rod.

The American Machinist, commenting on these formulæ, says: For horizontal engines formula (2) is often used; formula (1) will give a counterbalance too light for vertical engines. We should use formula ( 2 ) for computing the counterbalance for both horizontal and vertical engines, excepting locomotives, in which the counterbalance should be heavier.

Preventing Vibrations of Engines.-Many suggestions hare been made for remedying the vibration and noise attendant on the working of the big engines which are employed to run dynamos. A plan which has given great satisfaction is to build hair-felt into the foundations of the engine. An electric company has had a 90 -horse-power engine removed from its foundations, which were then taken up to the depth of 4 feet. A layer of felt 5 inches thick was then placed on the foundations and run up 2 feet on all sides, and on the top of this the brickwork was built up.-Safety Valve.
Steam-engine Foundations Embeddedin Air. - In the sugarrefinery of Claus Spreckels, at Philadelphia, Ya., the engines are distributed practically all over the buildings, a large proportion of them being on upper floors. Some are bolted to iron beams or girders, and are consequently innocent of all foundation. Some of these engines ran noiselessly and satisfactorily, while others produced more or less vibration and rattle. To correct the latter the engineers suspended foundations from the bottoms of the engines, so that, in looking at them from the lower floors, they were literally hanging in the air.-Iron Age, Mar. 13. 1890.

Cost of Coal for Steam-power.-The following table shows the amount and the cost of coal per day and per jear for various horse-powers. from 1 to 1000, based on the assumption of 4 lbs. of coal being used per hour per horse-power. It is useful, among other things, in estimating the saving that may be made in fuel by substituting more economical boilers and engines for those already in use. Thus with coal at \(\$ 3.00\) per ton, a saving of \(\$ 9000\) per year in fuel may be made by replacing a steam plant of 1000 H.P., requiring 4 lbs . of coal per hour per horse-power, with one requiring only 2 lbs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{} & \multicolumn{5}{|l|}{Coal Consumption, at 4 lbs. per H.P. per hour; 10 hours a day ; 300 days in a Year.} & \multicolumn{2}{|l|}{\$1.50.} & \multicolumn{2}{|r|}{\$2.00.} & \multicolumn{2}{|r|}{\$3.00.} & \multicolumn{2}{|r|}{\$4.00.} \\
\hline & Lbs. & \multicolumn{2}{|l|}{Long Tons.} & \multicolumn{2}{|l|}{Short Tons.} & \multicolumn{2}{|l|}{Per Short Ton.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Per \\
Short Ton.
\end{tabular}} & \multicolumn{2}{|l|}{Pel \({ }^{*}\) Short Ton.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Per \\
Short Ton,
\end{tabular}} \\
\hline & \multirow{2}{*}{Per} & \multirow{2}{*}{Per
Day.} & \multirow{2}{*}{\[
\begin{aligned}
& \text { Pr } \\
& \text { Year. }
\end{aligned}
\]} & \multirow{2}{*}{\[
\begin{aligned}
& \text { Per } \\
& \text { Day. }
\end{aligned}
\]} & \multirow{2}{*}{\[
\begin{gathered}
\text { Per } \\
\text { Year }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Cost in Dollars.} & \multicolumn{2}{|l|}{Cost in Dollars.} & \multicolumn{2}{|l|}{Cost in Dollars.} & \multicolumn{2}{|l|}{Cost in Dollars.} \\
\hline & & & & & & \[
\begin{aligned}
& \text { Per } \\
& \text { Day. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Per } \\
\text { Year }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Day. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Year. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Day. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Year. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Day. }
\end{aligned}
\] & \[
\underset{\text { Year }}{\text { Per }}
\] \\
\hline & 40
400 & . 0179 & \({ }_{5}^{5.357}\) & 2 & 60 & & \[
\begin{gathered}
9 \\
90
\end{gathered}
\] & + & \[
\begin{array}{r}
12 \\
120
\end{array}
\] & .06
.60 & 18
80 & . 80 & 24
240 \\
\hline & 1,000 & . 1464 & 133.92 & . 50 & 150 & . 10 & \(22 \overline{5}\) & 1.00 & 300 & 1.50 & 450 & 2.00 & 600 \\
\hline & 2,000 & & 267.85 & 1.00 & 300 & 1.50 & 450 & 2.00 & 600 & 3.00 & 900 & 4.00 & 1,200 \\
\hline & 3,000 & 1.3393 & 401.78 & 1.50 & 450 & 2.25 & 675 & 3.00 & & 4.50 & 1,350 & 6.00 & 1,500 \\
\hline 100 & 4,000 & 1.785\% & \({ }_{80}^{535.71}\) & 2.00 & 600 & 3.00 & 900 & 4.00 & 1,200 & 6.00 & 1,800 & 8.00 & 2,100 \\
\hline & \({ }_{8,000}^{6.000}\) & \({ }_{3.5714}\) & - & 3.00
4.00 & & \({ }^{4.50}\) & & 6.00
8.00 & \(\xrightarrow{1,500}\) & \({ }_{12.00}^{9.00}\) & 3, \({ }_{3,600}\) & 12.60 & 3,600
\(4.8 c 0\) \\
\hline 250 & 10,000 & 4. 4612 & 1,339.27 & 5.00 & 1,500 & 7.50 & 2.250 & 10.00 & 2,000 & 15.00 & 4,500 & 20.00 & 6.000 \\
\hline 30 & 12,000 & 5. 5.51 & 1,607.13 & 6.00 . & 1.500 & 9.00 & 3,150 & 12.00 & 3,600 & 18.00 & 5,400 & 24.(1) & i,200 \\
\hline 350
400 & 14,000
16,000 & 6.2.20 & 1, & \({ }_{8}^{7.00}\) & & 12.00 & 3,600 & \({ }_{16.00}\) & \(\xrightarrow{4,500}\) & 21.00 & \({ }_{7}^{6}\) & 3. 00 & \({ }_{9,600}\) \\
\hline & 18,000 & 8. \(0: 375\) & -, 110.69 & 9.00 & 2,700 & 13.50 & 4,050 & 1800 & 5,400 & 27.00 & 8,100 & 36.00 & 10,800 \\
\hline 500 & 20,000 & 8.9285 & \(2,678.55\) & 10.00 & 3,000 & 15.00 & 4.500 & 20.00 & 6,000 & 30.00 & 9,000 & 40.00 & 12,000 \\
\hline 600 & 24,000 & 10.7142 & 3.214 .26 & 12.00 & 3.650 & 18.00 & 5.400 & \(2 \pm .00\) & 7,200 & 36.00 & 10.800 & 48.00 & 14,400 \\
\hline 700 & 28,000 & 12.4999 & 3,749.97 & 14.09 & 4,200 & 21.00 & 6,300 & 28.00 & 8,404 & +3.00 & 11,600 & 56.00 & 16,800 \\
\hline & \({ }_{36,000}\) & 14.2856
16.0713 & \(\pm, 285.68\)
4.321 .39 & 16.00 & 4,300 & & & & & +8.00 & 12,400 & 64. & 19,200 \\
\hline ri.900 & 36.000
40,000 & 16.0713 & - & 18.00 & 5, 400
6,000 & 27.00
30.00 & 8.100
9,000 & 36.00
40.00 & \(10,8 \mathrm{H}\)
\(12,100 \cdot\) & & 14.200
18,000 & 72.00
80.00 & (21.600 \\
\hline
\end{tabular}

Storing Steam Heat. - There is no satisfactory method for equalizing the load on the engiues and boilers in electric-light stations. Storage-batteries have been used, but they are expensive in first cost, repairs, and attention. Mr. Halpin, of London, proposes to store heat during the day in specially constructed reservoirs. As the water in the boilers is raised to 250 lbs . pressure, it is conducted to cylindrical reservoirs resembling English horizontal boilers, and stored there for use when wanted. In this way a comparatirely small boiler-plant can be used for heating the water to 250 lbs . pressure ail through the twenty-four hours of the day, and the stored water may be drawn on at any time, according to the magnitude of the demand. The
steam-engines are to be worked by the steam generated by the release of pressure from this water, and the valves are to be arranged in such a way that the steam shall work at 130 lbs . pressure. A reservoir 8 ft . in diameter and 30 ft . long, containing \(84,000 \mathrm{lbs}\). of heated water at 250 lbs . pressure, would supply 5250 lbs . of steam at 130 lbs . pressure. As the steam consumption of a condensing electric-light engine is about 18 lbs . per horse-power hour, such a reservoir would supply 286 effective horse-power hours. In 1878, in France, this method of storing steam was used on a tramway. M. Francq, the engineer, designed a smokeless locomotive to work by steampower supplied by a reservoir containing 400 gallons of water at 220 lbs . pressure. The reservoir was charged with steam from a stationary boiler at one end of the tramway.
Costi of Steam-power. (Chas. T. Main, A. S. M. E., x. 48.)-Estimated costs in New England in 1888, per horse-power, based on engines of 1000 H.P.


When exhaust-steam or a part of the receiver-steam is used for heating, or if part of the steam in a condensing engine is diverted from the condenser, and used for other purposes than power, the value of such steam should
and 30 are based on an assumption made by Mr. Main of losses of heat amounting to \(25 \%\) between the boiler and the exhanst-pipe, an allowance which is probably too large.
See also two papers by Chas. E. Emery on "Cost of Steam Power," Trans. A. S. C. E., vol. xii, Nov. 1883, and Trans. A. I. E. E., vol. x, Mar. 1893.

\section*{ROTARY STEATI-ENGINES.}

Steam Turbines.-The steam turbine is a small turbine wheel which runs with steam as the ordinary turbine does with water. (For description of the Parsons and the Dow steam turbines see Modern Mechanism, p. 298, etc.) The Parsons turbine is a series of parallel-flow turbines mounted side by side on a shaft; the Dow turbine is a series of radial outward-flow turbines, placed like a series of concentric rings in a single plane, a stationary guide-ring being between each pair of movable rings. The speeds of the steam turbines enormously exceed those of any form of engine with reciprocating piston, or even of the so-called rotary engines. The three- and fourcylinder engines of the Brotherhood type, in which the sereral cylinders are usually grouped radially about a common crank and shaft, often exceed 1000 revolutions per minute, and have been driven, experimentally, above 2000 ; but the steam turbine of Parsons makes 10,000 and even 20,000 revolutions, and the Dow turbine is reputed to have attained 25,000. (See Trans. A. S. M. E., vol. x. p. 680, and xii. p. 888; Trans. Assoc. of Eng'g Societies, vol. viii. p. 583; Eng'g, Jan. 13, 1888, and Jan. 8, 1892: Eng'g Neuvs, Feb. 27, 189..) A Dow turbine, exhibited in 1889, weighed 68 lbs., and dereloped 10 H.P., with a consumption of 47 lbs . of steam per H.P. per hour, the steam pressure being \(\% 0\) lbs. The Dow turbine is used to spin toe Hy-wheel of the Howell torpedo. The dimensions of the wheel are 13.8 in . diam., 6.5 in . width, radius of gyration 5.57 in . The energy stored in it at 10,000 revs. per min. is \(500,000 \mathrm{ft}\).-lbs.

The De Laval Steam Turbine, shown at the Chicago exhibition, 1893, is a reaction wheel somewhat similar to the Pelton water-wheel. The steam jet is directed by a nozzle against the plane of the turbine at quite a small angle and tangentially against the circumference of the mediuin periphery of the blades. The angle of the blades is the same at the side of admission and discharge. The width of the blade is constant along the entire thickness of the turbine.
The steam is expanded to the pressure of the surroundings before arriving at the blades. This expansion takes place in the nozzle, and is caused simply by making its sides diverging. As the steam passes through this shannel its specific volume is increased in a greater proportion than the cross section of the channel, and for this reason its velocity is increased, and also its momentum, till the end of the expansion at the last sectional area of the nozzle. The greater the expansion in the nozzle the greater its velocity at this point. A pressure of \(\% \mathrm{lbs}\). and expansion to an absolute pressure of one atmosphere give a final velocity of about 2625 ft . per second.

Expansion is carried further in this steam turbine than in ordinary steamengines. This is on account of the steam expanding cumpletely during its work to the pressure of the surroundings.

For obtaining the greatest possible effect the admission to the blades must be free from blows and the velocity of discharge as low as possible. These conditions would require in the steam turbine an enormous velocity of periphery—as high as 1300 to 1650 ft . per second. The centrifugal force, nevertheless, puts a limit to the use of very high velocities. In the 5 horseoower turbine the velocity of periphery is \(5 \pi 4 \mathrm{ft}\). per second, and the number of revolutions 30,000 per minute.

However carefully the turbine may be manufactured it is impossible, on account of unevenness of the material, to get its centre of gravity to correspond exactly to its geometrical axle of revolution; and however small this difference may be, it becomes very noticeable at such high velocities. De Laval has succeeded in solving the problem by providing the turbine with a flexible shaft. This yielding shaft allows the turbine at the high rate of speed to adjust itself and revolve around its true centre of gravity, the centre line of the shaft meanwhile describing a surface of revolution.
In the gearing-box the speed is reduced from 30,000 revolutions to 3000 by means of a driver on the turbine shafts, which sets in motion a cogwheel of 10 times its own diameter. These gearings are provided with spiral cogs placed at an angle of about \(45^{\circ}\). The shaft of the larger cog-wheel, running at a speed of 3000 revolutions, is provided at its outer end with a pulley for the further trausmission of the power.

Rotary Steam-engines, other than steam turbines, have been invented by the thousands, but not one has attained a commercial success. The possible adrantages, such as saving of space, to be gained by a rotary engine are overbalanced by its waste of steam.
The Tower Spherical Engine, one of the most recent forms of rotary-engine, is described in Proc. Inst. M. E., 1885, also in Modern Mechanism, p. 296.

\section*{DIMENSIONS OF PARTS OF ENGINES.}

The treatment of this subject by the leading authorities on the steam-engine is very unsatisfactory, being a confused mass of rules and formulæ based partly upon theory and partly upon practice. The practice of builders shows an exceeding diversity of opinion as to correct dimensions. The treatment given below is chiefly the result of a study of the works of Rankine, Seaton, Unwin, Thurston, Marks, and Whitham, and is largely a condensation of a series of articles by the author published in the American Ma. chinist, in 1894, with many alterations and much additional matter. In order to make a comparison of many of the formulæ they have been applied to the assumed cases of six engines of different sizes, and in some cases this comparison has led to the construction of new formulæ.

Cylinder. (Whitham.)-Length of bore \(=\) stroke + breadth of piston. ring \(-1 / 8\) to \(1 / 2 \mathrm{in}\); length between heads \(=\) stroke + thickness of piston + sum of clearances at both ends; thickness of piston \(=\) breadth of ring + thickness of flange on one side to carry the ring + thickness of followerplate.
Thickness of flange or follower....
For cylinder of diameter...........
\(8 / 8\) to \(1 / 2 \mathrm{in} . \quad \frac{3 / 4}{} \mathrm{in} . \quad 10 \mathrm{in} . \quad 36 \mathrm{in} . \quad 60\) to 100 in.
Clearance of Piston. (Seaton.)-The clearance allowed varies with the size of the engine from \(1 / 8\) to \(3 / 8 \mathrm{in}\). for roughness of castings and \(1 / 16\) to \(1 / 8\) in. for each working joint. Naval and other very fast-running engines have a larger allowance. In a vertical direct-acting engine the parts which wear so as to bring the piston nearer the bottom are three. viz., the shaft journals, the crank-pin brasses. and piston-rod gudgeon-brasses.

Thickness of Cylinder. (Thurston.)-For engines of the older types and under moderate steam-pressures, some builders have for many years restricted the stress to about 2550 lbs . per sq. in.
\[
\begin{equation*}
t=a p_{1} D+b \tag{1}
\end{equation*}
\]
is a common proportion; \(t, D\), and \(b\) being thickness, diam.. and a coustant added quantity varying from 0 to \(1 / 2\) in, all in inches; \(p_{1}\) is the initial unbalanced steam-pressure per sq. in. In this expression \(b\) is made larger for horizontal than for vertical cylinders, as, for example, in large engines 0.5 in the one case and 0.2 in the other, the one requiring re-boring more than the other. The constant \(\alpha\) is from 0.0004 to 0.0005 : the first value for vertical cylinders, or short strokes; the second for horizontal engines, or for long strokes.
Tlickness of Cylinder and its Connections for Marine Engines. (Seaton). \(-D=\) the diam. of the cylinder in inches; \(p=\) load on the safety-valves in lbs. per sq. in.; \(f\), a constant multiplier = thickness of barrel +.25 in .
Thickness of metal of cylinder barrel or liner, not to be less than \(p \times D+\) 3000 when of cast iron.*

Thickness of cylinder-barrel \(=\frac{p \times D}{5000}+0.6 \mathrm{in}\).
" \(\quad\) " liner \(=1.1 \times f\).
Thickness of liner when of steel \(p \times D \div 6000+0.5\)
" metal of steam-ports \(=0.6 \times f\).
" "6 valve-box sides \(=0.65 \times f\).

\footnotetext{
* When made of exceedingly good material, at least twice melted, the thickness may be 0.8 of that given by the above rules.
}

Thickness of metal of valve-box covers \(=0.7 \times f\).


Whitham gives the following from different authorities:
\[
\begin{aligned}
& \text { Van Buren: }\left\{\begin{array}{l}
t=0.0001 D p+0.15 \sqrt{D} ; ~ \cdot \cdot \cdot \cdot \cdot ~(5) ~
\end{array}\right. \\
& \text { Tredgold : } t=\frac{(D+2.5) p}{1900} \ldots \text {. . . . . . . (i) } \\
& \text { Weisbach: } t=0.8+0.00033 p D \text {. . . . . . . (8) } \\
& \text { Seaton: } t=0.5+0.0004 p D \text {. . . . . . . (9) } \\
& \text { Haswell : }\left\{\begin{array}{l}
t=0.0004 p D+1 / 8 \text { (vertical); } \quad . . .(10) \\
t=0.0005 p D+18 \text { (horizontal). }
\end{array}\right.
\end{aligned}
\]

Whitham recommends (6) where provision is made for the reboring, and where ample strength and rigidity are secured, for horizontal or vertical cylinders of large or small diameter; (9) for large cylinders using steam under 100 lbs . gauge .pressure, and
\[
\begin{aligned}
t & =0.003 D \sqrt{p} \text { for small cylinders. } \bullet \bullet . . .(12) \\
\text { Marks gives } t & =0.00028 p D
\end{aligned}
\]

This is a smaller value than is given by the other formulæ quoted; but Marks says that it is not advisable to make a stcam-cylinder less than 0.\% in. thick under any circumstances.

The following table gives the calculated thickness of cylinders of engines of 10,30 , and 50 in . diam., assuming \(p\) the maximum unbalanced pressure on the piston \(=100 \mathrm{lbs}\). per sq. in. As the same engines will be used for calcuJation of other dimensions, other particulars concerning them are here given for reference.

Dimensions, etc., of Engines.

\begin{tabular}{|c|c|c|c|}
\hline Thickness of Cylinder by Formula. & 1 and 2. & 3 and 4. & 5 and 6. \\
\hline (1) \(.0004 p D+0.5\), short stroke... & . 90 & 1.70 & 2.50 \\
\hline (1) \(00005 \mathrm{p} D+0.5\), long stroke... & 1.00 & 2.00 & 3.00 \\
\hline (2) \(00033 p^{\text {(3) }} .0002 p D+0.6 \ldots \ldots .\). & . 80 & .99
1.40 & 167
1.60 \\
\hline (5) \(.0001 p D+.15 \sqrt{D}\) & . 57 & 1.12 & 1.56 \\
\hline (6) \(.03 \sqrt{\overline{D p}}\). & . 95 & 1.64 & 2.12 \\
\hline (\%) \(\frac{(D+2.5)}{1900} p\) & . 66 & 1.71 & \(2 . \% 6\) \\
\hline (8) \(.000333 p D+0.8\) & 1.13 & 1.79 & 2.45 \\
\hline (9). \(0004 p \mathrm{p}+0.5\) & . 90 & 1.70 & 2.50 \\
\hline (10) \(.0004 p \mathrm{D}+1 / 8\) (vertical) & . 53 & \({ }_{1}^{1.33}\) & \({ }_{2}^{2.13}\) \\
\hline (11) \(.0005 \mathrm{p} D+1 / 8\) (horizontal) .... & . 63 & & \\
\hline \begin{tabular}{l}
(12) \(.003 D \sqrt{p}\) (small engines). \\
(13) . \(00028 p \mathrm{D}\)
\end{tabular} & . 388 (?) & \(\cdots \stackrel{81}{4}(?)\) & 1. 100 (?) \\
\hline Average of first eleven. & . 76 & 1.48 & 2.26 \\
\hline
\end{tabular}

The average corresponds nearly to the formula \(t=.00037 D p+0.4 \mathrm{in} . A\) convenient approximation is \(t=.0004 D p+0.3\) in., which gives for
\begin{tabular}{lccccccc} 
Diameters............ & 10 & 20 & 30 & 40 & 50 & \(60 \mathrm{in}\). \\
Thicknesses......... & .60 & 1.10 & 1.50 & 1.90 & 2.30 & \(2 . \% 0 \mathrm{in}\).
\end{tabular}

The last formula corresponds to a tensile strength of cast iron of 12,500 lbs., with a factor of safety of 10 and an allowance of 0.3 in . for reboring.

Cylinder-heads.-Thurston says: Cylinder-heads may be given a thickness, at the edges and in the flanges, exceeding somewhat that of the cylinder. An excess of not less than \(25 \%\) is usual. It may be thinner in the middle. Where made, as is usual in large engines, of two disks with intermediate radiating, connecting ribs or webs, that section which is safe against shearing is probably ample. An examination of the designs of experienced builders, by Professor Thurston, gave
\[
\begin{equation*}
t=\frac{D p}{3000}+1 / 4 \text { inch } \tag{1}
\end{equation*}
\]
\(D\) being the diameter of that circle in which the thickness is taken.
\(\begin{array}{lll}\text { Thurston also gives } & t=.005 D \sqrt{p}+0.25 . \\ \text { Marks gives } & t=0.003 D 1^{\prime} \bar{p} . .\end{array}\)
He also says a good practical rule for pressures under 100 lbs . per sq. in. is to make the thickness of the cylinder-heads \(11 / 4\) times that of the walls; and applying this factor to his formula for thickness of walls, or \(.000: 28 p \mathrm{D}\), we have
\[
\begin{equation*}
t=.00035 p D \tag{4}
\end{equation*}
\]

Whitham quotes from Seaton,
\[
\begin{equation*}
t=\frac{p D+500}{2000}, \text { which is equal to } .0005 p D+.25 \text { inch. } \tag{5}
\end{equation*}
\]

Seaton's formula for cylinder bottoms, quoted above, is
\[
\begin{equation*}
t=1.1 f, \text { in which } f=.0002 p D+.85 \text { inch, or } t=.00022 p D+.93 \tag{6}
\end{equation*}
\]

Applying the above formulæ to the engines of 10,30 , and 50 inches diameter, with maximum unbalanced steam-pressure of 100 lbs . per sq. in., we have
\begin{tabular}{|c|c|c|c|c|}
\hline Cylinder diameter, in & & 10 & 30 & 50 \\
\hline (1) \(t=.00033 D p+.25\) & \(=\) & . 53 & 1.25 & 1.82 \\
\hline (2) \(t=.005 D \sqrt{p}+.25\) & = & . 75 & 1.75 & \(2 . \% 5\) \\
\hline (3) \(t=.003 D \sqrt{p}\) & = & . 30 & . 90 & 1. 50 \\
\hline (4) \(t=.00035 D_{p}\) & = & . 35 & 1.05 & 1.75
2.75 \\
\hline (5) \(t=.0005 D p+.25\)
(6) \(t=.0002 \cup D p+.93\) & = & 1.75 & 1.75
1.59 & 1.75
2.03 \\
\hline Average of & & . 65 & 1.38 & 2.10 \\
\hline
\end{tabular}

The average is expressed by the formula \(t=.00036 D p+.31\) inch.
Micyer's "Modern Locomotive Construction," p. 24, gives for locomotive cylinder-heads for pressures up to \(120 \mathrm{lbs} .:\)
\begin{tabular}{ccccccc} 
For diameters, in........ & 19 to 22 & 16 to 18 & 14 to is & 11 to 13 & 9 to 10 \\
Thickness, in... \(\ldots \ldots \ldots\). & \(11 / 4\) & 1 & 1 & \(8 / 8\) & \(3 / 4\)
\end{tabular}

Taking the pressure at 120 lbs . per sq. in., the thicknesses \(1 / 4 \mathrm{in}\). and \(3 / 4 \mathrm{iu}\). for crlinder's 22 and 10 in . diam., respectively, correspond to the formula \(t=.00035 D p+.33\) inch.

Web-stiffened Cylinder-cover.s.-Seaton objects to webs for stiffening casi-iron cylinder-covers as a source of danger. The strain on the web is one of tension, and if there should be a nick or defect in the outer edge of the web the sudden application of strain is apt to start a crack. He recommends that high-pressure cylinders over 24 in . and lowpressure cylinders over 40 in . diam. should have their covers cast hollow, with two thicknesses of metal. The depth of the cover at the middle should be about \(1 / 4\) the diam. of the piston for pressures of 80 lbs . and upwards, and that of the low-pressure cylinder-cover of a compound engine equal to that of the high-pressure cvlinder. Another rule is to make the depth at the middle not less than 1.3 times the diameter of the piston-rod. In the British Navy the cylinder-covers are made of steel castings, \(3 / 4\) to \(11 / 4 \mathrm{in}\). thick, generally cast without webs, stiffness being obtained by their form, which is nften a series of corrugations.

Cylinder-head Bolts.-Diameter of bolt.circle for cylinder-head \(=\) diameter of cylindor \(+2 \times\) thicinness of cylinder \(+2 \times\) diameter of bolts. The bolts should not be more than 6 inches apart (Whitham).
Marks gives for number of bolts \(b=\frac{.8854 D^{2} p}{500 c}=.0001571 \frac{D^{2} p}{c}\), in which \(c=\) area of a single bolt, \(p=\) boiler-pressure in lbs. per sq. in.: 5000 lbs . is taken as the safe strain per sq. in. on the nominal area of the boit.

Seaton says: Cylinder-cover studs and bolts, when made of steel, should \(b i z\) of such a size that the strain in them does not exceed 5000 lbs . per sq . in. When of less than \(7 / 8\) inch diameter it should not exceed 4500 lbs . per sq. in. When of iron the strain should be \(20 \%\) less.

Thurston says: Cylinder flanges are made a little thicker than the cylinder, and usually of equal thickness with the flanges of the heads. Cylinderbolts should be so closely spaced as not to allow springing of the flanges and leakage, say, 4 to 5 times the thickness of the flanges. Their diameter should be proportioned for a maximum stress of not over 4000 to 5000 lbs . per square inch.
If \(D=\) diameter of cylinder, \(p=\) maximum steam-pressure, \(b=\) number of bolts, \(s=\) size or diameter of each bolt, and 5000 lbs . be allowed per sq. in. of nominal area of the bolt, \(.7854 D^{2} p=392 \sim 6 s^{2}\); whence \(b s^{2}=.0002 D^{2} p\);
\(b=.0002 \frac{D^{2} p}{s^{2}} ; s=.01414 D \sqrt{\frac{p}{b}}\). For the three engines we have:
\begin{tabular}{llccc} 
Diameter of cylinder, inches........ & 10 & 30 & 50 \\
Dianmeter of bolt-circle, approx.... & 13 & 35 & 57.5 \\
Circumference of circle, approxx... & 40.8 & 110 & 180 \\
Minimum No. of bolts, circ. \(+6 \ldots .\). & 8 & 18 & 30 \\
Diam. of bolts, \(s=.01414 \mathrm{D} \sqrt{\bar{p}} \ldots \ldots\). & \(3 / 4 \mathrm{in}\). & 1.00 & 1.29
\end{tabular}

The diameter of bolt for the 10 inch cylinder is 0.54 in . by the formula, but \(3 / 4\) inch is as small as should be taken, on account of possible overstrain by the wrench in screwing up the nut.
The Piston. Details or Construction of Ordinary Pis= tons. (Seaton.)-Let \(D\) be the diameter of the piston in inches, \(p\) the effective pressure persquare inch on it, \(x\) a constant multiplier, found as follows:
\[
x=\frac{D}{50} \times \sqrt{p}+1
\]


Marks gives the approximate rule: Thickness of piston-head \(=\sqrt[2]{l d}\), in which \(l=\) length of stroke, and \(d=\) diameter of cylinder in inches. Whita am says in a horizontal engine the rings support the piston, or at least a part of it, under ordinary conditions. The pressure due to the weight of the piston upon an area equal to 0.7 the diameter of the cylinder \(x\) breadth of ring-face should never exceed 200 lbs . per sq. in. He also gives a formula much used in this country: Breadth of ring-face \(=0.15 \times\) diameter of cylinder.
For our engines we have diameter \(=\ldots \ldots . . . . .\). . 10 . 50
Thickness of piston-head.


Diameter of Piston Packing-rings. - These are generally turned, before they are cut, about \(1 / 4\) inch diameter larger than the cylinder, for cylinders up to 20 inches diameter, and then enough is cut out of the ring to spring them to the diameter of the cylinder. For larger cylinders the rings are turned proportionately larger. Seaton recommends an excess of \(1 \%\) of the diameter of the cylinder.

Cross-section of the Rings.-The thickness is commonly made \(1 / 30\) th of the diam. of cyl. \(+1 / 8\) inch, and the width \(=\) thickness \(+1 / 8\) inch. For an eccentric ring the mean thickness may be the same as for a ring of uniform thickness, and the minimum thickness \(=2 / 3\) the maximum.

A circular issued by J. H. Dunbar, manufacturer of packing-rings, Youngstown, O., says: Unless otherwise ordered, the thickness of rings will be made equal to \(.03 \times\) their diameter. This thickness has been found to be satisfactory in practice. It admits of the ring being made about \(3 / 16^{\prime \prime}\) to the foot larger than the cylinder, and has, when new, a tension of about two pounds per inch of circumference, which is ample to prevent leakage, if the surface of the ring and cylinder are smooth.

As regards the width of rings, authorities "scatter" from very narrow to very wide, the latter being fully ten times the former. For instance, Unwin gives \(W=d .014+.08\). Whitham's formula is \(W=d .15\). In both formulæ \(W\) is the width of the ring in inches, and \(d\) the diameter of the cylinder in inches. Unwin's formula makes the width of a \(20^{\prime \prime}\) ring \(W=20 \times .014\) \(+.08=.36^{\prime \prime}\), while Whitham's is \(20 \times .15=3^{\prime \prime}\) for the same diameter of ling. There is much less difference in the practice of engine-builders in this respect, but there is still room for a standard width of ring. It is believed that for cylinders over \(16^{\prime \prime}\) diameter \(3 / 4^{\prime \prime}\) is a popular and practical width, and \(1 / 2^{\prime \prime}\) for celinders of that size and under.

ITit́ of Piston-rod into Piston. (Seaton.)-The most convenient and reliable practice is to turn the piston-rod end with a shoulder of \(1 / 16\) inch for small engines, and \(1 / 8\) inch for large ones, make the taper 3 in. to
the foot until the section of the rod is three fourths of that of the body, then turn the remaining part parallel; the rod should then fit into the piston so as to leave \(1 / 8\) inch between it and the shoulder for large pistons, and \(1 / 16\) in. for sinall. The shoulder prevents the rod from splitting the piston, and allows of the rod being turned true after long wear without encroaching on the taper.

The piston is secured to the rod by a nut, and the size of the rod should be such that the strain on the section at the bottom of the thread does not exceed 5500 lbs . per sq. in. for iron, 7000 lbs . for steel. The depth of this nut need not exceed the dianneter which would be found by allowing these strains. The nut shouid be locked to prevent its working loose.

Diameter of Piston-rods.-Unwin gives
\[
d^{\prime \prime}=b D \sqrt{p}, \quad \text {. . . . . . . . . . (1 }
\]

In which \(D\) is the cylinder diameter in inches, \(p\) is the maximum unbalanced pressure in los. per sq. in., and the constant \(b=0.0167\) for iron, and \(b=\) 0.0144 for steel. Thurston, from an examination of a considerable number of rods in use, gives
\[
\begin{equation*}
d^{\prime \prime}=\sqrt[4]{\frac{D^{2} p L^{2}}{a}}+\frac{D}{80}, \text { nearly } \tag{2}
\end{equation*}
\]
( \(L\) in feet, \(D\) and \(d\) in inches), in which \(\alpha=10,000\) and upward in the various types of engines, the marine screw engines or ordinary fast engines on hore giving the lowest values, while "low-speed engines" being less liable to accident from shock give \(\alpha=15,000\), often.

Connections of the piston-rod to the piston and to the crosshead should have a factor of safety of at least 8 or 10. Marks gives
\[
\begin{align*}
& d^{\prime \prime}=0.0179 D \sqrt{p}, \text { for iron; for steel } d^{\prime \prime}  \tag{3}\\
& \text { and } d^{\prime \prime}=0.03901 \sqrt[4]{D^{2} l^{2} p}, \text { for iron; for steel } d^{\prime \prime}  \tag{4}\\
&=0.03525 \sqrt[4]{D^{2} l^{2} p}
\end{align*}
\]
in which \(l\) is the length of stroke, all dimensions in inches. Deduce the diumeter of piston-rod by (3), and if this diameter is less than \(1 / 12 l\), then use (4).
\[
\text { Seaton gives: } \text { Diameter of piston-rod }=\frac{\text { Diameter of cylinder }}{F} \sqrt{p} .
\]

The following are the values of \(F\) :
\[
\begin{aligned}
& \text { Naval engines, direct-acting ............................ } \quad F=60 \\
& \text { return connnecting-rod, } 2 \text { rods....... } \quad \text { r }=80 \\
& \text { Mercantile ordinary stroke, direct-acting............... } F=50 \\
& \text { " long }{ }^{6} \text { very long " } 6 \quad \ldots \ldots \ldots \ldots .{ }^{F}=48 \\
& \text { " very long " " } 6 \text {.............. } F=45 \\
& \text { " medium stroke, oscillating ................... } F=45
\end{aligned}
\]

Note.-Long and very long, as compared with the stroke usual for the power of engine or size of cylinder.

In considering an expansive engine \(p\), the effective pressure should be taken as the absolute working pressure, or 15 lbs , above that to which the boiler safety-valve is loaded; for a compound engine the value of \(p\) for the high-pressure piston should be taken as the absolute pressure, less 15 lbs ., or the same as the load on the safety-valve; for the medium-pressure the load may be taken as that due to half the absolute boiler-pressure; and for the low-pressure cylinder the pressure to which the escape-valve is loaded +15 lbs ., or the maximum absolute pressure, which can be got in the receiver, or about 25 lbs . It is an advantage to make all the rods of a compound engine alike, and this is now the rule.
Applying the above formulæ to the engines of 10,30 , and 50 in . diameter, both short and long stroke, we have:

\section*{Diameter of Piston-rods.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diameter of Cylinder, inches.. & \multicolumn{2}{|l|}{10} & \multicolumn{2}{|l|}{30} & \multicolumn{2}{|c|}{50} \\
\hline Stroke, inches & 12 & 24 & 30 & 60 & 48 & 95 \\
\hline Unwin, iron, \(.016 \% D \sqrt{p}\) & 1.67 & 1.67 & 5.01 & 5.01 & 8.35 & 8.35 \\
\hline Unwin, steel, \(.0144 D \sqrt{p}\) & 1.44 & 1.44 & 4.32 & 4.32 & 7.20 & 7.20 \\
\hline Thurstou \(\sqrt[4]{\frac{\bar{D}^{2} p L^{2}}{10,000}}+\frac{D}{80}\) ( \(L\) in feet \()\). & 1.13 & & 3.12 & & 5.10 & \\
\hline Thurston, same with \(\alpha=15,000\). & & 1.40 & & 3.88 & & 6.35 \\
\hline Marks, iron, \({ }^{\text {. }}\) (799D \(\sqrt{p}\).. & 1.79 & & 5.37 & 5.37 & 8.95 & 8.95 \\
\hline Marks, iron, . \(03901 \sqrt[4]{\sqrt{D^{2} l^{2} p} \ldots . . . . . . . .}\) & 1.35 & 1.91 & 3.70 & 5.13 & 6.04 & 8.54 \\
\hline Marks, steel, \(.0105 D \sqrt{p}\). & (1.05) & & (3.15) & 5.13 & (5.25) & 8.54 \\
\hline Marks, steel, . \(03525 \sqrt[4]{D^{2} l^{2} p}\) & 1.22 & 1.73 & 3.34 & 4.72 & 5.46 & 7.72 \\
\hline Seaton, naval engines, \(\frac{D}{60} \sqrt{p} \ldots \ldots \ldots\) & 1.67 & & 5.01 & 4.8 & 8.35 & . \\
\hline Seaton, land engine, \(\frac{D}{45} \sqrt{p} \ldots \ldots\). & & 2.22 & & 6.67 & & 11.11 \\
\hline Average of four for iron & 1.49 & 1.82 & 4.30 & 5.26 & 7.11 & 8.74 \\
\hline
\end{tabular}

The figures in brackets opposite Marks' third formula would be rejected since they are less than \(1 / 8\) of the stroke, and the figures derived by his fourth formula would be taken instead. The figure 1. 9 opposite his first formula would be rejected for the engine of 24 -inch stroke.

An empirical formula which gives results approximating the above averages is \(d^{\prime \prime}=.013 \sqrt{\overline{D l p}}\).

The calculated results from this formula, for the six engines, are, respectively, 1.42, 1.88, 3.90, 5.61, 6.37, 9.01.

Piston-rod Guides.-The thrust on the guide, when the connectingrod is at its maximum angle with the line of the piston-rod, is found from the formula: Thrust \(=\) total load on piston \(\times\) tangent of maximum angle of connecting-rod \(=p \tan \theta\). This angle, \(\theta\), is the angle whose sine \(=\) half stroke of piston \(\div\) length of connecting-roa.

Seaton says: The area of the guide-block or slipper surface on which the thrust is taken should in no case be less than will admit of a pressure of 400 lbs. on the square inch; and for good working those surfaces which take the thrust when going ahead should be sufficiently large to prevent the maximum pressure exceeding 100 lbs . per sq. in. When the surfaces are kept well lubricated this allowance may be exceeded.

Thurston says: The rubbing surfaces of guides are so proportioned that if \(V\) be their relative velocity in feet per minute, and \(p\) be the intensity of pressure on the guide in lbs. per sq. in., \(p V<60,000\) and \(p V>40,000\).

The lower is the safer limit; but for marine and stationary engines it is allowable to take \(p=60,000 \div V\). According to Rankine, for locomotives, \(p=\frac{44800}{V+20}\), where \(p\) is the pressure in lbs. per sq. in. and \(V\) the velocity of rubbing in feet per minute. This includes the sum of all pressures forcing the two rubbing surfaces together.

Some British builders of portable engines restrict the pressure between the guides and cross-heads to less than 40 , sometimes 35 lbs . per square inch.
For a mean velocity of 600 feet per minute, Prof. Thurston's formulas give, \(p<100, p>66.7\); Rankine's gives \(p=72.2\) lbs. per sq. in.

\section*{Whitham gives,}
\[
A=\text { area of slides in square inches }=\frac{P}{p_{0} \sqrt{n^{2}-1}}=\frac{.7854 d^{2} p_{1}}{p_{0} \sqrt{n^{2}-1}}
\]
in which \(P=\) total unbalanced pressure, \(p_{1}=\) pressure per square inch on piston, \(d=\) diameter of cylinder, \(p_{0}=\) pressure allowable per square inch on slides, and \(n=\) length of connecting-rod \(\div\) length of crank. This is equivalent to the formula, \(A=P \tan \theta \div p_{0}\). For \(n=5, p_{1}=100\) and \(p_{0}\) \(=80, A=.2004 d^{2}\). For the three engines 10,30 and 50 in . diam., this would give for area of slides, \(A=20,180\) and 500 sq. in., respectively. Whitham says: The normal pressure on the slide may be as high as 500 lbs . per sq. in., but this is when there is good lubrication and freedom from dust. Stationary and marine engines are usually designed to carry 100 lbs . per sq. in., and the area in this case is reduced from \(50 \%\) to \(60 \%\) by grooves. In locomotive engines the pressure ranges from 401050 lbs . per sq. in. of slide, on account of the inaccessibility of the slide, dirt, cinder, etc.

There is perfect agreement among the authorities as to the formula for area of the slides, \(A=P \tan \theta \div p_{0}\); but the value given to \(p_{n}\), the allowable pressure per square inch, ranges all the way from 35 lbs . to 500 lbs .

The Connecting-rod. Ratio of length of connecting-rod to length of stroke.-Experience has led generally to the ratio of \(2 \mathrm{or}^{\circ} 21 / 2\) to 1 , the latter giving a long and easy-working rod, the former a rather short, but yet a nlanageable one (Thurston). Whitham gives the ratio of from 2 to \(41 / 2\), and Marks from 2 to 4.

Dimensions of the Connecting-rod. -The calculation of the diameter of a connecting-rod on a theoretical basis, considering it as a strut subject to both compressive and bending stresses, and also to stress due to its inertia, in high-speed engines, is quite complicated. See Whitham, Steam-engine Design, p. 217; Thurston, Manual of S. E., p. 100. Empirical formulas are as follows: For circular rods, largest at the middle, \(D=\) diam. of cylinder, \(l=\) length of connecting-rod in inches, \(p=\) maximum steam-pressure per sq. in.
(1) Whitham, diam. at middle, \(d^{\prime \prime}=0.02 \% \sqrt{D l \sqrt{p}}\).
(2) Whitham, diam. at necks, \(d^{\prime \prime}=1.0\) to \(1.1 \times\) diam. of piston-rod.
(3) Sennett, diam. at middle, \(d^{\prime \prime}=\frac{D}{55} \sqrt{p}\).
(4) Sennett, diam. at necks, \(d^{\prime \prime}=\frac{D}{60} \sqrt{p}\).
(5) Marks, diam., \(d^{\prime \prime}=0.01 \pi 9 D ~ 1^{\prime} \bar{p}\). if diam. is greater than \(1 / 24\) length.
(6) Marks, diam., \(d^{\prime \prime}=0.02 \% 5 S \sqrt{D l} \sqrt{p}\) if diam. found by (5) is less than 1/24 length.
(7) Thurston, diam. at middle, \(d^{\prime \prime}=a \sqrt{D L 1^{\prime} \bar{p}}+C, D\) in inches, \(L\) in feet, \(a=0.15\) and \(C=1 / 2\) inch for fast engines, \(a=0.08\) and \(C=3 / 4\) inch for moderate speed.
(8) Seaton says: The rod may be considered as a strut free at both ends, and, calculating its diameter accordingly,
\[
\text { diameter at middle }=\frac{\sqrt{R\left(1+4 a r^{2}\right)}}{48.5}
\]
where \(R=\) the total load on piston \(P\) multiplied by the secant of the maximum angle of obliquity of the connecting-rod.
For wrought iron and mild steel \(a\) is taken at \(1 / 3000\). The following are the values of \(r\) in practice:

(9) The following empirical formula is given by Seaton as agreeing closely with good modern practice:

Diameter of connecting-rod at middle \(=\sqrt{l \bar{K}} \div 4, l=\) length of rod in inches, and \(K=0.03 \sqrt{\text { effective load on piston in pounds. }}\)

The diam. at the ends may be \(0.8 \% 5\) of the diam. at the middle.
Seaton's empirical formula when translated into terms of \(D\) and \(p\) is the same as the second one by Marks, viz., \(d^{\prime \prime}=0.03 \% 58 \sqrt{D l \sqrt{p}}\). Whitham's (1) is also practically the same.
(10) Taking Seaton's more complex formula, with length of connecting. rod \(=2.5 \times\) length of stroke, and \(\gamma=12\) and 16 , respectively, it reduces to: Diam. at middle \(=.02: 294 \sqrt{P}\) and \(.02411 \sqrt{P}\) for short and long stroke engiues, respectively.
Applying the above formulas to the engines of our list, we have

\section*{Diameter of Connecting-rods.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diameter of Cylinder, inches. & \multicolumn{2}{|c|}{10} & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|r|}{50} \\
\hline Stroke, inches & 12 & 24 & 30 & 60 & 48 & 96 \\
\hline Length of connecting-rod & 30 & 60 & \% 5 & 150 & -120 & 240 \\
\hline (3) \(d^{\prime \prime}=\frac{D}{55} \sqrt{p}=.0182 D \sqrt{p}\). & 1.82 & 1.82 & 5.46 & 5.46 & 9.09 & 9.09 \\
\hline (5) \(d^{\prime \prime}=.0179 D \sqrt{p}\) & 1.79 & & 5.37 & & 8.95 & \\
\hline (6) \(d^{\prime \prime}=.02 \pi 58 \sqrt{D l \sqrt{p}}\) & & 2.14 & & 5.85 & & 9.51 \\
\hline (7) \(d^{\prime \prime}=0.15 \sqrt{D L 1^{\prime} p}+1 / 2\) & 2.87 & & 7.00 & & 11.11 & \\
\hline (7) \(d^{\prime \prime}=0.05 \sqrt{D L \sqrt{p}}+3 / 4\) & & 2.54 & & 5.65 & & 8.75 \\
\hline (9) \(d^{\prime \prime}=.03 \sqrt{P}\). & \(2.6 \%\) & 2.67 & 7.97 & 7.97 & 13.29 & 13.29 \\
\hline (10) \(d^{\prime \prime}=.02294 \sqrt{P} ; .02411\) & 2.03 & 2.14 & 6.09 & 6.41 & 10.16 & 10.68 \\
\hline Average. & 2.24 & 2.26 & 6.38 & 6.27 & 10.52 & 10.26 \\
\hline
\end{tabular}

Formulæ 5 and 6 (Marks), and also formula 10 (Seaton), give the larger diameters for the long-stroke engine; formulæ 7 give the larger diameters for the short-stroke engines. The average figures show but little difference in diameter between long- and short-stroke engines; this is what might be expected, for while the connecting-rod, considered simply as a colum:, would require an increase of diameter for an increase of length, the load remaining the same, yet in an engine generally the shorter the connectingrod the greater the number of revolutions, and consequently the greater the strains due to inertia. The influences tending to increase the diameter therefore tend to balance each other, and to render the diameter to some extent independent of the length. The avelage figures correspond nearly to the simple formula \(d^{\prime \prime}=.021 D \sqrt{p}\). The diameters of rod for the three diameters of engine by this formula are, respectively, 2.10, 6.30 , and 10.50 in . Since the total pressure on the piston \(P=.7854 D^{2} p\), the formula is equivalent to \(d^{\prime}=.023 \pi \sqrt{P}\).

Connecting-rod Ends.-For a connecting-rod end of the marine type, where the end is secured with two bolts, each bolt should be proportioned for a safe tensile strength equal to two thirds the maximum pull or thrust in the connecting-rod.

The cap is to be proportioned as a beam loaded with the maximum pull of the connecting-rod, and supported at both ends. The calculation should be made for rigidity as well as strength, allowing a maximum deflection of \(1 / 100\) inch. For a strap-and-key connecting-rod end the strap is designed for tensile strength, considering that two thirds of the pull on the connectingrod may come on one arm. At the point where the metal is slotted for the key and gib, the straps must be thickened to make the cross-section equal to that of the remainder of the strap. Between the end of the strap and the slot the strap is liable to fail in double shear, and sufficient metal must be provided at the end to prevent such failure.
The breadth of the key is generally one fourth of the width of the strap, and the length, parallel to the strap, should be such that the cross-section will have a shearing strength equal to the tensile strength of the section of the strap. The taper of the key is generally about \(5 / 8\) inch to the foct.

Tapered Connecting-rods.-In modern high-speed engines it is customary to make the connecting-rods of rectangular instead of circular section, the sides being parallel, and the depth increasing regularly from the crosshead end to the crank-pin end. According to Grashof, the bending action on the rod due to its inertia is greatest at \(6 / 10\) the length from the crosshead end, and, according to this theory, that is the point at which the section should be greatest, although in practice the section is made greatest at the crank-pin end.

Professor Thurston furnishes the author with the following rule for tapered connecting rod of rectangular sectiou: Take the section as computed by the formula \(d^{\prime \prime}=0.1 \sqrt{D L \sqrt{p}}+3 / 4\) for a circular section, and for a rod \(4 / 3\) the actual length, placing the computed section at \(2 / 3\) the length from the small end, and carrying the taper straight through this fixed section to the large end. This brings the computed section at the surge point and makes it heavier than the rod for which a tapered form is not required.

Taking the above formula, multiplying \(L\) by \(4 / 3\), and changing it to \(l\) in inches, it becomes \(d=1 / 30 \sqrt{D l V p}+3 / 4^{\prime \prime}\). Taking a rectangular section of the same area as the round section whose diameter is \(d\), and making the depth of the section \(h=\) twice the thickress \(t\), we have \(. \tilde{6} 84 d^{2}=h t=2 t^{2}\), whence \(t=.62 \tau d=.0209 \sqrt{D l \sqrt{p}}+.47^{\prime \prime}\), which is the formula for the thickness or distance between the parallel sides of the rod. Making the depth at the crosshead end \(=1.5 t\), and at \(2 / 3\) the length \(=2 t\), the equivalent depth at the crank end is 2.25t. Applying the formula to the short-stroke engines of our examples, we have


The thicknesses \(t\), found by the formula \(t=.0209 \sqrt{D l \sqrt{p}}+.47\), agree closely with the more simple formula \(t=.01 D \sqrt{p}+.60^{\prime \prime}\), the thicknesses calculated by this formula being respectively \(1.6,3.6\), and 5.6 inches.

The Crank-pin. - A crank-pin should be designed (1) to avoid heating, (2) for strength, (3) for rigidity. The heating of a crank-pin depends on the pressure on its rubbing-surface, and on the coefficient of friction, which latter varies greatly according to the effectiveness of the lubrication. It also depends upon the facility with which the heat produced may be carried away: thus it appears that locomotive crank-pins may be prevented to some degree from overbeating by the cooling action of the air through which they pass at a high speed.
\[
\left.\begin{array}{rl}
\text { Marks gives } l & =.0000247 f p N D^{2}=1.038 f \frac{(\text { I.H.P. })}{L} \\
\text { Whitham gives } l & =0.9075 f \frac{(\text { I.H.P. })}{L}, \cdots \tag{2}
\end{array}\right)
\]

In which \(l=\) length of crank-pin journal in inches, \(f=\) coefficient of frictiou, which may be taken at .03 to 05 for perfect lubrication, and .08 to .10 for im: perfect; \(p=\) mean pressure in the cylinder in pounds per square inch; \(D\) \(=\) diameter of cylinder in inches; \(N=\) number of single strokes per minute; I.H.P. = indicated horse-power; \(L=\) length of stroke in feet. These formulæ are independent of the diameter of the pin, and Marks states as a general law, within reasonable limits as to pressure and speed of rubbing, the longer a bearing is made, for a given pressure and number of revolutions, the cooler it will work; and its diameter las no effect upon its heatidg. Both of the above formulæ are deduced empirically from dimensions of crank-pins of existing marine engines. Marks says that about one-fourth the length required for crank-pins of propeller engines will serve for the pins of side-wheel engines, and one tenth for locomotive engines, making the
formula for locomotive crank-pins \(l=.00000247 f p N^{2}\), or if \(p=150, f\) \(=.08\), and \(N=600, l=.013 D^{2}\).
Whitham recommends for pressure per square inch of projected area, for naval engines 500 pounds, for merchant engines 400 pounds, for paddle-wheel engines 800 to 900 pounds.
Thurston says the pressure should, in the steam-engine, never exceed 500 or 600 pounds per square inch for wrought-iron pins. or about twice that figure for steel. He gives the formula for length of a steel pin, in inches,
\[
\begin{equation*}
l=P R \div 600,000, \tag{3}
\end{equation*}
\]
in which \(P\) and \(R\) are the mean total load on the pin in pounds, and the number of revolutions per minute. For locomotives. the divisor may be taken as 500,000 . Where iron is used this figure should be reduced to 300,000 and 250,000 for the two cases taken. Pins so proportioned, if well made and well lubricated. may ailways be depended upon to run cool; if not well formed, perfectly cylindrical, well finished. and kept well oiled, no crank-pin can be relied upon. It is assumed above that good bronze or white-metal bearings are used.
Thurston also says: The size of crank-pins required to prevent heating of the journals may be determined with a fair degree of precision by either of the formulæ given below :
\[
\begin{align*}
& l=\frac{P(V+20)}{44,800 d}(\text { Rankine, 1865); . . . .... (4) } \\
& l=\frac{P V}{60,000 d}(\text { Thurston, 1862); . . . .... (5) }  \tag{5}\\
& l=\frac{P N}{350,000}(\operatorname{Van} \text { Buren, 1866). ....... (6) } \tag{6}
\end{align*}
\]

The first two formulæ give what are considered by their authors fair working proportions. and the last gives minimum length for iron pins. ( \(V=\) velocity of rubbing-surface in feet per minute.)
Formula (1) was obtained by observing locomotire practice in which great liability exists of annoyance by dust, and great risk occurs from inaccessibiiity while running, and (2) hy observation of crank-pins of naval screwengines. The first formula is therefore not well suited for marine practice.
Steel can usually be worked at nearly double the pressure admissible with iron running at similar speed.
Since the length of the crank-pin will be directly as the power expended upon it and inversely as the pressure, we may take it as
\[
\begin{equation*}
l=a \frac{\mathrm{I} \cdot \mathrm{H} \cdot \mathrm{P} .}{L}, . \tag{7}
\end{equation*}
\]
in which \(a\) is a constant, and \(L\) the stroke of piston, in feet. The values of the constant, as obtained by Mr. Skeel, are about as follows: \(a=0.04\) where water can be constantly used; \(a=0.045\) where water is not generally used; \(\alpha=0.05\) where water is seldom used; \(a=0.06\) where water is never needed. Unwin gives
\[
l=a \frac{\mathrm{I} . \mathrm{H} . \mathrm{P}}{r}
\]
in which \(r=\) crank radius in inches, \(a=0.3\) to \(a=0.4\) for iron and for marine engines, and \(\alpha=0.066\) to \(\alpha=0.1\) for the case of the best stepl and for locomotive work, where it is often necessary to shorten up outside pins as much as possible.
J. B. Stanrvood (Eng'g. June 12, 1891), in a table of dimensions of parts of American Corliss engines from 10 to 30 inches diameter of cylinder, gives sizes of crank-pins which approximate closely to the formula
\[
\begin{equation*}
l=.275 D^{\prime \prime}+.5 \text { in.; } d=.25 D^{\prime \prime} . \tag{9}
\end{equation*}
\]

By calculating lengths of iroin crank-pins for the engines 10.30 , and 50 inches diameter, long and short stroke, by the several formula above given, it is found that there is a great difference in the results, so that one formula in certain cases gives a length three times as great as another. Nos. (4). (5), and (6) give lengths much greater than the others. Marks (1). Whitham (2), Thurston (7), \(l=.06\) I.H.P. \(-L\), and Unwin (8), \(l=0.4\) I.H.P. \(\div r\), give results which agree more closely.

The calculated lengths of iron crank-pins for the several cases by formulæ (1), (2), (7), and (8) are as follows:

\section*{Length of Crank-pins.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diameter of cylinder............ ... \(D\) & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Stroke...... . . . . . . . . . . . . . . . . L (ft.) & 1 & 2 & 21/2 & 5 & 4 & 8 \\
\hline Revolutions per minute.............. \(R\) & 250 & 125 & 130 & 65 & 90 & 45 \\
\hline Horse-power........ . . . . . . . . . \(1 . H . P\). & 50 & 50 & 450 & 450 & 1,250 & 1,250 \\
\hline Maximum pressure.................lbs. & 7,854 & 7.854 & \%0,686 & 70,686 & 196,350 & 196,350 \\
\hline Mean pressure per cent of max... & 42 & 42 & 32.3 & 32.3 & 30 & 30 \\
\hline Mean pressure...... ............... P. & 3,299 & 3,299 & 22,832 & 22,832 & 58,905 & 58,905 \\
\hline \begin{tabular}{l}
Length of crank-pin. \\
(1) Whitham, \(l=90 \% 5 \times 05\) I.H.P \(\div \mathscr{L}\).
\end{tabular} & 2.18 & 1.09 & 8.17 & 4.08 & 14.18 & 7.09 \\
\hline (2) Marks, \(\quad l=1.038 \times .05\) I.H.P. \(\div L\). & 2.59 & 1.30 & 9.34 & 4.67 & 16.22 & 8.11 \\
\hline (7) Thurston, \(l=.06\) I.H.P. \(\div L \ldots \ldots\). & 3.00 & 1.50 & 10.80 & 5.40 & 18.75 & 9.38 \\
\hline (8) Unwin, \(l=.4\) I.H.P. & 3.33 & 1.57 & 12.0 & 6.0 & 20.83 & 10.42 \\
\hline (8) -" \(\quad l=.3\) I.H.P. \(\div\) & 2.50 & 1.25 & 9.0 & 4.5 & 15.62 & 7.81 \\
\hline Average......... & 2.72 & 1.36 & 9.86 & 4.93 & 17.12 & 8.56 \\
\hline (8) Unwin, best steel, \(l=.1 \frac{\text { I.H.P. }}{r}\) & . 83 & . 42 & 3.0 & 1.5 & 5.21 & 2.61 \\
\hline (3) Thurston, steel, \(\quad l=\frac{P R}{600,000} \ldots \ldots\). & 1.37 & . 69 & 4.95 & 2.47 & 8.84 & 4.42 \\
\hline
\end{tabular}

The caiculated lengths for the long-stroke engines are too low to prevent excessive pressures. See "Pressures on the Crank-pins," below.

The Strength of the Crank-pin is determined substantially as is that of the crank. In overhung cranks the load is usually assumed as carried at its extremity, and, equating its moment with that of the resistance of the pin,
\[
1 / 2 P l=1 / 32 t \pi d^{3}, \text { and } d=\sqrt[3]{\frac{5.1 \overline{P l}}{t}}
\]
in which \(d=\) diameter of pin in inches, \(P=\) maximum load on the piston, \(t=\) the maximum allowable stress on a square inch of the metal. For iron it may be taken at 9000 lbs . For steel the diameters found by this formula may be reduced \(10 \%\). (Thurston.)
Unwin gives the same formula in another form, viz.:
\[
d=\sqrt[3]{\frac{5.1}{t}} \sqrt[3]{P l}=\sqrt{\frac{5.1}{t}} \sqrt{P \frac{l}{d}}
\]
the last form to be used when the ratio of length to diameter is assumed.
For wrought iron, \(t=6000\) to 9000 lbs. per sq. in.,
\[
\sqrt[3]{\frac{\overline{5.1}}{t}}=.0917 \text { to } .0827 ; \quad \sqrt{\frac{5.1}{\bar{t}}}=.0291 \text { to } .0238
\]

For steel, \(t=9000\) to \(13,000 \mathrm{lbs}\). per sq. in.,
\[
\sqrt[3]{\frac{5.1}{t}}=.0827 \text { to } .0723 ; \quad \sqrt{\frac{5.1}{t}}=.0238 \text { to } .0194
\]

Whitham gives \(d=0.0827 \sqrt[3]{3}^{\sqrt[P]{P l}}=2.1058 \sqrt[3]{ }_{\frac{l \times \mathrm{I} . \mathrm{H.P} .}{L R}}\) for strength, and
\(d=0.405 \sqrt[4]{P^{3}}\) for rigidity, and recommends that the diameter be calculated by both formulæ, and the largest result taken. The first is the same as Unwin's formula, with \(t\) taken at 9000 lbs . per sq. in. The second is based upon an erroneous assumption.

Marks, calculating the diameter for rigidity, gives
\[
d=0.066 \sqrt[4]{p l^{3} D^{2}}=0.945 \sqrt[4]{\frac{(\mathrm{H} . \mathrm{P} .)^{3}}{L N}} ;
\]
\(p=\) maximum steam-pressure in pounds per square inch, \(D=\) diameter of cylinder in inches, \(L=\) length of stroke in feet, \(N=\) number of single strokes per minute. He says there is no need of an investigation of the strength of a crank-pin, as the condition of rigidity gives a great excess of strength.

Marks's formula is based upon the assumption that the whole load may be concentrated at the outer end, and cause a deflection of .01 inch at that point.

It is serviceable, he says, for steel and for wrought iron alike.
Using the average lengths of the crank-pins already found, we have the following for our six engines :

\section*{Diameter of Crank-pins.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diameter of cylinder & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Stroke, ft. & 1 & 2 & 21/2 & 5 & 4 & 8 \\
\hline Length of crank-pin & 2.72 & 1.36 & 9.86 & 4.93 & 17.12 & 8.56 \\
\hline \[
\text { Unwin, } d=\sqrt[3]{\frac{5.1 P l}{t}}
\] & 2.29 & 1.82 & 7.34 & 5.82 & 12.40 & 9.84 \\
\hline Marks, \(d=.066 \sqrt[4]{p l^{3} D^{2}}\). & 1.39 & . 85 & 6.44 & 3.78 & 12.41 & 7.39 \\
\hline
\end{tabular}

Pressures on the Crank-pins.-If we take the mean pressure upon the crank-pin = mean pressure on piston, neglecting the effect of the vary. ing angle of the connecting-rod, we have the following, using the averag lengths already found, and the diameters according to Unwin and Marks:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Diameter of cylinder, inches & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Stroke, feet.. & 1 & 2 & 21/2 & 5 & 4 & 8 \\
\hline Mean pressure on pin, pound & 3,299 & 3,299 & 22,832 & 22,832 & 58,905 & 58,905 \\
\hline Projected area of pin, Unwin & 6.23 & 236 & 72.4 & 28.7 & 212.3 & 84.2 \\
\hline "6 " "6 Marks & 3.78 & 1.16 & 63.5 & 18.6 & 212.5 & 63.3 \\
\hline Pressure per square inch, Unwin & 530
873 & 1,398
2,845 & 315
360 & 796
1,228 & \(2 \sim 7\)
\(2 \pi\) & 700
930 \\
\hline "6 "6 "6 Marks. & 873 & 2,845 & 360 & 1,228 & \(2 \% 7\) & 930 \\
\hline
\end{tabular}

The results show that the application of the formulæ for length and diameter of crank-pins give quite low pressures per square inch of projected area for the short-stroke high-speed engines of the larger sizes, but too high pressures for all the other engines. It is therefore evident that after calculating the dimensions of a crank-pin according to the formulægiven that the results should be modified, if necessary, to bring the pressure per square inch down to a reasonable figure.
In order to bring the pressures down to 500 pounds per square inch, we divide the mean pressures by 500 to obtain the projected area, or product of length by diameter. Making \(l=1.5 d\) for engines Nos. 1, 2, 4 and 6, the revised table for the six engines is as follows :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine, No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Length of crank-pin, inches & 3.15 & 3.15 & 9.86 & 8.37 & 17.12 & 13.30 \\
\hline Diameter of crank-pin & 2.10 & 2.10 & 7.34 & 5.58 & 12.40 & 8.87 \\
\hline
\end{tabular}

\section*{Crosshead-pin or Wrist-pin. - Whitham says the bearing surface} for the wrist-pin is found by the formula for crank-pin design. Seaton says the diameter at the middle must, of course, be sufficient to withstand the bending action, and generally from this cause ample surface is provided for good working; but in any case the area, calculated by multiplying the diameter of the journal by its length, should be such that the pressure does not exceed 1200 lbs . per sq. in., taking the maximum load on the piston as the total pressure on it.

For small engines with the gudgeon shrunk into the jaws of the connect-
ting-rod, and working in brasses fitted into a recess in the piston-rod end and secured by a wrought-iron cap and two bolts, Seaton gives:

\section*{Diameter of gudgeon \(=1.25 \times\) diam. of piston-rod, \\ Length of gudgeon \(=1.4 \times\) diam. of piston-rod.}

If the pressure on the section, as calculated by multiplying length by diameter, exceeds 1200 lbs . per sq. in., this length should be increased.
J. B. Stanwood, in his "Ready Reference" book, gives for length of crosshead-pin 0.25 to 0.3 diam. of piston, and diam. \(=0.18\) to 0.2 diam. of piston. Since he gives for diam. of piston-rod 0.14 to 0.17 dian. of piston, his dimensions for diameter and length of crosshead-pin are about 1.25 and 1.8 diam. of piston-rod respectively. Taking the maximum allowable pressure at \(1200 \mathrm{lbs} . \mathrm{per} \mathrm{sq}\). in. and making the length of the crosshead-pin \(=\) \(4 / 3\) of its diameter, we have \(d=\sqrt{P} \div 40, l=\sqrt{P} \div 30\), in which \(P=\) max. Imum total load on piston in lbs., \(d=\operatorname{diam}\). and \(l=\) length of pin in inches. For the engines of our example we have:


Stanwood's largest dimensious give pressure
per sq. in., lbs
1309
1329
1309
Which pressures are greater than the maximum allowed by Seaton.
The Crank-arm. - The crank-arm is to be treated as a lever, so that if \(a\) is the thickness in direction paral-al to the shaft-axis and \(b\) its breadth at a section \(x\) inches from the crank-pin centre, then, bending moment \(M\) at that section \(=P x, P\) being the thrust of the connecting-rod, and \(f\) the safe strain per square inch,
\[
P x=\frac{f a b^{2}}{6} \text { and } \frac{a \times b^{2}}{6}=\frac{T}{f}, \quad \text { or } a=\frac{6 T}{b^{2} \times f} ; \quad b=\sqrt{\frac{6 T}{f a}} .
\]

If a crank-arm were constructed so that \(b\) varied as \(\sqrt{x}\) (as given by the above rule) it would be of such a curved form as to beinconvenient to manufacture, and consequently it is customary in practice to find the maximum value of \(b\) and draw tangent lines to the curve at the points; these lines are generally, for the same reason, tangential to the boss of the crankarm at the shaft.
The shearing strain is the same throughout the crank-arm; and, consequently, is large compared with the bending strain close to the crank-pin ; and so it is not sufficient to provide there only for bending strains. The section at this point should be such that, in addition to what is given by the calculation from the bending moment, there is an extra square inch for every 8000 lbs . of thrust on the connecting-rod (Seaton).
The length of the boss \(h\) into which the shaft is fitted is from 0.75 to 1.0 of the diameter of the shaft \(D\), and its thickness \(e\) must be calculated from the twisting strain \(P L\). ( \(L=\) length of crank.)

For different values of length of boss \(h\), the following values of thickness of boss \(e\) are given by Seaton:
\[
\text { When } \begin{aligned}
h & =D, \text { then } e=0.35 D \text {; if steel, } 0.3 . \\
h & =0.9 D, \text { then } e=0.38 D, \text { if steel, } 0.32 \\
h & =0.8 D, \text { then } e=0.40 D, \text { if steel, } 0.33 . \\
h & =0.7 D \text {, then } e=0.41 D, \text { if steel, } 0.34 .
\end{aligned}
\]

The crank-eye or boss into which the pin is fitted should bear the same relation to the pin that the boss does to the shatt.
The diameter of the shaft-end onto which the crank is fitted should be \(1.1 \times\) diameter of shaft.
Thurston says: The empirical proportions adopted by builders will commonly be found to fall well within the calculated safe margin. These proportions are, from the practice of successful designers, about as follows :

For the wrought-iron crank. the hub is 1.75 to 1.8 times the least diameter of that part of the shaft carrying full load; the eye is 2.0 to 2.25 the diameter of the inserted portion of the pin, and their depths are, for the hub, 1.0 to 1.2 the diameter of shaft, and for the eye, 1.25 to 1.5 the diameter of pin.

The web is made 0.7 to 0.75 the width of adjacent hub or eye, and is given a depth of 0.5 to 0.6 that of adjacent hub or eye.
For the cast-iron crank the hub and eye are a little larger, ranging in diameter respectively from 1.8 to 2 and from 2 to 2.2 times the diameters of shaft and pin. The flanges are made at either end of nearly the full depth of hub or eye. Cast-iron has, however, fallen very generally into disuse.

The crank-shaft is usually enlarged at the seat of the crank to about 1.1 its diameter at the journal. The size should be nicely adjusted to allow for the shrinkage or forcing on of the crauk. A difference of diameter of one fifth of \(1 \%\), will usually suffice : and a common rule of practice gives an allowance of but one half of this, or .001 .

The formulæ given by different writers for crank-arms practically agree. since they all consider the crank as a beam loaded at one end and fixed at the other. The relation of breadth to thickness may vary according to the taste of the designer. Calculated dimensions for our six engines are as fol lows:

Dimensions of Crank-arins.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Diam. of cylinder, ins & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Stroke S, ins.......... & 12 & 24 & 30 & 60 & 48 & 96 \\
\hline Max pressure on pin \(P\), (approx.) lbs ...... . & \%854 & 7854 & \%0,686 & \%0,686 & 196,350 & 196,350 \\
\hline Diam. crank-pin \(\frac{d . \ldots \ldots}{3}\) & 2.10 & 2.10 & 7.34 & 5.58 & 12.40 & \(8.8 \%\) \\
\hline \[
\text { Diam.shaft, } a \sqrt[3]{\frac{\text { I.H.P. }}{R}} D
\]
\[
(a=4.69,5.09 \text { and } 5.22)
\] & 2.74 & 3.46 & \(7 . \%\) & 9.70 & 12.55 & 15.82 \\
\hline Length of boss, .8D.... & 2.19 & 2.75 & 6.16 & 7.76 & 10.04 & 12.65 \\
\hline Thickness of boss, . 4 D & 1.10 & 1.39 & 3.08 & 3.88 & 5.02 & 6.32 \\
\hline Diam. of boss, 1.8 D . & 4.93 & 6.23 & 13.86 & 17.46 & 22.59 & 28.47 \\
\hline Length crank-pin eye, .8d & 1.6 & 1.76 & 5.8 \% & 4.46 & 9.92 & 7.10 \\
\hline Thickness of crank-pin eye, \(4 \mathrm{~d} . .\). & . 88 & . 88 & ¢.94 & 2.23 & 4.46 & 3.55 \\
\hline Max. mom. T at distance \(1 / 2 S-1 / 2 D\) from centre of pin, inch-lbs. & 37, 149 & S0,661 & 7S8,149 & 1,848,439 & 3,479,322 & \%,871,6\%1 \\
\hline Thickness of crank-arm \(a=.75 D\) & 2.05 & 2.60 & \(5 . \% 8\) & 7.28 & 9.41 & 11.87 \\
\hline Greatest breadth,
\[
b=\sqrt{\frac{6 T}{9000 a}}
\] & 3.48 & 4.55 & 9.54 & 13.0 & 15.7 & 21.0 \\
\hline Min.mom. \(T_{0}\) at distance d from centre of pin \(=P\) 'd Least breadth, & 16,493 & 16,493 & 528,835 & 394,428 & 2,434,740 & 1,741,625 \\
\hline \[
b_{1}=\sqrt{\frac{6 T_{0}}{9000 a}}
\] & 2.32 & 2.06 & 7.81 & 6.01 & 13.13 & 9.89 \\
\hline
\end{tabular}

The Shaft.-Twisting Resistance.-From the general formula fur to: sion, we have: \(T=\frac{\pi}{16} d^{3} S=.19635 d^{3} S\), whence \(d=\sqrt[3]{\frac{5.1 T}{S}}\), in which \(T=\) torsional moment in inch-pounds, \(d=\) diameter in inches, and \(S=\) the shearing resistance of the material in pounds per square inch.

If a constant force \(P\) were applied to the crank-pin tangentially to its path, the work done per minute would be
\[
P \times L \times \frac{2 \pi}{12} \times R=33,000 \times \text { I.H.P., }
\]
in which \(L=\) length of crank in inches, and \(R=\) revs. per ming., and the mean twisting moment \(T=\frac{\text { I.H.P. }}{R} \times 63,025\). Therefore
\[
d=\sqrt[3]{\frac{5.1 T}{S}}=\sqrt[3]{\frac{321,427 \text { I.H.P. }}{R S}}
\]

This may take the form
\[
d=\sqrt[3]{\frac{\overline{I . H . P} \cdot}{R} \times F}, \text { or } d=a \sqrt[3]{\frac{\mathrm{I.H.P}}{R}}
\]
in which \(F\) and \(a\) are factors that depend on the strength of the material and on the factor of safety. Taking \(s\) at 45,000 pounds per square inch for wrought iron, and at 60,000 for steel, we have, for simple twisting by a uniform tangential force,
\begin{tabular}{rcccccccc} 
Factor of safety & \(=5\) & 6 & 8 & 10 & 5 & 6 & 8 & 10 \\
Iron..... & \(F=35.8\) & 42.8 & 57.1 & 71.4 & \(a=3.3\) & 3.5 & 3.85 & 4.15 \\
Steel..... & \(F=\$ 6.8\) & 32.1 & 42.8 & 53.5 & \(a=3.0\) & 3.18 & 3.5 & \(3 . \tilde{\pi}\)
\end{tabular}

Unwin, taking for safe working strength of wrought iron 9000 lbs ., steel 13,500 lbs., and cast iron 4500 lbs , gives \(\quad 1=3.294\) for wrought iron, 2. 8 ir for steel, and 4.15 for cast iron. Thurston, for crank-axles of wrought iron, gives \(a=4.15\) or more.

Seaton says: For wrought iron, \(f\), the safe strain per square inch, should not exceed 9000 lbs , and when the shafts are more than 10 inches diameter, 8000 lbs. Steel, when made from the ingot and of good materials, will admit of a stress of \(12,000 \mathrm{lbs}\). for small shafts, and \(10,000 \mathrm{lbs}\). for those above 10 inches diameter.

The difference in the allowance between large and small shafts is to compensate for the defective material observable in the heart of large shafting, owing to the hammering failing to affect it.
The formula \(d=a \sqrt[3]{\frac{\text { I.H.P. }}{R}}\) assumes the tangential force to be uniform and that it is the only acting force. For engines, in which the tangential force varies with the angle between the crank and the connecting-rod, and with the variation in steam-pressure in the cylinder, and also is influenced hy the inertia of the reciprocating parts, and in which also the shaft may be subjected to bendiug as well as torsion, the factor \(a\) must be increased, to provide for the maximum tangential force aud for bending.

Seaton gives the following table showing the relation between the maximum and mean twisting moments of engines working under various conditions, the momentum of the moving parts being neglected, which is allowable:
\begin{tabular}{|c|c|c|c|}
\hline Description of Engine. & Steam Cut-off at &  & \begin{tabular}{l}
Cube \\
Root of the Ratio
\end{tabular} \\
\hline Single-crank expansive & 0.2 & 2.695 & 1.38 \\
\hline & 0.4 & 2.125 & 1.29 \\
\hline \(6{ }_{6} 6\) & 0.6 & 1.835 & 1.22 \\
\hline 6 & 0.8 & 1.698 & 1.20 \\
\hline Two-cylinder expansive, cranks at \(90^{\circ}\) & 0.2 & 1.616 & 1.17 \\
\hline \% 0 " \({ }_{0}\) & 0.3 & 1.415 & 1.12 \\
\hline 6 6 6 & 0.4 & 1.295 & 1.09 \\
\hline "6 " & 0.5 & 1.256 & 1.08 \\
\hline " 66 & 0.6 & 1.270 & 1.08 \\
\hline "6 "6 & 0.7 & 1.3き9 & 1.10 \\
\hline  & \({ }_{0}^{0.8}\) & \(1.35 \%\) & 1.11 \\
\hline Three-cylinder compound, cranks \(120^{\circ} \ldots\). & h.p. 0.5, 1.p. 0.66 & 1.40 & 1.12 \\
\hline opposite one a other, and h.p. craniway \(\}\) & ، & 1.26 & 1.08 \\
\hline
\end{tabular}

Seaton also gives the following rules for ordinary practice for ordinary two-cylinder marine engines:

Diameter of the tunnel-shafts \(=\sqrt[3]{\frac{\text { I.H.P }}{R} \times F, \text { or } a \sqrt[3]{\frac{\text { I.H P. }}{R}} .}\)

Compound engines, cranks at right angles:
Boiler pressure 70 lbs ., rate of expansion 6 to \(7, F=\% 0, a=4.12\).
Boiler pressure 80 lbs , rate of expansion it to \(8, F=7, a=4.16\).
Boiler pressure 90 lbs ., rate of expausion S to \(9, F=75, a=4.02\).
Triple compound, three cranks at 120 degrees:
Boiler pressure 150 lbs , rate of expansion 10 to \(12, F=69, a=3.96\).
Boiler pressure 160 lbs., rate of expansion 11 to \(13, F=64, a=4\).
Boiler pressure \(1 \% 0 \mathrm{lbs}\)., rate of expansion 12 to \(15, F=67, a=4.06\).
Expansive engines, cranks at right angles, and the rate of expansion 5, boiler-pressure \(60 \mathrm{lbs} ., F=90, a=4.4 \mathrm{~S}\).
Single-crank compound engines, pressure \(80 \mathrm{lbs}, \overrightarrow{ }, F=96, a=4.58\).
For the engines we are considering it will be a very liberal allowance for ratio of maximum to mean twisting moment if we take it as equal to the ratio of the maximum to the mean pressure on the piston. The factor \(a\), then, in the formula for diameter of the shaft will be multiplied by the cube root of this ratio, or \(\sqrt[3]{\frac{100}{42}}=1.34, \sqrt[3]{\frac{100}{32.3}}=1.45\), and \(\sqrt[3]{\frac{100}{30}}=1.49\) for the 10,30 , and \(50-\mathrm{in}\). engines, respectirely. Taking \(a=3.5\), which corresponds to a shearing strength of 60,000 and a factor of safety of 8 for steel, or to 45,000 and a factor of 6 for iron, we have for the new coefficient \(a\), in the formula \(d_{1}=a_{1} \sqrt[3]{\frac{I . H . P}{R}}\), the values \(4.69,5.08\), and 5.22 , from which we obtain the diameters of shafts of the six engines as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Diam. of cyl & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Horse-power, I.H.P & 50 & 50 & 450 & 450 & 1250 & 1250 \\
\hline Revs. per min., \(R\). & 250 & 125 & 130 & 65 & 90 & 45 \\
\hline Diam, of shaft \(d=a_{1} \sqrt{\frac{\text { I.H.P. }}{R}}\) & 2.74 & 3.46 & \%.6\% & 9.70 & 12.55 & 15.82 \\
\hline
\end{tabular}

These diameters are calculated for twisting only. When the shaft is also subjected to bending strain the calculation must be modified as below:

Eesistance to Bending. -The strength of a circular-section shaft to resist bending is one halt of that to resist twisting. If \(B\) is the beuding moment in inch-lbs., and \(d\) the diameter of the shaft in inches,
\[
B=\frac{\pi d^{3}}{3:} \times f ; \text { and } d=\sqrt[3]{\frac{B}{f} \times 10.2}
\]
\(f\) is the safe strain per square inch of the material of which the shaft is composed, and its value mar be taken as given above for twisting (Seaton).

Equivalent Twisting BLoment. - When a shaft is subject to both twisting and bending simultaneonsly, the combined strain on any section of it may be measured by calculating what is called the equivalent twisting moment; that is, the two strains are so combined as to be treated as a twisting strain only of the same magnitude and the size of shaft ealculated accordingly. Raukine gave the following solution of the combined action of the two straius.

If \(T=\) the twisting moment, and \(B=\) the bending moment on a section of a shaft, then the equivalent twisting moment \(T_{1}=B+\sqrt{B^{2}+T^{\prime 2}}\).
Seaton says: Crank-shafts are subject always to twisting, bending, and shearing strains; the latter are so small compared with the former that they are usually neglected directly, but allowed for indirectly by means of the factor \(f\).
The two principal straias vary throughout the revolution, and the maximum equivalert twisting moment can only be obtained accurately by a series of calculations of bending and twisting moments taken at fixed interrals, and from them coustructing a curve of strains.
Considering the engines of our examples to have overhung cranks, the maximum bending moment resulting from the thrust of the connecting rod on the crank-pin will take place when the engine is passing its centres (neglecting the effect of the inertia of the reciprocating parts), and it will be the product of the total ressure ou the piston by the distance between
two parallel lines passing through the centres of the crank-pin and of the shaft bearing, at right angles to their axes; which distance is equal to 15 length of crank-pin bearing + length of hub \(+1 / 2\) length of shaft-bearing + any clearance that may be allowed between the crank and the two bearings. For our six engines we may take this distance as equal to \(1 / 2\) length of crank-pin + thickness of crank-arm \(+1.5 \times\) the diameter of the shaft as already found by the calculation for twisting. The calculation of diameter is then as below:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Diam. of cyl., in . & 10 & 10 & 30 & 30 & 50 & 50 \\
\hline Horse-power. & 50 & 50 & 450 & 450 & 1250 & 1250 \\
\hline Revs. per min & 250 & 125 & 130 & 65 & 90 & 45 \\
\hline Max.press. on pis, \(P\) & 7,854 & 7.854 & 70,686 & 70,686 & 196,350 & 196,350 \\
\hline Leverage,* \(L\) in \(\ldots\) & \(6.3 \%\) & 7.94 & 22.20 & 26.00 & 36.80 & 42.25 \\
\hline Bd.mo. \(P L=B \mathrm{in} .-\mathrm{ib}\) & 49,637 & 6:2,361 & 1,569,2u2 & 1,837,836 & 7,225,680 & 8,295,788 \\
\hline Twist. mom. T...... & 47,124 & 94,248 & 1,060,290 & 2,120,580 & 4,712,400 & 9,424,800 \\
\hline Equiv.'I'wist. mom.
\[
\begin{aligned}
& T_{1}=B+\sqrt{ } \overline{B^{2}+T^{2}} \\
& \text { (approx.) } \ldots \ldots \ldots .
\end{aligned}
\] & 118.000 & 1\%5,000 & 3,463.000 & 4,64\%.000 & 15,840,000 & 20.850,000 \\
\hline
\end{tabular}
*Leverage \(=\) distance between centres of crank-pin and shaft bearing \(=\) \(16 l+2.25 d\).

Having already found the diameters, on the assumption that the shafts were subjected to a twisting moment T' only, we may find the diameter for resisting combined bending and twisting by multiplying the diameters already found by the cube roots of the ratio \(T_{1} \div T\), or
\begin{tabular}{lrrrrrr} 
& 1.40 & 1.27 & 1.46 & 1.34 & 1.64 & 1.36 \\
Giving corrected diameters \(d_{1}=\ldots\) & 3.44 & 4.39 & 11.35 & 12.99 & 20.58 & 21.52
\end{tabular}

By plotting these results, using the diameters of the cylinders for abscissas and diameters of the shafts for ordinates, we find that for the long-stroke engines the results lie almost in a straight line expressed by the formula, diameter of shaft \(=.43 \times\) diameter of cylinder; for the short-stroke engines the line is slightly curved, but does not diverge far from a straight line whose equation is, diameter of shaft \(=.4\) diameter of cylinder. Using these two formulas, the diameters of the shafts will be \(4.0,4.3,12.0,12.9,20.0,21.5\).
J. B. Stanwood, in Engineering, June 12, 1891, gives dimensions of shafts of Corliss engines in American practice for cylinders 10 to 30 in . diameter. The diameters range from \(415 / 16\) to 1415,16 , following precisely the equation, diameter of shaft \(=1 / 2\) diameter of cylinder \(-1 / 16\) inch.

Fly-wheel Shafts. - Thus far we have considered the shaft as resisting the force of corsion and the bending moment produced by the pressure on the crank-pin. In the case of fly-wheel engines the shaft on the opposite side of the bearing from the crank pin has tu be designed with reference to the bending moment caused by the weight of the tly wheel, the weight of the shaft itself. and the strain of the belt. For engines in which there is an outboard bearing, the weight of fly-wheel and shaft being supported by two bearings, the point of the shaft at which the bending moment is a maximum may be taken as the point midway between the two bearings or at the midalle of the fly-wheel hub, and the amount of the moment is the product of the weight supported by one of the bearings into the distance from the centre of that bearing to the middle point of the shaft. The shaft is thus to be treated as a beam supported at the ends and loaded in the middle. In the case of an overhung fly-wheel, the shaft having only one bearing, the point of maximum noment should be taken as the middle of the bearing. and its amount is very nearly the product of half the weight of the fly-wheel and the shaft into the distance from the middle of its hub from the middle of the bearing. The bending moment should be calculated and combined with the twisting moment as above shown, to obtain the equivalent twisting moment, and the diameter necessary at the point of maximun moment calculated therefrom.

In the case of our six engines we assume that the weights of the flywheels, together with the snaft, are double the weight of fly-wheel rim obtained from the formula. \(W=\tilde{\circ} 85,400 \frac{d^{2} s}{R^{2} D^{2}}\) (given under Fly-wheels);
that the shaft is supported by an outboard bearing, the distance between the two bearings being \(21 / 2,5\), and 10 feet for the \(10-\mathrm{in}\)., \(30-\mathrm{in}\)., and \(50-\mathrm{in}\). engines, respectively. The diameters of the fly-wheels are taken such that their rim velocity will be a little less than 6000 feet per minute.


As these are very much less than the bending moments calculated from the pressures on the crank-pin, the diameters already found are sufficient for the diameter of the shaft at the fly-wheel hub.
In the case of engines with heavy band fly-wheels and with long fly-wheel shafts it is of the utmost importance to calculate the diameter of the shaft with reference to the bending moment due to the weight of the fly-wheel and the shaft.
B. H. Coffey (Power, October, 1892) gives the formula for combined bending and twisting resistance, \(T_{1}=.196 d^{3} S\), in which \(T_{1}=B+\sqrt{B^{2}+T^{2}} ; T\) being the maximum. not the mean twisting moment; and finds empirical working values for \(196 S\) as below. He says: Four points should be considered in determining this value: First, the nature of the material; second, the manner of applying the loads, with shock or otherwise; third, the ratio of the bending moment to the torsional moment-the bending moment in a revolving shaft produces reversed strains in the material, which tend to rupture it; fourth, the size of the section. Inch for inch, large sections are weaker than small oues. He puts the dividing line between large and small sections at 10 in. diameter, and gives the following safe values of \(S \times .196\) for steel, wrought iron, and cast iron, for these conditions.

Value of \(S \times .196\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ratio. & \multicolumn{3}{|l|}{Heavy Shafts with Shock.} & \multicolumn{3}{|l|}{Light shafts with Shock. Heavy Shafts No Shock.} & \multicolumn{3}{|l|}{Light Shafts No Shock.} \\
\hline \(B\) to \(T\). & Steel. & Wro't
Iron & Cast & Steel. & \[
\left\lvert\, \begin{aligned}
& \text { Wro't } \\
& \text { Iron. }
\end{aligned}\right.
\] & \begin{tabular}{l}
Cast \\
Iron.
\end{tabular} & Steel. & \[
\begin{aligned}
& \text { Wro't } \\
& \text { Iron. }
\end{aligned}
\] & Cast
Iron. \\
\hline 3 to 10 or & 1045 & 880 & 440 & 1566 & 1320 & 660 & 2090 & 1760 & 880 \\
\hline 3 to 5 or less & 941 & ז85 & 3.93 & 1410 & \(11 \div 9\) & 589 & 1882 & 1570 & 785 \\
\hline 1 to 1 or less & 855 & 715 & 358 & 1281 & 10ヶ̃4 & 537 & 1710 & 1430 & 715 \\
\hline \(B\) greater th & 784 & 655 & \(3: 8\) & \(11 \%\) & 984 & 492 & 1568 & 1310 & 655 \\
\hline
\end{tabular}

Mr. Coffey gives as an example of improper dimensions the fly-wheel shaft of a 1500 H.P. engine at Willimantic, Conn., which broke while the engine was running at 425 H.P. The shaft was 17 ft .5 in . long between centres of bearings, 18 in . diam. for 8 ft . in the middle, and 15 in . diam. for the remainder, including the bearings. It broke at the base of the fillet connecting the two large diameters, or \(561 / 2 \mathrm{in}\). from the centre of the bearing. He calculates the mean torsional moment to be 446,654 inch-pounds, and the maximum at twice the mean; and the total weight on one bearing at 87,530 lbs., which, multiplied by \(561 / 2 \mathrm{in}\)., gives \(4,945,445 \mathrm{in}\). -lbs . bending moment at the fillet. Applying the formula \(T_{1}=B+\sqrt{B^{2}+T^{2}}\), gives for equivalent twisting moment \(9,971,045\) in.-lbs. Substituting this value in the formula \(T_{1}=.196, S d^{3}\) gives for \(S\) the shearing strain \(15,0 \% 0 \mathrm{lbs}\). per sq. in., or if the metal had a shearing strength of \(45,000 \mathrm{lbs}\), a factor of safety of only 3. Mr. Coffey considers that 6000 lbs is all that should be allowed for \(S\) under these circumstances. This would give \(d=20.35 \mathrm{in}\). If we take from Mr . Coffey's table a value of \(.196 S=1100\), we obtain \(d^{3}=9000\) nearly, or \(d=20.8\) in.. instead of 15 in ., the actual dianeter.

Length of Shaft-bearings. - There is as great a difference of opinion among writers, and as great a variation in practice concerning length of journal-bearings, as there is concerning crank-pins. The length of a
journal being determined from considerations of its heating, the observations concerning heating of crank-pins apply also to shaft-bearings, and the formulæ for sength of crank-pins to avoid heating may also be used, using for the total load upon the bearing the resultant of all the pressures brought upon it, by the pressure on the crank, by the weight of the fly-wheel, and by the pull of the belt. After determining this pressure, however, we must resort to empirical values for the so-called constants of the formulæ, really variables, which depend on the power of the bearing to carry away hear, and upon the quantity of heat generated, which latter depends on the pressure. on the number of square feet of rubbing surface passed over in a minute, and upon the coefficient of friction. This coefficient is an exceedingly variable quantity, ranging from .01 or less with perfectly polished journals, having end-play, and lubricated by a pad or oil-bath, to .10 or more with ordinary oil-cup lubrication.

For shafts resisting torsion only, Marks gives for length of bearing \(l=\) \(.0000 \cdot 4 \tilde{f} p N D^{2}\), in which \(f\) is the coefficient of friction, \(p\) the mean pressure in pounds per square inch on the piston, \(N\) the number of single strokes per minute, and \(D\) the diameter of the piston. For shafts under the combined stress due to pressure on the crank-pin, weight of fly-wheel, etc., he gives the following: Let \(Q=\) reaction at bearing due to weight, \(S=\) stress due steam pressure on piston, and \(R_{1}=\) the resultant force; for horizontal engines, \(R_{1}=\sqrt{Q^{2}+S^{2}}\), for vertical engines \(R_{1}=Q+S\), when the pressure on the crank is in the same direction as the pressure of the shaft on its bearings, and \(R_{1}=Q-S\) when the steam pressure tends to lift the shaft from its bearings. Using empirical values for the work of friction per square inch of projected area, taken from dimensions of crank-pins in marine vessels, he finds the formula for length of shaft-journals \(l=.0000325 f R_{1} N\), and recommends that to cover the defects of workmanship, neglect of oiling, and the introduction of dust, \(f\) be taken at .16 or even greater. He says that 500 lbs . per sq. in. of projected area may be allowed for steel or wroughtiron shafts in brass bearings with good results if a less pressure is not attainable without inconvenience. Marks says that the use of empirical rules that do not take account of the number of turns per minute has resulted in bearings much too long for slow-speed engines and too short for high-speed engines.
Whitham gives the same formula, with the coefficient .00002575 .
Thurston says that the maximum allowable mean intensity of pressure may be, for all cases, computed by his formula for journals, \(l=\frac{P V}{60,000 d}\), or by Rankine's, \(l=\frac{P(V+20)}{44,800 \bar{d}}\), in which \(P\) is the mean total pressure in pounds, \(V\) the velocity of rubbing surface in feet per minute, and \(d\) the diameter of the shaft in inches. It must be borne in mind, he says, that the friction work on the main bearing next the crank is the sum of that due the action of the piston on the pin, and that due that portion of the weight of wheel and shaft and of pull of the belt which is carried there. The outboard bearing carries practically ouly the latter two parts of the total. The crank-shaft journals will be made longer on one side, and perhaps shorter on the other, than that of the crank-pin, in proportion to the work falling upon each, i.e., to their respective products of mean total pressure, speed of rubbing surfaces, and coefficients of friction.

Unwin says: Journals running at 150 revolutions per minute are often only one diameter long. Fan shafts running 150 revolutions per minute have journals six or eight diameters.long. The ordinary empirical mode of proportioning the length of journals is to make the length proportional to the diameter, and to make the ratio of length to diameter increase with the speed. For wrought-iron journals:
\[
\begin{aligned}
& \text { Revs. per min. }=\begin{array}{cccccccc}
50 & 100 & 150 & 200 & 250 & 500 & 1000 & \frac{l}{\bar{d}}=.004 R+1 \\
\text { Length } \div \text { diam. }=1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 3.0 & 5.0
\end{array}
\end{aligned}
\]

Cast-iron journals may have \(l \div d=9 / 10\), and steel journals \(l \div d=114\), of the above ralues.

Unwin gives the following, calculated from the formula \(l=\frac{0.4 \text { H.P. }}{r}\), in which \(r\) is the crank radius in inches, and H.P. the horse-power transmitted to the crank-pin.

\section*{Theoretical Journal Levgth in Inches.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Load on Journal in pounds.} & \multicolumn{6}{|c|}{Revolutions of Journal per minute.} \\
\hline & 50 & 100 & 200 & 300 & 500 & 1000 \\
\hline 1,000 & . 2 & . 4 & . 8 & 1.2 & 2. & 4. \\
\hline 2,000
4,000 & . 4 & . 8 & 1.6 & 2.4 & 4. & 8. \\
\hline & 1.8 & 1.6 & 3.2 & 4.8 & 8. & 16. \\
\hline 10,000 & 9. & 4. & 8. & 6. & 10. & 20. \\
\hline 15,000 & 3. & 6. & 12. & 12. & 20. & 40. \\
\hline 20,000 & 4. & 8. & 16. & 24. & 40. & \(\cdots\) \\
\hline 30,000 & 6. & 12. & 24. & 36. & 40. & .... \\
\hline 40,000 & 8. & 16. & 32. & 36. & .... & .... \\
\hline 50,000 & 10. & \(20^{\circ}\) & 40. & \(\ldots\) & .... & \(\ldots\) \\
\hline
\end{tabular}

Applying these different formluæ to our six engines, we have:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Diam. cyl. & 10 & 10 & 30 & 30 & & \\
\hline Horse -power. & 50 & 50 & 450 & 450 & 1.250 & 50 \\
\hline Revs, per min......... & 250 & 125 & 130 & 40 & 1,250
90 & 1,250 \\
\hline Mean pressure on crank-pin = S.... & 3,299 & 2,299 & 23,185 & 23,185 & 58,905 & 58.905 \\
\hline Half wt. of Hy-wheel and shaft \(=Q .\).
Resultant press. on bearing & 268 & 536 & 5,968 & 11,936 & 26,470 & 52,940 \\
\hline \(\sqrt{ } \sqrt{Q^{2}+S^{\prime 2}}=R_{1}\). & 3,310 & 3,335 & 23,924 & 26,194 & 64,580 & 79,200 \\
\hline Diam. of shaft journal.......... & 3.84 & 4.39 & 11.35 & 12.99 & 20.58 & 21.52 \\
\hline Marks, \(\quad l=.000032 .55 R_{1} N(f=.10)\) & 5.38 & 2.71 & 20.81 & 11.07 & 37.78 & 23.17 \\
\hline Whitham, \(l=\underset{.0000515 / R, ~}{P V}\) ( \(f=10)\). & 4.27 & 2.15 & 16.53 & 8.77 & 29.95 & 18.35 \\
\hline Thurston, \(l=\frac{P}{60,000 \mathrm{~d}} \ldots \ldots\). & 3.61 & 1.82 & 14.00 & 7.43 & 25.36 & 15.55 \\
\hline Rankine, \(l=\frac{P(V+20)}{44,800 d}\) & 5.22 & 2.78 & \(21 . \% 0\) & 10.85 & 35.16 & 22.47 \\
\hline Unwin, \(\quad l=(.004 R+1) d\) & 7.68 & 6.59 & 17.25 & 16.36 & 27.99 & 25.39 \\
\hline Unwin, \(\quad l=\frac{0.4 \text { H.P. }}{r}\) & 3.33 & 1.60 & 12.00 & 6.00 & 20.83 & 10.42 \\
\hline Average. & 4.92 & 2.99 & 17.05 & 10.00 & 29.54 & 19.22 \\
\hline
\end{tabular}

If we divide the mean resultant pressure on the bearing by the projected area, that is, by the product of the diameter and length of the journal, using the greatest and smallest length out of the seven lengths for each journal given above, we obtain the pressure per square inch upon the bearing, as
follows: follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Pressure per sq. in., shortest journal. & 259 & 455 & 176 & 336 & 151 & 353 \\
\hline Longest journal............... ....... & 112 & 115 & \({ }^{10} 9\) & 123 & 83 & 145 \\
\hline Average journal....... & 175 & 254 & 124 & 202 & 106 & 191 \\
\hline Journal of length \(=\) diam & & 173 & & 155 & & 175 \\
\hline
\end{tabular}

Many of the formulæ give for the long-stroke engines a length of journal less than the diameter, but such short journals are rarely used in practice. The last line in the above table has been calculated on the supposition that
the journals of the long-stroke engines are made of a length equal to the diameter.

In the dimensions of Corliss engines given by J. B. Stanwood (Eng., June 12, 1891), the lengths of the journals for engines of diam. of cyl. 10 to 20 in . are the same as the diam. of the cylinder, and a little more than twice the diam. of the journal. For engines above 20 in . diam. of cyl. the ratio of length to diam. is decreased so that an engine of 30 in . diam. has a journal 26 in . long, its diameter being \(14 \frac{1}{1} \frac{5}{6} \mathrm{in}\). These lengths of journal are greater than those given by any of the formulæ above quoted.

There thus appears to be a hopeless confusion in the various formulæ for length of shaft journals, but this is no more than is to be expected from the variation in the coefficient of friction, and in the heat-conducting power of journals in actual use, the coefficient varying from . 10 (or even .16 as given by Marks) down to .01 , according to the condition of the bearing surfaces and the efficiency of lubrication. Thurston's formula, \(l=\frac{P V}{60,000} \bar{d}\), reduces to the form \(l=.000004363 P R\), in which \(P=\) mean total load on journal, and \(R=\) revolutions per minute. This is of the same form as Marks' and Whitham's formulæ, in which, if \(f\) the coefficient of friction be taken at .10 , the coefficients of \(P R\) are, respectively, .0000065 and .00000515 . Taking the mean of these three formulæ, we have \(l=.0000053 P R\), if \(f=.10\) or \(l=\) \(.000053 f P R\) for any other value of \(f\). The author believes this to be as safe a formula as any for length of journals, with the limitation that if it brings a result of length of journal less than the diameter, then the length should be made equal to the diameter. Whenever with \(f=.10\) it gives a length which is inconvenient or impossible of construction on account of limited space, then provision should be made to reduce the value of the coefficient of friction below . 10 by means of forced lubrication, end play, etc., and to carry away the heat, as by water-cooled journal-boxes. The value of \(P\) should be taken as the resultant of the mean pressure on the crank, and the load brought on the bearing by the weight of the shaft, fly-wheel, etc., as calculated by the formula already given, viz., \(R_{1}=\sqrt{Q^{2}+S^{2}}\) for horizontal engines, and \(R_{1}=Q+S\) for vertical engines.

For our six engines the formula \(l=.0000053 P R\) gives, with the limitation for the long-stroke engines that the length shall not be less than the diameter, the following:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Length of jo & 4.39 & 4.39 & 16.48 & 12.99 & 30.80 & 21.52 \\
\hline Pressure per square inch on journal.. & 196 & 173 & 128 & 155 & 102 & 171 \\
\hline
\end{tabular}

Crank-shafts with Centre-crank and Double-crank Arms.-In centre-crank engines, one of the crank-arms, and its adjoining journal, called the after journal, usually transmit the power of the engine to the work to be done, and the journal resists both twisting and bending moments, while the other journal is subjected to bending moment only. For the after crank-journal the diameter should be calculated the same as for an overhung crank, using the formula for combined bending and twisting moment, \(T_{1}=B+\sqrt{B^{2}+T^{2}}\), in which \(T_{1}\) is the equivalent twisting moment, \(B\) the bending moment, and \(T\) the twisting moment. This value of \(T_{1}\) is to be used in the formula diameter \(=\sqrt[3]{\frac{5 \cdot 1 T}{S}}\). The bending moment is taken as the maximum load on piston multiplied by one fourth of the length of the crank-shaft between middle points of the two journal bearings, if the centre crank is midway between the bearings, or by one half the distance measured parallel to the shaft from the middle of the crank-pin to the middle of the after bearing. This supposes the crankshaft to be a beam loaded at its middle and supported at the ends, but Whitham would make the bending moment only one half of this, considering the shaft to be a beam secured or fixed at the ends, with a point of contraflexure one fourth of the length from the end. The first supposition is the safer, but since the bending moment will in any case be much less than the twisting moment, the resulting diameter will be but little greater than if Whitham's supposition is used. For the forward jourual, which is subjected to bending moment only, diameter of shaft \(=\sqrt[3]{\frac{10.2 B}{S}}\), in which \(B\)
is the maximum bending moment and \(S\) the safe shearing strength of the metal per square inch.
For our six engines, assuming them to be centre-crank engines, and con. sidering the crank-shaft to be a beam supported at the ends and loaded in the middle, and assuming lengths between centres of shaft bearings as given below, we have:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Engine No. & 1 & 2 & 3 & 4 & 6 & 6 \\
\hline Length of shaft, assumed, inches & 20 & 24 & 48 & 60 & 76 & \\
\hline Max. press on crank-pin, \(P\) & 2,854 & 7,854 & \%0,686 & \%0,686 & 196,350 & 196,350 \\
\hline Max. bending moment, \(B=1 / 4 P L\), inch-lbs...... & 39,2\%0 & 49,63\% & & & 3,729,750 & 4,712,400 \\
\hline Twisting moment, \(T\) '...... & 47,124 & 94,248 & 1,060,290 & 2,120,580 & 4,712,400 & 9,424,800 \\
\hline Equiv. twisting moment,
\[
B+\sqrt{B^{2}+T^{2}}
\] & 101,000 & 156,000 & 2,208,000 & 3,430,000 & 9,740,000 & 15,240,000 \\
\hline Diameter of after journal, & & & & & & \\
\hline \[
d=\sqrt[3]{\frac{5.1 T_{1}}{8000}} \cdots \ldots \ldots \ldots
\] & 3.98 & 4.60 & 11.15 & 13.00 & 18.25 & 21.20 \\
\hline Diam. of forward journal, & & & & & & \\
\hline \(d_{1}=\sqrt[3]{\frac{10.2 B}{8000}} \ldots \ldots \ldots\). & 3.68 & 3.99 & 10.28 & 11.16 & 16.82 & 18.18 \\
\hline
\end{tabular}

The lengths of the journals would be calculated in the same manner as in the case of overhung cranks, by the formula \(l=.000053 f P R\), in which \(P\) is the resultant of the mean pressure due to pressure of steam on the piston, and the load of the fly-wheel, shaft, etc., on each of the two bearings. Unless the pressures are equally divided between the two bearings, the calculated lengths of the two will be different; but it is usually customary to make them both of the same length, and in no case to make the length less than the diameter. The diameters also are usually made alike for the two journals, using the largest diameter found by calculation.
The crank-pin for a centre crank should be of the same length as for an overhung crank, siuce the length is determined from considerations of heating, and not of strength. The diameter also will usually be the same, since it is made great enough to make the pressure per square inch on the projected area (product of length by diameter) small enough to allow of free lubrication, and the diameter so calculated will be greater than is required for strength.
Crank-shaft with Two Cranks coupled at \(90^{\circ}\). - If the whole power of the engine is transmitted through the after journal of the after crank-shaft, the greatest twisting moment is equal to 1.414 times the maximum twisting moment due to the pressure on one of the crank-pins. If \(T=\) the maximum twisting moment produced by the steam-pressure on one of the pistons, then \(T_{1}\) the maximum twisting moment on the after part of the crank-shaft, and on the line-shaft, produced when each crank makes an angle of \(45^{\circ}\) with the centre line of the engine, is \(1.414 T\). Substituting this value in the formula for diameter to resist simple torsion, viz., \(d=\) \(\sqrt[3]{\frac{5.1 T}{S}}\), we have \(d=\sqrt[3]{\frac{5.1 \times 1.414 T}{S}}\), or \(d=1.932 \sqrt[3]{\frac{T}{S}}\), in which \(T\) is the maximum twisting moment produced by one of the pistons, \(d=\) diameter in inches, and \(S=\) safe working shearing strength of the material. For the forward journal of the after crank, and the after journal of the forward crank, the torsional moment is that due to the pressure of steam on the forward piston only, and for the forward journal of the forward crank, if none of the power of the engine is transmitted through it, the torsional moment is zero, and its diameter is to be calculated for bending moment ouly.
For Combined Torsion and Flexure. - Let \(B_{1}=\) bending moment on either juurnal of the forward crank due to maximum pressure on
forward piston, \(B_{2}=\) bending moment on either journal of the after crank due to maximum pressure on after piston, \(T_{1}=\) maximum twisting momens on after journal of forward crank, aud \(T_{2}=\) maximum twisting moment on after journal of after crank due to pressure on the after piston.
Then equivalent twisting moment on after journal of forward crank \(=B_{1}\) \(+\sqrt{B_{1}{ }^{2}+T_{1}{ }^{2}}\).
On forward journal of after crank \(=B_{2}+\sqrt{B_{2}^{2}+T_{2}^{2}}\).
On after journal of after crank \(=B_{2}+\sqrt{B_{2}^{2}+\left(T_{1}+T_{3}\right)^{2}}\).
These vaiues of equivalent twisting moment are to be used in the formula for diameter of journals \(d=\sqrt[3]{\frac{5 \cdot 1 T}{S}}\). For the forward journal of the forward crank-shaft \(d=\sqrt[3]{\frac{10.2 B_{1}}{S}}\).

It is customary to make the two journals of the forward crank of one diameter, viz., that calculated for the after journal.

For a Threecylinder Engine with cranks at \(120^{\circ}\), the greatest \(t\) wisting moment on the after part of the shaft, if the maximum pressures on the three pistons are equal, is equal to twice the maximum pressure on any one piston, and it takes place when two of the cranks make angles of \(30^{\circ}\) with the centre line, the third crank being at right angles to it. (For demonstration, see Whitham's "Steam-engine Design," p. 25\%.) Fór combined torsion and flexure the same method as above given for two crank engines is adopted for the first two cranks; and for the third, or after crank, if all the power of the three cylinders is transmitted through it, we have the equivalent twisting moment on the forward journal \(=B_{3}+\sqrt{B_{3}{ }^{2}+\left(T_{1}+T_{2}\right)^{2}}\). and on the after journal \(=B_{3}+1 B_{3}{ }^{2}+\left(T_{1}+T_{2}+T_{3}\right)^{2}, B_{3}\) and \(T_{3}\) being respectively the bending and twisting moments due to the pressure on the third piston.

Crank - shafts for Triple-expansion Marine Engines, according to an article in The Engineer, April 25, 1890, should be made larger than the formulæ would call for, in order to provide for the stresses due to the racing of the propeller in a sea-way, which can scarcely be calculated. A kind of unwritten law has sprung up for fixing the size of a crank-shaft, according to which the diameter of the shaft is made about \(0.45 D\), where \(D\) is the diameter of the high-pressure cylinder. This is for solid shafts. When the speeds are high, as in war-ships, and the stroke short, the formula becomes \(04 D\), even for hollow shafts.

The Valve-stem or Valve-rod. - The valve-rod should be designed to move the valve under the most unfavorable conditions, which are when the stem acts by thrusting, as a long column, when the valve is unbalanced (a balanced valve may become unbalanced by the joint leaking) and when it is imperfectly lubricated. The load on the valve is the product of the aroa into the greatest unbalanced pressure upon it per square inch, and the coefficient of friction may be as high as \(20 \%\). The product of this coefficient and the load is the force necessary to move the valve, which equals the maximum thrust on the valve-rod. From this force the diameter of the valve-rod may be calculated by Hodgkinson's formula for columns. An empirical formula given by Seaton is: Diam. of rod \(=d=\sqrt{\frac{\overline{l l p}}{F}}\), in which \(l=\) length and \(b=\) breadth of valve, in inches \(; p=\) maximum absolute pressure on the valve in lbs. per sq in., and \(F\) a coefficient whose values are, for iron: long rod 10,000 , short 12,000 ; for steel: long rod 12.000, short 14,500 .

Whitham gives the short empirical rule: Diam. of valve-rod \(=1 / 30 \mathrm{diam}\). of \(r \cdot v]\). \(=1 / 3\) diam of piston-rod.
Size of Slot-link. (Seaton.) - Let. \(D\) be the diam. of the valve rod
\[
D=\sqrt{\frac{l b p}{12,000}} ;
\]
then Diameter of block-pin when overhung
\begin{tabular}{rlrl} 
neter of block-pin when overhung \\
\("\) & \(=D\). \\
\(" \quad\) eccentric-rod pecured at both ends & \(=0.75 \times D\). \\
& \(=0.7 \times 1\). \\
\(" \quad\) suspension-rod pins & \(=0.55 \times D\). \\
\(" \quad\) pin when overhung & \(=0.75 \times D\).
\end{tabular}
\begin{tabular}{ll} 
Breadth of link & \(=0.8\) to \(0.9 \times D\). \\
Length of block & \(=1.8\) to \(1.6 \times D\). \\
Thickness of bars of link at middle & \(=0.7 \times D\). \\
If a single suspension rod of round section, its diameter \(=0.7 \times D\). \\
If two suspension rods of round section, their diameter \(=0.55 \times D\).
\end{tabular}

Size of Double-bar Links. - When the distance between centres of eccentric pins \(=6\) to 8 times throw of eccentrics (throw \(=\) eccentricity \(=\) half-travel of valve at full gear) \(D\) as before :
\[
\begin{array}{ll}
\text { Depth of bars } & =1.25 \times D+3 / 4 \mathrm{in} \\
\text { Thickness of bars } & =0.5 \times D+1 / \mathrm{in.} \\
\text { Length of sliding-block } & =2.5 \text { to } 3 \times D . \\
\text { Diameter of eccentric-rod pins } & =0.8 \times D+1 / 4 \mathrm{in} . \\
\text { centre of sliding-block } & =1.3 \times D
\end{array}
\]

When the distance between eccentric-rod pins \(=5\) to \(51 / 2\) times throw of eccentrics:
\[
\begin{array}{ll}
\text { Depth of bars } & =1.25 \times D+1.2 \mathrm{in} . \\
\text { Thickness of bars } & =0.5 \times D+1 / 4 \mathrm{in} . \\
\text { Length of sliding-block } & =2.5 \text { to } 3 \times D .
\end{array}
\]

Diameter of eccentric-rod pins \(=0.75 \times D\).
Diameter of eccentric bolts (top end) at bottom of thread \(=0.42 \times D\) when of iron, and \(0.3^{\circ} \times D\) when of steel.
The Eccentric. -Diam. of eccentric-sheave \(=2.4 \times\) throw of eccentric \(+1.2 \times\) diam. of shaft. \(D\) as before
Breadth of the sheave at the shaft................... \(=1.15 \times D+0.65\) inch
Breadth of the sheave at the strap..................... \(=D+0.6\) inch.
Thickness of metal around the shaft ................. \(=0.7 \times D+0.5\) inch.
Thickness of metal at circumference ................... \(=0.6 \times D+0.4\) inch.
Breadth of key.......................................... \(=0.7 \times D+0.5\) inch.
Thickness of key...................................... \(=0.25 \times D+0.5\) inch.
Diameter of bolts connecting parts of strap........ \(=0.6 \times D+0.1\) inch.

\section*{Thicrness of Eccentric-strap.}

When of bronze or malleable cast iron:
Thickness of eccentric-strap at the middle.......... \(=0.4 \times D+0.6 \mathrm{inch}\).
\[
\text { sides........... }=0.3 \times D+0.5 \text { inch. }
\]

When of wrought iron or cast steel:
Thickness of eccentric-strap at the middle.......... \(=0.4 \times D+0.5\) inch.
\[
\text { sides............ }=0.27 \hat{x} D+0.4 \text { inch }
\]

The Eccentric-rod. - The diameter of the eccentric-rod in the body and at the ecceutric end may be calculated in the same way as that of the connecting-rod, the lengtr being taken from centre of strap to centre of pin. Diameter at the limk end \(=0.8 D+0.2\) inch.
This is for wrought-iron; no reduction in size should be made for steel.
Eccentric-rods are often made of rectangular section.
Reversing-gear should be so designed as to have more than sufficient strength to withstand the strain of both the valves and their gear at the same time under the most unfavorable circumstances; it will then have the stiffness requisite for good working.

Assuming the work done in reversing the link-motion, \(W\), to be only that due to overcoming the friction of the valves themselves through their whole travel, then, if \(T\) be the travel of valves in inches; for a compound engine
\[
W=\frac{T}{12}\left(\frac{l \times b \times p}{5}\right)+\frac{T}{12}\left(\frac{l^{1} \times b^{1} \times p^{1}}{5}\right)
\]
\(l^{1}, b^{1}\) and \(p^{1}\) being length, breadth and maximum steam-pressure on valvo of the second cylinder; and for an expansive engine
\[
W=2 \times \frac{T}{12}\left(\frac{l \times b \times p}{5}\right) ; \text { or } \quad \frac{T}{30}(l \times b \times p)
\]

To provide for the friction of link-motion, eccentrics and other gear, and for abnormal conditions of the same, take the work at one and a half times the above amount.

To find the strain at any part of the gear having motion when reversing, divide the work so found by the space moved through by that part in feet; the quotient is the strain in pounds; and the size may be found from the ordinary rules of construction for ans of the parts of the gear. (Seaton.)

Engine-frames or Hed-plates.-No definite rules for the design of engine-fiames have been given by authors of works on the steam-engine. The proportions are left to the designer who uses "rule of thumb," or conies from existing engines. F. A. Halsey (Am. Mach., Feb. 14, 1895) has made a comparison of proportions of the frames of horizontal Corliss rugines of several builders. The method of comparison is to compute from the measurements the number of square inches in the smallest cross-section of the frame, that is, immediately behind the pillow-block, also to compute the total maximum pressure upon the piston, and to divide the latter quantity by the former. The result gives the number of pounds pressure upon the piston allowed for each square inch of metal in the frame. He finds that the number of pounds per square inch of smallest section of frame ranges from 217 for a \(10 \times 30-\mathrm{in}\). eugine up to 575 for a \(28 \times 48\)-inch. A \(30 \times 60\)-inch engine shows 350 lbs , and a 32 -inch engine which has been running for many years shows 66 ibs. Generally the strains increase with the size of the engine, and more cross-section of metal is allowed with relatively long strokes than with short ones.

From the above Mr. Halsey formulates the general rule that in engines of moderate speed, and having strokes up to one and one-half times the diameter of the cylinder, the load per square inch of smallest section should be for a 10 -inch engine 300 pounds, which figure should be increased for larger bores up to 500 pounds for a 30 -inch cylinder of same relative stroke. For high speeds or for longer strokes the load per square inch should be reduced.

\section*{FLI-WHEELS.}

The function of a fly-wheel is to store up and to restore the periodical fluctuations of energy given to or taken from an engine or machine, and thus to keep approximately constant the velocity of rotation. Rankine calls the quantity \(\frac{\Delta E}{2 E_{0}}\) the coefficient of fluctuation of speed or of unsteadiness, in which \(E_{0}\) is the mean actual energy, and \(\Delta E\) the excess of energy received or of work performed, above the mean, during a given interval. The ratio of the periodical excess or deficiency of energy \(\Delta E\) to the whole energy exerted in one period or revolution General Morin found to be from \(1 / 6\) to \(1 / 4\) for single-cylinder engines using expansion; the shorter the cut-off the higher the value. For a pair of engines with cranks coupled at \(90^{\circ}\) the value of the ratio is about \(1 / 4\), and for three engines with cranks at \(120^{\circ}, 1 / 12\) of its value for single-cylinder engines. For tools working at intervals, such as punching, slotting and plate-cutting machines, coining-presses, etc., \(\Delta E\) is nearly equal to the whole work performed at each operation.

A fly-wheel reduces the coefficient \(\frac{\Delta E}{2 E_{0}}\) to a certain fixed anount, being about \(1 / 32\) for ordinary machinery, and \(1 / 50\) or \(1 / 60\) for machinery for fine purposes.

If \(m\) be the reciprocal of the intended value of the coefficient of fluctuation of speed, \(\Delta E\) the fluctuation or energy, \(I\) the moment of inertia of the fly-wheel alone, and \(\alpha_{0}\) its mean angular velocity, \(I=\frac{m g \Delta E}{a_{0}}\). As the rim of a fly-wheel is usually heavy in comparison with the arms, I may be taken to equal \(W r^{2}\), in which \(W=\) weight of rim in pounds, and \(r\) the radius of the wheel; then \(W=\frac{m g \Delta E}{a_{0} r^{2}}=\frac{m g \Delta E}{v^{2}}\), if \(v\) be the velocity of the rim in feet per second. The usual mean radius of the fly-wheel in steam-engines is from three to.five times the length of the crank. The ordinary values of the product \(m g\), the unit of time being the second, lie between 1000 and 2000 feet. (Abridged from Rankine, S E., p. 62.)

Thurston gives for engines with automatic valve-gear \(W=250,000\) \(\frac{A S p}{K^{2} D^{2}}\), in which \(A=\) area of piston in square inches, \(S=\) stroke in feet, \(p=\) mean steam-pressure in lbs. per sq. in., \(R=\) revolutions per minute, \(D=\) outside diameter of wheel in feet. Thurston also gives for ordinary forms of
non condensing engine with a ratio of expansion between 3 and \(5, W=\) \(\frac{a A S}{R^{2} D^{2}}\), in which \(a\) ranges from \(10,000,000\) to \(15,000,000\), averaging \(12,000,000\). For gas-engines, in which the charge is fired with every revolution, the American Muchinist gives this latter formula, with a doubled, or 24,000.000. Presumably, if the charge is fired every other revolution, \(a\) should be again doubled.

Rankine ("Useful Rules and Tables," p. 247) gives \(W=475,000 \frac{A S p}{V D^{2} R^{2}}\), in which \(V\) is the variation of speed per cent. of the mean speed. Thurston's first rule above given corresponds with this if we take \(V\) at 1.9 per cent.

Hartnell (Proc. Inst., M. E. 188\%, 427) says: The value of \(V\), or the variation permissible in portable engines, should not exceed 3 per cent. with an ordinary load, and 4 per cent when heavily loaded. In fixed engines, for ordinary purposes, \(V=21 / 2\) to 3 per cent. For good governing or special purposes, such as cotton-spinning, the variation should not exceed \(11 / 2\) to 2 per cent.
F. M. Rites (Trans. A. S. M. E., xiv. 100) develops a new formula for weight of rim, viz., \(W=\frac{C \times \text { I.H.P. }}{R^{3} D^{2}}\), and weight of rim per horse-power \(=\frac{C}{R^{3} D^{2}}\), in which \(C\) varies from \(10,000,000,000\) to \(20,000,000,000\); also using the latter value of \(C\), be obtains for the energy of the fly-wheel \(\frac{M v^{2}}{2}=\frac{W}{64.4} \frac{3.14^{2} D^{2} R^{2}}{3600}=\) \(\frac{C \times \text { H.P. (3.14) }{ }^{2} D^{2} R^{2}}{R^{3} D^{2} \times 64.4 \times 3600}=\frac{850,000 \mathrm{H} . \mathrm{P} .}{R}\). Fly-wheel energy per H.P. \(=\frac{850,000}{R}\).
The limit of variation of speed with such a weight of wheel from excess of power per fraction of revolution is less than .0023 .

The value of the constant \(C\) given by Mr. Rites was derived from practice of the Westinghouse single-acting engines used for electric-lighting. For double-acting engines in ordinary service a value of \(C=5,000,000,000\) would probably be ample.
From these formulæ it appears that the weight of the fly-wheel for a given horse-power should vary inversely with the cube of the revolutions and the square of the diameter.
J. B. Stanwood (Eng'g, June 12, 1891) says: Whenever 480 feet is the lowest piston-speed probable for an engine of a certain size, the fly-wheel weight for that speed approximates closely to the formula
\[
W=700,000 \frac{d^{2} s}{D^{2} R^{2}}
\]
\(W=\) weight in pounds, \(d=\) diameter of cylinder in inches, \(s=\) stroke in inches, \(D=\) diameter of wheel in feet, \(R=\) revolutions per minute, corre sponding to 480 feet piston-speed.
In a Ready Reference Book published by Mr. Stanwood, Cincinnati, 1892, he gives the same formula, with coefficients as follows: For slide-valve engines, ordinary duty, 350,000 ; same, electric-lighting, r00.000; for automatic high-speed engines, 1,000,000; for Corliss engines, ordinary duty 700,000, electric-ligbting \(1,000,000\).
Thurston's formula above given, \(W=\frac{a A S}{R^{2} D^{2}}\), with \(a=12,000,000\), when reduced to terms of \(d\) and \(s\) in inches, becomes \(W=785,400 \frac{d^{2} s}{R^{2} D^{2}}\).
If we reduce it to terms of horse-power, we have I.H.P. \(=\frac{2 A S P R}{33,000}\), in which \(P=\) mean effective pressure. Taking this at 40 lbs ., we obtain \(W=5,000,000,000 \frac{I . H . P}{R^{3} D^{2}}\). If mean effective pressure \(=30 \mathrm{lbs}\)., then \(W=\) 6,666,000,000 \(\frac{\mathrm{I} . \mathrm{H} . \mathrm{P}}{R^{3} D^{2}}\).

Emil Theiss (Am. Mach., Sept. 7 and 14, 1893) gives the following values or \(1 \%\), the coefficient of steadiness, which is the reciprocal of what Rankine calls the coefficient of fluctuation :

\section*{For engines operating -}
\[
\begin{aligned}
& \text { Hammering and crushing machinery.............. } \boldsymbol{d}=5 \\
& \text { Pumping and shearing machinery................ } d=20 \text { to } \\
& \text { Weaving and paper-making machinery............ } d=40 \\
& \text { Milling machinery } \\
& d=50 \\
& \text { Spinning machinery................................... } d=50 \text { to } 100 \\
& \text { Ordinary driving-engines (mounted on bed-plate), } \\
& d=35 \\
& \text { Gear-wheel transmission } \\
& d=50
\end{aligned}
\]

Mr. Theiss's formula for weight of fly-wheel in pounds is \(W=i \times \frac{d \times \text { I.H.P. }}{V^{2} \times 1}\), where \(d\) is the coefficient of steadiness, \(V\) the mean velocity of the flyvrheel rim in feet per second, \(n\) the number of revolutions per minute, \(i=\) a coefficient obtained by graphical solution, the values of which for different conditions are given in the following table. In the lines under "cutoff," \(p\) means "compression to initial pressure," and \(O\) " no compression ":

Values of \(i\). Single-cylinder Non-condrnsing Engines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Cut-off, 1/6.} & \multicolumn{2}{|l|}{Cut-off, 1/4.} & \multicolumn{2}{|l|}{Cut-off, \(1 \times 3\).} & \multicolumn{2}{|l|}{Cut-off, \(1 / 2\).} \\
\hline & Comp. & 0 & Comp. & 0 & \[
\underset{p}{\text { Comp. }}
\] & 0 & Comp. & 0 \\
\hline 200 & 272.690 & 218.580 & 242.010 & 209,170 & 220,760 & 201,920 & 193,340 & 182,840 \\
\hline 400
600 & 240,810 & 187,430 & 208,200 & 1179.460 & \({ }_{165,210}^{188.510}\) & \(1 \tau 00,040\)
146,610 & 174,630 & 167,860 \\
\hline 800 & 158,200 & 10s,690 & 162,0i0 & 135,260 & & & & \\
\hline
\end{tabular}

Single-cylinder Condensing Engines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Cut-off, 1/8.} & \multicolumn{2}{|l|}{Cut-off, 1/6.} & \multicolumn{2}{|l|}{Cut-off, 1/4.} & \multicolumn{2}{|l|}{Cut-off, 1/3.} & \multicolumn{2}{|l|}{Cut-off, 1/2.} \\
\hline  & \[
\begin{gathered}
\mathrm{ComI} \\
p
\end{gathered}
\] & 0 & \[
\underset{p}{\text { Comp. }}
\] & 0 & \[
\overline{\mathrm{Comp}} \mathrm{p}
\] & 0 & \[
\underset{p}{\text { Comp. }}
\] & 0 & \[
\bar{p}
\] & 0 \\
\hline 200 & 265.5 & \(\frac{0}{126,560}\) & \(\overline{234,160}\) & \(\overline{173,660}\) & 204,210 & & \(\overline{189,600}\) & \(\overline{161,830}\) & 90 & 990 \\
\hline 400
600 & 1948, & 117,8 & 174,380 & 118,350 & 164,720 & 133,080 & 174,630 & 151,680 & & \\
\hline
\end{tabular}

Two-cylinder Engines, Cranks at \(90^{\circ}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Cut-off, 1/6.} & \multicolumn{2}{|l|}{Cut-off, \(1 / 4\).} & \multicolumn{2}{|l|}{Cut-off, 1/3.} & \multicolumn{2}{|l|}{Cut-off, 1/2.} \\
\hline & \[
\underset{p}{\mathrm{Comp}} .
\] & 0 & \[
\underset{p}{\mathrm{Comp}}
\] & 0 & \[
\underset{p}{\text { Comp. }}
\] & 0 & \[
\underset{p}{\mathrm{Comp}}
\] & 0 \\
\hline 200
400 & 71.980
70.160
70.00 & & 59,420
57,000 & & 49,273 & & & \\
\hline 600 & 70.040 & 60,140 & 57,480 & 54,340 & 49.150 & \} 50,000 & 35,500 & \} 36,950 \\
\hline 800 & \% 0,040 & & 60,140 & & 49,2:0 & & & \\
\hline
\end{tabular}

Three-cylinder Engines, Cranis at \(120^{\circ}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Cut-off, 1/6.} & \multicolumn{2}{|l|}{Cut-off, 1/4.} & \multicolumn{2}{|l|}{Cut-off, 1/3.} & \multicolumn{2}{|l|}{Cut-off, 1/2.} \\
\hline & \[
\underset{p}{\text { Comp. }}
\] & 0 & \[
\underset{p}{\text { Comp. }}
\] & 0 & \(\underset{p}{\mathrm{Comp}}\). & 0 & \[
\underset{p}{\operatorname{Comp}} .
\] & 0 \\
\hline 200
800 & 33.810
30,190 & 32,240
\(31,5 \div 0\) & 33.810
35,140 & 35,500
33,810 & 34,540
36,470 & 33,450
32,850 & 35.260
33,810 & 32, 370
32.360 \\
\hline
\end{tabular}

As a mean value of \(i\) for these engines we may use 33,810 .

Centrifugal Force in Fly-wheels. - Let \(W=\) weight of rim in pounds; \(R=\) mean radius of rim in feet; \(r=\) revolutions per minute, \(g=\) 32.16; \(v=\) velocity of rim in feet per second \(=2 \pi R r \div 60\).

Centrifugal force of whole \(\operatorname{rim}=F=\frac{W r^{2}}{g R}=\frac{4 W \pi^{2} R r^{2}}{3600 g}=.000341 W R r^{2}\).
The resultant, acting at right angles to a diameter of half of this force, tends to disrupt one half of the wheel from the other half, and is resisted by the section of the rim at each end of the diameter. The resultant of half the radial forces taken at right angles to the diameter is \(1 \div 1 / 2 \pi=\frac{2}{\pi}\) of the sum of these forces; hence the total force \(F^{\prime}\) is to be divided by \(2 \times 2 \times 1.5 i 08\) \(=6.2832\) to obtain the tensile strain on the cross-section of the rim, or, total strain on the cross-section \(=S=.0000542 \% W R r^{2}\). The weight \(W_{1}\) of a rim of cast iron 1 inch square in section is \(2 \pi R \times 3.125=19.635 R\) pounds, whence strain per square inch of sectional area of rim \(=S_{1} \overline{\bar{于}} .0010656 R^{2} r^{2}\) \(=.0002664 D^{2} r^{2}=.0000270 V^{2}\), in which \(D=\) diameter of wheel in feet, and \(V\) is velocity of rim in feet per minute. \(S_{1}=.0972 v^{2}\), if \(v\) is taken in feet per second.

For wrought iron.......... \(S_{1}=.0011366 R^{2} r^{2}=.0002842 D^{2} r^{2}=.0000288 V^{2}\).
For steel.................. \(S_{1}=.0011593 R^{2} r^{2}=.0002901 D^{2} r^{2}=.0000294 V^{2}\).
For wood.................... \(S_{1}=.0000888 R^{2} r^{2}=.0000222 D^{2} r^{2}=.00000225 V^{2}\).
The specific gravity of the wood being taken at \(0.6=37.5 \mathrm{lbs}\). per cu. ft., or \(1 / 12\) the weight of cast iron.

Example.-Required the strain per square inch in the rim of a cast-iron wheel 30 ft . diameter, 60 revolutions per minute.
\[
\text { Answer. } 15^{2} \times 60^{2} \times .0010656=863.1 \mathrm{lbs} \text {. }
\]

Required the strain per square inch in a cast-iron wheel-rim running a mile a minute. Answer. \(.000027 \times 5280^{2}=752.7 \mathrm{lbs}\).

In cast-iron fly-wheel rims, on account of their thickness, there is difficulty in securing soundness, and a tensile strength of \(10,000 \mathrm{lbs}\). per sq. in. is as much as can be assumed with safety. Using a factor of safety of 10 gives a maximum allowable strain in the rim of 1000 lbs . per sq. in., which corresponds to a rim velocity of 6085 ft . per minute.

For any given material, as cast iron, the strength to resist centrifugal force depends only on the velocity of the rim, and not upon its bulk or weight.

Chas. E. Emery (Cass. Mag., 1892) says: By calculation half the strength of the arms is available to strengthen the rim, or a trifle more if the flywheel centres are relatively large. The arms, however, are subject to transverse strains, from belts and from changes of speed, and there is, moreover, no certainty that the arms and rim will be adjusted so as to pull exactly together in resisting disruption, so the plan of considering the rim by itself and making it strong enough to resist disruption by centrifugal force within safe limits, as is assumed in the calculations above, is the safer way.

It does not appear that fly-wheels of customary construction should be unsafe at the comparatively low speeds now in common use if proper materials are used in construction. The cause of rupture of fly-wheels that have failed is usually either the "running away" of the engine, such as may be caused by the breaking or slackness of a governor-belt, or incorrect design or defective materials of the fly-wheel.

Chas. T. Porter (Trans. A. S. M. E., xiv. 808) states that no case of the bursting of a fly-wheel with a solid rim in a high-speed engine is known. He attributes the bursting of wheels built in segments to insufficient strength of the flanges and bolts by which the segments are held together. (See also Thurston, "Manual of the Steam-engine," Part II, page 413, ete.)

Arms of Fly -wheels and Pulleys. - Professor Torrey ( Am . Mach., July 30, 1891) gives the following formula for arms of elliptical crosssection of cast-iron wheels :
\(W=\) load in pounds acting on one arm; \(S=\) strain on belt in pounds per inch of width, taken at 56 for single and 112 for double belts; \(v=\) width of belt in inches; \(n=\) number of arms; \(L=\) length of arm in feet; \(b=\) breadth of arm at hub; \(d=\) depth of arm at hub, both in inches: \(W=\frac{S v}{n}\); \(b=\frac{W L}{30 d^{2}}\). The breadth of the arm is its least dimension \(=\) minor axis of the ellipse, and the depth the major axis. This formula is based on a factor of safety of 10 .

In using the formula, first assume some depth for the arm, and calculate the required breadth to go with it. If it gives too round an arm, assume the breadth a little greater, and repeat the calculation. A second trial will almost always give a gond section.

The size of the arms at the hub having been calculated, they may be somewhat reduced at the rim end. The actual amount cannot be calculated, as there are too many unknown quantities. However, the depth and breadth can be reduced about one third at the rim without danger, and this will give a well-shaped arm.

Pulleys are often cast in halves, and bolted together. When this is done the greatest care should be taken to provide sufficient metal in the bolts. This is apt to be the ver'y weakest point in such pulleys. The combined area of the bolts at each joint should be about \(28 / 100\) the cross-section of the pul ley at that point. (Torrey.)

Unwin gives
\[
\begin{aligned}
& d=0.6337 \sqrt[3]{\frac{B D}{n}} \text { for single belts } ; \\
& d=0.798 \sqrt[3]{\frac{B D}{n}} \text { for double belts; }
\end{aligned}
\]
\(D\) being the diameter of the pulley, and \(B\) the breadth of the rim, both in inches. These formulæ are based on an elliptical section of arm in which \(b=0.4 d\) or \(d=2.5 b\) on a width of belt \(=4 / 5\) the width of the pulley rim, a naximum driving force transmitted by the belt of 56 lbs . per inch of width for a single belt and 112 lbs . for a double belt, and a safe working stress of cast iron of 2250 lbs . per square inch.

If in Torrey's formula we make \(b=0.4 d\), it reduces to
\[
b=\sqrt[3]{\frac{W L}{187.5}} ; \quad d=\sqrt[3]{\frac{W L}{12}}
\]

Example.-Given a pulley 10 feet diameter; 8 arms, each 4 feet long; face, 36 inches wide; belt, 30 inches: required the breath and depth of the arm at the hub. According to Unwin,
\[
\begin{aligned}
& d=0.6337 \sqrt[3]{\frac{\overline{B D}}{n}}=0.633 \sqrt[3]{\frac{36 \times 120}{8}}=5.16 \text { for single belt, } b=2.06 \\
& d=0.798 \sqrt[3]{\frac{B D}{n}}=0.798 \sqrt[3]{\frac{36 \times 120}{8}}=6.50 \text { for double belt, } b=2.60
\end{aligned}
\]

According to Torrey, if we take the formula \(b=\frac{W L}{30 d^{2}}\) and assume \(d=5\) and 6.5 inches, respectively, for single and double belts, we obtain \(b=1.08\) and 1.33 , respectively, or practically only one half of the breadth according to Unwin. and, since transverse strength is proportional to breadth, an arm only one half as strong.

Torrey's formula is said to be based on a. factor of safety of 10, but this factor can be only apparent and not real, since the assumption that the strain on each arm is equal to the strain on the belt divided by the number of arms, is, to say the least, inaccurate. It would be more nearly correct to say that the strain of the belt is divided among half the number of arms. Unwin makes the same assumption in developing his formula, but says it is nnly in a rough sense true, and that a large factor of safety must be allowed. He therefore takes the low figure of \(2: 250 \mathrm{lbs}\). per square iuch for the safe working strength of cast iron. Unwin says that his equations agree well with practice.

Diameters of Flywheels for Various Speeds.-If 6000 feet per minute be the maximum velocity of rim allowable, then \(6000=\pi R D\), in which \(R=\) revolutions per minute, and \(D=\) diameter of wheel in feet, whence \(D=\frac{6000}{\pi R}=\frac{1910}{R}\).

Maximum Diameter of Fly-wheel Allowable for Different Numbers of Revolutions.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Revolutions per minute.} & \multicolumn{2}{|l|}{Assuming Maximum Speed of 5000 feet per minute.} & \multicolumn{2}{|l|}{Assuming Maximum Speed of 6000 feet per minute.} \\
\hline & Circum. ft. & Diam. ft. & Circum. f.t. & Diam. ft. \\
\hline 40 & 125 & 39.8 & 150. & 47.7 \\
\hline 50 & 100 & 31.8 & 120. & 38.2 \\
\hline 60 & 83.3 & 26.5 & 100. & 31.8 \\
\hline 70 & 71.4 & 22.7 & 85.72 & 27.3 \\
\hline 80 & 62.5 & 19.9 & 75.00 & 23.9 \\
\hline 90 & 55.5 & 17.7 & 66.66 & 21.2 \\
\hline 100 & 50. & 15.9 & 60.60 & 19.1 \\
\hline 120 & 41.67 & 13.3 & 50.00 & 15.9 \\
\hline 140 & 35.71 & 11.4 & 42.86 & 13.6 \\
\hline 160 & 31.25 & 9.9 & 37.5 & 11.9 \\
\hline 180 & 27.77 & 8.8 & 33.33 & 10.6 \\
\hline 200 & 25.00 & 8.0 & 30.00 & 9.6 \\
\hline 220 & 2.2 .3 & 7.2 & 27.27 & 8.7 \\
\hline 240 & 20.83 & 6.6 & 25.00 & 8.0 \\
\hline 260 & 19.23 & 6.1 & 23.08 & 7.3 \\
\hline 280 & 17.86 & 5.7 & 21.43 & 6.8 \\
\hline 300 & 16.66 & 5.3 & 2000 & 6.4 \\
\hline 350 & 14.29 & 4.5 & 17.14 & 5.5 \\
\hline 400 & 12.5 & 4.0 & 15.00 & 4.8 \\
\hline 450
500 & 11.11 & 3.5 & 13.33 & 4.8 \\
\hline 500 & 10.00 & 3.2 & 12.00 & 3.8 \\
\hline
\end{tabular}

Strains in the Rims of Fly-band Wheels Produced by Centrifugal Force. (James B. Stanwood, Trans. A. S. M. E., xiv. 251.) -Mr. Stanwood mentions one case of a fly-band wheel where the periphery velocity on a \(1 \tau^{\prime} 9^{\prime \prime}\) wheel is over 7500 ft . per minute.

In band saw-mills the blade of the saw is operated successfully over wheels 8 and 9 ft . in diameter, at a periphery velocity of 9000 to \(10,000 \mathrm{ft}\). per minute. These wheels are of cast iron throughout, of heavy thickness, with a large number of arms.

In shingle-machines and chipping-machines where cast-iron disks from 2 to 5 ft . in diameter are employed, with knives inserted radially, the speed is frequently 10,000 to \(11,000 \mathrm{ft}\). per minute at the periphery.

If the rim of a fly-wheel alone be considered, the tensile strain in pounds per square inch of the rim section is \(T=\frac{V^{2}}{10}\) nearly, in which \(V=\) velocity in feet per second; but this strain is modified by the resistance of the arms, which prevent the uniform circumferential expansion of the rim, and induce a bending as well as a tensile strain. Mr. Stanwood discusses the strains in band-wheels due to transverse bending of a section of the rim between a pair of arms.

When the arms are few in number, and of large cross-section, the ring will be strained transversely to a greater degree than with a greater number of lighter arms. To illustrate the necessary rim thicknesses for various jim velocities, pulley diameters, number of arms, etc., the following table is given, based upon the formula
\[
t=\frac{.475 d}{N^{2}\left(\frac{F}{V^{2}}-\frac{1}{10}\right)}
\]
in which \(t=\) thickness of rim in inches, \(d=\) diameter of pulley in inches, \(N=\) number of arms, \(V=\) velocity of rim in feet per second, and \(F=\) the greatest strain in pounds per square inch to which any fibre is subjected. The value of \(F\) is taken at 6000 lbs. per sq. in.

Thickness of Rims in Solid Wheels.
\begin{tabular}{|c|c|c|c|c|}
\hline Diameter of Pulley in inches. & Velocity of Rim in \(f \in\) et per second. & Velocity of Rim in feet per minute. & No. of Arms. & Thickness in inches. \\
\hline 24 & 50 & 3,000 & 6 & 2/10 \\
\hline 24 & 88 & 5,280 & 6 & 15/32 \\
\hline 48 & 88 & 5,280 & 6 & 15/16 \\
\hline 108 & 184 & 11,040 & 16 & 212 \\
\hline 108 & 184 & 11,040 & 36 & 1/2 \\
\hline
\end{tabular}

If the limit of rim velocity for all wheels be assumed to be 88 ft . per second, equal to 1 mile per minute, \(F=6000 \mathrm{lbs}\)., the formula becomes
\[
t=\frac{.47 \check{ } \text { d }}{.67 N^{2}}=0.7 \frac{d}{N^{2}}
\]

When wheels are made in halves or in sections, the bending strain may be such as to make \(t\) greater than that given above. Thus, when the joint comes half way between the arms, the bending action is similar to a beam supported simply at the ends, uniformly loaded, and \(t\) is \(50 \%\) greater. Then the fcrmula becomes
\[
t=\frac{.712 d}{N^{2}\left(\frac{F}{V^{2}}-\frac{1}{10}\right)}
\]
or for a fixed maximum rim relocity of 88 ft . per second and \(F=6000 \mathrm{lbs}\), \(t=\frac{1.05 i}{N^{2}}\). In segmental wheels it is preferable to have the joints opposite the arms. Wheels in halves, if very thin rims are to be employed, should have double arms along the line of separation,

Attention should be given to the proportions of large receiving and tightening pulleys. The thickness of rim for a \(48-\mathrm{in}\). wheel (shown in table) with a rim velocity of 88 ft . per second, is \(15 / 16 \mathrm{in}\). Many wrecks have been caused by the failure of receiving or tightening pulleys whose rims have beer too thin. Fly-wheels calculated for a given coefficient of steadiness are frequently lighter than the minimum safe weight. This is true especially of large wheels. A rough guide to the minimum weight of wheels can be deduced from our formulæ. The arms, hub, lugs, etc., usually form from one quarter to one third the entire weight of the wheel. If \(b\) represents the face of a wheel in inches, the weight of the rim (considered as a simple annular ring) will be \(w=.82 \mathrm{dtt}\) lbs. If the limit of speed is 88 ft . per second, then for solid wheels \(t=0.7 d \div N^{2}\). For sectional wheels (joint between arms) \(t=1.05 d \div N^{2}\). Weight of rim for solid wheels, \(w=.57 d^{2} b \div N^{2}\) in pounds. Weight of rim in sectional wheels with joints between arms, \(w=.86 d^{2} b \div\) \(N^{2}\) in pounds. Total weight of wheel: for solid wheel, \(W=.76 d^{2} t \div N^{2}\) to , \(86 d^{2} b \div N^{2}\), in pounds. For segmental wheels with joint between arms, \(W=1.05 d^{2} b \div N^{2}\) to \(1.3 d^{2} b \div N^{2}\), in pounds.
(This subject is further discussed by Mr. Stanwood, in vol. xv., and by Prof. Gaetano Lanza, in vol. xvi., Trans. A. S. M. E.)

A Wooden Rim Fly-wheel, built in 1891 for a pair of Corliss engines at the Amoskeag Mfg. Co.'s mill, Manchester, N. H., is described by C. H. Manning in Trans. A. S. M. E., xiii. 618 . It is 30 ft . diam. and 108 in. face. The rim is 12 inches thick, and is built up of 44 courses of ash plank, 2.3, and 4 inches thick, reduced about \(1 / 2\) inch in dressing, set edgewise, so as to break joints, and glued and bolted together. There are two hubs and two sets of arms, 12 in each, all of cast iron. The weights are as follows:


The wheel was tested at 76 revs. per min., being a surface speed of nearly 7200 feet per minute.

Mr. Manning discusses the relative safety of cast iron and of wooden wheels as follows: As for safety, the speeds being the same in both cases, the hoop tension in the rim per unit of cross-section would be directly as the weight per cubic unit; and its capacity to stand the strain directly as the tensile strength per square unit; therefore the tensile strengths divided by the weights will give relative values of different materials. Cast iron weighing 450 lbs . per cubic foot and with a tensile strength of \(1,440,000 \mathrm{lbs}\). per square foot would give a value of \(1,440,000 \div 450=3200\), whilst ash, of which the rim was made, weghing 34 lbs. per cubic foot, and with \(1,152,000\) lbs. tensile strength per square foot, gives a result \(1,152,000 \div 34=33,882\), and \(33,882 \div 3200=10.58\), or the wood-rimmed pulley is ten times safer than the cast-iron when the castings are good. This would allow the woodrimmed pulley to increase its speed to \(\sqrt{10.58}=3.25\) times that of a sound cast-iron one with equal safety.

Wooden fly wheel of the Willimantic Linen Co. (Illustrated in Power, March, 1893.)-Rim 28 ft diam., 110 in . face. The rim is carried upon three sets of arms, one under the centre of each belt, with 12 arms in each set.
The material of the rim is ordinary whitewood, \(7 / 8 \mathrm{in}\). in thickness, cutinto segments not exceeding 4 feet in length, and either 5 or 8 inches in width. These were assembled by building a complete circle 13 inches in width, first with the 8 inch inside and the 5 -inch outside, and then beside it another circle with the widths reversed, so as to break joints. Each piece as it was added was brushed over with glue and nailed with three-inch wire nails to the pieces already in position. The nails pass through three and into the fourth thickness. At the end of each arm four 14-inch bolts secure the rim, the ends being covered by wooden plugs glued and driven into the face of the wheel.

Wire-wound Fly-wheels for Extreme Speeds. (Eng'g News, August 2, 1890.)-The power required to produce the Mannesmann tubes is very large, varying from 2000 to \(10,000 \mathrm{H} . \mathrm{P} .\), according to the dimensions of the tube. Since this power is only needed for a short time (it takes only 30 to 45 seconds to convert a bar 10 to 12 ft . long and 4 in . in diameter into a tube), and then some time elapses before the next bar is ready, an engine of 1200 H.P. provided with a large fly-wheel for storing the energy will supply power enough for one set of rolls. These fly-wheels are so large and run at such great speeds that the ordinary method of constructing them cannot be followed. A wheel at the Mannesmann Works, made in Komotau, Hungary, in the usual manner, broke at a tangential velocity of 125 ft . per second. The fly-wheels designed to hold at more than double this speed consist of a cast-iron hub to which two steel disks, 20 ft . in diameter, are bolted; around the circumference of the wheel thus formed 70 tons of No. 5 wire are wound under a tension of 50 lbs . In the Mannesmann Works at Landore, Wales, such a wheel makes 240 revolutions a minute, corresponding to a tangeutial velocity of \(15,080 \mathrm{ft}\). or 2.85 miles per minute.

\section*{THE SLIDE-VALVE.}

Definitions.-Travel \(=\) total distance moved by the valve.
Throw of the Eccentric = eccentricity of the eccentric = distance from the centre of the shaft to the centre of the eccentric disk \(=1 / 2\) the travel of the valve. (Some writers use the term "throw" to mean the whole travel of the valve.)

Lap of the valve, also called outside lap or steam-lap = distance the outer or steam edge of the valve extends beyond or laps over the steam edge of the port when the valve is in its cential position.

Inside lap, or exhaust-lap \(=\) distance the inner or exhaust edge of the valve extends beyond or laps over the exhaust edge of the port when the valve is in its central position. The inside lap is sometimes made zero, or even negative, in which latter case the distance between the edge of the valve and the edge of the port is sometimes called exhaust clearance, or inside clearance.

Lead of the valve \(=\) the distance the steam-port is opened when the engine is on its centre and the piston is at the beginning of the stroke.

Lerd-angle \(=\) the angle between the position of the crank when the valve begins to be opened and its position when the piston is at the beginning of the stroke.

The valve is said to have lead when the steam-port opens before the pirton
begins its stroke. If the piston begins its stroke before the admission of steam begins the valve is said to have negative lead, and its amount is the lap of the edge of the valve over the edge of the port at the instant when the piston stroke begins.

Lap-angle \(=\) the angle through which the eccentric must be rotated to cause the steam edge to travel from its central position the distance of the lap.

Angular advance of the eccentric = lap-angle + lead angle.
Linear advance = lap + learl.

\section*{Effect of Lexp, Lead, etc., upon the Steam Distribution. -} Given valve-travel \(23 / 4\) in., lap \(3 / 4\) in., lead \(1 / 16\) in., exhaust-lap \(1 / 8\) in., required crank position for admission, cut-off, release and compression, and greatest port-opening. (Halsey on Slide-valve Gears.) Draw a circle of diameter \(f h=\) travel of valve. From \(O\) the centre set off \(O a=\) lap and \(a b\) \(=\) lead, erect perpendiculars \(O e, a c, b d\); then \(e c\) is the lap-angle and \(c d\) the lead-angle, measured as arcs. Set off \(f g=c d\), the lead-angle, then \(O g\) is the position of the crank for steam admission. Set off \(2 e c+c d\) from \(h\) to \(i\); then \(O i\) is the crank-angle for cut-off, and \(f k \div f h\) is the fraction of stroke completed at cut-off. Set off \(\mathrm{Ol}=\) exhaust-lap and draw lm ; em is the exhaust-lap angle. Set off \(h n=e c+c d-e m\), and \(O n\) is the position of crank at release. Set off \(f p=e c+c d+e m\), and \(O p\) is the position of crank for compression, fo \(\div f h\) is the fraction of stroke completed at release, and \(h q \div h f\) is the fraction of the return stroke completed when compression begins; Oh, the throw of the eccentric, minus \(O a\) the lap, equals ah the maximum port-opening.
If a valve has neither lap nor lead, the line joining the centre of the eccen-


Fig. 146.
tric disk and the centre of the shaft being at right angles to the line of the crauk, the engine would follow full stroke, admission of steam beginning at the berinning of the stroke and ending at the end of the stroke.

Adding lap to the valre enables us to cut off steam before the end of the stroke; the eccentric being advanced on the shaft an amount equal to the lap-angle enables steam to be admitted at the beginning of the stroke, as
before lap was added, and advancing it a further amount equal to the lead angle causes steam to be admitted before the beginning of the stroke.

Having given lap to the valve, and having advanced the eccentric on the shaft from its central position at right angles to the crank, through the angular advance = lap-angle and lead-angle, the four events, admission, cut-off, release or exhaust-opening, and compression or exhaust-closure, take place as follows: Admission, when the crank lacks the lead-angle of having reached the centre; cut-off, when the crank lacks two lap-angles and one lead-angle of having reached the centre. During the admission of steam the crank turns through a semicircle less twice the lap-angle. The greatest port-opening is equal to half the travel of the valve less the lap. Therefore for a given port-opening the travel of the valve must be increased if the lap is increased. When exhaust-lap is added to the valve it delays the opening of the exhaust and hastens its closing by an angle of rotation equal to the exhaust-lap angle, which is the angle through which the eccentric rotates from its middle position while the exhaust edge of the valve uncovers its lap. Release then takes place when the crank lacks one lap-angle and one lead-angle minus one exhaust-lap angle of having reached the centre, and compression when the crank lacks lap-angle + lead-angle + exhaust-lap angle of having reached the centre.

The above discussion of the relative position of the crank, piston, and valve for the different points of the stroke is accurate only with a connect-ing-rod of infinite length.
For actual connecting-rods the angular position of the rod causes a distortion of the position of the valve, causing the events to take place too late in the forward stroke and too early in the return. The correction of this distortion may be accomplished to some extent by setting the valve so as to give equal lead on both forward and return stroke, and by altering the exhaust-lap on one end so as to equalize the release and compression. F. A. Halsey, in his Slide-valve Gears, describes a method of equalizing the cut-off without at the same time affecting the equality of the lead. In designing slide-valves the effect of angularity of the connecting-rod should be studied on the drawing-board, and preferably by the use of a model.

Sweet's Valve-diagram.-To find outside and inside lap of valve for different cut-offs and compressions (see Fig. 147): Draw a circle whose


Fig. 147.-Sweet's Valve-diagram.
diameter equals travel of ralve. Draw diameter \(B A\) and continue to \(A^{1}\), so that the length \(A A^{1}\) bears the same ratio to \(X A\) as the length of connect-ing-rod does to length of engine-crank. Draw small circle \(E\) with a diameter equal to lead. Lay off \(A C\) so that ratio of \(A C\) to \(A B=\) cut-off in parts of the stroke. Erect perpendicular \(C D\). Draw \(D L\) tangent to \(E\); draw \(X S\) perpendicular to \(D L ; X S\) is then outside lap of valve.

To find release and compression: If there is no inside lap, draw \(F E\) through \(X\) parallel to \(D L . F\) and \(E\) will be position of crank for release and compression. If there is an inside lap, draw a circle about \(X\), in which radius \(X Y\) equals inside lap. Draw \(H G\) tangent to this circle and parallel to \(D L\); then \(H\) and \(G\) are crank position for release and compression. Draw \(H N\) and \(M G\), then \(A N\) is piston position at release and \(A M\) piston position at compression, \(A B\) being considered stroke of engine.
To make compression alike on each stroke it is necessary to increase the inside lap on crank end of valve, and to decrease by the same amount the
inside lap on back end of valve. To determine this amount, through \(M\) with a radius \(M M^{1}=A A^{1}\), draw arc \(M P\), from \(P\) draw \(P T\) perpendicular to \(A B\), then \(T M\) is the amount to be added to inside lap on crank end, and to be deducted from inside lap on back end of valve, inside lap being \(X Y\).

For the Bilgram Valve Diagram, see Halsey on Slide-valve Gears.
The Zeumer Valvediagram is given in most of the works on the steam-engine, and in treatises on valve-gears, as Zeuner's, Peabody's, and


Fig. 148.-Zeuner's Valve-diagram.
Spangler's. The following is condensed from Holmes on the Steam-engine: Describe a circle, with radius \(O A\) equal to the half travel of the valve. From \(O\) measure off \(O B\) equal to the outside lap, and \(B C\) equal to the lead. When the crank-pin occupies the dead centre \(A\), the valve has already moved to the right of its central position by the space \(O B+B C\). From \(C\) erect the perpendicular \(C E\) and join \(O E\). Then will \(O E\) be the position occupied by the line joining the centre of the eccentric with the centre of the crank-shaft at the commencement of the stroke. On the line \(O E\) as diameter describe the circle \(O C E\); then any chords, as \(O e, O E, O e^{\prime}\), will represent the spaces travelled by the valve from its central position when the crank-pin occupies respectively the positions opposite to \(D, E\), and \(F\). Before the port is opened at all the valve must have moved from its central position by an amount equal to the lap \(O B\). Hence, to obtain the space by which the port is opened, subtract from each of the arcs \(O e, O E\), etc., a iength equal to \(O B\). This is represented graphically by describing from centre \(O\) a circle with radius equal to the lap \(O B\); then the spaces \(\int e, g E\), etc., intercepted between the circumferences of the lap-circle \(B f e^{\prime}\) and the valve-circle \(O C E\), will give the extent to which the steam-port is opened.

At the point \(k\), at which the chor \(10 k\) is common to both valve and lap circles, it is evident that the valve bas moved to the right by the amount of the lap, and is consequently just on the point of opening the steam-port. Hence the steam is admitted before the commencement of the stroke, when the crank occupies the position \(O H\), and while the portion \(H A\) of the revo-
lution still remains to be accomplished. When the crank-pin reaches the position \(A\), that is to say, at the commencement of the stroke, the port is already opened by the space \(O C-O B=B C\), called the lead. From this point forward till the crank occupies the position \(O E\) the port continues to open, but when the crank is at \(O E\) the valve has reached the furthest limit of its travel to the right, and then commences to return, till when in the position \(O F\) the edge of the valve just covers the steam-port, as is shown by the chord \(O e^{\prime}\), being again common to both lap and valve circles. Hence when the crank occupies the position \(O F\) the cut-off takes place and the steam commences to expand, and continues to do so till the exhaust opens. For the return stroke the steam-port opens again at \(H^{\prime}\) and closes at \(F^{\prime \prime}\).

There remains the exhaust to be considered. When the line joining the centres of the eccentric and crank-shaft occupies the position opposite to \(O G\) at right angles to the line of dead centres, the crank is in the line \(O P\) at right angles to \(O E\); and as \(O P\) does not intersect either valve-circle the valve occupies its central position, and consequently closes the port by the amount of the inside lap. The crank must therefore move through such an angular distance that its line of direction \(O Q\) must intercept a chord on the valve-circle \(O K\) equal in length to the inside lap before the port can be opened to the exhaust. This point is ascertained precisely in the same manner as for the outside lap, namely, by drawing a circle from centre \(O\), with a radius equal to the inside lap; this is the small inner circle in the figure. Where this circle intersects the two valve-circles we get four points which show the positions of the crank when the exhaust opens and closes during each revolution. Thus at \(Q\) the valve opens the exhaust on the side of the piston which we have been considering, while at \(R\) the exhaust closes and compression commences and continues till the fresh steam is readmitted at \(H\).

Thus the diagram enables us to ascertain the exact position of the crank when each critical operation of the valve takes place. Making a résumé of these operations of one side of the piston, we have: Steam admitted before the commencement of the stroke at \(H\). At the dead centre \(A\) the valve is already opened by the amount \(B C\). At \(E\) the port is fully opened, and valve has reached one end of its travel. At \(F\) steam is cut off, consequently admission lasted from \(H\) to \(F\). At \(P\) valve occupies central position, and ports are closed both to steam and exhaust. At Q exhaust opened, consequently expansion lasted from \(F\) to \(Q\). At \(K\) exhaust opened to maximum extent, and valve reached the end of its travel to the left. At \(R\) exhaust closed, and compression begins and continues till the fresh steam is admitted at \(H\).

Problem.-The simplest problem which occurs is the following: Given the length of throw, the angle of advance of the eccentric, and the laps of the valve, find the angles of the crank at which the steam is admitted and cut off and the exhaust opened and closed. Draw the live \(O E\), representing the half-travel of the valve or the throw of the eccentric at the given angle of advance with the perpendicular \(O G\). Produce \(O E\) to \(K\). On \(O E\) and \(O K\) as diameters describe the two valve-circles. With centre and radii equal to the given laps describe the outside and inside lap-circles. Then the intersection of these circles with the two valve-circles give points through which the lines \(O H, O F, O Q\), and \(O R\) can be drawn. These lines give the required positions of the crank.

Numerous other problems will be found in Holmes on the Steam-engine, including problems in valve-setting and the application of the Zeuner diagram to link motion and to the Meyer valve-gear.

Port Opening. - The area of port opening should be such that the velocity of the steam in passing through it should not exceed 6000 ft . per min. The ratio of port area to piston area will then vary with the piston-speed as follows:
For speed of piston,
ft. per min.

For a velocity of 6000 ft . per min.,
\[
\text { Port are }=\frac{\text { sq. of diam. of cyl. } \times \text { piston } \text { speed }}{\text { ri639 }}
\]

The length of the port opening may be equal to or something less than the diameter of the cylinder, and the width \(=\) area of portopening \(\div\) its length.
The bridge between steam and exhaust ports should be wide enough to prevent a leak of steam into the exhaust due to overtravel of the valve.

Auchincloss gives: Width of exhaust port \(=\) width of steam port + \(1 / 2\) travel of valve - width of bridge.
Lead. (From Peabody's Valve-gears.)-The lead, or the amount that the valve is open when the engine is on a dead point, varies, with the type and size of the engine. from a very small amonnt, or even nothing, up to \(3 / 8\) of an inch or more. Stationary-engines running at slow speed may have from \(1 / 64\) to \(1 / 16\) inch lead. The effect of compression is to fill the wasle space at the end of the cylinder with steam; consequently, engines having nuch compression need less lead. Locomotive-engines liaving the valves controlled by the ordinary form of Stephenson link-motion may have a small lead when running slowly and with a long cut-off, but when at speed with a short cut-off the lead is at least \(1 / 4\) inch; and locomotives that have ralve-gear which gives constant lead commonly have \(1 / 4\) inch lead. The lead angle is the angle the crank makes with the line of dead points at aimission. It may vary from \(0^{\circ}\) to \(8^{\circ}\).

Inside Lead.-Weisbach (vol. ii. p. 296) says: Experiment shows that the earlier opening of the exhanst ports is especially of advantage, and in the best engines the lead of the valve upon the side of the exhaust. or the inside lead; is \(1 / 25\) to \(1 / 15\); i.e., the slide-valve at the lowest or highest position of the piston has made an opening whose height is \(1 / 25\) to \(1 / 15\) of the whole throw of the slide-valve. The outside lead of the slide-valve or the lead on the steam side, on the other hand, is much smaller, and is often only \(1 / 100\) of the whole throw of the valve.

Effect of Changing Outside Lap, Inside Lap, Travel
and Angular Advance. (Thurston.)
\begin{tabular}{|c|c|c|c|c|}
\hline & Admission & Expansion & Exhaust & Compression \\
\hline Incr. O.L. & is later, ceases sooner & occurs earlier, continues longer & is unchanged & begins at same point \\
\hline \begin{tabular}{l}
Incr. \\
I.L.
\end{tabular} & unchanged & begins as before, continues longer & occurs later, ceases earlier & begins sooner, continues longer \\
\hline Incr. T. & begins sooner, continues longer & begins later, ceases sooner & begins later, ceases later & begins later; ends sooner \({ }^{\text {ºn }}\) \\
\hline \[
\begin{aligned}
& \text { Incr. } \\
& \text { A. A. }
\end{aligned}
\] & begins earlier, period unaltered & begins sooner, per. the same & begins earlier, per. unchanged & begins earlier, pır. the same \\
\hline
\end{tabular}

Zeuner gives the following relations (Weisbach-Dubois, vol. ii. p. 307):
\[
\text { If } \begin{aligned}
S & =\text { travel of valve, } p=\operatorname{maximum} \text { port opening; } \\
L & =\text { steam-lap, } l=\text { exhaust-lap; } \\
R & =\text { ratio of steam-lap to half travel }=\frac{L}{.5 S}, \quad L=\frac{R}{2} \times S ; \\
r & =\text { ratio of exhaust lap to half travel }=\frac{l}{.5 S}, \quad l=\frac{r}{2} \times S ;
\end{aligned}
\]
\[
S=2 p+2 L=2 p+2 R+S ; \quad S=\frac{2 p}{1-R}
\]

If \(a=\) angle HOF betwe positions of crank at admission and at cut-off, and \(\beta=\) angle \(Q O R\) between positions of crank at release and at compression, then \(R=1 / 2 \frac{\sin \left(180^{\circ}-a\right)}{\sin 1 / 2^{\alpha}} ; r=1 / 2 \frac{\sin \left(180^{\circ}-\beta\right.}{\sin 1 / 2 \beta}\).
Ratio of Lap and of Portopening to Valve-travel.-The table on page 831, giving the ratio of lap to travel of valve and ratio of travel to port opening, is abridged from one given by Buel in Weisbach-Dubois, vol. ii. It is calculated from the above formulæ. Intermediate values may be found by the formulæ, or with sufficient accuracy by interpolation from the figures in the table. By the table on page 830 the crank-angle may be found, that is, the angle between its position when the engine is on the centre and its position at cut-off, release, or compression, when these are known in fractions of the stroke. To illustrate the use of the tables the following example is given by Buel: width of port \(=2.2 \mathrm{in}\); width of port opening \(=\) width of port \(+0.3 \mathrm{in} . ;\) over overtravel \(=2.5 \mathrm{in} .:\) length of connecting-rod \(=21 / 2\) times stroke; cut-off, .75 of stroke; release, .95 of stroke; lead-angle, \(10^{\circ}\). From the first table we find crank-angle \(=114.6\);
add lead-angle, making \(124.6 .^{\circ}\) From the second table, for angle between admission and cut-off, \(125^{\circ}\), we have ratio of travel to port-opening \(=3.72\), or for \(124.6^{\circ}=3.74\), which, multiplied by port-opening 2.5 , gives 9.45 in travel. The ratio of lap to travel, by the table, is . 2324 , or \(9.45 \times .2324=2.2\) in. lap. For exhaust-lap we have, for release at 95 , crank-angle \(=151.3\); add lead-angle \(10^{\circ}=161.3^{\circ}\). From the second table, by interpolation, ratio of lap to travel \(=.0811\), and \(.0811 \times 9.45=0 . \% 7\) in., the exhaust-lap.
Lap-angle \(=1 / 2\left(180^{\circ}-\right.\) lead-angle - crank-angle at cut-off \() ;\)
\[
=11 / 2\left(180^{\circ}-10-114.6\right)=271^{\circ}
\]

Angular advance \(=\) lap-angle + lead-angle \(=27.7+10=37.7^{\circ}\).
Exhaust lap-angle = crank-angle at release + lap-angle + lead-angle \(-180^{\circ}\);
\[
=151.3+27 . \%+10-180^{\circ}=9^{\circ} .
\]

Crank-angle at com-1
\(\left.\begin{array}{l}\text { pression measured } \\ \text { on return strnke }\end{array}\right\}=180^{\circ}\). . lap-angle - lead-angle - exhaust lap-angle; on return stroke
\(=180-27.7-10-9=133.3^{\circ} ;\) corresponding, by table, to a piston position of .81 of the return stroke; or
Crank-angle at compression \(=180^{\circ}-\) (angle at release - angle at cut-off) + lead-angle;
\[
=180-(151.3-114.6)+10=133.3^{\circ}
\]

The positions determined above for cut-off and release are for the forward stroke of the piston. On the return stroke the cut-off will take place at the same angle, \(114.6^{\circ}\), correspouding by table to \(66.6 \%\) of the return stroke, instead of \(75 \%\). By a slight adjustment of the angular advance and the length of the eccentric rod the cut-off can be equalized. The width of the bridge should be at least \(2.5+0.25-2.2=0.55 \mathrm{in}\).

\section*{Crank Angles for Connecting-rods of Diferent Length.}

Forward and Return Strokes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{13}{|c|}{Ratio of Length of Connecting-rod to Length of Stroke.} \\
\hline & \multicolumn{2}{|r|}{2} & \multicolumn{2}{|r|}{21/2} & \multicolumn{2}{|r|}{3} & \multicolumn{2}{|r|}{31/2} & \multicolumn{2}{|r|}{4} & \multicolumn{2}{|r|}{5} & \[
\begin{aligned}
& \text { Infi- } \\
& \text { nite. }
\end{aligned}
\] \\
\hline & For. & Ret & For. & Ret. & For. & Ret. & For. & Ret. & For. & Ret. & For. & Ret. & For.
or Ret. \\
\hline . 01 & 10.3 & 132 & 10.5 & 12.8 & 10.6 & 12.6 & 10.7 & 12.4 & 10.8 & 12.3 & 10.9 & 12.1 & 11.5 \\
\hline . 02 & 14.6 & 18.7 & 14.9 & 18.1 & 15.1 & 17.8 & 15.2 & 17.5 & 15.3 & 17.4 & 15.5 & 17.1 & 16.3 \\
\hline . 03 & 17.9 & 22.9 & 18.2 & 22.2 & 18.5 & 21.8 & 18.7 & 21.5 & 18.8 & 21.3 & 19.0 & 21.0 & 19.9 \\
\hline . 04 & 20.7 & 26.5 & 21.1 & 25.7 & 21.4 & 25.2 & 21.6 & 24.9 & 21.8 & 24.6 & 22.0 & 24.3 & 23.1 \\
\hline . 05 & 23.2 & 29.6 & 23.6 & 28.7 & 24.0 & 28.2 & 24.2 & 27.8 & 24.4 & 27.5 & 24.7 & 27.2 & 25.8 \\
\hline . 10 & 33.1 & 41.9 & 33.8 & 40.8 & 34.3 & 40.1 & 346 & 39.6 & 34.9 & 39.2 & 35.2 & 38.7 & 36.9 \\
\hline . 15 & 41 & 51.5 & 41.9 & 50.2 & 42.4 & 49.3 & 42.9 & 48.7 & 43.2 & 48.3 & 43.6 & 47.6 & 45.6 \\
\hline . 20 & 48 & 59.6 & 48.9 & 58.2 & 49.6 & 57.3 & 50.1 & 56.6 & 50.4 & 56.2 & 50.9 & 55.5 & 53.1 \\
\hline . 25 & 54.3 & 66.9 & 55.4 & 65.4 & 56.1 & 64.4 & 56.6 & 63.7 & 57.0 & 63.3 & 57.6 & 62.6 & 60.0 \\
\hline . 30 & 60.3 & т3.5 & 61.5 & 72.0 & 62.2 & 71.0 & 62.8 & 70.3 & 63.3 & 69.8 & 63.9 & 69.1 & 66.4 \\
\hline . 35 & 66.1 & 798 & 67.3 & 78.3 & 68.1 & \%7.3 & 68.8 & 76.6 & 692 & 76.1 & 69.9 & 75.3 & \%2.5 \\
\hline . 40 & 71.7 & 85.8 & 73.0 & 84.3 & 73.9 & 83.3 & 74.5 & 82.6 & 75.0 & 82.0 & 75.7 & 81.3 & \%8.5 \\
\hline . 45 & 77.2 & 91.5 & 78.6 & 90.1 & 79.6 & 89.1 & 80.2 & 88.4 & 80.7 & 87.9 & 81.4 & 87.1 & 84.3 \\
\hline . 50 & 82.8 & 97.2 & 84.3 & 95.7 & 85.2 & 94.8 & 85.9 & 94.1 & 86.4 & 93.6 & 87.1 & 92.9 & 90.0 \\
\hline . 55 & 88.5 & 102.8 & 89.9 & 101.4 & 90.9 & 100.4 & 91.6 & 99.8 & 92.1 & 99.3 & 92.9 & 98.6 & 95.7 \\
\hline . 60 & 94.2 & 108.3 & 95.7 & \(10 \% .0\) & 96.7 & 106.1 & 97.4 & 105.5 & 98.0 & 105.0 & 98.7 & 104.3 & 101.5 \\
\hline . 65 & 100.2 & 113.9 & 101.7 & 112.7 & 102.7 & 111.9 & 103.4 & 111.2 & 103.9 & 110.8 & 104.7 & 110.1 & 107.5 \\
\hline . 70 & 106.5 & 119.7 & 108.0 & 118.5 & 109.0 & 117\%.8 & 109.7 & 117.2 & 110.2 & 116.7 & 110.9 & 116.1 & 113.6 \\
\hline . 75 & 113.1 & 125.7 & 114.6 & 124.6 & 115.6 & 123.9 & 116.3 & 123.4 & 116.7 & 123.0 & 117.4 & 122.4 & 120.0 \\
\hline . 80 & 120.4 & 132 & 121.8 & 131.1 & 122.6 & 130.4 & 123.4 & 129.9 & 123.8 & 129.6 & 124.5 & 129.1 & 126.9 \\
\hline . 85 & 128.5 & 139 & 129.8 & 138.1 & 130.7 & \(1: 37.6\) & 131.3 & 137.1 & 131.7 & 136.8 & 132.3 & 136.4 & 134.4 \\
\hline . 90 & 138.1 & 1469 & 139.2 & 146.2 & 139.9 & 145.7 & 140.4 & 145.4 & 140.8 & 145.1 & 141.3 & 144.8 & 143.1 \\
\hline . 95 & 150.4 & 156.8 & 151.3 & 156.4 & 151.8 & 156.0 & 152.2 & 155.8 & 152.5 & 155.6 & 152.8 & 155.3 & 154.2 \\
\hline . 96 & 153.5 & 159.3 & 154.3 & 158.9 & 154.8 & 158.6 & 155.1 & 158.4 & 155.4 & 158.2 & 155.7 & 158.0 & 156.9 \\
\hline . 97 & \(15 \% .1\) & 162.1 & 157.8 & 161.8 & 158.2 & 161.5 & 158.5 & 161.3 & 158.7 & 161.2 & 159.0 & 161.0 & 160.1 \\
\hline . 98 & 161.3 & 165.4 & 161.9 & 165.1 & 162.2 & 164.9 & 162.5 & 164.8 & 162.6 & 164.7 & 162.9 & 164.5 & 163.7 \\
\hline 99 & 166.8 & 169.7 & 167.2 & 169.5 & 167.4 & 169.4 & 167.6 & 169.3 & 167.7 & 169.2 & 167.9 & 169.1 & 168.5 \\
\hline 1.00 & \(\mid 180\) & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 & 180 \\
\hline
\end{tabular}

Relative Motions of Cross－head and Crank．－If \(L=\) length of connecting－rod，\(R=\) length of crank，\(\theta=\) angle of crank with centre line of engine，\(D=\) dispiacement of cross－head from the beginning of its stroke，
\[
D=R(1-\cos \theta)+L-\sqrt{L^{2}-R^{2} \sin ^{2} \theta}
\]

\section*{Lap and Travel of Valve．}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  &  \\
\hline \(30^{\circ}\) & ． 4830 & 58.70 & \(85^{\circ}\) & ． 3686 & 7.61 & \(135^{\circ}\) & 1913 & 3.24 \\
\hline 35 & ． 4769 & 4322 & 90 & ． 3536 & 6.83 & 140 & ． 1110 & 3.04 \\
\hline 40 & ． 4699 & 33.17 & 95 & ． 3378 & 6.17 & 145 & ． 1504 & 2.86 \\
\hline 45 & ． 4619 & 26.27 & 100 & ． 3214 & 5.60 & 150 & ． 1294 & 2． 20 \\
\hline 50 & ． 4532 & 21.34 & 105 & ． 3044 & 5.11 & 155 & ． 1082 & 2.55 \\
\hline 55 & ． 4435 & 17.70 & 110 & ． 2868 & 4.69 & 160 & ． 0868 & 2.42 \\
\hline 60 & ． 4330 & 14.93 & 115 & ． 2687 & 4.32 & 165 & ．065：3 & 2.30 \\
\hline 65 & ． 4217 & 12.77 & 120 & ． 2500 & 4.00 & 170 & ． 04336 & 2.19 \\
\hline \％ 0 & ． 4096 & 11.06 & 125 & ． 2309 & 3．72 & 17.5 & ． 0218 & 2.09 \\
\hline 75
80 & ． 3967 & 9.68 & 130 & ． 2113 & 3.46 & 180 & 0000 & 2.00 \\
\hline 80 & ． 3830 & 8.55 & & & & & & \\
\hline
\end{tabular}

\section*{PERIODS OF ADIIISSION，OR CUT－OFF，FOR VARIOUS LAPS AND TRAVELS OF SLIDE－VALVES．}

The two following tables are from Clark on the Steam－engine．In the first table are given the periods of admission corresponding to travels of valve of from 12 in ．to 2 in ．，and laps of from 2 in ．to \(3 / 8 \mathrm{in}\) ．，with \(1 / 4 \mathrm{in}\) ．and \(1 / 8 \mathrm{in}\) ．of lead．With greater leads than those tabulated，the steam would be cut off earlier than as shown in the table．

The influence of a lead of \(5 / 16\) in．for travels of from \(15 / 3 \mathrm{in}\) ．to 6 in．，and laps of from \(1 / 2 \mathrm{in}\) ．to \(11 / 2 \mathrm{in}\) ．，as calculated for in the second table，is exhibited by comparison of the periods of admission in the table，for the same lap and travel．T＇he greater lead shortens the period of admission，and increases the range for expansive working．

\section*{Periods of Admission，or Points of Cut－off，for Given Travels and Laps of Slide－valves．}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \dot{\Xi} \\
& \stackrel{む}{\oplus} \\
& \hline
\end{aligned}
\]} & \multicolumn{10}{|l|}{Periods of Admission，or Points of Cut off，for the following Laps of Valves in inches．} \\
\hline & & 2 & 13／4 & 11／2 & 11／4 & 1 & 7／8 & \(3 / 4\) & 5／8 & 1／2 & \(3 / 8\) \\
\hline in. & \[
\mathrm{in}_{1 / 4} .
\] & \[
\begin{aligned}
& \% \\
& 88
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& 90
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \% \\
& 93
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& 95
\end{aligned}
\] & \[
\%
\] & \(\%\)
97 & \％
98 & \[
\begin{aligned}
& \% \\
& 98
\end{aligned}
\] & \％
99 & \％ \\
\hline 10 & \(1 / 4\) & 82 & 87 & 89 & 92 & 95 & 96 & 97 & 98 & 98 & 99 \\
\hline 8 & \(1 / 4\) & 72 & 78 & 84 & 88 & 92 & 94 & 95 & 95 & 98 & 08 \\
\hline \({ }^{\circ}\) & \(1 / 4\) & 50 & 63 & \(\pi 1\) & 79 & 86 & 89 & 91 & 94 & 96 & \(3{ }^{31}\) \\
\hline \(51 / 2\) & 1／8 & 43 & 56 & 68 & 77 & 85 & 88 & 91. & 94 & 96 & 97 \\
\hline 5 & 1／8 & 3： & 47 & 61 & 72 & 82 & 86 & 89 & 92 & 95 & 97 \\
\hline 41／2 & \(1 / 8\) & 14 & 35 & 51 & 66 & 78 & 83 & 87 & 90 & 94 & 96 \\
\hline 4 & 18 & & 17 & 39 & 57 & 72 & 78 & 83 & 88 & 92 & 95 \\
\hline 31／2 & \(1 / 8\) & & & 20 & 44 & 63 & 71 & 79 & 84 & 90 & 94 \\
\hline 3 & \(1 / 8\) & & & & 23 & 50 & 61 & \(\mathrm{r}_{51}\) & \％9 & 86 & 91 \\
\hline 21／2 & \(1 / 8\) & & & & & 27 & 43 & 57 & 70 & 80 & 88 \\
\hline 2 & 1／8 & ． & & & & & & 33 & 52 & 70 & 81 \\
\hline
\end{tabular}

\section*{Periods of Admission, or Points of Cut-off, for given Travels and Laps of Slide-valves.}

Constant lead, 5/16.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Travel. & \multicolumn{9}{|c|}{Lap.} \\
\hline Inches. & 1/2 & 5/8 & \(3 / 4\) & 7/8 & 1 & 11/8 & 11/4 & 13/8 & 11/2 \\
\hline 15/8 & 19
39 & & & & & & & & ... \\
\hline \(1 \% / 8\) & 47 & 1ir & & & & & & & \\
\hline 2 & 55 & 34 & & & & & & & \\
\hline 21/8 & 61 & 42 & 14 & & & & & & \\
\hline 214 & 65 & 50 & 30 & & & & & & \\
\hline \(23 / 8\) & 68 & 55 & 38 & \({ }_{97}^{13}\) & & & & & \\
\hline  & 71
74
74 & 59
63 & 45 & \(\stackrel{27}{36}\) & 12 & & & & \\
\hline 23/4 & - 76 & \(6{ }^{\text {\% }}\) & 56 & 43 & \(\stackrel{1}{26}\) & & . & & \\
\hline 2\%/8 & 78 & 70 & 59 & 47 & \% 2 & 11 & & & \\
\hline 3 & 80 & 73 & 62 & 50 & 38 & 23 & & & \\
\hline 31/8 & 81 & 74 & 65 & 5.5 & 44 & 30 & 10 & & \\
\hline \(31 / 4\) & 83 & 76 & 68 & 59 & 48 & 34 & 22 & & \\
\hline 33/8 & 84 & \% 8 & 71 & 62 & 51 & 40 & 29 & 9 & \\
\hline \(31 / 2\) & 8.5 & 80 & fi3 & 64 & 53 & 45 & 34 & 20 & \\
\hline \(35 / 8\)
\(33 / 8\) & 86 & 81
82 & 75 & 66
68 & 57
60 & 49
59 & 38
42 & 26
32 & \(\stackrel{9}{9}\) \\
\hline 378 & 87 & 83 & \% 8 & 70 & 63 & 55 & 46 & 36 & 25 \\
\hline 4 & 88 & 84 & 79 & \% & 66 & 58 & 49 & 40 & 29 \\
\hline 41/4 & 89 & 86 & 81 & 76 & 70 & 63 & 56 & 47 & 37 \\
\hline \(41 / 2\) & 90 & 87 & 83 & 79 & 73 & 67 & 61 & 54 & 45 \\
\hline \(43 / 4\) & 92 & 89 & 85 & 81 & 76 & 70 & 65 & 58 & 51 \\
\hline 5 & 93 & 90 & 87 & 83 & 78 & 73 & 67 & 62 & 56 \\
\hline 51/2 & 94
95 & \({ }_{93}^{92}\) & 89
91 & 86
88 & 82
85 & 78
88 & 73
78 & 68
74 & 63
69 \\
\hline
\end{tabular}

Diagram for Port-opening, Cutmoff, and Lap.-The diagram on the opposite page was published in Powver, Aug., 1893. It shows at a glance the relations existing between the outside lap, steam port-opening, and cut-off in slide valve engines.

In order to use the diagram to find the lap, having given the cut-off and maximum port-opening, follow the ordinate representing the latter, taken on the horizontal scale, until it meets the oblique line representing the given cut-off. Then read off this height on the vertical lap scale. Thus, with a port-opening of \(11 / 4\) inch and a cut-off of .50 , the intersection of the two lines occurs on the horizontal 3. The required lap is therefore 3 in .
If the cut off and lap are given, follow the horizontal representing the latter until it meets the oblique line representing the cut-off. Then vertically below this read the corresponding port-opening on the horizontal scale.
If the lap and port-opening are given, the resulting cut-off may be ascertained by finding the point of intersection of the ordinate representing the port-opening with the horizontal representing the lap. The oblique line passing through the point of intersection will give the cut-off.
If it is desired to take lead into account, multiply the lead in inches by the numbers in the following table corresponding to the cut-off, and deduct the result from tho lap as obtained from the diagram:
\begin{tabular}{c|c|c|c}
\hline Cut-off. & Multiplier. & Cut-off. & Multiplier. \\
\hline .20 & 4.717 & .60 & 1.358 \\
.25 & 3.731 & .625 & 1.288 \\
.30 & 3.048 & .65 & 1.222 \\
.33 & 2.717 & .70 & 1.103 \\
.375 & 2.381 & .75 & 1.000 \\
.40 & 2.171 & .80 & 0.904 \\
.45 & 1.930 & .85 & 0.815 \\
. .50 & 1.706 & .875 & 0.772 \\
.55 & 1.515 & 0.731 \\
\hline
\end{tabular}

THE SLIDE-VALVE.


Piston-valve.-The piston-valve is a modified form of the slide-valva The lap, lead, etc., are calculated in the same manner as for the commos slide-valve. The diameter of valve and amount of port-opening are calculated on the basis that the most contracted portion of the steam-passagu between the vaive and the cylinder should have an area such that the velocity of steam through it will not exceed 6000 ft . per minute. The area of the opening around the circumference of the valve should be about double the area of the steam-passage, since that portion of the opening that is opnosite from the steam-passage is of little effect.
Setting the Valves of an Engine. - The principles discussed above are applicable not only to the designing of valves, but also to adjustment of valves that have been improperly set; but the final adjustment of the eccentric and of the length of the rod depend upon the amount of lost motion, temperature, etc., and can be effected ouly after trial. After the valve has been set as accurately as possible when cold, the lead and lap for the forward and return strokes being equalized, indicator diagrams should be taken and the length of the eccentric-rod adjusted, if necessary, to correct slight irregularities.
To Putan Engine on its Centre.-Place the engine in a position where the piston will have nearly completed its outward stroke, and opposite some point on the cross-head, such as a corner, make a mark upon the guide. Against the rim of the pulley or crank-disk place a pointer and mark a line with it on the pulley. Then turn the engine over the centre until the cross-head is again in the same position on its inward stroke. This will bring the crank as much below the centre as it was above it before. With the pointer in the same position as before make a second mark on the pulleyrim. Divide the distance between the marks in two and mark the middle point. Turn the engine until the pointer is opposite this middle point, and it will then be on its centre. To avoid the error that may arise from the looseness of crank-pin and wrist-pin bearings, the engine should be turned a little above the centre and then be brought up to it, so that the crank pin will press against the same brass that it does when the first two marks are made.

Linkemotion.-Link-motions, of which the Stephenson link is the most commonly used, are designed for two purposes: first, for reversing the motion of the engine, and second, for varying the point of cut-off by varying the travel of the valve. The Stephenson link-motion is a combination of two eccentrics, called the forward and back eccentric, with a link connecting the extremeties of the eccentic-rods; so that by varying the position of the link the valve-rod may be put in direct connection with either eccentric, or may be given a movement controlled in part by one and in part by the other eccentric. When the link is moved by the reversing lever into a position such that the block to which the valve-rod is attached is at either end of the link, the valve receives its maximum travel, and when the link is in mid-gear the travel is the least and cut-off takes place early in the stroke.

In the ordinary shifting-link with open rods, that is, not crossed, the lead of the valve increases as the link is moved from full to mid-gear, that is, as the periol of steam admission is shortened. The variation of lead is equalized for the front and back strokes by curving the link to the radius of the eccentric-rods concavely to the axles. With crossed eccentric-rods the lead decreases as the link is moved from full to mid-gear. In a valve-motion with stationary link the lead is constant. (For illustration see Clark's Steamengine, vol. ii. p. 22.)
The linear advance of each eccentric is equal to that of the valve in full gear, that is, to lap + lead of the valve, when the eccentric-rods are attached to the link in such position as to cause the half-travel of the valve to equal the eccentricity of the eccentric.
The angle between the two eccentric radii, that is, between lines drawn from the centre of the eccentric disks to the centre of the shaft equals \(180^{\circ}\) less twice the angular advance.

Buel, in Appleton's Cyclopedia of Mechanics, vol. ii. p. 316, discusses the Stephenson link as follows: "The Stephenson link does not give a perfectly correct distribution of steam; the lead varies for different points of cut-off. The period of admission and the begiuning of exhaust are not alike for both ends of the cylinder, and the forward motion varies from the backward.
" The correctness of the distribution of steam by Stephenson's link-motion depends upon conditions which, as much as the circumstances will permit, onght to be fulfilled, namely: 1. The link should be curved in the arc of a circle whose radius is equal to the length of the eccentric-rod. 2. The
eccentric-rods ought to be long; the longer they are in proportion to the eccentricity the more symmetrical will the travel of the valve be on both sides of the centre of motion. 3. The link ought to be short. Each of its points describes a curve in a vertical plane, whose ordinates grow larger the farther the considered point is from the centre of the link; and as the horizontal motion ouly is transmitted to the valve, vertical oscillation will cause irregularities. 4. The link-hanger ought to be long. The longer it is the nearer will be the arc in which the link swings to a straight line, and thus the less its vertical oscillation. If the link is suspended in its centre, the curves that are described by points equidistant on both sides from the centre are not alike, and hence results the variation between the forward and backward gear. If the link is suspended at its lower end, its lower half will have less vertical oscillation and the upper half more. 5. The centre from which the link-hanger swings changes its position as the link is lowered or raised, and also causes irregularities. To reduce them to the smallest amount the arm of the lifting-shaftshould be made as long as the eccentric-rod, and the centre of the lifting-shaft should be placed at the height corresponding to the central position of the centre on which the link-hanger swings."
All these conditions can never be fulfilled in practice, and the rariations in the lead and the period of admission can be somewhat regulated in an artificial way, but for one gear only. This is accomplished by giving different lead to the two eccentrics, which difference will be smaller the longer the eccentric-rods are and the shorter the link, and by suspending the link not exactly on its centre line but at a certain distance from it, giving what is called "the offset."
For application of the Zenner diagram to link-motion, see Holmes on the Steam-engine, p. 290. See also Clark's Railway Machinery (1855), Clark’s Steam-engine. Zeuner's and Auchincloss's Treatises on Slide-valve Gears, and Halsey's Locomotive Link Motion. (See Appendix, p. 10:7.)
The following rules are given by the American Machinist for laying out a link for an upright slide-valve engine. By the term radius of link is meant the radius of the link-are \(a b\), Fig. 150, drawn through the centre of the slot;


Fig. 150.
this radius is generally made equal to the distance from the centre of shaft to centre of the link-block pin \(P\) when the latter stands mid way of its travel. The distance between the centres of the eccentric-rod pins \(e_{1} e_{2}\) should not be less than \(21 / 2\) times, and, when space will permit, three times the throw of the eccentric. By the throw we mean twice the eccentricity of the eccentric. The slot link is generally suspended from the end next to the forward ecceneric at a point in the link-arc prolonged. This will give comparatively a mall amount of slip to the link-block when the link is in forward gear; but this slip will be increased when the link is in backward gear. This increase
of slip is, however, considered of little importance, because marine engines, as a rule, work but very little in the backward gear. When it is necessary that the motion shall be as efficient in backward gear as in forward gear, then the link should be suspended from a point midway between the two eccentric-rod pins; in marine engine practice this point is generally located on the link-arc; for equal cut-offs it is better to move the point of suspension a small amount towards the eccentrics.

For obtaining the dimensions of the link in inches: Let \(L\) denote the length of the valve, \(B\) the breadth, \(p\) the absolute steam-pressure per sq. in., and \(R\) a factor of computation used as below; then \(R=.01 \sqrt{L \times B \times p}\).


The length of the link, that is, the distance from \(a\) to \(b\), measured on a straight line joining the ends of the link-arc in the slot, should be such as 10 allow the centre of the link-block pin \(P\) to be placed in a line with the eccen-tric-rod pins, leaving sufficient room for the slip of the block. Another ype of link frequently used in marine engines is the double-bar link, and this type is again divided into two classes: one class embraces those links which have the eccentric-rod ends as well as the valve-spindle end between the bars, as shown at \(B\) (with these links the travel of the valve is less than the throw of the eccentric); the other class embraces those links, shown i.t \(C\), for which the eccentric-rods are made with fork-ends, so as to connect to studs on the outside of the bars, allowing the block to slide to the end of the link, so that the centres of the eccentric-rod ends and the block-pin are in line when in full gear, making the travel of the valve equal to the throw of the eccentric. The dimensions of these links when the distance between the eccentric-rod pins is \(21 / 2\) to \(23 / 4\) times the throw of eccentrics can be found as follows:
\[
\begin{aligned}
& \text { Depth of bars........................................... }=(R \times 1.25)+1 / 2^{\prime \prime} \\
& \text { Thickness of bars......................................... }(R \times 1.5)+1 / 4^{\prime \prime} \\
& \text { Diameter of centre of sliding-block.............. }=R \times 1.3
\end{aligned}
\]

When the distance between the eccentric-rod pins is equal to 3 or 4 times the throw of the eccentrics, then


All the other dimensions may be found by the first table. These are empirical rules, and the results may have to be slightly changed to suit given conditions. In marine engines the eccentric-rod ends for all classes of links have adjustable brasses. In locomotives the slot-link is usually employed, and in these the pin-holes have case-hardened bushes driven into the pinholes, and have no adjustable brasses in the ends of the eccentric-rods. The link in \(B\) is generally suspended by one of the eccentric-rod pins; and the link in \(C\) is suspended by one of the pins in the end of the link, or by one of the eccentric-rod pins. (See note on Locomotive Link Motion in Appendix. p. 1077.)

Other Forms of Valve-Gear, as the Joy, Marshall, Hackworth, Bremme, Walschaert, Corliss, etc., are described in Clark's Steam-engine, vol. ii. The design of the Reynolds-Corliss valve-gear is discussed by A. H. Eldridge in Pover, Sep. 1893. See also Henthorn on the Corliss engine. Rules for laying down the centre lines of the Joy valve-gear are given in American Machinist, Nov. 13, 1890. For Joy's "Fluid-pressure Reversingvalve," see Eng'g, May 25, 1894.

\section*{GOVERNORS.}

Pendulum or Fly-ball Goverinor.-The inclination of the arms of a revolving pendulum to a vertical axis is such that the height of the point of suspension \(h\) above the horizontal plane in which the centre of gravity of the balls revolve (assuming the weight of the rods to be small
compared with the weight of the balls) bears to the radius \(r\) of the circle described by the centres of the balls the ratio
\[
\frac{h}{r}=\frac{\text { weight }}{\text { centrifugal force }}=\frac{w}{\frac{w v^{2}}{g r}}=\frac{g r}{v^{2}}
\]
which ratio is independent of the weight of the balls, \(v\) being the velocity of the centres of the balls in feet per second.
If \(T=\) number of revolutions of the balls in 1 second, \(v=2 \pi r T=a r\), in which \(a=\) the angular velocity, or \(2 \pi T\), and
\[
h=\frac{g r^{2}}{v^{2}}=\frac{g}{4 \pi^{2} T^{2}}, \text { or } h=\frac{0.8146}{T^{2}} \text { feet }=\frac{9.7 \pi 5}{T^{2}} \text { inches, }
\]
\(g\) being taken at 32.16. If \(N=\) number of revs. per minute, \(h=\frac{35190}{N^{2}}\) inches.
\begin{tabular}{lllllll} 
For revolutions per minute......... & 40 & 45 & 50 & 60 & 75 \\
The height in inches will be........ & 21.99 & 17.38 & 14.08 & 9.775 & 6.256
\end{tabular}

Number of turns per minute required to cause the arms to take a given angle with the vertical axis: Let \(l=\) length of the arm in inches from the centre of suspension to the centre of gyration, and a the required angle; then
\[
N=\sqrt{\frac{35190}{l \cos a}}=187.6 \sqrt{\frac{1}{l \cos a}}=18 \% .6 \sqrt{\frac{1}{h}} .
\]

The simple governor is not isochronous; that is, it does not revolve at a uniform speed in all positions, the speed changing as the angle of the arms changes. To remedy this defect loaded governors, such as Porter's, are used. From the balls of a common governor whose collective weight is \(A\) let there be hung by a pair of links of lengths equal to the pendulum arms a load \(B\) capable of sliding on the spirdle, having its centre of gravity in the axis of rotation. Then the centrifugal force is that due to \(A\) alone, and the effect of gravity is that due to \(A+2 B\); consequently the altitude for a given speed is increased in the ratio \((A+2 B): A\), as compared with that of a simple revolving pendulum, and a given absolute variation in altitude produces a smaller proportionate variatiou in speed than in the common governor. (Rankine, S. E., p. 551.)
For the weighted governor let \(l=\) the length of the arm from the point of suspension to the centre of gravity of the ball, and let the leugth of the sus-pending-link, \(l_{1}=\) the length of the portion of the arm from the point of suspension of the arm to the point of attachment of the link; \(G=\) the weight of one ball, \(Q=\) half the weight of the sliding weight, \(h=\) the height of the governor from the point of snspension to the plane of revolution of the balls, \(a=\) the angular velocity \(=2 \pi T, T\) being the number of revolutions per second ; then \(\left.a=\sqrt{\frac{3 \cdot 2.16}{h}\left(1+\frac{2 l l_{1}}{l}\right.} \frac{Q}{G}\right) ; ~ h=\frac{32.16}{a^{2}}\left(1+\frac{2 l_{1}}{l} \frac{Q}{G}\right)\) in feet, or \(h=\frac{35190}{N^{2}}\left(1+\frac{2 l_{1}}{l} \frac{Q}{G}\right)\) in inches, \(N\) being the number of revolutions per minute.

For various forms of governor.see App. Cycl. Mech., vol. ii. 61, and Clark's Steam-engine, vol. ii. p. 65 .
To Change the Speed of an Engine Having a Fly-ball Governor.-A slight difference in the speed of a governor changes the position of its weights from that required for fnll load to that required for no load. It is evident therefore that, whatever the speed of the engine, the normal speed of the governor must be that for which the governor was designed; i.e., the speed of the governor must be kept the same. To change the speed of the engine the problem is to so adjust the pulleys which drive the governor that the engine at its new speed shall drive it just as fast as it was driven at its original speed. In order to increase the engine-speed we must decrease the pulley upon the shaft of the engine, i.e., the driver, or increase that on the governor, i.e., the driven, in the proportion that the speed of the engine is to be increased.

Fly wwheel or Shaft Governors. - At the Centennial Exhibition in \(18 i 6\) there were shown a few steam-engines in which the governors were contained in the fly-wheel or band-wheel, the fly-balls or weights revolving around the shaft in a vertical plane with the wheel and shifting the eccentric so as automatically to vary the travel of the valve and the point of cutoff. This form of governor has since come into extensive use, especially for high-speed engines. In its usual form two weights are carried on arms the ends of which are pivoted to two points on the pulley near its circumference, \(180^{\circ}\) apart. Links connect these arms to the eccentric. The eccentric is not rigidly keyed to the shaft but is free to move transversely across it for a certain distance, having an oblong hole which allows of this movement. Centrifugal force causes the weights to fly towards the circumference of the wheel and to pull the eccentric into a position of minimum eccentricity. This force is resisted by a spring attached to each arm which tends to pull the weights towards the shaft and shift the eccentric to the position of maximum eccentricity. The travel of the valve is thus varied, so that it tends to cut off earlier in the stroke as the engine increases its speed. Many modifications of this general form are in use. For discussions of this form of governor see Hartnell, Proc. Inst. M. E., 1882, p. 408; Trans. A. S. M. E., ix. 300 ; xi. 1081 ; xiv. 92 ; xv. 929 ; Modern Mechanism, p. 399; Whitham's Constructive Steam Engineering; J. Begtrup, Am. Mach., Oct. 19 and Dec. 14, 1893, Jan. 18 and March 1, 1894.

Calculation of Springs for Shaftogovernors. (Wilson Hartnell, Proc. Inst. M. E., Aug. 1882.)-The springs for shaft-governors may be conveniently calculated as follows, dimensions being in inches:
Let \(W\) = weight of the balls or weights, in pounds;
\(r_{1}\) and \(r_{2}=\) the maximum and minimum radial distances of the centr \(\theta\) of the balls or of the centre of gravity of the weights;
\(l_{1}\) and \(l_{2}=\) the leverages, i.e., the perpendicular distances from the cen tre of the weight-pin to a line in the direction of the centrifugal force, drawn through the centre of gravity of the weights or balls at radi \(r_{1}\) and \(r_{2}\);
\(m_{1}\) and \(m_{2}=\) the corresponding leverages of the springs;
\(C_{1}\) and \(C_{2}=\) the centrifugal forces, for 100 revolutions per minute, a radii \(r_{1}\) and \(r_{2}\);
\(P_{1}\) and \(P_{2}=\) the corresponding pressures on the spring;
(It is convenient to calculate these and note them down for reference. 1
\(C_{3}\) and \(C_{4}=\) maximum and minimum centrifugal forces;
\(S=\) mean speed (revolutions per minute);
\(S_{1}\) and \(S_{2}=\) the maximum and minimum number of revolutions per minute:
\(P_{3}\) and \(P_{4}=\) the pressures on the spring at the limiting number of revalutions ( \(S_{1}\) and \(S_{2}\) );
\(P_{4}-P_{3}=D=\) the difference of the maximum and minimum pressures on the springs;
\(V=\) the percentage of variation from the mean speed, or the sensitive ness;
\(t=\) the travel of the spring;
\(u=\) the initial pressure on the spring;
\(v=\) the stiffness in pounds per inch;
\(w=\) the maximum pressure \(=u+t\).
The mean speed and sensitiveness desired are supposed to be given. Then
\[
\begin{array}{ll}
S_{1}=S-\frac{S V}{100} ; & S_{2}=S+\frac{S V}{100} ; \\
C_{1}=0.28 \times r_{1} \times W ; & C_{2}=0.28 \times r_{2} \times W ; \\
P_{1}=C_{1} \times \frac{l_{1}}{m_{1}} ; & P_{2}=C_{2} \times \frac{l_{2}}{m_{2}} ; \\
P_{8}=P_{1} \times\left(\frac{S_{1}}{100}\right)^{2} ; & P_{4}=P_{2} \times\left(\frac{S_{2}}{100}\right)^{2} ; \\
v=\frac{D}{t}, u=\frac{P_{3}}{v}, & w=\frac{P_{4}}{v} .
\end{array}
\]

It is usual to give the spring-maker the values of \(\mathrm{P}_{4}\) and of \(v\) or \(w\). To ensure proper space being provided, the dimensions of the spring shuuld be
calculated by the formulæ for strength and extension of springs, and the least iength of the spring as compressed be determined.
\[
\text { The governor-power }=\frac{P_{3}+P_{4}}{2} \times \frac{t}{12} .
\]

With a straight centripetal line, the governor-power
\[
=\frac{C_{3}+C_{4}}{2} \times\left(\frac{r_{2}-r_{1}}{12}\right)
\]

For a preliminary determination of the governor-power it may be taken as equal to this in all cases, although it is evident that with a curved centripetal line it will be slightly less. The difference \(D\) must be constant for the same spring, however great or little its initial compression. Let the spring be screwed up until its minimum pressure is \(I_{5}^{\prime}\). Then to find the speed \(P_{5}=P_{5}+D\),
\[
S_{5}=100 \sqrt{\frac{\bar{P}_{5}}{P_{1}} ;} \quad S_{6}=100 \sqrt{\frac{\bar{P}_{6}}{P_{2}}}
\]

The speed at which the governor would be isochronous would be
\[
100 \sqrt{\frac{D}{P_{2}-P_{1}}}
\]

Suppose the pressure on the spring with a speed of 100 revolutions, at the maximum and minimum radii, was 200 lbs . and 100 lbs ., respectively, then the pressure of the spring to suit a variation from 95 to 105 revolutions will be \(100 \times\left(\frac{95}{100}\right)^{2}=90.2\) and \(200 \times\left(\frac{105}{100}\right)^{2}=220.5\). That is, the increase of resistance from the minimum to the maximum radius must be \(220-90=\) 130 lbs.

The extreme speeds due to such a spring, screwed up to different pressures, are shown in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Revolutions per minute, balls shut. & 80 & 90 & 95 & 100 & 110 & 120 \\
\hline Pressure on springs, balls shut. & 64 & 81 & 90 & 100 & 121 & 144 \\
\hline Increase of pressure when balls open fully & 130 & 130 & 130 & 130 & 130 & 130 \\
\hline Pressure on springs, balls open fully & 194 & 211 & :20 & 230 & 251 & \(2 \pi\) \% \\
\hline Revolutions per minute, balls open fully & 98 & 102 & 105 & 10 a & 112 & 117 \\
\hline Variation, per cent of mean speed & 10 & 6 & 5 & 3 & 1 & \\
\hline
\end{tabular}

The speed at which the governor would become isochronous is 114.
Any spring will give the right variation at some speed: hence in experimenting with a governor the correct spring may be found from any wrong one by a very simple calculation. Thus, if a governor with a spring whose stiffness is 50 los . per inch acts best when the engine runs at \(9 \mathrm{n}, 90\) being its proper speed, then \(50 \times\left(\frac{90}{95}\right)^{2}=45 \mathrm{lbs}\). is the stiffness of spring required.

To determine the speed at which the governor acts best, the springs may be screwed up until it begins to "hunt " and then slackened until the governor is as sensitive as is compatible with steadiness.

\section*{CONDENSERS, AHR-PUTIPS CHECELATENG*}

The Jet Condenser. (Chiefly abridged from Seaton's Marine Engi-neering.)-The jet condenser is now uncommon in marine practice, being generally supplanted by the surface condenser. It is commonly used where fresh water is available for boiler feed. With the jet condenser a vacumm of \(\because 4\) in. was considered fairly good, and 25 in. as much as was possible with most condeusers; the temperature coresponding to \(\because 4 \mathrm{in}\). vacumm, or 3 lbs. pressure \(a b=o l n t e\), is \(140^{\circ}\). In practice the temperature in the hot-well varies firom \(110^{\circ}\) to \(1: 0^{\circ}\), and occasionally as much as \(130^{\circ}\) is maintained. To find the quantity of injection-water per poimd of steam to be condensed: Jet \(T_{1}=\) tempprature of steam at the exhaust pressure; \(T_{0}=\) temperature of the cooling-
water; \(T_{2}=\) temperature of the water after condensation, or of the hot-well; \(Q=\) pounds of the cooling-water per lb . of steam condensed; then
\[
Q=\frac{1114^{\circ}+0.3 T_{1}-T_{2}}{T_{2}-T_{0}}
\]

Another formula is: \(Q=\frac{W H}{R}\), in which \(W\) is the weight of steam condensed, \(H\) the units of heat given up by 1 lb . of steam in condensing, and \(R\) the rise in temperature of the cooling-water.

This is applizable both to jet and to surface condensers. The allowance made for the injection-water of engines working in the temperate zone is usually 27 to 30 times the weight of steam, and for the tropics 30 to 35 times; 30 times is sufficient for ships which are occasionally in the tropics, and this is what was usual to allow for general traders.

Area of injection orifice \(=\) weight of injection-water in lbs. per min. \(\div 650\) to 780 .

A rough rule sometimes used is: Allow one fifteenth of a square inch for every cubic foot of water condensed per hour.

Another rule: Area of injection orifice \(=\) area of piston \(\div 250\).
The volume of the jet condenser is from one fourth to one half of that of the cylinder. It need not be more than one third, except for very quickrunning engines.

Ejector Condensers.-For ejector or injector condensers (Bulkley's, Schutte's, etc.) the calculations for quantity of condensing-water is the same as for jet condensers.

The surface Condenser-Cooling Surface. -Peclet found that with cooling water of an initial temperature of \(68^{\circ}\) to \(77^{\circ}\). one sq. ft. of copper plate condensed 21.5 lbs . of steam per hour, while Joule states that 100 lbs . per hour can be condensed. In practice, with the compound engine, brass condenser-tubes, \(18 \mathrm{~B} . \mathrm{W} . \mathrm{G}\) thick, 13 lbs . of steam per sq. ft. per hour, with the cooling-water at an initial temperature of \(10^{\circ}\), is considered very fair work when the temperature of the feed-water is to be maintained at \(120^{\circ}\). It has been found that the surface in the condenser may be half the heating surface of the hoiler, and under some circumstances considerably less than this. In general practice the following bolds good when the temperature of sea-water is about \(60^{\circ}\) :
\(\begin{array}{lllllllll}\text { Terminal pres., lbs., abs.... } & 30 & 20 & 15 & 121 / 2 & 10 & 8 & 6\end{array}\) Sq. ft. per \({ }^{\prime} \mathrm{H} . \mathrm{P} . . . . . . . .\).

For ships whose station is in the tropics the allowance should be increased by \(20 \%\) and for ships which occasionally visit the tropics \(10 \%\) increase will give satisfactnry results. If a ship is constantly employed in cold climates \(10 \%\) less șuffices

Whitbam (Steam-engine Design, p. 283, also Trans. A. S. M. E., ix. 431) gives the following: \(S=\frac{W L}{\operatorname{ck}\left(T_{1}-t\right)}\), in which \(S=\) condensing-surface in sq. ft.; \(T_{1}=\) temperature Fahr. of steam of the pressure indicated by the vacuum gauge; \(t=\) mean temperature of the circulating water, or the arithmetical mean of the initial and final temperatures; \(L=\) latent heat of saturated steam at temperature \(T_{1} ; k=\) perfect conductivity of 1 sq . ft. of the metal used for the condensing-surface for a range f \(1^{\circ} \mathrm{F}\). (or \(55 \%\) B.T.U. per hour for brass, according to Isherwood's experiments) ; \(c=\) fraction denoting the efficiency of the condensing surface; \(W=\) pounds of steam condensed per hour. From experiments by Loring and Emery, ou U.S.S. Dallas, \(c\) is found to be 0.323 , and \(c k=180\); and the equation becomes
\[
S=\frac{W L}{180\left(T_{1}-t\right)}
\]

Whitham recommends this formula for designing engines having independent circulating-pumps. When the pump is worked by the main engine the value of \(S\) should be increased about \(10 \%\).

Taking \(T_{1}\) at \(135^{\circ} \mathrm{F}\)., and \(L=10 \geqslant 0\), corresponding to 25 in . vacuum, and \(t\) for summer temperatures at \(75^{\circ}\), we have: \(S=\frac{1020 \mathrm{~W}}{180(135-75)}=\frac{17 \mathrm{~W}}{180}\).

Condenser Tubes are generally made of solid-drawn brass tubes, and tested both by hydraulic pressure and stean. They are usually made of a composition of \(68 \%\) of best selected copper and \(32 \%\) of best Silesian spelter.

The Admiralty, however, always specify the tubes to be made of \(70 \%\) of best selected copper and to have \(1 \%\) of tin in the composition, and test the tubes 10 a piessure of 300 lbs . per sq. in. (Seaton.)
The diameter of the condenser tubes varies from \(1 / 2\) inch in small condensers, when they are very short, to 1 inch in very large condensers and long tubes. In the mercantile marine the tubes are, as a rule, \(3 / 4\) inch diameter externally, and 18 B.W.G. thick ( 0.049 inch); and \(16 \mathrm{~B} . \mathrm{W} . G .(0.065\) ), under some exceptional circumstances. In the British Navy the tubes are also, as a rule, \(3 / 4\) inch diameter, and 18 to 19 B. W.G. thick, tinned on both sides; when the condenser is made of brass the.Admiralty do not require the tubes to be tinned. Some of the smaller engines have tubes \(5 / 8\) inch diameter, and \(19 \mathrm{~B} . \mathrm{W} . G\). thick. The smaller the tubes, the larger is the surface which can be got in a certain space.
In the merchant service the almost unisersal practice is to circulate the water through the tubes.
Whitham says the velocity of flow through the tubes should not be less than 400 nor more than \(r 00 \mathrm{ft}\). per min.
Tube-plates are usually made of brass. Rolled-brass tube-plates should be from 1.1 to 1.5 times the diameter of tubes in thickness, depending on the method of packing. When the packings go completely through the plates the latter, but when only partly through the former, is sufficient. Hence, for \(3 / 4\)-inch tubes the plates are usually \(7 / 8\) to 1 inch thick with glands and tape-packings, and 1 to \(11 / 4\) inch thick with wooden ferrules.

The tube-plates should be secured to their seatings by brass studs and nuts, or brass screw-bolts; in fact there must be no wrought iron of any kind inside a condenser. When the tube-plates are of large area it is advisable to stay them by brass-rods, to prevent them from collapsing.

Spacing of Tubes, etc.-The holes for ferrules, glands, or indiarubber are usually \(1 / 4\) inch larger in diameter than the tubes: but when absolutely necessary the wood ferrules may be only \(3 / 3 \geqslant\) inch thick.
The pitch of tubes when packed with wood ferrules is usually \(1 / 4\) inch more than the diameter of the ferrule-hole. For example, the tubes are generally arranged zigzag, and the number which may be fitted into a square foot of plate is as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pitch of Tubes. & No. in a sq. ft. & Pitch of Tubes. & No. in a sq. ft. & Pitch of Tubes. & \[
\begin{aligned}
& \text { No. in a } \\
& \text { sq. ft. }
\end{aligned}
\] \\
\hline \(1^{\prime \prime}\) & 172 & 15/32 \({ }^{\prime \prime}\) & 128 & \(11 / 4^{\prime \prime}\) & 110 \\
\hline 11/16' & 150 & \(1^{1} 3 / 16^{\prime \prime}\) & 121 & \(19 / 32^{\prime \prime}\) & 106 \\
\hline \(118^{\prime \prime}\) & 137 & \(17 / 32^{\prime \prime}\) & 116 & \(15 / 16^{\prime \prime}\) & 99 \\
\hline
\end{tabular}

Quantity of Cooling Water. - The quantity depends chiefly upon its initial temperature, which in Atlantic practice may vary from \(40^{\circ}\) in the winter of temperate zone to \(80^{\circ}\) in subtropical seas. To raise the temperature to \(100^{\circ}\) in the condenser will require three times as many thermal units in the former case as in the latter, and therefore only one third as much cooling-water will be required in the former case as in the latter.
\begin{tabular}{ll}
\(T_{1}=\) temperature of steam entering the condenser; \\
"" \\
\(T_{0}=\) & " \\
\(T_{2}=\) & " circulating-water entering the condenser; \\
\(T_{3}=\) & "
\end{tabular}
\[
Q=\text { quantity of circulating water in lbs. }=\frac{1114+0.3\left(T_{1}-T_{3}\right)}{T_{2}-T_{0}}
\]

It is usual to provide pumping power sufficient to supply 40 times the weight of steam for general traders, and as much as 50 times for ships stationed in subtropical seas, when the engines are compound. If the circulat-ing-pump is double-acting, its capacity may be \(1 / 53\) in the former and \(1 / 42\) in the latter case of the capacity of the low-pressure cylinder.

Air-pump.-The air-pump in all condensers abstracts the water condensed and the air originally contained in the water when it entered the boiler. In the case of jet-condensers it also pumps out the water of condensation and the air which it contained. The size of the pump is calculated from these conditions, making allowance for efficiency of the pump.

Ordinary sea-water contains, mechanically mixed with it, \(1 / 20\) of its volume of air when under the atmospheric pressure. Suppose the pressure in the condenser to be 2 lbs . and the atmospheric pressure 15 lbs ., neglecting the effect of temperature, the air on entering the condenser will be expanded to \(15 / 2\) times its original volume; so that a cubic foot of sea-water, when it has entered the condenser, is represented by \(19 / 20\) of a cubic foot of water and 15/40 of a cubic foot of air.

Let \(q\) be the volume of water condensed per minute, and \(Q\) the volume of sea-water required to condense it; and let \(T_{2}\) be the temperature of the condenser, and \(T_{1}\) that of the sea-water.

Then \(19 / 20(q+Q)\) will be the volume of water to be pumped from the condenser per minute,
\[
\text { and } \frac{15}{40}(q+Q) \times \frac{T_{2}+461^{\circ}}{T_{1}+461^{\circ}} \text { the quantity of air. }
\]

If the temperature of the condenser be taken at \(120^{\circ}\), and that of seawater at \(60^{\circ}\), the quantity of air will then be \(.418(q+Q)\), so that the total volume to be abstracted will be
\[
.95(q+Q)+.418(q+Q)=1.368(q+Q)
\]

If the average quantity of injection-water be taken at 26 times that condensed, \(q+Q\) will equal 2ĩq. Therefore, volume to be pumped from the condenser per minute \(=3\) rq, nearly.
In surface condensation allowance must be made for the water occasionally admitted to the boilers to make up for waste, and the air contained in it, also for slight leak in the joints and glands, so that the air-pump is made about half as large as for jet-condensation.
The efficiency of a single-acting air-pump is generally taken at 0.5 , and that of a double-acting pump at 0.35 . When the temperatur of the sea is \(60^{\circ}\), and that of the (jet) condenser is \(120^{\circ}, Q\) being the volume of the cooling water and \(q\) the volume of the condensed water in cubic feet, and \(n\) the number of strokes per minute,

The volume of the single-acting pump \(=2.74\left(\frac{Q+q}{n}\right)\).
The volume of the double-acting pump \(=4\left(\frac{Q+q}{n}\right)\).
The following table gives the ratio of capacity of cylinder or cylinders to that of the air-pump; in the case of the compound engine, the low-pressure cylinder capacity only is taken.
\begin{tabular}{|c|c|c|c|c|}
\hline Description of Pump. & \multicolumn{3}{|c|}{Description of Engine.} & Ratio. \\
\hline \multirow[t]{2}{*}{Single-acting vertical..} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Jet-condensing, expansion \(11 / 2\) to 2...
Surface \({ }^{\text {c/ }}\) (1/2 to}} & 6 to 8 \\
\hline & & & & 8 to 10 \\
\hline " & Jet "6 & " 3 & to 5. & 10 to 12 \\
\hline " & Surface " & '6 & & 12 to 15 \\
\hline Double-acting horizontal. & Jet " & expansion 11 & to 2 & 10 to 13 \\
\hline "6 \({ }^{\text {a }}\) & Surface " & ** 11/ & 2to 2 & 13 to 16 \\
\hline " " & Jet " & " 3 & to 5 & 16 to 19 \\
\hline 6 & Surface " & " 3 & to 5 & 19 to 24 \\
\hline 6 6 & Surface" & compound & ...... & 24 to 28 \\
\hline
\end{tabular}

The Area through Valve-seats and past the valves should not be less than will admit the full quantity of water for condensation at a velocity not exceeding 400 ft . per minute. In practice the area is generally in excess of this.

Area through foot-valves \(=D^{2} \times S \div 1000\) square inches.
Area through head-valves \(=D^{2} \times S \div 800\) square inches.
Diameter of discharge-pipe \(=D \times \sqrt{S}+35\) inches.
\(D=\) diam. of air-pump in inches, \(S=\) its speed in ft. per min.
James Tribe (Am. Much., Oct. 8, 1891) gives the following rule for air-
pumps used with jet-condensers: Volume of single-acting air-pump driven by main engine = volume of low-pressure cylinder in cubic feet, multiplied by 3.5 and divided by the number of cubic feet contained in one pound of exhaust-steam of the given density. For a double-acting air-pump the same rule will apply, but the volume of steam for each stroke of the pump will be but one half. Should the pump be driven independently of tise engine, then the relative speed must be considered. Volume of jet-condenser \(=\) volume of air-pump \(\times 4\). Area of injection valve \(=\) vol. of airpump in cubic inches \(\div 50\).
Circulating-pump.-Let \(Q\) be the quantity of cooling water in cubic fert, \(\quad \boldsymbol{z}\) the number of strokes per minute, and \(S\) the length of stroke in feet.

Capacity of circulating pump \(=Q \div n\) cubic feet.
Diameter " " \(\quad=13.55 \sqrt{\frac{Q}{n \times S}}\) inches.

The following table gives the ratio of capacity of steam-cylinder or cylinders to that of the circulating pump :
Description of Pump.
Single-acting.
"،
Druble
\(\vdots\)
".

> Description of Engine. Expansive \(11 / 2\) to 2 times. 3 to 56 Compound. Expansive \(11 / 2\) to 2 times. 3 to 5 Compound.

\section*{Ratio.}

13 to 16
20 to 25
25 to 30
25 to 30
36 to 46
46 to 56
The crear area through the valve-seats and past the valves should be such that the mean velocity of flow does not exceed 450 feet per minute. The flow through the pipes should not exceed 500 ft . per min. in small pipes and 600 in large pipes.
For Centrifugal Circulating-pumps, the velocity of flow in the inlet and nutlet pipes should not exceed 400 ft . per min. The diameter of the fan-wheel is from \(21 / 2\) to 3 times the diam. of the pipe, and the speed at its periphery 450 to 500 ft . per min. If \(W=\) quantity of water per minute, in American gallois, \(d=\) diameter of pipes in inches, \(R=\) revolutions of wheel per min., \(d=\sqrt{\frac{W}{16.44}} ;\) diam. of fan-wheel \(=\) not less than \(\frac{1 \pi 00}{R}\). Breadth of blade at tip \(=\frac{W}{36 d} . \quad\) Diam. of cylinder for driving the fan \(=\) about \(2.8 V \overline{\text { diam. of pipe }}\), and its stroke \(=0.28 \times\) diain. of fan.

Feed-pumps for Mirine Engines.-With surface-condensing engines the amount of water to be fed by the pump is the amount condensed from the main engine plus what may be needed to supply auxiliary engines and to supply leakage and waste. Since an accident may happen to the surface-condenser, requiring the use of jet-condensation, the pumps of engines fitted with surface-condensers must be sufficiently large to do duty under such circumstances. With jet-condense:s and boilers using salt water the dense salt water in the boiler must be blown off at intervals to keep the density so low that deposits of salt will not be formed. Sea-water contains about \(1 / 32\) of its weight of solid matter in solution. The boiler of a surfacecondensing engine may be worked with safety when the quantity of salt is four times that in sea-water. If \(Q=\) net quantity of feed-water required in a given time to make up for what is used as steam, \(n=\) number of times the saltness of the water in the boiler is to that of sea-water, then the gross feedwater \(=\frac{n}{n-1} Q . \quad\) In order to be capable of filling the boiler rapidly each feed-pump is made of a capacity equal to twice the gross feed-water. Two feed-pumps should be supplied, so that one may be kept in reserve to be used while the other is out of repair. If \(Q\) be the quantity of net feed-water in cubic feet, \(l\) the length of stroke of feed-pump in feet, and \(n\) the number of strokes per minute,
\[
\text { Diameter of each feed-pump plunger in inches }=\sqrt{\frac{550 \times Q}{n \times l}}
\]

If \(W\) be the net feed-water in pounds,
\[
\text { Diameter of each feed-pump plunger in inches }=\sqrt{\frac{8.9 \times W}{u \times l}}
\]

An Evaporative Surface Condenser built at the Virginia Agricultural College is described by James H. Fitts (Trans. A. S. M. E., xiv. 690). It consists of two rectangular end chambers connected by a series of horizontal rows of tubes, each row of tubes immersed in a pan of water. Through the spaces between the surface of the water in each pan and the bottom of the pan above air is drawn by means of an exhaust-fan. At the top of one of the end-chambers is an inlet for steam, and a horizontal diaphragm about midway causes the steam to traverse the upper half of the tubes and back through the lower. An outlet at the bottom leads to the airpump. The condenser, exclusive of connection to the exhaust-fan, occupies a floor space of \(5^{\prime} 41 / 2^{\prime \prime} \times 1^{\prime} 93 / 4^{\prime \prime}\), and \(4^{\prime} 11 / 2^{\prime \prime}\) high. There are \(2 \tau\) rows of tubes, 8 in some and 7 in others; 210 tubes in all. The tubes are of brass, No. \(20 \mathrm{~B} . \mathrm{W}\) G., \(3 / 4^{\prime \prime}\) external diameter and \(4^{\prime} 91 / 2^{\prime \prime}\) in length. The cooling surface (internal) is 176.5 sq. ft . There are 27 cooling pans, each \(4^{\prime} 91 / 2^{\prime \prime} \times 1^{\prime} 93 / 4^{\prime \prime}\), and \(17 / 16^{\prime \prime}\) deep. These pans have galvanized iron buttoms which slide into horizontal grooves \(14^{\prime \prime}\) wide and \(1 / 4^{\prime \prime}\) deep, planed into the tube-sheets. The total evaporating surface is 234.8 sq . ft . Water is fed to every third pan through small cocks, and overflow-pipes feed the rest. A wood casing connects one side with a \(30^{\prime \prime}\) Buffalo Forge Co.'s disk-wheel. This wheel is belted to a \(3^{\prime \prime} \times 4^{\prime \prime}\) vertical engine. The air-pump is \(53 / 4^{\prime \prime}\) diameter with a \(6^{\prime \prime}\) stroke, is vertical and single-acting.

The action of this condenser is as follows: The passage of air over the water surfaces removes the vapor as it rises and thus hastens evaporation. The heat necessary to produce evaporation is obtained from the stean in the tubes, causing the steam to condense. It was designed to condense 800 lbs . steam per hour and give a vacuum of 22 in., with a terminal pressure in the cylinder of 20 lbs . absolute.
Results of tests show that the cooling-water required is practically equal in amount to the steain used by the engine. And since consumption of steam is reduced by the application of a condenser, its use will actually reduce the total quantity of water required. From a curve showing the rate of evaporation per square foot of surface in still air, and also one show ng the rate when a current of air of about 2300 ft . per min. velocity is passed over its surface, the following approximate figures are taken:
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Temp. \\
F.
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Evaporation, lbs. per \\
sq. ft. per hour.
\end{tabular}} & \begin{tabular}{c} 
Temp. \\
F.
\end{tabular} & \multicolumn{2}{|c}{\begin{tabular}{c} 
Evaporation, lbs. per \\
sq. ft. per hour.
\end{tabular}} \\
\cline { 2 - 3 } & Still Air. & Current. & & Still Air. & Current. \\
\hline \(100^{\circ}\) & 0.2 & 1.1 & \(140^{\circ}\) & 0.8 & 5.0 \\
110 & 0.25 & 1.6 & 150 & 1.1 & 6.7 \\
120 & 0.4 & 2.5 & 160 & 1.5 & 9.5 \\
130 & 0.6 & 3.5 & 170 & 2.0 & \(\ldots\) \\
\hline
\end{tabular}

The Continuous Use of Condensingowater is described in a series ot articles in Power, Aug.-Dec., 189\%. It finds its application in situations where water for condensing purposes is expensive or difficult to obtain.

In San Francisco J. 〕. H. Stut cools the water after it has left the botwell by means of a system of pans upon the roof. These pans are shallow troughs of galvanized iron arranged in tiers, on a slight incline, so that the water flows back and forth for \(1500 \mathrm{o}_{2} 2000 \mathrm{ft}\)., cooling by evaporation and radiation as it flows. The pans are about 5 ft . in width, and the water as it flows has a depth of about half an inch, the temperature being reduced from about \(140^{\circ}\) to \(90^{\circ}\). The water from the hot-well is pumped up to the highest point of the cooling system and allowed to flow as above described, discharging finally into the main tank or reservoir, whence it again flows to the condenser as required. As the water in the reservoir lowers from evaporation, an auxiliary feed from the city mains to the condenser is operated, thereby keeping the amount of water in circulation practically constant. An accumulation of oil from the engines, with dust from the surrounding streets, makes a cleaning necessary about once in six weeks or two months. It is found by comparative trials, running condensing and non condensing, that
about \(50 \%\) less water is taken from the city mains when the whole apparatus is in use than when the engine is run non-condensing. 22 to 23 in . of vacuum are maintained. A better vacuum is obtained on a warm day with a brisk breeze blowing than on a cold day with but a slight movement of the air.

In another plant the water from the hot-well is sprayed from a number of fountains, and also from a pipe extending around its border, into a large pond, the exposure cooling it sufficiently for the obtaining of a good vacuum by its continuous use.

In the system patented by Messrs. See, of Lille, France, the water is discharged from a pipe laid in the form of a rectangle and elevated above a pond through a series of special nozzles, by which it is projected into a fine spray. On coming into coutact with the air in this state of extreme division the water is cooled \(40^{\circ}\) to \(50^{\circ}\), with a loss by evaporation of only one tenth of its mass, and produces an excellent vacuum. A 3000-H.P. cooler upon this system has been erected at Lannoy, one of 2500 H.P. at Madrid, and one of 1200 H.P. at Liege, as well as others at Roubaix and Tourcoing. The system couid be used upon a roof if ground space were limited.
In the "self-cooling" system of H. R. Worthington the injection-water is taken from a tank, and after having passed through the condenser is discharged in a heated condition to the top of a cooling tower, where it is scattered by means of distributing-pipes and trickles down through a cellular structure made of 6 -in. terra-cotta pipes, 2 ft . long, stood on end. The water is cooled by a blast of air furnished by a disk fan at the bottom of the tower and the absorption of heat caused by a portion of the water being vaporized, and is led to the tank to be again started on its circuit. (Eny'g News, March 5, 1896.)

In the evaporative condenser of T. Ledward \& Co. of Brockley, London, the water trickles over the pipes of the large condenser or radiator, and by evaporation carries away the heat necessary to be abstracted to condense the steam inside. The condensing pipes are fitted with corrugations mounted with circular ribs, whereby the radiating or cooling surface is largely increased. The pipes, which are cast in sections about 76 in. long by \(31 / 2 \mathrm{inl}\) bore, have a cooling surface of 26 sq . ft., which is found sufficient under favorable conditions to permit of the condensation of 20 to 30 lbs . of stcam per hour when producing a vacuum of 13 lbs . per sq. in, In a condenser of this type at Rixdorf, near Berlin, a vacuum ranging from 24 to 26 in . of mercury was constantly maintained during the hottest weather of August. The initial temperature of the cooling-water used in the apparatus under notice ranged from \(80^{\circ}\) to \(85^{\circ} \mathrm{F}\)., and the temperature in the sun, to which the condenser was exposed, varied each day from \(100^{\circ}\) to \(115^{\circ} \mathrm{F}\). During the experiments it was found that it was possible to run one engine under a load of 100 horse-power and maintain the full vacuum without the use of any cooling-water at all on the pipes, radiation afforded by the pipes alone sufficing to condense the steam for this power.
In Klein's condensing water-cooler, the hot water coming from the condenser enters at the top of a wooden structure about twenty feet in height, and is conveyed into a series of parallel narrow metal tanks. The water overtlowing from these tanks is spread as a thin film over a series of wooden partitions suspended vertically about \(31 / 2\) inches apart within the tower. The upper set of partitions, corresponding to the number of metal tanks, reaches half-way down the tower. From there down to the well is suspended a second set of partitions placed at right angles to the first set. This impedes the rapidity of the downflow of the water, and also thoroughly mixes the water, thus affording a better cooling. A fan-blower at the base of the tower drives a strong current of air with a velocity of about twenty feet per second against the thin film of water running down over the partitions. It is estimated that for an effectual cooling two thousand times more air than water must be forced through the apparatus. With such a velocity the air absorbs about two per cent of aqueous vapor. The action of the strong air-current is twofold: first, it absorbs heat from the hot water by being itself warmed by radiation; and, secondly, it increases the evaporation, which process absorbs a great amount of heat. These two cooling effects are different during the different seasons of the Jear. During the winter months the direct cooling effect of the cold air is greater, while during summer the heat absorption by evaporation is the more important factor. Taking all the year round, the effect remains very much the same. The evaporation is never so great that the deficiency of water would not be supplied by the additional amount of water resnlting from the condensed steam, while in very cold winter months it may be necessary to occasionally rid the cistern of surplus water. It was found that the vacuum obtained by
this continual use of the same condensing-water varied during the year. between 27.5 and 28.7 inches. The great saving of space is evident from the fact that only the five-hundredth part of the floor-space is required as if couling tanks or ponds were used. For a 100 -horse-power engine the floor-space required is about four square yards by a height of twenty feet. For one horse-power 3.6 square yards cooling-surface is necessary. The vertical suspension of the partitions is very essential. With a ventilator 50 inches in diameter and a tower 6 by 7 feet and 20 feet high, 10,500 gallons of water per hour were cooled from \(104^{\circ} \mathrm{F}\). to \(68^{\circ} \mathrm{F}\). The following record was made at Mannlieim, Germany: Vacuum in condenser, 28.1 inches; temperature of condensing-water entering at top of tower, \(104^{\circ}\) to \(108^{\circ} \mathrm{F}\).; temperature of water leaving the cooler, \(66.2^{\circ}\) to \(71.6^{\circ} \mathrm{F}\). The engine was of the Sulzer compound type, of 120 horse-power. The amount of power necessary for the arrangement amounts to about three per cent of the total horse-power of the engine for the ventilator, and from one and one half to three per cent for the lifting of the water to the top of the cooler, the total being four and one half to six per cent.

A novel form of condenser has been used with considerable success in Germany and other parts of the Continent. The exhaust-steam from the engine passes through a series of brass pipes immersed in water, to which it gives up its heat. Between each section of tubes a number of galvanized disks are caused to rotate. These disks are cooled by a current of air supplied by a fan and pass down into the water, cooling it by abstracting the heat given out by the exhaust-steam and carrying it up where it is driven off by the air-current. The disks serve also to agitate the water and thus aid it in abstracting the heat from the steam. With 85 per cent vacuum the temperature of the cooling water was about \(130^{\circ} \mathrm{F}\)., and a consumption of water for condensing is guaranteed to be less than a pound for each pound of steam condensed. For an engine \(40 \mathrm{in} . \times 50 \mathrm{in}\), 60 revolutions per minute, 90 lbs . pressure, there is about 1150 sq . ft. of condensingsurface. Another condenser, 1600 sq. ft. of condensing-surface, is used for three engines, \(32 \mathrm{in} . \times 48 \mathrm{in}\), 27 in . \(\times 40 \mathrm{in}\)., and 30 in . \(\times 40 \mathrm{in}\)., respectively. -The Steamship.
The Increase of Power that may be obtained by adding a condensergiving a vacuum of \(\because 6\) inches of mercury to a non-condensing engine may be approximated by considering it to be equivalent to a net gain of 12 pounds mean effective pressure per square inch of piston area. If \(A=\) area of piston in square inches, \(S=\) piston-speed in ft . per minute, then \(\frac{12 A S}{33,000}=\frac{A S}{2750}=\) H.P. made available by the vacuum. If the vacuum \(=13.2 \mathrm{lbs} . \mathrm{per} \mathrm{sq} . \mathrm{in} .=27.9\) in. of mercury, then H.P. \(=A S \div 2500\).

The saving of steam for a given horse-power will be represented approximately by the shortening of the cut-off when the engine is run with the condenser. Clearance should be included in the calculation. To the mean effective pressure non-coudensing, with a given actual cut-off, clearance considered, add 3 lbs. to obtain the approximate mean total pressure, condensing. From tables of expansion of steam find what actual cut-off will give this mean total pressure. The difference between this and the original actual cut-off, divided by the latter and by 100 , will give the percentage of saving.

The following diagram (from catalogue of H. R. Worthington) shows the percentage of power that may be gained by attaching a condenser to a noncondensing engine, assuming that the vacuum is 12 lbs . per sq. in. The diagram also shows the mean pressure in the cylinder for a given initial pressure and cut-off, clearance and compression not considered.
The pressures given in the diagram are absolute pressures above a vacuum.
To find the mean effective pressure produced in an engine-cylinder with 90 lbs. gange ( \(=105 \mathrm{lbs}\). absolute) pressure, cut-off at \(1 / 4\) stroke: find 105 in the left-hand or initial-pressure column, follow the horizontal line to the right until it intersects the oblique line that corresponds to the \(1 / 4\) cut-off, and read the mean total pressure from the row of figures directly above the point of intersection, which in this case is 63 lbs . From this subtract the mean absolute back pressure (say 3 lbs . for a condensing engine and 15 lbs for a noncoudensing engire exhausting into the atmosphere) to obtain the mean effective pressure, which in this case, for a non-condensing engine, gives 48 lbs. To find the gain of̂ power by the use of a condenser with this engine. read on the lower scale the figures that correspond in position to 48 lbs . in the upper row, in this case \(25 \%\). As the diagram does not take into consideration clearance or compression, the results are only approximate.


Fig. 151.
Evaporators and Distillers are used with marine engines for the purpose of providing fresh water for the boilers or for drinking purposes.

Weir's Evaporator consists of a small horizontal boiler, contrived so as to be easily taken to pieces and cleaned. The water in it is evaporated by the steam from the main boilers passing through a set of tubes placed in its bottom. The steam generated in this boiler is admitted to the lowpressure valve-box, so that there is no loss of energy, and the water condensed in it is returned to the main boilers.
In Weir's Feed-henter the feed-water before entering the boiler is heated up very nearly to boiling-point by means of the waste water and steam from the low-pressure valve-box of a compound engine.

\section*{GAS, PETROLEUM, AND HOT-AIR ENGINES.}

Gas-engines.-For theory of the gas-engine, see paper by Dugala Clerk, Proc. Inst. C. E. 1882, vol. Ixix.; and Van Nostrand's Science Series, No. 62. See also Wood's Thermodynamics. Three standard works on gasengines are "A Practical Treatise on the 'Otto 'Cycle Gas-engine," by Wm. Norris; "A Text-book on Gas, Air, and Oil Engines," by Bryan Donkiu; and " The Gas and Oil Engine," by Dugald Clerk (6th edition, 1896).

In the ordinary type of single-cylinder gas-engine (for example the Otto) known as a four-cycle engine one ignition of gas takes place in one end of the cylinder every two revolutions of the fly-wheel, or every two double strokes. The following sequence of operations takes place during four consecutive strokes: (a) inspiration during an entire stroke; (b) compression during the second (return) stroke; (c) ignition at the dead-point, and expansion during the third stroke; \((d)\) expulsion of the burnt gas during the fourth (return) stroke. Beau de Rochas in 186: laid down the law that there are
four conditions necessary to realize the best results from the elastic force of gas: (1) The cylinders should have the greatest capacity with the smallest circumferential surface; (2) the speed should be as high as possible; (3) the cut-off should be as early as possible; (4) the initial pressure should be as high as possible. In modern engines it is customary for ignition to take place, not at the dead point, as proposed by Beau de Rochas, but somewhat later, when the piston has already made part of its forward stroke. At first sight it might be supposed that this would entail a loss of power, but experience shows that though the area of the diagram is diminished, the power registered by the friction-brake is greater. Starting is also made easier by this method of working. (The Simplex Engine, Proc. Inst. M. E. 1889.)
In the Otto engine the mixture of gas and air is compressed to about 3 atmospheres. When explosion takes place the temperature suddenly rises to somewhere about \(2900^{\circ} \mathrm{F}\). (Robinson.)
The two great sources of waste in gas-engines are: 1 . The high temperature of the rejected products of combustion; 2. Loss of heat through the cylinder walls to the water-jacket. As the temperature of the water-jacket is increased the efficiency of the engine becomes higher.
With ordinary coal-gas the consumption may be taken at \(20 \mathrm{cu} . \mathrm{ft}\) : per hour per I.H.P., or 24 cu . ft. per brake H.P. The consumption will vary with the quality of the gas. When burning Dowson prodncer-gas the consumption of anthracite ( \(W\) elsh) coal is about 1.3 lbs . per I.H.P. per hour for ordinary working. With large twin engines, 100 H.P., the consumption is reduced to about 1.1 lb . The mechanical efficiency or B.H.P. + I.H.P. in ordinary engiues is about \(85 \%\); the friction loss is less in larger engines.

Efficiency of the Gas-engine. (Thurston on Heat as a Form of Energy.)
\[
\begin{aligned}
& \text { Heat transferred into useful work...................... } \quad \text { 17\% } \\
& \text { "" " to the jacket-water..................... } 52 \\
& \text { " lost in the exhaust-gas............................. } 16 \\
& \text { " " by conduction and radiation } \\
& \text { 83\% }
\end{aligned}
\]

This represents fairly the distribution of heat in the best forms of gasengine. The consumption of gas in the best engines ranges from a minimum of 18 to 20 cu . ft. per I.H.P. per hour to a maximum exceeding in the smaller engines 25 cu . ft. or 30 cu . ft. In small engines the consumption per brake horse-power is one third greater than these figures.

The report of a test of a \(170-\mathrm{H} . \mathrm{P}\). Crossley (Otto) gas-engine in England, 1892 , using producer-gas, shows a consumption of but .85 lb . of coal per H.P. hour, or an absolute combined efficiency of \(21.3 \%\) for the engine and producer. The efficiency of the engine alone is in the neighborhood of \(25 \%\).

The Taylor gas-producer is used in connection with the Otto gas-engine at the Otto Gas-engine Works in Philadelphia. The only loss is due to radiation through the walls of the producer and a smali amount of heat carried off in the water from the scrubber. Experiments on a 100 -H.P. engine show a consumption of \(97 / 100 \mathrm{lb}\). of carbon per I.H.P. per hour. This result is superior to any ever obtained on a steam-engine. (Iron Age, 1893.)

Tests of the Simplex Gas-engine. (Proc. Inst. M. E. 1889.)Cylinder \(\tau 7 / 8 \times 153 / 4\) in., speed 160 revs. per min. Trials were made with town gas of a heating value of 607 heat-units per cubic foot, and with Dowson gas, rich in CO, of about 150 heat-units per cubic foot.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Town Gas.} & \multicolumn{3}{|c|}{Dowson Gas.} \\
\hline & 1. & 2. & 3. & 1. & 2. & 3. \\
\hline Effective H.P. & 6.70 & 8.67 & 9.28 & 7.12 & 3.61 & 5.26 \\
\hline Gas per H.P. per hour, cu. ft.. & 21.55 & 20.12 & 20.73 & 88.03 & 114.85 & 97.88 \\
\hline Water per H.P. per hour, lbs. & 54.7 & 44.4 & 43.8 & 58.3 & & \\
\hline Temp, water entering, F...... & \(51^{\circ}\) & \(51^{\circ}\) & \(51^{\circ}\) & \(48^{\circ}\) & & \\
\hline " effluent. & \(135^{\circ}\) & \(144^{\circ}\) & \(172^{\circ}\) & \(144^{\circ}\) & & \\
\hline
\end{tabular}

The gas volume is reduced to \(32^{\circ} \mathrm{F}\). and 30 in barometer. A 50-H.P. engine working 35 to 40 effective H.P. with Dowson generator consumed 51 lbs . English anthracite per hour, equal to 1.48 to 1.3 lbs. per effective H.P. A 16H.P. engine working 12 H.P. used 19.4 cu . ft. of gas per effective H.P.

A 320-H.P. Gas-engine.-The flour-mills of M. Leblanc, at Pantin, France, have been provided with a 320 -horse-power fuel-gas engine of the Simplex type. With coal-gas the machine gives 450 horse-power. There is one cylinder, 34.8 in . diam.; the piston-stroke is 40 in .; and the speed 100 revs.
per min. Special arrangements have been devised in order to keep the different parts of the machine at appropriate temperatures. The coal used is \(0.81 \% \mathrm{lb}\). per indicated or 1.03 lb . per brake horse-power. The water used is \(83 / 4\) gallons per brake horse-power per hour.

Test of an Otto Gas-engine. (Jour. F. I., Feb. 1890, p. 115.)-Engine 7 H.P. nominal; working capacity of cylinder . 2594 cu . ft . ; clearance space . 1796 cu . ft.
\begin{tabular}{|c|c|c|}
\hline - F. & Heat-units. & Per cent. \\
\hline Temperature of gas supplied.. 62.2 & Transferred into work. & 22.84 \\
\hline "6 "6 exhaust... 774.3 & Taken by jacket-water & . 49.94 \\
\hline " " entering water 50.4 & "" " exhaust.... & 27.22 \\
\hline " " exit water.... 89.2 & & \\
\hline Pressure of gas, in. of water.. 3.06 & Composition of the gas: & \\
\hline Revolution per min., av'ge.... 161.6 & By Volume. & By Weight. \\
\hline Explosions missed per min., 6.8 & \(\mathrm{CO}_{2} \ldots \ldots \ldots . . .0 .50 \%\) & 1.923\% \\
\hline mean effective pressure, io..... & \(\mathrm{C}_{2} \mathrm{H}_{4} \ldots \ldots \ldots . . .{ }^{\text {a }}\). \({ }^{\text {a }}\) & 10.520 \\
\hline per sq. in. .............. 59. &  & 2.79. \\
\hline Horse-power, indicated....... 4.94 & \(\mathrm{CH}_{4}\)............. 27.18 & 38.042 \\
\hline Worlk per explosion, foot- & H \(\ldots\)............. 51.57 & 9.021 \\
\hline pounds ......... \({ }^{\text {explosions per minute.......... }}\). 74. & N . . . . . . . . . . . 9.06 & 22.273 \\
\hline Gas per I.H.P. per hour, cu.ft. 23.4 & 99.96 & 99.995 \\
\hline
\end{tabular}

Test of the Clerk Gageengine. (Proc. Inst. C. E. 1882, vol. Ixix.)Cylinder \(6 \times 12\) in., 150 revs. per min.; mean available pressure, \(70.1 \mathrm{lbs} ., 9\) I.H.P.; maximum pressure, \(2: 2 \mathrm{lbs}\). per sq. in. above atmosphere; pressure before ignition, 41 lbs . above atm.; temperature before compression, \(60^{\circ} \mathrm{F}\)., after compression, \(313^{\circ} \mathrm{F}\).; temperature after ignition calculated from pressure, \(2800^{\circ} \mathrm{F}\).; gas required per I.H.P. per hour, 22 cu . ft.

More Recent Tests of gas-engines, 1898, have given higher economical results than those above quoted. The gas-consumption (city gas) has been as low as 15 cu . ft. per I.H.P. per hour, and the efficiency as high as \(27 \%\) of the heating value of the gas. The principal improvement in practice has been the use of much higher compression of the working charge.

Combustion of the Gas in the Otto Engine.-John Imray, in discussiou of Mr. Clerk's paper on Theory of the Gas-engine, says: The change which Mr. Otto introduced, and which rendered the engine a success, was that, instead of burning in the cylinder an explosive mixture of gas and air, he burned it in company with, and arranged in a certain way in respect of, a large volume of incombustible gas which was heated by it, and which diminished the speed of combustion. W. R. Bousfield, in the same discussion, says: In the Otto engine the charge varied from a charge which was an explosive mixture at the point of ignition to a charge which was merely an inert fluid near the piston. When ignition took place there was n explosion close to the point of ignition that was gradually communicated throughout the mass of the cylinder. As the ignition got farther away from the primary point of ignition the rate of transmission became slower, and if the engine were not worked too fast the ignition should gradually catch up to the piston during its travel, all the combustible gas being thus consumed. This theory of slow combustion is, however, disputed by Mr. Clerk, who holds that the whole quantity of combustible gas is ignited in an instant.

Temperatures and Pressures developedin a Gas-engine. (Clerk on the Gas-engine.)-Mixtures of air and Oldhan coal-gas. Temperature before explosion, \(17^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|}
\hline Gas. & Air. \\
\hline \[
1 \text { vol. }
\] & 14 vols \\
\hline 1 " & 12 ، \\
\hline - & 11 " \\
\hline " & 9 ، \\
\hline 1 " & \(7{ }^{6}\) \\
\hline 1 " & 6 " \\
\hline \(1{ }^{\prime \prime}\) & 5 '6 \\
\hline \(1{ }^{\prime \prime}\) & \(4{ }^{6}\) \\
\hline
\end{tabular}

> Max. Press above Atmos., lbs. per sq. in.

Temp. of Explosion calculated from observed Pressure. \(806^{\circ} \mathrm{C}\). 10.33 1202 \(1220 \quad 2058\) \(1220 \quad 2228\) \(1557 \quad 2670\) \(1733 \quad 3334\) \(1792 \quad 3808\) 1812 1595

Theoretical Temp. of Explosion if all Heat were evolved. \(1786^{\circ} \mathrm{C}\). 1912 2058 2670 3334
3808
91.
80.
40.
51.5
60.
61.
78.
87.
90.
91.
80.

Air in Gas-engines.-Air passed over
gasoline or volatile petroleum spirit of low sp. gr., 0.65 to \(0 . \% 0\), liberates some of the gasoline, and the air thus saturated with vapor is equal in heating or lighting power to ordinary coal-gas. It may therefore be used as a fuel for gas-engines. Since the vapor is given off at ordinary temperatures gasoline is very explosive and dangerous, and should be kept in an underground tank out of doors. A defect in the use of carburetted air for gasengines is that the more volatile products are given off first, leaving an oily residue which is often useless. Some of the substances in the oil that are taken up by the air are apt to form troublesome deposits and incrustations when hurned in the engine cylinder.

The Otto Gasoline=engine. (Eng'g News, May 4, 1893.)-It is claimed that where but a small gasoline-engine is used and the gasoline bought at retail the liquid fuel will be on a par with a steam-engine using 6 lbs. of coal per horse-power per hour, and coal at \(\$ 3.50\) per ton, and will besides save all the handling of the solid fuel and ashes, as well as the attendance for the boilers. As very few small steam-engines consume less than 6 lbs . of coal per hour, this is an exceptional showing for economy. At 8 cts. per gallon for gasoline and \(1 / 10\) gal. required per H.P. per hour, the ier H.P. per hour will be 0.8 cent.
Gasoline-engines are coming into extensive use (1898). In these engines the gasoline is pumped from an underground tank, located at some distance outside the engine-room, and led through carefully soldered pipes to the working cylinder. In the combustion chamber the gasoline is sprayed into al current of air, by which it is vaporized. The mixture is then compressed and ignited by an electric spark. At no time does the gasoline come in contact with the air outside of the engine, nor is there any flame or burning gases outside of the cylinder.

Naphtharengines are in use to some extent in small yachts and launches. The naphtha is vaporized in a boiler, and the vapor is used expansively in the engine-cylinder, as steam is used; it is then condensed and returned to the boiler. A portion of the naphtha vapor is used for fuel under the boiler. According to the circular of the builders, the Gas Engine and Power Co. of New York, a 2-H.P. engine requires from 3 to 4 quarts of naphtha per hour, and a 4-H.P. engine from 4 to 6 quarts. The chief advantages of the naphtha-engine and boiler for launches are the saving of weight and the quickness of operation. A 2-H.P. engine weighs 200 lbs ., a 4-H.P. 300 lbs. It takes only about two minutes to get under headway. (Moderu Mechanism, p. 2\%0.)

Hot-air (or Caloric) Engines.-Hot-air engines are used to some extent, but their bulk is enormous compared with their effective power. For an account of the largest hot-air engine ever built (a total failure) see Church's Life of Ericsson. For theoretical investigaton, see Rankine's Steam-engine and Rontgen's Thermodynamics. For description of constructions, see Appleton's Cyc. of Mechanics and Modern Mechanism, and Babcock on Substitutes for Steam, Trans. A. S. M. E., vii., p. 693.

Test of a Hot-air Engine (Robinson).-A vertical double-cylinder (Caloric Engine Co.'s) 12 nominal H.P. engine gave 20.19 I.H.P. in the working cylinder and 11.38 I.H.P. in the pump, leaving 8.81 net I.H.P.; while the effective brake H.P. was 5.9 , giving a mechanical efficiency of \(67 \%\). Consumption of coke, 3.7 lbs . per brake H.P. per hour. Mean pressure on pistons 15.37 lbs . per square inch, and in pumps 15.9 lbs ., the area of working cylinders being twice that of the pumps. The hot air supplied was about \(1150^{\circ} \mathrm{F}\). and that rejected at end of stroke about \(890^{\circ} \mathrm{F}\).
The Priestman Petroleum-engine. (Jour. Frank. Inst., Feb. 189:3 ) -The following is a description of the operation of the engine: Any ordinary high-test (usually \(150^{\circ}\) test) oil is forced under air-pressure to an atomizer, where the oil is met by a current of air and broken up into atoms and sprayed into a mixer, where it is mixed with the proper proportion of supplementary air and sufficiently heated by the exhaust from the cylinder passing around this chamber. The mixture is then drawn by suction into the cylinder, where it is compressed by the piston and ignited by an electric spark, a governor controlling the supply of oil and air proportionately to the work performed. The birnt products are discharged through an ex-haust-valve which is actuated by a cam. Part of the air supports the combustion of the oil, and the heat generated by the combustion of the oil expands the air that remains and the products resulting from the explosion, and thus develops its power from air that it takes in while running. In other words, the engine exerts its power by inhaling air, heating that air, and expelling the products of combustion when done with. In the largest engines only the \(1 / 250\) part of a pint of oil is used at any one time \(e_{2}\) and in
the smallest sizes the fuel is prepared in correct quantities varying from \(1 / 7000\) of a pint upward, according to whether the engine is runuing on light or full duty. The cycle of operations is the same as that of the Otto gasengine.

Trials of a 5-H.P. Priestman Petroleum-engine. (Prof. W. C. Unwin, Proc. Inst. C. E. 1892.)-Cylinder, \(81 / 2 \times 12 \mathrm{in} .\), making normally 200 revs. per min. 'Two oils were used, Russian and American. The more important results were given in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Trial V . Full Power. & Trial I. Full Power. & Trial IV. Full Power. & Trial II. Half Power. & Trial III. Light. \\
\hline Oil us & \begin{tabular}{l}
Dar- \\
lioht
\end{tabular} & Russo- & Russo- & Russo- & Russo- \\
\hline Brake H.P & \%\% \(\%\) \% & \%ene. & leue. & lene. & \\
\hline I.H.P. & 9.369 & \%.408 & 8.332 & 4. 0 & 0.889 \\
\hline Mechanical efficiency. & 0.824 & \(0 . .11\) & \(0.8 i 6\) & 0.769 & \\
\hline Oil used per brake H.P. hour, lb. & 0.842 & 0.946 & 0.988 & 1.381 & \\
\hline Oil used per indicated & & & & & \\
\hline H.P. hour, lb.......... & 0.694 & 0.864 & 0.816 & 1.063 & 5.734 \\
\hline Lb . of air per lb. of oil.. & 33.4 & \(31 . \%\) & 43.2 & 21.7 & 10.1 \\
\hline Mean explosion pressure, lbs. per sq. in. & 151.4 & 134.3 & 128.5 & 48.5 & 9.6 \\
\hline Mean compression pressure, lbs. per sq. in .. & 35.0 & 2T. 6 & 26.0 & 14.8 & 6.0 \\
\hline Mean terminal pressure, los. per sq. in & 35.4 & 23.7 & 25.5 & 15.6 & \\
\hline
\end{tabular}

To compare the fuel consumption with that of a steam-engine, 1 lb . of oil might be taken as equivalent to \(11 / 2 \mathrm{lbs}\). of coal. Then the consumption in the oil-engine was equivalent, in Trials I., IV., and V., to I.42 lbs., 1.48 lbs ., and 1.26 lbs . of coal per brake horse-power per hour. From Trial IV. the following values of the expenditure of heat were obtained:
\begin{tabular}{|c|c|}
\hline Useful work at brake & Per cent. .. 13.31 \\
\hline Engine friction. & . 2.81 \\
\hline Heat shown on indicator-diagram & 16.12 \\
\hline Rejected in jacket-water & 47.54 \\
\hline " in exhaust-gases...... & \({ }^{26.72}\) \\
\hline Radiation and unaccounted for. & 9.61 \\
\hline Total & 99.99 \\
\hline
\end{tabular}

\section*{LOCOMOTIVES.}

Eficiency of Locomotives and Resistance of Trains. (George R. Henderson, Proc. Engi's. Club of Phila. 1886.)-The efficiency of locomotives can be divided into two principal parts : the first dependiny upon the size of the cylinders and wheels, the valve-gear, boiler and steampassages, of which the tractive power is a function; and the second upon the speed, grade, curvature, and friction, which combine to produce the resistance.
The tractive power may be determined as follows:
Let \(P=\) tractive power;
\(p=\) average effective pressure in cylinder;
S = stroke of piston;
\(d=\) diameter of cylinders;
\(D=\) diameter of driving-wheels. Then
\[
P=\frac{4 \pi d^{2} p S}{4 \pi D}=\frac{d^{2} p S}{D}
\]

The arerage effective pressure can be obtained from an indicator-diagram, or by calculation, when the initial pressure and ratio of expansion are known, together with the other properties of the valve-motion. The subjoined table from "Auchincloss" gives the proportion of mean effective pressure to boiler-pressure above atmosphere for various proportions of cut-off.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stroke, Cut off at- & M.E.P. (Boilerpres. = 1). & Stroke, Cut off at- & \[
\begin{gathered}
\text { (M.E.P. } \\
\text { Boiler- } \\
\text { pres. }=1 \text { ). }
\end{gathered}
\] & Stroke, Cut off at- & M.E.P. (Boilerpres. \(=1\) ). \\
\hline & 15 & \(333=1 / 3\) & \(5=1 /\) & . \(625=5 / 8\) & 79 \\
\hline . \(125=1 / 8\) & . 2 & . \(375=3 / 8\) & & . \(666=8 \%\) & .82 \\
\hline . 15 & . 24 & & . 5 \% & & . 85 \\
\hline .175 & . 28 & . 45 & . 62 & . \(75=3 / 4\) & . 89 \\
\hline & . 32 & . \(5=1 / 2\) & . 67 & . 8 \% & . 93 \\
\hline . \(25=1 / 4\) & . 46 & . 55 & . \(\%\) & . \(875=7 / 8\) & . 98 \\
\hline
\end{tabular}

These values were deduced from experiments with an English locomotive by Mr. Gooch. As diagrams vary so much from different causes, this table will only fairly represent practical cases. It is evident that the cut-off must be such that the boiler will be capable of supplying sufficient steam at the giveu speed.

In the following calculations it is assumed that the adhesion of the engine is at least equal to the tractive power, which is generally the case-if the engine be well designed-except when starting, or running at a very low rate of speed, with a small expansive ratio. When running faster, economy, and also the size of the boiler, necessitate a higher ratio of expansion, thus reducing the tractive power below the adhesion. If the adhesion be less than the tractive power, substitute it for the latter in the following formulæ.
The resistances can be computed in the following manner, first considering the train:

There is a resistance due to friction of the journals, pressure of wind, etc., which increases with the speed. Most of the experiments made with a view of determining the resistance of trains have been with European rolling-stock and on European railways. The few trials that have been made here seem to prove that with American systems this resistance is less.

The following table gives the resistance at different speeds, assumed for American practice:
Speed in miles per hour :


The resistance due to curvature is about .5 lb . per ton per degree of curvature, or the coefficient \(=.000: 5 c\), where \(c=\) the curvature in degrees.
The effect of grades may be determined by the theory of the inclined plane.

Consider a load \(L\) on a grade of \(m\) feet per mile. The component of the weight \(L\) acting in the line of traction, or parallel to the track, is
\[
L \sin \theta=\frac{L m}{5280}=.00019 L m
\]

To combine these coefficients in one equation representing the resistance of the train :
Let \(L=\) weight of train, exclusive of engine, in pounds;
\(R=\) resistance of train, in pounds.
\(\varepsilon, c\), and \(m\), as above. Then
\[
R=L\left[.0015\left(1+\frac{s^{2}}{050}\right)+.000 \div 5 c \pm .00019 m\right]
\]

INERTIA AND RESISTANCES OF RAILROAD TRAINS. SO゙3
the \(\pm\) sign meaning that this coefficient is positive for ascending and negalive for descending grades.

To find a grade upon which a train would descend by itself, take the last coefficient minus and make \(R=U\), whence
\[
m=7.9\left(1+\frac{s^{2}}{650}\right)+1.3 c
\]

As locomotives usually have a long rigid wheel-base, the coefficient for curvature had better be doubled. The resistance due to the friction of the working parts will be considered as being proportional to the tractive power, so that the effective tractive power will be represented by \(u P\), the resistance being \((1-u) P\).

Combining all these values, there results the equation between the tractive power and the weight of the train and engine:
\[
u P-W(.0005 c \pm .00019 m)=L l+.00025 c \pm .00019 m
\]

W being weight of engine and tender, and \(u\) being probably about .8 .
Transforming, we have
\[
L=\frac{u F-W(.0005 c \pm .00019 \mathrm{~m})}{l+.00025 c \pm .00019 \mathrm{~m}}
\]
and
\[
P=\frac{L(l+.00025 c \pm .00019 \mathrm{~m})}{u}+W(.0005 c \pm .00019 \mathrm{~m})
\]

These deductions, says Mr. Henderson, agree well with railroad practice.
The figures given above for resistances are very much less than those given by the old formulæ (which were certainly wrong), but even Mr. Henderson's figures for high speed are too high, according to a diagram given by D. L. Barnes in Eng'g Mag., June, 1894, from which the following figures are derived:
\begin{tabular}{llllllll} 
Speed, miles per hour............. & 50 & 60 & 70 & 80 & 90 & 100 \\
Resistance, pounds per gross ton.. & 12 & 12.4 & 13.5 & 15 & 17 & 20
\end{tabular}

Eng'g News, March 8, 1894, gives a formula which for high speeds gives figures for resistance between those of Mr. Barnes and Mr. Henderson. See tests reported in Eng'g News of June 9, 1892. The formula is, resistance in pounds per ton \(=1 / 4\) velocity in miles per hour +2 . This gives for
\(\begin{array}{llllllllllllllll}\text { Speed } \ldots . . & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 60 & 70 & 80 & 90 & 100\end{array}\)


For tables showing that the resistance varies with the area exposed to the resistance and friction of the air per ton of load, see Dashiell, Trans. A. S. M. E., vol. xiii. p. 371.

Inertia andiResistances of Railroad Trains at Hincreasing Speeds.-A series of tables and diagrams is given in \(R . R\). Gaz., Oct. 31., 18!10, to show the resistances due to inertia in starting trains and accelerating their speeds.

The mechanical principles and formulæ from which these data were calculated are as follows:
\(\stackrel{\Delta}{s}=\) speed in miles per hour to be acquired at the end of a mile.
\(S \div 2=\) average speed in miles per hour during the first mile run.
\(V=\) velocity in feet per secoud at the end of a mile; then \(V \div 2=\) average relocity in feet per second during the first mile ruu.
\(5280 \div V / 2=\) time in seconds required to run first mile \(=10560 \div V\).
\(V \div(10560 \div V)=V^{2} \div 10560=.0000947 V^{2}=\) Constant gain in velocity or acceleration in feet per second necessary to the acquirement of a velocity \(V\) at the end of a mile.
\(g=\) acceleration due to the force of gravity, i.e., 32.2 feet per second.
The forces required to accelerate a given mass in a given time to different velocities are in proportion to those velocities. The weight of a body is the measure of the force which accelerates it in the case of gravity, and as we are considering 1 lb ., or the unit of weight, as the mass to be accelerated, we have \(g:\left(V^{2} \div 10560\right):: 1\) is to the force required to accelerate 1 lb . to the velocity \(V\) at the end of a mile run, or, what is the same, to accelerate it at the rate of \(V^{2} \div 10560\) feet per second.

From this the pull on the drawbar-it is the same as the force just mentioned, and is properly termed the inertia-in pounds per pound of train weight is \(V^{2} \div(10560 \times 32.2)\), which equals \(.00000: 94 V^{2}\).

This last formula also gives the grade in per cent which will give a resistance equal to the inertia due to acceleration.
The grade in feet per mile is \(.00000294 \mathrm{~V}^{2} \times 5280=.01553 \mathrm{~V}^{2}\).
The resistance offered in pounds per ton is 2000 times as much as per pound, or \(.00588 \mathrm{~V}^{2}\).

When the adhesion of locomotive drivers is 600 lbs. per ton of weight thereon-this is about the maximum-then the tons on drivers necessary to overcome the inertia of each ton of total train load are \(.00588 \mathrm{~V}^{2} \div 600=\) \(.0000098 \mathrm{~V}^{2}\). In this determination of resistances no account has been taken of the rotative energy of the wheels.

Efficiency of the Mechanism of a Locomotive. - Druitt Halpin (Proc. Inst. M. E., January, 1889,) writes as follows, concerning the tractive efficiency of locomotives; With simple two-cylinder engines, having four wheels coupled, experiments have been made by the late locomotive superintendent of the Eastern Railway of France, M. Regray, with the greatest possible care and with the best apparatus, and the result arrived at was that out of 100 I.H.P in the cylinders 43 H.P. only was available on the draw-bar. The loss of \(57 \%\) was rather a high price to pay for the efficiency of the engine. How much of that loss was due to coupling-rods no one could yet say; but a cousiderable amount of it must be due to the rods, because it was known that large engines with a single pair of driving-wheels not coupled were doing their work more economically, while advanced locomotive engineers who had not yet gone in for compounding were at any rate going back to the single pair of driving-wheels. Moreover, that astonishing loss of 5 i\% had been confirmed independently on the Pennsylvania Railroad, trials made with an engine having \(181 / 4 \times 24-\mathrm{in}\). cylinders and 6 ft .6 in . wheels four-coupled; by taking indicator diagrams up to 65 miles an hour, which were professed to be taken correctly, the power on the draw-bar was found to be only \(42 \%\) of that in the cylinders, or only \(1 \%\) less than in the French experiments.

The Size of Locomotive Cylinders is usually taken to be such that the engine will just overcome the adhesion of its wheels to the rails under favorable circumstances.

The adhesion of the wheel is about one third the weight when the rail is clean and sanded, but is usually assumed at 0.25 . (Thurston.)
A committee of the American Association of Master Mechanics, after studying the performance reports of the best engines, proposes the following formula for weight on driving-wheels: \(W=\frac{0.85 C d^{2} P S}{D}\) in which the mean pressure in the cylinder is taken at 0.85 of the boiler-pressure at starting, \(C\) is a numerical coefficient of adhesion, \(d\) the diameter of cylinder in inches, \(D\) that of the drivers in inches, \(P\) the pressure in the boiler in pounds per square inch. \(S\) the stroke of piston in inches. \(C\) is taken as 0.25 for passenger engines, 0.24 for freight, and 0.22 for "switching " engines.

The common builder's rule for determining the size of cylinders for the locomotive is the following, in which we accept Mr. Forney's assumption that the steam-pressure at the engine may be taken as nine tenths that in the boiler: The tractive force is, approximately, \(F=\frac{0.9 p_{1} \times A \times 4 S}{C}\) where \(C\) is the circumference of tires of driving-wheels, \(S=\) the stroke in inches, \(p_{1}=\) the initial unbalanced steam-pressure in the cylinder in pounds per square inch, and \(A=\) the area of one cylinder in square inches. If \(D=\) diameter of driving wheel and \(d=\) diameter of cylinder, \(F=\frac{0.9 p_{1} \times d^{2} S}{D}\). Taking the adnesion at one fourth the weight \(W\),
\[
F=0.25 W=\frac{0.9 p_{1} \times A \times 4 S}{C}=\frac{0.9 p_{1} d^{2} S}{D} ;
\]
whence the area of each piston is
\[
A=\frac{0.25 C W}{0.9 \times 4 \times p_{1} S} ; \quad d=\sqrt{\frac{0.25 D W}{0.9 p_{1} S}} .
\]

The above formulæ give the maximum tractive force; for the mean tractive force substitute for \(p_{1}\) in the formulæ the mean effective pressure.

BOILERS, GRATE-SURFACE, SMOKE-STACKS, EIC. 855
Von Borries's rule for the diameter of the low-pressure cylinder of a compound locomotive is \(d^{2}=\frac{2 Z D}{p h}\),
where \(d=\) diameter of l.p. cylinder in inches;
\(D=\) diameter of driving-wheel in inches;
\(p=\) mean effective pressure per sq. in., after deducting internal machine friction;
\(h=\) stroke of piston in inches;
\(Z=\) tractive force required, usually 0.14 to 0.16 of the adhesion.
The value of \(p\) depends on the relative volume of the two cylinders, and from indicator experiments may be taken as follows:
\begin{tabular}{|c|c|c|c|}
\hline Cl & Ratio of Cylinder & \(p\) in percentage & \(p\) for Boiler-press \\
\hline & Volumes. & of Boiler-pressure. & Lure of 176 lbs . \\
\hline Large-tender eng's & \(1: 2\) or \(1: 2.05\)
\(1: 2\) or \(1: 2.2\) & 40 & 74
71 \\
\hline
\end{tabular}

The Size of Locomotive Boilers. (Forney's Catechism of the Locomotive.)-They should be proportioned to the amount of adhesive weight and to the speed at which the locomotive is intended to work. Thus a locomotive with a great deal of weight on the driving-wheels could pull a heavier load, would have a greater cylinder capacity than one with little adhesive weight, would consume more steam, and therefore should have a larger boiler.

The weight and dimensions of locomotive boilers are in nearly all cases determined by the limits of weight and space to which they are necessarily confined. It may be stated generally that within these linits a locomotive boiler cannot be made too large. In other words, boilers for locomotives should always be made as large as is possible under the conditions that de. termine the weight and dimensions of the locomotives.

Wootten's Locomotive. (Clark's Steam-engine; see also Jour. Frank. Inst. 1891, and Modern Mechanism, p. 485.)-J. E. Wootten designed and constructed a locomotive boiler for the combustion of anthracite and lignite, though specially for the utilization as fuel of the waste produced in the mining and preparation of anthracite. The special feature of the engine is the fire-box, which is made of great length and breadth, extending clear over the wheels, giving a grate-area of from 64 to 85 sq . ft . The draught diffused over these large areas is so gentle as not to lift the fine particles of the fuel. A number of express-engines having this type of bniler are engaged on the fast trains between Philadelphia aud Jersey City. The fire-box shell is 8 ft .8 in . wide and 10 ft .5 in . long; the fire-box is \(8 \times 91 / 2 \mathrm{ft}\)., making \(i 6 \mathrm{sq}\). ft . of grate-area. The grate is composed of bars and water-tubes alternately. The regular types of cast-iron shaking grates are also used. The height of the fire-box is only 2 ft .5 in . above the grate. The grate is terminated by a bridge of fire-brick, beyond which a combustion-chamber, 27 in . long, leads to the flue-tubes, about 184 in number, \(13 / 4 \mathrm{in}\). diam. The cylinders are 91 in diam., with a stroke of 22 inches. The driving-wheels, four-coupled, are 5 ft .8 in . diam. The engine weighs 44 tons, of which 29 tons are on driving wheels. The heating-surface of the fire-box is 135 sq . ft., that of the flue-tubes is 982 sq . ft.; together, 1117 sq . ft., or 14.7 times the grate-area. Hauling 15 passenger-cars, weighing with passengers 360 tons, at an average speed of 42 miles per hour. over ruling gradients of 1 in 89 , the engine cousumes 62 lbs . of fuel per mile, or \(341 / 4 \mathrm{lbs}\). per sq. ft. of grate per hour.

Qualities Essential for a Free-steaming Locomotive. (From a paper by A. E. Mitchell, read before the N. Y. Railroad Club; Eng'g News, Jan. 24, 1891.)-Square feet of boiler-heating surface for bituminous coal should not be less than 4 times the square of the diameter in inches of a cylinder 1 inch larger than the cylinder to be used. One tenth of this should be in the fire-box. On anthracite locomotives more heatingsurface is required in the fire-box, on account of the larger grate-area required, but the heating-surface of the flues should not be materially decreased.
Grate-surface, Smoke-stacks, and Exhaust-nozzles for Locomotives. (Am. Mach., Jan. 8, 1891.)-For grate-surface for anthracite coal: Multiply the displacement in cubic feet of one piston during a stroke by 8.5 ; the product will be the area of the grate in square feet.

For bituminous coal: Multiply the displacement in feet of one piston during a stroke by \(61 / 2\); the product will be the grate-area in square feet for engines with cylinders 12 in . in diameter and upwards. For engines with
smaller cylinders the ratio of grate-area to piston-displacement should be \(71 / 3\) to 1 , or even more, if the design of the engine will admit this proportion.

The grate-areas in the following table have been found by the foregoing rules, and agree very closely with the average practice :

Smoke-stacks. -The internal area of the smallest cross-section of the stack should be \(1 / 17\) of the area of the grate in soft-coal-burning engines.
A. E. Mitchell, Supt. of Motive Power of the N. Y. L. E. \& W. R. R., says that recent practice varies from this rule. Some roads use the same size of stack, \(131 / 2 \mathrm{in}\). diam. at throat, for all engines up to 20 in . diam. of cylinder.

The area of the orifices in the exhaust-nozzles depends on the quantity and quality of the coal burnt, size of cylinder, construction of stack, and the condition of the outer atmosphere. It is therefore impossible to give rules for computing the exact diameter of the orifices. All that can be done is to give a rule by which an approximate diameter can be found. The exact diameter can only be found by trial. Our experience leads us to believe that the area of each orifice in a double exhaust-nozzle should be equal to \(1 / 400\) part of the grate-surface, and for single nozzles \(1 / 200\) of the grate-surface. These ratios have been used in finding the diameters of the nozzles given in the following table. The same sizes are often used for either hard or soft coal-burners.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size of Cylinders, in inches.} & \multirow[b]{2}{*}{Grate-area for Anthracite Coal, in sq. in.} & \multirow[b]{2}{*}{Grate-area for Bituminous Coal, in sq. in.} & \multirow[b]{2}{*}{Diameter of Stacks, in inches.} & Double Nozzles. & Single Nozzles. \\
\hline & & & & Diam. of Orifices, in inches. & Diam. of Orifices, in inches. \\
\hline \(12 \times 20\) & 1591 & 1217 & \(91 / 2\) & 2 & \(213 / 16\) \\
\hline \(13 \times 20\) & 1873 & 1432 & 1012 & 21/8 & \\
\hline \(14 \times 20\) & 2179 & 1666 & 1114 & \(25 / 16\) & \\
\hline \(15 \times 22\) & 2742 & 2097 & 121/2 & \(29 / 16\) & \(311 / 16\) \\
\hline \(16 \times 24\) & 3415 & 2611 & 14 & \(27 / 8\) & \(41 / 16\) \\
\hline \(17 \times 24\) & 3856 & 2948 & 15 & \(31 / 16\) & 4 5/16 \\
\hline \(18 \times 24\) & 4321 & 3304 & \(153 / 4\) & \(31 / 4\) & 45/8 \\
\hline \(19 \times 24\) & 4810 & 3678 & 1612 & \(37 / 16\) & \(413 / 16\) \\
\hline \(20 \times 24\) & 5337 & 4081 & 17112 & 35/8 & \(51 / 16\) \\
\hline
\end{tabular}

Exhaust-nozzles in Locomotive Boilers.-A committee of the Am. Ry. Master Mechanics' Assn. in 1890 reported that they had, after two years of experiment and research, come to the conclusion that, owing to the great diversity in the relative proportions of cylinders and boilers, together with the difference in the quality of fuel, any rule which does not recognize each and all of these factors would be worthless.

The committee was unable to devise any plan to determine the size of the exhaust-nozzle in proportion to any other part of the engine or boiler, and believes that the best practice is for each user of locomotives to adopt a nozzle that will make steam freely and fill the other desired conditions, best determined by an intelligent use of the indicator and a check on the fuel account. The conditions desirable are : That it must create draught enough on the fire to make steam, and at the same time impose the least possible amount of work on the pistons in the shape of back pressure. It should be large enough to produce a nearly uniform blast without lifting or tearing the fire, and be economical in its use of fuel.

Fire-brick Arches in Locomotive Fire-boxes.-A committee of the Am. Ry. Master Mechanics' Assn. in 1890 reported strongly in favor of the use of brick arches in locomotive fire-boxes. They say: It is the unanimous opinion of all who use bituminous coal and brick arch, that it is most efficient in consuming the various gases composing black smoke, and by impeding and delaying their passage through the tubes, and mingling and subjecting them to the heat of the furnace, greatly lessens the volume ejected, and intensifies combustion, and does not in the least check but rather augments draught, with the consequent saving of fuel and increased steaming capacity that might be expected from such results. This in particular when used in connection with extension fiont.
Size, Weight, Tractive Power, etc., of Different Sizes of Locomotives. (J. G. A. Meyer, Modern Locomotive Construction, Am.

Mach., Aug. 8, 1885.)-The tractive power should not be more or less than the adhesion. In column 3 of each table the adhesion is given, and since the adhesion and tractive power are expressed by the same number of pounds, these figures are obtained by finding the tractive power of each engine, for this purpose always using the small diameter of driving-wheels given in column 2. The weight on drivers is shown in column 4, which is obtained by multiplying the adhesion by 5 for all classes of engines. Column 5 gives the weights on the trucks, and these are based upon observations. Thus, the weight on the truck for an eight-wheeled engine is about one half of that placed on the drivers.

For Mogul engines we multiply the total weight on drivers by the decimal .2 , and the product will be the weight on the truck.
For ten-wheeled engines the total weight on the drivers, multiplied by the decimal 32 , will be equal to the weight on the truck.
And lastly, for consolidation engines, the total weight on drivers multiplied by the decimal .16, will determine the weight on the truck.
In column 6 the total weight of each engine is given, which is obtained by adding the weight on the drivers to the weight on the truck. Dividing the adhesion given in column 1 by \(71 / 2\) gives the tous of 2000 lbs . that the engine is capable of hauling on a straight and level track, column 7, at slow speed.
The weight of engines given in these tables will be found to agree generally with the actual weights of locomotives recently built, although it must not be expected that these weights will agree in every case with the actual weights, because the different builders do not build the engines alike.
The actual weight on trucks for eight-wheeled or ten-wheeled engines will not differ much from those given in the tables, because these weights depend greatly on the difference between the total and rigid wheel-base, and these are not often changed by the different builders. The proportion between the rigid and total wheel-base is generally the same.
The rule for finding the tractive power is:

\section*{\(\left\{\begin{array}{l}\text { Square of dia. of } \\ \text { piston in inches }\end{array}\right\} \times\left\{\begin{array}{l}\text { Mean effect. steam } \\ \text { press. per sq. in. }\end{array}\right\} \times\left\{\begin{array}{l}\text { stroke } \\ \text { in feet }\end{array}\right\}\)}

Diameter of wheel in feet.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Eight-wheeled Locomotives.} & \multicolumn{7}{|c|}{Ten-wheeled Engines.} \\
\hline  &  &  & \[
\begin{aligned}
& 0.0 \\
& 0 \\
& 0 \\
& 2 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& .00 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  &  &  &  &  &  &  &  &  \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 6 & 1 & 2 & 3 & 4 & 5 & 6 & \(\%\) \\
\hline \({ }_{10 \times 20}\) & \[
\operatorname{in}_{45-51}
\] & lbs. 4000 & lbs. 20000 & lbs. 10000 & \begin{tabular}{l}
lbs. \\
30000
\end{tabular} & 533 & \(\mathrm{in}_{12 \times 18}\) & in. & & lbs. & lbs. 9570 & lbs. 39477 & 797 \\
\hline \(11 \times 22\) & 45-51 & 5321 & 26620 & 13310 & 39930 & 709 & \(13 \times 18\) & 41-45 & & 33387 & & 44070 & 890 \\
\hline \(12 \times 22\) & 48-54 & 5940 & 29700 & 14850 & 4450 & 792 & \(14 \times 20\) & 43-47 & 8205 & 41023 & 13127 & 54150 & 1093 \\
\hline \(13 \times 22\) & 49-57 & 6828 & 34140 & 17070 & 51210 & 910 & \(15 \times 22\) & 45-50 & 9900 & 49500 & 15840 & 65340 & 1320 \\
\hline \(14 \times 24\) & 55-61 & 7697 & 38485 & 19242 & 57727 & 1026 & \(16 \times 24\) & 48-54 & 11520 & 57600 & 18432 & 76032 & 1536 \\
\hline \(15 \times 24\) & 55-66 & 8836 & 44180 & 22090 & 66270 & 1178 & \(17 \times 24\) & 51-56 & 12240 & 61200 & 19584 & 80784 & 1632 \\
\hline \(16 \times 24\) & 58-66 & 9533 & 47665 & 23832 & 71497 & 1271 & \(18 \times 24\) & 51-56 & 13722 & 68611 & 21955 & 90566 & 1829 \\
\hline \(17 \times 24\) & 60-66 & 10404 & 52020 & 26010 & 78030 & 1387 & \(19 \times 24\) & 51-60 & 14410 & 72200 & 23104 & 95304 & 1925 \\
\hline \(18 \times 24\) & 61-66 & 11472 & 57360 & 28680 & 86010 & \(15 \% 9\) & & & & & & & \\
\hline \multicolumn{14}{|c|}{Mogul Engines. Consolidation Engines.} \\
\hline in. & in & lbs. & lbs & lbs. & lbs. & & & & & & & & \\
\hline \(11 \times 16\) & 35-40 & 4978 & 24891 & 4978 & 29869 & 663 & \(14 \times 16\) & 36-38 & 7810 & 39200 & 6272 & 45472 & 1045 \\
\hline \(12 \times 18\) & 36-41 & 6480 & 32400 & 6480 & 38880 & 864 & \(15 \times 18\) & 36-38 & 10125 & 50625 & 8100 & 58725 & 1350 \\
\hline \(13 \times 18\) & 37-42 & 7399 & 36997 & 7399 & 44396 & 986 & 20×24 & 48-50 & 18000 & 90000 & 14400 & 104400 & 2400 \\
\hline \(14 \times 20\) & 39-43 & 9046 & 45230 & \(90 \pm 6\) & 54276 & 1206 & \(22 \times 24\) & 50-52 & 20909 & 104544 & 16727 & 121271 & 2787 \\
\hline \(15 \times 22\) & 42-47 & 10607 & 53035 & 10607 & 63642 & 1414 & & & & & & & \\
\hline \(16 \times 24\) & 45-51 & 12288 & 61440 & 12288 & 73738 & 1638 & & & & & & & \\
\hline \(17 \times 24\) & 49-54 & 12739 & 63697 & 12739 & 76436 & 1698 & & & & & & & \\
\hline \(18 \times 24\) & 51-56 & 13722 & 68611 & 13722 & 82333 & 1829 & & & & & & & \\
\hline \(\underline{19 \times 24}\) & 54-60 & 14440 & 72200 & 14440 & 86640 & 1925 & & & & & & & \\
\hline
\end{tabular}

\section*{Leading American Types of Locomotive for Freight and Passenger Service.}
1. The eight-wheel or "American" passenger type, having four coupled driving-wheels and a four-wheeled truck in front.
2. The "ten-wheel" type, for mixed traffic, having six coupled drivers and a leading four-wheel truck.
3. The "Mogul" freight type, having six coupled driving-wheels and a pony or two-wheel truck in front.
4. The "Consolidation" type, for heavy freight service, having eight coupled driving-wheels and a pony truck in front.

Besides these there is a great variety of types for special conditions of service, as four-wheel and six-wheel switching-engines, without trucks; the Forney type used on elevated railroads, with four coupled wheels under the engine and a four-wheeled rear truck carrying the water-tank and fuel; locomotives for local and suburban service with four coupled driving-wheels, with a two-wheel truck front and rear, or a two-wheel truck front and a four-wheel truck rear, etc. "Decapod" engines for heavy freight service liave ten coupled driving-wheels and a two-wheel truck in front.

\section*{Steam-distribution for High-speed Locomotives.}

> (C. H. Quereau, Eng'g News, March 8, 1894.)

Balanced Valves.-Mr. Philip Wallis, in 1886, when Engineer of Tests for the C., B. \& Q. R. R., reported that while 6 H.P. was required to work unbalanced valves at 40 miles per hour, for the balanced valves \(2.2 \mathrm{H} . \mathrm{P}\). only was necessary.

Effect of Speed on Average Cylinder-pressure.-Assume that a locomotive has a train in motion, the reverse lever is placed in the running notch, and the track is level; by what is the maximum speed limited? The resistanco of the train and the load increase, and the power of the locomotive decreases with increasing speed till the resistance and power are equal, when the speed becomes uniform. The power of the engine depends on thr average pressure in the cylinders. Even though the cut-off and boilerpressure remain the same, this pressure decreases as the speed increases; because of the higher piston-speed and more rapid valve-travel the steam has a shorter time in which to enter the cylinders at the higher speed. The following table, from indicator-cards taken from a locomotive at varying speeds, shows the decrease of average pressure with increasing speed:


The "average pressure calculated" was figured on the assumption that the mean effective pressure would decrease in the same ratio that the speed increase. The main difference lies in the higher steam-line at the lower speeds, and consequent higher expansion-line, showing that more steam entered the cylinder. The back pressure and compression-lines agree quite closely for all the cards, though they are slightly better for the slower speeds. That the difference is not greater may safely be attributed to the large exhaust-ports, passages, and exhaust tip, which is 5 in . diameter. These are matters of great importance for high speeds.

Boiler-pressure. -The increase of train resistance with increased speed is not as the square of the velocity, as is commonly supposed. It is more likely that it increases as the speed after about 20 miles an hour is reached. Assuming that the latter is true, and that an average of 50 lbs . per square inch is the greatest that can be realized in the cyluders of a given engine at 40 miles an hour, and that this pressure furnishes just sufficient power to keep the train at this speed, it follows that, to increase the speed to 50 miles, the mean effective pressure must be increased in the same proportion. To increase the capacity for speed of any locomotive its power must be increased, and at least by as much as the speed is to be increased. One way to accomplish this is to increase the boiler-pressure. That this is generally realized, is shown by the increase in boiler-pressure in the last ten years. For twentythree single-expansion locomotives described in the railway journals this year the steam-pressures are as follows: \(3,160 \mathrm{lbs} . ; 4,165 \mathrm{lbs}\); \(2,1 \% 0 \mathrm{lbs}\); 13, 180 lbs ; \(1,190 \mathrm{lbs}\).

\section*{SOME LARGE AMERICAN LOCOMOTIVES, 1893. 859}

Valve-travel. - An increased average cylinder-pressure may also be ohtained by iucreasing the valve-travel without raising the boiler-pressure, and better results will be obtained by increasing both. The longer travel gives a higher steam-pressure in the cylinders, a later exhaust-opening. later exhaust-closure, and a larger exhaust-opening-all necessary for high speeds and economy. I believe that a \(20-\mathrm{in}\). port and \(61 / 2\)-in. (or even \(\hat{i}\)-in.) travel could be successfully used for high-speed engines, and that frequently by so doing the cylinders could be economically reduced and the counterbalance lightened. Or, better still, the diameter of the drivers increased, securing lighter counterbalance and better steam-distribution.

Size of Drivers.-Economy will increase with increasing diameter of drivers, provided the work at average speed does not necessitate a cut-off longer than one fourth the stroke. The piston-speed of a locomotive with \(62-\mathrm{in}\). drivers at 55 miles per hour is the same as that of one with \(68-\mathrm{in}\). drivers at 61 miles per hour.

Steam-ports.-The length of steam-ports ranges from 15 in . to 23 in ., and has considerable influence on the power, speed, and economy of the locomotive. In cards from similar engines the stearn-line of the card from the engine with \(23-\mathrm{in}\). ports is considerably nearer boiler-pressure than that of the card from the engine with \(171 / 4-\mathrm{in}\). ports. That the higher steam-line is due to the greater length of steam-port there is little room for doubt. The \(23-\mathrm{in}\). port produced \(531 \mathrm{H} . \mathrm{P}\). in an \(181 / 2-\mathrm{in}\). cylinder at a cost of 23.5 lbs . of indicated water per I.H.P. per hour. The \(111 / 4-\mathrm{in}\). port, 424 H .P., at the rate of 22.9 lbs . of water, in a \(19-\mathrm{in}\). cylinder.
Allen Valves.-There is considerable difference of opinion as to the advantage of the Allen ported-valve (See Eng. News, July 6, 1893.)
Speed of Railway Trains. - In 1834 the average speed of trains on the Liverpool and Manchester Railway was twenty miles an hour; in 1838 it was twenty-five miles an hour. But by 1840 there were engines on the Great Western Railway capable of running fifty miles an hour with a train, and eighty miles an hour without. A speed of 86 miles per hour was made in England with the T. W. Worsdell compound locomotive. The total weight of the engine, tender, and train was \(695,000 \mathrm{lbs}\).; indicator-cards were taken showing \(1068.6 \mathrm{H} . \mathrm{P}\). on the level. At a speed of 75 miles per hour on a level, and the same train, the indicator-cards showed 1040 H.P. developed. (Trans. A. S. M. E., vol. xiii., 363.)
The limitation to the increase of speed of heavy locomotives seems at present to be the difficulty of counterbalancing the reciprocating parts. The unbalanced vertical component of the reciprocating parts causes the pressure of the driver on the rail to vary with every revolution. Whenever the speed is high, it is of considerable magnitude, and its change in direction is so rapid that the resulting effect upon the rail is not inappropriately called a "hammer blow." Heavy rails have been kinked, and bridges have been shaken to their fall under the action of heavily balanced drivers revolving at high speeds. The means by which the evil is to be overcome has not yet been made clear. See paper by W. F. M. Goss, Trans. A. S. M. E., vol. xvi.

Engine No. 999 of the New York Central Railroad ran a mile in 32 seconds, equal to 112 miles per hour, May 11, 1893.
\(\left.\begin{array}{l}\text { Speed in miles } \\ \text { per hour }\end{array}\right\}=\frac{\text { circum. of driving-wheels in in. } \times \text { no. of rev. per min. } \times 60}{63,360}\)
\(=\) diam, of driving-wheels in in. \(\times\) no. of rev. per min. \(\times .003\) (approximate, giving result \(8 / 10\) of 1 per cent too great).

\section*{DIMENSEONS OF SOME LARGE AMERICAN LOCOMOTIVES, 1893.}

The four locomotives described below were exhibited at the Chicago Exposition in 1893. The dimensions are from Engineering News, June, 1893. The first, or Decapod engine, has ten-coupled driving-wheels. It is one of the heaviest and most powerful engines ever built for freight service. The Philadelphia \& Reading engine is a new type for passenger service, with fourcoupled drivers. The Rhode Island engine has six drivers, with a 4 -wheel leading truck and a 2-wheel trailing truck. These three engines have all compound cylinders. The fourth is a simple engine, of the standard American 8 -wheel type, 4 driving-wheels, and a 4 -wheel truck in front. This engine holds the world's record for speed (1893) for short distances, having run a mile in 32 seconds.
\begin{tabular}{|c|c|c|c|c|}
\hline & Baldwin. N. Y., L. E. \& W. R. R. Decapod Freight. & Baldwin. Phila. \& Read. R. R Express Passenger. & Rhode Isl. Locomoti'e Works. Heavy Express. & \begin{tabular}{l}
N. Y. C. \(\mathcal{S}\) \\
H. R. R. \\
Emplire State \\
Express, No. 999.
\end{tabular} \\
\hline Running & & & & \\
\hline Driving-wheels, diam & \[
4 \mathrm{ft} .2 \mathrm{in} .
\] & \[
6 \mathrm{ft} .6 \mathrm{in} .
\] & \[
6 \mathrm{ft} .6 \mathrm{in} .
\] & \[
{ }_{2}^{7} \text { ft. } 2 \mathrm{in} .
\] \\
\hline Journals, driving-ax & \(9 \times 10 \mathrm{in}\). & \(81 / 2 \times 12 \mathrm{in}\). & & \\
\hline truck- & \(5 \times 10\) & \(61 / 2 \times 10^{\prime \prime}\) & \(81 / 2 \times 10^{4}\) & \(61 / 4 \times 10\) \\
\hline \({ }^{\prime}\) tender- & \(41 / 2 \times 9\) & \(41 / 2 \times 8{ }^{\prime}\) & \(4 \frac{1}{4} \times 8\) & \(41 / 8 \times 8\) \\
\hline Wheel-base: Driving....... & \(18 \mathrm{ft} 10 in.\). & 6 ft .10 in . & & \\
\hline Total eng & 27 " 3 \% & 23 " 4 " & 29 " 91/4 " & 23 "11 11 \\
\hline " tender & 16 " 8 " & 16 " 0 " & 15 "0 & 15 ft . \(21 / 2\) \\
\hline " engine and tende & 53 " 4 " & 47 " 3 " & 50 " \(63 / 4\) " & 47 " 8 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c|c|c|c|c} 
Wt. in working-order: \\
On drivers............ & \(170,000 \mathrm{lbs}\). & \(82,400 \mathrm{lbs}\). & \(88,500 \mathrm{lbs}\). & \(84,000 \mathrm{lbs}\).
\end{tabular}}} \\
\hline & & & & \\
\hline On truck-whe & 29,500 " & 47,000 ، & 54,500 & 40,000 " \\
\hline Engine, tota & 192,500 & 129,700 " & 143,000 " & 124,000 \\
\hline Tender & 117,500 & 80,573 & 75,000 & 80,000 \\
\hline Engine and tender, loaded & 310,000 & 210,273 " & 218,000 & 204,000 " \\
\hline \multicolumn{5}{|l|}{Cylinders:} \\
\hline h.p. (2). & \(16 \times 28 \mathrm{in}\). & \(13 \times 24 \mathrm{in}\). & one \(21 \times 26\) & \(19 \times 24\) in. \\
\hline l.p. (2). & & & one \(31 \times 26\) & \\
\hline Distance centre to centre. & \%ft. 5 " & \(7 \mathrm{ft} .41 / 2 \mathrm{in}\). & 7 ft .1 in . & \(6 \mathrm{ft}\).5 in . \\
\hline Piston-rod, diam.... & \(9^{4} 8 \mathrm{in}\). & 31/2in. & & \\
\hline Connecting-rod, lengt & \(9^{\prime} 8\) 7/16 \({ }^{\text {/ }}\) & \(8 \mathrm{ft} .01 / 2 \mathrm{in}\). & \(10 \mathrm{ft} .31 / 2 \mathrm{in}\). & \(8 \mathrm{ft} .11 / 2 \mathrm{in}\). \\
\hline Steam-ports & \(281 / 2 \times 2\) in. & \(24 \times 11 / 2\) in. & \(11 / 3 \times 20\) and 11 ㅈ25 & \(11 / 2 \times 18 \mathrm{in}\). \\
\hline Exhaust-ports & \(281 / 2 \times 8\) & \(24 \times 41 / 2\) " & \(3 \times 20 \mathrm{in}\). & \(23 / 4 \times 18\) " \\
\hline \multicolumn{5}{|l|}{Slide-valves, out. lap, h.p. \(8 / 8 \mathrm{in} . \quad 7 / 8 \mathrm{in} . \quad 11 / 4\)} \\
\hline " " out. lap, l.p.. & 5/8" & (neg.) \(1 / 8 \mathrm{in}\). & & \\
\hline " " in.lap, l.p... & & \({ }_{\text {(neg. }}^{\text {None }}\) 1/8 & & \\
\hline " " max. travel.. & & 5 in & 61/4 in. & \(51 / 2\) in. \\
\hline " " \({ }^{\text {" }}\) lead, h.p. & 1/16 in. & & 3/3 & \\
\hline " " lead, & 5/16 & & & \\
\hline Boiler-Type & Straight & Straight & Wagon top & Wagon top \\
\hline Diam. of barrel inside. & \(6 \mathrm{ft} .21 / 2 \mathrm{in}\). & \(4 \mathrm{ft} .81 / 4 \mathrm{in}\). & 5 ft . 2 in . & \(4 \mathrm{ft}\).9 in . \\
\hline Thickness of barrel-plates & \(3 / 4 \mathrm{in}\). & 5/8in. & 5/8 & \(9 / 16\) in. \\
\hline Height from rail to centre & 8 ft .0 in. & & 8 ft .11 in . & \(7 \mathrm{ft} .111 / 2 \mathrm{in}\) \\
\hline \multicolumn{5}{|l|}{} \\
\hline Working steam-pressu & 180 lbs . & 180 lbs . & 200 lbs . & 190 lbs . \\
\hline Firebox-type & Wootten & Wootten & Radial stay & Buchanan \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline Thickness of side plates.. " "back plate... & \[
\begin{aligned}
& 5 / 16 \text { in. } \\
& 5 / 166
\end{aligned}
\] & \[
\begin{aligned}
& 5 / 16{ }^{\prime \prime} \mathrm{in}_{6} . \\
& 5 / 16 \stackrel{2}{6}
\end{aligned}
\] & \[
\begin{gathered}
5 / 16 \text { in. } \\
3 / 8
\end{gathered}
\] & \[
\begin{aligned}
& 5 / 16 \mathrm{in} . \\
& 5 / 166 .
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{Thickness of crown-sheet. \(\quad 3 / 8{ }^{6}\) "} \\
\hline Grate-area.............. & 89.6 sq. ft. & r6.8 sq. ft. & 28 sq. ft. & 30.7 sq. ft. \\
\hline Stay-bolts, diam., 11/8 & pitch, \(41 / 4 \mathrm{in}\). & & 4 in . & \\
\hline Tubes-iron. & & \[
\begin{array}{r}
394 \\
21 / 16 i
\end{array}
\] & \[
272
\] & \[
268
\] \\
\hline Diam., outside & \[
{ }_{2}^{23 / 4} \text { in }_{6}
\] & \[
\begin{aligned}
& 21 / 16 \text { ir } \\
& 1 \frac{1}{2} \text { in. }
\end{aligned}
\] & & \\
\hline & 11 ft .11 in. & \(10 \mathrm{ft}\).0 in . & \(12 \mathrm{ft} .85 / 8 \mathrm{in}\). & 12 ft .0 in . \\
\hline \multicolumn{5}{|l|}{Heating-surface:} \\
\hline Fire-box....... & \[
\begin{array}{r}
2,208.8 \\
234.3
\end{array}
\] & 1,202 sq. ft. & & 1,697 sq. ft. \\
\hline \multicolumn{5}{|l|}{Miscellaneous :} \\
\hline Exhaust-nozzle, diam.... Sinokestack smal'st diam & & & & \\
\hline Smokestack, smal'st diam. & \[
1 \text { ft. } 6 \text { " }
\] & 1 ft .6 in . & 1 ft .3 in . & \(1 \mathrm{ft} .31 / 4 \mathrm{in}\) \\
\hline rail to top..... & 15 " 61/2" & \(14 \mathrm{ft} .03 / 4 \mathrm{in}\). & 15 " 2 & \(14 \times 10\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
－uolser \\
 \\
 \\
 －［ \(\mathrm{S}_{\mathrm{n}}\) јо о！ғеу
\end{tabular} &  00000000000000000000000000000 \\
\hline 'u! &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline sqI ＇ग！．．． u！•bs ．ıəd. ．m －ssə．Id－urəls &  \\
\hline \begin{tabular}{l}
－Jf•bs ‘əวधл．ns \\

\end{tabular} &  \\
\hline  &  \\
\hline \begin{tabular}{l}
－壮＂bs \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  &  \\
\hline  74 なった &  \\
\hline  &  \\
\hline \begin{tabular}{l}
－u！＇sโәәपм－ภิu！ \\

\end{tabular} & gio \\
\hline  & \\
\hline －s．ıəد！！．t¢ jo 0 N &  \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

Dimensions of Some American Locomotives. - The table on page 861 is condensed from one given by D. L. Barues, in his paper on "Distinctive Features and Advantages of American Locomotive Practice," Trans. A.S.C.E., 1893. The formula from which column marked "Ratio of cylinder-power to weight available for adhesion" ' is calculated as follows:
\[
\frac{2 \times \text { cylinder area } \times \text { boiler-pressure } \times \text { stroke }}{\text { Weight } o n \text { drivers } \times \text { diameter of driving-wheel }} \text {. }
\]
(Ratio of cylinder-power of compound engines cannot be compared with that of the single-expansion engines.)

Where the boiler-pressure could not be determined from the description of the locomotives, as given by the builders and operators of the locomotives, it has been assumed to be 160 lbs . per sq. in. above the atmosphere.

For compound locomotives the figures in the last column of ratios are based on the capacity of the low-pressure cylinders only, the volume of the high-pressure being omitted. This has been done for the purpose of comparison, and because there is no accurate simple way of comparing the cylinder-power of single-expansion and compound locomotives.
Dimensions of Standard Locomotives on the N. Y. C. \& H. R. R, and Penna. R. R., 1882 and 1893.
C. H. Quereau, Eng'g News, March 8,4894 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{N. Y. C. \& H. R. R.} & \multicolumn{4}{|l|}{Pennsylvania R. R.} \\
\hline & \multicolumn{2}{|l|}{Through Passenger.} & \multicolumn{2}{|l|}{Through Freight.} & \multicolumn{2}{|l|}{Through Passenger.} & \multicolumn{2}{|l|}{Through Freight.} \\
\hline & \(188 \%\). & 1893. & 1882. & 1893. & 1882. & 1893. & 1882. & 1893. \\
\hline Grate surface, sq. ft. . & \(17.8 \%\) & 27.3 & 17.87 & 29.8 & 17.6 & 33.2 & 23. & 31.5 \\
\hline Heating surface, sq. ft. & 1353 & 1821 & 1353 & 1763 & 1057 & 1583 & 1260 & 1498 \\
\hline Boiler, diam., in & 50 & 58 & 50 & 58 & 50 & 57 & 54 & 60 \\
\hline Driver, diam., in & r0 & 78, 86 & 64 & 67 & 62 & ¢8 & 50 & 50 \\
\hline Steam-pressure, lbs..... & 150 & 180 & 150 & 160 & 125 & 175 & 125 & 140 \\
\hline Cylin., diam. and stroke. & \(17 \times 24\) & \(19 \times 24\) & \(17 \times 24\) & \(19 \times 26\) & \(17 \times 24\) & \(18 \frac{1}{2} \times 24\) & \(20 \times 24\) & \(20 \times 24\) \\
\hline Valve-travel, ins ........ & 51/4 & 51/2 & 51/4 & 53/4 & 118 & 51/2 & 5 & 5 \\
\hline Lead at full gear, ins & 1/16 & 1/16 & 1/16 & 1/16 & 1/16 & 0 & 1/8 & 1/16 \\
\hline Outside lap.............. & \%/8 & 1 & & 7/8 & \(3 / 4\) & \(\stackrel{1}{1}\) & & \\
\hline Inside lap or clearance.. & 0 & 0 & 1/16l & \(3 / 322\) & \({ }^{\circ}\) & \(1 / 8 \mathrm{cl}\) & \(1 / 3: 2\) & 1/32 16 \\
\hline Steam-ports, length..... width. & \(151 / 2\)
\(11 / 4\) & 18 & \[
\begin{array}{r}
151 / 2 \\
11 / 4
\end{array}
\] & \[
\begin{aligned}
& 18 \\
& 11 / 4
\end{aligned}
\] & 16
\(11 / 4\) & \[
\begin{array}{r}
1114 \\
11 / 4
\end{array}
\] & 16
\(11 / 4\) & 16 \\
\hline Type of engine.. & Am. & Am. & Am. & Mog. & Am. & Am. & Cons. & Cous \\
\hline
\end{tabular}

Indicated Water Consumption of Single and Compound Locomotive Engimes at Varying Speeds.
C. H. Quereau, Eng'g News, March 8, 1894.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Two-cylinder Compound.} & \multicolumn{3}{|c|}{Single-expansion.} \\
\hline Revolutions. & Speed, miles per hour. & Water per I.H.P. per hour. & Revolutious. & Niles per Hour. & Water. \\
\hline 100 to 150 & 21 to 31 & 18.33 lbs . & 151 & 31 & \(21 . \% 0\) \\
\hline 150 ' 200 & 31 " 41 & 18.9 " & 219 & 45 & 20.91 \\
\hline 200 " 250 & 41 " 51 & 19.7 6 & 253 & 52 & 20.52 \\
\hline 250 " 275 & 51 " 56 & 21.4 " & 307 & 63 & 20.23 \\
\hline & & & 321 & 66 & 20.01 \\
\hline
\end{tabular}

It appears that the compound engine is the more economical at low speeds, the economy decreasing as the speed increases, and that the single engine increases in economy with increase of speed within ordinary limits, becoming more economical than the compound at speeds of more than 50 miles per hour.

The C., B. \& Q. two-cylinder compound, which was about \(30 \%\) less economical than simple engines of the same class when tested in passenger service, has since been shown to be \(15 \%\) more economical in freight service
than the best single-expansion engine, and \(29 \%\) more economical than the average record of 40 simple engines of the same rlass on the same division.

Indicator-tests of a Locomotive at High Speed. (Locomotive Eng'g, June, 1893.)-Cards were taken by Mr. Angus Sinclair on the locomotive drawing the Empire State Express.

Results of Indicator-diagrams.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Card No. & Revs. & Miles per hour. & I.H.P. & Card No. & Revs. & Miles. per hour. & I.H.P. \\
\hline 1 & 160 & \({ }_{37}{ }^{\text {prem }}\) & 648.3 & 7 & 304 & 770.5 & 977 \\
\hline 2 & 260 & 60.8 & 728 & 8 & 296 & 68.6 & 972 \\
\hline 3 & 190 & 44 & 551 & 9 & 300 & 69.6 & 1,045 \\
\hline 4 & 250 & 58 & 891 & 10 & 304 & 70.5 & 1,059 \\
\hline 5 & 260 & 60 & 960 & 11 & 340 & 78.9 & 1,120 \\
\hline 6 & 298 & 69 & 983 & 12 & 310 & 71.9 & 1,026 \\
\hline
\end{tabular}

The locomotive was of the eight-wheel type, built by the Schenectady Locomotive Works, with \(19 \times 24 \mathrm{in}\). cylinders, 88 -in. drivers, and a large boiler and fire-box. Details of important dimensions are as follows: Heating-surface of fire-box, 150.8 sq . ft.; of tubes, 16.0 .7 sq . ft .; of boiler. 1821.5 sq . ft. Grate area, 27.3 sq . ft. Fite-box: length, 8 ft .; width, \(3 \mathrm{ft} .47 / 8\) in. Tubes, 268; outside diameter, 2 in . Ports: steam, \(18 \times 11 / 4 \mathrm{in}\).; exhadiou, \(18 \times 23 / 4 \mathrm{in}\). Valve-travel, \(51 / 2 \mathrm{in}\). Outside lap, 1 in .; inside lap, \(1 / 0 \mathrm{u} 4 \mathrm{in}\). Journals: driving-axle, \(81 / 2 \times 101 / 2\) in.; truck-axle, \(6 \times 10 \mathrm{in}\).
The train consisted of four coaches, weighing, with estimated load, 340,000 lbs. The locomotive and tender weighed in working order \(200,000 \mathrm{lbs}\), making the total weight of the train about \(2 \pi 0\) tons. During the time that the engine was first lifting the train into speed diagram No. 1 was taken. It shows a mean cylinder-pressure of 59 lbs . According to this, the power exerted on the rails to move the train is 6553 lbs ., or 24 lbs . per ton. The speed is \(3 \pi\) miles an hour. When a speed of nearly 60 miles an hour was reached the average cylinder-pressure is 40.7 lbs ., representing a total traction force of 4520 lbs ., without making deductions for internal friction. If we deduct \(10 \%\) for friction, it leaves 15 lbs . per ton to keep the train going at the speed named. Cards 6, 7, and 8 represent the work of keeping the train running 70 miles an hour. They were taken three miles apart, when the speed was almost uniform. The average cylinder-pressure for the three cards is 47.6 lbs . Deducting \(10 \%\) again for friction, this leaves 17.6 lbs . per ton as the power exerted in keeping the train up to a velocity of 70 miles. Throughout the trip 7 lbs . of water were evaporated per lb . of coal. The work of pulling the train from New York to Albany was done on a coal consumption of about \(31 / 8 \mathrm{lbs}\). per H.P. per hour. The highest power recorded was at the rate of 1120 H.P.

Locomotivertesting Apparatus at the Laboratory of Puraue University. (W. F. M. Goss, Trans. A. S. M. E., vol. xiv. 826.) The locomotive is mounted with its drivers upon supporting wheels which are carried by shafts turning in fixed bearings, thus allowing the engine to be run without changing its position as a whole. Load is supplied by four friction-brakes fitted to the supporting shafts and offering resistance to the turning of the supporting wheels. Traction is measured by a dynamometer attached to the draw-bar: The boiler is fired in the usual way, and an exhaust-blower above the engine, but not in pipe connection with it, carries off all that may be given out at the stack.

A Standard Method of Conducting Locomotive-tests is given in a report by a Committee of the A. S. M. E. in vol. xiv. of the Transactions, page 1312.

Waste of Fuel in Locomotives. - In American practice economy of fuel is necessarily sacrificed to obtain greater economy due to heavy train-loads. D. L. Barnes, in Eng. Mag., June, 1894, gives a diagram showing the reduction of efficiency of boilers due to high rates of combustion, from which the following figures are taken:
\(\begin{array}{llllllll}\text { Lbs. of coal per sq. } \mathrm{ft} \text {. of grate per hour...... } & 12 & 40 & 80 & 120 & 160 & 200 \\ \text { Pler cent efficiency of boiler................ } & 80 & \tilde{\pi} 5 & 6 \pi & 59 & 51 & 43\end{array}\) Per cent efficiency of boiler

A rate of 12 lbs . is given as representing stationary-boiler practice, 40 lbs . is English locomotive practice, 120 lbs . average American, aud 200 lbs . maximum American, locomotive practice.

Advantages of Compounding.-Report of a Committee of the American Railway Master Mechanics' Association on Compound Locomotives (Am. Mach., July 3, 1890) gives the following summary of the advantages gained by compounding: (a) It has achieved a saving in the fuel burnt averaging 18\% at reasonable boiler-pressures, with encouraging possibilities
of further improvement in pressure and in fuel and water economy. (b) It has lessened the amount of water (dead weight) to be hauled, so that (c) the tender and its load are materially reduced in weight. (d) It has increased the possibilities of speed far beyond 60 miles per hour, without unduly straining the motion, frames, axles, or axle-boxes of the engine. (e) It has increased the haulage-power at full speed, or, in other words, has increased the continuous H.P. developed, per given weight of engine and boiler. ( \(f\) ) In some classes has increased the starting-power. (g) It has materially lessened the slide-valve friction per H.P. developed. (h) It has equalized or distributed the turning force on the crank-pin, over a longer portion of its path, which, of course, tends to lengthen the repair life of the engine. (i) In the two-cylinder type it has decreased the oil consumption, and has even done so in the Woolf four-cyliuder engine. ( \(j\) ) Its smoother and steadier draught on the fire is favorable to the combustion of all kinds of soft coal; and the sparks thrown being smaller and less in number, it lessens the risk to property from destruction by fire. ( \(k\) ) These advantages and economies are gained without having to improve the man handling the engine, less being left to his discretion (or careless indifference) than in the simple engine. ( \(l\) ) Valve-motion, of every locomotive type, can be used in its best working and most effective position. ( \(m\) ) A wider elasticity in locomotive design is permitted; as, if desired, side-rods can be dispensed with, or articulated engines of 100 tons weight, with independent trucks, used for sharp curves on mountain service, as suggested by Mallet and Brunner.
Of 27 compound locomotives in use on the Phila. and Reading Railroad (in 1892), 12 are in use on heavy mountain grades, and are designed to be the equivalent of \(22 \times 24 \mathrm{in}\). simple consolidations; 10 are in somewhat lighter service and correspond to \(20 \times 24 \mathrm{in}\). consolidations; 5 are in fast passenger service. The monthly coal record shows:
\begin{tabular}{|c|c|c|}
\hline Class of Engine. & No. & Gain in Fuel Economy. \\
\hline Mountain locomotives. & & 25\% to 30\% \\
\hline Heavy freight service. & & 12\% to 17\% \\
\hline Fast passenger & 5 & 9\% to 11\% \\
\hline
\end{tabular}
(Report of Com. A. R. M. M. Assn. 1892.) For a description of the various types of compound locomotive, with discussion of their relative merits, see paper by A. Von Borries, of Germany, The Development of the Compound Locomotive, Trans. A. S. M. E. 1893, vol. xiv., p. 1172.

Counterbalancing Locomotives.-The following rules, adopted by different locomotive-builders, are quoted in a paper by Prof. Lanza (Trans. A. S. M. E., x. 302):
A. "For the main drivers, place opposite the crank-pin a weight equal to oue half the weight of the back end of the connecting-rod plus one half the weight of the front end of the connecting-rod, piston, piston-rod, and crosshead. For balancing the coupled wheels. place a weight opposite the crankpin equal to one half the parallel rod plus one half of the weights of the front end of the main-rod, piston, piston-rod, and cross-head. The centres of gravity of the above, weights must be at the same distance from the axles as the crank-pin."
B. The rule given by D. K. Clark: "Find the separate revolving weights of crank-pin boss, coupling-rods, and connecting-rods for each wheel. also the reciprocating weight of the piston and appendages, and one half the connecting-rod, divide the reciprocating weight equally between each wheel and add the part so allotted to the revolving weight on each wheel: the sums thus obtained are the weights to be placed opposite the crank-pin, and at the same distance from the axis. To find the counterweight to be used when the distance of its centre of gravity is known, multiply the above weight by the length of the crank in inches and divide by the given distance." This rule differs from the preceding in that the same weight is placed in each wheel.
C. "W \(W=\frac{S \times\left(v-\frac{w}{f}\right)}{G}\), in which \(S=\) one half the stroke, \(G=\) distance from centre of wheel to centre of gravity in counterbalance, \(w=\) weight at crank-pin to be balanced, \(W=\) weight in counterbalance, \(f=\) coefficient of friction so called, \(=5\) in ordinary practice. The reciprocating weight is found by adding together the weights of the piston, piston-rod, cross-head, and one half of the main rod. The revolving weight for the main wheel is found by adding together the weights of the crank-pin hub, crank-pin, one
half of the main rod, and one half of each parallel-rod connecting to this wheel; to this add the reciprocating weight divided by the number of wheels. The revolving weight for the remainder of the wheels is found in the same manner as for the main wheel, except one half of the main rod is not added. The weight of the crank-pin hub and the counterbalance does not include the weight of the spokes, but of the metal inclosing them. This calculation is based for one cylinder and its corresponding wheels."
D. "Ascertain as nearly as possible the weights of crank-pin, additional weight of wheel boss for the same, add side rod, and main connections, piston-rod and head, with cross-head on one side: the sum of these multiplied by the distance in inches of the centre of the crank-pin from the centre of the wheel, and divided by the distance from the centre of the wheel to the common centre of gravity of the counterweights, is taken for the total counterweight for that side of the locomotive which is to be divided among the wheels on that side."
E. "Balance the wheels of the locomotive with a weight equal to the weights of crank-pin, crank-pin hub, main and parallel rods, brasses, etc., plus two thirds of the weight of the reciprocating parts (cross-head, piston and rod and packing)."
F. "Balance the weights of the revolving parts which are attached to each wheel with exactness, and divide equally two thirds of the weights of the reciprocating parts between all the wheels. One half of the main rod is computed as reciprocating, and the other as revolving weight."
See also articles on Counterbalancing Locomotives, in \(R\). R. \& Eng. Jour., March and April, 1890, and a paper by W. F. M. Goss, in Trans. A. S. M. E., vol. xvi.
Maximum Safe Load for Steel Tires on Steel Rails. (A. S. M. E., vii., p. 786.)-Mr. Chanute's experiments led to the deduction that 12,000 lbs. should be the limit of load for any one driving-wheel. Mr. Angus Sinclair objects to Mr. Chanute's figure of \(12,000 \mathrm{lbs}\)., and says that a locomotive tire which has a light load on it is more injurious to the rail than one which has a heavy load. In English practice 8 and 10 tons are safely used. Mr. Oberlin Smith has used steel castings for cam-rollers 4 in. diam. and 3 in . face, which stood well under loads of from 10,000 to 20,000 lbs. Mr. C. Shaler Smith proposed a formula for the rolls of a pivot-bridge which may be reduced to the form : Load \(=1,60 \times\) face \(\times \sqrt{\text { diam., all in }}\) ibs. and inches.
See dimensions of some large American locomotives on pages 860 and 861 . On the "Decapod" the load on each driving-wheel is \(17,000 \mathrm{lbs}\)., and on "No. 999," 21.000 lbs .
Narrow-gauge Railways in Manufacturing Works.A tramway of 18 inches gange several miles in length, is in the works of the Lancashire and Yorkshire Railway. Curves of 13 feet radius are used. The locomotives used have the following dimensions (Proc. Inst. M. E.. July, 1888): The cylinders were 5 in . diameter with 6 in . stroke, and \(2 \mathrm{ft} .31 / 4 \mathrm{in}\). centre to centre. The wheels were \(161 / 4 \mathrm{in}\). diameter, the wheel-base 2 ft .9 in .; the frame \(7 \mathrm{ft} .41 / 4 \mathrm{in}\). long, and the extreme width of the engine 3 feet. The boiler, of steel, 2 ft .3 in . outside diameter and 2 ft . long between tube plates, containing 55 tubes of \(13 / 8\) in. outside diameter; the fire-box, of iron and cylindrical, 2 ft .3 in . long and 17 in . inside diameter. The heatingsurface 10.42 sq . ft. in the fire-box and 36.12 in the tubes, total 46.54 sq . ft .: the grate-area, 1.78 sq. ft.; capacity of tank, \(261 / 2\) gallons; working-pressure, 170 lbs . per sq. in.; tractive power, say, \(1412 \mathrm{lbs.}\), or 9.22 lbs . per lb. of effective pressure per sq. in. on the piston. Weight, when empty, 2.50 tons; when full and in working order, 3.19 tons.
For description of a system of narrow-gauge railways for manufactories, see circular of the C. W. Hunt Co., New York.
Light Locomotives.-For dimensions of light ocomotives used for. mining, etc., and for much valuable information concerning them, see catalogue of H. K. Porter \& Co., Pittsburgh.
Petroleum-burning Locomotives. (From Clark's Steam-en-gine.)-The combustion of petroleum refuse in locomotives has been success fully practised by Mr. Thos. Urquhart, on the Grazi and Tsaritsin Railway, Southeast Russia. Since November, 1884 , the whole stock of 143 locomotives under his superintendence has been fired with petroleum refuse. The oil is injected from a nozzle through a tubular opening in the back of the fire-box, by means of a jet of steam, with an induced current of air.
A brickwork cavity or "regenerative or accumulative combustion-chamber " is formed in the fire-box, into which the combined current breaks as
spray against the rugged brickwork slope. In this arrangement the brickwork is maintained at a white heat, and combustion is complete and smokeless. The form, mass, and dimensions of the brickwork are the most inportant elements in such a combination.

Compressed air was tried instead of steam for injection, but no appreciable reduction in consumption of fuel was noticed.

The heating-power of petroleum refuse is given as 19,832 heat-units, equivalent to the evaporation of 20.53 lbs . of water from and at \(212^{\circ} \mathrm{F}\)., or to 17.1 lbs . at \(81 / 2\) atmospheres, or 125 lbs . per sq. in., effective pressure. The highest evaporative duty was 14 lbs . of water under \(81 / 2\) atmospheres per lb. of the fuel, or nearly \(82 \%\) efficiency.

There is no probability of any extensive use of petroleum as fuel ior locomotives in the United States, on account of the unlimited supply of coal and the comparatively limited supply of petroleum.

Fireless Locomotive. - The principle of the Francq locomotive is that it depends for the supply of steam on its spontaneous generation from a body of heated water in a reservoir. As steam is generared and drawn off the pressure falls; but by providing a sufficiently large volume of water heated to a high temperature, at a pressure correspondingly high, a margin of surplus pressure may be secured, and means may thus be provided for supplying the required quantity of steam for the trip.

The fireless locomotive designed for the service of the Metronolitan Railway of Paris has a cylindrical reservoir having segmental ends, about 5 ft . 7 in . in diameter, \(261 / 4 \mathrm{ft}\). in length, with a capacity of about 620 cubic feet. Four fifths of the capacity is occupied by water, which is heated by the aid of a powerful jet of steam supplied from stationary boilers. The water is heated until equilibrium is established between the boilers and the rese:voir. The temperature is raised to about \(390^{\circ} \mathrm{F}\)., corresponding to \(2 \% 5 \mathrm{lbs}\). per sq. in. The steam from the reservoir is passed through a reducingvalve, by which the steam is reduced to the required pressure. It is then passed through a tubular superheater situated within the receiver at the upper part, and thence through the ordinary regulator to the cylinders. The exhaust-steam is expanded to a low pressure, in order to obviate noise of escape. In certain cases the exhanst-steam is condensed in closed vessels, which are only in part filled with water. In the upper free space a pipe is placed, into which the steam is exhausted. Within this pipe another pipe is fixed, perforated, from which cold water is projected into the surrounding steam, so as to effect the condensation as completely as may be. The heated water falls on an inclined plane, and flows off without mixing with the cold water. The condensing water is circulated by means of a centrifugal pump driven by a small three-cylinder engine.

In working off the steam from a pressure of 225 lbs . to \(6 \% \mathrm{lbs}\)., 530 cubic feet of water at \(390^{\circ} \mathrm{F}\). is sufficient for the traction of the trains, for working the circulating-pump for the condensers, for the brakes, and for electriclighting of the train. At the stations the locomotive takes from 2200 to 3300 lbs. of steam-nearly the same as the weight of steam consumed during the run between two consecutive charging stations. There is 210 cubic feet of condensing water. Taking the initial temperature at \(60^{\circ} \mathrm{F}\)., the temperature rises to about \(180^{\circ} \mathrm{F}\). after the longest runs underground.

The locomotive has ten wheels, on a base 24 ft . long, of which six are coupled, \(41 / 2 \mathrm{ft}\). in diameter. The extreme wheels are on radial axles. The cylinders are \(231 / 2 \mathrm{in}\). in diameter, with a stroke of \(231 / 2 \mathrm{in}\).

The engine weighs, in working order, 53 tons, of which 36 tons are on the coupled wheels. The speed varies from 15 miles to 25 miles per hour. The trains weigh about 140 tons.

Compressed-air Locomotives.-For an account of the Mekarski system of compressed-air locomotives see page 509, ante.

\section*{SHAFTING.}

\section*{(See also Torsional Strength; also Shafts of Steam-engines.)}

For diameters of shafts to resist torsional strains only, Molesworth gives \(d=\sqrt[3]{\frac{P \bar{K}}{\bar{K}}}\), in which \(d=\) diameter in inches, \(P=\) twisting force in pounds applied at the end of a lever-arm whose length is \(l\) in inches, \(K=\) a coefficient whose values are, for cast iron 1500 , wrought iron 1700 , cast steel 3200 , gun-bronze 460 , brass 425 , copper 380 , tin 220 , lead 120 . The value given for cast steel probably applies only to high-carbon steel.
Thurston gives:

For head shafts well supported against springing (bearings close to pulleys or gears):
\(\left\{\right.\) H.P. \(=\frac{d^{3} R}{125} ; d=\sqrt[3]{\frac{125 \text { H.P. }}{R}}\), for iron;
H.P. \(=\frac{d^{3} R}{75} ; d=\sqrt[3]{\frac{100 \mathrm{H.P}}{R}}\), for cold-rolled \(\begin{gathered}\text { iron. }\end{gathered}\)

For line shafting, hangers 8 ft . apart:
\(\left\{\begin{array}{l}\text { H.P. }=\frac{d^{3} R}{90} ; d=\sqrt[3]{\frac{90 \mathrm{H.P}}{R}}, \text { for iron; } \\ \text { H.P. }=\frac{d^{3} R}{55} ; d=\sqrt[3]{\frac{55 \mathrm{H} . \mathrm{P} .}{R}}, \text { for cold-rolled iron. }\end{array}\right.\) \(\left\{\begin{array}{l}\text { H.P. }=\frac{d^{3} R}{62.5} ; d=\sqrt[3]{\frac{62.5 \text { H.P. }}{R}}, \text { for iron; } \\ \text { H.P. }=\frac{d^{3} R}{35} ; d=\sqrt[3]{\frac{35 \text { H.P. }}{R}}, \text { for cold-rolled iron. }\end{array}\right.\)
H.Y. \(=\) horse-power transmitted, \(d=\) diameter of shaft in inches, \(R=\) revolutions per minute.
J. B. Francis gives for turned-iron shafting \(d=\sqrt[3]{\frac{100 \mathrm{H} \cdot \mathrm{P}}{R}}\).

Jones and Laughlins give the same formulæ as Prof. Thurston, with the following exceptions: For line shafting, hangers 8 ft . apart:
\[
\text { cold-rolled iron, H.P. }=\frac{d^{3} R}{50}, d=\sqrt[3]{\frac{50 \text { H.P. }}{R}}
\]

For simply transmitting power and short counters:
\[
\begin{aligned}
\text { turned iron, H.P. } & =\frac{d^{3} R}{50}, d=\sqrt[3]{\frac{50 \mathrm{H} . \mathrm{P}}{R}} ; \\
\text { cold-rolled iron, H.P. } & =\frac{d^{3} R}{30}, d=\sqrt[3]{\frac{30 \mathrm{H} . \mathrm{P}}{R}} .
\end{aligned}
\]

They also give the following notes: Receiving and transmitting pulleys shonld always be placed as close to 1 earings as possible; and it is good practice to frame short "headers" between the inain tie-beams of a mill so as to support the main receivers, carried by the head shafts, with a bearing close to each side as is contemplated in the formulæ. But if it is preferred, or necessary, for the shaft to span the full width of the "bay "without in-
termediate bearings, or for the pulley to be placed away from the bearings towards or at the middle of the bay, the size of the shaft must be largely increased to secure the stiffness necessary to support the load without undue deflection. Shafts may not deflect more than \(1 / 80\) of an inch to each foot of clear length with safety.

To find the diameter of shaft necessary to carry safely the main pulley at the centre of a bay: Multiply the fourth power of the diameter obtained by above formulæ by the length of the "bay," and divide this product by the distance from centre to centre of the bearings when the shaft is supported as required by the formula. The fourth root of this quotient will be the diameter required.
The following table, computed by this rule, is practically correct and safe.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{8}{|l|}{Dianieter of Shaft necessary to carry the Load at the Centre of a Bay, which is from Centre to Centre of Bearings} \\
\hline  & \(21 / 2 \mathrm{ft}\). & 3 ft . & \(31 / 2 \mathrm{ft}\). & 4 ft . & 5 ft . & 6 ft . & 8 ft . & 10 ft . \\
\hline & & & & & & & & \\
\hline \[
\frac{1}{2}
\] & \(21 / 8\) & 214 & \(23 / 8\) & \(21 / 2\) & 2518 & \(23 / 4\) & \(2 \% 18\) & \[
3
\] \\
\hline 21.2 & \(21 / 2\) & 25\% & \(23 / 4\) & \(27 / 8\) & 8 & \(31 / 8\) & 33/8 & 35/8 \\
\hline 3 & & 318 & 314 & 33/8 & 31.2 & 334 & 4 & \(41 / 4\) \\
\hline 31/2 & & 31/2 & 35/8 & 33/4 & 4 & 414 & 41/2 & \(43 / 4\) \\
\hline 4 & & 4 & \(41 / 8\) & 41 & \(41 / 2\) & \(43 / 4\) & 51/8 & 538 \\
\hline 4112 & & & \(41 / 2\) & \(45 / 8\) & 47/8 & \(51 / 8\) & \(51 / 2\) & \(57 / 8\) \\
\hline 5 & & & & 51/8 & 53/8 & 50\% & 6 & \(61 / 2\) \\
\hline \(51 / 2\) & & & & \(51 / 2\) & \(53 / 4\) & 6 & 61/2 & \(67 / 8\) \\
\hline 6 & & & & 6 & \(63 / 8\) & 65/8 & \(71 / 8\) & 712 \\
\hline
\end{tabular}

As the strain upon a shaft from a load upon it is proportional to the product of the parts of the shaft multiplied into each other, therefore, should the load be applied near one end of the span or bay instead of at the centre, multiply the fourth power of the diameter of the shaft required to carry the load at the centre of the span or bay by the product of the two parts of the shaft when the load is near one end, and divide this product by the product of the two parts of the shaft when the load is carried at the centre. The fourth root of this quotient will be the diameter required.

The shaft in a line which carries a receiving-pulley, or which carries a transmitting-pulley to drive another line, should always be considered a head-shaft, and should be of the size given by the rules for shafts carrying main pulleys or gears.

Deflection of Shafting. (Pencoyd Iron Works.)-As the deflection of steel and iron is practicalls alike under similar conditions of dimensions and loads, and as shafting is usually determined by its transverse stiffness rather than its ultimate strength, nearly the same dimensions should be used for steel as for iron.

For continuous line-shafting it is considered good practice to limit the deflection to a maximum of \(1 / 100\) of an inch per foot of length. The weight of bare shafting in pounds \(=2.6 d^{2} L=W\), or when as fully loaded with pulleys as is customary in practice, and aliowing 40 lbs . per inch of width for the vertical pull of the belts, experience shows the load in pounds to be about \(13 d^{2} L=W\). Taking the modulus of transverse elasticity at \(26,000,000\) lbs., we derive from authoritative formulæ the following:
\[
\begin{aligned}
& L=\sqrt[3]{873 d^{2}}, d=\sqrt{\frac{L^{3}}{87 \cdot}}, \text { for bare shafting; } \\
& L=\sqrt[3]{175 d^{2}}, d=\sqrt{\frac{L^{3}}{175}}, \text { for shafting carrying pulleys, 'etc. }
\end{aligned}
\]
\(L\) being the maximum distance in feet between bearings for continuous shafting subjected to bending stress alone, \(d=\) diam. in inches.
The torsional stress is inverselv proportional to the velocity of rotation, while the bending stress will not be reduced in the same ratio. It is therefore impossible to write a formula covering the whole problem and suffi-
ciently simple for practical application, but the following rules are correct within the range of velocities usual in practice.

For continuons shafting so proportioned as to deflect not more than \(1 / 100\) of all inch per foot of leugth, allowance being made for the weakening effect of key-seats,
\[
\begin{aligned}
& d=\sqrt[3]{\frac{50 \mathrm{H.P}}{R}}, L=\sqrt[3]{720 d^{2}}, \text { for bare shafts; } \\
& d=\sqrt[3]{\frac{\tilde{\sigma H \cdot P}}{R}}, L=\sqrt[3]{140 d^{2}}, \text { for shafts carrying pulleys, etc. }
\end{aligned}
\]
\(d=\) diam. in inches, \(L=\) length in feet, \(R=\) revs. per min.
The following table (by J. B. Francis) gives the greatest admissible distances between the hearings of continuous shafts subject to no transverse strain except from their own weight, as would be the case were the power given off from the shaft equal on all sides, and at an equal distance from the hanger-bearings.

> Distance between Bearings, in ft.

Diarn. of Shaft, Wrought-iron Steel in inches. Shafts. Shafts
\begin{tabular}{ccc} 
inches. & 15.46 & Shafts. \\
2 & 15.89 \\
3 & 19.70 & 18.19 \\
4 & 20.48 & 20.02 \\
5 & & 21.57
\end{tabular}

Distance between Bearings, in ft.
Diam.of Shaft, Wrought-iron Steel in inches. Shafts. Shafts. \(22.30 \quad 22.92\) \(23.48 \quad 24.13\)
\(24.55 \quad 25.23\)
\(25.53 \quad 26.24\)

These conditions, however, do not usually obtain in the transmission of power by belts and pulless, and the varying circumstances of each case render it impracticable to give any rule which would be of value for universal application.

For example, the theoretical requirements would demand that the bearings be nearer together on those sections of shafting where most power is delivered from the shaft, while considerations as to the location and desired contiguity of the driven machines may render it impracticable to separate the driving-pulleys by the intervention of a hanger at the theoretically required location. (Joshua Rose.)

\section*{Horse-power Transmitted by Turned Iron Shafting at Different Speeds.}

As Prime Mover or Head Shaft carrying Main Driving-pulley or Gear, well supported by Bearings. Formula: H.P. \(=d^{3} R+125\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute.} \\
\hline & 60 & 80 & 100 & 125 & 150 & 175 & 200 & 225 & 250 & 275 & 300 \\
\hline Ins. & H.P. \
\hline 13/4 & 2.6 & 3.4 & 4.3 & 5.4 & 6.4 & 7.5 & 8.6 & 9.7 & 10.7 & 11.8 & 12. \\
\hline 2 & 3.8 & 5.1 & 6.4 & 8 & 9.6 & 11.2 & 12.8 & 14.4 & 16 & 17.6 & 19. \\
\hline 214 & 5.4 & 7.3 & 8.1 & 10 & 12 & 14 & 16 & 18 & 20 & 24 & 24 \\
\hline 21.2 & 7.5 & 10 & 12.5 & 15 & 18 & 22 & 25 & 23 & 31 & 34 & 37 \\
\hline \(23 / 4\) & 10 & 13 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\
\hline 3 & 13 & 17 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 \\
\hline \(31 / 4\) & 16 & 22 & 27 & 34 & 40 & 47 & 54 & 61 & 67 & 74 & 81 \\
\hline 31/2 & 20 & 27 & 34 & 42 & 51 & 59 & 68 & 76 & 85 & 93 & 102 \\
\hline \(33 / 4\) & 25 & 33 & 42 & 52 & 63 & 73 & 84 & 94 & 105 & 115 & 126 \\
\hline 4 & 30 & 41 & 51 & 64 & 76 & 89 & 102 & 115 & 127 & 140 & 153 \\
\hline \(41 / 2\) & 43 & 58 & 72 & 90 & 108 & 126 & 144 & 162 & 180 & 198 & 216 \\
\hline 5 & 60 & 80 & 100 & 125 & 150 & 175 & 200 & 225 & 250 & 275 & 300 \\
\hline 51/2 & 80 & 106 & 183 & 166 & 199 & 233 & 266 & 299 & 333 & 366 & 400 \\
\hline
\end{tabular}

As Second Movers or Line-shafting, Bearings 8 ft. apart. Formula: H.P. \(=d^{3} R \div 90\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute.} \\
\hline & 100 & 125 & 150 & 175 & 200 & 225 & 250 & 275 & 300 & 325 & 350 \\
\hline Ins. & H.P. \
\hline 13/4 & 6 & 7.4 & 8.9 & 10.4 & 11.9 & 13.4 & 14.9 & 16.4 & 17.9 & 19.4 & 20.9 \\
\hline 17/8 & 7.3 & 9.1 & 10.9 & 12.7 & 14.5 & 16.3 & 18.2 & 20 & 21.8 & 23.6 & 25.4 \\
\hline 2 & 8.9 & 11.1 & 13.3 & 15.5 & 17.\% & 20 & 22.2 & 24.4 & 26.6 & 28.8 & 31 \\
\hline 21/8 & 10.6 & 13.2 & 15.9 & 18.5 & 21.2 & 23.8 & 26.5 & 29.1 & 31.8 & 34.4 & 37 \\
\hline 214 & 12.6 & 15.8 & 19 & 22 & 25 & 28 & 31 & 35 & 38 & 41 & 44 \\
\hline \(25 / 8\) & 15 & 18 & 22 & 26 & 29 & 33 & 37 & 41 & 44 & 48 & 52 \\
\hline \(21 / 2\) & 17 & 21 & 26 & 30 & 34 & 39 & 43 & 47 & 52 & 56 & 60 \\
\hline \(23 / 4\) & 23 & 29 & 34 & 40 & 46 & 52 & 58 & 64 & 69 & 75 & 81 \\
\hline 3 & 30 & \(3{ }^{7}\) & 45 & 52 & 60 & 67 & 75 & 82 & 90 & 97 & 105 \\
\hline \(31 / 4\) & 38 & 47 & 57 & 66 & 76 & 85 & 95 & 104 & 114 & 123 & 133 \\
\hline \(31 / 2\) & 47 & 59 & 71 & 83 & 95 & 107 & 119 & 131 & 143 & 155 & 167 \\
\hline \(33 / 4\) & 58 & 73 & 88 & 102 & 117 & 13.2 & 146 & 162 & 176 & 190 & 205 \\
\hline 4 & 71 & 89 & 108 & 125 & 142 & 160 & 178 & 196 & 213 & 231 & 249 \\
\hline
\end{tabular}

For Simply Transmitting Power.
Formula: H.P. \(=d^{3} R \div 50\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute.} \\
\hline & 100 & 125 & 150 & 175 & 200 & 233 & 267 & 300 & 339, & 367 & 400 \\
\hline Ins. & H.P. & H P. & H.P. \\
\hline 11/2 & 6.7 & 8.4 & 10.1 & 11.8 & 13.5 & 15.7 & 17.9 & 20.3 & 22.5 & 24.8 & \(2 \% .0\) \\
\hline 15\% & 8.6 & 10.7 & 12.8 & 15 & 17.1 & 20 & 22.8 & 25.8 & 28.6 & 31.5 & 34.3 \\
\hline \(13 / 4\) & 10.7 & 13.4 & 16 & 18.7 & 21.5 & \(2{ }^{2}\) & 28 & 32 & 36 & 39 & 43 \\
\hline \(17 / 8\) & 13.2 & 16.5 & 19.7 & 23. & 26.4 & 31 & 35 & 39 & 44 & 48 & 53 \\
\hline 2 & 16 & 20 & 24 & 28 & 32 & 37 & 42 & 48 & 53 & 58 & 64 \\
\hline \(21 / 8\) & 19 & 24 & 29 & 33 & 38 & 44 & 51 & 57 & 63 & 70 & 76 \\
\hline 2114 & 22 & 28 & 34 & 39 & 45 & 52 & 60 & 68 & r 5 & 83 & 90 \\
\hline 238 & \(2 \tilde{1}\) & 33 & 40 & 47 & 53 & 62 & r0 & 79 & 88 & 96 & 105 \\
\hline \(21 / 2\) & 31 & 39 & 47 & 54 & 62 & 73 & 83 & 93 & 104 & 114 & 125 \\
\hline \(23 / 4\) & 41 & \(5:\) & 62 & 73 & 83 & 97 & 111 & 125 & 139 & 153 & \(16{ }^{1}\) \\
\hline 3 & 54 & 67 & 81 & 94 & 108 & 126 & 144 & 162 & 180 & 198 & 216 \\
\hline \(31 / 4\) & 68 & 86 & 103 & 120 & 137 & 160 & 182 & 205 & 228 & 250 & \(2 \pi 3\) \\
\hline 31/2 & 85 & \(10 \%\) & 128 & 150 & 171 & 200 & 228 & 257 & 285 & 313 & 342 \\
\hline
\end{tabular}

Horse-power Transmitted by cold-rolled Iron Shafting at Different Speeds.
As Prime Mover or Head Shaft carrying Main Driving-pulley or Gear, well supported by Bearings. Formula: H.P. \(=d^{3} R \div\) ís.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute.} \\
\hline & 60 & 80 & 100 & 125 & 150 & 175 & 200 & \(2: 5\) & 250 & \(2 \% 5\) & 300 \\
\hline Ins. & H.P. \\
\hline 11/2 & 2.7 & 3.6 & 4.5 & 5.6 & 6.7 & 7.9 & 9.0 & 10 & 11 & 12 & 13 \\
\hline \(13 / 4\) & 4.3 & 5.6 & 7.1 & 8.9 & 10.6 & 12.4 & 14.2 & 16 & 18 & 19 & 21 \\
\hline \({ }^{2}\) & 6.4 & 8.5 & 10.7 & 13 & 16 & 19 & 21 & 24 & 26 & 29 & 32 \\
\hline 21/4 & 9 & 12 & 15 & 19 & 23 & 26 & 30 & 34 & 38 & 42 & 46 \\
\hline \(21 / 2\) & 12 & 17 & 21 & 26 & 31 & 36 & 41 & 47 & 52 & 57 & 62 \\
\hline \(23 / 4\) & 16 & 22 & 27 & 35 & 41 & 48 & 55 & 62 & 70 & 76 & 82 \\
\hline 3 & 21 & 29 & 86 & 45 & 54 & 63 & 72 & 81 & 90 & 98 & 108 \\
\hline 314 & 27 & 36 & 45 & 57 & 68 & 80 & 91 & 103 & 114 & 126 & 136 \\
\hline 312 & 34 & 45 & 57 & 71 & 86 & 100 & 114 & 129 & 142 & 157 & 172 \\
\hline \(33 / 4\) & 42 & 56 & 70 & 87 & 105 & 123 & 140 & 158 & 174 & 193 & 210 \\
\hline 4 & 51 & 69 & 85 & 106 & 128 & 149 & \(1 \% 0\) & 192 & 212 & 244 & 256 \\
\hline 41/3 & 73 & 97 & 121 & 151 & 182 & 212 & 243 & 273 & 302 & 333 & 364 \\
\hline
\end{tabular}

As Second Movers or Line-shafting, Bearings 8 ft. apart.
Formula : H.P. \(=d^{3} R+50\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute} \\
\hline & 100 & 125 & 150 & 175 & 200 & \(2: 5\) & 250 & \(2 \% 5\) & 300 & 325 & 350 \\
\hline Ins. & H.P. \\
\hline 11/2 & 6.7 & 8.4 & 10.1 & 11.8 & 13.5 & 15.2 & 16.8 & 18.5 & 20.2 & 21.9 & 23.6 \\
\hline 15/8 & 8.6 & 10.\% & 12.8 & 15 & 17.1 & 19.3 & 21.5 & 23.6 & 25.7 & 28.9 & 31 \\
\hline \(13 / 4\) & 10.7 & 13.4 & 16 & 18.7 & 21.5 & 24.2 & 26.8 & 29.5 & 32.1 & 34.8 & 39 \\
\hline \(17 / 8\) & 13.2 & 16\% & 19.7 & 23 & 26.4 & 29.6 & \(3 \% .9\) & 36.2 & 39.5 & 42.8 & 46 \\
\hline 2 & 16 & \(\because 0\) & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 \\
\hline \(\because 1 / 8\) & 19 & 24 & 29 & 33 & 38 & 43 & 48 & 52 & 57 & 62 & 67 \\
\hline \(\because 1 / 4\) & 22 & 28 & 34 & 39 & 4.5 & 50 & 56 & 61 & 68 & 74 & 80 \\
\hline \(23 / 8\) & \(2 \tilde{1}\) & 3:3 & 40 & \(4 \hat{1}\) & 5:3 & 60 & 67 & 73 & 80 & 86 & 91 \\
\hline -1\% & 31 & 39 & 47 & 54 & \(6 \cdot\) & 69 & 78 & 86 & 93 & 101 & 109 \\
\hline \(23 / 4\) & 41 & 52 & \(6:\) & 73 & 83 & 9:3 & 104 & 114 & 125 & 135 & 145 \\
\hline 3 & 54 & \(6{ }^{1}\) & 81 & 94 & 118 & 121 & 134 & 148 & 162 & 175 & 189 \\
\hline 324 & 68 & 86 & 103 & \(1 \geqslant 0\) & 137 & 154 & 172 & 188 & 205 & 222 & 240 \\
\hline 84 & 8.5 & 1117 & 1:8 & 150 & 1.1 & 1992 & 214 & 235 & 257 & 278 & 300 \\
\hline
\end{tabular}

For Simply Transmititing Power and Short Counters.
Formula: H P. \(=d^{3} R \div 30\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Number of Revolutions per Minute.} \\
\hline & 100 & 125 & 150 & 175 & 200 & 233 & 267 & 300 & 333 & 367 & 400 \\
\hline Ins. & H.P. & H.P. & H.P. & H.P. & H.P. & HP. & H.P. & H.1. & H.P. & H.P. & H.P. \\
\hline 11/4 & 6.5 & 8.1 & 9. 7 & 11.3 & 13 & 15.2 & 17.4 & 19.5 & 21.7 & 23.9 & 26 \\
\hline \(13 / 8\) & 8.5 & 10.7 & 11.8 & 15 & 17 & 19.8 & 22.7 & 25.5 & 28.4 & 31 & 34 \\
\hline 11/2 & 11.2 & 14 & 168 & 196 & \(2 \cdot 2.5\) & 26 & 30 & 33 & 37 & 41 & 45 \\
\hline 10/8 & 14.2 & 17.7 & 21.2 & 24.8 & 28.4 & 33 & 38 & 42 & 47 & 52 & 57 \\
\hline \(13 / 4\) & 18 & 22 & 27 & 31 & 35 & 41 & 47 & 53 & 59 & 65 & 71 \\
\hline \(17 / 8\) & \(2:\) & 27 & 33 & 38 & 44 & 51 & 58 & 65 & 72 & 79 & 87 \\
\hline 2 & \(\because 6\) & 33 & 40 & 46 & 53 & 62 & 71 & 80 & 88 & 97 & 106 \\
\hline 11/8 & 32 & 40 & 47 & 55 & 63 & 73 & 84 & 95 & 105 & 116 & 127 \\
\hline 214 & 35 & 47 & 57 & 66 & \%6 & 89 & 101 & 114 & 127 & 139 & 152 \\
\hline \(23 / 8\) & 44 & 55 & 66 & \% & 88 & 10:3 & 118 & 133 & 148 & 163 & 1 1\% \\
\hline 24\% & 52 & 65 & T8 & 91 & 104 & 121 & 138 & 155 & \(1 \hat{\sim}^{2}\) & 190 & 207 \\
\hline \(23 / 4\) & 69 & 84 & 99 & 113 & 138 & 161 & 184 & 207 & 231 & 254 & \(2 \pi \%\) \\
\hline 3 & 90 & 112 & 135 & \(15 \%\) & 180 & 210 & 240 & \(22_{0}\) & 300 & 3:30 & 360 \\
\hline
\end{tabular}
\[
\begin{array}{r}
\text { Speed of Shafting. - Machine shops .................... } 120 \text { to } 180 \\
\\
\text { Wood-working....................... } 300 \text { to } 300 \\
\\
\text { Cotton and woollen mills...... } 300 \text { to } 400
\end{array}
\]

There are in some factories lines 1000 ft . long, the power being applied at the middle.

Hollow Shafts. - Let \(d\) be the diameter of a solid shaft, and \(d_{1} d_{2}\) the external and internal diameters of a hollow shaft of the same material. Then the shafts will be of equal torsional strength when \(d^{3}=\frac{d_{1}{ }^{4}-d_{2}{ }^{4}}{d_{1}}\). A 10 -inch hollow shaft with internal diameter of 4 inches will weigh \(16 \%\) less than a solid 10 -inch shaft, \(b\) at its strength will be only \(256 \%\) less. If the hole were increased to 5 inches liameter the weight would be \(25 \%\) less than that of the solid slaft, and the strength \(4.25 \%\) less.

Table for Laying out Shafting. - The table on the opposite page (from the Sievens Indicator, April, 1892) is used by Wm. Sellers \& Co. to facilitate the laying out of shafing.

The wood-cuts at the head of this table show the position of the hangers and position of couplings, either for the case of extension in both directions from a central head-shaft or extension in one direction from that head-shaft.


\section*{PULLEYS.}

Proportions of Pulleys. (See also Fly-wheels, pages 820 to 823.)Let \(u=\) number of arms, \(D=\) diameter of pulley, \(S=\) thickness of belt, \(t=\) thickness of rim at edge. \(T=\) thickness in middle, \(B=\) width of rim, \(\beta=\) width of belt, \(h=\) breadth of arm at hub, \(h_{1}=\) breadth of arm at rim, \(e=\) thickness of arm at hub \(e_{1}=\) thickness of arm at rim, \(c=\) amount of crowning; dimensions in inches.

> Unwin.
\(B=\) width of rim.
\[
9 / 8(\beta+0.4)
\]
\(t=\) thickness at edge of rim
\[
\begin{gathered}
0.7 S+.005 D \\
2 t+c .
\end{gathered}
\]

Reuleaux.
\(T=\) " " middle of rim.
\[
9 / 8 \beta \text { to } 5 / 4 \beta
\]
\(\left\{\begin{array}{c}\text { (thick. of rim.) } \\ 1 / 5 h \text { to } 1 / 4 h\end{array}\right.\)
\(h=\) breadth of arm at hub.....

\begin{tabular}{|c|c|c|}
\hline \(h_{1}=\) " " " 6 rim........ & 2/3h & \(0.8 h\) \\
\hline \(e=\) thickness of arm at hub....... & \[
0.4 h
\] & \(0.5 h\) \\
\hline \(e_{1}=\) " \({ }^{\text {c }}\) " " rim . & \(0.4 h_{1}\) & \(0.5 h_{1}\) \\
\hline \[
\begin{gathered}
\left.n=\begin{array}{c}
\text { number of arms, for } a \\
\text { single set, }
\end{array}\right\} \ldots
\end{gathered}
\] & \[
3+\frac{B D}{150}
\] & \[
1 / 2\left(5 \times \frac{D}{2 B}\right)
\] \\
\hline
\end{tabular}
\(L=\) length of hub
\(\left\{\begin{array}{l}\text { not less than } 2.5 S, \\ \text { is often } 2 / 3 B .\end{array}\right\} \& B\) for sin.-arm pulleys.
\(M=\) thickness of metal in hub
\} \(2 B\) "double-arm
\(c=\) crowning of pulley
\(1 / 24 B\)
\(h\) to \(3 / 4 h\)
The number of arms is really arbitrary, and may be altered if necessary. (Unwin.)
Pulleys with two or three sets of arms may be considered as two or three separate pulleys combined in one, except that the proportions of the arms should be 0.8 ol 0.7 time that of single-arm pulleys. (Reuleaux.)

Example.-Dimensions of a pulley \(60^{\prime \prime}\) diam., \(16^{\prime \prime}\) face, for double belt \(1 / 2^{\prime \prime}\) thick.
\begin{tabular}{llccccccccc} 
Solution by.... & \(n\) & \(h\) & \(h_{1}\) & \(e\) & \(e_{1}\) & \(t\) & \(T\) & \(L\) & \(M\) & \(c\) \\
Unwin........ & 9 & 3.79 & 2.53 & 1.52 & 1.01 &.\(\underbrace{1.95}_{1.27}\) & 10.7 & 3.8 & .67 \\
Reuleaux..... & 4 & 5.0 & 4.0 & 2.5 & 2.0 & \(\underbrace{}_{1.25}\) & 16 & 5 &
\end{tabular}

The following proportions are given in an article in the Amer. Machinist, authority not stated:
\(h=.0625 D+.5\) in., \(h_{1}=.04 D+3125 \mathrm{in} ., e=.025 D+.2 \mathrm{in} ., e_{1}=.016 D+\) 125 in.
These give for the above example: \(h=4.25 \mathrm{in} ., h_{1}=2.71 \mathrm{in} ., e=1.7 \mathrm{in}\)., \(e_{1}=1.09 \mathrm{in}\). The section of the arms in all cases is taken as elliptical.

The following solution for breadth of arm is proposed by the anthor: Assume a belt pull of 45 lbs . per inch of width of a single belt, that the whole strain is taken in equal proportions on one half of the arms, and that the arm is a beam loaded at one end and fixed at the other. We have the formula for a beam of elliptical section \(f P=.0982 \frac{R b d^{2}}{l}\), in which \(P=\) the load, \(R=\) the modulus of rupture of the cast iron, \(b=\) breadth, \(d=\) depth, and \(l=\) length of the beam, and \(f=\) factor of safety. Assume a modulus of rupture of 36.000 lbs ., a factor of safety of 10 , and an additional allowance for safety in taking \(l=1 / 2\) the diameter of the pulley instead of \(1 / 2 D\) less the radius of the hab.
Take \(d=h\), the breadth of the arm at the hub, and \(b=e=0.4 h\), the thickness. We then have \(f P=10 \times \frac{45 B}{n \div 2}=900 \frac{B}{n}=\frac{3535 \times 0.4 h^{3}}{1 / 2 D}\), whence \(h=\sqrt[3]{\frac{900 B D}{3535 n}}=.633 \sqrt[3]{\frac{\overline{B D}}{n}}\), which is practically the same as the value reached by Unwin from a different set of assumptions.

Convexity of Palleys.-Authorities differ. Morin gives a rise equal to \(1 / 10\) of the face; Molesworth, \(1 / 24\); others from \(1 / 8\) to \(1 / 96\). Scott A. Smith says the crown should not be over \(1 / 8\) inch for a 24 -inch face. Pulleys for shifting belts should be "straight," that is, without crowning.

\section*{CONE OR STEP PUHLEXS.}

To find the diameters for the several steps of a pair of cone-pulleys:
1. Crossed Belts.-Let \(D\) and \(d\) be the diameters of two pulleys connected by a crossed belt, \(L=\) the distance between their centres, and \(\beta=\) the angle either half of the belt makes with a line joining the centres of the pulleys : then total length of belt \(=(D+d) \frac{\pi}{2}+(D+d) \frac{\pi \beta}{180}+2 L \cos \beta\). \(\beta=\) angle whose sine is. \(\frac{D+d}{2 L} . \quad \cos \beta=\sqrt{L^{2}-\left(\frac{D+d}{2}\right)}\). The length of the belt is constant when \(D+d\) is constant; that is, in a pair of steppulleys the belt tension will be uniform when the sum of the diameters of each opposite pair of steps is constant. Crossed belts are seldom used for cone-pulleys, on account of the friction between the rubbing parts of the belt.

To design a pair of tapering speed-cones, so that the belt may fit equally tight in all positions : When the belt is crossed, use a pair of equal and similar cones tapering opposite ways.
2. Open Belts. - When the belt is uncrossed, use a pair of equal and similar conoids tapering opposite ways, and bulging in the middle, according to the following formula: Let \(L\) denote the distance between the axes of the conoids; \(R\) the radius of the larger end of each; \(r\) the radius of the smaller end; then the radius in the middle, \(r_{0}\), is found as follows:
\[
r_{0}=\frac{R+r}{2}+\frac{(R-r)^{2}}{6.28 L} \quad \text { (Rankine.) }
\]

If \(D_{0}=\) the diameter of equal steps of a pair of cone-pulleys, \(D\) and \(d=\) the diamêters of unequal opposite steps, and \(L=\) distance between the axes, \(D_{0}=\frac{D+d}{2}+\frac{(D-d)^{2}}{12.566 L}\).

If a series of differences of radii of the steps, \(R-r\), be assumed, then for each pair of steps \(\frac{R+r}{2}=r_{0}-\frac{(R-r)^{2}}{6.28 L}\), and the radii of each may be computed from their half sum and half difference, as follows:
\[
R=\frac{R+r}{2}+\frac{R-r}{2} ; \quad r=\frac{R+r}{2}-\frac{R-r}{2}
\]
A. J. Frith (Trans. A. S. M. E., x. 298) shows the following application of Rankine's method: If we had a set of cones to design, the extreme diameters of which, including thickness of belt, were \(40^{\prime \prime}\) and \(10^{\prime \prime}\), and the ratio desired 4, 3, 2, and 1, we would make a table as follows, \(L\) being \(100^{\prime \prime}:\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Trial \\
Sum of \(D+d\).
\end{tabular}} & \multirow{2}{*}{Ratio.} & \multicolumn{2}{|l|}{Trial Diameters.} & \multirow[t]{2}{*}{Values of
\[
\frac{(D-d)^{2}}{12.56 L}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Amount } \\
& \text { to be } \\
& \text { Added. }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Corrected Values.} \\
\hline & & D & \(d\) & & & D & \(d\) \\
\hline 50 & 4 & 40 & 10 & . 7165 & . 0000 & & 10 \\
\hline 50 & 3 & 37.5 & 12.5 & . 4975 & . 2190 & 37.7190 & 12.7190 \\
\hline 50 & 2 & 33.333 & 16.666 & . 2212 & . 4953 & 33.8286 & 17.1619 \\
\hline 50 & 1 & 25 & 25 & . 0000 & . 7165 & 25.7165 & 25.7165 \\
\hline
\end{tabular}

The above formulæ are approximate, and they do not give satisfactory results when the difference of diameters of opposite steps is large and when the axes of the pulleys are near together, giving a large belt-angle. The following more accurate solution of the problem is given by C. A. Smith ('Trans. A. S. M. E., x. 269) (Fig 152):

Lay off the centre distance \(C\) or \(E F\), and draw the circles \(D_{1}\) and \(d_{1}\) equal to the first pair of pulleys, which are always previously determined by known conditions. Draw \(H I\) tangent to the circles \(D_{1}\) and \(d_{1}\). From \(B\), midway between \(E\) and \(F\), erect the perpendicular \(B G\), making the length
\(B G=.314 C\). With \(G\) as a centre, draw a circle tangent to \(H I\). Generally this circle will be outside of the belt-line, as in the cut, but when \(C\) is short and the first pulleys \(D_{1}\) and \(d_{1}\) are large, it will fall on the inside of the beltline. The belt-line of any other pair of pulleys must be tangent to the circle \(G\); hence any line, as \(J K\) or \(L M\), drawn tangent to the circle \(G\), will give


Fig. 152.
the diameters \(D_{2}, d_{2}\) or \(D_{3}, d_{3}\) of the pulleys drawn tangent to these lines from the centres \(E\) and \(F\).

The above method is to be used when the belt-angle \(A\) does not exceed \(18^{\circ}\). When it is between \(18^{\circ}\) and \(30^{\circ}\) a slight modification is made. In that case, in addition to the point \(G\), locate another point \(m\) on the line \(B G .298 C\) above \(B\). Draw a tangent line to the circle \(G\), making an angle of \(18^{\circ}\) to the line of centres \(E F\), and from the point \(m\) draw an arc tangent to this tangent line. All belt-lines with angles greater than \(18^{\circ}\) are tangent to this arc. The following is the summary of Mr. Smith's mathematical method:
\(A=\) angle in degrees between the centre line and the belt of any pair of pulleys;
\(a=.314\) for belt-angles less than \(18^{\circ}\), and .298 for angles between \(18^{\circ}\) and \(30^{\circ}\);
\(B^{\circ}=\) an angle depending on the velocity ratio;
\(C=\) the centre distance of the two pulleys;
\(D, d=\) diameters of the larger and smaller of the pair of pulleys;
\(E^{\circ}=\) an angle depending on \(B^{\circ}\);
\(L=\) the length of the belt when drawn tight around the pulleys;
\(r=D \div d\), or the velocity ratio (larger divided by smaller).

> (1) \(\sin A=\frac{D-d}{2 C} ; \quad\) (2) \(\tan B^{\circ}=\frac{2 a(r-1)}{r+1}\) (3) \(\operatorname{Sin} E^{\circ}=\sin B^{\circ}\left(\cos A-\frac{D+d}{4 a C}\right)\)
(4) \(A=B^{\circ}-E^{\circ}\) when \(\sin E^{\circ}\) is positive; \(=B^{\circ}+E^{\circ}\) when \(\sin E^{\circ}\) is negative;
(5) \(d=\frac{2 C \sin A}{r-1} ;=.3183(L-2 C)\) when \(A=0\) and \(r=1\);
(6) \(D=r d\);
(7) \(L=2 C \cos A+.01745 d[180+(r-1)(90+A)]\).

Equation (1) is used only once for any pair of cones to obtain the constant \(\cos A\), by the aid of tables of sines and cosines, for use in equation (3).

\section*{BELTING.}

Theory of Belts and Bands.-A pulley is driven by a belt by means of the friction between the surfaces in contact. Let \(T_{1}\) be the tension on the driving side of the belt, \(T_{2}^{\prime}\) the tension on the loose side; then \(S,=T_{1}\) - \(T_{2}\), is the total friction between the band and the pulley, which is equal to the tractive or driving force. Let \(f=\) the coefficient of friction, \(\theta\) the ratio of the length of the arc of contact to the length of the radius, \(a=\) the angle of the arc of contact in degrees, \(e=\) the base of the Naperian logarithms \(=2.71828, m=\) the modulus of the common logarithms \(=0.434295\). The following formulæ are derived by calculus (Rankine's Mach's \& Millwork, p. 351 ; Carpenter's Exper. Eng'g, p. 173):
\[
\begin{aligned}
& \frac{T_{1}}{T_{2}}=e^{f \theta} ; T_{2}=\frac{T_{1}}{e^{f \theta}} ; \quad T_{1}-T_{2}=T_{1}-\frac{T_{1}}{e^{f \theta}}=T_{1}\left(1-e^{-f \theta}\right) \\
& T_{1}-T_{2}=T_{1}\left(1-e^{-f \theta)}=T_{1}\left(1-10^{-f \theta m}\right)=T_{1}\left(1-10^{-.00758 f a}\right)\right. \\
& \frac{T_{1}}{T_{2}}=10^{.00758 f a} ; \quad T_{1}=T_{2} \times 10^{.00758 f a} ; T_{2}=\frac{T_{1}}{10^{.00758 f a}}
\end{aligned}
\]

If the arc of contact between the band and the pulley expressed in turns and fractions of a turn \(=n, \theta=2 \pi n ; e^{f \theta}=10^{2.7288 f n}\); that is, \(e^{f \theta}\) is the natural number corresponding to the common logarithm 2.7:88fn.
The value of the coefficient of friction \(f\) depends on the state and material of the rubbing surfaces. For leather belts on iron pulleys, Morin found \(f=.56\) when dry, .36 when wet, .23 when greasy, and .15 when oily. In calculating the proper mean tension for a belt, the smallest value, \(f=.15\), is to be taken if there is a probability of the belt becoming wet with oil. The experiments of Henry R. Towne and Robert Briggs, however (Jour. Frank. Inst., 1868), show that such a state of lubrication is not of ordinary occurrence; and that in designing macbinery we may in most cases safely take \(f=0.42\). Reulearx takes \(f=0.25\). The following table shows the values of the coefficient \(2.7288 f\), by which \(n\) is multiplied in the last equation, corresponding to different values of \(f\); also the corresponding values of various ratios among the forces, when the arc of contact is half a circumference :
\[
\begin{array}{rlll}
f & =0.15 & 0.25 & 0.42 \\
2.7288 f & =0.41 & 0.68 & 1.15 \\
& 0.56 \\
\hline
\end{array}
\]

Let \(\theta=\pi\) and \(n=12\), then
\[
\begin{array}{rlll}
T_{1} \div T_{2} & =1.603 & 2.188 & 3.758 \\
T_{1} \div S & =2.66 & 1.84 & 1.36 \\
T_{1}+T_{2} \div 2 S & =2.16 & 1.34 & 0.86 \\
1.21 \\
0.71
\end{array}
\]

In ordinary practice it is usual to assume \(T_{2}=S ; T_{1}=2 S ; T_{1}+T_{2}+\) \(2 S=1.5\). 'Ibis corresponds to \(f=0.22\) nearly.

For a wire rope on cast iron \(f\) may be taken as 0.15 nearly; and if the groove of the pulley is bottomed with gutta-percha, 0.25 . (Rankine.)
Centrifugal Tension of Belts. - When a belt or band runs at a high velocity, centrifugal force produces a tension in addition to that existing when the belt is at rest or moving at a low velocity. This centrifugal tension diminishes the effective driving force.

Rankine says : If an endless band, of any figure whatsoever, runs at a given speed, the centrifugal force produces a uniform tension at each crosssection of the band. equal to the weight of a piece of the band whose length is twice the height from which a heavy body must fall, in order to acquire the velocity of the band. (See Cooper on Belting, p. 101.)
If \(T_{c}=\) centrifugal tension;
\(V=\) velocity in feet per second;
\(g=\) acceleration due to gravity \(=32.2\);
\(\underset{W}{W}=\) weight of a piece of the belt 1 ft . long and \(1 \mathrm{sq} . \mathrm{in}\). sectional area, -
Leather weighing 56 lbs . per cubic foot gives \(W=56 \div 144=.388\).
\[
T_{c}=\frac{W V^{2}}{g}=\frac{.388 V^{2}}{32.2}=.012 V^{2}
\]

Belting Practice. Handy Formula for Belting. - Since in the practical application of the above formulæ the value of the coefficient of friction must be assumed, its actual value varying within wide limits ( \(15 \%\) to \(135 \%\) ), and since the values of \(T_{1}\) and \(T_{2}\) also are fixed arbitrarily, it is customary in practice to substitute for these theoretical formulæ more simple empirical formulæ and rules, some of which are given below.

Let \(d=\) diam. of pulley in inches; \(\pi d=\) circumference;
\(V=\) velocity of belt in ft. per second; \(v=\) vel. in ft . per minute;
\(a=\) angle of the arc of contact;
\(L=\) length of arc of contact in feet \(=\pi d a \div(12 \times 360)\);
\(F=\) tractive force per square inch of sectional area of belt;
\(w=\) width in inches; \(t=\) thickness;
\(S=\) tractive force per inch of width \(=F \div t ;\)
rpm. \(=\) revs. per minute; rps. \(=\) revs. per second \(=\) rpm. \(\div 60\).
\[
\begin{aligned}
& V=\frac{\pi d}{12} \times \mathrm{rps}=\frac{\pi d}{12} \times \frac{\mathrm{rpm}}{60}=.004363 d \times \mathrm{rpm}=\frac{d \times \mathrm{rpm}}{229.2} ; \\
& v=\frac{\pi d}{12} \times \mathrm{rpm} . ;=.2618 d \times \mathrm{rpm}
\end{aligned}
\]

Horse-power, H.P. \(=\frac{S v v}{33000}=\frac{S V w}{550}=\frac{S w d \times \text { rpm. }}{126050}=.000007933 S w d \times \mathrm{rpm}\).
If \(F=\) working tension per square inch \(=275 \mathrm{lbs}\), and \(t=7 / 32 \mathrm{inch}, S=\) 60 lbs . nearly, then
\[
\begin{equation*}
\text { H.P. }=\frac{v w}{550}=.109 \mathrm{~V} w=.000476 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm} .}{2101} . \tag{1}
\end{equation*}
\]

If \(F=180 \mathrm{lbs}\). per square inch, and \(t=1 / 6 \mathrm{inch}, S=30 \mathrm{lbs}\)., then
\[
\begin{equation*}
\text { H.P. }=\frac{v w}{1100}=.055 \mathrm{~V} w=.000238 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{4202} . \tag{2}
\end{equation*}
\]

If the working strain is 60 lbs . per inch of width, a belt 1 inch wide travelling 550 ft . per minute will transmit 1 horse-power: If the working strain is 30 lbs. per inch of width, a belt 1 inch wide, travelling 1100 ft . per minute, will transmit 1 horse-power. Numerous rules are given by different writers on belting which vary between these extremes. A rule commonly used is : 1 inch wide travelling 1000 ft . per min. = I.H.P.
\[
\begin{equation*}
\text { H.P. }=\frac{v w}{1000}=.06 \mathrm{Vw}=.000262 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{3820} . \tag{3}
\end{equation*}
\]

This corresponds to a working strain of 33 lbs . per inch of width.
Many writers give as safe practice for single belts in good condition a working tension of 45 lbs . per inch of width. This gives
\[
\begin{equation*}
\text { H.P. }=\frac{w v}{733}=.0818 \mathrm{~V} w=.000357 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{2800} \tag{4}
\end{equation*}
\]

For double belts of average thickness, some writers say that the transmitting efficiency is to that of single belts as 10 to 7 , which would give
H.P. of double belts \(=\frac{w v}{513}=.1169 \mathrm{~V} w=.00051 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{1960}\).

Other authorities, however, make the transmitting-power of double belts twice that of single belts, on the assumption that the thickness of a doublebelt is twice that of a single belt.

Rules for horse-power of belts are sometimes based on the number of square feet of surface of the belt which pass over the pulley in a minute. Sq. ft. per min. \(=2 v v \div 12\). The above formulæ translated into this form give:


The above formulæ are all based on the supposition that the arc of contact is \(180^{\circ}\) For other arcs, the transmitting power is approximately proportional to the ratio of the degrees of arc to \(180^{\circ}\).
Some rules base the horse-power on the length of the arc of contact in feet. Since \(L=\frac{\pi d a}{12 \times 360}\) and HP. \(=\frac{S v w}{33000}=\frac{S w}{33000} \times \frac{\pi d}{12} \times \mathrm{rpm} . \times \frac{a}{180}\), we obtain by substitution H.P. \(=\frac{S w}{16500} \times L \times\) rpm., and the five formulæ then take the following form for the several values of \(S\) :
\(\mathrm{H} . \mathrm{P}=\frac{w L \times \mathrm{rpm}}{275} .(1) ; \frac{w L \times \mathrm{rpm} .}{550}(2) ; \frac{w L \times \mathrm{rpm}}{500}\) (3); \(\frac{w L \times \mathrm{rpm} .}{367}\) (4);
H.P. (double belt) \(=\frac{w L \times \mathrm{rpm}}{257}\) (5).

None of the handy formulæ take into consideration the centrifugal tension of belts at high velocities. When the velocity is over 3000 ft . per minute the effect of this tension becomes appreciable, and it should be taken account of as in Mr. Nagle's formula, which is given below.
Horse-power of a Leather Belt One Inch wide. (Nagle.)
Formula: H.P. \(=C V t w\left(S-.012 V^{2}\right) \div 550\).
For \(f=.40, a=180^{\circ}, C=.715, w=1\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Laced Belts, \(S=275\).} & \multicolumn{8}{|c|}{Riveted Belts, \(S=400\).} \\
\hline & \multicolumn{7}{|c|}{Thickness in inches \(=t\).} & & \multicolumn{7}{|c|}{Thickness in inches \(=\boldsymbol{t}\).} \\
\hline & 1/7 & & 3/16 & & & & \(1 / 3\) & & 7/32 & & 5/16 & 1/3 & & & \\
\hline p" & . 143 & & 187 & & 250 & . 312 & . 333 & & 219 & 250 & . 312 & 33 & . 37 & . 437 & 500 \\
\hline & & & & & & 1.05 & 1. & 15 & 1.69 & 1.94 & 2.42 & 2.58 & 2.91 & 3.39 & 3.87 \\
\hline 15 & . 75 & & 1.00 & & 1.32 & 1.66 & . 78 & 20 & 2.24 & 2.57 & 3.21 & 3.42 & 3.85 & 4.49 & 5.13 \\
\hline 20 & 1.00 & 1.17 & \(1 \cdot 32\) & 1.54 & 1.75 & 2.19 & 2.34 & 25 & 2.79 & 3.19 & 3.98 & 4.2 & 4.78 & 5.57 & 6.37 \\
\hline & 1.23 & 1.43 & 1.61 & 1.88 & 2.16 & 2.69 & 2.86 & 30 & 3.31 & 3.79 & 4.74 & 5.05 & 5.67 & 6.62 & 7.58 \\
\hline 30 & 1.47 & 1.72 & 1.93 & 2.25 & 2.58 & 3.22 & 3.44 & 35 & 3.82 & 4.37 & 5.46 & 5.83 & 6.56 & 7.65 & 8.75 \\
\hline 35 & 1.69 & 1.97 & 2.22 & 2.59 & 2.96 & 3.70 & 3.94 & 40 & 4.33 & 4.95 & 6.19 & 6.60 & 7.42 & 8.66 & 990 \\
\hline 40 & 1.90 & 2.22 & 2.49 & 2.90 & 3.32 & 4.15 & 4. 4 & 45 & 4.85 & 5.49 & 6.86 & 7.32 & 8.43 & 9.70 & 10.98 \\
\hline & 2.09 & 2.45 & 2.75 & & 3.67 & 4.58 & 4.89 & 50 & 5.26 & 6.01 & 7.51 & 8.02 & 9.02 & 10.52 & 12.03 \\
\hline & 2.27 & 2.65 & 2.98 & 3.48 & 3.98 & 4.97 & 5.30 & 55 & 5.68 & 6.50 & 8.12 & 8.66 & 9.74 & 11.36 & 3.00 \\
\hline & 2.44 & 2.84 & 3.19 & 3.72 & 4.26 & 5.32 & 5.69 & 60 & 6.09 & 6. 66 & 8.70 & 9.28 & 10.43 & 12.17 & 13.91 \\
\hline & 2.58 & 3.01 & 3.38 & 3.95 & 4.51 & 5.64 & 6.0.2 & 65 & 6.45 & 7.37 & 9.22 & 9.83 & 11.06 & 12.90 & 14.75 \\
\hline & 2.71 & 3.16 & & 4.14 & 4.74 & 5.92 & 6.32 & 70 & 6.78 & 7.75 & 9.69 & 10.33 & 11.62 & 13.56 & 15.50 \\
\hline 70 & 2.81 & 3.27 & 3.68 & 4.29 & 4.91 & 6.14 & 6.54 & 75 & 7. 09 & 8.11 & 10.13 & 10.84 & 12.16 & 14.18 & 16.21 \\
\hline 75 & 2.89 & 3.37 & 3.79 & 4.42 & 5.05 & 6.31 & 6.73 & 80 & 7.36 & 8.41 & 10.51 & 11.21 & 12.61 & 14.71 & 16.81 \\
\hline 80 & 2.94 & 3.43 & 3.86 & 4.50 & 5.15 & 6.44 & 6.86 & 85 & 7.58 & 8.66 & 10.82 & 11.55 & 13.00 & 15.16 & 17.32 \\
\hline 85 & 2.97 & . 47 & 3.90 & 4.55 & 5.20 & 6.50 & 6.9 & 0 & 7.74 & 8.85 & 11.06 & 11.80 & 13.27 & 15.48 & 17.69 \\
\hline 90 & 2.97 & 3.47 & 3.90 & 4.55 & . 20 & 6.50 & 6.93 & 100 & 7.96 & & 1. & 2. & 13.65 & 15.92 & 18.20 \\
\hline \multicolumn{16}{|l|}{The H.P. becomes a maximum
at 87.41 ft . persec, \(=5245 \mathrm{ft}\). p. min. 105.4 ft . per sec. \(=6324 \mathrm{ft}\). per min.} \\
\hline
\end{tabular}

In the above table the angle of subtension, \(a\), is taken at \(180^{\circ}\).
Should it be.. .............. \(\left|90^{\circ}\right| 100^{\circ}\left|10^{\circ}\right| 120^{\circ}\left|130^{\circ}\right| 140^{\circ}\left|150^{\circ}\right| 160^{\circ}\left|170^{\circ}\right| 180^{\circ} \mid 200^{\circ}\)

A. F. Nagle's Formula (Trans. A. S. M. E., vol. ii., 1881, p. 91. Tables published in 1882.)
\[
\text { H.P. }=C V t u\left(\frac{S-.012 V^{2}}{550}\right)
\]
\(C=1-10^{-.00758 f a}\);
\(a=\) degrees of belt conta \(s t ;\)
\(f=\) coefficient of friction;
\(w=\) width in inches;
\(t=\) thickness in inches;
\(V=v e l o c i t y\) in feet per second
\(S=\) stress upon belt per square inch.

WIDTH OF BELT FOR A GIVEN HORSE-POWER. 879
Taking \(S\) at \(2 \pi 5 \mathrm{lbs}\). per sq. in. for laced belts and 400 lbs . per sq. in. for lapped and riveted belts, the formula becomes

> H.P. \(=C V t w\left(.50-.0000218 V^{2}\right)\) for laced belts;
> H.P. \(=C V \operatorname{tw}\left(. \tilde{27}-.0000218 V^{2}\right)\) for riveted belts.

Values of \(C=1-10^{-.00758 f a}\). (Naglie.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Degrees of contact \(=\boldsymbol{a}\).} \\
\hline & \(90^{\circ}\) & \(100^{\circ}\) & \(110^{\circ}\) & \(120^{\circ}\) & \(130^{\circ}\) & \(140^{\circ}\) & \(150^{\circ}\) & \(160^{\circ}\) & \(170^{\circ}\) & \(180^{\circ}\) & \(200^{\circ}\) \\
\hline . 15 & . 210 & . 230 & . 250 & . 270 & . 288 & . 307 & . 325 & . 342 & . 359 & . 376 & . 408 \\
\hline . 20 & . 270 & . 295 & . 319 & . 342 & . 364 & . 386 & . 408 & . 428 & . 448 & . 467 & . 503 \\
\hline . 25 & . 325 & . 354 & . 381 & . 407 & . 432 & . 457 & . 480 & . 503 & . 524 & . 544 & . \(58 \%\) \\
\hline . 30 & . 376 & . 408 & . 438 & . 46 tr & . 494 & . 520 & . 544 & . 567 & . 590 & . 610 & . 649 \\
\hline . 35 & . 423 & . 457 & . 489 & . 520 & . 548 & . 575 & . 600 & . 624 & . 646 & . 667 & . \(\% 05\) \\
\hline . 40 & . 467 & . 502 & . 536 & . 567 & . 597 & . 624 & . 649 & . 673 & . 695 & . 715 & . 553 \\
\hline . 45 & . 507 & . 544 & . 579 & . 610 & . 640 & . 667 & . 692 & . 715 & . \({ }^{137}\) & . 757 & . 692 \\
\hline . 55 & . 578 & . 617 & . 652 & . 684 & . \(\% 13\) & . 739 & . 763 & . 785 & . 805 & . 822 & . 853 \\
\hline . 60 & . 610 & . 649 & . 684 & . 715 & . 744 & . 769 & . 792 & . 813 & . 832 & . 848 & . 877 \\
\hline 1.00 & . 792 & . 825 & . 853 & . 877 & .89\% & . 913 & . \(9: 2\) & . 937 & 947 & . \(9 \pm 6\) & . 969 \\
\hline
\end{tabular}

The following table gives a comparison of the formulæ already given for the case of a belt one inch wide, with arc of contact \(180^{\circ}\).

\section*{Horse-power or a Belt One Inch wide, Arc of Contact \(180^{\circ}\).}

Comparison of Different Formule.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \equiv 0^{\circ} \\
& \text { A0 }
\end{aligned}
\] & \[
\begin{aligned}
& E \in \dot{E} \\
& \text { Ben }
\end{aligned}
\] & \[
\ddot{\circ} \dot{\tilde{g}}
\] & Form. 1 & \begin{tabular}{l}
Form. 2 \\
H.P \(=\)
\end{tabular} & \begin{tabular}{l}
Form. 3 \\
H.P. \(=\)
\end{tabular} & \begin{tabular}{l}
Form. 4 \\
H.P. \(=\)
\end{tabular} & Form. 5 dbl.belt & \multicolumn{2}{|l|}{\begin{tabular}{l}
Nagle's Form. \\
\(7 / 32^{\prime \prime}\) single belt
\end{tabular}} \\
\hline  & \[
\begin{aligned}
& \text { ed } \\
& \frac{0}{0} \\
& 0
\end{aligned}
\] &  & \(\frac{v v}{550}\). & \(\frac{w v}{1100}\). & \(\frac{v v}{1000}\). & \(\frac{v v}{733}\). & \[
\frac{w v}{513} .
\] & Laced. & Rivete \\
\hline 10 & 60 & 50 & 1.09 & . 55 & . 60 & 82 & 1.17 & 73 & 1.14 \\
\hline 20 & 1200 & 100 & 2.18 & 1.09 & 1.20 & 1.64 & 2.34 & 1.54 & 2.24 \\
\hline 30 & 1800 & 150 & 3.27 & 1.64 & 1.80 & 2.46 & 3.51 & 2.25 & 3.31 \\
\hline 40 & 2400 & 200 & 4.36 & 2.18 & 2.40 & 3.27 & 4.68 & 2.90 & 4.83 \\
\hline 50 & 3000 & 250 & 5.45 & 2.73 & 3.00 & 4.09 & 5.85 & 348 & 5.26 \\
\hline 60 & 3600 & 300 & 6.55 & 3.24 & 3.60 & 4.91 & 7.02 & 3.95 & 6.09 \\
\hline ro & 4200 & 350 & 7.63 & 3.82 & 4.20 & 5.73 & 8.19 & 4.29 & 6.78 \\
\hline 80 & 4800 & 400 & 8.73 & 4.36 & 4.80 & 6.55 & 9.36 & 4.50 & 7.36 \\
\hline 90 & 5400 & 450 & 9.82 & 4.91 & 5.40 & 7.37 & 10.53 & 4.55 & 7. 74 \\
\hline 100 & 6000 & 500 & 10.91 & 5.45 & 6.00 & 8.18 & \(11 . \% 0\) & 4.41 & 7.96 \\
\hline 110 & 6600 & 550 & & & & & & 4.05 & 7.97 \\
\hline 120 & 2200 & 600 & & & & & & 349 & 7.95 \\
\hline
\end{tabular}

Width of Belt for Given Horse=power. - The width of belt sequired for any given horse-power may be obtained by trensposing the formulæ for horse-power so as to give the value of \(w\). Thus:
From formula (1); \(w=\frac{550 \mathrm{H} . \mathrm{P} .}{v}=\frac{9.17 \mathrm{H} . \mathrm{P} .}{V}=\frac{2101 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm}}=\frac{275 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}\).
From formula (2), \(w=\frac{1100 \mathrm{H} . \mathrm{P} .}{v}=\frac{18.33 \mathrm{H} . \mathrm{P} .}{V}=\frac{4202 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{530 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}\).
From formula (3), \(w=\frac{1000 \mathrm{H} . \mathrm{P} .}{v}=\frac{16.67 \mathrm{H} . \mathrm{P} .}{V}=\frac{38.20 \mathrm{H} \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{500 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}\)
From formula (4), \(w=\frac{733 \mathrm{H} . \mathrm{P} .}{v}=\frac{12.22 \mathrm{H} . \mathrm{P} .}{V}=\frac{2800 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{360 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}\).
From formula (5),* \(\dot{w}=\frac{513 \mathrm{H} . \mathrm{P}}{v}=\frac{8.56 \mathrm{H} . \mathrm{P}}{V}=\frac{1960 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm}}=\frac{257 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}\)

\footnotetext{
* Fur double belts.
}

Many authorities use formula (1) for double belts and formula (2) or (3) for single belts.
To obtain the width by Nagle's formula, \(w=\frac{550 \mathrm{H} . \mathrm{P} \text {. }}{\operatorname{CVt}\left(S-.012 V^{2}\right)}\), or divide the given horse-power by the figure in the table corresponding to the given thickness of belt and velocity in feet per second.

The formula to be used in any particular case is largely a matter of judgment. A single belt proportioned according to formula (1), if tightly stretched, and if the surface is in good condition, will transmit the horse-power calculated by the formula, but one so proportioned is objectionable, first. because it requires so great an initial tension that it is apt to stretch, slip, and require frequent restretching and relacing; and second, because this tension will cause an undue pressure on the pulley-shaft, and therefore an undue loss of power by friction. To avoid these difficulties, formula (2), (3), or (4,) or Mr. Nagle's table, should be used; the latter especially in cases in which the velocity exceeds 4000 ft . per min.

Taylor's Rules for Belting.-F. W. Taylor (Trans. A. S. M. E., \(x y .204)\) describes a nine years' experiment on belting in a machine-shop, giving results of tests of 42 belts running night and day. Some of these belts were run on cone pulleys and others on shifting, or fast-and-loose, pulleys. The average net working load on the shifting belts was only \(4 / 10\) of that of the cone belts.
The shifting belts varied in dimensions from 39 ft .7 in . \(10 n \mathrm{n}, 3.5 \mathrm{in}\). wide, .25 in . thick, to 51 ft .5 in . long, 6.5 in . wide, .37 in. thick. The cone belts varied in dimensions from 24 ft .7 in . long, 2 in . wide, .25 in . thick, to 31 ft . 10 in . long, 4 in . wide, .37 in. thick.
Belt-clamps were used having spring-balances between the two pairs of clamps, so that the exact tension to which the belt was subjected was accurately weighed when the belt was first put on, and each time it was tightened.
The tension under which each belt was spliced was carefully figured so as to place it under an initial strain-while the belt was at rest immediately after tightening-of 71 lbs . per inch of width of double belts. This is equivalent, in the case of
\[
\begin{aligned}
& \text { Oak tanned and fulled belts, to } 192 \text { lbs. per sq. in. section; } \\
& \text { Oak tanned, not fulled belts, to } 229 \text { "6 " } \quad \text { " } 0 \text { " } \\
& \text { Semi-raw-hide belts, to } 253 \text { "6 } \quad \text { " } 6 \text { " } 6 \text { " }
\end{aligned}
\]

From the nine years' experiment Mr. Taylor draws a number of conclusions, some of which are given in an abridged form below.
In using belting so as to obtain the greatest economy and the most satisfactory results, the following rules should be observed:
\begin{tabular}{|c|c|c|}
\hline & Uak Tanned and Fulled Leather Belts. & Other Types of Leather Belts and 6- to 7 -ply Rubber Belts. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{A double belt, having an arc of contact of
\(180^{\circ}\), will give an effective pull on the face}} \\
\hline & & \\
\hline of a pulley per inch of width of belt of.... Or, a different form of same rule: & 35 lbs . & 30 lbs . \\
\hline The number of sq. ft. of double Belt passing around a pulley per minute required to transmit one horse power is. & 80 sq. ft. & 90 sq . ft. \\
\hline Or: The number of lineal feet of doublebelting 1 in . wide passing around a pulley per minute required to transmit one horse- & & \\
\hline  & 950 ft . & 1100 ft . \\
\hline Or: A double belt 6 in . wide, running 4000 to 5000 ft . per min., will transınit............. & \(30 \mathrm{H} . \mathrm{P}\). & 25 H.P. \\
\hline
\end{tabular}

\footnotetext{
The terms "initial tension," "effective pull," etc., are thus explained by Mr. Taylor: When pulleys upon which belts are tightened are at rest, both strands of the belt (the upper and lower) are under the same stress per in of width. By "tension," "initial tension," or "tension while at rest," we
}
mean the stress per in. of width, or sq, in. of section, to which one of the strands of the belt is tightened, when at rest. After the belts are in motion and transmitting power, the stress on the slack side, or strand, of the belt becomes less, while that on the tight side-or the side which does the pull-ing-becomes greater than when the belt was at rest. By the term "total load" we mean the total stress per in. of width, or sq. in. of section, on the tight side of belt while in motion.

The difference between the stress on the tight side of the belt and its slack side, while in motion, represents the effective force or pull which is transmitted from one pulley to another. By the terms "working load," "net working load," or "effective pull," we mean the difference in the tension of the tight and slack sides of the belt per in. of width, or sq. in. section, while in motion, or the net effective force that is trausmitted from one pulley to another per in. of width or sq. in. of section.

The discovery of Messrs. Lewis and Bancroft (Trans. A. S. M. E., vii. 749) that the "sum of the tension on both sides of the belt does not renaain constant," upsets all previous theoretical belting formulæ.

The belt speed for maximum economy should be from 4000 to 4500 ft . per minute.

The best distance from centre to centre of shafts is from 20 to 25 ft .
Idler pulleys work most satisfactorily when located on the slack side of the belt about one quarter way from the driving-pulley.

Belts are more durable and work more satisfactorily made narrow and thick, rather than wide and thin.

It is safe and advisable to use: a double belt on a pulley 12 in . diameter or larger; a triple belt on a pulley 20 in . diameter or larger; a quadruple belt on a pulley 30 in . diameter or larger.

As belts increase in width they should also be made thicker.
The ends of the belt should be fastened together by splicing and cementing, instead of lacing, wiring, or using hooks or clamps of any kind.

A V-splice should be used on triple and quadruple belts and when idlers are used. Stepped splice, coated with rubber and vulcanized in place, is best for rubber belts.

For double belting the rule works well of making the splice for all belts up to 10 in . wide, 10 in . long; from 10 in . to 18 in . wide the splice should be the same width as the belt, 18 in . being the greatest length of splice required for double belting.

Belts should be cleaned and greased every five to six months.
Double leather belts will last well when repeatedly tightened under a strain (when at rest) of 71 lbs . per in. of width, or 240 lbs . per sq. in. section. They will not maintain this tension for any length of time, however.

Belt-clamps having spring-balances between the two pairs of clamps should be used for weighing the tension of the belt accurately each time it is tightened.

The stretch, durability, cost of maintenance, etc., of belts proportioned (A) according to the ordinary rules of a total load of 111 lbs . per inch of width corresponding to an effective pull of 65 lbs . per inch of width, and (B) according to a more economical rule of a total load of 54 lbs ., corresponding to all effective pull of 26 lbs . per inch of width, are found to be as follows:

When it is impracticable to accurately weigh the tension of a belt in tightening it, it is safe to shorten a double belt one half inch for every 10 ft . of lengih for (A) and one inch for every 10 ft . for (B), if it requires tighteving.

Double leather belts, when treated with great care and run night and day at moderate speed, should last for 7 years (A); 18 y ears (B).

The cost of all labor and materials used in the maintenance and repairs of double belts, added to the cost of renewals as they give out, through a term of years, will amount on an average per year to \(3 \%\) of the original cost of the belts (A); 14\% or less (B).

In figuring the total expense of belting, and the manufacturing cost chargeable to this account, by far the largest item is the time lost on the machines while belts are being relaced and repaired.

The total stretch of leather belting exceeds \(6 \%\) of the original length.
The stretch during the first six months of the life of belts is \(36 \%\) of their entire stretch (A); 15\% (B).

A double belt will stretch \(47 / 100\) of \(1 \%\) of its length before requiring to be tightened (A); 81/100 of \(1 \%\) (B).

The most important consideration in making up tables and rules for the use and care of belting is how to secure the minimum of interruptions to manufacture from this source.

The average double belt (A), when running night and day in a machineshop, will cause at least 26 interruptions to manufacture during its life, or 5 interruptions per year, kut with (B) interruptions to manufacture will not average oftener for each belt than one in sixteen months.
The oak-tanned and fulled belts showed themselves to be superior in all respects except the coefficient of friction to either the oak-tanned not fulled, the semi-raw-hide, or raw-hide with tanned face.
Belts of any width can be successfully shifted backward and forward on tight and loose pulleys. Belts running between 5000 and 6000 ft . per min. and driving \(300 \mathrm{H} . \mathrm{P}\). are now being daily shifted on tight and loose pulleys, to throw lines of shafting in and out of use.

The best form of belt-shifter for wide belts is a pair of rollers twice the width of belt, either of which can be pressed onto the flat surface of the belt on its slack side close to the driven pulley, the axis of the roller making an angle of \({ }^{7} 5^{\circ}\) with the centre line of the belt.
Remarks on Mr. Taylor9s Rules. (Trans. A. S. M. E., xv., 242.) -The most notable feature in Mr. Taylor's paper is the great difference between his rules for proper proportioning of belts and those given by earlier writers. A very commonly used rule is, one horse-power may be transmitted by a single belt 1 in . wide running \(x \mathrm{ft}\). per min., substituting for \(x\) various values, according to the ideas of different engineers, ranging usually from 550 to 1100 .

The practical mechanic of the old school is apt to swear by the figure 600 as being thoroughly reliable, while the modern engineer is more apt to use the figure 1000. Mr. Taylor, however, instead of using a figure from 550 to 1100 for a single belt, uses 950 to 1100 for double belts. If we assume that a double belt is twice as strong, or will carry twice as much power, as a single belt, then he uses a figure at least twice as large as that used in modern practice, and would make the cost of belting for a given shop twice as large as if the belting were proportioned according to the most liberal of the customary rules.

This great difference is to some extent explained by the fact that the problem which Mr. Taylor undertakes to solve is quite a different one from that which is solved by the ordinary rules with their variations. The problem of the latter generally is, "How wide a belt must be used, or how uarrow a belt may be used, to transmit a given horse-power"?" Mr. Taylr's problem is: "How wide a belt must be used so that a given horse-power may be transmitted with the minimum cost for belt repairs, the longest life to the belt, and the smallest loss and inconvenience from stopping the machine while the belt is being tightened or repaired ?"

The difference between the old practical mechanic's rule of a 1 -in.-wide single belt, 600 ft . per min., transmits one horse-power, and the rule commonly used by engineers, in which 1000 is substituted for 600 , is due to the belief of the engineers, not that a horse-power could not be transmitted by the belt proportioned by the older rule, but that such a proportion iuvolved undue strain from overtightening to prevent slipping, which strain entailed too much journal friction, necessitated frequent tightening, and decreased the length of the life of the belt.

Mr. Taylor's rule substituting 1100 ft . per min. and doubling the belt is a further step, and a long one, in the same direction. Whether it will be taken in any case by engineers will depend upon whether they appreciate the extent of the lusses due to slippage of belts slackened by use under overstrain, and the loss of time in tightening and repairing belts, to such a degree as to induce them to allow the first cost of the belts to be doubled in order to avoid these losses.

It should be noted that Mr. Taylor's experiments were made on rather narrow belts, used for transmitting power from shafting to machinery, and his conclusions may not be applicable to heavy and wide belts, such as engine fly-wheel belts.

\section*{MISCELLANEOUS NOTES ON BELTING.}

Formulæ are useful for proportioning belts and pulleys, but they furnish mo means of estimating how much power a particular belt may be transmitting at any given time, any more than the size of the engine is a measure of the load it is actually drawing, or the known strength of a horse is a measure of the load on the wagon. The only reliable means of determining the power actually transinitted is some form of dynamometer. (See Trans, A. S. M. E., vol. xii. p. 707.)

If we increase the thickness, the power transmitted ought to increase in proportion; and for double belts we should have half the width required for a siugle belt under the same conditions. With large pulleys and moderate velocities of belt it is probable that this holds good. With small pulleys, however, when a double belt is used, there is not such perfect contact between the pulley-face and the belt, due to the rigidity of the latter, and more work is necessary to bend the belt-fibres than when a thinner and more pliable belt is used. The centrifugal force tending to throw the belt from the pulley also increases with the thickness, and for these reasons the width of a double belt required to transmit a given horse-power when used with small pulleys is generally assumed not less than seven tenths the width of a single belt to transmit the same power. (Flather on "Dynamometers and Measurement of Power.")
F. W. Taylor. however, finds that great pliability is objectionable, and favors thick belts even for small pulleys: The power consumed in bending the belt around the pulley he considers inappreciable. According to Rankine's formula for centrifugal tension, this tension is proportional to the sectinnal area of the belt, and hence it does not increase with increase of thickness when the width is decreased in the same proportion, the sectional area remaining constant.

Scott A. Smith (Trans. A. S. M. E., X. r65) says: The best belts are made from all oak-tanned leather. and curried with the use of cod oil and tallow, all to be of superior quality. Such belts have continued in use thirty to forty years when used as simple driving-belts, driving a proper amount of power. and having had suitable care. The flesh side should not be run to the pulley-face, for the reason that the wear from contact with the pulley should come on the grain side, as that surface of the belt is much weaker in its tensile strength than the flesh side; also as the grain is hard it is more enduring for the wear of attrition; further, if the grain is actually worn off, then the belt may not suffer in its integrity from a ready tendency of the hart grain side to crack.

The most intimate contact of a belt with a pulley comes, first, in the smoothness of a pulley-face, including freedom from ridges and hollows left by turning-tonls; second, in the smoothness of the surface and evenness in the texture or body of a belt; third, in having the crown of the driving and receiving pulleys exactly alike, -as nearly so as is practicable in a commercial sense; fourth, in having the crown of pulleys not over \(1 / 8^{\prime \prime}\) for a \(24^{\prime \prime}\) face, that is to say, that the pulley is not to be over \(1 / 4^{\prime \prime}\) larger in diameter in its centre; fifth, in having the crown other than two planes meeting at the centre: sixth, the use of any material on or in a belt, in addition to those necessarily used in the currying process, to keep them pliable or increase their tractive quality, should wholly depend upon the exigencies arising in the use of belts: non-use is safer than over-use; seventh. with reference to the lacing of belts. it seems to be a good practice to cut the ends to a convex shape by using a former, so that there may be a nearly uniform stress on the lacing through the centre as compared with the edges. For a belt \(10^{\prime \prime}\) wide, the centre of each end should recede \(1 / 10^{\prime \prime}\).

Lacing of Belts. - In punching a belt for lacing. use an oval punch. the longer diameter of the punch being parallel with the sides of the belt. Punch two rows of holes in each end, placed zigzag. In a \(3-\mathrm{in}\). belt there should be four holes in each end-two in each row. In a 6 -inch belt, seren holes-four in the row nearest the end. A 10 -inch kelt should have nine holes. The edge of the holes should not come nearer than \(3 / 4\) of an inch from the sides, nor \(7 / 8\) of an inch from the ends of the belt. The second row should be at least \(13 / 4\) inches from the end. On wide belts these distances should be even a little greater.

Begin to lace in the centre of the belt and take care to keep the ends exactly in line, and to lace both sides with equal tightness. The lacing should not be crossed on the side of the belt that runs next the pulley. In taking up belts, observe the same rules as putting on new ones.

Setting a Belt on Quarter-twist.-A belt must run squarely on to the pulley. To connect with a belt two horizontal shafts at right angles with each other, say an engine-shaft near the floor with a line attached to the ceiling. will require a quarter-turn. First, ascertain the central point on the face of each pulley at the extremity of the horizontal diameter where the belt will leave the pulley, and then set that point on the driven pulley plumb over the corresponding point on the driver. This will cause the beit to run squarely on to each pulley, and it will leave at an angle greater or less, according to the size of the pulleys and their distance from each other.

In quarter-twist belts, in order that the belt may remain on the pulleys, the central plane on each pulley must pass through the point of delivery of the other pulley. This arrangement does not admit of reversed motion.

To find the Length of Belt required for two given Pulleys. - When the length caunot be measured directly by a tape-line, the following approximate rule may be used: Add the diameter of the two pulleys together, divide the sum by 2 , and multiply the quotient by \(31 / 4\), and add the product to twice the distauce between the centres of the shafts. (See accurate formula below.)

To find the Angle of the Arc of Contact of a Belt.-Divide the difference between the radii of the two pulleys in inches by the distance between their centres, also in inches, and in a table of natural sines find the angle most nearly corresponding with the quotlent. Multiply this angle by 2, and add the product to \(180^{\circ}\) for the angle of contact with the larger pulley, or subtract it from \(180^{\circ}\) for the smaller pulley.
Or, let \(R=\) radius of larger pulley, \(r=\) radius of smaller;
\[
\begin{aligned}
& L=\text { distance between centres of the pulleys; } \\
& a=\text { angle whose sine is }(R-\gamma) \div L . \\
& \text { Arc of contact with smaller pulley }=180^{\circ}-2 a ; \\
& 6 \quad \text { larger pulley }=180^{\circ}+2 a .
\end{aligned}
\]

To find the Length of Belt in Contact with the Pulley.For the larger pulley, multiply the angle \(\alpha\), found as above, by .0349 , to the product add 3.1416 , and multiply the sum by the radius of the pulley. Or length of belt in contact with the pulley
\[
=\text { radius } \times(\pi+.0349 a)=\text { radius } \times \pi\left(1+\frac{a}{90}\right)
\]

For the smaller pulley, length \(=\) radius \(\times(\pi-.0349 a)=\) radius \(\times \pi\left(1-\frac{a}{90}\right)\).
The above rules refer to Open Belts. The accurate formula for length of an open belt is,
\[
\begin{aligned}
\text { Length } & =\pi R\left(1+\frac{a}{90}\right)+\pi r\left(1-\frac{a}{90}\right)+2 L \cos a \\
& =R(\pi+.0349 \alpha)+r(\pi-.0349 a)+2 L \cos a
\end{aligned}
\]
in which \(R=\) radius of larger pulley, \(r=\) radius of smaller pulley,
\(L=\) distance between centres of pulleys, and \(\alpha=\) angle whose sine is
\[
(R-r) \div L ; \cos \alpha=\sqrt{L^{2}-(R-r)^{2}} \div L
\]

For Crossed Helts the formula is
\[
\begin{aligned}
\text { Leugth of belt } & =\pi R\left(1+\frac{\beta}{90}\right)+\pi r\left(1+\frac{\beta}{90}\right)+2 L \cos \beta \\
& =(R+r) \times(\pi+.0349 \beta)+2 L \cos \beta
\end{aligned}
\]
in which \(\beta=\) angle whose sine is \((R+r) \div L ; \cos \beta=\sqrt{L^{2}-(R+r)^{2}} \div L\).
To find the Length of Belt when Closely Rolled.-The sum of the diameter of the roll, and of the eye in inches, \(x\) the number of turns made by the belt and by .1309, = length of the belt in feet
To find the Approximate Weight of Belts - Multiply the lenyth of belt, in feet, by the width in inches, and divide the product by 13 for single. and 8 for double belt.
Relations of the Size and Speeds of Driving and Driven
Pulleys. - The driving puliey is called the driver, \(D\), and the driven pulley the driven, \(d\). If the number of teeth in gears is used instead of diameter, in these calculations, number of teeth must be substituted wherever diameter occurs. \(R=\) revs. per min. of driver, \(r=\) revs. per min. of driven.
\[
D=d r \div R
\]

Diam. of driver \(=\) diam. of driven \(\times\) revs. of driven \(\div\) revs. of driver.
\[
d=D R \div r
\]

Diam. of driven \(=\) diam. of driver \(\times\) revs. of driver \(\div\) revs. of driven.
\[
R=d r \div D
\]

Revs. of driver \(=\) revs. of driven \(\times\) diam. of driven \(\div\) diam. of driver.
\[
r=D R \div d
\]

Revs. of driven \(=\) revs. of driver \(\times\) diam. of driver \(\div\) diam. of driven.
Evils of Tight Belts. (Jones and Laughlins.)-Clamps with powerful screws are often used to put on belts with extreme tightness, and with most injurious strain upon the leatber. They should be very judiciously used for horizontal belts, which should be allowed sufficient slackness to move with a loose undulating vibration on the returning side, as a test that they have no more strain imposed than is necessary siniply to transmit the power.
On this subject a New England cotton-mill engineer of large experience, says: I believe that three quarters of the trouble experienced in broken pulleys, hot boxes, etc., can be traced to the fault of tight belts. The enormous and useless pressure thus put upon pulleys must in time break them, if they are made in any reasonable proportions, besides wearing out the whole outfit, and causing heating and consequent destruction of the bearings. Below are some figures showing the power it takes in average modern mills with first-class shafting, to drive the shafting alone:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Mill, } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{Whole Load, H.P.} & \multicolumn{2}{|l|}{Shafting Alone.} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Mill, } \\
\text { No. }
\end{gathered}
\]} & \multirow[b]{2}{*}{Whole Load, H.P.} & \multicolumn{2}{|l|}{Shafting Alone.} \\
\hline & & Horsepower. & Per cent of whole. & & & Horsepower. & Per cent of whole. \\
\hline 1 & 199 & 51 & 25.6 & 5 & \%59 & 172.6 & 22.7 \\
\hline 2 & \(4{ }^{\text {\% }}\) & 111.5 & 23.6 & 6 & 235 & 84.8 & 36.1 \\
\hline 3 & 486 & 134 & 27.5 & 7 & 670 & 262.9 & 39.2 \\
\hline 4 & \(6 \% \%\) & 190 & 28.1 & 8 & 677 & 182 & 26.8 \\
\hline
\end{tabular}

These may be taken as a fair showing of the power that is required in many of our best mills to drive shafting. It is unreasonable to think that all that power is consumed by a legitimate amount of friction of bearings and belts. I know of no cause for such a loss of power but tight belts. These, when there are hundreds or thousands in a mill, easily multiply the friction on the bearings, and would account for the figures.

Sag or Belts.--In the location or shafts that are to be connected with each other by belts, care should be taken to secure a proper distance one from the other. This distance should be such as to allow of a gentle sag to the belt when in motion.

A general rule may be stated thus: Where narrow belts are to be run over small pulleys 15 feet is a good arerage, the belt having a sag of \(11 / 2\) to 2 inches.

For larger belts. working on larger pulleys, a distance of 20 to 25 feet does well, with a sag of \(21 \frac{1}{2}\) to 4 inches.

For main belts working on rery larga pulleys, the distance should be 25 to 30 feet, the belts working well with a sag of 4 to 5 inches.

If too great a distance is attempted, the belt will hare an unsteady flapping motion, which will destror both the belt and machinery.

Arrangement of Belts and Pulleys. -If possible to arad it, connected shatts should never be placed one directly over the other, as in such case the belt must be kept very tight to do the work. For this purpose belts should be carefully selected of well-stretched leather:

It is desirable that the angle of the belt with the floor should not exceed \(45^{\circ}\). It is also desirable to locate the shafting and machinery so that belts should run off from each shaft in opposite directions, as this arrangement will relieve the bearings from the friction that would result when the belts all pull one way on the shaft.
In arranging the belts leading from the main line of shafting to the counters, those pulling in an opposite direction should be placed as near each other as practicable, while those pulling in the same direction should be separated. This can often be accomplished by changing the relative positions of the pulleys on the counters. By this procedure much of the friction on the journals may be avoided.

If possible. machinery should be so placed that the direction of the belt motion shall be from the top of the driving to the top of the driven puiley, when the sag will increase the arc of contact.

The pulley should be a little wider than the belt required for the work.

The motion of driving should run with and not against the laps of the belts.
Tightening or guide pulleys should be applied to the slack side of belts and near the smaller pulley.
Jones \& Laughlins, in their Useful Information, say: The diameter of the pulleys should be as large as can be admitted, provided they will not produce a speed of more than \(4 i 50\) feet of belt motion per minute.
They also say: It is better to gear a mill with small pulleys and run them at a high velocity, than with large pulleys and to run them slower. A mill thus geared costs less and has a much neater appearance than with large heavy pulleys.
M. Arthur Achard (Proc. Inst. M. E., Jan. 1881, p. 62) says: When the belt is wide a partial vacuum is formed between the belt and the pulley at a high velocity. The pressure is then greater than that computed from the tensions in the belt, and the resistance to slipping is greater. This has the advantage of permitting a greater power to be transmitted by a given belt, and of diminishing the strain on the shafting.

On the other hand, some writers claim that the belt entraps air between itself and the pulley, which tends to diminish the friction, and reduce the tractive force. On this theory some manufacturers perforate the belt with numerous holes to let the air escape.

Care of Belts.-Leather belts should be well protected against water, loose stearn, and all other moisture, with which they should not come in contact. But where such conditions prevail fairly good results are obtained by using a special dressing prepared for the purpose of water-proofing leather, though a positive water proofing material has not yet been discovered.

Belts made of coarse, loose-fibred leather will do better service in dry and warm places, but if damp or moist conditions exist then the very finest and firmest leather should be used. (Fayerweather \& Ladew.)

Do not allow oil to drip upon the belts. It destroys the life of the leather.
Leather belting cannot safely stand above \(110^{\circ}\) of heat.
Strength of Belting. - The ultimate tensile strength of belting does not generally enter as a factor in calculations of power transmission.

The strength of the solid leather in belts is from 2000 to 5000 lbs . per square inch; at the lacings, even if well put together, only about 1000 to 1500 . If riveted, the joint should have half the strength of the solid belt. The working strain on the driving side is generally taken at not over one third of the strength of the lacing, or from one eighth to one sixteenth of the strength of the solid belt. Dr. Hartig found that the tension in practice varied from 30 to 532 lbs . per square inch, averaging \(2 \pi 3 \mathrm{lbs}\).
Adhesion Independent of Diameter. (Schultz Belting Co.)1. The adhesion of the belt to the pulley is the same-the arc or number of degrees of contact, aggregate tension or weight being the same-without reference to width of belt or diameter of pulley.
2. A belt will slip just as readily on a pulley fuur feet in diameter as it will on a pulley two feet in diameter, provided the conditions of the faces of the pulleys, the arc of contact, the tension, and the number of feet the belt travels per minute are the same in both cases.
3. A belt of a given width, and making any given number of feet per minute, will transinit as much power ruuning on pulleys two feet in diam eter as it will on pulleys four feet in diameter, provided the arc of contact, tension, and conditions of pulley faces are the same in both cases.
4. To obtain a greater amount of power from belts the pulleys may be covered with leather; this will allow the belts to run very slack and give \(25 \%\) more durability.

Endless Belts. - If the belts are to be endless, they should be put on and drawn together by "belt clamps" made for" the purpose. If the belt is made endless at the belt factory, it should never be run on to the pulleys, lest the irregalar strain spring the belt. Lift out one shaft, place the belt on the pulleys, and force the shaft back into place.

Belt Data.-A fly-wheel at the Amoskeag Mfg. Co., Manchester, N. H., 30 feet diameter, 110 inches face, running 61 revolutions per minute, carried two heavy double-leather belts 40 inches wide each, and one 24 inches wide. The engine indicated 1950 H.P., of which probably \(1850 \mathrm{H} . \mathrm{P}\). was transmitted by the belts. The belts were considered to be heavily loaded, but not overtaxed.
\(\frac{30 \times 3.14 \times 104 \times 61}{1850}=323\) feet per minute for \(1 \mathrm{H} . \mathrm{P}\). per inch of wilth.
Samuel Webber ( Am. Mach., Feb. 22, 1894) reports a case of a belt 30 inches wide, \(3 / 8\) inch thick, running for six years at a velocity of 3900 feet per
minute, on to a pulley 5 feet diameter, and transmitting 556 H.P. This gives a velocity of 210 feet per minute for \(1 \mathrm{H} . \mathrm{P}\). per inch of width. By Mr. Nagle's table of riveted belts this belt would be designed for 332 H.P. By Mr. Taylor's rule it would be used to transmit only 123 H.P.

The above may be taken as examples of what a beltmay be made to do, but they should not be used as precedents in designing. It is not stated how much power was lost by the journal friction due to over-tightening of these belts.

Belt Dressings.-We advise that no belt dressing should be used except when the belt becomes dry and husky, and in such instances we recommend the use of Post's Belt Dressing. Where this is not used beef tallow at blood-warm temperature should be applied and then dried in either by artificial heat or the sun. The oil of the tallow passes into the leather. serving to soften it, and the stearine is left on the outside to fill the pores and leave a smooth surface. The addition of beswax to the tallow will be of some service if the belts are used in wet or damp places. Belts which have become dry and hard should have an application of Post's belt oil or neats'sfoot oil of the purest quality. Our experience convinces us that resin should never be used on leather belting in any form. (Fayerweather \& Ladew.)

Belts should not be soaked in water before oiling, and penetrating oils should but seldom be used, except occasionally when a belt gets very dry and husky from neglect. It may then be moistened a little, and:have neat'sfoot oil applied. Frequent applications of such oils to a new belt render the leather soft and flabby, thus causing it to stretch, and making it liable to run out of line. A composition of tallow and oil, with a little resin or beeswax, is better to use. Prepared castor-oil dressing is good, and may be applied with a brush or rag while the belt is running. (Alexander Bros.)

Cement for Cloth or Leather. (INolesworth.)- 16 parts guttapercha, 4 india-rubber, 2 pitch, 1 shellac, 2 linseed-oil, cut small, melted together and well mixed.

Rubber Belting. - The advantages claimed for rubber belting are perfect uniformity in width and thickness; it will endure a great degree of heat and cold without injury; it is also specially adapted for use in damp or wet places, or where exposed to the action of steam; it is very durable, and has great tensile strength, and when adjusted for service it has the most periect hold on the pulleys, heuce is less liable to slip than leather.

Never use animal oil or grease on rubber belts, as it will greatly injure and soon destroy them.

Rubber belts will be improved, and their durability increased, by putting on with a painter's brush, and letting it dry, a composition made of equal parts of red lead, black lead, French yellow, and litharge, mixed with boiled linseed-oil and japan enough to make it dry quickly. The effect of this will be to produce a finely polished surface. If, from dust or other cause, the beit should slip, it should be lightly moistened on the side next the pulley with boiled linseed-oil. (From circulars of manufacturers.)

\section*{GEARING.}

\section*{TOOTHED-WHEEL GEARING.}

Pitch, Pitch-circle, etc.-If two cylinders with parallel axes are pressed together and one of them is rotated on its axis, it will drive the other by means of the friction between the surfaces. The cylinders may be considered as a pair of spur-wheels with an infinite number of very small teeth. If actual teeth are formed upon the cylinders, making alternate elevations and depressions in the cylindrical surfaces, the distance between the axes remaining the same, we have a pair of gear-wheels which will drive one another by pressure upon the faces of the teeth, if the teeth are properly shaped. In making the teeth the cylindrical surface may entirely disappear, but the position it occupied may still be considered as a cylindrical surface, which is called the "pitch-surface," and its trace on the end of the wheel, or on a plane cutting the wheel at right angles to its axis, is called the "pitch-circle" or "pitch-line." The diameter of this circle is called the pitch-diameter, and the distance from the face of one tooth to the corresponding face of the next tooth on the same wheel, measured on an arc of the pitch-circle, is called the "pitch of the tooth," or the circular pitch.

If two wheels having teeth of the same pitch are geared together so that their pitch-circles touch, it is a property of the pitch-circles that their diam. eters are proportional to the number of teeth in the wheels, and vice versa;
thus, if one wheel is twice the diameter (measured on the pitch-circle) of the other, it has twice as many teeth. If the teeth are properly shaped the linear velocity of the two wheels are equal, and the angular velocities or speeds of rotation, are inversely proportional to the number of teeth and to the diameter. Thus the wheel that has twice as many teeth as the other will revolve just half as many times in a minute.
The "pitch," or distance measured on an arc of the pitch-circle from the face of one tooth to the face of the next, consists of two parts-the "thickness" of the tooth and the "space" between it and the next tooth. The space is larger than the thickness by a small amount called the "backlash," which is allowed for imperfections of workmanship. In finely cut gears the backlash may be almost nothing.

The length of a tooth in the direc-


Fig. 153.
tion of the radius of the wheel is called the "depth," and this is divided. into two parts: First, the "addendum," the height of the tooth above the pitch-line; second, the "dedendum," the depth below the pitch line, which is an amount equal to the addendum of the mating gear. The depth of the space is usually given a little "clearance" to allow for inaccuracies of workmanship, especially in cast gears.
Referring to Fig. 153, \(p l, p l\) are the pitch-lines, \(a l\) the addendum-line, \(r l\) the root-line or dedendum-line, \(c l\) the clearance-line, and \(b\) the backlash. The addendum and dedendum are usually made equal to each other.
\[
\begin{aligned}
\text { Diametral pitch } & =\frac{\text { No. of teeth }}{\text { diam. of pitch-circle in inches }}=\frac{3.1416}{\text { circular pitch }} ; \\
\text { Circular pitch' } & =\frac{\text { diam. } \times 3.1416}{\text { No. of teeth }}=\frac{3.1416}{\text { diametral pitch }}
\end{aligned}
\]

Some writers use the term diametral pitch to mean \(\frac{\text { diam. }}{\text { No. of teeth }}=\) \(\frac{\text { circular pitch }}{3.1416}\), but the first definition is the more common and the more convenient. A wheel of 12 in . diam. at the pitch-circle, with 48 teeth is \(48 / 12\) \(=4\) diametral pitch, or simply 4 pitch, The circular pitch of the same wheel is \(\frac{12 \times 3.1416}{48}=.7854\), or \(\frac{3.1416}{4}=.7854 \mathrm{in}\).

\section*{Relation of Diametral to Circular Pitch.}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
Diama- \\
tral \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Circular \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Diame- \\
tral \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Circular \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Circular \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Diame- \\
tral \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Circular \\
Pitch.
\end{tabular} & \begin{tabular}{c} 
Diame- \\
tral \\
Pitch.
\end{tabular} \\
\hline 1 & 3.142 in. & 11 & .286 in. & 3 & & 1.047 & \(15 / 16\) \\
\hline 112 & 2.091 & 12 & .262 & \(21 / 2\) & 1.257 & \(7 / 8\) & 3.351 \\
2 & 1.571 & 14 & .224 & 2 & 1.571 & \(13 / 16\) & 3.590 \\
\(21 / 4\) & 1.396 & 16 & .196 & \(17 / 8\) & \(1.6 \pi 6\) & \(3 / 4\) & 4.189 \\
212 & 1.257 & 18 & .175 & \(13 / 4\) & 1.795 & \(11 / 16\) & 4.570 \\
\(23 / 4\) & 1.142 & 20 & .157 & 158 & 1.933 & \(5 / 8\) & 5.027 \\
3 & 1.047 & 22 & .143 & \(11 / 2\) & 2.094 & \(9 / 16\) & 5.585 \\
312 & .898 & 24 & .131 & \(17 / 16\) & 2.185 & \(1 / 2\) & 6.283 \\
4 & .785 & 26 & .121 & \(13 / 8\) & 2.285 & \(7 / 16\) & 7.181 \\
5 & .628 & 28 & .112 & \(15 / 16\) & 2.394 & \(3 / 8\) & 8.378 \\
6 & .524 & 30 & .105 & \(11 / 4\) & 2.513 & \(5 / 16\) & 10.053 \\
7 & .449 & 32 & .098 & \(13 / 16\) & 2.646 & 114 & 12.566 \\
8 & .393 & 36 & .087 & \(11 / 8\) & 2.793 & \(3 / 16\) & 16.755 \\
9 & .349 & 40 & .079 & \(11 / 16\) & 2.957 & \(1 / 8\) & 25.133 \\
10 & .314 & 48 & .065 & 1 & 3.142 & \(1 / 16\) & 50.266 \\
\hline
\end{tabular}

Since circular pitch \(=\frac{\text { diam. } \times 3.1416}{\text { No. of teeth }}\), diam. \(=\frac{\text { circ. pitch } \times \text { No. of teeth }}{3.1416}\), which always brings out the diameter as a number with an inconvenient
fraction if the pitch is in even inches or simple fractions of au inch．By the diametral－pitch system this inconvenience is avoided．The diameter may be in even inches or conrenient fractions，and the number of teeth is usually an even multiple of the number of inches in the diameter．
Diameter of Pitch－line of Wheels from 10 to 100 Teeth of 1 in．Circular Pitch．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 号淢苞 & \[
\underset{\tilde{\tilde{\omega}}}{\dot{\tilde{E}}} . \dot{\Xi}
\] & \[
8
\] & \[
\stackrel{\dot{\tilde{E}}}{\dot{\oplus}} . \dot{\text { E. }}
\] & \[
1
\] & \[
\dot{\hat{E}} . \dot{\underline{E}}
\] & \[
10
\] & \[
\begin{aligned}
& \dot{\tilde{E}} . \\
& \dot{\underline{\omega}} .
\end{aligned}
\] & \[
0
\] & \[
\dot{\overline{\tilde{\omega}}} \underset{\underline{a}}{\dot{\theta}} .
\] & \[
1
\] & \[
\underset{\dot{\theta}}{\underset{\sim}{E}} .
\] \\
\hline 10 & 3.183 & 26 & 8．2ヶ6 & 41 & 13.051 & 56 & 17.825 & 71 & 22.600 & 86 & 27．3\％5 \\
\hline 11 & 3.501 & 27 & 8.594 & 42 & 13.369 & 57 & 18.144 & 72 & 22.918 & 87 & 27.693 \\
\hline 12 & 3.880 & 28 & 8.513 & 43 & 13.687 & 58 & 18.462 & \％3 & 23.236 & 88 & 28.011 \\
\hline 13 & 4.138 & 29 & 9.231 & 44 & 14.006 & 59 & 18.781 & T & 23.555 & 89 & 28.329 \\
\hline 14 & 4.456 & 30 & 9.549 & 45 & 14.324 & 60 & 19.099 & 75 & 23.873 & 90 & 25.648 \\
\hline 15 & 4.755 & 31 & 9.868 & 46 & 14.642 & 61 & 19.417 & 76 & 24.192 & 91 & 28.966 \\
\hline 13 & 5.093 & 32 & 10.186 & 47 & 14.961 & 62 & 19.735 & T 7 & 24.510 & 92 & 29.285 \\
\hline 17 & 5.411 & 33 & 10.504 & 48 & 15.279 & 63 & 20.054 & \％ & 24．S28 & 93 & 29.603 \\
\hline 18 & 5.730 & 34 & 10.823 & 49 & 15.597 & 64 & 20．3\％ & ז9 & 25.146 & 94 & 29.921 \\
\hline 19 & 6.048 & 35 & 11.141 & 50 & 15.915 & 65 & 20.690 & 80 & 25.465 & 95 & 30.239 \\
\hline 20 & 6.366 & 36 & 11.459 & 51 & 16.234 & 65 & 21.008 & S1 & 25．783 & 96 & 30.558 \\
\hline 21 & 6.685 & 37 & 11．77\％ & 52 & 16.552 & 67 & 21.327 & 82 & 26.101 & 97 & 30.816 \\
\hline 22 & \％．003 & 38 & 12.096 & 53 & 16．870 & 68 & 21.645 & 83 & 26.419 & 95 & 31.194 \\
\hline 23 & \％．321 & 39 & 12.414 & 54 & 17.189 & 69 & 21.963 & St & 26．735 & 99 & 31.512 \\
\hline 24 & \％．639 & 40 & 12.732 & 55 & 17．50î & & 22.282 & 85 & 27.056 & 100 & 31.831 \\
\hline 25 & 7.95 & & & & & & & & & & \\
\hline
\end{tabular}

For diameter of wheels of any other pitch than 1 in．，multiply the figures in the table by the pitch．Given the diameter and the pitch，to find the num－ ber of teeth．Divide the diameter by the pitch，look in the table under diameter for the figure nearest to the quotient，and the number of teeth will be found opposite．

Proportions of reeth．Circular Pitch \(=1\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1. & 2. & 3. & 4. & 5. & 6. \\
\hline Depth of tooth above pitch－line．． & ． 35 & ． 30 & ． 37 & ． 33 & ． 30 & ． 30 \\
\hline Working depth of tooth．．．．．．．．．． & ． 40 & ． 40 & ． 43 & & ． 40 & ． 35 \\
\hline Working depth of tooth
Total depth of tooth ．．． & ． 0 & ． 60 & ． 73 & ． 66 & & \\
\hline Total depth of tooth
Clearance at root ．． & ． 75 & ． 70 & ． 80 & ． 6 & ． 0 & ． 65 \\
\hline Clearance at root & ． 05 & ． 10 & ． 07 & 45 & 475 & 485 \\
\hline Width of space & ． 54 & ． 55 & ． 53 & ． 55 & ． 225 & ． 515 \\
\hline Backlash & ． 09 & ． 10 & ． 06 & ． 10 & ． 05 & ． 03 \\
\hline Thickness & & & ． 47 & 45 & ． 0 & 65 \\
\hline & \(\%\). & 8. & & 9. & \multicolumn{2}{|c|}{10．＊} \\
\hline Depth of tooth above pitch－line． & \[
\begin{aligned}
& .25 \text { to } .33 \\
& .35 \text { to } .42
\end{aligned}
\] & \[
.30
\] & & .318
.369 & \multicolumn{2}{|l|}{\[
\begin{array}{r}
1 \div P \\
1.15 \div \div P
\end{array}
\]} \\
\hline Working depth of tooth．．．．．．．．． & & ．．．．．．．．．． & & ． 637 & \multicolumn{2}{|l|}{\(1.2 \div P\)} \\
\hline Total depth of tooth & ． 6 to ． 5 & \multirow[t]{2}{*}{\(.65+.08{ }^{\prime \prime}\)} & & ． 687 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
2.15 \tilde{\pi} \div P \\
.15 \% \div P
\end{gathered}
\]}} \\
\hline Clearance at root． & & & & to ． 05 & & \\
\hline Thickness of tooth．．． & ． 48 to ． 485 & ． \(48-.03^{\prime \prime}\) & & to． 5 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1.51 \div P \text { to } \\
& 1.57 \div P
\end{aligned}
\]} \\
\hline Width of space & ． 52 to ． 515 & \(.52+.03^{\prime \prime}\) & & to .5 & \multicolumn{2}{|l|}{} \\
\hline Backlash & ． 04 to ． 03 & ． \(04+.06^{\prime \prime}\) & 1.0 & to 04 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1.63 \div P \\
& 0 \text { to } 06 \div P
\end{aligned}
\]} \\
\hline
\end{tabular}
＊In terms of diametral pitch．
Authorities．－1．Sir Wm．Fairbairn．2，3．Clark，R．T．D．；＂used by en－ gineers in good practice．＂4．Molesworth．5，6．Coleman Sellers： 5 for cast， 6 for cut wheels．7，8．Unwin．9，10．Leading American manufacturers of cut gears．

The Chordal Pitch（erroneously called＂true pitch＂by some authors）is the length of a straight line cr chord drawn from centre to centre of two adjacent teeth．The term is now but little used．

Chordal pitch \(=\) diam. of pitch-circle \(\times \operatorname{sine}\) of \(\frac{180^{\circ}}{\text { No. of }}\)
\(0^{\circ}\) pitch of a wheel of 10 in . pitch diameter and 10 teeth, \(10 \times \sin 18^{\circ}=3.0902\) in. Circular pitch of same wheel \(=3.1416\). Chordal pitch is used with chain or sprocket wheels, to conform to the pitch of the chain.

\section*{Formulæ for Determining the Dimensions of Small Gears.}

\section*{(Brown \& Sharpe Mfg. Co.)}
\(P=\) diametral pitch, or the number of teeth to one inch of diameter of pitch-circle;

\(a=\) distance between the centres of the two wheels;
\(b=\) number of teeth in both wheels;
\(t=\) thickness of tooth or cutter on pitch-circle;
\(s=\) addendum;
\(D^{\prime \prime}=\) working depth of tooth;
\(f=\) amount added to depth of tooth for rounding the corners and for clearance;
\(D^{\prime \prime}+f=\) whole depth of tooth;
\(\pi=3.1416\).
\(P^{\prime}=\) circular pitch, or the distance from the centre of one tooth to the centre of the next measured on the pitch-circle.

Formulæ for a single wheel:
\[
\begin{array}{rlrl}
P=\frac{N+2}{D} ; & D^{\prime}=\frac{D \times N}{N+2} ; & D^{\prime \prime}=\frac{2}{P}=2 s ; s=\frac{1}{P}=\frac{P^{\prime}}{\pi}=.3183 P^{\prime} \\
P & =\frac{N}{D^{\prime}} ; & D^{\prime}=\frac{N}{P} ; & N=P D^{\prime} ; \\
P^{\prime} & =\frac{\pi}{P}: & D=\frac{N+2}{P} ; & f=\frac{t}{10} ; \quad s=\frac{D^{\prime}}{N}=\frac{D}{N+2} ; \\
P & =\frac{\pi}{P^{\prime}} ; & D=D^{\prime}+\frac{2}{P} ; & t=\frac{1.57}{P}=1 / 2 P^{\prime} .
\end{array}
\]

Formulæ for a pair of wheels:
\[
\begin{aligned}
& b=2 a P ; \quad n=\frac{P D^{\prime} V}{v} \quad D=\frac{2 a(N+2)}{b} ; \\
& N=\frac{n v}{V} ; \quad v=\frac{P D^{\prime} V}{n} ; \quad d=\frac{2 a(n+2)}{b} ; \\
& n=\frac{N V}{v} ; \quad v=\frac{N V}{n} ; \quad a=\frac{b}{2 P} ; \\
& N=\frac{b v}{v+V} ; \quad V=\frac{n v}{N} ; \quad \quad a=\frac{D^{\prime}+a^{\prime}}{2} ; \\
& n=\frac{b V}{v+V} ; \quad D^{\prime}=\frac{2 a V}{v+V} ; \quad d^{\prime}=\frac{2 a V}{v+V} .
\end{aligned}
\]

The following proportions of gear wheels are recommended by Prof. Coloman Sellers. (Stevens Indicator, April, 1892.)

\section*{Proportions of Gear-wheels.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Circular Pitch.} & \multirow[b]{2}{*}{Outside of Pitch-line. \(P \times .3\)} & \multicolumn{2}{|l|}{Inside of Pitch-line.} & \multicolumn{2}{|l|}{Width of Space.} \\
\hline & & & For Cast or Cut Bevels or for Cast Spurs. \(P \times .4\) & For Cut Spurs. \(P \times .35\) & For Cast Spurs or Bevels. \(P \times .55\) & For Cut Bevels or Spurs. \(P \times .01\) \\
\hline & 1/4 & . 075 & . 100 & . 088 & . 131 & . 128 \\
\hline 12 & . 2618 & . 079 & . 105 & . 092 & . 137 & . 134 \\
\hline \multirow[t]{2}{*}{10} & . 31416 & . 094 & . 126 & . 11 & . 165 & . 16 \\
\hline & 3/8 & . 113 & . 150 & . 131 & . 19 亿̃ & . 191 \\
\hline 8 & . 3927 & . 118 & . 157 & . 137 & . 206 & 2 \\
\hline 7 & . 4477 & . 134 & . 179 & . 157 & . 235 & 223 \\
\hline \multirow{3}{*}{6} & 1/6 & . 15 & . 20 & . 175 & . 263 & . 255 \\
\hline & .5226 & . 157 & . 209 & . 183 & . 275 & . 267 \\
\hline & \(9 / 16\) & . 169 & . 225 & . 197 & . 295 & . 287 \\
\hline 5 & 5/8 & . 188 & .25 & . 212 & . 328 & . 319 \\
\hline \multirow{4}{*}{4} & . \(3 / 4\) & . 225 & . 3 & . 263 & . 394 & . 383 \\
\hline & . 7854 & . 236 & . 314 & . 275 & . 412 & . 401 \\
\hline & 7/8 & . 263 & . 35 & . 307 & . 459 & . 446 \\
\hline & 1 & . 3 & . 4 & . 35 & . 525 & . 51 \\
\hline \multirow[t]{2}{*}{3} & 1.0472 & . 314 & . 419 & . 364 & . 55 & . 531 \\
\hline & \(11 / 8\) & . 338 & . 45 & . 394 & . 591 & . 574 \\
\hline 23/4 & 1.1424 & . 343 & . 457 & . 40 & . 6 & . 583 \\
\hline & \(11 / 4\) & . 375 & . 503 & . 438 & . 656 & . 638 \\
\hline 21/2 & 1.3188 & . 413 & . 55 & . 481 & . 722 & . 701 \\
\hline \multirow[b]{2}{*}{2} & 11\% & . 45 & . 6 & . 525 & . 783 & . 765 \\
\hline & 1.5708 & . 471 & . 628 & . 55 & . 825 & . 801 \\
\hline & \(13 / 4\) & . 525 & . 7 & . 613 & . 919 & . 893 \\
\hline \multirow[b]{2}{*}{11/2} & 2 & . 6 & . 8 & . 7 & 1.05 & 1.02 \\
\hline & 2.0944 & . 628 & . 838 & . 733 & 1.1 & 1.068 \\
\hline \multirow[t]{6}{*}{1} & 21/4 & . 675 & . 9 & . 788 & 1.181 & 1.148 \\
\hline & 21/2 & . 75 & 1.0 & . 8763 & 1.313 & \(1.2 i 5\)
1.403 \\
\hline & \({ }_{3}{ }^{1 / 4}\) & . 9 & 1.2 & 1.05 & \(1.5 \%\) & 1.53 \\
\hline & 3.1416 & . 942 & 1.257 & 1.1 & 1.649 & 1.602 \\
\hline & \(31 / 4\) & .975 & 1.3 & 1. 138 & 1.706 & 1.657 \\
\hline & \(31 / 2\) & 1.05 & 1.4 & 1.225 & 1.838 & 1.785 \\
\hline
\end{tabular}

Thickness of rim below root \(=\) depth of tooth.
Width of Teeth. -The width of the faces of teeth is generally made from 2 to 3 times the circular pitcl: - from 6.28 to 9.42 divided by the diametral pitch. There is no standerd rulo -or uth.

The following sizes ar 2 given in a stock list of cut gears in "Grant's Gears:"
Diametral pitch..... \(3 \quad 4 \quad 6 \quad 8 \quad 8 \quad 12 \quad 16\)
Face, inches........ 3 and 4 21/2 \(13 / 4\) and \(2 \quad 11 / 4\) and \(11 / 23 / 4\) and \(1 \quad 1 / 2\) and \(5 / 8\)
The Walker Company give:
\(\begin{array}{lllllllllllll}\text { Circular pitch, in.. } & 1 / 2 & 5 / 8 & 3 / 4 & 7 / 8 & 1 & 11 / 2 & 2 & 21 / & 3 & 4 & 5 & 6 \\ \text { Face, in.......... } & 11 / 4 & 11 / 2 & 13 / 2 & 2 & 21 / 2 & 41 / 2 & 6 & 71 / 2 & 9 & 12 & 16 & 20\end{array}\)
Rules for Calculating the Speed of Gcars and Pulleys. -
The relations of the size and speed of driving and driven gear wheels are the same as those of belt pulleys. In calculating for gears, multiply or divide by the diameter of the pitch-circle or by the number of teeth, as may be required. In calculating for pulleys, multiply or divide by their diameter in inches.

If \(D=\) diom. of driving wheel, \(d=\) diom. of driven, \(R=\) revolutions per minute of driver. \(r=\) revs. jer min. of driven.
\[
R=r d \div D ; \quad r-R I \div l_{j} \Rightarrow-d r \div R ; \quad d=D R \div r .
\]

If \(N\) - number of teeth of duiver \(c=0 n-\) number of teeth of driven,
\[
N=n r+R ; n=n \div \because n=r n \div N ; \quad r=R N \div n .
\]

To flnd the number of revolutions of the last wheel at the end of a train of spur-wheels, all of which are in a line and mesh into one another, when the revolutions of the first wheel and the number of teeth or the diameter of the first and last are given: Multiply the revolutions of the first wheel by its number of teeth or its diameter, and divide the product by the number of teeth or the diameter of the last wheel.

To find the number of teeth in each wheel for a train of spur-wheels, each to have a given velocity: Multiply the number of revolutions of the driving-wheel by its number of teeth, and divide the product by the number of revolutions each wheel is to make.

To find the number of revolutions of the last wheel in a train of wheels and pinions, when the revolutions of the first or driver, and the diameter, the teeth, or the circumference of all the drivers and pinions are given: Multiply the diameter, the circumference, or the number of teeth of all the driving-wheels together, and this continued product by the number of revolutions of the first wheel, and divide this product by the continued product of the diameter, the circumference, or the number of teeth of all the driven wheels, and the quotient will be the number of revolutions of the last wheel.

Example. 1. A train of wheels consists of four wheels each 12 in. diameter of pitch-circle, and three pinions 4, 4, and 3 in . diameter. The large wheels are the drivers, and the first makes 36 revs. per min. Required the speed of the last wheel.
\[
\frac{36 \times 12 \times 12 \times 12}{4 \times 4 \times 3}=1296 \mathrm{rpm}
\]
2. What is the speed of the first large wheel if the pinions are the drivers, the 3 -in. pinion being the first driver and making 36 revs. per min.?
\[
\frac{36 \times 3 \times 4 \times 4}{12 \times 12 \times 12}=1 \mathrm{rpm} . \text { Ans }
\]

Milling Cutters for Interchangeable Gears.-The Pratt \& Whituey Co. make a series of cutters for cutting epicycloidal teeth. The number of cutters to cut from a pinion of 12 teeth to a rack is 24 for each pitch coarser than 10. The Brown \& Sharpe Mfg. Co. make a similar series, and also a series for involute teeth, in which eight cutters are made for each pitch, as follows:
\begin{tabular}{ccccccccc} 
No............... & 1. & 2. & 3. & 4. & 5. & 6. & 9. & 8. \\
Will cut from & 135 & 55 & 35 & 26 & 21 & 17 & 14 & 12 \\
to & Rack & 134 & 54 & 34 & 25 & 20 & 16 & 13
\end{tabular}

\section*{FORMS OF THE TEETH.}

In order that the teeth of wheels and pinions may run together smoothly and with a constant relative velocity, it is necessary that their working faces shall be formed of certain curves called odontoids. The essential property of these curves is that when two teeth are in contact the common normal to the tooth curves at their point of contact must pass through the pitch-point, or point of contact of the two pitch circles. Two such curves are in common use-the cyloid and the involute.

The Cycloidal Tooth. -In Fig. 154 let \(P L\) and \(p l\) be the pitch-circles of two gear-wheels; \(G C\) and \(g C\) are two equal generating-circles, whose radii should be taken as not greater than one half of the radius of the smaller pitch-circle. If the circle \(g c\) be rolled to the left on the larger pitch-circle \(P L\), the point \(O\) will describe an epicycloid, oefgh. If the other generatingcircle \(G C\) be rolled to the right on \(P L\), the point \(O\) will describe a hypocycloid oabcd. These two curves, which are tangent at \(O\), form the two parts of a tooth curve for a gear whose pitch-circle is \(P L\). The upper part oh is called the face and the lower part od is called the flank, If the same circles be rolled on the other pitch-circle \(p l\), they will describe the curve for a tooth of the gear pl, which will work properly with the tooth on \(l^{\prime} L\).

The cycloidal curves may be drawn without actually rolling the generat-ing-circle, as follows: On the line \(P L\), from \(O\), step off and mark equal distances, as \(1,2,3,4\), etc. From 1, 2, 3, etc., draw radial lines toward the centre of \(P L\), and from 6, 7, 8, etc., draw radial lines from the same centre, but beyond \(P L\). With the radius of the generating-circle, and with centres successively placed on these radial lines, draw ares of circles tangent to \(P L\) at 123,678 , etc. With the dividers set to one of the equal divisions, as \(O_{13}\)
step off \(1 a\) and \(6 e\); step off two such divisions on the circle from 2 to \(b\), and from \(\boldsymbol{r}\) to \(f\); three such divisions from 3 to \(c\), and from 8 to \(g\); and so on, thus locating the several points \(a b c d H\) and efgk, and through these points draw the tooth curves.
The curves for the mating tooth on the other wheel may be found in like manner by drawing ares of the generating-circle tangent at equidistant points on the pitch-circle \(p l\).
The tooth curve of the face oh is limited by the addendum-line \(r\) or \(r_{1}\),


Fig. \(154 .{ }^{7}\)
and that of the flank \(o H\) by the root curve \(R\) or \(R_{1} . \quad R\) and \(r\) represent the root and addendum curves for a large number of small teeth, and \(R_{1} r\) the like curves for a small number of large teeth. The form or appearance of the tooth therefore varies according to the number of teeth, while the pitch circle and the generating-circle may remain the same.
In the cycloidal system, in order that a set of wheels of different diameters but equal pitches shall all correctly work together, it is necessary that the generating-circle used for the teeth of all the wheels shall be the same, and it should have a diameter not greater than half the diameter of the pitchline of the smallest wheel of the set. The customary standard size of the generating-circle of the cycloidal system is one having a diameter equal to the radius of the pitch-circle of a wheel having 12 teeth. (Some gearmakers adopt 15 teeth.) This circle gives a radial flank to the teeth of a wheel having 12 teeth. A pinion of 10 or even a smaller number of teeth can be made, but in that case the flanks will be undercut, and the tooth will not be as strong as a tooth with radial flanks. If in any case the describing circle be half the size of the pitch-circle, the flanks will be radial; if it be less, they will spread out toward the root of the tooth, giving a stronger form; but if greater, the flanks will curve in toward each other, whereby the teeth become weaker and difficult to make.
In some cases cycloidal teeth for a pair of gears are made with the gener-ating-circle of each gear, having a radius equal to half the radius of its pitchcircle. In this case each of the gears will have radial flanks. This method makes a smooth working gear, but a disadvantage is that the wheels are not interchangeable with other wheels of the same pitch but different mumbets of teeth.

The rack in the cycloidal system is equivalent to a wheel with an infinite number of teeth. The pitch is equal to the circular pitch of the mating gear. Both faces and flanks are cycloids formed by rolling the generatingcircle of the mating gear-wheel on each side of the straight pitch-line of the rack.


Fig. 155.
Another method of drawing the cycloidar curves is shown in Fig. 155. It is known as the method of tangent arcs. The generating-circles, as beforo, are drawn with equal radii, tho length of the radius being less thay half the radius of \(p l\), the smaller pitcl?-circle. Equal divisions 1. 2, 3, 4, etc., are marked off on the pitch-circles and divisions of the same length stepped off on one of the generating-circles, as oabc, etc. From tho points \(1,2,3,4,5\) on the line \(p o\), with radii succcisively equal to the chord distances \(o a, o b, o c\), \(o d, o e\), draw the five small arcs \(F\). A line drawn through the outer edges of these small arcs, tangent to them all, will be the hypocycloidal curve for tho flank of a tooth below the pitch-line \(p l\). From the points 1, 2, 8 , etc., on the line ol. with radii as before, draw the small arcs \(G\). A line tangent to these ares will be the epicycloid for the face of the same tooth for which the flank curve has already been drawn. In the same way, from centres on the line \(P_{0}\). and oL, with the same radii, the tangent ares \(H\) and \(K\) may be drawn, which will give the tooth for the gear whose pitch-circle is \(P L\).

If the generating-circle had a radius just one half of the radius of \(p l\), the bypocycloid \(F\) would be a straight line, and the flank of the tooth would have been radial.

The Involute Tooth.-In drawing the involute tooth curve, the angle of obliquity, or the angle whicle a common tangent to the teeth, when they are in contact at the pitch-point, make; with a line joining the centres of the wheels, is first arbitrarily determined. It is customary to take it at \(15^{\circ}\). The pitch-lines \(p l\) and \(P L\) being drawn in contact at \(O\), the line of obliquity \(A B\) is drawn through \(O\) normal to a common tancent, to the tooth curves, or at the given angle of obliquity to a common tangent to the pitch-circles. In
the cut the angle is \(20^{\circ}\). From the centres of the pitch-circles draw circles \(c\) and \(d\) tangent to the line \(A B\). These circles are called base-lines or basecircles. from which the involutes \(F\) and \(K\) are drawn. By laying off convenient distances \(0,1,2,3\), which should each be less than \(1 / 10\) of the diameter of the base-circle, small arcs can be drawn with successively increasing radii, which will form the involute. The involute extends from the points \(F\)


Fig. 156.
and \(K\) down to their rospective base-circles, where a tangent to the involute becomes a racliv: of the circle, and the remainders of the tooth curves, as \(G\) and \(H\), are radial straight lines.

In the involute system the customary standard form of tooth is one having an angle of obliquity of \(15^{\circ}\) (Brown and Sharpe use \(141 / 2^{\circ}\) ), an addendum of about one third the circular pitch, and a clearance of about one eighth of the addendum. In this system the smallest gear of a set has \(1: 2\) teeth, this being the smallest number of teeth that will gear together when made :ith this nogle of obliquity. In gears with less than 30 teeth the points of the teet? must be slightly rounded over to avoid interference (=ee Grant's Teeth of Gears). All involute teeth of the same pitch and with the same angle of obliquity work smoothly together. The rack to gear with an involute-oot. od whocl has straight faces on its teeth, which make an angle :rith the aiddl= line of the tooth equal to the angle of obliquity, or in the stondard form the faces are inclined at an angle of \(30^{\circ}\) with each other.

To draw the teeth of a rack which is to gear with an involute wheel (Fig 1i.'.). - Let \(A B\) be the pitch-line of the rack and \(A I=I I^{\prime}=\) the pitch. Through


Fig. 157.
the pitch-point \(I\) draw \(E F\) at the given angle of obliquity. Draw \(A E\) and \(I^{\prime} F\) perpendicular to \(E F\). Through \(E\) and \(F\) draw lines \(E G G^{\prime}\) and \(F H\) paralfel to the pitch-nne. \(E G G^{\prime}\) will be the addendum-line and \(H F\) the flankline. From \(I\) d aw \(I K\) yerpendicular to \(A B\) equal to the greatest addendum in the set of wheel of "‘g given pitch and obliquity plus an allowance for clearance equal to \(3 ;\) of the addendum. Through \(K\), parallel to \(A B\), draw the clearance-line. \({ }_{1}{ }^{\prime} .2\) fronts of the teeth are planes perpendicular to \(E F\), and the Jacks are planes inclined at the same angle to \(A B\) in the contrary direction. The outer half of tho working face \(A E\) may be slightly curved. Mr. Grant makes it a circular arc drawn from a centre on the pitch-line
with a radius \(=2.1\) inches divided by the diametral pitch, or \(.67 \mathrm{in} . \times\) cir. cular pitch.
To Draw an Angle of \(15^{\circ}\) without using a Protractor.-From \(C\), on the line \(A C\), with radius \(A C\), draw


Fig. 158. an arc \(A B\), and from \(A\), with the same radius, cut the are at \(B\). Bisect the arc \(B A\) by drawing small ares at \(D\) from \(A\) and \(B\) as centres, with the same radius, which must be greater than one half of \(A B\). Join \(D C\), cutting \(B A\) at \(E\). The angle \(E C A\) is \(30^{\circ}\). Bisect the arc \(A E\) in like manner, and the angle \(F C A\) will be \(15^{\circ}\).

A property of involute-toothed wheels is that the distance between the axes of a pair of gears may be altered to a considerable extent without interfering with their action. The backlash is therefore variable at will, and may be adjusted by moving the wheels farther from or nearer to each other, and may thus be adjusted so as to be no greater than is necessary to prevent jamming of the teeth.
The relative merits of crcloidal and involute-shaped teeth are still a subject of dispute, but there is an increasing tendency to adopt the involute tooth for all purposes.
Clark (R. T. D., p. i34) says: Involute teeth have the disadvantage of being too much inclined to the radial line, by which an undue pressure is exerted on the bearings.
Unwin (Elements of Machine Design, 8th ed., p. 265) says: The obliquity of action is ordinarily alleged as a serious objection to involute wheels. Its importance has perhaps been overrated.
George B. Grant (Am. Mach., Dec. 26, 1885) says :
1. The worlk done by the friction of an involute tooth is always less than the same work for any possible epicycloidal tooth.
2. With respect to work done by friction, a change of the base from a gear of 12 teeth to one of 15 teeth makes an improvement for the epicycloid of less than one half of one per cent.
3. For the 12 -tooth system the involute has an advantage of \(11 / 5\) per cent, and for the 15 -tooth system an advantage of \(3 / 4\) per cent.
4. That a maximum improvement of about one \(p \in r\) cent can be accomplished by the adoption of any possible non-interchangeable radial flank tooth in preference to the 12 -tooth interchangeable system.
5. That for gears of very few teeth the involute has a decided advantage.
6. That the common opinion among millwrights and the mechanical 1 ub. lic in general in favor of the epicycloid is a prejudice that is founded on long-continued custom, and not on an intimate knowledge of the properties of that curve.

Wilfred Lewis (Proc. Engrs. Club of Phila., vol. x., 1893) says a strong reaction in favor of the involute system is in progress, and he believes that an involute tooth of \(2212^{\circ}\) obliquity will finally supplant all other forms.

Approximation by Circular Ares.-Having found the form of the actual tooth-curve on the drawing-board, circular arcs may be found by trial which will give approximations to the true curves and these may be


Tig. 15p,
used in completing the drawing and the pattern of the gear-wheels. The root of the curve is connected to the clearance by a fillet, which should be as large aspossible to give increased strength to the tooth, provided it is not large enough to cause interference.

Molesworth gives the following method of construction by circular arcs :
From the radial line at the edge of the tooth on the pitch-line, lay off the line \(H K\) at an angle of \(\hat{5} 5^{\circ}\) with the radial line; on this line will be the centres of the root \(A B\) and the point \(E F\). The lines struck from these centres are shown in thick lines. Circles drawn through centres thus found will give the lines in which the remaining centres will be. The radius \(D A\) for striking the root \(A B\) is = pitch + the thickness of the tooth. The radius \(C E\) for striking the point of the tooth \(E F=\) the pitch.

George B. Grant says: It is sometimes attempted to construct the curve by some handy method or empirical rule, but such methods are generally worthless.

Stepped Gears.--Two gears of the same pitch and diameter mounted side by side on the same shaft will act as a single gear. If one gear is keyed on the shaft so that the teeth of the two wheels are not in line, but the teeth of one wheel slightly in advance of the other, the two gears form a stepped gear. If mated with a similar stepped gear on a parallel shaft the number of teeth in contact will be twice as great as in an ordinary gear, which will increase the strength of the gear alld its smoothness of action.

Twisted Teeth. -If a great number of very thiu gears were placed together, one slightly in advance of the other, they would still act as a stepped gear. Coutinuing the subdivision until the thickness of each separate gear is infinitesimal, the faces of the teeth instead of being in steps take the form of a spiral or twisted surface, and we have a twisted gear. The twist may take any shape, and if it is in one direction for half the width of the gear and in the opposite direction for the other half, we have what is known as the herring-bone or double helical tooth. The obliquity of the twisted tooth if twisted in one direction canses an end thrust on the shaft, but if the herringbone twist is used, the opposite obliquities neutralize each other. This form of tooth is much used in heavy rolling-mill practice, where great strength and lesistance to shocks are necessary. They are frequently made of steel castings (Fig. 160). The angle of the tonth with a line parallel to the axis of the gear is usually \(30^{\circ}\).


Fig. 160.

Spiral Gears.-If a twisted gear has a uniform twist it becomes a spiral year The line in which the pitch-surface intersects the face of the tooth is part of a helix drawn on the pitch-surface. A spiral wheel may be made with only one helical tooth wrapped around the sylinder several times, in which it becomes a screw or worm. If it has two or three teeth so wrapped, it is a double- or triple-threaded screw or worm. A spiral-gear. meshing into a rack is used to drive the table of some forms of planingmachine.

Worm-gearing. -When the axes of two spiral gears are at rignt alugles, aud a wheel of one, two, or three threads works with a larger wheel of mainy fhreads, it becomes a worm-gear, or endless screw, the smallor


Fig. 161.
wheel or driver being called the worm, and the larger, or driven wherl, the worm-wheel. With this arrangement a hish velocity ration may be obtai:ied with a single pair of wheels. For a one-threaded wheel the velocity rainu is
the number of teeth in the worm-wheel. The worm and wheel are commonly so constructed that the worm will drive the wheel, but the wheel will not drive the worm.

To find the diameter of a worm-wheel at the throat, number of teeth and pitch of the worm being given: Add 2 to the number of teeth, multiply the sum by 0.3153 , and by the pitch of the worm in inches.

To find the number of teeth, diameter at throat and pitch of worm being given: Divide 3.1416 times the diameter by the pitch, and subtract 2 from the quotient.

In Fig. \(161 a b\) is the diam. of the pitch-circle, \(c d\) is the diam. at the throat.
Example. - Pitch of worm \(1 / 4 \mathrm{in}\)., number of teeth 70 , required the diam. at the throat. \((i 0+2) \times .3183 \times .25=5.73 \mathrm{in}\).

Teeth of Bevel-wheels. (Rankine's Machinery and Millwork.)-The teeth of a bevel-wheel have acting surfaces of the conical kind, generated by the motion of a line traversing the apex of the conical pitchsurface, while a point in it is carried round the traces of the teeth upon a spherical surface described about that apex.

The operations of drawing the traces of the teeth of bevel-wheels exactly, whether by involutes or by rolling curves, are in every respect analogous to those for drawing the traces of the teeth of spur-wheels; except that in the case of bevel-wheels all those operations are to be performed on the surface of a sphere described about the apex, instead of on a plane, substituting poles for centres and great circles for straight lines.

In consideration of the practical difficulty, especially in the case of large wheels, of obtaining an accurate spherical surface, and of drawing upon it when obtained, the following approximate method, proposed originally by Tredgold, is generally used:

Let \(O\), Fig. 162, be the common apex of the pitch-cones, \(O B I, O B^{\prime} I\), of a pair of bevel-wheels; \(O C, O C^{\prime}\), the axes of those cones; \(O I\) their line of con-

faces \(A B I, A^{\prime} B^{\prime} I\) are spread out flat. tact. Perpendicular to OI draw \(A I A^{\prime}\), cutting the axes in \(A, A^{\prime}\); make the outer rims of the patterns and of the wheels portions of the cones \(A B I, A^{\prime} B^{\prime} I\), of which the narrow zones occupied by the teeth will be sufficiently near for practical purposes to a spherical surface described about \(O\). As the cones \(A B I, A^{\prime} B^{\prime} I\) cut the pitch-cones at right angles in the outer pitch-circles \(I B, I B^{\prime}\), they may be called the normal cones. To find the traces of the teeth upon the normal cones, draw on a flat surface circular arcs, \(I D, I D^{\prime}\), with the radii \(A I, A^{\prime} I\); those arcs will be the developments of arcs of the pitchcircles \(I B, I B^{\prime}\) when the conical surfaces \(A B I\), Describe the traces of teeth for the developed arcs as for a pair of spur-wheels, then wrap the developed ares on the normal cones, so as to make them coincide with the pitch-circles, and trace the teeth on the conical surfaces.

For formulæ and instructions for designing bevel-gears, and for much other valuable information on the subject of gearing, see "Practical Treatise on Gearing," "and "Formulas in Gearing," published by Brown \& Sharpe MIf'g Co.; and "Teeth of Gears," by George B. Grant, Lexington, Mass. The student may also consult Rankine's Machinery and Millwork, Reuleaux's Constructor, and Unwin's Elements of Machine Design. See also article on Gearing, by C. W. MacCord in App. Cyc. Mech., vol. ii.

Annular and Differential Gearing. (S. W. Balch., Am. Mach., Aug. 24, 1893.)-In internal gears the sum of the diameters of the describing circles for faces and flanks should not exceed the difference in the pitch diameters of the pinion and its internal gear. The sum may be equal to this difference or it may be less; if it is equal. the faces of the teeth of each wheel will drive the faces as well as the flanks of the teeth of the other wheel. The teeth will therefore make contact with each other at two points at the same time.

Cycloidal tooth-curves for interchangeable gears are formed with describing circles of about \(5 / 8\) the pitch diameter of the smallest gear of the series. To admit two such circles between the pitch-circles of the pinion and internat
gear the number of teeth in the internal gear should exceed the number in the pinion by 12 or more, if the teeth are of the customary proportions and curvature used in interchangeable gearing.
Very often a less difference is desirable, and the teeth may be modified in several ways to make this possible.
First. The tooth curves resulting from smaller describing circles may be employed. These will give teeth which are more rounding and narrower at their tops, and therefore not as desirable as the regular forms.
Second. The tips of the teeth may be rounded until they clear. This is a cut-and-try method which aims at modifying the teeth to such outlines as smaller describing circles would give.
Third. One of the describing circles may be omitted and one only used, which may be equal to the difference between the pitch-circles. This will permit the meshing of gears differing by six teeth. It will usually prove inexpedient to put wheels in inside gears that differ jby much less than 12 teeth.
If a regular diametral pitch and standard tooth forms are determined on, the diameter to which the interual gear-blank is to be bored is calculated by subtracting 2 from the number of teeth, and dividing the remainder by the diametral pitch.
The tooth outlines are the match of a spur-gear of the same number of teeth and diametral pitch, so that the spur gear will fit the internal gear as a punch fits its die, except that the teeth of each should fail to bottom in the tooth spaces of the other by the customary clearance of one tenth the thickness of the tooth.
Internal gearing is particularly valuable when employed in differential action. This is a mechanical movement in which one of the wheels is mounted on a crank so that its centre can move in a circle about the centre of the other wheel. Means are added to the device which restrain the wheel on the crank from turning over and confine it to the revolution of the crank.
The ratio of the number of teeth in the revolving wheel compared with the difference between the two will represent the ratio between the revolving wheel and the crank-shaft by which the other is carried. The advantage in accomplishing the change of speed with such an arrangement, as compared with ordinary spur-gearing, lies in the almost entire absence of friction and consequent wear of the teeth.

But for the limitation that the difference between the wheels must not be too small, the possible ratio of speed might be increased almost indefinitely, and one pair of differential gears made to do the service of a whole train of wheels. If the problem is properly worked out with bevel-gear's this limitation may be completely set aside, and external and internal bevel-gears, differing by but a single tooth if need be, made to mesh perfectly with each other.

Differential bevel-gears have been used with advantage in mowing-maehines. A description of their construction and operation is given by Mr. Balch in the article from which the above extracts are taken.

\section*{EFFICHENCY OF GEARING.}

An extensive series of experiments on the efficiency of gearing, chiefly worm and spiral gearing, is described by Wilfred Lewis in Trans. A. S. M. E., vii. 273. The average results are shown in a diagram, from which the following approximate average figures are taken :

Efficiency of Spur, Spiral, and Worm Gearing.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Gearing.} & \multirow{2}{*}{Pitch.} & \multicolumn{5}{|l|}{Velocity at Pitch line in feet per mm.} \\
\hline & & 3 & 10 & 40 & 100 & 200 \\
\hline Spur pinion. & & . 90 & . 935 & . 97 & . 98 & . 985 \\
\hline Spiral pinion & \(45^{\circ}\) & . 81 & . 87 & .933 & . 955 & . 965 \\
\hline "، " & 30 & . 75 & . 815 & . 89 & . 93 & . 945 \\
\hline " 6 & 20 & . 6 \% & . 75 & . 845 & . 90 & . 92 \\
\hline '6 & 15 & . 61 & . 70 & . 805 & . 87 & . 90 \\
\hline Spiral pinion or worm & 10 & . 51 & . 615 & . 74 & . 82 & . 86 \\
\hline " " \({ }^{\text {" }}\) & 7 & . 43 & . 53 & . 72 & . 765 & . 815 \\
\hline 6 6 & 5 & . 34 & . 43 & . 60 & . 70 & . 765 \\
\hline
\end{tabular}

The experiments showed the advantage of spur-gearing over all other kinds in both durability and efficiency. The variation from the mean results rarely exceeded \(5 \%\) in either direction, so long as no cutting occurred. but the variation became much greater and very irregular as soon as cutting began. The loss of power varies with the speed, the pressure, the temperature, and the condition of the surfaces. The excessive friction of worm and spiral gearing is largely due to thee nd thrust on the collars of the shaft. This may be considerably reduced by roller-bearings for the collars.

When two worms with opposite spirals run in two spiral worm-gears that also work with each other, and the pressure on one gear is opposite that on the other, there is no thrust on the shaft. Even with light loads a worm will begin to heat and cut if run at too high a speed, the limit for safe working being a velocity of the rubbing surfaces of 200 to 300 ft . per minute, the former being preferable where the gearing has to work continuously. The wheel teeth will keep cool, as they form part of a casting having a large radiating surface; but the worm itself is so sinall that its heat is dissipated slowly. Whenever the heat generated increases faster than it can be conducted and radiated away, the cutting of the worm may be expected to begin. A low efficiency for a worm-gear means more than the loss of power, since the power which is lost reappears as heat and may cause the rapid destruction of the worm.
Unwin (Elements of Machine Design, p. 294) says: The efficiency is greater the less the radius of the worm. Generally the radius of the worm \(=1.5\) to 3 times the pitch of the thread of the worm or the circular pitch of the worm-wheel. For a one-threaded worm the efficiency is only \(2 / 5\) to \(1 / 4\); for a two-threaded worm, \(4 / 7\) to \(2 / 5\); for a three-threaded worm, \(2 / 3\) to \(1 / 2\). Since so much work is wasted in friction it is not surprising that the wear is excessive. The following table gives the calculated efficiencies of wormwheels of \(1,2,3\), and 4 threads and ratios of radius of worm to pitch of teeth of from 1 to 6 , assuming a coefficient of friction of 0.15 :
\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
No. of \\
Threads.
\end{tabular} & \multicolumn{8}{c}{ Radius of Worm \(\div\) Pitch. } \\
& 1 & \(11 / 4\) & \(11 / 2\) & \(13 / 4\) & 2 & \(21 / 2\) & 3 & 4 & 6 \\
\hline 1 & & .50 & & .44 & .40 & .36 & .33 & .28 & .25 \\
2 & .67 & .62 & .57 & .53 & .50 & .44 & .40 & .30 & .14 \\
3 & .75 & .70 & .67 & .63 & .60 & .55 & .50 & .43 & .33 \\
4 & .80 & .76 & .73 & .70 & .67 & .62 & .57 & .50 & .40 \\
\hline
\end{tabular}

\section*{STRENGTH OF GEAR-TEETH.}

The strength of gear-teeth and the horse-power that may be transmitted by them depend upon so many variable and uncertain factors that it is not surprising that the formulas and rules given by different writers show a wide variation. In 1879 John H. Cooper (Jour. Frank. Inst., July, 1879) found that there were then in existence about 48 well-established rules for horse-power and working strength, differing from each other in extreme cases about \(500 \%\). In 1886 Prof. Win. Harkness (Proc. A. A. A. S. 1886), from an examination of the bibliography of the subject, beginning in 1~96, found that according to the constants and formulæ used by various authors there were differences of 15 to 1 in the power which could be transmitted hy a given pair of geared wheels. The various elements which enter into the constitution of a formula to represent the working strength of a toothed wheel are the following: 1. The strength of the metal, usually cast iron, which is an extremely variable quantity. 2. The shape of the tooth, and especially the relation of its thickness at the roct or point of least strength to the pitch and to the length. 3. The point at which the load is taken to be applied, assumed by some authors to be at the pitch-line, by others at the extreme end, along the whole face, and by still others at a single outer corner. 4. The consideration of whether che total load is at any time received by a single tooth or whether it is divided between two teeth. 5. The influence of velocity in causing a tendency to break the teeth by shock. 6. The factor of safety assumed to cover all the uncertainties of the other elements of the problem.

Prof. Harkness, as a result of his investigation, found that all the formulæ on the subject might be expressed in one of three forms, viz.:
\[
\text { Horse-power }=C V p f, \text { or } C V p^{2}, \text { or } C^{T} p^{2} f
\]
in which \(C\) is a coefficient, \(V=\) velucity of pitch-line in feet per second, \(p=\) pitch in inches, and \(f=\) face of tooth in inches.
From an examination of precedents he proposed the following formula for cast-iron wheels:
\[
\text { H.P. }=\frac{0.910 V p f}{\sqrt{1+0.65 V}}
\]

He found that the teeth of chronometer and watch movements were subject to stresses four times as great as those which any engineer would dare to use in like proportion upon cast-iron wheels of large size.
It appears that all of the earlier rules for the strength of teeth neglected the consideration of the variations in their form; the breaking strengıh, as said by Mr. Cooper, being based upon the thickness of the teeth at the pitchline or circle. as if the thickness at the root of the tooth were the same in all cases as it is at the pitch-line.

Wilfred Lewis (Proc. Eng'rs Club, Phila., Jan. 1893; Am. Mach., June 22, 1893) seems to have beeu the first to use the form of the tooth in the construction of a working formula and table. He assumes that in well-constructed machinery the load can be more properly taken as well distributed across the tooth than as concentrated in one corner, but that it cannot be safely taken as concentrated at a maximum distance from the root less than the extreme end of the tooth. He assumes that the whole load is taken upon one tooth, and considers the tooth as a beam loaded at one end, and from a series of drawings of teeth of the involute, cycloidal, and radial flank systems. determines the point of weakest cross-section of each, and the ratio of the thickness at that section to the pitch. He thereby obtains the general formula,
\[
W=s p f y
\]
in which \(W\) is the load transmitted by the teeth, in pounds; \(s\) is the safe working stress of the material, taken at 8000 lbs . for cast iron, when the working speed is 100 ft . or less per minute; \(p=\) pitch; \(f=\) face, in inches; \(y=\) a fartor depending on the form of the tooth, whose value for different cases is given in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. of Teeth.} & \multicolumn{3}{|l|}{Factor for Strength, \(y\).} & \multirow[b]{2}{*}{No. of Teeth.} & \multicolumn{3}{|l|}{Factor for Strength, \(y\).} \\
\hline & Involute \(20^{\circ}\) Obliquity. & Involute \(15^{\circ}\) and Cycloidal & Radial Flanks. & & Involute \(20^{\circ}\) Obliquity. & Involute \(15^{\circ}\) and Cycloidal & Radial Flanks. \\
\hline 12 & . 078 & . 067 & . 052 & 27 & . 111 & . 100 & . 064 \\
\hline 13 & . 083 & . 070 & . 053 & 30 & . 114 & 102 & . 065 \\
\hline 14 & . 088 & . 072 & . 054 & 34 & . 118 & . 104 & . 066 \\
\hline 15 & . 092 & . 075 & . 055 & 38 & . 122 & . 107 & . 067 \\
\hline 16 & . 094 & . 077 & . 056 & 43 & 126 & . 110 & . 068 \\
\hline 17 & . 096 & . 080 & . 057 & 50 & :30 & . 112 & . 069 \\
\hline 18 & . 098 & . 083 & . 058 & 60 & 134 & . 114 & . 070 \\
\hline 19 & . 100 & . 087 & . 0.59 & 75 & . 138 & . 116 & . 071 \\
\hline 20 & . 102 & . 090 & . 060 & 100 & . 142 & . 118 & .0ヶ2 \\
\hline 21 & . 104 & .092 & . 061 & 150 & 146 & . 120 & . 073 \\
\hline 23 & . 106 & . 094 & . 062 & 300 & . 50 & 122 & . 074 \\
\hline 25 & . 108 & . 097 & . 063 & Rack. & . 154 & . 124 & . \(0 \% 5\) \\
\hline
\end{tabular}

Safe Working Stress, \(s\), for Different Speeds.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Speed of Teeth in ft. per minute. & \[
\left|\begin{array}{c}
100 \text { or } \\
\text { less. }
\end{array}\right|
\] & 200 & 300 & 600 & 900 & 1200 & 1800 & 2400 \\
\hline Cast iron. & 8000 & 6000 & 4800 & 4000 & 3000 & 2400 & 2000 & 1700 \\
\hline Steel... & 20000 & 15000 & 12000 & 10000 & 7500 & 6000 & 5000 & 4300 \\
\hline
\end{tabular}

The values of \(s\) in the above table are given by Mr. Lewis tentatively, in the absence of sufficient data upon which to base more definite values, but they have been found to give satisfactory results in practice.

Mr. Lewis gives the following example to illustrate the use of the tables: Let it be required to find the working strength of a 12 -toothed pinion of 1 . inch pitch, \(21 / 2\)-inch face, driving a wheel of 60 teeth at 100 feet or less per minute, and let the teeth be of the 20 -degree involute


Fig. 163. form. In the formula \(W=s p f y\) we have for a cast-iron pinion \(s=8000, p f=i .5\), and \(y=.0 r 8\); and multiplying these values together, we have \(W=1560\) pounds. For the wheel we have \(y=.134\) and \(W=2680\) pounds.
The cast-iron pinion is, therefore, the measure of strength; but if a steel pinion be substituted we have \(s=20,000\) and \(W=3900\) pounds, in which combination the wheel is the weaker, and it therefore becomes the measure of streugth.

For bevel-wheels Mr. Lewis gives the following, referring to Fig. 168: \(D=\) large diameter of bevel; \(d=\) small diameter of bevel; \(p=\) pitch at large diameter; \(n=\) actual number of teeth; \(f=\) face of bevel; \(N=\) formative number of teeth \(=n \%\) secant \(\alpha\), or the number corresponding to radius \(R ; y=\) factor depending upon shape of teeth and formative number \(N ; W=\) working load on teeth.
\[
W=\operatorname{spf} y \frac{D^{3}-d^{3}}{3 D^{2}(D-d)} ; \text { or, more simply, } W=\operatorname{spf} y \frac{d}{D},
\]
which gives almost identical results when \(d\) is not less than \(2 / 3 D\), as is the case in good practice.

In Am. Mach., June 22, 1893, Mr. Lewis gives the following formulæ for the working strength of the three systems of gearing, which agree very closely with those obtained by use of the table:
\[
\begin{aligned}
& \text { For involute, } 20^{\circ} \text { obliquity, } \quad W=\operatorname{spf}\left(.154-\frac{.912}{n}\right) ; \\
& \text { For involute } 15^{\circ}, \text { and cycloidal, } W=\operatorname{spf}\left(.124-\frac{.684}{n}\right) ; \\
& \text { For radial flank system, } \quad W=\operatorname{spf}\left(.075-\frac{.276}{n}\right) ;
\end{aligned}
\]
in which the factor within the parenthesis corresponds to \(y\) in the general formula. For the horse-power transmitted, Mr. Lewis's general formula \(W=s p f y,=\frac{33,000 \text { H.P. }}{v}\), may take the form H.P. \(=\frac{s p f y v}{33,000}\), in which \(v=\) velocity in feet per minute; or since \(v=d \pi \times\) rpm. \(+12=.2618 d \times\) rpm., in which \(d=\) diameter in inches and rpm. = revolutions per minute,
\[
\text { H.P. }=\frac{W v}{33,000}=\frac{s p f y \times d \times \mathrm{rpm} .}{126,050}=.00000 \pi 933 d s p f y \times \mathrm{rpm} .
\]

It must be borne in mind, however, that in the case of machines which consume power intermittently, such as punching and shearing machines, the gearing should be designed with reference to the maximum load \(W\), which can be brought upon the teeth at any time, and not upon the average horse-power transmitted

Comparison of the Harkness and Levis Formulas.Take an average case in which the safe working strength of the material, \(s=6000, v=200 \mathrm{ft}\). per min., and \(y=.100\), the value in Mr. Lewis's table for an involute tooth of \(15^{\circ}\) obliquity, or a cycloidal tooth, the number of teeth in the wheel being \(2 \%\).
\[
\text { H.P. }=\frac{s p f y v}{33,000}=\frac{6000 p f v \times .100}{33,000}=\frac{p f v}{55}=1.091 p f V,
\]
if \(V\) is taken in feet per second.
Prof. Harkness gives H.P. \(=\frac{0.910 \mathrm{Vpf}}{\sqrt{1+0.65 V}}\). If the \(V\) in the denominato.

De taken at \(200 \div 60=31 / 3\) feet per second, \(\sqrt{1+0.65 V}=\sqrt{3.16 \tilde{i}}=1.18\), and H.P. \(=\frac{.910}{1 . \tilde{8}} V p f=.571 p f V\), or about \(52 \%\) of the result given by Mr. Lewis's formula. This is probably as close an agreement as can be expected, since Prof. Harkness derived his formula from an investigation of ancient precedents and rule-of-thumb practice, largely with common cast gears, while Mr. Lewis's formula was derived from considerations of modern practice with machine moulded and cut gears.

Mr. Lews takes into consideration the reduction in working strength of a tooth due to increase in velocity by the figures in his table of the values of the safc working stress \(s\) for different speeds. Prof. Harkness gives expression to the same reduction by means of the denominator of his formula,
\(1 \overline{1+0.65 V}\). The decrease in strength as computed by this formula is somewhat less than that given in Mr. Lewis's table, and as the figures given in the table are not based on accurate data, a mean between the values given by the formula and the table is probably as near to the true value as may be obtained from our present knowledge. The following table gives the values for different speeds according to Mr. Lewis's table and Prof Harkness's formula, taking for a basis a working stress \(s\), for cast-iron 8000, and for steel \(: 0,000 \mathrm{lbs}\). at speeds of 100 ft . per minute and less:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(v=\) speed of teeth, ft. per min..
\(V=6\) ft. per sec.. & \[
\begin{aligned}
& 100 \\
& 12 / 3
\end{aligned}
\] & 200 & 300
5 & 600
10 & 900
15 & 1200
20 & 1800
30 & \[
\begin{gathered}
2400 \\
40
\end{gathered}
\] \\
\hline Safe stress \(s\), cast-iron, Lewis & 8000 & 6000 & 4800 & 4000 & 3000 & 2400 & 2000 & 1700 \\
\hline Relative do.. \(s \div 8000\) & 1 & . 75 & - & . 5 & . \(3 \% 5\) & . 3 & . 25 & . 2125 \\
\hline \(c=1 \div \sqrt{1+0.65 V}\). & . 6930 & . 5621 & . 4850 & . 3650 & . 3050 & . 2602 & . 2208 & 1924 \\
\hline Relative val. \(c \div .693\) & 1 & . 811 & . 700 & . \(5 \geqslant 6\) & . 439 & . 385 & . 318 & 2î \\
\hline \(s_{1}=8000 \times(c \div .693)\). & S000 & 6438 & 5600 & 4208 & 3512 & 3080 & 2544 & 2016 \\
\hline Mean of \(s\) and \(s_{1}\), cast-iron \(=s_{2}\). & 8000 & \(6: 00\) & 5:20 & 4100 & 33:300 & 2T00 & 2300 & 2000 \\
\hline \(:^{*}\) " \(\%\) for steel \(=s_{3}\). & 20000 & 15500 & \(1: 3000\) & 10:300 & 8100 & 6800 & \(5: 00\) & 4900 \\
\hline Safe stress for steel. Lewis.. & 20000 & 50 & 1200 & 10000 & i500 & 6000 & 5000 & 4300 \\
\hline
\end{tabular}

Comparing the two formulæ for the case of \(s=8000\), corresponding to a speed of 100 ft . per min., we have
Harkness: H.P. \(=1 \div \sqrt{1-0.65 V} \times .910 \mathrm{Vpf}=.695 \times .91 \times 1 \% / 3 p f=1.051 \mathrm{pf}\) :
Lewis: \(\quad\) H.P. \(=\frac{s p f y v}{33,000}=\frac{s p f y V}{550}=\frac{8000 \times 12 / 3 p f y}{550}=2124 p f y\),
in which \(y\) varies according to the shape and number of the teeth.
For radial-flank gear with 12 teeth \(\quad y=.052 ; 24.24 p f y=1.260 p f\) :
For \(20^{\circ}\) involute, 19 teeth, or \(15^{\circ}\) iuv., \(2 \sim\) teeth \(y=.100\); \(24.2 \frac{1}{2} p f y=2.42+p f\);
For \(15^{\circ}\) involute, 300 teeth \(\quad y=.150 ; 24.242 f y=3.636 \mathrm{pf}\).
Thus the weakest-shaped tooth, according to Mr. Lewis, will transmit 20 per cent more horse-power than is given by Prof. Harkness's formula, in which the shape of the tooth is not considered, and the average-shaped tooth, according to Mr. Lewis, will transmit more than double the horsepower given by Prof. Harkness's formula.

Comparison of Other Formula.-Mr. Cooper, in summing up his examination, selected au old English rule, which Mr. Lewis considers as a passably correct expression of good general averages, viz. : \(X=2000 \mathrm{pf}\). \(X=\) breaking load of tooth in pounds, \(p=\) pitch, \(f=\) face. If a factor of safety of 10 be taken, this would give for safe working load \(W=200 \mathrm{pf}\).

George B. Grant, in his Teeth of Gears, page 33. takes the breaking load at 3500 pf , and, with a factor of safety of 10 , gives \(W=350 \mathrm{pf}\).

Nystrom's Pocket-Book, 20 th ed., 1891, says: "The strength and durability" of cast-iron teeth require that they shall transmit a force of 80 lbs . per inch of pitch and per inch breadth of face." This is equivalent to \(W=80 p f\), or ouly \(40 \%\) of that given by the English rule.
F. A. Halsey (Clark's Pocket Book) gives a table calculated from the formula \(\quad \mathrm{H} . \mathrm{P} .=p f d \times \mathrm{rpm} . \div 850\).

Jones \& Laughlins give H.P. \(=p f d \times \mathrm{rpm} . \div 550\).
These formulæ transformed give \(W=1: 8 p f\) and \(W=218 p f\), respectively:

Unwin, on the assumption that the load acts on the corners of the teeth, derives a formula \(p=K / \bar{W}\), in which \(K\) is a coefficient derived from existing wheels, its values being : for slowly moving gearing not subject to much vibration or shock \(K^{=}=.04\); in ordinary mill-gearing, running at greater speed and subject to considerable vibration, \(K=.05\); and in wheels subjected to excessive vibration and shock, and in mortise gearing, \(K=06\). Reduced to the form \(W=C p f\), assuming that \(f=2 p\), these values of \(K\) give \(W=262 p f, 200 p f\), and \(139 p f\), respectively.
Unwin also gives the following formula, based on the assumption that the pressure is distributed along the edge of the tooth: \(p=K_{1} \sqrt{\frac{p}{f}} \vee \bar{W}\), where \(K_{1}=\) about .0707 for iron wheels and .0848 for mortise wheels when the breadth of face is not less than twice the pitch. For the case of \(f=2 p\) and the given values of \(K_{1}\) this reduces to \(W=200 \mathrm{pf}\) and \(\mathrm{W}=139 \mathrm{pf}\), respectively.
Box, in his Treatise on Mill Gearing, gives H.P. \(=\frac{12 p^{2} f \sqrt{d n}}{1000}\), in which \(n\) \(=\) number of revolutions per minute. This formula differs from the more modern formulæ in making the H.P. vary as \(p^{2} f\), instead of as \(p f\), and in this respect it is no doubt incorrect.
Making the H.P. vary as \(\sqrt{ } \overline{d n}\) or as \(\sqrt{v}\), instead of directly as \(v\), makes the velocity a factor of the working strength as in the Harkuess and Lewis formulæ, the relative strength varying as \(\frac{\sqrt{v}}{v}\), or as \(\frac{1}{\sqrt{\prime}^{v}}\), which for different velocities is as follows:
\(\begin{array}{rllllllll}\text { Speed of teeth in } \mathrm{ft} \text { per min., } v & =100 & 200 & 300 & 600 & 900 & 1200 & 1800 & 2400 \\ \text { Relative strength } & =1 & .707 & .574 & .409 & .333 & .289 & .236 & .204\end{array}\)
Showing a somewhat more rapid reduction than is given by Mr. Lewis.
For the purpose of comparing different formulæ they may in general be reduced to either of the following forms:
\[
\text { Н.Р. }=C p f v, \quad \text { H.Р. }=C_{1} p f d \times \mathrm{rpm.}, \quad W=c p f,
\]
in which \(p=\) pitch, \(f=\) face, \(d=\) diameter, all in inches \(; v=\) velocity in feet per minute, rpm. revolutions per minute, and \(C, C_{2}\) and \(c\) coefficients. The formulæ for transformation are as follows :
\[
\text { H.P. }=\frac{W v}{33000}=\frac{W \times d \times \mathrm{rpm} .}{1: 6,050} ;
\]
\(W=\frac{33,000 \mathrm{H} . \mathrm{P} .}{v}=\frac{126,050 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=33,000 \mathrm{Cpf} ; p f=\frac{\mathrm{H.P} .}{C v}=\frac{\mathrm{H} . \mathrm{P} .}{C_{1} d \times \mathrm{rpm} .}=\frac{W}{c}\).
\[
C_{1}=.2618 C ; \quad c=33,000 C ; \quad C=3.82 C_{1},=\frac{c}{33,000} ; \quad c=126,050 C_{1} .
\]

In the Lewis formula \(C\) varies with the form of the tooth and with the speed. and is equal to \(s y \div 33,000\), in which \(y\) and \(s\) are the values taken from the table, and \(c=s y\).
In the Harkness formula \(C\) varies with the speed and is equai to \(\frac{910}{\sqrt{1+0.65 V}}\) \((V\) being in feet per second \(),=\frac{.01517}{\sqrt{1+.011 v}}\)
In the Box formula \(C\) varies with the pitch and also with the velocity, and equals \(\frac{12 p \sqrt{d \times r p m .}}{1000 v}=.02345 \frac{p}{\sqrt{v}} . \quad c=33,000 \mathrm{C}=7 \pi 4 \frac{p}{\sqrt{v}}\).

For \(v=100 \mathrm{ft}\). per \(\min . C=7 \pi .4 p ;\) for \(v=600 \mathrm{ft}\). per minute \(c=31.6 p\).
In the other formulæ considered \(C, C_{1}\), and \(c\) are constants. Reducing the several formule to the form \(W=c p \hat{f}\), we have the following:

\section*{Comparison of Different Forx ile for Strength of Gear-teeth.}

Safe working pressure per inch pitch and per inch of face, or value of \(c\) in formula \(W=c p f\) :
\begin{tabular}{|c|c|c|}
\hline & per min. & min. \\
\hline \multirow[t]{2}{*}{Lewisp Weak form of tooth, radial flank, 12 reeth.
Medium tooth, inv. \(15^{\circ}\), or cycloid, \(2 \%\) teeth} & \(c=416\) & 208 \\
\hline & \(c=800\) & 400 \\
\hline Strong form of tooth, or cycloid, 300 teeth... & \(c=1: 00\) & 600 \\
\hline Harkness: Average tooth & \(c=347\) & 184 \\
\hline Box: Tooth of 1 inch pitch & \(c=\% \pi .4\) & 31.6 \\
\hline " 3 inches pitch & \(c=232\) & 95 \\
\hline
\end{tabular}

Varions, in which \(c\) is independent of form and speed: Old English rule, \(c=200\); Grant. \(c=350\); Nystrom, \(c=80\); Halsey, \(c=128\); Jones \(\&\) Laughlins, \(c=218\); Unwin, \(c=262,200\), or 139, according to speed, shock, and vibration.

The value given bs Nystrom and those given by Box for teeth of small pitch are so much smaller than those given by the other authorities that they may be rejected as having an entirely unnecessary surplus of strength. The values given by Mr. Lewis seem to rest on the most logical basis, the form of the teeth as well as the velocity being considered; and since they are said to have provensatisfactory in an extended machine practice, they may be considered reliable for gears that are so well made that the pressure bears along the face of the teeth instead of upon the corners. For rough ordinary work the old English rule \(W=200 p f\) is probably as good as ony, ex cept that the figure 200 may be too high for weak forms of tooth and for high speeds.

The formula \(W=200 p f\) is equivalent to H.P. \(=\frac{p f d \times \mathrm{rpm} .}{630}=\frac{p f v}{165}\), or \(\mathrm{H} P .=0015 \mathrm{Si} 3 \mathrm{p} p \mathrm{fd} \times \mathrm{rpm}=.006063 \mathrm{pfv}\).

Maximum Speed of Gearing.-A. Towler, Eng'g, April 19, 1889, p. 350 , gives me maximum speeds at which it was possible under favorable conditions to run toothed gearing safely as follows:

Ft, per min.
Ordinary cast-iron wheels........................... ............. .... 1800
Helical " " " \(\because\) "......... .................... . ........... 2400
Mortise " " " ................................................... 2400
Ordinary cast-steel wheels ....................................... ........... . . . . . 2600
Helical " " " .... ........................................... 3000
Special cast-iron machine-cut wheels ............. .. ......... ... 3000
Prof. Coleman Sellers (Stevens Indicator, April, 1892) recommends that grearing be not rim over 1200 ft . per minute. to aroid great noise. The Walker Company, Cleveland, O, say that 2200 ft . per min. for iron gears and 3000 ft . for wood and iron (mortise gears) are excessive, and should be avoided if possible. The Corliss engine at the Philadelphia Exhibition (18tio) had a fly wheel 30 ft . in diameter running 35 rpm . geared into a pinion 12 ft . diam. The speed of the pitch-line was 3300 ft . per min.

A Heavy Machine-cut Spur-gear was made in 189! by the Walker Company, Cleveland, O., for a diamond mine in South Africa, with dimensions as follows: Number of teeth, 192 ; pitch diameter, \(30^{\prime} 6.66^{\prime \prime}\); face \(30^{\prime \prime}\); pitch, \(6^{\prime \prime}\) : bore, \(27^{\prime \prime \prime}\); diameter of hub, \(9^{\prime} 2^{\prime \prime}\); weight of hub, 15 tons; and total weight of gear, \(663 / 4\) tons. The rim was made in 12 segments, the joints of the segments being fastened with two bolts each. The spokes were bolted to the middle of the segments and to the hub with four bolts in each end.

Frictional Gearing. - In frictional gearing the wheels are tonthless, and one wheel drives the other by means of the friction between the two surfaces which are pressed together. They may be used where the power to be transmitted is not very great; when the speed is so high that trothed wheels would be noisy; when the shafts require to be frequently put into and out of gear or to have their relative direction of motion reversed; or when it is desired to change the relocity-ratio while the machinery is in motion, as in the case of disk friction-wheels for changing the feed in machine tools.
Let \(P=\) the normal pressure in pounds at the line of contact by which two wheels are pressed together, \(T=\) tangential resistance of the driven wheel at the line of contact, \(f=\) the coefficient of friction, \(V=\) the velocity of the pitch-surface in feet per second, and H.P. = horse-power; then \(T\) may be equal to or less than \(f P ;\) H.P. \(=T V \div 550\). The vaiue of \(f\) for
metal on metal may be taken at .15 to 20 ; for wood on metal, 25 to .30 ; and for wood on compressed paper, .20. The tangential driving force \(T\) may be as high as 80 lbs. per inch width of face of the driving surface, but this is accompanied by great pressure and friction on the journal-bearings.
In frictional grooved gearing circuinferential wedge-shaped grooves are cut in the faces of two wheels in contact. If \(P=\) the force pressing the wheels together, and \(N=\) the normal pressure on all the grooves, \(P=N\) ( \(\sin a+f \cos a\) ), in which \(2 a=\) the inclination of the sides of the grooves, and the maximum tangential available force \(T=f N\). The inclination of the sides of the grooves to a plane at right. angles to the axis is usually \(30^{\circ}\).
Frictional Grooved Gearing.-A set of friction-gears for transmitting 150 H.P. is on a steam-dredge described in Proc. Inst. M. E., July, 1888. Two grooved pinions of 54 in. diam., with 9 grooves of \(13 / 4\) in. pitch and angle of \(40^{\circ}\) cut on their face. are geared into two wheels of \(12 \% 1 \frac{2}{2}\) in diam. similarly grooved. The wheels can be thrown in and out of gear by levers operating eccentric bushes on the large wheel-shaft. The circumferential speed of the wheels is about 500 ft . per min. Allowing for engine-friction, if half the power is transmitted through each set of gears the tangential force at the rims is about 3960 lbs ., requiring, if the angle is \(40^{\circ}\) and the coefficient of friction 0.18 , a pressure of \(75: 4 \mathrm{lbs}\). between the wheels and pinion to prevent slipping.
The wear of the wheels proving excessive, the gears were replaced by spurgear wheels and brake-wheels with steel brake-bands, which arrangement has proven more durable than the grooved wheels. Mr. Daniel Adamson states that if the frictional wheels had been run at a higher speed the results would have been better, and says they should run at least 30 ft . per second.

\section*{HOISTING.}

Approximate Weight and Strength of Cordage. (Boston and Lookport Block Co.)-See also pages 339 to 345.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Size in Circumference. & Size in Diaineter. & ```
Weight of
    100 ft.
    Manila,
    in lbs.
``` & Strength of Manila Rope, in lbs. & Size in Circumference. & Size in Diameter. & Weight of 100 ft . Manila, in lbs. & Strength of Manila Rope, in lbs. \\
\hline inch. & inch. & & & inch. & inch. & & \\
\hline \(\stackrel{1}{2}\) & 5/8 & 13 & 4,000 & 43/4 & \(19 / 16\) & 9 & 22,500 \\
\hline 21/4 & 3/4 & 16 & 5,000 & 5 & 15/8 & 80 & 25,000 \\
\hline \(21 / 2\) & \(13 / 16\) & 20 & 6,250 & 51/2 & 13/4 & 97 & 30,250 \\
\hline 23/4 & 7/8 & 24 & 7,500 & 6 & 2 & 113 & 36,000 \\
\hline 3 & & 28 & 9,000 & 61/2 & \(21 / 8\) & 1:33 & 42,250 \\
\hline \(31 / 4\) & 11/16 & 33 & 10,500 & 7 & \(21 / 4\) & 153 & 49,000 \\
\hline \(31 / 2\) & \(11 / 8\) & 38 & 12,250 & \(71 / 2\) & 21/2 & 184 & 56.250 \\
\hline \(33 / 4\) & \(11 / 4\) & 45 & 14,000 & 8 & 25/8 & 211 & 64.000 \\
\hline 4 & 15/16 & 51 & 16,000 & \(81 / 2\) & 27/8 & 2:36 & 72,250 \\
\hline \(41 / 4\) & 13/8 & 58 & 18,062 & 9 & 3 & 262 & 81,000 \\
\hline \(41 / 2\) & 11/2 & 65 & 20.250 & & & & \\
\hline
\end{tabular}

Working Strength of Blocks. (B. \& L. Block Co.)

Regular Mortise-blocks Single and Double, ur Two Double Ironstrapped Blocks, will hoist about-

Wide Mortise and Extra Heavy Single and Double, or Two Double, Iron-strapped Blocks, will hoist about-
\begin{tabular}{cr}
inch. & llbs. \\
8 & 2,00 \\
10 & \\
12 & 6,000 \\
14 & \\
12 & 24,000 \\
18 & 36,000 \\
18 & 50,000 \\
20 & 90,000
\end{tabular}

Where a double and triple block are used together, a certain extra proportioned amount of weight can be safely hoisted, as larger hooks are used,

\section*{Comparative Efficiency in Chain-blocks both in Hoisting and Lowering.}
(Tests by Prof. R. H. Thurston, Hoisting, March, 1892.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Work of Hoisting. Load of 2000 lbs .} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Work of Lowering. \\
Load of 2000 lbs ., lowered \(\% \mathrm{ft}\). in each case.
\end{tabular}} \\
\hline & & & & & Exc & of F & or o & ime. & \[
\begin{gathered}
\text { Inclu } \\
\text { Ti }
\end{gathered}
\] & sive of me. \\
\hline & \[
\begin{aligned}
& \stackrel{3}{3} \\
& 0 \\
& 0 \\
& e \\
& e \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & & & & & \[
\begin{array}{|cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0
\end{array}
\] & & \\
\hline 1 & 20.50 & \%9.50 & 1.00 & 32.50 & 8.00 & 227. & 1,816 & 1.00 & 0.75 & 1.000 \\
\hline 2 & 68.00 & 32.00 & . 40 & 6.44 & 14.00 & 436. & 6,104 & 3.33 & 1.20 & . 186 \\
\hline 3 & 69.00 & 31.00 & . 39 & 3000 & \(9 \cdot 3.30\) & 196. & 18,090 & 10.00 & 1.50 & . 050 \\
\hline 4 & 71.20 & 28.80 & . 36 & 28.00 & 92.60 & 168. & 15,556 & 8.60 & 2.50 & . 035 \\
\hline 5 & T3.96 & 26.04 & . 33 & 48.00 & 73.30 & 17.5 & 1,282 & 0.71 & 2.80 & . 380 \\
\hline 6 & 75.66 & 24.34 & . 31 & 53.00 & 56.60 & 370. & 20,942 & 11.60 & 1.80 & . 036 \\
\hline 8 & 77.00 & 23.00 & .29 & 44.30 & 55.00 & 310. & 17,050 & 9.40 & 2.75 & . 029 \\
\hline 8 & 81.03) & 18.97 & 24 & 61.00 & 48.50 & 426. & 20,000 & 11.60 & 3.75 & . 018 \\
\hline
\end{tabular}

No. 1 was Weston's triplex block; No. 3, Weston's differential; No. 4, Weston's imported. The others were from different makers, whose names are not given. All the blocks were of one-ton capacity.

Proportions of Hooks.-The following formulæ are given by Henry R. Towne, in his Treatise on Cranes, as a result of an extensive experimental and mathematical investigation. They apply to hooks of capacities from 250 lbs. to \(20,000 \mathrm{lbs}\). Each size of hook is made from some commercial size of round iron. The basis in each case is, therefore, the size of iron of which the hook is to be made, indicated by \(A\) in the diagram. The dimension \(D\) is arbitrarily assumed. The other dimensions, as given by the formulæ, are those which, while preserving a proper bearing-face on the interior of the hook for the ropes or chains which may be passed through it, give the greatest resistance to spreading and to ultimate rupture, which the amount of material in the original bar admits of. The syinbol \(\Delta\) is used to indicate the nominal capacity of the hook in tons of 2000 lbs . The formulæ which determine the lines of the other parts of the hooks of the several sizes are as follows, the measurements being all expressed in inches:

Fig. 164.
\(D=.5 A+1.25\)
\(E=.04 \Delta+1.60\)
\(G=.75 D\)
\(O=.363 \Delta+.66\)
\(Q=.64 \Delta+1.60\)
\begin{tabular}{rl}
\(H=1.08 A\) & \(I=1.05 A\) \\
\(I=1.33 A\) & \(M=.50 A\) \\
\(J=1.20 A\) & \(N=.85 B-.16\) \\
\(K=1.13 A\) & \(U=.866 A\)
\end{tabular}

The dimensions \(\boldsymbol{A}\) are necessarily based upon the ordinary merchant sizes of round iron. The sizes which it has been found best to select are the following:
Capacity of hook:
\(\begin{array}{llllllllllll}1 / 8 & 1 / 4 & 1 / 2 & 1 & 11 / 2 & 2 & 3 & 4 & 5 & 6 & 8 & 10\end{array}\)
Dimension \(A\) :
\(\begin{array}{llllllllllll}5 / 8 & 11 / 16 & 3 / 4 & 1 & 1 / 16 & 11 / 4 & 13 / 8 & 13 / 4 & 2 & 21 / 4 & 21 / 2 & 23 / 8 \\ & 31 / 4 & \mathrm{in} .\end{array}\)

Experiment has shown that hooks made according to the above formula will give way first by opening of the jaw, which, however, will not occur except with a load much in excess of the nominal capacity of the hook. This yielding of the hook when overloaded becomes a source of safety, as it constitutes a sigual of danger which cannot easily be overlooked, and which must proceed to a considerable length before rupture will occur and the load be dropped.

\section*{POWER OF HOISTING-ENGINES.}

\section*{Horse-power required to raise a Load at a Given} Speed. - H.P. \(=\frac{\text { Gross weight in lbs }}{33,000} \times\) speed in ft. per min. To this add \(25 \%\) to \(50 \%\) for friction, contingencies, etc. The gross weight includes the weight of cage, rope, etc. In a shaft with two cages balancing each other use the net load + weight of one rope, instead of the gross weight.

To find the load which a given pair of engines will start.-Let \(A=\) area of cylinder in square inches, or total area of both cylinders, if there are two; \(P=\) mean effective pressure in cylinder in lbs. per sq. in.; \(S=\) stroke of cylinder in inches; \(C=\) circumference of hoisting-drum in inches; \(L=\) load lifted by hoisting-rope in lbs. ; \(F=\) friction, expressed as a dimiuution of the load. Then \(L=\frac{A P^{2} S}{C}-F\).

An example in Coll'y Engr., July, 1891, is a pair of hoisting-engines \(24^{\prime \prime} \times\) \(40^{\prime \prime}\), drum 12 ft . diam., average steam-pressure in cylinder \(=59.5 \mathrm{lbs} . ; A=\) 904.8; \(P=59.5 ; S=40 ; C=452.4\). Theoretical load, not allowing for friction, \(A P 2 S \div C=9589 \mathrm{lbs}\). The actual load that could just be lifted on trial was 7988 lbs., making friction loss \(F=1601 \mathrm{lbs}\), or \(20+\) per cent of the actual load lifted, or \(16 \% / 3 \%\) of the theoretical load.
The above rule takes no account of the resistance due to inertia of the load, but for all ordinary cases in which the acceleration of speed of the cage is moderate, it is covered by the allowance for friction, etc. The resistance due to inertia is equal to the force required to give the load the velocity acquired in a given time, or, as shown in Mechanics, equal to the product of the mass by the acceleration, or \(R=\frac{W V}{g T}\), in which \(R=\) resistance in lbs. due to inertia; \(W=\) weight of load in lbs. \(V=\) maximum velocity in feet per second; \(T^{\prime}=\) time in seconds taken to acquire the velocity \(V\); \(g=32.16\).

Effect of Slack Rope upon Strain in Hoisting.-A sories of tests with a dynamometer are published by the Trenton Iron Co., which show that a dangerous extra strain may be caused by a few inches of slack rope In one case the cage and full tubs weighed \(11,300 \mathrm{lbs}\).; the strain when the load was lifted gently was 11,525 lbs.; with 3 in. of slack chain it was 19.025 lbs , with 6 in . slack 2.750 lbs ., and with 9 in . slack \(27,950 \mathrm{lbs}\).

Limit of Depth for Hoisting.-Taking the weight of a cast-steel hoisting-rope of \(11 / 8\) inches diameter at bs. per running foot, and its break. ing strength at \(84,000 \mathrm{lbs}\)., it should, theoretically, sustain itself until 42,000 feet long before breaking from its own weight. But taking the usual factor of safety of 7 , then the safe working length of such a rope would be only 6000 feet. If a weight of 3 tons is now hung to the rope, which is equivalent to that of a cage of moderate capacity with its loaded cars, the maximum length at which such a rope could be used, with the factor of safety of 7 , is 3000 feet, or
\[
2 x+6000=\frac{84,000}{7} ; \quad \therefore x=3000 \text { feet. }
\]

This limit may be greatly increased by using special steel rope of higher strength, by using a smaller factor of safety, and by using taper ropes. (See paper by H. A. Wheeler, Trans. A. I. M. E., xix. 107.)

Large Hoisting Records.-At a colliery in North Derbyshire during the first week in June, 1590, 6309 tons were raised from a depth of 509 yaids, the time of winding being from \(7 \mathrm{a} . \mathrm{m}\). to \(3.30 \mathrm{p} . \mathrm{m}\).

At two other Derbyshire pits, 170 and 140 yards in depth, the speed of winding and changing has been brought to such perfection that tubs are drawn and changed three times in one minute. (Proc. Inst, M. E., 1890.)

At the Nottingham Colliery near Wilkesbarre, Pa., in Oct. 1891, 70,152 tons were shipped in 24.15 days, the average hoist per day being 1318 mine cars.

The depth of hoist was \(4 \pi 0\) feet, and all coal came from one opening. The engines were fast motiou, \(22 \times 48\) inches, conical drums 4 feet 1 inch long, 7 feet diammer at small end and 9 feet at large end. (Eng'g Neus, Nov. 1891.)

Pieumatic Hoisting. (H. A. Wheeler, Trans. A. I. M. E., xix. 10. .)A puemmatic hoist was installed in \(18 \% 6\) at Epinac, France, consisting of two continuons air-tight iron cylinders extending from the bottom to the top of the shatt. Within the cylinder moved a piston from which was hung the cage. It was operated by exhausting the air from above the piston, the lower side being open to the atmosphere. Its use vas discontinued on account of the failure of the mine. Mr. Wheeler gives a description of the system, but criticises it as not being equal on the whole to hoisting by steel ropes.

Pneumatic hoisting-cylinders using compressed air have been used at blast-furnaces, the weighted piston counterbalancing the weight of the cage, and the two being connected by a wire rope passing over a pulley-sheave above the top of the cylinder. In the more modern furnaces steam-engine hoists are generally used.

Counterbalancing of Winding-engines. (H . W. Hughes, Columbia Coll. Qly.)-Engines ruuning unbalanced are subject to enormous variations in the load; for let \(W\) = weight of cage and empty tubs, say \(62 \pi 0\) lhs.; \(c=\) weight of coal, say \(4480 \mathrm{lbs}_{\text {. } ;} \gamma=\) weight of hoisting rope, say 6000 lus.; \(\boldsymbol{r}^{\prime \prime}=\) weight of counterbalance rope hanging down pit, say 6000 lbs . The weight to be lifted will be:

If weight of rope is unbalanced. If weight of rope is balanced.
at beginning of lift:
\(W+c+r-W\) or \(10,480 \mathrm{lbs}\).
At middle of lift:
\(W+c+\frac{r}{2}-\left(W+\frac{r}{2}\right)\) or 4480 lbs. \(W+c+\frac{r}{2}+\frac{r^{\prime}}{2}-\left(W+\frac{r}{2}+\frac{r^{\prime}}{2}\right),\left\{\begin{array}{l}\text { or } \\ 4480 \\ \text { lbs. }\end{array}\right.\) at end of lift:
\(W+c-(\dot{W}+r)\) or minus \(1520 \mathrm{lbs} . \quad " W+c+r \prime-(W+r), \quad\)
That counterbalancing materially affects the size of winding-engines is shown by a formula given by Mr. Robert Wilson, which is based on the fact that the greatest work a winding-engine has to do is to get a given mass into in certain velocity uniformly accelerated from rest, and to raise a load the distance passed over during the time this velocity is being obtained.
Let \(W=\) the weight to be set in motion: one cage, coal, number of empty tubs on cage, one winding rope from pit head-gear to bottom, and one rope from banking level to bottom.
\(v=\) greatest velocity attained, uniformly accelerated from rest;
\(g=\) gravity \(=32.2 ;\)
\(t=\) time in seconds during which \(v\) is obtained;
\(L=\) unbalanced load on engine;
\(R=\) ratio of diameter of drum and crank circles;
\(P=\) average pressure of steam in cylinders;
\(N=\) number of cylinders;
\(S=\) space passed over by crank-pin during time \(t\);
\(C=2 / 8\), constant to reduce angular space passed through by crank, to the distance passed through by the piston during the time \(t\);
\(A=\) area of one cylinder, without margin for friction. To this an addition for friction, etc., of engine is to be made, varying from 10 to \(30 \%\) of \(A\).
1st. Where load is balanced,
\[
A=\frac{\left\{\left(\frac{W v^{2}}{2 g t}\right)+\left(L \frac{v t}{2}\right)\right\} R}{P N S C}
\]

2d. Where load is unbalanced:
The formula is the same, with the addition of another term to allow for the variation in the lengths of the ascending and descending ropes. In this case
\(h_{1}=\) reduced length of rope in \(t\) attached to ascending cage;
\(h_{2}=\) increased length of rope in \(t\) attached to desceuding cage;
\(w=\) weight of rope per foot in pounds. Then
\[
A=\frac{\left[\cdot\left(\frac{W v^{2}}{2 g t}\right)+\left\{\left(\frac{v t}{L}\right)-\frac{h_{1} v+h_{2} w}{2}\right\}\right] R}{P N S C .}
\]

Applying the abore formula when designing new engines, Mr. Wilson found that 30 inches diameter of cylinders would produce equal results, when balanced, to those of the 36 -inch cylinder in use, the latter being unbalanced.
Counterbalancing may be employed in the following methods :
(a) Tapering Rope.-At the initial stage the tapering rope enables us to wind from greater depths than is possible with ropes of uniform section. The thickness of such a rope at any point should only be such as to safely bear the load on it at that point.
With tapering ropes we obtain a smaller difference between the initial and final load, but the difference is still considerable, and for perfect equalization of the load we must rely on some other resource. The theory of taper ropes is to obtain a rope of uniform strength, thimer at the cage end where the weight is least, and thicker at the drum end where it is greatest.
(b) The Counterpoise System consists of a heavy chain working up and down a staple pit, the motion being obtained by means of a special small drum placed on the same axis as the winding drum. It is so arranged that the chain hangs in full length down the staple pit at the commencement of the winding; in the centre of the run the whole of the chain rests on the bottom of the pit, and, finally, at the end of the winding the counterpoise has been rewound upon the small drum, and is in the same condition as it was at the commencement.
(c) Loaded-wagon System. - A plan, formerly much employed, was to have a loaded wagon rumning on a short incline in place of this heavy chain; the rope actuating this wagon being connected in the same manner as the above to a subsidiary drum. The incline was constructed steep at the commencement, the inclination gradually decreasing to nothing. At the beginning of a wind the wagon was at the top of the incline, and during a portion of the rungradually passed down it till, at the meet of cages, no pull was exerted on the engine-the wagon by this time being at the bottom. In the latter part of the wind the resistance was all against the engine, owing to its having to pull the wagon up the incline. and this resistauce increased from nothing at the meet of cages to its greatest quantity at the couclusiou of the lift.
(d) The Endless-rope System is preferable to all others, if there is sufficient sump room and the shaft is free from tubes. cross timbers, and other impediments. It consists in placing beneath the cages a tail rope, similar in diameter to the winding rope, and, after conveying this down the pit, it is attached beneath the other cage.
(e) Fiat Ropes Coiling on Reels. -This means of winding allows of a certain equalization, for the radius of the coil of tascending rope continues to increase, while that of the descending one continues to diminish. Consequently, as the resistance decreases in the ascending load the leverage increases, and as the power increases in the other, the leverage diminishes. The variation in the leverage is a constant quantity, and is equal to the thickness of the rope where it is wound on the drum.
By the above means a remarkable uniformity in the load may be obtained, the only objection being the use of flat ropes, which weigh heavier and only last about two thirds the time of round ones.
(\(f\)) Conical Drums.- Results analogous to the preceding may be obtained by using round ropes coiling on conical drums, which may either be smonth, with the successive coils lying side by side, or they may be provided with a spiral groove. The objection to these forms is, that perfect equalization is not obtained with the conical drums unless the sides are very steep, and consequently there is great risk of the rope slipping; to obviate this, scroll drums were proposed. They are, however, very expensive, and the lateral displacement of the winding rope from the cellte line of pulley becomes very great, owing to their necessary large width.
(g) The Koepe System of Winding,-An iron pulley with a single circular groove takes the place of the ordinary drum. The winding rope passes from one cage, over its head-gear pulley, round the drum, and, after pass
ing over the other head-gear pulley, is connected with the second cage. The winding rope thus encircles about half the periphery of the drum in the same manner as a driving-belt on an ordinary pull-y. There is a balance rope beueath the cages, passing round a pulley in the sump; the arrangem 'nt may be likened to an endless rope, the two cages being simply points of attachment.

\section*{BELT-CONVEYORS.}

Grain-elevators. - Anerican Grain-elevators are described in a paper by E. Lee Heidenreich, read at the International Engineering Congress at Chicago (Trans. A. S. C. E. 1893). See also Trans. A. S. M. E. vii, 660.

Bands for carrying Grain. - Flexible-rubber bands are extensively used for carrying grain in and around elevators and warehouses. An article on the grain-storage warehouses of the Alexandria Dock, Liverpool (Proc. Inst. M. E., July, 1891), describes the performance of these binds, aggregating three miles in length. A band \(16 \frac{1}{2}\) inches wide, \(12 \pi 0\) feet long, running 9 to 10 feet per second has a carrying capacity of 50 tons per hour. See also paper on Belts as Grain Conveyors, by T. W. Hugo, Trans. A. S. M. E.. vi. 400 .

Carrying-bands or Belts are used for the purpose both of sorting coal and of removing impurities. These carrying-bands may be said to be confined to two descriptions, namely, the wire belt, which cousists of an endless length of woven wire; and the steel-plate belt, which consists of two or three endless chains, carrying steel plates varying in width from 6 inches to 14 inches. (Proc. Inst. M. E., July, 1890.)

\section*{CRANES.}

Classification of Cranes. (Henry R. Towne, Trans. A. S. M. E., iv. 288. Revised in Hoisting, published by The Yale \& Towne Mfg. Co.)

A Hoist is a machiue for raising and lowering weights. A Crane is a hoist with the added capacity of moving the load in a horizontal or lateral direction.
Cranes are divided into two classes, as to their motions, viz., Rotary and Rectilinear, and into four groups, as to their source of motive power, viz.:

Hand.-When operated by manual power.
Power.- When driven by power derived from line shafting.
Steam, Electric. Hydraulic, or Pneumatic.-When driven by an engine or motor attached to the crane, and operated by steam, electricity, water, or air transmitted to the crane from a fixed source of supply.

Locomotive. - When the crane is provided with its own boiler or other generator of power, and is self-propelling ; usually being capable of both rotary and rectilinear motions.

Rotary and Rectilinear Cranes are thus subdivided:

\section*{Rotary Cranes.}
(1) Swing-cranes.-Having rotation, but no trolley motion.
(2) Jib-cranes.-Having rotation, and a trolley travelling on the jib.
(3) Column-cranes.-Identical with the jib-craves, but rotating around a fixed column (which usually supports a floor above).
(4) Pillar-cranes.-Having rotation only; the pillar or column being supported entirely from the foundation.
(5) Pillar Jib-cranes.-Identical with the last, except in having a jib and trolley motion.
(6) Derrick-cranes.-Identical with jib-cranes, except that the head of the mast is held in position by guy-rods, instead of by attachment to a roof or ceiling.
(r) Walking-cranes.-Consisting of a pillar or jib-crane mounted on wheels and arranged to travel longitudinally upon one or more rails.
(8) Locomotive-cranes.-Consisting of a pillar crane mounted on a truck, and provided with a steam-engine capable of propelling and rotating the crane, and of hoisting and lowering the load.

\section*{Rectilinear Cranes.}
(9) Bridge-cranes.-Having a fixed bridge spanning an opening, and a trolley moving across the bridge.
(10i Tram-cranes. - Consisting of a truck, or short bridge, travelling longitudinally on overhead rails, and without trolley motion.
(11) Travelling-cranes.-Consisting of a bridge moving longitudinally on overhead tracks, and a trolley moving transversely on the bridge.
(12) Gantries.-Consisting of an overhead bridge, carried at each end by a trestle travelling on longitudinal tracks on the ground, and having a trolley moving transversely on the bridge.
(13) Rotary Bridge-cranes.-Combining rotary and rectilinear movements and consisting of a bridge pivoted at one end to a central pier or post, and supported at the other end on a circular track; provided with a trolley moving transversely on the bridge.

For descriptions of these several forms of cranes see Towne's "Treatise on Cranes."

Stresses in Cranes.-See Stresses in Framed Structures, p. 440, ante.
Position of the Inclined Brace in a Jib-crane.-The most economical arrangement is that in which the inclined brace intersects the jib at a distance from the mast equal to four fifths the effective radius of the crane. (Hoisting.)

A Large Travellingacrane, designed and built by the Morgan Engineering Co., Alliance, U. for the \(12-i n c h-g u n\) shop at the Washingtou Navy Yard, is described in American Machinist, June 12, 1890. Capacity, 150 net tons; distance between centres of inside rails, \(59 \mathrm{ft} .6 \mathrm{in} .:\) maximum cross travel, 44 ft . 2 in .; effective lift, 40 ft .; four speeds for main hoist, 1,2 , 4 , and f ft. per min.; loads for these speeds, \(150,75,371 / 2\), and \(183 / 4\) tons respectively; traversing speeds of trolley on bridge, 25 and 50 ft . per minute : speeds of bridge on main track, 30 and 60 ft . per minute. Square shafts are employed for driving.

A 150 -ton Pillar-crane was erected in 1893 on Finnieston Quay, Glasgow. The jib is formed of two steel tubes, each 39 in . diam. and 90 ft . long. The radius of sweep for heavy lifts is 65 ft . The jib and its load are counterbalanced by a balance-box weighted with 100 tons of iron and steel punchings. In a test a 130 -ton load was lifted at the rate of 4 ft . per minute, and a complete revolution made with this load in 5 minutes. Eng'g News, July \(20,1893\).

Compressed-air Travelling-cranes.-Compressed-air overhead travelling-cranes have been built by the Lane \& Bodley Co., of Cincinnati. They are of 20 tous nominal capacity, each about 50 ft . span and 400 ft . length of travel, and are of the triple-motor type, a pair of simple reversing-engines being used for each of the necessary operations, the pair of engines for the bridge and the pair for the trolley travel being each 5 -inch bore by \(\boldsymbol{i}\)-inch stroke, while the pair for hoisting is 7 -inch bore by 9 -inch stroke. Air is furnished by a compressor having steam and air cylinders each \(10-\mathrm{in}\). diam. and \(12-\mathrm{in}\). stroke, which with a boiler-pressure of about 80 pounds gives an airpressure when required of somewhat over 100 pounds. The air-compressor is allowed to run continuonsly without a governor, the speed being regulated by the resistance of the air in a receiver. From a pipe extending from the receiver along one of the supporting trusses communication is continuously maintained with an auxiliary receiver on each traveller by means of a oneinch hose, the object of the ausiliary receiver being to provide a supply of air near the engines for immediate demands and independent of the hose counection, which may thus be of small dimension. Some of the advantages said to be possessed by this type of crane are: simplicity; absence of all moving parts, excepting those required for a particular motion when that motion is in use; no danger from fire, leakage, electric shocks, or freezing; ease of repair; variable speeds and reversal without gearing; almost entire absence of noise; and moderate cost.

Quay-cranes.-An illustrated description of several varieties of stationary and travelling cranes, with results of experiments, is given in a paper on Quay-cranes in the Port of Hamburg by Chas. Nehls, Trans. A. S. C. E.. Chicago Meeting, 1893.

Hydraulic Cranes, Accumulators, ctc.-See Hydraulic Press. ure Transmission, pare 616, ante.

Electric Cranes.-Travelling-cranes driven by electric motors have largely supplanted cranes driven by square shafts or flying-ropes. Each of the three motious, viz., longitudinal, traversing and hoisting, is usually accomplished by a separate motor carried upon the crane.

\section*{WIRE-ROPE HAULAGE.}

Methods for transporting coal and other products by means of wire rope. though varying from each other in detail, may be grouped in five classes:
I. The Self-acting or Gravity Iuclined Plane.
II. The Simple Engine-plane.
III. The Tail-rope System.
IV. The Endless-rope System.
V. The Cable Tramway.

The following brief description of these systems is abridged from a pamphlet on Wire-rope Haulage, by Wm. Hildenbrand, C.E., published by John A. Roebiing's Sons Co., Trenton, N. J.
I. The Self-acting Inclined Plane. -The motive power for the self-acting inclined plane is gravity; consequently this mode of transporting coal finds application only in places where the coal is conveyed from a higher to a lower point and where the plane has sufficient grade for the loaded descending cars to raise the empty cars to an upper level.

At the head of the plane there is a drum, which is generally constructed of wood, having a diameter of seven to ten feet. It is placed high enough to allow men and cars to pass under it. Loaded cars coming from the pit are either singly or in sets of two or three switched on the track of the plane, and their speed in descending is regulated by a brake on the drum.

Supporting rollers, to prevent the rope dragging on the ground, are generally of wood, 5 to 6 inches in diameter and 18 to 24 inches long, with \(3 / 4\) - to \(7 / 8\)-inch iron axles. The distance between the rollers varies from 15 to 30 feet, steeper planes requiring less roller's than those with easy grades. Considering only the reduction of friction and what is best for the preservation of rope, a general rule may be given to use rollers of the greatest possible diameter, and to place them as close as economy will permit.

The smallest angle of inclination at which a plane can be made self-acting will be when the motive and resisting forces balance each other. The motive forces are the weights of the loaded car and of the descending rope. The resisting forces consist of the weight of the empty car and ascending rope, of the rolling and axle friction of the cars, and of the axle friction of the supporting rollers. The friction of the drum, stiffness of rope, and resistance of air may be neglected. A general rule cannot be given, because a change in the length of the plane or in the weight of the cars changes the proportion of the forces; also, because the coefficient of friction, depending on the condition of the road, construction of the cars, etc., is a very uncertain factor.

For working a plane with a \(5 / 8\)-inch steel rope and lowering from one to folir pit cars weighing empty 1400 lbs . and loaded 4000 lbs ., the rise in 100 feet necessary to make the plane self-acting will be from about 5 to 10 feet, decreasing as the number of cars increase, and iucreasing as the length of plane increases.

A gravity inclined plane should be slightly concave, steeper at the top than at the bottom. The maximum deflection of the curre should be at an inclination of 45 degrees, and diminish for smaller as well as for steeper inclinations.
II. The Simple Engine-plane.-The name "Engine-plane" is given to a plane on which a load is raised or lowered by means of a single wire rope and stationary steam-engine. It is a cheap and simple method of conveying coal underground, and therefore is applied wherever circumstances permit it.

Under ordinary conditions such as prevail in the Pennsylvania mine region, a train of twenty-five to thirty loaded cars will descend, with reasonsuble velocity, a straight plane 5000 feet long on a grade of \(13 / 4\) feet in 100 , while it would appear that \(21 / 4\) feet in 100 is necessary for the same number of empty cars. For roads longer than 5000 feet, or when containiug sharp curves, the grade should be correspondingly larger.
111. The Fail-rope System.-Of all methods for conveying coal underground by wire rope, the tail-rope system has found the most application. It can be applied under almost any condition. The road may be straight or curved, level or undulating, in one continuous line or with side branches. In general principle a tail-rope plane is the same as an engineplane worked in both directions with two ropes. One rope, called the " main rope," serves for drawing the set of full cars outward; the other, called the "tail-rope," is necessary to take back the empty set, which on a level or undulating road cannot return by gravity. The two drums may be located at the opposite ends of the road, and driven by separate engines, but more frequently they are on the same shaft at one end of the plane. In the first case each rope would require the length of the plane, but in the second case the tail rope must be twice as long, being led from the drum around a sheave at the other end of the plane and back again to its starting-
point. When the main rope draws a set of full cars out, the tail-rope drum runs loose on the shaft, and the rope, being attached to the rear car, unwinds itself steadily. Going in, the reverse takes place. Each drum is provided with a brake to check the speed of the train on a down grade and prevent its overrunning the forward rope. As a rule, the tail rope is strained less than the main rope, but in cases of heavy grades dipping outward it is possible that the strain in the former may become as large, or even larger, than in the latter, and in the selection of the sizes reference should be had to this circumstance.
IV. The Endless-rope System.-The principal features of this system are as follows:
1. The rope, as the name indicates, is endless.
2. Motion is given to the rope by a single wheel or drum, and friction is obtained either by a grip-wheel or by passing the rope several times around the wheel.
3. The rope must be kept constantly tight, the tension to be produced by artificial means. It is done in placing either the return-wheel or an extra tension wheel on a carriage and connecting it with a weight hanging over a pulley, or attaching it to a fixed post by a screw which occasionally can be shorlened.
4. The cars are attached to the rope by a grip or clutch, which can take hold at any place and let go again, starting and stopping the train at will, without stopping the engine or the motion of the rope.
5. On a single-track road the rope works forward and backward, but on a double track it is possible to run it always in the same direction, the full cars going on one track and the empty cars on the other.
This method of conveying coal, as a rule, has not found as general an introduction as the tail-rope system, probably because its efficacy is not so apparent and the opposing difficulties require greater mechanical skill and more complicated appliances. Its advantages are, first, that it requires one third less rope than the tail-rope system. This advantage, however, is partially counterbalanced by the circumstance that the extra tension in the rope requires a heavier size to move the same load than when a main and tail rope are used. The second and principal advantage is that it is possible to start and stop trains at will without signalling to the engineer. On the other hand, it is more difficult to work curves with the endless system, and still more so to work different branches, and the constant stretch of the rope under tension or its elongation under changes of temperature frequently causes the rope to slip on the wheel, in spite of every attention, causing delay in the transportation and injury to the rope.
V. Wire-rope Tramways.-The methods of conveying products on a suspended rope tramway find especial application in places where a nine is located on one side of a river or deep ravine and the loading station on the other. A wire rope suspended between the two stations forms the track on which material in properly constructed "carriages " or "buggies " is transported. It saves the construction of a bridge or trestlework, and is practical for a distance of 2000 feet without an intermediate support.
There are two distinct classes of rope tramways:
1. The rope is stationary, forming the track on which a bucket holding the material moves forward and backward, pulled by a smaller endless wire rope.
2. The rope is movable, forming itself an endless line, which serves at the same time as supporting track and as pulling rope.
Of these two the first method has found more general application, and is especially adapted for long spans, steep inclinations, and heavy loads. The second method is used for long distances, divided into short spans, and is only applicable for light loads which are to be delivered at regular intervals.
For detailed descriptions of the several systems of wire-rnpe transportation, see circulars of John A. R"ebling's Sons Co., The Trenton Iron Co., and other wire-rope manufacturers. See also paper on Two-rope Haulage Systems, by R. Van A. Norris, Trans. A. S. M. E., xii. 6:6.
In the Bleichert System of wire-rope tramways, in which the track rope is stationary, loads of 1000 pounds each and upward are carried. While the average spans on a level aie from 150 to 200 feet, in crossing rivers, ravines, etc., spans up to 1500 feet are fiequently adopted. In a tramway on this system at Gianite, Montana, the total length of the line is 9750 feet, with a fall of \(1: 25\) feet. The descending loads, amounting to a constant weight of about 11 tons, develop over 14 horse-power, which is sufficient to haul the empty buckets as well as about 50 tons of supplies per day up the line, and
also to run the ore crusher and elevator. It is capable of delivering 250 tons of material in 10 hours.

\section*{Suspension Cableways or Cable Hoist-conveyors.}

> (Trenton Iron Co.)

In quarrying, rock-cutting, stripping, piling, dam-building, and many other operations where it is necessary to hoist and convey large individual loads economically, it frequently happens that the application of a system of derricks is impracticable, by reason of the limited area of their efficiency and the room which they occupy.

To meet such couditions cable hoist-conveyors are adapted, as they can be operated in clear spans up to 1500 feet, and in lifting individual loads up to 15 tons. Two types are made-one in which the hoisting and conveying are rone by separate rumuing ropes, and the other applicable only to inclines, in which the carriage descends by gravity, and but one running rope is required. The moving of the carriage in the former is effected by means of an endless rope, and these are commonly known as "endless-rope" hoistconveyors to distinguish them from the latter, which are termed "inclined" huist-conveyors.

The general arrangement of the eadless-rope hoist-conveyors consists of a main cable passing over towers, A frames or masts, as may be most convenient, and anchored firmly to the ground at each end, the requisite tension in the cable being maintained by a turnbuckle at one anchorage.

Upon this cable travels the carriage, which is moved back and forth over the line by means of the endless rope. The hoisting is done by a separate rope, both ropes being operated by an engine specially designed for the purpose, which may be located at either end of the line, and is constructed in such a way that the hoisting-rope is coiled up or paid out automatically as the carriage is moved in aud out. Loads may be picked up or discharged at any point along the line. Where sufficient inclination can be obtained in the main cable for the carriage to descend by gravity, and the loading and unloading is done at fixed points, the endless rope can be dispensed with. The carriage, which is similar in construction to the carriage used in the endless-rope cableways, is arrested in its descent by a stop-block, which may be clamped to the main cable at any desired point, the speed of the descending carriage being under control of a brake on the engine-drum.

Stress in Hoisting-ropes on Lnclined Planes. (Trenton Iron Co.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline \({ }_{5} \mathrm{ft}\). & & & \({ }_{5} \mathrm{ft}\) 5 & & & ft. & & \\
\hline 10 & \(5^{\circ} 43^{\prime}\) & 240 & 60 & \({ }^{28^{\circ}} 30^{\circ} 58^{\prime}\) & 1063 & 110 & \(47^{\circ} 44^{\prime}\)
\(50^{\circ} 12^{\prime}\) & 1516
1573 \\
\hline 15 & \(8^{\circ} 33^{\prime}\) & 336 & 65 & \(33^{\circ} 02^{\prime}\) & 1128 & 130 & \(5{ }^{\circ} \mathrm{O} 26^{\prime}\) & 1620 \\
\hline 20 & \(11^{\circ} 10^{\prime}\) & 432 & \% 0 & \(35^{\circ} 00^{\prime}\) & 1185 & 140 & \(54^{\circ} 28^{\prime}\) & 1663 \\
\hline 25 & \(14^{\circ} 03^{\prime}\) & 527 & 75 & \(36^{\circ} 53^{\prime}\) & 1238 & 150 & \(56^{\circ} 19^{\prime}\) & 1699 \\
\hline 30 & \(16^{\circ} 42^{\prime}\) & 613 & 80 & \(38^{\circ} 40^{\prime}\) & 1287 & 160 & \(58^{\circ} 00{ }^{\prime}\) & 1730 \\
\hline 35 & \(19^{\circ} 18^{\prime}\) & 700 & 85 & \(40^{\circ} 22^{\prime}\) & 1332 & 170 & \(59^{\circ} 33^{\prime}\) & 1758 \\
\hline 40 & \(21^{\circ} 49^{\prime}\) & 782 & 90 & \(42^{\circ} 00{ }^{\prime}\) & 1375 & 180 & \(60^{\circ} 5 \tilde{\tau}^{\prime}\) & 1782 \\
\hline 45 & \(24^{\circ} 14^{\prime}\) & 860 & 95 & \(43^{\circ} 32^{\prime}\) & 1415 & 190 & \(6 \%^{\circ} 15^{\prime}\) & 1804 \\
\hline 50 & \(26^{\circ} 34^{\prime}\) & 933 & 100 & \(45^{\circ} 00^{\prime}\) & 1450 & 200 & \(63^{\circ} 27^{\prime}\) & \(182 \cdot\) \\
\hline
\end{tabular}

The above table is based on an allowance of 40 lbs . per ton for rolling friction, but an additional allowance must be made for stress due to the weight of the rope proportional to the length of the plane. A factor of safety of 5 to 7 should be taken.
In hoisting the slack-rope should be taken up gently before beginning the lift, otherwise a severe extra strain will be brought on the rope.

A Double-suspension Cableway, carrying loads of 15 tons, erected near Williamsport, Pa., by the Trenton Iron Co., is described by E. G. Spilsbury in Traus. A. I. M. E. xx. 766 . The span is 733 feet, crossing the Susquehanna River. Two steel cables, each 2 in. diam., are used. On these cables runs a carriage supported on four wheels and moved by an endless cable 1 inch in diam, The load consists of a cage carrying a railroad-car loaded with lum-
ber, the latter weighing about 12 tons. The power is furnished by a \(50-\mathrm{H} . \mathrm{P}\). engine, and the trip across the river is made in about three minutes.

A hoisting cableway on the endless-rope system, erected by the Lidgerwnor IIfg. Co., at the Austin Dam, Texas, had a single span 1350 ft . in length, with main cable \(21 / 2 \mathrm{in}\). diam., and hoisting-rope \(13 / 4 \mathrm{in}\). diam. Loads of 7 to 8 tons were handled at a speed of 500 to 800 ft . per minute.

Another. of still longer span, 1650 ft ., was erected by the same company at Holyoke, Mass., for use in the construction of a dam. The main cable is the Elliott or locked wire cable, having a smooth exterior. In the construction of the Chicago Drainage Canal twenty cableways, of \(\% 00 \mathrm{ft}\). span ant 8 tons capacity, were used. the towers travelling on railc.

Gension required to Prevent Slipping of Rope on Drim. (Trenton Iron Co.)-The amount of artificial tension to be applied in an eudless rope to prevent slipping on the driving-drum depends on the character of the drum, the condition of the rope and number of laps which it makes. If \(T\) and \(S\) represent respectively the tensions in the taut and slack lines of the rope; \(W\), the necessary weight to be applied to the tail-sheave; \(R\). the resistance of the cars and rope, allowing for fliction; \(n\), the number of half-laps of the rope on the driving-drum; and \(f\), the coefficient of friction, the following relations must exist to prevent slipping:
\[
\begin{aligned}
& \qquad T=S e^{f n \pi}, \quad W=T+S, \text { and } R=T-S \\
& \text { from which we obtain } \quad W=\frac{e^{f n \pi}+1}{e^{f n \pi}-1} R
\end{aligned}
\]
in which \(e=2.71828\), the base of the Naperian system of logarithms.
The following are some of the values of \(f\) :
\begin{tabular}{llccc}
Wire-rope on a grooved iron drum & Dry. & Wet. & Greasy. & .085 \\
Wire-rope on wood-filled sheaves & 235 & .170 & .140 \\
Wire-rope on rubber and leather filling.. & .495 & .400 & .205
\end{tabular}

The values of the coefficient \(\frac{e^{f n \pi}+1}{e^{f n \pi}-1}\), corresponding to the above values of \(f\), for one up to six half-laps of the rope on the driving-drum or sheaves, are as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(f\)} & \multicolumn{6}{|c|}{\(n=\) Number of Half-laps on Driving-wheel.} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline . 070 & 9.130 & 4.623 & 3.141 & 2.418 & 1.999 & 1.729 \\
\hline . 085 & 7.536 & 3.833 & 2.629 & 2.047 & 1.714 & 1.505 \\
\hline . 120 & 5.345 & 2.874 & 1.953 & 1.570 & 1.358 & 1.238 \\
\hline . 140 & 4.623 & 2.418 & 1.729 & 1.416 & 1.249 & 1.154 \\
\hline . 170 & 3.833 & 2.047 & 1.505 & 1.268 & 1.149 & 1.085 \\
\hline . 205 & 3.212 & 1.762 & 1.338 & 1.165 & 1.083 & 1.043 \\
\hline .235 & 2.831 & 1.592 & 1.245 & 1.110 & 1.051 & 1.024 \\
\hline . 400 & 1.795 & 1.176 & 1.047 & 1.013 & 1.004 & 1.001 \\
\hline . 495 & 1.538 & 1.093 & 1.019 & 1.004 & 1.001 & \\
\hline
\end{tabular}

The importance of keeping the rope dry is evident from these figures.
When the rope is at rest the tension is distributed equally on the two lines of the rope, but when running there will be a difference in the tensions of the taut and slack lines equal to the resistance, and the values of \(T\) and \(S\) may be readily computed from the foregoing formulæ.
Taper Ropes of Uniform Tensile Strength. -The true form of rope is not a regular taper but follows a logarithmic curve, the girth rapidly increasing toward the upper end. Mr. Chas. D. West gives the following formula, based on a breaking strain of \(80,000 \mathrm{lbs}\). per sq. in. of the rope, core included, and a factor of safety of 10: \(\log G=F / 3680+\log g\), in which \(F=\) length in fathoms, and \(G\) and \(g\) the girth in inches at any two sections \(F\) fathoms apart. The girth \(g\) is first calculated for a safe strain of 8000 lbs . per sq. in., and then \(G\) is obtained by the formula. For a mathematical investigation see The Engineer, A pril, 1880, p. 267.

\section*{TRANSMISSION OF POWER BY WIRE ROPE.}

The following notes have been furnished to the author by Mr. Wm. Hewitt, Vice-President of the Trenton Iron Co. (See also circulars of the Trenton Iron Co. and of the John A. Roebling's Sons Co., Trenton, N. J.; "Transmission of Power by Wire Ropes," by A. W. Stahl, Van Nostrand's Science Series, No. 28; and Reuleaux's Constructor.)

The force transmitted should not exceed the difference between the elastic limit of the wires and the bending stress as determined by the following tables, taking the elastic limit of tempered steel, such as is used in the best rope, at \(57,000 \mathrm{lbs}\). per sq. in., and that of Swedish iron at half this, or \(\$ 8,500 \mathrm{lbs}\). (The el. lim. of fine steel wires may be higher than \(57,000 \mathrm{lbs}\).)

Elastic Limit of Wire Ropes.

The working tension may be greater, therefore, as the bending stress is less; but since the tension in the slack portion of the rope cannot be less than a certain proportion of the tension in the taut portion, to avoid slipping, a ratio exists between the diameter
of sheave and the wires composing the rope, corresponding to a maximum safe working tension. This ratio depends upon the number of laps that the rope makes about the sheaves, and the kind of filling, in the rims or the character of the material upon which the rone tracks.

The sheaves (Fig. 165) are usually of cast iron, and are made as light as possible consistent with the requisite strengrh. Varions materials have been used for filling the bottom of the groove, such as tarred oakum. jute yarn, hard wood, India-rubber, and leather. The filling which gives the best satisfaction, however, in ordinary transmissions consists of segments of leather and blocks of India-rubber soaked in tar and

Fig. 165. packed alternately in the groove. Where the working tension is very

918 TRANSMISSION OF POWER BY WIRE ROPE.
great, however, the wood filling is to be preferred, as in the case of long-distance transmissions where the rope makes several laps about the sheaves, and is run at a comparatively slow speed.

\section*{Bending Stresses, \(\mathbf{~} \boldsymbol{y}\)-Wire Rope.}
\[
k=\frac{E \alpha}{2.06 \frac{R}{\delta}+2 \tau .54}
\]
\(k=\) Bending stress \(; E=\) Modulus of elasticity \(=28,500,000 ;\)
\(a=\) Aggregate area of wires; \(R=\) Radius of bend; \(\delta=\) Diam. of wires
(lbs. and inches).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diam. Bend. & 24 & 36 & 48 & 60 & 52 & S4 & 96 & 108 & 120 & 132 \\
\hline Diam. Rope. & & & & & & & & & & \\
\hline 1/4 & 810 & 545 & 411 & & & & & & & \\
\hline 5/16 & 1,569 & 1.060 & 800 & \({ }^{642}\) & & & & & & \\
\hline 7/16 & & \({ }_{2,8 \% 8}^{1.822}\) & 2,1\%8 & 1,751 & - 1,465 & 1,259 & & & & \\
\hline 1/2 & & 4,053 & 3,0:0 & 2,470 & 2,067 & 1, \% \({ }^{1}\) & & & & \\
\hline 9/16 & & & 4,486 & 3,613 & 3,025 & 2,601 & 2,282 & & & \\
\hline 11/16 & & & 6,2\%8 & 5,060 & 4,238 & 3,646 & 3,199 & & & \\
\hline 11/16 & & & & 6,459 & 5,412 & 4,65̃ & 4,087 & 3,641 & & \\
\hline \(3 / 4\) & & & & 8,388 & 7,03.2 & 6.053 & 5,314 & 4,735 & & \\
\hline \%/8 & & & & & 11,168 & 9,620 & 8,449 & 7,532 & 6,795 & \\
\hline & & & & . & 16,651 & 14,354 & 12,613 & 11,249 & 10,151 & \\
\hline \(11 / 8\) & & & ... & & & 20,411 & 17,986 & 16,011 & 14,453 & 13, \(10 \cdot 2\) \\
\hline 11/4 & & & & & & & 24,582 & 21,942 & 19,814 & 18,062 \\
\hline 11/2 & & & & & & & & & 34,155 & 31,151 \\
\hline
\end{tabular}

Bending Stresses, 19-Wire Rope.
\[
k=\frac{E a}{2.06 \frac{R}{\delta}+45.9}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diam. Bend. & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120 \\
\hline \multicolumn{11}{|l|}{Dian Rope.} \\
\hline 5/16 & 1,7\%4 & 498 & 621 & & & & & & & \\
\hline 3/8 & & 1,366 & 924 & 698 & & & & & & \\
\hline \(\% 16\) & & 2,389 & 1,620 & 1,226 & & & & & & \\
\hline 1/2 & & 3,495 & 2,3テ6 & 1,800 & 1,448 & & & & & \\
\hline 9/16 & & 5,089 & 3.468 & \(\stackrel{\text { 2,630 }}{ }\) & 2,118 & & & & & \\
\hline \(1{ }^{5 / 8} 16\) & & & 4,847 & 3,680 & 2,967 & 2,485 & & & & \\
\hline 1136 & & & \(\stackrel{6,201}{8,101}\) & 6,165 & 4,9\% & 3,173 & 3,591 & & & \\
\hline \%/8 & & & 12,528 & 9,556 & 7.724 & 6,481 & 5,583 & & & \\
\hline 1 & & & & 14,614 & 11,830 & 9,937 & 8,566 & 7,528 & & \\
\hline \(11 / 8\) & & & & & 16,500 & 13,872 & 11,966 & 10,523 & 9,38i & \\
\hline 11/4 & & & \(\cdots\) & .. . & 22,239 & 18,713 & 16,153 & 14,209 & 12,682 & \\
\hline \(13 / 8\) & & & & & & 25,350 & 21.897 & 19,272 & 17,209 & 15,545 \\
\hline 1112 & .. & & & & & 32,403 & 28,008 & 24,66: & 2.2,030 & 19,906 \\
\hline 1\%8 & & & & & & & 35,140 & 30,957 & 27,664 & 25,005 \\
\hline 13/4 & & & & & & & 44,476 & 39,203 & 35,048 & 31,689 \\
\hline \(17 / 8\) & & & & & & & & 47,639 & 42,606 & 38,534 \\
\hline 2 & & & & & & & & 57,183 & 51,160 & 46.285 \\
\hline \(21 / 4\) & & & & & & & & & 72,908 & 66,002 \\
\hline
\end{tabular}

Horse-Power Transmitted. - The general formula for the amount of power capable of being transmitted is as follows:
\[
\text { H.P. }=\left[c c^{2}-.000005\left(w+g_{1}+g_{2}\right)\right] v ;
\]
in which \(d=\) diameter of the rope in inches, \(v=\) velocity of the rope in feet per second, \(w=\) weight of the rope, \(g_{1}=\) weight of the terminal sheaves and shafts, \(g_{2}=\) weight of the intermediate sheaves and shafts (all in lbs.), and \(c=\) a constant depending on the material of the rope, the filling in the grooves of the sheaves, and the number of laps about the sheaves or drums, a single lap meaning a half-lap at each end. The values of \(c\) for one up to six laps for steel rope are given in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\(c=\) for steel rope on} & \multicolumn{6}{|l|}{Number of Laps about Sheaves or Drums.} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Iron. & 5.61 & 8.81 & 10.62 & 11.65 & 12.16 & 12.56 \\
\hline Wood & 6.70 & 9.93 & 11.51 & 12.26 & 12.66 & 12.83 \\
\hline Rubber and leather. & 9.29 & 11.95 & 12.70 & 12.91 & 12.97 & 13.00 \\
\hline
\end{tabular}

The values of \(c\) for iron rope are one half the above.
When more than three laps are made, the character of the surface in contact is immaterial as far as slippage is concerned.

From the above formula we have the general rule, that the actual horsepower capable of being transmitted by any wire rope approximately equcls ctimes the square of the dianeter of the rope in inches, less six millionths the entire weight of all the moving parts, multiplied by the speed of the rope, in feet per second.
Instead of grooved drums or a number of sheaves, about which the rope makes two or more laps, it is sometimes found more desirable, especially where space is limited, to use grip-pulleys. The rim is fitted with a continuous series of steel jaws, which bite the rope in contact by reason of the pressure of the same against them, but as soon as relieved of this pressure they open readily, offering no resistance to the egress of the rope.
In the ordinary or "flying " transmission of power, where the rope makes a single lap about sheaves lined with rubber and leather or wood, the ratio between the diameter of the sheaves and the wires of the rope, corresponding to a maximum safe working tension, is one resulting in a working tension of one third and bending stress of two thirds of the elastic limit of the material. The diameters of sheaves are as follows:

\section*{Diameters of Minimum Sheaves in Inches, Corresponding to a Maximum Safe Working Tension.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Diameter of Rope. In.} & \multicolumn{3}{|c|}{Steel.} & \multicolumn{3}{|c|}{Iron.} \\
\hline & \%-Wire. & 12-Wire. & 19. Wire. & 7-Wire. & 12-Wire. & 19. Wire. \\
\hline 1/4 & 19 & 14 & 12 & 40 & 30 & 24 \\
\hline 5/16 & 24 & 18 & 14 & 50 & 38 & 30 \\
\hline 3/8 & 29 & 22 & 17 & 60 & 45 & 36 \\
\hline \%/16 & 34 & 25 & 20 & \% 0 & 53 & 42 \\
\hline 1/2 & 38 & 29 & 23 & 80 & 60 & 48 \\
\hline 9/16 & 43 & 32 & 26 & 90 & 68 & 54 \\
\hline 5/8 & 48 & 36 & 29 & 100 & 75 & 60 \\
\hline 11/16 & 53 & 40 & 32 & 110 & 83 & 66 \\
\hline \(3 / 4\) & 58 & 43 & 35 & 120 & 90 & 72 \\
\hline & 67 & 50 & 40 & 140 & 105 & 84 \\
\hline 1 & 77 & 57 & 46 & 160 & 120 & 96 \\
\hline & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Assuming the sheaves to be of equal diameter. and of the sizes in the above table, the horse-power that may be transmitted by a steel rope making a single lap on wood-filled sheaves is given in the table on the next page.
}

The trausmission of greater horse-powers than 250 is impracticable with filled sheaves, as the tension would be so great that the filling would quickly cut out, and the adhesion on a metallic surface would be insufficient where the rope makes but a single lap. In this case it becomes necessary to use the Reuleaux method, in whicb the rope is given more than one lap, as referred to below, under the caption "Long-distance Transmissions."
Horse-power Transmitted by a Steel Hope on Wood-filled Sheaves.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Diameter of Rope. In.} & \multicolumn{10}{|c|}{Velocity of Rope in Feet per Second.} \\
\hline & 10 & 20 & 30 & 40 & 50 & 60 & 70 & S0 & 90 & 100 \\
\hline 1/4 & 4 & 8 & 13 & 17 & 21 & 25 & 28 & 32 & 37 & 40 \\
\hline 5/16 & 7 & 13 & 20 & 26 & 33 & 40 & 44 & 51 & 57 & 62 \\
\hline 3/8 & 10 & 19 & 28 & 38 & 47 & 55 & 64 & 73 & 80 & 89 \\
\hline \%/16 & 13 & 26 & 3.3 & 51 & 63 & \% 5 & 88 & 99 & 109 & 121 \\
\hline 1/2 & 17 & \(3 \pm\) & 51 & \(6{ }^{2}\) & 83 & 99 & 115 & 130 & 144 & 159 \\
\hline \(9 / 16\) & 22 & 43 & 65 & 86 & 106 & 123 & \(14 \%\) & 167 & 184 & 203 \\
\hline & 27 & 53 & \% 9 & 104 & 130 & 155 & \(1: 9\) & 203 & 225 & 247 \\
\hline 11/16 & 32 & 63 & 95 & 126 & 157 & 186 & \(21 \%\) & 245 & & \\
\hline \(3 / 4\) & 38 & 76 & 10:3 & 150 & 186 & 223 & & & & \\
\hline 788 & 52 & 104 & 1.56 & 206 & & & & & & \\
\hline 1 & 68 & 135 & 202 & & & & & & & \\
\hline
\end{tabular}

The horse-power that may be transmitted by iron ropes is one half of the above.
This table gives the amount of horse-power transmitted by wire ropes under maximum safe working tensions. In using wood-lined sheaves, therefore, it is well to make some allowance for the stretching of the rope, and to advocate somewhat heavier equipinents than the above table would give; that is, if it is desired to transmit 20 horse-power, for instance, to put in a plaut that would transmit 25 to 30 horse-power, thus avoiding the pecessity of having to take up a comparatively small amount of stretch. On rubler and leather filling, however, the amount of power capable of being transmitted is 40 per cent greater than for wood, so that this filling is generally used, and in this case no allowance need be made for stretch, as such sheaves will likely trausmit the power given by the table, under all possible deflections of the rope.

Uuder ordinary conditions, ropes of seven wires to the strand, laid about a hemp core, are best adapted to the transmission of power, but conditions often occur where 12 - or 19 -wire rope is to be preferred, as stated below.

Deffections of the Rope. -The tension of the rope is measured by the amount of sag or deflection at the centre of the span, and the deflection corresponding to the maximum safe working tension is determined by the following formulæ, in which \(S\) represents the span in feet:

Limits of Span.-On spans of less than sixty feet, it is impossible to splice the rope to such a degree of nicety as to give exactly the required deflecion, and as the rope is further subject to a certain amount of stretch, it becomes necessary in such cases to apply mechanical means for producing the proper tension, in order to avoid frequent splicing, which is very objectionable: but care should always be exercised in using such tightening devices that they do not become the means, in unskilled hands, of overstraining the rope. The rope also is more sensitive to every irregularity in the sheaves and the fluctuations in the amount of power transmitted, and is apt to sway to such an extent beyond the narrow limits of the required deflections as to cause a jerking motion, which is very injurious. For this reason on very short spans it is found desirable to use a considerably heavier rope than that actually required to transmit the power: or in other words, instead of a 7 -wire rope corresponding to the conditions of maximum tension, it is better to use a 19 -wire rope of the same size wires, and to run this under a tension considerably below the maximum. In this way is ubtained the advantages of increased weight and no stretch, without
having to use larger sheaves, while the wear will be greater in proportion to the increased surface.

In determining the maximum limit of span, the contour of the ground and the available height of the terminal sheares must be taken into consideration. It is customary to trausinit the power through the lower portion of the rope, as in this case the greatest deflection in this portion occurs when the rope is at rest. When running, the lower portion rises and the upper portion sinks, thus enabliug obstructions to be avoided which otherwise would have to be removed, or make it necessary to erect very high towers. The maximum limit of span in this case is determined by the maximum deflection that may be given to the upper portion of the rope when ruming, which for sheaves of 10 ft . diameter is about 600 feet.

Much greater spans than this, however, are practicable where the contour of the ground is such that the upper portion of the rope may be the driver, and there is nothing to interfere with the proper deflection of the under portion. Some very long tramsmissions of power have been effected in this way without an intervening support, one at Lockport, N. Y., having a clear span of \(1: 00\) feet. .

Long-distance Transmissions.- When the distance exceeds the limit for a clear span, intermediate supporting sheaves are used, with plain grooves (not filled), and as a rule the taut portion of the rope requires fewer than the slack portion. The size of these sheaves will depend on the angle of the bend, gauged by the tangents to the curves of the rope at the points of inflection. If the curvature due to the tension, regardless of the size of the sheave, is less than that of the minimum sheave corresponding to a maximum safe working tension, the intermediate sheaves should be equal in size to the terminal sheaves or minimum sheave corresponding to the rope used (see table of minimum sheaves). but if it is greater, smaller intermediate sheaves may be used. (See Bending Curvature of Wire Ropes, below.)

In very long transmissions of power, requiring numerous intermediate supports, it is found impracticable to run the rope at the high speeds maintained in "fying transmissions." The rope therefore is run under a higher" working tension, made practicable by wrapping it several times about grooved terminal drums, with a lap about a sheave on a take-up or counterweighted carriage, which preserres a constant tension in the slack portion.

Inclined Transmissions. - When the terminal sheaves are not ou the same elevation, the tension at the upper sheave will be greater than that at the lower, but this difference is so slight, in most cases, that it may be ignored. The span to be considered is the horizontal distance between the sheares, and the principles governing the limits of span will hold good in this case, so that for very steep inclinations it becomes necessary to resort to tightening devices for maintaining the requisite tension in the rope. The limiting case of inclined transmissions occurs when one wheel is directly above the other. The rope in this case produces no tension whatever on the lower wheel, while the upper is subject only to the weight of the rope. which is usually so insignificant that it may be neglected altogether, and tightening sheaves are therefore an absolute necessity.

Bending Curvature of Wire Ropes.-The curvature due to any bend in a wire rope is dependent on the tension, and is not always the same as the sheare in contact, but may be greater, which explains how it is that large ropes are frequently run aromnd comparatively small sheaves without detriment, since it is possible to place these so close that the bending angle on each will be such that the resulting curvature will not overstrain the wires. This curvature may be ascertained from the formula and table on the next page, which give the theoretical radii of curvature in inches for various sizes of ropes and different angles for one pound tension in the rope. Dividing these figures by the actual tension in pounds, gives the radius of curvature assumed by the rope in cases where this exceeds the curvature of the sheave. The rigidity of the rope or internal friction of the wires and core has not been taken into account in these figures, but the effect of this is insignificant, and it is on the safe side to ignore it. By the "angle of bend" is meant the angle between the tangents to the curves of the rope at the points of inflection. When the rope is straight the angle is \(180^{\circ}\). For angles less than \(160^{\circ}\) the radius of curvature in most cases will be less than that corresponding to the safe working tension, and the proper size of sheave to use in such cases will be governed by the table headed "Diameters of Minimum Sheaves Corresponding to a Maximum Safe Working Tension,"

\section*{Radius of Curvature of Wire Ropes in Inches for 1-1b. Tension.}

Formula : \(R=E \delta^{4} n \div 5.25 t \cos 1 / 2 \theta\); in which \(R=\) radius of curvature; \(E=\) morlulus of elasticity \(=28,500,000 ; \delta=\) diameter of wires; \(n=\) no. of wires ; \(\theta=\) angle of bend; \(t=\) working stress (lbs. and ins.).

Divide by stress in pounds to obtain radius in inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diam. of wire. & \(160^{\circ}\) & \(165^{\circ}\) & \(170^{\circ}\) & \(172^{\circ}\) & \(174^{\circ}\) & \(176^{\circ}\) & \(178{ }^{\circ}\) \\
\hline \(1 / 2\) & 4,226 & 5,623 & 8,421 & 10,949 & 14,593 & 21,884 & 43,662 \\
\hline \%) & 11,090 & 14,753 & 22,095 & 26,731 & 35,6:8 & E3,429 & 106,841 \\
\hline 4 3/4 & 28,274 & 29.633 & 45,412 & 54,417 & 72,530 & 108,767 & 21\%,502 \\
\hline き2 \(7 / 8\) & 43,184 & 57,451 & 86,040 & 102.688 & 136,869 & 205,251 & 410,440 \\
\hline & 71,816 & 95,541 & 143,085 & 175,182 & 233,492 & 350,150 & 700,19:3 \\
\hline \(=11 / 8\) & 112.763 & 150.016 & 224,667 & 250,607 & 374,010 & \(560.8 \%\) & 1,121.5it \\
\hline \% \(111 / 4\) & 169,135 & 225,012 & 3:36,982 & 42\%,689 & 5i0,050 & 854,858 & 1,709,4.50 \\
\hline & 12,914 & 17.179 & 25, 227 & 31.125 & 41,485 & 62,212 & 124.405 \\
\hline \%) 5/8 & 29,662 & 39,594 & 59,297 & 75,985 & 101,282 & 151.884 & 303.923 \\
\hline & 6-3,313 & 82,899 & 124,151 & 157,5\% & 210,018 & 314,948 & 629.800 \\
\hline ¢ \(27 / 8\) & 116,239 & 154,641 & 231,593 & 291,917 & 389,085 & 583, 4 4,9 & 1,164.099 \\
\hline \(=1\) & 199,323 & 265,173 & 397,129 & 497,998 & 663,76\% & 995,390 & 1,990.4\%8 \\
\hline \% 11/8 & 320.556 & 4:6,459 & 635,674 & 797,697 & 1,063,21 & 1,594.422 & 3,188,359 \\
\hline \(\therefore\) : \(11 / 4\) & 504,40: & 6 71,041 & 1,004,965 & 1,215,817 & 1,620,513 & 2,430,151 & 4,850,561 \\
\hline
\end{tabular}

\section*{ROPE-DRIVING.}

The transmission of power by cotton or manila ropes is a competitnr with graring and leather belting when the amount of power is laree, or the disfance between the power and the work is comparatively gieat. The following is condensed from a paper br C. W. Hunt, Trans. A. S. M. E., xii. 230:
But few accurate data are available. on account of the long period required in each experiment, a rope lasting from three to six years. Installations which have been successful, as well as those in which the wear of the rope was destructive, indicate that 200 lbs . on a rope one iuch in diameter is a safe and economical working strain. When the strain is materially increased, the wear is rapid.
In the following equations
\(C=\) circumference of rope in inches;
\(g=\) gravity;
\(D=\) say off the rope in inches;
\(H^{\prime}=\) rentrifugal force in pounds; \(\quad L=\) distance between pulleys in feet; \(P=\) pounds per foot of rope; \(\quad v=\) working strain in pounds;
\[
\begin{aligned}
& R=\text { force in pounds doing useful work; } \\
& S \text { strain in pounds on the rope at the pulley; } \\
& T=\text { tension in pounds of driving side of the rope; } \\
& t=\text { tension in pounds on slack side of the rope; } \\
& v= \text { velocity of the rope in feet per second; } \\
& W=\text { ultimate breaking strain in pounds. } \\
& W=\gamma 20 C^{2} ; \quad P=.032 C^{2} ; \quad v=20 C^{2}
\end{aligned}
\]

This makes the normal working strain equal to \(1 / 36\) of the breaking strength, and about \(1 / 25\) of the strength at the splice. The actual strains are ordiuarily much greater, owing to the vibrations in running, as well as from imperfectly adjusted tension mechanism.

For this investigation we assume that the strain on the driving side of a rope is equal to 200 lbs . on a rope one inch in diameter, and an equivalent strain for other sizes, and that the rope is in motion at various velocities of from 10 to 140 ft . per second.

The centrifugal force of the rope in running over the pulley will reduce
the amount of force available for the transmission of power. The centrifugal force \(F=P v^{2}+g\).

At a speed of about 80 ft . per second, the centrifugal force increases faster than the power from increased velocity of the rope, and at about 140 ft . per second equals the assumed allowable tension of the rope. Computing this force at various speeds and then subtracting it from the assumed maximum tension, we have the force available for the transmission of power. The whole of this force cannot be used, because a certain amount of tension on the slack side of the rope is needed to give adhesion to the pulley. What tension should be given to the rope for this purpose is uncertain, as there are no experiments which give accurate data. It is known from considerable experience that when the rope runs in a groove whose sides are inclined toward each other at an angle of \(45^{\circ}\) there is sufficient adhesion when the ratio of the tensions \(T \div t=2\).

For the present purpose, \(T\) can be divided into three parts: 1. Tension doing useful work; 2. Tension from centrifugal force; 3. Tension to balance the strain for adhesion.

The tension \(t\) can be divided into two parts: 1. Tension for adhesion; 2. Tension from centrifugal force.

It is evident, however, that the tension required to do a given work should not be materially exceeded during the life of the rope.

There are two methods of putting ropes on the pulleys; one in which the ropes are single and spliced on, being made very taut at first, and less so as the rope lengthens, stretching until it slips, when it is respliced. The other method is to wind a single rope over the pulley as many turns as needed to obtain the necessary horse power and put a tension pulley to give the necessary adhesion and also take up the wear. The tension \(t\) required to transmit the normal horse-power for tine ordinary speeds and sizes of rope is computed by formula (1), below. The total tension \(T\) on the driving side of the rope is assumed to be the same at all speeds. The centrifugal force, as well as an amount equal to the tension for adhesion on the slack side of the rope, must be taken from the total tension \(T\) to ascertain the amount of force available for the transmission of power.

It is assumed that the tension on the slack side necessary for giving adhesion is equal to one half the force doing useful work on the driving side of the rope; hence the force for useful work is \(R=\frac{2\left(T-F^{\prime}\right)}{3}\); and the tension on the slack side to give the required adhesion is \(1 / 3(T-F)\). Hence
\[
\begin{equation*}
t=\frac{(T-F)}{3}+F \tag{1}
\end{equation*}
\]

The sum of the tensions \(T\) and \(t\) is not the sanie at different speeds, as the equation (1) indicates.

As \(F\) varies as the square of the relocity, there is, with an increasing speed of the rope, a decreasing useful force, and an increasing total tension, \(t\), on the slack side.

With these assumptions of allowable strains the horse-power will be
\[
\begin{equation*}
H=\frac{2 v(T-F)}{3 \times 550} \tag{2}
\end{equation*}
\]

Transmission ropes are usually from 1 to \(13 / 4\) inches in diameter. A computation of the horse-power for four sizes at various speeds and under ordinary conditions, based on a maximum strain equivalent to 200 lbs . for a rope one inch in diameter, is given in Fig. 166. The horse-power of other sizes is readily obtained from these. The maximum power is transmitted, under the assumed conditions, at a speed of about 80 feet per second.

The wear of the rope is both internal and external; the internal is caused by the movement of the fibres on each other, under pressure in bending over the sheaves, and the external is caused by the slipping and the wedging in the grooves of the pulley. Both of these causes of wear are, within the limits of ordinary practice, assumed to be directly proportional to the speed. Hence, if we assume the coefficient of the wear to be \(k\), the wear will be \(k v\), in which the wear increases directly as the velocity, but the horse-power that can be transmitted, as equation (i) shows, will not vary at the same rate.

The rope is supposed to have the strain \(T\) constant at all speeds on the driving side, and in direct proportion to the area of the cross-section; hence
the catenary of the driving side is not affected by the speed or by the dianneter of the rope.

The deflection of the rope between the pulleys on the slack side varies with each change of the load or change of the speed, as the teusion equation (1) indicates.

The deflection of the rope is computed for the assumed value of \(T\) and \(t\)

Fig. 166.
by the parabolic formula \(S=\frac{P L^{2}}{8 D}+P D, S\) being the assumed strain \(T\) on the driving side, and \(t\), calculated by equation (1) on the slack side. The tension \(t\) varies with the speed.

\section*{Horse-power of Transmission Rope at Various Speeds.}

Computed from formula (2), given above.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{Speed of the Rope in feet per minute.} & \multirow[t]{2}{*}{} \\
\hline & 1500 & 2000 & 2500 & 3000 & 3500 & 4000 & 4500 & 5000 & 6000 & 7000 & 8000 & \\
\hline 1/3 & 1.45 & 1.9 & 2.3 & 2.7 & 3 & 3.2 & 3.4 & 3.4 & 3.1 & 2.2 & 0 & 20 \\
\hline \% \(\%\) & 2.3 & 3.2 & 3.6 & 4.2 & 4.6 & 5.0 & 5.3 & 5.3 & 4.9 & 3.4 & 0 & 24 \\
\hline \(3 / 4\) & 3.3 & 4.3 & 5.2 & 5.8 & 6.7 & 7.2 & 7.7 & 7.7 & 7.1 & 4.9 & 0 & 30 \\
\hline 7/8 & 4.5 & 5.9 & 7.0 & 8.2 & 9.1 & 9.8 & 10.8 & 10.8 & 9.3 & 6.9 & 0 & 36 \\
\hline 1 & 5.8 & 7.7 & 9.2 & 10.7 & 11.9 & 12.8 & 13.6 & 13.7 & 12.5 & 8.8 & 0 & 42 \\
\hline 11/4 & 9.2 & 12.1 & 14.3 & 16.8 & 18.6 & 20.0 & 21.2 & 21.4 & 19.5 & 13.8 & 0 & 54 \\
\hline \(11 / 2\) & 13.1 & 17.4 & 20.7 & 23.1 & 26.8 & 28.6 & 30.6 & 30.8 & 28.2 & 19.8 & 0 & 60 \\
\hline 13/4 & 18 & 23.7 & 28.2 & 32.8 & 36.4 & 39.2 & 41.5 & 41.8 & 37.4 & 27.6 & 0 & 72 \\
\hline & 23.2 & 30.8 & 36.8 & 42.8 & 47.6 & 51.6 & 54.4 & 548 & 50 & 35.2 & 0 & 84 \\
\hline
\end{tabular}

The following notes are from the circular of the C. W. Hunt Co., New York:

For a temporary installation, when the rope is not to be long in use, it might be advisable to increase the work to double that given in the table.

For convenience in estimating the necessary clearance on the driving and on the slack sides, we insert a table showing the sag of the rope at different speeds when transmitting the horse-power given in the preceding table. When at rest the sag is not the same as when running, being greater on the driving and less on the slack sides of the rope. The sag of the driving side wheu transmitting the normal horse-power is the same no matter what size of rope is used or what the speed driven at, because the assumption is that the strain on the rope shall be the same at all speeds when transmitting the
assumed horse-porrer, but on the slack side the strains, and consequently the sag, vary with the speed of the rope and also with the horse-power. The table gives the sag for three speeds. If the actual sag is less than given in the table, the rope is strained more than the work requires.

This table is only approximate, and is exact only when the rope is running at its normal speed, transmitting its full load and strained to the assumed amount. All of these conditions are varying in actual work, and the table must be used as a guide ouly.

Sag of the Rope between Pulleys.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Distance between Pulleys in feet.} & \multicolumn{4}{|l|}{Driving Side.} & \multicolumn{12}{|c|}{Slack Side of Rope.} \\
\hline & \multicolumn{4}{|r|}{All Speeds.} & \multicolumn{4}{|l|}{80 ft . per sec.} & \multicolumn{4}{|l|}{60 ft . per sec.} & \multicolumn{4}{|l|}{40 ft . per sec.} \\
\hline 40 & & feet & 4 & che & & feet & 7 i & aches & & feet & 91 & ches & & feet & 11 in & ches \\
\hline 60 & & " & 10 & " & & " & & " & 1 & " & & " & & & & \\
\hline 80 & & " & 5 & " & & " 6 & 4 & " & & " & 10 & " & & '6 & & " \\
\hline 100 & & " \({ }^{6}\) & 0 & " & & \({ }^{6}\) & 8 & " & & " & 5 & " & 5 & " & 2 & " \\
\hline 120 & & " & 11 & " & & & 3 & " & & " & 3 & 6 & 7 & " & 4 & \\
\hline 140 & & ' & 10 & " & & " & 2 & " & & ، & 9 & " & 9 & " & 9 & 6 \\
\hline 160 & 5 & " & 1 & " & 9 & ، & 3 & '6 & 11 & " & 3 & " & 14 & " & 0 & ، \\
\hline
\end{tabular}

The size of the pulleys has an important effect on the wear of the ropethe larger the sheaves, the less the fibres of the rope slide on each other, and consequently there is less internal wear of the rope. The pulleys should not be less than forty times the diameter of the rope for economical wear, and as much larger as it is possible to make them. This rule applies also to the idle and tension pulleys as well as to the main driving-pulley.
The angle of the sides of the grooves in which the rope runs varies, with different engineers. from \(45^{\circ} 10^{\circ} 60^{\circ}\). It is very important that the sides of these grooves should be carefully polished, as the fibres of the rope rubbing on the metal as it comes from the lathe tools will gradually break fibre by fibre, and so give the rope a short life. It is also necessary to carefully avoid all sand or blow holes, as they will cut the rope out with surprising rapidity.
luch depends also upon the arrangement of the rope on the pulleys, especially where a tension weight is used. Experience shows that the increased wear on the rope from bending the rope first in one direction and then in the other is similar to that of wire rope. At mines where two cages are used. one being hoisted and one lowered by the same engine doing the same work. the wire ropes, cut from the same coil, are usually arranged so that one rope is bent continuously in one direction and the other rope is bent first in one direction and then in the other, in winding on the drum of the engine. The rope having the opposite bends wears much more rapidly than the other, lasting about three quarters as long as its mate. This difference in wear shows in mauila rope, both in transmission of power and in coalhoisting. The pulleys should be arranged, as far as possible, to bend the rope in one direction.

The wear of the rope is independent of the distance apart of the shafts, since the wear takes place only on the pulleys; hence in transmitting power any distance within the limits of rope-driving, the life of the rope will be the same whether the distance is small or great, but the first cost will be in proportion to the distance.

Tension on the Slack Part of the Rope.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Speed of Rope, in feet per second.} & \multicolumn{9}{|l|}{Diameter of the Rope and Pounds Tension on the Slack Rope.} \\
\hline & 1/2 & 5/8 & \(3 / 4\) & 7/8 & 1 & 114 & 11/2 & 13/4 & 2 \\
\hline 20 & 10 & 27 & 40 & 54 & 71 & 110 & 162 & 216 & 283 \\
\hline 30 & 14 & 29 & 42 & 56 & 74 & 115 & 170 & 226 & 296 \\
\hline 40 & 15 & 31 & \(4 \stackrel{1}{6}\) & 60 & \%9 & 12:3 & 181 & 240 & 315 \\
\hline 50 & 16 & 33 & 49 & 65 & 8.5 & 132 & 195 & 259 & 339 \\
\hline 60 & 18 & 36 & 53 & ก1 & 93 & 145 & 214 & 28.5 & 373 \\
\hline 50 & 19 & 39 & 59 & T8 & 101 & 158 & 236 & 310 & 406 \\
\hline 80 & 21 & 4.3 & 64 & 85 & 111 & 173 & 255 & 340 & 445 \\
\hline 90 & 24 & 48 & \(\% 0\) & 93 & 120 & 190 & 279 & \(3 \% 2\) & 487 \\
\hline
\end{tabular}

For large amounts of power it is common to use a number of ropes lying side by side in grooves, each spliced separately. For lighter drives some engineers use one rope wrapped as many times around the pulleys as is necessary to get the horse-power required, with a tension pulley to take up the slack as the rope wears when first put in use. The weight put upon this tension pulley should be carefully adjusted, as the overstraining of the rope from this cause is one of the most common errors in rope driving. We therefore give a table showing the proper strain on the rope for the various sizes, from which the tension weight to transmit the horse-power in the tables is easily deduced. This strain can be still further reduced if the horse-power transmitted is usually less than the nominal work which the rope was proportioned to do, or if the angle of groove in the pulleys is acute.

Diameter of Pulleys and Weight of Rope.
\begin{tabular}{c|c|c|c}
\hline \begin{tabular}{c}
Diameter of \\
Rope, \\
in inches.
\end{tabular} & \begin{tabular}{c}
Smallest Diameter \\
of Pulleys, in \\
inches.
\end{tabular} & \begin{tabular}{c}
ength of Rope to \\
allow for Splicing, \\
in feet.
\end{tabular} & \begin{tabular}{c}
Approximate \\
Weight, in lbs. per-1 \\
foot of rope.
\end{tabular} \\
\hline \(1 / 2\) & 20 & 6 & .12 \\
538 & 24 & 6 & .18 \\
34 & 30 & 7 & .24 \\
13 & 36 & 8 & .32 \\
\(11 / 4\) & 42 & 9 & .49 \\
114 & 54 & 10 & .60 \\
\(13 / 2\) & 60 & 12 & .83 \\
2 & 84 & 13 & 1.10 \\
\hline
\end{tabular}

With a given velocity of the driving-rope, the weight of rope required for transmitting a given horse-power is the same, no matter what size rope is adopted. The smaller rope will require more parts, but the weight will be the same.

Miscellaneous Notes on Roperdriving.- W. H. Booth communicates to the Amer. Machinist the following data from English practice with cotton ropes. The calculated figures are based on a total allowable tension on a \(13 / 4\)-inch rope of 600 lbs ., and an initial tension of \(1 / 10\) the total allowed stress, which corresponds fairly with practice.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(11 / 4^{\prime \prime}\) & 13 & 11/2' & \(15 / 8{ }^{\prime \prime}\) & \(13 / 4{ }^{\prime \prime}\) & 17/81 & \\
\hline & & . 6 & . 72 & . 844 & . 98 & 1.125 & 1.3 \\
\hline Centrifugal tension & 64 & 53 & 44 & 38 & 23 & 28 & 25 \\
\hline for \(V=80 \mathrm{ft}\). per sec., lbs & 100 & 121 & 145 & \(1 \% 0\) & 193 & 228 & 256 \\
\hline Total tension allowable & 300 & 360 & 430 & 500 & 600 & \(6 \%\) & 78 \\
\hline itial te & 30 & 36 & 43 & 50 & 60 & 67 & \\
\hline Net working tension at 80 ft .velocity & \(1 \% 0\) & 203 & 242 & 280 & 347 & 380 & 446 \\
\hline Horse-power per rope & 24 & 28 & 34 & 41 & 49 & & \\
\hline
\end{tabular}

The most usual practice in Lancashire is summed up roughly in the following figures: \(13 / 4\)-inch cotton ropes at 5000 ft . per minute velocity \(=50 \mathrm{H}\).P. per rope. The most common sizes of rope now used are \(13 / 4\) and \(15 / 8 \mathrm{in}\). The maximum horse-power for a given rope is obtained at about 80 to 83 feet per second. Above that speed the power is reduced by centrifugal tension. At a speed of \(\$ 500 \mathrm{ft}\). per minute four ropes will do about the same work as three at 5000 ft . per min.

Cotton ropes do not require much lubrication in the sense that it is required by ropes made of the rough fibre of manila hemp. Merely a slight surface dressing is all that is required. For small ropes, common in spinning inachinery, from \(1 / 2\) to \(3 / 4\) inch diameter, it is the custom to prevent the fluffing of the ropes on the surface by a light application of a mixture of black-lead and molasses,-but only enough should be used to lay the fibres,put upon one of the pulleys in a series of light dabs.

Reuleaux's Constructor gives as the "specific capacity" of hemp rope in actual practice, that is, the horse-power transmitted per square inch of cross-section for each foot of linear velocity per minute, .004 to .002 , the cross-section being taken as that due to the full outside diameter of the rope. For a \(13 / 4-\mathrm{in}\). rope, with a cross-section of 2.405 sq . in., at a velocity of 5000 ft . per min., this gives a horse-power of from 24 to 48 , as against 41.8 by Mr. Hunt's table and 49 by Mr. Booth's.

Reuleaux gives formulæ for calculating sources of loss in hemp-rope transmission due to (1) journal friction, (2) stiffness of ropes, and (3) creep of ropes. The constants in these formule are, however, uncertain from lack of experimental data. He calculates an average case giving loss of power due to journal friction \(=4 \%\), to stiffness \(\tau .8 \%\), and to creep \(5 \%\), or \(16.8 \%\) in all, and says this is not to be considered higher than the actual loss.
Spencer Miller, in a paper entitled "A Problem in Continuous Rope-driving (Trans. A. S. C. E., 189r), reviews the difficulties which occur in ropethe angle of \(45^{\circ}\) as a recommends that the larger pulley be groored with a wider angle to a degree such that the resistance to slipping is equal in both wheels. By doing this the effect of the tension weight is felt equally throughout all the slack strands of the rope-drive, hence the tight ropes pull equally. It is shown that when the wheels are grooved alike the strains in the various ropes may differ greatly, and to such a degree that danger is introduced, for while onehalf the teusion weight should represent the maximum strain on the slack rope, it is demonstrated in the paper that the actual maximum strain may be even four or six times as great.
In a drive such as is recommended, with a wide angle in the large sheave with the larger arc of contact, the conditions governing the ropes are the same as if the wheels were of the same diameter; and where the wheels are of the same diameter, with a proper tension weight, the ropes pull alike. It is claimed that by widening the angle of the laige sheave not only is there no power lost, but there is actually a great gain in power transmitted. An example is given in which it is shown that in that instance the power transmitted is nearly doubled. Mr. Miller refers to a 250 -horse-power drive which has been running ten years, the large pulley being grooved \(60^{\circ}\) and the smaller \(45^{\circ}\). This drive was designed to use a \(11 / 4-\mathrm{in}\). manila rope, but the grooves were made deep enough so that a \(7 / 8-\mathrm{in}\). rope would not bottom. In order to determine the value of the drive a common \(7 / 8-\mathrm{in}\). rope was put in at first, and lasted six years, working under a factor of safety of only 14 . He recommends, however, the employment in continuous rope-driving of a factor of safety of not less thau 20 .
The Walker Company adopts a curved form of groove instead of one with straight sides inclined to each other at \(45^{\circ}\). The curves are concave to the rope. The rope rests on the sides of the groove in driving and driven pulsemicircular pulleys the rope rests on the bottom of the groove, which is heavy rope-drives, in which the grooves are contained each in a separate ring which is free to slide on the turned surface of the drum in case one rope pulls more than another.

A heavy rope-drive on the separate, or English, rope system is described and illustrated in Power, April, 1892. It is in use at the India Mill at Darwen, England. This mill was originally driven by gears, but did not prove successful, and rope-driving was resorted to. The 85,000 spindles and preparation are driven by a 2000 -horse-power tandem compound engine, with cylinders 23 and 44 inches in diameter and \(i 2\)-inch stroke, running at 54 revolutions per minute. The fly-wheel is 30 feet in diameter, weighs 65 tons, and is arranged with 30 grooves for \(13 / 4\)-inch ropes. These ropes lead off to receir-ing-pulleys upon the several floors, so that each floor receives its power direct from the fly-wheel. The speed of the ropes is 5089 feet per minute, and five 7 -foot receivers are used, the number of ropes upon each being proportioned to the amount of power required upon the several floors. Lambeth cotton ropes are used. (For much other information on this subject see "RopeDriving," by J. J. Flather, John Wiley \& Sons, 1895.)

\section*{FRICTION AND LUBRICATION.}

Friction is defined by Rankine as that force which acts between two bodies at their surface of contact so as to resist their sliding on each other, and which depends on the force with which the bodies are pressed logether.

Coefficient of Friction. -The ratio of the force required to slide a body along a horizontal plane surface to the weight of the body is called the coefficient of friction. It is equivalent to the tangent of the angle of repose, which is the angle of inclination to the horizontal of an inclined plane oll which the body will just overcome its tendency to slide. The angle is usually denoted by \(\theta\). and the coefficient by \(f\). \(f=\tan \theta\).

Friction of Rest and of Motion. -The force required to start a body sliding is called the friction of rest, and the force required to coutinue its sliding after having started is called the friction of motion.

Rolling Friction is the force required to roll a cylindrical or spherical body on a plane or on a curved surface. It depends on the nature of the surfaces and on the force with which they are pressed together, but is essentiallv different from ordinary, or sliding, friction.

Friction of Solids.-Rennie's experiments (\(18: 29\)) on friction of solids, usually unlubricated and dry, led to the following conclusions:
1. The laws of sliding friction differ with the character of the bodies rubbing together.
2. The friction of fibrous material is increased by increased extent of surface and by time of contact, and is diminished by pressure and speed.
3. With wood, metal, and stones, within the limit of abrasion, triction varies only with the pressure, and is independent of the extent of surface, time of contact and velocity.
4. The limit of abrasion is determined by the hardness of the softer of the two rubbing parts.
5. Friction is greatest with soft and least with hard materials.
6. The friction of lubricated surfaces is determined by the nature of the lubricant rather than by that of the solids themselves.

Friction of Rest. (Rennie.)
\begin{tabular}{c|c|c|c|c}
\hline \begin{tabular}{c}
Pressure, \\
lbs. \\
per square \\
inch.
\end{tabular} & \multicolumn{4}{|c}{ Values of \(f\). } \\
\cline { 2 - 5 } \begin{tabular}{c}
Wrought iron on \\
Wrought Iron.
\end{tabular} & \begin{tabular}{c}
Wrought on \\
Cast Iron.
\end{tabular} & \begin{tabular}{c}
Steel on \\
Cast Iron.
\end{tabular} & \begin{tabular}{c}
Brass on \\
Cast Iron.
\end{tabular} \\
\cline { 2 - 5 } 187 & .25 & .28 & .30 & .23 \\
224 & .27 & .29 & .33 & .22 \\
336 & .31 & .33 & .35 & .21 \\
448 & .38 & .37 & .35 & .21 \\
560 & Abraded & .37 & .36 & .23 \\
672 & Abraded & .40 & .23 \\
784 & Abraded & .23 \\
\hline
\end{tabular}

Law of Unlubricated Friction.-A. M. Wellington, Eng'g News, April 7, 1888, states that the most important and the best determined of all the laws of unlubricated friction may be thus expressed:

The coefficient of unlubricated friction decreases materially with velocity, is very much greater at minute velocities of \(0+\), falls very rapidly with minute increases of such velocities, and continues to fall much less rapidly with higher velocities up to a certain varying point, following closely the laws which obtain with lubricated friction.

Friction of Steel Tires Sliding on Steel Rails. (Westing. house \& ('alton.)
\begin{tabular}{lllllllc}
Speed, miles per hour............ & 10 & 15 & 25 & 38 & 45 & 50 \\
Coefficient of friction........ & 0.110 & .087 & .080 & .051 & .047 & .040 \\
Adhesion, lbs. per ton (2240 ibs. \()\) & 246 & 195 & 179 & 128 & 114 & 90
\end{tabular}

Rolling Friction is a consequence of the irregularities of form and the roughutss of surface of bodies rolling one over the other: Its laws are not yet definitely established in consequence of the uncertainty which exists in experiment as to how inuch of the resistance is due to roughness of surface, how much to original and permanent irregularity of form, and how much to distortion under the load. (Thurston.)
Coefficients of Rolling Friction.-If \(R=\) resistance applied at the circumfielence of the wheel, \(W=\) total weight, \(r=\) radius of the wheel, and \(f=\) a coefficient, \(R=f W \div r, f\) is very variable. Coulomb gives .06 for wood, .005 for metal, where \(W\) is in pounds and \(r\) in feet. Tredgold made the value of \(f\) for iron on iron .002 .
For wagons on soft soil Morin found \(f=.065\), and on hard smooth roads .0\%.
A Committee of the Society of Arts (Clark, R. T. D.) reported a loaded omnibus to exhibit a resistance on various loads as below:
\begin{tabular}{|c|c|c|c|}
\hline Pavement & Speed per hour. & Coefficient. & Resistance. \\
\hline Granite & 2.87 miles. & . 007 & 17.41 per ton. \\
\hline Asphalt. & 3.56 " & . 0121 & 27.14 \\
\hline Wood & 3.34 & . 0185 & 41.60 \\
\hline Macadam, gravell & 3.45 " & . 0199 & 44.48 \\
\hline " granite & 3.51 " & . 0451 & 101.09 \\
\hline
\end{tabular}

Thurston gives the value of \(f\) for ordinary railroads, .003 , well-laid railroad track, .002 ; best possible railroad track, .001 .
The few experiments that have been made upon the coefficients of rolling friction, a part from axle friction, are too incomplete to serve as a basis for practical rules. (Trautwine).

Laws of Fluid Friction.-For all fluids, whether liquid or gaseous, the resistance is (1) independent of the pressure between the masses in contact; (2) directly proportional to the area of rubbing-surface; (3) proportional to the square of the relative velocity at moderate and high speeds, and to the velocity nearly at low speeds; (4) independent of the nature of the surfaces of the solid against which the stream may flow, but dependent to some extent upon their degree of roughness; (5) proportional to the density of the fluid, and related in some way to its viscosity. (Thurston.)
The Friction of Lubricated Surfaces approximates to that of solid friction as the journal is run dry, and to that of fluid friction as it is flooded with oil.

\section*{Angles of Repose and Coefficients of Friction of Building Materials. (From Rankine's Applied Mechanics.)}
\begin{tabular}{|c|c|c|c|}
\hline & \(\theta\). & \(f=\tan \theta\). & \(\frac{1}{\tan \theta}\). \\
\hline Dry masonry and brickwork. & \(31^{\circ}\) to \(35^{\circ}\) & . 6 to . 7 & 1.67 to 1.4 \\
\hline damp mortar. & \(361 / 2^{\circ}\) & . 74 & 1.35 \\
\hline Timber on stone & \(22^{\circ}\) & about 4 & 2.5 \\
\hline Iron on stone & \(35^{\circ}\) to \(162 / 3^{\circ}\) & . 7 to . 3 & 1.43 to 3.3 \\
\hline Timber on timber. & 261/90 to \(111 / /^{\circ}\) & .5 to . 2 & \[
2 \text { to } 5
\] \\
\hline Metals on metals & \(14^{\circ}\) to \(81 / 2^{\circ}\) & .25 to .15 & to 6. \\
\hline Mason'y on dry clay & \(27^{\circ}\) & & 1.96 \\
\hline " " moist clay & 1814 \({ }^{\circ}\) & . 33 & 3. \\
\hline Earth on earth & \(14^{\circ}\) to \(45^{\circ}\) & . 25 to 1.0 & 4 to 1 \\
\hline and mixed earth. & \(21^{\circ}\) to \(37^{\circ}\) & . 38 to . 75 & 2.63 to 1.33 \\
\hline Earth on earth, damp clay & \(45^{\circ}\) & 1.0 & \\
\hline "6 "6 "6 wet clay...... & \(1 \%^{\circ}\) & . 31 & 3.23 \\
\hline gravel & \(39^{\circ}\) to \(48^{\circ}\) & . 81 & 1.23 to 0.9 \\
\hline
\end{tabular}

Friction of Motion. - The following is a table of the angle of repose \(\theta\), the coefficient of friction \(f=\tan \theta\), and its reciprocal, \(1 \div f\), for the materials of mechanism-condensed from the tables of General Morin (1831), antd other sources, as given by Rankine;
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Surfaces. & \(\theta\). & \(f\). & \(1 \div f\) \\
\hline 1 & Wood on wood, dry & \(14^{\circ}\) to \(2611^{\circ}\) & . 25 to .5 & 4 to 2 \\
\hline \(\stackrel{2}{3}\) & "' " "\% soaped.. & 111/2 to \(\%^{\circ}\) & .2 to 5 . 04 & \\
\hline 3
4 & Metals on oak, dry & \({ }^{261 / 2}{ }^{\circ}\) to \(31^{\circ}\) to \(14^{\circ}\) & 5 to .6
.24 to 26 & \({ }_{4}^{2}\) to 1.67 \\
\hline 5 & " " " soapy & \(1112^{\circ}\) & . 24 & 4.15 \\
\hline 6 & " " elm, dry & \(1112^{\circ}\) to \(14^{\circ}\) & . 2 to . 25 & 5 to 4 \\
\hline \(\%\) & Hemp on oak, dry. & \(28^{\circ}\) & . 53 & 1.89 \\
\hline 8 & " " " wet. & 181/2 \({ }^{\circ}\) & . 33 & 3 \\
\hline 9 & Leather on oak.......... & \(15^{\circ}\) to \(1912^{\circ}\) & .27 to . 38 & 3.7 to 2.86 \\
\hline 10 & "، " metals, dry.. & \(2911{ }^{\circ}\) & . 56 & 1. 79 \\
\hline 112 & " " "\% wet. & \(\stackrel{20}{ }\) & . 36 & 2.78 \\
\hline 12 & " \({ }^{6}\) " \({ }^{\text {6 }}\), greasy & \({ }_{81} 3^{\circ}\) & . 23 & 4.35 \\
\hline 13 & Metals on metals, dry... & \(\stackrel{81 / 2}{ }{ }^{\circ} 2^{\circ}\) to \(11^{\circ}\) & . 15 to 2 & 6.6.67 to 5 \\
\hline 15 & " " "6 wet... & \(161 / 2^{\circ}\) & . 3 & 3.33 \\
\hline 16 & Smooth surfaces, occasionally greased & \(4^{\circ}\) to \(41 / 2^{\circ}\) & . 07 to . 08 & 14.3 to 12.5 \\
\hline 17 & Sniooth surfaces, continuously greased..... & \(3^{\circ}\) & . 05 & 20 \\
\hline 18 & Smooth surfaces, best results.. & \(13 / 4{ }^{\circ}\) to \(2^{\circ}\) & . 03 to . 036 & \\
\hline 19 & Bronze on lignum vitæ, constantly wet. & \(3^{\circ}\) ? & .05? & \\
\hline
\end{tabular}

Coefficients of Friction of Journals. (Morin.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Material.} & \multirow[b]{2}{*}{Unguent.} & \multicolumn{2}{|l|}{Lubrication.} \\
\hline & & Intermittent. & Continuous. \\
\hline Cast iron on cast iron.... & \multirow[t]{3}{*}{Oil, lard tallow. Unctuous and wet. Oil, lard, tallow. Unctuous and wet. Oil, lard.} & \[
.07 \text { to } .08
\] & . 03 to 0.05 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Cast iron on bronze.. \\
Cast iron on lignum vitæ Wrought iron oucastiron bronze..
\end{tabular}} & & to . 08 & . 03 to .054 \\
\hline & & & 09 \\
\hline & Oil, lard, tallow. & . 07 to . 08 & . 03 to . 054 \\
\hline Iron on lignum vitæ..... & Oil, lard.
Unctuous. & . 11 & \\
\hline & Olive-oil. & . 10 & \\
\hline
\end{tabular}

Prof. Thurston says concerning the above figures that much better results are probably obtained in good practice with ordinary machinery. Those here given are so greatly modified by variations of speed, pressure, and temperature, that they cannot be taken as correct for general purposes.
Average Coefficients of Friction. Journal of cast iron in bronze bearing; velocity \(\left\{20\right.\) feet per minute; trmperature \(70^{\circ} \mathrm{F}\).; intermittent feed through an oil-hole. (Thurston on Friction and Lost Work.)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Oils.} & \multicolumn{4}{|l|}{Pressures, pounds per square inch.} \\
\hline & 8 & 16 & 32 & 48 \\
\hline Sperm, lard, neat's-foot,etc. & . 159 to . 250 & . 138 to .192 & . 086 to . 141 & . 077 to . 144 \\
\hline Olive, cotton-seed, rape, etc.
Cod and menhaden.. & . \(160 \times 1.283\) & . 107 " 12.245 & . 101 " \({ }^{\text {c }}\). 1168 & .009
081 \\
\hline Mineral lubricating-oils. & . 154 ". 261 & .145 ".233 & . 086 ". 178 & . 091 " 22 \\
\hline
\end{tabular}

With fine steel journals running in bronze bearings and continuous luhrication, coefficients far below those above given are obtained. Thus with sperm-oil the coefficient with 50 lbs. per square inch pressure was .0034 ; with 200 lbs ., .0051 ; with 300 lbs ., ,0057.

For very low pressures, as in spindles, the coefficients are much higher. Thus Mr. Woodbury found, at a temperature of \(100^{\circ}\) and a velocity of 600 feet per minute,
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pressures, lbs. per sq. in. & 1 & 2 & 3 & 4 & 5 \\
\hline Coefficient... & . 38 & . 27 & . 22 & . 18 & 17 \\
\hline
\end{tabular}

These high coefficients, however, and the great decrease in the coefficient at increased pressures are limited as a practical matter only to the smaller pressures which exist especially in spinning machinery, where the pressure is so light and the film of oil so thick that the viscosity of the oil is an important part of the total frictional resistance.

Experiments on Friction of a Journal Lubricated by an Oil-bath (reported by the Committee on Friction, Proc. linst. M. E., Nov. 1883) show that the absolute friction, that is, the absolute tangential force per square inch of bearing, required to resist the tendency of the brass to go round with the juurnal, is nearly a constant under all loads, within ordinary working limits. Most certainly it does not increase in direct proportion to the load, as it should do according to the ordinary theory of solid friction. The results of these experiments seem to show that the friction of a perfectly lubricated journal follows the laws of liquid friction much nore closely than those of solid friction. They slow that under these circumstances the friction is nearly independent of the pressure per square inch, and that it increases with the velocity, though at a rate not nearly so rapid as the square of the velocity.

The experiments on friction at different temperatures indicate a great diminution in the friction as the temperature rises. Thus in the case of lard-oil, taking a speed of 450 revolutions per minute, the coefficient of friction at a temperature of \(120^{\circ}\) is only one third of what it was at a temperature of 60 .

The journal was of steel, 4 inches diameter and 6 inches long, and a gunmetal brass, embracing somewhat less than half the circumference of the journal, rested on its upeer side, on which the load was applied. When the bottom of the journal was immersed in oil, and the oil therefore carried under the brass by rotation of the journal, the greatest load carried with rape-oil was 573 lbs . per square inch, and with mineral oil 625 lbs .

In experiments with ordinary lubrication, the oil being fed in at the centre of the top of the brass, and a distributing groove being cut in the brass parallel to the axis of the journal, the bearing would not run cool with only 100 lbs. per square inch, the oil being pressed out from the bearing-surface and through the oil-hole, instead of being carried in by it. On introducing the oil at the sides through two parallel grooves, the lubrication appeared to be satisfactory, but the bearing seized with 380 lbs . per square inch.

When the oil was introduced through two oil-holes, one near each end of the brass. and each connected with a curved groove, the brass refused to take its oil or run cool, and seized with a load of only 200 lbs . per square inch.

With an oil-pad under the journal feeding rape-oil, the bearing fairly car. ried 551 lbs . Mr. Tower's conclusion from these experiments is that the friction depends on the quantity and uniformity of distribution of the oil, and may be anything between the oil-bath results anil seizing, according to the perfection or imperfection of the lubrication. The lubrication may be ver'y sinall, giving a coefficient of \(1 / 100\); but it appeared as though it could not be diminished and the friction increased much beyoud this point without imminent risk of heating and seizing. The oil-bath probably represents the most perfect lubrication possible and the limit beyond which friction cannot be reduced by lubrication; and the experiments show that with speeds of from 100 to 200 feet per minute, by properly proportioning the bearingsurface to the load, it is possible to reduce the coefficient of friction to as low as \(1 / 1000\). A cnefficient of \(1 / 1500\) is easily attainable. and probably is frequently attained, in ordinary engine-bearings in which the directiou of the force is rapidly alternating and the oil given an opportunity to get between the surfaces, while the du:ation of the force in one direction is not sufficient to allow time for the oil film to be squeezed out.

Observations on the behavior of the apparatus gave reason to believe that. with perfect lubrication the speed of minimum friction was from 100 to 150 feet per miuute, and that this speed of minimum friction tends to be higher with an increase of load, and also with less perfect lubrication. By the speed of minimum friction is meant that speed in approaching which from rest the friction diminishes, and above whlch the friction increases.

Coefficients of Friction of Journal with Oil-bath. -Ab. stract of results of Tower's experiments on friction (Proc. Inst. M. E., Nov. 18883). Journal, 4 in. diam., 6 in . loug; temperature, \(90^{\circ} \mathrm{F}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Lubricant in Bath.} & \multicolumn{7}{|l|}{Nominal Load, in pounds per square inch.} \\
\hline & 625 & 520 & 415 & 310 & 205 & 153 & 100 \\
\hline & \multicolumn{7}{|c|}{Coefficients of Friction.} \\
\hline \multicolumn{8}{|l|}{Lard-oil :} \\
\hline 157 ft . \(\mathrm{per} \min _{66}\) & & . 0009 & . 0012 & . 0014 & . 0020 & . 0027 & . 0042 \\
\hline Mineral grease : & & . 0017 & . 0021 & . 0029 & . 0042 & . 0052 & . 009 \\
\hline \(157 \mathrm{ft}{ }_{6}\) per \(\mathrm{min}_{6}\) & . 001 & . 0014 & . 0016 & . 0022 & . 0034 & . 0038 & \(00{ }^{2} 6\) \\
\hline & . 002 & .002\% & . 0027 & . 004 & . 0066 & . 0083 & . 0151 \\
\hline Sperm-oil : & & & & & & & \\
\hline \(157{ }^{7} \mathrm{ft}_{6}\) per \(\min _{6}\) & & seiz'd & . 0015 & . 0011 & . 0016 & . 0019 & . 003 \\
\hline & & & . 0021 & . 0019 & . 0027 & 003í & . 0064 \\
\hline Rape-oil:
\(15 \tilde{\text { ft. }}\) per min.. & \[
(573 \mathrm{lb} .)
\] & & & & & & \\
\hline \({ }_{471}^{15 \tilde{f}} \mathrm{ft}\) i، per \(\mathrm{min}_{66}\). & \[
.001
\] & . 001 & . 0009 & . 0008 & . 0014 & . 002 & . 004 \\
\hline 471 " " & & . 0015 & . 0016 & . 0016 & . 0024 & . 004 & . 007 \\
\hline Mineral-oil : & & & & & & & \\
\hline \({ }_{471}^{15 \pi} \mathrm{ft}_{6}\) per \(\min _{6}\) & . \(0 \subset 13\) & . 0012 & . 0012 & . 0014 & . 0021 & & . 004 \\
\hline Rape-oilfed by syphon lubricator: & & . 0018 & . 002 & . 0024 & . 0035 & & . 007 \\
\hline 15 f ft. \({ }^{\text {per }} \mathrm{min}_{61}\)................... & & & & . 0056 & . 0098 & & . 0125 \\
\hline 314 "p " & & & & . 0068 & . \(00 \%\) & & . 0152 \\
\hline Rape-oil, pad under journal: & & & & & & & \\
\hline \({ }_{314}^{157} \mathrm{ft}_{3}\) per min. & & & & . 0099 & . 0105 & & .0099
\(013 \%\) \\
\hline
\end{tabular}

Comparative friction of different lubricants under same circumstances, temperature \(90^{\circ}\), oil-bath:
\begin{tabular}{|c|c|c|c|}
\hline Sperm-oil & 100 per cent. & Lard. & 135 per ce \\
\hline Rape-oil & 106 " & Olive-oil. & 135 \\
\hline Nineral oi & 129 & Mineral grease. & 217 \\
\hline
\end{tabular}

Coefficients of Friction of MIotion and of Rest of a Journal.-A cast-iron journal in steel boxes, tested by Prof. Thurston at a speed of rubbing of 150 feet per minute, with lard and with sperm oil, gave the following:

The coefficient at a speed of 150 feet per minute decreases with increase of pressure until 500 lbs . per sq. in. is reached; above this it increases. The coefficient at rest or at starting increases with the pressure throughout the range of the tests.
Value of Anti-friction Metals. (Denton.)-The various whic metals available for lining brasses do not afford coefficients of friction lower than can be obtained with bare brass, but they are less liable to "overheating," because of the superiority of such material over bronze in ability to permit of abrasion or crushing, without excessive increase of friction.
Thurston (Friction aud Lost Work) says that gun-bronze, Babbitt, and other soft white alloys have substantially the same friction; in other words, the friction is determined by the nature of the unguent and not by that of the rubbing-surfaces, when the latter are in gond order. The soft metals run at higher temperatures than the bronze. This, however, does not necessarily indicate a serious defect, but simply deficient conductivity. The value of the white alloys for bearings lies mainly in their ready reduction to a smocth surface after any local or general injury by alteration of either suriace or form.

Cast-iron for Bearings. (Joshua Rose.)-Cast iron appears to be an exception to the general rule, that the harder the metal the greater the resistance to wear, because cast iron is softer in its texture and easier to cut with steel tools than steel or wrought iron, but in some situations it is far more durable than hardened steel; thus when surrounded by steam it will wear better than will any other metal. Thus. for instance, experience has demonstrated that piston-rings of cast iroll will wear smoother, better, and equally as long as those of steel, and longer than those of either wrouglit iron or brass, whether the cylinder in which it works be composed of brass, steel, wrought iron, or cast iron; the latter being the more noteworthy, since two surfaces of the same metal do not, as a rule, wear or work well together. So also slide-valves of brass are not found to wear so long or so smoothly as those of cast irou, let the metal of which the seating is composed be whatever it may; while, on the other hand, a cast iron slidevalve will wear longer of itself and cause less wear to its seat, if the latter is of cast ironl, than if of steel, wrought iron, or brass.
Friction of Metals under Steam-pressure. - The friction of brass uipon iron under stean-pressure is double that of iron upon iron. (G. H. Babeock, Trans. A. S. M. E., i. 151.)

Morin's \({ }^{6}\) Laws of Friction. 9 - 1 . The friction between two bodies is directly proportioned to the pressure; i.e., the coefficient is constant for ali pressures.
2. The coefficient and amount of friction, pressure being the same, is independent of the areas in contact.
3 The coefficient of friction is independent of velocity, although static friction (friction of rest) is greater than the friction of motion.

Eng.g News, April 7, 1888, comments on these "laws" as follows: From 1831 till about 1876 there was no attempt worth speaking of to enlarge our knowledge of the laws of friction, which during all that period was assumed t) be complete, although it was really worse than nothing, since it was for the most part wholly false. In the year first mentioned Morin began a series of experiments which extended over two or three years, and which resulted in the enunciation of these three "fundamental laws of friction," no one of which is even approximately true.
For fifty years these laws were accepted as axiomatic, and were quoted as such without question in every scientific work published during that whole period. Now that they are so thoroughly discredited it has been attempted to explain a way their defects on the ground that they cover only a very limited range of pressures. areas, velocities, etc., and that Morin himself only announced them as true within the range of his conditions. It is now clearly establisbed that there are no limits or conditions within which any one of them eveu approximates to exactitude, and that there are many conditions under which they lead to the wildest kind of error, while many of the constauts were as inaccurate as the laws. For example. in Morin's "Table of Coefficients of Moving Frictinn of Smonth Plane Surfaces: perfectly lubricated," which may be found in hundreds of text-books now in use. the coefficient of wrought iron on brass is given as .075 to .103 , which would make the rolling fr'ction of railway trains 15 to 20 lbs . per ton instead of the 3 to 6 lbs . which it actually is.
General Mícriv, in a letter to the Secretary of the Institution of Mechanical Engineers. dated March 15, 18i9, writes as follows concerning his experiments on friction made more than forty years before: "The results furnished by my experiments as to the relations between pressure, surface, aud speed on the one hand. and sliding friction on.the other. have always been regarded by myself, not as mathematical laws, but as close approximations to the truth. within the limits of the data of the experiments themselves. The same holds. in my opinion, for many other laws of practical mechanics, such as those of rolling resistance, fluid resistance, etc."
Prof. J. E. Denton (Stecelıs Ludicator, July, 1890) says: It has been generally assumed that friction thetwiven lubricated surfaces follows the simple law that the amount of the friction is some fixed fraction of the pressure between the surfaces. such fraction being independent of the intensity of the pressure per square inch and the velocity of rubbing. between certain limits of practice. and that the fixed fraction referred to is represented by the coefficients of friction given by th - experiments of Morin or obtained from experimental data which represent conditions of practical lubrication, such as those given in Webber's Manual of Power.

By the experiments of Thurston, Woodbury, Tower, etc., however, it appears that the friction between lubricated metallic surfaces, such as ma-
chine bearings, is not directly proportional to the pressure, is not independent of the speed, and that the coefficients of Morin and Webber are about tenfold too great for modern journals.
Prof. Denton offers an explanation of this apparent contradiction of authorities by skowing. with laboratory testing machine data, that Moriu's laws hold for bearings lubricated by a restricted feed of lubricant, such as is afforded by the oil-cups common to machinery; whereas the modern experiments have been made with a surplus feed or superabundance of lubricant, such as is provided only in railroad-car journals, and a few special cases of practice.
That the low coefficients of friction obtained under the latter conditions are realized in the case of car journals, is proved by the fact that the temperature of car-boxes remains at \(100^{\circ}\) at high velocities; and experiment shows that this temperature is consistent only with a coefficient of friction of a fraction of one per cent. Deductions from experiments on train resistance also indicate the same low degree of triction. But these low co-efficients de not account for the internal friction of steam-engines as well as do the co efficients of Morin and Wetber.
In American Machinist, Oct. 23, 1890, Prof. Denton says: Morin's measurement of friction of lubricated journals did not extend to light pressures. They apply only to the conditions of general shafting and engine work.
He clearly understood that there was a frictional resistance. due solely to the viscostry of the oil, and that therefore, for very light pressures, the laws which he enunciated did not prevail.
He applied his dynamometers to ordinary shaft-journals without special preparation of the rubbing-surfaces, and without resorting to artificial methods of supplying the oil.
Later experimenters have with few exceptions devoted themselves exclusively to the measurement of resistance practically due to viscosity alone. They have eliminated the resistance to which Morin confined his measurements. namely, the friction due to such contact of the rubbing-surfaces as prevail with a very thin film of lubricant between comparatively rough surfaces.
Prof. Denton also says (Trans. A. S. M. E., x. 518): "I do not believe there is a particle of proof in any investigation of friction ever made, that Morin's laws do not bold for ordinary practical oil-cups or restricted rates of feed."

Lavs of Friction of well-lubricated Journals.-John Goodman (Trans. Inst. C. E. 1856. Eng'g News, Apr. 7 and 14, 1888), reviewing the results obtained from the testing-machines of Thurston, Tower, and Stroudley, arrives at the following laws:

\section*{Lafs of Friction: Well-lubricated Surfaces. (Oil-bath.)}
1. The coefficient of friction with the surfaces efficiently lubricated is from \(1 / 6\) to \(1 / 10\) that for dry or scantily lubricated surfaces.
2. The coefficient of friction for moderate pressures and speeds varies approximately inversely as the normal pressure; the fríctional resistance varies as the area in contact, the normal pressure remaining constant.
3 At very low journal speeds t.ie coefficient of friction is abnormally bigh: but as the speed of sliding increases from about 10 to 100 ft per min , the friction diminishes, and again rises when that speed is exceeded, varying approximately as the square root of the speed.
4. The coefficient of friction varies approximately inversely as the temperature, within certain limits, namely, just before abrasion takes place.
The evidence upon which these laws are based is taken from various modern experiments. That relating to Law 1 is derived from the "First Repori on Friction Experiments," by Mr. Beauchamp 'Tower.
\begin{tabular}{|c|c|c|}
\hline Method of Lubrication. & Coefficient of Friction. & Comparative Friction. \\
\hline Oil-bath & . 00139 & 1.00 \\
\hline Siphon lubricator......................... & . 0098 & 7.06 \\
\hline Pad under journal & . 0090 & 6.48 \\
\hline
\end{tabular}

With a load of 293 lbs . per sq. in. and a journal speed of 314 ft . per min. Mr . Tower found the coefficient of friction to be .0016 with an oil-bath, und
.0097, or six times as much. with a pad. The very low coefficients obtained by Mr. Tower will be accounted for by Law 2, as he found that the frictional resistance per square inch under varying loads is nearly constant, as below:
Load in lbs. per sq. in..... \(5 \cdot 5 \cdot 9 \begin{array}{llllllll}468 & 415 & 363 & 310 & 258 & 205 & 153 & 100\end{array}\) Frictional resist. persq. in. . 416 . 514 . 498 . \(4 \mathrm{~T}_{2}\). 464 . 438 . 43 . 458 . 45
The frictional resistance per square inch is the product of the coefficient of friction into the load per square inch on horizontal sections of the brass. Hence, if this product be a constant, the one factor must vary inversely as the other. or a high load will give a low coefficient. and vice versc.
For ordinary lubrication. the coefficient is more constant under varying loads: the frictional resistance then varies directly as the load, as shown by Mr. Tower in Table VIII of his report (Proc. Inst. M. E. 1883).
With respect to Law 3, A. M. Wellington (Trans. A. S. C. E. 1884), in experiments on journals revolving at very low velocities, found that the friction was then very great. and nearly coustant under varying conditions of the lubrication, load, and temperature. But as the speed increased the friction fell slowly and regularly, and again returned to the original amount when the velocity was reduced to the same rate. This is shown in the following tâble:
Speed, feet per minute:

It was also found by Prof. Kimball that when the journal velocity was increased from 6 to 110 ft . per minure, the friction was reduced \(70 \%\); in another case the friction was reduced \(6 \% \%\) when the velocity was increased from 1 to 100 ft . per minute; but after that point was reached the coefficient varied approximately with the square :oot of the velocity.

The following results were obtained by Mr. Tower:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Feet per minute. & 209 & :26 & 314 & 366 & 419 & 471 & Nominal Load per sq. in. \\
\hline Coeff. of friction.. & . 0010 & . 0012 & . 0013 & . 0014 & . 0015 & . 0017 & 520 lbs. \\
\hline & . 0013 & . 0014 & . 0015 & . 0017 & . 0018 & .002
\(.00 \% 4\) & 468 "
415 \\
\hline
\end{tabular}

The variation of friction with temperature is approzimately in the inverse ratio, Law 4. Take, for example, Mr. Tower's results, at 262 ft . per minute:
\begin{tabular}{c|c|c|c|c|c|c}
\hline Temp. F. & \(110^{\circ}\) & \(100^{\circ}\) & \(90^{\circ}\) & \(80^{\circ}\) & \(70^{\circ}\) & \(60^{\circ}\) \\
\begin{tabular}{c}
Ubserved..... \\
Calculated...
\end{tabular} & -0044 & .0051 & \begin{tabular}{c}
.006 \\
.0051
\end{tabular} & -.0073 & \begin{tabular}{c}
.0092 \\
.00518
\end{tabular} & \begin{tabular}{c}
.0119 \\
.00608
\end{tabular} \\
\hline
\end{tabular}

This law does not hold good for pad or siphon lubrication, as then the coefficient of friction diminishes more rapidly for given increments of temperature, but on a gradually decreasing scale, until the normal temperature has been reached; this normal temperature increases directly as the load per sq. in. This is shown in the following table taken from Mr. Stroudley's experiments with a pad of rape oil:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Temp. F & 1050 & \(110^{\circ}\) & \(115^{\circ}\) & \(120^{\circ}\) & \(125^{\circ}\) & \(130^{\circ}\) & \(135^{\circ}\) & \(140^{\circ}\) & \(145^{\circ}\) \\
\hline Coefficient & . 022 & . 0180 & . 0160 & . 0140 & . 0125 & . 0115 & 0110 & 06 & \\
\hline Decrease of coeff. & & .0140 & .0020 & 0020 & . 0015 & . 0010 & 0005 & . 0004 & 000:3 \\
\hline
\end{tabular}

In the Galton-Westinghouse experiments it was found that with velocities below 100 ft . per min.. and with low pressures, the frictional resistance varied directly as the normal pressure; but when a velocity of 100 ft . per min. was exceeded, the coefficient of friction greatly diminished; from the same experiments Prof. Kennedy found that the coefficient of friction for high pressures was sensibly less than for low.

Allowable Pressures on Bearing-surfaces. (Proc. Inst. M. E., May, 1888.)-The Committee on Friction experimented with a steel ring of
rectangular section, pressed between two cast-iron disks, the annular bear. ing-surfaces of which were covered with gun-metal, and were 12 in . inside diameter and 14 in , outside. The two disks were rotated together, and the steel ring was prevented from rotating by means of a lever, the bolding force of which was measured. When oiled through grooves cut in each face of the ring and tested at from 50 to 130 revs. per min., it was found that a pressure of it lbs. per sq. in. of bearing-surface was as much as it would bear safely at the highest speed without seizing, although it carried 90 lbs. per sq. in. at the lowest speed. The coefficient of friction is also much higher than for a cylindrical bearing, and the friction follows the law of the friction of solids much more nearly than that of liquids. This is doubtless due to the much less perfect lubrication applicable to this form of bearing compared with a cylindrical one. The coefficient of friction appears to be about the same with the same load at all speeds, or, in other words, to be independent of the speed: but it seems to diminish somewhat as the load is increased. and may be stated approximately as \(1 / 20\) at 15 lbs . per sq. in., diminishing to \(1 / 30\) at T 5 lbs . per sq. in.
The high coefficients of friction are explained by the difficulty of lubricating a collar-bearing. It is similar to the slide-block of an engine, which can carry only about one tenth the load per sq. in. that can be carried by the crank-pins.
In experiments on cylindrical journals it has been shown that when a cylindrical journal was lubricated from the side on which the pressure bore, 1in lbs. per sq. in. was the limit of pressure that it would carry; but when it came to be lubricated on the lower side and was allowed to drag the oil in with it, 600 lbs . per sq. in. was reached with impunity; and if the 600 lbs . per sq . in., which was reckoned upon the full diameter of the bearing, came to be reckoned on the sixth part of the circle that was taking the greater proportion of the load, it followed that the pressure upon that part of the circle amounted to about 1200 lbs . per sq. in.
In connection with these experiments Mr. Wicksteed states that in drill-ing-machines the pressure on the collars is frequently as high as 336 lbs . per sq. in., but the speed of rubbing in this case is lower than it was in any of the experiments of the Researcl Committee. In machines working very slowly and intermittently, as in testing-machines, very much higher pressures are admissible.
Mr. Adamson mentions the case of a heavy upright shaft carried upon a small footstep-bearing, where a weight of at least 20 tons was carried on a shaft of 5 in. diameter, or, say, 20 sq . in. area, giving a pressure of 1 ton per sq. in. The speed was 190 to 200 revs. per min. It was necessary to force the oil under the bearing by means of a pump. For heavy horizontal shafts, such as a fly-wheel shaft, carrying 100 tons on two journals, his practice for getting oil into the bearings was to flatten the journal along one side throughout its whole length to the extent of about an eighth of an inch in width for each inch in diameter up to 8 in. diameter; above that size rather less flat in proportion to the diameter. At first sight it appeared alarming to get a continuous flat place coming round in every revolution of a heavily loaded shaft; yet it carried the oil effectually into the bearing, which ran much better in consequence than a truly cylindrical journal without a flat side.
In thrust-bearings on torpedo-boats Mr. Thornycroft allows a pressure of never more than 50 llhs . per sq. in.
Prof. Thurston (Friction and Lost Work, p. 240) says \(\gamma 000\) to 9000 lbs . pressure per square inch is reached on the slow-working and rarely-moved pivots of swing bridges.
Mr. Tower says (Proc. Inst. M. E.. Jan. 1884): In eccentric-pins of punching and shearing-machines very high pressures are sometimes used without seizing. In addition to the alternation in the direction, the pressure is applied for only a very short space of time in these machines, so that the oil has no time to be squeezed out.
In the discussion on Mr. Tower's paper (Proc. Inst. M. E. 1885) it was stated that it is well known from practical experience that with a constant load on an ordinary journal it is difficult and almost impossihle to have more than 200 ibs . per square inch, otherwise the bearing would get hot and the oil go out of it; but when the motion was reciprocating, so that the load was alternately relieved from the journal, as with crank-pins and similar journals, much higher loads might be applied than even 700 or 800 lbs . per square inch.

Mr. Goodman (Proc. Inst. C. E. 1886) found that the total frictional resistance is materially reduced by diminishing the width of the brass.
The lubrication is most efficient in reducing the friction when the brass subteuds an angle of from \(1: 0^{\circ}\) to \(60^{\circ}\). The film is probably at its best between the angles \(80^{\circ}\) and \(110^{\circ}\).
In the case of a brass of a railway axle-bearing where an oil-groove is cut along its crown and an oil-hole is drilled through the top of the brass into it, the wear is invariably on the off side, which is probably due to the oil escaping as soon as it reaches the crown of the hrass, and so leaving the off side almost dry, where the wear consequently ensues.

In railway axles the brass wears always on the forward side. The same observation has heen made in marine-engine journals, which always wear in exactly the reverse way to what they might be expected. Mr. Stroudley thinks this peculiarity is due to a film of lubricant being drawn in from the under side of the journal to the aft part of the brass, which effectually lubricates and prevents wear on that side; and that when the lubricant reaches the forward side of the brass it is so attenuated down to a wedge shape that there is insufficient lubrication, and greater wear consequently follows.

Prof. J. E, Denton (Am. Mach., Oct. 30, 1890) says: Regarding the pressure to wnich oil is subjected in railroad car-service, it is probably more severe than in any other class of practice. Car brasses, when used bare, are so imperfectly fitted to the journal, that during the early stages of their use the area of bearing may be but about one square inch. In this case the pressure per square inch is upwards of 6000 lbs . But at the slowest speeds of freight service the wear of a brass is so rapid that, within about thirty minutes the area is either increased to about three inches, and is thereby able to relieve the oil so that the latter can successfully prevent overheating of the journal, or else overbeating takes place with any vil. and measures of relief must be taken which eliminate the question of differences of lubricating power among the different lubricants available. A brass which has been run about fifty miles under 5000 lbs . load may have extended the area of bearing-surface to about three square inches. The pressure is then about 1700 lbs . per square inch. It may be assumed that this is an average minimum area for car-service where no violent and unnsanageable overheating has occurred during the use of a brass for a sbort time. This area will very slowly increase with any lubricant.
C. J. Field (Pomer, Feb. 1893) sars: One of the most vital points of an engine for electrical service is that of inain bearings. They should have a surface velocity of not exceeding 350 feet per minute, with a mean bearingpressure per square inch of projected area of journal of not more than 80 lbs. This is considerably within the sate limit of cool performance and easy operation. If the bearings are desioned in this way, it would admit the use of grease on all the main wearing-surface, which in a large type of engines for this class of work we think advisable.

Oil-pressure in a Bearing.-Mr. Beauchamp Tower (Proc. Inst. M. E. Jan. 1885) made experiments with a brass bearing 4 inches diameter by 6 inches long. to determine the pressure of the oil between the brass and the journal. The bearing was half immersed in cil, and had a total load of 8008 lbs. upon it. The journal rotated 150 revolutions per minute. Tbe pressure of the oil was determined by drilling sinall holes in the bearing at different points and connecting them by tubes to a Bourdon gauge. It was found that the pressure varied from 310 to 625 lbs. per square inch, the greatest pressure being a little to the "off" side of the centre line of the top of the bearing, in the direction of motion of the journal. The sum of the upward force exerted by these pressures for the whole lubricated area was nearly equal to the total pressure on the bearing. The speed was reduced from 150 to 20 revolutions, but the oil-pressure remained the same, showing that the brass was as completely oil-borne at the lower speed as at the higher. The following was the observed friction at the lower speed:
\[
\begin{array}{lcccc}
\text { Nominal load, lbs. per square inch... } & 443 & 333 & 211 & 89 \\
\text { Coefficient of friction }
\end{array}
\]

The nominal load per square inch is the total load divided by the product of the diameter and length of the journal. At the same low speed of 20 revolutions per minute it was increased to 676 lbs . per square inch without any signs of heating or seizing.

Friction of Car-journal Brasses. (J. E. Denton, Trans. A. S. M. E., xii. 405 ,-A new brass dressed with an emery-wheel, loaded with 5000 lbs , may have an actual bearing-surface on the journal, as sbown by the polish
of a portion of the surface, of only 1 square inch. With this pressure of 5000 lbs. per square inch, the coefficient of friction may be \(6 \%\), and the brass may be overheated, scarred and cut but, on the contrary, it may wear down evenly to a smooth bearing, giving a highly polished area of contact of 3 square inches, or more, inside of two hours of running, gradually decreasing the pressure per square inch of contact, and a coefficient of friction of less than \(0.5 \%\). A reciprocating motion in the direction of the axis is of importance in reducing the friction. With such polished surfaces any oil will lubricate, and the coefficient of friction then depends on the viscosity of the oil. With a pressure of 1000 lbs . per square inch, revolutions from 170 to 320 per minute, and temperatures of \(\% 5^{\circ}\) to \(113^{\circ} \mathrm{F}\). with both sperm and parraffine oils, a coefficient of as low as \(0.11 \%\) has been obtained, the oil being fed continuously by a pad.

Experiments on Overheating of Bearings.-Hot Boxes. (Denton.)-Tests with car brasses loaded from 1100 to 4500 lbs . per square inch gave 7 cases of overheating out of \(3 \%\) trials. The tests show how purely a matter of chance is the overheating, as a brass which ran hot at 5000 lbs . joad on one day would run cool on a later date at the same or higher pressure. The explanation of this apparently arbitrary difference of behavior is that the accidental variations of the smoothens of the surfaces, almost infinitesimal in their magnitude, cause variations of friction which are always tending to produce overheating, and it is solely a matter of cbance when these tendencies preponderate orer the lubricating influence of the oil. There is no appreciable advantage shown by sperm-oil, when there is no tendency to overheat-that is, paraffine can lubricate under the highest pressures which occur. as well as sperm, when the surfaces are within the conditions affording the minimum coefficients of friction.
Sperm and other oils of high heat-resisting qualities, like vegetable oil and petioleum cylinder stocks. only differ from the more volatile lubricants, like paraffine, in their ablity to reduce the chances of the continual accidental infinitesimal abrasion producing overheating.
The effect of emery or other gritty substance in reducing overheating of a bearing is thus explained:
The effect of the emery upon the surfaces of the bearings is to cover the latter with a series of parallel grooves, and apparently after such grooves are made the presence of the emery does not practically increase the friction over the amount of the latter when pure oil only is between the surfaces. The infinite number of grooves constitute a very perfect means of insuring a uniform oil supply at every point of the bearings. As long as grooves in he journal match with those in the brasses the friction appears to amount to only about \(10 \%\) to \(15 \%\) of the pressure. But if a smooth journal is placed between a set of brasses which are grooved, and pressure be applied, the journal crushes the grooves and becomes brazed or coated with brass, and then the coefficient of friction becomes upward of \(40 \%\). If then emery is applied, the friction is made very much less by its presence, because the grooves are made to match each other, and a uniform oil supply prevails at every point of the bearings, whereas before the application of the emery many spots of the latter receive no oil between them.

\section*{Moment of Friction and Work of Friction of Slidingsurfaces, etc.}
\begin{tabular}{|c|c|c|}
\hline & Moment of Friction, inch-lbs. & Energy lost by Friction in ft .-lbs. per min . \\
\hline Flat surface & & \(f\) WS \\
\hline Shafts and journals & \(1 \% \mathrm{fW}\) d & . \(2618 f\) Wdn \\
\hline Flat pivots.......... & \% \({ }_{3} f W r\) & . 1745 fWrm \\
\hline Collar-bearin & \(2 / 3 f W \frac{r_{2}{ }^{3}-r_{1}{ }^{3}}{r_{2}{ }^{2}-r_{1}{ }^{2}}\) & . \(1745 f W n \frac{r_{2}{ }^{3}-r_{1}{ }^{3}}{r_{2}{ }^{2}-r_{1}{ }^{2}}\) \\
\hline Conical pivot... Conical journai & \(2 / 3 f W r \cdot \operatorname{cosec} a\) \(2 / 8 f W r \sec a\) & \(.1745 f W r n \operatorname{cosec} a\) \(.1145 \mathrm{fWrn} \sec a\) \\
\hline Truncated-cone pivot. & \[
\frac{2}{3} f W^{r_{2}{ }^{3}-r_{1}{ }^{3}} \frac{r_{2} \sin a}{}
\] & \[
.1745 f W \frac{r_{2}^{3}-r_{1}^{3}}{r_{2} \sin a}
\] \\
\hline Hemispherical pivot. & \(f W r\) & . 2618 fWr \\
\hline Tractrix, or Schiele's " anti friction" pivot & \(f W r\) & . 2618 fWr . \\
\hline
\end{tabular}

In the above \(f=\) coefficient of friction;
\(W=\) weight on journal or pivot in pounds;
\(r=\) radius, \(d=\) diameter, in inches;
\(S=\) space in feet through which sliding takes place;
\(r_{2}=\) outer radius, \(r_{3}=\) inner radius;
\(n=\) number of revolutions per minute;
\(a=\) the haif-angle of the cone, i.e., the angle of the slope with the axis.
To obtain the horse-power, divide the quantities in the last column by 3:3,000. Horse-power absorbed by friction of a shaft \(=\frac{f W d n}{126050}\).
The formula for energy lost by shafts and journals is approximately true for loosely fitted bearings. Prof. Thurston shows that the correct formula varies according to the character of fit of the bearing; thus for loosely fitted journals, if \(U=\) the energy lost,
\[
U=\frac{2 f \pi r}{\sqrt{1+f^{2}}} W n \text { inch-pounds }=\frac{.2618 f W d n}{\sqrt{1+f^{2}}} \text { foot-lbs. }
\]

For perfectly fitted journals \(U=2.54 f \pi r \cdot W n\) inch-lbs. \(=.3325 f W d n, f t .-\mathrm{lbs}\).
For a bearing in which the journal is so grasped as to give a uniform pressure throughout, \(\quad U=f \pi^{2} r W n\) inch-lbs. \(=.4112 f W d n\), \(\mathrm{ft} .-\mathrm{lbs}\).
Resistance of railway trains and wagons due to friction of trains:
\[
\text { Pull on draw-bar }=\frac{f \times 2 \because 40}{R} \text { pounds per gross ton, }
\]
in which \(R\) is the ratio of the radius of the wheel to the radius of journal.
A cylindrical journal, perfectly fitted into a bearing, and carrying a total load, distributes the pressure due to this load unequally on the bearing, the maximum pressure being at the extremity of the vertical radius, while at the extremities of the horizontal diameter the pressure is zero. At any point of the bearing-surface at the extremity of a radius which makes an angle \(\theta\) with the vertical radius the normal pressu:e is proportional to \(\cos \theta\). If \(p=\) normal pressure on a unit of surface, \(w=\) total load on a unit of length of the journal, and \(r=\) radius of journal,
\[
w \cos \theta=1.5 \pi r p, \quad p=\frac{w \cos \theta}{1.57 r}
\]

\section*{PIVOT-BEARINGS.}

The Schiele Curve. - W. H. Harrison, in a letter to the Am. Machinist, 1891, says the Schiele curve is not as good a form for a bearing as the segment of a sphere. He says: A mill-stone weighing a ton frequently bears its whole weight upon the flat end of a hard-steel pivot \(11 / 8^{\prime \prime}\) dianneter, or one square inch area of bearing; but to carry a weight of 3000 lbs . he advises an end bearing about 4 inches diameter, made in the form of a segment of a sphere about \(1 / 2\) inch in height. The die or fixed bearing should be dished to fit the pivot. This form gives a chance for the bearing to adjuit itself, which it does not have when made flat, or when made with the Schiele curve. If a side bearing is necessary it can be arranged farther up the shaft. The pivot and die should be of steel, hardened; cross-gutters should be in the die to allow oil to flow, and a central oil-hole should be made in the shaft.

The advantage claimed for the Schiele bearing is that the pressure is uniformly distributed over its surface, and that it therefore wears uniformly. Wilfred Lewis (Am. Mach., April 19, 1894) says that its merits as a thrustbearing have been vastly overestimated; that the term "anti-friction" applied to it is a misnomer, since its friction is greater than that of a flat step or collar of the same diameter. He advises that flat thrust-bearings should always be annular in form, having an inside diameter one half of the external diameter

Friction of a Flat Pirot-bearing.-The Research Committee on Friction (Proc. Inst. M. E. 1891) experimented on a step-bearing, flatended, 3 in . diam.. the oil being forced into the bearing through a hole in its centre and distributed through two radial grooves, insuring thorough lubrication. The step was of steel and the bearing of manganese-bronze.
\begin{tabular}{lccccc}
At revolutions per min................ & 50 & 128 & 194 & 290 & 353 \\
The coefticient of friction varied & .011 & .0053 & .0051 & .0044 & .1053 \\
between
\end{tabular}

With a white-metal bearing at 128 revolutions the coefficient of friction was a little larger than with the manganese-bronze. At the higher speeds the coefficient of friction was less, owing to the more perfect lubrication, as shown by the more rapid circulation of the oil. At 128 revolutious the bronze bearing heated and seized on one occasion with a load of 260 pounds and on another occasion with 300 pounds per square inch. The white-metal bearing under similar conditions heated and seized with a load of 240 pounds per square inch. The steel footstep on manganese-bronze was afterwards tried, lubricating with three and with four radial grooves; but the friction was from one and a half tinses to twice as great as with only the two grooves. (See also Allowable Pressures, page 936.)
Mercury bath Pivot.-A nearly frictionless step-bearing may be obtained by floating the bearing with its superincumbent weight upon mercury. Such an apparatus is used in the lighthouses of La Heve, Havre. It is thus described in Eng'g, July 14, 1893, p. 41:

The optival apparatus, weighing about 1 ton, rests on a circular cast-iron table. which is supported by a vertical shaft of wrought iron 2.36 in . diameter.

This is kept in position at the top by a bronze ring and outer iron support, and at the bottom in the same way, while it rotates on a removable steel pivot resting in a steel socket, which is fitted to the base of the support. To the vertical shaft there is rigidly fixed a floating cast-iron ring 17.1 in . diameter and 11.8 in . in depth, which is plunged into and rotates in a mercury bath contained in a fixed outer drum or tank, the clearance between the vertical surfaces of the drum and ring being only 0.2 in , so as to reduce as much as possible the volume of mercury (about 220 lbs .), while the horizontal clearance at the bottom is 0.4 in .

\section*{BALL-BEARINGS, FRICTION ROLLERS, ETC.}
A. H. Tyler (Eng'g, Oct. 20, 1893, p. 483), after experiments and comparison with experiments of others arrives at the following conclusions: That each ball must have two points of contact only.
The balls and race must be of glass hardness, and of absolute truth.
The balls should be of the largest possible diameter which the space at disposal will admit of.
Any one ball should be capable of carrying the total load upon the bearing.
Two rows of balls are always sufficient.
A ball-bearing requires no oil, and has no tendency to heat unless overloaded.
Until the crushing strength of the balls is being neared, the frictional resistance is proportional to the load.
The frictional resistance is inversely proportional to the diameter of the balls, but in what exact proportion Mr. Tyler is unable to say. Probably it varies with the square.
The resistance is independent of the number of balls and of the speed.
No rubbing action will take place between the balls, and devices to guard against it are unnecessary, and usually injurious.

The above will show that the ball-bearing is most suitable for high speeds and light loads. On the spindles of wood-carving machines some make as much as 30.000 revolutions per minute. They run perfectly cool, and never have any oil upon them. For heavy loads the balls should not be less than two thirds the diameter of the shaft, and are better if made equal to it.

Ball-bearings have not been found satisfactory for thrust-blocks, for the reason apparently that the tables crowd together. Better results have been nbtained from coned rollers. A combined system of rollers and balls is descrihed in Eng'O. Oct. 6, 1893, p. 429.

Friction-rollers. - It a journal instead of revolving on ordinary bearings be supported on friction-rollers the force reqiired to make the journal revolve will be reduced in nearly the same proportion that the diameter of the axles of the rollers is less than the diameter of the rollers themselves. In experiments by A. M. Wellington with a journal \(31, \mathrm{in}\). diam. supported on rollers 8 in . diam., whose axles were \(13 / 4 \mathrm{in}\). diam., the friction in starting from rest was \(1 / 4\) the friction of an ordinary \(31 / 2-i n\). bearing, but at a car speed of 10 miles per hour it was \(1 / 2\) that of the ordinary bearing. The ratio of the diam. of the axle to diam. of roller was \(13 / 4: 8\), or as 1 to 4.6 .

Bearings for Very High Rotacive Speeds. (Proc. Inst. M. E., Oct. 1888, p. \(48 \%\).) -In the Parsons steam-turbine, which has a speed of as high as 18,000 rev. per min., as it is impossible to secure absolute accuracy of balance, the bearings are of special construction so as to allow of a certain very small amount of lateral freedom. For this purpose the bearing is surrounde 1 by two sets of steel washers \(1 / 16\) inch thick and of different diameters, the larger fitting close in the casing and about \(1 / 3:\) inch clear of the bearing, and the smaller fitting close on the bearing and about \(1 / 3 \cdot 3\) inch clear of the casing. These are arranged alternately, and are pressed together by a spiral spring. Consequently any lateral movement of the bearing causes them to slide mutually against one another, and by their friction to check or damp any vibrations that may be set up in the spindle. The tendency of the spindle is theu to rotate about its axis of mass, or principal axis as it is called; and the bearings are thereby relieved from excessive pressure, and the machine from undue vibration. The finding of the centre of gyration, or rather allowing the turbine itself to find its cwu centre of gyration, is a well-known device in other branches of mechanics: as in the instance of the centrifugal hydro-extractor, where a mass very much out, of balance is allowed to find its own centre of gyration; the faster it ran the more steadily did it revolve and the less was the vibration. Another illustration is to be found in the spindles of spinning machinery, which run at about 10,000 or 11,000 revolutions per minute: they are made of hardened and rempered steel, and although of very small dimensions, the outside diameter of the largest portion or driving whorl being perhaps not more than \(11 / 4 \mathrm{in}\)., it is found impracticable to run them at that speed in what might be called a hard-and-fast bearing. They are therefore run with some elastic substance surrounding the bearing, such as steel springs, hemp, or cork. Any elastic substance is sufficient to absorb the vibration, and permit of absolutely steady running.

\section*{FRICTEON OF STEAM-ENGINES.}

Distribution of the Friction of Engines.-Prof. Thurston in nis "Friction and Lost Work," gives the followiug:
\begin{tabular}{|c|c|c|c|}
\hline & 1. & 2. & 3. \\
\hline Main bearings. & 47.0 & 35.4 & 35.0 \\
\hline Piston and rod & 32.9 & 25.0 & 21.0 \\
\hline Crank-pin & 6.8 & \(5.1\}\) & 13.0 \\
\hline Cross-head and wrist-pin & 5.4 & 4.15 & 13.0 \\
\hline Valve and rod... & 2.5 & \(26.4\}\) & 22.0 \\
\hline Eccentric strap. & 5.3 & 4.0 \} & 22.0 \\
\hline Link and eccentric. Total & & & 9.01 \\
\hline & 100.0 & 100.0 & 100.0 \\
\hline
\end{tabular}

No. 1, Straight-line, \(6^{\prime \prime} \times 12^{\prime \prime}\), balanced valve; No. 2, Straight-line, \(6^{\prime \prime} \times 12^{\prime \prime}\), unbalanced valve; No. \(3,7^{\prime \prime} \times 10^{\prime \prime}\), Lansing traction locomotive valve-gear'.

Prof. Thurston's tests on a number of different styles of engines indicate that the friction of any engine is practically constant under all loads. ('Trans. A. S. M. E., viii. 86; ix. 74.)

In a Straight-line engine, \(8^{\prime \prime} \times 14^{\prime \prime}\), I.H.P. from 7.41 to \(5 \tau .54\), the friction \(H\). P. varied irregularly between 1.97 and 4.02 , the variation being independent of the load. With \(50 \mathrm{H} . \mathrm{P}\). on the brake the I.H.P. was only 52.6 , the friction being only \(2.6 \mathrm{H} . \mathrm{P}\)., or about \(5 \%\).

In a compound condensing-engine, tested from 0 to 102.6 brake H.P., gave I.H.P. from 14.92 to \(11 \% .8\) H.P., the friction H.P. varying ouly from \(14.9 \%\) to 17.42. At the maximum load the friction was \(15.2 \mathrm{H} . \mathrm{P}\)., or \(12.9 \%\).

The friction increases with increase of the boiler-pressure from 30 to \% 0 lbs., and then becomes constaut. The friction generally increases with increase of speed, but there are exceptions to this rule.

Prof. Denton (Stevens Indicator, July, 1890), comparing the calculated friction of a number of engines with the friction as determined by measurement, finds that in one case, a \(\mathfrak{i s}\)-ton ammonia ice-machine, the friction of the compressor, \(1 \% 1 / 2\) H.P., is accounted for by a coefficient of friction of \(11 / 2 \%\) on all the external bearings, allowing \(6 \%\) of the entire friction of the machine for the friction of pistons, stuffing-boxes, and valves. In the case of the Pawtucket pumping-engine, estimating the friction of the external bearings with a coefficient of friction of \(6 \%\) and that of the pistons, valves, and stuff-ing-boxes as in the case of the ice-machine, we have the total friction distributed as follows :
\begin{tabular}{|c|c|c|}
\hline & Horsepower. & Per cent of Whole. \\
\hline Crank-pins and effect of piston-thrust on main shaft. & 0.71 & 11.4 \\
\hline Weight of fly-wheel and main shaft.. & 1.95 & 32.4 \\
\hline Steam-valves. & 0.23 & 3.7 \\
\hline Eccentric & 0.07 & 1.2 \\
\hline Pistons. & 0.43 & 7.2 \\
\hline Stuffing-boxes, six altogether & 0.72 & 11.3 \\
\hline Air-pump...................... & 2.10 & 32.8 \\
\hline Total friction of engine with load. & 6.21 & 100.0 \\
\hline Total friction per cent of indicated power & 4.27 & \\
\hline
\end{tabular}

The friction of this engine, though very low in proportion to the indicated power, is satisfactorily accounted for by Morin's law used with a coefficient of friction of \(5 \%\). In both cases the main items of friction are those due to the weight of the fly-wheel and main shaft and to the piston-thrust on crank-pins and main-shaft bearings. In the ice-machine the latter items are the larger owing to the extra crank-pin to work the pumps, while in the Pawtucket engine the former preponderates, as the crank-thrusts are partly absorbed by the pump-pistons, and only the surplus effect acts on the crank-shaft.

Prof. Denton describes in Trans. A. S. M. E., x. 392, an apparatus by which he measured the friction of a piston packing-ring. When the parts of the piston were thoroughly devoid of lubricant, the coefficient of friction was found to be about \(71 / 2 \%\); with an oil-feed of one drop in two ininutes the coefficient was about \(5 \%\); with one drop per minute it was about \(3 \%\). These rates of feed gave unsatisfactory lubrication, the piston groaning at the ends of the stroke when run slowly, and the flow of oil left upon the surfaces was found by analysis to contain about \(50 \%\) of iron. A feed of two drops per minute reduced the coefficient of friction to about \(1 \%\), and gave practically perfect lubrication, the oil retaining its natural color and purity.

\section*{HUBRICATION.}

Measurement of the Durability of Lubricants. (J. E. Den. ton, Trans. A. S. M. E., xi. 1013.)-Practical differences of duravility of lubricants depend not on any differences of inherent ability to resist being "worn out" by rubbing, but upon the rate at which they flow through and away from the bearing-surfaces. The conditions which control this flow are so delicate in their influence that all attempts thus far made to measure durability of lubricants may be said to have failed to make distinctions of lubricating value having any practical significance. In some kinds of service the limit to the consumption of oil depends upon the extent to which dust or other refuse becomes mixed with it, as in railroad-car lubrication and in the case of agricultural machinery. The economy of one oil over another, so far as the quality used is concerned-that is, so far as durability is concerned-is simply proportional to the rate at which it can insinuate itself into and flow out of minute orifices or cracks. Oils will differ in their ability to do this, first, in proportion to their viscosity, and, second, in proportion to the capillary properties which they may possess by virtue of the particular ingredients used in their composition. Where the thickness of film between rub. bing-surfaces must be so great that large amounts of oil pass through bearings in a given time, and the surroundings are such as to permit oil to be fed at high temperatures or applied by a method not requiring a perfect fluidity, it is probable that the least amount of oil will be used when the viscosity is as great as in the petroleum cylinder stocks. When, however, the oil must flow freely at ordinary temperatures and the feed of oil is restricted, as in the case of crank-pin bearings, it is not practicable to feed such heavy oils in a satisfactory manner. Oils of less viscosity or of a fluidity approximating to larrl-oil must then be used.

Relative Value of Lubricants. (J. E.Denton, Am. Mach., Oct. 30, 1890.) -The three elements which determine the value of a lubricant are the cost due to consumption of lubricants, the cost spent for coal to overcome the frictional resistance caused by use of the lubricant, and the cost due to the metallic wear on the journal and the brasses. In cotton-mills the cost of the power is alone to be considered; in rolling-mills and marine engines the cost of the quantity of lubricant used is the only important factor: 'ut in railroads not only do both these elements enter the problem as tangible
factors, but the cost of the wearing away of the metallic parts enters in addition, and furthermore, the latter is the greatest element of cost in the case.

The Qualifications of a Good Lubricant, as laid down by W. H. Bailey, in Proc. Inst. C. E., vol. xlv., p. 3ir2, are: 1. Sufficient body to keep the surfaces free from contact under maximum pressure. 2. The greatest possible fluidity consistent with the foregoing condition. 3. The lowest possible coefficient of friction, which in bath lubrication would be for fluid friction approximately. 4. The greatest capacity for storing and carrying away heat. 5. A high temperature of decomposition. 6. Power to resist oxidation or the action of the atmosphere. 7. Freedom from corrosive action on the metals upon which used.

\section*{Best Lubricants for Different Purposes. (Thurston.)}

Low temperatures, as in rock-drills driven by compressed air:
Very great pressures, slow speed.
Heavy pressures, with slow speed.
Heavy pressures and high speed
Light pressures and high speed.....
Ordinary machinery \(\qquad\) Steam-cylinders
Watches and other delicate mecha- \(\{\) nism:

Light mineral lubricating-oils.
Graphite, soapstone, and other solid lubricants.
The above, and lard, tallow, and other greases.
Sperm-oil, castor-oil, and heavy mineral oils.
Sperm, refined petroleum, olive, rape, cotton-seed.
Lard-oil, tallow-oil, heavy mineral oils, and the heavier vegetable oils.
Heavy mineral oils, lard, tallow.
Clarified sperm, neat's-foot, porpoise, olive, and light mineral lubricating oils.

For mixture with mineral oils, sperm is best; lard is much used; olive and cotton-seed are gond.

Amount of Oil needed to Rin an Engine. - The Vacuum Oil Co. in 1892, in response to au inquiry as to cost of oil to run a \(1000-\mathrm{H} . \mathrm{P}\). Corliss engine, wrote: The cost of running two engines of equal size of the same make is not always the same. Therefore while we could furnish figures showing what it is costing some of our customers having Corliss engines of 1000 H.P., we could only give a general idea, which in itself might be considerably out of the way as to the probable cost of cylinderand engine-oils per year for a particular engine. Such an engine onght to run readily on less than 8 drops of 600 W oil per minute. If 3000 drops are figured to the quart, and 8 drops used per minute, it would take about two and one half barrels (52.5 gallons) of 600 W cylinder-oil, at 65 cents per gallon, or about \(\$ 85\) for cylinder-oil per year, running 6 days a week and 10 hours a day. Engine-oil would be even more difficult to guess at what the cost would be, because it would depend upon the number of cups required nu the engine, which varies somewhat according to the style of the engine. It would doubtless be safe, howerer, to calculate at the outside that not more than twice-as much engine-oil would be required as of cylinder-oil.

The Vacuum Oil Co. in 1892 published the following results of practice with " 600 W "' cylinder-oil:
Corliss compound engine, \(\left\{\begin{array}{l}20 \text { and } 33 \times 48 ; 83 \text { revs. per min. } ; 1 \text { drop of oil } \\ \text { per min. to } 1 \text { drop in two minutes. }\end{array}\right.\) triple exp. " 20,33 , and \(46 \times 48 ; 1\) drop every 2 minutes.

Porter-Allen
Ball
\(\{20\) and \(36 \times 36 ; 143\) revs. per min.; 2 drops of oil \(\{\) per min., reduced afterwards to 1 drop per min. \(\{15 \times 25 \times 16 ; 240\) revs. per min.; 1 drop every 4 minutes.

Results of tests on ocean-steamers communicated to the author by Prof. Denton in 1892 gave: for \(1200-\mathrm{H} . \mathrm{P}\). marine engine, 5 to 6 English gallons (6 to \(\because 2 \mathrm{U}\). S. gals.) of engine-oil per 24 hours for external lubrication; and for a 1500 -H.P. marine engine, triple expansion, running 75 revs. per min., 6 to 7 English gals. per 24 hours. The cylinder-cil consumption is exceedingly variable, -from 1 to 4 gals. per day on different engines, including cylinderoil used to swab the piston-1'ods.

Quantity of Oil used on a Locomotive Crank-pin. - Prof. Denton, Trans. A. S. hi. E., xi. 10:0, says: A very economical case of practical oil-consumption is when a locomotive main crank-pin consumes about six
cubic inches of oil in a thousand miles of service. This is equivalent to a consumption of one milligram to seventy square inches of surface rubbed over.
The Examination of Lubricating-oils. (Prof. Thos. B. Stillman, stevens Indicator: July, 1890.)-The generally accepted conditions of a gond lubricant are as follows:
1. "Body" enough to prevent the surfaces, to which it is applied, from coming in contact with each other. (Viscosity.)
2. Freedom from corrosive acid, either of mineral or animal origin.
3. As fluid as possible consistent with "body."
4. A minimum coefficient of friction.
5. High "flash " and burning points.
6. Freedom from all materials liable to produce oxidation or "gumming."

The examinations to be made to verify the above are both chemical and mechanical, and are usually arranged in the following order:
1. Identification of the oil, whether a simple mineral oil, or animal oil, or a mixture, 2. Density. 3. Viscosity. 4. Flash-point. 5. Burning point. 6. Acidity. 7. Coefficient of friction. 8. Cold test.

Detailed directions for making all of the above tests are given in Prof. Stillman's article.
Weights of oil per Gallon. - The following are approximately the weights per gallon of different kinds of oil (Penn. R. R. Specifications):
Lard-oil, tallow-oil, neat's-foot oil, bone-oil, colza-oil, mustard-seed oil, rape-seed oil, paraffine-oil, \(500^{\circ}\) fire-test oil, engine-oil, and cylinder lubricant, r1/2 pounds per gallon.
Well-oil and passenger-car oil, 7.4 pounds per gallon; navy sperm-oil, 7.2 pounds per gallon; signal-oil, 7.1 pounds per gallon; \(300^{\circ}\) burning-oil, 6.9

\section*{pounds per gallon: and \(150^{\circ}\) hurning-oil, 6.6 pounds per gallon. \\ Penna. R. R. Specifications for Petroleum Products. 1895. - Five different grades of petroleum products will be used.}

The materials desired under this specification are the products of the distillation and refining of petroleum unmixed with any other substances.
\(150^{\circ}\) Fire-test Oil.-This grade of oil will not be accepted if sample (1) is not " water-white" in color: (2) flashes below \(130^{\circ}\) Fahrenheit; (3) burns below \(151^{\circ}\) Fahrenheit; (4) is cloudy or shipment has cloudy barrels when received, from the presence of glue nr suspended matter; (5) becomes opaque or shows cloud when the sample has been 10 minutes at a temperature of \(0^{\circ}\) Fahreuheit.
\(300^{\circ}\) Fire-test Oil,-This grade of oil will not be accepted if sample (1) is not " water-white" in color; (2) flashes below \(249^{\circ}\) Fahrenheit; ;(3) burns below \(298^{\circ}\) Fahrenheit; (4) is cloudy or shipment has cloudy barrels when received, from the presence of glue or suspended matter; (5) becomes opaque or shows cloud when the sample has been 10 minutes at a temperature of \(32^{\circ}\) Fahrenheit; (6) shows precipitation when some of the sample is heated to \(450^{\circ} \mathrm{F}\). The precipitation test is made by having about two fluid ounces of the oil in a six-ounce beaker, with a thermometer suspended in the oil, and then heating slowly until the thermometer shows the required temperature. The oil changes color, but must show no precipitation.
Purafine and Neutral Oils.- These grades of oil will not be accepted if the sample from shipment (1) is so dark in color that printing with longprimer type cannot be read with ordinary daylight through a layer of the oil \(1 / 2\) inch thick; (2) flashes below \(298^{\circ} \mathrm{F}\).; (3) has a gravity at \(60^{\circ} \mathrm{F}\)., below \(24^{\circ}\) or above \(35^{\circ}\) Baumé; (4) from October ist to May lst has a cold test above \(10^{\circ} \mathrm{F}\)., and from May 1st to October 1 st has a cold test above \(32^{\circ} \mathrm{F}\).
The color test is made by having a layer of the oil of the prescribed thickness in a proper glass vessel, and then putting the printing on one side of the vessel and reading it through the layer of oil with the back of the observer toward the source of light.
Well oil.-This grade of oil will not be accepted if the sample from shipinent (1) flashes, from May 1st to October 1st, below \(298^{\circ} \mathrm{F}\)., or, from October 1st to May 1st, below \(249^{\circ} \mathrm{F}\).; (2) has a gravity at \(60^{\circ} \mathrm{F}\)., below \(25^{\circ}\) or above \(31^{\circ}\) Baumé; (3) from October 1st to May 1st has a cold test above \(10^{\circ} \mathrm{F}\)., and from May 1st to October 1st has a cold test above 320 FF .; "(4) shows any precipitation when 5 cubic ceutimetres are mixed with 95 c. c. of gasoline. The precipitation test is to exclude tarry and suspended matter. It is made by putting 95 c.c. of \(88^{\circ} \mathrm{B}\). gasoline, which must not be above \(80^{\circ} \mathrm{F}\). in temperature, into a 100 c . c.
graduate, then adding the prescribed amount of oil and shaking thoroughly. Allow to stand ten minutes. Witlı satisfactory oil no separated or precipitated material can be seen.
\(500^{\circ}\) Fire-test Oil.-This grade of oil will not be accepted if sample from shipment (1) flashes below \(494^{\circ} \mathrm{F} . ;\) (2) shows precipitation with gasoline when tested as described for well oil.
Printed directions for determining flashing and burning tests and for making cold tests and taking gravity are furnished by the railroad company. The specifications of 1889 contained the following:
\(150^{\circ}\) Fire-test Oil.-The flashing and burning points are determined by heating the oil in an open vessel, not less than \(12^{\circ}\) per minute, and applying the test-flame every \(\mathfrak{r}^{\circ}\), beginning at \(123^{\circ}\) Fahrenheit. The cold test may be conveniently made by having an ounce of the oil, in a four-ounce sample bottle, with a thermometer suspended in the oil, and exposing this to a freezing mixture of ice and salt. It is advisable to stir with the thermometer while the oil is cooling. The oil must remain transparent in the freeziug mixture ten minutes after it has cooled to zero.
\(300^{\circ}\) Fire-test Oil.-The flashing and burning points are determined the same as for \(150^{\circ}\) fire-test oil, except that the oil is heated \(15^{\circ}\) per minute, test-flame being applied first at \(242^{\circ}\) Fahrenheit. The cold test is made the same as above, except that ice and water are used.
Parafine-oil.-The flashing-point is determined same as for \(300^{\circ}\) fire-test oil. The cold test is determined as follows: A couple of ounces of oil is put in a four-ounce sample bottle, and a thermometer placed in it. The oil is then frozen, a freezing mixture of ice and salt being used if necessary. When the oil has become hard, the bottle is removed from the freezing mixture aud the frozen oil allowed to soften, being stirred and thoroughly mixed at the same time by means of the thermometer, until the mass will run from one end of the bottle to the other. The reading of the thermometer when this is the case is regarded as the cold test of the oil.
Well Oil.-For summer oil the flashing-point is determined the same as for paraffine-oil; and for winter oil the same, except that the test-flame is applied first at \(193^{\circ}\) Fahrenheit. The cold test is made the same as for par-affine-oil.
\(500^{\circ}\) Fire-test Oil.-In the flashing-test the flame is first applied at \(438^{\circ} \mathrm{F}\).

\section*{SOLID LUBRICANTS.}

Graphite in a condition of powder and used as a solid lubricant, so called, to distinguish it from a liquid lubricant, has been found to do well where the latter has failed.

Remuie, in 1829 , says: "Graphite lessened friction in all cases where it was used." General Morin, at a later date, concluded from experiments that it could be used with advantage under heavy pressures; and Prof. Thurston found it well adapted for use under both light and heavy pressures when mixed with certain oils. It is especially valuable to prevent abrasion and cutting under heavy loads and at low velocities.

Soapstone, also called talc and steatite, in the form of powder and mixed with oil or fat, is sometimes used as a lubricant. Graphite or soapstone, mixed with soap, is used on surfaces of wood working against either iron or wood.

Fibregraphite.-A new self-lubricating bearing known as fibregraphite is described by John H. Cooper in Trans. A. S. M. E., xiii. 3i4, as the invention of P. H. Holmes, of Gardiner, Me. This bearing material is composed of selected natural graphite, which has been finely divided and freed from foreign and gritty matter, to which is added wood-fibre or other growth mixed in water in various proportions, according to the purpose to be served, and then solidified by pressure in specially prepared moulds ; after removal from which the bearings are first thoroughly dried, then saturated with a drying oil. and finally subjected to a current of hot, dry air for the purpose of oxidizing the oil, and hardening the mass. When finished, they may be " machined" to size or shape with the same facility and means employed on metals.

Metaline is a solid compound, usually containing graphite, made in the form of small cylinders which are fitted permanently into holes drilled in the surface of the bearing. The bearing thus fitted runs without any other lubrication.

\section*{THE FOUNDRY.}

\section*{CUPOLA PRACTICE.}

The following notes, with the accompanying table, are taken from an article by Simpson Bolland in American Machinist, June 30, 1892. The table shows heights, depth of bottom, quantity of fuel on bed, proportion of fuel and iron in charges, diameter of main blast-pipes, number of tuyeres, blastpressure, sizes of blowers and power of engines, and melting capacity per hour, of cupolas from 24 inches to 84 inches in diameter.
Capacity of Cupola.-The accompanying table will be of service in determining the capacity of cupola needed for the production of a given quantity of iron in a specified time.
First, ascertain the amount of iron which is likely to be needed at each cast, and the length of time which can be devoted profitably to its disposal: and supposing that two hours is all that can be spared for that purpose, and that ten tons is the amount which must be melted, find in the column, Melting Capacity per hour in Pounds, the nearest figure to five tons per hour, which is found to be 10,760 pounds per hour, opposite to which in the column Diameter of Cupolas, Inside Lining, will be found 48 inches ; this will be the size of cupola required to furnish ten tons of molten iron in two hours.
Or suppose that the heats were likely to average 6 tons, with an occasional increase up to ten, then it might not be thought wise to incur the extra expense consequent on working a 48 -inch cupola, in which case. by following the directions given, it will be found that a 40 -inch cupola would answer the purpose for 6 tons, but would require an additional hour's time for meltin: 3 whenever the 10 -ton heat came along.
The quotations in the table are not supposed to be all that can be melted in the hour by some of the very best cupolas, but are simply the amounts which a common cupola under ordinary circumstances may be expected to melt in the time specified.
Height of Cupola.-By height of cupola is meant the distance from the base to the bottom side of the charging hole.
Depth of Bottom of Cupola.-Depth of bottom is the distance from the sand-bed, after it has been formed at the bottom of the cupola, up to the under side of the tuyeres.
All the amounts for fuel are based upon a bottom of 10 inches deep, and any departure from this depth must be met by a corresponding change in the quantity of fuel used on the bed; more in proportion as the depth is increased, and less when it is made shallower.
Amount of Fuel Required on the Bed.-The column "Amount of Fuel required on Bed. in Pounds" is based on the supposition that the cupola is a straight one all through, and that the bottom is 10 inches deep. If the bottom be more, as in those of the Colliau type, then additional fuel will be needed.
The amounts being given in pounds, answer for both coal and coke, for, should coal be used, it would reach about 15 inches above the tuyeres; the same weight of coke would bring it up to about 22 inches above the tuyeres. which is a reliable amount to stock with.
First Charge of Iron. - The amounts given in this column of the table are safe figures to work upon in every instance, yet it will always be in order. after proving the ability of the bed to carry the load quoted, to make a slow and gradual increase of the load until it is fully demonstrated just how much burden the bed will carry.
Succeeding Charges of Fuel and Iron.-In the columns relating to succeeding charges of fuel and iron, it will be seen that the highest proportions are not favored, for the simple reason that successful melting with any greater proportion of iron to fuel is not the rule, but, rather, the exception. Whenever we see that iron has been melted in prime condition in the proportion of 12 pounds of iron to one of fuel, we may reasonably expect that the talent, material, and cupola have all been up to the highest degree of excellence.
Diameter of Main Blast-pipe. The table gives the diameters of main blast-pipes for all cupolas from 24 to 84 inches diameter. The sizes given opposite each cupola are of sufficient area for all lengths up to 100 feet.

 -12 \({ }^{\prime}\) /Ig 700 y วง!ุр 07 วप! - ug Jo \({ }^{\prime} \mathrm{d}^{\circ} \mathrm{H}\) =

วุุด!!ux 2əd suo!fulosəy

 - عा، वnうчวeว 10f pax!nbəд -uripsayou! jo daquñ
 -7700T O. раәə -xวา0и иวчм ad!d - 7SE!g UIEN •UIB!

\section*{- 4011
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
[ən \\

\end{tabular}}} \\
\hline & \\
\hline
\end{tabular} 3u!pəววงnS
\begin{tabular}{|c|}
\hline - 10.150 \\
\hline \\
\hline
\end{tabular}

 jo әp!s дәpun
of paq-purs woxy 'Y7 \({ }^{\text {dәa }}\)
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
-1001) \\
 uoliuq 03 \\
 แuдJ riod \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} opisu! elod
-nj jo 1 cicia
\(\qquad\)

Tuyeres for Cupola.-Two columns are devoted to the number and sizes of tuyeres requisite for the successful working of each cupola; one gives the number of pipes 6 inches diameter, and the other gives the number and dimensions of rectangular tuyeres which are their equivalent in area.

From these two columns any other arrangement or disposition of tuyeres may be made, which shall answer in their totality to the areas given in the table.

When cupolas exceed 60 inches in diameter, the increase in diameter should begin somewhere above the tuyeres. This method is necessary in all common cupolas above 60 inches, because it is not possible to force the blast to the middle of the stock, effectively, at any greater diameter.

On no consideration must the tuyere area be reduced; thus, an 84 -inch cupola must have tuyere area equal to 31 pipes 6 inches diameter, or 16 flat tuyeres 16 inches by \(131 / 2\) inches.

If it is found that the given number of flat tuyeres exceed in circumference that of the diminished part of the cupola, they can be shortened, allowing the decreased length to be added to the depth, or they may be built in on end; by so doing, we arrive at a modified form of the Blakeney cupola.

Another important point in this counection is to arrange the tuyeres in such a manner as will concentrate the fire at the melting-point into the smallest possible compass, so that the metal in fusion will have less space to traverse while exposed to the oxidizing influence of the blast.
To accomplish this, recourse has been had to the placing of additional rows of tuyeres in some instances-the "Stewart rapid cupola" having three rows, and the "Colliau cupola furnace" having two rows, of tuyeres.

Blast-pressure.-Experiments show that about 30,000 cubic feet of air are consumed in melting a ton of iron, which would weigh about 2400 pounds, or more than both iron and fucl. When the proper quantity of air is supplied, the combustion of the fuel is jerfect, and carbonic-acid gas is the result. When the supply of air is insufficient, the combustion is imperfect, and carbonic-oxide gas is the result. The amount of heat evolved in these two cases is as 15 to \(41 / 2\) showing a loss of over two thirds of the heat by imperfect combustion.
It is not always true that we obtain the most rapid melting when we are forcing into the cupola the 1 rgest quantity of air. Some time is required to elevate the temperature of the air supplied to the point that it will enter into combustion. If more air than this is supplied, it rapidly absorbs heat, reduces the temperature, and retards combustion, and the fire in the cupola may be extinguished with too mu:h Llast.

Slag in Cupolas.-A certain amount of slag is necessary to protect the molten iron which has fallen to tue bottom from the action of the blast ; if it was not there, the irou would suffer from decarbonization.

When slag from any cause forms in too great abundance, it should be led away by inserting a hols a little below the tuyeres, through which it will find its way as the iron rises in the bottom.
In the event of clean iron and fuel, slag seldom forms to any appreciable extent in small heats; this renders any preparation for its withdrawal unnecessary, but when the cupola is to be taxed to its utmost capacity it is then incumbent on the melter to flux the charges all through the heat, carrying it away in the manner directed.

The best flux for this purpose is the chips from a white marble yard. About 6 pounds to the ton of iron will give good results when all is clean.

When fuel is bad, or iron is dirty, or both together, it becomes imperative that the slag be kept running all the time.

Fuel for Cupolas.-The best fuel for melting iron is coke, because it requires less blast, makes hotter iron, and melts faster than coal. When coal must be used, care should be exercised in its selection. All anthracites which are bright, black. hard, and free from slate, will melt iron admirably. The size of the coal used affects the melting to an appreciable extent, and, for the best results, small cupolas should be cliarged with the size called "egg,", a still larger grade for medium-sized cupolas, and what is called "lump" will answer for all large cupolas, when care is taken to pack it carefully on the charges.

Charging a Cupola.-Chas. A. Smith (Am. Mach., Feb. 12, 1891) gives the following: A 28 -in. cupola should have from 300 to 400 pounds of coke on bottom bed; a \(36-\mathrm{in}\). cupola, 700 to 800 pounds; a \(48-\mathrm{in}\). cupola, 1500 lbs .; and a \(60-\mathrm{in}\). cupola should have one ton of fuel on bottom bed. To every pound of fuel on the bed, three, and sometimes four pounds of metal can be added with safety, if the cupola has proper blast; in after-cbarges, to every
pound of fuel add 8 to 10 pounds of metal; any well-constructed cupola will stand ten.
F. P. Wolcott (Am. Mach., Mar. 5, 1891) gives the following as the practice of the Colwell Iron-works, Carteret, N. J.: "We melt daily from twenty to forty tons of iron, with an average of 11.2 pounds of iron to one of fuel. In a \(36-\mathrm{in}\). cupola seven to nine pounds is good melting, but in a cupola that lines up 48 to 60 inches, anything less than nine pounds shows a defect in arrangement of tuyeres or' strength of blast, or in charging up."
"The Moulder's Text-book," by Thos. D. West, gives forty-six reports in tabular form of cupola practice in thirty States, reaching from Naine to Oregon.

Cupola Charges in Stove-foundries. (Iron Age, April 14, 1892.) No two cupolas are charged exactly the same. The amount of fuel on the bed or between the charges differs, while varying amounts of iron are used in the charges. Below will be found charging-lists from some of the prominent stove-foundries in the country :
lbs.
A-Bed of fuel, coke.. 1,500
First charge of iron 5,000
All other charges of iron.. 1,000
First and second charges of coke, each
200

Four next charges of coke, each......................... 150 Six next charges of coke, each 120 Nineteen next charges of coke, each.

100

Thus for a melt of 18 tons there would be 5120 lbs. of coke used, giving a ratio of 7 to 1 . Increase the amount of iron melted to 24 tons, and a ratio of 8 pounds of iron to 1 of coal is obtained.

First charge of iron........ 4,000
First and second charges of coke 200 All other charges of coke...... 150

In a melt of 18 tons 4100 lbs . of coke would be used, or a ratio of 8.5 to 1 .
\begin{tabular}{|c|c|c|}
\hline & & All charges of coke each lbs. 200 \\
\hline First charge of iron & \[
\begin{aligned}
& 1,000 \\
& 5,600
\end{aligned}
\] & All other charges of iron........ 2,900 \\
\hline
\end{tabular}

In a melt of 18 tons, 3900 lbs , of fuel would be used, giving a ratio of 9.4 pounds of iron to 1 of coke. Very high, indeed, for stove-plate.
\begin{tabular}{|c|c|c|c|}
\hline & lbs & & lbs. \\
\hline E-Bed of fuel, coal & 1,900 & All other charges of iron, each & 2,000 \\
\hline First charge of iron & 5,000 & All other charges of coal, each & \(1 \% 5\) \\
\hline First charge of coal & 200 & & \\
\hline
\end{tabular}

In a melt of 18 tons \(4 \pi 00 \mathrm{lbs}\). of coal would be used, giving a ratio of 7.7 lbs . of iron to 1 lb . of coal.

These are sufficient to demonstrate the varying practices existing among different stove-foundries. In all these places the iron was proper for stoveplate purposes, and apparently there was little or no difference in the kind of work in the sand at the difierent foundries.

Resuits of Increased Driving. (Erie City Iron-works, 1891.)-May-Dec. 1890: 60-in. cupola, 100 tons clean castings a week, melting 8 tons per hour; iron per pound of fuel, \(71 / 2 \mathrm{lbs}\); per cent weight of good castings to iron charged, \(753 / 4\). Jan.-May, 1891: Increased rate of melting to 111/2 tons per hour; iron per lb. fuel, \(91 / 2\); per cent weight of good castings, \(75 ;\) one week, \(131 / 4\) tons per hour, 10.3 lbs . iron per lb. fuel; per cent weight of good castings, 75.3. The increase was made by putting in an additional row of tuyeres and using stronger blast, 14 ounces. Coke was used as fuel. (W. O. Webber, Trans. A. S. M. E. xii. 1045.)

\section*{Buffalo Steel Pressure－blowers．Speeds and Capacitles as applied to Cupolas．}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline 4 & 4 & 20 & 8 & 4732 & 154 & 666 & 9 & 5030 & \(64 \%\) & 717 \\
\hline 5 & 6 & 25 & 8 & 4209 & 2321 & 7¢3 & 10 & \(4 \% 2\) & 2600 & 86 \\
\hline 6 & 8 & 30 & 8 & 3660 & 3093 & 951 & 10 & 4108 & \(36 \sim 1\) & \(106 \hat{1}\) \\
\hline 7 & 14 & 35 & 8 & 3244 & 4218 & 1486 & 10 & 3542 & 477 & 1668 \\
\hline 8 & 18 & 40 & 8 & 2948 & 5425 & 2199 & 10 & 3310 & 6082 & 2469 \\
\hline 9 & 26 & 45 & 10 & 2785 & 7818 & 3203 & 12 & 3260 & 8598 & 3523 \\
\hline 10 & 36 & 55 & 10 & 2195 & 11295 & 4938 & 12 & \(2+13\) & \(123 \% 8\) & 543 \\
\hline 11 & 45 & 65 & 12 & 1952 & 16955 & T\％07 & 14 & 2116 & 18.357 & 8358 \\
\hline 111／2 & 55 & T2 & 12 & \(164 \%\) & 22607 & 10276 & 14 & 1797 & 25176 & 11144 \\
\hline 12 & 75 & 84 & 12 & 1625 & 25836 & 11744 & 14 & 1775 & 28019 & 12i36 \\
\hline
\end{tabular}

In the table are given two different speeds and pressures for each size of blower，and the quantity of iron that may be melted，per hour，with each． In all cases it is recommended to use the lowest pressure of blast that will do the work．Run up to the speed given for that pressure，and regulate quan－ tity of air by the blast－gate．The tuyere area should be at least one ninth of the area of cupola in square inches，with not less than four tuyeres at equal distances around cupola，so as to equalize the blast throughout．Va－ riations in temperature affect the working of cupolas materially，hot weather requiring increase in volume of air．
（For tables of the Sturtevant blower see pages 519 and 520 ．）
Loss in Melting Iron in Cupolas．－G．O．Vair，Am．Mach．， March 5，1891，gives a record of a \(45-\mathrm{in}\) ．Colliau cupola as follows：

Ratio of fuel to iron， 1 to 7．42．

Use of Softeners in Foundry Practice．（W．Graham，Iron Age， June 27．1889．）－In the foundry the problem is to have the right proportions of combined and graphitic carbon in the resulting casting；this is done by getting the proper proportion of silicon．The variations in the proportions of silicon attord a reliable and inexpensive means of producing a cast iron of any required mechanical character which is possible with the material employed．In this way，by mixing suitable irons in the right proportions， a required grade of casting can be made more cheaply than by using irons in which the necessary proportions are already found．

If a strong machine casting were required，it would be vecessary to keep the phosphorus，sulphur，and manganese within certain limits．Professor \({ }^{\circ}\) Turner found that cast iron which possessed the maximum of the desired qualities contained，graphite， \(2.59 \%\) ；silicon， \(1.42 \%\) ；phosphorus， \(0.39 \%\) ；sul－ phur， \(0.06 \%\) ；manganese， \(0.58 \%\) ．
A strong casting could not be made if there was much increase in the amount of phosphorus，sulphur，or manganese．Irons of the above percent－ ages of phosphorus，sulphur，and manganese would be most suitable for this purpose，but they could be of different grades，having different percentages of silicon，combined and graphitic carbon．Thus hard irons，mottled and white irons，and even steel scrap，all containing low percentages of silicon and high percentages of combined carbon，could be employed if an iron having a large amount of silicon were mixed with them in sufficient amount． This would bring the silicon to the proper proportion and would cause the combined carbon to be forced into the graphitic state，and the resulting
casting would be soft. High-silicon irons used in this way are called "softeners.'

The following are typical analyses of softeners:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Ferro:silicon.} & \multicolumn{3}{|l|}{Softeners, American.} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Scotch } \\
\text { Irons, No. } 1 .
\end{gathered}
\]} \\
\hline & Fore & ign. & Ame & can. & Wellston. & Globe & Bellefonte. & \[
\begin{gathered}
\text { Eg- } \\
\text { linton }
\end{gathered}
\] & Coltness. \\
\hline Silicon. & 10.55 & 9.80 & 12.08 & 10.34 & 6.67 & 5.89 & 3 to 6 & 2.15 & 2.59 \\
\hline Combined C.. & 1.84 & 0.69 & 0.06 & 0.07 & & 0.30 & 0.25 & 11.21 & \\
\hline Graphitic C.. & 0.52 & 1.12 & 1.52 & 1.92 & 2.57 & 2.85 & 3. & 3. 26 & \\
\hline Manganese... & & 1.95
0.21 & 0.76
0.48 & 0.52
0.45 & 0.50 & 1.00
1.10 & 0.53
0.35 & 2.80
0.62 & 1.70
0.85 \\
\hline Shosphorus. & 0.04
0.03 & 0.04 & Trace & Trace & Trace & 0.02 & 0.03 & 0.03 & 0.01 \\
\hline
\end{tabular}
(For other analyses, see pages 371 to 373.)
Ferro-silicons contain a low percentage of total carbon and a high percentage of combined carbon. Carbon is the most important constituent of cast iron, and there should be about 3.4\% total carbon present. By adding ferro-silicon which contains only \(2 \%\) of carbon the amount of carbon in the resulting mixture is lessened.

Mr. Keep found that more silicon is lost during the remelting of pig of over \(10 \%\) silicon than in remelting pig iron of lower percentages of silicon. He also points out the possible disadvantage of using ferro-silicons containing as high a percentage of combined carbon as \(0.70 \%\) to overcome the bad effects of combined carbon in other irons.

The Scotch irons generally contain much more phosphorus than is desired in irons to be employed in making the strongest castings. It is a mistake tu mix with strong low-phosphorus irons an iron that would increase the amount of phosphorus for the sake of adding softening qualities, when softness can be produced by mixing irons of the same low phosphorus.
(For further discussion of the influence of silicon see page 365.)
Shrinkage of Castings.-The allowance necessary for shrinkage varies for different kiuds of metal, and the different conditions under which they are cast. For castings where the thickness runs about one inch, cast under ordinary conditions, the following allowance can be made:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline For cast-iron, 1/8 & inc & pe & oo & & zinc, & 5/16 & nc & & er & foo & \\
\hline brass, \(3 / 16\) & & & & & tin, & & & & & & \\
\hline steel, 1/4 & " & " & " & " & alum & 3/16 & " & & " & & \\
\hline 6 mal. iron, \(1 / 8\) & " & " & " & " & Brit & 1/32 & & & & & \\
\hline
\end{tabular}

Thicker castings, under the same conditions, will shrink less, and thinner ones more, than this standard. The quality of the material and the manner of moulding and cooling will also make a difference.

Numerous experiments by W. J. Keep (see Trans. A. S. M. E., vol. xvi.) showed that the shrinkage of cast iron of a given section decreases as the percentage of silicon increases, while for a given percentage of silicon the shrinkage decreases as the section is increased. Mr. Keep gives the following table showing the approximate relation of shrinkage to size and percentage of silicon:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Percentage of Silicon} & \multicolumn{6}{|c|}{Sectional Area of Casting.} \\
\hline & \(1 / 2^{\prime \prime} \square\) & \(1^{\prime \prime}\) 口 & \(1^{\prime \prime} \times 2^{\prime \prime}\) & \(2{ }^{\prime \prime}\) & \(3^{\prime \prime} \square\) & \(4^{\prime \prime}\) \\
\hline & \multicolumn{6}{|l|}{Shrinkage in Decimals of an inch per foot of Length.} \\
\hline 1. & . 183 & . 158 & . 146 & . 130 & .113 & . 102 \\
\hline 1.5 & . 171 & . 145 & . 133 & . 117 & . 098 & . 08 \% \\
\hline 2. & . 159 & . 133 & . 121 & . 104 & . 085 & -. 074 \\
\hline 2.5 & . 147 & . 121 & . 108 & . 092 & . 073 & . 060 \\
\hline 3.5 & . 135 & . 108 & . 095 & . 077 & . 059 & . 045 \\
\hline 3.5 & . 123 & . 095 & . 082 & . 065 & . 046 & . 032 \\
\hline
\end{tabular}

Mr. Keep also gives the following " approximate key for regulating foundry mixtures" so as to produce a shrinkage of \(1 / 8 \mathrm{in}\). per ft . in castings of different sections:
\begin{tabular}{llccccc}
Size of casting...................... & \(1 / 2\) & 1 & 2 & 3 & 4 & in. sq. \\
Silicon required, per cent..... & 3.25 & 2.75 & 2.25 & 1.75 & 1.25 & per cent. \\
Shrinkage of a \(1 / 2^{-i n 1}\) test-bar. & .125 & .135 & .145 & .155 & .165 in. per ft.
\end{tabular}

\section*{Weight of Castings determined from Weight of Pattern.}
(Rose's Pattern-maker's Assistant.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{A Pattern weighing One Pound, made of-} & \multicolumn{5}{|c|}{Will weigh when cast in} \\
\hline & Cast Iron. & Zinc. & Copper. & Yellow Brass. & Gunmetal. \\
\hline Mahogany-Nassau & lbs. & \(1 \mathrm{lbs}\). & lbs. & lbs. & Ibs. \\
\hline Manog Honduras & 12.9 & 12.4 & 12.8 & 12.6 & \\
\hline Spanish & 8.5 & 8.2 & 10.1 & 9.7 & 9.9 \\
\hline Pine, red... & 12.5 & 12.1 & 14.9 & 14.2 & 14.6 \\
\hline "، white. & 16.7 & 16.1 & 19.8 & 19.0 & 19.5 \\
\hline " yellow & 14.1 & 13.6 & 16.7 & 16.0 & 16.5 \\
\hline
\end{tabular}

Moulding Sand. (From a paper on "The Mechanical Treatment of Moulding Sand," by Walter Bagshaw, Proc. Inst. M. E. 1891.)-The chemical composition of sand will affect the nature of the casting, no matter what treatment it undergoes. . Stated generally, good sand is composed of 94 parts silica, 5 parts alumina, and traces of magnesia and oxide of iron. Sand containing much of the metallic oxides, and especially lime, is to be avoided. Geographical position is the chief factor governing the selection of sand; and whether weak or strong, its deficiencies are made up for by the skill of the moulder. For this reason the same sand is often used for both heavy and light castings, the proportion of coal varying according to the nature of the casting. A common mixture of facing-sand consists of six parts by weight of old sand, four of new sand, and one of coal-dust. Floor-sand requires only half the above proportions of new sand and coal-dust to renew it. German founders adopt one part by measure of new sand to two of old sand; to which is added coal-dust in the proportion of one tenth of the bulk for large castings, and one twentieth for small castings. A few founders mix street-sweepings with the coal in order to get porosity when the metal in the mould is likely to be a long time before setting. Plumbago is effective in preventing destruction of the sand; but owing to its refractory nature, it must not be dusted on in such quantities as to close the pores and prevent free exit of the gases. Powdered French chalk, soapstone, and other substances are sometimes used for facing the mould; but next to plumbago, oak charcoal takes the best place, notwithstanding its liability to float occasionally and give a rough casting.

For the treatment of sand in the moulding-shop the most primitive method is that of hand-riddling and treading. Here the materials are roughly proportioned by volume, and riddled over an irou plate in a flat heap, where the mixture is trodden into a cake by stamping with the feet; it is turned over with the shovel, and the process repeated. Tough sand can be obtained in this manner, its toughness being usually tested by squeezing a handful into a ball and then breaking it; but the process is slow and tedious. Other things being equal, the chief characteristics of a good moulding-sand are toughmess and porosity, qualities that depend on the manner of mixing as well as on uniform ramming.
Toughness of Sand.-In order to test the relative toughness, sand mixed in various ways was pressed under a uniform load into bars 1 in . sq. and about 12 in . long, and each bar was made to project further and further over the edge of a table until its end broke off by its own weight. Old sand from the shop floor had very irregular cohesion, breaking at all lengths of projections from \(1 / 2 \mathrm{in}\). to \(11 / 2 \mathrm{in}\). New sand in its natural state held together until an overhang of \(23 / 4 \mathrm{in}\). was reached. A mixiure of old sand, new sand, and coal-dust

\footnotetext{
Mixed under rollers
broke at 2 to \(21 / 4 \mathrm{in}\). of overhang.
" in the centrifugal machine
\(\begin{array}{lllll}66 & 66 & 2 & 61 / 4 & 66\end{array}\)
through a riddle.
" " \(13 / 4\) " \(21 / 8\)
}

Showing as a mean of the tests only slight differences between the last three methods, but in favor of machine-work. In many instances the fractures were so meven that minute measurements were not taken.

Dimensions of Foundry Ladles.-The following table gives the dimens ous. inside the lining, of ladles from 25 lbs . to 16 tons capacity. All the ladles are supposed to have straight sides. (Am. Mach., Aug. 4, 1892.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Capacity. & Diam. & Depth. & Capacity & Diam. & Depth. \\
\hline 16 tons & in. & \[
\mathrm{in}_{56} .
\] & 3/4 ton ... & \(\mathrm{in}_{20}\) & \[
\operatorname{in}_{20}
\] \\
\hline 14 " & 52 & 53 & \(1 / 6\). & 17 & 17 \\
\hline 12 " & 49 & 50 & \(1 / 4\) 6 & 131/2 & 131/2 \\
\hline 10 & 46 & 48 & 300 pounds & 111/2 & \(111 / 2\) \\
\hline 8 " & 43 & 44 & 250 " & 103/4 & 11 \\
\hline 5 " & 39 & 40 & 200 " & 10 & 101/2 \\
\hline 4 & 34 & 35 & 150 " & 9 & 91/2 \\
\hline 3 " & 31 & 32 & 100 " & 8 & \(81 / 2\) \\
\hline \(2{ }^{\prime \prime}\) & 27 & 28 & 75 & 7 & \(71 / 2\) \\
\hline 112" \({ }^{\text {c }}\) & 241/2 & 25 & 50 " & 61/2 & 61/2 \\
\hline \(1{ }^{1} 6\) & 22 & 22 & 35 ، & 51/2 & 6\% \\
\hline
\end{tabular}

\section*{THE MACHINE-SHOP.}

\section*{SPEED OF CUTTENG-TOOLS IN LATHES, MHLLING MEACHINES, ETC.}

Relation of diameter of rotating tool or piece, number of revolutions, and cutting-speed :

Let \(d=\) diam. of rotating piece in inches, \(n=\) No. of revs. per min.;
\(S=\) speed of circumference in feet per minute;
\[
S=\frac{\pi d n}{12}=.2618 d n ; \quad n=\frac{S}{.2618 d}=\frac{3.82 S}{d} ; \quad d=\frac{3.82 S}{n} .
\]

Approximate rule : No. of revs. per min. \(=4 \times\) speed in ft. per min. \(\div\) diam. in inches.

Speed of Cut-for Lathes and Planers. (Prof. Coleman Sellers, Stevers' Indicator, April, 189\%.)-Brass may ve turned at high speed like wood.

Bronze.-A speed of 18 feet per minute can be used with the soft alloyssay 8 to 1 , while for hard mixtures a slow speed is required -say 6 feet per minute.

Wrought Iron can be turned at 40 feet per minute, but planing-machines that are used for both cast and forged iron are operated at 18 feet per minute.

Machinery Steel.-Ordinary, 14 feet per minute; car-axles, etc., 9 feet per minute.

Wheel Tires. -6 feet per minute; the tool stands well, but many prefer to run faster, say 8 to 10 feet, and grind the tool more frequently.
Lathes.-The speeds obtainable by means of the cone-pulley and the back gearing are in geometrical progression from the slowest to the fastest. In a well-proportioned machine the speeds hold the same relation through all the steps. Many lathes have the same speed on the slowest of the cone and the fastest of the back-gear speeds.

The Speed of Counter-shaft of the lathe is determined by an assumption of a slow speed with the back gear, say 6 feet per minute, on the largest diametre that the lathe will swing.

Example.-A 30 -inch lathe will swing 30 inches \(=\), say, 90 inches circumference \(=\tau^{\prime} 6^{\prime \prime}\); the lowest triple gear should give a speed of 5 or 6 per minute.

In turning or planing, if the cutting-speed exceed 30 ft . per minute. so much heat will be produced that the temper will be drawn from the tool. The speed of cutting is also governed by the thickness of the shaving, and by the hardness and tenacity of the metal which is being cut; for instance, in cutting mild steel, with a traverse of \(3 / 8 \mathrm{in}\). per revolution or stroke, and with a shaving about \(\frac{8}{8} \mathrm{in}\). thick, the speed of cutting must be reduced to about 8 ft . per minute. A good average cutting-speed for wrought or cast

Iron is 20 ft per minute, whether for the lathe, planing, shaping, or slotting machine. (Proc. Inst. M. E., April, 1883, p. D48.)

Table of Cutting-speeds.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Diameter, inches.} & \multicolumn{10}{|c|}{Feet per minute.} \\
\hline & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline & \multicolumn{10}{|c|}{Revolutions per minute.} \\
\hline & 76.4 & 152.8 & 229.2 & 305.6 & 382.0 & 458.4 & 534.8 & 611.2 & \(68 \% .6\) & 764.0 \\
\hline \(3 / 8\) & 50.9 & 101.9 & 15.2 & 203.7 & 254.6 & 305.6 & 356.5 & 40\%. 4 & 458.3 & 509.3 \\
\hline \(1 /\) & 38.2 & 76.4 & 114.6 & 152.8 & 191.0 & 229.2 & 267.4 & 305.6 & 343.8 & 382.0 \\
\hline 58 & 30.6 & 61.1 & 91.7 & 122.2 & 152.8 & 183.4 & 213.9 & 244.5 & 275.0 & 305.6 \\
\hline 8 & 25.5
21.5 & 50.9
43.7 & 76.4
65.5 & 101.8
87.3 & 127.3
109.1 & 152.8 & 178.2
152.8 & 203.7
174.6 & 229.1 & 254.6 \\
\hline 1 & 19.1 & 38.2 & 57.3 & 76.4 & 95.5 & 114.6 & 133.7 & 152.8 & 171.9 & 191. \\
\hline 11/8 & 17.0 & 34.0 & 50.9 & 67.9 & 84.9 & 101.8 & 118.8 & 135.8 & 152.8 & 169.7 \\
\hline \(11 / 4\) & 15.3 & 30.6 & 45.8 & 61.1 & 76.4 & 91.7 & 106.9 & 122.2 & 137.5 & 152.8 \\
\hline 13/8 & 13.9 & 27.8 & 41.7 & 55.6 & 69.5 & 83.3 & 97.2 & 111.1 & 125.0 & 138.3 \\
\hline 11\% & 12.7 & 25.5 & 38.2 & 50.9 & 63.6 & 76.4 & 89.1 & 101.8 & 114.5 & 127. \\
\hline \(13 / 4\) & 10.9 & 21.8 & 32.7 & 43.7 & 54.6 & 65.5 & 76.4 & 87.3 & 98.2 & 109. \\
\hline 2 & 9.6 & 19.1 & 28.7 & 38.2 & 47.8 & 57.3 & 66.9 & 76.4 & 86.0 & 95. \\
\hline 214 & 8.5 & 17.0 & 25.5 & 31.0 & 42.5 & 50.9 & 59.4 & 67.9 & 76.4 & 84.9 \\
\hline 21. & 7.6 & 15.3 & 229 & 30.6 & 38.2 & 45.8 & 53.5 & 61.1 & 688 & 76.4 \\
\hline \(23 / 4\) & 6.9 & 13.9 & 20.8 & \(2{ }^{1} .8\) & 34.7 & 41.7 & 48.6 & 55.6 & 62.5 & 69.5 \\
\hline 3 & 6.4 & 12.7 & 19.1 & 25.5 & 31.8 & 38.2 & 44.6 & 50.9 & 57.3 & 63.7 \\
\hline 31/2 & 5.5 & 10.9 & 16.4 & 21.8 & 27.3 & 32.7 & 38.2 & 43.7 & 49.1 & 54.6 \\
\hline 4 & 4.8 & 9.6 & 14.3 & 19.1 & 23.9 & 28.7 & 33.4 & 38 ~ & 43.0 & 47.8 \\
\hline 4112 & 4.2 & 8.5 & 12.7 & 17.0 & 21.2 & 25.5 & 29.7 & 34.0 & 38.2 & 42.5 \\
\hline & 3.8 & \%.6 & 11.5 & 15.3 & 19.1 & 22.9 & 26.7 & 30.6 & 34.4 & 38.1 \\
\hline 51/2 & 3.5 & 6.9 & 10.4 & 13.9 & 17.4 & 20.8 & 24.3 & 27.8 & 31.2 & 34.7 \\
\hline 6 & 3.2 & 6.4 & 9.5 & 12.7 & 15.9 & 19.1 & 22.3 & 25.5 & 28.6 & 31.8 \\
\hline 8 & 2.7 & 5.5 & 8.2 & 10.9 & 13.6 & 16.4 & 19.1 & 21.8 & 24.6 & 27. \\
\hline 8 & 2.4 & 4.8 & 7.2 & 9.6 & 11.9 & 14.3 & 16.7 & 19.1 & 21.5 & 23 \\
\hline \({ }^{8}\) & 2.1 & 4.2 & 6.4 & 8.5 & 10.6 & 12.7 & 14.8 & 17.0 & 19.1 & 21.2 \\
\hline 10 & 1.9 & 3.8 & 5.7 & 7.6 & 9.6 & 11.5 & 13.3 & 15.3 & 17.2 & 191 \\
\hline 11 & 1.7 & 3.5 & 5.2 & 6.9 & 8.7 & 10.4 & 12.2 & 13.9 & 15.6 & 17.4 \\
\hline 12 & 1.6 & 3.2 & 4.8 & 6.4 & 8.0 & 9.5 & 11.1 & 12.7 & 14.3 & 15.9 \\
\hline 13 & 1.5 & 2.9 & 4.4 & 5.9 & 7.3 & 8.8 & 10.3 & 11.8 & 13.2 & 14.7 \\
\hline 14 & 1.4 & 2.7 & 4.1 & 5.5 & 6.8 & 8.2 & 9.5 & 10.9 & 12.3 & 13.6 \\
\hline 15 & 1.3 & 2.5 & 3.8 & 5.1 & 6.4 & 7.6 & 8.9 & 10.2 & 11.5 & 12.7 \\
\hline 16 & 1.2 & 2.4 & 3.6 & 4.8 & 6.0 & \%.2 & 8.4 & 9.5 & 10.7 & 11.9 \\
\hline 18 & 1.1 & 2.1 & 3.2 & 4.2 & 5.3 & 6.4 & 7.4 & 8.5 & 9.5 & 10.6 \\
\hline 20 & 1.0 & 1.9 & 2.9 & 3.8 & 4.8 & 5.7 & 6.\% & 7.6 & 8.6 & 9.6 \\
\hline \(2 \cdot\) & . 9 & 1.5 & 2.6 & 3.5 & 4.3 & 5.2 & 6.1 & 6.9 & \%.8 & 8. \({ }^{\text {a }}\) \\
\hline 24 & . 8 & 1.6 & 2.4 & 3.2 & 4.0 & 4.8 & 5.6 & 6.4 & 7.2 & 8.0 \\
\hline 26 & . 7 & 1.5 & 2.2 & 2.9 & 3.7 & 4.4 & 5.1 & 5.9 & 6.6 & 7.3 \\
\hline 28 & . 7 & 1.4 & 2.0 & 2.7 & 3.4 & 4.1 & 4.8 & 5.5 & 6.1 & 6.8 \\
\hline 30 & . 6 & 1.3 & 1.9 & 2.5 & 3.2 & 3.8 & 4.5 & 5.1 & 57 & 6. \\
\hline 36 & . 5 & 1.1 & 1.6 & 2.1 & 2.7 & 3.2 & 3.7 & 4.2 & 4.8 & 5. \\
\hline 42 & . 5 & . 9 & 1.4 & 1.8 & 2.3 & 2.7 & 3.2 & 3.6 & 4.1 & 4. \\
\hline 48 & . 4 & . 8 & 1.2 & 1.6 & 2.0 & 2.4 & 2.8 & 3.2 & 3.6 & 4. \\
\hline 54 & . 4 & . 7 & 1.1 & 1.4 & 1.8 & 2.1 & 2.5 & 2.8 & 3.2 & 3.5 \\
\hline 60 & . 3 & . 6 & 1.0 & 1.3 & 1.6 & 1.9 & 2.2 & 2.5 & 2.9 & 3.2 \\
\hline
\end{tabular}

Speed of Cutting with Turret Lathes.-Jones \& Lamson Machine Co. give the following cutting-speeds for use with their flat turret lathe on diameters not exceeding two inches:

Ft. per minute.

Forms of Metal-cutting Tools.-"Hutte," the German Engineers' Pocket-book, gives the folluwing cutting-angles fo:" using least power: Top Rake. Angle of Cutting-edge.
\begin{tabular}{|c|c|c|}
\hline Wrought iron. & \(3^{\circ}\) & \(51^{\circ}\) \\
\hline Cast iron & \(4^{\circ}\) & \(51^{\circ}\) \\
\hline Bronze. & \(4^{\circ}\) & \(66^{\circ}\) \\
\hline
\end{tabular}

The American Machinist comments on these figures as follows: We are not able to give the best nor even the generally used angles for tools, because these vary so much to suit different circumstances, such as degree of harduess of the metal being cut, quality of steel of which the tool is made, depth of cut, kind of finish desired, etc. The angles that cut with the least expenditure of power are easily determined by a few experiments, but the best angles must be determined by good judgment, guided by experience. In nearly all cases, however, we think the best practical angles are greater than those given.

For illustrations and descriptions of various forms of cutting-tools, see articles on Lathe Tools in App. Cyc. App. Mech., vol. ii., and in Modern Mechanism.

Cold Chisels.-Angle of cutting-faces (Joshua Rose): For cast steel, about 65 degrees; for gun-metal or brass, about 50 degrees; for copper and soft metals, about 30 to 35 degrees.

Rule for Gearing Lathes for Screw-cutting. (Garvin Machine Co.)-Read from the lathe index the number of threads per inch cut by equal gears, and multiply it by any number that will give for a product a gear on the index; put this gear upon the stud, then multiply the number of threads per inch to be cut by the same number, and put the resulting gear upon the screw.

Example.-To cut \(111 / 2\) threads per inch. We find on the index that 48 into 48 cuts 6 threads per inch, then \(6 \times 4=24\), gear on stud, and \(11: \times 4=46\), gear on screw. Any multiplier may be used so long as the products include gears that belong with the lathe. For instance, instead of 4 as a multiplier we may use 6 . Thus, \(6 \times 6=36\), gear upon stud, and \(111 / 2 \times 6=69\), gear upon screw.
Rules for Calculating Simple and Compound Gearing where there is no Index. (Am Mach.)-If the lathe is simplegeared, and the stud runs at the same speed as the spindle, select some gear for the screw, and multiply its number of teeth by the number of threads per inch in the lead-screw, and divide this result by the number of threads per inch to be cut. This will give the number of teeth in the gear for the stud. If this result is a fractional number, or a number which is not among the gears on hand, then try some other gear for the screw. Or, select the gear for the stud first, then multiply its number of teeth by the number of threads per inch to be cut, and divide by the number of threads per inch on the lead-screw. This will give the number of teeth for the gear on the screw. If the lathe is compound, select at randoin all the driving-gears, multiply the numbers of their teeth together, and this product by the number of threads to be cut. Then select at random all the driven gears except one; multiply the numbers of their teeth together, and this product by the number of threads per inch in the lead-screw. Now divide the first result by the second, to obtain the number of teeth in the remaining driven gear. Or, select at random all the driven gears. Multiply the numbers of their teeth together, and this product by the number of threads per inch in the leadscrew. Then select at random all the driving-gears except one. Multiply the numbers of their teeth together, and this result by the number of threads per inch of the screw to be cut. Divide the first result by the last, to obtain the number of teeth in the remaining driver. When the gears on the compounding stud are fast together, and cannot be changed, then the driven one has usually twice as many teeth as the other, or driver, in which case in the calculations consider the lead-screw to ha twice as many threads per inch as it actually nas, and then ignore the compounding entirely. Some lathes are so constructed that the stud on which the first driver is placed revolves only half as fast as the spindle. This can be ignored in the calculations by doubling the number of threads of the lead-screw. If ioth the last conditious are present ignore them in the calculations by multiplying the number of threads per inch in the lead-screw by four. If the thread to be cut is a fractional one, or if the pitch of the lead-screw is fractional, or if both are fractional, then reduce the fractions to a common denominator, and use the numerators of these fractions as if they equalled the pitch of the screw
to be cut, and of the lead-screw, respectively. Then use that part of the rule given above which applies to the lathe in question. For instance, suppose it is desired to cut a thread of \(25 / 32\)-inch pitch, and the lead-screw has 4 threads per inch. Then the pitch of the lead-screw will be \(1 / 4\) iuch, which is equal to \(8 / 32\) inch. We now have two fraction, \(25 / 32\) and \(8 / 32\), and the two screws will be in the proportion of 25 to 8 , and the gears can be figured by the above rule, assuming the number of threads to be cut to be 8 per inch, and those on the lead-screw to be 25 per inch. But this latter number may be further modified by conditions named above, such as a reduced speed of the stud, or fixed compound gears. In the instance given, if the lead-screw had been \(21 / 2\) threads per inch, then its pitch being \(4 / 10\) inch, we have the fractions \(4 / 10\) and \(25 / 32\), which, reduced to a common denominator, are \(64 / 160\) and \(1: 5 / 160\), and the gears will be the same as if the lead-screw had 125 threads per inch, and the screw to be cut 64 threads per inch.

On this subject consult also "Formulas in Gearing," published by Brown \& Sharpe Mfg. Co.. and Janieson's Applied Mechanics.

Changengears for Screw-cutting Lathes.-There is a lack of uniformity antong lathe-builders as to the change-gears provided for screwcutting. W. R. Macdonald, in Am. Mach., April 7, 1892, proposes the following series, by which 33 whole threads (not fractional) may be cut by changes of only nine gears:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{9}{|c|}{Spindle.} & \multicolumn{4}{|l|}{\multirow{2}{*}{Whole Threads.}} \\
\hline & 20 & 30 & 40 & 50 & 60 & 70 & 110 & 120 & 130 & & & & \\
\hline 20 & & 8 & 6 & 4 4/5 & 4 & \(33 / \%\) & \(22 / 11\) & 2 & 111/13 & 2 & 11 & 22 & 44 \\
\hline 30 & 18 & & 9 & \(71 / 5\) & 6 & \(51 / 7\) & 3 3/11 & 3 & \(210 / 13\) & 3 & 12 & 24 & 48 \\
\hline 40 & 24 & 16 & 12 & \(93 / 5\) & 8 & \(66 / 7\) & \(44 / 11\) & 4 & \(3{ }^{3} 9 / 13\) & 4 & 13 & 26 & 52 \\
\hline 50 & 30 & 20 & 15 & & 10 & 8 4/7 & 5 5/11 & 5 & \(48 / 13\) & 5 & 14 & 28 & 66 \\
\hline 60 & 36 & 24 & 18 & \(142 / 5\) & & \(102 / 7\) & \({ }_{6}^{6} 6 / 11\) & \(\stackrel{6}{6}\) & \(\begin{array}{ll}5 & 7 / 13\end{array}\) & 6 & 15 & 30 & 72 \\
\hline 70 & 42 & 28 & 21 & \(164 / 5\) & 14 & & 7 7/11 & 7 & \(6 \quad 6 / 13\) & & 16 & 33 & 78 \\
\hline 110 & 66 & 44 & 3:3 & 26 2/5 & 22 & 18 6/7 & & 11 & \(1{ }^{10} 2 / 2 / 13\) & 8 & 18 & 36 & \\
\hline 120 & 72 & 48 & 36 & 28 4/5 & 24 & 20 4/i & \(131 / 11\) & & \(11 \begin{array}{ll}11 & 1 / 13\end{array}\) & & 20 & 39 & \\
\hline 130 & 78 & 52 & 39 & \(311 / 5\) & 26 & \(2: 3 / 7\) & \(142 / 11\) & 13 & \(\ldots\).... & 10 & 21 & 42 & \\
\hline
\end{tabular}

Ten gears are sufficient to cut all the usual threads, with the exception of perhaps 111/2, the standard pipe-thread; in ordinary practice any fractional thread between 11 and 12 will be near enongh for the customary short pipethread; if not, the addition of a single gear will give it.

In this table the pitch of the lead-sclew is 12 , and i , may be objected to as too fine for the purpose. This may be rectified by making the real pitch 6 or ans other desirable pitch, and establishing the proper ratio between the lathe sninille and the gear-stud.

FIetric Screw-threadis may be cut on lathes with inch-divided lead-ing-screws, by the use of change wheels with 50 and 127 teeth; 1or 127 centimetres \(=50\) inches (\(127 \times 0.3937=49.9999\) in.) .

Rule for Setting the Taper in a Latye. (Am. Mach.)-No rule can be given which will produce exact results, owing to the fact that the centres enter the work an indefinite distance. If it were not for this circumstance the following would be an exact rule, and it is an approximation as it is. To find the distance to set the centre over: Divide the difference in the diameters of the large and small end of the taper hy 2 and multiply this quotient by the ratio which the total length of the shaft bears to the length of the tapered portion. Example: Suppose a shaft three feet long is to have a taper turned on the end one foot long, the large end of the taper being two inches and the small end one inch diameter. \(\frac{2-1}{2} \times \frac{3}{1}=11 / 2\) inches.
Electric Drilling-machines-Speed of Drilling Holes in Steel Plates. (l'roc. Inst. M. K., Aug. 188i. p. \(3: 2\)) - In (lilling holes in the shell of the S.S. "Albauia," after a very' small amount of practice the men working the machines drilled the \(7 / 8\)-inch holes in the shell with great rapidity, doing the work at the rate of one hole avery 69 seconds, inclusive of the lime occupied in altering the pusition of the machines by means of differential pulley-blocks, which were not conveniently arranged as slings for this purpose. Repeated trials of these drilling-machines have also shown that, when using electrical energy in both holding-on magnets and motor
amounting to about \(3 / 4\) H.P., they have drilled holes of 1 inch diameter through 11.2 inch thickness of solid wrought irou, or through \(15 / 8\) inch of mild sieel in two plates of \(13 / 16\) inch each, taking exactly \(13 / 4\) min. for each hole.

Speed of Drills. (Morse Twist-drill and Machine Compans.)-The following table gives the revolutions per minute for drills from \(1 / 16\) in. to 2 in. diameter, as usually applied:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Diameter of Drills, in. & Speed for Wrought Iron and Steel. & Speed for Cast Irou. & \[
\begin{aligned}
& \text { Speed } \\
& \text { for } \\
& \text { Brass. }
\end{aligned}
\] & Diameter of Drills, in. & Speed for Wrought Iron and Steel. & Speed for Cast Iron. & Speed for Brass. \\
\hline 1/16 & 1712 & 2383 & 3544 & \(11 / 16\) & \% & 108 & 180 \\
\hline & 855 & 1191 & \(1{ }^{1} 2\) & 11/8 & 68 & 102 & \(1 \stackrel{1}{10}\) \\
\hline 3/16 & \(5 \% 1\) & 994 & 1181 & \(13 / 16\) & 64 & 97 & 161 \\
\hline & 397 & 565 & 855 & & 58 & 89 & 150 \\
\hline 5/16 & 318 & 452 & 684 & \(15 / 16\) & 55 & 84 & 143 \\
\hline 3/8 & 265 & \(3{ }^{\text {\% }}\) & 50 & 13/8 & 53 & 81 & 136 \\
\hline \%/16 & 227 & 323 & 489 & \(17 / 16\) & 50 & 77 & 130 \\
\hline & 183 & 267 & 412 & & 46 & 74 & 122 \\
\hline \(9 / 16\) & 163 & 238 & 367 & \(19 / 16\) & 44 & \%1 & 117 \\
\hline 5/8 & 147 & 214 & 330
300 & \(15 / 8\) & 40
38 & 66 & 113 \\
\hline 11/16 & 1138 & 194 & 300
265 & \({ }_{1} 11 / 16\) & 38
37 & 63 & 109 \\
\hline \[
\begin{gathered}
3 / 4 \\
13 / 1
\end{gathered}
\] & 112 & 168 & 265 & \({ }_{1}^{13 / 4} 13 / 16\) & 37
36 & 61
59 & 105
101 \\
\hline \% 78 & 96 & 144 & 227 & \(17 / 8\) & 33 & 55 & 98 \\
\hline 15/16 & 89 & 134 & 212 & \(115 / 16\) & 32 & 53 & 95 \\
\hline 1 & \% 6 & 115 & 191 & 2 & 31 & 51 & 92 \\
\hline
\end{tabular}

One inch to be drilled in soft cast iron will usually require: for \(1 / 4-\mathrm{in}\). drill, 160 revolutions; for \(1 / 2\)-in. drill, 140 revolutions; for \(3 / 4-\mathrm{in}\). drill, 100 revolutinns; for \(1-\mathrm{in}\). drill, 95 revolutions. These speeds should seldom be exceeded. Feed per revolution for \(114-\mathrm{in}\). drill, .005 inch; for \(1 / 2-\mathrm{in}\). drill, .007 inch; for \(3 / 4\)-in. drill .010 inch.

The rates of feed for twist drills are thus given by the same company:
Diameter of drill............ \(1 / 16 \quad 1 / 4 \quad 3 / 8 \quad 1 / 2 \quad 3 / 4 \quad 1 \quad 112\)

Revs. per inch depth of hole. \(125 \quad 125 \quad 120\) to \(140 \quad 1\) inch feed per min.

\section*{IMILLING-CUTTERRS.}

George Addy. (Proc. Inst. M. E., Oct. 1890, p. 537), gives the following :
Analyses of Steel.-The following are analyses of milling-cutter blanks, made from best quality crucible cast steel and from self-hardening "Ivanhne" steel:
\begin{tabular}{|c|c|c|}
\hline & Crucible Cast Steel, per cent. & Ivanhoe Steel per cent. \\
\hline Carbon & 1.2 & 1.67 \\
\hline Silicon & 0.112 & 0.252 \\
\hline Phosphorus & 0.018 & 0.051 \\
\hline Manganese. & 0.36 & 2.557 \\
\hline Sulphur. & 0.02 & 0.01 \\
\hline Tungsten & & 4.65 \\
\hline Iron, by difference & 98.29 & 90.81 \\
\hline
\end{tabular}

The first analysis is of a cutter 14 in . diam., 1 in . wide, which gave very good service at a cutting-speed of 60 ft . per min. Large milling-cutters are sometimes built up, the cutting-edges only being of tool steel. Acuiter 22 in. diam. by \(51 / 2 \mathrm{in}\). Wide has been made in this way, the reeth being clamped between two cast-iron flanges. Mr. Addy recommends for this form of
th one with a cutting-angle of \(70^{\circ}\), the face of the tooth being set \(10^{\circ}\) back
radial line on the cutter, the clearance-angle being thus \(10^{\circ}\). At the ence Iron-works, Leeds, the face of the tooth is set \(10^{\circ}\) back of the radia! sme for cutting wrought iron and \(20^{\circ}\) for steel.

Pitch or Teeth.-For obtaining a suitable pitch of teeth for millingcutters of carious diameters there exists no staudard rule, the pitch being usually decided in an arbitrary manner: accordiug to individual taste.

For estimating the pitch of teeth in a cutter of any diameter from 4 in . to 15 in., Mr. Addy has worked out the following rule, which he has found capable of giving good results in practice:
\[
\text { Pitch in inches }=\sqrt{(\text { diam. in inches } \times 8)} \times 0.0625=.177 \sqrt{\text { diam. }} .
\]
J. M. Gray gives a rule for pitch as follows: The number of teeth in a milling-cutter ought to be 100 times the pitch in inches; that is, if there were 27 teeth, the pitch ought to be 0.27 in. The rules are practically the same, for if \(d=\) diam., \(n=\) No. of teeth, \(p=\) pitch, \(c=\) circumference, \(c=\) \(p n ; \quad d=\frac{p u}{\pi}=\frac{100 p^{2}}{\pi}=31.83 p^{2} ; \quad p=\sqrt{.0314 d}=.177 \sqrt{d} ;\) No. of teeth, \(n,=\) \(3.14 d \div p\).

Number of Teeth in Mills or Cutters. (Joshua Rose.) -The teeth of cutters must obviously be spaced wide enough apart to admit of the emerywheel grinding one tooth without touching the next one, and the front faces of the teeth are always made in the plane of a line radiating from the axis of the cutter. In cutters up to 3 in . in diam. it is good practice to provide 8 teeth per in. of diam., while in cutters above that diameter the spacing may be coarser, as follows:

Speed of Cutters.-The cutting speed for milling was originally fixed very low; but experience has shown that with the improvements now in use it may with advantage be considerably increased, especially with cutters of large diameter. The following are recommended as safe speeds for cutters of 6 in . and upwards, provided there is not any great depth of material to cut away:
\begin{tabular}{ccccc}
& Steel. & Wrought iron. Cast iron. & Brass. \\
Feet per minute...... & 36 & 48 & 60 & 120 \\
Feed, inch per min... & \(1 / 2\) & 1 & \(12 / 3\) & \(22 / 3\)
\end{tabular}

Should it be desired to remove any large quantity of material, the same cutting-speeds are still recommended, but with a finer feed. A simple rule for cutting-speed is: Number of revolutions per minute which the cutter spindle should make when working on cast iron \(=240\), divided by the diameter of the cutter in inches.

Speed of Milling-cutters. (Proc. Inst. M. E., April, 1883, p. 248.)The cutting-speed which can be employed in milling is much greater than that which can be used in any of the ordinary operations of turning in the lathe, or of planing, shaping, or slotting. A milling-cutter with a plentiful supply of oil, or soap and water, can be run at from 80 to 100 ft . per min., when cutting wrought iron. The same metal can only be turned in a lathe, with a tool-holder having a good cutter, at the rate of 30 ft . per min., or at about one third the speed of milling. A milling-cutter will cut cast steel at the rate of 25 to 30 ft . per min.
The following extracts are taken from an article on speed and feed of milling-cutters in Eng'g, Oct. 22, 1891: Milling-cutters are successfully employed on cast iron at a speed of \(\because 50 \mathrm{ft}\). per min.; on wrought iron at from 80 ft . to 100 ft . per min. The latter materials need a copious supply of good lubricant, such as oil or soapy water. These rates of speed are not approached by other tools. The usual cutting-speeds on the lathe, planing. shaping, and slotting machines rarely exceed about one third of those given above, and frequently average about a fifth, the time lost in back strokes not being reckoned.
The feed in the direction of cutting is said by one writer to vary, in ordinary work, from 40 to 70 revs. of a 4 -in. cutter per in. of feed. It must always to an extent depend on the character of the work done, but the above gives shavings of extreme thinness. For example, the circumference of a 4 -in. cutter being, say, \(121 / 2\) in., and having, say, 60 teeth, the advance corresponding to the passage of one cutting-tooth over the surface, in the coarser of the above-named feed-motions, is \(1 / 40 \times 1 / 60=1 / 2400 \mathrm{in} . ;\) the finer feed gives an advance for each tooth of only \(1 / 70 \times 1 / 60=1 / 4200 \mathrm{in}\). Such fine feeds as these are used only for light finishing cuts, and the same authority recommends, also for finishing, a cutter about 9 in. in circumference, or nearly 3 in. in diameter, which should be run at about 60 revs. per min. to cut tough wrought steel, 120 for ordinary cast iron, about 80 for wrought

Iron, and from 140 to 160 for the various qualtities of gun-metal and brass. With cutters smaller or larger the rates of revolution are increased or diminished to accord with the following table, which gives these rates of cutting-speeds and shows the lineal speed of the cutting-edge:

Steel. Wrought Iron. Cast Iron. Gun-metal. Brass. \(\begin{array}{llllll}\text { Feet per minute... } & 45 & 60 & 90 & 105 & 120\end{array}\) \(\begin{array}{lllllll}\text { Feet per minute... } & 45 & 60 & 90 & 105 & 120\end{array}\) \(\begin{array}{lllllll}\text { Feet per minute... } & 45 & 60 & 90 & 105 & 120\end{array}\) \(\begin{array}{llllll}\text { Feet per minute... } & 45 & 60 & 90 & 105 & 120\end{array}\)

These speeds are intended for very light finishing cuts, and they must be reduced to about one half for heavy cutting.

The following results have been found to be the highest that could be attained in ordinary workshop routine, having due consideration to economy and the time taken to change and grind the cutters when they become dull: Wrought iron- 36 ft . to 40 ft . per min.; depth of cut, 1 in .; feerl, \(5 / 8 \mathrm{in}\). per min. Soft mild steel-About 30 ft . per min.; depth of cut, \(1 / 4 \mathrm{in}\).; feed, \(3 / 4\) in. per min. Tough gun-metal- 80 ft . per min.; depth of cut, \(1 / 2 \mathrm{in}\). ; feed, \(3 / 4\) in. per min. Cast-iron gear-wheels- \(261 / 2 \mathrm{ft}\). per min.; depth of cut, \(1 / 2\) in.; feed, \(3 / 4 \mathrm{in}\). per min. Hard. close-grained cast iron- 30 ft . per min.; depth of cut, \(21 / 2\) in.: feed, \(5 / 16 \mathrm{in}\). per min. Gun-metal joints, 53 ft . per min.; depth of cut, \(13 / 8 \mathrm{in}\).; feed, \(5 / 8 \mathrm{in}\). per min. Steel-bars- 21 ft . per min.; depth of cut, \(1 / 32\) in.; feed, \(3 / 4 \mathrm{in}\). per min.

A stepped milling-cutter, 4 in . in diam. and 12 in . wide, tested under two conditions of speed in the same machine, gave the following results: The cutter in both instances was worked up to its maximum speed before it gave way, the object being to ascertain definitely the relative amount of work done by a high speed and a light feed, as compared with a low speed and a heavy cut. The machine was used single-geared and double-geared, and in both cases the width of cut was \(101 / 2 \mathrm{in}\).

Single-gear, 42 ft . per min.; \(5 / 16 \mathrm{in}\). depth of cut; feed, 1.3 in . per min. \(=\) 4.16 cu . in. per min. Double-gear, 19 ft . per min.; \(3 / 8 \mathrm{in}\). depth of cut; feed, \(5 / 8 \mathrm{in}\). per min. \(=2.40 \mathrm{cu}\) in. per min.

Extreme Results with Milling-machines. - Horace L. Arnold (Am. Mach., Dec. 28, 1893) gives the following results in flat-surface milling, obtained in a Pratt \& Whitney milling-machine : The mills for the flat cut were \(5^{\prime \prime}\) diam., 12 teeth, 40 to 50 revs. and \(47 / 8^{\prime \prime}\) feed per min. One single cut was run over this piece at a feed of \(9^{\prime \prime}\) per min., but the mills showed plainly at the end that this rate was greater than they could endure. At 50 revs. for these mills the figures are as follows, with \(47 / 8^{\prime \prime}\) feed: Surface speed, 64 ft ., nearly; feed per tooth, \(0.0081 \mathfrak{N}^{\prime \prime}\) : cuts per inch, 123 . And with \(9^{\prime \prime}\) feed per min.: Surface speed, 64 ft . per min.; feed per tooth, \(0.015^{\prime \prime}\); cuts per inch, \(662 / 3\).

At a feed of \(47 / 8^{\prime \prime}\) per min. the mills stood up well in this job of cast-iron surfacing, while with a \(9^{\prime \prime}\) feed they required grinding after surfacing one piece; in other words, it did not damage the mill-teeth to do this job with 123 cuts per in. of surface finished, but they would not endure \(662 / 3\) cuts per inch. In this cast-iron milling the surface speed of the mills does not seem to be the factor of mill destruction: it is the increase of feed per tooth that prohibits increased production of finished surface. This is precisely the reverse of the action of single-pointed lathe and planer tools in general: with such tools there is a surface-speed limit which cannot be economically exceeded for dry cuts, and so long as this surface-speed limit is not reached, the cut per tooth or feed can be made anything up to the limit of the driving power of the lathe or planer, or to the safe strain on the work itself, which can in many cases be easily broken by a too great feed.

In wrought metal extreme figules were obtained in one experiment made in cutting keyways \(5 / 16^{\prime \prime}\) wide by \(18^{\prime \prime}\) deep in a bank of 8 shafts \(114^{\prime \prime}\) diam. at once, on a Pratt \& Whitney No. 3 column milling-machine. The 8 mills were successfully operated with 45 ft . surface speed and \(191 / 2 \mathrm{in}\). per min. feed; the cutters were \(5^{\prime \prime}\) diam., with 28 teeth, giving the following figures, in steel: Surface speed, 45 ft . per min.; feed per tooth, \(0.020: 4^{\prime \prime}\); cuts per inch, 50, nearly. Fed with the revolution of mill. Flooded with oil, that is, a large stream of oil running constantly over each mill. Face of tooth radial. The resulting keyway was described as having a heavy wave or cutter-mark in the bottom, and it was said to have shown no signs of being heavy work on the cutters or on the machine. As a result of the experiment it was decided for economical steady work to run at 17 revs., with a feed of \(4^{\prime \prime}\) per min., flooded cut, work fed with mill revolution, giving the following figures: Surface speed, \(221 / 4 \mathrm{ft}\). per min.; feed per tooth, \(0.0084^{\prime \prime}\); cuts per inch, 119.

An experiment in milling a wrought-iron connecting-rod of a locomotive on a Pratt \& Whitney double-head milling-machine is described in the Iron Age, Aug. 27, 1891. The amount of metal removed at one cut measured \(31 / 2\) in . wide by \(13 / 16 \mathrm{in}\). deep in the groove, and across the top \(1 / 8 \mathrm{in}\). deep by \(43 / 4\) in . wide. This represented a section of nearly \(41 / 2 \mathrm{sq}\). in. This was doue at the rate of \(13 / 4 \mathrm{in}\). per min. Nearly 8 cu . in. of metal were cut up into chips every minute. The surface left by the cutter was very perfect. The cutter moved in a direction contrary to that of ordinary practice; that is, it cut down from the upper surface instead of up from the bottom.

Milling \({ }^{66}\) with 9 or \({ }^{66}\) against 9 the Feed.-Tests made with the Brown \& Sharpe No. 5 milling-machine (described by H. L. Arnold, in Am. Mach., Oct. 18, 1894) to determine the relative advantage of running the milling-cutter with or against the feed-"with the feed "meaning that the teeth of the cutter strike on the top surface or "scale" of cast-iron work in process of being milled, and "against the feed " meaning that the teeth begin to cut in the clean, newly cut surface of the work and cut upwards toward the scale-showed a decided adrantage in favor of running the cutter against the feed. The result is directly opposite to that obtained in tests of a Pratt \& Whitney machine, by experts of the P. \& W. Co.

In the tests with the Brown \& Sharpe machine the cutters used were 6 inches face by \(41 / 2\) and 3 inches diameter respectively, 15 teeth in each mill, 4: revolutions per minute in each case, or nearly 50 feet per minute surface speed for the \(41 / 2\)-inch and 33 feet per minute for the 3 -inch mill. The revolution marks were 6 to the inch, giving a feed of 7 inches per minute, and a cut per tooth of \(.011^{\prime \prime}\). When the machine was forced to the limit of its driving the depth of cut was \(11 / 32\) inch when the cutter ran in the "old" way, or against the feed, and only \(1 / 4\) inch when it ran in the "new" way, or with the feed. The endurance of the milling-cutters was much greater when they were run in the "old" way.
Spiral Milling-cutters. - There is no rule for finding the angle of the spiral; from \(10^{\circ}\) to \(15^{\circ}\) is usually considered sufficient; if much greater the end thrust on the spindle will be increased to an extent not desirable for some machines.
Milling-cutters with Inserted Teeth.-When it is required to use milling-cutters of a greater diameter than about 8 in ., it is preferable to insert the teeth in a disk or head, so as to avoid the expense of making solid cutters and the difficulty of hardening them, not merely because of the risk of breakage in hardening them, but also on account of the difficulty in nhtaining a uniform degree of hardness or temper.
Milling - machine versus Planer, - For comparative data of work done by each see paper by J. J. Grant, Trans. A. S. M. E., ix. 259. He says: The advantages of the milling machine over the planer are many, among which are the following: Exact duplication of work; rapidity of production - the cutting being continuous; cost of production, as several machines can be operated by one workman, and he not a skilled mechanic; and cost of tools for producing a given amount of work.

\section*{POWER REQUIRED FOR MIACHINE TOOLS.}

Resistance Overcome in Cutting Metal. (Trans. A. S. M. E., viii. 308. --Some experiments made at the works of William Sellers \& Co. showed that the resistance in cutting steel in a lathe would vary from 180,000 to \(\% 00,000\) pounds per square inch of section removed, while for cast iron the resistance is about one third as much. The power required to remove a given amount of metal depends on the shape of the cut and on the shape and the sharpness of the tool used. If the cut is nearly square in section, the power required is a minimum; if wide and thin, a maximum. The dulness of a tool affects but little the power required for a heavy cut.

Heavy Work on a Planer. - Wm. Sellers \& Co. write as follows to the American Machinist: The 1 \(20^{\prime \prime}\) planer table is geared to run 18 ft . per minute under cut, and \(\tau 2\) feet per minute on the return, which is equivalent, without allowance for time lost in reversing, to continuous cut of 14.4 feet per minute. Assuming the work to be 28 feet long, we may take 14 feet as the continuous cutting speed per minute, the .8 of a foot being much more than sufficient to cover time loss in reversing and feeding. The machine carries four tools. At \(1 / 8^{\prime \prime}\) feed per tool, the surface planed per hour would be 35 square feet. The section of metai cut at \(3 / 4^{\prime \prime}\) depth would be . \(75^{\prime \prime} \times\) \(.125^{\prime \prime} \times 4=.8 \tilde{y}^{\prime \prime} \mathrm{F}\) square inch, which would require approximately \(30,000 \mathrm{lbs}\)

\section*{POWER REQUIRED FOR MACHINE TOOLS.}
pressure to remove it. The weight of metal removed per hour would be \(14 \times 12 \times .375 \times .26 \times 60=1082.8 \mathrm{lbs}\). Our earlier form of \(36^{\prime \prime}\) planer has removed with one tool on \(3 / 4^{\prime \prime}\) cut on work 200 lbs. of metal per hour, and the \(120^{\prime \prime}\) machine has more than five times its capacity. The total pulling power of the planer is \(45,000 \mathrm{lbs}\).

Horse-power Required to Run Lathes. (J. J. Flather, Am. Mach., April 23,1891 .)-The power required to do useful work varies with the depth and breadth of chip, with the shape of tool, and with the nature and lensity of metal operated upon; and the power required to run a machine empty is often a variable guantity.
For instance, when the machine is new, and the working parts have not become worn or fitted to each other as they will be after running a few months, the power required will be greater than will be the case after the running parts have become better fitted.
Ancther cause of variation of the power absorbed is the driving-belt; a tight belt will increase the friction, hence to obtain the greatest efficiency of a machine we should use wide belts, and run them just tight enough to prevent slip. The belts should also be soft and pliable, otherwise power is consumed in bending them to the curvature of the pulleys.
A third cause is the variation of journal-friction, due to slacking up or tightening the cap-screws, and also the end-thrust bearing screw.
Hartig's investigations show that it requires less total power to turn off a given weight of metal in a given time than it does to plane off the same amount; and also that the power is less for large than for small diameters.

The following table gives the actual horse-power required to drive a lathe empty at varying numbers of revolutions of main spindle.

Horse-power for Small Lathes.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Without Back Gears.} & \multicolumn{2}{|l|}{With Back Gears.} & \\
\hline Revs. of Spindle per min. & H.P. required to drive empty. & Revs. of Spindle per min. & \begin{tabular}{l}
H.P. \\
required to drive empty.
\end{tabular} & Remarks. \\
\hline \[
\begin{aligned}
& 132.72 \\
& 219.08 \\
& 365.00
\end{aligned}
\] & .145
.197
.310 & \[
\begin{aligned}
& 14.6 \\
& 24.33 \\
& 38.42
\end{aligned}
\] & \[
\begin{aligned}
& .126 \\
& .141 \\
& .274
\end{aligned}
\] & \(20^{\prime \prime}\) Fitchburg lathe. \\
\hline \[
\begin{aligned}
& 4 \hat{4} .4 \\
& 125.0 \\
& 188
\end{aligned}
\] & .159
.859
.339 & 4.84
12.8
19.2 & \[
\begin{aligned}
& .132 \\
& .187 \\
& .230
\end{aligned}
\] & Smallla the (\(131 / \mathbf{2}^{\prime \prime}\)), Chem nitz. Germany. New machine. \\
\hline \[
\begin{gathered}
54.6 \\
12.2 \\
183
\end{gathered}
\] & .206
.339
.455 & 6.61
14.8
22.1 & .157
.206
.249 & 171/2" lathe do. New machine. \\
\hline \[
\begin{aligned}
& 18.8 \\
& 54.6 \\
& 82.2
\end{aligned}
\] & .086
.210
.326 & \[
\begin{array}{r}
2.31 \\
6.72 \\
10.8
\end{array}
\] & \[
\begin{aligned}
& .035 \\
& .063 \\
& .087
\end{aligned}
\] & \(26^{\prime \prime}\) lathe do. \\
\hline
\end{tabular}

If H.P.o \(=\) horse-power necessary to drive lathe empty, and \(N=\) number of revolutions per minute, then the equation for average small lathes is \(\mathrm{H}_{\mathrm{F}} \mathrm{P}_{0}=0.095+0.001: N\).

For the power necessary to drive the lathes empty when the back gears are in, an average equation for lathes under \(20^{\prime \prime}\) swing is
\[
\text { H.P. }{ }_{0}=0.10+0.006 \mathrm{~N} .
\]

The larger lathes vary so much in construction and detail that no general rule can be obtained which will give, even approximately, the power required to run them, and although the average formula shows that at least 0.095 horse-power is needed to start the small lathes, there are many American lathes under \(20^{\prime \prime}\) swing working on a consumption of less than .05 horse-power.

The amount of power required to remove metal in a machine is determin． able within more accurate limits．

Referring to Dr．Hartig＇s researches，H．P．\({ }_{1}=C W\) ，where \(C\) is a constant， and \(W\) the weight of chips removed per hour．
Average values of \(C\) are .030 for cast－iron， .032 for wrought－iron， \(.04 \%\) for steel．

The size of lathe，and，therefore，the diameter of work，has no apparent effect on the cutting power．If the lathe be heavy，the cut can be increased， and consequently the weight of chips increased，but the value of \(C\) appears to be about the same for a given metal through several varying sizes of lathes．

Horse－power required to remove Cast Iron in a 20－inch Lathe． （J．J．Hobart．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \dot{0} \\
& z \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0.0 \\
& 0 \\
& 0.0 \\
& 0
\end{aligned}
\] & & Tool used． & & & & & & \\
\hline 1 & 22 & Side tool & 37.90 & 125 & ． 015 & 342 & 13.30 & 025 \\
\hline 2 & 15 & Diamond & 30.50 & ． 125 & ． 015 & 218 & 10.70 & 020 \\
\hline 3 & 17 & Round nose．． & 42.61 & ． 125 & ． 015 & ． 352 & 14.95 & ． 023 \\
\hline 4 & 2 & Left－hand round
nose．．．．．．．．．．．．．．．． & 26.29 & ． 125 & ． 015 & 237 & 9.22 & ． 026 \\
\hline 5 & 4 & Square－faced tool \(1 / 2^{\prime \prime}\) broad & 25.82 & ． 015 & ． 125 & 255 & 9.06 & 028 \\
\hline 6 & 1 & 2＂ & 25.24 & ． 048 & ． 048 & ． 200 & 10.89 & 018 \\
\hline 7 & 1 & 6 & 25.64 & ． 125 & ． 015 & ． 246 & 8.99 & 027 \\
\hline
\end{tabular}

The above table shows that an average of .26 horse－power is required to turn off 10 pounds of cast－iron per hour，from which we obtain the average value of the constant \(C=.024\) ．

Most of the cuts were taken so that the metal would be reduced \(1 / 4^{\prime \prime}\) in diameter；with a broad surface cut and a coarse feed，as in No．5，the power required per pound of chips removed in a given time was a maximum；the least power per unit of weight removed being required when the chip was square，as in No． 6.

Horse－power required to remove Metal in a 29 －inch Lathe． （R．H．Smith．）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Metal． & & & & & & \\
\hline 4 & Cast iron & 12.7 & ． 05 & ． 046 & ． 105 & 5.49 & 019 \\
\hline 4 & Cast iron & 11.1 & ． 135 & ． 046 & ． 217 & 12.96 & ． 017 \\
\hline 2 & Cast iron & 12.85 & ． 04 & ． 033 & ． 098 & 3.66 & ． 027 \\
\hline 4 & Wrought iron & 9.6 & ． 03 & ． 046 & ． 059 & 2.49 & ． 023 \\
\hline 4 & Wronght irou & 9.1 & ． 06 & ． 046 & ． 138 & 4.72 & ． 029 \\
\hline 4 & Wrought iron & 7.9 & ． 14 & ． 046 & ． 186 & 9.56 & ． 019 \\
\hline 2 & Wrought iron & 9.35 & ． 045 & ． 038 & ． 092 & 2.99 & ． 031 \\
\hline 4 & Steel & 6.00 & ． 02 & ． 046 & ． 043 & 1.03 & ． 042 \\
\hline 4 & Steel & 5.8 & ． 04 & ． 046 & ． 085 & 2.00 & ． 012 \\
\hline 4 & Steel & 5.1 & ． 06 & ． 046 & ． 108 & 2.64 & ． 040 \\
\hline
\end{tabular}

The small values of \(C, .017\) and .019 , obtained for cast iron are probably due to two reasons: the iron was soft and of fine quality, known as pulley metal, requiring less power to cut; and, as Prof. Smith remarks, a lower cutting-speed also takes less horse-power.

Hardness of metals and forms of tools vary, otherwise the amount of chips turned out per hour per horse-power would be practically constant, the higher cutting-speeds decreasing but slightly the visible work done.

Taking into account these variations, the weight of metal removed per hour, multiplied by a certain constant, is equal to the power necessary to do the work.

This constant, according to the above tests, is as follows :
\begin{tabular}{cccc}
Cast Iron. Wrought Iron. & Steel. \\
. .030 & .032 & .047 \\
. & .023 & .042 \\
. .024 & & .030 & .044
\end{tabular}

The power necessary to run the lathe empty will vary from about .05 to .3 H.P., which should be ascertained and added to the useful horse-power, to obtain the total power expended.

Power used by Machine-tools. (R. E. Dinsmore, from the Electical World.)
1. Shop shafting \(23 / 16^{\prime \prime} \times 180 \mathrm{ft}\). at 160 revs , carrying 26 pulleys from \(6^{\prime \prime}\) diam. to \(36^{\prime \prime}\), and running 20 idle machine belts
1.32 H.P.
2. Lodge-Davis upright back-geared drill-press with table, \(28^{\prime \prime}\) swing, drilling \(3 / 8^{\prime \prime}\) hole in cast iron, with a feed of 1 in . per minute.
0.78 H .1
3. Morse twist-drill grinder No. \(\stackrel{2}{ }\), carrying \(:^{\prime \prime} \times 6^{\prime \prime}\) wheels at 3200 revs.
0.29 H.P.
4. Pease planer \(30^{\prime \prime} \times 36^{\prime \prime}\), table 6 ft., planing cast iron, cut \(1 / 4^{\prime \prime}\) deep, planing 6 sq. in. per minute, at 9 reversals
1.06 H.P.
5. Shaping-machine \(22^{\prime \prime}\) stroke, cutting steel die, \(6^{\prime \prime}\) stroke, \(1 / 8^{\prime \prime}\) deep, shaping at rate of 1.7 square inch per minute..
0.37 H.P.
6. Engine-lathe \(1 \tilde{r}^{\prime \prime}\) swing, turning steel shaft \(23 / 8^{\prime \prime}\) diam., cut \(3 / 16\) deep, feeding \(\tilde{f} .92\) inch per minute.
0.43 H.P.
7. Engine-lathe 21" swing, boring cast-iron hole \(5^{\prime \prime}\) diam, cut \(3 / 16\) diam., feeding \(0.3^{\prime \prime}\) per minute.
0.23 H.P.
8. Sturtevant No. 2, monogram blower at 1800 revs. per minute, no piping
0.8 H.P.
9. Heary planer \(28^{\prime \prime} \times 28^{\prime \prime} \times 14 \mathrm{ft}\). bed, stroke \(8^{\prime \prime}\), cutting steel, 22 reversals per minute.
3.2 H.P.

The table on the next page compiled from various sources, principally from Hartig's researches, by Prof. J. J. Flather (Am. Mach., April 12, 1894), may be used as a guide in estimating the power required to run a given machine; but it must be understood that these values, although determined by dyamometric measurements for the individual machines designated, are not necessarily representative, as the power required to drive a machine itself is dependent largely on its particular design and construction. The character of the work to be done may also affect the power required to operate; thus a machine to be used exclusively for brass work may be speeded from \(10 \%\) to \(15 \%\) higher than if it were to be used for iron work of similar size, and the power required will be proportiouately greater.

Where power is to be transmitted to the machines by means of shafting and countershafts, an additional amount, varying from \(30 \%\) to \(50 \%\) of the total pnwer absorbed by the machines, will be necessary to overcome the friction of the shafting.

Horse-power required to drive Shafting.-Samuel Webber, in his "Manual of Power" gives among numerous tables of power required to drive textile machinery, a table of results of tests of shafting. A line of \(21 / 8^{\prime \prime}\) shafting, 342 ft . long, weighing 4098 lbs ., with pulleys weighing 5331 lbs ., or a total of 9429 lbs ., supported on 47 bearings, 216 revolutions per minute, required \(1.858 \mathrm{H} . \mathrm{P}\). to drive it. This gives a coefficient of friction of \(5.52 \%\). In seventeen tests the coefficient langed from \(3.34 \%\) to \(11.4 \%\), averaging 5.73\%.

\section*{Horsempower Required to Drive Machinery.}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Name of Machine.} & \multicolumn{2}{|l|}{Observed Horse-power} \\
\hline & Total Work. & Running Light. \\
\hline Small screw-cutting lathe \(131 / 2^{\prime \prime}\) swing, B. G. & 0.41 & 0.18; 0.15*-0.34† \\
\hline Screw-cutting lathe \(1712^{\prime \prime}, \mathrm{B}, \mathrm{G}\). & 0.867 & \[
0.207 ; 0.16-0.466
\] \\
\hline Screw-cutting lathe 20, (Fitchburg), B & 0.47 & \(0.12 ; 0.12\) to 0.31 \\
\hline Screw-cutting lathe \(26^{\prime \prime}\), B, G & 0.462 & \(0.05 ; 0.03\) to 0.33 \\
\hline Lathe, \(80^{\prime \prime}\) face plate, will swing 108 & 0.53 & \(0.187 ; 0.12\) to 0.66 \\
\hline Large facing lathe, will swing 68', 7 & 0.91 & 0.37; 0.39 to 0.81 \\
\hline Wheel lathe \(60^{\prime \prime}\) swing & & 0.23 to 3.40 \\
\hline Small shaper (Stroke \(4^{\prime \prime}\), traverse \(11{ }^{\prime \prime}\) & 0.16 & 0.086 to 0.26 \\
\hline Small shaper, Richards (\(91 / 2^{\prime \prime} \times 22^{\prime \prime}\)) & 0.24 & \(0.07 ; 0.07\) to 0.12 \\
\hline Shaper (\(15^{\prime \prime}\) stroke Gould \& Eber & 0.63 & 0.21 ; 0.01 to 0.47 \\
\hline Large shaper, Richards (\(29^{\prime \prime} \times 9{ }^{\prime \prime}\))) & 1.14 & \(0.26 ; 0.15\) to 0.73 \\
\hline Crank planer (capacity \(23^{\prime \prime} \times 27^{\prime \prime} \times 28\) & 0.24 & \(0.12 ; 0.12\) to 0.40 \\
\hline Planer (capacity \(36^{\prime \prime} \times 36{ }^{\prime \prime} \times 11\) feet) & 0.84 & 0.27 \\
\hline Large planer (capacity \(76^{\prime \prime} \times 76^{\prime \prime} \times 5\) & 1.47 & 0.60 \\
\hline Small drill press...................... & 0.62 & \({ }_{0}{ }^{0} 0.39\) \\
\hline Upright slct drilling mach. (& 0.41 & \(0.15 ; 0.15\) to 0.43 \\
\hline Medium drill press & 1.33 & \\
\hline Large drill press & 1.24 & 0.62 \\
\hline Radial drill 6 feet & 0.53 & \(0.44 ; 0.1{ }^{*}-0.44 \dagger\) \\
\hline Radial drill \(81 / 2\) feet & 0.67 & 0.30; 0.12*-0.80† \\
\hline Radial drill press & 1.08 & 0.46 \\
\hline Slotter (\(8^{\prime \prime}\) stroke) & 0.28 & 0.09; 0.05 to \({ }^{\text {u }} .25\) \\
\hline Slotter (\(91 / 2^{\prime \prime}\) stroke) & 0.44 & \(0.22 ; 0.15\) to 0.65 \\
\hline Slotter (\(15^{\prime \prime}\) stroke). & 0.95 & \(0.57 ; 0.43\) to 0.91 \\
\hline Universal milling mach. (Brown \& Sharpe N & 0.28 & 0.01; 0.003-0.13 \\
\hline Milling machine (\(13^{\prime \prime}\) cutter-head, 12 cutters) & 0.66 & \(0.26 ; 0.26\) to 0.55 \\
\hline Small head traversing milling machine (cutter-head 11" diameter, 16 cutters) & 0.18 & 0.10 \\
\hline Gear cutter will cut \(20^{\prime \prime}\) diame & 0.28 & 0.11 \\
\hline Horizontal boring machine for iron, 221/2" & 0.93 & \[
\begin{aligned}
& 0.12 ; 0.10-0.12 * ; ~ \\
& 0.10 \text { to } 0.25+;
\end{aligned}
\] \\
\hline Hydraulic shearing machine & \(1.5{ }^{2}\) & 0.37 \\
\hline Large plate shears-knives \(28^{\prime \prime}\) long, \(3^{\prime \prime}\) stroke...... & 7.12 & 0.67 \\
\hline Large punch press, over-reach \(28^{\prime \prime}, 3^{\prime \prime}\) stroke, \(11 / 2^{\prime \prime}\) stock can be punched. & 4.41 & 1.00 \\
\hline Small punch and shear combod, \(71 / 2^{\prime \prime}\) knives, \(11 / 2^{\prime \prime}\) str. & 0.79 & 0.16 \\
\hline Circular saw for hotiron (\(301 / 2^{\prime \prime}\) diameter of saw)... & 4.12 & 0.61 \\
\hline Plate-bending rolls, diam. of rolls \(13^{\prime \prime}\), length \(91 / 2 \mathrm{ft}\). & 2.70 & . 54 \\
\hline Wood planer \(131 / /^{\prime \prime}\) (rotary knives, 2 hor'l 2 vert. & 4.24 & 3.35 \\
\hline Wood planer 24/' (rotary knives) & 3.03 & 142 \\
\hline Wood planer 171/2' (rotary knives) & 4.63 & 1.25 \\
\hline Wood planer \(28^{\prime \prime}\) (rotary knives). & 5.00 & \(0.74 \ddagger-0.17\) § \\
\hline Wood planer 28 ' (Daniel's pattern) & 3.20 & 1.45 \\
\hline Wood planer and matcher (capacity \(141 / 2 \times 43 / 4\) & 6.91 & 4.18 \\
\hline Circular saw for wood (23' diameter of saw) & 3.23 & 0.70 \\
\hline Circular saw for wood (35" diameter of saw) & 5.64 & 1.16 \\
\hline Band saw for wood (34'" band wheel) & 0.96 & 1.19
0.34 \\
\hline Wood-mortising and boring machine..............i. & 0.49 & 0.34 \\
\hline Hor'l wood-boring and mortising machine, drill \(4^{\prime \prime}\) diam., mortise \(81 / 2\) deep \(\times 111 / 2^{\prime \prime}\) long........ & 3.68 & 1.67; 0.65 to 2 \\
\hline Tenon and mortising machine... & 2.11 & 1.42 \\
\hline Tenon and mortising machine & 2.73 & 0.61 \\
\hline Tenon and mortising machin & 2.25 & 2.17 \\
\hline Edge-molder and shaper. (Vertical spindle)........ & 2.00 & 1.30 \\
\hline Wood-molding mach. (cap. \(712 \times 21 / 2)\) Hor. spindle
Grindstone for tools, \(31^{\prime \prime}\) diam., \(6^{\prime \prime}\) face. Velocity & 2.45 & 2.00 \\
\hline Grindstone for tools, \(31^{\prime \prime}\) diam., \(6^{\prime \prime}\) face. Velocity 680 ft . per minute. & 1.55 & \\
\hline Grindstone for stock, \(42^{\prime \prime} \times 12^{\prime \prime}\). Vel. 1680 ft . per min. & 3.11 & 0.24 \\
\hline Emery wheel \(111 / 2^{\prime \prime}\) diameter \(\times 1 / 4^{\prime \prime}\). Saw grinder. . & 0.56 & 0.40 \\
\hline
\end{tabular}

\footnotetext{
* With back gears. † Without back gears. \(\ddagger\) For surface cutters. § With side cutters. B. G., back-geared. T. G., triple-geared.
}

Horse-power consumed in Machine-shops.-How much power is required to drive ordinary machine-tools? and how many men can be employed per horse-power\& arequestions which it is impossible to answer by any fixed rule. The power varies greatly accordiug to the conditions in each shop. The following table given by J. J. Flather in his work un Dynamometers gives an idea of the variation in several large works. The percentage of the total power required to drive the shafting varies from 15 to 80 , and the number of men employed per total H.P. varies from 0.62 to 6.04 .

Horse-power: Friction; Men Employed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Name of Firm.} & \multirow[b]{2}{*}{Kind of Work.} & \multicolumn{4}{|c|}{Horse-power.} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { No. of Men per Effec- } \\
& \text { tive H.P. }
\end{aligned}
\]} \\
\hline & & \[
\begin{aligned}
& \text { స్ల } \\
& 0 \\
& 0
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { Per cent to drive } \\
& \text { Shafting. }
\end{aligned}
\] & & & \\
\hline Lane \& Bodley & E. \& W. W. & 58 & & & & 132 & 2.27 & \\
\hline J. A. Fay \& Co & W. W. & 100 & & 85 & 15 & 300 & 3.00 & 3.53 \\
\hline Tinion Iron Works & E., M. M. & 400 & & 305 & 23 & 1600 & 4.00 & 5.24 \\
\hline F'rontier Iron \& Brass W'ks & M. E., etc. & 25 & 8 & 17 & 32 & 150 & 6.00 & 8.82 \\
\hline Taylor Mfg. Co & & 95 & & & & 230 & 2.42 & \\
\hline Baldwin Loco. Works.. ... & L. & 2500 & 2000 & 500 & 80 & 4100 & 1.64 & 8.20 \\
\hline W. Sellers \& Co. (one department) & H. M. & 102 & & 61 & 40 & 300 & 2.93 & 4.87 \\
\hline Pond Machine Tool Co.... & M. T. & 180 & & 105 & 41 & 432 & 2.40 & 4.11 \\
\hline Pratt \& Whitney Co. & & 120 & & & & T25 & 6.04 & \\
\hline Brown \& Sharpe Co. & & 230 & & & & 900 & 3.91 & \\
\hline Yale \& Towne Co. & C. \& L. & 135 & 67 & 68 & 49 & \%00 & 5.11 & 10.25 \\
\hline Ferracute Machine C & P. \& D. & 35 & 11 & 24 & 31 & 90 & 2.57 & 3.75 \\
\hline T. B. Wood's Sons. & P. \& S. & 12 & & & & 30 & 2.50 & \\
\hline Bridgeport Forge Co & H. F. & 150 & 75 & 75 & 50 & 130 & . 86 & 1.73 \\
\hline Singer Mfg. Co. & S. M. & 1300 & & & & 3500 & 2.69 & \\
\hline Howe Mfg. Co. & & 350 & & & & 1500 & 4.28 & \\
\hline Worcester Mach. Screw Co & M, S. & 40 & & & & 80 & 2.00 & \\
\hline \begin{tabular}{l}
Hartford \\
Nicholson File Co
\end{tabular} & F. & 400
350 & 100 & 300 & 25 & 250 & 0.62 & 0.83 \\
\hline Nicholson File Co. & & & & & & & 1.14 & \\
\hline Averages & & 346.4 & & & 38.6\% & 818.3 & 2.96 & 5.13 \\
\hline
\end{tabular}

Abbreviations: E., engine; W.W., wood-working machinery; M. M., mining machinery; M. E., marine engines; L., locomotives; H. M., heavy machinery; M. T., machine tools; C. \& L., cranes and locks; P. \& D., presses and dies; P. \& S., pulleys and shafting; H. F., heavy forgings; S. M., sewingmachines; M. S., machine-screws: F., files.
J. T. Henthorn states (Trans. A. S. MI. E., vi. 462) that in print-mills which he examined the friction of the shafting and engine was in 7 cases below \(20 \%\) and in 35 cases between \(20 \%\) and \(30 \%\), in 11 cases from \(30 \%\) to \(35 \%\) and in 2 cases above \(35 \%\), the average being \(25.9 \%\). Mr. Barrus in eight cotton-mills found the range to be between \(18 \%\) and \(25.7 \%\), the average being \(22 \%\). Mr. Flather believes that for shops using heavy machinery the percentage of power required to drive the shafting will average from \(40 \%\) to \(50 \%\) of the total power expended. This presupposes that under the head of shafting are included elevators, fans, and blowers.

\section*{ABRASIVE PROCESSES.}

Abrasive cutting is performed by means of stones, sand, emery, glass, corundum, carborundum, crocus, rouge, chilled globules of iron, and in some cases by soft, friable iron alone. (See paper by John Richards, read before the Technical Society of the Pacific Coast, Am. Mach., Aug. 20, 1891, and Eng. \& M. Jour., July 25 and Aug. 15, 1891.)

The \({ }^{6}\) Cold Saw."-For sawing any section of iron while cold the cold saw is sometimes used. This consists simply of a plain soft steel or iron disk without teeth, about 42 inches diameter and 3/16 inch thick. The velocity of the circumference is about 15,000 feet per minute. One of these saws will saw through an ordinary steel rail cold in about one minute. In this saw the steel or iron is ground off by the friction of the disk, and is not cut as with the teeth of an ordinary saw. It has generally been found more profitaile, however, to saw iron with disks or band-saws fitted with cuttingteeth, which run at moderate speeds, and cut the metal as do the teeth of a milling-cutter.

Reese's Fusing-disk.-Reese's fusing-disk is an application of the cold saw to cutting iron or steel in the form of bars, tubes, cylinders, etc., in which the piece to be cut is made to revolve at a slower rate of speed than the saw. By this means only a small surface of the bar to be cut is presented at a time to the circumference of the saw. The saw is about the same size as the cold saw above described, and is rotated at a velocity of about 25,000 feet per minute. The heat generated by the friction of this saw against the small surface of the bar rotated against it is so great that the particles of iron or steel in the bar are actually fused, and the "sawdust" welds as it falls into a solid mass. This disk will cut either cast iron, wrought iron, or steel. It will cut a bar of steel \(13 / 8\) inch diameter in one minute, including the time of setting it in the machine, the bar being rotated about 200 turns per minute.

Cutting Stone with Wire. - A plan of cutting stone by means of a wire cord has been tried in Europe. While retaining sand as the cutting agent, M. Paulin Gay, of Marseilles, has succeeded in applying it by mechanical means, and as continuously as formerly the sand-blast and band-saw, with both of which appliances his system-that of the "helicoidal wire cord "-has considerable analogy. An engine puts in motion a continuous wire cord (varying from five to seven thirty-seconds of an inch in diameter, according to the work), composed of three mild-steel wires twisted at a certain pitch, that is found to give the best results in practice, at a speed of from 15 to \(1 \%\) feet per second.

The Sand-blast.-In the sand-blast, invented by B. F. Tilghman, of Philadelphia, and first exhibited at the American Institute Fair, New York, in 1871, common sand, powdered quartz, emery, or any sharp cutting material is blowu by a jet of air or steam on glass, metal, or other comparatively brittle substance, by which means the latter is cut, drilled, or engraved. To protect those portions of the surface which it is desired shall not be abraded it is only necessary to cover them with a soft or tough material, such as lead, rubber, leather, paper, wax, or rubber-paint. (See description in App. Cyc. Mech; ; also U. S. report of Vienna Exhibition, 1873, vol. iii. 316.)

A "jet of sand "impelled by steam of moderate pressure, or even by the blast of an ordinary fan, depolishes glass in a few seconds; wood is cut quite rapidly; and metals are given the so-called "frosted" surface with great rapidity. With a jet issuing from under 300 pounds pressure, a hole was cut through a piece of corundrum \(11 / 2\) inches thick in 25 minutes.

The sand-blast has been applied to the cleaning of metal castings and sheet metal, the graining of zinc plates for lithographic purposes, the frosting of silverware, the cutting of figures on stone and glass, and the cutting of devices on monuments or tombstones, the recutting of files, etc. The time required to sharpen a worn-out 14 -inch bastard file is about four minutes. About one pint of sand, passed through a No. 120 sieve, and four horse-power of \(60-1 \mathrm{lb}\). steam are required for the operation. For cleaning castings compressed air at from 8 to 10 pounds pressure per square inch is employed. Chilled-iron globules instead of quartz or flint-sand are used with good results, both as to speed of working and cost of material, when the operation can be carried on under proper conditions. With the expenditure of 2 horse-power in compressing air, 2 square feet of ordinary scale on the surface of steel and iron plates can be removed per minute. The surface thus prepared is ready for tinning, galvanizing, plating, bronzing, painting, etc. By continuing the operation the hard skin on the surface of castings, which is so destructive to the cutting edges of milling and other tools, can be removed. Small castings are placed in a sort of slowly rotating barrel, open at one or both ends, through which the blast is directed downward against them as they tumble over and over. No portion of the surface escapes the action of the sand. Plain cored work, such as valve-bodies, can be cleaned perfectly both inside and out. 100 lbs . of castngs can be cleaned in from 10 to 15 minutes with a blast created by 2 hoṛse-
power. The same weight of small forgings and stampings can be scaled in from 20 to 30 minutes.-Iron Age, March 8, 1894.

\section*{EMERY-WHEELS AND GRINDSTONES.}

The Selection of Emery-wheels. - A pamphlet entitled "Emery. wheels, their Selection and Use," published by the Brown \& Sharpe lifg. Co., after calling attention to the fact that too much should not be expected of one wheel, and commenting upon the importance of selecting the proper wheel for the work to be done, says :

Wheels are numbered from coarse to fine; that is, a wheel made of No. 60 emery is coarser than one made of No. 100. Within certain limits, and other things being equal, a coarse wheel is less liable to change the temperature of the work and less liable to glaze than a fine wheel. As a rule, the harder the stock the coarser the wheel required to produce a given finish. For exanple, coarser wheels are required to produce a given surface upon hardened steel than upon soft steel, while finer wheels are required to produce this surface upon brass or copper than upon either hardened or soft steel.

Wheels are graded from soft to hard, and the grade is denoted by the letters of the alphabet, A denoting the softest grade. A wheel is soft or hard chiefly on account of the amount and character of the material combined in its manufacture with emery or corundum. But other characteristics being equal, a wheel that is composed of fine emery is more compact and harder than one made of coarser emery. For instance, a wheel of No. 100 emery, grade B, will be harder than one of No. 60 emery, same grade.
The softness of a wheel is generally its most important characteristic. A soft wheel is less apt to cause a change of temperature in the work, or to become glazed, than a harder one. It is best for grinding hardened steel. cast-iron, brass, copper, and rubber, while a harder or more compact wheel is better for grinding soft steel and wrought iron. As a rule, other things being equal, the harder the stock the softer the wheel required to produce a given finish.

Generally speaking, a wheel should be softer as the surface in contact with the work is increased. For example, a wheel \(1 / 16\)-inch face should be harder than one \(1 / 2\)-inch face. If a wheel is hard and heats or chatters, it can often be made somewhat more effective by turning off a part of its cutting surface; but it should be clearly understood that while this will sometimes prevent a hard wheel from heating or chattering the work, such a wheel will not prove as economical as one of the full width and proper grade, for it should be borne in mind that the grade should always bear the proper relation to the width. (See the pamphlet referred to for other information. See also lecture by T. Dunkin Paret. Pres't of The Tanite Co., on Emery-wheels. Jour. Frank. Inst., March, 1890.)
Speed of Emery-wheels.--The following speeds are recommended by different makers:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Revolutions per minute.} & \multirow[t]{2}{*}{} & \multicolumn{4}{|r|}{Revolutions per minute.} \\
\hline & & & & \[
\begin{aligned}
& \text { no } \\
& 0 \\
& \breve{0}_{0}^{2} \\
& \text { in }
\end{aligned}
\] & & & & & \\
\hline 1 & 19,000 & & & & 10 & 1,950 & 2,160 & 2,200 & 2,200 \\
\hline 112 & 12,500 & 14,400 & & 12,000 & 12 & 1,600 & 1,800 & 1,800 & 1,850 \\
\hline 2 & 9.500 & 10,800 & & 10,000 & 14 & 1,400 & 1,5\%0 & 1,600 & 1,600 \\
\hline 21/2 & 7.600 & 8,640 & & 8,500 & 16 & 1,200 & 1,350 & 1,400 & 1,400 \\
\hline 212 & 6,400 & 7,200 & \%,400 & 7,400 & 18 & 1,050 & 1,222 & 1,250 & 1.250 \\
\hline 4 & 4,800 & 5,400 & 5,400 & 5,450 & 20 & 950 & 1,080 & 1,100 & 1,100 \\
\hline 5 & 3,800 & 4,3:0 & 4,400 & 4,400 & 22 & \(8 \% 5\) & 1,000 & 1,000 & 1,000 \\
\hline 6 & 3,200 & 3,600 & 3,600 & 3,600 & 24 & 800 & 917 & 925 & 9.5 \\
\hline T & 2,600 & 3,080 & 3,200 & 3,150 & 26 & 750 & & 600 & 825 \\
\hline 8 & 2.400 & 2,700 & 2,700 & 2.750 & 30 & 675 & 733 & 500 & 735 \\
\hline 9 & 2,150 & 2,400 & 2,400 & 2,450 & 36 & 550 & 611 & 400 & 550 \\
\hline
\end{tabular}

\footnotetext{
"We advise the regular speed of 5500 feet per minute." (Detroit Emerywheel Co.)
"Experience has demonstrated that there is no advantage in running
}
solid emery-wheels at a higher rate than 5500 feet per minute peripheral speed." (Springfield E. W. Mfg. Co.)
"Although there is no exactly defined limit at which a wheel must be run to render it effective, experience has demonstrated that, taking into account safety, durability, and liability to heat, 5500 feet per minute at the periphery gives the best results. All first-class wheels have the number of revolutions necessary to give this rate marked on their labels, and a column of figures in the price-list gives a corresponding rate. Above this speed all wheels are unsafe. If run much below it they wear away rapidly in proportion to what they accomplish." (Northampton E. W. Co.)

Grades of Emery. - The numbers representing the grades of emery run from 8 to 120 , and the degree of smoothness of surface they leave may be compared to that left by files as follows:

\section*{Speed of Polishing-wheels.}

Wood covered with leather, about.................. ... ro00 ft. per minute
" " " a hair brush, about................. 2500 revs. for largest Walrus-hide \(11 / 2^{\prime \prime}\) to \(8^{\prime \prime}\) diam., hair 1 " to \(11 / 4\) " long, ab. 4500 " "smallest Rag-wheels, 4 to 8 in diameter about.......... 8000 " "

Safe Speeds for Grindstones and Emery-wheels.-G. D. Hiscox (Iron Age, April \%, 189\%), by an application of the formula for centrifugal force in fly-wheels (see Fly-wheels), obtains the figures for strains in grindstones and emery-wheels which are given in the tables below. His formulæ are:
Stress per sq. in. of section of a grindstone \(=(.7071 D \times N)^{2} \times .0000795\)
\(D=\) diameter in feet, \(N=\) revolutions per minute
He takes the weight of sandstone at \(.0 \hat{\mathrm{r}} 8 \mathrm{lb}\). per cubic inch, and that of an emery-wheel at 0.1 lb . per cubic inch; Ohio stone weighs about .081 lb . and Huron stone about .089 lb . per cubic inch. The Ohio stone will bear a speed at the periphery of 2500 to 3000 ft . per min., which latter should never be exceeded. The Huron stone can be trusted up to 4000 ft ., when properly clamped between flanges and not excessively wedged in setting. Apart from the speed of grindstones as a cause of bursting, probably the majority of accidents have really been caused by wedging them on the shaft and ovel: wedging to true them. The holes being square, the excessive driving of wedges to true the stones starts cracks in the corners that eventually run out until the centrifugal strain becomes greater than the tenacity of the remaining solid stone. Hence the necessity of great caution in the use of wedges, as well as the holding of large quick-running stones between large flanges and leather washers.

Strains in Grindstones.
Limit of Velocity and Approximate Actual Strain per Square Inch of Sectional area for Grindstones of Medium Tensile Strengith.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Diameter.} & \multicolumn{7}{|c|}{Revolutions per minute.} \\
\hline & 100 & 150 & 200 & 250 & 300 & 350 & 400 \\
\hline \multirow[t]{9}{*}{feet.
2
\(21 / 2\)
3
\(31 / 2\)
4
\(41 / 2\)
5
6
7} & lbs. & 1 bs . & lbs. & lbs. & lbs. & lbs. & lbs. \\
\hline & 1.58
2.47 & 3.57 & 6.35
9.88 & 9.93
15.49 & 14.30
22.29 & 18.36
28.64 & 25.42
39.75 \\
\hline & 3.57 & 8.04 & 14.28 & 22.34 & 32.16 & 28.64 & \\
\hline & 4.86 & 10.93 & 19.44 & 30.38 & & & \\
\hline & 6.35 & 14.30 & 27.37 & & & & \\
\hline & 8.04 & 18.08 & 32.16 & & & & \\
\hline & 9.93 & 22.34 & & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Approximate breaking strain ter times the strain for size opposit the bottom figure in each column.}} \\
\hline & 14.30
19.44 & 32.17 & & & & & \\
\hline & 19.44 & & & & & & \\
\hline
\end{tabular}

The figures at the bottom of columns designate the limit of velocity (in revolutions per minute), at the head of the columns for stones of the diameter in the first column opposite the designating figure.
A general rule of safety for any size grindstone that has a compact and strong grain is to limit the peripheral velocity to 47 feet per second.

There is a large variation in the listed speeds of emery-wheels by different makers- 4000 as a minimum and 5600 maximum feet per minute, while others claim a maximum speed of 10,000 feet per minute as the safe speed of their best emery-wheels. Rim wheels and iron centre wheels are specialties that require the maker's guarantee and assignment of speed.

\section*{Strains in Emery-wheels.}

Actual Strain per Square Inch of Section in Emery-wheels at the Velocities at head of Columas for Sizes in First Column.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Revolutions per minute.} \\
\hline \(\stackrel{\square}{\square}\) & 600 & 800 & 1000 & 1200 & 1400 & 1600 & 1800 & 2000 & 2200 & 2400 & 2600 \\
\hline 4 & & & & & & & & 22.67 & 27.43 & 32.64 & 38.31 \\
\hline 5 & & & & & & & & 51.13 & 61.86 & 73.62 & 86.40 \\
\hline 8 & & & 22.67 & 32.65 & 44.45 & 58.05 & \(73.4 \sim\) & 90.71 & 109.76 & 130.62 & 153.30 \\
\hline 10 & & & 35.47 & 51.08 & 69.51 & 90.81 & 114.94 & 141.90 & 171.71 & & \\
\hline 12 & 18.40 & 32.72 & 51.12 & 73.62 & 100.21 & 130.88 & 165.65 & & & & \\
\hline 14 & 24.80 & 43.90 & 68.70 & 99.21 & 134.65 & 175.60 & & & & & \\
\hline 16 & 32.57 & 57.65 & 90.24 & 130.31 & 177.80 & & & & Diam & Revs & per \\
\hline 18 & 41.41 & 73.62 & 115.03 & 165.65 & & & & & & & \\
\hline 20 & 50.98 & 90.23
109.41 & 141.22
171.23 & & & & & & in. & & 3000 \\
\hline 23 & \({ }_{73} 61.81\) & 109.41
130.88 & 171.23 & & & & & & in. & 2800 & \\
\hline 26 & 86.36 & 152.85 & & & & & & & 4 & 44.43 & 51.12 \\
\hline 30 & 115.04 & & & & & & & & 6 & 100.21 & 115.03 \\
\hline 36 & 165.64 & & & & & & & & 8 & 177.80 & \\
\hline
\end{tabular}

Joshua Rose (Modern Machine-shop Practice) says: The average speed of glindstones in workshops may be given as follows:

Circumferential Speed of Stone.
For grinding machinists' tools, about 900 feet per minute.
The speeds of stones for file-grinding, and other similar rapid grinding is thus given in the "Grinders' List."
 \(\begin{array}{llllllllllll}\text { Revs. per min. } & 135 & 144 & 154 & 166 & 180 & 196 & 216 & 240 & 2 \pi & 308 & 360\end{array}\)
The following table, from the Mechanical World, is for the diameter of stones and the number of revolutions they should run per minute (not to be exceeded), with the diameter of change of shift-pulleys required, varying each shift or change \(21 / 2\) inches, \(21 / 4\) inches, or 2 inches in diameter for each reduction of 6 inches in the diameter of the stone.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Diameter of Stone.} & \multirow[b]{2}{*}{Revolutions per minute.} & \multicolumn{3}{|c|}{Shift of Pulleys, in inches.} \\
\hline & & 21/2 & 214 & 2 \\
\hline ft. in. & 135 & 40 & 36 & 32 \\
\hline -76 & 144 & \(3.11 / 2\) & 333/4 & 30 \\
\hline 70 & 154 & 35 & \(311 / 2\) & 28 \\
\hline 66 & 166 & \(3 \times 1 / 2\) & \(291 / 4\) & 26 \\
\hline 60 & 180 & \(30^{2}\) & \(22^{2}\) & 24 \\
\hline 56 & 196 & \(211 / 2\) & 243/4 & 22 \\
\hline 50 & 216 & 25 & 2:36 & 20 \\
\hline 46 & 240 & 221\% & \(201 / 4\) & 18 \\
\hline 40 & 270 & 20 & 18 & 16 \\
\hline 36 & 308 & \(171 / 2\) & 153/4 & 14 \\
\hline 30 & 360 & 15 & 131/2 & 12 \\
\hline 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

Columns 3, 4, and 5 are given to show that if we start an 8 -foot stone with say, a countershaft pulley driving a 40 -inch pulley on the grindstone spindle, and the stone makes the right number (135) of revolutions per minute, the reduction in the diameter of the pulley on the grinding-stone spindie, when the stone has been reduced 6 inches in diameter, will require to be also reduced \(\$ 1 / 2\) inches in diameter, or to shift from 40 inches to \(3 \pi 1 / 2\) inches, and so on similarly for columns 4 and 5 . Any other suitable dimensions of pulley may be used for the stone when eight feet in diameter, but the number of inches in each shift named, in order to be correct, will have to be proportional to the numbers of revolutions the stone should run, as given in column 2 of the table.

Varieties of Grindstones.
(Joshua Rose.)
For Grinding Machinists' Tools.
\begin{tabular}{|c|c|c|c|}
\hline Name of Stone. & Kind of Grit. & Texture of Stone. & Color of Stone. \\
\hline Nova Scotia, & All kinds, from finest to coarsest & All kinds, from hardest to softest & Blue or yellowish gray \\
\hline Bay Chaleur (New Brunswick), & Medium to finest & Soft and sharp & Uviformly light blue \\
\hline Liverpool or Melling. & Medium to fine & Soft, with sharp grit & Reddish! \\
\hline
\end{tabular}

For Wood-working Tools.
\begin{tabular}{|c|c|c|c|}
\hline Wickersiey & Medium to fine & Very soft & Grayish yellow \\
\hline Liverpool or Melling. & Medium to fine \(\{\) & Soft. with sharp grit & Redaish \\
\hline Bay Chaleur (New Brunswick), & Medium to finest & Soft and sharp & Uniform light blue \\
\hline Huron, Michigan ... & Fine & Soft and sharp & Uniform light blue \\
\hline
\end{tabular}

For Grinding Broad Surfaces, as Saws or Iron Plates.
\begin{tabular}{|c|c|c|c|}
\hline Newc & Coarse to med'm & The hard ones & Yellow \\
\hline Independence. & Coarse & Hard to medium & Grasish \\
\hline Massillon & Coarse & Hard to medium & Yellowish white \\
\hline
\end{tabular}

\section*{TAP DRELLS.}

Taps for Machine-screws. (The Pratt \& Whitney Co.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Approx. Diameter, fractions of an inch & Wire Gauge. & No. of Threads to inch. & Approx. Diameter, fractions of an inch. & Wire Gauge. & No. of Threads to inch. \\
\hline & No. 1 & 60,72 & & No. 13 & 20, 24 \\
\hline & & 48, 56, 64 & \(1 / 4\) & & 16. \(18,20,22,24\) \\
\hline & & 40, 48, 56 & & 15 & 18, 20, 24,20 \\
\hline 7/64 & 4 & 32, 36, 40 & 1\%/64 & 16 & 16, 18, 20, 22 \\
\hline & 5 & 30, 32, 36, 40 & 9/32 & 18 & 16, 18, 20 \\
\hline 9/64 & \({ }_{7}\) & \(30,3 \cdot 2,36,40\) & & 19 & 16, 18, 20 \\
\hline & 8 & 24, 30, 3き & 5/16 & 20 & 16, 18, 20 \\
\hline 5/32 & 8 & \(24,30,32,36,40\)
\(24,28,30,32\) & 3/8 & 22 & 16,18
\(14,16,18\) \\
\hline 3/16 & 10 & 20, 22, 24, 30, 32 & & 26 & 16 \\
\hline & 11 & 22, 24 & & 28 & 16 \\
\hline 7/32 & 12 & 20. 22, 24 & & 30 & 16 \\
\hline
\end{tabular}

The Morse Twist Drill and Machine Co. gives the following table showing the different sizes of drills that should be used when a suitable thread is 20 be tapped in a hole. The sizes given are practically correct.
Tap Drills.
(The Morse Twist Drill and Machine Co.) \(]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diam. of Tap. & \multicolumn{3}{|l|}{No. Threads to inch.} & \multicolumn{3}{|l|}{Drill for V Thread.} & \multicolumn{3}{|l|}{Drill for U.S. S. Thread.} & Diam. of Tap. & \multicolumn{2}{|l|}{No. Threads to inch.} & \multicolumn{2}{|l|}{Drill for V Thread.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Drill for \\
U. S. S. Thread.
\end{tabular}} \\
\hline 1/4 & 16 & 18 & 20 & 5/32 & 11/64 & 15 & & ... & 3/16 & 118 & & 8 & \(59 / 64\)
\(61 / 64\) & 61/64 & 61/64 & \\
\hline 9/32 & 16 & 18 & 20 & 3/16 & 13/64 & 3 & . & & & \(15 / 32\)
\(13 / 16\) & & 8 & 61/64 \(63 / 64\) & 163/64 & & \\
\hline 5/16 & 16 & 18 & & \(7 / 32\) & 15/64 & & & C & & \(13 / 16\)
\(17 / 32\) & 7 & 8 & 11/64 & \(13 / 64\) & & \\
\hline 11/32 & 16 & 18 & 18 & \({ }^{1 / 4} 4\) & \(17 / 64\)
\(9 / 32\) & \(\mathrm{M}^{\text {- }}\) & & \(\ddot{\mathrm{N}}\) & & \(11 / 4\) & \(\stackrel{\sim}{6}\) & 8 & \(13 / 64\) & & \(15 / 64\) & \\
\hline \(1 / 8\)
\(13 / 32\) & 14 & 16 & 18 & \({ }^{1 / 4}\) & 5/16 & P & & & & \(19 / 32\) & 7 & \(\ldots\) & \(15 / 64\) & & & \\
\hline 7/16 & 14 & 16 & .. & Q & 11/32 & & S & & & \(15 / 16\) & 7 & - & \(17 / 64\) & & & \\
\hline 15/32 & 14 & 16 & & 23/64 & 3/8 & & & & & \(111 / 32\) & 7 & - & \(19 / 64\) & & \(111 / 64\) & \\
\hline chay \(1 / 2\) & 12 & 13 & 14 & 3/8 & W & 25/64 & & 13/32 & ... & \(13 / 8\)
\(1113 / 32\) & 6 & -. & \(11 / 8\)
\(15 / 32\) & & \(111 / 64\) & \\
\hline \(17 / 32\)
\(9 / 16\)
\(10 / 38\) & 12 & 13 & 14 & 13/32 & 27/64 & 8/16 & & & & \({ }_{1}^{1} 7 / 16\) & 6 & -. & \(13 / 16\) & & & \\
\hline \(9 / 16\)
\(19 / 32\) & 12 & 14 & .. & 7/16 & 29/64 & & 29/64 & & & \(115 / 32\) & 6 & \(\because\) & \(17 / 32\) & & & \\
\hline & 10 & 11 & 12 & 31/64 & 1/2 & 33/64 & & 33/64 & & \(11 / 2\) & 6 & . & 117/64 & & \(119 / 64\) & \\
\hline 21/32 & 10 & 11 & 12 & 33/64 & 17/32 & 35/64 & & & & \(11 \% / 32\) & 6 & - & \(119 / 64\) & & & \\
\hline 11/16 & 11 & 12 & .. & 9/16 & 37/64 & & & & & 19/16 & 6 & . & \(121 / 64\) & & & \\
\hline 23/32 & 11 & 12 & & 19/32 & 39/64 & & & & & \(119 / 32\) & 6 & & 1 \(121 / 64\) & \(123 / 64\) & & 1 \\
\hline \(3 / 4\) & 10 & 11 & 12 & 39/64 & 5/8 & 41/64 & 9/8 & & & \(1 \begin{aligned} & 15 / 8 \\ & 1 \\ & 101 / 32\end{aligned}\) & 5 & \(51 \%\) & \(123 / 64\) & \(125 / 64\) & & \\
\hline 25/32 & 10 & 11 & & 41/64 & 21/32 & 43/64 & & & & 1 111/16 & 5 & \(51 / 2\) & \(125 / 64\) & \(127 / 64\) & & \\
\hline 13/16 & 10 & & & 43/64 & & & & & & & 5 & 5\% & \(127 / 64\) & \(129 / 64\) & & \\
\hline 27/32 & 10 & 10 & & 45/64 & & & 47/64 & & & \(13 / 4\) & 5 & 5/3 & \(1 \stackrel{1}{12 / 64}\) & & \(11 / 2\) & \\
\hline 29/32 & 9 & 10 & & \(3 / 4\) & 49/64 & & , & & & \(125 / 32\) & 5 & & \(131 / 64\) & & & \\
\hline 15/16 & 9 & & & 25/32 & & & & & ... & \(113 / 16\) & 5 & \(\cdots\) & \(133 / 64\) & & & \\
\hline 31/32 & 8 & . & . & 13/16 & ... & & & & & \(1 \% / 8\) & \({ }_{41}\) & 5 & \(135 / 64\) & 1 3 37/64 & & 1\%\% \\
\hline 1 & 8 & . & & 53/64 & & & \(21 / 32\) & & & 138
\(129 / 32\) & \(41 /\) & 5 & \(137 / 64\) & \(139 / 64\) & & \\
\hline \(\begin{array}{ll}1 & 1 / 39 \\ 1 & 1 / 16\end{array}\) & 8 & .. & & 55/64 & & & & , & & \(115 / 16\) & 41 & 5 & \(139 / 64\) & 141/64 & & \\
\hline & 8 & \(\cdots\) & & 59/64 & & & & & & \(131 / 32\) & 41. & 5 & \(141 / 64\) & \(143 / 64\) & & \\
\hline \(13 / 32\) & & . & & 59/64 & & & & & & \(2^{3}\) & \(41 / 2\) & - & \(143 / 64\) & & \(123 / 32\) & \\
\hline
\end{tabular}

\section*{TAPER BOLTS, PINS, REAMERS, ETC.}

Taper Bolts for Locomotives.-Bolt-threads, U. S. standard, except stay-bolts and boiler-studs, \(V\) theads, 12 per inch; valves, cocks, and plugs, \(V\) threads, 14 per inch, and \(1 / 8\)-inch taper per 1 inch. Standard bolt taper \(1 / 16\) inh per foot.

Taper Reamers.-The Pratt \& Whitney Co. makes standard taper reamers for homotive work taper \(1 / 16\) inch per foot from \(1 / 4\) inch diam.: 4 in . leugth of flute to \(\%\) in. diam.; 18 in. length of flute, diameters advancing b. \(\overline{16 t h s}\) and \(3 \because d s\). P. \& W. Co.'s standard taper pin reamers taper \(1 / 4 \mathrm{in}\). per foot, are made in 14 sizes of diameters, 0.135 to 1.009 in .; length of flute \(15 / 16 \mathrm{in}\). to 12 in .
Dimensions of The Pratt \& Whitney Company's Reamers for Morse Standard-taper Socket.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Diameter Small End, inches. & Diameter Large End, inches. & Gauge Diam.,la'ge end, inches & Gauge L'ngth, inches. & Length Flute, inches. & \begin{tabular}{l}
Total \\
L'ngth.
\end{tabular} & Taper per foot inches. \\
\hline 1 & 0.365 & 0.525 & 0.481 & 21/8 & 3 & 51/4 & 0.605 \\
\hline 2 & 0.573 & 0.749 & 0.699 & \(21 / 8\) & \(31 / 2\) & 614 & 0.600 \\
\hline 3 & 0.779 & 0.982 & 0.950 & \(35 / 16\) & 4 & \(71 / 2\) & 0.605 \\
\hline 4 & 1.026 & 1.283 & 1.232 & , & 5 & \(83 \%\) & 0.615 \\
\hline 5 & 1.486 & 1.796 & 1.746 & 5 & 6 & 10 & 0.625 \\
\hline 6 & 2.117 & 2.566 & 2.500 & \(71 / 4\) & 81/2 & 121/2 & 0.634 \\
\hline
\end{tabular}

Standard Steel Taper-pins.-The following sizes are made by The Pratt \& Whitney Co.:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{0}{\text { Number: }}
\] & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Diameter . 156 & large . 172 & d: .193 & . 219 & . 250 & . 289 & . 341 & . 409 & . 492 & . 591 & 706 \\
\hline Approxim & 11,64 & 3/16 & \({ }^{1}\) size & 1/4 & 19/64 & 11/32 & 13/32 & 1/2 & 19/32 & 23/32 \\
\hline Lengths f
To* \({ }^{3} 1\)
1 & om
\(3 / 4\)
\(11 / 4\) & 3/4/4 & 3/4 \(13 / 4\) & 3/4 & \[
214
\] & 31/4 & \[
33 / 4
\] & \[
\begin{aligned}
& 11 / 4 \\
& 41 / 2
\end{aligned}
\] & \[
\begin{aligned}
& 11 / 2 \\
& 51 / 4
\end{aligned}
\] & \(11 / 2\) \\
\hline Diameter & \[
\begin{array}{r}
\text { small } \\
.146
\end{array}
\] & \[
\begin{array}{r}
\text { nd of } \\
.162
\end{array}
\] & stand & . 208 & \[
\begin{aligned}
& \text { oer-pi1 } \\
& .240
\end{aligned}
\] & \[
\begin{aligned}
& \text { reame } \\
& .2 \tilde{2} 9
\end{aligned}
\] & \[
\begin{aligned}
& r: \dagger \\
& .331
\end{aligned}
\] & 398 & 48 & \\
\hline
\end{tabular}

Standard Steel Mandrels. (The Pratt \& Whitney Co.)-These mandrels are made of cool-steel, hardened, and ground true on their centres. Centres are also ground to true \(60^{\circ}\) cones. The ends are of a form best adapted to resist injury likely to be caused by driving. They are slightly taper. Sizes, \(1 / 4 \mathrm{in}\). diameter by \(37 / 8 \mathrm{in}\). long to 3 in . diam. by \(145 / 8 \mathrm{in}\). long, diameters advancing by 16 ths.

\section*{PUNCHES AND DIES, PRESSES, HTC.}

Clearance between Punch and Die.-For computing the amount of clearance that a die should have, or, in other words, the difference in size between die and punch, the general rule is to make the diameter of die-hole equal to the diameter of the punch, plus \(2 / 10\) the thickness of the plate. Or, \(D=d+.2 t\), in which \(D=\) diameter of die-hole, \(d=\) diameter of punch, and \(t=\) thickness of plate. For very thick plates some mechanics prefer to make the die-hole a little smaller than called for by the above rule. For ordinary boiler-work the die is made from \(1 / 10\) to \(3 / 10\) of the thickness of the plate larger than the diameter of the punch; and some boiler-makers advocate making the punch fit the die accurately. For punching nuts, the punch fits in the die. (Am. Machinist.)

Kennedy's Spiral Punch. (The Pratt \& Whitney Co.)-B. Martell, Chief Surveyor of Lloyd's Register, reported tests of Kennedy's spiral punches in which a \(7 / 8\)-inch spiral punch penetrated a \(5 / 8\)-inch plate at a pressure of 22 to 25 tons, while a flat punch required 33 to 35 tons. Steel boilerplates punched with a flat punch gave an average tensile strength of \(58,5 \% 9\)

\footnotetext{
* Taken \(1.2^{\prime \prime}\) from extreme end, each size overlaps smaller one about \(1 / 2^{\prime \prime}\). Taper \(1 / 4^{\prime \prime}\) to the foot. t Lengths vary by \(1 / 4^{\prime \prime}\) each size.
}
lbs. per square inch, and an elongation in two inches across the hole of \(5.2 \%\), while plates punched with a spiral punch gave \(63,929 \mathrm{lbs}\)., and \(10.6 \%\) elongation.

The spiral shear form is not recommended for punches for use in metal of a thickness greater than the diameter of the punch. This form is of greatest beneft when the thickuess of metal worked is less than two thirds the diameter of punch.

Size of Blanks used in the Drawing-press. Oberlin Smith (Jour. Frank. Inst., Nov. 1886) gives three methods of finding the size of blanks. The first is a tentative method, and consists simply in a series of experiments with various blanks, until the proper one is found. This is for use mainly in complicated cases, and when the cutting portions of the die and punch can be finally sized after the other work is done. The second method is by weighing the sample piece, and then, knowing the weight of the sheet metal per square inch, computing the diameter of a piece having the required area to equal the sample in weight. The third method is by computation, and the formula is \(x=\sqrt{d^{2}+4 d h}\) for sharp-cornered cup, where \(x=\) diameter of blank, \(d=\) diameter of cup, \(h=\) height of cup. For round-cornered cup where the corner is small, say radius of corner less than \(1 / 4\) height of cup, the formula is \(x=\left(\sqrt{d^{2}+4 d h}\right)-r\), about; \(r\) being the radius of the corner. This is based upon the assumption that the thickness of the metal is not to be altered by the drawing operation.

Pressure attainable by the Use of the Drop-press. (R.H. Thurston, 'I'rans. A.S. M. E., v. 53. .)-A set of copper cylinders was prepared, of pure Lake Superior copper'; they were subjected to the action of presses of different weights and of different heights of fall. Companion specimens of copper were compressed to exactly the same amount, and measures were obtained of the loads producing compression, and of the amount of work done in producing the compression by the drop. Comparing one with the other it was found that the work done with the hammer was \(90 \%\) of the work which should have been done with perfect efficiency. That is to say, \(90 \%\) of the work done in the testing-machine was equal to that due the weight of the drop falling the given distance.
Formula: Mean pressure in pounds \(=\frac{\text { Weight of drop } \times \text { fall } \times \text { efficiency }}{\text { compression. }}\).
For pressures per square inch, divide by the mean area opposed to crushing action during the operation.

Flow of Metals. (David Townsend, Jour. Frank. Inst., March, 18i8.) --In punching holes \(\uparrow / 16\) inch diameter through iron blocks \(13 / 4\) inches thick, it was found that the core punched out was only \(11 / 16\) inch thick, and its volume was only about \(32 \%\) of the volume of the hole. Therefore, \(68 \%\) of the metal displaced by punching the hole flowed into the block itself, increasing its dimensions.

\section*{FORCING AND SHRINKING FITS.}

Forcing Fits of Pins and Axles by Hydraulic Pressure. -A 4 -inch axle is turned .015 inch diameter larger than the hole into which it is to be fitted. They are pressed on by a pressure of 30 to 35 tons. (Lecture by Coleman Sellers, 18\%..)

For forcing the crank-pin into a locomotive driving. wheel, when the pinhole is perfectly true and smooth, the pin should be pressed in with a pressure of 6 tons for every inch of diameter of the wheel fit. When the hole is not perfectly true, which may•be the result of shrinking the tire on the wheel centre after the hole for the crank-pin has been bored, or if the hole is not perfectly smooth, the pressure may have to be increased to 9 tons for every inch of diameter of the wheel-fit. (Am. Machinist.)

Shrinkage Fits.-In 1886 the American Railway Master Mechanics' Association recommended the following shrinkage allowances for tires of standard locomotives. The tires are uniformly heated by gas-flames, slipped over the cast-iron centres, and allowed to cool. The centres are turned to the standard sizes given below, and the tires are bored smaller by the amount of the shrinkage designated for each:
\begin{tabular}{lrrrrrr}
Diameter of centre, in.... & 38 & 44 & 50 & 56 & 62 & 66 \\
Shrinkage allowance, in.. & .040 & .047 & .053 & .060 & .066 & .040
\end{tabular}

This shrinkage allowance is approximately \(1 / 80\) inch per foot, or \(1 / 960\). A common allowance is \(1 / 1000\). Taking the modulus of elasticity of steel at
\(30,000,000\), the strain caused by shrinkage would be \(30,000 \mathrm{lbs}\). per square inch, which is well within the elastic limit of machinery steel.

\section*{SCREWS, SCREW-THREADS, ETC.*}

Efficiency of a Ncrew.-Let \(\alpha=\) angle of the thread, that is, the angle whose langent is the pitch of the screw divided by the circumference of a circle whose diameter is the mean of the diameters at the top and bottom of the thread. Then for a square thread
\[
\text { Efficiency }=\frac{1-f \tan \alpha}{1+f \operatorname{cotan} \alpha}
\]
in which \(f\) is tise coefficient of friction. (For demonstration, see Cotterill and Slade, A pplied Mechanics, p. 146.) Since \(\operatorname{cotan}=1 \div \tan\), we may substitute for cotan \(\alpha\) the reciprocal of the tangent, or if \(p=\) pitch, and \(c=\) mean circumference of the screw,
\[
\text { Efficiency }=\frac{1-f \frac{p}{c}}{1+f \frac{c}{p}}
\]

Example.-Efficiency of square-threaded screws of \(1 / 2 \mathrm{in}\). pitch.
\begin{tabular}{|c|c|c|c|}
\hline Diameter at bottom of thread, in & 2 & 3 & 4 \\
\hline " " top "، "، "*... 11/2 & 21/2 & \(31 / 2\) & 41/2 \\
\hline Mean circumference " 6 ".... 3.927 & 7.069 & 10.21 & 13.35 \\
\hline Cotangent \(a=c \div p \ldots \ldots \ldots \ldots .\). & 14.14 & 20.42 & 26.10 \\
\hline Tangent \(\alpha=p \div c . . .\). \(=.1273\) & . 0661 & . 0490 & .0\%75 \\
\hline Efficiency if \(f=.10 \ldots \ldots\). & 41.2\% & 32.7\% & R7.2\% \\
\hline & 81.7\% & 24.4\% & 19.9\% \\
\hline
\end{tabular}

The efficiency thus increases with the steepness of the pitch.
The above formulæ and examples are for square-threaded screws, and consider the friction of the screw-thread only, and not the friction of the collar or step by which end thrust is resisted, and which further reduces the efficiency. The efficiency is also further reduced by giving an inclination to the side of the thread, as in the V-threaded screw. For discussion of this subject, see paper by Wilfred Lewis, Jour. Frank. Inst. 1880; also Trans. A. S. M. E., vol. xii. 784.

Efficiency of Screw-bolts.-Mr. Lewis gives the following approximate formula for ordinary screw-bolts (V threads, with collars): \(p=\) pitch of screw, \(d=\) outside diameter of screw, \(F=\) force applied at circumference to lift a unit of weight, \(E=\) efficiency of screw. For an average case, in which the coefficient of friction may be assumed at .15 ,
\[
F=\frac{p+d}{3 d}, \quad E=\frac{p}{p+d} .
\]

For bolts of the dimensions given above, \(1 / 2-\mathrm{in}\). pitch, and outside diam. eters \(11 / 2,21 / 2,31 / 2\), and \(41 / 2 \mathrm{in}\)., the efficiencies according to this formula would be, respectively, .25, .167,.125, and . 10 .

James McBride (Trans. A. S. M. E.. xii. 781) describes an experiment with an ordinary 2 -in. screw-bolt, with a \(V\) thread, \(41 / 2\) threads per inch, raising a weight of 7500 lbs ., the force being applied by turning the nut. Of the power applied \(89.8 \%\) was absorbed by friction of the nut on its supporting washer and of the threads of the bolt in the nut. The nut was not faced, and had the flat side to the washer.

Prof. Ball in his "Experimental Mechanics" says: "Experiments showe \({ }^{\text {" }}\) in two cases respectively about \(2 / 3\) and \(3 / 4\) of the power was lost."

Trautwine says: "In practice the friction of the screw (which under heavy loads becomes very great) make the theoretical calculations of but little value."

Weishach says: "The efficiency is from \(19 \%\) to \(30 \%\)."
Efficiency of a Differential Screw.-A correspondent of the American Machinist describes an experiment with a differential screw. punch, consisting of an outer screw 2 in . diam.. 3 threads per in., and an inner screw \(13 / 8 \mathrm{in}\). diam., \(31 / 2\) threads per inch. The pitch of the outer screw
buing \(1 / 3 \mathrm{in}\). and that of the inner screw \(2 / 7 \mathrm{in}\), the punch would advance in one revolution \(1 / 3-2 / \%=1 / 21 \mathrm{in}\). Experiments were made to determine the force required to punch an \(11 / 16-\mathrm{in}\). hole in iron \(1 / 4 \mathrm{in}\). thick, the force being applied at the end of a lever arm of \(4 \pi 3 \mathrm{in}\). The leverage would be \(4 \pi 3 / 4 \times \ddot{2} \pi \times 21=66300\). The mean force applied at the end of the lever was 95 lbs., and the force at the punch, if there was no friction, would be \(6300 \times 95=598,500 \mathrm{lbs}\). The force required to punch the iron, assuming a shearing resistance of \(50,000 \mathrm{lbs}\). per sq. in., would be \(50,000 \times 11 / 16 \times \pi \times\) \(1 / 4=2 \pi, 000 \mathrm{lbs}\), and the efficiency of the punch would be \(2 \pi, 000 \div 598,500=\) ouly \(\mathbf{4 . 5 \%}\). With the larger screw only used as a punch the mean force at the end of the lever was only 82 lbs . The leverage in this case was \(473 / 4 \times\) \(2 \pi \times 3=900\), the total force referred to the punch, including friction, \(900 \times\) \(82=73,800\), and the efficiency \(2 \pi, 000 \div 73,800=36 . \tau \%\). The screws were of tool-steel, well fitted, and lubricated with lard-oil and plumbago.

Powell's New Screwnthread.-A. M. Powell (Am. Mach., Jan. 24, 1895) has designed a new screw-thread to replace the square form of thread, giving the advantages of greater ease in making fits, and provision for" take up " in case of wear. The dimensions are the same as those of squarethread screws, with the exception that the sides of the thread, instead of being perpendicular to the axis of the screw, are inclined \(141 / 2^{\circ}\) to such perpendicular; that is, the two sides of a thread are inclined \(29^{\circ}\) to each other. The formulæ for dimensions of the thread are the following: Depth of thread \(=1 / 2 \div\) pitch; width of top of thread \(=\) width of space at bottom \(=\) \(.3 i 07 \div\) pitch; thickness at root of thread \(=\) width of space at top \(=.6293 \div\) pitch. The term pitch is the number of threads to the inch.

\section*{PROPORTIONING PARTS OF MACHINES IN A SERIES OF SIZES.}

\section*{(Stevens Indicator, A pril, 1892.)}

The following method was used by Coleman Sellers while at William Sellers \(\& C o\) 's to get the proportions of the parts of machines, based upon the size obtained in building a large machine and a small one to any series of machines. This formula is used in getting up the proportion-book and arranging the set of proportions from which any machine can be constructed of intermediate size between the largest and smallest of the series.
Rule to Establish Construction Formula.-Take difference between the nominal sizes of the largest and the smallest machines that have been designed of the same construction. Take also the difference between the sizes of similar parts on the largest and smallest machines selected. Divide the latter by the former, and the result obtained will be a "factor," which. multiplied by the nominal capacity of the intermediate machine, and increased or diminished by a constant "increment," will give the size of the part required. To find the "increment :" Multiply the nominal capacity of some known size by the factor obtained, and subtract the result from the size of the part belonging to the machine of nominal capacity selected.

Example.-Suppose the size of a part of a \(72-\mathrm{in}\). machine is 3 in ., and the corresponding part of a \(42-\mathrm{in}\). machine is \(1 \% / 8\), or \(1.8 \% 5 \mathrm{in}\).: then \(\% 2-4:=\) 30 , and \(3 \mathrm{in} .-17 / 8 \mathrm{in} .=11 / 8 \mathrm{in} .=1.125 .1 .125 \div 30=.0375=\) the "factor." and \(.0375 \times 42=1.575\). Then \(1.8 \pi 5-1.5 \% 5=.3=\) the "increment" to be added. Let \(D=\) nominal capacity; then the formula will read: \(x=\) \(D \times .03 i 5+.3\).

Proof: \(42 \times .03 \% 5+.3=1.875\), or \(17 / 8\), the size of one of the selected parts.
Some prefer the formula: \(a D+c=x\), in which \(D=\) nominal capacity in inches or in pounds, \(c\) is a constant increment, \(a\) is the factor, and \(x=\) the part to be found.

\section*{KEYS.}

Sizes of Keys for Mill-gearing. (Trans. A. S. M. E., xiii. 229.)-E. G. Parkhurst's rule : Width of key \(=1 / 8\) diam. of shaft, depth \(=1 / 9\) diam. of shaft; taper \(1 / 8 \mathrm{in}\). to the foot.

Custom in Michigan saw-mills: Keys of square section, side \(=1 / 4\) diam. of shaft. or as nearly as may he in even sixteenths of an inch.
J. T. Hawkins's rule : Width \(=1 / 8\) diam. of hole; depth of side abutment in shaft \(=1 / 8\) diam. of hole.
W. S. Huson's rule : \(1 / 4\)-inch key for 1 to \(11 / 4 \mathrm{in}\). shafts, \(5 / 16\) key for \(11 / 4\) to \(11 / 2 \mathrm{in}\). shafts, \(3 / 8 \mathrm{in}\). key for \(11 / 2\) to \(13 / 4 \mathrm{in}\). shafts, and so on. Taper \(1 / 8 \mathrm{in}\). to the foot. Total thickness at large end of splice, \(4 / 5\) width of key.

Unwin (Elements of Machine Design) gives: Width \(=1 / 4 d+1 / 8 \mathrm{in}\). Thick: ness \(=1 / 8 d+1 / 8\) in., in which \(d=\) diam. of shaft in inches. When wheels or pulleys transmitting only a small amount of power are keyed on large shafts, he says, these dimensions are excessive. In that case, if H.P. = horsepower transmitted by the wheel or pulley, \(N=\) revs. per min, \(P=\) force acting at the circumference, in lbs ., and \(R=\) radius of pulley in inches, take
\[
d=\sqrt[3]{\frac{100 \text { H.P. }}{N}} \text { or } \sqrt[3]{\frac{P R}{630}} .
\]

Prof. Coleman Sellers (Stevens Indicator, April, 1892) gives the following : The size of keys, both for shafting and for machine tools, are the proportions adopted by William Sellers \& Co., and rigidly adhered to during a period of nearly forty years. Their practice in making keys and fitting them is, that the keys shall always bind tight sidewise, but not top and bottom; that is, not necessarily touch either at the bottom of the key-seat in the shaft or touch the top of the slot cut in the gear-wheel that is fastened to the shaft; but in practice keys used in this manner depend upon the fit of the wheel upon the shaft being a forcing fit, or a fit that is so tight as to require screw-pressure to put the wheel in place upon the shaft.

\section*{Size of Keys for Shafting.}

Length of key-seat for coupling \(=11 / 2 \times\) nominal diameter of shaft.

\section*{Size of Keys for Machine Tools.}

John Richards, in an article in Cassier's Magazine, writes as follows: There are two kinds or system of keys, both proper and necessary, but widely different in nature. 1. The common fastening key, usually made in width one fourth of the shaft's diameter, and the depth five eighths to one third the width. These keys are tapered and fit on all sides, or, as it is commonly described, "bear all over." They perform the double function in most cases of driving or transmitting and fastening the keyed-on member against movement eudwise on the shaft. Such keys, when properly made, drive as a strut, diagonally from corner to corner.
2. The other kind or class of keys are not tapered and fit on their sides only, a slight clearance being left on the back to insure against wedge action or radial strain. These keys drive by shearing strain.
For fixed work where there is no sliding movement such keys are commonly made of square section, the sides only being planed, so the depth is more than the width by so much as is cut away in finishing or fitting.

For sliding bearings, as in the case of drilling-machine spindles, the depth should be increased, and in cases where there is heavy strain there should be two keys or feathers instead of one.

The following tables are taken from proportions adopted in practical use.
Flat keys, as in the first table, are employed for fixed work when the parts are to be held not only against torsional strain, but also against movement endwise ; and in case of heavy strain the strut principle being the strongest and most secure against movement when there is strain each way. as in the case of engine cranks and first movers generally. The objections

HOLDING-POWER OF KEYS AND SET-SCREWS. 9 Y
to the system for general use are, straining the work out of truth, the care and expense required in fitting, and destroying the evidence of good or bacl fitting of the keyed joint. When a wheel or other part is fastened with a tapering ley of this kind there is no means of knowing whether the work is well fitted or not. For this reason such keys are not employed by machine-tool-makers, and in the case of accurate work of any kind, indeed, cannot be, because of the wedging strain, and also the difficulty of inspecting completed work.
I. Dimensions of Flat Keys, in Inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diam. of shaft. & 1 & 11/4 & 11/2 & 13/4 & 2 & \(21 / 2\) & 3 & 31/ & 4 & & 5 & & 6 & 7 & 8 \\
\hline Breadth of keys & 1/4 & \(5 / 16\) & 3/8 & \%/16 & 1/2 & 5/8 & \(3 / 4\) & 7/8 & 1 & & 11/8 & & 13/8 & 11/2 & 13/4 \\
\hline Depth of keys. & 5/32 & \(3 / 16\) & \(1 / 4\) & 9/32 & 5/16 & \(3 / 8\) & 7/16 & \(1 / 2\) & 5/8 & & 1/16 & & /16 & \(7 / 8\) & 1 \\
\hline
\end{tabular}
II. Dimensions of Square Keys, in Inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Diam & 1 & 11/4 & \(11 / 2\) & & & & & & \\
\hline Breadth of keys & 5/32 & 7/32 & 9/32 & 11/32 & 13/32 & 15/32 & 17/32 & \(9 /\) & 11/16 \\
\hline Depth of keys. & 3/16 & \(1 / 4\) & 5/16 & \(3 / 8\) & \%/16 & 1/2 & 9/16 & 5/8 & \(3 / 4\) \\
\hline
\end{tabular}
III. Dimensions of Sliding Feather-eeys, in Inches.

Diam. of shaft.
Breadth of keys..
Depth of keys....
\begin{tabular}{|c|c|c|c|}
\(11 / 4\) & \(11 / 2\) & \(13 / 4\) & 2 \\
\(1 /\) & \(1 / 4\) & \(2 / 16\) & \(5 / 16\) \\
\(3 / 8\) & \(3 / 8\) & \(7 / 16\) & \(7 / 16\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\(21 / 4\) & 212 & 3 \\
\(3 / 8\) & \(3 / 8\) & \(1 / 2\) \\
\(1 / 2\) & \(1 / 2\) & \(5 / 8\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l}
\(31 / 2\) & 4 & \(41 / 2\) \\
\(9 / 16\) & \(9 / 16\) & \(5 / 8\) \\
\(3 / 4\) & \(3 / 4\) & \(7 / 8\) \\
\hline
\end{tabular}
P. Pryibil furnishes the following table of dimensions to the Am. Machinist. He says: On special heavy work and very short hubs we put in two keys in one shaft \(90^{\circ}\) apart. With special long hubs, where we cannot use keys with noses, the keys should be thicker than the standard.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Diameter of Shafts, inches.} & Width, inches. & Thickness, in. & Diameter of Shafts, inches. & Width, inches. & Thickness,in. \\
\hline & to \(11 / 16\) & & & \(37 / 16\) to 311 & 7/8 & \\
\hline & to \(15 / 16\) & 5/16 & & \(315 / 16\) to \(43 / 16\) & 1 & 1 \\
\hline 1 \%/16 & to \(111 / 16\) & 3 & & \(47 / 16\) to \(411 / 16\) & 118 & \\
\hline \[
{ }_{2}^{1} 15 / 16
\] & \[
\text { to } 23 / 16
\] & & & \(47 / 8\) to \(53 / 8\) & & 15/ \\
\hline \(215 / 16\) & to 3 3/16 & \(3 / 4\) & 9/16 & \(67 / 8\) to \(73 \% 8\) & 13/4 & 11/8 \\
\hline
\end{tabular}

Keys longer than 10 inches, say 14 to \(16^{\prime \prime}, 1 / 16^{\prime \prime \prime}\) thicker; keys longer than 10 inches, say 18 to \(20^{\prime \prime}, 1 / 8^{\prime \prime}\) thicker; and so on. Special short hubs to have two keys.

For description of the Woodruff system of keying, see circular of the Pratt \& Whitney Co.; also Modern Mechanism, page 455.

\section*{HOLDIN斯-POXER OF KEYS ANH SET-SCREIVS.}

\section*{Tests of the Holding-power of Set-screws in Pulleys.} (G. Lanza, 'Irans. A. S. M. E., x. 230.)-These tests were made by using a pulley fastened to the shaft by two set-screws with the shaft keyed to the holders; then the load required at the rim of the pulley to cause it to slip was determined, and this being multiplied by the number 6.037 (obtained by adding to the radius of the pulley one-half the diannter of the wire rope, and dividing the sum by twice the radius of the shaft, since there were two set-screws in action at a time) gives the holding-power of the set-screws. The set-screws used were of wrought-iron, \(5 / 8\) of an inch in diameter, and ten threads to the inch; the shaft used was of steel and rather hard, the setscrews making but little impression upon it. They were, set up with a force of 75 lbs . at the end of a ten-inch monkey-wrench. The set-screws used were of four kinds, marked respectively A, B, C, and D. The results were as follows:

Remarks - A. The set-screws were not entirely normal to the shaft; hence they bore less in the earlier trials, before they had become flattened by weal:
B. The ends of these set-screws, after the first two trials, were found to be flattened, the flattened area having a diameter of about \(1 / 4 \mathrm{inch}\).
C. The ends were found, after the first two trials, to be flattened, as in B.
D. The first test held well because the edges were sharp, then the holdingpower fell off till they had become flattened in a manner similar to \(B\), when the holding-power increased again.

Tests of the Holding-power of Keys. (Lanza.)-The load was applied as in the tests of set-screws, the shatt being firmly keyed to the holders. The load required at the rim of the pulley to shear the keys was determined, and this, multiplied by a suitable constant, determined in a similar way to that used in the case of set-screws, gives us the shearing strength per square inch of the keys.

The keys tested were of eight kinds, denoted, respectively, by the letters \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\) and H , and the results were as follows : A, B, D and F, each 4 tests; E, 3 tests; C, G, and H, each 2 tests.
\begin{tabular}{|c|c|c|c|c|}
\hline A, Norway iron, \(2^{\prime \prime} \times 14^{\prime \prime} \times 15 / 32^{\prime \prime}\), & 40,184 to & \multicolumn{3}{|l|}{47, 660 lbs ; averag} \\
\hline B, refined iron, \(2^{\prime \prime} \times 1 / 4^{\prime \prime} \times 15 / 3 \%^{\prime \prime}\), & 36,482 ' \({ }^{\text {c }}\) & 39,254; & & 59. \\
\hline C, tool steel, 1 & 91,344 \& & 100,056. & & \\
\hline D, machinery steel, \(2^{\prime \prime} \times 1 / 4^{\prime \prime} \times 15 / 32^{\prime \prime}\), & 64,630 to & 70.186; & ، & 66.875 \\
\hline E, Norway iron, \(11 / 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}\), & 36,850 " & 37,222; & & 37,036 \\
\hline F, cast-iron, \({ }^{\prime \prime}\) & 30,278 " & 36,944; & '6 & 33,03 \\
\hline G, cast-iron, \(11 / 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 7 / 16^{\prime \prime}\), & 37,222 \& & 38,700. & & \\
\hline H , cast-iron, \(1^{\prime \prime} \times 12^{\prime \prime} \times 7 / 16^{\prime \prime}\), & 29,814 \& & 38,978. & & \\
\hline
\end{tabular}

In \(A\) and \(B\) some crushing took place before shearing. In \(E\), the keys being only \(7 / 16 \mathrm{in}\). deep, tipped slightly in the key-way. In H, in the first test there was a defect in the key-way of the pulley.

\section*{DYNAMOMETERS.}

Dynamometers are instruments used for measuring power. They are of several classes, as: 1. Traction dynamometers, used for determining the power required to pull a car or other vehicle, or a plough or harrow. 2. Brake or absorption dynamometers, in which the power of a rotating shaft or wheel is absorbed or converted into heat by the friction of a brake; and. 3. Transmission dynamometers, in which the power in a rotating shaft is measured during its transmission through a belt or other connection to another shaft, without being absorbed.

Traction Dynamometers generally contain two principal parts: (1) A spring or series of springs, through which the pull is exerted, the extension of the spring measuring the amount of the pulling force; and (2) a papercovered drum, rotated either at a uniform speed by clockwork, or at a speed proportional to the speed of the traction, through gearing, on which the extension of the spring is registered by a pencil. From the average height of the diagram drawn by the pencil above the zero-line the average pulling force in pounds is obtained, and this multiplied by the distance traversed, in feet, gives the work done, in foot-pounds. The product divided by the time in minutes and by 33,000 gives the horse-power.

The Prony brake is the typical form of absorption dynamometer. (See Fig. 167, from Flather on Dynamometers and the Measurement of Power.)

Primarily this consists of a lever connected to a revolving shaft or pulley in such a manner that the friction induced between the surfaces in contact will tend to rotate the arm in the direction in which the shaft revolves. This rotation is counterbalanced by weights \(P\), hung in the scale pan at the end of the lever. In order to measure the power for a given number of revolutions of pulley, we add weights to the scale-pan and screw up on bolts \(b b\), until the friction induced balances the weights and the lever is maintained

\section*{THE ALDEN ABSORPTION-DYNAMOMETER.}

In its horizontal position while the revolutions of shaft per minute remain coustant.

For small powers the beam is generally omitted-the friction being measured by weighting a band or strap thrown over the pulley. Ropes or cords are often used for the same purpose.

Instead of hanging weights in a scale-pan, as in Fig. 167, the friction may be weighed on a platform-scale; in this case, the direction of rotation being the same, the lever-arm will be on the opposite side of the shaft.

In a modification of this brake, the brake-wheel is keyed to the shaft, and its rim is provided with inner flanges which form an annular trough for the retention of water to keep the pulley from heating. A small stream of water constantly discharges into the trough and revolves with the
 pulley-the centrifugal force of the

Fig. 167.
particles of water overcoming the action of gravity; a waste-pipe with its end flattened is so placed in the trough that it acts as a scoop, and removes all surplus water. The brake consists of a flexible strap to which are fitted blocks of wood forming the rubbing-surface; the ends of the strap are connected by an adjustable bolt-clainp, by means of which any desired tension may be obtained.

The horse-power or work of the shaft is determined from the following:
Let \(W=\) work of shaft, equals power absorbed, per minute;
\(P=\) unbalanced pressure or weight in pounds, acting on lever-arm at distance \(L\);
\(\underset{V}{L}=\) length of lever-arm in feet from centre of shaft;
\(V=\) velocity of a point in feet per minute at distance \(L\), if arm were allowed to rotate at the speed of the shaft;
\(N=\) number of revolutions per minute;
H.P. = horse-power.

Then will \(W=P V=2 \pi L N P\).
Since H.P. \(=P V \div 33,000\), we have H.P. \(=2 \pi L N P \div 33,000\).
If \(L=\frac{33}{2 \pi}\), we obtain H.P. \(=\frac{N P}{1000} .33 \div-2 \pi\) is practically 5 ft .3 in , a value orten used in practice for the length of arm.
If the rubbing-surface be too small, the resulting friction will show great irregularity-probably on account of insufficient lubrication-the jaws beang allowed to seize the pulley, thus producing shocks and sudden vibrations of the lever-arm.
Soft woods, such as bass, plane-tree, beech, poplar, or maple are all to be preferred to the harder woods for brake-blocks. The rubbing-surface should be well luhricated with a heavy grease. A.S. M. E., vol. xi. 958 ; also xii, 200 and xiii. 429.\()-\) This dynamometer is a
friction-brake, which is capable in quite moderate sizes of absorbing powers with unusual steadiness and complete regulation absorbing large iron disk is keyed on the rotating shaft. This is enclosed in a cast-iron shell, formed of two disks and a ring at their circumference, which is free to revolve on the shaft. To the interior of each of the sides of the shell is fitted a copper plate, enclosing between itself and the side a water-tight space. Water under pressure from the city pipes is admitted into each of these spaces, forcing the conper plate against the central disk. The chamber enclosing the disk is filled with oil. To the outer shell is fixed a weighted arm, which resists the tendencs of the shell to rotate with the shaft, caused by the friction of the plates against the central disk. Four brakes of this type, 56 in . diam., were used in testing the experimental locomotive at Purdue University (Trans. A. S. M. E., xiii. 429), Each was designed for a maximum moment of 10,500 foot - pounds with a water-pressure of 40 lbs. per sq. in.
The area in effective contact with the copper plates on either side is represented by an annular surface having its outer radius equal to 28 inches, and its inner radius equal to 10 inches. The apparent coefficient of friction between the plates and the disk was \(31 / 2 \%\).
W. W. Beaumont (Proc. Inst. C. E. 1889) has deduced a formula by means of which the relative capacity of brakes can be compared, judging from the amount of horse-power ascertained by their use.

If \(W=\) width of rubbing-surface on brake-wheel in inches; \(V=\) vel. of point on circum. of wheel in feet per minute; \(K=\) coefficient; then
\[
K=W V \div H . P
\]

Capacity of Friction-brakes.-Prof. Flather obtains the values of \(K\) given in the last column of the subjoined table :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
\(\dot{0}\) \\
0 \\
0 \\
0 \\
\(\dot{0}\) \\
0 \\
0 \\
0 \\
\hline
\end{tabular}} & ¢ & \multicolumn{2}{|l|}{Brakepulley.} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\dot{3}\) \\
4 \\
4 \\
0 \\
5 \\
\hline 0 \\
0 \\
0 \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{Design of Brake.} & \multirow[b]{2}{*}{} \\
\hline & & & & & & \\
\hline 21 & 150 & 7 & 5 & \(33^{\prime \prime}\) & Royal Ag. Soc., compensating & 785 \\
\hline 19 & 148.5 & 7 & 5 & 33.38 \({ }^{\prime \prime}\) & McLaren, compensating & 8.58 \\
\hline 20 & 146 & \({ }^{7}\) & 5 & \(32.19^{\prime \prime}\) & \({ }^{6}\) water-cooled and comp & 802 \\
\hline 40 & 180 & 10.5 & 5 & \(3{ }^{3}{ }^{\prime \prime}\) & Garrett, "، "6 "، & 741 \\
\hline 33
150 & 150
150 & 10.5 & 5 & & Schoenheyder, water-cooled & 249 \\
\hline 24 & 142 & 12 & 6 & 38.31 " & Balk........ & 1385 \\
\hline 180 & 100 & 24 & 5 & \(126.1^{\prime \prime}\) & Gately \& Kletsch, water-cooled & 209 \\
\hline 475 & 76.2 & 24 & 7 & 191' & Webber, water-cooled & 84. \\
\hline 125
250 & \(\left.\begin{array}{l}290 \\ 250\end{array}\right\}\) & 24 & 4 & \(63^{\prime \prime}\) & Westinghouse, water-cooled. & 465 \\
\hline 40 \} & 322) & 13 & & & ، ، & \(84{ }^{4}\) \\
\hline 125 & \(290\}\) & 13 & 4 & 2134 & & \(84 ،\) \\
\hline
\end{tabular}

The above calculations for eleven brakes give values of \(K\) varying from 84.7 to 1385 for actual horse-powers tested, the average being \(K=655\).

Instead of assuming an average coefficient, Prof. Flather proposes the following :
Water-cooled brake, non-compensating, \(K=400 ; W=400 \mathrm{H} . \mathrm{P} . \div V\).
Water-cooled brake, compensating, \(K=750 ; W=750\) H.P. \(\div \dot{V}\).
Non-cooling brake, with or without compensating device, \(K=900\); \(W=900 \mathrm{H} . \mathrm{P} . \div V\).
Transmission Dynamometers are of various forms, as the Batchelder dynamometer, in which the power is transmitted through a "train-arm" of bevel gearing, with its modifications, as the one described by the author in Trans. A. I. M. E., viii. 177, and the one described by Samuel Webber in Trans. A. S. M. E., x. 514: belt dynamometers, as the Tatham; the Van Winkle dynamometer, in which the power is transmitted from a revolving shaft to another in line with it, the two almost touching, through the medium of coiled springs fastened to arms or disks keyed to the shafts; the Brackett and the Webb cradle dynamometers, used for measuring the power required to run dynamo-electric machines. Descriptions,of the four last named aregiven in Flather on Dynarhometers.
Much information on various forms of dynamometers will be found in Trans. A. S. M. E., vol. vii. to xv., inclusive, indexed under Dynamometers.

\section*{ICE-MAKING OR REFRIGERATING MACHINES.}

References.-An elaborate discussion of the thermodynamic theory of the action of the various fluids used in the production of cold was published by M. Ledoux in the Annales des Mines, and translated in Van Nostrand's Magixzine in 1879. This work, revised and additions made in the light of recent experience by Professors Denton, Jacobus, and Riesenberger, was reprinted in 1892. (Van Nostrand's Science Series, No. 46.) The work is largely mathematical, but it also contains much information of immediate practical value, from which some of the matter given below is taken. Other references are Wood's Thermodynamics, Chap. V., and numerous papers by Professors Wood, Denton, Jacobus, and Linde in Trans. A. S. M. E., vols. x. to xiv.; Johnson's Cyclopædia, article on Refrigerating-machines; also Eng'g, June 18, July 2 and 9, 1886; April 1, 1887 ; June 15, 1888; July 31, Aug. 28, 1889 ; Sept. 11 and Dec. 4, 1891 ; May 6 and July 8, 1892. For properties of Ammonia and Sulphur Dioxide, see papers by Professors Wood and Jacobus, Trans. A. S. M. E., vols. x. and zii.

For illustrated articles describing refrigerating-machines, see Am. Mach., May 29 and June 26, 1890, and Mfrs. Record, Oct. 7, 1892; also catalogues of builders, as Frick \& Co., Waynesboro, Pa.; De La Vergne Refrigerating-machine Co., New York; and others.

Operations of Refrigerating-machine.-Apparatus designed for refrigerating is based upon the following series of operations:

Compress a gas or vapor by means of some external force, then relieve it of its heat so as to diminish its volume; next, cause this compressed gas or vapor to expand so as to produce mechanical work, and thus lower its temperature. The absorption of heat at this stage by the gas, in resuming its original condition, constitutes the refrigerating effect of the apparatus.
A refrigerating-machine is a heat-engine reversed.
From this similarity between heat-motors and freezing-machines it results that all the equations deduced from the mechanical theory of heat to determine the performance of the first, apply equally to the second.
The efficiency depends upon the difference between the extremes of temperature.
The useful effect of a refrigerating-machine depends upon the ratio between the heat-units eliminated and the work expended in compressing and expanding.
This result is independent of the nature of the body employed.
Unlike the heat-motors, the freezing-machine possesses the greatest efficiency when the range of temperature is small, and when the final temperature is elevated.
If the temperatures are the same, there is no theoretical advantage in employing a gas rather than a vapor in order to produce cold.
The choice of the intermediate body would be determined by practical considerations based on the physical characteristics of the body, such as the greater or less facility for manipulating it, the extreme pressures required for the best effects, etc.

Air offers the double advantage that it is everywhere obtainable, and that we can vary at will the higher piessures, independent of the temperature of the refrigerant. But to produce a given useful effect the apparatus must be of larger dimensions than that required by liquefiable vapors.

The maximum pressure is determined by the temperature of the condenser and the nature of the volatile liquid: this pressure is often very high.

When a change of volume of a saturated vapor is made under constant pressure, the temperature remains constant. The addition or subtraction of heat, which produces the change of volume, is represented by an increase or a diminution of the quantity of liquid mixed with the vapor.

On the other hand, when vapors, even if saturated, are no longer in contact with their liquids, and receive an addition of heat either through compression by a mechanical force, or from some external source of heat, they comport themselves nearly in the same way as permanent gases, and become superheated.

It results from this property, that refrigerating-machines using a liquefiable gas will afford results differing according to the method of working,
and depending upon the state of the gas, whether it remains coustantly saturated, or is superheated during a part of the cycle of working.

The temperature of the condenser is determined by local conditions. The interior will exceed by \(9^{\circ}\) to \(18^{\circ}\) the temperature of the water furnished to the exterior. This latter will vary from about \(52^{\circ} \mathrm{F}\)., the temperature of water from considerable depth below the surface, to about \(95^{\circ} \mathrm{F}\)., the temperature of surface-water in hot climates. The volatile liquid employed in the machine ought not at this temperature to have a tension above that which can be readily managed by the apparatus.

On the other hand, if the tension of the gas at the minimum temperature is too low, it becomes necessary to give to the compression-cylinder large dimensions, in order that the weight of vapor compressed by a single stroke of the piston shall be sufficient to produce a notably useful effect.

These two conditions, to which may be added others, such as those depending upon the greater or less facility of obtaining the liquid, upon the dangers incurred in its use, either from its inflammability or unhealthfulness, and finally upon its action upon the metals, limit the choice to a small number of substances.

The gases or vapors generally available are: sulphuric ether, sulphurous oxide, ammonia, methylic ether, and carbonic acid.

The following table, derived from Regnault, shows the tensions of the vapors of these substances at different temperatures between \(-22^{\circ}\) and + \(104^{\circ}\).

\section*{Pressures and Boiling-points of Liquids available for Use in Refrigerating-machines.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. of Ebullition. & \multicolumn{6}{|c|}{Tension of Vapor, in lbs. per sq. in., above Zero.} \\
\hline Deg. Fahr. & Sulphuric Ether. & Sulphur Dioxide. & Ammonia. & Methylic Ether. & Carbonic Acid. & Pictet Fluid. \\
\hline -40
-31 & & & 10.22
13.23 & & & \\
\hline - 22 & \(\cdot\) & 5.56 & 16.95 & & & \\
\hline - 13
\(-\quad 4\) & 1.30 & 7.23
9.27 & 21.51
27.04 & 13.85
17.06 & 251.6
292.9 & 13.5 \\
\hline 5 & 1.70 & 11.76 & 33.67 & 20.84 & 340.1 & 16.2 \\
\hline 14 & 2.19 & 14.75 & 41.58 & 25.27 & 393.4 & 19.3 \\
\hline 23 & 2.79 & 18.31 & 50.91 & 30.41 & 453.4 & \(\bigcirc 2.9\) \\
\hline 32 & 3.55 & 22.53 & 61.85 & 36.34 & 520.4 & \\
\hline 41 & 4.45 & 27.48 & 74.55 & 43.13 & 594.8 & 31.2 \\
\hline 50 & 5.54 & 33.26 & 89.21 & 50.84 & 676.9 & 36.2 \\
\hline 59 & 6.84
8.38 & 39.93 & 105.99
1.25 & 5956
69.35 & 766.9 & 41.7 \\
\hline 68 & 8.38
10.19 & 47.62
56.39 & 125.08 & 69.35
80.28 & 864.9
971.1 & 48.1
55.6 \\
\hline 87 & 10.19
12.31 & 56.39
66.37 & 146.64
170.83 & 80.28
92.41 & 971.1
1085.6 & 55.6
64.1 \\
\hline 95 & 14.76 & 77.64 & 197.83 & & 1207.9 & \%3. \\
\hline 104 & 17.59 & 90.32 & 227.76 & & 1338.2 & 8.2.9 \\
\hline
\end{tabular}

The table shows that the use of ether does not readily lead to the production of low temperatures, because its pressure becomes then very feeble.

Ammonia, on the contrary, is well adapted to the production of low temperatures.

Methylic ether yields low temperatures without attaining too great pressures at the temperature of the condenser. Sulphur dioxide readily affords temperatures of -14 to -5 , while its pressure is only 3 to 4 atmospheres at the ordinary temperature of the condenser. These latter substances then lend themselves conveniently for the production of cold by means of mechanical force.

The "Pictet fluid" is a mixture of \(9 \% \%\) sulphur dioxide and \(3 \%\) carbonic acid. At atmospheric pressure it affords a temperature \(14^{\circ}\) lower than sulphur dioxide.

Carbonic acid is as yet (1895) in use but to a limited extent, but the relatively greater compactness of compressor that it requires, and its inoffensive
character, are leading to its recommendation for service ou shipboard, where economy of space is important.

Certain ammonia plants are operated with a surplus of liquid present during compression, so that superheating is prevented. This practice is known as the "cold system" of compression.

Nothing definite is known regarding the application of methylic ether or of the petroleum product chymogene in practical refrigerating service. The inflammability of the latter and the cumbrousness of the compressor regnired are objections to its use.
\({ }^{6}\) Ice-melting Effect." -it is agreed that the term "ice-melting effect" means the cold produced in an insulated bath of brine, on the assumption that each 142.2B.T.U.* represents oue pound of ice, this being the latent heat of fusion of ice, or the heat required to melt a pound of ice at \(32^{\circ}\) to water at the same temperature.

The performance of a machine, expressed in pounds or tons of "jce-melting capacity," does not mean that the refrigerating-machine would make the same amount of actual ice, but that the cold produced is equivalent to the effect of the melting of ice at \(32^{\circ}\) to water of the same temperature.

In making artificial ice the water frozen is generally about \(70^{\circ} \mathrm{F}\). whensubmitted to the refrigerating effect of a machine; second, the ice is chilled from \(1 \overbrace{}^{\circ}\) to \(20^{\circ}\) below its freezing-point; third, there is a dissipation of cold, from the exposure of the brine tank and the manipulation of the ice-cans: therefore the weight of actual ice made, multiplied by its latent heat of fusion, 142.2 thermal units, represents only about three fourths of the cold produced in the brine by the refrigerating fluid per I.H.P. of the engine driving the compressing-pumps. Again, there is considerable fuel consumed to operate the brine-circulating pump, the condensing-water and feed-pumps, and to reboil, or purify, the condensed steam firm which the ice is frozen. This fuel, together with that wasted in leakage and drip water, amounts to about one half that required to drive the main steam-engine. Hence the pounds of actual ice manufactured from distilled water is just about half the equivalent of the refrigerating effect produced in the brine per indicated horsepower of the steam-cylinders.

When ice is made directly from natural water by means of the "plate system," about half of the fuel, used with distilled water, is saved by avoiding the reboiling, and using steam expansively in a compound engine.

Ether-machines, used in India, are said to have produced about 6 lbs. of actual ice per pound of fuel consumed.

The ether machine is obsolete, because the density of the vapor of ether, at the necessary working-pressure, requires that the compressing-cylinder shall be about 6 times larger than for sulphur dioxide, and 17 times larger: than for ammonia.

Air-machines require about 1.2 times greater capacity of compressing cylinder, and are, as a whole, more cumbersome than ether machines, but they remain in use on ship-board. In using air the expansion must take place in a cylinder doing work, instead of through a simple expansion-cock which is used with vapor machines. The work done in the expansion-cylinder is utilized in assisting the compressor.

Ammonia Compression-machines.-"Cold" vs. "Dry" Systems of Compression. - In the "cold "system or "humid" system some of the ammonia entering the compression-cylinder is liquid, so that the heat dereloped in the cylinder is absorbed by the liquid and the temperature of the ammonia thereby confined to the boiling-point due to the condenser-pressure. No jacket is therefore required about the cylinder.

In the "dry" or "hot"system all ammonia entering the compressor is gaseous, and the temperature becomes by compression several hundred degrees greater than the boiling-point due to the condenser-pressure. A waterjacket is therefore necessary to permit the cylinder to be properly lubricated.

Relative Performance of Ammonia Compression- and Absorption-machines, assuming mo Water to be En= trained with the Ammonia-gas in the condenser. (Deuton and Jacobus, Trans. A. S. M. E., xiii.)-It is assumed in the calculation for both machines that 1 lb . of coal imparts \(10,000 \mathrm{~B} . \mathrm{T} . \mathrm{U}\). to the boiler. The

\footnotetext{
*The latent heat of fusion of ice is 144 thermal units (Phil. Mag., 18i1, xli., 182); but it is customary to use 142. (Prof. Wood. Trans. A. S. M. E., xi. 834.)
}
condensed steam from the generator of the absorption－machine is assumed to be returned to the boiler at the temperature of the steam entering the generator．The engine of the compression－machine is assumed to exhaust through a feed－water heater that heats the feed－water to \(212^{\circ} \mathrm{F}\) ．The engine is assumed to consume \(261 / 4 \mathrm{lbs}\) ．of water per hour per horse－power．The figures for the compression－machine include the effect of friction，which is taken at \(15 \%\) of the net work of compression．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Condenser．} & \multicolumn{2}{|l|}{Refrigerat－ ing Coils．} & \multirow[b]{8}{*}{} & \multicolumn{4}{|l|}{Pounds of Ice－melting Effect per lb．of Coal．} & \multirow[t]{8}{*}{\begin{tabular}{l}
 \\
名家 \\
边苞 \\
© \\
우를 \\
む ․․ 킁 \\
． \\
इ © \\
愛會
\end{tabular}} \\
\hline & \[
\stackrel{\unrhd}{\circ}
\] & & 㐫 & & \[
\begin{aligned}
& \mathrm{Con} \\
& \mathrm{Ma}
\end{aligned}
\] & ress． ine． & \[
\mathrm{Abs}
\] & ine．＊ & \\
\hline 쿨 & \[
\dot{\stackrel{n}{0}}
\] & \[
\begin{aligned}
& \text { \&゙ } \\
& \text { ت゙ }
\end{aligned}
\] & \[
\dot{\mathscr{n}}
\] & & \[
\] & ¢゙¢ & & & \\
\hline \[
0
\] & & \[
8
\] & & & ¢ٌ80 & － & 긍 틔 & & \\
\hline & & & & & \％－1 & \(\dot{\sim}\) & ๙ & & \\
\hline \[
\underset{\sim}{\infty}
\] & 云 & \％ & \％ & & & & \({ }^{1}\) & & \\
\hline ． & & ． & & & \(\infty\) & － 0 & ¢ & 0 & \\
\hline \[
\underset{\text { c. }}{\substack{\|}}
\] & & \[
\begin{gathered}
\dot{2} \\
\underset{y}{g} \\
E=1
\end{gathered}
\] & \[
\begin{aligned}
& 0 . \\
& 0 \\
& 0 \\
& 0 \\
& 4 \\
& 4
\end{aligned}
\] & & \[
\begin{aligned}
& \text { so } \\
& \text { By } \\
& \text { हn }
\end{aligned}
\] & & & & \\
\hline 61.2 & 110.6 & & 33.7 & 61.2 & 38.1 & 71.4 & 38.1 & 33.5 & 69 \\
\hline 59.0 & 106.0 & 5 & 33.7 & 59.0 & 39.8 & 74.6 & 38.3 & 33.9 & 967 \\
\hline 59.0 & 106.0 & 5 & 33.7 & 130.0 & 39.8 & 74.6 & 39.8 & 35.1 & 931 \\
\hline 59.0 & 106.0 & －22 & 16.9 & 59.0 & 23.4 & 43.9 & 36.3 & 31.5 & 1000 \\
\hline 86.0 & 170.8 & 5 & 33.7 & 86.0 & 25.0 & 46.9 & 35.4 & 28.6 & 988 \\
\hline 86.0 & 170.8 & 5 & 33.7 & 130.0 & 25.0 & 46.9 & 36.2 & 29.2 & 966 \\
\hline 86.0 & 170.8 & －22 & 16.9 & 86.0 & 16.5 & 30.8 & 33.3 & 26.5 & 1025 \\
\hline 86.0 & 170.8 & －22 & 16.9 & 130.0 & 16.5 & 30.8 & 34.1 & 27.0 & 100\％ \\
\hline 1040 & 227.7 & & 33.7 & 104.0 & 19.6 & 36.8 & 33.4 & 25.1 & 1002 \\
\hline 104.0 & 227.7 & －22 & 16.9 & 104.0 & 13.5 & 25.3 & 31.4 & 23.4 & 1041 \\
\hline
\end{tabular}

The Ammonia Absorption－machine comprises a generator which contains a concentrated solution of ammonia in water；this gener－ ator is heated either directly by a fire，or indirectly by pipes leading from a steam－boiler．The condenser communicates with the upper part of the gen－ erator by a tube；it is cooled externally by a current of cold water．The cooler or brine－tank is so constructed as to utilize the cold produced；the up－ per part of it is in communication with the lower part of the condenser．

An absorption－chamber is filled with a weak solution of ammonia；a tube puts this chamber in communication with the cooling－tank．
The absorption－chamber communicates with the boiler by two tubes：one leads from the bottom of the generator to the top of the chamber，the other leads from the bottom of the chamber to the top of the generator．Upon the latter is mounted a pump，to force the liquid from the absorption－cham－ ber，where the pressure is maintained at about one atmosphere，into the gen－ erator，where the pressure is from 8 to 12 atmospheres．
To work the apparatus the ammonia solution in the generator is first heated．This releases the gas from the solution，and the pressure rises． When it reaches the tension of the saturated gas at the temperature of the condenser there is a liquefaction of the gas，and also of a small amount of steam．By means of a cock the flow of the liquefied gas into the refrigerat－ ing－coils contained in the cooler is regulated．It is here vaporized by ab－ sorbing the heat from the substance placed there to be cooled．As fast as it is vaporized it is absorbed by the weak solution in the absorbing－chamber．

Under the influence of the heat in the boiler the solution is unequally sat－ urated，the stronger solution being uppermost．
The weaker portion is conveyed by the pipe entering the top of the absorb－ ing－chamber，the flow being regulated by a cock，while the pump sends an equal quantity of strong solution from the chamber back to the boiler．

\footnotetext{
＊ \(5 \%\) of water entrained in the ammonia will lower the economy of the ab－ sorption－machine about \(15 \%\) to \(20 \%\) below the figures given in the table，
}

The working of the apparatus depends upon the adjustment and regulation of the flow of the gas and liquid; by these means the pressure is varied, and consequently the temperature in the cooler may be controlled.
The working is similar to that of compression-machines. The absorptionchamber fills the office of aspirator, and the generator plays the part of compressor.
The mechanical force producing exhaustion is here replaced by the affinity of water for ammonia gas; and the mechanical force required for compression is replaced by the heat which severs this affinity and sets the gas at liberty.
(For discussion of the efficiency of the absorption system, see Ledoux's work; paper by Prof. Linde, and discussion on the same by Prof. Jacobus, Trans. A. S. MI. E., xiv. 1416, 1436; and papers by Denton and Jacobus, Trans. A. S. M. E. X. 792 ; xiii. 507.

Sulphur-Dioxide Machines.-Results of theoretical calculations are given in a table by Ledoux showing an ice-melting capacity per hour per horse-power ranging from 134 to 63 lbs ,, and per pound of coal. ranging from 44.7 to 21.1 lbs ., as the temperature corresponding to the pressure of the vapor in the condenser rises from \(59^{\circ}\) to \(104^{\circ} \mathrm{F}\). The theoretical results do not represent the actual. It is necessary to take into account the loss occasioned by the pipes, the waste spaces in the cylinder, loss of time in opening of the valves, the leakage around the piston and valves, the reheating by the external air, and finally, when the ice is being made, the quantity of the ice melted in removing the blocks from their moulds. Manufacturers estimate that practically the sulphur-dioxide apparatus using water at \(55^{\circ}\) or \(60^{\circ} \mathrm{F}\). produces 56 lbs . of ice, or about 10,000 heat-units, per hour per horse-power, measured on the driving-shaft, which is about \(55 \%\) of the theoretical useful effect. In the commercial manufacture of ice about 7 lbs . are produced per pound of coal. This includes the fuel used for reboiling the water, which, together with that wasted by the pumps and lost by radiation, amounts to a considerable portion of that used by the engine.

Prof. Denton says concerning Ledoux's theoretical results: The figures given are higher than those obtained in practice, because the effect of sluperheating of the gas during admission to the cylinder is not considered. This superheating may cause an increase of work of about \(25 \%\). There are other losses due to superheating the gas at the brine-tank, and in the pipe leading from the brine-tank to the compressor, so that in actual practice a sulphur-dioxide machine, working under the conditions of an absolute pressure in the condenser of 56 lbs . per sq. in. and the corresponding temperature of \(7^{\circ} \mathrm{F}\)., will give about 22 lbs . of ice-melting capacity per pound of cnal, which is about \(60 \%\) of the theoretical amount neglecting friction, or ro\% including friction. The following tests, selected from those made by Prof. Schröter on a Pictet ice-machine having a compression-cylinder 11.3 in. bore and 24.4 in . stroke, show the relation between the theoretical and actual ice-melting capacity.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No. of Test,} & \multicolumn{2}{|l|}{Temp. in degrees Fahr. corresponding to pressure of vapor.} & \multicolumn{3}{|l|}{Ice-melting capacity per pound of coal, assuming 3 lbs . per hour per H.P.} \\
\hline & Condenser. & Suction. & Theoretical friction included.* & Actual. & Per cent loss due to cylinder superheating, or differ ence between cols. 4 and 5 . \\
\hline 11 & 77.3 & 28.5 & 41.3 & 33.1 & 19.9 \\
\hline 12 & 76.2 & 14.4 & 31.2 & 24.1 & 22.8 \\
\hline 13 & 75.2 & -2.5 & 23.0 & 17.5 & 23.9 \\
\hline 14 & 80.6 & -15.9 & 16.6 & 10.1 & 39.2 \\
\hline
\end{tabular}

The Refrigerating Coils of a Pictet ice-machine described by Ledoux had 79 sq . ft. of surface for each 100,000 theoretic negative heat-units produced per hour. The temperature corresponding to the pressure of the dioxide in the coils is \(10.4^{\circ} \mathrm{F}\)., and that of the bath (calciun) chloride solution) in which they were immersed is \(19.4^{\circ}\).

\footnotetext{
* Friction taken at figure observed in the test, which ranged from 23\% to 26\% of the work of the steam-cylinder,
}
Ammonia Compression-machines.-Ammonia gas possesses the advantage of affording about three times the useful
The perfection of ammonia apparatus now renders it so convenient and reliable that no practical advantage results from the Lower pressures afforded by sulphur dioxide.

jo 'd.H dəd anuy dəd [80D Jo 'sqI \& Bu!unsse '[飞ON Jo
\begin{tabular}{|c|c|}
\hline & \\
\hline 守 & \begin{tabular}{l}
000 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \dot{\mathscr{E}} \\
& \underset{E}{0}
\end{aligned}
\] & \\
\hline
\end{tabular}

Performance in
British Thermal

\footnotetext{
The results of the calculations for ammonia are given in the table below :
}
Performance of Ammonia Compression-machines. \(11 \% .44\) lbs per sq. in. (Ledoux.)

The theoretical results for ammonia are higher than the actual, for the same reasons that have been stated for sulphur dioxide.
 75-ton refrigerating machine was measured directly by means of a special meter, so that in addition to determining the effect of superheating, the latent heats can be calculated at the suction and condenser pressure.

Refrigerating Effect of 1 cu. ft. or. 06386 lbs. of Ammonia Expanded through a Simple Cock to 16.95 libs. Absolute Pressure

The following is a comparison of the theoretical ice－melting capacity of an ammonia compression machine with that obtained in some of Prof． Schröter＇s tests on a Linde machine having a compression－cylinder \(99-\mathrm{in}\) ． bore and 16.5 in ．stroke，and also in tests by Prof．Denton on a machine having two single－acting compression cylinders \(12 \mathrm{in} . \times 30 \mathrm{in}\) ．：
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No． of Test．} & \multicolumn{2}{|l|}{Temp．in Degrees F． Corresponding to Pressure of Vapor．} & \multicolumn{3}{|l|}{Ice－melting Capacity per lb．of Coal， assuming 3 lbs per hour per Horse－power．} \\
\hline & Condenser． & Suction． & Theoretical， Friction＊in－ cluded． & Actual． & Per Cent of Loss Due to Cylinder Superheating． \\
\hline & \％2．3 & 26.6 & 50.4 & 40.6 & 19.4 \\
\hline \％ 2 & 70.5 & 14.3 & 37.6 & 30.0 & 20.2 \\
\hline 永 3 & 69.2 & 0.5 & 29.4 & 22.0 & 25.2 \\
\hline \％ 4 & 68.5 & －11．8 & 22.8 & 16.1 & 29.4 \\
\hline & 84.2 & 15.0 & 27.4 & 24.2 & 11.7 \\
\hline 戟 \(\{26\) & 82.7 & －3．2 & 21.6 & 17.5 & 19.0 \\
\hline ค 25 & 84.6 & －10．8 & 18.8 & 14.5 & 22.9 \\
\hline
\end{tabular}

Refrigerating Nachines using Vapor of Water．（Ledoux．） －In these machines，sometimes called vacuum machines，water，at ordi－ nary temperatures，is injected into，or placed in connection with，a chamber in which a strong vacuum is maintained．A portion of the water vaporizes， the heat to cause the vaporization being supplied from the water not vapor－－ ized，so that the latter is chilled or frozen to ice．If brine is used instead of pure water，its temperature may be reduced below the freezing－point of water．The water vapor is compressed from，say，a pressure of olle tenth of a pound per square inch to one and one half pounds，and discharged into a condenser．It is then condensed and removed by means of an ordinary air－pump．The principle of action of such a machine is the same as that of volatile－vapor machines．

A theoretical calculation for ice－making，assuming a lower temperature of \(32^{\circ} \mathrm{F}\) ．，a pressure in the condenser of \(11 / 2 \mathrm{lbs}\) ．per square inch，and a coal consumption of 3 lbs ．per I．H．P．per hour，gives an ice－melting effect of 34.5 lbs．per pound of coal，neglecting friction．Ammonia for ice－making condi－ tions gives 40.9 lbs ．The volume of the compressing cylinder is about 150 times the theoretical volume for an ammonia machine for these conditions．
Relative Efficiency of Refrigerating Machine．－The effi－ ciency of a refrigerating machine is sometimes expressed as the quotient of the quantity of heat received by the ammonia from the brine，that is，the quantity of useful work done，divided by the heat equivalent of the mechan－ ical work done in the compressor．Thus in column 1 of the table of perform－ ance of the 75－ton machine（page 998）the heat given by the brine to the ammonia per minute is 14,776 B．T．U．The horse－power of the ammonia cylin－ der is 65.7 ，and its heat equivalent \(=65.7 \times 33,000 \div 778=2786\) B．T．U．Then \(14, \pi 76 \div 2 \pi 86=5.304\) ，efficiency．The apparent paradox that the efficiency is greater than unity，which is impossible in any machine，is thus explained． The working fluid，as ammonia，receives heat from the brine and rejects heat into the condenser．（If the compressor is jacketed，a portion is rejected into the jacket－water．）The heat rejected into the condenser is greater than that received from the brine；the difference（plus or minus a small difference radiated to or from the atmosphere）is heat received by the ammonia from the compressor．The work to be done by the compressor is not the mechan－ ical equivalent of the refrigeration of the brine，but only that necessary to supply the difference between the heat rejected by the ammonia into the con－ denser and that received from the brine．If cooling water colder than the brine were available，the brine might transfer its heat directly into the cool－ ing water，and there would be no need of ammonia or of a compressor；but

\footnotetext{
＊Friction taken at figures observed in the tests，which range from \(14 \%\) to \(20 \%\) of the work of the steam－cylinder．
}
since such cold water is not available, the brine rejects its heat into the colder ammonia, and then the compressor is required to heat the ammonia to such a temperature that it may reject heat into the cooling water.

The efficiency of a refrigerating plant referred to the amount of fuel consumed is
 per pound of fuel. \(\}=\frac{142.2 \times \text { pounds of fuel used per hour. }}{}\)

The ice-melting capacity is expressed as follows:
\(\left.\begin{array}{c}\text { Tons (of } 2000 \mathrm{lbs} \text {) } \\ \text { ice-melting ca- }\end{array}\right\}=\frac{\left.\begin{array}{c}24 \times \text { pounds } \\ \times \text { specific heat } \\ \times \text { range of temp. }\end{array}\right\} \text { of brine circulated per hour. }}{142 \times 2000}\) \(142.2 \times 2000\)

The analogy between a heat-engine and a refrigerating-machine is as follows: A steam-engine receives heat from the boiler, converts a part of it into mechanical work in the cylinder, and throws away the difference into the condenser. The ammonia in a compression refrigerating-machine receives heat from the brine-tank or cold-room, receives an additional amount of heat from the mechanical work done in the compression-cylinder, and throws away the sum into the condenser. The efficiency of the steam-engine \(=\) work done \(\div\) heat received from boiler. The efficiency of the refrigerat-ing-machine \(=\) heat received from the brine-tank or cold-room \(\div\) heat required to produce the work in the compression-cylinder. In the ammonia

- DIAGRAM OF AMMONIA COMPRESSION MACHINE.

DIAGRAM OF AMMONIA ABSORPTION MACHINE.
absorption-apparatus, the ammonia receives heat from the brine-tank and additional heat from the boiler or generator: and rejects the sum into the condenser and into the cooling water supplied to the absorber. The efficiency \(=\) heat received from the brine \(\div\) heat received from the boiler.

\title{
TEST-TRIALS OF REFRIGERATING-TIACRINES.
}
(G. Linde, Trans. A. S. M. E., xiv. 1414.)

The purpose of the test is to determine the ratio of consumption and production, so that there will have to be measured both the refrigerative effect and the heat (or mechanical work) consumed, also the cooling water. The refrigerative effect is the product of the number of heat-units (\(Q\)) abstracted from the body to be cooled, and the quotient \(\frac{T_{c}-T}{T}\); in which \(T_{c}=\) absolute temperature at which heat is transmitted to the cooling water, and \(T=\) absolute temperature at which heat is taken from the body to be cooled.
The determination of the quantity of cold will be possible with the proper exactness only when the machine is employed during the test to refrigerate a liquid; and if the cold be found from the quantity of liquid circulated per unit of time, from its range of refrigeration, and from its specific heat. Sufficient exactness cannot be obtained by the refrigeration of a current of circulating air, nor from the manufacture of a certain quantity of ice, nor from a calculation of the fluid circulating within the machine (for instance, the quantity of ammonia circulated by the compressor). Thus the refrigeration of brine will generally form the basis for tests making any pretension to accuracy. The degree of refrigeration should not be greater than necessary for allowing the range of temperature to be measured with the necessary exactness; a range of temperature of from \(5^{\circ}\) to \(6^{\circ}\) Fahr. will suffice.
The condenser measurements for cooling water and its temperatures will be possible with sufficient accuracy only with submerged condensers.
The measurement of the quantity of brine circulated, and of the cooling water, is usually effected by water-meters inserted into the conduits. If the necessary precautions are observed, this method is admissible. For quite precise tests, however, the use of two accurately gauged tanks must be ad vised, which are alternately filled and emptied.
To measure the temperatures of brine and cooling water at the entrance and exit of refrigerator and condenser respectively, the employment of specially constructed and frequently standardized thermometers is indispensable; no less important is the precaution of using at each spot simultaneously two thermometers, and of changing the position of one such thermometer series from inlet to outlet (and vice versa) after the expiration of one half of the test, in order that possible errors may be compensated.
It is important to determine the specific heat of the brine used in each instance for its corresponding temperature range, as small differences in the composition and the concentration may cause considerable variations.

As regards the measurement of consumption, the programme will not have any special rules in cases where only the measurement of steam and cooling water is undertaken, as will be mainly the case for trials of absorption-machines. For compression-machines the steam consumption depends both on the quality of the steam-engine and on that of the refrigerating-machine, while it is evidently desirable to know the consumption of the former separately from that of the latter." As a rule steam-engine and compressor are coupled directly together, thus rendering a direct measurement of the power absorbed by the refrigerating-machine impossible, and it will have to suffice to ascertain the indicated work both of steam-engine and compressor. By further measuring the work for the engine running empty, and by comparing the differences in power between steam-engine and compressor resulting for wide variations of condenser-pressures, the effective consumption of work \(L e\) for the refrigerating-machine can be found very closely. In general, it will suffice to use the indicated work found in the steam-cylinder, especially as from this observation the expenditure of heat can be directly determined. Ordinarily the use of the indicated work in the compressorcylinder, for purposes of comparison, should be avoided; firstly, because there are usually certain accessory apparatus to be driven (agitators, etc.), belonging to the refrigerating-machine proper; and secoudly, because the external friction would be excluded.

Heat Balance.-We possess an important aid for checking the correctness of the results found in each trial by forming the balance in each case for the heat received and rejected. Only such tests should be regarded as correct beyond doubt which show a sufficient conformity in the heat balance. It is true that iu certaiu instances it may not be easy to account fully for the trausmission of heat between the several parts of the machine and its environment by radiation and convection, but generally
(particularly for compression-machines) it will be possible to obtain for the heat received and rejected a balance exhibiting small discrepancies only.
Report of Test.-Reports intended to be used for comparison with the figures found for other machines will therefore have to embrace at least the following observations :

\section*{Refrigerator:}

Quantity of brine circulated per hour.
Brine temperature at inlet to refrigerator
Brine temperature at outlet of refrigerator
\(\qquad\)
\(\qquad\)
Specific gravity of brine (at \(64^{\circ}\) Fahr.)
Specific heat of brine
Heat abstracted (cold produced) \(\qquad\)
Absolute pressure in the refrigerator
Condenser:
Quantity of cooling water per hour
Temperature at inlet to condenser.
Temperature at outlet of condenser\(t\)

Absolute pressure in the condenser.
Temperature of gases entering the condenser

\section*{Absorption-machine.}

\section*{Still:}

Steam consumed per hour Abs. pressure of heating steam. Temperature of condensed steam at outlet
Heat imparted to still. Absorber:
Quantity of cooling water per hour
Temperature at inlet
Temperature at outlet
Heat remored
Pump for Ammonia Liquor:
Indicated work of steam-engine
Steam-consumption for pump..
Thermal equivalent for work of pump..................... ALp
Total sum of losses by radiation and convection \(\pm Q_{3}\)
Heat Balance :

\section*{Compression-machine.}

Compressor:
Indicated work............... \(L_{t}\) Temperature of gases at inlet.. Temperature of gases at exit..
Steam-engine :
Feed-water per hour.
Temperature of feed-water
Absolute steam-pressure before steam-engine
Indicated work of steam-engine
Condensing water per hour
Temperature of \(d a \ldots\).
Total sum of losses by radiation and convection... \(\pm Q_{3}\)
Heat Balance :
\(Q_{e}+A L_{c}=Q_{1} \pm Q_{3}\). \(Q_{e}+Q^{\prime} e=Q_{1}+Q_{2} \pm Q_{3}\).
For the calculation of efficiency and for comparison of various tests, the actual efficiencies must be compared with the theoretical maximum of efficiency \(\left(\frac{Q}{A L}\right) \max =\frac{T}{T c-T}\) corresponding to the temperature range.

Temperature Range. - As temperatures (\(T\) and \(T c\)) at which the heat is abstracted in the refrigerator and imparted to the condenser, it is correct to select the temperature of the brine leaving the refrigerator and that of the cooling water leaving the condenser, because it is in principle impossible to keep the refrigerator pressure higher than would correspond to the lowest brine temperature, or to reduce the condenser pressure below that corresponding to the outlet temperature of the cooling water.

Prof. Linde shows that the maximum theoretical efficiency of a com-pression-machine may be expressed by the formula
\[
\frac{Q}{A L}=\frac{T}{T_{c}-T}
\]
in which \(Q=\) quantity of heat abstracted (cold produced);
\[
\begin{aligned}
& A L=\text { thermal equivalent of the mechanical work expended; } \\
& L=\text { the mechanical work, and } A=1 \div 778 \text {; } \\
& T=\text { absolute temperature of heat abstraction (refrigerator); } \\
& T_{c}=\text { " " " } \quad \text { rejection (condenser). }
\end{aligned}
\]

If \(u=\) ratio between the heat equivalent of the mechanical work \(A L\), and the quantity of heat \(Q^{\prime}\) which must be imparted to the motor to produce the work \(L\), then
\[
\frac{A L}{Q^{\prime}}=u, \text { and } \frac{Q^{\prime}}{Q}=\frac{T c-T}{u T} .
\]

It follows that the expenditure of heat \(Q^{\prime}\) necessary for the production of the quantity of cold \(Q\) in a compression-machine will be the smaller, the smaller the difference of temperature \(T_{c}-T\).
Metering the Ammonia.-For a complete test of an ammonia re-frigerating-machine it is advisable to measure the quantity of ammonia circulated, as was done in the test of the 75 -ton machine described by Prof. Denton. (Trans. A. S. M. E., xii. 326.)

\section*{PROPERTEES OF SULPHUR DIOXIDE AND AMIMONIA GAS.}

\section*{Ledoux's Table for Saturated Sulphur-dioxide Gas.}

Heat-units expressed in B.T.U. per pound of sulphur dioxide.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline Deg. F. & Lbs. & B.T.U. & B.T.U. & B.T.U. & B.T.U. & B.T.U. & Cu. ft. & Lbs. \\
\hline -22 & 5. & 157.43 & -19.56 & 176.99 & 13.59 & 163.39 & 13.17 & . 076 \\
\hline 13 & 7.23 & 158.64 & -16.30 & 174.95 & 13.83 & 161.12 & 10.27 & . 097 \\
\hline 4 & 9.27 & 159.84 & -13.05 & 172.89 & 14.05 & 158.84 & 8.12 & . 123 \\
\hline 5 & 11.76 & 161.03 & -- 9.79 & 170.82 & 14.26 & 156.56 & 6.50 & . 153 \\
\hline 14 & 14.74 & 162.20 & - 6.53 & 168.73 & 14.46 & 154.27 & 5.25 & . 190 \\
\hline 23 & 18.31 & 163.36 & -3.27 & 166.63 & 14.66 & 151.97 & 4.29 & . 232 \\
\hline 32 & 22.53 & 164.51 & 0.00 & 164.51 & 14.84 & 149.68 & 3.54 & . 282 \\
\hline 41 & 27.48 & 165.65 & 3.27 & 162.38 & 15.01 & 14\%\%.37 & 2.93 & . 340 \\
\hline 50 & 33.25 & 166.78 & 6.55 & 160.23 & 15.17 & 145.06 & 2.45 & . 40 ก \\
\hline 59 & 39.93 & 167.90 & 9.83 & 158.07 & 15.32 & 14:.75 & 2.07 & . 483 \\
\hline 68 & 47.61 & 168.99 & 13.11 & 155.89 & 15.46 & 140.43 & 1.75 & . 570 \\
\hline 77 & 56.39 & 170.09 & 16.39 & 153.70 & 15.59 & 138.11 & 1.49 & . 669 \\
\hline 86 & 66.36 & 171.17 & 19.69 & 151.49 & 15.71 & 135.78 & 1.27 & . 780 \\
\hline 95 & 77.64 & 172.24 & 22.98 & 149.26 & 15.82 & 133.45 & 1.09 & . 906 \\
\hline 104 & 90.31 & 173.30 & 26.28 & 147.02 & 15.91 & 131.11 & 91 & 1.046 \\
\hline
\end{tabular}

Density of Liquid Ammonia. (D'Andreff, Trans. A. S. M. E., x. 641.)
\(\begin{array}{ccccccccc}\text { At temperature } & \text { C...... } & -10 & -5 & 0 & 5 & 10 & 15 & 20 \\ \text { F...... } & +14 & 23 & 32 & 41 & 50 & 59 & 68 \\ \text { Density............... } & .6492 & .6429 & .6364 & .6298 & .6230 & .6160 & .6089\end{array}\)
These may be expressed very nearly by
\[
\begin{aligned}
& \delta=0.6364-0.0014 t^{\circ} \text { Centigrade } \\
& \delta=0.6502-0.000 \pi 7 T^{\circ} \text { Fahr } .
\end{aligned}
\]

Latent Heat of Evat oration of Ammonia. (Wood, Trans. A. S. M. E., X. 641.)
\[
h e=555.5-0.613 T-0.000219 T^{2}(\text { in B.T.U., Fahr. deg.) ; }
\]

Ledoux found \(h e=583.33-0.5499 T-0.0001173 T^{2}\).
For experimental values at different temperatures determined by Prof. Denton, see Trans. A. S. M. E., xii. 356. For calculated values, see vol. x. 646.

Density of Ammonia Gas.-Theoretical, 0.5894; experimental, 0.596 . Regnault (Trans. A. S. M. E.. x. 633)

Specific Heat of Liguid Ammonia. (Wood, Trans. A. S. M. E., x 645)-The specific heat is nearly constant at different temperatures, and about equal to that of water, or unity. From \(0^{\circ}\) to \(100^{\circ} \mathrm{F}\)., it is
\[
c=1.096-.0012 T, \text { nearly }
\]

In a later paper by Prof. Wood (Trans. A.S. M. E., xii. 136) he gives a higher value, viz., \(c=1.12136+0.000435 T\).
L. A. Elleau and Wm. D. Ennis (Jour. Franklin Inst., April, 1898) give the results of nine determinations, made between \(0^{\circ}\) and \(20^{\circ} \mathrm{C}\), which range from 0.983 to 1.056 , averaging 1.0206. Vou Strombeck (Jour. Frankliu Inst., Dec. 1590) found the specific heat between \(62^{\circ}\) and \(31^{\circ} \mathrm{C}\). to be \(1.2 \% 8 \mathrm{c}_{6}\). Ludeking and Starr (Am. Jour. Science, iii, 45, 200) obtained 0.886. Prof. Wood deduced from thermodynamic equations \(c=1.093\) at \(-31^{\circ} \mathrm{F}\). or \(-38^{\circ} \mathrm{C}\)., and Ledoux in like manner finds \(c=1.0058+.003658 t^{\circ} \mathrm{C}\). Elleau and Ennis give Ledoux's equation with a new constant derived from their experiments, thus \(c=0.9834+0.003658 t^{\circ} \mathrm{C}\).

Properties of the Saturated Vapor of Ammonia.
(Wood's Thermodynamics.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Temperature.} & \multicolumn{2}{|l|}{Pressure, Absolute.} & \multirow[t]{2}{*}{Heat of Vaporization, thermal units.} & \multirow[t]{2}{*}{Volume of Vapor per lb., cu. ft.} & \multirow[t]{2}{*}{Volume of Liquid per lb. cu. ft.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Weight of a cu. \\
ft . of \\
Vapor, lbs.
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { Degs. } \\
& \text { F. }
\end{aligned}
\] & Absolute, F . & Lbs.per sq. ft. & Lbs.per sq.in. & & & & \\
\hline - 40 & 420.66 & 1540.7 & 10.69 & 579.67 & 24.372 & . 0234 & . 0410 \\
\hline - 35 & 425.66 & 1773.6 & 12.31 & 576.69 & 21.319 & . 02336 & . 0468 \\
\hline - 30 & 430.66 & 2035.8 & 14.13 & 573.69 & 18.697 & .0237 & . 0535 \\
\hline - 25 & 435.66 & 23:29.5 & 16.17 & 570.68 & 16.445 & . 0238 & . 0608 \\
\hline - 20 & 440.66 & 2657.5 & 18.45 & 567.67 & 14.507 & . 0240 & . 0689 \\
\hline - 15 & 445.66 & 3022.5 & 20.99 & 564.64 & 12.834 & . 0242 & . 0779 \\
\hline - 10 & 450.66 & 3428.0 & 23.80 & 561.61 & 11.384 & . 0243 & .08i8 \\
\hline & 455.66 & 3877.2 & 26.93 & 558.56 & 10.125 & . 0244 & . 0988 \\
\hline & 460.66 & 43 13.5 & 30.37 & 555.50 & 9.027 & . 0246 & . 1108 \\
\hline + 5 & 465.66 & 4920.5 & \(3+.17\) & 552.43 & 8.069 & . 0247 & . 1239 \\
\hline + 10 & 470.66 & 5522.2 & 38.34 & 549.35 & 7.229 & . 0249 & . 1383 \\
\hline + 15 & 475.66 & 618.4 & 42.93 & 546.26 & 6.492 & . 0250 & . 1544 \\
\hline - 20 & 480.66 & 6905.3 & 47.95 & 543.15 & 5.842 & . 0252 & . 1712 \\
\hline - 25 & 485.66 & 7695.2 & 53.43 & 540.03 & 5.269 & . 0253 & . 1898 \\
\hline - 30 & 490.66 & 8556.6 & 59.41 & 536.92 & 4.763 & . 0254 & . 2100 \\
\hline - 35 & 495.66 & 9493.9 & 65.93 & 533.78 & 4.313 & . 0256 & . 2319 \\
\hline 40 & 500.66 & 10512 & \%3.00 & 530.63 & 3.914 & . 0257 & . 2555 \\
\hline - 45 & 505.66 & 11616 & 80.66 & 527.47 & 3.559 & . 0259 & . 2809 \\
\hline - 50 & 510.66 & 12811 & 88.96 & 524.30 & 3.242 & . 0261 & . 3085 \\
\hline + 55 & 515.66 & 14102 & 97.43 & 521.12 & 2.958 & . 0263 & . 3381 \\
\hline 60 & 520.66 & 15494 & 107.60 & 517.93 & 2.704 & . 0265 & . 3698 \\
\hline 65 & 525.66 & 16993 & 118.03 & 514.73 & 2.476 & . 0266 & . 4039 \\
\hline \(+\quad \%\)
\(+\quad 15\) & 530.60 & 15605 & 129.21 & 511.52 & 2.271 & . 0268 & . 4403 \\
\hline + 15 & 535.66 & 20:336 & 141.25 & 508.29 & 2.087 & . 0270 & . 4793 \\
\hline + 80 & 540.66 & 22192 & 154.11 & 505.05 & 1.920 & .0272 & . 5208 \\
\hline -85 & 545.66 & 24178 & 167.86 & 501.81 & 1.770 & .0273 & . 5650 \\
\hline + 90 & 550.66 & 26300 & 189.8 & 498.11 & 1.632 & . 0274 & . 6128 \\
\hline + 95
+1 & 555.65 & 28565 & 198.37 & 495.29 & 1.510 & .0277 & . 6623 \\
\hline +100 & 560.66 & 30980 & 215.14 & 492.01 & 1.398 & .02\%9 & . 7153 \\
\hline +105 & 565.006 & 33550 & 232.98 & 488.72 & 1.296 & . 0281 & . 7716 \\
\hline +110 & \(5: 0.66\) & 36284 & 251.97 & 485.42 & 1.203 & . 0283 & .8312 \\
\hline +115 & 575.66 & 39188 & 2 212.14 \(^{2}\) & 482.41 & 1.119 & . 0285 & . 89337 \\
\hline +120 & 580.66 & 42267 & 293.49 & 478.99 & 1.045 & . 0287 & . 9569 \\
\hline +125 & 585.66 & 45528 & 316.16 & 475.45 & 0.970 & . 0289 & 1.0309 \\
\hline 130 & 590.66 & 48978 & 340.42 & 472.11 & 0.905 & . 0291 & 1.1049 \\
\hline +135 & 595.66 & 52626 & 365.16 & 468.75 & 0.845 & . 0293 & 1.1834 \\
\hline +140 & C00.66 & 56483 & 392.22 & 465.39 & 0.791 & . 0295 & 1.2642 \\
\hline +145 & 605.66 & 60550 & 420.49 & 462.01 & 0.741 & .0297 & 1.3495 \\
\hline +150 & 610.66 & 64833 & 450.20 & 458.62 & 0.695 & . 0299 & 1.4388 \\
\hline +155 & 615.66 & 69341 & 481.54 & 455.22 & 0.652 & . 0302 & 1.5337 \\
\hline +160 & \(6 \cdot 0.66\) & 74086 & 514.40 & 451.81 & 0.613 & . 0304 & 1.6343 \\
\hline +165 & 625.66 & \% \(90 \sim 1\) & 549.04 & 448.39 & 0.577 & . 0306 & 1.7333 \\
\hline
\end{tabular}
specific Heat of Ammonia Vapor at the Saturation Point. (Wood, Trans. A. S. M."E, x. 644 .)-For the range of temperatures ordiuarily used in engineeering practice, the specific heat of saturated ammonia is negative, and the saturated vapor will condense with adiabatic expansion, and the liquid will evaporate with the compression of the vapor, and when all is vaporized will superheat.

Regnault (Rel. des. Exp., ii. 16:) gives for specific heat of ammonia-gas 0.50836. (Wood, Trans. A. S. M. E., xii. 133.)

Properties of Brine used to absorb Refrigerating Effect of Ammonia. (J. E. Denton, Trans. A. S. M. E, x. 799.)-A solution of Liverpool salt in well-water having a specific gravity of 1.17 , or a weight per cubic foot of 73 lbs ., will not sensibly thicken or congeal at \(0^{\circ}\) Fahrenheit. (It is reported that brine of 1.17 gravity, made with American salt, begins to congeal at about \(24^{\circ}\) Fahr.)

The mean specific heat between \(39^{\circ}\) and \(16^{\circ}\) Fahr. was found by Denton to be 0.805 . Brine of the same specific gravity has a specific heat of 0.805 at \(65^{\circ}\) Fahr., according to Naumann.

Naumann's values are as follows (Lehr-und Handbuch der Thermochemie, 1882):
\[
\begin{array}{lccccccc}
\text { Specific heat.... } & .791 & .805 * & .863 & .895 & .931 & .962 & .978 \\
\text { Specific gravity. } & 1.187 & 1.170 & 1.103 & 1.072 & 1.044 & 1.023 & 1.012 \\
& \text { *Interpolated. } & & &
\end{array}
\]

Chloride-ofecalcium solution has been used instead of brine. According to Naumann, a solution of 1.0255 sp . gr. has a specific heat of .957 . A solution of 1.163 sp . gr. in the test reported in Eng'g, July 22,1887 , gave a specific heat of .827 .

\section*{ACTUAL PEREORIMANCES OF ICE-IIAKING MACHINES.}

The table given on page 996 is abridged from Denton, Jacobus, and Riesenberger's translation of Ledoux on Ice-making Machines. The following shows the class and size of the machines tested, referred to by letters in the table, with the names of the authorities:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Class of Machines.} & \multirow[t]{2}{*}{Authority.} & \multicolumn{2}{|l|}{Dimensions of Compres sion-cylinder in inches.} \\
\hline & & Bore. & Stroke. \\
\hline A. Ammonia cold-compression.. & Schröter. & 9.9 & 16.5 \\
\hline B. Pictet fluid dry-compression. & & 11.3 & 24.4 \\
\hline C. Bell-Coleman air & & 28.0 & 23.8 \\
\hline D. Closed cycle air............. & \begin{tabular}{l}
\{ Renwick \& \\
Jacobus.
\end{tabular} & 10. & 18.0 \\
\hline E. Ammonia dry-compression.. & Denton. & 12.0 & 30.0 \\
\hline
\end{tabular}

\section*{Performance of a \(\boldsymbol{7} 5\)-ton Ammonia Compression-} machine. (J. E. Denton, Trans. A.S. M. E., xii, 326.\()\)-The machine had two single-acting compression cylinders \(12^{\prime \prime} \times 30^{\prime \prime}\), and one Corliss steamcylinder, double-acting, \(18^{\prime \prime} \times 36^{\prime \prime}\). It was rated by the manufacturers as a: 50 -ton machine, but it showed 75 tons of ice-refrigerating effect per 24 hours during the test.
The most probable figures of performance in eight trials are as follows :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Ammonia Pressures, lbs. above Atmosphere.} & \multicolumn{2}{|l|}{Brine Temperatures, Degrees F} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & \[
\left\lvert\, \begin{gathered}
\text { Con- } \\
\text { densing }
\end{gathered}\right.
\] & Suction. & Inlet. & Outlet. & & & & & \\
\hline & 151 & 28 & 36.76 & 28. & \%0.3 & & & & \\
\hline & 161 & 27.5 & 36.36 & 28.45 & r0.1 & 22.27 & 1.09 & 1.0 & \\
\hline & 147 & 13.0 & 14.29 & 2.29 & 42.0 & 16.27 & 0.83 & 1.70 & 1.66 \\
\hline 4 & 152 & 8.2 & 6.27 & 2.03 & 36.43 & 14.10 & 1.1 & 1.93 & 1.92 \\
\hline 6 & 105 & 7.6 & 6.40 & -2.22 & 37.20 & 17.00 & 2.00 & 1.91 & 1.88 \\
\hline & 135 & 15.7 & 4.62 & 3.22 & 27.2 & 13.20 & 1.25 & 2.59 & 2. 5.7 \\
\hline
\end{tabular}

The principal results in four tests are given in the table on page 998. The fuel economy under different conditions of operation is shown in the following table:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{6}{|l|}{Pounds of Ice-melting Effect with Engines-} & \multicolumn{3}{|l|}{B.T.U. per lb. of Steam with Engines-} \\
\hline & & \multicolumn{2}{|l|}{Non-condensiug.} & \multicolumn{2}{|l|}{Non-compound Condensing.} & \multicolumn{2}{|l|}{Compound Condensing} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & & \\
\hline 150 & 28 & 24 & 2.90 & 30 & 3.61 & 37.5 & 4.51 & 393 & 513 & 640 \\
\hline 150 & \% & 14 & 1.69 & 17.5 & 2.11 & 21.5 & 2.58 & 240 & 300 & 366 \\
\hline 105 & 28 & 34.5 & 4.16 & 43 & 5.18 & 54 & 6.50 & 591 & 725 & 923 \\
\hline 105 & \(\tau\) & 22 & 2.65 & 27.5 & 3.31 & 34.5 & 4.16 & \(3 \pi 6\) & 47 & 591 \\
\hline
\end{tabular}

The non-condensing engine is assumed to require 25 lbs . of steam per horse-power per hour, the non-compound condensing 20 lbs ., and the comdensing 16 lbs., and the boiler efficiency is assumed at 8.3 lbs . of water per lb. coal under working conditions. The following conclusions were derived from the investigation :
1. The capacity of the machine is proportional, almost entirely, to the weight of ammonia circulated. This weight depends on the suctionpressure and the displacement of the compressor-pumps. The practical suction-pressures range from 7 lbs . above the atmosphere, with which a temperature of \(0^{\circ} \mathrm{F}\). can be produced, to 28 lbs . above the atmosphere, with which the temperatures of refrigeration are confined to about \(28^{\circ} \mathrm{F}\). At the lower pressure only about one half as much weight of ammonia can be circulated as at the upper pressure, the proportion being about in accordance with the ratios of the absolute pressures, 22 and \(4 \geqslant\) lbs. respectively. For each cubic foot of piston-displacement per minute a capacity of about one sixth of a ton of "refrigerating effect" per 24 hours can be produced at the lower pressure, and of about one third of a ton at the upper pressure. No other elements practically affect the capacity of a machine, provided the coolingsurface in the brine-tank or other space to be cooled is equal to about 36 sq. ft. per ton of capacity at 28 lbs . back pressure. For example, a difference of \(100 \%\) in the rate of circulation of brine, while producing a proportional difference in the range of temperature of the latter, made no practical difference in capacity.

The brine-tank was \(101 / 2 \times 13 \times 10 \% / 3 \mathrm{ft}\)., and contained 8000 lineal feet of 1-in. pipe as cooling-surface. The condensing-tank was \(12 \times 10 \times 10 \mathrm{ft}\)., and contained 5000 lineal feet of 1 -in. \%ipe as cooling-surface.
2. The economy in coal-crinsumption depends mainly upon both the suc-tion-pressures and condensirg-pressures. Maximum economy, with a given type of engine, where water inust be bought at average city prices, is obtained at 28 lbs . suction-pressure and about 150 lbs . condensing-pressure. Under these conditions, for a non-condensing steam-engine, consuming coal at the rate of 3 lbs . per hovir per I.H.P. of steam-cylinders, 24 lbs . of icerefrigerating effect are obtained per lb . of coal consumed. For the same condensing-pressure, and with 7 lbs. suction-pressure, which affords temperatures of \(0^{\circ} \mathrm{F}\)., the possible economy falls to about 14 lbs . of "refrigerating effect" per lb, of coal consumed. The condensing-pressure is determined by the amount of condensing-water supplied to liquefy the ammonia in the condenser. If the latter is about 1 gallon per minute per ton of refrigerating effect per 24 hours, a condensing-pressure of 150 lbs . results, if the initial temperature of the water is about \(56^{\circ} \mathrm{F}\). Twenty-five per cent less water causes the condensing-pressure to increase to 190 lbs . The work of compression is thereby increased about \(20 \%\), and the resulting "economy" is reduced to about 18 lbs . of "ice effect" per 1 b . of coal at 28 lbs . suction-pressure and 115 at 7 lbs . If, on the other hand, the supply of water is made 3 gallons per minute, the condensing-pressure may be confined to about 105 lbs . The work of compression is thereby reduced about \(25 \%\), and a proportional increase of economy results. Minor alterations of economy depend on the initial temperature of the condensing-water and variations of latent heat, but these are confined within about \(5 \%\) of the gross result, the main element of control being the work of compression, as affected by the back pressure and con-densing-pressure, or both. If the steam engine supplying the motive power may use a condenser te secure a vacum, an increase of economy of \(25 \%\) is available over the above figures, making the lbs. of "ice effect" yer lb. of
coal for 150 lbs . condensing-pressure and 28 lbs . suction-pressure 30.0 , and for 7 lbs. suction-pressure, 17.5. It is, however, impracticable to use a condenser in cities where water is bought. The latter must be practically free of cost to be available for this purpose. In this case it may be assumed that water will also be available for condensing the ammonia to obtain as low a condensing-pressure as about 100 lbs ., and the economy of the refrig-erating-machine becomes, for 28 lbs . back-pressure, 43.0 lbs . of "ice effect", per lb. of coal, or for 7 lbs. back-pressure, 27.5 lbs . of ice effect per lb . of coal. If a compound condensing-engine can be used with a steam-consumption per hour per horse-power of 16 lbs . of water, the economy of the refrigerating-machine may be \(25 \%\) higher than the figures last named, making for 28 lbs . back pressure a refrigerating effect of 54.0 lbs . per lb . of coal, and for 7 lbs . back pressure a refrigerating effect of 34.0 lbs . per lb . of coal.

Actual Performance of Icemaking Machines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{} & & & & Revolutions per minute. & & & & & & \multicolumn{2}{|l|}{} \\
\hline & & & & 1 & 27 & 43 & 44.9 & 17.9 & 14.4 & & 40.63 & 30 & & \\
\hline & & & 42 & 70 & 14 & 28 & & & & & & & & \\
\hline & & 128 & 30 & & & 14 & & & & & & 37 & & 50.3 \\
\hline & & 126 & 22 & 68 & -12 & \(0-5\) & 4.8 & 15.5 & 19.5 & & 16.14 & 42. & & 44.7 \\
\hline & 5 & 200 & 42 & 95 & 14 & 28.23 & 45.0 & 24.1 & 10.5 & 16.5 & 19.07 & 36. & 28.5 & \%7.0 \\
\hline & 6 & 136 & 60 & 72 & 30 & 44 3r & 45.2 & 17. & 10.7 & 29.8 & 46.29 & 28. & 19.9 & 56.8 \\
\hline & & 131| & 45 & 71 & 18 & 28.23 & 45.1 & 18. & 12.1 & 21.6 & 33.23 & 31. & & 56.4 \\
\hline & & & 24 & & & \(0-6\) & & & 18.0 & & 17.55 & 41.1 & 28 & 46.1 \\
\hline & 9 & & 41 & 64 & 13 & & 45.0 & 16 & & 20.0 & & 331 & & 50.6 \\
\hline & 10 & 130 & 60 & 70 & 31 & \(43 \quad 3 \%\) & 31. & 12. & 14 & 19.5 & 45.01 & 35.2 & 23 & 52.0 \\
\hline B & 11 & 54 & 2 & 8 & 2 & 43 37 & 5r.0 & 1. & 2. & 2. & 33.07 & 39 & & 24.1 \\
\hline & 12 & 56 & 15 & 76 & 14 & 28.23 & 56.8 & 20.6 & 22.9 & 17.9 & 24.11 & 41.3 & 24. & 23.1 \\
\hline & 13 & & 10 & 75 & -2 & 14.9 & & 18.5 & 24.0 & 11.6 & 17.47 & 42.2 & & 20.4 \\
\hline & 14 & 60 & ? & 81 & -16 & 0-6 & 57.6 & 15.7 & 25. & 5.7 & 10.14 & 54.5 & 38 & 16.8 \\
\hline & 15 & 91 & 15 & 104 & 14 & 28.23 & 59 & 27.2 & 16.9 & 15.7 & 16.05 & 36.2 & 23 & 31.5 \\
\hline & 16 & 61 & 22 & 81 & 31 & 4437 & 57.3 & 216 & 14.0 & 28.1 & 36.19 & 33.4 & 22.5 & 26.8 \\
\hline & 17 & 59 & 16 & 80 & 16 & \(28 \quad 23\) & 57.5 & 20.5 & 12.8 & 19.3 & 26.24 & 34.6 & 25.0 & 25.6 \\
\hline & 18 & 59 & & 79 & -16 & \(0-6\) & 57.8 & 15.9 & & 6.8 & 11.93 & 47.5 & & 18.0 \\
\hline & 19 & 54 & \(2 \cdot\) & 75 & 31 & 43 3î & 35.3 & 12.4 & 22. & 17.0 & 38.04 & 39.5 & 22 & 22.6 \\
\hline & 20 & 89 & 16 & 103 & 16 & 28 2:3 & 42.9 & 19.9 & 14 & 11.9 & 16.68 & 37.7 & 27 & \(3: 3.7\) \\
\hline & 21 & 62 & 6 & 82 & \(-17\) & \(0-5\) & 34.8 & 9.9 & 24.3 & 3.5 & 9.86 & 54.2 & 39.5 & 17.7 \\
\hline & 22 & 59 & 15 & 65* & --53* & & 63.2 & 83.2 & 21.9 & 10.3 & 3.42 & 71. & 56.9 & 26.6 \\
\hline D & 23 & 175 & 54 & 81* & -40* & & 93.4 & 38.1 & 32.1 & 4.9 & 3.0 & 80 & 63 & 89.2 \\
\hline E & 24 & 166 & 43 & 84 & 15 & 3728 & 58 & 85.0 & 22. & 73.9 & 24.16 & 32.8 & 11 & 65.9 \\
\hline & 25 & 167 & 23 & 85 & -11 & 62 & 57. & T2.6 & 18.6 & 37.9 & 14.52 & 37.4 & 22. & 57.6 \\
\hline & 26 & 162 & 28 & 88 & 3 & \(14 \quad 2\) & 57.9 & 73.6 & 19.3 & 46.5 & 17.55 & 34.9 & 18.6 & 59.9 \\
\hline & 27 & 176 & 42 & 88 & 14 & 3628 & 58.9 & 88.6 & 19.7 & 74.4 & 23.31 & 30.5 & 13.5 & ros \\
\hline & 28 & 152 & 40 & 79 & 13 & 2116 & & & & & 20.1 & 47.8 & & \\
\hline
\end{tabular}

\footnotetext{
* Temperature of air at entrance and exit of expansion-cylinder.
† On a basis of 3 lbs . of coal per hour per H.P. of steam-cylinder of com-pression-machine and an evaporation of 11.1 lbs . of water per pound of combustible from and at \(212^{\circ} \mathrm{F}\). in the absorption-machine.
\(\ddagger\) Per cent of theoretical with no friction.
§ Loss due to heating during aspiration of gas in the compression-cylinder and to radiation and superheating at brine-tank.
\(\Downarrow\) Actual, including resistance due to inlet and exit valves.
}

In class A, a German machine, the ice-melting capacity ranges from 46.29 to 16.14 lbs . of ice per pound of coal, according as the suction pressure varies from about 45 to 8 lbs . above the atmosphere, this pressnre being the condition which mainly controls the economy of compression-machines. These results are equivalent to realizing from \(72 \%\) to \(5 \% \%\) of theoretically perfect performances. The higher per cents appear to occur with the higher suction-pressures, indicating a greater loss from cylinder-heating (a phenomenon the reverse of cylinder condensation in steam-engines), as the range of the temperature of the gas in the compression-cylinder is greater.

In E, an American compression-machine, operating on the "dry system," the percentage of theoretical effect realized ranges from \(69.5 \%\) to \(62.6 \%\). The friction losses are higher for the American machine. The latter's higher efficiency may be attributed, therefore, to more perfect displacement.

The largest "ice-melting capacity" in the American machine is 24.16 lbs . This corresponds to the highest suction-pressures used in American practice for such refrigeration as is required in beer-storage cellars using the directexpansion system. The conditions most nearly corresponding to American brewery practice in the German tests are those in line 5, which give an "icemelting capacity " of 19.07 lbs .

For the manufacture of artificial ice, the conditions of practice are those of lines 3 and 4 , and lines 25 and 26 . In the former the condensing pressure used requires more expense for cooling water than is common in American practice. The ice-melting capacity is therefore greater in the German machine, being 22.03 and 16.14 lbs . against 17.55 and 14.52 for the American apparatus.

Cuass B. Sulphur Dioxide or Pictet Machines.-No records are available for determination of the "ice-melting capacity" of machines using pure sulphur dioxide. This fluid is in use in American machines, but in Europe it has given way to the "Pictet fluid," a mixture of about 9 \% \% of sulphur dioxide and \(3 \%\) of carbonic acid. The presence of the carbonic acid affords a temperature about 14 Fahr. degrees lower than is obtained with pure sulphur dioxide at atmospheric pressure. The latent heat of this mixture has never been determined, but is assumed to be equal to that of pure sulphur dioxide.

For brewery refrigerating conditions, line 17, we have 26.24 lbs . "icemelting capacity," and for ice-making conditions, line 13, the "ice-melting capacity" is 17.47 lbs. These figures are practically as economical as those for ammonia, the per cent of theoretical effect realized ranging from 65.4 to \(5 \% .8\). At extremely low temperatures, \(-15^{\circ}\) Fahr., lines 14 and 18 , the per cent realized is as low as 42.5 .

Cylinder-heating. - In compression-machines employing volatile vapors the principal cause of the difference between the theoretical and the practical result is the heating of the ammonia, by the warm cylinder walls, during its entrance into the compressor, thereby expanding it, so that to compress a pound of ammonia a greater number of revolutions must be made by the compressing-pumps than corresponds to the density of the ammonia-gas as it iscues from the brine-tank.

Tests of Ammonia Absorption-machine used in storage-warehouses under approaches to the New York and Brooklyn Bridge. (Eng'g, July 22,1887 .) -The circulated fluid consisted of a solution of chloride of calcium of \(1.163 \mathrm{sp} . \mathrm{gr}\). Its specific heat was found to be .827 .

The efficiency of the apparatus for 24 houls was found by taking the product of the cubic feet of britie circulating through the pipes by the average difference in temperature in the ingoing and outgoing currents, as observed at frequent intervals by the specific heat of the brine (.82\%) and its weight per cubic foot (73.48). The final product, applying all allowances for corrections from various causes, amounted to \(6,218,816\) beat-units as the amount abstracted in 24 hours, equal to the melting of \(43,565 \mathrm{lbs}\). of ice in the same time.

The theoretical heating-power of the coal used in 24 hours was \(27,000,000\) heat-units; hence the efficiency of the apparatus was \(23 \%\). This is equivalent to an ice-melting effect of 16.1 lbs . per lb . of coal having a heating value of 10,000 B.T.U. per lb.

A test of a 35 -ton absorption-machine in New Haven, Conn., by Prof, Denton (Trans. A. S. M. E., x. 792), gave an ice-melting effect of 20.1 lbs . per lb . of coal on a basis of boiler economy equivalent to 3 lbs . of steam per I.H.P. in a good non-condensing steam-engine. The ammonia was worked between 138 and 23 lbs . pressure above the atmosphere.

\section*{Performance of a \(7 \boldsymbol{5}\)-ton Refrigerating-machine.}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline Av. high ammonia press. above atmos. & 151 lbs & \[
\overline{152 \mathrm{lbs} .}
\] & \[
147 \mathrm{lbs} .
\] & 161 lbs. \\
\hline Av. back ammonia press. above atmos. & & 8.2 " & 13 " & 27.5 " \\
\hline Av. temperature brine inlet. & \(36.76^{\circ}\) & \(6.27^{\circ}\) & \(14.29^{\circ}\) & \\
\hline Av. temperature brine outle & \(28.86^{\circ}\) & \(2.03^{\circ}\) & \(2.29^{\circ}\) & \(28.45^{\circ}\) \\
\hline Av. range of temperature & \(7.9^{\circ}\) & \(4.24^{\circ}\) & \(12.00^{\circ}\) & \(7.91{ }^{\circ}\) \\
\hline Lbs. of brine circulated per minute & 2281 & 2173 & 943 & \(23 \sim 4\) \\
\hline Av. temp. condensing-water at inlet. & \(44.65^{\circ}\) & \(56.65^{\circ}\) & \(46.9^{\circ}\) & \(54.00^{\circ}\) \\
\hline Av. temp. condensing-water at outle & \(83.66^{\circ}\) & \(85.4{ }^{\circ}\) & \(85.46^{\circ}\) & \(82.86^{\circ}\) \\
\hline Av. range of temperature & \(39.01^{\circ}\) & \(28.75{ }^{\circ}\) & \(38.56^{\circ}\) & \(28.80^{\circ}\) \\
\hline Lbs. water circulated p. min. thro' cond'ser & 442 & 315 & 257 & 601.5 \\
\hline Lbs. water per min. through jackets....... & 25 & 44 & 40 & 14 \\
\hline Range of temperature in jackets.. & \(24.0{ }^{\circ}\) & \(16.2^{\circ}\) & \(16.4{ }^{\circ}\) & \(29.1^{\circ}\) \\
\hline Lbs. ammonia circulated per min & *28.17 & 14.68 & 16.67 & 28.32 \\
\hline Probable temperature of liquid ammonia, entrance to brine-tank. & *71.30 & *680 & *63. \(\mathrm{r}^{\circ}\) & 66.\% \({ }^{\circ}\) \\
\hline Temp. of amm. corresp, to av. back press. & \(+14^{\circ}\) & - \(8^{\circ}\) & - \(5^{\circ}\) & \\
\hline Av. temperature of gas leaving brine-tanks & \(34.2{ }^{\circ}\) & \(14.7^{\circ}\) & \(30^{\circ}\) & \(29.2{ }^{\text {a }}\) \\
\hline Temperature of gas entering compressor.. & *39 \({ }^{\circ}\) & \(25^{\circ}\) & \(10.13^{\circ}\) & \(34^{\circ}\) \\
\hline Av. temperature of gas leaving compressor & \(213^{\circ}\) & \(263{ }^{\circ}\) & \(239^{\circ}\) & \(221{ }^{\circ}\) \\
\hline Av. temp. of gas entering condenser....... & \(200^{\circ}\) & & \(209^{\circ}\) & \(168{ }^{\circ}\) \\
\hline Temperature due to condensing pressure.. & \(84.5{ }^{\circ}\) & \(84.0^{\circ}\) & \(82.5{ }^{\circ}\) & \(88.0^{\circ}\) \\
\hline Heat given ammonia:
By brine, B.T.U. per miniute & & & & \\
\hline By brine, B.'T.U. per miniute. & 14776 & 7186 & 8824 & \(1464 ?\) \\
\hline By compressor, B.T.U. per minute & 2786 & 2320 & & 3020 \\
\hline By atmosphere, B.T.U. per minute..... & 140 & \(14 \%\) & 167 & 141 \\
\hline Total heat rec. by amm., B.T.U. per min. & \(17 \% 02\) & 9653 & 11409 & \(1 \% 703\) \\
\hline Heat taken from ammonia: By condenser, B.T.U. per min \(\qquad\) & 17242 & 9056 & 9910 & 1\%359 \\
\hline By jackets, B.T.U. per min. & 608 & 712 & 656 & 406 \\
\hline By atmosphere, B.T.U. per & 182 & 338 & 250 & 252 \\
\hline Total heat rej. by amm., B.T.U. per min... & 18032 & 10106 & 10816 & \(1801 \%\) \\
\hline Dif. of heat rec \({ }^{\text {d }}\) and rej., B.T.U. per min. & 330 & 453 & 407 & 309 \\
\hline \% work of compression removed by jackets. & 22\% & 31\% & 26\% & 13\% \\
\hline Av. revolutions per min................... & 58.09 & 57.7 & \(5 \% .88\) & 58.89 \\
\hline Mean eif. press. steam-cyl., lbs. per sq. in.. & 32.5 & 27.17 & 27.83 & 32.97 \\
\hline Mean eff. press amm.-cyl, lbs. per sq. in.. & 65.9 & 53.3 & 59.86 & 70.54 \\
\hline Av. H.P. steam-cylinder & 85.00 & \%1.7 & 73.6 & 88.63 \\
\hline Av. H.P. ammonia-cylinde & 65.7 & 54.7 & 59.3 rir & \%1.20 \\
\hline Friction in per cent of steam & 23.0 & 24.0 & 20.0 & 19.6í \\
\hline Total cooling water, gallons per min. per ton per 24 hours & 0.75 & 1.185 & \(0.79 \sim\) & 0.930 \\
\hline Tons ice-melting capacity per 24 hours. & 74.8 & 36.43 & 44.64 & 74.56 \\
\hline Lbs. ice-refrigerating eff. per lb. coal at 3 lbs. per H.P. per hour & 24.1 & 14.1 & 17.27 & 23.37 \\
\hline Cost coal per ton of ice-refrigerating effect at \(\$ 4\) per ton. & \$0.166 & \$0.283 & \$0.231 & \$0.1\%0 \\
\hline Cost water per ton of ice-refrigerating effect at \(\$ 1\) per 1000 cu . ft. & \$0.128 & \(\$ 0.200\) & \(\$ 0.136\) & \$0.169 \\
\hline Total cost of 1 ton of ice-refrigerating eff... & \$0.294 & \$0.483 & \$0.467 & \$0.339 \\
\hline
\end{tabular}

Figures marked thus (*) are obtained by calculation; all other figures are ghtained from experimental data ; temperatures are in Fahrenheit degrees.

\section*{Ammonia Compression-machine.}

Actual Results obtained at the Munich Tests.
(Prof. Linde, Trans. A. S. M. E., xiv. 1419.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. of Test & 1 & 2 & 3 & 4 & 5 \\
\hline Temp. of refrig- \} Inlet, deg & 43.194 & 28.344 & 13.952 & -0.2ヶ9 & 28.251 \\
\hline erated brine \({ }^{\text {O }}\) Outlet, \(t\) deg. F & 37.054 & 22.885 & 8.771 & -5.879 & 23.0 \% 2 \\
\hline Specific heat of brine & 0.861 & 0.851 & 0.843 & 0.837 & 0.851 \\
\hline Quantity of brine circ. per h., cu. ft. & 1,039.38 & 908.84 & 633.89 & 414.98 & 800.93 \\
\hline Cold produced, B.T.U. per hour & 342,909 & 263,950 & 172,776 & 121,474 & 220,284 \\
\hline Quant. of cooling water per h., c. ft. & 338.66 & 260.83 & 187.506 & 139.99 & 97.76 \\
\hline I.H.P. in steam-engine cylinder (\(L e\)). & 15.80 & 16.47 & 15.28 & 14.24 & 21.61 \\
\hline Cold pro- \(\mathrm{Per}^{\text {P I.H.P. in comp.-cyl. }}\) & 24,813 & 18,411 & 12, 7 \% \({ }^{\text {a }}\) & 10,140 & 11,151 \\
\hline duced per \(\}\) Per I.H.P. in steam-cyl. & 21.703 & 16,026 & 11,307 & 8,530 & 10,194 \\
\hline h., B.T.U. \({ }^{\text {a }}\) Per lb. of steam........ & 1,100.8 & 85.6 & 564.9 & 435.82 & 12.12 \\
\hline
\end{tabular}

Means for Applying the Cold. (M. C. Bannister, Liverpool Eng'g Soc'y, 1890.)-The most useful means for applying the cold to various uses is a saturated solution of brine or chloride of magnesium, which remains liquid at \(5^{\circ}\) Fahr. The brine is first cooled by being circulated in contact with the refrigerator-tubes, and then distributed through coils of pipes, arranged either in the substances requiring a reduction of temperature, or in the cold stores or rooms prepared for them; the air coming in contact with the cold tubes is immediately chilled, and the moisture in the air deposited on the pipes. It then falls, making room for warmer air, and so circulates until the whole room is at the temperature of the brine in the jipes.
In a recent arrangement for refrigerating made by the Linde British ReI rigeration Co., the cold brine is circulated through a shallow trough, in which revolve a number of shafts, each geared together, and driven by mechanical means. On the shafts are fixed a number of wrought-iron disks, partly immersed in the brine, which cool them down to the brine temperature as they revolve; over these disks a rapid circulation of air is passed by a fan, being cooled by contact with the plates; then it is led into the chambers requiring refrigeration, from which it is again drawn by the same fan; thus all moisture and impurities are removed from the chambers, and deposited in the brine, producing the most perfect antiseptic atmosphere jet invented for cold storing; while the maximum efficiency of the brine temperature was always available, the brine being periodically concentrated by suitable arrangements.

Air has also been used as the circulating medium. The ammonia-pipes refrigerate the air in a cooling-chamber, and large wooden conduits are used to convey it to and return it from the rooms to be cooled. An advantage of this system is that by it a room may be refrigerated more quickly than by brine-coils. The returning air deposits its moisture in the form of snow on the ammonia-pipes, which is remored by mechanical brushes.

\section*{ARTEFICIAL ICE-MIANUFACTURE.}

Under summer conditions, with condensing water at \(\% 0^{\circ}\), artificial ice-machines use ammonia at about 190 lbs. above the atmosphere condenserpressure, and 15 lbs suction-pressure.

In a compression type of machine the useful circulation of ammonia, allowing for the effect of cylinder-heating, is about 13 lbs . per hour per indicated horse-power of the steam cylinder. This weight of ammonia produces about 32 lbs . of ice at \(15^{\circ}\) from water at \(\% 0^{\circ}\). If the ice is made from distilled water, as in the "can system," the amount of the latter supplied by the boilers is about \(33 \%\) greater than the weight of ice obtained. This exiess represents steam escaping to the atmosphere, from the re-boiler and steam-condenser, to purify the distilled water, or free it from air; also, the loss through leaks and drips, and loss by melting of the ice in extracting it from the cans. The total steam consumed per horse-power is, therefore, about \(32 \times 1.33=43.0 \mathrm{lbs}\). About 7.0 lbs . of this covers the steam-consumption of the steam-engines driving the brine circulating-pumps, the several

\section*{1000 ICE-MAKING OR REFRIGERATING MACHINES.}
cold-water pumps, and leakage, drips, etc. Consequently, the main steamengine must consume 36 lbs . of steam per hour per I.H.P., or else live steam must be condensed to supply the required amount of distilled water. There is, therefore, nothing to be gained by using steam at high rates of expansion in the steam-engines, in making artificial ice from distilled water. If the cooling water for the ammonia-coils and steam-condenser is not too hard for use in the boilers, it may enter the latter at about \(175^{\circ} \mathrm{F}\)., by restricting the quantity to \(11 / 2\) gallons per minute per ton of ice. With good coal \(81 / 2 \mathrm{lbs}\). of feed-water may then be evaporated, on the average, per lb. of coal.

The ice made per pound of coal will then be \(32 \div(43.0 \div 8.5)=6.0 \mathrm{lbs}\). This corresponds with the results of average practice.

If ice is manufactured by the "plate system," no distilled water is used for freezing. Hence the water evaporated by the boilers may be reduced to the amount which will drive the steam-motors, and the latter may use steam expansively to any extent consistent with the power required to compress the ammonia, operate the feed and filter pumps, and the hoisting machinery. The latter may require about \(15 \%\) of the power needed for compressing the ammonia.

If a compound condensing steam-engine is used for driving the compressors, the steam per indicated steam horse-power, or per 321 bs . of net ice, may be 14 lbs . per hour. The other motors at 50 lbs . of steam per horsepower will use 7.5 lbs. per hour, making the total consumption per steam horse-power of the compressor 21.5 lbs . Taking the evaporation at \(8 \mathrm{lbs} .\), the feed-water temperature being limited to about \(110^{\circ}\), the coal per horsepower is 2.7 lbs . per hour. The net ice per lb . of coal is then about \(32 \div 2.7=\) 11.8 lbs . The best results with "plate-system" plants, using a compound steam-engine, have thus far afforded about \(101 / 2 \mathrm{lbs}\). of ice per lb . of coal.
In the "plate system" the ice gradually forms, in from 8 to 10 days, to a thickness of about 14 inches, on the hollow plates, \(10 \times 14\) feet in area, in which the cooling fluid circulates.
In the "can system" the water is frozen in blocks weighing about 300 lbs . each, and the freezing is completed in from 40 to 48 hours. The freezingtank area occupied by the "plate system" is, therefore, about twelve times, and the cubic contents about four times as much as required in the "can system."

The investment for the "plate" is about one-third greater than for the "can" system. In the latter system ice is being drawn throughout the 24 hours, and the hoisting is done by hand tackle. Some "can" plants are equipped with pneumatic hoists and on large hoists electric cranes are used to advantage. In the "plate system" the entire daily product is drawn, cut, and stored in a few hours, the hoisting being performed by power. The distribution of cost is as follows for the two systems, taking the cost for the "can" or distilled-water system as 100 , which represents an actual cost of about \(\$ 1.25\) per net ton:
\begin{tabular}{|c|c|c|}
\hline & Can System. 14.2 & Plate System. \\
\hline Engineers, firemen, and coal-passer. & 15.0 & 13.9 \\
\hline Coal at \(\$ 3.50\) per gross ton. & 42.2 & 20.0 \\
\hline Water pumped directly from a natu at 5 cts. per 1000 cubic feet. . & 1.3 & 2.6 \\
\hline Interest and depreciation at 10\% & 24.6 & 32.7 \\
\hline Repairs... & 2.7 & 3.4 \\
\hline & 100.00 & 75.4 \\
\hline
\end{tabular}

A compound condensing engine is assumed to be used by the "plate sys. tem."

Test of the New York Hygeia Icemmaking Plant.-(By Messis. Hupfel, Griswold, and Mackenzie; Stevens Indicutor, Jan. 1894.) The final results of the tests were as follows:
Net ice made per pound of coal, in pounds. 7.12
Pounds of net ice per hour per horse-power 37.8
Net ice manufactured per day (12 hours) in tons 97
Av. pressure of ammonia-gas at condenser, lbs. per sq. in. ab. atmos. 135.2
Average back pressure of amm.-gas, lbs. per sq. in. above atmos.. 15.8
A verage temperature of brine in freezing-tanks, degrees F 19.7
Total number of cans filled per week 4389
Ratio of cooling-surface of coils in brine-tank to can-surface. 7 to 10
Ratio of brine in tanks to water in cans 1 to 1.2
Ratio of circulating water at condensers to distilled water 26 to 1
Pounds of water evaporated at boilers per pound of coal 8.085
Total horse-power developed by compressor-engines... 444
Percentage of ice lost in removing from cans. 2.2
APPROXIMATE DIVISION OF STEAM IN PER CENTS OF TOTAL AMOUNT.
Compressor-engines 60.1
Live steam admitted directly to condensers 19.7
Steam for pumps, agitator, and elevator engines 7.6
Live steam for reboiling distilled water 6.5
Steam for blowers furnishing draught at boilers 5.6
Sprinklers for removing ice from cans 0.5
The precautions taken to insure the purity of the ice are thus described:
The water which finally leaves the condenser is the accumulation of theexhausts from the various pumps and engines, together with an amount oflive steam injected into it directly from the boilers. This last quantity isused to make up any deficit in the amount of water necessary to supply theive-cans. This water on leaving the condensers is violently reboiled, andafterwards cooled by running through a coil surface-cooler. It then passesthrough an oil-separator, after which it runs through three charcoal-filtersand deodorizers, placed in series and containing 28 feet of charcoal. It nextpasses into the supply-tank in which there is an electrical attachment fordetecting salt. Nitrate-of-silver tests are also made for salt daily. Fromthis tank it is fed to the ice-cans, which are carefully covered so thet thewater cannot possibly receive any impurities.

\section*{MARINE ENGINEERING.}

Rules for Measuring Dimensions and Obtaining Tonnage of Vessels. (Record of American \& Foreign Shipping. American Shipmasters' Assn., N. Y. 1830.)-The dimensions to be measured as follows:
I. Length. \(L\).-From the fore side of stem to the after side of stern-post measured at middle line on the upper deck of all vessels, except those having a continuous hurricane-deck extending right fore and aft. in which the length is to be measured on the range of deck immediately below the hurri-eane-deck.

Vessels having clipper heads, raking forward, or receding stems, or rak. ing stern-posts, the length to be the distance of the fore side of stem from aft-side of stern-post at the deep-load water-line measured at middle line. (The inner or propeller-post to be taken as stern-post in screw-steamers.
II. Breadth, B.-To be measured over the widest frame at its widest part; in other words, the moulded breadth.
III. Depth, \(D\). - To be measured at the dead-flat frame and at middle line of vessel. It shall be the distance from the top of floor-plate to the upper side of upper deck-beam in all vessels except those having a continuous ihurricane-deck, extending right fore and aft, and not intended for the American coasting trade, in which the depth is to be the distance from top of floor-plate to midway between top of hurricane deck-beam and the top of dieck-beam of the deck immediately below hurricane-deck.

In vessels fitted with a continuous hurricane deck, extending right fore and aft. and intended for the American coasting trade, the depth is to be the distance from top of floor-plate to top of deck-beam of deck immediately below hurricane-deck.

Rule for Obtaining Tonnage.-Multiply together the length, breadth, and depth, and their product by . 75 ; divide the last product by 100 ; the quotient will be the tonnage. \(\frac{L \times B \times D \times .75}{100}=\) tonnage.

The U. S. Custom-house Tonnage Law, May 6, 1864, provides that " the register tonnage of a vessel shall be her entire internal cubic capacity in tons of 100 cubic feet each." This measurement includes all the space between upper decks, however many there may be. Explicit directions for making the measurements are given in the law.

The Displacement of a Vessel (measured in tous of 2240 lbs .) is the weight of the volume of water which it displaces. For sea-water it is equal to the volume of the vessel beneath the water-line, in cubic feet, divided by 35 , which figure is the number of cubic feet of sea-water at \(60^{\circ}\)
F. in a ton of 2240 lbs . For fresh water the divisor is 35.93 . The U. S. register tonnage will equal the displacement when the entire internal cubic capacity bears to the displacement the ratio of 100 to 35 .
The displacement or gross tonnage is sometimes approximately estimated as follows: Let \(L\) denote the length in feet of the boat, \(B\) its extreme breadth in feet, and \(D\) the mean draught in feet; the product of these three dimensions will give the volume of a parallelopipedon in cubic feet. Putting \(V\) for this volume, we have \(V=L \times B \times D\).

The volume of displacement may then be expressed as a percentage of the volume \(V\), known as the "block coefficient." This percentage varies for different classes of ships. In racing yachts with very deep keels it varies from 22 to 33 ; in modern merchantmen from 55 to 75 ; for ordinary small boats probably 50 will give a fair estimate. The volume of displacement in cubic feet divided by 3 gives the ciisplacement in tons.

Coefficient of Fineness.-A term used to express the relation between the displacement of a ship and the volume of a rectangular prism or box whose lineal dimensions are the length, breadth, and draught of the ship.
Coefficient of fineness \(=\frac{D \times 35}{L \times B \times W} ; D\) being the displacement in tons of 35 cubic feet of sea-water to the ton, \(L\) the length between perpendiculars, \(B\) the extreme breadth of beam, and \(W\) the mean draught of water, all in feet.

Coefficient of Water-lines.-An expression of the relation of the displacement to the volume of the prism whose section equals the midship section of the ship, and length equal to the length of the ship.

Coefficient of water-lines \(=\frac{D \times 35}{\text { area of immersed water section } \times L}\). Seaton gives the following values:
\begin{tabular}{|c|c|c|}
\hline & Coefficient of Fineness. & Coefflcient of Water-lines. \\
\hline Finely-shaped ships. & 0.55 & 0.63 \\
\hline Fairly-shaped ships. & 0.61 & 0.67 \\
\hline Ordinary merchant steamers for spe & 0.65 & 0.72 \\
\hline Cargo steamers, 9 to 10 knots & 0.70 & 0.76 \\
\hline Modern cargo steamers of large size & 0.78 & 0.83 \\
\hline
\end{tabular}

Resistance of Ships.-The resistance of a ship passing through water may vary from a number of causes, as speed, form of body, displacement, midship dimensions, character of wetted surface, fineness of lines, etc. The resistance of the water is twofold: 1st. That due to the displace. ment of the water at the bow and its replacement at the stern, with the consequent formation of waves. 2d. The friction between the wetted surface of the ship and the water, known as skin resistance. A common approximate formula for resistance of vessels is
Resistance \(=\) speed \(^{2} \times \sqrt[3]{\text { displacement }^{2}} \times\) a constant, or \(R=S^{2} D^{\frac{2}{3}} \times C\).
\[
\text { If } D=\text { displacement in pounds, } S=\text { speed in feet per minute, } R=\text { resist- }
\] ance in foot-pounds per minute, \(R=C S^{2} D^{\frac{2}{3}}\). The work done in overcoming the resistance through a distance equal to \(S\) is \(R \times S=C S^{3} D^{\frac{2}{3}}\); and if \(E\) is the efficiency of the propeller and machinery combined, the indicated horse-power I.H.P. \(=\frac{C S^{3} D^{\frac{2}{3}}}{E \times 33,000^{\circ}}\).

If \(S=\) speed in knots, \(D=\) displacement in tons, and \(C\) a constant which includes all the constants for form of vessel, efficiency of mechanism, etc., I.H.P. \(=\frac{S^{3} D^{\frac{2}{3}}}{C}\).

The wetted surface varies as the cube root of the square of the displacement; thus, let \(L\) be the length of edge of a cube just immersed, whose displacement is \(D\) and wetted surface \(W\). Then \(D=L^{3}\) or \(L=\sqrt[3]{D}\), and \(W=5 \times L^{2}=5 \times(\sqrt[3]{D})^{2}\). That is, \(W\) varies as \(D_{3}^{2}\) 。

\section*{Another approximate formula is}
\[
\text { I.H.P. }=\frac{\text { area of immersed midship section } \times S^{3}}{K}
\]

The usefulness of these two formulæ depends upon the accuracy of the so-called "constants" \(C\) and \(K\), which vary with the size and form of the ship, and probably also with the speed. Seaton gives the following, which may be taken roughly as the values of \(C\) and \(K\) under the conditions expressed:
\begin{tabular}{|c|c|c|c|}
\hline General Description of Ship. & Speed, knots. & Value of \(C\). & Value of \(K\). \\
\hline Ships over 400 feet long, finely shape & 15 to 17 & 240 & 620 \\
\hline "، 300 "، "، & \begin{tabular}{ll}
15 & "6 \\
17 \\
13 & 17 \\
\hline
\end{tabular} & 190 & 500 \\
\hline " ، ، & 13 \({ }^{13} 615\) & 240 & 650
700 \\
\hline Ships over 300 feet Jong, fairly shaped & 11 \({ }^{11}\) ، 13 & 240 & 650 \\
\hline " & 9 \({ }^{1} 611\) & 260 & 700 \\
\hline Ships over 250 feet long, finely shaped & \begin{tabular}{l}
13 \\
13 \\
\hline 6 \\
\hline 6 \\
\hline 15 \\
\hline 15
\end{tabular} & 200 & 580 \\
\hline & 11 11613 & 240 & 660 \\
\hline & 9 " 11 & 260 & 700 \\
\hline Ships over 250 feet long, fairly shap & 11 \(\begin{array}{rrr}6 & 13 \\ 9 & 6 & 11\end{array}\) & 220
250 & 620
680 \\
\hline Ships over 200 feet long, finely shap & 11 31612 & 220 & 600 \\
\hline " "، \({ }^{\text {ch }}\) & 9 " 11 & 240 & 640 \\
\hline Ships over 200 feet long, fairly shaped & 9 " 11 & 220 & 620 \\
\hline Ships under 200 feet long. finely sliaped & 11 61012 & 200 & 550
580 \\
\hline & 10 \({ }_{10} \mathbf{6}\) 6 11 & \(\stackrel{210}{230}\) & 580
620 \\
\hline Ships under 200 feet long, fairly shape & \(\begin{array}{llll} \\ 9 & & 10\end{array}\) & 200 & 600 \\
\hline
\end{tabular}

Coefficient of Performance of Vessels.--The quotient

\author{
\(\sqrt[3]{(\text { displacement })^{2}} \times(\text { speed in knots })^{3}\) \\ tons of coal in 24 hours
}
gives a quotient of performance which represents the comparative cost of propulsion in coal expended. Sixteen vessels with three-stage expansionengines in 1890 gave an average coefficient of 14,810 , the range being from 12,150 to 16,700 .

In 1881 seventeen vessels with two-stage expansion-engines gave an average coefficient of 11.710 . In 1881 the length of the vessels tested ranged from 260 to 320 , and in 1890 from 295 to 400 . The speed in knots divided by the square root of the length in feet in 1881 averaged 0.539 ; and in 1890, \(0.5 \% 9\); ranging from 0.520 to 0.641 . (Proc. Inst. MI. E., July, 1891, p. 329.)
Defects of the Common Formula for iresistance.-Moderu experiments throw doubt upon the truth of the statement that the resistance varies as the square of the speed. (See Robt. Mansel's letters in Engineering, 1891; also his paper on The Mechanical Theory of Steamship Propulsion, read before Section G of the Engineering Congress, Chicago, 1893.)

Seaton says: In sinall steamer's the chief resistance is the skin resistance. In very fine steamers at high speeds the amount of power required seems excessive when compared with that of ordinary steamers at ordinary speeds.
In torpedo-launches at certain high speeds the resistance increases at a lower rate than the square of the speed.

In ordinary sea-going and river steamers the reverse seems to be the case.
Rankine's Formula for total resistance of vessels of the "waveline ' type is:
\[
R=A L B V^{2}\left(1+4 \sin ^{2} \theta+\sin ^{4} \theta\right),
\]
in which equation \(\theta\) is the mean angle of greatest obliquity of the streamlines, \(A\) is a constant multiplier, \(B\) the mean wetted girth of the surface exposed to friction, \(L\) the length in feet, and \(V\) the speed in knots. The power demanded to impel a ship is thus the product of a constant to be determined by experiment, the area of the wetted surface, the cube of the speed, and the
quantity in the parenthesis, which is known as the "coefficient of augmentation." The last term of the coefficient may be neglected in calculating the resistance of ships as too small to be practically important. In applying the formula, the mean of the squares of the sines of the angles of maximum obliquity of the water-lines is to be taken for \(\sin ^{2} \theta\), and the rule will then read thus:

To obtain the resistance of a ship of good form, in pounds, multiply the length in feet by the mean immersed girth and by the coefficient of augmentation, and then take the product of this "augmented surface," as Rankine termed it, by the square of the speed in knots, and by the proper constant coefficient selected from the following:
\[
\begin{aligned}
& \text { For clean painted vessels, iron hulls......... } A=.01 \\
& \text { For clean coppered vessels................ } A=.009 \text { to } .008 \\
& \text { For moderately rough iron vessels......... } A=.011+
\end{aligned}
\]

The net, or effective, horse-power demanded will be quite closely obtained by multiplying the resistance calculated, as above, by the speed in knots and dividing by 326 . The gross, or indicated, power is obtained by multiplying the last quantity by the reciprocal of the efficiency of the machinery and propeller, which usually should be about 0.6 . Rankine uses as a divisor in this case 200 to 260.

The form of the vessel, even when designed by skilful and experienced naval architects, will often vary to such an extent as to cause the above constant coefficients to vary somewhat; and the range of variation with good forms is found to be from 0.8 to 1.5 the figures given.

For well-shaped iron vessels, an approximate formula for the horse-power required is H.P. \(=\frac{S V^{3}}{20,000}\), in which \(S\) is the "augmented surface." The expression \(\frac{S V^{3}}{H . P}\). has been called by Rankine the coefficient of propulsion. In the Hudson River steamer "Mary Powell," according to Thurston, this coefficient was as high as 23,500 .

The expression \(\frac{D^{\frac{2}{3}} V^{3}}{H . P_{.}}\)has been called the locomotive performance. (See Rankine's Treatise on Shipbuilding, 1864; Thurston's Manual of the Steamengine, part ii. p. 16; also paper by F. T. Bowles, U.S.N., Proc. U. S. Naval Institute, 1883.)

Rankine's method for calculating the resistance is said by Seaton to give more accurate and reliable results than those obtained by the older rules, but it is criticised as being difficult and inconvenient of application.

Dr. Kirk's Method.-This method is generally used on the Clyde.
The general idea proposed by Dr. Kirk is to reduce all ships to so definite and simple a form that they may be easily compared; and the magnitude of certain features of this form shall determine the suitability of the ship for speed, etc.

The form consists of a middle body, which is a rectangular parallelopiped, and fore body and after body, prisms having isosceles triangles for bases, as shown in Fig. 168.

Fig. 168.
This is called a block model, and is such that its length is equal to that of the ship, the depth is equal to the mean draught, the capacity equal to the displacement volume, and its area of section equal to the area of im.
mersed midship section. The dimensions of the block model may be obtained as follows:
Let \(A G=H B=\) length of fore- or after-body \(=F \cdot\)
\[
\begin{array}{ll}
G H=\text { length of middle body } & =M ; \\
K L=\text { mean draught } \\
E K=\frac{\text { area of immersed midship section }}{K L} & =B ;
\end{array}
\]

Volume of block \(=(F+M) \times B \times H\);
Midship section \(=B \times H\);
Displacement in tons \(=\) volume in cubic \(\mathrm{ft} .+35\).
\[
A H=A G+G H=F+M=\text { displacement } \times 35+(B \times H)
\]

3ne wetted surface of the block is nearly equal to that of the ship of the sime length, beam and draught; usually \(2 \%\) to \(5 \%\) greater. In exceedingly fine hollow-line ships it may be \(8 \%\) greater.
\[
\begin{aligned}
& \text { Area of bottom of block }=(F+M) \times B ; \\
& \text { Area of sides }=2 M \times H \\
& \text { Area of sides of ends }=4 \sqrt{F^{2}+\left(\frac{B}{2}\right)^{2}} \times H ; \\
& \text { Tangent of half angle of entrance }=\frac{1 / 2 B}{F}=\frac{B}{2 F}
\end{aligned}
\]

From this, by a table of natural tangents, the angle of entrance may be obtained:

Angle of Entrance Fore-body in of the Block Model. parts of length.

Ocean-going steamers, 14 knots and upward.
12 to 14 knots..........
cargo steamers, 10 to 12 knots..
30 to 22
.3 to .36
.26 to . 3
. 22 to . 26
E. R. Mumford's Method of Calculating. Wetted Surfaces is given in a paper by Archibald Denny, Eng'g, Sept. \({ }^{2} 1,1894\). The following is his formula, which gives closely accurate results for medium draughts, beams, and finenesses:
\[
S=(L \times D \times 1.7)+(L \times B \times C)
\]
in which \(S=\) wetted surface in square feet;
\(L=\) length between perpendiculars in feet;
\(D=\) middle draught in feet:
\(B=\) beam in feet;
\(C=\) block coefficient.
The formula may also be expressed in the form \(S=L(1.7 D+B C)\).
In the case of twin-screw ships having projecting shaft-casings, or in the case of a ship having a deep keel or bilge keels, an addition must be made for such projections. The formula gives results which are in general much more accurate than those obtained by Kirk's method. It underestimates the surface when the beam, draught, or block coefficients are excessive; but the error is small except in the case of abnormal forms, such as stern-wheel steamers having very excessive beams (nearly one fourth the length), and also very full block coefficients. The formula gives a surface about \(6 \%\) too small for such forms.

To Find the Indicated Horsemonver from the Wetted Surface. (Seaton.)-In ordinary cases the horse-power per 100 feet of wetted surface may be found by assuming that the rate for a speed of 10 knots is 5 , and that the quantity varies as the cube of the speed. For example: To find the number of I.H.P. necessary to drive a ship at a speed of 15 knots, having a wetted skin of block model of 16,200 square feet:

The rate per 100 feet \(=(15 / 10)^{3} \times 5=16.875\).
Then I.H.P. required \(=16.8 \% 5 \times 162=2734\) 。

When the ship is exceptiona!ly well-proportioned, the bottom quite clean, and the efficiency of the machinery high, as low a rate as 4 I.H.P. per 100 feet of wetted skin of block model may be allowed
The gross indicated horse-power includes the power necessary to overcome the friction and other resistance of the engine itself and the shafting, and also the power lost in the propellor. In other words, I.H.P. is no measure of the resistance of the ship, and can only be relied on as a means of deciding the size of engines for speed, so long as the efficiency of the engine and propellor is known definitely, or so long as similar engines and propellers are employed in ships to be compared. The former is difficult to obtain, and it is nearly impossible in practice to know how much of the power shown in the cylinders is employed usefully in overcoming the resistance of the ship. The following example is given to show the variation in the efficiency of propellers:
H.M.S. " Amazon," with a 2-bladed screw, increased pitch, and less revolutions per minute............................. 12.396 " 1663 H.M.S. "Iris,"," with a 4-bladed screw............................ 16.577 " 7503 H.M.S. "Iris," with 2-bladed screw, increased pitch, less

Vessels. (Horse-power for 10 knots \(=1\).)-The horse-power is taken usually to vary as the cube of the speed, but in different vessels and at different speeds it may vary from the 2.8 power to the 3.5 power, depending upor the lines of the vessel and upon the efficiency of the engines, the propeller, etc.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline تُ & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline \[
\underset{S^{2} \cdot B_{8}^{\prime}}{\operatorname{AP}}
\] & . 0769 & 239 & . 535 & 1. & 1.666 & 2.565 & 3.729 & 5.185 & 6.964 & 9.095 & 11.60 & 14.52 & 17.87 & \\
\hline \(S^{2 \cdot 9}\) & . \(0 \sim 01\) & 227 & 524 & 1. & \(1.69 \%\) & 2.653 & 3.908 & 5.499 & 7.464 & 9.841 & 12.6 \({ }^{\prime}\) & 15.9 i & 19.80 & \\
\hline \(S^{3}\) & . 0640 & . 216 & 512 & 1. & 1. 728 & 2. 744 & 4.096 & 5.832 & & 10.65 & 13.82 & 17.58 & 21.95 & \\
\hline \(S^{3.1}\) & . 0584 & . 205 & . 501 & 1 & 1. 660 & 2.838 & 4.293 & 6.185 & 8.574 & 11.52 & 15.09 & 19.34 & 24.33 & 30 \\
\hline \(S^{3 \cdot 2}\) & . 0533 & 195 & . 490 & 1. & 1.792 & 2.935 & 4.500 & 6.559 & 9.189 & 12.47 & 16.47 & 21.28 & \(26.9 \%\) & 33.63 \\
\hline \(S^{3 \cdot 3}\) & . 0486 & . 185 & . 479 & 1. & 1.8\%5 & 3.036 & 4.716 & 6.957 & 9.849 & 13.49 & 17.98 & 23.41 & 29.90 & 37.54 \\
\hline \(S^{3 \cdot 4}\) & . 0444 & 176 & . 468 & 1. & 1.859 & 3.139 & 4.943 & 7.378 & 10.56 & 14.60 & 19.62 & 25.76 & 33.14 & 41.90 \\
\hline \(S^{3.5}\) & . 0 & 16 & . 45 & & 1. & 3. & 5.181 & 4 & 11.31 & 15.79 & 21.42 & 28.34 & 36.73 & 46.78 \\
\hline
\end{tabular}

Example in Use of the Tabie.-A certain vessel makes 14 knots speed with \(58 \%\) I.H.P. and 16 knots with 900 I.H.P. What I.H.P. will be required at 18 knots, the rate of increase of horse-power with increase of speed remaining constant? The first step is to find the rate of increase, thus: \(14^{x}: 16^{x}::\) \(58 \%\) : 900.
\[
\begin{aligned}
& x \log 16-x \log 14=\log 900-\log 587 \\
& x(0.204120-0.146128)=2.954243-2.768638
\end{aligned}
\]
whence \(x\) (the exponent of \(S\) in formula H.P. \(\propto S^{x}\)) \(=3.2\).
From the table, for \(S^{3} \cdot 2\) and 16 knots, the I.H.P. is 4.5 times the I.H.P. at 10 knots, \(\therefore\) H.P. at 10 knots \(=900 \div 4.5=200\).
From the table, for \(S^{3 \cdot 2}\) and 18 knots, the I.H.P. is 6.559 times the I.H.P. at 10 knots; \(\therefore\) H.P. at 18 knots \(=200 \times 6.559=1312\) H.P.
Resistance per Horse-power for Different Speeds. (One horse-power \(=33,400 \mathrm{lbs}\). resistance overcome through 1 ft . in 1 min .) -The resistances per horse-power for various speeds are as follows: For a speed of 1 knot, or 6080 feet per hour \(=1011 / 3 \mathrm{ft}\). per min., \(33,000 \div 1011 / 3=325.658 \mathrm{lbs}\). per horse-power; and for any other speed 325.658 lbs . divided by the speed in knots; or for

\section*{Results of Trials of Steam-vessels of Various Sizes.}
(From Seaton's Marine Engineering.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline Length, perpendiculars & \(\overline{90} 0^{\prime \prime}\) & \(\overline{171^{\prime} 9^{\prime \prime}}\) & \(\overline{130^{\prime} 0^{\prime \prime}}\) & 286' \(0^{\prime \prime}\) & \(230^{\prime} 0^{\prime \prime}\) & \(3!7^{\prime \prime} 0^{\prime \prime}\) \\
\hline Breadth, extreme.. & \(10^{\prime} 6^{\prime \prime}\) & \(18^{\prime} 9^{\prime \prime}\) & \(21^{\prime} 0^{\prime \prime}\) & \(34^{\prime} 3^{\prime \prime}\) & \(29^{\prime} 0^{\prime \prime}\) & \(35^{\prime} 0^{\prime \prime}\) \\
\hline Mean draught water & \(2^{\prime} 6^{\prime \prime}\) & \(6^{\prime} 91 / 2^{\prime \prime}\) & \(8^{\prime} 10^{\prime \prime}\) & \(6^{\prime} 0^{\prime \prime}\) & \(13^{\prime} 6^{\prime \prime}\) & \(13^{\prime} 0^{\prime \prime}\) \\
\hline Displacement (tons) & 29.73 & 280 & \(3{ }^{3} 0\) & 800 & 1500 & 1900 \\
\hline Area Immersed mid. sectio & 24? & 99 & 148 & 200 & 310 & 336 \\
\hline \% (Wetted skin...... .. & 903 & 3793 & \(3{ }^{2} 54\) & 8:22 & 10,075 & 15,782 \\
\hline ¢ \({ }_{\text {d }}^{0}\) Length, fore-body. & \(45^{\prime} 0^{\prime \prime}\) & '22 \(2^{\prime} 0{ }^{\prime \prime}\) & \(42^{\prime} 6^{\prime \prime}\) & \(143^{\prime} 0^{\prime \prime}\) & \%9' \(6^{\prime \prime}\) & \(129^{\prime} 0^{\prime \prime}\) \\
\hline దू (Angle of entrance. & \(12^{\circ} 40^{\prime}\) & \(11^{\circ} 30^{\prime}\) & \(23^{\circ} 50^{\prime}\) & \(13^{\circ} 21^{\prime}\) & \(17^{\circ} 0^{\prime \prime}\) & \(11^{\circ} 26^{\prime}\) \\
\hline Displacement \(\times 35\) & 0.481 & \(0.5 \% 6\) & 0.608 & 0.489 & 0.671 & 0.605 \\
\hline Length \(\times\) Imm. mid area..... & & & & & & \\
\hline Speed (knots) & 2201 & 15.3 & 10.74 & 17.20 & 10.04 & 17.8 \\
\hline Indicated horse-power & 460 & \%98 & 371 & 1490 & 503 & \(4 \pi 51\) \\
\hline I.H.P. per 100 ft . wetted skin & 50.9 & 21.04 & 9.88 & 18.12 & 5.00 & 30.00 \\
\hline I.H.P. per 100 ft . wetted skin, reduced to 10 knots. . & 4.78 & 5.87 & 7.97 & 3.56 & 4.90 & 5.32 \\
\hline \[
\frac{D^{\frac{2}{3}} \times S^{3}}{\text { I.H.P. }}
\] & 223 & 192 & 172.8 & 293.7 & 266 & 182 \\
\hline \[
\frac{\text { Immersed mid area } \times S^{3}}{\text { I.H.P. }}
\] & 556? & 445 & 495 & 683 & 690 & 399 \\
\hline & & & & & & \\
\hline Length, perpendiculars.. & \(2 \pi 0^{\prime} 0^{\prime \prime}\) & \(300{ }^{\prime \prime} 0^{\prime \prime}\) & \(300^{\prime} 0^{\prime \prime}\) & \(370{ }^{\prime \prime}\) & \(3920^{\prime \prime}\) & \(450^{\prime} 0^{\prime \prime}\) \\
\hline Breadth, extreme........ & \[
42^{\prime} 0^{\prime \prime}
\] & \[
46^{\prime} 0^{\prime \prime}
\] & \(46^{4} 6^{\prime} 0^{\prime \prime}\) & 41' \(0^{\prime \prime}\) & 39 \(39{ }^{\prime \prime}\) & 45' \(2^{\prime \prime}\) \\
\hline Mean draught water. & \({ }^{18^{\prime} 10^{\prime \prime}}\) & \(18^{\prime} 2^{\prime \prime}\) & \(18^{\prime} 2^{\prime \prime}\) & 18'11" & \({ }^{21} 1^{\prime} 4^{\prime \prime}\) & \(23^{\prime \prime} 7^{\prime \prime}\) \\
\hline Displacement (tons) & 30.57
632 & 3290
700 & \(3: 90\)
\(r 00\) & 4635
656 & \(\underset{\sim}{5 \sim 67}\) & 8500
926 \\
\hline An Wetted skin.... & 16,008 & 18,168 & 18,168 & 22,633 & 26,235 & 32,5\%8 \\
\hline む Length, fore-body & \(101^{\prime} 0^{\prime \prime}\) & \(135^{\prime} 6^{\prime \prime}\) & \(135^{\prime} 6^{\prime \prime}\) & \(123{ }^{\prime \prime} 0^{\prime \prime}\) & \(118^{\prime} 0^{\prime \prime}\) & \(129^{\prime} 0^{\prime \prime}\) \\
\hline ¢ \(^{\sim}\) (Angle of entrance. & \(18^{\circ} 44\) & \(16^{\circ} 16^{\prime}\) & \(16^{\circ} 16^{\prime}\) & \(16^{\circ} 4^{\prime}\) & \(16^{\circ} 30^{\prime}\) & \(1 \%^{\circ} 16^{\prime}\) \\
\hline Displacement \(\times 35\) & 0.629 & 0.548 & 0.548 & 0.668 & 0.698 & 0.714 \\
\hline Length \(\times\) Imm. mid area & & & & 0.668 & 0.698 & 0.114 \\
\hline Speed (knots) & 14.966 & 18.5 \%3 & 15.746 & 13.80 & 12.054 & 15.045 \\
\hline Indicated horse-power. & 4015 & Tilt & 3958 & 2500 & 1758 & 4900 \\
\hline I.H.P. per 100 ft . wetted skin.. & 25.08 & 42.46 & 21.78 & 11.04 & 6.7 & 15.04 \\
\hline I.H.P. per 100 ft . wetted skin, reduced to 10 knots. & 7.49 & 6.634 & 5.58 & 4.20 & 3.83 & 4.42 \\
\hline \(\eta^{\frac{2}{3} \times S^{3}}\) & 175.8 & 183.7 & 218.2 & 292 & \(3: 0\) & 289.3 \\
\hline I.H.P. & 175.8 & 183.7 & 218.2 & 292 & 320 & 289.3 \\
\hline \[
\frac{\text { Immersed mid area } \times S^{3}}{\text { I.H.P. }}
\] & 527.5 & 581.4 & 690.5 & 689 & 735 & 642.5 \\
\hline
\end{tabular}

\section*{Results of Progressive Speed Trials in Typical Vessels.}
(\(E n g^{\prime} g\), April 15, 1892, p. 463.)

The figures for I.H.P. are "round." The "Medusa's" figures for 20 knots are from trial on Stokes Bay, and show the retarding effect of shallow water. The figures for the other ships for 20 knots are estimated for deep water.

More accurate methods than those above given for estimating the horse-power required for any proposed ship are: 1. Estimations calculated from the results of trials of "similar" vessels driven at "corresponding" speeds; "similar" vessels being those that have the same ratio of length to breadth and to draught, and the same coefficient of fineness, and "corresponding" speeds those which are proportional to the square roots of the lengths of the respective vessels. Froude found that the resistances of such vessels varied almost exactly as wetted surface \(\times\) (speed) \({ }^{2}\).
2. The method employed by the British Admiralty and by some Clyde shipbuilders, viz., ascertaining the resistance of a model of the vessel, 12 to 20 ft . long, in a tank, and calculating the power from the results obtained.

Speed on Canals.-A great loss of speed occurs when a steam-vessel passes from open water into a more or less restricted channel. The average speed of vessels in the Suez Canal in 1882 was only \(51 / 3\) statute miles per hour. (Eng'g. Feb. 15, 1884, p. 139.)

Estimated Displacement, Horseppower, etc.-The table on the next page, calculated by the author, will be found convenient for making approximate estimates.

The figures in rth column are calculated by the formula H.P. \(=S^{3} D^{\frac{2}{3}} \div c\), in which \(c=200\) for vessels under 200 ft . long when \(C=.65\), and 210 when \(C=.55 ; c=200\) for vessels 200 to 400 ft . long when \(C=.75,220\) when \(C=.65,240\) when \(C=.55 ; c=230\) for vessels over 400 ft . long when \(C=.75\), 250 when \(C=.65,260\) when \(C=.55\).

The figures in the 8th column are based on 5 H.P. per 100 sq. ft . of wetted surface.

The diameters of screw in the 9 th column are from formula \(D=\)

To find the diameter of screw for any other speed than 10 knots, revolutions being 100 per minute, multiply the diameter given in the table by the 5 th root of the cube of the given speed \(\div 10\). For any other revolutions per minute than 100 , divide by the revolutions and multiply by 100.

To find the approximate horse-power for any other speed than 10 knots, multiply the horse-power given in the table by the cube of the ratio of the given speed to 10, or by the relative figure from table on p. 1006. vessels of Various Sizes.

\section*{THE SCREW-RROPELLER.}

The "pitch" of a propeller is the distance which any point in a blade, describing a helix, will travel in the direction of the axis during one revolution, the point being assumed to move around the axis. The pitch of a propeller with a uniform pitch is equal to the distance a propeller will advance during one revolution, provided there is no slip. In a case of this kind, the term "pitch" is analogous to the term "pitch of the thread" of an ordinary single-threaded screw.

Let \(P=\) pitch of screw in feet, \(R=\) number of revolutions per second, \(V=\) velocity of stream from the propeller \(=P \times R, v=\) velocity of the ship in feet per second, \(V-v=\operatorname{slip}, A=\) area in square feet of section of stream from the screw, approximately the area of a circle of the same diameter, \(A \times V=\) volume of water projected astern from the ship in cubic feet per second. Taking the weight of a cubic foot of sea-water at 64 lbs ., and the force of gravity at 32 , we have from the common formula for force of acceleration, viz.: \(F=M \frac{v_{1}}{t}=\frac{W}{g} \frac{v_{1}}{t}\), or \(F=\frac{W}{g} v_{1}\), when \(t=1\) second, \(v_{1}\) being the acceleration.
\[
\text { Thrust of screw in pounds }=\frac{64 A V}{32}(V-v)=2 A V(V-v)
\]

Rankine (Rules, Tables, and Data, p. 275) gives the following: To calculate the thrust of a propelling instrument (jet, paddle, or screw) in pounds, multiply together the transverse sectional area, in square feet, of the stream driven astern by the propeller; the speed of the stream relatively to the ship in knots; the real slip, or part of that speed which is impressed on that stream by the propeller, also in knots; and the constant 5.66 for sea-water, or 5.5 for fresh water. If \(S=\) speed of the screw in knots, \(s=\) speed of ship in knots, \(A=\) area of the stream in square feet (of sea-water),
\[
\text { Thrust in pounds }=A \times S(S-s) \times 5.66
\]

The real slip is the velocity (relative to water at rest) of the water projected sternward; the apparent slip is the difference between the speed of the ship and the speed of the screw; i.e., the product of the pitch of the screw by the number of revolutions.

This apparent slip is sometimes negative, due to the working of the screw in disturbed water which has a forward velocity, following the ship. Negative apparent slip is an indication that the propeller is not suited to the ship.

The apparent slip should generally be about \(8 \%\) to \(10 \%\) at full speed in wellformed vessels with moderately fine lines; in bluff cargo boats it rarely exceeds \(5 \%\).

The effective area of a screw is the sectional area of the stream of water laid hold of by the propeller, and is generally, if not always, greater than the actual area, in a ratio which in good ordinary examples is 1.2 or thereabouts, and is sometimes as high as 1.4 ; a fact probably due to the stiffness of the water, which communicates motion laterally amongst its particles. (Rankine's Shipbuilding, p. 89.)

Prof. D. S. Jacobus, Trans. A. S. M. E., xi. 1028, found the ratio of the effective to the actual disk area of the screws of different vessels to be as follows:
Tug-boat, with ordinary true-pitch screw
Ferryboat " serew having blades projecting backward................... 57 dinary true-pitch screw Steamer" Homer Ramsdell," with ordinary true-pitch screw........... 1. 120

Size of Screw.-Seaton says: The size of a screw depends on so many thmgs that it is very difficult to lay down any rule for guidance, and much must always be left to the experience of the designer, to allow for all the circumstances of each particular case. The following rules are given for ordinary cases. (Seaton and Rounthwaite's Pocket-book):
\(P=\) pitch of propeller in feet \(=\frac{10133 S}{R(100-x)}\), in which \(S=\) speed in knots, \(R=\) revolutions per minute, and \(x=\) percentage of apparent slip. For a slip of \(10 \%\), pitch \(=\frac{112.6 \mathrm{~S}}{R}\).
\(D=\) diameter of propeller \(=K \sqrt{\frac{\text { I.H.P. }}{\left(\frac{P \times R}{100}\right)^{3}}}, K\) being a coefficient given in the table below. If \(K=20, D=20000 \sqrt{\frac{\text { I.H.P. }}{(P \times R)^{3}}}\).
Total dereloped area of blades \(=C \sqrt{\frac{\overline{\text { I.H.P }}}{R}}\), in which \(C\) is a coefficient to be taken from the table.
Another formula for pitch, given in Seaton's Marine Engineering, is \(P=\frac{C}{R} \sqrt[3]{\frac{\text { I.H.P. }}{D^{2}}}\), in which \(C=73 \pi\) for ordinary vessels, and 660 for slowspeed cargo vessels with full lines.
Thickness of blade at root \(=\sqrt{\frac{\overline{d^{3}}}{n b}} \times k\), in which \(d=\) diameter of tailshaft in inches, \(n=\) number of blades, \(b=\) breadth of blade in inches where it joins the boss, measured parallel to the shaft axis; \(k=4\) for cast iron, 1.5 for cast steel, \(\supseteq\) for gun-metal, 1.5 for high-class bronze.

Thickness of blade at tip: Cast irou \(.04 D+.4 \mathrm{in} . ;\) cast sterl \(.03 D+.4 \mathrm{in} .:\) gun-metal \(.03 D+.2\) in.; high-class bronze \(.0 \geqslant D+.3 \mathrm{in}\)., where \(D=\) diameter of propeller in feet.

Propeller Coefficients.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description of Vessel. & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \\
\hline Bluff cargo boats & 8-10 & One & 4 & \(1 \%-1 \% 5\) & \(19-17.5\) & Cast iron \\
\hline Cargo, moderate lines. & 10-13 & & 4 & \(15-19\) & \(1 \%-15.5\) & \\
\hline Yass. and mail, fine lines. & 13-1i & \({ }^{\prime \prime}\) & 4 & \(19.5-20.5\) & \begin{tabular}{ll}
15 & -13 \\
\hline 14
\end{tabular} & \(\mathrm{C}_{6 .} \mathrm{I}\). \\
\hline " \("\) verr fine. & lin-17 & Twin & 4 & 20.5-21-5 & 14.5-12.5 & \\
\hline " ،6 :0 ". \({ }^{\text {a }}\) & 17-2 & Twin & 3 & \(22-23\) & 10.5-9 & G.6. 6 \\
\hline Naval ressels, "، "، & 16-22 & . & 4 & \(21-29.5\) & 11.5-10.5 & " "6" \\
\hline " \({ }^{\text {chpedo-boats, " }}\) " & 16-20 & O1 & 3
3 & 2205 & \(8.5-7\)
\(7-6\) & B or \({ }^{\prime}\) " \({ }^{\text {c }}\) \\
\hline
\end{tabular}
C. I., cast iron; G. M., gun-metal; B., bronze; S., steel; F. S., forged steel.

From the formulæ \(D=30000 \sqrt{\frac{\text { I.H.P. }}{(P \times R)^{3}}}\) and \(P=\frac{73 \pi}{R} \sqrt[3]{\frac{\text { I.H.P. }}{D^{2}}}\), if \(P=D\) and \(R=100\), we obtain \(D=\sqrt[5]{400 \times \text { I.H.P. }}=331 \sqrt[5]{\text { I.H.P. }}\)

If \(P=1.4 D\) and \(R=100\), then \(D=\sqrt[5]{145 . S \times \text { I.H.P. }}=2 . \pi 1 \sqrt[5]{\text { I.H.P. }}\)
From these two formulæ the figures for diameter of screw in the table on page 1009 have been calculated. They may be used as rough approximations to the correct diameter of screw for any given horse-power, for a speed of 10 knots and 100 revolutions per minute.

For any other number of revolutions per minute multiply the figures in the table by 100 and divide by the given number of revolutions. For any other speed than 10 knots, since the I.H.P. varies approximately as the cube of the speed, and the diameter of the screw as the 5th root of the I.H.P., multiply the diameter given for 10 knots, by the 5 th root of the cube of one tenth of the given speed. Or, multiply by the following factors:

For speed of knots:

Speed:
\begin{tabular}{rllllllllllll}
17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 88 \\
\(\sqrt[5]{(S \div 10)^{3}}\) \\
\(=1.375\) & 1.423 & 1.470 & 1.515 & 1.561 & 1.605 & 1.648 & 1.691 & 1.733 & 1.774 & 1.815 & 1.855
\end{tabular}

For more accurate determinations of diameter and pitch of screw, the formulæ and coefficients given by Seaton, quoted above, should be used.

Emciency of the Propeller.-According to Rankine, if the slip of the water be \(s\), its weight \(W\), the resistance \(R\), and the speed of the ship \(v\),
\[
R=\frac{W s}{g} ; \quad R v=\frac{W s v}{g}
\]

This impelling action must, to secure maximum efficiency of propeller, be effected by an instrument which takes hold of the fluid without shock or disturbance of the surrounding mass, and, by a steady acceleration, gives it the required final velocity of discharge. The velocity of the propeller overcoming the resistance \(R\) would then be
\[
\frac{v+(v+s)}{2}=v+\frac{s}{2}
\]
and the work performed would be
\[
R\left(v+\frac{s}{2}\right)=\frac{W v s}{g}+\frac{W s^{2}}{2 g}
\]
the first of the last two termis being useful, the second the minimum lost work; the latter being the wasted energy of the water thrown backward. The efficiency is
\[
E=v \div\left(v+\frac{s}{2}\right)
\]
and this is the limit attainable with a perfect propelling instrument, which limit is approached the more nearly as the conditions above prescribed are the more nearly fulfilled. The efficiency of the propelling instrument is probably rarely much above 0.60 , and never above 0.80 .
In designing the screw-propeller, as was shown by Dr. Froude, the best angle for the surface is that of \(45^{\circ}\) with the plane of the disk; but as all parts of the blade cannot be given the same angle, it should, where practicable, be so proportioned that the "pitch-angle at the centre of effort" should be made \(45^{\circ}\). The maximum possible efficiency is then, according to Froude, \(77 \%\).
In order that the water should be taken on without shock and discharged with maximum backward velocity, the screw must have an axially increasing pitch.
The true screw is by far the more usual form of propeller, in all steamers, both merchant and naval. (Thurston, Manual of the Steam-engine, part ii., p. 176.)

The combined efficiency of screw, shaft, engine, etc., is generelly taken at \(50 \%\). In some cases it may reach \(60 \%\) or \(65 \%\). Rankine takes the effective H.P. to equal the I.H.P. \(\div 1.63\).

\section*{Pitch-ratio and Slip for Screws of Standard Form.}
\begin{tabular}{c|c|c|c}
\hline Pitch-ratio. & \begin{tabular}{c}
Real Slip of \\
Screw.
\end{tabular} & Pitch-ratio. & \begin{tabular}{c}
Real Slip of \\
Screw,
\end{tabular} \\
\hline .8 & 15.55 & 1.7 & 21.3 \\
.9 & 16.22 & 1.8 & 21.8 \\
1.0 & 16.88 & 1.9 & 22.4 \\
1.1 & 17.55 & 2.0 & 2.9 \\
1.2 & 18.8 & 2.1 & 23.5 \\
1.3 & 19.5 & 2.2 & 24.0 \\
1.4 & 20.1 & 2.3 & 24.5 \\
1.5 & 20.7 & 2.4 & 25.0 \\
1.6 & & 2.5 & 25.4 \\
\hline
\end{tabular}

Results of Recent Researches on the efficiency of screw-propellers are summarized by S. W. Barnaby, in a paper read before section G of the Engineering Congress, Chicago, 1893. He states that the following general principles have been established:
(a) There is a definite amount of real slip at which, and at which only, maximum efficiency can be obtained with a screw of any given type, and this amount varies with the pitch-ratio. The slip-ratio proper to a given ratio of pitch to diameter has been discovered and tabulated for a screw of a standard type, as below (see table on page 1012):
(b) Screws of large pitch-ratio, besides being less efficient in themselves, add to the resistance of the hull by an amount bearing some proportion to their distance from it, and to the amount of rotation left in the race.
(c) The best pitch-ratio lies probably between 1.1 and 1.5.
(d) The fuller the lines of the vessel, the less the pitch-ratio should be.
(e) Coarse-pitched screws should be placed further from the stern than fine-pitched ones.
(\(f\)) Apparent negative slip is a natural result of abnormal proportions of propellers.
\((g)\) Three blades are to be preferred for high-speed vessels, but when the diameter is unduly restricted, four or even more may be advantageously employed.
(h) An efficient form of blade is an ellipse having a minor axis equal to four tenths the major axis.
(i) The pitch of wide-bladed screws should increase from forward to aft, but a uniform pitch gives satisfactory results when the blades are narrow, and the amount of the pitch variation should be a function of the width of the blade.
(j) A considerable inclination of screw-shaft produces vibration, and with right-handed twin-screws turning outwards, if the shafts are inclined at all, it should be upwards and outwards from the propellers.

For results of experiments with screw-propellers, see F. C. Marshall, Proc. Inst. M. E. 1881; R. E. Froude, Trans. Institution of Naval Architects, 1886; G. A. Calvert, Trans. Institution of Naval Architects 1887; and S. W. Barnaby, Proc. Inst. Civil Eng'rs 1890, vol. cii.

One of the most important results deduced from experiments on model screws is that they appear to have practically equal efficiencies throughout a wide range both in pitch-ratio and in surface-ratio; so that great latitude is left to the designer in regard to the form of the propeller. Another important feature is that, although these experiments are not a direct guide to the selection of the most efficient propeller for a particular ship, they supply the means of analyzing the performances of screws fitted to vessels, and of thus indirectly determining what are likely to be the best dimensions of screw for a vessel of a class whose results are known. Thus a great advance has been made on the old method of trial upon the ship itself, which was the origin of almost every conceivable erroneous view respecting the screw-propeller. (Proc. Inst. M. E., July, 1891.)

\section*{THE PADDLE-WHEEL。}

Paddlewheels with Radial Floats. (Seaton's Marine En-gineering.)-The effective diameter of a radial wheel is usually taken from the centres of opposite floats; but it is difficult to say what is absolutely that diameter, as much depends on the form of float, the amount of dip, and the waves set in motion by the wheel. The slip of a radial wheel is from 15 to 30 per cent, depending on the size of float.
\[
\text { Area of one float }=\frac{I . H . P}{D} \times C
\]
\(D\) is the effective diameter in feet, and \(C\) is a multiplier, varying from 0.25 in tugs to 0.175 in fast-running light steamers.

The breadth of the float is usually about \(1 / 4\) its length, and its thickness about \(1 / 8\) its breadth. The number of floats varies directly with the diameter, and there should be one float for every foot of diameter.
(For a discussion of the action of the radial wheel, see Thurston, Manual of the Steam-engine. part ii., p, 182.)

Feathering Paddle - wheels. (Seaton.) - The diameter of a feathering-wheel is found as follows: The amount of slip varies from 12 to 20 per cent, although when the floats are small or the resistance great it
is as high as 25 per cent; a well-designed wheel on a well-formed ship should not exceed 15 per cent under ordinary circumstances.

If \(K\) is the speed of the ship in knots, \(S\) the percentage of slip, and \(R\) the revolutions per minute,
\[
\text { Diameter of wheel at centres }=\frac{K(100+S)}{3.14 \times R}
\]

The diameter, however, must be such as will suit the structure of the ship, so that a modification may be necessary on this account, and the revolutions altered to suit it.

The diameter will also depend on the amount of "dip " or immersion of float.

When a ship is working always in smooth water the immersion of the top edge should not exceed \(1 / 8\) the breadth of the float; and for general service at sea an immersion of \(1 / 2\) the breadth of the float is sufficient. If the ship is intended to carry cargo, the immersion when light need not be more than 2 or 3 inches, and should not be more than the breadth of float when at the deepest draught; indeed, the efficiency of the wheel falls off rapidly with the immersion of the wheel.
\[
\text { Area of one float }=\frac{I \cdot H \cdot P}{D} \times C .
\]
\(C\) is a multiplier, varying from 0.8 to \(0.35 ; D\) is the diameter of the wheel to the float centres, in feet.

The number of floats \(=1 / 2(D+2)\).
The breadth of the float \(=0.35 \times\) the length .
The thickness of floats \(=1 / 12\) the breadth.
Diameter of gudgeons \(=\) thickness of float.
Seaton and Rounthwaite's Pocket-book gives:
\[
\text { Number of floats }=\frac{60}{\sqrt{R}}
\]
where \(R\) is number of revolutions per minute.
\[
\text { Area of one float (in square feet) }=\frac{\text { I.H.P. } \times 33000 \times K}{N \times(D \times R)^{3}}
\]
where \(N=\) number of floats in one wheel.
For vessels plying always in smooth water \(K=1200\). For sea-going steamers \(K=1400\). For tugs and such craft as require to stop and start frequently in a tide-way \(K=1600\).

It will be quite accurate enough if the last four figures of the cube \((D \times R)^{3}\) be taken as ciphers.

For illustrated description of the feathering paddle-wheel see Seaton's Marine Engineering, or Seaton and Rounth waite's Pocket-book. The diameter of a feathering-wheel is about one half that of a radial wheel for equal efficiency. (Thurston.)

Efficiency of Paddle-wheels. - Computations by Prof. Thurston of the efficiency of propulsion by paddle-wheels give for light river steamers with ratio of velocity of the vessel, \(v\), to velocity of the paddle-float at centre of pressure, \(V\), or \(\frac{v}{V},=\frac{3}{4}\), with a dip \(=3 / 20\) radius of the wheel, and a slip of 25 per cent, an efficiency of .714 ; and for ocean steamers with the same slip and ratio of \(\frac{v}{V}\), and a dip \(=1 / 3\) radius, an efficiency of .685 .

\section*{JET-PROPULSION.}

Numerous experiments have been made in driving a vessel by the reaction of a jet of water pumped through an orifice in the stern, but they have all resulted in commercial failure. Two jet-propulsion steainers, the "Waterwitch," 1100 tons, and the "Squirt," a small tor"pedo-boat, were built by the British Government. The former was tried in 1867, and gave an efficiency of apparatus of only 18 per cent. The latter gave a speed of 12 knots, as against 17 knots attained by a sister-ship having a serew and equal steam-power. The mathematical theory of the efficiency of the jet was discussed by Rankine in The Engineer, Jan. 11, 1867, and he showed that the greater the quantity of water operated on by a jet-propeller, the greater
is the efficiency. In defiance both of the theory and of the results of earlier experiments, and also of the opinions of many naval engineers, more than \(\$ 200,000\) were spent in 1888-90 in New York upon two experimental boats, the "Prima Vista "and the "Evolution," in which the jet was made of very small size, in the latter case only \(5 / 8\)-inch diameter, and with a pressure of 2500 lbs. per square inch. As had been predicted, the vessel was a total failure. (See article by the author in Mechanics, March, 1891.)

The theory of the jet-propeller is similar to that of the screw-propeller. If \(A=\) the area of the jet in square feet, \(V\) its velocity with reference to the orifice, in feet per second, \(v=\) the velocity of the ship in reference to the parth, then the thrust of the jet (see Screw-propeller, ante) is \(\approx A V(V-v)\). The work done on the ressel is \(2 A V(V-v) v\), and the work wasted on the rearward projection of the jet is \(12 \times 2 A V(V-v)^{2}\). The efficiency is
\(2 A V(V-v) v\)
\(\overline{2 A V(V-v) v+A V} \overline{(V-v)^{2}}=\frac{2 v}{V+v}\).
This expression equals unity when
\(V=v\), that is, when the velocity of the jet with reference to the earth, or \(V-v,=0\); but then the thrust of the propeller is also 0 . The greater the value of \(V\) as compared with \(v\), the less the efficiency. For \(V=20 v\), as was proposed in the "Evolution," the efficiency of the jet would be less than 10 per cent, and this would be further reduced by the friction of the pumping mechanism and of the water in pipes.
'The whole theor'y of propulsion may be summed up in Rankine's words: "That propeller is the best, other things being equal, which drives astern the largest body of water at the lowest velocity."
It is practically impossible to devise any system of hydraulic or jet propulsion which can compare favorably, under these conditions, with the screw or the paddle-wheel.
Reaction of a Jet.-If a jet of water issues horizontally from a vessel, the reaction on the side of the vessel opposite the orifice is equal to the weight of a column of water the section of which is the area of the orifice, and the beight is twice the head.

The propelling force in jet-propulsion is the reaction of the stream issuing from the orifice, and it is the same whether the jet is discharged under water, in the open air, or against a solid wall. For proof, see account of trials by C. J. Everett, Jr., given by Prof. J. Burkitt Webb, Trans. A. S. M. E., xii. 904.

\section*{RECENT PRACTECE IN MARINE ENGINES.}
(From a paper by A. Blechynden on Marine Engineering during the past Decade, Proc. Inst. M. E., July, 1891.)
Since 1881 the three-stage-expansion engine has become the rule, and the boiler-pressure has been increased to 160 lbs . and even as high as 200 lbs . per square inch. Four-stage-expansion engines of various forms have also been adopted.

Forced Dranght has become the rule in all vessels for naval service, and is comparatively common in both passenger and cargo vessels. By this means it is possible considerably to augment the power obtained from a given boiler: and so long as it is kept within certain limits it need result in no injury to the boiler, but when pushed too far the increase is sometimes purchased at considerable cost.

In regard to the economy of forced draught, an examination of the appended table (page 1018) will show that while the mean consumption of coal in those steamers working under natural draught is 1.573 lbs . per indicated horse-power per hour, it is only 1.336 lbs . in those fitted with forced draught. This is equivalent to an economy of \(15 \%\). Part of this economy, however, may be due to the other heat-saving appliances with which the latter steamers are fitted.

Boilers.-As a material for boilers, iron is now a thing of the past, though it seems probable that it will continue yet awhile to be the material for tubes. Steel plates can be procured at \(13:\) square feet superficial area and \(11 / 2\) inches thick. For purely boiler work a punching-machine has become obsolete in marine-engine work.

The increased pressures of steam have also caused attention to be directed to the furnace, and hare led to the adoption of rarious artifices in the shape of corrugated, ribbed, and spiral thes, with the object of giving increased strength against collapse without abnormally increasing the thickness of the plate. A thick furnace-plate is viewed by many engineers with great
suspicion; and the advisers of the Board of Trade have fixed the limit of thickness for furnace-plates at \(5 / 8\) inch; but whether this limitation will stand in the light of prolonged experience remains to be seen. It is a fact generally accepted that the conditions of the surfaces of a plate are far greater factors in its resistance to the transmission of heat than either the material or the thickness. With a plate free from lamination, thickness being a mere secondary element, it would appear that a furnace-plate might be increased from \(1 / 2\) inch to \(3 / 4\) inch thickness without increasing its resistance more than \(11 / 4 \%\). So convinced have some engineers become of the soundness of this view that they have adopted flues \(3 / 4\) inch thick.
Piston-valves.--Since higher steam-pressures have become common, piston-valves have become the rule for the high-pressure cylinder, and are not unusual for the intermediate. When well designed they have the great advantage of being almost free from friction, so far as the valve itself is concerned. In the earlier piston-valves it was customary to fit spring rings, which were a frequent source of trouble and absorbed a large amount of power in friction; but in recent practice it has become usual to fit springless adjustable sleeves.

For low-pressure cylinders piston-valves are not in favor; if fitted with spring rings their friction is about as great as and occasionally greater than that of a well-balanced slide-valve; while if fitted with springless rings there is always some leakage, which is irrecoverable. But the large port-clearances inseparable from the use of piston-valves are most objectionable; and with triple engines this is especially so, because with the customary late cut-off it becomes difficult to compress sufficiently for insuring economy and smoothness of working when in "full gear," without some special device.

Steam-pipes.-The failures of copper steam-pipes on large vessels have drawn serious attention both to the material and the modes of construction of the pipes. As the brazed joint is liable to be imperfect, it is proposed to substitute solid drawn tubes, but as these are not made of large sizes two or more tubes may be needed to take the place of one brazed tube. Reinforcing the ordinary brazed tubes by serving them with steel or copper wire, or by hooping them at intervals with steel or iron bands, has been tried and found to answer perfectly.

Auxiliary Supply of Fresh Water-Evaporators.-To make un the losses of water due to escape of steam from safety-valves, leakage at glands, joints, etc., either a reserve supply of fresh water is carried in tanks, or the supplementary feed is distilled from sea-water by special apparatus provided for the purpose. In practice the distillation is effected by passing steam, say from the first receiver, through a nest of tubes inside a still or evaporator, of which the steam-space is connected either with the second receiver or with the condenser. The temperature of the steam inside the tubes being higher than that of the steam either in the second receiver or in the condenser, the result is that the water inside the still is evaporated, and passes with the rest of the steam into the condenser, where it is condensed and serves to make up the loss. This plan localizes the trouble of the deposit, and frees it from its dangerous character, because an evaporator cannot become overheated like a boiler, even though it be neglected until it salts up solid; and if the same precautions are taken in working the evaporator which used to be adopted with low-pressure boilets when they were fed with salt water, no serious trouble should result.

Weir's Feed-water Heater.-The principle of a method of heating feed-water introduced by Mr. James Weir and widely adopted in the marine service is founded on the fact that, if the feed-water as it is drawn from the hot-well be raised in temperature by the heat of a portion of steam introduced into it from one of the steam-receivers, the decrease of the coal necessary to generate steam from the water of the higher temperature bears a greater ratio to the coal required without feed-heating than the power which would be developed in the cyiinder by that portion of steam would bear to the whole power developed when passing all the steam through all the cylinders. Suppose a triple-expansion engine were working under the following conditions without feed-heating: boiler-pressure 150 lbs . I.H.P. in high-pressure cylinder 398 , in intermediate and low-pressure cylinders together 790 , total 1188 . The temperature of hot-well \(100^{\circ} \mathrm{F}\). Then with feedheating the same engine might work as follows: the feed might be heated to \(220^{\circ} \mathrm{F}\). and the percentage of steam from the first receiver required to heat it would be \(10.9 \%\); the I.H.P. in the h.p. cylinder would be as before 398, and in the three cylinders it would be 1103 , or \(93 \%\) of the power developed without

\section*{RECENT PRACTICE IN MARINE ENGINES.}
feed-heating. Mean while the heat to be added to each pound of the feed-water at \(220^{\circ} \mathrm{F}\). for converting it into steam would be 1005 units against 1125 units with feed at \(100^{\circ} \mathrm{F}\)., equivalent to an expenditure of only \(89.4 \%\) of the heat required without feed-heating. Hence the expenditure of heat in relation to power would be \(89.4 \div 93.0=96.4 \%\), equivalent to a heat economy of \(3.6 \%\). If the steam for heating can be taken from the low-pressure receiver, the economy is about doubled.

Passenger Steamers fitted with Twin Screws.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Vessels.} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{Cylinders, two sets in all.} & \multirow[t]{2}{*}{\[
\begin{array}{r}
0.5 \\
0 . \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]} & \multirow[t]{2}{*}{} \\
\hline & & & Diameters. & Stro. & & \\
\hline & Feet & Feet & Inches & In. & Lbs. & I.H.P. \\
\hline City of New York Naris \(_{6}\) (..... & 525 & 631/4 & 45, 71, 113 & 60 & 150 & 20,000 \\
\hline Majestic ¢......... & 565 & 58 & 43, 68, 110 & 60 & 180 & 18,000 \\
\hline Normannia & 500 & 571/2 & 40, 67, 106 & 66 & 160 & 11,500 \\
\hline Columbia.. & 4631/2 & 5512 & 41, 66, 101 & 66 & 160 & 12,500 \\
\hline Empress of India \(\quad\) "Japan \(\}\) & 440 & 51 & 32, 51, 82 & 54 & 160 & 10,125 \\
\hline "6 "China) & & & & & & \\
\hline Orel.
Scot. & 415 & 48 & 34, 54, 85 & 51 & 160 & 10,000 \\
\hline Scot........ & 460 & 541/2 & \(341 / 2,5112,92\) & 60 & \(1 \% 0\) & 11,6ธ56 \\
\hline
\end{tabular}

Comparative Results of Working of Marime Engines, \(18 \% 2\), 1881, and 1891.

\section*{Weight of Three - stage - expansion Engines in Nine Steamers in Relation to Indicated Horsemower and to Cylinder-capacity.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multicolumn{3}{|c|}{Weight of Machinery.} & \multicolumn{5}{|l|}{Relative Weight of Machinery.} & \multirow{3}{*}{Type of Machinery.} \\
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow{2}{*}{\[
\begin{aligned}
& \dot{\mathbf{i j g}} \\
& \stackrel{0}{0} \\
& 0
\end{aligned}
\]} & \multicolumn{3}{|l|}{Per Indicated Horsepower.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \\
\hline & & & & Engineroom. & Boilerroom & Total & & & \\
\hline & \begin{tabular}{l}
tons. \\
681
\end{tabular} & tons. 662 & \begin{tabular}{l}
tons. \\
1343
\end{tabular} & lbs. & \begin{tabular}{l}
lbs. \\
20
\end{tabular} & lbs. & tons. & tons. & \\
\hline 2 & 638 & 619 & 12.5 & 259 & 251 & 510 & 1.46 & 3.15
4.10 & ercantile \\
\hline & 134 & 128 & 262 & \(20 \%\) & 198 & 405 & 1.23 & 3.23 & " \\
\hline 4 & 38.8 & 46.2 & 85 & \(1 \% 0\) & 203 & \(3 \% 3\) & 1.29 & 3.30 & " \\
\hline 5 & 719 & 695 & 1414 & 167 & 162 & 329 & 1.41 & 3.44 & " \\
\hline 6 & 75.2 & 10ヶ. 8 & 183 & 141 & 202 & 343 & 1.37 & 3.37 & '، \\
\hline 7 & 44 & 61 & 105 & 77 & 108 & 185 & 1.21 & \(2.72\}\) & Naval horizontal \\
\hline 8 & 73.5 & 109 & 182.5 & 78 & 116 & 194 & 1.11 & 2.78 & \\
\hline 9 & 26. & 429 & 691 & 62.5 & 102 & 165 & 0.82 & 2.70 & Naval vertical \\
\hline
\end{tabular}
Particulars of 'Inreemstage-expansion Engines in Twentymeight Steaniers. (A. Blechynden.)
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{Cylinders.} & \(\left|\begin{array}{c}\text { Con- } \\ \text { denser }\end{array}\right|\) & \multicolumn{2}{|l|}{Propeller.} & \multicolumn{3}{|l|}{Boilers.} & \multicolumn{9}{|l|}{Results of Trials.} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Diameter.}} & \multirow[t]{2}{*}{\[
\begin{gathered}
0.0 \\
\vdots \\
0 \\
0 \\
0 \\
0
\end{gathered}
\]} & \[
\dot{\vdots}
\] & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & '0 & \multicolumn{2}{|l|}{Heatingsurface.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & & & & & 或気 & & & & & & \\
\hline No. & & \begin{tabular}{l}
ins. \\
66
\end{tabular} & & ins. & 3q. ft . & ft. in. & ft. in. & sq. ft. & sq. ft. & lbs. & revs. & \(\mathrm{ft}_{6}\) & I.H.P. & sq. ft. & sq. ft. & I.H.P. & lbs. & lbs. & \\
\hline \[
\frac{1}{2}
\] & & & & 72 & 11,586 & \(\begin{array}{ll}22 & 0 \\ 22 & 0\end{array}\) & 28
28 & 17,640 & 626 & 155 & 52.2 & 627 & 4295 & 4.11 & 2.46 & 6.86 & 11.45 & 1.67 & H \\
\hline 3 & 39 & 61 & 97 & 66 & 11,000 & 20 10 & 26
26 & 15,107 & 626
540 & 155 & 51.3
57.3 & 616
630 & 4402
3587 & 4.04
4.21 & 2.55
2.22 & 7.03 & 11.14 & 1.584 & H \\
\hline 4 & 39 & 61 & 97 & 66 & 11,000 & \(20 \quad 10\) & 260 & 15,107 & 540 & 155 & 57.4 & 631 & 3822 & 3.95 & 2.14 & 7.08 & 13.02 & 1.841 & H \\
\hline 5 & 23 & 38 & 61 & 42 & 2,008 & 160 & 176 & 3,972 & 133 & 160 & 61 & 427 & 1120 & 3.54 & 2.02 & 8.43 & 14.75 & 1.75 & \\
\hline 6 & \(2.51 / 2\) & 42 & 70 & 51 & 3,209 & \(16 \quad 6\) & 200 & 6,162 & 193 & 180 & 61.3 & 521 & 1700 & 3.62 & 2.40 & 8.82 & 13.25 & 1.505 & \\
\hline 7 & & 34 & \(551 / 2\) & 36 & 1,447 & 140 & 176 & 3,350 & - 99 & 160 & 64 & 384 & 900 & 3.72 & 2.31 & 9.09 & 14.67 & 1.612 & H \\
\hline 8 & & 35 & & 39 & 1,430 & 156 & 156 & 3,324 & 102 & 160 & 70 & 455 & 1065 & 3.12 & 2.38 & 1042 & 13.70 & 1.312 & \\
\hline 9 & & 45 & 74 & 54 & 3,900 & \(19 \quad 6\) & 200 & 6,875 & 240 & 160 & 56 & 504 & 2250 & 3.055 & 2.04 & 9.38 & 14.00 & 1.494 & H \\
\hline 10 & 31 & 48 & 82 & 54 & 4,150 & 190 & 190 & 8,000 & 260 & 160 & 61.5 & 553 & 2600 & 3.075 & 2.04 & 10.00 & 15.10 & 1.505 & H \\
\hline 11 & 25 & 41 & \({ }_{59}^{67}\) & 48 & \(\stackrel{2}{2,800}\) & & & 4,645 & 142 & 160 & 58 & 464 & 1300 & 3.57 & 2.26 & 9.16 & 14.46 & 1.580 & \\
\hline 12 & \({ }_{32} 1^{1 / 2}\) & 36
51 & 59
82 & 42
54 & 2,000 & \(\begin{array}{ll}15 & 0 \\ 16 & 6\end{array}\) & 166 & 3,852 & 122 & 160 & \({ }_{58}^{67}\) & 469 & 1100 & 3.50 & 2.29 & 9.02 & 13.79 & 1.529 & \\
\hline 14 & 27 & 44. & 71 & 48 & 12,800
2,800 & 17
17 & 176 & 6,164 & 220 & 150 & \({ }_{63} 68\) & 504 & 1680 & \({ }_{3.67}\) & 3.64
2.12 & \({ }_{7} .65\) & 13.18 & 1.510 & \({ }_{\mathbf{H}}\) \\
\hline 15 & 29 & 45 & 74 & 60 & 4,020 & 19 0 & 240 & 6,950 & 196 & 150 & 53.8 & 538 & 2360 & 2.94 & 1.78 & 12.03 & 19.85 & 1.650 & \\
\hline 16 & 29 & 45 & 74 & 54 & 3,850 & 18 0 & 210 & 6,960 & 216 & 160 & 64 & 576 & 2550 & 2.73 & 1.82 & 11.80 & 17.70 & 1.500 & \\
\hline 17 & 23 & 37 & 64 & 48 & 2,400 & \(16 \quad 6\) & 180 & 4,715 & 144 & 180 & 62 & 496 & 1500 & 3.14 & 2.00 & 1040 & 16.31 & 1.568 & \\
\hline 18 & 28 & 44 & 74 & 51 & 3,700 & \(17 \quad 9\) & 229 & 8,000 & 24 & 150 & 62 & 527 & 1727 & 4.63 & 2.85 & 10.53 & 17.06 & 1.620 & \\
\hline 19 & 23.17 & \(361 / 2\) & 58 & 36 & 2,218 & 150 & 156 & 3,271 & 126 & 160 & 76 & 456 & 1269 & 2.58 & 1.84 & 10.07 & 14.10 & 1.400 & \\
\hline 20 & \({ }_{25}^{17.17}\) & 38
39 & 60 & 42 & \(\stackrel{2900}{ }\) & 156 & 15
15
16 & 4,400 & 168 & 150 & 75 & 525 & 1530 & 2.875 & 1.96 & 9.11 & 13.32 & 1.464 & \\
\hline \(\stackrel{21}{22}\) & \(\stackrel{25}{31}\) & 39
46 & 62
72 & 36
51
51 & 2,700
3,713 & \(\begin{array}{ll}14 & 0 \\ 16 & 3\end{array}\) & \(\begin{array}{ll}16 & 3 \\ 22 & 6\end{array}\) & 4,000
5,076 & 150 & 160
150 & 73 & 450 & 1250 & 3.20 & 2.40 & 8.35 & 11.13 & 1.330 & \\
\hline 23 & \(22^{1 / 2}\) & \(351 / 2\) & \(581 / 2\) & 39 & 1,750 & \(\begin{array}{ll}14 & 7\end{array}\) & 166 & 2,338 & - 50 & 160 & 76 & 494 & 1350 & 1.73 & 1.34 & 27.00 & 11.13
36.42 & 1.488 & D H \\
\hline 24 & 25 & & \(681 / 2\) & 48 & 2.763 & \(16 \quad 10\) & 179 & 4,346 & 84 & 160 & 65 & 520 & 1800 & 2.41 & 1.94 & 21.42 & 26.62 & 1.242 & \({ }^{\text {D H }}\) \\
\hline 25 & 221/4 & 35\%/4 & \(581 / 2\) & 48 & 3,530 & 156 & 180 & 3,486 & 63 & 160 & 69.5 & 552 & 1360 & 2.56 & 1.91 & 21.59 & 28.90 & 1.338 & D H \\
\hline 26 & 31 & 50 & \(831 /\) & 60 & 6,860 & 190 & 230 & 6,438 & 154 & 150 & 59 & 590 & 2600 & 2.435 & 1.78 & 16.88 & 23.05 & 1.365 & D H \\
\hline & & 53
46 & \(871 / 2\)
75 & 60 & 7,500 & 190 & & 8,751 & 210 & 160 & \({ }^{66}\) & 660 & 3400 & 2.52 & 2.04 & 16.18 & 19.97 & 1.234 & D H \\
\hline 28 & 281/2 & & & 42 & 3,450 & 160 & 210 & 6,618 & 188 & 160 & 73 & 511 & 2058 & 3.215 & 2.05 & 17.10 & 10.92 & 1.565 & \\
\hline \multicolumn{14}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Average of all twentyoeight. \\
" " natural draught. \\
" " forced draught.
\end{tabular}}} & & & & & & \\
\hline & & & & & & & & & & & & & & \[
3.560
\] & \[
2.25
\] & 8.91 & \[
13.92
\] & 1. 573 & \\
\hline & & & & & & & & & & & & & & 2.412 & 1.72 & 20.98 & 28.15 & 1.336 & \\
\hline
\end{tabular}

\section*{Dimensions, Indicated Horse - power, and Cylinder capacity of Three-stage - expansion Engines in Nine steamers.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Cylinders.} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Heating-sur-
face.} \\
\hline & & Diameters. & Stroke & & & & & Total. & \[
\begin{aligned}
& \text { Per } \\
& \text { I.H.P. }
\end{aligned}
\] \\
\hline & & ins. & ins. & revs. & lbs. & I. & & & \\
\hline & Single & \begin{tabular}{|ccc}
40 & 66 & 100 \\
39 & 61 & 97
\end{tabular} & & \[
\begin{aligned}
& 64.5 \\
& 67.8
\end{aligned}
\] & 160
160 & 6651
5525 & & 17.640
10
1 & \\
\hline 3 & & \(\begin{array}{llll}33 & 38 & 96 \\ 23 & 38 & 61\end{array}\) & 42 & \({ }_{83} 8.8\) & 160 & 1450 & 109 & 3,973 & 2. 73 \\
\hline 4 & & \(17 \quad 261 / 242\) & 24 & 90 & 150 & 510 & 30 & 1,403 & 2.75 \\
\hline 5 & win & \(\begin{array}{llll}32 & 54 & 82\end{array}\) & 54 & 88 & 160 & 9625 & 508 & 20,193 & 2.10 \\
\hline \({ }^{6}\) & & \(15 \quad 24\) & & \({ }_{19}^{113}\) & 150 & 1194 & & 3,200 & 2.68 \\
\hline 8 & \(\underset{\text { Twin }}{\text { Single }}\) & [10 & 24 & 191 & 145 & \({ }_{2105}^{1265}\) & 36.3 & \(\stackrel{2}{2}\) & 1.76 \\
\hline \({ }_{9}\) & Twin & & \({ }_{39}\) & \({ }_{145}^{182.5}\) & 140 & \({ }_{9400}^{2105}\) & \begin{tabular}{|c|c|c|c|}
66.2 \\
319
\end{tabular} & \(\stackrel{3}{3,9} 1\) & 1.87 \\
\hline
\end{tabular}

\section*{CONSTRUCTION OF BUIIDINGS.*}

\section*{(Extract from the Building Laws of the City of New York, 1893.)}

\section*{Walls of Warehouses, Stores, Factories, and Stables.-} 25 feet or less in width between walls, not less than 12 in. to height of 40 ft .; If 40 to 60 ft . in height, not less than 16 in . to 40 ft ., and 12 in . thence to top; 60 to 80 " 6
75 to 85 " " \(6 \quad 6 \quad\) " \(24 \quad 6 \quad 20 \mathrm{ft} . ; 20 \mathrm{in}\). to 60 ft ., and 16 in . to top;
85 to 100 ft . in height, not less than 28 in . to 25 ft .; 24 in . to 50 ft .; \(20 \mathrm{in}^{\circ}\) to 75 ft ., and 16 in . to top;
Over 100 ft . in height, each additional 25 ft . in height, or part thereof, next above the curb, shall be increased 4 inches in thickness, the upper 100
feet remaining the same as specified for a wall of that weight.
If walls are over 25 feet apart, the bearing-walls shall be 4 inches thicker than above specified for every \(121 / 2\) feet or fraction thereof that said walls are more than 25 feet apart.

Strength of Floors, Roofs, and supports.
Flonrs calculated to bear safely per sq. ft., in addition to their own weight.
Floors of dwelling, tenement, apartment-house or hotel, not
\begin{tabular}{|c|c|}
\hline less than & 70 lbs . \\
\hline Floors of office-building, not less than & 100 " \\
\hline " public-assembly building, not less than. & \\
\hline " store, factory, warehouse, etc., not less than & \\
\hline Roofs of all buildings, not less than & \\
\hline
\end{tabular}

Every floor shall be of sufficient strength to bear safely the weight to be imposed thereon, in addition to the weight of the materials of which the floor is composed.

Columns and Posts:-The strength of all columns and posts shall be computed according to Gordon's formulæ, and the crushing weights in pounds, to the square inch of section, for the following-named materials, shall be taken as the coefficients in said formulæ, namely: Cast iron, 80,000;

\footnotetext{
* The limitations of space forbid any extended treatment of this subject. Much valuable information upon it will be found in Trautwine's Civil Engineer's Pocket-book, and in Kidder's Architect's and Builder's Pocket-book. The latter in its preface mentions the following works of reference: "Notes on Building Construction," 3, vols., Rivingtons, publishers, Boston; "Building Superintendence," by T. M. Clark (J. R. Osgood \& Co., Boston.); "The American House Carpenter," by R. G. Hatfield; "Graphical Analysis of Roof-trusses," by Prof. C. E. Greene; "The Fire Protection of Mills," by C. J. H. Woodbury; "House Drainage and Water Service,", by James C. Bayles; "The Builder's Guide and Estimator's Price-book," and "Plastering Mortars and Cements," by Fred. T. Hodgson; "Foundations and Concrete Works," and "Art of Building,' by E. Dobson, Weale's Series, London.
}
wrought or rolled iron, 40,000 ; rolled steel, 48,000 ; white pine and spruce, 3500 ; pitch or Georgia pine, 5000 ; American oak, 6000 . The breaking strength of wooden beams and girders shall be computed according to the formulæ in which the constants for transverse strains for central load shall be as follows, namely: Hemlock, 400 ; white pine, 450 ; spruce, 450 ; pitch or Georgia pine, 550 ; American oaks, 550 ; and for wooden beams and girders carrying a uniformly distributed load the constants will be doubled. The factors of safety shall be as one to four for all beams, girders, and other pieces subject to a transverse strain; as one to four for all posts, columns, and other vertical supports when of wrought iron or rolled steel; as one to five for other materials, subject to a compressive strain; as one to six for tierods, tie-beams, and other pieces subject to a tensile strain. Good, solid, natural earth shall be deemed to safely sustain a load of four tons to the superficial foot, or as otherwise determined by the superintendent of buildings, and the width of footing-courses shall be at least sufficient to meet this requirement. In computing the width of walls, a cubic foot of brickwork shall be deemed to weigh 115 lbs . Sandstone, white marble, granite, and other kinds of building-stone shall deemed to weigh 160 lbs . per cubic foot. The safe-bearing load to apply to good brickwork shall be taken at 8 tons per superficial foot when good lime mortar is used, \(111 / 2\) tons per superticial foot when good lime and cement mortar mixed is used, and \(15^{\circ}\) tons per superficial foot when good cement mortar is used.
Fire-proof Buildings-Iron and Steel Columns.-All castiron, wrought-iron, or rolled-steel columns shall be made true and smooth at both ends, and shall rest on iron or steel bed-plates, and have iron or steel cap-plates, which shall also be made truc. All iron or steel trimmerbeams, headers, and tail-beams shall be suitably framed and connected together, and the iron girders, columns, beams, trusses, and all other ironwork of all floors and roofs shall be strapped, bolted, anchored, and connected together, and to the walls, in a strong and substantial manner. Where beams are framed into headers, the angle-irons, which are bolted to the tail-beams, shall have at least two bolts for all beams over 7 inches in depth, and three bolts for all beams 12 inches and over in depth, and these bolts shall not b.'s less than \(3 / 4\) inch in diameter. Each one of such angles or knees, when boltel to girders, shall have the same number of bolts as stated for the other leg, The angle-iron in no case shall be less in thickness than the header or trim. mer to which it is bolted, and the width of angle in no case shal! be less than one third the depth of beam, excepting that no angle-knee shall be less than \(21 / 2\) inches wide, nor required to be more than 6 inches wido. All wroughtiron or rolled-steel beams 8 inches deep and under shall have bearings equal to their depth, if resting on a wall; 9 to 12 inch beams shall have a bearing of 10 inches, and all beams more than 12 inches in depth shall have bearings of not less than 12 inches if resting on a wall. Where beams rest on iron supports, and are properly tied to the same, no greater bearings shall be required than one third of the depth of the beams. Iron or steel floor-beams shall be so arranged as to spacing and length of beams that the load to be supported by them, together with the weights of the materials used in the construction of the said floors, shall not cause a deflection of the said beams of more than \(1 / 30\) of an inch per linear foot of span; and they shall be tied together at intervals of not more than eight times the depth of the beam.
Under the ends of all iron or steel beams, where they rest on the walls, a stone or cast-iron template shall be built into the walls. Said template shall be 8 inches wide in 12 -inch walls, and in all walls of greater thickness said template shall be 12 inches wide; and such templates, if of stone, shall not be in any case less than \(21 / 2\) inches in thickness, and no template shall be less than 12 inches long.
No cast-iron post or column shall be used in any building of a less average thickness of shaft than three quarters of an inch, nor shall it have an unsupported length of more than twenty times its least lateral dimensions or dianneter. No wrought-iron or rolled-steel column shall have an unsupported length of more than thirty times its least lateral dimension or diameter, nor shall its metal be less than one fourth of an inch in thickness.

Lintels, Bearings and Supports. - All iron or steel lintels shall have bearings proportionate to the weight to be imposed thereon, but no lintel used to span any opening more than 10 feet in width shall have a bearing less than 12 inches at each end, if resting on a wall; but if resting on an iron post, such lintel shall have a bearing of at least 6 inches at each end, by the thickness of the wall to be supported
Strains on Girders and Rivets.-Rolled iron or steel beam gir-
ders, or riveted iron or steel plate girders used as lintels or as girders. carrying a wall or floor or both, shall be so proportioned that the loads which may come upon them shall not produce strains in tension or compression upon the flanges of more than \(12,000 \mathrm{lbs}\). for iron, nor more than 15.000 lbs. for steel per square inch of the gross section of each of such flanges, nor a shearing strain upon the web-plate of more than 6000 lbs . per square inch of section of such web-plate, if of iron, nor more than 2000 pounds if of steel; but no web-plate shall be less than \(1 / 4\) inch in thickness. Rivets in plate girders shall not be less than \(5 / 8\) inch in diameter, and shall not be spaced more than 6 inches apart in auy case. They shall be so spaced that their shearing strains shall not exceed 9000 lbs . per square inch, on their diameter, multiplied by the thickness of the plates through which they pass. The riveted plate girders shall be proportioned upon the supposition that the bending or chord strains are resisted entirely by the upper and lower fianges, and that the shearing strains are resisted entirely by the web-plate. No part of the web shall be estimated as flange area, nor more than one half of that portion of the angle-iron which lies against the web. The distance between the centres of gravity of the flange areas will be considered as the effective depth of the girder.

The building laws of the City of New York contain a great amount of detail in addition to the extracts above, and penalties are provided for violationi. See An Act creating a Department of Buildings, etc., Chapter 275, Laws of 1892. Pamphlet copy published by Baker, Voorhies \& Co., New York.

\section*{MAXHMUM LOAD ON FLOORS.}
(Eng'g, Nov. 18, 189\%. p. 644.)-Maximum load per square foot of floor surface due to the weight of a dense crowd. Considerable variation is apparent in the figures given by many authorities, as the following table shows:

\section*{Authorities.}

Weight of Crowd, lbs. per sq. ft.
French practice, quoted by Trautwine and Stoney
Hatfield ("Transverse Strains," p. 80)
Mr. Page, London, quoted by Trautwine 84
Maximum load on American highway bridges according to Waddell's general specifications100

Mr. Nash, arclitect of Buckingham Palace....................... 120
IExperiments by Prof. W. N. Kernot, at Melbourne 126
Experiments by Mr. B. B. Stoney (" On Stresses," p. 617).... 147.4
The highest results were olitained by crowrling a number of persons previously weighed into a small room, the men being tightly packed so as to resemble such a crowd as frequently occurs on the stairways and platforms of a theatre or other public building.

\section*{STREENG'H OF FLOORS.}
(From circular of the Boston Manufacturers' Mutual Insurance Co.)
The following tables were prepared by C. J. H. Woodbury, for determining safe loads on floors. Care should be observed to select the figure giving the greatest possible amount and concentration of load as the one which may be put upon any beam or set of floor-beams; and in no case should beams be subjected to greater loads than those specified, unless a lower factor of safety is warranted under the advice of a competent engineer.

Whenever and wherever solid beams or heavy timbers are made use of in the construction of a factory or warehouse, they should not be painted, varnished or oiled, filled or encased in impervious concrete, air-proof plastering, or metal for at least three years, lest fermentatiou should destroy them by what is called "dry rot."

It is, on the whole, safer to make floor-beams in two parts, with a small open space between, so that proper ventilation may be secured, even if the outside should be inadvertently painted or filled.

These tables apply to distributed loads, but the first can be used in respect to floors which may carry concentrated loads by using half the figure given in the table, since a beam will bear twice as much load when evenly distributed over its length as it would if the load was concentrated in the centre of the spall.

The weight of the floor should be deducted from the figure given in the table, in order to ascertain the net load which may be placed upon any floor: The weight of spruce may be taken at 36 lbs . per cubic foot, and that of Southern pine at 48 lbs . per cubic foot.

Table I was computed upon a working modulus of rupture of Snuthern pine at 2160 lbs ., using a factor of safety of six. It can also be applied to ascertaining the strength of spruce beams if the figures given in the table are multiplied by 0.78 ; or in designing a floor to be sustained by spruce beams, nultiply the required load by 1.28 , and use the dimensions as given by the table.

Theses tables are computed for beams one inch in width, because the strength of beams increases directly as the width when the beams are broad enough not to cripple.

Example.- Required the safe load per square foot of floor, which may be safely sustained by a floor on Southern pine \(10 \times 14\) inch beams, 8 feet on centres, and 20 feet span. In Table I a \(1 \times 14\) inch beam, 20 feet span, will sustain 118 lbs. per foot of span; and for a beam 10 inches wide the load would be 1180 lbs . per foot of span, or \(14 \tau 1 / 2 \mathrm{lbs}\). per square foot of floor for Southern-pine beams. From this should be deducted the weight of the floor, which would amount to \(171 / 2 \mathrm{lbs}\). per square foot, leaving 130 lbs . per square foot as a safe load to be carried upon such a floor. If the beams are of spruce, the result of \(1471 / 2\) lbs. would be multiphed by 0.78 , reducing the load to 115 lbs . The weight of the floor, in this instance amounting to 16 lbs ., would leave the safe net load as 90 lbs . per square foot for spruce beams.
Table II applies to the design of floors whose strength must be in excess of that necessary to sustain the weight, in order to meet the conditions of delicate or rapidly moving machinery, to the end that the vibration or distortion of the floor may be reduced to the least practicable limit.
In the table the limit is that of load which would cause a bending of the beams to a curve of which the average radius would be 1250 feet.

This table is based upon a modulus of elasticity obtained from observations upon the deflection of loaded storehouse floors. and is taken at 2,010.000 lbs. for Southern pine; the same table can be applied to spruce, whose modulus of elasticity is taken as \(1,200,000 \mathrm{lbs}\)., if six tenths of the load for Southern pine is taken as the proper load for spruce; or, in the matter of designing, the load should be increased one and two thirds times, and the dimension of timbers for this increased load as found in the table should be used for spruce.

It can also be applied to beams and foor-timbers which are supported at each end and in the middle, remembering that the deflection of a beam supported in that manner is only four tenths that of a beam of equal span which rests at each end; that is to say, the floor-planks are two and one half times as stiff, cut two bays in leugth. as they would be if cut only one bay in length. When a floor-plank two bays in length is evenly loaded, three sixteenths of the load on the plank is sustained by the beam at each end of the plank, and ten sixteenths by the beam under the middle of the plank; so that for a completed floor three eighths of the load would be sustained by the beams under the joints of the plank, and five eighths of the load by the beams under the middle of the plank: this is the reasoll of the importance of breaking joints in a floor-plank every three feet in order that each beam shall receive an identical load. If it were not so, three eighths of the whole load upon the floor would be sustained by every other beam, and five eighths of the load by the corresponding alternate beams.

Repeating the former example for the load on a mill floor on Southernpine beams \(10 \times 14\) inches, and 20 feet span, laid 8 feet on centres: In'Table II a \(1 \times 14\) inch beam should receive 61 lbs . per foot of span, or 75 lbs . per sq. ft. of floor, for Southern-pine beams. Deducting the weight of the floor, \(1 / 1 / 2\) lbs. per sq. ft., leaves 57 lbs. per sq. ft . as the advisable load.
If the beams are of spruce, the result of \(\tau 5 \mathrm{lbs}\). should be multiplied by 0.6 , reducing the load to 45 lbs . The weight of the floor, in this instance amounting to 16 lbs. would leave the net load as 29 lbs . for spruce beams.
If the beams were two spans in length, they could, under these conditions, support two and a half times as much load with an equal amount of deflection, unless such load should exceed the limit of safe load as found by Table J, as would be the case under the conditions of this problem.

Mill Columms.-Timber posts offer more resistance to fire than iron pillars, and have generally displaced them in millwork. Experiments made on the testing-machine at the U. S. Arsenal at Watertown, Mass., show that sound timber posts of the proportions customarily used in millwork yield by direct crushing, the strength being directly as the area at the smallest part. The columns yielded at about 4500 lbs . per square inch. confirming the general practice of allowing 600 lbs. per square inch, as a safe load. Square columns are one fourth stronger than round ones of the same diameter.

\section*{1. Safe Distributed Loads upon Southern-pine Beams One Inch in Width.}

\section*{(C. J. H. Woodbury.)}
(If the load is concentrated at the centre of the span, the beams will sustain half the amount as given in the table.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{15}{|c|}{Depth of Beam in inclies.} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline & \multicolumn{15}{|c|}{Load in pounds per foot of Span.} \\
\hline 5 & 38 & 86 & 154 & 240 & 346 & \(4 \% 0\) & 614 & 7r8 & 960 & & & & & & \\
\hline 6 & \(2{ }^{2}\) & 60 & \(10 \sim\) & 167 & 240 & 327 & 427 & 540 & \(66{ }^{6}\) & \(80 \%\) & & & & & \\
\hline \% & 20 & 44 & \%8 & 122 & 176 & 240 & 314 & 397 & 490 & 593 & 705 & 828 & & & \\
\hline 8 & 15 & 34 & 60 & 94 & 135 & 184 & 240 & 304 & 375 & 454 & 540 & 634 & 735 & & \\
\hline 9 & & \(2{ }^{2}\) & 47 & 74 & 10ヶ & 145 & 190 & 240 & 296 & 359 & 427 & 501 & 581 & 667 & 759 \\
\hline 10 & & 22 & 38 & 60 & 86 & 118 & 154 & 194 & 240 & 290 & \(3 \not 26\) & 406 & \(4 \% 0\) & 540 & 614 \\
\hline 11 & & & 32 & 50 & 71 & 97 & 127 & 161 & 198 & 240 & 286 & 335 & 389 & 446 & 508 \\
\hline 12 & & & 27 & 42 & 60 & 82 & 107 & 135 & 167 & 202 & 240 & 282 & 32 T & 375 & 474 \\
\hline 13 & & . & & 36 & 51 & \% 0 & 90 & 115 & 142 & 172 & 205 & 240 & 278 & 320 & 364 \\
\hline 14 & & & & 31 & 44 & 60 & 78 & 99 & \(1: 3\) & 148 & 176 & 207 & 240 & 276 & 314 \\
\hline 15 & & & & 27 & 39 & 52 & 68 & 86 & 107 & 129 & 154 & 180 & 209 & 240 & 273 \\
\hline 16 & & & & & 34 & 46 & 60 & 76 & 94 & 113 & 135 & 158 & 184 & 211 & 240 \\
\hline 17 & & & & & 30 & 41 & 53 & \(6 \pi\) & 83 & 101 & 120 & 140 & 163 & 187 & 217 \\
\hline 18 & & & & & & 36 & 47 & 60 & 74 & 90 & 107 & 125 & 145 & 167 & 190 \\
\hline 19 & & & & & & & 43 & 54 & 66 & 80 & 96 & 112 & 130 & 150 & \(1 \% 0\) \\
\hline 20 & & & & & & & 38 & 49 & 60 & 73 & 86 & 101 & 118 & 135 & 154 \\
\hline 21 & & & & & & & & 44 & 54 & 66 & 78 & 92 & \(10 \hat{\text { r }}\) & 122 & 139 \\
\hline 22 & & & & & & & & & 50 & 60 & 71 & 84 & 97 & 112 & 127 \\
\hline \(2: 3\) & & & & & & & . & & 45 & 55 & 65 & 77 & 89 & 102 & 116 \\
\hline 24 & & & & & & & & & & 50 & 60 & 70 & 82 & 94 & 107 \\
\hline 25 & & & & & & & & . & & 46 & 55 & 65 & 75 & 86 & 98 \\
\hline
\end{tabular}

\section*{11. Distributed Loads upon Southern-pine Beams sufficient to produce Standard Limit of Deflection.}
(C. J. H. Woodbury.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{+}{\otimes}\) & \multicolumn{15}{|c|}{Depth of Beam in iuches.} & \multirow[t]{3}{*}{} \\
\hline ミี & 2 & 3 & 4 & 5 & 6 & ก & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & \\
\hline \(\stackrel{\sim}{2}\) & \multicolumn{15}{|c|}{Load in pounds per foot of Span.} & \\
\hline 5 & 3 & 10 & 23 & 44 & 77 & 122 & 182 & 259 & & & & & & & & . 0300 \\
\hline 6 & 2 & 7 & 16 & 31 & 53 & 85 & 126 & 180 & 247 & & & & & & & . 0432 \\
\hline \% & & 5 & 12 & 23 & 39 & 62 & 93 & 132 & 181 & 241 & & & & & & . 0588 \\
\hline 8 & & 4 & 9 & 17 & 30 & 48 & 71 & 101 & 139 & 185 & 240 & 305 & & & & . 0.68 \\
\hline 9 & & & \(\tau\) & 14 & 24 & 38 & 56 & 80 & 110 & 146 & 190 & 241 & 301 & & & .09ie \\
\hline 10 & & & 6 & 11 & 19 & 30 & 46 & 65 & 89 & 118 & 154 & 195 & 244 & 300 & & . 1200 \\
\hline 11 & & & & , & 16 & 25 & 38 & 54 & 73 & 98 & 127 & 161 & 202 & 248 & 301 & 145:3 \\
\hline 12 & & & & & \(1: 3\) & 21 & 32 & 45 & 62 & 82 & 107 & 136 & 169 & 208 & 25:3 & 1728 \\
\hline 13 & & & & & 11 & 18 & 27 & 38 & 53 & 70 & 91 & 116 & 144 & 178 & 215 & 20:8 \\
\hline 14 & & & & & & 16 & 23 & 33 & 45 & 60 & 78 & 100 & 124 & 153 & 186 & 23.5: \\
\hline 15 & & & & & & 14 & 20 & 29 & 40 & 53 & 68 & 87 & 108 & 133 & 162 & 2700 \\
\hline 16 & & & & & & & 18 & 25 & 35 & 46 & 60 & 76 & 95 & 117 & 147 & . \(30 \%\) \\
\hline 17 & & & & & & & 16 & 22 & 31 & 41 & 53 & 68 & 84 & 104 & 126 & . 3468 \\
\hline 18 & & & & & & & & 20 & 2 & \(3 \hat{1}\) & 47 & 60 & 75 & 93 & 112 & . 3888 \\
\hline 19 & & & & & & & & 18 & 25 & 33 & 43 & 54 & 68 & 83 & 101 & . 4332 \\
\hline 20 & & & & & & & & & 2 & 30 & 38 & 49 & 61 & 75 & 91 & . 4800 \\
\hline 21 & & & & & & & & & 20 & \(2 \hat{7}\) & 35 & 44 & 55 & 68 & 83 & . 5292 \\
\hline 22 & & & & & & & & & & 24 & 32 & 40 & 50 & 62 & 75 & . 5808 \\
\hline 23 & & & & & & & & & & 22 & 29 & 37 & 46 & 5\% & 69 & . 6348 \\
\hline 24 & & & & & & & & & & & 27 & 34 & 42 & 52 & 63 & . 6912 \\
\hline 25 & .. & & & . & & & & & & & 25 & 31 & 39 & 48 & 58 & . 7500 \\
\hline
\end{tabular}

\section*{ELECTRICAL ENGINEERING.}

\section*{STANDARDS OF MEASUREMIENT.}

\section*{C.G.S. (Centimetre, Gramme, Second) or \({ }^{66}\) Absolute99 System of Physical lileasurements:}
\begin{tabular}{ll}
Unit of space or distance & \(=1\) centimetre, \(\mathrm{cm} . ;\) \\
Unit of mass & \(=1\) gramme, \(\mathrm{gm} . ;\) \\
Unit of time & \\
Und & 1 second, \(\mathrm{s} . ;\)
\end{tabular}

Unit of time
\(=1\) second, s .;
Unit of velocity \(=\) space \(\div\) time \(=1\) centimetre in 1 second;
Unit of acceleration = change of 1 unit of velocity in 1 second;
Acceleration due to gravity, at Paris, \(=981\) centimetres in 1 second;
Unit of force \(=1 \mathrm{dyne}=\frac{1}{981}\) gramme \(=\frac{.0022046}{981} \mathrm{lb} .=.00000224 \% \mathrm{lb}\).
A dyne is that force which, acting on a mass of one gramme during one second, will give it a velocity of one centimetre per second. The weight of one gramme in latitude \(40^{\circ}\) to \(45^{\circ}\) is about 980 dynes, at the equator 973 dynes, and at the poles nearly 984 dynes. Taking the value of \(g\), the acceleration due to gravity, in British measures at 32.185 feet per second at Paris, and the metre \(=39.37\) inches, we have
\[
1 \text { gramme }=32.185 \times 12 \div .3937=981.00 \text { dynes }
\]

Unit of work \(=1 \mathrm{erg}=1 \mathrm{dyne}\)-centimetre \(=.00000007378\) foot-pound;
Unit of power \(=1\) watt \(=10\) million ergs per second,
\[
\begin{aligned}
& =.7373 \text { foot-pound per second, } \\
& =\frac{.7373}{550}=\frac{1}{746} \text { of } 1 \text { horse-power }=.00134 \text { H.P. }
\end{aligned}
\]
C.G.S. Unit of magnetism \(=\) the quantity which attracts or repels an equal quantity at a centimetre's distance with the force of 1 dyne.
C.G.S. Unit of electrical current \(=\) the current which, flowing through a length of 1 centimetre of wire, acts with a force of 1 dyne upon a unit of magnetism distant 1 centimetre from every point of the wire. The ampere, the commercial unit of current, is one tenth of the C.G.S. unit.

The Practical Units used in Electrical Calculations are:
Ampere, the unit of current strength, or rate of flow, represented by \(C\).
Volt, the unit of electro-motive force, electrical pressure, or difference of potential, represented by \(E\).
\(O h m\), the unit of resistance, represented by \(R\).
Coulomb (or ampere-second), the unit of quantity, \(Q\).
Ampere-hour \(=3600\) coulombs, \(Q^{\prime}\).
Watt (ampere-volt, or volt-ampere), the unit of power, \(P\).
Joule (volt-coulomb), the unit of energy or work, \(W\).
Farad, the unit of capacity, represented by \(K\).
Henry, the unit of induction, represented by \(L\).
Using letters to represent the units, the relations between them may be expressed by the following formulæ, in which \(t\) represents one second and \(T\) one hour:
\[
C=\frac{E}{R}, \quad Q=C t, \quad Q^{\prime}=C T, \quad K=\frac{Q}{E}, \quad W=Q E, \quad P=C E
\]

As these relations contain no coefficient other than unity, the letters may represent any quantities given in terms of those units. For example, if \(E\) represents the number of volts electro-motive force, and \(R\) the number of ohms resistance in a circuit, then their ratio \(E \div R\) will give the number of amperes current streugth in that circuit.

The above six formulæ can be combined by substitution or elimination, so as to give the relations between any of the quantities. The most inpor. tant of these are the following:
\[
\begin{gathered}
Q=\frac{E}{R} t, \quad K=\frac{C}{E} t, \quad W=C E t=\frac{E^{2}}{R} t=C^{2} R t=P t \\
P=\frac{E^{2}}{R}=C^{2} R=\frac{W}{t}=\frac{Q E}{t} .
\end{gathered}
\]

The definitions of these units as adopted at the International Electrical Congress at Chicago in 1893, and as established by Act of Congress of the United States, July 12, 1894, are as follows:

The ohm is substantially equal to \(10^{9}\) (or \(1,000,000,000\)) units oin resistance of the C.G.S. system, and is represented by the resistance offered to an unvarying electric current by a column of mercury at \(3 z^{\circ} \mathrm{F}\)., 14.4521 grammes in mass, of a constant cross-sectional area, and of the length of 106.3 centimetres.

The ampere is \(1 / 10\) of the unit of current of the C.G.S. system, and is the practical equivalent of the unvarying current which when passed through a solution of nitrate of silver in water in accordance with standard specifications deposits silver at the rate of .001118 gramme per second.

The volt is the electro-motive force that, steadily applied to a conductor whose resistance is one ohm, will produce a current of one ampere, and is practically equivalent to \(1000 / 1434\) (or .6974) of the electro-motive force between the poles or electrodes of a Clark's cell at a temperature of \(15^{\circ} \mathrm{C}\)., and prepared in the mauner described in the standard specifications.

The coulomb is the quantity of electricity transferred by a current of one ampere in one second.

The farctd is the capacity of a condenser charged to a potential of one volt by one coulomb of electricity.

The joule is equal to \(10,000,000\) units of work in the C.G.S. system, and is practically equivalent to the energy expended in one second by an ampere in an ohm.
The watt is equal to \(10,000,000\) units of power in the C.G.S. system, and is practically equivalent to the work done at the rate of one joule per second.

The henry is the induction in a circuit when the electro-motive force induced in this circuit is one volt, while the inducing current varies at the rate of one ampere per second.

The ohm, volt, etc., as above defined, are called the "international" ohm, volt, etc., to distinguish them from the "legal" ohm, B.A. unit, etc.

The value of the ohm, determined by a committee of the British Association in 1863, called the B.A. unit, was the resistance of a certain piece of copper wire preserved in London. The so-called "legal " ohm, as adopted at the International Congress of Electricians in Paris in 1884, was a correction of the B.A. unit, and was defined as the resistance of a column of mercury 1 square millimetre in section and 106 centimetres long, at a temperature of \(32^{\circ} \mathrm{F}\).

Derived Units.
1 megohm \(=1\) million ohms;
1 microhm \(=1\) millionth of \(2 . n \mathrm{ohm}\);
1 milliampere \(=1 / 1000\) of an ampere;
1 micro-farad \(=1\) millionth of a farad.
Relations of Various Units.
\begin{tabular}{|c|c|}
\hline 号 & coulomb per second \\
\hline volt-ampere............. & \(=1\) watt = 1 volt-coulomb per second; \(\{=.7373\) foot-pound per second, \\
\hline 1 watt................. & \[
\left\{\begin{array}{l}
\overline{=} .00094 \pi 7 \text { heat-units per second (Fahr.), } \\
=1 / 746 \text { of one horse-power; }
\end{array}\right.
\] \\
\hline & \(\{=.7373\) foot-pound, \\
\hline \[
1 i
\] & \(\left\{\begin{array}{l}\text { = work done by one watt in one second, } \\ =.000947 \% \text { heat-unit: }\end{array}\right.\) \\
\hline British thermal unit & \(=1055.2\) joules; \\
\hline kilowatt, or 1000 watts & \[
\left\{\begin{array}{l}
=737.3 \text { foot-pound per second, } \\
=.94 \pi \text { heat-units per second, } \\
=1000 / 746 \text { or } 1.3405 \text { horse-powers; }
\end{array}\right.
\] \\
\hline 1 kilowatt-hour, 1000 volt-a mpere hours, & \[
\left\{\begin{array}{l}
=1.3405 \text { horse-power hours, } \\
=2,654,200 \text { foot-pounds, }
\end{array}\right.
\] \\
\hline 1 British Board of Trade unit, & \(=3412\) heat-units \\
\hline horse-power & \(=\pi 46\) watts \(=746\) volt-amperes,
\(=33,000\) foot-pounds per minute. \\
\hline
\end{tabular}

The ohm, ampere, and volt are defined in terms of one another as follows: Ohm, the resistance of a conductor through which a current of one ampere will pass when the electro-motive force is one volt. Ampere, the quantity
Equivalent Values of Electrical and Mechanical Units.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Unit. & Equivalent Value in Other Units. & Unit. & Equivalent Value in Other Units. & Un & alent Value in Other Units. \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { K. W. } \\
& \text { Hour }=
\end{aligned}
\]} & \begin{tabular}{l}
1,000 watt hours. \\
1.34 horse-power hours. \\
2,654,200 ft.-lbs. \\
3,600,000 joules. \\
3,412 heat-units. \\
367,000 kilogram metres. \\
.235 lb . carbon oxidized with perfect efficiency. \\
3.53 lbs . water evap. from and at \(212^{\circ} \mathrm{F}\).
\end{tabular} & \multirow[t]{2}{*}{\[
\stackrel{1}{\mathrm{H} . \mathrm{P} .}=
\]} & \begin{tabular}{l}
\({ }^{7} 46\) watts. \\
. \(246 \mathrm{~K} . \mathrm{W}\). \\
\(33,000 \mathrm{ft} .-\mathrm{lbs}\). per minute. \\
550 ft .-lbs. per second. \\
2,545 heat-units per hour. \\
42.4 heat-units per minute. \\
.707 heat-units per second. \\
.175 lbs carbon oxidized per hour. \\
9.64 lbs . water evap. per hour
\end{tabular} & \[
\begin{aligned}
& 1 \\
& \text { Heat- } \\
& \text { unit }=
\end{aligned}
\] & \begin{tabular}{l}
1,055 watt seconds. \(778 \mathrm{ft} .-\mathrm{lbs}\). 107.6 kilogram metres. .000293 K. W. hour. \\
.000393 H.P. hour. \\
.0000688 lbs. carbon oxidized. \\
.001036 lbs. water evap. from and at \(212^{\circ} \mathrm{F}\).
\end{tabular} \\
\hline & 22.75 lbs . of water raised from \(62^{\circ}\) to \(212^{\circ} \mathrm{F}\). & & \begin{tabular}{l}
from and at \(212^{\circ} \mathrm{F}\). \\
1 watt second.
\end{tabular} & 1 Heat-unit per Sq. Fit. per min. = & .122 watts per square in. 0176 K. W. per sq. ft. 0236 H.P. per sq. ft. \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
1 \\
\text { H.P. } \\
\text { Hour }=
\end{gathered}
\]} & \begin{tabular}{l}
\(.746 \mathrm{~K} . \mathrm{W}\). hours. \(1,980,000 \mathrm{ft}\).-lbs. 2,545 heat-units. \(273,740 \mathrm{k} . \mathrm{g}\). m. \\
\(.1 \% \mathrm{lb}\). carbon oxi
\end{tabular} & & \begin{tabular}{l}
\(.0000002 \mathrm{r}^{2} \mathrm{~K} . \mathrm{W}\). hour. \\
\(.102 \mathrm{k} . \mathrm{g} . \mathrm{m}\). \\
. 0009477 heat-units. \\
\(.7373 \mathrm{ft} .-1 \mathrm{~b}\).
\end{tabular} & 1 Kilogram Metre = & \begin{tabular}{l}
\(7.233 \mathrm{ft} .-1 \mathrm{bs}\). \\
. 00000365 H.P. hour. \\
\(.000002{ }^{2} 2 \mathrm{~K}\). W. hour. \\
.0093 heat-units.
\end{tabular} \\
\hline & \begin{tabular}{l}
with perfect efficiency. \\
2.64 lbs . water evaporated from and at \(212^{\circ} \mathrm{F}\). \\
17.0 lbs. water raised from \(62^{\circ} \mathrm{F}\). to \(212^{\circ} \mathrm{F}\).
\end{tabular} & \[
\frac{1}{t .-l b}
\] & \begin{tabular}{l}
1.356 joules. \\
.1383 k. g. m. \\
.000000377 K. W. hours. \\
.001285 heat-units. \\
.0000005 H.P. hour.
\end{tabular} & \multirow[t]{2}{*}{1 lb. Carbon Oxidized with perfect Efficiency \(=\)} & \begin{tabular}{l}
14,544 heat-units. \\
1.11 lb. Anth'cite coal ox. \\
2.5 lbs dry wood oxidized. \\
21 cu . ft. illuminating-gas. \\
\(4.26 \mathrm{~K} . \mathrm{W}\). hours.
\end{tabular} \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
1 \\
\text { Kilo- } \\
\text { watt }=
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
1,000 watts. \\
1.34 horse-power. \\
\(2,654,200 \mathrm{ft}\).-lbs. per hour. \\
44,240 fit. \(-1 b s\). per minute. \\
\(737.3 \mathrm{ft} .-1 \mathrm{bs}\). per second. \\
3,412 heat-units per hour. \\
56.9 heat-units per minute. \\
.948 heat-unit per second. \\
.2275 lb. carbon oxidized per hour. \\
3.53 lbs. water evap. per hour from and at \(212^{\circ} \mathrm{F}\).
\end{tabular}} & Watt \({ }^{1}\) & \begin{tabular}{l}
1 joule per second. .00134 H.P. \\
3.412 heat-units per hour.
\end{tabular} & & \begin{tabular}{l}
5.i1 H.P. hours. \\
\(11,315,000 \mathrm{ft} .-\mathrm{lbs}\). \\
15 lbs. of water evap. from and at \(212^{\circ} \mathrm{F}\).
\end{tabular} \\
\hline & & & \begin{tabular}{l}
.0035 lbs . water evap. per hr. \\
44.24 ft .-lbs. per minute.
\end{tabular} & & \begin{tabular}{l}
83 K. W. hour. \\
79 H.P. hour.
\end{tabular} \\
\hline & & Watt er sq. in. \(=\) & \begin{tabular}{l}
8.19 heat-units per sq. ft. per minute. \\
\(6371 \mathrm{ft} .-\mathrm{lbs}\). per sq. f. per minute. \\
.103 H.P. per sq. ft.
\end{tabular} & Evapor'ed from and at \(212^{\bullet} \mathrm{F} .=\) & \[
\begin{aligned}
& \text { 103,900 k. g. m. } \\
& 1,019,000 \text { joules. } \\
& 751,300 \text { ft.-1bs. } \\
& .0664 \text { lb. of carbon oxi- } \\
& \text { dized. }
\end{aligned}
\] \\
\hline
\end{tabular}
of current which will flow through a resistance of one ohm when the electromotive force is one volt. Volt, the electro-motive force required to cause a current of one ampere to flow through a resistance of one ohm.
Units of the Magnetic Circuit.-(See Electro-magnets, page 1058.) For Methods of making Electrical Measurements, Testing, etc., see Munroe \& Jamieson's Pocket-Book of Electrical Rules, Tables, and Data; S. P. Thompson's Dynamo-Electrie Machinery; and works on Electrical Engineering.

Equivalent Electrical and Mechanical Units.-H. Ward Leonard published in The Electrical Engineer. Feb. 25 , 1895, a table of useful equivalents of electrical and mechanical units, from which the table on page 1026 is taken, with some modifications.

\section*{ANALOGIES RETWEEN THE FLOW OF WATER AND ELECTRYCH'TY.}

Water.
Head, difference of level, in feet.
Difference of pressure per sq. in., in los.
Resistance of pipes, apertures, etc., increases with length of pipe, with contractions, roughness, etc.: decreases with increase of sectional area. The law of increase and decrease is expressed by complex formulæ. See Flow of Water.

Jate of flow, as cubic ft. per second, gallons per minute, etc., or volume divided by the time. In the mining regions sometimes expressed in " miner's' inches."
Quantity, usually measured in cubic feet or gallons, but is also equivalent to rate of flow \(\times\) time, as cubic feet per second for so many hours.

Work, or energy, measured in footpounds; product of weight of falling water into height of fall; in pumping, product of quantity in cubic feet into the pressure in lbs. per square foot against which the water is pumped.

Power, rate of work. Horse-power,ft. los. of work done in 1 min. \(\div 33,000\). In falling water, pounds falling in one second \(\div 550\). In water flowing in pipes, rate of flow in cubic feet per second \(\times\) pressure resisting the flow in lbs. per sq. ft. \(\div 550\).

Electricity.
Volts; electro-motive force ; difference of potential or of pressure; E . or E.M.F.
Olims, resistance. \(R\). The resistance increases directly as the length of the conductor or wire and inversely as its sectional area, \(R \propto l \div s\). It varies with the nature or quality of the conductor.
Conductivity is the reciprocal of specific resistance.
Amperes; current; current strength; intensity of current; rate of flow; 1 ampere \(=1\) coulomb per second.
Amperes \(=\frac{\text { volts }}{\text { ohins }} ; C=\frac{E}{R} ; E=C R\).
Coulomb, unit of quantity, \(Q,=\) rate of flow \(\times\) time, as ampere-seconds. 1 ampere-hour \(=3600\) coulombs.

Joule, volt-coulomb, \(W\), the unit of work, = product of quantity by the electro-motive force \(=\) volt-amperesecond. 1 joule \(=. \pi 373\) foot-pound.
If \(C\) (amperes) = rate of flow, and \(E\) (volts) \(=\) difference of pressure between two points in a circuit, energy expended \(=C E t,=C^{2} R t\), since \(E=C R\).

Watt, unit of power, \(P\), volts \(\times\) amperes, \(=\) current or rate of flow \(x\) difference of potential.
1 watt \(=.73 \pi_{3}\) foot-pound per second \(=1 / 746\) of a horse-power.

Analogy between the Ampere and the Miner's Inch.
('I'. O'Connor Sloane.)-The miner's inch is defined as the quantity of water which will flow through an aperture an inch square in a board two inches thick, under a head of water of six inches. Here, as in the case of the ampere, we have no reference to any abstract quantity, such as gallons or pounds. There is no reference to time. It is simply a rate of flow. We may consider the head of water, six inches, as the representative of electrical pressure; i.e., one volt. The aperture restricting the flow of water may be assumed to represent the resistance of one ohm; the How through a resistance of one ohm under the pressure of one volt is one ampere; the flow through the resistance of a one-inch hole two inches long under the pressure of six inches to the upper edge of the opening is one miner's inch.
The miner's inch-second is the correct analogue of the ampere-second; the one denotes a specific quantity of water, 0.194 gallon; the other a specific quantity of electricity, a coulomb.

\section*{ELECTRICAL RESISTANCE.}

Laws of Electrical Resistance. -The resistance, \(R\), of any conductor varies directly as its length, \(l\), and inversely as its sectional area, \(s\), or \(R \propto \frac{l}{s}\).

Example, - If one foot of copper wire .01 in . diameter has a resistance of \(.103 \% 3\) ohm, what will be the resistance of a mile of wire .3 in . diam. at the same temperature? The sectional areas being proportional to the squares of the diameters, the ratio of the areas is \(.3^{2}: .01^{2}=900\) to 1 . The lengths are as 5280 to 1. The resistances being directly as the lengths and inversely as the sectional areas, the resistance of the second wire is \(.10323 \times 5280 \div\) \(900=.6056\) ohm .
Conductance, \(c\), is the inverse of resistance. \(R=\frac{l}{s c}, \quad c=\frac{l}{s R}\). If \(c\) and \(c_{2}\) represent the conductances, and \(R\) and \(R_{2}\) the respective resistance of two substances of the same length and section, then \(c: c_{2}:: R_{2}: R\).
Equivalent Conductors. - With two conductors of length \(l, l_{1}\), of conductances \(c, c_{1}\), and sectional areas \(s, s_{1}\), we have the same resistance, and one may be substituted for the other when \(\frac{l}{c s}=\frac{l_{1}}{c_{1} s_{1}}\).

The specific resistance, also called resistivity, \(a\), of a material of unit length and section is its resistance as compared with the resistance of a standard conductor, such as pure copper. Conductivity, or specifce conductance, is the reciprocal of resistivity.
\[
R=\frac{l}{s c}, \quad R=\frac{a l}{s}
\]

If two wires have lengths \(l, l_{1}\), areas \(s, s_{1}\), and specific resistances \(a, a_{1}\), their actual resistances are \(R=\frac{\alpha l}{s}, R_{1}=\frac{a_{1} l_{1}}{\delta_{1}}\), and \(\frac{R}{R_{1}}=\frac{a l s_{1}}{a_{1} l_{1} s}\).

\section*{Electrical Conductivity of Different Mietals and Alloys.}
-Lazare Weiler presented to the Société Internationale des Electriciens hie results of his experiments upon the relative electrical conductivity of certain metals and alloys, as here appended:
1. Pure silver 100
2. Pure copper 100
3. Refined and crystallized copper 99.9
4. Telegraphic silicious bronze 98
5. Alloy of copper and silver (50\%) 86.65
6. Pure goid 78
7. Silicide of copper, \(4 \%\) Si 75
8. Silicide of copper, \(12 \% \mathrm{Si}\). 54.7
9. Pure aluminum 54.2*
10. Tin with \(12 \%\) of sodium... 46.9
11. Telephonic silicious bronze 35
12. Copper with \(10 \%\) of lead 30
13. Pure zinc 29.9
14. Telephonic phosphor - bronze 29
15. Silicious brass, \(25 \%\) zinc 26.49
16. Brass with \(35 \%\) of zinc 21.5
17. Phosphor tin 17.1
18. Alloy of gold and silver (50\%) 16.12
19. Swedish iron 16
20. Pure Banca tin 15.45
21. Antimonial copper 12.7
22. Aluminum bronze (\(10 \%\)) 12.6
23. Niemens steel 12
24. Pure platinum 10.6
25. Copper with \(10 \%\) of nickel.. 10.6
26. Cadmium amalgam (\(15 \%\)). 10.2
27. Dronier mercurial bronze. 10.14
28. Arsenical copper (\(10 \%\)) 9.1
29. Pure lead 8.88
30. Bronze with \(20 \%\) of tin 8.4
31. Pure nickel 7.89
32. Phosphor-bronze, \(10 \%\) tin 6.5
33. Phosphor-conper, \(9 \%\) phos. 4.9
34. Antimony 3.88
The above comparative resistances may be reduced to uhms on the basisthat a wire of soft copper one millimetre in diameter at a temperature of \(0^{\circ}\)C. has a resistance of .02029 international ohms per metre; or a wire .001 inchdiam, has a resistance of \(\mathbf{9 . 5 9}\) international ohms per foot.

\footnotetext{
* This figure is too low. J. W. Richards (Jour. Franl. Inst., Mar. 1894) gives for hard-drawn aluminum of purity 98.5, 99.0, 99.5, and 99. \(5.5 \%\) respectively a conductivity of \(55,59,61\), and 63 to \(64 \%\), copper being \(100 \%\). The Pittsburg Reduction Co. claims that its purest aluminum has a conductivity of over 64.5\%. (Eng'g News, Dec. 17, 1896.)
}

\section*{Relative Conductivities of Different Metals at \(0^{\circ}\) and \(100^{\circ}\) C. (Matthiessen.)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Metals.} & \multicolumn{2}{|l|}{Conductivities.} & \multirow[b]{2}{*}{Metals.} & \multicolumn{2}{|l|}{Conductivities,} \\
\hline & \[
\begin{gathered}
\text { At } 0^{\circ} \mathrm{C} . \\
{ }^{2} \text {. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { At } 100^{\circ} \mathrm{C} . \\
& { }^{4} 212^{\circ} \mathrm{F} .
\end{aligned}
\] & & \[
\left.\right|_{\text {At }} ^{\text {At }} 0^{\circ} \mathrm{C} \text {. }
\] & \[
\text { At } 100^{\circ} \mathrm{C} .
\] \\
\hline Silver, hard. & 100 & 71.56 & Tin & 12.36 & 8.67 \\
\hline Copper, hard. & 99.95 & 70.27 & Lead............. & 8.32 & 5.86 \\
\hline Gold, hard.... & 77.96 & 55.90 & Arsenic......... & 4.76 & 3.33 \\
\hline Zinc, pressed. & 29.02 & 20.67 & Antimony..... & 4.62 & 3.26 \\
\hline Cadmium.... & 23.72
18.00 & & Mercury, pure..
Bismuth....... & 1.60
1.245 & 0.878 \\
\hline Iron, soft.. & 16.80 & & & & \\
\hline
\end{tabular}

\section*{Conductors and Insulators in Order of their Value.}

Conductors.
All metals
Well-burned charcoal
Plumbago Acid solutions Saline solutions Metallic ores Animal fluids Living vegetable substances Moist earth Water

Insulators (Non-conductors).
\begin{tabular}{ll}
Dry Air & Ebonite \\
Shellac & Gutta-percha \\
Paraffin & India-rubber \\
Amber & Silk \\
Resins & Dry Paper \\
Sulphur & Parchment \\
Wax & Dry Leather \\
Jet & Porcelain \\
Glass & Oils \\
Mica &
\end{tabular}

According to Culley, the resistance of distilled water is 6754 million times as great as that of copper.

Resistance Varies with Temperature.-For every degree Centigrade the resistance of copper increases about \(0.4 \%\), or for every degree \(F\). \(0.2222 \%\). Thus a plece of copper wire having a resistance of 10 ohms at \(32^{\circ}\) would have a resistance of 11.11 ohms at \(82^{\circ} \mathrm{F}\).

The following table shows the amount of resistance of a few substances used for various electrical purposes by which 10 hm is increased by a rise of temperature \(1^{\circ} \mathrm{F}\)., or \(1^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|}
\hline Material. & \[
\begin{gathered}
\text { Rise of } \mathrm{R} \text {. of } 1 \\
1^{\circ} \mathrm{F} .
\end{gathered}
\] & Ohm when Heated\(1^{\circ} \mathrm{C}\). \\
\hline Platinoid & . 00013 & . 00021 \\
\hline Platinum-silver & .. .00018 & . 00031 \\
\hline German silver (see below) & . . .00024 & . 00044 \\
\hline Gold, silver. & . 00036 & . 00065 \\
\hline Castiron. & . .00044 & . 00080 \\
\hline Copper..... & . . 00222 & . 00400 \\
\hline
\end{tabular}

Annealing.-The degree of hardness or softness of a metal or alloy affects its resistance. Resistance is lessened by annealing. Matthiessen gives the following relative conductivities for copper and silver, the comparison being made with pure silver at \(100^{\circ} \mathrm{C} .:\)
\begin{tabular}{|c|c|c|c|c|}
\hline Metal. & Temp. C. & Hard. & Annealed. & Ratio. \\
\hline Copper & \(11^{\circ}\) & 95.31 & 97.83 & 1 to 1.027 \\
\hline Silver. & \(14.6{ }^{\circ}\) & 95.36 & 103.33 & 1 to 1.084 \\
\hline
\end{tabular}

Dr. Siemens compared the conductivities of copper, silver, and brass with pure mercury at \(0^{\circ} \mathrm{C}\)., with the following results:
\begin{tabular}{cccc}
Metal. & Hard. & Annealed. & Ratio. \\
Copper...................... & 52.207 & 55.253 & 1 to 1.058 \\
Silver.......................... 56.252 & 64.380 & 1 to 1.145 \\
Brass.......................11.439 & 13.502 & 1 to 1.180
\end{tabular}

Edward Weston (Proc. Electrical Congress 1893, p. 179) says that the resistance of German silver depends on its composition. Matthlessen gives it as nearly 13 times that of copper, with a temperature coefficient of .0004483 per degree C. Weston, howẹver, has found copper-nickel-zinc alloys (German
silver) which had a resistance of nearly 28 times that of copper, and a temperature coefficient of about one half that given by Matthiessen. Kennelly and Fessenden (Proc. Elec. Cong., p. 186) find that copper has a uniform temperature coefficient of \(0.406 \%\) per degree C., between the limits of \(20^{\circ}\) and \(250^{\circ} \mathrm{C}\).

Standard of Resistance of Copper Wire. (Trans. A. I. E. E., Sept. and Nov. 1890.)-Matthiessen's standard is: A hard-drawn copper wire 1 metre long, weighing 1 gramme has a resistance of 0.1469 B.A. unit at \(0^{\circ}\) C. (1 B.A. unit \(=0.9889\) legal ohm \(=0.9866\) international ohm.) Resistance of hard copper \(=1.0226\) times that of soft copper. Relative conducting power (Matthiessen): silver, 100; hard or unannealed copper, 99.95; soft or annealed copper, 102.21. Conductivity of copper at other temperatures than \(0^{\circ} \mathrm{C} ., C_{t}=C_{0}\left(1-.00387 t+.000009009 t^{2}\right)\).

The resistance is the reciprocal of the conductivity, and is
\[
R_{t}=R_{0}\left(1+.00387 t+.0000059 \% t^{2}\right)
\]

The shorter formula \(R_{t}=R_{0}(1+.00406 t)\) is commonly used.
A committee of the Am. Inst. Electrical Engineers recommend the following as the most correct form of the Matthiessen standard, taking 8.89 as the sp. gr. of pure copper:

A soft copper wire 1 metre long and 1 mm . diam. has an electrical resistance of \(.0205 \%\) B.A. unit at \(0^{\circ} \mathrm{C}\). From this the resistance of a soft copper wire 1 foot long and .001 in . diam. (mil-foot) is found to be \(9.720 \mathrm{~B} . \mathrm{A}\). units at \(0^{\circ} \mathrm{C}\).

Standard Resistance at \(0^{\circ} \mathrm{C}\).
B.A. Units. Legal Ohms.

Internat.

For tables of the resistance of copper wire, see pages 218 to 220 , also pp. 1034, 1035.
Taking Matthiessen's standard of pure copper as \(100 \%\), some refined metal has exhibited an electrical conductivity equivalent to \(103 \%\).
Matthiessen found that impurities in copper sufficient to decrease its density from 8.94 to 8.90 produced a marked increase of electrical resistance.

\section*{DHRECT ELECTRIC CURRENTS.}

Ohm's Law.-This law expresses the relation between the three fundamental units of resistance, electrical pressure, and current. It is :
\[
\text { Current }=\frac{\text { electrical pressure }}{\text { resistance }} ; C=\frac{E}{R} ; \text { whence } E=C R, \text { and } R=\frac{E}{C}
\]

In terms of the units of the three quantities,
\[
\text { Amperes }=\frac{\text { volts }}{\text { ohms }} ; \text { volts }=\text { amperes } \times \text { ohms } ; \quad \text { ohms }=\frac{\text { volts }}{\text { amperes }} .
\]

Examples: Simple Circuits.-1. If the source has an effective electrical pressure of 100 volts, and the resistance is two ohms, what is the current?
\[
C=\frac{E}{R}=\frac{100}{2}=50 \text { amperes. }
\]
2. What pressure will give a current of 50 amperes through a resistance of 2 ohms? \(E=C R=50 \times 2=100\) volts.
3. What resistance is required to obtain a current of 50 amperes when the pressure is 100 volts \(ः R=\frac{E}{C}=\frac{100}{50}=2 \mathrm{ohms}\).
The following examples are from R. E. Day's "Electric Light Arithmetic:"
1. The internal resistance of a certain Brush dynamo-machine is 10.9 ohms , and the external resistance is 73 ohms ; the electro-motive force of the machine being 839 volts. Find the strength of the current flowing in the circuit
\[
\begin{aligned}
& E=839 ; R=73+10.9=83.9 \text { ohms; } \\
& O=E \div R=839 \div 83.9=10 \text { amperes. }
\end{aligned}
\]
2. Three arc lamps in series have a combined resistance of 9.36 ohms, while the resistance of the leading wires is 1.1 ohm , and that of the dynamo is 2.8 ohms. Find what must be the electro-motive force of the machine when the strength of the current produced is 14.8 amperes.
\[
\begin{aligned}
& R=2.8+9.36+1.1=13.26 \text { ohms; } C=14.8 \text { amperes; } \\
& E=C \times R=13.26 \times 14.8=196.3 \text { volts. }
\end{aligned}
\]
3. Calculate from the following data the average resistance of each of three arc lamps arranged in series. The electro-motive force of the machine is 244 volts and its resistance is 3.7 ohms, while that of the leading wires is 2 ohms, and the strength of current through each lamp is 21 amperes.
If \(x\) represent the average resistance in ohms of each lamp, then the total resistance of the circuit is \(R=3 x+2+3.7\).
But by Ohm's law \(R=E \div C, \therefore 3 x+5.7=244 / 21=11.61\) ohms, whence \(x=1.97\) ohms, nearly.
4. Three Maxim incandescent lamps were placed in series. The average resistance, when hot, of each lamp was 39.3 ohms, and that of the dynamo and leading wires 11.2 ohms. What electro-motive force was required to maintain a current of 1.2 amperes through this circuit?

In this case we have
\[
\begin{aligned}
& R=3 \times 39.3+11.2=129.1 \mathrm{ohms}, \text { and } \\
& C=1.2 \text { ampere } ;
\end{aligned}
\]
and therefore, by Ohm's law,
\[
E=C^{r} \times R=1.2 \times 129.1=154.9 \text { volts. }
\]
5. The resistance of the arc of a certain Brush lamp was 3.8 ohms when a current of 10 amperes was flowing through it. What was the electro-motive force between the two terminals?
\[
E=C \times R=10 \times 3.8=38 \text { volts }
\]
6. Twenty-five exactly similar galvanic cells, each of which had an average internal resistance of 15 ohms , were joined up in series to one incandescent lamp of 70 ohms resistance, and produced a current of 0.112 amperes. What would be the strength of current produced by a series of 30 such cells through 2 lamps, each of 30 ohms resistance?

The data of the first part of the problem enable us to determine the average electro-motive force of each cell of the battery. Let this be represented by \(E\); then we have
\[
\begin{gathered}
25 E=C \times R=.112 \times(25 \times 15+\% 0)=.112 \times 445 ; \\
\therefore E=\frac{.112 \times 445}{25}=2 \text { volts, nearly } .
\end{gathered}
\]

Then from the data in the second part of the problem, we have, by Ohm's law,
\[
C=\frac{30 \times 2}{30 \times 15+2 \times 30}=\frac{60}{510}=0.118 \text { ampere. }
\]

Divided Circuits. -If the circuit has two paths, the total current in both divides itself inversely as the resistances.

If \(R\) and \(R_{1}\) are the resistances of the two branches, and \(C\) and \(C_{1}\) the currents, \(C \times R=C_{1} \times R_{1}\), and \(\frac{C}{C_{1}}=\frac{R_{1}}{R}\), whence
\[
C=\frac{C_{1} R_{1}}{R} ; \quad C_{1}=\frac{C R}{R_{1}} ; \quad R=\frac{C_{1} R_{1}}{C} ; \quad R_{1}=\frac{C R}{C_{1}} .
\]

In the case of the double circuit, one circuit is said to be in shunt to the other, or the circuits are in multiple arc, in multiple, or in parallel.
Conductors in Series.-If conductors are arranged one after the other they are said to be in series, and the total resistance is the sum of their several resistances. \(R=R_{1}+R_{2}+R_{3}\).

Internal Resistance.-In a simple circuit we have two resistances, tnat of the circuit \(R\) and that of the internal parts of the source of electro-
motive force, called internal resistance, \(r\). The formula of Ohm's law when the internal resistance is considered is \(C=\frac{E}{R+r}\).
Total or Joint Resistance of Two Branches. - Let \(C\) be the total current, and \(C_{1}, C_{2}\) the currents in branches whose resistances respectively are \(R_{1}, R_{2}\). Then \(C=C_{1}+C_{2} ; C=\frac{E}{R} ; C_{1}=\frac{E}{R_{1}} ; C_{2}=\frac{E}{R_{2}} ;\) or, if \(E=\) \(1, C=\frac{1}{R}=\frac{1}{R_{\mathrm{t}}}+\frac{1}{R_{2}}\), whence \(R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}\), which is the joint resistance of \(R_{1}\) and \(R_{2}\).
Similariy, the joint resistances of three branches have resistances respectively of \(R_{1}, R_{2}, R_{3}\), is \(R=\frac{R_{1} R_{2} R_{3}}{R_{1} R_{3}+R_{1} R_{3}+R_{2} R_{3}}\).
When the branch resistances are equal, the formula becomes
\[
\frac{R_{1}{ }^{n}}{R_{1}{ }^{n-1} \times n}=\frac{R_{1}}{n},
\]
where \(R_{1}=\) the resistance of one branch, and \(n=\) the number of branches.
Kirchhoff's Laws.-1. The sum of the currents in all the wires which meet in a point is nothing.
2. The sum of all the products of the currents and resistances in all the branches forming a closed circuit is equal to the sum of all the electrical pressures in the same circuit.
When \(E=E_{1}+E_{2}+E_{8}\), etc., and \(C=C_{1}+C_{2}+C_{3}\), etc., and \(R\) is thr total resistance of \(R_{1} R_{2} R_{3}\), etc., then
\[
E_{1}+E_{2}+E_{3}, \text { etc. }=C_{1} R_{1}+C_{2} R_{2}+C_{3} R_{3}, \text { etc. }
\]

Power of the Circuit.-The power, or rate of work, in watts = current in amperes \(\times\) electro-motive force in volts \(=C X X E\). Since \(C=E \div R\), watts \(=\frac{E^{2}}{R}=\) electro-motive force \({ }^{2}+\) resistance.

Example.- What H.P. is required to supply 100 lamps of 40 ohms resistance each, requiring an electro-motive force of 60 volts ?
The number of volt-amperes for each lamp is \(\frac{E^{2}}{R}=\frac{60^{2}}{40}, 1\) volt-ampere \(=\) .00134 H.P.; therefore \(\frac{60^{2}}{40} \times 100 \times .00134=12\) H.P. (electrical) very nearly.
If the loss in the dynamo is 20 per cent, then \(12 \mathrm{H} . \mathrm{P}\). is 80 per cent of the actual H.P. required; which therefore is \(\frac{12}{.80}=15\) H.P.

Heat Generated by a Current.-Joule's law shows that the heat developed in a conductor is directly proportional, 1st, to its resistance; 2d, to the square of the current strength; and 3d, to the time during which the current flows, or \(H=C^{2} R t\). Since \(C=E \div R\),
\[
C^{2} R t=\frac{E}{R} C R t=E C t=E \frac{E}{R} t=\frac{E^{2} t}{R}
\]

Or, heat \(=\) current \(^{2} \times\) resistance \(\times\) time
\[
=\text { electro motive force } \times \text { current } \times \text { time }
\]
\(=\) electro-motive force \({ }^{2} \times\) time \(\div\) resistance.
\(Q=\) quantity of electricity flowing \(=C t=\frac{E}{R} t\).
\(H=E Q\); or heat \(=\) electro-motive force \(\times\) quantity.
The electro-motive force here is that causing the flow, or the difference in potential between the ends of the conductor.

The electrical unit of heat, or "joule" \(=10^{7}\) ergs = heat generated in one second by a current of 1 ampere flowing through a resistance of one ohm = .239 gramme of water raised \(1^{\circ} \mathrm{C} . \quad H=C^{2} R t \times .239\) gramme calories \(=\) \(C^{2} R t \times .0009478\) British thermal units.
In electric lighting the energy of the current is converted into heat in the lamps. The resistance of the lamp is made great so that the required quantity of heat may be developed, while in the wire leading to and from
the lamp the resistance is made as small as is commercially practicable. so that as little energy as possible may be wasted in heating the wire. The transformations of energy from the fuel burned in the boiler to the electric light are the following:
Heat energy is transformed into mechanical energy by means of the boiler and engine.
Mechanical energy is transformed into electrical energy in the dynamo.
Electrical energy is transformed into heat in the electric light.
The heat generated in a conductor is the equivalent of the energy causing the flow. Thus, rate of expenditure of energy in watts = electro-motive force in volts \(\times\) current in amperes \(=E C\), and the energy in joules \(=\) watts \(\times\) time in seconds \(=E C t\). Heat \(=C^{2} R t=E C t\).
Heating of Conductors. (From Kapp's Electrical Transmission of Energy.) - It becomes a matter of great importance to determine beforehand what rise in temperature is to be expected in each given case, and if that rise should be found to be greater than appears safe, provision must be made to increase the rate at which \(h \geqslant a t\) is carried off. This can generally be done by increasing the superficial area of the conductor. Say we have one circular conductor of 1 square inch area, and find that with 1000 amperes flowing it would become too hot. Now by splitting up this conductor into 10 separate wires each one tenth of a square inch cross-sectional area, we have not altered the total amount of energy transformed into heat, but we have increased the surface exposed to the cooling action of the surrounding air in the ratio of \(1: \sqrt[1]{10}\), and therefore the ten thin wires can dissipate more than three times the heat, as compared with the single thick wire.

\section*{Feating of Wires of Subaqueous and Aerial Cables (insulated with Gutta=percha). (Prof. Forbes.)}

Diameter of cable \(\div\) Diameter of conductor \(=4\).
Temperature of air \(=20^{\circ} \mathrm{C} .=68^{\circ} \mathrm{F}\).
\(t=\) excess of temperature of conductor over air.

Diameter in centimetres and mils.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cm. & Mils. & \[
\begin{aligned}
& t=1^{\circ} \mathrm{C} \\
& =1.8^{\circ} \mathrm{F}
\end{aligned}
\] & \[
\begin{aligned}
& t=9^{\circ} \mathrm{C} . \\
& =16.2^{\circ} \mathrm{F} .
\end{aligned}
\] & \[
\begin{aligned}
t & =25^{\circ} \mathrm{C} . \\
& =45^{\circ} \mathrm{F}
\end{aligned}
\] & \[
\begin{aligned}
t & =49^{\circ} \mathrm{C} . \\
& =92.2^{\circ} \mathrm{F} .
\end{aligned}
\] & \[
\begin{aligned}
& t=81^{\circ} \mathrm{C} \\
& =145.8^{\circ} \mathrm{F}
\end{aligned}
\] \\
\hline . 1 & 40 & 3.7 & 11.0 & 17.8 & 24.0 & 29.5 \\
\hline . 2 & 80 & 9.1 & 27.0 & 43.8 & 59.0 & 72.5 \\
\hline . 3 & 120 & 15.0 & 44.4 & \%2.1 & 97.3 & 119 \\
\hline . 4 & 160 & 21.2 & 62.5 & \(10 \cdot 3\) & 13 i & 168 \\
\hline . 5 & 200 & 27.4 & 81.0 & 131 & \(1 \%\) & 218 \\
\hline . 6 & 240 & 33.7 & 100 & 164 & 219 & 268 \\
\hline . 7 & 280 & 40.1 & 119 & 192 & 259 & 319 \\
\hline . 8 & 310 & 46.4 & 137 & 223 & 301 & 369 \\
\hline . 9 & 350 & 52.9 & 157 & 253 & 312 & 420 \\
\hline 1.0 & 390 & 59.3 & 175 & 285 & 384 & \(4 \%\) \\
\hline 2.0 & 780 & 124 & 367 & 595 & 803 & 988 \\
\hline 3.0 & 1180 & 189 & 559 & 908 & 12:5 & 1503 \\
\hline 4.0 & 1570 & 254 & 753 & 1221 & 1646 & 2021 \\
\hline 5.0 & 1970 & 319 & 945 & 1534 & 2068 & 2523 \\
\hline 6.0 & 2360 & 385 & 1138 & 1846 & 2491 & 3058 \\
\hline \%.0 & \(2 \sim 60\) & 450 & 1330 & 2158 & 2846 & \(35 \% 5\) \\
\hline 8.0 & 3150 & 514 & 1595 & 24ヶ2 & 3335 & 4094 \\
\hline 9.0 & 3540 & 580 & 1716 & 2785 & 3755 & 4611 \\
\hline 10.0 & 3940 & 645 & 1909 & 3097 & 4178 & 5130 \\
\hline
\end{tabular}

Prof. Forbes states that an insulated wire carries a greater current without overheating than a bare wire if the diameter be not too great. Assuming the diameter of the cable to be twice the diam. of the conductor, a greater cnrrent cau be carried in insulated wires than in bare wires up to 1.9 inch diam. of conductor. If diam. of cable \(=4\) times diam. of conductor, this is the case up to 1.1 inch diam. of conductor.

Copper-wire Table.-The table on pages 1034 and 1035 is abridged from one computed by the Committee on Units and Standards of the American Institute of Electrical Engineers (Trans. Oct. 1893).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Gauges.} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Diam- } \\
\text { eter, } \\
\text { inches. }
\end{gathered}
\]} & \multirow[t]{2}{*}{Area, Circular mils.} & \multicolumn{2}{|l|}{Weight.} & \multicolumn{2}{|l|}{Length.} & \multicolumn{4}{|l|}{Resistance in International Ohms.} \\
\hline \begin{tabular}{l}
A. W. G. \\
B. \& S.
\end{tabular} & B. W. G. Stubbs'. & & & L,bs. per Foot. & Lbs. per Ohm,
at \(20^{\circ} \mathrm{C}, 68^{\circ} \mathrm{F}\). & \[
\begin{aligned}
& \text { Feet per } \\
& \text { Lb. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ft. per Ohm, } \\
& \text { at } 20^{\circ} \mathrm{C} .68^{\circ} \mathrm{F} .
\end{aligned}
\] & Ohms per Lb. at \(20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F}\). & \[
\left|\begin{array}{cc}
0 . \text { per ft., at } \\
20^{\circ} \mathrm{C} ., 68^{\circ} & \mathrm{F} .
\end{array}\right|
\] & \[
\begin{aligned}
& \mathrm{O} . \text { per } \mathrm{ft} ., \text { at } \\
& 50^{\circ} \mathrm{C} ., 122^{\circ} \mathrm{F} .
\end{aligned}
\] & O. per ft., at \(80^{\circ} \mathrm{C} ., 176^{\circ} \mathrm{F}\). \\
\hline \multirow[t]{2}{*}{0000} & & 0.460
0.454 & 211,600
206,100 & 0.6405 & 13,090 & 1.561 & 20,440 & 0.00007639 & 0.00004893 & 0.00005467 & 0.00006058 \\
\hline & 0000 & 0.454 & 206,100 & 0.6239 & 12,420 & 1.603 & 19,910 & 0.00008051 & 0.00005023 & 0.00005612 & 0.00006220 \\
\hline \multirow[t]{2}{*}{000} & 000 & 0.425 & 180,600 & 0.5468 & 9,538 & 1.829 & 17,450 & 0.0001048 & 0.00005732 & 0.00006404 & 0.00007097 \\
\hline & & 0.4096 & 167,800 & 0.5080 & 8,232 & 1.969 & 16,210 & 0.0001215 & 0.00006170 & 0.00006893 & 0.00007640 \\
\hline \multirow[t]{3}{*}{00} & 00 & 0.380 & 144,400 & 0.4371 & 6,096 & 2.288 & 13,950 & 0.0001640 & 0.00007170 & 0.00008011. & 0.00008878 \\
\hline & & 0.3648 & 133,100 & 0.4028 & 5,177 & 2.482 & 12,850 & 0.0001931 & 0.00007780 & 0.00008692 & 0.00009633 \\
\hline & 0 & 0.340 & 115,600 & 0.3499 & 3,907 & 2.858 & 11,160 & 0.0002560 & 0.00008957 & 0.0001001 & 0.0001109 \\
\hline 0 & & \(0.3 刃 49\) & 105,500 & 0.3195 & 3,256 & 3.130 & 10,190 & 0.0003071 & 0.00009811 & 0.0001096 & 0.0001215 \\
\hline \multirow[t]{3}{*}{1} & 1 & 0.3000 & 90,000 & 0.2724 & 2.368 & 3.671 & 8,692 & \(0.00042 \% 3\) & 0.0001150 & 0.0001285 & 0.0001424 \\
\hline & & 0.2893 & 83,690 & 0.2533 & 2,048 & 3.947 & 8,083 & 0.0004883 & 0.0001237 & \(0.000138 \%\) & \(0.000153 \%\) \\
\hline & 2 & 0.2840 & 80,660 & 0.2441 & -1,902 & 4.096 & 7,790 & 0.0005258 & 0.0001284 & 0.0001434 & 0.0001589 \\
\hline \multirow[t]{2}{*}{2} & 3 & 0.2590 & 67,080 & 0.2031 & 1,316 & 4.925 & 6,479 & 0.0007601 & 0.0001543 & 0.0001724 & 0.0001911 \\
\hline & & 0.2576 & 66,370 & 0.2009 & 1,288 & 4.977 & 6,410 & 0.0007765 & 0.0001560 & 0.0001743 & 0.0001932 \\
\hline \multirow[t]{3}{*}{3} & 4 & 0.2380 & 56,640 & 0.1715 & 938.0 & 5.832 & 5,471 & 0.001066 & 0.0001828 & 0.0002042 & 0.0002263 \\
\hline & & 0.2294 & 52,630 & 0.1593 & 810.0 & 6.276 & 5,084 & \(0: 001235\) & 0.0001967 & 0.0002198 & 0.0002435 \\
\hline & 5 & 0.2200 & 48,400 & 0.1465 & 684.9 & 6.826 & 4,675 & 0.001460 & 0.0002139 & 0.0002390 & 0.0002649 \\
\hline 4 & & 0.2043 & 41,740 & 0.1264 & 509.4 & 7.914 & 4,031 & 0.001963 & 0.0002480 & 0.0002771 & 0.0003071 \\
\hline \multirow[t]{3}{*}{5} & 6 & 0.2030 & 41,210 & 0.1247 & 496.5 & 8.017 & 3,980 & 0.002014 & 0.0002513 & 0.0002807 & 0.0003111 \\
\hline & & 0.1819 & 33,100 & 0.1002 & 320.4 & 9.980 & 3,197 & 0.003122 & 0.0003128 & 0.0003495 & 0.0003873 \\
\hline & 7 & 0.1800 & 32,400 & 0.09808 & 306.9 & 10.20 & 3,129 & 0.003258 & 0.0003196 & 0.0003570 & 0.0003957 \\
\hline \multirow[t]{2}{*}{6} & 8 & 0.1650 & 27,230 & 0.08241 & 216.7 & 12.13 & 2,629 & 0.004615 & 0.0003803 & 0.0004249 & 0.0004709 \\
\hline & & 0.1620 & 26,250 & 0.07946 & 201.5 & 12.58 & 2,535 & 0.004963 & 0.0003944 & 0.0004406 & 0.0004883 \\
\hline \multirow[t]{2}{*}{7} & 9 & 0.1480 & 21,900 & 0.06630 & 140.3 & 15.08 & 2,116 & 0007129 & 0.0004727 & 0.0005281 & 0.0005853 \\
\hline & & 0.1443 & 20,820 & 0.06302 & 126.7 & 15.87 & 2,011 & 0.007892 & 0.0004973 & 0.0005556 & 0.0006158 \\
\hline \multirow[t]{2}{*}{8} & 10 & 0.1340 & 17,960 & 0.05435 & 94.26 & 18.40 & 1,734 & 0.01061 & 0.0005766 & 0.0006442 & 0.0007140 \\
\hline & & 01285 & 16,510 & 0.04998 & 79.69 & 20.01 & 1,595 & 0.01255 & 0.0006271 & 0.0007007 & 0.0007765 \\
\hline \multirow[t]{3}{*}{9} & 11 & 0.1200 & 14,400 & 0.04359 & 60.62 & 22.94 & 1,391 & 0.01650 & 0.0007190 & 0.0008033 & 0.0008903 \\
\hline & & 0.1144 & 13,090 & 0.03963 & 50.12 & 25.23 & 1,265 & 0.01995 & 0.0007908 & \(0.000 \times 835\) & 0.0009791 \\
\hline & 12 & 0.1090 & 11,880 & 0.03596 & 41.27 & 27.81 & 1,147 & 0.02423 & 0.0008715 & 0.0009736 & 0.001079 \\
\hline 10 & & 0.1019 & 10,380 & 0.03143 & 31.52 & 31.82 & 1,003 & 0.03173 & 0.0009972 & 0.001114 & 0.001235 \\
\hline \multirow[t]{2}{*}{11} & 13 & 0.0950 & 9,025 & 0.02732 & 23.81 & 36.60 & 871.7 & 0.04199 & 0.001147 & 0.001282 & 0.001420 \\
\hline & & 0.09074 & 8,234 & 0.02493 & 19.82 & 40.12 & 795.3 & 0.05045 & 0.001257 & 0.001405 & 0.001557 \\
\hline \multirow[t]{2}{*}{12} & 14 & 0.08300 & 6,889 & 0.02085 & 13.87 & 47.95 & 665.4 & 0.07207 & 0.001503 & 0.001679 & 0.001861 \\
\hline & & 0.08081 & 6,530 & 0.01977 & 12.47 & 50.59 & 630.7 & \(0.0802 \%\) & 0.001586 & 0.001771 & 0.001963 \\
\hline \multirow[t]{3}{*}{13} & 15 & 0.07200 & 5,184 & 0.01569 & 7.857 & 63.73 & 500.7 & 0.1273 & 0.001997 & 0.002231 & 0.002473 \\
\hline & & 0.07196 & 5,178 & 0.01568 & 7.840 & 63.79 & 500.1 & 0.1276 & 0.001999 & 0.002234 & 0.002476 \\
\hline & 16 & 0.06500 & 4,225 & 0.01279 & 5.219 & 78.19 & 408.1 & 0.1916 & 0.002451 & 0.002738 & 0.003034 \\
\hline 14 & & 0.06408 & 4,107 & 0.01243 & 4.981 & 80.44 & 396.6 & 0.2028 & 0.002521 & 0.002817 & 0.003122 \\
\hline & 17 & 0.0580 & 3,364 & 0.01018 & 3.308 & 98.23 & 324.9 & 0.3023 & 0.003078 & 0.003439 & 0.003811 \\
\hline \multirow[t]{3}{*}{16} & & 0.05707 & 3,257 & 0.009858 & 3.101 & 101.4 & 314.5 & 0.3225 & 0.003179 & 0.003552 & 0.003936 \\
\hline & 18 & 0.05088 & 2,583 & 0.007818 & 1.950 & 127.9 & 249.4 & 0.5128 & (.004009 & 0.004479 & 0004964 \\
\hline & 18 & 0.6490 & 2,401 & 0.007268 & 1.685 & 137.6 & 231.9 & 0.5933 & 0.004312 & 0.004818 & 0.005339 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Gauges.} & \multirow[t]{2}{*}{Diameter, inches.} & \multirow[t]{2}{*}{Area, Circular mils.} & \multicolumn{2}{|l|}{Weight.} & \multicolumn{2}{|l|}{Length.} & \multicolumn{4}{|l|}{Resistance in International Ohms.} \\
\hline A. W. G. B. \& S. & B. W. G. Stubbs'. & & & Lbs. per Foot. & Libs. per Ohm, at \(20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F}\). & Feet per Lb. & Ft. per Ohm, at \(20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F}\). & Ohms per Lb. at \(20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F}\). & \[
\begin{gathered}
\text { Ohms per ft. } \\
\text { at } 20^{\circ} \mathrm{C} ., \\
68^{\circ} \mathrm{F} .
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { Ohms per ft. } \\
\text { at } 50^{\circ} \mathrm{C} . \\
122^{\circ} \mathrm{F} .
\end{gathered}\right.
\] & Ohms perft. at \(80^{\circ} \mathrm{C}\). \(176^{\circ} \mathrm{F}\). \\
\hline 17 & & 0.04526 & 2,048 & 0.006200 & 1.226 & 161.3 & 197.8 & 0.8153 & 0.005055 & 0.005648 & 0.006259 \\
\hline & 19 & 0.04200 & 1,764 & 0.005340 & 0.9097 & 187.3 & 170.4 & 1.099 & 0.005870 & 0.006558 & 0.007267 \\
\hline 18 & & 0.04030 & 1,624 & 0.004917 & 0.7713 & 203.4 & 156.9 & 1.296 & 0.006374 & 0.007122 & 0.007892 \\
\hline 19 & & 0.03589 & 1,288 & 0.003899 & 0.4851 & 256.5 & 124.4 & 2.061 & 0.008038 & 0.008980 & 0.009952 \\
\hline & 20 & 0.03500 & 1,225 & 0.003708 & 0.4387 & 269.7 & 118.3 & 2.279 & 0.008452 & 0.009443 & 0.01047 \\
\hline & 21 & 0.03200 & 1,024 & 0.003100 & 0.3066 & 322.6 & 98.90 & 3.262 & 0.01011 & 0.01130 & 0.01252 \\
\hline 20 & & 0.03196 & 1,022 & 0.003092 & 0.3051 & 323.4 & 98.66 & 3.278 & 0.01014 & 0.01132 & 0.01255 \\
\hline 21 & & 0.08846 & 810.1 & 0002452 & 0.1919 & 407.8 & 78.24 & 5.212 & 0.01278 & 0.01428 & 0.01583 \\
\hline & 22 & 0.02800 & 784.0 & 0.002373 & 0.1797 & 421.4 & 75.72 & 5.565 & 0.01321 & 0.01475 & 0.01635 \\
\hline 22 & 23 & 0.02535
0.0250 & 642.4 & 0.001945 & 0.1207 & 514.2 & 62.05 & 8.287 & 0.01612 & 0.01801 & 0.01996 \\
\hline 23 & 23 & 0.0250
0.02257 & 625.0
509.5 & 0.001892
0.001542 & 0.1142
0.07589 & 528.6
648.4 & 60.36
49.21 & 8.756 & 0.01657
0.02032 & 0.01851 & 0.02051 \\
\hline & 24 & 0.0220 & 484.0 & 0.001465 & 0.06849 & 682.6 & 46.75 & 14.60 & 0.02139 & 0.02390 & 0.02649 \\
\hline 24 & & 0.02010 & 404.0 & 0.001223 & 0.04773 & 817.6 & 39.02 & 20.95 & 0.02563 & 0.02863 & 0.03173 \\
\hline & 25 & 0.0200 & 400.0 & 0.001211 & 0.04678 & 825.9 & 38.63 & 21.38 & 0.02588 & 0.02892 & 0.03205 \\
\hline & 26 & 0.0180 & 324.0 & 0.0009808 & 0.03069 & 1,020 & 31.29 & 32.58 & 0.03196 & 0.03570 & 0.03957 \\
\hline 25 & & 0.01790 & 320.4 & 0.0009699 & 0.03002 & 1,031 & 30.95 & 33.32 & 0.03231 & 0.03610 & 0.04001 \\
\hline & 27 & 0.0160 & 256.0 & 0.0007749 & 0.01916 & 1,290 & 24.73 & 52.19 & 0.04045 & 0.04519 & 0.05008 \\
\hline 26 & & 0.01594 & 254.1 & 0.0007692 & 0.01888 & 1,300 & 24.54 & 52.97 & 0.04075 & 0.04552 & 0.05045 \\
\hline 27 & & 0.0142
0.0140 & 201.5
196.0 & 0.0006100 & 0.01187 & 1,639 & 19.46 & 84.23 & 0.05138 & 0.05740 & 0.06362 \\
\hline & 28
29 & 0.0140
0.0130 & 196.0
169.0 & 0.0005933
0.0005116 & 0.01123
0.008350 & 1,685 & 18.93
16.32 & 89.04
119.8 & 0.05283 & 0.05902 & 0.06541 \\
\hline 28 & & 0.01264 & 159.8 & 0.0004837 & 0.007466 & 2,067 & 15.43 & 133.9 & 0.06479 & 0.07239 & 0.08022 \\
\hline & 30 & 0.0120 & 144.0 & 0.0004359 & 0.006062 & 2,294 & 13.91 & 165.0 & 0.07190 & 0.08033 & 0.08903 \\
\hline 29 & & 0.01126 & 126.7 & 0.0003836 & 0.004696 & 2,607 & 12.24 & 213.0 & 0.08170 & 0.09128 & 0.1012 \\
\hline 30 & & 0.01003
0.0100 & 100.5 & 0.0003042 & 0.002953 & 3,287 & 9.707 & 338.6 & 0.1030 & 0.1151 & 0.1276 \\
\hline & 31
32 & 0.0100
0.0090 & 100.0
81.0 & 0.0003027
\(0.000245 \%\) & 0.002924
0.001918 & 3,304
4,078 & 9.658
7.823 & 342.0
521.3 & 0.1035
0.1278 & 0.1157 & 0.1282 \\
\hline 31 & & 0.008928 & 79.70 & 0.0002413 & 0.001857 & 4,145 & 7.698 & 538.4 & 0.1299 & 0.1451 & 0.1608 \\
\hline & 33 & 0.0080 & 64.0 & 0.0001937 & 0.601197 & 5,162 & 6.181 & 835.1 & 0.1618 & 0.1807 & 0.2003 \\
\hline 32 & & 0.007950 & 63.21 & 0.0001913 & 0.001168 & 5,227 & 6.105 & 856.2 & 0.1638 & 0.1830 & 0.2028 \\
\hline 33 & & 0.007080 & 50.13 & 0.0001517 & 0.0007346 & 6,591 & 4.841 & 1,361 & 0.2066 & 0.2308 & 0.2558 \\
\hline & 34 & 0.0070 & 49.0 & 0.0001483 & 0.0007019 & 6,742 & 4.733 & 1,425 & 02113 & 0.2361 & 0.2616 \\
\hline 34 & & 0.006305 & 39.75 & 0.0001203 & 0.0004620 & 8,311 & 3839 & 2,165 & 0.2605 & 9.2910 & 0.3225 \\
\hline 35
36 & 35 & 0.005615
0.0050 & 31.52
25.0 & 0.000009543
0.00007568 & 0.0002905
0.0001827 & 10,480
13,210 & 3.045 & 3,441 & 0.3284 & 0.3669 & 0.4067 \\
\hline 37 & & 0.004453 & 19.83 & 0.00006001 & 0.0001149 & 16,660 & 2.914
1.915 & 8,473 & 0.4142
0.522 & 0.4627
0.5835 & 0.5129
0.6466 \\
\hline & 36 & 0.0040 & 16. & 0.00004843 & 0.00007484 & 20,650 & 1.545 & 13,360 & 0.6471 & 0.7230 & 0.8011 \\
\hline 38 & & 0.003965 & 15.72 & 0.00004759 & 0.00007210 & 21,010 & 1.519 & 13,870 & 0.6585 & 0.7357 & 0.8154 \\
\hline 39 & & 0.0035331 & 12.47 & 0.00003574 & 0.00004545 & 26,500 & 1204 & 22,000 & 0.8304 & 0.9277 & 1.028 \\
\hline 40 & & 0.003145 & 9.888 & 0.00002993 & 0.00002858 & 33,410 & 0.9550 & 34,980 & 1.047 & 1.170 & 1.296 \\
\hline
\end{tabular}

The data from which the foregoing table has been computed are as follows: Mathiessen's standard resistivity, Matthiessen's temperature coefficients, specific gravity of copper \(=8.89\). Resistance in terms of the international ohm.
Matthiessen's standard 1 metre-gramme of hard-drawn copper \(=0.1469\) B. A. U. @ \(0^{\circ}\) C. Ratio of resistivity hard to soft copper 1.0026.

Matthiessen's standard 1 metre-gramme of soft-drawn copper \(=0.14365\) B. A. U.@ \(0^{\circ}\) C. One B. A. U. \(=0.9866\) international ohm.

Matthiessen's standard 1 metre-gramme of soft-drawn copper \(=0.141729\) interuational ohm @ \(0^{\circ} \mathrm{C}\).

Temperature coefficients of resistance for \(20^{\circ} \mathrm{C} .50^{\circ} \mathrm{C}\)., and \(80^{\circ} \mathrm{C} ., 1.07968\), 1.20625 , and 1.33681 respectively. 1 foot \(=0.3048028\) metre, 1 pound \(=\) 453.59256 grammes.

Heating of Coils.-To calculate the heating of a coil, given the cooling surface and its resistance. (Forbes.)

Let \(\rho=\) the resistance of a coil in ohms at the permissible temperature
\(S=\) (the resistance (cold) must be increased by \(1 / 5\) of its value to give \(\rho\));
\(S=\) the surface exposed to the air measured in square centimetres
(\(1 \mathrm{square} \mathrm{cm} .=.155\) square inch; 1 sq . in. \(=6.45 \mathrm{square} \mathrm{cm}\).);
\(t=\) the rise in temperature, centigrade scale;
\(C=\) the current in amperes.
\(.24 C^{2} \rho=\) heat generated \(=\) etS.
where \(e\) is McFarlane's constant, varying from .0002 to .0003 . The latter value may be taken. If \(50^{\circ} \mathrm{C}\). be the permissible rise in temperature,
\[
C=\sqrt{\frac{.0003 \times 50 \times S}{.24 \times \rho}}=.25 \sqrt{\frac{\bar{S}}{\rho}} .
\]

Example. -The resistance of the field-magnets of a dynamo is 1.5 ohms cold, and the surface exposed to the air is 1 square metre; find the current to heat it not more than \(50^{\circ} \mathrm{C}\).
\[
\text { Here } S=10,000 ; \rho=1.8 \text { ohms; and } C=.25 \sqrt{\frac{10,000}{1.8}}=33.5 \text { amperes. }
\]

For the heating of coils of field-magnets Carl Hering gives 1 watt of energy dissipated for every 223 square inches of cooling-surface for each degree \(F\). of difference between the temperature of the coil and the surrounding air.
\(W=C E=1 / 2 j 3 T S=0.004476 T S\), in which \(W=\) watts lost in coil, \(T=\) degrees Fahr., and \(S=\) square inches.
\(C=\frac{T S}{223 E}\) is the greatest current which can be used in the magnet coils of a shunt machine having a certain pressure in order that they do not heat above a certain temperature. Thus for a rise of temperature of \(50^{\circ} \mathrm{F}\). above the surrounding air,
\(C=\frac{50 S}{223 E}=.224 \frac{\dot{S}}{E}\). Substituting for \(E\) its equivalent \(C R\), we get
\[
C=\sqrt{.224 \frac{\mathrm{~S}^{\prime}}{R^{\prime}}}
\]

If \(80^{\circ} \mathrm{F}\). is the maximum difference of temperature,
\[
C=\frac{80 S}{223 E}=.36 \frac{S}{E}=.60 \sqrt{\frac{S}{R}}
\]

The formula can be used for series machines when \(C\) is known, for writing
\[
C^{2} R=1 / 223 T S, \quad \text { we get } R=\frac{T S}{223 C^{2}}
\]

With a permissible rise of \(50^{\circ} \mathrm{F}\). or \(80^{\circ} \mathrm{F}\)., we have respectively,
\[
R=\frac{.224 S}{C^{2}} ; \text { and } R=.36 \frac{S}{C^{2}}
\]

The surface area of the coil in square inches may be found from
\[
S=\frac{223 W}{T}=\frac{223 C E}{T}=\frac{223 C^{2} R}{T}
\]

For a rise of temperature of \(50^{\circ} \mathrm{F}\). or \(80^{\circ} \mathrm{F}\)., respectively, the surface will be
\[
S=\frac{2 \cdot 3 W}{50}=4.46 \mathrm{~W} ; \text { and } S=\frac{223 \mathrm{~W}}{80}=2.8 \mathrm{~W}
\]

Fusion of Wires. - W. H. Preece gives a formula for the current required to fuse wires of different metals, viz.: \(C=a d^{\frac{3}{2}}\), in which \(d\) is the diameter in inches and a coefficient whose value for different metals is as follows: Copper 1024; aluminum 7585 ; platinum 51\%2; German silver 5236 ; platinoid 4750; iron 3148; tin, 1642; lead, 1379 ; alloy of 2 lead and 1 tin, 1318.

\section*{Diameters of Various Wires which will be Fused by a given current.}

Formula, \(d=\left(\frac{C}{a}\right)^{\frac{2}{3}} ; a=1642\) for \(\operatorname{tin}=1379\) for lead \(=10244\) for copper \(=\) 3148 for iron.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\underset{\text { in }}{\text { Current, }}\) amperes.} & \multicolumn{2}{|l|}{Tin Wire.} & \multicolumn{2}{|l|}{Lead Wire.} & \multicolumn{2}{|l|}{Copper Wire.} & \multicolumn{2}{|l|}{Iron Wire.} \\
\hline & Diam. inches. & \begin{tabular}{l}
Approx. \\
A. W. G.
\end{tabular} & Diam. inches & \begin{tabular}{l}
Approx. \\
A. W. G.
\end{tabular} & Diam. inches. & Approx. A. W. G. & Diam. inches. & \begin{tabular}{l}
Approx. \\
A. W. G
\end{tabular} \\
\hline 1 & .00\%2 & 33 & . 0081 & 32 & . 0021 & & . 0047 & 36 \\
\hline 2 & . 0113 & 29 & . 0128 & 28 & . 0034 & 39 & . 0074 & 32.5 \\
\hline 3 & . 0149 & 26.5 & . 0168 & 25.5 & . 0044 & 27 & . 0097 & 30 \\
\hline 4 & . 0181 & 25 & . 0203 & 24 & . 0053 & 35.5 & . 0117 & 28.5 \\
\hline 5 & . 0210 & 23.5 & . \(0: 336\) & 22.5 & .006:2 & 34 & . 0136 & 27.5 \\
\hline 10 & . 0334 & 19.5 & .03\%5 & 18.5 & . 0098 & 30 & . 0216 & 23.5 \\
\hline 15 & . 0437 & \(1 \widetilde{6}\) & . 0491 & 16 & . 0129 & \(\because 8\) & . 0283 & 21 \\
\hline 20 & . 0529 & 16 & . 0595 & 15 & . 0156 & 26 & . 0343 & 19 \\
\hline 25 & . 0614 & 14.5 & . 0690 & 13 & . 0181 & 25 & . 0398 & 18 \\
\hline 30 & . 0694 & 13 & . 0779 & 12 & . 020.5 & 24 & . 0450 & 17 \\
\hline 35 & . 0769 & 12.5 & . 0864 & 11.5 & . 02021 & 23 & . 0498 & 16 \\
\hline 40 & . 0840 & 11.5 & . 0944 & 11 & .0248 & 22 & . 0545 & 15.5 \\
\hline 45 & -0909 & 11 & . 1021 & 10 & . 0268 & 21.5 & . 0589 & 15 \\
\hline 50 & .09\% & 10.5 & . 1095 & 9.5 & . 0283 & 21 & . 0632 & 14 \\
\hline 60 & . 1101 & 9 & .123i & 8.5 & . 03.25 & 20 & . 0714 & 13 \\
\hline \%0 & . 1220 & 8.5 & .13~1 & \%.5 & . 0360 & 19 & . 0791 & \(1:\) \\
\hline 80 & . 1334 & 7.5 & . 1499 & 7 & . 0394 & 18 & . 0864 & 11.5 \\
\hline 90 & . 1443 & 7 & . 1621 & 6 & 0426 & 17.5 & . 0935 & 11 \\
\hline 100 & . 1548 & 6.5 & . 1739 & 5.5 & . 045 亿 & 17 & . 1003 & 10 \\
\hline 120 & . 1748 & 5.5 & . 1964 & 4.5 & . 0516 & 16 & . 1133 & \\
\hline 140 & . 1937 & 4.5 & . 2176 & 3.5 & . 0572 & 15 & . 1255 & 8 \\
\hline 160 & . 2118 & 4 & .2379 & 3 & . 0625 & 14 & . 1372 & 7.5 \\
\hline 180 & .2291 & 3 & . 2573 & 2 & . 0676 & 13.5 & . 1484 & 7 \\
\hline 200 & . 2457 & 2 & . 2660 & 1.5 & . 0725 & 13 & . 1592 & 6 \\
\hline 250 & . 2851 & 1 & . \(3 \div 03\) & & . 0841 & 11.5 & . 1848 & 5 \\
\hline 300 & . 3220 & 0 & . 3617 & 00 & . 0950 & 10.5 & . 2086 & 4 \\
\hline
\end{tabular}

Current in Amperes Required to Fuse Wires According to the Formula \(C=a d^{\frac{3}{2}}\).
\begin{tabular}{l|c|c|c|c|c|c}
\hline \begin{tabular}{c}
Approx. \\
A. W. G.
\end{tabular} & \begin{tabular}{c}
Diameter, \\
inches.
\end{tabular} & \(d^{\frac{3}{2} .}\) & \begin{tabular}{c}
Tin. \\
\(a=1642\).
\end{tabular} & \begin{tabular}{c}
Lead \\
\(a=1379\).
\end{tabular} & \begin{tabular}{c}
Copper \\
\(a=10244\)
\end{tabular} & \begin{tabular}{c}
Iron. \\
\(a=3148\).
\end{tabular} \\
\cline { 1 - 2 }\(=12\) & .080 & .022627 & 37.15 & 31.20 & 231.8 & 71.22 \\
14 & .064 & .026191 & 26.58 & 22.32 & 165.8 & 50.96 \\
16.5 & .048 & .010516 & 17.27 & 14.50 & 107.7 & 33.10 \\
19 & .036 & .006831 & 11.22 & 9.419 & 69.97 & 21.50 \\
21 & .028 & .004685 & 7.692 & 6.461 & 48.00 & 14.75 \\
23 & .022 & .003263 & 5.357 & 4.499 & 33.43 & 10.27 \\
25 & .018 & .00415 & 3.965 & 3.330 & 24.74 & 7.602 \\
27 & .0148 & .001801 & 2.956 & 2.483 & 18.44 & 5.667 \\
26 & .0124 & .001381 & 2.267 & 1.904 & 14.15 & 4.347 \\
29 & .0108 & .001122 & 1.843 & 1.548 & 11.50 & 3.533 \\
\hline
\end{tabular}

\section*{ELECTRIC TRANSTISSHON, DIRECT CURRENTS.}

\section*{Cross-section of Wire Required for a Given Current. -} Constont Current (Series) System.-The cross-sectional area of copper necessary in any circuit for a given constant current depends on the differeuce between the pressure at the generating station and the maximum pressure required by all the apparatus on the circuit, and on the total length of the circuit., The following formulæ are given in "Practical Electrical Engineering:"

If \(V=\) pressure in volts at generators;
\(v=\) sum of all the pressures (in volts) required by apparatus supplied in the circuit;
\(n=\) total length (going and return) of circuit in miles;
\(C=\) current in amperes;
\(r=\) resistance of 1 mile of copper-conductor of 1 square inch sectional area in ohms;
\(a=\) required cross-sectional area of copper in square inches,-
\[
a=\frac{n r C}{V-v} .
\]

If we take the temperature of the conductor when the current has been flowing for some time through it, as \(80^{\circ} \mathrm{F}\).,
\[
r=0.0455 \mathrm{ohm}, \text { and } a=\frac{0.0455 n C}{V-v}
\]

It generally happens, however, that we are not tied down to a particular value of \(V\), as the pressure at the generators can be varied by a few volts to suit requirements. In this case it is usual to fix upon a current density and determine the cross-sectional area of copper in accordance with it.

If \(D=\) current density in amperes per square inch determined upon,
\[
a=\frac{C}{D}
\]

The current density is frequently taken at 1000 amperes to the square inch, but should in general be determined by economical considerations for every case in question.
Constant Pressure (Parallel System).-To determine the loss in pressure in a feeder of given size in the case of two-wire parallel distribution.

Let \(a=\) cross-sectional area of copper of one conductor of the feeder in square inches;
\(n=\) length of feeder (going and return) in miles;
\(C=\) current in amperes;
\(V-v=\) loss of pressure in feeder in volts;
\(r=\) resistance of 1 mile of copper conductor of 1 square inch sec tional area in ohms.
\[
V-v=\frac{n r C}{a}
\]

If the temperature of the conductor with this current flowing in it is assumed to be \(80^{\circ} \mathrm{F}\).,
\[
r=0.0455 \mathrm{ohm}, \text { and } \quad \nabla-v=\frac{0.0455 n C}{a}
\]

Short-circuiting.-From the law \(C=\frac{E}{R}\) it is seen that with any pressure \(E\) the current \(C\) will become very great if \(R\) is made very small. In short-circuiting the resistance becomessmall and the current therefore great. Hence the dangers of short-circuiting a current.

Economy of Electric Transmission. (R. G. Blaine, Eng'g, June 5. 1891.)-Sir W. Thomson's rule tor the most economical section of conductor is that for which the "annual interest on capital outlay is equal to the annual cost of energy wasted."

Tables have been compiled by Professor Forbes and others in accordance with modifications of Sir W. Thomson's rule. For a given entering hursepower tine question is merely one as to what current density, of how many amperes per square inch of conductor, should be employed. Sir W. Thomson's rule gives about 393 amperes per square inch, and Professor Forbes's tables-for a medium cost of one electrical horse-power per hour-give a current density of about 380 amperes per square inch as most economical.

When a given horse-power is to be delivered at a given distance, the case is somewhat different, and Professors Ayrton and Perry (Electrician, March. 1886) have shown that in that case both the current and resistance are variables, and that their most economical values may be found from the following formulæ:
\[
C=\frac{w}{P}(1+\sin \phi), \quad \text { and } \quad r=\frac{P^{2}}{v w} \frac{\sin \phi}{(1+\sin \phi)^{2}},
\]
in which \(C=\) the proper current in amperes; \(r=\) resistance in ohms per mile which should be given to the conductor; \(P=\) pressure at entrance in volts: \(n=\) number of miles of conductor; \(w=\) power delivered in watts; \(\phi=\) such an angle that \(\tan \phi=n t \div P, t\) being a constant depending on the price of copper, the cost of one electrical horse-power, interest, etc.: it may be taken as about 17.

In this case the current density should not remain constant, but should diminish as the length increases, being in all cases less than that calculated by Sir W. Thomson's rule.

Example. - If the current for an electric railway is sent in at 200 volts, 100 horse-power being delivered, find the waste of power in heating the conductor, the distance being 5 miles and there being a return conductor.
Here \(u=10, t=17, P=200 ; \tan \phi=170 \div 200=.85, \phi=40^{\circ} 22^{\prime}, \sin \phi=\) \(.64 \% \pi\).

Hence most economical resistance
\[
r=\frac{200^{2}}{10 \times 74600} \times \frac{.6477}{1.647^{2}}=.01279 \text { ohm per mile, }
\]
or \(.12 \pi 9 \mathrm{ohm}\) in its total length.
The most economical current, \(C=\frac{74600}{200} \times 1.6477=614.58\) amperes, and \(W\), the power wasted in heat, \(=\frac{C^{Y_{2}} R}{746}=\frac{614.58^{2} \times .12 \tilde{2} 9}{746}=64.75\) horse-power.

The following tables show the power wasted as heat in the conductor.
Horse-power Wasted in Transmitting Power Electrically to a Given Distance, the Entering Power being Fixed. Pressure at Entrance, 200 Volts. Current Density, 380 Amperes per Square Inch.
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c}
Horse-power \\
sent in.*
\end{tabular} & \begin{tabular}{c}
Horse-power Wasted, the \\
Distance to which the \\
Oower is Transmitted being \\
one Mile (there being a \\
Return Conductor).
\end{tabular} & \begin{tabular}{c}
Horse-power Wasted. \\
Distance Five Miles.
\end{tabular} \\
\hline 10 & 1.663 & 8.318 \\
20 & 3.327 & 16 \\
40 & 6.654 & 33.27 \\
50 & 8.318 & 41.59 \\
80 & 13.308 & 66.54 \\
100 & 16.636 & 83.18 \\
200 & 33.212 & 166.36 \\
\hline
\end{tabular}
* That is, horse-power at the generator terminals.

Pressure at Entrange, 2000 Volits.
\begin{tabular}{|c|c|c|c|c|}
\hline Horsepower sent in. & Horse-power Wasted. Distance One Mile (there being a Return Conductor). & Horsepower Wasted. Distance Five Miles. & Horsepower Wasted. Distance Ten Miles. & Horse-power Wasted. Distance Twenty Miles. \\
\hline 100 & 1.663 & 8.318 & 16.636 & 33.27 \\
\hline 200 & 3.327 & 16.636 & 33.272 & 66.54 \\
\hline 400 & 6.654 & 33.272 & 66.54 & 133.08 \\
\hline 500 & 8.318 & 41.59 & 83.18 & 166.36 \\
\hline 800 & 13.308 & 66.54 & 133.08 & 266.17 \\
\hline 1000 & 16.636 & 83.18 & 166.36 & 332.72 \\
\hline 2000 & \(33.2 \% 2\) & 166.36 & 332.72 & 665.44 \\
\hline
\end{tabular}

It will be seen from these numbers that when the current density is fixed the power wasted is proportional to the entering horse-power and the length of the conductor, and is inversely proportionai to the potential. For a copper conductor the rule may be simply stated as
\[
W=16.6358 \frac{E}{P} \times l
\]
\(E\) being the horse-power and \(P\) the pressure at entrance, and \(l\) the iength of the conductor in miles.

Horse-power Wasted in Electric Transmission to a Given Distance, the Power to be Delivered at the Distant End being Fixed. Pressure at Entrance, 200 Volts. Current and Resistance Calculated by ayrton and Perry's Rules.
\begin{tabular}{|c|c|c|c|}
\hline Horse-power Delivered. & Horse-power Wasted, the Distance to which the Power is Transmitted being One Mile (there being a Return Conductor). & Horse-power Wasted. Distance Five Miles. & Horse-power Wasted Distance Ten Miles. \\
\hline \[
\begin{array}{r}
10 \\
20 \\
40 \\
50 \\
80 \\
100 \\
200
\end{array}
\] & \[
\begin{gathered}
1.676 \\
3.352 \\
6.704 \\
8.38 \\
83.48 \\
16.76 \\
16.76 \\
\hline 3.52 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
6.476 \\
12.952 \\
25.904 \\
3.904 \\
51.88 \\
64.86 \\
129.52
\end{array}
\] & \[
\begin{gathered}
8.620 \\
17.24 \\
3448 \\
43.18 \\
68.96 \\
86.90 \\
172.4
\end{gathered}
\] \\
\hline
\end{tabular}

Pressure at Entrance, 2000 Volits.
\begin{tabular}{|c|c|c|c|}
\hline Horse-power Delivered. & Horse-power Wasted. Distance One Mile. & Horse-power Wasted. Distance Five Miles. & Horse-power Wasted. Distance Ten Miles. \\
\hline 100 & 1.716 & 8.484 & 16.763 \\
\hline 200 & 3.432 & 16.968 & 33.526 \\
\hline 400 & 6.864 & 33.938 & 67.052 \\
\hline 500 & 8.58 & 42.42 & 83.815 \\
\hline 800 & 13.728 & 67.87 & 134.104 \\
\hline 1000 & 17.16 & 84.84 & 16763 \\
\hline 2000 & 34.32 & 169.68 & 335.26 \\
\hline
\end{tabular}

\footnotetext{
If \(H=\) horse-power sent in, \(w=\) power delivered in watts, \(C=\) current in amperes, \(r=\) resistance in ohms per mile, \(P=\) pressure at entrance in volts, and \(n=\) number of miles of conductor,
\[
\left(w+C^{2} r\right) \div 746=H ; \quad w=746 H-C^{2} r
\]
}

\section*{and the formulæ for best current and resistance become}
\[
C=\frac{746 H-C^{2} r}{P}(1+\sin \phi) ; \quad r=\frac{P^{2}}{n\left(746 H-C^{2} r\right.} \times \frac{\sin \phi}{1+\sin \phi} .
\]

Energy wasted as heat in watts per mile \(=C^{2} r=\frac{{ }_{\gamma}}{} \frac{\gamma 6 H \sin \phi}{n+\sin \phi}\).
Horse-power wasted per mile \(=W_{1}=\frac{H \sin \phi}{n+\sin \phi}\).
(\(\phi=\) angle whose tangent \(=n t \div P\), and the value of \(t\) corresponding to a current density of 380 amperes per sq. in. is 16.636.)

TABLE OF ELECTRICAL HORSE-POWERS.
Formula: \(\frac{\text { Volts } \times \text { Amperes }}{746}\)
Read amperes at top and volts at side, or vice versa.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }_{0}^{\circ}\) & \multicolumn{13}{|c|}{Volts or Amperes.} \\
\hline 会 & 1 & 10 & 20 & 30 & 10 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \\
\hline 1. & . 00134 & . 0134 & . 0268 & . 0402 & . 0536 & . 0570 & . 0804 & . 0938 & . 1072 & . 1206 & . 1341 & . 1475 & . 1609 \\
\hline 2. & . 00268 & . 0268 & . 0536 & . 0804 & . 1072 & . 1341 & . 1609 & . 1877 & . 2140 & . 2418 & . 2681 & . 2949 & . 3217 \\
\hline 3 & . 00402 & . 0402 & . 0804 & . 1206 & . 1609 & . 2011 & . 2413 & . 2815 & . 3217 & . 3619 & . 4022 & . 4424 & . 4826 \\
\hline & . 00536 & . 0536 & . 1072 & . 1609 & . 2145 & . 2681 & . 3217 & . 3753 & . 4290 & . 4826 & . 5362 & . 5898 & . 6434 \\
\hline 5. & . 00670 & . 0670 & . 1341 & . 2011 & . 2681 & . 3351 & . 4022 & . 4692 & . 5362 & . 6032 & . 6703 & . 7373 & . 8043 \\
\hline 6. & . 00804 & . 0804 & . 1609 & . 2413 & . 3217 & . 4022 & . 4826 & . 5630 & . 6434 & . 7239 & . 8043 & . 8847 & . 9652 \\
\hline 7. & . 00938 & . 0938 & . 1877 & . 2815 & . 3753 & . 4692 & . 5630 & . 6568 & . 7507 & . 8445 & . 9384 & 1.032 & 1.126 \\
\hline 8. & . 01072 & . 1072 & . 2145 & . 3217 & . 4290 & . 5362 & . 6434 & . 7507 & . 8579 & . 9652 & 1.072 & 1.180 & 1.287 \\
\hline 9. & . 01206 & . 1206 & . 2413 & . 3619 & . 4826 & . 6032 & . 7239 & . 8445 & . 9652 & 1.086 & 1.206 & 1.327 & 1.448 \\
\hline 10. & 01341 & . 1341 & . 2681 & . 4022 & . 5362 & . 6703 & . 8043 & . 9353 & 1.072 & 1.206 & 1.341 & 1.475 & 1.609 \\
\hline 11. & . 01475 & . 1475 & . 2949 & . 4424 & . 5898 & . 7373 & . \(88 \pm 7\) & 1.032 & 1.180 & 1.327 & 1.475 & 1.622 & 1.769 \\
\hline 12 & . 01609 & . 1609 & . 3217 & . 4826 & . 6434 & . 8043 & . 9652 & 1.126 & 1.287 & 1.448 & 1.609 & 1.769 & 1.930 \\
\hline 13 & . 01743 & . 1743 & . 3485 & . 5228 & . 6970 & . 8713 & 1.046 & 1.220 & 1.394 & 1.568 & 1.743 & 1.917 & 2.091 \\
\hline 14. & . 01877 & . 1877 & . 3753 & . 5630 & . 7507 & . 9384 & 1.126 & 1.314 & 1.501 & 1.689 & 1.877 & 2.064 & 2.252 \\
\hline 15. & . 02011 & . 2011 & . 4022 & . 6032 & . \(80 \pm 3\) & 1.005 & 1.206 & 1.408 & 1.609 & 1.810 & 2.011 & 2.212 & 2.413 \\
\hline 16 & 02145 & . 2145 & . 4290 & . 6434 & . 8579 & 1.072 & 1.287 & 1.501 & 1.716 & 1.030 & 2.145 & 2.359 & 2.574 \\
\hline 17 & . 02279 & . 2279 & . 4558 & . 6837 & . 9115 & 1.139 & 1.367 & 1.595 & 1.823 & 2.051 & 2.279 & 2.507 & 2.735 \\
\hline 18 & . 02413 & . 2413 & . 4826 & . 7239 & . 9652 & 1.206 & 1.448 & 1.689 & 1.930 & 2.172 & 2.413 & 2.654 & 2.895 \\
\hline 19 & . 02547 & . 2547 & . 5094 & . 7641 & 1.019 & 1.273 & 1.528 & 1.783 & 2.037 & 2.292 & 2.547 & 2.801 & 3.056 \\
\hline 20 & . 02681 & . 2681 & . 5362 & . 8043 & 1.072 & 1.340 & 1.609 & 1.877 & 2.145 & 2.413 & 2.681 & 2.949 & 3.217 \\
\hline 21 & . 02815 & . 2815 & . 5630 & . 8445 & 1.126 & 1.408 & 1.689 & 1.971 & 2.252 & 2.533 & 2.815 & 3.097 & 3:378 \\
\hline 22 & . 02949 & . 2949 & . 5898 & . 8847 & 1.180 & 1.475 & 1.769 & 2.064 & 2.359 & 2.654 & 2.949 & 3.244 & 3.539 \\
\hline 23 & . 03083 & . 3083 & . 6166 & . 9249 & 1.233 & 1.542 & 1.850 & 2.158 & 2.467 & 2.775 & 3.083 & 3.391 & 3.700 \\
\hline 24 & . 03217 & . 3217 & . 6434 & .9652 & 1.287 & 1.609 & 1.930 & 2.252 & 2.574 & 2.895 & 3.217 & 3539 & 3.861 \\
\hline 25 & . 03351 & . 3351 & . 6703 & 1.005 & 1.341 & 1.676 & 2.011 & 2.346 & 2.681 & 3.016 & 3.351 & 3.686 & 4.022 \\
\hline 26 & . 03485 & . 3485 & . 6971 & 1.046 & 1.394 & 1.743 & 2.091 & 2.440 & 2.788 & 3.137 & 3.485 & 3.834 & 4.182 \\
\hline 27 & . 03619 & . 3619 & . 7239 & 1.086 & 1.448 & 1.810 & 2.172 & \(2.53 \pm\) & 2.895 & 3.257 & 3.619 & 3.981 & 4.343 \\
\hline 28 & . 03753 & . 3753 & . 7507 & 1.126 & 1.501 & 1.877 & 2.252 & 2.627 & 3.003 & 3.378 & 3.753 & 4.129 & \(4.50 \pm\) \\
\hline 29 & .03887 & . 3887 & . 7775 & 1.166 & 1.555 & 1.944 & 2.332 & 2.721 & 3.110 & 3.499 & 3.887 & 4.276 & 4.665 \\
\hline 30 & . 04022 & . 4022 & . 8043 & 1.206 & 1.609 & 2.011 & 2.413 & 2.815 & 3.217 & 3.619 & 4.022 & 4.424 & 4.826 \\
\hline 31 & . 04156 & . 4156 & . 8311 & 1.247 & 1.662 & 2.078 & 2.493 & 2.909 & 3.324 & 3.740 & 4.156 & 4.571 & 4.987 \\
\hline 32 & . 04290 & . 4290 & . 8559 & 1.287 & 1.716 & 2.145 & 2.574 & 3.003 & 3432 & 3.861 & 4.290 & 4.719 & 5.148 \\
\hline 33 & . 04424 & . 4424 & . 8817 & \(1.32 \%\) & 1.769 & 2.212 & 2.654 & 3.097 & 3.539 & 3.986 & 4.424 & 4.866 & 5.30 S \\
\hline 34 & . 04558 & . 4555 & . 9115 & 1.367 & 1.823 & 2.279 & 2.735 & 3.190 & 3.646 & 4.102 & 4.558 & 5.013 & 5.469 \\
\hline 35 & . 01692 & . 4692 & . 9384 & 1.408 & 1.877 & 2.346 & 2.815 & 3.281 & 3.753 & 4.223 & 4.692 & 5.161 & 5.630 \\
\hline 36 & . 04826 & . 4826 & . 9652 & 1.448 & 1.930 & 2.413 & 2.895 & 3.378 & 3.861 & 4.343 & 4.826 & 5.308 & 5. 791 \\
\hline 37 & . 04960 & . 4960 & . 9920 & 1.488 & 1.984 & 2.480 & 2.976 & 3.472 & 3.968 & 4.464 & 4.960 & 5.456 & 5.952 \\
\hline 38 & . 05094 & . 5094 & 1.019 & 1.528 & 2.038 & 2.547 & 3.056 & 3.566 & 4.075 & 4.585 & 5.094 & 5.603 & 6.113 \\
\hline 39 & 9.05228 & . 5228 & 1.046 & 1.568 & 2.091 & 2.614 & 3.137 & 3.660 & 4.182 & 4.705 & 5.225 & 5.751 & 6.274 \\
\hline 40 & 0.05362 & . 5362 & 1.072 & 1.609 & 2.145 & 2681 & \(3.21 \%\) & 3.753 & 4.290 & 4.826 & 5.362 & 5.898 & 6.434 \\
\hline & 1.05496 & . 5496 & 1.099 & 1.649 & 2.198 & 2.748 & & & 4.397 & 4.946 & 5.496 & 6.046 & \(6.59 \overline{3}\) \\
\hline & 2.05630 & . 5630 & 1.126 & 1.689 & 2.252 & 2.815 & 3.378 & 3.941 & 4.504 & 5.067 & 5.630 & 6.193 & 6.756 \\
\hline & 8. 05764 & . 5764 & 1.153 & 1.729 & 2.306 & 2.882 & 3.45 S & 4.035 & 4.611 & 5.157 & 5.764 & 6.341 & 6.917 \\
\hline & 4.05898 & . 5898 & 1.180 & 1.769 & 2.359 & 2.949 & 3.539 & 4.129 & 4.719 & 5.308 & 5.898 & 6.488 & 7.078 \\
\hline 45 & 5.06032 & . 603 & 1.206 & 1.810 & 2.413 & 3.016 & 3.619 & 4.223 & 4.826 & 5.439 & 6.032 & 6.635 & 7.239 \\
\hline & 6.06166 & . 6166 & 1.233 & 1.850 & 2.467 & 3.083 & 3.700 & 4.316 & 4.933 & 5.550 & 6.166 & 6.783 & 7.400 \\
\hline & 7.06300 & . 6300 & 1.260 & 1.890 & 2.520 & 3.150 & 3.780 & 4.410 & 5.040 & 5.670 & 6.300 & 6.930 & 7.560 \\
\hline & 8.00434 & . 6434 & 1.287 & 1.930 & 2.574 & 3.217 & 3.861 & 4.504 & 5.148 & 5.791 & \(6.43 \pm\) & 7.078 & 7. 721 \\
\hline & 9.06568 & . 6568 & 1.314 & 1.970 & 2.627 & 3.284 & 3.941 & 4.598 & 5.255 & 5.912 & 6.568 & 7.225 & 7.882 \\
\hline & 0.06703 & . 6703 & 1.341 & 2.011 & 2.681 & 3.351 & 4.022 & 4.692 & 5.362 & 6.032 & 6.703 & \%.373 & 8.043 \\
\hline
\end{tabular}

TABLE OF ELECTRICAL HORSE-POWERS-(Continued.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{13}{|c|}{Volts or Amperes.} \\
\hline 4 & 1 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \\
\hline 55 & . \(0737{ }^{3}\) & . 7373 & 1.475 & 2.212 & 2.949 & 3.686 & 4.424 & 5.161 & 5.898 & 6.635 & 7.373 & 8.110 & 8.847 \\
\hline 60 & . \(0804^{3}\) & . 8043 & 1.609 & 2.413 & 3.217 & 4.022 & 4.826 & 5.6.30 & 6.434 & 7.239 & 8.043 & 8.847 & 9.652 \\
\hline & . \(0871{ }^{3}\) & . 8713 & 1.743 & 2.614 & 3.485 & 4.357 & 5.228 & 6.099 & 6.970 & 7.842 & 8.713 & 9.584 & 10.46 \\
\hline 70 & .0938 & . 9384 & 1.877 & 2.815 & 3.753 & 4.692 & 5.630 & 6.568 & 7.507 & 8.445 & 9.384 & 10.32 & 11.26 \\
\hline 75 & . \(1005 \pm\) & 1.005 & 2.011 & 3.016 & 4.021 & 5.027 & 6.032 & 7.037 & 8.043 & 9.048 & 10.05 & 11.06 & 12.06 \\
\hline 80 & . 10724 & 1.072 & 2.145 & 3.217 & 4.290 & 5.362 & 6.434 & 7.507 & 8.579 & 9.652 & 10.72 & 11.80 & 12.87 \\
\hline 85 & . 11391 & 1.139 & 2.279 & 3.419 & 4.55 S & 5.697 & 6.836 & 7.976 & 9.115 & 10.26 & 11.39 & 12.53 & 13.67 \\
\hline 90 & . 12065 & 1.206 & 2.413 & 3.619 & 4.826 & 6.032 & 7.239 & 8.445 & 9.652 & 10.86 & 12.06 & 13.27 & 14.48 \\
\hline 95 & . 12735 & 1.273 & 2.547 & 3.820 & 5.094 & 6.367 & 7.641 & 8.914 & 10.18 & 11.46 & 12.73 & 14.01 & 15.28 \\
\hline 100 & . 13405 & 1.341 & 2.681 & 4.022 & 5.362 & 6.703 & 8.043 & 9.384 & 10.72 & 12.06 & 13.41 & 14.75 & 16.09 \\
\hline 200 & . 26810 & 2.681 & 5.362 & 8.043 & 10.72 & 13.41 & 16.09 & 18.77 & 21.45 & 24.13 & 26.81 & 29.49 & 32.17 \\
\hline 300 & . 40215 & 4.022 & 8.043 & 12.06 & 16.09 & 20.11 & 24.13 & 28.15 & 32.17 & 36.19 & 40.22 & 44.24 & 48.26 \\
\hline 400 & . 33620 & 5.362 & 10.72 & 16.09 & 21.45 & 26.81 & 32.17 & 37.53 & 42.90 & 48.26 & 53.62 & 58.98 & 64.34 \\
\hline 500 & . 67025 & 6.703 & 13.41 & 20.11 & 26.81 & 33.51 & 40.22 & 46.92 & 53.62 & 60.32 & 67.03 & 73.73 & 80.43 \\
\hline 600 & . 80430 & 8.013 & 16.09 & 24.13 & 3\%.17 & 40.22 & 48.26 & 56.30 & 64.34 & 72.39 & 80.43 & 88.47 & 96.52 \\
\hline \(i 90\) & . 93835 & 9.384 & 18.77 & 28.15 & 37.53 & 46.92 & 56.30 & 65.68 & 75.07 & 84.45 & 93.84 & 103.2 & 112.6 \\
\hline 800 & 1.0724 & 10.72 & 21.45 & 3\% 17 & 42.90 & 53.62 & 64.34 & 75.07 & 85.79 & 96.52 & 107.2 & 118.0 & 128.7 \\
\hline 300 & 1.2065 & 12.06 & 24.13 & 36.19 & 48.26 & 60.32 & 72.39 & 84.45 & 96.52 & 108.6 & 120.6 & 132.7 & 144.8 \\
\hline 1.000 & 1.3405 & 13.41 & 26.81 & 40.22 & 53.62 & 67.03 & 80.43 & 93.84 & 107.2 & 120.6 & 134.1 & 147.5 & 160.9 \\
\hline 2,000 & 2.6810 & 26.81 & 53.62 & 80.43 & 107.2 & 134.1 & 160.9 & 187.7 & 214.5 & 241.3 & 268.1 & 294.9 & 321.7 \\
\hline 3,000 & 4.0215 & 40.22 & 80.43 & 120.6 & 160.9 & 201.1 & 241.3 & 281.5 & 321.7 & 361.9 & 402.2 & 442.4 & 482.6 \\
\hline 4,000 & 5.3620 & 53.62 & 107.2 & 160.9 & 214.5 & 268.1 & 321.7 & 375.3 & 429.0 & 4826 & 536.2 & 589.8 & 643.4 \\
\hline 5,000 & 6.7025 & 67.03 & 131.1 & 201.1 & 268.1 & 335.1 & 402.2 & 469.2 & 536.2 & 603.2 & 670.3 & 737.3 & 804.3 \\
\hline 6,000 & 8.0430 & 80.43 & 160.9 & 241.3 & 321.7 & 402.2 & 482.6 & 563.0 & 643.4 & 723.9 & 804.3 & 884.7 & 965.2 \\
\hline 7,000 & 9.3835 & 93.84 & 187.7 & 281.5 & 375.3 & 469.2 & 563.0 & 656.8 & 750.7 & 844.5 & 938.4 & 1032 & 1126 \\
\hline 8,000 & 10.724 & 107.2 & 214.5 & 321.7 & 429.0 & 536.2 & 643.4 & 750.7 & 857.9 & 965.2 & 1072 & 1180 & 1287 \\
\hline 9,000 & 12.065 & 120.6 & 241.3 & 361.9 & 482.6 & 603.2 & 723.9 & 844.5 & 965.2 & 1086 & 1206 & 1327 & 1448 \\
\hline 10,000 & 13.405 & 134.1 & 268.1 & 402.2 & 536.2 & 670.3 & 804.3 & 938.3 & 1072 & 1206 & 1341 & 1475 & 1609 \\
\hline
\end{tabular}

Wire Table. - The wire table on the following page (from a circular of the Westinghouse El. \& Mfg. Co.) shows at a glance the size of wire necessary for the transmission of any given current over a known distance with a given amount of drop, for 100 -volt and 500 -volt circuits, with varying losses. The formula by which this table has been calculated is
\[
\frac{D \times 1000}{C \times 2 L}=R
\]
in which \(D\) equals the volts drop in electro-motive force, \(C\) the current, \(L\) the distance from the dynamo to the point of distribution, and \(R\) the line resistance in ohms per thousand feet.

Example 1.-Required the size of wire necessary to carry a current of 60 amperes a distance of 650 feet with a loss of \(5 \%\) at 100 volts.

Referring to the table, under 60 amperes, we find the given distance, 650 feet. In the same horizontal line and under \(5 \%\) drop at 100 volts, we find No. 000 wire, which is the size required.

Example 2.-What size will be required for 10 amperes 2000 feet, with a drop of \(10 \%\) at 500 volts.

Under 10 amperes find 1930-the nearest figure to 2000-and in the same horizontal line under \(10 \%\) at 500 volts find No. 11, the size required.

Wiring Formulz for Incandescent Lighting. (W. D. Weaver, Elec. World, Oct. 15, 1892.)-A formula for calculating wiring tables is
\[
A=\frac{2150 W}{a E^{2}} L N, \quad \text { or, } \quad A=\frac{2150 L C}{a E},
\]
where \(A=\) section in circular mils; \(W=\) watt rating of lamps; \(E=\) voltage; \(L=\) distance to centre of distribution, in feet; \(N=\) number of lamps; \(a=\) percentage of drop; \(C=\) current in amperes.

Example.-Volts, 50 ; amperes, 100 ; feet to centre of distribution, 100; drop, \(2 \%\).
\[
\frac{2150 \times 100 \times 100}{2 \times 50}=215,000 \text { circular mils }
\]
or about 0000 B. \& S. gauge.
\begin{tabular}{l}
Per cent Drop at 500 Volts. \\
\hline \begin{tabular}{l|l|l|l|l|l|l|l|}
\multicolumn{6}{c}{} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Brown \& Sharpe Gaug

The horse-power and efficiency of a motor being given, the size of the conducting wire in circular mils can be found from the following formula:
\[
A=\frac{160,400,000 \times \text { H.P. } \times L}{a E^{2} \times \text { efficiency }}
\]

Example.-Horse-power, 10; volts, 500; drop, 3\%; feed to distributing point, 600: efficiency of motor, \(75 \%\).
\(A=\frac{160,400,000 \times 10 \times 600}{3 \times 500 \times 500 \times 75}=17,109\) circular mils, or about No. 8 B. \& S.

\section*{Cost of Copper for Long-distance Transmission.}
(Westinghouse El. \& Mfg. Co.)
Cost of Copper required for the Delivery of One Mechanical Horsepower at Motor Shaft with 1000, 2000, \(3000,4000,5000\), and 10,000 Volts at Motor Terminals, or at Terminals of Lowering Transformers.
Loss of energy in conductors (drop), equals \(20 \%\).
Distances equal one to twenty miles.
Motor efficiency equals \(90 \%\).
Length of conductor per mile of single distance, 11,000 feet, to allow for sag.

Cost of copper taken at 16 cents per pound. (This figure is too high. An approzimate figure now, 1897, is 12 cents per pound.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Miles. & 1000 v. & 2000 จ. & 3000 จ. & 4000 \%. & 5000 \%. & 10,000 \\
\hline 1 & \$2.08 & \$0.52 & \$0.23 & \$0.13 & \$0.08 & \$0.02 \\
\hline 2 & 8.33 & 2.08 & 0.93 & 0.52 & 0.33 & 0.08 \\
\hline 3 & 18.70 & 4.68 & 2.08 & 1.17 & 0.75 & 0.19 \\
\hline 4 & 33.30 & 8.32 & 3.70 & 2.08 & 1.33 & 0.33 \\
\hline 5 & 52.05 & 13.00 & 5.78 & 3.25 & 2.08 & 0.52 \\
\hline 6 & 74.90 & 18.70 & 8.32 & 4.68 & 3.00 & 0.75 \\
\hline 7 & 102.00 & 25.50 & 11.30 & 6.37 & 4.08 & 1.02 \\
\hline 8 & 133.25 & 33.30 & 14.80 & 8.32 & 5.33 & 1.33 \\
\hline 9 & 168.60 & 42.20 & 18.70 & 10.50 & 6.74 & 1.69 \\
\hline 10 & 208.19 & 52.05 & 23.14 & 13.01 & 8.33 & 2.08 \\
\hline 11 & 251.90 & 63.00 & 28.00 & 15.75 & 10.08 & 2.52 \\
\hline 12 & 299.80 & 75.00 & 33.30 & 18.70 & 12.00 & 3.00 \\
\hline 13 & 352.00 & 88.00 & 39.00 & 22.00 & 14.08 & 3.52 \\
\hline 14 & 40800 & 102.00 & 45.30 & 25.50 & 16.32 & 4.08 \\
\hline 15 & 468.00 & 117.00 & 52.00 & 29.25 & 18.72 & 4.68 \\
\hline 16 & 533.00 & 133.00 & 59.00 & 33.30 & 21.32 & 5.33 \\
\hline 17 & 600.00 & 150.00 & 67.00 & 37.60 & 24.00 & 6.00 \\
\hline 18 & 675.00 & 169.00 & 75.00 & 42.20 & 27.00 & 6.75 \\
\hline 19 & 750.00 & 188.00 & 83.50 & 47.00 & 30.00 & 7.50 \\
\hline 20 & 833.00 & 208.00 & 92.60 & 52.00 & 33.32 & 8.33 \\
\hline
\end{tabular}

Weight of Copper required for Long-distance Trans-mission.-W. F. C.Hasson (Trans. Tech, Socy, of the Pacific Coast, vol. \(x\), No. 4) gives the following formula:
\[
W=\frac{D^{2}}{E^{\prime 2}} \mathrm{H} \cdot \mathrm{P} \cdot \frac{(100-L)}{L} 266.5
\]
where \(W\) is the weight of copper wire in pounds; \(D\), the distance in miles; \(E\). the E.M.F. at the motor in hundreds of volts; H.P., the horse-power delivered to the motor; \(L\), the per cent of line loss.

Thus, to transmit 200 horse-power ten miles with 10 per cent loss, and have 3000 volts at the motor, we have
\[
W=\frac{10 \times 10}{30 \times 30} \times 200 \times \frac{(100-10)}{10} \times 266.5=53,300 \mathrm{lbs} .
\]

Cost of Copper required to deliver One Mechanical Horse-power at Motor-shaf: with Varying Percentages of Loss in Conductors, upon the assumption that the Potential at Motor Terminals is in Each CASE 3000 Volts. (Westiughouse El. \& Mfg. Co.)

Distances equal one to twenty miles.
Motor efficiency equals \(90 \%\).
Length of conductor per mile of single distance, 11,000 feet, to allow for sag.

Cost of copper equals 16 cents per pound.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Miles. & 10\% & 15\% & 20\% & 25\% & 30\% \\
\hline 1 & \$0.52 & 80.33 & \$0.23 & \$0.17 & \$0.13 \\
\hline 2 & 2.08 & 1.31 & 0.93 & 0.69 & 0.54 \\
\hline 3 & 4.68 & 2.95 & 2.08 & 1.55 & 1.21 \\
\hline 4 & 8.32 & 5.25 & 3. 10 & 2.77 & 2.15 \\
\hline 5 & 18.00 & 8.20 & 5.78 & 4.33 & 3.37 \\
\hline 6 & 18.70 & 11.75 & 8.32 & 6.23 & 4.85 \\
\hline 7 & 25.50 & 16.00 & 11.30 & 8.45 & 6.60 \\
\hline 8 & 33.30 & 21.00 & 14.80 & 11.00 & 8.60 \\
\hline 9 & 42.20 & 26.60 & 18.75 & 14.00 & 10.90 \\
\hline 10 & 52.05 & 32.78 & 23.14 & 17.31 & 13.50 \\
\hline 11 & 63.00 & 39.75 & 28.00 & 21.00 & 16.30 \\
\hline 12 & 75.00 & 47.20 & 33.30 & 24.90 & 19.40 \\
\hline 13 & 88.00 & 55.30 & 39.00 & 29.20 & 22.80 \\
\hline 14 & 102.00 & 64.20 & 45.30 & 33.90 & 26.40 \\
\hline 15 & 117.00 & 73.75 & 52.00 & 38.90 & 30.30 \\
\hline 16 & 133.00 & 83.80 & 59.00 & 44.30 & 34.50 \\
\hline 17 & 150.00 & 94.75 & 67.00 & 50.00 & 39.00 \\
\hline 18 & 169.00 & 106.00 & 75.00 & 56.20 & 43.80 \\
\hline 19 & 188.00 & 118.00 & 83.50 & 62.50 & 48.70 \\
\hline 20 & 208.00 & 131.00 & 92.60 & 69.25 & 54.00 \\
\hline
\end{tabular}

Efficiency of Long-distance Transmission. (F. R. Hart, Power, Feb. 1892.)-The mechanical efficiency of a system is the ratio of the power delivered to the dynamo-electric machines at one end of the line to the power delivered by the electric motors at the distant end. The commercial efficiency of a dynamo or motor varies with its load. Under the most favorable conditions we must expect a loss of say \(9 \%\) in the dynamo and \(9 \%\) in the motor. The loss in transmission, due to fall in electrical pressure or "drop" in the line, is governed by the size of the wires, the other conditions remaining the same. For a long-distance transmission plant this will vary from \(5 \%\) upwards. With a loss of \(5 \%\) in the line the total efficiency of transmission will be slightly under \(79 \%\). With a loss of \(10 \%\) ic the line it will be slightly under \(50 \%\). We may call \(80 \%\) the practical limit of the efficiency with the apparatus of to-day. The methods for long-distance transmission may be divided into three general classes: (1) continuous current: (2) alternating current; and (3) regenerating or "motor-dyuamo" systeins.

There are many factors which govern the selection of a system. For each problem considered there will be found certain fixed and certain unfixed conditions. In general the fixed factors are: (1) capacity of source of power; (2) cost of power at source; (3) cost of power by other means at point of delivery; (4) danger considerations at motors; (5) operation conditions; (6) construction conditions (length of line, character of country, etc.). The partly fixed conditions are: (i) power which must be delivered, i.e., the efficiency of the system; (8) size and number of delivery units. The variable conditions are: (9) initial voltage; (10) pounds of copper on line; (11) original cost of all apparatus and construction; (12) expenses, operating (fixed charges, interest, depreciation, taxes, insurance, etc.); (13) liability of trouble and stoppages; (14) danger at station and on line; (15) convenience in operating, making changes, extensions, etc. Assuming that the cost of dynamos, motors, etc., will be approximately the same whatever the initial pressure, the great variation in the cost of wire at different pressures is shown by Mr. Hart in the following figures, giving the weights of copper required for transmitting 100 horse-power 5 miles:
\begin{tabular}{|c|c|c|}
\hline Voltage. & Drop 10 per cent. & Drop 20 per cent. \\
\hline 2,000 & 16,800 lbs. & 8,400 lbs. \\
\hline 3,000 & テ,400 " & 3,700 \({ }^{6}\) \\
\hline 10,000 & 620 ' & 310 ' \\
\hline
\end{tabular}

The subdivisions of each of the general methods of transmission are tabulated as follows:
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{Continuous current} & Low voltage & One machine. \\
\hline & 2-wire \(\left\{\begin{array}{l}\text { High } \\ \text { voltage }\end{array}\right.\) & One machine. Machines in parallel. Machines in series. \\
\hline & 3 -wire & \begin{tabular}{l}
2 machines in series. \\
Machines in multiple series.
\end{tabular} \\
\hline & Multiple-wire & Machines in series. \\
\hline \multirow[t]{2}{*}{Alternating current} & Alternating single phase & Without conversions. With conversions. \\
\hline & Alternating multiphase & Without conversions. With conversions. \\
\hline \multirow[t]{2}{*}{Regenerating systems} & Alteruating continuous. Alternating converter; tinuous. & converter; alternating con- \\
\hline & Continuous-continuous. & ystem. \\
\hline
\end{tabular}

The relative advantages of these systems vary with each particular transmission problem, but in a general way may be tabulated as below.
\begin{tabular}{|c|c|c|c|}
\hline & System. & Advantages. & Disadvantages. \\
\hline \multirow{4}{*}{\[
\stackrel{5}{9}
\]} & \{ Low voltage. & Safety, simplicity. & Expense for copper. \\
\hline & High voltage. & Economy, simplicity. & Danger, difficulty of building machines. \\
\hline & 3-wire. & Low voltage on machines and saving in copper. & Not saving enough in copper for long dis- \\
\hline & Multiple-wire. & Low voltage at machines and saving in copper. & tances. Necessity for " balanced" system. \\
\hline & Single phase. & Economy of copper. & Cannot start under load. Low efficiency. \\
\hline & Multiphase. & Econcmy of copper, synchronous speed unnecessary; applicable to very long distances. & Requires more than two wires. \\
\hline 4 & Motor-dynamo. & High-voltage transmission. Low-voltage delivery. & Expensive. Low efficiency. \\
\hline
\end{tabular}

A Graphical Method of calculating leads for wiring for electric lighting is described by Carl Hering in Trans. A.I. E. E., 1891. He furnishes a chart containing three sets of diagonal straight-line diagrains so connected that the examples under the general formula for wiring may be solved without calculation by simply locating three points in succession on the chart.
Systems of Electrical Distribution in Common Use. (Chas.
T. Scott, Proc. Engis. Soc'y of Western Penna., 1895.)
I. Continuous or Direct Current.
A. Constant Potential.

110 Volts.-Distances less than, say, 1500 feet.
For incandescent lamps.
For arc-lamps, usually 2 in series.
For motors.

220 Volts.-Distances less than, say, 3000 feet. For incandescent lamps, usually 2 in series. For arc-lamps, usually 4 in series. For motors.
220 Volts, 3 -wire.-Distances less than, say, 3000 feet. For incandescent lamps.
For arc-lamps, usually 2 in series on each branch.
For motors 110 or 220 volts, usually \(2: 0\) volts.
500 Volts.-Distances less than, say, 8000 feet.
For incandescent lamps, usually 5 in series.
For arc-lamps, usually 10 in series.
For motors, stationary and street-car.

\section*{B. Constant Curvent. \\ Usually about 10 amperes, the volts increasing to several thousand, as demanded. For arc-lamps. For motors.}

\section*{II. Alternating Current.}
A. Constant Potential.
Ordinarily, about 16,000 or 7200 alternations per minute. Primary
circuit, 1000 or 2000 volts; secondary circuit, 50 or 100 volts.
For incandescent lamps.
For arc-lamps.
For small motors.
Multiphase Systems.
For lighting.
For motors.
For rotary transformers for giving direct current.

\section*{B. Constant Current. \\ Usually 10 amperes. \\ For arc-lamps.}

Efficiency of a Combined Engine and Dynamo. - A compound double - crank Willans engine mounted on a single base with a dynamo of the Edison-Hopkinson type was tested in 1890, with results as follows: The low-pressure cylinder is 14 in . diam., 15 in . stroke; steampressure 120 lbs . It is coupled to a dynamo constructed for an output of \(4 \pi\) amperes at 110 volts when driven at 430 revolutions per minute. The armature is of the bar construction, is plain shunt-wound, and is fitted with a commutator of hard-drawn copper with mica insulation. Four brushes are carried on each rocker-arm.

The engine and dynamo were worked above their full normal output, which fact would tend to slightly increase the efficiency.
The electrical losses were : Loss in magnet coils, 756 watts, equal to \(1.4 \%\); loss in armature coil, 1386 watts, equal to \(2.6 \%\); so that the electrical efficiency of the machine due to ohmic resistance alone was \(96 \%\). The remainder of the losses, a little over 8 horse-power, is due to friction of engine and dynamo, hysteresis, and the like.
Electrical Efficiency of a Generator and Motor.-A twelvemile transmission of power at Bodie, Cal., is described by T. H. Leggett (Trans. A. I. M. E. 1894). A single-phase alternating current is used. The generator is a Westinghouse \(120 \mathrm{~K} . W\). constant-potential 12-pole machine, speed 860 to 870 revs. per min. The motor is a synchronous constant-potential machine of 120 horse-power. It is brought up to speed by a \(10-\mathrm{H} . \mathrm{P}\). Tesla starting motor. Tests of the electrical efficiency of the generator aud motor gave the following results:

Test on Generator.

Apparent electrical efficiency of generator, \(95.559 \%\).
Test on Motor.
\begin{tabular}{|c|c|c|c|}
\hline & Amperes & Volts. & Watts. \\
\hline Self-excited field. & \multirow[t]{4}{*}{52} & \multirow[t]{4}{*}{62.4} & \multirow[t]{2}{*}{3244.8} \\
\hline Resistance of armature, 1.4 ohms. & & & \\
\hline \(C^{2} R\), loss in armature... & & & 560.0 \\
\hline Total loss in machine. & & & 3804.08 \\
\hline Load... & 20 & 3110 & 62200 \\
\hline
\end{tabular}

\section*{Apparent electrical efficiency of motor, \(93.883 \%\).}

Efficiency of an Electrical Pumping-plant. (Eng. \& M. Jour., Feb. 7, 1891.)-A pumping-plant at a mine at Normanton, England, was tested, with results given below:

Above ground there is a pair of \(201 / 2 \times 48\)-in. engines running at 20 revs. per min., driving two series dynamos giving 690 volts and 59 amperes. The current from each dynamo is carried into the mine by an insulated cable about 3000 feet long. There they are connected to two \(50-\mathrm{h} . \mathrm{p}\). motors which operate a pair of differential ram-pumps, with rams 6 in. and \(41 / 2 \mathrm{in}\). diam. and 24 in . stroke. The total head against which the pumps operate is 890 feet. Connected to the same dynamos there is also a set of gearing for driving a hauling plant on a continuous-rope system, and a set of three-throw rampumps with 6 -inch rams and 12 -inch stroke can also be thrown into gear. The connections are so made that either motor can operate any or all three of the sets of machinery just described. Indicator-diagrams gave the following results:
\begin{tabular}{|c|c|c|}
\hline Friction of engine & 6.9 H.P. & 9.4\% \\
\hline Belt and dynamo friction & 4.8 " & 6.5\% \\
\hline Leads and motor & 6.7 & 9.4\% \\
\hline Motor belt, gearing and pumps empty & 10.2 & 14.0\% \\
\hline Load of 117 gallons through 890 feet. & 31.5 & 43.1\% \\
\hline Water friction in pumps and rising main & 12.9 & 17.6\% \\
\hline & 73.0 H.P. & 100.0\% \\
\hline
\end{tabular}

At the time when these data were obtained the total efficiency of the plant was \(43.1 \%\), but in a later test it rose to \(47 \%\).
References on Power Distribution. - Kapp, Electric Transmission of Energy; Badt, Electric I'ransmission Handbook; Martin and Wetzler, The Electric Motor and its Applications; Hospitalier, Polyphased Electric Currents.

\section*{ELECTRIO RALLWAYS.}

Space will not admit of a proper treatment of this subject in this work. Consult Crosby and Bell, The Electric Railway in Thenry and Practice, price \(\$ 2.50\); Fairchild, Street Railways, price \(\$ 4.60\); Merrill, Reference Book of Tables and Formulæ for Street Railway Engineers, price \(\$ 1.00\).

Test of a Street Railway Plant.-A test of a small electric-railway plant is reported by Jesse M. Smith in Trans. A. S. M. E., vol. Xv. The following are some of the results obtained:
Friction of engine, air-pump, and boiler feed-pump; main belt off 9.22 I.H.P.
Friction of engine, air and feed pumps, and dynamo, brusbes off. 11.34 I.H.P.2.12 I.H.P.Power consumed by englne, air and feed pumps and dynamowith brushes on and main circuit open
14.34 I.H.P.
Power required to charge fields of dynamo 3.00 I.H.P.
Rated capacity of engine and dynamo each 150 I.H.P.
Power developed by engine
\(\min\). 21.27; max. 141.4 ; mean, 70.1 I.H.P. Volts developed by dynamo
max. 200; min. 4.7; average, 67 amperes Amperes developed by dynamo

\(\qquad\) 33,56\% Watts Average watts delivered by dynamo
45 E.H.P.
Average electrical horse-power delivered by dynamo
Average I.H.P. del'd to pulley of dynamo, estimating friction of
59.8 I.H.P.
armature shaft to be the same as friction of belt.
Average commercial efficiency of dynamo
2.89 cars.
Average number of cars in use during test
64
Number of single trips of cars. 15.2
Average numbe
Weight of cars 14,500 lbs.
Est. total weight of cars and persons 15,900 lbs.
Average weight in motion 45,950 lbs.
Average electrical horse-power per 1000 lbs . of weight movedAverage horse-power developed by engine per 1000 lbs . of weightmoved1.52 I.H.P.
Average watts required per car. 11,615 watts
Average electrical horse-power per car 15.54 E.H.P.
Average horse-power developed in eugine per car 24.25 I.H.P.10.5 miles.Average speed, including all stops, 21 miles in 1.5 hours \(=14\) miles per hour.Arerage speed between stops, 21 m . in 1.366 hours \(=15.38\) miles per hour.

\section*{ELECTPIC LIGHTING.}

Hife of Incandescent Lamps. (Eng'g, Sept. 1, 1893, p. 282.)-From experiments made by Messrs. Siemens and Halske, Berlin, it appears that the average life of incandescent lamps at different expenditure of watts per candle-power is as follows:
\begin{tabular}{llcccc}
Watts per candle-power........ & 1.5 & 2 & 2.5 & 3 & 3.5 \\
Life of lamp, hours............ & 45 & 200 & 450 & 1000 & 1000
\end{tabular}

Life and Efficiency Tests of Lamps. (P. G. Gossler, Elec. World, Sept. 17, 1892.)-Lamps burning at a voltage above that for which they are rated give a much greater illuminating power than \(1 €\) candles, but at the same time their life is very considerably shortened. It has been observed that lamps received from the factory do not average the same candlepower and efficiency for different invoices: that is, lamps which are received in one invoice are usually quite uniform throughout that lot, but they vary considerably from lamps made at other times.

The following figures show the different illuminating-powers of a 16.c.p., 50 -volt, 52 -watt lamp, for various voltages from 25 to 80 volts:

Street-lighting. (H. Robiuson, M.I.C.E., Eng'g Neus, Sept. 12, 1891.) - For street-lighting the arc-lamp is the most economical. The smallest size of arc-lamp at present manufactured requires a current of about 5 amperes; but for steadiness and efficiency it is desirable to use not less than 6 amperes. (Good 3-ampere lamps are now on the market. 1897.) The caudla-power of arc-lamps varies considerably, according to the angle at which it is measured. The greatest intensity with continuous-current lamps is found at an angle of about \(40^{\circ}\) below the horizontal line. The following
table gives the approximate candle-power at various angles. The height of the lamps should be arranged so as to give an angle of not less than \(7^{\circ}\) to the most distant point it is intended to serve.

\section*{Lighting-power of Arc-lamps.}

Current in Amperes.
\begin{tabular}{rr}
6 & 92 \\
8 & 156 \\
10 & 220
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline At Angle & At Ang & At Angle & Maximum at \\
\hline of \(7^{\circ}\). & of \(10^{\circ}\). & of \(20^{\circ}\). & Angle of \(40^{\circ}\). \\
\hline 175 & 207 & 322 & 460 \\
\hline 300 & 350 & 546 & 780 \\
\hline 420 & 495 & 770 & 1100 \\
\hline
\end{tabular}

The following data enable the coefficient of minimum lighting-power in streets to be determined:

Let \(P=\) candle-power of lamps;
\[
\begin{aligned}
& L=\text { maximum distance from lamp in feet; } \\
& H=\text { height of lamp in feet; } \\
& X=\text { a coefficient. }
\end{aligned}
\]

The light falling on the unit area of pavement varies inversely as the square of the distance from the lamp, and is directly proportional to the angle at which it falls. This angle is nearly proportional to the height of the lamp divided by the distance. Therefore
\[
X=\frac{P}{L^{2}} \times \frac{H}{L} \quad \text { or } \quad X=\frac{P H}{L^{3}}
\]

The usual standard of gas-lighting is represented by the amount of light falling on the unit area of pavement 50 feet away from a 12-c.p. gas-lamp 9 feet high, which gives a coefficient as follows:
\[
X=\frac{12 \times 9}{50^{3}}=0.000864
\]

The minimum standard represents the amount of light on a unit area 50 feet away from a \(24-\mathrm{c} . \mathrm{p} . \operatorname{lamp}, 9 \mathrm{ft}\). high, and gives the coefficient .001728.

Adopting the first of the above coefficients, Mr. Robinson calculates that the before-mentioned sizes of arc-lights will give the same standard of light at the heights and distances stated in Table A. Table B gives the corresponding distances, assuming the minimum standard to be adopted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table A.} & \multicolumn{5}{|c|}{Table B.} \\
\hline Hgt. of Lamps. & \multicolumn{4}{|l|}{| \(20 \mathrm{ft} .|25 \mathrm{ft} .|30 \mathrm{ft}| 35 ft.\).} & Height..... & 20 ft . & 25 ft . & 30 ft . & 35 ft \\
\hline Current in Amperes. & \multicolumn{4}{|l|}{Max. distances served from lamp, in ft.} & Amperes. & \multicolumn{4}{|l|}{Max. distances served from Lamp.} \\
\hline 6 & 160 & 175 & 190 & 202 & 6 & 130 & 144 & 155 & 166 \\
\hline 8 & 185 & 202 & 220 & 235 & 8 & 150 & 165 & 180 & 193 \\
\hline 10 & 205 & 225 & 243 & 260 & 10 & 170 & 190 & 205 & 220 \\
\hline
\end{tabular}

The distances the lamps are apart would, of course, be double the distances mentioned in Tables A and B. One arc-lamp will take the place of from 3 to 6 gas lamps, according to the locality, arrangement, and standard of light adopted. A scheme of arc-lighting, based on the substitution of one arc-light on the average for \(31 / 2\) to 4 gas-lamps, would double the minimum standard of light, while the average standard would be increased 10 or 12 times.

Candle-power of the Are-light. (Elihu Thomson, El. World, Feb. 28, 1891.)-With the long arc the maximum intensity of the light is from \(40^{\circ}\) to \(60^{\circ}\) downward from the horizontal. The spherical candle-power is only a fraction of the rated c.p., which is generally taken at the maximum obtainable in the best direction. For this reason the term 2000 c.p. has little significance as indicating the illuminating-power of an arc. It is now generally taken to mean an are with 10 amperes and not less than 45 volts between the carbons, or a 450 -watt arc. The quality of the carbons will determine whether the 450 watts are expended in obtaining the most light or not, or whether that light will have a maximum intensity at one angle or another
within certain limits. The larger the current passing in an arc, the less is its resistance. Well-developed arcs with 4 ampéres will have about 11 ohms , with 10 amperes 4.5 ohms , and with 100 amperes .45 ohm .

It is not unusual to run from 50 to 60 lights in a series, each demanding from 45 to 50 rolts, or a total of, say, 3000 volts. In going beyond this the difficulties of insulation are greatly increased.

Reference Books on Electric Lighting. - Noll, How to Wire Buildings, \(\$ 1.00\); Hedges, Contineutal Electric-light Central Stations, \(\$ 6.00\); Tleming, Alternating Current Transformers in Theory and Practice, 2 vols., \(\$ 8.00\); Atkinson, Elements of Electric Lighting, \(\$ 1.50\); Algave and Boulard, Electric Light: its History, Production, and Application, \$5.00.

\section*{ELECTRIC WELDING.}

The apparatus most generally used consists of an alternating-current dynamo, feeding a comparatively high-potential current to the primary coil of an induction coil or transformer, the secondary of which is made so large in section and so short in length as to supply to the work currents not exceeding two or three volts, and of very large volume or rate of flow. The welding clamps are attached to the secondary terminals. Other forms of apparatus, such as dynamos constructed to yield alternating currents direct from the armature to the welding-clamps, are used to a limited extent.

The conductivity for heat of the metal to be welded has a decided influence on the heating, and in welding iron its comparatively low heat conduction assists the work materially. (See papers by Sir F. Bramwell, Proc. Inst. C. E., part iv., vol. cii. p. 1; and Elihu Thomson, Trans. A. I. M. E., xix. 8ĩ.)

Fred. P. Royce, Iron Age, Nov. 28, 1892, gives the following figures showing the amount of power required to weld axles and tires:

\section*{AXLE-WELDING.}

Seconds.
1 -inch round axle requires 25 H.P. for. 45
1 -inch square axle requires \(30 \mathrm{H} . \mathrm{P}\). for .. 48
11/4-inch round axle requires 35 H.P. for................................ 60
\(11 / 4\)-inch square axle requires 40 H.P. for.. 70
2-inch round axle requires 75 H.P. for... 95
2-inch square axle requires 90 H.P. for. 100
The slightly increased time and power required for welding the square zxle is not only due to the extra metal in it, but in part to the care which it is best to use to secure a perfect alignment.
tire-welding.
Seconds.
\(1 \times 3 / 16\)-iuch tire requires 11 H.P. for.................................. 15
\(11 / 4 \times 3 / 8\)-inch tire requires \(23 \mathrm{H} . \mathrm{P}\). for.. 25
\(11 / 2 \times 8 / 8\)-inch tire requires 20 H.P. for 30
\(11 / 2 \times 1 / 2\)-inch tire requires \(23 \mathrm{H} . \mathrm{P}\). for.................................... . . . 40
\(2 \times 1 / 2\)-inch tire requires 29 H.P. for.............. 55
\(2 \times 3 / 4\)-inch tire requires 42 H.P. for... 62
The time above given for welding is of course that required for the actual application of the current only, and does not include that consumed by placing the axles or tires in the machine, the removal of the upset and cther finishing processes. From the data thus submitted, the cost of welding can be readily figured for any locality where the price of fuel and cost of labor are known.

In almost all cases the cost of the fuel used under the boilers for producing power for electric welding is practically the same as the cost of fuel used in forges for the same amount of work, taking into consideration the difference in price of fuel used in either case.

Prof. A. B. W. Kennedy found that \(21 / 2\)-inch iron tubes \(1 / 4\) inch thick were welded in 61 seconds, the net horse-power required at this speed being 23.4 (say 33 indicated horse-power) per square inch of section. Brass tubing required 21.2 net horse-power. About 60 total indicated horse-power would be required for the welding of angle-irons \(3 \times 3 \times 1 / 2\) inch in from two to three minutes. Copper requires about 80 horse-power per square inch of section, and an inch bar can be welded in 25 seconds. It takes about 90 seconds to weld a steel bar 2 inches in diameter.

\section*{ELECTRECHEATERS.}

Wherever a comparatively small amomet of heat is desired to be automatically and uniformly maintained, and started or stopped on the instant without waste, there is the province of the electric heater.
The elementary form of heater is some form of resistance, such as coils of thin wire introduced into an electric circuit and surrounded with a substance, which will permit the conduction and radiation of heat, and at the same time serve to electrically insulate the resistance.

This resistance should be proportional to the electro-motive force of the current used and to the equation of Joule's law :
\[
H=C^{2} R t \times 0.24,
\]
where \(C\) is the current in amperes; \(R\), the resistance in ohms; \(t\), the time in seconds; and \(h\), the heat in gram-centigrade units.
Since the resistance of metals increases as their temperature increases, a thin wire heated by current passing through it will resist more, and grow hotter and hotter until its rate of loss of heat by conduction and radiation equals the rate at which heat is supplied by the current. In a short wire, before heat enough can be dispelled for commercial purposes, fusion will beyin; and in electric heaters it is necessary to use either long lengths of thin wire, or carbon, which alone of all conductors resists fusion. In the majority of heaters, coils of thin wire are used, separately embedded in some substance of poor electrical but good thermal conductivity.
The Consolidated Car-heating Co.'s electric heater consists of a galvanized iron wire wound in a spiral groove upon a porcelain insulator. Each heater is \(305 / 8 \mathrm{in}\). long, \(87 / 8 \mathrm{in}\). high, and \(65 / 8 \mathrm{in}\). wide. Upon it is wound 392 ft . of wire. The weight of the whole is \(231 / 3 \mathrm{ibs}\).
Each heater is designed to absorb 1000 watts of a 500 -volt current. Six heaters are the complement for an ordinary electric car. For ordinary weather the heaters may be combined by the switch in different ways, so that five different intensities of heating-surface are possible, besides the position in which no heat is generated, the current being turned entirely off.
For heating an ordinary electric car the Consolidated Co. states that from 2 to 12 amperes on a 500 -volt circuit is sufficient. With the outside temperature at \(20^{\circ}\) to \(30^{\circ}\), about 6 amperes will suffice. With zero or lower temperature, the full 12 amperes is required to heat a car effectively.
Compare these figures with the experience in steam-heating of railwaycars, as follows :
1 B.T.U. \(=0.29084\) watt-hours.
6 amperes on a 500 -volt circuit \(=3000\) watts.
A current consumption of 6 amperes will generate \(3000 \div 0.29084=10,315\) B.T.U. per hour.

In steam-car heating, a passenger coach usually requires from 60 lbs . of steam in freezing weather to 100 lbs. in zero weather per hour. Supposing the steam to enter the pipes at 20 lbs . pressure, and to be discharged at \(200^{\circ}\) F., each pound of steam will give up 983 B.T.U. to the car. Then the equivalent of the thermal units delivered by the electrical-heating system in pounds of steam, is \(10,315 \div 983=101 / 2\), nearly.

Thus the Consolidated Co.'s estimates for electric-heating provide the equivalent of \(101 / 2 \mathrm{lbs}\). of steam per car per hour in freezing weather and 21 lbs. in zero weather.
Suppose that by the use of good coal, careful firing, well-designed boilers, and triple-expansion engines we are able in daily practice to generate \(1 \mathrm{H} . \mathrm{P}\). delivered at the fly-wheel with an expenditure of \(21 / 2 \mathrm{lbs}\). of coal per hour.

We have then to convert this energy into electricity, transmit it by wire to the heater, and convert it into heat by passing it through a resistance-coil. We may set the combined efficiency of the dynamo and line circult at \(85 \%\), and will suppose that all the electricity is converted into heat in the resist-ance-coils of the radiator. Then 1 brake H.P. at the engine \(=0.85\) electrical H.P. at the resistance-coil \(=1,683,000 \mathrm{ft}\) - -lbs . energy per hour \(=2180\) heatunits. But since it required \(21 / 2 \mathrm{lbs}\). of coal to develop 1 brake H.P., it follows that the heat given out at the radiator per pound of coal burned in the boiler furnace will be \(2180+21 / 2=8 \pi 2\) H.U. An ordinary steam-heating system utilizes \(9652 \mathrm{H} . \mathrm{U}\). per 16. of coal for heating; hence the efficiency of the electric system is to the efficiency of the steam-heating system as 8\% to 9652 , or about 1 to 11. (Eng'g News, Aug. 9, '90; Mar. 30, '92; May 15, 93.)

\section*{ELECTRICAL ACCUMULATORS OR STORAGE-BATTERIES. 1053}

\section*{ELECTRICAL ACCUMULATORS OR STORAGEBATTERIES.}

Storage-batteries may be divided into two classes: viz., those in which the active material is formed from the substance of the element itself, either by direct chemical or electro-chemical action, and those in which the chemical formation is accelerated by the application of some easily reducible salt of lead. Elements of the former type are usually called Planté, and those of the latter "Faure," or "pasted."
Faraday when electrolyzing a solution of acetate of lead found that peroxide of lead was produced at the positive and metallic lead at the negative pole. The surfaces of the elements in a newly and fully charged Planté cell consists of nearly pure peroxide of lead, \(\mathrm{PbO}_{2}\), and spongy metallic lead, Pb , respectively on the positive and negative plates.
During the discharge, or if the cell be allowed to remain at rest, the sulphuric acid \(\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)\) in the solution enters into combination with the peroxide and spongy lead, and partially converts it into sulphate. The acid being continually abstracted from the electrolyte as the discharge proceeds, the density of the solution becomes less. In the charging operation this action is reversed, as the reducible sulphates of lead which have been formed are apparently decomposed, the acid being reinstated in the liquid and therefore causing an increase in its density.
The difference of potential developed by lead and lead peroxide immersed in dilute \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is, as nearly as may be, two volts.
A lead-peroxide plate gradually loses its electrical energy by local action, the rate of such loss varying according to the circumstances of its preparation and the condition of the cell. Various forms of both Planté and Faure batteries are illustrated in "Practical Electrical Engineering."
In the Faure or pasted cells lead plates are coated with minium or litharge made into a paste with acidulated water. When dry these plates are placed in a bath of dilute \(\mathrm{H}_{2} \mathrm{SO}_{4}\) and subjected to the action of the current, by which the oxide on the positive plate is converted into peroxide of lead and that on the negative plate reduced to finely divided or porous lead.
Gladstone and Tribe found that the initial electro-motive force of the Faure cell averaged 2.25 volts, but after being allowed to rest some little time it was reduced to about 2.0 volts.
The following tables give the elements of several sizes of "chloride" accumulators made by the Electric Storage Battery Co., Philadelphia. Type G is furnished in cells containing from 11 to 125 plates, and type A from 21 plates to any greater number desired. The voltage of cells of all sizes is
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Size of Plates, \(3 \times 3 \mathrm{in}\). & \multicolumn{3}{|l|}{\[
\left\lvert\, \begin{gathered}
\text { TYPE "C." } \\
\text { Size of } \\
\text { Plates, } 4 \times 4 \\
\text { in. }
\end{gathered}\right.
\]} & \multicolumn{6}{|l|}{\begin{tabular}{l}
TYPE "D." \\
Size of Plates, \(6 \times 6 \mathrm{in}\).
\end{tabular}} \\
\hline nber of plates........... ... 3 & \multirow[t]{15}{*}{} & \multirow[t]{14}{*}{} & \multirow[t]{10}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{10}{*}{}} & \multirow[t]{10}{*}{} & \multirow[t]{11}{*}{} & \multirow[t]{11}{*}{} & \multirow[t]{5}{*}{26} \\
\hline scliarge for 8 hours 58 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline peres: "\% 3 ، 114 & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline Outside measurement (Width . 134 & & & & & & & & & \\
\hline of rubber jar in Length. \(35 / 8\) & & & & & & & & & \\
\hline inches: \({ }^{\text {a }}\) Height. 5 & & & & & & & & & \\
\hline of glass jar in Length. 4 & & & & & & & & & \\
\hline ches: \({ }^{\text {a }}\) (Height. 41/2 & & & & & & & & & \\
\hline eight of acidin glass jars in & & & & & & & & & \\
\hline Weight of acid in ruber jars & & & & & & & & & \\
\hline in lbs........i...............il \(3 / 4\) & & & & & & & & & \\
\hline eight of cell complete, with acid, in rubber jars in lbs. & & & & & & & & & \\
\hline ight of cell over all in inches. 8 & & & & & & & 121/2 & 212 & 2121/2 \\
\hline
\end{tabular}

TYPE "E."
Size of Plates, \(73 / 4 \times 73 / 4 \mathrm{in}\).

Weight of acid in glass
jars in lbs.............
Weight of acid in rubher jars in lbs........
Weight of cell complete, with acid, in rubber jar in lbs. Height of cell over all,
in inches......... ...
\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 & . & 9 & 11 & 13 & 15 \\
\hline s 10 & 15 & 20 & 25 & 30 & 35 \\
\hline 14 & 21 & 28 & 35 & 42 & 49 \\
\hline 20 & 30 & 40 & 50 & 60 & 70 \\
\hline 10 & 15 & 20 & \(\because 5\) & 30 & 35 \\
\hline 23 & 33 & 43 & 52 & 62 & \%1 \\
\hline 3 & 4 & 5 & 61/8 & 71/4 & 81/2 \\
\hline \(81 / 2\) & 81/2 & 81/2 & 81/2 & 81/2 & 81 \\
\hline 11 & 11 & 11 & 11 & 11 & 11 \\
\hline \[
\begin{aligned}
& 51 / 2 \\
& 91 \%
\end{aligned}
\] & 63
91 & \({ }_{9}^{81}\) & 85/8 & 11 & 11 \\
\hline \[
\left.\begin{array}{|c|}
911 \\
1114
\end{array} \right\rvert\,
\] & \({ }_{111}^{91 / 8}\) & \({ }_{111}^{91} 8\) & \(1{ }^{91} 18\) & 91/8 & 918 \\
\hline 114 & 11/4 & 1114 & 111/4 & 111/4 & 1114 \\
\hline 17 & 21 & 25 & 27 & 35 & 34 \\
\hline 61/2 & 9 & 11122 & 141/2 & 1712 & 21 \\
\hline 31 & 42 & 54 & 66 & \%9 & 91 \\
\hline 141/2 & 141/2 & 141/2 & 141/2 & 141/2 & 141/2 \\
\hline
\end{tabular}

TYPE "G."
Size of Plates, \(151 / 2 \times 151 / 2 \mathrm{in}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Number of plates. & 11 & 13 & 15 & 11 & 25 & 125 & D* & 21 & 23 & 25 & 125 & D* \\
\hline Discharge For 8 hrs. & 100 & 120 & 140 & 160 & 240 & 1240 & 10 & 400 & 440 & 180 & 2480 & 2 \\
\hline in am- \(\left\{\begin{array}{llll} & & 5 & \\ \hline\end{array}\right.\) & 140 & 168 & 196 & -24 & 336 & 1736 & 14 & 560 & ¿16 & \(6{ }^{\text {¢ }} 2\) & 3472 & 28 \\
\hline peres: \(\quad\) " 3 & 200 & 240 & 280 & 3:0 & 480 & 2480 & 20 & 800 & -80 & 960 & 4960 & 40 \\
\hline Normal charge rate.. & 100 & 120 & 140 & 160 & 240 & 1240 & 10 & 400 & 440 & 480 & 2480 & 20 \\
\hline Weight of each ele- & & & & & & & & & & & & \\
\hline ment, lbs.. & 219 & 260 & 300 & 341 & 503 & 2538 & 20.4 & T90 & 866 & \(9+2\) & ti41 & 38 \\
\hline Outside fWidth & 151/8 & 163/4 & 183/8 & 20 & 2i5\% & \(111 \frac{1}{4}\) & 7/8 & 251/8 & 263/4 & 283/2 & 111 \(\frac{1}{4}\) & 7 \\
\hline \(\underset{\text { measurement }}{\text { of tank in }}\) \{ Length & 193/4 & 193/4 & 193/4 & 193/4 & \(203 / 4\) & 211/2 & & 211/2 & 211/2 & 211/2 & 211/2 & \\
\hline inches. (Height & 22\%/8 & \(227 / 8\) & 227/8 & 227\% & 227/8 & 243/4 & & 42\%/8 & 427/8 & 42\%/8 & 437/8 & \\
\hline Weight of acid in pounds. & 160 & 179 & 197 & & 292 & 1242 & & 515 & 1552 & 590 & 2512 & 19 \\
\hline Weight of cell, complete, with acid in lead-lined tank in pounds: & 482 & 552 & 021 & 689 & 99.2 & 4560 & 36 & 1635 & 1169 & 1904 & 8696 & 68 \\
\hline Height of cell over all. inches. & 26 & 26 & 26 & 26 & 26 & \(\mathfrak{2 9}\) & & 45 & 45 & 45 & 46 & \\
\hline
\end{tabular}

\footnotetext{
* \(\mathrm{D}=\) addition per plate from 25 to 125 plates; approximate as to dimensions and weights.
slightly above two volts on open circuit, and during discharge varies from that point at the beginning to \(1 . \%\) at the end.
Accumulators are largely used in central lighting and power stations, in office buildings and other large isolated plauts, for the purpose of absorbing the energy of the generating-plaut during times of light load, and for giving it out during times of heavy load or when the generating-plant is idle. The advantages of their use for such purposes are thus enumerated:
1. Reduction in coal-consumption and general operating expenses, due to the generating machinery being run at the point of greatest economy while in service. and being shut down entirely during hours of light load, the battery supplying the whole of the current.
}
2. The possibility of obtaining good regulation in pressure during fluctuations in load, especially when the day load consists largely of elevators and similar disturbing elements.
3. To meet sudden demands which arise unexpectedly, as in the case of darkness caused by storm or thunder-showers; also in case of emergency due to accident or stoppage of generating-plant.
4. Smaller generating-plant required where the battery takes the peak of the load, which usually only lasts for a few hours, and yet where no battery is used necessitates sufficient generators, etc., being installed to provide for the maximum output, which in many cases is about double the normal output.

They are also in common use for furnishing current for electric motors for a great variety of purposes, and as a substitute for primary electric batteries.

For a very full description of various forms of storage-batieries, seo "Practical Electrical Engineering," part xii. For theory of the battery and practice with the Julien battery, see paper on Electrical Accumulators by P. G. Salom, Trans. A. I. M. E., xviii. 348.

Use of Storage-batteries in Power and Light stations, (Iron Age, Nov. 2, 1893.)-The storage-batteries in the Edison station, in Fifty-third Street, New York, relieve the other stations at the hours of heavy load, by delivering into the mains a certain amount of current that would otherwise have to come, and at greater loss or "drop," from one or another of the stations connecting with the network of mains. Hence the load may be varied more or less arbitrarily at these stations according to the proportion of load that the larger stations are desired or able to carry.

The battery consists of 140 cells each of about 1000 ampere-hour capacity, weighing some 750 lbs ., and of about 48 inches in length, 21 inches in width, and 15 inches in depth. The battery has a normal discharge rate of about 200 amperes, but can be discharged, if necessary, at 500 amperes.

A test made when the station was running only 12 hours per day, from noon to midnight, showed that the battery furnished about \(23.2 \%\) of the total energy delivered to the mains. The maximum rate of discharge attained by the battery was about \(2 \% 0\) amperes. Thus, in this case, we have an example of a battery which is used for the purpose: 1. Of giving a load to station machinery that would otherwise be idle. 2. Utilizing the stored energy to increase the rate of output of the station at the time of heavy load, which would otherwise necessitate greater dynamo capacity.

The Working Current, or Energy Efficiency, of a storagecell is the ratio between the value of the current or energy expended in the charging operation, and that obtained when the cell is discharged at any specified rate.

In a lead storage-cell, if the surface and quantity of active material be accurately proportioned, and if the discharge be commenced immediately after the termination of the charge, then a current efficiency of as much as \(98 \%\) may be obtained, provided the rate of discharge is low and well regulated. In practice it is found that low rates of discharge are not economical, and as the current efficiency always decreases as the discharge rate in creases, it is found that the normal current efficiency seldom exceeds \(90 \%\), and averages about \(85 \%\).

As the normal discharging electro-motive force of a lead secondary cell never exceeds 2 volts, and as an electro-motive force of from 2.4 to 2.5 volts is required at its poles to overcome both its opposing electro-motive force and its internal resistance, there is an initial loss of \(20 \%\) between the energy required to charge it and that given out during its discharge.

As the normal discharging potential is continually being reduced as the rate of discharge increases, it follows that an energy efficiency of \(80 \%\) car. never be realized. As a matter of fact, a maximum of \(75 \%\) and a mean of \(60 \%\) is the usual energy efficiency of lead-sulphuric-acid storage-cells.

\title{
ELECTRO-CHEIITCALEQUIVALENTS.
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elements. & & & & & & \\
\hline Electro-positive. & & & & & & \\
\hline Hydrogen & \(\mathrm{H}_{1}\) & 1.00 & 1.00 & . 010384 & 96293.00 & \(0.03 \% 38\) \\
\hline Potassium & \(\mathrm{K}_{1}\) & 39.04 & 39.04 & . 40539 & 2467.50 & 1.45950 \\
\hline Sodium & \(\mathrm{Na}_{1}\) & 22.99 & 22.99 & . 23873 & 4188.90 & 0.85942 \\
\hline Aluminum & \(\mathrm{Al}_{3}\) & 27.3 & 9.1 & . 09449 & 1058.30 & 0.34018 \\
\hline Magnesium & \(\mathrm{Mg}_{2}\) & 23.94 & 11.97 & . 12430 & 804.03 & \(0.44 \sim 47\) \\
\hline Gold & \(\mathrm{Ala}_{3}\) & 196.2 & 65.4 & . 61911 & 1473.50 & 2.44480 \\
\hline Silver. & \({ }_{\text {Ag }}{ }_{1}\) & 107.66 & 107.66 & 1.11800 & 894.41 & 4.02500 \\
\hline Copper (cupric) & \(\mathrm{Cu}_{2}\) & 63.00 & 31.5 & . 32709 & 3058.60 & \(1.17 \% 00\) \\
\hline " (cuprous) & \(\mathrm{Cu}_{1}\) & 63.00 & 63.00 & . 65419 & 1525.30 & 2.35500 \\
\hline Mercury (mercuric).... & \(\mathrm{Hg}_{1}\) & 199.8 & 99.9 & 1.03ヶ40 & 963.99 & 3.73450 \\
\hline " \({ }^{\text {" }}\) (mercurous).. & \(\mathrm{Hg}_{1}\) & 199.8 & 199.8 & 2.07470 & 481.99 & 7.46900 \\
\hline Tin (stannic). & \(\mathrm{Su}_{4}\) & 117.8 & 29.45 & . 30581 & 3270.00 & 1.10090 \\
\hline " (Stannous) & \(\mathrm{Sn}_{2}\) & 117.8 & 58.9 & . 61162 & 1635.00 & 2.20180 \\
\hline Iron (ferric). & \(\mathrm{Fe}_{4}\) & 55.9 & \(18.64 \ddagger\) & . 19356 & 5166.4 & 0.69681 \\
\hline " (ferrous) & \(\mathrm{Fe}_{2}\) & 55.9 & 27.95 & . 29035 & 3445.50 & 1.04480 \\
\hline Nickel. & \(\mathrm{Ni}_{2}\) & 58.6 & 29.3 & . 30425 & 3286.80 & 1.09530 \\
\hline Zinc. & \(\mathrm{Zl}_{2}\) & 64.9 & 32.45 & . 33696 & 2967.10 & 1.21330 \\
\hline Lead. & \(\mathrm{Pb}_{2}\) & 206.4 & 103.2 & 1.07160 & 933.26 & 3.85780 \\
\hline Electro-negative. & & & & & & \\
\hline Oxygen. & \(\mathrm{O}_{2}\) & 15.96 & 7.98 & . 08286 & & \\
\hline Chlorine. & \(\mathrm{Cl}_{1}\) & 35.37 & 35.37 & . 36728 & & \\
\hline Iodine. & \(\mathrm{I}_{1}\) & 126.53 & 126.53 & 1.31390 & & \\
\hline Bromine & \(\mathrm{Br}_{1}\) & 79.75 & 79.75 & . 82812 & & \\
\hline Nitrogen & \(\mathrm{N}_{3}\) & 14.01 & 4.67 & . 04849 & & \\
\hline
\end{tabular}

\footnotetext{
* Valency is the atom-fixing or atom-replacing power of an element compared with hydrogen, whose valency is unity.
+ Atomic weight is the weight of one atom of each element compared with hydrogen, whose atomic weight is unity.
\(\ddagger\) Becquerel's extension of Faraday's law showed that the electro-chemical equivalent of an element is proportional to its chemical equivalent. The latter is equal to its combining weight, and not to atomic weight \(\div\) valency, as defined by Thompson, Hospitalier, and others who have copied their tables. For example, the ferric salt is an exception to Thompson's rule, as are sesqui-salts in general.
}

\section*{ELECTROLYSIS.}

The separation of a chemical compound into its constituents by means of an electric current. Faraday gave the nomenclature relating to electrolysis. He called the compound to be decomposed the Electrolyte, and the process Electrolysis. The plates or poles of the battery he called Electrodes. The plate where the greatest pressure exists he called the Anode, and the other pole the Cathode. The products of decomposition he called Ions.
Lord Rayleigh found that a current of one ampere will deposit 0.017253 grain, or 0.001118 gramme, of silver per second on one of the plates of a silver voltameter, the liquid employed being a solution of silver nitrate con. taining from \(15 \%\) to \(20 \%\) of the salt.

The weight of hydrogen similarly set free by a current of one ampere is .00001038 gramme per second.
Knowing the amount of hydrogen thus set free, and the chemical equiva-
lents of the constituents of other substances, we can calculate what weight of their elements will be set free or deposited in a given time by a given current.
Thus the current that liberates 1 gramme of hydrogen will liberate 8 grammes of oxygen, or 107.7 grammes of silver, the numbers 8 and 107.7 being the chemical equivalents for oxygen and silver respectively.

To find the weight of metal deposited by a given current in a given time, find the weight of hydrogen liberated by the given current in the given time, and multiply by the chemical equivalent of the metal.

Thus: Weight of silver deposited in 10 seconds by a current of 10 amperes \(=\) weight of hydrogen liberated per second \(\times\) number seconds \(X\) current strength \(\times 107.7=.00001038 \times 10 \times 10 \times 107.7=.11178\) gramme.

Weight of copper deposited in 1 hour by a current of 10 amperes \(=\)
\[
.00001038 \times 3600 \times 10 \times 31.5=11.77 \text { grammes }
\]

Since 1 ampere per second liberates .00001038 gramme of hydrogen, strength of current in amperes
\[
\begin{aligned}
= & \frac{\text { weight in grammes of H. liberated per second }}{.00001038} \\
& =\frac{\text { weight of element liberated per second }}{.00001038 \times \text { chemical equivalent of element }}
\end{aligned}
\]

The table on page 1057 (from "Practical Electrical Engineering") is calFulated upon Lord Rayleigh's determination of the electro-chemical equiva. '2nts and Roscoe's atomic weights.

\section*{ELECTRO-ILAGNETS.}

\section*{Units of Electro-magnetic Measurements.}
C.G.S. unit of force \(=1\) dyne \(=1.01936\) milligrammes in localities in which the acceleration due to gravity is 981 centimetres, or 32.185 feet, per second.
C.C.S. unit of energy \(=1 \mathrm{erg}=\) energy required to overcome the resistiance of 1 dyne at a speed of 1 centimetre per second. 1 watt \(=10^{7} \mathrm{ergs}\).
Unit magnetism = that amount of magnetic matter which, if concentrated in a point, will repel an equal amount of magnetic matter concentrated in another point one centimetre distant with the force of one dyne.

Unit strength of field \(=\) that flow of magnetic lines which will exert unit mechanical force upon unit pole, or a density of 1 line per square centimetre.

The following definitions of practical units of the magnetic circuit are given in Houston and Kennelly's "Electrical Engineering Leaflets."

Gilbert, the unit of magneto-motive force; such a M.M.F. as would be produced by \(\frac{10}{4 \pi}\) or 0.7958 ampere-turn.

If an air-core solenoid or hollow anchor-ring were wound with 100 turns of insulated wire carrying a current of 5 amperes, the M.M.F. exerted would be 500 ampere-turns \(=628.5\) gilberts.

Weber, the unit of magnetic flux; the flux due to unit M.M.F. when the reluctance is one oersted.

Gauss, the unit of magnetic flux-density, or one weber per normal square centimetre.

The flux-density of the earth's magnetic fleld in the neighborhood of New York is about 0.6 gauss, directed downwards at an inclination of about \(72^{\circ}\).

Oersted, the unit of magnetic reluctance; the reluctance of a cubic centimetre of an air pump vacuum.

Reluctance is that quantity in a magnetic circuit which limits the flux under a given M.M.F. It corresponds to the resistance in the electric circuit.

The reluctivity of any medium is its specific reluctance, and in the C.G.S. system is the reluctance offered by a cubic centimetre of the body between opposed parallel faces. The reluctivity of nearly all substances, other than the magnetic metals, is sensibly that of vacuum, is equal to unity, and is independent of the flux density.

Permecubility is the reciprocal of magnetic reluctivity.

\section*{The fundamental equation of the magnetic circuit is}
\[
\text { Webers }=\frac{\text { gilberts }}{\text { oersteds }} ;
\]
or, magnetic flux \(=\) magneto-motive force \(\div\) magnetic reluctance .
From this equation we have
Gilberts \(=\) webers \(\times\) oersteds; oersteds \(=\) gilberts \(\div\) webers.
There are therefore two ways of increasing the magnetic flux: 1. by increasing the M.M.F.; 2. by decreasing the reluctance.
Lines and Loops of Force.-In discussing magnetic and electrical plenomena it is conventionally assumed that the attractions and repulsions as shown by the action of a magnet or of a conductor upon iron filings are due to "lines of force" surrounding the magnet or conductor. The "number of lines "indicates the magnitude of the forces acting. As the iron filings arrange themselves in concentric circles, we may assume that the forces may be represented by close curves or "loops of force." The following assumptions are made concerning the loops of force in a conductive circuit:
1. That the lines or loops of force in the conductor are parallel to the axis of the conductor.
2. That the loops of force external to the conductor are proportional in number to the current in the conductor, that is, a definite current generates a definite number of loops of force. These may be stated as the strength of field in proportion to the current.
3. That the radii of the loops of force are at right angles to the axis of the conductor.
The magnetic force proceeding from a point is equal at all points on the surface of an imaginary sphere described by a given radius about that point. A sphere of radius 1 cm . has a surface of \(4 \pi\) square centimetres. If \(F=\) total field strength, expressed as the number of lines of force emanating from a pole containing \(M\) units of magnetic matter,
\[
F=4 \pi M ; \quad M=F \div 4 \pi .
\]

Magnetic moment of a magnet = product of strength of pole \(M\) and its length, or distance between its poles \(L\). Magnetic moment \(=\frac{L F}{4 \pi}\).

If \(B=\) number of lines flowing through each square centimetre of crosssection of a bar-magnet, or the "specific induction," and \(A=\) cross-section,
\[
\text { Magnetic moment }=\frac{L A B}{4 \pi} .
\]

If the bar-magnet be suspended in a magnetic field whose induction is \(H\), and so placed that the lines of the field are all horizontal and at right angles to the axis of the bar, the north pole will be pulled forward, that is, in the direction in which the lines flow, and the south pole will be pulled in the opposite direction, the two forces producing a torsional moment or torque,
\[
\text { Torque }=M L H=L A B H \div 4 \pi, \text { in dyne-centimetres. }
\]

Magnetic attraction or repulsion emauating from a point varies inversely as the square of the distance from that point. The law of inverse squares, however, is not true when the magnetism proceeds from a surface of appreciable extent, and the distances are small, as in dynamo-electric machines. (For an analogy see "Radiation of Heat," page 46\%.)
Strength of an Electro-magnet. - In an electric magnet made by coiling a current-carrying conductor around a core of soft iron, the space in which the loops of force have influence is called the magnetic field, and it is convenient to assume that the strength of the field is proportional to the number of loops of magnetic force surrounding the magnet. Under this assumption, if we take a given current passing through a given number of conductor-turns, the number of magnetic loops will depend upon the resistance of the magnetic circuit, just as the current with a given pressure in the conductive circuit depends upon the resistance of the circuit.
The following laws express the most important principles concerning electro-magnets :
(1) The magnetic intensity (strength) of an electro-magnet is nearly proportional to the strength of the magnetizing current, provided the core is not saturated.
(2) The magnetic strength is proportional to the number of turns of wire in the magnetizing coil; that is, to the number of ampere turns.
(3) The magnetic strength is indepeudent of the thickness or material of the conducing wires.

These laws may be embraced in the more general statement that the strength of an electro-magnet, the size of the maguet being the same, is pronortional to the number of its ampere turns.

Force in the Gap between Two Poles of a Magnet. -If \(P=\) force exerted by one of the poles upon a unit pole in the gap, and \(m=\) density of lines in the field (that is, that there are \(m\) absolute or C.G.S. units on each square centimetre of the polar surface of the magnet), the polar surface being large relative to the breadth of the gap, \(P=2 \pi m\). The total force exerted upon the unit pole by both north and south poles of the magnet is \(2 P=4 \pi m\), in dynes \(=B\), or the induction in lines of force per square centimetre. If \(S=\) number of square centimetres in each polar surface, \(S B=\) total flow of force, or field strength \(=F ; S m=\) total pol 6 strength \(=M\), spread over each of the polar surfaces. We then have \(F=\) \(4 \pi M\), as before; that is, the total field is \(4 \pi\) times the total pole strength.

Total attractive force between the two opposing poles of a magnet, when the distance apart is small, \(=\frac{S B^{2}}{8 \pi}\), in dynes.

This formula may be used to determine the lifting-power of an electromagnet, thus:

A bent magnet provided with a keeper is 3 cm . square on each pole, and the induction \(B=20,000\) lines per square centimetre. The attractive force of each limb on the keeper in dynes \(=\frac{9 \times 20000^{2}}{8 \times 3.14}\), or in kilogrammes for both limbs, \(\frac{9 \times 400 \times 10^{6}}{25.12 \times 981000} \times 2=292\) kilogrammes.

The Magnetic Circuit. - In the conductive circuit we have \(C=\frac{E}{R}\);
Current \(=\frac{\text { electro-motive force }}{\text { resistance }}=\frac{\text { volts }}{\text { ohms }}\).
In the magnetic circuit we have
Number of lines, or loops, of force, or magnetism
\[
=\frac{\text { Current } \times \text { conductor turns }}{\text { Resistance of magnetic circuit }}=\frac{\text { Ampere turns }}{\text { Resistance of magnetic circuit }}
\]

Or , in the new notation, webers \(=\frac{\text { gilberts }}{\text { oersteds }}\).
Let \(N=\) No. of lines of force, \(R m=\) total magnetic resistance, \(A t=\) ampere turns, then \(N=\frac{A t}{R m}\).
The magnetic pressure due to the ampere turns \(=\frac{4}{10} \pi T C=1.25 \tilde{\tau} T\); where \(T=\) turns and \(C=\) amperes, whence \(N=\frac{.4 \pi T C}{R m}=\frac{1.25 \sim T C}{R m}\).

If \(R m=\) total magnetic resistance, and \(R a, R A, R F\) the magnetic resist. ances of the air-spaces, the armature, and the field-magnets, respectively,
\[
R m=R_{a}+R_{A}+R_{F} ; \quad \text { and } \quad N=\frac{.4 \pi T C}{R a+R_{A}+R_{F}}
\]

Determining the Polarity of Electro-magnets. - If a wire is wound around a magnet in a right-handed helix, the end at which the current flows into the helix is the south pole. If a wire is wound around an ordinary wood screw, and the current fows around the helix in the direction from the head of the screw to the point, the head of the screw is the south pole. If a magnet is held so that the south pole is opposite the eye of the observer, the wire being wound as a right-handed helix around it, the curent flows in a right-handed direction, with the hands of a clock.

\section*{DYNAMO-ELECTRIC MACHINES.}

There are three classes of dynamo-electric machines, viz.:
1. Generators, for the conversion of mechanical into electrical energy.
2. Motors, for the conversion of electrical into mechanical energy.

Generators and motors are both subdivided into direct-current and alter-nating-current machines.
3. Transformers, for the conversion of one character or voltage of current into another, as direct into alternating or alternating into direct, or from one voltage into a higher or lower voltage.

Kinds of Dynamo-electric Machines as regards Mana ner of Winding. (Houston's Electrical Dictionary.)
1. Dynamo-electric Machine.-A machine for the conversion of mechanical energy into electrical energy by means of magneto-electric induction.
2. Compound-wound Dynamo.-The field-magnets are excited by more than one circuit of coils or by more than a single electric source.
3. Closed-coil Dynamo.-The armature-coils are grouped in sections communicating with successive bars of a collector, so as to be connected continuously together in a closed circuit.
4. Open-coil Dynamo.-The armature-coils, though connected to the successive bars of the commutator, are not connected continuously in a closed circuit.
5. Separate-coil Dynamo. -The field-magnets are excited by means of coils on the armature separate and distinct from those which furnish current to the external circuit.
6. Separately-excited Dynamo.-The field-magnet coils have no connection with the armature-coils, but receive their current from a separate machine or source.
7. Series-wound Dynamo. -The field-current and the external circuit are connected in series with the armature circuit, so that the entire armature current must pass through the field-coils.
Since in a series-wound dynamo the armature-coils, the field, and the ex-ternal-series circuit are in series, any increase in the resistance of the external circuit will decrease the electro-motive force from the decrease in the magnetizing currents. A decrease in the resistance of the external circuit will, in a like manner, increase the electro-motive force from the increase in the magnetizing current. The use of a regulator avoids these changes in the electro-motive force.
8. Series and Separately-excited Compound-wound Dyncmo.-There are two separate circuits in the field-magnet cores, one of which is comected in series with the field-magnets and the external circuit, and the other with some source by which it is separately excited.
9. Shunt-uound Dynamo. -The field-magnet coils are placed in a shunt to the armature circuit, so that only a portiou of the current generated passes through the field magnet coils, but all the difference of potential of the armature acts at the terminals of the field-circuit.

In a shunt-dynamo machine an increase in the resistance of the external circuit increases the electro-motive force, and a decrease in the resistance of the external circuit decreases the electro-motive force. This is just the reverse of the series-wound dynamo.
In a shunt-wound dynamo a continuous balancing of the current occurs. The current dividing at the brushes between the field aud the external circuit in the inverse proportion to the resistance of these circuits, if the resistance of the external circuit becomes greater, a proportionately greater current passes through the field-magnets, and so causes the electro-motive force to become greater. If, on the contrary, the resistance of the external circuit decreases, less current passes through the field, and the electromotive force is proportionately decreased.
10. Series-and Shunt-wound Compound-wonnd Dynamo.-The field-magnets are wound with two separate coils, one of which is in series with the armature and the external circuit, and the other in shunt with the armature. This is usually called a compound-wound machine.
11. Shunt and Separately-excited Compound-vound Dynamo.-The field Is excited both by means of a shunt to the armature circuit and by a current produced by a separate source.
Current Generated by a Dynamo=electric Machine.-Unit current in the C.G.S system is that current which, flowing in a thin wire forming a circle of one centimetre radius, acts upon a unit pole placed in the centre with a force of \(2 \pi\) dynes. One tenth of this unit is the unit of current used in practice, called the ampere.

A wire through which a current passes has, when placed in a magnetic field, a tendency to move perpendicular to itself and at right angles to the lines of the field. The force producing this tendency is \(P=l c B\) dynes, in which \(l=\) length of the wire, \(c=\) the current in C.G.S. units, and \(B\) the induction in the field in lines per square centimetre.

If the current \(C\) is taken in amperes, \(P=l C B 10^{-1}\).
If \(P_{l_{c}}\) is taken in kilogramınes,
\[
P_{k}=\frac{l C B}{9 S 10000}=10.193 i l C B 10^{-8} \text { kilogrammes. }
\]

Example.-The mean strength of field, \(B\), of a dynamo is 5000 C.G.S. lines; a curent of 100 amperes flows through a wire; the force acts upon 10 centimetres of the wire \(=10.1937 \times 10 \times 100 \times 5000 \times 10^{-8}=.5097\) kilogrammes.

In the "English" or Kapp's system of measurement a total flow of 6000 C.G.S. lines is taken to equal one English line. Calling \(B_{E}\) the induction in English, or Kapp's, lines per square inch, and \(B\) the induction in C.G.S. lines per square centimetre, \(B_{E}=B \div 930.04\); and taking \(l^{\prime \prime}\) in inches and \(P_{p}\) in pounds, \(P_{p}=531 \mathrm{Cl}^{\prime \prime} B_{E} 10^{-6}\) pounds.

Torque of an Armature. \(-P p\) in the last formula, \(=\) the force tending to move one wire of length \(l^{\prime \prime}\), which carries a current of \(C\) amperes through the field whose induction is \(B_{E}\) English lines per square inch. The current through a drum-armature splits at the commutator into two branches. each half going through half of the wires or bars. The force exerted upon one of the wires under the influence of a pole-piece \(=1 / 2 P p\). If \(t=\) the number of wires under the pole-pieces, then the total force \(=1 / 2 P_{p} t\). If \(r=\) radius of the armature to the centre of the couductors, expressed in feet, then the torque \(=1 / 2 P p t r,=1 / 2 \times 531 \times C l^{\prime \prime} B_{E} \times 10^{-6} \times t r\) foot-pounds of moment, or pounds acting at a radius of 1 foot.

Example.-Let the length \(l\) of an armature \(=20 \mathrm{in}\)., the radius \(=6 \mathrm{in}\). or .5 ft ., number of conductors \(=120\), of which \(t=80\) are under the influence of the two pole-pieces at one time, the average induction or magnetic flux through the armature-field \(B_{E}=5\) English lines per square inch, and the current passing through the armature \(=400\) amperes; then
\[
\text { Torque }=1 / 2 \times 531 \times 400 \times 20 \times 5 \times 80 \times .5 \times 10^{-6}=424.8
\]

The work done in one revolution \(=\) torque \(\times\) circumference of a circle of 1 foot radius \(=424.8 \times 6.28=26 \tilde{0} 0\) foot-pounds.

Let the revolutions per minute \(=500\), then the horse-power
\[
=\frac{2670 \times 500}{33000}=40.5 \text { H.P. }
\]

Electro-motive Force of the Armature Circuit.-From the horse-power, calculated as above, together with the amperes, we can obtain the E.M.F., for \(C E=\) H.P. \(\times 746\), whence E.M.F. or \(E=\) H.P. \(\times 746+C\).

If H.P., as above, \(=40.5\), and \(C=400, E=\frac{40.5 \times 746}{400}=75.5\) volts.
The E.M.F. may also be calculated more directly by the following formulæ given by Gisbert Kapp:
\(C=\) Total current through armature; \(c\), current through single armature conductor;
\(e_{a}=\) E.M.F. in armature in volts;
\(\tau=\) Number of actire conductors counted all around armature;
\(p=\) Number of pairs of poles (\(p=1\) in a two-pole machine);
\(u=\) Speed in rerolutions per minute;
\(F=\) 'rotal inducrion in C.G.S. lines;
\(Z=\) Total induction in English lines.

Electro-motive force
\[
\left.\begin{array}{l}
e_{\alpha}=\operatorname{Fr} \frac{n}{60} 10^{-8} \\
e_{\alpha}=Z_{\tau} n 10^{-6}
\end{array}\right\} \text { for two-pole machines. }
\]
\[
\left.e_{a}=p F T \frac{n}{60} 10^{-1}\right\} \text { for multipolar machiues with }
\]
\[
e_{a}=p Z_{\tau n 10^{-6}}
\]
\[
\text { Torque } \left.\left\{\begin{array}{l}
\text { Kilogramme-metres }=1.615 \mathrm{Fr} C 10^{-10} \\
\text { Foot-pounds....... }=7.05 \mathrm{ZrC10} 10^{-6}
\end{array}\right\} \begin{array}{l}
\text { for two-pole ma- } \\
\text { Kilogramme-metres }=3.23 F \tau c 10^{-10} \\
\text { Foot-pounds...... }=14.10 \mathrm{Z} \mathrm{\tau cp} 10^{-6}
\end{array}\right\} \begin{gathered}
\text { for muitipo } \\
\text { chines }
\end{gathered}
\]

Example. \(\boldsymbol{\tau}=120, n=500\), length of armature \(\boldsymbol{l}=20 \mathrm{in}\), diameter \(\alpha^{i}=12\) in., cross-section \(=20 \times 1 \dot{z}=240\) sq. in., induction per sq. in. \(B_{E}=\) 5 lines per sq. in., total induction \(Z=240 \times 5=1200\); then
\[
E=Z \operatorname{m} n 10-{ }^{6}=1200 \times 120 \times 500 \times 10-6=72 \text { volts. }
\]

A formula for horse-power given by Kapp is
\[
\begin{aligned}
\text { H.P. } & =1 / \sim 46 \text { ZNtn } 10-{ }^{6} C a \\
& =1 / \tau 462\left(b m N \ln 10-{ }^{6} \mathrm{Ca}\right.
\end{aligned}
\]
\(C a=\) current in amperes, \(n=\) revs. per min., \(2 a b=\) sectional area of arm. ature-core, \(m=\) average density of lines per sq. in. of armature-core, \(N t=\) total number of external wires counted all around the circumterence, \(t=\) number of wires corresponding to one plate in the commutator, \(N=\) number of plates, \(Z=2 a b m=\) total number of English lines of force.
Kapp says that experience has shown that the density of lines \(m\) in the core cannot exceed a certain limit, which is reached when the core is saturated with magnetism. This value is reached when \(m=30\). A fair average value in modern dynamos and motors is \(m=20\), and the area \(a b\) must be taken as that actually filled by iron, and not the gross area of the core. 20 English lines per sq. in. \(=18,600\) C.G.S. lines per square centimetre. Silvanus \(P\). Thompson says it is not advisable in continuous-current machines to push the magnetization further than \(B=17,000\) C.G.S. lines per square centimetre.
Thompson gives as a rough average for the magnetic field in the gap-space of a dynamo or motor 6300 lines per sq. cm., or 40,000 lines per sq. in., and the drag per inch of conductor .00 .354 lb . for each ampere of current carried.
Pounds average drag per conductor \(=\frac{\text { H.P. } \times 33,000}{\text { ft. per min. } \times C}\), in which \(C\) is the number of conductors around the armature.
Strength of the Magnetic Field.-Kapp gives for the total number of lines of force (Kapp's lines \(=\) C.G.S. lines \(\div 6000\)) in the magnetic circuit. \(Z=\frac{X}{R a+R A+R F}\), in which \(Z=\) number of magnetic lines, \(X=\) the exciting pressure due to the ampere turns \(=.4 \pi T C, R a, R A\), and \(R F=r e-\) spectively the resistances of the air-spaces, the armature, and the field-magnets.
Kapp gives the following empirical values of \(R a, R_{A}\), and \(R F\), for dynamos and motors made of well-annealed wrought iron, with a permeability of \(\mu=\) 940:
\[
R a=1440 \frac{2 \delta}{\lambda b} ; \quad R A=\frac{l}{a b} ; \quad R F=2 \frac{L}{A B} ;
\]
in which \(\delta=\) distance across the span between armature-core and polar surface, \(b=\) breadth of armature measured parallel to axis, \(\lambda=\) length of arc embraced by polar surface, so that \(\lambda b=\) the polar area out of which magnetic lines issue, \(a=\) radial depth of armature-core, so that \(a b=\) section of armature core (space actually occupied by iron only being reckoned, \(A B=\) area of field-magnet core, \(l=\) length of magnetic circuit within armature, \(L=\) length of magnetic circuit in field magnet; all dimensions in inches or square inches.
\[
\text { For cast-iron magnets, } Z=\frac{0.8 X}{1800 \frac{2 \delta}{\lambda b}+\frac{l}{a b}+\frac{3 L}{A B}}
\]

For double horse-shoe magnets of wrought iton,
\[
\frac{Z}{2}=\frac{X}{1440 \frac{2 \delta}{\lambda b}+\frac{2 l}{a b}+\frac{2 L}{A B}}
\]
and of cast iron,
\[
\frac{Z}{z}=\frac{0.8 X}{1800 \frac{2 \delta}{\lambda b}+\frac{2 l}{a b}+\frac{3 L}{A B}}
\]

These formulæ apply only to cases in which the intensity of magnetization is not too great-say up to 10 Kapp's lines per square inch.

Silvanus \(P\). Thompson gives the following method of calcuiating the strength of the field, or the magnetic flux, \(M F\), or the whole number of magnetic lines flowing in the circuit in C.G.S. lines:

The magnetic resistance of any magnetic conductor is proportional directly to its length and inversely to its cross-section and its permeability.
Magnetic resistance \(=\frac{L}{S \mu}\), in which \(L=\) length of the magnetic circuit passing through any piece of iron, \(S=\) section of the magnetic circuit passing through any piece of iron. \(\mu=\) permeability of that piece of iron.
In a dynamo-machine in which the resistances are three, viz.: 1. The fieldmagnet cores; 2. The armature-core; 3. The gaps or air-spaces between them,-

> let \(L_{m, S m, \mu m}\) refer to the field-magnet part of the circuit;
> \(L_{a s, S a s, \mu a s}\) refer to the air-space part of the circuit;
> \(L a, S a, \mu a\) refer to the armature part of the circuit;
the lengths across each of the air-spaces being \(L_{a s}\), and the exposed area of pular surface at either pole being sas.
\[
\text { Total magnetic resistance }=\frac{L m}{S m \mu m}+\frac{L a s}{S a s \mu a s}+\frac{L_{a}}{S a \mu a^{\circ}}
\]

Magnetic flux, or total number of magnetic lines, \(=\)
\[
M_{F}=\frac{1.257 T w C}{\frac{L m}{S m \mu m}+\frac{L a s}{S a s \mu a s}+\frac{L_{a}}{S a \mu a}} .
\]
\(T w=\) turns of wires, ul number of turns in the spiral;
\(C=\) current in amperes passing through spiral.
Application to Designing of Dynamos. (S. P. Thompson.)Suppose in designing a dynamo it has been decided what will be a convenient speed, how many conductors shall be wound upon the armature, and what quantity of magnetic lines there must be in the field, it then becomes necessary to calculate the sizes of the iron parts and the quantity of excitation to be provided for by the field-magnet coils. It being known what MF is to be, the problem is to design the machine so as to get the required ralue. Experience shows that in every type of dynamo there is magnetic leakage; also, that it is not wise to push the saturation of the armature-core to more than 16,000 lines to the square centimetre at the most highly saturated part, and that the induction in the field-magnet ought to be not greater than this, even allowing for leakage. Leakage may amount to \(1 / 4\) of the whole: hence, if the magnet-cores are made of same quality of iron as the armature-cores, their cross-section ought to be at least \(5 / 4\) as great as that of the armature-core at its narrowest point. If the field-magnets are of cast iron, the section ought to be at least twice as great.
Now, \(B a\) (the induction in the armature-core) \(=M a \div S a\) (or magnetic flux through armature - cross-sectional area of the armature; hence, if this is fixed at 16,000 lines per centimetre of cross-section, we at once get \(S a=\) \(M_{a} \div B a\). This fixes the cross-section of the armature-core. (Example: If \(M a=4,000,000\) of lines, then there must be a cross-section equal to 250 square centimetres for \(\frac{4,000,000}{16,000}=250\).)

Magnetic Length of Armature Circuit.-The size of wires on the armature is fixed by the number of amperes which it must carry without risk. Remembering that only half the current (in ring or drum armatures) passes through any one coil, and as the number is supposed to have been fixed beforehand, this practically settles the quantity of copper that must be put on the armature, and experience dictates that the core should be made so large that the thickness of the external winding does not exceed \(1 / 6\) of the radial depth of the irou core. This settles the size of the armature-core, from which an estimate of La, the average length of path of the magnetic lines in the core, can be made.

Length and Section or Surface Area of Air-space.-Experience further dictates the requisite clearance, and the advantage of making the polepieces subteud an arc (in two-pole machines) of at least \(135^{\circ}\) each, so as to gain a large polar area. This settles Las and Sas.

Length of Field-magnet Iron Cores, etc.-As shown above, the minimum value of Sm is settled by leakage and materials; \(L_{m}\) therefore remains to be decided. It is clear that the magnet-cores must be long enough to allow of the requisite magnetizing coils, but should not be longer. As a rule, they are made so stout, especially in the yoke part, that they do not add much to the magnetic resistance of the circuit, then a little extra length as sumed in the calculation does not matter much. It now only remains to calculate the number of ampere-turns of excitation for which it will be needful to provide.
It will now be more convenient to rewrite the formula of the magnetic circuit as follows:
\[
A \times T m w=M a \frac{\left\{\lambda \frac{L m}{S m \mu m}+2 \frac{L a s}{S a s, \mu a s}+\frac{L a}{S a \cdot \mu a}\right\}}{1.2 \tilde{\tau}} ;
\]
where \(A=\) amperes of current passing through the field-magret coils;
\(T m w=\) total turns of the magnet wire;
\(\lambda=\) leakage coefficient (say \(5 / 4\)).
Or,
\[
A \times T m w=M a \frac{\lambda R m+R a s+R a}{1.257}
\]

Or, as before,
\[
M a=1.257 \frac{A \times T m w}{\lambda R m+R a s+R a}
\]
where \(R m, R a s, R a\) stand for the magnetic resistance of magnets, airspace, and armature, respectively.

But we cannot use this formula yet, because the values of \(\mu\) in it depend on the degree of saturation of the iron in the various parts. These have to be found from the Hopkinson tables, given below; and, indeed, it is preferable first to rearrange the formula once more, by dividing it into its separate members, ascertaining separately the ampere-turns requisite to force the required number of magnetic lines through the separate parts, and then add them together.
1. Ampere-turns required for magnet-cores \(=\lambda \frac{M a}{S m} \times \frac{L_{m}}{\mu m} \div 1.25 \%\).
2. Ampere-turns required for air-spaces
\[
=\frac{M a}{S a s} \times 2 \frac{L_{a s}}{\mu a s} \div 1.25 \%
\]
3. Ampere-turns required for armature-core \(=\frac{M a}{S a} \times \frac{L_{a}}{\mu a} \div 1.257\).

Now \(\lambda \frac{M a}{S m}\) is the value of \(B\) in the magnet-cores, and reference to the table of permeability will show what the corresdonding value of \(\mu \mathrm{m}\) must be. Similarly, \(\frac{M a}{S a}\) will afford a clue to \(\mu a\). When the total number of ampereturns to be allowed for is thus ascertained, the size and length of wire will be determined by the permissible rise of temperature, and the mode of exciting the field-magnets, whether in series, or as a shunt machine, or with a compound-winding.

Permeability.-Materials differ in regard to the resistance they offer to the passage of lines of force; thus iron is more permeable thar air. The permeability of a substance is expressed by a coefficient \(\mu\), which denotes its relation to the permeability of air, which is taken as 1. If \(H=\) number of magnetic lines per square centimetre which will pass through an airspace between the poles of a magnet, and \(B\) the number of lines which will pass through a certain piece of iron in that space, then \(\mu=B \div H\). The permeability varies with the quality of the iron, and the degree of saturation, reaching a practical limit for soft wrought iron when \(B=\) about 18,000 and for cast iron when \(B=\) about 10,000 C.G.S. lines per square centimetre,

The following values are given by Thompson as calculated from Hopkinson's experiments:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Annealed Wrought Iron.} & \multicolumn{3}{|c|}{Gray Cast Iron.} \\
\hline \(B\) & \(H\) & \(\mu\) & B & H & \(\mu\) \\
\hline 5,000 & 2 & 2,500 & 4,000 & 5 & 800 \\
\hline 9,000 & 4 & 2,250 & 5,000 & 10 & 500 \\
\hline 10,000 & 5 & 2,000 & 6,000 & 21.5 & 279 \\
\hline 11,000 & 6.5 & 1,692 & 7,000 & 42 & 133 \\
\hline 12,000 & 8.5 & 1,412 & 8,000 & 80 & 100 \\
\hline 13,000 & 12 & 1,083 & 9,000 & 127 & 71 \\
\hline 14,000 & 17 & 823 & 10,000 & 188 & 53 \\
\hline 15,000 & 28.5 & 526 & 11,000 & 292 & 37 \\
\hline 16,000 & 52 & 308 & & & \\
\hline 17,000 & 105 & 161 & & & \\
\hline 18,000 & 200 & 90 & & & \\
\hline 19,000 & 350 & 54 & & & \\
\hline
\end{tabular}

Permisgible Amperage and Permissible Depth of Winding for Magnets with Cotton-covered Wire.-Walter S. Dix (El. Engineer, Dec. 21, 1892) gives the following formula:
\[
C=\sqrt{\frac{12 \times W}{\frac{\omega_{m} f}{M} \times T \times L^{v}}}
\]
where \(C=\) current;
\[
\begin{aligned}
W & =\text { emissivity in watts per square inch; } \\
\omega_{m} f & =\text { ohms per mil-foot } ; \\
M & =\text { circular mils; } \\
T & =\text { turns per linear inch; } \\
L & =\text { number of layers in depth }
\end{aligned}
\]

The emissivity is taken at .4 watt per sq. in. for stationary magnets for a rise of temperature of \(35^{\circ} \mathrm{C}\). (\(63^{\circ} \mathrm{F}\).). For armatures, according to Esson's experiments, it is approximately correct to say that . 9 watt per sg. in. will be dissipated for a rise of \(35^{\circ} \mathrm{C}\).

The insulation allowed is .00 \% inch on No. 0 to No. 11 B. \& S.; . 005 inch on No. 12 to No. 24 ; and .0045 inch on No. 25 to No. 31 single ; twice these values for insulation of double-covered wires. Fifteen per cent is allowed for imbedding of the wires.

\section*{Formulx of Efficiency of Dynamos.}
(S. P. Thompson in "Munro and Jamieson's Pocket-Book.")

Total Electrical Energy (per second) of any dynamo (expressed in watts) is the product of the whole E.M.F. generated by armature-coils into the whole current which passes through the armature.
Useful Electrical Energy (per second), or useful output of the machine, is the product of the useful part of the E.II.F. (i.e., that part which is available at the terminals of the machine) into the useful part of the current (i.e., that part of the current which flows from the terminals into the external circuit).

Economic Coefficient or "electrical efficiency" of a dynamo is the ratio of the useful energy to the total energy.
Commercial Efficiency of a dynamo is the ratio of the useful energy or output to the power actually absorbed by the machine in being driven.

Let \(E_{a}=\) total E.M.F. generated in armature;
\(E_{e}=\) useful E.M.F. available at terminals;
\(C_{a}=\) total current generated in armature;
\(C s=\) current sent round shunt-coils;
\(C_{e}=\) useful current supplied to external circuit;
\(R a=\) resistance of armature-coils;
\(R_{m}=\) resistance of magnet-coils in maiu circuit (series);
\(R s=\) resistance of magnet-coils in shunt;
\(R e=\) resistance of external circuit (lamps, mains, etc.);
```

Wa}=W\mathrm{ Watts lost in armature;
Wm= Watts lost in magnet-coils;
Vl= lost volts;
Te = total electrical energy (per second);
Ue = useful electrical output;
c= economic coefficient;
p}=\mathrm{ commercial efficiency (percentage).

```

When only one circuit (series machine) \(C e=C a\).
In shunt machines Cs should not be more than \(5 \%\) of Ce. Also, \(C a=C e+C s\).
In all dynamos, \(R a\) ought to be less than \(1 / 40\) as great as the working value of \(R \dot{e}\).

In series (and compouud) machines, \(R m\) should be not greater than \(R a\), and preferably only \(2 / 3\) as great.
In shunt (and compound) machines, \(R_{s}\) should be not less than 300 times as great as \(R a\) and preferably 1000 to 1200 times as great.
\begin{tabular}{|c|c|c|c|}
\hline & Series Machine. & Shunt Machine. & Compound Machine (Short Shunt). \\
\hline \(W_{a}\) & \(C_{a}^{2} R_{a}\) & \(C_{a}^{2} R_{a}\) & \(C_{a}^{2} R_{a}\) \\
\hline \(W_{m}\) & \(C_{a}^{2} R_{m}\) & \(C_{s}^{2} R_{s}=E_{e}^{2} \div R_{s}\) & \(C_{a}^{2} R_{m}+C_{s}^{2} R_{s}\) \\
\hline \(V_{l}\) & \(C_{a} P_{a}\) & \(C_{a} R_{a}\) & \(C_{a} R_{a}+C_{e} R_{m}\) \\
\hline \(T_{e}\) & \[
\begin{aligned}
& E_{a} C_{a}= \\
& C_{a}^{2}\left(R_{a}+R_{m}+R_{e}\right)
\end{aligned}
\] & \[
\begin{aligned}
& E_{a} C_{a}= \\
& \quad C_{a}^{2}\left(R_{a}+\frac{R_{s} R_{e}}{R_{s}+R_{e}}\right)
\end{aligned}
\] & \(E_{a} C_{a}=C_{a}^{2}\left(R_{a}+\frac{R_{s}\left(R_{m}+R_{e}\right)}{R_{s}+R_{m}+R_{e}}\right)\) \\
\hline \multirow[t]{2}{*}{\(U_{e}\)} & \(E_{e} C_{a}=C_{a}^{2} R_{e}\) & \(E_{e} C_{e}=C_{e}^{2} R_{e}\) & \(E_{e} C_{e}=C_{e}^{2} R_{e}\) \\
\hline & \(E\) E \(R_{e}\) & \(C_{e}^{2} R_{e}\) & \(C_{e}^{2} R_{e}\) \\
\hline & \[
E_{a}-R_{a}+R_{m}+R_{e}
\] & \(C_{e}^{2} R_{e}+C_{a}^{2} R_{a}+C_{s}^{2} R_{s}\) & \(C_{e}^{2} R_{e}+C_{a}^{2} R_{a}+C_{s}^{2} R_{s}+C_{e}^{2} R_{m}\) \\
\hline \multirow[t]{2}{*}{\(p\)} & \[
\begin{array}{r}
100 \times E_{e} C_{e} \div \\
\text { (H.P. } \times 146 \text {) }
\end{array}
\] & \[
100 \times E_{e} C_{e} \div
\] & \(100 \times E_{e} C_{e} \div\) (H.P. \(\left.\times 746\right)\) \\
\hline & N.B. Horse-power is converted into watts (so as to compare with electric output of the machine) by multiplying by 746. & * This will be a maximum when \(R e\) is a mean proportional between \(R s\) and \(R_{a}\). & In well-constructed compound machines the difference between "short shunt" and "long shunt" is very slight, as \(R \mathrm{~m}\) is so small. \\
\hline
\end{tabular}

\section*{Alternating Currents, Multiphase Currents, Trans-}
cormers, etc.-The proper discussion of these subjects would take more space than can be afforded in this work. Consult S. P. Thompson's "DP-namo-Electric Machinery," Bedell and Crehore on "Alternating Currents," Fleming on "Alternating Currents," and Kapp on "Dynamos, Alternators and Transformers."

The Electric Motor. -The electric motor is the same machine as the dynamo, but with the nature of its operation reversed. In the dynamo mechanical energy, such as from a belt, is converted into electric current; in the motor the current entering the machine is converted into mechanical energy, which may be taken off by a belt. The difference in the action of the machine as a dynamo and as a motor is thus explained by Prof. F. B. Crocker, (Cassier's Mag., March, 1895):

In the case of the dynamo there exists only one E．M．F．，whereas in the motor there must alwass be two．

One kilowatt dynamo，\(C=E \div R ; 10\) amperes \(=100\) volts \(\div 10\) ohms．
\[
\text { One kilowatt motor, } C=\frac{E-e}{R_{1}} ; 10 \text { amperes }=\frac{100 \text { volts }-90 \text { volts }}{1 \mathrm{ohm}}
\]
\(C\) is the current；\(E\) ，the direct E．M．F．；e，the counter E．M．F．；\(R\) ，the total resistance of the circuit；\(R_{1}\) ，the resistance of the armature．The current and direct E．M．F．are the same in the two cases，but the resistance is only one tenth as much in the case of the motor，the difference being replaced by the counter E．M．F．，which acts like resistance to reduce the current．In the case of the motor the counter E．M．F．represents the amount of the electrical energy converted iato mechanical energy．The so－called electri－ cal efficiency or conversion factor \(=\) counter E．M．F．- direct E．M．F．The actual or commercial efficiency is sonvewhat less than this，owing to fric－ tion，Foncault currents，and hysteresis．

For full discussions of the theory and practice of electric motors see S． P．Thompson＇s＂Dynamo－Electric Machinery＂Kapp＇s＂Electric Trans－ mission of Energy，＂Martin and Wetzler＇s＂The Electric Motor and its Applications，＂Cox＇s＂Continuous Current Dynamos and Motors，＂and Crocker and Wheeler＇s＂Practical Management of Dynamos and Motors．＂

\section*{STANDARD BELTED MOTORS AND GENERATORS．}
（Crocker－Wheeler Electric Co．，1898．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\dot{\oplus}
\]} & \multirow[b]{3}{*}{\[
\left|\begin{array}{c}
\dot{x} \\
\frac{2}{2} \\
-1 \\
0 \\
0 \\
0
\end{array}\right|
\]} & \multicolumn{4}{|c|}{Output．} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Effi- } \\
& \text { ciency. }
\end{aligned}
\]}} & \multirow[b]{3}{*}{} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Outside Dimen－ sions in inches． Net Over All．}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Size of Pulley．
\(\qquad\)}} & \multirow[t]{3}{*}{0
0
0
0
0
0
0
0
0} \\
\hline & & \multicolumn{2}{|l|}{Motor．} & \multicolumn{2}{|l|}{Dynamo．} & & & & & & & & & \\
\hline & & \[
\stackrel{H}{4}
\] & & \[
\begin{aligned}
& \vec{i}
\end{aligned}
\] & & & Big & & 感 & & 方 & 荘 & \[
\begin{gathered}
\text { ن⿹勹巳一 } \\
\text { ¢ }
\end{gathered}
\] & \\
\hline 225 & 4 & 225 & 400 & 200 & 450 & 88 & 93 & 30000 & 133 & \(733 / 4\) & 6\％1／4 & 38 & 29 & 45 \\
\hline 150 & 6 & 150 & 400 & 130 & 450 & 85 & 92 & 11300 & 8516 & \(651 / 8\) & & 32 & 23 & 45 \\
\hline 100 & 4 & 100 & 600 & 90 & 650 & SS & 92 & 11000 & Ticos & 5814 & 5134 & 23 & 16 & 45 \\
\hline 5 & 4 & 75 & \(6: 5\) & 60 & \(6{ }^{2} 5\) & 90 & \(9:\) & 6500 & 693／4 & \(5: 1\) & 4612 & & 14 & 45 \\
\hline 50 & 4 & 50 & 650 & 45 & & 89 & 91122 & 4500 & 6112 & 461／4 & \({ }_{3}^{4}\) & 17 & 12 & 45 \\
\hline 35 & 4 & 35 & 700 & 31.5 & & & 91 & 33.350 & 54\％ & 4014 & \(371 / 4\) & 15 & 11 & 45 \\
\hline 25 & 4 & 25 & 750 & 21.5 & 8：5 & & 881／2 & 2400 & 46\％ & 362／8 & & 13 & & 45 \\
\hline 15 & 4 & 15 & 800 & 13 & 900 & 8：21／2 & 88 & 1510 & 41 & 311. & 283／4 & 11 & 8 & 45 \\
\hline 10 & 2 & 10 & 850 & 10 & & 8 8， & S & \(9: 3\) & 361／4 & \(253 / 4\) & 231 & 9 & \(\tau\) & 45 \\
\hline 71／2 & \(\stackrel{2}{2}\) & 712 & 900 & 7.5 & 1050 & 83 & 86 & 760 & 33 & 2312 & \(211 / 4\) & 8 & 5 & 45 \\
\hline 5 & \(\stackrel{2}{2}\) & 5 & 950 & 5 & 1100 & 89 & 85 & 510 & \(25^{1 / 4}\) & 213／8 & \(191 / 4\) & 7 & 5 & 45 \\
\hline 3 & \(\stackrel{2}{2}\) & 3 & & 3 & & 80 & 841／2 & 410 & 265 & 185\％ & \(161 / 4\) & \(\delta\) & 41／4 & 15 \\
\hline & 2 & 2 & 1000 & 2 & 1：00 & \％ & \(8{ }^{2}\) & 288 & 2016 & \(153 / 4\) & \(141 / 4\) & 5 & & 45 \\
\hline 1 & \(\pi\) & 1 & 1000 & 5 & 1300 & \％ 6 & 81 & 205 & 1914 & 15 & \(131 / 4\) & 4 & 312 & 45 \\
\hline & \(\stackrel{2}{2}\) & \(1 / 2\) & 1200
1375 & ． 5 & 1600 & & 75 & 100
\(\%\) & \[
\begin{aligned}
& 173 \\
& 15
\end{aligned}
\] & 103／4 & \({ }^{10} 85\) & 3
3 & 31
21 & 45 \\
\hline 1／6 & 2 & 1／6 & 1600 & ． 11 & 2200 & & 61 & 24 & 97／8 & 81\％ & 611 & 1122 & 1 & 45 \\
\hline
\end{tabular}

\section*{APPENDIX.}

\section*{STRENGTH OF TIMBER.}

\section*{Safe Loads in Tons, Uniformly Distributed, for White= oak Beans.}
(In accordance with the Building Laws of Boston.)
\(W\), safe load in tons of 2000 lbs ; \(P\), extreme Formula: \(W=\frac{4 P B D^{2}}{3 L_{j}} \quad \begin{array}{ll}\text { fibre-stress }=1000 \text { lbs. per } \mathrm{sq.} \text { in. for white } \\ \text { oak; } B, \text { breadth in inches; } D, \text { depth in inches; }\end{array}\) \(L\), distance between supports in inches.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|c|}{Distance between Supports in feet.} \\
\hline & 6 & 8 & 10 & 11 & 12 & 14 & 15 & 16 & 17 & 18 & 19 & 21 & 23 & 25 & 26 \\
\hline \(2 \times 6\) & 0.67 & 0.50 & 0.40 & 0.36 & 0.3 & 0.29 & 0.27 & 0.25 & 0.24 & 0.22 & & & & & \\
\hline \(2 \times 8\) & 1.19 & 0.89 & 0.71 & 0.65 & 0.59 & 0.51 & 0.47 & 0.44 & 0.42 & 0.40 & 0.37 & 0.34 & 0.31 & 0.28 & \\
\hline \(2 \times 10\) & 1.85 & 1.39 & 1.11 & 1.01 & 0.93 & 0.79 & 0.74 & 0.69 & 0.65 & 0.62 & 0.58 & 0.53 & 0.48 & 0.44 & 0.43 \\
\hline \(2 \times 12\) & 2.67 & 2.00 & 1.60 & 1.45 & 1.33 & 1.14 & 1.07 & 1.00 & 0.94 & 0.89 & 0.84 & 0.76 & 0.70 & 0.64 & 0.62 \\
\hline \(3 \times 6\) & 1.00 & 0.75 & 0.60 & 0.55 & 0.50 & 0.43 & 0.40 & 0.37 & 0.35 & 0.33 & 0.32 & 0.29 & 0.26 & & \\
\hline \(3 \times 8\) & 1.78 & 1.33 & 1.07 & 0.97 & 0.89 & 0.76 & 0.71 & 0.67 & 0.63 & 0.59 & 0.56 & 0.51 & 0.46 & 0.43 & 0.4 \\
\hline \(3 \times 10\) & 2.78 & 2.08 & 1.67 & 1.52 & 1.39 & 1.19 & 1.11 & 1.04 & 0.98 & 0.33 & 0.88 & 0.79 & 0.72 & 0.67 & 0.6 \\
\hline \(3 \times 12\) & 4.00 & 3.00 & 2.40 & 2.18 & 2.00 & 1.71 & 1.60 & 1.50 & 1.41 & 1.33 & 1.26 & 1.14 & 1.04 & 0.96 & 0.92 \\
\hline \(3 \times 14\) & 5.45 & 4.08 & 3.27 & 2.97 & 2. 72 & 2.37 & 2.18 & 2.04 & 1.92 & 1.82 & 1.72 & 1.56 & 1.42 & 1.31 & 1.25 \\
\hline \(3 \times 16\) & 7.11 & 5.33 & 4.27 & 3.88 & 3.56 & 3.05 & 2.84 & 2.67 & 2.51 & \(2.3 \hat{1}\) & 2.25 & 2.03 & 1.86 & 1.71 & 1.6 \\
\hline \(4 \times 10\) & 3.70 & 2.78 & 2.22 & 2.02 & 1.85 & 1.59 & 1.48 & 1.39 & 1.31 & 1.23 & 1.17 & 1.06 & 0.97 & 0.89 & 0.85 \\
\hline \(4 \times 12\) & 5.33 & 4.00 & 3.20 & 2.91 & 12.67 & 2.29 & 2.13 & 2.00 & 1.88 & 1.78 & 1.68 & 1.52 & 1.39 & 1.28 & 1.23 \\
\hline \(4 \times 14\) & 7.26 & 5.44 & 4.36 & 3.96 & 3.63 & 3.11 & 2.90 & 2.72 & 2.56 & 2.42 & 2.29 & 2.07 & 1.90 & 1.74 & 1.68 \\
\hline \(4 \times 10\) & 9.48 & 7.11 & 5.69 & 5.17 & 4.74 & 4.06 & 3.79 & 3.56 & 3.35 & 3.16 & 3.00 & 2.71 & 2.47 & 2.28 & 2.19 \\
\hline \(4 \times 18\) & 12.00 & 9.00 & 7.20 & 6.55 & 6.00 & 5.14 & 4.80 & 4.50 & 4.24 & 4.00 & 3.79 & 3.43 & 3.13 & 2.88 & 2. \({ }^{1}\) \\
\hline
\end{tabular}

For other kinds of wood than white oak multiply the figures in the table by a figure selected from those given below (which represent the safe stress per square inch on beams of different kinds of wood according to the building laws of the cities named) and divide by 1000.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Hemlock. & Spruce. & White pine. & Oak. & Yellow Pine. \\
\hline New York.. & 800 & 900 & 900 & 1100 & 1100* \\
\hline Boston. & & 750 & 750 & \(1000+\) & 1.250 \\
\hline Chicago.... & & & 900 & 1050 & 1440 \\
\hline
\end{tabular}

\section*{MATHEMATICS.}

\section*{Formula for Interpolation.}
\[
a_{n}=a_{1}+(n-1) d_{1}+\frac{(n-1)(n-2)}{1.2} d_{2}+\frac{(n-1)(n-2)(n-3)}{1.2 .3} d_{3}+\ldots
\]
\(\alpha_{1}=\) the first term of the series; \(n\), number of the required term; \(a_{n}\), the required term; \(d_{1}, d_{2}, d_{3}\). first terms of successive orders of differences between \(a_{1}, a_{2}, a_{3}, a_{4}\), successive terms.

Example.-Required the \(\log\) of \(40 . \tilde{\tau}, \operatorname{logs}\) of \(40,41,42,43\) being given as below.
\[
\begin{aligned}
& \text { Terms } a_{1}, a_{2}, a_{3}, a_{4}: 1.60211 .61281 .62321 .6335 \\
& \text { 1st differences: } \quad .0107 \quad .0104 \quad .0103 \\
& 2 \mathrm{~d} \quad \text { " } \quad .0003-.0001 \\
& \text { 3d " }+.0002
\end{aligned}
\]

For \(\log .40 n=1 ; \log 41 n=2 ; \log 40.7 n=1.7, n-1=0 . \pi, n-2=-0.3\), \(n-3=-.1 .3\).
\[
\begin{aligned}
a_{n} & =1.6021+0 . \tilde{\tau}(.010 \tau)+\frac{(0 . \tau)(-0.3)(-.0003)}{2}+\frac{(0.7)(-0.3)(-1.3)(.0002)}{6} \\
& =1.6021+.00 \pi 49+.000031+.000009=1.6096+.
\end{aligned}
\]

MIaxima and Minima without the Calculus. - In the equation \(y=a+b x+c x^{2}\), in which \(a, b\), and \(c\) are constants, either positive or negative, if \(c\) be positive \(y\) is a minimum when \(x=-b \div 2 c\); if \(c\) be negative \(y\) is a maximum when \(x=-b \div 2 c\). In the equation \(y=a+b x+c / x, y\) is a minimum when \(b x=c / x\).

Application. - The cost of electrical transmission is made up (1) of fixed charges, such as superintendence, repairs, cost of poles, etc., which may be represented by \(a ;(2)\) of interest on cost of the wire, which varies with the sectional area, and may be represented by \(b x\); and (3) of cost of the energy wasted in transmission, which varies inversely with the area of the wire, or \(c / x\). The total cost, \(y=a+b x+c / x\), is a minimum when item \(\Omega=\) item 3 , or \(b x=c / x\).

\section*{REVETED JOINTS.}

Pressure Required to Drive Hot Rivets.-R. D. Wood \& Co., Philadelphia, give the following table (189\%):

Power to Drive Rivets Нот.
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline Size. & \begin{tabular}{c}
Girder- \\
work.
\end{tabular} & \begin{tabular}{c}
Tank- \\
work.
\end{tabular} & \begin{tabular}{c}
Boiler- \\
work.
\end{tabular} & Size. & \begin{tabular}{c}
Girder. \\
work.
\end{tabular} & \begin{tabular}{c}
Tank- \\
work.
\end{tabular} & \begin{tabular}{c}
Boiler- \\
work.
\end{tabular} \\
\hline in. & tons. & tons. & tons. & in. & tons. & tons. & tons. \\
\(1 / 2\) & 9 & 15 & 20 & \(11 / 8\) & 38 & 60 & \begin{tabular}{c}
75 \\
\(3 / 8\)
\end{tabular} \\
\hline 12 & 18 & 25 & 114 & 45 & 70 & 100 \\
\(3 / 4\) & 15 & 22 & 33 & 112 & 60 & 85 & 125 \\
18 & 20 & 30 & 45 & \(13 / 4\) & 75 & 100 & 150 \\
\hline
\end{tabular}

The above is based on the rivet passing through only two thicknesses of plate which together exceed the diameter of the rivet but little, if any.

As the plate thickness increases the power required increases approximately in proportion to the square root of the increase of thickness. Thus, if the total thickness of plate is four times the diameter of the rivet, we should require twice the power given above in order to thoroughly fll the rivet-holes and do good work. Double the thickness of plate would increase the necessary power about \(40 \%\).

It takes about four or five times as much power to drive rivets cold as to drive them hot. Thus, a machine that will drive \(3 / 4\)-in. rivets hot will usually drive \(3 / 8\)-in. rivets cold (steel). Baldwin Locomotive Works drive \(1 / 2-\mathrm{in}\). softiron rivets cold with 15 tons.

\section*{HEATING AND VENTHLATION．}

Table of Capacities for Hot－blast or Plenum Heating with Fans or Blowers．
（Computed by F．R．Still，American Blower Co．，Detroit，Mich．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\stackrel{N}{\Omega}
\] & & & & & & & \[
\begin{aligned}
& \pi \\
& 0 \\
& 0 \\
& 4 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \\
\hline & & & & & & 1，021，000 & 900 & & & \\
\hline & 48 & & & 8，500 & 510，00 & 1，255，000 & & 9.45 & & \\
\hline & 54 & 250 & 4 & 10.500 & 630.000 & 1，550，000 & & 1.66 & & 80 \\
\hline 00 & 60 & 250 & 5 & 12，500 & 750，000 & 1．845，000 & & 13.9 & & 050 \\
\hline 110 & 66 & 230 & 6 & 15，500 & 948，000 & 2，335，000 & & 17．55 & & \\
\hline 120 & i2 & 210 & 8 & 19，800 & 1，118，000 & 2，900，000 & & & & 50 \\
\hline 140 & 84 & 180 & 10 & 26，200 & 1，572，000 & 3，870，000 & & 2．\({ }^{\text {a }}\) & & 2200 \\
\hline 160 & 96 & 160 & 12 & 33，000 & 1，950，000 & 4，870，000 & & 36．7 & & 2740 \\
\hline 180 & 108 & 140 & 15 & 41，600 & \(\stackrel{2}{2}, 496,000\) & 6，130，000 & & 46. & & \\
\hline 200 & 120 & 125 & 18 & 50.00 & 3，000，0 & \％，375，000 & & 55 & ＇6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline & 1，74 & 1055 & 31 & 2 & 35 & 5 & 15 & 8． & 9.6 & 8.200 \\
\hline So & 2，142 & 1295 & 4 & \(\stackrel{2}{2}\) & 43 & 645 & 18 & 10，600 & 13.05 & 0，000 \\
\hline 0 & \(\stackrel{2}{2}, 640\) & 1600 & 4112 & 216 & 53 & 795 & 23 & 13，200 & 14．72 & 12，500 \\
\hline 100 & 3，150 & 1900 & 5 & \(21 / 2\) & 63 & 945 & \(2 \pi\) & 15，800 & 17.55 & 15，000 \\
\hline 110 & 3，9i5 & 2410 & 51／2 & 3 & 80 & 1200 & 34 & 19，900 & \(\underset{\sim}{2}\) 2． 20 & 18，900 \\
\hline 120 & 4.950 & 2990 & 6 & 3 & 100 & 1500 & 43 & 25，000 & 27．\({ }^{\text {2 }}\)－ 80 & 23，800 \\
\hline 140 & 6,600 & 3990 & \％ & 812 & 133 & \({ }^{1995}\) & \％ & 33，100 & 36.80 & 3,600 \\
\hline 160 & 8.310 & 50．5 & 8 & 416 & \(\stackrel{161}{211}\) & 205 & 90 & 52，500 & 58.40 & 50，000 \\
\hline 180
400 & \(10,4 \% 0\)
12.420 & 63.35
7560 & 10 & 415 & 211 & 3165
\(3 \uparrow 100\) & 108 & 63．200 & \％0．25 & 60,000 \\
\hline
\end{tabular}

Temperature of fresin air， \(0^{\circ}\) ；of air from coils， \(120^{\circ}\) ；of steam， \(22 \pi^{\circ}\) ．Pres－ sure of steam， 5 lbs．

Peripheral velocity of fan－tips， 4000 ft ．；number of pipes deep in coil， 24 ； depth of coil， 60 inches；area of coils approximately twice free area．

\section*{WATER－WHEELS．}

Water－power Plants operating under High Pressures．－ The following notes are contributed by the Pelton Water Wheel Co．：
The Consolidated Virginia \＆Col．Mining Co．．Virginia，Ner．．has a 3．ft． steel－disk Pelton wheel operating under 2100 ft ．fall，equal to 911 lbs ．per sq．in． It rums at a peripheral velocity of 10.504 ft ．per minute and has a capacity of over \(100 \mathrm{H} . \mathrm{P}\) ．The rigidity with which water under such a high pressure as this leaves the nozzle is shown in the fact that it is impossible to cut the
stream with an axe, however heavy the blow, as it will rebound just as it would from a steel rod travelling at a high rate of speed.

The London Hydraulic Power Co. has a large number of Pelton wheels from 12 to 18 in . diameter running under pressure of about 1000 lbs . per. sq. in. from a system of pressure-mains. The 18 -in. wheels weighing 30 lbs . have a capacity of over \(20 \mathrm{H} . \mathrm{P}\). (See Blaine's "Hydraulic Machinery.")

Hydraulic Power-hoist of Milwaukee Mining Co., Idaho.-One cage travels up as the other descends; the maximum load of 5500 lbs . at a speed of 400 ft . per min. is carried by one of a pair of Pelton wheels (one for each cage). Wheels are started and stopped by opening and closing a small hydraulic valve at the engineer's stand which operates the larger valves by hydraulic pressure. An air-chamber takes up the shock that would otherwise occur on the pipe line under the pressure due to 850 ft . fall.

The Mannesmann Cycle Tube Works, North Adams, Mass., are using four Pelton wheels, having a fly-wheel rim, under a pump pressure of 600 lbs . per sq. in. These wheels are direct-connected to the rolls through which the ingots are passed for drawing out seamless tubing.

The Alaska Gold Mining Co., Douglass Island, Alaska, has a \(22-\mathrm{ft}\). Pelton wheel on the shaft of a Riedler duplex compressor. It is used as a flywheel as well, weighing \(25,000 \mathrm{lbs}\).-and develops \(500 \mathrm{H} . \mathrm{P}\). at 75 revolutions. A valve connected to the pressure-chamber starts and stops the wheel automatically, thus maintaining the pressure in the air-receiver.

At Pachuca in Mexico five Pelton wheels having a capacity of 600 H.P. each under 800 ft . head are driving an electric transmission plant. These wheels weigh less than 500 lbs . each, showing over a horse-power per pound of metal.

Formula for Calculating the Power of Jet WaterWheels, such as the Pelton (F. K. Blue). \(-H P=\) horse-power delivered: \(\delta=62.36 \mathrm{lbs}\). per cu. ft. \(; E=\) efficiency of turbine; \(q=\) quantity of water, cubic feet per minute; \(h=\) feet effective head ; \(d=\) inches diameter of jet; \(p=\) pounds per square inch effective head; \(c=\) coefficient of discharge from nozzle, which may be ordinarily taken at 0.9.
\[
\begin{aligned}
& H P=\frac{\delta E q h}{33000}=.00189 E q h=.00436 E q p=.00496 E c d^{2} \sqrt{h^{3}}=.0174 E c d^{2} \sqrt{p^{3}} . \\
& q=529.2 \frac{H P}{E h}=229 \frac{H P}{E p}=2.62 c d^{2} \quad \sqrt{h}=3.99 c d^{2} \sqrt{p} . \\
& d^{2}= 201.6 \frac{H P}{E c \sqrt{h^{3}}}=57.4 \frac{H P}{E c \sqrt{p^{3}}}=.381 \frac{q}{c \sqrt{h}}=.25 \frac{q}{c \sqrt{p}} . \\
& \text { GAS FUEL. }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Natural
Gas.} & \multirow[t]{2}{*}{Coalgas.} & \multirow[t]{2}{*}{Watergas.} & \multicolumn{2}{|l|}{Producer-gas.} & \multirow{2}{*}{Air.} \\
\hline & & & & Anthra. & Bitum. & \\
\hline CO & 0.50 & 6.0 & 45.0 & 27.0 & 27.0 & \\
\hline H & 2.18 & 46.0 & 45.0 & 12.0 & 12.0 & \\
\hline CH & 92.6 & 40.0 & 2.0 & 1.2 & 2.5 & \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{4}\) & 0.31 & 4.0 & & & 0.4 & \\
\hline \(\mathrm{CO}_{2} \ldots \ldots\). & 0.26 & 0.5 & 4.0 & 2.5 & 2.5 & trace \\
\hline & 3.61 & 1.5 & 2.0 & 57.0 & 55.3 & 79 \\
\hline \(\bigcirc\) & 0.34 & 0.5 & 0.5 & 0.3 & 0.3 & 21 \\
\hline Vapor & & 1.5 & 1.5 & & & trace \\
\hline Lbs. in 1000 cu. ft. & 45.6 & 32.0 & 45.6 & 65.6 & 65.9 & 76.1 \\
\hline H. U. in \(1000 \mathrm{cu} . \mathrm{ft}\). & 1,100,000 & \% 35,000 & 322,000 & 137,455 & 156,917* & \\
\hline Cu.ft. from each lb. of coal approx... & & 5 & 25 & 85 & 75 & 200† \\
\hline
\end{tabular}
* The real energy of bituminous producer-gas when used hot is far in excess of that indicated by the above table, on account of the hydrocarbons, which do not show, as they are condensed in the act of collecting the gas for analysis. In actual practice there is found to be about \(50 \%\) more effective energy in bituminous gas than in anthracite gas when used hot enough to prevent condensation in the flues.
+ Cubic feet of air required to burn 1 lb . of coal with blast.

\section*{STEAII-BOLHERS.}

Steam-boiler Construction. (Extract from the Rules and Specifications of the Hartford Steam Boiler Inspection \& Insurance Co., 1898.)
Cylindrical boiler shells of fire box steel, and tube-heads of best flange steel. Limits of tensile strength between 55,000 and \(62,000 \mathrm{lbs}\). per sq. in.
Iron rivets in steel plates, \(38,000 \mathrm{lbs}\). T. S. per sq. in. in single shear and \(85 \%\) more, or \({ }^{5} 0,300 \mathrm{lbs}\)., in double shear.

Each shell-plate must bear a test-coupon which shall be sheared off and tested. Each coupon must fulfil the above requirements as to tensile strength, but must have a contraction of area of not less than \(56 \%\) and an elongation of \(25 \%\) in a length of 8 in . It must also stand bending \(180^{\circ}\) when cold, when red hot, and after being heated red hot and quenched in cold water, without fracture on outside of bent portion.
Crow-foot braces are required for boiler-heads without welds, and if of iron limit the strain to 7500 lbs . per sq. in., and stay-bolts must not be subjected to a greater strain than 6000 lbs . per sq. in.
The thickness of double butt-straps \(\delta / 10\) the thickness of plates. In lapjoints the distance between the rows of rivets is \(2 / 3\) the pitch. In doubleriveted lap-joints of plates up to \(1 / 2 \mathrm{in}\). thick the efficiency is \(\% 0 \%\) and in triple-riveted lap-joints \(\% 5 \%\) of the solid plate.
In triple-riveted double-strapped butt-seams for plates from \(1 / 4 \mathrm{in}\). to \(1 / 2 \mathrm{in}\). thick, the efficiency ranges from \(88 \%\) to \(86 \%\) of the solid plate.
In high-pressure boilers the holes are required to be drilled in place; that is, all holes may be punched \(1 / 4 \mathrm{in}\). less than full size, then the courses are rolled up, tube-heads and joint-covering plates bolted to courses, with all holes together perfectly fair. Then the rivet-holes are drilled to full size, and when completed the plates are taken apart and the burr removed.
The rule for the bursting-pressure of cylindrical boiler-shells is the following: Multiply the ultimate tensile strength of the weakest plate in the shell by its thickness in inches and by the efficiency of the joint, and divide result by the semi-diameter of shell; the quotient is the bursting-pressure per square inch. This pressure divided by the factor 5 gives the allowable working pressure.

\section*{HOILER FEEDING.}

Cravity Boiler-feeders. - If a closed tank be placed above the level of the water in a boiler and the tank be filled or partly filled with water, then on shutting off the supply to the tank, admitting steam from the boiler to the upper part of the tank, so as to equalize the steam-pressure in the boiler and in the tank, and opening a valve in a pipe leading from the tank to the boiler the water will run into the boiler. An apparatus of this kind may be made to work with practically perfect efficiency as a boilerfeeder, as an injector does, when the feed-supply is at ordinary atmospheric temperature, since after the tank is emptied of water and the valves in the pipes connecting it with the boiler are closed the condensation of the steam remaining in the tank will create a vacuum which will lift a fresh supply of water into the tank. The only loss of energy in the cycle of operations is the radiation from the tank and pipes, which may be made very small by proper covering.
When the feed-water supply is hot, such as the return water from a heating system, the gravity apparatus may be made to work by having two receivers, one at a low level, which receives the returns or other feed-supply, and the other at a point above the boilers. A partial vacuum being created in the upper tank, steam-pressure is applied above the water in the lower tank by which it is elevated into the upper. The operation of such a machine may be made automatic by suitable arrangement of valves. (See circular of the Scott Boiler Feeder, made by the Q. \& C. Co., Chicago.)

\section*{FEED-WATER HEATERS.}

Capacity o Feed-water Heaters.-The following extract from a letter by W. R. Billings, treasurer of the Taunton Locomotive Manufacturng Co., builders of the Wainwright feed-water heater, to Engineering Record, February, 1898, is of interest in showing the relation of the heating surface of a heater to the work done by it:
"Closed feed-water heaters are seldom provided with sufficient surface to raise the feed temperature to more than \(200^{\circ}\). The rate of heat trans-
mission may be measured by the number of British thermal units which pass through a square foot of tubular surface in one hour for each degree of difference in temperature between the water and the steam. The difficulties which attend experiments in this direction can only be appreciated by those who have attempted to make such experiments. Certain results have been reached, however, which point to what appears to be a reasonable conclusion. One set of experiments made quite recently gave certain results which may be set forth in the table herewith.

Difference between

Transmitted in one
 hour by each sq. ft. of surface for each degree of average difference in temperatures.
tures of water and
steam
"In other words, when the water was brought to within \(5^{\circ}\) of the temperature of the heating medium, heat was transmitted through the tubes at the rate of \(6 \pi\) B.T.U. per square foot for each degree of difference in temperature in one hour. When the amount of water flowing through the heater was so largely increased as to make it impossible to get the water any nearer than within \(18^{\circ}\) of the temperature of the steam, the heat was transmitted at the rate of 139 B.T.U. per sq. ft. of surface for each degree of difference in temperature in one hour. Note here that even with the rate of transmission as low as 67 B.T.U. the water was still \(5^{\circ}\) from the temperature of the steam. At what rate would the heat have been transmitted if the water could have been brought to within \(2^{\circ}\) of the temperature of the steam, or to \(210^{\circ}\) when the steam is at \(212^{\circ}\) ?
"For commercial purposes feed-water heaters are given a H.P.rating which allows about one-third of a square foot of surface per H.P.-a boiler H.P. being 30 lbs . of water per hour. If the figures given in the table above are accepted as substantially correct, a heater which is to raise 3000 lbs of water per hour from \(60^{\circ}\) to \(207^{\circ}\). using exhaust steam at \(212^{\circ}\) as a heating medium, should have nearly 84 sq . ft. of heating surface-that is, a 100 H.P. feed-water heater which is to maintain a constant temperature of not less than \(20 \hat{\imath}^{\circ}\), with water flowing through it at the rate of 3000 lbs . per hour, should have nearly a square foot of surface per H.P. That feed-water heaters do not carry this amount of heating surface is well known."

\section*{THE STEATI-ENGINE.}

Current Practice in Engine Proportions, 1897 (Compare pages 792 to 817.) - A paper with this title by Prof John H. Barr, in Trans. A.S. M. E., xviii. 737, gives the results of an examination of the proportions of parts of a great number of single-cylinder engines made by different builders. The engines classed as low speed (L. S.) are Corliss or other long-stroke engines usually making not more than 100 or 125 revs. per min. Those classed as high speed (H. S.) have a stroke generally of 1 to \(11 / 2\) diameters and a speed of 200 to 300 revs. per min. The results are expressed in formulas of rational form with empirical coefficients, and are here abridged as follows:

Thickness of Shell. L. S. only. \(-t=C D+B ; D=\) diam. of piston in in.; \(B=0.3\) in. ; \(C\) varies from 0.4 to 0.6, mean \(=0.5\).

Flanges and Cylinder-heads.-1 to 1.5 times thickness of shell, mean 1.2.
Cylinder-head Studs.-No studs less than \(3 / 4 \mathrm{in}\). nor greater than \(13 / 8 \mathrm{in}\). diam. Least number, 8 , for 10 in diam. Average number \(=0.7 \mathrm{D}\). Average diam. \(=D / 40+1 / 2 \mathrm{in}\).

Ports and Pipes.- \(a=\) area of port (or pipe) in sq. in.; \(A=\) area of piston, sq.in.; \(V=\) mean piston-speed, ft. per min.; \(a=A V / C\), in which \(C=\) mean velocity of steam through the port or pipe in ft. per min.

Ports, H. S. (same ports for steam as for exhaust). \(-C=4500\) to 6500 , mean 5500. For ordinary piston-speed of 600 ft . per min. \(a=K A ; K=.09\) to .13 , meau . 11.
Steam-ports, L. S. \(-C=5000\) to 9000 , mean 6800: \(K=.08\) to .10 , mean .09 .
Exhaust-ports. L. S. \(-C=4000\) to 7000 , mean \(5500 ; K=.10\) to 125 , mean 11.
Steam-pipes, H. S. \(-C=5800\) to 7000 , mean 6500. If \(d=\) diam. of pipe and \(D=\) diam. of piston, \(d=.29 \mathrm{D}\) to .32 D , mean .30 D .

Sterm-pipes, L. S. \(-C=5000\) to 8000 , mean \(6000 ; d=.27\) to \(.35 D\), mean \(.32 D\).
Exhaust-pipes, H. S. \(-C=2500\) to 5500 , mean \(4400 ; d=.33\) to \(.50 D\), mean \(.37 D\).
Exhaust-pipes, L.S. \(-C=2800\) to 4700 , mean \(3800 ; d=.35\) to \(.45 D\), mean .40D.

Face of Pistons. \(-F=\) face; \(D=\) diameter. \(\quad F=C D\). H. S.: \(C=.30\) to .60 mean . 46 . L. S.: \(C=.25\) to .45 , meau .32.

Piston-rods. \(-d=\) diam. of rod; \(D=\) diam. of piston; \(L=\) stroke, in.; \(d=C V \bar{D} \bar{L} . H . S .: C=.12\) to .175 , mean .145 . L. S.: \(C=.10\) to .13 , mean .11 . Connecting-rods.-H. S. (generally 6 cranks long, rectangular section): \(b=\) breadth \(; h=\) height of section; \(L_{1}=\) length of connecting-rod; \(D=\) dian. of piston; \(b=C \sqrt{D L_{1}} ; C=.045\) to .07 , mean \(.05 \tilde{7} ; h=K b ; K=2.2\) to 4 , meau 2.7. L. S. (generally 5 cranks long, circular sections only): \(C=.082\) to .105 , mean .092.

Cross-head Slides.-Maximum pressure in lbs. per sq. in. of shoe, due to the rertical component of the force on the connecting-rod. H. S.: 10.5 to 38, mean \(2 \pi\). L. S : 29 to 33 , mean 40.

Cross-head Pins. \(-l=\) length \(; d=\) diam.; projected area \(=a=d l=C A\); \(A=\) area of piston; \(l=K d . \quad H . S .: C=.06\) to .11 , mean \(.08 ; K=1\) to \(:\), mean 1.25. L. S.: \(C=.054\) to .10 , mean \(.07 ; K=1\) to 1.5 , mean 1.3.

Crank-pin.-HP = horse-power of engine; \(L=\) length of stroke: \(l=\) length of pin; \(l=C \times H P / L+B ; d=\operatorname{diam}\). of pin: \(A=\) area of piston; \(d l=K A\). H. S.: \(C=.13\) to 46 , mean \(.30 ; B=2.5 \mathrm{in} . ; K=.1 \%\) to 44 , mean .24. L. S.: \(C=.4\) to .8 , mean \(.6 ; B=2\) in. \(; K=.065\) to .115 , mean .09 .

Crank-shaft Main Journal.- \(d=C \sqrt[3]{H P \div N ;} d=\) diam. \(; l=\) length: \(N=\) revs. per min.: projected area \(=M A ; A=\) area of piston. H.S.: \(C=6.5\) to 8.5, mean \(7.3 ; K=2\) to 3 , mean \(2.2: M=.37\) to.\(\tilde{2} 0\), mean .46. L. S.: \(C=6\) to 8 , mean \(6.5 ; K=1.7\) to 2.1 , mean \(1.9 ; M=.46\) to .64 , mean .56 .

Piston-speed.-H. S.: 530 to 660 mean 600; L. S.: 500 to 850 , mean 600.
Weicint of Reciprocating Parts (piston, piston-rod, cross-head, and clehalf of connecting-rod). \(-W=C D^{2} \div L N^{2}: D=\) diam. of piston; \(L=\) length of stroke, in.; \(N=\) revs per min. H. S. only: \(C=1,200,000\) to \(2,300,000\), mean 1,860.000.

Belt-surface per I.H.P. \(-S=C H P+B ; S=\) product of width of belt in feet by velocity of belt in ft . per min. H. S.: \(C=21\) to 40 mean \(28 ; B=1\) EC0. L. S.: \(S=C \times H P . ; C=30\) to 42 , mean \(=35\).

Fly-wheel (H.S. only). Weight of rim in lbs.: W \(=C \times H P \div D_{1}{ }^{2} N^{N_{3}} ; D_{1}=\) diam. of wheel in in.; \(C=65 \times 10^{10}\) to \(2 \times 50^{12}\) mean \(=12 \times 10^{11}\), or 1,200,000,000,000.

Weight of Engine per I.H.P. in lbs., including fly-wheel. \(-W=C \times H . P\). II. S.: \(C=100\) to 135, mean 115. L. S.: \(C=135\) to 240 , mean 175.

Work of Steam-turbines. (See p. 791.)-A 300-H.P. De Laval steamturbine at the \(1:\) th Street station of the Edison Electric Illuminating Co. in New York City in April, 1896, showed on a test a steam-consumption of 19.275 lbs. of steam per electrical H.P. per hour, equivalent to 17.348 lbs . per brake H.P., assuming an efficiency of the dynamo of \(90 \%\). The steampressure was 145 lbs. gauge and the racuum 26 in . It drove tro \(100-\mathrm{K}\).W. dynamos. The turbine-disk was 29.5 in . diameter and its speed 9000 revs. permin. The dynamos were geared down to 750 revs. The total equipment, including turbine, gearing, and dynamos, occupied a space \(13 \mathrm{ft} .3 \mathrm{in}\). long, \(6 \mathrm{ft} .5 \mathrm{in}\). . wide, and 4 ft .3 inc . high.

The "Turbinia," a torpedo-boat 100 ft . long, 9 ft . beam, and \(441 / 2\) tons displacement, was driven at 31 knots per hour by a Parsons steam-turbine in 189\%, dereloping a calculated I.H.P. of \(15 i 6\) and a thrust H.P. of 916 , the steam-pressure at the engine being 130 lbs . and at the boilers \(: 200 \mathrm{lbs}\). The vacuum was \(131 / 2 \mathrm{lbs}\). The revolutions averaged 2100 per minute. The calculated steam-consumption was 15.86 lbs . per I.H.P. per hour. On another trial the "Turbinia" developed a speed of \(393 / 4\) linots.

Relative Cost of Different Sizes of Steam-engines.
(From catalogne of the Buckere Engine Co.. Part III.)
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
Horse-power \\
Cost per H.P, \\
\hline
\end{tabular}

\section*{LOCOMOTIVES.}

Resistance of Trains. -The Baldwin Locomotive Works contribute the following notes to the text on pages \(85 ?\) to 869 .
"On page 852, we think the resistances ' \(y\) ' for increasing speeds were originally intended to be added to a coefficient for the total frictional
resistance, for, if we assume a straight, level track and a speed of 5 miles per hour, then according to the formula the total resistance per ton would be 3.3 lbs . This is less than we are actually able to obtain under most favorable conditions, and we know that in some cases, for instance, in mine construction, the frictional resistance has been shown to be as much as 60 lbs. per ton at slow speed. This resistance should be approximate to suit the conditions of each individual case, and the Pincreased resistances due to speed added thereto.
"On page 853, in the formula
\[
u P-W(.0005 c \pm .00019 m)=L l+.00025 C \pm .00019 m
\]
the journal and rolling resistances of engine and tender at different speeds are not accounted for, unless the author includes them in the coefficient ' \(u\),' under the supposition that the tractive power will be in proportion to the total weight of engine and tender at different speeds. As the proportion of driver, or adhesive weight, to the total weight of engine and tender varies considerably in different classes, we think this rather indefinite. If the coefficient ' \(u\) ' were made to embrace only the resistances of the working parts, and the coefficient ' \(l\) ' (after the modification suggested above), were applied to the weight of engine and tender, we think the formula would be more generally applicable. For instance, in the formula assume, as before, a straight, level track: then \(W(.005 c \pm .00019 \mathrm{~m})\) would reduce to 0 , and the total weight of engine and tender would disappear entirely, except in their indirect influence upon coefficient ' \(u\).'
"Approximate Formula for Train Resistance. (See Holmes on the Steam Engine, pages 141 to 143.)
"'Page 856, 'Exhaust Nozzles.' Refer to the Annual Report of the American Railway Master Mechanics' Association for 1896, which gives some interesting data on the subject.
" Page 855, 'Boilers.' Refer to Holmes on the Steam Engine, pages 371 to 377 , and 383 to 389, and also to the Master Mechanics' Report for 1897, pages 218 to 232, for a very important list of data and formulæ.
"Page 864, 'Counterbalancing.' Refer to the Master Mechanics' Report for 1896 , pages 148 to 155 , for some interesting formulæ.
"Formuloe for Curves.

Approximate Formula for Radius.
\(R=\frac{. \pi 646 W}{2 P}\)

\(R=\) radius of min. curve in feet.
\(P=\) play of driving-wheels in decimals of 1 ft .
\(W=\) rigid wheel-base in feet.

Approximate Formula for Swing.
\[
\frac{\frac{W T}{2 R}=S}{}
\]

Performance of a High-speed Locomotive. -The Baldwin compound locomotive No. 1027, on the Phila. \& Atlantic City Ry., in July and August, 1897, made a record of which the following is a summary:

On July 2d a train was placed in service scheduled to make the run between the terminal cities in 1 hour. Allowing 8 minutes for ferry from Philadelphia to Camden, the time for the \(551 / 2\) miles from the latter point to Atlantic City was 52 minutes, or at the rate of 64 miles per hour. Owing to the inability of the ferry-boats to reach Camden on time, the train always left late, the average detention being upwards of 2 minutes. This loss was invariably made up, the train arriving at Atlantic City ahead of time. 2 minutes on an average, every day. For the 52 days the train ran, from July 2 d to August 31st, the average time consumed on the run was 48 minutes, equivalent to a uniform rate of speed from start to stop of 69 miles per hour. On July 14th the run from Camden to Atlantic City was made in \(461 / 2 \mathrm{~min}\)., an average of 71.6 miles per hour for the total distance. On 22 days the train consisted of 5 cars and on 30 days it was made up of 6 , the weight of
cars being as follows : combination car, \(57,200 \mathrm{lbs} . ;\) coaches, each, \(59,200 \mathrm{lbs}\); Pullınan car, \(85,500 \mathrm{lbs}\).

The general dimensions of the locomotive are as follows: cylinders, 13 and \(22 \times 26 \mathrm{in}\).; height of clrivers, \(841 / 4 \mathrm{in}\).; total wheel-base, 26 ft .7 in .; drivingwheel base, 7 ft .3 in . \(;\) length of tubes, 13 ft .; diameter of boiler, \(583 / 4 \mathrm{in} . ;\) diameter of lubes, \(13 / 4 \mathrm{in}\).; number of tubes, 278 ; length of fire-box, \(113 \% / 8 \mathrm{in}\).; width of fire-box, 96 in .; heating-surface of fire-box, 136.4 sq. ft.; heatingsurface of tubes, 1614.9 sq . ft.; total heating-surface, 1835.1 sq . ft.; tank capacity, 4000 gallons; boiler-pressure, 200 lbs . per sq, in.; total weight of engine and tender, \(22 \pi, 000 \mathrm{lbs}\).; weight on drivers (about), \(\tau 8,600 \mathrm{lbs}\).

Locomotive Link Motion.-Mr. F. A. Halsey, in his work on Locomotive Link Motion," 1898, shows that the location of the eccentricrod pins back of the link-arc and the augular vibrations of the eccentricrods introduce two errors in the motion which are corrected by the angular vibration of the connecting-rod and by locating the saddle-stud back of the link-arc. He holds that it is probable that the opinions of the critics of the locomotive link motion are mistaken ones, and that it comes little short of all that can be desired for a locomotive valve motion. The increase of lead from full to mid gear and the heavy compression at mid gear are both advantages and not defects. The cylinder problem of a locomotive is entirely different from that of a stationary engine. With the latter the problem is to determine the size of the cylinder and the distribution of steam to drive economically a given load at a giveu speed. With locomotives the cylinder is made of a size which will start the heaviest train which the adhesion of the locomotive will permit, and the problem then is to utilize that cylinder to the best advantage at a greatly increased speed, but under a greatly reduced mean effective pressure.

Negative lead at full gear has been used in the recent practice of some railroads. The advantages claimed are an increase in the power of the engine at full gear, since positive lead offers resistance to the motion of the piston; easier riding; reduced frequency of hot bearings; and a slight gain in fuel economy. Mri. Halsey gives the practice as to lead on several roads as follows, showing great diversity :
\begin{tabular}{|c|c|c|c|}
\hline & Full Gear Forward, in. & Full Gear Back, in. & Reversing Gear, in. \\
\hline New York, New Haven \& Hartford & 1/16 pos. & 1/4 neg. & 1/4 pos. \\
\hline Maine Central & & \(1 / 4\) neg. & \\
\hline Illinois Central & \(1 / 32\) pos. & & abt. \(3 / 16\) \\
\hline Lake Shore..... & 1/16 neg. & 9/64 neg. & \(5 / 16\) pos. \\
\hline Chicago Great Western..... & & 0 & 3/16 to 9/16 \\
\hline Chicago \& Northwestern.... & 3/16 neg. & & \(1 / 4\) pos. \\
\hline
\end{tabular}

The link-chart of a locomotive built in 1897 by the Schenectady Locomotive Works for the Northern Pacific Ry. is as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Lead.} & \multicolumn{2}{|r|}{Valve Open.} & \multicolumn{2}{|r|}{Cut-off.} \\
\hline Forward Stroke, in. & Rearward Stroke, in. & Forward Stroke, in. & \begin{tabular}{l}
Rearward \\
Stroke, in.
\end{tabular} & Forward Stroke, in. & Rearward Stroke, in. \\
\hline \[
\begin{aligned}
& -1 / 8 \\
& \hline 1 / 32 \\
& +1 / 32 \\
& 3 / 32 \\
& 1 / 8 \\
& 9 / 64 \\
& 5 / 32 \mathrm{~s} . \\
& 5 / 32 \\
& 5 / 32 \mathrm{f} .
\end{aligned}
\] & \[
\begin{gathered}
-1 / 8 \\
1 / 39 \\
+1 / 32 \\
3 / 32 \\
1 / 8 \\
9 / 64 \\
5 / 32 \mathrm{s.} \\
5 / 32 \\
5 \\
\text { SE. } 5 / 32 \mathrm{f} .
\end{gathered}
\] & \[
\begin{aligned}
& 17 / 8 \\
& 17 / 16 \\
& 1716 \\
& 23 / 32 \\
& 1 / 3 \\
& 338 \\
& 5 / 16 \\
& 1 / 4 \\
& 7 / 32
\end{aligned}
\] & \[
\begin{gathered}
17 / 8 \\
17 / 16 \\
1116 \\
23 / 3: 2 \\
112 \\
8 / 8 \\
5 / 16 \\
1 / 4 \\
7 / 39
\end{gathered}
\] & \[
\begin{aligned}
& 229 / 16 \\
& 21 \\
& 19 \\
& 16 \\
& 13 \\
& 10 \\
& 8 \\
& 6 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 225 / 8 \\
& 21 \\
& 19 \\
& 16 \\
& 131 / 8 \\
& 10 \\
& 8 \\
& 6 \\
& 4 \\
& 4 / 16
\end{aligned}
\] \\
\hline
\end{tabular}

Cylinders \(20 \times 26 \mathrm{in}\)., driving-wheels 69 in , six coupled wheels, main rods \(1261 / 2\) in., radius of link 40 in., lap \(11 / 8\) in., travel 6 in., Allen valve.

\section*{GEARING.}

Eficiency of Worm Gearing. (See also page 898.)-Worm gearing as a means of transmitting power, has until recently, generally been looked upon with suspicion, its efficiency. being considered necessarily tow and its life short. Recent experience, however, indicates that when properly proportioned it is both durable and reasonably efficient. Mr. F. A. Halsey discusses the subject in Am. Machinist, Jan. 13 and 20, 1898. He quotes two formulas for the efficiency of worm gearing due to Prof. Johu H. Barr:
\[
\begin{equation*}
E=\frac{\tan \alpha(1-f \tan \alpha)}{\tan \alpha+f}, \ldots \text { (1) } \quad E=\frac{\tan a(1-f \tan \alpha)}{\tan \alpha+2 f} \tag{1}
\end{equation*}
\]
in which \(E=\) efficiency \(; ~ a=\) angle of thread, being angle between thread and a line perpendicular to the axis of the worm; \(f=\) coefficient of friction.

Eq. (1) applies to the worm thread only, while (2) applies to the worm and step combined, on the assumption that the mean friction radius of the two is equal. Eq. (1) gives a maximum for \(E\) when \(\tan a=\sqrt{1+f^{2}}-f \ldots\) (3) and eq. (2) a maximum when \(\tan a=\sqrt{2+4 f^{2}}-2 f\). . . (4) Using a value .05 for \(f\) gives a value for \(a\) in (i) of \(43^{\circ} 34^{\prime}\) and in (4) a value of \(52^{\circ} 49^{\prime}\).

On plotting equations (1) and (2) the curves show the striking influence of the pitch-angle upon the efficiency, and since the lost work is expended in friction and wear, it is plain why worms of low angle should be short-lived and those of high angle long-lived. The following table is taken from Mr. Halsey's plotted curves :
relation between thread-angle speed and efficifncy of worm gears.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Velocity of Pitch-line, feet per minute.} & \multicolumn{6}{|c|}{Augle of Thread.} \\
\hline & 5 & 10 & 20 & 30 & 40 & 45 \\
\hline & \multicolumn{6}{|c|}{Efficiency.} \\
\hline 3 & 35 & & 66 & 73 & \%6 & \\
\hline 5 & 40 & 56 & 69 & \% 6 & \%9 & 80 \\
\hline 10 & 47 & 62 & 74 & ¢9 & 82 & 82 \\
\hline 20 & 52 & 67 & 78 & 83 & 85 & 86 \\
\hline 40 & 60 & 74 & 83 & 87 & 88 & 88 \\
\hline 100 & 70 & 82 & 88 & 91 & 91 & 91 \\
\hline 200 & 76 & 85 & 91 & 92 & 92 & 92 \\
\hline
\end{tabular}

The experiments of Mr. Wilfred Lewis on worms show a very satisfactory correspondence with the theory. Mr. Halsey gives a collection of data comprising 16 worms doing heavy duty and having pitch-angles ranging between \(4^{\circ} 30^{\prime}\) and \(45^{\circ}\), which show that every worm having an angle above \(12^{\circ} 30^{\prime}\) was successful in regard to durability, and every worm below \(9^{\circ}\) was unsuccessful, the overlapping region being occupied by worms some of which were successful and some unsuccessful. In several cases worms of one pitch-angle had been replaced by worms of a diffurent angle, an increase in the angle leading in every case to better results and a decrease to poorer results. He concludes with the following table from experlments by Mr. James Christie, of the Pencoyd Iron Works, and gives data connecting the load upon the teeth with the pitch-line velocity of the worm:

Limiting speeds and pressures of worm gearing.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Single-thread Worm 1" Pitch, \(2 \frac{7}{8}\) Pitch Diam.} & \multicolumn{3}{|l|}{Doublethread Worm \({ }^{\prime \prime}\) Pitch, 27 Pitch Diam.} & \multicolumn{3}{|l|}{Doublethread Worm 2 \({ }^{\frac{1}{2}}\) " Pitch. \(4 \frac{1}{2}\) Pitch Dian.} \\
\hline Revolutions per minute........ & & & & 5 & & & & & \(2 \% 2\) & 425 \\
\hline Velocity at pitch-line in feet per minute. & & & & & & & & & & \\
\hline Limiting pressure in pounds & 1700 & 1300 & 1100 & r0 & & 100 & & 100 & r00 & 40 \\
\hline
\end{tabular}

\section*{LIST OF AUTHORITIES QUOTED IN THIS BOOK.}

When a name is quoted but once or a few times only, the page or pages are given. The names of leading writers of text-books, who are quoted frequently, have the word "various" affixed in place of the page-number. The list is somewhat incomplete both as to names and page numbers.

Abel, F. A., 642
Abendroth \& Root Mfg. Co., 19\%, 198
American Screw Co., 209
Achard, Arthur, 886, 919
Addy, George, 957
Addyston Pipe and Steel Co., 187, 188
Alden, G. I., 979
Alexander, J. S., 629
Allen, Kenneth, 295
Allen, Leicester, 582
Andrews. Thomas, 384
Ansonia Brass and Copper Co., 327
Arnold, Horace L., 959
Asheroft Mfg. Co., \%5?, \(7 \% 5\)
Atkinson, J. J., 532
Ayrton and Perry, 1040
Babcock, G. H., 524, 933
Babcock \& Wilcox Co., 538, 636
Baermann, P. H., 188
Bagshaw, Walter, 952
Bailey, W. H., 943
Baker, Sir Benjamin, 239, 247, 402
Baich, S. W., 898
Baldwin, Wm. J., 541
Ball, Frank H., 751
Barlow, W. H., 384
Barlow, Prof., 288
Barnaby, S. W., 1013
Barnes, D. L., 631, 861, 863
Barrus, Geo. H., 636
Bauer, Chas. A., 207
Bauschinger, Prof., 239
Bazin, M., 563, 587
Beardslee, L. A.. 238, 377
Beaumont, W. W., 979
Becuel, L. A., 644
Begtrup, J., 348
Bennett, P. D., 354
Bernard, M. \& E., 330
Birkinbine, John, 605
Bjorling, P., 676
Blaine, R. G., 616, 1039
Blauvelt, W. H., 639, 649
Blechynden, A., 1015
Bodmer, G. R., 753
Bolland, Simpson, 946
Booth, Wm. H., \({ }_{925} 2\)
Box, Thomas, 475
Briggs, Robert, 194, 478, 539, 672
British Board of Trade, 264, 266, 700
Brown, A. G., ₹23, 724
Brown, E. H., 388
Brown \& Sharpe Mfg. Co., 219, 890
Browne, Ross E., 597
Brush, Chas. B., 566
Buckle, W., 511

Buel, Richard H., 606, 834
Buffalo Forge Co., 519, 529
Builders' Iron Foundry, 374
Burr. Wm. A., 565
Burr, Wm. H., 247, 259, 290, 381
Calvert, F. Crace, 386
Calvert \& Johnson, 469
Campbell, H. H., 398, 459, 650
Campredon, Louis, 403
Carnegie Steel Co., 1\%テ, 2\%2, 2\%7, 391
Carpenter, R. C.. 454, 615, 718, etc.
Chadwick Lead Works, 201, 615
Chamberlain, P. M., 474
Chance, H. M., 631
Chandler, Chas. F., 53:
Chapman Valve iffg. Co., 193
Chauvenet, S. H., 3テ̃0
Chase, Chas. P., 312
Chevandier, Eugene, 640
Christie, James, 394
Church, Irving P., 415
Church, Wm. Lee, 784, 1050
Clapp, Geo. H., 397, 403, 551
Clark, Daniel Kiunear, various
Clarke, Edwin, \({ }^{\circ} 40\)
Claudel, 455
Clay, F. W., 291
Clerk, Dugald, 847
Cloud, John W., 351
Codman, J. E., 193
Coffey, B. H., 810
Coffin, Freeman C., 292
Coggswell, W. B., 554
Cole, Romaine C., 329
Coleman, J. J., 470
Cooper, John H., 876, 900
Cooper, Theodore, 262, 263, 359
Cotterill and Slade, 432, 974
Cowles, Eugene H., 329, 331
Cox, A. J., 290
Cox, E. T., 629
Cox, William, 575
Coxe, Eckley B., 632
Craddock, Thomas, 473
Cramp, E. S., 405
Crimp, Santo, 564
Crocker, F. B., 1070
Cummins, Wm. Russell, 772
Daelen, R. M., 617
Dagger, John H. J., 329
Daniel, Wm., 492
D'Arcy, 563
Davenport, R. W., 620
Day, R. E., 1030
Dean, F. W., 605, 689

\section*{Decceur, P., 600}

DeMeritens, A., 386
Denton, James E., 730, \(761,781,932\)
Dinsmore, R. E., 963
Dix, Walter S., 208, 1066
Dodge Manufacturing Co., 344
Donald, J. T., 235
Donkin, B., Jr., 491, 783
Dudley, Chas. B., 327, 333
Dudley, P. H., 401, 622
Dudley, W. D., 167
Dulong, M., 458, 476
Dunbar, J. H., 796
Durand, Prof., 56
Dwelshauvers-Dery, 662
Egleston, Thomas, 235, 641
Emery, Chas. E., 603, 613, 820
Engelhardt, F. E., 463
Ellis and Howland, \(57 \%\)
English, Thos., 753
Ericsson, John, 286
Eytelwein, 564
Fairbairn, Sir Wm., 240, 264, 308, 354
Fairley, W., 531, 533
Falkenau, A., 509
Fanning, J. T., 564, 5r9
Favre and Silbermann, 621
Felton, C. E., 646
Fernow, B. E., 640
Field, C. J., 30, 937
Fitts, James H., 844
Flather, J. J., 961, 964
Flynn, P. J., 463, 559
Foley, Nelson, 700
Forbes, Prof., 1033
Forney, M. N., 855
Forsyth, Wm., 630
Foster, R. J., 651
Francis, J. B., 586, 739, 867
Frazer, Persifor, 624
Freeman, J. R., 581, 584
Frith, A. J., 874
Fulton, John, 637
Ganguillet \& Kutter, 565
Gantt, H. L., 406
Garrison, F. L., 326, 331, 409
Garvin Machine Co., 955
Gause, F. T., 501
Gay, Paulin, 966
Gill, J. P., 65 \({ }^{7}\)
Gilmore, E. P., 241
Glaisher, 483
Glasgow, A. G., 654
Goodman, John, 934
Gordon, F. W., 689, 740
Gordon, 247
Goss, W. F. M., 863
Gossler, P. G., 1051
Graff, Frederick, 385
Graham, W., 950
Grant, George B., 898
Grant, J. J., 960
Grashof, Dr., 284
Gray, J. McFarlane, 661
Gray, J. M., 958
Greene, D. M., 567

Greig and Eyth, 363
Grosseteste, W., 715
Gruner, L., 623
Hadfield, R. A., 391, 409
Halpin, Druitt, 789, 854
Halsey, Fred'k A., 490, 817
Harkuess, Wm., 900
Harrison, W. H., 939
Hart, F. R., 1047
Hartig, J., 961
Hartman, John MI., 364
Hartnell, Wilson, 348, 818, 838
Hasson, W. F. C., 1047
Hawksley, T., 485, 513, 564
Hazen, H. Allen, 494
Henderson, G. R., 347, 851
Henthorn, J. T., 965
Hering, Carl, 1045
Herschel, Clemens, 583
Hewitt, G. C., 630
Hewitt, Wm., 917
Hildenbrand, Wm., 913
Hill, Jobn W., 17
Hiscox, G. D., 968
Hoadley, John C., 451, 688
Hobart, J. J., 962
Hodgkinson, 246
Holley, Alexander L., 377
Honey, F. R., 47, 52
Hoopes \& Townsend, 210
Houston, Edwin J., 1061
Houston \& Kennelly, 1058
Howard, James E., 242, 382, 385
Howden, James, 714
Howe, Henry M., 402, 40\%, 451, 518
Howe, Malverd A., 170, 312
Howland, A. H., 292
Hudson, John G., 465
Hughes, D. E., 396
Hughes, H. W., 909
Hughes, Thos. E., 917
Humphreys, Alex. C., 652
Hunsicker, Millard, 397
Hunt, Alfred E., 235, 317, 392, 553
Hunt, Chas. WT., 340, 922
Huston, Charles, 383
Hutton, Dr., 64
Huyghens, 58
Ingersoll-Sergeant Drill Co., 503
Isherwood, Benj. F., 472
Jacobus, D. S., 511, 689, 726, 780
Johnson, J. B., 309, 314
Johnson, W. B., 475
Johnsou, W. K., 290
Jones, Horace K., 387
Jones \& Lamson Machine Co., 954
Jones \& Laughlins, 867, 885
Kapp, Gisbert, 1033
Keep, W. J., 365, 951
Kennedy, A. B. W., 355, 525, 764
Kernot, Prof. 494
Kerr, Walter C., 781
Kiersted, W., 292
Kimball, J. P., 499, 632, 637
Kinealy, J. H., 537

Kirk, A. C., 705
Kirk, Dr., 1004
Kirkaldy, David, 296
Kopp, H. G. C., 472
Kuichling, E., 578
Kutter, 559
Landreth, O. H., 712
Langley, J. W., 409, 410, 412
Lanza, Gaetano, 310, 369, 864, 977
La Rue, Benj. F., 248
Leavitt, E. D., 788
Le Chatelier, M., 452
Le Conte, J., 565
Ledoux, M., 981
Leggett, T. H., 1049
Leonard, H. Ward, 1026
Leonard, S. H., 686
Lewis, Fred. H., 186, 189, 397
Lewis, I. N., 498
Lewis, Wilfred, 352, 362, 3i88, 899
Linde, G., 989
Lindenthal, Gustav, 385
Lloyd's Register, 264, 266, 700
Loss, H. V., 306
Love, E. G., 656
Lovett, T. D., 256
Lyne, Lewis F., 718
McBride, James, 974
MacCord, C. W., 898
Macdonald, W. R., 956
Macgovern, E. E., 545
Mackay, W. M., 542, 544
Mahler, M., 633
Main, Chas. T., 590, 780, 790
Mannesmann, L., 332
Manning, Chas. H., 675, 823
Marks, Wm. D., ז93, 811
Master Car Builders' Assoc., 376
Mattes, W. F., 399
Matthiessen, 1029
Mayer, Alfred M., 468
Mehrtens, G. G., 395, 405
Meier, E. D., 688
Meissner, C. A., 370
Melville, Geo. W., 674
Mendenhall, T. C., 23
Merriman, Mansfield, 241, 260, 282
Metcaif, William, 240, 412
Meyer, J. G. A., 795, 856
Meystre, F. J.. 472
Miller, Metcalf \& Parkin, 412
Miller, T. Spencer, 344, 927
Mitchell, A. E., 855 , 856
Molesworth, Sir G. L., 562, 658
Molyneux and Wood, 736
Moore, Gideon E., 653
Morin, 435, 930, 933
Morison, Geo. S., 381, 393
Morrell, T. T., 407
Morris, Tasker \& Co., 195, 196
Mumford, E. R., 1006
Murgue, Daniel, 521
Nagle, A. F., 292, 606, 878
Napier, 47.t, 669
Nason MIfg. Co., 4•8, 542
National Pipe Bending Co,, 198

Nau, J. B., 367, 409
Newberry, J. S., 624
Newcomb, Simon, 432
New Jersey Steel \& Iron Co., 253, 310
Newton, Sir Isaac, 475
Nichol, B. C., 473
Nichols, 285
Norris, R. Van A., 521
Norwalk Iron Works Co., 488, 504
Nystrom, John W., 265
Ordway, Prof., 469
Paret, T. Dunkin, \(96^{6} \gamma\)
Parker, W., 354
Parsons, H. de B., 361
Passburg, Emil, 466
Pattinson, John, 629
Peclet, M., 471, 478, 731
Pelton Water Wheel Co., 191, 574, 585
Pence, W. D., 294
Pencoyd Iron Works, 179, 232, 868
Pennell, Arthur, 555
Pennsylvania R. R. Co., 307, 375, 399
Philadelphia Engineering Works, 526
Philbrick, P. H., 446
Phillips, W. B., 629
Phœnix Bridge Co., 262
Phœnix Iron Co., 181, 257
Pierce, C. S., 424
Pierce, H. M., 641
Pittsburg Testing Laboratory, 243
Platt, John, 617
Pocock, F. A., 505
Porter, Chas. T., 662, 787, 820
Potter, E. C., 646
Pottsville Iron \& Steel Co., 250
Pouillet, 455
Pourcel, Alexandre, 404
Poupardin, M., 687
Powell, A. M., 975
Pratt \& Whitney Co., 892, 972
Price, C. S., 638
Prony, 564
Pryibil, P., 977
Quereau, C. H., 85S, 862
Ramsey, Erskine, 638
Rand Drill Co., 490, 505
Randolph \& Clowes, 198
Rankine, W. J. M., various
Ransome, Ernest L., 241
Raymond, R. W., 631, 650
Reese, Jacob, 966
Regnault, M., various
Reichhelm, E. P., 651
Rennie, John, 928
Reuleaux, various
Richards, Frank, 488, 491, 500
Richards, John. 965, 976
Richards, Windsor, 404
Riedler, Prof., 507
Rites, F. M., 783, 818
Roberts-Austen, Prof., 451
Robinson, H., 1051
Robinson, S. W., 583
Rockwood, G. J., 781
John A. Roebling's Sons' Co., 214, 921

\section*{1082}

Roelker, C. R., 265
Roney, W. R., 711
Roots, P. H. \& F. M., 526
Rose, Joshua, 414, 869, 970
Rothwell, R. P., 637
Rowland, Prof., 456
Royce, Fred. P., 1053
Rudiger, E. A., 671
Ruggles, W. B., Jr., 361
Russell, S. Bent, 567
Rust and Coolidge, 290
Sadler, S. P., 639
Saint Venant, 282
Salom, P. G., 406, 1056
Sandberg, C. P., 384
Saunders, J. L., 544
Saunders, W. L., 505
Scheffler, F. A., 681
Schröter, Prof., 788
Schutte, L., \& Co., 527
Seaton, various
Sellers, Coleman, 890, 953, 975
Sellers, Wm., 204
Sharpless, S. P., 311, 639
Shelton, F. H., 653
Shock, W. H., 307
Simpson, 56
Sinclair, Angus, 863
Sloane, T. O'Connor, 1027
Smeaton, Wm., 493
Smith, Chas. A., 537, 874
Smith, C. Shaler, 256,865
Smith, Hamilton, Jr., 556
Smith, Jesse M., 1050
Smith, J. Bucknall, 225, 303
Smith, Oberlin, 865, 973
Smith, R. H., 962
Smith, Scott A., 874
Snell, Henry I., 514
Stahl, Albert W., 599
Stanwood, J. B,, 802, 809, 813, 818
Stead, J. E., 409
Stearns, Albert, 465
Stein and Schwarz, 410
Stephens, B. F., 292
Stillman, Thos. B., 944
Stockalper, E., 493
Stromeyer, C. E., 396
Struthers, Joseph, 451
Sturtevant, B. F., Co., 487, 578
Stut, J. C. H., 844
Styffe, Knut, 383
Suplee, H. H., 769, 772
Suter, Geo. A., 524
Sweet, John E., 826
Tabor, Harris, 751
Tatham \& Bros., 201
Taylor, Fred. W., 880
Taylor, W. J., 646
Theiss, Emil, 818
Thomas, J. W., 369
Thompson, Silvanus P., 1064, 1066
Thomson, Elihu, 1052
Thomson, Sir Wm., 461, 1039
Thurston, R. H., various
Tilghman, B. F., 966
Tompkins, C. R., 336

Torrance, H. C., 401
Torrey, Joseph, 582, 820
Tower, Beauchamp, 931,934
Towne, Henry R., 876, 907, 911
Townsend, David, 973
Trautwine, J. C., 59, 118, 311, 482
Trautwine, J. C., Jr., 255
Trenton Iron Co., 216, 223, 230, 915
Tribe, James, 765
Trotz, E , 453
Trowbridge, John, 467
Trowbridge, W. P., 478, 513, 733
Tuit, J. E., 616
Tweddell, R. H., 619
Tyler, A. H., 940
Uchatius, Gen'l, 321
Unwin, W. Cawthorne, various
Urquhart, Thos., 645
U. S. Testing Board, 308

Vacuum Oil Co., 943
Vair, G. O., 950
Violette, M., 640, 642
Vladomiroff, L., 316
Wade, Major, 321, 374
Wailes, J. W., 404
Walker Mfg. Co., 905
Wallis, Philip, 858
Warren Foundry \& Mach. Co., 189
Weaver, W. D., 1043
Webber, Samuel, 591, 963
Webber, W. O., 608
Webster, W. R., 389
Weidemann \& Franz, 469
Weightman, W. H., 762
Weisbach, Dr. Julius, various
Wellington, A. M., 290, 9:8, 935
West, Chas. D., 916
West, Thomas D., 328
Westinghouse \& Galton, 928
Westinghouse El. \& Mfg. Co., 1043
Weston, Edward, 1029
Whitham, Jay M., 4 ri, r69, r92, 840
Whitney, A. J., 389
Willett, J. R., 538, 540
Williamson, Prof., 58
Wilson, Robert, 284
Wheeler, H. A., 908
White, Chas. F., 714
White, Maunsel, 408
Wohler, 238, 240
Wolcott, F. P., 949
Wolff, Alfred R , 494, 517, 528, 588
Wood, De Volson, various.
Wood, H. A., 9
Wood, M. P., 386, 389
Woodbury, C. J. H., 537, 931
Wootten, J. E., 855
Wright, C. R. Alder, 331
Wright, A. W., 289
Yarrow, A. F., 710
Yarrow \& Co., 307
Yates, J. A.. 287
Zahner, Robert, 499
Zeuner, \(82 \%\)

\section*{INDEX.}

Abbreviations, 1
Abrasive processes, 965
Abscissas, 69
Absolute zero, 461
Absorption refrigerating-machines, 984
Accelerated motion, 427
Arceleration, 423
work of, 430
Accumulators, electric, 1053
Adiabatic compression of air (table), 502
curve, 742
expansion, 742
formulæ, 501
Air, 481-527
and vapor, weights of, 484
compressed, 488, 499
compressed, for railways, 510
compressors, 504
compressors, steam, 504
horse-power required to compress, 501
density and pressure, 481
lift-pump, 614
loss of pressure, 487, 49:3
manometer, 481
pressure through pipes, 489
properties of, 481
pumps, 839
pyrometer, 453
specific heat of, 484
thermometer, 454
Algebra, 33
Algebraical signs, 1
Alligation, 10
Alloys, 319-338
aluminum, 328
aluminum-silicon-iron, 330
antimony, 336
bismuth, 332
caution as to strength, 329
composition of, 325
copper-nickel, 326
copper-tin, 319
copper-tin-zinc, 322
copper-zinc, 321,325
copper-zinc iron, 326
for bearings, 333
fusible, 333
manganese-copper, 331
steels, 407
variation of strength, \(3: 3\)
white-metal, 336

Alternating currents, 1066
Altitude by barometer, 483
Aluminum, 167
alloys of, 319, 328
brass, 329
bronze, 328
hronze wire, 225
hardened, 330
properties and uses, 317
steel, 409
wire, 225
Ammonia ice-machines, 983
vapor, properties of, 99 :
Amperage permissible in maguets, 1066, 1068
Analyses of alloys (see Alloys)
of asbestos, 235
of coals (see Coals)
of fire-clay, 234
of magnesite, 235
of steel (see Steel)!
of water, 553
Analytical geometry, 69
Anemometer, 491
Angle, the economical, \(44 \pi\)
Angle-bars, sizes and weights, 1ヶ9
weight and strength, 2\%9a
Angles, plotting without protractor, \(5:\)
problems in, 3 r, 33
Angular velocity, 425
Animal power, 433
Annealing, effect on conductivity. 1029
iron, effect of, on magnetic capacity, 396
non-oxidizing process of, 387
of steel, 394, 413
Annuities, 15-1\%
Annular gearing, 898
Anthracite, analyses of, 624
gas, 647
space occupied b5, 625
value of sizes of. 63:
Anti-friction metals, \(93 \%\)
Antimony, \(16 \%\)
alloys, 336
Apothecaries' measure and weight, 18, 19
Arc lamps, lighting power of, 105:
Arches, tie-rods for, 281
Area of circles, 103, 108
of irregular figures, 55, 56
Arithmetic, \({ }^{2}\)
Arithmetical progression, 11
Armature circuit, E. M. F. of, 1061

Asbestos, 235
Asphaltum coating for iron, 387
Asymptotes of hyperbola, 71
Atmosphere, moisture in, 48:3 pressure of, 481
Atomic weight of elements, 16:3
Automatic cut-off engines, 153
Avoirdupois weight, 19
Axles, steel, specifications for, 401 strength of, 299

Babbitt metals, 336
Babcock \& Wilcox boilers, tests with different coals, 636
Bagasse as fuel, 643
Balance, to weigh on an incorrect, 19
Ball bearings, 940
Bands and belts, theory of, \(8 i 6\)
Bands for carrying grain, 911
Barometric readings, 482
Barrels (see Casks), 64
No. of, in tanks, 126
Bars, Lowmoor iron, 297
Basic Bessemer steel, strength, 390
Baumés hydrometer, 165
Bazin's experiments on weirs, 587
formula, flow of water. 563
Beams ánd channels, 2テ3-2ז9
Beams, coefficients for special forms, 270
flexure of, 267
of uniform strength, 271
safe load of pine, 1023, 1069
safe loads, 269
strength of, 268
tie-rods for, 281
wooden, 1023, 1069
Bearing-metal alloys, \(3: 33\)
Bearing-metals, anti-friction, 932
Bearings (see Journal-bearings)
ball, 940
cast-iron, 933
for high speeds, 941
oil-pressure in, 937
overheating of, 938
pivot, 939
pressure allowed, 935
roller, 940
Bed-plates of engines, 817
Belt cement, 887
conveyors, 911
dressings, 887
Belting, 8r6-887
formula for, \(8{ }^{7} 7\)
rubber, 887
rules for, 880
Belts, adhesion of, 886
care of, 886
centrifugal tension of, 876
endless, 886
evil of tight, 885
horse-power of, 878
lacing of, 883
open and crossed, 874,884
setting a twist, 883
size of, 885
width for given H.P., \(8 \pi 9\)
Bends and curves, effect of, on flow of water, 578

Bends, valves, etc., resistance to flow in, 488, \(6 \mathfrak{\imath} 2\)
Bessemer'steel, 391
Bessemerized cast iron, 375
Bevel-wheels, 898
Binomials, theorem, 33, 35
Birmingham gauge, 28
Bismuth, 167
alloys, 332
Bituminous coal (see Coals)
Blast-furnace boilers, 689
Blocks or pulleys, 438
streng th of, 906
Blowers, steel pressure, 950
Blowers and fans, 511-526
cepacity, 517
centrifugal, 518
comparative efficiency, 516
experiments with, 514
for cupolas, 519, 950
positive rotary, 526
steam-jet, 527
Blowing-engines, 526
Blue heat, effect on steel, 395
Board measure, 20
Boiler compounds, 717
explosions, 720
feed-pumps, 605, 726
furnaces, height of, 771
heads, 706
heads, strength of, 284-286
heads, wrought-iron, 285
scale, 552
ship, and tank plates, 399
tests, rules for, 690
tubes, 196
tubes, holding power of, 307
Boilers (see Steam-boilers), 6 \(\boldsymbol{\pi} 7-\boldsymbol{\sim} 41\)
for steam-heating, 538
locomotive, 855
Boiling-point of water, 550
Boiling-points, 455
resistance to, 463
Bolts and nuts, 209, 211
track, 210
weight of, 210, 211
Bolts, holding power of, 290
initial strain, 292
iron for, 206
strength of, 292
Brackets, cast-iron, strength of, 252
Brass alloys, 325
composition of rolled, 203
sheet and bar, 203
tubing, 198-200
wire and plates, 202
Brick, fire, sizes of, 233, 234
strength of, 302, 312
Bricks, absorption of water by, 312
magnesia, 235
Brick work, weight of, 169
Bridge iron, durability, 385
members, working strain, 262
proportioning materials in, 381
trusses, 443
Brine. resistance to boiling, 463
specific gravity, etc., 464, 994
Bronze (see Alloys), 319-231
aluminum, 329

Bronze, ancient, 323
deoxidized, 327
manganese, 331
phosphor, 32\%
propeller-blade, 300
Tobin, \(32 \mathfrak{r}\)
variation of strength, 321
Building construction, laws of, 1019
materials, coefficient of friction, 929
materials, sizes and weights, 1\%0, 184
Buoyancy, 550
Burr truss, 443
Cables, chain, 308
electric, insulated, 1033
strength of, 338
suspension-bridge, 230
Cable-ways, suspension, 915
Cadmium, 167
Calculus, differential, 72
Caloric engines, 851
Calorimeters, steam, 728
Calorimetric tests of coal, 636
Cam, the, 438
Canals, speed of vessels on, 1008
Canvas, strength of, 302
Carbon, burned out of steel, 402
effect of, on strength of steel, 389
Car-axles, steel for, 401
Car-heating by steam, 538
Casks, 64
Castings, iron, analyses of, \(3 \pi 3\)
strength of, 297
shrinkage of, 951
steel, 405
weight of, from pattern, 952
Cast iron, 365-375
and steel mixtures, \(3 \% 5\)
bad, 375
chemical elements, 365
columns, strength of, 250
durability, 385
hollow columns, 250
malleable, 375
pipes, 188-190
solid columns, 250
specific gravity, 374
specifications, 374
strength of, 369, 374
tests, 369
Catenary, construction of, 51
the wire rope, 919
Cement, weight of, 170
for belts, 887
mortar, strength of, 313
Portland, 302
Centigrade and Fahrenheit table, 449
Centre of gravity, 418
of gyration, 420
of oscillation, 421
of percussion, 421
Centrifugal fans, 511
force, 423
force in fly-wheels, 820,822
tension of belts, \(8 \% 6\)
Centrifugal pumps, 606
efficiency of, 608
tests of, 609
ventilators, 521

Cera-perduta process, alloys for, 326
Chain-blocks, 907
Chain-cables, 308, 340
Chains. crane, 232
weight aud strength, 307, 339
Channel-beams, sizes and weight, 178, 180
Channel-irons, tests of, 297
Channels, steel, strength of, 277
Charcoal, 640
absorption, 641
composition, 642
making, results, 641
pig iron, 365, 374
weight of, 170
Chemical elements, 163
Chimneys, 731-741
brick, 737
for ventilation, 533
protection from lightning, 737
shafts, weak, 739
stability of, 738
size of, 734
steel, 740
sheet-iron, 741
table of sizes of, 735
Chords of circles, 57
Chrome steel, 409
Circle, equation of, 70
measures of̂, 57,58
Circles, problems, 39,40
tables of, 103, 108
Circular are, length of, 57, 58
ares, tables of, 114, 115
functions in calculus, 78
measure, 20
ring, 59
Circulating-pump. 889
Circumference of circles, 103, 108, 113
Cisterns, cylindrical, 121, 126
Clearance in steam-engines, 751, 79 :
Coals, analyses of, 624-631
calorimetric tests, 636
classification, 624
evaporative power of, 636
foreign, 631
heating value of, 634
navigation, Welsh, 632
Ohio, 62
7
Penusylvania, 624
relative value of, 633
Southern and Western, 628
Coal gas, illuminating, 651
hoisting, 343
products of distillation of, 639
washing, 638
weathering of, 633 ?
Coatings for iron, etc., 387
Coefficient of elasticity, 237, 314 of fineness, 1002
Coefficients for beams, 270
of friction, 928-932
of a propeller, 1011
of water-lines, 1002
of performance of vessels, 1008
Coiled pipes, 199
Coils, heating of, 1036
Coke, 637
manufacture, by-products, 639

Coking, experiments in, 637
Cold, effect of, on iron aud steel, 383
rolling, effect of, 393
Cold-drawing steel, 305
Cold-sawing iron, 966
Collapse, resistance of hollow cylinders to, 264
Columns, built, 256
cast-iron, strength of, 250
cast-iron, weight of. 185
eccentric loading, 254
Merriman's formulæ, 259
steel, 261
strength of, 246-260, 1019
stresses, 252
wrought-iron, 255, 260
wrought-iron, tests of, 305
Combined stresses, 282
Combination, 10
Combustion, heat of, 456, 621
gases of, 622
rate due to height of chimney, 733
theory of, 620
Composition of forces, 415
Compound engines, 761 - 768
engines, condensing, 788
engines, diameter of cylinder, 768
engines, economy of, 780
engines, efficiency of, 784
engines, non-condensing, 784
engines, receiver-space, 766
engine, two-vs. three-cylinder, 781
engines, work of steamin, \(\tau 6 \pi\)
engines, velocity of steam in, \(7 \%\)
interest, 14
locomotives, 862, 863
numbers, 5
units of weight and measure, 27
Compressed air, 488, 499
cranes, 912
drills driven by, 506
efficiency of, 508
engines, efficiency of, 506
formulæ, 501
for underground pumps, 511
mean effective pressure for, 502
motors, 507
practical results with, 505
shops operated by, 509
system in Paris, \(50 \%\)
tramway, 509
transmission, 488
utilization in motors, 507
Compressed steel, 410
Compression and expansion of air, 502
in steam-engines, 751
unit strains in structures, 380
Compression and torsion, stresses, 283
Compressive strength, 244
of iron bars, 304
Compressors, air, 503
Condenser, evaporative surface, 844 increase of power by, 846
Condensers, 839-846
ejector, 840
jet, 839
surface, 840
Condenser-tuhes, transmission of heat 1H, 8 TK

Condensing water, continuous use of, 844
Conduction of heat, 468
Conductivity, electrical, 1028
of steel, influence of composition on, 403
Conductors, electrical, 1029
Cone, measures of, 61
pulleys, 874
Conic sections, 71
Conoid, parabolic, 63
Connecting-rods, 799
tapered, 801
Conservation of energy, 432
Construction of buildings, 1019
Convection of heat, 471
Conveyors, belt, 911
Cooling of air for ventilation, 531
Co-ordinate axes, 69
Copper, 167
at high temperatures, strength of, 309
balls, hollow, 289
nickel alloys, 326
round bolt, 203
strength of, 300
tin alloys, 319
telegraph wires, 221
tubing, 200
wire and plates, 202
wire, tables of, 218-220
wire, resistance of hot and cold, 1034, 1035
wire, cost of, for long-distance transmission, 1044
zinc alloys, 321
Cordage, 341, 344, 906
Cork, procerties of, 316
Corrosion of iron, 385
of steam-boilers, 716, 719
Corrosive agents in atmosphere, 386
Corrugated iron, 181
furnaces, 266, 702, 709
Cosecant of an angle, 65
Cosine of an angle, 65
Cosines, tables of, 159
Cost of coal for steam-power, 789
of steam-power, 790
Cotangent of an angle, 65
Counterbalancing engines, 788
locomotives, 864
of winding-engines, 909
Couples, 418
Coverings for steam-pipes, 4r0, \(4 \pi 1\)
Cox's formula for loss of head, \(5 \% 5\)
Crane, chain, 232
electric, 912
simple, a, 440, 441
Cranes, classification of, 911
compressed-air, 912
stress in, 440
Crank angles, 830
arms, 805, 806
pins, 801-804
pins, steel for, 400
shaft, torsion and flexure, 819
shafts, 813
Cross-head guides, 798
pins, 804

Crucible steel, 410
Crushing strength of masonry materials, 312
Cubature of volumes of revolution, i io
Cube root, 8
Cubes and cube roots, table of, 86
Cubic measure, 18
Cupola, capacity of, 950
charging of, 945
Cupolas, blast-pipes for, 519
blowers for, 519
practice, 946
Current motors, 589
Currents, electric, 1030
Cutting stone with wire, 966
Cycloid, construction of, 49 differential equation of, i9 measure of, 60
Cycloidal teeth of gears, 892
Cylinder condensation, 752,753
Cylinders and pipes, contents of, \(1: 0\), 121
engine, dimensions of, 792
hollow, resistance of, 264
hollow, strength of, 287, 288
measures of, 61
under tension, 289
Cylindrical ring, 62
Dangerous steam-boilers, 720
Dam, stability of a, 417
D'Arcy's formula, flow of water, 563
Decimal equivalents of fractions, 3,4
Decimal gauge, 32
Decimals, 3
squares and cubes of, 101
Deck-beams, sizes and weights, 177 strength of, 278
Delta metal, 225, 326
Denominate numbers, 5
Deoxidized bronze, 327
Derricks, stresses in, 441
Diametral pitch, 888
Differential calculus, \(7_{2}\)
forms, integrals of, 78,79
gearing, 898
pulley, 439
screw, 439
screw, efficiency of, \(9 \% 4\)
windlass, 439
Discount and interest, 13
Disk fans, air removed by, 525
efficiency of, \(5: 5\)
experiments with, 524
Displacement of vessels, 1001, 1008
Draught of chimneys, 731
Drawing-presses, blanks for, \(9 \pi 3\)
Drilling holes, speed of, 956
machines, electric, 956
Drills, speed of twist, 957
tap, 970
Drop-press, pressure of, 973
Drums for hoisting-ropes, 917
Drying and evaporation, 462
in vacuum, 466
Dry measure, 18
Ductility of metals, 169
Dust explosions, 642
fuel, 642

Durability of aron, 385
Durand's rule for areas, 56
Duty trials of pumping-engines, 609
Dynamo and engine, efficiency of, 1047
electric machines, 1060
Dynamos, designing of, 1063
efficiency of, 1064
Dynamometers, 978
transmission, 980
Earth filling, weight of, 170
Earths, weight of, 170
Eccentric loading of columns, 254
Eccentrics, steam-engine, 816
Economizers, fuel, 715
Edison or circular mil wire gauge, 29, 30
Efficiency of a machine, 432
of boilers, 683, 689
of electric transmission, \(104 \%\)
of pumps, 603. 608
of steam-engines, 749, 775
Effort, defiuition of, 429
Ejector condensers, 840
Elastic limit, 236
resilience, 2 \%0
resistance to torsion, 282
Elasticity, modulus of, 237, 314
Electric a ccumulators, 1053
conductivity of steel, 403
generator, efficiency of, 1047
heating, 546, 1052
lighting, 1049
motor, 1066,1067
pumping-plant, 1048
railways, 1048
transmission, 1038
transmission, economy of, 1039
welding, 1051
Electrical engineering, 1024
horse-powers, table of, 1041
resistance, 1028
standards of measuremen \({ }^{\dagger}, 1024\)
units, 1024
Electricity, analogy with flow of water, 1027
heating by, 546, 1052
Electro-chemical equivalents, 1056
Electro-magnetic measurements, 1057
Electro-magnets, 1057
polarity of, 1059
Electrolysis. 1056
Elements, chemical, 163
of machines, 435
Ellipse, construction of, 45
equation of, \(\% 0\)
measures of, 59
Ellipsoid, 63
Elongation, measure of, 243
Emery, grades of, 968
wheels, 967-969
wheels, speed and selection, 967
wheels, strains in, 969
Endless screw, 440
Energy, conservation of, 432
of recoil of guns, 431
or stored work, 429
sources of, 482

Engine frames or bed-plates, 817
Engines (see Steam-engines)
blowing, 526
gas, 847
gasoline, 850
hoisting, 908
hot-air, 851
marine, sizes of steam-pipes, \(6 \boldsymbol{r} 4\)
naphtha, 851
petroleum, 850
steam, 742-847
triple-expansion steam, 769
winding, 909
Epicycloid, 50
Equalization of pipes, 491
Equation of payments, 14
Equations, algebraic, 34
Equilibrium of forces, 418
Equivalent orifice, 533
trosion by flow of water, 565
Evaporating by exhaust-steam, 465
Evaporation and drying, 46?
by the multiple system, 405 Lit 6
from open channels, 463
from reservoirs, 463
latent keat of, 461
salt-making, 463
table of factors of, 695
total heat of, 46:
Evaporators, fresh-water, 1016
Weir's, 847
Evolution, 7
Exhaust-steam for heating, 780
Exhausters, steam-jet, 527
Expansion by heat, 459
of iron and steel, 385
of steam, \({ }^{2} 42\)
of steam, real ratios of, \(\% 50\)
of wood, 311
Explosive energy of steam-boilers, 720
Exponents, theory of, 36
Exponential functions, in calculus, 78
External conduction, rate of, \(4 \% 0\)
Eye-bars, tests of, 304, 393
Factor of safety, 314
in steam-boilers, roo
Factors of evaporation, tables, 695
Fahrenheit and Centigrade table, 450
Failures of steel, 403
Falling bodies, 423-426
Fans and blowers, capacity, 517
centrifugal, 518
efficiency, 520
efficiency of ventilation by, 533
pressure, 513
properties of, 512
Feed-pumps, 843
Feed-water, cold, strains caused by, 727
heater, Weir's, 1016
heaters, 727, 1073
purifying, 554
Fibre-graphite, 945
Fifth roots and fifth powers, 102
Fink roof-truss, 446
Fire, temperature of, 622
Fire-brick, sizes of, 233, 234
Fire-clay, analysis of, 234

Fire-engines, capacities oi, 580
Fireless locomotive, 866
Fire-proof buildings, 1020
Fire-streams, 5 59
Flagging, transverse strength of, 313
Flanges, pipe, 192. 193
Flat plates in steam-boilers, \({ }^{7} \mathrm{C} 1,709\)
plates, strength of, 283
Flexure of beams, \(26 \pi\)
Flooring material, weight of, 281
Floors, strength of, 1019, 10\%1
Flow of air in pipes. 485
of air through orifices, 484
of compressed air, 489, 493
of gas in pipes, 650
of metals, 973
of steam in pipes, 669
of water from orifices, 555, 584
of water in house service-pipes, \(5 i 8\)
of water over weirs, 586
Flowing water, horse-power of, 589
measurement, 582
Flues, collapse of, 265
corrugated, British rules, 266, 702
corrugated, U. S. rules, 109
(see also Tubes and Boilers)
Fly-wheels, 81i-824
arms of, 820
centrifugal force in, 820
diameter of, 821
strains in rims, 822
thickness of rims, 823
wire-wound, 824
wooden, 823
Flynn's formula, flow of water, 562
Foot, decimals of, in fractions of inch, 112
pound, unit of work, 428
Force of a blow, 430
centrifugal, 423
expression of, 429
moment of, 416
of acceleration, 427
representation of, 415
unit of, 415
Forced draught in marine practice. 1015
Forces, compesition of, 415
equilibrium of, 418
parallel, 417
parallelogram of, 416
parallelopipedon of, 416
polygon of, 416
resolution of, 415
Forcing and shrinking fits, 973
Forging, broken anchor, 297
hydraulic, 618, 620
iron, 297
locomotive, 297
tool-steel, 413
Foundry, the, 946-956
iron, analysis, 371
iron, chemistry of, 370
irons, grades, 372
practice, 950
Fractions, 2
Francis's formula for weirs, 586
Freezing of water, 550
French measures and weights, 21-26

Friction and lubrication, 938-945
brakes, 980
car-journals, 937
Morin's law of, 933
of air in passages, 531
of steam-engines, 941
pivot-bearings, 939
rollers, 940
work of, 938
Frictional heads, flow of water, \(5 \%\)
Fuel, 6:0-651
analysis of gases, 622
bagasse as, 643
economizers, 715
gas, 646
miscellaneous solid, \(6 \pm 2\)
peat or turf, 643
pressed, 646
rise of temperature, 623
sawdust, 643
straw as, 643
theory of combustion of, 620
temperature of fire, \(6 \% \%\)
weight of, 170
wet tan bark, 643
F'uels, classification of, 623, 624
Furnace, downward-draught, 635, 712
kinds of, for different coals, 635
formulæ, 702
Furnaces, corrugated, 266̂, 702, 709
for boilers, 711
gas-fuel, 651
use of steam in, 650
Fusible alloys, 333
plugs for boilers, 710
Fusibility of metals, 169
Fusing-disk, Reese's, 966
Fusing of wires by electric currents, 1037
temperatures, 455
\(g\), value of, 424
Gallons and cubic feet, table, 122
Galvanic action, corrosion by, 386
Galvanized wire rope, \(2: 28\)
Gas, a mmnnia, 992, 993
calorific equivalents, 654
engines, 847
engines, efficiency of, 848
engine test, 849
fired steam boilers, 714
flow of, in pipes, 65 f
for small furnaces, 651
fuel, 646, \(10 \tilde{\imath}^{2} 2\)
illuminating, 651
illuminating, fuel value of, 656
natural, 649
pipe. sizes and weights, 188,194
producers, 649, 650
sulphur-dioxide, 992
water, 648-652
Gases, absorption of, 480
Avogadro's law, 479
expansion of, by heat, 459
flow of, 480
heat of combustion of, 456
law of Charles, 479
Mariotte's law, 479
properties, 816

Gases, specific heat of, 458
weight and specific gravity of, 166
waste, use under boilers, 689, 690
G asoline-engines, 850
Gauges, wire and sheet-metal, 28-32
Gear, reversiug, 816
teeth, strength of, 900-905
wheels, properties of, 891
Gearing, annular and differential, 898
comparison of formulas, \(90 \%, 903\)
cycloidal teeth, 892
dimensions of, 890
efficiency of, 899
frictional, 905
involute teeth, 894
of lathes, 955
speed of, 905
spiral, 899
strength of, 900
toothed-wheel, 439, 887-906
twisted teeth, 897
width of teeth, 891
worm, \(897,10 \hat{8} 8\)
Geometrical problems, 37
progression, 11
propositions, 53
German silver, 326, 332
silver, strength of, 300
Girder, iron plate, \(29 \%\)
Girders for boilers, 703
strains on, 1020
Glass, skylight, 184
strength of, 308
Gold, 167
Gordon's formula, 247
Governors, 836
Grain, weight of, 170
Granite, strength of, 312
Grate- and heating-surface of a boiler, 678
Graphite as a lubricant, 945 paint, 389
Gravity, acceleration due to, 424
centre of, 418
specific, 163
Greatest common measure, 2
Greenhouse-heating by hot water, 542 by steam, 541
Green's fuel-economizers, 712
Grindstones, 968 , 970
safe speeds. 968
strains in, 968
varieties, 970
Gyration, centre and radius of, 247, 249, 420, 421

Haulage, wire-rope, 912
Hawley down-draught furnace, 712
Hawsers, steel, 223, 230
Heads of boilers, 706
unbraced, 285
wrought-iron, 285
Heat, 448-478
boiling-points, 455
conduction of, 468
convection of, 471
equivalent, mechanical, 456
expansion by, 459
generated by electric currents, 1032

Heat, latent, 461
latent, of evaporation, 462
latent, of fusion, 461
melting-points, 455
of combustion, 456
radiation of, 467
specific, 457
storing of, 789
transmission, in condenser tubes, 473
transmitting power of substances, 478
unit, 455, 660
Heaters, feed-water, 727
Heating a building to \({ }^{5} 0^{\circ} \mathrm{F}\)., 545
and ventilation, 528-516
blower system of, 545, 1071
by electricity, 546,1052
by exhaust-steam, 780
by hot water, 542
greenhouse by steam, 541
of electric conductors, 1033
of large buildings, 534
surface of boilers, \(6 ; 8\)
Heine boiler, test with different coals, 688
Helical springs, capacity, 349
for locomotives, 353
steel, -347
Helix, 60
Hobson's hot-blast pyrometer, 453
Hodgkinson's formula, 246
Hoisting, 906-916
coal, 343
engines, power of, 908
pneumatic, 909
rope, 340
rope, stress, 915
weight and strength, 906
Hollow cylinders, collapse of, 264
Hooks, hoisting, 907
Horse-gin, 434
work of a, 434
Horse-power, 429
constants, 757, 758
electrical, 1041
of flowing water, 589
of steam-boilers, 677,679
of steam-engines, 755
power-hours, 429
Hose, friction losses in, 580
Hot-air engines, 851
Hot boxes, experiments on, 9.38
Hot water, diameter of pipes, 543
rules for heating by, 044
velocity of flow, 542
Howe truss, 445
Humidity in atmosphere, 483
Hydraulic apparatus, 616
engine, 619
formulæ, 557
machinery, friction of, 616
pipe, 191
ram, efficiency of, 614
ram, water delivered by, 615
riveting-machines, 618
Hydraulics, flow of water, 555-588
forging, 618
grade-line, \(5 \%\)

Hydraulics, power, 617
pressure transmission, 616
ram, 614
speed of hoisting by, 617
thickness of cylinders, 617
Hydrometer, 165
Hygrometer, dry-and wet-bulb, 483
Hyperbola, equation of, 71
construction of, 49
Hyperbolic, logarithms 156
curve in indicator-diagrams, 759
Hypocycloid, 50
I-beams, sizes and weights, 177
properties of, 272
spacing of, 276
Ice and snow, 550
Ice-making machines, 981-1001
manufacture, 999
Illuminating gas, 651
fuel value of, 759
Impact of bodies, 431
Incandescent lamps, 1049
Inches and fractions, decimals of \(\delta\) foot, 112
Inclined plane, 437
planes, hauling on, 913, 915
planes, motion on, 428
Incrustation and scale, 561,716
India rubber, tests of, 316
Indicated horse-power, 755
Indicator diagrams, 754, 759
errors. 756
pendulum rigs, 759
tests of locomotives, 863
water-consumption, 760
Indirect-heating surface, 537
Inertia, 415
moment of, 247, 419
of railroad trains, 853
Injectors, 725
Inspection of steam-boilers, 720
Insulators, electrical, 1029
Integral calculus, 79
Integrals, integration, 73, 74
of differential forms, \(\tau 8,79\)
Intensifier, hydraulic, 619
Interest and discount, 13 compound, 14
Interpolation, formula for, 1070
Involute gear-teeth, 894 construction of, 52
Involution, 6
Iridium, 167
Iron, 167
bars, sizes of, 170
bars, strength of, 297
bars, weight of, 171
bridges, 385
corrosion of, 385
durability of, 385
forgings, locomotive, 297
manganese plating, 387
preservative coatings for, 389
shearing strength of, 306
stay-bolt, 3 r9
Iron and steel boiler-plate, 383
classification of, 364
cold-rolling of, 393

Irou and steel, expansion of, 385
inoxidizable surfaces, 386
rustless coatings, 386
sheets, weight of, 32, 174
specifications, Pennsylvania Railroad, 378
strength of, 296-300
strength at high temperature, \(38^{\circ}\) ?
strength at low temperature, 383
Irregular figure, area of, 55, 56
solid, volume of, 64
Irrigation canals, 564
Isothermal expansion, 742
Japanese alloys, 326
Jet condensers, 839
propulsion of vessels, 1014
Jets, vertical water, 579
Joints, riveted, 354-363
double-riveted, 358
efficiency of, 359
Joule's equivalent, 456
Journal-bearings, 810-815
bearings, cast-iron, 933
friction, 930-939
Journals, engine, 810-815
Kerosene for scale in boilers, 718
Keys and set-screws, 977
for mill-gearing, 975
holding power of, 977
Kinetic energy, 429
King-post truss, 442
Kirkaldy's tests of materials, 296
Knot, or nautical mile, 17
Knots in ropes, 344
Kutter's formula, 559
Lacing of belts, 883
Ladles, foundry, sizes of, 953
Latent heat, 461
heat of evaporation, 461
heat of fusion, 459-461
Lathes, change gears, 956
cutting speeds, 954
H. P. required, 961
rule for setting taper in. 956
Lap and lead of a valve, 8:9-833
Lead, 167 pipe, 200, 201
Leakage of steam in engines, 761
Least common multiple, 2
Leather, streugth of, 302
Le Chatelier's pyrometer, 451
Levelling by barometer, 48\%
Lever, the bent, 436
Levers, 435
Lignites, Western, 631
Liine, weight of, 170
Limestone, strength of, 313
Limit gauges for' screw-threads, 205
Lines of force, 1058
Link motion, 834, 1077
Links, engine, 816
Lintels, bearings and supports, 1020
Liquation of alloys, \(3 \% 3\)
Liquid measure, 18
Liquids, expansion of, 461 weight and specific gravity, 164

Locomotive, fireless, 866
Locomotives, 851-866, 1075
American types, 858
compounding, advantages, 863
counterbalancing, 864
dimensions of, 859-862
fire-brick arches, 856
forgings, 297
free-steaming, 855
grate-surface, boiler,855
link motion, 1077
performance, 1076
petroleum-burning, 865
size of cylinders, 854
size of boilers, 855
tests of, 863
tractive power, 856
waste of fuel, 863
water-consumption, 862
Wootten's, 855
Logarithmic curve, 71
sines, etc., 162
Logarithms, hyperbolic, 156
differential of, 77
of numbers, \(127-155\)
Logs, lumber, etc., weight of, 232
Luop, the steam, 676
Loss of head in pipes, 573
Lowmoor iron bars, 297
Lubricating-oils, examination of, 944
Lubricants, amount of oil to run an engine, 943
relative value, 942
solid, 945
Lumber, weight of, 232
Machines, elements of, 435
Machine-shop, the, 953-978
shop practice, 953
shops, power used in, 965
screws, 208, 209
tools, power required for, 960-965
tools, power used, 963
tools, proportioning sizes of, 9\%5
Maclaurin's theorem, 76
Magnesia bricks, 235
Magnesium, 168
Magnetic balance, 396
capacity of iron, effect of annealing on, 396
circuit, 1059
circuit, units of, 1057
field, strength of, 1062
Magnets, electro-, 1057
Malleability of metals, 169
Malleable castings, rules for, 376
cast iron, 375
Mandrels, sizes of, 972
Manganese, 168
bronze, 331
influence of, on cast iron, 368
influence of, on steel, 389
plating of iron, 387
steel, 407
Mannesmann tubes, 296
Manometer, air, 481
Man-power, 433
Manure as fuel, 643
Man-wheel, 434

Marble, strength of, 302
Marine engineering, 1001-1018
engine, horse-power of, 766
engine practice, 1015
engine, feed-pump for, 843
engine, thickness of cylinder, 792
engine, three-stage expansion, 101710!9
engine, triple-expansion, 815
engine, ratio of cylinders, \(766,7 \% 3\)
Marriotte's law, 479, 742
Masonry materials, strengih of, 312
materials, weight and sp. gr., 166
Mass, 427, 429
Materials. 163-235
strength of, 236-412
Maxima and minima, 66
without the calculus, \(10 \% 0\)
Measures and weights, 17
of work, power, and duty, 27
Measurement of air, 491
of elongation, 243
Mechanical equivalent of heat, 456
powers (see Elements of Machines), 435
stokers, 711
Mechanics, 415-447
elements of, 435
Mekarski compressed-air tramway, 509
Melting-points of substances, 455
Memphis bridge, strains on steel, 381
Mensuration, 54
Mercurial thermometer, 448
Mercury, 168
bath pivot, 940
Merriman's formula for columns, 260
Mesuré and Nouel's pyrometer, 453
Metaline, 945
Metals, flow of, \(9 \pi 3\)
properties of, 167
specific gravity of, 164
table for calculating weight of, 169
Metric conversion tables, 22-26
measures and weights, 21, 22
Meters, water, \(5 \% 9\)
Mil, circular, 18, 29
Milling cutters, 957
cutters for gears, 892
machines, results with, 959
pitch of teeth, 957
speed, 958
Mill-power, 589
Miner's inch, 18
inch measurement, 585
Mine-ventilating fans, 521
ventilation, 531
Modulus of elasticity, 237, 314
Moisture in steam, \(\% 28\)
Molesworth's formula, flow of water, 562
Moment of force, 416
of inertia, 247, 419
statical, 417
Momentum, 428
Morin's laws of friction, 933
Mortar, strength of, 313
Motion, formulæ for, \(4: 27\)
Newton's laws of, 415
on inclined planes, 428

Motion, perpetual, 432
retarded, 424
Motor, electric, \(10 \pi 0\)
Motors, compressed-air, 507
Moulding-sand, 952
Moving strut, 436
Mules, power of, 435
Multiphase currents, 1070
Mushet steel, 409
Nails, 213, 215
screws, etc., holding power, 289-291
Naphtha-engines, 851
Napier's rule for flow of steam, 669
Natural gas, 649
Nautical measure, 17
Newton's laws of motion, 415
Nickel, 168
alloys, 326, 332
steel, 406
steel, tests of, 408
Nozzles, measurement of water by, 584
Nuts and bolts, 209, 211
Ohm, definition of, 1025
Ohm's law, 1030
Oil, fire-test, 944
lubricating, 944
needed for engines, 943
paraffine, 944
well, 945
weight per gallon, 944
Open-hearth steel, 391
Ores, weight of, 170
Oscillation, centre of, 421
Oxen, power of, 435
Ordinates, 69
\(\pi\), value of, \(5 \%\)
Packing rings, engines, 796
Paddle-wheels, 1013
Paint, qualities of, 387
Painting wood and iron structures, 388
Parabola, construction of, 48 equation of, 70
Parabolic conoid, 63
Parallel forces, 417
Parallelogram, 54 of forces, 416
Parentheses, 33
Partial payments, 15
Peat or turf, 643
Pelton water-wheel, 597
Pendulum, 422 conical, 423
Percussion, centre of, 422
Perforated plates, excess strength of, 359
strength of, 354
Permutation, 10
Perpetual motion, 432
Petroleum, 645
as fuel, 645, 646
buruing locomotive, 865
distiliates of, 645
engines, 850
Lima, 645
metallurgical fuel, 646

Petroleum products, specifications, 944
value of, 645
Phosphor-bronze, 327, 334
springs, 352
wire, 225
Phosphorus, influence of, on cast-iron, 367
iufluence of, on steel, 389
Piezometer, the, 582
Pig iron, anaiysis of, 371
chemistry of, 370
grading of, 365
influence of silicon, etc., on, 365
tests of, 369
Pillars, strength of, 216
Pipe fittings, cast-iron, 18 亿
flanges, 193
lead, 200, 201
riveted, 197
sheet-iron hydraulic, 191
spiral riveted, 197
Pipes, air-bound, 579
and cylinders, contents of, 120, 121
cast-iron, strength of, 251
cast-iron, thickness of. 188, 190
cast-iron, weight of, 185, 186
coiled, 199
effect of bends in, 488, \(578,6 \pi 2\)
flow of air in, 485
flow of gas in, \(65 \%\)
flow of steam in, 669
flow of water in, 557
loss of head in, 573
riveted, safe pressures in, 707
steam, for steam-heating, 540
steam, sizes for engines, 673
water, riveted, 295
water, wrought-iron and steel, 295
wrought-iron, 194
Piston-rods, 796-798
Piston packing-rings, 796 valves, 834
Pistons, steam-engine, 795
Pitch, diametral, 888
of gears, 887
of rivets, \(357-359\)
of screw propellers, 1012
Pitot tube gauge, 58.3
Pivot-bearings, 939
Plane surfaces, mensuration, 54
Plane, inclined (see Inclined Plane)
Planer, heavy work, 960
cutting speed of, 954
Plate girder, 297
Plate iron, weight of, \(1 \% 5\)
steel, classification, 399
Flates, brass and copper, 202 riveted steel, 299
single-riveted, \(35 \pi\)
square feet in, 123
strength of, for boilres, 705
Platinum, 168
wire, 225
Pneumatic hoisting, 909
postal transmission, 509
Polyedrons, 62
Polygon of forces, 416
Polygons, construction of, 42

Polygons, table of, 55
tables of angles of, 44
Population of the United States, 12
Portland cement, 302
Postal transmission, pneumatic, 509
Potential energy, 429
Powell's screw-thread, 9\%5
Power, animal, 433
of a fall of water, 588
of ocean waves, 599
rate of work, 429
stations, electric, 1050
Powers of numbers, 7, 33
Pratt truss, 443
Pressed fuel, 632
Presses, punches, etc., 972
Prism, measures of, 60
Prismoid, 61
rectangular, 61
Prismoidal formula, 62
Problems geometrical, 37-52
in circles, 39,40
in lines and angles, 37, 38
in polygons, 42
in triangles, 41
Producer-gas, 649
Progression, arithmetical and geometrical, 11
Prony brake, 979
Propeller, coefficients of, 1011
blade, 300
efficiency of, 1012
shafts, strength of, 299
Proportion, 5
Pulley, differential, 439
Pulleys, 873-875
arrangement of, 874
arms of, 820
convexity of, 874
or blocks, 438
size and speed of, 884, 891
Pulsometer, 612
Pumping-engine, tests of, 783
Pumping-engines, duty trials, \(60 ؟\)
leakage tests, 611
measurement of discharge, 584
triple-expansion, 782
Pumps, 601-614
air lift, 614
boiler-feed, 605, 726
capacity of, 601
centrifugal, 606, 609
circulating, 842
direct-acting, 603
duplex, 604
efficiency of, 603, 608
horse-power of, 601
jet, 614
piston-speed of, 605
sizes of, 603
speed of water through, 602
steam-cylinders of, 602
suction of, 602
vacuum, 612
valves of, 605, 606
Punched plates, strength of, 354
Punches and dies, 972
Punching and drilling steel, 395
steel, effect of, 394

Purifying feed-water, 554
Pyramid, 60
Pyrometers, 451-453
Pyrometry, 448-454
Quadratic equations, 35
Quadrature of a plane figure, 74 of surfaces of revolution, 75
Quadruple-expansion engines, 7 Ti
Quantitative measurement of heat, 455
Quarter-twist belts, 883
Queen-post truss, 442
Radiating and reflective power, 468 surface, rules for, 536
Radiation of heat, \(46 \tilde{\pi}\)
Radiators, transmission of heat by, 475-4i7, 545
Radius of gyration, 247, 420, 421
of oscillation, 421
Railroad axles, 383
trains, resistance of, 851
Rail-steel, specifications, 401
Rails, maximum safe load on, 865 steel, strength of, 298
Railway trains, speed of, 859
Railways, narrow-gauge, 865
Ram, hydraulic, 614
Ratio and proportions, 5
Reamers, taper, 972
Recalescence of steel, 402
Receiver-space in engines, 766
Reciprocals of numbers, 80 use of, 85
Red lead as a preservative, 389
Reduction, descending and ascending, 5
Reflection of heat, 468
Refrigerating-machines, 981-1001 air-machines, 983
actual performance, 994
ammonia-absorption, 984
ammonia-compression, 983-987
ether-machines, 983
heat balance, 990
ice-melting effect, 983
liquids for, 982
pipe coils for, 985
properties of brine, 994
properties of vapor, 993
relative efficiency, 988
sulphur-dioxide, 985
temperature range, 991
test trials, 990
use of water-vapor, 988
Registers and air-ducts, 539
Regnault's experiments on steam, 661
Resilience, 238
elastic, 270
Resistance, electrical, 1028
electric, of copper wire, 1030
electric, of steel, 403
of ships, 1002
of trains, 851
to repeated stresses, 238
Resolution of forces, 415
Retarded motion, 424
Rhombus and rhomboid, 53

Rivet iron and steel, 363
Riveted iron pipe, 197
Riveted lap-joints, double, 357 proportions, 358
Riveted joints, 299, 303, 354-362
drilling vs. punching of holes, 355
Fairbairn's experiments, 354
results of research, 356
Riveted pipes, flow of water in, \(5 \% 4\)
plates, single, \(35 \%\)
steel plates, 297
Riveting, efficiency of different methods, 355
Riveting-machines, hydraulic, 618
of steam-boilers, 700
of steel plates, 394
pressures, 362
Rivets, diameter of, 360
power to drive, \(10 \% 0\)
sizes, etc., 211
Rivet-steel, 401
Roads, resistance of carriages on, 435
Rock-drills: air required by, 506
Roof-coverings, weight of, 184 trusses, 446
Roofing materials, 181, 184
Rope-driving, 922-927
diameter of pulleys, 926
sag of rope, \(9: 5\)
various speeds, 924
weight of rope, 926
wire, 226-231
Rope, charcoal-wire, 228
locked-wire, 231
steel-wire hawsers, 229
wire, 231
Ropes, 301, 338, 906
flat, 339
splicing, 341, 345
strength of, 338
Rotary blowers, 526
steam-engines, 701
Rotation, accelerated, 430
Rubber belting, 887
vulcanized, 316
Rule of three, 6
Rustless coatings for iron, 386
Safety, factors of, 314
Safety-valves. 721
Salinometer, strength of brines, 464
Salt, manufacture of, 463
solubility of, 464
weight of, 1 ro
Sand-blast, 966
moulding, 952
Sawdust as fuel, 643
Sawing metal, 966
Scale and incrustation, 551
in steam-boilers, 716
Schiele's anti-friction curve, 5C
pivot-bearing, 939
Screw, 437
differential, 439
endless, 440
propeller, 1010
thread, Powell's, 975
threads, 204, 208
threads, English, 205

Screw threads, metric, 956
threads, standard, for bolts, 207
threads, United States, 204
Screw-bolts, efficiency of, 974
Screws and screw-threads, 974
holding power of, 290
machine, 208, 209
Secant of an augle, 65
Sectors and segments, 59
Sediment in steam-boilers, 717
Seeger's fire-clay pyrometer, 453
Segments of a circle, table, 116
Segregation in steel ingots, 404
Separators, steam, 728
Set-screws, holding power of, 977
Sewers, grade of, 566
Shaft-bearings, 810
governor, 838
Shafting. 86i-872
deflection of, 868
H.P. to drive, 963
table for laying out, 87
Shafts, engine, 806-815
Hy-wheel, 809
hollow, 8 ir
propeller, strength of, 815
steel propeller, 299
twisting resistance, 281, 806
Shapes of test-specimens, 243
Shearing, effect of, on steel, 394 strength of iron, 306
strength of woods, 312
resistance of rivets, 363
unit strains, 380
Shear-poles, stresses in, 442
Sheet brass, weight of, 203 copper, weight of, 202
iron and steel, weight of, 32, 174
metal, tensile strength of, 300
Shells, spherica! strength of, 286
Shingles, sizes and weight, 183
Shipping measure, 19, 1001
Ship-plates, 399
Ships, resistance of, 1002
Shocks, resistance to, 240, 241
Shot, lead, 204
Shrinkage of castings, 951
Shrinking fits, 973
Signs of trigonometrical functions, 66 arithmetical, 1
Silicon-bronze wires, 225, 328
Silicon, influence of, on cast iron, 365 influence of on steel, 389
Silver, 168
Simplex gas-engine, test, 8.48
Simpson's rule, 56
Sine of an angle, 65
Sines, cosines, etc., table of, 159 etc., logarithmic, 162
Sinking-funds, 17
Siphon, the, 581
Slate, sizes and weights, 183
Slide-valve, \(8: 4\) - 835
diagrams, \(8: 5-833\)
lap and travel of, 831
Smoke-prevention, 712
Smokestack guys, \(2 \% 3\)
Snow and ice, 550
Soapstone as a lubricant, 945

Softeners, use of, in foundry, 950
Softening hard water, 555
Soft steel, hardening, 393
Solders, 338
Solid bodies, mensuration of, 60
of revolution, 62
measure, 18
Specific gravity, 163
gravity of alloys, 320,323
gravity of cast iron, 374
gravity of gases, 166
gravity of steel, 403, 411
gravity of stones, brick, etc., 166
heat, 457
heat of air, 484
Specifications for axles, steel, 400
for car-axles, 401
for cast iron, 374
for crank-pin steel, 400
for oils, 944
for plate steel, 39G, 400
for rail-steel, 401
for rivets, 401
for spring-steel, 400
for steel, 397
for steel castings, 406
for steel rods, 400
for wrought iron, 378
Speed of cutting-tools, 953, 954
of vessels, 1006
Sphere, measures of, 61
Spheres, table of, 118
weights of, 169
Spherical polygon, area of, 61
segment, 62
shells, strength of, 286
steam-engine, 792
triangle, area of, 61
zone, 62
Spheroid, 63
Spikes, holding power, 289
sizes and weights, 212, 213
Spindle, snrface and volume, 63, 64
Spiral, construction of, 50
gears, 897
riveted pipe, 198
measures of, 60
Splicing of ropes, 341
wire ropes, 345
Spring-steel, 299
locomotive, 400
specifications, 400
strength of, 299
Springs, capacity of, 349
elliptical, 352
for governors, 838
formula for, 347,353
helical steel, 34 ?
laminated steel, 349
phosphor-bronze, 352
tables of, 349, 353
torsional force, 352
Spur gear, machine-cut, 905
Square measure, 18 root, 8
Squares and cubes of decimals, 101
and square roots, table of, 86
Stability, 41\%
Stand-pipes, desigu of, 202-294

Statical moment, 417
Stay-bolt, iron, 379
Stay-bolts for boilers, 710
Stayed surfaces, strength of, 286
Stays for boilers, 703,710
Steam, 659-6ĩ6
boiler, water-tube, 688, 689
boilers, 677-740
boilers, air-space in grate, 681
boilers, allowable pressures, 706
boilers, economy of, 682
boilers, efficiency of, 635,683
boilers, explosive energy of, \(\mathfrak{i} 20\)
boilers, factor of evaporation, 695
boilers, factor of 'safety, r00
boilers, feeding, 1073
boilers, forced draught, 714
boilers, flues and yassages, 680
boilers, gas-fired, 714
boilers, grate-surface of, \(6 \pi 8,680\)
boilers, heating air-supply to, 687
boilers, heating-surface of, 678
boilers, height of chimney for, 735
boilers, horse-power of, 6 ir
boilers, hydraulic test of, 700
boilers, incrustation and scale, 716
boilers, materials for, 700
boilers, measure of duty of, \(6 \pi 8\)
boilers, performance of, 681
boilers, Philadelphia inspection rule, 708
boilers, proportions of, \(6 \pi 8\)
boilers, rules for construction, \(\% 00\), 1073
boilers, safe working pressure, 707
boilers, strength of, r00
boilers, tests of, 685
boilers, tests, rules for, 690-695
boilers, tests with different coals, 636, 688
boilers, tubulous, 686
boilers, using waste gases, 689
boilers, use of zinc in, 720
domes on boilers, 711
dry, identification of, 730
engine constants, 756-758
engine cylinders, \(792-795\)
engine, spherical, 792
engines, 742-847
engines at Columbian Exhibition, 774
engines, calculation of mean effective pressure, 744
engines, compound, 761
engines, Corliss, 773
engines, Corliss condensing, 780
engines, cost of different sizes, 1075
engines, counterbalancing, 788
engines, cylinder-condensation, 752
engines, dimensions of parts of, 792 817, 1074
engines, economy at various speeds, is6
engines, economic performance, 775
engines, economy of various sizes, 785, 786
engines, economy with varying loads, 784
engines, effect of compression. 751

Steam engines, effect of water in steam, 781
engines, efficiency of, 749
engines, efficiency of non-condensing compound, 784
engines, feed-water consumption of, 753, 760,775
engines, frames of, 817
engines, friction of, 941
engines, foundation of, 889
engines, leakage of steam in, \(\uparrow 61\)
engines, limitation of speed, \(\uparrow 87\)
engines in electric stations, 785
engines, marine, 1015
engines, mean effective pressure in, 753
engines, measures of duty, 748
engines, most economical point of cut-off, 777
engines, non-condensing, 779
engines, performance of, \(775-\) - 89
engines, piston-speeds of, 787
engines, power-plant at World's Fair, 774
engines, preventing vibrations, \(\approx 89\)
engines, proportions of cyliuders, 765
engines, putting on centre, 834
engines, quadruple-expansion, 772
engines, relative economy of, 780
engines, rotary, 791
engines, steam-consumption, 785
engines, three-cylinder, 815
engines, three-stage expansion, 101\%, 1019
engines, triple-expansion, 769
engines, triple-expansion, annularring method, 769
engines, triple-expansion, diameter cylinders, 773
engines, triple-expansion, doubletandem, 773
engines, triple-expansion, non-condensing, 7 T9 9
engines, triple-expansion, proportioning cylinders, 771
engines, triple-expansion, relative economy, 781
engines, triple-expansion, sequence of cranks, 772
engines, two- vs. three-cylinder, 781
engines, vertical high-speed, 777
engines, water-consumption, 783
expansive working of, \(\mathbf{7} 69\)
flow of, 668
flow of, in pipes, 663
heat, storing, 789
heating, 536-540
heating greenhouse, 541
jacket, influence of, 787
jet blowers, 52 \%
loop, 6 ri 6
loss of pressure in pipes, 671
mean pressures, 743
moisture in, 728
pipe coverings, 469
pipes, copper, 674, 676
pipes, loss from uncovered, \(6 \pi 6\)
nines, marine, 1016

Steam-pipes, overhead, 537
pipes, size of, for eugines, 673
pipes, valves in, 675
pipes, wire-wound, 675
power, cost of, 790
power, cost of coal for, 789
superheated, 661
supply mains, 539
table of properties of, 659
temperature, pressure, etc., 659-662
turbines, \(791,10 \% 5\)
vessels, dimensions, horse-power, etc., 1006-1009
vessels, coefficient of performance, 1003
vessels, trials of, \(100 \%\)
wa'er in, effect of, on economy of *ines, 781
work of, in a single cylinder, 746 , 749
Steel, 389-414
aluminum, 409
analyses and properties of, 389
and iron, classification, 364
annealing, 413
at blue heat, 395
axles, 299
beams, safe load, 269
Bessenter, 390-392
blooms, weight of, 176
bridge links, 297
castings, 405
castings, strength of, 299
chrome, 409
cold-drawing of, 305
columns, 256-261
composition of, 389
compressed, 410
crucible, 410
effect of hammering, 412
effect of heat on, 412
effect of nicking, 402
effect of oxygen on, 391
electric conductivity of, 403
failures of, 403
for car-axles, 401
for rails, 401
hardening of soft, 393
manganese, 407
Mushet, 409
nickel, \(40 \%\)
open-hearth, 391, 392
plates, 297, 400
plates, Bessemer, strength of, 390
plates, riveted, 299
propeller shafts, 299
rails, strength of, 298
recalescence of, 402
segregation in, 404
shearing strength, 306
soft, hardening of, 393
specific gravity of, 403, 411
specifications for, 367
spring, 299
strength of, 297-303, 389
structural, 272, 405
struts, 259
tempering, 412, 414
tires, strength of, 298

Steel, treatment of, 394
tungsten, 409
use in structures, 405
variation in strength of, 398
water-pipes, 295
working stresses for, 966
Stoker, under-feed, 712
Stokers, mechanical, 711
Stone, strength of, 302, 312
Stone-cutting with wire, 966
Stones, etc., weight and sp. gr., 166
Storage-batteries, 1055
Storing steam-heat, 789
Strains allowed in bridge members, 262-264
unit, in structural iron and steel, 3 亿y
Straw as fuel, 643
Stream, horse-power of a, 589
Streams, measurement of, 584
Strength of boiler-heads, 285
of bolts, 292
of columns, 246, 250-261
compressive, 244
of flat plates, 283
of glass, 308
of masonry materials, 312
of materials, 236-414
of materials, Kirkaldy's tests, 296
of stayed surfaces, 286
of structural shapes. 2\%2-280
of timber, 309, 1023, 1069
of unstayed surfaces, 284
of water-pipe, 251
tensile, 242
torsional, 281
transverse, 266
Stress and strain, 236
due to temperature, 283
Stresses, combined, 282
bridge tension members, 263
effect of, 263
in framed structures, 440
in steel plating, 287
of columns, 252
practice in Chicago, 381
sudden effect of, 241
Structural iron, strains in, 379
shapes, elements of, 249
shapes, properties of, 272
shapes, sizes and weights, 177
steel in the World's Fair buildings, 398
steel, treatment of, 394
Structures, framed, 440
Strut, the moving, 436
Struts, strength of, 246
working formulæ for, 259
wrought-iron, 253
Sugar manufacture, 643
solutions, concentration of, 465
Sulphate of lime, solubility, 464
Sulphur-dioxide refrigerating-machines, 985
Sulphur, influence of, on cast irou, 367
influence of, on steel, 389
Surface condensers, 840-844
Surfaces, unstayed flat, 284
Suspension cable-ways, 915

T shapes, steel, 180, 278
Tail-rope system of haulage, 913
Tan bark as fuel, 643
Tangent of an angle, 65
Tangents, sines, etc., table of, 159
Tank-plates, 399
Tanks, cylindrical, 121, 126
rectangular, gallons in, 125
Tannate of soda for boiler-scale, 718
Tap-drills, 970, 971
Taper bolts, pins, reamers, \(9 \% 2\)
Taper, in lathes, 956
Tapered wire ropes, 916
Taylor's rules for belting, 880
theorem, 76
Tee-bars, 278
Tees, Pencoyd, sizes and weights, 180
Teeth of gears, forms of, 892 proportions of, 889
Telegraph-wire, 217-221, 224
Telescope, pyrometer, 453
Temperature, absolute, 461 effect on strength, 309, 382 stresses in iron, etc., 283
Temperatures in furnaces, 451 judged by color, 454
Tempering steel, 414
Tenacity of metals, 169
of metals at different temperatures, 309, 382
Tensile strength, 242 strength, increase by twisting, 241
Tension and flexure, stresses, 282
Terra-cotta, 181
Testing materials, precautions in, 243
Test-pieces, comparison of small and large, 393
standard shapes, 243
Tests of materials, 303
Thermal unit, British, 455, 660
Thermodynamics, 478
Thermometers, 448
Three-cylinder engine, 815
Three-stage engine, \(7 \div 1\)
Tidal power. utilization of, 600
Tie-rods for brick arches, 281
Tiles, sizes and weights, 181
Timber measure, 20, 21 strength of, 309
Time, measure of, 20
Tin, 168 roofing, 181, 182
Tires, steel, strength of, 298
Tobin bronze, \(3: 27\), 334
Toggle-joint, 436
Tonnage of vessels, 19, 1001
Tool-steel, heating, 412
Tools, metal-cutting, 955
Toothed-wheeled gearing, 439
Toothed wheels, proportions of, 889
Torsion, elastic resistance, 28: of shafts, 806
Torque of an armature, 1061
Torsional strength, 281
Tower spherical engine, 792
Track bolts, 210 spikes, 212
Tractive power of locomotives, 85 ?
Tractrix, or Schiele's curve, 50

Trains, resistance of, 851, 853
Tramway, compressed-air, 509
Tramways, wire-rope, 914
Transformers, 1066
Transmission by hydraulic pressure, 617-620
by wire rope, 917-922
electric, 1038
electric, efficiency of, 1045
of heat, 471-478
of power by ropes, 922-927
Transporting power of water, 565
Transverse strength, 266
Trapezium, 54
Trapezoid, 54
Trapezoidal rule, 56
Triangle, mensuration of, 54
Triangles, problems in, 41
solution of, 68
Trigonometrical functions, 65-67
functions, table, 159
Trigonometry, plane, 65
T'riple effect, multiple system, 463
Triple-expansion engine, 769
Troy weight, 19
Truss, Howe and Warren, 445
king-post, 442
queen-post, 442
Pratt or Whipple, 443
Trusses, roof, 446
Tubes, boiler, holding power, 307
for steam-boilers, 196, 704,709
Mannesmann, 296
or flues, collapse of, 265
seamless brass, 198
strength of, 266
weights of, 169
wrought-iron, 196
Tubing, brass, 198
Tungsten-aluminum alloys, 331 steel, 409
Turbines, steam, 791
Turbine-wheels, 591
wheels, tests of, 596
Turf or peat, 643
Turnbuckles, sizes, 211
Turret lathes, cutting speed, 954
Twin-screw vessels, 1017
Twist-drill gauge, 29
Twist-drills, sizes and speeds, 957
Twisted iron bars, 241
Type-metal, 336
Unit of heat, 455
United States. population of, 12
Unstayed surfaces, strength of, 284
Upsetting of steel, 394
Vacuum pumps, 612
Valve-diagrams, 825
Valve, lap and travel of, 831
motion, 825
rods, 815
slide, 824
seats, area through, 842
Valves, engine, setting of, 834
in steam-pipes, 675
of pumps, 605, 606
Vapors, properties of, 480

Vapors used in refrigerating-machines, 982
Varnishes, 387
Velocities, parallelogram of, 426
Velocity, angular, 425
Ventilating-ducts, discharge of, 530 fans, 51\%-525
Ventilation and heating, 528-546
blower system of, 545
by a steam-jet. 527
efficiency of, 533
of large buildings, 534
Ventilators for mines, 521
Venturi meter, 583
Versed sine of an arc, 65
Vessels (see Steam-vessels)
Vertical high-speed engines, 777
Vibrations of engines, preventing, 88
Vis-viva, 4 23
Volt, definition of, 1025
Warehouse floors, 1019
Warren girder, 445
Washers, sizes of, 212
Water, 54ї-554
analyses of, 553
boiling-point, 550
buoyancy of, 550
comparison of heads and pressures, 548
compressibility of, 551
erosion by flowing, 565
expansion of, 547
flow in channels, 564
flow of, 5055-588
flow of, experiments, 566
flow of, in pipes, tables, 558, 559, 56~-5テ0
freezing-point, 550
gas, 648, 652
hardness of, 553
ice and snow, 550
impurities of, 551
pipes, 295
power, 588
power, value of, 590
pressure engine, 619
pressure of, 549
softening of hard, 555
specific heat of, 550
transporting power of, 565
velocities in channels, 565
weight of, 27,547
wheel. jet, power of, \(10 \tilde{\imath}_{2}\)
wheel, the Pelton, 597, 1071
Wares, power of ocean, 599
Weathering of coal, 63 亿
Wedge, the, 437
volume of \(\mathrm{a}, 61\)
Weight of bars, rods, plates, etc., 169
of brickwork, 169
of brass and copper, 198-203
of bolts and nuts, 209-211
of cast-iron pipes and columns, 185193
of cement, 170
of flat rolled iron, \(1 \% 2\)
of fuel, \(1 \% 0\)
of iron bars, \(1 \sim 1\)
of iron and steel sheets, 32,174

Weight of ores, earths, etc., 170
of plate iron, 175
of roofing materials, 181-184
of steel blooms, 176
of structural shapes, 1\%7-180
of tin plates, 182
of wrought-iron pipe, 194-197
of various materials, 169
Weights and measures, 17
of ail and vapor, 484
Weir table, 58 \%
Weirs, flow of water over, 586
Welding, electric, 1051 of steel, 394, 395
Welds, strength of, 300
Wheel and axle, 439
Whipple truss, 443
White-metal alloys, 336
Whitworth compressed steel, 410
Wiborgh air-pyrometer, 453
Wind. 493
pressure in storms, 495
Wiuding-engines, 909
of magnets, 1068
Windlass, 439
differential, 439
Windmills, 495
Wind-pressures, 493
Wire cables, 222
copper and brass, 202
copper, tables of, 218-220, 1034
different metals, 225
gauges, 28-31
iusulated, 221
iron and steel, 217
iron, size, strength, etc., 216
nails, 214, 215
piano, 224
plough-steel, 224, 228
rope, 226, 231
rope haulage, 912
ropes, durability of, 919
ropes, splicing, 345
ropes, strength of, 301
ropes, tapered, 916
rope transmission, 917-922
rope tramways, 914
stone-cutting, 966
strength of, 301, 303
table for 100 and 500 volts, 1044
table, hot and cold wires, 1034, 1035
telegraph, 217, 221, 224
weight of, 216
wound fly-wheels, 824
Wiring formula for incandescent lighting, 1042
Wires, current required to fuse, 10.3ir
Wöhler's experiments, 238
Wood as fuel, 639
composition of, 640
compression strength of, 311
expansion of, 311
heating value of, 639
shearing strength of, 312
specific gravity of, 165
strength of, \(302,306,310,312,10 \geqslant 3\), 1069
weight of, 165, 232
Wooden fly-wheels, 888

Woodstone or xylolith, 316
Woolf type of compound engine, 762
Wootten's locomotive, 855
Work, energy, power, 429
Work of acceleration, 430
of men and animals, 433
unit of, 428
Worm-gear, 440
gearing, 897, 1078
Wrist-pin, 804
Wrought iron, 377-379
bolts, strength of, 292
chemistry of, 377
columns, 250,260
specifications, 378,379

Wrought iron, strength of, 297, 300, 304, 378 struts, 259
water-pipe, 295
Xylolith or woodstone, 316
Yield-point, \(23 \%\)
Z-bars, properties of, 280
sizes and weights, 178
Zinc, 168
tubing, 200
use of, in steam-boilers, 720
Zeuner valve-diagram, 827
Zero absolute, 461

\section*{INDEX 'OO ADVERTISEMENTS.}
Abendroth \& Root Manufacturing Company 9
American Stoker Company 7
Atlas Cement Company 23
Berlin Iron Bridge Company, The 21
Boston Belting Company 15
Chapman Valve Manufacturing Company 13
Deane Steam Pump Company, The. 6
Fuel-Economizer Company, The. 7
Goubert Manufacturing Company, The 2
Hancock Inspirator Company, The 17
Hartford Steam Bofler: Inspection and Insur- ance Company 14
Hawley Down-Draft Furnace Company, The 17
Holmes Fibre-Graphite Manufacturing Company. 15
Hunt Company, The C. W. 1
Illinois Steel Company 4
Ingersoll-Sergeant Drill Company 8
Keasbey \& Mattison Company 13
Keuffel \& Esser Company 20
Lidgerwood Manufacturing Company. 12
Morris, Tasker \& Company 16
National Meter Company. 18
Norwalk Iron Works Company, The 19
Olsen \& Company, Tinius 16
Peerless Rubber Company. 5
Pelton Water-Wheel Company 8
Phosphor-Bronze Smelting Company, Liamted 22
Pratt \& Whitney Company, The I 8
Rand Drill Company 9
Roebling's Sons Company, John A 10
Sellers \& Company, William 23
Simmons Company, John I 1
Stirling Company, The 12
Trenton Iron Company 10
Wyman \& Gordon 19
Wiley \& Sons, John 22
Williams \& Company, J. H 14
Wood \& Company, R. D II
Worthington, Henry R 20
Yale \& Towne Manufacturing Company. 3

\section*{CLASSIFIED INDEX TO ADVER'IISEME.N'LS.}
Air-compressors and Rock-drills. PAGE
Ingersoll-Sergeant Drill Co 8
Norwalk Iron Works Co., The 19
Rand Drill Co 9
Bearings, Anti-frictional.
Holmes Fibre-Graphite Mfg. Co 15
Phospino!-Bronze Smelting Co. (Limited). 22
Beiting and Hose.
Boston Belting Co 15
Boiler Inspection and Insurance.
Hartford Steam Boiler Inspection and Insurance:Co 14
Boilers, Steam.
Abendroth \& Rnot MIfg. Co 9.
Stirling Co., The 12
Boiler Tubes and Plates.
Illimuis Steel C゚○. 4.
Morris, Tasker \& Co. (Incorporated) 16.
Воокs.
Wiley \& Sons, John 22
Bridge Bu'llders.
Berlin Iron Bridge Co., The 21
Castings.
Phosphor-Bronze Smelting Co. (Limited?) 22
Cement. American Portland.
Allas Cement Co 23.
Chain Holsts.
Yale \& Towne Mfg. Co., The 3
Drop Forgings.
Weyman \& Gordon 19
Williams \& Co., J. H 14
Engines, Gas.
National Meter Co IS
Enginelering Outfits.
Keuffel \& Esser Co \(\therefore 0\)
Feed-water Heaters.
Goubert Mifg. Co., The 2
Fire-hydrants
Chapman Talve Mfg. Co \(13:\)
Forgings.
Phosphor-Bronze Smelting Co. (Limited) \(2 ?\)
Williams \& Co., J. H. 14
Fuel-economizers.
American Stoker Co T
Fuel-Economizer Co., The 7
Furnaces.
American Stoker Co. \(\gamma\)
Hawley Down-draft Furnace Co., The. 17
Hoisting Machinery-Elevators. Conveyors. etc.Hunt Co., The C. W1
Lidgerwoorl Mfg. Co 12
Hypraulic Presses.Olsen \& Co., Tinius16
Injectors and Inspirators. PAGE
Hancock Inspirator Co., The 14
Machine Tools and Bolts.
Sellers \& Co., Willian (Incorporated) 23
Meters.
National Meter Co 18
Milling Machines, Shapers, Planers, Lathes, etc.
Pratt \& Whitney Co., The 1
Sellers \& Co., William (Incorporated) 23
Mineral Wool.
Illinois Steel Co 4
Paciing-Piston, Valve, Joint.
Peerless Rubber Co. 5
Pipe and Boiler Coverings.
Keasbey \& Mattison Co 13
Pipe, Water and Gas.
Abendroth \& Root Mfg. Co 9
Morris, Tasker \& Co. (Incorporated) 16
Simmons Co., John 11
Wood \& Co., R. D 11
Plate, Iron and Sterl.
Illinois Steel Co 4
Pumping Machinery.
Deane Steain Pump Co., The 6
National Meter Co. 18
Worthington, Henry R 20
Rope, "Stevedore."
Hunt Co., The C. W 1
Steel Plates, Bars, Rods, Rails.
Illinois Steel Co. 4
Steel Portland Cement.
Illinois Steel Co 4
Smore-prevention.
American Stoker Cu i
Hawley Down-draft Furnace Co., The 17
Surveying Instruments.
Keuffel and Essser Co 20
Testing-machines.
Olsen \& Co., Tinius 16
Tramways-Wire Rope.
Trenton Iron Co 10
Turbine Water-wheels.
Pelton Water-Wheel Co., The 8
Valves-Gas, Water, and Steam.Chapman Valve Mfg. Co13
Wood \& Cu., R. D 11
Wire Rope and Telegraph and Telephone Wire.
Roebling's Sous Co., John A 10
Trenton Irou Co 10
Whenches-Drop Forged.
Williams \& Co., J. H 14

\section*{C. W. HUNT COMPANY}
(ESTABLISHED 1872),

\section*{New York Office: 45 Broadway, Works: Staten Island, N. Y.,}

\section*{MANUFACTURE}

\section*{Industrial Railways.}

of every description for hoisting and distributing coal and bulky material. from the simple mast and gaff to the most elaborate plant, that will unload the largest vessel in one day.-Steam Shovels, Coal Tubs, Automatic and Cable Railways, Coal Screens, Chutes, Valves, etc.

A special railway, \(21 \frac{1}{2}\)-inch gauge. designed with the idea that a railway for this purpose is as much a machine as a lathe or a loom. We make up the track, switches, curves. crossings and turn-tables, etc., ready to lay. The cars run around a curve of 12 feet radius as easily as a wagon turns a corner. We furnish cars to suit every variety of service.

\section*{Coal=handling}

\section*{Machinery}

\section*{Conveyers.}

Noiseless Gravity Conveyor, which carries the material in any direction, without shock, breakage, or violence, and every bearing arranged to be kept thoroughly lubricated, and the whole machine as durable as an ordinary machine tool.

\section*{"Stevedore" Rope.}

This rope is made for Rope Driving and Hoisting only, and is sold under the trade name of "Stevedore." We guar" antee that more work can be done with it, in proportion to its cost, than with any other rope in the market, without any exception whatever, and will gladly refund the difference in price if it is not all we claim.

\section*{Steam and Electric}

\section*{Hoisting Engines.}

Heavy-duty Engines, with extraordinarily heavy working parts, large wearing surfaces, and accurate workmanship.

\section*{FEED WATER HEATERS}

In the construction of the pressure heater, the following general principles appear self-evident:

No part exposed to the exhaust steam should be of wrought-iron or steel, for these are quickly pitted and destroyed by fatty acids. The best materials will be found in copper, brass, and castiron; the tubes being necessarily made of the first metals and the shell of the last.

But as these metals, under the influence of heat, do not expand to the same extent, some provision should be made in the construction to allow for the differential expansion. No weak element, however, should be introduced in the parts of the apparatus subject to boiler pressure.

The tubes should be straight and easily accessible for cleaning, the reason being obvious.

Somewell or receptacle, removed from the heating surfaces, should be provided where the water is quiescent and the fine particles of sediment can settle, undisturbed by the circulation of the heated water.

The circulation should be positive, ensuring an eren distribution of the water to all the parts of the heating surface.
No obstruction should be offered to the passage of the exhaust through the heater that may tend to caluse back pressure on the engines.

The exponent of all these principles, carried out in their best form, will be found in

\section*{The "Goubert" Feed Water Heater}

\section*{STEAM SEPARATORS}

The efficiency of a steam engine is largely dependent upon the quality of the steam: while the bursting of fly-wheels and the breaking of cylinder heads are generally due to the presence of entrained water. The Stratton Steam Separator insures DRY STEAM under any and all conditions. It also overcomes the drop of pressure between boiler and engine.

\author{
SEND FOR DESCRIPTIVE CATALOGUES
}

\section*{THE GOUBERT MFG. CO.}

14 and 16 Church Street \(=\quad=\) NEW YORK

\section*{The Yale \& Towne Mfg. Company.}

\section*{Chain Blocks}

Weston's Patents.

FOR SALE BY ALL DEALERS.
A descriptive Catalogue of 50 pages will be sent on request. GENERAL OFFICES:
Nos. 9, 11 and 13 Murray Street, NEW YORK CITY.

\section*{STEET PORTLAND CEMENT}
a hydraulic cement for masonry and concrete construction, equal to best imported. We make a special stainless brand which will not discolor stone.

\section*{MINERAL WOOL}
fire-proof, sound-proof, frost-proof, vermin-proof.

\section*{STEEL FRAMES FOR BUILDINGS AND BRIDGES address Universal Construction Company, The Rookery, Chicago.}

\section*{IIGHT AND HEAVY STEEL RAILS,} SPLICES, BOLTS, SPIKES, BILLETS OF ALL KINDS, INGOTS, BLOOMS, SLABS, BARS, CAR CHANNFLS, SHAPES, MERCHANT STEEL, WIRE RODS, TIE PLATES, HOOPS, BANDS, COTTON TIES, PIG IRON, SPIEGEL, PLATES, BOIIER STEEL, FLANGE STEEL, FIRE BOX STEEL, TANK STEEL.

\section*{ILLINOIS STEEL COMPANX}

General Offices, the Rookery, Chicago. New York Offices, 46 Wall Street. St Louis Offices, Security Building. St Paul offices, Pioneer press Bldg. Denver Offices, Equitable Building. Cleveland Offices, Cuyahoga Building. New Orleans Offices, Hennen Building. London Offices, Billiter Square Buildm ings, Billiter Square, London, E.C., Ene Asiatic offices, American Trading Co.s Shanghai, China; Yokohama, Japan; Kobe, Japan.
Mexican Offices, Hasam \& Moreno, la Calle de las Damas, No.5, City of Mexico, Mexico.

\section*{RAINBOW PACKING}

Makes Steam Joints Instantly Without Baking or Following Up.
THOUSANDS
OF
IMITATORS;
NO EQUAL.

WILL HOLD HIGHEST PRESSURE

DON'T HAVE TO USE WIRE AND CLOTH TO HOLD RAINBOW.

CAN'T BLOW IT OUT.

THE COLOR OF RAINBOW PACKING IS RED.
Engineers in erecting new plants can make thousands of joints without the use of

\section*{ECLIPSE SECTIONAL RAINBOW GASKET.}

\section*{PEERLESS PISTON and VALVE ROD PACKING}

WILL HOLD

400 LBS. STEAM.

PATENTED AND MANUFAC. TURED EXCLUSIVELY BY

EXPRESSLY FOR HIGH SPEED ENGINES. Write for Catalogue.

\title{
The Deane of Holyoke PUMPING MACHINERY.
}
 BUILT BY

\section*{The Deane Steam Pump Co., HOLYOKE, IMASS.} WAREROOMS:
NEN YORK . BOSTON. PHILADELPHIA.
CHICAGO. ST. LOUIS.
DENVER.

\section*{THE \\ AMERICAN}

Particulars and Catalogue on Application.

\section*{STOKER}

\section*{141 BROADWAY}

\section*{Washington Life Building}

\author{
NEW YORK
}

\section*{GREEN'S FUEL ECONOMIZER} FOR STEAM BOILERS.

ADVANTACES.-Heat the feed water to a Migh Temperature thus effecting a GREAT SAVING IN COAK. Can be applied to any type of boiler without stoppage of works. Alarge volume of water always in reserve at the evaporative point ready for immediate dellivery to the boilers.

Sixteen Prize MLedals.
SOLE MAKERS IV THE UNITED STATES.

THE FUEL ECONOMIZER CO. of Matteawan, N. Y.

\title{
The Pelton . Water=Wheel
} is conceded to be one of the most useful as well as illustrious inventions of this or any other country. By means of it, water is converted into power in so simple and economical a way that machinery may be said to be almost dispensed with. Thousands of these wheels are sent out every year to all parts of the world, and in no instance do they fail to meet the most sanguine expectations of purchasers. Adapted to heads from twenty feet up to the highest in any case obtainable.

\section*{Electric Power Transmission.}

PELTON WHEELS afford the most reliable and efficient power for such service, and are running the majority of stations of this character in the United States, as well as most foreign countries.

\section*{Highest Efficiency and Absolute Regulation}
guaranteed, covering the most extreme variations of load. Catalogues furnished on application. Address, giving conditions,
 or, 143 Liberty St., New York, U, S.A.

Air Compressors.

EVERY STYLE AND TYPE
SUITED TO

ROCK DRILLS, Stone Channelers, Coal Cutters, The Pohlé Air Lift Pump.
MINING OPERATIONS,
MACHINE=SHOP PRACTICE,
PUMPING WATER,
GAS COMPRESSION,
STREET RAILWAYS,
PNEUMATIC TOOLS,

AND ALL CTHER COMPRESSED-AIR USES.
The INGERSOLL= SERGEANT DRILL C0.,

Eavemejer Building,
NEW VORK

\title{
AIR COMPRESSORS
}

\author{
FOR ALL USES.
}

Rock Drills
FOR
Quarries, Mines, and Contract Work.

\section*{RAND DRILL COMPANY,}

\author{
100 Broadway,
}

New York.

\section*{IMPROVED ROOT WATER-TVBE BOILER}

HIGHEST ECONOMY- EEST ADAPTED TO HIGH PRESSURES ABSOLUTELY DRY STEAM - PERFECT WORKMANSHIP

\section*{HYDRAULIC RIVETERS, \\ Fixed and Portable:}

INTENSIFIERS, PIINCHES, SHEARS, PRESSES, and LIFTS. Matthews' Fire Hydrants, Fddy Valves, Valve-indicator Posts.

\section*{CAST-IRON PIPE.}

\section*{R. D. WOOD \& CO.,} Engineers, Iron Founders, Machinests, 400 Chestnut St., Philadelphia, Pa.

\section*{LIDGERW001 HOISTING ENGINES}

Are built to gauge on the Duplicate Part System. Quick delivery assured.

\section*{STANDARD FOR QUALITY}

Steam and Electric Hoists.
Cableways
Hoisting and
Conveying Devices
For Mining, Quarrying, Logging, Dam Construction, etc.

LIDGERWOOD M'F'G CO.,
Send for Catalogue. 96 Liberty St., New York.

\section*{ESTRLINGW": BOILER}

\section*{Safe Economical Durable}

All surfaces under pressure, cylindrical in form and made entirely of wrought metal.
Onẹ manhole in each drum gives access to all parts of the interior.

\section*{THE STIRLING CO.}

AGENCIES IN ALL
Principal cities.

Pullman Building, CHICAGO

\section*{ABSOLUTELY FIREPROOF.}

\section*{MAGNESIA}

COVERING FOR

\section*{Heaters, Heater Pipes,}

Flue Linings,
Steam Pipes and Boilers.
Saves coal; insures heat where needed; secures perfect ventilation. For samples, prices and full particulars, address the manufacturers,

KEASBEY \& MATTISON COMPANY,
AMBLER,

NEW YORK.
CHICAGO.

PENNSYLVANIA. BOSTON. CINCINNATI.

\section*{CHAPMAN VALVE MFG. CO.,}

MANUFACTURERS OF
Valves for Water, Gas, Steam, 0il, Acid, etc., and Fire Hydrants.
We make a Specialty of Valves with Renewable and Removable Bronze Seats for Heavy Pressure Steam.

General Office and Works: Indian Orchard, Mass. Treasurer's Office: \(7 \mathbf{2}\) Kilby Street, Boston.

\section*{J. H. WILLIAMS \& CO.,}

\section*{9-31 Richards Street, Brooklyn, New York.}

\section*{SPECIAL DROP-FORGINGS TO ORDER. \\ Parts of gas or oil}

From TOBIN BRONZE, Copper, Iron, Steel, Aluminum.

Wide Experience,
We like intricate work.

Send models for estimate.

engines, electric or air motors, pumps, machine tools, etc., etc. Standard Eyebolts, LATHE DOGS, Machine Handles,
VULCAN CHAIN PIPE WRENCH.

\section*{DROP-FORGED WRENCHES.}

OVER
180
KINDS !

OVER
100,000
IN STOCK!

JRCANIZED, 1866.

\section*{THOROUGH INSPECTIONS}

Ensurance against Loss or Damage to Property and Loss of Life and Injury to Persons caused by

\section*{Steam Boiler Explosions}
J. M. ALLEN, President.

WMI. B. FRANKLIN, Vice-President.
F. B. ALIEN. Secon, Secretary.
J. B. PIERCE, Secretary
L. B. BRAINERD. Treasurer.
L. F. MIDDLEBROOK, Asst. Secretary.

\section*{Boston Belting Co.}

\author{
James Bennett Forsyth, Mfg. Agt. \& Gen. Man.
}

\section*{Manufacturers of}

Rubber Belting,
Rubber Hose for all Purposes, Cotton and Linen Fire Hose,

Packings, Gaskets, Valves, Tubing, Rubber Mats and Matting, Rubber Covered Rollers,

And the Highsst Grades of Rubber Goods for all Mechanical and Manufacturing Purposes.

BOSTON:
256, 258, 260 Devonshire St.

NEW YORK: ioo Chambers St.

\section*{Fibre=Graphite Requires No Oil!}

Avoid all cost of oil and attendance, and annoyance from dripping oil, by using

\section*{FIBRE-GRAPHITE BEARINGS.}

We are prepared to furnish Boxes for any form of Hanger, Pillow Block, or other standard now in use, or to furnish the material in the form of Bushings, or other desired shape, for ready introduction into the frames of special machines or elsewhere. The anti-frictional and self-lubricating qualities of FIBRE=GRAPHITE, together with ease of adaptation, render it eminently suitable for all bearings under light or moderate pressures where freedom from oil is desired.

A few of the special uses of FIBRE=GRAPHITE are in Bearings for Water Meters, Dye Tubs, Bearings subjected to high temperatures, Plungers for Arc Lamp Dash Pots, Commutator Brushes for Dynamos and Motors, etc., etc.

Awarded the Elliott Cresson Gold Medal by the Franklin Institute of Pennsylvania.

HOLMES FIBRE=GRAPHITE MFG. CO.,
Station Z, Philadelphia, U. S. A.

\section*{MORRIS, TASKER \& CO.}

INCORPORATED.
OFFICES : 222 and 224 South Third St., Philadelphia.

\author{
mandfacturers of
}

\section*{ELECTRIC LIGHT AND RAILWAY PIPE POLES} Boiler Tubes, Wrought Iron Pipe and Fittings, Gas Works and Structural Work, Heavy Castings, Tools and Machinery.

PASCAL IRON WORKS, Philadelphia.

DELAWARE IRON WORKS, New Castle, Del.

\section*{OLsen'S Testing Machines}

FOR TESTING

Iron Specimens, Bridge Materials, Chain, Cement, Wire, Springs, Oils or Lubricants, also Viscosimeters, ete.

Hydraulic Presses, Accumulators, Gauges, anc: Pumps.

\author{
Awarded the Elliott Cresson Gold Medal by the Franklin Institute, also Medal and Diploma by the World's \\ Columbian Exposition.
}

\title{
TINIUS OLSEN \& CO.
} 500 North 12th Street, Philadelphia, Pa.

\section*{"THE HANCOCK INSPIRATOR."}

Over 200,000 in Daily Use.

Highest degree of efficiency, absolute reliability and durability guaranteed.

Illustrated Catalogue mailed free \(\mathbf{u}_{\bar{f}}\) on application.

\section*{THE HANCOCK INSPIRATOR COMPAMY,}

MANUFACTURERS OF
Injectors, Ejectors, General Jet Apparatus, and Steam=goods Specialties,

BOSTON, MASS.

\section*{Smoke Prevention and Economy. Senil for our new Catalogue.}

\section*{THE HAWLEY DOWN-DRAFT FURNaCE CO.}

NEW YORK, 39 Cortlandt Street. BOSTON, CHICAGO, CINCINNATI, DETROIT, ST. LOUIS, BALTIMORE, PITTSBURGH,

Tremont Building. Monadnock. 328 West Pearl Street. 401 Chamber of Commerce.
1 West Broadway.
1631 Fulton Avenue.
Tradesmen Building.

\section*{THE Priti \& writer Con} machive Toois FOR

\section*{General and Railway Machine Shop Service.}

Modern Machine Tools for the Manufacture, on the Interchangeable System, of Locomotive Work, Bicycles, Electrical Apparatus, Typewriting Machines, Guns and Sewing Machines, including ali Small Tools, Gauges and Fixtures.
Milling IIIachines, Sereew and Turret-Head Chucking MIachines.
Specially designed Machinery and Tools for the Manufacture of Brass Goods, Agricultural Implements, etc., and for every purpose where Accurate, Rapid and Economical Production is essential.
U. S. Standard Taps, Dies and Gauges, Standard Cylindrical Size and Caliper Gauges, Reamers of every kind, Plain, Spirally Fluted and Inserted Tooth Milling Cutters of every size and style.

AUTOHATEIC WEIGHHNG IMACHINES, especially adapted for accurately weighing coal and all materials of uniform size, handled in storage, that can be spouted.

Send for Illustrated Catalogues and Prices. Correspondence invited.

\section*{the greatest}

\section*{WATER METER}

\author{
RECORD EVER MADE.
}

\title{
225,000 \\ Crown, Empire, Nash, Gem METERS IN USE.
}

\section*{National Meter Company,}

NEW YORK, CHICAGO, BOSTON, LONDON. JUNE, 1899.

\section*{WYMAN \& GORDON,} Worcester, Mass.

\title{
LIGHT OR HEAVY FORGINGS
}

\author{
MADE BY
}

\section*{HYDRAULIC PRESS, \\ DROP HAMMER,} STEAM HAMMER,

HELVE HAMMER.
~~~~~~~~~~~
Copner Welds made in large quantities without aid of electrisity.

\section*{The Norwalk Iron Works Co,} SOUTH NORWALK, CONN., Mancfacture

\section*{AIR AND GAS COMPRESSORS}

ON THE COMPOUND COMPRESSION PRINCIPLE.


Professor UNWIN says: "There can be no doubt that this arrangement is more efficient than a simple compres. sor, and the Nor. walk Iron Works Co. were the first to use that principle in America."

\footnotetext{
DESCRIPTIVE CIRCULARS ON APPLICATION.
}


MANUFACTURERS AND IMPORTERS OF

\section*{Drawing Materials and Surreying Instruments,}

> Excelsior Measuring Tapes, Chains, Rods, Poles, Surveying Compasses, etc.
> Paragon, Anvil, Universal and Duplex Drawing Papers.
> Helios and other Blue Print Papers, Nigrosine and Umbra positive black process Papers, etc.
> Standard Profile and Cross-Section Papers and Books. Hard Rubber Drawing Toois, Draughtsmen's Scales, T Squares, Drawing Boards.
> Columbia and Kallos Indelible Drawing Inks, etc. Paragon Scales with White Edges, Patent Triangular Paragon Scales, etc., etc.

The We have the Largest and most Complete Stock in this Country and will jorward Catalogue on Application.

\section*{WORTHINGTON Steam Pumps, Electric Pumps, Pumping Engines CONDENSERS, WATER METERS}

\section*{HENRY R. WORTHINGTON HYDRAULIC WORKS BROOKLYN}

\author{
BRANCH OFFICES:
}

NEW YORK: 86 and 88 Liberty Street BOSTON, PHILADELPHIA, CHICAGO, ST. LOUIS, CLEVELAND INDIANAPOLIS, DETROIT, ATLANTA, PITTSBURG
Sales Agencies in principal cities of the United States and CanadELIZAEETHPORT, N. J. BROOKLYN, N. Y.
\[
\text { ESTABLISHED } 1845
\]

WORTHINGTON PUMPING ENGINE CO.工OITDOIT
PARIS, BERLIN, VIENNA, BUDAPEST, ST, FETEPSBURG AMSTERDAM, COPENHAGEN, ERUSSELS, MILAN NAPLES, CALCUTTA, SYDNEY
And in all the principal cities throughout the zuorld


\section*{Books for Mechanical Engineers.}
Thurston-Manual of Steam Engine, 2 vols ..... \(\$ 1000\)
Peabody-Thermodynamics of Steam Engine ..... 500
Wood-Thermodynamics, Heat Motors and Refrigerating Machines ..... 400
Whitham-Constructive Steam-Engineering ..... 600
Kneass-Theory of Injector ..... 150
Henenway-Indicator Practice ..... 200
Wilson-Flather-Steam Boilers ..... 250
Spangler-Valve Gears ..... 250
Peabody-Valve Gears ..... 250
Thurstox--Steam Boilers ..... 500
Peabody-Steam Tables ..... 100
Sincliair-Locomotive Running ..... 200
Reagan-Locomotive Mechanism ..... 200
JOHN WILEY \& SONS,NEW YORK CITY.

\title{
WM. SELLERS \& CO.
}

INCORPORATED

\section*{Engineers, Machinists}

\author{
MANUFACTURERS OF
}

METAL-WORKING MACHINE TOOLS, for Railway and Machine-Shop Equipment; HIGH SPEED TRAVELING AND SWING CRANES; IMPROVED RAILWAY TURN-TABLES; SELLERS-EMERY TESTING MACHINES; PERFECTED INJECTORS, for Locomotive and Stationary Boilers; SMOKEPREVENTING MECHANICAL STOKERS, for Automatically Firing 'Eoilers; SUPERIOR SHAFTING, for Economically Transmitting Power; SPECIAL MACHINE TOOLS, from our own designs to suit unusual conditions of service.

OFFICE AND WORKS

\section*{PHILADELPHIA, U. S. A.}

\section*{ATLAS}

\section*{PORTLAND} CEMENT

\section*{IS THE STANDARD OF AMERICAN CEMENTS.}

Used by all the leading Engineers and Contractors throughout the United States, and preferred by the U. S. Government.

\section*{ATLAS CEMENT CO.,}

\(\qquad\)

LIBRARY OF CONGRESS


00212253662```


[^0]:    * Corrected by addition of $1,260,078$, estimated error of the census of 1870 , Census Bulletin No. 16, Dec. 12, 1890.

[^1]:    A owes $\mathrm{B} \$ 100, \$ 200$, and $\$ 300$, which amounts are overdue respectively 30 , 60 , and 90 days. If he now pays the whole amount, $\$ 600$, how many days' interest should he pay on that sum? Ans. 70 days.

[^2]:    * The British Admiralty takes the round figure of 6080 ft . which is the length of the "measured mile" used in trials of vessels. The value varies
     ameter. There is a difference of opinion among writers as to the use of the word "linot" to mean length or a distance-some holding that it should be

[^3]:    used only to denote a rate of speed. The length between knots on the log line is rido of a nautical mile or 50.7 ft . When a half-minute glass is used; so that a speed of 10 knots is equal to 10 nautical miles per hour.

[^4]:    Diam．

[^5]:    * These two sizes are calculated for exact diameter.

    Rivets with button heads weigh approximately the same as cone-head rivets.

[^6]:    Joints in Telegraph Wires.-The fewer the joints in a line the better. All joints should be carefully made and well soldered over, for a bad joint may cause as much resistance to the electric current as several miles of wire.

[^7]:    For any other load than 100 lbs．per square foot，divide the spacing given by the ratio the given load per square foot bears to 100 ．
    Thus for a load of 150 lbs ．per square foot divide by 1.5 ．Maximum fibre stress， $16,000 \mathrm{lbs}$ ．per square inch．
    Only figures above the cross－lines should be used for plastered ceilings，so that the deflection will not cause cracking of the plaster

[^8]:    ＊Pins in centre of gravity of channel bars and continuous plate， 1.63 inches from centre line of channel bars．
    $\dagger$ Pins placed in centre of gravity of channel bars．

[^9]:    * It is mixed as follows: Twelve parts of copper are first melted and then 36 parts of tin are added; 24 parts of antimony are put in. and then 36 parts of tin, the temperature being lowered as soon as the copper is melted in order not to oxidize the tin and antimony, the surface of the bath being protected from contact with the air. The alloy thus made is suhsequentiy remulted in the propnition of 50 parts of alloy to 100 tin. (Joshua Ruse)

    Whitemetal Alloys.-The following alloys are used as lining metals by the Eastern kailruad of France (1890):

[^10]:    Springs B, $U$, $G$, , $V$, and $W$ are made of four equal coils placed near together and joined by top and bottom cap-pieces.

[^11]:    * Excepting that in pin-connected members taking alternate stresses, the bearing stress must not exceed 9000 lbs . for iron or steel.

[^12]:    The coefficient of elasticity is practically uniform for all grades, and is the same as for iron, viz., $29,000,000 \mathrm{lbs}$. These figures form the average of a numerous series of tests from rolled bars, and can only serve as an ap.

