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This paper presents a generalization of a game.theoretic model, first described in an earlier paper, of the 

relationship between an inspectee who may decide to "cheat" or not, and an inspector whose task it is to 
minimize the expected gain that the inspectee achieves by cheating. When cheating is detected by the inspector, 

a penalty is assessed against the inspectee. The generalized model permits imposing a relationship between the 
level of the penalty to the inspectee when he/she is caught and the value to the inspectee of not being caught 

when he/she is cheating. The solution of the game takes on different forms depending on whether or not the 
inspector's resources are sufficient to make the detection of cheating likely. 
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1. Introduction 

In an earlier paper [2],1 the authors presented three simple mathematical models of game-theoretic type, 
with the aim of exploring "strategic" aspects of the inspector-inspectee relationship. These models arose in 
the context of a study performed for the NBS Office of Weights and Measures, and were tailored to fit the 
specific situation encountered there. We also discussed a number of possible directions for generalizing the 
models in order to make them relevant to other situations involving an inspector-inspectee relationship. 

Shortly thereafter, the opportunity arose to investigate the inspector-inspectee relationship inherent 
between the Internal Revenue Service and taxpayers. Indeed, the direct impetus for the current study was 
an attempt to apply the models of [2] to the problems faced by the Audit Division of IRS when trying to 
promote compliance by taxpayers to the Income Tax Regulations [1]. In each of the models of [2], the 
penalty imposed on the inspectee when cheating is detected by the inspector was assumed to be the same in 
all cases (P). For the purposes of [1], we were obliged to investigate the consequences of dropping that 
assumption: in particular, of relating the level of the penalty to the magnitude of the gain from cheating (if 
undetected). The present paper's model is sufficiently general to permit introducing such a relationship. 

The definitions, notation, terminology, etc. used in [2] are retained here. Although it has been necessary 
to repeat parts of the earlier paper in order to make this one self-contained, this has been kept to a 
minimum. For this reason we recommend that the reader become familiar with the earlier paper, whose 
sections 1 and 2 describe the general aim of this line of research as well as (on p. 192) the motivation for 
~he extension treated here. 

2. Formulation of the Model 

This mathematical model takes the form of a 2-player zero-sum game. The "players" are the inspector (an 
aggregate representing the inspection agency) and the inspectee (an aggregate representing all those whom it 
is the inspector's province to inspect). Goldman and Shier [3] have shown that in a non-cooperative game, 
with payoff functions satisfying an assumption obeyed by (2.4) below, such an aggregation of players into a 
single unit does not change the solution of the game. 
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As in [2], the inspectee can either cheat, or not, for each of a set of devices, D I , D'!., '" , Dn' (These 
"devices" might be the measuring devices in n retail establishments, or the tax returns of n individuals.) 
The inspector selects some of these devices for inspection, up to the limit of his/her resources. The 
detection of a cheat, if the device is inspected, is assumed to be certain. We set: 

n 

I~ 
P; 
m = 

the number of devices available to the inspectee, 
the payoff to the inspectee from cheating on D;, 
the penalty imposed on the inspectee when cheating is detected on D;, 
the number of devices that the inspector can inspect. 

We assume that m <n, and that all V; and P; are positive. It will be convenient to number the devices so 
that 

(2.1) 

A strategy for the inspectee is an n-component vector 

where C; is the probability that the inspectee will cheat on D;. A pure strategy for the inspector is the 
specification of a subset M of the set N={I, 2, ... , n}, where i E M denotes that D; is inspected. Then, a 

(mixed) strategy for the inspector is a vector p = (p(M), where 

p(M) = Prob [{Di : i E M} are the devices inspected]. 

With each such p we associate the quantities 

Pi Prob [D; is inspected] 

~ {p(M) : i E M}. 

Since Ci and Pi represent probabilities, we must have 

o < C i < 1, o < Pi < 1, i = 1, 2, ... , n. (2.2) 

There is no further restriction on c. However, as was shown in [2], the limitation of the inspector's 

resources2 (m) which prevents him/her from inspecting all of the devices (n) can be expressed as 

n 
~ Pi = m. 

i=I 

(2.3) 

The net expected payoff to the inspectee from device Di is the expected gain from cheating minus the 

expected penalty, i.e. 

Thus, the total net expected payoff to the inspectee when the two players choose strategies c and p 

respectively, is 
n 

F(c,p) = ~ [Vi - PiPJci' 
i=I 

(2.4) 

:! Th .. rI •• tri,·lion Ihal m I ... an inlej!er i. inherenl in the ,( .. finilion of .v. """('\'er, it is nol ('s"enlial in whal follows. Equalion (2.:J). wilh any choiee of m, 

fl<m<n. "an lit" 11.('.1 Itl ,j('fin .. Iht· in'llt"dion r('.nllrfes 3\'ailahle 10 Ih(' in'p('clor. 
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From the "zero-sum" assumption that the interests of the two players are diametrically opposed, it follows 
that -F(c,p) is the expected payoff to the inspector. (Two of the three models in [2] involve alternatives to 
this assumption, but we shall retain it here.) 

For each i, i = 1, 2, ... , n, define qi by 

Then the objective function (2.4) can be rewritten as 

n 
F(c,p) = l: Pi (qi -p;}Ci. 

i=1 

As in [2], we set N={1, 2, ... , n} and let 

T {i : 17; > p} = {i : qi > I}, 

T N - T = {i : 17; <; p} = {i : q .. <; I}. 

(2.5) 

(2.6) 

Thus, T represents the set of "tempting" devices, those on which the inspectee can profit from cheating 
even if the cheating is detected. For any subset S of N, we denote the number of members of S by I S I. 
Also, we set 

P(S) = ~ Pi' q(S) = l: q .. , 
E S E S 

V(S) = l: Vi' p(S) = l: Pi' 
E S E S 

etc. 

The solution of the game which we have just described takes different forms according as 

m;> ITI + q(1) (Case I) (2.7) 

or its opposite 

m < ITI + q(1) (Case II) (2.8) 

holds. These cases correspond roughly to adequate and inadequate inspection resources, respectively. Note 
that the adequacy of inspection resources is influenced by the size of the penalties as well as by m; the 
larger the penalties, the smaller the term q(1) in (2.7) and (2.8). 

Cases I and II will be analyzed in sections 3 and 4, respectively. For illustration, section 5 applies the 
results to the situation in which penalties for detected cheating are proportional to gains from cheating, i.e., 
all q,.'s have the same value. 
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Here we assume that 

which can also be expressed as 

It will be convenient to set 

u 

W 

3. Case I 

m > ITI + q(1) 

n 

m > l: min (1, q). 
i=1 

{i: Vj < pJ 

{i: Vj = pJ 

{i : qj < I} 

{i : qj = I} 

so that T=U U W. Then (2.7a) becomes 

m > I T U WI + q( U). 

THEOREM 1. (i) The value of the game is 

FO V(T) - P(T). 

(ii) If pO 
is a strategy for the inspector such that 

p~ > min (1, q;) for all i 

then p O is optimal. 

(iii) If CO is a strategy for the inspectee such that 

c~ = 1 for i E T 

for i E U 

then C
O is optimal. 

PROOF: First, set 

p~ = 1 for i E T U W 

From (2.3) and (2.7b) we have 

q(U) < m - IT U WI 

and 
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and hence the above settings can be extended to yield a strategy pO for the inspector such that 

for i E U. 

Thus the hypothesis of (ii) can be satisfied. Set F ° = V(1)-P(1) and let c be any strategy for the inspectee. 

It follows from (2.4) and (2.5) that 

FO - F(c,pO) = V(1) - P(1) - ~ (Vi - PJCi - ~ (Vi - PiP~)Ci 
iETUW EU 

~ (Vi - PJ(l - c) - ~ Pi(qi - p;)Ci (3.1) 
E T E U 

> o. 

Now let CO be any strategy for the inspectee satisfying the conditions of (iii). Then, for any strategy p for 

the inspector, 

F(cO,p) _ FO ~ (Vi - PiP) - V(1) + P(1) + 
E T 

~ (Vi - PiPi)c~ 
E W 

~ Pi (l - p) + ~ Pi (l - p)C~ 
i E T E W 

> o. 

Combining equations (3.1) and (3.2), we have 

(3.2) 

for all p and for all c. Hence the value of the game is F 0, po is an optimal strategy for the inspector and CO 

is an optimal strategy for the inspectee. 
We now wish to determine whether or not there are any other optimal strategies. In Theorems 2 and 3 

we will show that when m> IT U WI +q(lf) then no other optimal strategies exist for either player. 
However, when m = IT U WI +q(U) then another class of optimal strategies for the inspectee exists. 

THEOREM 2. The strategy pO for the inspector is optimal if and only if 

p~ > min (1, q) 

for all i. 
PROOF. Let pO be an optimal strategy for the inspector. It follows from eq (3.2) that if there exists 

JET such that pjo < 1, then 
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where CO is the strategy defined in (iii) of Theorem 1. Hence pO is not optimal. This is a contradiction and 
so 

for allj E T. 

Similarly, if there exists JEW such that pj < 1, then 

(for any choice of cj>O). Again, pO is not optimal. This is a contradiction and thus we have shown that 

pj = 1 for allj E W. 

It remains to show that 

for all i E U. 

Suppose there exists j E U such that 

Consider a strategy c for the inspectee for which: 

C; = 1 for all i E T, 

S = 1, 
C; = 0, for i =1= j, i E U. 

Then 

Thus pO is not optimal. This is a contradiction and so we have shown that 

for allj E U. 

Hence p;>min (1, q) for all i. 
The converse is part (ii) of Theorem 1. 

We wish to show that if m> IT U WI +q(U), then every optimal strategy for the inspectee is given by 
(iii) of Theorem 1. The proof of the following Lemma is trivial. 

LDf~fA 1. If m > IT U WI + q(U), then there exists a strategy p for the inspector such that 

i E U 

Pi = 1 iET U W 

THEOREM 3. If m > IT U WI + q(U), then c is an optimal strategy for the inspectee if and only if 
Ci = 1 i E T 

Ci = 0 i E U 

(so that Ci is arbitrary for i E W). 
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PROOF. Let CO be an optimal strategy for the inspectee and suppose that there exists JET for which 
cj < 1. By eq (3.1) 

where pO is the strategy for the inspector define in Theorem 1. Hence CO is not optimal. This is a 
contradiction and thus 

for allj E T. 

Similarly, suppose that there exists j E U such that 

Let p be the strategy for the inspector described in the Lemma. By equation (3.1) 

Hence CO is not optimal. This is again a contradiction and so we have shown that 

for allj E U. 

The converse follows from (iii) of Theorem 1. 
The hypothesis that m> IT U WI +q(lI) of Theorem 3 was used only via Lemma 1, when showing that 

cjO =0 for all j E U. Hence, the following corollary is a consequence of the proof of Theorem 3 (whether 

m> IT U WI +q(lI) or not). 
COROLLARY 1. If CO is an optimal strategy for the inspectee then 

for all i E T. 

In order to complete our consideration of Case I, it remains only to examme the situation where 

m= IT U WI +q(lI). 
LEMMA 2. Let m = IT U WI + q(U) and let CO be an optimal strategy lor the inspectee. For h, j E U we 

hal,Je 

PROOF. Suppose that for some h, j E U, we have 

say 

cZ 
cj Pj 

Ph 
a > o. 
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Let b=min (qj' I-qh)· Since h,j E U, it follows that b>O. Define the strategy p for the inspector by 

Pn qh + b, 

PJ qj - b, 

p; min (I, qj) i =1= h,j. 

Note that p is a strategy vector since 

n 

~ p; = IT U WI + q(U) = m. 
i=1 

It follows from eq (2.4) and Corollary 1 that 

~ (~- PJc; - V(1) + P(1) + 
i f T 

L (Vj - P/lf;)c; 
i E U 

- L (~- PJ(l - en + [Vh - (qh + b) Ph]c~ + [Tj - (qj - b)Pj]cjO 
i f T 

< o. 

This is a contradiction of the optimality of CO and hence we have shown that 

Let m = IT U WI +q(U) and let CO be an optimal strategy for the inspectee. Since m <n it follows that 
U is not empty. By Lemma 2 there exists a number M(cO) such that M(cO)=e~Ph for all h E U. 

LDIMA 3. Let m= IT U WI +q(U) and let CO be an optimal strategy for the inspeetee. Then 

ct Pi :> M(cO) for all i E W, 

Pi :> M(cO) for all i fT. 

PROOF. Let j E U and suppose there exists hEW such that 
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Define the strategy pfor the inspector by 

Pi = 1, 

min (1, q;), i -=/=- j, h. 

Then, using Corollary 1, we have 

F(c°;P) - FO = (1 - q)PhcZ + (qj - l)Pj cj + l: (Vi - P;}(c; - 1) 
E T 

< o. 

This is a contradiction and hence 

for all i E W 

Now suppose that there exists h E T such that 

With pthe strategy vector for the inspector as defined above, we have 

F(c°,'P) - FO = (qh - q)PhcZ + (qj - l)Pj cj - Vh + Ph + l: (V; - P;)(c; - 1) 

E T 
i-=/=-h 

< 0 

since PhcZ <Ph <M(cO). Again we have reached a contradiction and thus we have 

for all i E T. 

We are now able to determine all of the optimal strategies CO for the inspectee in the special case where 

m=IT U WI+q(U). 
THEOREM 4. Let m = IT U WI + q(U). A set of necessary and sufficient conditions in order that the 

strategy vector CO be optimal for the inspectee are 
(i) there exists a real number M(cO) such that 

a) c~ Pi = M(cO) 
b) c~ Pi > M(cO) 
c) Pi > l\f(CO) 

(ii) c~ = 1 

for all 
for all 

for all 

for all 
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PROOF. The necessity of the conditions follows from Corollary 1; Lemma 2 and Lemma 3. 
Now let CO be a vector satisfying the conditions of the theorem. Then, for any strategy p for the 

inspector, 

Set 

Then 

since 

~ (17; - PiP) - V(1) + P(1) + l: Pi (1 - p)c~ + l: (qi - p)Pi c,~ 
eT ieW ieU 

~ Pi(l - p) + l: Pi (1 - pJc~ + ~ (qi - p)M(cO). 
eT ieW ieU 

for all i e W, 

for all i e T. 

n n 

~ min (1, q)
i=l 

~ PJM(cO) + ~ (1 - p)bi + l: (1 - p)ai 
i==l ieT ieW 

~ (1 - p)b i + ~ (1 - p)a i 
i e Tie W 

n n 

~ min (1, q) = IT U WI + q(lJ) = m = ~ Pi· 
i=1 i=l 

Hence F(cO,p)-F°;>O for all p and so CO is an optimal strategy for the inspectee. 
COROLLARY 2. Let m = IT U WI +q(l!) and let M be a real number. A necessary and sufficient 

condition that there is an optimal strategy CO for the inspectee such that M(cO)=M is that 

0<; M <; min Pi. 

PROOF. Let CO be an optimal strategy for the inspectee with M(cO)=M. Then 

for all i e U, 

for all i e W, 

J,1 <; Pi for all i e T 

and so ill :< min Pi. 
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Conversely, let M be any number such that O<M< min; P; and define CO by 

c7 = 1 for all i E T U 117, 

for all i E U. 

Then CO is the desired optimal strategy for the inspectee. 
This completes the case in which the inspector's resources are at least adequate for the job of inspecting 

the devices under his/her jurisdiction. The value of such a game is F ° = V(1)-P(1), which is independent of 
m. The inspectee cannot, of course, be prevented from benefitting by cheating on the tempting devices (1), 
but he/she gains nothing (or actually decreases his/her expectation) by cheating on the other devices 
(U U W). When the inspector's resources are just barely adequate for his/her responsibilities (i.e. 
m = IT U WI +q(U)), the inspectee has a wider variety of optimal strategies to choose from (e.g., 
including cheating on the devices in U U 117 with probabilities inversely proportional to the associated 
penalties) but the value of the game remains the same. We now turn to the case of inadequate inspection 
resources. 

4. Case II 

The defining relation for Case II, which describes the inspection resources as being below a certain 
adequacy threshold, is 

n 
m < IT U WI + q(U) ~ min(l, qJ. 

i=1 

Recall that in (2.1) we have numbered the devices so that 

It follows from (4.1) that there exists an integer k, O<k <n, such that 

k 
~ min(l, q) < m < 

i=1 

k+l 
~ min(l, q). 

i=1 

(4.1) 

(4.2) 

If the P;'s are not distinct then the condition of (2.1) does not assign a number to each device in a unique 
manner. This ambiguity in numbering the devices may in turn affect the value of k as defined by (4.2). 
However, the subsequent material does not depend on which of the possible numberings obeying (4.2) is 
used. Once k has been determined, we set 

L = {i I P; < Pl + 1} 

Note that G, E and L are independent of which of the possible numberings of the devices obeying (2.1) has 
been used. Clearly E is not empty, although either G or L might be. Set K ={1,2, ... , k} with the 
understanding that K is empty if k = o. Then 

G h K C K U {k + I} ~ G U E 
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and so 

k k+1 
~ min(l, q) < ~ min(l, qJ < m < l: min(l, q) < l: min(l, qJ. 

i E G i= 1 

Then, setting 

we have 

We will show that 

is the value of the game. 

i=l i E G U E 

g m - l: min(l, q) 
i E G 

m - I G n TI - q(G n 1), 

o < g < ~ min(l, q). 
i E E 

V(G n 1) + V(E) + V(L) - PHlg - P(G n 1) 

LEMMA 4. Let FO be defined as in (4.5) and let pO be any strategy for the inspector which satisfies 

(i) 
(ii) 
(iii) 

p~ min(l, q;) 
p~ 0 
p~ < min(l, qj) 

Then F°;;"F(c,pO)for all strategies cfor the inspectee. 
PROOF. It follows as a consequence of (i), (ii) and (4.3) that 

Substituting (i) and (ii) into (2.4), we have 

for all i E G, 
for all i E L, 
for all i E E. 

F(c,pO) = ~ (Vj - P)cj + l: _ (Vj - Pjq;)cj + l: (17; - PHI p;)C j + l: 
i E G n T iEGnT iEE iEL 

But Vj-Pjqj=O for all i E G n f. It follows from (4.5) and (iv) that 

~ Pj (qj - 1)(1 - c) + ~ (Vj - PHIP~)(l - c) + l: Vi (1 - c
j
). 

iEGnT iEE iEL 

However. q; -1 > 0 for i E G n T and, by (iii), 

for all i E E. 
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Hence each term on the right hand side of the last equation is non-negative and so 

for all strategies c for the inspectee. 
COROLLARY 3. Let'Cbe a strategy for the inspectee. In order that F('ir,p)=Fo for all strategies p for the 

inspector which satisfy conditions (i) through (iv) of the lemma, it is necessary and sufficient that 

(v) ,-.oJ 

Ci = 
(vi) ,-.oJ 

Ci = 
(vii) ~ 

Ci = 

1 

1 
1 

for all i f G n 1: 

for all i f L, 
for all i f E. 

PROOF. It follows immediately from (4.6) that conditions (v) through (vii) form a set of sufficient 
conditions that F(C',p)=Fo for all strategies P which satisfy conditions (i) through (iv). 

Since qi-1>0 for all i f G n T and Vi>O for all i E L, (4.6) also shows that (v) and (vi) are 
necessary conditions that F(~p) =F ° for all strategies p satisfying (i) through (iv). It remains to show that 
condition (vii) is also necessary. By (4.4), for each j f E there exists a strategy for the inspector, pi, 
satisfying (i) through (iv) and such that 

p~ < min(l, q). 

Then 

By (4.6), in order that F('C:pi)=Fo, it is necessary that Cj= 1. Hence we have shown that condition (vii) is 
also necessary. 

LEMMA 5. If'C is any strategy for the inspectee which satisfies conditions (v) through (vii) of Corollary 3 
then 

F('C:p) - FO = ~ (Pi - Pk+l)(l - pJ + ~ (Pk+l - Pi)Pi + ~ (P;<; - Pk+l)(qi - PJ (4.7) 
if G n T fL ifGnr 

for all p. Ifc is any strategy for the inspectee which satisfies conditions (v) through (vii) and, in addition, 
satisfies 

for all i f GnU 

then 

F(c,p) - FO = ~ (Pi - Pk+ I)(1 - p,) + l: (Pk+l - P')Pi + 
f L 

~ (Pli - Pk+I)(1 - p,) (4.8) 
i f G n T e G n w 

for all p. 
PROOF. Let c be a strategy for the inspectee which satisfies (v) through (vii). Substituting (v) through 

(vi) into (2.4), we have 

F(~p) = ~ (Vi - PiP) + l: Pi (qi - p)C; + 
ieGnT ifGnr 

l: .(Vi - PH1P) + 
f E 

V(G n 1) + V(E) + V(L) + PH,[q(G n 1) - p(G n 1) - p(E)] 

~ PiPi - l: PiPi + ~ (P;'C( - PH ,)(qi - Pi)· 
fG fL ifGnf' 
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It follows from (4.5) that 

F(c,p) _ FO = P"+I[q(G n 1) - p(G n 1) - p(E) + g] - ~ PiP; 
i € L 

+ ~ _ (P/C; - P,,+ l)(q; - p;) + ~ P;(l - p;}. 
i € G n T i € G n T 

Solving eq (4.3) for m, we have 

m = g + / G n T/ + q( G n 1) 

and so the last equation becomes 

F(c,p) - FO = PH1[m - p(G n 1) - p(G n 1) - p(E) - p(L)] + ~ (P"+l - P;}p; 

i € L 

+ ~ (Pi - P"+I)(l - Pi) + 
i E G n T 

By eq (2.3), 

m = p(G n 1) + p(G n 1) + p(E) + p(L) 

and consequently we are left with 

F(c,p) - FO = 1: (PHI - P)Pi + ~ (Pi - PH1)(1 - p) + 1: (P/c-: - P"+l)(qi - p;) 
iEL i€GnT i € G n T 

which is eq (4.7). 

If c is a strategy for the inspectee which satisfies condition (viii) then 

for all i E Gnu. 

Thus, if c satisfies conditions (v) through (viii) then eq (4.7) becomes (4.8). 
It follows from equation (4.8) that: 
COROLLARY 4. If CO is a strategy for the inspectee which satisfies conditions (v) through (viii) and also 

satisfies 

for all i E G n W, 

then F(cO,p»Fo for all p. 
We can now describe the solution of the game in Case II. 
THEOREM 5. (a) The value of the game is FO. (b) If pO is a strategy for the inspector which satisfies (i) 

through (iv) then pO is optimal. (c) If CO is a strategy for the inspectee which satisfies (v) through (ix) then CO is 

optimal. 
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PROOF. First we wish to show that there exist strategies pO and CO which satisfy conditions (i) through 
(iii) and (v) through (ix) respectively. It is readily verified that if pO is defined by 

min(l, qJ 
o 
g min(l, q)l{ l: min(l, q)} 

jeE 

for all i e G, 
for all i E L, 
for all i E E 

then pO is a strategy for the inspector and pO satisfies (i) through (iv). 
Similarly, if CO is defined by 

° 1 for all i e G n T, Ci 

° 1 for all i e L, Ci 

° 1 for all i e E, Ci 

° PH/Pi for all i E G n T, Ci 

then CO is a strategy for the inspectee and CO satisfies (v) through (ix). 
The Theorem now follows from Lemma 4 and Corollary 4. 
Theorem 5 provides sets of sufficient conditions for stategies of each of the players to be optimal. In 

Theorem 6 we will show that the converse of part (b) of Theorem 5 holds, that is, conditions (i) through (iv) 
are both necessary and sufficient for a strategy for the inspector to be optimal. However, conditions (v) 
through (ix) are not necessary for a strategy for the inspectee to be optimal. In Theorems 7 and 8 we will 
provide a set of necessary and sufficient conditions that a strategy for the inspectee be optimal. 

COROLLARY 5. If CO is an optimal strategy for the inspectee then CO satisfies conditions (v) through (vii). 
PROOF. Let CO be an optimal strategy for the inspectee and let p be any strategy for the inspector which 

satisfies conditions (i) through (iv). By Theorem 5 (b), p is an optimal strategy for the inspector. By 
Theorem 5 (a), F(co,p)=Fo and by Corollary 3, CO satisfies conditions (v) through (vii). 

We can now identify all of the optimal strategies for the inspector. 
THEOREM 6. The strategy pO for the inspector is optimal if and only if pO satisfies conditions (i) through 

(iv). 

PROOF. By Theorem 5 (b), a strategy pO for the inspector which satisfies conditions (i) through (iv) is 
optimal. Conversely, let pO be an optimal strategy for the inspector and let CO be a strategy for the inspectee 
which satisfies conditions (v) through (viii) and also 

for all i E G n W. 

Since condition (x) is stronger than condition (ix), it follows from Theorem 5 (c) that CO is optimal. It then 
follows from Theorem 5 (a) that F(co,pO)=Fo. Consequently, eq (4.8) becomes 

o = ~ (Pi - PHI)(l - p;) + l: (P"+I - PJp;. 

But 

Thus, we must have 

eGnT iEL 

Pi-P'+I > 0 

PHI - Pi> 0 

for all i e G n T, 

for all i E L. 

for all i e G n T 

for all i E L. 
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Now, for each h E G n T we define two strategies for the inspectee, c" and ch
, as follows: 

'"t' and c" satisfy conditions (v) through (vii) 

,...;, -" Cj = Cj for all i E G n f, i -=/= h 

,...;, 
1, C" = c1 = o. 

Since pO is an optimal strategy for the inspector we have 

F O 
- F(Ch,pO) > 0, 

FO - F(c",pO) > O. 

Sincec" and c" satisfy conditions (v) through (vii), we may apply Lemma 5. Substituting eq (4.9) and (4.10) 

into eq (4.7), we have 

from which it follows that 

FO - F\c',pO) = (P" - PH1)(qh - p~) > o. 

F O - F(c",pO) = (-P"+l)(q" - p;) > 0, 

for all h E G n T. 

We have now shown that po satisfies conditions (i) and (ii) and consequently, as in Lemma 4, we have 

It remains only to prove that po satisfies condition (iii). 
Suppose that there exists r E E for which p:>qr. We define the strategy cr for the inspectee by 

cr 
satisfies conditions (v), (vi) and (viii), 

C~ = 1 

c~ = 0, 

for all i E E, i -=/= r, 

that is, c
r 

differs from the strategy c of Lemma 5 for the inspectee only in that c;=O whereas cr = 1. By a 
computation similar to that of Lemma 5, we find 

E E 
i-=/=r 

:! PH1(qj - p;) - V(E) + gPH1 - P"+l(qr - p;) 
E E 
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However, since pO is an optimal strategy, we must have 

This is a contradiction and so we have shown that 

for all i E E, 

which proves that pO satisfies condition (iii). 
It remains to find a set of necessary and sufficient conditions that a strategy for the inspectee be optimal. 
LEMMA 6. If CO is an optimal strategy for the inspectee then CO satisfies 

for all i E G n T. 

PROOF. For j E E, let pj be the optimal strategy for the inspector defined in Corollary 3, that is, pj 
satisfies conditions (i) through (iv) and 

p~ < min(l, q). 

Consider any h E G n T; it follows from condition (i) that 

We choose any u such that 

o < u < min(qh' 1 - p~ 

and define the (not optimal) strategy p by 

Pi p~ + u, 

~ = p{ - u = qh - U, 

[/; = p~ 
I 

for all i, i =1= j, h. 

Since CO is an optimal strategy, 

and, by Corollary 5, CO satisfies conditions (v) through (vii). By eq (4.7), 

l: (Pjc; - P/c+I)(qj - PJ 
E G n f 
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and so CO satisfies condition (xi). 
LEMMA 7. If CO is an optimal strategy for the inspectee then there exists a real number M(cO);>O such that 

(xii) for all i E GnU, 

(xiii) for all i E G n w. 

PROOF. If GnU is empty then, by Lemma 6, 0 will do for M(cO). Hence we assume that there exists 
j E GnU and consider any h E G n f, j=l=h. Choose u such that 

o < u < min(q", 1 - q). 

Let pO be an optimal strategy for the inspector and define p by 

p" q" u, 

...... 
qj + u, Pj 

p; = p; for all i, i =1= j, h. 

By eq (4.7), we have 

Since CO is an optimal strategy, 

Hence 

We set 

Thus we have shown that 

for all i E G n T. 

If h (as well as J) belongs to GnU then this argument can be repeated with j and h interchanged. Thus 

for all h, j E Gnu. 

By Lemma 6, M(cO);>O. 

210 



LEMMA 8. Let CO be an optimal strategy for the inspectee. If g>O and GnU is not empty then M(cO)= 

0, that is, CO satisfies condition (viii), namely, 

for all i E Gnu. 

PROOF. Since Gnu is not empty, we may select j E Gnu. Let pO be an optimal strategy for the 

inspector. Since g> 0, (iv) shows that there exists h E E such that 

Choose a real number u such that ° < u < min(p~, 1 - q) 

and define the strategy p for the inspector by 

p" p~ u, 

""oJ 

p; + Pj u 

p; p; for all i, i =1= h, j. 

Then a simple calculation yields 

Since j E GnU, it follows from Lemma 7 that 

F(co,'j)) _ FO 

However, CO is optimal and thus 

By Lemma 6, M(cO);>O and so we have M(cO)=O, which is equivalent to condition (viii). 

We are now able to identify all of the optimal strategies for the inspectee. Theorem 7 wiII show that if 

GnU is empty or if g> 0, then the optimal strategies are those described in (c) of Theorem 5. However, 

when both of these conditions are violated then there is an additional class of optimal strategies. These wiII 

be described in Theorem 8. 
THEOREM 7. If either GnU is empty or g>O then CO is an optimal strategy for the inspectee if and 

only if CO satisfies conditions (v) through (ix). 
PROOF. Let CO be an optimal strategy for the inspectee. By Corollary 5, CO satisfies conditions (v) 

through (vii). If GnU is empty then condition (viii) is satisfied vacuously. If g>O and Gnu is not 

empty then, by Lemma 8, condition (viii) is satisfied. Finally, by Lemma 6, condition (ix) is satisfied. 

The converse is (c) of Theorem 5. 

THEOREM 8. Let g=O and let GnU not be empty. Then CO is an optimal strategy for the inspectee if 
and only if CO satisfies conditions (v) through (viz) and there exists a real number l\1(CO), 

° <; M(cO) <; Min Pi - PI..+l' (4.11) 
iEG 

such that c ° satisfies 

(.~iz) PiC~ - PI..+1 = M(cO) for all i E Gnu, 

(xiiz) PiC~ - PHI ;> M(cO) for all i E G n W. 
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PROOF. ° Let CO be a strategy for the inspectee which satisfies conditions (v), (vi), (vii), (xii) and (xiii), 
where M(c ) be a real number satisfying (4.11). By Lemma 5, 

F(co.p) - FO= ~ (P; - Pk+1)(1 - p) + ~ (Pk+1 - P)p; + ~ _(PiC; - Pk+I)(qj - p) (4.12) 
iEGnT iEL iEGnT 

for any strategy p for the inspector. For each i E G n ,set 

PiC; - PHI - M(cO) = a; ;> O. 

Then eq (4.12) becomes 

F(cO,p) - FO ~ (P; - PH 1)(1 - p) + ~ (Pk+1 - P)Pi 

i E G n T i E L 

+ ~ (M(cO)(q; - pJ + ~ [M(cO) + aJ(l - pJ. (4.13) 
i E G n U i E G n IF 

Since g=O, it follows from eq (4.3) that 

m = I G n TI + q( G n 1) 

= p(G n 1) + p(G n 1) + p(E) + p(L). 

Thus, 

q(G n 1) - p(G n 1) = p(G n 1) + p(E) + P(L) - IG n TI. (4.14) 

Substituting eq (4.14) into eq (4.13) yields 

F(cO,p) - FO = ~ (P; - PH 1)(1 - pJ + 
i E G n T 

~ (PH 1 - PJpi 
i E L 

+ M(cO)fp(G n 1) + p(E) + p(L) - I G n TI] + 
i E G n IF 

= ~ [Pi - Pk+1 - M(cO)](l - pJ + ~ [Pk+1 - Pj + M(cO)] p; + ~ M(cO)p; 
iEGnT iEL iEE 

+ ~ a; (l - pJ ;> 0 
i E G n IF 

for all strategies p for the inspector, since P; -Pk+ I-J1(CO);>° for all i E G n T. Thus we have shown that 
CO is an optimal strategy. 

Conversely, let CO be an optimal strategy for the inspectee. By Corollary 5 and Lemma 7, CO satisfies 
conditions (v), (vi), (vii), (xii) and (xiii) for some Jl(cO);>O. It remains only to show that M(cO) satisfies the 
right-hand inequality in (4.11). Suppose it does not. Then there exists h E G n T such that 

Jl(cO) > Ph - P"+I' 
that is, 

Ph - P,,+ 1 - Jl(cO) < O. 
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Since Gnu is' not empty, there exists j E GnU and so qj< 1. Define the strategy p for the inspector 
by 

Ph qj 

Pj 1 

Pi 1 for all i E G n T, i =1= It, 
Pi qi for all i E G n T, i =1= j, 
Pi 0 for all i E E n L. 

Then 

which contradicts the fact that CO is an optimal strategy for the inspectee. Hence M(cO) satisfies (4.11). 

Table of Results 

Case Definition I nspectee' s Strategy Inspector's Strategy Payoff 

m > ITI + q(T) p~ ~ min(l,q,) Cj = I i E T FO= l'(T) - PIT) 

C j = 0 i E [! 

Case I 

m = ITI + q(f) p; = min(l,q,) C~Pj = M(c°) i E U FO = I'(T) - I'T) 

C~Pj ;;. M(cO) i E W 

Cj = I i E T 

C j = I i E G n T 

° = I i E L Cj 

C j = 1 i E £ FO= pC; n T) + I'(f:) 

C j = PH/Pj i E G n U + 1,(/, ) - P, + I t: - IV; n T) 

p~ = min(l,q,) i E G 

Case II m < ITI + q(f) p~ = 0 i E L c; ;;. P,+/Pj i E G n W 

for G n (! = ~ or g > 0 

p~ ..;; min(l,q,) i E £ 

pOlE) = ° = 1 i E G n T g c j 

C j = I i E L 

C j = 1 i E £ 

C;Pj - PHI = M(cO) 

i E G n (! 

c;Pj-PHI ;;. M(cO) 

i E G n W 

for G n u =1= ~ and g = 0 
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5. Example: Proportional Penalties 

Our aim in this section is to illustrate the preceding material by applying it to some simple situation. 
Three possibilities suggest themselves for this illustrative role. One is the situation in which all penalties Pi 
have a common value P. This, however, is precisely Model 1 of our previous paper [2], and so it need not 
be repeated here. The other two "scenarios" are both natural generalizations of Example 1: Equal-Sized 
Firms given in section 3 of [2]. One of them involves a common value V for the cheating-gains Vi; the other 
postulates a common value q for all the quotients qi= V/ Pi. The latter situation, in which penalties for 
detected cheating are proportional to gains from cheating, leads to results which are simpler and more 
readily interpretable and it is also more relevant in the (income-tax return audit) context of [1]. This 
constant-q situation was therefore selected for presentation below. 

Suppose first that q> 1. Then all n devices are "tempting", i.e., T=N, while T, U and Ware empty. The 
right-hand side of (2.7) and (2.8) reduce to n. Since m<n, Case II is governing. It follows from (4.2) that k 
is the greatest integer not exceeding m, which we denote k=[m]. From (4.3), we have g=m-I G I. 

The value of the game, according to (4.S) and (a) of Theorem S, is given by 

FO V(G) - P(G) + V(E U L) - PH~ 

(q - l)P(G) + q[P(N) - P(G)] - PH1(m - I G /) 

qP(N) - mPk+1 - [P(G) - PHil G I]. (S.l) 

It is interesting to think of the P,.'s as fixed and to see how F 0, a measure of the (mis)performance of the 
inspection system, varies with m (a measure of the inspection-resources available) and q (a measure of the 
incentive to cheat). For each integer k, with O<k<n-1, it follows from (S.l) that F ° is linear in q and m in 
the vertical strip {(m, q):k<m <k + 1, q> 1} of the (m,q)-plane; as would be expected, F ° increases with q 
and decreases with m. 

The optimal strategies pO for the inspector are given by (b) of Theorem S: one should always inspect 
those devices with penalties greater than the critical level PHI' never inspect those with penalties below 
this level, and allocate the balance (if any) of his/her effort arbitrarily among the remaining devices. The 
optimal strategy for the inspectee is given by Theorem 7 (since U is empty), and requires always cheating 

on every device, a natural conclusion since all devices are tempting. 
Now suppose that q=l; thus W=N, while T and U are empty. The results are just the limiting case 

q = 1 of those given above, except for the optimal strategies of the inspectee. Hel she need not always cheat 
on those devices Di with the higher penalties (Pi> Pk+ I)' but hel she must do so with high enough 
probability (c~>PH.I P,) to keep the inspector from diverting effort from certain inspection of these devices 

to more frequent inspection of the others. 
Finally, suppose that q< 1. Thus all devices are untempting (U=N), while T and Ware empty. The 

right-hand side of (2.7) and (2.8) reduces to nq; thus Case II governs if min <q< 1 while Case I governs if 

q<.mITl. 
For mln<q<l, (4.2) yields k=[mlq], while (4.3) givesg=m-qIGI. Again the value of the game FO.is 

given by (4.S), yielding 

F
O 

= V(E U L) - Pk+lg 

q[P(N) - {P(G) - Pk+11 GI}] - mPH1 · (S.2) 

For each integer k, with 1 <.k<.n-l, F ° is linear in q and m (increasing with q, decreasing with m) in the 

angular sector {(m,q):k<mlq<k+ 1} of the positive quadrant of the (m,q)-plane. 
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Still under the assumption that mln<q<l, the optimal strategies for the inspector are given again by 
(b) of Theorem 5; again the devices with penalties Pi exceeding the critical level PH I are always to be 
inspected, while those with lower penalties should be left uninspected. The balance (if any) of inspection 
resources can be allocated arbitrarily among the remaining devices, Di' subject only to the no-overkill 
proviso p~ <qi' If either G is empty (i.e., PHI =maxi P) or if g=O, then the unique optimal strategy for the 
inspectee is given by Theorem 7: cheat on the high-penalty devices (Pi>PHI ) with probability PH'; Pi' and 
always cheat on the other devices. But if g=O and G is non-empty (i.e., there are mlq high-penalty 
devices), then Theorem 8 shows that the inspectee has an additional one-parameter family of optimal 
strategies specified by the behavior Pi c~ -PH I =M(cO) on the high-penalty devices Di (and always cheating 
on the other devices), where the range of the parameter M(cO) is given by (4.11). 

The only remaining situations are those with q<mln. As noted above, Case I applies. The game-value FO 
is 0, by (i) of Theorem 1, so that the inspection-system succeeds in preventing illicit gains by the inspectee. 
In fact, if q<mln then Theorem 3 shows that the system succeeds in inhibiting all cheating (in optimal 
behavior) by the inspectee. If q=mln, however, the inspectee has (by Theorem 4) optimal strategies 
involving cheating on the various devices Di with probabilities inversely proportional to the associated 
penalties Pi' By Theorem 2, the optimal strategies for the inspector are precisely those in which each device 
is inspected with probability at least q. 
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