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ABSTRACT

In order to support search planning for counterdrug operations, we introduce a generalized

Orienteering Problem (OP) where transit on arcs in a network and reward collection at

nodes both consume a variable amount of the same limited resource. We exploit this

resource trade-o� through a specialized branch-and-bound algorithm that relies on partial

path relaxation problems, which often yield tight bounds and lead to substantial pruning

in the enumeration tree. We present the Smuggler Search Problem (SSP) as a real-world

application of our generalized OP. Numerical results show that our algorithm applied to

the SSP outperforms standard mixed-integer nonlinear programming solvers for problems

with seven or more targets. We present model enhancements that allow practitioners to

represent realistic search planning scenarios. We investigate how evolving uncertainty in

planning data can be addressed by a multi-stage stochastic programming model.
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Executive Summary

This research is motived by the ongoing e�orts of the Joint Interagency Task Force South

(JIATFS), which conducts search operations in order to stem the �ow of illicit tra�ckers

from South and Central America. Planning real-world search operations is a particularly

di�cult task. Planners, operating under strict time constraints, weigh uncertain infor-

mation about target whereabouts against the limitations of their search assets in order

to develop a search plan that they expect will produce a �good� outcome. The problem

of routing search assets in order to maximize the value of the plan is even more di�cult.

Path-constrained optimal search problems, such as this one, are known to be NP-hard.

There are no known algorithms that can solve these problems in polynomial time. Thus,

the practical di�culty associated with real-world search planning is compounded by the

technical di�culty of an NP-hard optimization problem. Aiding the search planning pro-

cess requires models and algorithms that give planners the ability to both capture the

important features of real-world scenarios and solve problems in a reasonable amount of

time.

In order to aid the search planning process, we generalize the Orienteering Problem (OP),

where a vehicle is routed from a prescribed start node, through a directed network, to a

prescribed destination node, collecting rewards at each node visited, in order to maximize

the total reward along the path. In our generalization, transit on arcs in the network and

reward collection at nodes both consume a variable amount of the same limited resource.

As such, we name this problem the Generalized Orienteering Problem with Resource

Dependent Rewards (GOP-RDR). We exploit the resource trade-o� through a specialized

branch-and-bound algorithm (B&B) that relies on partial path relaxation problems, which

often yield tight bounds and lead to substantial pruning in the enumeration tree. The

GOP-RDR and B&B can be used to model and solve problems in many application areas,

such as mission planning for search aircraft, commercial vehicle routing, sports, tourism,

production, and scheduling.

We present the Smuggler Search Problem (SSP), a novel path-constrained optimal search

model in continuous time and space, as an important special case of the GOP-RDR. The

SSP is used to �nd an optimal search plan for a single searcher that is routed in an area of

interest (AOI) to detect multiple linearly moving targets. Many practical problems involve

planning for 10 or fewer targets. Numerical results show that B&B applied to randomly

xvii



generated SSP instances with seven or more targets outperforms standard mixed-integer

nonlinear programming solvers. We present a search order heuristic that can be used

to quickly compute good search plans, with runtimes within one second for problems of

up to 10 targets. We demonstrate that the search plan values of solutions computed by

the search order heuristic are within 1-3% of the optimal search plan values for problem

instances with up to 10 targets.

We develop �ve enhancements to the SSP, along with tailored solution procedures, that

can be used together or separately to model various real-world search planning scenarios.

The merits of each SSP enhancement are demonstrated on a benchmark scenario, which is

developed to highlight many of the issues that may be faced by real-world search planners.

In the �rst SSP enhancement, we account for complex target motion by approximating

each target's movement path with a piecewise-linear track of segments. This model may

be used in planning scenarios where the target's speed and/or direction changes along its

path, as well as when the searcher's performance characteristics vary in the AOI (e.g.,

due to environmental conditions). We demonstrate that this model, with seven target

segments and a single searcher, can be solved to optimality using B&B in 3.5 seconds.

In the second SSP enhancement, we account for multiple cooperating, heterogeneous

searchers. We solve problem instances of this type using B&B on a searcher-expanded

network. Many practical problems involve planning for one or two searchers. We demon-

strate that this model, with seven target segments and two searchers, can be solved to

optimality using B&B in 48.9 seconds, while heuristic solutions, with search plan values

within 10% of the optimal plan, can be computed in as little as 1.3 seconds.

With the third SSP enhancement, we demonstrate that scenarios with high uncertainty

in a target's movement track may be modeled by allowing search in �xed regions. This

model allows planners to account for targets whose departure time uncertainty value is

larger than the duration of the planning horizon. We demonstrate that this model, with

eight target segments and two searchers, can be solved to optimality using B&B in 64.8

seconds, while heuristic solutions, with search plan values within 10% of the optimal plan,

can be computed in as little as 1.4 seconds.

In the fourth SSP enhancement, we coordinate aerial search e�orts with the positioning

of surface interdictors. This is an important consideration in counterdrug operations

xviii



where searchers must rely on surface assets to physically intercept smugglers once they

are detected by the searcher. By adding continuous variables and convex constraints to

the search model, we develop the �rst search-and-interdiction model that can be used for

planning in real-world counterdrug operations. We demonstrate that this model, with

eight target segments, two searchers, and four interdictors, can be solved to optimality

using B&B in 84.8 seconds, while heuristic solutions, with search plan values within 10%

of the optimal plan, can be computed in as little as 1.5 seconds.

The �fth SSP enhancement is a multi-period search model that accounts for sequencing

search plans over multiple mission execution cycles. We show that this multi-period model

may be used to improve plans when search needs to be coordinated with the positioning

of interdictors over several planning periods. We demonstrate that this model, with 16

target segments, two searchers, four interdictors, and three mission execution cycles, can

be solved to optimality using B&B in 6.9 hours. Runtimes as short as 3.1 seconds can be

achieved by heuristics, which yield solutions with search plan values that within 19% of

the optimal plan.

We study the sensitivity of optimal search plans with respect to environmental uncertainty.

We demonstrate that planners need to consider the certainty level associated with scenario

data, be aware of how changes to this data may a�ect the plan, and, if possible, directly

account for data uncertainty by using a multi-stage search planning model.

We present a multi-stage stochastic programming model that allows planners to account

for evolving uncertainty by considering a scenario-based planning approach. We show

that a scenario-based approach, as opposed to planning for a single scenario, can yield

more valuable search plans with lower risk of poor performance in worst-case scenarios.

We demonstrate that the multi-stage model, with �ve target segments, a single searcher,

and four scenarios, can be solved to optimality using B&B in 1.5 hours. In order to solve

larger problem instances, we show that the progressive hedging algorithm may be used to

compute solutions to multi-stage problems with many scenarios. We demonstrate that the

multi-stage model, with �ve target segments, a single searcher, and up to 100 scenarios,

can be solved using progressive hedging in within 1.5 hours.
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CHAPTER 1:

Introduction

1.1 Motivation and Background
This research is motived by the ongoing e�orts of the Joint Interagency Task Force South

(JIATFS) to stem the �ow of illicit tra�ckers (a.k.a., smugglers or targets) from South

and Central America. This mission is large and complex. JIATFS is tasked to not only

search for and detect illicit tra�ckers, but it must also plan to monitor them and facilitate

their interdiction once detected (Joint Interagency Task Force South 2013). We consider

a search planning problem where aerial searchers are routed within an area of interest

(AOI) to detect and monitor targets, while surface interdictors are assigned to locations

in the AOI so that targets can be interdicted when a detection occurs.

Current search planning is done manually by planners with years of operational expe-

rience. These planners weigh a number of variables associated with targets (e.g., time,

space, uncertainty, and priority) against the constraints on their search and interdiction

assets (e.g., availability, capability, location, speed, and endurance) in order to develop

a coordinated search plan that they expect will result in seizing a large amount of illicit

material. In order to aid the JIATFS search planning process, we introduce the General-

ized Orienteering Problem with Resource Dependent Rewards (GOP-RDR), we develop

e�cient algorithms to solve instances of the problem, and we explore model extensions

that give planners the ability to solve realistic planning problems.

The GOP-RDR seeks to route a vehicle along a simple path through a directed network,

between prescribed start and end nodes, in order to maximize the total reward along

the path. Rewards are collected by the vehicle at each node visited, where the reward

level depends on the amount of scarce resources expended. Arcs in the network are

traversed while consuming the same limited resources used for reward collection. Resource

consumption at nodes and on arcs depend on nonlinear functions which are de�ned on

the network. The path is constructed so that the total resource expenditure is within

given limits. The GOP-RDR is a generalization of the well-known Orienteering Problem

(OP), as well as several other related optimization problems: the Selective Vehicle Routing

Problem (SVRP), the Selective Traveling Salesman Problem (STSP), and the Maximum
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Collection Problem (MCP). In these problems, node visitation rewards and arc traversal

resource expenditures (arc lengths) are �xed quantities.

The GOP-RDR arises in military, search and rescue, and law enforcement operations

where the objective is to plan a searcher route to �nd moving targets in an AOI so that

the total reward garnered by the search is maximized. In these optimal search problems,

targets can be thought of as carrying some type of material that is valuable to the searcher.

Thus, the reward garnered by the search is related to the amount of material detected.

Limited resources (e.g., time and fuel) are expended by the searcher while performing

search actions in regions of interest (the nodes in our directed network) and while in

transit between these regions (the arcs in our directed network) as targets move in the

AOI. The GOP-RDR may also arise in commercial applications where a vehicle can be

routed to a number of locations in order to perform a service. The distance between

locations can be represented by a travel time, possibly changing with time-of-day or

environmental e�ects, and the reward garnered by performing the service at each location

may be an increasing function of time spent at the location (see, for example, Yi 2003).

The distinguishing characteristic of the GOP-RDR is that there exists a trade-o� between

resource usage in transit between the nodes and resource usage collecting rewards at the

nodes.

We introduce the Smuggler Search Problem (SSP), a path-constrained optimal search

problem in continuous time and space as an important example of the GOP-RDR. The

SSP deals with the high level decision of routing search vehicles through subsets, search

regions, of the AOI in the presence of uncertain information about target whereabouts.

1.2 Literature Review
The OP has received much attention in the literature; see, e.g., Vansteenwegen et al. (2011)

for a recent survey. The OP has wide-ranging applicability and has been used to solve

many practical problems. Tsiligirides (1984) describes the sport of orienteering, where

competitors travel to various control locations to receive points as reward. The player who

accumulates the most total points within the prescribed time limit is declared the winner.

See also Butt and Cavalier (1994) and Golden et al. (1987) for other sporting-related OP

formulations. Another common OP application is found in the tourism industry (Wang

et al. 2008), where tourists visiting a country would like to plan their visit in such a

way that they maximize the value of their trip. See also Silberholz and Golden (2010),
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Schilde et al. (2009), and Sou�riau et al. (2008) for other tourism related OP applications.

The OP is used to obtain optimal mission plans for military intelligence, surveillance and

reconnaissance (ISR) aircraft. Moser (1990) uses a multi-vehicle generalization of the OP

to compute optimal plans. Royset and Reber (2009) consider a more general problem by

adding considerations for aircraft take-o� times, airspace decon�iction, and distinguishing

between search and transit. OP applications related to commercial service and vehicle

routing are commonly found in the literature (see, e.g., Tricoire et al. 2010, Tang and

Miller-Hooks 2005, Golden et al. 1987). OPs are also used in production (Ramesh and

Brown 1991) and scheduling (Ilhan et al. 2008) applications.

Many heuristics and exact algorithms for solving OPs have been proposed in the literature.

A recent survey (Vansteenwegen et al. 2011) remarks that �the �ve-step heuristic of Chao

et al. (1996a) clearly outperforms all above-mentioned [referring to those considered in

the survey] heuristics.� We use this heuristic as a point of departure in the development of

a heuristic for the Smuggler Search Problem (SSP), where a simple node-deletion step is

used to �nd an improving path. The Team OP (TOP), described in Chao et al. (1996b),

is a generalization of the OP that allows for multiple routes through the transportation

network (e.g., multiple homogeneous team members collecting rewards). As with the

OP, many heuristics (Archetti et al. 2007, Chao et al. 1996a) and exact algorithms have

been proposed for the TOP. Boussier et al. (2007) presents a branch-and-price algorithm

that relies on a pricing step within the column generation phase, evaluating the reduced

cost associated with routes not yet considered in the master problem. In order to do

this e�ciently, the reward for a path must be obtained cheaply (e.g., a table look-up).

Other optimal solution procedures for the OP, TOP, and related problems use column

generation approaches in a similar way (see, e.g., Butt and Ryan 1999). Branch-and-bound

algorithms for the OP and related problems can also be found in the literature (see, e.g.,

Laporte and Martello 1990, Ramesh et al. 1992). Laporte and Martello (1990) present an

enumerative algorithm where fathoming is accomplished by computing inexpensive upper

bounds based on a binary knapsack problem. This is possible because the arc lengths

and rewards are �xed values, conditions which do not necessarily hold in the GOP-RDR.

Another approach (Ramesh et al. 1992) uses Lagrangian relaxation within a branch-and-

bound procedure, where they relax the budget constraint and solve the resulting relaxation

for �xed Lagrange multipliers using a polynomial time degree-constrained spanning tree

algorithm; this is a technique that is not possible for the nonlinear GOP-RDR. Optimal
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Lagrange multipliers are then computed via subgradient optimization.

Other generalizations of the OP have been considered in multi-objective problems where

rewards can be functions of a number of attribute scores (see Silberholz and Golden

2010, Schilde et al. 2009, Wang et al. 2008, Wang et al. 1995), and where the arc length

between nodes is determined by general cost functions (Ramesh and Brown 1991). The

latter describes a generalized OP, where transit resources are not �xed values and the

manner in which resources are consumed is determined by general resource expenditure

functions. This generalized OP is solved with a four-phase heuristic which implements

a series of node addition, node deletion, and node swapping steps, while using a bang-

for-buck term that is based on a resource-to-reward ratio. No exact algorithms for this

problem exist in the literature. The GOP-RDR further generalizes the OP by allowing

node rewards to vary according a function of resources expended at the node.

More recently, Erdogan and Laporte (2013) studies another OP generalization where

rewards can vary as a function of the number of visits to (or time spent at) a node.

This problem is called the OP with Variable Pro�ts (OPVP). This study considers two

forms of the OPVP. In the �rst, a number of discrete reward collecting passes can be

taken at each node so that more reward is collected as the number of passes increase.

The second form considers node reward functions that increase with time spend at the

node. The authors propose a solution approach where the nonlinear objective function

is linearlized, similarly done in Royset and Sato (2010) in the context of optimal search,

and the resulting mixed-integer program (MIP) is solved with a branch-and-cut algorithm.

They report that linearizing the objective function is important so that they can introduce

cuts in the MIP, a feature that is uncommon in nonlinear solvers. The OPVP is similar to

the GOP-RDR in that rewards are allowed to vary as a function of resources (e.g., time)

spent at each node. The GOP-RDR, however, is more general because arc lengths are

allowed to vary as well. We will see in Chapter 3 that this important feature allows for

modeling the situation where the nodes are in motion.

Some variants of the Vehicle Routing Problem (VRP) are related to the OP. A recent

survey (Kumar and Panneerselvam 2012) and two books (Toth and Vigo 2002, Golden

et al. 2008) contain detailed descriptions of most variants of the VRP as well as many

popular heuristics and exact algorithms for solving them. A variant of the VRP which is

closely related to the OP is the SVRP, which is sometimes called the VRP with Selective
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Pickups (VRPSP). A relatively small proportion of the literature on the VRP considers the

SVRP or other pro�t-maximizing VRPs where not all the customers have to be visited.

In one such study, Privé et al. (2005) develops three heuristics to solve a VRP, where

revenue generated from picking up recyclable containers enters in the objective function

as an o�set to travel cost. In another, Sou�riau et al. (2013), contrasts the SVRP with

Time Windows with the TOP.

The STSP and the MCP, which are similar to the OP, can also be found in the literature

(see Laporte and Martello 1990, Gendreau et al. 1998, Butt and Cavalier 1994, Erkut and

Zhang 1996). The GOP-RDR is closely related to the Red Cross blood-collection problem

described by Yi (2003) where it is more bene�cial to visit pickup locations later in the route

because the visitation reward increases with time. This problem di�ers from the GOP-

RDR in that, while rewards at each node depend on time (time being a resource consumed

in transit between nodes), the activity of collecting the reward does not require resource

consumption. Moreover, the arc lengths between nodes are �xed values in these problems.

There appear to be no references in the literature which consider generalizations of the

node rewards and arc lengths at the same time, nor does there appear to be problems

where activity of collecting rewards at nodes is in direct competition with the activity of

transiting between nodes. The GOP-RDR seems to be the �rst to consider these issues.

OPs and similar problems have been used to solve path-constrained optimal search prob-

lems. These problems are concerned with determining the best routing for search as-

sets (searchers) in order to detect targets in some de�ned AOI. Path-constrained optimal

search problems are known to be NP-hard (Trummel and Weisinger 1986). Benkoski et al.

(1991) summarize much of the search theory literature through 1991. Recent research in

optimal search has focused on discrete-time and -space models, developing various tech-

niques to reduce solution times such as specialized branch-and-bound algorithms (see,

e.g., Stewart 1979, Eagle and Yee 1990, Dell et al. 1996, Sato and Royset 2010), heuristics

(see, e.g., Dell et al. 1996, Grundel 2005, Wong et al. 2005), and cutting-plane approaches

(see, e.g., Royset and Sato 2010). Optimal search problem formulations have become more

versatile in their ability to account for multiple cooperating searchers, multiple targets

with di�erent characteristics, as well as environmental e�ects on the search (see, e.g., Dell

et al. 1996, Wong et al. 2005, Riehl et al. 2007, Royset and Sato 2010).

Coordinating search plans with interdiction assets is an important real-world consid-
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eration. Few studies in the literature focus on this aspect of search planning. Kress

et al. (2012) examines a discrete-time and -space stochastic Dynamic Programming (DP)

approach to coordinate the e�orts of a single arial search asset and a single surface in-

terdiction asset. This model can, in principle, be solved by a backward DP algorithm,

but becomes intractible when one considers problems arising from real-world scenarios.

Accordingly, a greedy heuristic is proposed to obtain solutions. Related work has been

done in studying search and action problems (see Sun 2009, Jin et al. 2006), however

these models consider multi-role arial assets with some combination of sensing, intercept,

and attack capabilities. Supporting the JIATFS mission requires the development of a

new appraoch to modeling coordinated search and interdiction operations that lead to

problems which are solvable for real-world scenarios.

Another important search planning consideration is planning in the presence of environ-

mental uncertainty. Stone (1975, ch. 2) examines how a Search Allocation Problem (SAP)

is a�ected by uncertain sensor performance. For this problem, uniformly optimal plans

can be computed using the probability distributions of the uncertain sensor parameters.

Search planning under uncertainty is considered in Evers et al. (2012), where a Robust OP

(ROP) is proposed to �nd search plans that can withstand changes in the environment.

While these studies consider search planning under uncertainty, their proposed techniques

do not apply to the mixed-integer nonlinear SSP. We study how the SSP is a�ected by

environmental uncertainty and we propose a multi-stage stochastic programming model

that allows planners to develop contingency plans.

1.3 Contributions
This research presents the GOP-RDR, a generalization of the OP and several other related

optimization problems, which appears to be the �rst OP to consider generalizations of

the node rewards and arc lengths at the same time. We develop a specialized branch-and-

bound (B&B) framework to compute solutions to the GOP-RDR.

Focusing speci�cally on the search application of the GOP-RDR, we develop the SSP,

a novel path-constrained optimal search model in continuous time and space. The SSP

requires fewer integer variables than classical discrete-time and -space optimal search

models. We present a specialized B&B algorithm and three heuristics tailored to this

model, which are able to quickly compute optimal search plans in scenarios that are on

the scale of real-world counterdrug operations, a �rst in the �eld of optimal search.
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We study �ve enhancements to the SSP, along with tailored solution procedures, that

can be used together or separately to model various real-world search planning scenarios.

With these enhancements planners can account for complex target motion, multi-vehicle

search planning, high uncertainty in target motion, the coordination of search and in-

terdiction e�orts, and multi-period search planning over time. The SSP, combined with

these enhancements, is the �rst optimal search model to consider all of these issues.

We study how environmental conditions can impact optimal solutions to the SSP, and

highlight conditions where plans are most a�ected. Since environmental conditions are

uncertain by nature, we investigate how evolving uncertainty in planning data can be

addressed by a multi-stage stochastic programming model. This model can yield improved

plans by incorporating environmental uncertainty. This appears to be the �rst multi-stage

optimal search model that is able to handle problems on the scale of those encountered

in real-world counterdrug operaions.

1.4 Disclaimer
While this research aims to support JIATFS in conducting search and interdiction plan-

ning for counterdrug operations, information presented and views expressed in this dis-

sertation do not re�ect the o�cial policy, position, or practices of JIATFS or any other

U.S. Government organization. Mission details and data used throughout are obtained

from unclassi�ed and unrestricted sources. Mission details are derived from United States

Southern Command (2013), Joint Interagency Task Force South (2013), Munsing and

Lamb (2011), and the author's interpretations thereof. Data are derived from Munsing

and Lamb (2011), United States Coast Guard (2013), GlobalSecurity.org (2013), and

approximations based on the author's personal experience.

1.5 Organization
This dissertation is organized as follows. We formulate the GOP-RDR and provide a

branch-and-bound framework for obtaining solutions in the next chapter. In Chapter 3, we

formulate the SSP, describe two heuristics that provide initial solutions to the branch-and-

bound algorithm, and present numerical results, comparing branch-and-bound solutions to

solutions obtained by mixed-integer nonlinear programming solvers. Chapter 4 describes

SSP enhancements that allow practitioners to model realistic search planning problems

and demonstrates how they can be applied using a baseline scenario. In Chapter 5 we
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investigate the environmental sensitivity of optimal search plans and demonstrate how to

account for changes in the environment using multi-stage stochastic programming. We

conclude with �nal remarks in Chapter 6.
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CHAPTER 2:

Generalized Orienteering Problem with Resource

Dependent Rewards

2.1 Formulation

Before formulating the Generalized Orienteering Problem with Resource Dependent Re-

wards (GOP-RDR) we begin with a standard Orienteering Problem (OP) formulation

(Vansteenwegen et al. 2011), which we will use as a stepping stone for generalization. In

an OP, a vehicle is routed through a transportation network, collecting rewards at each

node. Let G = (N,A) be the directed graph that models this transportation network,

where N = {0, 1, . . . , n + 1} is the node set and A is the arc set. Nodes 0 and n + 1 are

the vehicle's home station and recovery location, respectively; not necessarily the same

physical location. We assume that all arcs incident to node 0 are outbound arcs, and

that all arcs incident to node n + 1 are inbound arcs. For notational convenience, we

de�ne N̂ = N\{0, n+ 1} as the set of nodes excluding the home station, node 0, and the

recovery location, node n + 1. A reward qi is collected at each node i ∈ N̂ . Traversing

any arc (i, j) ∈ A consumes a �xed resource t̄i,j. Total resource expenditure is limited by

T . We model the vehicle path on G using the binary variables xi,j, where xi,j takes on

value 1 when arc (i, j) is in the path, and 0 otherwise. We then obtain the following OP

formulation.

Problem O:

max
x

∑
j∈N̂

qj

 ∑
i:(i,j)∈A

xi,j

 (2.1a)

s.t.
∑

(i,j)∈A

t̄i,jxi,j ≤ T (2.1b)

∑
i:(i,j)∈A

xi,j −
∑

i:(j,i)∈A

xj,i =


−1,

0,

1,

j = 0

∀j ∈ N̂

j = n+ 1

(2.1c)
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∑
i:(i,j)∈A

xi,j ≤ 1, ∀j ∈ N (2.1d)

∑
(i,j)∈A:
i,j∈N ′

xi,j ≤ |N ′| − 1, ∀N ′ ⊆ N̂ ,N ′ 6= ∅ (2.1e)

xi,j ∈ {0, 1}, ∀(i, j) ∈ A (2.1f)

The objective (2.1a) accumulates rewards along the path. Constraint (2.1b) ensures the

resources t̄i,j expended along the path do not exceed the resource limit T . Constraints

(2.1c) maintain a balanced network �ow that starts at the home station and ends at the

recovery location. Constraints (2.1d) ensure nodes are visited at most once. Constraints

(2.1e) are the subtour elimination constraints proposed in Desrochers and Laporte (1991),

which are known to yield relatively tight linear programming relaxations (see Toth and

Vigo 2002, ch. 1). Constraints (2.1f) require that variables xi,j be binary.

For notational convenience we use the auxiliary binary variable yj, which is uniquely

determined by variables xi,j. Variable yj takes on value 1 when node j is in the path, and

0 otherwise; i.e.,

y0 = 1, yj =
∑

i:(i,j)∈A

xi,j,∀j ∈ N\{0} (2.2)

We denote by x the vector of path variables {xi,j : (i, j) ∈ A}. We denote by y the vector

of node visitation variables {yj : j ∈ N} and represent (2.2) with the expression y = Γx

for an appropriately selected matrix Γ. We de�ne X as the set of paths that satisfy (2.1c),

(2.1d), (2.1e), and (2.1f).

We generalize O to construct the GOP-RDR as follows. A visit to any node i ∈ {1, . . . , n}
is rewarded at the expense of consuming r dwell resources di ∈ IRr. Similarly, transit

resources ti,j ∈ IRr are consumed when traveling directly from node i to node j. Resources

may represent, for example, various consumables such as time, fuel, and/or money. We

also include auxiliary resource variables ai ∈ IRr, which, when consumed at nodes, yield

no reward. These variables may be used, for example, to track the accumulation of dwell

and transit resources expended along the path. Let a,d ∈ IRr(n+2), and t ∈ IRr|A| denote

vectors of resource variables; i.e., a = (aT0 ,a
T
1 , . . . ,a

T
n+1)T and similarly for d and t. A

vehicle may collect rewards according to the concave utility function f(d) : IRr(n+2) 7→ IR,

with f(0) = 0. We assume without loss of generality that no reward is possible at nodes

10



0 and n + 1. The vehicle path through G must obey η resource expenditure laws on

each arc (i, j) ∈ A denoted by the functions hi,j(ai,aj,di,dj, ti,j) : IR5r 7→ IRη. The

resource expenditure laws account for applications where arc lengths are allowed to vary.

In the static network considered in O, hi,j = ||t̄i,j − ti,j|| for �xed arc lengths t̄i,j, but in

Chapter 3 arc lengths are not �xed because the nodes of the network are in motion. The

vehicle path must also obey resource expenditure laws at each node i ∈ N denoted by the

functions gi(ai,di) : IR2r 7→ IRγ and mi(ai,di) : IR2r 7→ IRµ. We assume that functions

hi,j and gj are convex, and functions mj are a�ne. The vehicle path must be such

that total resource expenditure stays within the resource limits de�ned by T ∈ IRr. Let

the matrix Y ∈ IRr(n+2)×r(n+2) be the diagonal matrix diag(y00, y11, y21, . . . , yn1, yn+10),

where 0,1 ∈ IRr are vectors of 0s and 1s respectively. We note that the expression Y d

simply returns the dwell resource vector associated with reward collection nodes in the

path x. We now state the GOP-RDR.

Problem P:

Sets

N nodes: i, j ∈ {0, 1, . . . , n+ 1}
A arcs

X paths that satisfy (2.1c), (2.1d), (2.1e), and (2.1f)

Parameters

T ∈ IRr resource expenditure limits

Γ ∈ IR(n+2)×|A| path-to-node visitation mapping matrix representing (2.2)

Functions

f : IRr(n+2) 7→ IR concave reward collection objective function

hi,j : IR5r 7→ IRη convex resource expenditure law functions

gi,j : IR2r 7→ IRγ convex node resource expenditure law functions

mi,j : IR2r 7→ IRµ a�ne node resource expenditure law functions
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Variables

ai node i auxiliary resource variable

di node i dwell resource variable

ti,j arc (i, j) transit resource variable

xi,j arc (i, j) binary path variable

yi node i binary visitation variable;

Y is a diagonal matrix of these variables

Formulation

max
a,d,t,x,y

f(Y d) (2.3a)

s.t. hi,j(ai,aj,di,dj, ti,j)xi,j ≤ 0, ∀(i, j) ∈ A (2.3b)∑
j∈N

dj +
∑

(i,j)∈A

ti,j ≤ T (2.3c)

gj(aj,dj) ≤ 0, ∀j ∈ N (2.3d)

mj(aj,dj) = 0, ∀j ∈ N (2.3e)

aj,dj ≥ 0, ∀j ∈ N (2.3f)

ti,j ≥ 0, ∀(i, j) ∈ A (2.3g)

y = Γx (2.3h)

x ∈ X (2.3i)

The objective (2.3a) maximizes the reward collected along the path. Constraints (2.3b)

enforce resource expenditure laws on each arc. Constraint (2.3c) ensures that total re-

source expenditure is within the prescribed limits. Constraints (2.3d) and (2.3e) enforce

resource expenditure laws at each node. Concavity of f makes it desirable to consume

resources d. Constraints (2.3c) make it undesirable to consume resources t. However,

d and t, along with a, are related through constraints (2.3b) so it may not be possible

to consume t = 0 transit resources. We observe that when node j is not in the path x,

(2.3d) and (2.3e) are vacuous because aj and dj can be chosen arbitrarily to satisfy these

constraints provided total resource expenditure (2.3c) is not exceeded. Constraint (2.3c)
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makes dj = 0 desirable in this situation because a higher reward is obtained by consum-

ing more dwell resources at visited nodes. We assume that dj = 0 is always feasible.

Similarly, when arc (i, j) is not in the path x, constraint (2.3b) is inactive and the re-

source constraint (2.3c) forces ti,j = 0. Constraints (2.3f) and (2.3g) require nonnegative

resource expenditure. Binary visitation and path variables are set by (2.3h) and (2.3i)

respectively.

Proposition 1. The GOP-RDR is NP-hard.

Proof. Since the OP is known to be NP-hard (Golden et al. 1987, Laporte and Martello

1990) it su�ces to show that the GOP-RDR contains an OP as a special case. We begin

with an arbitrary instance of O and introduce continuous variables a,d and t, and binary

vector y as in (2.2). We de�ne functions hi,j, gj, and mj as follows.

hi,j(ai,aj,di,dj, ti,j) = ||t̄i,j − ti,j||, ∀(i, j) ∈ A (2.4)

gj(aj,dj) = mj(aj,dj) = ||dj − 1||, ∀j ∈ N (2.5)

We add to O the constraints (2.3b), (2.3d), and (2.3e). Due to (2.5), a is free to take on

any nonnegative value and dj = 1,∀j ∈ N . Using (2.2), the objective function (2.1a) of

O is equivalently stated as follows.

∑
j∈N̂

qj

 ∑
i:(i,j)∈A

xi,j

 =
∑
j∈N̂

qjyj =
∑
j∈N̂

qjdjyj = f(Y d)

Setting T̄ = T − |N | and observing that due to (2.3b) and (2.4),

ti,j =

t̄i,j, xi,j = 1

0, xi,j = 0

and constraints (2.1b) are equivalent to (2.3c). We immediately see that since the only

remaining free variables in the resulting GOP-RDR are x, the optimal x in this GOP-

RDR are also optimal in O. Moreover, since the objective functions are equal for any

common x, this GOP-RDR solves O.

The MINLP P has a non-convex continuous relaxation. When this is the case most
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MINLP solvers such as DICOPT (Grossmann et al. 2013) and BONMIN (Vigerske 2013)

provide no guarantees of �nding globally optimal solutions. The problem can be convex-

i�ed with a Big-M reformulation. For example, (2.3b) can be reformulated as

hi,j(ai,aj,di,dj, ti,j) ≤M(1− xi,j),∀(i, j) ∈ A,

forM su�ciently large. We discuss Big-M reformulation and show numerical results in the

context of the SSP in Chapter 3. Another approach is to use a B&B-based MINLP solver

such as BARON that uses convexifying techniques at each node of a B&B enumeration

tree to obtain globally optimal solutions (Sahinidis and Tawarmalani 2013, Tawarmalani

and Sahinidis 2004). This approach is not pursued here, rather we use the underlying

structure of P as a basis for computing solutions.

With these matters in mind, we now proceed to describe a B&B approach that uti-

lizes convex relaxation problems, avoids Big-M reformulations, and capitalizes on the

underlying structure of P as a basis for branching and pruning. We introduce the no-

tation G(x) = (N(x), A(x)), where N(x) = {j ∈ N : yj = 1; y0,= 1,y = Γx} and

A(x) = {(i, j) ∈ A : xi,j = 1}. For any path x ∈ X, P can be expressed as the following

convex, �xed-path NLP.

Problem P(x):

max
a,d,t

f(Y d) (2.6a)

s.t. hi,j(ai,aj,di,dj, ti,j) ≤ 0, ∀(i, j) ∈ A(x) (2.6b)∑
j∈N(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ T (2.6c)

gj(aj,dj) ≤ 0, ∀j ∈ N(x) (2.6d)

mj(aj,dj) = 0, ∀j ∈ N(x) (2.6e)

aj,dj ≥ 0, ∀j ∈ N(x) (2.6f)

ti,j ≥ 0, ∀(i, j) ∈ A(x) (2.6g)

When x is �xed, y can be computed by (2.2). Variables aj and dj corresponding to

unvisited nodes are removed from the problem. Similarly, variables ti,j corresponding to
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arcs not traversed are eliminated. The resulting convex NLP in the remaining variables

a,d, and t is e�ciently solved by standard NLP solvers such as MINOS (Murtagh et al.

2013) and SNOPT (Gill et al. 2013). If we are able to enumerate all possible paths x ∈ X
and solve P(x) for each, we are assured to �nd an optimal solution to P.

2.2 Branch-and-Bound Framework
Observing that d contributes to reward collection and t consumes resources without re-

ward, clearly nonzero values of d and small values of t are always desired. We construct

the matrix Ĩ by taking an r(n + 2) × r(n + 2) identity matrix, and setting the �rst r

diagonal entries and the last r diagonal entries to zero. The expression Ĩd returns the

vector of dwell resources, setting home and recovery dwell resources to zero. We de�ne

δi,j ∈ IRr as the smallest possible resource expenditure between node i and node j. We

assume that T ≥ δ0,j + δj,n+1,∀j ∈ N . Any node where this assumption does not hold is

removed from the network because it cannot be on any feasible path x between node 0

and node n+ 1. If we consider P(x) and allow reward to be collected at every node with

no transit resource expenditure on any arc, we obtain the following relaxed NLP.

Problem RP(0):

max
a,d

f(Ĩd) (2.7a)

s.t.
∑
j∈N

dj ≤ T − min
j∈N :

(0,j)∈A

{δ0,j} − min
j∈N :

(j,n+1)∈A

{δj,n+1} (2.7b)

dj ≤ T − δ0,j − δj,n+1, ∀j ∈ N̂ (2.7c)

(2.3d), (2.3e), and (2.3f)

We observe that the resource limit decrement on the right hand side of (2.7b),

min
j∈N :

(0,j)∈A

{δ0,j}+ min
j∈N :

(j,n+1)∈A

{δj,n+1}, (2.8)

is a lower bound on t0,j +tj,n+1,∀j ∈ N̂ . A path that visits any nonempty subset of nodes

N ′ ⊆ N̂ : N ′ 6= ∅ consumes at least (2.8) transit resources. Constraint (2.7c) simply

requires that the upper bound on dwell resources at each node dj is decremented by the
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minimum resource consumption on the path 0→ j → n+ 1.

Proposition 2. RP(0) is a relaxation of P.

Proof. P is obtained by adding constraints (2.3b), (2.3g), (2.3h), and (2.3i) to RP(0),

while restricting reward collection (2.3a) to nodes in the path, and incurring a transit

resource expenditure in (2.3c) that is no less than (2.8).

We denote the optimal objective function values of P, P(x), and RP(0) by Z∗, Z(x)∗,

and Z(0)∗, respectively, and state the following result.

Proposition 3. Z(0)∗ ≥ Z∗ ≥ Z(x)∗, ∀x ∈ X.

Proof. The result follows from the fact that RP(0) is a relaxation of P and that Z∗ =

max
x∈X

Z(x)∗.

In order to obtain useful bounds on P, we introduce the notion of a partial path. We

de�ne a partial path x̂` to be the binary vector satisfying constraints (2.1d), (2.1e), and

(2.1f), while constraints (2.1c) are satis�ed for all nodes except the recovery location n+1

and the last node ` visited. We denote by N×(x̂`) the set of nodes that, if added to the

current partial path x̂`, would violate one or more constraints in P. Any node j ∈ N×(x̂`)

cannot be considered in later extensions to any extension of x̂`. Therefore, N
×(x̂`) does

not reduce in size as the partial path x̂` is extended. Formally, N
×(x̂`) ⊆ N×(x̂k), ∀k :

(`, k) ∈ A. In general N×(x̂`) = ∅, but, depending on the structure of h, g and/or m, this

set may be nonempty. In Chapter 3, this is discussed further in the context of the SSP

and rules for constructing N×(x̂`) are presented. We de�ne the indicator parameter I`

that takes on value 1 when ` = n+1, and 0 otherwise. We denote by T̃j(x̂`) the optimistic

dwell resource expenditure for search region j that is not in the partial path x̂`.

T̃j(x̂`) = max

0,T − δ`,j − δj,n+1 −
∑

(i,i′)∈A(x̂`)

δi,i′

 (2.9)

For any partial path x̂` we have the following convex partial path relaxation NLP.
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Problem RP(x̂`):

max
a,d,t

f(Ĩd) (2.10a)

s.t. hi,j(ai,aj,di,dj, ti,j) ≤ 0, ∀(i, j) ∈ A(x̂`) (2.10b)∑
j∈N

dj +
∑

(i,j)∈A(x̂`)

ti,j ≤ T − (1− I`)δ`,n+1, (2.10c)

dj ≤ T̃j(x̂`), ∀j ∈ N\N(x̂`) (2.10d)

I`dj = 0, ∀j ∈ N\N(x̂`) (2.10e)

dj = 0, ∀j ∈ N×(x̂`) (2.10f)

ti,j ≥ 0, ∀(i, j) ∈ A(x̂`) (2.10g)

(2.3d), (2.3e), and (2.3f)

We note that when I` = 1, the path is complete, and P(x) and RP(x̂`) are equivalent.

Conversely, when I` = 0, the path is a partial path, (2.10e) is inactive and resources

associated with unvisited nodes are allowed to take on nonzero values, the right hand side

of (2.10c) is decremented by δ`,n+1, and the right hand side of (2.10d) bounds dwell time

associated with unvisited nodes based on minimum travel time resource expenditure. We

observe that constraints (2.10f) only rule out dwell time associated with infeasible partial

path extensions.

Suppose that the partial path x̂` is extended by adding any arc (`, k) ∈ A to the path as

shown in Figure 2.1. In this depiction, the minimum resource expenditure δ`,n+1 in the

partial path x̂` is no larger than the transit resource expenditure t`,k+δ`,n+1 in the partial

path x̂k. Next we show results that support building successive restrictions of RP(x̂`) by

adding to the partial path.

Theorem 1. RP(x̂k) is a restriction of RP(x̂`), ∀k : (`, k) ∈ A.

Proof. We observe that if ` = n + 1, then {k : (`, k) ∈ A} = ∅. Suppose ` ∈ N\{n + 1}.
Adding node k and arc (`, k) to the partial path, we add a block of constraints to (2.10b)

and variable t`,k in (2.10c) and (2.10g). Since N×(x̂`) ⊆ N×(x̂k), no constraints (2.10f)

are removed. Lastly, since the increase in resource expenditure along the new partial path

is at least δ`,n+1, the result follows.
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Let Z(x̂`)
∗ be the optimal objective function value of RP(x̂`).

Corollary 1. Z(x̂`)
∗ ≥ Z(x̂k)

∗,∀k : (`, k) ∈ A.

Proof. If ` = n + 1, then {k : (`, k) ∈ A} = ∅. Alternatively, if ` ∈ N\{n + 1} the result
follows by Theorem 1.

(a) (b)

Figure 2.1: Partial path resource expenditure - (a) Partial path x̂`. (b) Partial path x̂k.
Transit resource expenditure along partial path x̂` is no larger than transit resource expenditure
along path x̂k.

We present a GOP-RDR B&B framework that begins at the home station and forms

partial paths by adding nodes to a path sequentially, solving restrictions of RP(x̂`) along

the way. We denote by X̂ the set of all possible partial paths x̂. Let l ∈ {0, 1, . . . , n+ 1}
denote the level of the B&B enumeration tree, and let Ll ⊆ N be the set of nodes yet

to be considered at level l. We de�ne the set Ω ⊆ X̂ ×N to be a subset of partial path

and B&B enumeration tree level pairs. Let ε ≥ 0 be the absolute optimality gap stopping

tolerance.

Algorithm B&B:

1. Initialization

Initialize ` = 0; x∗ = x̂` = 0; lower bound LB = 0; l = 0; L0 = ∅; Lk = N,∀k =

1, . . . , n+ 1; and Ω = {(0, 0)}. Solve RP(0). If RP(0) is infeasible, then stop; P is

infeasible. Otherwise, initialize upper bound UB = Z(0)∗.

2. Branching

If UB−LB ≤ ε, then stop and return x∗. Otherwise, choose (x̂`, l) ∈ Ω. Add node
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j to partial path x̂` to form the extended partial path x̂j ∈ X̂ that contains arc

(`, j). Add {(x̂j, l + 1)} to Ω. Remove j from Ll+1. Solve RP(x̂j).

3. Lower-Bounding

If j = n + 1 and LB < Z(x̂j)
∗ and RP(x̂j) is feasible, then set LB = Z(x̂j)

∗ and

x∗ = x̂j as the best complete path found thus far.

4. Upper-Bounding

If Ll+1 = ∅ then set UB = max{Z∗n+1, Z
∗
l+1}, where Z∗n+1 is the largest value Z(x)∗

of all complete paths explored thusfar and Z∗l+1 is the largest value Z(x̂j)
∗ on level

l + 1 of the B&B enumeration tree.

5. Fathoming

If Z(x̂j)
∗ < LB or if RP(x̂j) is infeasible, then fathom partial path x̂j by removing

from Ω all elements (x̂j̃, l̃), where x̂j is a subpath of x̂j̃ and l̃ > l.

6. Iteration

Return to step 2.

This algorithm is guaranteed to converge after solving a �nite number of partial path

relaxation problems RP(x̂`). If ε = 0 and step 5 is eliminated, the algorithm would

simply enumerate partial paths, compute the solution to RP(x̂`) for each, and return

the optimal solution after considering all partial paths. Since fathoming, in step 5, only

eliminates suboptimal and infeasible paths, the algorithm is guaranteed to produce a path

with an objective function value that is within ε of the optimal objective function value.

The algorithm can be accelerated by obtaining an initial feasible solution x that produces

a better lower bound in step 1, thereby allowing fathoming in step 5 to occur more rapidly.

To this end, we provide a specialized heuristic for the SSP in Section 3.2.1. We do not

prescribe the nature of branching to be performed in step 2. Numerical results discussed

in Section 3.3 use depth-�rst-search, but other branching strategies can also be used (see,

for example, Ramesh et al. 1992, Toth and Vigo 2002).
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CHAPTER 3:

Smuggler Search Problem

The Smuggler Search Problem (SSP) is a special case of a GOP-RDR that arises in chal-

lenging real-world search operations. The SSP serves as a model to support JIATFS in

detecting and interdicting the �ow of illicit tra�ckers in international waters. To accom-

plish this mission, planners must employ a limited number of search assets as e�ectively

as possible, under strict resource constraints, as they respond to uncertain estimates of

how illicit tra�ckers move in the AOI.

Many approaches to solving path-constrained optimal search problems using a discrete-

time and -space model can be found in the literature (Dell et al. 1996, Eagle and Yee 1990,

Grundel 2005, Royset and Sato 2010, Sato and Royset 2010). These approaches yield

large models when considering the size of the JIATFS AOI. For example, given that the

JIATFS AOI covers 42 million square miles (Munsing and Lamb 2011) and conservatively

estimating that target activity occurs in only 1% of the AOI, even a coarse discretization

of 10,000-nm2-area cells and hour-long time periods over a 24-hour mission day yields a

network with over 1,000 nodes. The state-of-the-art OP algorithms are reported to solve

problems with fewer than 500 nodes (Vansteenwegen et al. 2011). Similarly, discrete-

time and -space optimal search models of this size cannot be solved to optimality in a

reasonable amount of time using current methods (Royset and Sato 2010). We proceed

to formulate the SSP, a novel path-constrained optimal search model in continuous time

and space, which avoids large models caused by discretization.

Consider a planning scenario where a searcher is to be routed throughout an AOI to

detect multiple moving targets. The search controller has, based on planning factors, the

information listed in Table 3.1.

Maximum cruise speed of the searcher while in transit V

Speed of the searcher while performing search actions V̂
Searcher sensor sweep width W
Searcher endurance time limit T
Scenario time limit D

Table 3.1: Search planning factors

Suppose that there is uncertainty with regard to where and when each target departs,
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where the target arrives, and the value of detecting the target, but that the nature of

the intelligence allows the search controller to estimate these values within some range

of uncertainty. These data are listed in Table 3.2. We refer to data listed in Tables 3.1

and 3.2 collectively as planning data. Figure 3.1 illustrates the assessed target data for a

two-target scenario on a map.

Number of targets n
Speed of target j Uj
Expected departure time of target j τj
Time uncertainty range of target j τ̃j
Expected departure location of target j ρj
Expected arrival location of target j ρ̄j
Departure/arrival location uncertainty range of target j ρ̃j
Expected value of detecting target j qj

Table 3.2: Assessed target data

Figure 3.1: Assessed target data illustration - Assessed target data listed in Table 3.2
depicted for a two-target (n = 2) scenario. Expected departure time of targets (τj) and expected
value of detecting targets (qj) are not depicted.

We assume that targets are moving along straight-line movement tracks with constant

speed, independent of the search e�ort. Modeling more complex target tracks is explored
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in Section 4.2. We assume that the deviation from the expected departure time of target

j is uniformly distributed within the range [−τ̃j/2, τ̃j/2]. Similarly, we assume that the

deviation from the expected departure location of target j is uniformly distributed within

the range [−ρ̃j/2,+ρ̃j/2]. This re�ects the situation where search planners have informa-

tion that allows them to bound departure time and departure location within �xed ranges,

but lack either speci�c enough information or su�cient con�dence in the available infor-

mation to say any point in the range is more likely than another. Discrete-time and -space

models are more �exible in this regard because, in principle, they can approximate many

distributions by using a heat map, where each (potentially small) cell in the discretization

may have a di�erent probability that a target is contained within. Unfortunately, when

planners lack high-�delity target data, the heat map presents an illusion of precision. In

real-world planning scenarios, given the dynamic nature of the mission and the complexity

of the intelligence gathering process, a uniform distribution on uncertainty may often be

the most appropriate.

Based on these data, the latest departure time for each target j can be calculated as

τminj = τj +
1

2
τ̃j.

Similarly, the earliest arrival time for each target j can be calculated as

τmaxj = τj −
1

2
τ̃j +

1

Uj
||ρj − ρ̄j||.

Lastly, we can calculate the velocity vector of target j, uj, as a function of speed, and

expected departure and arrival locations.

We model search within each target's moving region of uncertainty (search region) using

a random search law with known sensor sweep width W ; for details on random search

models see Washburn (2002, ch. 2) and Stone (1975, ch. 1). While, strictly speaking,

random search is physically impossible, it serves as a useful model. In a real mission,

the planner chooses the tactical pattern to be �own by the searcher in the search region.

Unless the planner deliberately makes a poor choice, the search pattern will be better

than random search. In that sense, random search provides a practical lower bound on

detection probability.

We assume that τ̃j and ρ̃j are small relative to the scenario time limitD and the dimensions
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of the AOI, respectively. This assumption ensures that the search regions are not too large

relative to the size of the AOI. A model where this assumption does not hold is explored

in Section 4.4. We also assume that search actions cannot be conducted for more than

one target at the same time. This re�ects the operational setting where the searcher

is seeking out a speci�c target in a sparse AOI looking for characteristics outlined in

intelligence reports. Thus, in the unlikely event that search regions overlap in time and

space, the searcher cannot receive additional reward for searching for more than one

target at a time. We assume that the search involves a single searcher. A more general

multi-searcher model is considered in Section 4.3. Given all the available information, the

search controller wishes to route the searcher through the AOI in order to maximize the

expected value of the search e�ort. We model this as routing a vehicle across a network

G = (N,A), where nodes are de�ned by the search regions and arcs are de�ned by the

searcher's transit between each pair of moving search regions.

3.1 Formulation
Since targets are in linear motion, the distance required to travel directly between each

pair (i, j) of search regions can be computed as a function of time using Euclidean distance

calculations. We proceed under the assumption that the path of the searcher is through the

respective center of each search region. This gives the planner the �exibility to dictate any

tactical search pattern to the searcher by placing it in position to travel in any direction

within the search region. We also assume that the error between Euclidean distance and

great circle distance is small relative to the size of the search regions. This is a reasonable

assumption to make in the near the equator, where this error is small, or when the entire

AOI small. Suppose a searcher is searching for target in some prede�ned order and that

the searcher has just completed searching region i. If ai represents the time the searcher

began searching region i and di represents the duration of the search in region i, then

we can compute the current position ψi of the searcher as ψi = ρi + (ai + di − τi)ui.

We assume that ai ≥ τmini ,∀i; the searcher will never arrive to search a target that has

not departed. Suppose the searcher is next routed to region j, and that the transit time

from region i to region j is denoted as ti,j. The position of region j at the moment the

searcher arrives is ψj = ρj + (ai + di + ti,j − τj)uj. We can now relate the distance

between region i and region j to the distance the searcher can travel in the same amount

of time ||ψi−ψj|| = V ti,j. We can relax this relationship by recognizing that the searcher

does not always have to travel at maximum cruise speed. The searcher could choose to
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travel slower. Thus, ||ψi−ψj|| ≤ V ti,j, which is second-order cone constraint in the time

resources a,d, and t of the form (2.3b).

Drawing from search theory (Washburn 2002, ch. 2), we de�ne the detection rate in search

region j, αj, as

αj =
WV̂

τ̃j ρ̃jUj
. (3.1)

We assume that the searcher speed V̂ is much greater than the target speeds Uj,∀j ∈
N̂ . From the searcher's perspective, within each search region, the target is essentially

stationary. It is possible to model the problem where this does not hold (Washburn 2002,

sec. 6-1). However, this assumption approximately holds in our SSP application, where

we consider search aircraft and surface (e.g., boats) smugglers.

This problem can be formulated as the following MINLP, which is a special case of P.

Problem SSP:

max
a,d,t,x,y

∑
j∈N̂

qj (1− exp {−αjdjyj}) (3.2a)

s.t. (||ρi + (ai + di − τi)ui − ρj
. . .− (ai + di + ti,j − τj)uj||

. . .− V ti,j)xi,j ≤ 0, ∀(i, j) ∈ A (3.2b)

(ai + di + ti,j − aj)xi,j ≤ 0, ∀(i, j) ∈ A (3.2c)∑
j∈N̂

dj +
∑

(i,j)∈A

ti,j ≤ T (3.2d)

∑
j∈N

dj +
∑

(i,j)∈A

ti,j ≤ D (3.2e)

aj ≥ τminj , ∀j ∈ N (3.2f)

aj + dj ≤ τmaxj , ∀j ∈ N (3.2g)

a0 = 0 (3.2h)

dn+1 = 0 (3.2i)
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aj, dj ≥ 0, ∀j ∈ N (3.2j)

ti,j ≥ 0, ∀(i, j) ∈ A (3.2k)

y = Γx (3.2l)

x ∈ X (3.2m)

The objective (3.2a) is to maximize the expected value of the search e�ort. Constraints

(3.2b) ensure that search region j is reachable from search region i in time ti,j given

the searcher's speed V . Constraints (3.2c) propagate arrival times a forward in time as

arcs are traversed. Constraints (3.2b) and (3.2c) correspond to (2.3b) in P. Constraint

(3.2d), corresponding to (2.3c) in P, ensures that the total �ying hours of the searcher

does not exceed its endurance limit T . Similarly, constraint (3.2e), corresponding to

(2.3c) in P, ensures that the time horizon of plan does not exceed the scenario time limit

D. Note that the left summation in (3.2d) is over the set of nodes not including the

home station and recovery location N̂ . This may appear to be inconsistent with (2.3c),

however in SSP we could equivalently model two dj terms for each node. One retains

the correct dwell resources at all nodes, and the other is nearly a copy but consumes

zero dwell resources at nodes 0 and n + 1. We choose the more compact formulation

here. Constraints (3.2f) require that the vehicle be routed to search regions only after the

target has surely departed. Similarly, constraints (3.2g) preclude searching in a region

after the target has possibly arrived. Constraint (3.2h) ensures that the scenario starts at

time 0, while constrain (3.2i) ensures that the scenario ends when the searcher arrives at

the recovery location. Constraints (3.2f), (3.2g), (3.2h) and (3.2i) correspond to (2.3d) in

P. Constraints (3.2j), (3.2k), (3.2l), and (3.2m) correspond to (2.3f), (2.3g), (2.3h), and

(2.3i) in P respectively.

We de�ne an NLP analogous to P(x) which, for any route x ∈ X, provides the optimal
time resource expenditure. We arrive at this problem by �xing x and y, and retaining

from SSP only the interesting constraints and objective function terms. Recall that

N(x) = {j ∈ N : yj = 1; y0,= 1,y = Γx} and A(x) = {(i, j) ∈ A : xi,j = 1}.
Additionally, we de�ne the set of search regions in the path N̂(x) = N(x)\{0, n+ 1}.
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Problem SSP(x):

max
a,d,t

∑
j∈N̂(x)

qj (1− exp {−αjdj}) (3.3a)

s.t. ||ρi + (ai + di − τi)ui − ρj
. . .− (ai + di + ti,j − τj)uj||

. . .− V ti,j ≤ 0, ∀(i, j) ∈ A(x) (3.3b)

ai + di + ti,j − aj ≤ 0, ∀(i, j) ∈ A(x) (3.3c)∑
j∈N̂(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ T (3.3d)

∑
j∈N(x)

dj +
∑

(i,j)∈A(x)

ti,j ≤ D (3.3e)

aj ≥ τminj , ∀j ∈ N(x) (3.3f)

aj + dj ≤ τmaxj , ∀j ∈ N(x) (3.3g)

aj, dj ≥ 0, ∀j ∈ N(x) (3.3h)

ti,j ≥ 0, ∀(i, j) ∈ A(x) (3.3i)

(3.2h) and (3.2i)

We observe that SSP(x) is a model that can be used by planners, heuristics, and/or exact

algorithms to evaluate the quality of any complete route x. Some operational settings,

perhaps based on a subjective prioritization, may call for planners to determine the order

in which targets are searched. When this is the case the remaining decision problem is

one of determining the search times a,d, and t. This can be done quickly by solving the

convex NLP SSP(x).

After a Big-M reformulation, SSP can be equivalently stated as an MINLP with a convex

continuous relaxation. Let MR
i,j be a number that is always greater than the distance

between region i and region j. Let MT
i,j be a number that is always greater than the

time required for the searcher to travel between region i and region j. Let MD
j be a

number that is always greater than the search time in region j. We arrive at the following

Big-M-reformulated SSP.
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Problem SSPM

max
a,d,t,x,y

∑
j∈N̂

qj (1− exp {−αjdj}) (3.4a)

s.t. ||ρi + (ai + di − τi)ui − ρj
. . .− (ai + di + ti,j − τj)uj||

. . .− V ti,j ≤MR
i,j(1− xi,j), ∀(i, j) ∈ A (3.4b)

ai + di + ti,j − aj ≤MT
i,j(1− xi,j), ∀(i, j) ∈ A (3.4c)

dj ≤MD
j yj, ∀j ∈ N (3.4d)∑

j∈N̂

dj +
∑

(i,j)∈A

ti,j ≤ T (3.4e)

∑
j∈N

dj +
∑

(i,j)∈A

ti,j ≤ D (3.4f)

(3.2f) � (3.2m)

The nonlinear interactions between the binary variables and the continuous variables in

SSP are modeled with Big-M terms on the right hand sides of (3.4b), (3.4c) and (3.4d).

Constraint (3.4d) requires that search duration be zero when the corresponding search

region is not visited, which makes it possible to remove the nonlinear interactions in the

objective function (2.3a), yielding (3.4a). It is well known that unnecessarily large Big-M

values lead to poor continuous relaxations and ultimately slow down computation time

(Camm et al. 1990). In the case of the SSP, since target motion is linear, we can compute

Big-M values based on the maximum distance between each pair of targets.

For any two target search regions i and j (home station possibly being one of them), the

following convex NLP produces the minimum travel distance between them.

Problem D

δ∗i,j = min
t

||(ρi + (t− τi)ui)− (ρj + (t− τj)uj)||

s.t. max{τmini , τminj } ≤ t ≤ min{τmaxi , τmaxj }

28



We let δi,j ≡ V −1δ∗i,j be the minimum travel time resource expenditure between search

region i and search region j. We proceed under the assumption that the home station and

the recovery location are the same physical location, therefore δ0,j = δj,n+1 = V −1δ∗0,j =

V −1δ∗j,n+1. This is usually the case in the type search planning problems we consider

and it imposes no limitations on our model or solution procedures. The SSP instance of

RP(0) is obtained when no path x is speci�ed. We force a to take on lower bound values

in order to allow d to take on highest possible values. When this is done a and t can be

eliminated from the problem, resulting in the following NLP in the search time d.

Problem RSSP(0)

max
d

∑
j∈N̂

qj (1− exp {−αjdj}) (3.6a)

s.t. dj ≤ τmaxj − τminj , ∀j ∈ N (3.6b)∑
j∈N̂

dj ≤ T − 2 min
j∈N
{δj,n+1} (3.6c)

∑
j∈N

dj ≤ D − 2 min
j∈N
{δj,n+1} (3.6d)

dn+1 = 0 (3.6e)

0 ≤ dj ≤ min{T,D} − 2δj,n+1, ∀j ∈ N̂ (3.6f)

We observe the following for any search region j that is not in the current partial path. If

it has an earliest arrival time τmaxj , which is less than or equal to the latest departure time

τmini for any search region i that is in the current partial path, it should not be considered

in extending the current partial path. Formally, we construct the set N×(x̂`) = {j ∈
N\N(x̂`) : τmaxj ≤ τmini , i ∈ N(x̂`)}. Analogous to (2.9), we denote by T̃j(x̂`) the

optimistic dwell time for search region j that is not in the partial path x̂`.

T̃j(x̂`) = max

0, T − δ`,j − δj,n+1 −
∑

(i,i′)∈A(x̂`)

δi,i′


For any partial path x̂`, we have the following relaxed NLP as a special case of RP(x̂`).
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Problem RSSP(x̂`)

max
a,d,t

∑
j∈N̂

qj (1− exp {−αjdj}) (3.7a)

s.t. ||ρi + (ai + di − τi)ui − ρj
. . .− (ai + di + ti,j − τj)uj||

. . .− V ti,j ≤ 0, ∀(i, j) ∈ A(x̂`) (3.7b)

ai + di + ti,j − aj ≤ 0, ∀(i, j) ∈ A(x̂`) (3.7c)∑
j∈N̂

dj +
∑

(i,j)∈A(x̂`)

ti,j ≤ T − (1− I`)δ`,n+1 (3.7d)

∑
j∈N

dj +
∑

(i,j)∈A(x̂`)

ti,j ≤ D − (1− I`)δ`,n+1 (3.7e)

dj ≤ T̃j(x̂`), ∀j ∈ N\N(x̂`) (3.7f)

I`dj = 0, ∀j ∈ N\N(x̂`) (3.7g)

dj = 0, ∀j ∈ N×(x̂`) (3.7h)

ti,j ≥ 0, ∀(i, j) ∈ A(x̂`) (3.7i)

(3.2f) � (3.2j), (3.6b), and (3.6f)

SSP can be solved by Algorithm B&B using RSSP(x̂`) relaxations and the lower bound

initialization heuristics described next.

3.2 Heuristic Algorithms
Denoting the optimal solution to SSP as Z∗, we observe that if ε = 0 and the initial

guess x is provided to Algorithm B&B where Z(x)∗ = Z∗, then the number of NLP

solutions required to prove x = x∗ is constant regardless of how branching is done in

step 2. This is a direct consequence of the fact that fathoming only depends on the lower

bound. Of course this observation is not unique to our problem setting. In fact, it is

true of any branch-and-bound algorithm provided the algorithm does not include more

sophisticated fathoming rules. This observation is the main impetus to develop a reliable

way of providing initial solutions to Algorithm B&B, possibly eliminating the need for

complex branching strategies. Furthermore, when runtimes are too long in large problem
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instances, e�cient heuristics can be used to give operators a feasible search plan to follow

while the optimal plan is being computed. In some cases runtimes may be so long that

operators cannot a�ord to wait for an optimal plan to be computed, and a heuristic

algorithm is the only viable option.

We now describe two heuristics. The �rst is a fast heuristic that imposes a �xed target

search order, solving at most 2n + 2 NLPs to compute a good search plan solution. The

second heuristic computes good search plans by limiting the number of targets that may

be assigned the searcher.

3.2.1 Fixed Order Heuristic

In order to provide a good initial solution to Algorithm B&B, we consider a �ve-phase

SSP heuristic that relies on the knowledge that solving a GOP-RDR entails �nding an

acceptable balance between dwell and transit resource expenditure. Ramesh and Brown

(Ramesh and Brown 1991) outline a four-phase heuristic for the TOP using a bang-for-buck

ratio that relates the reward at each node to the bounds on transit time. We use a similar

idea here, however since rewards and transit times are generally not known quantities,

we consider a bang-for-buck ratio that relates expected search value to the area of the

search region. We also add considerations for transit time by clustering targets based on

temporal and spatial proximity. Throughout, we use SSP(x) to quickly determine the

value of search plan at each iteration in the heuristic.

The SSP heuristic begins by de�ning ∆ as the temporal clustering parameter, which con-

trols how close we allow target clusters to be with respect to time. We assume that

the problem instance of interest can be separated into spatial clusters σ ∈ Σ based on

geographical boundaries. This is the case in our SSP application where smugglers are

transiting through water on either side of a large land mass. Furthermore, since we are

concerned with seagoing smugglers, they cannot move from one region to another. We

denote by Kσ the set of targets that belong to spatial cluster σ.

The SSP heuristic computes search plans by assigning all targets to clusters based on

time and space proximity, �xing the order in which targets may be searched, and then

removing low-valued targets. The �ve-phase SSP heuristic algorithm is stated as follows.
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SSP heuristic:

Phase I (Initialization). Begin by solving the relaxed NLP RSSP(0). Permanently

remove from consideration in the heuristic, all targets j such that dj = 0 in the optimal

solution. For each of the remaining targets, calculate the bang-for-buck ratios.

1. Initialize cluster count k = 1, order index o = 1, and null path x = 0. Solve

RSSP(0) and record the optimal solutions d∗. Construct the set of searchable

targets Ň = N\{j ∈ N : d∗j = 0}.
2. Compute bang-for-buck ratios

βj =
qj

τ̃j ρ̃jUj
. (3.8)

Phase II (Target Clustering). Partition all remaining targets into spatial clusters.

Next, further partition all targets into clusters of width ∆ based on their earliest arrival

times τmaxj , forming K clusters κk, k ∈ {1, . . . , K}. Order targets within each cluster

κk in ascending order of τmaxj . (In our SSP application, the searcher's home station is

generally closer to target arrival locations than departure locations. Therefore it is more

bene�cial for search to take place at the end of the target's movement track than it is at

the beginning. Earlier target arrivals represent search opportunities that vanish earliest in

the mission execution period [0, D]. Thus, earlier arriving targets would likely be searched

�rst if they are searched at all.) For each cluster, assign the value νk = min{τmaxj : j ∈ κk}.
Order each cluster in ascending value νk. For all targets, assign orderings {Oj, j = 1, 2, . . .}
from the �rst target in the �rst cluster through the last target in the last cluster. Form

the initial path x and solve SSP(x). If the problem is feasible, set the value Z∗H to the

optimal objective function value of this problem. Otherwise, set Z∗H = −∞.

3. For each spatial cluster σ ∈ Σ:

Initialize time window parameter

τ̌σ = min
j∈Ň∩Kσ

{τmaxj }.

While

τ̌σ + ∆ < max
j∈Ň∩Kσ

{τmaxj } :

For each target j ∈ Kσ:
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Assign target j to cluster κk if τ
max
j ∈ [τ̌σ, τ̌σ + ∆).

Increment τ̌σ to τ̌σ + ∆.

If one or more targets are assigned to cluster κk in this time interval,

increment k to k + 1.

4. For each cluster κk:

Order targets j ∈ κk in ascending value of τmaxj . Compute cluster order value

νk = min{τmaxj : j ∈ κk}.
5. For each cluster κk, considered in ascending order value νk:

For each target j ∈ κk:
Assign search order Oj = o and increment o to o+ 1.

6. Assign order O0 = 0 to the home station and order On+1 = |Ň |+ 1 to the recovery

location.

7. Form the initial path x by setting xi,j = 1 for all i and j with consecutive orderings

Oi and Oj. Solve SSP(x). Save incumbent path x̄ = x. If the problem is feasible,

save the heuristic objective value Z∗H as the optimal objective function value of this

problem. Otherwise, set Z∗H = −∞.

Phase III (Feasibility Check). (Perform only if Z∗H = −∞.) Attempt to �nd an

initial feasible solution by removing the target with the smallest value βj from the route.

When a target j is removed, generate an arc in the route between the target with order

Oj−1 and order Oj+1, then solve SSP(x). If a feasible solution is found, save the path

and move to the next phase. Otherwise, continue this procedure removing one target at

a time until an initial feasible solution is found. Set Z∗H to the objective function value

of this solution.

8. If Z∗H = −∞:

For all targets j ∈ Ň , considered in ascending order βj:

Do procedure Remove_j: { Remove target j from the path x by setting

xi,j = 0 (for i : Oi = Oj − 1), xj,i′ = 0 (for i′ : Oi′ = Oj + 1), and xi,i′ = 1

(for i : Oi = Oj−1 and i′ : Oi′ = Oj + 1). Remove j from the set Ň . Solve

SSP(x). }

If a feasible solution is found, set Z∗H to the objective function value of this

solution and go to step 9.
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Phase IV (Cluster Seam Re�nement). For each cluster in the search order, do the

following seam re�nement. Let target i be the last target in cluster k. Let target j be

the �rst target in cluster k + 1. If τmaxi > τmaxj and βi < βj, temporarily remove target i

from the route and form a new path by generating an arc between target j and the target

with order Oi−1. If Z∗H is improved, permanently remove target i from consideration in

the heuristic. Otherwise, reinsert target i in its place in the route.

9. Save incumbent path x̄ = x. For each seam between clusters κk−1 and κk, where

k > 1:

Let j be the target in that last order position in cluster κk−1. Let i′ be the

target in the �rst position in cluster κk. If τmaxj > τmaxi′ and βj < βi′ , do

Remove_j de�ned in step 8. If Z∗H is improved, save incumbent path x̄ = x.

Otherwise, reset incumbent path x = x̄.

Phase V (Greedy Target Removal). Attempt to improve the solution by removing

the target with the smallest value βj from the route, generating a new route as described

in Phases III and IV. If the solution is improved, permanently remove target j from

consideration in the heuristic. Otherwise, reinsert target j in its place in the route.

Consider all remaining targets in ascending order of βj for removal in turn. Return the

best route found upon completion of the above steps.

10. For each target j ∈ Ň , considered in ascending order βj:

Do Remove_j de�ned in step 8. Solve SSP(x). If Z∗H is improved, save

incumbent path x̄ = x. Otherwise, reset incumbent path x = x̄.

11. Return heuristic path x̄ and solution Z∗H .

The worst case run-time of this heuristic is 2n + 2 NLP solutions. This occurs when a

feasible route is found in Phase II, and all targets are considered for removal in Phases

IV and V. In this situation each target occupies its own cluster. This can be prevented in

well posed problem instances where ∆ is chosen appropriately with respect to the arrival

times τmaxj . Since the NLP subproblems, SSP(x), can be solved quickly, approximately

1/10 of a second for problem instances with up to 20 targets, the heuristic is quite fast

even in the worst case.

The bang-for-buck parameter (3.8) can be strengthened to account for targets of di�erent
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type by incorporating sweep with.

β̂j = αjqj (3.9)

The expression (3.9) simply captures the initial rate-of-reward garnered by searching each

target j. When the sweep widths associated with the various targets are the same (3.8)

and (3.9) clearly yield the same search order.

3.2.2 Partial Branch-and-Bound Heuristic

Another heuristic, the PBB heuristic, is based on exploring a limited portion of the B&B

enumeration tree. Formally, we use Algorithm B&B and limit the level l in step 2 to some

number l̄, where 0 < l̄ < n+ 1. By an l̄-level PBB heuristic we mean an implementation

of Algorithm B&B that is restricted to exploring only the �rst l̄ levels of the enumeration

tree. This approach can be described operationally as restricting the search to plans that

consider searching no more than l̄ − 1 targets.

This heuristic has several operational bene�ts. First, it may be the case that planners do

not want to assign searchers to hunt for too many targets. There may be several reasons

for this. When cruise (transit) altitude is di�erent from patrol (search) altitude, e�ciency

is lost with repeated changes in altitude. If too many targets are in the plan the searcher's

endurance may be diminished. Sensors may be tuned or aircrew may be conditioned to

look for a speci�c type of target vessel, and having to search for many di�erent types

of targets (e.g., GO FAST, SPSS, merchant vessel, etc.) in the same mission may yield

some subtle loss in e�ciency. Second, using the PBB heuristic does not preclude planners

from continuing to run Algorithm B&B in search of an optimal solution. One can think

of a PBB heuristic solution as an intermediate result. Third, since Algorithm B&B is

being used, the PBB heuristic can return meaningful optimality gap bounds while the

SSP heuristic cannot.

3.3 SSP Numerical Experiments
We consider SSP where smugglers move through an abstract AOI, which is similar to

Central America but with simpli�ed coastal features, in a northwesterly direction as they

attempt to transport illicit material from the south. In this scenario, we assume smuggler

movement occurs through corridors de�ned by linear coastal strips of likely departure

and arrival locations as depicted by the map shown in Figure 3.2. We observe that, even

though the dotted lines intersect on the spatial map, target search regions rarely overlap
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in space and time.

We assume searcher and target performance data that is consistent with known planning

factors for P-3 aircraft and GO FAST smuggler boats; see Tables 3.3 through 3.5. We

assume further that mission planning occurs in a 24-hour cycle, D = 24 hours. Departure

time uncertainty data is randomly generated within the mission planning period with

uncertainty ranging up to four hours. Location uncertainty data is randomly generated

where smugglers are equally likely to depart and arrive anywhere on the aforementioned

coastal strips. Expected value of detecting each target is randomly generated within the

uniform range [500, 5000] lbs, corresponding to estimated payload capacity of GO FAST

boats.

Searcher V V̂ T D W Home
P-3 325 205 10 24 15 (6.5 8.0)

Table 3.3: Searcher data - Used throughout Section 3.3. Home station location is given in 100
nautical mile units with (h v) being respective horizontal and vertical displacement from the
origin depicted in Figure 3.2.

Target U τ τ̃ ρ̃ q
GO FAST [55,65] [0,12] [1,4] [20,100] [500,5000]

Table 3.4: Uniform target data ranges - Used throughout Section 3.3

Corridor ρ ρ̄
BL [(12.0 0.0), (13.8 3.0)] [(3.0 9.6), (7.2 7.8)]
C [(13.8 4.8), (16.8 7.2)] [(8.4 9.6), (10.2 9.0)]
TR [(13.8 4.8), (16.8 7.2)] [(7.2 10.8), (7.8 12.6)]

Table 3.5: Target departure and arrival location corridors - Used throughout Section 3.3.
BL, C, and TR refer to the bottom-left, center, and top-right corridors respectively in Figure 3.2.

We solve 100 randomly generated problem instances with 3, 5, 7, 8, and 10 smugglers

and compare model performance using Algorithm B&B with SSP heuristic initialization

applied to SSP versus solving SSPM directly using two MINLP solvers. For each set

of problem instances we deem the best solver to be the one that identi�es an optimal

solution in the shortest amount of average computing time. For the purposes of the

numerical experiment, Algorithm B&B is implemented with a depth-�rst-search strategy

and the optimality tolerance of zero, ε = 0. We also omit constraints (3.7f) and (3.7h) from
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Figure 3.2: Target track sample space - Target movement tracks are randomly generated
with origin and destination points chosen within coastal strips marked by thick solid bars. Given
an origin and destination, the target track goes along a straight line within corridors indicated by
dotted lines in a northwesterly direction. The searcher's home station is identi�ed by �×�. Dotted
lines shown illustrate possible target movement tracks. Randomly generated target movement
tracks are not limited to those depicted here, but stay within the envelope boundaries. Vertical
and horizontal axes are in units of 100 nautical miles. Refer to Table 3.5 for listing of corridor
endpoints.

RSSP(x̂`). This is done for the following two reasons. First, in initial testing, constraint

(3.7f) rarely yielded fewer NLP solutions, made each NLP slightly more di�cult to solve,

and produced a slight increase in overall runtime. Second, the expected departure time

range given in Table 3.4 rarely produces nonoverlapping arrival time feasibility windows

[τmin, τmax]. Therefore, using these constraints in this experiment is not bene�cial. The

SSP heuristic is implemented with temporal clustering parameter ∆ = 6 hours and spatial

clustering corresponding to the Southwest and Northeast regions. All computations are

done on a 64-bit Windows 7 desktop computer (2x Intel Xeon 3.46GHz; RAM 24GB)

using GAMS 23.8. We use MINOS to solve all NLP subproblems. In initial testing,

DICOPT and BONMIN with ECP solver option appeared to be the most e�ective GAMS-

based solvers for directly solving SSPM. Accordingly we limit our MINLP numerical

results to these two solvers. For brevity, we refer to Algorithm B&B with heuristic
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initialization as B&B and BONMIN with ECP solver option as BONMIN(ECP). For the

remainder of this chapter, unless otherwise stated, searcher and target data is presented

in nautical miles, nautical miles per hour, hours, and pounds; computation runtimes are

given in seconds; and optimality gaps are reported as a percent di�erence from the optimal

objective function value.

As indicated in Table 3.6, all three solvers are able to solve all 100 of the 5-target SSPs

to optimality within 13 seconds computing time. For these problem instances BON-

MIN(ECP) is the best solver, while B&B yields the slowest mean runtime.

B&B BONMIN(ECP) DICOPT
Num Solved 100 100 100

Runtime (sec)
Mean 5.77 1.25 2.03

Std Dev 2.52 0.30 0.89
Std Error 0.25 0.03 0.09
Median 5.44 1.22 1.92

90th Percentile 9.21 1.70 3.08
Min 1.54 0.61 0.61
Max 13.00 1.98 4.99

Table 3.6: Runtime summary for 5-target SSPs - Num Solved refers to the number of
problems out of 100 that were solved to optimality within 30 minutes. BONMIN(ECP) dominates
in all metric categories and B&B appears to be the least favorable.

We use performance pro�les (Dolan and Moré 2002) as a method for comparing solver

runtimes. Performance pro�les require two components: performance ratios and perfor-

mance metrics. A performance ratio is a ratio of the runtime for solver s on problem

p to the best runtime for all solvers tested on problem p. A performance metric is the

empirical probability, across all problems p, that the runtime for solver s is within a factor

of k of the best solver runtime. A performance pro�le is a distribution function of the

performance metric over factors k.

We see in Figure 3.3 that BONMIN(ECP) preforms well on 5-target SSPs, with the

fastest runtime for nearly 90% of these problems. DICOPT runtimes stay within a factor

of three of the fastest runtime for 90% of problems. B&B lags behind the MINLP solvers,

with runtimes within a factor of seven of the fastest runtimes for approximately 80% of

problems. All of the problem instances being examined here are solved in 13 seconds

or less. On a relative (performance pro�le) scale BONMIN(ECP) seems to be the clear
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winner, but all of these solvers would be acceptable to planners in a practical sense.

Figure 3.3: Performance pro�le for 5-target SSPs - BONMIN(ECP) preforms well on 5-
target SSPs, with the fastest runtime for nearly 90% of these problems. B&B lags behind the
MINLP solvers, with runtimes within a factor of seven of the fastest runtimes for approximately
80% of problems.

On the 7- and 8-target SSPs the relative performance of these solvers changes dramati-

cally. Table 3.7 and the performance pro�le plot, Figure 3.4, highlight that runtimes of

BONMIN(ECP) and B&B on 7-target SSP instances are nearly identical. DICOPT yields

the slowest runtimes of the three solvers tested.

Table 3.8 shows that B&B is the best solver for the larger 8-target problem instances. B&B

runtimes are, on average, 90 seconds (1.5 minutes), while BONMIN(ECP) runtimes are

much larger at 267 seconds (4.5 minutes). We observe that since the limiting distribution

of the sample mean is normal, and considering the standard error of the mean runtimes,

we can say with high (> 99%) con�dence that the true mean runtimes for B&B on all

8-target problems in this sample space are faster than that of the other two solvers.

The performance pro�le plot (Figure 3.5) demonstrates that runtimes for BONMIN(ECP)

and DICOPT in nearly all problem instances are several times larger than that of B&B,

39



B&B BONMIN(ECP) DICOPT
Num Solved 100 100 100

Runtime (sec)
Mean 32.84 30.47 115.39

Std Dev 20.48 16.31 97.76
Std Error 2.05 1.63 9.78
Median 27.82 26.19 86.20

90th Percentile 53.06 52.99 240.25
Min 8.77 8.02 15.90
Max 141.07 81.96 618.70

Table 3.7: Runtime summary for 7-target SSPs -BONMIN(ECP) and B&B have nearly
identical runtimes. DICOPT yields the slowest runtimes of the three solvers tested.

Figure 3.4: Performance pro�le for 7-target SSPs - BONMIN(ECP) and B&B each have the
best runtimes in approximately half of the test problems. DICOPT yields the slowest runtimes
of the three solvers tested.

with over half of the probability mass for BONMIN(ECP) being in the k = 3 to k = 9

range.

When considering larger, 10-target, SSPs it is clear that B&B is the only viable algorithm

among the three tested. Table 3.9 highlights that B&B is able to solve 97 of 100 prob-
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B&B BONMIN(ECP) DICOPT
Num Solved 100 100 82

Runtime (sec)
Mean 90.01 267.82 876.74

Std Dev 72.13 185.82 578.37
Std Error 7.21 18.58 57.84
Median 67.38 191.67 737.59

90th Percentile 181.18 500.62 1800.00
Min 8.74 65.58 57.69
Max 415.33 946.74 1800.00

Table 3.8: Runtime summary for 8-target SSPs - B&B is the best solver for these problem
instances. B&B runtimes are, on average, 90 seconds (1.5 minutes), while BONMIN(ECP)
runtimes are much larger at 267 seconds (4.5 minutes).

Figure 3.5: Performance pro�le for 8-target SSPs - B&B yields the fastest runtimes for
nearly all problem instances. BONMIN(ECP) and DICOPT runtimes are at least three times
larger than that of B&B for over 60% of problems tested.

lem instances within 30 minutes of computing time. The mean runtime is 8.5 minutes

and 90% of the problems are solved within 17 minutes of computing time. Meanwhile

BONMIN(ECP) and DICOPT are unable to solve any of the SSP test problems within
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B&B BONMIN(ECP) DICOPT
Num Solved 97 0 0

Runtime (sec)
Mean 515.91 - -

Std Dev 697.87 - -
Std Error 69.79 - -
Median 313.06 - -

90th Percentile 1006.96 - -
Min 33.27 - -
Max 1800.00 - -

Table 3.9: Runtime summary for 10-target SSPs - B&B is the only viable solver for these
problems. BONMIN(ECP) and DICOPT are unable to solve any of these problems within 30
minutes of computing time.

30 minutes.

We now quantify how far the BONMIN(ECP) and DICOPT solutions are from the 10-

target SSP optimal solutions by looking at the reported optimality gaps upon termination.

Table 3.10 highlights that when BONMIN(ECP) and DICOPT terminate upon reaching

the 30 minute time limit, the solution available is usually far from optimal. On average,

solutions are o� by a factor of at least 3.5 (optimality gaps in excess of 350%). For over

half of the problems tested, DICOPT is unable to provide a bound on the optimal solution

because the initial MIP for the linearized subproblem is not solved within 30 minutes.

The trend continues for larger problems. On a set of 25 randomly generated 15-target

problem instances B&B solves each problem instance to optimality in 4,667.8 seconds (1.30

hours) on average, solving 18 out of 25 problem instances within 2 hours. BONMIN(ECP)

is unable to solve any of these problem instances within 2 hours, terminating with an

average optimality gap of 949%.

We observe that, on average, 5% of the B&B runtime is spent by MINOS solving the

partial path relaxation problems RSSP(x̂`). The majority of the total runtime is spent

generating these problems within GAMS and managing the enumeration tree. It seems

reasonable to conclude that a more e�cient implementation of B&B would yield substan-

tially shorter runtimes.

We are able to gain some insight into why B&B outperforms the MINLP solvers as
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BONMIN(ECP) DICOPT
Num Bounds 100 44

Gap (%)
Mean 504 358

Std Dev 323 223
Median 433 316

10th Percentile 236 126
90th Percentile 903 551

Min 74 17
Max 1893 1182

Table 3.10: Optimality gap summary for BONMIN(ECP) and DICOPT on 10-target
SSPs - Num Bounds refers to the number of problem instances out of 100 for which the respective
solver provided a bound on the objective function value within 30 minutes of computing time.
Reported solutions generally di�er from the optimal solutions by a large margin, upwards of
350% for both solvers. DICOPT is unable to report an optimality gap within 30 minutes for 56
problem instances.

the problem size increases by examining the branch-and-bound enumeration tree of a

representative problem instance. We consider a 10-target SSP instance that is solved in

324 seconds, near the median runtime. In order to isolate the e�ciency gained by the

heuristic, we solve this problem with no initial solution provided as well as with heuristic

initialization. We note that a 10-target SSP results in an enumeration tree of nearly

20 million nodes, spanning 12 levels deep. At each node we solve RSSP(x̂`). Clearly,

B&B visits only a small fraction of these nodes due to fathoming. Any path through

the tree that has length 12 is a path that visits all target search regions. We use the

term perceived depth to refer to the depth of visited nodes in the enumeration tree. If the

average perceived depth of the tree were large, it would be tantamount to enumerating

all possible paths x ∈ X. Thus, in order for our B&B algorithm to perform e�ciently

we need that the perceived depth of the tree remain relatively small for large problems.

This is possible due to the dwell-to-transit resource trade-o� that takes place when we

consider extensions to partial paths in the enumeration tree. Table 3.11 shows the number

of nodes at each level of the tree for a representative problem instance with and without

heuristic initialization. We see that the tree is explored no more than 9 levels deep, as

the partial path relaxation provided by RSSP(x̂`) encounters the optimal solution bound

fairly shallow in the enumeration tree. The majority of the nodes are visited in levels 5-7

of the enumeration tree. Considering that a 5-target SSP, solvable in only a few seconds,

yields an enumeration tree that is seven nodes deep, the perceived depth of the tree for
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larger 10-target SSP is shallow relative to its problem size.

With SSP Heuristic Without SSP Heuristic
Level # NLPs Solved # NLP Solved
1 1 1
2 10 10
3 100 100
4 657 702
5 2008 3024
6 2051 5061
7 714 3354
8 85 720
9 0 40

Total 5626 13 012
Runtime (sec) 324.78 676.69

Table 3.11: Number of NLP solved on each level of the B&B tree for a representative
10-target SSP instance - The perceived depth of the enumeration tree is shallow relative to
its problem size, highlighting the resource trade-o� that motivates the GOP-RDR and highlights
the bene�t of the Algorithm B&B.

Table 3.11 also shows the bene�t of using the SSP heuristic to determine the initial guess

for B&B. Runtime increases proportional to the number of required NLP solutions in the

enumeration tree. Having a good bound on the optimal solution reduces the total number

of required NLP solutions by a factor of 2.3.

We conclude this section with some remarks on the performance of the heuristics presented

in Section 3.2 with respect to the 3-, 5-, 7-, 8-, and 10-target SSP test set. The SSP

heuristic correctly identi�es 223 optimal solutions out of 500 total SSPs tested. Table 3.12

shows that the accuracy of this heuristic tends to diminish as the number of targets

increases. However, the average relative optimality gap remains within the 1-3% range

throughout. Therefore, while the accuracy rate in �nding the optimal solution decreases,

the SSP heuristic does not miss by too wide of a margin on average. This heuristic is

able to get within 7% of optimality in at least 90% of all problems tested. In all cases,

the average accuracy rate is driven by one to three poor performing problem instances.

While the average accuracy diminishes, the runtime remains fairly constant. It is at or

below half a second for all problems tested. This is consistent with the worst case runtime

analysis presented in Section 3.2.1. We observe that, comparing Table 3.12 to Table 3.9,

on average the heuristic's 90th percentile optimality gaps for 10-target problem instances

are smaller than the optimality gaps for BONMIN(ECP) and DICOPT. A problem-by-
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problem comparison reveals that the heuristic solutions have a smaller optimality gap in

all problem instances.

Number of Targets
3 5 7 8 10

Avg Time (sec) 0.19 0.24 0.30 0.31 0.34
Min Time (sec) 0.14 0.17 0.22 0.19 0.22
Max Time (sec) 0.40 0.42 0.65 0.55 0.67
Num Optimal 80 42 41 31 29
Avg Gap (%) 1 3 2 3 2

90th Percentile Gap (%) 3 7 6 6 6
Max Gap (%) 29 34 23 48 30

Table 3.12: SSP heuristic performance results - The heuristic presented in Section 3.2.1
produces runtimes that are at or below the half-second mark for all 3-, 5-, 7-, 8-, and 10-target
SSP instances. Accuracy in �nding the optimal solution appears to diminish as problem size
increases, however the average, 90th percentile, and maximum optimality gaps remain fairly
stable.

Numerical results of the PBB heuristic highlight its utility in producing optimality gap

estimates. While the SSP heuristic demonstrates a stable gap between its solution and

the true optimal solution, the true solution will not be known in an arbitrary problem

instance. Therefore, having the ability to provide an estimate of the optimality gap is

desirable so that planners can be assured that a plan based on a purely heuristic solution

is good by some measure.

In all 500 sample problems, the solution returned by the PBB heuristic is the same as the

SSP heuristic solution, thus the accuracy and true (unknown) optimality gap performance

of these heuristics are the same. While this might suggest that the two heuristics always

produce the same solution, this is not true in general. We consider a two-target scenario

where one target moves away past the home station and the other target moves toward

the home station. The target data for this example scenario is provided in Table 3.13.

By virture of the smallest τmax value the SSP heuristic produces a plan that searches

target 2 �rst and target 1 last, yielding an objective function with expected search value

1,583.9. In this situation it is clearly more bene�cial to use the opposite search order to

decrease total transit time as target 1 moves away from the home station. The optimal

search plan, swapping the targets in the search order, yields an objective function with

expected search value 1,743.7. In this example the PBB heuristic solution di�ers from the

SSP heuristic solution.
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Target U τ τ̃ τmin τmax ρ ρ̄ ρ̃ q
1 60 3 2 4 23.1 (13.8 3.0) (3.0 9.6) 50 1000
2 60 9 2 10 22.4 (13.8 3.0) (6.6 7.8) 50 1000

Table 3.13: 2-target example scenario data

Table 3.14 highlights that the runtimes for the 3-level PBB heuristic on 3- and 5-target

problem instances are, as one would expect, similar to the runtimes for the full B&B.

However, for the larger 7-, 8-, and 10-target problem instances running the PBB heuristic

takes a fraction of the time it takes to obtain the optimal solution using Algorithm B&B.

The optimality gap estimate produced by the PBB heuristic remains fairly stable as

problem size (e.g., number of targets) increases. While the pure accuracy of solution

obtained by either heuristic diminishes as the problems get larger, the true (unknown)

and the estimated optimality gaps appear to be stable.

Number of Targets
3 5 7 8 10

Avg Time (sec) 0.83 3.77 11.64 18.55 37.92
Full B&B Avg Time (sec) 0.83 5.77 32.84 90.01 515.91

Num Optimal 80 42 41 31 29
Avg Gap Est (%) 1 14 13 14 14

90th Percentile Gap Est (%) 4 27 25 22 23
Max Gap Est (%) 14 68 44 41 33

Table 3.14: 3-level PBB heuristic performance results - The heuristic presented in Sec-
tion 3.2.2 produces solutions in a fraction of the time it takes to run the full B&B algorithm on
moderate to large problem instances. In all 500 sample problems, the solution returned by the
PBB heuristic is the same as the SSP heuristic solution, thus the accuracy and true (unknown)
optimality gap performance of these heuristics are the same. The PBB heuristic yield average,
90th percentile, and maximum optimality gap estimates remain fairly stable as problem size
increases.
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CHAPTER 4:

Search Model Enhancements

Problem SSP serves as a baseline model for solving many interesting problems that arise

in search planning. Real-world scenarios may require developing search plans for multiple

searchers, coordinating surface interdiction e�orts, and accounting for complicated smug-

gler movement tracks over multiple planning periods. This chapter demonstrates how

SSP can be enhanced to capture these di�cult planning issues.

4.1 Benchmark Scenario
In order to motivate the search model enhancements presented later in this chapter, we

describe the following benchmark scenario. This scenario was developed so that it is

representative of the real-world issues faced by planners, while providing scenario details

in an unclassi�ed manner. Our benchmark scenario (BS) involves nine targets, two aerial

searchers, and four surface interdiction assets (interdictors). Figure 4.1 depicts a spatial

representation of the expected movement tracks for these targets.

There are two P-3 aircraft available for planning, each operating out of Comalapa Airbase,

El Salvador. Each has a maximum cruise speed (V ) of 325 knots, an on-station speed

(V̂ ) of 205 knots, and a 10-hour endurance (T ). We assume a revolving daily planning

cycle and a total scenario time limit (D) of 72 hours. In order to minimize disruption

to the daily planning cycle rhythm, we require that search planning recommendations be

computed within a reasonable amount of time. We de�ne a reasonable amount of time to

be two hours. Runtimes in excess of two hours are deemed to be too long because having

planners wait for these solutions to be computed may negatively impact other aspects of

the planning process.

Throughout this scenario, there are four surface ships available for interdiction support

as needed. Two can be positioned anywhere in the eastern Paci�c Ocean and the other

two can be positioned anywhere in the Caribbean Sea. Each has an intercept speed of 20

knots. Surface interdictors are to be positioned in coordination with the search plan so

that they are able to respond if a searcher detects a target. When a target is detected by

a searcher, the searcher monitors the target and summons an interdictor. The interdictor

must then transit from its standby location to the location where the target is being

47



monitored. A successful interdiction occurs once the interdictor arrives. Due to high cost

of repositioning surface assets, we assume that interdictors cannot be routed and that

they will remain in their stand-by position until called upon to respond when a detection

occurs.

The �rst target (GF1) is a GO FAST boat that is expected to be carrying 1,000 kg

of cocaine and traveling in the Caribbean at an expected speed (U1) of 50 knots. The

expected track of GF1 is a coastal route that transits through the longitude/latitude

points: 76.3W 9N � 79W 10N � 82W 10N � 83.5W 14N. The location of departure (76.3W

9N) and the arrival location (83.5W 14N) both have a uniform uncertainty range of ±30

nm. There is a 60 nm × 60 nm uniform range of uncertainty about each waypoint (79W

10N, 82W 10N). GF1 is expected to depart at 0000 hours on day one of the scenario with

uniform departure time uncertainty of ±2 hours. The overall certainty of the intelligence

about GF1 is 0.95, thus the expected detection value (q1) of GF1 is the product of the

payload and the overall certainty q1 = 1, 000 × 0.95 = 950. The sweep width of a P-3

against a GO FAST boat is assumed to be 15 nm.

The second target (SP1) is a Self-Propelled Semi-Submersible vessel (SPSS) that is ex-

pected to be carrying 5,000 kg of cocaine and traveling in the Caribbean at an expected

speed (U2) of 15 knots. The expected track of SP1 is a straight-line route that transits

through the longitude/latitude points: 76.3W 9N � 83.5W 14N. The location of departure

(76.3W 9N) and the arrival location (83.5W 14N) both have a uniform uncertainty range

of ±30 nm. SP1 is expected to depart at 0400 hours on day two of the scenario with

uniform departure time uncertainty of ±4 hours. The overall certainty of the intelligence

about SP1 is 0.95, thus the expected detection value (q2) of SP1 is the product of the

payload and the overall certainty q2 = 5, 000 × 0.95 = 4, 750. Due to the low pro�le of

an SPSS, the sweep width of a P-3 against this type of vessel is assumed to be 5 nm. By

virtue of its large expected detection value and its relatively narrow uncertainty range,

SP1 is considered a high-value target in this scenario.

The third target (GF2) is a GO FAST boat that is expected to be carrying 1,500 kg

of cocaine and traveling in the Caribbean at an expected speed (U3) of 50 knots. The

expected track of GF2 is a straight-line route that transits through the longitude/latitude

points: 72W 12N � 87.5W 20N. The location of departure (72W 12N) and the arrival

location (87.5W 20N) both have a uniform uncertainty range of ±30 nm. GF2 is expected
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to depart at 0000 hours on day two of the scenario with uniform departure time uncertainty

of±24 hours. The overall certainty of the intelligence about GF2 is 0.50, thus the expected

detection value (q3) of GF2 is the product of the payload and the overall certainty q3 =

1, 500× 0.50 = 750.

The fourth target (MV1) is a merchant vessel that is expected to be carrying 2,000 kg

of cocaine and traveling in the Caribbean at an expected speed (U4) of 15 knots. The

expected track of MV1 is an angled route that transits through the longitude/latitude

points: 75.5W 10.5N � 78W 17N � 85W 16N. The location of departure (75.5W 10.5N)

and the arrival location (85W 16N) both have a uniform uncertainty range of ±40 nm.

There is also a 80 nm × 80 nm uniform range of uncertainty about the waypoint (78W

17N). MV1 is expected to depart at 1200 hours on day two of the scenario with uniform

departure time uncertainty of ±5 hours. The overall certainty of the intelligence about

MV1 is 0.25, thus the expected detection value (q4) of MV1 is the product of the payload

and the overall certainty q4 = 2, 000 × 0.25 = 500. Due to the relatively large size of a

merchant vessel, the sweep width of a P-3 against this type of vessel is assumed to be 30

nm.

The �fth target (GF3) is a GO FAST boat that is expected to be carrying 1,000 kg

of cocaine and traveling in the Caribbean at an expected speed (U5) of 50 knots. The

expected track of GF3 is a straight-line route that transits through the longitude/latitude

points: 75.5W 10.5N � 87.5W 20N. The location of departure (75.5W 10.5N) and the

arrival location (87.5W 20N) both have a uniform uncertainty range of ±20 nm. GF3 is

expected to depart at 0400 hours on day three of the scenario with uniform departure time

uncertainty of ±2 hours. The overall certainty of the intelligence about GF3 is 0.95, thus

the expected detection value (q5) of GF3 is the product of the payload and the overall

certainty q5 = 1, 000× 0.95 = 950.

The sixth target (GF4) is a GO FAST boat that is expected to be carrying 1,000 kg

of cocaine and traveling in the eastern Paci�c at an expected speed (U6) of 50 knots.

The expected track of GF4 is a coastal route that transits through the longitude/latitude

points: 79W 1N � 79W 5N � 83W 6N � 92.2W 14.5N. The location of departure (79W 1N)

and the arrival location (92.2W 14.5N) both have a uniform uncertainty range of ±40 nm.

There is also an 80 nm × 80 nm uniform range of uncertainty about each waypoint (79W

5N, 83W 6N). GF4 is expected to depart at 2300 hours on day two of the scenario with
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uniform departure time uncertainty of ±2 hours. The overall certainty of the intelligence

about GF1 is 0.95, thus the expected detection value (q6) of GF6 is the product of the

payload and the overall certainty q6 = 1, 000× 0.95 = 950.

The seventh target (SP2) is an SPSS that is expected to be carrying 2,500 kg of cocaine

and traveling in the eastern Paci�c at an expected speed (U7) of 15 knots. The expected

track of SP2 is an angled route that transits through the longitude/latitude points: 77W

5N � 86W 3N � 92.2W 14.5N. The location of departure (77W 5N) and the arrival location

(92.2W 14.5N) both have a uniform uncertainty range of ±40 nm. SP2 is expected to

depart at 0500 hours on day one of the scenario with uniform departure time uncertainty

of ±3 hours. The overall certainty of the intelligence about SP2 is 0.50, thus the expected

detection value (q7) of SP2 is the product of the payload and the overall certainty q7 =

2, 500× 0.50 = 1, 250.

The eighth target (SP3) is an SPSS that is expected to be carrying 5,000 kg of cocaine

and traveling in the eastern Paci�c at an expected speed (U8) of 15 knots. The expected

track of SP3 is a straight-line route that transits through the longitude/latitude points:

80W 0N � 89W 13.5N. The location of departure (80W 0N) and the arrival location (89W

13.5N) both have a uniform uncertainty range of ±35 nm. SP3 is expected to depart

at 1200 hours on day one of the scenario with uniform departure time uncertainty of

±48 hours. The overall certainty of the intelligence about SP3 is 0.50, thus the expected

detection value (q8) of SP3 is the product of the payload and the overall certainty q8 =

5, 000× 0.50 = 2, 500.

The ninth target (GF5) is a GO FAST boat that is expected to be carrying 2,000 kg

of cocaine and traveling in the Caribbean at an expected speed (U9) of 50 knots. The

expected track of GF5 is an angled route that transits through the longitude/latitude

points: 79W 1N � 92W 2S � 94W 16N. The location of departure (79W 1N) has a uniform

uncertainty range of ±25 nm. The arrival location (94W 16N) has a uniform uncertainty

range of ±50 nm. There is also a 50 nm × 50 nm uniform range of uncertainty about

the waypoint (92W 2S). GF5 is expected to depart at 0500 hours on day one of the

scenario with uniform departure time uncertainty of ±2 hours. The overall certainty of

the intelligence about GF5 is 0.95, thus the expected detection value (q9) of GF5 is the

product of the payload and the overall certainty q9 = 2, 000 × 0.95 = 1, 900. By virtue

of its large expected detection value and its relatively narrow uncertainty range, GF5 is
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Figure 4.1: Baseline scenario BS - Spatial representation of expected target tracks in the
baseline scenario. The searchers' home station is identi�ed by �×�. Nine total targets transiting
the AOI over a three day planning period. Timing and uncertainty of target tracks not shown.
Refer to BS narrative for further target details.

considered a high-value target in this scenario.

In a nine-target scenario, where target motion can be modeled as search regions moving

on straight-line tracks and interdiction is not considered, developing a plan, for even a

single searcher, is not an easy task for a planner. Varying target speeds and payloads,

di�ering levels of certainty, and timing constraints over a three day period present many

challenges. Clearly, since BS is even more complex, developing a good plan manually

would be an even harder task for planners.

The remainder of this chapter successively introduces enhancements to SSP to build a

complete model that is used to compute a combined search and interdiction plan for BS,

while presenting intermediate numerical results for each model enhancement. In order

to reduce notational complexity, each model enhancement is introduced and formulated

as a stand-alone modi�cation to SSP, while in practice any combination of these model

enhancements can be used together to accommodate the scenario at hand. Indeed BS
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requires them all.

4.2 Complex Target Motion
Real-world scenarios where the SSP arises can require the use of models that are more

complex than those discussed thus far, e.g., BS. A particular target's movement track may

not be along a straight line. The target may be traveling along a track that follows a par-

ticular stretch of coastline, or the target may navigate around islands or other geographic

obstacles. It is also possible that the search region associated with a target changes as

the target moves, perhaps due to changing weather or intelligence-driven changes to the

uncertainty ranges themselves. The speed of the target may also change with ocean state

conditions as a smuggler travels. All of these considerations can be modeled, at least

approximately, with piecewise linear target movement tracks.

We consider the situation where target motion is nonlinear, but can be approximated by

piecewise linear segments. We model the nodes N as the segmented search regions (target

segments). Nodes represent search regions as in SSP, but here they do not necessary

correspond to unique targets. Let F ⊆ N̂ be the set of �rst segment target paths, one for

each actual target. Let B(i) ⊆ N̂ , i ∈ F denote the set of search region segments for each

target. The piecewise linear target motion model is as follows.

Problem SSP-PWL:

max
a,d,t,x,y

∑
i∈F
qi

(
1− exp

{
−
∑

j∈B(i)

αjdjyj

})
s.t. (3.2b) � (3.2m)

SSP-PWL only di�ers from SSP in the objective function. In the objective we sum

total search e�ort in the exponential. In this case the summation is over all segments in

the piecewise linear target movement track. We set τminj and τmaxj in (3.2f) and (3.2g)

respectively to de�ne the connections between target path line segments.

Some computational e�ciency can be realized by reducing the size of the arc set A.

Clearly, any arc (i, j) where j precedes i ∈ B(j) should be eliminated from A. This

is accomplished with the set N×(x̂`) in constraints (3.7h). Performing this elimination
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procedure for all target path line segments reduces the dimension of X̂ in Algorithm

B&B.

4.2.1 Complex Target Motion Model Numerical Results

We now consider the baseline scenario BS. Model enhancements that account for multiple

searchers or interdiction have not been introduced, therefore we only consider a single

searcher problem with no interdiction. Additionally, we have yet to describe how to

handle scenarios with multiple mission cycles. A target is considered to be active in a

particular period if it is expected to be moving along its track at any time during the

period. We restrict the scenario to �rst day's mission cycle (D=24 hours). Doing so

removes SP1, MV1, GF3, GF4, and SP3 from the scenario because these targets are not

active until after the �rst day. Lastly, since we have not described how to model target

tracks that have a large time uncertainty window, we remove GF2 from the scenario.

We denote by GF1(i) the ith segement of GF1's piecewise linear movement track, where

segment 1 is the �rst with respect to expected departure time. We also denote by θ+
j and

θ−j the respective locations where the searcher begins and ends search for target j. In this

model, θ+
j corresponds to the expected location of target j the moment search begins at

time aj, and θ
−
j corresponds to the expected location of target j the moment search ends

at time aj + dj.

The resulting restricted baseline scenario BS-PWL considers the remaining targets GF1,

SP2, and GF5 as shown in Figure 4.2. During preprocessing the second segment of SP2's

track can be eliminated from search consideration because the target does transit this

segment until the second day of the scenario; τminSP2(2) = 41.8. Due to the additional

segments this problem is equivalent in size to a 6-target SSP. BS-PWL is solved using

Algorithm B&B in 3.5 seconds of computing time, yielding an expected search plan value

of 1,444.1 kg of cocaine detected. The SSP heuristic correctly identi�es the optimal

solution in 0.6 seconds of computing time.

Table 4.1 lists the optimal search times (a,d, and t) and searcher path. The rows in

this table correspond to target segments and home station locations (i.e., nodes in the

network G). The column labeled t lists the transit time for the searcher to arrive at each

node from its previous node. The column labeled a lists the arrival time of the searcher

at each node. The column labeled d lists the dwell time of the searcher at each node.

The column labeled θ+ lists the position at time of the searcher when it arrives at each
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Figure 4.2: Restricted baseline scenario BS-PWL - Spatial representation of expected target
tracks in the restricted baseline scenario BS-PWL. The searchers' home station is identi�ed by
�×�. Timing and uncertainty of target tracks not shown. Refer to BS narrative for further target
details.

node. The column labeled θ− lists the position at time of the searcher when it departs

each node.

Figure 4.3 shows a spatial representation of the optimal search plan, where the dark

rectangle represents the e�ective search region of GF5(1) in the search plan and the

arrows indicate the direction of the searcher's path.

For another SSP-PWL example, centered on a two-searcher scenario, see Pietz and

Royset (2013).

4.3 Multiple Searchers
We now consider search planning operations where a set of searchers S is available. We

model this planning problem as a GOP-RDR on a searcher-expanded network GS =

(NS, AS), where the nodes are searcher-target pairs NS = {(s, j) : s ∈ S, j ∈ N} and
the arcs AS = {(s, i, j) : s ∈ S, (i, j) ∈ A} represent the transit of searcher s between
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t a d θ+ θ−

Home - 0 8.40 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.68 11.08 4.64 (83.9W 0.1S) (87.7W 1.0S)
Home 2.68 18.40 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.1: Optimal search times and searcher path for scenario BS-PWL - The rows in
this table correspond to target segments and home station locations (i.e., nodes in the network
G). The column labeled t lists the transit time for the searcher to arrive at each node from its
previous node. The column labeled a lists the arrival time of the searcher at each node. The
column labeled d lists the dwell time of the searcher at each node. The column labeled θ+ lists
the position at time of the searcher when it arrives at each node. The column labeled θ− lists
the position at time of the searcher when it departs each node.

Figure 4.3: Restricted baseline scenario BS-PWL solution - Spatial representation of BS-
PWL optimal solution. The optimal search plan directs the searcher to search only for GF5
along its �rst movement track segment for a total of 4.64 hours. The resulting expected value of
the search plan is 1,444.6 kg of cocaine detected. The size of the rectangular block corresponds
to the total area of the search region during the time when the searcher is performing search
actions in that region against GF5. Arrows indicate the direction of the searcher's path

search region i and search region j. Utilizing the vector forms of aj,dj and ti,j in P, we

allow each of these resource variables to have |S| elements. We denote by as,j and ds,j the

respective arrival time and dwell time of searcher s in search region j, and we denote by

ts,i,j the transit time of searcher s from search region i to search region j. The multiple

55



searcher SSP is stated as follows.

Problem SSP-MS:

max
a,d,t,x,y

∑
j∈N̂

qj

(
1− exp

{
−
∑
s∈S

αs,jds,jys,j

})
(4.2a)

s.t. (||ρs,i + (as,i + ds,i − τs,i)us,i − ρs,j
. . .− (as,i + ds,i + ts,i,j − τs,j)us,j||

. . .− V ts,i,j)xs,i,j ≤ 0, ∀(s, i, j) ∈ AS (4.2b)

(as,i + ds,i + ts,i,j − as,j)xs,i,j ≤ 0, ∀(s, i, j) ∈ AS (4.2c)∑
j∈N̂S

ds,j +
∑

(i,j)∈AS

ts,i,j ≤ Ts, ∀s ∈ S (4.2d)

∑
j∈NS

ds,j +
∑

(i,j)∈AS

ts,i,j ≤ Ds, ∀s ∈ S (4.2e)

as,j ≥ τmins,j , ∀(s, j) ∈ NS (4.2f)

as,j + ds,j ≤ τmaxs,j , ∀(s, j) ∈ NS (4.2g)

as,0 = 0, ∀s ∈ S (4.2h)

ds,n+1 = 0, ∀s ∈ S (4.2i)

as,j, ds,j ≥ 0, ∀(s, j) ∈ NS (4.2j)

ts,i,j ≥ 0, ∀(s, i, j) ∈ AS (4.2k)

ys = Γxs, ∀s ∈ S (4.2l)

xs ∈ X, ∀s ∈ S (4.2m)

Each expression in SSP-MS is a direct extension of its SSP counterpart where as,j, ds,j

and ts,i,j are the arrival time, dwell time, and the transit time of searcher s contained

in the vectors aj,dj and ti,j respectively. We allow resources T and D in (4.2d) and

(4.2e) respectively to vary by searcher. This is a useful feature that allows the model to

account for heterogeneous searchers. In the objective function (4.2a), each exponential

term associated with search region j in the random search model computes detection

probability by accumulating total search e�ort for all searchers just as in SSP-PWL.
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4.3.1 Algorithms for the Multi-Searcher Model

B&B for the Multi-Searcher Model

Algorithm B&B can be used to solve SSP-MS. We modify the notation in Algorithm

B&B by requiring that the nodes of the enumeration tree be viewed as (s, j)-pairs, where

s ∈ S, j ∈ N . We also vectorize I` and δ`,n+1 in RP(x̂`) to account for path completion

with respect to each searcher, and modify the path completion criterion in step 3 to

require that (s, j) = (s, n + 1),∀s ∈ S. In principle, this can be done for an arbitrary

number of searchers, however the enumeration tree grows exponentially with the number

of searchers |S|. Fortunately, real-world applications we consider call for planning with

a very limited number of searchers (i.e., one or two searchers). When searchers are

homogeneous and have the same home station, many multi-searcher partial paths in the

set X̂ are redundant because the individual partial paths for two or more searchers can

be swapped to produce an equivalent multi-searcher partial path that is also in X̂. These

redundant multi-searcher partial paths can be removed from the set X̂ in order to reduce

the amount of enumeration that must be done in Algorithm B&B. This redundant partial

path elimination (RPPE) belongs to the class of reduction rules used in B&B algorithms

for the VRP (see Toth and Vigo 2002, ch. 2).

SSP Heuristic for the Multi-Searcher Model

In order to provide a good initial guess to Algorithm B&B, accounting for |S| searchers,
we de�ne the multi-searcher SSP heuristic, which performs the SSP heuristic sequentially,

as follows. We set the temporal clustering parameter ∆ = 6 hours. We initialize the

path for searcher s, s = 2, . . . , |S| to each consist only of arc (0, n + 1). This ensures

a feasible, but certainly not optimal, path for searchers 2 through |S|. We then run

the heuristic for searcher 1 and �x the resulting path. We then do the same for searcher

s, s = 2, . . . , |S| in turn. We improve the search plan by considering the removal of targets

from searcher 1's path, performing Phase V of the SSP heuristic. We then do the same for

searcher s, s = 2, . . . , |S| in turn. Lastly, we attempt to improve the plan by allowing each
pair searchers to swap their entire search paths. The modi�ed heuristic returns the best

search plan encountered after the aforementioned steps are completed. We do not consider

pairwise target swaps between searchers nor do we consider a parallel implementation of

the SSP heuristic. Our aim is to quickly provide a good initial solution to Algorithm

B&B. To make notation more concise, we use the term SSP heuristic more broadly to

refer either the (single-searcher) SSP heuristic or the multi-searcher SSP heuristic as the
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problem context dictates. The long-form name, multi-searcher SSP heuristic, is used when

the distinction between the single-searcher algorithm and the multi-searcher algorithm is

important.

Cyclic Seesaw Heuristic for the Multi-Searcher Model

We propose another heuristic, the Cyclic Seesaw (CS) heuristic, for solving multiple

searcher SSPs. This heuristic is inspired by a decomposition approach to optimizing

over vector valued variables (Spall 2012). The fundamental idea of this cyclic seesaw

method is to �x a subset of the decision variables in SSP-MS and solve for the remain-

der, alternating or cycling between �xing and solving until a stable point is reached. In

SSP-MS a natural place to partition decision variables x is by searcher. It should be

noted that since the decision variables x are integer valued, this approach is not guar-

anteed to converge to the optimal solution (Spall 2012). We now describe how the CS

heuristic is implemented.

CS Heuristic: We begin by de�ning the cycle limit parameter Λ ≥ 1 and initialization

parameter ι ∈ {0, 1}. We initialize the cycle count λ = 0.

Phase I. We initialize the search plan as follows. If ι = 0, we initialize the search plan x

for all searchers to the null path, where xs,0,n+1 = 1,∀s ∈ S and xs,i,j = 0,∀s ∈ S,∀(i, j) ∈
A\{(0, n + 1)}. If ι = 1, we initialize the search plan x for all searchers using the SSP

heuristic. We save the initial search plan as x̄.

Phase II. We do the following for each searcher s in turn. We �x the plan for all

searchers other than s to xs′ = x̄s′ ,∀s′ ∈ S\{s}. Using Algorithm B&B we solve for the

optimal search plan with respect to searcher s. We save the resulting solution as the new

incumbent x̄s.

Phase III. We increment cycle count λ, then repeat Phase II until λ = Λ. Upon termi-

nation return the last incumbent search plan x̄.

We observe that the multi-searcher SSP heuristic can be viewed as using the (single-

searcher) SSP heuristic in place of Algorithm B&B within the CS heuristic.
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4.3.2 Multi-Searcher Model Numerical Results

We now return to the restricted baseline scenarioBS-PWL. Including the second searcher

we arrive at the still restricted, but modi�ed, scenario BS-MS. We observe that since

the searchers are homogeneous and have the same home station, the respective search

plans for searcher 1 and searcher 2 can always be swapped to produce an equivalently

valued search plan. We take advantage of this fact using RPPE in Algorithm B&B. The

SSP heuristic produces a search plan that has an objective function value of 2,035.1 kg of

cocaine detected in 1.3 seconds of computing time. The search times and searcher path

for this solution are shown in Table 4.2.

Searcher Segment t a d θ+ θ−

1

Home - 0 2.54 (89.1W 13.4N) (89.1W 13.4N)
GF1(2) 1.83 4.37 2.68 (79.8W 10.0N) (82.0W 10.0N)
GF5(1) 1.79 8.85 0.98 (82.1W 0.3N) (82.9W 0.1N)
Home 2.71 12.54 - (89.1W 13.4N) (89.1W 13.4N)

2
Home - 0 8.40 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.68 11.08 4.64 (83.9W 0.1S) (87.7W 1.0S)
Home 2.68 18.40 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.2: SSP heuristic search times and searcher path for scenario BS-MS - Expected
value of the SSP heuristic search plan is 2,035.1 kg of cocaine detected.

The optimal search plan, computed using Algorithm B&B with RPPE in 48.9 seconds,

has an objective function value of 2,254.6 kg of cocaine detected. Since real-world sce-

narios do not in general have homogeneous searchers with the same home station, it is

not always appropriate to use RPPE. The optimal solution is computed using Algorithm

B&B without RPPE in 2.7 minutes. Clearly RPPE yields a substantial runtime savings,

70% in this case, and should be used when appropriate. For the remainder of this chap-

ter, Algorithm B&B applied to BS uses RPPE and runtimes re�ect this more e�cient

approach.

The search times and searcher path for the optimal solution are shown in Table 4.3.

Figure 4.4 shows a spatial representation of the optimal search plan.

The SSP heuristic solution di�ers from the optimal solution in that SP2 is removed from

the heuristic ordering due to a relatively low rate-of-reward β̂, which is mainly driven

by the small sweep width of a P-3 against an SPSS (see Table 4.4). Timing and travel

distance, however, make SP2 a worthwhile target to include in the optimal search plan.
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Searcher Segment t a d θ+ θ−

1
Home - 0 8.40 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.68 11.08 4.64 (83.9W 0.1S) (87.7W 1.0S)
Home 2.68 18.40 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 0 6.39 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.37 7.76 1.91 (82.2W 10.6N) (82.8W 12.0N)
SP2(1) 1.57 11.24 2.69 (78.5W 4.7N) (79.2W 4.5N)
Home 2.46 16.39 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.3: Optimal search times and searcher path for scenario BS-MS - Expected value
of the SSP heuristic search plan is 2,254.6 kg of cocaine detected.

Figure 4.4: Restricted baseline scenario BS-MS solution - Spatial representation of BS-
MS optimal solution. The resulting expected value of the search plan is 2,254.6 kg of cocaine
detected. The size of the rectangular blocks correspond to the total area of the search region
during the time when the searcher is performing search actions.

The CS heuristic, with Λ = 1 and ι = 1, correctly identi�es the optimal search plan in

8.3 seconds of computing time. Clearly this heuristic will not always produce the optimal

solution, but in this case it does so because in Phase I the SSP heuristic provides an initial

plan which is optimal with respect to one of the searchers.

We refer to Pietz and Royset (2013) for an SSP-MS example which studies the di�erences
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Segment β̂ q α W τ̃ ρ̃
GF1(1) 214.7 950 0.256 15 12000
GF1(2) 214.7 950 0.256 15 12000
GF1(3) 214.7 950 0.256 15 12000
SP2(1) 187.7 1250 0.163 5 6300
GF5(1) 503.0 1900 0.308 15 10000
GF5(2) 332.2 1900 0.192 15 16000

Table 4.4: Rate-of-reward parameter comparison of scenario BS-MS target segments
- The small sweep width associated with SP2 make it an unfavorable target in the SSP heuristic
search order.

between multiple-searcher plans done manually, plans obtained with the SSP heuristic,

and plans computed using Algorithm B&B.

4.4 Fixed Region Search
Suppose that the uncertainty associated with a target track is such that de�ning a moving

search region is not realistic. This can happen, for example, when the departure time

uncertainty range is large or when there is unpredictable variation in the target speed.

In this case, we model the search for targets using a random search model (Washburn

2002, ch. 2) applied to a static �xed region. In keeping with the SSP, we assume that the

probability distribution of the target within the search region is uniform.

In a sense this model is less complex than that of the SSP which considers moving search

regions. However, a subtle practical matter must be considered. In the SSP, we assume

that the moving regions are not too large. As such, the question of where within the region

a searcher is routed to and from is insigni�cant. Out of convenience we choose the center

of the region. When the search region is small, the chosen tactical search pattern can

be accommodated with a negligible di�erence in the searcher's entry and exit locations

in this region. In the situation when the search region is large, we must account for the

di�erence in entry and exit points. We do this by including the entry and exit locations

in the model as decision variables.

We model searcher transit to and from a convex subset Rj of the �xed region associated

with target j. We denote by r+
j and r−j the respective entry and exit location of the

searcher in �xed region j. We model both moving and �xed regions by introducing the

respective disjoint subsets Q and R, where Q ∪ R = N are the nodes in the directed

network G. We include the home station and recovery location in the set Q. It is
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convenient to de�ne Q̂ = Q\{0, n+ 1}. Directed arcs are de�ned between all (i, j) ∈ A as

follows. Let AQQ be the set of arcs connecting a moving search region to another moving

search region. Let AQR be the set of arcs connecting a moving search region to �xed

search region. AQR and ARR are de�ned similarly. We introduce the vectorized location

notation rj = (r+
j , r

−
j ), and r = (rj1 , rj2 , . . . , rj|R|). Accounting for �xed region targets,

the modi�ed SSP is stated as follows.

Problem SSP-FR:

max
a,d,t,r,x,y

∑
j∈N̂

qj (1− exp {−αjdjyj}) (4.3a)

s.t. (||ρi + (ai + di − τi)ui − ρj
. . .− (ai + di + ti,j − τj)uj||

. . .− V ti,j)xi,j ≤ 0, ∀(i, j) ∈ AQQ (4.3b)

(||ρi + (ai + di − τi)ui − r+
j ||

. . .− V ti,j)xi,j ≤ 0, ∀(i, j) ∈ AQR (4.3c)

(||r−i − ρj − (ai + di + ti,j − τj)uj||

. . .− V ti,j)xi,j ≤ 0, ∀(i, j) ∈ ARQ (4.3d)

(||r−i − r+
j || − V ti,j)xi,j ≤ 0, ∀(i, j) ∈ ARR (4.3e)

(||r−j − r+
j || − V̂ dj)yj ≤ 0, ∀j ∈ R (4.3f)

r−j , r
+
j ∈ Rj, ∀j ∈ R (4.3g)

(3.2c) � (3.2m)

Constraints (4.3b) through (4.3e) ensure that the time it takes the searcher to travel

between each pair of regions, moving or �xed, is feasible given its maximum cruise speed V .

Constraint (4.3f) ensures that the time it takes the searcher to travel from the entry point

to the exit point of each �xed region is feasible given its on-station speed V̂ . Constraint

(4.3g) restricts the searcher's entry point and exit point in each �xed region j to lie within

the convex feasibility set Rj. We observe that (4.3g) need not depend on x because rj is

a vacuous variable when region j is not searched.
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4.4.1 Fixed Region Search Model Numerical Results

Returning to BS-MS, we also include for day 1 the target that exhibit large departure

time uncertainty ranges, namely GF2. We assume that the �xed region entry and exit

points are constrained to RGF2 the line segment between the expected departure and

arrival locations of GF2; 72W 12N - 87.5W 20N. We arrive at the modi�ed scenario

BS-FR with expected target tracks shown in Figure 4.5.

Figure 4.5: Restricted baseline scenario BS-FR - Spatial representation of expected target
tracks in the restricted baseline scenario BS-FR. The searchers' home station is identi�ed by
�×�. Timing and uncertainty of target tracks not shown. Refer to BS narrative for further target
details.

This scenario BS-FR is solved using the SSP heuristic and Algorithm B&B without

any further modi�cations. The SSP heuristic returns the same search plan reported

in Section 4.3.2 (Table 4.2) in 1.4 seconds of computing time. The optimal solution,

computed in 64.8 seconds, is also the same as reported in Section 4.3.2 (Table 4.3 and

Figure 4.4). The large search area associated with GF2 results in a search value (β̂ = 15.8)

that is an order of magnitude smaller than that of the other targets (see Table 4.4). As

a result, it is not bene�cial for either searcher to consume transit time in order to search

for GF2.
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To illustrate a search plan that includes a �xed region search in the optimal solution

we consider an excursion to BS-FR, adjusting the intelligence data for GF2 as follows.

The expected departure time is shifted 12 hours earlier to 1200 on day 1. The expected

payload of GF is increased to 5,000 kg of cocaine. Additionally, the overall certainty of

the intelligence is increased to 0.95. The later two modi�cations serve to increase the

search value of GF2, while the �rst modi�cation provides a greater opportunity for seach

by shifting τminGF2 to earlier in day 1. We denote by BS-FR-E this excursion to BS-FR

that includes these three modi�cations.

The optimal solution for BS-FR-E, computed in 2.3 minutes, yields an expected search

value of 2,297.0 kg of cocaine detected. The optimal search plan is given in Table 4.5.

Note that θ+
j = r+

j and θ−j = r−j for j ∈ R, while θ+
j and θ−j for j ∈ Q represent expected

locations as described in Section 4.2.1.

Searcher Segment t a d θ+ θ−

1
Home - 0 8.40 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.68 11.08 4.64 (83.9W 0.1S) (87.7W 1.0S)
Home 2.68 18.40 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 0 5.54 (89.1W 13.4N) (89.1W 13.4N)
GF1(2) 1.46 7.00 0.06 (81.9W 10.0N) (82.0W 10.0N)
GF1(3) 0.00 7.06 3.13 (82.0W 10.0N) (82.9W 12.4N)
GF2 0.85 11.03 3.30 (80.8W 16.5N) (86.1W 19.3N)
Home 1.21 15.54 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.5: Restricted baseline scenario excursion BS-FR-E solution - The plan for
searcher 1 is unchanged relative to the BS-MS optimal solution, searcher 2 is now directed
to GF2 instead of SP2.

Figure 4.6 depicts the optimal search plan for BS-FR-E. We observe that the optimal

plan for searcher 1 is unchanged with respect to the optimal plan for BS-FR, searching

for GF5 with the same search times. The optimal plan for searcher 2, however, shifts to

search GF1 earlier in day 1 and then proceeds to search for GF2 in its �xed region. Recall

that search is assumed to be carried out according the random search model, and the

planner chooses the tactical pattern to be �own by the searchers in each search region.

The large shaded search area for GF2 shown in Figure 4.6 re�ects the �xed geographical

boundaries of the search region, and is not meant to imply that search is required be

conducted everywhere in this region. In fact, searching this entire �xed region is not

possible given the 3.3 hour search dwell time. The GF2 search region is over 1000 nm

long (|ρ̄GF2−ρGF2| = 1014 nm). Searcher 2 traveling at V̂ = 205 knots would take almost
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�ve hours just to transit across the region. The optimal entry and exit locations r+
GF2

and r−GF2 are chosen to reduce transit time as much as possible provided that constraints

(4.3f) and (4.3g) are satis�ed.

Figure 4.6: Restricted baseline scenario excursion BS-FR-E solution - Searcher 1 is
routed to search GF5, while searcher 2 is routed to search GF1 and GF2. The path of searcher
2 into and out of the �xed search region for GF2 re�ects the optimal values for r− and r+

respectively. Within the search region (shaded dark) search actions are carried out according to
the random search model.

4.5 Interdiction
We now consider search planning operations where the searcher is routed in the AOI to

detect moving targets, and when a detection occurs, an interdictor is called to respond.

While the interdictor is in transit to capture the detected target, the searcher monitors

the target to prevent escape. At the moment the target is detected, one of three things

can happen. First, the target could take evasive action by altering its intended track in

an attempt to evade capture. This possibility is not considered in our one-sided search

model. Search games are more appropriate models to deal with this consideration (see,

e.g., Alpern and Gal 2003). Second, the target could continue on its intended track.

Third, the target could stop. The latter two possibilities can be captured by our search
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model by expressing the distance between the target and the interdictor using a second

order cone constraint. We proceed under the assumption that targets stop when detected

by a searcher.

Since the endurance of the searcher and the speed of the interdictor are both limited, we

must account for the distance between the position of the interdictor and the location

where a detection may occur. The interdictor may be positioned at a �xed standby

location that cannot be changed by the search controller. In this case, the feasible search

area is constrained by the interdictor's location. Alternatively, the standby location of

the interdictor may be a decision variable. Yet another possibility exists where the search

controller may specify an initial standby position for the interdictor, as well as a constant

drift course and speed (drift vector). We model the later as it is the more general case.

Let p ∈ P be the initial standby position of the surface interdictor, where P is a convex

set. Let p̂ ∈ P be the �nal resting position of the surface interdictor. Let v be the drift

vector of the surface interdictor. Let VI be the intercept speed of the interdictor. We

assume that if a detection occurs in any searched region, the searcher will stay on station

as required so that the interdictor may respond. Therefore, the interdictor must be able

to travel to the search region before the planning period expires and before the searcher

reaches its endurance limit. In the unlikely event that multiple detections occur at the

same time for the same interdictor, we assume that the interdictor will respond to the �rst

call it receives from a searcher. We also assume that the searcher maintains a safety stock

of fuel so that, when it has to monitor a detected target, it is still able to return to home

station at the end of its mission. We account for safety stock through backtracking time

bj, which is the minimum time required for the searcher to return to home station from

any point on target segment j that is assigned to be searched. Backtracking time can be

modeled as a �xed value, possibly di�erent for each target, or as a decision variable. We

choose the latter as it is the more general case. The interdictor coordinated SSP is stated

as follows.
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Problem SSP-I:

max
a,d,t,b,p,p̂,x,y

∑
j∈N

qj (1− exp {−αjdjyj}) (4.4a)

s.t. (||ρi + (ai − τi)ui − p− aiv||

. . .− VI(T + d0 − bi − ai))yi ≤ 0, ∀i ∈ N̂ (4.4b)

(||ρi + (ai + di − τi)ui − p− (ai + di)v||

. . .− VI(T + d0 − bi − ai − di))yi ≤ 0, ∀i ∈ N̂ (4.4c)

(||ρi + (ai − τi)ui − p− aiv||

. . .− VI(D − bi − ai))yi ≤ 0, ∀i ∈ N̂ (4.4d)

(||ρi + (ai + di − τi)ui − p− (ai + di)v||

. . .− VI(D − bi − ai − di))yi ≤ 0, ∀i ∈ N̂ (4.4e)

(||ρi + (ai − τi)ui − ρn+1|| − V bi)yi ≤ 0, ∀i ∈ N̂ (4.4f)

(||ρi + (ai + di − τi)ui − ρn+1|| − V bi)yi ≤ 0, ∀i ∈ N̂ (4.4g)

p+ an+1v − p̂ = 0 (4.4h)

p, p̂ ∈ P (4.4i)

(3.2b) � (3.2m)

Constraints (4.4b) and (4.4c) require that the distance between where search occurs and

position of interdictor is within the travel range of the searcher given the amount of time

remaining relative to the endurance limit of the searcher. Figures 4.7 and 4.8 illustrate

how constraints (4.4b) and (4.4c) function in this model. We assume that the maximum

speed of the interdictor is faster than its intercept speed. This allows the interdictor

to successfully respond when the searcher detects a target within its search region and

just outside of the interdictor response circle. Similarly, constraints (4.4d) and (4.4e)

require that the distance between where search occurs and position of interdictor is within

the travel range of the searcher given the amount of time remaining in the planning

cycle. Constraints (4.4f) and (4.4g) require that the distance between where search occurs

and searcher's home station is within the backtracking time travel range of the searcher.

Constraint (4.4h) sets the �nal resting position of the interdictor to be its drifted position

at the moment the searcher returns to home station. Constraint (4.4i) requires that the
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position of the interdictor remain within the feasibility set P throughout the mission.

(a) (b)

Figure 4.7: Interdiction model diagram - Consider a straight line movement track for target i
and rectangular search region as shown. (a) Constraint (4.4b) requires that the distance between
where search begins against target i and the position p+aiv of the interdictor is no greater than
the range of the interdictor VI(T + d0− bi− ai). The search region at the moment search begins
against target i is shown as the solid rectangle. The interdictor response circle with radius
VI(T +d0− bi−ai) and center p+aiv is shown. (b) Constraint (4.4c) requires that the distance
between where search ends against target i and the drifted position p+(ai+di)v of the interdictor
no greater than the range of the interdictor VI(T + d0 − bi − ai − di). The search region at the
moment search ends against target i is shown as the solid rectangle. The search region moving
over time epochs is shown as indicated by the dotted rectangles. The interdictor response circle
with radius VI(T + d0 − bi − ai − di) and center p+ (ai + di)v are shown.

The special case where the position of the interdictor is �xed and unchangeable can be

modeled by �xing p and v = 0. Similarly, other situations can be modeled by allowing p

to vary and/or choosing v 6= 0. Multiple interdictors are easily handeled with this model

by indexing the variables and parameters associated with the interdictor. If each target

can be matched to an interdictor, the multiple interdictor model is no more di�cult
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to solve than the single interdictor model. When the target-to-interdictor matching is

unknown or cannot reasonably be set manually, this introduces integer variables that

must be handled along with x through branching. Since predetermined patrol zones and

state sovereignty often drive surface interdictor placement, we assume that the target-to-

interdictor matching can be done manually.

Figure 4.8: Interdiction model diagram combined - We combine the both parts of Figure 4.7
by shading the response circle associated with constraint (4.4c) and �lling in the moving search
region as done in previous illustrations. Interdiction model solution �gures later in this section
will have this representation. We see that the center of the shaded response circle is o�set by the
vector div. We observe that when v = 0, the centers of the response circles must be the same
position p.

4.5.1 Interdiction Model Numerical Results

Returning to BS we assume that interdictors are assigned in regional zones as indicated

in Table 4.6. Recall that the intercept speed of the interdictor is VI = 20 knots.

We augment the restricted scenario BS-FR by adding the four available interdiction

assets. We assume that backtracking time for each searcher is included in its endurance

time T ; we �x bj = 0,∀j ∈ N , and we relax constraints (4.4f) and (4.4g). In keeping with
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Interdictor Targets Zone
1 GF2, GF3, MV1 NE Caribbean zone
2 GF1, SP1 SW Caribbean zone
3 GF4, SP2, SP3 NE Eastern Paci�c zone
4 GF5 SW Eastern Paci�c zone

Table 4.6: Zonal interdictor-to-target assignment for scenario BS

BS in Section 4.1, we do not allow the interdictors to change position after their location

has been coordinated with the search plan. Therefore, we require v = 0 and p = p̂.

We restrict the positions of interdictors 1 and 2 to be within the Caribbean Sea, and

the positions of interdictors 3 and 4 to be within the eastern Paci�c Ocean. Accordingly,

feasible polyhedral sets Pk for interdictors k = 1, 2, 3, 4 are de�ned by the convex hulls of

the sets of extreme points given in Table 4.7. We denote by BS-I this restricted scenario

that includes interdictior coordination.

Interdictor (k) Extreme Points of Pk
1 (70W 25N), (90W 22N), (82W 10N), (76.3W 9N), (72W 12N)
2 (70W 25N), (90W 22N), (82W 10N), (76.3W 9N), (72W 12N)
3 (100W 5S), (81W 5S), (77W 6N), (100W 17N)
4 (100W 5S), (81W 5S), (77W 6N), (100W 17N)

Table 4.7: Interdictor position polyhedral sets extreme points

Scenario BS-I is solved using the SSP heuristic and Algorithm B&B. The SSP heuristic

returns the search plan and interdictor placements reported in Table 4.8 and Table 4.9

respectively in 1.5 seconds of computing time. Expected value of the SSP heuristic search

plan is 1,978.4 kg of cocaine detected. While the searcher path x in this plan is equivalent

to the SSP heuristic searcher path for BS-FR reported in Section 4.3.2, the search times

and objective function value are diminished due to the restricted range of the interdictors.

We observe that interdictors 1 and 3 are not used in the SSP heuristic plan because GF2

and SP2 are not searched.

The optimal search plan and interdictor placements, computed in 84.8 seconds, are re-

ported in Table 4.10 and Table 4.11. Expected value of the optimal search plan is 2,189.8

kg cocaine detected. The optimal search plan di�ers from the optimal search plan for

BS-FR reported in Section 4.3.2 in how the search e�ort for GF5 is allocated. In BS-I,

it is optimal to search GF5 along both of its movement track segments. As with the

heuristic solution, this is due to the restricted range of the interdictor.
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Searcher Segment t a d θ+ θ−

1

Home - 0 2.86 (89.1W 13.4N) (89.1W 13.4N)
GF1(2) 1.79 4.65 2.41 (78.0W 10.0N) (82.0W 10.0N)
GF5(1) 1.79 8.85 1.31 (82.1W 0.3N) (83.2W 0.0N)
Home 2.70 12.86 - (89.1W 13.4N) (89.1W 13.4N)

2
Home - 0 4.77 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.80 7.57 4.11 (81.1W 0.5N) (84.4W 0.3S)
Home 2.67 14.36 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.8: SSP heuristic search times and searcher path for scenario BS-I - Expected
value of the SSP heuristic search plan is 1,978.4 kg of cocaine detected.

Interdictor Position
1 -
2 (81.9W 10N)
3 -
4 (83.4W 0.0S)

Table 4.9: SSP heuristic interdictor standby positions for scenario BS-I - Interdictors 1
and 3 are not used in the SSP heuristic plan because GF2 and SP2 are not searched.

Searcher Segment t a d θ+ θ−

1

Home - 0 14.16 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.71 16.87 4.14 (88.6W 1.2S) (92.0W 2.0S)
GF5(2) 0.00 21.01 0.10 (92.0W 2.0S) (92.0W 1.9S)
Home 2.89 24.00 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 0 6.39 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.37 7.76 1.91 (82.2W 10.6N) (82.8W 12.0N)
SP2(1) 1.57 11.24 2.69 (78.5W 4.7N) (79.2W 4.5N)
Home 2.46 16.39 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.10: Optimal search times and searcher path for scenario BS-I - Expected value
of the optimal search plan is 2,189.8 kg cocaine detected.

Figure 4.9 shows a spatial representation of the optimal search plan. As the interdictor

response circles indicate, the search plan relative to GF1 and SP2 are not limited by

the range of the interdictor. The GF1-interdictor 2 range circles could be shifted in

the northwest direction and the search plan would still be feasible. Similarly, the SP2-

interdictor 3 range circles could be shifted east. This is not the case for the GF5-interdictor

4 range circles. The edge of the outer interdictor range circle is tanget to the point θ+
GF5(1)

where search begins against GF5, while the edge of the inner interdictor range circle is

tanget to the point θ−GF5(2) where search ends against GF5. This indicates that the search

plan relative to GF5 is limited by the range of the interdictor, and it highlights why the
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Interdictor Position
1 -
2 (81.9W 10N)
3 (79.9W 4.1N)
4 (91.0W 1.7S)

Table 4.11: Optimal interdictor standby positions for scenario BS-I - Interdictor 1 is not
used in the optimal plan because GF2 is not searched.

Figure 4.9: Restricted baseline scenario BS-I solution - Spatial representation of BS-I
optimal solution. The resulting expected value of the search plan is 2,189.8 kg of cocaine detected,
which is less that the expected search plan value associated with BS-FR due to the restrictions
induced by the interdictor ranges. The size of the rectangular blocks correspond to the total
area of the search region during the time when the searcher is performing search actions. The
large transparent outlined outer circles, with optimal interdictor standby locations at the center,
represent the response range, based on constraints (4.4b), of each respective interdictor at the
moment search begins for its assigned target. The small shaded inner circles, again with optimal
interdictor standby locations at the center, represent the response range, based on constraints
(4.4c), of each respective interdictor at the moment search ends for its assigned target.

optimal search plan for BS-I di�ers from that of BS-FR.

One might consider using the optimal solution for BS-FR and simply adding in the

interdictor position later by solving a single NLP with decision variable vector p (e.g.,

solve SSP-I by �xing all variables except p). Such as strategy may appear practical
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in situations where interdictor coordination is an afterthought, an optimal solution to

SSP-FR is already in hand, and there is not enough time to set-up and solve SSP-I.

Unfortunately this approach does not work in general, because there is no guarantee that

the incumbent search plan is feasible with respect to the interdictor. Taking the optimal

search plan solution to BS-FR and overlaying the interdictor response circles we arrive at

Figure 4.10. Given 4.64 hours of search dwell time against GF5, there is no point p that

can satisfy both constraint (4.4b) and constraint (4.4c) for interdictor 4 and GF5. The

situation depicted illustrates that when the point θ+
GF5(1) where search begins is contained

in the outer circle, the point θ−GF5(1) where search ends cannot be contained in the inner

circle.

Figure 4.10: Interdictor infeasibility of the restricted baseline scenario BS-FR solution
- The search boxes depicted represent the optimal search plan for BS-FR. The large transparent
outlined outer circles represent the response range based on constraints (4.4b). The small shaded
inner circles represent the response range based on constraints (4.4c). Given 4.64 hours of
search dwell time against GF5, there is no point p that can satisfy both of these constraints for
interdictor 4 and GF5. The situation depicted here shows that when the point θ+

GF5(1) where

search begins is contained in the outer ring, the point θ−GF5(1) where search ends cannot be

contained in the inner ring.

Alternatively, one might consider using the optimal searcher path x∗ for BS-FR and
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solving a single NLP for all continuous variables in SSP-I. Such a strategy is also not

guaranteed to yield a feasible solution. This is easily seen in a situation where at least two

searched targets in the same interdiction zone are too far apart. In such a situation there

would be no interdictor position p that could support searching both targets. In BS-FR,

however, since no more that one target in each interdiction zone is searched in the optimal

plan, we can obtain an interdictor-feasible plan using this strategy. This approach results

in the search plan and interdictor placement given in Tables 4.12 and 4.13 respectively.

This strategy produces a suboptimal plan, albeit by a small margin, with an expected

search value that is 2.1 kg less than the optimal plan (given in Tables 4.10 and 4.11).

While the optimality gap in this case is small, we note that its magnitude is driven by

the expected payload of qGF5.

Figure 4.11 shows a spatial representation of this suboptimal search plan. We observe

that the search region for GF5 in this plan is shifted to the northeast and is slightly

smaller than the search region for GF5 Figure 4.9.

Searcher Segment t a d θ+ θ−

1
Home - 0 10.75 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.66 13.40 4.20 (85.8W 0.6S) (89.2W 1.4S)
Home 2.73 20.33 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 0 6.39 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.37 7.76 1.91 (82.2W 10.6N) (82.8W 12.0N)
SP2(1) 1.57 11.24 2.69 (78.5W 4.7N) (79.2W 4.5N)
Home 2.46 16.39 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.12: Optimal search times and searcher path using the optimal searcher path
x for BS-FR - Expected value of the search plan is 2,187.8 kg cocaine detected.

Interdictor Position
1 -
2 (82W 10N)
3 (79.9W 4.1N)
4 (88.2W 1.1S)

Table 4.13: Interdictor standby positions using the optimal searcher path x∗ for BS-
FR - Interdictor 1 is not used in the optimal plan because GF2 is not searched.

4.6 Multiple Mission Cycles
We now consider search over the course of multiple mission cycles with a minimum re-

covery time period in between cycles. Similar multi-period sequencing models have been
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Figure 4.11: Suboptimality of the restricted baseline scenario BS-FR �xed search
order when adding interdictors - The search boxes depicted represent the optimal search
times for the BS-FR �xed search order. The large transparent outlined outer circles represent
the response range based on constraints (4.4b). The small shaded inner circles represent the
response range based on constraints (4.4c). Adding interdictor coordination to the �xed search
order for BS-FR yields a plan whose objective function is 2.1 kg less than the optimal plan.
This because the interdictor range restriction drives a slightly smaller search region for GF5.

studied in the vast literature on production planning and scheduling (see, e.g., Escud-

ero and Salmeron 2005, Wolsey 1997, Dillenberger 1994). In another study, Yang et al.

(2004) considers an receding horizon optimal control model that balances the short- and

long-term rewards of routing a team of searchers. The focus here is on modeling optimal

search problems of the form SSP over mutiple mission cycles. One can think of a mission

cycle as being a day, though this particular unit of time need not be relevant in general.

Planning for more than one mission cycle is particularly important when target move-

ment tracks span multiple mission cycles (e.g., a daily mission cycle with target tracks

that have τmaxj − τminj > 24 hours). In this situation, a multiple mission cycle scenario

cannot simply be decoupled and solved one cycle at a time without considering how to

address double-counting dwell times for these targets. One could choose to use a myopic

approach where SSP is solved one cycle at a time by conditioning on the dwell time of

undetected targets which were searched in a prior mission cycle. The focus of this sec-
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tion is a more robust multi-cycle approach, where coordinated search plans for all mission

cycles are computed prior to the start of the �rst cycle.

A multi-cycle approach has three potential advantages over the myopic approach. The

�rst is that we obtain plans with greater search value by accounting for targets whose

movement tracks span multiple mission cycles. This approach anticipates the bene�t, if it

exists, of choosing not to search for a target in an early cycle in favor of searching for it in

a later cycle. Secondly, searcher recovery time between cycles is explicitly modeled. This

allows planners to account for considerations like aircraft downtime due to maintenance

checks and crew rest as part of the search plan, thus avoiding a situation where the

myopic approach is unnecessarily constrained in later cycles by an unavailable searcher at

the start of a cycle. Finally, when interdictor coordination is required, since interdiction

assets may not be repositioned every day, the myopic approach would severely limit future

cycle search plans based on where interdiction assets are placed in the �rst cycle.

There are two drawbacks to the multi-cycle approach. The �rst, as we will see shortly, is

that we require a new model that is, strictly speaking, not just a special case of the GOP-

RDR. Rather, it is a special case of a GOP-RDR that allows the vehicle to take multiple

trips back the home station. The second drawback, of course, is that the multi-cycle

model will be di�cult to solve to optimality in a reasonable amount of time when many

targets, multiple searchers, and several cycles are involved. Recall from Section 3.3 that

Algorithm B&B applied to SSP performs e�ciently because the perceived depth of the

enumeration tree is shallow for large problems. The searcher runs out of endurance and

fathoming occurs before B&B must extend the partial path very far. We now consider a

multi-cycle SSP that resets the searchers remaining endurance time with each new cycle.

We should expect a greater reliance on heuristic algorithms when considering multi-cycle

search planning for scenarios like BS.

We de�ne C = {1, 2, . . . , c} as the ordered set of mission planning cycles. We also de�ne

H ⊆ N as the set of home station (or recovery) nodes, and Ĥ = H\{0, n+1} as the set of
intermediate home station nodes which exclude the originating and �nal destination home

stations. For notational convenience we consider H to be an ordered set {h0, h1, . . . , hc},
where h0 = 0 is the originating home station, hc = n + 1 is the �nal destination home

station, and there exists unique (j, k) : hk = j, j ∈ N\{0, n + 1}, k ∈ C\{0, c} is the
intermediate home station which completes cycle k. Let TR be the minimum required
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time between cycles for the searcher to recover. We denote by τ startj the nominal start

time of cycle k, where hk−1 = j. We introduce the vector z of binary cycle variables with

elements zk,j which take value 1 when region j is searched in cycle k, and 0 otherwise. We

assume that each search region will be visited by the searcher at most once during the

multi-cycle search plan. We recall that the set of target nodes, excluding home station

nodes, is denoted by N̂ = N\H. The multi-cycle SSP is stated as follows.

Problem SSP-C:

max
a,d,t,x,y,z

∑
j∈N̂

qj (1− exp {−αjdjyj}) (4.5a)

s.t.
∑
j∈N̂

djzk,j +
∑

(i,j)∈A

ti,jzk,izk,j ≤ T, ∀k ∈ C (4.5b)

dj ≥ TR, ∀j ∈ Ĥ (4.5c)

aj + dj ≥ τ startj , ∀j ∈ Ĥ (4.5d)

ah1 ≤ . . . ≤ ahc−1 ≤ ahc (4.5e)∑
k∈C

zk,j − yj = 0, ∀j ∈ N̂ (4.5f)

zk,hk−1
= zk,hk = 1, ∀k ∈ C (4.5g)

zk,j ∈ {0, 1}, ∀k ∈ C, j ∈ N (4.5h)

(3.2b), (3.2c), and

(3.2e) � (3.2m)

The objective function (4.5a) computes the expected value of the search, excluding all

home station nodes. Constraints (4.5b) enforce the searcher endurance resource constraint

in each cycle. Constraints (4.5c) maintain the minimum recovery time TR between cycles.

Constraints (4.5d) enforce nominal start times of cycles, other than the �rst cycle which

begins at time 0 by de�nition, by requiring that the searcher leave intermediate home

stations no earlier than times τ startj . Constraints (4.5e) ensure that home stations are

visited in the correct sequence. Constraints (4.5f) ensure that each target is searched at

most once during the scenario. Constraints (4.5g) require that home stations are visited in

their correct cycle. We observe that, since intermediate home stations lie on the boundary
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between cycles, we model them as being in both the cycle immediately before and the

cycle immediately after the searcher visits them. Constraints (4.5h) require that the cycle

variables are binary.

We observe that constraints (4.5d) allow planners to maintain temporal integrity of plan-

ning cycles so that there is an opportunity for re-planning between cycles when the

searcher is at the home station. In particular, the nominal start times τ startj may cor-

respond to regularly spaced (e.g., 24-hour) time intervals so that the beginning of each

mission execution cycle is aligned to the planning cycle. In our baseline scenario BS, the

times τ startj correspond to 24-hour blocks of time. In principle this constraint could be

relaxed by setting τ startj = 0,∀j ∈ Ĥ. While this would yield a more �exible model where

cycles can slide throughout the mission execution period [0, D], re-planning between cycles

may not be possible.

We assume paths x are generated so that constraints (4.5e) through (4.5h) are satis�ed.

Formally, we de�ne the set XC ⊆ X as the subset of paths that satisfy cycle constraints

(4.5e) through (4.5h). We observe that this restriction on paths x only means that home

station nodes must have the proper ordering in the path (4.5e) and that they must all be

visited (4.5g). This reduces the number of partial paths that must be considered in the

modi�ed branch-and-bound algorithm described in Section 4.6.1, and path enumeration

can be accomplished with a simple adjustment to the branching rules. We denote by

Nk(x) and Ak(x) the set of nodes and the set of arcs respectively that are in cycle k in

the path x. Analogously to SSP(x), we de�ne the �xed path multi-cycle search model

for any x ∈ XC as follows.

Problem SSP-C(x):

max
a,d,t,x,y,z

∑
j∈N̂(x)

qj (1− exp {−αjdjyj}) (4.6a)

s.t.
∑

j∈N̂k(x)

dj +
∑

(i,j)∈Ak(x)

ti,j ≤ T, ∀k ∈ C (4.6b)

(3.2h), (3.2i), (3.3b), (3.3c),

(3.3e) � (3.3i), (4.5c), and (4.5d)
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4.6.1 Algorithms for the Multi-Cycle Model

The optimal solution to SSP-C can be computed using Algorithm B&B, where the relaxed

problem solved in step 2 is modi�ed to account for multiple mission cycles as follows.

We denote by N̂k(x̂`) the set of target nodes in the partial path x̂` that are visited in

cycle k. Recall that the set of target nodes in the partial path is denoted by N̂(x̂`). The

set of arcs in the partial path x̂` that are transited in cycle k is de�ned as Ak(x̂`). We

de�ne the indicator parameter Īk which takes value 1 when cycle k is complete and 0

otherwise.

The smallest minimum travel time between any unvisited target node and the �nal des-

tination home station is de�ned as follows.

δ∗(x̂`) = min
j∈N\N̂(x̂`)

{δj,n+1}

Given that cycles completed in the partial path x̂` are indicated by Īk, the optimistic

endurance time T (x̂`) that remains for all future cycles is computed as follows.

T (x̂`) =

(
c− 1−

c∑
k′=2

Īk′

)
max {0, T − 2δ∗(x̂`)} (4.7)

The term (4.7) is an upper bound on the total search dwell time of future mission cycles

which are explored by extending the current partial path x̂`. Just as in constraint (3.6c),

searcher endurance T is decremented by twice the minimum travel time between home

and any potential target. In this case, however, we account for the fact that there may be

more cycles beyond the current one that are yet to be explored by extending the partial

path.

In order to have a useful bound on transit time when the last node ` on the partial path is

a home station node, we de�ne the home-node-dependent minimum travel time as follows.

δ̃` =

2δ∗(x̂`), ` ∈ H

δ`,n+1, ` /∈ H

We de�ne the indicator parameter Îk, which takes value 1 when cycle k is in progress and
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incomplete (e.g., when the partial path x̂` has reached home station node hk−1 but not

home station node hk), and 0 otherwise. The partial path relaxation model is stated as

follows.

Problem RSSP-C(x̂`):

max
a,d,t

∑
j∈N̂

qj (1− exp {−αjdj}) (4.8a)

s.t.
∑

j∈N̂k(x̂`)

dj︸ ︷︷ ︸
(i)

+ Îk

 ∑
j∈N̂\N̂(x̂`)

dj


︸ ︷︷ ︸

(ii)

. . .+
∑

(i,j)∈Ak(x̂`)

ti,j︸ ︷︷ ︸
(iii)

≤ T − Îkδ̃`︸ ︷︷ ︸
(iv)

+ ÎkT (x̂`)︸ ︷︷ ︸
(v)

, ∀k ∈ C (4.8b)

dj ≥ TR, ∀j ∈ Ĥ ∩N(x̂`) (4.8c)

aj + dj ≥ τ startj , ∀j ∈ Ĥ ∩N(x̂`) (4.8d)

(3.2f) � (3.2j), (3.6b), (3.6f),

(3.7b), (3.7c), and (3.7e) � (3.7i)

We note that when ` = n + 1 (or equivalently I` = 1), the path is complete, and SSP-

C(x) and RSSP-C(x̂`) are equivalent. Constraints (4.8b) are a relaxation of (4.5b) and

become successively restricted as the current partial path x̂` is extended. The meaning

of each term in this constraint is as follows. Term (i) sums dwell time of nodes visited

in cycle k. Term (ii) sums dwell time for target nodes that are not in the partial path

when cycle k is in progress and incomplete. Term (iii) sums transit time in cycle k. Term

(iv) decrements the searcher endurance by the minimum travel time. Term (v) adds the

optimistic total mission time for future cycles when cycle k is in progress and incomplete.

We observe that when cycle k is complete, constraint (4.8b) takes the form of (4.6b), and

when cycle k is not yet in progress constraint (4.8b) is vacuous. We assume branching is

performed so that constraints (4.5e)-(4.5h) are satis�ed throughout.

Though similar, RSSP-C(x̂`) does not possess the same structure as RSSP(x̂`) due
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to the handling required for multiple mission cycles. Therefore, the following results are

warranted to justify using Algorithm B&B for SSP-C.

Lemma 1. The set Φ = {(a, b, c, c′, d, e) ∈ IR6 : a+ c ≤ d; b ≤ e; c ≥ c′} is a restriction

of the set Φ′ = {(a, b, c, c′, d, e) ∈ IR6 : a+ b+ c′ ≤ d+ e; c ≥ c′}.

Proof. Given (a, b, c, c′, d, e, e′) ∈ Φ, the result follows by observing that c ≥ c′ and adding

the �rst two constraints in Φ together.

a+ b+ c′ ≤ a+ c+ b ≤ d+ e

Theorem 2. RSSP-C(x̂`′) is a restriction of RSSP-C(x̂`), ∀`′ : (`, `′) ∈ A.

Proof. Using Theorem 1 and observing that constraints (4.8c) are unchanged by partial

path extensions, it su�ces to show that whenever variables a,d, and t are feasible in

RSSP-C(x̂`′), they also satisfy (4.8b) inRSSP-C(x̂`). There are three cases to consider.

Case 1: `′ ∈ N̂ . Adding node `′ to the partial path does not complete a cycle. Suppose the

current, yet-to-be completed cycle is k′. Constraints (4.8b) where k 6= k′ are unchanged.

In the current cycle constraint (4.8c) associated with k′, d`′ remains on the left hand

side by shifting from term (ii) to term (i), t`,`′ is added to term (iii), δ̃` is replaced with

δ`′,n+1 in term (iv), and T (x̂`) is replaced with T (x̂`′) in term (v). Since T (x̂`) − δ̃` ≥
T (x̂`′)− t`,`′ − δ`′,n+1, the result follows.

Case 2: `′ ∈ Ĥ. Adding node `′ to the partial path completes a cycle and starts a new

cycle. Suppose the cycle just completed is k′ and that the new cycle that just began is

k′ + 1. Constraints (4.8b) where k /∈ {k′, k′ + 1} are unchanged. In the just-completed

cycle constraint (4.8b) associated with k′, d`′ remains on the left hand side by shifting

from term (ii) to term (i), t`,`′ is added to term (iii), and the right hand side is reduced to

T . Meanwhile all dwell times dj for unvisited target nodes in term (ii) are moved to the

new cycle constraint (4.8b) associated with k′ + 1. Since T (x̂`) = T − 2δ∗(x̂`′) + T (x̂`′)

the result follows by Lemma 1.

Case 3: `′ = n + 1. Adding node `′ to the partial path completes the path. Constraints

(4.8b) where k < c are unchanged. In the �nal cycle constraint (4.8b) associated with
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k = c, d`′ remains on the left hand side by shifting from term (ii) to term (i), t`,`′ is added

to term (iii), and the right hand side is reduced to T . Since all dwell times dj for unvisited

target nodes in term (ii) are constrained to 0, the result follows.

Let ZC(x̂`)
∗ be the optimal objective function value of RSSP-C(x̂`).

Corollary 2. ZC(x̂`)
∗ ≥ ZC(x̂`′)

∗,∀`′ : (`, `′) ∈ A.

Proof. If ` = n+ 1, then {`′ : (`, `′) ∈ A} = ∅. Alternatively, if ` ∈ N\{n+ 1} the result
follows because RSSP-C(x̂`′) is a restriction of RSSP-C(x̂`) by Theorem 2.

4.6.2 Bounding Strategies

Since SSP-C can be di�cult to solve in a reasonable amount of time for large problems

with multiple cycles, it is important to highlight some strategies to compute upper bounds

on its optimal objective function value. An upper bound is required to compute the

relative optimality gap (rgap) of a heuristic solution. Indeed obtaining useful bounds

and developing good heuristic algorithms are not mutually exclusive endeavors. Given an

upper bound UB and objective function value of any feasible search plan Z, the relative

optimality gap is computed as follows.

rgap =
|UB − Z|
UB

× 100% (4.9)

The simplest upper bound is obtained directly from evaluating the value of the a do-

nothing solution where the searcher merely remains at the home station. In this case the

bound is UB =
∑
j∈N̂

qj. While this is an uninteresting bound in and of itself, it is easy to

compute and may lead to an adequate rgap for some problem instances. We call this the

do-nothing bound.

Another simple bound is obtained by solving the root node relaxation problem RSSP(0).

Clearly, this is better than the do-nothing bound because dwell time is limited by con-

straints (3.6b)-(3.6f). We call this the root bound. Computing this bound requires solving

a single convex NLP, therefore, it is only slightly harder to obtain the root bound than it

is to obtain the do-nothing bound.
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Another upper bound is obtained by using the l-level PBB heuristic as discussed in Sec-

tion 3.2.2. When l = 0, this approach is equivalent to computing the root bound. When l

is large this approach may be too expensive to compute for large problem instances. De-

pending on the problem setting, useful bounds may be obtained in a reasonable amount

of time. We call this the l-level PBB bound.

Since the complexity SSP-MS is exponential in the number of searchers |S|, assuming
homogeneous searchers operating from the same home station, one could simply solve the

single searcher problem and multiply the resulting search plan value by |S|. This is clearly
an upper bound for the multi-searcher problem because we allow �double-counting� dwell

time. We call this the |S|-multiple bound.

The �nal approach to obtain an upper bound on the optimal objective function value

is to decouple the problem for each mission cycle. In this approach, for each cycle,

we model any target whose movement track occurs at any time within the cycle, allow

�double counting � dwell time, and make the searcher available at the start of the cycle.

This approach clearly leads to an upper bound because �double-counting � dwell time is

allowed and constraints (4.5c) are relaxed. We call this the decoupled cycle bound.

4.6.3 Multi-Cycle Model Numerical Results

We return to the full baseline scenario BS as we are now able to model search planning for

both searchers and all nine targets over the full 72-hour period. We assume that the daily

planning cycle entails that each searcher return to the home station by the end of the

mission day and that they cannot leave the home station until the new mission day has

begun. This gives planners the ability to adjust the plan, if desired, by re-solving between

mission cycles. It should be noted that the terms �day k� and �cycle k� are interchangeable

in this scenario. Given the 10-hour searcher endurance, the earliest arrival time τmin to the

home station is well de�ned as 10 hours after the beginning of the mission day. Similarly,

latest departure time τmax from the home station is well de�ned as 10 hours prior to the

end of the mission day. Table 4.14 lists the resulting time windows associated with home

station nodes.

Before discussing solutions to BS, we report upper bounds on the optimal objective

function value using the approaches outlined in Section 4.6.2. Table 4.15 lists these

bounds, along with computation time required to obtain each of them. We see that the
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node τmin τ start τmax

h0 0 - 14
h1 10 24 38
h2 34 48 62
h3 58 - 72

Table 4.14: Baseline scenario BS home station node time windows (hours)

2-level PBB approach yields the smallest upper bound of 9,588 kg in a relatively short

runtime of 438 seconds. The easy-to-compute root bound is only slightly higher at 9,925

kg. The more sophisticated bounding strategies, 2-multiple and decoupled cycle, are

expensive to compute and yield bounds that are nearly as high as the do-nothing bound.

For the remainder of this section we will use the 2-level bound in computing relative

optimality gaps.

Bound Approach UB (kg) Runtime (sec)
do-nothing 14 500 <1

root 9925 <1
2-level PBB 9588 438
2-multiple 10 468 625

decoupled cycle 10 452 36 251

Table 4.15: BS optimal search plan bounds - Computed using bounding strategies described
in Section 4.6.2. The lowest upper bound is obtained using 2-level PBB strategy. The more
sophisticated bounding strategies, 2-multiple and decoupled cycle, are expensive to compute and
yield poor bounds.

We now present numerical results for the full baseline scenario BS computed using the

myopic appraoch (described at the beginning of Section 4.6), the SSP heuristic, the CS

heuristic, and Algorithm B&B.

Search and Interdiction Plan Computed using the Myopic Approach

A search and interdiction plan could be computed using the myopic approach. Table 4.16

lists each active target segment by day based on its time window [τmin, τmax]. The myopic

approach proceeds each day considering only active targets.

We know from Section 4.5.1 that the optimal �rst day plan, reported in Tables 4.10-4.11,

directs the position of interdictors 2-4 and has an expected detection value of 2,189.8

kg. During the second day only the targets listed in Table 4.17 are active based on the

time windows associated with their movement tracks. We condition on day 1 dwell times,

denoted by d̄ in the objective function (4.1a) as shown in (4.10).
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Target Day 1 Day 2 Day 3 τmin τmax

GF1(1) X 2.00 3.46
GF1(2) X 3.46 7.06
GF1(3) X 7.06 10.18
SP1 X X 32.00 59.06
GF2 X X X 20.93 68.93

MV1(1) X X 41.00 63.85
MV1(2) X 63.86 72.00
GF3 X 52.00 70.37

GF4(1) X X 47.00 51.80
GF4(2) X 51.80 56.75
GF4(3) X 56.75 71.78
SP2(1) X X 8.00 41.88
SP2(2) X X 41.88 72.00
SP3 X X 28.90 72.00

GF5(1) X 7.00 21.01
GF5(2) X X 21.01 40.74

Table 4.16: Active target segments for each day - Active targets for each day are marked
�X�. Time windows [τmin, τmax] are derived from the scenario BS description in Section 4.1.

max
a,d,t,x,y

∑
i∈F

qi

1− exp

−∑
j∈B(i)

αj(dj + d̄j)yj


 (4.10)

Target Day 1 Dwell Time d̄
SP1 0
GF2 0

MV1(1) 0
GF4(1) 0
SP2(1) 2.69
SP2(2) 0
SP3 0

GF5(2) 4.24

Table 4.17: Active target segments for myopic approach day 2 - Dwell times shown re�ect
optimal day 1 solution from Table 4.10.

Since interdictors are not repositionable from one day to the next, we �x the location of

interdictors 2-4 to the positions given in Table 4.11. This is clearly a signi�cant restriction

on search plans considered after the �rst day. This requirement could be relaxed by

allowing interdictor position p to change with each new cycle or by allowing drift vector
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v to take nonzero values, however we enforce this restriction due to the high cost of

repositioning surface assets. Additionally, we enforce recovery time constraint (4.5c) by

placing a lower bound on d0 as required. The resulting myopic search plan for day 2 is

given in Table 4.18 and Figure 4.12.

Searcher Segment t a d θ+ θ−

1

Home - 16.39 27.26 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.73 45.39 0.92 (79.9W 11.5N) (80.1W 11.6N)
Home 1.70 48.00 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 24.00 19.65 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.73 45.39 0.92 (79.9W 11.5N) (80.1W 11.6N)
Home 1.70 48.00 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.18: Myopic approach day 2 search times and searcher path - High-value target
SP2 is assigned to both searchers but dwell time is limited by position of interdictor 2 which is
�xed by the day 1 solution.

Figure 4.12: Myopic approach day 2 solution - Both searchers are assigned to search SP1.
Search against high-value target SP1 is limited by the position of interdictor 2, which is �xed in
day 1 to support searching GF1.

In Figure 4.12 we see that the position of interdictor 2, which was �xed in day 1 to support

searching GF1, limits search opportunity against the highest value target SP1 in day 2.
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This is clearly an undesirable search plan. While it is good that the highest value target,

SP1, is searched, a more robust plan would have positioned interdictor 2 closer to SP1.

Interdictor 1 is unused through day 2, and GF2 and MV1 are not searched in day 2.

Similarly, we condition on active day 3 targets (see Table 4.19) using (4.10), restrict the

position of interdictors 2-4 to day 1 locations, and enforce recovery constraint (4.5c) to

obtain the conditioned optimal search and interdiction plan for day 3 shown in Tables 4.20

and 4.21, and Figure 4.13. The only remaining untasked interdictor, interdictor 1, is

positioned to support search against both MV1 and GF3. A good opportunity to search

high-value target, SP1, when it is close to the home station is wasted because interdictor

2 is not in range. Therefore, SP1 is not searched in day 3.

Target Days 1 & 2 Dwell Time d̄
SP1 1.84
GF2 0

MV1(1) 0
MV1(2) 0
GF3 0

GF4(1) 0
GF4(2) 0
GF4(3) 0
SP2(2) 2.69
SP3 0

Table 4.19: Active targets for myopic approach day 3 - Dwell times shown re�ect the sum
of optimal dwell times from Tables 4.10 and 4.17.

Searcher Segment t a d θ+ θ−

1

Home - 48.00 6.00 (89.1W 13.4N) (89.1W 13.4N)
MV1(1) 0.54 58.71 1.76 (77.5W 15.8N) (77.7W 16.2N)
GF3 2.02 56.02 2.15 (78.1W 12.6N) (79.5W 13.7N)
Home 2.16 62.63 - (89.1W 13.4N) (89.1W 13.4N)

2

Home - 48.00 6.00 (89.1W 13.4N) (89.1W 13.4N)
MV1(1) 0.54 58.71 1.76 (77.5W 15.8N) (77.7W 16.2N)
GF3 2.02 56.02 2.15 (78.1W 12.6N) (79.5W 13.7N)
Home 2.16 62.63 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.20: Myopic approach day 3 search times and searcher path - Both searchers are
assigned to MV1 and GF3 which correspond to the only remaining untasked interdictor. Each
is limited by the 6-hour recovery time at home station and cannot start their search plan until
time 54 hours.

The myopic approach yields total search dwell times for each target listed in Table 4.22,
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Interdictor Position
1 (78.4W 15.2N)
2 (81.9W 10N)*
3 (79.9W 4.1N)*
4 (91.0W 1.7S)*

Table 4.21: Myopic approach day 3 optimal interdictor positions - Positions of interdictors
2-4 (marked *) are �xed to the day 1 positions. Interdictor 1 position is set to support search of
MV1 and GF3 on day 3.

Figure 4.13: Myopic approach solution day 3 - Interdictor 1, untasked through day 2, is
positioned to support search against MV1 and GF3.

leading to a total expected search value of 4,469.2 kg. Recall that the upper bound on

the true optimal objective function value is 9,588 kg. Therefore the myopic approach

solution, computed in a 480.4 seconds (8.0 minutes) of total runtime, has an rgap of 53%.

Search and Interdiction Plan Computed using the SSP Heuristic

Using the time windows given in Table 4.14, the SSP heuristic, with two modi�cations,

can be used to �nd a good, though not necessarily optimal, search plan in SSP-C. The

�rst modi�cation is that intermediate home stations cannot be removed from the heuristic

path x̄ in any phase of the heuristic. The second is that, for the purpose of assigning

orderings Oj to intermediate home station nodes in the heuristic, we use the τ startj instead
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Target Total Dwell Time
GF1 1.91
SP1 1.84
GF2 0
MV1 3.52
GF3 4.30
GF4 0
SP2 2.69
SP3 0
GF5 4.24

Table 4.22: Myopic approach total search dwell times

of τmaxj . This provides a fairly equal spacing in the heuristic search order, placing at least

two target segments in each mission cycle.

Tables 4.23 and 4.24 list the SSP heuristic search plan and interdictor positioning respec-

tively. This plan yields and expected search value of 6,380.5 kg (rgap = 33%) and is

computed in 3.1 seconds. While this solution is clearly much better and computed more

quickly than the myopic solution, it can certainly be improved. We observe that both

searchers remain at the home station throughout the second day - a do-nothing cycle.

Additionally, interdictor 3 is unused throughout the scenario. Clearly there would be

some bene�t to searching, for example, SP2 and/or SP3 during day 2. These targets are

removed from the heuristic search order early in step 8 because their rate-of-reward β̂

is relatively low. While this exposes a drawback of this linear-time heuristic applied to

multi-cycle problems, it is important to note that the high-value targets, SP1 and GF5,

are heavily searched.

Search and Interdiction Plan Computed using the CS Heuristic

While the SSP heuristic solution is much better than the myopic approach solution, it is

still far from optimal and a manual examination of this plan highlights some opportunities

for improvement. We now consider using the CS heuristic described in Section 4.3.1. Using

cycle limit parameter Λ = 3, we obtain the search plan and interdictor positioning given

in Tables 4.25 and 4.26. The CS heuristic solution has a search plan value of 7,450.1 kg

(rgap = 22%) and was obtained in 1,786.3 seconds (29.8 minutes).

The CS heuristic solution has several remarkable aspects. First, the searcher paths xs

di�er from the SSP heuristic plan only in day 2. The CS heuristic solution adds search
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Searcher Segment t a d θ+ θ−

1

Home h0 - 0 7.99 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.69 10.68 4.18 (83.6W 0.1S) (87.0W 0.9S)
Home h1 2.66 17.52 16.48 (89.1W 13.4N) (89.1W 13.4N)
Home h2 0 34.00 16.24 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.47 51.71 7.35 (81.2W 12.4N) (82.7W 13.4N)

Home h3 1.18 60.24 - (89.1W 13.4N) (89.1W 13.4N)

2

Home h0 - 0 5.93 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.42 7.35 2.38 (82.1W 10.2N) (82.8W 12.1N)
GF5(1) 2.32 12.05 1.23 (84.7W 0.3S) (85.7W 0.6S)
Home h1 2.66 15.93 18.07 (89.1W 13.4N) (89.1W 13.4N)
Home h2 0 34.00 18.82 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.37 54.18 4.88 (81.7W 12.7N) (82.7W 13.4N)
GF3 0.45 59.5 1.88 (80.4W 14.4N) (81.6W 15.4N)

Home h3 1.41 62.82 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.23: Multi-cycle SSP heuristic searcher solution - High-value targets SP1 and GF5
are heavily search by both searchers. The day 2 portion of the plan, a do-nothing cycle, could
clearly be improved.

Interdictor Position
1 (81.3W 15.1N)
2 (82.6W 13.0N)
3 -
4 (86.0W 0.6S)

Table 4.24: Multi-cycle SSP heuristic interdictor solution - Interdictor 1 is positioned to
support search against GF3 in day 3. Interdictor 2 is positioned to support search against GF1
in day 1 and SP1 in day 3. Interdictor 3 is unused. Interdictor 4 is positioned to support search
against GF5 in day 1.

against SP2 in day 2 for both searchers. The absence of a day 2 search assignment in the

SSP heuristic solution was its most glaring weakness. The CS heuristic solution corrects

this problem. Second, all interdiction assets are used. Since interdictor range restricts

search opportunities, it is reasonable to conclude that there is little room for improvement

in this plan. Third, high-value targets SP1 and GF5 are both searched heavily. Fourth,

each day is characterized by targets being searched by both searchers. Since interdictor

range limits search opportunity and there are only four interdiction assets, it is reasonable

that both searchers would focus on the most valuable targets each day so that there are

interdictors left to support searching high-value targets on other days.

Figure 4.14 depicts day 1 of the CS heuristic solution. We see that GF1 is searched by
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Searcher Segment t a d θ+ θ−

1

Home h0 - 0 7.99 (89.1W 13.4N) (89.1W 13.4N)
GF5(1) 2.69 10.68 4.18 (83.6W 0.1S) (87.0W 0.9S)
Home h1 2.66 17.52 16.36 (89.1W 13.4N) (89.1W 13.4N)
SP2(1) 2.04 35.93 5.95 (84.6W 3.3N) (86.0W 3.0N)
Home h2 2.01 43.89 6.35 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.47 51.71 7.35 (81.2W 12.4N) (82.7W 13.4N)

Home h3 1.18 60.24 - (89.1W 13.4N) (89.1W 13.4N)

2

Home h0 - 0 5.93 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.42 7.35 2.38 (82.1W 10.2N) (82.8W 12.1N)
GF5(1) 2.32 12.05 1.23 (84.7W 0.3S) (85.7W 0.6S)
Home h1 2.66 15.93 17.95 (89.1W 13.4N) (89.1W 13.4N)
SP2(1) 2.04 35.93 5.95 (84.6W 3.3N) (86.0W 3.0N)
Home h2 2.01 43.89 8.93 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.37 54.18 4.88 (81.7W 12.7N) (82.7W 13.4N)
GF3 0.45 59.5 1.88 (80.4W 14.4N) (81.6W 15.4N)

Home h3 1.41 62.82 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.25: CS heuristic searcher solution to BS - The searcher paths xs di�er from the
SSP heuristic plan only in day 2. The CS heuristic solution adds search against SP2 in day 2 for
both searchers.

Interdictor Position
1 (81.3W 15.1N)
2 (82.6W 13.0N)
3 (86.0W 3.0N)
4 (86.0W 0.6S)

Table 4.26: CS heuristic interdictor solution to BS - Interdictor 1 is positioned to support
search against GF3 in day 3. Interdictor 2 is positioned to support search against GF1 in day 1
and SP1 in day 3. Interdictor 3 is positioned to support search against SP2 in day 2. Interdictor
4 is positioned to support search against GF5 in day 1.

searcher 2 in a area that places interdictor 2 in position to be able to support later search

of SP1 in day 3. Searcher 1 spends its entire day 1 mission assigned to GF5. We observe

that the dwell time of seacher 1 against GF5 is limited by the range of interdictor 4.

Figure 4.15 depicts day 2 of the CS heuristic solution. Both searchers are assigned to SP2

and interdictor 3 is positioned to support. In the day 2 solution, dwell time against SP2

is not limited by interdictor range. Both searchers reach their endurance limit T during

day 2.

The CS heuristic solution for �nal day of the scenario is depicted in Figure 4.16. High-
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Figure 4.14: CS heuristic solution to BS day 1 - GF1 is searched by searcher 2 in a area that
places interdictor 2 (upper circles) in position to be able to support later search of SP1 in day 3.
Searcher 1 spends its entire day 1 mission assigned to GF5. Dwell time of seacher 1 against GF5
is limited by the range of interdictor 4 (lower circles). Response circles for interdictor 4 relative
to searcher 2 not shown.

value target SP1 is searched as its track is closest to the home station, allowing transit

time to be small. Searcher 2 searches SP1 and then searches GF3. Having spent much of

its endurance limit searching against SP1, little time is left to search against GF3. This

results in a small response circle for interdictor 1.

Search and Interdiction Plan Computed using Algorithm B&B

The optimal solution to BS, computed using Algorithm B&B with RPPE in 24,947.9

seconds (6.9 hours), has search plan value of 7,851.4 kg. While the two-hour time limit is

exceeded, with greater computing power it may be possible to obtain the optimal solution

in a period of time that can support a 24-hour planning cycle. Tables 4.27 and 4.28 list

the optimal search plan and interdiction plan respectively.

The optimal solution to BS has several features that distinguish it from the heuristic

solutions. First, in the optimal solution, both searchers are assigned to the same targets

through the �rst two days of the scenario. In this case, the strategy of focusing both
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Figure 4.15: CS heuristic solution to BS day 2 - Both searchers are assigned to SP2 and
interdictor 3 is positioned to support. Dwell time against SP2 is limited by searcher endurance,
not interdictor range.

searchers on high-value targets is preferable given the limited range of interdiction assets.

Second, high-value target SP1 is searched at the very end of day 2, rather than on the

day 3 as the CS heuristic solution prescribes. This allows GF4 to be added to the search

plan in the third day. GF4 is not searched in any of the heuristic solutions. Third, the

optimal plan in days 2 and 3 of the scenario is marked by searcher paths that occur as late

as possible. This suggests that the optimal plan is limited by the time windows on the

intermediate home stations (given in Table 4.14). Shifting the time windows by adding

four hours to the latest home station departure times τmaxj ,∀j ∈ H yields a search plan

with an objective function value that is 134 kg greater. This improved plan is computed in

11.4 hours and compromises the ability to do re-planning between mission cycles because

the searchers do not return home at regular 24-hour intervals. In principle, completely

relaxing the home station time window constraints so that τminj = τ startj = 0, ∀j ∈ H and

τmaxj = 72,∀j ∈ H could result in a higher-valued search plan, however, the ability to do

re-planning would be sacri�ced and the computation time required to compute this plan

exceeds the reasonable amount of time threshold. Lastly, as illustrated in Figures 4.17-
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Figure 4.16: CS heuristic solution to BS day 3 - High-value target SP1 is searched by both
searchers as its track is closest to the home station. Searcher 2 searches SP2 and then searches
GF3. Response circles for interdictor 2 relative to searcher 2 not shown.

4.20, the dwell time of searchers against targets assigned in the optimal plan is not limited

by the response range of interdiction assets.

Figure 4.17 depicts the optimal search and interdiction plan in day 1 of the scenario. We

see that both searchers are assigned to search GF1(3) followed by GF5(1). Interdictor 2

is positioned to support search against GF1 (and also SP1 in day 2), while interdictor 4 is

assigned to support search against GF5. In contrast with the CS heuristic solution, dwell

time against targets searched in day 1 of the optimal plan is limited by each searcher's

endurance limit, and not by the response range of either interdictor.

Figure 4.18 depicts the optimal search and interdiction plan in day 2 of the scenario. We

see that both searchers are assigned to search the high-value target SP1. This di�ers

from the CS heuristic solution, where SP1 is searched in day 3. Interdictor 2 is positioned

to support search against SP1 (and also GF1 in day 1). Again, we see that dwell time

against targets searched in day 2 of the optimal plan is not limited by the response range

of the interdictor. It is, however, restricted by each searcher's endurance limit and the
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Searcher Segment t a d θ+ θ−

1

Home h0 - 0 5.61 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.45 7.06 1.18 (82.0W 10.0N) (82.3W 10.9N)
GF5(1) 2.02 10.25 2.70 (83.3W 0.0N) (85.5W 0.5S)
Home h1 2.66 15.61 22.39 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.97 39.97 6.34 (78.8W 10.7N) (80.1W 11.6N)

Home h2 1.70 48.00 14.00 (89.1W 13.4N) (89.1W 13.4N)
GF3 1.26 63.26 4.18 (82.9W 16.3N) (85.6W 18.5N)
SP2(2) 1.87 69.32 1.95 (89.3W 9.0N) (89.5W 9.5N)
Home h3 0.74 72.00 - (89.1W 13.4N) (89.1W 13.4N)

2

Home h0 - 0 5.61 (89.1W 13.4N) (89.1W 13.4N)
GF1(3) 1.45 7.06 1.18 (82.0W 10.0N) (82.3W 10.9N)
GF5(1) 2.02 10.25 2.70 (83.3W 0.0N) (85.5W 0.5S)
Home h1 2.66 15.61 22.39 (89.1W 13.4N) (89.1W 13.4N)
SP1 1.97 39.97 6.34 (78.8W 10.7N) (80.1W 11.6N)

Home h2 1.70 48.00 14.00 (89.1W 13.4N) (89.1W 13.4N)
GF4(3) 0.85 62.85 3.60 (86.7W 9.5N) (88.9W 11.5N)
SP2(2) 0.55 67.00 4.26 (89.0W 8.5N) (89.5W 9.5N)
Home h3 0.74 72.00 - (89.1W 13.4N) (89.1W 13.4N)

Table 4.27: Optimal search plan for BS - Both searchers are assigned to the same targets
through the �rst two days of the scenario. High-value target SP1 is searched by both searchers
as late as possible in the second day. This allows GF4 to enter the plan on the third day, a
trade-o� that was missed by all heuristic solutions.

Interdictor Position
1 (85.6W 17.4N)
2 (80.4W 11.2N)
3 (89.4W 9.7N)
4 (84.9W 0.7S)

Table 4.28: Optimal interdictor solution to BS - Interdictor 1 is positioned to support search
against GF3 in day 3. Interdictor 2 is positioned to support search against GF1 in day 1 and
SP1 in day 2. Interdictor 3 is positioned to support search against both GF4 and SP2 in day 3.
Interdictor 4 is positioned to support search against GF5 in day 1.

latest departure time from the home station τmaxh1
= 38.

Figures 4.19 and 4.20 depict the optimal search and interdiction plan in day 3 of the

scenario. Since interdictor 3 is assigned to support search against two targets and both

searchers for one of the two targets, we illustrate the day 3 plan for the searchers separately.

In Figure 4.19 we see that the �rst searcher is assigned to search GF3 followed by SP2(2).

Interdictor 1 is positioned to support search against GF3, while interdictor 3 is assigned

to support search against SP2 (and also GF4 for the other searcher). The �rst searcher's
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Figure 4.17: Optimal solution to BS day 1 - Both searchers are assigned to search GF1(3)
followed by GF5(1). Interdictor 2 is positioned to support search against GF1 (and also SP1 in
day 2), while interdictor 4 is assigned to support search against GF5. Dwell time is limited by
each searcher's endurance limit, and not by the response range of either interdictor.

dwell time in day 3 is limited by its endurance limit and the scenario time limit D = 72,

but not the response range of either interdictor.

In Figure 4.20 we see that the second searcher is assigned to search GF4(3) followed by

SP2(2). Interdictor 3 is assigned to support search against both targets (and also SP2 for

the other searcher). The second searcher's dwell time in day 3 is limited by its endurance

limit and the scenario time limit D = 72, but not the range of either interdictor.

Table 4.29 summarizes SSP-C solution results for our benchmark scenarioBS. The utility

of multi-cycle planning is clear. Search plans generated using either the SSP heuristic

or the PBB heuristic to solve SSP-C have signi�cantly higher objective function value

than using a myopic approach and can be obtained within the two-hour time limit. The

CS heuristic produces the highest valued search and interdiction plan within a two-hour

planning time limit. If greater computing power and/or a more e�cient implementation of

B&B is available, obtaining the optimal search and interdiction plan to support a 24-hour
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Figure 4.18: Optimal solution to BS day 2 - Both searchers are assigned to search the high-
value target SP1. Interdictor 2 is positioned to support search against SP1 (and also GF1 in day
1). Dwell time is limited by each searcher's endurance limit and the latest departure time from
the home station τmaxh1

= 38, and not by the response range of the interdictor.

planning cycle may be possible.

We conclude this chapter with a remark on solving BS in the case where the searchers

are heterogeneous. Recall that if the searchers are heterogeneous or if they do not have

the same home station, it is inappropriate to use Algorithm B&B with RPPE. When we

use B&B without RPPE in an attempt to solve BS, it takes over 24 hours to explore 10%

of the enumeration tree. Clearly, given a scenario of the same size as BS or larger, with

heterogeneous searchers, it appears unlikely that the optimal solution can be obtained in

a reasonable amount of time. Either the SSP heuristic or the CS heuristic should be used.

97



Figure 4.19: Optimal solution to BS day 3 for searcher 1 - The �rst searcher is assigned to
search GF3 followed by SP2(2). Interdictor 1 is positioned to support search against GF3, while
interdictor 3 is assigned to support search against SP2 (and also GF4 for the other searcher).
Dwell time is limited by its endurance limit and the scenario time limit D = 72.

Approach Exp. Search Value (kg) rgap (%) Gap (%) Runtime (sec)
Myopic 4469.2 53 43 480.4

SSP heuristic 6380.5 33 19 3.1
CS heuristic 7450.1 22 5 1786.3

Algorithm B&B 7851.4 - 0 24 947.9

Table 4.29: Summary of SSP-C solution results for our benchmark scenario BS - All
three heuristic approaches produce a search and interdiction plan within the required two-hour
(7,200-second) time limit. Among the heuristics, the CS heuristic yields the plan with the highest
value. Objective function values are reported in expected kg of cocaine detected. The runtime
required to compute the optimal solution exceeds the two-hour time limit. rgap and Gap refer
to the relative optimality gap (4.9) and the true optimality gap respectively. Times reported do
not include the 625 seconds required to obtain the upper bound of 9,588 kg.
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Figure 4.20: Optimal solution to BS day 3 for searcher 2 - The second searcher is assigned
to search GF4(3) followed by SP2(2). Interdictor 3 is assigned to support search against both
targets (and also SP2 for the other searcher). The second searcher's day 3 plan is limited by its
endurance limit and the scenario time limit D = 72.
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CHAPTER 5:

Multi-Stage Optimal Search Under Evolving

Uncertainty

In general, planners will not know all scenario data with certainty. Intelligence estimates

of target tracks, payload, departure and arrival information, and even sensor performance

may not take on the values that planners expect. In this chapter we investigate how

random planning data can impact the optimal search plans and propose an approach

to handle uncertainty using a multi-stage stochastic programming model. To simplify

exposition, we consider SSP in this study, though the �ndings and multi-stage stochastic

programming model easily generalize to the enhanced models described in Chapter 4.

We recall that SSP takes as input the planning data listed in Tables 3.1 and 3.2. We

study how changes to this data can a�ect optimal solutions. Data that is outside the

control of the search controller is of primary concern. For this reason, we exclude V, V̂ ,

T from consideration is this analysis. While search aircraft performance may a�ected by

external factors (e.g., weather), it is common practice to assign planning factors based

on conservative aircraft performance estimates. We also exclude the scenario time limit

D because this value is set at the discretion of the search controller. Lastly, we exclude

the number of targets n, because removing any target j may be modeled by driving its

detection value qj to zero. Eliminating these data from consideration and allowing sweep

width W take a di�erent value for each target j, we arrive at the scenario data listed in

Table 5.1.

Searcher sensor sweep width against target j Wj

Speed of target j Uj
Expected departure time of target j τj
Time uncertainty range of target j τ̃j
Expected departure location of target j ρj
Expected arrival location of target j ρ̄j
Departure/arrival location uncertainty range of target j ρ̃j
Expected value of detecting target j qj

Table 5.1: Scenario data

We assume that scenario data are random with known probabilistically distributions, and

that their distributions have �nite support. For any discrete random variable ω̃ we denote
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by P (ω) the probability that ω̃ = ω.

5.1 Sensitivity of Optimal Search Plans
Given a �xed scenario ω (i.e., data in Table 5.1), we wish to solve SSP and determine

how its optimal solution is a�ected by perturbations to ω. We denote by ω′ a perturbed

scenario which is created by changing one or more of the scenario data elements that

make up ω. One of three things can happen: (1) The optimal solution in scenario ω may

still be optimal in scenario ω′. (2) The optimal solution in scenario ω may be infeasible

in scenario ω′. (3) The optimal solution in scenario ω may be suboptimal in scenario ω′.

The �rst possibility requires no investigation.

The second possibility is caused by changes to SSP constraints. For example, if the time

windows, e.g., constraints (3.2f) and (3.2g), for some target j were to shift so this target is

active before another target i, where τmini > τmaxj , then xi,j = 1 would be infeasible. If arc

(i, j) were in the optimal path x∗ in scenario ω, this previously optimal solution would no

longer be feasible in scenario ω′. While a change of this type appears to be problematic,

since perturbations are known probabilistically, we account for alternative target tracks

by adding arti�cial targets to the model, adjusting the expected search value q of each

target to re�ect its probability of occurrence. For this reason, we are more concerned with

changes to scenario data that result in suboptimal search plans.

The third possibility is driven by changes to the SSP objective function (3.2a). The

objective function depends on the expected detection value q and the detection rate α.

Since the objective function is linear in q, when the detection value is a random variable

q̃ with a set of possible values Q, the objective function using the distribution for q̃

is equivalent to the objective function using its expected value. More precisely, given

objective function f(d, q) = qf̂(d), the following is true.

Eq̃[f(d, q̃)] =
∑
q∈Q

P (q)f(d, q) =
∑
q∈Q

P (q)qf̂(d) = Eq̃[q̃]f̂(d)

The same cannot be said about α because (3.2a) is a nonlinear function of the detection

rate. Recall that the detection rate α (3.1) is a function of the searcher's on-station speed

V̂ , the sensor sweep width W , and the search region area τ̃j ρ̃jUj. Since the searcher

has control over its speed, changes to V̂ are of little concern. Changes to the search
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region area are not considered here because they are more appropriately captured by

adding alternative target tracks. The focus of this sensitivity analysis is on examining

how changes to sweep width W can a�ect the optimal search plan.

It is well known (see United States Coast Guard 2013, appx. H) that environmental

conditions impact sensor performance. When a visual sensor is used, sweep width can

diminish due to any number of factors (e.g., cloud cover, wind, etc.). Alternatively, when a

radar sensor is used, sweep width can be a�ected by environmental clutter and noise, and

atmospheric conditions. We now proceed to analyze how changes in sensor performance

impact optimal search plans.

5.1.1 Search Allocation Problem

We begin by considering a search allocation problem (SAP). The SAP is a distribution

of search e�ort problem (see Stone 1975, ch. 1) that arises when transit time t = 0 is

possible and time window constraints (3.2f) and (3.2g) are relaxed in SSP. Examining

this problem provides insight into how the SSP is impacted by changes in W . The SAP

is stated as follows.

Problem SAP

max
d

∑
j∈N̂

qj (1− exp {−αjdj}) (5.1a)

s.t.
∑
j∈N̂

dj ≤ T (5.1b)

dj ≥ 0, ∀j ∈ N̂ (5.1c)

Allowing sweep width to depend on each target j ∈ N̂ , we introduce the partial detection

rate α̂, which excludes sweep width.

α̂j =
V̂

τ̃j ρ̃jUj
=

αj
Wj

(5.2)

Since SAP is a convex NLP, the �rst order KKT necessary conditions (see Bertsekas

1999, ch. 3) are also su�cient. Denoting by N̂∗ the set of inactive constraints (5.1c)
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corresponding to positive dwell times, the KKT conditions are reduced to express the

optimal dwell times d∗ as follows.

d∗j =
1

Wjα̂j
∑
i∈N̂∗

1/(Wiα̂i)

T − ∑
j′∈N̂∗

1

Wj′α̂j′
log{Wj′α̂j′qj′}

+
1

Wjα̂j
log{Wjα̂jqj} (5.3)

We observe that (5.3) expresses each d∗j as a function of itself and the other search dwell

times by virtue of N̂∗. Optimal dwell times are obtained by a simple node-addition pro-

cedure (Stone 1975, ch. 2) where N̂∗ = ∅ initially, then targets i ∈ N̂\N̂∗ corresponding
to the largest value Wiα̂iqi are added to N̂∗ in turn until adding another would violate

constraint (5.1c). Note that this procedure inversely corresponds to the Remove_j pro-

cedure considered in step 8 of the SSP heuristic described in Section 3.2.1. The natural

interpretation of these procedures is to add to (or remove from) the search plan the targets

with the largest (or smallest) rate-of-reward.

Though it is not obvious from (5.3), increasing Wj may increase or decrease d
∗
j depending

on the values of T, qj, α̂j,Wi, qi, and α̂i for the other targets i ∈ N̂\{j}. Generally

speaking, if d∗j is currently �small�, then increasing Wj will increase d
∗
j . However, if d

∗
j is

currently �large�, then increasing Wj will decrease d
∗
j . Naturally, �small� and �large� are

relative, so we proceed to consider SAP with two targets to demonstrate this e�ect.

5.1.2 Two-Target Analysis

Given SAP where |N̂ | = 2, the optimal solution (5.3) reduces to the following.

d∗1 = min

{
T,max

{
0,
W2α̂2T + log{W1α̂1q1} − log{W2α̂2q2}

W1α̂1 +W2α̂2

}}
(5.4)

d∗2 = T − d∗1 (5.5)

If we assume T and α̂ take on values listed in Table 5.2, and W can vary within the range

[1, 20], we arrive at the contoured sweep-sweep plot in Figure 5.1.

The contoured sweep-sweep plot depicts the proportion of the searcher endurance T that

is allocated to target 1 as the sweep width for each target varies independently. The
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W [1, 20]
T 10
α̂ 0.0137

Table 5.2: Two-target analysis data - W varies independently for each target. α̂ is the same
for both targets. α̂=0.0137 results from setting V̂ = 205 and τ̃j ρ̃jUj = 15, 000.

white region of the plot is where all of the searcher endurance is allocated to target 1,

while the dark blue region is where all of the searcher endurance is allocated to target 2.

The contours fading from white to dark blue indicate a mixture of the searcher endurance

allocation between both targets. Contours closer to the white region favor target 1 in the

allocation mixture, while contours closer to the dark blue region favor target 2.

Figure 5.1: SAP contoured sweep-sweep plot - The white region indicates where all of the
searcher endurance is allocated to target 1, while the dark blue region is where all of the searcher
endurance is allocated to target 2. The contours fading from white to dark blue indicate a
mixture of the searcher endurance allocation between both targets. Contours closer to the white
region favor target 1 in the allocation mixture, while contours closer to the dark blue region favor
target 2.
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Figure 5.2 depicts the proportion of the searcher endurance T that is allocated to target 1

as the sweep width against target 1 varies for �xed target 2 sweep widthsW2 ∈ {5, 10, 15}.
The three line plots shown are created by taking horizontal slices of the contoured sweep-

sweep plot Figure 5.1.

(a) (b) (c)

Figure 5.2: Optimal target 1 dwell time allocation as a function of W1 for �xed W2 -
(a) W2 = 5. (b) W2 = 10. (c) W2 = 15. Changes to W1 have a greater impact in increasing
optimal target 1 dwell time when both W1 and W2 are small. The e�ect of increasing W1 is less
pronounced when either W1 or W2 is large.

Figures 5.1 and 5.2 highlight several features of SAP solutions that would reasonably

apply to SSP solutions as well. First, we see that increasing sweep width against a

particular target does not necessary result in greater dwell time against this target in the

optimal solution. Secondly, when the sweep width against one target is �xed and not

too small, search dwell time for the other target goes to zero as sweep width against it

decreases. This feature highlights the need to take a close look at the solution switch

points that mark the boundary between where search dwell time for a target is zero and

where it is nonzero.

The switch-point sweep-sweep plot in Figure 5.3 depicts the three regions whose bound-

aries correspond to where search dwell time for a target switches from zero to nonzero,

and vice versa. The light blue region of the plot is where all of the searcher endurance

is allocated to target 1, while the dark blue region is where all of the searcher endurance

is allocated to target 2. The white region indicates a mixture of the searcher endurance

allocation between both targets. We refer to this region as the mixture region of the

switch-point sweep-sweep plot. If transit time t = 0 were possible in SSP, these three
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regions (light blue, dark blue, and white) would correspond to di�ering values of the op-

timal path variable x∗. Clearly if dwell time against a target is zero, it cannot be optimal

to route a searcher to this target's search region.

Figure 5.3: SAP sweep-sweep plot without contours - The light-shaded (blue) region indi-
cates where all of the searcher endurance is allocated to target 1, while the dark-shaded (blue)
region is where none of the searcher endurance is allocated to target 1.

In SSP, where t = 0 transit time is not possible, the searcher is not able to use all of its

endurance for search dwell time d. In SAP this has the a�ect of reducing T . Figure 5.4

depicts the switch-point sweep-sweep plot for SAP with T = 5. We see that the mixture

region is smaller than that of Figure 5.3 when the searcher endurance is twice as large.

The mixture region is even smaller when we consider the optimal allocation of searcher

endurance T = 2 shown in Figure 5.5. We should expect the optimal solution to SSP to

behave similarly. Since the searcher must transit from one search region to the next, the

result of this transit is diminished opportunity to search all targets. In scenarios where

a large amount of transit time is required for the searcher to execute the search plan,

we should expect that the optimal solution is most sensitive to changes in sweep width

because the switch points are close together.
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Figure 5.4: SAP sweep-sweep plot without contours with reduced searcher endurance
- When the searcher endurance is reduced to T = 5 hours, the region (white) where both targets
are searched in the optimal solution is smaller than that of Figure 5.3 when the searcher endurance
is twice as large.

5.1.3 SSP Sweep Width Experiment

We now consider SSP applied to two di�erent two-target scenarios in order to illustrate

how the impact of changes to sweep width depends on the transit time that is required

for the searcher to execute the search plan. The �rst scenario, scenario 1, considers

targets that are relatively close together in time and space. In this scenario, a small

amount of transit time is required for the searcher to search both targets. The second

scenario, scenario 2, considers targets that are relatively far apart in time and space. In

this scenario, substantial transit time is required for the searcher to search both targets.

Targets 2 and 3 are considered in scenario 1, while targets 1 and 4 are considered in

scenario 2. Data for both scenarios are given in Tables 5.3 and 5.4. We allow sweep width

W to vary within the range [1, 20] for each target independently. Figure 5.6 depicts a

spatial representation of the target tracks.

Computing the optimal solution to SSP in scenario 1 for varying sweep width values,

we obtain the switch-point sweep-sweep plot in Figure 5.7. Given that targets 2 and 3
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Figure 5.5: SAP sweep-sweep plot without contours with reduced searcher endurance
- When the searcher endurance is reduced to T = 2 hours, the mixture region (white) where
both targets are searched in the optimal solution is small. In this situation, the optimal solution
is highly sensitive to changes in sweep width.

Home (85.5W 10.6N)
V 325

V̂ 205
T 10
D 24

Table 5.3: Searcher data for sweep width experiments

are close together, a small amount of time is required for the searcher to transit from

one search region to another. As a result, as evidenced by the large mixture region in

this �gure, the optimal allocation of the searcher endurance between the targets is, in

a relative sense, not very sensitive to changes in sweep width. Results in this scenario

resemble the SAP analysis with searcher endurance T = 10 illustrated in Figure 5.3.

Computing the optimal solution to SSP in scenario 2 for varying sweep width values, we

obtain the switch-point sweep-sweep plot in Figure 5.8. Given that targets 1 and 4 are

far apart, a large amount of time is required for the searcher to transit from one search
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Target
1 2 3 4

τ 0 0 0 10
ρ (81W 1S) (80W 0N) (79W 1N) (76.3W 9N)
ρ̄ (96.5W 15.7N) (92W 14.5N) (91W 14N) (83.5W 14N)

Table 5.4: Target data derived by the search controller - Additionally, τ̃ = 3, ρ̃ = 100,
q = 1000, and U = 50 for all four targets. Scenario 1 includes targets 2 and 3. Scenario 2
includes targets 1 and 4.

Figure 5.6: Target track map for SSP sweep width experiments - Scenario 1 includes
targets 2 and 3. Scenario 2 includes targets 1 and 4.

region to another. As a result, as evidenced by the small mixture region in this �gure,

optimal allocation of the searcher endurance between the targets is, relative to scenario

1, more sensitive to changes in sweep width. Results in this scenario resemble the SAP

analysis with searcher endurance T = 5 illustrated in Figure 5.4.

Note that, in scenario 1, for all sweep width con�gurations W1,W2 within the mixture

region of Figure 5.7, the optimal searcher paths x∗ are the same. Provided both targets

are searched, the optimal search order is always target 3 followed by target 2. The same is

true in scenario 2. Provided both targets are searched, the optimal search order is always
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Figure 5.7: Switch-point sweep-sweep plot for scenario 1 - Given that targets targets 2 and
3 are close together, little time is required for the searcher to transit from one search region to
another. Optimal allocation of the searcher endurance between the targets is not very sensitive
to changes in sweep width.

target 1 followed by target 4.

This is noteworthy because if it is true in general, for an SSP with n targets, that there

exists an underlying optimal search order where all targets can be ordered independent

of sweep width, then accounting for changes in sweep width could be done e�ciently. For

example, suppose that we are interested in an SSP with 10 targets, we have baseline sce-

nario data that provides valuesWj, j = 1, 2, . . . , 10, and we have computed the underlying

optimal search order. If any of the sweep widths Wj were to change, then re-optimizing

the search plan would simply entail determining which targets should be searched and

which targets should not. The search order would not change. In terms of SSP, it would

be su�cient to solve the problem with the binary visitation variables y instead of the

binary path variables x. Since y ∈ {0, 1}n+2 and x ∈ {0, 1}n2+2(n+1), re-optimizing with

the modi�ed sweep width data could be done more e�ciently than completely re-solving

SSP. A simple modi�cation of branching rules in step 2 of Algorithm B&B to preserve

the search order can be made to achieve this e�ciency.
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Figure 5.8: Switch-point sweep-sweep plot for scenario 2 - Given that targets targets 1
and 4 are far apart, more is required for the searcher to transit from one search region to another.
Optimal allocation of the searcher endurance between the targets is more sensitive to changes in
sweep width.

Unfortunately, an underlying optimal search order does not exist in general. If we consider

a 3-target SSP with targets 2, 3, and 4 from Table 5.4, we can see that the optimal search

order changes with changing sweep width values. For most sweep width con�gurations

W2,W3,W4, target 3 is searched before target 2. This order agrees with our results for

scenario 1. However, for sweep width con�gurations where it is optimal to search all three

targets (e.g., W2 = 10,W3 = 10,W4 = 15), the optimal search order is target 2, target 3,

and then target 4. The order of targets 2 and 3 in the optimal search path is reversed.

As a result of this sensitivity analysis we see that changes to sweep width can completely

change the optimal search plan. Targets can exit the optimal search plan or enter the

optimal search plan when a switch-point is crossed. The relative search order of targets can

also change as switch-points are crossed and, more troublingly, even within the interior

of the mixture region where some combination of targets are searched. In any search

planning situation, planners need to consider the certainty level associated with scenario

data, be aware of how changes to this data may a�ect the plan, and, if possible, directly
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account for data uncertainty in the model. We now address the latter.

5.2 Multi-Stage Planning
We consider daily mission cycles where planning (or re-planning) occurs L hours prior to

the start of each mission execution period. At each planning epoch, given the available

scenario data, a search plan is computed for the next mission execution period and beyond.

When scenario data only extends up to the next day, we have a single-cycle problem that

can be modeled by SSP with appropriate model enhancements described in Chapter 4.

On the other hand, when scenario data extends beyond the next 24 hours, we have a multi-

cycle problem that can be modeled by SSP-C with appropriate model enhancements. A

timeline for this mission planning process is shown in Figure 5.9.

Figure 5.9: Mission planning timeline - Planning (or re-planning) occurs L hours prior to
each mission execution period. At each planning epoch, given the available scenario data, a
search plan is computed for the next mission execution period and beyond.

In this mission planning process, we need to consider three things that can happen between

planning epochs. (1) New target information can arrive. (2) Updated weather forecasts

can become available. (3) Targets can be detected. The latter is not addressed by our

models. When a target is detected, it necessarily changes the scenario data for subsequent

mission cycles. A positive detection implies that the target was detected somewhere along

the path of the searcher. In this way, the scenario data for later mission cycles would

depend on the solution for earlier mission cycles. A dynamic programming model (see,

e.g., Kress et al. 2012, Lehnerdt 1982) is more appropriate to handle this consideration.

The �rst two considerations are direct changes to the scenario data and may occur in-

dependent of search activity. Assuming that the new data can be modeled as a random

vector with �nite support, we can account for data uncertainty with a multi-stage stochas-

tic program (see, e.g., King and Wallace 2012, Watson and Woodru� 2010, Shapiro et al.

2009, Rockafellar and Wets 1991). A multi-stage model represents all possible scenario
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data realizations by a number of scenarios ω ∈ Ω, each with a probability of occurrence

P (ω). We refer to this data as probabilistic scenario data.

As a practical matter, in order to use this model, when the initial plan is made at time

0 − L, planners must be able to estimate possible updates to scenario data that will ar-

rive leading up to subsequent re-planning epochs, along with the probability that each

update will be realized. The nature of the real-world search missions makes this require-

ment unrealistic for some types of scenario data. In most cases, it is unreasonable to

think that planners will be able to include information that has to do with new target

information in the probabilistic scenario data. Intelligence indicating the existence of a

future target is more appropriately captured in the model in the �rst place. However,

planners would likely be able to estimate possible updates to scenario data that are due to

weather. Weather models often characterize future conditions with probabilities of occur-

rence (Gombos et al. 2012, Hansen et al. 2011). Figure 5.10 is a rendering of graphic which

shows how, in an abstract scenario, sensor performance may be a�ected by environmental

conditions (Hansen 2013).

Figure 5.10: Spatial distribution of sensor performance - Red-orange areas re�ect small
sweep width (poor sensor performance) corresponding to bad weather. Green areas re�ect large
sweep width (high sensor performance) corresponding to bad weather.

We assume that nominal start times for intermediate home stations τ startj ,∀j ∈ Ĥ corre-
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spond to daily mission cycles as described in Section 4.6. For each mission cycle k ∈ C,
we de�ne the set scenario bundles Ω̂k ⊆ {(ω, ω′) : ω ∈ Ω, ω′ ∈ Ω}, where scenarios ω

and ω′ are indistinguishable up to and including cycle k. As an example, since the day 1

scenario data is known prior to initial planning at time 0−L, all scenarios are equivalent
in the �rst mission cycle. All scenarios are in the �rst bundle Ω̂1 = Ω×Ω. In later cycles

k > 1, bundles are sparser because the scenarios are dissimilar. Indexing all SSP-C

variables a,d, t,x,y, and z on scenarios ω ∈ Ω, and using a scenario-expanded network

GΩ = (NΩ, AΩ), which is constructed equivalently as the searcher-expanded network GS

in Section 4.3, we arrive at the following multi-stage SSP.

Problem SSP-MSP:

max
a,d,t,x,y,z

∑
ω∈Ω

P (ω)

(∑
j∈N̂Ω

qωj

(
1− exp

{
− αωj dωj yωj

}))
(5.6a)

s.t. aωj zk,j − aω
′

j zk,j = 0, ∀k ∈ C, j ∈ NΩ,

(ω, ω′) ∈ Ω̂k (5.6b)

dωj zk,j − dω
′

j zk,j = 0, ∀k ∈ C, j ∈ NΩ,

(ω, ω′) ∈ Ω̂k (5.6c)

tωi,jzk,izk,j − tω
′

i,jzk,izk,j = 0, ∀k ∈ C, (i, j) ∈ AΩ,

(ω, ω′) ∈ Ω̂k (5.6d)

xωi,jzk,izk,j − xω
′

i,jzk,izk,j = 0, ∀k ∈ C, (i, j) ∈ AΩ,

(ω, ω′) ∈ Ω̂k (5.6e)

(3.2b), (3.2c),

(3.2e) � (3.2m), and

(4.5b) � (4.5h), ∀ω ∈ Ω

The objective function (5.6a) calculates the expected value of the search using the proba-

bility of occurrence for each scenario. Constraints (5.6b)-(5.6e) enforce non-anticipativity

for each scenario bundle. Constraints (3.2b), (3.2c), (3.2e)-(3.2m), and (4.5b)-(4.5h) are

enforced for each scenario ω ∈ Ω.

Problem SSP-MSP is solved using Algorithm B&B on the scenario-expanded network.
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We observe, however, that this model becomes too large to solve in a reasonable amount

of time when a large number scenarios are considered. The number of partial paths that

must be considered in B&B grows exponentially with the number of scenarios. A popular

heuristic that solves multi-stage stochastic programming problems with many scenarios

is the progressive hedging algorithm (Rockafellar and Wets 1991, Watson and Woodru�

2010). Progressive hedging is discussed further in Section 5.2.2. We now proceed with a

numerical example solved using Algorithm B&B.

5.2.1 SSP-MSP Example

In order to illustrate the utility of SSP-MSP, we consider a planning problem with a

single searcher, four targets, and two 24-hour mission cycles. The planning data for this

problem is given in Tables 5.5 and 5.6.

Home (89.1W 13.4N)
V 325

V̂ 205
T 10
D 24
TR 6

Table 5.5: Searcher data for SSP-MSP example

Target
1 2 3 4

q 4000 3000 3000 4000
τ 14 0 0 36
ρ (80W 0N) (78.7W 2N) (76.3W 9N) (72W 12N)
ρ̄ (92.2W 14.5N) (85.5W 10N) (83.5W 14N) (87.5W 20N)

Table 5.6: Target data for SSP-MSP example - Additionally, τ̃ = 3, ρ̃ = 100, and Uj = 50
for all four targets.

Figure 5.11 depicts a spatial representation of the target tracks for this planning problem.

A high value target, target 1, is active at the end of day 1, and due to its relatively long

movement track, it remains active through the �rst part of day 2. Targets 2 and 3 are

active early in the �rst day of the scenario and have relatively short movement tracks.

Another high value target, target 4, has a long movement track and is active late in day

2. Due to the timing of target movement tracks, searching for target 1 in day 1 cannot be

done e�ectively if either target 2 or target 3 is also searched in day 1. Similarly, searching

for target 1 in day 2 cannot be done e�ectively if target 4 is also searched in day 2.
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Figure 5.11: Spatial representation of the target tracks for SSP-MSP example - Target
1 is active at the end of day 1, and due to its relatively long movement track, it remains active
through the �rst part of day 2. Target 1 is active at the end of day 1, and due to its relatively
long movement track, it remains active through the �rst part of day 2. Targets 2 and 3 are active
early in the �rst day of the scenario and have relatively short movement tracks. Target 4, with
a long movement track, is active late in day 2.

We assume that the sensor performance distribution depicted in Figure 5.10 illustrates

the general weather trend in day 2. Given this, we expect that bad weather (i.e., small

sweep width) is more likely than good weather (i.e., large sweep width) in the Eastern

Paci�c region. Similarly, we expect that good weather (i.e., large sweep width) is more

likely than bad weather (i.e., small sweep width) in the Caribbean region. We assume

good weather in both regions in day 1. For the remainder of this chapter, we denote by

j(k) target j searched in day k. Variables and parameters are indexed in this fashion

when appropriate. For example, we denote by Wj(k) the sweep width against target j in

day k. The probabilistic scenario data for this problem is given in Table 5.7.

This example highlights a di�cult issue that planners may face: a here-and-now versus

wait-and-see trade-o�. A single searcher cannot e�ectively search for all targets in two

mission cycles. A planner must choose between going after a high value target, target 1, in

day 1 at the expense of neglecting targets 2 and 3, or saving this high value target for day
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Scenario
ω1 ω2 ω3 ω4

Probability 0.1875 0.0625 0.5625 0.1875
E. Paci�c Weather Good Good Bad Bad
Caribbean Weather Good Bad Good Bad

Wj(1),∀j ∈ N̂ 15 15 15 15
W1(2),W2(2) 15 15 5 5
W3(2),W4(2) 15 5 15 5

Table 5.7: Probabilistic scenario data for SSP-MSP example - Good weather (i.e., large
sweep width) is expected throughout the AOI in the �rst day. The second day is marked by bad
weather and small sweep width in the Eastern Paci�c region, and good weather and large sweep
width in the Caribbean region.

2 while running the risk of a bad weather scenario. In classical stochastic programming

terms, day 1 requires here-and-now decisions, which must be made before the scenario is

revealed. In contrast, day 2 requires wait-and-see decisions, which can be made after the

scenario is revealed (Wets 2002, Shapiro et al. 2009).

A gambling planner guesses which scenario will be realized, perhaps choosing the most

likely scenario or, based on professional judgment, another less-likely scenario, and de-

termines his search plan by solving SSP-C with a single scenario. A hasty planner

determines his search plan by solving SSP-C with a single scenario as well, however he

uses the expected sweep width in the model. A cautious planner is uneasy about the

uncertainty associated with the weather and would like to have a plan that he can adjust

based on the day 2 weather outcome, so he uses SSP-MSP to compute his plan. It is

not obvious what solutions these approaches would yield. We now proceed to compare

them.

For the remainder of this chapter, the following convention is used. We denote by π search

plan. Three plans, π1, π2, and π3, are central to the understanding of the approaches taken

by the the gambling planner, the hasty planner, and the cautious planner. Table 5.8 lists

the optimal dwell times and searcher path for each plan.

We distinguish between three measures of search plan e�ectiveness. The optimal objective

function value for a particular problem is denoted by Z∗. The expected search plan value

given a search plan π to be executed and a scenario ω realization is denoted by value.

The expected search plan value across all scenarios given a search plan π to be executed is

denoted by E[value]. Note that the objective function (5.6a) maximizes E[value] over all
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Plan d∗1(1) d∗1(2) d∗2(1) d∗3(1) d∗4(2) Searcher Path

π1 5.67 0 0 0 5.65 h0 → 1(1)→ h1 → 4(2)→ h2

π2 0 8.5 2.89 3.06 0 h0 → 3(1)→ 2(1)→ h1 → 1(2)→ h2

π3 0 0 2.89 3.06 5.65 h0 → 3(1)→ 2(1)→ h1 → 4(2)→ h2

Table 5.8: Search plan details for SSP-MSP example - Data in this table re�ects the
optimal dwell times d∗ for a given path x. The Searcher Path column corresponds to the path
obtained by sequencing the xi,j = 1 values of the associated path x for the associated plan π.
Plans π1, π2, and π3 correspond to optimal search plans for the di�erent planning approaches
examined in this section.

possible search plans π, and this is equivalent to Z∗ only when SSP-MSP is the problem

that is being solved. The value for each search plan π and each scenario ω is given in

Table 5.9.

Scenario Realized
Plan ω1 ω2 ω3 ω4 E[value]
π1 5492.8 4030.1 5492.8 4030.1 5127.2
π2 6038.7 6038.7 4501.3 4501.3 4885.6
π3 5482.9 4020.1 5482.9 4020.1 5117.2

Table 5.9: Expected search plan value by plan for SSP-MSP example - Data in this
table re�ect the value for each plan πo given that scenario ω is realized. E[value] is computed
for each scenario using probabilities in Table 5.7.

The gambling planner assumes he �knows� the scenario outcome and determines the op-

timal search plan accordingly. This approach entails choosing the appropriate column in

Table 5.7 which corresponds to the desired scenario, and solving SSP-C with this sce-

nario data. A gambling planner who assumes that scenario ω3 will be realized computes

π1 as his optimal plan. A gambling planner who assumes that any other scenario will be

realized computes π2. Given that ω3 occurs with probability 0.5625, π1 appears to be a

favorable choice for a gambling planner.

The hasty planner uses the expected sweep width within SSP-C to compute his search

plan. He calculates that, on day 2, the sweep width in the Eastern Paci�c and Caribbean

regions will be 7.5 nm and 12.5 nm respectively. Using these values, he computes π1, with

an objective function value Z∗ = 5, 227.0 kg, as his optimal plan.

The cautious planner chooses to use SSP-MSP to compute his search plan. With this

approach, the optimal policy is to choose π3 if scenario ω3 is realized, and choose π2 if

any other scenario is realized. We refer to this scenario-based contingency plan as π0.

The E[value] of π0 is 5,437.8 kg, which is greater than that of the other plans π1, π2, and
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π3. Figure 5.12 illustrates that π0 yields the largest worst case value in any scenario. We

observe that π0 is implementable because non-anticipativity constraints (5.6b)-(5.6e) are

satis�ed; the day 1 portions of π2 and π3 are identical. Planners who choose π0 make

the here-and-now versus wait-and-see trade-o� by setting a day 1 plan at time 0 − L,

while retaining the �exibility to adjust the day 2 plan at planning epoch 24−L when the

weather outcome is known.

Figure 5.12 illustrates how the value of two plans, π0 and π1, taken by the three planners

compare for each scenario realization. In three of the four scenarios, the cautious planner

who chooses π0 does substantially better than the hasty and the gambling planners who

choose π1. When ω3 is realized, the hasty and the gambling planners do slightly better by

choosing π1, with a value that is 10 kg greater than the plan π0 chosen by the cautious

planner.

Figure 5.12: Comparison of planning approaches - In three of the four scenarios, the cautious
planner who chooses π0 does substantially better than the hasty and the gambling planners who
choose π1. When ω3 is realized, the hasty and the gambling planners do slightly better by
choosing π1, with a value that is 10 kg greater than the plan π0 chosen by the cautious planner.

Given that scenario ω3 is the most likely scenario and that π1 is optimal if expected sweep

width is used, it would be plausible for a planner to choose this search plan in the absence

of multi-stage planning. Unfortunately for this planner, with probability 0.4375, his plan

will be inferior to the scenario-based contingency plan π0. Clearly, π0 is the most desirable
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option, yielding the largest E[value], the largest worst case value, and a value that is

only 10 kg less than that of π1 in scenario ω3.

5.2.2 Progressive Hedging Algorithm

Since real-world mission planning with many scenarios yields large problems that may

preclude computing solutions to SSP-MSP using Algorithm B&B, planners wishing to

do multi-stage planning may have to rely on heuristics such as the progressive hedging

algorithm (PH). PH computes solutions by relaxing the non-anticipativity constraints

(5.6b)-(5.6e), and then iterating between solving the decoupled problems SSP-C for each

scenario ω and penalizing non-anticipativity constraint violation. PH takes two parame-

ters: a penalty parameter ρPH and a stopping tolerance εPH. The parameter ρPH penal-

izes violations of non-anticipativity constraints within the algorithm, while the stopping

tolerance εPH indicates the degree to which non-anticipativity constraint violations are

acceptable. The complete PH algorithm can be found in Watson and Woodru� (2010, p.

2).

PH is an exact algorithm for convex optimization problems (Rockafellar and Wets 1991),

while it is a heuristic for problems with integer variables, like SSP-MSP. In multi-stage

planning for real-world search missions, we are most concerned with evaluating multiple

scenarios in a time-constrained environment. While computing the optimal solution to

SSP-MSP is ideal, if a heuristic can compute a solution in a reasonable amount of time,

and this solution is better than the solution obtained by solving SSP-C using expected

(sweep width) value, then this heuristic can be a valuable tool for planners.

In order to evaluate the performance of PH on large problems, which B&B is not expected

to be able to solve in a reasonable amount of time, we consider an excursion to the example

problem of Section 5.2.1 where we vary the number of scenarios. Scenarios are constructed

as follows. We assume that the sweep width against target 1 in day 2 is a random variable

W̃1(2) with a scaled beta distribution.

W̃1(2)

20
∼ beta(α = 2.4, β = 4)

We assume that the sweep width against target 4 in day 2 is a random variable W̃4,
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independent of W̃1(2), with a scaled beta distribution.

W̃4(2)

20
∼ beta(α = 4, β = 2.4)

The particular distributions chosen in this excursion are arbitrary and carry no real-world

signi�cance in sweep width uncertainty. Choosing underlying sweep width distributions in

this excursion allows us to attribute di�erences in algorithm performance to changes in the

number of scenarios. We eliminate the potential for algorithms to perform di�erently due

to changes to the underlying probability distributions. These distributions yield sweep

widths in the range (0, 20) nm and have identical expected sweep widths as those used

by the hasty planner in Section 5.2.1. We denote by EV the approach taken by the hasty

planner - using expected sweep width to compute the search plan. We consider problems

with 4, 6, 9, 10, 15, 25, and 100 scenarios by discretizing the joint distribution into bins

according to sweep width levels. Since the sweep width values in each problem have the

same underlying distribution, the expected sweep widths are all the same and we can

compare the E[value] in each problem to that of the same baseline plan π1 (see Table 5.8)

computed using EV. This allows us to assess the quality of PH solutions when a large

number of scenarios precludes solving the problem to optimality using Algorithm B&B.

We use PH with parameter values ρPHj = qj,∀j ∈ NΩ; ρ
PH
i,j = max{qi, qj},∀(i, j) ∈ AΩ;

and εPH = 1e − 3. We require that, in order for solutions to be useful to planners, they

be computed in a reasonable amount of time. We de�ne a reasonable amount of time to

be two hours.

Table 5.10 lists the E[value] for the plans computed by B&B, PH, and EV as the number

of scenarios increases. Note that the di�erences in E[value] for EV are due to probability

binning when discretizing the joint sweep width probability distribution. EV yields the

same plan π1 and objective function value Z∗ = 5, 227.0 kg in all cases. For problems

with 4,6, and 9 scenarios PH correctly identi�es the optimal solution as a scenario-based

contingency plan made up of π2 and π3. Recall that π0 is a scenario-based contingency

plan made up of π2 and π3, where four scenarios are used. For problems with more

scenarios, the PH solution is also a scenario-based contingency plan made up of π2 and

π3. In all cases, the PH solution has a greater E[value] than the EV solution.

Figure 5.13 depicts the runtimes of B&B,PH, and EV on a log scale as the number of sce-

narios is increased. Runtimes for B&B, as expected, grow exponentially with the number
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Scenario Realized
Scenarios B&B (optimal) PH EV

4 5437.8 5437.8 5127.2
6 5408.9 5408.9 5127.2
9 5364.1 5364.1 5116.6
10 - 5423.2 5127.2
15 - 5386.8 5116.6
25 - 5469.5 5212.4
100 - 5386.6 5163.5

Table 5.10: Expected search plan values for increasing number of scenarios - Data in
this table re�ect the E[value] for each solution method for increasing number of scenarios. For
problems with 4,6, and 9 scenarios PH correctly identi�es the optimal solution as a scenario-based
contingency plan made up of π2 and π3. For problems with more scenarios, the PH solution is a
scenario-based contingency plan made up of π2 and π3 as well. In all cases, the PH solution has
a greater E[value] than the EV solution.

of scenarios. With nine scenarios, B&B requires over 15 hours to compute the optimal

solution. Using B&B to solve SSP-MSP appears to be a poor option for planners in

a time constrained environment if they would like to consider any more than six sce-

narios. Runtimes for PH appear grow linearly with the number of scenarios. A simple

linear regression �t of the PH runtimes versus number of scenarios yields a 6.7-second-

per-scenario runtime increase rate (e.g., slope), a slope p-value which is less than 10−9,

and an R2 value of 0.9998. All PH solutions are computed within two hours. With 100

scenarios, PH requires 11 minutes to compute a solution that yields a larger E[value]

than the EV-based plan π1. PH appears to be a useful tool for planners who would like

to consider multi-stage planning with many scenarios and do so in a reasonable amount

of time.
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Figure 5.13: Runtime comparison for multi-stage example - Runtimes for B&B, as ex-
pected, grow exponentially with the number of scenarios. With nine scenarios, B&B requires over
15 hours to compute the optimal solution. Runtimes for PH are all below two hours. With 100
scenarios, PH requires 11 minutes to compute a solution that yields a larger E[value] than the
EV-based plan π1. The runtime for EV is constant at 3.25 seconds for any number of scenarios.
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CHAPTER 6:

Summary, Conclusions, and Future Work

6.1 Summary and Conclusions
This research presents the Generalized Orienteering Problem with Resource Dependent

Rewards (GOP-RDR), which appears to be the �rst Orienteering Problem (OP) to con-

sider generalizations of the node rewards and arc lengths at the same time. We show that

in the GOP-RDR the activity of collecting rewards at nodes is in direct competition with

the activity of transiting between nodes. We develop a specialized branch-and-bound

(B&B) algorithm, which exploits this competition for resources. The GOP-RDR and

B&B can be used to model and solve problems in many application areas, such as mission

planning for search aircraft, commercial vehicle routing, sports, tourism, production, and

scheduling.

We present the Smuggler Search Problem (SSP), a novel path-constrained optimal search

model in continuous time and space, as an important special case of the GOP-RDR. The

SSP is used to compute an optimal search plan for a single searcher that is routed in an

area of interest (AOI) to detect multiple linearly moving targets. The SSP requires many

fewer integer variables than classical discrete-time and -space optimal search models. We

present a specialized B&B algorithm and three heuristics tailored to this model. We

show that these algorithms are able to quickly compute optimal search plans in scenarios

that are on the scale of real-world counterdrug operations, a �rst in the �eld of optimal

search. Numerical results show that B&B applied to randomly generated SSP instances

with seven or more targets outperforms standard mixed-integer nonlinear programming

solvers. We present a search order heuristic that can be used to quickly compute good

search plans, with runtimes within one second for problems of up to 10 targets. We

demonstrate empirically that optimality gaps, when using the search order heuristic, tend

to remain stable, in the 1-3% range, as problem size is increased from 3 to 10 targets.

We study �ve enhancements to the SSP, along with tailored solution procedures, that

can be used together or separately to model various real-world search planning scenarios.

With these enhancements, planners can account for complex target motion, multi-vehicle

search planning, high uncertainty in target motion, the coordination of search and in-
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terdiction e�orts, and multi-period search planning over time. The SSP, combined with

these enhancements, is the �rst optimal search model to consider all of these issues. The

merits of each SSP enhancement are demonstrated on a benchmark scenario, which is

developed to highlight several issues that may be faced by real-world search planners.

In the �rst SSP enhancement, we account for complex target motion by approximating

each target's movement path with a piecewise-linear track of segments. This model may

be used in planning scenarios where the target's speed and/or direction changes along its

path, as well as when the searcher's performance characteristics vary in the AOI (e.g., due

to weather conditions). We note that approximating a target's path by adding segments

is equivalent to adding nodes in the network G considered in the SSP. We �nd that this

model, with seven target segments and a single searcher, can be solved to optimality using

B&B in 3.5 seconds.

In the second SSP enhancement, we account for multiple cooperating, heterogeneous

searchers. We solve problem instances of this type using B&B on a searcher-expanded

network. Since the enumeration tree grows exponentially with the number of searchers,

B&B should only be used solve problem instances with a moderate number of searchers.

In our experiment with the baseline scenario, we observe that optimal multi-searcher plans

often assign more than one searcher to the same target. This is especially true when the

scenario involves �high value� targets. We �nd that this model, with seven target segments

and two searchers, can be solved to optimality using B&B in 48.9 seconds, while heuristic

solutions, with optimality gaps less than 10%, can be computed in as little as 1.3 seconds.

With the third SSP enhancement, we demonstrate that scenarios with high uncertainty

in a target's movement track may be modeled by allowing search in �xed regions. This

model allows planners to account for targets whose departure time uncertainty value is

larger than the duration of the mission execution period. We �nd that, though �xed-

region targets in the baseline scenario are not assigned to be searched in the optimal plan,

this model may be useful when �xed-region targets have a relatively high search value.

We demonstrate that this model, with eight target segments and two searchers, can be

solved to optimality using B&B in 64.8 seconds, while heuristic solutions, with optimality

gaps less than 10%, can be computed in as little as 1.4 seconds.

In the fourth SSP enhancement, we coordinate aerial search e�orts with the positioning

of surface interdictors. This is an important consideration in counterdrug operations
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where searchers must rely on surface assets to physically intercept smugglers once they

are detected by the searcher. By adding continuous variables and second order cone range

constraints to the search model, we develop the �rst search-and-interdiction model that

can be used for planning in real-world counterdrug operations. Based on our study of this

model, we recommend that it be used to compute improved search plan recommendations

whenever interdiction support is required. We �nd that this model, with eight target

segments, two searchers, and four interdictors, can be solved to optimality using B&B

in 84.8 seconds, while heuristic solutions, with optimality gaps less than 10%, can be

computed in as little as 1.5 seconds.

The �fth SSP enhancement is a multi-period search model that accounts for sequencing

search plans over multiple mission execution cycles. We show that this multi-period model

may be used to improve plans when the search needs to be coordinated with the positioning

of interdictors over several mission execution periods. We �nd that this model, with 16

target segments, two searchers, four interdictors, and three mission execution cycles, can

be solved using B&B in 6.9 hours. Runtimes as short as 3.1 seconds can be achieved

by heuristics, which yield solutions with search plan values that are within 19% of the

optimal plan. Based on our numerical experiments with this model, we recommend that,

when solutions are required in a time constrained environment, heuristics be used to solve

problem instances with two or more heterogeneous searchers and three or more mission

execution cycles.

We study the sensitivity of optimal search plans with respect to weather uncertainty.

Based on this study, we conclude that planners need to consider the certainty level asso-

ciated with scenario data, be aware of how changes to this data may a�ect the plan, and,

if possible, directly account for data uncertainty by using a multi-stage search planning

model.

We present a multi-stage model that allows planners to account for uncertainty in scenario

data. This appears to be the �rst multi-stage optimal search model that is able to handle

problems on the scale of those encountered in real-world counterdrug operations. We

observe that multi-stage planning, as opposed to planning for a single scenario, can yield

higher quality search plans with reduced risk of poor outcomes due to weather uncertainty.

We solve problem instances of this type using B&B on a scenario-expanded network. We

�nd that the multi-stage model, with �ve target segments, a single searcher, and four
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scenarios, can be solved to optimality using B&B in 1.5 hours. Since the enumeration

tree grows exponentially with the number of scenarios, we recommend that B&B only

be used solve problem instances with a moderate number of scenarios. In order to solve

larger problem instances, we show that the progressive hedging algorithm may be used

to solve multi-stage problems with many scenarios. We �nd that the multi-stage model,

with �ve target segments, a single searcher, and up to 100 scenarios, can be solved using

progressive hedging in within 1.5 hours.

6.2 Future Work
A common approach in optimal search problems is to represent intelligence about target

motion and environmental forecasts with a discrete-time and -space distribution of target

presence. The models presented in this dissertation are formulated in continuous time

and space, assuming piecewise linear target motion, so that the resulting optimization

problem can be solved by planners in a time-constrained environment. It is not clear how

to best translate discrete-time and -space distributions of target presence into appropriate

inputs to a continuous-time and -space model. It seems reasonable to use linear regression

techniques to approximate target motion, however establishing a complete approximation

procedure requires further research.

The SSP heuristic, based on results presented in Section 3.3, appears to perform well

on single-searcher problems with one mission cycle. We present modi�cations to the

SSP heuristic which account for multiple searchers and multiple mission cycles. It seems

reasonable to improve these modi�ed heuristics by expanding on the clustering concept

used in the single-searcher, single-cycle SSP heuristic. Observing that the SSP strives

to make dwell times large and transit times small, clustering targets based on searcher

and/or mission cycle assignment may yield higher quality solutions.

The SSP uses a random search model to maximize the expected value of the search.

Maximizing the expected number of targets detected can be done by simply setting equal

to one the expected detection value for each target. Other objectives may be of interest

to planners. For example, some optimal search problem formulations aim to maximize

the probability that at least one target is detected (see, e.g., Foraker 2011). Alternatively,

a di�erent search model (e.g., exhaustive search) may be considered.

Search aircraft not only have endurance limits that restrict the duration of single missions,
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but they also have aggregate �ying hour limits that constrain their total usage over long

periods of time (e.g., monthly or annual �ying hour programs). This type of �long-range�

constraint is not considered in this dissertation. It seems reasonable to consider a multi-

cycle model that extends many time periods into the future in order to assess search plan

feasibility with respect to long-range usage constraints. Such a consideration brings two

signi�cant challenges. First, e�cient algorithms would be required to solve the multi-cycle

problem over many periods. Second, one would need to �nd the right balance between

projecting potentially inaccurate target intelligence data too far into the future versus

accounting for long-range constraints on search aircraft.

This dissertation presents numerical results for search problem scenarios with up to 16

target segments, two searchers, and three mission execution cycles. Algorithm B&B

runtimes for larger problem instances are greater than 24 hours. Alternative algorithms

need to be developed in order to solve larger problem instances to optimality within a

reasonable amount of time.

The models presented in this dissertation were developed to support maritime search for

drug smugglers. A natural extension appears to be to consider land-based search missions.

In some ways, a land-based search mission appears to be easier to model because target

tracks may be limited to existing roadways. A piecewise linear motion model, like SSP-

PWL in Section 4.2, may be used in the case when targets can move freely over land.

More study seems warranted to develop an appropriate search value model to use in the

objective function; it is not clear whether or not random search of a moving search region

is valid when considering land-based search missions.
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