

U(lLOi<l

. SCHOOL

NAVAL POSTGRADUATE SCHOOL
Monterey, California

I^oHLpI^

AN EXPERT SYSTEM APPLICATION FOR SERMIS

by

Daniel J. Rippinger
« / 1

September 1988

Thesis Advisor

:

John B. Isett

improved for public release; distribution is unlimited

T242296

Tnclassified

ecurity Classification of this page

REPORT DOCUMENTATION PAGE
a Report Security Classification Unclassified lb Restrictive Markings

Security Classification Authority

J Declassification/Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

Performing Organization Report NuTnber(s) 5 Monitoring Organization Report Number(s)

Name of Performing Organization

aval Postgraduate School
6b Office Symbol

(If Applicable) Codc 54
7a Name of Monitoring Organization

Naval Postgraduate School
Address (city, state, and ZIP code)

lonterey, CA 93943-5000
7 b Address (city, state, and ZIP code)

Monterey, CA 93943-5000
I Name of Funding/Sponsoring Organization 8b Office Symbol

(If Applicable)

9 Procurement Instrument Identification Number

; Address (city, state, and ZIP code) 1 Source of Funding Numbers

Program Elemenl Number | Project No | Task No \ Work Unit Accession No

Title (Include Security Classification) An Expert System Application for SERMIS
\ Personal Author(s) Rippjnger, Daniel J

Type of Report

Raster's Thesis
13b Time Covered

From To

14 Date of Report (year, month,day)

1988 September
1 5 Page Count

100
Supplementary Notation The views cxprcssed in this thesis are those of the author and do not reflect the official

bHcy or position of the Department of Defense or the U.S. Govemment.

1 Cosati Codes

;ld Group Subgroup

1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Expert systems, knowledge acquisition

Abstract (continue on reverse if necessary and identify by block number)

The Support Equipment Resources Management Information System (SERMIS) is an extensive program that

Qntrols the Navy's aviation support equipment assets. Deficient support equipment allowances for maintenance
ativities are being generated under this system due to the retirement of a cadre of experts who have acquired years

Q direct experience with these activities. These direct experiences contribute to mastering the types of knowledge
SLRMIS requires as input data to this allowance process. Interviews were conducted with an acknowledged
apert to identify the types of information that comprised this prerequisite body of knowledge. A prototype expert

^stem application was then constructed using a commercial development tool. The prototype demonstrated the

ffisibility of capturing this knowledge and using it as a front-end application to gain a more effective and efficient

115 of SERMIS.

.3

Distribution/Availability of Abstract

unclassified/unlimited I I same as report I DTIC users

21 Abstract Security Classification

Unclassified

Name of Responsible Individual

rfn B. Isett, Major USAF
22b Telephone (Include Area code)

(408) 646-2464
22c Office Symbol

54Is

)JFORM 1473, 84 MAR 83 APR edition may be used imtil exhausted

All other editions are obsolete

i

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

An Expert System Application for SERMIS

by

Daniel J. Rippinger

Lieutenant Conimander, United States Navy
B.A., Northwestern University, 1976

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INTORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

ABSTRACT

The Support Equipment Resources Management Information System (SERMIS) is an

extensive program that controls the Navy's aviation support equipment assets. Deficient

support equipment allowances for maintenance activities are being generated under this

system due to the retirement of a cadre of experts who have acquired years of direct

experience with these activities. These direct experiences contribute to mastering the types

of knowledge SERMIS requires as input data to this allowance process. Interviews were

conducted with an acknowledged expert to identify the types of information that comprised

this prerequisite body of knowledge. A prototype expert system application was then

constructed using a commercial development tool. The prototype demonstrated the

feasibility of capturing this knowledge and using it as a front-end appUcation to gain a more

effective and efficient use of SERMIS.

m

t' /

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. REASONS FOR THESIS RESEARCH IN THIS AREA 2

C. HOW AN EXPERT SYSTEM ALLEVIATES THE PROBLEM 4

D. RESEARCH QUESTIONS 5

E. METHODOLOGY 6

F. ASSUMPTIONS AND LIMITATIONS OF STUDY 7

G. BENEFITS OF THE STUDY 8

H. ORGANIZATION OF THESIS 8

II. THEORY OF EXPERT SYSTEMS AND KNOWLEDGE ACQUISITION 10

A. FRAMEWORK FOR EXPERT SYSTEMS 10

B. EXPERT SYSTEM COMPONENTS 21

C. PLANNING AND BUILDING AN EXPERT SYSTEM 23

D. INTEGRATION OF AN EXPERT SYSTEM INTO AN MIS 31

E. SUMMARY 33

III. DESIGN AND CONSTRUCHON OF A PROTOTYPE EXPERT SYSTEM

FOR THE SERMIS ALLOWANCE SUBSYSTEM 35

A. INTRODUCTION 35

IV

B. IDENTIFICATION STAGE 36

C. CONCEPTUALIZATION STAGE 39

D. FORMALIZATION 42

E. IMPLEMENTATION 45

F. TESTING 51

G. CHAPTER SUMMARY 53

IV. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE

STUDY 55

A. RESEARCH SUMMARY 55

B. FINDINGS 56

C. REQUIREMENTS FOR FOLLOW-ON DEVELOPMENT 58

D. GENERAL CONCLUSIONS 59

E. APPLICATIONS FOR OTHER AREAS 60

F. OVERALL SUMMARY 61

APPENDIX A SERMIS OVERVIEW 63

APPENDDCB SPONSOR INTERVIEW 65

APPENDIX C EXPERT INTERVIEWS 68

APPENDIX D VP-EXPERT 74

APPENDIX E DOCUMENTATION 79

APPENDIX F RULES AND INFORMATION BASE EXAMPLES 83

REFERENCES 88

INITIAL DISTRIBUTION LIST 91

VI

ACKNOWLEDGMENTS

I would like to take this opportunity to acknowledge the people whose help was

instrumental in the completion of this research, A sincere appreciation is extended to: the

thesis sponsor for providing the opportunity and tools to become initiated in the art of

expert system development; the expert, for contributing his experience, time, and most

importantiy, patience during the course of the interview sessions; my thesis advisor, for his

insights and soft spoken insistence on producing a quality product; and finally my wife,

whose emotional support, love and understanding were ever present throughout the entire

process.

vu

I. INTRODUCTION

A. BACKGROUND

Modem mission requirements of the U.S. Navy necessitate a variety of aircraft types.

The Naval Aviation Maintenance Organization (NAMO) supports this diverse aircraft

inventory by providing three levels of aircraft maintenance: organizational, intermediate,

and depot. Organizational maintenance is performed at the squadron level and typically

consists of the day-to-day repairs required on the aircraft. Intermediate maintenance

activities (IMA's) are the next step in the maintenance hierarchy and they support a group

of organizational activities that are usually in close geographical proximity. As an example,

an IMA at an air station or on an aircraft carrier will support the various squadrons

(organizational activities) based at that air station or assigned to the carrier. This level

focuses on the upkeep of major aircraft components that are beyond the scope of an

organizational activity, for example, engine overhauls, and radar calibrations. The depot

level is a major re-work facility for the entire airframe. This type of activity conducts

complete overhauls and performs major airframe modifications such as re-winging an

aircraft. These three maintenance levels are summarized in Table 1.

Just as the complexity of maintenance increases with each level, so does the

complexity of support equipment. The support equipment program needed to maintain

these three maintenance levels has evolved into an extensive and complex program.

Technological advances required more varieties of support equipment. As the need for

wider ranges of equipment grew, so did the requirement for an automated method to track

the respective allowances, inventories, readiness reports, etc., for the various aircraft

maintenance activities. A determination such as an allowance requirement for a specific

aircraft maintenance activity, would require consulting numerous types of ground support

equipment (GSE) allowance lists. Manual determinations for these requirements became

too time consuming and error prone. The Support Equipment Resources Management

Information System (SERMIS) was created in response to this requirement for an

automated system. The purpose of SERMIS is to provide management personnel with

timely, accurate, and readily available support equipment allowance and data on this $6-$9

billion inventory. It maintains the necessary data for the effective management of aircraft

support equipment. Appendix A provides a detailed description of SERMIS and its

history.

TABLE 1. Aircraft Maintenance Level Summary.

Maintenace Level

Organizational

Intermediate

Depot

Tvpe Facility

Squadron

Centrally located for

support of units on a

particular base or ship

Industrial

Tvpe Maintenance

Day-to-day opera-

tions and servicing

Repair, test, and
modifications of

aircraft components

Rework and overhaul

of aircraft, components
and equipment

B. REASONS FOR THESIS RESEARCH IN THIS AREA

Even though SERMIS assimilates and aggregates the data in response to user

inquiries, the inherent complexities of the support equipment system still exist. An

example of such a situation was described in an inter\'iew (Appendix B) with the thesis

sponsor from NAMO concerning the Individual Material Readiness List (IMRL). The

IMRL is a consolidated allowance list specifying support equipment end items and

quantities required for an activity to perform its maintenance responsibilities. A typical

intermediate level facility will have an IMRL list that is over 3,000 pages in length.

SERMIS provides the data necessary for an accurate IMRL. There are training programs in

place that teach IMRL managers the intricacies of navigating through SERMIS in order to

obtain accurate IMRL's.

The problem then, is not inadequate training, but rather the experience level associated

with the position of IMRL manager. There is an IMRL manager associated with each

Support Equipment Controlling Authority (SECA). Presently there are six SECAs and the

IMRL manager is responsible for the IMRL generation of each of the activities within the

SECA. As an example, Commander Naval Air Force Pacific (COMNAVAIRPAC) is a

SECA with over 300 activities.

The civilian holding the position of IMRL manager does not have any direct experience

with these maintenance activities. It takes a substantial amount of experience to become

familiar with all these activities. As an example, a new IMRL manager might be generating

an IMRL for a particular air station. This manager is unaware that this station is required to

support F/A-18's on a transient basis. Consequently support equipment for F/A-18's are

left out of the IMRL. This error is not discovered until the IMRL is generated and goes to

the activity. When the error is detected the IMRL has to be re-generated. All these facts

regarding the intricacies of a maintenance activity are known collectively as the

"employment data" for that activity.

When this IMRL manager finally departs the position, so will all the corporate

knowledge on employment data obtained while using the system. Without this knowledge,

maintenance activities risk the potential of operating with less than optimal levels of support

equipment. Therefore the problem becomes one of retaining the SERMIS knowledge in

that position. There are other problems that contribute to an ineffective use of this system,

such as a database that is not sound, available computer time, and so forth. The objective

of the thesis however will focus on the capture and retention of the knowledge necessary

for effective use of SERMIS. This will be accomplished through the use of an expert

system.

The specific example of an IMRL manager was used to illustrate one of the problems

arising from the complexity of SERMIS. Parallel problems can be found in any of the six

functional subsystems (Appendix A) of SERMIS. For the purposes of this study, expert

system construction will focus on the "allowance" functional subsystem which contains the

programs necessary to compute support equipment allowances for various maintenance

activities. These allowances are computed from established algorithms. This functional

subsystem also has the capability to add to or modify these support equipment allowances.

C. HOW AN EXPERT SYSTEM ALLEVIATES THE PROBLEM

The sponsor has accomplished some initial work in this area through use of a

commercial software package, "VP Expert" (see Appendix D for VP Expert details). The

work thus far has been limited to applications that capture "textbook" knowledge, such as

explaining SERMIS definitions for the user, presenting instructions, or indicating what

references should be checked in order to obtain correct values for required data elements.

The sponsor is now prepared to support further efforts in creating the necessary knowledge

base.

Continued development is critical due to the decreasing supply of experts. At present,

there are only a handful of people remaining that have been with the SERMIS program

from its inception and that have had significant experience with the support equipment

environment. It is this type of expertise that allows one to proceed correctly and efficiently

through a major SERMIS transaction. An example of such a transaction would be the

determination of a new IMRL for an entire carrier airwing. This involves identifying the

organizational and intermediate level support requirements for seven different aircraft types

that contribute to the 90 plus aircraft total on board a standard aircraft carrier. It results in

the 3,000 page IMRL output described previously. This type of transaction takes a

weekend of computing time (Friday-Monday). Clearly, this is not a resource that can be

used repetitively until one arrives at an optimal solution. The user has to be well versed in

the ways of SERMIS in order to obtain the best results. It is not a matter of simply

following menu choices.

Currently, this cadre of "experts" is not sufficient to fill all positions responsible for

these types of major transactions. If such a calculation is required, and the expertise is not

available in-house, commands have to "borrow" the proficiency from another location.

This method obviously cannot suffice for the long term. An expert system, which would

contain the acquired knowledge from a SERMIS expert, could be incorporated as a front-

end system to SERMIS and will lead to a more efficient use of SERMIS without stretching

the present limited resources.

D. RESEARCH QUESTIONS

The primary area that will be investigated is identification of the unique knowledge

requirements of the SERMIS Allowance subsystem. What knowledge must be captured

for the user to make more effective use of this subsystem? The SERMIS experts have

acquired a certain knowledge level that distinguishes them from the novice user. What are

the characteristics of this knowledge level? Is it composed of textbook knowledge or

know-how gained through constant exposure to the system, or is it a combination of both?

Once these essentials have been identified the research emphasis will be on prototype

construction of an expert system in order to capture this knowledge. Can a simple expert

system be constructed using a commercial package? Does a commercial package provide

effective knowledge acquisition? Finally, the matter of incorporation of an expert system

into an established management information will be addressed. Should the expert system

be integrated as part of the information system or should it be a separate component?

E. METHODOLOGY

Prior to undertaking any type of knowledge extraction interviews, a fundamental grasp

of SERMIS had to be developed. This was accomplished in part by the sponsor interview

(Appendix B) and by obtaining a copy of the SERMIS users manual. Study of the

existing system was limited to the "textbook" exposure provided by the user's manual due

to the inaccessibility of SERMIS sites in the area. The intent was to gain as much SERMIS

domain knowledge as possible in order to reduce the communication overhead when it

came time for the expert interview.

Once the fundamental concepts and terminology were acquired from the manuals, the

expert interviews were conducted in order to transfer the knowledge from the human

source to a knowledge base. During these interviews, the problem domain had to be

restricted in order to keep the process manageable. For this study, the problem domain

was limited to specific applications in the SERMIS Allowance subsystem. Concepts,

terms, relations, definitions and basic strategies were uncovered that were relevant to these

applications.

Following completion of the interviews, analysis and design of the expert system

began using a prototyping approach. An initial knowledge base was constructed from the

strategies revealed in the interviews through the use of the commercial software tool, "VP

Expert." The rules comprising this knowledge base were then subjected to testing by the

knowledge engineer. This was the basic iteration cycle used for the prototype

6

development. The main intent was to implement early and not become mired in making the

informal rules perfect.

F. ASSUMPTIONS AND LIMITATIONS OF STUDY

One of the preliminary decisions to be made in developing an expert system is which

software tool to use. An assumption of this study is that the software tool has already been

decided as "VP Expert." This is the package that has been used in the initial cases

performed by NAMO and is considered a suitable program.

Travel logistics were one of the major limitations of this study. The three main players

in this study: sponsor, knowledge engineer, expert; were geographically dispersed between

Washington, D.C., Monterey, CA, and San Diego, CA; respectively. This made

coordination efforts between the parties somewhat difficult. The knowledge engineer's

academic agenda also prohibited the scheduling of a series of dedicated one week intervals

to conduct expert interviews. The expert interviews were conducted over a quarter break.

This was the only available time period that contained a week that would not impact the

academic schedule. This compressed window for knowledge acquisition meant limiting the

scope of the knowledge domain to be extracted to a single application within the Allowance

subsystem. The application chosen was the computation of allowance lists for fleet

maintenance activities.

It is assumed that the usefulness of this effort will be a more efficient application of the

SERMIS Allowance subsystem and computing time. This research will also lead to expert

system development in other subsystems of SERMIS.

A final assumption of this research is that the recommended experts employed in the

study had sufficient SERMIS experience to be considered "experts."

G. BENEFITS OF THE STUDY

The main benefit of this study was the resuh of developing the prototype expert

system. This prototype established an initial, machine-usable knowledge base that

provided a better understanding of the SERMIS Allowance subsystem. This increased

understanding of SERMIS will ultimately lead to more efficient and accurate computations

of support equipment levels to the fleet. The prototype will also serve as a foundation for

further refinements and iterations to this subsystem and as a model for the other

subsystems.

Expert system benefits can be generalized to many other areas of a military

environment. A fact of life with military assignments is the "passdown" information

associated with a job when it is turned over to one's successor. This passdown document

is a repository of corporate knowledge that is manually maintained and updated. As with

any form of manual documentation, it can eventually become too unwieldy and fall into

disuse. An expert system offers an automated method of knowledge retention, and a more

convenient manner to access this knowledge. The manual drudgery often associated with

passdowns is now eliminated. Learning curves are reduced and a more disciplined

understanding of the job is acquired.

H. ORGANIZATION OF THESIS

The remainder of this thesis is presented in three chapters. Chapter II discusses expert

system theory and evolution and where this research falls in a general framework of expert

systems. The elements of planning and building an expert system application are also

covered. Chapter III details the specifics involved in the actual composition of the

prototype expert system for SERMIS. This chapter provides descriptions of the expert

interviews, and incorporating the extracted knowledge into a knowledge base. Chapter TV

8

presents the findings, conclusions and the requirements for future refinements. An

extrapolation of expert system benefits to other areas is also presented.

II. THEORY OF EXPERT SYSTEMS AND KNOWLEDGE
ACQUISITION

A. FRAMEWORK FOR EXPERT SYSTEMS

Expert system technology has, in recent years, exploded from the research

environment into myriad real world applications. This rapid emergence has caused a "high-

tech hype" to be associated with the term "expert system." When a technology such as

expert systems, proves its potential and becomes accessible, companies are quite anxious to

wrap their products in the cloak of this latest advancement. An aura becomes associated

with the technology and suddenly it becomes a trend [Mishkoff 86]. Even though this

aura has resulted in a higher visibility for expert systems, it has also created a more casual

use of the term. Ultimately, a wide spectrum of products end up with the label "expert

system." Some applications are deserving of the label and some merely are using it to

remain in vogue. The original concept has been spread too thin across this range of

applications.

1. Expert System Definition

A definition for "expert system" must be established as an initial step prior to any

actual development.

A logical source would be one of the "founding fathers" of expert systems,

Professor Edward Feigenbaum of Stanford University. Feigenbaum was a principal

researcher for what is generally considered the first successful expert system application

(DENDRAL). He defines an expert system as:

10

...an intelligent computer program that uses knowledge and inference

procedures to solve problems that are difficult enough to require significant

human expertise for their solution.

The knowledge of an expert system consists of facts and heuristics.

The "facts" constitute a body of information that is widely shared, publicly

available, and generally agreed upon by experts in a field. The "heuristics"

are mostly private, little-discussed rules of good judgement (rules of

plausible reasoning, rules of good guessing) that characterize expert-level

decision making in the field. The performance level of an expert system is

primarily a function of the size and quality of a knowledge base it possesses

[Harmon 85:p.5].

Boose describes an expert system as "a reasoning system that captures and

replicates the problem-solving ability of human experts [Boose 86:p.2]." Other authors

echo a similar view: that expert systems are programs containing expert knowledge; and

they attempt to mimic an expert's process of making judgements in specialized areas [Ford

85, Hu 87:p.3, Michie 82].

For the purposes of this study, the definition of an expert system will adhere to

the general flavor of these definitions, that is, an expert system will be considered a

computer based program that manipulates a stored body of knowledge (derived from

experts and facts) in order to arrive at a decision. Specific characteristics of an expert

system will be addressed later in this chapter.

2. Evolution of Expert Systems

Man has constantly searched to enhance human abilities through mechanical

assistance. The Industrial Revolution of the nineteenth century was a major outcome of

these unremitting endeavors, while the development of the electronic digital computer is a

principal consequence of these actions in the twentieth century.

11

Within this context of computer development, the objective was to develop a

system which would replicate the human problem solving process [Harmon 85:p.2]. To

accomplish this goal, two distinct and separate fields of study had to merge: psychology

and computer technology.

Psychologists started placing a heavy emphasis on cognitive styles as a means of

interpreting the human problem-solving process. "It [cognitive style paradigm] categorizes

individual habits and strategies at a fairly broad level and essentially views problem-solving

behavior as a personality variable [Keen 78]." The ultimate goal was to reduce this human

problem-solving process down to a set of reasoning laws that the computer scientists could

then encode into a program. It was discovered however, that the spectrum of human

problem solving knowledge was too diverse to encode into a basic set of rules. The rules

were simply too extensive for practical computer implementation. Reducing the set of rules

limited applications to simple problems.

Time and technology were beginning to provide a solution however. From

technology came hardware advances that permitted faster processing times and larger

memory capacities. Roles for the computer were also becoming something more than just

numerical computation tools. These roles were evolving from the strictly computational, to

electronic data processing (EDP), to management information systems (MIS), to decision

support systems (DSS)[Sprague 82].

The other part of the solution resulted from Artificial Intelligence (AI) researchers

who concluded that knowledge capture had to be limited to specific domains for effective

knowledge base construction [Buchanan 82]. Attempting to capture all of the human

problem solving expertise was too formidable a task. If the knowledge could be relegated

to narrow problem domains, then it could be comprehensively encoded. Figure 1 , adapted

12

from [Harmon 85:p.3], reflects the merging of these two fields of study that have produced

the concept of expert systems.

Non-

technical

t

Technical

Pyschology

Cognitive

Pyschology

"consultant"

systems

Expert Systems

rDSS

rMIS

Computers

Developed

rEDP

"controlling"

systems

Systems helping

decision makers

Systems replacing

decision makers

1940 1970 1975 1980

Figure 1. Evolution of Expert Systems

The term, "expert system" was unfolding as the embodiment of these attempts to

capture human expertise in a specified area. Expert system applications were still for the

most part limited to laboratory research until DENDRAL came on the scene, which is

generally regarded as the first successful expert system application [Michie 82:p.3].

DENDRAL was a program that allowed a user to identify the structure of a complex

organic compound based on an analysis of the compound's spectrogram. DENDRAL

essentially proved that an expert's knowledge could be represented as a set of rules within a

computer program. This program could then be used by someone less knowledgeable to

achieve results similar to the expert.

13

Today expert systems serve mainly as intelligent consultants to decision making.

The future will hold a time when these systems will actually take the place of the decision

maker in certain areas [Ow 87].

3 . Expert System Characteristics

Even though expert systems can var>' significantly in terms of the type of problem

that is being solved (see "Types of Expert Systems" section), all expert systems should

reflect basic characteristics that are representative of the real life experts after whom the

systems are being patterned.

Hayes-Roth et al. describe four basic attributes that are indicative of expert

systems: quality, speed, specialized domains and an explanation facility [Hayes-Roth

83:p.42].

The importance of quality is obvious, that is, no one will want a system that

produces inaccurate judgements. Speed is an important but relative feature of an expert

system. Its weight will be dependent on the type of task. For example, if the task of a

particular system is to provide control decisions at a nuclear power plant, system speed

will carry an important emphasis. Caution must be taken however not to sacrifice quality

for speed and vice versa.

Hayes-Roth et al. also state that experts are found only in "narrow, specialized

domains [Hayes-Roth 83:p.42]." This is due to the fact that one can either possesses a

good deal of knowledge (thereby considered an expert) regarding a limited number of

subjects, or limited knowledge regarding a large number of subjects. In other words, if

one "specializes" in a certain field, then the potential exists for becoming an expert in that

field.

The final characteristic, an explanation facility, although not critical to the

functionality of the system, does serve to satisfy the human operator's intuition and is

14

critical to the "consultant" systems. Little faith would be put in such a system that operated

on a "black box" principle, that is, the inputs are put in at one end of the box and the

answer magically appears out the other end. If a person can "see" the system

understanding and working the problem, more confidence will be put in the results as well

as gaining a better comprehension for the entire process.

Though all expert systems have these similar characteristics specific expert

systems vary greatly however, due in large part to their tasks. Emphasis will now turn to

an examination of these differences.

4 . Types of Expert Systems

Expert system applications cover a wide range of tasks. The majority of expert

system tasks come under a "consultant" label. Such tasks would include: debugging,

design, interpretation, prediction, and diagnosis. The other generic and more advanced

class of expert system types are "controlling" systems, which perform such tasks as:

control, instruction, repair and monitoring [Hayes-Roth 83:p.l3, Hu 87:p.l86]. All of

these tasks are explained below and summarized in Table 2, which has been adapted from

the categories as described by Hayes-Roth et al. and Hu.

• Control systems analyze the current situation and anticipate future problems. The
system will devise a plan to address the predicted trouble spots and then monitor the

execution of the plan.

• Debugging systems when provided a malfunction, will recommend a remedy for that

malfunction.

• Design systems take inputted constraints and arrive at a configuration that satisfy these

constraints. Design systems provide an object configuration. A typical application

may be the design of a computer network based on cost and size limitations.

• Diagnosis systems act as troubleshooters. Given the "symptoms" of a particular

problem, the program will provide what type of malfunction is involved.

• Instruction expert systems combine diagnosis and debugging systems. Through use of

the diagnosis subsystem, a student's deficiencies, that is, "malfunction" are

identified. The debugging portion will address these deficiencies by presenting

appropriate drills in order to correct them.

15

• Interpretation systems analyzes incoming data and assigns it a "real world" meaning. It

deciphers observed data. A typical example in this area would be an expert system
that takes instrument readings in order to recognize deviations.

• Monitoring systems are continually comparing system observations to the the system
goal or factors critical to a successful outcome. If a discrepancy is noted, the

monitoring systems can then identify a situation that would conflict with planned
outcomes.

• Planning systems provide a series of actions to take to achieve a goal. The plan also

has to meet any constraints that are given. One such example would be a plan to

test an installed computer system.

• A prediction type of expert system forecasts future outcomes. The prediction is based
on knowledge of events and circumstances that caused past occurrences of similar

outcomes.

• Repair systems take the combination of debugging and planning systems to their

logical conclusion, that is, they fix a problem once it has been diagnosed. A
problem is identified, a plan is made to correct the problem, and the plan is then

executed.

TABLE 2. Categories of Expert Systems' Tasks

Category Problem Addressed Sample Application

Control Constantly analyzes, predicts & repairs system behavior Air traffic control

Debugging Prescribing remedies for malfunctions. Treat nuclear reactor accidents.

Design Configuring objects subject to a set of constraints Computer network

Diagnosis Inferring system malfunctions from "symptoms" Diagnose diseases

Instruction Diagnosing, debugging, and correcting student behavior Instructing naval students

in steam plant operation.

Interpretation Inferring situation description from data interpretation Interpreting sonar sensor data

Monitoring Comparing observations to goals/vunerabilities Fiscal management

Planning Designing actions to achieve given goals Test plans.

Prediction Forecasting consequences of given actions Military forecast of where next

armed conflict would occur

Repair Executing a plan to administer a prescribed remedy Repair of automotive

components

16

5 . Expert Systems vs. Other Automated Technologies

An expert system has been defined as a program that manipulates a captured body

of domain specific knowledge in an attempt to mimic a human expert's problem-solving

process. Even given this generally accepted definition, the term "expert system" is at

times, confused with terms from related, but distinct automated technologies. Additional

clarification is needed to firmly establish expert systems in this framework of automated

technologies.

a. Expert Systems and Decision Support Systems

The first differentiation that should be addressed is the one between expert

systems and DSS. Ford states that the differences between these two are in four areas:

objectives, operational use, users, and development methodology [Ford 85:pp.24-25].

With respect to objectives, Ford contends that DSS "support the user" in

making a decision while expert systems "provide to the user a conclusion or decision [Ford

85:p.24]." Sprague and Carlson corroborate this passive role of DSS by their definition

which states DSS "help decision makers confront ill-structured problems [Sprague

80:p,l]." The difference here is that expert systems take a more active role by providing a

solution or conclusion to the user while DSS supports the user by making data and models

critical to the decision more accessible and quantifiable.

Operationally, DSS are more flexible, that is, they permit the user to

"manipulate the data and models in a variety of ways while progressing through the

decision making process [Ford 85:p.24]." Expert systems are much more regulated. The

knowledge base of an expert system generally consists of a set of rules. The conclusion is

reached by a system, not user, manipulation of these rules. This manipulation is

accomplished through the use on an inference capability [Harmon 85:p.34]. Consequently,

17

the operational difference with DSS, is the user directs the system, and with expert

systems, the system directs the user [Turban 86:p.l22].

The next difference is found in the type of users. In the beginning days of

expert systems, the difference between DSS users and expert system users could be

classified as business vs. research [Ford 85:p.25J. lliis particular difference is becoming

less clear cut over time however as expert systems are gradually finding a niche in business

organizations. DSS are designed for improving the effectiveness of individual decision

making within a business organization. Since DSS applications can cover the concerns of a

diverse group, these users are normally considered a non-homogeneous group. In

contrast, expert systems were developed from a narrow knowledge domain and therefore

the users are a more homogeneous group. Ford makes a further distinction by stating that

DSS users normally helped designed the system, while most expert system users had

nothing to do with the design [Ford 85:p.251.

The final area of contrast concerns the development methodology. Both DSS

and expert systems employ the prototyping approach. For DSS this approach permits a

high level of user involvement and allows the application to continue to adapt to the user's

needs. When this iterative approach is used in the development of expert systems, it allows

the knowledge base to be constantly refined and expanded, which leads to better

performance [Ford 85:p.25].

b. Expert Systems and Artificial Intelligence (AI)

Finally, a distinction should be made between expert systems and the more

inclusive category of AI, since there exists an occasional propensity for these terms to be

used interchangeably.

AI is generally considered an outgrowth of computer science that deals with

the development of systems which attempt to produce results on a level equal with human

18

intelligence [Harmon 85:p.3]. Expert systems are just one branch of AI. Other AI

categories include: robotics, voice recognition and synthesis, and vision [Hu 87:p.3].

Establishing a precise definition of artificial intelligence is a very elusive task. Since the

field is constantly changing, so are the definitions. The intent here is not to nail down the

definition of artificial intelligence, but rather to establish that expert systems are normally

considered a subset of this fluid technology .

6. How SERMIS Project Fits in the Framework.

Various characteristics and types of expert systems have been described. In

general, expert systems adhere to the same basic architecture (see "Expert System

Components" section) but differ in their knowledge bases and applications [Hayes-Roth

83:p.89].

Luconi et al. provide a framework that puts expert systems into a management

context [Luconi 86:p.6]. This framework is depicted in Figure 2. The problem types used

by this framework are defined as:

• Type I: where the problem elements of data, procedures, goals & constraints, are all

clearly defined and therefore suited for conventional programming techniques. This

type of problem is fully structured and is indicative of data processing.

• Type II: an unstructured quality to the problem elements is introduced. Standard

procedures alone are no longer sufficient. Computers apply procedures to the

structured component but rely on humans to decide which procedures are

appropriate in a given situation. Decision support systems deal with Type II

problems.

• Type III: the system is capable of encoding some of the goals and strategies from
humans. The system can now explore a range of strategies before picking a

solution. Luconi et al. label this type problem appropriate for expert systems. They
argue however, that it appears to be almost impossible to encode all the knowledge
for less clearly bounded problems like financial analysis [Luconi 86:p.9].

• Type IV: all the problem solving knowledge cannot be feasibly encoded, but it is still

beneficial to draw on expert system techniques. Luconi et al. state this type of

problem is well suited for what they label "Expert Support Systems." These
systems focus on a design that supports rather than replaces users [Luconi 86:p.9].

19

Problem Types

I

DP
m
ES

Data

B

E

B

C

Procedures

Goals &
Constraints

Flexible Strategies

Key

D
Done by

Computer

T
SERMIS

Done by

People

Figure 2. Expert Systems Framework [Luconi 86:p.l2].

The problem elements are represented on the vertical axis. The type of problem

will depend on how structured these problem elements are. The authors described this

framework as an extension of the earlier framework of Gorry and Scott Morton [Luconi

86:p.6].

The SERMIS effort will be a rule based, planning type expert system that will fall

under the Type III category. It is a Type III problem because it is a prototype effort, and

consequently will only cover a limited area of SERMIS. Future endeavors may cover a

wider spectrum placing these efforts in the Type FV category since there will be a larger

amount of potentiaUy relevant information.

Blanning states that a "reasonable approach", in regards to expert system design

and implementation, "is to begin with partially structured but interesting problems and then

move on to less structured ones as experience is gained [Blanning 84]." This makes the

SERMIS effort a favorable candidate for an initial expert system construction.

20

B . EXPERT SYSTEM COMPONENTS

Regardless of type application, all expert systems share a basic set of components:

knowledge base, inference engine, and user interface [Luconi 86:p.4]. These components

are shown in Figure 3.

Inference Engine:
- Reasoning Methods

User

User Interface

Knowledge Base:

-Facts

-Rules

Figure 3. The Basic Components of an Expert System. [Luconi 86:p.7]

1 . Knowledge Base

A knowledge base contains the encoded knowledge acquired from the expert.

Prior to incorporation into the knowledge base however this knowledge can exist in many

forms [Hayes-Roth 83].

a. Types of Knowledge

Learning is a result of knowledge acquisition from two different domains.

Harmon and King label one of these domains as consisting of facts, and the other

consisting of "heuristics [Harmon 85:p.30]." The acquisition of facts is accomplished

through textbooks and other formal methods of education. Heuristics however are learned

through experience. They are "rules of thumb" that one relies on to solve a problem or

complete a task [Harmon 85:p.31]. Heuristics are the means by which the facts are applied

21

to tasks. For example, a law student may know a great deal of factual knowledge

concerning laws and cases but until actual experience is gained in the courtroom the overall

expertise will be limited.

Figure 4, from Harmon and King, illustrates the general pattern for

compiling knowledge [Harmon 85:p.33]. The process begins with an integration of formal

methods and experiences. But as time progresses it ultimately relies on knowledge gained

through experiences. Feigenbaum also supports the belief that the nature of the knowledge

an expert has acquired is "largely heuristic [Feigenbaum 84:p.53]." This trend of

knowledge compilation over time is depicted by the large arrow in Figure 4.

2 . Inference Engine

The inference engine is the link between the knowledge base and the working

memory. It is the component that manipulates the knowledge base in order to achieve a

solution. The inference engine performs this manipulation by deciding how to search the

knowledge base, which rules or frames to employ, and when to stop and present an

answer.

Domain and

peifonnance

leories

No
knowledge

IDomain-dependent Heuristics

facts
Surf ce

Kno vledge

D«p
K lovi^edge

Domain-independent

definitions First principles, axioms,

and laws.

Geneial

theories

Figure 4. General Pattern of Professional Development [Harmon 85:p.33].

22

3 . Interface

The interface allows the user to interact with the expert system. This interface can

include a wide variety of features such as: explanation facilities, graphical representations,

and on-line help functions. The interface should make expert system operation easy for the

user and as such is a key factor for determining frequency of use [Harmon 85:pp.98, 205].

C. PLANNING AND BUILDING AN EXPERT SYSTEM

There are a variety of reasons for wanting to implement an expert system. This section

examines these criteria, discusses how the knowledge is extracted and incorporated, and

the methodology used in the construction of this prototype system.

1 . Criteria

There are several reasons why an expert system should be constructed as opposed

to continued reliance on human experts. Boose gives the following justifications [Boose

86:p.3]:

• Experts retire.

• Scarcity of expertise.

• Expert systems provide answers faster, if human expertise is not readily available.

• Expertise might be expensive to obtain.

• There are better ways to optimize an expert's time than to instruct users.

• Experts are not always consistent.

The first three reasons are the ones most germane to the SERMIS undertaking.

Additionally, Vedder and Mason argue that five criteria, which are more

application specific, should be satisfied prior to considering a development. These criteria

along with their applicability to SERMIS are depicted in Table 3 [Vedder 87:p.402].

SERMIS meets both criteria sets presented here.

23

TABLE 3. Application of Development Criteria for the Use of Expert
Systems

General Criteria Applicability to SERMIS

1 Numerous instances of the situation occur for which

the choice of an effective response depends on a

common body of knowledge and/or expertise.

IMRL generation has to be performed for

every naval aviation wganization.

2 Experts are available There are personnel that manually generated

IMRLs prior to SERMIS

3 But expertise is scarce and expensive to develop

through education and training

There are not enough experts for each SECA.
They are retired or approaching retiremenL

4 The relevant knowledge in principle is articulable,

that is, can be communicated to a knowledge

engineer (and captured in an expert system)

Interviews with one expert provided some

suggestions that can be employed.

5 Failure to apply this expertise can result in

significant losses.

Erroneous use of SERMIS can result in the wrong

type of support equipment for deploying units

2. Role of the Knowledge Engineer

One of the most instrumental functions in the development of any expert system,

is the extraction of knowledge from the sources (books, experts, etc.) into the expert

system. The person performing this task is known as the knowledge engineer. Figure 5

[Hayes-Roth 83:p.l30], illustrates the relationship the knowledge engineer has between the

expert system and the expert.

24

EXPERT SYSTEM

EXPERT ^ KNOWLEDGE ENGINEER
INFERENCE ENGINE

(General Problem-solving

Knowledge)

KNOWLEDGE BASE

(Domain Knowledge)

Figure 5. Knowledge Engineering—Expert to Knowledge Base Via a
Knowledge Engineer

Olson and Reuter give two methods by which the knowledge engineer can acquire

the knowledge: expert interviews and beconiing the expert [Olson and Reuter 87].

Becoming the expert is not a feasible solution due to the tremendous amount of time that

would be involved attempting to acquire the knowledge and then building the expert

system. Yet this approach is required, to a limited degree in order to gain an operating

knowledge of the problem domain. In other words the knowledge engineer has to leam

some of the "textbook" portions of the knowledge in order to comfortably converse with

the real expert during interviews. This will require becoming an "expert" with respect to

certain fundamentals of the problem domain.

The major source of knowledge will then come from the domain expert

[Feigenbaum 84, Waterman 86]. A knowledge engineer now must not only be technically

competent, but also be proficient in a wide range of inter-personal skills as well. Some of

these skills are: good communicator; tact and diplomacy; persistence; versatility and

inventiveness; patience; and logicality [Hart 86:p.40]. All of these are critical in eliciting

accurate knowledge from the expert by means of interviews. Sources state than effective

expert interviews can be a "careful, painstaking analysis [Feigenbaum 84:p.53]" that last

"over a period of many months [Waterman 86:p.l52]." Because of all the skills, time and

25

complexities involved with the knowledge acquisition task, it is often considered the

bottleneck in developing expert systems [Hayes-Roth 83, Heng 87, Olson 87].

Recent efforts to reduce this "bottleneck" have included tools that automate some

of the knowledge engineer's tasks. Waterman breaks them into four major categories:

programming languages, knowledge engineering languages, system-building aids, and

support facilities [Waterman 86:p.80]. Summary descriptions are presented in Table 4.

TABLE 4. Summary of Expert System Tools.

CATEGORY DESCRIPTION

Programming Languages Languages designed for a specific class of problems

Knowledge Engineering Languages Languages expressly for Expert System building

System-Building Aids Programs that help acquire and represent expert's knowledge

Support Facilities Programming tools, e.g., debugging aids, knowledge base

editors

3 . Knowledge Representation

It is understood that the knowledge base contains the expert's knowledge, but

exactly how is this knowledge represented in a program? Some sources present as many as

five strategies for encoding knowledge into the knowledge base [Harmon 85:p.35]. For

the purposes of this study, only the three most widely employed methods: rule-based,

frame-based, and semantic nets; will be discussed [Waterman 86:pp.63-79].

Rule-based systems capture knowledge by employing one or more logical "if-

then" statements. The IF portion presents a condition, and when this condition is judged

valid, the THEN statement provides an action to take. As an example, a simple rule used to

determine what level of aircraft engine repair a particular facility provides might read : IF

repair includes removal and replacement of compressor rotor, THEN maintenance activity

26

is a first-degree repair facility. The rule complexity can vary from one to many conditional

statements.

Frames are another means of representing knowledge. They are used to denote

common concepts and situations [Waterman 86]. Frames are more modular than rules

since each frame contains information related to one subject. Information within the frames

is broken down into two categories - slots and procedures. Slots are the attributes of the

object or situation being described, and the procedures are executable code associated with

each slot. The main difference with this method, as compared to rule-based systems, is

that frames can have default values put into the slots. These values will then be used if

other information is not provided.

A third method of knowledge representation is a semantic net. The net consists of

nodes and arcs. Nodes are points that represent objects, and arcs are the links that connect

the nodes. The arcs describe the relation between the nodes. Two of the more common

arcs are " is a" and "has a" [Waterman 86]. Figure 6 is an example of a semantic net with

four nodes and three hnks. A primary advantage of a semantic net is its ability to establish

an inheritance hierarchy. This means that objects lower in the net hierarchy inherit

properties from objects higher in the net. In the example from Figure 7, USS Nimitz

would automatically inherit the property of "ship" from the object "aircraft carrier" , since

"Nimitz" is lower in the hierarchy than "aircraft carrier." The inheritance hierarchy saves

space by not having to duplicate information [Waterman 86].

27

is a

4Ship 1Aircraft

Carrier

hac Q

% —

>

—

Aiiaaft^^Nk

^ r

is ^^v^^^

USS
Nimitz

Figure 6. Example of a Semantic Net.

The three main methods of knowledge representation are summarized in Table 5.

TABLE 5. Primary Methods of Knowledge Representation.

METHOD DESCRIPTION ADVANTAGES DISADVANTAGES

Rules A set of rules are checked against the facts - Most popular - Some systems require

of the current situation. When a rule premise - Flexible a large quantity of rules

is vahd, the "THEN" action is executed.

Frames A body of related knowledge consisting of slots - Slots can provide -Harder to maintain

(attributes) and procedures default values.

Semantic Net A collection of nodes connected by links that - Inheritance -difficult to use for

represent the relationships between nodes. hierarchy loosely established

taxonomies

4 . Knowledge Base Search Methods

Inference engines normally use one of two principal search methods when

implementing the knowledge base: forward chaining, or backward chaining.

Backward chaining is known as a goal driven method because the inference

engine starts with a goal and works backwards through the rule conclusions attempting to

to determine if the premises are valid [Boose 86]. In order to determine a ship type (the

28

goal), for example, backward chaining would start with a specific ship type, an aircraft

carrier for example, and then work backwards to determine if all the conditions are met. If

it found an aircraft carrier condition that was not met, it would abort that choice and then

assume another type ship, such as a frigate, until a ship type was found that met all the

conditions. Backward chaining is an efficient methodology when there are a small number

of goals compared to the number of initial states.

Forward chaining is said to be a data-driven system. In this case the goal needs

to be assembled from a relatively large amount of possible outcomes [Harmon 85:p.55].

The system is given the known facts and then conclusions are drawn from the rule

premises. The inference engine keeps working forward, adding any valid conclusions to

the facts until there is enough information for a solution. For example, consider a

knowledge base containing these two rules: 1) IF ship displaces more than 50,000 tons and

embarks fixed-wing aircraft, THEN ship is an aircraft carrier; 2) IF ship is an aircraft

carrier and hull number is 68, THEN ship is USS Nimitz. Now if the facts of "ship

displacement is 90,000 tons" and "ship carries fixed-wing aircraft " are supplied to the

knowledge base, the premise to the first rule is met and forward chaining will now add a

third fact, that the ship is an aircraft carrier, to the knowledge base. This fact is now

available for use in the second rule.

5 . Development Methodology

When it comes to the development of expert systems, there may not be any "time-

tested methodology [Heng 87:103]," but the consensus would appear to advocate the use

of prototyping, since its success has been demonstrated with decision support system

development [Ford 85, Henderson 87, Heng 87, Hogue 84, Waterman 86]. Although this

methodology may be known by a wide variety of pseudonyms, such as: adaptive design

[Alavi 84], evolutionary development [Waterman 86], generation-and-test [Feigenbaum

29

84], and rapid prototyping [Philips 88], the inherent advantages of this approach remain the

same.

With prototyping, a basic working version of the system is implemented and

tested as soon as possible. Portions of knowledge are extracted, coded, implemented and

tested in incremental steps. The expert critiques that portion of the system, the knowledge

engineer notes the deficient areas and produces the next version. The intent with this

prototype is not to test the accuracy of code or speed of performance, but rather, the

"adequacy of the formalization and of the basic underlying ideas [Waterman 86:p.l46]."

Often times a prototype will never serve as a final version because "it can no longer support

the new knowledge added and has to be discarded [Heng 87:p.l03]." But it has served its

purpose if it has pointed out potential solutions for subsequent versions [Ow 87:p.446].

Expert system development shares the same benefits as decision support

development when employing the prototyping methodology, that is it: provides an

assessment of benefits [Keen 81], increases user involvement [Hogue 84], serves as

vehicle to clarify user requirements, demonstrates project feasibility, and it can identify

potential trouble spots early on.

Expert systems however, can gain further advantages due to some inherently

unique characteristics of its own. Besides helping define system requirements, Heng

presents three additional problem areas where the prototype approach is tailored for helping

expert system developers: the problem of knowledge extraction; the problem of structuring

the knowledge for machine manipulation; and the problem of maintaining the interest of the

experts [Heng 87:p.l03]. Prototypes are a fact of life when it comes to expert systems.

The built in complexities of knowledge extraction, coding, and expert interviewing

preclude carrying out this process m a linear fashion. "The prototype is a tool to cope with

the evasive nature of human expertise [Heng 87:p.l06]."

30

6. Validating an Expert System

An expert system which has not been continuously validated will provide low

quality decisions which in turn leads to a loss of confidence in the system and in an

eventual disuse of the system [O'Leary 87]. As discussed in the prototyping section, the

expert system will be subjected to continual validation by the expert if the knowledge

engineer is indeed getting feedback on each version. Feigenbaum considers this constant

interaction between developer and expert essential. Based on his experiences:

The expert was surprised, sometimes frustrated, by the occasional gaps

and inconsistencies in the knowledge, and the incorrect diagnoses that were

logical consequences of the existing rule set. The interplay between the

knowledge engineer and expert gradually expanded the set of rules to

remove most of these problems [Feigenbaum 84:p.51].

Quite often, the human specialist is rarely successful in conveying an accurate,

objective description of their subjective thought processes to another person [Heng

87:p.l06]. Even when the knowledge engineer thinks a firm grasp on the knowledge has

been attained, it still may not be compatible with the expert's concept. This is why the

knowledge must be continually tested and validated. It also represents why expert system

testing has to incorporate more than just the traditional method of error checking the

software [O'Leary 87].

D. INTEGRATION OF AN EXPERT SYSTEM INTO AN MIS

Turban and Watkins argue that most of the expert systems in use today are

independent applications. Now that expert systems have proven their value in specialized

fields, the time has arrived to start considering how this newer technology of expert

systems can be incorporated into already established information systems [Turban 86].

This integration can be in either of two forms: an expert system(s) integrated into the

31

existing components of the information system; or an expert system as a separate

component of the information system. Since expert systems deal with specialized domains,

the method of integration is dependent on the scope of the existing management information

system (MIS). Several expert systems may have to be integrated into an MIS that is broad

in scope so that there is a separate one for each domain. On the other hand, an expert

system as a separate, or front-end, component might be warranted if the information

system has a narrow domain. [Turban 86]. Regardless of what form the integration takes,

the main benefit gained is that both types of technologies have "distinct advantages that,

when combined can yield synergetic results [Turban 86:p.l23]."

An additional benefit to be gained from the integration of expert systems and existing

MIS is the closing of the gap that exists between management expertise and computer

competence. This discontinuity is unique to today's technological climate. Upper level

managers have a wealth of managerial skills and knowledge by virtue of their experiences,

yet they attained their positions during a time when computer applications were still in their

infancy. The individuals most skilled in computer development however, can be

characterized as a relatively young group with minimal managerial skills. Consequently,

there are managers with minimal computer training being provided decision support

software by specialists with minimal managerial skills. Managers therefore do not have

complete confidence in these systems, which Cooper argues is a major reason for their

disuse [Cooper 86]. Cooper goes on to suggest four criteria that a decision aiding tool

must meet in order to close this gap: 1) require no user training; 2) provide an explanation

facility; 3) require no customization; 4) Incorporate state-of-the-art techniques [Cooper

86:pp.220-221]. These criteria are presented in Table 6 along with the reasons why it can

help bridge these differences. Expert systems meet these criteria and therefore should lead

to a greater use of current automated information systems if they can be integrated.

32

TABLE 6. System Criteria Required to Close Managerial/Computer
Competence Gap.

CRITERIA REASON

Requires no training Makes the system less intimidating

Has an explanation facility Establishes a credibility

Requires no customization Expert systems should learn from the user and not

be "customized" in order to fit the user

Incorporate state-of-the-art

analytic techniques ^^ techniques remain when the expert goes home

E. SUMMARY

Expert systems have evolved out of a merging of the psychology and computer

disciplines. These systems "preserve and disseminate scarce expertise [Luconi 86:p.3]" by

encoding facts and the experiences of an expert into a knowledge base. This knowledge

base is then accessible to less experienced people through manipulation by an inference

engine. The design and construction of expert systems has also resulted in the creation of a

new speciality - the knowledge engineer. The knowledge engineer is charged with the

representation, organization, transfer, utilization, and extension of the knowledge used by

the expert system [Tou 85]. This task requires an unique blend of technical and personal

skills. The prototyping or evolutionary approach is considered the most effective means of

expert system design since it accommodates the "trial and error" method often associated

with knowledge extraction. Once an expert system is developed, integration with an

organization's current information systems can provide a greater synergy for decision

making as well as bring the human expertise and judgement (managers) together with the

power of computers.

33

This chapter has laid the groundwork for the SERMIS prototype effort. The

subsequent chapters describe how the knowledge engineer extracted an expert's knowledge

and incorporated this knowledge into a rule-based prototype expert system. This system

can be used in a "consultant" role to aid SERMIS users at the Support Equipment

Controlling Authority (see Appendix B) level in the generation of support equipment

allowances to their cognizant activities.

34

III. DESIGN AND CONSTRUCTION OF A PROTOTYPE

EXPERT SYSTEM FOR THE SERMIS ALLOWANCE

SUBSYSTEM

The basic theory and concepts of expert systems have been addressed in Chapter 11.

These concepts were put into practice in order to produce the prototype application for the

SERMIS Allowance subsystem. This prototype attempted to capture the expert knowledge

necessary to produce accurate support equipment allowances for fleet maintenance

activities. This chapter details the steps taken in the design and construction of this

prototype.

A. INTRODUCTION

A knowledge engineer goes through several stages prior in producing an expert

system. Hayes-Roth et al. has broken these stages of knowledge acquisition into five

areas. These five stages and their relationships are shown in Figure 7. The development

and construction of this prototype system subscribed to these general stages. Each stage

will be addressed individually in this chapter.

Reformulations

'

Requirements

'

r

Redesigns

'

Structure

Refinements

^ 1 1

Identify

Problem

Find Con-

cepts To
Concepts

Design

Structure To

Formulate

Rules To
Embody

Knowledge

Rules
Validate

Rules That

Chan

ist

icter-

cs

Repr

Knov

esent

/ledge

Orga

Know
nize

iedge

Org!

Know

inize

ledge

Identification Conceptualization Formalization Implementation Testing

Figure 7. Stages of Knowledge Acquisition [Hayes-Roth 83:p.l39].

35

B. IDENTIFICATION STAGE

This is the initial step in knowledge acquisition. The intent of this stage is to identify

the players, problem characteristics and resources that will be involved in the development

of the expert system [Hayes-Roth 83:p.l41].

1 . Players

The construction of an expert system is centered on four main players: the expert

system, the domain expert, the knowledge engineer and the expert-system-building tool

[Waterman 86:8]. For this project, the expert system was the final package—the inference

engine along with the specific knowledge bases developed for this project. The expert was

located at Commander Naval Air Forces Pacific (COMNAVAIRPAC) headquarters; the

author served as knowledge engineer; and the commercial application—"VP-Expert"

(Appendix D)-was used as the development tool to construct this first version prototype.

In order to meet with the expert, interviews were scheduled over a three day

period at COMNAVAIRPAC headquarters in San Diego, Califomia (see Appendix C for a

summary of the interview period). Unfortunately, this was the sole opportunity to interact

with the expert due to academic and funding constraints. Nonetheless, it did serve as a

solid foundation for establishing the fundamental concepts.

2 . Problem Identification

A very specific area of SERMIS had to be identified as a target application for this

prototype expert system. This specificity was required in order to optimize the limited time

available for interviews. Based on the example cited in the meeting between the thesis

sponsor and author (Appendix B), it was decided that the work would focus on the IMRL

generation process (done in the "Allowance" subsystem of SERMIS) for the activities

within the COMNAVAIRPAC SECA. As a reminder-IMRL's are the authorized support

equipment allowance for each aviation activity. These IMRL's are prepared for an activity

by the cognizant SECA [NAVAIRINST 87]. Appendix A lists the six SECA's.

36

The first interview session was spent eliciting potential causes for inadequate

IMRL generation. One of the sources identified were the civilians doing the inputs at the

SECA level. The expert contends that these civilians have no real feel, experience or

incentive to ensure all inputs regarding the IMRL activity are correct. The operator's

actions are divorced from the consequences. The other major problem area singled out was

the lack of data integrity in the SERMIS source data. This particular problem however, is

the concern of the Naval Aviation Engineering Center (NAEC) and goes beyond the scope

of this work.

Figure 8 depicts the problem sources that were identified as a result of the first

interview session. The shaded region depicts the area that will be addressed by this

research.

IMRL Generation

Errors

SERMIS
Source Data

Problem Area

Addressed by the

this research

User input errors

(at the SECA level)

regarding activity

em[>loyment data

Types of Employmeni

• Activity type

• Types and number

of aircraft

Dau:

• Level of main-

tenance perfoniied

• Av ionic systems

supported

Figure 8. IMRL Generation Problem Areas.

37

In other words, this prototype application intends to improve on the problem of

inadequate IMRL generation by making employment data "expertise" available to the

civilian operators at the SECA level.

3. Resources

The four major resources required to accomplish the prototype construction

included: knowledge sources, time, computing facilities and money [Hayes-Roth

84:p.l42].

The knowledge sources included both the domain expert and textbook references.

The thesis sponsor identified the expert, arranged for the interviews and provided a copy of

the SERMIS user's manual. During the course of the interviews the expert described many

background references, such as NAVAIR instructions, various excerpts and maintenance

manuals that were previously unavailable to the knowledge engineer. These additional

sources proved to be instrumental in defining basic concepts.

Time, the most critical resource in this research, was also the most scarce. The

time limitation with respect to expert interviews has already been discussed, but additional

time would have allowed for testing the prototype with the expert and actual users.

Computing facilities were not a problem resource with this study. The hardware

at the Naval Postgraduate School (development site) was compatible with the sponsor

provided software. Computing resources were available throughout the time of

development.

The final item on the list of resources is money. This resource, along with time,

proved to be another limiting factor in the development of the expert system. Unanticipated

budget cuts did not permit the thesis sponsor to fund the anticipated trips for expert

interviews, follow-on sessions, and testing. The commitment to perform this research

however, was made prior to the occurrence of these funding shortfalls. Consequendy, in

38

an effort to proceed with the research, the author was able to receive enough local funding

for the one time interview session described previously. Although subsequent trips would

have been most beneficial, this lone trip to conduct the interviews provided enough of the

essential elements to work on an initial prototype.

In summary, the "identification" phase described the main players and their

respective roles. In this phase, the research was given a focused direction by identifying

the problem sources to be addressed. Finally, the resources required to perform the

research were also identified. Once all the elements were in place, they provided the

requirements for the next stage-conceptualization.

C. CONCEPTUALIZATION STAGE

The conceptualization phase was characterized by a series of interviews with the expert

in order to make more explicit the key concepts and relations uncovered from the problem

identification in the first phase. These interviews took place over a three day period. The

general nature of the interviews will be described here.

1 . Expert Interviews

The interviews took place over a three day period at COMNAVAIRPAC

headquarters in San Diego, California. The sessions were extremely constructive, but a bit

more complicated than anticipated. The knowledge engineer came into the interviews

armed with only a superficial knowledge of SERMIS that was gained from the user's

manual. Although this knowledge provided a good working foundation, it was insufficient

to facilitate a flowing dialogue between the knowledge engineer and the expert. Often times

the knowledge engineer would have to stop the expert in the middle of a discussion and ask

for further clarification on unfamiliar concepts. The expert would then direct the

knowledge engineer to an appropriate source or provide a separate explanation. This

significant difference in respective levels of knowledge made the interview process more

39

tedious than initially expected, but despite these differences, a significant amount of

pertinent information was collected.

As discussed previously in the "Identification section," the initial portion of the

interview process was spent identifying problem sources. After these areas were

designated, discussion turned towards general concepts of the IMRL generation procedure.

These generalities eventually proceeded to more specific items until finishing up the

sessions with detailed explanations of the SERMIS data elements involved in the IMRL

generation process. Throughout the course of these discussions the knowledge engineer

was attempting to construct a structured narrative, that is, a "walk through" of the actual

steps involved with this process. This process is described in the next section.

Prior to moving into a depiction of the process however, it was interesting to note

that when asked what was required to become a SERMIS "expert" in the area of IMRL

generation. The expert echoed the perspectives from Chapter II and stated that it first

required knowing the facts and then acquiring the experience. He stated that one must

become intimately familiar with all the textbook references (facts), and then build a rapport

with the activities so an experience base can be built up (heuristics).

2 . IMRL Generation "walk through"

During the interviews, particular attention was given to the sequence of events

involved in an actual IMRL generation. The expert explained how this process worked

prior to SERMIS and how the system operates now, under SERMIS. By comparing the

two methods and becoming familiar with them, the knowledge engineer hoped to gain a

user's perspective for which steps would be suited for an expert system application. A

generic IMRL generation process will now be discussed. Figure 9 summarizes this

process.

40

SERMIS

User

provides

Activity

Employment

Data

SERMIS
Source

Data

compared

Selection Criteria

IMRL

• IMRL manager inputs employment data via the SERMIS employment update screen

• SERMIS compares employment data against source data

• Appropriate quantities are selected for the activity

• An IMRL is generated by SERMIS which is the activity's authorized support equipment allowance

Figure 9. The IMRL Generation Process.

The SECA IMRL manager is responsible for an activity's IMRL preparation. In

order to produce this IMRL, SERMIS requires input data both from the IMRL manager and

the SECA source data. The source data is transparent to the user. This data contains the

"range of allowance" tables. Essentially, there are range of allowance tables for each item

of support equipment. To determine what quantity to select from this range of allowances

in order for an activity to support a particular aircraft engine for example, SERMIS needs

selection criteria. This selection criteria is called an activity's "employment data" and is

provided by the IMRL manager. Figure 10 gives some examples of items that comprise

employment data. Appendix C provides an explanation of these items as well as their data

element names as used by SERMIS.

41

• Type of aircraft, engine, etc. supported • Number of aircraft supported

• Activity's level of maintenance • Selection control code

• Degree of engine repair • Number of detachments

Figure 10. Examples of Employment Data.

3. Conceptualization Summary

The three day expert interview session was the essence of the conceptualization

stage. By discussing the IMRL generation procedure with an expert, the knowledge

engineer was able to determine key concepts that should be addressed by the prototype

expert system. The concepts decided on in this case were the elements comprising the

employment data. If the civilian IMRL manager does not possess enough expertise

regarding the SECA's cognizant activities, the potential exists to enter erroneous

employment data. SERMIS will still generate an IMRL in a very efficient manner, but it

will give inadequate levels of support equipment since the system was provided bad

selection criteria. This prototype must be able to provide the civilian IMRL manager at the

SECA, the equivalent of a military expert's knowledge regarding an activity's employment

data.

D. FORMALIZATION

This stage "involves mapping the key concepts...isolated during conceptualization into

more formal representations [Hayes-Roth 84:p.44]." The main intent of this stage then,

was to come up with a basic structure that demonstrates how COMNAVAIRPAC's activity

employment data can be captured in a knowledge base file. Particularly, the type of

knowledge that one acquires after years of experience with the various maintenance

activities. This captured knowledge would be made available to the SECA IMRL manager

who can then "consult" this knowledge base prior to an actual IMRL generation.

42

1 . Prior Work

The first step in this process was to avoid redundancy of effort. As described in

Chapter I, the thesis sponsor has already produced some SERMIS knowledge bases with

VP-Expert. The knowledge engineer reviewed the IMRL related prototypes produced by

these efforts in order to determine which areas would still require applications. It appeared

that a majority of the "textbook" knowledge regarding employment data had already been

captured. Figure 1 1 shows three successive screens from this prior work. The user

selections are in bold type, with the dashed lines separating different screens.

WOULD YOU LIKE EXPERT HELP ?

Y N

DO YOU HAVE THE AAI ?

Y N DEFINE AAI

The AAI is the AVIATION ACTIVITY CODE. An unique command
identifier. Used to identify an organizational entity within the

SERMIS ADP system. Within employment, the AAI must exist

within the SERMIS system before entering employment data.

<Press any key to continue>

Figure 11. Sample of Prior Work.

This system leads the user through a sequential listing of each element of

employment data in the same fashion as depicted in Figure 11. In cases where a valid

response can be found in documentation, the user is directed to the applicable publication

by the system.

43

2 . Representing Current Information

These initial prototypes are excellent for defining the steps and definitions

involved in this process. However, these systems only refer the user to a source in order

to obtain the required information. After a number of references the user would eventually

build experience. The next logical progression in the SERMIS expert system development

is then to capture the knowledge from these various outside sources so that this experience

is accessible on demand.

In order to accomplish this, the data had to be represented in a manner compatible

with "VP-Expert." VP-Expert is a rule-based expert system development tool produced by

Paperback Software (a general description of this commercial application along with some

of its features are provided in Appendix D). Attempting to encode every data element for

each of the AIRPAC activities with a separate rule however would be a formidable task.

The VP-Expert architecture provides a more efficient method of encoding the data. Figure

12 gives a schematic representation of a VP-Expert knowledge base.

KNOWLEDGE
BASE

Rule

Base

Information

Base

Database files

Spreadsheet files

Figure 12. VP-Expert Knowledge Base Components

44

The two primary components of data storage within a VP-Expert knowledge base

are a rule base and an information base. The logic of the rule base has already been

described as a series of "IF-THEN" statements. The information base permits large

amounts of data to be stored separately from the rule base. This separate data repository

can be accomplished through the use of database files and/or spreadsheet files. Collective

information on an activity for this research will be kept on a database file. VP-Expert

provides a means through which the knowledge contained in the database can interact with

the rules kept in the rule base. This feature keeps the rule base from becoming too

unwieldy.

This was the strategy taken for data formalization on this project. Activities

within COMNAVAIRPAC's SECA would be arranged in database files along with certain

types of employment data. Rules would determine what information should be extracted

from the database files. Rules would also be used for the incorporation of the less

concrete, or heuristic type knowledge regarding the activity.

3 . Formalization Summary

The formalization stage was characterized by comparing the concepts to be

encoded with the architecture of the VP-Expert program. Methods were then determined

on how best to incorporate the different types of knowledge required by the prototype. The

two primary methods decided upon were database files and rules.

E. IMPLEMENTATION

This stage involved the actual encoding of the formalized knowledge from the prior

stage into the VP-Expert framework. Rules and DBase III Plus files were used during

implementation. This section will detail the sp)ecific types of information encoded and how

it was performed. The proposed implementation of the system within SERMIS will also be

addressed. Documentation for this initial prototype is provided in Appendix E.

45

1 . Information Encoded

The amount of information obtained was another casualty of the time/funding

limitations of this project. Ideally, the knowledge engineer envisioned sitting down with

the expert and examining on an individual basis each of the over 350 COMNAVAIRPAC

maintenance activities. The knowledge engineer would be attempting to draw out any

unique characteristics for an activity based on the expert's long history of interactions with

them. Since there were no additional occasions in which to accomplish this rather

ambitious task, the knowledge engineer made note of the isolated examples used by the

expert during the course of the interview sessions (VXE-6 was one such example—see

Appendix C). To supplement these examples, the knowledge engineer also drew upon

personal experiences from the naval aviation community to come up with parallel examples

of non-documented activity-specific data that is vital in an IMRL generation. As an

example, the knowledge engineer knew from his experience that the F-14A model aircraft

is currently receiving completely new engines. The aircraft that receive these new engines

also receive a new designation—the "F-14A+." This "plus" designation may appear as a

subtle change in terms of semantics, but it has significant impact in terms of support

equipment. The F-14A-I- has not been delivered to Pacific fleet squadrons as yet, but when

it is, IMRL changes will be required. The civilian IMRL managers may not be aware of

such transitions. If this information was associated with the activity in the knowledge

base, it would not have to be "assumed" information. This type of information was

targeted for incorporation into the expert system.

After identifying some of the personal experiences in dealing with maintenance

activities, the next priority was to decide which type of activity specific employment data,

that is, "textbook" data, could be encoded.

46

The majority of the data elements that make up the employment data for an activity

are situation dependent. Thus it would be a difficult task to cover all valid contingencies

with a comprehensive rule set. For instance, an intermediate maintenance activity may

support 15 squadrons consisting of three different model aircraft. Employment data such

as model number, model quantity and list series selection code can cover a wide range of

alternatives. Consequentiy, in order to demonstrate project feasibility it was decided to use

the more static data elements of the employment data. In this case these data elements

included the Control Identifier (CI), AMMRL Activity Identifier (AAI) and the Three

Degree Code (3 D Code). The Three Degree Code was a good candidate element to include

since it was referred to by the expert as a "continuous stickler" when it came to IMRL

generation problems.

2 . Encoding Process

After the information types were specified, an algorithm was created to identify

the sequence of events during program execution. The algorithm is provided here:

• Get activity name

• Provide name along with CI and AAI to the user

• Provide 3 Degree Code of engine repair for the selected activity

• Provide supported/supporting activities associated with the selected activity

• Provide a remarks section conceming the selected activity

To implement this algorithm the first task was to create a database containing the

369 COMNAVAIRPAC activities. This file would be used at the session start to present a

master listing of all activity names. The user could then select which activity was desired

for an IMRL generation or update. Given the quantity of activities however, all of them

could not be presented on one screen and VP-Expert limitations did not provide for a

scrolling option. Consequently this master data base information was copied into eight

47

individual databases, each containing approximately 45 names. The user could then choose

a range of activity names from which to select a specific activity. This opening process

was considered an improvement since the present method required by SERMIS calls for the

user to enter in an AAI number for the activity. Activity names for this menu driven

selection method were taken from an April 1988 SECA activity report obtained while at

COMNAVAIRPAC. Once the activity name was obtained, the associated AAI and CI

would then be presented on screen along with the name. A sample portion of the rule base

for this part of the process is presented in Figure 13.

ACTIONS

FIND menu_option

FIND right_menu

RULE 1

IF menu_opUon = A6E_Planning_to_HAMS_13

THEN

display the range of names...

right_menu = (nienu_option)

ASK menu_option "Select the range for the desired activity:"

CHOICES menu.opUon: A6E_Planning _to_HAMS_I3, HAMS_15_to_HMH_463.

Figure 13. Rule Depiction for Menu Display

In this example from Figure 13, the "Actions" block tells the program to find the

goal variable of "menu_option." After searching the rules and coming up empty handed

for this value, the system asks the user (via the "ASK" and "CHOICES" statements) to

provide a value. In this case it will be assumed that the "A6E_Planning_to_HAMS_13"

range of names was the desired selection. Once this value is provided, the expert system is

next instructed to find a value for "right_menu." It locates a rule conclusion with this

48

variable and checks to see if the premise is a valid one. In this case the premise to Rule 1 is

now satisfied so the program will execute the pseudocode (shown in italics).

After obtaining the activity name, the next step asked the user if the three degree

codes of engine repair were desired. To provide this data, another information base or

database file, was created. This file contained the activity name along with each type of

engine and the respective degree of repair capability. Once again rules were used to

determine when and where to look for this information. A sample rule from this section is

provided in Figure 14.

IF 3_Degree_Code = yes

THEN
• find codesfrom database

ELSE

no codesfound

Figure 14. Sample Rule to Find Three Degree Codes

Another essential user provided input for SERMIS is the issue of the

equal/unequal CI/AAI. Basically, an activity with an "equal CI/AAI" is a supporting

activity and one with an "unequal CI/AAI" is a supported activity. The SERMIS manual

provides this example:

NAS North Island AIMD is CI 00246 and AAI 00246. This will be

referred to as the equal CI/AAI or the supporting activity. The squadron is

the unequal CI/AAI. For example, HSL-41 FRAMP North Island is CI

00246 and AAI 55139. This will be referred to as the unequal CI/AAI or

the supported activity [SERMIS 86:p.C-15].

49

The supported activity requires the use of certain support equipment maintained

by the supporting activity. The use of an unequal CI/AAI along with the type IMRL

selection code, will ensure appropriate items will be posted to the correct activity.

Understandably, this concept has great potential for creating confusion. This prototype

consults a master database file after an activity selection in order to tell the user whether the

selected activity is a supported or a supporting one along with the associated

supported/supporting activity name.

As a final step in the gathering of correct employment data, the expert system will

consult a separate knowledge base file in order to find any remarks conceming the activity.

This separate knowledge base consists entirely of rules that contain information on an

activity. The logic behind a separate knowledge base for remarks was to keep the system

as a modular design thus making system maintenance easier. If an activity's remarks

require updating, it can be done without having to enter the main program.

3 . Prototype Use

The prototype as an entity, is designed to be used as a front-end application prior

to an IMRL generation. It is believed that the IMRL manager would run the program on a

personal computer adjacent to the SERMIS terminal. With this arrangement, the user could

gather all the captured information on an activity prior to SERMIS data entry. Even prior to

committing the data from the SERMIS screen, the expert system could still provide a ready

reference source in the event of last minute questions.

4 . Implementation Stage Summary

In summary, implementation was achieved through the use of database files

(information bases), rule bases, and a separate knowledge base file. The information bases

contained "hard data" on the activities; the main rule base contained the rules that controlled

50

the access and manipulation of the the information bases; and the separate rule base held the

remarks, or the more dynamic data on the activity.

F. TESTING

The final stage in the iterative construction of a prototype is testing. The strategy for

this project used four of testing. These testing stages, as described by Pressman, are: unit,

integration, validation and system [Pressman 87]. Each of these stages will be addressed

in this section. Table 7 provides a summary of these testing levels and the specific areas

tested in each level with respect to this project. The shaded area indicates the levels that

have not been tested to date.

TABLE 7. Testing Strategy Summary

TEST TYPE AREA TESTED SERMIS EXAMPLE

Unit Testing Code Rules

Integration Testing Module interfaces Interfaces between knowledge base and databases

Validation Testing User requirements Will it provide accurate/useful employment data

Incorporation into the
System Testing overall system F'^ ''"^o the SERMIS program

1. Unit Testing

With unit testing, emphasis is on the individual modules. Data structures and

integrity are tested by executing the statements within the module. In this project, unit tests

were done to validate the rules contained in the knowledge base files. Test cases were

developed to verify:

• Rule premises

• Rule logical operators

• Loops

51

Rule premises (the "IF" portions of a rules) were tested by using known activity

employment data and comparing it to the employment data provided by the expert system.

These cases were used to check if the inference engine was in fact "firing" a rule when the

premise was valid. If system did not provide the same information as known beforehand,

the knowledge engineer would manually "backchain" through the code to determine which

rule or rules were at fault. Conversely, a check was also done to determine if any rule

conclusions were being implemented when the rule premise was false, such as, listing three

degree codes for an activity when in fact none applied.

There were some occasions where multiple conditions had to be satisfied either

for a rule to be considered valid or for a database record to be selected. These criteria were

based on conditions linked by the "AND/OR" logical operators. An example of such a rule

premise would be: IF activity = USS Enterprise OR USS Nimitz. Test cases were run that

verified each one of the valid options would satisfy the rule premise.

In instances where the expert system had to retrieve successive records from a

database file, a loop condition was set up. The loops were executed with test cases to

ensure: all valid responses were being listed; a maximum of one screen of information was

being displayed at a time; and that there were not any infinite loop conditions.

2 . Integration Testing

Pressman defines integration testing as "a systematic technique for constructing

the program structure while at the same time conducting tests to uncover errors associated

with interfacing [Pressman 87:p.507]." Within this project, interfaces had to be tested

between the two knowledge base files and the various database files. To accomplish this

level of testing, a "top-down" approach was used. Top-down is a methodology that starts

with the main control module (in this case, the main knowledge base file) and tests the

interfaces by substituting "stubs" for the subordinate modules. In this research, stubs were

52

used to replace database files and the subordinate knowledge base file. Representative test

data was then passed across these interfaces to verify the data integrity. Once this process

was validated, the respective database file or knowledge base file was constructed replacing

the test stub.

3 . Validation Testing

Validation testing ensures that the software has met the user requirements.

Boehm rather succinctly and accurately captures the intent of this phase with the question

"Are we building the right product?" [Boehm 81]. Testing in this phase would have

required additional sessions with the expert in order to determine if the information being

provided by the expert system was indeed correct. The project limitations precluded testing

at this level however. Once the prototype is turned over to the sponsor, validation testing

can be performed at his discretion.

4 . System Testing

System testing occurs after the expert system software has been completely

validated. Once this has been completed, it can now be incorporated into the SERMIS

environment. System testing checks for the problems created by this integrating of

systems. System testing was also not accomplished within this project for the same reasons

that addressed in validation testing.

G. CHAPTER SUMMARY

The design and construction of this prototype followed the five stages of knowledge

acquisition as described by Hayes-Roth. These stages were: Identification,

Conceptualization, Formalization, Implementation, and Testing. This process began with a

sponsor interview and a SERMIS user's manual. Following exposure to the manual the

knowledge engineer proceeded into the enlightening, and perhaps somewhat inelegant

expert interviews. This one shot opportunity at the expert did however, identify problem

53

origins to be attacked, and enough expertise and documented source material for the

knowledge engineer to start work on a prototype. Emphasis was placed on SERMIS

employment data and the VP-Expert knowledge base structure. A large portion of the data

was incorporated into DBase III Plus files referred to as "information bases," with the

remainder of the data being encoded into rules. Only the first two levels of testing—unit

and integration—were performed for this project. Unanticipated funding cutbacks and

schedule limitations prevented testing of the validation and system levels.

54

IV. FINDINGS, CONCLUSIONS, AND

RECOMMENDATIONS FOR FUTURE STUDY

This chapter will review the project scope, the problem addressed by the prototype,

and the methodology involved. In the results discussion, the original research questions

will be answered as well as addressing the overall conclusions as seen from the perspective

of a novice knowledge engineer. Finally, requirements for follow-on development will be

discussed.

A. RESEARCH SUMMARY

This research was initiated in response to a Naval Aviation Maintenance Office request

for the development of an expert system application. This application would be used to

gain a more effective employment of SERMIS. The specific area of IMRL generation was

chosen for this apphcation because there is either: no one with enough experience to fill the

vacant IMRL manager positions; or the individual presently filling the position does not

possess enough background experience to accurately input all activity employment data.

The thesis sponsor provided the VP-Expert development tool and scheduled time for a

brief interview period with a recognized expert. The author acted in the capacity of

knowledge engineer and used a prototyping methodology that consisted of the following

phases:

• Identification

• Conceptualization

• Formalization

• Implementation

• Testing

55

The prototyping or iterative approach was considered appropriate due to the heavy

interactions with the human expert and the functionality of an expert system could be

demonstrated without a prolonged effort [Pressman 87].

B. FINDINGS

One of the main questions to be answered by this effort was the identification of the

unique knowledge requirements necessary to produce a complete and accurate support

equipment allowance. The expert interviews revealed that a greater personal awareness of

an activity's employment data is the distinguishing factor. The difficult aspect in acquiring

this knowledge was not due to any conceptual complexities in learning this information, but

rather, just the sheer quantity of required information that exists regarding all the activities

in the COMNAVAIRPAC SECA. So there does exist a quantifiable body of knowledge.

Once this knowledge, collectively known as employment data, becomes second nature to

the IMRL manager, it has the capability of making that person an "expert" in the area of

IMRL generation. This body of knowledge is comprised mainly of facts and "textbook"

data. Examples would include: Three Degree Code of engine repair and whether the

activity is a supported or supporting activity. Some of the knowledge however, is gained

through benefit of continuous interactions with the subordinate activities within the SECA.

This experience provides insights into an activity's operating environment, such as

knowing the activity now belongs to a new airwing, or that a new engine is coming out for

its model aircraft.

The previous finding indicated that the expert knowledge is identifiable. The next

question then becomes: can a simple expert system be constructed that captures this

knowledge? This research showed the answer to be yes. VP-Expert's architecture lent

itself to this task very nicely. Since a majority of the knowledge was factual, it could be

56

stored in database files that in turn could be accessed by the main knowledge base program.

Information such as equal or unequal CI/AAI, Three Degree Codes, and activity names

were all incorporated into database files. The "heuristic," or mostly private information on

activities, was encoded into rule conclusions to be displayed as on-screen text If the rule

premise was proved true, such as "if activity = F14," then the "expert advisory" regarding

an F14 activity would be displayed for the user.

Another observation from this project regarded the appropriateness of VP-Expert as a

development tool. Was it effective in knowledge acquisition? Overall, it did reduce the

"bottleneck" commonly associated with the knowledge acquisition process. To realize the

true effectiveness of such a tool however, one must still have valid concepts to encode. A

development tool such as VP-Expert, is not a panacea for the problems associated with the

knowledge acquisition process. There still is no substitute for human interaction when it

comes to eliciting the fundamental concepts from another human. Once these concepts

were known, VP-Expert proved to be an effective and valuable development tool. The

transitions from concepts to formalization to implementation were made in a much

smoother and more time efficient manner using this program.

Another finding this research set out to address was the integration of an expert system

into an existing MIS. This first cut prototype obviously never reached a mature enough

stage to warrant an immediate incorporation into SERMIS. Chapter II addressed two

strategies however to consider when the time is appropriate for incorporation. The first

option is that the expert system can be integrated into existing SERMIS components. The

second choice is to keep the expert system as a separate component. While development

continues, this prototype should certainly be kept as a separate component. This approach

would have no impact on SERMIS during the frequent expert system refinements being

performed during the course of development. Even when the expert system achieves a

57

relatively stable existence following development, most of its advantages will still be gained

through use as a separate, or front-end component. The conversion of the expert system's

MS DOS database files and knowledge bases to a mainframe environment will simply be

too complex a process to support when changes are required.

C . REQUIREMENTS FOR FOLLOW-ON DEVELOPMENT

The first priority in a follow-on effort is testing. The validation stage of testing the

initial work must be accomplished prior to moving on to future prototype iterations.

Additional time with the expert should be arranged in order to conduct this validation

testing. This testing should not be limited to just the expert either, inputs should also be

sought from actual SERMIS users. The expert's scrutiny will help validate the information

and concepts being captured, while the user's inputs will indicate if this knowledge is in

fact beneficial in the execution of the IMRL generation process.

More interactions between expert, knowledge engineer, and user will permit

expanding on the original concepts. This entails more interview sessions with the expert

.

In the absence of follow-on interviews for this project, the knowledge engineer drew upon

personal experiences to supplement the captured information. Eventually, as more difficult

concepts emerge, more time must be scheduled with the expert. Additional VP-Expert

features, such as confidence factors can then be employed to help structure the more

complicated concepts.

Expert system feasibility has been proven by this effort and the structure is now in

place. Follow-on efforts are required to supplement the initial activity information provided

from documentation and the limited sessions with the expert.

58

D. GENERAL CONCLUSIONS

The main intent of this thesis was to provide the author a more comprehensive

background in expert systems. Prior to this research the author's exposure to expert

systems had been purely academic. This project was a vehicle to bridge that space between

theory and experience. It moved the learning experience from the classroom to a real world

application through a knowledge acquisition process for a prototype expert system

development. The additional goal during the course of this process was to provide the

thesis sponsor with a prototype SERMIS application.

The position of knowledge engineer is still being defined in this, the early stages of

expert system applications. It is a demanding position with relatively few ground rules.

This research reaffirmed the complexities inherent in the position as well as the wide range

of skills required for the task of knowledge engineer. The knowledge engineer is the

common denominator throughout all stages of expert system development. Each stage

focuses on a different ability. At the outset, the knowledge engineer must be a student, by

learning the basic concepts that are involved in the proposed expert system application area.

The more fundamental knowledge acquired, the less the knowledge disparity between the

expert and the developer when it comes time for the knowledge extraction sessions. Once

the expert interviews commence, time becomes a critical resource. The knowledge

engineer must possess competent communication skills in order to maximize the available

time. If the knowledge engineer is attempting to draw out over 30 years of accumulated

knowledge from the expert, every minute becomes valuable. After identifying the essential

concepts from the expert, the knowledge engineer must exercise technical skills to encode

these concepts into data structures.

59

In summary, the first attempt at knowledge engineering is an eye-opening experience.

It provides a genuine appreciation for the depth of the assignment and reinforces the need to

keep the application confined to a narrow knowledge domain.

It was also concluded that the use of an expert system development tool will reduce

some of the workload created by the required steps described above. Development tools

provide capabilities to help structure concepts, such as databases that can be used as

information bases. It is certain that these tools will continue to develop more potential with

time and as a result, the knowledge engineer's life will be made a little easier. This project

would have been infeasible for a first time developer without the aid of a development tool.

Finally, the value of the prototyping methodology was also proven by this research.

Hayes-Roth et al. describe one of the most important advantages of prototyping:

The development of the prototype system is an extremely important step

in the expert system continuation process. Some code may be salvaged

from this throw-away program for later versions, but the most important

part of the exercise is testing the adequacy of the formalization and of the

basic underlying ideas [Hayes-Roth 83:p.l46].

So it was with this research. It was never intended to produce perfect coding in order

to provide direct implementation of an expert system to the sponsor. Rather the concepts

considered crucial to capturing the required information were demonstrated by the

prototype. It is up to follow-on efforts to build on these established concepts and refine the

code.

E. APPLICATIONS FOR OTHER AREAS

Even though the ultimate question of whether this research will eventually lead to a

fully developed system that improves the IMRL generation procedure is still to be

60

answered, a prototype proved the basic potential of expert systems. The advantages of this

technology can be extrapolated to other areas.

One such area, particularly appropriate to the military environment, is where the

expertise is required, but the expert is gone. Such an example, as described in Chapter I, is

the case of taking over a billet after the predecessor has departed. By having the corporate

knowledge stored in an expert system, the job transition can be still be accomplished

effectively. As expert system development tools become more powerful and more user

friendly, the potential exists for the "expert" to maintain his own expert system.

In today's environment, the jobs requiring the use of an automated technology stretch

all the way down to the operational level. In the military, the use of such technology,

whether it is word processing or weapon systems, is often in the hands of younger and less

educated personnel. Expert systems can be employed to train this technologically

inexperienced work force. Expert systems can be also be used (as it is intended for

SERMIS) as front-end applications that make the operation of a complex system more

"user friendly."

As the number of automated systems increase in an environment requiring a rapid

response, the time available for decision making decreases. The time previously available

to consult resident experts before making a decision may no longer be available. Expert

systems can rapidly provide the information when the experts are not immediately

available.

F . OVERALL SUMMARY

Expert systems reflect the merging trend of the psychological and computer science

fields of study. These systems continually strive to capture the human cognitive process in

computer code. As of late, expert systems have been moving rapidly from the research

61

environment into practical applications. A prototype expert system application was

developed as part of this research. It captures the knowledge necessary to generate accurate

support equipment allowances under the SERMIS program.

This research identified some of the knowledge, both factual and heuristic, considered

integral in accomplishing this task and demonstrated the feasibility of incorporating this

body of knowledge into an expert system. The knowledge engineer was the link between

this body of knowledge and the expert system. It was also shown that the position of

knowledge engineer is a demanding one that requires a wide array of skills. The process of

encoding the knowledge was greatly facilitated by the use of VP-Expert. This development

tool minimized the overall time of prototype development.

Ultimately, the advantages of expert systems should continue to become more and

more visible. As expert system development tools become more powerful, the technology

will be easier and more economical to incorporate into a wider array of potential areas.

62

APPENDIX A

SERMIS OVERVIEW

A. HISTORY

The Support Equipment Management Information System (SERMIS) project has

evolved in response to the need for automated support within the Aircraft Maintenance

Material Readiness List (AMMRL) Program. The AMMRL program is a Naval Air

Systems Command Headquarters managed program for aviation support equipment

established in 1960. The goal of this program is to "ensure the availability of support

equipment to meet flight and personnel safety requirements; operational readiness, and

mission effectiveness goals" [NAVAIRINST 87]. Prior to SERMIS, manual generation of

allowance lists were considered inadequate because of different criteria being used and an

inability to recognize particular needs of different activities. In 1963 allowance lists were

generated by batch operations. The purpose of SERMIS was to move this data generation

process to an interactive database management system with real-time capabilities. SERMIS

implementation began in 1979.

B. SYSTEM DESCRIPTION

SERMIS has now become the repository of master support equipment data. SERMIS

operates from a central data base in New Orleans that recognizes approximately 27,000

items, 600 airframe configurations, 70 power plant configurations and almost 1250

avionics, missiles and armament systems [SERMIS 86]. This program is run off of a

Sperry Univac 1 100.

SERMIS is composed of six major subsystems:

63

• INrVENTORY- maintains total reportable assets for each IMRL activity

• SOURCE DATA--maintains the catalog and technical data provided by the Automated
Support Equipment Recommendation Data (AUTOSERD) system. AUTOSERD is

the sole update medium for SERMIS.

• ALLOWANCE—provides the Support Equipment Controlling Authorities (SECAs)
with the n-line capability of creating and maintaining employment data. This
employment data combined with established algorithms, compute Support
Equipment (SE) allowances.

• SE ASSET READINESS REPORTING-updates and maintains activity descriptive

information records for use by other SERMIS subsystems.

• REWORK-tracks all pertinent information required to manage SE end items going

through depot level rework.

• SECA TECHNICAL DATA-assigns and monitors special management codes to items

not listed in the source data.

C. USERS

The six Support Equipment Controlling Authorities (SECAs),are the primary users of

SERMIS. They are:

• Commander Naval Air Forces U.S. Atlantic Reet (COMNAVAIRLANT)

• Commander Naval Air Forces Pacific Fleet (COMNAVAIRPAC)

• Chief of Naval Air Training (CNATRA)

• Commander Naval Air Reserve Force (COMNAVAIRESFOR)

• Commander Naval Air Systems Command (COMNAVAIRSYSCOM)

• Naval Air Maintenance Training Group (NAMTRAGRU)

These SECAs are major aviation commands that provide administrative control for the

allowance and inventory of support equipment end items. These organizations use the data

from the central repository in order to provide Individual Material Readiness Lists (IMRLs)

and the monthly supplements to Navy and Marine Corps support equipment users.

64

APPENDIX B

SPONSOR INTERVIEW

This was a one day meeting that took place on May 2, 1988 between the author, and

the thesis sponsor of the Naval Aviation Maintenance Office, Patuxent River Naval Air

Station, Maryland. The sponsor had solicited for thesis students to do expert systems

work for the SERMIS project.

This meeting provided the opportunity for a face-to-face discussion regarding the

sponosor's desires for SERMIS and the author's requirements for a thesis. It also allowed

the author to pick up a copy of the SERMIS user's manual, and the "VP Expert" software

package and documentation.

Much of the discussion centered on SERMIS and its particulars (the author has had

first hand experience in naval aviation activities, but no experience with SERMIS). The

sponsor summarized the complexity and importance of SERMIS by stating this system

controls the $6-9 billion inventory of Support Equipment. SERMIS is composed of six

subsystems (Appendix A). The sponsor desired the expert system work to be directed

towards the Allowance subsystem.

An actual case was related where SERMIS misuse in the Allowance subsystem had

strong ramifications. An aircraft carrier was required to make an unscheduled deployment

in response to a real world contingency. The airwing, which comprises approximately 95

aircraft, was newly created and consequently required a new IMRL to be generated in order

to provide the necessary support equipment to the airwing while deployed on board the

carrier. This process was given priority on SERMIS, and a weekend of computing time

was spent generating this 3(XX) plus page document. The end result provided incomplete

levels of support equipment, and the entire process had to be performed again.

65

This real world example led into the discussion of the basic problem: erroneous inputs

are creating tremendous deficiencies in support equipment allowances. Now while some of

these cases can be solved by repetition, others simply cannot afford to be rerun without

mission impact.

The sponsor attributes these end product deficiencies to a lack of expertise on the part

of those inputting the parameters. The main users of SERMIS are called Support

Equipment Controlling Authorities (SECA). There are six of these SECA activities (see

Appendix A for a more detailed description of the SECA's) and they are listed below:

• Commander Naval Air Forces U.S. Atlantic Fleet (COMNAVAIRLANT)

• Commander Naval Air Forces U.S. Pacific Fleet (COMNAVAIRPAC)

• Chief of Naval Air Training (CNATRA)

• Commander Naval Air Reserve Force (COMNAVAIRESFOR)

• Commander Naval Air Systems Command (COMNAVAIRSYSCOM)

• Naval Air Maintenance Training Group (NAMTRAGRU)

Each of the above listed SECA's has a position that carries out the IMRL generation

and updating for each activity under its control. Some SECA's can have as many as 700

activities under its cognizance. Since automating the support equipment system under

SERMIS, these positions have been staffed by civilians. Initially, there were few civilians

with enough prior military expertise under the manual system (pre-SERMIS) that would

qualify them for this position. There were sufficient numbers to staff each SECA

originally, but this initial cadre has gradually retired with no replacements. The sponsor

states that there is currently a real scarcity of expertise when it comes to a thorough

understanding of the mechanics of support equipment allowances, that is, an understanding

that could really only be gained through years of generating IMRL's by hand. The sponsor

went on to state that out of the six SECA's, two of them have to borrow the "expert" now

when it comes to involved operations.

66

All of the background discussion was summarized by stating that the knowledge from

one of the few remaining experts needs to be captured. This expert should be one who has

had direct experience with the entire support equipment program evolution. This

knowledge could then be incorporated into a prototype expert system, and used as a front

end program to the allowance subsystem.

67

APPENDIX C

EXPERT INTERVIEWS

A. OVERVIEW

The time dedicated for the travel to San Diego to conduct the expert interviews was

only three days. This was the only time available due to academic schedules and funding

constraints.

The first session was spent clarifying and gathering SERMIS specific information that

was previously unavailable to the researcher. The second session dealt with the actual

steps involved in the generation of support equipment allowances. The third and fmal

session discussed the particular data elements that are the user provided inputs to SERMIS

for the allowance lists.

B . BACKGROUND OF EXPERT

The designated expert is currently employed by Science Applications International

Corporation (SAIC). SAIC is a civilian consultant firm that is contracted to perform work

for the Naval Aviation Logistics Center (NAVAVNLOGCEN). The expert's current

position is an ADMRL/SERMIS Senior Systems Analyst, which entails providing services

for NAVAVNLOGCEN's support equipment management products.

This gentleman qualifies as a SERMIS expert by virtue of over 40 years experience in

the aviation support equipment environment. Prior to his position with SAIC, he retired

from the Navy as a Senior Chief Aviation Machinist with 20 years of experience in aircraft

maintenance and maintenance administration. He then worked in the Federal Civil Service

for 17 years at the Naval Air Systems Command Representative Pacific where he

administered the Aviation Maintenance Material Readiness List (AMMRL) program.

68

In summary, he has been described as the only man that has personally experienced all

aspects of the AMMRL—from manual methods to SERMIS.

C. FIRST SESSION

The first session began with general introductions, description of backgrounds, and

the intent of these interviews. Much of the subsequent discussion centered on clarification

and further explanation of specific aspects of SERMIS. During this initial session, the

original problem definition of inaccurate or incomplete Individual Material Readiness Lists

(IMRL's), that is, support equipment allowances, was made more explicit. The problem

was still attributed to two sources: errors in the central database, and errors from user

inputs. The errors in the central database are not a part of this study. The interviews did

provide the following underlying causes for user errors however:

• Availability: few people are required to have the knowledge to fill the positions.

Consequently, when someone does vacate the position, there are no replacements.

• Responsibility: since the IMRL generation process is now performed by civilians,

there is no direct appreciation of the consequences of their actions on operational

units, in other words, the IMRL managers at the SECA level do not live with the

results.

• Job appeal: this particular SERMIS responsibility was described as "not a glamorous
job," since it more often than not invokes criticism instead of compliments.

After elaborating on the problem sources, the interview turned towards a discussion of

the prerequisite knowledge involved in the generation of support equipment allowances.

The resident expert stated that the primary building block is OPNAVINST 4790.2, or the

"maintenance bible." This publication details maintenance functions and assignments of

responsibilities. Once an operating knowledge is acquired with this formal publication, one

must establish a rapport with the different types of activities within a Support Equipment

Controlling Authority's (SECA) jurisdiction. For example, VXE-6 is a C-130 squadron

that is tasked to fly research missions. There are times when these missions are flown

69

from the Antarctic. When the squadron is in the United States, it is considered an

organizational level maintenance activity. When the squadron operates out of the Antarctic,

they are considered an intermediate level activity since they must support themselves in a

remote location. Support equipment allowances will vary significandy depending on this

particular squadron's base of operations. By building this rapport with the maintenance

activities, one becomes aware of these various subtleties that potentially have a significant

impact on allowances.

This was just one example of the type of cases the operator at SECA must be aware of

prior to sitting down in front of the SERMIS terminal and typing in the data elements

required for an IMRL for a particular activity. The bottom line is that even though the

allowance process is now automated, one still has to do all the necessary "homework" on

the respective activity to ensure valid input parameters.

D. SECOND SESSION

After the review of problems, concepts and hard copy sources from the initial session,

the second session was spent reviewing actual allowance reports and describing the general

mechanics of an IMRL generation under SERMIS.

SERMIS draws on two inputs when generating an IMRL for a specific activity. The

first input comes from the source data and is not subject to any user manipulation.

Basically, the source data contains all the prerequisite information such as range of

allowance tables. The second input is provided by the user via the "activity employment

update" screen in the Allowance subsystem. Figure C-1 shows a sample of this screen

[SERMIS 86:C-33]. The underlined items (see "Third Session" section for explanation of

these items) concern information on an activity's configuration such as number and types

of entities supported [NAVAIRINST 87]. Once the user is satisfied with these inputs, they

70

can be committed and SERMIS will use this information to update/create the IMRL for that

activity.

AAI

ACT
CODE
V

ACTIVITY EMPLOYMF.NT UPDA lb

KA-6D USS CORAL SEA CV-43 CI 03343 USS CORAL SEA CV-43

SUB TYPE IMRL SLM SLM M/L LIST SERIES 3 D NUMBER
IND SEL CODE NUMBER OTY CODE SEL CODE CODE OF DET

N C KA-6D 005 00 N

EXCEPTIONS

Figure C-1. Sample of an Activity Employment Update Screen

The entire IMRL generation process can be summarized in these steps:

• The user gathers all the pertinent data regarding the activity, such as level of

maintenance performed and types of aircraft supported.

• The user then calls up the "Activity Employment Update Screen" and enters the

required information. This screen is considered a "work area" until the user

instructs SERMIS to incorporate the data.

• Once the information is committed, SERMIS performs an editing and validation check

on the data, and if correct proceeds to the source data to apply this information to

the algorithms and allowance tables.

• An IMRL is then established for this activity which can be tailored by the SECA
through another SERMIS application.

E. THIRD SESSION

The final interview session consisted of more research on topics covered in the

previous sessions, and explanations from the expert on the data elements that the user

71

inputs to SERMIS via the screen depicted in Figure C-1. The data element names and

meanings from that screen are summarized below:

• CI~Control Identifier. A code assigned to each activity in SERMIS.

• AAI—AMMRL Activity Identifier. A number used to identify an activity which
submits inputs or receives outputs from SERMIS.

• ACT CODE--Activity code. Used to specify a land or vessel activity (L or V).

• SUB IND—Subcustody Indicator. Used when activity is supported by multiple

supporting activities. This was a category designed for a large number squadrons

in close proximity on the east coast. The COMNAVAIRPAC SECA always uses

"N"(No).

• TYPE IMRL SEL CODE—Type IMRL selection code. It serves as a means of
controlling the selection of support equipment from the source data. In this case

"A" selects both intermediate and organizational level items. B,C and D are used
less frequently since they cover unique cases.

• SLM NUMBER— System/List/Model number can be either a: system number; list

code; or a model designation (as shown in Figure C-1) to be supported by an

activity.

• SLM QTY-System/List/Model quantity. A numeric value greater than zero to reflect

the quantity of systems supported.

• M/L CODE—Maintenance Level Code. This code is used to identify the level of

maintenance performed by an activity (D=Depot, I=Intermediate, 0=
organizational, T = transient).

• LIST SERIES SEL CODE—List series selection code. This is used to control the

selection of SERMIS source data. For example, "00" will select all appropriate

items (list codes) needed to support the model or system at the activity, while "TA"
will cause a selection of only the airframe items required.

•3D CODE-Three Degree Code. This is a code that denotes what degree (first,

second, or third) of engine maintenance is performed at that activity. Different

criteria will be used by the source data depending on the code entered.

• NUMBER OF DET—Number of detachments. A number that specifies how many
detachments are within this parent activity. In this example a blank indicates that

this category is not applicable.

The question was asked if there were any historic "problem" data elements from the

above list. The expert felt that the Three Degree Code of engine repair was probably the

worst offender that he could recall, but in general there was really no specific set of data

elements that consistently caused errors in the allowance process. The expert re-emphasized

72

the need for the user to become really involved with the process, that is, to understand the

workings and subtleties of each activity and to do the appropriate amount of research on the

activity prior to sitting in front of the terminal. Other areas he believed that would benefit

from an expert system would be activity related specifics as: types of aircraft supported,

level of maintenance performed, airwing composition and so on.

The remainder of the time spent at COMNAVAIRPAC consisted of gathering

additional publications and references that would serve as source material for some of these

activity specific items.

73

APPENDIX D

VP-EXPERT

A. DESCRIPTION

VP-Expert is a microcomputer-based expert system development tool. This software

runs on an IBM PC, PC-XT, PC-AT or compatible system. It requires 256K or more of

RAM and is produced by Paperback Software International of Berkeley, California.

B. FEATURES

Listed below are some of the main features of VP-Expert

:

• Inference Engine. This inference engine makes use of both the backward and forward

chaining methods (see Chapter H).

• Knowledge Base. The knowledge representation method used by VP-Expert is rule-

based, that is, a series of "IF-THEN" statements. The knowledge base also

contains statements that help structure the problem solving process. For example,
statements are used to present menus, ask questions of the user, or to identify a

goal variable.

• Explanation facility. VP-Expert provides options that allow a user to "view" the

problem solving session. A "Rules" window shows the knowledge base rules that

are being processed by the inference engine. The "Results" window depicts the

conclusions (intermediate and final), or values assigned to the variables along with

the confidence factors.

• Confidence factors. Confidence factors (0-l(X)) can be applied to the rules in the

knowledge base and to the user provided inputs.

• Induce function. This option allows creation of a simple knowledge base from an

induction table that is created in the text editor or from a compatible data base file.

• Text Editor. This editor can be used for the creation and editing of the knowledge
base. It enhances error correction ability by allowing the user to immediately enter

the knowledge base after conducting a run in order to make the appropriate

corrections.

74

C. KNOWLEDGE BASE

In order to perform a consultation with VP-Expert, one requires a knowledge base file.

This file contains the instructions and rules pertinent to a specific consultation. Each

knowledge base file contains three basic elements:

• The ACTIONS block

• Rules

• Statements

The "ACTIONS" block of the knowledge base can be thought of as a small program.

It contains an ordered list of tasks for the expert system to carry out. In the example used

in Section D, there is only one task.

Rules are the series of "IF-THEN" statements that contain the encoded knowledge.

Rules may occur in any order within the knowledge base.

Statements are additional code in knowledge base that provide additional information

pertinent to the consultation that are not in the rules. For example, the "ASK" statement

allows the system to ask questions of the user, and a "CHOICES" statement will then

present a menu of choices from which to select.

D. VP-EXPERT EXAMPLE

This section will present a simple example taken from the VP-Expert user's manual in

order to illustrate some of the above concepts [VP-Expert 87: 2.6-2.10].

Figure D-1 shows a simple knowledge base file that consists of three statements and

four rules that would be used to find an appropriate cheese to serve with a particular

course.

75

ACTIONS
FIND The_Cheese;

RULE!
IF Complement = crackers_and_bread

THEN The_Cheese = Brie CNF 80;

RULE 2

IF Complement = bread_and_fruit

THEN The_Cheese = Cambert CNF 100;

RULES
IF Course = Appetizer

THEN Complement = crackers_and_bread CNF 100;

RULE 4
IF Course = Dessert

THEN Complement = bread_and_fruit CNF 100;

ASK Course: "Is the course Appetizer or Dessert?";

CHOICES Course: Appetizer, Dessert;

Figure D-1. A VP-Expert Knowledge Base File Example.

Here, the system was instructed by the "ACTIONS" statement to find a cheese to

recommend for a particular course. The inference engine looks for the first rule with the

goal variable, "The_Cheese" in its conclusion. In this case it is Rule 1. Once the rule is

found, the inference engine will attempt to test the rule, but in this case the value of

"Complement," in the premise, is not known, so the inference engine cannot test it for the

time being. In order to do so, it searches next for a value for "Complement" by looking

for the first rule with "Complement" in the premise. This brings the inference engine to

Rule 3, and once again it attempts to test this rule. Once again, the rule cannot be tested

since the value for the premise variable, "Course" is unknown. In order to test this rule

then, the inference engine will attempt to find a rule with "Course" in its conclusion. In

this example however, there are no rules with "Course" as a conclusion. If the inference

76

engine cannot locate a rule that assigns a value to "Course," it will look for an "ASK"

statement. In this sample problem, it finds one so VP-Expert displays the ASK statement

to the user. The "CHOICES Course" statement will cause the choices of Appetizer and

Dessert to be displayed with the ASK statement. The user can now enter a choice, and the

inference engine can work back through and test the rules.

The "CNF" designation from the above example illustrates the use of confidence

factors. The confidence factor of 80 from the rule 1 conclusion means that this conclusion

is drawn with 80% confidence. Confidence factors should not be confused with statistical

probability since the confidence factors are subjective assessments. If no CNF value is

entered, the default value of 100 will be assigned. In this example, the values of 100 in the

last three rules were added for puposes of illustration.

Since the system started with a goal and worked backwards to determine which rules

to test, the system made use of backward chaining. Figure D-2 shows a sample screen

from this consultation. The upper portion is the consultation window, the lower left

section is the "rules" window, and the lower right is the "results" window.

Is the course appetizer or dessert ?

Appetizer ^ Dessert

Finding Complement Course = Appetizer CNF 100

Testing 1

Complement = crackers_and_bread CNF 100

Rule 1 IF The Cheese = Brie

Complement = crackers and bread

THEN
rhe_Cheese = Brie;

Figure D-2. VP-Expert Sample Screen

77

E. SUMMARY

VP-Expert is a rule-based expert system development tool. The user employs the text

editor to develop the knowledge base by using "IF-THEN" rules as well as VP-Expert

specific statements that perform such functions as: identifying goal variables, presenting

menu choices, assigning confidence factors and so on. The built-in inference engine will

then go through and test the rules (normally using backward chaining) to arrive at a

conclusion.

78

APPENDIX E

DOCUMENTATION

A. OVERVIEW

This appendix provides general instructions for the use of the COMNAVAIRPAC

SERMIS expert system application. It is assumed the user will be familiar with the general

procedures of VP-Expert. A description of the different files (database and knowledge

base) used in the construction of the first version prototype is also provided. This

appendix is also intended to be used as a reference for any follow-on work with respect to

this program.

B. START UP INSTRUCTIONS

All the files necessary to run this prototype program are on the disk that is labelled

"AIRPAC.KBS". It is designed for use on a computer system with two disk drives. The

VP-Expert system disk should be inserted into drive "A" and the AIRPAC.kbs disk should

be inserted into drive "B". Start the VP-Expert session as normal, choose the "Consult"

option, and then type in "BiAirpac" when prompted to enter a knowledge base file name.

The system will then begin the consultation.

C. CONSULTATION DESCRIPTION

The main intent of this prototype was to demonstrate the feasibility of presenting

activity-specific information to the user prior to entering an IMRL generation process in the

SERMIS Allowance subsystem. In order to perform this function, activity data was

separated into two categories: employment data and remarks. Employment data for this

79

project was limited to: AAI, CI, Activity name, and the Three Degree Code of engine

repair. Remarks were considered to include any supplemental information on an activity

that might affect an IMRL generation. For example, an activity remark on an aircraft carrier

would be provide the models of aircraft comprising the airwing.

When a user begins the program, the fu"st choice to make is the activity for which

information is desired. All of the activities within the COMNAVAIRPAC SECA are

arranged alphabetically, by name, and displayed for selection in groups of approximately

45. The user must determine the appropriate alphabetical range for the desired activity.

Once the correct range of names is selected, all the names within that range are displayed

and then the specific activity can be chosen. After making an activity choice, options are

given for viewing Three Degree Codes and supported/supporting activities. The main

knowledge base file, AIRPAC.KBS, will then call the remarks knowledge base file (using

the VP-Expert technique known as chaining) , REMARKS.KBS and determine if there is

any supplemental information to be displayed.

D. SYSTEM FILES

This prototype made use of several database files and two knowledge bases. The

database files were constructed using DBase III Plus and have the "dbf ' file extension

associated with them. The knowledge base files were created using the VP-Expert text

editing feature and are designated by a "kbs" file extension. Table E-1 provides a summary

listing of the all the files used in this prototype, while Table E-2 gives a summary listing of

the database file structures used by the program.

80

TABLE E-1. File Summary

File Name File Type Description

AKPAC KBS

REMARKS KBS

ACT_MSTR DBF

AIRPACO DBF

AIRPACl DBF

AIRPAC2 DBF

AIRPAC3 DBF

AIRPAC4 DBF

AIRPAC5 DBF

AIRPAC6 DBF

AIRPAC7 DBF

3DEGREE DBF

Main icnowledge base file

Contains remarks on COMNAVAIRPAC's activities

Holds the 369 COMNAVAIRPAC activity names

Used for menu display of names from A6E Planning to HAMS 13

Used for menu display of names from HAMS 1 5 to HMH 463

Used for menu display of names from HMH 465 to MAG 1

1

Used for menu display of names from MAG 12 to NAF Misawa

Used for menu display of names from NAS Adak to USS Tripoli

Used for menu display of names from VA 22 to VFA 195

Used for menu display of names from VF 1 to VMQ 2

Used for menu display of names from VP 1 to VXE 6

Contains type engines and the 3 D codes for "I" level activities

TABLE E-2. Database File Structure Summary

Number of Number of
File Name Records Fields Field Names & Types

AirpacO 49 3 CI: character, AAI:

Aiipacl 49 3 CI: character, AAI:

Aiipac2 42 3 CI: character, AAI:

Airpac3 54 3 CI: character, AAI:

AiTpac4 47 3 CI: character, AAI:

AirpacS 56 3 CI: character, AAI:

Airpac6 37 3 CI: character, AAI:

AirpacT .35 3 CI: character, AAI:

Act_Mstr 369 3 CI: character, AAI:

3 Degree 165 3 Facility: character.

character. Name: character

character. Name: character

charact^ Name: character

character. Name: character

character. Name: character

character. Name: character

charactCT; Name: character

character. Name: character

character. Name: character

Engine: character. Level: numeric

81

E. FUTURE RECOMMENDATIONS

This prototype only made use of the AAI, CI, and Three Degree Codes employment

data elements in order to demonstrate project feasibility. Future efforts should strive to

incorporate the remaining employment data elements. These elements can either be

incorporated as additional fields in the current database files, or as separate files.

Ultimately, it is desired to have the remarks knowledge base file (REMARXS.KBS)

contain a rule for each activity. In this project, activity information was Umited to the brief

examples used by the expert and parallel examples based on the author's experience. More

time with the expert is required to quantify this activity information. As the information is

gained, it can be added directly into the remarks knowledge base file.

82

APPENDIX F

RULES AND INFORMATION BASE EXAMPLES

A. OVERVIEW

The two primary methods of encoding the knowledge for this prototype were database

files and knowledge base files. The database files were considered the "information bases"

while the knowledge base files were comprised of the rules. This appendix provides

examples of these methods that are indicative of the overall design, and addresses the

testing involved with them.

B. EXAMPLES

The type of information contained in the database files was factual data regarding the

activity, such as the Three Degree Code of Gas Turbine Engine Repair. Figure F-1

displays a representative sampling from the database "3Degree.dbf," which was used as

one of the information bases for the prototype.

Facility
•

Engine
•

Level

•

NAS Alameda
NAS_Alameda
NAS Alameda
NAS_Alameda
NAS Alameda
NAS_Agana
NAS_Agana
NAF_Atsugi
NAF_Atsugi

•

J52 P 63-83^08
J57 P 10
IF 41 A-23-2C-402D
T58 GE 8F-10
T64 GE 6
J57 P 10
T56"A 10-14

T58 GE 8F-10
T56_A_14

•

3
2
2
1

3

1

2
•

• • •

• • •

Figure F-1. Information Base Example

83

In order for the expert system to use this knowledge, a rule would have to be satisfied

in the knowledge base that would contain instructions to retrieve this data from the

information base. An example of such a rule is provided in Figure F-2.

RULE 3Degree

IF 3Deg_menu = yes

THEN

DISPLAY "Checking 3 degree codes for {the_activity)'

GET the_activity = lacility, B:3E)egree, ALL
FIND message

Figure F-2. Rule Accessing an Information Base

The rule "3Degree" in Figure F-2 picks up just after the user has been presented an

option to view the Three Degree Codes. If the user responded "yes" to this option, then the

rule premise in this example has been satisfied. The program then presents a message to

the user, via the "display" statement, that it is checking for the codes. It should be noted

here that the variable name, "the_activity" has been assigned to the activity name the user

selected at the beginning of the consultation. The "GET" clause is the next instruction the

program encounters. This clause is telling the system to transfer values from a database to

the rule base. In this case, it is going to the "3Degree" database file on the "B" drive for the

values. The "GET" clause contains three arguments. The first argument is "the_activity =

facility" and it is telling the expert system to select the next record from the database whose

"facility" field matches the value of "the_activity." The next argument in this example is

"B:3Degree" and this is simply the path and filename for the database to access. The third

argument, "ALL," means that all the field values of the selected record should be

transferred.

84

It was mentioned that the "GET" clause retrieves records one at a time from the

database. In the case of multiple occurrences, as with NAS Alameda in Figure F-1, a loop

condition had to be constructed in order to retrieve all values for an activity. VP-Expert

does this through the use of the "WHILEKNOWN" clause. Figure F-3 provides an

example where the rule from Figure F-2 has been modified by an addition of a

"WHILEKNOWN" condition.

RULE 1

IF 3Deg_menu = yes

THEN

WHILEKNOWN facility

GET the_activity = facility, B:3Degree, ALL
FIND message
RESET message

END,

RULE 2

IF facUity o UNKNOWN

THEN

message = displayed
DISPLAY "For the (engine) engine, this is a level (level) facility"

ELSE

DISPLAY "This completes the list. Press any key to continue...-";

Figure F-3. "WHILEKNOWN" Example

Rule 1 in Figure F-3 contains the "WHILEKNOWN" condition and the loop runs

between the "WHILEKNOWN" and "END" keywords. As long as the variable named in

the "WHLEKNOWN" clause has a known value, the loop will execute. In this example

the variable is "facility," so as long as a record is found in the "3Degree" database file in

which "the_activity" matches a "facility" field value, the value of "facility" will be known

85

and the loop will continue to execute. The next clause in this loop instructs the inference

engine to "find" a value for "message." The fu-st place the inference engine looks is in the

rule conclusions. Rule 2 in Figure F-3 contains the variable "message" in its rule

conclusion. After finding this variable, the inference engine will check to see if the rule

premise is valid. In this example, the premise can be translated to "if facility does not equal

unknown," that is, if the facility has a known value. Assuming a value for facility is

known, the system will display a message reflecting the values found from the database.

In summary, this example set up a loop condition (Rule 1 in Figure F-3) in order to

obtain multiple values from a database depicted in Figure F-1, As long as a value was for

"the_activity" was found to match a value for "facility" the loop would execute and make

Rule 2 display the results. The next step was to run test cases to validate this aspect of the

design. ^,^ ^

C. TESTING

An activity was selected for which there were multiple occurrences in the "3Degree"

database file. NAS Alameda was one such test case and it will be used here for purposes

of illustration. Once NAS Alameda was selected from the menu as the activity for which

information was desired, "the_activity" was assigned the value "NAS_Alameda." If the

user desired Three Degree codes. Rule 1 in Figure F-3 would be valid and the inference

engine would then go to the database shown in Figure F- 1 and select the first record where

"the_activity," that is "NAS_Alameda," was the same as the value in the "facility" field.

The program would then return all the values for this record (Facility, engine, and level)

back to the rule base. The inference engine was then instructed to find a value for

"message" and went to Rule 2 in Figure F-3. Checking the premise, it found the value of

facility was known, therefore the premise is true and the conclusion was executed by

86

displaying on screen the "engine" and "level" values brought over from database file. The

program then continues loop execution since "facility" is still known. After the fifth

iteration no more records will be found that contain NAS_Alameda in the "facility" field.

Consequently, the loop variable, "facility" now becomes unknown satisfying the exit

criteria, and the "else" portion of Rule 2 is also satisfied causing the complete message to

be displayed. Figure F-4 shows how the output from this test case would appear on the

screen.

For the J52 P 6B-8B-408 engine, this is a level 1 facility.

For the J57 P 10 engine, this is a level 1 facility.

For the TF 41 A-2B-2C-402D engine, this is a level 3 facility.

For the T58 GE 8F-10 engine, this is a level 2 facility.

For the T64 GE 6 engine, this is a level 2 facility.

This completes the list. Press any key to continue...

Figure F-4. Screen Display of Three Degree Codes.

One important problem the test cases uncovered with this design was the satisfying of

the record selection criteria from the database, that is, the "GET the_activity = facility"

portion of the "GET" clause. The value for "the_activity" had to match exactly the value

for "facility." The variable, "the_activity" is assigned a value based on an opening menu

display of the activity names from one of the databases "AirpacO" through "Airpac7." The

value for "facility" was taken from the field of the same name of the database file

"3Degree." The tests revealed that in some cases, even though the names were spelled

correctly in the two separate files, an extra space or the absence of an underscore would

cause the selection criteria to be invalid. Particular attention had to be given to the names in

both files to ensure satisfying the selection criteria.

87

REFERENCES

[Alavi 84] Alavi, M. and Napier, H. A., "An Experiment in Applying the Adaptive
Design Approach to DSS Development," Information and Management, 7, 1984, pp
21-28, reprinted in Decision Support Systems, Ralph Sprague and Hugh Watson,
[eds.], Prentice-Hall, 1986.

[Blanning 84] Blanning, R.W., "Issues in the Design of Expert Systems for

Management," AFIPS Proceedings, (National Computer Conference '84), 1984, 489-

495.

[Boehm 81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981, p. 37,

quoted in Pressman, Roger, S., Software Engineering, A Practitioner's Approach,
McGraw-Hill, New York, 1987 p. 149.

[Boose 86] Boose, John, H., Expertise Transfer for Expert System Design, Elsevier

Publishing Company Inc., New York, 1986, 312 pp.

[Buchanan 82] Buchanan, B.C., "New Research on Expert Systems," 269-299, printed in

Machine Intelligence, Hayes, I.E., Michie, D., Pao, Y-H., [eds.], Halsted Press,

1982.

[Cooper 86] Cooper, Philip, "Expert Systems in Management Science," Future
Generations Computer Systems, 2(4), December, 1986,217-223.

[Feigenbaum 84] Feigenbaum, Edward, A., "The Art of Artificial Intelligence - Themes
and Case Studies of Knowledge Engineering," reprinted in Artificial Intelligence , O.
Firschein [ed.], AFIPS Press, Reston, VA , 1984.

[Ford 85] Ford, F. Nelson, "Decision Support Systems and Expert Systems: A
Comparison," Information and Management, 8, 1985, 21-26.

[Harmon 85] Harmon, Paul, and King, David, Expert Systems, John Wiley & Sons,

New York, 1985, 283 pp.

[Hart 86] Hart, A., Knowledge Acquisition for Expert Systems, McGraw-Hill, New
York, 1986, 180 pp.

[Hayes-Roth 83] Hayes-Roth, Frederick, Waterman, Donald A. and Lenat, Douglas, B.,

od.yBuilding Expert Systems, Addison-Wesley, Reading, MA, 1983, 444 pp.

[Henderson 87] Henderson, John C, "Finding Synergy between Decision Support

Systems and Expert Systems Research," Decision Sciences, 18, 1987, 333-349.

[Heng 87] Heng, M.S.H., "Why Evolutionary Development of Expert Systems
Appears to Work," Future Generations Computer Systems, 3, 1987, 103-109.

88

[Hogue 84] Hogue, J. T., and Watson, Hugh J., "Current Practices in the Development
of Decision Support Systems," Proceedings from the International Conference on
Information Systems, 1984, reprinted in Decision Support Systems, Ralph Sprague
and Hugh Watson, [eds.], Prentice-Hall, 1986.

[Hu 87] Hu, David, Programmer's Reference Guide to Expert Systems, Howard
W. Sams & Company, Indianapolis, IN, 1987.

[Keen 78] Keen, P.G. and Scott Morton, M.S., Decision Support Systems: An
Organizational Perspective, Addison-Wesley, Reading, MA, 1978, p.74.

[Keen 81] Keen, P. G., "Value Analysis: Justifying Decision Support Systems," MIS
Quarterly, 5(1), March, 1981, reprinted in Decision Support Systems, Ralph
Sprague and Hugh Watson, [eds.], Prentice-Hall, 1986.

[Luconi 86] Luconi, Fred, L., Malone, Thomas, W., and Scott Morton, Michael, S.,

"Expert Systems: The Next Challenge for Managers," Sloan Management Review,

Summer 1986, 3-14.

[Michie 82] Michie, Donald, ed.. Introductory Readings in Expert Systems, Gordon
and Breach, New York, 1982, 237 pp.

[Mishkoff86] Mishkoff, Henry, C, Understanding Artificial Intelligence, Texas
Instruments Incorporated, Dallas, TX, 1986, p.3-1.

[NAVAIRINST 87] Naval Air Systems Command Headquarters , NAVAIR
INSTRUCTION 13650. IB, 1987, End (5).

[O'Leary 87] O'Leary, D.E., "Validation of Expert Systems-With Applications to

Auditing and Accounting Expert Systems," Decision Sciences, 18, 1987, 468-486.

[Olson 87] Olson, J. R., and Reuter, H.H., "Extracting Expertise from experts:

Methods for Knowledge Acquisition," Expert Systems, 4(3), August 1987, 152-168.

[Ow 87] Ow, P.S. and Smith, S.F., "Two Design Principles for Knowledge-Based
Systems," Decision Sciences, 18, 1987, p. 430.

[Philips 88] Phillips, Jack S., and Sanders, Perry, "First Steps in Prototyping," AI
Expert, 3(5), May 1988, 64-68.

[Pressman 87] Pressman, Roger, S., Software Engineering, A Practitioner's

Approach, McGraw-Hill, New York, 1987 p. 149.

[SERMIS 86] Naval Aviation Logisitics Center, Management Systems Development
Directorate, Support Equipment Resources Management Information System Users

Manual, September 86.

[Sprague 80] Sprague, Ralph, H., "A Framework for the Development of Decision

Support Systems", MIS Quarterly, 4(4), June, 1980, reprinted in Decision Support

Systems, Ralph Sprague and Hugh Watson, [eds.], Prentice-Hall, 1986.

89

[Sprague 82] Sprague, Ralph, H. and Carlson, Eric, D., Building Effective Decision
Support Systems, F*rentice-Hall Inc. Englewood Cliffs, NJ, 1982, 329 pp.

[Tou 85] Tou, Julius, T., "Knowledge Engineering Revisited," Computer &
Information Sciences, 14(3), June 1985, p. 123.

[Turban 86] Turban, Efraim, and Watkins, Paul R., "Integrating Expert Systems and
Decision Support Systems," MIS Quarterly, June 1986, 121-136.

[Vedder87] Vedder, R. G. and Mason, R.O., "An Expert System Application for

Decision Support in Law Enforcement," Decision Sciences, 18, 1987, 400-414.

[VP-Expert 87] Paperback Software International, V/*-£xperr, 1987, 1.1-10.3.

[Waterman 86] Waterman, Donald, A., A Guide to Expert Systems, Addison-Wesley
Publishing Company Inc., Reading, MA, 1986, 419 pp.

90

INITIAL DISTRIBUTION LIST

No. Copies

1

.

Defense Technical Information Center 2
Cameron Station

Alexandria, Virginia 22314-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CaUfomia 93943-5102

3. Director, Information Systems (OP-945) 1

Office of the Chief of Naval Operations

Navy Department
Washington, D.C. 20350-2000

4. Naval Aviation Maintenance Office 2

Attn: John Gray
Naval Air Station

Patuxent River, Maryland 20670-5446

91

?^/ '89?

/

Thesis
R5766 Rippinger
c.i An expert system appli-

cation for SERMIS

i
ZZ feOV 90 36073

Thesis
R5766 Rippinger
c.l An expert system appli-

cation for SERMIS.

UCHUI'

