
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2001-03

Analysis, design and implementation of a web

database with Oracle 8i

Demiryurek, Ugur.

http://hdl.handle.net/10945/10813

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYSIS, DESIGN AND IMPLEMENTATION OF A WEB
DATABASE WITH ORACLE 8

by

Ugur Demiryurek

March 2001

Thesis Advisor: Thomas Wu
Thesis Co-Advisor: Chris Eagle

Approved for public release; distribution is unlimited

20010328 049

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2001

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Analysis, Design and Implementation of a Web Database with Oracle8i

5. FUNDING NUMBERS

6. AUTHOR(S)
Demiryurek, Ugur

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis represents a model of web-database analysis, design and implementation. An electronic bulletin board
for the Naval Postgraduate School is implemented for demonstration. The model includes Oracle8i DBMS as the
database, Java (Java Server Pages. Java Script, Enterprise Java Beans, Java Soviets) as the programming language.
Apache HTTP Server v 1. ? 1 omcat v. 1.2 is used as the Web server and JSP engine. Windows NT4.0 served as the OS
environment. From the technical aspect, Database Management Systems, Web-Database Architectures, Server Extension
Programs, OracleSi. as well as several other software and hardware components are reviewed, and some are

recommended.

14. SUBJECT TERMS
Oracle DBMS, OracleSi. Java Server Pages, Enterprise Java Beans, Web-Database,
Apache/Tomcatl.2, Two-tiered Architecture, Multi-tiered Architecture

15. NUMBER OF
PAGES

112
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

ANALYSIS, DESIGN AND IMPLEMENTATION OF A WEB DATABASE WITH
ORACLE 81

Ugur Demiryurek
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCEENCE IN COMPUTER SCffiNCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2001

Author:

Approved by:

/ (A^^-H ^^ ^-g^\J^vCM>j^Ve,V
Ugur Demiryurek

ThomasxWu, Thesis Advisor

Chris Eagle, ^Thesis Co-Advisor

Dan Boger, C-fia Dan Boger, Cnaim
Department of Computer Science and Information System & Technology

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

This thesis represents a model of web-database analysis, design and

implementation. An electronic bulletin board for the Naval Postgraduate School

is implemented for demonstration. The model includes Oracle8i DBMS as the

database, Java (Java Server Pages, Java Script, Enterprise Java Beans, Java

Servlets) as the programming language. Apache HTTP Server v. 1.3 / Tomcat

v.l.2 is used as the Web server and JSP engine. Windows NT4.0 served as the OS

.: ft
environment.

From the technical aspect, Database Management Systems, Web-Database

Architectures, Server Extension Programs, Oracle8i, as well as several other

software and hardware components are reviewed, and some are recommended.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Prof. Thomas Wu, for introducing

me to the basics of Database Management Systems, for his help in completing my

thesis, and for his valuable instruction, which made this a worthwhile learning

experience for me.

I also would like to thank Prof. Chris Eagle for his continuous support and

encouragement throughout all phases of the thesis.

I would like to express my gratitude to Prof. Rex Buddenberg, who gave

me an office and all the hardware that I needed to implement my thesis. I could

not have set up the architecture without his help.

I would also like to thank Paul Dorsey (an author of several Oracle Press

books), Todd Jonz (the founder of Infoseek), and Dr. Donald Bruce (CEO of

Virtual Health Networks) for letting me join their development team and teaching

me real world Enterprise Applications.

vn

THIS PAGE INTENTIONALLY LEFT BLANK

Vlll

TABLE OF CONTENTS

I. INTRODUCTION 1

II. DATABASE MANAGEMENT SYSTEMS 3

A. EARLY DATABASE MODELS 3

1. Hierarchical Database Model 3

2. Network Database Model 5

B. RELATIONAL DATABASE MODEL 6

C. OBJECT ORIENTED AND OBJECT RELATIONAL

DATABASE MODEL 8

D. DATA MODELING 10

1. Entity Relationship Model 10

2. Semantice Object Model 12

3. High Level Conceptual Data Modeling for Database

Design 13

III. COMPONENTS AND ARCHITECTURE OF WEB DATABSE 17

A. THE TWO-TIERED CLIENT/SERVER WEB DATABASE 18

B. THE THREE-TIERED WEB DATABASE 20

C. SERVER EXTENSION PROGRAMS 22

1. CGI for Server Extension Program 22

2. ISAPI & IDC for Server Extension Program 23

3. Remote Method Invocation (RMI) Extension Program 25

4. WebBase for Server Extension Program 26

5. Active Server Pages (ASP) 26

6. Servlets and Java Server Pages (JSP) 27

D. DATABASE CONNECTION PROGRAMS 30
ix

1. Open Database Connectivity (ODBC) 30

2. Java Database Connectivity (JDBC) 33

3. JDBC versus ODBC 34

E. CLIENT SIDE EXTENSION PROGRAMS 35

IV. ORACLE 8i WEB DATABASE ARCHITECTURES 37

A. TWO TIER ARCHITECTURE WITH ORACLE WEBDB 37

B. THREE TIER ARCHITECTURE WITH ORACLE

APPLICATION SERVER 38

1. Oracle Application Server(OAS)-Second Tier 39

2. Connection Between OAS and Database Server 49

3. Oracle Database Server-Third Tier 52

V. CONCLUSION 57

A. WHY ORACLE DATABASE SERVER? 57

B. WHY JAVA PROGRAMMING LANGUAGE? 59

APPENDIX A 63

A. THE WEB USER INTERFACE 63

B. THE IMPLEMENTATION CODE 72

1. JDBC Connection 72

2. Enterprise Java Beans 73

3. Java Server Pages 85

LIST OF REFERENCES 95

INITIAL DISTRIBUTION LIST 97

INTRODUCTION

I have always been curious to know how large Web sites are designed and

constructed. Clearly, there must be some sort of underlying database system for these

sites. But when I select "view source" in my Web browser, I see nothing but the HTML.

How do these underlying databases work? What are the design issues? These are the

questions that motivate this thesis.

I started the thesis with a lot of enthusiasm, as well as some uncertainty about

how I would go about answering these questions. I knew basic things about static and

dynamic HTML. I knew a little SQL code and ODBC/JDBC connection methods from

my Introduction to Database class. I had already spent two quarters learning Java. I was

eager to use what I had learned from my classes to implement an Enterprise Application,

and I was ready for a hands-on experience. The final product is the "NPS Bulletin

Board", which is intended to provide the Naval Postgraduate community with a

convenient way to place advertisements for personal items on sale.

In my implementation I decided to use the following tools: Oracle8i DBMS as a

database, Java (Jsp, Java Servlets, JavaScript, Enterprise Java Beans) as a programming

language, Apache/Tomcat v. 1.2 as a Web server and Jsp engine, and Windows NT 4.0

platform as an OS. The road was bumpy and uphill because I first had to learn how to

install, configure and use Oracle and Tomcat. Second, putting all of these elements

together and making an Enterprise Application by myself was not as easy as I had

thought it would be.

In my thesis, I also present currently available technologies in web-database

development. The outline of the thesis is as follows:

In Chapter II, I present an overview of database system concepts, as well as past

and current Database Management Systems. Then, I discuss Relational Database

Management Systems (RDMS), Object Oriented Database Management Systems

(OODBMS) and Object Relational Database Management Systems (ORDBMS). I also

concentrate on the modeling concepts of the Entity Relationship (ER) model, which is a

popular high-level conceptual data model for database applications.

In Chapter m, I introduce and discuss the componenents and architecture of web

databases in detail. First, I present two current architectures: the two-tiered client/server

and the three-tiered web database. Second, I present Server extension programs such as

cgi, asp, and jsp, among others. Third, I explain the database connection programs;

ODBC and JDBC. Finally, I present the Client Side extension program.

In Chapter IV, I describe the Oracle8i architecture for web information system

design. I mainly explore the two main approaches offered by Oracle: a two-tier

architecture with Oracle WebDB, and a three-tier architecture using the Oracle

Application Server (OAS).

Chapter V, my concluding chapter, presents my reasons for choosing Oracle and

Java to implement the NPS Bulletin Board.

II. DATABASE MANAGEMENT SYSTEMS

In this chapter, I will present a brief review of Database Management Systems. I

will discuss early database systems and Relational Database Management Systems

(RDBMS). I will introduce the Object Oriented Database Management System

(OODBMS) and the Object Relational Database Management Systems (ORDBMS). I

will concentrate on the modeling concepts of the Entity Relationship (ER) model, which

is a popular high-level conceptual data model for database applications.

A. EARLY DATABASE MODELS

In the days before the relational database model, two data models were commonly

used to maintain and manipulate data: the Hierarchical Database Model (HDM) and the

Network Database Model (NDM).

1. IIierarchical Database Model

In a hierarchical database model, data is structured hierarchically. This model can

be easily visualized as an inverted tree. Relationships in a HDM are represented in terms

of a parent and child. This means that in a HDM a single table will act as the root and

other tables will act as the branches extending from the root. Therefore, a parent table

can be associated with many child tables, but a child table can have only one parent table.

These tables are explicitly linked via a pointer. To access any record in this model, the

user always needs to begin from the root table and travel through the tree to the target.

One advantage of this type of database is that referential integrity is built in and

automatically enforced. More precisely, a record in a child table must be linked to an

existing record in a parent table; if a record is deleted in a parent table, all associated

records are deleted in any child tables.

ROOT

Level-1
A

Level-1
B

Level-1
C

Level-2
Al

Level-2
A2

Level-2
Cl

Figure 2.1 A Hierarchical Database Model Diagram

A problem occurs in a HDM when there is a need to store a record in a child table

that is currently unrelated to any record in a parent table. However, if a dummy record is

inserted in the parent table, the rules can be bent without breaking them. But this option

is not optimal.

Another problem in a HDM is redundant data. Redundant data occurs because

HDM is not flexible enough to allow many-to-many relationships. Therefore, the data

should be repeated in both tables, participating in a many-to-many relationship.

The hierarchal model lent itself to the tape storage systems used by mainframes in

the 1970's, and was very popular among companies that used those systems. But despite

the fact that the HDM provided fast and direct access to data and was a useful model in a

number of circumstances, it was clear that a new database model was needed to address

the problems of data redundancy and complex relationships (many-to-many) among data.

(Hernandez, M., 1998, pp. 11-12)

2. The Network Database Model

The Network Database Model (NDM) was developed to address some of the

problems of the Hierarchical Model. As with the hierarchical model, the structure of the

NDM can be visualized as an inverted tree. However, in this model there can be several

inverted trees that share branches. Sharing branches solves the many-to-many

relationship problem, which cannot be implemented in a HDM. Figure 2.2 shows a

diagram of a NDM structure:

ROOT

Level-1
A

Level-1
B

Level-1
C

Level-2
Al

Level-2
A2

Level-2
Cl

Figure 2.2 A Network Database Model Diagram

In NDM, all access to the data is defined by the pathways that link the schemas,

which are the views of the database as they appear to an application program. The NDM

also introduced the concept of a data definition as well as a data definition

language(DDL). (Kroenke David M., 1998, p. 473)

The difficulty for the network model was that only defined relationships could be

queried using defined paths in the schema. Any new relationship meant changing the

schema of the database.

B. RELATIONAL DATABASE MODEL (RDM)

During the late 1960's Dr. E. F. Codd, a mathematician, was looking in to new

ways to handle large amounts of data. He had the idea that applying disciplines and

structures of mathematics to data management would help to solve many of the problems

encountered when applying other database models, such as data redundancy and weak

data integrity.

Dr. Codd introduced the relational model of data in June 1970. He based his

model on two branches of mathematic, set theory and first order predicate logic. The

original papers by Codd did not receive much attention until IBM became interested in

the relational database concept. IBM used his ideas to create a series of design

documents for a relational database called System/R and a relational language, which

they called Structured Query Language (SQL). (Hernandez, M., 1998, p. 21)

In RDM, the physical order of the records or the fields in a table is completely

irrelevant. Each record in the table is identified by a field (called primary key) that

contains a unique value. Therefore, a user is not required to know the physical location

in order to retrieve its data. The relationship between the tables avoids data redundancy

and duplication.

In RDM data is retrieved by specifying the appropriate fields and the table(s) to

which they belong. One way of retrieving data is to use SQL. SQL is the standard

language used to create, modify, and query relational databases.

Essentially, there are three basic components of the relational database model:

relational data structure (tables), the rules that govern the organization of the data

structures (constraints), and the operations that are performed in the data structures

(inserts, deletes, and updates).

In summary, RDM has a number of advantages over the early models, such as

a Built-in multilevel integrity; Data integrity is built into the model at the table

level to ensure that records are not duplicated and to detect missing Primary

key values; at the relationship level to ensure that a relationship between a

pair of tables is valid.

Q Logical and physical data independence from database applications;

changes made by a user to the logical and physical design of the RDM will

not adversely affect the applications built upon it.

Q Guaranteed data consistency and accuracy; data is consistent and accurate

due to the various levels of integrity which can be imposed within the

database.

a Easy data retrieval; at the user's command data can be retrieved either from

a particular table or from any number of related tables within the database.

A Relational Database Management System, or RDBMS, is a software program

that is used to create, maintain, and manipulate a relational database. A RDBMS is also

used to create applications that users can interact with the data stored in the database.

As the benefits of the RDBM became more widely known, many companies

decided to move from hierarchical and network database models to the relational

database model, thus creating a need for more and better mainframe RDBMS programs.

The 1980's saw the development of various commercial RDBMS's for mainframe

computers such as Oracle, and IBM's DB2.

C. OBJECT ORIENTED AND OBJECT RELATIONAL DATABASE MODEL

Object Oriented Programming (OOP), a new style of programming, began to be

used in the late 1980's. OOP has shown significant advantages over traditional

programming. These advantages will be explained in the following paragraphs. This

change in programming also brought a new understanding for database models, called

Object Oriented DBMS (OODBMS).

An OODBMS is basically a DBMS that integrates the database capabilities with

object-oriented capabilities. An OODBMS makes database objects appear as

programming language objects. Lets look closely at how it works:

Objects are software representations of real world entities. To capture the

features and capabilities of the real world, objects consist of both attributes and

operational characteristics. Classes are the templates for objects, which are similar to one

another in behaviors and attributes. One of the important features of the Object Oriented

Model (OOM) is encapsulation. Encapsulation is the access to the data that is stored in

the object through well-defined behaviors or interfaces approved or accepted by that

object. The capability of an object-oriented database to add new objects and their

associated behaviors without affecting other objects (entities in database level) is very

flexible. In the OOM, new objects can be defined in terms of existing objects that are

known as base classes. Polymorphism allows several versions of the same behavior to

exist in the subclasses, but the proper version of this behavior is invoked at runtime

depending on the class of the object. (Kroenke David M., 1998, p. 22)

8

What are the advantages of OODBMS over RDBMS?

The first advantage of OODBMS is that OODBMS is integrated with object

oriented programming languages. The programmer need not learn a programming

language and then learn SQL. Using the language will automatically provide object

persistence. In theory, a programmer can code an instruction that causes object methods

to be invoked, and the OODBMS will find the appropriate methods, load them in

memory, and cause them to be executed.

Second, the OODgMS provides for the definition of user-defined types. Unlike

traditional DBMBS products where the basic data types are hard-coded in the DBMS and

are unchangeable by the users, with an ODBMS the user can encode any type of structure

that is necessary and OODBMS will manage that type. (Kroenke David M., 1998, p.

335)

Because of user defined types, and because relationships are defined in context, it

is easy to define complex data in an ODBMS. Unlike the RDBMS, there is no need to

define 1:1 or 1:N or N:M relationship and create the appropriate foreign key structures.

Instead, the programmer defines the relationship in context, and the OODBMS creates

the necessary data structures in the database.

Finally, the OODBMS automatically creates persistent object ID's. This not only

saves programmers work, but it also enables the OODBMS to provide single-level

memory so that the programmer need not be concerned with whether or not an object is

located in memory. (Kroenke David M., 1998, pp. 341-342)

Oracle, being a RDBMS vendor, did not want to be left out of OODBMS, so

Oracle added another terminology to the DBMS history, Object Relational Database

Management Systems (ORDBMS). Oracle claims that ORDBMS will dominate over

object oriented technology, because object relational databases have the power of both

the RDBMS and OODBMS. The Object Relational approach allows organizations to use

their pure relational database and still get the benefits of object-oriented features.

As a result, a new type of DBMS-the object oriented DBMS-has been developed.

While OODBMS have significant advantages over traditional techniques for object

storage, most data in commercial systems today are in relational format. Organizations

are reluctant to spend the time and money necessary to convert all of their files and

relational data to the OODBMS format. Furthermore, current OODBMS's lack some

features that are essential in the commercial environment. Hence, at present, OODBMS

are not seeing widespread use. However, this may change in the near future. (Kroenke

David M, 1998, pp. 481-482)

D. DATA MODELING

Data modeling is the process of creating representation of the developers' view

of the data and is the most important task in the development of effective database

applications. If the data model incorrectly represents the view of data, the developers

will find the applications difficult to develop, incomplete, and very frustrating.

Therefore, it is the basis for all subsequent work in the development of databases and

their applications.

There are currently two main data modeling approaches; the Entity Relationship

(E-R) Model and Semantic Object Model.

1. Entity Relationship Model

This model includes four basic elements:

Q Entities

10

□ Attributes

a Identifiers

a Relationships

An entity is something that can be defined and in order to track in a database,

such as a person, a student or a vehicle. Attributes are the properties of the entities, such

as the age of a person or the name of a student.

Identifiers are the attributes that uniquely identify the specific entities. For

example, the identifier of the person entity might be a social security number.

A relationship is an association among two or more entities. For example,

relationship can be defined as that Mike (Employee entity) works in the Billing

Department (Department entity) as shown in the Figure 2.3

EMPLOYEE
*Ssn
Name

DEPARTMENT
* Dep_Id

Dep_Name

Figure 2.3. The Works In Relationship Set

Relationships between entities may occur in different ways, such as One-to-One

(1:1), One-to-Many (1 :N), Many-to-One (N: 1), or Many-to-Many (N:M). The cardinality

ratio for the relationship specifies the number of relationship instances that an entity can

participate in. For example, in the "Works In" relationship DEPARTMENT:

11

EMPLOYEE is of cardinality ratio 1 :N meaning that each department can be related to

numerous employees, but an employee can be related to only one department.

2. Semantic Object Model

This model uses semantic objects instead of entities. A semantic object is a

representation of some identifiable thing in the user environment. More formally, a

semantic object is a named collection of attributes that sufficiently describes a distinct

identity (like entity). The word "sufficiently " is important, because an object must have

enough attributes to be a semantic object. (Kroenke David M., 1998, p. 80)

The primary difference between an E-R model and a semantic object model is that

entities are the basic focus area in an E-R model, where semantic objects are the focus in

the other model.

Figure 2.4 is a simple presentation of a semantic object called DEPARTEMNT.

DEPARTMENT
IS
Department Name 1:1
Campus Address —
Building 1:1 0:1
Office No 1:1

Phone Number 1 :N

STUDENT

PROFESSOR

Figure 2.4 A Semantic Model

There are different kinds of objects to represent different kind of data. The basic

object types are Simple Objects, Composite Objects, Compound Objects, and Hybrid

Objects.

12

3. High Level Conceptual Data Modeling for Database Design

Conceptual modeling is an important phase in designing a successful database

application. In this section, I will represent the traditional approach of concentrating on

the database structures and constraints during the database design. I will present the

modeling concept of the Entity Relationship (E-R) model, which is a popular high-level

conceptual data model. Figure 2.5 shows a simplified description of the database design

process.

13

Functional Requirements

1
FUNCTIONAL DESIGN

1
High Level Transaction

Specification

APPLICATION
PROGRAM DESIGN

TRANSACTION
IMPELEMENTATION

I
Application Programs

MINI WORLD

i
REQUIREMNTS
COLLECTION AND
ANALYSIS

1
Database Requirements

1
CONCEPTUAL DESIGN

Conceptual Schema
(In a high level data Model)

1
LOGICAL DESIGN

(Data Model Mapping)

1

DBMS Independent

DBMS Specific

Logical (Conceptual) Schema
(In the data model of specific DBMS) fl

PHYSICAL DESIGN

I
Internal Schema

Figure 2.5 Conceptual Design Workflow

14

The first step shown is requirements collection and analysis. During this step,

the database designers interview prospective database users to understand and document

their data requirements. The result of this step is a concisely written set of user

requirements. These requirements should be specified in a form that is detailed and

complete as possible. In parallel with specifying the data requirements, it is useful to

specify the known functional requirements of the application. These consist of the

user-defined operations (or transactions) that will be applied to the database, and they

include both retrievals and updates. In software design, it is common to use data flow

diagrams, sequence diagrams, or scenarios for specifying functional requirements.

Once all of the requirements have been collected and analyzed, the next step is to

create a conceptual schema for the database, using a high-level conceptual data model.

The conceptual schema is a concise description of the database requirements of the user,

and includes detailed descriptions of the entity types, relationships, and constraints.

These are expressed using the concepts provided by the high-level data model, they are

usually easier to understand, and can be used to communicate with nontechnical users.

(Elmasri, R. and Navathe S., 2000, p. 43)

The next step in database design is the actual implementation of the database,

using a commercial DBMS. Most current commercial DBMS use an implementation of

the data model (such as the relational model) so the conceptual schema is transformed

from the high-level data model into the implementation data model. This step is called

logical design or data model mapping. (Elmasri, R. and Navathe S., 2000, p. 44)

Finally, the last step is the physical design phase. During this step, the internal

storage structures, access paths, and file organizations for the database files are specified.

15

In parallel with these activities, application programs are designed and implemented as

database transactions corresponding to the high-level transaction specifications.

16

III. COMPONENENTS AND ARCHITECTURE OF A WEB DATABASE

There are many technologies available to implement a Web database application.

Everything is still evolving, but a few reliable categories of software and architectures

seem to be emerging. Selecting the best strategy for a Web database application depends

on user perspectives, styles, and priorities. In this chapter, I will explain the architectures

and describe how Web database components are different from each other and how

programmers can use them to solve different kinds application problems.

Before beginning the detailed definitions, let us examine a mechanism, which will

aid in understanding the definitions better:

Suppose that you want to buy a book from an on-line retailer and you have typed

the URL "http: wwu-.amazon.com" on the address location of your browser. Typing that

web page address is actually a way of making a request. One of the main functions of the

browser is to make requests on the behalf of users. The web server that runs at the

company building is designated to serve our request, which is one of its main functions.

The first page that we see is the homepage of the company, which is usually

default.htm or index.htm. This is usually the page where the companies offer their

various services such as buying products, making a search or making a query via links.

In our case, we will buy a book, so we click on the relevant link, which takes us to

another page where we can choose the book we want. Before giving the order to buy, we

need to give some personal information for shipment and payment. The most common

way to provide the information is by using forms. By the time we click on the "submit"

button, we are specifying script parameters to be transmitted via our browser. This is

another request made by our browser and sent via the Internet to the web server of the

17

company. The server running at the company building is, itself, unable to take that

information and store it. So, the web server asks for assistance from one of the programs

(under one of its directories, i.e., "\cgi\bin\example.exe"), which executes the script. The

script communicates with a related database and stores the information in that database's

tables. Then, another script is used to return the output to the web server, which is, in our

case, simply confirmation information. The web server sends this script output back to

the browser, and the browser parses and processes the information.

A. THE TWO-TIERED CLIENT/SERVER WEB DATABASE

In a two-tier (client/sever) architecture, the computing client talks directly to a

server with no intervening process (Figure 3.1). The two-tiered client/server architecture

is the most common architecture on microcomputer-based LANs. Hence, the clients

manage the user interface, validate data entered by the user, post requests from clients,

execute database retrievals and updates, manage data integrity, and control transactions.

^ ^ Server
Client Network

Protocol

Figure 3.1 Two-Tiered Client/Server Architecture

Web tools and databases are technologies that were developed separately,

however both technologies are based on two-tiered client/server architecture (Figure 3.2).

The partitioning of functions between a Web browser (client) and a Web server (server)

is very distinctive. The Web server delivers HTML pages and the Web browser displays

those pages by interpreting the HTML tags. Neither side can change this division of

18

functions. Because of this simplicity and standardization, many vendors can create web

browsers.

When it comes to the partitioning of the functions between the database client and

the database server, it is much less distinctive. Decisions about partitioning the functions

are often made by application programmers, and are influenced by the requirements of

the project. Therefore, there is no standardization. This lack of standardization means

that a significant programming effort is usually needed to implement changes to a

database client and a database server.

Network
Protocol Network

Protocol

Database
Server

Database

Figure 3.2 Two-tiered Client/Server Web and Database Architecture

Any computer can be a client or a server. The client and the server are often a

microcomputer because of cost issues. Sometimes, the server is a mainframe either

because of organizational reasons, or when considerable power is required from the

server. The clients and servers are generally connected to each other via a LAN.

The typical client-server architecture that is shown in Figure 3.2 works well in

relatively homogeneous environments with fairly static rules. For dispersed,

heterogeneous environments with rapidly changing rules, there is another client-server

architecture, called three-tier client-server architecture. In this type, an additional middle

19

tier functionality server is added to the configuration (Elmasri, R. and Navathe S., 2000,

p. 789)

The main advantage of a client-server database system is that, since the bulk of

the database processing is done on the back-end, the speed of the DBMS is not tied to the

speed of the client workstation. Because the client is separated from the server, users are

no longer limited to one type system platform. The clients can be IBM compatible PCs,

Macintoshes, UNIX workstations or any combination of these, and can run multiple

operating systems. However, According to the Standish Group, 30% of the client-server

projects fail.

B. THE THREE-TIERED WEB DATABASE

The three-tiered client/server architecture introduces a third layer of processing

between the client and the server. Three-tiered architecture is the more recent

architecture on PC-based LAN's.

An important advantage of this architecture over two-tiered architecture is that it

helps clients and servers to process their works. In other words, it allows clients and

servers to lose weight and become "thin clients" and "thin servers". This means that the

partitioning of functions can be carried further, and greater modularity can be achieved.

It is usually agreed that transactions should be implemented in the middle tier. Other

processes that could be implemented in that layer are translating data from legacy

applications on mainframes, handling security and authentication, and generating reports.

Web database applications combine their two-tiered parent technologies into a

new kind of system. This new system is based on the three-tiered client/server

architecture. A web browser occupies the client tier, a database server occupies the

server tier, and a middle tier holds a Web server and a server extension program

20

(Figure3.4). Eventually, this architecture reduces the network traffic, makes components

interchangeable, and increases security. However, this architecture also makes database

transaction processing more difficult because of the stateless nature of the HTTP protocol

that is used to transfer data between the web browser and the database

TCP/IP

Server
Extension Proe.

1

Web
Server

1
Html Files

Database Conn.
(ODBC-JDBC)

Figure 3.4 Three-Tiered Web Database Application

The Web browser (first tier) sends a Web page request or data request to the Web

server. The Web server (second tier) takes the page request and ships the data request to

the server extension program. Then, the server extension program accepts the requests

and converts them to a form that the database server (third tier) can interpret. For the

next step, the database server performs a task, such as query, insert or update, and returns

a result set to the server extension program. The server extension program converts the

database result to a form that the Web browser can accept (e.g.: HTML), and finally it

passes the result set to the Web server, which passes the final result to the Web browser.

21

C. SERVER EXTENSION PROGRAMS

One of the most important reasons for using a server extension program in the

middle tier is to take advantage of the standards that already exist in the two last tiers by

translating between the Web server and the database server. Other reasons for utilizing

server extensions include handling database connections to reduce network traffic, and

maintaining a pool of open database connections to reduce the overhead associated with

opening and closing the database. Server extensions also support interchangeability at

their standard interfaces. Thus, Web servers and database servers can be replaced or

upgraded with relative ease.

1. CGI for Server Extension Program

The Common Gateway Interface (CGI) is a standard way of interfacing external

applications with Web servers. The CGI is a mechanism that allows a Web server to run

a program or script on the server and send the output to a Web browser. It is important to

understand that the CGI is neither a programming language nor a script. It is, rather, the

mechanism to enable scripts to operate within standards.

The database server can be made to interact with the Web server via the CGI.

So, the CGI scripts, which are written in languages like PERL, C, and Tel, serves as a

middleware. A CGI external application executes in real-time and dynamically produces

output information. It processes HTTP requests from Web clients and returns an HTML

document.

The main disadvantage of this approach is that for each client request, the Web

server must start a new CGI process. Each process makes a new connection with the

DBMS and the Web server must wait until the results are delivered to it.

22

query
http

ld____^
Data
Source

Database
Server

answer

Figure 3.6 Database access on the Web using CGI Scripts

2. ISAPI & IDC for Server Extension Program

ISAPI (Internet Server Application Programming Interface) server extensions

provide an alternative to the use of Common Gateway Interface applications for Internet

servers. Unlike CGI applications, ISA's run in the same address space as the HTTP

server and have access to all the resources available to the HTTP server. ISA's have

lower overhead than CGI applications because they do not require the creation of

additional processes, and they do not perform time-consuming communications across

process boundaries. Both extension and filter DLL's may be unloaded if the memory is

needed by another process.

An Internet client calls an ISA through the HTTP server the same way it would

call a CGI application. For example, a client might call a CGI application as:

http: //sample/example. exe? Par ami &Param2

It would call an ISA that performs the same function as:

23

http: //sample/example. dll ? Param 1 &Param2

The Internet Database Connector (IDC) is an ISAPI application. The IDC enables

Web pages to link to databases supporting Open Database Connectivity. Web page

developers create an IDC file that resides on the Internet Server. The IDC file is a text

file that specifies an ODBC data source name, login information, and a SQL query to

retrieve data. Web page developers also create an HTX file, which is a HTML

formatting template for the data retrieved from the ODBC-compliant database. The IDC

file references the HTX file.

When an IDC file is requested the following sequence of steps occurs:

a The web server recognizes the IDC file is requested, so it passes along the

IDC file to the IDC dynamic library (DLL).

□ The IDC DLL reads the IDC file, passing the SQL statement and the name of

the data source to the ODBC Administrator program.

Q The ODBC Administrator program passes the SQL statement to the

appropriate ODBC driver, which then passes the SQL statement to the

database.

a The database runs the query and returns any rows to the BDC DLL via ODBC.

a The IDC DLL merges the returned rows with the HTX file, producing the

standard HTML file, which it passes along the Web Server.

24

a Finally, the Web Server passes the HTML file back to the browser over the

Internet or Intranet connection.

Figure 3.7 represents an example of an IS API server extension program for an

Internet Information Server (Web Server) and a SQL server (Database Server):

Internet Information Server

Figure 3.7 IDC to Access the Internet Information Server Log File, Stored in the SQL Server
Database

3. Remote Method Invocation (RMI) Extension Program

RMI enables the programmer to create distributed Java-to-Java applications, in

which the methods of remote Java objects can be invoked from another JVM (Java

Virtual Machine), possibly on different hosts. A Java program can make a call on a

remote object once it obtains a reference to the remote object, either by looking up the

25

remote object in the bootstrap-naming service provided by RMI, or by receiving the

reference as an argument or a return value. A client can call a remote object in a server,

and that server can be a client of another remote object. (JavaSoft Web Site, 1999)

4. WebBase for Server Extension Program

WebBase relies on special tags and SQL, but it is tightly integrated with a Web

server specially tuned for the database. WebBase supports the standard for Dynamic

HTML and Document Object Model. Dynamic HTML lets authors make interactive

Web pages that use up far less bandwidth than conventional HTML pages. Dynamic

HTML can dynamically modify HTML tags, style sheets, text, tables, ActiveX objects,

and Java applets without server intervention. WebBase automatically creates the

database and forms to add, update, search and view records in any Browser. Users need

no special viewers or plug-ins to use this add-on. (WebBase Web Site, 1998)

In addition, WebBase provides solutions from single access to real estate listings,

product pricing, availability, and customer order status to complex catalog ordering

applications. Users can make anything available in the database to anyone browsing the

Web site, or allow access to a specific audience that users control through password

protection. Users can also make existing databases far more powerful by adding

hypertext links to reports. This feature allows users to delve into a report in detail, while

maintaining the simplicity of high-level view.

5. Active Server Pages (ASP)

The Active Server Pages specification is a technology built on top of the

Microsoft Internet Information Server (US). Unlike the IDC specification that I

explained above, ASP is not limited to database connectivity.

26

An ASP is an HTML page that includes one or more scripts (embedded

programs) that are processed on a Microsoft Web server before the page is sent to the

client. An ASP is somewhat similar to the Common Gateway Interface (CGI)

application, in that both involve programs that run on the server, usually tailoring a page

for the user. Typically, the script in the web page at the server uses the input received as

the result of the client's request for the page to access data from a database and then

builds or customizes the page on the fly before sending it to the requestor. (Buser D. and

others, 1999, p. 79)

Since the server-side script is just building a regular HTML page, it can be

delivered to any browser. An ASP file is created by including a script written in

VBScript, JavaScript or PeriScript (Perl interpreter for Win 32 must be installed) in an

HTML file and then renaming it with the ".asp" file suffix.

The main disadvantage of the ASP technology is that ASP does not work in other

web servers; it only works with Microsoft Web Server (US).

6. Servlets and JSP

Servlets are Java technology's answer to Common Gateway Interface

programming. They are programs that run on a Web server, acting as a middle layer

between a request coming from a Web browser or another HTTP, and databases or

applications on the HTTP server. A Servlet is a Java class, and thus needs to be executed

by a Java VM, called a Servlet engine. Servlets are loaded by the engine when they are

called, and remain running until the servlet is explicity unloaded or the engine is shut

down. Their job is to:

27

a Read any data sent by the user: This data is usually entered in a form on a

Web page, but could also come from a Java Applet or a custom HTTP client

program.

□ Look up any other information about the request that is embedded in the

HTTP request: This information includes details about browser capabilities,

cookies, the host name of the requesting client, and so forth.

a Generate the results : This process may require talking to a database,

executing an RMI or CORBA call, invoking a legacy application, or

computing the response directly.

a Set the appropriate HTTP response parameters : This means telling the

browser what type of document is being returned (e.g. HTML), seeting

cookies and caching parameters.

Q Send document back to client: This document may be sent in text format

(HTML), binary format (GIF images) or even in a compressed format like

gzip.

JSP is an extension of the Servlets technology. Anything that is done in JSP can

be done with Servlets. However, JSP allows to mix static HTML with the code.

28

Typically, it is also easier to read the code and visualize the page that will ultimately be

generated. For instance:

JSP

<HTML>
<HEAD>
<TITLE>Hello World !!</TITLE>
</HEAD>
<BODY>
Hello World! Your name is:<%
out.println(response.getParameter("name"));
%>
</BODY>
</HTML>

Servlet
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet <

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws lOException,
ServletException {

response.setContentType("text/html");
PrintWriter out =
response.getWriter();

out.println("<HTML>");
out.println("<HEAD>");
out.println("<TITLE>Hello
World! !</TITLE>");
out.println("</HEAD>n);
out.println("<BODY>");
out.println("Hello World! Your
name is: "
+
response.getParameter("name"))

out.println("</BODY>");
out.println("</HTML>");

In a nutshell, the JSP page is being converted to a normal servlet, with static data

being written to an output stream. There are ways to reduce the actual amount of code

written in the Servlet. Even though they both generate the same output, JSP is easier to

read and easier to write. Clearly, JSP and Servlets have their own distinct roles and uses

which allow the developer freedom and ease of use.

29

Some advantages of Servlet and JSP over CGI programming are as follows: (Hall

M, Core Servlets and JavaServer Pages, p. 11, 2000)

a Efficiency - Using CGI programming, each time an HTTP request is received

a new process is started, which can result in poor performance and scalability

issues. Using Servlets, the Java VM is always running, therefore starting a

Servlet creates a Java thread, as opposed to a system process.

□ Power - Servlets allow power unknown by traditional CGI. They allow

programmers to do things that would either be very difficult or otherwise

impossible because they have access to the entire family of Java APIs.

Servlets easily share data and maintain information, making session tracking.

□ Security - Servlets can by run by the Servlet engine in a restrictive sandbox,

similar to a web browser's sandbox for applets. The helps to protect against

malicious Servlets.

□ Portability - The Servlet API takes advantage of the Java platform. It is a

fairly simple API which is supported by nearly all web servers so that Servlets

may be moved from platform to platform, usually without any modification

whatsoever.

B. DATABASE CONNECTION PROGRAMS

1. Open Database Connectivity (ODBC)

The Open Database Connectivity (ODBC) interface is a C programming language

interface that makes it possible for applications to access data from a variety of database

30

management systems (DBMS). The ODBC interface permits maximum interoperability;

an application can access data in diverse DBMS through a single interface. Furthermore,

that application will be independent of any DBMS from which it accesses data. Users of

the application can add software components called drivers, which interface between an

application and a specific DBMS. The use of drivers isolates applications from database-

specific calls in the same way that printer drivers isolate word processing programs from

printer-specific commands. Because drivers are loaded at run time, a user only has to add

a new driver to access a new DBMS; it is not necessary to recompile or relink the

application.

The server extension program translates Web browser requests into an ODBC

SQL statement, submits them to the data source via the ODBC driver, and retrieves the

results. An example of an ODBC function call is SQLConnect, which connects to the

data source when given a data source name, a user ID and password, and a few other

parameters.

The ODBC architecture has four components: (Microsoft Web Site, 200)

□ Application:

Performs processing and calls ODBC functions to submit SQL statements and

retrieve results.

Q Driver Manager:

Loads and unloads drivers on behalf of an application; processes ODBC function

calls or passes them to a driver.

31

a Driver:

Processes ODBC function calls, submits SQL requests to a specific data source,

and returns results to the application. If necessary, the driver modifies an

application's request so that the request conforms to syntax supported by the

associated DBMS.

□ Data source:

Consists of the data the user wants to access and its associated operating system,

DBMS, and network platform (if any) used to access the DBMS.

The following illustration shows the relationship between these four components:

Driver

1
Data

Source

Application

I
Driver Manaeer

Driver

1
Data

Source

Driver

1
Data

Source

ODBC API

ODBC API

Figure 3.5 Relationship between ODBC components

As seen from Figure 3.5; multiple drivers and data sources can exist, which

allows the application to simultaneously access data from more than one data source.

Second, the ODBC API is used in two places: between the application and the Driver

32

Manager, and between the Driver Manager and each driver. The interface between the

Driver Manager and the drivers is sometimes referred to as the service provider interface,

or SPI. For ODBC, the application programming interface (API) and the service provider

interface (SPI) are the same; that is, the Driver Manager and each driver have the same

interface to the same functions. (Microsoft Web Site, 200.)

2. Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) is a Java API (Application Programming

Interface) for executing SQL statements. More precisely; JDBC is a collection of Java

classes and interfaces that enables database access from programs written in the Java

programming language. The classes and interfaces are part of the "java.sql " package.

Using JDBC, it is easy to send SQL statements to virtually any relational

database. In other words, with the JDBC API, it is not necessary to write one program to

access a Sybase database, another program to access an Oracle database, and so on. One

can write a single program using the JDBC API, and the program will be able to send

SQL statements to the appropriate database. And, with an application written in the Java

programming language, one also does not have to worry about writing different

applications to run on different platforms. The combination of Java and JDBC lets a

programmer write it once and run it anywhere.

There are three basic types of JDBC drivers. The first one is simply a bridge

between the JDBC API and the operating system-dependent ODBC driver manager. Sun

provides these bridges for OS/2,Win32 and Solaris systems. These kinds of drivers were

created to allow quick development of applications without waiting for database suppliers

to create real JDBC drivers.

33

The second driver uses JNMI (Java Native Method Invocation) to call the

functions of the database client library. These are also platform-dependent, as the

database supplier will have to provide both the client libraries and the JDBC driver

specific for the desired platform. JJBM and Oracle, among others, provide this kind of

drivers

The third driver is a "100% Pure" Java driver. It may not be certified as such, but

the important feature is that the driver is written entirely in standard Java, and then it can

be used on any platform that has a Java Virtual Machine. This is perfect if the database

supplier does not support the client platform. For example, Linux, Oracle, Sybase and

BM, provide this kind of driver; and some can be obtained from third parties or as Open

Source Software. (Lozano F., 2000)

3. JDBC versus ODBC

Microsoft's ODBC API is probably the most widely used programming Interface

for accessing relational databases. It offers the ability to connect to almost all databases

on almost all platforms. So why not just use ODBC from Java?

The answer is that one can use ODBC from Java. In that case, the question now

becomes "Why does one need JDBC?" There are several answers to this question:

(Olivia R., 1998)

□ A Java API like JDBC is needed in order to enable a "pure Java" solution.

When ODBC is used, the ODBC driver manager and drivers must be

manually installed on every client machine. Since the JDBC driver is written

in Java language, JDBC code is automatically installable, portable, and secure

on all Java platforms from network computers to mainframes.

34

a ODBC is not appropriate for direct use from Java because it uses a C

interface. Calls from Java to native C code have a number of drawbacks in

the security, implementation, robustness, and automatic portability of

applications.

a ODBC is hard to learn. It mixes simple and advanced features together, and it

has complex options even for simple queries. JDBC, on the other hand, was

designed to keep simple things simple while allowing more advanced

capabilities where required.

Q A literal translation of the ODBC API into a Java API would not be

desirable.

a ODBC drivers cannot connect to remote databases, while JDBC drivers can

easily make a connection to remote databases.

C. CLIENT-SIDE EXTENSION PROGRAMS

The HTML passed back to a web browser by a web server may contain more than

the HTML. For example, a client-side ActiveX control may play background music or a

Java applet may create special effects. So, a client-side extension is a program that adds

to the capabilities of a web browser. Client-side extensions may be used for many

purposes, but one of their main functions is to perform input field validations. Although

35

there are no formal classifications for client-side extensions, they fall into three

categories: pluggable applications, Java applets, and scripts.

Pluggable applications are stand-alone programs that run on the Web browser;

their purpose is to process and display data that the browser cannot handle directly, (i.e.,

ActiveX)

Java Applets are compiled programs that are downloaded when a HTML page is

requested and are then run by the browser. Applets run as byte-code interpreted

programs, which reduces the likelihood that they will transmit a virus, since each

instruction is validated before being run.

Scripts are programs embedded in a HTML page. Scripts integrate well with the

web browser because they add functionality without changing the look and feel of

standard web page, (i.e., Dynamic HTML, JavaScript, VBscript)

36

IV. ORACLE 81 WEB DATABASE ARCHITECTURES

In this chapter, I will present the Oracle 8i architecture for web information

system design. There are two main approaches offered by Oracle: a two-tier architecture

with Oracle WebDB, and three-tier architecture using the Oracle Application Server

(OAS).

A. TWO-TIER ARCHITECTURE WITH ORACLE WEBDB

As its name implies, WebDB has something to do with putting a database together

with a web site. Oracle WebDB is the fastest and easiest way to "Web-enable" Oracle

databases. Oracle WebDB comes with tools necessary to build dynamic Web

applications and content-driven Web sites. Users do not need to know any HTML or

SQL to use it. More precisely, WebDB is an Oracle development environment for

building and monitoring content-driven web sites and data driven applications.

WebDB provides a complete web development environment, which includes an

HTML server so it can process HTTP requests and serve web pages. The only client

software needed to develop and deploy an application is a web browser. (Netscape

Navigator 3.1 or later or Microsoft Internet Explorer 4.0 or later.)

WebDB uses the database's native components. It is a collection of PL/SQL

procedures contained entirely within an Oracle database. It also includes a lightweight

listener that acts as a Web server and a PL/SQL interface to the database. Since it is

essentially written in the database's native language, it eliminates required layers such as

ODBC or JDBC. The following figure is the representation of Oracle WebDB

architecture. (Bradley D., 1999,p.224)

37

Web
Browser

HTTP WebDB
HTTP Listener

PL/SQL
Procedure

Java Stored
Procedure

Figure 4.1 Oracle Two-tier Architecture with WebDB

The main disadvantages of Oracle WebDB is that the lightweight listener does not

have the ability to handle a large number of requests, nor does it support some important

security related technologies, such as Secure Socket Layers (SSL) and IP restriction.

B. THREE TIER ARCHITECTURE WITH ORACLE APPLICATION
SERVER

As mentioned before, in the three-tier approach, there is a middle tier between the

clients and the database server. This proxy (middle tier) is called an application server.

The application layer is where all the processing is done according to the logic

implemented by the system. Business rules are enforced, data integrity is checked, and

complex processing dictated by system requirements are carried out. This layer is the

workhorse of the three-tier approach.

38

^ w
Middle-ware

(Oracle Application
Server)

M w

s> ~"

Oracle
Client ^ w ^ w Database

Server

^—

Figure 4.2 Oracle There-tier Architecture

In a three-tier approach the client (sometimes called presentation layer) is where

information is displayed to use, and input is accepted for processing. At the middle tier,

we can use any web server such as Microsoft Internet Information Server, Apache Web

Server or Oracle Application Server, on which I will focus .

The data layer (Database Server, often called back end) plays a role in the storage

of information to satisfy requests placed by the other two layers. In many but not all

cases, this is a relational database.

This chapter will concentrate on the last two layers; the Oracle Application Server

and the connection between OAS and the Oracle Database Server. The first layer was

detailed in Chapter HI and nothing changes with the client side in Oracle's three-tier

approach.

1. Oracle Application Server (OAS)-Second Tier

Oracle Application Server (OAS) performs all functions of a standard web server,

while keeping a tight integration with a backend Oracle database. OAS is an add-on tool

to an Oracle database and is used to build web-based database applications and serve as

the main engine between web requests and the Oracle database. More precisely, OAS is

an extensible web server that uses plug-in programs called cartridges for database

39

connections. OAS allows programmers to develop database-integrated systems in a

variety of languages, including Java, Perl, and PL/SQL.

OAS supports two different types of dynamic web technology: Common Gateway

Interface (CGI) and cartridges.

Oracle AtJDlication Server

Httn Listener

CGI

Carrrirlpe

Database
Server

Figure 4.3 Oracle Application Server

CGI allows the programmer to execute any kind of server side program, whether

written in a third generation language like C, a scripting language like Perl, or a database

language like PL/SQL. There are some important limitations of the CGI interface in

OAS.

CGI requires significant overhead. The system must create a process for each

CGI interface connection, and allocate resources for it. More over, a CGI program must

establish a new connection to the database every time it is executed. This affects

performance, especially when a series of CGI executions are linked together to form

even a small application.

Another way that OAS takes care of dynamic pages is through cartridges. This

method has advantages over CGI. A cartridge is a code module that interacts with the

40

OAS through a standard interface. The basic function of the OAS is to manage the

interaction of cartridges or more accurately, cartridges instances. In short, a cartridge

includes code that executes application logic. For example, the Java Cartridge contains

code that enables it to connect to Oracle databases and execute Java stored procedures in

the database.

The cartridge interface maintains a pool of processes that are already running and

connected to the appropriate database. Therefore, using a cartridge is much faster than

using a CGI. Unlike CGI programs, cartridge servers do not have to be started for each

request. The OAS listener and dispatcher components route incoming request to running

cartridge servers, based on the current server load. The cartridge server that handles the

request does not need to run on the same machine that initially received the request.

The Oracle Application Server is composed of the following three layers:

□ The HTTP Listener Layer

Q The Oracle Application Server Layer

Q The Application Layer

The HTTP Listener layer, handles communication between clients and the

Application Server layer through standard Internet protocols.

The Oracle Application Server layer manages the creation of cartridge

instances, load balancing between multiple instances of individual cartridges, and

services to cartridges. This layer is the glue, that holds everything together as well as the

location of the basic services such as authentication, logging, failure recovery, transaction

control, and load balancing. With Object Request Broker (ORB), it also allows for a

41

distributed system, where applications, listeners, and data can be located on different

physical machines, but still configured and managed from a centralized interface.

(William G, 2000, p. 834)

The application layer, is the place where specific cartridges (i.e., Java cartridge)

are used to implement specific application functionality. Let us examine at the

application layer elements (cartridges) in detail.

a) Java (JWEB) Cartridges

Java is a modern, object-oriented programming language, and is portable

across operating systems and hardware. An amazing number of technologies are arising

around Java including, Java Cartridges in OAS, Servlets, EJB, CORBA, RMI, JDBC,

SQLJ. These can be used in conjunction with each other. In addition to new

technologies, hundreds of classes are built into the class libraries that accompany Java.

Additionally, countless classes are available for free or commercially; therefore

developers do not need to build all the classes.

Java is currently the premier application development language for the

Internet, and as far as the immediate future, this is not likely to change. Java is gaining

acceptance and a significant share of the market. Over 70 percent of global 1000

companies are currently either implementing or have specific plans to implement Java

solutions to business problems. There is a growing base of Java developers, and a

corresponding growth in demand for Java developers. Additionally, there are established

standards used in the industry that have proven themselves in production environments.

(Bradley D., 2000, p. 801)

The Java Cartridge is generally a source of some confusion. The Java

cartridge does not have anything to do with Java applets. A Java applet is a small

42

program, which is downloaded and run in the browser (client). Essentially, the Java

cartridge runs a Java application on the server and returns straight HTML to the browser.

The browser needs no special capability to see the application because it is not being

asked to do anything but interpret the HTML (the server has already done everything for

it). Java Cartridge can be discussed as two different topics: Java cartridges (JWeb) and

Servlet cartridges (JServlet). I will explain the Java cartridges first.

Oracle ADD. Server

HTTP I istener

Java Cartridge
Net8/JDBC/RMI/ IIOPO

< ►
Oracle

Database

Figure 4.4 OAS Server Java Cartridge

The Java (JWeb) Cartridge comes with the JWeb Toolkit, which is a set of

Oracle specific Java classes that developers can use to generate HTML pages and access

Oracle databases. These classes help developers create web pages much more easily than

the Servlet classes. The Java cartridge also takes care of load balancing, scalability,

monitoring, sessions, and other futures of the Oracle Application Server. The Java

cartridge minimizes use of the resources by running multiple Java applications on the

same virtual machine, as well as handling multiple requests for the same application

using the same instance of the application. (William G, 2000, pp. 834-835)

43

Since the Java cartridge is a runtime environment, it does not have built-in

debugging facilities, other than using print statements to generate messages to standard

output or to a log file. The Java cartridge does not have a standard interface. JWeb

toolkit works within the context of the application server. Therefore, it is better to build

and debug the applications outside of the application server and then finish the

application using the JWeb toolkit classes.

Now, let us look at how the Servlet cartridge works in OAS:

Oracle ADD. Server

HTTP Listener

Sevlet
Cartridse V

Net8/JDBC/RMI/ IIOPO
< ►

Oracle
Database

Figure 4.5 Oracle Application Server with Java Servlet Cartridges

The JServlet cartridge contains a Java Virtual Machine and Java class

libraries. It provides a runtime environment for server-side Java applications written with

the Java Servlet API specification. Servlets are currently the most popular Java

technology for building dynamically generated web pages. They are easy to build

because all Servlets have the same life cycle characteristic and provide a standard set of

method calls. Servlets also support user authentication and threads. A single instance of

a servlet can support all client requests for its services.

44

Like in JWeb, the JServlet cartridge minimizes the use of system resources

by running multiple JServlet cartridges on the same virtual machine when they belong to

the same application. Free instances of applications are also used when available, instead

of creating new instances. The JServlet cartridge comes with the JServlet Toolkit.

In conclusion, for applications that involve complex object-oriented or

highly CPU-intensive operations, the Java cartridge or Servlet cartridge are faster than

other cartridge methods that I explain in the following paragraphs. Since Java is an

object oriented language, Java provides elegant facilities from which to inherit existing

Java types and build complex class hierarchies. Furthermore, when natively compiled

using the Java compiler (NCOMP), Java's performance will improve significantly.

b) PL/SQL Cartridges

With the PL/SQL cartridge, developers can develop Web applications by

using Oracle stored procedures. The PL/SQL cartridge provides an environment that

enables users to use their browsers to invoke PL/SQL procedure. The stored procedures

can retrieve data from tables in the database, and generate HTML pages that include the

data to return to the client browser.

The main advantage of the PL/SQL cartridge is that it hides the complexity

of interacting with the database. Basically, when it receives a request, the cartridge

server logs in to the database, executes a stored procedure, and returns any result to the

browser. It is easier to interact with database objects in PL/SQL than in any other

language.

45

Oracle ADD. Server

s-

\
/ /

HTTP Listener |

/ /

->
PIVSQL
Cartridge V

•^)

Net8 Oracle
Database

Figure 4.6 PL/SQL Cartridge in OAS

The PL/SQL cartridge connects to the database with the Oracle Net8

communication protocol, and invokes the procedure in the database. The procedure

generates the HTML page, which includes the data that is retrieved from the database.

The stored procedure that the cartridge invokes should return the HTML

data back to the client. To simplify this task, the PL/SQL cartridge comes with the

PL/SQL Web Toolkit, which is a set of packages that you can use in your stored

procedure to obtain information about the request, construct HTML tags, and return

header information to the client. (Allen C, 1999, p. 10)

Currently, invoking the PL/SQL cartridge is quicker than invoking other

cartridges. PL/SQL is a sophisticated procedural language for developing database

applications and is ideally suited for building SQL/data-intensive applications. It has

information hiding, overloading, and exception handling features. However, PL/SQL

does not yet support constructs such as inheritance, polymorphism, and component

models that are familiar to distributed system developers.

46

In conclusion, while PL/SQL is generally more optimized for SQL

intensive applications, the overall performance of the application will depend on the

relative balance between computational operations and the number of SQL access.

c) Perl Cartridges

Before the advent of applications servers, most CGI scripts were written in

Perl. Running Perl as a CGI application has some drawbacks. For one thing, like every

CGI script, every time a user makes a request the interpreter needs to be started because

Perl is an interpreted language. This can be a serious resource and performance drain.

The Oracle Application Server solves this big performance problem with

the Perl Cartridge. Perl cartridge is basically a version of the Perl interpreter that remains

resident in memory, waits for requests, and then executes them.

Oracle ADD. Server

HTTP I istener

Perl Cartridge
Net8 Oracle

Database

Figure 4.7 Perl Cartridge in OAS

Perl is free and can be used to call operating system commands or programs,

whereas PL/SQL cannot. Another major reason for the popularity of Perl is the Apache

Web Server that can be deployed in large-scale enterprises supports Perl robustly.

47

Oracle supports Perl, as Perl has been used since the beginning of web

development. Java can be used everywhere, that Perl can be used and Oracle is moving

in the direction of Java, rather than Perl.

d) LiveHTML Cartridges

LiveHTML is Oracle's name for Server Side Include (SSI). SSI was one

of the web's earliest methods to provide dynamic content in a page. It allows the

developer to create a static HTML page, but it embeds dynamic information and sends

the result back to the browser. Scripts can be inserted between standard HTML tags.

This allows developers to perform more complex commands than those supported by

SSI.

Oracle ADD. Server

HTTP I istener

LiveHTML
Cartridge

Net8/JDBC/RMI/ IIOPO
< ►

Oracle
Database

Figure 4.8 LiveHTML Cartridge in OAS

LiveHTML technology is very similar to Microsoft Active Server Pages

(ASP) technology. ASP uses Visual Basic as its underlying language, whereas Oracle's

LiveHTML uses Perl as its script language.

When developers want to generate an HTML page dynamically, they

usually have to write a script or program to generate the entire page, including the static

48

portions. This requires more time to write the scripts and programs and to generate each

dynamic page. LiveHTML provides an alternative method of generating dynamic HTML

pages. It saves developers from generating the entire HTML page each time it is

requested by allowing them to embed server-side commands and scripts in a static HTML

page.

After discussing the cartridges in Oracle Application Server, it is time to

mention the connection between OAS and Oracle Database.

2. Connection Between OAS and Database server

There are four different ways to connect from OAS to Oracle Database Server.

Net8, JDBC, HOP, and RMI:

a) Net8

Net8 is Oracle's protocol to connect to remote databases. The main

function of Net8 is to establish network sessions and transfer data between a client

machine and a server or between servers. Net8 should be installed on both machines to

communicate. It is a free utility, which can be downloaded from Oracle's web site.

Another feature of Net8 is the Oracle Security Server. It adds special

security features to network traffic of Net8 nodes. The security server uses cryptography

across the network and requires users enter a password and login ID. The server keeps

track of which users are allowed to access which Oracle8i databases.

Net8 offers network load balancing by allowing configuration of multiple

connection routes from clients to a single data source. This configuration feature

maximizes performance in the Oracle8i Parallel Server and replicated environments, and

provides capabilities from recovering connection failures. (Abbey M. and others, 1999,

p. 23)

49

Moreover, as an extension of Net8 Oracle has its own version of a firewall

for protection across the Internet. This software is called Connection Manager.

Connection Manager can be configured according to which IP addresses are allowed to

access the database.

b) Java Database Connectivity (JDBC)

JDBC is a Java Class library that provides access to relational data. JDBC

is an object-oriented application programming interface (API), with interfaces defined by

JavaSoft. Conceptually similar to Microsoft's ODBC (Open Database Connectivity), the

JDBC API defines Java classes to represent connections, SQL statements, result sets, and

other database objects that enable a Java program to interact with a Oracle database.

(JDBC was discussed in detail in the previous chapter).

c) Internet Inter-ORB Protocol (HOP)

HOP is an object-oriented protocol that makes it possible for distributed

programs written in different programming languages to communicate over the Internet.

HOP is a critical part of a strategic industry standard. The Common Object Request

Broker Architecture (CORBA) and HOP are competing with a similar strategy from

Microsoft, called the Distributed Component Object Model (DCOM)

CORBA and HOP assume the client/server model of computing, in which a

client program always makes requests and a server program waits to receive requests

from clients.

Any CORBA object that is written in any CORBA standard programming

language can use JJOP connections. However, because it supports multiple languages,

HOP has some overhead and is slower than other communication protocols.

50

Oracle uses EOP to access CORBA objects in an Oracle database.

Oracle ADD. Server

s-

A
• ;

HTTPT.isfenpr)

/ /

~>
Java Cartridge

V

^-)

HOP

Oracle Database

Corba Object

Figure 4.8 HOP Connection to Oracle Database

d) Remote Method Invocation (RMI)

RMI is a way that a programmer can write object-oriented programs using

the Java programming language and development environment, in which objects on

different computers can interact on a distributed network.

RMI is the Java version of what is generally known as remote procedure

call, but with the ability to pass one or more objects along with the request. The object

can include information that will change the service that is performed in the remote

computer.

RMI technology is similar to HOP technology, except RMI supports only

Java. RMI originally had less overhead than HOP since it only supported the Java

programming language. However, Oracle uses RMI on top of the HOP protocol, so by

this usage, RMI has as much overhead as HOP has in Oracle.

Oracle uses RMI to invoke Enterprise Java Beans in Oracle Database

server.

51

Oracle ADD. Server

HTTP Listener

Java Cartridge
RMI

Oracle Database

Figure 4.9 RMI Connection to Oracle Database

3. Oracle Database Server -Third Tier

The Oracle8i Database Server has the ability to store business logic in many

ways. The reason for the widespread use of business logic in the database server

procedure is that result set processing improves application performance by eliminating

network traffic bottlenecks and allows more efficient use of server resources.

Beginning with the Oracle 8i, application developers started using Java to

implement business logic in the database level. The business logic they developed was

deployed and stored as program units that run in the database as stored procedure,

functions or triggers. Before Oracle8i, PL/SQL was used to implement the business logic

on the Oracle Database Server.

Because Java programs (stored procedures) are executed on the database server,

SQL access is much faster than when the data must be retrieved from the server to a Java

VM on another machine. However, the Java VM still runs slower than PL/SQL on

Oracle 8i Database Server.

52

Java can be used in anywhere that PL/SQL is traditionally used. By adding Java

as a server programming language, Oracle aims to open the RDBMS as a general-purpose

server platform to all Java developers.

Finally, the two-way interoperability that Oracle provides between Java and

PL/SQL allows the reuse of applications. Existing PL/SQL stored procedures can easily

be reused from Java. In addition, Java procedures can be reused from PL/SQL.

There are three different ways to implement business logic with Java in the

Database Server:

a) Enterprise Java Beans (EJB)

EJB are basically distributed Java components that implement a set of

predefined Java interfaces. These interfaces are designed for transaction processing

functionality. EJB is a powerful development methodology for distributed application

development.

EJB enables developers to design and package applications in components

that can be assembled with components written by other developers. Component-based

programming is very useful because of the prospect of reusable application code, easy

assembly of applications by wiring components from different vendors, and flexibility of

deployment.

53

Oracle ADD. Server

HTTP Listener

Java Cartridge
RMI

EJB

Figure 4.10 EJB Object in Oracle Database

Unlike client-side components, EJB (server-side) components are

transactional, they encapsulate business logic, and they need to run on the server. An

EJB executes in a container. A container provides an operating system process or thread

in which to execute the components. Some types of containers are a web server, a

transaction processing (TP) monitors and database systems. (William G., 2000, p. 219).

Enterprise Java Beans offer a higher level of abstraction than CORBA,

because EJB does not require advanced systems programming skills, and they are simple

for Java developers to develop like any other Java program.

b) Common Object Request Broker Architecture (CORBA)

CORBA is an object-oriented protocol that makes it possible for

distributed programs written in different programming languages to communicate over a

network, including the Internet. It is a standard for building, deploying, and managing

distributed object applications that are interoperable across platforms. CORBA

components written in different languages and running on different platforms can

transparently communicate and interoperate. More precisely, the client and server code

54

can be written in any language (not just in Java), and are compiled into native machine

code.

Oracle8i uses Java as its CORBA implementation language. Oracle8i

integrates a Java-based CORBA that provides users with the ability to call into and out of

the database using HOP. Oracle8i comes with a complete set of tools for developing

CORBA applications. Using these tools, developers can compile JDL specifications or

load Java source files or classes into the database.

c) Java Stored Procedures

Java stored procedures allow users to program the database by adding

business rules to extend SQL. Java programs can be stored and executed in the Oracle

database as Java stored procedures. Such procedures may use JDBC or SQLJ (Java with

embedded SQL statement) to access data.

Java stored procedures are compiled once and stored in executable form, so

procedure calls are quick and efficient. Executable code is automatically cached and

shared among users. This reduces memory requirements and invocation overhead.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

V. CONCLUSION

As I explained in detail in Chapter II, a rich variety of architecture and

programming models can be used to implement a Web-Database application. For

example, an Oracle or SQL Server can be chosen as the database, and ODBC or JDBC

can be the connection between the database and the programming model. One of the

programming techniques from Jsp, Java Servlets, Asp, etc. can be selected to provide the

dynamic content of the web page. Tomcat, Resin, IIS or Web Logic can be selected to

serve the static and dynamic web pages.

Selecting one model over another can be a difficult task. Each model has

strengths and weaknesses for each particular application. Developers generally select the

technique, with which they are most comfortable. Selecting a technique also depends on

user perspectives, style, and priorities.

Coming to my thesis implementation, I spent a considerable amount of time to

decide on my approach for implementing the Web-Database. It was obvious that there

were many possible paths to follow. As a result of my research, I decided to use Oracle,

Apache/Tomcat, Java (EJB, JSP, Java Script), and Windows NT 4.0. This section

represents why I have chosen these methods.

A. WHY ORACLE DATABASE SERVER?

First, Oracle is available on multiple platforms such as Windows, Linux, and all

Unix platforms from vendors such as IBM, Sun, HP, etc. The multi-platform nature of

Oracle makes it a true enterprise solution.

Oracle has multi-version consistency, which means that "readers do not block

writers and writers do not block readers." In other words, the reader will see the data as it

57

was before the writer began changing it (until the writer commits). Oracle manages this

scheme by creating a dynamic read-consistent image for a reader. Some other databases

manage this scheme by locking the data, which results in a lot of delays.

In Oracle, the large tables and indexes can be partitioned at the database level.

For example, a 10GB invoice table can be partitioned into monthly invoice table

partitions. Such partitioned tables and partitioned indexes give performance and

maintenance benefits, and are transparent to application.

One of the strongest features of the Oracle database is its ability to scale up for

handling extremely large volumes of data and users. Oracle scales not only by running

on more and more powerful platforms, but also by running in a distributed configuration.

Oracle databases on separate platforms are combined to act as a single logical distributed

database. (Stern J., 1999, p. 27)

Advanced replication and backup is another attractive feature of Oracle. Oracle

comes with a whole core of functionality to keep the data accessible 24/7. Oracle backs

up the data while the user community is still accessing it (hot backup). Moreover, by

using the Advanced Replication feature, data can be replicated in another physical

location. In case of any disaster, the replicated data can be used for recovery.

The usage of Internet and World Wide Web is extremely fast. Oracle provides

strong e-business tools, which are integrated with the DBMS. Oracle is well positioned

in this area with its Electronic Commerce Server, the Oracle Application Server and also

other business planning tools.

Data warehousing has become one of the most powerful trends in information

technology. There is a simple motivation behind this trend: data warehousing allows

58

businesses to use their data to aid in making statistical and strategic decisions. Oracle has

added data warehousing related features to its DBMS. Oracle has also developed

additional tools for building a complete data warehouse infrastructure, including business

analysis and data movement tool.

Finally, Oracle is secure. The Oracle security model is a multi-layered one. It

incorporates the protection of files and objects both inside and outside of the database, as

well as a variety of administrative policies and technical strategies.

B. WHY JAVA PROGRAMMING LANGUAGE?

Oracle has made a strategic commitment to Java by integrating it into a large

portion of its product offerings. Oracle's complete Java platform provides an integrated

set of products that enable the development, debugging, and deployment of database

applications. The Oracle Java Platform consists of two related execution environments: a

Java Virtual Machine (JVM) integrated with the Oracle database to run data intensive

Java applications and a Java cartridge in the Oracle Application Server. Both share a

common programming environment and programming interface.

In addition to the close relationship between Oracle and Java, Java has other

advantages. Java is built on the principle of "Build once, run everywhere" and therefore

can overcome cross-platform obstacles. In another words, because there is a standard,

and because compiled Java byte code is portable across all platforms that support JVM,

using Java does not lock you into using a specific hardware platform, operating system,

or server software. For example, if a switch becomes necessary between components

(hardware or software), all JSP pages and associated Java classes (EJB) can be migrated

over as is. Moreover, Java web technologies provides:

a Robustness and Scalability (n-tier systems)

59

a Easy database access through JDBC

a Modularity - code reusability (Enterprise Java Beans)

a Separation of content from appearance (Servlets-JSP)

As an object-oriented language with strong typing, encapsulation, exception

handling, and automatic memory management, the use of Java increases program

productivity, and a more robust code.

Java Server Pages is a new technology to create web applications that connect to

server-side Java components. As part of the Java family, it inherits all of the benefits of

the Java language, including platform- and server-independence, a modular and reusable

component architecture, and access to the rich family of Java API's.

JSP also offers a simpler mechanism for writing a small amount of program logic

than a full-blown Servlet does. JSP scripting is a very powerful mechanism that provides

the full power of Java in the simple form of scripting within an HTML page. In fact,

developers can implement their entire application using only JSP, without ever writing a

single explicit servlet, since JSP files are automatically translated into Java servlets when

they are executed. JSP itself offers several advantages a system for dynamic content

generation. Among these are improved performances over CGI, and a programming

model that emphasizes component-centric application design.

Separation of presentation and implementation can be accomplished by using JSP

technology. By taking advantage of Java Beans, it becomes possible to maintain a strict

separation between data presentation (the display of information to the end user) and

program implementation (the code used to generate that information in the first place).

60

The benefit of decoupling these two aspects is that changes to one can be made without

requiring any changes to other.

JSP is based on a model in which JavaBeans and Enterprise JavaBeans (EJB)

components contain the business and data logic for an application (component-centric

platform). JavaBeans are Java's answer to Microsoft's ActiveX components. A JavaBean

is the architecture for using and building components in Java.

EJB brings the component model of development to middleware. Enterprise

middleware development is notoriously complicated; it involves not only business logic,

but concurrency and scaling issues, as well as gluing together incompatible systems on

incompatible platforms. Enterprise Java Beans solve middleware development

complexity by factoring this entire infrastructure into containers. This allows the

developer to focus on writing the business logic without having to worry about

synchronization, scalability, transaction integrity, networking, distributed object

frameworks, and other related matters.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

APPENDIX A

In this appendix, I will present my demonstration and the code, which has been

implemented using JDeveloper 3.1.1.2. My prototype is completely web enabled and

currently published inside the school firewall so that the NPS community can access it

via web browser and Internet connection (school account).

A. THE WEB USER INTERFACE

Currently, users can access the NPS Bulletin Board from URL:

http://l 31.120.179.222:7070/ugur/buildjsps/main.jsp

1. NPS Bulletin Board Main Page

■V4*:'
Back '.fomiii' 'Step ReteiK-ittaii» '/»Saach- FwaiwivWtta» '■• Mai"*i Rri . ■ Sg<.-Oitcatt"

Hj-iinxj

|Jj^eil|g] MIP7/131 l20.179.2227B70/u9ur'lx^psAna>Lisp "3 *>B«!

WELCOME TO
!nps bulletin board

I Help 1 ^TOJRACCOÜiiTj t.SEl.1 ITEMS J

SEARCH * CÄTE«0*ÖES|[FEATURED f ADDITIONS j

■Auto

•Books

* Computers

* Electronics

•Furniture

•Home Appliance

• Movie/D VD/VCO

•Toys

•La Mesa B. Fair

• Fort Ord B. Fair

•Miscellaneous

•FREE ITEMS

iftbonej

Welcome To The Naval Postgraduate School(NPS) Bulletin Board Online. This service is intended to
help the Naval Postgraduate comunity in placing their personal used items on sale. All
advertisement will stay online by a period of 10(ten) consecutive days.

Please contact to udemin3>cs.nps.navy.mil for any suggestions or questions.

Newest Ad at NPS Bulletin Board...

La Mesa Bargain Fain Coming La Mesa Bargain Fair will be held on 15 Mar 2001. To get your
selling spots, please contact to Mary at NPS Afiars Office for details call (831)656-5069

In Auto
1993 Golf III GL

Description:
'93 VW Golf GL, 4-door, 5-speed manual transmission, blue exterior/beige interior. Very good
condition m&out. Large cargo room due to the hatchback. Power locks, power sunrooPmoonroof,
alarm, 6-disc CD changer.

In Electronics
JVC Fiat Screen TV

Description:
zzämM" 'Model 60SDX8SB. All Time Progressive Scanning (480p), 1000 Lines Resolution, Digital A.I

..fMovie/SoortsJTV). Etiatal 3D...Y/C. Comb Filter. UltraBlack Screen wife Surface Differ. Dynamic. ZJ
^v^.tntnnejt^:::

Figure A. 1 Menu

63

2. Search by Category

In this menu, the user can search for an item by selecting a category

i f* £<* V»w Fävotes look H*_

|gi»M

*» .. ® 3 • ar a " & i>- s
Stop g«l-aih HOT» Siwch s«va<>; Hnaci fri Pl<

l»**f

j^*««)*] hHp://131.12ai79.2227070/ugui/biJMisps/mari.isp ~3^So

WELCOME TO

' nps bulletin board

•Auto

•Books

•Computers

•Electronics

• Furniture

• Home Appliance

• Movie/DVD/VCD

•Toys
• La Mesa B. Fair
• Fort Ord B. Fair
• Miscellaneous

•FREE ITEMS

S_itjti_t»

| Help [QgaaACCOUNTj jstit ITEMS j

SfiAftCSf j CÄTEOORJES l\ fEAtURED 1

Computers

item Asking Price Description

Sony VAIO Pentium III

Pentium III 750 Khz

lOOOJ»

800.00

fDESCRIPTION)

[OESCROTION]

iSfe ;|0Me<t<*ji-

Figure A.2 Search by Category

Detailed information of the item can be viewed by clicking on "Description"

button.

^gpj«i|jgK VJZLCC &&'- TCI i Mcfek 1 •TrOUBACCOOHTHWi.UTeMS}

if^ijgjfalr^ JtpS DUilÖ^** UUUi(J jBHUffl/M MjtBCT -i"*^VfcaoR«a»y FEATURE» T AOöfTK>«3 !]

•Auto

•Books

• Computers

«Electronics

•Furniture

•Home Appliance

• Movie/DVIWCD

-Toys

Asking Price: Pentium III 750 Mhz.CPU, 6.4 GB Hard Disk, 64 MB SDRAM, Altec Dolby Digital f Ulli "5
BUU'UU Speakers w/Subwoofer, S6K Rockwell Modem, Intel Ether Express 10/100 NIC, 17 fegWBto

Sellenaemirvurek inch Di9ital Uoni,or- Pfe-^

Figure A.3 Detail Information

64

3. Search Menu

The query given by the user is searched in the database and all matching records

are returned.

j'. {jh~ifift":j£w:!:;fj(w*»» loot U«fc>

a-
■3

i «■;■»■- @ a Ö ' & a 0
:j 8«*" y.ifiwwaJ :* ": SW> fl«*Mh! Han» 5 SMa*',f**«**"' HMoy

Q
EC1 Drtcu»

: »

jAi(4«»J€] h«B7/131.120.179,222:707IVugtJr/l»ji*ps/n»n.|sp
■

zl ^s°

WELCO.Ms TO

'nps bulletin board
Hdp j (TOttRACCOtHfTj tsm mwsj

SEARCH j CATECORJES | fEATWRED j ADDCrtONS j

Search NPS Bulletin Board Database
•Auto

-Bootes

-Computers

♦Electronics

- Furniture

•Home Appliance

•Movie/DVD/VCD

•Toys

•La Mesa B. Fair

•Fort OrdB. Fair

-Miscellaneous

•FREE ITEMS

Please enter item name to search (i.e.vcr. Golf).

(Pentium \\\

SjyjxJn,

^mümmim^w^j^j^^ria^^^

Figure A.4 Search Menu

65

4. Featured Items Menu

All items which have an image are viewed on this menu.

! £ie £*)£m Fjva*» lot* H*

-|g|x|

D
j".-».a n 4 a a a

ßadc . Fmv?c Stop fl«teth: HOWB ' Semsh Fwoofes HB*O# * MB)

_ g
Pnm Drd Lk*s

:}iSj>tes4ö htm//!31.120.179.222TOTO/ugu/buHjsps/mmisp d ^E»

WELCOME TO

' nps bulletin board
I Help i {VpaRACCaiiiTJ fcsittmiiBJ

'SGUtCM fcÄTEGORtesI' FEATURED [AOOmOHS |

•Auto

•Books

• Computers

• Electronics

• Furniture
•Home Appliance
•Movie/DVD/VCD

•Toys
•La Mesa B. Fair
-FortOrd B. Fair
•Miscellaneous
•FREE ITEMS

Sitjii..lu

In Electronics
3VC Fiat Screen TV

Description:

NPS Bulletin Board - Featured Items

Welcome To The Naval Postgraduate School(IMPS) Bulletin Board Online. This service is intended to help the
Naval Postgraduate comunity in placing their personal used items on sale. All advertisement will stay online

by a period of 10(ten) consecutive days.

Please contact to udemircacs.nps.navv.mil for any suggestions or questions.

Newest Ad at NPS Bulletin Board...

La Mesa Bargain Fair: Coming La Mesa Bargain Fair will be held on 15 Mar 2001. To get your
selling spots, please contact to Mary at NPS Affairs Office for details call (831)656-5059

111 Avit)
1993 Golf III GL.

Description:
'93 VW Golf GL, 4-door. 5-speed manual transmission, blue exterior/beige interior. Very good

condition in&out. Large cargo room due to the hatchback. Power locks, power sunroof/moonroof,
alarm, 6-disc CD changer.

"["iirsäSön
zJ

£SP*ft..

Figure A.4 Featured Items Menu

66

5. Sell Item Menu

User must sign in to sell an item

1 Eh ■ 1* ' '$m fjvMte loot« tfi* ... , i^B
1 *• , •* , © a tS $ 'a a
J Bade-.- Ffittsf'■ ;SKe _ S*«^«<^_jiS8^jNB5M^ _wa>^ s.--*u»;-v

m m
• K&. ■ DBCUW

:|Ad4e«tj)g]hllp://131.120179 222:707tVugu./buldisps/mi«iisp - ■— _

_J f>6o

WELCOME ;

nps bulletin board
Help I :~m'JS *CCaO«Tj; (.SEtt IK*«D

SEARCH | CATEGORIES]j FEATURED j ADEHTSONS;

•Auto
«Books

■ Computers
■Electronics
•Furniture
•Home Appliance
•Movie/DVÜ/VCD

•Toys
•La Mesa B. Fair
•FortOrdB. Fair
•Miscellaneous

•FREE ITEMS

Si.gnjn

Sign In Required!

In order to sell an item you must first Sign In or become Registered User!

Click Here to Sign In!

ifcÄl ;.!Ä**«!*i: ie

Figure A.5 Sell Item Menu

67

If the user is not a registered user, he can sign up to have an account for selling

purposes. To sign up the user must enter his personal information.

feBBfiMWIIrifllBIBffBilffllllilllBBIBl
j gfe £* Jfiow fcotos I«* .H* _-_

j' * . - . 3 "if 4' '" <ä j
j'l rjaefc Fffi-rc Su» Rrtwft Home Sea« Haay : Mat WW. E«.

p&t«*jg] Mlp:tf131.120179.222:707a'ugn/lx*igpsMain.H; jj i>5o

WELCOME TO

'nps bulletin board

•Auto

•Books
- Computers

•Electronics
-Furniture
•Home Appliance
•Movie/DVD/VCD
•Toys
•La Mesa B. Fair
• Fort OrdB. Fair
•Miscellaneous
•FREE ITEMS

Sign in

I Help | rroaskeou»*} Ism ITEMS J

JH^U^'jCATSJOWES/j* FEATURED \ ADDITIONS |

Sign up for NPS Bulletin Board

Userici BBBBBBBBB
BBBBBBBBBfBfBfftfftfg " -

RrstName

LastName

Phone

BBBBBBBBBBBBBB1BBB

BBBBBBBBB
BBBBBBBBB
BBBBBBBBi

Email ■ÜHHürt
Address

^^^^^^^^^^^^^^^^^B^^^^B SaveChaoges ^^^^^^^^^B^^^^B^BB^^^Li

igJSoä». IS Mem*

Figure A.6 User Information Entry Form

68

If the user is already registered, he has to supply a "User ID" and "Password" to

sell his item.

'il B» E* ¥»» <*»*« I«* H«*> n
>.-♦,§ a ^ S a 3 i- i 1 1

8a* ".■'.Fcsaf ." 'Sto|>:':::ifl»tie* .. .;Hw»-\j* Searehl Fwo*er"»^:* .s.Mat Pnhl" "-'* OECUK

30

Link»

;|Aij*>»J€!l hllpi//131.120.17a2227tl7a^jgui/l»*jtps/iMKisp d &*>

«aÄSSs WSLC OM E TO 1 Hdp I KMBACCOUHTJ [stu ITEMS)

•Auto

•Books

• Computers

•Electronics

• Furniture
•Home Appliance
•Movie/DVD/VCD

•Toys
•La Mesa B. Fair

•FortOrdB. Fair
•Miscellaneous

•FREE ITEMS

bullern uudrg 2[J SEARC* feATeOOREs' FEATURED f ADOmCJNS |

I'm a New Member At IMPS Bulletin Board!

• Plejse register to jell!

• lOrjoel & JJUJ together ire grejrJM

• Next-> DjUb«M Replicition!

Sign Me Up!

I'm a Registered Member

User ID: Jugur

Password: 1*""

|, Sign in |

Si.gn.ln

fe]Done .>..:■.■.. -■,„,.---./.. ■■-^;: ••:.;^:.^ j 1 {»Ms«.

Figure A. 7 User ID and Password Entry Menu

69

In the Greeting page, the user's First Name and Last Name are displayed. Also,

under the Categories menu, two extra buttons are created for signing out and selling an

item.

t^ffffllWilrifliniWBillTOiaillliBa
9» £dt Wow Fjvate« Toob a*

Sack. fc-jvrd Slop Retesh Ho» Seadt Eawfta Hitf«y Mai Port. Biteu»

drftgnjgj h^//131.120.179.22Z:7070/ugu/tuidisps/m»n.^p~ ~3 fiSo

WELCOME TO
f nps bulletin board

I Help f ITOüRACCOWIT) jsuttrm^

SEARCH ICATTSÜRJESj fEATUÄEÜ 1 1

•Auto

-Books
* Computers

* Electronics
- Furniture
-Home Appliance
• Movie/DVD/VCD
•Toys
• La Mesa B. Fair
•Fort Ord B. Fair

•Miscellaneous
- FREE ITEMS

Sign Out

Add an item

Heiio, Ugur Demiryurek!
Welcome To The Naval Postgraduate School (NPS) Bulletin Board Online. This service is intended to
help the Naval Postgraduate comunity in placing their personal used items on sale. All
advertisement will stay online by a period of 10(ten) consecutive days.

Please contact to udemirf&cs.nps.navy.mil for any suggestions or questions.

Newest Ad at NPS Bulletin Board...

La Mesa Bargain Fair. Coming La Mesa Bargain Fair will be held on 15 Mar 2001. To get your
selling spots, please contact to Mary at HPS Affairs Office for details call (831)656-5069

}r) Auto
1993 Golf III GL

Description:
'93 VW Golf GL, 4-door, 5-speed manual transmission, bhie exterior/beige interior. Very good
condition in&out. Large cargo room due to the hatchback Power locks, power sunrooSmoonroof,
alarm, 6-disc CD changer.

In Electronics
JVC Fiat Screen TV

Description:
'Model 60SDX88B, All Tane Progressive Scanning (480p), 1000 Lines Resolution, Digital A.I
(Mo^ ..M

igjoSw"

Figure A. 8 Greeting Page

70

To advertise an item on the NPS Bulletin Board, the user enters his item's information.

ttrt Internet tswotef

' ^ . =* . 9 JH 4 ^3t 2i
Back ::Fow»i::: I SKpJ R*eh Hoi^ J>»j|l*_f»««»_

!jAs|4»t|«j http://l3l.l2t)179.222:7070/ugu/lxjl*ps/mairvisci Tgj-^NsM

WELCOME TC

nps bulletin board

•Auto

•Books
• Computers

• Electronics

•Furniture
•Home Appliance

•Movie/DVD/VCD

•Toys

•La Mesa B. Fair
• Fort OrdB. Fair

•Miscellaneous

•FREE ITEMS

Si.ü.iÄ'i.t

Add an item

m.

Help j -,roiffiAc;QUNTj tsm ITEMS;}

S£A«CH jotTFOOMeSJl FEATURE» j ADDITIONS |

-as^ijj a* o ÄtfäÄ » ■ jg^^M^

Figure A. 9 Item Entry Form

71

B. THE IMPLEMENTATION CODE

The implementation code of the NPS Bulletin Board is Java. JDeveloper is used

to create the EJB and jsp pages. JDBC connection to Oracle database is also done via

JDeveloper.

1. JDBC Connection

£2 Connection

Connection Name: I thesis

-Connection Type:— ■■ -

<? JDBC r HOP C HTTP

-Please enter any applicable security information:

Usemame: (thesis Password: j ***-**—
ISBlff

Role: Normal H {7 include password in deolovment archive

Select a JDBC Driver |Oracle_JDBC Thjn [▼]

~3' Select a connection method: Named Host

Please enter your database connection information:

TIMS Sewfce: I • ' 3
Host ID: J131.120.J79_2_22

SID: Iugur2

i.'5t'.v?rv.P:-ctLici. |TC-

' Port |l_521_

I jjj Oth sr \

Row Prefetch: JlO Batch Value: [7 C ReportTABLE_REMARKS

A usemame allows you to identify yourself to a datasource.

Test Connection

Help OK Cancel

Figure B.l JDBC Connection to Oracle Database

72

Enterprise Java Beans

a featureBean.java

import java.io.*;
import oracle.jbo.*;
import oracle.jdeveloper.html.*;

public class featureBean extends oracle.jdeveloper.html.DataWebBeanlmpl {

public void render() {
try
{

out.println("<td> <!— left panel featured items -->");
out.println("");
out.println("<p>");
out.println("<strongxfont face=verdana,arial,helvetica size=2> Welcome To

The Naval Postgraduate School(NPS) Bulletin Board Online.");
out.println("This service is intended to help the Naval Postgraduate comunity in

placing their personal used items on sale.");
out.pnntln("All advertisement will stay online by a period of 10(ten) consecutive

days.");
out.pnntln(*'< p>");
out.pnntln{ "<p>");
out.pnntln("Please contact");
out.pnntln("udemir@cs.nps.navy.mil");
out.println("for any suggestions or questions.</fontx/strong>");
out.pnntln("< p>");
out.pnntln("<font face=verdana,arial,helvetica size=3

color=#FF0000xb>Ne\vest Ad at NPS Bulletin Board...</bx/font>");
out.println("<br clear=left>");
out.println("");
out.println("");
out.println("<table border=0 align=left cellpadding=0 cellspacing=Oxtrxtd>");
out.println("<IMG alt=\"\" border=0

src=\"/ugur/webapp/images/old/la_mesa.gif\"x/a>");
out.println("</tdx/trxtrxtdxcenterxfont face=verdana,arial,helvetica

size=-2>");
out.println("");
out.println("");
out.println("</fontx/center>");
out.println("</tdx/trx/table> <pxb>La Mesa Bargain Fair:");
out.println(" Coming La Mesa Bargain Fair will be held on 15 Mar 2001.");

73

out.println(" To get your selling spots, please contact to Mary at NPS Affairs
Office");

out.println(" for details call (831)656-5069");
out.println(" </p>");
out.println("<p>");
out.println("<br clear=left>");
out.println("");
out.println("<!- item 3 -x/p>");
out.println("<p>");
out.println("");
out.println("");
out.println("In");
out.println(" Auto</bx/fontxbrx/A>");
out.println("<strongxfont face=verdana,arial,helveticacolor=#cc6600> 1993

Golf m GL</fontx/strongxbr>");
out.println("");
out.println("");
out.println("");
out.println("<table border=0 align=left cellpadding=0 cellspacing=Oxtrxtd>");
out.println("<Ahref=\"BidsView_Browse.jsp?ITEMROWINDEX=2\">");
out.println("<IMG alt=\"BidsView_Browse.jsp?ITEMROWINDEX=2\" border=

src=\"/ugur/webapp/images/old/cars.gif\" x/a>");
out.println("</tdx/trxtrxtdxcenterxfont face=verdana,arial,helvetica

size=-2>");
out.println("");
out.println("Details");
out.println(" ");
out.println("</fontx/center>");
out.println("</tdx/trx:/tablexb>Description:");
out.println("
'93 VW Golf GL, 4-door, 5-speed manual

transmision, blue exterior/beige interior. Very good condition in&out. Large cargo room
due to the hatchback. Power locks, power sunroof/moonroof, alarm, 6-disc CD
changer.");

out.println("</p>");
out.println("<p> ");
out.println(" ");
out.println(" ");
out.println("");
out.println("<br clear=left>");
out.println("");
out.println("<!- item 2 --x:/p>");
out.println("");
out.println("<p>");
out.println("");

74

out.println("In
Electronics</bx/fontxbr>");

out.println("");
out.println("<strongxfont face=verdana,arial,helvetica color=#cc6600> JVC

Flat Screen TV</fontx/strongxbr>");
out.println("");
out.println("");
out.println("");
out.println("<table border=0 align=left cellpadding=0 cellspacing=Oxtrxtd>");
out.println("");
out.println("<IMG alt=\"\" border=0 src=\7ugur/webapp/images/old/video.gif\"

x/a>";
out.println("</tdx/trxtrxtdxcenterxfont face=verdana,arial,helvetica

size=-2");
out.println("");
out.println("<A

hreM"BidsView_Browse.jsp?ITEMROWINDEX=45\">Details");
out.println("");
out.println("</fontx/center>");
out.println("</tdx:/trx/tablexb>Description:");
out.println("
'Model 60SDX88B, All Time Progressive

Scanning (480p), 1000 Lines Resolution, Digital A.I. (Movie/Sports/TV), Digital 3D Y/C
Comb Filter, UltraBlack Screen with Surface Diffuser, Dynamic Focus.");

out.println("</p>");
out.println("<p> ");
out.println(" ");
out.println(" ");
out.println("");
out.println("<br clear=left>");
out.println("<p>");
out.println("<br clear=left>");
out.println("");
out.println("");
out.println("");
out.println("");
out.println("In");
out.println(" Computers</bx/fontxbrx/A>");
out.println("<strongxfont face=verdana,arial,helvetica color=#cc6600> Pentium

m 750 Mhz.</fontx/strongxbr>");
out.println("");
out.println("<table border=0 align=left cellpadding=0 cellspacing=Oxtrxtd>");
out.println("");
out.println("<IMG alt=\"BidsView_Browse.jsp?ITEMROWINDEX=51\"

border=0 src=\"/ugur/webapp/images/old/desktop.gif\" x/a>");
out.printhi("</tdx/trxtrxtdxcenterxfont face=verdana,arial,helvetica

size=-2>");

75

out.println("<A
refH"BidsViewJBrowse.jsp?ITEMROWINDEX=51\">Details");

out.println(" ");
out.println("</fontx/center>");
out.println("</td></trx/tablexb>Description:");
out.println("
'Pentium m 750 Mhz.CPU, 6.4 GB Hard Disk, 64

MB SDRAM, Altec Dolby Digital Speakers w/Subwoofer, 56K Rockwell Modem, Intel
Ether Express 10/100 NIC, 17 inch Digital Monitor.");

out.println("</p>");
out.println("<p> ");
out.println("<br clear=left>");
out.println("");
out.println("</td>");
out.println("");
out.println("<!-- Left panel end ->");

} catch(Exception ex)
{
throw new RuntimeException(ex.getMessage());
}

}

76

a greetings.java

import java.io.*;
import oracle.jbo.*;
import oracle.jdeveloper.html.*;

public class greetings extends oracle.jdeveloper.html.WebBeanlmpl {

public void render() {

String loggedin = (String) session.getValue("ISLOGGEDIN");

if (loggedin.equals("true"))

{
out.println("");
out.println(" Hello,");
out.print(session.getValue("USERNAME") +»");
out.print(session.getValue("USERLASTNAME"));
out.println(" !</fontx/bxbr>");

}
else {

out.println("
");
}

}
public void renderlogin(){

String loggedin = (String) session.getValue("ISLOGGEDIN");
if (loggedin.equals("false"))

{
out.println("<pxfontface=\"Arial\" size=2 color=\"blue\" >");
out.println("Sign

In</bx/a>");

out.println("");
}
else {
out.println("<pxfont face=\"Arial\" size=2 color=\"blue\" >");
out.println("Sign Out</bx/a>");
out.println("");
out.println("<pxfont face=\"Arial\" size=2 color=V'blue\"> ");
out.println("<a href=\"ItemsView_Insert.j sp\"

target=\"contentsFrame\"xb>Add an Item</bx/ax/font>");

}

77

□ loginBean.java

import java.io.*;
import java.io.Print Writer;
import oracle.jbo.*;
import oracle.jdeveloper.html.*;

public class loginBean extends oracle.jdeveloper.html.DataWebBeanlmpl {

String userid = "";
String password = "";

//Set methods

public void setLoginParms(String p_userid, String p_password){
userid = p_userid;
password = p_password;

}

public void execute() {

Row resultRow;

// get the rowset instance
RowSet qView = getRowSet();
qView.getViewObjectO.setWhereClauseC userid ='" + userid + "* AND

password = "' + password +'"");

try
{
qView.executeQueryO;
qView.first();

// User Validated
// Set session variables

resultRow = qView.getCurrentRow();

session.putValue("USERNAME", resultRow.getAttribute("FirstName"
).toString());

session.putValue("USERLASTNAME",resultRow.getAttribute("LastName"
).toString());

session.putValue("CUSTID",resultRow.getAttribute("Id").toString());
session.putValue("EMAIL",resultRow.getAttribute("Email").toString());
session.putValue("ISLOGGEDIN", "true");

78

// print header with meta refresh tag to main.jsp
out.println("<META HTTP-EQUIV=\"refresh\" CONTENTS" 1;

URL=main.jsp\">");
out.println("</headxbody>");
out.println("<brxcenterxh2>Logging In </h2x/center>");

}
catch(Exception ex)

{
// print header with meta refresh tag to login.jsp

out.println("<META HTTP-EQUIV=\"refresh\" CONTENTS" 1;
URL=login.jsp\"> ");

out.println("</headxbody>");
out.println("<brXcenterx:h2>Invalid Login, try again.</h2x/center>");

if(ex.getMessage() != null)
out.println(ex.getMessageO);

return;

}// catch

} // execute

}

79

a qpBean.java

import java.io.*;
import java.io.PrintWriter;
import java.util. Vector;
import oracle.jbo.*;
import oracle.jdeveloper.html.*;

public class qpBean extends oracle.jdeveloper.html.DataWebBeanlmpl {

String yellow_dot =" •";
String red_dot =" •";
int font_size = 2;
String font_color ="#000000";
String font_face = "Arial, Helvetica, sans-serif;
String qp_display[];
String qp_link[];
int linksnum = 0;
int i;

AttributeDefl] attrs;
Row[] rows;

//Set methods

public void set_font_size(int size){
font size = size;

public void set_font_color(String color){
font color = color;

public void set_font_face(String face){
fontface = face;

}

public void render() {

AttributeDef[] attrs;
Row[] rows;

try {

// Retrieve all records by default
qView. setRangeSize(-1);

80

qView.first();

rows = qView.getAllRowsInRange();
attrs = qView.getViewObject().getAttributeDefs();

linksnum = rows.length;

// print table wrapper
out.print("<!~ JSP Generated QUICK PICK --> \n"+

"<table width=\"170\" cellpadding=0 cellspacing=0 border=0>"+
"<trvalign=\"top\">"+
"<td width=\"10\"ximg src=\"/ugur/webapp/images/hdr_left.giA"

width=10 height=20 border=0 align=\"top\"x/td>"+
"<td width=\"150\" valign=\"middle\" bgcolor=\"#006699\" nowrapxfont

face=\"Arial,Helvetica,sans-serif\" size=\"2\"
color=\"#ffffff\"xb>Categories</bx/fontx/td>"+

"<td width=\"10\" align=\"right\"ximg
src=\"/ugur/webapp/images/hdr_right2.gif\" width=10 height=20 border=0
align=\"top\"x/td>"+

"</trx/table>"+
"<table width=\"170\" cellpadding=l cellspacing=0 border=0

bgcolor=\"#006699\">"+
"<trxtdxtable width=\"100%\" cellpadding=0 cellspacing=0 border=0

bgcolor=\"#FFFFFF\">"+
"<trxtd width=\"10\"xfont face=\"Arial,Helvetica,sans-serif\"

size=\"2\"> </fontx/tdxtd>");

out.print("<!-- JSP Generated QUICK PICKS MENU --> \n"+
"<TABLE BORDER=\"0\" CELLSPACINGS"0\" WIDTH=\"143\"

HEIGHT=\"83V >\n");

if (linksnum < 1) {
out.println("<trxtd>No links added! Use addLink!</tdx/tr>\n");

}
else {
for (i=0; i<linksniun; i++){
out.println("<TRxTD WIDTH=\"15%\" ALIGN=\"RIGHT\"

VALIGN=\"MIDDLE\">\n,,+ red_dot + "\n" +
"</TD>\n");//print dot

out.println("<TD WIDTH=\"85%\" ALIGN=\"LEFT\"
VALIGN=\"MIDDLE\">\n"+

"<BxA HREF=\"srch_results.jsp?QRY=cat_id=" + rows[i].getAttribute(0
).toString() + "&cat_name=" + rows[i].getAttribute(1).toString() + "V
target=contentsFramexSPAN STYLE=\"Text-Decoration: None\">\n"+

81

"<FONT SIZE=\"" + font_size +"\" COLOR=\"" + font_color +"\" FACE=\""
+ font_face + "\">" + rows[i].getAttribute(1).toString() +
"</FONTx/SPANx/Ax/B>\n"+

"</TDx/TR>W);

} // for loop
} //else

out.println("</TABLE>\n"+
"</tdx/trx/tablex/tdx/trx/tablex!- END JDEV Generated QUICK

PICKS MENU -->");

} catch(Exception ex)

{
throw new RuntimeException(ex.getMessage());

}
}

}

82

Q srchresBean.java

import java. io.*;
import oracle.jbo.*;
import oracle.jdeveloper.html.*;
import oracle.jbo.html.databeans.*;

public class srchresBean extends oracle.jdeveloper.html.DataWebBeanlmpl {

public void render() {
try
{

oracle.jbo.html.databeans.RowsetNavigator rsn;

oracle.jbo.hrml.databeans.FindForrn find;

oracle.jbo.html.databeans.RowSetBrowsersrch;

String catName = request.getParameter("cat_name");

fmd= (oracle.jbo.html.databeans.FindForm) new
oracle.jbo.html.databeans.FindFormO;

rsn = (oracle.jbo.html.databeans.RowsetNavigator) new
oracle.jbo.html.databeans.RowsetNavigatorO;

rsn.initialize(application,session,
request,response,out,"packagel_PackagelModule.srchItemsView");

String QueryArg = request.getParameter("QRY");
String Itemlndex = request.getParameter("ITEMROWINDEX");

if (QueryArg != null) {
// Using Category Bean
rsn.getRowSet().getViewObject().setWhereClause(QueryArg);
rsn.getRowSet().getViewObject().executeQuery();
rsn.getRowSet().first();

}

if (QueryArg = null && Itemlndex = null) {
// Using FindForm Search window
find.initialize(application,session,

request,response,out,"package 1 _Package 1 Module, srchltems View");
find.execute();

}

83

// print category
if (catName != null && catName != "")
{
out.println("<p> " + catName +

"</bigx/fontxbr>");
session.putValue("CATNAME", catName);

}
else
out.println("
");

// rowset browser bean
srch = (oracle.jbo.html.databeans.RowSetBrowser) new

oracle.jbo.html.databeans.RowSetBrowserO;

srch.initialize(application,session,
request,response,out,"packagel_PackagelModule.srchItemsView");

srch.setVisibleRows(l 00);
srch.setShowCurrentRow(false);
srch.setDisplayAttributes("ItemName,StartPrice");
srch.setAttributeTitle("ItemName" , "Item");
srchsetAttributeTitleC'StartPrice" , "Asking Price");
srch.addImageUrlColumn("Description", "/ugur/webapp/images/desc.jpg",

"BidsView_Browse.jsp?BIDVIEW=srchBidsView", "contentsFrame");
srch.render();

} catch(Exception ex)
{
throw new RuntimeException(ex.getMessage());
}

}
}

84

Java Server Pages

□ main.jsp

<%@ page contentType="text/html;charset=WINDOWS-1252"%>
<HTML>
<HEAD>
<title>Welcome to NPS Bulletin Board</title>
</HEAD>

<%
// Check to see if logged in already.

String loggedin = (String) session.getValue("ISLOGGEDIN");

if (loggedin = null)
{
session.putValue("ISLOGGEDIN", "false");
}
%>

<!-- Define Frameset -->

<FRAMESET ROWS="90,*" FRAMESPACING="0" FRAMEBORDER="0"
boider="falsc" >

<FRAME SRC="title.html" NAME="titleFrame" FRAMEBORDER="0"
MARGINHEIGHT-1

MARGI\W'IDTH=1 FRAMEBORDER="0" FRAMESPACING="0"
SCROLLIKG="No">

<FRAMESET cols="200,*"
FRAMESPACING="0" FRAMEBORDER="0" SCROLLING="AUTO">
<FRAME SRC="nav.jsp" name="navFrame">
<FRAME src="contents.jsp" name="contentsFrame">
</FRAMESET>
</FRAMESET>

</HTML>

85

a Login.jsp

<%@ page contentType="text/html;charset=WINDOWS-1252',%>
<%@ page language = "Java" errorPage-'errorpage.jsp" import = "java.util.*,

oracle.jbo.*, javax.naming.*, oracle.jdeveloper.html.*, oracle.jbo.common.appmgr.*,
oracle.jbo.html.databeans.*" %>

<%
// make sure the application is registered
oraclejbo.htmljspJSPApplicationRegistiy.registerApplicatioriFrorriPropertyFile(

session, "packagel_PackagelModule");
%>

<html>
<head>
<LINK REL=STYLESHEET TYPE="text/css"

HREF="<%=session.getValue("CSSURL")%>">

<title>Welcome to NPS Bulletin Board</title>
</head>
<body bgcolor="#FFFFFF" TEXT="black" BGCOLOR="#FFFFFF"

UNK="#336699" ALINK="#6699CC" >
<pxbr>

<centerxtable BORDER=0 CELLSPACING=0 CELLPADDING=2

WIDTH="80%" >
<tr>
<td VALIGN=TOP WIDTH="1%">
<table BORDER=0 CELLSPACING=0 CELLPADDING=4 >
<tr>
<td BGCOLOR="#336699">
<bxfont face="arial"xfont color="#FFFFFF">I'm a New

Member</fontx/fontx/b>
</td>
</tr>
<tr>
<td ALIGN=CENTER>
<table BORDER=0 CELLSPACING=0 CELLPADDING=6 >
<tr>
<tdx:b>
Sign Me

Up !</ax/fontx^>

86

<td>
</tr>
</table>
</td>
</trxtr> <td NOWRAP BGCOLOR="#336699"xbxfont face="arial"xfont

color="#FFFFFF">rm a Registered Member</fontx/fontx/b></tdx/tr>
<form action="login_submit.jsp" target-'_top" method="post">

<tr> <td ALIGN=RIGHT> <table BORDER=0 CELLSPACING=0
CELLPADDING=2 >

<tr> <td ALIGN=RIGHT NOWRAPxfont face="arial"xfont size=-l>User
ID:</fontx/fontx:/td>

<tdxinput name="userid" size=20 maxlength=32 value-'"x/tdx/tr>

<trxtd ALIGN-RIGHT NOWRAPxfont face="arial"xfont size=-
1 >Password:</fontx/fontx/td>

<tdxinput name-'password" type-'password" size=20maxlength=32
value=""x/tdx/tr>

<trxtd> </tdxtdx:input type="submit" value="Sign
in"x/tdx:/formx:/tr> </tablex/td> </tr> </tablex:/tdxtd> </tdxtd
VALIGN=TOP WIDTH="100%"xtable BORDER=0 CELLSPACINGS
CELLPADDING=4 WEDTH="100%" >

<trxtd BGCOLOR="#CCCCCC"xb>At NPS Bulletin
Board!</fontx/bx/tdx:/tr>

<trxtd VALIGN=TOPx:ulxlixfont face="helvetica,arial"xfont size=-
2>Please register to sell!</fontx/fontx/li>

<lixfont face="helvetica,arial"xfont size=-2>!Oracel & Java together are
great! !!</fontx/li>

 Next~> Database
Replication!</fontx/fontx/lix:/ul> </td> </tr> </table> </td> </tr>
</tablex/centerxbr>
 <center>

<table BORDER=0 CELLSPACING=0 CELLPADDING=4 WIDTH="80%" >
<tr>
<td align="right"x/td>
</trx/table>
</center>
</body> </html>

87

a Login_submit.jsp

<%@ page contentType="text/html;charset=WINDOWS4252"%>
<%@ page language = "Java" errorPage-'errorpage.jsp" import = "java.util.*,

oracle.jbo.*, javax.naming.*, oracle.jdeveloper.html.*, oracle.jbo.common.appmgr.*,
oracle.jbo.html.databeans.*" %>

<html>
<head>
<LINK REL=STYLESHEET TYPE="text/css"

HREF="<%=session.getValue("CSSURL")%>">

<jsp:useBean class="auctionbeans.loginBean" id-'login" scope="request" >
<%
login.initialize(application,session,

request,response,out,"packagel_PackagelModule.CustomersView");

login.setLoginParms(request.getParameter("userid"),request.getParameter("password"));
login.execute();
%>
</jsp:useBean>

</body>
</html>

88

□ ItemViewInsertjsp

<%@ page contentType="text/html;charset=WINDOWS-1252"%>
<%@ page language = "Java" errorPage-'errorpage.jsp" import = "java.util.*,

oracle.jbo.*, javax.naming.*, oracle.jdeveloper.html.*, oracle.jbo.common.appmgr.*,
oracle.jbo.html.databeans.*" %>

<%
// make sure the application is registered
oracle .jbo.html.jsp JSP ApplicationRegistry.registerApplicationFromPropertyFile(

session, "packagel_PackagelModule");
%>

<html>
<head>
<SCRIPT LANGUAGE="JavaScriptl.l">

</SCRIPT>

<LINK REL=STYLESHEET TYPE="text/css"
HREF="<%=session.getValue("CSSUPvL")%>">

</head>
<body>

<jsp:useBean id="RowEditor"
class="oracle.jbo.html.databeans.EditCurrentRecord" scope="request">

<%
String loggedin = (String) session.getValue("ISLOGGEDIN");

if (loggedin != null && loggedin.equals("true"))

{
%>

<%
RowEditor.initialize(application, session , request, response, out,

"package 1 _Package 1 Module. srchltemsView");

RowEditor.setTargetUrl("ItemsView_SubmitInsertForm.jsp?SellerId=" +
session.getValue("CUSTID"));

RowEditor.setDisplayAttributes("CatId,ItemName,Description,ImageUrl,StartPrice");

89

RowEditor.createNewRow();

RowEditor.useComboBox("CatId", "select id, name from categories", "NAME",
"ID");

RowEditor.getFieldRenderer("CatId").setPromptText("Category");

RowEditor.getFieldRenderer("ItemName").setDisplayWidth(40);
RowEditor.getFieldRenderer("ItemName").setDisplayHeight(2);
RowEditor.getFieldRenderer("ItemName").setPromptText("ItemName");

RowEditor.getFieldRenderer("Description").setDisplayWidth(60);
RowEditor.getFieldRenderer("Description").setDisplayHeight(4);

RowEditor.getFieldRenderer("ImageUrl").setDisplayWidth(60);
RowEditor.getFieldRenderer("ImageUrl").setDisplayHeight(1);
RowEditor.getFieldRenderer("ImageUrl").setPromptText("Image<A

HREF=\"javascript:imagepick()\"ximgsrc=\"/ugur/webapp/images/itempick.gif\"
border=0x/a>");

RowEditor.getFieldRenderer("StartPrice").setPromptText("Asking Price");

RowEditor.render();

%>
<%

}
else {

out.println("<brXcenterxh2>Sign In Required!</h2x/centerxbr>");
out.println("<centerxbrxb>In order to sell an item you must first Sign In or

become Registered User!
");
out.println("<brxbrx:a href=\"login.jsp\">Click Here to Sign

In!</ax/bx/center>");
}

%>

</jsp:useBean>

</body>
</html>

90

a CustomerViewInsertjsp

<%@ page contentType="text/html;charset=WINDOWS-1252"%>
<%@ page language = "Java" errorPage-'errorpage.jsp" import = "java.util.*,

oracle.jbo.*, javax.naming.*, oracle.jdeveloper.html.*, oracle.jbo.common.appmgr.*,
oracle.jbo.html.databeans.*" %>

<%
// make sure the application is registered
oracle .jbo.html.jsp JSP ApplicationRegistry.registerApplicationFromPropertyFile(

session, "packagel_PackagelModule");
%>

<html>
<head>
<LINK REL=STYLESHEET TYPE="text/css"

HREF="/ugur/webapp/css/auctions.css">
</head>
<body>

<centerxh2>Sign up for NPS Bulletin Board</h2x/center>

<jsp:useBean id="RowEditor"

class="oracle.jbo.html.databeans.EditCurrentRecord" scope="request">
<%
RowEditor.initialize(application, session, request, response, out,

"packagel_PackagelModule.CustomersView");
RowEditor.setTargetUrl("CustomersView_SubmitInsertForm.jsp?Id=999");

RowEditor.setDisplayAttributes("Userid,Password,FirstName,LastName,Phone,E
mail,Address");

RowEditor.getFieldRenderer("Userid").setDisplayWidth(20);
RowEditor.getFieldRenderer("Password").setDisplayWidth(20);

RowEditor.getFieldRenderer("FirstName").setPromptText("Asking Price");

RowEditor.getFieldRenderer("LastName").setDisplayWidth(20);

91

RowEditor.getFieldRenderer("Email")-setDisplayWidth(30);
RowEditor.getFieldRenderer("Phone").setDisplayWidth(30);
RowEditor.getFieldRenderer("Address").setDisplayWidth(30);
RowEditor.getFieldRenderer("Address").setDisplayHeight(l);
RowEditor.createNewRow();
RowEditor.render();
%>
</jsp:useBean>

</body>
</html>

92

□ CustomerView_SubmitInsertForm.jsp

<%@ page contentType="text/html;charset=WINDOWS-1252"%>
<%@ page language = "Java" import = "java.util.*, oracle.jbo.*, javax.naming.*,

oracle.jdeveloper.html.*, oracle.jbo.common.appmgr.*, oracle.jbo.html.databeans.*" %>

<%
// make sure the application is registered
oracle.jbo.html.jspJSPApplicationRegistry.registerApplicationFromPropertyFile(

session, "package 1 _Package 1 Module");
%>

<jsp:useBean id="RowEditor"
class="oracle.jbo.html.databeans.EditCurrentRecord" scope="request">

<%
RowEditor.initialize(application, session , request, response, out,

"packagel_PackagelModule.CustomersView");
RowEditor.execute();

%>
</jsp:useBean>

<html>
<head>
<LINK REL=STYLESHEET TYPE="text/css"

HREF="/ugur/webapp/css/auctions.css">

<%

Row row = RowEditor.getRowSet().getCurrentRow();

%>

<META HTTP-EQUIV="refresh" CONTENT="l; URL=login.jsp">
</head>
<body>

<centerxh2>Customer Successfully Added !</h2>
<P>Proceeding to login page...</center>

</body>
</html>

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

LIST OF REFERENCES

1. Abbey, M., and others, Oracle 8i Beginners Guide, Osborne McGraw-Hill, 1999.

2. Bradley, D., Oracle 8i Web Development, Osborne McGraw-Hill, 2000.

3. Burlenson, D., Oracle8 Tuning, Coriolis Group, 1999.

4. Elmasri, R. and Navathe S., Fundamentals of Database Systems, 3 rd. Edition,

Addison-Wesley, 2000.

5. Hernandez, M., Database Design for Mere Mortals, Addison-Wesley, 1998.

6. Horstman, C. and Cornell G., Core Java 2, Sun Microsystems Press, 1999.

7. JavaSoft Web site, "Remote Method Invocation Specification",

[http://www.javasoft.eom/products/jdk/l. 1/docs/guide/rmi/spec/rmiTO

C.doc.html]. May 1999.

8. JavaSoft Web site, "Press Archive",

[http://javasoft.com/pr/archive/pr_2001.html7frontpage-spotlight]. Oct. 1999.

9. JavaWorld Web site, "Write a session EJB",

[http://www.javaworld.com/javaworld/jw-07-1998/jw-07-step.html]. Jan. 2000.

10. Kolb M. and Duanne K., Web Development with Java Server Pages, Manning

Press, 1999.

11. Kroenke David M., Database Processing, Prentice Hall, 1998.

12. Loney K., Oracle DBA Handbook, Oracle Press., 1999.

13. Lozano F., "Accessing Databases Using Java and JDBC"

[http://www.edm2.com/0607/msql3.html]. April 2000.

14. Microsoft Web site, "ODBC Architecture.",

[http://msd^.microsoft.com/library/psdk/dasdk/odch6ghl.htm]. November200.

15. Morrison J. and Morrison M., "A Guide to Oracle 5", Course Technology, 2000.

16. Odewahn, A., Oracle Web Applications, O'reilly Press, September 1999.

17. Olivia R., "Advanced Topics in Database Sys.",

[http://misdb.bpa.arizona.edu/~96g.]. Dec. 1998.

18. Oracle Corporation, "Deploying Enterprise JavaBeans in the Oracle 8i Server",

Technical White Paper, 1999.

95

19. Oracle Web site, "General Documentation, Release 3 (8.1.7)",

[http://otn.oracle.com/docs/products/oracle8i/doc_index.htm]. March 1999.

20. Oracle Web site, "Oracle 8i Enterprise Edition",

[http://om.oracle.com/son^are/products/oem/software_index.htm]. Dec. 2000.

21. Ramakrishan, R. and Gehrke, J., Database Management Systems,

22. Rick, G-, Stackowiak, R. and Stern J., Oracle Essentials, Oracle 8 & Oracle 8i,

O'Reilly Press, 2000.

23. Sun Systems Web site, "Java 2 Platforms Enterprise Documentation",

[http://developer.java.sun.com/developer/infodocs/]. March 1999.

24. Sun Web site, "Core Servlets & JavaServer Pages".

[http://www.sun.com/books/catalog/hall/]. Jan. 2000.

25. Tower, J. and Billings, M., Rapid Application Development with Oracle Designer,

Addison-Wesley, 1997.

26. WebBase Web Site, "How WebBase Works?", [http://www.

webbase.com/corp.htm]. June 1998.

27. Wilkinson, S. and others, ProfessionalJSP, Wrox Press, 2000.

28. Zikri A., and Dirksen P., Oracle Designer Generation, Osborne Oracle Press,

1999.

96

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Chairman, Code CS 1
Naval Postgraduate School
Monterey, CA 93943-5101

4. Professor Thomas Wu 1
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5118

5. Deniz Kuwetleri Komutanligi 1
Personel Daire Baskanligi
Bakanliklar
Ankara, TURKEY

6. Deniz Kuwetleri Komutanligi Kutuphanesi 1
Bakanliklar
Ankara, TURKEY

7. Deniz Harp Okulu Kutuphanesi 2
Tuzla
Istanbul, TURKEY

8. Yazilim Gelistirme Grup Baskanligi 1
Deniz Harp Okulu Komutanligi
Tuzla
Istanbul, TURKEY

9. Envanter Kontrol Merkezi Komutanligi 1
Golcuk
Kocaeli, TUZLA

97

10. Ugur Demiryurek
Sirinevler Mah. 3 No lu Sokak
No:2 Kat:3
Sakarya, TURKEY

98

