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We introduce the set of quasi-Herglotz functions and demonstrate
that it has properties useful in the modelling of non-passive
systems. The linear space of quasi-Herglotz functions constitutes
a natural extension of the convex cone of Herglotz functions. It
consists of differences of Herglotz functions and we show that
several of the important properties and modelling perspectives
are inherited by the new set of quasi-Herglotz functions. In
particular, this applies to their integral representations, the
associated integral identities or sum rules (with adequate
additional assumptions), their boundary values on the real axis
and the associated approximation theory. Numerical examples
are included to demonstrate the modelling of a non-passive gain
medium formulated as a convex optimization problem, where
the generating measure is modelled by using a finite expansion
of B-splines and point masses.
1. Introduction
It is well known that an admittance passive system (admittance,
impedance, electromagnetic constitutive relations, etc.), i.e. a
system that absorbs more energy than it emits [1], can be
represented mathematically by a symmetric Herglotz function
(or positive real function) (e.g. [2–7]). The condition of passivity
implies, among other things, that the system also has to be
causal [8]. Furthermore, the integral representation formula for
symmetric Herglotz functions leads to integral identities or sum
rules [4,6] that are useful to derive physical bounds in a variety
of technical applications such as radar absorbers [9], passive
metamaterials [10], high-impedance surfaces [11], antennas
[12,13], reflection coefficients [14], waveguides [15] and periodic
structures [16], only to mention a few. The integral
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representation formula can also be used in a convex optimization setting to construct an optimal

approximating passive realization of a desired target response [17,18], which is typically given on a
finite closed interval of the real (frequency) axis. Optimal realizations of passive metamaterials
are typical examples, where it is, for example, desired to synthesize low-loss materials with
negative refractive index over a frequency interval [10,17,18]. However, there exist many practically
important systems that are causal, but not passive, and thus we introduce a new class of functions to
model them.

As a motivation for the study of the new class of functions, we refer to the use of gain media which
has been proposed to improve the light localization effects in plasmonics, with applications such as
plasmon waveguides, extraordinary transmission, perfect lenses, artificial magnetism, negative
refractive index, cloaking, tunnelling, high directivity radiators, optical nanocircuits, nanowires etc.
(e.g. [19–25] and references therein). Here, the use of gain media refers to the use of fluorescent dyes
through optical pumping for which there exist explicit Lorentz type of resonance models in the
standard laser literature (e.g. [21,25–28] and references therein). Hence, laser pumping is a physical
mechanism that allows for a linearized description of the medium in terms of a dielectric permittivity
that can have a negative imaginary part over some frequency intervals. Naturally, it has been
recognized that such models must satisfy causality and the associated Kramers–Kronig relations [29].
However, our purpose of employing the new class of functions in this context is to add the
restrictions imposed by passivity outside the (non-passive) emitting frequency range for determination
of an optimal realization of a non-passive medium characterized by a permittivity function. It is
emphasized that the term realizability is employed here in the sense of realizability theory as in [30].
This means that a given system response is realizable, not as a physical system, but rather as a
function possessing mathematically well defined properties of physical significance, such as causality
and passivity [30], and also as in our case, having some a priori assumed regularity properties
regarding its boundary values on the real (frequency) axis.

The boundary values of analytic functions representing causal systems are treated classically in L2

spaces as in Titchmarsh’s theorem [5,29] or in the sense of tempered distributions as in [2,31]. There
are a few results concerned with approximation theory or interpolation problems associated with
partial information on the real axis (or on the unit circle). For example, bounds on the dispersion
for finite-frequency-range Kramers–Kronig relations based on Stieltjes functions are presented in
[32], and in [33] an approximation theory is given with density results for Hardy space
approximants targeted for Lp functions defined on subsets of the circle. Furthermore, a related
bounded extremal problem is examined in [34] with point-wise constraints on the complementary
part of the circle.

In this paper, we are interested in extending the class of admittance passive systems to include
certain causal, non-passive systems. This extension is aimed to preserve the integral representation
formula for the system, as well as, in certain cases, a sum rule. As a characterization of the full class
of functions that satisfy the sum-rule identities seems out of reach, we use a class of functions that
includes all Herglotz functions, and for which the sum-rule identities still hold under some
appropriate additional assumptions regarding their asymptotic expansions. Moreover, it is also
desirable that the new class of functions can be incorporated in an approximation theory, similar to
the one for Herglotz functions [18]. It turns out that differences of Herglotz functions are suitable in
this sense and we define the (real) vector space generated by Herglotz functions as the space of
quasi-Herglotz functions. As for the approximation theory, we follow a slightly different route from
[33,34] and consider, as approximants, certain subspaces of quasi-Herglotz functions which are
Hölder continuously extendable to a neighbourhood of a given approximation interval on the real
line, equipped with the topology from a larger Lp space. This is a formulation that will imply that
even smaller subspaces generated by finite B-spline expansions (useful in convex optimization) will
be dense in the larger set of approximants. Numerical examples are included to demonstrate the
approximation approach by modelling of a given non-passive system by solving a convex
optimization problem. Here, the generating measure is modelled by using a finite expansion of
B-splines and point masses.

The rest of the paper is organized as follows. In §2, we introduce the set of quasi-Herglotz functions
and discuss their basic properties, integral representations and boundary values. In §3, the sum rules are
formulated and proved. In §4, the mathematical approximation theory and related convex optimization
are formulated. It is based on certain assumptions regarding the Hölder continuity of the approximating
quasi-Herglotz functions extended to the real line. In §5, the theory is illustrated by numerical examples,
and the paper ends with conclusions in §6.
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2. Quasi-Herglotz functions

2.1. Background
An important function class in applied mathematics is the class of so-called Herglotz functions. Known
also under a variety of different names, such as Herglotz–Nevanlinna functions, Pick functions and
R-functions, these are analytic functions on the upper half-plane

C
þ :¼ {z :¼ xþ iy [ C j y . 0} (2:1)

having non-negative imaginary part [3,4]. A major significance of this class of functions lies in the fact
that the subclass of all symmetric Herglotz functions, i.e. Herglotz functions with the property

h(z) ¼ �h(�z�)�, (2:2)

is closely connected with passive systems [2]. Above, the superscript (·)� denotes complex conjugation.
One of the most powerful tools in the theory of Herglotz functions is the existence of an integral

representation formula [3,4]. This well-known formula states that a function h: Cþ ! C is a Herglotz
function if and only if it can be written, for any z [ C

þ, as

h(z) ¼ aþ þ bþzþ
ð
R

1þ jz
j� z

dsþ(j), (2:3)

where aþ [ R, b+≥ 0 and σ+ is a finite positive Borel measure on R, and the subscrpit (·)+ is used to
highlight the fact that these parameters represent a function with non-negative imaginary part.
Furthermore, the correspondence between the function h and the triple of its representing parameters
(a+, b+, σ+) is unique.

If we are, instead, considering a symmetric Herglotz function, condition (2.2) implies first that the
function must take purely imaginary values along the imaginary axis, yielding that the coefficient a+
from representation (2.3) must be zero. Furthermore, the Stieltjes inversion formula [3] implies that the
measure σ+ from representation (2.3) must be even, i.e. σ+(U ) = σ+(−U ) for any Borel measurable set
U # R, where �U :¼ {x [ R j� x [ U}.

As such, all symmetric Herglotz functions h admit, for z [ C
þ, an integral representation of the form

h(z) ¼ bþzþ p:v:
ð
R

1þ j2

j� z
dsþ(j), (2:4)

where b+ and σ+ are as in representation (2.3), with the additional constraint that the measure σ+ is
symmetric (cf. [2–5,7]) and p.v. denotes that the integral in representation (2.4) is taken as the Cauchy
principal value at infinity. Observe that it is necessary to view the above integral in the principal
value sense to ensure convergence. Indeed, for any fixed z [ C

þ, the integrand grows linearly at ±∞
and is, hence, not necessarily integrable with respect to the measure σ+. Note, furthermore, that this is
not the case in representation (2.3), where the integrand is a bounded function on R for any fixed z [ C

þ.
2.2. Basic properties
We now introduce the following class of analytic functions on the upper half-plane.

Definition 2.1 An analytic function q: Cþ ! C is called a quasi-Herglotz function if there exist two
Herglotz functions h1 and h2, such that

q(z) ¼ h1(z)� h2(z) (2:5)

for any z [ C
þ. Analogously, an analytic function q: Cþ ! C is called a symmetric quasi-Herglotz function

if there exist two symmetric Herglotz functions h1 and h2, such that equality (2.5) holds for all z [ C
þ.

The set of all quasi-Herglotz functions is denoted by Q, while the set of all symmetric quasi-Herglotz
functions is denoted by Qsym.

We mention two trivial observations. First, any Herglotz (resp. symmetric Herglotz) function is also a
quasi-Herglotz (resp. symmetric quasi-Herglotz) function, as we only need to take the function h2 in
definition 2.1 to be identically equal to zero. Second, there is an element of non-uniqueness in
definition 2.1. If an analytic function q can be written as in formula (2.5) for some Herglotz (resp.
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symmetric Herglotz) functions h1 and h2, then it can also be written as

q(z) ¼ (h1 þ h3)(z)� (h2 þ h3)(z), (2:6)

where z [ Cþ, for any other Herglotz (resp. symmetric Herglotz) function h3.

2.3. Integral representations
It is an immediate consequence of the integral representation formulae (2.3) and (2.4) that quasi-Herglotz
functions in the sets Q and Qsym admit similar integral representations. Any function q [ Q can be
written, for z [ C

þ, as

q(z) ¼ aþ bzþ
ð
R

1þ jz
j� z

ds (j), (2:7)

where a and b are real numbers and σ is a signed Borel measure. In particular, if q is given as q = h1− h2,
then a = a+,1− a+,2, b = b+,1− b+,2 and σ = σ+,1− σ+,2 where, for j = 1, 2, the parameters a+,j, b+,j and σ+,j are
the representing parameters for the Herglotz function hj in the sense of representation (2.3).

Similarly, any function q = h1− h2 in the class Qsym can be written, for z [ Cþ, as

q(z) ¼ bzþ p:v:
ð
R

1þ j2

j� z
ds (j), (2:8)

where b and σ are as in the previous case.
Note that, despite the element of non-uniqueness in definition 2.1 discussed in §2.2, the triple of

representing parameters (a, b, σ) corresponding to a quasi-Herglotz function q in the sense of
representation (2.7) is determined uniquely by the function q.

The integral representation formula (2.3) for ordinary Herglotz functions may also be written in terms
of a not necessarily finite measure β+. Indeed, one can show that the right-hand side of representation
(2.3) may equivalently be written as

aþ þ bþzþ
ð
R

1
j� z

� j

1þ j2

� �
dbþ(j), (2:9)

where a+ and b+ are as before and β+ is a positive Borel measure on R satisfying the growth conditionð
R

1
1þ j2

dbþ(j) , 1: (2:10)

However, an integral representation of this form cannot yield an integral representation for all quasi-
Herglotz functions, as the difference of two measures satisfying the growth condition (2.10) is not
necessarily well-defined. Nevertheless, some quasi-Herglotz functions q do admit an integral
representation of the form

q(z) ¼ aþ bzþ
ð
R

1
j� z

� j

1þ j2

� �
db (j), (2:11)

and one case where this happens, which will appear later in §§4 and 5, is when the measure σ from
representation (2.7) has compact support. Then, the measure β in representation (2.11) may be defined
via dβ(ξ) = (1 + ξ2) dσ (ξ).

2.4. Boundary values
In general, Herglotz functions, as well as quasi-Herglotz functions, and in particular their imaginary
parts, have boundary values (on the real line) only in the distributional sense (e.g. [2,6,18,31]). In what
follows, however, we will be interested in complex-valued functions on some interval V , R which
appear as continuous extensions of suitable quasi-Herglotz functions.

First, we want to mention certain inclusions of function spaces, which will be very useful in §4. As
usual, we let C(Ω) denote the Banach space consisting of all complex-valued continuous functions
defined on some compact interval V , R equipped with the standard max-norm ‖ · ‖∞. The Hölder
space with exponent 0 < α < 1 is denoted C0,α (Ω) and the corresponding norm is denoted k � ka (cf. [35,
pp. 94–104]). Further, let Lp(w, Ω) denote the Banach space with norm kfkL p(w,V) ¼ (

Ð
V w(x)jf(x)j p dx)1=p,

where 1≤ p <∞ and w > 0 denotes a positive continuous weight function on Ω (cf. [36]). The Banach
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space L∞(w, Ω) is similarly equipped with the norm kfkL1(w,V) defined by taking the essential supremum

[36] of the function w|f|. Then, the spaces defined above satisfy the following inclusions:

C0,a(V) , C(V) , L p(w, V), (2:12)

where 0 < α < 1 and 1≤ p≤∞.
Second, recall that the property that assures the existence of boundary values of quasi-Herglotz

functions (i.e. of both the real and imaginary parts) is Hölder continuity of the density of the measure.
More precisely, the following theorem holds (see [18, Thm. 2.2] for the argument).

Theorem 2.2 Let q be a quasi-Herglotz function with representing parameters (a, b, σ) and let V , R be a
compact interval. Then the function q can be Hölder continuously (with Hölder exponent α) extended to V< C

þ if
and only if the measure σ is absolutely continuous on the closure of some open neighbourhood O of Ω and the
corresponding restriction sjO has a Hölder continuous density s0

V (with Hölder exponent α), i.e. it belongs to
the space C0,a(O): In this case, for every x∈Ω, this extension is given by

q(x) ¼ aþ bxþ p:v:
ð
R

1þ jx
j� x

ds(j)þ ip(1þ x2)s0
V(x), (2:13)

where the integral is taken as a Cauchy principal value both at infinity and at the singularity x [ R.
ci.7:191541
3. Sum rules
One of the most important properties of Herglotz functions are the, so-called, sum-rule identities [6, Thm.
4.1] and [4]. These identities relate weighted integrals of the imaginary part of a Herglotz function, via
the moments of its representing measure, to the coefficients of the asymptotic expansion of the function at
the points zero and infinity.

The asymptotic expansions we are interested in are always taken with respect to non-tangential limits
in a Stoltz domain. A Stoltz domain with parameter θ∈ (0, π/2] is the angular domain

{z [ Cþ j u , Arg (z) , p� u}: (3:1)

As such, the limit z!̂0 (resp. z!̂1) denotes that the limit |z|→ 0 (resp. |z|→∞) is taken in any
Stoltz domain as above.

Consider now the following definitions.

Definition 3.1 Let q be a quasi-Herglotz function. We say that q admits, at z = 0, an asymptotic
expansion of order M≥−1 if there exist real numbers a−1, a0, a1,…, aM such that q can be written as

q(z) ¼ a�1

z
þ a0 þ a1zþ . . .þ aMzM þ o(zM) as z!̂0: (3:2)

Definition 3.2 Let q be a quasi-Herglotz function. We say that q admits, at z =∞, an asymptotic
expansion of order K≥−1 if there exist real numbers b1, b0, b−1,…, b−K such that q can be written as

q(z) ¼ b1zþ b0 þ b�1

z
þ . . .þ b�K

zK
þ o

1
zK

� �
as z!̂1: (3:3)

At z = 0, an expansion of order M =−1 always exists for any quasi-Herglotz function q, as it always
exists for any two Herglotz functions h1 and h2, cf. [3,6], yielding that

lim
z!̂0

zq(z) ¼ �s({0}), (3:4)

where the signed measure σ is as in representation (2.7). Similarly, at z =∞, an expansion of order K =−1
always exists for any quasi-Herglotz function q, as it always exists for any two Herglotz functions h1 and
h2, cf. [3,6], yielding that

lim
z!̂1

q(z)
z

¼ b, (3:5)

where the number b is as in representation (2.7). Furthermore, the number b equals the number b1
appearing in definition 3.2.

We may now derive the following sum-rule theorem.
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Theorem 3.3 The following two statements hold.

(i) Let q = h1− h2 be a quasi-Herglotz function, such that at least one of the Herglotz functions h1 and h2
admits, at z = 0, an asymptotic expansion (3.2) of some order M≥−1. Then, for some integer N0≥ 1
with 2N0− 1≤M, the limit

lim
1!0þ

lim
y!0þ

ð
1,jxj,(1=1)

x�2N0 Im{q(xþ iy)} dx (3:6)

exists as a finite number if and only if the function q admits, at z = 0, an asymptotic expansion (3.2) of order
2N0− 1.

(ii) Let q = h1− h2 be a quasi-Herglotz function, such that at least one of the Herglotz functions h1 and h2
admits, at z =∞, an asymptotic expansion (3.3) of some order K≥−1. Then, for some integer N∞≥ 0
with 2N∞ + 1≤K, the limit

lim
1!0þ

lim
y!0þ

ð
1,jxj,(1=1)

x2N1 Im{q(xþ iy)} dx (3:7)

exists as a finite number if and only if the function q admits, at z =∞, an asymptotic expansion (3.3) of
order 2N∞ + 1.

Furthermore, the identities

lim
1!0þ

lim
y!0þ

1
p

ð
1,jxj,(1=1)

xk Im{q(xþ iy)} dx ¼
a�k�1, �2N0 � k � �3,
a�k�1 � b�k�1, �2 � k � 0,
�b�k�1, 1 � k � 2N1

8<
: (3:8)

are valid

— for k =−2N0,−2N0 + 1,…, − 2 if there exists an integer N0 satisfying statement (i),
— for k = 0, 1,…, 2N∞ if there exists an integer N∞ satisfying statement (ii),
— for k =−1 if there exist integers N0 and N∞ satisfying statements (i) and (ii), respectively.

In formula (3.8), the numbers a�1, a0, a1, . . . , a2N0�1 are as in definition 3.1 and the numbers
b�1, b�2, . . . , b�(2N1þ1) are as in definition 3.2.

Proof. In the case of statement (i), we may, without loss of generality, assume that, if we write q =
h1 − h2, it is the function h2 that admits, at z = 0, an asymptotic expansion (3.2) of some order M ≥ −1.

Then, it follows from e.g. [6, Thm. 4.1], that the limit (3.6) for the function h2 exists and, moreover,
that the sum rules identities (3.8) hold for the function h2 for all k between −M − 1 and −2. Thus, the
existence of the limit (3.6) for the function q = h1 − h2 is equivalent to the existence of the limit

lim
1!0þ

lim
y!0þ

ð
1,jxj,(1=1)

x�2N0 Im{h1(xþ iy)} dx, (3:9)

and the existence of an asymptotic expansion of the function q of the form (3.2) is equivalent to the
existence of an analogous expansion of the function h1. Statement (i) is then established by applying
the sum rule for the function h1, namely [6, Thm. 4.1].

The proof of statement (ii) follows an analogous reasoning. ▪
Remark 3.4 For q = h1− h2, the requirement of statement (i) in theorem 3.3 will certainly be satisfied if

the representing measure of at least one of the functions h1 or h2 has support that does not include the
point zero. Similarly, the requirement of statement (ii) in theorem 3.3 will certainly be satisfied if the
representing measure of at least one of the functions h1 or h2 has compact support.

Remark 3.5 If, in theorem 3.3, we have a function q [ Qsym, all integrals with odd powers k on the
left-hand side of identity (3.8) are zero due to the symmetry of the measure. Furthermore, for even
powers k, these integrals may be written as

lim
1!0þ

lim
y!0þ

2
p

ð1�1

1

xk Im{q(xþ iy)} dx: (3:10)

Remark 3.6 Theorem 3.3 cannot be formulated for arbitrary quasi-Herglotz functions. Examples
show that it even does not hold for all meromorphic quasi-Herglotz functions, e.g. it can be shown
that the quasi-Herglotz function q(z) :¼ tan (z)�i admits, at z =∞, an asymptotic expansion of order
K = 0, but there exists no integer N∞ that would fulfil statement (ii) of theorem 3.3.



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191541
7
4. Approximation and optimization based on quasi-Herglotz functions

In this section, we derive the rationale for employing convex optimization as a tool to approximate a
given continuous function defined on a compact approximation domain by certain quasi-Herglotz
functions. The approximating quasi-Herglotz functions are first restricted to a certain subspace
characterized by a particular requirement regarding their Hölder continuity on the approximation
domain. Then it is shown that a smaller set of quasi-Herglotz functions generated by finite B-spline
expansions (suitable for convex optimization) is dense in the larger space of Hölder continuous quasi-
Herglotz functions in the topology induced by any Lp-norm. In essence, this development constitutes
a straightforward, but very important extension of previous results derived for Herglotz functions [18].

4.1. Approximation theory based on quasi-Herglotz functions
To make the statements given above precise, we fix the approximation domain V , R as a finite union of
closed and bounded intervals on the real axis.

With a finite B-spline expansion we refer to a finite linear combination of B-splines of any order m≥ 2.
A B-spline of order m is a compactly supported positive basis spline function which is piecewise
polynomial of order m− 1, i.e. linear, quadratic, cubic, etc., and which is defined by m + 1 break-
points as described, for example, in [37,38]. With a finite uniform B-spline expansion we refer to a
finite B-spline expansion with equidistant break-points.

The following definitions and theorems are similar to those in [18] but extended to the current
situation with quasi-Herglotz functions. Let Ω be given as above and let w > 0 denote a positive
continuous weight function, and let 0 < α < 1, 1≤ p≤∞ and m≥ 2.

Definition 4.1 LetWα,p(w,Ω), Lp(w,Ω) denote the subspace of all complex-valued functions q∈C0,α(Ω)
with the following property: there exists a quasi-Herglotz function that has a Hölder continuous (with
exponent α) extension to the closure of some neighboorhood O of Ω which coincides with q on Ω.

Note that we consider Wα,p(w, Ω) as a subspace of Lp(w, Ω) and hence equipped with the topology
from Lp(w, Ω).

Remark 4.2 If it is clear from the context, in the following, we denote by q the quasi-Herglotz
function as well as the extension to C

þ <O and its restriction to Ω.

Definition 4.3 Let Wm,p(w, Ω) ,Wα,p(w, Ω) denote the subspace of those functions for which the
signed measure β (in (2.11)) of the quasi-Herglotz function q in definition 4.1 is absolutely continuous
with density β 0 that is a finite uniform B-spline expansion of order m.

Note that the sets Wα,p(w, Ω) and Wm,p(w, Ω) are independent of p and w, but are equipped with the
topology of Lp(w, Ω).

Remark 4.4 The signed measure β is a not necessarily finite signed Borel measure and can be
represented in terms of the finite signed measure σ as described in §2.3.

The following theorem is a straightforward generalization of [18, Thm. 3.4] to the situation of quasi-
Herglotz functions instead of Herglotz functions.

Theorem 4.5 The subspace Wm,p(w, Ω) is dense in Wα,p(w, Ω) with respect to the topology of Lp(w, Ω).

Proof. Let ɛ > 0 and let a function q∈Wα,p(w, Ω) be given. Since both the positive and the negative
parts of a real-valued Hölder continuous function are again Hölder continuous, it follows that q can
be written as q = h1− h2 with functions h1 and h2 belonging to the convex cone Vα,p(w, Ω), similar to
Wα,p(w, Ω) but generated by extensions of Herglotz functions rather than quasi-Herglotz functions.
Then, theorem 3.4 in [18, pp. 443–445] implies that there exist functions eh1 and eh2 belonging to the
convex cone Wm,p(w, Ω) such that kehi � hikL p(w,V) , 1=2 for i = 1, 2. Hence for eq :¼ eh1 � eh2 [ Wm,p(w, V)
it holds keq� qkL p(w,V) , 1, which finishes the proof. ▪

Definition 4.6 Let F∈C(Ω) and consider the problem to approximate F based on the set of functions
q∈Wα,p(w, Ω). The greatest lower bound on the approximation error over the subspace Wα,p(w, Ω) is
defined by

d :¼ inf
q[Wa,p(w,V)

kq� FkL p(w,V): (4:1)
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Note that the distance d depends on the chosen topology of Lp(w, Ω), but is independent of the Hölder
exponent α (cf. [18]). The following theorem demonstrates the usefulness of employing finite B-spline
expansions in the associated approximation problem.

Theorem 4.7 The greatest lower bound on the approximation error defined in (4.1) is given by

d ¼ inf
q[Wm,p(w,V)

kq� FkL p(w,V): (4:2)

The theorem is a straightforward consequence of theorem 4.5 together with an application of the triangle
inequality. It is noted that the distance d is independent of the Hölder exponent α as well as of the spline
order m (cf. [18]). The following obvious corollary can be used when the measure of the approximating
quasi-Herglotz function contains a set of point masses. Such cases will be discussed in §§4.2 and 5.

Corollary 4.8 Let W (w, Ω), Wα,p(w, Ω) be a set which contains Wm,p(w, Ω). Then, W(w, Ω) is dense in
Wα,p(w, Ω) and it holds that

d ¼ inf
q[W (w,V)

kq� FkL p(w,V): (4:3)
sci.7:191541
4.2. Convex optimization with B-splines
The significance of the theorems 4.5 and 4.7 is that B-spline expansions [37–39], which are well suited for
numerical optimization [18,40,41], can be used to approximate a given continuous function F with
arbitrary small deviation from the greatest lower bound defined in (4.1). A detailed description of the
associated convex optimization problem is given as follows.

Let the approximation domain Ω, the target function F∈C(Ω) and the weight function w∈C(Ω) be
given as above, and let 0 < α < 1, 1≤ p≤∞ and m≥ 2. As approximating functions we can use
functions q from a set W(w, Ω) defined by the following representations:

q(x) ¼ aþ bxþ
XM
i¼1

pi
ji � x

þ p:v:
ð1
�1

1
j� x

� j

1þ j2

� �
b0(j) djþ ipb0(x) (4:4)

¼ �aþ bxþ
XM
i¼1

pi
ji � x

þ p:v:
ð1
�1

1
j� x

b0(j) djþ ipb0(x) (4:5)

for x∈Ω, and where the second part of the integral in (4.4) has been absorbed into the constant �a in (4.5).
In (4.4) and (4.5) the density β 0 is a finite uniformB-spline expansion as in definition 4.3, and a finite number
of point masses at ji � V with real-valued amplitudes pi, i = 1,…, M, have also been included. It is noted
that the set W(w, Ω) satisfies the condition Wm,p(w, Ω) ,W(w, Ω) ,Wα,p(w, Ω) of corollary 4.8.

In particular, we employ here B-spline basis functions pn(x) of fixed polynomial order m− 1 for n=
1,…, N, where N is the number of B-splines, and p̂n(x) the (negative) Hilbert transform [29] of the
B-spline functions. Explicit formulae for general uniform as well as non-uniform B-splines and their
Hilbert transforms are given in [42, Sec. 3.1]. Let qN ∈W denote approximating functions represented
as in (4.5), and hence

Im{qN(x)} ¼ pb0(x) ¼
XN
n¼1

cnpn(x) (4:6)

and

Re{qN(x)} ¼ �aþ bxþ
XM
i¼1

pi
ji � x

þ
XN
n¼1

cnp̂n(x), (4:7)

for x∈Ω, and where cn are the corresponding B-spline expansion coefficients. Note that all the
parameters �a, b, {pi}

M
i¼1 and {cn}

N
n¼1, as well as the break-points of the B-splines defined above depend

on N. It is further assumed that the support of qN grows with N at the same time as the distance δ
between breakpoints decreases, e.g. as jsupp{qN}j ¼

ffiffiffiffi
N

p
and d ¼ jsupp{qN}j=N ¼ 1=

ffiffiffiffi
N

p
. For a fixed N,

the minimization of the norm of the approximation error kqN � FkL p(w,V) is a finite-dimensional convex
optimization problem over the real parameters �a, b, pi and cn, and we denote the optimal value dN.
The important implication of theorem 4.7 and corollary 4.8 is that dN→ d as N→∞. Finally, it is noted
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that for a numerical implementation using, for example, the CVX MATLAB software for disciplined

convex programming [41] the calculation of the norm above must be approximated based on a finite
set of sample points in Ω. However, due to the uniform continuity of all functions involved, this can,
in principle, be done within arbitrary numerical accuracy.

Now that we have established the rationale for using numerical convex optimization as a tool for
approximating a given continuous function based on the set of quasi-Herglotz functions, we can also
expand the setting by incorporating any additional convex constraints of interest (see also [17,43,44]).
For example, we can include upper and lower bounds on the density β 0 stated as

minimize kq� FkL p(w,V)
subject to blower(x) � b0(x) � bupper(x),

(4:8)

where the optimization is over q∈W (w, Ω) and blower and bupper are suitable functions. Note that these
functions can be used for constraining the density β 0(x) outside of Ω to prevent non-physical oscillatory
behaviour of the resulting function outside the approximation domain. Also, these constraints are useful
in regularization of the low-frequency behaviour of materials; see the numerical examples in §5. In
practice, this might for instance amount to solving for qN ∈W (w, Ω)

minimize kqN � FkL p(w,V)
subject to ulower,j � u j � uupper,j, j [ J, (4:9)

where N is fixed, J is a finite index set and the vector θ may consist of any of the parameters
u j [ {�a, b, p1, . . . , pM, c1, . . . , cN}, for j∈ J.

When a priori information is available about the asymptotic properties of a given non-passive system
to be approximated and which admits the sum rules discussed in §3, the identities (3.8) can be involved
in an optimization (4.8) as an additional convex constraint. Due to the finite-dimensional approximation
(4.6), the left-hand side of (3.8) becomes

lim
1!0þ

lim
y!0þ

1
p

ð
1,jxj,(1=1)

xk Im{q(xþ iy)} dx ¼ lim
1!0þ

1
p

XN
n¼1

cn
ð
1,jxj,(1=1)

xkpn(x) dx, (4:10)

for even k =−2N0,…, 2N∞, see theorem 3.3, and which can be employed as an additional constraint in the
optimization formulation (4.9).
5. Numerical examples
In the numerical examples presented below, non-passive approximation is employed as a tool to
determine optimal realizations (in the sense of a mathematical representation) of non-passive systems
with a given target response over the approximation domain. The target functions to be approximated
are symmetric, and thus we employ symmetric quasi-Herglotz functions to solve the convex
optimization problems.

The symmetry property (2.2) implies that the representation based on (4.6) and (4.7) can be
simplified as

Re{qN(x)} ¼ bxþ p0
�x

þ
XM
i¼1

pi
1

ji � x
� 1
ji þ x

� �
þ
XN
n¼1

cn [p̂n(x)� p̂n(� x)] (5:1)

and

Im{qN(x)} ¼
XN
n¼1

cn[pn(x)þ pn(� x)], (5:2)

respectively, where �a ¼ 0 and p0 denotes the amplitude of the point mass located at 0. In connection with
the optimization formulation (4.8) and (4.9) established above, it is also convenient here to introduce the
notation Vopt ¼ I1 < I2, where Ωopt is the optimization domain consisting of two disjoint sets I1 and I2
where the approximating measure is required to be non-negative (pi≥ 0 or cn≥ 0) and non-positive
(pi≤ 0 or cn≤ 0), respectively. Hence, the support of the measure is contained in Ωopt.

The approximation methods that we have described above are general, and can be applied to any
quasi-Herglotz function and for a range of physics and engineering applications. In the examples
below, we consider a sequence of interesting different optimization constraints that we think are
generally applicable. In particular, we consider different constraints on the optimized function outside
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the approximation domain, Ω, where passivity or conditions of non-passivity can be applied. In the first

numerical example presented in §5.1, we consider a target response, F, which is the restriction of a non-
Herglotz function, here F =−h0, where h0 is the Ω restriction of a Herglotz function. In the second
example described in §5.2, we use the same target response; however, we apply the non-passive
approximation framework to determine an optimal realization of the system. Here, we consider a
constrained amplifying region over a fixed bandwidth outside the approximation domain. In addition,
we study the dependence of the approximation error on the size of the approximation domain for a
given fixed optimization domain. The third example in §5.3 is focused on the non-passive
approximation of a given system, where the approximating quasi-Herglotz function is generated by a
measure consisting of point masses. In the fourth numerical example given in §5.4, we are interested
to determine an optimal non-passive realization of the given system with additional constraints of its
asymptotic properties, i.e. the behaviour in the small- and large-argument limits. Hereby, we extend
the convex optimization problem (4.9) with an additional sum-rule constraint which is based on (4.10).

Although the developed theory is generally applicable, in the following examples, we select a canonical
electromagnetic application, which is themodelling of permittivity functions that characterizemetamaterials
with desired exotic properties (fixed negative permittivity, which is of interest in, for example, plasmonic
applications). For the non-passive cases, the optimized dielectric permittivity functions eopt can have
negative imaginary part over some frequency intervals. Note that the functions we study here correspond
to linear and stable systems. Consequently, these functions have no poles in the upper-half complex plane.
However, these functions can also be used as an input to another system, e.g. the transmission or
reflection coefficients [45] from a dielectric slab, and cause an instability of the resulting system. In
practice, any instability issues associated with non-passive systems will always be limited by other
external factors such as the saturation of the gain media [21], which is not considered in this paper.

Here, the independent variable is a dimensionless real-valued normalized frequency x corresponding
to an angular frequency ω in rad/s. For simplicity and since the approximants q(x) and qN(x) in (4.8) and
(4.9) are conjugate symmetric on R, in particular, Im{qN} is an even function when restricted to R, we will
only specify and visualize the right side of the approximation domain, i.e. V> Rþ.

5.1. Passive approximation of a system with a given target response
An interesting canonical example for which (4.1) gives a non-trivial bound is with the passive
approximation of a negative symmetric Herglotz function F =−h0, which can be Hölder continuously
extended to C

þ <V, and which has the large-argument asymptotics h0(z) ¼ b01zþ o(z) as z!̂1. Based
on the theory of Herglotz functions and associated sum rules [6], it can be shown that

kh� Fk1 � (b1 þ b01)
1
2
jVj, (5:3)

for all Herglotz functions h with large-argument asymptotics h(z) = b1z + o(z) as z!̂1 (see [10,18]). Here,
|Ω| is the length of the interval Ω.

As an application, consider a passive approximation of a metamaterial as in [10], and note that the
case with passive systems and passive approximation based on Herglotz functions as in [18]
constitutes a special case of the non-passive approximation based on the representations (5.1) and
(5.2), with blower = 0 in (4.8), i.e. β 0(x)≥ 0 for all x.

For a passive metamaterial, a dielectric permittivity function e(z) is considered, where h(z) = ze(z) is
the associated symmetric Herglotz function [10]. The high-frequency permittivity of the metamaterial
is assumed to be given by e∞, and hence b1 = e∞. A real-valued and constant target permittivity et < 0
is given over the approximation interval Ω defined by Ω = [1− B/2, 1 + B/2], where B is the relative
bandwidth, 0 < B < 2, and hence F(x) = xet with h0(z) =−zet, and b01 ¼ �et. Now, by using (5.3) the
resulting physical bound can thus be obtained as (see also [10,18])

ke� etk1 ¼ kh� FkL1(w,V) �
kh� Fk1
1þ B=2

� (e1 � et)B
2þ B

¼: D: (5:4)

Note that here ke� etk1 ¼ kh� FkL1(w,V), where the weight function is w(x) = 1/x for x∈Ω, with 0 � V,
and where Δ is the resulting physical bound.

Let the target function F = xet be defined over the approximation domain Ω = [1− B/2, 1 + B/2],
where the relative bandwidth B = 0.02, and let the support of the generating measure supp{b}> Rþ be
contained in the optimization domain Vopt ¼ {0}< [0:97, 1:03] including one positive point mass with
amplitude p0 at the origin, and the density β 0 is constrained to be non-negative, i.e. β 0(x)≥ 0.
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Figure 1. Real and imaginary part of the optimal passive permittivity function approximating a metamaterial with given et =−1
over the approximation domain Ω. The corresponding sum-rule-bound limits based on (5.4) are given by et ± Δ. (a) Real part of
permittivity. (b) Imaginary part of permittivity.
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Figure 1 shows the result of optimization (4.9) carried out using N = 100 uniform linear B-splines (of
order m = 2) for given parameters et =−1 and e∞ = 1. The real and imaginary parts of the resulting
permittivity function eopt are shown in figure 1a and 1b, respectively, including comparison with the
fundamental sum-rule-bound limits et ± Δ, when Δ is given by (5.4). Interestingly, the optimized
function is, in principle, supported only on Ω, i.e. the optimal solution for β 0 is approximately zero
outside the approximation domain Ω, except for the point mass with p0≈ 79.1. It should be noted that
the point mass at the origin contributes with a response at frequencies x≠ 0, which is very similar to
that of a Drude model with sufficiently large relaxation time τ, so that xτ≫ 1.

5.2. Non-passive approximation of a system with a given target response
Consider an approximation problem, similar to the one described in §5.1, with the difference that the
approximating functions are not restricted to Herglotz functions, but to quasi-Herglotz functions. Let
Vopt ¼ I1 < I2 denote the domain of optimization of the measure β, where I2 ¼ [0:97, 0:99)< (1:01, 1:03]
is the frequency set where the density β 0 is constrained to be non-positive, i.e. β 0(x)≤ 0.

Figure 2 shows the corresponding optimization results using I1 = {0} including only a point mass with
amplitude p0 at the origin. It has been observed that by letting I1 ¼ {0}<V and letting β 0(x)≥ 0 over Ω,
one can obtain negligible deviation from the optimal solution presented in figure 2. In this optimization,
we used N = 100 linear B-splines, which is sufficient to achieve an approximation error of order of
magnitude 10−6. Here, the resulting point mass has a magnitude p0≈ 79.1, which is essentially the
same as in the example presented in §5.1, but the support of the approximating function qN over I2
becomes concentrated to the outermost endpoints of the set. This seems to suggest that two point
masses with amplitudes p1 and p2 located at the two outermost endpoints xl≈ 0.971 (lower endpoint)
and xu≈ 1.029 (upper endpoint) of I2 should be sufficient for the optimization, where the
approximating function has the representation based on (5.1). Hence, figure 2 also includes
optimization results, where the measure β consists solely of these two point masses with negative
amplitudes p1 and p2, together with the original point mass at 0 with amplitude p0. Figure 2b also
shows the optimized point masses with p1≈−8.7 and p2≈−8.48 (indicated by the dark-red ‘o’)
normalized to the same area as the corresponding linear B-spline basis functions. The example
illustrates that it is possible under certain circumstances to obtain a much better realization of the
target permittivity et given over the approximation interval with smaller approximation error as a
non-passive system by using quasi-Herglotz functions rather than by using only Herglotz functions;
compare the results in figures 2a and 1a, respectively.

Now, let Vopt ¼ I1 < I2, where I1 = {0} (where p0≥ 0), and I2 ¼ [0:97, 1� B=2)< (1þ B=2, 1:03] (where
β 0(x)≤ 0). The approximation domain is Ω = [1− B/2, 1 + B/2]. Figure 3 illustrates how the size of the
approximation domain |Ω| = B affects the optimal realization of the desired system response. Here,
the support of the measure qN is concentrated at the outermost frequencies of the set I2 as
demonstrated in the example above. In figure 3a is shown optimal realizations Re{eopt} of the desired
target function et =−1 for two different sizes of Ω, where B = 0.02 and B = 0.056, respectively, and a
comparison with the passivity bounds Re{et} ± Δ defined in (5.4).
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permittivity. (b) Approximation error ‖e− et‖∞.
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Figure 3b shows how the approximation error ‖e− et‖∞ depends on the size of the approximation
domain given as a function of the relative bandwidth B, i.e. Ω = [1− B/2, 1 + B/2]. From this figure it
can be concluded that by increasing the size of Ω towards the outermost points of I2, the
approximation error increases, and for high values of B the optimization results become even worse
than the results based on Herglotz functions for the passive case.
5.3. Optimization with point masses
Consider again the optimization based solely on point masses as in §5.2 above. For this problem, let
Vopt ¼ I1 < I2, where I1 = {0} and I2 ¼ {xl}< {xu} denote the domain of optimization of the measure β,
and Ω = [1− B/2, 1 + B/2] the approximation domain. Here, the approximating quasi-Herglotz
function has the representation based on (5.1) with cn = 0, xl and xu are the lower and upper
normalized frequencies, where the point masses with negative amplitudes are located. Note that the
optimization is done solely over the three point masses with amplitudes p0 (which is located at the
origin), p1 and p2.

Figure 4 shows the optimization results and how the approximation error ‖e− et‖∞ depends on the
location of the assumed a priori point mass, where et =−1 is the given target permittivity function. From
figure 4b, it can be concluded that the non-passive approximation based on point masses provides a good
agreement between the target function and the optimal solution based on the approximating quasi-
Herglotz function generated by point masses. In particular, the approximation error has an L-curve
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characterization with transition at about 2% from the normalized frequency xc; see the approximation
error and the optimal realizations in figure 4b and 4a, respectively.
 541
5.4. Optimization with sum-rule constraints
Now, we would like to further constrain the optimization (4.8) to determine an optimal realization of a
system with additionally given small- and large-argument asymptotic properties. Consequently, for the
given target function F, the convex optimization problem (4.9) is modified with an additional convex
constraint obtained from (4.10) for k =−2 as

lim
1!0þ

1
p

ð
1,jxj,(1=1)

Im{q(x)}
x2

dx ¼ a1 � b1, (5:5)

where a1 and b1 denote the expansion coefficients of the small- and the large-argument asymptotic
expansion of the given system response, respectively. Note that b1 in constraint (5.5) coincides with b
in the representation (4.5) of the approximating quasi-Herglotz function.

As an application, modelling of a permittivity function is considered here, where the target
permittivity et =−1 is fixed over the approximation domain Ω = [1− B/2, 1 + B/2], 0 < B < 2. The small-
and the large-argument asymptotics of this system are represented by the static and the high-
frequency permittivities, i.e. a1 = es and b1 = e∞, respectively.

Let Vopt ¼ I1 < I2 denote the domain of optimization of β 0, I1 ¼ [0:01, 0:9)< (1:5, 2] the frequency set,
where the density is restricted to be non-negative, i.e. β 0(x)≥ 0, and I2 = (1.1, 1.5] the frequency set, where
the density β 0(x)≤ 0. For this optimization, the relative bandwidth B = 0.2 (and hence Ω = [0.9, 1.1]), the
asymptotic constraints are a1 = es = 3 and b1 = e∞ = 1, and N = 1000 linear B-splines are used due to the
increased size of Ωopt, which is sufficient for an accurate solution. Further, the set I1 has been
increased in comparison with the previous example to control the realization of the optimal solution
with the desired low-argument asymptotic behaviour.

Figure 5a,b,c depicts the corresponding optimization results with no a priori point masses. The obtained
optimization result shows a good agreement of the target function et =−1 over the approximation domain
Ω; see figure 5b. The approximation error ‖e− et‖∞ is much less than the physical bound for passive
metamaterials (5.4), and hence the optimal solution eopt fits well et over Ω. Also, it is reassuring to note
that the optimal solution satisfies the asymptotic requirement for the small-argument limit, i.e. eopt→ 3
as x→ 0; see figure 5a. We have observed that the same result can be accurately achieved when the
measure β consists of two point masses with amplitudes p1≈ 989.9 and p2≈−790.8 placed at x1≈ 0.469
and xu≈ 1.499, respectively, where xu is the upper outermost frequency of the non-passive region
represented by the set I2. In figure 5d, the approximation error is shown as a function of the small-
argument asymptotic constraint a1 = es. It is interesting to note that the approximation error decreases as
es increases, and meanwhile, the location of the point mass with positive amplitude p1 moves towards
the origin. Hence, in the limit, when the point mass approaches zero, we obtain a result which is very
similar to the non-passive approximation case described in §§5.2 and 5.3.
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6. Conclusions
In this paper, the non-passive framework for a certain class of non-passive causal systems has been
formulated. This has been done by extending the existing class of Herglotz functions to the class of
quasi-Herglotz functions, which is obtained by taking all possible differences of two Herglotz
functions. Based on the integral representation formulae for Herglotz functions using finite measures,
we have shown that quasi-Herglotz functions can be described by an integral representation formula
using signed Borel measures. For Herglotz functions, one can also use an equivalent, possibly non-
finite measure, in their representation formula. However, this is not the case for quasi-Herglotz
functions when the measure is non-finite where only some functions admit integral representations
via non-finite signed measures. Quasi-Herglotz functions can also be analytically extended to some
interval of the real axis in the same way as Herglotz functions, provided the density of measure of the
function is Hölder continuous on some open neighbourhood of this interval, which is important for
the non-passive framework. Furthermore, we show that quasi-Herglotz functions admit, under certain
additional constraints, sum-rule identities that generalize the known identities for Herglotz functions,
and which allow us to control small- and large-argument asymptotics of desired non-passive systems
in optimization problems.

We have also demonstrated that a family of B-splines can be used in the representation of
approximating quasi-Herglotz functions, which is used in a number of numerical examples. It has
been concluded that a very efficient mathematical representation of a non-passive metamaterial with
et≈−1 (which is typical in plasmonic applications) can be achieved by choosing point masses
representing the power excitation at certain frequencies outside of the approximation domain. A
further constrained problem for non-passive metamaterials with controlled low- and high-frequency
responses shows that the sum-rule identities can be efficiently used in the realization of such
permittivities with desired properties as a constraint for the convex optimization problem (4.8).
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