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ABSTRACT 

Feedback control of a two wheeled mobile robot from one point in its 

configuration space to another presents a challenging problem. The mobile robot 

belongs to a clas~ of systems with non-integrable motion constraints for which 

smooth feedback control laws cannot be designed. Recent work has been aimed 

a\ developing time-varying feedback control laws and piecewise smooth feedback 

control laws. These control techniques are, however, not optimal in any sense. 

In this research, we look into the optimal control of a mobile robot using partial 

feedback. A solution is obtained by application of Pontryagin's Minimization 

Priciple and solving the assodated two point boundary value problem using a 

numerical relaxation technique. The resulting robot trajectories exhibit optimal 

behavior for all non-trivial cases. 
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INTRODUCTION 

The mobile robot belongs to a class of systems ..... ith non-

integrab l e motion constraints for wh ich smooth feedback 

control laws for motion from one point i.n the configuration 

space to ano t her cannot be designed [Ref. 1] . Recen::. work 

ajms dt developing time -varying feedback control l<lwS [Ref . 1] 

and piecewise smooth feedback cont.rol laws [Ref . 2] These 

cont~ol techniques are , however , not optimal in any sense . I n 

this !:"esea~ch, we look into the optimal control of a mobile 

robot Ilsing partial feedback. 

KINEMATICS OF A MOBILE ROBOT 

The position and orientation of a two wheeled mobile robot 

a hor izontal p l ane is described by three generalized 

coordinates. Figure 1 shows the three coordinates chosen for 

aur robot. These are t he two X-Y coordinates for the locat ion 

of the robo t on the plane, and an angular displacement, (j, to 

describe the robot's orientation with respect to the positive 

X axis. 

The veloc i ty 0 1: the robot can be described completely in 

terms of t ranslation and rotation . Assuming no slipping, the 

interaction cf the whee::'S with the plan.e restr i cts the 

instantaneous mo tion t o the direction of orientation of the 

robot. Defining U1 as the velocity in the d irection of 



orientation, and U2 as the rate of change of the orientation, 

the fol l owing const raint equations result: 

(1) 

(2) 

(3) 

Note that while the constraints above limit the number of 

degrees of freedom for the system to two, specifically U1 and 

u 2 ' a minimum of three coordinates are required to describe 

the system. This is true of all nonholonomic systems; the 

number of generalized coordinates required to describe the 

system is greater than the number of degrees of freedom. 

A nonholonornic system is characterized by the non­

integrable nature of the constraint between the first 

derivatives of the coordinates. [Ref. 4:p. 244] In the 

particular case of the mobile robot, the non- integrable 

constraint is due to the nature of the angular displacement 

term, (J. As (J is an independent function of time, the 

relationship between the remaining coordinates cannot be 

uniquely determined. In other words, for a robot moving from 

one position and orientation on the X-Y plane to another, the 

instantaneous value of (j depends upon the path followed by the 

robot. As a result, the coordi nate relationship is dependent 

upon the pa th taken. 



OPTIMAL CONTROL 

Sl.-r.ce thto' number of: path", the Tob,j- could follGW l.-S 

l.-nt UlltEO , so:ne paths would be mOI-p p.:fie::.en~ thell1 oLhC'':::'t;. TE 

ordel La determl.-ne the mosL ef:':iclent path, w,= [m .. fl~ tl rsL 

cease Cl cost [unetH):] a p;:>rformance ir_dC'x. Pol :'owing r-hp 

development- In Reference S, pp. 180-183, [er optl::1al control 

of a sLanda:cd nonlinear sysce:n, '"c :nily obta tn the necessa:r:y 

:.::ooditio:1s for optlmallty" 

We first expr",ss tbe differe::ltial eq"..ldtlu;W ot moti,n in 

for:ll, 

(4) 

The r:Oflt func: ion take chc form 

(5) 

where F caul d represenL Lhe pseud::> kinet lC energy in che fO:tTH 

u2 , with u as the V(',OClty. The term 10 is a term::.nal cost 

vector and is a funct10n of tho st:ates at: tho final time" 

Thl s fl.-lidl time is not specified" Apply1 ng Lagrange 

mu:'tipl1er vector, A, we ferm the ac.gmented funct:"-onal" 

defining th" Haml.-ltoIlLiIl alJ 

H=F+),.'!f 

(~",JI deLerminc the-; r.ecessa::-y ('ond1, 

SolUL.lUn usi!1g Pontryagin's MlramizD.t-10I" 

[Ref. ~:p, 183] 

(6) 

for ar. optimCl 



, 
,/it.=O (8) 

bx( ~t) 1 =0 (9) 

(loO) 

7"1 (11) 

(12) 

"T:J.e optimal control u (tJ is de::errnined at each lllstoint to 

rendEOr the 3amillonian a minimum over all ad.'nlsslb:e coctrol 

tunctl.or,s." [Ref. 5:9. 183] L's~ng the last condition, 

solve for the control input, u, in terms :::Jf t~e states, x, and 

what we will now refer La as costatE;'s, A. 

Let us now consider some simplitiri3.Lions to the abovc:' 

neC8ssdry cond~tions. If we fix the final time to achieve tr.e 

desired condition, t3e first criterion lS immediately 

If we also de6cr~be the des::..red 

r:onditJ..on d~Tectly in terrr.s of the s'.::ates, x, and flX the 

va:ue of the desired f=-nal states, then 6x(t f ) = o. 

Consequencly, ::he seeDed conditlon is 1:1 pract leal 

terms, this translates to go:'-og to a des~red set of states l-n 

a fixed amount o( time. 

We now apply these sjlnpl:ificat~ons to the difterentl-al 

expressions for the states and costo..tes. ASS\;ffilI:g O'.lI' initial 

sta:es are known, ~le have boundary conditions fo::- the states 



at the initial and final time. However, we know neither the 

initial or final boundary conditions for the costaLes. And 

since the state and costate different~al expressions are 

coupled, they must be solved simultaneously. As a result, the 

combined expressions give the form for a two point boundary 

value problem. 

[J!l~[f lx, All t g (X, A) 

(13) 

C. TWO POINT BOUNDARY VALUE PROBLEMS 

In the case of linear differential equations, many 

analyt~c methods available for solution of two point 

boundary value problems. However for nonlinear problems like 

the mob~le robot, analytic methods for the solution to the two 

point boundary value problem do no exist. In some cases, non-

linear problems can be solved analytically. Such problems are 

generally very simple and may only represent special cases of 

an overall problem. As we shall see later, the mobile robot 

problem does not lend itself readily to analytic methods. 

In many cases, a non-linear two point boundary value 

problem can best be solved numerically. Unfortunately, 

numerical methods for non-linear two point boundary value 

problems are usually fairly complicated. 



The generdl approach is to an initJ..Cl.l "guess" to the 

solution ar.d adjust ::-his txial soluLio:l Lo ,ndtch the bou!1dary 

conditicns and differential equations, There an" two disLincL 

:ne~hcds fa!:' so=-ving su~h problem~, S:lOotltlg and rel;;;.xation 

[Ref, 6 

Tce first, met!lod, shooting, requires an r:nitr:al guess of 

dependent variables based upon one Doundary. Then us:,-ng 

rc,lIl'.F"rico.l methods common to valu8 problems, we obtain 

SoJutr:on. Th:"s trial sol'.ltlon lS compared agaiDst the 

second boundary. The error between the two is noted ar.d the 

free parameters of the equation adjusted accordingly. This 

repeats u::1tll the error is sufficiently sT.all The advantages 

of this method are its simplicity and re~ative speed. 

extreme.! y non ·::'inear systems, ho'",'ever, sys::cmCltll;",lly 

r:mprovr:ng the solution can prove diffr:cult. 

1:1 Lhe second method, relaxatio:1, the di[:::eren~ial 

equations are ccr;verted into diffe::::ence expressions llRing 

Ta.ylor series expansion. WiLh a:1 arb:"trary inltlal trJ .. a::' 

SOlUL.lOn, lhe variance of each poiat in t:H" du;cretlzed mesh 

is caLculated. The tri",l su:"ution is tr.en ad~usted to improve 

agreement w:'..th the differential equa::iurltJ and the boundary 

conditr:ons. This continues ite:::'atively until t.h? variance, or 

error, of the solution r:s suttlclently s:nall. Relaxa::ion 

methOds a-:o:-c- cOl".siderec. advar.Ldyeous fur problems wi.th 

cooplicoOl1::ed bour.dary conc.r:::i~)ns, but smooth and non­

oscil1atory fllm~tiODR. Two disadvan::ages of t~is method are 



I_he large :lumber of variables to be solved ~imultanC'ously and 

cO:t1;Jlexlty of the expressions requin,d in the ai'::lurlt.'1:1l. T:Je 

adjacent points In the mesh determlr:e the nurrber c:t varlables 

to solvp. For examplE, =-n a systeIT wit;) 8 d=-f1'erent_ial 

equatior.s, en a mesh w~~h 100 poinLs, coupling two pOlr.ts, 

1600 varlables would resul t. 

For the l'1obile robot problem, the k"ir.emiJ.tic equations 

~nvolve Lrigonometric tunC':ions. As we shall see in Chapter 

.::rr, the n",sulling state and costate dlfferential equatlons 

arc lllghly :lon-linedr. In anlicil:-'dtion of the rllghly non 

Ilnear kinemaLic behavi8r 8f a moblle robot, the approach 

taken here is the relaxation meLhoc. We take advanc-age of 

published computer programs designed specifically fur this 

methud. 

D. APPLICATION OF THE RELAXATION METHOD 

As previously sta:;ed. the method starts with an irlltlal 

guess L~ajec~ory for eac:h of t!:te di ffcren~la'-- equations and 

Lhee iJ.djusts these trlal solutions to match both the gove:::ning 

equatlons c:nd the bCl\mdary conditions. The rreLhcd in wh=-ch 

th", cOmpULe!- program makefl ths' corrections to the tra Jeetaries 

ifl a key to tindinLJ d. proper solution. '::'he so'-.nce of the 

f'ompu-.::er code and expression preparatlon p-:::-ocess us",d here lfl 

Reference 6. 



Giv2u a set of N coupled first order diftercn:;.id=-

eqJdtions, we first divlde the independent variable dorr-air. 

into Mdiscrete mesh pOlnts, t k , k= 1,:::, .. M. For our pyoblen~, 

the inltial stdte bouml.ary values arR locdted at t7 anll t:JC 

tinal stdte bounda!:'y val\::es at tM. Tr.e costate boc.ndary 

vdlues are nut flxpd. The N ditterential equations then 

become fini te difference e'-!uat::.ons to uC'scribe the lnternal 

m2shpoints. We define the vc::::tor Yk as the entire set of 

dependent varlab;es ilt point tic. The exact form of <:::he finitp 

difference equatlon depends on i.he :coupling desired. 

purposes, a backward difference technique lS sufficient. This 

will coupl.e each point on tr.e mesh wlth t~e pain:: preCf'dlng 

it. 

By co::nparlng the d1 ffereilee be::wee:1 adjacent solutlon 

values, (Yk-Yk.l) ' t.o the sOlutlon of the flnitc difference 

equatlons, ·",e form an error f"qudtlon. A Rolution exists where 

the error equations d;:e zero and the boundary conditlons arc 

considerirlg any internal r:1esh point, k, this error 

expression takeR the form 

(14) 

Through Taylor seTl es expansion uf the error equdt:..on W2 

determine the vari.ance of -:::he error wi::.h snldl:" chango8 in I'IYk. 

since we:, are looking for the Bol'.lt::'on where the e.!"ror is zero, 

for the interna1 mesh p::>lnts, k-2,J .. . M, the fonn 



(15) 

j=~, 2, .. . N 

where 

(16) 

n=l.,2, .. . ,N 

At each internal point, k, S],n fOTInS a N X 2N matrix. The 

contents of this matrix are corrections to the solut~on 

variables between points k and k-l. 

At the initial boundary, since E] depends only on Yl the 

relation takes the form 

(17) 

where 

(18) 

n"'l., 2, . ,N 

And similarly, at the final boundary, where EM depends 

only on YM' the form is 

(19) 

j=l, 2, ... ,fl2 

where 

(20) 

0=1,2, ... ,N 



The above equatio:1s can now be used to solve for 

corrections, .::ly, to the trial solutlon vector, y. This 

process continues itc;rat":..vely until the corr:ecti..:lIl 

sufficiently snaIl. Of course, since ~r.e eq;;at';'ons 

cuup:"eJ., tr.ey m1.is:: be solved Slmultancously. 

It we co~ine ~he expressloils tor each internal point" a:1ri 

boundccry points lr. a glolJal mdtrix, we se,,=, that mat.rix has a 

special "b_ock diagonal" torm (Fig. 2" This toen allows a 

more ~cQnorr',lcal matrlx inverBlon p:::-ocess, The mdtrix 

':'nversion is accomplished through a tom ot Gauss::'an 

elimlnation which takes advantaqe of the speclal form. Tr.ls 

process requ:'..res s::'gniIicantly less computa'...ional tI:ne 01 

stcrage than lnversicm of the enLire matrix. Thls is criticJl 

dl:.e to the size 0: the globa:" matrix, (MN X MN) 

Rccal::' tr.a: our overall goal lS to dete:cmine the optlmal 

tTJjecto:::-y for a moblle robol traversir::g from Ol'.e posit~O:l and 

orlen::atlon to another. Applicatlon 0: optlmal control theory 

results In a two point bcundary value problem. USlng tho 

rrethod descrlbed above, we can solve most prob:"ems cE thIS 

form, Eowever, thlS method does not guarClntee J soluz:.ion, 

11any :actcrs w-il:" affect the program's abi::.ity to converge to 

a solutlon, ThGrefore before Clttempting the two wheeled 

mobi:"e robot proh} ern, a simp:"el' relat ed probler.:l will be 

SOlved. -l'l1lS will servo to provide lllsi'7h': or.: '..lRC of the 

progrctr.:l and validat.e the process, 



II. OPTIMAL CONTROL OF A ROLLING DISK 

In Chapter I, we provided an outline for the opt::-mal 

control problem of a dynamical system. In this chapter we 

apply Pontryagin's Minimization Principle [Ref. 5] and solve 

the associated two point boundary value problem for the simple 

example of a rolling disk. The differential equations of 

motion for the disk and robot systems are similar, and the 

nonholonomlc constraint is exactly the same; no side slipping 

is allowed. The only difference between the rolling disk and 

the mobile robot model is the addition of a state variable; 

the angular orientation of the rolling disk about it's 

rotational axis, ¢. 

A. PROBLEM DESCRIPTION 

Consider a vertical disk rolling on the horizontal, X- Y 

plane. (Fig. 3). Like the mobile robot, the orientation of 

this disk with respect to the plane will be described as an 

angular displacement, e, from the X axis. The orientation of 

the disk face with respect to it's axis of rotation is 

described as an angular displacement, ¢, from the normal 

vector to the X· Y plane. This gives us a total of 5 

coordinates to descrlbe the position and orientation of the 

disk. 



The veloclty of the dlsk, l~ke the robn!;., can be described 

i:1 te.:::ns of translation and rotCltioo. The' t:r:a~ls::'ational 

vc._ocity again is constralned to the di:::-cctioll of orIentation 

of the disk. However, the forwac:d velo(;it:y ::>f the disk is 

dlrectly rela::ed to the angular veioclty of ¢ and disk radius, 

R. r: we consider the vari.J~ion of 0 Clnd ¢ WIth ti:ne dS 

ccntl::'o::' inputs, U1 and U2 respectively, the slate space form 

cf the kj nemo.::lc eqUatIonS becorr,es 

x 

1
0 R 

o R 

1 

10 

In a more condensed form as 

if [Kj 

OPTIMAL CONTROL 

(21) 

(22) 

The obJective for t.his problem is to roll th~ disk from 

and io:-tial pO>J:'.tion and oricn~atlon to a desir-en final 

position and orIentation ill some optunal manner. Note that 

for our &roblem the tIme t.O accompllS:1 t:].is task ;).8 fixed. 

The choice of units fol.- the X-Y parameters are arbl.trary. 

angular displacement:,; are ir_ non-dlmer.sior.al :::ad:..ar:s. TIme 1S 

coosidE:red 00 the unIty scale WIth 0 at 

:-nitial condItions ilt t(l are defined as Xl.' y~. !ie.' rfJ~, and the 

final condiLlcr:s at t f as X f ' Yf , (if' ¢r. 



The develotJmenL of ::he optima: r~ontro_ probl,:,m fol~ows th,:, 

:nethod descrlbea III ::!1ap':::er I. To dete~~rr,lne an OptlIlldl path 

lor L'1e dlSk, we dcf=-ne the per:orma:lce !:-larameter as 

dt 

By defll1ln<j Lhe Ha:tultonian, 

Ih~ uptima: C'on::ro=- iR octained <:is; 

(23) 

they are 
the cost 

(24) 

(25) 

(26) 

Substituting this expression intu equatlon (25), the 

Ham!.l tCr:l an uecomes 

Il= (27) 

us=-n? Tll'W eXpretltllOrl, the stares can he cx[ressE'd as 

,\ = -i{ y" ~. (28) 

or In expandC'c. form, 



(29) 

SImi -:; CiI ly, the costates equatior:s ca.:\ bc expressed as 

(30) 

Not'--::lq that t!1e rnaLrix K is or:ly a [unction 8f sLate vClriablc 

f), the individual costate eqllatlons become 

{31) 

[(~~~,.., (Si.~~EI" 2 Al~'; +, cos2f}) l] 
+-"A.(Az ccs6 - A,S_:l.EI} . 

Cu!"r:bll1lng th8 states and costates into d. sin,::]le vector ':Jives 

the strucLure [ur the two point bOUl1rt;;J.ry v;;J.lue prob:"em. 



i[ ~ P' "'. (1 + cos 28) 

I 
IA'I (32) 

1- (HeosB" .. R::LnB}., f .1.. , ) 1 

To the Lest of our knowledge, no analytical so_nt_ion ex, sLs to 

:...l1i5 problem. A similar p:::'ublem ha~ been sulved aGa1yt:.cally 

ty Cameron [Ref. 7] However, his problem ~Goks for ::he 

m~nimum tnr.e solution. By use of Pantryagin's Mini:niza::10'l 

IJrinciple. eq'J.<ltion ('12), this 1mplles use of the Lime 

derivative at the HamilLonian. For: tC"lP. minimum time probleT., 

1t can be show:1 that the I:amiltor.ian is a canstdIlt. However 

,-n ::lUI problem, the Eini'l.l t:"me is fixed and termiGal cost, 9, 

::8 zero. From ec:uation (8), the Ham:"lLonian rr.ay theretore be 

any val UP. OVCI tlme. Therefore, Cameron' 8 analytical meL:lOu 

uoes nOL apply ::'0 our f1xed llme problem. 



C _ NUMERICAL SOLUTION BY THE RELAXATION METHOD 

Glven t:le N ditterent::.al eqJatians aouve, we apply :he 

r",ldxat:Ion method descrih~rl ill Chapter I develop 

expr"s~,:'Qns requLt:f"cd by the relaxdtiQIl nethod computer 

p:::ogr"am. Th1s essential Rntai::'s flnd:.ng the elell~ents of the 

.") ma:-r:.x. F01" the i:1terlor Deshpolnts, a ::otal of N X 2N such 

expressions must be developed. The two boundaries each 

require ar: addltional N X N expressior.s. Since there an", 

eight dlfferential equations, we must develop a LoLal of 

Sj,n expressions. Fort_cnately, many of the expressions for 

'.::hlS particular problem will tt.:.r:1 out to be zero. 

«ather than repeating the deve:'opment for all thesEo 

expressions here, an example of developlng expreSSIons for an 

lnterior point is presented. Given a differential equation 

which describes the interior mesh points, the iiI8t step lS to 

sulJstitutt=' Yn for all depcr.de:1t variables, ·;,'here n is Lhe 

equa-=:.on number, such that 

(33) 

We then apply the fi:1ite difference RxprcssIon 

(34) 



tc edeh -LnJ.ependent variable. Tc:..king the f::.rst state equatio:l 

;::IS 2:1 <=>xample, t-he finile di::rerenc" equatio:l is 

(35) 

Next, the [iuiLe d:"fference equation :"s placed into 

,-,xpressio::l. 

(36) 

Where h 1 e the grid spaClng on the mesh. evenly 

spaced ~csh, 

(37) 

At; Ylvell by equation (16), tlcE.: S],n (""xpressions are t~e 

partial derivatives of :::r:p prror expt'eSSlons with respect 

each of the SlaLes and cos::ates at meshpolllt k and k -;. 



Again, in the interesc:. of brevity, only two Sj,n 

expressions presented here. ':',.'aking Sl,S aE;l the first 

example yH2lds 

(38) 

Forluna':e:y, due t~o the finite rllfferencc method chosen, lhese 

expressions Lenu to repeat. For example 8],13 yields 

(39) 

the same as S1, 5' The development of lne o:.her :.26 ~nterior 

meshpo1nt expressions follow similarly, some sjmp:er than 

o:::hers. The f ina 1 resuJ t for all of t.hese terms can be seen 

in the DIFEQ,FOR subroutir.e in ilppendix A. 

The expressio:1s for the boundary expressions. though 

simil<J.:~, fall ur.der equations (18) and (20). The maJur 

di~ference for tr.e boundary expressiuns is lhat they Clre not 

baspd on the differe:1tiaJ equat~ons. Since our boundo.ry 

conditior.s are slmply state values, the error expressions are 

at the lnit-::-o.l and final time aTe of "the form 

(40) 

w:--,ere n is the nCh variable as given by eq~atior. 133). Thus 

!"cr "the J:llLial dnd tinal boundary condltions respectively, 

IS 



(41) 

'"here N lS L"le to~al numl;e.::: equat ions and ll J is Lhe number at 

ooundaTy condi::ions at the initial :...ime. The shif~ in lndices 

by Nand !ll is necessary to take ac.vantage of the 'block 

d~agonal' form of the overall ma:...rix of S expresslor_s. The 

result is the unity :llCltyix for the lnitlal and final .'> 

expressio:1S. Note ::hat for mOTC c')l":Lplicated boundary 

condi~ions, suer. as a manifold of states OT terminal costR, 

the Ielallonsh=-ps above are ;:lOt valid. 

Next, we must develop an inlt:cal Cjcless [or !..-he valu'Os of 

tile states and costates [OL all points on the r.lesh. For the 

states this guess can be somewhat ll:tultive. For example, we 

desire that the d:;.sk start at the X,Y [osition (0,0) a.nd roll 

Len {Ie) tlmes ar.d rtlcLke one complete turn to return to the 

starting posltlon. Ther,:,tore, lr.ltial and flnal l:::oundary 

eond:..t:..or.s are 

X[ 0 

~~ 7.11 
(42) 

<p~ 2011 

wherEo the angl.l~dr expr"sscd rad.ldns. 

lr.tuitiveJy, we would expect the rnost- opt"imo.l path in Ull.' X-Y 



plane to be a circle. If we ulltially assume that the angular 

t~:rms vary at a constant rate, the iEltial guess trajectory 

for tho state variables w~l:L appear as sr.own in F=--g"Jre 4. 

S1nc(' we have no in::::ormatioll on the coslate behavior, we wl]l 

assume the lnitlal trajectory [or each costate to be a 

constant value of zero. 

After the required expreSSlQIlS and initial guess entry 

method ~s success::::ully compiled, tIle progran: ':::'eady to run. 

A sampling o[ the resul'.::s follow. 

D. DISCUSSION OF RESULTS 

FOL the case desc::--jbed above, the prograM converges i:l a 

few hund:::-ed iterat'-ons. From Flgure 5, we see that the final 

stdte solution lS in fact the same as the i:1itial gucss. The 

:.'.::erations were required to adjust the costa~e solut:.ons tc 

tr.Clr propoL traJ ec:.ories. (F 19. S'-n::::e the state sc:utiO:1 

g:.ves the expertcd cl::-cular path, the solution appears to be 

optimal. 

Fo:::- a more rigorous validatirJl1, we substitu.te the costate 

sol utions 

= 211: 
(43) 

back into '='<.J.datlor. (32) 



The derlvativp. equations can :...her. be expressed as 

= 20n-sin8 

{) - 271: 

¢ = /.On-

i, 

-A, -0 

i., = 0 

-A4= 

(44) 

Nc;te ::LdL the an~ular vo 1 oeity t~TTflS are cO:lstant. TilLe; l8 

eonslstent witL Lhe mlnim:..zation of our cost function. And 

thlS 18 a kinEOcnatics problem, the velocities may be non-

at the :..rll.tlal and final time. Integra.tin", the state 

terms yield:;; 

(45) 

which gives the equat:..on for a circle in the X-Y plone. 

If we makto a slightly differer:l initial guess for the 

states, iolu::::h as an ellipse (Fig. 7) the L.i.ndl Tp.:;;ult lS the 

If however, the in it ial guess is not sutt icientl y good, 

the program does :-lot converge. While the :..nlt:..al guess for 

the states r:ar: Ilsudl_y he based on som" l.nt"..litive reasoning, 

prov::.ding Ci sllt:icie:ltly gOGa EOstimat" of the costate can 

prove c:..ff.i.cu1 t For:- :::lliF pr:-oblem, an inilic;.l qL.eSS ot a] 1 

zeros for costates works quite well. If, howevel, we chose 

trlal values that ar:-e lO un:..:::s away from the proper Solu::lon, 



the program does not converge. Thus, while the costates may 

not be particularly important to the usable state space 

solution, they are necessary to solve the optimal control 

prob:!.em. Generally though, a poor estimation of the costate 

can be compensated for by a good state estimation. 

Where the circular path presents a fairly simple solution, 

we now choose a more difficult task for our disk. This will 

demonstrate the usefulness of this method for problems where 

the optimal path is not obvious. For example, we desire that 

the disk make 10 rolls and 5.5 turns while moving on the x-y 

axis form a point (10,10) to a point (-5,-2). As an initial 

guess, we shall use the state and costate solution to the 

circular problem above. The resulting path, obtained after 

several hundred iterations, appears in Figure 8. The state 

and costate trajectories appear in Figures 9 and 10, 

respectively. While these solutions appear optimal, they are 

not obvious at the outset of the problem. 

The program for the disk problem has been tested 

extensively and, when provided a sufficiently good guess, 

found to give an apparently optimal solution for all cases 

except one. For the case of rolling the disk where the 

initial and final 8 boundary conditions are the same and lie 

along the same line, the program does not converge. However, 

the program will converge if there is at least a very small 

difference between the initial and final angles. For the 

nearly straight line case, the smallest angular difference 
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which results in a convergence is .00036 degrees. (Fig. 11) 

To achieve this it is necessary reduce the SLOWe program 

parameter to cause smaller adjustments to the trial solution. 

This indicates that for small difference in boundary (J values, 

the program is sensitive to small changes. If we exaggerate 

the distance the disk must roll between these two points, the 

reason for this behavior becomes evident. (Fig. 12) Here we 

specified that the disk roll 5 times. The initial (J value is 

45 degrees. If we require that the disk make a 3.6 x 10.8 

degree turn to the left (1 X 10.10 rotation) we obtain one 

optimal solution. However, if we require that the disk make 

a 3.6 x 10.8 degree turn to the right (-1 X 10.10 rotation) we 

obtain a much different solution. Hence, for very small 

changes in angle the solution varies widely. If we specify a 

zero rotation, there is no clear preference for the most 

optimal solution, and the program cannot converge. The same 

holds true as we approach a perfectly straight line path. We 

specify the initial and final position and the initial and 

final ¢ values, which theoretically are the same. However 

numerically, there is a small difference. This difference is 

sufficient to induce the problems above and prevent 

convergence. Fortunately. an analytic solution to the exact 

straight line problem is easily obtained. 



The computer program used includes several control 

parameters which assist in finding a solution. While running 

various simulations, the following trends were noted: 

• Slowing down the convergence by decreasing SLOwe can 

help find a solution when the maximum error fluctuates near 

some minimum value. However, doing so does Dot guarantee a 

solution. 

• The SCALV values should represent the absolute magnitude 

of a typical solution value. Where this value is not known, 

use a small SCALV to start. 

• The trend Of the maximum error with iterations should be 

used as a guide as to whether the program will converge to a 

solution. However, the trend neither guarantees nor excludes 

convergence. 

As demonstrated, the rolling disk problem requires a path 

which is continuous and smooth. And since we specify the 

distance the disk must roll and number of turns the disk must 

make, the solution is only optimal for those specifications. 

In the more general mobile robot problem, we look for the most 

optimal path which need only meet the initial and final 

boundary conditions. 
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III. OPTIMAL CONTROL OF A MOBILE ROBOT 

Chayter II we developeu '" two pOlnt bOU!1dary value 

problem by applying Por:tryagin's M:inimi7ati0::1 Pl~i:1::::iple to th,= 

equaLions o~ motion tor a lolling dlsk. We then solved thp 

resul t:'-::1g two poin~ boundary value problem by a ::1Um('rlCc:.: 

rcldxatioIl ;:echnique. Having demonsLra<--cou L.!:Ht tLe process 

above provid,:,s an optimal soluL':'oL for rt simpl'" nonho.lonor.lic 

system, we return to thf' dittll.~ult mobile ::'obot problem. 

Our goal is to move the robot fro;n a ~nltial position a::1d 

oriRntatlO::1 LO a desired one v.;ithin a f::'xej ar.lount of Lim"", in 

an cptime:.:.. manner, and using teedback cO::1trol. Before 

developlng O.lr 801;.Jt1on, howeve.:· we first look 

conventlcn",l theory regarding mobile robot conLro:". This 18 

necessary to mOC1vate the approacn used to 80:"Ve. our problem. 

LITERATURE SURVEY 

Extenslve research into non-linear control design cf 

wheeled mobil," robots exi~ts. For the probJ<O>ffis of path 

follow:!.ng and tracking, rel&.tively c:"asslcal nOE-Ilnear 

cortrol tt'chniq.le.s have been applied successf1l1~y. [RGfs. 2,3] 

How<o>ver, tile problen: of sti1blli7otion about a point i" more 

difficult. BIockeLt's TJ1eol"em l?ef. 8] shows t:1a:-. smoot.h r:CI".-

time varylng conLrul laws cannal be develop"'d for such 



Thls is the case for all driftless, nor;holonorr.ic systems of 

the form 

x = [K] 
(46) 

UOllTIg clo.ssical Lyapuncv analysls, Reference l preser.ts a 

gene:::a~ motrlOQ for findlng tlme varying control laws for 

d~i.ftless systems . .In Refe:;encc 6 and 'I, the authors develop 

smooLh, time varying and piecel'iise continuous conzrol laws, 

While these controls employ closed loop feed.:Jack, 

considers thp cptimallty ()f ,be solution. =n this resea:::ch, 

we apply optir.lal control theory to the mobile robot problem. 

B. STATE AND COSTATE EQUATIONS FOR THE MOBILE ROBOT 

=:1 our approach to the mobile robot control problE':'m we 

fll::st move the robot onto the line described by tr.E' fl:lal 

posiLiun and orientdtlon of the r:ubo::. (Fig. 13) The robot. 

may ::hen roll dircoctly to the final deslred posltlon, 'fhe 

pOln:: at which tr.e robot will intersect the lllle ar.d -=-h2 

man:1ET ~n wh i en the robot will approdch the lir.2 it; 

spec::. t i f:'d. The goa 1 of the opL':'mal control prcblem is Lv 

ITlIllmize the dlstance beL-ween the desired posit~on of the 

robot a:1d the point of interseC:::lon of the robot wit:'1 the 

line, In a way that utilizes the minimum amount of energy. 



1. Basic Kinematic Relationships 

Retc.rn1ng to the coordinat'? and velocity d~script_1ons 

of Figure 1, we heg1n w=--;;:r. t<-te kH:ematic eql.allons, 

A {Jl cosO 

= U) slnG (47) 

€I = U. 

?ron the dosl,en fin",l ::::onditions of Xd , Yd , and 0d' we 

redefine our states ir, tenns 0= <:::he> d1f-:erence between the 

f~n",l condit1on and the current coordinate> va1ue such thal 

(48) 

As approach suggests, we reCU1re that the 

dL:ference between the robot angle and desired angle be 

dB - [0 (49) 

We a1 so :ceqG1rco thaL the perpendicular dlstance between the 

robot and the Ilne be minimized. This distance can be defined 

in Lr=-gonometl1c terms as 

(50) 

In order to converg€' p and l!.8 to zero asymptotically, 

find chat the Becond inpu'c :5hould be a function of the 

t1rSt inpuc. Our analysis 1s t;ased on t:-:te dPplicat10n of 

Lyapunov's Stc'Lb:..l1Ly Theorem. 



2. Application of Lyapunov's Theorem 

LyaJ::unov' s Theore:n of asymptotic stahi' ity r:rovides 

\,h'lt ::he equJ..librium of 7.cro for a system, 

(51) 

J..s i'isyrnptot1cally stable if there exists a positiv~ deflnJ..te 

fucction such that the f:'rs7: derivative of t.ha~ function is 

:l.~Q-inCleasJ..ng. [Ref. 9] In our case we dpfinE;;' a Lyapunov 

tunctJ..on as 

Tce flrst derivative of >.::1:J..5 functJ..on J..s, 

where 

I: we choose 

v ~ -p(cosBa sir.B - slnB.,. c086) U~-ll..BU. 

j:;U,sir.(ll.B) -ll.BU. 

ll.6(U2 - pU, sir-a(:B) ) 

-11.6 (U, - pu, [(6.01) 

We may C'xpress equat::'on (53: 

-0: ll. 8~ 

WhlCh .is negative semJ..::iefilllle. 
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(52) 

(53) 

(54) 

(55) 

(56) 



This equation satisfies Lyapunov's Theorem for all Q' greater 

than zero, provided that l!.O is not equal to zero. In the 

event l!.O is equal to zero, the derivatJ.ve of the Lyapunov 

function becomes negative semidefinite and the asymptotic 

stability can be guaranteed by applying the theorem by 

Mukherjee and Chen [Ref. ~Ol. 

The choice of the second control, U2 , given by 

equation (55), in tenus of the first control, Ul , and state 

feedback leaves us with the task for the design of one input 

for the system, namely Ul . Ul will be designed using optimal 

control methods. The gain, (x, affects the rotational motion, 

and from Lyapunov's Theorem, Q' must be greater than zero at 

all times. Various schemes have been tested to detenuine the 

best use of this parameter in an optimal solution for: Ul • 

3 _ Variations of the Robot Prob~em 

Since the only requirement of U2 is that equation (53) 

be negative definite, there are infinite variations of this 

function which we could employ. In the sections below, we 

produce five possible variations and discuss the application 

of optimal control to each of them. 

Robot 1, Virtual Robot Problem 

In t.his approach, in addition to the original 

robot, we define a virtual robot which may travel only on the 

line of the desired angle. {Fig. 14} This approach is 

somewhat SJ.milar t.o the bi-directional approach. [Ref. 1~1 The 

virtual robot may roll forward or backward, but not turn. 
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Our goal is to have the two robots meet at some unspecified 

po~nt on the line. This allows a smooth traj ectory for each 

robot. Furthermore, this positions and orients the real robot 

in line with the des~red final location, requiring only a 

trivial solution to complete. Fortunately, the impact of this 

addition to the kinematic equations is minimal. Defining the 

position of the virtual robot as Xd and Yd , which are now 

variables, the difference between the two positions 

Ax = 

AY = 
(57) 

The difference between the orientation of the two robots is 

.1.B = (Sd - B) (58) 

where (Jd is the constant desired angle of orientation. The 

differential equations of motion now take the form, 

(59) 

Where Ud is the forward/backward velocity of the virtual 

robot. Applying the same optimal control theory as before, we 

define our cost function as 

(60) 

The terminal cost gives a penalty for not going to the desired 

final condition, 11X, AY, and 118. C is the weighting parameter 

for this cost. This cost is necessary as the values of the 
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final states tend to float and hence 

Fro:n equatlon (9) we sCltisfy 

conditione; for opLirral contra=-. we need 

wherp 

This lmplles ~_haL lhe cOIlstrain:...s at the final 

= CI.l.X) 

= CU'Y)t 

= eldS) 

(61) 

ne~eS8a:ry 

(62) 

(63) 

(64) 

AS we shall later, thlS i8 lmpcrtant 1 n minlmi ~lng thE;' 

at ,he final time. the def inj t 1 on of the 

HamllLoniar., 

H = L ... A,of (65) 

where 

(66) 

and f is the rlght: hand side of equilt,:,cL '59). apply 

ec;uaticn (12) tor both Vi and Ud , F:c'om this we can show that 

the uptimctl control 1 nputs ilTC, 

and 

(68) 



Jl.pplying equations (10} and (11) we can develop a fuLL set of 

equat~ons for OUI two pOIU:- boundary value problem. 

- cos \6.:/ - Ae; 

- "lilted - AOI 

{69) 

II 
described above. ?he f·.lllctio:J 

f (.10,1 Iequires specIal hd:ldling due to t,he .11) term In the 

denominator. By L'HopitaJ's rule we k:1oW 

(70) 

and 

lim cas (dO) _ sinl.6..0) _ 0 
ae·,n -,-,- dEl" 

(71) 

Thcref0Te, to l'lalntai:J continuity dt:.ril:g numeric processing we 

define 

1 sjn{~J!l for 6..8"'0\ 
f(dEl} ~ dO' 

1, for j,8=o 
(72) 

and 

1 cos(AO) - .SIL~L, tor Ml>,o'l 
f'(dB) _ 6..8 D..82 , 

0, lor j,O~()J 
(73) 

l·':::om equdtion \69.1 t.he ut ility of a nLlmeric solutIon to 

two poir.t boundary value problem becomes clear'. 
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The proccOss for tic;'LLing up Lhe S],n expresslons 

to:!: the COIT.puLer proqram is similar to :...t::e rol:iLg disk 

pr0blF'ITl, rllthO\~gL more lengLly and iLvolved. The ::ina:" 

expressions Cdll b<? [uUlld in LLee DIFEQ. FOR s-...:br()util:e ..)[ 

APP('Edix B. 

Upon testlng vlrtual robot problpm, it bEocdme 

ubvicus that the dlscont::..nuous path was :lot a problem for thee 

prograrr .. (Flg 15) A look at the veloc:ty componer.ts expLnilS 

;"'hy. (F~9 16) When broken inLo componen:..s the velucltl,,"s ore 

smooth. WI" a:"so llotR that non·zer:J veloclt::'F's at the 

lnitlal and flnal tlme are not a source of cocr-:crr., as this is 

Cl kinemCl.tlct; p:::-oblRm. Further:noI ee , sine" tillS is a motion 

j::lanning prcnlem dI:d no::: ieeuback CO:1L.IOl, a two robot IT.ode:" 

has no practlco] disadvanto.ges. However, :::he l'.ext robol modR S 

consider are based upon a s1l1gle rooot. 

b. Robot: 2, Single Mobile Robot 

The kinc:nutic equations of motion for this problem 

d.re simllar :0 the equa~ions for t~e two mobile robot exccpt 

that Xci Clnd Yd arC' fixed. As J resul t, 

(74) 

and the kinemo t ic equa t ~ O:'1S appea r- as 

-c~,,; (OJ - .Q.O) u, 

-s - ::"1(6, - Jle: ('~ (75) 



We define ::he cost function [or this problem as 

0, 

(ilx 2 + l!.y: + ,1.6"':;, + r, (u,~) (76) 

to· 

whic!: has ::1;;.e same terminal ::costs C!.fl the, twu robot problem. 

We again USco the defir.ition ot the: Harniltonia:1 

H = L + )"'f 

where 

(77) 

(78) 

and f is the ::-igh:: hand siue of equation (7':-). Applyin~ 

equatio:r.. l12) LJr UI we can show that for optimal contyol, 

Applying equations (10) and (11: agair. develop the 

equations for our two point boundary value problem. 

-ros (6 d - Jl6) [1, 

-sin (Dei - l!.6) U, 

-al!.6 - pU.1"(l!.6J 

(AB) -A., U_Si:1B,,.t(l!.6) laO) 

i1 A.1 u , cos6.jf(A6) 

>, 
A, 

wnich lS the same as e::rUd.tlon (69) except tor the :::..rst two 

differential equal_lons. '::'he result.ing expressions can b", beeT' 

~n tr.e D=FEC.FOR flubroutine of Appendix C: 



As expected, the problem works adequately for 

apparently non-smooth paths. (Fig. 17, IS) However, for the 

case where we ask the robot to change only its angle of 

orientation, the solution given indicates that the robot only 

spins without moving forward. While this solution is indeed 

optimal, it is evident from the definition of angular velocity 

in equation (aD) that the robot turns without moving. 

Robot: 3, Cont:rained Robot: Model 

To contrain the angular rotation to prevent 

rotation when the robot is stopped, we must ensure that U2 is 

entirely a function of U1 • In order to meet Lyapunov's 

Theorem we must ensure that equation (53) ~s negative at all 

times. In order to meet both requirements, we chose U2 of the 

(81) 

where 

(82) 

This expression guarantees that Lyapunov's Theorem is 

sat~sfied. Application of equation (12) results in the 

control, 

which :;'s the same control from Robot 2. 
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Applying Lhe other necessary condi tions for aplin-al control 

glves the equations foo: thp two pOlnt boundary value problem. 

-(",OS led - ll.Bi il, 

-s-=-r.(e d u.e) [/, 

-all.8g{U,) - pU,":(ll.e) 

-)..3 U1 81;-10,,£(ll.8) 

A) [11 cos8"J(ll.81 

(84) 

':'hc resultlng expressions, obtained as bc~fo:::e, ca:l be seen in 

the DIFEQ.FOR subroutine in Appendix D. 

The sO::'utions fa!: this new variation are, 

cases. the same as lhose from Robot 2. (Fig. 19; The most 

s:'..gnlf.'..cant difference is for tr.e case where we as,.;: the robot 

La change only its angle at or:l-entation. The scluLion is now 

a t:dvlal one; the robot does not move. (Fig. 20) When,J,X and 

ll.Y are zero, the qUantity p is zero and thus, 

And for a1l t:l-me, 

(86) 
g(r;,) 



dIll': tr.erefore, 

g(l':) 

dX = 0 

;y 0 

The terminal (""'osts are mpt since 

(87) 

w:terc !!'fJ 1S fixeu and the "3 term Bimf~Y heccInEOS a 1 Clrge 

enough 1.0 meet thlS C;)aSLr.;t1nt (F:.g. ~ll. 

Hpllristically, Lhis says tnClt the most eff::cieat: mannteI to 

cichieve the des:.red t~nCll conditior. 1S not to go. Such 

any time tw·o of the three states, 1lX, ..lY or ::.e, 

are pq-:.lal to zero. In suc:"") cases where !:-' or t:.ii zero at all 

t;mes and U1 becomes zero, the stale equations mot-Ions from 

equation (84) are all equal ze-::-o and give a triv1al solutIon. 

So far, we have chosen the value of rY at the 

outset ot the IJrogram. HGwever, d", we shall show Jater, O! has 

a direcL impact on :::he f'..nal solution. 



d. Robot 4, Robot 3 with High/LOW 0' Control 

Defining 0' dS a control ic; c;ompllcated by L1e fact 

that Q' must be posltive to satis:y Lyapunov's Theorem. WE: 

therefore define the cost funct10n 

. "' (89) 

where Cl' is greater than zero for all t. The result~ng 

Hcuniltonian is 

(90) 

Applying equatl0n (12) to U1 we find the same resu:'.t dS 

before, 

For :::he secor;d control we consider only thosE" tenm, in t~e 

Hamiltonian associated with 01. 

(92) 

In order '-.0 rui nimize the Hami:tonian and mainta~n Cl posltiv€ 

Q' we define 

wr.er", 

for P > 0) 
for P <.0 

(93) 

(94) 

The rf"'sultin0' equalio:1s fo::: ':::ho two point Doundary valCle 

problem are the same as equatlon (84), except L,at the value 

of Q' depends on p. The resul t i ng S expressions arc listed in 

Lhe DI"EQ. FOR program ir. Appendix E. 



USlng t~llS var~atl():l ()f U2 ' th", pro,:,raP.l has 

dif:ic.ulLy converging in marly casE's. '='he non-lined-r: natl:re o[ 

i.J' is the sourc(' of tLis d::'ttlf'ulty IFlg. 22) In IT.any cGlses, 

,J'H" converged solution lS t~e samE' a.~ Robot 1. Sir:ce theLcO 

appears Lo be :"ittle advclntagc -::.0 this varlation, "1(' seek a 

p::::oportlonal 0' centrel. 

Robot !>, Robot 3 wi th Proportional Q' Control 

To develop a prop'-.)ri.-ional Cl' ::onLLol, we start w~tl: 

funct.lQn, 

(95) 

We fir:d tr.at Ul is tr.c sar:le as before. 1- we enly cons=-der 

t hp n terms L"len, 

{96} 

However:, since g (U1 ) equoJ s zero tor equal tu zeyo, HCi is 

Cllready a :i{lir:Lnum whe:1 U J equCils zero and 0' approac:l"='S the 

positlve side of :o:eco. Thus ~Ie only need CO:l~lder the cGlse 

where U I is not zero. In this case g([}l) is one and wlll 

dropped in the remaIning cxpreSfllons. Factor~t'..g HCi • we. tlnd, 

(97) 

If we neglect :.he second pi'lTt of :.his expression 0.5 It is 

(98) 

where O',.un is so,ne value greater thL1.r. 
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The resulting d~fferential equations differ from 

equation (84) only in that alpha is now a funct~on of "3 and 

flO. This must be taken into account when developing the S 

expressions. The changes to the resulting S expressions can 

be seen in the DIFEQ. FOR subroutine in Appendix F. 

In general, this variation gives better solutions 

than all other variations discussed. The proportional alpha 

control is more likely to converge and gives an apparently 

more optimal solution. It's tendency to converge is more well 

behaved than other variations. However, it still requires a 

certain amount of user interaction to set the value of O'mln 

and other program parameters to a value which will ach~eve 

convergence. Trends and comparisons of this and other 

variations of the mobile robot problem is the subject of the 

following section. 

C. DISCUSSION OF RESULTS 

There are many factors which affect convergence, 

optimality and error of the final solution. Since each 

variation was designed w~th a sl~ghtly different intent, 

comparison is difficult. This section d~scusses general 

trends noted d'-lring extensive testing of the programs. 

The state variable solutions to the two point boundary 

value problems are in terms of the difference between the 

current and desired value. For presentation, we convert these 

values into x, Y, and (J coordinates. 



:.:u..)rdilld:es :r,QVe 

d[Jpear lYl ~h,~ pdth plots !::or: RG::')()~ l TIl'= fln,:d 



r,.;rh~le Robet 5 was the m:ly VaYLatlon developed from thls 

performance paramet('r, this is the mORt ('nr:ompdBBing C8St 

descript=-on. The terTr-lnal costs were T.ot c::mside::::ed for this 

pdrt as these "ire compared in the form at -:::inal errOl. 

1. Effect of Varying 0/ and C Parameters 

Fer each varlatlon of the :;:'obot pros-ram, the effect of 

vary:ng the rot:ational gain, Qt, and terminal cost weig:'l.tlIlg, 

C, is a~fferent. Rather thdrl preseYlt a:'l the possiblp 

variatio::ls here, some of the more signif~can::: trends are 

sctrr.pled. 

The variatlon of 0', strongly af:ects the abi:.ity of: 

the progran to converge as well as the opt=-miility and e1':::8r in 

the final solution. There lS a range of 0: for which each 

program will conv('rgc for a given set. of boundary condltlons. 

A typlcal example of the effect of varyin'J ry r:i'ill be seen in 

F~gure 23. arc the paths glvell .oy Robot 1 for boundary 

condiLions of 

We P1.ust also look 

Xu = 0 
Y:, ~ 0 
eo ~ 0° 

X t = 

Y r - :.0 
Of - 90" 

(lOl) 

r-he an~r.Ilar traJ",,(;tory for lhese 

solutions. (Flq. 24) Note that: tnr the extreme va:'ues of 0', 

there is a ~arger error in the final solutio:1. Alsc note that 

lhe paths are of differen~ lengths, lIldica':.ing that so:ne ,")"8 

give more optirlal solutions than ot~lers. ~';:le energy cos, plot 

(Flg. 2:') shows the effect of ry cr. this cost. 
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From F1gures 23 and an 0: value 0: 25 appears La give bo::l: 

o ffi1nimnm t1llal er:::or and c:ost However, thR results for 

th1S p'O'Jl(.lm il-nd of bou:1dary r.ond~t:ions Cil-l1llot bo used as 

(l g~lldcl =-ne for all prog:::-a,TIs or cases. 

It. Lhe pdrtH::u::'ar case of Robot 4. Lhe use . .): (Xm~n ullcl 

G:max must be ~ldIlrl.led carefully. If the twu va::"u(;.'-l are great:" .. y 

diEfe,ent, the pruyram will have difficulLy converging. If 

tile Lwo values are too close, lhere 1S no Gldvantage to US1llg 

::bi8 program. 

Robut. 5 tends tu converge for a larqer ra,lge of QI 

valu0s. In general, any c.: for which the other pro'Jrams 

converge will usual::"y work for R:::Jcot 5. H-lwever in many 

cases, RuLot ::; dllows a lower CJI, and a lower [lnal ell0:rgy 

.::·ule of thumb, the lowest [\ImlIl [or Wh1Ch the 

prugram c::Jnverges gives the most optimal solut:'on. 

':'he variation 0: C 1s more straigh~forward; the 11ig11er 

:-tle va:"~_e of C, Lhe smaller the flhal error. 26,2·11 

However, certa1n limi LS do apply this qUldel':'ne. If C is 

too high for a given set: of boundary (""ond1t10ns, the progr0IT" 

tends llOt to converge. Tr.ere 18 also a prJ ce for l:hi8 

accuracy. (Fig. 28) In ':Jeneral a more aCC"clrate :iLdl 

Solut1on~ show a high?r f1llil-::" cost .. 



2. Sample of Test Cases 

The Robot programs have been teste:'! [or many different 

bounoary oondi t ions and, subj eet to use, supplled parameters, 

give op::'lmal sO::'utions. The following six cases are 

representatlve of the results. For each prog,am variation we 

provide t::Je best kr.own control pararr.eters for that program and 

set of boundary conditions. :0 this way we compare th'" best 

result: for each. 

90 Degree Turn Problem 

For this case t~e bOundary conditions are: 

Xo" 0 
Y., = 0 
eo = 0° 

X t = 
Y t = _0 
6 f = 90 0 

(102) 

Most of the programs give a similar result for this problem, 

except Robot 1. (Fig. 29, 30) This problem requ:'res a 

relatively high a to achieve convf.:'rgence. As a result, the 

programs whlch use a as a control, Robot. 4 & 5, show no 

advantage. (Fig. 31, 32) Although the Robot 1 solution takes 

a longer path, by o· . .II" definition of cost, l'::S solution is more 

aptintal. 

b. 30 Degree Angle Parking Problem 

For th::'s case the boundary conciltlons dre: 

x, 
Yo - 0 
eo = O~ 

Here, the ~ffect of [t control 

X t = 0 
Y f 2 
6 ~ = ., 06 

1 S rrore evident. 

(103) 

(Fig. 33, .01) 

In Lhe case ot Robor. 4, Lhe prugram bds a more difflcult tlIT.e 

8onverg~ng because of the non-linear 0:. As a Ye"mlt, its 



sclu:..ior. 1S the least optimal. (Fig. 35) RODot 5, :lOwevel', 

':lives the bes'C opt1mal soluc=-orJ. WIllIe Robot 5'8 !:inal eTTor 

is h~gher Ulan some others, considerin? lne 01:-iO'r: of mdgnitudc 

of th{' t=-r:a=- tlw dlffr-rence ~s negligible. 

270 Degree 'l'llrn l'rob~em 

This case is lnheT'~ntly r::oc optimal. '~'he anguldr: 

disp=-acement required :::ould be achi"ved :no:re easily oy gei ng 

instead. dowever, tr.ese bOlJnda~y conditions provlde 

a nnre der:lc.IHji:lg lest. 

x,, - 0 X t '" 0 

o Y,- 2 (104) 
au '" 0° 0t = 270" 

The IJrograms overcom" the ansulc.r d1sp=-acement proDl err, by 

stopping and :Oack1ng part way though t~e maneuver (FiS. 36, 

37, 38) Baspd or. Lhe final error ar.d energy cost, no f.rngTam 

has a::1Y d1stiGct advantage over the oLhers [or: trus maneuver-. 

d_ ]80 Degree Turn On A Point 

For Rohot programs Js:'r:g partlal feedback, Lt 

LWO of the t;,r-ee c;tdce varidb:'es, :Df, AY nr ,1$, 

difference be:-ween lheir iniL;,al and floal boundary 

conditions, the r'esulL w112. be the triv:'Ll.l, "don'\"_ go" 

If, however, there is at least small di[[er,""llcA 

between the =-nl~la:' and fi:lal boundary conditions f"r TWO 0"" 

tlle three st_ates, a non-trlvidl tlUlut10n can bE: obta.ned. 

tb1S reason, WC> llF;C> CI. Olmall dl::fcr-euce between the ir:llictl an:! 

tina.l X ~uundary cond1tlor:S :or thlS problen. 



Xo" 0 
Yo 0 
flc = 0 0 

X[" -0.01 
Y, 0 
e.~ eo 1 f< 0 0 

(lOS) 

Robot 1 and 2, which do not include partial fee::l.iJack, sJr.1ply 

turn and go to the c.esired positlon. {Fig. 4U} The Temalning 

solGticns are all similar. For all cases the energy cost is 

the same, wi::.h similar final error for lhe feedback proble:ns. 

(Fig. 41) 

Parallel Parking Problem 

This case proved the mcst difficult of Cl.:ly 

program to solve. Again, we J1lUSt avoid c:he bounJary 

ccndit::"ons when, two of the tr.::-ee boundary cond:"::'lons haVe 

zero ditterence. Only RODot 5 WdS able to produce a so:"uLion 

WiLh reaso~lable m:..nlmum error. (Fig. 42, 43, 44) This is 

because only Robot :;; supports proportional ex control. The 

choice of 0: lS cr::"t:ical to the res·clltlng solution. Since 0' lS 

a gain wh::"ch affects the angular: velocity, too high an lln"n 

resul ts in highly :loo-linear solutlons. Th:..s is trl.e even ::'n 

the case of Robot 5. (Flg 45, 4£, 47) Nevertheless, a 

judiclous choice of Cl'min results in an oplimal and 10"'· final 

SOl\:tlOIl. 

46 



f. Trivial St:raigbt Line Case 

For the tr:ividl Cd-5e wherp ehE' :CODOC to 

mov,=, along a st:ra::'ght IlnE from one position to anocher, :.t:e 

solut1.on o.JIlVelges very quicJ.::y (0 the obviO\. .. s solu~.lon. 

few lteratio::1s are necessary to bring the costa;::", variab12S co 

tne::'r p:-opel:' values. These programs have no problE'm 

converging, unlike diR:.c prob j ern, bcrac:.se there are no 

C'omp""ting b:mnuary conditions. 

3. Other Trends Noted 

The eIfect on of the i:1iclal guess cannOL be 

overstated. For each case, the "initial guess was based on the 

straight line path between the initial and flnal point.s. 

(Fig. 48) The costates wen" assumed to be seme small, non­

zpro valLle. The :<obot p:rograo!'; show strong tendency ~owards 

CQIlVeryence even when g:iven such a crude guess. 

In some cases, particularly highly 0SC~ llal ory 

so.utiol1s abou~ sma::"=- va:ues, Lhe prugram will tend toward 

convergenc.:= bu~ ther. 110ver at some e.::ror value, ur osr:::'l:ate 

between Lwo small error values. In Lhese cases the besL 

response is to adJust the SLCWC parameter to slow the program 

convergence. Ttns causes the program LO ma.ke smaller 

co:crect10:lS where '--~ miqht be jumping, back aYld forth, uver a 

solution. DClng t01S d0es not gUClrant!OE a solutiOl., but 1".:: is 

helpful il"'. some CClSeS. 



The Program uses an EPSILON variable to determine the 

value of £(,;18) when,;18 is nearly equal to zero. If,;18 is less 

than EPSILON, we consider it sufficiently close to zero to use 

the definition of £(,;18) equal to one and £' (t:.8) equal to zero. 

From experimenting w~th the programs, any reasonably small 

value for this variable will give the same solution. This is 

true as t:.8 rare:"y approaches zero within a solution, except at 

the final time. At the final time, the computer determines 

the values of the S~j expressions based on the final boundary 

condition expressions. Since the function f(lJ.8) does not 

appear in these expressions, the value of EPSILON has no 

effect. In the case where ,;1B is less than EPSILON at some 

other time, the impact appears negligible for all reasonable 

values of EPSILON. 

The cant rained robot problems use the control of 

equation (82). The program uses the variable EPSILON2 to 

determine if the value of U1 is sufficiently close to zero for 

g(U1 ) to be equal to zero. The value used for this EPSILON2 

has been found to make little difference in the solution as U1 

~s rarely zero for any length of time. (Fig. 49) Where the 

value of U1 is less than EPSILON2 at some time, the solution 

profile tends to be non-smooth, making it difficult (though 

not impossible) for the program to converge. On the next 

iteration, the time location of the zero U1 may be moved. As 

a result, the program solution tends to place the exactly zero 

U1 velocities between the discrete time points. 
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Hence, for reaso:1ab1y sized vc;.lues of EPSILQX2, t:he solution 

is :'1ol affected significantly. Howeve::::-, for convergence sake, 

Lhe valu'2 of EPSILON2 should be suff-iciently sma11, : x 10- 4 

0::::- ::ess. 



IV. SUMMARY AND RECOMMENDATIONS 

In thls thesis, w~ have demonstrated a method :or finding 

an optimal, open leap, time varying control for a :-lOnholonomic 

syst.i"m. In general thi co method ",mploys Pont:::yagi:1' S 

Minimization Princip20 to find tho state and costate el!:uatio:1s 

for an op~imal conlral. Then a nume:::ical relaxatiOl: t8:::hnique 

is applied Lo the resull.'..ng two poinl boundary value prob::'em. 

Fcr t:le specific p:c·obleIT. of a tWe) wheeled mobile robot, we 

first develop a partial feedback law using Lyapunov' s Theorem. 

In doing so, we create a system wr.ich does not fal' nude:: 

Broci;:ett's Theo:::em and thus has an equilibrium point soluti:Xl. 

'.:'he metilaj has nee:1 [ou:-ld to give optimal solut:ions fo~ all 

cases of the :nobile robot problem. However, in the c"se where 

two of tlle three stale boundary conditions are exactly t.lle 

S3mo at the initial ar.d final time. the op;::imLlI solution 

obtained is a trivial one. ':'he optimality 0: tl1e solution is 

subject to the defir.i<.;:ion ot the cost function, the weight of 

the te:c"minal COSt, and cho:':.ce of rotational gain, (1:". While 

closed loop controls cf mubile robots are obtainable, '.'leya:!:'e 

nOL opLimal in any sense. For an application wr_E're efficiency 

important, the me::hod de!1',onstrated here wO'~ll d be 

advantageO'J.s. 
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The results oblGcined opees up a LlI110er of aredo; for 

further ,,,,,search into tr.is and related problems: 

• }{efin=-ng '-he cmgular feedback -" (U1 ) such Lhat 

contYcl is more propor'_ional to U1 would reiolult in a more 

~IlLOO:.:t contro-=-. 

• A more ref tIled Cll'Jorith~ for creating the i:1jtial guess 

cf states and costates would help ensure convergence anj allow 

more freedom in choosing problem pa:ramf>tcrs C ar.d O!. The 

init_ial guesses could be based all known solutions to 

C'orrnrnnly used boundary ccnditions. 

• The :nethod des:-:ribed here requires that ::he final time 

be fixed. li. more general solution to the free end time, cr 

minimum timE' p:-ot:::'em is desirable. 

• This method cuuld be used fa:::: ::..n line patr. planning of 

0. mobile rovol. By us=-ng tr.e last solution as l:.,e new in-'--:..ial 

gU2SS, program c:Juld cO:1st:ant:ly update, the path for the 

r:~bot to fo-=-low. As t:'l2 laBt solution would be a very quud 

guess, the! yrograr:t would convf>rge ve::::y quickly. 

• ('he mobile robot pruvlem pr,-,scnted is a kinerr.aLics 

problem. A [".ore reali8tic second order problem would consider 

kinetic c!-llirnization, r:1ClSS momen~ uf inertia, smootI-, vcloclty 

profiles and ini.C:ial dnd final velocities ::It 2er'0. 

As this Jist suggests, ,_he possibil it-ies tor expanding 

"_hill research a~'e enormous 
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Costate Variable Trajectories: Circular Final Solution 
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PaIn of Disk on X-Y Plane: 10 Rolls, 5.5 Turns 

>-

State Variable Trajectories: 10 Rolls. 5.5 Turns, Final Solution 
80-, --

theta 

0.4 0.6 

Figure 9 



20 

~ 
rn 

~ -20 

:g -40 
E 

."1 
-60 

-80 
0 

Costate Variable Trajectories: 10 Rolls, 5.5 Turns, Final Solution 

Figure 10 

>-

Figure 11 

lambda 1& 2 

1 
lambda 3 

~J lambda 4 

0.2 0.4 0.6 0.8 
Time 

Path on X-Y Plane: Nearly Straight Line Path 

'r-~~- ~~--­
Finish 

10f Initial Guess & 

81 (nearly identical) 

Final Solution 

Stan 

24 J 
10 



14 

12 

10 

-2 

Path on X-V Plane: Effect of Small Variations in Angle 

3.6 e-8 degree 
tum to left 

Start 

Figure 12 

10 12 



>< 

>- ... - - -------'---

60 



x 

.~ . . ,.'7-'00 c. 

~\ 

>-



2.5 

1.5 
>-

0.5 

Robot 

-2.5 

F-igure 15 

Figure 16 

Path on X-V Plane: Robol 1 

Desired Position 

Virtual Robot 

--_~_~_________________ Starting Position 

--------------~. 

-2 -1.5 -1 -0.5 0.5 
x 

State Variable Velocity Profiles 

Time 



2:r 
1.5 

0>-

Robot 

05 

O~ 
-0.5 

"2.5 

Figure 17 

g 
~ I 

~ 1f! 
x- / 
0--

-1 o 
Fiqurc 18 

Position on X-V Plane: Robot 2 
-~ ------.-----, 

Desired Position I 

Virtual Robot 

-2 -1.5 

State Variable Trajectories: Turning on a Point 

Theta 

X&y 

02 0.4 0.6 0.8 
Time 



Path on X-V Plane: Robot 3 

2.5 Desired Positio 

Robot 

1.5 

0:. ~i1iOl 

.0.5~.2.5 -----:-.2 ~.'.5C---·~' -:-::--.0.5---:----J0 

Figure 19 X 

State Variable Trajectol-ies: Trivial Solution 

x, Y & Theta 

· , O:c----O:C.=-2 ----=O~4c---:C0.=-6----=0C:.B:---...J· 

Figure 20 
Time 



Costate Variable Trajectories: Robot3, Trivial Solution 
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Energy Cost with Variation of Alpha, Robot1 
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Path with Variation of C, Robot1 
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Energy Cost with Varialion of C, Robol1 
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Path Comparison of Robot Programs, 90 Degree Turn 
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Angle Trajectory Comparison of Robot Programs. 90 Degree Turn 
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Path Comparison of Robot Programs, 30 Degree Turn 
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Variation of U1 with Time: Robot 5, Highly Oscillatory Solution 
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Program Files Specific to Disk 

Ga;D=::iK. FOR 

DIFEQ. FOR 



Pftj<.AM~·i LH '~jE_ 8 , ~.=;; J 1 . ~3_~ . ~'CI =tlf:, NCJ _~E 
115~'=:: ')1['1, NYJoN1, NYK_'1i .................... , ...................... .. 
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rlEl 
rl_l 

5(1,1) ~ -1 
S(l,2I m O 
SIl,]) _ h"Rad""a*Y6*C05(Y))/(4*r2)-I>"Rild*YS*Sin(Y3/21!(4'r21-

, h*Rad**l*YS"Sin(Y]I/('*r2) 
S(1,4)=0 
S{l,SI =h*Rad"*21{4*r2) +h*Rad*'2"C""IYl)/(4*r2) 
S{l, 6) ~ h*RII.<3.**2*Sin(Y3)/(4*r2) 
S(1,1) .. 0 
S(1,6) _ h"Rad"Co~(Y312)/12*r2) 
S (1, ~l E 1 
SI1,lOI_0 
S(1,l1) ~ a(l,)) 
S(1,12)_0 
S(1,13)_8(1,5) 
SIl,H) ~ a(1,6) 
S(1,15)_0 
S(l, 16) ~ an.8) 
S\2,1) ~ 0 
SI:',:') ~ -1 
SI2,J) "h*Ra/l*YS*C09(Y3/l)/(4*r2)+h*Ra/l"2*YS*Cos(Y))!1 4*r2). 

" h*Rad*'2*Y6*Stn(Y3)/t'*r2) 
S(2,4).0 
S(2.S)_h*Rad**2*sin(Y3)/(4*r2) 
SI2.6) m h*Rad**21 14"r2) _ h*Rad"2"Co~(Y11/('*r2) 
S(2.7)_0 
S(2,8) ~ h*Rad*Sin(Yl/2) ((l*r2) 
S(2,9),,0 
S(2,10) "'1 
S(2,11) =&(2.3) 
S(2,12) =0 
SI2.131"8(l,E) 
S(2.14)_8(2,6) 
S(2.15)"0 
S(2.16) =5(2,8) 
S(l.l)=0 

~g:~l ~ ~1 
S(3,4)=0 

~lt~l : ~/(2*rl) 
S(l. 8) ~ 0 
S(),9)=0 
Sll,lO)_O 

~g:m : ~ 
~g:~;: : ~ 
S(3,15) =&13,7) 

~ ~!: ~~) ""00 

S(4.2) ~ 0 
S(4,1) ",h*Rad*Y6*Cos(Yl/2)/(4"r2) -h'Rad'~*sinIY){2)/(4*r2) 
S(4,4) =-1 
S(4,5) =h"Rad*Co&(YlI2)/(2*y2) 
S(4,6)" h"Rad*sln(Y3nl/(2*r2) 
S(4,7)=0 
S(4.8)=II/(2*r2) 
S(4.9)_0 

~i!:t~: : ~(4.1) 
S(4,12)=1 
S(4,1l) =&(1.8) 
S(4,14) " s (~, 9) 
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APPENDIX B 

Program Files Specific to Robot 1 

DIFEQ.FOR (tor Robot Ii 

97 



98 



99 





101 









1 DS 



'NI';CIAL POS1TION5 & ENERGy CON[llTIO", ......................................... 

C~Cl'L!'_Tl()N O~ VELOCITEH :n,un ......................................... 

C/'.LCl'L/'.TfOlJ elf" EJ<E~GY COSTS ..................................................................... 

':'R.\?ElOI:J"~ lI:TEGRATlON ................................... 

106 
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Program Files Specific to Robot 2 

ROBOT2. FO" 

DIFEO. FO" (tor ?,obol 2) 

XLA~OR2 . FOR 

108 



C'){'n"'~'! R('D,W: ............................... 

109 



DO 





112 



In 





115 





KOJIF1W InlJH FOR r:xw '!:~:'L'!\.L 
SUCH ':'HAT un_ 101: ALL T:_~c ........................................... 

11'7 



FORMAl' 12'(' 6F15_41 
FORMATI2X,H2Q.IO) 

118 



Prog'ram Files Specific to Robot 3 

ROB:)T3. FOR 

(for Robot 3:1 

ZLATO?3 



:20 





122 





124 





126 
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Program Files Specific to Robot 4. 

R8BOT4.FOR 

DIFEQ. FOP (for Robo:... 4) 

X[,AT8"4. rOE 



dj)r~ <~e_trol (c_ii~_, ................... 

131 



132 



:f,L AI,rf-A D~H3"TNA'1'T0N ......................... 



131 



13S 





137 



133 



S"BROUTI>lE XLATOR4IY, YIlOT,II,NY.l,NYX,X,THETA::J, ~P5,AJ PHA, 
XO.YO,':'HETAO,XF'.Y?,POS,EPS2) 

HODII:ED 7/l1194 POR FIXED VIRTUAL ITARUET) 
SUCII TIIAT UD:O FOR AL~ TIME 

139 
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Program Fi1es Specific to Robot 5 

ROBOTS. FOR 

DIFEQ.FOR (for Robot 5) 

XLATORS . FOR 

141 



PROGRAM ROBOT5 ............................................................................. 
SOUrce for subroutines R .. d, Pinvs, Solvde, and Bksub and model for 
DHe,. and Disl<main' 

••• * ••• , ••• ~~:: :~!;, ~!~~~:: ~. ~!;; ~~. ~ ~ .:;::! ~ *!:.!: •••••••• , •••• * ••••• * * ••• 

IMPLICIT """",'S (II-If, O-Z) 

~AAAIIETER (IIE_ 6 , M~' 0 1 ,liS'), NCI~NE, NCJ~NE-IIB'l, IICK~Ii+ 1 , IISI ~IIE, 
& N5J'.*IIE+l, NYJoNE, NYK_M) 

DIMeNSION SCIILV(II"-), IIIDexv(lIe), '( (liE, II) ,C (IICI. NCJ. liCK). S (IISI ,NSJ) , 

:COMMON ~~~r~~:E~~~ '~~~~~-~E~~~~~~~~~I\D. EPS, Cwr.IILPI!I\(M). 

variable description' 

---_._-------_._--_.----------------------------
Number ot inde"",ndent equations deocribi"ll system 
Number of Mestlpoints, divisions of independent variable, 
lIumber of Boundary conditions lenown at initial condition 

C 3-D F<:ru.y for storage of corrections for each iteration 
NC,], ~~~e: largest array in program 

dirnensi.on variables ot C array, must satisfy equations 
found in parameter statem .. nt 

NSI, Ns~~ray for storalle of blocks of solution of Difeq 

n~~~st~np:.:!!.:~;~s$~;t~~n~ anal', must satisfy equnlon. 

2-D array cOnUinlDg i.ni.tial guess for each point, This array 
u updated by calculated corrections. When the corre"tions 
are suffidently small, convergence is acheive" 
Array for independent variable, time. used only for compad.son 
of dependent "~ri.ables after program completes, 
II-rray of value. r .. presenting the typic .. l "",gnitude of the 
dep@nd.mt variabl<!s, Use<l for controlling corr<!ction magnitude 

INDEXV:~~~i~:;;;:;:;~:~;;:~;;:::::::si:oSymay. not us@d in this 

Controls fraction of corr .. cticn. appliood to y 
In"rement of independent variable, division. bee", .. en mesh points 

lniti .. l )( coordinate of robot 
Initial '( coordinate of robot 

~::1~:~ Ift:Y~ aii~l~~[~E ir~s~~y~ robot 

Desired final angle coordinate of robot 
Initial boundary condition for state Variable delt"-x 
Initial boundary condition for state vanable delta-Y 
IniUal boundary conditio~ for state variabh d .. lta-theta 
S .... llest value for which f(clelta·X)~liin(delu-x)I(<l"lta-xl 

~=i~~IJ~!n :~~~!~~r ~~:~~;;~~~~;~~;HER FORMS OF 
142 
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1'11~'lAL ALPHA DETEPM1'lICION .............................. 

144 
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51(;10 m -STDn 0 
SIGll. CTOn.[' 

148 
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Program Subroutines Used by All Programs 

P::NVS. FOR 

RE:l.FOR 

BKSUB. FeR 

152 



subroutine solvde !itmax. conv. slowe. scalv. inde><v. ne. nb.m. 
y,nYi,nyk,c,ncLncj,nck,s,nsi.nsjl 

pARAMETER (NMAX~SJ 

di .... nsion y{nyj .nyk) ,c(nci,ncj,nckl ,s(n£i,Mjl 

~t::~:t~~ :~:.!~~~;~~:~~: 

callred(icl,ic2,j5.j6.j?jB,j9.ic3,jcl,jcf,k2,c.nci.ncj,nck, 
5,nsi.nsj) 

153 



endU 
continue 
WRITElll,") 'itmax exceeded' 
f"=at(lX,IlO,lX,9flS.6) 
!~f~Ouo:;:tllX.i4'2fl2,6. I/Sx,;'5,U2,6)) 

154 



" '" 

subroutine pinvs [i"I, i.,2, j<>l, hE, jc1,~, C ,nd, nCj, nc~, s, noi, nsj I 

PARAMETER (ZERO~O .• OIlE=l., NMAX=81 

~i::n:sii~~ c,,~n~cl;'(~l~ct~dxrS(~lnsj) 

i<>2 _ j<>l~i.,'-i<>l 

)£l_j<><+l 
do 12 i _ '<>1.i<>2 
big. "<>""0 
do 11 j _ j.,I,j,,2 
i~~nbt'i~'"u~,jll.g".big) big - "bs(s(i,j)) 

if(bi9'.e'l:.~e,,"o) pause ·Si.ngular ..atri,.. ro ... s an o' 

!:~~itti:d;e: o:::~~:2 
.,;'vozero 
do 14 i ~ iel, i.,2 
~I~i~~~;~I . .,q.OI th.,n 

do n i " j~1.j"2 
~f(absl$Ii.,j I) .!I~.oig) ~hen 
jP" 1 
~:.aif "os(s(i,j)) 

if (bi\l'p~cll i) .gt,piv) then 
ip1v ~ l. 

jpiv ~ jp 

E~t~ bil/'pscllil 

ifl.[ipiv.jpiv) ... q.zero) pause 
indxr(iplv) ~ jpiv 
pivinv ~ on.,/s(;piv,jp;'J) 
do IS ) _io>l,jsf 
S~i:n'tVi~J .. ~ s(ipiv,j)"pivin'J 

~~ ;~~vi j~t~i, i@~n" 
if(indxr(i) .n".jpivl then 
Hls(i,jpiv).ne .• "rol th,m 
dum _ s(i,jpiv) 
do16j=iel,jsf 

s~i';~~in';.: [i,j) 

:~~~tV) = mo 

jeoH _ jc1-j~1 

!~:~: -;~~;gL; icoif 

~ ~~~~:~~;i"Off. k) 

""' 

155 



subrou~in<! n,dl i~1. h:l. jzl. jz:l. jml, jm2, jmf. ie1, je1, jd, kc. 
c.nci,ncj.nck,s,nsi,nsj) 

dimension clnci,ncj ,nck). slnsi,nsj I 
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