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ABSTRACT

The Economic Order Quantity (EOQ) model is extended to

a deterministic, two-echelon model with an arbitrary number

of activities on the lower echelon. Two variations of the

model are developed using minimization of time-average cost

as an objective. A no-stockouts-allowed case is examined,

and a method for finding the optimal solution is developed.

A backorders-allowed model is derived and partially solved

here in general. A full solution is presented for a re-

stricted range of lower echelon parameter values. Examples

of the no-stockouts-allowed model are given and solved.

The solutions from this model are compared to those derived

assuming the activities operate wholly independently.

Significant potential reduction in variable time-average

cost through the use of this model is demonstrated.
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I. INTRODUCTION

A field of primary interest in Operations Research,

especially as applied to supply support problems, is the

study of inventory models. Inventory theory is the appli-

cation of mathematical optimization techniques to the problem

of deciding when and in what quantities certain goods should

be purchased to meet the demand of customers while minimizing

time-average cost [1]

.

The fundamental inventory model, usually called the

economic order quantity (EOQ) or Wilson model, presumes that

all costs and demand are fixed over time, that resupply

occurs after some deterministic leadtime following placement

of an order, and that demand will be met without incurring

shortages of stock, all of this for a single activity hold-

ing only one good or commodity (see the sketch below)

.

Purchase Q.

Cvc^m T"u.*\it.s o"f t,i.vwe

Constat D*****^

More complex and realistic models have been developed by

relaxing some or all of these assumptions [1] . Nevertheless,

the majority of the problems that have been solved concern





finding optimal policies for single activities since multi-

echelon problems are more difficult to formulate and solve.

For many practical applications inventory models for a

single activity suffice. But for some large retail firms

and military supply systems which have centralized procure-

ment for a system of retail outlets or stock-points, a

mathematical model which accounts for the multi-activity,

multi-echelon nature of the inventory system is more appro-

priate. A classic principle of optimization theory is that

any allocation of resources for a multi-component system

based on optimal solutions for each component operating

independently can be no better than the solution found for

the system as a whole by subordinating the roles of the

independent components. It is the author's belief that most

multi-echelon inventory systems tend to operate sub-optimally,

because the above-mentioned independent component approach

is used to solve for stocking policies.

This paper presents a simple, deterministic, multi-

echelon model which is optimized on a "system" basis. The

model is an extension of the EOQ with two echelons, as

depicted below.





PurcWa.se Q<

Consent
X)enrVJ.nd

Constant
'*v\

The upper echelon consists of a single activity which could

represent a centralized procurement and warehousing facility

The lower echelon has m independent retail outlets or stock

points which replenish from the upper echelon and meet the

demands of the customers outside the system. A minimum

time-average cost solution for the system, presuming no

stockouts are allowed and subject to the system cycle length

being an integer multiple of the cycle length of each lower

echelon activity (possibly a different multiplier for each

activity), is derived in Chapter II. In Chapter III, an

algorithm is developed, to find the best choice of integer

multipliers. The case in which customers' demands may be

backordered is taken up in Chapter V. Some examples of the

no-stockouts-allowed model solution are presented in Chapter





IV with an analysis of the cost benefit available in the

use of this model over the use of independent EOQ models

for the activities.

The work in this paper is basically an extension of

the two-echelon model with one activity at each echelon

sketched in [2] and presented in greater depth with the

finite production rate and backorders cases in [3]

.

Several authors have attacked special cases of the multi

echelon problem. A probabilistic model for repairables is

presented in [4] . A probabilistic two-echelon model is

solved in [5] using a dynamic programming technique.

The deterministic models in [2] and [3] , while they are

fine in themselves, solve problems of completely specified

size. The stochastic models of [3] and [4] are not multi-

echelon extensions of the probability models presented in

Chapter Four of [1] . This paper is a natural two-echelon

extension of inventory theory's fundamental model with an

arbitrary number of activities at the lower echelon. It

is hoped that it also provides a starting point for further

development of more complex deterministic models and more

general stochastic models such as extensions of those in

Chapter Four of [1]

.

The author presumes in his presentation that the reader

is familiar with the EOQ model and its backorders-allowed

extension.





II. THE NO-STOCKOUTS-ALLOWED MODEL

A. MODEL FORMULATION

Suppose that there is an inventory system consisting of

two echelons of inventory, performing the procurement, the

holding, and distribution of a single good. The upper echelon

is a single activity which orders and buys the good from an

outside source and holds it in inventory for further distri-

bution within the system. The lower echelon has m independent

activities which order and resupply from the upper echelon

and hold inventory to meet the demands of their customers.

In setting up the cost equation for the system the following

are assumed:

1) All orders are filled immediately (a deterministic
lead time has no effect on the optimal policy) ;

2) all demands are met immediately;

3) the demand rate is constant and continuous over time
but may be different for each lower echelon activity;

4) the goods are purchased only by the upper echelon;
and the price is constant over time;

5) ordering costs are constant over time;

6) inventory holding costs are products of the annual
interest rate and the purchase price of the good
(following [1]); and

7) the cycle length (time between orders) will be constant
for each activity; and system cycle length will be a

positive integer multiple of each lower echelon activ-
ity's cycle length; the number of complete sub-cycles
for each lower echelon activity may be different.

10





The sketch below is a schematic of the material flow in

this inventory system. The construction of the mathematical

model of the system parallels that of the EOQ model.

l^xti^e

Throughout this paper whenever a summation sign ( E ) is

used, it is assumed that sum is taken for the index variable

ranging from one to m unless it is specifically stated

otherwise.

Activity is the upper echelon activity. Activities one

through m are the lower echelon activities. The subscript of

a variable identifies the parameter or variable with its

associated activity. The A-, I., and D. are, respectively,

the ordering cost, interest rate, and consumer demand rate

for the i activity. These, along with C, the unit price

of the good, are the system parameters. The Q., T-, and n.

11





are, respectively, the ordering quantity, the cycle length,

and the number of complete cycles over T for the i activity;

Q. and T. are continuous variables while n. is a positivex i 1 1 r

integer variable.

Let H. be the total costs of running the inventory system

for one system-cycle, T . Since each cycle is comprised of

n. sub-cycles for the i activity, total ordering costs are

A + 2I n ;.Al . Total purchasing cost is merely CQ , for the

goods are bought only at the upper echelon. Let B^(t) be

the quantity of inventory on hand at time t. Then the total

holding costs are Zj IiC j B;.(-t)dt.
, Putting the parts

together

;

A typical realization of the on-hand inventories within the

system over one cycle is shown in the following sketch.

i

I

dm
1

\
"I

o

4

\ \^ X.

\ Activity

Activity

^=3
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The assumptions of the model result in:

T = n. T. for all i;Oil '

Q i
= D

i
T. for all i; and

(2-1)
Q - E n. Q. .xo 1 x i

Now consider I tC J BlW dt £or l<Li^. S nice

the n. sub-cycles are identical and the area under the on-

hand curve for one sub-cycle is just that under a triangle,
Ti

LCjkctWt -- ^kCfBiWdt-w^C

For the upper echelon activity B (t) can be decomposed

into the sum of the inventories held for each of the m lower

echelon activities. If B (t) is the inventory held for the

i
th echelon, then B^ (t) = I bJ (t) where

£>)= {n t -i - r„t \yr]
J
Q. and LtW is

the greatest integer less than or equal to X.

Then

(VcOJt --

I (Vi-Int[%])Q;dt

Summing over i gives
To

o

It follows that the total costs per cycle are

13





B. MINIMIZATION WITH RESPECT TO Q

To compute the time-average cost for the system, divide

the cost per cycle by the cycle length, T = n. T-. Thus,

Km 4^ + 1^ ftl| 4- LiliCQ; * LiToCK-i)^. (z-2)

Although this is a function in 2m + 1 continuous vari-

ables, it can be reduced to a function in one continuous

variable by using the equations (2-1) that arose from the

model's assumptions. Since Q. = D. T- and T = n- T. =
r x l 1 1 Oil

n. T. for i,j = l,...,m; equation (2-2) becomes

In this form, K will be referred to as K(Q, , n, , . . .
, n ) .

For a given choice of n, , . . . ,n K(Q,) will represent equation

(2-3).

Taking the derivative of K(Q,) gives

i!i c - A e P, y Av.ni P.. T T;CD L n , - I.C n,co L-l)D-

4Q. n,Q.1 " * n.Q,*
+ ^ 2D.il; * L 2D, rt-w , (2-4)

and Tq s V implies

Now,

since all of the parameters and variables are positive.

Therefore, Q, gives the minimum of K(Q, )

.

Substituting Q, given by equation (2-5) into equation

(2-3) gives

14





K(GM= P c 'Ao+ZmAiJJ
I.K-nDi + TiDi'

n;
• +Cl3>i. U'O

Let (Q, , o, ,.. . ,
nm ) be an optimal value

of CQt>n., , "m ). Then

Theorem 1-1 : *(&><--»"*)= K(Q!\<*-' J "« ).

Proof : Since K(Q* « *-•>*«%*) = •*>** k(GUAr->0,
©„*V"»n "'

K (Q*,**i •> "~)< K(Q.X,.-.jvC) 4 Now, for each fixed

*.»••>**%, KCQi»«.i-i«m)i KCQ.^.r-^m) for all Qx .

Then K (Q%»*.V ,O < K CQ.»»f»--»Wm ) for all Q 1
-

Thus, KCQ«AV->"£)* KlQ* *?>•,*£). Finally,

K(Q?><->0 * K(Q^*>-- )0* KCQ**?,-,**) which

implies the result.

Corollary 1-2 : Q, = Q, (."*, • ••> n ~, ) .

C. CLOSING REMARKS

Given Q, ,n , . . . ,n the remaining components of the

optimal operating doctrine can be derived. Let starred

variables represent the optimal values of the variables.

Then

Ti* = 5, Qf (2-7)

71* = %T," f«-«»t ',

or all L

(2-8)

(2-9)

(2-10)

15





Qo*= I nrQi*. (2-lD

In this chapter, the no-stockouts -allowed model has been

developed, and the values of the continuous variables which

minimize the time-average cost function (given any set

n,,...,n m of the integer variables) have been found.

In the next chapter, a method for finding the optimal values

of the integer variables is derived which will, by using

equations (2-7) through (2-11), give the optimal policy for

operating the inventory system.

16





III. FINDING OPTIMAL n , ...,nm IN THE
NO-STOCKOUTS-ALLOWED MODEL

Chapter II developed the no-stockouts- allowed model and

gave in equation (2-6) the minimum value of K for a choice

of n,,...,nm . In this chapter a method for finding optimal

n| ,...,nm is given and, for the case A^ = A, for all i, an

optimal search algorithm is stated and proven.

A. THE GENERAL CASE

Let n be the m-tuple (n,,...,nm ) of positive integers.

Let K(n) be the optimal K for each choice of n as given by

equation (2-6). Let n* be the optimal value of n.

Minimizing K(n) could involve considering a countably

infinite number of alternatives for n * . Another potential

problem in seeking n* is that there may exist a sequence

of n's, call it in -1 , such that the I'* K(«^=0. Thus,—
C — j J i-»co

even though K(n) is positive and, hence, bounded below, it

may not have a minimum.

Fortunately, neither of the above problems arise with

K(n). Theorem 3-1 and its corollary given below show that

n* lies in a finite, one-sided neighborhood G of the point

(1,...,1) whose boundary can be computed easily. Hence, n*

can be found by considering a finite number of candidate

points n.

As an example of this peculiarity, consider y(n) = ~^

for n = 1, 2, 3,... Clearly, y(n) > for all n; yet Ifj^yCnuo.
Hence, there does not exist a finite n* such that y(n*) £ y(n)
for all n.

17





Theorem 3-1 : For each n*
%
11 j $ no , there exists an N.

such that K(n) > K(l,...,l) whenever n. ^ N. regardless of

the choice of n. , i •£ j .

Proof : Let

LC?}>= ~ { KCQ)- CLDi]

Note that
I C^^> L(l,--,i) if and only if

K(0)> K (i,-- i) . Let j 6 [i|2,...,vv»! be arbitrary

but fixed. Let

and

/3,
--

5-

Then oi > O and A, > O . Then

Let

Since LCD) -M(*i)> 0, LlQ)>M(*s ).

b- LCi,-,*)
,

and let

where Int [•] is the greatest integer function.

Let

18





Since M(n.) is a strictly increasing function in

N., M(n.) > M(N.) for n. > N . . But

b - AjI;,Pj
N

j > A:T.D: 4 1 >
and

AjIoDj

MWO > C
b
A
A
^f i )A,roD^A,I^

= b = LCI,...,!)-

Hence, for all n- :> N. and regardless of the value of

the n
±

, i#j , LC**> M(n
5 ) ^ LU,-ii).

Then for the same conditions on n, K(n) > K(l,...,l);

and the proof is complete.

Theorem 2-1 shows that the neighborhood

£f-
= !«2 '• 1 ^ nl * Nc a«<i l<t< wl is a hyper box in

the positive integer lattice in m-space with one corner at

the point (!,...,!). The following sketch shows what G

looks like if n = (n ,, n^) .

ft,-t

1

1 -

I !
1 \ \

The
J-Jyper box

i i Ww< ' <

3 4 S <• 1
i r n.
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An immediate implication of theorem 3-1 is the following

corollary that n* lies in the bounded hyper box G.

Corollary 5-2 : For K given by equation (2-6)

Proof : Either n* = (1,...,1), or it is not. If

n* = (1,...,1), then n* = G. Assume now that

n* :£ (1,...,1). Then K(l,...,l) > K(n*) . Now

for all n £ G,

K(n) > K(l,. . . ,1) > K(n*)

which implies that n* is not an element of the complement

of G. Hence, n* £ G . In either case n * £ G. This

completes the proof.

The previous theorem and corollary show that in the

general case n* and, hence, the optimal policy ( Qi i Ti )

can be found in a finite number of steps by an exhaustive

search. The exact number of steps required is equal to the

number of positive integer lattice points in G; namely,
m

f \
TV ^N;.""!)

t
For example, suppose that m = 5 and

c='

N. = 11 for i = 1,...,5. Then the number of iterations

required to find n* is 100,000!

B. THE CASE Ai = A
L
FOR ALL i

The balance of this chapter is devoted to developing an

optimal search algorithm to find n* for the special case of

having the same ordering cost at each of the lower echelon

activities; that is, A- = A
t

for all i. The method of search

• is demonstrated by the following example in which n = (n
,

, n t )

20





Suppose N, = 5 and N^ = 3. The search begins by com-

puting K(i,i) { actually L(l,l)j and saving (1,1) as the

first candidate for the optimal solution. The two adjacent

lattice points in G, (1,2) and (2,1) are compared to find

out which one gives the smaller value for K. Say that

K(l,2) >K(2,1). Now K(2,l) is compared to K(l,l) to find

out whether (2,1) will become the updated candidate for n*.

If K(2,l) < K(l,l), then (2,1) becomes the updated candidate

Whether the candidate changes or not, the search continues

from the point (2,1). Now the two points adjacent to (2,1)

for which either n, or n 2 increases (that is, (3,1) and

(2,2)) are compared in the same manner as were (1,2) and

(2,1). Say that K(2,2)< K(3,l). Then K(2,2) is compared

to the candidate for n* as before, and either an update

occurs or it does not. In either case the search continues

from the point (2,2). The search terminates when either

n ,
= N, or n^ = N2, and, at that point, the coordinates of

the last candidate give n *
. The diagram below shows how

the above search began and how it may have continued.

Pe,.n+ o" Path CA^didafe q*

U.O (•>')

(3,3) S+op. D** (fc*>.

Ik'

5 • • •

4 - » »—
t

*~^* • •

3 •

1

•• • • # «

« p
1

z,

1 -

• • • * m

• • •

1 •

1 1 3 1 * *l
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The algorithm, itself, will be stated at the end of

the chapter. Some theoretical groundwork is required to

prove that this method of search works.

In the following development, let g (n) be a positive

increasing function in each n. defined over the positive

integer lattice in Euclidean m-space. Let n = (1,...,1).

Let n_n ,4
= (n

t
,...,n ) be an element in a sequence of n ' s

which track the progress of the search through the positive

integer lattice. Then let

and let n* be such that

Then the sequence n . I traces the coordinate-wise, unit

step-sized path of steepest ascent in g(n)

.

Define h Ql) by

Thus, h is defined on all positive integers and corresponds

to the value of g (n) along the path of steepest ascent.

Now, when A. = Aj for all i, K contains a function

g(n) for which it is important to find the coordinate-wise

path of steepest ascent. Without justifying its existence

at this point, the particular g(n) will be defined and a

property of its associated function h will be noted.

22





Theorem 5-3 : Let g(n) = Zl 3lC^w) where gi(0) =

and giCrii) = I^Dc^* J^TIj for n i > 1 - Suppose that

I-l > andDi > for all i. If h(
fl ) is defined for g(n ^ )

as above, then h (j} ) ^ g (n) for all n such that

WM

Proof: Let "V",, = Uo^l where

Let h (0) = 0. Finding the JJ
—- element of the sequence

j
Q^l is equivalent to picking the X largest elements

from the set JVo and letting n^ equal one plus the number

of elements picked from aX'l . Then h (j^) = g (n^).

For any other n such that 9= (Ti^l)-*^ , 3t^O is

found by picking the largest n^ - 1 elements or ^K\_ , taking

their sum, and then summing over i. Since the sum of the

£ largest elements in «A.o must be at least as large as

*ili th
/

.

Zj (j— largest element in ) such that

JJ
r (I 1;)-^i h U)^3(2) for any n such that J(

= LUj) - m;

and the proof is complete.

Consider La (n) with A^ = A for all i.

Ll9». (A.*A 1
L«l](l.LDi *L ti^'}

i

Let I ^ = I ^ - I
Q

and suppose for the present that Ij, >

for all i. Let the set J = ) I : nw>l] . Then

Lct>)=[A +A,Ln-4{r.iDL^ii;^- z ?j>c|~
l

lW.
The last expression in the second set of brackets is g (n)

in the previous theorem.

23





The following theorem completes the proof that

coordinate-wise steepest descent works for L (n) and,

hence, for K ( n ) .

Theorem 5-4 : Let n* be defined as before and let

W = (V^ Oil,- } • If
m
n
n L(n) exists, then

min
t r r. ^ - *v»m T tf\\

Proof : First note that theorem 3-1 and its corollary

showed that •*•* L 13} exists. Let a , = A , a^= A,, and

a
3

= Io Zty. + LT-.Di . Then

Clearly, m^iw L c* ) < *v\i* I_,t"M Suppose
a - 2tV *"* - rr

y^irN L(/o < r*\ir\ Lciil . Since the minimum exists, there

is an n | W such that L(2) < tT^r^j(> - ) •
Let j " (£"0~ ^ •

A
Then, from theorem 3-3, Q^n ) ^ fo (0) _. Q (p* ) •

It follows that

This contradiction gives the result.

Corollary 3-5 :
Win K(*> = ^ K C*>.

Proof : See the proof of theorem 3-1.

Theorem 3-3 assumed that 1^ > 0. The following theorem

shows why this assumption is not restrictive.

24





Theorem 3-6 : If Ij £ for some j, then n.* = 1.

Proof : Suppose that rij * > 1. Let n* be such that

Leo*) = ^''"TiCo) •
Now

Let n = (n, *,..., nj = l,...,n^
since n.<n*,

(a, + a^ ii.) < (a, + a^ n" ). Since 1^ ^ O ,

T" * ~~^ an^'oIV#fH(^#|).
Then L(n) < L ( n*) . This contradiction implies n.* = 1,

and the proof is complete.

For the special case of A- = A for all i the preceding

theorems have proven that the following algorithm will

provide the optimal solution.

Algorithm

(1) Let J = (i. : I. >0
J

. If J = $, stop; n.* = 1 for

all i. Otherwise, set n = (1,...,1). Compute L* = L ( n )

and N. = Int [

L* '^ T^'-
+ 1] + 1. Set n = (1,...,1)

and go to step (2)

.

(2) Let j £ J be that index such that wcivl) * m,lV^

for all i £ J. Increase n- by one. If n. N . . stop;
3 3 3

n* = n. Otherwise go to step (3)

.

A
(3) If L (n) < L* , set L* = L (n) and n = n. Otherwise,

make no changes. In either case, return to step (2).
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After n* is found, then Q^*, T-* and K* can be computed

as shown in Chapter II (see equations (2-6) through (2-11)).

Earlier in this chapter it was shown that for an exhaustive

search over G for which m = 5 and N. = 11 for i - 1,...,5, the

number of iterations required would be 100,000. If this

algorithm could be employed (that is, if A. = A± for

i = 1,...,5) for this case, then the maximum number of

iterations required would be 50, an impressive reduction.
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IV. EXAMPLES OF THE NO- STQCKOUTS- ALLOWED MODEL

This chapter is dedicated to some examples which, it is

hoped, will enhance the understanding of the model and will

aid the reader in following the use of the algorithm

developed in Chapter III.

A. AN EXAMPLE WITH LOWER ECHELON SYMMETRY

A two-echelon, three-activity inventory system is

operating with the following parameters:

A
Q

= $500 ;

I
Q

= 0.1/year;

C = $10/unit;

A
i

= A z
= $1 ;

1 1
= 1 L

= °- 05/year;

Dj, = B z = 1,000 units/year

The aim is to find the optimal operating doctrine. The

following sketch illustrates the system.
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The algorithm in Chapter III terminates at step (1)

since I > I
1

= 1^. Equation (2-10) gives

K*(l,l) = $21,002 (or $1,002 in variable costs

alone), and equation (2-5) results in

Q * = 1,002 units.

Equations (2-11), (2-12), (2-13), and (2-14) yield the

remainder of the optimal operating policy:

T * = 1.002 years;

T * = Ti*
= T2* ;

Q i
* = Qi*; and

Q * = 2,004 units,
^o

Had the inventory policy been derived using the standard

EOQ model for each activity, the following would have resulted,

Since activities one and two are identical,

Q t
* = Q z

* - 63.24 units; and

T i*
= Ti*

=
• 063 years.

This results in a time-average variable cost for each of

the lower echelon activities of

K 1
* = $31.62/year.

To find the time-average cost for the upper echelon recall

that T^* = T2
* and, hence, that the upper echelon must

supply I Q.* + Q»*[ every T^ * units of time. The holding

and ordering costs divided by T for the upper echelon are:

AcD,
h

IoCC".-lUQ*»Q >
,*)

K= WiQf Z - K(M.). (4-1)
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Since Q x
* = Q^** equation (4-1) becomes

K= %& * r.C(n,-i)Q*. (4 . 2)

Treating n L momentarily as a continuous variable, it is easy

to see that equation (4-2) is convex in n t
. Minimizing with

respect to n
t
gives two candidate integer solutions for the

minimization problem, n^ = 11 and n^ = 12. Of these,

n i
= 11 gives the lower cost value for the problem parame-

ters. Then the total variable time-average cost in this

second analysis of the inventory system is

n*Q*

= $1,413.40.

Comparing the second analysis to the first, the second

policy yields a cost which is 411 higher than that given by

the optimal policy for the model of Chapter II. This seems

only natural since the model of Chapter II allows for

cooperation among the various activities of the inventory

system.

B. AN EXAMPLE WITH LOWER ECHELON ASYMMETRY

The following example has some differences in the

parameters of the lower echelon activities and the resulting

cost difference between models is more dramatic than that

in the previous example.

Consider a two-echelon, three-activity inventory system,

as in the previous example, with the following parameters:
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A
Q

= $500; A
t

= $100; A z
= $1;

I = 0.1/year; I 1
» I 2

0.05/year;

C - $10/unit; D
t

= 100 units/year;

and D^ = 1000 units/year.

Again, since 1^ = I. ^ 0; n
t
* = n

z
* = 1. In this case

the total variable time- average cost is

K* = $813.08.

The optimal operating policy is:

Q 4
* = 147.83 units

;

Q z
* = 1,478.3 units;

r * = t * = T * = 1.478 years; andl*o '

Q * = 1626.13 units,
^o

As in the first example, a policy can be derived assuming

independently operating EOQ activities and the variable costs

can be compared.

The EOQ operating policies for the lower echelon activ-

ities are:

Q L
* = 200 units;

Q z * = 63.24 units;

Ti * - 2 years; and

T2
* = .06324 years.

This yields time-average costs for the two activities of

Kj^* = $100/year , and

K 2
* = $31.62/year.

30





There are two alternative policies for the upper echelon to

employ. One is to order for both lower echelon activities

on the same cycle. This leads to the constraint

n t Tt * = n^T^*. The smallest values of n 1 and n^ which solve

this equation are n ^ s 1,581 and n^ = 50,000, and they

result in a policy with ridiculously high costs for the

upper echelon. The other policy is to order for the two

activities on independent cycles, and it is this second

policy that is derived. The variable cost for the upper

echelon as a function of time is

Z(t)= Ao^t[v^] + A 9I^tvfV^ + holding costs (t) . (4-3)

Dividing equation (4-3) by t gives

K(tW t
1 +avc. UUjcoststo.

(4 _ 4)

As t grows large, Int [ m *] = L(t) , a large integer; and

Similarly,

Int [npt?] _k

Average holding costs, by an argument similar to the one

above, stabilize at

L C(n,-l)a* TaC Ox- 11 g£
5 a

Then |i m «U^- K . where

t->oo

31





K . ^_ +
A^

+
I,C(vi)Qi T eCK-i)Qr

r%,T,» n r r/ A 5 (4-5)

KO^iij) .

Equation (4-5) is convex in n ^ and n* if n ^ and n t are

treated as continuous variables. Minimizing K with respect

to n^ and n^ gives n^ = 1.58 and n^ = 15.8. Four alternative

solutions for integer values of (n^n^ are (1,15), (2,15),

(1,16), and (2,16). Of these four, the choice that offers

the smallest value of K is n < = 2 and n ^ 16. For the

upper echelon alone, then,

K(2 ,16) = $1,193.45.

Adding to this the time-average cost for the lower echelon

activities gives a system time-average variable operating

cost of $1,325.07.

The second operating policy yields a system time-average

cost which is 63% higher than that for the optimal policy

for the model presented in Chapter II. With asymmetry in

the problem, allowing the activities to cooperate pays even

greater dividends.

C. AN EXAMPLE WHICH EMPLOYS THE ALGORITHM IN CHAPTER III

This final example shows more details of how the

algorithm of Chapter III works.

Consider a two-echelon, three-activity inventory system,

as before, with the following parameters:
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A
Q

= $5; A
1

= A 2 = $5;

I = 0.05/year; I 1
= I L

= 0.1/year;

C = $10/unit; D L
- 100 units/year; and

V% = 1000 units/year.

For n
1

= n
a

= 1, L (n) = $1650. Then

N 1
* Int [

165
25

5 °
+ 1] + 1 = 66, and

m t«+ r
1650-500 -,-, , ,N z = Int [

—

jttq +1] +1 = 6.

Since for i = 1, 2 ,

I±A = 5/2 and

Ij
- D* = 50/2 ;

set n^ = 2. Now n = (1,2) and L(n) = $1700.

Then n remains (1,1) and L* remains $1650.

The table below shows the progress of the algorithm.

In this example n jj*
= n^* = 1. The optimal policy could

then be computed using the equations at the end of Chapter II
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r>i n*. L(Q) L*
A

1 1 IG5o IG 5 o ci.n

i X ("too / 65o (l.i)

1 3 lilt /&5 u.u

1 + SLITS' (450 (l,i)

3L 4 £450 /&50 C1>1)

X 5 ;noo /650 Ci.l)

3l Q> SroP, SjNiCE nx = Nl^.
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V. THE BACKORDERS-ALLOWED MODEL

A. MODEL FORMULATION

This chapter extends the model developed in Chapter H

by allowing the lower echelons to run out of stock and to

backorder the shortage until the next order is received.

For each unit backordered a penalty cost is assumed to be

suffered.

The sketch below shows the net inventory during one

cycle for one lower echelon activity. For activities one

through m a new variable, s., the backordered quantity for

one cycle, and a new parameter it., the shortage penalty

cost, are introduced.

(5-1)

The total costs for one cycle are given by (5-2)

1-- A. + CZ»-A* LCmaMfniCh-i^ _ «. a.

+ £ (holding cost for lower echelon activity i)

+ Z (shortage penalty cost for lower echelon

activity i)

.

(5-2)
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The holding cost is the product of I..C, the unit holding

cost per unit time, and the area under the on-hand inventory-

curve over n. periods. That is:

The shortage penalty cost is the product of ir., the unit

penalty cost, and the total number of backorders incurred

over n. periods. That is, n.ir.s.. Thus, equation (5-2)

becomes

:

1 -- Ac + L*.Ai * C ItGL + Lt LT; l̂ li Q .

4 Ll-.C°iBr
}t+

L^^Si • (5-3)

Dividing equation (5-3) by T gives the time-average

cost for operating the inventory system.

Equation (5-4) will be denoted by K(Q
A
,s,, . .

.
,s .n^ , . .

.
,n ).

B. OPTIMAL OPERATING DOCTRINE FOR GIVEN n ,...,n .

m

A full statement of the problem faced in minimizing

time-average system cost would be:

minimize K (Qn*">^**iT»>—/n*,SM ...,Sm,rt,,.-- >^rv»)

subject to Q = X»lQl %*<} Ql*DiTt £<rr L* l,-,™ >

Q-
fc
JtO -for i-

s 1, .»»«*,

and mX* n-^sT. -for L'-l,-^ d»<* ^ 1,-,™.
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Equation (5-4) presents K with the equality constraints

already satisfied. Full justification for this simplifica-

tion is not presented here, but the reader is invited to

consider what information the Kuhn-Tucker conditions would

give in the case of the equality constraints and how this

would then be used to simplify the other first order condi-

tions. Consider only the problem posed in minimizing K

given by equation (5-4).

minimize K(Q t ,s
1

, . .
.
»sm ,n

t , . .
.
,nm )

subj ect to Q^ >/ ;

°* s i* -^t^< and

n- ^ 1 and integer.

Disregarding the variables n<,...,n for the time being,

notice that the constraint set is convex. If K itself is

convex, then the entire problem is a convex programming

problem with a global optimum. The issue of the convexity

of K will be discussed later.

Let Qi>s^,...,s denote the values of Q^s, ,...,s

which minimize K for a given choice of n^, . .
.
,n . Let

Q«* > si* > • • • > sm
*» n

i*»
• • • » n * De tne optimal values for all

the variables. By arguments similar to those given in the

proof of theorem 2-1 the following can be shown to be true:

Theorem 5-1 : K(Q
1) s,,...,Sm ,<,,..,nm > s K(Q?,s* ...,s£, »,%..,, n*f).

A A A
Now Q1 ,s1 ,...,s can be found by the calculus.

K(Qi ,s
1 , . . . ,s ) is a global minimum for given n

t
,...,n
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if the first partial derivatives of K with respect to

A A A
Q 1 ,si ,...,s evaluated at Q 1 ,s

<L
, . . . ,s ,n t , . . . ,n are zero

and the Hessian of K is positive definite (so K is convex)

for the specified n« , . . . ,n and for all feasible values of

Q^,s^,...,s . There are several cases, however, in which

this approach to solving the problem fails because either

the partial derivatives cannot be set equal to zero simul-

taneously for some Q 4 £ and some s. such that

0£Si 6. j£-=p Q, for each i, or the Hessian of K is not positive

definite

.

Taking the first partial derivatives of equation (5-4)

with respect to Q ^ and s.:

55," *.q.
x +j-- l ^

avul>l
- q\ z» —^7— (5-5)

* *- 5to/D, " Q»x " '

2.n,D-,. " q* ^ a, ; and

3< IX s-,n-cD, TCI n L T3,

Setting equation (5-6) equal to zero and solving for s-

yields

:

s
i

=
IlCoiD, • ( 5

- y )

Substituting this result into equation (5-5) and setting

(5-5) equal to zero gives a quadratic equation for Q

in terms of the system parameters.

B, <3'
2

+ Bo - C where
(5-8)
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B_ J
L SUiS.

y)

Depending on the values of B ^ and B 2 the method for

finding Q^> s
i

> • •

•

> sm varies so that a case by case analysis

will have to be made. Note that it is possible that B^ can

be negative, zero, or positive, depending on the sign of

its numerator,

h '

(5-9)

Note also that if n. =1 for all i then B ^ = ; otherwise,

B j < 0. Six cases will be considered below:

CASE Bi Bi

ONE = =

TWO < >

THREE = >

FOUR < =

FIVE < <

SIX = <

In the analysis of the cases, the following property

of K will be valuable. For a fixed, positive Qj,, K is

positive -definite everywhere for s^,... ,s ^ If some

of the s. = and Q^> 0, then K is positive definite every-

where in the remaining s. y 0. To see that this is true

consider f^T .
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3*K IlC^Vj
Ss^Si " ^."BwQ for i = j ; and

- Q for i * j .

Hence, the Hessian of K in any non-void subset of the s.'s

is a diagonal square matrix with all of the diagonal terms

positive. This implies its positive definiteness and the

resulting convexity in the s.'s. Additionally, when the

3 K
value of s. that renders ^-r. = for each i is substituted

into K given by equation (5-4), K is then convex in Q^.

This method for finding the minimizing values of

Q^ ,s
A , . . . , and s is justified in Section D.

CASE ONE : B
i

= and B z
= 0.

In this case equation (5-8) cannot be used to solve

for Q^ since it yields no information. Let Q^ > be

arbitrarily large but fixed. Then s. is given by equation

(5-7), and the positive definiteness of K in s^,...,s
A A

implies that s^ , . . . , s provide a global minimum for the

given Q^. Now consider K as a function of Q^ at the value

s 4 , . . . ,s . Its value is
* m

K C iDl + S *J>l •

Since K is independent of Q^, Qj_ could be any positive value,

Once it is selected, s. could be computed using equation

(5-7).

A problem arises, however, if Q± is chosen such that
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A , wax ZEiS.1

Uii * 1*1 <m XiC

since equation (5-7) would give s.< for some i. The

problem is resolved by considering the following two state-

ments of the problem.

A
Minimize KCQ^s, , ...,s ) ,

given Q, < ls;£M ^- m

Minimize K(Q 1 ,st ,. . . ,sm) ,

given Q t
<

lllJW| jtc" ; and

s . £, for all i.

Since the second statement is a restriction of the first,

the best answer to the second can be no better than the best
A A A

answer to the first. This implies that K(Q
1
_,s

1 , . . . ,s ) for
A

. an a. x TC^Di ^ _ -iv

Ql lfii^ T-.C 1S greater than or equal to CLDi+ Z'^L i-) i.

and that there is no advantage to choosing Q t
that small.

Thus, Q, can be picked as long as Q, £ t^jr* t
l g >

A
and s. is then computed using equation (5-7).

CASE TWO : B
j>

< and B^ > 0.

A
In this case Q^ can be computed using equation (5-8);

a f Btl* a „** hlICiD,,
namely Qi = I" -g- I . Provided that Q t ^ lil*^ n.IwC ">

A
s. will be non-negative for all i; and the problem will be

solved. If Q t <
i«'t t,* r^x c » then s. < for some i

would result. Thus, for Q « <
**** c

*"
'

this method

of solution is invalid.

41





WKXX CV,. TLi t>,

Suppose that Q^^uLim A.IcC and fixed. Solving

for s 4 ,...,s that minimize K results in
*• ' m

WAX «lt^,
Additionally, suppose that Q 4 <i<Uv* nJ.C •

Then l< (Qi , S.CQ^, ... , SmW.) ) < minimum K subject to

Qt = Qi • In fact, as Q^ decreases from Q^ towards Q^

,

K decreases. Let

^1 =
l<«.<*n HiXvC ^

and let Q^ decrease from Q^ to Q ^ = e^. Minimum K is taken

on where s. = for at least one value of i. Let
1

(
i:s

i
> °1 •

Y^ ) i : s. I . and

Y,
X

Now as Q L is decreased, the minimization of K given Q A
< e.

becomes

minimize K

subject to Q^ fixed; and

s . = for i 1 Y4 .

i 1

The functional form of minimum K is:

^ . J- } A.t>, y ^AiD, T n.D.U^D-J

+ L^3>c+ (i^.CL-j^— * Lt^-I (5-10)

The first bracketed expression remains positive and increases

as the number of elements in Y«, decreases. The second

bracketed expression also remains positive and increases as

the number of elements in Y, increases.

42





Equation (5-10) remains a valid expression for minimum

K in Si»...,s given Qj_ fixed until Q t is decreased to the

point where equation (5-7) implies that another s. = for

some i. Then the functional form of minimum K changes,

because the sets Y, and Y^ change. Once Y^ and Y^ have

been modified to restrict any of the s.'s from turning nega-

tive, equation (5-10) is again valid. This method of

recursively formulating K remains valid until Q^ has been

decreased to that value which requires Y^ = X and

Y, = |l,...,m|. Then the problem reduces to the one given

in Chapter II, s. = for all i.

As i ranges from one to m, let e^ > e
2 > . . . >

e

p
be an

ordering of the ratios _
; r

-

. That is, let

l
= max [T^xTc"' fii—i"1

] )e

e^ = max

e = max
P

A
If Q^ < e^, the optimal values of Q^ ,s< , . . . , and s are those

which correspond to the least value of K from among the

sequence of problems stated in the above two paragraphs.

The first problem in the sequence is to

yy\ * r\ i rr\ i i d |<^

Si> Li Ya

Subject to S L= O -Cot- U Y,
7
<X«A
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where Y L and Yz are the first Y L and Yz formed.

For this problem

H.- CtDi *.Lv
fcl>i i

*"*

E
3

=

Now K is convex in Q t , and, hence, minimum K corresponds to

Q l
=

{gJJ »T ez ^
( g;}

< e, 5
otherwise

Ql = e. such that K(C-0 £ £{£
K(Ci^

This procedure is followed p-1 times for the p-1 inter-

vals for Qi , and for each iteration a value for minimum K in

Q 1 is generated. The value for K where s. = for all i need

not be considered since the last of the sequence of p-1

problems examines K(e ) . From among these p-1 alternatives,

pick the least value for minimum K. This will give a feasible
A A

value for Ql from which feasible s. can be computed for all

i £ Y^ of that iteration. Of course, s- = for all i £ Y^

of that iteration.

CASE THREE : B t = and B^ > .

In this case equation (5-8) cannot be used to solve for

Q ^ since j " W" r is not defined. Let Q l > be arbitrarily

large but fixed. Then s- is given by equation (5-7), and the

44





positive definiteness of K in slf ...,s implies that, for

fixed Q t , s
t
,...,s provide a global minimum.

Now consider K as a function of Qj. at the point

(st ,...,sm).

K = ^ [expression (5-^) + CEDi + I 1^. (5-11)

For Q L ^ e. , equation (5-11) is valid and minimum

K = li^ K =. C Z.D-W+- Z.X,-,.3>i .

<?,-"> CO

But suppose that Q^< e . Then equation (5-11) is no

longer valid, and an analysis similar to that performed in

I t L 11*

reduces to E « = ZJ I _ . The minimum K is picked from
«5 v eK D i

CASE TWO is required. The only modification is that E^

Y, 3D,

among the p-1 alternatives. If that value of K is less

than CU>i4- ritilfe, then Q t ,s
L
,...,s are the corresponding

values for which that K applies. Otherwise, Qj. =oO and

A
s . = o© for all i. This suggests it is best not to go into

business

.

CASE FOUR : B L < and B t = 0.

In this case equation (5-8) cannot be used to compute
A A

Q^ since it implies that Q^ = which in turn would imply

s. < for all i. As before, minimum K for a given large Qi

A
can be found when s. is determined by equation (5-7).

Then K = CID^ XmPi + Q.(r^L (^'^ L

\
. Since K is

strictly increasing in Qi, K is minimized as Q i is minimized,

But this argument is only valid for Qj_ > e^ . Hence one

candidate for minimum K is
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k = c id i + l*-j>i + e,[r cL 2 ^ Vl \ # (5-12)

For Qj_ < e. , s. = for some i; and the formula for minimum

K changes.

Since s- = for some i, B increases; and, hence,

B
JL

> 0. Now CASE TWO applies. The minimum K under CASE

TWO conditions is computed and compared to equation (5-12).

If K in (5-12) is less than the CASE TWO solution, Qj^ = e 1

and s. is computed with equation (5-7). Otherwise, the

CASE TWO solution applies.

CASE FIVE : Bj < and B a
< 0.

In this case equation (5-8) cannot be used to compute

Q L since ("~ -g— r is imaginary. As before, for a given

large value of Q\ the minimum value of K is given by:

(5-13)

Since expression (5-9) is negative, K is minimized for min-

imum Q^ . But equation (5-13) is only valid for Q^ z ©i •

Hence, a candidate for minimum K is the K given by equation

(5-13) evaluated at Q^ = e^.

For Q L < e t construct Yj_ and Y^ as was done in CASE TWO,

Here, K is given by

K

Yi v Hi J.
(5-14)
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I

Now, if

remains negative, then the next candidate for minimum K is

K given by expression (5-14) evaluated at e*. This analysis

continues (evaluation at e^ would be next) as long as

epxression (5-15) remains non-positive. If expression (5-15)

turns positive at some iteration, then the procedures of

CASE TWO apply for the remainder of the analysis. Then

minimum K is picked from among the p alternatives, and

Q l ,s1 ,.. . , and sM are the values that pertain to the K thus

picked.

Although this search is sufficient to find minimum K

it can be streamlined somewhat so that fewer alternatives

need be considered for minimum K. As K is transformed from

iteration to iteration and indices migrate from Yj. to Y^

,

K is continuous in Q^. That means that K for two successive

iterations when evaluated at the common boundary point is

the same. While expression (5-9) remains negative we have

seen that minimum K in Q^ is taken on for Q ± equal to the

left hand or smaller boundary value. Thus, as K changes

from iteration to iteration and as long as expression (5-9)

remains negative, K continues to decrease with decreasing

Qi. Accordingly, past values of K may be discarded as

potential minimum K since they are greater than the present

K.

The first value of K that should be retained is the last

value of K for which expression (5-9) is negative which
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equals K evaluated at the right hand or upper boundary value

for Qi for which iteration expression (5-9) is positive for

the first time.

CASE SIX : B t = and B^ < 0.

This case is the same as CASE FIVE except that the term

(3i |loC> L ^n'T) 1
^ s roissing. If expression (5-15)

turns positive, then this problem falls into CASE THREE

except that E^ = —- . The appropriate
A "

values of Q t
,s. , . . . , and s are found as they were before.

C. THE SEARCH FOR OPTIMAL n t , . .
.
,n

1 m

Finding optimal n
l
,...,n involves many calculations.

The first problem that must be addressed is, as in the

no-stockouts-allowed case, showing that only finitely many

points need to be considered. In general this cannot be

done since, without some restriction on the parameters, as

the values of n^,...,n range, the solutions for
A

A A

Q»,s 4 ..... and s found in Section B cannot be controlled

and the value of minimum K cannot be predicted. However,

if the assumption that ZA^TlC £ TC t I>L for each i is

made; the hyperbox G can be constructed.

Consider the following two problems:

(1) minimize K(Q
1
,s

i , . . . ,

s

m
,n

i , . . . ,n
m )

subject to n . Z> 1 integer;

Q i £. ; and

QSS^ ~^ Q, -for all '«. ', and
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(2) minimize K(Q
t ,s ± , . .

.
,s
m
,ni , . .

.
,n
m )

subject to n. ^ 1 integer; and

Q t
>A ; and

S'L $ ^Yt

Q\ for all i.

The first problem is the minimization problem that CASES ONE

through SIX address with n*,...,n fixed. The second problem,

given that 2/UXlC £ t-V. &%. has as a solution s- and Qt

given by equations (5-7) and (5-8) for a given n
i
,...,n .

The second problem is also a relaxation of the first problem.

Let K^ * (n^, . .
.
,n ) be the optimal solution to the first

problem for a given n.,...,n . Let K l *(n 1 , . . .
,n ) be the

corresponding solution for the second problem. Then

The following theorem shows that n* = (1,...,1).

,7,
Theorem 5-2: 2A ;.I; C >K. D. for all i,c l ^ l l

then n* = (1 , . .
. ,1) .

Proof : The following argument shows that, if

for all i, then whenever n. £ 2, regardless of the choice

of n. ,

J

K* $ K
i
*(l,...l)< Kz*( ni ,...,nm)^ K

1
*(n

1
,...,nm )

where K* = Kv* (n^* , . . . ,n *) ; and, hence, n.* = 1 for each i

Substituting Qj_ given by equation (5-8) and s- given by

equation (5-7) into equation (5-4) for K yields equation

(5-16), the solution to the second problem for given

n^, . . . ,n
m
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K z \*)* B 3
+ {B+ co)[B5co)-t^(B6+B7

cn) + B8CoO]l
/2

' (5-l
5 J )

6]

where

B
4W = I CI^

B
5
(n) = Ao 4. 7 & ^g " 7L

'
J):>

5 v-' o ^ 2i;C

B, = A*
fe o

B
and7

Cn) = ( E«iAl)
X

3

Note that if n. >, 2 for some i (or Bj_ < 0, the condition

that makes this solution for K valid), then B^, B^. (n) , B5 (n) ,

B/, B-j (n) , and Bg (n) are all positive. Then, for K given

by equation (5-16),

Kz*tn ) > B 3 .

Consider now K(l,...,l). Since B
2
> and Bj_ = 0,

CASE THREE applies. Recall that for CASE THREE

rv\ in KCQ.) ^ ,Im **'" KLQ t
)= 3

S,yi$rA Q-)00 S,f")^m

It follows that whenever n . 5. 2 for some i

K
jL

*(l,...,l) ^ K
t*(nJ

< K^Cn).

This completes the proof.

D. THE CONVEXITY OF K (Q 1 ,s , . .
.
,s )

Throughout this chapter the various efforts that have

been made to solve for minimum K have disregarded the notion

that K may not be convex in Q 4
,S£ , . .

.
, and s . In general,
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it is not. One way to show convexity is to show that the

Hessian of K, the matrix of second partial derivatives, is

positive definite. The Hessian of K is

30,Ss,

as*
a*K

^K *

SS^Q,
<

*

ill
3s *

Now,
^K . g.A,D,

£Q*~ n.Q,3

feldS;

Let (h-0 be the Hessian of K. Since ^ =" = o

for i it j, (h--) is sparse (if m = 9 , then (h-0 nas only

28, out of 100, non-zero entries). However, the analysis of

(h..) for a problem of arbitrary size is difficult. The

case for m = 1 illustrates this.
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Suppose m = 1. Then (h .
.
) has only four entries and is

positive definite provided that hM > and J ^ t| kiz - U,x (
> 0.

For Q.> 0, h M > 0. Now
z

.

If D^ = 2, this reduces to

Q. ",

which is negative for "tt\ sufficiently large. Hence, (h..)

is not positive definite for all feasible values of Qj. and

s±; and K is not convex.

Although the convexity of K is a sufficient condition

to claim that a feasible stationary point of K is a global

minimum, it is not a necessary condition. The analysis in

Section B showed that if K was first minimized over

s 4 , . .
.

, and s (K is convex in s<,.... and s ) and if the1 m L 7 m

resulting cost function was then minimized over Q^
A \

(K(Q^ ,s> , . .
.
,s ) is convex in Qi ) , a global minimum could

be found. The following theorem formalizes that approach.

Theorem 5-3 : Let

KCQ,)= ^Q,?.,---3~> '
Z"'™~

KtQ„S 1) ...,S.O,

and let
A

^' J
Qv

Then K(Q t*,s *,..., sm
*) = K(Qt ) ; Q t * = QL ; and s^ = s

i (Q4 )

for each i.

Proof : Since K(Qj.* .s^*, . . . ,s *) is the global minimum,

K(Q4*S *,...,s *) < K(Qt ).: 1 * * ' ' ' ' m
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Now,

K(Qi) $ K(Q
1 ,s 1*,...,sm*),

and, hence,

KCQi) * K(Q
t
*, Sl *,...,

s

m*).

Therefore,

K(Qi) = KCQaSs *,...,s
m
*)

Finally, it follows that 0^* _ Qt ; and s-t
* = s . (Q.) for

each i. This completes the proof.

This method of finding the optimal solution is used

throughout CASES ONE through SIX. It suggests a weaker

sufficiency condition for (Q^*,s^* , . .
.
,s *) than convexity

of K. This condition is proposed in the following corollary

A
Corollary 5-4 : Let s- be the value of s. which minimizes

A

K(Qi ,s 1 , . .
.
,s ) for a given value of Qt . Then K(Q

1 )
=

K(Qi,s 1 (Q 1 ) ,. . . ,s
m (Q1 )) is convex.

E. CLOSING REMARKS

This chapter has offered the development of a backorders

allowed extension of the model presented in Chapter II.

Section B derived a method that can be used to find candi-

date points for a local minimum to K. Section C showed that

n.* = 1 provided that 2A.I.C 2 It. . D- for each i. Section D
l r 1111

showed the solution technique discussed in Section B indeed

provided the global minimum. In all, the general backorders

problem has been solved except for the problem of bounding

the search in n when 2A
i
I
i
C < TL

i
D
i

for some i.
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VI. CONCLUSION

A. SUMMARY

This paper has presented two deterministic multi-echelon

inventory models. The assumptions of the first model led to

the development of an extension of the EOQ (no-stockouts-

allowed) model. Through the presentation of a handful of

theorems, it was shown how the optimal policy could be found

either by exhaustive search in the completely general case

or by a rapid steepest descent search in the case where the

ordering cost is the same for each lower echelon activity.

From the author's point of view the three most inter-

esting aspects of this paper are the assumptions for the

steepest descent algorithm, the effect of I • = I .
- I on* 6 > 110

optimal n in the no-stockouts-allowed model, and the general

method for finding optimal K(g) in the backorders model.

The first point of interest is the way in which the

assumption A. = A
t

for each i affects the search for optimal

n in the no-stockouts-allowed model. That this assumption

streamlined the search is of some interest mathematically,

but it is of additional interest from an economic point of

view. In military applications of inventory theory it is

usually assumed that the cost of ordering or requisitioning

is constant for any one class of activities. For example,

among Navy stock points inventory "pull" item orders have

roughly the same cost. In the case of afloat activities
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it was long assumed that the cost of submitting and pro-

cessing any requisition was $7. The exact figures are not

important here, but the principle lends additional justifi-

cation for the assumption.

The second point of interest is that the observation

that I. = I»-Io<0 implies that n.* = 1. This says that the

cost to the system of holding goods at the upper echelon is

at least as great as the cost of holding them at that par-

ticular lower echelon. In this case, the solution shows

that the optimization strives to minimize the holdings of

the upper echelon because of the relatively high "opportunity

cost" presented. This notion seems to support military

decisions to provide central procurement activities with

an unencumbered "open to buy," because the "opportunity

costs" for alternative decisions are high.

The third point of interest is strictly a mathematical

one. Even though the cost function in the backorders-allowed

model is not convex in all the continuous variables simul-

taneously, theorem 5-3 and its corollary show a global

optimum can be found by decomposing the cost function

minimization problem into a sequence of two convex-program-

ming problems. Thus, for this problem, a weaker sufficiency

condition than the standard one of convexity has been found.

B. RECOMMENDATIONS FOR FURTHER WORK

Specifically, there are two points in this paper that

should be re-examined and, perhaps, extended. The author
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feels that an optimal search plan, such as the algorithm in

Chapter III, can be developed for the general no-stockouts-

allowed model. For the backorders allowed model it was

shown that if 2A.I.C} TC
2

. D. for all i that n.* = 1 for

all i. A bound and search scheme should be developed for

z
the case where 2A-I.C<TC- D. for some i.11 11

A general area suggested for further work is to extend

the backorders-allowed model for the case in which the

backorder-penalty cost may be time-weighted. Additionally,

a "lost sales" model could be developed.

C. CLOSING REMARKS

In appraising the value of this new model it should be

remembered that it represents an attempt in basically a new

direction. Simple results usually forerun more complex ones

which are often more directly useful. However, just as the

standard EOQ model serves as a good first approximation to

more complex deterministic or stochastic single activity

models; so perhaps this model may be found similarly useful

for multi-echelon models.
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