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ABSTRACT

Feedback control of a two wheeled mobile robot from one point in its
configuration space to another presents a challenging problem. The mobile robot
belongs to a class of systems with non-integrable motion constraints for which
smooth feedback control laws cannot be designed. Recent work has been aimed
at developing time-varying feedback control laws and piecewise smooth feedback
control laws. These control techniques are, however, not optimal in any sense.
In this research, we look into the optimal control of a mobile robot using partial
feedback. A solution is obtained by application of Pontryagin’s Minimization
Priciple and solving the associated two point boundary value problem using a
numerical relaxation technique. The resulting robot trajectories exhibit optimal

behavior for all non-trivial cases.
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I. INTRODUCTION

The mobile robot belongs to a class of systems with non-
integrable motion constraints for which smooth feedback
control laws for motion from one point in the configuration
space to another cannot be designed [Ref. 1]. Recent work
aims at developing time-varying feedback control laws [Ref. 1]
and piecewise smooth feedback control laws [Ref. 2]. These
control techniques are, however, not optimal in any sense. In
this research, we look into the optimal control of a mobile

robot using partial feedback.

A. KINEMATICS OF A MOBILE ROBOT

The position and orientation of a two wheeled mobile robot
on a horizontal plane is described by three generalized
coordinates. Figure 1 shows the three coordinates chosen for
our robot. These are the two X-Y coordinates for the location
of the robot on the plane, and an angular displacement, 6, to
describe the robot’s orientation with respect to the positive
X axis.

The velocity of the robot can be described completely in
terms of translation and rotation. Assuming no slipping, the
interaction of the wheels with the plane restricts the
instantaneous motion to the direction of orientation of the

robot. Defining U, as the velocity in the direction of



orientation, and U, as the rate of change of the orientation,

the following constraint equations result:

(1)

X = U, cosB
¥ = U, sind ()
§-0 @

Note that while the constraints above limit the number of
degrees of freedom for the system to two, specifically U, and
U,, a minimum of three coordinates are required to describe
the system. This is true of all nonholonomic systems; the
number of generalized coordinates required to describe the
system is greater than the number of degrees of freedom.

A nonholonomic system is characterized by the non-
integrable nature of the constraint between the first
derivatives of the coordinates. [Ref. 4:p. 244] In the
particular case of the mobile robot, the non-integrable
constraint is due to the nature of the angular displacement
term, 6. As 0 is an independent function of time, the
relationship between the remaining coordinates cannot be
uniquely determined. In other words, for a robot moving from
one position and orientation on the X-Y plane to another, the
instantaneous value of § depends upon the path followed by the
robot. As a result, the coordinate relationship is dependent

upon the path taken.



B. OPTIMAL CONTROL

Since the number of paths the robot could follow is
infinite, some paths would be more efficient than others. In
order to determine the most efficient path, we must first
chose a cost function or a performance index. Following the
development in Reference 5, pp. 180-183, for optimal control
of a standard nonlinear system, we may obtain the necessary
conditions for optimality.

We first express the differential equations of motion in

the form,
%= f(x,u,t) 4)

The cost function can take the form
te

J=Q[x(tf).t[]*fi’[x(t),u(t),t]dt (5)
3

where F could represent the pseudo-kinetic energy in the form
u?, with u as the velocity. The term ¢ is a terminal cost
vector and is a function of the states at the final time.
This final time is not specified. Applying Lagrange
multiplier vector, A, we form the augmented functional.
te
J=0+ [ [FeAT(£-5) ) de (6)
%
After defining the Hamiltonian as
H=F+ATf 7)
we can determine the necessary conditions for an optimal
solution using Pontryagin’s Minimization Principle:

[Ref. S5:p. 183]



m»%] e dte=0 (8)

-2y x(t1=0 (9)
_(8H,r (10)
2
OHyr, 1
1y rer (11)
o, (12)

ou

"The optimal control u(t) is determined at each instant to
render the Hamiltonian a minimum over all admissible control
functions." [Ref. 5:p. 183] Using the last condition, we can
solve for the control input, u, in terms of the states, x, and
what we will now refer to as costates, .

Let us now consider some simplifications to the above
necessary conditions. If we fix the final time to achieve the
desired condition, the first criterion is immediately
satisfied as 6ty = 0. If we also describe the desired
condition directly in terms of the states, x, and fix the
value of the desired final states, then 0x(tg) = O.
Consequently, the second condition is met. In practical
terms, this translates to going to a desired set of states in
a fixed amount of time.

We now apply these simplifications to the differential
expressions for the states and costates. Assuming our initial

states are known, we have boundary conditions for the states



at the initial and final time. However, we know neither the
initial or final boundary conditions for the costates. And
since the state and costate differential expressions are
coupled, they must be solved simultaneously. As a result, the
combined expressions give the form for a two point boundary
value problem.

k4
b3

[f(x, M Ery =K (a3
g(X,A) Kienep =Xe

C. TWO POINT BOUNDARY VALUE PROBLEMS

In the case of linear differential equations, many
analytic methods are available for solution of two point
boundary value problems. However for nonlinear problems like
the mobile robot, analytic methods for the solution to the two
point boundary value problem do no exist. In some cases, non-
linear problems can be solved analytically. Such problems are
generally very simple and may only represent special cases of
an overall problem. As we shall see later, the mobile robot
problem does not lend itself readily to analytic methods.

In many cases, a non-linear two point boundary value
problem can best be solved numerically. Unfortunately,
numerical methods for non-linear two point boundary value

problems are usually fairly complicated.



The general approach is to make an initial "guess" to the
solution and adjust this trial solution to match the boundary
conditions and differential equations. There are two distinct
methods for solving such problems, shooting and relaxation
[Ref. 6],

The first method, shooting, requires an initial guess of
dependent variables based upon one boundary. Then using
numerical methods common to initial value problems, we obtain
a trial solution. This trial solution is compared against the
second boundary. The error between the two is noted and the
free parameters of the equation adjusted accordingly. This
repeats until the error is sufficiently small. The advantages
of this method are its simplicity and relative speed. For
extremely non-linear systems, however, systematically
improving the solution can prove difficult.

In the second method, relaxation, the differential
equations are converted into difference expressions using
Taylor series expansion. With an arbitrary initial trial
solution, the variance of each point in the discretized mesh
is calculated. The trial solution is then adjusted to improve
agreement with the differential equations and the boundary
conditions. This continues iteratively until the variance, or
error, of the solution is sufficiently small. Relaxation
methods are considered advantageous for problems with
complicated boundary conditions, but smooth and non-

oscillatory functions. Two disadvantages of this method are



the large number of variables to be solved simultaneously and
complexity of the expressions required in the algorithm. The
number of differential equations, mesh size and coupling of
adjacent points in the mesh determine the number of variables
to solve. For example, in a system with 8 differential
equations, on a mesh with 100 points, coupling two points,
1600 variables would result.

For the mobile robot problem, the kinematic equations
involve trigonometric functions. As we shall see in Chapter
III, the resulting state and costate differential equations
are highly non-linear. In anticipation of the highly non-
linear kinematic behavior of a mobile robot, the approach
taken here is the relaxation method. We take advantage of
published computer programs designed specifically for this

method.

D. APPLICATION OF THE RELAXATION METHOD

As previously stated, the method starts with an initial
guess trajectory for each of the differential equations and
then adjusts these trial solutions to match both the governing
equations and the boundary conditions. The method in which
the computer program makes the corrections to the trajectories
is a key to finding a proper solution. The source of the
computer code and expression preparation process used here is

Reference 6.



Given a set of N coupled first order differential
equations, we first divide the independent variable domain
into M discrete mesh points, ty, k= 1,2,..M. For our problem,
the initial state boundary values are located at t; and the
final state boundary values at ty. The costate boundary
values are not fixed. The N differential eqguations then
become finite difference equations to describe the internal
meshpoints. We define the vector y, as the entire set of
dependent variables at point t,. The exact form of the finite
difference equation depends on the coupling desired. For our
purposes, a backward difference technique is sufficient. This
will couple each point on the mesh with the point preceding
it.

By comparing the difference between adjacent solution
values, (yx-¥x.;), to the solution of the finite difference
equations, we form an error equation. A solution exists where
the error equations are zero and the boundary conditions are
met. Considering any internal mesh point, k, this error

expression takes the form
Ey=y~Viey = = ) G (Er Epoy s Vier Vieey) (14)

Through Taylor series expansion of the error equation we
determine the variance of the error with small changes in Ayy.
Since we are looking for the solution where the error is zero,

for the internal mesh points, k=2,3...M, the form is



" 2n
DI D D N
=

o (15)
J=1,2,...N
where
_ B
I (16)

At each internal point, k, S,

i,n £OTMS @ N X 2N matrix. The

contents of this matrix are corrections to the solution
variables between points k and k-1.
At the initial boundary, since E; depends only on y; the

relation takes the form

I
DIETINS AR I
=

(17)
FEnl, 0,42, .00 N
where
9B,
"W (18)
n=1,2,...,N

And similarly, at the final boundary, where E, depends

only on yy, the form is

x
Y S8
=

(19)
j=1,2, ,n,
where
%m'i%%il'
oM (20)
n=1,2, N



The above equations can now be used to solve for
corrections, Ay, to the trial solution vector, y. This
process continues iteratively until the correction are
sufficiently small. Of course, since the equations are
coupled, they must be solved simultaneously.

If we combine the expressions for each internal point and
boundary points in a global matrix, we see that matrix has a
special "block diagonal" form (Fig. 2). This form allows a
more economical matrix inversion process. The matrix
inversion is accomplished through a form of Gaussian
elimination which takes advantage of the special form. This
process requires significantly less computational time or
storage than inversion of the entire matrix. This is critical
due to the size of the global matrix, (MN X MN).

Recall that our overall goal is to determine the optimal
trajectory for a mobile robot traversing from one position and
orientation to another. Application of optimal control theory
results in a two point boundary value problem. Using the
method described above, we can solve most problems of this
form. However, this method does not guarantee a solution.
Many factors will affect the program’s ability to converge to
a solution. Therefore before attempting the two wheeled
mobile robot problem, a simpler related problem will be
solved. This will serve to provide insight on use of the

program and validate the process.

10



IXI. OPTIMAL CONTROL OF A ROLLING DISK

In Chapter I, we provided an outline for the optimal
control problem of a dynamical system. 1In this chapter we
apply Pontryagin’'s Minimization Principle [Ref. 5] and solve
the associated two point boundary value problem for the simple
example of a rolling disk. The differential equations of
motion for the disk and robot systems are similar, and the
nonholonomic constraint is exactly the same; no side slipping
is allowed. The only difference between the rolling disk and
the mcbile robot model is the addition of a state variable:
the angular orientation of the rolling disk about it’'s

rotational axis, ¢.

A. PROBLEM DESCRIPTION

Consider a vertical disk rolling on the horizontal, X-Y
plane. (Fig. 3). Like the mobile robot, the orientation of
this disk with respect to the plane will be described as an
angular displacement, §, from the X axis. The orientation of
the disk face with respect to it’s axis of rotation is
described as an angular displacement, ¢, from the normal
vector to the X-Y plane. This gives us a total of §
coordinates to describe the position and orientation of the

disk.

11



The velocity of the disk, like the robot, can be described
in terms of translation and rotation. The translational
velocity again is constrained to the direction of orientation
of the disk. However, the forward velocity of the disk is
directly related to the angular velocity of ¢ and disk radius,
R. If we consider the variation of 6§ and ¢ with time as
control inputs, U; and U, respectively, the state-space form

of the kinematic equations becomes

X 0 R cos®
v| _ |0 R sind|fu, (21)
B 1 0 |lE
N 0o 1
¢
or in a more condensed form as
(22)

B. OPTIMAL CONTROL

The objective for this problem is to roll the disk from
and initial position and orientation to a desired final
position and orientation in some optimal manner. Note that
for our problem the time to accomplish this task is fixed.
The choice of units for the X-Y parameters are arbitrary. The
angular displacements are in non-dimensional radians. Time is
considered on the unity scale with 0 at t, to 1 at tg. The
initial conditions at t, are defined as X;, Y;, 6;, ¢;, and the
final conditions at tg as Xg, Yy, 0f ¢f.

12



The development of the optimal control problem follows the
method described in Chapter I. To determine an optimal path
for the disk, we define the performance parameter as

13

Jg=1 fu’"u de (23)
° £

Since the terminal costs are path independent, they are
neglected here. Adding a Lagrange multiplier the cost
functional becomes

uTu + AT(Ku - X)) dt (24)

By defining the Hamiltonian,

H %(uTu + ATKu) (25)

the optimal control is obtained as:

u=-K7 (26)
Substituting this expression into equation (25), the
Hamiltonian becomes
H= -2(TKKTA) (27)

Using this new expression, the states can be expressed as
X = -KKTA (28)

or in expanded form,

13



2 2
n Jizﬁ (1 + cos28) - R;= s5in20 - RcosOA,
S sin2@ - L (1 - cos28) - RsinBi @
0 2 2 ‘
U A
- (Rcosh, + Rsindh, + A,)
Similarly, the costates equations can be expressed as
(30)

- -2 (-1
DI ;J.TKKT).)

Noting that the matrix K is only a function of state variable

0, the individual costate equations become

% -0
X =0
: (31)
B33 - 43 (5in20 + 21,4, + cos20)]

A, =
: +RA¢(A,cos8 - A,51nB)

Combining the states and costates into a single vector gives

the structure for the two point boundary value problem.



r2 2
- 2;"‘ (1 + cos20) - £5in26 - RcosBA,
; R? 2
)R Gnae - B () - cos2e) - Rsinﬁll]
v z B
6 [4s] (32)
¢ B [~ (RcosBA, + Rsind, + 1,)]
Xy 0
X, o
s R2[ 92_52y o4
x, T[(szk,)mnze + 22,4, + cos28|+|
RAy(A,cos6-1,8inB)
0

To the best of our knowledge, no analytical solution exists to
this problem. A similar problem has been solved analytically
by Cameron [Ref. 7]. However, his problem looks for the
minimum time solution. By use of Pontryagin’s Minimization
Principle, equation (12), this implies use of the time
derivative of the Hamiltonian. For the minimum time problem,
it can be shown that the Hamiltonian is a constant. However
in our problem, the final time is fixed and terminal cost, &,
is zero. From equation (8), the Hamiltonian may therefore be
any value over time. Therefore, Cameron’s analytical method

does not apply to our fixed time problem.

15



C. NUMERICAL SOLUTION BY THE RELAXATION METHOD

Given the N differential equations above, we apply the
relaxation method described in Chapter I to develop
expressions required by the relaxation method computer
program. This essential entails finding the elements of the
S matrix. For the interior meshpoints, a total of N X 2N such
expressions must be developed. The two boundaries each
require an additional N X N expressions. Since there are
eight differential equations, we must develop a total of 144
Sj,n expressions. Fortunately, many of the expressions for
this particular problem will turn out to be zero.

Rather than repeating the development for all these
expressions here, an example of developing expressions for an
interior point is presented. Given a differential equation
which describes the interior mesh points, the first step is to
substitute Y, for all dependent variables, where n is the

equation number, such that

) (33)

We then apply the finite difference expression

¥, pm et Yo x (34)
on 5

16



to each independent variable. Taking the first state equation

as an example, the finite difference equation is

-R* (Y54 * Y5, i) [l,cosz( Yok * Yok
2 2 \ 2

y;,k*‘yz,k-x) (35)
2

R (Yot Youn) (.
5 3 \San(

os (

(yevk * yB,k-'l) Y},k * YJ,P-J)
2 B

Next, the finite difference equation is placed into the error

expression.
-R* (Y54 + Y5'“){1+cosz( Yok * Yikny
2 2 \ 2
By = (%Y ) -h{ B2 ek * Yo (oo Yaut ¥y
1k 1 1 3 3 |ein ( 3 )
Rk * Yok (oo Yok * Yok
2
(36)
Where h is the grid spacing on the mesh. For our evenly
spaced mesh,
.1
b=l 37
As given by equation (16), the S; , expressions are the

partial derivatives of the error expressions with respect to

each of the states and costates at meshpoint k and k-1.



Again, in the interest of brevity, only two S3,n
expressions are presented here. Taking S; 5 as the first

example yields

Sis =

OE, 2
ay;:l - hf (1+COS( ¥y, + ¥y n)) (28

Fortunately, due to the finite difference method chosen, these
expressions tend to repeat. For example S; ;3 yields

aEJ w3

Sin * 5y
5.k

2
= hTR(1~cos(y,,k+y,,,_,>) (39)

the same as S; ;. The development of the other 126 interior
meshpoint expressions follow similarly, some simpler than
others. The final result for all of these terms can be seen
in the DIFEQ.FOR subroutine in Appendix A.

The expressions for the boundary expressions, though
similar, fall under equations (18) and (20). The major
difference for the boundary expressions is that they are not
based on the differential equations. Since our boundary
conditions are simply state values, the error expressions are

at the initial and final time are of the form

Fas = Yo (40)

Eﬂ,M'l = yn.H

where n is the nth variable as given by equation (33). Thus

for the initial and final boundary conditions respectively,



OE,
{ BYiiz Sj'"""‘"} 1, for j=n
P e,
7 omen

M

(41)

where N is the total number equations and n; is the number of
boundary conditions at the initial time. The shift in indices
by N and n; is necessary to take advantage of the ‘block
diagonal’ form of the overall matrix of S expressions. The
result is the unity matrix for the initial and final S
expressions. Note that for more complicated boundary
conditions, such as a manifold of states or terminal costs,
the relationships above are not valid.

Next, we must develop an initial guess for the values of
the states and costates for all points on the mesh. For the
states this guess can be somewhat intuitive. For example, we
desire that the disk start at the X,Y position (0,0) and roll
ten (10) times and make one (1) complete turn to return to the
starting position. Therefore, the initial and final boundary
conditions are

=0
[
2 (42)
2

o,
-
wonw

n
on

where the angular terms are expressed in radians.

Intuitively, we would expect the most optimal path in the X-Y

19



plane to be a circle. If we initially assume that the angular
terms vary at a constant rate, the initial guess trajectory
for the state variables will appear as shown in Figure 4.
8ince we have no information on the costate behavior, we will
assume the initial trajectory for each costate to be a
constant value of zero.

After the required expressions and initial guess entry
method is successfully compiled, the program is ready to run.

A sampling of the results follow.

. DISCUSSION OF RESULTS

For the case described above, the program converges in a
few hundred iterations. From Figure 5, we see that the final
state solution is in fact the same as the initial guess. The
iterations were required to adjust the costate solutions to
their proper trajectories. (Fig. 6) Since the state solution
gives the expected circular path, the solution appears to be
optimal.
For a more rigorous validation, we substitute the costate

solutions

(43)

back into equation (32).

20



The derivative equations can then be expressed as

X = 20mcos®

¥ = 20msin®

6 =2n
4 = 20m o
A =0
A, =0
Ay =0
A =0

.

Note that the angular velocity terms are constant. This is
consistent with the minimization of our cost function. And
gince this is a kinematics problem, the velocities may be non-
zero at the initial and final time. Integrating the state

terms yields

(45)

which gives the equation for a circle in the X-Y plane.

If we make a slightly different initial guess for the
states, such as an ellipse (Fig. 7) the final result is the
same. If however, the initial guess is not sufficiently good,
the program does not converge. While the initial guess for
the states can usually be based on some intuitive reasoning,
providing a sufficiently good estimate of the costate can
prove difficult. For this problem, an initial guess of all
zeros for costates works quite well. If, however, we chose
trial values that are 10 units away from the proper solution,

21



the program does not converge. Thus, while the costates may
not be particularly important to the usable state space
solution, they are necessary to solve the optimal control
problem. Generally though, a poor estimation of the costate
can be compensated for by a good state estimation.

Where the circular path presents a fairly simple solution,
we now choose a more difficult task for our disk. This will
demonstrate the usefulness of this method for problems where
the optimal path is not obvious. For example, we desire that
the disk make 10 rolls and 5.5 turns while moving on the X-Y
axis form a point (10,10) to a point (-5,-2). As an initial
guess, we shall use the state and costate solution to the
circular problem above. The resulting path, obtained after
several hundred iterations, appears in Figure 8. The state
and costate trajectories appear in Figures 9 and 10,
respectively. While these solutions appear optimal, they are
not obvious at the outset of the problem.

The program for the disk problem has been tested
extensively and, when provided a sufficiently good guess,
found to give an apparently optimal solution for all cases
except one. For the case of rolling the disk where the
initial and final 0 boundary conditions are the same and lie
along the same line, the program does not converge. However,
the program will converge if there is at least a very small
difference between the initial and final angles. For the

nearly straight line case, the smallest angular difference
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which results in a convergence is .00036 degrees. (Fig. 11)
To achieve this it is necessary reduce the SLOWC program
parameter to cause smaller adjustments to the trial solution.
This indicates that for small difference in boundary 6 values,
the program is sensitive to small changes. If we exaggerate
the distance the disk must roll between these two points, the
reason for this behavior becomes evident. (Fig. 12) Here we
specified that the disk roll 5 times. The initial 6 value is
45 degrees. If we require that the disk make a 3.6 x 1078
degree turn to the left (1 X 107! rotation) we obtain one
optimal solution. However, if we require that the disk make
a 3.6 x 10°8 degree turn to the right (-1 X 10710 rotation) we
obtain a much different solution. Hence, for very small
changes in angle the solution varies widely. If we specify a
zero rotation, there is no clear preference for the most
optimal solution, and the program cannot converge. The same
holds true as we approach a perfectly straight line path. We
specify the initial and final position and the initial and
final ¢ values, which theoretically are the same. However
numerically, there is a small difference. This difference is
sufficient to induce the problems above and prevent
convergence. Fortunately, an analytic solution to the exact

straight line problem is easily obtained.
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The computer program used includes several control
parameters which assist in finding a solution. While running
various simulations, the following trends were noted:

® Slowing down the convergence by decreasing SLOWC can
help find a solution when the maximum error fluctuates near
some minimum value. However, doing so does not guarantee a
solution.

® The SCALV values should represent the absolute magnitude
of a typical solution value. Where this value is not known
use a small SCALV to start.

® The trend of the maximum error with iterations should be
used as a guide as to whether the program will converge to a
solution. However, the trend neither guarantees nor excludes
convergence.

As demonstrated, the rolling disk problem requires a path
which is continuous and smooth. And since we specify the
distance the disk must roll and number of turns the disk must
make, the solution is only optimal for those specifications.
In the more general mobile robot problem, we look for the most
optimal path which need only meet the initial and final

boundary conditions.
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III. OPTIMAL CONTROL OF A MOBILE ROBOT

In Chapter II we developed a two point boundary value
problem by applying Pontryagin’s Minimization Principle to the
equations of motion for a rolling disk. We then solved the
resulting two point boundary value problem by a numerical
relaxation technique. Having demonstrated that the process
above provides an optimal solution for a simple nonholonomic
system, we return to the more difficult mobile robot problem.
Our goal is to move the robot from a initial position and
orientation to a desired one within a fixed amount of time, in
an optimal manner, and using feedback control. Before
developing our solution, however, we first look at some
conventional theory regarding mobile robot control. This is

necessary to motivate the approach used to solve our problem.

LITERATURE SURVEY

Extensive research into non-linear control design of two
wheeled mobile robots exists. For the problems of path
following and tracking, relatively classical non-linear
control techniques have been applied successfully. [Refs. 2,3]
However, the problem of stabilization about a point is more
difficult. Brockett's Theorem [Ref. 8] shows that smooth non-
time varying control laws cannot be developed for such

problems.
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This is the case for all driftless, nonholonomic systems of
the form

£ “e

Using classical Lyapunov analysis, Reference 1 presents a
general method for finding time varying control laws for
driftless systems. In Reference 6 and 7, the authors develop
smooth, time varying and piecewise continuous control laws.
While these controls employ closed loop feedback, none
considers the optimality of the solution. In this research,

we apply optimal control theory to the mobile robot problem.

B. STATE AND COSTATE EQUATIONS FOR THE MOBILE ROBOT

In our approach to the mobile robot control problem we
first move the robot onto the line described by the final
position and orientation of the robot. (Fig. 13) The robot
may then roll directly to the final desired position. The
point at which the robot will intersect the line and the
manner in which the robot will approach the line is not
specified. The goal of the optimal control problem is to
minimize the distance between the desired position of the
robot and the point of intersection of the robot with the

line, in a way that utilizes the minimum amount of energy.
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Basic Kinematic Relationships

Returning to the coordinate and velocity descriptions
of Figure 1, we begin with the kinematic equations,

= Ucos®

= U;sin® (47)
-u,

@ X

From the desired final conditions of Xy, Y5 and f4 we
redefine our states in terms of the difference between the

final condition and the current coordinate value such that

(48)

As our approach suggests, we require that the
difference between the robot angle and desired angle be
minimized or,

AB =0 (49)
We also require that the perpendicular distance between the
robot and the line be minimized. This distance can be defined

in trigonometric terms as
p = (AYcosB, - AX sin®,) (50)

In order to converge p and Af to zero asymptotically,
we find that the second input should be a function of the
first input. Our analysis is based on the application of

Lyapunov's Stability Theorem.
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2. Application of Lyapunov’s Theorem

Lyapunov’s Theorem of asymptotic stability provides
that the equilibrium of zero for a system,
. 51
%e£(2,0) (0

is asymptotically stable if there exists a positive definite

function such that the first derivative of that function is
non-increasing. [Ref. 9] 1In our case we define a Lyapunov
function as

V= 21(p?+ A6%) (52)
The first derivative of this function is,
V = -p(cosB, sin@ - sinB, cos0) U,-ABU,
= pUsin(AB) - AU,
5 (53)
. _ sin(A6)
Ae(u2 pu, BB )
= -AB (U, - pU, £(A8))
where
sin(A6)
£(AB) & 26 (54)
If we choose
U, = pU, £(AB) + «AB (55)
We may express equation (53) as
V= -aAd? (56)

which is negative semidefinite.
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This equation satisfies Lyapunov’s Theorem for all « greater
than zero, provided that Af# is not equal to zero. In the
event Af is equal to zero, the derivative of the Lyapunov
function becomes negative semidefinite and the asymptotic
stability can be guaranteed by applying the theorem by
Mukherjee and Chen [Ref. 10].

The choice of the second control, U,, given by
equation (55), in terms of the first control, U;, and state
feedback leaves us with the task for the design of one input
for the system, namely U;. U; will be designed using optimal
control methods. The gain, «, affects the rotational motion,
and from Lyapunov’s Theorem, « must be greater than zero at
all times. Various schemes have been tested to determine the
best use of this parameter in an optimal solution for U;.

3. Variations of the Robot Problem

Since the only requirement of U, is that equation (53)
be negative definite, there are infinite variations of this
function which we could employ. 1In the sections below, we
produce five possible variations and discuss the application
of optimal control to each of them

a. Robot 1, Virtual Robot Problem

In this approach, in addition to the original
robot, we define a virtual robot which may travel only on the
line of the desired angle. (Fig. 14) This approach is
somewhat similar to the bi-directional approach. [Ref. 11] The

virtual robot may roll forward or backward, but not turn.
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Our goal is to have the two robots meet at some unspecified
point on the line. This allows a smooth trajectory for each
robot. Furthermore, this positions and orients the real robot
in line with the desired final location, requiring only a
trivial solution to complete. Fortunately, the impact of this
addition to the kinematic equations is minimal. Defining the
position of the virtual robot as X; and Y, which are now

variables, the difference between the two positions is
AX = (XX

AY = (Y1) (7

The difference between the orientation of the two robots is
A6 = (8, - 0) (58)
where 63 is the constant desired angle of orientation. The
differential equations of motion now take the form,
(K| [e088.0s = cos (8, - 48) U
(&) [78in0Us - 5in(0y - 40) U, (59)
(A‘BD -aAO - pU f(AB)
Where U, is the forward/backward velocity of the virtual
robot. Applying the same optimal control theory as before, we

define our cost function as
e
T = £ (AxE+ MY+ 88Y),, + [L(Uf + Ud) (60)
Y

The terminal cost gives a penalty for not going to the desired

final condition, AX, AY, and Af. C is the weighting parameter

for this cost. This cost is necessary as the values of the
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final states tend to float and hence we cannot assume as
before that

87(t,) =0 (61)

From equation (9) we see that to satisfy the necessary

conditions for optimal control, we need

AE%, at t=t, (62)

where
& = 1(AX? -+ AY? + AB?) (63)
This implies that the constraints at the final times are
()., = cam,,
(A),, = CAY),, (64)
(A,),, = C(AB)

As we shall see later, this is important in minimizing the

error at the final time. From the definition of the
Hamiltonian,

H=1L+A"f (65)
where

L:%(U,’ + U%) (66)
and f is the right hand side of equation (59). We apply

equation (12) for both U; and U,. From this we can show that

the optimal control inputs are,

U,=A,cos (8, - AB) + X,5in (0, - AB) + A,pf(AB) (67)

= -2,c080, - A,5inf, (68)
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Applying equations (10) and (11) we can develop a full set of

equations for our two point boundary value problem.

cos@,U, - cos (8, - AB) U,

(AX)| |sin@,U, - sin(6, - A6) U,
(AY) -aAB - pU,£(AB)
(A0 | -h0,5in6,£(40) (69)
Ay A,U,cosB,f(AB)
Ay A, U;sin(8, - A6)
Py - A,U,cos (8,-46)
3 + A, (@ + pU, £/(A8))
where U;, Uy and p, are as described above. The function

F(Af) requires special handling due to the Af# term in the

denominator. By L’Hopital’s rule we know

Lim . lim sin(A8) _
A8lo £a0) = ggT, SIBLA0 - (70)

AT £(a8) = ddm %%Ae) - sin(d0) _ 4 (71)

AB?

Therefore, to maintain continuity during numeric processing we

define
sin(A8)
£(AB) ={ A® , for AB#0 (72)
1, for A8=0
and
cos(AB) _ sin(AB)
cos(AB) _ sin(A0)  (,, agug
£/(a0) = A® 26 or A0 73)
0, for AB=0

From equation (69) the utility of a numeric solution to the

two point boundary value problem becomes clear.
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The process for setting up the S; , expressions

3,0
for the computer program is similar to the rolling disk
problem, although more lengthy and involved. The final
expressions can be found in the DIFEQ.FOR subroutine of
Appendix B.

Upon testing the virtual robot problem, it became
obvious that the discontinuous path was not a problem for the
program. (Fig 15) A look at the velocity components explains
why. (Fig 16) When broken into components the velocities are
smooth. We also note that the non-zero velocities at the
initial and final time are not a source of concern, as this is
a kinematics problem. Furthermore, since this is a motion
planning problem and not feedback control, a two robot model
has no practical disadvantages. However, the next robot models
we consider are based upon a single robot.

b. Robot 2, Single Mobile Robot

The kinematic equations of motion for this problem
are similar to the equations for the two mobile robot except
that X4 and Y, are fixed. As a result,

o (74)

and the kinematic equations appear as

-cos (8, - AB) U,

(AX)
(A (7] ~sin(0, - 40) U, (75)
89y [-e40 - pU (a0



We define the cost function for this problem as
te
T = £(AX* 4 AY? 4 A0, + [ (76)
%
which has the same terminal costs as the two robot problem.

We again use the definition of the Hamiltonian

H=1L+A\"f 17)
where

L=1(u}) (78)
and f is the right hand side of equation (75). Applying

equation (12) for U; we can show that for optimal control,
U,=h,cos (8, ~ AB) + A,8in(8, - AB) + A,p£(AB) (79)

Applying equations (10) and (11) we again develop the

equations for our two point boundary value problem.

-cos (6, - A8) U,

(A%) -sin (6, - A®) U,
(Av) -« AB - pU,£(AB)
(80)[ | -2,u,5in8,£(AB) (80)
A, AUy cOS8,£ (AB)
A2 | [[r,u.sin(e, - A8)
z - A, U,cos (0,-40)
3 + Ay (@ + pU £/(AB))

which is the same as equation (69) except for the first two
differential equations. The resulting expressions can be seen

in the DIFEQ.FOR subroutine of Appendix C:
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As expected, the problem works adequately for
apparently non-smooth paths. (Fig. 17, 18) However, for the
case where we ask the robot to change only its angle of
orientation, the solution given indicates that the robot only
spins without moving forward. While this solution is indeed
optimal, it is evident from the definition of angular velocity
in equation (80) that the robot turns without moving.

c. Robot 3, Contrained Robot Model

To contrain the angular rotation to prevent
rotation when the robot is stopped, we must ensure that U, is
entirely a function of U;. In order to meet Lyapunov’'s
Theorem we must ensure that equation (53) is negative at all

times. In order to meet both requirements, we chose U, of the

form
U, = pU, £(AB) + ag(U,) A8 (81)
where
1, forU,#0
g(U,) = (82)
0, forU,*0

This expression guarantees that Lyapunov’'s Theorem is
satisfied. Application of equation (12) results in the

control,

U, = A,c08(8, - AB) + A,8in(6, - AB) + A,p£(AB)  (83)

which is the same control from Robot 2.
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Applying the other necessary conditions for optimal control

gives the equations for the two point boundary value problem.

-cos (6, - AB) U,

(Ax) -sin(8, - A8) U,

(ay) -« ABg(U,) - pU£(AB)

o] | -1,U,5in6,£ (A8) (84)
N A, U, cosB,£(AB)

l:z A, U sin(8, - A6)
i . izflézc:iz(?d:A:z)z £/(A8))
3 s 1
The resulting expressions, obtained as before, can be seen in
the DIFEQ.FOR subroutine in Appendix D.

The solutions for this new variation are, in most
cases, the same as those from Robot 2. (Fig. 19) The most
significant difference is for the case where we ask the robot
to change only its angle of orientation. The solution is now
a trivial one; the robot does not move. (Fig. 20) When AX and

AY are zero, the quantity p is zero and thus,

U,=A, Cos (8, - AB) + A,Sin(8, - AB) (85)
And if N\, and A\, are zero for all time, then
U, =0

' (86)
g(u,) =0

36



and therefore,

(87)

The terminal costs are met since
Ay, = CAB, (88)

3¢,

where Af is fixed and the A3 term simply becomes a large
enough constant to meet this constraint (Fig. 21) .
Heuristically, this says that the most efficient manner to
achieve the desired final condition is not to go. Such
results occur any time two of the three states, AX, AY or Af,
are equal to zero. In such cases where p or Af is zero at all
times and U; becomes zero, the state equations of motions from
equation (84) are all equal zero and give a trivial solution.

So far, we have chosen the value of o at the
outset of the program. However, as we shall show later, o has

a direct impact on the final solution.



d. Robot 4, Robot 3 with High/Low « Control
Defining « as a control is complicated by the fact
that o must be positive to satisfy Lyapunov’s Theorem. We

therefore define the cost function
e
T=[Gufvw (89)
3
where o is greater than zero for all ¢t. The resulting
Hamiltonian is
H=2uf +a
-k cos (8, - AB) u 90
AA sin (0,
-4y (pU f(Ae) * ag(U ) A0)
Applying equation (12) to U, we find the same result as
before,
U, = A,cos(8, - AB) + A,sin(8, - AB) + A,p£(AB)  (91)
For the second control we consider only those terms in the
Hamiltonian associated with o.
Hy=a (1 - A,g(U,) AB) (92)
In order to minimize the Hamiltonian and maintain a positive

o we define

@i, for B>0 (93)
“ {am:, for ﬂsu}
where
B=1-A,q(U,) A0 (94)

The resulting equations for the two point boundary value
problem are the same as equation (84), except that the value
of o depends on f. The resulting S expressions are listed in

the DIFEQ.FOR program in Appendix E.
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Using this variation of U, the program has
difficulty converging in many cases. The non-linear nature of
@ is the source of this difficulty. (Fig. 22) In many cases,
the converged solution is the same as Robot 3. Since there
appears to be little advantage to this variation, we seek a
more proportional @ control.

e. Robot 5, Robot 3 with Proportional a Control
To develop a proportional « control, we start with

a new cost function,
te
f%w; + a?) (95)

t

We find that U, is the same as before. If we only consider
the o terms then,

2H, = A= -2)ag(U) AB (96)
However, since g(U;) equals zero for U; equal to zero, H, is
already a minimum when U; equals zero and « approaches the
positive side of zero. Thus we only need consider the case
where U; is not zero. In this case g(U;) is one and will be

dropped in the remaining expressions. Factoring H,, we find,

= (@ - A,AB)* - (1,48)% (97)

If we neglect the second part of this expression as it is not

a function of @, then to minimize H,,

2,40, for A,48>0
« ={ } (s8)

« for 1,400

where oy, is some value greater than zero.
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The resulting differential equations differ from
equation (84) only in that alpha is now a function of A; and
Af. This must be taken into account when developing the S
expressions. The changes to the resulting S expressions can
be seen in the DIFEQ.FOR subroutine in Appendix F.

In general, this variation gives better solutions
than all other variations discussed. The proportional alpha
control is more likely to converge and gives an apparently
more optimal solution. It’s tendency to converge is more well
behaved than other variations. However, it still requires a
certain amount of user interaction to set the value of op;,
and other program parameters to a value which will achieve
convergence.  Trends and comparisons of this and other
variations of the mobile robot problem is the subject of the

following section.

C. DISCUSSION OF RESULTS

There are many factors which affect convergence,
optimality and error of the final solution. Since each
variation was designed with a slightly different intent,
comparison is difficult. This section discusses general
trends noted during extensive testing of the programs.

The state variable solutions to the two point boundary
value problems are in terms of the difference between the
current and desired value. For presentation, we convert these

values into X, Y, and # coordinates.
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In the case of Robot 1 desired coordinates move.
Therefore, we substitute our solution back into the
differential equations to obtain velocity profiles. For Robot
1 only, we then use a crude trapezoidal integration to
determine the values of X, ¥, f, X; and Y, at each time.
There is a small error imposed by this integration which may
appear in the path plots for Robot 1. The true final error
all cases is taken directly from the sclution values of AX,
AY, and Af and is not affected by this integration. By true
final error we refer to the difference between the final robot
coordinates and the desired robot coordinates. For most cases
this true final error can be made negligibly small by
adjusting a and C.

For the other Robot variations the velocity profiles are
obtained in the same way. However, since X, and Y4 are fixed
for these problems, determining the X, Y, and § coordinates is
simply a matter of subtraction. The final error shown in
these problems is more representative of the true final error.

For the sake of comparison, the results of each variation

was tested against a single pseudo-energy cost function.

(Uf+a?) dt (99)

This cost value has mixed units. For simplicty we consider

the costs shown in the figures below in nondimensional units,

Length?

100
Time ( )
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While Robot 5 was the only variation developed from this
performance parameter, this is the most encompassing cost
description. The terminal costs were not considered for this
part as these are compared in the form of final error.

1. Effect of Varying o and C Parameters

For each variation of the Robot program, the effect of
varying the rotational gain, @, and terminal cost weighting,
C, is different. Rather than present all the possible
variations here, some of the more significant trends are
sampled.

The variation of a, strongly affects the ability of
the program to converge as well as the optimality and error in
the final solution. There is a range of « for which each
program will converge for a given set of boundary conditions.
A typical example of the effect of varying a can be seen in
Figure 23. These are the paths given by Robot 1 for boundary

conditions of

X, =0 X, =10
¥, =0 Y =10 (101)
8, =0° 6, =90°

We must also look at the angular trajectory for these
solutions. (Fig. 24) Note that for the extreme values of «@,
there is a larger error in the final solution. Also note that
the paths are of different lengths, indicating that some a's
give more optimal solutions than others. The energy cost plot

(Fig. 25) shows the effect of a on this cost.



From Figures 23 and 25, an « value of 25 appears to give both
a minimum final error and cost. However, the results for
this program and set of boundary conditions cannot be used as
a guideline for all programs or cases.

In the particular case of Robot 4, the use of oy, and
Gpax MuSt be handled carefully. If the two values are greatly
different, the program will have difficulty converging. If
the two values are too close, there is no advantage to using
this program.

Robot 5 tends to converge for a larger range of a
values. In general, any « for which the other programs
converge will usually work for Robot 5. However in many
cases, Robot 5 allows a lower «, and a lower final energy
cost. As a rule of thumb, the lowest oy, for which the
program converges gives the most optimal solution.

The variation of C is more straightforward; the higher
the value of C, the smaller the final error. (Figs. 26, 27)
However, certain limits do apply to this guideline. If C is
too high for a given set of boundary conditions, the program
tends not to converge. There is also a price for this
accuracy. (Fig. 28) 1In general a more accurate final

solutions show a higher final cost.

43



2. Sample of Test Cases

The Robot programs have been tested for many different
boundary conditions and, subject to user supplied parameters,
give optimal solutions. The following six cases are

representative of the results. For each program variation we

provide the best known control parameters for that program and
set of boundary conditions. In this way we compare the best
result for each.

a. 90 Degree Turn Problem

For this case the boundary conditions are:

X =0 X, =10
Y, =0 ¥, =10 (102)
8, =0° 8,=290°

Most of the programs give a similar result for this problem,

except Robot 1. (Fig. 29, 30) This problem requires a

relatively high o to achieve convergence. As a result, the

programs which use o as a control, Robot 4 & 5, show no

advantage. (Fig. 31, 32) Although the Robot 1 solution takes

a longer path, by our definition of cost, its solution is more

optimal.
b. 30 Degree Angle Parking Problem
For this case the boundary conditions are:
X =0 X =0
Y, =0 Y =2 (103)
6, = 0° 6, =30°
Here,

the effect of a control is more evident. (Fig. 33, 34)

In the case of Robot 4, the program has a more difficult time

converging because of the non-linear . As a result, its
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solution is the least optimal. (Fig. 35) Robot 5, however,
gives the best optimal solution. While Robot 5’s final error
is higher than some others, considering the order of magnitude
of the final error, the difference is negligible.
c. 270 Degree Turn Problem

This case is inherently not optimal. The angular
displacement required could be achieved more easily by going
to -90° instead. However, these boundary conditions provide

a more demanding test.

X, =0 X, =0
Y,=0 Y, =2 (104)
0, = 0° 6, =270°

The programs overcome the angular displacement problem by
stopping and backing part way though the maneuver. (Fig. 36,
37, 38) Based on the final error and energy cost, no program
has any distinct advantage over the others for this maneuver.
(Fig. 39)
d. 180 Degree Turn On A Point

For all Robot programs using partial feedback, if
two of the three state variables, AX, AY or Af, have zero
difference between their initial and final boundary
conditions, the result will be the trivial, "don’'t go"
solution. I1f, however, there is at least small difference
between the initial and final boundary conditions for two of
the three states, a non-trivial solution can be obtained. For
this reason, we use a small difference between the initial and

final X boundary conditions for this problem.
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X, = -0.01

(105)

Y, =0
° 8, = 180°
Robot 1 and 2, which do not include partial feedback, simply
turn and go to the desired position. (Fig. 40) The remaining
solutions are all similar. For all cases the energy cost is
the same, with similar final error for the feedback problems.
(Fig. 41)
e. Parallel Parking Problem

This case proved the most difficult of any for the
program to solve. Again, we must avoid the boundary
conditions where two of the three boundary conditions have
zero difference. Only Robot 5 was able to produce a solution
with reasonable minimum error. (Fig. 42, 43, 44) This is
because only Robot 5 supports proportional « control. The
choice of o is critical to the resulting solution. Since o is
a gain which affects the angular velocity, too high an op;,
results in highly non-linear solutions. This is true even in
the case of Robot 5. (Fig 45, 46, 47) Nevertheless, a
judicious choice of a;, results in an optimal and low final

error solution.
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f. Trivial Straight Line Case

For the trivial case where we ask the robot to
move along a straight line from one position to another, the
solution converges very quickly to the obvious solution. A
few iterations are necessary to bring the costate variables to
their proper values. These programs have no problem
converging, unlike the disk problem, because there are no
competing boundary conditions.

3. Other Trends Noted

The effect on of the initial guess cannot be
overstated. For each case, the initial guess was based on the
straight line path between the initial and final points.
(Fig. 48) The costates were assumed to be some small, non-
zero value. The Robot programs show strong tendency towards
convergence even when given such a crude guess.

In some cases, particularly highly oscillatory
solutions about small values, the program will tend toward
convergence but then hover at some error value, or oscillate
between two small error values. In these cases the best
response is to adjust the SLOWC parameter to slow the program
convergence. This causes the program to make smaller
corrections where it might be jumping, back and forth, over a
solution. Doing this does not guarantee a solution, but it is

helpful in some cases.
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The Program uses an EPSILON variable to determine the
value of f(Af) when Af is nearly equal to zero. If Af is less
than EPSILON, we consider it sufficiently close to zero to use
the definition of f(Af#) equal to one and £’ (Af) equal to zero.
From experimenting with the programs, any reasonably small
value for this variable will give the same solution. This is
true as Af rarely approaches zero within a solution, except at
the final time. At the final time, the computer determines
the values of the Sx‘j expressions based on the final boundary
condition expressions. Since the function f£(Af) does not
appear in these expressions, the value of EPSILON has no
effect. 1In the case where A§ is less than EPSILON at some
other time, the impact appears negligible for all reascnable
values of EPSILON.

The contrained robot problems use the control of
equation (82). The program uses the variable EPSILON2 to
determine if the value of U; is sufficiently close to zero for
g(U;) to be equal to zero. The value used for this EPSILON2
has been found to make little difference in the solution as U,
is rarely zero for any length of time. (Fig. 49) Where the
value of U; is less than EPSILON2 at some time, the solution
profile tends to be non-smooth, making it difficult (though
not impossible) for the program to converge. On the next
iteration, the time location of the zero U; may be moved. As
a result, the program solution tends to place the exactly zero

U; velocities between the discrete time points.
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Hence, for reasonably sized values of EPSILON2, the solution
is not affected significantly. However, for convergence sake,
the value of EPSILON2 should be sufficiently small, 1 x 10°%

or less.
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Iv. AND RECC TON:

In this thesis, we have demonstrated a method for finding
an optimal, open loop, time varying control for a nonholonomic
system. In general this method employs Pontryagin’s
Minimization Principle to find the state and costate equations
for an optimal control. Then a numerical relaxation technique
is applied to the resulting two point boundary value problem.
For the specific problem of a two wheeled mobile robot, we
first develop a partial feedback law using Lyapunov’s Theorem.
In doing so, we create a system which does not fall under
Brockett’s Theorem and thus has an equilibrium point solution.
The method has been found to give optimal solutions for all
cases of the mobile robot problem. However, in the case where
two of the three state boundary conditions are exactly the
same at the initial and final time, the optimal solution
obtained is a trivial one. The optimality of the solution is
subject to the definition of the cost function, the weight of
the terminal cost, and choice of rotational gain, «. While
closed loop controls of mobile robots are obtainable, they are
not optimal in any sense. For an application where efficiency
is important, the method demonstrated here would be

advantageous.
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The results obtained opens up a number of areas for
further research into this and related problems:

® Refining the angular feedback g(U;) such that the
control is more proportional to U; would result in a more
smooth control.

@ A more refined algorithm for creating the initial guess
of states and costates would help ensure convergence and allow
more freedom in choosing problem parameters C and «. The
initial guesses could be based on known solutions to some
commonly used boundary conditions.

® The method described here requires that the final time
be fixed. A more general solution to the free end time, or
minimum time problem is desirable.

® This method could be used for in line path planning of
a mobile robot. By using the last solution as the new initial
guess, the program could constantly update the path for the
robot to follow. As the last solution would be a very good
guess, the program would converge very quickly.

® The mobile robot problem presented is a kinematics
problem. A more realistic second order problem would consider
kinetic optimization, mass moment of inertia, smooth velocity
profiles and initial and final velocities at zero.

As this list suggests, the possibilities for expanding

this research are enormous.
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State Variable Trajectories: Circular Initial Guess
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Costate Variable Trajectories: Circular Final Solution
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Figure 8

State Variable Trajectories: 10 Rolls, 5.5 Tumns, Final Solution
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Costate Variable Trajectories: 10 Rolls, 5.5 Tumns, Final Solution
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Path on X-Y Plane: Effect of Small Variations in Angle
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Position on X-Y Plane: Robot 2
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Costate Variable Trajectories: Robot3, Trivial Solution
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Variation of Alpha With Time: Robot 4
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Path with Variation of Alpha, Robot1
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Energy Cost with Variation of Alpha, Robot1
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Path with Variation of C, Robot1

Figure 26

Angular Trajectory with Variation of C, Robot1

desired angle

0.5]

Angle, radians

0.2 0.4 0.6 0.8
Time
Figure 27



Energy Cost with Variation of C, Robot1
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Path Comparison of Robot Programs, 90 Degree Turn
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Final X error
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Final X error
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Variation of U1 with Time: Robot 5, Highly Oscillatory Solution
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APPENDIX A
Program Files Specific to Disk
GENDISK.FOR

DIFEQ.FOR
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PROGRAM GENDISK

This is the most general and m ive form of the disk programs.
T orks Tor probiems for which a Circular Initial guess is mese

nDplxcab)-:

In some cases the alternate straight line guess may be more applicable
There is an apparent sinqularity for the exact scraight line case
Fortunately this case is readily solved by analytically.

Source for subroutines Red, Pinvs, Solude, and Bksub and model for
Difeq and Dis
wamrscar Recipes, William H. press, et al

IMPLICIT REAL®S (A-H, 0-7)

E-NB+ 1, NCK=M+1,NS!

FARMETER (N5-8 M-201 B~  NCI<NE, N
NSJ=2*NE+1, NYJ=KE, M)

Variable description:

GENERAL PROGRAM VARIABLE:

NE: Nunber of independent equations describing syscem
amber of Meshpoints, divisions of independent variable. time

Nb:  Nember of Bosndary Conditions known ac imitial emditio

c 3-D Array for storage of corrections for each sceration.

largest array in pro
Ne1, weg, Nex:
Qimension variables of C array, must satisfy equations
found in parameter statement

s array for storage of blocks of solution of Difeq.

NSI, NSJ:
dimension varisbles of 2-D § arsay. must satisfy equations
found in parameter statement

¥ 2D armay comumnq initial guess for each point. This array
is updat the i

e Sy et comvergence. is ac
Airay for indepundent variables cine. Used only for comparison
pendent variables after program complet
nting the typical magnitude of the
Used for controlling correction magnitude.
INDEXV:lists column ordering for variables in § array. not used in this

ITHAX: Maximum number of iterations
CONV: Convergence criteria for corrections t
stowe i

ied to v
W Tncrement of independent variable, Givisions between mesh points

PROBLEM SPECTFIC VARIABLES:

RAD:  Radius of Dis
ROLL: Nomber of revelu e disk is required to make
TURNS: Nunber of turns the disk is required co mak

DINENSION SCALV (NE), INDEXY (NE). ¥ (NE,H) .C NCE, NCJ NCK) . 8 ST, NSJ)
COMMON X(M), H, RAD, ROLL, TURNS, x0,xf,yo.yf,to

OPEN (21, FILES"

OPEN(30] FILE="xi UNKNOWN” )
OPEN(31, FILE=" it KNOWN )
OPEN(32|FILE='testdat’, “UNKNOWN )

OPEN(33]FILE="1iplot’, STATUS='UNKNOWN')

HelL/(M-1)
PI=3.141592654
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Print *,‘Enter Test Number.
Read +, 1TESTHO

Print *,'Enter the maximum number of iterations.’
Read *,

Print *,’Enter the convergence criteria

Read -,

Print *,’Enter SLOWC.’

Print *, Enter disk radius.’
RAD

“Enter 1 for circular initial
Print +‘Enter 2 for straight line initial duess,®

Print -, Enter 3 for an elliptical initial guess.:
Read *, IGUESS

IF (IGUESS . EQ. 3) THEN
PRINT *, ‘Enter factor for width of elipse’

a
INT *, ‘Enter factor for height of elipse’
B

€ Boundary Conditions
Print *,’Enter the starting X-¥ coordinates of the disk.’
the final X-Y coordinates of the disk.

starting theta in degrees.’

starting phi in degrees.’

the number of required rolls of the disk.
i pe’ e PreRAD-ROLL

write (32,7)
write (32.)
Write (32,%)
write (32.%)
write (32,%) 'RAD =',RAD
write (32/°) ‘RoLL -»,ncu.
Write (32,%) ‘TURNS =',TURNS

write (32,

“xo =*,x0

Ueite (330) theta ¥ar,ee
write (32,%) 'phi £ =*,pt

NO INDEX CHANGES NECESSARY
INDEXV(1)=1

INDEXV(8) =8
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c Initialize independent vector X (time)

50 11 Kel,M
X(K)=(K-1) "0

11 cont:

c Enter initial guess values for all meshpoints

IF (IGUESS.EQ.1) THEN
c CIRCULAR INITIAL GUESS WITH LAMBDA'S NEAR KNOWN CIRCLE SOLUTION:
DO 12 K=1,¥

YQ-Ki=tea) oo 1)

yi1 RAD*SIN(y (3,K) ]

y(z x)xxou-m (1-cos(y(3, m))/'ruws
K-1) *2*PI"ROLL¥RAD [

o

2+p1
-2*PI*ROLL-RAD
12 cowrmvue

< Scalv set to approximate size of typical values for circle

ELSEIF (IGUESS.£Q.2) THEN
c STRALGHT LINE INITIAL GUESS:

i n-m o)L (1) /(-1 oxo
0) * (K-1) / (4-1) +yo
) AN ko /(4 ey

4.K) = (K-1) *2*PI°ROLL/ (M-1

10
c
SeALV(8) =1
ELSEIF (IGUESS.EQ.3) THEN
c ELLIPFICAL INITIAL GUESS WITH LAMBDA'S NEAR KNOWN CIRCLE SOLUTION

: K} = (K=1) 2T *TURNS/ (M-1)
K) =A"ROLLRAD*SIN (y (3, K) ) /

z K) =BROLL*RAD" (1-COS (y (3, K)))/'rums
K) = (K-1) "2 *P1"ROLL RAD/ (

~<~<~<~<<-<~<E
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80

¥(8,K) =-2*PI*ROLL*RAD
conTI:
Sealv set to approximate size of typical values for circle
SCALV(1) =ROLL*RAD/2
SCALV(2) =ROLL *RAD

ENDIF
write initial guess to file
0O 13 K=1,M
WRITE(30,80) X(K).¥(1,K),¥(2,K),¥(3,K).¥(4,K)
WRITE(33,80) X(X),¥(5.K),Y(6.K).Y(7.K),¥(8.K)
CONTINUE
FORMAT (2X, 5F10.5)

EXPLICIT ENTRY OF BOUNDARY CONDITIONS:

y(3im=ee
y(d,1)=po

Y4, M) =pE
E,NB, ¥, ¥, NYJ, NYK,

CALL SOLVDE (ITMAX, CONY, SLOWC, SCALY, INDEXV,
/NCI,NCJ,NCK, S.NST,NSJ)
write final ¥ values to file
DO 181 k = 1,201
WRITE(21,83) X(K),¥(1,K),¥(2,K),¥(3, k), ¥(4,Kk)
WRITE(22.83) X(K),¥(5.k).¥(6,K).¥(7, K] ¥(8 k)
181 CONTINUE
FORMAT (2x, SF15.5)
FRINT *, *PROGRAM COMPLETED®
cLosE(21)

cLose
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9
10

SUBROUTINE DIFEQ(K,K1,K2,JSF,IS1, ISF, INDEXV,NE, S, NST,NSJ, ¥, NYJ,
. NV

IMPLICIT REAL®S (A-H, 0-2)

PARAMETER (M=201)
DIMENSION Y(NYJ,NYK), $(NSI,NSJ), INDEXV(NYJ)
COMMON X (), x0,x£,y0,yE, €0, t£,p0,pE

PI_ = DACOS(-1)
PI = 3.14159

Initialize matrix § as 0

5o 10

con
CONTINUE

Tnitial Boundary Conditions
IF(K.EQ.KL) THEN
Enter non-zero values:
00 11 I= 1,4
5(8+1,8+7)51.0
CONTINUE

Initial values in right hand vector for initial block

S(5,35F)= y(1,1)-x0
5(6,35F)= y(2,1)-yo

c

End Boundary Conditions
BLSE IF (K.GT.K2] THEN
Enter non-zero values
00 12 1= 1,4
S(1,8+3)=1.0
CONTINUE

Final values in right hand vector for final block

Interior Points
Derived from Finite Difference Equations of Motion
ELSE

Pre-calculation of commonly used variables:

YISY (3K 0¥ (3, K1)

YB=Y(81K) ¥ (8, K-1)



¥6°Cos (¥3) / (4°52) ~h*Rad Y87 §in(¥3/2) / (47x2)
(¥3)/(4+22)

24212/ (452) o hoRadee2+Con Y3/ (4¥r2)
ad*+2*Sin(¥3)/ (4752

ad*Cos (¥3/2) / (2%22)

(¥3/2) / (4%12) +h*R: Y
¥6+5in(¥3)/(4°22)

= h*Rad**2+Sin(¥3)/ (47r2)
h*Rad**2/(4°r2) - h*Rad**2+Cos (¥3)/(47r2)

=0
= h*Rad*Sin(¥3/2)/(2°r2)
=0

o
1
h*Rad*¥6°Con (¥3/2)/ (4°r2) - h*Rad*¥5°Sin(¥3/2)/(4°x2)
-1
h

"Rad*Cos (¥3/2) /(2752)
heRad*Sin(¥3/2)/(2+x2)

= h/(20r2)
)
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P T

) = h 5+¥8+C0os (¥3/2)/ (8%x2) +
& heRadw2+Y57+2+Cos(¥1)/(8°r2) -
& heRad®*2+Y§"+2+Cos (¥3)/(8°r2) +
& heRad-Y6+Y8+sin(¥3/2)/(8*r2)
& heRad**2+Y5+Y6*Sin(¥3)/(4r2)
0

S(7.4)
57,5) = - (¥3))/(8°r2) 0 (¥3/2)/(4e2) 0
& h*Rad=2+¥5*Sin(¥3)/(4°r2)
517,6) = - (¥372)1/(4°x2) - (3)/(8052) -
& h*Rad**2°¥§*sin(¥3)/(4°r2)
517.7) = -1

¥3/201/48%52) + in(¥3/2)/ (47e2)
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an

5(8,14) = 0
58.15) = 0

S(8.16) = 1

S(L,ISE) = hRad--2o¥S/ (4752) + hRad Y8°Cos(Y3/2)/(2°12) +
. 2

£ Meraa- 20e-sinl S ¥(L-l e K .

$(2,35F) ithagetarstcos 3] avr2) -
& R Raarva-Bin(va/21 ) (3521 + hohad 2 ova-Sinird) (4 T s
b Y(2,-1eK) v YLK

1. LK)
£2) + h*Rad*¥5+Cos(¥3/2)/(27x2) +
Y1+ K v

lrm e

F) = -m'kad"ts‘va'cux(nﬂ))/(I‘xll -

¥6++2+Sin(¥3)/(8*12) - ¥(7.-1 + K) + ¥(T,K)
S(8,3SF) = -¥(8,-1 + K) + Y(8,K)

ENDIF

Dumny use of variables to prevent inocculous warning on MS Compiler
{varisbles not used)

INBERVIL) = NDERVOL)
NE = NE

RETURN
END
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APPENDIX B
Program Files Specific to Robot 1
ROBOT1.FOR
DIFEQ.FOR (for Robot 1)

XLATOR.FOR
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PROGRAM ROBOT1

. Source
. Difeq a:

for subroutines Red. Pinvs, Solvde, and Bksub and model for
nd Diskma:
erical Recipes, William H. press, et al

MpLICT

PARAMET
& NsJ=:

DIMENSI(

‘common

T REAL®8 (A-H, 0-2)

8 (NE-6,-201, NB=3, NCT-NE, NCJ-NE-NB 1, NCK=Me 1, NSI-NE,
M)

2%NE1. NYJ:NE,

ON SCALV(NE) , INDEXV (NE) , ¥ (NE, M) ,C (NCI,NCJ NCK) , § (NSI,NSJ) ,
YDOT (NE-1,M) , POS (NE-1, 1|
X(M), M, DELXO, DELYO, DELTHETO, THETAD, EPS, ALPHA, CWT

. Variabl:

. GENERAL

e description:

PROGRAM VARIABLES:

SCALV:
INDEXV:
ITMAX

conv:
SLowe

PROBLEN

. Ne:  Nunber of independent equations describing sys

. " Nunber of Meshpoints, Sivisions of independent vnrlah)e time
. NB Number of Boundary Conditions known at initial conditio

. c 370 Array for storage of corrections for each iteration

. argest array in progr:

. NCI, NCJ, NCK:

. imension variables of C array, must satisfy equations

. found in parameter statement

. s: array for storage of blocks of solution of Difeq.

. NSI, NSJ:

. O 2D S arvay. mist satisfy equations

. ¥ 2-D array l:ontnivunc uuuu guses for sach polnt. This array
. is updated by when the

. ety convergence. is acheived

R x: iable, time. Used only for comparison
. es

it £ the
e sed for controlling correction magnitude.
lists column ordering for variables in S array, not used in this
pr

Maximum number of iteration:

Convergence criteria for corrections to Y

Controls fraction of corrections applied

rerament of independent varisbie. Givisions between mesh points

SPECIFIC VARIABLES

cwr:
RL1,RL2,RLY:  Initia
ot

Initial X coordinate of robot
Initial Y coordinate of robo
Initial angle wrt X axis of robot
Desired final X coordinate of robot
esired final Y coordinate of robot
Desired final angle coordinate of robot
Initial boundary condition for state variable delta-X
Inicial boundary condition for state variable dalta-¥
yariable -theta
ich £ (delt Sin(delta-; xl/(deln x)
RYABLE USED' FOR CONTINUITY WETH OTHER

Rotational gain related to delta-theta-dot

DUMMY VARIABLE USED FOR CONTINUITY WITH OTHER FORMS OF

weighting parameter for Terninal Costs
litude for

or lambda costates
1, oMz, OHMI fhitial guess frequencies for lambda costates
DC1,DC2,0C3:  Initial guess d.c. offsets for lambda costates.

98



pHIL pHI2, pHI:
SL1,§L2,5L3:
PO N

Inicial quess
Position Trajec

tial guess phase 1ag for lanbds costates.
SCALV, scal,
oy tor ey theta, x4 and va

states.

an

QPEN(2L FILE= xplot.obl ",

OPEN(34, Pl dotplor Yont
OPEN(35, FILE=’posplot .robl"
CPEN(37. FILE. Cimior foni: |

PI= 3.141592654
BTER TTIAX, cow,
THAX,

VENTER ALPHAS
" ALP

W
RINT *,ENTER EPSILON'
READ *, EPS

£r0 -, '
PRINT +,' ENTER INITIAL XY, AND
& X0, Y0, THETAG

STATUS = UNIYOMN- )
E="1plot robl’, STATUS:

STATUS =" UNKNOWN" )
STATUS =" UNKNOWN " }

sLowe”

DUMMY READ FOR DATA FILE COMPATASILITY, Enter 4’

READ *,
PRINT +,"ENTER C, WEIGHTING PARAMTER FOR TERMINAL COST'

DUMMY READ FOR DATA FILE COMPATABILITY, Enter A'

THETA (degrees) *

READ *,'RL1,RL2,
PRI [BNTER INFTIAL GUESS FOR
READ =, OHMI, OHIN2 ,OF

PRINT
READ +,'DCL,DC2,
PRINT *,'ENTER INITIAL GUESS FOR
READ *, PHIL, PHI2, PHI3
PHIL<PHI1*P1/180
PHI2=PHI2*P1/180
PHI3=PHI) *PL/18
PRINT *,ENTER INITIAL GUESS FOR
READ *,'SL1,5L2,5L3
DELXO= (XF-X0)

DELYO= (YF-Y0)
DELTHETO= (THETAD-THETAO)
Hel /(M1

NO INDEX CHANGES NECESSARY
Tndex Scale used by SOLVDE.FOR

INDEXV(1) =1
2

INOEXV (6) =6

INITIAL GUESS FOR ALL POINTS, 1

Initialize independent vector X

3 LAMBOA AMPLITUDES'
3 LAMBDA FREQUENCTES'
3 LAMBDA DC OFFSETS'

3 LAMBDA PHASES®

SIZE OF 3 LAMBOA VALUES'

- u

(zime)
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o nnan

181

00 11 K=l
(K)=(K-1) "8

conriio

Enter initial values for all meshpoints
DARY CONDITONS FOR Y(1)-¥(3] ARE
ENTERED AT POINTS 1 ITIAL GUESS! !t
THESE NUMBERS MUST COINCIDE WITH ANY DESTRED B.C

INITIAL GUESS:
o 12 K=1,M

DELYO- (DBLX0 (x-1)/ (-1))

write initial guess to file

00 13 K=1,4
WRITE(30,80) X(K),¥(1,K),¥(2,K),¥(3,K)
WRITE(31,80) X(K),Y(4.K)¥(5.K) ¥(6,K)
CONTINUE

Scalv set to approximate size of typical values of known solution

SCALV(1) =ABS (DELX0/2) +.01
SCALY (2] -ABS (DELY0/2) + |01
SCALV (3) =ABS (2*DELTHETO /M) +.01
SCALV(4) =ABS (SL1) +.01
SCALV () =ABS (SL2) +.01
SCALV(6) =ABS (SL3) + .01

WRITE TEST DATA TO FILE
WRITE(33, ) *ITMAX =, IT

A = . X0,YO0, (THETAO®180/PT)
NML K L THETA - ' XEIXF. (THETAD®180/P1)
“INITIAL LAMBOA VALUES', RL1.RL3,RL:

\STE OF LaMBOR VALUES.. SLi.siz.Si3

“DELXO =', DELXO
“DELY0 ='| DELYQ
WRITE(33]*) *DELTHETO =’, DELTHETO

,CALL SOLVDE (ITMAX, CONV, SLOWC, SCALV, INDEXV, NE,NB. ¥, Y, NYJ, NYK,
C/NCI,NCJ,NCK, S, NST,NSJ)

write final ¥ values to file:
D0 181 k =
WRITE(21,80) X(K),¥(1, K2z 0.

WRITE(22,80) X(K) . Y(4,k
CONTINUE'

FORMAT (2X, 4F15.4)

(CALL XLATOR (Y, YDOT W, NYJ. NYK, 4. THETAD, EPS. ALPIA.
YO, THETAG, XF, YF, POS)

PRINT °,’PROGRAM COMPLETED'
cLOSE(21)
CLOSE (22)
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CLOSE(30)
CLOSE(31)
CLOSE(32)
CLOSE(33)
CLOSE(34)
CLOSE(35)
CLOSE(37)

=D



SUBROUTINE DIFEQ(K,K1,K2,JSF,TS1, ISF, INDEXV,NE,,NST,NSJ, Y, NYJ,
- NYK

IMPLICIT REAL®S (A-H, 0-Z)

* MODIFIED 7/18/94 TO INCLUDE TERMINAL COST AT FINA BOUNDARY CONDITION

PARAMETER (M=201)
DIMENSION Y(NYJ,NYK), S(NSI,NSJ), INDEXV(NYJ)
COMMON X(M), M, DELXO, DELYO, DELTHETO, THETAD, EPS, ALPHA, CWT

< Initialize matrix S as 0

00 10 1-1.ne1

10 CONTINUE

c Initial Boundary Conditions

TF(K.EQ.K1) THEN

c Enter non-zero values:
Do 11 1=
suq sineio
1 conTT
©  Initial values in right hand vector for initial block

y(1.1) -DELXO

¥(3.1) ~DELTHETO

< End Boundary Conditions
ELSE IF (K.GT.K2) THEN

c Enter non-zero values
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S(1,3SF)= ¥(1,M)*CWT - Y(4,m)
S(2,35F)= Y(2.M) *CWT - Y(5.M)
S(3,35F)= ¥(3,M) *CaT - ¥(6.1)

an

Interior Poin
Derived from Finite Difference Equations of Motion

ELSE
Pre-calculation of commonly used variables:

YI=(Y(1LK)+X (1, K-1)) /2.

V6= (Y(6.K)+¥(6.K-11)/2.

CTD=COS (THETAD)
STD=SIN(THETAD)

P= Y2¢CTD-Y1°STD

IF (ABS (¥3) .GT.EPS) THEN
FOssINx)/ (1)
13+ COS (13)/13) - (STN(Y3) /(¥3++2))
Sloasrevs/,
rohas (LSIN(Y3) /Y3-2.0°CO8 (X3 /(43 ++2 +
0°SIN(Y3)/(¥3)7*3)/2.0

ELSE

UI1=Y4°CTOY3 + Y5°STDY3 + Y6*PFY3
UD=-¥4*CTD-Y575TD.

/2.0

sxn' e €10/2.0
16, 13m0 2 vs/2.0vcTons + vepesice

“s1D/
- STDY3/2.0
PUFYI/2.0

10 = -5TD/2.0
SIG11= €T0/2.0

Enter non-zero values:

s(1 lpoleTon-sict
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$(2,1)= H*STDY3*SI1GL
$(2/2)= -1 + H*STDY3*SIGZ
$(2,3)= H®(STDY3*SIG3 - CTDYI*U1/2.0)
S{2,4)= H*(STDY3*SIG6-STD*SIGS)
5)=

FRtI

3.07 Horrestlsstaloul)

B ERaBRLEan Bnnunnan

nn

Tosrra- (Y6i5105 - U1/2.0)
)
2
5

4+ 2.0
4l5)

4.6

“HIY6:CTD: (ULSIGY + s1G2°FYY)
= -HYYE*CTD"SIGE *F)

e o e rn
-HICTD*FY3* (Y6+SIGI + UL/2.0)

GuuunennnEnn BELENEBY G,
z
3
3
ki
8

S(6,1)= -H"(Y4*STDYI*SIGL - YS*CTDY3*SIGI +
feTRYs (PestaleSIclonuL)
5(6,2)= -H*(¥4*STDY3"S: ¥5°CTDY3*5162
e Tr® (Pe12 STOTL )
S(6.3)% e YA+ (-U1CTDN/3.0 o SIG-STDY)
*(U1*STDY3/2.0 + CTDY}*SIG3)
Voopt i1 osta12 - TG PP} )

5(6.4)= -n-xs-nn (Y4°SIG6 + UL/2.0) - YS®CTDY3*SIG6 +

s(6.5)= —u'nvsfrnn-sxcu - CTOY3®(Y5°SIGE + U1/2.0) +
¥

G8)
-n-m-swn-s:cs - ¥5+CTDY3*SIGY

(6.9
5(6.10)= S(6,4)

*PTFPY3*SIGY o (ALPHAP*UL'FPY3)/2.0)



an

T SR YIS K1) HIYE UL -CTDoPY,
X S He (rasu ssTDYa- Zyseo1-cros.
Rt

ENDIF
of varisbles co prevenc inocculous warning on M5 Compiler

Dummy use
kVIt)ablux ot u
8

INDERV (D) = 1WDERV(1)
E

RETURN
END



SUBROUTINE XLATOR(Y, YDOT, i, N X, THETAD, EPS, ALPHA,
X0, Y0, THETAQ, XF , YF, 20S)

This subroutine converts the stace varisbles delea- x.v.

into Robot variable: theta and v,mm oot variaibios: xa, va
A simple trapezoidal i tion is used to deternine position and
Snergy costs by integration of the term (u1+3)/2-a1pha

IMPLICIT REAL®S8 (A-M, 0-2)

PARAMETER
DIMENSTON ¥ (NY3 NYK) , YDOT(S,8), X(), 20S(5,H),
OST (M) ,NRG (M) , ULTRAJ () , UDTRAJ (M)

INITIAL POSITIONS & ENERGY

POS(1,1)=X0

POS(5,1) =¥F
NRG(1)=0..
Do 10

1F(ABS(Y(3,K) ) .GT.EPS) THEN
SINTY(3,K)) /¥ (3,K)

CALCULATION OF VELOCITIES U1,UD

e

Pdels ¥(2,K)~COS(THETAD) Y 1K) *SIN(THETAD)

ek -raet-ro>

1T 1
oS (4] )OS (THETAD) ~¥ (5, K) ST (THETAD)
UDTRAJ (K) <UD

CALCULATION OF ENERGY COSTS

ENERGY COST FUCTION FOR ROBOT4 &
NG (1) (0L TRAT () o2 DDTRAD (1) 21 /2

ION IN FORM FOR ROBOTS (used for com
NRG (K) = (UITRAJ (K) **2+UDTRAJ (K) **2) /2 + ALPHA

YDOT (1,K) = COS (THETAD-¥(3,X) ) *UL
SIN(THETAD-Y (3, K) ) *U1
Pd “FY3 o ALPHA®Y(3,K)

YDOT(5,K} = SIN(THETAD) *UD

TPk on. 1) THEN
08 (1,K-1) +H* (YDOT (1, K) +¥DOT (1,K-1)) /2

708 (21K) ~bO8 (2. KoL) oH- (YBOR(2. K) “¥BOF (3 K111 73
FOS(31K) <POS (3. K-1) +H® (YDOT (3. K) +YDOT(3.K-11) /2
S (4, K) =POS (4.K-1) +H* (YDOT (4/K) +YDOT(4,K-1)) /2
P03 (5. K) +705(5, K-1) +hv (YOOT (3, K) YBOT (3.

11172

COST(K) 2COST (K-1) +H" (NRG (K) +NRG (K~1) } /2
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expIF

WRITE(34,80) X(K), YDOT (1,K), ¥DOT(2,K) , ¥DOT(3,K) , YDOT (4.K)

WRITE(35,80) X(X),POS(1,K),POS(2,K),POS(3,K) ,POS(4.K) .
£0S (5, K)

WRITE(37,81) X(K), U1TRAJ (K) ,UDTRAJ (K) , COST (K)

80
81

coNTINUE

FORMAT (2X, 6515 .4)
FORMAT (2%, 4¥15.4)

RETURN
END
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APPENDIX C
Program Files Specific to Robot 2
ROBOT2 . FOR
DIFEQ.FOR (for Robot 2)
XLATOR2 . FOR



PROGRAM

ROBOT2

single Robot Problem with Terminal Costs

Source
Difeq a:

for subroutines Red. Pinvs, Solvde, and Bksub and model for
nd Diskmain.

Namerical Recipes, William H. Press, et al

IMPLICIT REAL*S (A-H, 0-2)

PARAMETER (N1 NB=3,NC. E-NB+1,NCK=M+1,NST=NE,
NET3NEL L RYISNE, NeKer)

DINENSION SCAL (NE) , INDEXY (NE) . ¥ (NE, ), (NCI, NCJ, NCK) § (NS NS3) ,

‘conon

E-1, M), POS (NE-1,M)
XM) - . DELKO. DBLXO, DELTHETO, THETAD, EPS, ALPHA, CWT

variabl,
GENERAL

e description:

PROGRAM VARIABLES

ne:

Nurber of independent equations describing system
Nunber of Meshpoints, divisions of independent varisble. time
of Boundary Conditions Known at initial condition

rgest array in pro
X
QAimension variables of C array, must satisfy equations

found in parameter statemen:
array for storage of blocks of solution of Difeq.

ScALV:
INDEXV.
TTHAX

PROBLEM SPECIFIC VARTABLE!

dimension variables of 2-D S array, must satisfy equations

found in parameter statement

30 acray concaining initial queas for each point. this arrey

is up by

oSy erag convergence. is chaived

Acray for independent Variable, tine. Used only for comparison

of dependent variables after program compl

Arzay of values representing the typical magnitude of
pendent variable: sed for controlling correction mqn.u.ae

Liste column ordering for variabies ray, not used in thi

Haximim nunber of iterations

ed to
Cnerenant 'of Independent varlable. Givialons betwean mesh points

]
3

g
g

3

Initial X coordinate of robot
coordinate of robot
1 angle wrt X axis of robot
Desired final X Coordinate of rovot
Desired final Y coordinate of robot
Dasired final angle coordinate of robot

Initial boundary condition for state variable delta-X
Initial boundary condition for scate variable delta-v
Initial boundary condition for state variable delta-theta

1lest value for which f(delta-x)=Sin(delta-x)/(delta-x)

ARIABLE USED FOR CONTINUITY WITH OTHER FORMS OF

Rotational gain related to delta-theta-dot
DONMY VARIABLE USED FOR CONTINUITY WiTH OTHER FORNS OF
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ueighting parameter for Terninal Costs
al guess smplituds for ) costates.
Erequencies for lambda costates.
Initial mn 4% Cttsets for lanbda costates.
nitial guess phase lag for 1 costates.
“Initial guess SCALV. seate sises. for lambia costates.
osition Trajectory for x,y,theta, xd and yd.

SL:
et

ao

oPEN(21. FILE= xplot. rob2, STATUS UNIOWY:
~UNINOWN

OPEN(37, FILE="ulplot. rob:
PI= 3.141592654
FRINT - EMIER ITOAX, COW, SLowc’

EAD +,  ITMAX, CONV,
TRinT ©, CENTER ALPHAS
READ *, ALPHA

. ’DUMMY READ FOR COMPATABILITY, enter #°

ENTER C, WEIGHTING PARAMTER FOR TERMINAL COST*

“DUMMY READ FOR COMPATABILITY, enter #°

ENTER INITIAL X,¥, AND THETA(degrees)’
 THETAQ

o

FINAL X,Y, AND THETA(degrees) "

TAD

PRINT. -, \ENTER. TNITIAL GUESS FOR 3 LAMBOA AMPLITUDES'
EAD *

RL1,RL2,RL3
(ENTER, INITIML GUESS FOR ) LAMEDA FREQUENCIES'

Priwe *, Evten T mn-m. GUESS FOR ) LAMBOA DC OFFSETS’
RrEAD -, "pC1,DC2

PRINT *,'ENTER mxﬂu  SUESS FOR 3 LANBOA PHASES®
READ - . PHIZ,

PHI1PHI1*PI/180
PHI2=PHI2*PI/180
PHI3<PHID-PL/180
PRINT *,'ENTER INITIAL GUESS FOR SIZE OF 3 LAMBDA VALUES'

RER> . SEA, 512,503

DELX0= (XF-X0)
DELYO= (P Y0)
THETAD-THETAO)

W

et

NO INDEX CHANGES NECESSARY
Index Scale used by SOLVDE.FO!

INDEXV(1) =1

N
INDEXV(S) =



a nnon

80

INDEXV (6) =6
INITIAL GUESS FOR ALL POINTS, 1 - X
Initialize independent vector X (time)

Do 11

"
=(x-1)

X (%)
CONTINUE

Enter initial values for all meshpoints
NOTE: BOUNDARY CONDITONS FOR ¥(1)-¥(3
ED AT POINTS

)
DuRiNG TE INTTIAL GuEsst 1
THESE NUNBERS NUST COTNCIDE WITH ANY DESIRED B.C

INITIAL GUESS:
00 12 K=1,M

DELXO- (DELXO: (K-11/ (4-1))
ELYO- (DELYO* (K-1) /

J43.K) “DELTMETO (DELTNERDY (K-1)/ (4-11)

(4, K)=RL1"SIN(2*PI*OHM1 = (K-1) / (M-1) +PHI1) +DCL

¥(5,K) SRL2"SIN (2P *OHN2* (K-1) / (M-1) +PHI2) +DC2
y(6,K) =RLI*STN(27PT"OHM3* (K-1) / (M-1) +PHI) +DC3
CONTTNUE

write initial guess to file

Do

13 K=1M
WRITE(30,80) X(K),Y(1,K),¥(2,K),¥(3,K)
WRITE(31,80) X(K).¥(4.K),¥(5 K} ¥(6,K)
CONTINUE

Scalv set to approximate size of typic:

SCALV (1) =ABS (DELX0/2) + .01
SCALV(2) ¥0/2) +.01
SCALY(3) -A8S (2 "DELTHETO /M) .01
SCALV(4) =ABS (SL1) +

85
SCALV (6) =ABS (SL3) + .01
VRITE TEST OATA To FILE

“Ria RCER
Sisiasn

LYO
WRITE(33,*) 'DELTHETO =, DELTHETO

CALL_SOLVDE ITHAX, CONY. SLOWC SCALV. INDEXV.NE. NB. N, Y, NYJ, NYX.

X.NCJ,NCK. §,NST, NSJ)

write final Y values to file

20 1,
WRITE(21,80) X(K),¥(1,k),¥(2,k),¥(3,k)
WRITE(22,80) X(K),Y(4,K) ¥(5,K) ¥ (6.k)

FORMAT (2X, 4F15.4)
CALL XLATORZ (Y, YDOT, H,NYJ, NYK, X, THETAD, EPS, ALPHA,

1i1

values of known solution

< Xo,Yo. (muETA0-180/8)
74T, (THETAD"180/P1)



X0, Y0, THETAO, XF , ¥F , POS)
* PROGRAM COMPLETED"

CLOSE(37)

END
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SUBROUTINE DIFEQ(K,K1,K2,JSF, IS1, ISF, INDEXV,NE, S,NSI,NSJ, ¥, NVJ,

IMPLICIT REAL'B (A-H, 0-Z)

* MODIFIED 7/18/94 TO INCLUDE TERMINAL COST AT FINA BOUNDARY CONDITION
*+ MODIFIED 7/21/94 FOR NON-MOVING VIRTUAL (TARGET) ROBOT

PARAMETER (M=201
DIMENSTON ¥ (NY3.NYK), S (NSI,NSJ), INDEXV(NYS)
COMMON X(M), H, DELX0, DELY0, DELTHETO, THETAD, EPS, ALPHA, CWT

© Initialize matrix S as 0

cONTINUE

c Initial Boundary Conditions
IF(K.EQ.KL) THEN

c Enter non-zero values
Do 11 1= 1,

e S0

1 conTT

C  Initial values in right hand vector for initial block
SU8.35R)= v(1, 1) -DELXO

S(5.35F)= y(2,1)-
HE A

c End Boundary Conditions
ELSE IF (K.GT.K2) THEN

c Enter non-zero values:

©  Final values in right hand vector for final block
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an

Interior Poi:
Derived from Finite Difference Equations of Motion

ELSE
Pre-calculation of commonly used variables:

2

P= Y2+CTD-Y1*STD

IP(AS (13) o B THEN
Fossmn) [
(n)/n|-4slmn)/u)~-zxy
leasiees)
ste12=(; RN (03) /13-2.01C08 (431 /312
0WSIN(¥3)/(¥3)%*3) /2.0

47CTOY3 + YSTSTOY3 + Y6°PeFY3

-¥6°FY3+5TD/2.0
Y6"FY3CTD/2.0
= Y4/2.0°STDY3 - ¥5/2.0°CTOY3 + Y6*P*SIGH

S166= CT0Y3/2.0
STDY3/2.0

PUEYI/2.0

-STD/2.0

2.0
Enter non-zero values:
-1+ HeCTDYI*SIGL
HeCTDY3 5162
1 (CTOTISIG) + STOVI™UL/2.0)
6)

S s
5(2,1)= HSTOY3*SIGL



HTSTDY3*SIG2

H*EY3* (P*SIG1+SIG10°U1)
x-yn-w-smz.smu-un
HA/2.0 + P*(UL°SIG4 + SIGI*FY3))

W (HSTDGISIGY - YSiCIDIIeIGl ¢
PY3* (P*S1G1951G1001) )
si6.2)= -n-wusmv: S1G2 - ¥5+CTDY3*STC2 +

(6,315 Ko (4 (L0 CTOY3 /3.0 5 S103-91DY3)
- Y5+ (U1-STDY3/2.0 + CTDY3*S1G3)
+ ¥6+p*(UL7SIGL2 + SIGIFPY3))
S(6,4)= -HY(STDY3*(Y4¥SIGE + UL/2.0) - Y5°CTOY¥3*SIGE +
Y6+PAFPY3~STGE)
S(6,5)% ~H* (HA°STOV3-STGS - CTOY3® (Y5'SIGN « U1/2.0) +
*PYFPYI*SIGE)
S(6,6)= -1 s (¥4 STOY<5IGY — YvCTOYI*SIGH
+Y6*P*FPY3"SIGS + (ALPHA+P*UL*FPY1)/2.0)




56,12)= $(6,6) + 2.0

HERR Vs muuul-mv: YsU1+CTDY3e
~ (ALPHA+P=U1*FPY3)

ENDIF

2 of variables to prevent inocculous werning on S Compiler
{variables not used

e arp———
NE = NE

RETURN
END



SUBROUTINE XLATOR2 (Y, YDOT,H,NYJ, NYK, X, THETAD, EPS, ALPHA,
« 0, 0, THETAO, XF, YF, 20S)

MODIFIED 1/31/56 FOR FIXED VIRTUML (TARGET) ROBOT PROBLEN
HAT UD=0 FOR ALL

IMPLICIT REAL®B (A-H, 0-2)

PARAMET!
DINENSION ¥ (NYJNYK), YDOT(S,M). X(N). POS(S.M),
COST M G ) A AT )

POS(1,1)
POS(2,1)=
P0S(3.1)
POS(4,1)
0S(5,1)

NRG(1)=0
cur=1

D0 10 K=1,M

1€ (ABS(¥(3,K)) .GT .EPS) THEN
FY3= SIN(Y(3,K))/¥(3,K)
ELSE
FY:

ENDIF
Flals ¥(20K) ~COS(THERAD) -Y(1.K) "SI ITHETAD)
Y(4,K] *COS (THETAD-¥ (3, K.
MR sxmm:nn H N

6.K) *Pdel“FY3

ULTRAT () =t
ENERGY COST. FUCTION FOR ROBOTA & 2

NRG(K) « (VITRAT () ++2)
GY COST FUNCTION IN PORN FOR ROBOTS (used for comparison)
RO (K) = (1 TRAD (K)

up= 0.0
YDOT(1,K) = COS (THETAD-Y (3, K] ) *U1
YDOT (2, K|

¥DOT(3/K) = Pdel-U)
YDOT (4,K) = COS (THETAD) *
YDOT(5,K) = SIN(THETAD) UD

IF (K.GT. 1) THEN
POS (1,K) =XE-¥ (1,K)
ROS(2.1) P (2 1)
POS (3/K) =THETAD ¥ (3,K)
P03 (41K ¥
POS (5, X) =¥F

TRAPEZOXOAL INTEGRATION:
COST (K) =COST (K-1) +H* (NRG (X) +NRG (K~1) ) /2
WRITE(34,80) X(K),YDOT(X,K),¥DOT(2,K) , YDOT(3,K) , YDOT (4. K) ,
YDOT (5, k!
WRITE(35,80) X(K),POS(1,K),POS(2,K),POS(3,X),POS(4,K),

LK)
WRITE(37,81) X(K),ULTRAJ (K) ,GU1,COST (K)
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10

80
81

CONTINUE

FORMAT (2X, 6F15.4)
FORMAT (2X,4F20.10)

RETURN
£



APPENDIX D
Program Files Specific to Robot 3
ROBOT3 . FOR
DIFEQ.FOR (for Robot 3)

XLATOR3 . FOR
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PROGRAM ROBOT

single Robot with Terminal Costs and g(ul}=function of ul.

Source for subroutines Red. Pinvs. Solvde. and Bksub end model for
Difeq and Di:
Snerical Recipes, William . press, et al

B

IMPLICIT REAL'S (A-H, 0-Z)

PARAMETER (NE=6, M=201,NB=3 , NCI=NE, NC:
NSJ=2°NEel, NYJ=NE, NYK=M)

E-NB+1,NCK=Ms1,NSI=NE,

DIMENSION SCALV(NE) . INDEXV(NE) . ¥ (NE, W) ,C (NCE, NC3 ,NCK) . S(NSI.NSJ) .
DOT (NE-1,¥) , PO (NE-1, M)

CoMMON X () . DELKG, DELYO. DELHETO, THETAD, EPS. ALPHA, CWT.
« Eps2

Variable description:

GENERAL PROGRAM VARTABLES:

NE Number of independent equ:

ions describing system
' Nusber of Weshpoints, divisions of independent varisble. time
NB:  Number of Boundary Condition: it ndit
c: 3D Arxay for storage of corrections for cach iceration
Note: largest array in progr
NCT, NCJ, NCK:
dinension variables of C array, must satisty equations
found in parameter statemen:
atray for storage of blecks of solution of Difeq
s:

Qimension variables of 2-D § array, must satisty equations
found in paramecer statemen

¥ 2-D array containing muul guess for each point. This array
is updated by
et Hipe ity convergence is acheived

x Array for in ne Variable, time. Used only for comparison

of dependent variables a
SCALV: Array of values epresenting the” ypical magnituda of

pendent variables. Used for controlling correction magnituds
INDEXV: 1uu column ordering for variables in S array, not used in this

1muAx: Haximam number of iterations

Tncrement of independent varisble, Givisions betveen mesh poincs
PROBLEM SPECIFIC VARIABLES:

Initial X coordinate of robot

¥0: Initial ¥ coordinate of robot

THETAO: Initial angle wrt X axis of robot

xP Desired final X coordinate of robot

I Desired final ¥ coordinate ©

THETAD Desired final angle coordinate of robot
X0 +
X0:

DELTHETO

EPS:

EPS2:

ALPHA

RLPHAMAX : DURary VARIABLE USED FOR CONTINUITY WITH OTHER FORMS OF
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0BOT.

veighting paraveter for Terminal Costs
1

oo

PN (37, FILES Ciptot rens: . STAROS: ONINOMN")

PI= 3.141592654

PRINT *, ‘ENTER ITMAX, CONV, SLOWC
& stowe

m
EAD +, ITMAX, CONV,
"ENTER ALPHA'

onces

cwr
“ENTER EPSILON’

[BTER EPSTLON 2¢

JENTER INITIAL X, Y,
X0 Y0 THETAD
ETAO*PI/180
TENTER FINAL X.¥, AND TH:
YE, THET)
D*PI/1
PRINT *,’ENTER INITIAL GUESS
EAD +,RL1,RL2,RLY
PRINT *,'ENTER INITIAL GUESS
. .o

R
PRINT *,ENTER nm-m. . cusss
READ - PHIL PHI2,

DELX0= (XF-X0)
¥0)
THETAD-THETAQ)

Hel./(M-1)

NO INDEX CHANGES NECESSAR

D

FOR
FoR
FoR

FoR

FoR

NDEX v
Index Scale used by SOLVDE.FOR

INDEXV (1) =1
INDEXV (2) =2
INDEXV (3)=3

PHA
d for compatability with standard data input

ENTER C, WEIGHTING PARAMTER FOR TERMINAL COST"

THETA (degrees) *

ETA(degrees) *

3 LAMBDA AMPLITUDES®
3 LAMBOA FREQUENCIES'
3 LAMBOA DC OFFSETS'

3 LAMBDA PHASES

SIZE OF 3 LAMBDA VALUES'

R
. RULiRL2.ALD: | Initial guess amplitude for lambda costates
- OHMI, OFM2, 010e3 : {Cial Guess frequencies for lambda costates
. BCL BCT 63 Initial guess dc. OFfsats for tanida coseacas.
- PHI1, PHI2, PHI3: Initial guess phase lag for 1 costates.
- SL1.5L2,SL3:  Initia) guess SCALV, scale sizes, for lambda costates
. POS(NE-1,M): Position Trajectory for x.y,theta, xd and yd

OPEN (21, FIL:

OPEN(22, FIL!

OPEN(30, FILI

OPEN(31;FILI

PEN (32, FIL

OPEN(33,FILE=' testdat. r

OPEN (34, FILS



1

annn o

INDEXV (4)
INDEXV (S}

INDEXV (6)

INITIAL GUESS FOR ALL POINTS, 1 - M

Initialize independent vector X (time)

Do 11

X (K)
CONTINUE

¥
K1) oH

INITIAL GUESS:

Encer initial values for all meshpoints
NOTE: BOUNDAR)

TR
ENTERED AT POINTS

THESE NUMBERS MOST COTNCTDR WITH ANY DESIRED

NDITONS FOR ¥ (1) (3)
DURT]

WRITE(1), ") STRAIGHT LINE GUESS®

~<~<_

<<k

1 Ki-n:hxc (DELXO® (K-1) / (M-1])

Y0~ (DELYO* (K-1) / (M-1))

3 mxu:x.-mrro {DBLTHETO® (K-1) /.

S(K-1)/

(M-1) +PHI1) +DC!
LK) RL2SIN 2 FL oM+ (K- 1)/ (M-1) -PHL2) e
6.K) =RL3*SIN(2*PI*ORM3* (K-1) / (M-1) +PHI3) +DC3
CONTINUE

write initial guess to file

Do 13

scaly

SCALV(1) =ABS (DELXO0/2) .01

£

=ABS (DELY0/2) +
3 Misu'nu'mrreln)‘ .01

z)'m

3
WRITE (3.

CALL _SOLVDE (ITMAX, CONV. SLOWC, SCALV, INDEXV, NE, N5
c

*DELYO =)
*DELTHETO DELTHETO

NCI,NCJ,NCK, §,NST,NSJ)

Write final Y values to file:
DO 181 k = 1M

WRITE(2

1,80) X(K),¥(1,k},¥(2,k),¥(3,
URITE(32,80) X(K) ¥ 4Lk} ¥ (3R (L)

122

ARE
NG THE INITIAL GUESS!

1

X

WRITE(30,80) X(K),¥(1,K),¥(2,X),¥(3,K)
WRITE(31,80) X(K).Y(4,K),¥(5,K),¥(6,K)
CONTINUE

set to approximate size of typical values of known solution

XF.YF, (THETAD*180/P)
L1 RL2,RLY

¥, NI NV,




181 conTmNuE
B0 FORMAT(2X,4F15.4)

CALL XLATOR3 (¥, YDOT,H,NYJ, NYK, X, THETAD, EPS, ALPHA,
B X0, Y0, THETAO, XF, YF, POS, E252)

PRINT *,’PROGRAM COMPLETED'

cLoseE(21)
CLOSE(22)

CLOSE(34)
CLOSE(35)
CLOSE(3T)

END



SUBROUTINE DIFEQ(K,KL,K2,JSF,IS1,1SF, INDEXV,NE, S, NST,NSJ, ¥, NV,

IMPLICIT REAL"S (A-H, 0-2)

1 MODIFIED 7/18/94 TO INCLUDE TERMINAL COST AT PINA BOUNDARY CONDITION

* MODIFIED 7/21/94 FOR NON-MOVING VIRTUAL (TARGET) RO

© NODIFIED 7/25/54 FOR FONCTION, O(U1) TINES ALPHA TeR IN U2.
(FEEDBACK REFINEMENT)

PARAMETER (M=
DINENSTON ¥ (NY3/IYK) , S (NST,NS3), INDEXV(NY)

COMMON X (M), H, DELX0, DELY0, DELTHETO, THETAD, EPS, ALPHA, CWT,
&«

c Initialize matrix S as 0

9 J=1,NS3
S(1,3) = 0.0
INUE

9 conT
10 coNTINUE

c Initial Boundary Conditions
IF(K.EQ.K1) THEN
c Enter non-zero values:
D0 11 1= 1,3
S(+1,6+1)21.0
1 CONTINUE
©  Initial values in right hand vector for initial block
v -omx
y(2.1)-
Vi35 Beiero
c End Boundary Conditions
ELSE IF (K.GT.K2) THEN
c Enter non-zero values




Final values in right hand vector for final block

c
V(1M TOHT - Y(4,M)
Y(2.M) D - ¥(5.M)
Y3/ T - ¥i6Im)

¢ Interior Point.

c erived from Finite Difference Equations of Notion

ELSE
< Pre-calculation of commonly used variables:

1172.0

1172.0

1)72.0
va 1)72.0
Verleis (s /20
Y6:(¥(6,K)+¥(6,K-1)1/2.0
CTD=COS (THETAD)
STD=SIN (THETAD)

CTDY3=COS (THETAD-Y3)
STDY3=SIN(THETAD-Y3)

Y2+CTO-Y1+STD

sTaBs (13 orEre T
FY3ZSINGY)/ (
cosmy/v)1-4sxnmy/m--zn

e ) -2 0108 (¥3) 1113172
2.0°SIN(Y3)/(¥3)773) /2
sLse
FY3=1.0
FPY30.0

ENDIF
UL=Y4CTDY3 + YS*STOYD + Y6°P*FY3

IF (ABS (U1) .GT. EPS2) THEN
GU1=1.0

ELSE

%
ENDIF
s161- cysernesTon 0
S1G2= Y6*FYI*CTD/2.0
VoSt Y vsr2.00cTovs + v6epesIoa

5163,

SIG6= CTDY3/2.0
S1G8= STDY3/2.0

Enter non-zero values

sl o1 - scTor sic)

v i



S.me s v 2.0

HitMH ]
S(2,1)= H*STDY3I*SIG:

S5 T Sovaesta
§(2.3)= H(sTONISTG) - Crov3+u1/2.00

12)= 52186
3.1)= HTFY3" (P"SIG1SIG10°UL)

1)
2.0+ P*(ULSIGE + SIG3*FY3))

S S
3.12)= 5(3.6)

mmmMmmwmmmmm wannnnnn

4107 Hnesmirn sty

4.2)= H*Y6+STD'FY3+SIG2

(45 ae-sror (01 104 « s1caven)

CL ¢ H'Y6TSTO'EY3+SIG

*Y6STD*FY3*S1G8

418)2 HSTDVFY3®(Y67S109 + UL/2.0)
1

J11)= s(4)5)
4.12)= S(406)
5.1)= -H*YE*CTD*FY3*SIGL
5.2)= -R*Y6*CTD*FY3*SIG2
-HeY6CTD® (U1°SIGE + SIGI*FY3)
4)= -HY6*CTD*SIGE
.5)- I TR
DoFes (vessi0s + u1/2.0)

MnnEnEanEnnE Bunnnonn, 00

it

S(6,1)= -H*(Y4"STDYI*SIG] - Y5°CTDYI*SIGL +
Y6*FPY3* (P*SIG1+51GL0*U1)

S(6.2)= -H*(Y4*STDY3I*SIG2 - Y5°CTDY
Y6

S(6,3)= -ne

Y3
s(6.4)= —w(smn-«usxcs + U1/2.0) - Y5°CTDYI*S1G6 +

S(5.5)= -He (Y4-STOVS"STOB - CTOY3® (¥S+SIGE + 11/2.0) »
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an

Y6PrFPY3*SIGE)
-1 e (Y4-STOUISSTGY - ysecTo3esics
Y6+PUFPY3*SIGI + (ALPHATGUL+P*UL"FPY3)/2.0)

YI1,%) -¥(1,K-1) +H* (CTDY3*U1)
HER Rt
13K Y13 K-1) o (ALPUA-GUL Y3+ £rUL-FY3)

K -v(
V{80) ¥ (1-1) e (va U1 5POYS ¥ +UL-CTOV+
¥6* (ALPHA*GU1+P U1 FPY3) )

EenpIF

of variables to prevent inocculous warning on S Compiler
4v-nnble5 not used)
s1

INDERV(L) = THDERV(L)
NE = NE

RETURN
END
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(SUBROUTINE XLATOR] (Y, YDOT. . MY3. NYK. X, THETAD, £PS. ALPHA.
%0, THETAO, XF, YF, POS, EPS2]

WODIFIED 7/21/94. FOR PIXED VIRTUML (TARGET) ROBOT PROBLEN
SUCH THAT UD=0 FOR ALI

{ WODIFIED 7/25/34 FOR FUNCTION, G(UL) TINES ALPHA TERN IN UZ.

. (FEEDBACK REFIN

IMPLICIT REAL"S (A-H, 0-7)

PARAMETER (M=201)
DIMENSION Y (NYJ,NY)

DO (S W XU oSS,
COST M) ARG () \CVTHAD (41, GO TRAS

POS(1,1)=X0

TE(ABS(Y(3.K)1.GT, EPS)THEN
SIN(Y(3,K)) /¥ (3, K

Fy:
ENDIF
Pdels ¥(2.)“COS (THETAD) ¥ (1. K) "SIN(THETAD)
UL= Y(4,K) *COS (THETAD-¥ (3

& Y0510 ST (THETAD ¥ (3.K1) <

“

¥(6.K) “PdelFY3

ULTRAJ (K) =

ENERGY COST FUCTION FOR ROBOTS & 2

NRG (K) = (ULTRAJ (K) **2) /2

ENERGY COST F FORM_FOR ROBOTS (used for comparison)
NRG (K) = (ULTRAJ (K) **2) /2 + ALPHA

IF (ABS (U1) .GT.EPS2) THEN
cut

GULTRAJ (K) =GUY

up= 0.0

YDOT(1,K) = COS(THETAD-Y(3,K) ) "U1

YDOT (2,K) = SIN(THETAD-Y(3.K)) *U1
YOOT(K)x Mal-ULaFrd « ALPRAGUI ¥(3. )
¥DOT (4, K) = COS (THETAD)

YDOT (5, K) =

SIN (THETAD) 0D




an

TRAPEZOIDAL INTEGRATION

COST (K) =COST (K-1) +H (NRG(K) ~NRG (K-1) ) /2
ENDIF

WRITE(34,80) X0 ¥DOT (1.K) . YDOT(2,X) . YDOT(3.K) . ¥DOT (4.0
&
VRITE(35.,80) X(K),603 (1,K) ,POS (2,1, POS (3, K) PO (4,K)
B

05 (5,
WRITE(37,61) X(K),U1TRAJ (K) ,GULTRAJ () , COST (K)

10

80
81

CONTINUE

FORMAT (2X, 6F20.10)
FORMAT (2X, 4F20.10)

RETURN
=Np



APPENDIX E
Program Files Specific to Robot 4
ROBOT4 .FOR
DIFEQ.FOR (for Robot 4)

XLATOR4 . FOR



PROGRAM ROBOT4

. Single Robot with terminal cost and g(Ul) and alpha concrol (hi/lo)
. Source for subroutines Red. Pinvs. Solvds, and Bksub and model for

. Difeq and D

. amarsear Regipes, Willian . Press, et al

IMPLICIT REAL®S (A-H, 0-2)

FARANETER (V2 /NCI=NE,NCI=NE-NB+1,NC!
i Eiee g e

DIMENSION SCALYINE) . INDEXV (NE) ¥ (N, M) .C NCX.NCJ. NCKI . (NST, N53) ,
. 1M,

CoMON X(8) - W DELKO. DELYO DELFWETO, THETAD, EPS, CHT,ALPHA(M),
&« EPS2, ALPHAMIN, ALPHAMAX

. Variable description:

. GENERAL PROGRAM VARIABLES

- NE:  Number of independenc equations describing sys

. M Nunber of Heshpoints, divisions of independent variable, time
- NA:  Humber of Boundary Conditions Kngwn ar initial sondition

. c 3°D Array for storage of corrections for each iteratiol

. Note: largest array in progri

. NCI, NG :

. sion variables of C array, must satisfy equations

. und in parameter statement

. s: array for storage of blocks of solution of Difeq.

. NSI. NSJ:

. dimension variables of 2-D S array. must satisty equations

. found in parameter stater

. v 1,0 szcay containing mu.x guess for each point. This array
. is update uhen the

. Ty el T converance. is acheiv

. x Rrray for- indepundent variabie, vine. Used oniy for comparison
- of dependent varisbles after program completes

. SCALV: Array of values represencing the typical magnitude of the

. dependent. variables. Used for controlling correction masnitude
. NDEX umn ordering for variables in S array, not used in this
N program

. ITMAX: Maximum number of iterations

. CONV: Convergence criteria for corrections to ¥

. SLoWC: Controls fraction of corrections applied to

. Cranent ¢ indepandent vatiabie. Sivisions betueen mesh points
. PROBLEM SPECIFIC VARIABLES:

. x0: Initial X coordinate of robot

. ¥o: Initial ¥ coordinate of robot

. THETAO: Initial angle wre X axis of robor

. XF:

. Smallest value UL for which g(ul)

. Cow alpha gain for ul equal to

N High alpha gain for ul not e

. wWeighti rameter for Terminal Co

. RL1,RL2,RLY:  Initial guess amplitude for lambda costates

. OHM, OHMZ, O3 : Initial guess frequencies for lambda costates.
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DC1,DC2,0C3:  Initial guess d.c. offsets for lambda costates.
3

PHII, PHI2, PHID: Initial guess phase lag for lambda costate:
SL1503, 503 Initial guess SCALV. scale sizes, for lambda costates.
POSINE-1,M):  Position Trajectory for x,y,theta, xd and yd.

an

OPEN(34FILE="dotplot.robd’, STATUS=' Ummovm )
OPEN(35, FILE="posplot .robd ‘. STATUS=

GPEN (36 FILES 2ipion ope., STATUSS CNINOWN')
OPEN(37, FILE="ulplot .robd ", STATUS=’UNIN(

3

3.141592654

PRINT », 'ENTER ITMAX, CONV, SLOWC'
READ *, ITMAX, CONV, SLOWC

“ENTER ALPHAMIN'

ALPHA MIN

"ENTER ALPHAMAX"

PHA MAX
CENTER C. WEIGHTING PARAMTER FOR TERMINAL COST'
m:l EPSILON®
CENTER EpstioN 2
“ENTER INITIAL X,Y, AND THETA(degrees)’
X0, Y0, THETAQ
HETAO*P1/180
ENTER FINAL X,Y, AND THETA(degrees)’

0

{ENTER, INITIL GUESS FOR 3 LAMOA MMPLITUDES®
RL1,RL2,

“ENTER. INETIAL GUESS FOR 3 LAMEDA FREQUENCIZS®
HM1, OHM2 , OHM3

[ENTER INITIAL GUESS FOR 3 LAMBDA OC OPFSETS®

Evren. INTIAL SUESS FOR 3 LAMEDA PHASES”
PHIL PUI2, P

PHI2pIIZ-P1/100
PHI3=PHI3*P1/180

ENTER INITIAL GUESS FOR SIZE OF ) LAMBDA VALUES'
SL1,512,5L3

0)
DELTHETO= (THETAD-THETAO)
ML/ (M-1)

NO INDEX CHANGES NECESSARY
Index Scale used by SOLVDE.FOR

INDEXV(6) =6
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o INITIAL GUESS FOR ALL POINTS, 1 - M
c Initialize independent vector X (time)
DO 11 K=

() k-1 K
11 contiNuE

c INITIAL GUESS:
< Enter initial valves for all meshpoi
c ¥ CoNDITONS FOR ¥(1)-Y(3) ARE
c ERTERED, AT POTWTS 1 AN K DURING THE INITIAL GUESS
c THESE NUMBERS MUST COINCIDE WITH ANY DESIRED B.C.:
WRITE(33,*) *STRAIGHT LINE GUESS'
va m-m.xo-u:sv.xow s
- (DELYO* (K-1) /
L asTor (DELTHETO" (K-1)
L1+SIN(2*PI=OHML® (K-1) / (-1) +PHI1) +DCL
L2SIN(2*PI=OMM2 " (K-1) / (M-1) +PHI2) +DC2
L3*SIN(2"PI0HM® (K-1]/ (-1) +PHI3}+DC3
12
. INITIAL ALPHA DETERMINATION: -
TF(Y(3,1) .GT.EPS) TH:
SN, D/,
FY3= 1.0
ENDIF
vl ¥is, 3,10)
& s oy ¥ 5 15 N ety -5
IF(ABS (U10) .GT. EPS2) THEN
Gul=1.0
BETA=1-¥(6,1) "GUL*¥ (2,1}
IF (BETA.GT. (0.0) ) THEN
el ALPHAMIN
ELSE
ALPHA(1) =ALPHAMAX
DIF
c write initial guess to file
00 13 K=1,M
WRITE(30,80) X(K),¥(1,K),¥(2,K),Y(3,K)
WRITE(31,80) X(K).¥(4.K)|¥(5.K) ¥ (6, K)
13 CONTINUE
c Scalv set to approximate size of typical values of known solution

3 (ELX0/2) 201

oAV (6) vaBs (31374 01

C  WRITE TEST DATA TO FILE
TE(33,) ITMAX -, ITMAX



WRITE(33,7)

WRITE(33,

WRITE (33, %)

WRITE(33)*

WRITE(33,*

WRITE(33,

WRITE(33

WRITE(33,*) *INITIAL X.Y & THETA = °, XO0,Y0, (THETAO®180/PI)
ITE(33.%) ‘FINAL XY & THETA = ', XF,YF, (THETAD*180/P1)

WRITE(33,*) ‘INITIAL LAMBDA VALUE AMPLITUDE', RL1,RL2,RL3
ITE(33,*) 'SIZE OF LAMBDA VALUES', SL1,SL2,SL3

WRITE(33,*) ‘DELXQ =', DELXO

WRITE(33,*) "DELYO =', DELYQ

WRITE(33,*) ‘DELTHETO =, DELTHETO

CALL SOLVDE (ITMAX, CONV, SLOWC, SCALV, INDEXV, NE, N8, M, ¥, NYJ, NYK,
* C.NCI,NCJ.NCK,S.NSI,NSJ)

write final ¥ values to fil,

00 181 k = 1,4
WRITE(21,80) X(K),¥(1,k),¥(2,K),¥(3,k)
WRITE(22,80) X(K}.¥(4,k},¥(5,Kk)¥(6.k)
)

80
81

WRITE(36,81) X(K),ALPHA(K
CONTINUE

FORMAT (2X, 4F15.4)
FORMAT (2X, 2F15.4)

CALL XLATORS (¥, ¥DOT, H,NYJ, NYK, X, THETAD, EPS, ALPHA,
. X0, Y0, THETAQ, XF, YF, POS, EPS2

PRINT *, ' PROGRAM COMPLETED'

cLOSE(21)

CLOSE(37)
enp



SUBROUTINE DIFEQ(K,K1,K2,JSF,IS1,ISF, INDEXV,NE,S,NSI,NSJ, Y, NYJ,

IMPLICIT REAL®8 (A-H, 0-Z)

0D
MOD:
MoD:

MOD:

IFIED 7/18/94 O INCLUDE TERMINAL COST AT FINA BOUNDARY COMDITION

TFIED 7/21/94 FOR NON-MOVING VIRTUAL (TAR

TF1E0 7/25/54 FOR FUNCTION, (G(UL) TIMES ACPIA TERM TN 02
(FEEDBACK REFINEMENT)

IFIED 7/26/94 FOR ALPHA AS INBUT

PARAMETER (4=201)

DIMENSION ¥(NYI.NYK), S(NST.NSJ). INDEXV(NYJ)

Cormon 1) . DELXD, “DELND, DELTHETO: THETAD. EPS. CWE.ALPHA(M).
52, ALPHAMIN,

Initialize matrix § as 0

20 10 1-1M51

Initial Boundary Conditions
IF(K.EQ.K1) THEN

Enter non-zero values

1 1=,
S(3+1,6+1)=1.0
CONTTNUE

Initial values in right hand vector for initial block
]
30 Bermmere

End Boundary Conditions
ELSE IF (K.GT.K2) THEN

Enter non-zero values:

$(2,7)= 0.0
5(2.8)= cwr




€ Final values in right hand vector for final block
S(1,3SF)= Y(1,4)°CWT - ¥(4,3)
S{2,JSF)= Y(2.M)*CWT - Y(5.M)
S(3,35F)= Y(3/M)"CWT - ¥(5.3)

< interior Points

< rived from Finite Difference Equations of Motion

ELSE
< Pre-calculation of commonly used variables:

P= Y2+CTD-¥1+5TD
IFIABS (Y3) G- ERS)THEN

FPY:a(cos(ﬂ)/‘tn-‘sm(Y:lun

S1G:

Storae (- smmun 2.04€0S (¥3)/(¥3)
0°SIN(Y3)/(¥3)**3)/2.0

201

UL=Y4°CTOY3 + YS*STDY) + Y6*PeFY3

IF (ABS(U1) .GT . EPS2) THEN
Gul=1.0

BETA=1-Y6°GU1°Y3
IF (BETA.GT. (0.0) ) THEN
ALPHA (K) =ALPHAMIN
BLSE
'ALPHA (K) =ALPHAMAX
ENDIF

SIG1= -Y6°FY3*STD/2.0
S1G2= Y6*FY3*CTD/2.0
SIG3= Y4/2.0°STDY] - ¥5/2.0°CTOY3 » Y67PSIGE

S1G6= CTOY1/2.0

sT0¥3/2.0
FY3/2.0

SIG10 = -5T0/2.0

S1611= CT0/2.0

Enter non-zero values:



-1 + WrCTDY3*SIGL
v3+sIG2

sn 1>= v fempu=sios « stoviuis.o)

» (CTDY3 *STG6)

HYFY3* (PTSIGL+SIG107UL)
HYFY3* (P*SIG2+SIGL1*0L}
= LT (LA G120 + P1IULTSION ¢ SI63FY3))

HeY§*STD*FY37SIGL

HTY6*STD*FY3*S

HRYSTSTO® (0195164 + S163°FY3)
g fuYersToeria sics

sis - e

s(s z)x TevecromFa-

H‘\’G’c‘m‘(ul'sma + SIG3*FY3)

e CTD SIG

-1 - Tocsiosrry

ChecTBreas (76 atos s 1/2.0)
1)

HHASSTOSIGL - ¥SsCIDYISIL
FPY3¥ (PeSIC1+SIGL001))

e (VA STDEASIG o YReCTDYIS1GE
Y6*FPY3" (B*SIG2+SIGI1+UL})
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nn

5(6,3)= -H"(¥4*(-U1CTDY3/2.0 + SIG3-STOV3)
(U1*STDY3/2.0 + CTDY3*SIG3}
+ Y6*P* (U1*SIG12 + SIG3*FPY3))
S(6.4)% -H" (STDI3- (14°81GS  D1/2.0) - YseCTOY3-S1GE +

<FPY3 *SIG
S16,5)= »H'LY4'51D13'5155 - CTDY3*(Y5%SIGB + U1/2.0) +
FPY3*SIGH
56,6 el dsmori+stos - vsectovatsics
PrEPYI*ST
HA(K) *GUL+ P*UL=FPY3) /2.0)
58,7
sts.
s16.9)
HE
s

s(6,5)
SEADTES <20
Y(1,K)-Y(1,K-1) +H* (CTDY3*U1)

2/K) -¥ (2. K-1) +H* (STDY3*UL)
ALPHA(K) 'GUL"Y3+P°U

-FY3)
“G1-cmperY

) 14:01-STDY Y5 U1 CTOY3

REREAR R

ENDIF
Dunny use of varisbles to prevent inocculous warning on S Compiler
{variables not us

Ior o Ier
INDEXV(1) = INDEXV(1)
NE = NE

RETURN
END



SUBROUTINE XLATORA (Y, YDOT. . WY, NYK, X, THETAD, EPS. ALFIA.
0.Y0.THETAO, XF, YF. POS, EPS2)

HODIFIZD 7/21/54 FOR FIXED VIRTUAL (TARGET) ROBOT PROBLEN
SUCH THAT UD=
MODIFIED 7/25/94 FOR FUNCTION, G(U1) TIMES ALPHA TERM IN U2
(FEEDBACK REFINEMENT)
MODIFIED 7/26/34 FOR ALPKA AS INPUT, ALPHAMIN OR ALPHAMAX.

IMPLICIT REAL'B (A-H, 0-2)

PARAMETER
DINENSTON ¥ (RY7 NYK) , YDOT(5,K), X(M). POS(S.H)ALPHA().
COST (M), NRG () , ULTRAJ (4} , GUYTRAJ ()

NRG(1)=0
DO 10 K=1,3

IFIABS(X(3.K)) .G EPS) THEN
NY(3,K) /Y (3,6

s
FY
ENDIF
pdel. {FLoCO8 (THETAD) -¥ (1, K] "SIN(THETAD)
B oS mremap Y (0 ki
& V{51 St mETADY (310 +
“ Y(6.€) PdelFY3

A -
ERGY COST FUCTION FOR ROBOTS
NRG(K) - (OLTRAT(K) o+2) 72 - ALPA(K)

IF (ABS (U1) .GT. EPS2) THEN
Gul=1.0

COS (THETAD-¥ (3,X) ) *U1
SIN(THETAD-Y (3, X)) *U1
SULTFYD o ALPHA(K) *GUL*Y(3,K)
\(oo'ru x)< COS (THETAD) *UD
SIN(THETAD) *UD

TRK.GT. 1)
505 (1) K) X ¥ 1, %)
POS (2/K) =YF-Y(2.K)
FOS (3] K) STHETAD-Y (3, K)
POS(4:K) X
POS(5,K) =

TRAPEZOIDAL INTEGRATION:
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80
81

COST (K) =COST (K-1) +H* (NRG (X) NRG (K-1) ) /2
ENDIF

WRITE(34,80) X(K),YDOT(1,K),YDOT(2,K) ,YDOT(3,K) . ¥DOT (4, K,
¥DOT(5, K)

WRITE(35,80) X(K),POS(1,K),POS(2,K),POS(3.K), POS(4,K),

WRITE(37,81) X(K),ULTRAJ (K} ,GUITRAJ (K) , COST (K)

contmnuE

FORMAT (2, 6F20.10)
FORMAT (2X, 4F20.10)

RETURN
END



APPENDIX F
Program Files Specific to Robot 5
ROBOTS . FOR
DIFEQ.FOR (for Robot 5)

XLATORS .FOR



PROGRAM ROBOTS

SINGLE ROBOT WITH TERMINAL COST, g(Ul), AND ALPHA CONTROL.

Source for subroutines Red. Pinvs. Solvde. and Bkaub and model for
Difeq and Diskna
crical Recipes, William K. Press, et al

IMPLICIT REAL®S (A-H, 0-2)

PIMENSION SCALY(NE) . INDEXV (NE) ¥ (NE,3) . (MCX NG NCK), S(NSL.NST) .
DOT ( 01

& NE-1L ). FOS (Ne-1 1)

TAETO. THETAD, EPS. CWT,ALPHA(M),
PS2, ALPHAMIN

variable description:

GENERAL PROGRAM VARIABLES:

NE:  Number of independent equations describing sys!

: Nunber of Meshpoints. divisions of independent varxable, time
NB:  Number of Boundary Conditions known at initial condition
c:

3-D Array for storage of corrections for each iteration
Note: largest array in program

K
dimension variables of ¢ array. must satisfy equations
found in parameter stateme;

s: avray for storage of blocks of solution of Difeq.

NSI, NST:

dinension variables of 2-D § array. mist satisty equations

found in parameter statement

2,0 arxey concaining xmtul guess for each point. Thi srray

is updated
are sufficiently small, convergence is -lehe) 1
Array for independent variable, time. Used only for comparison

of

SCALV: Atray of values represencing the typical magnitude of th
iependent variables. or controliing correction magnitude

INDEXV: 115%8 column orderifg for variabies in § arrey. ot used in this
program

ITHAX: Maximum number of iterations
Convergence criceria for corrections to v

Controls fraction of corrections applied to ¥

nerement of independent varisbie. Givisions between mesh points

PROBLEM SPECIFIC VARTABLES:

RoBOT

Initial X coordinate of robot
Initial ¥ coordinate of robot

nitial angle wrt X axis of robot
Desired final X coordinate of robot

¥e: Desired final Y coordinate of robot

THETAD. Desired final angle coordinate of robot

DELXQ: Initial boundary condition for state variable delta-X

Initial boundary condition for state variable d

DELTHETO Ini condition for state variable delta-theta
: Smallest value for which f(delta-x]=3in(delta-x]/(delta-x)

Eps2: Smallest value of Ul for which g(ul)=1

ALPHA: Rotational gain related to delta-theta:

ALPHAMAX: UMY VARTABLE USED FOR CONTINUITY WITH OTHER FORNS OF
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Weighting parameter for Terminal Costs

s
RL1,RL2,RL3:  Initial guess
b e

amplitude for lambda costates

vl itz on nitial guess frequencies for lambda costates.

pHIl, mm pux)
su2

©
Initial guess

ALV, scale sizes,

ESINELH . Posiiion Trasectany for kv theta, v and va

o0

OPEN(21,FILE='xplot.robS’, ST

v
OPEN(37, FILE=‘ulplot.robS’, STATUS=UNKNOWN')

PI= 3.141592654

PRINT +, |GNTER TTIONX, COW, SLowe!
READ )

conv, sLow
Fatwr ¢, ENTER ALPHANIM
R

EAD PHA MIN
print +,'dumny read for compatibility , enter ¥
Reap

X0, Y0, THETAO
HETAO*P1/180

OHXN1, OHM2 , OHMY
"ENTER INITIAL GUESS

“per, pe2, o3
PRIwr ¢ BNTER INITInL cuess
READ 3

0

DELYO= (YF-Y0)
DELTHETO= (THETAD-THETAO)
HelL/ 1)

NO INDEX CHANGES NECESSARY

FOR

FOR

FOR

FOR

FoR

Index Scale used by SOLVDE.FOR

INDEXV(1) 51
INDEXV (2

ENTER C, WEIGHTING PARAMTER FOR TERMINAL COST'
CEiten EpSILON for (deltheta)®
| [BNTER EPSILON 2 for g(Ul)®

“ENTER INITIAL X,Y. AND THETA(degrees)’

[ENTER FINAL X.Y. AND THETA(degroes)
¥,

3 LAMBDA AMPLITUDES'
3 LAMBDA FREQUENCIES'
3 LAMBDA DC OFFSETS”
3 LANEDA PHASES®

SIZE OF 3 LAMBDA VALUES®




INDEXV (6

3 INITIAL GUESS FOR ALL POINTS, 1 - M

c Initialize independent vector X (time)

1 k=14
X(K) =(x-1) K
11 conTINUE

< INITIAL GUESS:
c Enter initial values for all meshpoints
c NoT! ¥, CONDITONS FOR (1)-¥(3)
c ENTERED AT POINTS 1 NG THE INITIAL GUESS
c THESE NUNBERS. MUST COINCIDE WITH ANY DESTRED
“STRAIGHT LINE GUESS'
LXO- (DELX0* (K-1) / (M-1) )
ELYO- (DELYO* (K-1) / (M
LTHETO- (DELTHETO* (K-1)
RL1*SIN(2*PI*OHM1* (K-1) / (M-1) +PHI1) +DC1
2+SIN(27P! 2+ (K-1) 7 (M-1) +PHI2) +DC:
L3*STN(27PT*OHM3* (K-1) / (M-1) +PHI3) +DC3
12 CONTTNUE
. INITIAL ALPHA
w1 orees)
SR
FY3= 1.0
ENDIF
U10=Y(4,1) *COS (THETAD-Y(3,1)) + Y(5,1) *SIN(THETAD-Y(3,1))
&+ ¥(6,1)*(Y(2,1) *COS (THETAD) -¥ (1, 1) *SIN(THETAD) ) *F¥3
IF(ABS(U10) .GT.EPS2) THEN
GUL=1.0
ELSE
GU1=0.0
ENDIF
BETASY(6,1) *GUL*¥(3,1)
IF (BETA.LT . ALPHAMIN) THEN
ALPHA (1) SALPHAMIN
ELSE
ALPHA(1) =BETA
ENDIF
< write initial quess to file
0O 13 K21,
WRITE(30,80) X(K),¥(1,K),¥(2,K),¥(3,K)
WRITE(31,80) X(K),¥(4.K).¥(5,K) Y (6, K)
13 CONTINUE
© Scalv set to approximate size of typical values of known solution

SCALY (1) =ABS (DELKG/2) +.01
(

SCALV(6) =ABS (SL3}



WRITE TEST DATA 7O FILE
I

H
i

WRITE(33,*) *SLOWC =',SLOWC
WRITE(33. 1) IALPHA nrn * ALPHAMIN

WRITE(33, ") sxwu =, EPS

WRITE(3, ) SEpSILO 52
VRITE(33.+) ‘INITIAL X, & THETA = ©, X0,¥O. (THETAD*180/9T)
WRITE(33[*) ‘FINAL H . . (THETAD*180/PT}

WRITE(33,*) SIZE DA VALUES', SLL,SL2,SL3
WRITE(). 1) DEL ELXO
WRITE(33] DELYO

“DELYO =*,
WRITE 05,4 -bELTaETS ‘DELTHETO

CALL_SOLVDE (ITMAX, CONV, SLOWC, SCALV, INDEXY, NE,NB, M, ¥, NYJ, NYK,
= C,NCI,NCJ,NCK.S,NST,NST)
write final ¥ values to file:

DO 181 k = 1,k
WRITE(21,80) X(K).¥(1,k),¥(2,K),¥(3,k)
WRITE(22,80) X(K),Y(4,K),¥(5,¥),¥(6,k)
WRITE(36,81) X(K),ALPHA(K)

181 CONTINUE

80 FORMAT(2X,4F15.4)
81 FORMAT(2X,2F15.4)

CALL XLATORS (Y, YDOT,H,NYJ, NYK, X, THETAD, EPS, ALPHA,
& X0, ¥, THETAD, XF, YF, POS, EPS2, ULTRAT)

PRINT *,*PROGRAM COMPLETED'
cLosg(21)

CLOSE(22]
CLOSE(30)

CLOSE(37)
ENp



SUBROUTINE DIFEQ(K,K1,K2,JSF, IS, ISF, INDEXV,NE, S, NSI,NSJ, ¥, NYJ,
IMPLICIT REAL"S (A-H, 0-2)

MODIFIED 7/18/94 TO INCLUDE TERMINAL COST AT FINA BOUNDARY CONDITION

MODIFIED 7/21/94 FOR NON-MOVING VIRTUAL (TARGET) ROBOT

MODIFIED 7/25/94 FOR FUNCTION, G(UL) TIMES ALPHA TERM IN U2.
(FEEDBACK REFINEMENT)

MODIFIED 7/26/94 FOR ALPHA AS INPUT

MODIFIED 7/26/94 FOR PROPORTIONAL ALPHA AS INPUT

PARAMETER (M=201)

DIMENSION ¥ (NYJ,NYK), S(NSI,NSJ), INDEXVINYJ)

COMMON X(M), H, DELXO, DELYO, DELTHETO, THETAD, EPS, CWT,ALPHA(M),
A 52, ALPHANIN

c Initialize macrix S as 0

= 0.0
s CONTINUE
10 CONTINUE
¢ Initial Boundary Conditions
IF(K.EQ.K1) THEN
¢ Enter non-zero values:
1
€ Initial values in right hand vector for initial block
S(4,5F)= y(1,1) -DELXO
S(5,J5F) 11)-DELYO
5(6,ISF)= y(3,1) -DELTHETO
c End Boundary Conditions
BLSE IF (K.GT.K2) THEN
< Enter non-zero values:

5(1,7)= cur
5(1,8)= 0.0




©  Final values in right hand vector for final block
501,35, LM)SCHT - Y (4,M)
5(2,35F)= ¥(2,M) *CWT - ¥(S.M)
5(3,35F! I eCcwT - Y(6M)

< nterior reints

c rived from Finite Difference Equations of Motion

ELSE
< Pre-calculation of commonly used variables:

YK=Y 0LK-1) /2.0

¥
¥;
v
¥
¥:
¥

Y(6,K) ¥ (6,K-1)) /2.0
CTD=COS (THETAD)

= ¥2+CTD-Y1'STD
17 (MBS (¥3) GT. 2B THEN

Ga
51612=(-! smu )/¥3-2.0%COS (¥3)/ (¥3) 2 +
0*SIN(Y3)/(¥3)%*3)/2.0

. ¥6rErRY

IF (ABS (U1) .GT.EPS2) THEN
Gul=:

ELSE

cu.

ENDIF

BETASY6°GU1*Y3

TF (BETA. LT . ALPHAMIN) THEN
ALPHA (K) <ALPHAMIN
DELAL3=0.0

-Y6*FY3*STO/2 .0
Y6FY3CTD/2.0
= ¥4/2.0°STOYI - ¥5/2.0°CTDY3 + Y6'P*SIG4

S166= CTO¥3/2.0

SIG8= STDY3/2.0
51G9- PeFY3/2.0



$iclo - -storz.0
SIG11= CTD/:

Enter non-zero values:
210 1 - woTonesion

Si2)e Hctony
He (CTDﬂ'sxG) + STOYI'UL/2.0)

S(1110)= 5(1,4)
SUI1n): 50105
suli2s sale

$(2,1)= H*STOYI"ST
HE gt T
§3) H TSIy - CTonui/2.0)
STDY3 *STG!
STova-sige)

*s169

.1

5(2.8)= 5(2:2) + 2.0
$(2,9)= 5(2,3)
5(2/10)= S(2.4)
S(2011)= 5(2.5)
5(2,12)= s(2.6)

§3:1)2 wora: (statstoionn)

2033 TR GO AT () 2.0 + DELALI®YS)
2 b (i1 stce v St0aren)
$0-41- wrrarsics

5(3.7)= 503,

B

S0 HresTonr oy
HeY6-STOFY2 151G
(ULASICe .+ s13tre3)

1 v FY3°sIc

5(4.12)= 5(4.6)

§(3-10 -wevsreroirnsial
5(5.2)= -H*Y§*CTD*FY3"S:
HHE e
S(514)= Hevecn
(5.5

+Y6+CTDSIGE*FY3
-wcmvn:-ws-sm Yuiz.o

S(5.7)= s
s(5/8)= s(s,n

5(5,9)= 5(5,3)
5(5.10)= 5(5,4)
S(5.11)= S(5.5) + 2.0



an

5(5,12

st6.11=
s(6,2)=
s(6,3)=

506,41
5(6,5)=
5(6,6)=

s16,7)=

5(6,35F)

ENDIF

5(5,6)

H¥ (Y4STDY3 YS*CTDY3°SIGL
6FPYa (p-31a1- G100 U )

3 ELALS -G
e (ST (1A 5108 '+ Ui/ 00 - YA CAes-Sice
Y6*PTFPY3*SIGH,
-H*(Y4°STOYT*STGB - CTDY3* (YS*SIGS + U1/2.0) +
Y6 P*FPY3*SIGS|
-1 -Re(ves s-mn-sms Lsemn.
R 6°Gu1)
CRHAR aicpoRE 50)

5(6,1)

TE -y L eron )
¥{2,K) -¥ (2] K-1) +H* (STDY3"

¥(3,K)-¥ (3 K-1) .u-(urmrx)wux‘nw‘m‘nj)
AL R T (R s
TSR s e
B b IR A -,
AT IALPRA G U p U PR T)

Dumny use of variables to prevent inocculous warming on S Compiler
(Variables not used)
181 = 151

ISF = ISP
INDEXV (1)
NE

RETURN
END

INDEXV (1)



ann

 SUBROUTINE. XLATORS (Y. YOOT. . NYJNYK. X, THETAD. EPS . ALFHA,
L YO.THETAQ, XF, YF, POS, EPS2, UITRAJ)

MODIFIED 7/21/94 FOR FIKED VIRTUAL (TARGET) ROBOT PROBLEM

HODIFIED 7/26/94 FOR

e

IMPLICIT REAL®8 (A-H, 0-2)
PARAMETER

DIMENSION Y (NYJ,NYK). YDOT(S.M), X(M), POS(S,M),ALPHA(M).
ST () ARG (M) UL TRAT () s GULTRAS (M)

POS(5,1)=¥F
NRG(1) =0
0o 10

IF(ABS(Y(3,K)) .GT.EPS) THEN
INTY(3,K)) /Y (3, K)

¥(2,K) *COS (THETAD) -¥ (1, K) *SIN (THETAD)
Y (4, K] "COS (THETAD-Y (3, X))

¥(5.K) *SIN(THETAD-Y(3,K)) +

Y(6,K) *Pdel*FY3

ULTRAJ (K) =UL

£OST FUNCTION FOR KOBOTE ONLY

NRG (K) = (ULTRAJ (K) **2 + ALPHA (K) *

oSt FUNCTION. 1N SAME' FORM AS ROBGHS FOR COMPARISON:
NRG (K) = (ULTRAJ (K) **2) /2 + ALPHA(K

IF (ABS (U1) .GT . EPS2) THEN
Gul=1.0

ELSE
GUL=0.0

ENDIF

GULTRAJ (K) =GUL.

o

0.0

¥0OT(LK) = COS(THETAD-¥(3.1)) UL
YOOT(2:K) = SIN(TKETAD-Y (3;K))
YOOT(3.) 2 Pael ULTFYS  + ALPRA(K) *GUL+Y (3, K)
YDOT{5,K)= SIN(THETAD)*UD
1P (K GT. L) THEN
5K =Xyl x)
70302 iz
vcsn K)x'rm;'rm Yom

i

TRAPEZOIDAL INTEGRATION



80
81

COST (K-1) +H* (NRG (K) +NRG (K-1)) /2

WRITE(34,80)

X(X),¥YDOT(1,K) , YDOT(2,K) , YDOT (3, K) , YDOT (4, X) ,
o YDOT (5, K)

WRITE(35,80) X(K),POS(1,K),POS(2,K),POS(3,K),POS (4,K),

S (5.

WRITE(37,81) X(K),ULTRAJ (K) ,GUITRAJ (K) ,COST (K)
coNTTNUE

FORMAT (2X, 6720..10)

FORMAT (2%, 4F20.10)

RETURN
END
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APPENDIX G
Program Subroutines Used by All Programs
SOLVDE.FOR
PINVS.FOR
RED.FOR

BKSUB.FOR
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1 ndexv, ne, nb.m,
P A e et

implicit real*s (a-h, o-z)

PARAMETER (NMAX=8)
dimension y(ny3,nyk),c(nci,nc,nck), s (nsi,nsj)
dimension scalviny) indext (zy5)
dimension ermax (NMAX )

1,itmax
k
a1 aifeatk. k1, k2,39, 1e3, ic, indexv, ne, 5. nsi . ns3 y.ny3, vk
call pinvs (163, 1c4’35.39. jel. Kl e.nei. nc nek. 5. nsi ns)

o

P
Call difeq(k, K59 el et ndexe ne, 5. ndnss o o)
call redtic icd, J133.3314. 39, 163, el 38 kb e hci  nc] mck

call pinve{ici,ics, 33,99, jel.k,c.nei.nes nek, s, nsi,ns3)
continue
K=Kz a1
call difeq(k,k1,k2,39,icl,ic2, indexv.ne, s,nsi,ns3,y,ny3, nyk)
call red(ict ic2,45,36,37. 38,39, 462, je Jof. k. c.noi nej ek,
call pinvs(icl,ic2,37,39, ¢, k2+1,c,nci, a5, nok, s, nsi. nsi)

call bksub(ne,nb,jcf, k1,k2,c,nci,ncj, nck)




101
100

2
Y.k = y(3.0) - facte(iv, 1k

WRITE(*,101} I7,ERR,¥(5,1),¥(6,1),¥(7,1),¥
WR:

(s,
TR (32, 101) Ko, EhR, ¥i1, 100} ¥ (2, 100) o mc) ¥(4,100),
0)

& ¥(5,100),¥(6,100),¥(7,100),
itels 1001 it.erk, fac, (knax(3 ) ka1 51 e

T 5 Lase iteration: it

WRITE(33,*) “itmax exceeded’
iorma{(lx uo 1x,9£15.6)

(1%, 1¢,2£12.6, (/5x. 15, €12.6))
recurn
end
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1
1

19
21

subroutine pinvs(iel,ie2,jel,3st, jel,k ¢,nci,ncj.nck, s, nsi, ns3)
inplicit real8 (a-h, o-z)

PARAMETER (ZERO<0.

. -, NMAX=S)
dimension c(nci,ncj,nck), s(nsi,nsj
dimension pscl (NGAX) , indxr (NMWAK)

big = abs(s{i, 31}

“singular matrix, rows all 0"

2
if(indxr(i).eq.0) then
big =

o2
Lfknbs{s[x 3)).ge.big) then

big = absts(i.in
endif

tinue
if (big*pscl (i) .gt.piv) then
piv = 1

piv = 3p
piv = bigepscl(il
endif

lf(l(lvlv jpivi ea-zexo) pause “Singular ratcix’

piviny = ane/sumv,:va)
s

i3 piviny

s(ipiv,jpiv) = one
do 17 iziel,ie2
if(indxr(i).ne.jpiv) then
if{s(i,jpiv) .ne.zero) then
dun = s1i,jpiv

o1, st
s(4,3) 7= 3(i,5) - dum*s(ipiv.;

s(i,3piv) = zero

ie2
i + icoff
js

[
clirow,jejcoff. k) = s(i,3)
continue

continue

recurn

end



1
12

subroutine red(izl,iz2,3z1,3z2,3ml,jm2, 3me, icl,jel, jof ke
c.nci,ncj,nck,s,nsi, ns3)

implicit reals (a-h, o-z)
dimension cinci,nej,nck), s(asi,nsj)
Loff = jel-jml

ic = ict

do 14 3 = 321,322
do 12 1 = jmi,jm2
vx = clic,1+10£f, k)

a0 11 iz1,iz3
S0, = s, 1) - st g v

s(L,3mE) - s(i,3)ovx



1
13

15
16

subroutine bksub(ne,nb, JE.k1,k2.¢.nci,ne3, nck)

implicit real®8 (a-h, o

dimension c(nci,ncj,nckl
nbf = ne-nb

im = 1
do 13 k = k2, kI, -1
if(k.eq.kl) im = nbfs
kp = kb

do 12 j = 1,mbf

xx = cli, i€ kp)

do 11 i

eli

im ne
SIEK) = (i3 k) - e, 5k

continue

continue

X1,k2

cant’
o 15 4 = 1,nbf
clisnb, 1,5 = c(i,if.kp)
continue

continue

return

nd
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