

## $A \mathrm{~N}$

# ACCOUNT OF 

SIR ISAAC NEWTON's

## Philofophical Difcoveries,

## IN FOUR BOOKS.

BY
COLIN MACLAURIN, A. M.
Late Fellow of the Royal Society, Profeffor of Mathematics in the University of Edinburgh, and Secretary to the Philofophical Society there.

Publifhed from the Author's Manufcript Papers, By PATRICK MURDOCH, M. A. and F.R.S.

The Second Edition.

$$
L O N D O N:
$$

Printed for A: Miller, at Buchanan's-Head over again ft Catbarine-ftreet in the Strand. $\overline{\text { M.DCC.L. }}$

# IN MEMORY <br> OF THAT JUST VENERATION 

## W H I C H

THE AUTHOR MY DECEASED HUSBAND
ALWAYS EXPRESSED
FOR HIS ROYAL HIGHNESS

## THEDUKE,

THIS ACCOUNT OF SIR ISAAC NEWTON's PHILOSOPHICALDISCOVERIES

IS HUMBLY INSCRIBED

TO HIS ROYAL HIGHNESS

> BY HIS

MOST OBEDIENT SERVANT,

ANNE MACLAURIN,

> Digitized by the Internet Arc̣ive in 2019 with funding from Wellcome Library

https://archive:org/details/b30515336

## THE

## CONTENTS.

An Account of the Life and Writings of the Author

## B OOK I.

Of the method of proceeding in natural philofophy, and the various fyftems of philofophers.

C H A P. I. Ageneralvierv of Sir Iraac Newton's metbod, and of bis account of the fylem of the world

CHAP. II. Of the fyftems of the ancient pbilaSopbers

CHAP. III. Of the modern philofophers before Des Cartes

CHAP. IV. Of the philofopical principles of Des Cartes, the emendations of his followers, and the prefent controverfes in natural philofoposy 66

* 2
$C H A P$


## Thbe CONTENTS.

CHAP. V. Conclufions frose the foregoing obServations

## B O O K II.

Of the theory of motion, or rational mechanics.

CHAP. I. Of $\int$ pace, time, matter, and motion 102
CHAP. II. Of the laws of motion, and their ganeral corollaries

C H A P. III. Of the mechanical powers
154
C H A P. IV. Of the collifion of bodies
C H A P. V. Of the motion of projecitiles in vacuo; of the cycloid, and the motion of a pendulum in it 207

## B O O K III.

Gravity demonftrated by analyfis.
C H A P. I. Of the theory of gravity as far as it appears to bave been known before Sir Ifaac Newton 232

C H A P. II. The moon is a beavy body, and gravitates torvards the earth in the fame manner as terreftrial bodies

CH A P. III. Of the folar fytem: and the parals laxes of the planets and fixed ftars 268

CHAP.

## The CONTENTS.

C H A P. IV. Of the general gravitation of matter 288

CHAP. V. Of the quantity of matter, and dsu. fity, of the fun and planets

## B O O K IV.

The effects of the general power of gravity deduced fynthetically.

CHAP. I. Of the centre of the folar fyftem 3 IO
C H A P. II. Sberving bowe gravity produces fome fmall irregularities in the motions of the planets 315

C H A P. III. Of the approach and recefs of the planets to and from the fun, in every revoluion 320

CH A P. IV. Of the motion of the moon $33^{8}$
CII A P. V. Of the path of a Secondary planet upon an imnoveable plane; woitb an illuftration of Sir Ifaac Newton's account of the motions of the fatellites, from the theory of gravity 352

C H A P. VI. Of the figure of the earth, and the preceffion of the equinoxes

362

CHAP.

## The CONTENTS.

CHAP. VII. Of the ebbing and flowing of the fea 368

CHAP. VIII. Of the comets 387
C H A P. IX. Of the Supreme Autbor and Goverwor of the Univerfe, the True and Living God 396

ERRATA.
Page 134, 1. 4 , r. AXDd. Page 360 , 1. ult. L $K_{2}$


# A N <br> <br> ACCOUNT <br> <br> ACCOUNT <br> <br> OF THE <br> <br> OF THE <br> <br> Life and Writings of the <br> <br> Life and Writings of the AUTHOR. 

 AUTHOR.}

COLIN MACLAURIN was defcended of an ancient family, which had been long in pofferfion of the illand of Tirrie, upon the coait of Argylefhire. His grand-father, Daniel, removing to Inverara, greatly contributed to reftore that town, after it had been almoft entirely ruined in the time of the civil wars; and, by fome memoirs which he wrote of his owr times, appears to have been a perfon of worth and fuperior abilities. Fobn the fon of Daniel, and father of our author, was minifter of Glenderule; where he not only diftinguifhed himfelf by all the virtues of a faithful and diligent paftor, but has left, in the regifter of his provincial fynod, lafting monuments of his talents for bufinefs, and of his public firit. He was likewife employed by that fynod in completing the verfion of the pralms into Irifh, which is fill ufed in thofe parts of the country where divine fervice is performed in that language. He married a gentlewoman of the family of Cameron, by whom he had three fons; $\mathcal{F}$ bon, who is ftill living, a learned and pious divine, one of the minifters of the city of Glafgorw; Daniel, who died young, after having given proo's of a moft extraordinary genius; and Colin, born at Kilmoddan in the month of February 1698.

His father died fix weeks after; but that lofs was in a good meafure fupplied to the orphan family, by the affectionate care of their uncle Mr. Daniel Maclaurin, miniffer of Kilfinan, and by the virtue and prudent ceconomy of Mrs. Maclaurin. After fome flay in Argylefbire, where her fifters and the had a fmall patrimoniai eftate, the removed to Dumbarton, for the more convenient education of her childaren : but dying in 1\%07, the care of them devolved entirely to their uncle.

In 1709 Colin was fent to the univerfity of Glafgow, and placed under the care of one of the beft men, and moft eminent profeffors, of this age, the learned Mr. Gerboom Carmichacl. Here he continued five years, applying himfelf to his fudies with that fuccefs which might be expected from parts like his, cultivated with the moft indefatigable care and diligence. We find, amongft his oldeft manufrripts, fragments of a diary in which he kept an account of every day, and of almoft every hour of the day; of the beginning and fuccefs of every particular ftudy, enquiry or inveftigation: of his converfations with learned anen, the fubjects of them, and the arguments on either dide. Here we read the names of Profefior Carmickael, the celebrated Mr. Robert Simjon, Dr. Fobinfon, and feveral other gentiemen of learning and worth; who all vied who fhould moft encourage our young philofopher, by opening to him their libraries, and admitting him into their molt intimate fociety and friendfhip. He could not, afterwards, find time to keep fo formal a regiffer of his life, but we are affured the habit never left him; and that every hour of it was continually filled up with fomething which he could review with pleafure.

His genius for mathematical learning difcovered iifelf fo early as at twelve years of age, when, having accidentally met with a copy of Euclid in a friend's chamber, in a few days he became mafter of the firft fix books without any affiftance: and thence, following his natural bent, mave fuch a furprizing progrefs, that very foon after we find him engaged in the moft curious and difficult problems. Thus such is ecrain, that in his fixteenth year, he had already
invented many of the propofitions afterwards publifhed under the title of Geometria Organica.

In the fifteenth year of his age he took his degree of mafter of arts, with great applaufe; on which occafion be compofed and publicly deiended a Thefes on the power of gravity: and after having fpent a year in the ftudy of divinity, he quitted the univerfity, and lived, for the moft part, in an agreeable country retirement at his uncle's houfe, till near the end of 1787 . In this retirement, he purfued his Atudies with the fame affiduity as he had done at the univerfity; continuing his favourite refearches in mathematicks and philofophy, and at other times reading the beft clafic authors; for which he naturally had an exceeding good talte.

In the intervals of his fudies, the lofty mountains amidfe which he lived would often invite him abroad, to confider the numberlefs natural curiofities they contain, and the infinite variety of plants that grow on them ; or to climb to their tops, and enjoy the moft extenfive and moft diverfified profpects. And here, his fancy being warmed by the grand fcenes which prefenited themfelves, he would fometimes break out into a hymn or poetic rhapfody on the beauties of nature, and the perfections of its Author. Of thefe fome fragments ftill remain; which, tho' fo unfinifhed that it can be only thro' forgetfulnefs they have not been deftroyed, yet fhew a genius capable of much greater things in that way. His friends, however, are obliged to the accidents that have preferved them, together with fome others of his juvenile performances; for however unfit they may be for the public view, they fhew the progrefs he had made in the feveral parts of learning, at the time they were written: and what can be more delightful, than to obferve the gradual openings and improvements of a mind like that of Mr. Maclaurin?

In the autumn of 1717, he prefented himfelf a candidate for the profefiomip of mathematics in the marimal college of Aberdeen, which he obtained after a comparative tryal of ten days with a very able competitor: and being fixed in his chair, he foon revived the tafte of mathemati-
cal learning, and raifed it higher than it had ever been is that univerify.

During the vacations of 1719 and 1721, he went to London with a view of improving himfelf, and of being introduced to the illuitrious men there. In his firt journey, befides Dr. Hoadly then bifhop of Bangor, Dr. Samuel Clarke, and feveral other eminent men, he became acquainted with Sir Ifaac Newton; whofe friendfhip he ever after reckoned the greateft honour and happinefs of his life. He was admitted a member of the Royal Society; two papers of his were inferted in their tranfactions, and his book intitled Geometria Organica was publifhed with the approbation of their prefident.

In his fecond journey to London in $\mathbf{r} 72 \mathrm{I}$, he became acquainted with Martin Folkes, Efq; now prefident of the royal fociety; with whom he thence forth cultivated a moft entire and unreferved friendhip, frequently interchanging letters with him, and communicating all his views and improvements in the fciences.

In 1722, Lord Polwarth, Plenipotentiary of the King of Great Britain at the congrefs of Cambray, engaged Mr. Maclaurin to go as tutor and companion to his eldeft fon, who was then to fet out on his travels.

After a Mort fay at Paris, and vifiting fome other towns in France, they fixed in Lorrain; where, befides the advantage of a good academy, they had that of the converfation of one of the moft polite courts in Europe. Here Mr. Maclaurin gained the efteem of the moft diftinguified perfons of both fexes, and at the fame time quickly improved that eary genteei behaviour which was natural to him, both from the temper of his mind, and from the advantages of a graceful perfon.

It was here likewife that he wrote his piece on the percuffion of bodies, which gained the prize of the Royal Acadeny of Sciences for 1724 ; the fubflance of this tract is inferted in his Treatife of Fiuxione, and alfo in Book II. Cbap. 2. of the following work.

Mr. Maclaurin and his pupil having quitted Lorrain, were got as far on their tour as the fouthern provinces of France, when Mr. Hume was feized with a fever, and died at Montpelier. An event fo fhocking muft have affected a heart lefs fenfible and tender than Mr. Maclaurin's: in fome letters written on this occafion, he appears quite inconfolable. His own grief for his pupil, his companion, and friend; and his fympathy with a family to which he owed great obligations, and which had fuffered an irreparable lofs in the death of this hopeful young nobleman, rendered him altogether unhappy. Travelling and every thing elfe was become diftafteful, fo he fet out immediately on his return to his profeffion at Aberdeen.

But being now univerfally diftinguifhed as one of the firft genius's of the age, fome of the curators of the univerfity of Edinburgh, were defirous of engaging him to fupply the place of Mr. Fames Gregory, whofe age and infirmities had rendered him incapable of teaching. Several difficulties retarded this defign for fome time; particularly; the comperition of a gentleman eminent for mathematical abilities, who had good interef with the patrons of the univerfity; and the want of an additional fund for the new profeffor. But both thefe difficulties were got over, upon the receipt of two letters from Sir Ifaac Newtort. In one, addreffed to Mr. Maclaurin, with allowance to fhew it to the patrons of the univerfity, Sir IJaac exprefles himfelf thus; "I am very glad to hear that you have a "profpect of being joined to Mr. Fames Gregory in the " profefformip of the mathematics at Edinburgh, not " only becaufe you are my friend, but principally becaufe " of your abilities, you being acquainted as well with the "' new improvements of mathematics, as with the former ${ }^{6}$ ftate of thofe fciences; I heartily wilh you good fuc${ }^{6}$ cefs, and thall be very glad of hearing of your being "elecied; I am, with all fincerity, your faithful friend "t and moft humble fervant."

In a fecond letter to the then Lord Provoft of Edinburgh, which Mr. Maclaurin knew nothing of till fome years after Sir Ifaac's death, he thus writes, "I am glad
"s to underfand that Mr. Maclaurin is in good repute " amongft you for his fkill in mathematics, for I think he " deferves it very well; and to fatisfy you that I do not "flater him, and alfo to encourage him to accept the " place of affíting Mr. Gregory, in order to fucceed him, "I am ready (if you pleafe to give me leave) to contri" bute twenty pounds per amnum towards a provifion for "s him, till Mr. Gregory's place become void, if I live fo " long, and I will pay it to his order in London."

In Novernber 5725 , he was introduced into the univerfity: as was at the fame time his learned collegue and intimate friend, Dr. Alexander Monro, profeffor of anatomy. After this the mathematical claffes foon became very numerous, there being generally upwards of a hundred young gentlemen attending his lectures every year: who being of different ftandings and proficiency, he was obliged to divide them into four or five claffes, in each of which he employed a full hour every day, from the firft of November to the firf of fune.

In the firt or loweft clafs, (fometimes divided into two) he taught the firft fix books of Euclid's Elements, plain trigonometry, practical geometry, the elements of fortification, and an introduction to algebra. The fecond clafs ftudied algebra, the 11 th and 12 th books of Euclid, fpherical trigonometry, conic fections, and the general principles of aftronomy. The third clafs went on in aftronomy and perfpective, read a part of Sir Ifaci Newton's Principia, and had a courfe of experiments for illuftrating them, performed and explained to them. He afterwards read and demonftrated the elements of fluxions: thofe in the $4^{\text {th }}$ clals read a fyitem of fluxions, the doctrine of chances, and the reft of Newton's Principtia.

All Mr. Maclaurin's lectures on thefe different fubjects were given with fuch perfpicuity of meethod and language, that his demonftrations feldom ftood in need of repetition: fuch, however, was his anxiety for the improvement of his fcholars, that if at any time they feemed not fully to comprehend his meaning, or if, upon examining them, he found they could not readily demonftrate the propofin
tions which he had proved, he was apt rather to fufpect his own expreffions to have been obfcure, than their want of genius or attention ; and therefore would refume the demonftration in fome other method, to try if, by expofing it in a different light, he could give them a better view of it.

Befides the labours of his public profeffion, he had frequently many other employments and avocations. If an uncommon experiment was faid to have been made any where, the curious were defirous of having it repeated by Mr. Maclaurin: if an eclipfe or comet was to be obferved, his telefcopes were always in readinefs. The ladies too would fometimes be entertained with his experiments and obfervations ; and were furprized to find how eafily and familiarly he could refolve the queftions they put to him. His advice and affiftance, efpecially to the young gentlemen who had been his pupils, was never wanting; nor was admittance refufed to any, except in his teaching hours, which were kept facred. His acquaintance and friendfhip was likewife courted by the ingenious of all ranks; who, by their fondnefs for his company, took up a great deal of his time, and left him not mafter of it, even in his country retirements. Notwithftanding the neceffary labour and the many interruptions and avocations which he had, he continued to purfue his own fludies with the utmoft affiduity, reading whatever was publifhed, from which be could expect any information or improvement. But to have time for fo much fludy and writing, he was obliged to take from the ordinary hours of fleep, what he beftowed on his fcholars and friends; and by this, no doubt, greatly impaired his health.

Sir Ifaac Nerton dying in the beginning of the year 1728, his nephew Mr. Conduitt propofed to publifh an account of his life, and defired Mr. Maciaurin's affitancé; who, out of gratitude to his great benefactor, chearfully undertook and foon finifhed the hiftory of the progrefs which philofophy had made before Sir Ifaac's time. This was the firft draught of the following work; which was immediately fent up to London, and had the approbation of fome of the beft judges. Dr, Rundle, in particular, af.

## viii

## An Account of the Life and Writings

terwards bifhop of Derry, was fo pleafed with the defign, that he mentioned it to her late Majefty; who did it the honour of a reading, and exprefied a defire to fee it publifhed. But Mr. Conduitt's death having prevented the execution of his part of the propofed work, Mr. Maclaurin's manufcript was returned to him. To this he afterwards added the more recent proofs and examples, given by himfelf or others, on the fubjects treated of by Sir IJaac, and left it in the ftate in which it now appears.

Mr. Maclaurin had lived a batchelor to the year 1733: but being formed for fociety as well as for contemplation, and deffrous of mixing more delicate and interefting delights with thofe of philofophy, he married Anne, daughter of Mr. Walter Stewart follicitor-general to his late Majefty for Scotland; by whom he had feven children, of which, two fons Fobn and Colin, and three daughters, have furyived him.

Dr. Berkley bifhop of Cloyne, having taken occafion from fome difputes that had arifen concerning the grounds of the fluxionary method, in a treatife intitled the Anoly $/ f$, publifhed in 1734 , to explode the method itfelf, and, at the fame time to charge mathematicians in general with infidelity in religion ; Mr. Maclaurin found it neceffary to vindicate his favourite fudy, and repel an accufation in which he was moft unjufly included. He began an anfwer to the bihhop's book ; but as he proceeded, fo many difcoveries, fo many new theories and problems occurred to him, that, inftead of a vindicatory pamphlet, his work came out a complete fyftem of fluxions, with their application to the moft confiderable problems in geometry and natural philofophy.

This work was publifhed at Edinburgh in 1742, in two volumes in quarto; in which we are at a lofs what moft to admire, his folid and unexceptionable demonftrations of the grounds of the method itfelf, or its application to fuch a variety of curious and ueful problems.

His demonfrations had been, feveral years before, communicated to Dr. Berkley, and Mr. Maclaurin had treated him with the greateft perfonal refpect and civility: notwithftanding which, in his pamphlet on tar-water, he renews the charge, as if riothing had been done; for this excellent reafon, that different perfons had conceived and expreffed the fame thing in different ways.

A fociety having fubfifted fome years at Edinburgh for improving medical knowledge, Mr, Maclaurin propofed to have their plan made more extenfive, fo as to take in all the parts of phyfics, together with the antiquities of the country. This was readily agreed to; and Mr. Maclaurin's influence engaged feveral noblemen and gentlemen of the firft rank and character, to join themfelves, for that purpofe, to the members of the former fociety. The Earl of Morton did them the honour to accept of the office of prefident; Dr. Plummer profeffor of chymiftry, and Mr. Maclaurin were appointed fecretaries; and feveral gentlemen of diftinction, Englifh and foreigners, defired ț, be admitted members.

At the monthly meetings of the fociety, Mr. Maclaurin generally read fome performance or obfervation of his own, or communicated the contents of his letters from foreign parts; by which means the fociety was informed of every new difcovery or improvement in the fciences.

Several of the papers read before this focietv, are printed in the 5 th and 6 th volumes of the Medical EJays. Some of them are likewife publihhed in the Pbilofopbical Tranfactions, and Mr. Maclaurin had occafion to infert a great many more in his Treatife of Fluxions, and in his account of Sir IJaac Newwton's philofophy. By which means the publication of any volume of the works of the fociety has been retarded: but we may hope their labours will fill be continued with fuccefs, notwithftanding the lofs they have fuftained by Mr. Maclaurin's death.

## $x$ An Account of the Life and Writings

He likewife propofed the building an aftronomical obfervatory, and a convenient fchool for experiments in the univerfity; of which he drew an elegant and well contrived plan: and as this work was to be carried on by private contributions, employed all his influence to raife money for that purpofe; with fo much fuccefs, that had not the unhappy diforders of that country intervened, the fabrick might by this time heve been far advanced. The Earls of Morton and Hoptoun fhewed their liberality as well as their love of the fciences, upon this occafion; as did the honourable Baton Clerk, vice-prefident of the philofophical fociety: and feveral noblemen and gentlemen offered to contribute what infruments of value they were poffefled of, as foon as the obfervatory fhould be ready to receive them.

The Earl of Morton being to fet out for Orkney and Sbetland in 1739, to vifit his eftates there, wanted at the fame time to fettle the geography of thefe countries, which is very erroneous in all our maps; to examine their natural hiftory, to furvey the coafts, and to take the meafure of a degree of the meridian: and, for this purpofe, defired Mr. Maclaurin's affiftance. But his family affairs not permitting him to take fuch a journey, he could do no more than draw a memorial of what he thought neceffary to be obferved, furnifh the proper inftruments, and recommend Mr. Short, the famous optician, as a fit operator for managing them.

The account :which he received of this voyage, made him ftill more fenfible of the erroneous geography we have of thofe parts, by which many fhipwrecks have been occafioned; and therefore he employed feveral of his fcholars, who were then fettled in the northern counties, to furvey the coafts.

The reverend Mr. Bryce compofed from obfervations a map of the coaft of Caithne/s and Strathnaver, with remarks on the natural hiftory and rarities of the country, together with directions for fea-faring people. This map was prefented to the Pbilofophical Society at Edinburgh,
and publifhed by their order. The reverend Mr. Bonnar drew likewife a map of the three moft northerly inands of Shetland, which is among Mr. Maclaurin's papers; and we expect foon the geography of the Orkneys correcied by Mr, Mackenzie. It was from obfervations like thefe, made by fkilful perfons, and with the beft inftruments, that Mr. Maclaurin expected to fee a good map of Scotland; not from the flavifh copying of map-fellers, nor from a painful collecting, and patching together of old draughts and furveys of little authority; which he thought muft contribute more to perpetuate than to rectify errors.

Mr. Maclaurin had fill another fcheme for the improve-. ment of geography and navigation, of a more extenfive nature. After reading all the accounts he could procure of voyages, both in the fouth and north feas, he imagined the fea was open all the way from Greenland to the fouth fea, by the north pole. Of this he was fo much perfuaded, that he has been heard to fay, if his fituation could admit of fuch adventures, he would undertake the voyage even at his own charges. But when fchemes, for finding out fuch a paffage, were laid before the parliament in 1744, and he was confulted concerning them by feveral perfons of high rank and influence; before he could finifh the memorials which he propofed to have fent, the promium was limited to the difcovery of a north-weft paflage, and Mr. Maclaurin ufed to regret that the word weft was inferted, 'becaufe he thought that paffage, if at all to be found, muft lie not far from the pole.

Such was the zeal of this worthy perfon for the public good, in every inftance; the laft, and moft remarkable, is that which we are now going to relate.

When it was sertainly known, in 1745 , that the rebels, after having got between Edinburgh and the King's troops, were continuing their march fouthwards, Mr. Maclaurin was among the firlt to roufe the friends of our happy conftitution, from the unlucky fecurity they had hitherto continued in: and tho' he was fenfible that the city of Edinburgh, far from being able to ftand the attack of a regular army, could not eren hold out any conft-
derable time againft the undifciplined and ill-armed force that was coming againft it; yet, as he forefaw of how much advantage it would be to the rebels, to get poffeffion of that capital; and, the King's forces under the command of Sir Fobn Cope being daily expected; he made plans of the walls, propofed the feveral trenches, barricades, batteries, and fuch other defences as he thought could be got ready before the arrival of the rebels, and by which, he hoped, the town might be kept till the King's forces fhould come to its relief. The whole burden, not only of contriving, but alfo of overfeing the execution, of thefe bafty fortifications fell to Mr. Maclaurin's fhare ; he was employed night and day, in making plans, and running from place to place; and the anxiety, fatigue, and cold to which he was thus expofed; affecting a conftitution naturally of weak nerves, laid the foundation of the difeafe of which he died.

How this plan came to be neglected, and in what manner the rebels got poffieflion of the town, is not a proper enquiry for this place. They got poffeffion of it ! and, their fipirits being raifed by this unaccountable fuccefs, and by the fupply of arms and provifions which it gave them, they foon after defeated the King's troops at Prefion. The moderation which they had affected before that unhappy battle was now laid afide, and obedience was to be given to whatever proclamations or orders they thought fit to iffue, under pain of military execution. Among other defpotic orders, one was, commanding all who had been volunteers in defence of the town, before a flated time, to wait on their fecretary of ftate, to fubfcribe a recantation of what they had done, and a promife of fubmiffion to their pretended government, under the pain of being deemed and treated as rebels. Mr. Maclaurin had been too active and diffinguifhed a volunteer, to think he could efcape the fevereft treatment, if he fell into their hands after neglecting to make the fubmiffion required; he therefore withdrew privately into England, before the laf day of receiving the fubmiffions; but, previous to his efcape, found means to convey a good telefcope into the caftle, and concerted a method of fupplying the garrifon with provifions.

As foon as his Grace, Dr. Thomas Herring then Lord Archbifhop of York, was informed that Mr. Maclaurin had fled to the north of England, he invited him in a moft friendly and polite manner, to refide with him during his ftay in that country. Mr. Maclaurin gladly accepted of the invitation, and foon after expreffes himfelf thus in a letter to a friend; "Here (fays he) I live as happily as a " man can do, who is ignorant of the fate of his family, "s who fees the ruin of his country." His Grace, of whofe merit and goodnefs, Mr. Maclaurin ever retained the higheft fentiments, afterwards kept a regular correfpondence with him; and when it was furpecied that the rebels might once more take poffieffion of Edinburgh, after their retreat from Englaid, invited his former gueft again to take refuge with him.

At York he had been obferved to be more meagre than ordinary, and with a fickly look; though not being apprehenfive of any danger at that time, he did not call in the affiftance of a phyfician: but having had a fall from his horfe on his journey fouthward, and, when the rebel army marched into England, having on his return home been expofed to moft tempelfuous cold weather, upon his arrival he complained of being much out of order. In a little time his difeafe was difcovered to be a dropfy of the belly, to remove which, variety of medicines, prefcribed by the moft eminent phyficians at London, as well as thofe of Edinburgh, and three tappings, were ufed without making a cure.

His behaviour, during this tedious and painful diftem. per, was fuch as became a philofopher and a chriftian; calm, chearful, and religued; his fenfes and judgment remaining in their full vigour, till within a few hours of his death. Then, for the firft time, his amanuenfis to whom he was dictating the laft chapter of the following werk (in which he proves the wifdom, the power, goodnefs, and othcr attributes of the Deity) obferved fome hefitation or repetition: no pulfe could then be felt in any part of his body, and his hands and feet were alrealy cold. Nolwithitanding this extremely weak condition, he fate in tis
chair, and fpoke to his friend Dr. Monro with his ufua! ferenity and flrength of reafon, defiring the Doctor to account for a phænomenon which he then obferved in himfelf: flafhes of fire feeming to dart from his eyes, while in the mean time his fight was failing, fo that he fcarce could diftinguilh one object from another. In a little time after this converfation, he deffred to be laid upon his bed; where, on Saturday the 14th of $\mathfrak{F} u n e, 1746$, aged 48 years and 4 months, he had an eafy paffage from this world to that ftate of blifs, which he had the moft elevated ideas of, and which he moft ardently longed to poffers.

The grief for the lofs of this excellent perfon was as general as the efteem which he had acquired, with all ranks of men: but thofe of greateft worth, and who had moft intimately known him, were the moft deeply affected. Dr. Monro, in an oration fpoken at the firft meeting of the univerfity after Mr. Maclaurin's death (from which the fubftance of the foregoing account is taken) gives, particularly, a very moving picture of the grief of the late Lord Prefident Forbes, on this occafion. A likenefs of character, and a perfect harmony of fentiments and views, had clofely united them in their lives; in their deaths; they were alas! too little divided: the prefident likewife, worn out in the fervice of his country, was foon to be the fubject of a general mourning.

In the fame difcourfe the Doctor hhews, in a variety of inftances, that acute parts and extenfive learning were, in Mr. Maclaurin, but inferior qualities; that he was ftill more nobly diftinguifhed from the bulk of mankind, by the qualities of the heart; his fincere love to God and Men, his univeral benevolence and unaffected piety; together with a warmth and conftancy in his friendhips, that was in a manner peculiar to himfelf. He profeffes likewife, that after an intimacy with him for fo many years, he had but half known his worth; which then only difclofed itfelf in its full luftre, when it came to fuffer the fevere teft of that diftrefful fituation, in which every man: mult at laft find himfelf; and which only minds prepared like his, armed with virtue and chriftian hope, can bear with dignity.

But the bounds we are confined to, do not permit us to follow the profeffor in this delightful track; nor would the modefty of Mr. Maclaurin's furviving friends bear with our being fo particular. We mult content ourfelves to confider him in the character in which he was univerfally known; by giving a fhort account of his works, and of the tafte and manner in which he cultivated the mathematical fciences; purfuing with fuch indefatigable pains, ftudies that feem, to many, rather curious than ueful.

His firf work, compofed in bis early youth, was the Geometria Organica, in which he treats of the defription of curve lines by continued motion. The firt and fimpleft of curves is defrribed by the motion of a right line on a plane, round one of its extremities. Sir IJaac Newton had fhewn, that the Conic Sections might all be defcribed by affuming two centres or poles in a plane, and moving round them two given angles, fo as the interfection of two legs be always found in a ftreight line, given in pofition in the fame plane; for thus the interfection of the other two will trace fome conic fection. In a fimilar way, he defcribes fuch lines of the third order, as have a double point, that is to fay, which returning upon themfelves, pals twice through the fame point ; but the defcription of the far greater number of thofe lines, which have no fuch point, Sir IJaac declares to be a problem of much more difficulty. This was referved for Mr. Maclaurin; who not only happily refolved it, but carried the fame method of defcription much higher. By affuming more poles, or by moving the angular points along more lines given in pofition, or, laftly, by carrying the interfections along curve lines, inftead of ftreight, he has extended, or given hints of extending, the method as far as it can go. And becaufe, by the motion of rulers actually combined, as the cafe requires, fuch defcriptions may be effected, he calls them by the general name of Organical. When he wrote this treatife, the fubjects being new and entertaining, his invention in its prime, and the ardor of his curiofity continually urging him on to farther difcoveries, he did not take time to finifh every demonftration in fo elegant a manner as he might have done. His page, we

## zyi An Account of the Life and Writings

muft own, is incumbered with algebraical calculations, and thefe have offended the delicate eyes of fome critics; but, in anfwer to this, we may fay that what offends them, may be very acceptable to younger ftudents: nor indeed fould we at all have mentioned this blemith in fo great a work, if himfelf had not fomewhere hinted at it, and, in a letter to one of his friends, expreffed an intention of refuming, with his firf leifure, that whole theory, and adding to it a fupplement ; the greateft part of which bad been printed feveral years ago, but whereof we haye only an abffract in the Philofophical Tranfactions, $\mathrm{N}^{\circ}$. 439. In the fame volume, he gives a new theory of the curves which may be derived from any given curve, by conceiving perpendiculars to its tangents to be drawn continually through a given point, whofe interfections with the tangents will form a new curve; from which laft a zhird may be formed in the fame manner, and fo on in infinitum. This furnifhes many curious theorems: there are likewife fome propofitions concerning centripetal forces and other fubjecis, which, with the quotations he ufes, thew the great progrefs he had already made in every part of mathematical learning, and how well acquainted he was with the writings of the beft authors.

We fhall not here repeat what has been faid concerning his piece which gained the prize of the Royal Academy of Sciences in 1724. In the year 1740, the Academy adjudged him a prize which did him ftill more honour, for accounting for the motion of the Tides, from the theory of gravity; a queftion which had been given out the former year, without receiving any folution. He happened to have only ten days time to draw up this paper, and could not find leifure to tranfcribe a fair copy, fo that the Paris edition of it is incorrect; but he afterwards revifed the whole, and inferted it in his Treatife of Fluxions.

Nor need we mention the occafions on which feveral pieces which be fent to the Royal Society were written: the following lift will hew their dates, and the fubjects treated of in them.
r. Of the confruction and meafure of curves, Phil. Tranf. $\mathrm{N}^{\mathrm{Q}} .3 \mathrm{~S}_{6}$.
2. A new method of defcribing all kinds of curves, $\mathrm{N}^{\mathrm{Q}} .359$.
3. A Letter to Martin Folkes, Efq; on equations with impoffible roots, May, 1726. $\mathrm{N}^{\mathrm{o}} .394$.
4. ———— Continuation of the fame, March 1729. $\mathrm{N}^{\mathrm{o}} .408$.
5. Decem. $21 \mathrm{ft}, 173^{2}$. On the defcription of curves; wuith an account of farther improvements, and a paper dated at Nancy, 27 th Nov. 1722. N ${ }^{\text {Q }}$. 439.
6. An account of the annular eclipfe of the fun, at Edinburgh, Feb. 18, 1736-7. N ${ }^{\circ}$. 447 .
7. An account of the Treatife of Fluxions, January 27th, 1742-3. NP. 467.
8. --The fame continued, March 10th, 1742-3. $\mathrm{N}^{\mathrm{o}} .46 \mathrm{~g}$.
9. A rule for finding the meridional parts of a Spheroid with the fame exactnefs as of a Jpbere, Auguft 174.1. ND. 46 I.
10. Of the bafes of the cells wherein the bees depofit their boney, Novem. 3, 1743. $\mathrm{N}^{\mathrm{N}} .47 \mathrm{I}$.

But the great work, on which he beffowed the moft labour, and which will for ever do him honour, is his Treatije of Fluxions.

The occafion of it was related above, namely, the objections of fome ingenious men againft the doctrine of fluxions, on account of the different modes of explication which had been uled by different authors. Nor can it be denied, that the terms infinite and infinitefinal were become much too familiar to mathematicians, and had been abufed both in arithmetic and geometry: At one time in-

## sviii An Account of the Life and Writings

troducing and palliating real abfurdities, and, at others, giving thefe fciences an affected myfterious air which does not belong to them. To remedy this growing evil, and for ever take away the handle which it gave to cavilling, Mr. Maclaurin found it neceffary, in cemonftrating the principles of fluxions, to reject altogether thofe exceptionable terms, and to fuppofe no other than finite determinable quantities, fuch as Euclia treats of in his geometry; nor to ufe any other form of demonftration than what the antients had frequently ufed, and which had been allowed as ftrictly conclufive from the firft rife of the fcience: by which means, he has fecured this admirable invention from all future attacks, and at the fame time done juftice to the accuracy of the great inventor. The work coft him infinite pains; but he did not grudge it: he thought that in proportion ${ }^{6}$ as the general me${ }^{66}$ thods are valuable, it is important that they be effa"s blifhed above all exception, and fince they fave us fo "s much time and labour, we may allow the more for il" luftrating the methods themfelves *."

To his demonftrations of this doctrine he has added many valuable improvements of it, and has happily applied it to fo many curious and ufeful enquiries, that his work may be called a ftorchoufe of mathematical learning, rather than a treatife on one branch of it. The parsiculars we need not cnumerate, efpecially as there is printed in the Philofophical Tranfactions, $\mathrm{N}^{0} .468,469$. a clear and methodical account of them; to which we refer the reader.

Throughout this whole work, though not equally perfect in all its parts, becaufe of the infinite extent of the ficld into which he was led, there appears a very mafterly genius, and an uncommon addrefs.

An ordinary artift follows the firft, not generally the bef, road that prefents itfelf, and arrives perhaps at the folution of his problem ; but it will fcarcely be either elegant or clear; one may fee there is fill fomething want-

[^0]ing, the refult being little more fcientific than that of an arithmetical operation, where the given numbers and their relations have all difappeared. This was not the cafe of Mr. Maclaurin; he had a quick compreheniive view, taking in at once all the means of inveftigation; he could felect the fitteft for his purpofe, and apply them with exquifite art and method. This is a faculty not to be acquired by exercife, only; we ought rather to call it a fpecies of that tafte, the gift of nature, which in mathematics, as in other things, diftinguifhes excellence from mediocrity.

We have in all Mr. Maclaurin's latter works, efpecially in his treatife of fluxions, numberlefs inftances of this addrefs: We need only inftance in his reducing fo many folutions which ufed to be managed by the higher orders of fluxions to thofe of an inferior order, and many of the queftions concerning the maxima and minima, even fome of the moft difficult, to plane geometry.

Thefe are all the writings which our author lived to publifh; fince his deceafe two volumes more have appeared, his treatife of Algebra, and this account of Sir IJaac Newton's philofophy.

His Algebra, tho' it had not the advantage to be finifhed by his own hand and publifhed under his eye, is yet allowed to be excellent in its kind; containing, in no large volume, a complete eiementary treatife of that fcience, as far as it has hitherto been carried ; all the moft ufeful rules, which lie fcattered in fo many authors, being clearly laid down and demonftrated, and in the order which he had found to be the beft in a long courfe of methodical teaching. He is more fparing, it is true, in the practical applications than moft other writers, but this was defignedly; he was of opinion that many of thofe applications deferve to be treated of apart; and to have taken too much of them into his plan, would have been like disfiguring the elements of Euclid, by mixing with them the rules of practical geometry. To this work is fubjoined, as a proper appendix, his Latin tract De Linearum Geometricarum proprictatibus generalibus. It is carefully printed from a

## xx An Account of the Life and Writings

manufcript all written and corrected by the author's own hand; and we need only add, that as it was among the laft, fo it appears to have been, in his own judgment, one of the beft of his performances.

The account of Sir Iface Newton's philofophy lies now before the reader; who, by cafting his eye on the table of contents, may fee the auihor's defign and method; and in perufing the work itfelf will not, we hope, find himfelf difappointed.

One queftion however may be put, which it is proper for us to obviate. Why, in this account, Sir IJaac Newton's grand difcoveries concerning light and colours, are but tranfiently and in general touched upon? To this it is anfwered, that our author's main defign feems to have been to explain only thofe parts of Sir I/aac's philofophy that have been, and are ftill, controverted. But it is known that, ever fince the experiments, on which his doctrine of light and colours is founded, have been repeated with due care, this doctrine has fuffered no conteftation: Whereas his fyftem of the world, his accounting for the celeftial motions, and the other great appearances of nature, from gravity, is mifunderftood and even ridiculed to this day: the weak charge of occult qualities has been frequently repeated; foreign profeflors ftill amufe themfelves with imaginary triumphs; even the polite and ingenious Cardinal de Polignac is feduced to lend them the harmony of his numbers.

It was proper therefore that thefe Gentlemen fhould once more be told (and by Mr. Maclaurin) that their objections are altogether out of feafon; that the fpectres they are daily combating are a creation of their own, no more related to Sir IJaac Newton's doctrines than obfervation and experience are to occult qualities; that the followers of Sir Iface Newton will for cver affert their right to ftop where they find they can get no farther upon fure ground; and to make ufe of a principle firmly eftablifhed in experience, adequate to all the purpofes they apply it to, and in every application uniform and confiftent with itfelf;
itfelf*; although they, perhaps, defpair of tracing the ulterior caufe of that principle.

But befides that Sir Ifaac Neweon's treatife of optics wanted no defence, it may be faid likewife, that it farce admits of an explication ; it is fuch an abfolute mafterpiece of philofophical writing, that it can as little be abridged as enlarged; and we had better take all his experiments, illuftrations and proofs in the words in which he has delivered them, than rifque the injuring them by a different drefs. As for the hints which he could not further purfue, and which he propofes as queries; Mr. Maclaurin had too found a judgment, and had too thoroughly imbibed the genius and fpirit of his great Mafter, to run away with them as materials for rearing doubtful theories: He leaves them as he found them, till future difcoveries can give them another name.

Befides his printed and more finifhed works, Mr. Maclaurin had by him a number of manufcript papers, and imperfect effays on mathematical and other fubjects. Thefe the increafe of his diftemper did not give him time to put in order, or to leave particular directions how they were to be difpofed of: He therefore intrufted them all together to the care of three gentlemen, in whofe hands he knew they would be perfectly fafe: his honoured friend Martin Folkes, Efq; prefident of the royal faciety; Andrew Mitchell, Efq; member of parliament for the fhire of Aberdeen, who, he knew, would fare no pains to do juftice to the memory of a perfon whom he had fo long, and fo entirely, loved; and the reverend Mr. Jobn Hill, chaplain to his grace the archbifhop of Canterbury, with whom he had for fome years cultivated a moft intimate friendhip. In confequence of this truft, thefe Gentlemen immediately fet about publifhing what Mr. Maclaurin had defigned and prepared for the prefs; his algebra, and the account of Sir Ifaac Newton's philofophy: and becaufe

[^1]
## 8xif

they could not take upon themfelves the immediate care of thefe editions, they appointed, for that purpofe, a perfon whofe regard for the author's memory was a fure pledge of his utmoft diligence. They likewife fet on foot and follicited a fubfription for the following work; which the fituation of Mr. Maclaurin's family made neceffary. For not to mention, that the thoughts of a philofopher are not much turned to the faving of money, nor is his curiofity to be gratified but at a confiderable expence, Mr. Maclaurin's liberality was greater than his fortune could well bear : it was not advice and recommendation only that he furnifhed to young men, in whom he could difcover a promifing and virtuous difpofition; he often fupplied them with money till his recommendations could take place. This however will not, we hope, upon the whole, be any lofs to his family; as it has been remembred, and rewarded by the generous manner in which many gentlemen of worth have promoted this fubfrription.

If we now look back upon the numerous writings of our author, and the deep refearches he had been engaged in, his patience and affiduity will be equally aftonifhing with his genius. To endeavour to account for it to a perfon who has not himfelf tafted the pleafures of a contemplative mind, would be a vain attempt. Whoever has devoted himfelf to worldly views, or to the mere joys of fenfe and imagination, muft be a ffranger to the charms of truth, naked, unportioned, and unadorned; fuch as Mr. Maclaurin courted her, through his whole life, with a moft faithful and perfevering paffion. Call his fpeculations but a kind of luxury; it is however a higher and more refined luxury than other purfuits can furnifh : an exercife, in which the human faculties find themfelves the moft rationally employed, and the moft fenfibly frrengthened and improved. At the fame time, it beft diftinguifhes the limits to which they are confined; infpiring that humility which belongs to man, and makes a principal part of true wifdom, the knowledge of one's. fals.

How

How great an example Mr. Maclaurin was of this virtue, thofe who had the happinefs of his acquaintance can teftify, and his writings abundantly fhew. The farther he advanced in the knowledge of geometry and of nature, the greater his averfion grew to perfect fyftems, hypothefes, and dogmatizing; without peevifhly defpifing the attainments we can arrive at, or the ufes to which they ferve, he faw there lay infinitely more beyond our reach; and ufed to call our higheft difcoveries but a dawn of knowledge, fuited to our circumftances and wants in this life; which, however, we ought thankfully to acquiefce in for the prefent, in hopes that it will be improved in a happier and more perfect ftate.

In weak and unexperienced minds, it is erue, the ftudy of mathematics has often wrought quite different effects : fometimes an overweening and moft ridiculous felfconceit, with a contempt of all other ftudies; at other times, a rafh confounding of the different kinds of evidence, and the different fubjects to which they can be applied; fometimes, becaufe demonftrative evidence is the moft perfect, it has been taken for granted there is none other; or moral evidence, to bring it to the fame level, has been difguifed in an awkward and difadvantageous drefs. But to oppofe the fingle example of Mr. Maclaurin to fuch pretenders, will be a fufficient cenfure of their abfurd conduct ; and at the fame time a fufficient anfwer to the unjuft reproaches, which, on occafion of thefe abufes, have been thrown out againft mathematicians.

It was not mental pleafure and improvement only, that Mr. Maclaurin fought in his favourite ftucies; he faw their great importance in all the arts of civil life, in affifing (as my Lord Bacon expreffes it *) the powers of man, and extending bis dominion in nature. Whofoever is the leaft acquainted with the hiftory or the prefent flate of trade and manufactures, is fully apprized that there

[^2]
## zxiv An Account of the Life and Writings

is nothing great or beautiful, nothing convenient or expeditious, nothing univerfally beneficial, but wants their direction: nor are even the hints which accident throws in our way, to be improved to any tolerable purpofe, without the help of Aritbmetic and Geometry.

To this view of general utility, Mr. Maclaurin had accommodated all his ftudies; and we find in many places of his works an application, even of the moft abftrufe theories, to the perfecting of mechanical arts. He had refolved, for the fame purpofe, to compore a courfe of practical mathematics, and to refcue feveral ufeful branches of the fcience, from the bad treatment they often meet with in lefo fkilful hands. But all this his death has deprived us of; unlefs we would reckon as a part of his intended work, the tranflation of Dr. David Gregory's practical geomerry, which he revifed and publifhed, with additions, in the year 1745 .

In his life-time, however, he often had the pleafure to ferve his friends and country by his fuperior fkill. Whatever difficulty occurred concerning the conftruction or perfecting of machunes, the working of mines, the improvement of manufacures, the conveying of water. or the execution of any other public work, Mr. Maclaurin was at hand to refolve it. He was likewife employed to terminate fome difputes of confequence, that had arifen at Glafgow concerning the gauging of veffels; and for that purpofe, prefented to the commiffioners of excife two elaborate memorials, containing rules by which the officers now act, with their demonftrations.

But what muft have given him a higher fatisfaction than any thing elfe of this kind, was the calculations he made, relative to that wife and humane provifion, which is now eftablifhed by law, for the children and widows of the Scotcb clergy, and of the profeffors in the univerfities; entitling them to certain annuities and fums, upon the voluntary annual payment of a certain fum by the incumbent. In contriving and adjufting the fcheme, Mr. Maclaurin had beftowed great labour; and the gentle-
men who were appointed to follicite the affair at Lon. don, own that the authority of his name was of great ufe to them, for removing any doubts that were moved concerning the fufficiency of the propofed fund, or the due proportion of the fums and annuities.

To find himfelf thus eminently ufeful, even to late pofterity, muft have been a delightful enjoyment. But what ftill more endeared his ftudies to him, was the ufe they are of in demonftrating the Being and Attributes of the Almighty Creator, and eftablifhing the principles of natural religion on a folid foundation; equally fecure againft the idle fophiftry of Epicureans, and the dangerous refinements of modern metaphyjicians. He pagreed with the great Mr . Cotes *, in thinking that the knoweledge of nature will ever be the frmeft bulwark againgt Atheifng, and confequently the fureft foundation of true religion. This knowledge does more than excite mere wondering ; it infpires love and adoration of the Creator, our reafonable Service: for it muft be a fuperficial view of nature, indeed, that fuggefts no relation, or duty, to Him in whom we live, move, and bave our being. The argument' from final caufes, from the order and defign that evidently fhews itfelf throughout the univerfe, Mr. Naclaurin held to be the fhorteft and fimpleft of all others ; and confequently of moft general ufe, and the beft adapted to the human faculties: whereas metaphyfical deductions are to be apprehended but by the few, and are ever liable to be perverted. So that altho' he could ufe them with as much fubtlety and force as any man living, he chofe rather, in his converfation as well as his writings, to bring the difpute to a fhort ifiue in his own way.

He was no lefs ftrenuous in the defence of revealed religion; which he would warmly undertake as often as it was attacked, either occafionally in converfation, or in thofe pernicious books which have brought the name of Free-thinker into difgrace, and have fo much contributed to fpoil our tafte as well as our morals: and how firm his

[^3]xxvi An Account of the Life and Writings, E?c.
own perfuafion of it was, appeared from the fupport it afforded him in his laft hours.

Such was the life of this eminent perfon; fpent in a courfe of laborious, yet not painful, fudy; in continually doing good to the utmoft of his power: in improving curious and ufeful arts; and propagating truth, virtue, and religion amongft mankind. He was taken from us at an age when he was capable of doing much more; but has left an example which, we hope, will be long admired and imitated : till the revolution of human affairs puts an end to learning in thefe parts of the world; or the ficklenefs of men, and their fatiety of the beft things, have fubftituted for this philofophy fome empty form of falfe fcience; and, by the one or the other means, we are brought back to our original ftate of barbarifm.

# $$
A \mathrm{~N}
$$ <br> A CCOUNT O E <br> Sir ISAAC NEWTON's 

Philofophical Difcoveries.
$2-2+2+0-10$
$x+2+2+2 x+2$


## $\mathrm{B} \mathrm{O} \mathrm{OK} \mathrm{I}$.

Of the metbod of proceeding in natural philofopby, and the various Jyjems of philofophers.

## CHAX. P.

A general viere of Sir Ifaac Newton's method, and of bis account of the fyltem of the world.

1. 10 defcribe the phenomena of nature, to explain their caufes; to trace the relations and dependencies of thofe caufes, and to enquire into the whole contitution of the univerfe, is the bufinefs of natural philofophy. A ftrong curiofity has prompted men in all times to ftudy nature; every ufeful art has fome connexion with this fcience; and the unexhaufted beauty and variety of things makes it ever agreeable, new, and furprifing.

But natural philofophy is fubfervient to purpofes of a higher kind, and is chiefly to be valued as it lays a fure foundation for natural religion and moral philofophy ; by leading us, in a fatisfactory manner, to the knowledge of the Author and Governor of the univerfe. To ftudy nature is to fearch into his workmanfhip : every new difcovery opens to us a new part of his fcheme. And while we ftill meet, in our enquiries, with hints of greater things yet undifcovered, the mind is kept in a pleafing expectation of making a further progrefs; acquiring at the fame time higher conceptions of that great Being, whofe works are fo various and hard to be comprehended.

Our views of nature, however imperfét, ferve to reprefent to us, in the moit fenfible manner, that mighty power which prevails throughout, acting with a force and efficacy that appears to fuffer no diminution from the greateft diftances of face or intervals of time; and that wifdom which we fee equally difplayed in the exquifite ftructure and juft motions of the greateft and fubtileft parts. Thefe, with perfect goodnefs, by which they are evidently directed, conftitute the fupreme object of the fpeculations of a philofopher; who, while he contemplates and admires fo excellent a fyftem, cannot but be himfelf excited and arimated to correfpond with the general harmony of nature.

In order to obtain thofe great purpofes, we muft not proceed haftily in our enquiries, bur with the utmoft caution. Falfe fchemes of natural philofophy may lead to atheifm, or fuggeft opinions, concerning the Deity and the univerfe, of moft dangerous confequence to mankind; and have been frequently employed to fupport fuch opinions. We have the more reafon to be on our guard, becaufe philofophers have, on many occafions, fhown an unaccountable difpofition to give into extravagant fictions in their accounts of nature. A confiderable party adopted, of old, that monfrous fyftem, which, excluding the influences of a Deity *, attempted to explain the formation of the univerfe from the accidental play of atoms, and derived the ineffable beauty of things, even life and thought itfelf, from a lucky hit in the blind uproar: An horror at the dire effects of fupertition may have induced them to have recourfe to a doctrine fo oppofite to common fenfe and reafon; bur we have not even this

[^4]Chap. i. Philosophical Discoverizs. excufe to offer in defence of fome modern philofophers of great name, who feem to have copied too much after thofe mafters, in their mechanical accounts of the production of the material fyftem.

While we guard againft atheifm and opinions that approach towards it, we ought likewife to beware of liftening to fupertition ; which difcourages enquiries into nature, left, by having our views enlarged, we fhould efcape from her bonds, and our difcoveries fhould weaken fome darling tenets. If thofe tenets are true, they will rather be confirmed by our enquiries; and if they are falfe, furely it is better they fhould be detected. We may purfue truth fteadily, fecure that it will be always found confiftent with itfelf, and flands in no need of the jealoufies and dark fufpicions of the fupertitious to fupport it ; in whofe hands truth itfelf is apt to fuffer, by the bafe alloy they mix with it, and by the detefted means which they have too often employed to maintain fo incongruous an union. The philofophers who have been devoted to fo mean views, have never failed to expofe themfelves to juft ridicule, without doing fervice to the'caufe which they efpoufed. Cofmas Indopicuftes * of old, mined by an injudicious zeal, compiled a fyftem of nature from fome expreffions in the facred writings; which, againit the conftant and univerfai ufe of language, he would needs underftand in the moft literal and the very ftricteft feníe.

The earth therefore, according to him, was not globular, but an immenfe plane of a greater length than breadth, environed by an unpaffable ocean.

* Fabrit. biblintheca greca, vol. II. p. $609, \varepsilon^{\circ} c$, where an account is given from Pbotius and others of this author, with a figure to illuftrate his fyltem.

He placed a huge mountain towards the north, around which the fun and ftars performed their diurnal revolutions; and from the conical thape which he afcribed to it, with the oblique motion of the fun, he accounted for the inequality of the days and the variation of the feafons. The vault of heaven leaned upon the earth extended beyond the ocean, being likewife fupported by two vaft columns: beneath the arch, angels conducted the ftars in their various motions. Above it were the celeftial waters, and above all he placed the fupreme heavens. However abfurd the conceits of this author, who wrote in darker times, may appear, we have a more inexcufable inftance, in the laft century, of the fame kind, in what Kircher calls his Ecftatic Voyage to the Planets; who, after many great difcoveries had been made concerning the celeftial bodies, produced nothing worthy * of fo noble a fubject, or of his own extenfive learning and invention, having determined to make a facrifice of both to certain decrees of the church of Rome: he defcends even fo low as to adopt the folly or rather impiety, of aftrologers, in deriving the good or evil that happens to man from the propitious or malignant influences of planets. True religion requires no fuch facrifices; nor are its interefts advanced by feigning philofophical fyytems purpofely to favour it: for when we afterwards find there to be ill-grounded, we may be in danger of falling into fcepticifm.

An entire liberty muft be allowed in our enquiries, that natural philofophy may become fubfervient

[^5]vient to the moft valuable purpofes, and acquire all the certainty and perfection of which it is capable: but we ought not to abufe this liberty by fuppofing inftead of enquiring, and by imagining fyltems, inftead of learning from obfervation and experience the true conftitution of things. Speculative men, by the force of genius, may invent fyttems that will perhaps be greatly admired for a time; thefe, however, are phantoms which the force of truth will fooner or later difpell : and while we are pleafed with the deceit, true philofophy, with all the arts and improvements that depend upon it, fuffers. The real ftate of things efcapes our obfervation: or, if it prefents itfelf to us, we are apt either to reject it wholly as fiction, or, by new efforts of a vain ingenuity, to interweave it with our own conceits, and labour to make it tally with our favourite fchemes. Thus, by blending together parts fo ill fuited, the whole comes forth an abfurd compofition of truth and error.

Of the many difficulties that have ftood in the way of philofophy, this vanity perhaps has had the wort effects. The love of the marvellous, and the prefudices of fenfe, obftructed the progrefs of natural knowledge; but experience and refiection foon taught men to examine and endeavour to correct thefe. Tho' philofophers met with great difcouragements in the dark and fuperftitious ages, learning flourifhed, with liberty, in better times. The difputes amongft the fects, more fond of victory than of truch, produced a talkative fort of philofophy, and a vain oftentation of learning, that prevailed for a long time ; but men could not be always diverted from purfuing after more real knowledge. Thefe have not done near fo much harm, as that pride and neath them, to offer any thing lefs to the world than a complete and finifhed fyftem of nature; and, in order to obtain this at once, to take the liberty of inventing certain principles and hypothefes, from which they pretend to explain all her mylteries.
2. Sir Ifaac Neroton faw how extravagant fuch attempts were, and therefore did not fet out with any favourite principle or fuppofition, never propofing to himfelf the invention of a fyftem. He faw that it was neceflary to confult nature herfelf, to attend carefully to her manifeft operations, and to extort her fecrets from her by well chofen and repeated experiments He would admit no objections againft plain experience from metaphyiical confiderations, which, he faw, had often milled philofophers, and had feldom been of real ufe in their enquiries. He avoided prefumption, he had the neceffary patience as well as genius; and having kept fteadily to the right path, he therefore fucceeded.

Experiments and obfervations, 'tis true, could not alone have carried him far in tracing the caufes from their effects, and explainitg the effects from their caufes : a fublime geometry was his guide in this nice and difficult enquiry. This is the inftrument, by which alone the machinery of a work made with fo much art, could be unfolded ; and therefore he fought to carry it to the geateft height. Nor is it eafy to difcern, whether he has fhewed greater fkiil, and been more fucceisful, in improving and perfecting the inftrument, or in applying it to ufe. He ufed to call his philofophy experimental philofophy, intimating, by the name, the effential difference there is betwixt it and thofe fyltems that are the product of genius and invention only. Thefe could not

Chap. I. Philosoriticai. Discoveries. long fubfiit ; but his philofophy, being founded on experiment and demonftration, cannot fail till reafon or the nature of things are changed.

In order to proceed with perfect fecurity, and to put an end for ever to difputes, he propofed that, in our enquiries into nature, the methods of analyis and Jyntbefis fhould be both employed in a proper order ; that we fhould begin with the phænomena, or effects, and from them inveftigate the powers or caufes that operate in nature ; that, from particular caufes, we fhould proceed to the more general ones, till the argument end in the moft general : this is the method of analy/s. Being once poffeft of there caufes, we fhould then defcend in a contrary order ; and from them, as eftablifhed principles, explain all the phænomena that are their confequences, and prove our explications: and this is the fynthe /fs. It is evident that, as in mathematics, fo in natural philofophy, the invertigation of difficult things by the method of analyfis ought ever to precede the method of compofition, or the fyintbefis. For in any other way, we can never be fure that we affume the principles which really obtain in nature; and that our fyftem, after we have compofed it with great labour, is not mere dream and illufion.

By proceeding according to this method, he demonftrated from obfervations, analytically, that gravity is a general principle; from which he afterwards explained the fyftem of the world. By analyis he difcovered new and wonderful properties of light, and, from thefe, accounted for many curious phænomena in a fyutbetic way. But while he was thus demonftrating a great number of truths, he could not but meet with hints of many other things, that his fagacity and diligent obfervation fuggefted to him, which
which he was not able to eftablifh with equal certainty : and as thefe were not to be neglected, but to be feparated with care from the others, he therefore collected them together, and propofed them under the modeft title of queries.

By diftinguifhing thefe fo carefully from each other, he has done the greateft fervice to this part of learning, and has fecured his philofophy againft any hazard of being difproved or weakened by future difcoveries. He has taken care to give nothing for demonitration but what muft ever be found fuch; and having feparated from this what he owns is not fo certain, he has opened matter for the enquiries of future ages, which may confirm and enlarge his doctrines, but can never refute them. He knew where to ftop when experiments were wanting, and when the fubtilty of nature carried things out of his reach : nor would he abufe the great authority and reputation he had acquired, by delivering his opinion concerning thefe, otherwife than as matter of queftion. It was long before he could be prevailed on to propofe his opinion or conjectures concerning the caufe of gravity; and what he has faid of it, and of the other powers that act on the minute particles of matter, is delivered with a modefty and diffidence feldom to be met with amongft philofophers of a lefs name. Nor do they act in a conformity with the pirit of this philofophy who fpeak dogmatically on thefe fubjects, till a clearer light from new obfervations and experiments brings them from the clafs of queries, and places them on the level of demonfration.
3. Such was the method of our incomparable philofopher, whofe caution and modefty will ever do him the greatelt honour in the opinion of the unprejudiced.

Chap. i. Philosophical Discoveries.
prejudiced. But this ftrict method of proceeding was not relifhed by thofe who had been accuftomed to treat philofophy in a very different way, and who faw that, by following it, they muft give up their favourite fyftems. His obfervations and reafonings were unexceptionable; fo, finding nothing to object to thefe, they endeavoured to leffen the character of his philofophy by general indirect infinuations, and, fometimes, by unjuft calumnies. They pretended to find a refemblance between his doetrines and the exploded tenets of the fcholaftic philofophy. They triumphed mightily in treating gravity as an occult quality, becaufe he did not pretend to deciuce this principle fully from its caufe. His extending over all the fyftem a power which is fo well known to us on the earth, and explaining by it the motions and infiuences of the celeftial bodies, in the moft fatisfactory manner; and his determining the meafures of the various motions that are confequences of this power, by fo fkilful an application of geometry to nature; all thefe had no merit with fuch philofophers, becaufe he did not affign the mechanical caufe of gravity. I know not that ever it was made an objection to the circulation of the blood that there is no fmall difficulty in accounting for it mechanically; for they who firft extended gravity to air, vapour, and to all bodies round the earth, had their praife, though the caufe of gravity was as obfcure as before; or rather appeared more myfterious, after they had fhewn that there was no body found near the earth, exempt from gravity, that might be fuppofed to be its caufe. Why then were his admirable difcoveries, by which this principle was extended over the univerfe, fo ill relifhed by fome philofophers? The truth is, he had, with great evidence, overthrown the boafted fchemes by which they pretended to unravel all the mylteries of nature ; and
the philofophy he introduced, in place of them, carrying with it a fincere confeffion of our being far from a complete and perfect knowledge of it, could not pleafe thofe who had been accuftomed to imagine themfelves poffers'd of the eternal reafons and primary caufes of all things.

But to all fuch as have juft notions of the great author of the univerfe, and of his admirable workmanfhip, Sir IJaac Nervton's caution and modefty will recommend his philofophy; and even the avowed imperfection of fome parts of it will, to them, rather appear a confequence of its conformity with nature. To fuch, all complete and finifhed fyitems muft appear very fufpicious: they will not be furprized that refined fpeculations, or even the labours of a few ages, are not fufficient to unfold the whole conititution of things, and trace every phænomenon through all the chain of caufes to the firft caufe. Is the admirable progrefs which has been made in this arduous purfuit to be defpifed or neglected, becaufe more remains behind undifcovered? Surely we ought rather to rejoice that fo much is opened to us of the confummate art by which all things were made, and ought to be afraid to intermix with it our own extravagant conceits.

The proceffes of nature lie fo deep, that, after all the pains we can take, much, perhaps, will remain undifcovered beyond the reach of human art or fkill. But this is no reafon why we hould give ourfelves up to the belief of fictions, be they ever fo ingenous, inftead of hearkening to the unerring voice of nature; for fhe alone can guide us in her own labyrinths; and it is a confequence of her real beauty, that the leaft part of true philofophy is incomparably more beautiful than the moft complete fyftems which

Chap. f. Philosophical Discoveries. have been the product of invention. This is parricularly true of Sir IJac Neroton's philolophy; and we may compare it in chis relpect withthofe celebrated pieces of Apelles, which, though they never received his laft hand, were in greater admiration amongft the ancients, than the moft finihhed pieces of other artifts: and we wih pofterity may not find caufe to fay of this philofophy what the ancients faid of thofe pieces, -If Sum defectum ceffefe in glorian artificis, nec qui fuccederet opers ad prafcripta lineamenta inventum juife. Plin.
4. It was, however, no new thing that this philofophy fhould meet with oppofition. All the ufeful difcoveries that were made in former times, and particularly in the laft century, had to ftruggle with the prejudices of thofe who had accuftomed themfelves not fo much as to think but in a certain fyftematic way ; who could not be prevailed on to abandon their favourite fchemes, while they were able to imagine the lealt pretext for continuing the difpute: every art and talent was difplayed to fupport their falling caufe; no aid feemed foreign to them that could in any manner annoy their adverfary; and fuch often was their obftinacy, that truth was able to make little progrefs, till they were fucceeded by young perfons who had not fo ftrongly imbibed their prejudices.

Sir Iface Neroton had very carly experience of this temp $r$ of philofophers, and appears to have been difcouraged by it. He had a particular averfion to difpute,, and was with difficulty induced to enter into any concroverly. The warm oppofition his admirable difcoveries in optics met.with, in his youth, deprived the world of a full account of them for many years, till there appeared a greater difpofition
among the learned to receive them ; and induced him to retain other important inventions by him, from an apprehenfion of the difputes in which a publication might involve him. He thus weighed the reafons of things impartially and coolly, before a publication of them can be fufpected to have engaged him in their defence. It is well known how now he was in publiming : and we cannot but obferve that the temper and difpofition of mind, as well as the abilities of this great man, fitted him in a particular manner for penetrating far into nature and unfolding her harmony.

Nor did his averfion to difputes proceed from the love of quiet only. Philofophy had been in high efteem of old, but had loft its antient luftre from the endlefs idle janglings that had arifen amongtt the fects; and could never recover it while a faculty of inventing a fyftem readily, and defending it obftinately, were the admired talents of a philofopher. While one age or fect overturned for the moft part the laborious productions of another, many of the wifer fort defpaired of acquiring certainty in natural knowledge, and chofe rather to content themfelves with the general view of things, open to all men, than attach themfelves to fchemes which produced no real fruit, and really led them farther from the truth. Our author therefore propofed that all prejudices fhould be laid afide, and the genuine method of treating natural philofophy, which we have defcribed from him, fhould be clofely followed. By his adhering to it himfelf, we are fecure that truth and nature are on his fide; and by following the excellent models which he has given us, we may be able to make farther advances.

Others have pretended to explain the whole conftitution of things by what they call clear ideas, and

## Chap. i. Philosophical Discoveries.

by mere abftracted fpeculations. They exprefs a contempt * for that knowledge of caufes which is derived from the contemplation of their effects, and are unwilling to condefcend to any other fcience than that of effects from their caufes. Therefore they fet out from the firft caufe; and from their ideas of him pretend to unfold the whole chain, and to trace a complete fcheme of his works. This is the philofophy that ftands in oppofition to our author's to this day. It flatters human vanity fo much, and fets out in fo pompous a manner, that they who attend not to the unexhauftible variety of nature, and confider not how unequal the human powers are to fo arduous an undertaking, are deluded by its promifes. It may be doubted if fuch a philofophy lies within the reach of any created being; and it feems to be very plain that it far furpaffes the reach of men. But fince many are devoted to this phantom, and ufe all their art to adorn, and recommend it to more admirers, it will be neceffary for the fervice of truth, that, while we proceed, we have in view likewife the detection of this impofture.
5. The view of nature which is the immediate object of fenfe is very imperfect, and of a fmall extent; but by the affiftance of art, and the help of our reafon, is enlarged till it lofes itfelf in an infinity on either hand. The immenfity of things on

* Perfpicuum eft optimam philofophandi viam nos fequuturos, fi, ex ipfius Dei cognitione, rerum ab eo creatarum explicationem deducere conemur, ut ita fcientiam perfectiffimam, quæ eft effectuum per caufas, acquiramus. Cartes Princip. part. II. \$22. Afterwards, having occafion to fpeak of the phænomena, he takes care to tell us, that he would not make ufe of them to prove any thing from them, becaufe he wanted to derive the knowledge of effects from their caufes, and not reciprocally that of the caufes from their effects. Princip. part III. § $4, \& \mathrm{c}$.
the one fide, and their minuteness on the other, carry them equally out of our reach, and conceal from us the far greater and more noble part of phyfical operations. As magnitude of every fort, abftractly confidered, is capable of being increafed to infinity, and is alfo divifible without end; fo we find that, in nature, the limits of the greatelt and leaft dimenfions of things are actually placed at an immente diftance from each orlier. We can perceive no bounds of the vaft expanfe in which natural caufes operate, and can fix no border or termination of the univerfe; and we are equally at a lofs when we endeavour to trace things to their elements, and to difcover the limits which conclude the fubdivifions of matter. The objects which we commonly call great vanifh when we contemplate the valt body of the earth ; the terraqueous globe iffelf is foon loft in the folar fyftem : in fome parts it is feen as a diftant Star. In great part it is unknown, or vifible only at rare times to vigilant obfervers, afifted, perhaps, with an art like to that by which Galileo was enabled to difcover fo many new parts of the fyitem. The fun itfelf dwindles into a ftar; $S a-$ turn's vait orbit, and the orbits of all the comets, croud into a point, when viewed from numberlefs places between the earth and the neareft fix'd flars. Other funs kindle light to illuminate other fyftems where our fun's rays are unperceived; but they alfo are fwallowed up in the vaft expanfe. Even all the fyftems of the ftars that fparkle in the cleareft fky muft poffefs a fmall corner only of that face over which fuch fyitems are difperfed, fince more ftars are difcovered in one conftellation, by the telefcope, than the naked eye perceives in the whole heavens*.

[^6]Chap. I. Philosophical Discoverits.
After we have rifen fo high, and left all definite meafures fo far behind us, we find ourlelves no nearer to a term or limit; for all this is nothing to what may be diplayed in the infinite cxpanfe, beyond the remoteft flars that ever have been difcovered.

If we defcend in the fcale of nature, towards the other limit, we find a like gradation from minute objects to others incomparably more fubtile, and are led as far below fenfible meafures as we were before carried above them, by fimilar fteps that foon become hid to us in equal obfcurity. We have ground to believe that thefe fubdivifions of matter have a termination, and that the elementary particles of bodies are folid and uncompounded, fo as to undergo no alteration in the various operations of nature or of art. But from microfcopical obfervations that difcover animals, thoufands of which could fcarce form a particle perceptible to the unaffifed fenfe, each of which have their proper veffels, and fuids circulating in thofe veffels; from the propagation, nourifhment and growth of thofe animals; from the fubtiley of the cfluvia of bodies retaining their particu'ar properties after fo pr digious a rarefaction; from many aftonifhing experiments of chymifts; and efpecially from the inconceivable minutenefs of the particles of light, that find a paffage equally in all directions through the pores of tranfparent bodies, and from the contrary properties of the differnt fides of the fame ray. $t$; it appears, that the fubdivifions of the particles of bodies defcend by a number of feps or degrees that furpaffes all imagination, and that nature is unexhauftible by us on every fide. Nor is it in the magnitude of bodies only that this endless gradation is to be obferved. Of motions, fome are

+ Nevu:on's optics. Query 25. too fwift, to be perceptible by us. The tracing the chain of caufes is the moft nobe purfuit of philofophy; but we meet with no caufe but what is, itelf, to be confidered as an effect, and are able to number but few links of the chain. In every kind of magnitude, there is a degree or fort to which our fenfe is proportion'd, the preception and knowledge of which is of greateft ufe to mankind. The fame is the ground work of philofuphy *; for tho' all forts and degrees are equally the object of philofophical fpeculation; yet it is from thofe which are proportioned to fenfe that a philofopher muft fet out in his enquiries, afcending or defcending afterwards as his purfuits may require. He does well indeed to take
* If we were to examine more particularly the fituation of man in nature, we hould find reafon to conclude, perhaps, that it is well adapted to one of his faculties and inclinations. for extending his knowledge, in fuch a manner as might be confiftent with other duties incumbent upon him; and that they have not judged rightly who have compared him in thi refpect (Spinoz. Epift. 15.) with the animalcules in the blood difcovered by microfcopes. He mult be allowed to be the firtt being that pertains to this globe, which, for any thing we know, may be as confiderable (not in magnitude, but in more valuable refpects) as any in the folar fyftem, which is itfelf, perhaps, not inferior to any other fyltem in thefe parts of the vaft expanfe. By occupying a lower place in nature, man might have more eafily feen what paffes amongit the minute particles of matter, but he would have loit more than he could have gained by this advantage. He would have been in no condition to inftitute an analyfis of nature, in that cafe. On the other hand, we doubt not but there are excellent reafons, why he fhould not have accefs to the diftant parts of the fyftem, and mult be contented at prefent with a very imperfect knowledge of them. The duties incumbent upon him, as a member of fociety, might have fuffered by too great an attention to them, or communication with them. Had he been indulged in a correfpondence with the planets, he next would have defired to pry into the ftate of the fixed flars, and at length to comprehend infinite fpace. his views from many points of fight; and fupply the defects of fenfe by a well regulated imagination ; nor is he to be confined by any limit in fpace or time: but as his knowledge of nature is founded on the obfervation of fenfible things, he muft begin with thefe, and muft often return to them, to examine his progrefs by them. Here is his fecure hold ; and as he fets out from thence, fo if he likewife trace not often his fteps backwards with caution, he will be in hazard of lofing his way in the labyrinths of nature.

6. From this fhort view of nature, and of the fituation of man, confidered as a fpectator of its phænomena and as an enquirer into its conflitution, we may form fome judgment of the project of thofe, who, in compofing their fy ftems, begin at the fummit of the fcale, and then, by clear ideas, pretend to defcend through all its fteps with great pomp and facility, fo as in one view to explain all things. The proceffes in experimental philofophy are carried on in a different manner: the beginnings are lefs lofty, but the fcheme improves as we arife from particular obfervations, to more general and more juft views. It muft be owned, indeed, that philofophy would be perfect, if our view of nature, from the common objects of fenfe, to the limits of the univerfe upwards, and to the elements of things downwards, was complete ; and the powers or caufes that operate in the whole were known. But if we compare the extent of this fcheme with the powers of mankind, we fhall be obliged to allow the neceffity of taking it in parts, and of proceeding with all the caution and care we are capable of, in enquiring into each part. When we perceive fuch wonders, as naturalifts have difcovered, in the minutelt objects, fhall we pretend to defcribe fo C 2
eanly
eafily the productions of infinite power in fpace, that is at the fame time infinitely extended and infinitely divifible? Surely we may rather imagine, that in the whole, there will be matter for the enquiries and perpetual admiration of much more perfect beings.

It is not therefore the bufinefs of philofophy, in our prefent fituation in the univerfe, to attempt to take in at once, in one view, the whole fcheme of nature ; but to extend, with great care and circumfpection, our knowledge, by juft fleps, from fenfible things, as far as our obfervations or reafonings from them will carry us, in our enquiries concerning either the greater motions and operations of nature, or her more fubtile and hidden works. In this way Sir Isaac Newton proceeded, in his difcoveries : he eftablifhed his account of the fyitem of the world upon the beft affronomical obfervations, on the one hand; and performed, himfelf, on the other, with the greatef addrefs, the experiments by which he was enabled to pry into the more fecret operations of nature, amongft the minute particles of matter. On either fide he has extended our views very far, and has left valuable hints and intimations of what yet lies involved in obfeurity.

For thofe purpofes he has given us two incomparable treatifes, the moft perfect in their kind philofophy has to boaft of; his mathematical Principles of Natural Philofophy, and his. Treatife of Optics. In the firit, he defcribes the fyftem of the world, and demonftrates the powers which govern the celeftial motions, and produce their mutual infuences. Thefe are extended from the center of the fun to the utmoft altitude of the higheft comet, and probably to the fartheft limits of the univerfe. Nor

Chap. t. Philosophical Discoveries. 21 are thefe new or abitrufe principles, like to thofe which never had a being but in the imagination of philofophers, but the fame which are moft familiar to mankind, and in common we, farther extended and more accurately defined. In the fecond, he treats of light, which, tho' the moft potent agent in nature, that is fenfible to us, acts only at the leaft diftances. His admirable difcoveries, on this fubject, led him to fearch into the motions that are amongt the minute particles of matter, the moft abitrufe of all natural phænomena.

In the firft, he had the obfervations of aftronomers for many ages to build on, with valuable confequences that had been derived from them, by the laborious calculations of diligent and ingenious men. The conftancy and regularity of the celefial motions had contributed, with the obfervations of fome thoufands of years, to render aftronomy the moft exact part of the hiftory of nature ; the doctrine of comets only excepted. The vaft diftances of the great bodies which compofe the fyfem, from each other, rather favource' a juft analyis of the powers by which they act on one another; fince by the greatnefs of the diftance, thefe muft be reduced to a few fimple principles, and be the more eafily difcovered. In the fecond treatife, he enquires into more hiden parts of nature, and had moft of the phanomena themfelves to trace, as well as their caufes. The fubject is rather more nice and difficult, becaufe of the inconccivable minutenefs of the agents, and the fubcilty and quicknefs of the motions; and the principles combined in producing the phænomena being more various, it could not be expected that they for uld be fo tafily fubjected to an analyjis. Hence it is that what he has delivered in the firft (iho' fill capable of improvement) is more complete
and finifhed in feveral refpects; while his difcoveries of the fecond fort are more aftonifhing.

After having eftablifhed the principle of the univerfal Gravitation of Matter in the firf treatife, when he is not able to demonftrate the caufes of the phænomena defrribed in the fecond more evidently, he endeavours to judge of them, by analogy, from what he had found in the greater motions of the fyftem; a way of reafoning that is agreeable to the harmony of things, and to the old maxim afcribed to Hermes *, and approved by the obfervation and judgment of the beft philofophers, "That what paffes in the heavens above is fimilar and analogous to what paffes on earth below." He had found that all bodies gravitated towards each other, by a power that acts on all their particles equally at equal diftances, and increafes according to a ftated law when the diftance is diminifhed. From a like principle, acting at lefs diftances, with greater vigour, and with more variety, but infenfib'y at larger diftances, he fufpected that the more abftrufe phrenomena of nature proceeded. It was a great matter in philofophy to be fecure of one general principle; and one was fufficient for carrying on the regular motions of the heavenly bodies. A greater variety was neceffary for conducting the different operations of nature in particular parts; and thefe being involved in fome obfcurity, till better light fhould appear, he could find no furer ground on which to found a judgment of them, than that principle he had already fhewn to take place in nature. But be-

[^7]Chap. i. Philosophical Discoveries. caufe we often find that phænomena, which, ar firt fight, appear of a very different fort, flow neverthelefs from the fame caufe, and feveral fuch caules are often refolved, on farther enquiry, into one more general principle; the whole conftitution of nature (notwithitanding the variety of appearances) manifeftly leading to one fupreme caufe; this great philufopher was hence induced, as well as from feveral obfervations he had made, to think that all thefe powers might procced from one general inftrument or agent, as various branches from one great ftem, whofe efficacy might be refoived more immediately into the direction or infuences of the fovereign caufe that rules the univerfe. But he feeaks of this in the manner that became a philof pher who had fo much fudied nature, and knew how obfcure thofe arduous parts of her fcheme muft be to us.
7. As the moft obvious views of the creation fuggeft to all men the perfuafion of the being and government of a Deity; fo every difcovery in natural philofophy enforces it: and with this improvement of his difcoveries, this great man concludes both thofe treatifes. Nor is his philofophy to be thought of little fervice for this purpofe, tho' he has not been able to explain fully the primary caufes themfelves.

The great myfterious Being, who made and governs the whole fyftem, has fet a part of the chain of caufes in our view; but we find that, as he himfelf is too high for our comprehenfion, fo his more immediate inftruments in the univerfe, are alfo involved in an obfcurity that philofophy is not able to diflipate; and thus our veneration for the fupreme author is always increaled, in proportion as we advance in the knowledge of his works. As we arifo
in philofophy towards the firft caufe, we obtain more extenfive views of the conftutution of things, and fee his influences more plainly. We perceive that we are approaching to him, from the fimplicity and generility of the powers or lawe we difcover; from the difficulty we find to account for them mechanically; from the more and more complete beauty and contrivance, that appears to us in the fcheme of his works as we advance; and from the hints we obtain of greater things yet out of our reach : but ftill we find ourfelves at a diftance from Him, the great fource of all motion, power and efficacy; who, after all our enquiries, continues removed from us and veiled in darknefs. He is not the object of fenfe, his nature and effence are unfathomable; the more immediate inftruments of his power and energy arebut obfcurely known to us; the leaft part of nature, when we endeavour to comprehend it, perplexes us; even place and time, of which our ideas feem to be fimple and clear, have enough in them to embarafs thofe who allow nothing to be beyond the reach of their faculties. Thefe things, however, do not hinder but we may learn to form great and juft conceptions of him from his fenfible works, where an art and fill is expreffed that is obvious to the moft fuperficial ipectator, furprizes the moft experienced enquirer, and many times furpaffes the comprehenfion of the profoundeft philofopher. From what we are able to underftand of nature, we may entertain the greater expectations of what will be difcovered to Cis , if ever we flall be allowed to penetrate to the firft caufe himfelf, and fee the whole fcheme of his works as they are really derived from him, when our imperfect philofophy fhall be compleated.

## CHAP. II.

## Of the fystems of the ancient philofopbers.

1. $\$$ Hofe who have not imbibed the prejudices of philofophers, are eafily convinced that natural knowledge is to be founded on experiment and obfervation. But there is a philofophy that intoxicates the mind, while it pretends to elevate and fatisfy it, which teaches to defpife the plain and fober way of truth. And it is no cafy matter to deal with thofe who have loft themfelves in the dark fchemes of an inviolable and univerfal neceffity, or with thofe who are ever dreaming themfelves poffeft of the eternal reaions and primary caufes of thing The leaft fhew of an argument in their own vifronary way takes infinitely more with them, than the cleareft evidence from fact or obfervation; and fo fond they appear of fuch airy fchemes, that they would chufe rather to go on difputing for ever, than condefcend to acquiefce in certainty obtained in a lower way.

To an impartial enquirer, Sir Ifaac Newton's method, defcribed in the laft chapter, approves itfelf; and fome ingenious men have been fenfible of the neceflity of following it, in former times. But the general practice of philofophers has been very different ; and fyftems founded on abftracted fpeculations ftill fo much prevail, that it will be neceffary for our purpofe to hew, by a few obfervations on the hiftory of learning, how vain and fruitlefs fuch attempts have always proved.

Theories of this kind have been invented, and amended again and ágain, with great labour and expence of thought; but fill when they came to compare them with nature, how wide has been the difference ! -ibi omnis effufus labor. If we look back into the ftate of philofophy in the different ages, we fhall learn from the hiftory of every period, that as far as philofophers confulted nature, and proceeded on obfervation, they made fome progrefs in true knowledge ; but as far as they pretended to carry on their fchemes without this, they only multiplied dipputes.

The beginnings of learning, as of other things, are uncertain, and obfcured with fables: we collect, however, from feveral teftimonies, that the oldeft and moft celebrated philofophers of Pbanicia and Greece made a vacuum and atoms, and the gravity of atoms, the firt principles of their philofophy *; whether thefe were fuggefted to them from their early obfervations of nature, before her plain appearances were obfruced by the imaginary fchemes and the difputes of fpeculative men, or were derived from fome other origin. Afterwards various fyftems appeared, but iome traces of thofe antient principles are for a long time to be difcovered amongt the doctrines of fucceeding philofophers, tho' interwoven with their own particular tenets;

[^8]Chap. 2. Philosophical Discoveries.
and what appears to be moft uniform in the variety of their opinions feems to be derived from this fource *. The more ancient atomifts feem to have raught that there were living fubftances alfo, which pre-exifted before the union of the fyftems of thofe elementary corpufcles, and continued to exift after their diffolution. They faw the neceffity of admiting active as well as paffive principles, life as well as mechanifm, throughout the world $\dagger$. But this entire and genuine philofophy was difmembered afterwards, and from an affectation of fimplicity, or for other reafons, one fort of permanent fubftance was thought fufficient. One party retained the pafive and fluggifh matter only, and from the fortuitous concourfe of its corpufcles pretended to explain the formation of the univerfe. Others, more refined, afcribed reality and permanency to active incorporeal fubftances chiefly, or only. And fo fimilar were their divifions and difputes to thofe of our own times, that a third fort feem to have rcjected the reality of both, while they maintained that there was no ftability of effence or knowledge any where to be found; that all being and knowledge was fantaftical and relative only; that man was the meafure of truth to himfelf in all things; and that every opinion or fancy of every one was true $\ddagger$. While one fect thought that nothing was permanent, but that all things were in a continual flux or motion, and

* 'They taught that nothing was made out of nothing, that no fubftance is generated or deftroyed, that colour and tafte are not in the objects, $\sigma \%$. which feem to be the genuine doctrines of this atomical philofophy amongtt the Greeks. See Arifot. de anima, Lib. III. Cap. I. who afcribes fuch opinions to molt of the phyfiologers before his time.
$\dagger$ See Dr. Cudrworth's intellectual fyftem of the univerfe. Book I. Chap. I.
\# This was the doctrine of Protagoras the Abderite. Plat. Thætetus, $\mathcal{E}^{\circ}$. and infinite effence, it is no wonder that their fucceffors own themfelves at a lofs to underftand their meaning |l.-Oppofition to each other feems to have driven them to extremes, and both aimed at too general and extenfive principles.

As to the particular tenets of $T$ bales, and his fucceffors of the Ionic fchool, the fum of what we learn from the imperfect accounts we have of them is, that each overthrew what his predecefor had advanced; and met with the fame treatment himfelf from his fucceffor. One of them is faid to have made water the principle of all things; anether chofe air: a third fire; a fourth preferued earth; and fome rook them all in, and made thefe four the elements or principles of things. So early did the paffion for fyftems begin, and difputes in confequence of fuch precipitancy were unavoidable.
2. In the time of this uncertainty amonget the phyfiologers (for fuch all the more antient philofophers were) Socrates appeared in the world. A fublimity of genius, a fimplicity of manners, a particular talent of inveftigating truth and expofing error, diftinguifhed this great man. In his youth he applied himielf, as his predeceffors had done, to natural knowledge, and endeavoured to reduce it to a method and principles. But after examining their fchemes without receiving any fatisfaction from them, he was too fincere a lover of truth, and too juit to mankind, to attempt to invent one of his own, or to diffemble his ignorance of nature. He faw that inaginary knowledge was the greateft obfruction to true fcience, and made thofe who were puffed up with it very troublefome to the lovers of folid learn-

Chap. 2. Philosophical Discoveries.
ing. He therefore took everý occafion to expofe it, and had a happy talent in ridiculing the vanity of the fophifts of thofe times, who pretended to know all things. The oracle on a certain occafion had declared him the wifet of men; and this preference he explained, with his ufual modefty, to be owing to this only, that while others vainly imagined they knew what they were indeed ignorant of, he knew this one thing more than they, " that he knew nothing."

After many other fruitlefs attempts he had made in his youth * to fee into the caufes of things, happening to hear that Anaxagoras taught that all things were governed by a fupreme mind, and being mightily pleafed with this principle, he had recourfe to his writings; full of expectation to fee the whole fcheme of nature explained from the perfect wifdom of an all-governing mind, and to have all his doubts about the perfection of the univerfe fatisfied. But he was much difappointed, when he found that Anoxagoras made no ufe of this fovereign mind in his explications of nature, and referred nothing to the order and perfection of the univerfe as its reafon; but introduced certain aereal, æthereal and aqueous powers, and fuch incredible principles for the caules of things. Upon the whole, Socrates found that this account of nature was no more fatisfactory, than if one who undertook to account for all the aCtions of Socrates, fhould begin with telling that Socrates was acted by a principle of thought and defign; and pretending to explain how he came to be fitting in prifon at that time, when he was condemned to die by the unjuft and ungrateful Athenians, he fhould acquaint us that the body of Socrates confifted of bones and murcles, that the
bones were folid and had their articulations, while the mufcles were capable of being contracted and extended, by which he was enabled to move his body and put himfelf in a fitting pofture ; and after adding an explication of the nature of found, and of the organs of his voice, he fhould boaft at length that he had thus accounted for Socrotes's fitting and converfing with his friends in prifon; without taking notice of the decree of the Atbenians, and that he himfelf thought it was more juft and becoming to wait patiently for the execution of their fentence, than efcape to Megara or Thebes, there to live in exile. "Tis true, fays he, that without bones and " nerves I fhould not be able to perform any action
" in life, but it would be an unaccountable way of
" fpeaking to affign thofe for the reafons of my ac" tions, while my mind is influenced by the appear"s ance of what is beft."

I have taken notice of this paffage the rather, becaufe it fhews how effential the greateft and beft philofophers have thought the confideration of final caufes to be to true philofophy; without which it wants the greateft beauty, perfection and ufe. It gave a particular pleafure to Sir IJaac Nerwton to fee that his philofophy had contributed to promote an attention to them (as I have heard him obferve) after Des Cartes and others had endeavoured to banifh them. It is furprizing that this author fhould reprefent it as greater prefumption in us * to aim at the

[^9] a complete fyftem of the univerfe from the nature of the Deity, confidered as the fupreme efficient caufe, or, after difcarding mental and final caufality, to refolve all into mechanifm and metaphyfical or material neceffity. Surely this is the fort of caufes that is moft clearly placed in our view ; and we cannot comprehend why it fhould be thought arrogant in us, to attend to the defign and contrivance that is fo evidently difplayed in nature, and obvious to all men; to maintain, for inftance, that the eye was made for feeing, tho' we may not be able either to account mechanically for the refraction of light in the coats of the eye, or to explain how the image is propagated from the retina to the mind.

Socrates, finding all dark and uncertain in the various fyltems of his predeceffors, was fatisfied that it was better to reft contented with the general view of nature open to all, than adopt any one of them; and having applied himfelf to promote the practice as well as the theory of moral philofophy among ft his fellow citizens, by his example and precepts, he merited the higheft efteem and admiration of mankind *. Plato, however, and his followers, being fenfible of the influence which natural knowledge

[^10]mult have on the moft important truths, returned to it. The beauty of the univerfe was the favourite fubject of the Platonifts ; and they ufed to recommend the contemplation and imitation of its regular and conftant motions, by the practice of virtue, as the beft means to recover their antient conformity with it in a prior ftate, and to become worthy of returning to the fame ftate again. While a fect of the Atomifts refolved all things into the motions and modifications of matter, Plato ftrove to raife the thoughts of men above the objects of fenfe, and zealoufly maintained the pre-eminence of active, incorporeal and intellectual beings. Thefe, according to him, are the true fubitances, the other the fhadows; which laft only, thofe grofs philofophers could perceive; as he who has his back towards the light fees it not, or the bodies placed betwixt him and it, but the images projected from them only *. He fpeaks, however, fometimes of the infenfible particles of bodies, which can only be perceived by the mind and underftanding, afcribing different figures to them in the ftyle of the atomical philofophy $\dagger$. If he carried his fondnefs for his ideas too far, we muft own, at leaft, that he erred on the moft innocent fide of the queftion, in oppofition to the dangerous doctrines of Democritus and others. But however laudable the views of this amiable philofopher may have been, furely the unintelligible myftical doctrines of fome of his followers $\ddagger$ ought to admonifh us to be on our guard againft exceffes, even in a good caufe.

[^11]3. In the mean time the followers of Pythagorias flourifhed in Italy, and taught a philofophy that does not appear to have been fo much the refult of their own obfervations, as to have been tranfplanted from the eaft by their great mafter ; who ipent two and twenty years in thofe parts, and fcrupled not to comply with the cuftoms * molt peculiar to the eattern nations, in order to obrain the freer accefs to their learned men. And as he was a man of extraordinary qualities and at the moft pains, fo he feems to have been the moft fuccefstul of the ancients in getting acquainted with their philofophy. We find that his followers taught the true account of the planetary motions, particularly that the earth moved daily on its own axis, and revolved annually round the fun; and gave the fame account of the comes which is agreeable to modern difcoveries $\dagger$. They alfo taught that every ftar was a world $\ddagger$, and that each of them had fomething correfponding to our earth, air, and water, in the vaft expanfe. The moon particularly, according to them, was inhabited by larger and more beautiful animals than this globe. We find fome hints concerning the gravitation of celeftial bodies, in what is related of the doctrines of Tbales and his fucceffors: but Pytbagoras feems to have been better acquainted with it, and is fuppofed to have had a view to it, in what he taught concerning the harmony of the fuheres \$.

[^12]A mufical chord gives the fame notes as one double in length, when the tenfion or force with whick the latter is ftrctched is quadruple : and the gravity of a planet is quadruple of the gravity of a planet ar a double diftance. In general, that any mufical chord may become unifon to a leffer chord of the fame kind, its tenfion muft be increafed in the fame proportion as the fquare of its length is greater; and that the gravity of a planet may become equal to the gravity of another planet nearer to the fun, it muft be increafed in proportion as the fquare of its diftance from the fun is greater. If therefore we fhould fuppofe mufical chords extended from the fun to each planet, that all thefe chords might become unifon, it would be requifite to increafe or diminifh their tenfions in the fame proportions as would be fufficient to render the gravities of the planets equal. And from the fimilitude of thofe proportions, the celebrated doctrine of the harmony of the fpheres is fuppofed to have been derived.

As thefe doctrines of the Pytbagoreans, concerning the diurnal and annual motions of the earth, the revolutions of the comers, the inhabitants of the moon and ftars, and the harmony of the fpheres, are very remote from the fuggeflions of fenfe, and oppofite to vulgar prejudices; fo we cannot but fup. pofe that they who firf difcovered them muft have made a very confiderable progrefs in aftronomy and natural philofophy. It is no eafy matter to perfuade a perfon unacquainted with the true theory of motion, that the earth, which of all things in nature appears to be moft fixed and flable, is carried on in fuch a manner, and with fo much rapidity, in the expanfe. To be fatisfied of thefe doctrines, fo as to reckon the earth amongft the ftars, and confider the ftars as fo many worlds, one muft have got over many difficulties from fenfe as well as from the religious prejudices that prevailed in thofe days When therefore we find the accounts of them given by the Greeks to be very imperfect, mixed with errors and mifreprefentations, it feems reafonable to luppofe that they had fome hints of them only from fome more knowing nations who had made greater advan ces in philofophy; and that they were able to defrribe them perhaps not much better than we may imagine an ingenious Indian, after paffing fome years in Europe, and having had tome accefs to learned men, would reprefent our fyitems to his countrymen after his return. Hence it was that the Pytbagoreans do not feem to have been in a condition to defend their doctrines, tho' true; and Arifotle refutes them with the appearance of reafon on his fide. What he fays of their fyftem fhews that either it was not defcribed rightly by them, or that he mifunderitood them. We are told that they taught that there was an earth oppofite to our earth, and feveral other bodies revolving about the fun which were concealed from us by the earth, and that from this they ex. plained why there were more eclipfes of the moon than of the fun*. On this occafion he urges againt them a complaint, for which philofophers have too often given ground, "That inftead of fuiting their " philofophy to nature, they had mifreprefented the " phrnomena, that they might appear conformable "to their own fuppofitions." But had he been

* De colo, lib. II. cap. 15. We may be the lefs furprized that the Greeks had fo imperfect accounts of the eaftern learning, if it be true that fome of the mof noted amongt their philorom phers, travelled into Egypt from a very different view than acquiring their philofophy. Plaso's chief view is faid to have been to fell his oyl. better acquainted with the phænomena and this fyftem, he had formed a better judgment of it.

At this time geometry was in high efteem. We have reafon to think that the fondnefs of the Pytbagoreans and Platonifts for it fometimes mifled them, by inducing them to derive the mylteries of nature from fuch analogies of figures and numbers as are not only unintelligible to us, but in fome cafes feem not capable of any juft explication. The ufe they made of the five regular folids in philofophy is a remarkable inftance of this, and muif have been a very important part of their fcheme, if we may depend upon the antient commentators on Euclid; who tell us that he was a platonic philofopher, and compofed his excellent elements for the fake of this doctrine. But as it is a matter of pure fpeculation, we cannot conceive that there can be any analogy between it and the conftitution of nature ; and they have not been fucceisful who have of late endeavoured to explain this analogy; as we fhall have occafion to fhew afterwards, when we come to give fome account of Kepler's difcoveries. Nor is this the only inftance, where a purfuit of analogies and harmonies has led us into error, in philofophy. Geomerry can be of little ufe in it till data are collected to build on, and Lord Verulam has juftly obferved, Mathefin pbilojophiam naturalem terminare debere, non generare aut procreare.
4. From Arifotle's philofophy we may learn, that the greateft penetration, without other helps, will ever be of lefs fervice in enquiries into nature, than in metaphyfics and dialectics; where the force of genius may indeed atchieve wonders. Inftead of the more antient fyftems, he introduced matter, form, and privation as the principles of all things : but it does does not appear that this doctrine was of great ufe to him in natural philofophy. He furpaffed all the other philofophers, in ftating the divifions and definitions relating to his fubjects, with peculiar accuracy; yet fome of his doctrines are fo obfcurely expreffed, according to the confeffion of his moft devoted difciples, that tho' they took the utmoft pains to difcover his meaning (and fome of them, as is reported, in a very extraordinary manner) they. were not able to penetrate into it ; and it is difputed to this day what were his fentiments on fome of the moft important fubjects.

He was enabled by the liberality of his pupil Alexander to make vaft collections relating to the hiftory of nature, at an immenfe expence, which have been often copied by natural hiftorians fince *. But in his general and theoretical writings concerning nature, tho' his reafonings may appear acute and fubtle, the conclufions are commonly fuch as are overthrown by later difcoveries. How he defcribed the Pytbagorean doctrine concerning the two-fold motion of the earth, and endeavoured to refute it, we obferved above: in one of the treatifes that are afcribed to him $t$, the author pretends to demonItrate that the matter of the heavens is ungenerated, incorruptible, and fubject to no alteration; and fuppofes the ftars to be carried round the earth in folid orbs. In thefe doctrines he was generally followed, till Tycho by his obfervations, and Galileo by his arguments, expofed their fallacy. Some have complained that there is lefs mention of a Deity, in his

[^13]extenfive and various works, than in moft of the antient philofophers; that HEPI KOEMOr, or, as fome fay it ought to be entitled, HEPI IIANTOE) excepted; which for this reafon has been afcribed to another author. But there are many who judge this admirable piece to be Arifotle's; and Gaffendus is of opinion that he compofed it towards the end of his life, as the refult of his moft ferious thoughts *.

It may be obferved in favour of this great philofopher, that perhaps he did not intend his difcoveries fhould be well underftood from his public writings ; for we are told that when his pupil * complained of his publiming fome of his treatifes, he infinuated, by his anfwer, that they would be underftood by philofophers only. Had we a more perfect account of his doctrines concerning forms and qualities, poffibly they might appear in a better light: perhaps he meant only to affert, in oprofition to that branch of the atomitts who followed Democritus, that the phænomena of nature could not be accounted for from matter and motion only; but that the qualities of bodies arife from hidden powers acting varioufly on different combinations of the particles of matter, according to the laws eftablifhed. The conduct of Callifthenes, whom he recommended to Alexander to accompany him in his Aflatic conquefts, does great honour to Arifotie: A profecution however, carried on by the Atbenian priefts, obliged him to abandon their city, to avoid the fate of Socrates.

Arifotle was for a long time called the prince of philofophers; and poffeffed the moft abfolute authority in the fchools, not in Europe only, but even in

[^14] They had tranlations of his works in Perfio and at Samarcand ; and no philofopher ever acquired fo univerfal or fo high an efteem. His opinion was allowed to ftand on a level with reafon itfelf; nor was there any appeal from it adritted, the parties, in every difpute, being obliged to fhew that their conclufions were no lefs conformable to Arifotle's doctrine than to truth. This, however, did not put an end to difputes, but rather ferved to multiply them; for neither was it eafier to afcertain his meaning than to come at the truth, nor was his doctrine confiftent with itfelf. It is not improper to have this חlavifh fubjection of philofophers in remembrance; becaufe an high efteem for great men is apt to make us devoted to their opinions even in doubtful matters, and fometimes in fuch as are foreign to philofophy.
5. We have already mentioned the Epicurean fyfo tem, and fhall have occafion frequently to make remarks upon it afterwards. Whoever confiders the extravagant doctrines of this fect, and of the other Dogmatifts, of whatever denomifation, Peripatetics or Stoics, may admire fome of them for their morality, and more for their eloquence, it having been their chief bufinefs to difpute for their fchemes and declaim upon them ; but cannot be greatly furprized that, as to what relates to natural knowledge, fo many joined the feeptics; and either maintained that it was impofible to difcover truth, with fome of them ; or with others, that men were only in purfuit, not in poffefion of it. The fect, and fubdivifions of fects, at length became fo numerous, and their fyytems fo various, that almolt every perfon of any note addicted himfelf in fome degree to philofophy: for none could be at a lofs to find a fect and doctrine fuited to his tafte and inclination. But it does not
appear that this great increafe of philofophers contributed much to the advancement of the fcience, or did iervice to truth: fuch was their licentioufnefs, and fo great the variety of their opinions, that there has hardly appeared any doctrine, in later times, but may be fupported by the authority of one or other of them. It has been juitly obferved that we may learn fomething from the faults and miftakes of others, in every art; but we do not find that the errors of one fect in philofophy ferved to put others on their guard. The great mafters we have mentioned had given an unhappy example; and their fucceffors exceeded them in grafting one fiction upon another, to ferve their purpofes. Thus the Platonifts became unintelligible myftics, and the Peripatetics unwearied dilputants; while every fect had its tale or fcheme, magniffied by the party, but condemned by all the reft.

When the antients, however, applied themfelves to confider the heavens, or to collect the hiftory of nature, they did not lofe their labour ; their obfervations, fometimes, uggefted to them imperfect views of the true caufes which obtain in the uniwerfe: and we have reafon to admire fome hints of this kind that appear in feveral paffages of their writings, and feem to be anticipations of fome of the moft valuable modern difcoveries. But, generally speaking, they indulged themelves too much in abftrufe fruiticfs difquifitions concerning the hidden effences of things, and fought after a knowledge that was not fuited to the grounds they had to build on. As to their accounts of the fyntem of the world, the Pytbagorean doctrines were quite forgot, and the opinions of Arifotle and Eudoxus univerfally prevailed. In procefs of time great liberties were faken with nature, folid orbs and epicycles were multiplied,

Chap. 2. Philosaphical Discoveries. multiplied, 10 anfwer every appearance, till the univerfe in their defcriptions loft its native beauty, and feemed reduced to a chaos again by their unhappy labours,

It is not worth while, nor of ufe for our purpofe, to trace the hiftory of learning thro' its various revolutions in the later ages, when philofophy and philofophers fell into contempt; when they became more diftnguifhed by their extravagant opinions, manners and temper *, than by any real knowledge and ment. How defferent they were, fo early as in the times of the Cafars, from the famous Pyibayorean lawgivers, the incomparable Sociates, and others who acorned the firft ages of philofophy, we may learn from the picture given of them by Tacitus. "Nero, fays this author, ufed to bellow fome time " after meals in hearing the reafonings of different "t philofophers, and while each maintained his own " fect, and every one exprefly contradicted another, " they all confpired to expofe their endlefs variance " and broils, as well as to difplay their peculiar " and favourite opinions; nay, there were fome of " thofe folemn mafters of wifdom, highly fond of " being feen with their gloomy afpect and rigid ac" cent, amidft the royal exceffes and recreations "s of Nerot.

* Sapientiam capillis et habitu jactant, fays Lactantius fpeaking of them. See alfo the complaint of Taurus the philofopher cited from Aul. Gellius above in the notes on § 2. of this chapser.
$\dagger$ Tacit. annal lib 14 . We have faid nothing of the Cbinefé, for tho no nation has applied to aftronomy for fo long a time, or with fo much encouragement from the public, they feem to have made little progrefs, by the accounts we have of them: this may be afcribed, in part at leaft, to their neglect of geometry (without which it is impoffible to make great advances in aftronomy) and their having no correfpondence with other nations.

But the fate of learning proved ftill more deplorable in a later period; that ought to be remembered, becaufe it difcovers to us the moft cruel enemy to true philofophy. 'Twas fometime after the fall of the Roman empire, when the majefty and policy of that people had given way to Gotbic barbarity, that fuperftition reignea uncontrouled, liberty of enquiry was profcribed, and a favage zeal fought to root out the memory of antient learning, by deftroying the records of it, the ineftimable product of the labours of paft times. The fatal fcheme proved but too fuccefstul, for foon a thick cloud feems to have darkened the underftandings of men, and to have almoft extinguifhed their, natural faculties ; in fo much that a part of the fucceeding times obtained the appellation of the leaden ages, as worfe than the iron age of the poets. Authority for a long time ufurped the place of reafon, and, under the abufed pretence of making them more fubmiffive to heaven, mankind were enflaved and degraded. Here and there fome appeared worthy of better times; but thefe were obliged to conform to the genius of that barbarous age: if they applied to true philofophy, it was either in a private and myfterious manner, or their abilities and merit ferved only to provoke fevere and cruel treatment from their bigotted cotemporaries. This was the fate of the famous Roger Bacon, who appears to have made furprizing advances in natural knowledge, for thofe times, and feems to have been acquainted with fome inventions that are moft commonly fuppofed to be of a later date.

Learning, neglected and defpifed in Europe, found a fanctuary amongt the Saracens, to whom we are indebted for \{everal inventions, as well as for the

Chap. 3. Philosophical Discoveries. prefervation of fome of the works of the antients. They had fo great a value for thefe, that it was ufual with them to demand copies of them, by particular articles, in their treaties with the Greek emperors; tho' they had deftroyed an ineftimable treafure of this kind, at Alexandria, in their firtt conquefts. The caliph Almaimon is celebrated for encouraging aftronomical learning, erecting a great number of obfervatories over liis dominions, and providing them with inftruments of a prodigious fize. By his order, a degree of the circle of the earth, was, firlt, meafured with exactnefs, as far as we know. But," at length, their philofophers feem to have devoted themfelves abfolutely to Arifotle, in no lefs navifh a manner than the Europeans; and to a talkative philofophy that ferved only to produce endlefs difputes.

The cloud was, at length, gradually difpell'd in Europe: the active genius of man could not be enflaved for ever. The love of knowledge revived, the remains of antient learning, that had efcaped the wreck of the dark ages, were diligently fought after; the liberal arts and fciences were reftored, and none of them has gained more by this happy revolution than natural philofophy.

## C H A P. III.

## Of the modern philofophers before Des Cartes.

1. HE revolutions of learning were compared, by Arifotle, to the rifing and fetting of the ftars; and Pliny fpeaks of four periods of it that preceded his time, the Egyptian, Affrian, Cbaldean, and Grecian. Learning, after it was once loft in thofe countries, has never revived again; and, little or nothing left. The weftern parts of Europe have been more happy. After a long interval, learning has returned to them; and the period which commenced upon the revolution we have mentioned, has already continued fome hundred years. It was ufhered in by feveral inventions of the greateft ufe. If we may judge from thefe, from the valuable difcoveries that have been made in its progrefs, and from thofe which learned men are ftill in purfuit of, (which afford matter for their enquiries, and at the fame time keep up their curiofity and expectation) we may juftly hope that it will be long ere it comes to an end: and if it fhould likewife have its termination, it cannot, however, but be ever memorable in the hiftory of learning, in fucure times; unlefs a general oblivion overwhelm all memory and record.

The invention of convex and concave glaffes was as old as the thirteenth century, tho' no one thought of putting two of them together to make a telefcope, till three hundred years later. Upon which it has been juftly obferved, that thofe things which we handle daily may have valuable properties altogether unknown to us, which chance, or future tryals, may difcover. The polarity of the magnetic needle, which was made ufe of in navigation early in the fourteenth century (if not fooner) facilitated the correfpondence between diftinct nations, and conducted Columbus to the difcovery of the new world. It is obvious how advantageous to learning the art of printing has proved, which we owe to the fame century. Thefe, with feveral other new and furprizing inventions, produced a great change in the affairs of the world ; and a firit of reformation foon flewed itfelf,

Chap. 3. Philosophical Discoveries. itfelf, in every thing that had any connexion with the arts and fciences.
2. Peurbacbius, with his fcholar Regiomontanus and others, revived aftronomical learning, in the fourteenth century. The celebrated Copernicus (who was born at Tborn in Pruffia in 1473) fucceeded them, " a man, fays Kepler, * of a vaft genius, and "what is of great moment in thefe matters, of a "free mind." When he confidered the form, difpofition and motions of the fyltem, as they were then reprefented after Ptolemy, he found the whole void of order, fymmetry and proportion; like a piece (as he expreffes himfelf) made up of parts copied from different originals, which not fitting each other, fhould rather reprefent a monfter than a man. He therefore perufed the writings of the antient philofophers, to fee whether any more rational account had ever been propofed of the motions of the heavens. The firft hint he had was from Cicero, who tells us, in his academical queftions (book 4.) that Nicetas a Syracufion had taught that the earth turned round on its axis, which made the whole heavens to appear to a fpectator on the earth to turn round it daily. Afterwards, from Plutarch $\dagger$, he found that Pbilolaus the Pythagorean had taughe that the earth moved annually round the fun. He immediately perceived that, by allowing thefe two motions, all the perplexity, diforder and confurion, he had complained of in the celeftial motions, vanifhed, and that, inftead of thefe, a fimple regular difpofition of the orbits, and a harmony of the motions appeared, worthy of the great author of the world.

[^15]'Twas foon after the year 1500 he began to form this judgment of the fyitem, in his own thoughts: but being fenfible how ill it would be received by the generality of men, and even of the learned of that time, he could not be induced to publifh bis account of the celeftial morions, for more than thirty years. He had a great inclination, as he tells us, to have followed the manner of the Pythagoreans, who would not publifh their myfteries to the world, but chore rather to deliver them from hand to hand to pofterity; not that they envied others the knowledge of them, but that the beautiful difcoveries of great men, the fruit of all their labours, might not become the fport of the prefumptuous and ignorant. It was not without the greatef follicitations, and much ftruggling on his part, that at length he gave his papers to his friends, with permifion to publifh them; and he lived only to fee a copy of his book in 1543 , a few hours before his death.

In this treatife, he reftores the antient Pytbagorean fyftem, and deduces the appearances of the celeftial motions from it. Every age fince has produced new arguments for it; and, notwithftanding the oppofition it met with, from the prejudices of fenfe againft the earth's motion, the authority of Arifotle in the fchools, the threats of ignorant bigots, and the terror of the inquifition, it has gradually prevailed. The chief argument that had induced Arifotle, and his followers, to confider the earth as the centre of the univerfe, was that all bodies have a tendency towards the centre of the earth. In anfiwer to this, Copernicus * obferved, that it was reafonable to think there

[^16] opificis

Chap. 3. Philosophical Discoveries. there was nothing peculiar to the earth in this principle of gravity; that the parts of the fun, moon, and ftars, tended likewife to each ocher, and that their fpherical figure was preferved in their various motions by this power. Thus every ftep in true knowledge gives a glimple or faint view of what lies next beyond it, tho' yet unrevealed, in the fcale of nature.
3. The reftoration of the Pytbagorean fyltem was a ftep of the utmoft importance in true philofophy, and paved the way for greater difcoveries; but the minds of men were not fufficiently prepared for it, at that time. A juft account of the theory of motion was wanting to make them fenfible of its fimplicity and beauty, and to enable shem to refolve, in a fatisfaztory manner, the obvious arguments that appeared againft it. According to Copernicus, the earth revolved on its axis, with a rapid motion, from weft to eaft. It was objected, that fuch a motion could not but have fenfible effects on many occafions; that a ftone, for inftance, drop'd from the fummit of a tower, ought to Atrike the ground, not at the foot of the tower, but at a diftance weftward, according to this doctrine; the tower being carried; by the diurnal motion, towards the eaft, while the ftone was falling. In anfwer to this, the motion of the earth was compared to the uniform progreflive motion of a fhip at fea; and it was affirmed, that a ftone drop'd from the top of the maft would ftrike the deck at the foot of it, tho' the fhip was under

[^17]fail, and advanced at a great rate while the fone was falling. This experiment is now beyond a 1 queftion: but fome, who tried it without due care and attention, having reported to $\mathcal{T}_{j}$ cho Brabe that it had not fucceeded ${ }^{*}$, this, with a miftaken zeal for the facred writings, and perhaps an ambition of being the inventor of a new fyftem, induced him to reject the doctrine of Copernicus, and propofe a middle fcheme. Tycho was too well acquainted with the planetary motions to fuppofe their centre any where elfe than in the fun; but that the earth might be quiefcent, he fuppofed the fun, with all the planets, to be carried annually arcund it, while thefe, by their proper motions, revolved about the fun in therr feveral periods. Having rejected the diurnal rotation of the earth on its axis, he was obliged to retain the moft fhocking part of the Ptolemaick fyftem, and to fuppofe that the who e univerfe, to its fartheft vifible limits, was carried, by the primum mobile, about the axis of the earth every day. In this, however, he was abandoned by fome of his followers, who chofe rather to fave this immenfe labour to all the fpheres, by afcribing the diurnal motion to the earth, with Copernicus; and therefore were called Semi-Tychonics.

Tho' this noble Dane was not happy in eftablifhing a new fyftem, he did great fervice, however, to aftronomy, by his diligence and exactnefs in making obfervations, for a long feries of years. He difcovered the refraction of the air, and determined the places of a great number of the fixed ftars, with an accuracy unknown to the aftronomers of former times. He demonftrated that the comets were higher than the moon, from their having a very fmall parallax, againft the opinion which then pre-

[^18] in the motion of the moon; and, from his feries of obfervations on the other planets; the theories of their motions were afterwards corrected and improved. For thefe fervices he will be always celebrated by aftronomers.
4. Towards the latter end of the fixteenth century, and about the beginning of the next, Galileo and Kepler diftinguifhed themfelves in the defence of the Copernican fytem, and by many new difcoveries in the fyltem of the world. The excellent Galileo was no lefs happy in his phitofophical enquiries, than in the celebrated difcoveries which he made in the heavens, by the telefcope. To the admirable Kepler we owe the difcovery of the true figure of the orbits, and the proportions of the motions of the folar fyftem : but the philofophical improvement of thefe phænomena was referved for Sir Ifaac Neretori.

Kepler had a particulat paffion for finding analogies and harmonies in nature, after the manner of the Pythagoreans and Platonifts; and to this difpofition we owe fuch valuable difcoveries as are more than fufficient to excufe his conceits. Three things, lie tells us, he anxioufly fought to find the reafori of, from his early youth; why the planets were fix in number, why the dimenfions of their orbits were fuch as Copernicus had defcribed from obfervations, and what was the analogy or law of their revolutions. He fought for the reafons of the firt two of thefe in the properties of numbers and plane figures, without fuccefs. But at length reflecting that while the plane regular figures may be infinite in number, the ordinate and regular folids are five only; as Euclid had long ago demonttrated: he imagined
that certain myfteries in nature might correfpond with this remarkable limitation inherent in the effences of things; the rather that he found the Pytbagoreans had made great ufe of thofe five regular folids in their philofophy. He therefore endeavoured to find fome relation between the dimenfions of thofe folids and the intervals of the planetary fpheres; and imagining that a cube infcribed in the fphere of Saturn would touch by its fix planes the fphere of Fupiter, and that the other four regular folids in like manner fitted the intervals that are betwixt the fpheres of the other planets, he became perfuaded that this was the true reafon why the primary planets were precifely fix in number, and that the Author of the world had determined their diftances from the fun, the center of the fyftem, from a regard to this analogy. Being thus poffeffed, as he thought, of the grand fecret of the Pytbagoreans, and being mightily pleafed with his difcovery, he publifhed it in 1596, under the title of Myfterium Cofnograpbicum.

Kepler fent a copy of this book to Tycho Brobe, who did not approve of thofe abftracted fpeculations concerning the fyftem of the world, but wrote to Kepler, firt to lay a folid foundation in cbfervations, and then, by afcending from them, to ftrive to come at the caufes of things. This excellent advice, to which we owe the more folid difcoveries of Kepler, deferves to be copied from his own account of it *. "Argumentum literarum Brachei (fays he) hoc " erat, uti fufpenfis fpeculationibus a priori de"fcendentibus, animum potius ad obfervationes, " quas fimul offerebat, confiderandas adjicerem. "Inque iis primo gradu facto, poft demum, ad

[^19]Chap. 3. Philosophical Discoveries.
"caufas afcenderem." In this judgment the great men of different times have frequently confpired, but few have faithfully followed it.

Tycho, however, pleafed with his genius, prevailed with Kepler to refide wich him near Prague (where he paffed the laft years of his life, after having left his native country on fome ill ufage) and to affift him in his aftronomical labours. Soon after this Tycho died, but Kepler made many important difcoveries from his obfervations: he found that aftronomers had erred, from the firt rife of the fcience, in afcribing always circular orbits and uniform motions to the planets; that each of them moves in an ellipfis which has one of its foci in the center of the fun; that the motion of each is really unequable; and varies fo, that a ray fuppofed to be always drawn from the planet to the fun defribes equal areas in equal times.

It was fome years later before he difcovered the analogy there is between the diftances of the feveral planets from the fun, and the periods in which they complete their revolutions. He eafily faw that the higher planets not only moved in greater circles, but alfo more flowly than the nearer ones; fo that, on a double account, their periodic times were greater ; Saturn, for example, revolves at a diftance from the fun nine times and a half greater than the earth's diftance from it; and the circle defcribed by Saturn is in the fame proportion; and as the earth revolves in one year, fo, if their velocities were equal, $S a$ turn ought to revolve in nine years and a half; whereas the periodic time of Saturn is above twerty nine years. The periodic times of the planets increafe, therefore, in a greater proportion than their diftances from the fun; but not in fo great a pro- was the law of their motions (the fquare of $9 \frac{1}{2}$ being $90 \frac{1}{4}$ ) the periodic time of Saturn ought to be above 90 years. A mean proportion betwixt that of the diftances of the planets, and that of the fquares of thofe diffances, is the true proportion of the periodic times; as the mean betwixt $9 \frac{1}{2}$ and its fquare $90 \frac{1}{4}$ gives the periodic time of Saturn in years. Kepler, after having committed feveral miftakes in determining this analogy, hit upon it at laft in 1618, May 15 th, for he is fo exact as to mention the precife day when he found, that "The fquares " of the periodic times were always in the fame "proportion as the cubes of their mean diftances "from the fun." This is only a very brief and fummary account of the fruits of his great labours for many years on the obfervations made by Tycho *.

When Kepler faw that his difpofition of the five regular folids amongft the planetary fpheres was not agreeable to the intervals between their orbits, according to better obfervations, he endeavoured to difcover other fchemes of harmony. For this purpofe, he compared the motions of the fame planet at its greateft and leaft diftances, and of the different planets in their feveral orbits, as they would appear viewed from the fun; and here he fancied that he found a fimilitude to the divifions of the octave in mufic. Thefe were the dreams of this ingenious man, of which he was fo fond, that, hearing of the difcovery of four new planets (the fatellites of fupiter) by Galileo, he owns that his firt reflexions were from a concern how he could fave his favourite fcheme, which was threatned

[^20] by this addition to the number of the planets *. The fame attachment led him into a wrong judgment of the sphere of the fixed ftars $+:$ for being obliged, by his doctrine, to allow a vaft fuperiority to the fun in the univerfe, he reffrains the fixed ftars within very narrow limits. Nor did he confider them as funs, placed in the centers of their feveral fyftems, having planets revolving round them; as the other followers of Copernicus, from their having light in themfelves, their immenfe diftances, and from the analogy of nature, have concluded them to be. Not contented with thefe harmonies, which he had learned from the obfervations of Tycho, he gave himfelf the liberty to imagine feveral other analogies, that have no foundation in nature, and are overthrown by the beft obfarvations. Thus from the opinions of Kepler, tho' moft juftly admired, we are taught the danger of efpoufing principles, or hypothefes, borrowed from $a b$. ftracted fciences, and of applying them, with fuch liberty, to natural enquiries.

A more recent inftance of this fondnefs, for difcovering analogies between matters of abftracted fpeculation and the conftitution of nature, we find in Huygens, one of the greateft geometricians and attronomers any age has produced: when he had difcovered that fatellite of Saturn, which, from him, is fill called the Huygenian fatellite, this, with our moon, and the four fatellites of fupiter, completed the number of fix fecondary planets then difcovered in the fyftem: and, becaufe the number of the primary planets is alfo fix, and this number is called by mathematicians a perfect number, (being equal to

[^21] for any more $\dagger$. We do not mention this to leffen this great man, who never perhaps reafoned in fuch a manner on any other occafion ; but only to fhew, by another inftance, how ill-grounded reafonings of this kind have always proved: for, not long after, the celebrated Ca/frini difcovered four more fatellites about Saturn; fo that the number of fecondary planets now known in the fyftem is ten. The fame Caffini having found that the analogy, difcovered by Kepler, between the periodic times and the diftances from the center, takes place in the leffer fyitems of $7 u p i t e r$ and Saturn, as well as in the great folar fyftem; his obfervations overturned that groundlefs analogy which had been imagined between the number of the planets, both primary and fecondary, and the number fix; but eftablifhed, at the fame time, that harmony in their motions, which will, afterwards, appear to flow from one real principle extended over the univerfe.
5. But to recurn to Kepler, his great fagacity, and continual meditation on the planetary motions, fuggefted to him fome views of the true principles from which thefe motions flow. In his preface to the commentaries concerning the planet Mars, he fpeaks of gravity as of a power that was mutual betwixt bodies, and tells us that the earth and moon tend towards each other, and would meet in a point fo many times nearer to the earth than to the moon, as the earth is greater than the moon, if their motions did not hinder it. He adds, that the tides

[^22] arife from the gravity of the wavers towards the moon. But not having juft enough notions of the laws of motion, he does not feem to have been able to make the beft ufe of thefe thoughts; nor does he appear to have adhered to them fteadily, fince in his epitome of aftronomy, publifhed eleven years after, he propofes a phyfical account of the planetary motions, derived from different principles.

He fuppofes, in that treatife, that the motion of the fun on his axis is preferved by fome inherent vital principle; that a certain virtue, or immaterial image of the fun, is diffufed with his rays into the ambient fpaces, and, revolving with the body of the fun on his axis, takes hold of the planets and carries them along with it in the fame direction; as a load-ftone turned round in the neighbourhood of a magnetic needle makes it turn round at the fame time. The planet, according to him, by its inertia endeavours to continue in its place, and the action of the fun's image and this inertio are in a perpetual Atruggle. He adds, that this action of the fun, like to his light, decreafes as the diftance increafes; and therefore moves the fame planet with greater celerity when nearer the fun, than at a greater diftance. To account for the planet's approaching towards the fun as it defcends from the aphelium to the peribelium, and receding from the fun while it afcends to the apbelium again, he fuppofes that the fun attracts one part of each planet, and repells the oppofite part; and that the part which is attracted is turned towards the fun in the defcent, and that the other part is towards the fun in the afcent. By fuppofitions of this kind, he endeavoured to account for all the other varieties of the celeftial motions.

Now the laws of motion are better known than in Kepler's time, it is eafy to thew the falliacy of every part of this account of the planetary revolutions. The planet does not endeavour to flop in its place in confequence of its inertia, but to perfevere in its motion in a right line. An attractive force makes it defcend from the apbelium to the peribelium in a curve concave towards the fun: but the repelling force, which he fuppofed to begin at the peribslium, would caufe it to afcend in a figure convex towards the fun. We fhall have occafion to fhew afterwards, from Sir Ifaac Neroton, how an attraction or gravis fation towards the fun, alone, produces the effects? which, according to Kepler, required both an attractive and repelling force ; and that the virtue which he afcribed to the fun's image, propagated into the planetary regions, is unneceflary, as it could be of no ufe for this effect tho' it were admitted. For now his own prophecy, with which he concludes his book *, is verified; where he tells us that " the ". difcovery of fuch things was referved for the fuc"ceeding age, when the Author of nature would "c be pleafed to reveal thofe mytteries.'?
6. In the mean time, Galiteo made furprizing difcoveries in the heavens by the telefcope, an inftrument invented in that time; and, by applying geometry to the doctrine of motion, began to eftablifh natural philofophy on a fure foundation. He made the evidence of the Copernican fyitem more fenfible, when he fhewed from the phafes of Ventes, like to the monthly phafes of the moon, that Venus actually revolves about the fun. He proved the

[^23]revolution revolution of the fun on his axis, from his fpots; and thence the diurnal rotation of the earth became more credible. The four fatellites that attend $\mathcal{F u p i}$ ter in his revolution about the fun, reprefented, in 'fupiter's leffer fyftem, a juft image of the great folar fyttem ; and rendered it more eafy to conceive how the moon might attend the earth, as a fatellite, in her annual revolution. By difcovering hills and cavities in the moon, and fpots in the fun conftantly sarying, he fhewed that there was not fo great a difference between the celeftial and fublunary bodies as the philofophers had vainly imagined *.

He did no lefs fervice by treating, in a clear and geometrical manner, the doctrine of motion, which has been juflly called the key of nature. The rational part of mechanics had been fo much neglected, that there was hardly any improvement made in it, from the time of the incomparable Arcbimedes to that of Galileo; but this laft named author has given us fully the theory of equable motions, and of fuch, as are uniformly accelerated or retarded, and of thefe two compounded together. He, firft, demonftrated, that the fpaces defcribed by heavy bodies from the beginning of their defcent are as the fquares of the times, and that a body, projected in any direction that is not perpendicular to the horizon, defrribes a parabola. Thefe were the beginnings of the doctrine of the motion of heavy bodies, which

[^24]has been fince carried to fo great a height by Sir Ifaac Newton.

He alfo difcovered the gravity of the air, and endeavoured to compare it with that of water; and opened up feveral other enquiries in natural philofophy. He was not efteem'd and followed by philofophers only, but was honoured by perfons of the greateft diftinction of all nations. Des Cartes, indeed, * after commending him for applying geometry to phyfics, complains that he had not examined things in order, but had enquired into the reafons of particular effects only; adding that, by his paffing over the primary caufes of nature, he had built without a foundation. He did not, 'tis true, take fo high a flight as Des Cartes, or attempt fo univerfal a fyftem; but this complaint, I doubt, muft turn out to Galileo's praife; while the cenfure of Des Caries fhews that he had the weaknefs to be vain of the worft part of his writings.

But all the merit of this excellent philofopher and elegant writer could not preferve him from perfecution in his old age. Some pretended philofophers, who had imprudently objected againft his new difcoveries in the heavens, when they found themfelves worfted and expofed to ridicule, turned their hatred and refentment againft his perfon. He was obliged, by the rancour of the Jefuits (as 'tis faid + ) and the weaknefs of his protector, to go to Rome, and there folemnly renounce the doctrine of the motion of the

[^25]Chap. 3. Philosophical Discoveries. earth, which he had argued for with fo much ingenuity and evidence *. After this cruel ufage he was filent for fome time, but not idle; for we have valuable pieces of his of a later date.
7. Sir Francis Bacon Lord Verulam $\dagger$, who was cotemporary with Galileo and Kepler, is juftly held amongit the reftorers of true learning, but more efpecially the founder of experimental philofoply. When he was but fixteen years old, he began to diflike the vulgar phyfics and what was called Arifotle's philofophy. He faw there was a neceffity for a thorough reformation in the way of treating natural knowledge, and that all theory was to be laid afide that was not founded on experiment. He propofed his plan in his infauratio magna, with fo much ftrength of argument, and fo juft a zeal, as renders that admirable work the delight of all who have a tafte for folid learning.

He confiders natural philofophy as a vaft pyramid, that ought to have the hiftory of nature for its bafis; an account of the powers and principles that operate in nature, which he calls the phyfical part, for its fecond ftage ; and the metaphyfical part, that treats of the formal and final caufes of things, for its third ftage. But as for the fummit of this pyramid, the fupreme of nature, opus quod operatur Deus a principio ufque ad finem, as he expreffes it, he doubts if men can ever attain to the full knowledge of it. The philofophers who ftrive to erect thefe by the force of abftract fpeculation he compares to the

[^26]giants of old, who, according to the poets, endeavoured to throw mount Offa upon Pelion, and Olympus upon Offa.

An artift, fays this noble author, would expore himfelf to the jufteft ridicule, who, in order to raife fome vaft obelifk, fhould attempt it by the force of his arms, inftead of employing the proper machines; or if, after finding himfelf unequal to the tank, he fhould call for the aid of more workmen in the fame way. Would he appear lefs ridiculous if he fhould next fet about chufing his men, and examining them carefully, that he might employ the vigorous and robuft only? or if, after he found this was to no purpofe, he fhould then apply himfelf to ftudy the athletic art, and learn to compofe curious ointments for ftrengthening their limbs, or confult learned phyficians, who, by proper medicaments, fhould promote their health and vigour? Nor are they lefs abfurd, in our noble author's judgment, who labour to interpret nature by the force and fubtlety of genius only, tho' they fhould affume the aid of the acuteit men in the fame work, and carry the dialecticks, or the art of reafoning, to the greateft height for this purpofe.

The empirical philofophers, thofe who have no higher view than to collect the hiftory of nature, he compares to the ants, who gather the grain and lay it up as they find it (unlefs it be true, as is reported of them, that they firft take care it Mould not germinate or become fruitful;) the Sopbifs to the fpiders, who form their webs from their own bowels, to catch unwary infects in their aerial flights; while the bee that gathers the matter from the flowers of the field, from which with admirable fkill the makes her honey, is the emblem of the true philofopher; who neither neither trufts wholly to his own underftanding, nor contents himfelf with recording the matter with which he is furnifhed from natural hiftory or mechanical experiments ; but, by reafoning fkilfully from them, brings forth truth and fcience, the great and noble production of the human faculties. From the neglect of experiments it arofe, that while nature was infinite, natural knowledge was at a ftand for many ages, and that the various fects wandered in the dark, without kindling any light to guide them, or finding any path to conduct them in her mazes. But, from a happy conjunction of the experimental and rational faculties, Lord Verulam conceived the higheft expectations. Alexander, he tells us, and Cafar performed exploits that are truly greater than thofe reported of king Artbur or Amadis de Gaul ; tho' they acted by natural means, without the aid of magic or prodigy.

It was with great juftice, and very feafonably, he reprehended thofe * who, " upon a weak conceit of " fobriety, or ill-applied moderation, thought or " maintained that a man can fearch too far, or be " too well fudied in the book of God's word, or in " the book of God's works. But rather, he adds, " let men awake themfelves, and chearfully endea${ }^{66}$ vour and puirfue an endlefs progrefs and profi$*^{2}$ ciency in both; only let them beware left they " apply knowledge to pride, not to charity, to "s oftentation, not to ufe." He obferves, that a fuperficial tafte of philofophy may perchance incline the mind to atheifm ; bur a full draught thereof brings it back again to religion: in the entrance of philofophy, when the fecond caules moft obvious to the fenfes offer themfelves to the mind, we are apt

[^27]to cleave unto them, and dwell too much upon them, fo as to forget what is fuperior in nature. But when we pafs further, and behold the dependency, continuation and confederacy of caufes, and the works of providence, then, according to the allegory of the poets, we eafily believe that the higheft link of nature's chain mult needs be tied to the foot of $\mathfrak{F u}$ piter's chair ; or perceive " That philofophy, like "Facob's vifion, difcovers to us a ladder, whofe " top reaches up to the footftool of the throne " of God."

The Ariftotelion philofophy appeared unfatisfactory to Lord Bacon, not from want of efteem for its author, whom he always ufed to extol ; but becaufe it feemed fit for difputes only, and incapable of producing real fruit. Arifotle, he faid, had fuited his phyfics to his logic, inftead of giving fuch a kind of logic as might be of real ufe in phyfics. To fupply this defect, he compofed his novum organum; where his chief defign is to fhew how to make a good induction, as Arifotle's was to teach how to make a good Jyllogijm. Had the philofophers, fince Lord Verulam's time, adhered more clofely to his plan, their fuccefs had been greater; and Sir Ifaac Nerwton's philofophy had not found the learned fo full of prejudices againft it, in favour of fome fyftems lately invented and mightily extolled by fpeculative men; that while all admired the fublime geometry which fhone throughout his work, few for fome time appeared to be difpofed to hearken to his philofophy, or in a condition to judge of it impartially.
8. However, Lord Bacon's exhortations and example had a good effect; and experimental philofophy has been much more cultivated fince his time than than in any preceding period. Geometry and philofophy advanced together at a great pace, and gave mutual aid to each other. The evidence of geometry began to take place in philofophy, while all things were examined by number, weight, and meafure; and the principles of the theory of motion, being now clearly underftood, furnifhed excellent illuftrations of the abftrufe parts of geometry. Galileo had fcholars worthy of fo great a mafter, by whom the gravitation of the atmofphere was eftablifhed fully, and its varying preffure accurately and conveniently meafured, by the column of quick-filver of equal weight fuftained by it in the barometrical tube. The elafticity of the air, by which it perpetually endeavours to expand itfelf, and, while it admits of condenfation, refifts in proportion to its denfity, was a phænomenon of a new kind (the common fluids having no fuch property) and of the utmoft importance to philofophy. Thefe principles opened up a vaft field of new and ufeful knowledge, and explained a great variety of phænomena, which had been accounted for in an abfurd manner before that time. It feem'd as if the air, the fluid in which men lived from the beginning, had been then firft difcovered. Philofophers were every where bufy enquiring into its various properties and their effects; and valuable difcoveries rewarded their induftry. Of the great number who diftinguifhed themfelves on this occafion, we cannot but mention Torricelli in Italy, Pafchal in France, Otto Guerick in Germany, and Boyle in England.

The views of philofophers began now to be mightily enlarged, not by their difcoveries concerning the air only, but likewife by their enquiries into the more potent element fire and its effects, and into the chymical compofition, refolution, and changes conneet it in fome degree with natural philofophy, or to confider it, at leaft, as not quite foreign to it. This we owe in great meafure to the honourable $\mathrm{Mr}_{\text {。 }}$. Boyle, whofe favourite fludy chymiftry is faid to have been, and who was happy in an eafy and familiar manner of defribing the fubjects which were treated by him.

It mult be owned that none ever took fo great pains to promote natural knowledge, in all its branches, or the beft improvement that can be made of it, than this excellent perfon. It has been obferved that he was born the fame year that Lord Bacon died, as if he had been defin'd to carry on his plan. He fpared no labour nor coft in collecting the hiftory of nature, and making curious and ufeful experiments of all forts. As Lord Bacon's plan comprehended the whole compais of nature, fo the variety of enquiries profecuted by Mr . Boyle, with great care and attention, is very furprizing, and perhaps not to be parallel'd. Hydroftatics, tho' a moft ufeful branch of mechanical philofophy, had been but ill underfood, till he eftablifhed its principles, and illuftrated its paradoxes, by a number of plain experiments, in a fatisfactory manner. The doctrine of the air afforded him an ample field; and, in all his refearches, he fhewed a genius happily turned for experimental philofophy, with a perfect candour, and a regular condefcenfion in examining with patience, and refuting, without oftentation, the errors which philofophers had been led into from their prejudices, and the many artful fubterfuges by which they frove to fupport them. The unexceptionable integrity, extenfive charity, and fingular piety of this excellent perfon did great honour to philofophy,

Chap. 3. Philosophical Discoveries.
and formed an eminent part of his character. The world he confidered as the temple of God, and * " man (to ufe his own words) as born the prieft of " nature, ordained (by being qualified) to celebrate " divine fervice, not only in it but for it." Not fatisfied with having promoted the belief of a Deity and the evidence of true religion, to the utmoft of his power, in the great number of volumes compofed by him, on every occafion during the courfe of a laborious life, he has taken care, by his will, to perpetuate a fucceffion of advocates for it, who fhould make the fame improvement not of his difcoveries only, or of thofe of former times, but of what fhould be produced by future ages. In this defign, worthy of him, the fuccefs has been anfwerable to his intentions; and furely fuch a man, we muft allow, was not an ornament to his own age and country only, but a publick benefit to all times and nations.

We are now arrived at the happy ara of experimental philofophy; when men, having got into the right path, profecuted uleful knowledge; when their views of nature did honour to them, and the arts received daily improvements; when not private men only, but focieties of men, with united zeal, ingenuity and induftry, profecuted their enquiries into the fecrets of nature, devoted to no fect or fyftem. But we are obliged to abandon, at prefent, the agreeable tafk of following them in their difcoveries, in this flourifhing period of fcience, to give account of a moft illufive fcheme of feculative philofophy that prevailed amongit many at this very time, and, by mifleading ingenious men, corrupted their notions and retarded their progrefs. It feems that, however

[^28]fertile this period was in new inventions, nature did not unveil herfelf readily enough to fatisfy the impatience of fome men, who could not be contented with thofe views of her which time and induftry produced to them. Therefore they hearkned again to the vain promifes of thofe who pretended to unravel all her mytteries at once, by the force of their abftracted fpeculations. The Cortefion fyifem was the moft extenfive, and (according to many: the moft exquifite in its contrivance, of any that have been imagined. The author of it was a bold philofopher, and doubtlefs of a fubtie genius, to indulge which he retired from the world for many years. He valued himfelf on his clear ideas, and is allowed to have contributed to diffipate the darknefs of that fort of fcience which prevailed in the fchools. If we may believe fome accounts, he rejected a void from a complaifance to the tafte which then prevailed, againft his own firf fentiments; and amongft his familiar friends, ufed to call his fyfiem his philofophical romance. It had however great fuccefs; and his doctrines fill prevail fo much, that it is neceffary for our purpofe to give a fhort account of them.

## CHAP. IV.

Of the pbilofopbical principles of Des Cartes, the emendations of bis followers, and the prefent controverfies in natural pbilofophy.

DES Cartes begins his principia by fhewing the neceffity of doubting firft of every thing, in order to our obtaining certain knowledge; and recommends to his readers to confider his reafons for doubting of all things, not once only, but to employ weeks, or even months, on there alone, before

Chap. 4. Philosophical Discoveries.
he proceed farther. He firt eftablifhes the certainty of our own exiftence, and that of our ideas of which we are intimately confcious to ourfelves; of the exiftence of which, however, after all he has faid, it feems impoffible for us to doubt for a moment. From our having the idea of a Being infinitely perfect and neceffarily exifting, he concludes that fuch a Being actually is; upon whofe will he makes the certainty of felf-evident propofitions, or axioms *, as well as of all other neceffary truths, to depend.

From the knowledge of the caufe eftablifhed in this manner, he pretends to deduce a complete knowledge of his effects, by neceffary feeps. It is clear, fays he $\uparrow$, that we fhall follow the beft method in philofophy, if, from our knowledge of the Deity himfelf, we endeavour to deduce an explication of all his works; that fo we may acquire the moft perfect kind of fcience, which is that of effects from their caufes. As for final caufes he rejected them from philefiphy, as we obferved above; and from thefe paffagee, which reprefent the genius of this author's philofophy, and from the manner in which he fets out, we may already form fome judgment how hopoful his project was.

From the veracity of the Deity, he infers the reality of material objects, which are reprefented to us as exifting without us. He places the effence of matter in extenfion ; for this alone remains, he fays,

* According to him, the Deity did not will that the three angles of a triangle fhould be equal to two right ones, becaufe he knew that it couid not be otherwife; but, becaufe he would that the three angles of a triangle fhould neceflarily be equal to two right ones, therefore this is true and can be no otherwife.
+ Sec the paffages cited above from his Principia, in the notes upon § 4. ch. 1 :
when we reject hardnefs, colour, weight, hear and cold, and the other qualities which, we know, a body can be without. Hence he eafily concludes that there can be no void, or extenfion without matter. He adds, however, immediately afterwards, as properties of matter, that its parts are feparable and moveable; tho' thefe feem to imply more than mere extenfion.

He defines motion to be the tranflation of a body from the neighbourhood of other bodies that are in contact with it, and are confidered as quiefcent, to the neighbourhood of other bodies; and thus makes no diftinction between abfolute or real, and relative or apparent motions; both of which equally agree to this definition. The reafon he gives why the fame quantity of motion mult be preferved for ever in the univerfe, without any augmentation or diminution in the whole, muft appear concife, and very extraordinary. It is no other than that God muft be fuppofed to act in the moft conftant and immutable manner. From the fame property of the Deity, he infers that a body muft continue in its ftate as to reft, motion, figure, \&xc. till fome external influence produce a change; which is his firt law of nature : that the direction of motion is naturally rectilinear, or that a body never changes its direction of itfelf; which is his fecond law : and that a body in motion, when it meets with another moving with a greater force, is reflected without lofing any part of its firft motion; but when it meets with a body inoving with lefs force, it then carries this body along, and lofes as much motion as is transferred to it; and this is his third law of nature. He accounts for the hardnefs of bodies from their parts being quiefcent with refpect to each other; and for Aluidity, from their being moved perpetually in all directions. He concludes the fecond part of his book with telling us, that thefe principles are fufficient for explaining all the phænomena of nature, and that no other ought to be admitted or even wifhed for.

He afterwards proceeds to fhew how the univerfe might have affumed its prefent form, and may be for ever preferved, by mechanical principles. He fuppofes the particles of matter to have been angular, fo as to replenifh fpace without leaving any interftices between them; and to have been in perpetual agitations, by which the angular parts being broke off, the particles themfelves became round, and formed what he calls the matter of the fecond element. The angular parts, being ground into the moft fubtile particles of all, became the matter of his firft element, and ferved to fill all the pores of the other. But there being more of this firt element than was neceflary for that purpofe, it became accumulated in the centers of the vortices, of which he imagined the univerfe to confift, and formed there the bodies of the fun and ftars. The heavens were filled with the matter of the fecond element, the medium of light. But the planets and comets confifted of a third element groffer than the other two, the generation of which he traces at length through all its fteps. According to him, the matter of the firft element muft have conftantly flowed out through the interftices between the fpherical particles of the fecond element, where the circular motion is greateft, and mult have returned continually at the poles of this motion towards the centre of the vortex; where being apt to cohere together, they at length produced the groffer particles of the third; and when thefe came to adhere in a confiderable quantity, they gave rife to the fpots on the furfaces of
the funs or ftars. Some being crufted over with fuch fpots became planets or comets; and the force of their rotation becoming languid, their vortices were abforbed by fome more potent neighbouring vortex. In this manner the folar fyftem was formed, the vortices of the fecondary planets having been abforbed by the vortex of the primary, and all of them by that of the fun. He contends that the parts of the folar vortex increafe in denfity, but decreafe in celerity, to a certain diftance; beyond which he fuppofes all the particles to be equal in magnitude, but to increafe in celerity as they are farther from the fun. In thofe upper regions of the vortex he places the comets; in the lower parts he ranges the planets; fuppofing thofe that are more rare to be nearer the fun, that they may correfpond to the denfity of the vortex where they are carried round.

He accounts for the gravity of terreftrial bodies from the centrifugal force of the æther revolving round the earth; which, he imagined, muft impell bodies downwards that have not fo great a centrifugal force, much in the fame manner as a fluid impells a body upwards that is immerged in it, and has a lefs fecifical gravity than it. He pretended to explain the phrnomena of the magnet, and to account for every thing in nature, from the fame principles.
2. There never was, perhaps, a more extravagant undertaking than fuch an attempt, to deduce, by neceffary confequences, the whole fabric of nature, and a full explication of her phænomena, from any ideas we are able to form of an infinitely perfect Being. Was it not for the high reputation of the author, and of his fyitem, it would be hardly excufable to make any remarks upon fuch a rhapfody. Should

Should we allow the principles he builds on, and his method, it muft be obvious with how weak an evidence the confequences are connected with each otner, in this vifionary chain. How juft a method he has taken to eftablifh the exiftence and attributes of the Deity we fhall not enquire, nor how far his making all truth and falfhood dependent on the will of the Deity tends to weaken all fcience and confound its principles. While he fuppofes extenfion to conftitute the complete effence of matter, he neglects folidity, and the inertia by which it relifts any change in its ftate of motion or reft; which diftinguifh body from fpace. If extenfion be underftood to be the effence of matter, it is a trifling propofition to affirm that all fpace is full of matter, according to this definition. But flill the queftion will remain, whether all fpace is full of that folid, moveable and refifting fubftance commonly called body. And as many parts of fpace appear to make no fenfible refiftance to motion, while others refift variouny in proportion to the denfity of the medium diffufed over them, we thence learn there is fpace void of what is commonly called matter. The comets which move with equal freedom in all directions with very rapid motions, and carry along with them tails of a prodigious fize, confifting of fome highly rarified matter, fhew that the heavens are not replenifhed with denfe fluids that admit no void. For it is evident in experimental philofophy that the refiftance of fluids increafes, cateris paribus, with their denfity; fo that all motion would foon languifh in a fluid, which, having no pores, muft far furpafs quick filver, or the heavieft folids, in denfity. Nothing is more evident, than that the force requifite to move two equal bodies with a given velocity, is double that which would produce the fame celerity in either of them. When we compound greater
bodies from leffer, or when we refoive them into their parts, we find that the reffifance or inertia increafes or decreafes in proportion to the quantity of matter. Therefore when the velocity is given, if a body moving in a denfer fluid difplaces more matter to make way for itfelf, the refiftance which it meets with being equal to the motion communicated to the parts of the fluid, it mut find a refiftance proportionally greater.

It is not only from the free motions of the planets and comets that we learn the abfurdity of the doctrine of an univerfal pienitude. The moft common and plain phrnomena of the motion of bodies, at or near the furface of the earth, are fufficient to overthrow it; for we find that they meet with no fenfible refiftance but from the air : whereas fo denfe a fluid as would replenifh all fpace equally would neceffarily produce a very great refiftance.

It is objected *, that by fuppofing this denfe fluid which replenifhes fpace to penetrate the pores of bodies with the utmoft frcedom, (as light paffes through tranfparent bodies, and the magnetic and electric effiuvia through mof kinds of bodies) its refiftance will then be incomparably lefs than in proportion to its denfity; for then the refiftance will not be meafured by the denfity of the fluid, becaufe the much greater part paffes through the pores of the body in motion, freely without refiftance. Suppofing this to be admitted, it is, however, obvious that, even in this hypothefis, the refiftance of a golden ball in a plenum would be ftill very great. For this fubtle fluid, how penetrating foever it be, muft refit the

[^29]folid parts of the ball; which cannot move in the fluid without difplacing its parts, and lofing as much motion as muft be communicated to thofe parts; and this refiftance depends on the quantity of folid parts in the ball: whereas the refiftance which the fame ball meets with in quick filver (which we fuppole to have no paffage through the ball) depends on the quantity of the folid parts in an equal bulk of the quick filver, which mult be moved to make way for the ball. And this being lefs than the quantity of folid parts in an equal bulk of the golden ball, in proportion as the fpecific gravity of quick filver is lefs than that of gold, it follows that the refiftance of a golden ball, moving in fuch a fubtile penetrating plenum, would ftill be greater than its refiftance in quick filver. To illuftrate this farther, the fpecific gravity of gold being to that of quick filver nearly as 195 to 140 , fuppofe a golden ball confifting of 195 folid particles to move in the plenum with a given velocity, and to defcribe a very fmall fpace; and then fuppofe the fame ball to move in quick filver with the fame velocity over the fame face; in the former cafe, the folid parts of the ball difplace a certain quantity of the plenum, fuppofe a quantity equal to the ball, or 195 parts; in the latter cafe, they difplace an equal bulk of the quick filver, that is, 140 folid particles. But becaufe it may be faid for thofe who maintain an univerfal plenitude, that the golden ball meets with a refiftance from the fubtile fluid that replenifhes fpace, while it moves in the quick filver, as well as from the quick filver itfelf; let this likewife be allowed, and let us even fuppofe it to meet with as much refiftance from the plenum, while it moves in the quick filver, as when it moves in a fpace free from any grofs fluid; yet it will ftill appear that the refiftance of the golden ball in the plenum ought to bear at leaft as great a proportion
to its refiftance in quick filver, as the denfity of gold is to the fum of the denfities of goid and quick filver, or as 195 to 335 , and confequentiy ought to be eight tumes greater than its reffitance in water. This is the leaft refirtance fuch a ball could meet with in a plenum, fhould we allow the fuppofitions that are moft favourabie in this doctrine; and this refiffance would foon pat an end to the motions of bodies. But it is evident that we allowed too much in favour of their doctrine, when we fuppoied the ball moving in the quick filver to meet with a refiftance equal to the fum of the refiftances that it would meet with from the plemum and quick filver feparately. For, according to this fuppofition, its refiftance in quick filver would be to its refiftance in water, as the fum of the denfities of gold and quick filver to the fum of the denfities of gold and water, that is, as 335 to 205 , or 67 to 41 ; fo that the refiftance of quick filver would not be double of that of water, or even double of that of air; than which nothing can be more contradictory to experiment.

It is of no importance to this argument how rare gold, quick filver, or the heavieft bodies, be fuppofed; fince the refiftance of quick filver in fact is known to be very great, and is not altered by fuch fuppofitions : neither is the proportion of the denfity of gold to that of quick filver (upon which proportion the 'argument is founded) affected by them. For it will always be found that the refiftance of a golden ball in a plenumn (how freely foever it pals through the pores of the ball, and how large or numerous foever thefe pores may be) muft correfpond to the folid matter in the ball; which is greater than the folid matter in any equal bulk of any of our fluids; upon which their refiftance depends. The fuppofing the folid matter in the quick filver

Chap. 4. Philosophical Discoveries. 75 filver to occupy only the thoufandth or millionth part of its bulk, has no other effect but that it fuppofes the inertia of a given quantity of folid matter to be increafed in the fame proportion with the rarity of the quick filver, whofe inertia is in fact afcertained.

The refiftance which arifes from the tenacity or adhefion of the parts of fuids may be diminifhed; but ftill the refiftance which arifes from the ineria of the matter remains : if this could be taken away, as the matter would have no refiftance, fo it is not eafy to conceive how it could have any activity or mechanical force to impell bodies, or to produce any of the effects which are attributed to the fubtile matter of the Cartefians. For action and reaction are always equal, and we know of no force in bodies but what arifes from their refiftance to change their itate, or their inertia. Without this there could be no centrifugal force, the favourite power by which thofe philofophers endeavour to explain the phænomena of nature.

They fuppofe the particles of thofe fubtile fluids to move conftantly and equally in all directions; and, by the favour of this hypothefis, they imagine that they may fuppofe them to act but not refint. But they have neither made this itrange fuppofition probable, nor even credible, nor can they fhew that it would anfwer their purpofe. A motion of a fluid favours the motion of a body in it, only as far as it is in the fame direction; and an inteftine motion of the parts of the fluid, equal in all directions, cannot make the refiftance lefs than if there was no motion of the parts. It is fuppofed by many that the particles of common fluids, water or air for example, are in a conftant inteftine motion; but this does their denfity.

We are told by fome, that it is impoffible to conceive a vacuum. But this furely muft proceed from their having imbibed Des Cartes's doctrine, that the effence of body is conftituted by extenfion; as it would be contradictory to fuppofe fpace without extenfion. To fuppofe that there are fluids penetrating all bodies and replenifhing fpace, which neither refift nor act upon bodies, merely in order to avoid the admitting a vacuum, is feigning two forts of matter, without any neceffity or foundation; or is tacitly giving up the queftion. As for Mr. Leibnitz's arguments againft a vacuum, we defer them till we come to confider the emendations that have been made to this fyftem.

The fame quantity of motion is not always preferved in the univerfe, as Des Cartes rafhly concluded from the immutability of the Deity. The quantity of abfolute motion is continually varying; it is diminifhed in the compofition of motion, and, in many cafes, in the collifions of bodies that have an imperfect elafticity; and it is increafed in the refolution of motion, and, in fome cafes, in the collifions of elaftic bodies. It requires an active principle to account for the hardnefs of bodies; and the particles being at reft is not fufficient for this purpofe; for this would not hinder them to be feparated from each orher by the leaft force. There is hardly one article in this fcheme but what is, in like manner, liable to infuperable difficulties.

After all, Des Cartes faw the neceffity of having recourfe to obfervation, tho' unwillingly ; and he appears to be at a lofs how to acknowledge it, after
having
having boafted fo much of his principles. He tells us that he found thefe fo extenfive and fertile *, that many more things followed from them than we find in the vifible world. Other philofophers have complained that they were able to account for too little of nature: Des Cartes finds that his principles were more than fufficient to account for all her phænomena, and feems only to fear left he fhould account for too much. Therefore he has recourfe to the phænomena, not becaufe he would prove any thing from them; for he takes care that we fhould not have fo mean an opinion of his philofophy, as to imagine he would eitablifh it on facts ; but that he might be able to determine his mind to confider fome of thofe innumerable effects, which he judged might proceed from the fame caufes, rather than others. He likewife acknowledges $f$, that the fame effect might be deduced, from his principles, many different ways; and that nothing perplexed him more than to know which of them obtained in nature. In thofe paffages he magnifies his principles, in order to conceal the weaknefs of his fyftem, with an affectation that only ferves to make it more evident, and appear unworthy of fo great a man.
3. Des Cartes, by placing the effence of matter in extenfion alone, gave occafion to others to draw
> * He cites the effects, as he tells us, Non quidem ut ipfis tanquam rationibus utamur ad aliquod probandum ; cupimus enim rationes effectuum a caufis, non autem e contrario caufarum ab effectibus deducere; fed tantum uf ex innumeris effectibus, quos ab iifdem caufis produci poffe judicamus, ad unos potius quam alios confiderandos mentem noftram determinemus.
> $\dagger$ Sed confiteri me etiam oportet potentiam naturæ effe adeo amplam, ut nullum fere amplius particularem effectum obfervem, quem flatim variis modis ex iis principiis deduci poffe non agnofcam : nihilque ordinario mihi difficilius videri, quam invenire quo ex his modis inde dependet. De Metbodo, \$6.
confequences, from this doctrine, of a dangerous nature; which undoubtedly he would have difowned, tho' 'tis not eafy to fee how he could have got rid of them. As we are not able to conceive that fpace can be annihilated, or that there ever was a time when fpace or expanfion was not; fo if we allow that extenfion alone conftitutes the effence of matter, we cannot but afcribe infinity, eternity, and neceffary exiftence to it. In this manner Spinoza reafons from the Cartefian principles, affirming that matter is not only infinite and neceffary, but alfo that it is one and indivifibie *. "This, fays he, cannot be de" nied by thofe who reject the poffibility of a vacuum; "' for if matter could be fo divided that its parts "6 Mould be really diftinct, why might not one pare " be annihilated, the reft remaining connected with " each other as before? fince of things which are " really diftinct from each other, the one can exift " and remain in its flate without the other." In another place, he tells us, that if any one part of matter was annihilated, all extenfion would vanifh with it $\dagger$. This author appears to have been very con-

* Nam fi fubftantia corporea ita poffet dividi ut ejus partes realiter diftinctæ effent, cur ergo una pars non poffet annihilari manentibus reliquis, ut ante, inter fe comnexis? Et cur omnes ita aptari debent ne detur vacuum? Sane, rerum quæ realiter ab invicem diftinctæ funt, una fine alià effe \& in fuo ftatu manere poteft. Cum igitur vacuum in naturâ non detur, fed omnes partes ita concurrere debent ut detur vacuum, fequitur hinc etiam eafdem non poffe realiter diftingui; hoc eft, fubftantiam corpoream, quatenus fubflantia eft, non poffe dividi. Spinoz. Etbic. part 1. prop. 15. fchol.
+ Si una pars materix annihilaretur, fimul etiam tota extenSio evanefceret. Epif. 4, ad Henr. Oldenb.

From thefe and other paffages it appears, that this author was unhappily milled by the doctrine of Des Cartes, that the effence of matter is conifituted by extenfion. It mult be owned, however, that many of the Cartefians endeavoured to wrangle away the dreadful conclufion: but they had fhortned their work, firt parts of whofe principia he reduced into the geometrical form. Mr. Leibnitz himfelf calls, fpinozifn un Cortefianijme outré; and it is apparent that his method, and many of his doctrines, were derived from this fource.

As Des Cartes had concluded, from the idea of an infinitely perfect neceffarily-exifting Being, that fuch a Being muitt exift ; fo Spinoza, from our having a true isea (that is a clear and diftinct idea, as he himfelf explains it) of a fubftance, infers that it muft necefiarily exift *; or, to ufe his own words, that its exiftence as well as its effence muft be an eternal truth. As Des Caries pretended to deduce all the pheromena of nature from the nature and properties of the firtt caufe; fo Spinoza pretends, that all our knowledge is to be derived from true ideas (as he always calls them) and that thofe true ideas ought
and had proseeded on better grounds, if they had rejected the principle. Yer Spinoza, in his feventy-third letter, pretends to find fault with Des Cartes for defining matter by extenfion, which, according to him, ought to have been explained by an attribute that fhould exprefs an efential and infinite effence.
$\ddagger$ Quam ille fummo fciendi amore arderet, quid in his ingenii vires valerent experiri decrevit. Ad hoc propofitum urgendum fcripta philofophica nobiliffimi \& fummi philofophi Renati Des Cartes magno ei fuerunt adjumento. Spinoz. oper. pofth. profat.

* Si quis dicerit fe claram \& diftinctam, hoc eft veram, ideam fubftantix habere, \& nihilominus dubitare num talis fubftantia exiftat, idem hercle effet ac fi diceret fe veram habere ideam, \& nihilominus dubitare num falfa fit (ut fatis attendenti fit manifeftum :) vel fi quis fatuat fubftantiam creari, fimul ftatuit ideam fallam factam effe veram; quo fane nihil abfurdius concipi poteft: adeoque fatendum neceffario eft, fubftantiæ exiftentiam ficut ejus effentiam æternam effe veritatem. Ethic. part 1. prop. 8. fchol, 2.
to be produced by the mind $\dagger$, from that idea which reprefents the moft perfect Being, the origin and fountain of nature. Des Cartes rejected the confideration of final caufes from philofophy; and $S p i$ noza tells us they are nothing but human fiction $\ddagger$, and laughs at chofe who imagine that the eyes were defigned for feeing, or the fun for giving light. He derives our notions of good and evil, order and confufion, beauty and deformity, from the fame fource. As Des Cartes reprefented the univerfe as a machine that might have been produced at firft, and may continue to exift for ever, by mechanical laws only, the fame quantity of motion remaining always in it unalterable; fo Spinoza reprefented it as infinite and neceffary, endowed always with the fame quantity of motion, or (to ufe his inaccurate expreffion *) having always the fame proportion of motion to reft in it, and proceeding by an abfolute natural neceffity; without any felf-mover or principle of liberty.

In all thefe, Spinoza has added largely, from his own imagination, to what he had learned from

+ Ut mens noftra omnino referat naturx exemplar, debet omnes fuas ideas producere ab eâ quæ refert originem \& fontem totius nature, ut ipfa etiam fit fons ceterarum idearum. Spinoz. de emendatione intellect.
\$ Ut jam oftendam naturam nullum fibi finern prefixum habere, \& omnes caufas finales nihil nifi humana effe figmenta, non opus ell multic, \&c. Hoc adhuc addam, nempe hanc de fine doctrinam naturam omnino evertere. Append. prop. 36. part 1. Eubic.
* Omnia corpora ab aliis circumcinguntur, \& ab invicem determinantur ad exiftendum \& operandum, certâ ac ceterminatâ ratione, fervatâ femper in omnibus fimul, hoc eft in toto univerfo, eâdem ratione motus ad quietem, Epift. 15 _Corpus motum vel quiefcens ad motum vel quietem determinari debuit ab alio corpore, quod etiam ad motum vel quietem determinatum fuit $a b$ alio, \& illud iterum $a b$ alio, \& fic in infinitum. Etbic. part 2. prop. 13. lem. 3.

Chap. 4. Philosophtcal Discoteries:
Des Carles. But from a comparifon of their method and principles, we may beware of the danger of fetting out in philofophy in fo high and prefumptuous a manner; while both pretend to deduce compleat fyltems from the clear or true ideas, which they imagined they had, of eternal effences and necellary caufes. If we attend to the confequences of fuch principles, we fhall the more willingly fubmit to experimental philofophy, as the only fort that is fuited to our faculties. It were unreafonable to charge upon Des Cartes the impious confequences which Spinoza may, have been led into from his principles: but we cannot but obferve, to the honour of Sir Ifaac Nereton's philofophy, that it altogether overthrows the foundation of Spinoza's doctrine, by fhewing that not only there may be, but that there actually is a vacuum ; and that, inftead of an infinite, neceffary, and indivifible, plenitude, matter appears to occupy but a very fmall portion of fpace, and to have its parts actually divided and feparated from each other.

It would be of no ufe to give a more particular account of the fyftem of Spinoza; nor is it poflible to defrribe fully, in an intelligible manner, fo abfurd a doctrine. It is allowed even by thofe who, on other occafions, have fhewn a difpofition towards fcepticifm, in relation to the foundations of natural religion, to be the moft monftrous that can be imagined; and to be fo oppofite to the moft evidenc: notions we are able to form *, that no perfon of a right

[^30]right mind can be in hazard of giving into it. He pretends, indeed, to proceed in the geometrical method and ftyle; but while he affumes a definition of lubflance and of its attributes at his pleafure, and paffes from his definitions as true ideas (as he calls them) to the neceffary exiftence of the thing defined, by a pretended immediate confequence, which he will not allow to be difputed, his whole fuperftructure appears a mere petitio principii or fiction. By his way of proceeding, any fyftem whatfoever might be eftablifhed. But it does not appear poffible to invent another fo abfurd, while he maintains that there is but one fubftance in the univerfe, endowed with infinite attributes, (particularly, infinite extenfion and cogitation) that produces all other things, in itfelf, neceffarily, as its own modifications; which alone is, in all things, caufe and effect, agent and patient, in all refpects phyfical and moral.

The Cortefian doctrine has been often altered, and variounly mended, fince it was firft propofed by its author ; and, for a hundred years together, many ingenious men have been making their utmoft efforts to patch it up, and fupport its credit, by reforming firtt one part, and then new-modeling another part of this extenfive fyftem. But the foundation is fo faulty, and the whole fuperftructure fo erroneous, that it were much better to abandon the fabrick, and fuffer the ruins to remain a memorial, in all time to come, of the folly of philofophical prefumption and pride.
leads, but likewife to trace Spinoza's doerine to its fource (for the fake of fome who may have been mined into a favourable opinion of it), which is no other than the Cartcfion fable; of which almof every article has been difproved by Sir Ifaas Noriton, or others.

Mr. Leibnitz retained the Cartefian fubtilc matter, with the univerfal plenitude and vortices; and reprefented the univerfe as a machine that fhould proceed for ever, by the laws of mechanifm, in the moft perfect ftate, by an abfolute inviolable neceffity; tho' in fome things he differs from Des Cartes. After Sir Ifaac Nereton's philofophy was publifhed (in 1687), he printed an effay on the celeftial motions (Act. Erudit. 1689) where he admits of the circulation of the ether with Des Cartes, and of gravity with Sir IJaac Neroton; but he never explained how thefe could be reconciled, and adjufted together, fo as to account for the planetary revolutions; or how gravity arofe from the impulfe of this cther. Nor did he fhew how his harmonical circulation of the ether could be reconciled with the law of the motions of the feveral planets, in their refpective orbits; which is very different from the law of the motions of the fame planer, at its various diftances from the fun. The angular velocity of any one planet, decreafes from the peribeium to the apbelium, in the fame proportion as its diftance from the fun increafes, and this is what he calls the harmonical circulation. If this law took place likewife in the motions of the different planets compared together, throughout the fyftem, this hypothefis, of their being carried along with a circulating ether, might appear more tolerable: bur the velocities of the planets, at their mean diftances, decreafe in the fame proportion as the fquare-roots of the numbers which exprefs thofe diftances from the fun. Neither did he hew how to reconcile this circulating motion of the ether with the free motions of the comets in all directions, or with the obliquity of the planes in which the planets revolve to the cquator of the fun and to one ano-
ther; or refolve the other objections to which this hypothefis of a plenum and vorices is liable.

Afrerwards however, on occafion of fome difputes that had arifen concerning his title to the invention of the calculus of infinitefimals, or method of fluxions, he appeared with great warmth againft Sir Ifaac Nerroton's philofophy, and placed himfelf at the head of its oppofers. It is needlefs to infift here on the paffion and prejudices that his followers have expreffed againft it, and againft thofe that have appeared in its defence. It is better to forget thefe, and to confine a philofophical difpute to philofophical matters.

Mr. Leibnitz's fyftem has been the more acceptable to many, becaufe, from the wifdom and goodnefs of the Deity, he concluded the univerfe, upon the whole, to be a perfect work, or the beft that could poffibly have been made. This doctrine was very agreeable in all times to the philofophers who acknowledged a fupreme beneficent governor; but the origin of evil perplexed them. The folution of this was what Socrates expected from the writings of Anaxagoras, but was difappointed. The fupreme Being, according to Timcus Locrus, was סapusprog т $\mathrm{\omega}$ ße入tiowos. Plato taught that the fupreme governor has difpofed and complicated all things for the happinefs and virtue of the whole, and that our complaints are groundlefs, arifing from our narrow views of things. Cbryyppuis was of opinion * that it could

[^31]Chap. 4. Philosophical Discoveries. could never have been the aim or firft intention of the Author of nature, and parent of all good, to make men obnoxious to difeafes; but that while he was producing many excellent things, and forming his work in the beft manner; other things alfo arofe, connected with them, that were incommodious; which were not made for their own fakes, but permitted as neceffary confequences of what was beft. Mr. Leibnitz has wrote at great length in defence of this doctrine, and has endeavoured to anfwer the objections that have been made againft the perfection of the univerfe.

But this learned author's fpeculations, tho' they may perplex a cautious reader, cannot fatisfy him. He propofes two principles as the foundation of all our knowledge; the firft, that it is impoffible for a thing to be, and not to be at the fame time, which, he fays, is the foundation of fpeculative truth. The other is, that nothing is without a fufficient reafon why it fhould be fo rather than otherwife; and by this principle, according to him, we make a tranfition from abftracted truths to natural philofophy. From this principle he concludes, that the mind is naturally determined, in its volitions or elections, by the greateft apparent good; and that it is impoffible to make a choice between things perfectly like, which he calls indifcernibles; from whence he infers, that two things perfectly like could not have been produced even by the Deity. For this reafon, and other metaphyfical confiderations, he rejects a vacuum, the parts of which muft be fuppofed perfictly like to each other. For the fame reafon he alfo rejects atoms, and all fimilar particles of matter; to
faciebat coharentia; eaque non per naturam, fed per fequelas quafdam neceffarias, facta dicit, quod ipfe appellat $x \dot{\alpha} \tau \alpha \pi \alpha \npreceq \alpha-$ колїӨпоw. Aul. Gell. lib. 6. cap. . * a monad, or active kind of principle, in which, fays he, are as it were perception and appetites. The effence of fubftance he places in action or activity, or rather (as he expreffes it) in fomething that is between acting and the faculty of acting. He affirms abfolute reft to be impofifible, and holds motion, or a fort of nifus, to be effential to all material fubftances. Each monad he defcribes as reprefentative of the whole univerfe from its point of fight; and, after all, in one of his letters tells us, that matter is not a fubftance, but a fubfantiatum, or pbenomene bien fondé.

Such are the doctrines and expreffions of a philo fopher who valued himfelf upon his clear and adequate ideas, and ridiculed the metaphyfics of the Englifh, as narrow, and founded on unadequate notions. The criterion of truth is ufually placed in clear and evident perception; but fome philofophers feem to value doctrines in proportion as they are obfcure. Who would imagine that, in natural philofophy, fuch arguments fhould be preferred to the plainef facts and experiments for determining the queftion concerning a vacuum? Let any man reflect on his own thoughts, from which only any notions we have of liberty (and confequently of the divine liberty) can be derived; and if he is fatisfied that he could chufe between two defirable things that appear equally good, rather than want both, fuch arguments can have no force upon him. His difficulty feems ftill to remain againft the particles of matter, after all the pains he had taken to diftinguifh them by his monads; for how thall we dininguifh the monads themfelves? or if that may be practicable,

[^32]Chap. 4. Philosophical Discoveries. how fhall we diftinguifh the fame monad from itfelf, in all the moments of its exiftence? If two things perfectly like to each other can exift in different times, furely they may exift in different places at the fame time. This learned author appeared very averie to thofe doctrines which he imagined had a tendency to reftore the exploded tenets of the fcholaftic philofophy; yet thefe monads, as far as he has condefcended to defcribe them, appear to be as incomprehenfible as their fubitantial forms, entelecbeia, or moft occult qualities.

He makes great ufe of a comparifon between the effects of oppofite motives on the mind, and of weights placed in the fcales of a ballance, or of powers acting upon the fame body with contrary directions. His learned antagonift denies that there is a fimilitude between a ballance moved by weights; and a mind acting upon the view of certain motives; becaufe the one is entirely paffive, and the other not only is acted upon, bur acts alfo. The mind, he owns, is purely paffive in receiving the impreffion of the motive, which is only a perception, and is not to be confounded with the power of acting after, or in confequence of, that perception. The difference between a man and a machine does not confift only in fenfation, and intelligence; but in this power of acting alfo. The ballance for want of this power cannot move at all, when the weights are equal: but a free agent, fays he, when there appear two perfectly alike reafonable ways of acting, has ftill within itflff a power of chuling; and it may have flrong and very good reafons not to forbear. It is evident that as it is from internal confcioufnefs I know any thing of liberty, fo no affertion contrary to what I am confcious of concerning it can be adimitted; and it were better perhaps to treat of this
abftrufe fubject after the manner of experimental philofophy, than to fill a thoufand pages with meta. phyfical difcuffions concerning it. But to leave this fubject, the doctrine of liberty is fo foreign to the queftions concerning a vacuum and atoms, that it mult appear a far-fetched uncommon ftretch of me: taphyfics to pretend to determine them by it; and very unaccountable to refufe the Deity the power of producing, by one act of his will, all the matter in the univerfe at once, tho' it dhould be fuppofed perfectly fimilar and uniform.
5. From the fame principle, Mr. Leibnitz concluded, that the material fyttem is a machine abfolutely perfect, that can never fall into diforder, or require to be fet right; and that to imagine that God interpofes in it, is to leffen the fkill of the Author, and the perfection of his work.

But this is more than his own principles require. For tho' it fhould be allowed that nothing is limited without a fufficient reafon; yet, upon the whole, it may be better that the Author of the world fhould act immediately in it, cherifhing and governing his work, and fometimes changing or renewing it. Can the beauty and perfection of the univerfe be the worfe for His acting in it, who muft be fuppofed to act always with perfect wifdom? It was fit that there fhould be, in general, a regularity and conftancy in the courfe of nature; not only for the fake of its greater beauty, but alfo for the fake of intelligent agents, who without this could have had no forefight, or occafion for choice and wifdom in judging of things by their confequences, and no proper exercife for their other faculties. But tho' the courfe of nature was to be regular, it was not necefiary that it fhould be governed by thofe princi- ples only which arife from the various motions and modifications of unactive matter, by mechanical laws; and it had been incomparably inferior to what it is, in beauty and perfection, if it had been left to them only.

Sir Ifaac Newton was of opinion that the fabrick of the univerfe, and courfe of nature, could not continue for ever in its prefent ftate, but would require, in procefs of time, to be re-eftablifhed or renewed by the fame hand that formed it. Yet this philofophy was condemned by Mr. Leibnitz as leading to impiety ; and, which is very furprizing, this particular doctrine was excepted againft as having fuch a tendency. He objected, that as a good artift made his workmanfhip as perfect as poffible, fo it argued a want of power or fkill in the Author of the world, if it fhould ever require to be reformed or wound up again. But Sir Ifaac Neroton thought it altogether confiftent with the notion of a moft perfect Being, and even more agreeable to it, to fuppofe that he fhould form his work dependent upon himfelf, fo as after proper periods to mode! it anew, according to his infinite wifdom. To exclude the Deity from acting in the univerfe, and governing it, is to exclude from it what is moft pertect and beft, the abfence of which no mechanifm can fupply. Such a doctrine could not have been propofed by one of Mr. Leibnitz's fentiments concerning the perfection of the univerfe, if he had not been mifled by an excelfive fondnefs for neceffity and mechanifm.

The capital doctrine of this philofophy that reprefents the univerfe as a perfect machine, fuch as may continue for ever by mechanical laws in its prefent flate, is, that the fame quantity of force and vigour
remains always in it, and paffes from one portion of matter to another, without undergoing any change in the whole. Des Cartes maimtained that the fame quantity of motion is always preferved in the univerfe. Spinoza called it the fame proportion of motion to reft. Mr. Leibnitz diftinguifhed between the quantity of motion, and the force of bodies; he owns that the former varies, but maintains that the quantity of force is for ever the fame in the univerfe: and yet there is no doctrine more repugnant to perpetual experience and common obfervation than this is, even tho' we fhould meafure the forces of bodies by the fquares of the velocities, according to his doctrine. If all bodies in the world had a perfect elafticity, there might be fome pretence for maintaining this principle. But there never has been difcovered as yet any one body, whofe elafticity is perfect; and when any two bodies meet with equal motions, they rebound with lefs motions, and there is always force loit by their collifion; and if the bodies are foft, they both fop, becaufe of the impenetrability of their parts; or, to fpeak in this author's favourite fyle, becaufe there can be no fufficient reafon why one of them fhould prevail, rather than the other. In this cafe, their whole motion is loft ; and the motion of the one being deftroyed by the oppofite motion of the other, it is without ground, and merely to fave an hypothef:s, that a fluid is imagined, which they feign to receive and retain the forces of thofe bodies. When liberty is taken to fupport one fiction by another, this by a third, and fo on, any fyftem may be maintained. According to our firf views of matter and motion, from the plaineft experiments, matter appears to be an unactive fubftance of no elafticity; yet they afribe a perfect elaificity to all their fubtile matter; and laws of motion are propofed by them as general,

Chap. 4. Philosophical Discoveries.
which can hold of perfectly elaftic bodies only, that is, of bodies not one of which has hitherto been found in nature. They have never been able to explain how this perfeet elafticity arifes from the laws of mechanifm; yet, according to them, the world is a mechanical perpetual movement.

The genius of this kind of philofophy appears on no occafion fo evidently, as from the arts which have been ufed to get rid of the infuperable objec. tions againit the vortices. To remove the difficulty a ftep farther, or to involve the queftion in obicurity, new vortices are introduced in every infinitely fmall particle of matter. From thefe, if there be occafion, they will defcend into another order infinitely lefs; and fo on; for they expreny pretend to take the fame benefit from the infinite orders of infinitefimals, in philofophy *, that is claimed by fome late geomerricians in the refolution of their problems. Thus (as we obferved elfewhere $\dagger$ ) an abfurd philofophy is the natural product of a vitiated geometry. For tho' it follows from our notion of magnitude, that it al way confifts of parts, and is divifible without end, yet an actual divifion in infnitum is abfurd, and an infinitely little quantity (even in Mr. Leibnitz's judgment $\ddagger$ ) is a mere fiction. Philofophers may allow themfelves to imagine likewife infinite orders of infinitely finall particles of matter, and fuffer themfelves to be tranfported with the idea; but thefe illufions are not fupported by found geometry, nor agreeable to common fenfe: After all that has been faid for the vortices, there is not one experiment to favour them; and fome of the moft

[^33]common
common and fimple are againft admitting fuch fluids and their motions.

We have another inftance of the art by which they fupport their fchemes, in the pretended demonftration they give againft the poffibility of atoms, or of any perfectly hard and inflexible bodies. According to what they call the law of continuity, all changes in nature are produced by infenfible and infinitely fmall degrees; fo that no body can, in any cale, pafs from motion to reft, or from reft to motion, without paffing through all poffible intermediate degrees of motion ; from which they conclude that atoms, or any perfectly hard bodies, are impoffible; becaufe if two of them fhould meet with equal motions, in contrary directions, they would neceffarily ftop at once, in violation of the law of continuity*. But upon what grounds have they made this an univerfal law of nature? Tho' in common bodies (which are loofely compounded of particles that are themfelves compounded of others of a lower order, and fo on; fo that we cannot arrive at the elements, or atoms, till-after we know not how many refolutions) the parts yield in their collifions, we cannot affirm this of the atoms or ultimate elements themfelves. This yielding is a confequence of the contexture of bodies, which have always much more of void interftices than of folid matter, and confift of particles that muft be fuppofed to adhere to one another with a force incomparably lefs than that by which the matter of the elementary particles themfelves holds together $\dagger$.

The

## * Difcours fur le Mouvement, Paris 1726.

+ The author of the above cited difcourfe on motion, tells us, that if nature could pafs from a ftate of motion to a fate of reft at once, without paffing through the intermediate degrees of motions, The truth is, they found it neceffary to reject bodies of a perfect hardnefs; becaufe it was impoffible to explain the effects of their collifions, in a manner confiftent with the prefervation of the fame quantity of force in the univerfe, or with their new doctrine, That the forces of bodies are as the Squares of the velocities; and therefore they had recourfe to this new law of continuity to profcribe them. If fuch a body fhould ftrike another equal quiefcent body, of the fame kind, the velocity of the firf would be equally divided by the ftroke between them ; but if we meafure the force by the fquare of the velocity, each of them would have but one fourth part of the force of the firft body; and both together would have but one half of its force; fo that the other half would be neceffarily loft, without producing any fort of effect. In order to get rid of objections of this kind, fome of the favourers of the new doctrine, concerning the menfuration of the force of bodies, content themfelves with obferving, that no bodies of a perfect hardnefs have been found in nature; tho' there is the fame objection againft admitting and treating of bodies of a perfect elafticity. But others boldly reject fuch hard bodies as impoffible, from thofe far-fetched metaphyfical confiderations we have defribed. How much they have endeavoured to perplex the theory of motion, in its plaineft parts, from a zeal for the fame doctrine, will appear afterwards.
motion, then one ftate would be deftroyed before nature could know what new fate fhe ought to determine herfelf to ; and asks how the could then determine herfelf to any one fate rather than another? In anfwer, we need only obferve, that to ceafe to move is the fame as to be at reft, and that when the equal atoms itop each orher at once, there is no interval between the ftate of motion and that of reff; and that when motion is deAtroyed, reft neceffarily enfues.

The power of mechanifm was never more mag. nified than by Mr. Leibnitz's famous doctrine of a pre-eftablifbed barmony, as he calls it. According to Des Cartes, the brutes were mere machines; and this doctrine, to many, appeared incredible. But this is nothing in comparifon to what Mr. Leibnitz would have us believe, when he tells us that the foul does not act on the body, nor the body on the foul; that both proceed by neceffary laws, the foul in its perceptions and volitions, and the body in its motions, without affecting each other; but that each is to be confidered as a feparate independent machine. The volitions of the mind are followed inftantly by the defired motions of the body, not in confequence of thofe volitions in the leaft, but of the nice and well adjufted machinery of the body. The impreffions produced in the fenfory have no effect on the mind; but the correfponding idea arifes, at that precife time, in confequence of a chain of caufes of a different kind. Thus all that men do or fay, is no more than the effect of exquifite machinery, according to him. But it is time for us to leave thofe fictions, left the reader fhould be tempted to think that all philofophy is illufion.

## C H A P. V.

Conclufions from the foregoing obfervations.

1. HHE fum of what we have obferved is, that tho' thefe learned men may have fhewn abundance of genius and invention in their writings; yet they, and all others who have followed a like method, have begun at the wrong end, in tracing the chain of caufes, and have attempted to form a fcheme of philofophy that far furpaffes the human facul-

Chap. 5. Philosopitical Discoveries. faculces. The eternal reafons and primary caufes of things, which they imagine they poffers, rife infiritely above them; while certain obfervation, and plain facts, perpetually appear in contradiction to their boafted fpeculations.

We are to endeavour to rife, from the effects thro' the intermediate caufes, to the fupreme caufe. We are, from his works, to feek to know God, and not to pretend to mark out the fcheme of his conduct, in nature, from the very deficient ideas we are able to form of that great myfterious Being. Thus natural philofophy may become a fure bafis to natural religion, but it is very prepofterous to deduce natural philofophy from any hypothefis, tho' invented to make us imagine ourfelves poffert of a more complete fyftem of metaphyfics, or contrived perhaps with a view to obviate more eafily fome difficulties in natural theology: We may, at length, reft fatisfied, that in natural philofophy, truth is to be difcovered by experiment and obfervation, with the aid of geometry, only; and that it is neceffary firft to proceed by the method of analyfis, before we prefume to deliver any fyftem fynthetically.

We may alfo learn at length, from the bad fuccefs of fo many fruitlefs attempts, to be lefs fond of perfect and finifhed fchemes of natural philofophy; to be willing to ftop when we find we are not in a condition to proceed farther; and to leave to pofterity to make greater advances, as time and obfervation fhall enable them. For we cannot doubt but that nature has difcoveries in ftore for future times alfo, which may be retarded by our rah and illgrounded anticipations. By proceeding with due care, every age will add to the common ftock of knowledge; the myfteries that flill lie concealed in
nature may be gradually opened, arts will flourifh and increafe, mankind will improve, and appear more worthy of their fituation in the univerfe, as they approach more towards a perfect knowledge of nature.
2. 'Twas thus the fpeculative parts of the mathematics gradually arofe, from fmall beginnings, by the confpiring labours of great men, in the diftant ages of the world. The Egyptians began this fcience, the Greeks purfued it, the Arabians preferved it, when it was loft in Europe, and fet a high value upon it while their empire flourihed; and fince the late memorable reftoration of letters in Europe, its great progrefs has been the boaft of modern learning.

The inundations of the Nile made it neceffary for the Egyptians to invent fome art by which they fhould be able to meafure their land, and to this, we are told, geometry owes its origin and name. The priefts of that country, abounding in leifure and genius, improved it into a fcience; and their kings wrote treatifes upon it. Thales brought the principles of it into Greece, where it was fo diligently cultivated that the elementary part was foon compleated, and was fo highly efteemed as to have the appellation of the mathemata in a manner appropriated to it. An oracle appointing the cubical altar of Apoilo to be coubled was, we prefume, of greater advantage to geometry than to the Atbenians then afflicted with the plague; as it gave occafion to Plato to confider the famous problem of the duplication of the cube, and produced the Solid geometry. It afterwards received great improvements from the incomparable Arcbinedes, who fquared the area of the parabola, made fome progrefs in the menfura-

Chap. 5. Philosophical Discoveries. tion of the circle, and enriched this fcience with many difcoveries worthy of fo excellent a genius.

It appears that it advanced but by degrees, and fometimes by very flow fteps: one, we are told, difcovered that the three angles of an equilateral triangle were equal to two right ones; another went farther, and fhewed the fame thing of thofe that have two fides equal and are called ifófceles triangles; and it was a third who found that the theorem was general, and extended it to triangles of all forts *. In like manner, when the fcience was farther advanced, and they came to treat of the conic fections, the plane of the fection was always fuppofed perpendicular to the fide of the cone; the parabola was the only fection that was confidered in the rightangled cone, the ellipfe in the acute-angled cone, and the hyperbola in the obtufe-angled. From thefe three forts of cones, the figures of the fections had their names, for a confiderable time ; till at length Apollonius fhewed how they might be all cut out of any one cone, and by this difcovery merited in thofe days the appellation of the great geometricion.

By fuch fteps this fcience rofe, in procefs of time, to that vaft height for which it is admired. Problems that appeared of an infuperable difficulty in one age were refolved in another, and, in a third, were in a manner defpifed as too fimple and eafy; particular theorems were firft inveftigated that led to more extenfive difcoveries; laborious methods were followed, till others were found that were more fimple and general; but the greateft care was always taken of the certainty and evidence of the fcience, as it was carried on. There was indeed a long

[^34]interval of many ages, between the period when it flourifhed in Greece, and revived in Europe : but the antients, having founded it on unexceptionable grounds, and carried it on with the utmoft accuracy, when learning was reflored, their works ferved for a bafis, as well as for models, to the modern inventors. Thus the gradual progrefs of mankind in this fcience appears fimilar, in fome refpects, to the advances of a man in vigour and knowledge. They firt made effays of a weak and unexperienced ftrength, which by degrees acquired more and more force, till at length, after the fuccelsful labours of feveral ages, nothing feem'd too high for them.
3. From what we have obferved concerning the hiftory of natural philofophy, it may eafily be underflood why its progrefs has been fo different; and whence it proceeds that we feidom have found in it, as in geometry, that pleafing gradual rife from fmall beginnings to greater heights. Inftead of fearching into nature, men retired to contemplate their own thoughts; inftead of tracing her operations, they gave their innaginations full play: where they ought to have hefitated, they decided; and where there was no difficulty, they doubted. What was fimple they divided, and defined what was plain; but in what was more intricate, the fubterfuges of art were fet up in oppofition to nature, and captious fcience againft common reafon; while one ill-grounded maxim was imagined, to fupport another, and fiction was grafted on fiction. Hypothefes were invented, not for reducing facis or obfervations of a complicated nature to rules and order, (for which purpofe they may be of fervice) but as primciples of fcience. Thefe were of fo great authority as not to be overturned by contradictory obfervations, or by the extravagant confequences that arofe from them ; but
the author, charm'd with his rhapfody, proceeded, without minding thefe, to the conclufion of his fable.

Thus one age or fect could not but deftroy, for the moft part, the labours of another. Sometimes the numbers and barmony of the Pytbagoreans ferved for explaining what was moft my lterious in nature; the ideas of Plato, the matter and form of Arifotle prevailed in their turn; but thefe were of ufe only to veil the ignorance of men. Epicurus employed his philofophy to overthrow the plain and evident dictates of fenfe and reafon ; yet difciples were not wanting to fupport and adorn fo abfurd a fcheme. The Sceptics went into the oppofite extreme, and became fo fond of darknefs that they would not fee the light tho' never fo clear ; and fome of them chofe rather to doubt that they doubted, than to acknowledge any thing; yet they too had numerous followers. Afterwards philofophy was in no efteem but as far as it ferved, by a perplexed and falfe glofs, to promote the ends of fuperftition. Of late, the pretended clear ideas of Des Cartes, and metaphyfical fpeculations of Mr. Leibnitz, have been received by many for true philofophy; not to mention the extravagancies of Spinoza, and a thoufand crude notions that deferve no memory.

We have feen, in the foregoing account of the fate of philofophy in different periods, that they who have indulged themfelves in inventing fyftems and compleating them, tho' they have fometimes fet out in a manner that has appeared plaufible, yet, in purfuing thofe fchemes, fuch confequences have arifen as could not fail to difguft all but fuch as were intoxicated with the deceit. Some, from their fond-- out of the univerfe: others, from a contrary difpofition, admit nothing but perceptions, and things which perceive; and fome have purfued this way of reafoning, till they have admitted nothing but their own perceptions. Others, while they overlock the intermediate links in the chain of caufes, and haftily refolve every principle into the immediate influence of the firft caufe, impair the beanty of nature, put an end to our enquiries into the moft fublime part of philofophy, and hurt thofe very interefts which they would promote. In framing thofe fyftems, he who has profecuted each of them fartheft has done this valuable fervice, that, while he vainly imagined he improved or compleated it, he really opened up the fallacy, and reduced it to an abfurdity. Many who fuffered themfelves to be pleafed with Des Cartes's fable, were put to a ftand by Spinoza's impieties. Many went along with Mr. Leibnitz's fcheme of abfolute neceffity, but demurred at his monads and pre-eftablifbed barmony. And fome, willing to give up the reality of matter, could not think of giving up their own and other minds.

The variety of opinions and perpetual difputes amongft philofophers has induced not a few, of Jate as well as in former times, to think that it was vain labour to endeavour to acquire certainty in natural knowledge, and to afcribe this to fome unavoidable defect in the principles of the fcience. But it has appeared fufficiently, from the difcoveries of thofe who have confulted nature and not their own imaginations, and particularly from what we learn from Sir Ifaac Neroton, that the fault has lain in the philofophers themfelves, and not in philofophy. A

Chap. 5. Philosophical Discoveries. compleat fyttem indeed was not to be expected from one man, or one age, or perhaps from the greateit number of ages; could we have expected it from the abilities of any one man, we furely hould have had it from Sir IJaac Neroton: but he faw too far into nature to attempt it. How far he has carried this work, and what are the moft important of his difcoveries, we now proceed to confider.

## B O O K II.

## Of the theory of motion, or rational mechanics.

## CHAP. I.

Of Space, time,' matter, and motion.

"A$S$ we are certain of our own exiftence, and of that of our ideas, by internal confcioufnefs; fo. we are fatisfied, by the fame confcioufnefs, that there are objects, powers, or caufes without us, and that act upon us. For in many of our ideas, particularly thofe that are accompanied with pain, the mind muft be paffive, and receive the impreffions (which are involuntary) from external caufes or inftruments, that depend not upon us. We eafily diftinguifh thefe objects into two general claffes. The firft is of thofe which we perceive to have a fpontaneity, or felf-moving power, and feveral properties and affections fimilar to thofe of our own minds, fuch as reafoning, judging, willing, loving, hating, $\varepsilon^{\circ} c$. The fecond general clafs is of thofe in which no fuch affections appear, but which are fo far of a paffive nature, that they never move of themfelves, neither, when they are in motion, do they ever ftop without fome external influence. If one of thefe move out of its place, without the appearance of a mover, we immediately conclude that this is owing to fome invifible agent; fo much are we perfuaded of its own inertia. If we lay up one of them in any place, we expect to find it there at any diftance of time, if no other powers have had accefs to it. This paffive nature, or inertia, is what chiefly diftinguifhes the fecond clafs of external objects, which is called body or matter; as the former is called mind or $\int$ pirit.
2. How external objects, of either clafs, act upon the mind, by producing fo great a variety of impreffions or ideas, is not our bufinefs at prefent to enquire: neither is it neceffary for us to determine how exact or perfect the refemblance may be between our ideas and the objects or fubftances they reprefent. In our ideas which are repecitions of other ideas, we find very different degrees of refemblance between them and thofe of which they are repetitions. The idea we form in our imagination of a perfon, place, or figure which we have often feen, has a much more perfect refemblance to the impreffion we receive from fenfe, than the idea we are able in our imagination to form of pain, as to the fenfation we have felt of it. And as it is no objection againt the exiftence of the fouls of other men, that they may be very different from the notion or conception we may have formed of them ; fo it is no juft reafon againft admitting the exiftence of body, that its inward effence, or fubftratum, may be very different from any thing we know of it. It is, however, rating our ideas of external objects by much too low, to compare them to words or arbitrary figns, ferving only to ditinguifh them from each other. For it is from our ideas of them that we learn their properties, relations, and their influences upon each other, and upon our minds and thofe of others, and acquire ufeful knowledge concerning them and ourfelves. For example, by comparing and examining our ideas, we judge of order and confufion, beauty and deformity, fitnefs and $\mathrm{H}_{4}$
unfit- unfitnefs, in things. The ideas of number and proportion, upon which fo ufeful and extenfive fciences are founded, have the fame origin.
3. The mind is intimately confcious of its own activity in reflecting upon its ideas, in examining and ranging them, in forming fuch as are complex from the more fimple, in reafoning from them, and in its elections and determinations. From this, as well as from the influence of external objects upon the mind, and from the courfe of nature, it eafly acquires the ideas of caufe and effect. When a figure defcribed upon a board produces a frmilar idea or impreffion on all thofe who fee it, it is as natural to afcribe this to one caufe, as, when we fpeak to a numerous audience, the effect of the difcourle is to be afcribed to us; tho' we may be unable to explain how the impreflion of the figure is communicated to the feveral fpectators, or the difcourfe to the hearers. It were eafy to make many more remarks on the philofophy of thofe whofe principles would lead them to maintain; that external objects vary with our preceptions, and that the object is always different when perceived by different minds, or by the fame perfon at different times, or in different circumftances. It will not be expected from us that we fhould enter farther, in a treatife of this kind, into the examination of doctrines as fruitlefs as they are extravagant.
4. Body not only never changes its ftate of itfelf, in confequence of its paffive nature or inertia, but it alfo refifts when any fuch change is produced: when at reft, it is not put in motion without difficulty; and when in motion, it requires a certain force to fop it. This force with which it endeavours to perfevere in its ftate, and refifts any change, is called its vis inertice; and arifes from the inertio

Chap. i. Philosophical Discoveries.
of its parts, being always proportional to the quantity of matter in the body; infomuch that it is by this inertia only we are able to judge of the quantity of matter. And this judgment is well founied, becaufe we conftantly find that when we double or triple a body, or increafe or diminifh it in any proportion, we mult double or triple the force that is requifite to move it with the fame celerity, or increafe or diminifh it in the fame proportion with the body. If the folid, uncompounded particles void of pores, of equal bulk, have their inertia equal, then this mutt be accurately true: but if matter be of kinds fo different from each other, that the folid elementary particles of the one have a greater inertia than equal folid elementary particles of the other kind, then it is only when we compare thofe of the fame kind, that we can affirm the inertia to be proportional to the quantity of matter. Such different kinds of matter may exift for ought we know; but it is by diminifhing or increafing the number or dimenfions of the pores of bodies that they are condenfed or rarified, according to our experience, and thereby the inertia of a given bulk increafed or diminifhed.
5. Space is extended without limits, immoveable, uniform and fimilar in all its parts, and void of all refiftance. It confifts indeed of parts which may be diftinguifhed into other parts, lefs and lefs, without end, but cannot be feparated from each other, and have their fituation and diftances changed.
6. Body is extended in fpace, moveable, bounded by figure, folid, and impenetrable, refifting by its inertia, divifible into parts, lefs and lefs, without end, that may be feparated from each other and have their fituation or diftances changed in any manner.
7. From the fucceffion of our own ideas, and from the fucceffive variations of external objects in the courfe of nature, we eafily acquire the ideas of duration and time, and of their meafures. We conceive true or abfolute time, to flow uniformly in an unchangeable courfe, which alone ferves to meafure with exactnefs the changes of all other things. For unlefs we correct the vulgar meafures of time, which are grofs and inaccurate, by proper equations, (as in predicting the eclipfes of the fatelites of $\mathcal{F u p i t e r}$, and moft other aftronomical phænomena) the conclufions are always found inaccurate and erroneous: and however various the flux of time may appear to different intellectual beings, it cannot, at leaft, be thought to depend upon the ideas of any created being. Time may be conceived to be divided into fucceffive parts that may be lefs and lefs without end; tho', with refpect to any one particular being, there may be a leaft fenfible time, as well as a minimum fenfibile in other magnitudes.
8. Motion is the change of place; that is, of the part of fpace which the body occupies, or in which it is extended. The motion is real or abfolute, when the body changes its place in abfolute fpace. It is called relative, when the body changes its place with relation only to ambient bodies; and it is apparent motion, when the body changes its fituation with refpect to other bodies that appear to us to be at reft. The parts of abfolute fpace not being the objects of our fenfes, it is one of the great difficulties in philofophy to diftinguifh which motions are true and real, and which are apparent only. However, philofophers by proper care are often able to effect this, by arguing juftly from the caufes of the motion when known, or from their properties and effects. A real

Chap. i. Phlosophical Discoveries.
circular motion, for example, is always accompanied with a centrifugal force, arifing from the tendency which a body always has to proceed in a right line. Thus, from the centrifugal force which, at the æquator, diminifhes the gravity and retards the motion of the pendulum, fo that it moves more flowly there than towards either pole, we have a proof of the earth's diurnal rotation on its axis. At the fame time, the diurnal revolution of the heavenly bodies about the earth muft be apparent only ; fince if it was real, an immenfe centrifugal force would thence arife, which could not but difcover itfelf; becaufe they move in free fpaces, and the folid orbs have been exploded upon the moft evident grounds.
9. I know that fome metaphyficians of great character condemn the notion of abfolute fpace, and accufe mathematicians in this of realizing too much their ideas: but if thofe philofophers would give due attention to the phænomena of motion, they would fee how ill grounded their complaint is. From the obfervation of nature, we all know that there is motion; that a body in motion perfeveres in that ftate, till by the action or influence of fome power it be neceflitated to change it ; that it is not in relative or apparent motion in which it perfeveres, in confequence of its inertia, but in real and abfolute motion. Thus the apparent diurnal motion of the ftars would ceafe, wihhout the leaft power or force acting upon them, if the motion of the earth was ftopt; and if the apparent motion of any ftar was deftroyed by a contrary motion impreffed upon it, the other celeftial bodies would ftill appear to perfevere in their courfe, the centrifugal force at the æquator would fill fubfift, with the fpheroidical figure of the fluid ocean ; the confequences of the real motion of the earth
upon its axis. They who are not well acquainted with the theory of motion, more eafily allow that a body at reft continues at reft, in confequence of its paffive nature or ineriia, than that when in motion it continues in motion: but this perfeverance of a body in a flate of reft can only take place with relation to abfolute fpace, and can only be intelligible by admitting it. When a topp turns upon a fmall pivot, its circular motion will continue fmooth for a long time, but any body placed upon its furface does not continue in that place, but immediately flies off. When a fhip moves fteadily, any body placed in the cabin continues in its place, as if the whole was at reft; but when the motion of the fhip is ftopt, the body flies off in the direction of its former motion; for, in confequence of its inertia, it endeavours to perfevere, not in its fate of reft in the fhip, but in its ftate of motion or reft with regard to abfolute fpace. It were eafy to enlarge on this fubject, and to fhew that there is no explaining the phænomena of nature without allowing a real diftinction between true, or real, and apparent motion, and between abfolute and relative fpace. Whatever thofe philofophers may pretend, we have no clearer idea than of face; and tho' fome puzzling difputes may arife in fome of our enquiries concerning it, this is what we meet with in all our enquiries into nature; our knowledge of which we ought to take care to have as clear and well founded as poffible, tho' it is in vain to pretend to make it complete and perfect; as we obferved in the firft book,
10. Body being diftinguifhed from face by its vis inertic or refiftance, it is an obvious fuggeftion of common fenfe that all fpace is not equally full of matter ; and it is the refult of philofophical enquiries, that the folid matter in the denfeft bodies bears

Chap. i. Philosophical Discoveries. 109 a fmall proportion to their whole bulk. The rays of light find a paffage through a glafs globe in all directions, which argues the great rarity of the globe, as well as the fubtility of light. The fame is to be faid of the magnetic and electric effurvia, and of the fubtile matter that pervades the pores of bodies with great freedom in chymical experiments. As for thofe fluids which philofophers have invented, in order to replenifh the pores of bodies, fo as to exclude a void out of the univerle, we made fome obfervations upon them in the firt book; and we may have occafion afterwards to fhew how improper they are for accounting for the phrnomena which have been afrribed to them.
ri. Space and time ferve to meafure each other, reciprocally, by motion: time is in a perpetual flux and perifhing; but a reprefentation of it is preferved in the fpace defcribed by the motion. When the fpace flows as the time, that is, when equal parts of fpace are defcribed in any equal parts of the time, then the motion is uniform, and the velocity is conftant or unvaried during the motion. When the parts of fpace, defcribed in any equal fucceffive parts of the time, continually increafe, the motion is accelerated; and when thofe parts of face continually decreafe, the motion is retarded. In general, the velocity of motion is always meafured by the fpace that would be defcribed by that motion continued uniformly for a given time. It is obvious that the fpace, defcribed by an uniform motion, is in the compound proportion of the time and velocity of the motion: but in general, let A B, (Fig. I.) the bafe of a figure, reprefent the time of a motion, and the ordinate or perpendicular $\mathrm{P} M$, at any point P of the bafe, meafure the velocity at the correfponding term of time, (that is, the fpace which would be
defcribed by the motion continued uniformly from that term for a given time) then the area of the figure $A B D$ fo formed will meafure the fpace defcribed by the motion, in the time reprefented by the bafe a в. Thus a rectangular parallelogram ferves to meafure the fpace defcribed by an uniform motion, the time being reprefented by the bafe, and the conftant velocity of the motion by the perpendicular. The fpace defcribed by a motion which is uniformly accelerated (the velocity of which increafes uniformly as the time, that is, receives equal augments in any equal fucceffive parts of time) is reprefented by a triangle ; the time being reprefented by the bafe, and the increafing velocity by the perpendicular, which increafes in the fame proportion as the bafe. Becaufe the triangle is the half of a parallelogram of the fame bafe and altitude, the fpace defcribed by a motion uniformly accelerated, during any time, from the beginning of the motion, is one half of what would have been defribed if the motion had been uniform, and the velocity had been the fame as is acquired at the end of that time. Becaufe fimilar triangles are as the fquares of their analogous fides, the fpaces defrribed by a motion uniformly accelerated, being meafured by fuch triangles, are as the fquares of the times from the beginning of the motion; or as the fquares of the velocities acquired at the end of thofe times. The fpaces defcribed by motions uniformly retarded are meafured in the fame manner; only the times and velocities are to be taken in a contrary order, till the extinction of the motion. In other cafes, the faces are meafured by curvilinear areas. And becaufe there are areas whofe ordinates decreafe in fuch a manner, that tho' the figure be produced indefinitely, the area never amounts to a certain finite face; it appears that the velocitics of a retarded motion

Chap. i. Philosophical Discoveries. may decreafe in fuch a manner, that, tho' the motion was continued ever fo long, yet the fpace defcribed by it fhould not exceed any certain given line. For example, if the velocity during the firit hour be double of what it is in the fecond hour, and this be reduced to its half in the third hour, and fo on for ever, then the fpace defcribed by this motion, tho' it was to continue for the greateft number of ages, will never amount to the double of the line defcribed in the firft hour.
12. The quantity of motion in a body being the fum of the motions of its parts, is in the compounded ratio of its quantity of matter and of the velocity of the motion. If the body $A$, of a quantity of matter reprefented by 2 , moves with a velocity reprefented by 5 , and the body $B$, reprefented by 3 , moves with a velocity reprefented by 4 ; then the quantity of motion of A , fhall be to the quantity of motion of B , in the compounded ratio of 2 to 3 and of 5 to 4 , that is as $2 \times 5$ to $3 \times 4$, or as 10 to 12. There appears to be no ground for making a diftinction between the quantity of motion and the force of a body in motion; as all the power or activity of body arifes from and dependis upon its motion. We are not, however, to expect that all the effects of the motion of bodies fhould be proportional to the quantity of motion, unlefs a due regard be had to the time of the motion, and to the direction in which it acts, according to the true principles of mechanics. A body, in confequence of its uniform motion, defcribes a certain fpace in a certain time ; but there is no fpace fo great that may not be defcribed by it, if the time be not limited. When a body acts upon another body, the effect is very different according to the direction in which it adts. How neceffary it is to have regard to thefe, in determining the effects of the motions and actions of bodies, will appear more fully in the next chapter.
13. When a body tends to move, but is hindered by fome obftacle, this tendency is called preffure. It is not to be compared with the force of a body in motion, no more than a line is to be compared with the rectangle that is generated by it. Of this kind is the gravity of a body that refts and prefles upon a table, or of water upon the bottom of a veffel, or of air upon the fails of a fhip. When the obftacle is removed, the continual action of the preffure generates motion in the body, in any finite time. Thus gravity accelerates the motion of falling bodies, by acting inceffantly upon them. When an orifice is opened in the bottom of a veffel, the preffure of the fluid accelerates the motion of the iffuing water, and, in an exceeding little time, brings its velocity to a height. When the wind acts upon the fails of a hip, it accelerates her motion for fome time, till the refiftance of the water (which increafes with the increafing velociry of the fhip) ballances the action of the wind; after which her motion becomes uniform. In thefe, and all fuch other initances, the motion begins from nothing; and it is in confequence of the continual inceffant action of the power or preffure, that the velocity, generated in any finite time, is finite. If we were to fuppofe that each action of the power produced a finite augmentation of velocity, the motion acquired in the leaft finite time would be infinite, or furpafs any affignable velocity ; as we have demonftrated elfewhere *.

[^35]Chap. i. Philosophical Discoveries.
14. Gravity is the beft known to us of all thofe powers or preffures. Becaufe all bodies defcend with equal velocity in a void, the gravity of bodies mult be proportional to their quantity of matter; and depends not upon the figure or texture of the parts, but upon their folid matter only. This is evident by experiments of the motion of pendulums, made with the greateit exactnefs. For when the lengths of the pendulums are equal, bodies of very different bulks, and different internal and external texture, perform their vibrations in times exactly equal in equa! arcs, keeping always pace together, and acquiring always equal velorities at the correfoonding points of thofe arcs, unlets fo far as the reffitance of the air acts upon them unequally. In the common bufinels of life, the quantity of marter of bodies has been always meafured out by their weight; tho' the influence of the air is various in its different ftares, and renders this menfuration fomewhat unaccurare in things of great value. Tho' the gravity of bodies really arifes from their gravitation towards the feveral parts of the earch (as will appear afterwards) yet, becaufe this power acts around in all parts, and its direction is nearly towards the centre of the earth, it is therefore called a centripetal force. We thall, afterwards, fhew that fimilar centripetal forces tend to the fun and planets. Thefe forces are of three kinds: the absolute force is meafured by the motion that would be produced by it in a given body, at a given diftance. For example, the abfolute centripetal force tending towards the fun is to that which tends toward the earth, as the motion which would be produced by the force tending toward the fun in a given body, at a given diftance without the fun's body, is to the motion which would be produced by the force tending towards the earth in an equal body, at an equal diftance from it. As when we compare
the forces of two magnets, we muft compare their effects at equal diftances; fo when we compare the abfolute forces which tend to the central bodies, the comparifon cannot be juft unlefs it be from effects produced when the circumftances are alike.

The fecond fort of centripetal force is the accelerating force, which is meafured by the velocity generated by it in a given time, and is different at different diftances from the fame central body, but depends not on the quantity of matter of the body that gravitates, being equal in all forts of bodies at equal diftances from the centre: The third fort is the weight, or the vis motrix, and is meafured by the quantity of motion that is generated in a heavy body in a given time; and differs from the accelerating force in the fame manner as motion differs from velocity.
15. Becaufe the power of gravity is fo well known to us, when we enquire into other powers, we endeavour to compare them with that of gravity, and to determine their proportion. We find a great variety of powers analogous to it in nature; fuch as that by which the particles of fluids form themfelves into drops; that by which the pares of hard bodies cohere together; that by which the rays of light, in entering into water or glafs, or into any medium of a greater refractive power, are conftantly bent towards the perpendicular, and when they are incident upon the farther furface of the glafs, with a fufficient obliquity, are all turned back into the glafs, though there be no fenfible medium behind the glafs to reflect it; in the fame manner as a heavy body projected obliquely upwards is bent into a curve, and brought back to the earth again by its gravity. Thefe, and many other powers in nature, have an

Chap. i. Philosophical Discoferies. むt5 analogy to gravity, but extend to lefs diftances, and obferve laws fomewhat different. It has been found very difficult to account for them mechanically. For this purpofe, fome have imagined certain effuvia to proceed from bodies, or atmofpheres environing them; others have invented vorices; but all their attempts have hitherto proved unfatisfactory. That fuch powers take place in nature, "and concribute to produce its chief phenomena, is moft evident ; but their caufes are very oblcure, and hardly acceffible by us. In all the cafes when bodies feem to act upon each orher at a diftance, and tend towards one another without any apparent caufe impelling them, this force has been commonly called attraction; and this term is frequently ufed by Sir Ifaci Newton. But he gives repeated cautions that he pretends not, by the infe of this term, to define the nature of the power, or the manner in which it acts. Nor does he ever affirm, or infinuate, that a body can act upon another at a diftance, but by the intervention of other bodies. It is of the utmoft importance in philofophy to eftablifh a few general powers in nature, upon' unqueftionable evidence, to determine their laws, and trace their confequences, however obfcure the caules of thofe powers may be; and this he has done with great fuccefs.
16. But however commodiotis the term attration may be, to avoid an ufelefs and tedious circumlocution, yet becaufe it was ufed by the fchool-men to cover their ignorance, the adverfaries of Sir Ifaac Neroton's philofophy have taken an unjuft handle from his ufe of this term, after all his precautions, to depreciate and even ridicale his doatrines; by which they only convince us that they neither underfland them, nor have impartially and duely confdered them. Mr. Leibnitr made ufe of this fame
term, in the fame fenfe with Sir IJaac Newton, before he fet up in oppofition to him ; and it is often to be met with in the writings of the moft accurate philofophers, who have ufed it without always guarding againft the abufe of it, as he has done. A term of art has been often employed by crafty men, with too much fuccefs, to raife a dinlike againft their opponents, and miflead the unwary, and to difguft them from enquiring into the truth; but fuch difingenuity is unworthy of philofophers. No writer hath appeared againft Sir Ifaac Neroton, of late, by whom this argument, tho' altogether groundlefs, is not infifted on at great length; and fometimes adorned with the embellifhments of wit and humour ; but if the reader will take the trouble to compare their defcriptions with Sir IJaac Neroton's own account, he will eafily perceive how little it was minded by them; and that the fum of all their art and fkill amounts to this only, that they were able to expofe a creature of their own imagination. Poffibly fome unfkilful men may have fancied that bodies might attract each other by fome charm or unknown virtue, without being impelled or acted upon by other bodies, or by any other powers of whatever kind; and fome may have imagined that a mutual tendency may be effential to matter, tho' this is directly contrary to the inertia of body defcribed above; but furely Sir Ifaac Neroton has given no ground for charging him with either of thefe opinions: he has plainly fignified that he thought that thofe powers arofe from the impulfes of a fubtile ætherial medium that is diffured over the univerfe, and penetrates the pores of groffer bodies. It appears from his letters to Mr. Boyle *, that this was his opinion early; and if

[^36]Chap. i. Philosophical Discoveries.
he did not publifh it fooner, it proceeded from hence only, that he found he was not able, from experiment and obfervation, to give a fatisfactory account of this medium, and the manner of its operation, in producing the chief phænomena of nature. They who imagine that he has only introduced a new phrafe or two into philofophy, without any real benefit, may be eafily fatisfied of their miftake, if they will but confider with what evidence he has refolved the chief phænomena of the fyftem of the world from thofe powers; how he has computed the quantity of matter and denfity of the fun, and of feveral of the planets, from them; how nearly he has determined the motion of the nodes of the moon, from its caufe; and explained many of her irregularities, and the other motions of the fyltem. But we have infifted upon this perhaps at too great length; for as no philofopher fcruples to fay that the magnet attracts iron, and that electric bodies, when their virtue is raifed by friction, attract light fubftances; it muft be allowed to be at leaft as jultifiable an expreffion, or even more unexceptionable, to fay that the earth attracts heavy bodies towards it; fince all of them defcend towards it with forces proportional to their quantity of matter, at equal diftances from it ; and this power extends to all diftances, varying according to a certain known law.

## $\mathrm{CH} A \mathrm{P}$. II.

Of the laws of motion, and their general corollaries.
1.

THE find law of motion is, "That a body " ${ }^{6}$ always perfeveres in iss fate of reft, or "s of uniform motion in a right line, till by fome ${ }^{6}$ external influence it be made to charge its tate."? That a body, of iefelf, perfeveres in its fate of reft, is matter of molt common and general obfervation, and is what fuggefts to us the paffive nature of body: but that it likewife, of itfelf; perfeveres in its fate of motion, as well as of reft, is not altogether fo obvious, and was not undentood, for fome time, by philofophers themfelves, when they demanded the caufe of the continuation of motion. It is early, however, to fee that this lat is as general and conftant a law of nature as the firf. Any motions we produce, here on the earth, foo languifh and at length vanifh; whence it is a vulgar notion that, in general, motion diminifhes and tends always toward reft. But this is owing to the various refinances which bodies here meet with in their motion, efpecially from friction, or their rubbing upon other bodies in their progress, by which their motion is chiefly confumed. For when, by any contrivance, this friction is much diminifhed, we always find that the motion continues for a long time. Thus, when the friction of the axis is leflened by friction wheels applied in it, and turning round with it, the great wheel will fometimes continue to revolve for half an hour. And when a brain tope moves on a very foal pivot on a glass plane, it will continue in motimon very fmoothly for a great number of minutes.

Chap. 2. Philosophical Discoveries.
A pendulum, fufpended in an advantageous manner, will vibrate for a great while, notwithftanding the refiftance of the air. Upon the whole, it appears, that, if the friction and ocher refiftances could be taken quite away, the motions would be perpetual. But what fets this in the cleareft light, is, that a body placed on the deck, or in the cabin, of a fhip, continues there at reft while the motion of the fhip remains uniform and fteady; and the fame holds of a body that is carried along in any fuace that has, itfelf, an uniform motion in a right line. For if a body in motion tended to reft, that which is in the cabin of a thip ought to fall back towards the fern, which would appear as furprizing, when the motion of the fhip is uniform and feady, as if the body Should, of itfelf, move towards the ftern when the fhip is at reft. It is for this reafon that the uniform motion of the earth upon its axis has no effect on the motion of bodies at the furface; that the motion of a fhip carried away with a current is infonfible to thofe in the hip, unlefs they have an opportunity to difcover it by objects which they know to be fixed, as the fhores, and the bottom of the fea, or by aftronomical obfervations; and that the motions of the planets and comets, in the free celeftial fpaces, require no new impulfes to perpetuate them.
2. It is a part of the fame law, that a body never changes the direction of its motion, of iffelf, hut by fome external influence only; and it is as natural a confequence of the paffive nature of body, as that it never changes its velocity of itfelf. As body has no felf-motive power, or fpontancity, if it was to charge its direstion, how could it determine itfelf to any one direction rather than to another? This part of the law is likewife confirmed by conftant experience. If upon any mooth plane a glote of an uniform texture be projected, it proceeds always in a right line, without turning to either fide, till its motion be extinguifhed by the friction of the plane and refitance of the air. It is true, that, in certain cafes, a ball proceeds upon a billiard table firt in a right line, and, afterwards, returns of itfelf a little way in the fame right line; but this arifes from the ball's having a motion upon its axis, with a direction contrary to that of its progreffive motion on the table; which, when the progreffive motion is deftroyed by the friction, brings the ball back again, till this motion is likewife deftroyed by the fame friction. When a ball is projected in the air, its gravity indeed bends its motion into a curve, but it continues to move in the plane of its firft projection perpendicular to the horizon, without turning to either fide of that plane; unlefs in fome cafes, when, becaufe of its motion upon its axis, the reaction of the air makes it deviate fomewhat from it. If bodies changed the direction of their motion of themfelves, they could not continue at reft in a fpace that is carried uniformly forward in a right line; as they are always found to do. As body, therefore, is paffive in receiving its motion and the direction of its motion, fo it retains them or perfeveres in them, without any change, till it be acted upon by fomething, external. This law is now generally received upon the beft evidence, but was not clearly underflood even fo lately as in Kepler's time, as appears by the account we gave of his doctrines in the firft book. From this law it appears, why we enquire not, in philofophy, concerning the caufe of the continuation of the reft of bodies, or of their uniform motion in a right line. But if a motion begin, or if a motion already produced is either accelerated or retarded, or if the direction of the motion is altered, an enquiry into the power or caufe that produces

Chap. 2. Philosophical Discoveries. this change is a proper fubject of philofophy: the chief bufinefs of which (as Sir Ifaac Neroton obferves) is to difcover the powers that produce any given motions; or, when the powers are given, to trace the motions that are produced by them.
3. The fecond general law of motion is "t that " the change of motion is proportional to the force " impreffed, and is produced in the right line in "6 which that force acts." Thus when a motion is accelerated, as that of a heavy body defcending in the vertical line, the acceleration is proportional to the power that acts upon the body. If a body defcend along an inclined plane, the acceleration of the motion along the plane is proportional not to the total force of gravity, but to that part only which acts in the direction of the plane, as will better appear when we come to treat of the refolution of motion. When a fluid acts upon a body, as water or air upon the vanes of a mill, or wind upon the fails of a hip, the acceleration of the motion is not proportional to the whole force of thofe fluids, but to that part only which is impreffed upon the vanes or fails, which depends upon the excefs of the velocity of the fluid above the velocity which the vane or fail has already acquired: for if the velocity of the fluid be only equal to the velocity of the vane or fail, it juft keeps up with it, but has no effect either to advance or retard its motion.

It is, at the fame time, of the utmof importance to have regard to the direction in which the force is impreffed, in order to determine the change of motion produced by it. It would be very erroneous to fuppofe that the acceleration of the motion of the Thip, in the cirection in which the fails, is proportional to the force impreffed when it acts obliquely
upon the fail, or when the pofition of the fail is oblique to the direction in which the Ship moves. The change of her motion is firft to be eftimated in the direction of the force impreffed, and thence, by a proper application of mechanical and geometrical principles, the change of the motion of the fhip in her own direction is to be derived. When gravity or any centripetal force, acts upon a body moving with a direction oblique to the right line drawn from it to the center, the change of its motion is not proportional to the whole centripetal force which acts upon it, but to that part only, which, after a juft refolution of the force, is found to act in the direction of its motion. It appears from theie inftances, of how extenfive an ufe thefe general laws are in the doctrine of motion.
4. The third general law of motion is, " that "s aftion and reaction are equal with oppofite direc" tions, and are to be eftimated always in the fame "right line." Body not only never changes its ftate of itfelf, but refifts, by its inertia, againft every action that produces a change in its motion. When two bodies meet, each endeavours to perfevere in its flate and refifts any change ; and, becaufe the change which is produced in either may be equally meafured by the action which it exerts upon the other, or by the refiftance which it meets with from it, it follows that the changes produced in the motions of each are equal, but are made in contrary directions. The one acquires no new force but what the other lofes in the fame direction; nor does this laft lofe any force but what the other acquires; and, hence, tho' by their collifions, motion paffes from the one to the other, yet the fum of their motions, eftimated in a given direction, is preferved the fame, and is unalterable by their mutual actions upon each other. In collecting this fum, motions that have contrary directions are to be affected with contrary figns; a motion caftward is contrary to a motion weftward; fo that if the motions are fummed up as having a weftern direction, a motion eaftward is to be confidered as negative, or to be fubducted from the reft. In this manner, this law ferves to render the firft law more general, and to extend it to any number of bodies; for as, by the firft law, a body perfeveres in its ftate of reft, or of uniform rectilinear motion, till fome external infinence affect it; fo it follows from this law, "that the fum of the motions of " $\varsigma$ any number of bodies, effimated in a given di"rection, perfeveres the fame in their mutual ac"s tions and collifions, till fome external influence " difturb them."
5. The truth of this third law appears from manifold experiments, in the collifions of bodies of all kinds. But the meaning of it feems to have been miftaken, in feveral inftances, by ingenious men; which it is neceffary for us to guard againft. They who maintain the new opinion concerning the forces of bodies, meafuring them by the compounded proportion of the quantity of matter and the fquare of the velocity, found it impofitble to explain the actions and collifions of bodies of a perfert hardnefs, void of all elafticity, confiftently with this doctrine. Therefore, in order to get rid of them, fome pretended that it is abfolutely imponiole fuch bodies hould exift, upon grounds the weaknefs of which was hown in the firt book; while others contented themfelves with obferving that they knew of no fuch bodies in nature, and thought this a fufficient excufe for giving no account of their collifions; tho' at the fame time they treated largely of bodies of a perfet elaticity, none of which are to be met
with in nature ; and we have much better reafon to conclude that there are bodies of a perfect hardnefs, than of a perfect elafticity; becaufe we cannot but fuppofe the ultimate elementary particles of bodies that are void of all pores, or atoms, to be perfectly hard or inflexible, fo as not to yield in the ordinary actions and collifions of bodies. But after all this art in fcreening their favourite opinion, the difficulty ftill recurred in explaining the collifions of foft bodies; and fome farther new invention was requifite to reconcile the phænomena with their doctrine. For if a foft body, with the velocity $u$, frikes another equal quiefcent foft body, they will proceed as in one mafs with the velocity $\frac{1}{2} u$, dividing the motion of the firlt body equally between them, in confequence of the third general law of motion. According to the new opinion, the force of the firft body before the ftroke was $u u$, the force of each of them after the froke is $\frac{1}{2} u \times \frac{x}{2} u$ or $\frac{\frac{1}{4} u u \text {; and the }}{}$ fum of their forces after the ftroke is $\frac{1}{2} u u$; fo that the fum of the forces, after the ftroke, is only one half of what it was before the ftroke, while the quantity of motion is preferved the fame as it was, without any change. Now the difficulty was, how to account for the lofs of one half of the force of the firft body in the Atroke: for this purpofe, they advanced, without any other proof, this new doctrine, that when the parts of foft bodies yield without refloring themfelves, being void of elaticity, a certain quantity of force is loft in the compreffion of their parts by the collifion; whereas we know no way by which force is loft in one body, but by its being communicated to another. The parts of foft bodies are indeed moved out of their places, in the collifron, and fome motion is loft in the firft body by being communicated, in this manner, to the parts of the fecond ; but thefe parts cannot lofe this mo-

Chap. 2. Phllosophical Discoveries. tion otherwife than by communicating it to other parts, or by its accruing to the whole body; fo that there is no juft reafon for fuppofing that any motion or force is loft in flattening or hollowing of foft bodies, in their collifions; and this new tenet is invented merely to ferve a particular purpofe.
6. The moft learned and fkilful advocate for this new doctrine appears to have greatly miftaken this third law of motion, when he tells us that the prefervation of the fum of the abfolute motions of bodies, in their colifions, is fo immediate a confequence of the equality of action and reation, that to endeavour to prove it would only render it more obfcure, the augnentation or diminution of the force of the one (fays he) being the neceffary confequence of the diminution or augmentation of the force of the other. Now it is plain that this third law of motion is general, extending to bodies of all kinds; and it is well known that when foft bodies meet in oppofite directions, the fum of their abfolute motions or forces is diminifhed; and when the bodies are equal, and their velocities likewife equal, it is totally deftroyed by their collifion. It is not the fum of the abfolute motions or forces of bodies, but this fum eftimated in a given direction, that is preferved unaltered in their collifions, in confequence of this third law of motion: nor can the prefervation of the fum of the abfolute forces of any fort of bodies be confidered as an immediate confequence of it. On the contrary, the fum of the abfolute motions of even perfectly elaftic bodies is fometimes increafed, and in tome cafes diminifhed, by their collifions; fo that a proof was neceflary that the fum of their abfolute forces (in whatever manner thofe forces are meafured) is preferved unalierable, in their collifion; efpecially fince this fum, according to his
own doctrine, undergoes an infinite variety of changes, during the fmall time in which the bodies act upon each other, while the parts firf yield and then reftore themfelves to their former fituations.
7. The fame philofophers miftake this third law, or a mof effential part of it, when they meafure action and reaction on different right lines.' In a celebrated argument which they advance for their new docerine concerning the forces of bodies, and which is much applauded by thofe who favour it, they thew that a body with a velocity as 2 , is able to bend and overcome the reffitance of four fprings; one of which alone is equivalent to the force of the fame body moving with a velocity as $x$; from which they infer that, in the former cafe, the force is quadruple, tho the velocity be only double of what it is in the latter cafe. In like manner, becaufe a body moving with a velocity proportional to the diagonal of the rectangle is able to ballance the refiftance of two fprings proportional to the fides of the fame rectangle, they thence infer that the force of a body moving with a velocity as the diagonal is equal to the fum of the forces of two bodies moving with velocities proportional to the fides of the rectangle; and, becaule the fquare of the diagonal is equal to the fum of the fquares of the two fides, they thence infer that the forces of equal bodies are as the fquares of their velocities. But in all thefe arguments (which are the moft plaufible of any that have been offered for their new doctrine, and are moft apt to millead their readers) they do not confider that the force which one body lufes, in ating upon another, is not equal to that which it produces or deftroys in the other, eftimated in any direction at pleafure, but in that only in which the firft body atts; and that body, in confequence of its inerlia, not only refints

Chap. 2. Philosophical Discoveries. 127 any change in its quantity of motion, but likewife any change in the direction of its motion. If any planet revolves in a circle, the gravity of it towards the centre is employed, during the whole revolution, in changing the direction of its motion only, without producing the leaft augmentation or diminution of the motion itfelf. But thefe things will more eafily appear after we have treated of the compofition and refolution of motion: we only obferve here, that, in order to fupport their favourite doctrine, they embarrafs the plain, fimple and beautiful theory of motion, in fome cafes by neglecting the time, and in others by confounding the directions in which bodies aft upon each other, or upon fprings; while all the valuable confequences which they pretend to draw from this doctrine follow more naturally, and in a fatisfactory manner only, from the laws of motion rightly undertood and applied.
8. Our author's firft corollary, from the laws of motion, is, that when a body is acted upon by two forces at the fame time, it will defcribe the diagonal, by the motion refulting from their compofition, in the fame time that it would defcribe the fides of the parallelogram by thofe forces acting feparately. Let the body a (Fig. 2.) have a motion in the direction $A B$, reprefented by the right line $A B$, at the fame time let another motion be communicated to it in the direction $A D$, reprefented by the right line $A D$; complete the parallelogram $A B C D$; and the body will proceed in the diagonal A C, and defcribe it in the fame time that it would have defcribed the fide $A B$ by the firt motion, or the fide $A D$ by the fecond. To underfand our author's demonftration of this corollary, we mutt premife this obvious principle, that when a body is acted upon by a motion or power parallel to a right line given in pofition,
this power or motion has no effect to caufe the body to approach towards that right line or recede from it, but to move in a line parallel to that right line only; as appears from the fecond law of motion. Therefore AD being parallel to BC, the motion in the direction $A D$ has no effect in promoting or retarding the approach of the body a towards the line в $\subset$; confequently it will arrive at this line $B C$ in the fame time as if the firft motion $\begin{aligned} & \text { a } \\ & \text { only } \\ & \text { had }\end{aligned}$ been impreft upon it. In like manner, becaufe $A$ a is parallel to $D C$, the motion $A B$ has no effect in promoting or retarding the approach of the body $A$ towards the line D C ; confequently it will arrive at the line DC in the fame time as if the motion A D only had been impreffed upon it. Therefore the body a will arrive at both the lines b c and D c in the fame time, that, by the firft motion alone, it would have defcribed A B, or, by the fecond alone, it would have defcribed A D. But it can arrive at both the lines B C and D C no other way than by coming to their interfection c : therefore, when the two motions $A B$ and $A D$ are impreft upon it at once, it moves from a to $c$, and defcribes the diagonal A c, in the fame time that, by thefe motions acting feparately, it would have defcribed the fides $A B$ and $A D$.
9. Becaufe this corollary is of very extenfive ufe, it may be worth while to illuftrate it farther. Suppofe (Fig. 3.) the fpace efgh to be carried uniformly forward in the direction $A B$, and with a velocity reprefented by AB. Let a motion in the direction A $D$, and meafured by the right line $A D$, be impreft upon the body $A$ in the face efGH. To thofe who are in this fpace, the body a will appear to move in the right line $A D$; but its real or abfolute motion will be in the diagonal a c of the

Chap. 2. Philosophical Discoveries. parallelogram $A B C D$; and it will defcribe $A C$ in the fame time that the face by its uniform motion, or any point of it, is carried over a right line equal to $A B$, or that the body $A$, by its motion acrofs the fpace, defrribes ad. For it is manifeft that the line $A D$, in confequence of the motion of the fpace, is carried into the fituation B C , and the point D to c ; fo that the body a really moves in the diagonal A C.
so. The converfe of this corollary is, that the motion in the diagonal a c may be refolved into the motions in the fides of the parallelogram $A B$ and A.. For it is manifeft that if (Fig. 4.) A K be taken equal to $A D$ with an oppofite direction, and the parallelogram A к в С be compleated, the right line a $^{\text {b fhall be the diagonal of this parallelogram }}$ confequently, by the two laft articles, the miotion A C compounded with the motion $A K$ equal and op* pofite to the motion A D, produces the motion AB; that is, if from the motion AC, in the diagonal, you fubduct the motion A D in one of the fides, there will remain the motion $A$ b in the other fide of the parallelogram ABCD.
II. This doctrine will receive farther illuftration by refolving each of the motions $A B$ and $A D$ into two motions, one in the direction of the diagonal $A C$ and the other in the direction perpendicular to it ; that is, by refolving (Fig. 5.) the motioti A B into the motions $A M$ and $A N$, and the motion $A D$ into the motions AK and AL. For the triangles ADK and BCM being equal and fimilar, DK is equal to $B M$, or Al to AN; fo that the motions AL and AN, being equal and oppofite, they deftroy each others effect: and it being an obvious and general principle, that the motion of a body in a right line is no way K
affected
affected by any two equal powers or motions that act in directions perpendicular to that line, and oppofite to each other, it thus appears how the body A is determined to move in the diagonal A c ; and, becaufe AK is equal to mc , it appears how the remaining motions AM and AK are accumulated in the direction AC , fo as to produce a motion meafured by ac. It appears likewife how abfolute motion is loft in the compofition of motion; for the parts of the motions $A B$ and $A D$ that are reprefented by $A N$ and $A L$, being equal and oppofite, deftroy each others effect, and the other parts AM and A $K$, only, remain in the direction of the compounded motion AC: while, on the contrary, in the refolution of motion, the quantity of abfolute motion is increafed, the fum of the motions $A B$ and $A D$, or B $C$, being greater than the motion $A C$. But the fum of the motions, eftimated in a given direction, is no way affected by the compofition or refolution of motion, or indeed by any actions or influences of bodies upon each other, that are equal and mutual and have oppofite directions.

For fuppofe that (Fig. 6.) the motions are to be eftimated in the direction $A P$; let $C P, B R, D Q$, be perpendicular to this direction in the points $\mathrm{P}, \mathrm{R}$ and $Q$; then the motions $A C, A B, A D$, reduced to the direction AP, are to be eftimated by AP, AR and $A$ Q refpectively, the parts which are perpendicular to $A P$ having no effect in that direction. Let AP meet bc in S ; then becaufe RP is to SP , as bC (or AD) to CS , that is, as $A Q$ to SP, it follows that $A Q$ is equal to RP, and that $A R+A Q$ is equal to $A P$; that is, that the fum of the motions $A B$ and $A D$, reduced to any given direction $A P$, is equal to the compounded motion A c reduced to the fame direction. From which it is obvious, that, in gene-

# Chap.2: Philosophical Discoveries. 

ral, when any number of motions are compounded together, or are refolved according to this general corollary, the fum of their motions continues invariably the fame, till fome foreign influence affects them.
12. The ufefulnefs of the fame corollary has induced authors to invent other demonftrations for the farther illuntration of it. We fhall only add a proof of the fimpleft cafe, when the motions A B and AD are equal, and the angle $\overline{\text { B } D}$ is a right one; in this, cafe $A B C D($ Fig. 7, 8.) is a fquare, and the diagonal AC bifects the angle BAD; and, becaufe the powers and motions of $A D$ and $A B$ are equal, and there can be no reafon why the direction of the compounded power or motion fhould incline to one of thefe more than to the other, it is evident that its direction muft be in the diagonal AC ; and that the compounded power or motion is meafured by AC appears in the following manner. If it is not meafured by a c, firft let it be meafured by any right line $A E$ lefs than $A C$; join $B D$ interfecting AC in $K$, upon AC take AM greater than $A K$, in the fame proportion that AC is greater than AE ; thro' the point m draw the right line Fg parallel to $B D$, meeting $A D$ in $G$ and $A B$ in $F$; compleat the parallelograms AMGH and AMFN: then becaufe thefe parallelograms are fquares as well as $A B C D$, and $A D$ is to $A G$, as $A K$ to $A M$, that is as $A E$ to $A C$; and $A B$ to $A F$ in the fame proportion; and becaufe $A E$ is fuppofed to be the power or motion compounded from $A B$ and $A D$, ir follows that the power or motion AD may be fuppofed to be compounded from the powers or motions $A M$ and $A \mathrm{H}$, and $A B$ from $A M$ and $A N$. But $A H$ and $A n$, acting equally with oppofite directions, deftroy each others effect; fo that it would follow that the re- nal $A C$, ought to be equal to $A E$; which is ablurd, for AM is greater than AK by the conftruction, and 2 AM greater than 2 AK or AC , which is fuppofed to be greater than ae. In like manner, it is fhewn (Fig. 8.) that the compoundea power or motion, in the diagonal Ac, is not meafured by a right line greater than $A C$; and therefore it is meafured precifely by the diagonal a c itfelf.
13. The fate of any fyftem of bodies, as to motion or reft, is judged by that of their centre of gravity, in the moft fimple and convenient manner. In a regular body of a homogeneous texture, the centre of gravity is the fame with the centre of magnitude; and, in general, it is that point of an heavy body, which being fuftained the body is in confequence itfelf futained. In two equal bodies it is in a right line joining their centres, at equal diftances from both: when the bodies are unequal, it is aearer to the greater body, in proportion as it is greater than the other; or its diftances from their centres are inverfely as the bodies. Let a (Fig. 9.) be greater than $B$, join $A B$, upon which take the point $c$, fo that $с$ a may be to C $^{\prime}$, as the body в is to the body $A$, or that $A X C A$ may be equal to $B \times C B$, then is $C$ the centre of gravity of the bodies $A$ and $B$; and we fhall afterwards fhew, that if $A$ and $B$ be joined by an inflexible $\operatorname{rod} A B$ void of gravity, and the point c be fuftained, then the bodies A and B fhall be in cequilibrio. If the centre of gravity of three bodies be required, firf find c the centre of gravity of A and B , and fuppofing a body to be placed there equal to the fum of $A$ and $B$, find o the centre of gravity of it and D; then fhall $G$ be the centre of gravity of the three bodies $A, B$,

Chap. 2. Philosophical Discoveries. and D : in like manner, the centre of gravity of any number of bodies is determined.
14. The fum of the products that arife by multiplying the bodies by their refpective diftances from a right line, or plane, given in pofition, is equal to the product of the fum of the bodies multiplied by the diftance of their centre of gravity from the fame right line or plane, when all the bodies are on the fame fide of it : but when fome of them are on the oppofite fide, their products when multiplied by their refpective diftances from it are to be confidered as negative, or to be fubducted. Let il. (Fig. 10.) be the right line given in pofition, c the centre of gravity of the bodies A and $\mathrm{B}, \mathrm{A} a, \mathrm{~B} b, \mathrm{c} c$ perpendiculars to IL in the points $a, b, c$; then if the bodies $A$ and $B$ be on the fame fide of $I L$, we fhall find $A \times A a+B \times B b=\overline{A+B} \times C c$. For drawing thro' c the right line MN parallel to IL , meeting $\mathrm{A} a$ in M , and $\mathrm{B} b$ in N , we have A to B , as BC to AC , by the property of the centre of gravity; and confequently $A$ to $B$, as $B N$ to $A M$, or $A \times A M=B \times B N$; but $\mathrm{A} \times \mathrm{A} a+\mathrm{B} \times \mathrm{B} b=\mathrm{A} \times \mathrm{C} c+\mathrm{A} \times \mathrm{AM}+\mathrm{B} \times \mathrm{C} c-$ $B \times B N=A \times C C+B \times C C=A+B \times C \sigma$.

When (Fig. 11.) в is on the other fide of the right line $I L$, and $c$ on the fame fide with $A$, then $A \times A a-B \times B b=A \times C C+A \times A M-B \times B N+B \times C C=$ $A+B \times C C$ : and when the fum of the products of the bodies on one fide of I L multiplied by their diftances from it, is equal to the fum of the products of the bodies multiplied by their diftances on the other fide of 1 L , then $\mathrm{c} c$ vanifhes, or the common centre of gravity of all the bodies falls on this right line IL.
15. Suppofe now the bodies A and B to procced in the right lines $A D$ and $B E$, (Fig. 12.) and when

$$
\text { K } 3
$$

they
they come to $D$ and E their common centre of gravity to be found in G : let $\mathrm{D} d, \mathrm{E} \varepsilon, \mathrm{G} g$ be perpendiculars to IL, in $d, e, g$; let $\mathrm{DM}, \mathrm{EN}, \mathrm{GK}$, parallel to 1 , , meet $\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c$, refpectively, in the points $\mathrm{M}, \mathrm{N}, \mathrm{K}$. By the laft article, $\times \mathrm{D} d+\mathrm{B} \times \mathrm{E} e=\overline{A+B}$ $X \circ g$; and, fubducting this from the equation in the preceding article, viz. $A \times A a+B \times B b=\overline{A+B} \times C \in$, then $A \times A M+B \times B N=A+B X C K$. By proceeding in the fame manner it will appear that $A \times D M+B X E N$ $=\overline{A+B} \times G K$. The motions of $A$ and $B$ being fuppofed uniform, the right lines $A M$ and $B N$ will increafe uniformly; fo as to become double in double the time; confequently ck will alfo increafe uniformly, or in the fame proportion as the time. And becaufe $D M, E N$, increafe uniformly, it follows that GK alfo increafes uniformly; and that ck is to KG in the conftant ratio of $A \times A M+B \times B N$ to $A \times D M+$ $B \times E N$. Hence it appears, that when any number of bodies move in right lines with uniform motions, their common centre of gravity moves likewife in a right line with an uniform motion; and that the fum of their motions, eftimated in any given direction, is precifely the fame as if all the bodies, in one mafs, were carried on with the direction and motion of their common centre of gravity. Becaufe the fum of the motions of the bodies, eftimated in any given direction, is preferved invariably the fame in their collifions, without being affected by their actions upon each other, that are equal and mutual and have contrary directions; it follows, that the flate of their centre of gravity is no way affected by their collifions or any fuch actions; and that it perfeveres in its fate of reft or uniform motion, in the fame manner as by the firft law of motion any one body perfeveres in its ftate, till fome external influence difturb it. Thefe propolitions reprefent to us the theory of

Chap. 2. Philosophical Discoveries. motion in a plain and beautiful light; and enable us to judge the motions of a fyftem of bodies, with almoft the fame facility as of thofe of one body.
16. The motions and actions of bodies upon each other, in a fpace that is carried uniformly forward, are the fame as if that fpace was at reft; and any powers or motions that act upon all the bodies, fo as to produce equal velocities in them in the fame or in parallel right lines, have no effect on their mutual actions or relative motions. Thus the motion of bodies aboard a hip, that is carried fteadily and uniformly forward, are performed in the fame manner as if the fhip was at reft. When a fleet of fhips is carried away by an uniform current, their relative motions are no way affected by the current, but are the fame as if the fea was at reft. The motion of the earth and air round its axis has no effect on the actions of bodies and agents at its furface, but fo far as it is not uniform and rectilineal. In general, the actions of bodies upon each other depend not upon their abfolute but relative motion; which is the difference of their abfolute motions when they have the fame direction, but their fum when they are moved in oppofite directions.
17. No principle being more univerfally allowed than this, or more evidently eftablifhed upon common experience, we deduced the following argument from it againft the new doctrine concerning the forces of bodies in motion, in a piece that obtained the prize of the royal academy of fciences at Paris, in 1724 ; which, becaufe of its plainnefs and fimplicity, we Chall defcribe here again. Let a and B (Fig. 13.) be two equal bodies that are feparated from each other by frings interpofed between them in the direction ва (in which line the fprings act) with a velocity as 1 ; and fuppofe that the fprings imprefs on the equal bodies $A$ and b equal velocities, in oppofite directions, that are each as 1 , Then the abfolute velocity of A (which was as 1) will be now as 2 ; and according to the new doctrine its force as 4 : whereas the abfolute velocity and the force of e (which was as I) will be now deftroyed; fo that the action of the frings adds to $a$ a force as 3, and fubducts from the equal body в a force as 1 only; and yet it feems manifeft, that the actions of the fprings, on thefe equal bodies, ought to be equal ; (and Mr. Bernovilli exprefsly owns them to be fo): that is, equal actions of the fame fprings upon equal bodies would produce very unequal effects, the one being triple of the other according to the new doctrine; than which hardly any thing more abfurd can be advanced in philofophy or mechanics. In general, if $m$ reprefent the velocity of the fpace efgh in the direction ba, $n$ the velocity added to that of $A$ and fubducted from that of $B$, by the action of the fprings, then the abfolute velocities of $A$ and $B$ will be reprefented by $m+n$ and $m-n$ refpectively, the force added to $A$ by the fprings will be $2 m n+n n$, and the force taken from в will be $2 m n-n n$, which differ by $2 n n$. Farther, it is allowed that the actions of bodies upon one another are the fame in a fpace that proceeds with an uniform motion as if the fpace was at reft: but if the fpace efgh was at reft, it is allowed that the forces communicated by the fprings to $A$ and $B$ had been equal; and, according to the new doctrine, the force of each had been reprefented by $n n$; whereas the force communicated to $A$ by the fprings in the fpace PFGH is reprefented by $2 m n+n n$, and the force

Chap. 2. Philosophical Discoveries.
taken from в will be $2 m n-n n$. Thefe arguments are fimple and obvious, and feem, on that account, to be the more proper in treating of this queftion. They who maintain the new doctrine may define force in fuch a manner, as to make the difpute appear to relate merely to words; but, as the terms aetion and force feem to be very nearly allied to each other, it furely tends to confound our notions and language, to maintain that equal actions generate or produce unequal forces in the fame time. But what evidently fhews that the authors on the fide of this new opinion did not underftand what they taught, is, their telling us, that the quantity of abfolute force is unalterable by the collifions of bodies, and that this follows fo evidently from the equality of altion and reaction, that to endeavour to demonftrate it would only render it more obfcure. For hence it appears, that they underftood equal changes to be produced in the forces of bodies in confequence of the equality of action and reaction; and yet it is evident from what we have fhewn, that the changes produced in the forces of bodies muft be very unequal, according to this new doctrine, tho' the action and reaction by which they are produced be equal. It feems to have been by a miftake, that Mr. Leibnitz firtt found himfelf engaged to maintain this new doctrine, in 1686; and in like manner, fome of his difciples feem to have rafhly adopted the fame, without having attended to the confequences.
18. In the theory of motion, rightly underfood, the fame laws that ferve for comparing, compounding, or refolving motions, are obferved likewife by preflures; that is, the powers that generate motion, pr tend to produce it: for forces are nothing elfe but the fums of fuch prefures accumulated in the
body, in confequence of the continued action of the powers for a finite time; and preffures are confldered as infinitely fmall forces, or as the elements from which the forces are produced : and it adds no fmall beauty and evidence to this theory of motion, that both obferve the fame laws. When a force is generated in any body, by the accumulation of other forces or impulfes, that which is generated, in any direction, munt be equal to the fum of thofe which are all employed and confumed, in that direction, in producing it; and if the force is produced by a continual fucceffive action, the motion generated muft be equal to the fum of the preffures that are exerted in producing it. In like manner, if motion is deftroyed by the refiftance of any oppofite power, it muft be equal to the fum of all the actions by which it is totally deftroyed. On the other hand, the intenfity of the power that generates motion in any body, is proportional to the augment of force which it generates in a given time, and the intenfity of the power that refifts or deftroys motion, is meafured by the decrement of force produced in a given time; fince the augment in the firft cafe, and decrement of motion in the fecond cafe, are the adequate effects of the power ; which is fuppofed to be of fuch a nature as to be renewed every moment, and exert all its influence at once. In general, the intenfity of any power that generates or deftroys motion is the greater, in proportion as the change of velocity produced by it in the direction of that power is greater, and the lefs the time is in which that change is produced, if the intenfity of the power continues uniform during that time: but if the power varies, its intenfity, at any given term of the cime, is to be meafured by the change of velocity which would have been produced, in a given tinee, by the power continued uniformly for that time.
19. The preffure or power that generates motion in a body is in the compounded ratio of the quantity of matter in the body, and of the velocity which it would generate in it in a given time, if it was continued uniform for that time; and thofe preffures are equal in any two bodies, when their quantities of matter are reciprocally as thofe velocities, that is, when the intenfity of the power that acts upon the greater body $A$, is lefs than the intenfity of that which acts upon the leffer body $\boldsymbol{B}$, in the fame proportion as $B$ is lefs than $A$. If two bodies that are acted upon by fuch powers, with oppofite directions, be in contact, neither of the powers will prevail, and no motion will be produced. In the fame manner, if two bodies, moving with velocities inverfely proportional to their quanticies of matter, meet with oppofite directions, their motions will deftroy each other, if they are foft bodies; or if they are fo perfectly hard as that their parts are quite inflexible, they will both ftop after the ftroke: but if they have any elafticity, they will be reflected after the ftroke with equal motions. Thus there is a perfect harmony between the laws of preffures, or powers, and the laws of motions or forces produced by thofe powers; as, in general, there muft be an analogy between the powers that generate or produce any effect, and the effects themfelves which are generated. But this harmony is quite loft, as to the forces of bodies, according to the new opinion concerning their menfuration; for, according to this opinion, when the velocity is finite, how fmall foever it may be, the force is meafured by the fquare of the velocity; but when the velocity is infinitely little (as it is, according to the favourers of the new opinion) in confequence of the firt impulfe of the power that generates the motion, the force is fimply
fimply as the velocity; and we cannot but obferve, that this fudden change of the law does not appear to be conffftent with the favourite principle of continuity, fo zealounly maintained by the fame philofophers. According to the fame opinion, forces that fuftain each other, with oppofite directions, and deftroy each others effect, may be unequal in any given ratio; and when bodies meet with equal forces in oppofite directions, they do not therefore fuftain each other, but that which has the greater velocity carries it againft the other. Let v denote the velocity of $A$, and $v$ the velocity of $B$; then $A \times V$ will denote the motion or force of $A$, and $B \times r$ the motion or force of $B$; fo that thefe motions are equal when $A \times v=B \times v$, that is, when $v$ is to $v$, as $B$ is to $A$ : and this is the cafe wherein conftant experience teaches us that the motions fuftain each other, provided their directions be oppofite. But, according to the new opinion, the force of A is meafured by $A \times v \vee$, and the force of $B$ by $B \times v V$, which are to each other in the fame proportion as $v$ to $v$, in the prefent cafe, becaufe we fuppofe $\mathrm{A} \times \mathrm{V}=\mathrm{B} \times$. Thefe forces, therefore, according to the new opinion, are fo far from being equal, that the force of A is lefs than the force of B , in proportion as V is lefs than $v$, or b lefs than $A$; fo that, according to this doctrine, a force might fuftain, or even overcome, a force 1000 times greater than itfelf, or greater than itfelf in any affignable proportion. According to the fame doctrine, the forces of A and $B$ are equal, when $A \times V \vee=B \times v v$, that is, for example, when A being quadruple of B , the velocity of $B$ is double of the velocity of $A$; in which cafe the quantity of motion, or momentum, of $A$ is double of that of B ; and the motion of A appears, from experience, to be more than fufficient to futtain the motion of b. It has coft the favourers of the new

Chap.2. Philosophical Discoveries. I4I opinion a great deal of pains to compofe their accounts, by which they endeavoured to reconcile their theory with experience; and how unfatisfactory their accounts have proved, will eafily appear to the reader who will take the trouble to examine them.
20. Let the bodies A and в (Fig. 14.) by moving towards each other, comprefs equal and fimilar fprings placed between them, till by the reaction of thofe fprings their motions be deftroyed. Mr. Bernovilli exprefsly owns, that the actions of the fprings on thofe bodies are conftantly equal to each other, and yet maintains that they deftroy a force in $\quad$ B greater than the force of A , in the fame proportion as the body $A$ is greater than $B$, or ( $C$ being the centre of gravity of $A$ and $B$ ) as с $B$ is greater than $с A$. He therefore maintains, that equal preffures or actions of fprings generate, in the fame time, forces that may be unequal in any affignable ratio; which is repugnant to the plaineft notions we are able to form of action and force, and ferves only to introduce myfterious and obfcure conceptions into the theory of motion, without any neceffity. If we fuppofe the body a to comprefs the fprings from a to c , then the body в will comprefs all the fprings from в to c , in the fame degree, and in the fame time ; and thence he infers, that the force of $A$ is to the force of $B$, in the fame proportion as the number of fprings from $c$ to $A$, to the number of fprings from с to b. But fince the motion, force, or effect of any kind, produced or deftroyed in $A$ or $B$, depends upon the immediate action which produces the effect, and upon it only; and fince, in this cafe, the actions of the fprings upon the bodies $A$ and $B$ are thofe which deftroy their motions; and fince it is allowed by him that the actions of the frings upon thefe bodies are equal, is it not evident that the
forces deftroyed by them in the fame time muft be equal? And is it not manifeft, that the forces which are produced or deftroyed in bodies, are to be meafured by the efforts which the fprings exert upon the bodies in producing this effect, and not by the number of fprings? It is the laft fpring only, which is in contact with the body, that acts upon it, the reft ferving only for fuftaining it in its action; fo that any change produced in the body, by whatever name it be called, ought to be determined from the action of this laft fpring only, and in juft reafoning ought to be computed from it alone. Had he defined force by the number of equal and fimilar fprings, that, by a given degree of expanfion or compreffion, produce or deftroy it, juft exceptions might have been made againit the propriety and convenience of fuch new and unneceffary expreffions, as tending to perplex and darken this moft ufeful theory of motion, which was before very clear and evident: but then this controverfy would have appeared to relate chiefly to words and terms of art, and there would not have been fo much danger of miftakes arifing from their doctrines. But he does not give this for the definition of force.
21. When a body defcends by its gravity, the motion generated may be confidered as the fum of the uniform and continual impulfes accumulated in the body, during the time of its falling. And when a body is projected perpendicularly upwards, its motion may be confidered as equivalent to the fum of the impulfes of the fame power till they extinguifh it. When the body is projected upwards with a double velocity, thefe uniform impulfes muft be continued for a double time, to be able to deftroy the motion of the body; and hence it arifes, that the body, by fetting out with a double velocity, and afcend-
afcending for a double time, muft arife to a quadruple height, before its motion is exhaufted. But this proves that a body with a double velocity moves with a double force, fince it is produced or deftroyed by the fame uniform power continued for a double time, and not with a quadruple force, tho' it arife to a quadruple height. This, however, was the argument upon which Mr. Leibnitz firft built this doctrine; and thofe which have been fince derived from the indentings or hollows produced in foft bodies by others falling into them, are much of the fame kind and force. Caufes are not to be meafured by any effects produced by them, taken without any choice, or judgment, or regard to their circumftances. Motions and forces are not to be meafured by the effects produced, without regard to the times and directions of the motions, according to the principles of geometry and mechanics. In geometry, we judge of wholes by comparing their parts, or the elements from which they are generated; and, in mechanics, we can have no better method of judging of motions, or forces, than from the powers that produce them. The motion, or force, of a body has a much more fimple and plain analogy to the power that produces it, than to the fpace defcribed by it in foft clay or any other refifting medium.
22. The principle, "s that the caufe is to be mea"fured by its effect," is one of thofe that will be very apt to lead us into error, both in metaphyfics and natural philofophy, if applied in a vague and indiftinct manner, without fufficient precautions. Force is defined to be that power of acting in a body which muft be meafured by its whole effect till its motion be deftroyed, by thofe who favour the new opinion, or fome of them at leaft, and by fome
who would reprefent this difpute as merely about words. But the fame authors tell us likewife, that force is proportional to the number of fprings which it can bend before it be deftroyed; and this they propofe, without any proof, as a definition or axiom. Did they content themfelves with the latter of thefe only, we fhould allow the difpute to be of very little moment, farther than as fuch liberties tend to confound our notions of the action and motion of bodies, as we obferved above. But while they pretend that force, defined by them at their pleafure, is to be confidered as the caufe of the effects produced by motion, and is to be meafured by thofe effects, the difpute appears no longer to be about words only. Sir Ifaac Nereton, in his fecond law of motion, points out to us that the impreffed force being confidered as the caufe, the change of motion produced by it is the effect that meafures the caufe; and not the fpace defcribed by it againft the action of an uniform gravity, nor the hollows produced by the body falling into clay. This law of motion is the fureft guide we can follow, in determining effects from their caufes, or converfely the caufes from their effects.
23. The harmony between the laws of preffures, or powers, that generate motion, and the laws of thefe motions themfelves, appears in a fuller light when we attend to their compofition and refolution. Powers acting in the directions A B and AD, (Fig. 4.) proportional to thofe right lines, compound a power that acts in the direction of the diagonal A C, and is meafured by $A C$. Becaufe $A C$ is lefs than $A B+A D$, the power compounded from $A B$ and $A D$ is always lefs than thofe powers themfelves; and this is fully accounted for by refolving the power A B into a m and $A N$, (Fig. 5.) and the power $A D$ into $A K$ and

Chap. 2. Philosophical Discoteries.
AL ; of which AN and AL are oppofite and equal and deftroy each others effect, fo that there remains $A M+A K$, or $A C$, the meafure of the compounded power. The favourers of the new opinion agree with us in arguing in this manner, concerning powers and preffures; but in a manner quite inconfiftent with this, in the compofition and refolution of forces. When the angle BAD is right, the compounded force is equal to the fum of the forces $A B$ and AD, according to them ; and no force is loft, notwithftanding the oppofite directions of the forces A L and AN ; tho' it is not eafy to conceive how this fhould not have an effect in the compofition of forces, as well as of powers and preffures. When the angle $\operatorname{BAD}$ (Fig. 15.) is acute, the fquare of the diagonal $A C$ exceeding the fum of the fquares of $A D$ and $D C,($ Euclid, 12.2.) or of AD and $A B$, the two forces in the directions AD and AB mut, according to the new doctrine, compound a force $A C$ greater than their fum. Now this appears directly cointradictory to the metaphyfical principle fo much infifted on by them, that the effect is proportional to the caufe which produces it ; for, in this cafe, the effeet is greater than the caufe; and this feems to be as abfurd, in mechanics, as that two quantities collected together fhould produce a greater quantity than their fum, in geometry. When this was objected, the anfwer * given to it deferves to be copied, for a fpecimen of their way of getting over difficulties: it is no more but that " no abfurdity follows from the " new opinion, which by meafuring forces, not by " momenta, but, by the fquare of the velocities, " concludes that on account of the angle D A B its "6 being acute, the fquare of AC (which is the force

[^37]" compounded) is greater than the fquares of AE " and AD, the fum of what they call the com" pounding forces."
24. To illuftrate this farther, fuppofe that the elaftic body a (Fig. 16.) receives its force, in the direction $A B$, from the equal elaftic body H , and its force, in the direction $A D$, from the equal elaftic body g , at the fame time. According to the patrons of the new doctrine, the forces of $H$ and $G$ are communicated to a by infinitely fmall degrees, or by an uninterrupted fucceffion of preffures, and the whole force communicated to A is the fum of the effects of thefe preflures. Now in every inftant the preffure, or infinitely fmall force impreffed on a, is lefs than the fum of the preffures exerted in that inftant by $H$ and $G$, in proportion as $A C$ is lefs than $A B+A D$, as is allowed on all fides. Therefore the fum of all the preffures, or the force imprefs'd on A, muft be lefs than the fum of all the preffures, or the fum of the forces exerted by h and c , in the fame proportion of $A C$ to $A B+A D$; that is, the forces of $A, H$, and $G$, mutt be as the lines $A C, A B$ and $A D$, and not as their fquares. It is not poffible to conceive that while the force in A arifes from the accumulation of the preflires, or infinitely fmall forces, which it receives every moment from the actions of $H$ and $G$, and each of thefe preffures, or infinitely fmall forces, is lefs than the fum of the actions of H and G that produce them ; yet the whole force of a fhould neverthelefs exceed the fum of the whole actions or forces of H and g . I fpeak here of infinitely fmall forces, to comply as much as poffible with the ftile of the favourers of this new opinion. To * this they gave no other anfwer than that what we call

[^38]Chap. 2. Philosophical Discoveries. ${ }^{1} 47$ forces here ought to be called momenta. But they pretend not to explain how the infinitely fmall forces impreffed upon A , in the direction AC , come to produce a finite force far greater than their from total; or how the effect fhould be fo far from correfponding to the caufe; the metaphyfical principle which they feem to ufe, or reject, juft.as it ferves their turn. If we fuppofe the angle $B A D$ to be infinitely acute, the fame forces (according to the new opinion generate a force in a which exceeds their fum as much as the fquare of $A B+A D$ exceeds the fum of the fquares of $A B$ and $A D$; fo that if $A D$ be equal to $A B$, they will in that cafe generate at a force double of their fum, for then the fquare of $A B+A D$ will be equal to the fquare of 2 AB , that is to $4 \mathrm{AB}^{2}$; tho' the two equal forces which are fuppofed to produce this, taken together, amount only to $2 \mathrm{AB}{ }^{2}$, according to their own computation; fo that, in this cafe, a caufe produces an effect of the fame kind double of itfelf. To this it has been $\dagger$ anfwered, that, according to the new opinion, a double momentum may produce a quadruple effect, if the velocity is double. But furely the author who gave this anfwer did not attend to the objection; for what we have proved, is not that a double momentum produces a quadruple effect, but that a double force, according to their own notion and computation, produces a quadruple force, according to the fame notion and computation. And indeed the fum of the anfwers they have made to the abfurdities which have been dedaced from their favourite opinion amounts to this, viz. that they are no abfurdities becaufe their new opinion obliges them to admit them.
t Ibid. p. 74, in the notes.

25 . The refolution of powers, or preffures, is a neceflary confequence of their compofition. As motion is loft in the compofition, fo it is neceffarily gained in the refolution of motion; and as this is allowed of motions, and of the powers that generate motion, there can be no good reafon given why it ought not to be allowed of the effects of thofe powers, or of the force of bodies. The fame reafons that argue for an increafe in the one cafe, prove, with the fame evidence, that an increafe of the other ought likewife to be allowed. Let the body c (Fig. 17.) moving in the direction DC, the diagonal of the parallelogram C LDK, ftrike the equal body A obliquely, fo as to impell it in the direction ca the continuation of CK , and at the fame time the equal body b , in the direction св the continuation of $C L$; the body a will proceed in the right line ca, and the body в will proceed in the direction с в the continuation of cL , and c having communicated all its force to them will ftop. It will not appear ftrange that the motions and forces of $A$ and $B$ exceed the motion or force of c , if we confider that c communicates the whole motion or force ck to A , and the whole motion or force CL to $B$, that the refiftance or inertia of a reacting upon c , not in the direction of its motion CD , but in the direction ck oblique to it, the abfolute motion or force of $c$, in the direction DC , is not fo much diminifhed by this reaction as if it was directly oppofite to the motion of c ; for no power, or refiftance, can produce fo great an effect in any direction as in that wherein it acts. In like manner the reaction of в deftroys the motion or force lc in the body c, in the direction in which в reacts; but not fo great a motion or force in the direction DC to which it is oblique; and thus it appears, that the motion or force of $\epsilon$, in the direction

Chap. 2. Philosophical Discoveries. dc, muit neceffarily be lefs than the fum of the motions or forces of the bodies A and B in their refpective directions. If it be objected, that, in this cafe, the motion of c , in the direction DC , is the caufe of the motions of A and B , in the directions CA and $C B$; fo that a caufe produces effects whofe fum is greater than itfelf; in anfwer to this, we have already obferved, that as this is allowed on all hands of motions and preffures, it cannot be abfurd to extend it to forces, but muft obtain in them for the fame reafons. But farther, we are to obferve, that, in confequence of the inertia of body, it not only refifts any change of its motion, but likewife any change in the direction of its motion; and that when the action of bodies upon each other is not in a right line, both thefe are to be taken into the account. Suppofe the body c firft to ftrike upon a, then the reaction of a has a $t$ wofold effect; it fubducts fome. what from the motion or force of c , and at the fame. time it produces a change in the direction of $c$; and the reaction of A (to which the motion or force produced in it is equal) is not to be eftimated by one of thofe effects only, but by both conjointly. After the body c has ftruck A , it proceeds in the right line св with a motion or force as cl, and, impinging upon в directly, it communicates its whole motion or force to b which reacts directly againft it. We have fuppofed the bodies $\mathrm{C}, \mathrm{A}$, and B to be perfectly elaftic, in conformity to the fuppofitions of our opponents, fome of whom confine themfelves in their enquiries to the fe only.
26. If we fubftitute fprings in place of the bodies $A$ and b , and their refiftances be meafured by $\mathrm{c} \kappa$ and $C \mathrm{~L}$, it will appear, in the fame manner, that the refiftances of thofe fprings are not the proper meafures of the force of the body c , but that taken

$$
L_{3}
$$

toge at a difadvantage againft the motion or force of c . It has its whole effect in the direction ck in which ir refifts; but not fo great an effect in the direction CD , which is oblique to that in which it acts. If the foring a acted with the fame advantage as $B$, they would together produce a greater effect than in the fituation they have in the figure; and therefore the greateft refiftances which they are able to exert taken together, muft exceed the force of the body c. Thus it appears that this argument, inftead of overthrowing our doctrne, confirms it, and that they who advanced it fuppofed thofe forces to be equal, which, according to the known principles of mechanics, are unequal. If it is afked what becomes of the excefs of the force of the fpring $A$, above what is fubducted from the force of $c$ ? It may be anfwered, that it is not without its effect: for the direction of the body is changed from the line D $C$ into the right line св; and no principle, either in metaphyfics or mechanics, teaches us that this effect is to be neglected, in comparing the caufe and effects rogether on this occafion. On the contrary, many inftances might be given where a force is employed in producing a change in the direction of a motion of a body only, without either accelerating or retarding it. The force that is fufficient to carry a body upwards in the perpendicular to the horizon, to a double diffance from the centre of the earth, is equal to that which, impreffed in a horizontal direction, would carry it in a circle about the earth for ever, abftracting from the refiftance of the air; as appears from the theory of gravity: and yet the firit would overcome the refiftunce arifing from the gravity of the body for a certain time only; whereas the other would overcome that refilance for ever, without any diminution of motion. In the firt $\mathrm{cafe}^{2}$

Chap. 2. Philosophical Discoveries. cafe, the gravity of the body would act directly againft its force; in the fecond, it would act in a line perpendicular to the direction of its mution: in the firft cafe, the action of gravity is entirely employed in confuming the force of the body; in the orher, in changing its direction only. The arguments drawn in favour of the new opinion from the refolution of motion, feem, at firft fight, the moft plaufible of any that have been offered for it; but, from the confiderations which we have fuggefted, it may appear to an impartial reader, that inftead of overthrowing the common doctrine, they rather confirm it. As, in other inftances, Mr. Leibnitz's followers neglect the confideration of time, in reafoning concerning the forces of bodies; fo here we find that they have not due regard to the directions of motions and forces, in eftimating and comparing their effects; which, however, in mechanical enquiries, are of no lefs importance than the motions or forces themfelves.
27. We have infifted on thefe obfervations, becaufe they fet the theory of motion in a plain and juft light. We often obtain this advantage from difputes concerning the edementary propofitions of any fcience, that they are the more carefully enquired into, and when found juft, are illuftrated and the better underftood for having been difputed. We cannot, however, leave this fubject without mentioning an experiment, made by the ingenious and accurate Mr . Grabam, to whom the mechanical fciences are fo much indebted. He prepared a pendulous body with a cavity in it capable to receive another body of an equal weight, at the loweft point of its vibration; and when the body was drop'd into it, he found, by the fubfequent vibration, that the velocity of the double mafs was precifely one half of
what the velocity of the pendulum was before; from which it appears, that the fame force produces in a double quantity of matter one half of the velocity only; which is agreeable to the common doctrine, but directly repugnant to the new one, concerning the forces of bodies in motion. Many ingenious pieces have been writ againft this new doctrine by learned men, to which we refer the reader who defires to fee more on the fubject *. It is pretended, that by this new doctrine we are enabled to refolve problems in an eafy manner, which are otherwife of great difficulty; but by the rejecting hard and inflexible bodies, there is more loft than gained in this refpect, as we have fhewn elfewhere, and as will appear afterwards, when we come to determine more particularly the effects of the collifions of bodies.
28. It is becaufe action and reaction are always equal, that the mutual actions of bodies upon one another have no effect upon the motion of the common centre of gravity of the fyftem to which they appertain. If there was any afition in the fyftem that had not a contrary and equal reaction always correfponding to it; it would affect the fate of the centre of gravity of the fyftem, and difturb its motion: and, converfely, if it be allowed that the flate of the centre of gravity of a fyftem is not difturbed by the actions of bodies upon one another that are its parts, we may conclude that their actions are mutual, equal, and have contrary directions. It will therefore be found agreeable to the courfe of thinge, and to perpetual experience, that the third law of motion be extended generally to all forts of

[^39]powers

Chap. 2. Philosophical Discoveries.
powers that take place in nature, thofe of attraction and repulfion as well as others, (and not to be a fuppofition arbitrarily introduced by Sir Ifaac Neroton; ) when thofe powers are found to depend upon the bodies that are faid to aitract or repell, as well as upon thofe that are attracted or repelied. We find the loadftone attracts iron, and that iron attracts the loadftone with equal force; and becaufe they attract each other equally, they remain at reft when they come into contact. If a mountain by its gravity preffed upon the earth, and the earth did not react equally on the mountain; then the mountain would neceffarily carry the earth before it, by its preffure, with a motion accelerated in infinitum. The fame is to be faid of a ftone, or the leaft part of the earth, as well as of a mountain. Bodies act upon light in proportion to their denfity, cateris paribus, by refracting it when it enters into them; and converfely, light acts upon bodies by heating them and putting their parts in morion. This equality of acion and reaction obtains fo generally, that when any new motion is produced by any power or agent in nature, there is always a correfponding equal and oppofite motion produced by its reaction at the fame time, or fome equal motion in the fame direction deftroyed. When from an engine a weight is thrown, the engine reacts with an equal force on the earth or air. If it was not for this law, the ftate of the centre of gravity of the earth would be affected by every action or impulfe of every power or agent upon it: But by vircue of this law, the ftate of the centre of gravity of the earth, and the general courfe of things, is preferved, independent of any motions that can be produced at or near us furface, or within its bowels. By the fame law, the ftate of the leffer fyftems of the planets, and the the motions produced by voluntary and intelligent agents, we find the fame law take place; for tho' tile principle of motion, in them, be above mechanifm, yet the inftruments which they are obliged to employ in their actions are fo far fubject to it as this law requires. When a perfon throws a ftone, for example, in the air, he at the fame time reacts upon the earth with an equal force; by which means the centre of gravity of the earth and fone perfeveres in the fame ftate as before. And the neceffity of this law, for preferving the regularity and uniformity of nature, well deferved the attention of thofe who have wrote fo fully and ufefully of final caufes, if they had attended to it.

## C H A P. III.

## Of the mechanical powers.

'THE knowledge of mechanics is one of thofe things that contribute moft to diftinguifh civilized nations from barbarians: the works of art derive their chief beauty and value from it; and without it we can make very little. progrefs in the knowledge of the works of nature. It is by this fcience that the utmolt improvement is made of

Chap. 3. Philosophical Discoveries.
every power and force in nature, and the motions of the elements, water, air, and fire, are made fubfervient to the purpofes of life, when induftry, with materials for the neceffary inftruments, are not wanting. However weak the force of man appears to be, when unaffifted by this art, yet with its aid, there is hardly any thing above his reach. It is a fcience that admits of the ftricteft evidence; and certainly it is worth while to eftablifh it on its juft principles, and to cultivate it with the greateft diligence.

It is diftinguifhed by Sir Ifaac Nerwton into practical and rational mechanics; the former treats of the mechanical powers, viz. the lever, the axis and wheel, the pulley, the wedge, and the forew, to which the inclined plane is to be added; and of their various combinations together. Rational mechanics comprehends the whole theory of motion; and fhews, when the powers or forces are given, how to determine the motions that are produced by them; and, converfely, when the phrnomena of the motions are given, how to trace the powers or forces from which they arife. Thus it appears that the whole of natural philofophy, befides the defcribing the phænomena of nature, is little more than the proper application of rational mechanics to thofe phænomena; in tracing the powers that operate in nature from the phænomena, we proceed by onaly/is; and in deducing the phænomena from the powers or caufes that produce them, we proceed by fynthefis. But in either cafe, in order to proceed with certainty, and make the greateft advances, it is neceffary that the principles of this art fhould be premifed and clearly eftablifhed, being the grounds of our whole work. We have already confidered the inertia or paffive nature of body, according to which it perfeveres in its itate of motion or reft, receives motion much as it is refilted; which is the fum of the three general laws of motion: from which, and their general corollaries, demonftrated in the laft chapter, we are now to deduce the principles of mechanics. As thefe laws and their corollaries take place, tho' the caufes of the motions, the nature of the impreft force, or of the refiftance, be unknown or obicurely underftood; fo the obfcurity of the nature and caufe of the power that produces the motions, does not hinder us from tracing its effects in mechanics with fufficient evidence, provided we can fubject its action to a juft menfuration: and, in fact, we know that excellent contrivances have been invented for raifing weights, and overcoming their refiftances, by fuch as gave themfelves no trouble to enquire into the caufe of gravity.
2. In treating of the mechanical engines, we always confider a weight that is to be raifed, the power by which it is to be raifed, and the inftrument or engine by which this effect is to be produced. There are two principal problems that ought to be refolved in treating of each of them. The firt is, " to de"termine the proportion which the power and " weight ought to have to each other, that they " may juit fuftain one another, or be in aquili"brio." The fecond is, " to determine what " ought to be the proportion of the power and " weight to each other, in a given engine, that it " may produce the greateft effect poffole, in a given " time." All the writers on mechanics treat of the firt of thefe problems, but few have confidered the fecond; tho' in practice it be equally ufeful as the other. As to the firft, there is a general uniform rule that holds in all the powers, is founded on the laws of motion, and is another inftance of the

Chap. 3. Philosophical Discoveries.
beauty and harmony that refults from the fimplicity of the theory of motion defcribed in the lait chapter. Suppofe the engine to move, and reduce the velocities of the power and weight to their refpective directions in which they act ; find the proportion of thofe velocities ; then if the power be to the weight, as the velocity of the weight is to the velocity of the power, or, (which amounts to the fame thing) if the power multiplied by its velocity give the fame product as the weight multiplied by its velocity, this is the cafe wherein the power and weight fuftain each other and are in aquilibrio: fo that in this cafe, the one would not prevail over the other, if the engine was at reft ; and, if it is in motion, it would continue to proceed uniformly, if it was not for the friction of its parts, and ocher refiftances. This principle has a plain analogy to that by which the equality of the motions, or forces, of bodies was determined in general, in chap. 2. § 19. For, as the motion of bodies are equal, and deftroy each others effect, if their directions are contrary, when the firt is to the fecond, as the velocity of the fecond is to the velocity of the firt, the greater velocity of the leffer body juft compenfating its deficiency in quantity of matter; fo the actions of the power and weight are equal, and deftroy each others effect upon the engine, when the power is to the weight, as the velocity of the weight is to the velocity of the power. But tho' it is ufeful and agreeable, to obferve how uniformly this principle prevails in engines of every fort, throughout the whole mechanics, in all cafes where an aquilibriun takes place; yet it. would not be right to reft the evidence of fo important a doctrine upon a proof of this kind only. Therefore we fhall demonftrate the law of the aquilibrium in the lever or veefis (which is the foundation of all the other propofitions of this kind in mecha-
nics) by a new method, that feems to us to be founded on the plaineft and moft evident principles; to which we fhall fubjoin the demonftration given by Sir Ifaac Neroton of the fame law, and that which is afcribed to Arcbimedes.
3. In the firft place it is evident, that if equal powers act at equal diftances on different fides of the prop, or centre of motion, with directions oppofite and parallel to each other, they will have the fame effect. Thus, А в (Fig. 18.) being bifected in c, if a power $A$ act upon the lever in the direction $A F$, and an equal power b act upon it with an oppofite and parallel direction be, then the effects of thofe powers, to move the lever about the centre c , will be precifely equal; fo that the one may be always fubftituted for the other. A fecond principle is, that, gravity being fuppofed to act in parallel lines, if the prop c (Fig. 19. n. 1.) be between the bodies A and $B$, it muft bear the fum of their weights; becaufe the lever being loaded with thofe weights, it muft give way if the prop does not fuftain their fum ; but that when the powers $A$ and $B$ are on the fame fide of the prop or fulcrum c, (Fig. 19.n.2.) in which cafe one of them, as A, muft pull upwards, while the other в pulls downwards, that there may be an aquilibrium, it is then only loaded with the difference of the powers A and b. The one of thofe cafes always follows from the other, if we confider, that in the cafe of the azuiliorium, any one of the three powers that act at $A, B$, and $C$, may be confidered as that of the prop, and the other two as endeavouring to turn the lever about it. From thefe principles we deduce the law of the cquilibrium in the lever, in the following manner.
4. Sup-
4. Suppofing firft two equal powers, A and B (Fig. 20.) acting in the directions A F, BH, to carry a body c, upon the lever a B, placed at c at equal diftances from them ; it is evident, that, in this cafe, each of the powers a and b fultains one half of the weight c , by dividing it equally between them. Imagine now that the power a is taken away, and that inftead of refting upon it, the end a of the lever refts upon a prop at $A$; it is manifeft that the power b, and the prop at A, fuftain, as before, each one half of the weight c ; the prop now acting, in every refpect, as the power at a before; and, the equilibrium continuing, it appears, that, in this cafe, a power в equal to one half of the weight c fuftains and ballances it, when the diftance of c from the prop $A$ is one half of the diftance of $\boldsymbol{b}$ from the fame; that is, when B is to c , as са to ba, or $B \times B A=C \times C A$. From this fimple inftance we fee, that powers act upon a lever not by their abfolute force only, buit that their effect neceffarily depends upon the diftance of the point where they act from the prop, or centre of motion; and particularly, that a power ballances a double power which acts at half its diftance from the prop, on the fame fide of it, with an oppofite direction.

The cafe when the two powers act on different fides of the prop, follows from this, by the principles laid down in the laft article. For let в н and cg (Fig. 21.) reprefent the directions and forces with which the powers b and c act upon the lever; upon $B A$ produced take $A E$ equal to $A C$, or $\frac{1}{2} A B$, and in place of the power CG fubftitute an equal power EK at E, with an oppofite direction; and, by the firft of thofe principles, this power ek will have the fame effect as cG, only the prop, or centre of
motion, a will now fuftain the fum of the forces $\mathbf{E K}_{\mathrm{K}}$ and BH , by the fecond principle in the laft article. But the aquilibrium between the powers вн and $\mathrm{e}_{\mathrm{K}}$ will continue as it was before between вн and cG ; fo that the powers bhand ek will be in equiliorio, when the power $\mathrm{B} \boldsymbol{H}$ is one half of EK , and the diftance of Ek from the prop a is one half of the diftance of $\boldsymbol{b} \boldsymbol{H}$ from the fame; that is, when the power at $B$ is to the power at $E$, as $A E$ to $A B$, or $B \times B A=E \times E A$. In this cafe, the prop a being loaded with both the powers в and e which act with the fame direction, its reaction muft be equal to their fum $\mathrm{EK}+\mathrm{BH}=3 \mathrm{BH}$, and muft be in the oppofite direction AF. In place of this reaction let us now (Fig. 22.) fubftitute a power $A F$ at $A$, equal to thrice bн; and in place of the power eк, let us fubftitute a prop at E , fuftaining that end of the lever be; and fince the aquilibrium continues as before, it follows that the prop, or centre of motion, being at E , the power BH fuftains the power AF which is triple of BH , when the diftance of в н from the prop E is triple of the diftance of the power $A$ from the fame, that is, when $b \boldsymbol{f} \times \mathrm{be}$ $=A F X A E$.

If we fuppofe the power ex to remain (Fig. 23.) but the end $\quad$ of the lever $\begin{aligned} \text { в to reft upon a prop, }\end{aligned}$ then the powers $\operatorname{AF}$ and ek will fuftain and ballance each other, the prop at b now coming in place of the power BH ; in which, $\mathrm{AF}=3 \mathrm{~B} \mathrm{H}$, and $\mathrm{EK}=$ 2 BH ; fo that $A F$ is to EK as 3 to 2 ; and the diftances eb and $A$ b being in the fame proportion, it appears that when two powers in the proportion of 3 to 2 act upon a lever on the fame fide of the prop, or centre of motion, with oppofite directions, at diftances in the proportion of 2 to 3 , they then fuftain each other. We have demonftrated there-

Chap. 3. Philosophical Discoveries, $16 \pm$ fore, that when the powers are in the proportion either of 2 to 1 , or of 3 to 1 , or of 3 to 2 , and the diftances of their application from the centre of motion are in the inverfe proportion, then thofe powers ballance each other, or are in equilibrio.
5. Upon в e produced (Fig. 25. n. 1.) take el= ea; and in place of the power af fubtitute a power LM=AF, but with a contrary direction ; this power $\mathrm{L} m$ will have the fame effect to turn the lever round the centre of motion e as A $F$ had, by the firft principle in $\$ 3$; confequently it will be in aquilibrio with the power bh, as Af was. Therefore when two powers $L \mathrm{~m}$ and BH , in the proportion of 3 to I , act upon a lever with the fame direction, they are in equilibrio, if their diftances from the centre of motion Le and eb be in the ratio of 1 to 3 ; that is, when $L M \times L E=B H \times B E$. In this cafe, the powers Lм E muft fuftain their fum $\mathrm{LM}+\mathrm{BH}=4 \mathrm{BH}$, by the fecond principle of $\$ 3$. Therefore a power at L as 3 , and a power acting at a with the fame direction as I , are fuftained by a power acting at E , with a contrary direction, as 4. From which it follows, by fubftituting in the place of the power гм a prop at L , that a power at B as I fuftains a power at E as 4, acting with a contrary direction, when BL is to EL as 4 to 1 ; that is, when the powers are inverfely as their diftances from the prop, or centre of motion. By fubitituting the prop at $\overline{\mathrm{B}}$ in the place of the power вн, it appears that a power LM at L, as 3, fuftains a power, acting with an oppofite direc. tion, at E , as 4, when their diftances L b and EB from the prop $B$, are to each other as 4 to 3 , or when $\mathrm{l} M \times \mathrm{L}=\mathrm{e}$ KXeb. By taking upon lb produced $\boldsymbol{B} \ell=\mathrm{BE},($ Fig. 24. n.2.) and in place of the power at $E$, fubflituting an equal power at with a
contrary direction, it appears, by the firft principle in §3. that a power at L as 3 fuftains a power acting at $e$, with the fame direction, as 4 , when the
 cafe, the prop at в fuftains the fum of the powers acting at L and $e$, that is, a power equal to feven times вн. From which it follows, by fubftituting a prop at L , or $e$, in place of the powers that act there, that a power at $e$ as 4 fuftains a power at B as 7 , about the centre of motion L , when their diftances from it $e \mathrm{~L}, \mathrm{BL}$ are to each other as 7 to 4: and that a power at L as 3 fuftains the power at в as 7 , about the centre of motion $e$, when their diftances from $\mathrm{it}, \mathrm{L} e$ and $\mathrm{B} e$, are to each other as 7 to 3.
6. By proceeding in this manner it appears, that when the powers are to each other as number to number, and when their diftances from the cen. tre of motion are in the inverfe ratio of the famt numbers, then the powers fuftain each other, or ar in aquilibrio. From which it is eafy to fhew, in ge neral, that when the powers are to each other in any ratio, tho' incommenfurable, and the diftances o their application from the centre of motion in th fame inverfe ratio, then they are in equilibrio; be caufe the ratio of incommenfurable quantities mar be always limited, to any degree of exacunefs at plea fure, between a greater and a leffer ratio of number to number. And this I take to be the moft dired and natural proof of the law of aquilibrium in th lever, the fundamental propofition of mechanics.
7. When the centre of motion $c$ is between $t$ l bodies A and B , it is the fame point which was calle their centre of gravity, chap. $2 . \S 13$. And hene it appears, that when the two bodies are fuppof


Chap. 3: Philosophical Discoveries! 163 to be joined by an inflexible rod void of gravity, if the centre of gravity be fultained, then the bodies fhall be fuftained.

If two powers or weights, B and D, (Fig. 25.) act upon a lever at the diftances B C and D C from the centre of motion, the forces with which they act upon the lever flall be in the fame proportion of $B \times B C$ to $D \times D C$; that is, in the ratio compounded of the ratio of the powers, or weights, and that of their diftances from the centre of motion. For the effort of $B$ is fuftained by $A$, if $A \times A C$ be equal to $B \times B C$; and the effort of the power $D$ is fuftained by $K$ applied at the diftance $C A$, if $K \times A C=D \times D C$. But the efforts of the powers, or weights, в and D , upon the lever, are in the fame proportion to each other as the powers $A$ and K , which, applied at the fame diftance c a from the centre of motion, fuftain them, or as $A \times A C$ to $K X A C$, and therefore as $B \times B C$ to $D \times D C$. From this it appears, that when any number of powers act upon a lever, if the fum of the products that arife by multiplying each power by its refpective diftance from the centre of motion, on one fide of it, be equal to the fum of the products that arife by multiplying each power on the other fide of the centre of motion by its refpective diftance from it, then thefe powers fuftain each other, and the lever is in ajuilibrio. But by what was fhewn in § r 3. chap. 2. the centre of motion coincides, in this cale, with what was there called the centre of gravity. Therefore if any number of powers or weights act upon a lever, and, their centre of gravity being determined by the conftruction in that article, if the prop or fulcoum be applied at this centre, the lever hall be in cquilibrio. In the fame manner, if any number of powers or weights be applied upon a plane that refts upon a given right
line It, (Fig. 26.) and the centre of gravity of all the powers or weights fall upon that line, the plane fhall be in cquilibrio: for, by that article, the fums of the products that arife by multiplying each power by its refpective diftance from the axis of motion, being equal on the different fides of this axis, their efforts to move the plane muft be equal and contrary, and deftroy each others effect. Therefore as the flate of any fyitem of bodies, as to motion or reft, depends on the motion or reft of the point called the centre of gravity, by what was fhewn above in the latt chapter; fo it is another notable property of this point, that if the bodies be joined together, and to it, by inflexible lines void of gravity, and this point be fuftained, the whole fyftem thall be fuftained and remain in equilibrio.
8. When any powers B and D (Fig. 25, 26.) act upon a lever, endeavouring to turn it about the centre of motion c , or when they act upon a plane, endeavouring to turn it about the axis of motion I L , their effect is the fame as if a power or weight equal to their fum was fubftituted in place of them at their common centre of gravity n. For, by § 14. chap. 2, $\mathrm{B} \times \mathrm{BC}+\mathrm{D} \times \mathrm{DC}=\overline{\mathrm{B}+\mathrm{D}} \times \mathrm{NC}$; or if $\mathrm{B} b, \mathrm{D} d, \mathrm{~N} n$ be perpendicular to IL in the points $b, d, n$, then, by the fame article, $\mathrm{B} \times \mathrm{B} b+\mathrm{D} \times \mathrm{D} d=\overline{\mathrm{B}+\mathrm{D}} \times \mathrm{N} n$. If c , the centre of gravity of all the powers, or weights, that act upon the lever, fall on one fide of c the centre of motion; or the centre of gravity of all the powers that act upon the plane, is on one fide of the axis IL.; then the preponderancy will be on that fide, and will be the fame as if, in place of all thofe powers, one power equal to their fum was fubftituted at their common centre of gravity. For it was fhewn that $B \times B C+D \times D C-A \times A C=\overline{A+B+D} X$

Chap．3．Philosophical Discoviries． 165 cc，when the power a acts on one fide and the powers $B$ and $D$ on the other．Therefore，as when the centre of gravity of the powers refts upon the centre of motion，the whole is in aquilibrio，and the prop c fuftains a force equal to their fum ；fo when the centre of gravity is not fuftained by the prop， but falls on one fide of it，the preponderancy is on that fide，and is the fame as if all the powers or weights were collected together at that centre．The analogy between thefe ftatical theorems，and thofe in the theory of motion relating to this centre，de－ frribed in the laft chapter，deferve our attention； and farther illuitrate the fimplicity of this doctrine and the harmony of all its parts．

9．Sir IJaac Nerwton demonflates the funda－ mental propofition concerning the lever，from the refolution of motion．Let c（Fig．27．）be the cen－ tre of motion in the lever kl；let $A$ and $b$ be any two powers，applied to it at K and L ，acting in the directions ka and lb．From the centre of motion c ，let CM and cN be perpendicular to thofe directions in $M$ and $N$ ；fuppofe $C M$ to be lefs than $C N$ ，and from the centre c ，at the diftance cn ，defcribe the circle NHD，meeting KA in D．Let the power a be reprefented by $⿴ 囗 十$ a and let it be refolved into the power DG acting in the direction $C D$ ，and the power $D F$ perpendicular to $C D$ ，by compleating the paral－ lelogram AFDG．The power DG，acting in the direction CD from the centre of the circle，or wheel， DHN towards its circumference，has no effect in turn－ ing it round the centre，from D towards H ，and tends only to carry it off from that centre．It is the part D F only that endeavours to move the wheel from D towards H and N ，and is totally employed in this effort．The power в may be conceived to be ap－ plied at N as well as at L ，and to be wholly employed
in endeavouring to turn the whieel the contrary way, from N towards H and D . If therefore the power B be equal to that part of $A$ which is reprefented by $D \mathrm{~F}$, thefe efforts, being equal and oppofite, mult deftroy each others effect ; that is, when the power B is to the power A, as DF to DA, or, (becaufe of the fimilarity of the triangles $A F D, D M C$ ) as CM to CD, or as CM to CN, then the powers muft be in equilibrio; and thofe powers always fuftain each other that are in the inverfe proportion of the diftances of their directions from the centre of motion; or, when the product of the one power multiplied by the diftance of its direction from the centre, is equal to the product of the power on the other fide multiplied by the like diftance from it.

1. The demonftration commonly afcribed to Arcbimedes is founded upon this principle, that when any cylindric or prifmatic body is applied upon a lever, it has the fame effect as if its whole weight was united and applied at the middle point of its axis. Let $A b$ (Fig. 28.) be a cylinder of an uniform texture, c its middle point; and it is manifeft, that if the point c be fupported, the equal halves of the cylinder, CA and CB , will ballance each other about the point c , and the body will remain in aquilibrio. Let the cylinder A B be diftinguifhed into any unequal parts, $A D$ and $D B$; bifect $A D$ in $E$, and $D B$ in $F$; then a power applied at $E$, equal to the weight of the part $A D$, with a contrary direction, will fuftain it; and a power applied at $F$, equal to the weight of the part DB , with a contrary direction, will fuftain that part ; fo that thefe two powers acting at E and F , refpectively equal to the weights of $A D$ and $D B$, have precifely the fame effect as a prop at c , fuftaining the whole cylinder AB , and may be confidered as in coquilibrio with a power, acting at $c$,

Chap. 3. Philosophical Discoveries. equal to the whole weight of the cylinder. But the diftance $C E=C A-A E=\frac{1}{2} A B-\frac{1}{2} A D=\frac{1}{2} D B ;$ and, in like manner, the diftance $\mathrm{CF}=\mathrm{CB}-\mathrm{BF}=\frac{1}{2} \mathrm{AB}-\frac{1}{2} \mathrm{DB}$ $=\frac{1}{2} \mathrm{AD}$; confequently $C E$ is to $C F$, as $D B$ to $A D$; that is, as the power applied at F to the power applied at E , thefe being in aquilibrio with the weight of the whole cylinder applied at c. From which it appears, that powers applied at E and F , which are to each other in the proportion of C F to C E, fuftain one another about the centre $c$.
II. Suppore the lever A B (Fig. 29.) with the weights $A$ and $B$, to turn round the centre $C$; the bodies $A$ and $B$ will defcribe fimilar arcs $A a$ and $B b$; and $A a$ will be to $\mathrm{B} b$, as CA to c $b$, or as B to A ; confequently $\mathrm{A} \times \mathrm{A} a=\mathrm{B} \times \mathrm{B} b$; that is, the momenta, or quantities of motion, of $A$ and $B$ will be equal; and confidering one of them as the power and the other as the weight, the power will be to the weight, as the velocity of the weight to the velocity of the power. Therefore in this, as in all nechanical engines, when a fmall power raifes a great weight, the velocity of the power is much greater than the velocity of the weight; and what is gained in force is therefore faid to be loft in time. In like manner, when a number of powers are fuppofed to act upon the lever, and it is turned round about their common centre of gravity c , the fums of the momenta on the different fides of c are equal.
12. The lever, or vectis, is commonly diftinguifhed into three kinds. In the firft, the centre of motion is between the power and weight. In the fecond, the weight is on the fame fide of the centre of motion with the power, but applied between them. In the tbird, the power is applied between the weight and centre of motion. In this laft, the
power muit exceed the weight, in proportion as its diftance from the centre of motion is lefs than the diftance of the centre from the weight. But as the firlt two ferve for producing a flow motion by a fwift one; fo the laft ferves for producing a fwift motion of the weight by a flow motion of the power. It is by this kind of levers that the mufcular motions of animals are performed; the mufcles being inferted much nearer to the centre of motion than the point where the centre of gravity of the weight to be raifed is applied; fo that the power of the mufcle is many times greater than the weight which it is able to fuftain. Tho' this may appear at firft fight a difadvantage to animals, becaufe it makes their ftrength lefs; it is, however, the effect of excellent contrivance: for if the power was, in this cale, applied at a greater diftance than the weight, the figure of animals would not only be awkward and ugly, but altogether unfit for motion; as Borelli has fhewn in his treatife de motu animalium.
13. When the two arms of a lever are not in a right line, but contain any invariable angle at c , (Fig. 30.) the lasy of the cquilibrium is the fame as in the former cafe; that is, if the power p be applied at B 'to the arm c B, and the weight w act, by means of a pulley $m$, in the direction $A m$ perpendicular to the arm $\mathrm{C}_{\mathrm{A}} \mathrm{A}$, the power and weight will fuftain each other if P be to w , as CA to $\mathrm{c} B$, or $\mathrm{P} \times$ $C B=w \times c A$. If feveral powers act upon the arm $C A$, find their centre of gravity $A$, on the anm $C A$, by § 13. chap. 2. fuppofe all the powers to be united there; and if the power P be to their fum, as CA to $c b$, it will fultain them. The fum of the powers being fuppofed given, it is manifeft that the farther their centre of gravity a is removed from the centre of motion 'c, the greater refiftance they will oppofe againft

Chap. 3. Philosophical Discoveries. againft the power P , and it will require the greater force in the power to overcome them. From this Galileo juifly concludes, that the bones of animals are the ftronger for their being hollow, their weight being given; or, if the arm свғ reprefent their length, the circle C H D a fection perpendicular to the length, P any power applied along their length, tending to break them; then the ftrength or force of all their longitudinal fibres, by which the adhefion of the parts is preferved, may be conceived to be united in A the centre of the circle снD, which is the common centre of gravity of thofe forces, whether the fection be a circle or annulus. But it is plain that when the area of the fection, or the number of fuch fibres, is given, the diftance $\mathrm{c} \cdot \mathrm{A}$ is greater when the fection is an annulus, than when it is a circle without any cavity; confequently the power with which the parts achere, and which refifts againft $P$ which endeavours to feparate them, is greater in the fame proportion. For the fame reafon, the falks of corn, the feathers of fowls, and hollow fpears, are lefs liable to accidents that tend to break them, than if they were of the fame weight and length, but folid without any cavity. In this inftance, therefore, art only imitates the wifdom of nature.
14. The fame excellent author obferves, that in fimilar bodies, engines, or animals, the greater are more liable to accidents than the leffer, and have a lefs relative frength; that is, the greater have not a ftrength in proportion to their magnitude. A greater column, for example, is in much more danger of being broke by a fall than a fimilar fmall one; a man is in greater danger from accidents of this kind than a child; an infect can bear a weight many times greater than itfelf, whereas a large animal, as a horfe, can hardly bear a burthen equal to his own weight.

To account for this, it will be fufficient to fhew, that, in fimilar bodies of the fame texture, the force which tends to break them, or to make them liable to hurtful accidents, increafes in the greater bodies in a higher proportion than the force which tends to preferve them entire, or fecure againft fuch accidents. Suppofe the fimilar beams AbDE, FGHK, (Fig. 31.) of a cylindric or prifmatic figure, to be fixed in the immoveable wall ris ; and let us at prefent abftract from any other force that may tend to break them, befides their own weight. Bifect A B in C , and FG in M ; and their weights may be conceived to be accumulated at the points c and m , which are directly under their centres of gravity. For the greater facility of the computation, fuppofe $A B=2 F G$, and confequently the weight of the beam $A B D E$ will be eight times greater than the weight of the fimilar beam FGHK; and the weight of the former being conceived to be accumulated in c, and that of the latter in m , and Ac being double the diftance FM , it follows, that the force which tends to break the former at $A$, being eight times greater than that which tends to break the latter at $F$, and at the fame time acting at a double diftance, on both thefe accounts its effort mult be fixteen times greater than that of the latter. Now, to compare the forces which tend to preferve thofe beams entire and fixed in the wall, let are be a fection of the greater beam, and FSK a fection of the latter, perpendicular to their lengths at the points $A$ and $F$; bifect $A E$ in $p$, and FK in $q$; then the number of longitudinal fibres, whofe adhefion tends to preferve the beams entire, or rather the quantity of this adhefion, in the greater beam, will be to the quantity of adhefion in the leffer beam, as the area of the fection ARE to the area of the fection FSK , that is, in the prefent cale (becaufe of the fimilarity of the figures) as the fquare adhefion of the parts that are in contact with each other in the fection ARE may be conceived to be accumulated at $p$ their centre of gravity; and the adhefion of the parts in contact with each other in the fectionfSK is to be conceived as accumulated in $q$, for the fame reafon. The adhefion, therefore, which tends to preferve the greater beam entire is quadruple of that which tends to preferve the leffer beam entire, and at the fame time is to be conceived as acting at a double diftance from the centre of motion, becaufe $\mathrm{A} p=2 \mathrm{Fq}$; fo that the effort which tends to preferve the greater beam from breaking, is eight times greater than that which tends to preferve the leffer beam entire. We have found, therefore, that the effort which tends to break the greater beam at A , is fixteen times greater than that which tends to break the leffer beam at F ; but that the effort, which, on the other hand, endeavours to preferve the adhefion of the greater beam entire, is only eight times greater than that which tends to preferve the adhefion in the leffer beam. In general, it will eafily appear, in the fame manner, that the efforts tending to deftroy the adhefion of the beams, arifing from their own gravity only, increafe in the quadruplicate ratio of their lengths; but that the oppofite efforts, tending to preferve their adhefion, increafe only in the triplicate ratio of the fame lengths. From which it follows, that the greater beams mult be in greater danger of breaking than the leffer fimilar ones; and that, tho' a leffer beam may be firm and fecure, yet a greater fimilar one may be made fo long, as neceflarily to break by its own weight. Hence Galieo juftly concludes, that what appears very firm, and fucceeds well, in models, may be very weak and infirm, or even fall to pieces
15. From the fame principles he argues, that there are neceffarily limits in the works of nature and art, which they cannot furpafs in magnitude. Were trees of a very enormous fize, their branches would fall by their own weight. Large animals have not ftrength in proportion to their fize ; and if there were any land-animals much larger than thofe we know, they could hardly move, and would be perpetually fubjected to moft dangerous accidents. As to the animals of the fea, indeed, the cafe is different, as the gravity of the water fuftains thofe animals in great meafure, and in fact thefe are known to be fometimes vaftly larger than the greatelt landanimals. Nor does it avail againft this doctrine to tell us, that bones have been found which were fuppofed to have belonged to giants of an immenfe fize, fuch as the fkeletons mentioned by Strabo and Pliny; the former of which was 60 cubits high, and the latter 46 ; for the naturalifts havé concluded, on juft grounds, that in fome cafes thofe bones had belonged to elephants; and that the larger ones were bones of whales, which had been brought to the places where they were found, by the revolutions of nature that have happened in paft times. Tho' it muft be owned, that there appears no reafon why there may not have been men that have exceeded, by fome feet in height, the talleft we have feen. The reader will find a curious and ufeful differtation on this fubject, by the celebrated Sir Hans Sloane, in the Pbilofopbical Tranfactions, or in the Memoires de l' Academie Royale des Sciences, 1727 . If, in the other planets, the fame law of cohefion and other attractions takes place as in the earth, it may be of ufe that the gravity near their furfaces fhould not be the earth; it was perhaps with fome view to this, that Sir Ifaac Nereton infinuates, that it was not without defign and contrivance that the gravities at the furfaces of the planets fhould differ fo much lefs from each other, than, at firft fight, might be expected from the attractions of bodies of fo unequal magnitude.
16. It follows, from § 14 th, that in order to make bodies, engines, or animals, of equal relative ftrength, the greater ones muft have groffer proportions. Thus in order that the greater cylinder A B DE may be as firm and fecure againft accidents as the leffer cylinder FGHK, the fection ARE and its diameter ae muft be increafed, till the effort arifing from the adhefion of the parts bear as greas a proportion to the effort that tends to overcome this adhefion, in the greater, as in the leffer cylinder. And this fentiment being fuggetted to us by perpetual experience, we naturally join the idea of greater ftrength and force with the groffer proportions, and the idea of agility with the more delicate ones. In architecture, where the appearance of folidity is no lefs regarded than real firmnefs and itrength, this is particularly confidered, in order to fatisfy a judicious eye and tafte; the various orders of the columns ferving to fuggeft different degrees of ftrength. But, by the fame principle, if we fhould fuppofe animals vaftly large, from the grofs proportions, a heavinefs and unwieldinefs would neceffarily arife, which would make them ufelefs themfelves, and difagreeable to the eye. In this, as indeed in all other cafes, whatever generally pleafes taftes not vitiated by education, or by fabulous and marvellous relations, may be traced till it appear to
have a juft foundation in nature; tho' the force of habits is fo ftrong, and their effects upon our fentiments fo quick and fudden, that it is often no eafy matter to trace, by reflexion, the grounds of what pleafes us.
17. We have infifted at fo great length on the lever, that we may be brief in treating of the other mechanical powers. The common ballance is a lever that has equal arms AG and GB, (Fig. 32.) with the centre of motion $\mathbf{c}$ commonly placed directly over g. If the centre of motion was in G , equal weights, fufpended from A and B , would futtain each other, in any pofition of the lever a в; but when the centre of motion is above $G$, they fuftain each other when the lever $a b$ is level only; and when the weight at $A$ is but a little greater than the weight at $\boldsymbol{в}$, the ends $\boldsymbol{A}$ and $в$ defcend and afcend by turns, till their common centre of gravity $g$ fettles in the vertical line c c ; where they fuftain each other, becaufe their centre of gravity is fuftained by c. The ballance is falfe when the arms AG and GB are unequal : and the exactnefs of this inftrument chiefly depends upon making the friction, at the centre of motion c, as fmall as poffible.
18. The axis and wheel has a near analogy to the lever; the power is applied at the circumference of the wheel, and the weight is raifed by a rope that is gathered up (while the machine turns round) on the axis. The power may be conceived as applied at the extremity of the arm of a lever equal to the radius of the wheel, and the weight as applied at the extremity of a lever equal to the radius of the axis; only thofe arms do not meet at one centre of motion as in the lever, but in place of this centre, we have an axis of motion, viz. the axis of the rence, it follows that the power and weight are in aquilibrio when they are to each other inverfely as the diftances of their directions from the axis of the engine ; or when the power is to the weight, as the radius of the roller to the radius of the wheel, the power being fuppofed to act in a perpendicular to this radius ; but if the power act obliquely to the radius, fubflitute a perpendicular from the axis on the direction of the power, in the place of the radius. Thus if ABDE (Fig.33.) reprefent the cylindric roller, HPN the wheel, LM the axis or right line upon which the whole engine turns, e the point of the furface of the roller where the weight w is applied, F the point where the power is applied, KQ Q the radius of the roller, c $P$ the radius of the wheel; then if the power P act with a direction perpendicular to $\mathrm{c} P$, the power and weight will fuftain each other when P is to w , as KQ to CP or CH : but if the power act in any other direction PR , let c r be perpendicular from c , the centre of the wheel, on that direction; then $P$ and $w$ will fuftain each other when $P$ is to $w$, as $k$ e to $C R$; becaufe, in this cafe, a power p has the fame effect as if it was applied at the point R of its direction, acting in a right line perpendicular to C R.
19. The fimple pulley ferves only to change the direction of the power, or motion, without any mechanical advantage, or any difadvantage but what arifes from the friction. Let m (Fig. 34.) reprefent a fimple pulley, PNW the rope that goes over the pulley from the power P to the weight w : and it is manifeft, that if p and w be equal, they will fufain each other as if fufpended at equal diftances, ma and $m b$, from the centre of the lever $A B$. But, if befides the fixed pulley m , there be ( Fi . 35. 35.) another moveable pulley L , to which the weight w is fixed, and the rope that goes from the power $\mathrm{P}_{\text {, }}$ over the fixed pulley $m$, and under the moveable pulley L , be fixed above at E , then it is manifeft that the power p fuftains only one half of w , becaufe the rope $\mathrm{K} N$ fuftains only one half of $i t$, the other half being fuftained by the rope ке.

There is an obvious analogy between this cafe of pullies, and that wherein a power fuftains a double weight at half its diftance from the centre of motion, on the fame fide. For if $A$ b be the diameter of the pulley L , at whofe extremities the parallel ropes, $A E$ and $B N$, touch $i$, the power $P$ may be conceived to be applied at B , the weight w at L , and the centre of motion to be at $A$. If we fuppofe the power P and weight w to move, as P is equal to one half of $w$, fo the velocity of $w$ is one half of the velocity of P , or P multiplied by its velocity gives a product equal to w multiplied by its velocity; for, that the weight w may be elevated one inch, each of the parts of the rope EK and Kn muft be fhortned by one inch; and the power p that draws the whole rope from E by K and N , mutt defcend two inches. A fimilar reafoning may be applied to all the combinations of pullies.
20. When a weight w (Fig. 35.) defcends along an inclined plane Ac, a part of its gravity is fuftained by the reaction of the plane, and the remaining part produces its motion along the plane. Let AB be the height of the plane, $B C$ the bafe, and the gravity of the weight w being reprefented by the vertical line wm , let this power be refolved into the power $w n$ perpendicular to the plane, and $w Q$ parallel to it. The former wN is deftroyed by the reaction of the plane, and the latter $w Q$ is that

Chap. 3. Philosophical. Discoveries. which produces the motion of the body along the plane. Becaufe the triangles $W Q M$ and $A B C$ are fimilar, $W Q$ is to $W M$, as $A B$ to $A C$; and the force with which a body defcends along the plane is to its gravity, as the height of the plane to its length; confequently a force acting upon the body w , with the direction QW parallel to the plane AC , will fuftain it, if it be to the whole weight of the body, as a B to Ac.
21. Let $\operatorname{ABC}$ (Fig. 37.) reprefent a weedge driven into the cleft EDF, of which DE and DF are the fides; and if we fuppofe thofe fides DE and DF to re-act upon the wedge with directions perpendicular to $D E$ and $D F$, let the horizontal line ef meet $D F$ in $F$; then when the force impelling the wedge, fuppofed perpendicular to the horizon, is in cequilibrio with the refiftances of the fides of the cleft $D E$ and $D F$, thefe three powers are in the fame proportion as the three right lines ef, d e and d f. For it follows from the compofition of motion, that when three powers are in equilibrio with each other, they are in the fame proportion as the three fides of a triangle parallel to their refpective directions, and, confequently, as the three fides of a triangle perpendicular to their directions; fuch a triangle being evi. dently fimilar to the former. But ef is perpendicular to the direction in which the weight of the wedge, or the power that impells it, is fuppofed to aCt ; and $\mathrm{DE}, \mathrm{DF}$ are perpendicular to the directions in which their refiftances are fuppofed to act, confequently the power that impells the wedge and thofe refiftances are in the fame proportion aS E F , DE and $D F$. If other fuppofitions are made concerning the refiftances of the fides of the cleft DE and D F , the proportions of the powers may be determined, fromz the fame principles.
22. When a point moves along the fide of a cylinder, with an uniform motion, upon its curve furface, while this fide is itfelf carried with an uniform motion about the axis of the cylinder, the line traced, by this compounded motion, upon the curve furface of the cylinder, is called a piral. When this line is raifed upon the external furface of the cylinder, it is called the external forero; but if it is carried on in the internal furface, it is called the internal forere. While one of thefe is converted about the other, one of them ought to be fixed; and they form a machine of great force for fqueezing or moving bodies. If a power p (Fig. 38.) turn either of the ferews with a direction parallel to the bafe, it will fuftain the weight $w$ which is to be raifed, if it be to $w$ in the fame proportion as the diftance between the two neareft fpirals is to the circumference of the circle defcribed by the power P ; becaufe while the power makes a compleat revolution, the fcrew advances by the diftance of the two neareft fpirals, and the velocity of the power is to the velocity of the weight, as the circumference defcribed by p to that diftance. The fame will appear by confidering the fcrew as an inclined plane involved about a cylinder. In this engine the friction is very great.
23. From thefe fimple machines, compounded ones are formed by various combinations, and ferve for different purpofes; in which the fame general laws take place, particularly that which was deffribed in § 3. That the power and weight fuftain each other when they are in the inverfe proportion of the velocities which they would have in the directions wherein they act, if they were put in motion. By shefe the famous problem is refolved, of moving any given weight by any given power, provided the

Chap. 3. Philosophical Discoveries: refiftance arifing from the friction can be overcome. It being of great importance to diminifh this friction, feveral contrivances have been invented for that purpofe. In wheel-carriages the friction is transferr'd from the circumference of the wheel (where it would act if the wheel did not turn round) to the circumference of the axis; and, confequently, is diminihed in the proportion of the radius of the axis to the radius of the wheel. In thefe, therefore, the friction is always diminifhed by diminifhing the diameter of the axis, or by increafing the diameter of the wheel. The friction is likewife diminifhed by making the axis of an engine to reft upon the circumferences of wheels that turn round with it, inftead of refting in fixed grooves that rub upon it; for by this contrivance, the friction is transferred from the circumferences of thofe wheels to their pivots; and the friction may be ftill diminifhed farther by making the axles of thofe wheels reft upon other friction-wheels that turn round with them. It is hardly poffible to give general and ezact rules concerning friction, fince it depends upon the itructure of bodies, the form of their prominent parts and cavities, and upon their rigidity, elafticity, their coherence, and other circumftances. Some authors have made the friction upon a horizontal plane equal to one third of the weight; but others have found that it was only one fourth of it, and fometimes only $\frac{x}{6}$ or $\frac{x}{7}$ of it. Of late, authors have told us that the friction depends not on the furface of the body, but its weight only; but neither is this found to be accurately true. In leffer velocities, the friction is nearly in the fame ratio as the velocities; but in greater velocities, the friction increafes in a higher proportion, whether the bodies are dry or oil'd.
24. The fecond general problem in mechanics, mentioned above, is, to determine the proportion which the power and weight ought to bear to each other, that, when the power prevails, and the engine is in motion, the greaten effect poffible may be produced by it in a given time. It is manifeft that this is an enquiry of the greateft importance, tho few have treated of it. When the power is only a little greater than that which is fufficient to fuftain the weight, the motion is too flow; and tho' a greater weight is raifed in this cafe, it is not fufficient to compenfate the lofs of time. When the weight is much lefs than that which the power is able to fuftain, it is raifed in lefs time; and this miay happen not to be fufficient to compenfate the lofs arifing from the fmallnefs of the load. It ought, therefore, to be determined when the product of the weight multiplied by its velocity is the greateft poffible; for this meafures the effect of the engine in a given time, which is always the greater in proportion as the weight that is raifed is greater, and as the velocity with which it is raifed is greater. We fhall, therefore, fubjoin fome inftances of this kind that may be demonftrated from the common elementary geometry; wihhing that farther improvements may be måde in this moft ufeful part of mechanics.
25. When the power prevails, and the engine begins to move, the motion of the weight is at firft gradually accelerated. The action of the power being fuppofed invariable, its influence in accelerating the motion of the weight decreafes while the velocity of the weight increafes. Thus the action of a ftream of water, or air, upon a wheel is to be eftimated only from the excefs of the velocity of the fluid above the velocity already acquired by the part of the

Chap. 3. Philosophical Discoveries. 18 t the engine which it ftrikes, or from their relative velocity. On the other hand, the weight of the load that is to be elevated, and the friction, tend to retard the motion of the engine; and when thefe forces, viz. thofe that tend to accelerate it, and thofe that tend to retard it, become equal, the engine then proceeds with the uniform motion it has acquired.

Let $\operatorname{AB}$ (Fig. 39.) reprefent the velocity of the ftream, $A C$ the velocity of the part of the engine which it frikes, when the motion of the machine becomes uniform; and $с$ в will reprefent their relative velocity, upon which the effect of the engine depends. It is known that the action of a fluid, upon a given plane, is as the fquare of this relative velocity; confequently, the weight raifed by the engine, when its motion becomes uniform, being equal to this action, it is likewife as the fquare of $с в$. Let this be multiplied by $A C$, the velocity of the part of the engine impell'd by the fluid; and the effect of the engine in a given time will be proportional to $A C \times C B^{2}=$ (fuppofing $с в$ to be bifected in D) $A C \times 2 C D \times 2 D B=4 A C \times C D \times D B$; confequently, the effect of the engine is greateft when the product of $A C, C L$, and $D B$ is greateft. But it is eafy to fee, that this product is greateft when the parts $A C$, $C D$ and $D B$ are equal; for, if you defribe a femicir. cle upon $A D$, and the perpendicular CE meet the circle in $E$, then $A C \times C D=C E^{2}$, and is greateft when c is the centre of the circle; fo that in order that $A C \times C D \times D B$ may be the greateft poffible, $A D$ mult be bifected in C ; and CB having been bifected in B , it follows that $A C, C D, D B$ muft be equal ; or that AC , the velocity of the part of the engine impelled by the ftream, ought to be but one third of $A B$ the velocity of the ftream. In this cafe, when (abitraci-
ing from friction) the engine acts with the utmoft advantage, the weight raifed by it is to the weight that would jult fuitain the force of the ftream, as the fquare of $C B$. the relative velocity of the engine and ftream, to the fquare of $A B$, which would be the relative velocity if the engine was quiefent; that is, as $2 \times 2$ to $3 \times 3$ or 4 to 9 . Therefore, that the engine may have the greateft effect poffible, it ought to be loaried with no more than $\frac{4}{9}$ of the weight which is juft able to futtain the efforts of the ftream. Of this the reader will find more in my Ireatije of. Fluxions, § 908.
26. For another example, fuppofe that a given weight P, (Fig - 40.) defcending by its gravity in the vertical lice, raffes a greater weight w likewife given, by the rope $P M W$ (that paffes over the fixed pulley m) along the inclined plane BD, the height of which ba is given; and let it be required to find the pofition of this plane, along which w will be raifed in the leat time, from the horizontal line AD to B . Let bC be the plane upon which if $w$ was placed, it would be exactly futtained by P , and, by § 20 . of this chapter, $P$ thall be to $w$, as $A B t B C$; but $w$ is to the force with which it tends to defeeid along the plane $B D$, as $B D$ to $A B$, by the fame article; confequently the weight P is to that force, as $B D$ to $b C$. Therefore the excefs of P above that force (which excefs is the power that accelerates the motions of P . and $w$ ) is to $P$, as $B D-B C$ to $B D$; or, taking $B H$ upon $B C$ equal to $B D$, as $C H$ to $B D$. But it is known that the fpaces defcribed by motions uniformly accelerated are in the compound ratio of the forces which produce them and the fquares of the times; or, that the fquare of the time is directly as the fpace deforibed in that time, and inverfely as the force; confequently, the fquare of the time, in which $B D$ is defcribed by w, will be directly as $B D$ and inverfly as $\frac{\mathrm{CH}}{\mathrm{BD}}$, and will be leatt when $\frac{\mathrm{BD}_{2}}{\mathrm{CH}}$ is a minimum; that is, when $\frac{\mathrm{BC}_{2}}{\mathrm{CH}}+\mathrm{CH}+2 \mathrm{BC}$, or (becaufe 2 BC is invariable) when $\frac{\mathrm{BC}_{2}}{\mathrm{CH}}+\mathrm{CH}$ is a minimum. Now as, when the fum of two quantities is given, their produet is a maximum when they are equal to each other; fo it is manifeft, that, when their product is given, their fum muft be a minimum when they are equal. Thus it is evident, that, as in the laft fection the rectangle or product of the equal parts AC and CB was $\mathrm{CE}^{2}$; fo the rectangle or product of any two unequal parts, into which AD may be divided, is lefs than $C E^{2}$, and $A D$ is the leaft fum of any two quantities the product of which is equal to $\mathrm{CE}^{2}$. Bue the product of $\frac{\mathrm{BC}_{2}}{\mathrm{CH}}$ and CH is $\mathrm{BC}^{2}$, and confequently given; therefore the fum of $\frac{\mathrm{PC}_{2}}{\mathrm{CH}}$ and CH is leaft when thefe parts are equal, that is, when c H is equal to BC , or BD equal to 2 BC . It appears, therefore, that when the power P and weight w are given, and w is to be raifed by an inclined plane, from the level of a given point $A$ to the given point $B$, in the leaft time poffible, we are firft to find the plane $в с$ upon which $w$ would be fuftained by p , and to take the plane $B D$ double in length of the plane $B C$; or, we are to make ufe of the plane $B D$ upon which a weight that is double of w could be futtained by the power P .
27. Let a fluid, moving with the velocity and direction AC (Fig. 4\% I.) ftrike the plane CE, and fuppofe that this plane moves parallel to itfelf in the direction CB , perpendicular to CA , or that it cannot move in any other direction; then let it be required to find the moft advantageous pofition of the plane
ce , that it may receive the greateft impulfe from the action of the fluid. Let AP be perpendicular to $C E$ in $P$, draw $A K$ parallel to $C B$, and let $P K$ be perpendicular upon it in $K$; and $A K$ will meafure the force with which any particle of the fluid impells the plane ec, in the direction cb. For the force of any fuch particle being reprefented by $A C$, let this force be refolved into AQ parallel to EC, and AP perpendicular to it ; and it is manifeft, that the latter AP only has any effect upon the plane ce. Let this force AP be refolved into the force AL perpendicular to $C B$, and the force $A K$ parallel to it; then it is manifeft, that the former, AL, has no effect in promoting the motion of the plane in the direction $\mathbf{~} \boldsymbol{b}$; fo that the latter AK , only, meafures the effort by which the particle promotes the motion of the plane ce, in the direction ćb. Let em and en be perperidicular to CA and CB , in M and N ; and the number of particles, moving with directions parallel to Ac , incident upon the plane Ce , will be as em. Therefore the effort of the fluid upon CE , being as the force of each particle and the number of particles together, it will be as AKXEm; or, becaufe AK is to $\mathrm{AP}\left(=E M\right.$ ) as EN to CE , as $\frac{\mathrm{EM2} 2 \mathrm{EM} 2 \mathrm{XEN}}{\mathrm{CE}}$; fo that ce being given, the problem is reduced to this, to find when $E M^{2} \times E N$ is the greateft pofible, or a maximum. But becaufe the fum of $E M^{2}$ and of $E N^{2}$ ( $=\mathrm{CM}^{2}$ ) is given, being always equal to $\mathrm{CE}^{2}$, it follows that $\mathrm{EN}^{2} \times \mathrm{EM}^{4}$ is greateft when $\mathrm{EN}^{2}=\frac{1}{3} \mathrm{CE}^{2}$; in the fame manner as it was demonftrated in $\$ 25$. that when the fum of $A C$ and $C B$ was given, $A C \times C B^{2}$ was greateft when $A C=\frac{1}{3} A B$. But when $E N^{2} X E M^{4}$ is greateft, its fquare-root EnXEM ${ }^{2}$ is of neceffity at the fame time greateft. Therefore the action of the fluid upon the plane ce in the direction cb is great-

Chap. 3. Philosophical Discoveries. eft when $\mathrm{EN}^{2}=\frac{1}{3} \mathrm{CE}^{2}$, and confequently $\mathrm{EM}^{2}=$ ${ }_{3}^{2}$ CE $^{2}$; that is, when EM the fine of the angle ACE in which the ftream ftrikes the plane is to the radius, as $V_{2}$ to $V_{3}$; in which cafe it eafily appears, from the trigonometrical tables, that this' angle is of $54^{\circ} \cdot 44^{\prime}$.
28. Several ufeful problems in mechanics may be refolved by what was hewn in the laft article. If we reprefent the velocity of the wind by Ac , a fection of the fail of a wind-mill perpendicular to its length by CE , as it follows from the nature of the engine, that its axis ought to be turned directly towards the wind, and the fail can only move in a direction perpendicular to the axis, it appears, that, when the motion begins, the wind will have the greateft effect to produce this motion, when the angle ACE in which the wind ftrikes the fail is of $54^{\circ} \cdot 44^{\prime}$. In the fame manner, if св reprefent the direction of the motion of a fhip, or the pofition of her keel, abftracting from her lee-way, and ac be the direction of the wind, perpendicular to her way, then the moft advantageous pofition of the fail ce , to promote her motion in the direction $с в$, is when the angle ace, in which the wind ftrikes the fail, is of $54^{\circ} \cdot 44^{\prime}$. The beft pofition of the rudder, where it may have the greateft effect in turning round the thip, is determined in like manner. And how this fame angle enters into the determination of the figure of the rhombus's that form the bafes of the cells in which the bees depofite their honey, in the moft frugal manner, I have fhewn in a letter to the learned and worthy Martin Folkes, Efq; prefident of the royal fociety. Pbilofophical Tranfactions, $\mathrm{N}^{\circ} .47 \mathrm{I}$ 。
29. But it is to be carefully obferved, that when the fine of the angle $A C E$ is to the radius as $\sqrt{2}$ to $\sqrt{3}$, or (which is the fame thing) when its tangent is to the radius, as the diagonal of a fquare to its fide, this is the moft advantageous angle only at the beginning of the motion of the engine; fo that the fails of a common wind-mill ought to be fo fituated, that the wind may indeed ftrike them in a greater angle than that of $54^{\circ} \cdot 44^{\prime}$. For we have demonftrated elfewhere, that when any part of the engine has acquired the velocity $c$, the effort of the wind upon that part will be greateft, when the tangent of the angle in which the wind ftrikes it is to the radius,
not as the $V 2$ to 1 , but as $\sqrt{2+\frac{9 c c}{4 a a}}+\frac{3 c}{2 a}$ to $I$, the velocity of the wind being reprefented by $a$. If for example $c=\frac{5}{3} a$ then the tangent of the angle ACE ought to be double of the radius, that is, the angle Ace ought to be of $6,3^{\circ} \cdot 26^{\prime}$. If $c=a$ then ACE ought to be of $74^{\circ} \cdot 19^{\circ}$. This obfervation is of the more importance, becaufe, in this engine, the velocity of the parts of the fail remote from the axis, bear a confiderable proportion to the velocity of the wind, and perhaps fometimes are equal to it; and becaufe a learned author, Mr. Daniel Bernouilli, has drawn an oppofite conclufion from his computations in his bydrodynamics, by miftaking a minimum for a maximum; where he infers, that the angle in which the wind ftrikes the fail ought to decreafe as the diftance from the axis of motion increafes, that if $c=a$ the wind ought to ftrike the fall in an angle of $45^{\circ}$, and that, if the fail be in one plane, it ought to be inclined to the wind, at a medium, in an angle of about $50^{\circ}$. How he fell into thefe miftakes, we have explained elfewhere *. In like manner, tho ${ }^{\circ}$

[^40]Chap. 3. Philosofhical Discoveries. 187 the angle ACE of $54^{\circ} \cdot 44^{\prime}$. be the moft advantageous at the beginning of the motion, when a fhip fails with a fide wind, yet it ought to be enlarged afterwards as the motion increafes. In general, let $\mathrm{A} a$, parallel to CB , be to AC , as the velocity which the engine has already acquired in the direction $\mathrm{CB}_{\mathrm{B}}$, to that of the ftream; upon $A C$ produced take $A D$ to AC as 4 to 3 , draw DG parallel to CB , and let a circle defcribed from the centre c with the radius c $a$ meet DG in $g$; and the plane Ce fhall be in the moft advantageous fituation for promoting the motion of the engine, when it bifects the angle $a \mathrm{c} g$. It is generally fuppofed, that a direct wind always promotes the motion of a fhip, the fail being perpendicular to the wind, more than any fide-wind; and this has been affirmed in feveral late ingenious treatifes; but, to prevent miftakes, we are obliged to obferve, that the contrary has been demonftrated in our treatife of fluxions, $\$ 919$; where other inftances of this fecond general problem in mechanics are given, to which we refer.
30. The mechanical powers, according to their different ftructure, ferve for different purpofes; and it is the bufinefs of the fkilful mechanic to chufe them, or combine them, in the manner that may be beft adapted to produce the effect required, by the power which he is poffeffed of, and at the leaft expence. The lever can be employed to raife weights a little way only, unlefs the engine itfelf be moved, as, for example, to raife ftones out of their beds in quarries. But the axis and wheel may ferve for raifing weighs from the greateft depths. The pullies being eafily portable aboard fhips, are therefore much employed in them. The wedge is excellent for feparating the parts of bodies ; and the forew, for comprefing or fqueezing them together; and its the effect already produced by it. The ftrength of the engine, and of its parts, muft be proportioned to the effects which are to be produced by it. As we found, that, when the centre of motion is placed between the power and weight, it muft fuftain the fum of their efforts; a finall ballance ought not to be employed for weighing great weights; for thefe diforder its ftructure, and render it unfit for ferving that purpofe with accuracy. Neither are great engines proper for producing fmall effects: the detail of which things mult be left to the fkilful and experienced mechanic.
31. But, befides the raifing of weights and overcoming refiftances, in mechanics we have often other objects in view. To make a regular movement, that may ferve to meafure the time as exactly as poffible, is one of the moft valuable problems in this frience; and has been mont fuccefsfully effected, hitherto, by adapting pendulums to clocks; tho' many ingenious contrivances have been invented to correct the irregularities of thofe movements that go by fprings. Some have endeavoured to find a perpetual movement, but without fuccefs: and there is ground to think, from the principles of mechanics, that fuch a movement is impoffible. In many cafes, when bodies act upon each other, there is a gain of abfolute motion; but this gain is always equal in oppofite directions, and the quantity of direct motion is never increafed. To make a perpetual movement, it appears neceffary that a certain fyftem of bodies, of a determined number and quantity, fhould move in a certain fpace for ever, and in a certain way and manner; and for this, there muft be a feries of actions returning in a circle, to make the movement continual; fo that any action by which the ab-

folute quantity of force is increafed, of which there are feveral forts, muft have its correfponding counteraction, by which that gain of force is deftroyed, and the quantity of force reftored to its firft ftate. Thus, by thefe actions, there will never be any gain of direct force, to overcome the friction and the refiftance of the medium. But every motion will be abated, by thefe refiftances, of its juit quantity ; and the motions of all muft, at length, languifh and ceare.
32. To illuftrate this, it is allowed, that, by the refolution of force, there is a gain or increafe of the abfolute quantity of force; as the two forces $A B$ and AD (Fig. 2.) taken together, exceed the force AC which is refolved into them. But you cannot proceed refolving motion in infinitum, by any machine whatfoever; but thofe you have refolved muft be again compounded, in order to make a continual movement, and the gain obtained by the refolution will be loft again by the compofition. In like manner, if you fuppole A and b (Fig. 42.) to be perfectly elaftic, and that the leffer body a frikes b quiefcent, there will be an increafe of the abfolute quantity of force, becaufe a will be reflected; but if you fuppofe them both to turn round any centre c , after the ftroke, fo as to meet again in $a$ and $b$, this increafe of force will be loft, and their motion will be reduced to its firft quantity. Such a gain, therefore, of force as muft be afterwards loft in the actions of the bodies can never produce a perpetual movement. There are various ways, befides thefe, by which abfolute force may be gained; but fince there is always an equal gain in oppofite directions, and no increafe obtained in the fame direction ; in the circle of actions neceffary tn make a perpetual movement, this gain mult be prefently loft, and
will not ferve for the neceffary expence of force em. ployed in overcoming friction and the refiftance 0 the medium.
33. We are to obferve, therefore, that tho' i could be fhewn that in an infinite number of bodies or in an infinite machine, there could be a gain o force for ever, and a motion continued to infinity it does not therefore follow that a perpetual move ment can be made. That which was propofed by Mr . Leibnitz, in Auguft s 69 o , in the Leipprck acts as a confequence of the common eftimation of the forces of bodies in motion, is of this kind; and, fol this and other reafons, ought to be rejected. It is, however, neceffary to add, that tho on many ac counts, it appear preferable to meafure the forces as well as motions of bodies by their velocities, and noin by the fquares of their velocities; yet, in order tc produce a greater velocity in a body, the power on caufe that is to generate it muft be greater in a higher profortion than that velocity; becaufe the action of the power upon the body depends upon their relative motion only; fo that the whole attion of the power is not employed in producing motion in the body, but a confiderable part of it in fuftaining the power, fo as to enable it to act upon the body and keep up with it. Thus the whole action of the wind is not employed in accelerating the motion of the fhip, but only the excefs of its velocity above that of the fail on which it acts, both being reduced to the fame direction. When motion is produced in a body by fprings, it is the lat fpring only which aets upon the body by contact, and the reft feive only to furtain it in its action; and hence a greater number of frings is requifite to produce a greater velocity in a given body, than in proportion to that velocity. A double power, like that of gravity, will produce a double motion

## Chap. 3. Philosophical Discoveries.' ige

 motion in the fame time; and a double motion in an elaftic body may produce a double motion in another of the fame kind. But two equal fucceffive impulfes, acting on the fame body, will not produce a motion in it double of what would be generated by the firlt impulfe; becaufe the fecond impulfe has neceffarily a lefs effect upon the body, which is already in motion, than the firft impulfe which acted upon it while at reft. In like manner, if there is a third and fourth impulfe, the third will have lefs effect than the fecond, and the fourth lefs than the third. From this it appears what anfwer we are to make to a fpecious argument that is adduced to fhew the poffibility of a perpetual motion. Let the height AB (Fig. 43.) be divided into four equal parts Ac, $\mathrm{CD}, \mathrm{DE}, \mathrm{EB}$ : fuppofe the body A to acquire, by the defcent AC, a velocity as 1 , and this motion by any contrivance to be tranfmitted to an equal body B : then let the body $A$, by an equal defcent $C D$, acquire another motion as 1 , to be tranfmitted likewife to the fame body B , which in this manner is fuppofed to acquire a motion as 2 , that is fufficient to carry it upwards from B to A ; and becaufe there yet remain the motions which A acquires by the defcents $D E$ and $E b$, that may be fufficient to keep an engine in motion, while $B$ and $A$ afcend and defcend by turns, it is hence concluded that a fufficient gain of force may be obtained in this manner, fo as to produce a perpetual movement. But it appears from what has been fhewn, that a motion as 2 cannot be produced in B , by the two fuccefive impalfes tranfmitted from $A$, each of which is as $\mathbf{I}$.Some authors have propofed projects for producing a perpetual movement, with a defign to refute them; but, by miftaking the proper anfwer, have rather confirmed the unfkilful in their ground-
lefs expectations.' An inftance of this we have in Dr. Wilkin's Mathemaical Magick, book 2. chap. 13. A load-ftone at A (Fig. 44.) is fuppofed to have a fufficient force to bring up a heavy body along the plane FA , from F to B ; whence the body is fuppofed to defcend by its gravity, along the curve bef, till it return to its firlt place F ; and thus to rife, along the plane $F A$, and defcend, along the curve $\operatorname{BEF}$, continually. But fuppofing BZE to be the furface upon which if a body was placed, the attraction of the load-ftone and the gravity of the body would ballance each other, this furface fhall meet bef at fome point E between A and F , and the body muft ftop in defcending along $A E F$ at the point $E$.

## C H A P. IV.

## Of the collifion of bodies.

THO' the laws of motion and principles of mechanics are-fufficiently explained and eftablifhed in the preceding chapters, it will be of ufe, before we procced to apply them to fubjects of a higher nature, to confider the moft fimple and obvious motions and phænomena that are derived from them ; by which they may be farther tried and examined, and our methods of reafoning from them juftified: and thefe are the motions which are produced by bodies impinging upon one another, which fall frequently under our obfervation, and can be repeated by us in experiments. It is always from the moft fimple kind of phænomena that we can trace with the greateft certainty the analyfis of the laws of nature; from which we afterwards may proceed to fuch as are more complicated and abftrufe: but it would be contrary to the rules of good method to begin

Chap. 4. Philosophical Discoteries. begin with the latter. It would be very prepofterous, for example, in defining or afcertaining the true notion of the inertia of body, to begin with chymical experiments concerning fermentation, the folutions of bodies by menftruums, the phænomena of generation and corruption, or others of that complicated kind. If we fhould begin with fixing our attention on thefe, we fhould be apt to afcribe to body an activity which is really repugnant to its nature. It is from oblervations and experiments concerning the fenfible and grofs bodies; that we muft acquire our knowledge of the firft principles of this fcience. The doctrine of the collifion of bodies was very plain and clear, and deduced in a fatisfactory manner from the laws of motion, before fome late authors endeavoured to cloud it, by introducing abftrufe notions into it, in favour of their new doctrine concerning the eftimation of the forces of bodies in motion. But we fhall have no regard to thefe; and fhall endeavour to deduce it, in a plain and fatisfactory manner, from the principles eftablifhed and illuftrated in the fecond chapter.
2. Bodies have been commonly diftinguifhed into three forts. Thofe are called perfectly bard whofe parts yield not at all in cheir collifions, but are abfolutely inflexible; and fuch the laft elements of bodies, or atoms, are fuppofed to be. Thofe are called foft whofe parts yield in their collifions, but reftore not themfelves again towards their firt pofitions. Thofe are faid to be elaftic which yield in their collifions, but reftore themfelves fo as to recover their fint fituation; and they are faid to be perfectly elaftic, when they reftore themfelves with the fame force with which they are compreffed. Tle actions of perfectly hard or inflexible bodies on one another are confummated in a moment: and, as
there is no fpring, nor any force, to feparate then, they muft go on together after their collifion as if they formed one bady. But when an elaftic body is acted on by any force or power, its parts yield at firt, and afterwards reftore themfelves by degrees to their firft fituations. There is a time required for this, which may be diftinguifhed into two portions; the firft is the cime during which the parts yield and become more and more compreffed; the other is the time during which they reftore themfelves to their firft fituations. When two fpherical elaftic bodies meet, at firft they touch one another in a point, but their contact gradually increafes, as the parts that touch and prefs on one another yield, till their greateft compreffion: and afterwards thefe parts recover by the fame fteps, tho' in a contrary order, their firft fituations. The actions of elaftic bodies may be explained by imagining fprings ke placed betwixt hard bodies A and B (Fig. 14.) ; for the fprings muft have the fame effect in this cafe, as the elafticity of the parts of the bodies in the other cafe. If a move towards в and comprefs the fprings, and, by their mediation, act on E , the frings will become more and more compreffed, till the two bodies have equal velocities in the fame direction; and then, no force acting on the fprings, they will have liberty to begin to expand themfelves; which they will do by the fame degrees as they were compreffed, in a contrary order: and this is the fecond period of the action of the bodies on one another. In the firft period of the action of elaftic bodies, or of bodies acting by the intervention of fprings, the fame effects are produced as if the bodies were perfectly hard. At the end of this period the refpective velocity of the bodies is deftroyed, and in the inftant when it ceafes the fecond begins, the velocities of the bodies in the fame direction being now equal. In this fecond period of

Chap. 4. Phllosophical Discoveries? \$g the action of the bodies, if the elafticity is perfect, the fprings expanding themfelves by the fame force with which they were compreffed, the bodies muft be feparated with a refpective velocity equal to that they had before their collifion; and whatever mation was added to, or fubducted from, either body, in the firft period, as much will be added to, or fubducted from it, in the fame direction, in the fecond; fo that there will be twice as much force loft, or twice as much gained, by either, as if the bodies had been perfectly hard.
3. The effects produced in the firft period of the action of bodies that have an imperfect elafticity are the fame as when the bodies are perfectly elaftic; but, becaufe theiir parts recover their firft fituations with lefs force than that whereby they were difplaced from them, there is lefs force loft or gained in the fecond than in the firft period. There is, however, a conftant proportion obferved between what is loft or gained in thefe two periods, in the fame fort of bodies; fo that there is a conftant proportion between their refpective velocities before and after their collifion. In glafs, for example, this proportion is obferved to be that of 16 to 15 .
4. In foft bodies, whofe parts yield fo as not to reftore themfelves at all to their firft fituations, the action muft be the fame as in the firlt period of perfectly elaftic bodies, and the fame as in perfectly hard bodies. By their collifion their refpective velocity is deftroyed, the inertia, or reffiftance of the parts, having the fame effect in this cafe, as their fpring in the other. After the collifion they go on together as one mals, there being no foring to feparate them. Becaufe the parts yield, in their collifions, certain philofophers have imagined that fome force muft be
loft in producing this effect : but there is no motion communicated to any one part that it can lofe without communicating it to others; a body moving in a fluid lofes no force but what it communicates to the parts of the fluid; and a body acting upon a foft body can lofe no force but what muft be communicated to the parts of that body, which therefore muft be accumulated to the force of the whole. The parts are indeed moved out of their firft places, but this can produce no lofs of force ; for it is manifeft, that if A move and ftrike B , (Fig. 45.) and make it go into the place $b$, and there ftrike c , fo that it remain itfelf in the place $b$, all the force which a had at firt murt be fill found in A or c , and there can be none loft or confumed in carrying в from its firt place $B$, to its laft place $b$, fince $A$ loft none but what it gave to b , and B could lofe none, but what is communicated to c . There can be no force loft in this cafe more than if в had fruck c in its firt place B , nor would there be more force loft in в moved twice or thrice as far before it ftruck c. In like manner, when a body acts upon a foft body and moves its parts out of their places, the force which the firft body lofes is employed in moving thofe parts, indeed, by which they acquire whatever is loft by it, and lofe none of what they thus acquire, but by communicating to other particles; nor is it of moment how far they are moved from their places, but what force is communicated to them, which it is not poffible to conceive they can lofe by merely moving out of their places, but by acting on other particles.
5. This will ftill be found true, tho' you fuppofe the particles of the foft body to cohere with forme certain degree of force. That cafe may be explained by fuppofing particles, B, C and D, (Fig. 46.) cohering by a ftring of a certain degree of ftrength,

## Chap. 4. Philosophical Discoveries. 197

 and that a impelling c changes the fituation of the particles with refpect to one another. In this cafe, A will lofe no force which will not be all communicated to c, but fome part, by mediation of the ftring, muft be imprinted on $B$ and $D$, and all that $A$ lofes and is not given to c , muft be communicated to B and D , if we fuppofe the ftring infinitely fine, or $a b-$ Itract from its ineriia, and reckon all the force in the fame direction. It is true the ftring will be fretched by the force which is at firft imprinted on c, but as c can lofe none but what s and d receive, there can be no force loft from that caufe; and, if the ftring fhould break, the only confequence can be, that there will be no more force communicated from c to B and D , after that happens. From the equality of action and reaction it follows, that the ftring acts equally on $C$ and $B$, and on $C$ and $D$; fo that it adds as much force to в and $D$ as it takes from $c ;$ and, as this is always true, it muft hold in the inftant when the ftring breaks, as well as before: the cohefion of the particles, therefore, can be the occafion of no lofs of force, taking in all that are affected in the collifion, and there appears no ground for fuppofing that any force is confumed, in making the parts of foft bodies yield, but what is accumulated to the whole mafs of body, while its parts continue all together.6. Thefe things being premifed, firft let the bodies A and B (Fig. 47.) be fuppofed void of elafticity, let c be their centre of gravity, and let AD and B D reprefent their velocities before the itroke. Then fuppofing the ftroke to be direct, after it they will proceed together as forming one mafs, and their centre of gravity being carried along with them, their common velocity will be the fame as the velocity of that centre, which (by § $\mathbf{1 5}$. chap. 2.) is the fan $\mathbf{e}$
after the ftroke as before it. But while the bodies defcribed $A D$ and $B D$ before the ftroke, their centre of gravity moves from $c$ to $D$, the place where they meet, or the one overtakes the other; therefore the common velocity of $A$ and B after the ftroke is meafured by CD , their velocities before the ftroke being reprefented by $A D$ and $B D$ refpectively. The right line c $D$ fhews the direction as well as the velocity of their motions after the ftroke; for it is always in the direction from c to D . If m fall upon c , then CD vanifhes, and their motions are deftroyed by the ftroke. This propofition ferves for determining the cafes when the bodies are either perfectly hard, or perfectly foft.
7. But if the bodies are perfectly elatic, take ce equal to $C D$ in an oppofite direction; and the velocities of $A$ and B after the firoke, with their directions, will be reprefented by ea and eb refpectively. For the change produced in their motions by the ftroke, being, in this cafe, double of what it was in the former, by $\$ 2$; and the difference of $A D$ and $C D$ (the change produced in the velocity of $A$ in the former cafe) being equal to the difference of $C D$, or $C E$, and EA, it follows that the velocity of $A$ after the frolse is meafured by EA ; and the difference of玉B and CD, or CE, viz. с B , being equal to the difs ference of $C D$ and $B D$, it follows, that $\mathrm{E}_{\mathrm{B}}$ is the velocity of $в$ after the ftroke. If $\boldsymbol{в}$ have no motion before the ftroke, let $\begin{aligned} & \text { в } \\ & \text { reprefent the velocity of } A \text {, }\end{aligned}$ take $c \in$ equal and oppofite to $C B$, and $E A, E B$, will reprefent the velocities of $\triangle$ and $B$ after the ftroke: in which cafe, the velocity of $A$ before the ftroke is to the velocity of B after it, as $A \mathrm{~B}$ to EB, or 2 © B ; that is, as one half $A B$ to $с B$, and therefore (by the property of the centre of gravity) as half the fum of the bodies $A$ and $B$ to $A$.

From this theorem, all the cafes relating to the motion of bodies that have a perfect elafticity may be immediately deduced. For example, if the bodies $A$ and в be equal, then $с А=с в$, and fince $с е=$ CD , it follows that $\mathrm{EA}=\mathrm{BD}$, and $\mathrm{EB}=\mathrm{AD}$; that is, the bodies exchange their velocities by the ftroke.
8. But if the elafticity of the bodies is imperfect, take ce (Fig. 48. n. I.) equal and oppofite to cd , but $\mathrm{c} a$ is lefs than $\mathrm{c} A$, and $\mathrm{c} b$ lefs than св, in the fame proportion as their elafticity is lefs than a perfect elafticity ; and the right lines $\mathrm{E} a$ and $\mathrm{E} b$ will reprefent their velocities after the ftroke, by $\$ 3$ : becaufe if we diftinguifh the time in which the bodies act upon each other into two periods, as in that article, the effect produced in the fecond period will be lefs than the effect produced in the firft period, in that ratio. In this cafe their refpective velocity after the ftroke is reprefented by $a b$, and is to their refpective velocity before the Aroke, as $a b$ to А в. In glafs, Sir Ifaac Nerwton found this ratio to be that of 15 to 16 , as was obferved above; confequently in determining the effect of their collifions, we are to take $\mathrm{c} a=\frac{15}{16} \mathrm{CA}$, and $\mathrm{c} b=\frac{1.5}{1} 6 \mathrm{CB}$.
9. If motion be communicated, in this manner, from a body a to a feries of bodies in a geometrical progreffion, then the velocity fucceffively communicated to thofe bodies will be likewife in a geometrical progreffion; and if $A$ and B be the two firft bodies, the common ratio of the velocities will be that of half the fum of $A$ and $B$ to $A$; that is, if the bodies $A, B$, be reprefented by the right lines $O a$ and $0 b$, (Fig. 48. n. 2.) and $a b$ be bifected in $e$, the common ratio of any two fubfequent velocities in the progrefion will be that of $o e$ to $o a$; and if $n$ the firft $A$, the velocity of the laft will be to the velocity of the firit, as the power of oa whofe exponent is $n$ to the fame power of $o e$.
10. Any three bodies being reprefented by $0 a$, $O b$, and $o d$, take of to $o d$, as $a a$ is to $o b$; then fuppofing the motion to begin from the firft $o a$ (which was fuppofed to frike ob quiefcent, and ob afterwards to ftrike od quiefcent) the velocity communicated, in this manner, to the third fhall be to the velocity of the firft, as $o a$ is to one fourth part of the fum of $o a, o b$, of and od. For the velocity of the firft $o a$ is to the velocity of the fecond $o b_{\text {a }}$ as the fum of $o a$ and $o b$ to $20 a$; the velocity of $o b$ is to that of $o d$, as the fum of $o b$ and $o d$ to $2 o b$; confequently the velocity of the firft $o a$ is to the velocity of the third od, in the compound ratio of $a a+o b$ to $20 a$ and of $0 b+0 d$ to $20 b$, that is, (fince $\circ a, o b, o f, o d$, are proportional, fo that $0 a$ is to $o b_{2}$ as $0 a+\circ f$ to $o b+o d$, and $0 a+0 b$ to $o b$, as the fum of $o a, o b, o f$ and $o d$ to $o b+o d$ ) as the fum of $o a$, $o b$, of and $o d$ is to $40 a$. Hence the velocity of $o a$ being given, the velocity communicated to $o d$ is inverfely as the fum of $o a, o b$, of and $o d$, and is greatef when this fum is leaft ; that is, if $o a$ and $o d$ be given, when $o b$ and of coincide with each other and with ok the mean proportional between $o a$ and od. Therefore the velocity communicated to od is greatef when $o b$, the body interpofed between oa and $o d$, is a mean proportional between them. This is one of Mr . Huygens's theorems; from which it follows, that the more fuch geometrical mean proportionals are interpofed between $o a$ and $o d$, the greater is the velocity communicated to $0 d$. There is, however, a limit which the velocity communicated to od never amounss to, (the bodies on, od, and the velocity of oa before the ftroke, being given) to which it approaches continually, while the number of fuch bodies interpofed between oa and od is always increafed. And this limit is a velocity which is to the velocity of the firft oa before the ftroke, in the fubduplicate ratio of $o a$ to $o d$; as we have demonftrated in our fluxions, §514.
11. The fame principles will ferve for determin ing the effects of the collifions, when a body frikes any number of bodies at once, in any directions whatever. Let the bodies firft be perfectly hard and void of elafticity, and the body c (Fig. 49.) moving in the direction CD with a velocity reprefented by $C D$, ftrike at once the bodies $A, B, E, \mathcal{E}^{\circ} c$. that are fuppofed at reft before the ftroke, in the directions $\mathrm{CF}, \mathrm{CH}, \mathrm{CK}, \mathcal{E}^{2} \mathrm{c}_{0}$ in the fame plane with CD , and let $\mathrm{D} a, \mathrm{D} b, \mathrm{D} e$, be perpendicular to $\mathrm{C} \mathrm{F}, \mathrm{C} \mathrm{H}, \mathrm{CK}$, in $a, b$, and $e$, refpectively. Determine the point p where the common centre of gravity of the bodies $C, A, B, E, \mathcal{E}^{3} C_{0}$ would be found, if their centres were placed at the points $c, a, b, e, \mathcal{E}^{2} c$. refpectively, (by § I3. chap. 2.); join D P, and C L parallel to DP fhall be the direction of the body C after the ftroke. Let $P R$, perpendicular to $D P$, meet $C D$ in $R$, and $D L$, perpendicular to $C D$, meet $C L$ in L ; then if Cl be divided in G , fo that CG be to c L in the ratio compounded of that of $C D$ to $C R$, and that of the body c to the fum of all the bodies, the velocity of c after the ftroke will be reprefented by c $G$; that is, the velocity of c after the ftroke will be to its velocity before it, as cG is to cd. Let c $f, \mathrm{G} b$, and $\mathrm{G} k$ be refpectively perpendicular to $\mathrm{CF}, \mathrm{CH}_{4}$, and CK , in $f, b$, and $k$; and the velocities of $A, B$, and $E$, after the froke, will be reprefented by c $f, c b$ and $c k$.

But if we now fuppofe the bodies to be perfectly elaftic, or the relative velocities, before and after the ftroke, to be always equal when meafured on the fame right line; produce DG till D $g$ be equal to 2 DG , join c $g$, and the body c will defcribe c $g$ after the ftroke, in the fame time that it would have defcribed a right line equal to $C D$, before the ftroke. And, in like manner, the motions are determined when the elafticity is imperfect, if the relative velocity after the ftroke is always in a given ratio to the relative velocity before it in the fame right line. Mr. Bernouilli has refolved only a very limited cafe of this problem, in his Effay on motion, Paris 1726 ; for he fuppofes the bodies to be perfectly elattic, and that, for each body on one fide of the line of direction $C D$, there is always an equal body on the other fide, that is impell'd in a right line forming an equal angle with CD; fo that the body c moves with the fame direction after the ftroke as before. The folution of this particular cafe, (which he reprefents as a matter of uncommon difficulty, and magnifies as the fruit of the new doctrine concerning the forces of bodies) he derives from this principle, "6 that the fum of the bodies multiplied by the fquares of their velocities is the fame before and after the ftroke; ${ }^{92}$ which principle, however, had never been demonftrated by him; for it cannot be confidered as an immediate confequence of the equality of action and re-action, as he too haftily concluded, by what was fhewn above. But the folution of thefe and other problems of this kind is derived, in a natural eafy and general manner, from the laws concerning the fum of the motions of a fyftem of bodies eftimated in a given direction, and concerning the motion of their centre of gravity, which is never affected by their collifions.
12. The fame things being fuppofed as in $\$ 7$. becaure $\mathrm{CE}=\mathrm{CD}$, (Fig. 47.) it follows that $A D^{2}$ $A E^{2}=4 C E X C A$; and that $E B^{2}-\mathrm{BD}^{2}=4 \mathrm{CEXCB}$. But $A \times 4 C E \times C A=B \times 4 C E \times C B$, by the property of the centre of gravity $c$ : therefore $A \times A D^{2}-A \times A E^{2}$ $=B \times E B^{2}-B \times B D^{2}$, or $A \times A D^{2}+B \times B D^{2}=A \times A E^{2}$ $+B X E B^{2}$; that is, when the bodies are perfectly elaftic, the fum arifing when each is multiplied by the fquare of its velocity, is the fame after the froke as before it. The fame things being now fuppofed as in the laft article, let $D Q g q, f m, b n, k r$, be perpendiculars to CG , in $e, q, m, n$, and $r$; then the rectangles contained by c $m$ and $\mathrm{c} \mathrm{G}, \mathrm{c} n$ and c $G$, $\mathrm{c} r$ and $\mathrm{c} G$, will be refpectively equal to the fquares of $\mathrm{c} f, \mathrm{c} b$, and $\mathrm{c} k$. If the bodies $\mathrm{c}, \mathrm{A}$, $B, E$, be fuppofed to have no elafticity, their velocities after the ftroke will be reprefented by c $\mathrm{c}, \mathrm{c} f$, $c b$ and $c k$, the velocity of $c$ before the froke being reprefented by c d, becaufe, in this cafe, no relative velocity is generated by the ftroke in their refpective directions, and the fum of $\mathrm{A} \times \mathrm{C} m, \mathrm{~B} \times \mathrm{C} n, \mathrm{E} \times \mathrm{C} r$ is equal to $\mathrm{c} \times \mathrm{GQ}$, becaufe the fum of the motions which would be communicated to $A, B$ and $E$, in the direction CG , is equal to the motion which c would lofe in the fame direction, by §4. chap. 2. Therefore the fum of $A \times c f^{2}, B \times C b^{2}, E \times c k^{2}$ is equal to CXCGXGQ ; and to thefe if we add $\mathrm{c} \times \mathrm{cG}^{2}$, the fum of all the bodies multiplied by the fquares of their velocities in this cafe would be $\mathrm{c} \times \mathrm{cg} \times \mathrm{ce}$. But when the bodies are fuppofed to be perfectly elaftic, the velocities of $A, B$ and $E$, are to be reprefented by $2 \mathrm{c} f, 2 \mathrm{ch}$, and 2 ck , refpectively; the fum of $\mathrm{A} \times 4 \mathrm{C} f^{2}, B \times 4 \mathrm{C} b^{2}$ and $\mathrm{E} \times 4 \mathrm{C} k^{2}$, is equal to $\mathrm{c} \times 4 \mathrm{CG} \times \mathrm{GQ}$ or (Elem.8.2.) $\mathrm{c} \times \mathrm{CQ}^{2}-\mathrm{c} \times \mathrm{c} q^{2}$; to which if we add $\mathrm{c} \times \mathrm{c} \mathrm{g}^{2}$ (or $\mathrm{c} \times \mathrm{C} q^{2}+\mathrm{C} \times D Q^{2}$ ) the whole fum of the products, when each body is multiplied $C D^{2}$; and confequently the fame after the flroke as it was before the ftroke. When therefore the bodies are void of elafticity, this fum is lefs after the itroke than before it, in the ratio of $\operatorname{CGXCQ}$ to $C D^{2}$, or of co to CL, L being the point where LD perpendicular to CD meets cG. And when the bodies $\mathrm{A}, \mathrm{B}, \mathrm{E}$, move, before the ftroke, in directions different from thofe in which c acts upon them, the propofition will appear by refolving their motions into fuch as are in thofe directions (which alone are affected by the ftroke, ) and fuch as are in perpendiculars to thofe directions, from Elem. 47. 1. This propofition likewife holds when bodies of a perfect elafticity frike any immoveable obftacle as well as when they Itrike one another, or when they are conftrained, by any power or refiftance, to move in directions different from thofe in which they impell one another. But it is manifef, that it is not to be held a general principle or law of motion, fince it can take place in the collifions of one fort of bodies only. The folutions of fome problems which have been deduced from it may be obtained, in a general and direct manner, from plain principles that are univerfally allowed, by determining firft the motions of hard bodies, which are fuppofed to have no elafticity, and thence deducing the folutions of other cafes, when the relative velocities before and after the ftroke are equal, or in any given ratio.
13. From what was fhewn in the laft article, we are led to the principle, which, by Mr. Huygens, was called the confervatio vis afcendentis. It is well known, and was proved in \$ 11 . chap. I: that the heights to which bodies will rife againft the direct reffiftance of an uniform gravity are as the fquares of the velocities with which they fet out. In the laft the bodies are multiplied by the fquares of their velocities, is the fame after as before the ftroke; provided the bodies be perfectly elaftic. If, therefore, we fuppofe the motion of the bodies to be turned upwards in vertical lines, the fum of the products when each body is multiplied by the height to which it would arife is the fame after as before the ftroke. But by the property of the centre of gravity, in $\$$ 15. chap. 2. the fum of the products of the bodies multiplied by thofe heights is equal to the product of the fum of the bodies multiplied by the height to which their centre of gravity would arife. Therefore when the motions of bodies are fuppofed to be converted upwards in vertical lines, before or after their collifions, their common centre of gravity will always arife to the fame height ; and that is what is meant by Mr. Huygens when he tells us the wis afcendens of any fyltem of bodies is not affected by their collifions or mutual actions, provided they be perfectly elaftic; for if they are foft bodies, or have an imperfect elafticity (which indeed is the cale of all bodies we have accefs to examine, then it is obvious that by their collifions their motions are often diminifhed, and fometimes totally deftroyed; fo that the centre of gravity will neceffarily arife to a lefs height after their collifion than before it, if the motions of the bodies be fuppofed to be converted upwards in vertical lines.
14. When bodies are moved by their gravity, and at the fame time act upon each other, it will ftill be found, that the fum of the products that arife when each body is multiplied by the fquare of the velocity acquired by $i t$, is equal to the difference of the fum of the products of thofe that defcend multiplied by
the fquares of the velocities that would have been acquired by the fame defcents, if the bodies had fallen freely without acting upon each other, and of the fum of the products of the bodies that afcend multiplied by the fquares of their refpective velocities that would be acquired by falling freely along the refpective altitudes to which they have arifen; provided that the elafticity of the bodies be perfect; or if it be imperfect, that there be no collifion, or fudden communication of motion from one body to another. For if the relative velocities in their refpective directions be lefs immediately after that action than before it; in thofe cafes, the fum of the products of the bodies multiplied by the fquares of their velocities will be lefs than it would have been if the bodies had defcended freely from the fame refpective altitudes; and if the bodies be fuppofed to afcend with their refpective velocities at any time, and their motions be retarded by their gravity only, the common centre of gravity will not afcend to the fame level from which it defcended; as we have thewn at length in our Treatife of Fluxions, from § 521 to 533 .
15. The true general principle on this fubject, is, that when any number of bodies, moved by their gravity, are connected together in any manner fo as to act upon each other while they move, the afcent of their common centre of gravity, in their vibrations or revolutions, will be always found to be either equal to its defcent, or lefs than it, but never to exceed it. And, from this principle, the impoffibility of a perpetual motion is juftly derived. For it appears, that, in fuch vibrations and revolutions, the fucceffive afcents of the centre of gravity muft continually diminifh, in confequence of the attri- being never greater than the defcent (tho' often lefs chan it,) there can be no gain of force to overcome thofe refiftances. All motion, therefore, muft be abated and gradually languifh in our mechanical engines, unlefs they be fupplied by new and repeated influences of the power.
16. It is very well known, that, when allowance is made for the defect of elafticity in bodies, for attrition, and the refiftance of the medium, thefe conclufions are perfectly agreeable to experience; and therefore ferve to confirm the general laws of motion with their corollaries, and our methods of reafon. ing from them.

## CHAP. V.

Of the motion of projectiles in vacua; of the cycloid, and the motion of a pendulum in it *.

$$
\mathcal{L} E M M A I
$$

Suppofe the motion of a body to be uniformly accelerated; let the time be reprefented by the right line Am , (Plate IV. Fig. I.) and any part of it by $A K$, draw $M N, K L$ perpendiculars to $A M$ in $M$ and K , and AN interfecting them in N and L : then the velocities acquired in the times $A M, A K$, reckoned from the beginning of the motion, will be as the

* To render the fecond book more complete, we have added this fupplement, from two pieces which the author ufed to give his fcholars. The fubfance of them is taken from the learned Mr. Cotes's traets, printed as the end of his Harmonia Meno furarum.
perpendiculars $\mathrm{MN}, \mathrm{KL}$, but the fpaces defribed in thefe times will be as the areas $A M M, A K L$.

This propofition has been demonftrated elfewhere; but we fhall here add the proof that is commonly given of it, by the method of indivifibles.

Since the motion of the body is fuppofed to be uniformly accelerated, that is, to receive equal increments of velocity in equal times, the velocities acquired will be always proportional to the times : fo that if MN reprefent the velocity acquired in the time AM, it follows, becaufe AM:AK::MN:KL, that $\mathrm{K} L$ will reprefent the velocity acquired in tha time ak. After the fame manner, the velocities acquired in the times $A B, A C, A D, E_{C}$. will be reprefented by the perpendiculars $B E, C F, D G, \mathcal{E}^{2} C$. refpectively.

The fpace defcribed by any uniform motion is as the rectangle contained by the right lines that reprelent the velocity and the time : therefore the fpaces defcribed in the times $A B, B C, C D, D H, \mathcal{E}^{2}$. with the velocities в $\mathrm{E}, \mathrm{C} \boldsymbol{F}, \mathrm{DG}, \mathrm{HI}, \mathcal{E}^{2} \mathrm{c}$. are as the rectangles $A E, B F, C C, D I, \mathcal{E}^{3} C$. and the fpaces defrribed in the whole time $A K$ as the fum of thefe rectangles. That the motion may be uniformly and continually accelerated, fuppofe the number of the parts $A B, B C, C D, \mathcal{V}^{\circ}$. into which the line $A K$ is divided, to be increafed in infinitum, and the fum of the rectangles $A E, B F, C G, \dot{\delta}^{2} C$, will become equal to the triangle A K L. . Therefore, in a motion uniformly accelerated, the fpaces defcribed in any times $A K, A M$, from the beginning of the motion, are as the areas AKL, AMN.

Corol. I. The fpace defcribed by a motion uniformly accelerated, in any time, is half the fpace that would be defcribed, in the fame time, by an uniform motion with the velocity acquired at the end of that time.

The fpace defribed by a motion uniformly accelerated, in the time $\mathrm{AK}_{\mathrm{K}}$, is reprefented by the triangle AKL; the fpace that would be defcribed by an uniform motion, in the fame time, with the velocity $K \mathrm{~K}$, is reprefented by the rectangle contained by $A K^{\circ}$ and KL, but the triangle AKL is half of that rectangle; and the propofition is manifeft.

Corol. 2. The fpaces defcribed by a motion uniformly accelerated, are as the fquares of the times from the beginning of the motion; for thofe faces are as the fimilar triangles AKL, AMN; whofe homologous fides AK, am, reprefent the times. For the fame reafon, the fpaces are alfo as the fquares of ( $\mathrm{K} \mathrm{L}, \mathrm{mN}$.) the velocities acquired at the end of thofe faces:

Corol. 3. If the accelerating force is fuppofed to be greater or leffer in any given ratio, the velocities generated by it, in a given time, will be increafed or diminifhed in the fame ratio. And in any times; the velocity generated by this force, will be to that generated by the former, in the compounded ratio of the forces and of the times.

Corol. 4. The fall of heavy bodies, either perpendicular or along inclined planes, being a motion uniformly accelerated; the preceding Lemmic and its corollaries may be applied to them.

## $L E M M A$ II. Fiz. II.

If two heavy bodies fall from reft at c to the horizontal line $A B$, one in the vertical $C B$, and the other along the inclined plane cA ; the time of defcent from $C$ to $B$, will be to the time of defcent from C to A, as C B to CA; and the velocities acquired at $B$ and $A$ will be equal.

For let the force of gravity by which the body defcends in the vertical $\mathrm{c}_{\mathrm{B}}$, be reprefented by C B , and refolved into the forces $B D$ perpendicular to $C A$, and $C D$; the other body is urged along the "inclined plane by CD only. Therefore the accelerating forces by which the bodies defcend in the vertical св а and along the inclined plane $\mathbf{c} A$, are reprefented by c $\quad$ b and CD. The fpaces defcribed in equal times, by the uniform continued action of any forces, are in the fame ratio as thofe forces: therefore the bodies will fall from c to B , and from C to D , in equal times. But the time of defcent from $C$ to $D$ is to the time of defcent from c to A (by Corol. 2. and 4. Lem. I.) in the fubduplicate ratio of $C D$ to $C A$, that is, (becaufe cD, с B, CA, are in continued proportion) in the ratio of $C D$ to $C B$, or of $с в$ to $C A$.

Again, the velocities generated in the falls are in the compound ratio of the generating forces, and of the times of their generation (Corol. 3. Lem. 1.) that is, in the prefent cafe, in the compound ratio of $C A$ to $C B$, and of $C B$ to $C A$; which compound ratio is that of equality.

## $L E M M A \mathrm{III}$.

Upon the fame horizontal plane, let there be raifed another plane $c a$, whofe elevation is $C \mathrm{~B}$; from c draw c i parallel to $c a$, meeting $B A$ in $I_{\text {, }}$ and from b the line $\mathrm{e} d$ perpendicular to Cr . Then св reprefenting; as before, the conftant force of gravity, $\mathrm{CD}, \mathrm{C} d$ will reprefent the accelerating forces along the planes CA and ( CI or) $c a$; and their ratio being compounded of thofe of $C D$ to $C B$, and of CB to $\mathrm{C} d$, that is, of CB to CA , and ( CI to CB or) ca to CB ; it follows that thofe accelerating forces are directly as the elevations of the planes, $C B, C B_{3}$ and inverfely as their lengths $\mathrm{c} A, c a_{0}$

Corol. I. Compound now thele three ratios; that of $C A$ to $C B$, of $V \subset B$ to $V C B$, and of $C B$ to $\subset a_{3}$ their fum gives the ratio of the times of falling thro' CA and $c a$, being the direct ratio of the length CA , $c a$, and the inverfe fubduplicate of the elevations $C B$, or $C B$.

Corol. 2. The velocities acquired being as the accelerating forces and the times in which they act; compound the ratio of thefe found in the preceding Lemma and Cotollary, and there will refult that of the velocities, viz. the direct fubduplicate of the elevations C B, CB.

Corol. 3. Hence likewife it is inferred, that if (Fig. III.) a body fall from reft at c , to A in the horizontal line $A B$, along any number of planes $C D$, $D E, E A$, inclined to each other any how, as at $D$ and E , the velocity at A will be the fame as if the body had fallen in the vertical $\overline{\text { B }}$; abftracting however

From the lofs of velocity that happens by its impulfes at $D$ and $E$, upon the contiguous planes.

That multiplying the number of planes from $c$ to A, till the path of the body becomes curvilinear, the velocity at a will be accurately the fame as in the perpendicular fall c $B$.

And laftly, that if a feries of planes, $c d, d e$, \&c. fimilar and fimilarly fituated to the former, or two fimilar and fimilarly fituated arcs of a curve, be the path of the body; the velocities will be as the lengths of the paths; and the times in the fubduplicate ratio of thofe lengths, of the heights $\mathrm{c} B, c b$, or of any two homologous lines belonging to the figures.

Corol. 4. Let A D (Fig. IV.) be the diameter of a circle touching the horizontal line in $A ; C A, C a$, any two chords drawn to A. Then, if bodies defcend by the force of gravity along thefe chords, the times of defcent will be equal; and the velocities will be proportional to the chords CA, CA.

For, joining $D C, D C$, and making $c E, c e$, perpendiculars to the diameter; becaufe the triangles $D C A, E C A$ are fimilar, as alfo DCA, eCA; it is eafily fhewn, that CA is to $C \mathrm{~A}$ in the fubduplicate ratio of the elevations Ae, A $e$ : and this compounded with the fame ratio inverted, gives the ratio of equality; which, by Corol. I. is that of the times.

And, by Corol. 2. the velocities are in the fubduplicate ratio of $A E$ to $A E$, or that of CA to $c A$.

## I. Of the motion of projectiles.

## PROPOSITION I. Fig. V.

The line defcribed by a beavy body, tbrown in any direection noo perpendicular to the borizon, is a parabola.

Suppofe a body projected in the direction AD, with the velocity it would have acquired by falling from $B$ to $A$, the body, by that force alone acting upon it, would uniformly defrribe the right line $A D$; and any part of the line of direction, as AH, reprefents the time in which it would be defribed,

Suppofe that the force of gravity, afting alone, would have, in the fame time, carried the body from A to P ; compleat the parallelogram APM H , and, at the end of the time reprefented by AH , the body will actually be found in m . Since, by the firt $\mathrm{Co}-$ rollary of the firt Lemma, the time in which the body falls from $B$ to $A$ is the fame in which it would deferibe 2 AB by an uniform motion, with a velocity equal to that acquired at $A$, therefore that time will be reprefented by 2 AB . But the time in which the body would fall from A to P being reprefented by AH, it follows, from the fecond Corollary of the fame Lermma, that $A P: A B:=A H^{2}: 4 A^{2}$, and $4 A B X$ $A P=A H^{2}=P M^{2}$ : from which it appears that the point $m$ is a point in the Parabola whofe diameter is $A B$ and vertex $A$, having the parameter of that dia,meter equal to 4 AB .

Gorol. I. It is evident that the line $A$ is a tangent to the Parabola in A, becaure it is parallel to, the ordinate Pm .

Corol. 2. Since 4 А в is the parameter of the diameter AP, it follows that the parameters belonging to the vertex A of the diameter AP are always in the duplicate ratio of the velocities of the projection, the fpace $A B$ being always as the fquare of the velocity acquired by falling from $B$ to $A$. It follows alfo that the parameter of AP is the fame when the velo: city of the projection is the fame, whatever the direction af of the projectile be.

Corol. 3. If from a as centre you defcribe the femicircle $\mathbf{e} Q$, its circumference fhall be the locus of all the foci of the parabolas that can be defcribed by a projectile thrown from $A$, with the velocity it could acquire falling from E to A : for, by a known property of the parabola, the diftance of the focus from $A$ is always equal to $\frac{1}{4}$ of the parameter of the diameter that paffes thro ${ }^{3} \mathrm{~A}$ : that is, to $\frac{1}{4}$ of 4 AB or to $A B$ itfelf; all the foci muit therefore be found in the femicircle $B$ Ql.

Corol. 4. Hence it is eafy to determine the parabola defcribed when the direction of the projectile is given; for you need only draw AF fo as to make the angle $F A D$ equal to the given one $D A B$, which the direction $A D$ makes with the perpendicular $A B$, and the point F where AF cuts the femicircle $B \mathrm{Q}$ ? Thall be the focus required; and, if you draw thro' F the line $F N$ parallel to $A B$ cutting the direetrix $B E$ in $N$, it fhall be the axis, and $I$, the middle point betwixt F and N , fhall be the vertex of the parabola? fri being the parameter of the axis.

Corol. 5. If you draw a line thro' the vertex it parallel to the directrix, meeting $A B$ in $c$ it mut be bilected by the line of direction in $D$; and if you draw a line from the focus $F$, to $D$, it will be perpendicular to the tangent, and will pafs thro' B if produced, as appears from the properties of the parabola: and therefore a femicircle defcribed upon A B as diameter will always pafs thro' the point $D$, where the line of direction cuts CI the tangent to the vertex of the parabola.

Definition. If you draw a line thro' the point $A$, parallel to the horizon, cutting the axis in o and the parabola in K , then $\mathrm{A}_{\mathrm{K}}$ is called the amplitude of the parabola.

## PROPOSITION.I.

The amplitude of any parabola is always equal to four times the fine of double the angle which the line of direetion makes with the vertical, taking the balf of А в for radius.

For $A K=2 A O=2 C I=4 C D$; but $A K$ is the amplitude of the parabola, and $C D$ is the fine of the angle $D G B$, which is the double of $B A D$, if you take $G B\left(=\frac{\pi}{2} A B\right)$ for radius.

Therefore the amplitude is equal to 4 times the fine of double the angle $B A D$, which the vertical makes with the line of direction.

Corol. I. The velocity of projection being given, the amplitudes are to one another as the fines of double the angles of inclination,

Corol.2. If the angle bad does not exceed $45^{\circ}$, then it is plain that the more acute that angle is, the amplitude $A K$ muft be the lefs; fince the fine of
$P_{4}$
double double that angle mult become lefs, and the amplirude is equal to four times the fine.

When the angle bad vanifhes, then the parabola A IK coincides with the freight line $A B$; and the projectile, inftead of defrribing a curve, will only rife to $B$ and fall again to $A$.

On the other hand, the more the angle BAD approaches to $45^{\circ}$, the line CD , which is the fine of double that angle, becomes the greater: and therefore the amplitude $A K$, which is quadruple of that fine, mutt alfo become the greater.

Corol. 3. When the angle bad becomes $45^{\circ}$, the points $F$ and o fhall fall on the point $Q$. where the femicircle $B Q L$ cuts the horizontal line $A K$; the fine $C D$ of double $B A D$ becomes now the fine of $90^{\circ}$, and therefore is equal to the radius $G A$.

But fince the radius is the greateft fine, it is plain that now the amplitude $A K$ is the greateft that can be defcribed by any projectile thrown from a with a velocity which it would have acquired by falling from $B$ to $A$ : and this greateft amplitude is always double of $B A$; for $A K$ in this cafe is equal to $4 A G=2 A B$. Hence it appears, that if you throw a body in a direction that makes an angle of $45^{\circ}$ with the horizon, it will be carried farther on the horizontal line, than if you threw it with the fame force in any other direction.

Corol. 4. When the angle BAD is greater than $45^{\circ}$, then according as it approaches to a right angle, the parabola becomes more and more open, but the amplitudes AK decreafe as the angle $\underset{\text { B A D increafes; }}{ }$

Chap. 5. Philosophical Discoveries. for $A K=4 C D$, and $C D$ mult, in this cafe, decreafe according as BAD increafes.

If of two directions $A D$ and $A d$, the elevation of the one exceeds that of $45^{\circ}$ as much as the elevation of the other wants of it, their amplitudes will be equal; for the fines of double thefe angles muft be equal, becaufe they are fupplements to two right angles, to one another: but the amplitudes of the parabola are always quadruple of thefe fines, and therefore they muft alfo be equal to one another. That the doubles of thefe angles are fupplements to one another appears thus: let their difference from $45^{\circ}$ be called A , and the greater fhall be $45^{\circ}+\mathrm{A}$, the leffer $45^{\circ}-\mathrm{A}$, their doubles fhall be $90^{\circ}+2 \mathrm{~A}$ and $90^{\circ}-2 \mathrm{~A}$, which are fupplements to each ocher becaufe together they make up $180^{\circ}$.

Corol. 5. When the angle BAD becomes a right angle, then $A$ b becomes the axis, and $A$ the vertex of the parajola, $C D$ vanifhes, and $A K$ becomes $=0$.

Corcl. 6. When the angle BAD becomes greater thin a right one, then the curve defcribed fhall be only a portion of the parabola that we have confidered in the preceding corollaries, lying on the other fide of $A$.

Corol. 7. If there is given the impetus or velocity wherewith the projectile is thrown, and the angle of elevation, or its complement bad, you may find the amplitude A K, and the altitude of the parabola defcribed by this projection. For feeing the amplitude of $45^{\circ}$ is 2 AB (which is the line that always expreffes the velocity, fince by falling thro' it the velocity is acquired) you may fay as the radius (or
fine of $90^{\circ}$ ) is to the fine of double the angle BAL, fo is 2 AB to AK the amplitude fought, (by Cor. 1.): the amplitude being found, you may find the altitude by faying, as the radius is to the tangent of the angle of elevation, fo is $\mathrm{CD}\left(=\frac{1}{4} \mathrm{AK}\right)$ to AC the altitude fought.

Corol. 8. If you have given, the amplitude A K , and the angle of elevation $\mathrm{DAK}_{\mathrm{K}}$, you may find the impetus neceffary to defrribe a parabola that fhall have that amplitude, by this proportion; as the fine of double the angle of elevation, is to the radius, fo is one half of the given amplitude to $A B$, the face thro' which a body muft fall to acquire the ne. ceffary impetus.

Corol. 9. If the impetus and amplitude be given, the direction may be found by this rule. Firft find $A B$, by falling thro' which the given impetus may be acquired; then fay, as the double of this line to the given amplitude, fo is the radius, to the fine of double the angle of elevation, and this angle or its complement will fatisfy the problem.

## PROPOSITION III. Fig. VI.

A projectile thrown in the direction A E, with the velocity it would acquire by falling from в to A, will frike any line AN in K , fo that A K foall be equal to 4 CD : Juppofing AG perpendicular to the line A N , the angle $G B A=G A B$, and that the circle defcribed from G as centre, with the radius GA, cuts the direction A E in D , and that DC is parallel to AN, meeting A B in C .

For it is plain that the angle ADC (二DAK) $=\mathrm{dBA}$, by Eucl. 32.3. and that confequently the confequently $\mathrm{CD}=\frac{1}{4} \mathrm{AK}$, or $\mathrm{AK}=4 \mathrm{CD}$.

Corol. I. Draw thro' $D$ a parallel to $A$ B meeting the circle in $d$, and draw $\mathrm{A} d$; then will the projectile thrown in the direction A $d$ ftrike the line A $n$ in the fame point K ; for $\mathrm{CD}=\mathrm{Cd}$.

Corol. 2. Let HL, parallel to AB, touch the circle in $H$, then fhall $A_{H}$ be the direction which will carry the projectile fartheft on the line AN ; becaufe when $D$ comes to $H$, then $C D$ is the greateft it can poffibly be, and confequently $\mathrm{AK}(=4 \mathrm{CD}$ ) is then the greateft diftance the projectile can be carried to, on the line $A N$, by the velocity acquired by falling from B to A . But it is plain that the angle $\mathrm{HAN}=$ $\mathrm{HBA}=\mathrm{HAB}$, therefore the direction A H bifects the angle $b a n$ which the line $A N$ makes with the vertical A B.

Corol. 3. The lines AD, Ad, make equal angles with $A H$, alfo the angle $D A N=d_{A B}$; and when thefe angles are equal the diftance $A \mathrm{~K}$ is the fame.

Corol. 4. When AK is given and the direction is required, take $A R=\frac{x}{4}$ of $A K$, and thro' $R$ draw $R D$ parallel to $A B$, meeting the circle in $D$ and $d$; then draw $A D, A A^{3}$; and thefe will be the directions *.

[^41]II. Of the cycloid; and the motion of a pendulums in it.

Definitions. If the circie CDH (Fig. VII.) roll on the given ftreight line $A B$, fo that all the parts of the circumference be applied to it one after another, the point $C$ that touched the line $A_{B}$ in $A$, by a motion thus compounded of a circular and rectilineal motion, will defrribe the curve line асев which is called the cycloid. The ftreight line а в is called the bafe; the line EF perpendicular to $A B$, bifecting it in $F$, the axis; and the point m the vertex of the cycloid. The circle by whofe revolution the curve line is defcribed, is called the generating circle. The line CK parallel to the bafe A b , meeting the circle c and the axis in K , is called an ordinate to the axis; and a line meeting the curve in one point, that produced does not fall within the curve, is called a tan: gent to the curve in that point.

## PROPOSITIONI.

On the axis EF defcribe the generating circle EGF; meeting the ordinate CK in G ; and the ordinate will be equal to the fum of the arc EG and its right fine cK; I fay, cK=EG+GK.

It is plain, from the definition, that the line a $\boldsymbol{b}$ is equal to the whole circumference of the generating circle, and therefore a f mult be equal to the femicircumference egr. It is alfo obvious, from the defcription of the curve, that the arc $C D$ is equal to the line $A D$, and confequently the $\operatorname{arc} \mathrm{Ch}$ equal to DFOrIK or CG; but the arc CH is equal to the $\operatorname{arc} E G ;$ therefore $C G$ is equal to the $\operatorname{arc} E G$, and

Chap. 5: Philosophical Discoveries. 22 I the ordinate CK ( $=\mathrm{CG}+\mathrm{GK}$ ) mutt be equal to the fum of the arc eg and the right line GK .

## PROPOSITION II.

The line c H , parallel to the chord EG , is a tangent to the cycloid in c .

Draw an ordinate $c k$ very near c k , meeting the curve in $c$, the circle in $g$, and the axis in $k$ : let $\mathrm{c} u$ and $\mathrm{c} n$, parallel to the axis, meet the ordinate $c k$ in $u$ and $n$; and from o the centre of the circle EGF, draw the radius og. Since $c k=\mathrm{E} g+g k$, therefore $c u=\mathrm{G} g+g n$; and if you fuppofe the ordinate $c k$ to approach to the ordinate $с к$, and at length to coincide with it, as $\mathrm{G} g$ and $\mathrm{G} n$ vanifh, the triangles c $g n$ and cor become fimilar, whence $\mathrm{G} g: g n:=$ OG:OK, and Gg+gn:gn::OG+OK(二FK):OK; but $\mathrm{G} n: g n:: \mathrm{cK}: \mathrm{o} \mathrm{K}$, therefore $\mathrm{G} g+g n: \mathrm{G} n:$ : FK:GK::GK:EK; and confequently cu:cu:: GK: ek; and if you draw the chord cc, the triangles cuc, еKG will be fimilar; fo that the chord c $c$, as the points c and $c$ coincide, becomes parallel to EG: therefore the tangent of the cycloid at c is parallel to EG.

## PROPOSITION III.

The arc of the cycloid E L is double of the chord Em of the correfponding arc of the generating circle EM F.

Let $k l$ and $k s$ be two very near ordinates of the cycloid, meeting the generating circle in $m$ and $Q$; produce the chord em till it meet the ordinate $k \mathrm{~s}$ in $P$; let $Q O$ be the perpendicular from $Q$ on $M P$; then draw the lines $E N$ and $M N$, touching the circle in $E$ and m .

Becaufe the triangles $\mathrm{EN} M, \mathrm{PQM}$ are fimilar, and $\mathrm{EN}=\mathrm{NM}$, therefore PQ is equal to QM ; and the triangle $P Q M$ being ifofceles, the perpendicular $Q 0$ bifects the bafe PM ; fo that MP is double of MO 0 : but, by the laft propofition, is is parallel, and confequently equal, to MP , and LS is equal to 2 Mo . The line $\mathrm{l} s$ is the increment of the curve ex, generated in the fame time that the chord Em increafes by M 0 , fince $\mathrm{E} Q$ is equal to E 0 , when the points $Q$ and $m$ come together: Therefore the curve increafes with double the velocity that the chord increafes; and fince they begin, at e, to increafe together, the arc of the cycloid EL will be always double of the chord em.

Corol. The femi-cycloid elb is equal to twice the diameter of the generating circle, E F; and the whole cycloid ACEB is quadruple of the diameter Ef.

## PROPOSITION IV.

Let er be parallel to the bafe A B, and Crparallel to the axis of the cycloid; and the fpace ECR, bounded by the arc of the cycloid EC and the lines ER. and Re, Joall be equal to the circular area 玉GK.

Draw or parallel to cr ; and fince $c u: \mathrm{c} u:: \mathrm{GK}$ : ек; therefore $\mathrm{EKXC} u=\mathrm{CKXC} u$, and confequently R $r \times \mathrm{Cl}_{\mathrm{R}}=\mathrm{GK} \times \mathrm{Kk}$ : therefore the little face crrct=gkkg. So that the areasecr, egkincreafe by equal increments; and fince they begin to flow together, therefore they muit be equal.

Corol. i. Let A t, perpendicular to the bafe a B, meet er in T , and the fpace etace will be equal to the femicircle EGF.

Corol.2. Since af is equal to the femicircumference EGF, the rectangle EfAT, being the rectangle of the diameter and femicircumference, will be equal to four times the femicircle egf: and therefore the area ECAFE will be equal to three times the area of the generating femicircle EGF.

Corol.3. If you draw the line ea, the area intercepted betwixt the cycloid E C A and the ftreight line ea will be equal to the femicircleatgr; for the area EcAFE is equal to three times EgF, and the triangle $E A F=A F \times \frac{1}{2} E F$ the rectangle of the femicircle and radius, and confequently equal to 2 EGF ; therefore their difference, the area ECAE, is equal to EGF.

## PROPOSITIONV.

Take 玉 $b=0 \mathrm{~K}$, draw $b \mathrm{z}$ parallel to the bafe, meeting the generating circle in x , and the cycloid in z , and join $\mathrm{Cz}, \mathrm{FX}$ : then hall the area C ZEC be equal to the fum of the triangles GFK and $b_{F X}$.

Draw $z d$ parallel to the axis ef, meeting et produced in $d$, and the trapezium $R C z d$ will be equal to $\frac{1}{2} \overline{\mathrm{CR}+\frac{1}{2}} \mathrm{z} d \times R d=$ (becaufe $\left.z d=\mathrm{E} b=\mathrm{OK}\right) \frac{\mathrm{x}}{2} \mathrm{OE}$ $\times \mathrm{R} d$. But $\mathrm{R} d=\mathrm{RE}+\mathrm{E} d=\mathrm{CK}+b \mathrm{Z}=\mathrm{EG}+\mathrm{GK}+\mathrm{EX}$ $+b x$; therefore the trapezium RCzd is equal to the fum of the rectangles of half the radius and the $\operatorname{arcs} E G, E X$, added to their fines GK , and $b \mathrm{X}$. But the area egf, i.e. the triangle egr and the feg- the arc EG and its right fine $G K$; and the area $\operatorname{Exf}$ confifting of the fector mox and the triangle xof is equal to the rectangle of half the radius and the fum of the arc $E x$ and its right fine $b x$; therefore the trapezium rczd is equal to the fum of the areas egra and exf. By the laft propofition, the area ECR is equal to EGK , and $\mathrm{Ezd}=\mathrm{E} b \mathrm{x}$; from the trapezium rczd fubtract the areas EcR, EZd, and from the areas EGF, ExF, fubtract the areas EGK, $E b x$, and there will remain the area czec equal to the fum of the triangles, $G F K, b_{F X}$.

Corol. r. Hence, an infinite number of fegments of the cycloid may be affigned that are perfectly quadrable. For example, if the ordinate cok be fuppofed to cut the axis in the middle of the radius - E , then K and $b$ coincide; and the area ECK becomes in that cafe equal to the triangle GK F , and $\pm b z$ becomes equal to $\mathrm{F} b \mathrm{x}$; and thefe triangles themfelves become equal.

Corol. 2. Suppofe now that K comes to the centre $\oplus$, and c comes to $i$; then becaufe or vanifhes, therefore $¥ b$ vanifhes, and the fpace czec becomes in this cafe $\mathrm{E} \boldsymbol{c}_{\mathrm{E}}$, which is equal to $\frac{1}{2} \mathrm{OE}^{2}$; for the triangle $\sigma_{\mathrm{FX}}$ in this cafe vanihes.

## But to return from this digrefion;

## PROPOSITION VI. Fig. VIII.

Let atc be a femi-cycloid baving its bafe ec paralLel to the borizon, and its vertex A downwoards. fuppofe a fring, with a pendulum, of the length of the

Chap. 5. Philosophical Discoveries. Semi-cycloid, fufpended at c, and applied to the femicycloid CTA ; the body P, by its gravity, will gradually Separate the fring from the femi-cycloid стA, and will defcribe on equal semi-cycloid A P V, baving its vertex in v , and its axis perpendicular to the borizon.

On the axis $A \mathrm{E}$ defcribe the generating femicircle AGE, draw $A b$ cutting the vertical line $c v$ in $D$, and on $D V$, taken equal to $A E_{3}$ defcribe the femicircle dyv. Then, fince the femi-cycloid c T A is equal to 2 AE or CV, (by Cor. Prop. WI.) therefore the body P will come to V , when the ftring c T P comes to a vertical fituation. Thro' T and p draw TG and PH parallel to AD, meeting the femicircles in G and H ; and fince the ftreight part of the ftring $T P$ is equal to the curve $T A$ to which it was applied, therefore $\mathrm{TP}=2 \mathrm{AG}=2 \mathrm{TK}$, and confequently TK and $K P$ are equal, and the points $\varepsilon$ and $h$ muft be equally diftant from the line AD: and therefore the $\operatorname{arc} A G$ will be equal to $D H$, and confequently the angle $G A D=A D H$; and the chords GA, D H, are parallel. But $\mathrm{T} P$, being a tangent to the cycloid in T, is parallel to GA; therefore DKPH is a parallelogram, and $D K$ is equal to $P H$. But the $\operatorname{arc} A G$ is equal to G t, by Prop. I. and therefore the arc a G $=A K$; and fince $A D=A G E$, it follows that $D K$ or $\mathrm{PH}=\mathrm{GE}$ or HV : and if P н be produced till it meet the axis in R , then thall the ordinate PR be equal to the fum of the arc $H V$ and its right fine $H R$, and therefore the point P , by Prop. I. muft be in a femicycloid, whofe generating circle is DHV , its axis $\mathrm{D} v$, and vertex v .

Corol. If another femi-cycloid equal to с т $A$, as $\mathrm{c} t \mathrm{~b}$, be placed in a contrary fituation, it is plain, that, by means of thefe femi-cycloids, a pendulum

## PROPOSITION VII.

Let V L, perpendicular to D V, be equal to any arc of the cycloid VML; defcribe with the radius V L the femicircle $\mathrm{z} l$; and fuppofing the pendulum to begin an ofcillation from L , the velocity acquired at M , in the cycloid, will be as $\mathrm{m} \times$ the ordinate of the circle at the corresponding point m in the ftreight line V L : and the force by which the motion of the pendulum is accelerated in M , is as the arc of the cycloid V M that remains to be dejcribed.

Let $L R, M S$ be perpendiculars to the axis $D V$, meeting the generating circle in $O$ and $e$, and draw the chords $\mathrm{vo}, \mathrm{vQ}$ : then by Cor. 3. Lemma 3. the velocity of the pendulum at M , will be the fame as would have been acquired by a body directly falling from $R$ to $S$, and the velocity acquired at $v$ will be the fame as would have been acquired by a body directly falling from R to v ; but thefe velocities are to one another as $\sqrt[2]{\mathrm{RS}}$ to $\sqrt[2]{2 \mathrm{RV}}$, by Cor. 2. Lemma 1 . and fince $\mathrm{Rv}: \mathrm{sv}:: \mathrm{vo}^{2}: \mathrm{V} \mathrm{Q}^{2}$, and rv : $R \mathrm{~V}-\mathrm{SV}(=\mathrm{RS}):: \mathrm{VO}^{2}: \mathrm{VO}^{2}-\mathrm{VQ}^{2}:: \mathrm{VL}^{2}: \mathrm{VL}^{2}-$ $\mathrm{V} \mathrm{M}^{2}$ (becaufe $\mathrm{VL}=2 \mathrm{VO}$ and $\mathrm{VM}=2 \mathrm{Ve}$ ), it follows that the velocity of the pendulum acquired in m is to the velocity acquired in V , as $\sqrt[2]{\mathrm{VL}^{2}-\mathrm{VM}^{2}}$ to $V^{2} \overline{V L^{2}}$, or as $M X$ to $V Z$.

The force of gravity that is fuppofed invariable, acting in the direction of the diameter $D \mathrm{v}$, may be reprefented by DV; and may be refolved into the ewo forces $D Q$ and $v Q$, whereof the firlt $D Q$, paralle

Chap. 5. Philosophical Discoveries. rallel to $t \mathrm{~m}$ the ftring, ferves only to ftretch the ftring, and does not at all contribute to accelerate the motion of the pendulum ; it is only the force reprefented by the chord $v e$ that accelerates the motion of it along the curve m $m$, and is all employed to produce that effect, the direction $v$ e being parallel to the tangent of the cycloid at m , by Prop. II. But vm=2ve, by Prop. III; therefore the force that accelerates the pendulum at m , is as the arc of the curve v .

Corol. It is obvious from the demonftration, that the part of the gravity which the ftring fuftains in any point m , is to the whole weight of the pendulum, as the chord D e to the diameter.

## PROPOSITION VIII.

Suppofe that the circle $\mathrm{L} Z \mathrm{l}$ is deforibed by the body x with an uniform motion, by the velocity acquired by the penduluin in v ; and any arc of the cycloid, as MN , will be defcribed by the pendulum, in the fame time as the arc of the circle x y by that uniform motion: taking VN , on the freight line VL , equal to VN in the cycloid, and draveing NY parallel to vz , meeting the circle in Y .

Let $x m$ be an ordinate very near to $x \mathrm{~m}$, and draw $\mathrm{x} r$ parallel to the diameter $\mathrm{L} l$, meeting $x m$ in $r$; then, fince the triangles $\mathrm{x} r *$ and VxM are fimio lar, it follows that $\mathrm{x} x: \mathrm{m} m(=\mathrm{xr}):: \mathrm{vx}: \mathrm{mx}$, that is, as the velocity of the body $x$ to that of the body M : and confequently the fpaces $\mathrm{x} x$ and $\mathrm{m} m$ will be defrribed in the fame time by thefe bodies, the times being always equal when the fpaces are taken in the fame ratio as the velocities. After the fame manner, the other correfponding parts of the lines $M N$ and
$\mathrm{x} y$ will be defcribed in the fame time; and therefore the whole fpace $\mathrm{m} N$ will be defribed in the fame time as the arc $\mathrm{x} y$.

Cor. Therefore the pendulum will ofcillate from L to v , in the fame time as the body x will defcribe the quadrant L z .

## PROPOSITION IX.

T'be time of a complete ofcillation in the cycloid is to the time in wobich a body would fall tbro' the axis of the cycloid DV , as the circumference of a circle to its diameter.

The time in which the femi-circumference $\mathrm{Lz} l$ is defrribed by the body $x$, is to the time in which the radius LV could be defrribed with the fame velocity; as the circumference of a circle, to its diameter. But the fame time, in which the femi-circumference $\mathrm{L} z l$ is defcribed by the body $x$, is equal to the time of the complete ofcillation L V P in the cycloid, by the Corollary of the laft propofition. The time in which a body falls from o to v , along the chord ov , is equal to the time in which $\mathrm{m} \mathrm{v}(=2 \mathrm{OV}$ ) could be defcribed by the velocity acquired at the point v , by Cor. I. Lem. I. and Cor. 3. Lem. 3. and the time of the fall thro' the chord ov is equal to the time of the fall thro' the diameter D v, by Cor. 4. Lem. 3, confequently the time in which Lv could be defcribed by a velocity equal to that of the body $x$, is equal to the time of a fall thro' the diameter $\mathrm{D} v$. It follows therefore that the time of the entire ofcillation LVP, is to the time of a fall thro' the diameter DV ; as the circumference of a circle, to its diameter.

Corol. I. Hence the ofcillations in the cycloid are all performed in equal times; for they are all in the fame ratio to the time in which a body falls thro' the diameter D v. If therefore a pendulum ofcillates in a cycloid, the time of the ofcillation in any arc is equal to the time of the ofcillation in the greateft arc bVA, and the time in the leaft arc is equal to the time in the greateft.

Corol. 2. The cycloid may be confidered as coinciding, in $v$, with any fmall arc of a circle defcribed from the centre c ; paffing thro' v ; and the time in a fmall arc of fuch a circle will be equal to the time in the cycloid; and hence is underftood why the times in very little arcs are equal, becaufe thefe little arcs may be confidered as portions of the cycloid as well as of the circle.

Corol. 3. The time of a complete ofcillation in any little arc of a circle, is to the time in which a body would fall thro' half the radius; as the circumference of a circle, to its diameter: and fince the latter time is half the time in which a body would fall thro' the whole diameter, or any chord, it follows that the time of an ofcillation in any little arc, is to the time in which a body would fall thro' its chord; as the femicircle, to the diameter.

Suppofe N v a fmall arc of the circle defcribed from the centre c ; then the time in the arc N v is fo far from being equal to the time in the chord $\mathrm{N} v$, even when they are fuppofed to be evanefcent, that the laft ratio of thefe times is that of the circumference of a circle to four times the diameter : and hence an error in feveral mechanical writers is to be corrected, who, from the equality of the evanefcent arcs and the fall of a body in their chords.

Corol. 4. The times of the ofcillations in cycloids, or in fmall arcs of circles, are in a fubduplicate ratio of the lengths of the pendulums. For the time of the ofcillation in the arc LVP is in a given ratio to the time of the fall thro' Dv , which time is in the fubduplicate ratio of the fpace D v, or of its double cv the length of the pendulum.

Corol. 5. But if the bodies that of cillate be acted on by unequal accelerating forces, then the ofcillations will be performed in times that are to one another in the ratio compounded of the direct fubduplicate ratio of the lengths of the pendulums, and inverfe fubduplicate ratio of the accelerating forces: becaufe the time of the fall thro' Dv is in the fubduplicate ratio of the fpace D v directly and of the force of gravity inverfely; and the time of the ofcillations is in a given ratio to that time. Hence it appears, that if ofcillations of unequal pendulums are performed in the fame time, the accelerating gravities of thefe pendulums muft be as their lengths; and thus we conclude that the force of gravity decreafes as you go towards the equator; fince we find that the lengths of pendulums that vibrate feconds are always lefs at a lefs diftance from the equator.

Corol. 6. From this propofition we learn how to know exactly what fpace a falling body defcribes in any given time: for finding, by experiment, what pendulum ofcillates in that time, the half of the length of the pendulum will be to the face required, in the duplicate ratio of the diameter to the circumference; becaufe fpaces defcribed by a falling body, from

Chap. 5. Philosophical Discoveries.
from the beginning of its motion, are as the fquare ${ }^{s}$ of the times in which they are defcribed; and the ratio of the times, in which thefe fpaces are defcribed, is that of the diameter to the circumference: and thus Mr . Huygens demonftrates that falling bodies, by their gravity only, defcribe 15 Parifan feet and I inch in a fecond of time.

Scbol. That it may be underftood how the time in a fmall arc is not the fame with that in its chord, tho' the evanefcent arc is equal to its chord, we may here demonltrate, that if $v k$ and $N k$ be two planes touching the $\operatorname{arc} \mathrm{Nv}$ in v and N . Tho' the evanefcent chord $\mathrm{N} v$ be equal to the fum of thefe tangents $\mathrm{v} k$ and $n k$, yet the time in the chord is to the time in thefe tangents as 4 to 3 .

By Cor. r. Lem. 3. the time in $n k$ is to the time in N V as $\mathrm{N} k$ to NV , or as I to 2 ; but $k \mathrm{v}$ being horizontal, the motion in $k v$ muft be uniform, and it will be defcribed by that uniform motion in half the time the body falls from N to $k$ : therefore if the time in which $k \mathrm{~V}$ is defcribed uniformly be called T , the time in which $\mathrm{N} k$ is defcribed will be 2 T , and the time in which the chord $\mathrm{N} v$ will be defcribed will be 4 T : and confequently the time in which a body would fall along the two tangents, is to the time in which it would defribe the chord, as 3 to 4 .

## B O O K III.

## Gravity demonftrated by analy/is.

## C H A P. I.

Of the theory of gravity as far as it appears to bave been known before Sir Ifaac Newton:

FROM experiments and obfervation alone, we are enabled to collect the hiftory of nature, or defrribe her phænomena. By the principles of geometry and mechanics, we are enabled to carry on the analyfis from the phænomena to the powers or caufes that produce them ; and, by proceeding with caution, we may be fatisfied that our foundations are well laid, and that the fuperftructure raifed upon them is fecure. The firlt views which philofophers had of nature were no better than thofe of the vulgar, being the immediate fuggeftions of fenfe. But by comparing thefe together, examining the nature of the fenfes themfelves, correcting and affifting them ; and by a juft application of geometrical and mechanical principles, the fcheme of nature foon appears very different to a philofopher fiom that which is prefented to a vulgar eye. At firt fight, the furface of the earth appears of an unbounded extent, and of a moft irregular form; while all the reft of the univerfe, the clouds, meteors, moon, fun, and itars of all forts, appear in one concave furface bent towards the earth. This was the opinion concerning the fyftem that moft

Chap. 1. Philosophical Discoveries. commonly prevailed at firt, while their imagination, influenced by fuch prejudices, made men fancy that they faw and heard things impolible. Thus the Roman poet reprefents their army when in Portugal (the weftern boundary of the great continent) as hearing the fun enter with a hiffing noife into the ocean,

Audiit berculeo fridentem gurgite Solem. Lucan.
while other travellers have talked of a vaft cavity in the moft remote parts of the eaft, from whence the fun was heard to iffue every morning with an unfufferable noife. But philofophers foon difovered that the earth was not of an unbounded extent, but of a globular form ; and that the meteors, planets, and tlars, were not confined to one concave furface, but difperfed in space at very different diftances; that their real magnitudes and motions are very different from their apparent ones, and are not to be deduced from the appearances in any one place, but from views taken from divers points of fight, compared together by geometrical principles.
2. As our analy/is of the fyitem muft be founded upon the real figures, magnitudes and motions, of the bodies of which it is compofed; fo we thall have an excellent inftance of the method of proceeding by analyfis and fyntbefis if we defcribe in what manner we are enabled, from the apparent phænomena, to deduce an account of the real; without the knowledge of which our enquiries into the powers or caufes that operate in nature muft be doubtful or erroneous. The knowledge of the difpofition and motions of the celeftial bodies muft precede a juft enquiry into their caufes. The former is more fimple, the latter more arduous; and the former will
prepare the way for the latter, and ferve to make the reader acquainted with this method (the only one by which certainty can be acquired in this fcience) in eafy cafes, before he proceed to thofe of a more complicated nature. We fhall therefore begin with the plaineft and moft fimple inftance of this kind, by fhewing briefly how, from the phænomena, the true figure, magnitude and motions of the earth are derived; and how, thefe being eftablifhed, innumerable phænomena are deduced by fynthefis.
3. It is to fogbt that our knowledge of the diftant parts of the fyftem is owing, thofe objects that are very near us falling under the obfervation of the other fenfes only: but this fenfe, however admirable, has its imperfections. Vifion depends upon the picture of external objects formed on the retina, together with a judgment of the underftanding, acquired by habit and experience; which is fo immediately connected with the fenfe, that it is impoffible, by an act of reflection, to trace it, or, when it is erroneous, fuddenly to correct it. If vifion depended upon the picture only, then equal piciures upon the retina would fuggeft ideas of equal magnitudes of the objects; and if the fmalleft fly was fo near that it could cover a diftant mountain from it, the fly ought to appear to us to be equal to the mountain. But we have, by habit, acquired a faculty of compounding the opinion, or prejudice, formed concerning the diftance with the apparent magnitude or bulk of the image formed on the retina; and this with an inconceivable quicknefs of thought, fo that the idea or image we form to ourfelves of its magnitude is the refult of both; an allowance being made for the greater diftance, agreeable to the notion we have conceived of it. Hence it is eafy to fee how many fallacies in vifion mult arife: for as

Süplement to Mlac -faurin's' dxcount ya. B. It. Pag. zsp.



## Chap. I. Philosophical Discoveries.

we may be often miftaken in our notion of diffance, fo every fuch miftake mutt produce a correfponding error in our idea of the magnitude of the object. Befides, in many cafes, this notion of diftance arifes without reflexion, from the force of habit; and we find the effect of it takes place even after the underftanding is better informed, and the judgment corrected. Thus the moon continues to appear bigger to us at the horizon than at the meridian, even after it has been demonftrated to us that her diftance is then greater, fo that the ought really to appear lefs. Becaule (according to Kepler's obfervation) the heavens appear to us, not in an hemifpherical dome, but as a fegment of a fphere lefs than the hemifphere, we have been accuftomed to afcribe a greater real magnitude to objects feen at a great diftance along the horizon, than to thofe of an equal apparent magnitude (or that have equal images on the retina) feen at a confiderable elevation about it; and hence he ingenioufly accounts for the moon's appearing bigger to us at the horizon than at the meridian. But after we are better informed, and know that the apparent magnitude of the moon is lefs at the horizon in the fame proportion as the diftance is greater, we continue to make an allowance not on this account only, but a much greater than this requires, from the great influence of habit and cultom *; the effect of which on the mind and its operations is a fubject that well deferves the particular attention of philofophers,

* Perhaps the concave furface of the heavens appears to us as a portion lefs than a hemifphere, becaufe we have been always accuftomed to fee greater diltances along the horizon than in the vertical line towards the zenith. But whatever the reafon of this appearance (fuppofing it true) may be, it would feem that an habitual way of thinking to the contrary ought to have fome effect; and fome obferve that the moon never appears to then fularge at the horizon, as it did formerly when they were young and unacquainted with her motions. tical geometry applied to the heavens.

4. Experience has taught us feveral ways of forming a judgment concerning the diftances of objects, when they are not very remote from us; as by the different difpofition of our eyes when we look at a near object with both; it being manifeft that when the object is near, the eyes muft be turned more towards each other, in order that they may be directed towards the fame point of it, than when it is at a greater diftance. We foon learn from experience, likewife, that when the object is very near, the image is obfcure and confufed, and we are obliged to ftrain the eye to render it tolerably diftinct. 'The image is alfo found to be more luminous and bright when the object is near than when it is remote. But the moft ufual way of eftimating the diftance is from the intervening objects; or, when the object itfelf is of a kind with which we are well acquainted, by the bulk its image bears in the picture upon the relina. By thefe, and perhaps other methods, we are enabled to form fome judgment of the diftance of near objects*. But when they are very remote, and no

* A learned author, of a diftinguifhed character, begins an ingenious treatile upon this fubject, by obferving, "it is. I " think, agreed by all, that diftance, of itfeif and immediately, "cannot be feen. For diftance being a line directed endwife " to the eye, it projects only one point in the fund of the eye, "which point remains invariably the fame, whether the dif"t tance be longer or fhorter." The diftance here fpoken of, is diftance from the eye; and what is faid of it is not to be applied so diflance in general. The apparent difance of two fars

Chap. s. Philosophical Discoveries. objects intervene, as is the cafe of the celeftial bodies, thefe methods fail us, the fenfe is at a lofs in comparing their diftances tugether, and is unable to determine which are greater or lefs, wichout the aid of geometry, or fome equivalent art. In fuch cafes, therefore, the objects are all referred by the fenfe to one concave furface. Thus the clouds, meteors, planets, and ftars of all kinds, appear to the fenfe in one concave furface of heaven, tho' there be the greateft variety in their real diftances. It is in thefe cafes that practical geometry brings us its neceffary and fure aid. By it we foon find that the clouds are not only nearer us than the celeftial bodies, which they often cover from us, but that their diftance is only of a few miles; a fmall change of the place producing a great change in their pofition with refpect to us, while thofe that are feen by us at one place are different in pofition from thofe that are feen at the fame time in places remote from it. We foon perceive that the moon is at a valtly greater diftance; becaufe fhe is feen over one half of the earth at once, and nearly in the fame direction, or in the fame fituation among the fixed ftars. We eafily learn that the moon is at a lefs diftance from us than the fun, becaufe by coming between us and the fun fhe produces the folar eclipfes; and that Venus and
is capable of the fame varieties as any other quantity or magnitude. Vifible magnitudes confift of parts into which they may be refolved as well as tangible magnitudes, and the proportions of the former may be affigned as well as of the latter; fo that this author goes too far, when he tells us that vifible magnitudes are to be no more accounied the ol ject of geometry than words; and when he concludes of diftance in general, what had only been fhewn of diftance directed "end-swife to the eye ;" and pretends "to demonftrate that the ideas of fpace, outnefs, and "t things placed at a diflance, are not, Atrictly fpeaking, the ob" ject of fight; and are not otherwife perceived by the eye than "by the ear."

Mercury are nearer to us in their inferior conjunctions than the fun, becaufe they are then feen as dark fpots upon his difk. If our inftruments were abfolutely perfect, and our obfervations could be made with the utmoft accuracy, then each celeftial body might have its diftance precifely afcertained, and the whole difpofition of the fyftem might be exactly known. But this fubject being of the utmoft importance in our prefent analy/s, it deferves fome farther illuftration.
5. Let a and e (Plate III. Fig. 50.) reprefent two fpectators, or two different ftations of the fame fpectator, $D$ the object or phænomenon whofe diftance is required. This object appears to the fpectator at A in the right line ADF, and to the fectator at $C$ in the right line $C D E$; the angle contained by which, ADC, fhews how much the pofition of the object D varies with refpect to the two fpectators. When this angle is great, the diftance AD bears not a great proportion to AC ; but when this angle is very fmall, as when the object is removed from $D$ to $H$, then its diftance from $A$ muft be much greater than $A C$ the dittance of the two fpectators or flations; becaufe $A C$ is always to $A D$, as the fine of the angle $A D C$ to the fine of ACD , by common trigonometry. Thus when $A C$ confifts of fome miles, and $D$ reprefents a cloud, the angle $A D C$ is found to be confiderable; and thence we learn that its diftance is not very great. If edc reprefent the right line in which the fun fhines, then c will reprefent the fhadow of the cloud upon the plane AC ; and the proportion of AD to AC may be determined by obfervations taken from one ftation A . But tho' the right line a c confift of hundreds of miles, if $H$ reprefent the moon, it is found that the angle A H C is exceeding fmall; and thence we conclude, that the diftance of the moon is not to be expreffed but by a great number of miles.
6. Let c (Fig. 51.) reprefent the centre of the earth, a a place upon its furface, с a e the vertical line of this place, $d$ any object or phænomenon in the zenith; $A D F$ a tangent to the furface of the earth at $A$, the fenfible horizon at that place. Then the object $d$ being fuppofed to project upon the fixed flar $e$, when in the vertical line, to a fpectator at a as well as at c , it will be otherwife when the object $d$ comes to the horizon at D . For tho' the centre c, the object $D$ and the ftar $E$ (abitracting from their proper motions) be fill in a ftrait line, yet D and E are no longer in a right line with a the place of the fpectator; but while $D$ appears to be fet at $F$, the ftar appears ftill elevated above the horizon by the $\operatorname{arc} \mathrm{EF}$, which meafures the angle EDF, or ADC ; the fine of which is to the radius, as CA the femidiameter of the earth is to $C D$ the diftance of the object from the centre of the earth. This angle ADC is what is called the borizontal parallax of the object or phænomenon, and fhews under what angle the femidiameter of the earth ca would appear if viewed at the diftance of the object CD. And to find this horizontal parallax of any object, is no more than to determine how great (or under how many minutes and feconds) the femidiameter of the earth would appear viewed at that object. Suppole any number of objects in the right line $A F$, as $D, C, H$; and fpectators at each of thefe viewing the femidiameter of the earth ca; it will appear to them under the refpective angles $C D A, C G A, C H A$, which are the refpective parallaxes of thofe objects, and which gradually decreafe as their diftances increafe. We difcover therefore the diftances of thofe objects by determining what appearance, as to bulk or ap- parent magnitude, the earth's femidiameter makes at thofe objects: and it is obvious that this method is well founded, it being manifeft, that the diftances at which the earth appears great to a fpectator muft be lefs, and that thofe diftances at which the earth appears fmall to him muft be greater. Thus to a fpectator carried to a few hundred miles diftance only, the earth would appear very large ; to a fpectator at the moon, the femidiameter of it would appear under an angle lefs than a degree ; to a fpectator at Venus, of much about the fame bignefs as Venus appears to us; and to a fpectator as remote as Fupiter or Saturn it would hardly be vifible at all, unlefs his fenfe was more acute than ours, or affifted by art. And as, when the proportion of the diftance of the fpectator from the centre of the earth to its femidiameter is known, it is eafily afcertained how great an appearance the earth will make to that fpectator; fo converfely, when this appearance is determined, it is eafy to affign the fpectator's diftance from it.
7. In this manner, menfuration is carried from the earth to the heavens; and the diftances of the celeftial bodies compared with femidiameters of the earth, and with one another. For the further ilduftration of what is of fuch importance in aftronomy, a fcience that affords us fo noble and extenfive views of nature, let us imagine a fpectator at a viewing the immenfe expanfe around him, while a right line $D L$, perpendicular to $A D$ and equal to the femidiameter of the earth, moves off on the right line A F from the leaft to the greateft diftances; then the parallax belonging to any diftance is nothing elfe than the angle which the femidiameter of the earth at that diftance fubtends to the fpectator at A. Thus the parallaxes belonging to the feveral diftances $A D, A G$,

Chap. f. Philosophical Discoverifs, 241
$A H, E^{2} c$. are the refpective angles DAL, GAM, HAN, $\varepsilon^{2} c$; which meafure the apparent magnitude of the femidiameter of the earth viewed, at thofe diftances, by a fpectator at a. While we fuppofe this femidiameter to be carried off in infinitum, thefe apparent magnitudes gradually decreafe, nearly in the fame proportion as the diftance increafes. The parallazes decreafe in the fame manner; and a fcale of the one affords us a fcale of the other. It is obvious, that, from the moment any object departs from the vertical line, it appears to a fpectator at a depreffed towards the horizon, and is the more depreffed in proportion as it is nearer to him. The true place of the object $D$ is at $E$, where it would be feen from the centre c; but its apparent place to a Ifectator at A is at F, and its depreffion or parallax is meafured by the arcef, or by the angle EDF equal to ADC. Now in order to find this depreffion, it is fufficient to make ufe of the fixed ftar E , which has no fenfible parallax, and was fuppofed to be in conjunction with the object in the vertical line Ade; for the depreffion of the object D below the ftar E , viewed from A , gives the parallax. By proceffes of this kind, it is found, from aftronomical obfervations, that the mean diftance of the moon from the centre of the earth, is about $60 \frac{1}{2}$ femidiameters of the earth.
8. The figure of a body is more eafily known when we are able to view it from great diftances than from very fmall ones; becaufe when it is at a great diftance, the eye takes in a confiderable portion of it in one view, from which the figure of the whole is more eafily collected: whereas when it is viewed at. a fmall diftance, fmall irregularities on its furface have too great an effect upon the fenfe, and are apt to minead us in our judgment concerning the whole.

It is very ealy to fee, for example, that the fun and moon are globular, becaule in all poffitons they conftantly appear to us as bounded by a circle, a property which belongs to the fphere or globe alone. But the figure of the earth is not fo eally difcovered by us, becaufe the largeft views we are able to take of it, from the tops of the highef mountains, bear a fmall proportion to the whole furface; and the curvature or fphericity is hardly fenfible in thofe profpects of it. However, we have undoubred proofs that the earth is globular, tho' not exactly fpherical. We are affured that the meridian fections of the earth, or fections thro' its poles, are circular, becaufe as we go fouthwards the northern ftars are depreffed, and the fouthern ftars elevated, nearly in a regular courfe; fo that a degree of depreffion of the former, or elevation of the latter, always correfponds to 60 Italian or geophraphical miles on the meridian; whence we conclude, that a meridian fection of the earth is a circle, a degree of which is 60 fuch miles, and the whole circumference is $60 \times$ 360 , or 21600 , of the fame miles. At the equator, both the poles are in the horizon; as we remove northwards, the northern pole rifes till we come to the pole of the earth, where the celeftial pole is in the zenith; and, in general, the elevation of the pole increafes gradually and regularly with the diftance from the equator. The equator and its parallels appear to be circular from the regular daily progrefs of light, from eaft to weft, along their furface. The fun arrives at the meridian of places that are more eafterly, fooner than to the meridian of thofe that are towards the weft, in proportion to the diftance of the meridians meafured upon the equator. The fpherical figure of the earth appears likewife from levelling, where it is found neceffary to make an allowance for the difference between the apparent and the true level; the former being a plane that touches the earth's furface, the latter the globular furface itfelf, which falls below the tangent plane.
9. But we have the plaineft and moft fimple proof of the globular figure of the earth, from that of its fhadow projected on the moon in a lunar eclipfe. For this fhadow being always bounded by an arc of a circle, it follows that the earth which projects it is of a fpherical figure. If there was any remarkable angle, or very confiderable irregular protuberance, on the earth, it would, on fome occafion or other, appear by the fhadow. The mountains, indeed, are rregularities on the furface of the earth; but they pear fo fmall a proportion to its vaft bulk, that they make no appearance upon its fhadow. There is ikewife a gradual rifing from the fea fhore towards the inland parts of the great continents; as in $E u$ rope from the fhores of the ocean, the Mediterrasean, and the Euxine fea, towards Switzerland; but his gradual rifing is fmall, and has little effect on he figure of the earth. If it was confiderable, it vould carry the inland parts too high in the atmophere; but it is fufficient for giving a courfe to the ivers, and preferving the beautiful circulation of vater, fo neceffary to the good condition of this globe; and the extent of the continents has been probably contrived with a view to this great purpofe. Upon the whole, the earth is evidently globular tho' lot an exact fphere, and if feen at a diftance would ippear to us as the fun or moon; that is, always ferminated by a circular figure, unlefs this diftance vas fo great as to make it appear like Venus or Mars; hen, in confequence of the contraction of the aparent diameter, the whole furface would appear to e crouded in one point, and the Alps, Pyrenees, and ven the diftant Cordelleras, would reflect undiftin-
guiffed rays. At fuch diftances its figure could not be difcerned by fenfe, unlefs it was affifted by a telêfope or fome equivalent inftrument.
10. The ocean, which covers a great part of the furface of the earth, is more accurately globular than the folid parts ; and it is mannifeft that this arifes from the gravitation of its parts towards the earth, acting in right lines perpendicular to its furface. For if its direction formed an acute angle with the furface, the fluid water would neceffarily move towards that fide and could not be in aquilibrio till the direction o: gravity became perpendicular to the furfáce every where, fo as to give no inclination to the fluid to move towards either fide. The perpendiculars to : fpherical furface meet all in the centre of the fphere Therefore, fince the earth is nearly a fpliere, the di rection of the gravity is nearly towards it centre not as if there was really any virtue or charm in th point called the centre, by which it attracted bodies but becaufe this is the refult of the gravitation c bodies towards all the parts of which the earth con fifts; as will appear more fully afterwards. Thl direction of gravity is not any one fixed or deter mined one, as the vulgar are apt to imagine; nor i there any occafion for pillars or inftruments of an kind to fupport the earth; that direction being a ways downwards which is towards the centre, or ( $t$ fpeak more accurately) which is perpendicular to th fluid furface or level, on the concave fide; and the direction being upwards which lies in a perpendicula to the furface on the convex fide. Was the eart all fluich, all the furface would be on one level, an no one part would have a pre-eminence above th seft in this reffect; and bodies would be fuftaine by the earth equally round all its furface with equa firmnees and fecurity. Thus there is no difficult in conceiving that there are Antipodes; and it appears equally abfurd that bodies fhould fall off from any other part of the earch, as that they hould rife here into the air.
II. This principle of gravity extends to all bodies around the earth. For the gravity of the air being eftablifhed beyond all difpute, by the celebrated experiments of Galileo and Torricelii, and many others of the fame kind, it eafily appears that a!l terreftrial bodies whatfoever are heavy, or gravitate towards the earth ; and that the arparent leviry of fome of them proceeds only from the greater gravity of the ambient air, which makes them rife upwards, for the fame reafon that cork rifes in water, and leat in quick-filver; or from their being carried off by fome medium entangled in its parts. The gravity of terreftrial bodies muft the rather be allowed to be uniyerfal, becaufe, by the moft accurate experiments, it is always found to obferve the fame proportion as their quantities of matter; and not to depend on the figure or bulk of bodies, or the contexture of their parts, but always to meafure their quantity of matter, and to be meafured by it only, abftracting from the influence of the medium in which they fwim. For gravity always generates the fame velocity, in bodies of all forts, in the fame time; and therefore muft act equally on equal portions of matter, and on a greater portion with a force proportionally greater. The direction of this power is nearly towards the centre of the earth; for, at prefent, we abitract from the variation of its figure from that of a perfect fphere, arifing from its motion on its axis. The force of this power is fuch, that it carries all bodies downwards about $15 \frac{1}{2}$ feet, of Paris meafure, in a fecond of time. This is the refult of accurate experiments; every body would fall juilt fo
much if it defcended freely in the plump.line, or perpendicular to the horizon, and met with no refiftance from the air or ambient medium. When a body is projected in a right line that is not perpendicular to the horizon, it moves in a curve, but fo as to fall always below the point in the line of projection which is directly over it, as much as it would have fallen by defcending freely in the perpendicular in the fame time; provided we fuppofe gravity to act in parallel lines, as was ufual before Sir Ifaac Neroton found it neceffary to confider this fubject more accurately, and which may be admitted, without any fenfible error, in fuch motions as our engines are able to produce.
12. The globular figure of the earth, with the direction and force of gravity, being difcovered by this analyfs, a great variety of phænomena may be thence deduced by the Syntbetic method. The whole doctrine of the fphere may be explained from the figure of the earth, either in the Pytbagorean or Ptolemaic fyftem. As the fun appears to go round the whole circle of 360 degrees in 24 hours, fo in one hour he appears to defcribe 15 degrees, and one degree in 4 minutes of time, on the equator or its parallels. Hence the diftance of meridians at two places, meafured upon the equator, or their difference of longitude, being known, it is eafy to compute how much the hours at one place precede the fame hours at the other, by allowing 4 minutes of time for each degree of that diftance; and converfely, the difference of time being given, the difference of longitude is computed by allowing one degree for each 4 minutes of time, and proportionally in greater or leffer differences. And it is obvious that the hours of the day, which are fucceffive in any one place, are co-exiftent when you take in the whole globe;

Chap. i. Philosophical Discoveries.
globe ; fo that no hour of the day can be affigned, but a meridian can be likewife affigned where it is that hour at this prefent time. The fenfible borizon of any place is a plane perpendicular to the plumbline at that place, and tangent to the earch's furface there. The rational borizon is a plane thro' the earth's centre parallel to this, whofe poles are the zenith and nadir, in the fame manner as the north and fouth poles of the world are the poles of the equator. The particular phænomena of places depend upon the pofition of their horizon with refpect to the circles of the apparent diurnal motion of the fun and ftars. The horizon of a place at the equator paffes thro' the poles, and divides equally the equator and its parallels. Hence the days and nights are always equal in fuch places, and each of the fars performs one half of its revolution above their horizon, and the other half under it. The circles of diurnal motion are all perpendicular to their horizon, and therefore they are faid to be in a right spbere. When the fun moves in the equator, he rifes directly from their horizon to their zenith, and then defcends directly to their horizon again; in other cafes, after rifing perpendicularly, he nopes away in his parallel towards the north or fouth fide of their zenith, according to the feafon of the year : which muft be a confiderable relief to them, as the heat mult thereby be abated. At the poles, their horizon coincides with the equator; fo that the northern celeftial hemifphere muft be always in view of the northern pole, being above their horizon, while no part of the fouthern hemifphere is vifible to them, being always beneath it. The circles of the diurnal motion being parallel to the æquator, and confequently to their horizon, the fun and ftars appear to them to move in parallels to their horizon; the fixed flars never rife nor fet, and the fun rifes at
the vernal equinox and fets at the autumnal; fo that they have day for one half year and night for the other. They are faid to be under a parallel fphere. In intermediate places, the circles of the diurnal motion are oblique to their horizon; one pole is always elevated above it by an arc equal to the latitude of the place, and the other pole is depreffed under it by an equal arc. All the flars whofe diftance from the elevated pole exceeds not the latitude of the place are conftantly above their horizon; and thofe within the fame diftance of the other pole are depreffed under it, and are never vifible to them. The equator and horizon being great circles divide each other equally, whence the days and nights are equal every where when the fun defrribes the celeftial equator, But when the fun is on the fame fide with the elewated pole, a greater portion of his parallel is above the horizon than under it, and therefore the days are longer than the nights: and when the fun is on the other fide of the equator, a greater portion of his diumal parallel is below the horizon than above it ; and confequently the nights are longer than the days. Thefe are faid to be under an oblique fpbere. In all thofe different places, the time in which they have day (that is, when the centre of the fun is above the horizon) is equal to the time in which they have night, or when the centre of the fun is beneath their horizon, taking the whole year together; abftracting from the effects of refraction and the elliptic figure of the earth's orbit, which are not confidered in the dodrine of the fphere. But thefe equal times are dinfibuted with a good deal of variety. At the equator they have 12 hours day and 12 hours night, perpetually fucceeding each other. At the poles shey have their day all at once and their night at once, each of half a year. In intermediate places,

Chap. i. Philosophical Discoveries.
the length of their days at one feafon is compenfated by the length of the nighis at another. Within the polar circles, they have the fun continually for fome days, or weeks, circulating above their horizon; but, in the oppofite feafon of the year, he continues as long beneath their horizon ; and thus the equality of the times of day and night is preferved, when we abftract from the fun's having a fenfible diameter, from the effects of refraction and twilight, and the elliptic figure of the earth's orbit; but, in confequence of thefe, the time in which they have day confiderably exceeds what is commonly called night, particularly in the northern hemifphere. The amplitude of the fun, or his range upon the horizon, has likewife great varieties, which are eafily deduced from the fame principles. It is leaft at the equator, amounting there to $23^{\circ} 29^{\prime}$ on each fide, towards the north and fouth of the eaft and weft points. In the latitude of $56^{\circ}$ it amounts to above $45^{\circ}$, on each fide of the fame points; and the arc between the moft northern and fouthern points where he rifes, and fets, is above a quadrant. At the polar circles, his range on the horizon is the whole femicircle from north to fouth. A circle perpendicular to the meridian and horizon is called the prime vertical, and, being a great circle, it cuts the equator equally, and all places that are under it bear due eaft or weft from us; whence many of the geographical paradoxes are explained. The art of dialling is deduced from the fame principles. The moft fimple kind of dial is an équinoctial one, where the fhadow is received upon a plane parallel to the circles of the fun's diurnal motion, and is projected by a fylus, or right line, perpendicular to thofe planes. Becaufe the fun moves over equal arcs on its parallel in equal times, the motion of the fhadow in this dial muft likewife be uniform, fo that the intervals between the hours fign obliges us to mention thefe things very briefly. We have a remarkable inftance of the beauty of truth when we obferve what a variety of phænomena arife from fo few fimple principles as the fpherical figure of the earth, its diurnal motion, and the obliquity of its axis, as we take a furvey of the earth from the torrid to the frigid zone, or from the equator to the poles, and attend to the phænomena of heat and cold, as well as of thofe of day and night, and of the apparent motions of the ftars. A diverfity of phænomena fo very great, arifing from two principles of fo fimple a nature, affords a curious fpeculation to the underftanding, as well as a pleafing entertainment to the imagination, and ferves to fuggeft the admirable fertility of which nature is capable in its productions; infomuch that upon one globe we have fome image or reprefentation, in the climates from the equator to the poles, of that great variety that we may fuppofe to take place in the folar fyitem, from Mercury, the neareft and hotteft, to Saturn, the remotelt and coldeft of all the planets.
13. Tho' the doctrine of the fphere may be explained from the Ptolemaic, as well as from the Pytbagorean or Copernican fyitem, by fuppofing the primum mobile to penetrate the whole univerfe (the earth and its appendicles only excepted) and to carry every thing round the earth's axis every day ; yet this hypothefis, to every thinking perfon who has not devoted his judgment entirely to the prejudices of fenfe or dictates of fuperfition, appears fo very abfurd, that it is now almof univerfally exploded. The motions of the comets, performed with fo much

Chap. 1. Philosophical Discoveries. freedom in the celeftial fpaces, fhew us that the folid orbs are imaginary, and that there can be no fuch univerfal mover that carries all the univerfe along with it : nor is there any axis upon which this immenfe machine can be fuppofed to turn. The prodigious velocity, which, according to this doctrine, muft be afcribed to the remote fixed ftars, cannot but fhock thofe that have any juft notion of the vaft extent of the univerfe. The afcribing fo extraordinary a pre-eminence to the earth, to which it appears to have no title, argues a partiality unworthy of philofophers; efpecially fince we fee that moft of the other bodies of the fyftem, even the fun himfelf, turn round upon their axes, which would induce us, if we were upon the furface of any of them, to afcribe the fame pre-eminence to that one, and to place it in the centre of the whole. But befides thefe and other confiderations, the retardation of pendulums carried to the equator, with the increafe of the degrees of the meridian from thence to the poles, are obfervations that demonftrate a centrifugal force, greateft at the equator, and gradually diminifhing towards either pole, where it vanifhes. Now this centrifugal force is an evident proof of the diurnal rotation of the earth upon its axis; therefore, in treating of the celeftial motions, we fhall entirely abftract from the apparent diurnal motions of the planets, as pertaining to the earth only: and thus our analyfis of the caufes that produce the celeftial motions is founded on the real ftate of things, and not on fallacious appearances.
14. The doctrine of the fphere is eafily deduced from thefe true motions. One half of the earth is illuminated by the fun at all times, and the other half always deprived of his light. The boundary of light and darknefs is a great circle of the earth.

It is day at any place while it revolves in the illuminated part, but night while it moves in the part that is hid from the fun's rays. The diurnal motion is from weft to eaft, and the fun rifes to any place when it arrives at the boundary of light and darknefs on the weft fide, and fers when it arrives at the fame boundary on the eaft. The point where a right line joining the centres of the fun and earth cuts the furface of the earth, is that which has the fun in the vertex or zenith, and is the pole or middle point of the illuminated difk. The circle defribed by the earth's annual motion, or the fun's apparent motion, is the ecliptic; and, becaufe the axis of the earth is oblique to the plane of this circle, it cuts the equator (in an angle of $23^{\circ} 29^{\prime}$ ), and the two points of interfection are called the equinoctial points; in which the fun appears when the axis of the earth is perpendicular to the right line drawn from its centre to the centre of the fun. Thofe are called the foltitial points which are at $90^{\circ}$ diftance from the former, and where the fun appears when he declines moft towards the poles. The equator being a great circle, fo as to be equally divided by the boundary of light and darknefs, the day therefore at the equator is always equal to the night. It is obvious that when the fun appears on the north fide of the equator, the northern pole muft be in the illumined hemifphere; fo that it muft be day there from the vernal ro the autumnal equinox, but that they muft be deprived of the fun's light from the autumnal to the vernal cquinox; and that it is the contrary at the fouth pole. In any place that is on the fame fide of the equator with that which has the fun in the zenith, a greater part of the parallel to the equator defcribed by that place muft be in the illuminated hemifphere than in the other; fo that the day muft be longer than the night:' but it is the contrary when the place
is on the oppofite fide of the equator, and then the night muft be longer than the day. In the fame manner, all the other phænomena of the doctrine of the fphere may be deduced from the true motions in the fyltem.
15. We have given a fummary account of what was known concerning the gravity of terreftrial bodies, before Sir Ifaac Neroton. As the figure of the earth is owing to this principle; fo, as Copernicus very juftly obferved *, it is highly reafonable to fuppofe that by a like principle, diffufed from the fun and planets, their figures are preferved in their various motions. Various attempts and fchemes have been propofed, for explaining the nature of this power and its caufe; but all have proved unfucceffful. Des Cartes deduced it from the centrifugal force of his fubtile matter revolving on the axis of the earth; but this account has been already refuted + . Others confidered it as a fort of magnetifm; but the powers of gravity and magnetifm differ widely in molt effential circumftances. Others derived it from the preffure of the atmofphere; altho' the air is fo far from producing gravity, that it conftantly fubducts from the weight of bodies. But all we want to conclude here, is, that this power extends univerfally to all forts of fenfible bodies, at or near the earth's furface; and that it has thefe two remarkable properties; firt, that it is proportional to the quantity of matter in bodies; fecondly, that it acts inceffantly or continually, and with the fame force upon a body that is already in motion as upon a body that is at reft. The laft property appears from hence, that it produces equal accelerations in

[^42]falling diftinguifh it from fuch caufes as are wholly mechanical; which either act in proportion to the furface or to the bulk of bodies, and produce a lefs acceleration in a body that is already in motion, in the direction in which the caufe acts, than upon a body at reft, in the fame time. We here obferve thefe things concerning gravity, not with a view to determine any thing concerning its caufe, but only to pave the way for what follows concerning the univerfality of this principle.

## C H A P. II.

The moon is a beavy body, and gravitates towards the earth in the fame manner as terreftrial bodies.

1. तIR Ifaac Newton confidering that the power of gravity acts equally on all matter on the furface of the earth or near it, that it is not fenfibly lefs on the tops of the higheft mountains, that it affects the air and reaches upward to the utmoft limits of the atmofphere, and that it cannot be owing to the influence of any fenfible terreftrial matter; he could not believe that it broke off abruptly, but was induced, on thefe grounds, to think it might be a more general principle, and extend to the heavens; to as to affect the moon at leaft, which is by much the neareft to us of all the bodies in the fyftem. The abfurdity of thofe who had taught that the heavenly bodies were made of fome inexplicable fubitance, effentially different from that of our earth, had fufficiently appeared from modern difcoveries: the philofophers no longer made that diftinction, which had been founded on fuperftition and vulgar prejudices only. The earth was allowed to be, of the number of the planets, and the planets were confidered as like our earth. 'Гo complete this refemblance, our author has fhewn that they confift of the fame heavy gravitating fubftance of which the earth is formed.
2. The effects of the power of gravity upon terreftrial bodies may be reduced to three claffes: Firt , in confequence of it, a body at reft, fupported by the ground, or fufpended by a ftring or line of any kind, or that is any way kept from falling, endeavours, however, always to move; and in fuch cafes, its gravity is meafured by the preffure of the quiefcent body upon the obftacle that hinders its motion. Secondly, when a body defcends in the vertical or plumb-line, its motion is continually accelerated, in confequence of the power of gravity's acting incerfantly upon it; or if it be projected upwards in the fame right line, its motion is continually retarded, in confequence of the fame power's acting inceffantly upon it with a contrary direction: and, in fuch cafes, the force of gravity is meafured by the acceleration or retardation of the motion produced in a given time, by the power continued uniformly for that time: but if the body defcend or afcend along an inclined plane, or move in a refifting medium, then, in meafuring this power, due regard muft be had to the principles of mechanics defcribed in the preceding book. Tbirdly, when a body is projected in any direction different from the vertical line, the direction of its motion is continually varied, and a curve line is defrribed, in confequence of the inceffant action of the power of gravity, which in fuch cafes is meafured by the flexure or curvature of the line defcribed by it; for the power is always the greater, cateris paribus, the more it bends the way or courfe of the body from the tangent or direction
in which it was projected. Effects of the power of gravity, of each kind, fall under our conftant obfervation, near the furface of the earth; for the fame power which renders bodies heavy while they are at reft, accelerates them when they defcend perpendicularly, and bends their motion into a curve line when they are projected in any other direction than that of their gravity. But we have accefs to judge of the powers that act on the celeftial bodies by the effects of the laft kind only : we fee bodies near the earth falling towards it; but this is a proof of the moon's gravity that cannot be had, till the prefent fate of things comes to its diffolution. When a body is projected in the air, we do not fee it fall in the perpendicular towatds the earth, but we fee it falling every moment from the tangent to the curve, that is, from the direction in which it would have moved if its gravity had not acted for that moment. And this proof we have of the moon's gravity: for tho' we do not fee her falling directly towards the earth in a right line, yet we obferve her defcending every moment towards the earth from the right line which was the direction of her motion at the beginning of that moment; and this is no lefs evidently a proof of hér being acted upon by gravity, or fome power like to it, than her rectilineal defcent would be was the allowed to fall freely towards the earth.
3. If we had engines of a fufficient force, bodies might be projected from them fo as not only to be carried a vaft way without falling to the earth, but fo as to move over a quarter of a great circle of it, or (abftracting from the effects of the air's refiftance) fo as to move round the whole earth without touching it, and, after retuming to their firt place, commence a new revolution with the fame force they Firt received from the engine, and after that a third,
and thus revolve as a moon or fatellite round the earth for ever. If this could be effected near the earth's furface it might be done higher in the air gt even as high as the moon, could the engine, or an equivalent power, be carried up and made to act there. By increafing the force of the power, a body proportionally larger might be thus projected : and, by a power fufficiently great, a heavy body not inferior to the moon might be put in motion at firt ; which, being perpetually reftrained by its gravity from going off in a right line, might revolve for ever about the earth. Thus Sir Ifaac Nevoton faw that the curvilineal motion of the moon in her orbit, and of any projectile at the furface of the earch; were phænomena of the fame kind, and might be explained from the fame principle extended from the earth fo as to reach the moon; and that the moon was only a greater projectile that received its motion, in the beginning of things, from the Almighty Author of the univerfe.
4. But, to make this perfectly evident, it was neceflary to fhew that the powers which act on the moon, and on projectiles near the earth, and bend. cheir motions into a curve line, were directed to the Fame centre, and agreed in the quantity of their force as well as in their direction. All we know of force relates to its direction or quantity, and a conftant coincidence and agreement in thefe two refpects is fufiicent ground to conclude them to be the fame, or imilar, phænomena derived from the fame, or from ike caufes. It was hhewn in the laft chapter, that The gravity of heavy bodies is directed towards the "entre of the earth; and it appears from the obferations of aftronomers, that the power which acts in the moon, inceffantly bending her motion into a "urve, is directed towards the fame centre: for they
find that the moon does not defribe an exact circle about the earth; but an ellipfe or oval; and that fhe approaches to the earth, and then recedes from it, in every revolution, but fo as to have her motion accelerated while fhe approaches to the centre of the earth, and retarded as fhe recedes from it; which is an indication that the is acted on by a power directed, accurately or nearly, towards the centre.
5. That this may appear more fully, let us fuppofe that a body is projected in any right line, and, if no new force act upon it, then muft it proceed in that line, defcribing equal fpaces in equal times, by the firft law of motion; and if you imagine a ray drawn always from the body to fome fixed point, that is not in the line of its motion, while the body moves over equal faces in equal times, that ray will defcribe equal triangular fpaces * in equal times;

* All the reafoning here fuppofes only one propofition very generally known, that " triangles on the fame bafe, or on equal bafes, that have the fame height, are equal to each other:" from which it eafily follows, x. That while a body by an uniform motion defrribes the line AF, (Fig. 52.) and moves over the equal parts $A B, B C$, in equal times, the triangles defcribed by a ray drawn always from the body to the given point $s$, viz. $A S B, B S C$, mult be equal, becaufe their bafes $A B, B C$ are equal, and they have their common vertex in s. 2. Suppofe a force to act on the body in B , directed toward s , that would carry it to $x$, if it acted alone upon the body, in the fame time in which the body by its uniform motion would defcribe в с, and the body will now defcribe $B D$ the diagonal of the parallelogram EEDC in the fame time, and the ray drawn from the body to s will defcribe the triangle в s d equal to вsc becaufe they are on the fame bafe es and between the parallels $B S$, $C B$; that is, the fpace defcribed now by the ray is equal to the fpace that would have been defcribed by it if no new force had acted on the body E : from which it appears, that the fpace defcribed by the ray is not increafed or diminifhed by any action of the body directed towards s, and therefore the ray drawn from the body to s will ftill continue to deferibe equal faces in equal times, if no new force act upon it but what is directed towards s.


## Chap.2. Philosophical Discovieries.

 becaufe thefe triangles, defcribed by the ray in equal times, will have equal bafes on the line of projection, and one common vertex in that fixed point. Suppofe next that a force, directed to the fame fixed point, acts upon the body, and it will now be carried out of the firt line of its motion into a new direction, but the area or fpace defcribed by the ray, drawn always from the body to that fixed point, will be equal to the fpace that would have been defcribed by the ray in the fame time if no fuch force had acted upon the body; for thefe fpaces are triangles tanding on the fame bafe (viz. the firft dittance of the body from that fixed point) and between the ame parallel lines. The power, therefore, directed owards the given point has no effect on the magniude of the area or fpace defcribed by the ray that is uppofed to be drawn always from the body to that point; it may accelerate or retard the morion of the body, but affects not the area. Therefore the ray muft ftill continue to defcribe the fame faces in qual times about the given point, as it would have one if no new force had acted on the body, but it ad been permitted to proceed uniformly in the line. If projection.6. As one impulfe towards the given point has no ffect on the area, or fpace, defcribed by the ray nding always from the body to that point, fo any umber of fucceffive impulfes directed to the fame pint can have no effect on that area, fo as to accerate or retard its defcription; and, if you fuppofe e power directed to that point to act continually, will bend the way of the body's motion into a rve ; and may accelerate or retard its velocity, It can never affect the area defcribed in a given ime by the ray fuppofed to be drawn always from le body to the given point; which therefore will which would have been defribed in the fame time, if the body had proceeded uniformly in a right line, from the beginning of the motion.
7. The converfe of this theorem fhews, that the equable increafe of the areas defcribed by a ray, drawn always from a body to a given point, is an indication that the direction of the power that acts upon the body, and bends its way into a curve, is directed to that point. It is cafy to fee, that if that power was directed to either fide of the point *, i would increafe or diminifh the area defcribed by the ray drawn from the body to the point; fo that i equal areas continue to be defcriber about it in equa times, we may be affured that the power is directel to that point. If a body defcribe a circle with a equable motion, fo as to move over equal arcs i equal times, the areas defcribed in equal times by ray drawn from the body to the centre of the circl will be equal, and it is plain that the force whic bends the body into the curve mult tend to the: centre ; for if it was directed to any other point, th body would be accelerated in its motion as it af proached to that point, and retarded as it remove to a greater diftance from it. We have explaine this propofition at fome length, becaufe it is of ti greateft confequence in this philofophy. From it w: learn, that the force which retains the moon in $h$ orbit is directed to the centre of the earth, becau the defcribes, by a ray drawn to the centre of $t \mathrm{t}$ earth, equal fpaces in equal times, being accelerate
[^43]Chap. 2. Philosophical Discoveries. 26i in her motion as fhe approaches to the earth, and retarded as fhe recedes from it. We fhall, afterwards, fee that a fmall inequality in thefe fpaces only ferves to confirm our author's philofophy.
8. There is, therefore, a power which acts on the moon, like to gravity, directed to the centre of the earth; and as this power makes her fall from the direction of her motion every moment towards the earth; fo, if her projectile motion was deftroyed, the fame power would make her fall to the earth, in a direct line: and becaufe this power acts inceffantly, bending, every moment, her way into a curve, it therefore would make her defcend to the earth with an accelerated motion, like that of heavy bodies in their fall. It remains only to fhew, that the power which acts on the moon agrees with gravity in the quantity of its force, as well as in all other refpects. But, before we compare them in this particular, we are to obferve, that the power which acts upon the moon is not the fame at all diftances from the earth, but is always greater when the is nearer to the earth. To be fatisfied of this, it is only neceffary to fee that to bend the motion of a body into a curve, when it moves with a greater velocity, requires the action of a greater power than when it defrribes the fame curve with a lefs velocity. This is obvious enough, but may appear more fully thus : imagine a tangent (Fig. 53.) drawn at the beginning of a fmall arc defcribed by the body, and as this is the line which the body would have followed if no mew power had acted upon it, the effect of that power is eftimated by the depreffion of the other extremity of the arc under that tangent : now it is plain, that in arcs of the fame curvature or flexure, the greater the arc is, the farther mult one extremity of it fall below the tangent drawn at the other ex-
tremity; and confequently when a body defcribes a greater arc, it muft be acted on by a greater power than when it defcribes a leffer arc in the fame time. Now as the moon approaches to the earth, her motion is accelerated, is fwifteft at her leaft diftance, and floweft at her greateft diftance, and the arcs which the defcribes at her greateft and leaft diftance have the fame curvature, therefore the force which zets upon her at her leaft diftance, when her motion is fwifter, muft be the greater force.
9. It will not be difficult to fee according to what law this power varies, at her greateft and leaft diftances from the earth. That it may appear more eafily, let us affume a fimple cafe, and fuppofe that her leaft diftance is the half of her greateft diftance. If this was true, the moon would move with a double yelocity in her leaft diftance, that the area defcribed there by a ray from her to the earth might be equal to the area defcribed by fuch a ray, in the fame time, at her greateft diftance; fo that fhe would defcribe at her leaft diffance an arc, in one minute, equal to the are fhe would defcribe in two minutes at her greateft diftance ; and would fall as much below the tangent at the beginning of the arc, in one minute in the lower part of her orbit, or the perigacum, as in two minutes in the higher part of it, or her appogacum. If therefore her projectile motion was deftroyed at her leaft diftance, fhe would fall towards the earth as much in one minute, as in two minutes if her projectile motion was deftroyed at her greateft diftance. But the fpaces defcribed by a heavy body in its defcent are as the quares of the times, by Book II. Cbap. 1, § 11 ; and fuch a body defcends thro a quadruple fpace in a double time; fo that the moon defcending freely at her greateft diftance, would necenfarily fall four times as far in two mi-

Chap. 2. Philosophical Discoveries.
nutes as in one minute. Therefore fhe would fall thro' four times as much face, in one minute, at her leaft diftance, as at her greatef diftance in the fame time. But the forces with which heavy bodies defcend, are in the fame proportion as the faces defcribed, in confequence of thofe forces, in equal fmall parts of time; confequently the power that acts at the leaft diftance is quadruple of that which acts at the greater diftance, when the latter is fuppofed to be double of the former; or the forces are as 4 to 1 , when the diftances are as 1 to 2 . We find, therefore, that the force which acts upon the moon, and bena's her courfe into a curvilinear orbit, increafes as the diftance from the centre of the earth decreafes, fo as to be quadruple, at half the diftance. In the fame manner it is fhewn, that if her leaft dittance was the third part only of her greateft diftance, her velocity would be triple at the leaft dif. tance, to preferve the equability of the areas defcribed by a ray drawn from her to the centre of the earth; and that fhe would be acted upon by a power which would have the fame effeet there in one minute, as in three minutes at her greateit diftance; To that if fhe was allowed to defcend freely from each diftance, fhe would fall nine times as far from the leaft diftance as from the greateft, in the fame time : confequently, the power itfelf which caufes her defcent would be nine times greater at the third part of the diftance; or the diftances being as it to 3 , the force of gravity at thofe diftances would be as 9 to I , that is, inverfely as the fquares of the diftances. In the fame manner, it appears that when the greateft and leaft diftances are fuppofed to be in any proportion of a greater to a leffer number, the velocities of the revolving planet are in the inverfe ratio of the fame numbers; and that the powers,
which bend its motion into a curve, are in the ing verfe ratio of the fquares of thofe numbers.
10. In general, let T (Fig. 53.) reprefent the centre of the earth, ALP the moon's elliptical orbit, A the apogaum, P the perigaoum, A H and PK the tangents at thofe points, $A M$ and $P N$ any friall arcs defcribed by the moon in equal times, at thofe diftances; $\mathrm{MH}, \mathrm{NK}$, the fubtenfes of the angles of contact, terminated by the tangents in $н$ and K : then MH and NK will be equal to the fpaces which would be defcribed by the moon, if allowed to fall freely from the refpective places $A$ and $p$, in equal times; and will be in the fame proportion to each other, as the powers which act upon the moon, and inflect her courfe, at thofe places. Let a $m$ be taken equal to PN, and $m b$, parallel to AP, meet the tangent at A in $b$; then, becaufe the curvature of the ellipfe is the fame at A as at $\mathrm{P}, m b$ is equal to KN ; and, if the moon was to fall freely, from the places $P$ and A, towards the earth, her gravity would have a greater effect at $P$ than at $A$, in equal times, in proportion as $m b$ is greater than mH. But $m b$ is the fpace which the moon would defcribe freely by her gravity at $A$, in the time in which $A b$ would be deforibed by her projectile motion at $A$; and $M+$ is the 'pace thro' which fhe would defcend freely by her gravity at A, in the time in which AH would be defcribed by her projectile motion; and thofe fpaces being as the fquares of the times, it follows that $m b$ is to $M H$, as the fquare of $A B$ to the fquare of $A H$, or (becaufe of the equality of the areas TAFI, TPK) as the fquare of TP to the fquare of TA . Therefore the gravity at $P$ is to the gravity at $A$, as the fquare of TA to the fquare of TP; that is, the gravity of the moon towards the earth increafes in the fane proportion as the fquare of the diftance from

Chap. 2. Philosophical Discoveries.
the centre of the earth decreafes. Sir IJaac Neroton fhews the univerfality of this law, in all her diftances, from the direction of the power that acts upon her, and from the nature of the ellipfis, the line which the defcribes in her revolution; and it follows from the properties of this curve, that, if you take fmall arcs defcribed by the moon in equal times, the fpace by which the extremity of any arc defcends towards the earth below its tangent at the other extremity, is always greater in proportion as the fquare of the diftance from the focus is lefs: from which it follows that the power which is proportional to this fpace obferves the fame proportion.
II. The moon's orbit, according to the obfervations of aftronomers, differs not much from a circle of a radius equal to fixty times the femi-diameter of the earth ; and the circumference of her orbit, is, therefore, about fixty times the circumference of a great circle of the earth; which, by the French mathematicians, was found to be 123249600 Parifian feet. The circumference of the moon's orbit is eafily computed from this; and, fince fhe finifhes her revolution in 27 days, 7 hours and 43 minutes, it is eafy to calculate what arc fhe defcribes in one minute. Now, to compute by what fpace one end of this arc falls below a tangent drawn at the other end, we learn from geometry that this fpace is nearly a third proportional to the diameter of her orbit and the arc fhe defcribes in a minute; and by an eafy calculation this fpace is found to be $15 T^{\frac{1}{2}}$ Parifan feet. This fpace is defcribed in confequence of her gravity towards the earth, which, therefore, is a power, that, at the diffance of fixty femi-diameters of the earth, is able to make her defcend in one mi- orbit as, at her leaft diftance, to pafs by the furface of the earth. She would then come fixty times nearer to the centre of the earth, and move with a velocity fixty times greater, that the areas, defcribed by a line drawn from her to that centre in equal times, might ftill continue equal. The moon therefore pafing by the furface of the earth, at her loweft diftance, would defrribe an are in one fecond of time (which is the fixtiech part. of a minute) equal to that which fhe defrribes in a minute at her prefent mean diftance, and would fall as much below the tangent at the beginning of that are in a fecond, as She falls from the tangent at her mean diftance in a minute ; that is, fhe would fall near the furface of the earth ${ }_{5} \frac{1}{T} \frac{1}{2}$ Parifion feet in one fecond of time. Now this is exactly the fame fpace through which all heavy bodies are found by experience to defcend by their gravity, near the furface of the earth, as we obferved above. The moon, therefore, would defcend at the furface of the earth with the fame velocity, and every way in the fame manner, as heavy bodies fall towards the earth; and the power which acts upon the moon, agreeing in direction and force with the gravity of heavy bodies, and acting inceffantly every moment, as their gravity does, they muit be of the fame kind, and proceed from the fame caure.
12. The computation may be made alfo after this manner: the mean diftance of the moon from the earth being fixty times the diftance of heavy bodies at the furface from its centre, and her gravity increafing in proportion as the fquare of her diftance

Chap. 2. Philosophical Discoveries. from the centre of the earth decreafes, her gravity would be $60 \times 60$ times greater near the furface of the earth than at her prefent mean diftance, and therefore would carry her through $60 \times 60 \times 15 \mathrm{~T}^{\frac{1}{2}}$ Porifian feet in a minute near the furface: but the fame power would carry her through $60 \times 60$ times lefs fpace in a fecond than in a minute, by what has been often obferved of the defcent of heavy bodies; and, therefore, the moon in a fecond of time would fall by her gravity near the furface of the earth $15^{\frac{1}{2}}$ Parifian feet; which therefore is the fame with the gravity of terreftrial bodies.
13. Thus Sir Ifaac Newoton fhewed that the power of gravity is extended to the moon; that the is heavy, as all bodies belonging to the earth are found by perpetual experience to be ; and that the moon is retained in her orbit from the fame caufe, in confequence of which a flone, bullet, or any other projectile, defcribes a curve in the air. If the moon, or any part of her, was brought down to the earth, and projected in the fame line and with the fame velocity as a terreftrial body, it would move in the fame curve; and if any body was carried from our earth to the diftance of the moon, and was projeeted in the fame direction and with the fame velocity with which the moon is moved, it would proceed in the fame orbit which the moon defcribes, with the fame velocity. Thus the moon is a projectile, and the motion of every projectile gives an image of the motion of a fatellite or moon. Thefe phænomena are fo coincident, that it is manifeft they muft flow from the fame caufe.

## CHAP. III.

Of the foiar fyftem: and the parallaxes of the planets and fixed flars.

1. 1 ITAVING fhewed that gravity is extended from the furface of the earth to the moon, and to all diftances upwards, decreafing in a regular courfe as the fquares of thofe diftances increafe, our author did not ftop here : as any confiderable difcovery in nature generally opens a new fcene, fo valuable a one as this could not be barren in Sir IJaac Neroton's hands. The gravity of the moon fuggefted to him the univerfal gravitation of matter ; and fo fuccefsful an account of her motion led him to explain all the curvilinear motions in the folar fyftem, from the fame principle. The earth cannot be confidered as the centre of the motions of any body in the fyftem but of the moon only, with which the forms one of thofe leffer fyitems of which the vait folar fyitem confifts. The inferior planets, Mercury and Venus, do not fo much as include the earth within their orbits, but manifeftly revolve round the fun; for fometimes they are farther diftant from us than the fun, and at other times pals between him and us, but never are feen oppofite to the fun, or appear removed from him beyond a certain arc, which is called their greateft elongation. The higher planets, Mars, Fupiter and Saturn, move in orbits which include the earth indeed; but it appears from their motions, which viewed from the earth are fubject to many irregularities, that the earth is not to be confidered as the centre of their orbits. Sometimes they appear to proceed in thefe orbits from weft to caft, fometimes they feem fationary

Chap. 3. Philosophical Discoveries. 269 or without motion, and at other times they appear retrograde, or to go backwards from eaft to weft: and thefe irregularities, tho' different in the different planets, are exactly fuch, in all of them as hould appear to us in confequence of the motion of the earth in her orbit.
2. The motions of all the planets about the fun are conftant and regular. They all move round him from weft to eaft, almoft in the fame plane, in elliptic orbits that have the fun in one of the foci, but of which fome approach very near to circles. Mercury poffeffes the loweft place; where moving with the greatelt velocity of them all, and in the leaft orbit, he finifhes his revolution in two months and 28 days. The planet Venus, which is called by us fometimes the evening flar, fometimes the morning ftar, according as it appears to us eaftward or weftward from the fun, and confequently fets later or rifes earlier, is next to Mercury in the fyftem, and revolves in about feven months and 15 days. Above thefe next in order revolves the earth, with her fatellite the moon, in the fpace of a year. Mars is above the earth, and is the firtt which includes the earth, as well as the fun, in his orbit; which he deicribes in one year, ten months and 22 days. Higher in the fyftem and at a great diftance 7 upiter revolves, with his four fatellites, in eleven years, ten months and 15 days. Laft of all, Saturn, with five fatellites, and a ring peculiar to him, moves in a vaft orb with the floweft motion, and finifhes his period in twenty-nine years, five months and 27 days.
3. Suppofe the earth's mean diftance from the fun to be divided into 100 equal parts, then the mean diftances of Mercury, Venus, Mars, Jupiter and Soturn, from the fun, Thall confift of nearly 38, Or if they be required with greater exactnefs, let the earth's mean diftance be reprefented by 100000 , and the diftances of thofe feveral planets fhall be reprefented by the numbers $38710,72333,15^{2} 369$, 520096,954006 , refpectively.

The diftances of Mercury and Venus are determined by their greateft elongations from the fun. Let (Fig. 54.) reprefent the fun, T the earth, and fuppofing $A v B$ the orbit of Venus to be perfectly circular, draw тvatangent; then fhall v reprefent the place of Venus where her elongation from the fun is greatef, and the triangle $\mathrm{s} v \mathrm{~T}$ being right angled at v , it follows that s T , the diftance of the earth from the fun, is to sv , the diftance of Venus from the fun, as the radius to the fine of the angle stv the greateft elongation of Venus from the fun. In this manner, the diftances of the inferior planets are compared with the diftance of the earth from the fun. The diftances of the fuperior planets are determined from their retrogradations, and, in fuch as have fatellites, by the eclipfes of thofe fatellites: For example, let I (Fig. 55.) reprefent the planet Fupiter, and if the right line si, joining the centres of the fun and 7 upiter, be produced to m , then fhall 1 m be the axis of his fhadow, the pofition of which is determined by the eclipfes of the fatellites, and fhews the beliocentric place of Fupiter, i. e. his place viewed from the fun. Produce the line т F , which joins the centres of the Eartb and Fupiter, to iv, and N fhall reprefent the geocentric place of 7 upiler, i.e. his place when viewed from the earth. The difference of thofe places gives the angle NIm or tis; the angle its, the elongation of Fupiter from the fun as feen from the earth at T , is eafily found by obfervation; confequently all the angles of the triangle t is are known, with the proportion of its fides, which is the fame as of the fines of thofe angles; and thus the proportion of SI, the diftance of $\mathcal{F} u p i t e r$ from the fun, to s T , the diftance of the earth from the fun is difcovered. The angle t is is that under which s $T$ the femi-diameter of the earth's orbit would appear if viewed from I, or the clongation of the earth from the fun as it would appear to a fpectator at Jupiter.
4. In the firft chapter of this book, we explained at length how the diftances of the celeftial bodies are difcovered by what is called the diurnal parallax, that is, the angle under which the femi-diameter of the earth would appear at thofe diftances. By this method the diftance of the moon from the earth is compared with its femi diameter. When Venus and Mars are at their leaft diftances from the earth, it is of ufe likewife for eftimating thofe diftances. But in moft other cafes, the diftances of the celeftial bodies are fo great, and the femi-diameter of the earth bears fo fmall a proportion to them, that the angle under which it would appear, viewed at fo great diftances, cannor be difcovered by our inftruments, with any tolerable accuracy . Therefore aftronomers have been obliged to have recourfe to other inventions. The method propofed by Arifatchus for determining the diffance of the fun, by obferving the time when the moon's difk appears to be half illuminated by the fun, may be confidered as an attempt to fubflitute the femi-diameter of the moon's orbit in place of the femi-diameter of the earth. Let s and T (Fig. 56.) reprefent the fun and earth, l the moon's place when TL is perpendicular to Sm , at which time her difk ought to appear to us to be bifected by the boundary of light and darknefs upon her furface; and it is manifeft that T , the diftance of the moon from the earth, as the radius to the fine of the angle LST, the complement of the angle stl the elongation of the moon from the fun at that time. But this method, tho' very ingenious, has proved unfuccefsful; aftronomers finding it impracticable to determine the time of this bifection of the lunar difk with fufficient exactnefs for this purpofe. We learn from it, however, that the diftance of the fun is vaitly greater than that of the moon; for it is obvious that the nearer the angle STL approaches to a right one, the greater muft the diftance s t be in proportion to TL ; and that if this diftance ST was infinite, then 5 t i would be a right angle. Now aftronomers find it very difficult to difcover any difference between the angle stl and a right angle, or between the time when the lunar difk appears to be bifected and the quadrature; from which it follows that $S T$ is vaftly greater than $T L$.
5. Aftronomers finding the diurnal parallax of no ufe for determining or comparing the greater diftances in the celeftial fpaces, the femi-diameter of the earth being too fmall a bafe for this purpofe, have had recourfe to what they call the annual parallax. In place, therefore, of the femi-diameter of the earth, they fubftituted the femi-diameter of the orbit defcribed by the earth annually about the fun; or, in place of two ftations or fpectators, one of which was fuppofed to be at the furface and the other at the centre of the earth, they fubftituted one at the earth and another at the fun. In this manner they obtained a bafe that bears a confiderable proportion to any diftances within the folar fyftem, and with which they were able to compare them by accurate obfervations. As, in the former cafe, they compared the diftances in the heavens with the femi-diameter of

Chap. 3. Philosophical Discoverits. 273 the earth, by finding under what angle it would appear at thofe diftances; fo, in this cafe, they compare the valt diftances of the planets from the fun with the femi-diameter of the earth's orbit, by finding under what angle this femi-diameter appears at thofe diftarices. This angle is greater at the diftance of Mars than at that of Fupiter, and is greater there than at the dittance of Saturn; decreafing always with the diftance, till at length it become too fimall to be difcernible by the exacteft inftruments we have. Let I (Fig. 55.) reprefent any remote object in the fyltem, A the point where the earth paffes betwixt the fun $s$ and that object I, IT a tangent from the point I to the earth's orbit, fuppofed to be circular: and when the earth is at $A$; the object 1 will appear in the fame place to the earth and fun; but when the earth comes to $T$, if we fuppore I to have no motion, it will appear to the earth in the right line Tr, and will appear to have gone backward by the arc that meafures the angle I IS, the fame which the femi-diameter of the earth's orbit ST fubtends at 1; and this angle being determined by obfervation, its fine will be to the radius, as ST to SI ; that is, as the diftance of the earth from the fun to the diftance of the object I from the fun; which proportion, therefore, is eafily computed by trigonometry. When the object i has a proper motion, an allowance muift be made for this motion, after it is determined by obfervation.

The appearances, in this cafe, may be explained in the following manner. Let si produced meet thie Sphere in which the fixed ftars are apparently lifpofed in m , let the two tangents T I and $i$ I meet the fame in N and $n$, and fuppofing the object i to vibrate continually between N and $n$ like a penduum, imagine this arc $n n$ itfelf to be carried along
the arc DME with the proper motion and direction of the object r. If i reprefent a planet, the arc $\mathrm{N} n$ which meafures the angle NIn or T It, will hew how much the planet is retrogade, the half of which angle is SIT; which being known, the froportion of $S I$ to $S T$ is computed as above.
6. We alcribe the annual motion to the earth and not to the fun, according to the Pytbagorean fyttem revived by Copernicus, for many reafons; fome of which were briefly mentioned in § I , and 2. By comparing the periodic times of the primary planets and their diftances from the fun, and by comparing the periodic times of the fatellites that revolve about Fupiter and Saturn with their refpective diftances from their primary planets, it appears to be a general law in the folar fyftem, that when feveral bodies revolve about one centre, the fquares of the periodic times increafe in the fame proportion as the cubes of the diftances from that centre; that is, the periodic times increafe in a higher proportion than the diftances, and not in fo high a proportion as the fquares of thofe diftances, but accurately as the power of the diftance whofe exponent is $1 \frac{1}{2}$, or as the number which is a mean proportional between thofe numbers that reprefent the diffance and its fquare. The earth is the centre of the motion of the moon, in all the fyttems. If the fun likewife revolved round the eatch, we fhould expect that the fame general law would take place in their periodic times and diftances compared together ; or that the fquare of 27 days, $7^{\text {th }}, 43^{\prime}$ would be to the fquare of 365 days, $6^{h}, 9^{\prime}$, as the cube of the moon's diftance from the earth to the cube of the fun's diftance from the fame: from which it is eafy to compute that the fun's diftance ought to be little more than $5 \frac{3}{5}$ times greater tbian the moon's diftance; whereas it is evident,

-

$$
\begin{aligned}
& * \\
& =-
\end{aligned}
$$

Chap. 3: Philosophical Discoveries: 275 from the minuteriefs of the fun's diurnal parallax, that the fun's diftance is fome hundred times greater than the moon's diftance from the earth: But if, with Copernicus, we fuppofe the earth to revolve about the fun, in an orbit placed betwixt thofe of Venus and Mars, this law will be found to obtain between the periodic times and diftances of the earth and any of the planets from the fun compared together ; and the harmony of the fyftem will appear complete. The retrogradations and ftations of the planets, and the many apparent irregularities in their motions and diftances from the earth, furnifh us with fo many arguments againft the Ptolemaic fyftem, according to which thofe appearances are explained by a number of perplexed folid orbs and epicycles; in a manner unworthy of the noble fimplicity and beauty of nature. It is likewife to be remarked, that thofe inequalities are different in the different planets, but in each of them are fuch as ought to arife from the annual motion of the earth. The arguments derived from the magnitude of the fun; and its great ufefulnefs to all the bodies in the fyitem, which feem to entitle it to the moft centric place, are too obvious to require our infilting on them. The earth and planets revolve about the fun, in order to enjoy the benefits of his light and heat ; but no reafon appears why the fun and planets thould revolve around the earth.
7. There is but one argument againft the annual motion of the earth that deferves any notice, viz. The want of an annual parallax in the fixed ftars. Let Tat (Fig. 57.) reprefent the earth's orbit about the fun s , Tx the axis of the earth, and $t \%$, parallel to Tx , fhall reprefent the pofition of the fame axis at the oppofite point $t$. Suppofe $\mathrm{x} x$ to be di-

$$
\text { T. } 2 \text { rectea }
$$

rected towards the flar P ; and it is manifeft that the axis of the earth will not be directed to the fame ftary when it comes to the fituation $t x$, but will contain an angle $\dot{x} t_{\mathrm{P}}$ with the line $t_{\mathrm{P}}$ joining the earth and ftar, equal to the angle $t_{\mathrm{PT}}$, under which the diameter T $t$ of the earth's orbit appears to a fectator, viewed from the ftar P. It might be expected, therefore, that by obferving the fixed ftar p fromy the different parts of the earth's orbit $\mathrm{T}, t$, (which may be confidered as two flations in this problem, the moft fublime of all that can be brought inte. practical geometry,) we ought to be able to judge, from its different appearances at thofe ftations, of the angle т $t$, and confequently of the proportion of $T p$, the diftance of the flar, to $t$, the diameter of the earth's orbit, or double diftance of the fun. Yet it is certain that aftronomers, hitherto, have not been able to difcover any difference in the apparent fituations of the fixed ftars, with refpect to the axis of the earth or to one another, that can arife from the motion of the earth; tho', fince the seftoration of the Pytbagorean doctrine, they have taken great pains to examine this matter. In anfwer to this objection, it is obferved, that the diflance of the fixed ftars is fo very great, that the diameter of the earth's orbit bears no fenfible proportion to it ; to that the angle $x p t$ is not to be difcovered by our exacteft inftruments. Nor is this immenfe diftance of the fixed ftars advanced by the Copernicans as an hypothefis, merely for the fake of folving this objection: for, as they had reafon to fuppofe the fixed Aars like to our fun, they had ground to conclude their diftance to be vaflly great, fince they appear to us with fo faint a light, and of no fenfible diameter, even in the largeft telefcopes. If we fhould fuppore the diftance between us and a fixed ftar to be divided into 300 equal parts, and a fipectater, after pafing over 299 of thofe parts, fhould view it from the laft divifion, or at $\frac{x}{300}$ th part of the whole diftance, the ftar, indeed, would appear brighter to him, but not fenfibly magnified in diameter; becaufe it would appear of the fame magnitude to him at that diftance, as it was in a telefoope that magnified 300 times. The immenfe diftance of the fixed fars likewife appears from hence, that when the moon or any other planet covers them from us, this is done in an inflant; they difappear at once, and not gradually as the more remote planets when covered by the nearer ones. If we join thefe obfervations together, they will rather appear to confirm one another and the motion of the earth, than to make againtt it. The immenfe diftance of the fixed ftars, that arifes from them jointly, rather ftrengthens the evidence of the Copernican fyftem; becaure the more remote the ftars are, the more abfurd it muft appear to fuppofe fo immenfe a fpace to revolve about our earth, fo inconfiderable a point! that to our neighbouring planets it is feen but as a fmall fark of light; to others of them is hardly known; and to fome of the fixed ftars, neither it nor the whole folar fyftem to which it belongs is vifble. How can it be imagined that thofe immenfe bodies, funk fo deep in the abyis of ipace, defrcribe daily fuch vaft rounds about fo mean a centre; efpecially if it be confidered that it is highly probable fome of the fixed fars are immenfely farther diftant than others, and that all the fyftem of the fixed ftars, vifible to the naked eye in a clear night, form but a fmall corner of the tuiverfal fyltem?
8. But this is not all we learn from the diligence and accuracy of late aftronomers, in confirmation of the motion of the earth about the fun, and that ferves to refolve this the only material objection
againft it. An inftrument was contrived by the famous Mr. Grabam (for a defcription of which we refer the reader to Dr. Smitb's excellent treatile of optics) and executed with furprifing exactnefs, which being placed in the vertical line, a ftar in the conftellation Draco that paffed near the zenith was obferved by this inftrument for a number of years, with a yiew to difcover its parallax, by Mrs. Molyneux, Bradley and Grabam. They foon difcovered that the ftar did not appear always in the fame place in the inftrument, but that its diftance from the zenith varied, and that the difference of its apparent places amounted to 21 or 22 feconds. This ftar is near the pole of the ecliptic. They made fimilar obfervations on other ftars; and found a like apparent motion in them, proportional to the latitude of the far. This motion was by no means fuch as was to have been expecied as the effect of a parallax; and it was fome time before they difcovered any way of accounting for this new phænomenon: but at length Mr. Bradley refolyed all its varety in a fatisfactory manner, by the motion of light and the motion of the earth compounded together.

Let AD (Fig. 58.) reprefent a fmall portion of the earth's orbit, CD a ray of light moving from the ftar with the direction CD; and if the earth was at reft, the telefcope would be directed to the ftar, by placing it in the right line A e parallel to D c. Let $A D$ be to $D C$, as the velocity of the earth in its orbit to the velocity of light, and it is manifeft that the telefcope muift now be placed in the fituation AC , that the ray of light may run along its axis, and, after entering the middle of the object glafs at c , may infue at the middle of the eye glafs at $A$; becaufe, while the ray defcribes the right line CD, the point $A$ is carried forwards to $D$, and the telefcope

## Chap. 3. Philosophical Discoveries.

by moving parallel to itfelf is carried into the fituation $D c$. But the apparent place of the ftar is determined by the pofition of the telefcope, and confequently the ftar will appear in the right line Ac, and not in its true fituation am. Thus a far in the pole of the ecliptic will appear to have its latitude diminifhed by the angle EAC or ACD ; which will be found to exceed 20 feconds, if the velocity of light be to the velocity of the earth as 8000 to 1 : and this far will in appearance defcribe a fmall circle round the pole of the ecliptic at a diftance from it of about $20^{\prime \prime \prime}$. In other cafes, the far will appear to defcribe a fmall elliplis having its centre in the true place of the far, (i.e. the place where it would appear if the earth was at reft) its tranfverfe axis parallel to the ecliptic, and its fecond axis perpendicular to it ; the former of which gives its greateft aberration in longitude, and the latter its greateft aberration in latitude. If the ftar be in the plane of the ecliptic, the aberration then is orily in longitude. In this cafe, if the rays from the ftar touch the earth's orbit in G and H , and be perpendicular to it in A and B , the motion of the earth, at G and H , being in the direction of the ray, the far will appear in yts true place, and there will be no aberration at thofe points; but the aberration in longitude will be greateft at A and b. He has explained all the appearances of the ftars obferved by Mr. Molyneux and himfelf, in this manner; and tho he has not difcovered any parallax by thefe obfervations, he has produced from them a new argument for the motion of the earth, by a feries of obfervations made on different ftars in different places. He finds ground to conclude from thefe, that the parallax of the fixed ftars can hardly exceed one fecond; from which their diftance ought so be 400,000 greater than the diftance of the fur.

The true motions in the fyltem being eftablifhed, twe may now proceed fafely with our analyfis.
9. Each of the primary planets bend their way about the centre of the fun, and are accelerated in their motion as they approach to him, and retarded as they recede from him ; fo that a ray drawn from any one of them to the fun always defrribes equal fpaces, or areas, in equal times: from which it follows, as in Chap. 2. $\$ 5,6,7$. that the power which bends their way into a curve line muft be directed to, the fun. This power always varies in the fame manner as the gravity of the moon towards the earth. The fame reafoning by which the gravity of the moon towards the earth at her greateft and leaft diftances were compared together, in Cbap. 2. §8, 9, 10. may be applied in comparing the powers which act on any primary planet, at its greateft and leaft diftances from the fun; and it will appear, that thefe powers increafe as the fquare of the diftance from the fun decreafes. Our author fhews this generally, from the nature of the elliptic curve in which each planet moves.
10. But the univerfality of this law, and the uniformity of nature, ftill farther appears by comparing the motions of the different planets. The power which acts on a planet that is nearer the fun is manifeftly greater than that which acts on a planet more remote ; both becaufe it moves with more velocity, and becaufe it moves in a leffer orbit, which has more curvature, and feparates farther from its tangent, in arcs of the fame length, than a greater orbit. "By comparing the motions of the planets, it is found that the velocity of a nearer planet is greater than the velocity of one more remote, in proportion as the fquare root of the number which expreffes the

## Chap. 3. Philosophical Discoveries. 28 2

 greater diftance to the fquare root of that which expreffes the leffer diftance; fo that if one planet was four times farther from the fun than another planet, the velocity of the firlt would be half the velocity of the latter, and the nearer planet would defcribe an arc in one minute, equal to the arc defcribed by the higher planet in two minutes: and tho the curvature of the orbits was the fame, the nearer planet would fal! by its gravity as much in one minute as the other would fall in two, and therefore the nearer planet would defcribe by its gravity four times as much fpace as the other would defcribe in the fame time, by the law of motion of falling bodies fo often mentioned; the gravity of the nearer planet would therefore appear to be quadruple, from the confideration of its greater velocity only. But befides, as the radius of the leffer orbit is fuppofed to be four times lefs than the radius of the other, the leffer orbit muft be four times more curve, and the extremity of a fmall arc of the fame length will be four times farther below the tangent drawn at the other extremity in the leffer orbit than in the greater; fo that, tho' the velocities were equal, the gravity of the nearer planet would, on this account only, be found to be quadruple. On both thefe accounts together, the greater velocity of the nearer planet, and the greater curvature of its orbit, its gravity towards the fun muft be fuppofed fixteen times greater, tho ${ }^{\circ}$ its diftance from the fun is only four times lefs than that of the other; that is, when the diftances are as 1 to 4 , the gravities are reciprocally as the fquares of thefe numbers or as 16 to 1 . In the fame manner, by comparing the motions of all the planets, it is found that their gravities decreafe as the fquares of their diftances from the fun increafe.1. Thus, by comparing the motions of any one planet in the different parts of its elliptic orbit, and the motions of the different planets in their different orbits, it appears that there is a power like the gravity of heavy bodies fo well known to us on the earth, extending from the fun to all diftances, and conftantly decreafing as the fquares of thefe diftances increafe. If any one planet defcended to the diftance of another, it would be acted on in the fame manner, and by the fame power, as that other: and as gravity preferves the fubftance of the earth together, and hinders its loofer parts from being diffipated by its various motions; fo a like power, acting at the furface of the fun, and within its body, keeps its parts together and preferves its figure, notwithftanding its rotation on its axis.
2. In the fame manner as this principle governs the motions of the planets in the great folar fyftem, it governs alfo the motions of the fatellites in the leffer fyftems of which the greater is compofed. There is the fame harmony in their motions compared with their diftances, as in the great fyftem: we fee 'fupiter's fatellites bending their way round him, and falling every moment from the lines that are the directions of their motions, or the tangents of their orbits, towards him ; each defcribing equal areas in equal times by a ray drawn to his centre, to which their gravity is therefore directed. The nearer fatellites move with greater celerity, in the fame proportion as the nearer primary planets move more fwiftly round the fun, and their gravity, therefore, varies according to the fame law. The fame is to be faid of Saturn's fatellites. There is, therefore, a power that preferves the fubftance of thefe planets in therr various motions, acts at their fur- faces, and is extended around them, decreafing in the fame manner as that which is extended from the earth and fun to all diftances.
3. Thefe fecondary planets muft alfo gravitate towards the fun. It is impoffible they fhouild move fo regularly round their refpective primaries, if they were not acted on by the fame powers. If we fuppofe them to be acted on by the fame accelerating power in parallel lines, there will no diforder or perplexity arife from thence ; for they will then accompany their primary planers in their motions round the fun, and move about them at the fame time, with the fame regularity as if their primary planets were at reft. It will be as in a fhip, or in any fpace carried uniformly forward: in which the mutual actions of bodies are the fame as if the fpace was at reft, being no way affected by that motion which is common to all the bodies. As every projectile, while it moves in the air, gravitates towards the fun, and is carried along with the earth about the fun, while its own motion in its curve is as regular as if the earth was at reft ; fo the moon, which we have fhewed to be only a greater projectile, mult gravitate toward the fun, and, while it is carried along with the earth about the fun, is not hindered by that motion from performing its monthly revolutions round the earth. Fupiter's fatellites gravitate toward the fun as every part of Fupiter's body, and Saturn's fatellites gravitate toward the fun as if they were parts of Saturn. Thus the motions in the great folar fyftem, and in the leffer particular fyftems of each planet, are confiftent with each other, and are carried on with a regular harmony without any confufion, or mutually interfering with one another, put what neceffarily arifes from fmall inequalities in the gravities of primary and fecondary planets, and thore gravities; of which we are to treat afterwards.
4. Nor is there any body that comes, tho' rarely and as a ftranger, into the lower parts of our fyftem, exempted from this univerfal gravitation toward the fun. When a comet appears, we fee the effect of the fame power acting on it; fince it defcends with an accelerated motion as it approaches the fun, and afcends with a retarded motion, bending its way about the fun, and defcribing equal areas in equal times by a ray drawn from it to his centre. This power that acts on the comets varies according to the fame law as the gravity of the planets, as appears from their defcribing either parabolas *, or very eccentric ellipfes having one of their foci in the centre of the fun: our author having demonftrated, that the power which makes a body defcribe a parabola about its focus, muit likewife vary according to the law fo often mentioned. If a body was projected from our earth in a line perpendicular to the horizon, with a certain force, (viz. that which would carry it over about 420 miles with an uniform motion in a minute, , it would rife in that line for ever and return to the earth no more. Its gravity would, indeed, retard its motion continually, but never be able to exhauft it, the force of gravity upon it decreafing as it rifes to a greater height. If the body was projected with the fame force in any other direction, it would go off in a parabola having its focus in the centre of the earth, and never return to the earth again. A force a littie lefs would make it move in a very eccentric ellipfis, in which it would return after a long period to its firft place; if it was
[^44]Chap. 3. Philosophical Discoveries. not diverted in its courfe by approaching too near to fome celeftial body. In the fame manner, a planet projected with a certain force would go off for ever in a parabolic curve having the fun in its focus; and if it was projected with a force a little lefs would revolve in a very eccentric ellipfis having its focus in the fun. All thefe motions, therefore, proceed from the fame principle, acting in a various but moft regular manner in different circumftances, and are all analogous to the motions of heavy bodies projected from our earth. Effects fo fimilar are to be refolved into the fame caufe, and there is hardly more evidence for fuppofing that it is the fame power of gravity that acts upon terreftrial bodies in Europe and in America, at the equator and at the poles, than that it is the fame principle which acts over the whole fyitem; from the centre of the fun to the remote orb of Saturn, or to the utmor altitude of the moft eccentric comet.
15. From feveral phænomena we have reafon to conclude, that there is an atmoiphere environing the fun and extended from it to a confiderable diftance. The ring of light obferved around the moon, in a total eclipfe of the fun, in 1605 , mentioned by FKepler, and of late in 1706 and 1724 , when it was obferved to extend to 9 or 10 degrees diftance from the moon, feems rather to have proceeded from the reflexion of that atmofphere, while the folar direct rays were intercepted by the moon, than from the refraction of any atmofphere about the moon. The matter of this atmofphere appears to gravitate towards the fun, from the effect it has upon the vapour which arifes in the tails of comets from their Nucleus and atmofphere, with a direction oppofite so that of their gravity towards the fun. For this
vapour, being highly rarified, feems to arife with this direction in confequence of the greater gravity of the folar atmofphere towards the fun; in the fame manner as a column of vapour rifes in the air, in confequence of the air's greater gravity towards the earth; the rather that this vapour rifes with more rapidity, as well as in greater plenty, in proportion as the comet is nearer the fun. Thus there is no fort of matter in the folar fyftem but what we have ground to conclude gravitates towards the fun.
16. As to the fixed ftars, they are removed to fuch an immenfe diftance, that their gravity toward the fun can have no fenfible effect upon them in: many ages, and cannot appear to us by the phænomena. The power of gravity decreafes in proportion as the fquare of the diftance increafes; the neareft fixed ftar feems to be feveral hundred thoufand times farther diftant from us than the earth is from the fun; and therefore their gravity mult be fome $100000 \times 100000$ times lefs than the gravity of the earth toward the fun. It is not therefore from phænomena, but from analogy only, that we can: extend the power of gravity to the fixed ftars: There is no influence but their light only which is able to traverfe that valt abyfs of fpace that is between us and them, fo as to have any fenfible effect. However, as their light is every way the fame as that of our fun, our author thinks the argument from analogy may have its weight in this cafe. If they alfo gravitate toward the fun, and toward each other, then we may fuppofe that the unfathomable void that intervenes between the fyftems of which they are probably the centres, as the fun is of our fyftem, may ferve to hinder them from difturbing. each others motions, and from coming together into the gravity toward it Chould be infenfible; and that we fhould here find no effects of any gravitation toward the fixed ftars.
17. As action and reaction are always equal and in oppofite directions, fo that the earth, for example, gravitates toward every mountain as well as every mountain toward the earth, and gravitates toward every projectile while it is moving in the air, as well as the projectile gravitates towards it; and without this law nothing would be fteady or conftant in nature: hence it follows, that the fun gravitates toward all the bodies in the fyftem, and that the primary planets gravitate toward their fatellites. The primary planets alfo gravitate toward one another; fume minute irregularities in their motions, efpecially in thofe of Fupiter and Saturn, the two greateft planets, when they are in conjunction and come neareft to each other, are evidences of this. The motions of the fatellites of Jupiter and Saturn are alfo faid to be fubject to irregularities that proceed from their mutual actions. From fo many indications we may at length conclude, that all the bodies in the folar fyftem gravitate toward each other ; and tho' we cannot confider gravitation as effential to matter, we muft allow that we have as much evidence, from the phænomena, for its univerfality, as for that of any other affection of bodies what foever,
$C H A P$.

## CHAP . IV.

## Of the general gravitation of matter.

1. Itherto we have confidered only the accelerating force of gravily at different diftances; to which the velocity generated by it, in a given time, is always proportional. It remains to fhew that the motion prodirced by this power, at equal diftances from a given centre, is alwáys proportional to the quantity of matter in the heavy body ; that the gravity of bodies arifes from the mutual gravitation of their parts; and to afcertain the law of the gravitation of the particles of bodies. It is allowed as to terreftrial bodies, and was confirmed from many accurate experiments by Sir Ifaac Newton, that bodies of the fame bulk and figure, tho' of very different kinds, furpended by lines of the fame length; performed their vibrations, when moving as pendulums, exactly in the fame time ; from which it follows, that the force of their gravity is exactly proportional to their quantity of matter: nor would there be any difference in the times of their vibrations tho' their figure and bulk were different, the diftances between their centres of fufpenfion and of ofcillation being equal; if it was not for the refiftance of the air. It has been already fliewed, that the moon would fall toward the earth with the fame velocity as any other heavy body, if fhe was at the fame diffance from its centre; and it is plain that the forces of bodies moved with equal velocities are as their quantities of matter: fo that the weight of the moon would be to the weight of any heavy body at the fame diftance from the centre of the earth, in the fame proportion as the matter of the moon is to

Chap. 4. Philosophical Discoveries. the matter of that heavy body. The primary planets are acted on variouly in their different diftances, but according to the law which fhews that if they were at equal diftances they would defcend with equal velocities toward the fun, fo that their motion would be proportional to their quantity of matter. In the fame manner it appears, that if the facellites of 'fupiter and Saturn were at equal diftances from the centres of their refpective primary planets, they would defcend towards them with equal velocities. The earth and moon, at equal diftances from the fun, are acted upon by equal accelerating forces, and would defcend with equal velocities toward it. Fupiter and his fatellites would defcend with the fame velocity toward the fun, if their projectile motions were deftroyed. The fame is to be faid of $S a$ turn and his fatellites. A very fimall inequality in the accelerating forces that act upon the primary planet and its fatellites would produce very great irregularities in their motion. In all there cafes, equal velocities being generated in equal times, the moo tions of the bodies, and confequently the gravities that produce thefe motions, mult be proportional to the quantities of matter in the bodies; from which it follows, that all equal portions of matter, at equal diftances from the centre of gravitation, are equally heavy; without regard to figure, bulk, or the texture of their parts: and that the gravitation of bodies arifes from the gravitation of the particles of which they are compofed.
2. Becaufe aetion is always equal to reaction, if you itill fuppofe the planets at equal diftances from the fun, and therefore gravitating toward the fun with forces proportional to their quantities of matter, the fun will gravitate towards each of the planets with forces in the fame proporion. In general,
the fame body gravitates towards any other bodies, at equal diftances from them, with forces proportional to their quantities of matter ; becaufe it gravitates toward them with the fame forces with which they gravitate towards it, which are as their quantities of matter. The power, therefore, that is extended from the centre of the fun and of each of the planets, to all diftances around them, is, at equal diftances from their centres, proportional to their quantities of matter: and, in general, it appears that the weight or gravity of a body is the greater, in proportion as its quantity of matter is greater, as the quantity of matter in the body to which it gravitates is greater, and as the fquare of the diffance from it is lefs. By compounding thefe three proportions together, the weight, and motion, of bodies, arifing from their gravitation, may always be determined.
3. Gravity being found, by fo many experiments and obfervations, to affect all the matter of bodies equally, we have hence more reafon ftill to conclude its univerfality; fince it appears to be a power that acts not only at the furfaces of bodies, and on fuch bodies as are removed at a diftance from them, but to penetrate into their fubftance, and into that of all other bodies, even to their centres; to affect their internal parts with the fame force as the external, to be obftructed in its action by no intervening body or obftacle; and to admit of no kind of variation in the fame matter, but from its different diftances only from that to which it gravitates.
4. The action of gravity on bodies arifes from its action on their parts, and is the aggregate of thefe actions; fo that the gravitation of bodies muft arife from the gravity of all their particles towards each other.

Chap. 4. Philbsophical Discoveries: other. The weight of a body toward the earth arifes from the gravity of the parts of the body : the gravity of a mountain toward the earth arifes from the gravitation of all the parts of the mountain towards it. The gravitation of the northern hemifphere toward the fouthern arifes from the gravitation of all its parts towards it; and if we fuppofe the earth divided into two unequal fegments; the gravitation of the greater toward the leffer arifes from the gravitation of all the parts of the greater toward the leffer. In the fame manner, the gravity of the whole earth, one particle being excepted, toward that particle, muft arife from the quantity of gravitation of all the other particles of the earth toward that particle. Every particle, therefore, of the earth gravitates toward every other particle of it; and, for the fame reafon, every particle of matter in the folar fyftem gravitates toward every other particle in it.
5. We now proceed to an important part of this doctrine, to determine the law according to which the particles of bodies gravitate towards each other; after having difcovered the law which is obferved by bodies compofed of thofe particles. To a fuperficial enquirer; at firft fight, the former might poffibly appear to be neceffarily the fame with the latter: but it is eafily fhewn, that the law which is obferved in the attractions of the minute particles of matter is often very different from that which is obferved by fpheres compofed of fuch particles. If, for example, the gravitation of the particles decreafe in the fame proportion as the cubes of their diftances increare, of in any higher proportion, the fpheres compofed of fuch particles will not gravitate towards each other with forces that decreafe in the fame proportion as the cubes of the diftances of their centres increafe, or in that higher proportion; for fpheres in contact fhall attract each other, in thofe cafes, with a force infinitely greater than when they are removed to the leaft diftance from contact, tho' there be very little difference betwixt the diftances of their centres in thofe two cafes. This made it neceffary for Sir Ifaac Newton to treat of this fubject fully ; and as it is a very ufeful part of the theory of gravity, but not to be underftood, as he has delivered it, without a profound fkill in geometry and prolix computations, we fhall endeavour to defcribe it in a more eafy manner, by chufing (as on other occafions) the moft fimple cafes. Suppofe, firft, that the gravitation towards any particle decreafes in the fame proportion that the fquare of the diftance from it increafes, let paE $a, \operatorname{pbFb}$ (Fig. 59.) be fimilar cones confifting of fuch particles, terminated by spherical baies AE $a, B F b$ that have their centre in P ; and the gravitation at P toward the folid $\mathrm{PAE} a$, will be to the gravitation at P toward $\mathrm{PBF} b$, as PA to PB , or in the fame ratio as any homologous fides of thefe fimilar folids. For let $M N M$ be any furface fimilar to $\mathrm{AE} a$, having its centre likewife in P ; and the gravitation towards the furface A E $a$ will be to that towards MN m , in the ratio compounded of the direct ratio of the furface $A E a$ to $\mathrm{MN} m$ (or $P A^{2}$ to $\mathrm{PM}^{2}$ ) and of the inverfe ratio of $\mathrm{PA}^{2}$ to $\mathrm{P} \mathrm{M}^{2}$, that is, in the ratio of equality; confequently, the gravitation towards the furface $\mathrm{AE} a \mathrm{~A}$ being reprefented by A , the gravitation towards the folid PAE $a$ will be reprefented by $A \times P A$, and that towards the fimilar folid $P B E b$ by $A \times P B$, which are in the ratio of pa to pb . In the fame manner, the gravitation towards the fruftum that is bounded by the furfaces AE $a, \mathrm{MN} m$, is reprefented by $A \times A \mathrm{M}$. It is evident, likewife, that tho' the furfaces $\mathrm{A} E a$ and m N $m$ be of any other form, yet the ultimate ratio of the gravitations at P towards the conical or pyramidical
folids

Chap. 4. Philosophical Discoveries. 293 folids PAE $a, \mathrm{PMN} m$, is that of PA to PM; and that if $A Q$ and $M q$ be perpendicular to $P H$ in $Q$ and $q$, thefe forces reduced to the direction PH will be ultimately in the ratio of $P Q$ to $p q$. Whence it appears, that, if $P B$ be equal to $B A$, the attraction of the particle $P$ by the cone $P B b$, with which the particle is in contact, will be equal to the attraction of the fruftum of the cone terminated by the furfaces $\mathrm{A} £ a, \mathrm{BF} b$, when the attraction of the particles is fuppofed to increafe as the fquare of the diftance decreafes; and that, in this cale, the attraction of a portion of matter is not much greater when it is in contact with the particle attracted, than when it is removed to a fmall diftance from it.
6. But it is otherwife when we fuppofe the attraction of the particles to decreafe as the cubes of their diftances increafe. For, in this cafe, the particle P will tend to the furface $\mathrm{m} \mathrm{N} m$ with a force that is as the furface, or the fquare of PM directly, and the cube of PM inverfely; that is, with a force which is as PM inverfely, or directly as $M V$ the ordinate of the equilateral hyperbola k v I, defcribed between the aflymptotes PA and PH. Therefore the attraction of the frutum $\mathrm{MN} M \mathrm{AE} a$ will be meafured by the hyperbolic area MVIA bounded by the ordinates at $A$ and $M$; and the attraction of the cone $P M N m$, by the infinite hyperbolic area that is conceived to be formed betwixt the ordinate $m v$ and the affymptote PH. It follows then, that, if fuch a law could take place, the particle P would tend towards the leaft portion of matter in contat with it, with a greater force than towards the greateft body at any diftance, how fmall foever, from it. The fame is eafily fhewn when the attraction of the particles decreafes as any powers of the diftances, higher than their cubes, increare. It appears, therefore, that the at- fenfibly increafed by the addition or diminution of new matter, at any diftance, how fmall foever, from the contact ; whether this addition or diminution be made to the body or particle; and, in fuch cafes, the lefs the particle is, the motions produced in it at infinitely fmall diftances, by fuch attractions, muft be the more violent; becaufe the fame force acting on a particle generates a velocity in it that is always greater in proportion as the particle itfelf is lefs.
7. The farne things may be demonftrated without having recourfe to the property of the hyperbolic area. Let PA (Fig. 60.) be to PB, as Pb to PD; let $A B$ and $B D$ be conceived to be divided into an infinite number of fimilar equal parts $\mathrm{A} k, k l, \& c$. and $\mathrm{B} m, m_{i n} \& \mathrm{c}$; then $\mathrm{A} k$ will be to $\mathrm{B} m$ as А в to $B D$, and the matter between the furfaces whofe radii are pa and $\mathrm{p} k$, thall be to the matter between the furfaces whofe radii are PB and $\mathrm{P} m$, as $\mathrm{PA}^{2} \times \mathrm{A} k$ to $\mathrm{PB}{ }^{7} \times \mathrm{B} m$; that is, as $\mathrm{PA}^{3}$ to $\mathrm{PB}^{3}$. The attractive powers of equal particles placed betwixt the furfaces of the radii pA and $\mathrm{p} k$, and the furfaces of the radii PB and $\mathrm{P} m$, are in the inverfe proportion, or as $P B^{3}$ to $P A^{3}$, by the fuppofition; and thefe two proportions compounded together give a ratio of equality. Therefore, becaufe the attractive powers of the matter bounded by two fuch furfaces are in the compound ratio of the attractions of equal particles, and of the number of particles, it follows that the attraction of the matter contained by the furfaces of the radii PA and P. $k$ muft be equal to the attraction of the matter contained by the furfaces of the radii $P_{B}$ and $P$ in. In the fame manner the attraction of the matter contained by the furfaces whofe radii are Pk and $g l$, is equal to the attraction of the matter between the furfaces whofe radii are $\mathrm{p} m$ and p th

Chap. 4. Philosophical Discoveries. and the attraction of the fruftum $\mathrm{AE} a \mathrm{BF} b$ is equal to the attraction of the fruftum BFbDGd . In the fame manner, if $P B$ be to $P D$, as PD to $P H$, the attraction of the fruftum $\mathrm{DG} d_{\mathrm{HR}} b$ appears to be equal to the attraction of the fruftum $\mathrm{AE} a \mathrm{BF} b$; and if this feries of decreafing geometrical proportionals be continued, the attraction of the fruftum contained by furfaces whofe radii are any two fubfequent terms of the progreffion, muft be equal to the attraction of the firft fruftum $\mathrm{AE} a \mathrm{BF} b$. But in this decreafing progreffion continued from P B the number of terms is infinite ; and in the folid $\mathrm{PBF} b$ there is an infinite number of fruftums, the attraction of each of which is equal to the attraction of the firt fruftum terminated by the furfaces $\mathrm{AEC}$,BFb ; therefore the attraction of the folid $\mathrm{BF} b$, which is in contact with the particle $P$, is infinitely greater than the attraction of the fruftum bounded by the furfaces aEa, bFb, which is the greater folid, but is removed from the contact of the particle P . We have taken this opportunity to illuftrate and demonftrate this theorem here, becaufe it will be of ufe to us afterwards, and ferves to thew the advantages of the law of gravity which takes place in the folar fyftem above other laws; tho' thele, on other occafions, may be preferable.
8. The gravitation of the particles being fuppofed to decreafe as the fquares of their diftances increafe, the forces with which particles, fimilarly fituated with refpect to fimilar homogeneous folids, gravitate towards thefe folids, are as their diftances from any points fimilarly fituated in the folids, or as any of their homologous fides. For fuch folids may be conceived to be refolved into fimilar cones, or fruftums of cones, that have always their vertex in the particles, and the gravitation towards thefe cones, or
frufums, will be always in the fame ratio by $\$ 5$. But if the gravitation of the particles decreafe as the cubes of the diftance increare, the forces, with which particles, fimilarly fituated with refpect to fimilar homogeneous folids, tend toward thofe folids, thall be equal. For fuch folids being refolved into fimilar frutums of cones that have always their vertex in the particles, and are fimilarly fituated with refpect to them, the gravitation towards thefe fruftrums will be always cqual, by what was fhewn in the laft article; in the fame manner as the forces with which the particle P tends toward fimilar frufturns $A E a b F b, D G d H R b$ were demonitrated to be equal.
9. The gravitation of the particles being fuppored to decreafe as the fquares of their diffances from each other increafe, if a particle be placed within the hollow folid generated by the annular face terminated by two concentric circles, or fimilar concentric ellipfes, ADBE and $a d b c$, (Fig. 6I.) revolving about the axis $A B$, it fhall have no gravity towards this folid. For let $p$ be any fuch particle, $p r$ any right line from $p$ that meets the internal circle or ellipfe in any points $f$ and $q$, and the external figure in $x$ and $r$; then if $x r$ be bifected in $z, f q$ will be likewife bifected in $z$, becaufe the figures are fimilar and fimilarly fituated ; confequently $f x$ is equal to $q r$; and the gravitations of $p$ towards oppolite fruftums of the folid that have their vertex in $p$, and are terminated by the fame right lines produced from $p$, with oppofite directions, will be always equal, by $\$ 5$. and mutually defroy each others effect. It follows from this, that the gravity of any point $Q$ in the femi-diameter cp, towards the fphere or fpheroid, is to the gravity at P , as Ce to PC , fuppofing the point e to be within the folid; becaufe the gravita-

## Chap. 4. Philosophical Discoveries.

tion towards the folid generated by the annular fpace, which is included between a $\operatorname{Pb}$ and $a$ Q $b$, has no effect upon a particle at $Q$; fo that the gravity at $Q$ towards the whole folid $A D B E$ is the fame as the gravity at Q towards the folid $a d b e$, which is to the gravity at $P$ towards the folid $A D B E$ as ce to C P, by the laft article. It appears, therefore, that when a fphere or fpheroid, of an uniform denfity, confifts of particles that attract with a force decreafing as the fquare of their diftance increafes, the gravitation towards the folid decreafes from the furface to the centre, in any given fomidiameter, in the fame proportion that the diftance from the centre decreafes.
10. Suppofe now the particle P (Fig. 62.) to be placed without the fphere ADBE, at the diftance Pc from the centre C ; and this particle fhall be attracted towards the fphere with a force that decreafes as the fquare of the diftance pc increafes. For let PNM be any right line from P meeting the generating femicircle $A D B$ in $N$ and $M$, and the $\operatorname{arc} C H$, defcribed from the centre P with the radius PC , in L ; let $\mathrm{p} n \mathrm{~m}$ be another fuch right line from P , conttituting an infinitely fmall angle with Pm , meeting the femicircle in $n, m$, and the $\operatorname{arc} с н$ in $l$; draw $\mathrm{I}, \operatorname{lr}$, perpendicular to PC in R and $r$, and $\mathrm{C} v$ perpendicular to PM in v . Suppofe another circle $A d B e$ to interfect the circle $A D B E$ in the axis $A B$, and to conftitute with it an infinitely fmall angle; and let $L u$ and $l x$, perpendicular to the plane $A D B$, meet $A d B$ in $u$ and $x$. Then the gravitation of the particle P , towards the matter in the phyfical furface $\mathrm{L} u x\}$, fhall be meafured by $\frac{\mathrm{L} / \times \mathrm{L} u}{\mathrm{PL}^{2}}$ or $\frac{\mathrm{L} / \times \mathrm{L} u}{\mathrm{PC}^{2}}$; confequently the gravitation of P towards the pyramidical fruftum, terminated by the circular planes $A D B$ and $A d B$, and by planes perpendicular
pendicular to $A D B$ in NM and $n m$, fhall be meafured by $\frac{\mathrm{I} . l \times \mathrm{L}, u}{\mathrm{PC} \mathrm{C}^{2}} \times \mathrm{NM}$, by $\S 5$. of this chapter. But, the angle contained by the planes ADB,AdB, being given, $L u$ is to LR , as $\mathrm{D} d$, the arc intercepted by thefe circular planes at the diftance CD , to CD (or ca;) and, $L l$ being to $r$, as $P L$, or $P c$, to $L R$, fo that $L l \times L R$ is equal to $P C \times R r$; it follows that the gravitation of $P$ towards that fruftum fhall be meafured by $\frac{\mathrm{L} l \times \mathrm{LR} \times 2 \mathrm{VM} \times \mathrm{D} d}{\mathrm{PC}^{2} \times \mathrm{CD}}$ or $\frac{\mathrm{R} r \times 2 \mathrm{VM} \times \mathrm{D} d}{\mathrm{PC} \times \mathrm{CA}}$. This gravitation is reduced to the direction P c by diminifhing it in the ratio of $P V$, or $P R$, to $P C$; and is then meafured by $\frac{\mathrm{D} d \times \mathrm{R} r \times P \mathrm{P}}{\mathrm{CA} \times \mathrm{C}^{2}} \times 2 \mathrm{VM}$; or (the fimultaneous increment of v M being reprefented by V 0 , and $\mathrm{PR}^{2}$, or $\mathrm{PV}^{2}$, being equal to $\mathrm{VM} \mathrm{M}^{2}+$ N PM, by Eucl. 2. 6. or to $\mathrm{VM} \mathrm{M}^{3}+\mathrm{APB}$, fo that $A P B$ being conftant, the increments of $P R^{2}$ and $V_{M}{ }^{2}$ mult be equal, and $R r \times P R$ equal to $\left.V O \times V M\right)$ by $\frac{D d \times 2 \mathrm{Vm}^{2} \times \mathrm{Vo}}{\mathrm{CA} \times P C^{2}}$; which is the fimultaneous increment of $\frac{\mathrm{D} d \times 2 \mathrm{VM}}{\mathrm{CA} \times 3 \mathrm{PC}^{2}}$, in the fame manner as the increment of $\mathrm{Vm}^{3}$, while Vm acquires the infinitely fmall augment V 0 , is $3 \mathrm{Vm}^{2} \times \mathrm{V} 0$. Therefore the attraction of the part of the flice of the fphere terminated by the circular planes ADB, AdB, which is cut off by a plane perpendicular to $A D B$ in the right line $N M$, is as $\frac{D d}{C A} \times \frac{2 v \mathrm{M}^{3}}{3 \mathrm{PC}^{2}}$; and the attraction of the portion of the fphere which is generated by the revolution of the fegment MDN about the axis AB bearing the fame proportion to the attraction of that flice, as the circumference of the whole circle to the $\operatorname{arc} \mathrm{D} d$, it is meafured by $\frac{c}{r} \times \frac{2 \mathrm{vM}^{3}}{3 p c^{2}}$, where $\frac{c}{r}$ exprefes the ratio of the circumference of a circle to the radius; and confequently is directly as the cube of the chord MN , and inverfely as the fquare of P c , the diftance of the particle P from the centre of the fphere. Hence the gravity at p towards the whole fphere is as the cube of its diameter, or its quantity of matter (the denfity being given) directly, and the fquare of the diftance PC inverfely, the chord $M \mathrm{~N}$ coinciding with the diameter AB , when the attraction of the whole fphere is confidered; fo that this attraction is meafured by $\frac{c}{r} \times \frac{2 \mathrm{c} A^{3}}{3 \mathrm{pc}^{2}}$.
11. It appears from what has been fhewn, that any particle P , without the fphere, is attracted by it with the fame force as if the whole matter of the fphere was collected in the centre, and attracted as one particle from that centre. For the circumference of the circle $A D B E$ is expreffed by $\frac{c}{r} \times C A$, its area by $\frac{c}{r} \times \frac{C A^{2}}{2}$, the furface of the fphere by $\frac{c}{r} \times 2 \mathrm{CA}^{2}$, and its folid content by $\frac{c}{r} \times \frac{2 \mathrm{CA}^{3}}{3}$; fo that the attraction of this folid content acting from the centre c , at the diftance Pc , is meafured by $\frac{c}{r} \times \frac{2 \mathrm{CA}^{3}}{3 \mathrm{PC}^{2}}$, the very fame which meafures the attraction of the fphere at that diftance, by the laft article. The fame is to be faid of the gravity towards the aggregate of any number of fuch fpheres that have a common centre; from which it follows, that however variable the denfity of a fphere may be at different diftances from the centre, provided the denfity be always the fame at the fame diftance from it, the gravity of a particle (that is not within the fphere) towards it will be as the quantity of matter in the fohere directly, and the fquare of the diftance of the partio proportion as their diftances increafe or decreafe, the fphere would act, in this cafe likewife, in the fame manner as if all its matter was lodged in the centre as one particle; but the cafe is different when the attraction of the particles obferves other laws. Suppofe that the attraction of the particles is inverfely as the power of the diftance of any exponent $n$ lefs than 3 , and the attraction of a fphere confifting of fuch particles, at its furface, will be to the force with which the whole matter of the fphere collected in its centre would attract at the fame diftance, as $3 \times 2^{2-n}$ to $3-n \times 5-n$. If, for example, the attraction of the particles be the fame at all diftances (in which cafe we fuppofe $n=0$ ) this ratio is that of 4 to 5 ; and if the attraction of the particles be inverfely as their diftance, it is that of 3 to 4 ; as we have fhewn elfewhere *.
12. Having thewn that when the particles gravitate towards each other with forces that are inverfely as the fquares of their diftances, the action of a fphere upon a particle placed without it obferves the fame law as that of the particles themfelves, and decreafes in the fame proportion as the fquare of the diftance of the particle from the centre of the fphere increafes; it follows, becaufe action and reaction are equal, that the particle will attract the fphere by a force varying in the fame proportion; and if, in place of the particle, a fecond fphere be fubftituted confinting of fuch particles, fince the total action of this fecond fphere will be the fame as if all its matter was lodged in its centre, therefore the two fpheres

[^45]Chap. 4. Philosophical Discoveries. 30 of muft obferve the fame law, in acting upon each other, as two particles placed in their centres; that is, their attraction muft decreafe in proportion as the fquare of the diftance betwixt their centres increafes.
13. The gravitation of bodies having been refolved by Sir Ifoac Neroton into the gravitation of their particles, and the law which is obferved by the gravity of bodies having been difcovered from the phrnomena defcribed at length above; it appears from the preceding conclufions, that the gravity of the particles of which the bodies are compounded obferves the very fame law. He was likewife enabled, by the fame fteps, to determine the progrefs of gravity from the centre of any fphere to the greateft diftance from it. At the centre a particle can have no gravity at all, being equally attracted every way by the matter of the fphere about it. . If it is placed within the fphere at fome diftance from the centre, its gravity will be the greater, the greater this diftance is, by $\$ 9$; for thefe parts of the fphere only having an effect upon it that are at a lefs diftance from the centre than itfelf, and its gravity being as the attracting matter directly and the fquare of the diftance from the centre reciprocally, fince the matter is as the cube of the fame diftance, the gravity mult be as the diftance itfelf. From the centre to the furface, its gravity increafes in proportion as its diftance from the centre increafes; at the furface, its gravity is greateft; and from the furface upwards, its gravity decreafes in proportion as the fquare of its diftance from the centre increafes; regularly obferving this law to the utmoft limits of fpace. Here we fpeak of the accelerating power of gravity, which is proportional to the velocity that it is able to generate in any given fmall moment of time; and fince
it generates the fame velocity in the fame time in all bodies whatfoever at the fame diftance, it follows that their weight or motion arifing from it, muif be proportional to their quantities of matter. In general, to eftimate the weight or motion of any fphere that is attracted by another whofe parts are equally denfe at equal diftances from its centre; we are to meafure it by compounding three proportions, that of the matter in the heavy bodies that gravitate, that of the matter in the attracting fpheres to which they gravitate, and the reciprocal proportion of the fquares of the refpective diftances betwixt the centres of the fpheres that tend towards each other ; and this is the law which we found from the phænomena to take place in the fyftem. See art. 2. of this chapter:
14. Thus Sir Ifaac Nerwton difcovered and fully defcribed, from undifputed obfervations and unexceptionable calculations, this fimple principle of the gravitation of the particles. of matter towards each other ; which being extended over the fyftem to all diftances, and diffufed from the centre of every globe, is the chain that keeps the parts of each together, and preferves them in their regular motions about their proper centres. The fame gravity, which is fo well known to us on the earth, affects them all; the whole mafs of the fyftem is, in this refpect, of a piece; and this one principle, fo regularly diffufed over the whole, fhews one general influence and conduct, flowing from one caufe equally active and potent every where. Several obfervations have been made of late that greatly confirm his doctrine, and particularly ferve to fhew that the gravitation towards bodies arifes from the gravitation towards their particles. Of this kind are the meafures of a degree on the meridian made lately, with the declination of the plumb-line from the true vertical, in confequence of the attraction of a great mountain in the neighbourhood.

## CHAP. V.

Of the quantity of uatter, and denfity, of the fun and planets.

1. HHUS far our author afcends by way of analy/is, tracing the caufes from their effects, and from the coincidence, or perfect fimilarity, of many effects, fhewing the caufe to be more general. But in order to defcend by the fyntbefis, and to determine the effects from the caufe now known, it was not fufficient to eftablifh the general gravitation of the particles of matter; it was requifite to determine, as far as poffible, the quantities of the powers which act in the fyftem. We have feen that there is a gravity extending from each body in the fyftem on all fides, at equal diftances from their centres proportional to their quantities of matter. We know, from experience, the force of this power at the furface of our own earth, and have feen how to eftimate its efficacy at any other diftance. In order to be able to eftimate all the powers in the fyltem directed to their different bodies, it is neceffary to determine the proportion of their quantities of matter to that of our earth. If this is once obtained, all the powers that operate in the fyftem being known, it will require no more but a fkilful application of geometry and mechanics to determine the motions and phænomena of the celeftial bodies, which all flow from them.
2. To meafure the matter in the fun and planets was an arduous problem, and, at firft fight, feemed above the reach of human art. But the principles of this philofophy afforded a natural and eafy folution of it in the moft important cafes, and Sir IJaac Nerwton has determined the proportions of the matter that is in the Sun, fupiter, Saturn, and the Moon, to that in our Earth; that is, he has hewed how many earths might form a Sun, a fupiter, or a Saturn. To underftand bow he was able to difcover this, we are to recollect that the matter in each of thefe is in the fame proportion as the force of gravity toward them, at equal diffances from their centres. We know the force of gravity towards our earth from the defcent of heavy bodies, and alfo by calculating how much the moon falls below the tangent of her orbit in any given time. We have no experience of any rectilineal defcent of heavy bodies toward the Sun, Jupiter, or Saturn; but as the primary planets revolve about the fun, and their fatellites revolve about Fupiter and Saturn, by computing from their motions how much a primary planet falls below its tangent in a given time, and how much any of 7 upiter's and Saturn's fatellites fall below their tangents in the fame time, we are able to determine the proportion which the gravity of a primary planet to the fun, and of a fatellite towards its primary, bears to the gravity of the moon towards the earth, in their refpective diftances: then from the general law of the variation of gravity, the forces that would act upon them at equal diftances from the Sun, $\mathcal{F u}$ piter, Saturn, and the Earth are computed; which give the proportion of the matter contained in thefe different bodies.

Chap. 5. Philosophical Discoveries.
3. That the quantity of matter in Fupiter is greater than the quantity of matter contained in the earth, we may eafily learn from the motion of his fatellites; all of which revolve about his centre in lefs time than the moon revolves about the earth, and are all, excepting the firlt, at a greater diftance from his centre than the moon is from the earth. The fecond fatellite is farther diftant from Fupiter than the moon is from the earth in the proportion of 3 to 2 nearly; and moves in an orbit greater in the fame proportion. But this fatellite finifhes its revolution in 3 days, 13 hours, which is lefs than a feventh part of the moon's periodic time about the earth ; confequently its motion muft be much more fivift than that of the moon. A fatellite nearer $\mathfrak{F} u$ piter would move ftill more fwiftly than this fatellite : fo that if a fatellite revolved about $\mathcal{F u p i t e r}$ at a diftance from his centre equal to the diftance of the moon from the earth, it would move much more fwiftly than the moon moves about the earth, and therefore would be acted on by a much greater centripetal force; for it requires always a greater force to bend into the fame orbit a body that moves with a greater velocity. But the quantities of matter in the central bodies are proportional to their attractive powers at equal diftances, and therefore the matter in $\mathcal{F u p i t e r}$ muft very much exceed the matter in the earth. In like manner, we may eafily obferve that Mercury revolves about the fun in very little more than thrice the time in which the moon revolves about the earth, and yet moves in an orbit about 140 times greater, being fo many times farther diftant from the centre of his motion; from which it is eafy to fee that if a fatellite revolved about the earth as far diftant from it as Mercury is from the fun, this fatellite would move vaftly flower than Mercury:
whence it follows that the attractive power of the fun muft be vaftly fuperior to that of the earth, and therefore that the fun muft contain vaftly more matter than the earth. The matter in Saturn is alfo found to be greater than that in the earth. From our author's calculations, founded on thefe principles, it follows that the quantities of matter in the Sun, Fupiter, Saturn and the Earth are to each other

4. The quantities of matter in thefe bodies being thus determined, and their bulk being known from aftronomical obfervations, it is eafy to compute what matier each of them contains in the fame bulk; which gives the proportion of their denfities. Thus our author finds the denfities of the Sun, Fupiter, Saturn and the Earth, to be as the numbers $\mathbf{1 0 0}_{2}$ $94 \frac{\pi}{2}, 67$ and 400 .

From which it appears that the earth is more denfe than $\mathcal{F u p i t e r}$, and Fupiter more denfe than $S_{a}$ turn; that is, thofe planets which are nearer the fun are found to be more denfe, by which they are enabled to bear the greater heat of the fun. This is the refult of our moft fubtile enquiries into nature, that all things are in the beft fituations, and difpofed by perfect wifdom. If our earth was carried down into the orb of Nercury, our ocean would boil and. foon be difipated into vapour, and the dry land would become uninhabitable. If the earth was carried to the orb of Saturn, the ocean would freeze at to great a diftance from the fun, and the cold would foon put a period to the life of plants and animals. A much lefs variation of the earth's diftance from the fun than this would depopulate the torrid zone if the earth came nearer the fun, and the temperate zones, if it was casried from the fun, A lefs heat at Fupiter's diftance is adapted to the greater rarity of his fubftance: the confequences might be as faral in $\mathcal{F u p i t e r}$, if he was carried into the orb of the earth, as it would be to us to be carried into the orb of Mercury. The ftill greater rarity of Saturi is fitted to his more remote orb; fo that tho' he is the laft of the planets, and receives 90 times lefs light and heat from the fun than we do, he may neverthelefs be in the beft fituation that could poffibly be affigned him in the fyltem; and there the fituation of Jupiter, and of all the lower planets, may appear as terrible as that of Mercury does to us. Saum terminates the planetary revolutions; and, as if the heat of the fun was too weak in the higher orbs, we find no bodies revolving higher, but fuch as defcend in fome part of their orbit nearer to this great centre of light and heat. Upon the whole we have reafon to conclude, that they are all difpofed in fuch order, and in fuch fituations, from which any confiderable variation would produce fatal effects. The hypothefis of Des Cartes led him to place the more denfe planets at a greater diftance from the fun ; but a philofophy founded on the oblervation of nature correfponds better with the final caules of things end proves, on every occafion, the wifdom of the author.
5. As aftronomers have found no fatellites revolving about Mercury, Venus, or Mars, we are deprived of the like opportunities of comparing theit ttractive powers and proportional quantities of mater. But it is highly probable, from what we have aid of the Eerth, Jupiter and Saturn, that the denties of the other planets correfpond to their diftances rom the fun, and are greater in the nearer planets. Dur author has alfo computed the proportion of the "tractive powers of the Sun, Fupitet, Saturn, and X. 2 the them to be in proportion as thefe numbers; 10000 , 943, 529, 435, refpectively. From which it appears, that the force of gravity towards thefe very unequal bodies approaches furprifingly to an equality at their furfaces; fo that tho' Fupiter be feveral hundred times greater than the earth, the force of gravity at his furface is very little more than double what it is at the furface of the earth; and the force of gravity at the furface of Saturn is but about $\frac{\pi}{4}$ greater than that of terreftrial bodies.
6. The moft confiderable powers that act in the fyftem being this determined; before we proceed to confider their effects, it is neceffary, firft, to enquire whether they act in a void, or if there is any medium that refifts the motions produced by them. We find that the air makes a confiderable refiftance to the motion of projectiles near the earth; which, if it extended unto the planetary regions, would alfo very confiderably affect their motions. But experiments fhew that the denfity of the air is proportional to the force that compreffes it, and that the weight of the fuperincumbent atmofphere is the force which compreffes the air in every altitude; fo that the higher any portion of air is, having a lets weight of air above it to comprefs it, it muft have lefs denfiey in the fame proportion: and from this it follows, that if we abftract from the diminution of gravity, and the altitudes from the furface of the earth be taken in arithmetical progreffion, the denfities of the air at thefe altitudes will decreafe in geometrical progreffion *. Since, therefore, it appears from feveral experiments, made in France and England, that the

[^46] denfity of the air decreafes in fuch a manner, that at the height of feven perpendicular miles it is abour $\frac{1}{4}$ of the denfity it has at the level of the fea, at 14 miles it muft be $\frac{7}{16}$ of it, at 21 miles $\frac{1}{64}$, at 28 miles $\frac{x}{2 \frac{x}{56}}$, at 35 miles $\frac{1}{10 \frac{1}{2} 4}$, at 42 miles $\frac{1}{405 万}$, at the height of 49 miles ${ }_{T 6 \frac{1}{3} 8 \mp}$ part of it, and at the height of a femidiameter of the earth altogether infenfible. It appears from the laws of motion, and from many accurate experiments, that the refiftance of fluids, arifing from the inertia of their matter, is proportional to their denfity; and therefore the refiftance of the air, tho' fenfible at the furface of the earth, would be 16384 times lefs at the height of 49 miles, and could not be fenfible in the greateft number of ages at the height of a femidiameter of the earth : it muft be ftill lefs at the diftance of the moon, which therefore, meeting with no refiftance, continues to revolve for ever in her orbit, without any impediment or diminution of motion. As for a more fubtile medium than the air, no experiments nor obfervations fhew that there is any here, or in the celeftial fpaces, from which any fenfible refiftance can arife.

## B O O K IV.

The effects of the general power of gravity dem duced fynthetically.

## C H A P. I.

## Of the centre of the folar fyftem.

'SIR Ifaac Neroton having eftablifhed the general principle of the gravitation of the particles of matter, and having determined the chief powers that act in the fyftem, viz. thofe which tend to the Sun, Jupiter, Saturn, and the Eartb; and having found that the celeftial motions are performed in free fpaces, where the refiftance is infenfible; he has now prepared the way for proceeding fyuthetically in his account of the fyftem of the world, and enquiring into the various effects that arife from a power fo evidently eftablifhed. Any general principle afcertained in nature is a great acquifition to philofophy, efpecially when the variations of this power, with its direction and force, are clearJy determined; and the fertility of this principle will appear from the various phænomena refolved by it fyntibetically, of which we are now to treat. Sir Ifcac Nereton begins with enquiring into the centre of the fyftem. The Pytbagoreans afcribed this place to the centre of the fun, the followers of AriProtle and Ptolemy to the earth. But Sir Jfaac, having found that thefe gravitate towards each other and towards all the other bodies in the fyitem, neither of them, nor indeed any body in the fyttem, can be fuppofed to be void of all motion.
2. It is the centre of gravity of the whole fyitem that is the only point which can be fuppofed quiefcent in it ; the fame point about which all the matter of the fyltem would foon be accumulated, if the progreflive motions of the bodies in it were deftroyed, and their gravity was permitted to bring them together. The mutual actions of bodies on each other never affect the fate of this centre; their attracting or repelling each other produces no effect upon it; and it muft either be quiefcent, or proceed uniformsly in a right line. All feem agreed that the centre of the fyitem is at reft, and no reafon or obfervation argues for our afcribing any motion to it. The centre of gravity of the fyitem is, therefore, the only immoveable point, while all the bodies in the fyftem move round it with various motions.
3. As we have our knowledge of gravity, and the laws of nature, from what paffes on the furface of the earth, we cannot illuftrate the motions of the bodies of the folar fyitem, arifing from their mutual gravity, better than by fome images we find of them on the earth, after having fhewn fo fully the fimilarity of the powers that act on the parts of the earth and on the celeftial bodies. We know that when, by any power or machine, a body is projected in the air, the power reacts on the earth with an equal force, and that if the power was fufficient to project a nrountain or a much larger part of the earth, it would act on the remainder of the earth with an equal force, in an oppofite direction; fo that while the projected part began to move in its curve, the remainder of the earth would begin at the fame time to move in an oppofite direction, with projected part; and both would revolve in certain orbits about the common centre of gravity, which would continue in the fame ftate as before the projection. If, by the refiftance of the medium, the motions of thefe parts of the earth came to be defiroyed, they would come together again and be accumulated in one mals about the fame centre. If there were more fuch parts of the earth projected, the centre of gravity of all would be no way affected by fuch projections, but they would move round it, fo that the fum of the motions on one fide of it fhould be equal to the fum of the motions on the other fide: and this obtains even in thofe fmall motions that are every day produced by powers and agents on the earth.
4. The motions of the great bodies in the folar fyftem are analogous to thefe: the different parts of the folar fyftem gravitate to each other, as the parts of the earth gravitate towards one another; and the different parts of the fyftem move in the fame manner about their common centre of gravity, as the parts into which we fuppofed the earth to be divided, if projected in any direction, would all move about their common centre of gravity; or as the earth, and all the bodies that are actually projected every day on its furface, revolve about the common centre of gravity of the earth and there projectiles. Only there is this difference, that the bodies of the great fyftem were projected at great diftances from each other, and in fuch a manner that the planets revolve in orbits almoft circular, fo as not to come too near to the fun, or to be carried too far from him, in their revolutions. The creator of the world had in vain made them of denfities adapted to certain diftances,

Chap. 1. Philosophical Discoveries. 313 if he had not projected them with the forces that were requifite to preferve them revolving at thofe diftances, or near to them; and as the greatnefs of the force impreffed on thofe vaft bodies, fome of which are many times greater than our earth, hnews the power, its juft quantity, varied regularly in the different diftances of the planets, and its proper direction, fhew the fkill of the firft mover.
5. We may fuppofe that all the matter of which the fyftem confifts was formed firft in one mafs, where now the centre of gravity of the whole fyftern is found; that of this mals various bodies were formed, and feparated from each other to proper diftances, where they received their projectile motions; and that the powers which feparated and moved them obferved the law of nature that requires an equality between action and reaction, and is obferved in all the actions of powers at prefent : and thus thefe motions would begin, and continue for ever, without producing any motion in the centre of gravity of the fyftem.
6. When the bodies were thus moved in their juft orbits, we may conceive fome of them to have been fubdivided again, by actions obferving the fame laws, into feveral other bodies, which in like manner were formed into leffer fyltems; as that of the earth and moon, thofe of Gupiter and Saturn and their fatellites. There is not any of thefe quiefcent in its particular fyftem; the earth and moon move about their common centre of gravity, while it is carried with a regular motion round the centre of gravity of the whole fyftem. The fame is to be faid of Jupiter and Saturn and their fatellites; and it is certain from the laws of nature, that the motions in any leffer fyftem about its centre of gravity, and the motion of that centre about the centre of gravity of the whole fyftem, interfere not with each other: A leffer fyftem being thus formed, one of the bodies that compofe it might be fubdivided into leffer bodies that might form a fyftem of an inferior order. But we do not find that nature carries this fubordination fo far, unlefs we would confider the motion of projectiles, near the furfaces of the fecondary planets, as an example of this kind.
7. It is next to be confidered, where this point of reft of the common centre of gravity of the fyltem is to be found; and it is plain from what we have already feen, that it can never be far removed from the fun, becaufe the matter in the fun valtly exceeds the matter in all the planets taken together: and, from what we faid of the centre of gravity above, it appears that it is always nearer the greater body in proportion as it is greater. Fupiter is the largeft of the planets, and yet is but $\frac{9}{x \circ \frac{1}{7}}$ of the fun, fo that their centre of gravity mult be 1067 times nearer the fun than Fupiter; and as the diftance of $\mathcal{F} u p i t e r$ is little more than 1067 femidiameters of the fun, it follows that the centre of gravity of the fun and Fupiter cannot be much above the furface of the fun. Saturn is lefs than Fupiter both in bulk and denfity, and the centre of gravity of the Sun and Saturn falls within the body of the fun: and thus it eafily appears, that tho' all the planets were on one fide of the fun in one line, the centre of gravity of the fun and them all could fcarcely be above a femi-diameter of the fun from his furface: and this is the fartheft that the fun is ever removed from that centre. It appears, therefore, that tho the fun is in perpetual agitation about this centre, yet, being always fo near it, he may very well be çonfidered by aftronomers as the centre of the Colar fyitem. Thus, tho' the power that move projectiles in the air, and is, to fpeak accurately, agitated a little by thefe powers with a very complex motion, yet we confider it as at reft, neglecting fuch exceeding minute actions and their effects.

## C H A P. II.

Sberving low gravity produces fome fmall irregularities in the motions of the planets.

1. F the planets were acted on by a power djrected to the centre of the fun only, varying according to the general law of gravity, and that centre was quiefcent, their motion about it would be perfectly regular. But we found that each of the planets was acted on by a power directed to every body in the fyltem. In order to judge of the effects of thefe actions, our author firft fuppofes two bodies equally gravitating towards each other, and revolving about their common centre of gravity: and, fince the direction of their mutual gravitation paffes always from the one to the other through their centre of gravity, and their diftances from it vary always in the fame proportion as their diftances from each other: it follows, that they muft defcribe equal areas in equal times about that centre, and about each other, and defcribe fimilar figures about that point and about each other *. So that in the motions of two bodies no irregularities arife in their motions about each other from their mutual attractions; whatever the law of their gravity be fuppofed to be: only they will finifh their revolutions about

[^47] fame diftance, and with the fame centripetal force; becaufe the orbit defcribed about the centre of gravity being lefs than that which is defcribed by any one of them about the other quiefcent (their diftance from each other being equal in both cafes) and being alfo fimilar to it, it muft be defcribed in lefs time.
2. If three or more bodies mutually attract each other, the gravitation of any one, arifing from the actions of the reft, may be determined by the rule for the compofition of motion; and if the law of gravity be fuch as we find to obtain in the folar fyftem, its gravitation will not be always directed to the centre of gravity of the other bodies, or indeed to any fixed point, but fometimes to one fide of that centre and fometimes to the other; and therefore, equal areas will not be defcribed in equal times about any point in the fyftem, and feveral irregularities will neceffarily arife in the motions of the bodies. But if you fuppofe one of thefe bodies to be vaftly greater than the reft, fo that the actions of the other bodies may be neglected if compared with its action, and the centre of gravity of the fyftem be always found near it, then the irregularities in the motions in fuch a fyltem will be very fmall. The areas defcribed in equal times, about the centre of that great body, will be nearly equal, and the orbits defcribed will be nearly elliptic, having that centre in their focus. That this is the cafe of the fun and planets, appears from what we have fhewn concerning their quantities of matter : and thus we fee that not only the regular motions of the planets are to be derived from the principle of gravity, but alfo how their minute errors and irregularities are accounted for from it. The fame is the cafe of Jupiter and Sation
their fatellites. As for the Earth and the Moon, tho' there be a lefs difproportion in their magnitudes, and their common centre of gravity be fenfibly removed from the earth, yet as there are only two in their fyftem, no irregularities arife from their mutual actions in their motions about their common centre of gravity, or they are eafily determined when the pofition of their centre of gravity is known. Thefe leffer fyltems of the Earth, Fupiter, and Saturn, are carried about the centre of gravity of the general folar fyitem, without receiving any difturbance from any action of the fun or planets, which is equal on all their parts and in the fame direction. When a fleet of Thips is carried away by a current that affects them equally, it has no effect on their particular motions amongft themfelves, nor is the motion proceeding from the current difcovered by them, if they have no body in fight that is not afo fected by it. In the fame manner, if the gravity towards the fun acted equally, and in the fame direction, on the parts of thefe leffer fyitems, it would have no effect on their motions amongft one another, and could only be difcovered by comparing their motions with the fixed ftars, or with fome body foreign to that leffer fyftem, which is acted on in a different manner by the fun. But as there is fome variation in the actions of the fun upon the parts of thefe fyftems, and in the directions of thefe actions, from hence fome irregularities neceffarily arife.
3. Tho' the actions of the fun and of the inferior planets, compounded together, do not always produce in a fuperior planet a gravitation exactly directed towards their centre of gravity ; yet, as upon the whole it is more nearly directed to that point than to any other, the motions of a fuperior planet will be found more regular by fuppofing that point
to be the centre of its attraction, rather than any other, and its ellipfe will be juft by placing its lower focus there. A planet that is higher than this will, by its attraction, have fome effect on the motion in this ellipfe, but as it alfo acts on the inferior planets at the fame time, there will no irregularity arife from that part of its action which is equal and in the fame direction on them all, but from the differences of its actions only; which being exceedingly minute, and having contrary effects in the oppofitew fituations of that higher planet, can produce effects fcarcely fenfible in many revolutions.
4. The action of Fupiter on Saturn when greateff (that is in their conjunction when their diftance is
 upon Saturn, by comparing the matter of Jupiler with the matter in the Sun, and the fquare of the diftance of the Sun from Saturn, with the fquare of the diftance of 7 upiter from Saturn. The effect of this action on Saturn is not altogether infenfible. But the elliptic orb of Saturn will be found to be more juft, if you fuppofe its focus not to be in the centre of the Sun, but in the centre of gravity of the Sun and Yupiter, or rather in the cencre of gravity of the Sun and of all the planets below Saturn. In the fame manner, the elliptic orb of any other planet will be found more accurate, by fuppofing its focus to be in the centre of gravity of the Sun and all the planets that are below it.
5. The whole action of fupiter difturbs the motion of Saturn in their conjunction, becaufe fupiter. acts upon Saturn and upon the Sun with oppofite directions, at that time. But, becaufe Saturn acts then in the fame direction on Fupiter and on the Sun, if it acted alfo with the fame force on both, it

Chap. 2. Philosophical Discoveries:
would have no effect on the motion of Fupiter about the Sun, and it is by the excefs of its action on $\mathcal{F u}$ piter above its action on the Sun that it difturbs the motion of Fupiter. This excefs is found to be $\frac{1}{29^{2} 3}$ of the action of the Sun on Fupiter, and therefore is much lefs than the force with which $\mathcal{F} u$ ipiter difturbs the motion of Saturn. The actions of the other planets on each other are incomparably lefs than thefe, and the irregularities procceding from thofe actions are always lefs in any planet as it is nearer the fun. Only the orbit of the earth may appear a little more irregular than that of its neighbouring planets, becaufe it revolves about the centre of gravity of the earth and moon, while that centre annually revolves about the fun.
6. If the planets were attracted by the fun and by one another, but the fun was not reciprocally attracted by them, the centre of gravity of the fyftem, becaufe of the deficiency of this reaction, would neceffarily be in motion; and this would be a new source of errors and irregularities. If the primary planets were not attracted by their fatellites, as well as the fatellites by their primary planets, other irregularities would neceffarily arife. If the great planets, Jupiter and Saturn, had moved in the lower fpheres, their influences would have had much more effect to difturb the planetary motions. But while they revolve at fo great diftances from the reft, they act almoft equally on the fun and on the inferios planets, and have the lefs effect on their motions about the fun, and the motions of their fatellites are at the fame time lefs difturbed by the action of the fun. The earth and moon move in a lower fphere, but their motions are the lefs irregular becaufe there are only two in their fyftem. We fhall aftewards fee that the comets continue for a very fmall time greater part of their revolutions they are carried to fuch vaft diftances that their actions can have very little effect on the motions of the planets. Such is the law of gravity, and the manner of its operation, and fuch is the difpofition of the bodies in the fyftem, as feems well adapted for preferving their motions with great regularity; but this will appear ftill more fully from the following chapter.

## C H A P. III.

## Of the approach and recefs of the planets. to and from the fun, in every revolution.

1. HHUS far we have confidered the powers that act in the fyftem of the fun, and have found that thofe which produce the regular motions of the planets vafly exceed thofe that difturb them. We are next to confider how the motions in their orbits proceed from the action of thofe powers ; and how the planet is made to afcend and defcend by turns, at the fame time that it revolves about the centre of its gravitation. This requires an illuftration, the rather becaufe we have nothing fimilar to it in the motion of heavy bodies at the earth's furface; for thefe are always made to fall to the earth by their gravity: in whatever diretion they are projected, upwards, perpendicularly, or obliquely, their gravity foon brings them down to the earth again. Hence many find it hard to conceive how a planet after approaching to the fun can recede from it again, efpecially fince its gravity is increafed as its diftance decreafes. They imagine that it ought to continue to approach to the fun, and at length fall upon his body, as heavy bodies fall to the earth.
2. But we are to remember, that the force with which heavy bodies are projected, from our moft powerful engines, is inconfiderable, compared with the motions which their gravity could generate in them in a few minutes; and they move over fuch fmall fpaces, when compared with their diftance from the centre of the earth, that their gravity is confio dered as acting in parallel lines, without any fenfible error, fo that the centrifugal force arifing from the rotation about that centre is altogether neglected. But when we examine the motion of a projectile in larger fpaces, and trace it in its orbit, we muft confider the action of gravity as directed to a centre, and take in the centrifugal force arifing from its motion of rotation about that centre; and it will appear, that there are indeed fome laws of gravity which would make the body approach to the centre continually, till it fall into it, but that there are other laws which make bodies approach to the centre, and fuffer them to recede from it, by turns. How to diftinguifh thefe we fhall now confider.

In the firtt place, it will be eafily underfood that if $s$ (Fig. $\mathrm{\sigma}_{3}$.) be the centre of attraction, and a body is projected with a certain force in the line A E, perpendicular to AS, it will defcribe the circle A L $a$ with an equable motion, and after a complete revolution return to its firft place A, with its firft motion. The fame gravity that acted at a uponit, and carried it below the tangent $A E$, acts upon it at any other point L , at an equal diftance from the centre 3 , and brings it from the tangent at i thro' the fame length in the fame time. The centrifugal force, arifing from its rotation, being equal to its gravity, neither of them prevails, and the body therefore neither approaches to the centre nor recedes from it.

If you fuppofe the motion of projection at a to be increafed, the gravity neceffary to keep it in the fame circle mult be increafed alfo; fo that if the velocity of the projection be double, the gravity requifite to retain the body in the fame circle mutt be quadruple; becaufe A K being double of A L, the point k falls four times farther below the tangent than the point L , as we fhewed above: in general, the gravity neceffary to retain a body in the fame circle is in the duplicate proportion of the motion of projection; and the velocity, therefore, in the fubduplicate proportion of the gravity; fo that when the gravities are as $\mathbf{x}$ to 4 , the velocities are as 1 to 2.
3. If the body is projected at a leif diffance from the centre of attraction, as at D , with the fame velocity, the gravity muft be greater to retain it in a circle; becaufe the curvature being greater, the extremity $P$ of the $\operatorname{arc} D P$, equal to $A L$, falls farther below the tangent at $D$, than L falls below the tangent at $A$, in proportion as the arc $D P$ is more curve, that is, in proportion as the diftance $S D$ is lefs than s $A$. If the velocity of projection is increafed at $D$, fo that the body defcribe a greater arc de in the fame time, then the force of gravity, neceffary to retain the body in a circle there, muft be increafed in a duplicate proportion: becaufe $Q T$ is to $P R$ in the duplicate proportion of $D$ C to $D P$. If the velocity at $D$, for example, is greater than chat at A in proportion as $S A$ is greater than $S D$, then $Q T$ will be to $P R$ as the fquare of $S A$ is to the fquare of $S D$, and $Q T$ will be to LM as the cube of SA is to the cube of SD ; that is, the force requifite to retain bodies in circles mun be reciprocally as the cubes of the femidiamerers, when the velocities in thefe circles are reciprocally as the femidiameters themfelves; and con-

Chap. 3. Philosophical Discoveries. 323 verfely, if the gravities increafe as the cubes of the diftances from the centre decreafe, the velocities néceffary to carry bodies in circles; at different diftances from the centre of attraction, muft increafe in proportion as che diftances decreafe.
4. In general, as the gravities of bodies that defrribe circles about the fame centre increafe in proportion as the fquares of the velocities increare, and as the diftances decreafe; ic follows converfely, that, in order to compare the velocities of projection that are neceffary to carry bodies in circles at thefe different diftances, we muft compound the proportion of the gravities and the proportion of thefe diffances together, for this compounded proportion will give that of the fquares of the requifte velocities. So in the folar fyftem, if the diffances of two planets were as i to 4 , the gravities being as 16 to 1 , thefe proportions compounded give that of 16 to 4 , or of 4 to I , which is that of the fquares of the velocities, and therefore the velocities themfelves are as 2 to 1 . In like manner we can determine the law according to which the velocities, neceflary to carry bodies in. circles about $s$, vary at any diftances, in any given Iaw of gravity.
5. If a body is projected at A (F:g, 64.) with a relocity leís than that which is neceflary to carry it In a circle there, it mult fall within the circle, the entrifugal force, arifing from the motion of rotaion about $s$, is lefs thian that which it would have In the circle AL, in proportion as the fquare of its felocity is lefs, and is therefore lefs than its gravity 2 the fame proportion: the body, therefore, by the xcefs of its gravity above its centrifugal force, is pade to approach to the centre. The motion of he body, as if defcends in the orbit $A M B$, muft be times about s , and the velocity of its motion at m mult be greater than its velocily at $A$, in proportion as SA is greater than SP , the perpendicular from S on the tangent to its orbit at m ; becaufe if the arcs $\mathrm{AK}, \mathrm{MN}$, be defribed in the fame time, the triangular fpaces ASK, MSN, being equal, the bafes A K, M N muft be reciprocally as their altitudes $S A, S P$, and the velocities are as the $\operatorname{arcs} A K, M N$, defcribed in the fame time, and therefore reciprocally as $S A$, Sp. The velocity, therefore, in the orbit from A to m , increafes in a higher proportion than that in which the diftances SA, SM decreafe, becaufe sa is to $S P$ in a higher proportion than $S A$ is to $S M$ : only if the direction of the body ever become perpendicular again to the ray drawn from $s$, at any point, as $B$, there $S M$ and $S P$ will coincide, and the proportion of the velocities will be the fame as the reciprocal of the diftances SA, SB.
6. If a body is projected at $\overline{\text { b }}$ in a direction perpendicular to SB, with a velocity greater than that which is neceffary to carry it in the circle BG H about the centre of attraction, at the diftance $\mathrm{S}_{\mathrm{B}}$, it muft be carried without that circle, and recede from the centre s. The centrifugal force, in this cafe, arifing from its motion of rotation, is greater than that which would arife from its motion in the circle в G н, and therefore greater than its gravity; and by the excefs of its centrifugal force above its gravity, it recedes from s the centre of attraction. The motion of the body decreafes as it rifes, being retarded by the action of its gravity, fo that the velocity is always lefs than the velocity at B , in proportion as $s B$ is lefs than $s p$, the perpendicular from $s$ on the direction of its motion.
7. A planet defcends from A, which is called its higher apfis, to B , which is called its lower apfis, and reafcends again from $\boldsymbol{b}$ to A. It defcends from A, approaching to the centre of attraction, becaufe its velocity at A is lefs than that which would be able to carry it in a circle about s , at the diftance $\mathrm{s} A$. As it defcends to leffer diftances, its velocity in its orbit increafes in a higher proportion than the velocities, which would be fufficient to carry bodies in circles at thefe diftances, increafe. For the velocity in the orbit at B is greater than that at A , in proportion as $3 A$ is greater than $S B$; whereas the velocity in a circle at $B$ is greater than the velocity in a circle at A , as $V \mathrm{SA}$ is greater than $V \mathrm{~S} B$. If SA were to $S B$ as 4 to , the firft proportion would be that of 4 to 1 , but the fecond that of 2 to 1 only. Hence it appears how the velocity in the orbit at b , exceeds that in a circle at the fame diftance, tho' the velocity in the orbit at a was exceeded by the velocity that was able to carry it in a circle at the diftance sa. In the higher part of the orbit, the velocity of the body is lefs than that which would carry it in a circle there about $s$; but the velocity in the orbit increafes more, by the approach of the body to the centre of attraction, than the velocities requifite for carrying bodies in circles do, and fo gets the better of them in the lower part of the orbit. Of thefe two each prevails over the other by turns, in the two apfides; the velocity in the circle in the higher apfis, and the velocity in the orbit in the lower apfis. After the body is carried off at' B by its fuperior velocity, the velocity in a circle afterwards gets the better, becaufe it does not decreafe fo quickly as the velocity in the orbit, and the body is made to move, in its afcent, in a femi-ellipfe equal and fimilarly fituated to that which it defcribed in its defeent.
8. The gravity indeed at $B$ is greater than the grawity at A , in proportion as the fquare of the diftance is lefs'. But the centrifugal force arifing from the cire cular motion about $s$ increafes in a higher proportion, viz. as the cubes of the diftances decreafe; for thefe centrifugal forces are in the direct proporfion of the fquares of the velocities and their inverfe proportion of the diflances, compounded together: the firft of thefe is the inverfe proportion of the fquares of the diftances, and the cwo together compound the inverfe proportion of the cubes of the diftances. The centrifugal forces, therefore, increafe more quickly than the gravities; and tho' the gravities prevail in the higher part of the orbit, the centrifugal forces get the better in the lower part of it. The gravity prevailing in the higher apfis makes the body approach to s , the centrifugal force prevailing in the lower apfis makes the body recede from it; and, by their actions, the body for ever revolves from the one to the other.
9. It is eaiy to fee from what we have faid, that the body can defcend from the higher apfis to the lower, and afcend again from the lower apfis to the higher, when the velocities neceffary to carry bodies in circles about the centre of attraction increafe, in approaching to that centre, in a lefs proportion than the velocity of a body moving in an orbit $A m$ a increafes. For tho' the velocity in a circle in the greater diftances exceed the velocity in the orbit, this latter, by increafing more quickly as the diftance decreafes, gets the better of the other in the lower part of the orbit, and carries the body off again. Bur if the velocities by which circles can be defcribed about the centre of attraction increare, in approachfing to that centre, in a higher proportion, or in the
fame proportion, as the velocity in the orbit increafes, then this latter having been fuppofed at a lefs than the former, it muft always continue lefs than it, and never get the better of it, fo as to be able to carry off the body; and therefore, in all fuch cafes, the body can never recede from the centre after it has once begun to approach to it, but muft defcend to diftances lefs and lefs, till it fall into the centre. It approaches at $A$, becaufe its velocity is lefs than that which/is requifite to carry it in a circle there: its velocity indeed increafes as it defcends to leffer diftances, but the velocities which would carry bodies in circles at thefe diftances about $s$, increafing alfo in as great a proportion, the velocity in the orbit muft fill continue to be lefs than in thefe circles, and the body mutt ftill continue to approach to the centre.
10. To fix the limit of thefe two cafes, we are to confider, that the velocities in an orbit, at a and $B$, are in the inverted proportion of the diftances there from the centre of gravitation; and that, if the gravity increafe as the cubes of the diftances decreafe, the velocities neceffary to defcribe circles at $A$ and $B$ are in the fame inverted proportion of the diftances at A and b from s . In this cafe, therefore, the velocities in circles, and in the orbit at A and B , vary in the fame proportion, and the fame which exceeds at the one diffance muft exceed at the other ; fo that, for the fame reafon for which the body approarhed to $s$ at $A$, it would approach to it at B , and if it receded from it at $B$, it mult recede from it at $A$; that is, if it once begin to approach, it muft always approach to $s$, and if it once begin to recede, it muft always recede from it. This alfo appears from what we faid of the centrifugal force, which, in the fame orbit, increafes as the cube of the diftance decreafes; and confequently in the fame proportion
in which the gravity is fuppofed to increafe in this cafe; fo that, of thefe two, which ever is fuppofed to prevail in any one apfid, the fame muft prevail in any other apfid, if fuch could be affigned; and the body muft either defcend continually to the centre, or rife from it for ever.
II. If the gravity increafe in a higher proportion than as the cubes of the diftances from the centre of attraction decreafe, then the velociries neceffary to carry bodies in circles about that centre, in approaching to it, will increafe in a higher proportion than the diftances decreafe; that is, in a higher proportion than the velocity in an orbit increales from a to в; fo that as the velocity in a circle at a exceeded the velocity in the orbit there, it will much more exceed it at B , and therefore the body, acted on by a gravity varying in fuch a manner, muft approach to the centre till it fall into it, if it once begin to approach to it at A; and if it once begin to recede from it, it muft continue to recede from it for ever. The higher the power of the diftance is to which the gravity is reciprocally proportional, the body will defcend in a lefs number of revolutions to the centre, in like circumftances. If the gravity is reciprocally proportional to the cubes of the diftances, the body will defcend after an infinite number of revolutions. If the gravity increafe as the 4 th power of the diftance decreafes, and the body is projected at a with a velocity lefs than that which would carry it in a circle about $s$ in proportion as $\sqrt{2}$ is lefs than $\sqrt{ } 3$, the body will defcribe a certain epicycloid about s , and fall into it after half a revolution. If the gravity increafe as the $5^{\text {th }}$ power of the diftance decreafes, and the velocity of the projection be to that which would carry it in a circle about the centres as-I is to $\sqrt{ } 2$, it will defcend in a femicircle defribed on the diameter s A, and fall into the centre in a quarter of a revolution. If the gravity increafe as the 7 th power of the diftance decreafes, and thefe velocities be as 1 to $\sqrt{ } 3$, it will fall into the centre in $\frac{7}{3}$ of a revolution. In general, if the gravity increafe as the $n+3$ power of the diftance decreafes, and the velocity of projection at a be to the velocity which would carry the body in a circle there, about $s$, as I to $\sqrt{1+\frac{n}{2}}$, it will fall into the centre in the $\frac{1}{2 n}$ part of a revolution. If the gravity increafe as the $3 \frac{1}{\square} \frac{5}{0}$ power of the diftance decreafes, and the velocities be as $I$ to $\sqrt{I+\frac{1}{2} \frac{1}{0}}$, the body muft fall into the centre after 50 revolutions. We cannot pretend to demonftrate thefe things here, and have mentioned them only to illuftrate this theory *.
12. If the gravity increafe in a lefs proportion than that in which the cubes of the diftances decreafe, the velocities, neceffary to carry bodies in circles about the centre $s$, will increafe, in approaching to it, in a lefs proportion than the fimple proportion in which the diftances decreafe, and therefore in a lefs proportion than the velocity in the orbit from $A$ to $B$; fo that, tho' the former exceed in the greater diftances, the latter may exceed in the leffer diftances, and the body may confequently defcend from the higher apfis to the lower, and afcend from the lower apfis to the higher by turns. The gravity may prewail over the centrifugal force in the higher parts of the orbit, but, increafing more flowly in defcending to the leffer diftances than the centrifugal force, it is overcome by it in the lower parts of the orbit, and the body is made to recede again to its firft diftance. If the gravity increafe as the cubes of the diftances decreafe, the body never can arrive at the

[^48]lower aplis B . If the gravity increafe as the fquares of the diftances decreafe, the body will defcend in a femi-ellipfe from the higher to the lower apfis in half a sevolution.
13. If the gravity increafe in the reciprocal proportion of fome power of the diftance betwixt the iquare and cube, the body will take more than half a revolution to defcend from the higher to the lower aplis, the more the increafe of gravity approaches to the reciprocal proportion of the cubes of the diftances; for the velocity in the orbit will find the more difficulty to get the better of the motion that would carry the body in a circle, or the centrifugal force will with more difficulty get the better of the gravity. But if the gravity increafe in proportion as fome power of the diftance lefs than the fquare decreafes, the velocities in circles increafing lefs in approaching to the centre, the velocity in the orbit will the more eafily prevail, and the centrifugal force will fooner exceed the gravity; and therefore the body will defcend to the lower apfis in lefs than half a revolution, and return to the higher apfis in lefs than a complete revolution, From which it appears, that as the apfides are fixed in the regular courfe of gravity, that is, while it increafes as the fquares of the diflances decreafe, they muft be carried forwards, in the direction of motion of the body, when gravity varies in a higher proportion than that, and muft be carried backwards with a contrary motion when gravity varies lefs than in that proportion. As a change from the proportion of the fquares to that of cubes gives an infinite motion to the apfides, fo that the body never arrives at either of them again; a very fmall change in the courle of gravity will produce a fenfible motion in the apfides, and the leaft change from the regular courfe of gravity muft become very fenfible, in a great many revolutions, by the motion of the apfides. From which we learn, that fince the apfides of the planets have fo fmall a motion that fome aftronomers neglect it altogether, and doubt if there is indeed any fuch motion at all, we may conclude that their gravity muft obferve very accurately, in its variations, the law of the fquares of the diftances.
14. Our author, to reduce to a computation the motion of the apfides arifing from a variation from the regular courfe of gravity, fuppofes, with aftronomers, that the body moves in an ellipfe that is carried at the fame time with a regular motion about $s$, which, in an entire revolution, gives the motion of the apfides. In a quiefcent ellipfis, (Fig. 65.) the curvature at $A$ and $B$ being the fame, the centripetal forces there were found, above, to follow the inverfe proportion of the fquares of the diftances SA, SR. Suppoing that the body moves in the elliple $a l b$, while this ellipre itfelf is carried about s with an angular motion, fo that, $s l$ in the moveable orbit being equal to SL in the fixed orbit, the angle A sl may be to A SI in a conflant invariable proportion, fuppofe that of G to F; then the increments of thefe angles, while s $L$ and $s l$ decreafe equally, will obferve the fame conflant proportion; and the angular motions about s of two bodies $l$ and L , revolving in the fame time in thefe orbits, will be in the fame proportion, as allo the areas defcribed by rays drawn from thefe bodies to s: fo that if the bodies be projected together at a with velocities in the fame proportion, and are acted on by the neceffary centripetal forces, they will move in thefe orbits, and approach equally towards $s$, and arrive at $l$ and L in the fame time. The motion of approach to she centre being the fame at equal diftances from it, fame excefs as in the other, and therefore the difference of the centrifugal forces mult be the fame as the difference of their gravities; fo that, to find the gravity in the moveable orbit, we are to add to the gravicy in the fixed orbit, at the fame diftance, the excefs of the centrifugal force in the moveable orbit there, above the centrifugal force in the fixed orbit at the fame diftance. Thefe centrifugal forces are in a given proportion to each other, viz. in that of the fquares of the angular motions, or in the proportion of $G^{2}$ to $F^{2}$, and their difference mult be in a given proportion to either; the fame centrifugal forces, at different diftances, are reciprocally as the cubes of the diftances, as we fhewed above, and their differences muft vary in the fame proportion: fo that the difference of the gravities in the moveable and immoveable, muft vary in the reciprocal proportion of the cubes of the diftances.
15. If the ellipfe is carried about s with a progreffive motion, that is in the direction of the motion of the body, the angular motion of the body in the moveable orbit is greater than in the fixed orbit, and the centrifugal force, and confequently the gravity, is greater. But if the ellipfe is carried about $s$ with a retrograde motion, the angular motion in the moveable orbit, and confequently the gravity, is leffer. In the firtt cafe, the difference of the centrifugal forces is to be added to the gravity in the fixed orbit, to find the gravity in the revolving orbit at the fame diftance from s. In the latter cafe, the difference of the centrifugal forces is to be fubtracted from the gravity in the fixed orbit, to find the

Chap. 3. Philosophical Discoveries. 333 gravity in the revolving orbit at the fame diflance from s.
16. The force in the fixed ellipfe increafes as the fquare of the diftance decreafes; add to this a force that increafes as the cube of the diftance decreafes, and the fum muft increafe in a higher proportion than that of the fquares of the diffances, but never in fo high a proportion as their cubes. A body therefore that moves in an ellipfe that has itfelf a progreffive motion about $s$, mult be acted on by a force that varies according to fome power of the diftance higher than the fquare, but lefs than the cube. The greater this motion of the ellipfe is, the greater is the excels of the centrifugal force in the moveable ellipfe above that in the fixed ellipfe, at the fame diftance from s ; and the greater is the quantity that varies as the cube of the diftance in the aggregate, in proportion to that which varies in it as the fquare of the diftance only; and the more does the proportion of the aggregate vary from that of the fquares towards that of the cubes of the diftances. In fuch a moveable ellipfe, the gravity, which is as the aggregate, cannot be faid to vary in the proportion of any one power of the diftance accurately; but if the ellipfe is very near to a circle, the proportion of the aggregate will be found to vary very nearly as a certain power of the diftance, and the motion of the ellipfe may be adjufted fo as that the aggregate may vary, very nearly, as any power of the diftance that can be affigned betwist the fquares and the cubes.
17. If from a force that increafes as the fquare of the diftance decreafes, you fubduct a force that increafes in a higher proportion, viz. as the cube of the diftance decreafes, the remainder muft increafe the diftance decreales. A body, therefore, that moves in an elliple which revolves itfelf at the fame time with a retrograde motion about $s$, muft be acted on by a gravity that varies in a lefs proportion than the fquare of the diftance ; and the greater the motion of the ellipfe is, the gravity will vary in a lefs proportion, fo that if the motion of the ellipfe be fufficiently great, the gravity may decreafe inftead of increafing as the diftance decreafes. By fuppofing the orbit near to a circle, the motion of the ellipfe may be adjufted, that the remainder may vary according to any proportion leís than that of the fquares of the diftances.
18. Our author has made an improvement of this, to juige of the motion of the apfides in any law of gravity: for, by fuppofing the gravity in the moveable ellipfe, when near to a circle, computed from the forefaid principles, to vary according to any given law, he determines what muft be the motion of the ellipfe, or of the apfides, in confequence of this fuppofition; or, the motion of the ellipfe being given, he determines what is the power of the diftance according to which the gravity varies, nearIy, when the ellipfe revolves with that given moo tion *.
19. We have faid as much as our defign will aflow us, of the motions arifing from gravity, that are performed in regular revolutions from the one apfis to the other; where the diftance from the centre of gravitation varies indeed, but fo as to keep within certain limits, betwist which the body conftantly revolves; and we have fhewn that the motion

[^49]of the body may be of this kind, if the gravity decreafe in a lefs proportion than that in which the cubes of the diftances from the centre increafe. But the motion of the body is not always of this kind, in thefe cafes; for if the velocity of projection at B is fufficiently great, the body will, in fome of thefe cafes, recede for ever from the centre of gravitation, and never arrive at the higher aplis $A$. We have already fhewed that if the gravity decreafe as the cubes, or any higher powers, of the diftance increafe, and the velocity at в exceed, in the leaft, that which would carry the body in a circle there, about the centre of gravitation, it will recede from s for ever. If the gravity decreafe in a lefs proportion than that of the cubes of the increafing diftances, it may be projected at B with a motion which will ftill carry it for ever from the centre, provided the gravity decreafe in a proportion greater than that in which the diftances increafe: for the limit here is the inverfe fimple proportion of the diftances. If gravity vary more, the body may be carried off for ever from the centre by a finite motion of projection; but if the gravicy varies in that proportion, or in any lefs proportion, then no finite force will be able to make the body move in fuch a manner, as to recede from the sentre s for ever: but the body in thefe cafes mult always revolve betwixt the two apfides.
20. In order to fee this, we may firt fuppofe a body to be projected perpendicularly to the horizon, that is acted on by a gravity decreafing in a higher proportion than that of the increafing diftances; and if the force of projection be fufficiently great, it will rife for ever with a motion continually retarded by the action of its gravity, but that fhall never be altogether deftroyed by thefe actions; becaufe they
21. The fame law of gravity is the limit betwixt the cafes of infinite afcents, in curvilineal motions and in rectilineal: for our author has fhewn, that if one body move in a curve, and another afcend or defcend in a right line, acted on by the fame gravity, and their velocities be equal in any equal altitudes, they will be equal in all other equal altitudes*: and fince the gravity of the body projected upwards in a vertical line, with a certain affignable force, is not able to bring it back again; it will not be able to make it return, if it was projected with the fame force obliquely upwards, fo as to move in a curve. For the centrifugal force, arifing from the motion of rotation about s , leffens the effect of the gravity, and makes.it lefs capable to deftroy the motion of

[^50]Chap. 3. Philosophical Discoveries, 337 afcent in this cafe, than in the cafe of a perpendicular afcent. Therefore if gravity varies in the reciprocal proportion of fome power of the diftance higher than unit, a body may run out to infinity in its orbit, if it be projected with a certain force.
22. If this force is the fame which it would acquire by falling from an infinite height, it will go off in a curve of the parabolic kind. But if it is projected with a greater force than that which would be acquired even by an infinite defcent, the curve will be of the byperbolic kind. If it is projected with the fame velocity which it would acquire by falling from an infinite height (affuming different laws of gravity, but other circumftances fimilar) it will go off to infinity after a greater or lefs part of a revolution, or after a greater or fmaller number of revolutions, according as the power of the diftance, which is reciprocally proportional to the gravity, is greater or lefs. The limit here is a quarter of a revolution from the apfis, or the place where the direction of the body's motion is perpendicular to the line drawn to the centre; for it muft always take more than that to get off from the apfis to an infinite diftance. If gravity obferve the reciprocal fefquiplicate proportion of the diftance, then the body will go off in $\frac{1}{3}$ of a revolution. If it obferve the reciprocal duplicate, it will go off for ever in a parabola, in half a revolution. If it obferves the reciprocal $\frac{5}{2}$ power of the diffance, it will go off in a complete revolution. But if gravity obferve the reciprocal triplicate proportion of the diftance, and the body be projected oblique to the radius, it will go off in an infinite number of revolutions *.

[^51]23. If gravity decreafe in a lefs proportion than the reciprocal fimple proportion of the diftances, and a body is projected from the apfis with any finite force whatfoever, it cannot rife for ever ; but will have the fame velocity at any diffance, as it would have had at the fame diftance, fuppofing it had been projected at a directly upwards with the fame force of projection : and fince any finite force would have been deftroyed in the perpendicular, if the body move in a curve it muft return again, and after paffing the higher apfis, defcend again to the lower apfis, tho' that apfis be not in the fame place as before. If gravity increafe as the diftance increafes, a fortiori the body will never be able to afcend to an infinite diftance. Thefe obfervations fhew the limits of the various forts of motions, that can proceed from various laws of gravity.

## CHAP. IV.

## Of the motion of the moon.

3. X E have explained the motions of the bodies in the folar fyftem, from gravity, and have taken notice of fome inequalities or errors in their motions, that arife from the fame principle.
a force that is to that which would carry it in a circle as I to $\sqrt{\frac{\overline{m-s}}{2}}$, it will rife for ever from the centre, and go off in the $\frac{x}{6-2 n^{2}}$ part of a revolution, or in the $\frac{x}{2} n$ part of the revolution. Sappofing $\frac{1}{n}$ to be the excefs of 3 above the number $m$. If the gravity follow the reciprocal proportion of the $2 \frac{98}{9} 8$ power of the difance, the body will go off in 50 revolutions. See Fluxricus, §416, ©o feq.

Chap．4：Philosophical Discoveries． 339 But the manifold irregularities that are produced by it in the motion of the moon deferve particularly to be confidered，as the is the neareft to us in the fyftem，and as great advantages might be deduced from her motions，if they could be fubjected to ex－ act computation．Formerly，they who built fyitems had great difficulties to reconcile their principles with the phrenomena：our author anticipates obfervations， and the more perfect our knowledge of the motions in the fyftem fhall become，the more will this philo－ fophy be efteemed．Pofterity will fee its excellence yet more fully than we do，when the celeftial mo－ tions fhall be determined more accurately，by a feries of long－continued exact obfervations．

2．To give the principles of our author＇s compu－ tations on this perplexed fubject，in as plain a man－ ner as poffible，we muft recollect what has been al－ ready obferved；that if the fun acted equally on the earth and moon，and always in parallel lines，this action would ferve only to reftrain them in their an－ nual motions round the fun，and no way affect their actions on each other，or their motions about their common centre of gravity．In that cafe，if they were both allowed to fall directly towards the fun， they would fall equally，and their refpective fitua－ tions would be no way affected by their defcending equally towards it．We might then conceive them as in a plane，every part of which being equally acted on by the fun，the whole plane would defcend orvards the fun，but the refpective motions of the farth and moon would be the fame in this plane as fit was quiefcent．Suppofing then this plane，and 11 in it，to have the annual morion imprinted on it， would move regularly round the fun，while the arth and moon would move in it，with refpect to ach other，as if the plane was at relt，without any
irregularities. But becaufe the moon is nearer the fun in one half of her orbit' than the earth is, and in the other half of her orbit is at a greater diffance than the earth from the fun, and the power of gravity is always greater at a lefs diftance; it follows, that in one half of her orbit the moon is more attracted than the earth towards the fun, and in the ocher half lefs attracted than the earth; and hence irregularities neceffarily arife in the motions of the moon, the excefs, in the firft cafe, and the defect, in the fecond, of the attraction, becoming a force that difurbs her motion: add to this, that the action of the fun on the earth and moon is not directed in parallel lines, bue in lines that meet in the centre of the fun.
3. To fee the effects of thefe powers, let us fuppofe that the projectile motions of the earth and moon were deftroyed, and that they were allowed to fall freely towards the fuin. If the moon was in conjunction with the fun, or in that part of her orbit which is nearef to him, the moon would be more attracted than the earth, and fall with greater velocity towards the fun; fo that the diftance of the moon from the earth would be increafed in the fall. If the moon was in oppofition, or in the part of her orbit which is fartheft from the fun, fhe would be lefs attracted than the earth by the fun, and would fall with a lefs velocity towards the fun than the earth, and the moon would be left behind by the earth; fo that the diflance of the moon from the earth would be increafed, in this cafe alfo. If the moon was in one of the quarters, then the earth and moon being both attracted towards the centre of the fun, they would both directly defcend towards that centre, and by approaching to the fame centre, they would necefarily approach at the fame time to

Chap. 4. Philosophical Discoveries. $34 \pi$ each other, and their diftance from one another would be diminifhed, in this cafe. Now, whereever the action of the fun would increafe their diftance, if they were allowed to fall towards the fun, there we may be fure the fun's action, by endeavouring to feparate them, diminifhes their gravity to each other; wherever the action of the fun would diminifh their diftance, there the fun's action, by endeavouring to make them approach to one another, increafes their gravity to each other: that is, in the conjunction and oppofition, their gravity towards each other is diminifhed by the action of the fun; but in the two quarters it is increafed by the action of the fun. To prevent miftaking this matter, it muft be remembred, it is not the total action of the fun on them that diffurbs their motions, it is only that part of its action by which it tends to feparate them, in the firlt cafe, to a greater diftance from each other; and that part of its action by which it tends to bring them nearer to each other, in the fecond cafe, that has any effect on their motions with refpect to each other. The other, and the far more confiderable, part has no other effect but to retain them in their annual courfe, which they perform together about the fun.
4. In confidering, therefore, the effects of the fun's action on the motions of the earth and moon with refpect to each other, we need only attend to the excefs of its action on the moon above its action on the earth, in their conjunction; and we muft confider this excefs as drawing the moon from the earch towards the fun in that place. In the oppofition, we need only confider the excefs of the action of the fun on the earth above its action on the moon, and we mutt confider this excefs as drawing the moon from the earth, in this place, in a direction oppofite to where the fun is; pecaufe we confider the earth as quiefcent, and refer the motion, and all its irregularities, to the moon. In the quarters, we confider the action of the fun as adding fomething to the gravity of the moon towards the earth.
5. Suppofe the moon fetting out from the quarter that precedes the conjunction, with a velocity that would make her defcribe an exact circle round the earth, if the fun's action had no effect on her; and becaufe her gravity is increafed by that action, the muft defcend towards the earth, and move within that circle : her orbit, there, will be more curve than otherwife it would have been; becaufe this addition to her gravity will make her fall farther at the end of an arc below the tangent drawn at the other end of it; her motion will be accelerated by it, and will continue to be accelerated till the arrives at the enfuing conjunction; becaufe the direction of the action of the fun upon her, during that time, makes an acute angle with the direction of her motion. At the conjunction, her gravity towards the earth being diminifhed by the action of the fun, her orbit will be lefs curve there, for that reafon; and fhe will be carried farther from the earth as fhe moves to the next quarter; and, becaufe the action of the fun makes then an obtufe angle with the direction of her motion, fhe will be retarded by the fame degrees by which the was accelerated before.
6. Thus fhe will defcend a little towards the earth, as the moves from the firf quarter towards the conjunction, and afcend from it, as the moves from the conjunction to the next quarter. The action which difturbs her motion will have a like, and almoft equal, effect upon her, while fhe moves

Chap. 4. Philosophical Discoveries.
in the other half of her orbit, I mean, that half of it which is fartheft from the fun : fhe will proceed from the quarter that follows the conjunction with an accelerated motion to the oppofition, approaching a little towards the earth, becaufe of the addition made to her gravity, at that quarter, from the aetion of the fun; and receding from it again, as the goes on from the oppofition to the quarter from which we fuppofed her to fet out. The areas defcribed in equal times by a ray drawn from the moon to the earth will not be equal, but will be accelerated by the confpiring action of the fun, as the moves towards the conjunction or oppofition from the quarters that precede them; and will be retarded by the fame action, as fhe moves from the conjunction or oppofition to the quarters that fucceed them.
7. Our author has computed the quantities of thefe irregularities from their caufes. He finds, that the force added to the gravity of the moon in her quarters, is to the gravity with which the would revolve in a circle about the earth, at her prefent mean diftance, if the fun had no effect on her, as I to $178 \frac{29}{40}$. He finds the force fubducted from her gravity, in the conjunetions and oppofitions, to be double of this quantity, and the area defrribed in a given time in the quarters, to be to the area defcribed in the fame time in the conjunctions and oppofitions, as 10973 to 11073 . He finds, that, in fuch an orbit, her diftance from the earth in her quarters, would be to her diftance in the conjunctions and oppofitions, as 70 to 6 g .
8. The moon does not move in the fame plane, round the earth, in which the earth moves round the fun, but in a plane that is inclined to it in an angle
of about 5 degrees: and hence it is that the centre of the moon appears to us to trace a diferent circle from the ecliptic, the circle which the centre of the fun appears to defcribe in the heavens. Thefe circles cut each other in two oppofite points, that are called by aftronomers the nodes of the moon; at the greatelt diftance from the nodes, thefe circles are feparated from each other by about five degrees. The eclipfes of the fun and moon depend on their diftances from thele nodes, at the time of the new and full moon; for, if the change of the moon happen when the is near one of the nodes, the eclipfes the fun; and, if the moon is full, near one of the nodes, the mutt fall into the fhadow of the earth, and there become eclipfed. Aftronomers have at all times been very attentive to the fituation of the nodes, in order to calculate thefe eclipfes, which have been always a phænomenon much confidered by them. The nodes are not fixed in the fame part of the heavens, but are found to move over all the figns in the ecliptic, with a retrograde motion, in about eighteen or nineteen years.
9. Sir Ifaac Neroton has not only fhewed that this motion arifes from the action of the fun, but has calculated, with great fkill, all the elements and varieties in this motion, from its caufe. We called thefe points the moon's nodes, in which her orbit cuts the plane in which the earth revolves about the fon, and the line that joins the points we call the line of the nodes. We fay the motion of the nodes is direct when they proceed in the fame way as the moon moves in her orbit, viz. from weft to ealt, atcording to the order of the figns Aries, Taurus, \&cc. in the ecliptic; and we fay their motion is retrograde, when they move with a motion contrary to that of the moon, or from eaft to weft, contrary

Chap. 4. Philosophical Discoveries. 345 to the order of the figns. We conceive the plane of the moon's motion to pafs always through the centre of the earth and the centre of the moon, and to be a plane in which the right line joining their centres, and the right line that is the direction of the moon's motion, or the tangent of her orbit, are always found. It is certain, that if the earth and moon were always acted on equally by the fun, they would defcend equally toward the fun; the plane determined always by thefe two lines, would defcend with them, keeping always parallel to itfelf, fo that the moon would appear to us to revolve in the fame plane conftantly, with refpect to the earth. But the inequalities in the action of the fun, defcribed above, will bring the moon out of this plane, to that fide of the plane on which the fun is, in the half of her orbit that is neareft the fun, and toward the other fide, in the half of her orbit that is fartheft from the fun.
10. From which we have this general rule for judging of the effect of the fun on the nodes; that while the moon is in the half of her orbit that is neareft the fun, the node towards which the is moving is made to move towards the conjunction with the fun; and while the moon is in the half of her orbit which is fartheft from the fun, the node towards which fhe is moving is made to move towards the oppofition: but when the nodes are in conjunction with the fun, its action has no effect upon them. In the firft cafe, the moon is brought into a direction which is on the fame fide, as the fun is, of that direction which the would follow of herfelf: and the interfection of a plane paffing through this direction, and through the centre of the earth, will cut the ecliptic, on that fide towards which the moon moves, in a point nearer the con- difturb her motion. In the other cafe, the action of the fun has a contrary direction, and for the fame reafon, makes the enfuing node move towards the oppofition. When the line of the nodes produced paffes through the fun, then the fun, being in the plane of the moon's motion, has no effect to bring her to either fide; and therefore, in that cafe, the nodes have no motion at all.
II. From this general rule, it appears, that if you fuppofe the nodes to be in the quarters $A$ and $c$, (Fig. 67.) after the moon fets out from the node A, that is, in the quarter preceding the conjunction B , the enfuing node c moves towards the conjunction $B$, and is therefore retrograde; becaufe it moves in a direction oppofite to that in which the moon moves; and, in all this revolution of the moon, the nodes are manifefly retrograde; for, after the moon paffes the quarter c that fucceeds the conjunction, then the enfuing node a moves towards the oppofition $D$, fo that the nodes are, in that half of her orbit alfo, retrograde.
12. Suppofe the nodes in the fituation $\mathrm{N} n$, fo as one of them may be between the quarter A and the enfuing conjunction $B$, while the other node $n$ falls on the oppofite point of the moon's circle, between the fubfequent quarter c and the oppofition D. In this care, while the moon moves from $A$ to $N$, the node $\mathbb{N}$ moves towards the conjunction $\boldsymbol{b}$ (by the general principle in § 10.) and therefore its motion is direct. While the moon moves from n to c , the enfuing node $n$ moves towards the conjunction B , and therefore is retrograde; and becaufe the arc n c exceeds A N, the retrograde motion exceeds the

Chap. 4. Philosophical Discoveries. 347 direct motion. While the moon moves from c to $n$, the enfuing node $n$ moves towards the oppofition D , and the motion of the nodes is then direct. But while the moon moves from $n$ to $A$, the enfuing node N moves towards the oppofition D , and then the motion of the nodes being contrary to the motion of the moon, their motion is retrograde; and becaufe the arc $n$ a exceeds $n \mathrm{c}$, it is apparent that the motion is more retrograde than direet.
13. When (Fig. 68.) one node N is between the conjunction в and the enfuing quarter c , while the moon moves from a to N , the enfuing node N moves toward's the conjunction B , and therefore is retrograde: while the moon moves from N to c , the enfuing node $n$ moves towards the conjunction, and is direct. But as the $\operatorname{arc}$ An exceeds N c , the retrograde motion of the nodes muft exceed the direct motion. While the moon moves from c to $n$, the motion of the enfuing node is towards the oppofition D , and is therefore retrograde. While the moon moves from $n$ to $A$, the enfuing node N moves towards the oppofition D , and therefore is direct. But, as the $\operatorname{arcc} n$ exceeds a $n$, it follows that the retrograde motion exceeds the direct motion.

It appears, therefore, that in every revolution of the moon, the retrograde motion of the nodes exceeds the direct motion, excepting only when the line of the nodes paffes through the fun, in which cafe there is no motion of the nodes at all. We fee then, how, from the principle of gravity, the nodes of the moon are made to recede every year. Our author has determined the quantity * of this retrograde motion in every revolution of the moon, and
*Princip, Lib, III. Prop. 32. exactly the theory of thefe motions, drawn from their caufes, agrees with the obfervations of aftronomers. He finds, from the theory of gravity, that the nodes ought to move backward about $19^{\circ}$ $18^{\prime} I^{\prime \prime}$ in the fpace of a year, and the aftronomical tables make this motion $19^{\circ} 2 \mathbf{I}^{\prime} 21^{\prime \prime}$; whofe difference is not $\frac{3}{3} \frac{1}{9}$ of the whole motion of the nodes in a year. By a more correct computation of this motion from its caufe, the theory and obfervation agree within a few feconds.
14. The inclination of the moon's orbit to the ecliptic, is alfo fubject to many variations. When the nodes are in the quarters $A$ and $c$, while the moon moves from the quarter $A$ to the conjunction s , the action of the fun diminifhes the inclination of the plane of her orbit; the inclination of this plane is leaft of all when the moon is in the conjunction B: it increafes again as fhe moves from the conjunction $B$ to the next quarter at c , and is there reftored to its firf quantity nearly. When the nodes of the moon are in $B$ and $D$, fo that the line of the nodes pafies through the fun, the inclination of the moon's orbit is not affected by the action of the fun; becaufe, in that cafe, the plane of her orbit produced paffes through the fun: and therefore the action of the fun can have no effect to bring the moon out of this plane to either fide. It is in this laft cafe that the inclination of the moon's orbit is greateft ; it decreafes as the nodes move towards the quarters; and it is leaft of all when the nodes are in the quarrers, and the moon either in the conjunction or oppoficion. Our author calculates thefe irregularities from their caufes, and finds his conclufions


Chap. 4. Philosophical Discoveries. agree very well with the obfervations of aftronomers *.
15. The astion of the fun diminifhes the gravity of the moon towards the earth, in the conjunctions and oppofitions, more than it adds to it in the quarters, and, by diminifning the force which retains the moon in her orbit, it increafes her diftance from the earth and her periodic time: and becaufe the earth and moon are nearer the fun in their perihelium than in their aphelium, and the fun acts with a greater force there, fo as to fubduct more from the moon's gravity towards the earth; it follows, that the moon muft revolve at a greater diffance, and take a longer time to finifh her revolution in the perihelium of the earth, than in the aphelium ; and this alfo is conformable to obfervation.
16. There is another remarkable irregularity in the moon's motion, that alfo arifes from the action

[^52] apfides. The moon defrribes an ellipfe about the centre of the earth, having one of the foci in that centre. Her greateft and leaft diftances from the earth are in the apfides, or extremities of the longer axis of the ellipfe. This is not found to point always to the fame place in the heavens, but to move with a progreffive motion forwards, fo as to finifh a revolution round the earth's centre in about nine years.

To underftand the reafon of this motion of the apfides, we muft recollect what was fhewed above, that, if the gravity of a body decreafed lefs as the diftance increafes, than according to the regular courfe of gravity, the body would defcend fooner from the higher to the lower apfis, than in half a revolution; and therefore the aplis would recede in that cafe, for it would move in a contrary direction to the motion of the body, meeting it in its motion. But if the gravity of the body fhould decreafe more as the diftance increafes than according to the regular courfe of gravity, that is, in a higher proportion than as the fquare of the diftance increafes, the body would take more than half a revolution to move from the higher to the lower apfis; and therefore, in chat cafe, the apfides would have a progreflive motion in the fame direction as the body.

In the quarters, the fun's ation adds to the gravity of the moon, and the force it adds is greater, as the diftance of the moon from the earth is greater; fo that the action of the fun hinders her gravity towards the earth; from decreafing as much while the diffance increafes, as it ought to do according to the regular courfe of gravity; and therefore, while the moon is in the quarters, her apfides muft recede.

Chap. 4. Philosophical Discoveries. 35 亩 In the conjunction and oppofition, the action of the fun fubducts from the gravity of the moon towards the earth, and fubducts the more the greater her diftance from the earth is, fo as to make her gravity decreafe more as her diftance increafes, than according to the regular courfe of gravity; and therefore, in this cafe, the apfides are in a progreflive motion. Becaufe the action of the fun fubducts more in the conjunctions and oppofitions from her gravity, than it adds to it in the quarters, and, in general, diminifhes more than it augments her gravity; hence it is that the progreffive motion of the apfides exceeds the retrograde motion; and therefore, the apfides are carried round according to the order of the figns.
17. Thus the various irregularities of the moon's motion are explained from gravity: and from this theory, with the affiftance of a long feries of accurate obfervations, her motion may be at length reduced fo exactly to computation, and her appulfes to the fixed ftars, over which the paffes in her courfe, may be predicted with fo much accuracy, as to afford, on many occafions, an opportunity to navigators, to difcover their longitude at fea.

CHAP .

## CHAP. V.

Of the path of a fecondary planet upon an immoveable plane; with an illuftration of Sir Ifaac Newton's account of the motions of the fatellites, from the theory of gravity *.

IN defrribing the motions of the folar fyftem, it is ufual to confider the primary planets, as revolving in immoveable planes, but to refer the motions of the fatellites to planes that are carried along with their primaries about the fun. Sir IJaac Newton follows the fame method, in accounting for their motions from the theory of gravity : by this analyfis, the explication of the motions themfelves, and of the powers that produce them, is rendered more fimple and eafy, than if we fhould refer the motion of the fatellite to an immoveable plane, and contemplate only the path defcribed by it, in confequence of fo compounded a motion, in abfolute pace.

The properties, however, of this path are more fimple than perhaps will be expected on a fuperficial confideration of it; and the referring of the motion of the fatellite to it, may be of ufe on fome occafions, particularly for refolving the difficulties fome have found to underftand Sir IJaac Neroton's account of the motions of the fatellites, from gravity. This path is, in fome cafes, concave towards the fun throughout; in other cafes, the part, of it neareft

[^53]Chap. 5. Philosophical Discoveries. the fun is convex towards the fun, and the reft is concave. An inftance of the former we have in the moon, of the latter in the fatellites of the fuperior planets.

The force that bends the courfe of the fatellite into a curve, when the motion is referred to an immoveable plane, is, at the conjunction, the difference of its gravity towards the fun, and of its gravity towards the primary. When the former prevails over the latter, the force that bends the courfe of the fatellite tends towards the fun ; confequently, the concavity of the path is towards the fun: and this is the cafe of the Moon, as wili appear afterwards. When the gravity towards the primary exceeds the gravity towards the fun, at the conjunction, then the force that bends the courfe of the fatellite tends towards the primary, and therefore towards the oppofition of the fun; confequently the path is there convex towards the fun: and this is the cafe of the fatellites of fupiter. When there two forces are equal, the path has, at the conjunction, what mathematicians call a point of reetitude; in which cafe, however, the path is concave towards the fun throughout.

Becaufe the gravity of the moon towards the fun is found to be greater, at the conjunction, than her gravity towards the earth, fo that the point of equal attraction, where thofe two powers would futtain each other, falls then between the moon and earth, fome * have apprehended that either the parallax of the fun is very different from that which is affigned by aftronomers, or that the moon ought neceffarily to abandon the earth. This apprehenfion may be

[^54]eafily removed, by attending to what has been fhewn by Sir Ifaac Neroton, and is illuftrated by vulgar experiments, concerning the motions of bodies about one another, that are all acted upon by a third force in the fame direction. Their relative motions, not being in the leaft difturbed by this third force, if it aet equally upon them in parallel lines; as the relative motions of the fhips in a fleet, carried away by a current, are no way affected by it, if it act equally upon them; or as the rotation of a bullet, or bomb, about its axis, while it is projected in the air, or the figure of a drop of falling rain, are not at all affected by the gravity of the particles of which they are made up, towards the earth. It is to the inequality of the actions of the fun upon the earth and moon, and the want of parallelifm in the directions of thefe actions, only, that we are to afcribe the irregularities in the motion of the moon.

But it may contribute towards removing this difficulty, to obferve, that if the abfolute velocity of the moon, at the conjunction, was lefs than that which is requifite to carry a body in a circle there around the fun, fuppofing this body to be acted on by the fame force which acts there on the moon, (i. e. by the excefs of her gravity towards the fun, above her gravity towards the earth,) then the moon would, indeed, abandon the earth. For, in that cafe, the moon having lefs velocity than would be neceffary to prevent her from defcending within that circle, fhe would approach to the fun, and recede from the earth. But tho' the abfolute velocity of the moon, at the conjunction, be lefs than the velocity of the earth in the annual orbit, yet her gravity towards the fun is fo much diminifhed by her gravity towards the earth, that her abfolute velocity is ftill much fuperior to that which is requifite to carry a body in a

## Chap. 5. Philosophical Discoveries: 355

 circle, there, about the fun, that is acted on by the remaining force only. Therefore, from the moment of the conjunction, the moon is carried without fuch a circle, reseding continually from the fun to greater and greater diftances, till the arrive at the oppofition; where, being afted on by the fum of thofe two gravities, and her velocity being now lefs than what is requifite to carry a body in a circle, there, about the fun, that is acted on by a force equal to that fum, the moon thence begins to approach to the fun again. Thus fhe recedes from the fun and approaches to it by turns, and in every month her path has two apfides, a peribelium at the conjunction, and an apbelium at the oppofition; between which fhe is always carried, in a manner fimilar to that in which the primary planets revolve between their apfides. The planet recedes from the fun at the perihelium, becaufe its velocity, there, is greater than that with which a circle could be defcribed about the fun, at the fame diftance, by the fame centripetal force; and approaches towards the fun from the aphelium, becaufe its yelocity there, is lefs than is requifite, to carry it in a circle, at that diftance, about the fun. See my Treatife of Fiuxions, Art. 447.Tho' the path of the moon be concave towards the fun throughout, its curvature is very unequal: it is leaft at each lower apfide or conjunction, and greateft at each higher apfide or oppofition. The path of a fatellite of Jupiter has likewife two apfides, in the part which is defcribed every fynodic revolution; but in the lower apfide, the convexity is towards the fun; and it has likewife two points of contrary flexure in every fuch part *.

Sce the note to Corol. 1. Prop. II. belowro

By confidering this path, we fhall arrive at the fame conclufions which Sir Ifaac Newton derived, more briefly, from the laws of motion; that if the folar action was the fame on the fatellite and on the primary, and in the fame direction, the motion of the fatellite around the primary, would be the fame as if the fun was away. This will appear from the following propofitions, where we fuppofe the orbits of the primary about the fun, and of the fatellite about the primary, to be both circular, and the motions in thefe orbits to be uniform and in the fame plane.

## PROPOSITION I. Fig. 70. Pl. VI.

The path of the fatellite, on an immoveable flane, is the epicycloid that is defcribed by a given point in the plane of a circle, wbich revolves on a circular bafe, baving its centre in the centre of the fun, and its diameler in the fame proportion to the diameter of the revolving circle, as the periodic time of the primary about the fun, to the time of the fynodic revolution of the fatellite about the primary: the tangent of the path is perpendicular to the right line that joins the fatellite to the contait of the two circles: and the abfolute velocity of the fatellite is always as its diftance from that contact.

Let T denote the periodic time of the primary about the fun, $t$ the periodic time of the fatellite about the primary. Let s reprefent the fun, A a the orbit of the primary; upon the radius A s , take Aeto as as $t$ is tot. From the centres defcribe the circle eez, and from the centre a the circle emf. Let this circle emf revolve on the other Eez, as its bafe : then a point $L$, taken on the plane

# Chap．5．Phriosophical Discoveries． 357 

 of the circle $\mathrm{e} A \mathrm{~F}$ ，at the diftance a l，equal to the diftance of the fatellite from the primary，fhall de－ fcribe the path of the fatellite．For fuppofe the circle emp to move into the fitua－ tion $e m f$ ，the point a to $a$ ， ，to $l$ ，and let AL and al，produced，meet ем F and emf，in m and $m$ ． Upon the arc em take er＝em，then the angle ear＝e：am．Let ar meet the circle $c l d$ ，defcribed from the centre $a$ with the diftance $a l$ ，in $q$ ；and becaufe eaq＝EAL，the angle eaq reprefents the elongation of the fatellite from the fun at its firft place L ．Becaufe em（二er＋rm）$=e \mathrm{E}+\mathrm{Em}$ and $e r=\mathrm{EM}$ ，it follows that $r m=e \mathrm{E}$ ；confequently the angle ram：eSE：：SE：AE：：T一 $t: t$ ；or，as the angular velocity of the fatellite from the fun，to the angular velocity of the primary about the fun．But ese is the angle deferibed by the primary about the fun，confequently ram，or $q a l$ ，is the fimultaneous increment of the elongation of the fatellite from the fun；$l$ is its place when the primary comes to $a$ ； and the epicycloid defcribed by $l$ is the path of the fatellite．

Becaufe the circle emf moves on the point e，the direction of the motion of any point L is perpendi－ cular to EL；or the tangent of the path at any point l is perpendicular toel．The velocity of any point s．is as its diftance ex；and，the motion of the pri－ mary a being fuppofed uniform and reprefented by ea，the velocity of the fatellite fhall be reprefented by EL ．

## PROPOSITION Ir．

Upon As take A B：As：：tt：T＇T（or AB：AE：： AE：AS）；upon the diameter EB deforibe the circle
e кв meeting ex in K, take lo a tbird proportional. to LK and LE , on the fame fide of L with LK ; and - Jall be the centre of the curvature at L of the path, and lo the ray of curvature.

Becaufe el and el are perpendicular to the path at the points $L$ and $l$, let them be produced, and their ultimate interfection o fhall be the centre of curvature at l. Produce $q e$ till it meet Le in v , join $s v$, and the angle $s e v=q e a=\mathrm{LeA}=\mathrm{Sev}$; confequently the angle $e \mathrm{VE}=e \mathrm{SE}$, the angle EVS $=e s \mathrm{E}$, and the angle evs=e $e s$, and sv is ultimately perpendicular to eo. Now the angle eof is ultimately to eve (三Ese) as ev to eo, that is (becaufe ev:ek: es:eb:: AS:AE) as ekXAS to EOXAE. But the angular motion of EL being equal to the angular motion of EA , while the circle emp turns on the point E , $\mathrm{L} E l$ is therefore ultimately equal to $\mathrm{AE} a$, which is to ESe as $S \mathrm{~A}$ to AE; and eoe being to hel asel to lo, it follows that eoe: ese $:=$ saxel: Aexlo: eoxae. Therefore el:lo: $:$ ek:eo, and el: LK::LO:EL, or LK, LE and Lo are in continued proportion. This theorem ferves for determining the ray of curvature of epicycioids and cycloids of all forts; only when the bafe $E C$ is a right line, $A$ B vanifhes, and E в becomes equal to $\mathrm{E} A$.

Corol. . When $A$ l ot $A C$ is lefs than $A B$, then (becaufe $\mathrm{L} O$ is always on the fame fide of the point 10. with LK) the path is concave towards $s$ throughout. When $\mathrm{AC}=\mathrm{A} \mathrm{B}$, the curvature at the conjunction vanifhes, or the path has there a point of rectitude. When AC is greater than AB (or A $S x$ $\left.\frac{t t}{T T}\right)$, a portion of the path near the conjunction is convex towards $s$, becaufe a part of the circle $c m$

Chap. 5. Phlosophical Discoveries. falls within the circle bкe; and when l comes to either of the interfections of thefe two circles, the path has a point of contrary flexure *.

Corol.2. In the cafe of the moon, $t:$ т $\mathrm{T}:: 1:$ 178 , and $A B=\frac{1}{1} \frac{1}{8} \times A S$; but $A C$ is about $\frac{1}{3} \frac{1}{7} X$ $A S$; confequently $A C$ is lefs than $A B$, and the path of the moon is concave towards the fun throughout.

## PROPOSITION III.

Let A b: As::tt: т t, and the force by which the patb of the fatellite can be defcribed on an immoveable plane, is alroys directed to the point a upon the ray A S; and is always meafured by в ц the diftance of the fatellite from the point B , the gravity of the primary tozeards the fun being reprefented by в А.

We conceive the force by which this path could be defcribed, on an immoveable plane, to be refolved into a force that acts in the direction lo, perpendicular to the path, and bends the path, but has no effect on the velocity of the fatellite; and a force perpendicular to l o that accelerates or retards the motion of the fatellite. The former of thefe is meafured by L к, the latter by в к, the gravity of the primary towards the fun being meafured by А в. For the former is to the gravity of the primary towards S , as $\frac{E L^{2}}{\mathrm{~L} O}$ to $\frac{E A^{2}}{\mathrm{~A} S}$ (thofe forces being directly as the fquares of the velocities, and inverfely as the

[^55] being reprefented by $A B$, the former force will be meafured by L K .

The fecond force that acts on the fatellite in the direction of the tangent of its path, and accelerates or retards its motion, is as the fluxion of the velocity el directly, and the fluxion of the time inverfely. The fluxion of the time is meafured by $\frac{A a}{E A}$ (A a being the arc defcribed by the primary, and E A the velocity with which it is defcribed) $=\frac{E_{E B} e}{}=$ $\frac{r_{E B}}{E}=\frac{l q X_{A E}}{E B X A C}=$ (fuppofing $a n$ and $q u$ to be perpendiculars to $e l$ in $n$ and $u$, becaufe $l q: l u:: a c: a n$, or $\mathrm{Ac}: \mathrm{AN}) \frac{\mathrm{AE} \times l u}{\mathrm{BBXA}}=\frac{l u}{\mathrm{BK}}$. $\quad$ Therefore the force which is meafured by $l u$, the fluxion of the velocity $\mathrm{E} l$, or EL, divided by the fluxion of the time or $\frac{l u}{B K}$, is meafured by вк. The force, therefore, in the direction le being meafured by LK , and the force in the perpendicular direction кв bу к в, the compounded force is meafured by $L \operatorname{B}$, and is directed from L to e .

It appears, from what has been demonftrated, that the path may be defcribed by a force directed towards the point B , (which is given upon the ray As, but revolves along with this ray about s) or by any forces which, compounded together, generate a force tending to B , and always proportional to L B , the diftance of the fatellite from b . Let Lh be equal and parallel to $A B$, and $A$ в $H \mathrm{~L}$ fhall be a párallellogram, and the force $\mathrm{L} k$ may be compounded

Chap. 5. Philosophical Discoveries.
of lhand la; that is, the force lk may be the refult of a force L н acting on the fatellite, equal and parallel to A B, the gravity of the primary towards the fun, and of a force la tending to the primary, and equal to the gravity by which the fatellite would defcribe the circle cld about the primary, in the fame periodic time $t$, if the fun was away; becaufe fuch a force is to the gravity of the primary towards the fun, (reprefented by $A B$ ) as $\frac{A L}{t}$ to $\frac{A S}{T T}$ or as $A L$ to $\mathrm{AS} \times \frac{t t}{T T}=\mathrm{AB}$ :

Thus we arrive at the fame conclufion which Sir Ifaac Neroton, more briefly, derived from an analyfis of the motions of the fatellite ; that while the fatellite gravitates towards the primary, if, at the fame time, it be acted on by the fame folar force as the primary, and with a parallel direction, it will revolve about the primary, in the fame manner as if this laft was at reft, and there was no folar action. Thefe two forces, the gravitation towards the primary, and a force equal and parallel to the gravitation of the primary towards the fun, are exactly fufficient to account for the compounded motion of the fatellite in its path, however complex a curved-line it may appear to be. Nor is there any perturbation of the fatellite's motion, but what arifes from the inequality of the gravity of the fatellite, and of the primary towards the fun, or from their not acting in parallel lines. If we fhould fuppofe them to move about their common centre of gravity, while this is carried round the fun, or if we fuppofe the orbits to be elliptical, the conclufions will ftill be found confonant to what was more briefly deduced by this great author,

## C H A P. VI.

Of the figure of the earth, and the preceflion of the equinoxes.

1. WF the earth was fluid, and had no motion on its axis, the equal gravitation of its parts towards each other would give it a figure exactly fpherical, the columns from the furface to the centre mutually fuftaining each other at equal heights from it. But, becaufe of the diurnal rotation of the earth on its axis, the gravity of the parts at the equator is diminifhed by the centrifugal force arifing from this rotation; the gravity of the parts on either fide of the equator is diminifhed lefs, as the velocity of rotation is lefs, and the centrifugal force, arifing from it acts lefs directly againtt the gravity of the parts; while the gravity at the poles is not at all affected by the rotation. The equilibrium that was fuppofed to be amongtt the parts will not, therefore, now fubfift in a fpherical figure, but will be deltroyed by the inequality of their gravitation, till the water rife at the equator and fink at the poles, fo as, by a greater height at the equator, to compenfate the greater gravity at the poles; and till, by affuming an intermediate height in the intermediate places, the whole earth become of an oblate fpheroidal form, whofe diameter at the equator will be the greateft, and the axis the leaft, of all the lines that can pafs through, the centre.
2. If the gravity of a body at the equator was deftroyed, the motion of rotation would there make it go off in a tangent to the earth; and by moving in the tangent it would rife, in a fecond of time

Chap. 6. Philosophical Discoveries. 363 from the fpherical body of the earth, as much as one extremity of the arc which bodies defcribe there, in a fecond, falls below the tangent drawn at the other extremity : and this is found to be a fpace of about 7.54 lines, French meafure. The effect of the centrifugal force of bodies at the equator, in a fecond of time, is proportional to this fpace. The effect of the centrifugal force at any place at a diftance from the equator, for example, at Paris, is lefs for the reafons above mentioned; and, there, it is found, by calculation, that it could only produce a motion of 3,267 lines in a fecond. Add this to what, by experiments, bodies are found to defcribe by their gravity at Paris, viz. 15 feet, 1 inch and 2 lines, and the fum 2177,267 lines will fhew the fpace which bodies would defribe by their gravity, in a fecond of time, if there was no centrifugal force there. By comparing this with the effect of the centrifugal force at the equator, in the fame time, we fhall find that the centrifugal force, there, is the $\frac{7}{289}$ part of the power of gravity, becaufe 7,54 is to 2177,267 as i to 289 .
3. From this it follows, that a body at the equator lofes $\frac{1}{2} \frac{1}{8} 9$, at leaft, of its gravity; and the equator muft be, at leaft, $\frac{x}{289}$ higher than the poles from the centre of the earth. But as the parts of the equator lofe ftill of their gravity as they rife from the centre of the earth, and the regular courfe of gravity is altered by the change of figure, this is not the true proportion of the height of the earth at the equator, to its height at the poles.

Our author, who was never at a lofs to find fome expedient by which he might determine, accurately or near the truth, what he wanted; in order to take in there perplexed confiderations, affumes, as an bypo-
bypotbefis, that the axis of the earth is to the diameter of the equator, as 100 to ior; he thence determines what mult be the centrifugal force at the equator, that the earth might take fuch a form, and finds it muft be $\frac{4}{503}$ of gravity, and therefore would exceed the prefent centrifugal force there, which is only $\frac{x}{\frac{x}{8} 万}$ of gravity. By the rule of proportion, he fays, that if a centrifugal force equal to $\frac{4}{505}$ of gravity, would make the earth higher at the equator than at the poles, by $\frac{x}{\mathrm{t}}$ of the whole height at the poles, a centrifugal force that is the $\frac{1}{289}$ of gravity, will make it higher by a proportional excefs, which is found by calculation to be $\frac{x}{2 \frac{1}{2}}$ of the height at the poles; and thus our author difcovers that the diameter at the equator is to the diameter at the poles, or the axis, as 230 to 22 g .
4. This computation fuppofes the earth to be of an uniform denfity every where : but if the earth is more denfe near the centre, then bodies at the poles will be more attracted by this additional matter being nearer to it; and, for this reafon, the excefs of the femidiameter of the equator above the femiaxis will be different. What we have faid of a fluid earth muft hold of the earth in its prefent ftate; for if it had not this figure in its folid parts, but a fpherical figure, the ocean would overflow all the equatorial regions, and leave the polar regions elevated many miles above the level of the fea; whereas we find the one is no more elevated above the level of the ocean, than the other.
5. The planet $\mathcal{F}$ ufiter revolves on his axis with much more rapidity than our earth, and finifhes his diurnal rotation in lefs than ten hours. The denfity of that planet is alfo lefs; and therefore his figure is more different from a fphere than the figure of

# Chap. 6. Philosophical Discoveries. 365 

 the earth, and his equatorial diameter exceeds his axis in a greater proportion. Their difference is fo fenfible, that they are found, by the obfervations of aftronomers, to be to one another as 13 is to 12 .6. The decreafe of gravity from the poles towards the equator, is very manifeft from the motion of pendulums. A pendulum that vibrates, in a fecond, in the northern regions, when carried to the equator, is always found to move too low, and requires to be made fhorter to vibrate truly in a fecond. This fhews the gravity is lefs there : and this obfervation confirms the diurnal motion of the earth, and its oblate fpheroidal figure at the fame time. It is alfo a confequence of this figure of the earth, that the degrees in a meridian muft increafe from the equator to the poles; but the difference is fo fmall that it cannot be difcovered, from obfervation, but in latitudes that differ confiderably from each other ; and the variation of the degrees, that are near one another, appears, by our author's computations, to be incomparably lefs adapted for judging of the figure of the earth, than the motion of pendulums, in which the leaft variation becomes very fenfible, in a great number of vibrations.
7. Some have imagined the flownefs of the pendulums, at the equator, may have proceeded, from the rod of the pendulum being extended to a greater length, by the heat: but our author has fhewed, that this could produce but a very fmall part of the effect. Mr. Richer, who was very careful in making his obfervations, found, that a pendulum vibrating in a fecond of time, in the ifland of Cayenne, was fhorter than one that vibrated, in the fame time, at Paris, by one line and a fourth part of a line. Our author, with good reafon, thinks that a difference
of one fixth part of a line, may be allowed as the effect of the heat; and, fubducting this from the difference obferved by Mr. Ricber, the remainder, 1 line and $\frac{x}{T_{2}}$ of a line, is the difference owing to the decreafe of gravity, and is very confonant to what our author draws from his theory. This obfervation and our author's theory agree, in allowing feventeen miles for the excefs of the height of the earth at the equator, above its height at the poles.
8. From the oblate figure of the earth, our aule thor has accounted for the preceffion of the equinoxes. We commonly fuppofe, that, while the earth moves in her orbit round the fun, her axis continues always parallel to itfelf, fo as to form an invariable angle with the ecliptic of about $66 \frac{1}{2}^{\circ}$ : from hence it is, that the plane of the equator is inclined to the ecliptic, in an angle of $23^{\frac{1^{\circ}}{}}$, and produced paffes through the centre of the fun, twice only in every revolution. The points of the heavens, where the centre of the fun appears to be, in thefe two cafes, are called the equinoctial points. In any other parts of the "earth's orbit, the fun is on one fide of the plane of the equator; being to the north of it in the fummer half of the year, and to the fouth of it in the winter half. Thefe equinoctial points are not fixed in the heavens, but have a flow motion, from eaft to weft, among the ftars, of about $50^{\prime \prime}$ in a year ; and hence it is, that the interval of time betwixt any equinox and that fame equinox, in the following revolution of the earth (which aftronomers call the tropical year), is fome minutes fhorter than the fidereal year, or the period wherein the earth revolves from one point of her orbit, to the fame point again: and, becaufe the retrograde motion of the equinoctial points thus advances the time of every equinox a little fooner than it would otherwife have

## Chap. 6. Philosophical Discoveries.

 happened, this phænomenon is called the preceffion of the equinoxes. The philofophers who maintained the Ptolemaic fyitem afcribed this motion to the fixed ftars; and, in their ordinary way, made no fcruple to contrive a fphere for this purpofe, which they fuppofed to revolve with a very flow motion on the poles of the ecliptic, and to carry all the fixed ftars along with it; whereas this phrnomenon is accounted for by a retrograde motion of the nodes of the equator and ecliptic, fimilar to the motion of the nodes of the moon's orbit.It was fhewn above, how the action of the fun produces the retrograde motion of the nodes of the moon; and it follows, from the fame principles, that if a planet revolved about the earth near to its furface in the plane of the equator, its nodes would allo go backward, tho' with a flower motion than thofe of the moon, in proportion as its diflance from the earth's centre was lefs than that of the moon. Suppofe the number of fuch planets to be increafed till they touch each other, and form a ring in the equator, and the nodes of this ring would go backward in the fame manner as the nodes of the orbit of any one planet revolving there. Suppofe then this ring to adhere to the earth; and its nodes would ftill go backward, but with a much nower motion, becaufe the ring mutt move the whole earth, to which it is fuppofed to adhere. The elevation of the equatorial parts of the earth has the fame effect as fuch a ring would have; only the motion of the nodes of the equator, or of the equinoctial points, is nower, becaufe the accumulated parts of the earth, above a fpherical figure, are diffufed over its furface, and have al lefs effect than if they were all collected in the place of the equator, in the form of a ring. The moon has a greater force on this ring than the ever, produced by both is fo low, that thofe points will not finih a revolution in lefs than 25000 years. Our author has determined the quantity of this motion, from its caufes, and finds it, from the theory, to be perfectly confonant with the obfervations of aftronomers.

There is another effect of the action of the fun and moon on this ring, which is too fmall to be fenfible in aftronomical obfervations: their action on the ring, makes its inclination to the ecliptic to decreafe and increafe, by turns, twice every year.

## C H A P. VII.

## Of the ebbing and flowing of the fea.

IT is not in the motions of the celeftial bodies only, that the effects of their mutual gravitation are vifible, for we are now to fhew, that a phænomenon which paffes on our earth, and is known to every body, proceeds from the fame principle; I mean, the ebbing and flowing of the fea, the folution of which, from the bad fuccefs of thofe who attempted it before our author, had become a reproach to philofophy, But he has very plainly and fully accounted for it, from the unequal gravitations of the parts of the earth towards the fun and moon. It will be worth while, becaufe it is a very celebrated queftion, to be the more particular in explaining his folution of it.

It is obvious, that, if the earth was entirely fuid, and quiefcent, its particles, by their mutual gravity towards each other, would form themfelves into the figure of an exact fphere. Suppofe now, that fome power acts on all the particles of this earth, with an equal force, and in parallel directions, the whole mafs will be moved by fuch a power, but its figure will fuffer no alteration by it; becaufe all the particles being equally moved by this power, in parallel lines, they will ftill keep the fame fituation with refpect to each other, and ftill form a fphere, whofe centre will have the fame motion as each particle. For, as a drop of water, while it falls towards the earth, retains its fpherical figure; and, as the fituation of bodies in a hhip, that moves with an uniform. motion forward, is no way affected by the motion which is common to the fhip and all the bodies in it; fo the fituation of the parts of the earth, with refpect to each other, can be no way affected by any power that acts with the fame force, and in the fame direction, on every part, and promotes each equally.

We have already fhewed, that the particles of the earth gravitate towards the moon, and if the gravitation of the particles was every where the fame, and acted in the fame direction, it would have no effect on the figure of the earth; fo that, if the motion of the earth round the common centre of gravity of the earth and moon was deftroyed, and the eamh was left to the influence of its gravitation towards the moon, the earth falling towards the moon would retain its foherical figure, all the parts being equally carried on, and retaining, therefore, the fame litudtion with refpect to each other.

But the actions of the moon, on different parts of the earth, are unequal; thofe parts, by the general law, being moft attracted which are neareft the moon, and thofe being leaft attracted which are farthef from the moon; while the parts that are at a middle diftance, are attracted by a mean degree of force : nor are all the parts acted on in parallel lines, but in lines directed towards the centre of the moon: and, on thefe accounts, the fpherical figure of the earth mult fuffer fome change from the moon's action.

Suppofe the earth to fall towards the moon, as before, and let us abftract from the mutual gravitation of its parts towards each other, as alfo from their cohefion; and it will eafily appear, that the parts neareft the moon would fall with the fwifteft motion, being moft attracted, and that they would leave the centre or greater bulk of the earth behind them in their fall; while the more remote parts would fall with the floweft motion, being lefs attracted than the reft, and be lefi a little behind the bulk of the earth, fo as to be found at a greater diftance from the centre of the earth than at the beginning of the motion. From which it is manifeft, that the earth would foon lofe its fpherical figure, and form itfelf into an oblong fpheroid, whofe longelt diameter would point at the centre of the moon. If the particles of the earth did not gravitate towards each other, but towards the moon only, the diftances betwixt the parts of the earth that are fuppofed to be neareft to the moon, and the central parts, would continually increafe, becaufe of their greater celerity in falling; and the diftance betwixt the central parts, and the parts that are fartheft from the moon, would increafe continually at the fame time; thefe being left behind by the central parts, which they would follow, but with a lefs velocity. Thus the figure of the earth would become more and more oblong, that diameter of it which pointed towards the moon continually increafing.

But this is not the only reafon why the earth would foon affume an oblong fpheroidal form, if its parts were allowed to fall freely by their gravity towards the moon's centre. The lateral parts of the earth (that is, thofe which are at the diftance of a quarter of a circle from the point which is directly below the moon) and the central parts defcending with equal velocities, towards the fame point, viz. the centre of the moon, in approaching to it, would manifertly approach, at the fame time, to each other, and, their diftance growing lefs, the diameters of the earth paffing through them would become lefs; fo that the diameter of the earth that points towards the moon would increafe, and thofe diameters of the earth that are perpendicular to the line joining the centres of the earth and moon, would decreafe at the fame time, and render the figure of the earth ftill more oblong for this reafon.

Let us now allow the parts of the earch to gravitate towards its centre; and, as this gravitation far exceeds the action of the moon, and much more exceeds the differences of her actions on the different parts of the earth, the effect that will refult from the inequalities of thefe actions of the moon, will be only a fmall diminution of the gravity of thofe parts of the earth which it endeavoured, in our former fuppofition, to feparate from its centre, and a fmall addition to the gravity of thefe parts which it endeavoured to bring nearer to its centre ; that is, thofe parts of the earth which are neareft to the
moon, and thofe which are fartheft from her, will have their gravity towards the earth fomewhat abated; whereas the lateral parts will have their gravity increafed: fo that, if the earth be fuppofed fluid, the columns from the centre to the neareft and to the fartheft parts muft rife, till, by their greater height, they be able to ballance the other columns, whofe gravity is either not fo much diminifhed, or is increafed by the inequalities of the action of the moon: and thus the figure of the fluid earth muft be ftill an oblong fpheroid.

We have hitherto fuppofed the earth to fall towards the moon by its gravity. Let us now confider the earch as projected in any direction, fo as to move round the centre of gravity of the earth and moon: it is manifeft, that the gravity of each particle towards the moon will endeavour to bring it as E.ir from the tangent, in any fmali moment of time, as if the earth was allowed to fall freely towards the moon; in the fame manner as any projectile at our earth, falls from the line of projection as far as it would fall by its gravity in the perpendicular, in the fame time. Therefore the parts of the earth neareft to the moon, will endeavour to fall fartheft from the tangent, and thofe farthert from the moon will endeavour to fall leaft from the tangent, of all the parts of the earth; and the figure of the earth, therefore, will be the fame as if the earth fell freely towards the moon: that is, the earth will ftill affect a fpheroidal form, having its longeft diameter directed rowards the moon.

What muft be carefully attended to here, is, that it is not the action of the moon, but the inequalities in that action, that produce any variation from the foherical figure; and that if this action was the

Chap. 6. Philosofhical Discoveries. fame in all the particles as in the central parts, and acted in the fame direction, no fuch change would enfue. Our author, therefore, to account for this matter, conceives firf the attraction of the central parts to be diffufed with an equal force over all the parts, in the fame direction, and then conceives the inequalities as arifing from a power fuperadded, and directed towards the moon where there is an excefs, and directed in the oppofite line where there is a defect, in the attraction of the parts, compared with the attraction of the central parts: for thus the fum of thefe forces, in the firft cafe, will account for the attraction where it exceeds, and their difference will account for the attraction where it is lefs than in the central parts. And when the effects of thefe powers are confidered as they affect the figure of the earth, it is manifeft that they muft produce fuch an oblong fpheroid as we have defrribed; the fuperadded force drawing the parts neareft the moon towards her, and therefore from the earth's centre, while it draws the parts fartheft from the moon in an oppofite direction; and therefore ftill draws from the centre of the earth alfo.

The action of the moon on the lateral parts is refolved into two, one equal and parallel in its direction to her action on the central parts, and another directed from thofe lateral parts towards the centre of the earth; the firft of thefe can have no effect upon the figure of the earth, being confidered as common to all the particles, and therefore to be negiected in this enquiry: it is the other that adds to the gravity of the lateral parts towards the centre of the earth, and, by adding to the weight of the lateral columns, it makes them fuftain the other columns, whofe gravity is diminifhed by the action of the moon, to a greater height; and the power which
alters the fpherical figure is to be eftimated as the fum of two powers, that which is added to the gravity of the one, and is fubducted from the gravity of the other.

Hitherto we have abftracted from the motion of the earth on its axis: but this mutt alfo be confidered in order to know the real effect of the moon's actions on the fea. Was it not for this motion, the longeft diameter of the fpheroidal figure, which the fuid earth would affume, would point at the moon's centre; but, becaufe of the motion of the whole mafs of the earth on its axis from weft to eaft, the moft elevated part of the water no longer anfwers precifely to the moon, but is carried beyond the moon towards the eaft in the direction of the rotation.

The water continues to rife after it has paffed directly under the moon, tho' the immediate action of the moon there begins to decreafe, and comes not to its greateft elevation till it has got half a quadrant further. It continues to defcend after it has paffed at 90 degrees ditance from the point below the moon, tho' the force which the moon adds to its gravity begins to decreafe there. For ftill the action of the moon adds to its gravity, and makes it defcend till it has got half a quadrant farther: the greateft elevation, therefore, is not in the points which are in a line with the centres of the earth and moon, but about half a quadrant to the eaft of thefe points in the direction of the motion of notation.

Thus it appears that the fpheroidal form, which the fluid earth would affect, will be fo fituated that the longeft diameter of that figure will point to the ealt of the moon, or that the moon will always be to the weft of the meridian of the parts of greateft elevation. Suppofe now an ifland in this fluid earth, and it will approach in every revolution to each elevated part of this fpheroid, and the water on the fhore of this inand will neceffarily rife twice every lunar day; and the time of high water will be when it approaches to thefe elevated parts, that is, when it has paffed to the eaft of the moon, or when the moon is at fome diftance to the weft of the meridian.

We have hitherto taken notice of the action of the moon only: but it is manifeft, that, for the fame reafons, the inequality of the fun's action on the different parts of the earth would produce a like effect, and that thefe alone would produce a like variation from the exact fpherical figure of a fluid earth. Indeed the effect of the fun, becaufe of his immenfe diftance, muft be confiderably lefs, tho' the gravity towards the fun be vaftly greater. For it is not their actions, but the inequalities in the actions of each, which have any effect ; as we have often obferved. The fun's diftance is fo great, that the diameter of the earth is a point compared to it, and the difference between the actions of the fun on the neareft and fartheft parts becomes, on this account, vaftly lefs than it would be if the fun was as near as the moon, whofe diftance from us is about 30 diameters of the earth. Thus the inequality of the action of the earth on the parts of a drop of water is altogether infenfible, becaufe the diameter of the drop is an infenfible quantity compared with its diftance from the centre of the earth.

However, the immenfe bulk of the fun makes the effect ftill fenfible at fo vaft a diftance; and therefore, tho' the action of the moon has the great-

Bb 4.
cf
eft thare in producing the tides, the action of the fun adds ferifibly to it when they confpire together, as in the change and full of the moon, when they are nearly in the fame line with the centre of the earth, and therefore unite their forces; fo that then the tides are greateft, and are what we call the $\int$ pring tides. The action of the fun diminifhes the effect of the moon's adtion in the quarters, becaufe the one raifes the veater in that cafe where the other depreffes it; and therefore the tides then are leaft ; and thefe we call the neap tides. Tho', to fpeak accurately, the fpring and neap tides murt be fome time after; becaufe, as in other cafes, fo in this, the effect is not greateft or leaft when the immediate influence of the caufe is greateft or leaft. As the greateft heat, for example, is not on the folftitial day, when the immediate action of the fun is greateft, but fome time after.

That this may be more clearly underfood, let it be confidered, that, tho' the actions of the fun and moon were to ceafe this moment, yet the tides would continue to have their courfe for fome time: For the water where it is now highef would fubfide and flow down on the parts that are lower, till, by the motion of defcent, being there accumulated to too great a height, it would neceffarily return again to its firt place, tho' in a lefs meafure, being retarded by the reffitance arifing from the attrition of its parts. Thus it would for fome time continue in an agitation like to that in which it is at prefent. The waves of the fea that continue after a ftorm ceafes, and every motion almoft of a fluid, may illuftrate this.

The high water does not always anfwer to the fame fituation of the moon, but happens fometimes
fooner, acted on the fea. This procceds from the action of the fun, which brings on high water fooner when the fun alone would produce a tide earlier than the moon, as the fun manifeftly would in the firf and third quarter; and retards the time of high water a little, when the fun alone would produce a tide later than the moon, as in the fecond and laft quarters. The different diftances of the moon from the earth, produce likewife a fenfible variation in the tides. When the moon approaches the earth, her action on every part increafes, and the differences of that action, on which the tides depend, increafe. For her action increafes as the fquares of the diftances decreafe; and tho' the differences of the diftances themfelves be equal, yet there is a greater difproportion betwist the fquares of lefs than the fquares of greater quantities. As for example 3 exceeds 2 as much as 2 exceeds 1 , but the fquare of 2 is quadruple of the fquare of x , while the fquare of 3 (viz. 9.) is little more than double the fquare of 2 (viz. 4.) Thus it appears, that, by the moon's approach, her action on the neareft parts increafes more quickly than her action on the remote parts, and the tides, therefore, increafe in a higher proportion as the diftances of the moon decreafe. Our author fhews that the tides increare in proportion as the cubes of the diftances decreafe, fo that the moon at half her prefent diftance would produce a tide eight times greaier. The moon defcribes an ellipfe about the earth, and in her neareft diftance produces a tide fenfibly greater than at her greateft diftance from the earth : and hence it is that two great fpring tides never fucceed each other immediately; for, if the moon be at her neareft diftance from the earth at the change, fhe muit be at her greateft diftance at the full, having, in the intervening time, finifhed half a revolution; and
therefore the fpring tide then will be much lefs than the tide at the change was: and for the fame reafon, if a great fpring tide happen at the time of full moon, the tide at the enfuing change will be lefs.

It is manifeft, that if either the fun or moon was in the pole, they could have no effect on the tides; for their action would raife all the water at the equator to the fame height ; and any place of the earth, in defribing its parallel to the equator, would not meet, in its courfe, with any part of the water more elevated than another; fo that there could be no tide in any place. The effect of the fun or moon is greateft when in the equator: for then the axis of the fpheroidal figure, arifing from their action, moves in the greateft circle, and the water is put into the greateft agitation; and hence it is, that the fpring tides produced when the fun and moon are both in the equator, are the greateft of any, and the neap tides are the leaft of any, about that time. But the tides produced when the fun is in either of the tropics, and the moon in either of her quarters, are greater than thofe produced when the fun is in the equator, and the moon in her quarters; becaufe, in the firft cafe, the moon is in the equator ; and, in the latter cafe, the moon is in one of the tropics: and the tide depends more on the action of the moon than that of the fun, and is therefore greateft when the moon's action is greateft. However, becaufe the fun is nearer the earth in winter than in fummer, hence it is, that the greateft fpring tides are after the autumnal and before the vernal equinox.

When the moon declines from the equator towards either pole, one of the greatelt elevations of the water follows the moon, and defcribes nearly the parallel op the earth's furface which is under that which which the moon, becaufe of the diurnal motion, feems to defcribe: and the oppofite greatelt elevation, being Antipodes to that, mult defcribe a parallel as far on the other fide of the equator: fo that while the one moves on the north fide of the equator, the other moves on the fouth fide of it, at the fame diftance. Now the greateft elevation which moves on the fame fide of the equator, with any place, will come nearer to it than the oppofite elevation, which moves in a parallel on the other fide of the equator; and therefore, if a place is on the fame fide of the equator with the moon, the day tide, or that which is produced while the moon is above the horizon of the place, will exceed the night tide, or that which is produced while the moon is under the horizon of the place. It is the contrary if the moon is on one fide and the place on the other fide of the equator; for then the elevation which is oppofite to the moon, moves on the fame fide of the equator with the place, and therefore will come nearer to it than the other elevation. This difference will be greateft when the fun and moon both defcribe the tropics; becaufe the two elevations in that cafe defcribe the oppofite tropics, which are the fartheft from each other of any two parallel circles they can defcribe. Thus it is found, by obfervation, that the evening tides in the fummer exceed the morning tides, and the morning tides in winter exceed the evening tides. The difference is found at Brifol to amount to fifteen inches, at Plymoutb to one foot. It would be ftill greater, but that a fluid always retains an impreffed motion for fome time; fo that the preceding tides affect always thofe that follow them *.

The

[^56]The phænomena of particular places agree with thefe general obfervations, if the fituation and extent of the feas and fhores, in which they are fituated, are confidered. It has been always known that the tides follow the motion of the moon, rifing twice in one revolution of the moon to the meridian of any place; which exceeds a folar day by above $\frac{3}{4}$ of an hour, becaufe the proper motion of the moon retards fo much her appulfe to the meridian of the place. All the effects of the fun's action, fometimes promoting, fometimes abating the effects of the action of the moon, as before mentioned, are alfo conformable to perpetual obfervation: and the tides in places that lie on a deep and open ocean, where the water can eafily follow the influences of the fun and moon, are agreeable to this theory.

That the tides may have their full motion, the ocean in which they are produced ought to be extended from eaft to weft $90^{\circ}$, or a quarter of a circle of the earth, at leaft. Becaufe the places,
tor, F any place not in the equator, $\mathrm{F} f$ its parallel, $\mathrm{D} d$ a parallel on the other fide of the equator, 1 the moon's place three hours before, i the place of the earth to which I, is vertical, and $b$ the oppofite place, $k, k$, places $90^{\circ}$ difant from thefe. Then will $\mathrm{ch}, \mathrm{c} \hat{b}$, meafure the greateft elevations of the water, and $\mathrm{CK}, \mathrm{c} k$, the leaft. $\mathrm{c} \mathrm{F}, \mathrm{c} f, \mathrm{CD}, \mathrm{c} d$, will be the elevations at $\mathrm{F}, f, \mathrm{D}, d$. And if NM is a circle of the fphesoid, meeting the equator and thefe parallels in s , $\mathrm{R}, \mathrm{T}, \mathrm{C} . \mathrm{N}$ will be the elevation of the water at $\mathrm{S}, \mathrm{R}, \mathrm{T}$, or any other places in the circle Nm . The highent tides at any place F , happen at F and $f$, three hours after the moon's pafing the meridian, above or below the horizon; and the lowelt at e three hours after her fetting or rifing. And if F and L are on the fame fide of the equator, the day tide will rife higher than the night tide, c F being greater than $\mathrm{c} f$. 'Tis the contrary, when the moon's declination and the latitude of a place $D$ are of oppofite denominations, the one north and the other fouth; becaufe then $\mathrm{C} \square$ is greater than $\mathrm{C} d$.


## Chap. 6. Philosophical Discoveries. 38 E

 where the moon raifes moft, and moft depreffes, the water, are at that diftance from each other. Hence it appears, that it is only in the great oceans that fuch tides can be produced; and why in the larger pacific ocean they exceed thofe in the Atlontic ocean. Hence alfo, it is obvious why the tides are not fo great in the torrid zone, between Africa and America, where the ocean is narrower, as in the temperate zones on either fide; and, from this alfo, we may underfand why the tides are fo fmall in illands that are very far diftant from the fhores. It is manifeft, that, in the Atiantic ocean, the water cannot rife on one fhore but by defcending on the other; fo that, at the intermediate diffant inands, it muft continue at about a mean height betwixt its elevation on the one and on the other hore.As the tides pafs over fhoals, and run through ftraits into bays of the fea, their motion becomes more various, and their height depends on a great many circumftances. The tide that is produced on the weftern coafts of Europe, in the Atlantic, correfponds to the fituation of the moon we defcribed above. Thus it is high water on the coafts of Spain, Portugal, and the weft of Ireland, about the third hour after the moon has paffed the meridian. From thence it flows into the adjacent channels, as it finds the eafieft paffage. One current from it, for example, runs up by the fouth of England, another comes in by the north of Scotland: they take a confiderable time to move all this way, and it is high water fooner in the places to which they firt come; and it begins to fall at thofe places, while they are yet going on to others that are farther in their courfe. As they return, they are not able to raife the tide, becaufe the water runs fafter off than it returns, till, by a new tide propagated from the open ocean, the gins to rile again. The tide takes twelve hours to come from the ocean to London-bridge, fo that, when it is high water there, a new tide is already come to its height in the ocean; and, in fome intermediate place, it murt be low water at the fame time. In channels, therefore, and narrow feas, the progrefs of the tides may be, in fome refpects, compared to the motion of the waves of the fea. Our author alfo obferves, that when the tide runs over fhoals, and flows upon flat fhores, the water is raifed to a greater height than in the open and deep oceans that have fteep banks; becaufe the force of its motion cannot be broke, upon thefe level thores, till the water rifes to a greater height.

If a place communicates with two oceans, (or two different ways with the fame ocean, one of which is a readier and eafier paffage) two tides may arrive at that place in different times, which, interfering with each other, may produce a great variety of phænomena. An extraordinary initance of this kind is mentioned by our author at Bat/ba, a port in the kingdom of Tunquin in the Eaft Indies, of northern latitude $20^{\circ} 50^{\prime}$. The day in which the moon paffes the equator, the water ftagnates there withour any motion: as the moon removes from the equator, the water begins to rife and fall once a day ; and it is high water at the fetting of the moon, and low water at her rifing. This daily tide increafes for about feven or cight days, and then decreafes for as many days by the fame degrees, till this motion ceafes when the moon has returned to the equator. When the has paffed the equator, and declines towards the fouth pole, the water rifes and falls again, as before; but 'tis high water now at the rifing, and low water at the fetting of the moon.

Our author, to account for this extraordinary tide, confiders that there are two inlets to this port of BatJa, one from the Cbinefe ocean betwixt the continent and the Manillas, the other from the Indian ocean betwixt the continent and Borneo. This leads him to propofe, as a folution of the phænomenon, that a tide may arrive at Bat $/ \mathrm{ba}$, through one of thefe inlets, at the third hour of the moon, and another through the other inlet fix hours after, at the ninth hour of the moon. For, while thefe tides are equal, the one flowing in as the other ebbs out, the water muft ftagnate: now they are equal when the moon is in the equator; but as foon as the moon begins to decline on the fame fide of the equator with $B a t h a$. we have thewed that the diurnal tide muft exceed the nocturnal, fo that two greater and two leffer tides mult arrive at $B a t / \beta a$ by turns. The difference of thefe will produce an agitation of the water, which will rife to its greateft height at the mean time betwixt the two greateft tides, and fall loweft at a mean time betwixt the two leaft tides; fo that it will be high water about the fixth hour at the fetting of the moon, and low water at her rifing. When the moon has got to the other fide of the equator, the nocturnal tide will exceed the diurnal ; and therefore, the high water will be at the rifing, and low water at the fetting, of the moon. The fame principles will ferve to account for other extraordimary tides, which, we are told, are obferved in places whofe fituation expofes them to fuch irregularities.

Our author does not content himf if with the fe general obfervations, but calculates the effects of the fun and moon upon the tides, from their attractive powers. The augmentation of the gravity of the lateral parts of the earth, produced by the action the water under the fun, and the parts oppofite to it, above its height in the lateral parts; the whole force that produces this effeet is to be confidered as triple of what is added to the gravity of the lateral parts: and is thence found to be to the gravity of the particles as I to 12868200 , and to the centrifugal force at the equator as 1 to 44527 . The elevation of the waters, by this force, is confidered by our author as an effect fimilar to the elevation of the equatorial parts above the polar parts of the earth, arifing from the centrifugal force at the equator; and, being 44527 times lefs, is found to be 1 foot and $11 \frac{1}{3} \frac{1}{3}$ inches, Paris meafure. This is the elevation arifing from the action of the fun upon the water.

In order to find the force of the moon upon the water, he compares the fpring tides at the mouth of the river Avon below Brifol (which are the effect of the fum of the forces of the fun and moon when their actions almoft confpire together, with the neap tides there (which are the effect of the difference of thefe forces when they act almoft againft one ano-

* Princip. Lib. III. Prop. $3^{6}$.

Chap. 7. Philosophical Discoveries. 385 ther $r_{2}$ ) and finds their proportion to be that of 9 to 5; from which, after feveral neceffary corrections; he concludes that the force of the moon is to the force of the fun, in raifing the waters of the ocean, as 4,48 I 5 to I; fo that the force of the moon is able, of itfelf, to produce an elevation of 8 feet and $7 \frac{5}{2}$ inches, and the fun and moon together may produce an, elevation of about $10 \frac{1}{2}$ feet, in their mean diftances from the earth, and an elevation of about i2 feet when the moon is neareft the earth. The height to which the water is found to rife, uport the coafts of the open and deep ocean, is agreeable enough to this computation.

It is from this laft calculation that he is able to make an eftimate of the denfity and quantity of matter in the moon. Her influence on the tides is the only effect of the moon's attracting power which we have accefs to meafure, and it enables us to eftimate her denfity compared with that of the fun, which we find it exceeds in the proportion of 489 f to 1000 ; and fince the denfity of the earch is to that of the fun as 4000 to 1000 , it follows that the moon mult be more denfe than the earth in the proportion of 4891 to 4000 , of of It to 9 nearly. The proportion of the diameter of the earth to that of the moon is known, from aftronomical obfervations, to be that of 365 to 100 ; and from there two. proportions it eafily follows, that the quantity of matter in the moon is to the matter in the earth as I to 39,788 ; and the centre of gravity of the earth and moon mult be, therefore, almof 40 times nearer to the earth than to the moon; and, the fitua: tion of their centre of gravity being known, the motions in their fyftem nay be determined with great precifenefs.

Our author enquires into the figure of the moon: and, becaufe the earth contains near 40 times more matter than the moon, the elevation produced by the action of the earth in the parts of the moon that are neareft to it, and in the parts oppofite to thefe, would be near 40 times greater than that which the moon produces in our feas, if this elevation was not to be diminifhed in proportion as the femidiameter of the moon is lefs than the femidiameter of the earth, that is, in the proportion of 100 to 365 . By compounding thefe proportions he finds, that the diameter of the moon that paffes through the centre of the earth, muft exceed thofe that are perpendicular to it, by about 186 feet. He thinks the folid parts of the moon mult have been formed into fuch a fphervidal figure, having its longeft diameter directed towards the earch; and this may be the reafon why the moon always turns the fame fide towards the earth. If there were great feas in the moon, and if the revolved on her axis fo as to turn different fides towards the earth, there would have been very great tides produced in them, fuch as would exceed our tides ten times; but, by her keeping one fide always towards the earth, there are no tides produced in her feas, but what proceed from the differences of their diftances from the earth, and from the moon's librations; for the action of the fun can have very little effect upon them.

C HAP.

## CHAP. VIIL.

## Of the comiets.

HItherto we have treated of the planets: butry befides thefe, we find in the expanfe of heaven many other bodies belonging to the fyttem of the fun, that feem to have much more irregular motions. Thefe are the comets, which, defcending from the far diftant parts of the fyften with great rapidity, furprize us with the fingular appearance of a urain, or tail, which accompanies them; become virible to as in the lower parts of their orbits, and; after a fhort ftay, are carried off again to vaft diftances, and difappear. Tho' fome of the ancients had more juft notions of them, yet the opinion having prevailed, that they were only meteors generated in the air, like to thofe we fee in it every night; and in a few moments vanifhing, no care was taken to obferve or record their phenomena accurately, till of late. Hence this part of aftronomy is very imperfect. The number of the comets is far from being known: many have been noted by hiftorians formerly, and not a few of late obferved by aftronomers; and fome have been difcovered accidentalty by telefcopes, paffing by us, that never became vifible to the naked eye: fo that we may conclude their number to be very great. Their periods, magnitudes, and the dimenfions of their orbits, are alfo uncertain. This is a part of fcience, the perfection of which may be referved for fome diftant age, when thefe numerous bo fies, and their valt orbits, by long and accurate obfervation, may be added to the known parts of the folar fyitem. Aftronomy will appear as a new fcience, atter all the difcoveries we
now boalt of: but then it will be remembred, even in thofe flourifhing days of aftronomy, that it was Sir Ifaac Neroton who difcovered and demonftrated the principles by which alone fuch great improvements could be made; and that he begun and carried this work fo far, that he left to pofterity little more to do, but to obferve the heavens, and compute after his models.

Having this part of aftronomy to deduce almoft from its elements, he begins with fhewing, againft the fcholaftic philofophers, that the comets are above the moon; becaufe they participate of the apparent diurnal motion, rifing and fetting daily, as all things that are not appendant to the earth do, and that without any fenfible diumal parallax. But, as they are all affected by the annual motion of the earth, appearing, like the planets, fometimes direct, fometimes retrograde, he concludes that, when they become vifible to us, they muft be in the regions of the planets. As they are all affected by the motion of the earth, and it is impoffible to bring their motions to any regularity without allowing that motion; and it, alone, fuffices for explaining the irregularities of every comet, as well as of every planet ; we obtain from this a new confirmation of the motion of the earth, and find all the parts of this philofophy perfectly confiftent.

Our author having fhewed that the comets defcend into the planetary regions when they are vifible to us, againft the opinion of Des Cartes, he proceeds to trace them in their courfes. It follows, from the general law of gravity already eftablifhed, that they muit move either in parabolic, or very excentric elliptical, orbits, that have one focus in the centre of the fun. He then enquires, with his ufual

Chap. 8. Philosophical Discoveries. 389 fkill and a great deal of labour, how a motion in a parabola may agree with the obfervations that have been made upon the comets; and, for this end, fhews how, from three obfervations, the parabolic trajectory which a comet defrribes may be determined: and, from feveral examples which he has given, there appears fo perfect a harmony between his theory and the obfervations, as adds a new evidence to it, and fhews its ufe in carrying on the knowledge of our fyftem.

He infifts particularly on the celebrated comet that appeared near the end of the year 1680, and in the beginning of 168 r . He determines its trajectory, or curve, from three obfervations made by Mr. Flamfteed; and then compares all the obfervations, that were made by himfelf or others, with the motion of a body in that curve, and finds the differences betwixt the obferved places of this comet and thofe computed for it in the curve, for the fame time, to be very fmall. It was the fame comet that was feen in November 1680, and in December, January, February and March following, tho they had been generally efteemed two different comets. In November it was defcending towards the fun; it paffed very near the fun on the 12 th day of December; where, having been heated to a prociigious degree, tho' the light of the head or nucleus was duller, yet, while it afcended in the other half of its orbit, its tail was vaftly greater than before, extending fometimes $70^{\circ}$ in length, and continuing vifible even after the head or nucleus was carried out of fight.

Dr. Halley, to whom every part of aftronomy, but this in a particular manner, is highly indebted, has joined his labours to our author's on this lubject; nor is it neceffary for us to feparate them. Finding
three obfervations of comets recorded in hiftory, agrecing with this in remarkable circumftances, and returning at the diftance of 575 years from each other, he furpected that there might be one and the fame comet, revolving in that period about the fun. He therefore fuppofed the parabola to be changed into fuch an excentric ellipfe as the comet might defcribe in 575 years, and as fhould nearly coincide with the parabola in its loweft part ; and, having computed the places of the comet in this elliptic orbit, he found them to agree fo well with thofe in which the comet was obferved to pafs, that the variations did not exceed the differences which are found betwixt the computed and the obferved places of the planets, whofe motions had bren the fubject of aftronomical calculation for fome shoufand years. This comet may, therefore, be expected again after finifhing the fame period, about the year 2255 . If it then return, it will give a new lultre and evidence to Sir Ifaac Nervion's philofophy, in that diftant age. And fhould the inconftancy of human affairs, and the perpetual revolutions to which they are fubject, occafion any neglect of our philofophy in the intervening ages; this comet will revive it, and fill every mouth again with this great man's name. Nor need this be efteemed a vain prediction; for we cannot but fuppofe that the attention of the aftronomers of thofe days, to this comet muft be raifed to a great pitch, becaufe in one part of its orbit it approaches very near to the orbit of our earth; fo that, in fome revolutions, it may approach near enough to have very confiderable, if not fatal, effects upon it. Nor is it to be doubted but that, while fo many comets pals among the orbits of the planets, and carry fuch immenfe tails along with them, we fhould have been' called, by very extraordinary confequences, to attend to thefe bodies long ago, if the motions in the uni-

Chap. 8. Philosophical Discoveries.
verfe had not been at firft defigned, and produced, by a Being of fufficient fkill to forefee their moft diftant confequences. Our earth was out of the way when this comet laft paffed near her orbit; but it. requires a perfect knowledge of the motion of the comet, to be able to judge if it will always pafs by us with fo little effect. We may here obferve, that thefe great periods, and diftant depending obfervations, promife this good effect, that they muft contribute to preferve the relifh for learning from the revolutions it has been formerly fubject to. By them, diftant ages are connected together, and perpetual matter for reviving the curiofity of men is provided, from time to time.

But we are not to wait for the return of this diftant comet to have our author's theory verified, and to fee predictions of this kind begin to take place. By comparing together the orbits of the comets that appeared in 1607 and 168,2 , they are found fo coincident, that we cannot but fuppofe them to be one and the fame comet, revolving in 75 years about the fun. If this comet, according to this period, return in 1758, altronomy will then have fomething new to boalt of. It feems to be of thofe that rife to the leaft height from the fun, its greateft diffance being only 35 times greater than the difance of the earth from the fun; fo that, at the fartheft, it does not run out four times farther from us than Saturn. It will probably be the firft that will be added to the number of the revolving planets, and eftablifh this part of our author's theory.

Befides thefe comets we have mentioned, our author has confidered the motions of feveral others, and finds his theory always confonant with obfervation. He particularly computes the places of a re$C C_{4}$
markable grade, became direct towards the end: and, notwithttanding fo unufual a courfe, its places, computed from our author's theory, agree with the ob: ferved places, as well as thofe of the planets agree with their theory.

The phrnomena of all the comets, but efpecially of the comet of 1680 , fhew them to be folid, fixed and durable bodies. This comet was, in its peribelium, 166 times nearer to the fun than our earth is: and, from this, our author computes that it muft have conceived a heat 2000 times greater than that of iron almoft going into fufion, and that, if it was equal to our earth, and cooled in the fame manner as terreftrial bodies, it would take 50,000 years to cool : to bear fo prodigious a heat, if muft furely be a very folid and fixed body.

There is a phrenomenon that attends each comet, and is peculiar to them, called its tail: fome have imputed this appearance to the refraction of the funbeams, paffing through the nucleus or head, which they fuppofed to be tranfparent: others, to the refraction of the beams reflected from the head, as they pafs through the intermediate fpaces to us. Our author refutes both thefe opinions, and hews that the tail confifts of a vapour arifing continually from the body of the comet, towards thofe parts that are oppofite to the fun, for a like reafon that vapour or fmoke rifes in the atmofphere of the earth. Becaufe of the motion of the body of the comet, the rail is bent a little towards thofe parts which the comet

Chap. 8. Philosophical Discoveries. 393 leaves in its motion. Thefe tails are found greateft after it has paffed its perihelium, or leaft diftance from the fun, where its heat is greateft, and the atmofphere of the fun is moft denfe. The head appears, after this, obfcured by the thick vapour that fifes plentifully from ir. The tail of the comet of 1680 was of a prodigious fize : it was extended from the head to a diftance fcarcely inferior to the vaft diftance of the fun from the earth. As the matter of the tail participates of the motion of the comet, it is thereby carried along with the comet in its motion, and fome part of it returns again with it : and as the matter in the tail rifes, it becomes more and more rarified; as appears from the tail's increafing in breadth upwards. By this rarefaction a great part of the tail muft be dilated and diffufed over the fyftem; fome of this, by its gravity, may fall towards the planets, mix with their atmofpheres, and fupply the fluids, which, in natural operations, are confumed; and may, perhaps, fupply that fubtile fpirit in our air, which is neceffary for the life of animals, and for other natural operations.

We are not to expect that the motions of the comets can be fo exact, and the periods of their revolutions fo equal, as thofe of the planets; confidering their great number, and their great diftance from the fun in their aphelia, where their actions upon each other mult have fome effect to difurb their motions. The refiftance which they meet with in the atmofphere of the fun, when they defcend into the lower parts of their orbits, will alfo affect them. By the retardation of their motion in thefe lower parts, their gravity will be enabled to bring them nearer the fun in every revolution, till at length they fall into him, and fupply fewel to that immenfe body of fire. The comet of 1680 paffed at a diftance from the next revolution, and fall into his body at length. The fixed ftars may receive fupplies, in the fame manner, by comets falling into them; and fome of them, whofe light and heat are almoft exhautted, may receive new fewel in this way. Of this kind thofe ftars feem to be, which have been obferved to break out at once with great fplendor, and to vanifh gradually afterwards. Such was the ftar in Cafliopeia, that was not vifible on the 8th of November 1572, but fhone the following night with a brightnefs alo moft equal to that of the planet Venus, and decreafed continually afterwards, till in 16 months time it vanifhed. A nother of the fame kind appeared to Kepler's fcholars in the right foot of Serpentarius, on the 3oth of September 1604, brighter than Yupiter, tho' it was not vifible the preceding night; which alfo decreafed gradually, and vanifhed in fifteen or fixteen months. By fuch a new ftar appearing with an extraordinary brightnefs in the heavens, Hipparchus is faid to have been induced to make his catalogue of the fixed flars. But thofe ftars which appear and difappear, gradually increafing and decreafing by turns, feem to be of a different kind; and to have a luminous and an obfcure fide, which, by their rotation on their axis, they turn towards us alternately.

The argument againt the eternity of the univerfe, drawn from the decay of the fun, ftill fublitts; and even acquires a new force from this theory of the comets : fince the fupply which they afford muft have been long ago exhaufted, if the world had exifted from eternity. The matter in the comets themfelves, that fupplies the vapour which rifes from them in every revolution to the perihelium, and ere now. In general, all quantities that mult be fuppofed to decreafe or increafe continually, are repugnant to the eternity of the world; fince the firft had been exhaufted, and the laft had grown into an infinite magnitude, at this time, if the world had been from eternity: and of both kinds there feem to be feveral forts of quantities in the univerfe.

The defcent of the comets into the planetary regions fhews that the folid orbs, in which the planets were fuppofed, by the fchoolmen, to move, are imaginary. And the regularity of their motions, while they are carried in very excentric orbs, in all directions, into all parts of the heavens, confpire with many other arguments to overthrow the Cartefion vortices.

Sir Ifaac Nerwton further observes, that while the comets move in all parts of the heavens, with different directions, and in very excentric orbits, whofe planes are inclined to one another in large angles; it cannot be attributed to blind fate that the planets move round the fun, and the fatellites round their refpective primaries, all with one direction, in orbits nearly circular, and almoft in the fame plane. The comets, by moving in very excentric orbits, defcend with a vaft velocity, and are carried quickly thro' the planetary regions, where they approach the neareft to each other, and to the planets, fo as to have as little time as poffible to difturb their own motions, or thofe of the planets. By their moving in very different planes, they are carried to a vaft diftance from each other in the higheft parts of their orbits, or aphelia; where, becaufe of the flownefs of their motions, and the weaknefs of the fun's action at fo great diftances, their mutual actions, but for this
precau- the appearance of irregularity and confufion in nature, is difcovered, on further enquiry, to be the beft contrivance and the moft wife conduct.

Sir Ifac Newton proceeds to make fome reflections on the nature of the fupreme caufe, and infers, from the ftructure of the vifible world, that it is governed by One Almigbty, and All-wife Being, who rules the world, not as its Soul but as its Lord, exercifing an abfolute fovereignty over the univerfe, not as over his own body but as over his wook; and act. ing in it according to his pleafure, without fuffering any thing from it. What he has delivered concerning the Deity will be further explained in the next, chapter.

## C H A P. IX.

Of the Supreme Autbor and Governor of the univerfe, the True and Living God.

1. $A^{R I S T O T L E}$ concludes his treatife de mundo, with obferving, that " to treat of the world without faying any thing of its Author would be impious;" as there is nothing we meet with more frequently and conftantly in nature, than the traces of an All-governing Deity. And the philofopher who overlooks thefe, contenting himfelf with the appearances of the material univerfe only, and the mechanical laws of motion, neglects what is moft excellent; and prefers what is imperfect to what is fupremely perfect, finitude to infinity, what is narrow and weak to what is unlimited and almighty, and what is perifhing to what endures for ever. Such who attend not to fo manifeft indications of fupreme wifdom and goodnefs, perpetually appearing before them wherever they turn their views or enquiries, too much refemble thofe antient philofophers who made night, matter, and chaos, the original of all things.
2. As we have neither ideas nor words fufficient to defcribe the firt caufe, fo Ariftotle, in the conclufion of the above mentioned treatife, is obliged to content himfelf with comparing him with what is chief and molt excellent, in every kind *: Thus we fay he is the king or lord of all things, the parent of all his creatures, the foul of the world, or great fpirit that animates the whole. Such expreffions, tho' well meant at firf, were fometimes abufed afterwards; particularly, that of his being the anima mundi, which was apt to reprefent him not only as the active and felf-moving principle, but likewife as paffive and fuffering from the actions and motions of bodies. The abftrufe nature of the fubject gave occafion to the later Platonifss, particularly to Plotinus, to introduce the moft myttical and unintelligible notions concerning the Deity and the worfhip we owe to him; as when he tells us that intellect or underftanding is not to be afcribed to the Deity, and that our moft perfect workip of hima confifts, not in acts of veneration, reverence, gratitude or love; but in a certain myfterious felf-annihilation, or total extinction of all our faculties. Thefe doctrines, however abfurd, have had follow-

[^57]ers; who, in this as in other cafes, by aiming too high, far beyond their reach, overitrain their facula ties, and fall into folly or madnefs; contributing, as much as lies in them, to bring true piety and devotion into contempt.
3. Neither are they to be commended, who, under the pretence of magnifying the effential power of the fupreme caufe, make truth and falfizood entirely to depend on his will; as we obferved of Des Cartes, Book I. Chap. 4. Such teners have a direct tendency to introduce the abfurd opinion, that intellectual faculties may be fo made, as clearly and diftinetly to perceive that to be true, which is really falfe. They judge much better; who, without fcruple, meafure the divine omnipotence itfelf, and the poffibility of things, by their own clear ideas concerning them; affirming that God himfelf cannot make contradictions to be true at the fame time ; and reprefent the certain part of our knowledge, in fome degree, as the knowledge and wifdom of the Deity imparted to us, in the views of nature which he has laid before us.
4. The fublimity of the fubject is apt to exalt and tranfport the minds of men, beyond what their faculties can always bear: therefore, to fupport them, allegorical and enigmatical reprefentations have been invented, which in procefs of time have produced the greateft abufes. When metaphorical figures and names came to be confidered as realities; in place of the true God, falfe deities were fubftituted without number, and, under the pretence of devotion, a worlhip was paid to the moft deteftable characters, that tended to extinguifh the notions of true worth and virtue amonglt men.
5. As there are no enquiries of a more arduous nature than thofe that relate to the Deity, or of near fo great importance to intellectual beings, that difcern betwixt truth and falfhood, betwixt right and wrong; fo it is manifeft, that there are none in which the utmoft caution and fobernefs of thought is more requifite. Hence it is a very unpleafant profpect to oblerve with how great freedom, or rather licentioufnefs, philofophers have advanced their rafn and crude notions concerning his nature and effence, his liberty and other attributes. What freedoms were taken by Des Cartes in defcribing the formation of the univerfe without his interpofition, and in pretending to deduce from his attributes confequences that are now known to be falfe, we explained in the firft book, almoft in his own words. A manner of proceeding fo unjurtifiable, in fo ferious and important a fubject, ought, one would think, to have difgufted the fober and wife part of mankind. Spinoza, while he carried the doctrine of abfolute neceffity to the moft monftrous height, and furpaffed all others in the weaknefs of his proofs as well as the impiety of his doctrines, yet affects to fpeak, on feveral occafions, in the higheft terms of veneration for the Deity. Mr. Leibnitz and many of his difciples have likewife maintained the fame doctrine of abfolute neceflity, extending it to the Deity himfelf, of whom our ideas are fo inadequate, and whom it fo much concerns us not to milreprefent. But Sir Jfaac Nereton was eminently diftinguifhed for his caution and circumfpection, in fpeaking or treating of this fubject, in difcourfe as well as in his writings; tho' he has not efcaped the reproaches of his adverfaries even in this refpect. As the Deity is the fupreme and firf caufe, from whom all other caules derive their whole force and energy, fo he
thought it moft unaccountable to exclude Him only out of the univerfe. It appeared to him much more juft and reafonable, to fuppofe that the whole chain of caufes, or the feveral feries of them, fhould centre in him as their fource and fountain; and the whole fyftem appear depending upon him the only independent caufe.
6. The plain argument for the exifence of the Deity, obvious to all and carrying irrefitible conviction with it, is from the evident contrivance and fitnefs of things for one another, which we meet with throughout all parts of the univerfe. There is no need of nice or fubtle reafonings in this matter: a manifeft contrivance immediately fuggefts a contriver. It ftrikes us like a fenfation; and artful reafonings againf it may puzzle us, but it is without fhaking our belief. No perfon, for example, that knows the principles of optics and the ftructure of the eye, can believe that it was formed without fkill in that fcience; or that the ear was formed without the knowledge of founds; or that the male and female in animals were not formed for each other, and for continuing the fpecies. All our accounts of nature are full of inftances of this kind. The admirable and beautiful ftructure of things for final caufes, exalt our idea of the Contriver: the unity of defign fhews him to be One. The great motions in the fyitem, performed with the fame facility as the leaft, fuggeft his Alwigbiy Power, which gave motion to the earth and the celeftial bodies, with equal eafe as to the minuteft particles. The fubtility of the motions and actions in the internal parts of bodies, fhews that his influence penetrates the inmoft receffes of things, and that He is equally active and prefent every where. The fimplicity of the laws that prevail in the world, the excellent difpofition

Chap. 9. Philosophical Discoveries: of things, in order to obtain the beft ends, and the beauty which adorns the works of nature, far fuperior to any thing in art, fuggeft his confummate Wifdom. The ufefulnefs of the whole fcheme, fo well contrived for the intelligent beings that enjoy it, wish the internal difpofition and moral ftructure of thofe beings themfelves, fhew his unbounded Goodnefs. Thefe are the arguments which are fufficiently open to the views and capacities of the unlearned, while at the fame time they acquire new ftrength and luftre from the difcoveries of the learned: The Deity's acting and interpofing in the univerfe, fhew that he governs it as well as formed it, and the depth of his counfels, even in conducting the material univerfe, of which a great part furpaffes our knowledge, keep up an inward veneration and awe of this great Being, and difpofe us to receive what may be otherwife revealed to us concerning him. It has been juftly obferved, that fome of the laws of nature, now known to us, muft have efcaped us if we had wanted the fenfe of feeing. It may be in his power to beftow upon us other fenfes of which we have at prefent no idea; without which it may be impofible for us to know all his works, or to have more adequate ideas of himfelf. In our prefent fate, we know enough to be fatisfied of our dependency upon him, and of the duty we owe to him the lord and difpofer of all things. He is not the object of fenfe; his effence, and indeed that of all other fubitances, is beyond the reach of all our difcoveries; but his attributes clearly appear in his admirable works. We know that the highefl conceptions we are able to form of them are ftill beneath his real perfections; but his power and dominion over us, and our duty towards him, are manifett.
7. Sir Ifaac Neroton is particularly careful, always to reprefent him as a free agent; being juitly appre-
henfive of the dangerous confequences of that doctrine which introduces a fatal or abfolute neceffity prefiding over all things. He made the world, not from any neceffity determining him, but when he thought fit: matter is not infinite or neceflary, but he created as much of it as he thought proper : he placed the fyftems of the fixed ftars at various diftances from each other, at his pleafure : in the folar fyltem, he formed the planets of fuch a number, and difoofed them at various diftances from the fun, as he pleafed: he has made them all move from weft to eaft, tho' it is evident from the motions of the comets, that he might have made them move from eaft to weft. In thefe and other inftances, we plainly perceive the veftiges of a wife agent, but acting freely and with perfeet liberty.

As caution was a diftinguifhing part of Sir IJaac Nexeion's character, but no way derogatory from his penetration and the acutenefs and fublimity of his genius ; fo we have particular reafon on this occafion to applaud it, and to own that his philofophy has proved always fubfervient to the moft valuable purpofes, without ever tending to hurt them.
8. As in treating of this unfathomable fubject we are at a lofs for ideas and words, in any tolerable degree, adequare to it, and, in order to convey our notions with any ftrength, are obliged to have recourfe to Ggurative expreffions, as was obferved already; fo it is hardly pomble for the moft cautious to make ufe of fuch as may not be liable to exceptions, from angry and captious men. Sir Ifaac Nervron, to exprefs his idea of the divine Omniprefence, had faid that the Deity perceived whatever paffed in fpace fully and intimately, as it were in his Senforium. A clamour was raifed by his adverfaries, as if he meant

Chap.9. Philosophical Discoveries: 403 that fpace was to the deity what the Senforium is to our minds. But whoever confiders this expreffion without prejudice, will allow that it conveys a very ftrong idea of the intimate prefence of the Deity every where, and of his perceiving whatever happeas in the completeft manner, withoui the ufe of any intermediate agents or inftruments, and that Sir Ifaac made ufe of it with this view only; for he very carefully guards againft our imagining that external objects act upon the Deity, or that he fuffers any pation or reaction from them. It is commonly fuppofed that the mind is intimately confcious of the impreffions upon the fenforium, and that it is immediately prefent there, and there only; and as we mutt derive our ideas of the attributes of God from what we know of our minds, or of thofe of others, in the beft manner we can, by leaving out all imperfection and limitation; fo it was hardly poffible to have reprefented to us the divine Omniprefence and Omnifcience in a ftronger light, than by this comparifon: But the fondnefs of philofophers for their favourite fyftems, often irritates them againft thofe, who, in the purfuit of truth, innocently overturn their doctrines; and provokes them to catch at any occafion of finding fault.
9. But the greateft clamour has been raifed againft Sir Ifanc Newton, by thofe who have imagined that he reprefented infinite joace as an attribute of the Deity, and that He is prefent in all parts of fpace by difufion. The truth is, no fuch expreffions appear in his writings: he always thought and fpoke with more veneration of the divinity than to allow himfelf fuch liberties. On the contrary, he tells * us that ${ }^{6}$ the

[^58]'s the Deity endures from eternity to eternity, and is prefent from infinity to infinity; but that he is not eternity or infinity, fpace or duration." He adds indeed, that as the Deity exifts neceffarily, and by the fame neceffity exifts every where and always, he conftitutes fpace and duration: but it does not appear that this expreffion can give any juft ground of complaint; for it is faying no more than that fince he is effentially and neceflarily prefent in all parts of fpace and duration, thefe of confequence, muft alfo neceffarily exif.
10. This idea is fo far from giving any juft ground of complaint, that it accounts for the neceffary exiftence of fpace, in a way worthy of the Deity, and fuggefts the nob'e improvement we may make of this doctrine, which lies fo plain and open before us. Sir Ifaac Neroton is fo far from reprefenting the Deity as prefent in fpace by diffufion (as fome have advanced very unjufly) that he exprefly tells us * there are fucceffive parts in duration, and co-exiftent parts in fpace. But that neither are found in the foul or principle of thought which is in man; and that far lefs can they be found in the divine fubftance. As man is one and the fame in all the periods of his life, and thro' all the variety of fenfations and paffions to which he is fubjeet; much more muft we allow the fupreme Deity to be one and the fame in all time, and
nia regit, \& omnia cognofcit, que fiunt aut fieri poffunt. Non eft æternitas $\&$ infinitas, fed æternus $\&$ infinitus ; non eft duratio \& fpatium, fed durat \& adef. Durar femper, \& adef ubique, \& exifendo femper \& uhique, durationem \& fatium conflituit. Neut. Princip. Scholiun Generale, pag. 528.

* Partes dantur fuccefiver in duratione, coexiftentes in fpatio, neutræ in perfona hominis feu primcipio ejus cogitante ; \& multo minus in fubtantia cogitante Dei. Omnis homo guarenus res fentiens, ett unus $\&$ idem homo durante vitâ fuâ in omnibus \& fingulis fenfurm organis. Deus eft unus \& idem Deus femper \& ubique, ibid. in all fpace, free from change and external infuence. He adds, that the Deity is prefent every where, non per virtutem Solam Sed etiam per fubftantiam, Sed modo prorfus incorporeo, modo nobis penitus ignoto. It is plain, therefore, that he was far from meaning that the Deity was prefent every where by the diffufion of his fubftance, as a body is prefent in fpace by having its parts diffufed in it. Nor is it furprizing that we fhould be at a lofs to give a fatisfactory account of the manner of Gad's omniprefence. Our knowledge of things penetrates not into their fubftance: we perceive only their figure, colour, external furface, and the effects they have upon us, but no fenfe, or act of reflection, difcovers to us their fubftance; and much lefs is the divine fubftance known to us. As a blind man knows not colours, and has no idea of the fenfation of thofe who fee, fo we have no notion how the Deity knows and acts.
Ix. His exiftence and his attributes are, in a fenfible and fatisfactory manner, difplayed to us in his works; but his effence is unfathomable. From our exiftence, and that of other contingent beings around us, we conclude that there is a firft cause, whofe exiftence mult be neceffary, and independent of any other being; but it is only a poferiori that we thus infer the neceffity of his exiftence, and not in the fame manner that we deduce the neceffity of an eternal truth in geometry, or the property of a figure from its effence: nor is it even with that direct felfevidence which we have for the neceffary exittence of fpace. We mention this only to do juntice to Sir Ifaac Neroton's notion, when he fuggents that the neceffary exiftence of fpace is relative to the neceffary exiftence of the Deity. Philofophers have had always difputes about infinite fpace and duration ; and probably their contefts on thefe fubjects will never

Dd 3
have
have an end : all we want to reprefent is only, that what is fo briefly and modeftly advanced by this great man on thofe fubjects, is, at leaft, as rational and worthy of the Deity, and as well founded in true philofophy, as any of their fchemes; tho' it muft be expected that the beft account we can form of matters of fo arduous a nature, will be liable to difficulties and objections. As for thofe who will not allow fpace to be any thing real, we oblerved above that the reality of motion, which is known by experience, argues the reality of abfolute fpace; without admitting which, we fhould have nothing but confufion and contradictions in natural philofophy. Many other arguments, particularly thofe drawn from the axiom, non entis nulla funt altributa, for the reality of fpace, whofe parts are fubject to menfuration and various relations, have been treated of largely by others.
12. We obferved above, that as the Deity is the firft and fupreme caufe of all things, fo it is moft unaccountable to exclude him out of nature, and reprefent him as an intelligentia extramundana. On the contrary, it is moft natural to fuppofe him to be the chief mover throughour the whole univerfe, and that all other caufes are dependent upon him; and conformable to this is the refult of all our enquiries into nature; where we are always meeting with powers that furpafs mere mechanifm, or the effects of matter and motion. The laws of nature are confant and regular, and, for ought we know, all of them may be refolved into one general and extenfive power; but this power itfelf derives its properties and efficacy, not from mechanifm, but, in a great meafure, from the immediate influences of the firft mover. It appears, however, not to have been his intention, that the prefent flate of things fhould coneinue for ever without alteration; not only from what paffes in the moral world, but from the phrnomena of the material world likewife; as it is evident that it could not have continued in its prefent flate from eternity.
13. The power of gravity, by which the celeftial bodies perfevere in their revolutions, penetrates to the centres of the fun and planets without any diminution of virtue, and is extended to immenfe diftances, decreafing in a regular courfe. Its action is proportional to the quantity of folid matter in bodies, and not to their furfaces, as is ufual in mechanical caufes: this power, therefore, feems to furpafs mere mechanifm. But, whatever we fay of this power, it could not pofibly have produced, at the beginning, the regular fituation of the orbs and the prefent difpofition of things. Gravity could not have determined the planets to move from weft to eaft in orbits nearly circular, almoft in the fame plane; nor could this power have projected the comets with all variety of directions. If we fuppofe the matter of the fyftem to be accumulared in the centre by its gravity, no mechanical principles, with the affiftance of this power of gravity, could feparate the vait mafs into fuch parts as the fun and planets, and, after carrying them into their different diftances, project them in their feveral directions, preferving ftill the equality of action and reaction, or the fate of the centre of gravity of the fyitem. Such an exquifite ftructure of things could only arife from the contrivance and powerful influences of an intelligent, free, and molt potent agent. The fame powers, therefore, which at prefent govern the material univerfe, and conduet its various motions, are very different from thofe which were neceffary to have produced it from nothing, or to have difpofed it in the admirable form in which it now proceeds.
14. As we cannot but conceive the univere, as depending on the firft caufe and chief mover, whom it would be abfurd, not to fay impious, to exclude from acting in it; fo we have fome hints of the manner in which he operates in nature, from the laws which we find eftablifhed in it. Tho' he is the fource of all efficacy, yet we find that place is left for fecond caufes to act in fubordination to him; and mechanifm has its fhare in carrying on the great fcheme of nature *. The eftablifhing the equality of astion and reaction, even in thofe powers which feem to furpais mechanifm, and to be more immediately derived from him, feems to be an indication that thole powers, while they derive their efficacy from him, are however, in a ce:tain degree, circumfcribed and regulated in their operations by mechanical principles; and that they are not to be confidered as mere immediate volitions of his (as they are often reprefented) but rather as inftruments made by him, to perform the purpofes for which he intended them. If, for example, the moft noble phænomena in nature be produced by a rare elaftic atberial medium, as Sir Ifaac Nerwton conjectured, the whole efficacy of this medium muft be refolved into his power and will, who is the fupreme caufe. This, however, does not hinder, but that the fame medium may be rubject to the like laws as other elaftic fluids', in its actions and vibrations; and that, if its nature was better known to us, we might make curious and ufeful difcoveries concerning its effects, from thofe laws. It is eafy to fee that this conjecture no way derogates from the government and influences of

[^59]the Deity ; while it leaves us at liberty to purfue our enquiries concerning the nature and operations of fuch a medium. Whereas they who hattily refolve thofe powers into immediate volitions of the fupreme caufe, without admitting any intermediate initruments, put an end to our enquiries at once; and deprive us of what is probably the moit fublime part of philofophy, by reprefenting it as imaginary and fictitious: by which means, as we obferved above *, they hurt thofe very interefts which they appear fo fanguine to promote ; for the higher we rife in the fcale of nature, towards the fupreme caufe, the views we have from philofophy appear more beautiful and extenfive. Nor is there any thing extraordinary in what is here reprefented concerning the manner in which the Supreme Caufe acts in the univerfe, by employing fubordinate inftruments and agents, which are allowed to have their proper force and efficacy ; for this we know is the cafe in the common courfe of nature; where we find gravity, attraction, repulfion, $\xi^{3} c$. conftantly combined and compounded with the principles of mechanifm: and we fee no reafon why it hould not likewife take place in the more fubtile and abftrufe phænomena and motions of the fyitem.
15. It has been demonftrated by ingenious men, that great revolutions have happened in former times on the furface of the earth, particularly from the phænomena of the Strata; which fometimes are found to lie in a very regular manner, and fometimes to be broken and feparated from each other to very confiderable diftances, where they are found again in the fame order; from the imprefliuns of plants left upon the hardeft bodies dug deep out of

[^60]the earth, and in places where fuch plants are not now found to grow; and from bones of animals both of the land and fea, difcovered fome hundreds of yards beneath the prefent furface of the earth, and at very great diftances from the fea. Some philofophers explain thefe changes by the revolutions of comets, or other natural means: but as the Deity has formed the univerfe dependent upon himfelf, fo as to require to be altered by him, tho' at very diftant periods of time; it does not appear to be a very important queftion to enquire whether thefe great changes are produced by the intervention of inftruments, or by the fame immediate influences which firft gave things their form.
16. We cannot but take notice of one thing, that appears to have been defigned by the author of nature: he has made it impofible for us to have any communication from this earth with the other great bodies of the univerfe, in our prefent fate; and it is highly probable, that he has likewife cut off all communication beewixt the other planets, and betwizt the different fyftems. We are able, by telefcopes, to difcover very plainly mountains, precipices and cavities in the moon: but who tread thofe precipices, or for what purpofes thofe great cavities (many of which have a little elevation in the middle) ferve, we know not ; and are at a lofs to conceive how this planet, without any atmofphere, vapours, or feas, (as is now the common opinion of aftronomers) can ferve for like purpofes as our earth. We obferve fudden and furprizing, revolutions on the furface of the great planet Jupiter, which would be fatal to the inhabitants of the earth. We obferve, in them all, enough to raife our curiofity, but not to fatisfy it. From hence, as well as from the fate of the moral world, and many other

Chap. 9. Philosophical Discoveries. 41立 confiderations, we are induced to believe, that our prefent ftate would be very imperfect without a fubfequent one; wherein our views of nature, and of its great author, may be more clear and fatisfactory. It does not appear to be fuitable to the wifdom that fhines throughout all nature, to fuppofe that we fhould fee fo far, and have our curiofity fo much raifed concerning the works of God, only to be difappointed at the end. As man is undoubtedly the chief being upon this globe, and this globe may be no lefs confiderable, in the moft valuable refpects, than any other in the folar fyftem, and this fyftem, for ought we know, not inferior to any in the univêrfal fyitem ; fo, if we fhould fuppofe man to perifh, without ever arriving at a more complete knowledge of nature, than the very imperfect one he attains in his prefent ftate; by analogy, or parity of reafon, we might conclude, that the like defires would be fruftrated in the inhabitants of all the other planets and fyitems; and that the beautiful fcheme of nature would never be unfolded, but in an exceedingly imperfect manner, to any of them. This, therefore, naturally leads us to confider our prefent ftate as only the dawn or beginning of our exiftence, and as a ftate of preparation or probation for farther advancement : which appears to have been the opinion of the moft judicious philofophers of old. And whoever attentively confiders the conftitution of human nature, particularly the defires and paffions of men, which appear greatly fuperior to their prefent objects, will eafily be perfuaded that man was defigned for higher views than of this life. Thefe the author of nature may have in referve to be opened up to us, at proper periods of time, and after due preparation. Surely it is in his power to grant us a far greater improvement of the faculties we already poffers, or even to endow us with new faculties, of which, at this time, we have no idea, for penetrating farther into the fcheme of nature, and approaching nearer to himfelf, the firft and fupreme caufe. We know not how far it was proper or neceffary that we fhould not be let into knowledge at once, but fhould advance gradually, that, by comparing new objects, or new difcoveries, with what was known to us before, our improvements might be more complete and regular ; or how far it may be neceffary or advantageous, that intelligent beings fhould pafs through a kind of infancy of knowledge. For new knowledge does not confift fo much in our having accefs to a new object, as in comparing it with others already known, obferving its relations to them, or difcerning what it has in common with them, and wherein their difparity confifts. Thus our knowledge is vaftly greater than the fum of what all its objects feparately could afford; and when a new object comes within our reach, the addition to our knowledge is the greater, the more we already know; fo that it increafes not as the new objects increafe, but in a much higher proportion. * * *

FI NI S


E


[^0]:    * Introd. to Fluxions, at the end.

[^1]:    * Of this we fee a frefl inftance in a fecond admirable difcovery of Dr. Bradiey's; of a imall nutation of the earth's axis, from the motion of the nodes of the lunar orbit.

[^2]:    * Nov. Organ. Lib. I.

[^3]:    * In Prefat. ad Neut. Principia.

[^4]:    * Licreto de rerum natura, lib. I. v. 63 , छ'c.

[^5]:    * In the planet Venus, for example, he finds no other amufement but to admire the limpid waters and beautiful crytials he found there; and to ask the genie, his companion and guide ${ }_{2}$ whether baptifm with fuch water would be valid. The reft is Wf a piece with this.

[^6]:    * In the conflellation of Orion, 2000 flars have been num. bered by aftronomers.

[^7]:    * A principle not unlike this is afcribed to the Perfana and
     ratio dogmat. Chaldaic. Tho' this, as other maxims, was much abufed in progrefs of time, when philofophers degenerated from their firf fimplicity.

[^8]:    * According to Poffdonius the floick, as cited by Strabo and Sextus Empiricus, the doctrine of Atoms was more ancient than the times of the Trojan war, having been taught by Mofchus a Phoenician, the fame probably meant by Iamblicbus, when he tells us that Pytbagoras converfed at Sidon with the prophets, the fucceffors of Mochus the phyfiologer. In thofe early times the characters of lawgiver and philofopher were united, and this Moclius is fuppofed by many to have been the fame with Mofes the leginator of the Ferus.

[^9]:    * Princip. Part I. §28. Nullas unquam rationes circa res naturales a fine, quem Deus aut natura in iis faciendis fibi propofuit, defumemus; quia non tantum debemus nobis arrogare ut cjus confiliorum participes nos effe putemus; fed ipfum ut caufam efficientem rerum omnium confiderantes, videbimus quidnam, ex iis ejus attributis quorum nos nonnullam notitiam voluit habere, circa illos ejus effectus, qui fenfibus noftris apparent; lumen naturale quod nobis indidit concludendum effe oftendat.
    knowledge

[^10]:    * See Aul. Gellius, Lib. 6. ch. 10. where an extraordinary inflance of this is given from Taurus a Platonic philofopher. The Atbenions, upon fome difference with the inhabitants of Megara. made it capital for any of them to enter Athens. Euclid of Megara, after this edict, ufed to difguife himfelf as a woman, and travel twenty miles in the night to hear Socrates. Whence Taurus takes occafion to lament how much philofophy was funk in efteem in his time. Now, fays he, we fee philofophers run of their own accord to attend at the gates of the young and rich, and there fit waiting to noon till their difciples have flept out their laft night's debauch. Diogenes Laerizus, however, fpeaks of a ftranger who came to Athens and found faulc with Socrates in fome things.

[^11]:    * Plato de republica, Lib. 7. \& 10.
    + Plat. Timæus.
    $\ddagger$ It were unneceffary to cite here inftances of the moff profound myfticifm from Plorinus and other platonifts.

[^12]:    * He was circumcifed in Egypt afier the manner of the priefts of that country, and i- faid to have been the mott graceful perfon of his time. Clem. Alexandr. Strom. Lib I.
    $\$$ Ariftot. Meteorol. Lib. I. cap. 6 Plutarch. de placitis philofoph. Lib. III cap. 2.
    $\ddagger$ Ibid. cap. 13, \& 30 .
    § Plin. Lib. II. cap 22. Macrob in fomnium Scip. Lib. It. cap. I. See alfo Pluta ch de animal procreatione, è Timæの.
     to the end.

[^13]:    * According to Pliny, Arifotle wrote fifty volunes concerning animals, and feveral thoufand perfons in Greece and $A f a$, by Alexander's orders, affifted him in his enquiries. The expence is faid to have amounted to eighty talents.
    + De cælo.

[^14]:    * De phytiologia Epicuri.

[^15]:    * Prefatio ad Paulum III. pontif. max.
    + De placitis philofophorum, lib. 3. cap. 13 .

[^16]:    * Equidem exiftimo gravitatem non aliud effe quam appetentiam quandam naturalem, partibus inditam a divina providentia

[^17]:    opificis univerfornm, ut in unitatem integritatemque fuam fefe conferant, in formam globi coeuntes. Quam affectionem credibile eft etiam foli, lunæ, cæterifq; errantium fulgoribus, ineffe, ut ejus efficaciâ in eâ qua fe reprefentant rotunditate permaneant; que nihilominus multis modis fuos efficiunt circuitus. Nicol. Copernici revol. lib. r. cap.9.

[^18]:    * Gafend. in vita Tychonis.

[^19]:    * Nota in editionem fecundam Myfterii Cofmegraphici.

[^20]:    "* See his Tabulæ Rudolphinæ, and Comment. de fellâ Martis.

[^21]:    * Difert. cum nuncio fidereo.

    4. Epitome Aftronomize, lib. 4. part t.
[^22]:    * Elem. Euclid. lib. 7. defin. uit.
    + See the dedication of his Syftema Saturnium.

[^23]:    * Hxc et cretera hujufmodi latent in pandectis evi fequentis, non antea difcenda quam librum hunc Deus arbiter feculorum reclurerit mortalibus. Eyit. Aftron.

[^24]:    * Gnlileo obferved fomething very extraordinary about Saturn, which he imagined to be rwo Satellites almoft in contack with his body; and Des Cartes fancied thefe two Satellites were quiefcent in his vortex, becaufe (as he fuppofed) Saturn did not turn round on his axis; but Huygens fhewed that this aypearance proceeded from a ring that encompaffes his body, without touching it, and accompanies him in his revolution about the fun.

[^25]:    * Epifol. part 2. epirt. 9 r.
    + Vir in omni mathematum parte fummus Galileus Galilci, Jefuitarum in ipfum odio, ac principis Thufci fub quo vixit focordi metu, coactus ire Romam, ideo quod terram moviffet, non vetante veftro Hortenfor, durè habitus, ut majus vitaret malum, quafi ab ecclefia edoctus, fua foita refcidit. Hug. Grotius in epiftola ad Volfuma Lutét. 17. maii, 1635.

[^26]:    * He was befides condemned to a years imprifonment in the inquifition, and the penance of repeating daily fome penitential pralms.
    + He was born in 5560 , Galileo in 4564 .

[^27]:    * Bacon's Advancement of Learning, lib. I.

[^28]:    * Boyle's UTefulnefs of Natural Philofophy, part 1. effay 3.

[^29]:    * In a frmall piece publifhed on this fubject, a few years ago, by an ingenious gentleman.

[^30]:    * Thefe are the words of Mr. Bayle in the article of Spinoz? ; where he expofes the abfurdities of this fytem very clearly, and affirms that the weakeft of its adverfaries was able to have overturned it. Our view in giving fome account of it, was not only to thew the abfurd confequences to which Des Cartes's fyftem G leads,

[^31]:    * Exiftimat Cbryfippus non hoc fuife naturx principale confilium ut faceret honines morbis obnoxios, nunquam enim hoc convenifle naturæ auctori, parentique rerum omnium bonarum; fed quum multa atque magna gigneret, pareretque aptiffima \& utilifima, alia quoque fimulagnata funt incommoda iis ipfis quæ

[^32]:    * Acta Liphix, 16,8, p. 435.

[^33]:    * Mem. de l'Academie Royale des Sciences, 1729 .
    + Treatife of Fluxions Introd. P. 47.
    \$ Effay de Theodicée, §70.

[^34]:    * Procli Comment. in Euclidem.

[^35]:    * See the Treatife of Fluxions, §44.

[^36]:    * See the life of Mr. Boyle premifed to the late complete edition of his works.

[^37]:    * See Defagulier's courfe of experimentai philofophy, vol. 2. in the note ai the bot:om of page 72 .

[^38]:    * Ibid. p. 73, in the laft note.

[^39]:    * As a piece of Mr. de Mairan, in the memoires de l'academie royale des fciences 1728 . Several pieces of Dr. Jurin, philofophical tranfadions, $\mathcal{O}_{\mathrm{C}} \mathrm{c}$.

[^40]:    * Ireatije of Fluxions, § $9^{14}{ }^{\circ}$

[^41]:    * See more oin this fubject in Mr. Gray's treatife of Gunnery, Zondons 53 I.

[^42]:    * See Book I. Chap. 3. §z.
    + See Book I. Chap. 4. 4.

[^43]:    * If a new force acted upon the body at b , that was direct to either fide of $s$, the body, inftead of being found in the lis cd, would, in the fame time, either pafs that line or fall tho of it, and the area defcribed by the ray drawn from the body would either be greater or lefs than bse.

[^44]:    Princip. Lib. III. Prop. 40.

[^45]:    *Treatife of Fluxions, $\$ 90$.

[^46]:    * See Dr. Halley in Pbii. Tranf. No 181. and Scbol. Prop. 22. Jib. II. Princip.

[^47]:    * Princip. Lib. I. Prop. 58.

[^48]:    *See Treatife of Fiuxions, Art. 4.3.

[^49]:    * See Priucit. Lib. I. SeA. 9:

[^50]:    * Suppofe the velocities of bodies $L$ and $p$ (Fig. 66.) to be equal at $L$ and $P$, at equal diftances $S L$, $S P$; and let them defribe the very fmall lines $\mathrm{L} l, \mathrm{P} p$, fo that $\mathrm{s} p$ being equal to $\mathrm{s} l$, and $p \mathrm{n} l$ a circular arc defcribed from the centre $s$ meeting s L in $\mathbb{N}, \mathrm{L} N$ mutt be equal to $P p$. The gravity of L toward s may be refolved into two forces, one of which may be reprefented by Lr, and acts in the direction of the tangent lr, the other in a direction rs perpendicular to the tangent or the direction of the body's motion. The latter has no effect in accelerating its motion, being perpendicular to it, and the former is to the gravity, as LR is to SL, or as LN is to Ll. The motion of the body P is accelerated by its whole gravity, fo that the forces which accelerate the bodies L and $p$ are to each other, as Ln (orpp) to $\mathrm{L} l$; but the velocities at L and p having been equal, the times in which $\mathrm{L} l$ and $\mathrm{P} p$ are defcribed are in the proportion of the fpaces $1 . l$ and $p p ;$ fo that tho' the body $L$ is accelerated by a lefs force in defcending to $l$; the time of its acceleration is greater in the fame proportion: from which it appears that their accelerations are equal in defcribing thefe fpaces, and their velocities confequently equal at $l$ and $p$. The velocities therefore of thefe bodies muft be equal in all equal altitudes. See Princip., Math. Lib. I. Prop. 40.

[^51]:    * In general, if gravity vary as the m power of the difatce reciprocally, and the body is projested obliquely upwards with

[^52]:    * To make the foregoing account of the motion of the moon's nodes till clearer, we have added Fig. 69, (Plate VI.) in which, the plane of the fcheme reprefenting that of the ecliptic, $s$ is the fun, $T$ the centre of the earth, it the moon in her orbit $\mathrm{D} \mathrm{N} d n ; \mathrm{N} n$ is the line of the nodes pafing between the quadrature $Q$ and the moon's place $L$, in her lalt quarter. Let now L p , any part of L s , reprefent the excefs of the fun's action at L , above his action at T , and this being refolved into the force LR, perpendicular to the plane of the moon's orbit, and $P R$ parallel to it, 'tis the former only that has any effect to alter the pofition of the orbit, and in this it is wholly exerted. Its effect is twofold ; (r.) It dimininhes its inclination, by a motion which we may conceive as performed round the diameter D $d$, to which LT is perpendicular. (2.) Being compounded with the moon's tangential motion at L, it gives it an intermediate direction $\mathrm{L} t$; thro' which, and the centre of the earth, a plane being drawn muft meet the ecliptic nearer the conjunction c than before: and in the fame manner, the other cafes are explained.

[^53]:    * The following chapter, as belonging properly to this place, is inferted from a letter of the author, to his learned friend Dr. Bunjamin Hoadlay, phyfician to his Majefty's houfehold.

[^54]:    * See Cofinotbroria puerilis.

[^55]:    * If a $C=\mathrm{A} E$, thefe points meet again, and form a cufp: and if $A C$ is greater than $A E$, the path has a nodus: which laft is the cafe of the innermoft of the fatellites of Jupiter and Saturn.

[^56]:    * See Fig. 71. (from Sir fracc Nerwton) in which the fpheroid $P$ A $P E$ reprefents the carth, $P, p$, the poles, A E the equa-

[^57]:    
    
    
    
    
    

[^58]:    * Eternus eft \& infinitus, omnipotens \& omnifciens, id eft, durat abxterno in aternum, $\delta$ adelt ab infinito in infinitum: om-

[^59]:    
    
     Arijzot. ubi fupra.

[^60]:    * Book I. Chap. 5. §3.

