$$
\begin{aligned}
& \text { 4-H INSECT-CLUB MANUAL } \\
& \text { M.D.JONES } \\
& \text { EXTENSICN ENTOMOLOGIST } \\
& \text { DIVISION OF CODPERATIVE EXTENSIO: }
\end{aligned}
$$



## CONMENTS

Page
Introduction ..... 3
Activity chart for 4 years of insect work ..... 4
Why study insects? ..... 5
Part I.--About the insect. (Introduction to first-year work) ..... 6
Activity chart - first year ..... 8
Collection and identification ..... 9
Outline of work ..... 10
Fart II.--Rearing insects. (Introduction to second-rean work) ..... 15
How insects grow ..... 15
Activity chart - second year ..... 16
Collection and identification ..... 17
Outline of work ..... 18
Things to know about insects ..... 22
Questionnaire ..... 23
List of common insects ..... 24
Answers to questinnnaire ..... 27
Part III,--Control of insects. (Introduction to third-year work) ..... 29
Activity chart - third year ..... 30
Collection and identification ..... 31
Outline of work ..... 32
Samole spray-record sheet ..... 36
Samole narrative report ..... 37
Part IV.--Teaching devices ..... 39
Activity chart - fourth year ..... 40
Collection and identification ..... 41
Playlets ..... 42
Demonstrations ..... 61
Exhibits ..... 65
Surveys ..... 66
Names of insects ..... 67

[^0]
## INTRODUCTION

This manual was premared primarily for the use of $4-H$ club members, but it also may be useful to other grouns of younc people. Its puroose is to give a better understanding of the lives of insects and the orinciples underlying insect control.

In industrial sections of the country where use of leisure time is becoming a problem, the strdy of insects and the making of insect collections affords an excellent pastime. The cost of equipment is small, and the insect suoply is almost umlimited. Ir some places, county-fair boards and local chambers of commerce have provided money to be given as awards to individuals mairing commendable showings of insect collections.

Although some insect collections have sold for large sums of money, such collections represent the lifetime jobs of the individuals making them. The collector should not be misled by advertisements of certain companies to purchase insects, especially when he is obligated to buy a book of instructions before the company will buy the insects.

Insect collecting should be started as a hobby, just as stamos and other objects are collected, and not as a means of making money. The value of the collection to scientific institutions will depend on the number of rare species it contains and the preciseness with which the specimens are mounted and labeled.

The public in general is becoming more conscious of the damage caused by insects and the need for more information on insect control. Members of $4-H$ clubs who barticipate in the activities outlined in this manual will learn many things that will always be of value to them.

To get the most out of the insect study, one should follow the 4-year program as outlined. This will allow time not only for the acquirement of experience, which is the best teacher, but for a review of literature on insects.

All people cannot become entomologists, but they may acquire knowledge that will enable them better to understand the language of the entomologists.
This manual is so outlined that $4-H$ club members can carry on insect work for $1,2,3$, or 4
years. To help the members to set the most out of the stuay of insects, tine following chart outlines
an activity for each meeting neriod. In case of less than le meetinen veriods per year, tor or more
of these activities can be combined into one meetins period.


| Meetings | Acquaintance with insects and collections | Fape | Rearing irsects, survors, and collections | Fage | Control of insects and collections | Faç | Teaching devices and collections | Fage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First | Organization |  | Orcanization |  | Orranization |  | Orsanionticn |  |
| Second March | Outline mork |  | Outline work |  | Outline work |  | Outline mork |  |
| Third April | Wake collecting net |  | Wiako rearing cajes |  | Select control project |  | Playlets |  |
| Hourtin <br> Nay | vare killing jars |  | Select insects to be reared |  | Nix insecticide |  | Flaylets |  |
| Fifth June | dinke collection box |  | Wake preservative for immature insects |  | Apply insecticiac |  | Demonstritions |  |
| Sixth July | Pin insect Spread butterfly |  | Make Rifer mounts |  | Visit control nrojects |  | Demonstrations |  |
| Seventh August | Collecting trip |  | Exhibit reared incects |  | Check results and exhibits |  |  |  |
| Eighth <br> Seotember | Identify insects |  |  |  | FaIl clean-up anj exhibits |  | Exhibits |  |
| $\begin{aligned} & \text { Octopth } \\ & \text { Octor } \end{aligned}$ | Exnibit collections |  | Hibernation cages |  | Fall nlowino |  |  |  |
| Tenth November | Incividual reports |  | Iocate insects in winter quarters |  | Judging contests |  | Fall surveys |  |
| Dleventh December Twelfth January | Literature reports Discussion on life cycle of insects |  | rake permanent exnibits for school or county agent's office |  | Fill out record sheet forms <br> Insecticide exhibit for school or county agent |  | Playlets |  |

## THY STUDY INSECTS?

There are many people who have trudged through life finding little enjoyment in the beauties of Nature or knowing very little about them. If we learn to know more of our natural surroundings, we shall be builaing toward a fuller life. The human race makes up only a very small part of the living creatures here on earth. Jan feels that he has about reached the top of the social ladder, but in reality he still has a long way to go.

## Fistory of insects.

People could profit much by turning to some of Nature's other children Who have been struggling along life's pathways for millions of years, possibly long before man came into existence. The lowly insects, as we think of them, were living on the earth more than forty million years ago. In fossils and in amber, we find preserved insects almost identical with those we can find in our own back yard todov. Scientists have found no trace of man that dates back to anywhere near those geological ages.

That is it about the insect that has permitted it to withstand all these centuries mile many other forms of animal life have aopeared on the earth and, after a relatively few years, passed out of existence? Te see pictures of large prehistoric animals and wonder, with all the strength they must have possessed, why they aid not dominate the earth. This process of elimination is still going on, and every fer years some form of animal life passes out of existence. Cur naturalists today are morkine very hard to perpetuate the lives of certain kinds of birds and animals that are almost extinct.

## Importance of insects.

Insects, however, live on, and today they are man's greatest competitor in his straghle for existence. Insects destroy our crops, they kill our animals, thoy crumple our buildings, and thoy actually feed on man himself. In addition, they spread disease germs that threaten our plants and animals. Some of the diseases carried only by insects have killed more people than have deen killed. in all wors. It would be uniair to give the impression that all insects are pests, because nost of them are of little or no importance and many are actually beneficial. Nany of the ground beetles, lady beetles, wasps, and flies are beneficial because they feed on insect pests. The honeybee makes honey and beestrax, the silkrorm makes silk, and many insects poliinate plants. Insects also provide food for birds and fishes.

This manual is prepared so that youth may have a better understanding of tho lives and habits of many of the insects and rhy they have been able to exist for so many centuries. It must be remembercd that every creeping thing is just as much entitled to a living as we are. Te must, however, be able to protect ourselves against their taking too much of the material we claim. The more of us there are who know our friends and foes in the insect world, the better we shall be equipped to stand our ground against the ravages of our greatest rivals, the insect pests.

# PAPT I - ABDUT THE INSECT <br> (Introduction to first-year work) 

What is this creature we call an insect, and how does it differ from other forms of animal life? Insects are animals that in the adult stage have an external skeleton and three definite body regions: Head, thorax, and abdomen. They have three pairs of legs and only one pair of antennae (feelers). They usually have compound eyes and one or two pairs of wings.


Insects are adapted to a ride range of conditions. Some live in the air and soil, some in plants or animals or their products, and some live in the water. Those that live out of the water oreathe through small openings along the sides of their bodies, and some of those that live in the water are equipped with gills which enable them to set their air from the water.

There are more kinds of insects than of all other forms of animal life put together. In fact, an entomologist found more than 1,000 different kinds in his small back yard in a suburb of Nem Iork City. Then we consider that there are about 700 , 000 different kinds of insects known to exist, the need for some form of classification becones apparent. The entomologists separate them into orders, families, genera, and soccies. (Each of these classifications further divides the one precedins.) In this manual we can do no more than to help acquaint the reader with the more common orders.

A scientific name, in aỏdition to neloing to classify an insect or show its relationshin to other insects, aids in desisnating more clearly the particular insect referred to. For instance, there are several insects which have the same common name. The potato beetle is an example - a name which may refer to the Colorado potato beetle, the black blister beetle (oldfashioned potato bus), or the ting flea bectle; but if we say Leptinotarsa decimlineata it dnosn't matter whethow we are in the United States, England,
or China, the entomologist lnows mich bertl: me are weferring to. Let us analyze Leptinotarsa decimlineata and see what the mords mean:

Ieptinotarsa: From leptos, mearinz small, and tarsa, meaning "part of insect leg."
decimlineata: Fron deca, meaning ten, and linea, meaning line.
Thus we have Eentinotarsa decimlineata, an insect with small tarsa and 10 lines on its head.

It should ie noted that the technical name of an insect often refers to some part of the insect, or to the plant or animal upon which the insect feeds.

Insects may have different common names. Take the corn earworm, for instance. In places where tomatoes are grom extensively, this worm is called the tomato fruit rorm; in the cotton sections it is called the cotton bollworm, and penple growing corn refer to it as the corn earworm. But if we say Heliothis obsoleta, the entomologist amphere will know the insect reforrod to.

No doubt many boys and sirls will mant to refer to the scientific names of some insccts. For this reason, on pages 87 through 74 are the common name, and the order, family, eenus, and species names of several of our common insects. It must be remembered that in referring to the scientific name, only the genus and species names are eiven.

> Sones on Insect Control
> (Tune: Tait for the Tagon)

1. Though some insects are harmless, some otherscause distress.

They bring us much annovance, and make the crons grow less. They eat the corr and beans and souds and make the farmer cuss. The moths bite holes in Sunday clothes, and fleas bite holes in us.

Chorus:

> We:ll put up a scran, bovs! Te'll put un a scran, boys! We will not Ei-ive u-up our crops without a fight.
2. Against the sarden beetles me'li use calci'm arsenate, And plant lice through our nicntine will meet their orover fate. Te'll bait cutmorms and honpers too, an spray our fruit trees well, And make clear-up and rntations apainst field-cron pests tell.

Chorus:

```
        We'll put up a scrap - . - - etc.
```

| Meetings | Acquaintance with insects and collections | Page |
| :---: | :---: | :---: |
| First <br> February | Orsanization. |  |
| Second March | Outline work. |  |
| Third Anril | Make collecting net. |  |
| $\begin{aligned} & \text { Fourth } \\ & \text { May } \end{aligned}$ | Make killing jars. |  |
| Fifth June | Make collection box. |  |
| Sixth Juiy | Pin insect, spread butterfly. |  |
| Seventh Alvenst | Collecting trip. |  |
| Eighth Seotember | Identify insects. |  |
| Ninth October | Exhibit collections. |  |
| Tenth Movember | Individual reports. |  |
| Eleventh December | Iiterature reports. |  |
| Tvelfth <br> January | Discussion on life cycle of insects. |  |

## COLIECTION AND IDENTIFICATION

It is hoped that club members will make an insect collection, and that after a fev years each member will have representative specimens of the more important orders of insects and note sheets giving a comolete description of each. Besinners should endeavor to have by the end of the first year insects representative of the following six orders:


CRTHOPTERA.-Orthos (straight); pteron (wing). Four wings when present; front wings leathery, straight; hind wings fold fanlike under them. Chewing mouth parts, gradual life change (metamorphosis). Antennae tusually lons, less usually long. Grasshoppers, crickets, katydids, cockroaches, walkinz sticks.

HEMIPTERA.-Hemi (half); nteron (wing). Four wings when present; front wings leathery at base forming an $X$ on bacr when wings are folded. Fiercing and suckins mouth parts folded under body. Odor sometimes sickening. Stinkbugs, bedbugs, chinch bugs, squash bugs, assassin bugs, leaf bugs, plant bugs.

COLEOPTRA.-Koleos (a sheath); pteron (wing). Eront wings all leathery, fitted over body like a case, meet in straight line along center of back; hind vings clear, jointed in middle, folded under front wings when at rest. Wouth parts formed for chewing. Life changes (metamorohosis) complete. Potato beetle, lady beetles, leaf beetle, carpet beetles.

IED IDOPTERA,-Lepido (scale); pteron (wing). Four similar wings when present; membranous, but covered with overlapoing scales. Mouth parts for sucking. Complete life change (metamorphosis). Butterflies, moths, skippers.

DIPCEPA.-Dis (two); pteron (wing). Two clear wings, knobs in place of hind wincs. Three distinct body regions. Mouth parts tubular for sucking, piercing, or lapning. Complete life change (metamorohosis). Flies, mosquitoes, हnats.

EYMENOPTCRA.-Hymen (membrane); pteron (wing). Four clear wings when present, few veins; hind wings smaller, often hooked to front wings. Mouth parts, chewing. Abdomen often with slender waist, some females have stincers. Complete life stages. Bees. wasps, ants, sawfilies.

The following outline breaks down the activity chart. It lists some of the equipment necessary and suggests a few steps in procedure for carrying out the work each meeting or each month. When entire clubs are working on insects, the work for each meetins can be illustrated by team demonstrations.

The introduction and sumary for each demonstration will be about the same. In the introduction the demonstrators should tell first, what is being demonstrated, and second, what it will be used for. In the summary they should summarize the main points in the demonstration to be remembered, and ask for questions.

Because the equipment and procedure will vary with each meeting, the following outline will set up the equipment necessary and a few points on procedure for each meeting.

## OUTLINE OF WORK

President of club, club agent or entomologist outlines the work for the year and has club members make survey of insect situation before next meeting. Read through work for year.

## Collecting Net

Equipment:

wire

wood Handle


Cloth Dattern
l. Small wood handle about $z$ feet long (broom handle).
2. Five feet of heavy stiff wire (barrel hoops or telephone wire).
3. Piece cloth 3 by 5 feet (mosquito netting or better-grade material).
4. Pattern from which to cut cloth.
5. Saw, hammer, brace, small bit, narrow wood chisel.
6. Cord for wrapoing vire onto handle.

Procedure:

1. Bend wire into shape.
2. Bore hole and cut grooves into broom handle.
3. Cut cloth and sew it together (mention grades of cloth).
4. Slin bag on wire.
5. Attach wire to handle.
6. Reference: U. S. Denartment of Agriculture. Farmers'
Bulletin l6nl, Collection and Preservation of Insects.

Equipment:

1. l-oint frat jar (tight lid).

2. Piece of cardboard (double-faced, corrugated preferred).
3. Small bottle of gasoline or calcium cyanide.
4. POISON label for Calcium cyanide.

Procedure:
Gut cardboard to fit tightly inside jar.

## For gasoline killing jar--

1. Place several small scraps of cardboard in bottom of jar.
2. Saturate scrans with gasoline.
Z. Cover with cardboard disk.
3. Place lid on tight.

For calcium-cyanide killing jar--
(Dangerous:hande with caution)

1. Place calcium cyanide (G grade) about half an inch deep ir bottom of jar.
2. Cover with cardboard.
3. Place lid on tight.
4. Place POISOn: label on jar.

## Nave Collection Box

Equipment:


1. Cigar box, 2 by 6 by 8 inches preferred.
2. Piece of double -faced, corrugated cardboard or soft fiber board.
3. Glue.
4. Moth ball.
5. Common pins.
6. Box or folder of matches.

Procedure:


1. Gut cardboard to fit bottom of box.
2. Smear glue in bottom of box and insert cardboard.
3. Box may ie lined with white paper.
4. Heat head of pin from lighted match.
5. Insert hot head of pin in moth ball and cool.
6. Stick moth ball, on pin, in corner of box.

Equipment:

1. Pins. No. 3 insect pins preferred. Common pins may be used. 2. A few freshly killed insects representing each of the five ma,jor groups, namely: beetle, stinkbus, grasshopper, bee or fly, butterfly.
2. Spreading board.

Proceaure:


Bug


Eeet!e


Bee


Erassinopper

1. Pin insects, Farmers' Bulletin 1601, pases 6 and 7, according to figures 5, 6, 7, 8.
2. Spread butterfly, Farmers' Bulletin l601, pages 6 and 7, according to figure 11.
3. Naking of spreading board may be demonstrated.

Collecting Trip
Equipment:

1. Killin jar or bottle.
2. Collecting net.
3. Extra bottle or box for young or soft-bodied forms.

Procedure:


1. Collect economic insects from gardens, orchards, or field crops.
2. Observe plant on which insect is feeding.
3. Kill adult forms only, in killing jars.
4. Keep lid on killing jar tight except when inserting or removing insects.
5. Immature insects may be pickled in alcohol or formaldehyde.
Identify Insects

Equipment:

1. State or Government farmers' bulletins on insects.
2. Textbook on insects.
3. Small labels from stiff paper $\frac{1}{2}$ by 1 inch.

## Procedure:

1. Compare insects with pictures and descriptions in bulletins and books. 2. Prepare labels (to be placed on pin with insect). 3. On one or more labels have:

a. Name of insect.
b. Place collection.
c. Date collection.
d. Name of collector.
"Exhibits
Equipment:
2. Insect collections and any notes on insects.
3. Insects should be well labeled.
4. Insects should be neatly arranged in rows, heads toward lid of box.

Procedure:

1. Place all insects from a given club in neat order.


Individual Reports
Equioment:

1. Collection and any notes that nember may have.

Procedure:

1. Each insect club member tells name of each insect in collection.
2. Tells what he or she knows about:each insect in collection.
3. Names book or bulletin where information was obtained.

## Literature Reoort

Equipment:

1. Book, farm paper, newspaper, or bulletin carryins some unusual or interestins story about an insect.

Procedure:

1. Each tells in his own words the interestin story about insects, and his source of information.

## Eife Cycle of Insects

Equipment:
l. Book, bulletin, or paper giving life history of some one insect,

Procedure:

1. Each member reaorts on life of same insect.
a. Its name.
b. The plant or animal it feeds on.
c. How it feeds (chews or sucks).
d. Kind of life cycle, complete or imcomplete.
e. Where insect spends the winter.

## The Prayer of Agassiz

On the isle of Penikese, Finged about by sapohire seas, Fanned by breezes salt and coot. Stood the Master with his school.

Said the Master to the youth; "We have come in search of truth, Trying with uncertain key Door by door of mystery;
***
As with fingers of the blind, We are sroning here to find That the hieroglyphics mean Of the Unseen in the seen, What the Thought which underlias Nature's masking and disguise, What it is that hides boneath Blight and bloom and birth and death."

-     - Whittier.


# PART II- PEARING INSECTS <br> (Introduction to Second-Year Work) 

## HON INSECTS GFOT

Once the insect becomes an adult it never grows any larger. A gnat will always be a gnat; it is not a baby fly. Insects make all their growth while in the immature stages. There are, however, two types of growth. Some insects, like the grasshopper, develon gradually, and each time they shed their skin, the newly emerged young more closely resemble the adult. We call this incomolete metamorphosis.


In the case of the butterflies and beetles, the young or larva does not resemble the adult, and when the larva has completed its growth, it goes into a pupa stage where the complete change takes place. We call this complete metamorohosis.


ACIIVITY CHART - SECOND YEAR

| Meetings | Rearing insects, surveys, and collections | Page |
| :--- | :--- | :--- |
| First <br> February | Organization. |  |
| Second <br> March | Outline work. |  |
| Third <br> April | Make rearing cages. |  |
| Fourth <br> May | Select insects to be reared. |  |
| Fifth <br> June | Make preservative for immature insects. |  |
| Sixth <br> July | Make Riker mounts. |  |
| Seventh <br> Ausust | Exhibit reared insects. |  |
| Eighth <br> Seotember | Field trip. |  |
| Ninth <br> October | Hibernation cages. |  |
| Tenth <br> November | Locate insects in winter quarters. |  |
| Eleverth <br> December | Make permanent exhibits for school or <br> county agent's office. |  |
| Trelfth <br> January | Make permanent exhibits for school or <br> county agent's office. |  |

## COLIECTION AID IDEATIFICATION

In addition to rearing insects, members of this group are to continue with their collections and should expand them to include six more orders of insects. Some of these insects are too small to be pinned, but they can be preserved in alcohol or formaldehyde.


ODONATA.-Odons (a tooth). Four lons, rather narrow Tings, finely netted, may be clear or banded, equal size. Larse eyes, head loosely joined to long narrow body, Antenna short. Wings notched along front side appear to be broken. Chering mouthoarts. Larva live in water. Dragonflies, damsel flies.

ISUROPTHPA.-Neuron (nerve); ptera (ving). Four large leaflike wings, nearly equal size, usually finely netter; wings not notched, held rooflike over back when at rest. Antenna long. Chewing mouth parts. Complete life change (metamorphosis). Larva of some live in water. Dobson flies, aphid lions, and lions (doodlebugs).

ERHEMERIDA,--Epheron (a may-fly). Four netted, veined wings folded vertically over back when at rest; hind pair much smaller. Mouth parts chewins. Antenna short. Three long tails on tip of abdomen. Gradual metamorphosis. Body rather frail, molt once in adult sta弓e; very short lived. Nymphs live in water. Nay flies, lake flies, or shad flies.

TRICHOPTERA.-Trichos (the hair); pteron (wing). Four similar membranous wings; hind pair shorter and broader. llouth parts modified for chewing. Antenna lons, legs long. Complete metamorphosis. Larva live in water. Caddis flies.

THYSANURA.-Thysanos (a tassel); oura (the tail). Small grey wingless irsects. Long antenna and long bristlelike tails. Chewing mouth parts. No metamorphosis. Body somewhat carrot shaved. Found in dark places and feed on starchy substances such as book bindino. Silverfish, bristletails, or fish moths.

President of club, club agent, or entomolo,ist outlines the work for the year and has club members make survey of insect situation before next meeting. Read through work for year.

Equipment:

1. Bulletins or books showing rearing caçes.

Procedure:

1. Have president of club or entomologist outline the work for year.
2. Mention some insects that can be reared.

## Make Rearing Cages

Equipment:

1. Glass container with both bottom and top open, such as

lamp chimney, fruit can with bottom out.
2. Piece cheesecloth.
3. Flowerpot or can in which to grow plant.
4. Screen wire.
5. Sticks of mood (small to support screen cage).
6. Carpet tacks.

Procedure:

1. Glass cage.
a. Place globe over plant and firm it in soil.
b. Fasten cheesecloth over ton.

2. Screen cage.
a. Roll screen to make cylinder of desired size.
b. Tack stick to fold in screen (leaving stick 2 or 3 inches longer than screen).
c. Fasten cloth or screen over top.
d. Insert point of stick in soil, firm soil around base of wire.

Select Insect to be Reared
Equipment:

1. Each member should have list of common insects about the farm or home.

Procedure:

1. From life cycle presented in books or bulletins decide which insects can be reared during summer.
2. As far as possible have each member select a different insect to rear.
3. Outline procedure for rearing insects.
```
Nake Preservative for Imrature Insects
```

Equipment:


1. Small bottles with stoppers, sire of man's thumb.
(l dram short Foneo) can be obtained at drug store.
2. I pint formaldehyde.

## Procedure:

1. Dilate formaldehyde to 5 -percent solution.
2. Distribute in vials.
3. Keep reserve supply with club stock.
4. Preserve immature life stages of insects. Select these insects from those to be reared.

Make River Mounts
Equipment:


1. Piece silas about 6 by 8 inches (windowone glass).
?. Shallow box (l inch deep).
2. Cotton.
3. Insect and its damage to be mounted.
4. Paper for labels.
5. Tools: Hammer, saw, pincers, chisel, etc.

## Procedure:



1. Fit lid for box, using glass for top.
2. Place cotton in box.
3. Arrange insect and damaged leaves, cloth, etc.
4. Fasten lid on box.

## Exhibit Reared Insect

Equipment (for each club member):

1. Riker mount.
2. Preserved specimens immature insects.
3. Potted plant showing insect and damars.

## Procedure:

1. Arrange exhibit showing each club member's mounts, preserved insects, and potted plant; also any notes available.

$18-37$

Equipment:

1. Collecting net.
2. Killing bottle.
3. Vials for immature forms.
4. Container for insect galls and other things of interest.

Procedure:

1. Locate as many life stares of each insect as possible.
2. Collect as many life stages of each insect as possible.

Hibernation Cages
(Each Club Member, or One for Thole Club)
Equipment:


1. Two pieces of screen about 24 inches square and 1 oiece 24 inches wide and 6 feet long (or enough to cover five sides of a 24-inch cube).
2. Wood strios to make frame for cage (eight 1 by 1 by 20 inch and four l by l by 22 inch strios).
3. Nails and carpet tacks.

Procedure:

I. Nail frame together.
2. Cover with screen.
3. Tack very tightly to prevent insects' escape.
4. If possible, fit door into one side.
5. Allow the four longer corner strips to extend below wire.
6. Sink longer less in soil.
7. Place leaves, sticks, etc., in cage.
8. Place several hundred beetles or bugs inside.
a. Examine occasionally to see that case has not been molested.
10. Examine and count buss that come out alive in spring.

Equioment:

1. Paper and pencil.

Procedure:

1. Examine weeds along fence rows and ditchbanks; record findings.
2. Look carefully under loose bark of dead and fallen trees, and record findings.
3. From books and bulletins find other places where insects spend the winter and look for them there.

Permanent Exhibit
(For Club, School, or County Agent)
Equipmert:

1. Collections.
2. Riker mounts.
3. Preserved immature forms.

Procedure:

1. Select from each member's collection the best prepared specimens. 2. In permanent exhibit have representatives of the more important insects in the community.
2. Arrarge insects in neat order in large exhibit tray or case.

Chasirg Insects
(Iune: I'm Forever Blowing Irihbles.)
Tho're forever chasing irsects,
Pasky insects everywhere,
They're small ard shy:
Hot they hate to die;
But re will get them hy and by.
Though they're almays hiding,
Me'll look everywhere,
Telre forover chasing insects.
Pesky insects everywhere.

- Courtesy of Cklanoma Extension

Service. (4-H Oluh Insect Kanuai

Cluo members should know something about the habits of the insects in their collections, and control of the pests. If a paragraph were written on each insect, this manual would be too large to be practical for the ourpose for which it is intended. The key apoeariney on pages 27 and 28 prove helpful in aiding members to obtain the information they need regarding each common insect listed.

On page 23 is a questionnaire, to be filled out, which contains questions indicated by 10 Roman numerals. A list of insects, arranged in alphabetical order appears on pages 24,25 , and 26 ; at the top of the page appear the Roman numerals corresoonding to the numbers of the questions in the questionnaire. Following each insect nane is a series of numbers arranged in columns under the Roman numerals. These numbers refer to like numbers on pages 22 through 27, which give the answers to the questions. For example, if an alfalfa cateroillar is the insect concerned, and we want to fill out the questiormaire, we turn to page 24, and find alfalia cateroillar, then look for Roman numeral I, which represents the question, "What are the food plants, animals, or their oroducts?" Opoosite alfalfa caterpillar, under number I, we find the figure 2. If we turn to page 27 , under Roman numeral I, we find that figure 2 refers to alfalfa and clover, which are the food of the cateroillar. By the same procedure all the questions for each insect may be answered. In some cases the mouthoarts, controls, or other factors may be different for the adults and larvae, in whicn case the top row of figures refers to the adult and the bottom row refers to the larvae. In the case of the codling moth, the reference indicates that control is directed to the larvae and all control practices and materials refer to the larvae.

Learn from the birds what food the thickets yield;
Learn from the beast the physic of the field;
The art of building from the bee receive;
Learn of the mole to plough, the worm to weave.

-     - Pode.


## Questionnaire

Thines to Know About Irsects

Name of insect___(commor)
Name of collector
(Genus) (species)
Date collected: Place collected:
$\overline{\text { (Iay) (month) Town State }}$
I. That are the food plants, arimals, or their products?
II. That part of the food plant or animal is infested?
III. In what stage does insect spend the winter?
IV. Where does the insect sperd the winter?
V. What kind of mouth parts has this insect?
VI. Of what economic importance is this irsect?
VII. That is injurious stage of insect?
VIII. Control is directed toward what stage of this insect?
IX. What control measures are recommended?
X. That insecticide would be used?

| Insect | Stage | I | II | III | IV | V | VI | VII | VIII | IX | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alfalfa caterpillar | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 2 | 32 | 43,50 | 60 | $\begin{aligned} & 66 \\ & 62 \end{aligned}$ | ¢ 7 | 73 | 73 | 30.86 | 112 |
| Ancoumois grain moth | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 21 | 34,35 | 50 | ćo | $\begin{aligned} & 66 \\ & 5 ? \end{aligned}$ | 67. | 73 | 76 | 83, 0 | 105 |
| Apple aphid |  | 3 | $\begin{aligned} & 31 \\ & 32,34 \end{aligned}$ | 46 | 53 | 04 | 67 | 73,75 | 76 | 0.7 | 117,113,115 |
| Armyworm | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 7,21 | 32 | 47,50 | 57,60 | $\begin{aligned} & 66 \\ & 62 \end{aligned}$ | 67 | 73 | 73 | 77 | 110,123 |
| Bagworm | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | $\begin{array}{r}7 \\ 0 \\ \hline\end{array}$ | 32 | 46 | E) | $\begin{aligned} & 66 \\ & 62 \end{aligned}$ | 67 | 73 | 73 | 85,80, 97 | ? 05,112 |
| Bean weevil |  | 4 | 34,35 | 50 | 00 | 52 | 67 | 73.75 | 76. | $\begin{aligned} & 88 \\ & c 0,98 \end{aligned}$ | 106 |
| Beábug |  | 14,1 | 40 | 50 | 54, 60 | $\bigcirc 4$ | 67 | 73,75 | $\begin{aligned} & 73 \\ & 75 \end{aligned}$ | $\begin{aligned} & 07 \\ & 88,0 \end{aligned}$ | 108,111 |
| Blister beetle | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | $\begin{aligned} & 18 \\ & 15 \end{aligned}$ | $\begin{aligned} & 32,33 \\ & 44 \end{aligned}$ | 47 | 57 | $\begin{aligned} & 62 \\ & 62 \end{aligned}$ | $\begin{aligned} & 67 \\ & 68 \\ & \hline \end{aligned}$ | 75 | 75 | 86,97 | 101 |
| Boll weevil |  | 8 | $\begin{aligned} & 31,32 \\ & 33,34 \end{aligned}$ | 49 | 56 | 62 | 67 | 73,75 | $\begin{aligned} & 73 \\ & 75 \end{aligned}$ | $\begin{aligned} & 83,80 \\ & 86,06 \end{aligned}$ | 105 |
| Bollvorm | $\left\|\begin{array}{l} \text { adult } \\ \text { larva } \end{array}\right\|$ | 18 | $\begin{aligned} & 33 \\ & 32,34 \end{aligned}$ | 48 | 57 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | 73 | 30,86 | 105 |
| Brown chicken louse |  | 20 | 40 | 50 | 60 | Óc | $0 \cdot 1$ | 73, 75 | 76 | 84,86 | 125 |
| Cabbage aphid |  | 6 | 32 | 46,50 | 60 | 64 | 67 | 73,75 | 76 | 86,97 | 115 |
| Cabbage looper | $\begin{array}{\|l\|} \hline \text { adult } \\ \text { larva } \\ \hline \end{array}$ | -, 1\% | 32 | 48 | 55 | $\begin{aligned} & 66 \\ & 62 \end{aligned}$ | 07. | 73 | 73 | 86,91 | 100 |
| Cankervorm | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 3,23 | 32 | 48 | 57 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | $\begin{aligned} & 75 \\ & 73 \end{aligned}$ | $\begin{aligned} & 78 \\ & 36,21 \end{aligned}$ | $\begin{aligned} & 126 \\ & 112 \end{aligned}$ |
| $\begin{aligned} & \text { Carpet beetles } \\ & \text { (Buffalo bug, etc.) } \end{aligned}$ |  | $11,15$ $25$ | 30,42 | 50 | 60 | 62 | 67 | 73,75 | 76 | $\begin{aligned} & 88,90 \\ & 06,98 \end{aligned}$ | 106,108 |
| Cat and dog flea |  | 1 | 40 | 50 | 60 | 66 | 67 | 75 | 76 | $\begin{aligned} & 84,86 \\ & 97 \end{aligned}$ | 107,127 |
| Chinch bug | $\begin{aligned} & \text { adult } \\ & \text { nymoh } \end{aligned}$ | $\begin{array}{r} 7,21 \\ 7,21 \end{array}$ | $\begin{array}{r} 23,32 \\ 28,32 \\ \hline \end{array}$ | 49 | 56 | $\begin{aligned} & 64 \\ & 64 \end{aligned}$ | $\begin{aligned} & 67 \\ & 67 \end{aligned}$ | $\begin{aligned} & 73 \\ & 75 \end{aligned}$ | $\begin{aligned} & 75 \\ & 73 \end{aligned}$ | $\begin{aligned} & 83,100 \\ & 78 \end{aligned}$ | 127 |
| Cicaça | adult nymph | 23 | 26 | 117 | 5],50 | 64 64 | 67 | 75 | 75 | 82 |  |

List of Common Insects (Continued)

| Insect | Stage | I | II | II I | IV | V | VI | VII | V I I I | IX | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cattle grub | . | Cattle | 40 | $1+7$ | $6 ?$ | 65 | 67 | 73 | 73 | $\begin{aligned} & 80,89 \\ & 01 \end{aligned}$ | 107 |
| Clothes moth 1 I | $\begin{aligned} & \text { alult } \\ & \text { larva } \end{aligned}$ | 11,25 | $1+2$ | 50 | 60 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | $\begin{aligned} & 75 \\ & 73 \end{aligned}$ | $\begin{aligned} & 88,90 \\ & 96,98 \end{aligned}$ | $\begin{aligned} & 106,108 \\ & 116,118 \end{aligned}$ |
| Cockroach |  | 12 | 35 | 50 | 60 | 62 | 67 | 73.75 | 73.75 | $\begin{aligned} & 77,86 \\ & 96,27 \end{aligned}$ | 109,12! |
| Codinns motil? | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 3 | 34 | 47 | 56 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | 73 | $\begin{aligned} & 78,80 \\ & 83,97 \end{aligned}$ | 112 |
| Coloraùo potato beetle |  | 19 | 32 | 49 | 57 | 62 | 67 | 73,75 | 73.75 | 86,97 | 112,119 |
| Corn earworm | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 18 | 32, 34 | 48 | 57 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | 73 | 92,86 | 105 |
| Cotton flea honper |  | 8,18 | $\begin{aligned} & 28,29 \\ & 30,31 \end{aligned}$ | 46 | 52 | 64 | 67 | 73,75 | 76 | 80,86 | 119,129 |
| Cotton Ieaf worm | $\begin{aligned} & \text { adult } \\ & \text { lasva } \end{aligned}$ | $3,10,16$ | $\begin{aligned} & 33,34 \\ & 32 \end{aligned}$ |  |  | $\begin{aligned} & 64 \\ & 62 \end{aligned}$ | 67 | 73 | 73 | 86,97 | 105,112,119 |
| Criolret (field) |  | 75,18 | $\begin{aligned} & 43 \\ & 32.35 \end{aligned}$ | 46,47 | 57.56 | $5 ?$ | 71 | 72,75 | 73.75 | 77 | $105,119,123$ |
| Cutworm | $\begin{aligned} & \text { anud } \\ & \text { larres } \end{aligned}$ | 18 | $25,28$ | 47 | 57 | $\begin{aligned} & t \\ & 0 ? \end{aligned}$ | 67 | 73 | 73 | 71 | 119,123 |
| Draegonfly | $\begin{aligned} & \text { odidit } \\ & \text { nymph } \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ |  | 47 | 59 | $\begin{aligned} & 62 \\ & 62 \end{aligned}$ | $\begin{aligned} & 58 \\ & 63 \end{aligned}$ |  |  |  |  |
| J |  | 18 | 25,36 | 47 | 57 | 62 | 71 |  |  |  |  |
| Gramary weevil |  | 7,21 | 34,35 | 50 | 6 C | 62 | 67 | 73,75 | 76 | $\begin{aligned} & 88,90 \\ & 96 \end{aligned}$ | 106,108 |
| Grassinopper |  | 18 | $\begin{aligned} & 31,32 \\ & 33,34 \end{aligned}$ | 46 | 57 | 62 | 57 | 73.75 | 76 | 77,80 | 119.123 |
| Harlenuin bugr |  | 6 | 32 | 40 | 60 | 64 | 57 | 73.75 | 73 | $\begin{aligned} & 97 \\ & 83.89 \end{aligned}$ | 109 |
| Hession fly |  | 21 | 28 | 47 | 60 | 65 | 67 | 73 | 76 | 80, 32 |  |
| Honey bee |  | 10 | 33 | 50 | Hive |  | 68 |  |  |  |  |
| Horse botfly |  | 13 | 40 | 47 | 50 | 65 | 67 | 73 | 73,72 | 21 | 106 |
| 1.- Mumbers in IX und 2.-Mumbers in IX and | $\begin{aligned} & \mathrm{d} \text { app } \\ & \mathrm{d} \mathrm{X} \text { app } \end{aligned}$ | ly to both <br> y to larva | $\begin{gathered} \text { adult } \\ \text { only. } \end{gathered}$ | larv |  |  |  |  |  |  |  |

Iist of Common Insects (Continued)

| Insect | Stage | I | II | III | IV | V | V I | VII | VIII | IX | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Horsefly |  | 1 | 39 | 47 | 51 | 65 | 67 | 75 |  |  |  |
| House ant |  | 12,14 |  | 50 | 54.57 | 62 | 67 | 75 | 76 | $77$ $88,96$ | 106,123 |
| Hiousefly | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 12,14 | 36 | 50 | 54 | 65,66 | 07 | 75 | $\begin{array}{r} 75 \\ 73 \\ \hline \end{array}$ |  | 121,126 |
| Imported cabbageworm | $\begin{aligned} & \text { adult } \\ & \text { larva } \\ & \hline \end{aligned}$ | 5 | 32 | 48,50 | 55 | $\begin{aligned} & 66 \\ & 62 \\ & \hline \end{aligned}$ | 67 | 73 | 73 | 85,07 | $10 c, 121$ |
| Japanese beetle | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | $\begin{array}{r} 18 \\ 21 \\ \hline \end{array}$ | $\begin{aligned} & 32,34 \\ & 20 \end{aligned}$ | 47 | 57 | $\begin{aligned} & 62 \\ & 62 \end{aligned}$ | $\begin{aligned} & 67 \\ & 67 \\ & \hline \end{aligned}$ | $\begin{array}{r} 73 \\ 75 \\ \hline \end{array}$ | $\begin{aligned} & 75 \\ & 73 \end{aligned}$ | $\begin{aligned} & 97 \\ & 80 \\ & \hline \end{aligned}$ | 128 |
| Ladybeetle |  | 15 | 44, 45 | 40 | 56 | 62 | 68 |  |  |  |  |
| Mantis |  | 15 | 44,45 | 45 | 53 | 62 | 68 |  |  |  |  |
| Melon aphid |  | $\begin{array}{r} 8,9 \\ 18 \\ \hline \end{array}$ | $\begin{aligned} & 31 \\ & 32,33 \end{aligned}$ | 45,50 | 52 | 64 | C 7 | 73,75 | 73,75 | 80, 07 | 115 |
| Nexican bean beetle |  | 4 | $\begin{aligned} & 32,33 \\ & 34 \\ & \hline \end{aligned}$ | 49 | 56 | 62 | 67 | 13,75 | 73.75 | 80., 97 | 107.100 |
| animal |  | 1 | 40 | 52 | 5, 5,54 | c 4 | 67 | 73,75 | 73,75 | 84, 91, 27 | 128 |
| $\text { Wites } \begin{aligned} & \text { flower } \\ & \text { vegetable) } \end{aligned}$ |  | 3,18 | $\begin{aligned} & 27,31 \\ & 36,34 \end{aligned}$ | 45.50 | 60 | 64 | $\therefore 7$ | 73,75 | 76 | 37,07 | 113, 117,128 |
| trees shrubs |  | 23 | $\begin{aligned} & 32 \\ & 33,34 \end{aligned}$ | 45 | 53 | 64 | 61 | 73.75 | 76 | 97 | 113,117 |
| Mosquito |  | 1 | 40 | 50 | 51 | 4 | 67 | 73,75 | $\begin{array}{r} 73 \\ -75 \\ \hline \end{array}$ | $\begin{aligned} & 85 \\ & 67 \end{aligned}$ | 121 |
| Onion tinrips |  | 1.3 | $\begin{aligned} & 32 \\ & 33,34 \end{aligned}$ | 49 | 55 | 65 | 57 | 73,75 | 75 | 07 | 100,115 |
| Pea apinid |  | 2.17 | $\begin{aligned} & 31 \\ & 32,34 \end{aligned}$ | 4, 40, | 60 | 64, 5 | 67 | 73,75 | 73,75 | 80.97 | 109 |
| Peach tree borer | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 16 | 28 | 47 | Co | $65$ $62$ | 67 | 73 | 73 | $\varepsilon 8$ | 118 |
| Stalk borer | $\begin{aligned} & \text { adult } \\ & \text { larva } \end{aligned}$ | 18 | 28 | 47 | 55,60 | $\begin{aligned} & 60 \\ & 62 \end{aligned}$ | 57 | 73 | 73 | 83,23 |  |
| Wireworms (click beetles) |  | 18 | 26, 27 | 47 | 57,60 | 6 2? | 67 | 73 | 73 |  |  |

Answers to Questionnaire
I. Food, olants, animals, or their products:

1. Animals, many kinds.
2. Alfalfa or clovers.
3. Apples and pears.
4. Beans.
5. Books and papers.
. Cabbage and related crops.
6. Corn.
7. Cotton.
-. Cucumbers, melons, and squash.
8. Florers.
9. Furs.
10. Food products.
11. Horses and mules.
12. Arnoyance.
13. Other insects.
14. Peaches.
15. Peas.
16. Plants, many kinds.
17. Potatoes (Irish).
18. Poultry and birds.
19. Small grains and grasses.
20. Tomato and tobacco.
21. Trees in general.
22. Tood and wood products.
23. Woolens.
II. Part of host infested:
24. Roots.
25. Bulbs or tubers.
26. Main stem or trunk.
27. Bark.
28. Branches.
29. Euds or "squares."
30. Leaves.
31. Blossoms.
32. Fruits or grains.
33. Stored plant products.
34. Decaying vegetation.
35. Paste, glue, starch.
36. Lumber.
37. Hide or leather.
38. Flesh or blood.
39. In intestines.
40. Dried hair and feathers.
41. Decaying animal matter.
42. Eggs (insect).
43. Young and adults (insect).
III. Stage in which insect spends the winter:
44. Esァ.
45. Immature stages.
46. Fupa.
47. Adult.
48. All stages (in South or in heated buildings).
IV. Where insect spends the winter:
49. Animals.
50. Alternate host.
51. Branches of trees.
52. Buildings.
53. Crop refuse.
54. Protected places in general.
55. Soil.
56. Stored oroducts.
57. Tater.
58. There it fed.
59. Foody portion of plants.
V. ifouth parts:
60. Chewins.
61. Lapping.
62. Piercing and sucking.
63. Raspins.
64. Sucking.
VI. Economic importance.
65. Pest.
66. Beneficial.
67. Larva beneficial.
68. Adult beneficial.
69. Questionable importance.
VII. Injurious stage:
(Same numbers as VIII.)
VIII. Control directed towards:
70. Igg.
71. Immature stage.
72. Pupa.
73. Adult.
74. All stages.
IX. Control measures:
75. Baits.
76. Banding or barriers.
77. Burning.
78. Culture.
79. Date of harvesting.
80. Date of planting.
81. Destroy hibernating quarters.
82. Dipping.
83. Drainage.
84. Dusting.
85. Hot-mater treatment.
86. Frumigation.
87. Hand picking or squeezing.
88. Heating.
89. Medication.
90. None satisfactory.
91. Parasite.

9t. Pruning.
95. Rotation.
95. Sanitation or crop refuse destruction.
? Spraying.
98. Store in tight container or bin.
09. Trapoing.
100. Varieties (resistant).
X. Insecticide to use:
ln. Barium fluosilicate.
102. Benzol.
102. Beta-naphthol.
104. Bordeaux mixture.
105. Calcium arsenate.
106. Carbon disulphide.

1n7. Cryolite.
108. Cyanide.
109. Rotenone (derris or cube).
110. Hellebore.

1ll. Kerosene.
112. Lead arsenate.
113. Lime sulphur.
115. Nicotine.
116. Naphthalene.
117. Oil emulsion.
118. Paradichlorobenzene.
119. Paris green.
120. Pine tar oil.
121. Pyrethrum.
122. Soaos.
123. Sodium arsenite.
124. Sodium fluoride.
125. Sodium fluosilicate.
126. Tanslefoot.
127. Creosote.
128. Rather complicated. See a bulletin on the subject.

In the first place, it has been estimated by a conservative naturalist of world-wide reputation that more than half of the animal matter of the land surfaces of the globe is locked up in the bodies of insects. That is to say, if all the elephants and lions and buffaloes and horses and cattle and hoss and birds and snakes and lizards of the earth were put irto one pan of a gigantic balance, and all its insects irto the other, the insect collection would be found to outweigh all these other land animals taken together.

-     - Stephen A. Forbes.


# PART III-CDNTROL OF INSECTS 

(Introduction to Third-Year \#ork)

Many years ago very Iittle was done about insect damase, and it was only occasionally that an outbreak occurred which caused serious damage. Since then many chanmes have taken place, and we have an entirely different problem today.

Throusin commerce man has unset Nature's balance and many insects have been accidentally introduced, and their natural enemies have been left behind. Nany plants have been introduced which nrovide better food for native insects than native plants provide, thus stimulating the ranid reproduction of those favored insects. Certain plant rreedinm has made plants more susceptible to insect attack. Then, also, one phase of our agricultural system - the planting of large acreares of one kind of cron in a concentrated area - has made it possible for damaging numbers of insects to build up in destructive numbers.

In recent years quarantines have been set uo which regulate the shioments of plants and animals. Plant breeders are rorking toward greater resistance in plants to insects and diseases. Much parasite work is being done to help nature reestablish her balance. All these factors are helping, but more imediate or drastic control measures are necessary, and chemicals poisonovs to insects must be used.

In the earlier days, a blanket recommendation mas made - stomach poisons for chewing insects and contact sprays for sucking insects.


An effort is being made to use less and less of the metallic poisors. The organic or plant product sprays have been foun to te much more specific, and the old rule doesn't always apply. A person must know much more about insects and insecticides (spray materials) than was formerly necessary if he hopes to control insects adequately.

This control phase of the project is better to acquaint the club member with the insect habits and effect of different control measures.

```
ACTIVITY CHART - THIRD YEAR.
```

| Meetings | Control of insects and collections | Page |
| :--- | :--- | :--- |
| First <br> Fehruarv | Organization. |  |
| Second <br> Iarch | Outline work. |  |
| Third <br> Anril | Select control project. |  |
| Fourth <br> Mav | Mix insecticide. |  |
| Fifth <br> June | Apply insecticide. |  |
| Sixth <br> Julv | Visit control projects. |  |
| Seventh <br> Axeust | Check results and exhibits. |  |
| Eishth <br> Sentember | Fall clean-up and exhibits. |  |
| Ninth <br> October | Fall plowing. |  |
| Tenth <br> Iovember | Judeing contests. |  |
| Eleventh <br> December | Fill out record sheet forms. |  |
| Twelfth <br> Januarv | Insecticide exhibit for school or |  |

In addition to the study of insect control, this grow of club members should endeavor to collect and orepare notes on six other orders of insects. The six listed below contain many small insects and should be mounted on small cardboard points or preserved in alcohol or formaldehyde.


MEYSANOPTERA.-Thysanos (fringed): Dteron (ving). Nostly wingless when wings present; four, lons, narrow fringed with hairs, folded over back when at rest. Body much elorzated. Mouth parts rasoins. Gradual metamorohosis. Thrios.

ISOPMPA.-Isos (equal); oteron (ring). Most forms wingless; kings and queens have four wings at matiņ time; win亏s equal in size, long, narrow, and folded over back when at rest. Somewhat resemble ants, but are pale in color and no slender waist in abdomen. Termites (white ants).

SIPHONAPIERA.-Siphon (a tube); aptera (without wings). Small wingless body, laterally comoressed (flattened from side to side). Hind leŋs long stout, fitted for jumoing. Wouth parts piercing and sucking. Comolete metamorohosis. Fleas.

MAIIOPHAGA.-Mallos (TOOI); phasein (to eat). Small, Wingless, flattened insects. Large brood heads, rounded in front. Eyes degenerate. Mouth parts cheming. Metamorohosis gradual. Mostly parasitic on birds, some on mammals. Chewing lice or bird lice.

ANOPIURA.-Anoolas (unarmed); oura (tail). Small wingless, flattened parasites of mammals. Mouth parts piercing and sucking. Head narro: and pointed in front. Iyes ranting or degenerate. Metamorohosis simple. Blood-sucking lice.

CORRODEITIA.-Corrodens (gnawing). Winute insects, wirsless or with four membranous wings with fe: orominent veins; when wings oresent, are folded rooflike over body. Mouth parts chewing. Netamorphosis simple. Book lice, dust lice, bark. lice, deathratches.

President of club, club agent, or entomologist outlines the work for the jear and has club members make survey of insect situation before next meeting. Read through work for year.

> Select Control Project

Equipment:

1. List of crops or animals at home.
2. List of insects causing damage.

Procedure:

1. Select most troublesome insect pests in community.
2. Assign each club member a different insect to control.
3. Work out control measures to be followed by cach club member.

Mix Insecticides
Equioment:


1. Samples of all insecticides to be used by each club member.
2. Tecessary vessels for mixing.
3. Bulletins and books on insect control.

Procedure:

1. Each member or team to demonstrate mixins of each kind of insecticide to be used.
2. Tell story of need for thorough mixture cautions, etc.

> Apply Insecticides (In Field if Possible)

Equipment:

1. Small quantity of each kind of insecticide.
2. Dusters and sprayers.

Procedure:

1. Each club member demonstrates hom his insecticide is applied.
2. Each club member demonstrates where insecticide is applied and why.
(Under leaves, in buds, mopoing, scattering poison, tops of
closets, etc.)
3. Leave few plants unsprayed as check.
4. Outline method for filling out spray record sheet, page 36.

## Visit Control Project

Equipment:

1. Notebook and pencil.
2. Thorough knowledge of your control problem.

Procedure:

1. Visit several menbers insect control plots.
2. Host member tells how many sprays are applied.
3. Tell of number of bugs.
4. Discuss record forms to be filled out.

## Check Results

Equipment:

1. Paper and pencil.
2. Record forms.

Procedure:

1. Check leaves damaged on treated and check plot, or amount of lice on poultry, etc.
2. Count insects present.
3. Compare yields.

## Exhibit

Equipment:

1. Insects controlled..
2. Potted plants showing control.
, Riker mounts showing control.
3. Insecticides used.
4. Dusters or spravers used.
5. Notes on control.
6. Any pictures taken.

Procedure:

1. Set up exhibit at school or community fair.
2. Have member present to discuss exhibit.
(This exhibit may be omitted until the ensuing month.)

> Fall Clean-up
> (In Ficld)

Equipment:

1. Crop refuse harboring insects.
2. Plow or spade.

Procedure:

1. Bxamine crop refuse and weeds for hibernatine insects.
2. Plow or spade under infested croo.
3. Plow under or burn trash and crop refuse.
4. Seed to some cover crop.

Fall Plowing
Equipment:

1. Farmer plowing late in fall.

Procedure:

1. See how many bugs can be found which have been exposed to the birds and weather.

> Judging Contests

Judging contests may be used better to acquaint individuals with insects and insect injury to the host, as well as with control measures. Contests may be between individuals within a club or between members of different clubs. Each club member may fill out a form for 10 insects as indicated in the form below.

Equipment:

1. Twelve samples of injury caused by insects, each carrying a number.
2. Twelve specimens of economic insects, each having a number.
3. Twelve samples of insecticides, each carrying a number.
4. Series of placards, each carrying a number, and the name of a
particular control practice such as spraying, dusting, fumigation.
5. Forms to be filled out by contestants.

| Injury samole | Insect | Insecticide | Control practice |
| :--- | :---: | :---: | :---: |
| Potato | Colorado notato <br> boctle | Arsenate of lead | Dusting or <br> spraving |
|  |  |  |  |
|  |  |  |  |

Procedure:

1. Contestants work separately.
2. Identify insect which caused injury and write name (or number) in space.
3. Pick out insecticide used to control, and write its number in space.
4. Pick out control-practice placard and write its number in space.

## Fill out Record Forms

Equipment:

1. Record forms, page 35.
2. Notes taken durins season.

Procedure:
l. Copy very neatly onto record forms information called for.
2. Write narrative report of season's :ork according to outline pase ${ }^{27}$.
3. Fill out questionnaire vage 23, for each insect collected this year.

Insecticide Exhibit
Equipment:

1. Collection of as many kinds of insecticides as nossible.

Procedure:

1. Wke list of all insects each irsecticide is used to control.
2. There possible, make case to hoid insecticides and notes on their use.

The careful insect 'midst his works I view Now from the flowers exhaust the framrant dew, Tith golden treasures load his littlc thichs, And steer his distant journey trrough the skies.

-     - Gay.
(Sample)

Name $\qquad$

Insect-Control Experiment
Spray Record Sheet

Name of plant: $\qquad$ Cabbage
Name of insect to ce controlled: $\qquad$
Cabbage earn
Does this insect have chewing or sucking mouthparts?


What spray or dust material used? $\qquad$
 of levine

Strength of dust material: $\qquad$ 195 percent Fatirune
$\qquad$

Spray Calendar


Oparrative Aeport of tiri Sabbage thour
This commour whiter binticfly，ov the common sabfiaqer crobend，is undoubticlly the



 lmerge in the early opring they－ank whith， －motbert with kelgrth setio the teive po the forewing．
 He，inate has ane．

 Carsoe yrabl wer hapidely and porge themiselves wow the，josiaqe．Cheip beetime fribl yrumen in phonel
 and＂ol a green crlor，very similew 姑 that gl thi fobiaqer，bwith s，painh jebrou－ataper－hown ita back ＂and yellour－tpoles on esch side．

Tine凂标，come parasito unve innpooted when the pifit becamse established in tithe thitet Ltites Ane prarasite purposely impoited from senvper is a wasplike Elif．Sioticie is temown to homw hilled prantically every woum at of ashington D．C．，in 1904.

Hence the prefrase unstet in tithe oly cobbaqe refuse, it-is meses-arary tithat wuch remm antes the chestioyet. If tarivier smethorfis control are - Pmourw, heth itho mooct patiseactary
 on - orgrettinsem.

Iittle bu弓s have other bugs
Upon their backs to bite 'em,
And these in turn have other bues,
And sn ad infinitum.

## PART IV - TEACHING DEVICES

(Introduction to Fourth-Year Tork)

In addition to continuing with insect collectins, the nembers in this group will be in a position to carry to other club members and to adults information that they have gained from their experience with insects. Througin plavs, demonstrations, exhinits, and surveys, they can helo entomologists and extension workers to get correct control information into the hands of many people who would not otherwise be reached. Because of the great rumber of insects and the wide variety of insect control oractices, there is no limit to the amount of mork club members can do in this respect.

0 , yet we trust that somehow good
"ill be the firal goal of ill, To panss of nature, sins of will,
Defects of doubt and taints of blood;
Trat nothing walks with aimless feet; That not one life shall re destroyed, Cr cast as rubbish to the void,
When God hath made the pile comblete;
That not a worm is cloven in vair, That not a moth with vain desire Is shriveled in a fruitless fire,
Or but subserves another's gair.

- Tennyson.

ACTIVITY CHART - FOURTH YEAR

| Meetings | Ieachirg devices and collections | Fage |
| :--- | :--- | :--- |
| First <br> Fehruary | Organization. |  |
| Second <br> March | Outline work. |  |
| Third <br> April | Playlets. |  |
| Fourth <br> May | Playlets. |  |
| Fifth <br> June | Demonstrations. |  |
| Sixth <br> July | Demonstrations. |  |
| Seventh <br> August | Exhibits. |  |
| Eighth <br> September | Exhihits. |  |
| Ninth <br> October | Fall surveys. |  |
| Tenth <br> November | Fall surveys. |  |
| Eleventh <br> December | Playlets. |  |
| Mwelfth <br> Jaruary | Playlets. |  |

There is a difference of oninion as to the total number of orders of insects, but it is about 25. Representatives of some orders are very rare and would seldom be picked up in collections. However, there are 5 more orders listed here, and specimens of some of them can be located with sufficient effort.


DIRMAPIRA.-Derma (skin); 贝tera (a wing). Front wings beetlelike (leathery), but much shorter than abdomen. Hind wins earshaped, veins radiatin from middle forward margin. Often wingless. Cerci (forceplike) structures on tip of abdomen. Chewing mouth parts, sradual metamornhosis.

PIECOPTEA.-Plecos (olaited); pteron (a wing). Four netted, veined wincs, front pair narrow, hind nair very broad and folding like a fan. Folded flat on abdomen when at rest. Chewing mouth parts. Gradual metamorphosis. Stone flies.

MECOPTERA.-Mecos (length); pteron (a wing). Four lons, rather narrow winss, numerous cross veins; mouth parts elongated into a snout three times as long as width across the eyes. At end of snout are chewins mouth parts; metamorphosis comolete. Scorpion flies.

COLIEMBOLA.-Colla (glue); embolon (a bolt or bar). Tiny, primitive winfless insects, mouth parts cheving, sunken into head. Never more than six abdominal segments. First segment has a forked adhesive organ or ventral tube. The fourth segment is with forked spring; by use of spring insect flips itself alon; no metamorphosis. Spring tails.


STREPSIPTERA,-Strensis (twisted); pteron (a wins). Four winss, front oair reduced to mere clubs, hind pair triangular. Eyes stalked, desenerate; chewine mouth parts. Females without legs, wings, eyes, or antenna; mouth parts, vestiges; wormlike, and living in the interior of insects throughout life. Twisted wing parasites.

```
PLAYIEIS
```

There is no question but that through plays many people can be shown the light to better insect control. Plays must be true to life. Sufficient wit and humor should be worked in to lighten the serious thought back of the play and to keep the audience interested.

In portraying the parts, proceed as one would normally. Don't make actions too mechanical.

In speaking, speak freely; practice to impersonate the person you are to represent.

The following playlets may serve as susgestions, and it is hoped that more original ones will be worked out.

## Strined Cucumber Reetle Control

A Playlet in Three Scenes

## Characters

Courty agent
Johnny, farmer boy
Grardpa Tortle
Matilda Hicks
Johnny's father
Nei rhbor Jones
Scene I.--Melon patch.
(To tyoify melon patch, seed can be planted in shallow trays a few meeks before the meeting, and these trays can be placed around on the stage to five the apoearance of a melon patch. As the scene opens we find Johnny seated on a stone with his face in his hands as Meighbor Jones walks in.)

Neighbor Jones: What's the matter Johnny?
Johnny: Last year I tried so hard to gro: a few melons, but they all died before I got any to eat. This year the bugs were here before the plant pot through the ground.

Neighbor Jones: (Stoops down and examines vine.)
Thy don't you try placing moth balls around the hills?
I hear they will keep the bugs away.

| Johnny: | These bugs are not moths, but if you think moth balls will <br> work I'll give them a trial. |
| :--- | :--- |
| Neighbor Jones: | Look who's coming now--that old busvbody, Matilda Hicks. <br> I monder what news she has today. I'll bet she has some <br> good remedy for these buss. |
| Johnny: | (Rises as Jones begins to speak, then sits down again.) |
|  | I wouldn't doubt it, she has the answer for most everything. |

Matilda Hicks, a tall, thin moman with pointed face and very sharn features, enters, talking very fast.)

Matilda:
Bless my soul! What are you two doing here? I would think you could find something more important to do then loafing.

Neighbor Jones: Tell, Johnny was just telling me about these bugs and I started -.- (Matilda interrupts.)

Natilda: Hun! Those bugs. Tell, if you will just go down the road there and get some dust out of the covered bridges and sorinkle it over the melon hills you won't have any more trouble. I'll tell you it's good for the bugs.

Johnny: (Rises and stoops over vines. Looks up to speak.) I don't want anything that is good for the bugs, I want something that will get rid of them. But noxt time I come through the bridge Illl get some dust and give it a trial.

Neighbor Jones: The covered bridges are about all gone, and how will we control the bugs then?
(Takes out his knife and starts to whittle.)
Matilda: Well, the dust from other hridses will do, but it isn't as good as that from covered bridges. In fact I hear that just plain road dust vill help some.

Neighbor Jones: Well son, your troubles will soon be over. Here comes Grandpa Wortle.
(All speairing at once.)
Johnny: Hello, Grandpa!
Matilda: How are you feeling today?
Neighbor Jones: Howdy, neighbor.

| Grandpa: | Oh, right oert - except from the way my rheumatiz feels I thirk we'll have a chane in tho weather, probably rain tonight or tomorrow. It's been nigh on to 2 weeks since we've had a good shower. <br> (Leans, both hands on his stick.) |
| :---: | :---: |
| Matilda: | Johnny here's been frettin' about these little striped bugs on his melons. |
| Grandoa: | (Pokes vines with his stick.) <br> Ah, shucks! Them critters are easy to handle. When I was a boy we used to get a pail of real fresh cow manure and make a sood paddle then smear a little manure around the vines. It mon't hurt if you get some on the vines and in addition to keeping the bugs away the manure makes the melons grow better. |
| Johnny's Father: | Tell, Johnny, I just came out to tell you supper is ready, but it seems as though you are having quite a convcrsation here. That's it all about? |
| Johnny: | (Rather startled.) <br> Hello Dad. Wyal these folks been telling me how to get rid of these beetles. |
| Johnny's Father: | Why don't you put salt on their tails then you can catch 'em? That's the way they catch birds. |
| All Except Johnny: | A grand laugh. |

> End of Scene I.

Scene II.--Next day, same place.
Johnny:
(Talking to himself, $h$ lds several small packages in his hands.)
Let's sce, row that I have all these things, what will I do with them, put a little of each around all the plants? No! that won't do, cause I mon't know which was best. I think I'll make a little experiment. (Stoops and works.) I'll put moth balls around these two or three hills (moves Along), road dust around these two, and (moves again, stooping) try Grandpa's wonder remedy on these two. Pa said he once heard of using soot, so I think I'll try using a little of that too. (Here he rises and looks toward the road.) I wonder who that fellow is and what he wants.

| County Agent: | (Enters.) <br> Hello there, sor. Ho:: are you? I am County Agent Smith from cver at Iublin. I just hapoened to be passing by, and when I sa\% all those packaces I rondered minat you were doing. |
| :---: | :---: |
| Johrrey: | Tell, I've keen trying to हrom some melons, but seems as thoush it can't ce done. The buss don't wait until the olants come uo before they start eatirz or them. Iast year some vines kept gromins until the melons mere almost ripe, then they withered and died. I muess it must have beer the weather. |

County Agent: The meather may have done part of the damaze, iut I imagine the beetles did the most of it.

There were not many bugs around when the vines wilted, just before harvest.

County Agent: Tnat's probably true. There is ar irteresting story in that connection. The reetles damaze your emlors and cucumbers the same way. You prooably krow they eat the plants.

They sixe do. They can almost clean un a patch over nigit.
(County agent takes a small leaflet from his oocket and hards it to the boy.)
Fere is a bulletin that tells all arout the beetles. These teetles also lay egess on or near the vines, and the little larvae or mormis that natch bore into the stems, and sometimes kill the plarts.

Johnny:

County Aseant:
(Interrunts and reads.)
It says here that the third and possibly most important is that these little striped beetles carr- a hacterial disease which they transmit to the olarts ar cause the plarts to wilt and die just hefore harvest. So far as er-tc-molosists - I suess that means iusolosis亡s - know the disease can only live overwinter in the stomann of these reetles. After one plant is diseased there are several insects that can carry the disease to nealthy plants. Mo prevert the disease it is recessary to kill the deetles iefore they set you.
(Has been looking over Johnny's shoulier. Johrry turrs to face hin.)
Tell, son, you can see riny the melons died just before harvest The g got the disease from the hugs last sprinc, but the disease didn't kill the vines until just cefore the melons got rioe.
$18-37$

Johnny:

County Agent: Oh, no! In some places there is a different kind of wilt disease that lives and spreads, independent of the beetles. Then often there are small green lice which suck the juice from the leaves and cause them to curl up. Guite often they are curled so much they might as well be dead.

But what can me do to kill these striped bugs?
If you will look at the bulletin it tells you what to use. (Again looks on with Johnny.)

Oh yes, it says here to use calcium arsenate and land plaster or gypsum. That is calcium arsenate?

Oh, that's a poison, a sort of white powder. By the way, I have some already mixed with gypsum out in my car. Just wait and Illl go out and eet it. (Johnny continues to look at bulletin. County agent returns.)

I've had several suggestions from people around here about different things I can use to control the bugs, and I $\mathrm{I}_{\mathrm{m}}$ making a test of some of these. Till you sell me onough of this to dust a few hills?

No, I won't sell you any, but if you'll dust about a dozen hills thoroughly each week until the runners are rather large, I'll give you the dust, and I believe I have a little duster in the car which you can use to apoly it. All Itl ask of you is to let me knor, sometime this fall, what kind of results you have. Me'll go see about the poison.

End of Scene II.

Scene III.--County agent's office.
(Johnny comes strolling in carrying a large melon - if off season one can be made up - his face beaming, follower by his father, mother, and Matilda.)
(County agent is seated writing, but looks up as they enter.)
County Agent: Hello, there, where did you buy that one?
Johnny:
County Agent: I didn't give it to you, because I haven't seen you since last sprint.

| Johnny: | Anyway, I brought this to you from your melon patch. (Hends melon to asent.) |
| :---: | :---: |
| County Agent: | Thanks a lot, but I don't have a melon patch. |
| Johnny's loother: | Johnny has called his oatch yours all season because you saved it from the bugs. |
| County Agent: | Tell. And what hapnened to the melons when you used moth balls, soot, dust, and Grandpa's remedy? |
| Johnny: | They're out of sipht. |
| County Agent: | You mean they are the nicest vines you have? |
| Johnny: | ITo, they're dead and gone. |
| Matilda: | (Tho has been nokins around.) <br> I came along to see if I could get one of those books. |
| Count.y Agent: | Sure you may. I'll get you one。 (Goes to file and picks one out and hands it to Natilda.) |
| Matilda: | Grandna Fortle asked if I could get one for him. |
| County Agent: | Sure, that's what they're printed for. (Talks toward files. Come on over, all of you, maybe there are some other bulletins you will find useful. (All follow agent and start looking over the file.) |
| Johnny's Nother: | (Picking up a bulletir and looking through it.) Eere is one on clothes moths and their control. Ild like to have it. |
| Johnny's Father: | (Picks up bulletin, fumbles for his specks, and reads.) This boll-weevil bulletin looks good to me. (An insect common to your particular community may be submitted.) |
| Natilda: | My mord! I didn't 'now there was any one place where a person could get so much information. Ton't I have lots to tell the folks when I go to prayer meetin: Wednesday night! Illl bet all the folks will be wanting more information when I get through telling them what I've learned. <br> dually walking toward the loor. Each one bids Ur. Smith |
| Johnny's Father: | Come out to see us whenever you can. Te'll need your help a lot. |

County Agent: All right, Mr. Jrown. Thanks again for the melon Johnny. What are you going to feed the bugs next year? (Follows them to the door.) "

Johnny:
(Others have left the stame, as Johnny leaves he repeats:) Calcium arsenate and land plastor; and hereafter when I want advice I know where I'll come. Good-bye.

## The End.

## 4-H Insect Sons

On where have you been, Billy boy, Billy boy?
Oh where have vou been, charming Eilly?
I've been learning insect lore that I never knew before, And I'm making a start in insect study.

Did you learn the different kinds, Billy boy, Billy boy?
Can you tell me some of them, charming Billy?
I know many different kinds, cannot keep them all in mind, For a hundred kinds are just outside my doorway.

Have you a collection made, Billy boy, Billy boy?
Have you pinned some in a box, charming Billy?
I have started to collect, but don't know what to reject, It is hard to find boxes for so many.

Have you watched the wavs they live, Billy boy, Billy boy?
Do you know their habits all, charming Billy?
I have watched them in the field, and seen some secrets yield,
But there's much more that I should learn about them.
Do some kinds eat up your Dlants, Billy boy, Billy boy?
Can you drive them from the crops, charming Billy?
I can put up quite a fight, if I have my methods right,
I can make then wish they had not left their mammies.

-     - Tadley.


## RUYING INSECIICIDES

A Flaylet in Three Scenes

## Characters

```
Robert Jones......Club president
Charley liyers.....Club secretary
Herman Ford.......Iruggist
#illie Durant.....Drug clerk
Mrs. Smith........Mary's and John's mother
Mary Smith
John Smith )
Dave Clark )
Sam Reed ).....Club members
Jare Johnson)
James Miller)
Mabel
8 other club members
```

List of crons and number of rows ir each crop (to be
written on blackboard before play starts).

| Cron | Rows | Croo | Rows |
| :---: | :---: | :---: | :---: |
| Potatoes.. | 15 | Onion | 1 |
| Corn. |  | Iettuc |  |
| Beans. | 4 | Soira |  |
| Peas. | 4 | Radis | $\frac{1}{2}$ |
| Cabbase | 4 | Carro | 1 |
| Cauliflowe | 2 | Melons | 1 |
| Tomatoes. | 1 | C acumb | 1 |
| Beets. | 1 | Squas | 1 |

Scene I.

Home of Mary and Jonn, club members. Mary and John are seated at the table.

Mary: Tell, John, last night we made olans for our छarden next summer. Tonight we arranged to figure on poisons to kill the bugs that are almost sure to come.

John: Do you have that list of crops we plan to plant, and the number of rors in each croo?

Mary: Yes, they are still written on the blackboard--the one we used the other night when the club met here.

John: I will go get it. (Leaves the room.)
Mary: (Thile John is out.) I'll look over the bulletin to see what bugs we are likely to have.

John: (Returns after a fem minutes.) Here it is, and the names of the vegetables are still there.

Mary: According to this bulletin, we are in for a lot of trouble with the bugs.

John: Nell, you remember the trouble Dad and mother had with potato beetles and the littlo yellow striped beetles on melons and cucumbers.

Mary: That's risht, and the little sreen worms just about ate all of Sallie Green's cabbage last year.

John: You remember all the neighbors were talking ahout how bad the cutworms were last year.

Mary: And the little green lice were on almost everything. Let's check the names of the vegetables that are often damaged by the lice.

John: (Goes to board and checks crops as he calls the names of those that are likely to have olant lice.) Te usually have lice on cabbage (pause), cauliflower (pause), turnips (pause), bears (pause), peas (pause), melons and cucumbers.

Mary: What about the spinach?
John: An! let the bregs have it. The more they eat the less $I$ will have to, and we will save that much nicotine.
(Mary interrupts.)
Mary: You can get used to eating the spinach as well as the bugs can, and it will be good for you, too.

John: This bulletin says to control aphids - I guess aphids are plant lice - use nicotine and let's see how much we will need.

Mary: How rig is our garden?
John: As I remember, our garden is about 50 by 125 feet, which is about one-seventh of an acre. We will run our rows the short way across the garden, which will make them about 50 feet long.

Nary: Well, how much nicotine will it take to protect our crops?
John: (Picks up bulletin and quotes.) It says here to use a $Z$-percent nicotire at the rate of about 40 pounds per acre for one apolicam tion.

Mary: How many times will we have to use it?
John: Te may get by with two, but I think we better count on applying it three times because some crops may need several treatments.

Nary: That means if we had an acre which needed to be protected me would have to have about 120 pounds of nicotine dust. Then how much nicotine will we need to buy?

John: (Looking in bulletin, quotes.) It says for a 3-percent dust use $3 \frac{3}{4}$ pounds of nicotine to a 50 -pound sack of lime or $l$ ounce per pound. It says also that nicotine sulphate alone does not deteriorate with age, but when it is mixed with lime it must be used soon after it is mixed or kept sealed very tight.

Uary: Let's get back to see hom much nicotine ree need.
Jonn: It will be easier to work out if we figure it on the basis of 1 ounce of nicotine to $l$ pound of lime.

Nary: What part of an acre do we have in crops that are likely to be bothered mith aphids?

John: (Goes to board and counts the rows in crops he had previously checked.)
There are 12 rows which we plan to plant, $2 \frac{1}{2}$ feet apart, and the melons and cucumbers will be 5 feet apart. Now, if these are 50 feet long, what part of an acre have we? You like to figure hetter than I do, Nary, you can work it out.

Mary: (Goes to blackboard and works out problem her own may.) All right.
12 rows $2 \frac{1}{2}$ feet apart $=30$ feet, width of this part of garden.
2 rows 5 feet apart $=10$ feet, width of melon and cucumber patch. 40 feet, total width.
That's a strip 40 feet wide, and if it is 50 feet lon we have $50 \times 40=2,000$ square feet. There are 43,560 square feet in an acre, so $43,560 \div 2,000=21.78$, or one-tmenty-first of an acre. To make it easy, let's say one-trentieth of an acre. Now, if 120 pounds is the right amount per acre, for three apolications, :re will need $120 \div 20$, or about 5 pounds of dust. At 1 ounce of nicotine to $l$ pound of lime, that would mean 6 ounces of nicotine.

John: "ell, that is pretty good, Mary. I could have figured it out fust as easily, but I wanted to see if you could.

Mother: (Rather loud from outside the room.)
Mary. John. It's time to go to bed. You can finish that tomorrow night.

Mary: All right, mother.
John: Well, tomorrow we can get an idea of how much of the other kinds of insecticides we need. Then the next time we go to town we will shop around for prices.

Scene II.
About 1 week later, in the corner drugstore.
(To represent a drug store, provide the shelves and a counter on which can be placed a number of bottles and packages. Empty cartons can be used. They can be saved up at home, or perhaps the drug store can provide some.)

Drug Clerk: (Young and quite sure of himself, and let's everybody know it. He is busy with some bottles as liar and John enter.) Hello, Mary. Hello, John. That will you have today?

John: Well, Mary and I are going to plant a garden next summer, and we have been shopping all town to get prices on poisons to kill the burs.

Drug Clerk: (Soaks rather loudly and cockily.) On! So you are going to be bugologists, are you? (Laughs.)

Mary: Call us bugologists if you like, but we know how much damage bugs can cause, and we want to be prepared.

Drug Clerk: (Speaks rather loudly and cockily.) What it takes to kill bugs, we 'te got plenty of! Just name your poison!

Mary: (Takes out list.) Te mill need about 6 ounces of nicotine.
Drug Clerk: (Pulls package off the shelf and shows it.) Yep, we have
trade name from local dealer)
. That's nicotine sulphate con-
trade name from local dealer)
taining 40 percent nicotine, and done up in l-ounce bottles. It sells for 35 certs per bottle.

Mary: There it is again, \$2.10 just for nicotine.
Drugs Clerk: Well, that's what she sells for. (Places nicotine package on counter.)

Mary: What is the price of Paris green?
Irug Clerk: Fifty cents per poxnd, and we have plenty of it, either in package or in bulk.

Nary:

Drug Clerk: Bordeaux! There do you thirk you are, in France? (Looks arourd under the counter and on the shelves.) Sure, we have it, without arsenate of lead 30 cents per pound, and 40 cents per pound with arsenate of lead already mixed in. Better huy it with the lead, and it will take care of the potato bugs as well as leafhoppers. Te also have copper lime dust, with or without the poison, and although it isn't quite as good as Bordeaux, it can be applied in a dust form.

Mary: Which kind do you think is better, John?
Jonn: Take the prices of all and we can figure out later which we want. (Mary gets prices from clerk and :rites them domn.)

Drug Clerk: What else you got on your mind?
John:
The bulletin said cryolite could be substituted for control of some bugs. That is it worth?

Drug Clerk: Cryolite? (Looks blank and stammers.) Ta-wa-wa-well, cryolite. You mean cryolite. (Goes to shelves again and looks around.)

John:
(Allows clerk to hunt amile, then nudges Mary and smiles.) Apparently you don't have crvolite, or don't even know what it is, so just forget it.

Drug Clerk: Oh, what do you mant to fool around with so many poisons for? (Reaches to shelf and pulls down a container.) Now, here is a cure-all which the salesman said would kill any hug that crawls. It may be a little more expersive, but if it kills all bugs, it's morth the difference.

Mary: My mother almays said that a medicine that was good for everym thing wasn't good for anything, and I am afraid the same would be true of insecticides.

Drug Clerk: (Puts that package back and gets out another.) Fell, now, here is another one. You can read right here on the label that it's good for cahbage worms, bean keetles, cucumber beetles, potato bugs. (Any rumber of bugs common to a given locality can be substituted.)

John: (Interrupts.) I an afraid that's the trouble, it's too good for the bugs. That we want is something bad for the bugs. Mary is right. Me will stick to the recommendations in our bulletin. That else do you have listed Mary?

Mary: How about the rotenone-bearing compounds?
Drug Clerk: Now what are you doing, trying to kid me?
Mary: No. (Shows the clerk her list.) Here is the name just as I conied it from the bulletin.

Drug Clerk: You must have copied it wrong.

> John:

Drug Clerk: Tell, ther, it must be a misprint.
Druggist: (Enters while clerk is still talking, and just as clerk stops talking druggist remarks rather jokingly:) What's all the commotion?

Drug Clerk: John and Mary are trying to find out what I know about bug control, and I don't know whether or not they are trying to kid me.

Druggist: That seems to be the difficulty?
John:
Druggist: Oh yes! Rotenone--that's a product that comes from both the derris and cube olants, and there are several products manufactured urder different trade names. They sell for different prices, depending on the amount of rotenone they contain. The trade names of some of these are: Cubor, Derridust, Derrispray, Derox, Dustall, Kubatox, Rotofume, Serrid, and I don't know how many others.

Nary: Thy do they recommerd rotenone?
Druggist: Apparently some people don't wash their vegetables thoroughly enough, and there is danger of people getting poisoned by usine arsenate of lead on any portion of vegetables which are to be eaten. So, they are using rotenone, which is safer.

Mary: You have about scared us out. When we consider the high cost it seems as though we may as well take a chance with the hugs.

Drugsist: Oh, I don't think so. I believe we can figure some way out. Why are you interested in insect control at this time of the year?

Mary: You see, the members in our club are planning gardens next summer, and John and I are making plans early and are getting prices on insecticides.

Iruggist: On, I see. Tell, you know the smaller the package, the more expensive the product, because it cost about as much to pack an ounce as it does to pack a pound, or even 5 pounds.

Johr:

Mary:

Drusgist:
(Rather surprised.) Say, I have an idea. Thy car't all we club members pool our orders and buy larser amounts, then divide the material according to our needs.

That will be a good idea. Let's bring this up at the next club meeting.
(As Mary and John start for the door.) All right, Then you find out how much you need, I will be glad to have your business, and if I don't have in stock the materials you need, I'll be hapoy to get just what you want.

Nary and John:
(Leaving the place,) Thank you, and we will see you again. Scene III. Club room tro reeks later.
(Ine club officers and a $f e w$ members are in the room when the curtain rises. Other members contirue to enter and all exchange greetings.)

Club
President: (Looks at his match.) It is 8 o'clock and time to start our meeting. All members be seated.

Fresident: (Rises to start the meetine, when an awful commotion takes place ourside and Pete comes rushirg in.) That's the matter, Pete? Did you have a flat tire, run out of gas, or couldn't you give your baby brother the slip?

Pete: On! I thou ht I was ready to come, and lom made me take a bath and change clothes. I guess next time I'd better do it without being told.

President: (Calls meetine to order.) Leads members in repeatins national 4-H clixb pledee; roll call; readins of minutes, unfinished business (all conducted in the usual manner).

President: Te have changed our program a little for tonight. lary and John have something in mind in which you will all be interested.

Will one of you come up to the front and tell the rest of the club your plan? (Mary punches John, and John urges lary to go. Finally Mary goes to a place by the table and related the story.)

Mary:. Mr. President.
President: Miss Smith.
Mary:

Sam:
President: Mr. Reed.
Sam: I certainly will. Iast summer I picked so many bugs, I dreamed about them at night.

Mary: How big is your garden, Sam?
Sam: I figure about a tenth of an acre.
Mary: What are you going to plant?
Sam: Cabbage, potatoes, corn, tomatoes, lettuce, beans, peas, melons.
Mary: That's just about what we had in mind.
President: Hom many more of you are planning for about the same size gardens and about the same crops? (All members raise their hands.)

President: How many of you would he interested in buying bug poisons according to Mary's and John's plan?

Jane: Mr. President.
President: Miss Johnson.
Jane: How much will the poisons cost?

| John: | Wr. President. |
| :---: | :---: |
| President: | Mr. Smith. |
| John: | Nell, that depends on hom much we buy. I imasine ahout a dollar or a dollar and a half aoiece. |
| James: | Mr. President. |
| President: | Vr. Miller. |
| James: | Where will we get that much money for poisons to kill bugs? |
| Jane: | Mr. President. |
| President: | Miss Johnson. |
| Jane: | Car't we put on a play and raise some money? |
| Sam: | Mr. President. |
| President: | Mr. Reed. |
| Sam: | Naybe we can get someone to advance us a fow dollars until we can sell some of our first vegetabies. |
| Fresident: | I believe the money part can be morked out, and if it can, how many of you would be interested in cooperating? |
|  | 1 raise their hands and the secretary makes the count.) |
| Secretary: | There were 18 raised their hands, but I believe Martha and Dave will be working together. How about you, Mabel and Janet? |
| Mabel: | Mr. President. |
| President: | Miss Brown. |
| Mabol: | Yes, me mill have only one garder. |
| Secretary: | Then with John and llary having the same garden, we will have 15 gardens. |
| President: | That means if we buy 15 times as many poisons as Mary and John planned for, we should have enough. I think there ought to be a committee appointed to arrange to get the poisons, and to study the possinilities of putting on a play. |
| Sam: | Mr. President. |
| President: | Mr. Reed. |
| 18-37 |  |

Sam: I would like to suggest that you, Mr. President, Mary, and John, serve on that committee.

James: Mr. President.
President: Mr. Miller.
James: I think that the secretary should also be on that committee, then all records will be kept together.

President: I feel that a committee of three is sufficient, and I will glady withdraw from the committee. Are there any other remarks about this committee?

Jane: Mr. President.
President: Miss Johnson.
Jane: I move that the selection of this committee be left with the president.

Sam: lir. President.
President: Mr. Reed.
Sam: I second the motion.
President: You have all heard the motion. Are there any further remarks? (Pause.) If not, will all those in favor let it ke known by saying Aye. (All members "Aye.")

President: All opposed, No.
President: On this committee I will aponint Mary, John, and Secretary Myers. I know they will keep us informed. of any developments. Then the poisons are bought, we car have a special meeting and divide them.

President: Are there any further questions or remarks relative to insect control?

Dave: Mr. President.
President: Mr. Clark.
Dave: I have been wondering how we will apply these insect poisons when we get them.

President: That's a very good point. Does anyone have a suggestion on how this can be handled?

| John: | Wr. President. |
| :--- | :--- |
| President: | Wr. Smith. |
| John: |  |
|  | In our shopping around we have found that poisons can be ot- |
|  | tained to apply either in the dust form or as a liquid spray. |
|  | The bulletin we were studying said that in many cases the |
|  | liquid spray was better than the dust, but that for small gar- |
|  | den use, the dust should prove quite satisfactory. |

President: Mr. Reed.
Sam: I move we adjourn.
Jone: I second the motion.
President: It has been moved and seconded that we adjourn. All in favor say, Aye; opposed, lio. (If there is no opposition the President says the meeting stands adjourned.)

The End.

```
The Chigger Song
(Tune: Polly-Wolly Doodle.)
On, there was a little chigger,
Ard he wasr't any bigger
Than the point of a very small pin;
But the lump that he raises
Just itches like the blazes,
And that's where the rub comes in.
Comes in, comes in,
On, that's where the rub comes in.
The lump that he raises, Just itches like the blazes, And that's where the rub comes in.
```

- Courtesy of Cklahoma Extension Service. (4-H Club Insect Manual


## DEHONSTRAITONS

Demonstrations nrovide club members mith the npportunity actively to study the details and technicalities of insect control, especially in relam tion to the insects that are prevalent in their own commuities. Club memm bers themselves not only become well informed but are thereby better prepared to pass their information on to othors.

The damage done by an insect, how it lives (life cycle), its feeding habits, and methods of control, constitute major points which should be well developed in any 4-H team demonstration dealing with insect control. These points are outlined a little more in detail in the followin sample outline Which the members of a club may use as a guide in planninf a team demonstram tion on the control of any insect or insects found in their community, as for example, Controllin\% Insects on. Yard Flowers, or Peach-3orer Control.

A club tour or a survey of the various kinds of insects found around their homes and in their commuities will not only aid club members in the selection of a demonstration subject having much practical value and worthy of being demonstrated, but will furnisn them also with very helpful, important data for the develonment of their demonstration. (Note points listed under introduction in outline.

The insect, the host, and some evidence of the damage caused $b$, the insect should be shown in the introduction. A chart or poster presenting important data on the insect or denonstration subject, resilting rossibly from a club survey, makes the introduction more convincing by emphasizing the need for good control methods.

In presenting the dmonstration all equipment, materials, and processe should be well shown. Diasrams or charts rill, no doubt, be needed to show and explain adequately the habits and the feedine and suckins mouth parts of the insect. Important points throughout the demonstration will be emphasized, and minute processes made much clearer by the use of charts and posterse

To have their demonstration fundamentally sound and complete, club members should exhaust all the subject-matter material possible relating to their demonstration. In addition to using material in this manual, club merbers may consult such well-informed nersons as the county agricultural asent, club agent, or extension specialist, and obtain bulletins from them on the particular subiect that is being demonstrated.

Note: The host of the insect is the plant or animal or products of these which the insect feeds on; such as cabbage for the cabbage worm or furs and woolens for the clothes' moth.
$18-3^{r}$

Sample Outline for Team Demonstratinn on Insect Control
Demonstrator's Name: $\qquad$ $\cdots$ Demonstraton's Name: $\qquad$
I. Introductinn (talkine and showing).

Reasons for giving demonstration.
Kinds of insects prevalent in commanity.
Damage done $3 y$ these insects.
Most important insect in community .
Host of this insect.
Nature of damage by this insect. Economic or esthetic value of host.
(ivo talkins.)
Assists teammate with work.
Furnishes teammate with equipment and supplies as needed.

First nart of demonstration
(talkine and working).
Tabits of the insects.
a. Time of year and place of the different life stages (eggs, larva or nymph. pupa, and adult) are found.
Relation of habits to control.
a. Feeding.

- Cherine.

Suckins.
(Under cover or out in open. )
. There insects spend the minter.
c. Xierration (check by barriers)
d. Othors.
(No talkins.)
Assists teammate with work. Furnishes teammate with equicment and supplies as needed.
4. Methods of apolication.
a. Tusting, sorayirs, fumipation, or medicatinn.
b. Place to apoly poison.
5. Time of apnlication.
o. Number of anolications.
7. Length of effectiveness.
8. Length of time to kill irsect.
B. Otner control metnods.

1. Hand pickins.
2. Gultural practices.
3. Mana ement practices.
4. Sanitary measures.
5. Natural control.

Parasites.
Predators.
(10 talking.)
Assists teammate rith charts, posters, and all equipment necessar: for summarizing all important points of demonstration.

Summary (talking and showing).
A review of all important points considered in demonstration. Use charts, posters and any type of illustrative material necessary.

There is almost no limit to the number of insect control practices which lerd themselves to team demonstrations. Below are listed a few susgestive topics which may be developed according to the sample outline given. The sutheads under each tooic are control methods which should be demonstrated.

Cortrclling the clotres moth and caroet beetle.
a. Fumigation.
b. Brushing.
c. Sunning and airing.
d. Cleaning and storing.

Controlling stored-arain insects.
a. Cleaning bins.
b. Fumigation.

Controlling ox marble.
a. Squeezing.
b. Ointment.
c. Mash.

Controlling screwworm on animals.
a. Medication.

Controlling lice on animals.
a. Dippine.
b. Medication.

Controlling peach borer with paradichlorobenzene.
Controlling vegetable-garden insect pests.
Controlling yard-flower insect pests.
Controlling houseflies.
a. Sanitation.
b. Traps.
c. Screens.

Mixing poison bait for grasshopper and cutworm control.
Mixing poison sirup for house-ant control.
In addition to the team demonstrations on insect control, there are many other phases of the work with insects which can be presented by individual demonstrations. They are simple processes which may become a part of a team demonstration. The following may offer a few suggestions:

Preparing insects to be sent away for identification.
Making a collection net.
Making a jar for killing insects.
Pinning insects.
Making of a spreadine board.
Spreading butterflies.
Mounting butterflies for ornaments.

## PKIIBITS

The orimary object of an exhibit is to create interest. It is often difficult to tell an entire story $i r$ an exibit, and quite frequently when peoole go rhere exhitits are shown, they do not take time to make a complete study of the whole exhirit. For this reason, exhibits must be simple and so built that they will suggest the story without the use of too many legends.

Exhinits should create enough interest so that the next time the oiserver sees an aricle or bulletin on the subject, he will wart to read it and know more of the details on the particular subject. If an attemot is made to show insect damage to a plant or animal, livins specimens should be used, whenever possible, and arranged in their natural position ard surroundings.

In displaying control measures, the major steps in procedure may be shown. For instance, in peach-borer control, use three trees or stumos. Around one have the ground leveled off and free of stones and trash. Around another show the positinn of the chemical, and arrange the third tree to show tne joh completed with the soil mounded up around the tree.

Whenever possible, have the life stases of the insect and the material to be used in control in a conspicuous place, where those who wish to exanine them more closely can do so.

The butterfly, seemine careless and free,
The armored reetle, and hummins bee, Tho dracon-fly darting through summer airs,

All busily mork at their strange affairs.

-     -         - Tadley.

Through surveys it is nossible to locate areas of heavy insect populations and arrange to apply control measures before damage occurs. In cases where certain control measures are to start with given populations of the insect, surveys are very important. Entomologists make surveys every year, but conditions do not permit them to cover every farm or even every county. Reports of surveys made by local people will often help the entomologist to locate threatening numbers of insects that might otherwise be overlooked until after damage occurred. There are many insect pests for which information on their abundance would be valuable, but surveys for only a few insects will be mentioned here.

Large quantities of grasshoppers in a given area during late summer ard early fall might indicate that numerous eggs were being laid there. County agents or entomologists could be notified to this effect and an egg-bed count could be made. These areas could be watched closely the following spring, and when young "hoppers" appear in dangerous quartities, poison bait can be applied to these areas. If this were done, the hoppers would be killed before they spread over the fields which would necessitate poisoning larger areas at a much greater cost.

With reference to the cotton boll weevil, the information gained from the surveys would be very important. The early soring survey to be made about the time cotton is chopned would he an indicator of the number of weevils emerging from hibernation. When 40 or more weevils per acre are present on any given field, it is likely that control measures will be necessary on that field and arrangements for applying control measures should be made.

The square infestation survey when the cotton begins to fruit should be made on each field to determine when 10 percent of the squares are infested. If cloudy rainy weather, which is favorable to boll-weevil development, prevails, dusting :ith calcium arsenate should be started.

The occurrence of scale insects increases and decreases from year to year. Too often damaging infestations are not located until the trees or shrubs are in foliage. Control measures for scale insects are applied while trees are in the dormant period. If the public could he taurht to be on the lookout for these pests and to notify entomologists, control measures could be started during the dormant period and before damage to the trees occurs.

Possibly one of the best examples of the effectiveness of surveys is the Hessian-fly survey. Through surveys entomologists have found that if no young growing wheat, barley, or rye is present when the adult flies are in flight, these crops will receive no eggs and no subsequent damage. Each year these surveys are made by entomologists, and safe seeding dates are announced. Club members in Hessian-fly territory could, by familiarizing themselves with the survey, do much to assist entomologists, as well as to educate farmers regarding the value of witholding planting until after the safe seeding date.

## NAMES OF INSECTS

For the benefit of the boy or girl who may want to knor more about the technical names of insects or the relationshio of one insect to another, there is atached a list of some imoortant economic insects. The insects are listed in alphabetical order by crons and by common names. Following the common name is the family, order, genus, and species, to which the insect belongs. Keep in mind that in referring to the scientific name of an insect, only the genus and species names are used. The order and family names are for classification. As an example the apole aphid is Aohis oomi.

Below is a chart to show how the technical name of an insect is used in classification. In this chart are only the Homontera, considered in the list of some imoortant economic insects, apoearing in this manual. Just remember that in the Homoptera there are many more families, genera, and soecies than are shown here. In the family aphididae (plant lice) there are listed here five genera, each of which has certain characteristics in comon. Whon closer examination one finds that in each of the genera are individuals which differ in character, so these are placed under species, as we see under aphis.

Common name

| Common name | Oraer | Family | Ģenus | Species |
| :---: | :---: | :---: | :---: | :---: |
| APPIE ATD PEAR. |  |  |  |  |
| Aphiàs: |  |  |  |  |
| Apple aphid | Homoptera | Anhididae | Apnis | pomi |
| Rosy̆ apple avhid | Homoptera | Apnididae | Anura:nis | rosers |
| Woolly apple arnid | Homontera | Apnididae | Eriusome | laniserum |
| Buffalo treehopwer | Homoptera | Nembracidae | Ceresa | bubalus |
| canker worm, Spring | Lepicoptera | Geometridae | Prieacrita | vernata |
| Codilnor moth | Lepidoptera | Oletinreutidae | Carpocapsa | pomonella |
| curcuiio, Arple | Soleontera | Curculionidae | Tachypterellus | quadrisibbus |
| curculio, Flum. | Coleoptera | Sirculionidae | Constracinelus | nesuphar |
| Fall webworm | Lepidoptera | Arctiidae | Hyphantria | cunea |
| Flat-heaxed apple tree horer | Coleoptera | Bunrestidae | Chrusohotinris | さemorata |
| leainopper, Apple | Homoptera | Cicauellidae | دnpoascie | malisna |
| Oriental fruit moth | Lepidontera | Olethreutidae | Grapholitha | molesta |
| Oyster-shell scale | Eomoptera | Coccidae | Lepidosanhes | ulmi |
| Pear slug | Hymenoptera | Tenthreainidae | Hriocampoides | limacina |
| Periodical cicaua | Homontera | Cicadidae | Naricicada | septendecim |
| found-headed apple tree borer | Soleoptera | Cerambycidae | Saperda | candide: |
| San Jose scale | Homoutera | Coccidae | Aswidiotus | perniciosus |
| Scurfy scale | Homoptera | Coccidae | Cinionaspis | furiura |
| Siot-hole borer | Coleoptera | Scolytidae | Scolytus | rumulosus |
| Snowy tree cricket | Ortnoptera | $G r y l l i d a e$ | Uecantinus | niveus |
| tent caternillar, Jastern | Lepiaoptera | Lasiocompidae | Talacosoma | americana |
| BEAV. |  |  |  |  |
| Sean-aphia | Homoptera | Apnididae | Apinis | rumicis |
| Dean leaf beetle | Coleoptera | Cinrysomelidae | Cerotuma | trifurcata |
| Bean weevil | Coleoptera | Nelabriaae | Acanthoscelides | obtectus |
| Me:ican bean beetle | Coleoptera | Coccinellidae | Epilachna | varivestis |
| CABBAGE. |  |  |  |  |
| Cabbage aphid | Homontera | Aprididae | Brevicoryne | brassicae |
| Cabioge looper | Lepidoptera | Noctuidae | Autograpina | brassicae |
| Cabbage maggot | Diptera | Anthomyiidae | Hylemyia | brassicae |


| Common name | Orier | Family | Genus | Snecies |
| :---: | :---: | :---: | :---: | :---: |
| CABRAGE. (Conta.) |  |  |  |  |
| Importca cabbarge worm | Lepidoptera | Pieridae | Ascia | rapae |
| Harlequin bug | Hemiptera | Pentatomidae | Murgantia | histrionica |
| CHERPY. |  |  |  |  |
| Black cherry axiid | Homoptera | Aphidiajae | Myzus | cerasi |
| Cnerry fruit fly | Diptera | Irypetivae | Ihagoletis | cinaulata |
| Perr slug | Hymenoptera | Tentiredinidae | Iriocampoides | limacina |
| COEN. |  |  |  |  |
| Chinch bug | Hemirters | Lymocilae | 2].issus | leucopterus |
| Corn carwurm | Lepidoptera | Noctuiare | Heliotnis | obsoleta |
| Corn root aphid | Homoptera | Aphididae | Anuraphis | maidi-radicis |
| Corn rootworm | Coleopterá | Chrysomelidae | Diaurotica | ducdecimpunctata |
| Corn wireworm | Coleoptera | Elateridac | Nelanotus | communis |
| Cutworms: |  |  |  |  |
| Bronzed | Lepiapotera | Noctuidae | Itephelodes | emmedonia |
| Glassy | Lepidoptera | Noctuidae | Sidemia | devastatrix |
| Black | Ievisoptera | Noctuidae | A rotis | ypsilon |
| Variejated | İ-icioptera | Noctuidae | -y心号) | margaritosa |
| Stalk borer | Lepidoptera | Noctuidae | Papaipema | nebris nitela |
| White grubs | Coleoptera | Scarabacidae | Lacrnosterna | spp. |
| COTTON. |  |  |  |  |
| Boll weevil | Coleoptora | Curculionidae | Anthonomus | grandis |
| Cotton leaf worm | Leriajoptera | Noctuidae | \&lavama | argillacea |
| Cotton fleahopper | Hemiptera | Miridae | Psallus | seriatus |
| Cotton aphid | Eomoptera | Apnididae | Aphis | gossypii |
| CUCUNBER. |  |  |  |  |
| uelon aphid | Homoptera | Aphididae | Apnis | gossypii |
| Spotted cucumber beetle | Coleoptera | Chrysomelidae | Diabrotica | duodecimpunctata |
| Spuashi beetle | Coleoptera | Coccinellidae | Epilachna | borealis |
| Striped cucumber beetle | Coleoptera | Chrysomelidac | Diabrotica | vittata |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Common name | Oraer | Family | jenus | Species |
| FOFAGE CROPS． |  |  |  |  |
| Alíalfa caterpillar | Lenidoptera | Fieridae | Colias | eurytineme |
| Clover leaf－weevil | Coleoptera | Curculioniaae | Eyrera | munctata |
| Clover root curculio | Coleopterá | Curculioriaze | Sitona | nispiuula |
| Clover seed chalcid | Eymenoptera | Cnalcididae | Bruchopha，mas | ；ibbus |
| Fielz cricket | Orthoptera | Gryllidae | Gryllus | assimilis |
| जreen clover worm | Levidoptera | Voctuiame | Platiypena | scabra |
| Soa webworms | Iepidoptera | Crambiaxe | Crambis | trisectus，et al |
| Stalk borer | Lepidopteriz | Noctuidae | Fapaipera | netris nitela |
| Wireworm，corn | Coleoptera | ふlateridae | ielanotus | communis |
| ICEEST AIT SIADE IREES． |  |  |  |  |
| Basworm | Levidoptera | isycnidae | Thyriaopterys | eonemeraefrmis |
| Catalpa sphinx | Iepidoptera | Spininsidae | Ceratomia | catalpao |
| Cecropia moth | Lepidoptera | Saturniidae | Samia | cecropia |
| Chestnut weevil | Coleoptera | Curculioniaje | Curculio | rectus |
| Crmon meacour grassinopxer | Orthoptera | Tettigoniidae | Orchelimum | vulgare |
| Cottory maple scale | Homoptera | Coccidae | Pulvinaria | vitis |
| Elm leaf beetle | Coleoptera | Chrysomelitae | Galerucella | xantromelaena |
| Hickory borer | Coleofteria | Cerambycidae | 3 yl 3ene | caryac |
| Katyaid | Orthopter | Iettigoniidae | Amblycorypina | obloroifolic |
| Locust borer | Coleoptera | Cerambucidae | Crilene | robiniae |
| Locust leaf miner | Coleopterá | Chrysomelidae | Snal epus | 隹orsabis |
| Tent caterpillar | Lenidoptera | Lasiocompidae | ialacusoma | americana |
| Walnut caterpillar | Lepidoptera | Notocortidue | Datana | interarima |
| Write－marked tussock motin | Lepidoptera | Iiparidae | Nemerocaripa | leucostismá |
| GARDEN． |  |  |  |  |
| Asparagus beatle | Coleoptera | Chrysomelidae | Crioceris | aspárasi |
| Blister beetles： |  |  |  |  |
| Ash－gray | Coleoptera | ※っloidae | Macrobasis | unicolor |
| Black | Coleoptera | Vieloiaae | Epicauta | pennsylvanica |
| Gray | Coleoptera | Meloidae | Epicauta | cinerea |
| Striped | Coleoptera | Yeloidae | Epicauta | vittata |
| Horseradish flea beetle | Coleoptera | Chrysomelidae | Fryllotreta | armoraciae |


| Commin :ame | Orier | Family | Genus | Succies |
| :---: | :---: | :---: | :---: | :---: |
| GARDEN. (Conta.) - Cone |  |  |  |  |
| Onion thrips | Thysanoptera | Thripidae | Thrips | taba:i |
| Tarnished plant bus | Hemiptera | Miridae | Lymus | pratensis |
| Zebra caterpillar | Lepiooptera | rijctuidac | Ceramica | picta |
| GENERAJ FEEDERS. |  |  |  |  |
| Blister beeties | See GARDİ |  |  |  |
| Cutworms | See CORN |  |  |  |
| Carolina grasshopper | Orthoptera | Acridiajae | Dissusteira | carsljna |
| Differential erassmouper | Orthontera | A?rididap | Vielanonlus | differentialis |
| American mrasshopker | Orthoptere | forijizae | Schistscercia | americana |
| Hed-lesjed srasshopper | Orthoptera | Avrididae | Melanoplus | t'cmur-rubrum |
| Sontted cucumber beetle | Coleoptera | Chrys molidae | Diabrotica | duodecimpunctat. |
| Tarnished plant bus | Homiptera | iinuise | Lysus | pratensis |
| Nireworms | See CORiJ, wiz | End FURAGE |  |  |
| SEAPE. |  |  |  |  |
| Grape berry motn | Leriajotera | Jlethreutidae | Polychrosis | viteana |
| 'srape leafhopper | Homoptera | Cicadellidire | 玉rytrironeura | comes |
| Grape rootworm | Coleoptrra | Cinry omelidac | こidiat | vitici ${ }_{\text {a }}$ |
| Imported currant worm | zymenoptera | Tentinrediniase | Pteronidea | ribesii |
| HOUSEHOLD. |  |  |  |  |
| Bedion | Hemiptera | Cimicidae | Cimes | lectixlarius |
| Cat flca | Si,honaptera | Pulicidac | Stenocephalides | felis |
| Case-iciring cisthes motin | Lepiuoptera | Sirneidae | Tinea | pelli nella |
| Tebbing clotnes moth | Lepidoptera | Tineidat | Tineola | histlliclla |
| Dog flea | Siphoriaptera | Puliciaae | Ctenocephalides | canis |
| 'ierman oockroach | Ortinoptera | Blattidae | Blattella | sermanica |
| Amerisan cockroach. | Orthoptera | Blattidae | Periplaneta | americana |
| Hopacily | Diptera | imasciure | Musca | domestica |
| Irdian-meal moth | Leniaptera | Pyralididae | Plodia | interpunctalla |
| Yeal moth | Lepidoptera | Pvralididie | Pyralis | farinalis |
| Wiosquit,os | Diptera | Gulicidae | Culex | pipiens, et al |
| Oriental cockroach | Orthoptera | Blattidae | Blatta | orientalis |


| Common name | Order | Femily | Genus | Species |
| :---: | :---: | :---: | :---: | :---: |
| HUUSEHOLD. (Contã.) |  |  |  |  |
| Silverfish | Thysanura | Lepismatidae | Lepisma | saccharina |
| Stablefly | Diptera | Muscidae | Stomoxys | calcitrans |
| Termites | Isoptera | Rhinotermitiage | Reticulitermes | flavipes, et al |
| Pharaon's ant | Hymenoptera | Formicidae | Monomorium | oharaonis |
| IittIe black ant | Hymenoptera | Formicidat | Nonomorium | sinimum |
| LIVESTOCK. |  |  |  |  |
| Cat ilea | Siphonaptera | Puliciuce | Ctenocepinalides | felis |
| Cnicken louse | Mallopnara | denoponiàae | Menonon | biserintum |
| Dog flea | Siphonastera | Pryiciaxe | Ctenocepralides | canis |
| Hog louse | Anoplura | Eisematuriniaae | Haematopirus | suis |
| Black horsefly | Diptera | Tabsniaje | Tabanus | atratus |
| Sheep tick | Dirtera | Eippobosciaae | Velopras,us | ovinus |
| Stablefly | Diptera | muscidae | Stomoxys | calcitrans |
| NEION. |  |  |  |  |
| welon apnid | Homoptera | Aphididae | Apris | gussynii |
| Spotted cucumber beetle | Coleoptera | Chrysomelidae | Diebrotica | duodecimpunctata |
| Striped cucumber beetle | Coleoptera | Chrysomelidae | Diabrstica | vittata |
| PEACH AND PLUM. |  |  |  |  |
| Oriental fruit moth | Lepidoptera | Clethreutiaja | Grapholitna | molesta |
| Oystershell scale | Homoptera | Coccidae | Lepidosaphes | ulmi |
| Peach borer | Lepidoptera | Acgeriidae | Conopie | exitiosa |
| Plum curculio | Coleopterá | Curculionidau | Conotrachelus | nenupriar |
| San Jose scale | Homoptera | Coccidae | Aspidiotus | perniciosus |
| POTATO. |  |  |  |  |
| Blister beetles | See GARDEN. |  |  |  |
| Colorado potato beetle | Coleoptera | Shrysomelidae | Leptinotarsa | decemlineata |
| Potato aphid | Homoptera | Aphididae | Jllinoia | s)lanifolii |
| Pntato flea beetle | Coleoptera | Chrysomelidae | 玉pitrix | cucumeris |
| Potato leafiopper | Homoptera | Cicadellidae | Empoasca | fabae |
| Sweetpotato flea beetle | Coleoptera | Chrysomelidac | Chaetocnema | confinis |


| Order | Family | genus | Species |
| :---: | :---: | :---: | :---: |
| Homoptera | Coccidae | Lepidosaphes | 121mi |
| Homoptera | Aphididae | Macrosiphum | rosae |
| Coleoptera | Scarabaeidae | Vacrodactylus | subspinosus |
| Hymenoptera | Tenthredinidae | Caliroa | aetniops |
| Homuptera | Coccidse | Chionaspis | forfura |
| Homoptera | Apnididae | Aphis | spiraecola |
| Hemiptera | Corejdae | Anasa | tristis |
| Coleoptera | Coccinellidac | Epilacnna | borea? is |
| Lepidopterat | Acgeriidae | Melittia | satyriniformis |
| Lepidoptera | Gelechiidae | Sitotroga | cereslella |
| Soleoptera | Cucujidae | Oryzaephilus | surinamensis |
| Lepidoptera | Sphinridae | Protoparce | quincuemaculate |
| Lepidoptera | Noctuidae | Eeliothis | obsoleta |
| Lepidoptera | Sphingidae | Protoparce | sexta |
| Hemiptera | Lygaeidae | Blissus | leucopterus |
| Diptora | Cecidomyiidae | Phytophaga | destructur |
| Hymenoptera | Chalcididae | Harmolita. | tritici |
| Diptera | Cecidomyiidae | Tnecodiplosis | mosellana |
| Coleoptera | Elateridae | Arriotes | mancus |
| Hymonoptera | Braconidae | Aphidius | spp. |
| Hymenoptera | Braconidae | Microgaster | spp. |
| Hymenoptera | Ichnexmonidae | iveprarhyssa | lunator, et al |
| Diptera | Tachinidae | Phorucera | claripennis, et |

Common name

| PREDAUEOUS INSECTS. | Order | Family | Genus | Species |
| :---: | :---: | :---: | :---: | :---: |
| Apnis lion Nouroptera |  |  |  |  |
| Fiery hunter chrys jpiaae |  |  |  |  |
| Ground beetle | coleวptera | Cerabidae | Cal osoma | こalidum |
| Ground beetle |  | Coraoidae | Calusoma | caliaum |
| Ground beetle | C)lepotera | Carabidae | Harpalus | calisinosus |
| Ground beetle | Coleaptera | Carabidae | Lebia |  |
| Convergent ladybeetle | coleoptera Coleoutera | Carabidae | Foecilus | lucubl andus |
| Nine-spotted ladybeetle | Coleoptera | Coccinelliale | Hipr Jdamia | convergens |
| Ladyoira beetle | Coleoptera | voccinelinaje | Coccinella | novemnotata |
| Spined soldier bug | Lemintera | Coccinellidae | Cerstomegilla | maculata |
| Syrphid fly | Diptera | pentatomidae | Podisus | maculiventris |
|  | -iptera | syrrnidae | Syruhus | americanus |



səuof ${ }^{\text {d }}$ 'W
геnuew qnij-ヶวəsuI $\mathrm{H}^{-}$


[^0]:    DISTRIBUTION.--A CODy of this circular has been sent to each extension director, State and assistant State leader in $4-H$ club work, extension entomologist, land-ogrant collese library, and experiment-station library.

