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INTBODUCTION.

The Author has been induced to prepare this work by many

considerations. In the first place, no general work upon the

Stability of Ships exists, so far as he is aware, in our language,

although several authors have treated the subject satisfactorily as

parts of more comprehensive works. In the next place, both the

science and the practice of the subject have recently undergone

great developments, at home and abroad, the results being scattered

over many and various publications; and it was undoubtedly

desirable to bring them together, and place them into due relation

to each other. Again, during the present, as during the last century,

French investigators have taken a leading part in the extension of

this branch of science, and it is essential to the sound education of

English naval architects and others, that the results of their labours

should be brought within easy reach. Finally, the number of

persons who now are required, by their professional avocations in

connection with ships, to obtain some knowledge of the doctrines

of stability is so great, that this work may fairly be taken as a

response, and a somewhat tardy response, to a demand which has

long been felt for collected information on the subject, and which,

during the last year, has become widespread and urgent.

No degree of justice can be done to the feelings with which one

surveys the wide field of this branch of naval science without express-

ing almost boundless admiration of the genius which has been dis-

played, and the labour which has been expended upon it, throughout

the whole period of its cultivation, by men of science in France. The

names of Bouguer and Dupin will probably excite greater and more

enduring admiration throughout the world, in connection with this

subject, than any other names whatever ; and the author cannot

but believe that the simple and beautiful manner in which M. Eeech

(as will be seen hereafter in chapter xiii.) unfolded the system of
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calculating the stability for various draughts of water and angles

of inclination, by means of the co-ordinates of the successive centres

of buoyancy, serves to prove that nothing of the mastery displayed

by Bouguer and Dupin has been wanting in their successors. This

volume will show that the names of Bisbec, Leclert, Guyou, and that

of the late MM. Dargnies and Ferranty, should not be without

honour in this connection; while the very complete and practical

system recently worked out by M. V. Daymard, of Marseilles * has

already commanded what it well deserved—the approbation and

applause of the entire profession. Of M. Bertin's masterly work in

connection with stability, this volume is not without illustrations,

although his most important labours have been devoted to the still

more difficult and complex study of the movements of ships at sea.

The prime characteristic of the French writers on the doctrines

of stability has been their comprehensive grasp of the subject.

While on this side of the Channel the tendency has usually been to

limit our investigations to the bounds which embrace the actual or

expected requirements of those who build ships or command them

at sea, on the other side of the Channel, French investigators have

usually passed far beyond these bounds, and have explored the

whole theory of the stability of floating bodies, in all its geometrical

breadth and completeness. Occasionally—as will hereafter be seen

in our remarks upon Bouguer's views of the MStacentrique, and

in some of our observations upon Dupin's work—they have gone a

little too fast and too far ; but their habit of dealing largely with

the subject has secured to them great advantages in recent days,

when the construction of ships-of-war of low freeboard, and of

merchant steamships of very small initial stability, combined with

great variations of stability on the voyage (occasioned by a large

consumption of fuel, shifting cargoes, &c), has made it absolutely

necessary to bring all the probable stability conditions of a ship

into full view and under calculation. It was only in 1867 or 1868,

when proposals for placing low-sided monitors under canvas came

officially before the author, at the Admiralty, that the necessity for

extending stability calculations to large angles, came strongly under

notice, and resulted in the construction of " Curves of Stability."

It was later still when the practice of calculating stability at greatly

different draughts of water, chiefly in the case of merchant steamers,

came into vogue among us. But as long ago as 1863, M. G. Dargnies

* See chapter xvi., commencing on page 31

L
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was making calculations at Marseilles for numerous angles of

inclination, and for four or five draughts of water ; and in 1864, M.

Reech put forward his admirable .system, to which reference has

already been made.

Both to Bouguer and to Dupin, and likewise to M. Reech, we

have endeavoured to do justice in the course of this volume ;
but,

having just shown that the habit of cultivating large views of the

subject has given to France much advantage and honour, we would

here commend that habit, at least to younger students of the subject,

as combining intellectual pleasure with professional advantage in

a high degree. The mind that can clearly follow, the movements of

the centre of buoyancy of a ship, when inclined continuously in one

direction, as it traces out a curve of buoyancy, can almost as

readily conceive of the same centre, when the ship is inclined

through all possible angles and in all possible directions, tracing

out a complete surface of buoyancy. When once this is clearly seen,

and the part played by the gravity of the ship, acting through its

centre of gravity, is likewise understood, there is opened up a

beautiful domain of further study, which will delight the mind of

any earnest student of geometrical science. In this domain, Dupin

has developed much that is as important as it is attractive. Imagin-

ing lines drawn in all directions from the centre of gravity to the

surface of buoyancy, "normally," or at right angles to the surface, he

shows that when these lines are minima, they indicate positions of

stable equilibrium, and when maxima, unstable equilibrium. This,

and other associated doctrines, he demonstrates by the charming

device of conceiving spheres, which either just embrace the surface of

buoyancy, or just touch its interior, with intermediate spheres

situated between them, fulfilling certain conditions. This con-

ception has been improved upon by M. Guyou (see chapter xv.),

who imagines a moist sphere of variable diameter expanding within

the surface of buoyancy, wetting it at various places as it expands,

and thus forming a series of isles and lakelets, which define the

limits of stable and unstable equilibrium. It cannot be doubted

that where the intelligence is trained to pursue investigations of

this nature, in which pure imagination and pure science are brought

equally into activity, the advantage to the student is very great

indeed. At the same time it is highly satisfactory to know that

French investigators, who have achieved so much distinction in the

highest parts of the science of stability, have likewise advanced

practical systems of calculation in a very remarkable manner,,
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To M. Risbec is due the credit of promptly and practically re-

ducing M. Reech's system to tabular forms for calculation ; the late

M. Ferranty expressly directed his labours to a like object; and
M. Daymard held back his theoretical results until he was able to

accompany them with appropriate practical tables.*

The labours of English investigators, although directed to objects

less attractive and brilliant than some of those developed by Dupin
and other French writers, have not been deficient either in skill or

in value. Atwood, with a simplicity and directness which are

perhaps characteristic of most English scientific investigators, turned

from Bouguer's somewhat hastily extended metacentric theory, and
closely examined the measure of a ship's stability when inclined at

a given finite angle. His method of investigation was perfectly

sound; the fundamental formulae which he obtained were no less

correct ; the abundant illustrations which he worked out were most
instructive; and the practical methods of calculation which he

employed—both such as were designed to be exact, and such as

were avowedly approximate—were deserving of all confidence.

Later English investigators have mainly followed in the same path,

Mr. F. K. Barnes, of the Admiralty, having distinguished himself

more than any other Englishman, by the novel application of graphic

and other eminently practical processes to the production of simple

and trustworthy methods of calculating stability.

It is a remarkable fact that, notwithstanding the extent to which
French processes have anticipated ours in point of time, English

systems of calculation suited to the requirements of the present

day, and more especially to those of the mercantle marine, appear

to have been quite independently developed in this country. Until

the present year, no one here, to the best of the author's knowledge,

had become acquainted with the real character of the investigations

of M. Reech, with the exception of the author, and he only had come
into possession of them through the private courtesy of M.V. Daymard.
M. Daymard's own admirable Memoire only became known to the

author in consequence of, and some time after, the appearance of

the report on the Daphne accident. But Mr. W. Denny and Mr.

John Inglis, of the Clyde, had for some time past been at work upon
those extended investigations of stability which the losses of cargo-

carrying vessels had probably suggested, and which, as those

* For translations of the tabular forms of MM. Risbec and Daymard, see the

end of this volume.
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gentlemen were prompt to observe, were really essential to the

safety of the mercantile marine. The subject has also for some

time past been engaging the attention of Mr. Martell, Mr. White,

Mr. John, and several other naval architects, while Professor Elgar,

in the course of his practice, was giving close attention to the

subject. Mr. White, in 1882, treated it well, and at considerable

length in the third chapter of his excellent Manual of Naval

Architecture. At the meeting of the Royal Society, held on the

6th March, 1884, Professor Elgar produced a valuable Paper on the

"Variation of Stability with Draught of Water;"* and a month later,

at the meeting of the Institution of Naval Architects, several highly

important English Papers upon Stability, all of them exhibiting an

equally enlarged method of treatment, were produced simultaneously

with the production there of M. Daymard's, and of another by a

young German naval architect, Mr. Benjamin.

f

In France first, therefore, and later (but, as would appear, quite

independently) in this country also, the subject of the Stability of

Ships has assumed at length its full importance, and received the

comprehensive treatment which it has come practically to require.

In the old days, when ships were mainly propelled by means of

sails, and when large stability was necessary to enable them to stand

up against the force of the wind, it was usual to give them a large

measure of righting force, and this enabled their constructors and

those who sailed them to dispense with refined calculations. Even
in those days, however, insufficient stability was a not uncommon
fault, and such contrivances as excessive ballasting, and doubling

the plank of the hull at and above the water-line, had not unfre-

quently to be resorted to. With the abandonment of sail-power

in so many ships, and in the belief that smallness of breadth,

within reasonable limits, was favourable to speed, it became the

general fashion to greatly reduce the stability of new vessels, and

it has been placed beyond doubt that many ships have been lost at

sea in consequence, including some sailing ships, in which the

reduction of the righting force was carried too far. This volume

will at least serve to show, it is believed, that there is nothing in

the circumstances of either mercantile or war ships to hinder a

complete knowledge of their stability, under all probable conditions,

being ascertained and formulated.

A highly satisfactory feature of the present condition of the

stability question, is the very practical manner in which it is

* See chapter x* hereafter* f See chapter viii. hereafter.

6
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considered by naval constructors, and the efforts they are exerting

to make the results of their calculations intelligible and clear to

naval officers, both of the Eoyal and Mercantile Marine. Professor

Elgar, who has the highest and most mathematical branches© 7 O

of the subject well within his grasp, has shown a praiseworthy

disposition to assist those who cannot be expected at present to

comprehend readily either formulae, or diagrams, or even the

technical terms of the naval architects. He has also done good

service by bringing into clear view the fact that when we speak of

the stability of a ship, we do not usually refer to some intrinsic

quality which she possesses of herself, apart from what she carries

;

but to the stability of the stowed ship, or of the ship and all she

carries; and the measure of her stability, therefore, can only be

ascertained by taking all the weights on board her into account,

both as to their amounts and as to their positions. It is no doubt

trite to say that the stability of the ship, thus viewed, varies with

every change in the weights on board her, and with every change of

position of every weight on board her
;
but, familiar as the fact may

be, its effective force is much too often neglected, and many a ship

and many scores of lives have been sacrificed in consequence.

" It often diverts attention from the main cause of loss," says Professor

Elgar, "to say that it occurred because the ship was unstable. The fact

is, that the ship has frequently so little to do with the matter, and the

stowage so much, that it is the latter which should be blamed for the

instability, and not the ship herself. When a ship is built for a particular

trade, and for the purpose of carrying certain specific cargoes, she may
then, of course, be so designed as to be quite stable, in all conditions,

while thus employed ; but when vessels are built, as they often are, to

dimensions fixed by owners, for general trading purposes, it is seldom

possible for the designer to provide against instability arising in some

possible or conceivable circumstances of loading. The due preservation

of stability in such cases requires to be watched and provided for by

those who control the loading. It is erroneous to suppose, as appears to

be sometimes done, that a cargo-carrying steamer should be so constructed

and proportioned as to run no risk of becoming unstable, however she

may be laden. If this idea were acted upon, such a mode of preventing

instability, however easy and plausible it may at first sight appear to be,

would only defeat the desired object of promoting safety at sea, because

it would make many vessels dangerously stiff when laden with some
classes of cargo. The true and reasonable mode of procedure is not to

attempt to construct a ship so that she will be stable however she may be

laden, but to see that any tendency she may have towards instability

—
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if any such exists—is understood by those in charge of her, and that she

is always laden with careful reference to it. There are no steamers afloat?

whatever tendency they may have towards instability as sometimes laden,

that might not be kept perfectly safe if treated with full knowledge of

what their stability is, and their stowage regulated accordingly. One

great problem that the mercantile naval architect has just now
;
to solve

is, how any dangerous features of a ship's stability are to be made clearly

known to those in charge of her, and in what manner they can be best

taught to regulate the loading in cases where special care may be

required."

And Professor Elgar's mode of attempting the solution of this

problem is the following :—

•

" In advising upon how a steamer should be treated and loaded so as

to be kept safe in respect of stability, I state, 1st, the quantity of ballast,

if any, that is required to enable her to stand up when quite empty,

without water in boilers or tanks, coal in bunkers, and with a clean-swept

hold, and to be stiff enough for all working requirements in dock or river;

2nd, if she is to be employed in carrying homogeneous cargoes, what

proportion of the space in the 'tween-decks it is safe to fill with such

cargo, after the holds are full, and what weight of ballast is required in

the bottom to enable the vessel to be loaded to her maximum draught

with such cargo ;
3rd, if required to carry two or more kinds of homo-

geneous cargo, such as grain and cotton, grain and wool, grain, meat, and

wool, &c, the best mode of stowage, and whether or not the space in the

'tween-decks can be filled with the lightest of the cargoes, and in what

circumstances ballast, and how much of it will be required ;
4th, if not

intended for homogeneous cargoes, but for general cargoes, or partly

homogeneous and partly general, the average densities of the general

goods for various ports is arrived at after a little experience, and the

same system adopted. The main point is, to state what space, if any,

must be left unfilled in the 'tween-deck cargo spaces, with the different

descriptions of cargo, and what ballast, if any, is necessary if the vessel

is to be loaded to her maximum draught 3
5th, if the consumption of the

coal diminishes the stability materially, as is often the case in some

classes of steamers, to call prominent attention to this fact, in order that

the captain may not be misled by finding his ship appear to be rather

stiff on commencing a voyage. The possible consumption of coal is, of

course, taken into account in fixing upon the limits that should be

imposed upon the stowage in all the conditions named ;
and, 6th, if there

appear to be any circumstances in which a tendency towards instability

may arise they are described."*

* Professor Elgar's Paper on "The Use of Stability Calculations in Regulating

the Loading of Steams,"-Transactions qf Institution of Naval Architects for 1884.



XX INTRODUCTION,

While adducing this as a laudable example of the manner in

which the scientific investigator can assist the sailor, the stevedore,

the agent, and others, we are not without hope that the time is

approaching when the education of the officers of the mercantile

marine, will be so far improved as to enable the greater part of

them to understand perfectly all the conditions of the stability of

their ships when these are reflected in suitable diagrams. Even the

smaller classes of merchant steamers are valuable pieces of property,

and carry each a few lives that ought not to be thrown away
because the man in command is ignorant of some of the conditions

of their safety; while, as regards the larger classes of ships, in which
many scores, sometimes hundreds, of lives are embarked, it is in-

tolerable that persons who are fully competent to master, in any
and every practical form, the conditions of their safety should not

be found to command them.

And this consideration leads to an expression of the author's

regret that, simple as are the fundamental principles of stability,

it is impossible to carry an exposition of them to any great length

without the resort to mathematical expressions. Than the primary

principles upon which all such expressions and all stability diagrams

depend, nothing can be simpler. The whole weight of the ship

and all on board tends downwards under the attraction of gravita-

tion, virtually acting through its centre of gravity; the whole

buoyancy of the ship acts upwards through its centre of buoyancy.

If these two great aggregate forces act in the same vertical line

there will be equilibrium; if they act in different vertical lines

motion must ensue, and will continue until the two lines come
together and coincide ; the distance between these two lines,

when they do not coincide, is the measure of the leverage with

which the ship tends to upright herself or further incline
;
and,

whether she will continue to incline or will return to the upright

depends upon the direction in which the two forces tend to turn

her, which direction is always pretty obvious : these are really and
truly the only essential doctrines of the stability of ships. It is

when you come to measure the separation of the two lines aforesaid,

for any given position of the ship, that all the difficulty and com-

plication enters, because then you have to take into account the

varying form of the ship, which changes more or less from point to

point, and is comprised within rounded or curved surfaces, the

volumes of which it is difficult to measure.

In writing this work the author has endeavoured to make the
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earlier chapters intelligible even to those who do not understand

mathematics, and in those earlier chapters will be found all that

many persons who are concerned with ships require to know. But

non-mathematical readers should not be readily deterred from

pressing on with their study of the subject by the occasional intru-

sion of a sign of integration, or other mathematical symbol. The

general sense and purpose may often be easily mastered even by
those who cannot interpret the mathematical expressions.

I have considered it desirable to do all that was possible in the

body of this work to clear up certain ambiguities that have arisen,

touching the uses of such terms as "metacentre," " curves of meta-

centres," " metacentric curves," &c, and have attempted to employ

them for single and definite purposes. I trust that my attempt will

be supported and furthered by future writers on the subject. It

is unnecessary to refer here to more than one ground of ambiguity,

to which Professor Osborne Reynolds made serviceable reference

at the British Association in 1883. After referring to a proposal

previously made to define stability, in a quantitative sense, as

measuring 6< the greatest angular disturbance from which a ship

would recover," and to substitute the term " stiffness " to " measure

the righting moment in any position," Professor Reynolds said—
" My object was to call attention to the importance of such a

system. In recent literature on naval architecture the term stability

occurs over and over again in the sense of righting moment, and

this under circumstances where the context shows the meaning" to

be incompatible with any meaning that can be given to the word,

for stability must refer to some position in which the ship is stable;

so that when it is said that a ship has initial stability, and has

some stability at a heel of 90 degrees, it would seem that the ship

would be stable (i.e., tend to hold its position) in either of the

positions ; but as this is clearly not what is meant, then it would
seem that some stability at 90 degrees means that a ship is stable

about the erect position for angular disturbances of 90 degrees.

This, however, it appears, is not the sense in which the words are

to be understood, some stability meaning' that the ship tends to

return towards, not necessarily to, its erect position, and has some
positive righting moment." Although there is nothing in this state-

ment of the case which, in any way, corrects or conflicts with the

well-understood science of the subject, it deserves careful attention,

because it well points out an instance of the looseness with which
the word "stability"—like the word " metacentre," as we shall
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see—has come sometimes to be employed.* In its most general

sense, the stability of a floating body is nothing more than its

tendency to remain in, or return to, a given position of equilibrium.

But wherever this tendency exists, it so exists by virtue of the

« righting force," which is called into play upon the disturbance of

the body from that given position. Nothing can be more natural,

and nothing more convenient, than to identify this righting force

with the stability which it produces, and thus to designate the

righting force at any angle of inclination (within the range of its

operation) the " stability " at that angle. It is of no consequence

whether the angle of inclination be small or great, provided the

tendency throughout the inclination always is to restore the body

to the given original position of equilibrium. Thus far all is clear,

and no objection need, we think, be taken to the current use of the

word stability to signify the righting rforce throughout this range.

Supposing, however, the inclination of the body to be carried so

far that the righting force disappears, and then continued farther

still until a new position of stable equilibrium is reached, we shall

now have a new righting force coming into play, of the same kind,

and acting in the same direction as before ; but it is manifest that

we can no longer speak of this force as representing the " stability,"

except on the clear condition that we now refer the word, and the

thing, to the second position of equilibrium, and not to the first

position. Now Professor Osborne Eeynolds is perfectly correct in

pointing out that this most essential distinction has not been always

observed, and that, in speaking of ships, mere righting force acting

in a given direction, has been spoken of as stability without any

plain and rigid reference to the position of equilibrium, to which,

and to which alone, it has relation. It is easy to see howr this has

been brought about. The practice of investigating the stability of

ships at large angles of inclination has sprung up in quite recent

years ; and in ships of ordinary type, and in ordinary conditions,

the positive righting force, or stability, which has been found to

exist, has always had reference to the upright position of the ship,

and the word stability has been, therefore, freely used to express the

force turning the ship towards that upright position. Recent events

have, however, brought to light the fact—which had not previously

been observed—that actual ships (no less than such prismatic bodies

as Atwood and other writers have considered) sometimes, in some

* The following observations are taken mainly from an article contributed by the

Author to the Contemporary Review for November, 1883.
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exceptional conditions, are characterised by the fact that the righting

force, tending to return the body " towards " its upright position,

either did not exist, or else disappeared at comparatively small

angles of inclination
;
and, after a phase of instability had been

passed through, reappeared again while the angle of inclination was

still within reasonable limits. In the case of a prismatic body

25 feet square in section, immersed 5 feet, and having its centre of

gravity 1 foot above its centre of form, very small instability exists

up to about 20 degrees of angle, a series of capsizing forces operating

up to that inclination ; then a position of stable equilibrium is

reached, and there commences (as the body is further inclined) a

righting force of small amount, acting, of course, in the opposite

direction to those which have been capsizing the body, and, there-

fore, tending to return the body towards the upright position, but

only so far towards it as to reach the second position, of equilibrium

—viz., that at which the body floats inclined at an angle of

20 degrees from the upright ; thus it is very easy to see how these

later righting forces happen to have been spoken of as so much
stability, seeing that they oppose and overcome the further cap-

sizing of the body ; but it is equally easy to see that, as Professor

Reynolds has pointed out, the stability so spoken of is not stability

at all in the sense of restoring the body to its erect position, but is

so only in the sense of restoring the body towards that position.

That which is true of the prism spoken of may be, under suitable

conditions, equally true of a ship
;
and, we have now to add, is true

(not quantitatively, but characteristically) of very many large and

fine ships of modern type
;
and, being true, gives rise to some grave

accidents, and to many more anxieties and apprehensions. Such

vessels, when in the condition described, refuse to float upright, but

loll over, if allowed, to whatever angle it happens to be at which

they find a position of stable equilibrium.

It becomes important to point out that no danger is necessarily

involved in a ship, under some conditions, having to lie over to even

a considerable angle in search of a position of rest. A ship may lie

in harbour or in dock just as safely at 12 or 15 or 20 degrees from

the upright as in an upright position
;
nay, if the inclined position

be one beyond which the righting forces become great, she may
even be safer than some other vessel which has stability in the

upright position, but the stability of which may be small in

amount or in range. We may even go further than this, and state

with perfect confidence, that some ships which have little or no
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stability in the upright position, but which gather large stability

as they incline, and go on increasing it up to very large inclinations,

may be safer, very much safer, in storms at sea than some other

ships which have considerable stability near the upright, but lose it

as the inclination becomes great. On the other hand, it requires no

special skill or judgment to see that when ships are, in any given

condition of stowage, incapable of standing upright or nearly so,

and are liable to loll about with small changes of weight, they are,

in fact, exposed to classes of risk from which they would otherwise

be free. We had a striking instance of this some time ago, in the

case of the Austral. In the state of her cargo, stowage, &c, on the

night of her sinking, she was exposed to a danger from which a

ship endowed with large initial stability under like stowage would

have been free. A moderate quantity of coal put on board through

her starboard ports sufficed to bring one of her coaling ports under

water. The sea poured in, and, further inclining her, brought

another and somewhat higher port under the surface ; and a com-

paratively short time sufficed to sink, in this manner, a splendid

ship. It is perfectly true that there were many ways of preventing

the catastrophe. Water-ballast might have been let in to increase

the stability ; the coaling ports might have been closed as they

came near the water's surface ; the coaling-lighter might have been

shifted in good time to the opposite side of the ship. But none of

these things was done, and the ship was sunk. The owners appear

to have been very careful and painstaking in framing their orders,

and to have understood their ship quite well. The probability is

that had their orders been strictly obeyed the accident would not

have happened. But the fact remains that the ship was sunk, and

that she was so sunk from those in charge of her either not under-

standing how to handle her, or not taking all the means necessary

for handling her properly. The case is mentioned here only because

it seems to illustrate in a remarkable manner the fact that the care

in handling which modern ships receive is not equal to their

requirements; and that one of two things, probably both, ought

to happen—either ships should be built so as to possess greater

stability, when discharging and loading, than some of the finest of

them now possess, or else the competence of those who have charge

of them should be better seen to,
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A. TEEATISE
ON"

THE STABILITY OF SHIPS.

CHAPTER I.

Primary Conditions of Flotation and Stability—Stability of Submarine Vessels-

Stable and Unstable Equilibrium—Stability of Partially-Immersed Bodies

—

Indifferent or Neutral Equilibrium—The Metacentre— Stability of a Homo-

geneous Cylinder with its Axis Horizontal—Curve of Flotation—Surface of

Flotation—Curve of Buoyancy—Surface of Buoyancy—Stability of a Cylinder

which is not Homogeneous—Curves of Stability—Double Branch Curves of

Stability—Stability of Homogeneous Prisms of Square Section.

Any body placed freely in still water, or in any other fluid at rest,

will sink if its weight exceed the weight of the fluid which it

displaces. If its weight be less than that of the fluid which it

would displace if wholly immersed, it will float with only a portion

of it immersed. If its weight be exactly equal to the weight of

the fluid which it displaces when wholly immersed, it will become

wholly immersed.

The first case—that of a body which sinks—needs no special

consideration here, although it must be acknowledged that it is not

wholly devoid of occasional practical interest*

In the last case—that of a body whose weight and displace-

ment are equal when it is wholly immersed—which has sometimes

to be dealt with in connection with submarine vessels, the position

which the body will assume, and in which it will remain, will be

determined by the relative positions of the body's centre of dis-

placement and its centre of gravity.

If the body in this case be homogeneous throughout, its centre

of gravity must of necessity be coincident with its centre of dis-

placement; its weight will act downwards, and its buoyancy (which

is equal to, and the effect of the displacement) will act upwards

through the same point. These being the only forces acting upon

* There were incidents connected with the foundering of the Captain, for example,

which required and received some investigation.

1
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the body, there is obviously no force interfering with its equilibrium,

and causing it to revolve about an axis, and it will therefore remain

in any position in which it may happen to be placed.

If the body be not homogeneous throughout, it may nevertheless

happen to have the weights of its parts so disposed as to bring its

centre of gravity into coincidence with its centre of displacement,

when the condition of undisturbed equilibrium in any position just

described will still hold.

If the body be not homogeneous, and if its centre of gravity be

not coincident with its centre of displacement, it will not remain

freely at rest, but will turn more or less round, unless and until

its centre of gravity comes vertically under its centre of displace-

ment. For in every other position it is obvious that it will be

subject to two vertical forces acting in different vertical lines, and

these will constitute what is known in mechanics as a " couple/'

and will turn the body round.

For example, if the accompanying diagram, Fig. 1, represent

a submarine vessel equal in
Fig.l.

total weight to the water

which it displaces, D being the

centre of its displacement, and

G its centre of gravity, and if

G Z be drawn at right angles

to the vertical lines, D B and

GO, along which the buoyancy

acts upwards and the gravity

downwards respectively, it is

manifest that these two forces

must tend to turn the body

with a leverage proportional
~~~ —" to G Z ; D will rise or G will

descend, or more strictly, both these movements will occur ; and

as they take place, G Z will shorten until D comes vertically over G,

when it (G Z) will disappear.

The forces of gravity and buoyancy will then neutralise each

other and the vessel will remain at rest.

This condition of equilibrium and rest would equally exist if

D should be placed vertically beneath G; but on the slightest

disturbance of the vessel from its position, the upward tendency

of the buoyancy acting through D, and the downward tendency

of the gravity acting through G, would be free to take effect.
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and the vessel would turn round until G had placed itself vertically

beneath D. Should a slight temporary disturbance produced by
some external cause now occur, the vessel would return as soon as

free to this position, with G beneath D. In this position the

equilibrium would, therefore, be what is called stable ; whereas
the equilibrium, which, as we have just seen, might exist when G
was situated vertically over D, would be unstable, the vessel on the

slightest disturbance abandoning that latter position, and moving
round till the position of stable equilibrium was reached.

It is necessary to include positions of unstable equilibrium within

the view of our investigations, because in them the mathematical

conditions of equilibrium are fulfilled, and because it is impossible to

investigate the stability of many modern ships without giving

careful consideration to the amount and range of their instability.

The case of a body less in weight than the fluid which it would
displace if wholly immersed, and which, therefore, floats partially

immersed, is that which chiefly claims our attention, and which we
proceed to consider.

If the body be homogeneous it is obvious that its centre of

gravity will be situated higher than its centre of displacement,

because the displacement is wholly below the water's surface, while

part of the weight is above that surface. But it does not by any
means follow in this case (as it did in that of the wholly immersed
body), that the equilibrium resulting from the centre of gravity

being vertically over the centre of buoyancy will necessarily be
unstable ; on the contrary, the centre of gravity will usually be

higher than the centre of buoyancy in ships of ordinary form and
character, and we, therefore, see thus early that vessels wholly

immersed, and those but partially immersed, are under very different

conditions as regards stability.

Instead of entering at this stage of our subject upon any general

investigation of the stability of a floating body, it may be well to

lead up to such an investigation by considering the conditions

which hold in the cases of certain bodies of forms simpler than
those of ordinary ships

;
such, for example, as cylinders and

prismatic bodies of various sections, observing that for all pris-

matic bodies their lengths may be left out of consideration, as the

stability of every unit of length will necessarily be the same, and it

is only necessary to attribute to them sufficient length for the

purpose when it is desired that they shall be supposed to float with
their longitudinal axes horizontal,
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And first, let us take what is perhaps the simplest case of all,

viz., that of a homogeneous cylinder circular in section. A moment's

consideration will show that, whatever be the degree of immersion

of this body, every position will be one of equilibrium, because the

centre of gravity will always be in the centre of form, and the

centre of buoyancy will necessarily be always beneath it, as the

immersed section is symmetrical about a vertical line through the

centre of form. If moved round from a position of equilibrium

through any angle, large or small, into a new position, the centre

of buoyancy will still be vertically beneath the centre of gravity,

and there will consequently be no force operating either to diminish

or to increase the rotation. This state of things introduces us to a

third kind of equilibrium, which is known as indifferent or neutral

equilibrium.

Before leaving this simple case of the cylinder, let us take note

of the fact that in every position the upward force of buoyancy is

directed through the centre of the body, so that successive inter-

sections of such lines of upward force are concentrated in this one

point—which we shall afterwards see to be the "metacentre," and

the only metacentre of this particular body, the word " metacentre"

being here employed in its original and legitimate sense, viz., as

signifying the point above which the centre of gravity cannot be

raised compatibly with stable equilibrium. This point is also in

the present instance the centre of gravity, as it is the centre of the

homogeneous body.

The water-line at which the body floats may be at any depth

less than the diameter, and if the body be caused to make a

complete rotation through 360°, its successive water-lines situated

indefinitely near to each other,

Fio$- will successively touch a circle

described about the centre of the

body, with the. distance between

that centre and the middle point

of the water-line as a radius.

Let WCL in the accompanying

diagram, Fig. 2,representin section

such a floating body, immersed

we will suppose, to the water-

line, WFL. Let M be the centre

of form, and it will also be, as we

have said, the metacentre and the centre of gravity likewise,
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always remaining at a fixed distance below the surface. De-

scribe the circle F F' about M with the radius M F, and this

circle will obviously come to the surface, point by point, as the

body rotates. Coming thus to the surface, and always therefore

having a point coincident with the water-line, or line of flotation, it

is called the "curve of flotation" for this body; and if the length of

the body be taken into consideration, the point, of course, corresponds

to a straight line, and the curve of flotation to a cylindrical surface

(of which the curve is a section), this surface being designated the
" surface of flotation." It is manifest that all the water-lines are

tangents to the curve of flotation, and all the water-planes are

tangents to the surface of flotation. Further, if B be the centre of

buoyancy in Fig. 2, let us describe the circle BB' about M with
the radius MB. A moment's reflection will show that as the body
is rotated, as before, each point of this circle BB' must become in

succession the centre of buoyancy, because that centre must always
in this case lie at one uniform distance below the water's surface;

and as M must do the same, the distance of the centre of buoyancy
below M must be constant. In other words, the points in BE;
the locus of the centres of buoyancy, must lie in a circle around
M as stated. The circle BB' is therefore called the curve of the

centres of buoyancy, or more briefly the " curve of buoyancy;'' and,

length being again considered, the cylindrical surface of which this

is the section is known as the " surface of buoyancy."

Owing to the simplicity of the figures which we are here con-

sidering, these " curves" of flotation and buoyancy happen to be
circles; but, as we shall see hereafter, these are very special cases

only, and generally we shall find them of more complex curvatures.

It is scarcely necessary to acid that in the instance we have been

considering, the only effect that would result from increasing
'

or
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diminishing the draught of water of the cylindrical or spherical body

(all the time it remains homogeneous) would be to vary the sizes of

the circles BB' and FF'. As the body becomes more immersed,

the circle F F' is enlarged, and the circle B B' is reduced in diameter,

until,, when the body is almost wholly immersed, FF' lies close to

the circumference WCL, and BB' is almost reduced to the point

M, as in Fig. 3. "When the body is but very slightly immersed, the

circles FF' and BB 7 become almost coincident with WCL—see

Fig. 4 ; and when the body is just half immersed (being one-half

the specific gravity of water) the curve or circle of flotation becomes

a point coincident with M, the circle BB" having a radius of

4<d
where d is the diameter of the section.

4<d
being the distance

Fig.5.

7T'" O 7T

down of the centre (or centre of gravity) of the immersed semi-circle

from the water-line.

Let us next consider the case of a cylinder of circular section

which is not homogeneous, and which has its centre of gravity

situated in some point other than the centre of form, as in Fig. 5,

in which G represents the centre

of gravity, and WL the water-line.

In this case all those elements

which depend solely upon form

will be the same as in the last

case for corresponding immersions,

and therefore M, the centre of

form, will be the metacentre as

before, and the curves of flotation

and buoyancy will also remain as

before for any given immersion.

But the condition of the body as regards equilibrium and stability

will be very different.

If the body be first floated in the position shown in Fig. 5, with

the centre of gravity, G, situated vertically below the metacentre,

M, and if an inclining or rotating force be now applied, it obviously

cannot take effect and turn the body round, without raising the

centre of gravity, G, nearer to the water's surface ; if this be done,

and if the angular motion be less than 180°, and the body be now

left free, the centre of gravity, being left unsupported, will fall back

again into the position shown. This, therefore, is a position of

* The Greek letter pi {n) is used to denote the ratio of the circumference of a

circle to its diameter, which is expressed by the quantity 3*14159..., that being the

circumference of a circle whose diameter is 1.



CHAP. I.] NON-HOMOGENEOUS CYLINDERS* 7

stable equilibrium. If the body be turned round through 180°,

and the centre of gravity be thus brought vertically over the

metacentre, M, the forces of the buoyancy and gravity will again

be in equilibrium, but the equilibrium will now be unstable, and on

the slightest disturbance (which could not, in practice, be avoided)

G would again fall into the position shown in Fig. 5. There

obviously is no other position of equilibrium besides the two just

mentioned, and but one of them is a position of stable equilibrium.

This is true wherever the point, G, may be situated between M
and the circumference of the body ; but the leverage with which the

body will be urged back to the position of stable equilibrium, after

having been moved out of it, will be materially influenced by the

position of the centre of gravity. If G be very near to M, that

leverage will be proportionately small ; but if G be very near the

circumference, it will be proportionately greato Let G' and G",

Fig. 5, illustrate these positions of the centres of gravity respectively

when the body has been turned round through 90°. In the former

case, the weight of the body, tending to turn it back round M, will

act with the small leverage, G' M, and in the latter case with the

large leverage, G"M; and the righting moment will be proportionate

in each case to the leverage. This moment, thus depending only on

the weight of the body and the distance, M G, will be the same,

whatever the immersion (although immersion and weight are

themselves of course practically related), but will vary with every

change of angle. It is easy to see, from Fig. 6, what the righting

moment must be for any given

position of G, and at any given Fig, 6.

angle of inclination. The buoy-

ancy acts upwards through B and

M, the gravity acts downwards

through G, and these forces are

equal
;
they therefore constitute

a " couple," the arm of which is

G Z, G Z being drawn from G at

right angles to BO. It will be

seen that G Z = GM sin. 0, if 6

be the angle of inclination from

the upright position. Starting from nothing, when G is beneath M,

the righting moment therefore gradually increases in this instance

up to 90°, when it reaches a maximum, and is there equal to the

weight of the body multiplied by the distance of the centre of



8 STABILITY OF SHIPS. [CHAP. 1

gravity from the centre of the body ; it then diminishes with further

inclinations, and vanishes at 180°, when G comes vertically over M.

From 180° to 360° it will clearly pass through phases the reverse of

those previously passed through, for it matters not whether the

motion be continued from 180° or reversed. By giving any required

values to the weight, to GM, and to the angle of inclination, the

righting moment under all possible circumstances can be determined.

Having now before us a case, however simple, of varying stability,

and exhibiting variations of righting force under different conditions,

it will be well to observe that these variations may be conveniently

illustrated graphically in the form of a "Curve of Stability." The

instance before us is so elementary, and so easily understood without

graphic aid, that it would not be worth while, for the immediate

purpose only, to further discuss it ; but the principle involved in the

construction of curves of stability (or, more correctly, "curves of

righting forces") is always the same, and general principles are

often most easily and effectively illustrated by elementary examples.

We will, therefore, take as a first example the case shown in

Fig. 6, and assume the centre of gravity, G, to be one-half the

radius from M, so that M G is equal to one-fourth the diameter

of the floating cylinder. Now we can take either of two measures

of righting force, as we please, for we can either take the length,

G Z, at each angle, which we may call the righting "lever;" or

we can take the length of that lever multiplied by the weight

of the floating body, which we can call the righting "moment;"

and it is obvious that the series of results obtained will differ

only in being the one a fixed multiple of the other. Let us

leave the weight out of consideration, and deal with the righting

levers only. These will be represented at every angle of inclina-

tion by the length of GZ at that angle, and we may presume

these to be ascertained at a series of positions as numerous as

we please; for example, at intervals of 10°. This would give

us 36 different lengths of G Z for the full rotation of 360°, or 18

positions for each 180° of inclination. Our object is to exhibit

graphically the variations of G Z, and that may best be done by

setting them all off from one base-line, A B, Fig. 7, which we

*»—-> Fig. 7.

0
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will take to represent by its length the 360° of angle. Dividing

this line into 36 parts, we may then set up as an ordinate at

each of the points so obtained the length of G Z, corresponding

to the inclination, and through the extremities of the ordinates

so obtained draw a curved line, C C, Fig. 7. With this curve

before us we have the means of ascertaining by simple measure-

ments the length of the righting lever at any angle of inclination

whatever. An inspection of the curve shows that regarding the

upright position, with G beneath M, as the starting position,

indicated by A, as the body is by external force inclined as the

arrow indicates, a righting lever comes into play, and increases

until an angle of 90° is reached, there attaining a maximum

;

beyond 90° the righting lever still exists, but it now begins to

diminish in amount until an angle of 180° is reached, where the

righting ordinate vanishes, the curve there crossing the base-

line. At this point G is above M ; there is therefore equilibrium,

but it is unstable. Beyond 180° the curve falls below the base-

line, and remains there till 360° of inclination is reached, or in

other words, till the original upright position is resumed, the

ordinates varying in length exactly as they varied above the

base-line during the first 180° of inclination. These ordinates

being now (from 180° to 360°) always below the base-line, or

negative in amount, signify that the effect of the inclining lever

is now, not to turn the body back to its original position by

reversing its motion, but to further rotate the body in the direc-

tion in which it has been forcibly moved, or in other words to

completely capsize it. This curve represents, therefore, the stability

(or instability as the case may be) of the vessel, and has come to

be called—somewhat loosely, but too generally now to be altered—

the " curve of stability " of the body in question.

This curve will always be of the same type as in Fig. 7 (for

an unbalanced circular cylinder floating with its axis horizontal),

whatever be the position of G in the body. The curve will

always reach its maximum at 90°, always cross the base-line at

180°, always reach its negative maximum, so to speak, at 270°,

and always come to the base-line again at 360°
9 But the ordinates

of the curve will obviously decrease in length as the centre of

gravity of the body is placed nearer and nearer the centre of

form, and increase in length as it recedes from that centre, since

for any given angle whatever G Z of necessity varies directly

with G M 6 The largest righting lever that such a body as this
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can have is obtained when the centre of gravity is in the circum-

ference (as we may for a moment imagine it to be), and the body

is inclined at 90° from the upright. The righting lever is then

equal to the radius, and this is true whatever be the degree of

immersion of the body. The righting moment will also be the

greatest with the centre of gravity in the circumference, but in

this case the weight of the. body must also be at a maximum,

which it will be when it just, and only just, floats.

We thus see that this simple form of body offers to us the

means of constructing a whole series of curves of stability, all

following a given law, but differing with every change of position

of the centre of gravity. The law by which the ordinates will

vary in the respective curves is simple enough, for they will be

in each curve directly proportional to G M. As GM gets small

all the ordinates of the curve will diminish, and the curve itself

will be ultimately merged in the base-line. In Fig. 8 are shown

four different curves of stability—which are here curves of upright-

ing and inclining levers— corresponding to the following four

positions of the centre of gravity, viz., when GM is equal to

one-fourth, one-half, and three-fourths of the radius of the body

respectively, and also when it equals the radius itself. The

ordinates are of course in these proportions to each other.

The reader who is considering this subject for the first time

must be careful to bear in mind that in framing the above curves

of righting levers, it has been assumed that the body has been

inclined always in one direction, viz., that indicated by the arrow

in Fig. 6. It will be clearly seen that had the body been rotated

in the opposite direction precisely similar curves would have been

obtained. But those who are unaccustomed to such curves often

experience a difficulty in understanding them from the fact that,

as usually constructed they do not exhibit to the eye that which

it seems natural to expect, viz., curves that are symmetrical on

either side of the upright position and on either side of other

positions of equilibrium. If we take Fig. 7, for example, we know
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that, in the upright positions, at A and B, the stability of the

body is the same whether we incline it to the right or to the

left, but the curve of stability (if continued far enough), rises

on the right of each of these points with positive ordinates, and

descends on the left of them with negative ordinates. The explana-

tion is simple enough, viz., that the curve is constructed on the

assumption that the rotation takes place in one direction only,

and that motion in the opposite direction is provided for by

simply changing the sign of the ordinates—making negatives

positive and positives negative.

But it will greatly facilitate the ready comprehension of these

curves by amateurs and students if we give to them two equal

branches—the branch to the right representing the righting levers

(or (i moments,'' as the case may be) when the top of the floating

body is inclined to the right, and the branch to the left representing

the levers when the top of the body is inclined to the left. These

two branches will usually be precisely alike for ships, and one of

them will, therefore, be superfluous for purposes of calculation ;
but

the second branch will be very far from superfluous to many

persons among whom it is desirable to diffuse a sound knowledge

of the stability of ships. Applying this method to the curves in

Fig. 8, and contenting ourselves with seeing the body capsize (or

lose all stability) to right and to left (which happens at 180° in this

case), the curves will assume the graphic form of Fig. 9, In referring

Fig.9.

to curves so constructed, it will always be understood that ordinates

above the line will be righting ordinates tending to return the body

to the position from which it was started, until the curve first crosses

the base-line, either to the right or to the left. The ordinates, then

falling below the base-line, are capsizing ordinates, tending to con-

tinue the inclination previously given to the body.

Owing to the special condition of the cylindrical body thus far

under consideration, in which positive ordinates do not reappear until

the body has made a complete rotation, it is undesirable to pursue

this branch of the subject further at present ; but hereafter we

shall have cases to consider in which positive ordinates reappear at
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much smaller angles, and then we shall take occasion to show

that although their reappearance signifies the reversal of the

capsizing forces, it does not signify any tendency on the part of the

floating body to return to the upright position.

We have seen that the cylindrical body has but one position of

stable equilibrium wherever its centre of gravity may be situated.

It is easy to show that this is the case by other than graphic means.

It is obvious, for example—in fact we have already seen—that

whenever the centre of gravity is not situated in the centre of the

body, the moment of the weight about M, at any given angle 0, is

W x M G x sin. 0 (see Fig. 6). All the time this moment has a

finite value there is a turning force in operation, and the body can-

not be in a state of equilibrium. When equilibrium exists this

moment must vanish. Now it can only vanish, under the condition

supposed, by sin. 0 vanishing, and this can only be when 0 = 0, or

0 = 180°. When 0-180°, the centre of gravity is above the rneta-

centre, and the equilibrium is therefore unstable. The upright

position when 0 = 0 alone remains, and this, therefore, is the only

position of stable equilibrium.

In the cylindrical bodies which we have thus far been consider-

ing, the resultant upward pressure of the buoyancy always acts

through the centre of the cylindrical section for reasons which are

obvious, or which the most elementary knowledge of hydrostatics

makes clear. If we now pass to bodies of almost equal simplicity of

form—viz., prismatic bodies with parallel sides, and suppose them to

be of square section, we shall find that the change from the circular

section to the square, simple as it may appear, involves very

different conditions of stability.
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First, let us consider the case of homogeneous prisms of square sec-

tion, and let us commence with a body one-half the weight of water,

and, therefore, floating with one-half its volume immersed. We will

place this body first in the position shown in Fig. 10, with its sides

vertical and horizontal. This will be a position of equilibrium,

because both its centre of gravity, G, and its centre of buoyancy, B,

will lie in the vertical line, G 0, and there is consequently no force

tending to rotate the body. We will place the body next in the

position shown in Fig. 11, with its diagonals horizontal and vertical

respectively. This will also be a position of equilibrium, because

both the centre of gravity, G, and its centre of buoyancy, B', will lie

in the vertical line, G C. We will finally place the body, as in

Fig. 12, in a position intermediate Fig.12.

between Figs. 10 and 11, and con-

sider how it is situated. As com-

pared with its situation in Fig. 10,

the following changes will have

happened :—Instead of the water-

line, WL, it will now (Fig. 12)

have a new water-line, W 1/ ; and

instead of the centre of buoyancy,

B, it will have some new centre of

buoyancy, B'. B' will obviously lie

to the right of B, because the body has been more immersed on that

side by the inclination, the triangle, 1/ G L, having been newly

immersed on the right side, and the triangle, W G W', having been

taken out of the water on the left side. The upward pressure of

buoyancy will act through B', and, when the angle of inclination is

exceedingly small, its line of action will, in this case, intersect G C at

a point, M, below G, as may be ascertained either by geometrical con-

struction or by calculation. This point, M, is the metacentre, being,

as we see, the intersection of two verticals through two centres of

buoyancy lying extremely near to each other, and corresponding,

of course, to two positions of the body which differ only by a very

slight angle of inclination, one of the two being a position of

equilibrium.
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CHAPTER II.

Fuller Consideration of the Metacentre—Bouguer's Original Use of the Word—Its

Precise Signification—Bouguer's " Metacentric " (M4tacentrique)—His Error

regarding it—True Character and Properties of the Metacentric—Pro-Meta-

centres—The Metacentric a Locus of Metacentres and Pro-Metacentres—The
Metacentric an Evolute of which the Curve of Buoyancy is the Involute—The
so-called "Shifting Metacentre "—Modern French Usage: "Initial Metacentre' 5

and Metacentre—Rules of M. Reech stated by M. Bertin—Ascending and
Descending Metacentrics—Examples of Simultaneous Descent of Metacentric

and Increase of Stability—Distinction between "Curve of Metacentres" and
e

' Metacentric Curve . '

'

We have now arrived at a point in our inquiries when it has become
necessary to consider somewhat fully the term " metacentre."

The French investigator, Bouguer, nearly a century and a-half

ago,* introduced the word metacentre into the nomenclature of naval

science. He employed it with specific reference to a ship floating

freely in an upright position, and for the specific purpose of indi-

cating that point in the vertical axis of the ship beyond which her

centre of gravity could not be raised without inclining the ship.

All the time the centre of gravity (which we presume to be in

the vertical axis) is situated below the metacentre, the ship will

tend to remain upright, and to return to the upright if slightty dis-

turbed, because as soon as she is inclined a little either to the right

side or to the left, the buoyancy moves out towards that side, and
the upward vertical thrust of the buoyancy, acting through the new
centre of buoyancy, tends to push her back to the upright position.

If the centre of gravity be raised to exactly the same height as

the metacentre, and the ship be now slightly inclined either way, the

upward thrust of the buoyancy and the downward drag of gravity

will both pass through the same point, and no further motion

need therefore ensue; the ship will, consequently, be in neutral

equilibrium, and if put back to the upright, will remain there. But
if the centre of gravity be raised above the metacentre, then, on a

* In his famous Traitt du Navire, published in 1746,
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slight disturbance of the ship, the upward vertical thrust of the

buoyancy will not resist the downward drag of the gravity, but
will co-operate with it, and further incline the ship. We have here,

then, a clear and precise signification of the word " metacentre," *

and we know that it is its original and true meaning.

But Bouguer went a step farther: the metacentre being, as we
have seen, the point at which a vertical through a centre of

buoyancy, closely adjacent to the original centre of buoyancy, cuts

the originally upright axis, Bouguer saw that if the ship were a

little further inclined, two verticals through closely-adjacent centres

of buoyancy might not, and often would not, intersect at the same
point of the originally-upright axis, or in that axis at all, but would
intersect at some point lying a little aside from that axis, and, with
ships of usual form and condition, would be situated a little higher

than the metacentre. If the ship were inclined a little further still,

the point of intersection of similar verticals through adjacent centres of

buoyancy would usually be a little higher up still, and a little further

aside from the axis, and so forth. This is illustrated in Fig. 13 (next

page), in which a curved line is drawn through the metacentre,

M, and through successive intersections of such verticals, at M
1? M2,

and M
3 . This curved line Bouguer called the " metacentric " (meta-

centrique), and it is manifestly the locus of the intersections of

successive verticals through adjacent centres of buoyancy, corres-

ponding to successive small inclinations of the ship from the

upright.

Bouguer made the mistake of supposing that the rise of the

metacentric above the metacentre, or its fall below it, indicated

increase or decrease respectively of the righting force or stability;

and many writers since have made the same mistake, some of them
still repeating it. But it really does nothing of the kind, as Atwood
showed at the end of the last century, and as we shall abundantly

show hereafter.

It will easily be seen, if we keep the ship still in mind (and

with a ship in an upright position Bouguer started), that the points,

Mv M2,
M

3,
&c, are not metacentres (although they have lately

come to be very frequently spoken of as such) in Bouguer's own
* " The point so found he calls the metacentre, as it appears to some instructed

persons, from its being the meta, limit or goal beyond which the ship's centre of

gravity may not rise. It is to be regretted that Bouguer only hints at the derivation

of the word. Another derivation, from the Greek m&ta
9
signifying change, and kenfron,

centre, does not materially differ from this, provided we understand the centre to be
the ship's centre of gravity."—Naval Science, vol. iii., p. 439, 1874,



16 STABILITY OF SHIPS, [chap. II,

sense of the term, not being in the original upright axis at all, and

therefore being incapable, in a ship so loaded as to float upright,

of fixing a limit in that axis above which the centre of gravity

cannot be raised. Of course if we dismiss the idea of a ship, and

have regard only to that of any floating body whatever, and suppose

that its centre of gravity can be shifted about just as we please (as

Dupin afterwards did for his general investigation), we are then

at liberty to assume any axis of buoyancy, or line of action of

buoyancy, as indicating for the moment the upright axis of the

floating body, and in that case any such point as Mv M2 ,
&c., may

be regarded as the metacentre for the time being. But however

useful such artifices as this may be for the purpose of determining

general principles, we must be most careful not to regard such points

as Mv M2 ,
&c, as the metacentres of any ordinary ship, yacht, barge,

floating dock, or any other like body with which we may have

practically to do,—unless, indeed, it should be made perfectly clear

that they have reference solely to some specified inclined position of

the ship.

It may be well, however, here to point out that each of these

points, of which the metacentric is the locus, has a property of

considerable importance, for it is the centre of curvature of the

curve of buoyancy at the corresponding point of it. We saw in the

last chapter that the curve of buoyancy is the locus of the centres

of buoyancy, and we have just seen that the metacentric is the locus

of the intersections of adjacent verticals through neighbouring

centres of buoyancy. Each point in the metacentric will therefore

be related to a corresponding point in the curve of buoj^ancy, and if

we join these two corresponding points by a straight line, this line

will be at right angles to the curve of buoyancy (i.e., to its tangent)

at that point, and will be also its radius of curvature at that point.

In Fig. 13, for illustration, MB is the radius of curvature of the curve

of buoyancy, B, B
1 ,
B

2 ,
&c,

at B
;
M

1
B

x
is the radius

of curvature at B
x ;
M

2
B

2

its radius at B
2 , and so

forth. And this being the

case, the curve, M, M
1?
M

2 ,

&c.—it may be mentioned

in passing—is the evolute

of the curve, B, B
1?
B

2 ,
&c,

which is therefore its in-
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volute. If we suppose a string to be led round a rigid curve,

M
3 ,
M

2 ,
M

15
and M, and carried down to B, and this string then to

be kept stretched and carried outwards from B, the point of the

string which touched B will now trace out the curve, B B
1
B

2 , &c.

It would be well if we could avail ourselves of this property

in giving a new name to such points as Mp M2 ,
&c, which we

might define, and which have been defined as " centres of curvature

of the curve of buoyancy," but this designation is much too

cumbrous for ordinary and frequent use. We certainly need a

name for them; they are not " metacentres," save in a very

strained, misleading, and wholly exceptional sense ; and yet we
shall have frequently to speak of them. As we cannot find for

them, as we should like to do, a designation that is both specific

and characteristic, we shall content ourselves with calling them
" pro-metacentres," and hereafter, when we speak of a " pro-

metacentre," we shall signify by that word a point on the meta-

centric ; or, what is the same thing, a point on the evolute of

the curve of buoyancy
;

or, what is still the same thing, a centre

of curvature of the curve of buoyancy. An example of an isolated

" pro-metacentre " is given in Fig. 14. A floating prism of square

section is there shown with

the axis, A C, inclined at an

angle of about 30° from the

upright ; B is its centre of

buoyancy, when WL is its

water-line. By giving the

body a very slight inclination

either wayfrom this position,

it will have a new centre of

buoyancy given to it. If

we incline it one way b will

indicate this; if we incline

it the other way V will in-

dicate it ; and for each of these positions there will be a new line

of upward action of the buoyancy. These lines of action, together

with that through B, will all meet or intersect in one point, M',

and this point will be the pro-metacentre.

The word "metacentre," qualified by the adjective "shifting,"

has sometimes been used in this country to signify the intersection

of the vertical line of upward action of the buoyancy, when the

ship is inclined at any considerable angle with the axis of the

2
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ship which was vertical when she floated upright. It can hardly

be said, indeed it cannot be said, that the so-called " shifting meta-

centre " is any metacentre at all in the original sense of the word,

because it really has nothing to do with limiting the height to

which the centre of gravity can be raised without disturbing the

upright position of the ship. But on the other hand it does indicate

a point in the ship's axis of symmetry, above which the centre of

gravity cannot be raised without inclining the ship beyond the

given angle which determines it, and this doubtless is why it

was designated the " shifting metacentre." It is obviously a point

that usually would shift as the angle of inclination became altered.

But although the term has this measure of justification, its use is

not very desirable, and is indeed likely, unless great care is taken,

to introduce misconceptions into the subject."
1

In France, nevertheless, the modern usage is to treat the

metacentre proper as the "initial metacentre/' and to regard as

metacentres the points which we have above seen defined as

"shifting metacentres." From a reply which that distinguished in-

vestigator, Mons. L. Emile Bertin, of Brest, has been good enough to

make to an inquiry of mine on this point, I find that in his opinion,

although the diverse acceptations given to the word metacentre at

different periods or in different countries have thrown the subject

into some confusion, the terminology adopted throughout France

for many years past has been such as to leave no room for diffi-

culties of interpretation. " The rules followed," says M. Bertin

(whom we translate freely), "which, if they are no older, were

certainly employed about 1840 by M. Beech, at the Ecole du Genie

Maritime, are the following :—

-

" Let C, Fig. 15, be the centre of buoyancy of the upright ship,

C
r
the centre of buoyancy for any inclination whatever, CM

1
C

1 ,

equal to 0; then the point, M1?
at which the direction of the

upward thrust of buoyancy through G
±
cuts the axis C G

7
is the

metacentre corresponding to the inclination 6.

* "We do not remember having met with the term shifting metacentre in any

previous publication, but we may observe it is still applied only to points on the

axis. This term has never appeared to us a happy one, and we have never regarded

it as fixed in the scientific nomenclature of shipbuilding in the same sense as the

term metacentre is. It is, we think, open to the very serious objection that it is

not a metacentre—i.e., a limiting position of the ship's centre of gravity, in the true

sense of the word, as separating stable from unstable or neutral equilibrium. It is

very likely to be misunderstood by the unlearned or the sciolist, and seems really to

have misled, (fee.."—Naval Science, vol. irh, p. 44L
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Mg.15.

Ci In the particular case in which 6 is very small, the thrust

of the buoyancy through O
x

cuts C G at the

point, M, which is the initial metacentre of ,i/
5

<

the ship.

" The variable length, C M, is usually denoted

by p ; the constant distance, C G, by a, and the

expression for the arm of the lever of the couple

of stability is therefore

(p — a) sin. 6.

The length, p— a, or GM, is the metacentric

height. The very form in which this is written

leaves no room for doubt about the fact that the

metacentre M is situated on the line C G.

"When we prolong the directions C^M^ C
2
M

2 ,
&c, of the succes-

sive thrusts of the buoyancy to their own intersections, the point

at which two such lines of action which are infinitely near cut

each other is named simply the centre of curvature of the curve of

centres of buoyancy, or a point of the metacentric evolute. It

sometimes happens that this last appellation is abridged to ' meta-

centric point that is a fault, because it may lead to confusion, but

it is a simple abbreviation, and an excess of brevity sometimes has

its inconveniences."

We have already adverted to the error into which Bouguer fell

when he wrote his chapter entitled " On more extended investiga-

tion on the metacentres, and on the curved line which these points

form when the ship is inclined,'' and assumed that where the meta-

centric ascended from the metacentre as the vessel was inclined the

vessel might be regarded as safe against oversetting, and that when
it descended she might be regarded as insecure* Instead of demon-
strating the inaccuracy of this view—to which we shall have

occasion to refer hereafter—we will here give a conclusive and

striking example of the contrary. Fig. 16 illustrates the case of a

prismatic shallow draught vessel of the section shown; M is its

metacentre
;
M

2
i is its pro-metacentre at 2J degrees of inclination

;

and M
5 ,
M

10 ,
M

20 ,
fcc, are its pro-metacentres at inclinations of 5,

10, 20 degrees, &c. Its corresponding centres of buoyancy, B> B
2
i,

B
5 ,
B

10 ,
&c, are similarly indicated.

The pro-metacentres are joined to their corresponding centres of

buoyancy by ticked lines (which are radii of Curvature), and from

the centre of gravity, G, the levers of stability, GZ
aS GZ6 >

QZm &c,
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M

Curve, of Stability

are drawn perpendicular upon these respective lines as shown.

These levers are employed in forming the curve of stability which

is engraved below the figure. Here we manifestly have the meta-

centric descending, and descending very steeply, almost as soon as

the inclination commences, whereas the stability (instead of diminish-

ing) increases very rapidly, and continues to increase until the vessel

is inclined to about 25 degrees. After that the stability begins to

diminish, but it is still very large, and would remain of substantial

amount until the vessel was inclined nearly on her beam-ends.

One such example is as good as a thousand, so far as the settle-

ment of the question goes, but we have devised the following

example in order to put the simultaneous increase of righting lever

of stability and decrease in height of pro-metacentre (i.e., decrease in
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the radius of curvature of the curve of buoyancy) from the very

commencement of the inclination beyond all doubt. We take two

homogeneous cylinders placed side by side, Fig. 17, combined into

one floating body of one-half the specific gravity of water, and

therefore floating one-half immersed, and with the centre of

gravity, G, in the water-line. On inclining this body through any

small angle whatever, it is obvious that the area of its water-line

section (which, as the body is prismatic, is sufficiently represented

by the breadth of the body measured along the new water-line)

must diminish, because whereas the water-line breadth is equal to

two diameters when the body floats upright, the water-line breadth

is only equal to two chords of the circular section when the body is

inclined, and every such chord of a circle is of necessity less than

its diameter. Meantime, the volume immersed will remain the

same, the portion of the one cylinder which is emersed by the

inclination being equal to the portion of the other which becomes

immersed by it, the point G remaining in the water-line, and at its

middle at every possible angle of inclination. With the immersed

volume remaining the same, and the water-line area thus dimin-

ishing from the very beginning of the inclination, and going on

diminishing until an angle of 90° from the upright has been reached,

it follows (for reasons which will appear hereafter) that the radii of

curvature, B
10
M

10 ,
B

20
M

20 , &c. (corresponding to inclinations of

10°, 20°, &c.) must also continually diminish from the very

beginning, or, in other words, the pro-metacentre continually

descends until 90° of inclination is reached, as shown in the figure.

At that angle the water-line will have diminished to nothing, and

will be coincident with the point G, the pro-metacentre will have
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descended to the centre of the immersed circle; the centre of

buoyancy also will obviously have travelled to, and have become

coincident with, that point. The body will therefore float in

equilibrium, but the equilibrium will be unstable, the centre of

gravity, G, being poised a half-diameter above the metacentre. But
while the pro-metacentre has thus been continually falling, and the

radius of curvature thus continually diminishing, there has always

been a force of stability at work tending to return the body to its

original upright position. In the Fig. 17 the righting levers, GZ
10 ,

GZ
20 ,

&c, are drawn as perpendiculars upon the successive radii of

curvature of the curve of buoyancy B, B
10,
B

20? &c., and a curve of

stability, Fig. 18, has been constructed from them.* It will be

Fig.18.

0° 10° 20° 30° 40° 50° 60° 70° 80° 90

seen from both figures that the arm of stability or righting lever

increases up to 40° of inclination or more, and then diminishes

gradually until it disappears at 90°, so that from the beginning of

the inclination up to 40° of angle at least we have a steadily

diminishing radius of curvature, and a steadily increasing amount

of righting force.

Something like a ship-shape may be given to this body (Fig.

17) by supposing it to be furnished with a flat bottom, and decked

over at the top, as indicated in Fig. 19. This will, of course, have

the effect of disturbing some of the symmetries and other condi-

*The dotted line in this figure relates to Fig. 19, as will "be presently seen.
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tions of the previous case, and of somewhat diminishing the

stability at every point, as indicated by the light dotted line in

Fig. 18, but the same essential characteristic of the pro-metacentre

falling while the stability increases will still be preserved.

From what has gone before, it will be seen that it is our desire

—and for very good reasons—to limit the application of the word
" metacentre" to those points which are really metacentres, and are

therefore situated in the upright axis of equilibrium, and have

relation to small inclinations only. We retain the term " meta-

centric " as descriptive of the locus of " pro-metacentres," and as the

evolute of the curve of buoyancy, but only as such, and not as

implying that, for a given draught of water there is, or can be,

more than one et metacentre." This metacentric has sometimes been

spoken of as a " curve of metacentres," and as a " metacentric curve;"

the former it is not; to the latter we can hardly object, because if

it be a curve, and be designated the " metacentric," it can hardly

be considered wrong, or even irregular, to speak of it as a meta-

centric curve. It will be well, however, to avoid this term as much

as possible in this connection, because, as we shall see hereafter,

there is another curve in common use which is, strictly speaking,

a " curve of metacentres," and which has also been sometimes called

the metacentric curve, but which is really a curve constructed by

means of true metacentres, for a series of upright positions at

different draughts of water. Although this latter curve, as we

shall hereafter see, is artificially constructed, it is a curve of meta-

centres, and has therefore been called a metacentric curve, although

a wholly different thing from the " metacentric.
5
' If the last-named

term be employed to indicate the locus of the pro-metacentres, and

the other curve (which implies different draughts of water) be

always called the " curve of metacentres," much confusion may be

avoided.
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CHAPTER III.

Further Conditions of Stability of Square Prisms—Relation of Loci of Centres of

Buoyancy and of Pro-Metacentres to Stability—Relation of Height of Centre
of Gravity to Stability—Determination of Position of Metacentres. and
Pro-Metacentres—Shift of Centre of Gravity—Expression for the Height of

Metacentre above Centre of Buoyancy—Expression for the Height of Pro-

Metacentre above Centre of Buoyancy—Remarks of Professor Elgar and Mr.
W. John—" Surface Stability "—French Method of Treating Stability-
Description thereof by Mons. Emile L. Bertin—Notes by Mons. V. Daymarcl
and Mons. Emile L. Bertin.

Fig. 20.

The square prism, Fig. 12, is in unstable equilibrium when floating

with its diagonals inclined. The symmetry of the body suggests
that we should place it next with its diagonals nearly upright

and horizontal respectively,

as in Fig. 20. The centre of

buoyancy when G C was up-

right, was B ; now that G C is

slightly inclined it is at b,

and the metacentre M is now
situated above G, as shown.

The equilibrium is therefore

stable in this case.

As the body was rotated

from the position shown in

Fig. 12 to that shown in Fig.

20, with W L for water-line,

it passed through an indefinite

number of intermediate positions, for each of which there was a

corresponding centre of buoyancy and a corresponding pro-meta-

centre. These would compose in each case a curve or locus, as we
have seen. In Fig. 21 are shown the curve of buoyancy, B

1}
B

2 ,
B

3 ,

&c, and the metacentric, or curve of pro-metacentres, M
1 ,
M9 ,

M
3 ,

&c. These curves are not here limited to correspond to an in-

clination through an angle of 45° only; but are carried on to an
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extent corresponding to a complete rotation of the prism through
360°. Eegarding the body as upright when in the position shown
in Fig. 21, with I H central and vertical, B

x
is the corresponding

centre of buoyancy, and Mj the metacentre. As the body inclines

in the direction indicated by the arrow, the centre of buoyancy
travels along the curve, B

1
B

2,
arriving, so to speak, at B

2 , when the

diagonal, J K, becomes upright, by which time the pro-metacentre

(starting from M
2)

has travelled along its curve, M
1
M

2 , and has

arrived at M
2 .

Continuing the rotation, the centre of buoyancy
and the pro-metacentre travel on, arriving at B

3
and M

3 respectively,

when W L has become upright; and so on as the inclination proceeds

until the whole rotation has been completed, the centre of buoyancy
having then passed through the points B

4 ,
B

5 ,
B

6 ,
B

7
and B

8 , and

Fig. 21.

m >-

J & jv

TV

B. /

AT. J™8\

L

^\/

arrived again at Bp the pro-metacentre having similarly arrived again

at Mr The symmetry of the curves thus traced out indicates what
the symmetry of the prism makes certain beforehand, viz.—that

the relative positions of the centre of buoyancy and of the pro-meta-

centre, which held when the body was upright, recur whenever the

sides are horizontal; and the relative positions which held when the

body floated in stable equilibrium with a diagonal vertical, recur

whenever any diagonal becomes vertical.

With the locus of centres of buoyancy, B
x
B

2 ,
&c, and the locus of

pro-metacentres, M
x
M

2 ,
&c, Fig. 21, before him, the reader will easily

see in what relation these stand to the stability, or righting lever.
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at any given angle of inclination, Let him join the centre of

buoyancy and the pro-metacentre, corresponding to any given angle

of inclination, by a straight line (prolonging the' line if necessary

till it passes the centre of gravity) and observe on which side of

this line the centre of gravity lies. If it lies to the right of this line

it will turn the upper or unimmersed part of the body to the right;

if it lies to the left of this line it will turn the body in the opposite

direction.

It is not, as Bouguer hastily assumed, a question of whether the

metacentric rises or falls, but whether the force of buoyancy, acting

through any given centre of buoyancy, passes the centre of gravity

on one side of it or on the other. Whenever the forces of gravity

and buoyancy act in different lines they will produce a turning

movement, and that will turn the floating body in one way or the

other, according as they , act on one or other side of each other.

When we are dealing with metacentres (lying in axes of equilibrium

of course) the stability or instability of the equilibrium is deter-

mined by the relative heights of the centres of gravity and the

metacentre; but, when we are dealing with pro-metacentres which

are not metacentres, and which are nothing more than intersections

of adjacent verticals through centres of buoyancy, their heights

relative to the centre of gravity do not usually determine whether

stability or instability exists, or in any way measure the amount of

it. This we saw with reference to Fig. 16; it appears also from

Fig. 22. In this figure, which represents the pro-metacentres,

centres of buoyancy, and curve of stability of a square prism

immersed ths of its depth, M is the metacentre
;
M5

the pro-meta-

centre at an inclination of 5°; M
10

the pro-metacentre at 10°; and

M
15
and M

20
those at 15° and 20° respectively. The pro-metacentre

rises above the metacentre as the body is inclined up to 10°, but

then it falls, and falls rapidly, as the inclination proceeds, lying

considerably lower than the metacentre at 15°, and descending to

M
20

at 20°. It is obvious that if the righting force, or arm of

stability, were proportionate to the height of the pro-metacentre,

there would be a great falling off in it from 10° onwards, because

of this rapid descent of the pro-metacentres. The curve of stability

which is given below the figure shows, however, that if the centre of

gravity be situated at the centre of form this is by no means the

case, for the stability goes on increasing up to 20°. This increase

of stability, as the angle increased, up to 20° would obviously still

hold, proportionally, if G were either raised or lowered.
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In so far as height is concerned, it is the position of the centre

of gravity which really does determine the stability at any large

Fig. 22

w

M

g'\

<?<

L

<

0" S" 10* 15° 2Q°

angle, This also will readily be seen from Fig. 22, in which the

lines joining the centres of buoyancy with their respective pro-meta-

centres are shown, the ordinates in the curve of stability being the

perpendicular distances of the point, G, from these lines. If we
now suppose the centre of gravity to be situated no longer at G
but at G', it is easy to see that we shall get in G' Z, G' Z„ G' Z

//?

and Gf Z,„, a new set of stability ordinates, all greater than those

obtained from G ; and if we suppose the centre of gravity to be
raised above G, say to Q", it is clear that we shall obtain another

set of ordinates, all less than those obtained from G. In fact, the

magnitude of the ordinates, such as those shown drawn, G' Z, G' Z

,

&c, will vary directly as the height of G varies, each ordinate being

the base of a triangle, the hypothenuse of which is the distance

between the point G and the point of the upright axis of equili-

brium, at which it is intersected by the line joining the centre of

buoyancy and the pro-metacentre (produced if necessary). The ordi-

nate is positive, and should be drawn above the base of the curve of

stability when this joining line lies upon that side of G toward which
the top of the body is turning ; and negative, and should be drawn be-

low the base-line when it lies on the opposite side of G. Nothing is

easier, therefore, than to construct curves of stability for a prismatic
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body of this form for any given degree of immersion, and for any given

position of the centre of gravity, when once the centres of buoyancy

and pro-metacentres have been determined for the given draught

of water. In Fig. 23 we have shown a series of such curves (or

Fig. 23.

rather half-curves, as they represent inclination one way only), for

the 25-feet prism immersed 8 feet, as shown in Fig. 22. In Fig. 23

the dark curve represents the stability (or righting levers) when

the centre of gravity is at the centre of the body ; the light curves

lying above the dark one represents successive lowerings of the

centre of gravity, 2 feet each time; and the light curves lying

below the dark one represent successive raisings of the centre of

gravity, 2 feet each time. The ordinate corresponding to a given

angle of inclination increases and decreases by an equal length each

time, for the reason before stated—viz., that it varies directly with

the height of the centre of gravity

measured on the axis of equili-

brium.

Before proceeding further with

the case of square prisms, let us

consider how the positions of their

pro-metacentres and metacentres

may be determined. In Fig. 24,

W L and W 1/ are successive

water-lines, making with each

other, we will suppose, the very

small angle 0. B is the centre of buoyancy corresponding to WL,

JFIg.24.



CHAP. III.] PEO-METACENTEES OF SQUARE PEISM. 29

and B' the new one
; g is the centre of gravity of the triangle

W F W, and g' that of the triangle, L F I/. F will be in the line

M B, and the two small triangles just mentioned will be equal. It is

easy to find how far B' is from B, because the travel of the centre

of buoyancy has been caused solely by the emersion of the small

triangle on one side, and immersion of the equal triangle on the

other side. This is equivalent to saying that a triangle of buoy-

ancy, so to speak, has travelled from the position in which its centre

of gravity was at g to one in which its centre of gravity is at g', and

from a well-known proposition of mechanics it follows that the

area of this triangle multiplied by g g
f

is equal to the whole

immersed area of the body multiplied by B B'.*

In other words, if v be the area of the triangle, and V the whole

immersed area, then

V x B B' = v x g g
f

;

and, therefore,

v - .BB' =
V 99-

B B;

is parallel to g g' (as we just saw in the foot-note), but we need

not dwell on this here, as the angle 6 is supposed to be exceedingly

small. Later on we shall see that in the case of ships, and for large

angles of inclination, we shall have to substitute for g g' the

* Professor Rankine, in his Applied Mechanics, states

this principle in so concise and neat a form that we are

induced to give it here. He says—" Let A B CD (Fig.

25) be a body of the weight, W0 , whose centre of gravity,

Go, is known. Let the figure of this body be altered by

transposing a part, whose weight is W"i, from the position

E C F to the position F D H, so that the new figure of

the body is A B H E. £et Gi be the original, and G2 the

new position of the centre of gravity of the transposed

part. Then the moment of the body relatively to any axis

in a plane perpendicular to Gi G2 will be altered by the

amount Wx . Gi G2 ; and the centre of gravity of the

whole body will be shifted to Gg, in a direction, G0 G3,

parallel to Gi G2 , and through a distance given by the

formula

Wi

or.

Go Go = Gi G2 W0

If horizontal lines be drawn from Gi and G0 in the figure, and perpendiculars be

dropped upon them from G2 and G3 respectively, meeting them in g2 and g3 , then the

horizontal distance through which the centre of gravity is shifted will be given by the

formula

Wi
Go f/o - Gi g2
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distance apart of their perpendicular projections upon the new

water-line.

Now, if we take y to represent the half-breadth of the body

(W F or F L), F g and F g
f

will, by a well-known property of

2
triangles, each equal y (the angle being very small)

;
and, there-

fore, W L or W L' not differing materially from the whole breadth

measured along the line, g g\

99 = -*y

(1.)

1
The area, v, of one of the triangles will be equal to y F L x L L'.

but v,^— tan. 0, and, therefore, L 1/ — F L tan, 0.

1 2

Hence, v = -y F L tan. 6

1

1 4
-y 2/

2 tan. Sxyj
Consequently BB; = y —

-|- y
s tan. 0

V
B B'

But 0 being very small,
^ ^ may be taken as equal to tan. 0

and B B' = B M tan. 0 « . . . . (2.)

It follows from equations (1) and (2) that

It will be seen later on that there is a general expression for the

height of the metacentre above the centre of buoyancy of a ship in

the upright position, of which this is a simple form, its simplicity

being consequent upon the fact that we are here dealing only with

a square prism, and are assuming that its volume is represented by

its sectional area.

* The general expression to which, we refer, and which we shall show the reason

of afterwards, is

2

BM=~ :y
•

The employment of the sign of integration (/) in this expression and in the next
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On looking over the previous demonstration it will be seen that

it will hold with perfect accuracy for the height of the intersection

of the two consecutive verticals through any two consecutive centres

of buoyancy whatever. For example, if the original water-line

(Fig. 21) instead of being W L had been W I/, and B' M had been

the original vertical, and the second water-line had been taken at a

correspondingly greater inclination, the demonstrations would have

been unaltered, and only the quantities (y, g g', &c.) would have

been different. The expression

2 vs

B M ™ — —
3 V

would have been precisely of the same form in all such cases, and

is, therefore, a general expression for the height of the pro-

metacentre above the centre of buoyancy for the square prism in

question at all angles of inclination.

It will be further seen that the form of the body below the

water-line does not enter into the demonstration, and that the

demonstration would have been precisely the same if we had taken

not a square prism, but a prism of any section whatever. Con-

sequently, the expression given is true for all prismatic bodies, and

the height of the metacentre, or of any pro-metacentre, above the

corresponding centre of buoyancy may be found from the fact that

it is equal to two-thirds of the cube of the half-breadth of the

corresponding water-line divided by the whole immersed area of

the section.

Some interesting consequences follow from these facts. First, it

will be seen that, assuming any given specific gravity for the prism,

and consequently a given amount of buoyancy (V being then

constant), the height of the pro-metacentre above the corresponding

centre of buoyancy, at any angle of inclination whatever, will be

directly proportional to the cube of the half-breadth of the body

measured at the water-line. Hence, for all positions of the body in

which the breadth at the water-line is the same, and the displace-

ment the same, the pro-metacentre and the centre of buoyancy will

be at equal distances apart. Some readers will find it interesting

and instructive to verify this by examining Fig. 26, in which the

chapter, need not trouble those readers who are without knowledge of the Integral

Calculus. It is merely a conventional and simple mode of indicating that a number

of small elements are to be added together into one sum, as will be more fully

explained hereafter.
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curves of buoyancy and the curve of pro-metacentres (or the meta-

centric) are again traced throughout a complete revolution of the

body.

It will then be seen that what has just been said is true, not

only of the cardinal points, so to speak, of the figure (shown already

in Fig. 21), but also of all equal water-lines. For example: at

Fig$6.

angles of 10°, 80°, 100°, 170°, 190°, 260°, 280°, and 350°, Fig. 26, the

water-lines are all equal, being symmetrical with reference to the

four sides of the figure ; those at 10° and at 350° being evidently in

immediate symmetrical relation to the side of the prism that is

lowest in the figure ; those at 170° and at 190° being in similar

relation to the side which is shown at the top, and so on.

The water-lines at 30°, 60°, 120°, 150°, 210°, 240°, 300°, and 330°

are all equal, and it will be seen that their pro-metacentres are all at

equal distances from their respective centres of buoyancy. Other

like symmetries will suggest themselves to the reader,
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There are other inferences that may be drawn. For example

:

with the body floating, as shown in Fig. 26, y, the half-breadth at

the water-lines remains the same for all depths of immersion, and

I
2

s\

therefore in the value of B M viz., 3 J
j
the numerator of the

\ "TV
fraction remains constant for all depths. B M varies therefore in

this particular case, inversely as V, becoming small as V becomes

large, and large as V becomes small But V varies directly as the

depth of immersion, and consequently the height of the metacentre

above the centre of buoyancy varies inversely as the depth of

immersion or draught of water. As the pro-metacentres all follow

the same law, it is quite easy in passing from one draught of water

to another to determine their positions.

We have already explained that the distances between the

centres of buoyancy and the corresponding pro-metacentres must not

be taken as measures of the righting forces or stability. But there

are symmetrical relations existing between the righting forces

arising out of the symmetry of the floating body which we are

considering. One of these is very important. Let us suppose in

Fig. 26 that the body, instead of being only immersed, as there

shown, to WL, is immersed to the line, W'L', marked 180°, which

is as near to the top of the body as the water-line, W L, shown in

the figure is to the bottom of the body. If we now suppose the

body to rotate as before through a complete rotation (360°) it is

obvious that it will have precisely the same water-lines as before,

in regular succession as before, only the parts which were before

emersed will now be immersed, and vice versa. They will have,

therefore, at every angle of inclination, precisely the same centres as

before (but centres of emersion and immersion interchanged), and a

well-known property of the centre of gravity provides that the

lines joining the centres of immersion with corresponding centres

of emersion must all pass through the centre, G. For the sake of

clearness this is illustrated separately and adapted to other draughts

of water, in Fig. 27, where W L is the water-line, the body being

inclined ; b V are the centres of the immersed and non-immersed

parts respectively, m m! the corresponding pro-metacentres, G Z and

G 71 are perpendiculars drawn from G upon bm and V m\ Let v

and v' be the volumes (represented by the areas, as before) below

and above W L respectively, or v the immersed and v
f

the out-of-

water volume. We will still designate the half of WL by y. We
3
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know that bm and V m' (shown on a larger scale on the side of the

figure) are parallel, both being perpendicular to W L, and therefore

the angles, GbZ and G&'Z', are equal. Consequently the right-

angled triangles, b G Z and V G Z', are similar, and G Z is to G 71 as

G&is toGft'.

But G b x v = G V X ^;

and therefore G Z : G Z' : : G b : G &'
: : v' : v ;

and GZxv^GZ'xv',

In other words, the righting moments—or rather capsizing moments,

as they happen here to be—are exactly the same, whether the body

be immersed to W L, as shown in Fig. 24, or be turned upside down,

and sunk till it floats at the same water-line—always providing that

the body be homogeneous. It follows, of course, that the stability

of the prism would remain unaltered if it were simply sunk to the

line, W L, provided its centre of gravity still remained in its centre

of form. Small immersion and small freeboard therefore are atten-

ded in this case by like conditions of stability.

Mr. F. Elgar* drew attention to this class of considerations as

follows f:—" Any homogeneous floating body which is symmetrical

about the three principal axes at the centre of gravity—such as a

rectangular prism or an ellipsoid—will have the same moment of

stability at equal angles of inclination, whether floating at a light

* Now Professor Elgar, of Glasgow University.

t In a letter to The Times, published September l s
1883,
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draught with a small volume below water, or at a deep draught

with a similar volume above water. JFor instance, if a homogeneous

prism of square cross section, the sides of which section are each five

feet in length, floats at a draught of water of one foot, it will, then

have precisely the same moment of stability at equal angles of

inclination, and consequently the same curve of stability through out

as if it were loaded—without altering the position of the centre of

gravity—till it had four feet draught of water and one foot of

freeboard. From this it follows that in such elementary forms of

floating bodies as these, lightness of draught has the same effect

upon stability as lowness of freeboard, and if a low freeboard is

unfavourable to stability, so also—and precisely to the same extent

—is a correspondingly light draught of water."

Mr. W. John, in following up this statement of the case,

said*:—"The proposition laid down is not confined to a body

symmetrical about three principal axes at the centre of gravity, but

applies to all homogeneous floating bodies of irregular form revolving

about a horizontal axis fixed only in direction. This is easily seen

in the case of a horizontal prism with any irregular form of vertical

section. The line joining the centre of gravity of the immersed

section with the centre of gravity of the section above water passes

through the centre of gravity of the whole section, and the distances

from the latter are inversely as the areas; and the moment of

stability being proportional to the immersed area, multiplied by
this distance, it will be seen at once geometrically that the moment
of stability will be exactly the same if the diagram be turned upside

down and the part before out of water be now considered the

immersed part."

We have seen this to be correct.

Before advancing further, it will be well to point out that,

although there is no such thing as a measurable righting force, and

therefore no such thing as stability, apart from a definite weight of

body, and a definite position of its centre of gravity, yet the fact of

the position and movements of the centre of buoyancy, and the

corresponding position and movements of the pro-metacentres, all

being dependent upon form alone, has induced authors to speak of

" stability due to "form," or "surface stability,'
7

as it has been also

called,

Mr, Thearle, in his useful work on Theoretical Naval Archi-

* In a letter to The Times
>
published September 5, 1883.
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lecture, says:—" By surface stability is meant that tendency of a

vessel, when inclined, to return to the upright position, which is due

to her form, irrespective of the influence due to her centre of gravity

not coinciding with the centre of buoyancy."

Mr. Mackrow, in his Naval Architects and Shipbuilders' Pocket-

Booh, puts the matter more explicitly by saying—" The moment

of statical surface stability is what the righting moment would be,

supposing the centre of gravity of the ship coincident with, the

centre of buoyancy."

It is sometimes convenient, as will more plainly appear here-

after, thus to separate the actual stability of a ship into two parts,

one of which is estimated upon the assumption of the centre of

gravity and centre of buoyancy being coincident, the other part

being an addition thereto, or subtraction therefrom, according as the

centre of gravity is situated below or above the centre of buoyancy.

It is perfectly obvious, however, and must never be forgotten that

stability measured upon the assumed coincidence of the centre of

gravity and centre of buoyancy is not in any true sense stability

due to form only, but stability which is just as much due to gravity

as any stability is ever due to it. Still it is, as we have said, some-

times convenient to assume the coincidence in question, and calculate

the stability then existing, and there is no particular reason why this

should not be called " surface stability," or
<c
stability due to form,"

to distinguish, it. It will be seen later on that Mons. V. Daymard,

of Marseilles, has turned to account this method of arranging

stability calculations with remarkable originality and success.

We will give additional fullness to this chapter, and exhibit the

French view of this doctrine of " stability of form," by translating

here the remainder of the remarks by Mons. L. Emile Bertin, of Brest,

part of which were quoted in the last chapter, adding a note

received* from M. Daymard. M. Bertin goes on to say:—

" The points of the metacentric evolute (which we here designate

pro-metacentres) ' play, in the study of stability, a rdle infinitely less

important than the metacentres. The only practical advantages

which one can discover in considering this evolute appear to be the

two following: In the first place, the directions of the upward

push of the buoyancy in wThich the stability is annulled sue normals

to the curve of buoyancy drawn through the centre of gravity, G,

and are tangents to the metacentric evolute ; and through the point

* October, 1883,
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G we can draw the tangents to the metacentric evolute more easily

and more exactly than we can draw the normals to the curve of

buoyancy. In the second place, the maxima values of the arm or

lever of stability (p — a sin. 6) are the normals drawn through G to

the metacentric evolute; the evolute indicates therefore the posi-

tions of the maximum couple of stability, which are not indicated

by anything in the curve of buoyancy. These two advantages 'are,

howxever, of little value now that it has become the usage to repre-

sent the couples of stability by a curve traced with rectangular

co-ordinates, with which we see, still better than on the metacentric

evolute, the points where the stability becomes nothing, and those

where it reaches a maximum.
" An examination of the two processes employed (in France)

for determining the stability of ships at divers inclinations will

complete the proof that there can exist no possible doubt re-

specting the signification of the words metacentre and metacentric

height

"In the geometrical process we calculate, by the aid of quadra-

tures, the moment p x HH' of the couple

of the two wedges, OLL, and OFF,, Fig. 28,

the one immerged the other emersed, for a

finite inclination, 0, and put

pxHH^PxCA sin. 0,

calling M the metacentre, which is the point

already defined. In the experimental pro-

cess, one obtains, by inclining a small model,

a series of values of (p— a) sin. 0 corresponding to divers values of 0,

from zero to about 35 degrees ; one deduces from the initial value

0f (p— a) and from the initial value of p which is known, the value

of a for the model ; the a of the model is replaced by that of the

ship, and thus is obtained the couple of the real ship's stability for

divers values of 6. All this supposes the values of p and those of

the metacentric heights, p— a, taken on the initial vertical through

the centre of buoyancy; this shows, at the same time, the practical

utility of the division of the metacentric height into its two terms,

p and a.

" Often one is not content with distinguishing on the vertical

axis, C G', the two heights, CM and C G, of which the difference is

the metacentric height (p-a); it is desired further to distinguish,

in the couple of stability P(p-a) sin. 0
?
the two parts
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P p sin. 0,

P a sin. Qa

The first of these moments is called the couple of stability of form,

and the second, which would be a capsizing couple, is called the

stability of weight There is nothing in this which is inexact in

itself, but there may result from it the false impression that there

exist two sorts of stability, the one of form, the other of weight

which are not of the same nature. There is a celebrated theorem

of David Bernoulli, relative to the equilibrium of a ship on waves,

which attributes to these two sorts of stability properties wholly

different, and from which Mr. Froude intuitively set the theory of

rolling free. Such notions of stability of form and of stability of

weight are definitely set aside. If we experience the need of giving

particular names to Pp sin. 6, and to p sin. 6, we can call them the

couple of geometric stability and the arm of the lever of geometric

stability.

" The rules and usages which I have just described so summarily

are doubtless not perfect. We can easily imagine more general and

more scientific representations of stability than those furnished by

metacentres. But these rules, very little modified since Bouguer,

have the advantage of being sanctioned by long practice
;
they are

understood in the same sense by all those who employ them, and in

these conditions certainly cannot lead to any error.''

The interesting note from M. Daymard, of Marseilles, bears upon

the question of complementary measures of stability, and was sug-

gested by the correspondence previously quoted respecting the

relations between the stabilities of a given ship at light draught and

with small freeboard, and is to the following effect. M. Daymard

says*:

—

" There are for any ship whatever, and for every floating body

which possesses a longitudinal axis of symmetry, four positions,

viz. : Nos. 1, 2, 3, and 4, Fig. 29, inclined at the angles, 0, 180° — 0,

180° + 6, and 360° — in which the areas of flotation are of

exactly the same form, and of which the immersed volumes are

alternately complementary ; v and V — v, V being the total volume.

To each of these immersed volumes, v and V — v, correspond two

positions of the ship with its axis vertical, the one upright, the

* The substance of this note has, since this was written, been appended by

M. Daymard to his Paper read (April, 1884) at the Institution of Naval Architects.
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other reversed, or bottom upwards, as Nos. 5, 6, 7, and 8, Fig. 29.

There exists a simple relation between the arm of the lever and

the moments of stability corresponding to the positions, Nos. 1, 2,

Fig. 29..

3, and 4." M. Daymard proceeds to deduce these relations in his

note, but as in doing so he makes reference to the notation employed

in his beautiful system of calculating stability, which we shall here-

Pig. so.

after consider, we will here briefly indicate in our own words his

mode of procedure, observing that we may for the present purpose

regard the bodies spoken of as of prismatic form. Take, for example,
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the case illustrated in diagram Nos. 1 and 2, and let dv d
2 ,

Fig. 30,

be the distances from the centre, 0, of the whole volume, V, of the

respective centres of buoyancy, Cv C
2 , of the upright displacements,

v and V — v. Let R
x ,
E

2 , be the corresponding centres of buoyancy
when the ship is reversed with like displacements, then we shall

have

C
x
0 = d

x

C
2
0 = d

2

0 R < d i -7- y-

1 1 Y qj

G
2
E

2
= d

2 + d
Xy

v

Now let l
t
and l

2
be the levers of stability corresponding to the

positions, Nos. 1 and 2 in Fig. 29, and we shall have, as may be

the more readily seen if Fig. 24 and its descriptive text are

referred to,

l
2 = (

d
2 + sin. e-ky^v

v

and if we call m1 and rn
2
the corresponding moments, we shall have

m
2
= IT ^2 + V (^1 — ^2)] S^n

' 0 — l
±
V

= [V d
2 + v (d

1
— c?

2)] sin. 0 — mv

If in the second case we require the righting lever and the moment
for placing the body in the reversed position, as in diagram No. 8,

we have, calling these V
2
and m'

2 ,
respectively,

^2 — — v

In these expressions it has been assumed that the centre of gravity

is always coincident with the centre of buoyancy, and consequently

variable. If G be a fixed centre of gravity, a, its height above C
x

and a', its height above C
2 , we shall have d

2
— a — d

1
— a — d

2
— a!

-GO, which we may call D 9 When the following expressions



CHAP. III.] INVESTIGATION BY M. DAYMAKD. 41

will hold calling the arms of the righting levers, B
1
and B

2 ,
and

the moments, M15
M

2
.

1st case : Volume v, inclination 6, for restoring the body to the

upright position, No. 5,

= l
x
— a sin. 0

M
x
= l

x
v — a v sin. 6.

2nd case : Volume V — v, inclination 180° — (9, for restoring the

body to the upright position, No. 6,

B9 = ( d, a) sin. 6 — h Tr
^-

M
2
= (d

t
— a) V sin. 6 — (l

x
v — av sin, 6)

= VDsin. e-Mr

If in the second case we require the arm of the lever, and the

moment for reaching the reversed position, as in diagram No. 8,

calling these B'2 and M'2 respectively, we shall have

B'a = L (Jr^— ~~ aV ®m > &

= — B
2

M y

2
= l

t
v — a v sin. 6 — (d

t
— a) V sin. 0

= M
x
- V D sin. 6

= - M
2

.

The equalities, B'2
— B

2 ;
M'2

= — M
2 , thus found by calculation

are also self-evident.

M. Daymard, in resuming, remarks that the effective moments

of stability in the cases, Nos. 1 and 2, with the fixed centre of

gravity, are different for the return to the upright positions, but

as there exists between them the relation, M
2
- YD sin. 6 — M

x ,

they are in a certain sense complementary,

v
* ch -rf ct is the distance of the centre of gravity, G, from the centre of

x V - v

buoyancy, Ri, of the volume, V - v, measured from the top of the body downwards.
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Fig. 81.
r

M. Bertin has pointed out the fact that the expression (given pre-

viously in this chapter) for the height of the metacentre above

the centre of buoyancy—which is

the radius of curvature of the

curve of buoyancy, where that

curve cuts the upright axis—can

be found by an independent process

of reasoning, and in a perfectly

~~ general form. The reasoning by

which he proceeds to establish

this is based upon the following

elementary property of the circle,

viz., in a circle, the moment of the

surface of any segment whatever,

say A S B, Fig. 31, about its centre, M, is equal to two-thirds of the

cube of the half-chord, O B, of the segment. Let R be the radius

of the circle
; y0, the half-chord 0 B ; and z

0 , the distance M 0

;

then taking MY and M Z as axes of co-ordinates, and using the

word " moment " as the equivalent of " moment of segment, ASB,
about the axis M Z " we have,

But we know that

and therefore

moment = 21 yzdz.
J 0

O

y
2 + z2 = R2

;

moment = 2 J R zd%,

whence
2 -

moment = ~ (R2 — s2)
2

3

Applying now this formula to the calculation of stability, if

the floating body be a cylinder or part of a cylinder, of which the

immersed portion is represented by its section, A S B, and of which

G is the centre of gravity, we see immediately that the condition

of equilibrium is that G should be immediately below M; and if

we put V (= A S B) to represent the immersed volume (and its
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weight likewise) we shall have as the moment of stability for

any inclination, great or small,

V x M G sin. 0.

Calling C the centre of buoyancy, and putting for M C, p, and for

G C, a (as is usual in France) this expression may be written,

V (p — a) sin. 0.

But the moment which we previously calculated being equal to

V p }
it is evident that we have

p ~~ 3 T
the value arrived at by the usual investigation for stability.

Passing from the cylindrical floating body to any other having

the form of any surface of revolution whatever, of which the axis

is at M, it is evident that the upward thrust of the buoyancy at

any angle of inclination will pass through the axis, the moment of

stability will be calculated as before, and (if we still call p the

distance between the centre of buoyancy and the axis M) its

expression will be

the surface of revolution being supposed, for the calculation of the

moments, decomposed into a series of slices of the constant thick-

ness, $
Ic

, in each slice the half-ordinate of the water-line breadth

is y0, and the surface of the transverse section s. The expression

for p may be written

2 St S y\
p 3 V

observing that 2 s S
!c
is the immersed volume.

Finally, " if we consider a floating body of any form whatever,"

says M. Bertin, "and give it infinitely small inclinations, the
thrust passes constantly through the centre of curvature of the

curve of buoyancy, which performs the same part as the axis, M,
in the two preceding cases. The displacements of the centre of

buoyancy depend only on the total volume immersed and on the

form of the water-line plane, the influence of the form of the trans-

verse sections being neglected, as it may be, for infinitely small
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angles. The radius of curvature of the curve of buoyancy is

therefore equal to the radius of the circle, which would form the

curve of buoyancy of a floating body, of the same area of water-line

plane and the same immersed volume, which had the form of a

solid of revolution. This radius is given by the formula

2 S
Jc
2 yl

p 3 V

which is therefore of general application.

"To resume/' adds M. Bertin, "the metacentre, such as Bouguer

defined it, is the axis of the floating body of revolution, to which any

other floating body whatever can be assimilated, from the point of

view of initial stability, and the height of the metacentre above the

centre of buoyancy can be directly established by this property."
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CHAPTER IV.

General Case : Stability of Body of Irregular Form—Present Treatment thereof purely

Statical—Effects of Inclination—Wedges of Immersion and of Emersion

—

Travel of Centre of Buoyancy—Righting Lever of Stability—Expression for the

same—Atwood's Fundamental Formula of Statical Stability—Work to be done

in Calculating a Ship's Stability—Construction of Curves of Stability—Example

of a Curve of "Moments" of Stability in Foot-tons—Importance of Observing

the Scale of Curves of Stability—Curve of B R's—Curve of Sines—Curve

of Stability represents the Difference between these Curves—Stability due to

Form at Various Draughts of Water—Mons. V. Daymard's Curves—Metacentric

Stability—Fundamental Expression for Stability at Evanescent Angle of

Inclination—Expression for Height of Metacentre above Centre of Buoyancy

—

Moment of Inertia of Ship's Plane of Flotation—Atwood's System of Calculation

of the ' * Wedges "— Several Conditions under which Stability remains

Unchanged—Atwood's Methods of Equalising the " Wedges"—The late Mr.

Scott Russell's Method of Treating Stability.

We now come to consider the general case of a body of irregular

form, like a ship, and to ascertain what will be the leverages with

which the weight of the body and the buoyancy of the water will

operate to give motion to the body, presuming it to be inclined

from its upright position, and then left free. Like Bouguer, and

Atwood, and Dupin, we shall for the present treat the problem as

one purely statical, and take account solely of the measures of

the righting or capsizing forces which we find at work. We shall

presume, as they do, what is of course not usually or really

practicable, viz., that the ship or other body, when brought to a

given angle of inclination, and into a given position which is not

one of equilibrium, is for the moment, while we estimate the forces

at work, herself as stationary, and immersed in water that is also

as stationary, as if the body were floating upright in perfectly

smooth water, and in undisturbed stable equilibrium. It is on

this assumption that all the ordinary formulae of statical stability

are obtained. As a matter of fact, when a ship is inclined at an

angle at sea, she is usually undergoing more or less oscillation,

with her own centre of gravity rising and falling, and has to acquire

her stability, whatever its amount, from the pressures of water

which is itself undergoing continual movement. There is no fixed

position of equilibrium for a ship so circumstanced. This point

has been very well stated by Mons. L. E. Bertin, who says,* " rolling

* See Naval Science, vol. iii. page 44,
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is produced by the alternate variations of the different forces which

the water exerts on the immersed hulls of ships. In consequence

of these changes the position of equilibrium of the ship, that is to

say, the inclination for which the moment of all the external forces

is zero, undergoes a periodic motion of the nature of the motion

of a pendulum. By virtue of its moment of inertia the ship

cannot follow the motion of the position of equilibrium ; it assumes

round this a proper motion, which would become an ordinary

pendulous motion if, at a given moment, the position of equilibrium

remained fixed in a certain direction. , In order then to understand

the phenomenon, we may consider rolling as resulting from the

superposition of a roll of equilibrium and of a proper roll."

All these matters have to be considered, of course, in any

exhaustive account of a ship's stability under ordinary conditions

at sea ; but for the present, as we have said, we shall leave these

dynamic questions out of consideration, and presuming the condi-

tions to be statical, and the water in which the body floats to be at

rest, shall proceed to examine the problem.

Let Fig. 32 represent a transverse section of a ship, of which

Fig.32.

W L is the line in which the plane of flotation, when the ship is

upright, is cut by the plane of the paper, the centre of gravity of

the whole ship being at G, which we will suppose to be either in

the plane of the paper, or projected perpendicularly upon it. Let B
similarly represent the centre of buoyancy of the whole ship, or its

projection. Now, suppose the ship to be inclined through an angle

of a few degrees, by some external force that acts horizontally, and
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therefore does not alter the displacement of the ship, and letW X/

be the new water-line, or the line in which the new plane of flota-

tion is cut by the plane of the paper. Let S be the point in which

the two water-lines,W L andW L', intersect each other. The point

S, may not now be found at the middle point of W L (as it would if

the angle of inclination were exceedingly small) because of the

irregular form of the ship. The effect of the inclination has

obviously been to lift out of the water a wedge-like body enclosed

between the two planes of flotation, of which body W SW ' is the

section, and to submerge on the opposite side of the ship another

somewhat similar wedge-like body, of which the section is L S I/.

These wedges, so to speak—commonly known as the wedges of

emersion and immersion respectively—will each be bounded on the

outside by the outside of the ship, and will therefore usually differ

in external form, but they will be precisely equal in volume, for

otherwise the whole displacement of the ship could not remain

unaltered. They will be of the shape roughly indicated in Fig. 33,

their size and form varying, of course, with every variation of size

Fig. S3.

=^|f// / / / /

and form in ships. In most ships the inclined water-line will not

be symmetrical about a longitudinal axis as the upright water-line

is, for the obvious reason that the breadths of ships differ above

and below any given water-line, especially near the ends, and more

especially near the stern. It is, in fact, as will more clearly appear

presently, to the irregular and unsymmetrical form of the wedges

of immersion and emersion that most of the labour and trouble of

calculating a ship's stability is due, Still, the two planes of flota-

tion must intersect each other in a longitudinal straight line

(presuming no change of trim to occur), and of that line we will

assume S to be the projection on Figure 32.

During the inclination and the consequent immersion of the

wedge whose section is LSI/ and the emersion of the wedge

W S W, the centre of buoyancy was necessarily changed, and we
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have already seen (in the last chapter, foot-note, page 29) where it is

now to be found. It will be situated at a point, B', Fig. 32, which

can be determined by the formula

BB'

=

where V is the whole volume of displacement, v the volume of

either of the wedges, and gg' the distance between the centres of

gravity of the wedges. B B' will be parallel to g g\ In the inclined

position of the ship, the buoyancy will now act vertically upwards

through B'M', and therefore perpendicularly to the new water-line,

W'L', while the weight of the ship acts vertically downwards

through G, in a line, G r, parallel to B' M'. From B draw B R, and

through G draw GZ, both parallel to W'L', or perpendicular to

B'M'.

"We are now able to see clearly what will be the righting force

acting upon the ship. We have only two forces to deal with, viz.,

the weight of the ship acting directly downward through G r, and

the buoyancy acting directly upward, through B'M'. Two parallel

forces so acting constitute a " couple," and the effect will here be

measured by multiplying the weight of the ship into the distance

GZ.
At this point let it be observed that Ugh and g' K be drawn

perpendicular upon W'L', the distance, hhf, will be the distance

between the centres of gravity of the wedges of immersion and

emersion measured along or parallel to the new water-line.

Similarly, while B B' represents the distance travelled by the

centre of buoyancy in a direction parallel to gg\ BR represents the

distance travelled by it parallel to hhf

or W' I/. In the remainder

of this investigation, therefore, we need no longer consider the

distances g g\ or B B', but only the distances h hf and BR.
If a be the angle between the two planes of flotation, W L and

W' L', this will also be the angle B G r, and therefore B r = B G
sin. a.

We now have all the elements of the case before us.

G Z = r R - B R - B ^ rr: B R — B G sin. a.

But BR==^^
Therefore,
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v X 'h hfGZ =—y BG sin. a.

This is Atwood's fundamental formula of statical stability. It

obviously represents only the leverage with which the weight of

the ship acts; to get the moment of stability, the value of G Z must

be multiplied by the weight of the -ship.

We saw in a former chapter that French naval architects usually

call the height BW, p; and the weight B G, a; and putting 6 for

the angle of inclination, they write the equation of stability thus:

M = P (p — a) sin. 6;

where M is the "moment" of stability, and P the upward pressure

of the fluid. M is of course equal to W x G Z, and the above

equation is equivalent to Atwood's formula just given, p sin. 9 being

. , , « v X hh'
the equivalent or ^

We now clearly see what has to be done in calculating a ship's

stability at a given angle of inclination. We have to ascertain the

volume ot wedges of immersion and emersion, and take care that

they are equal. If they do not come out equal at the first attempt,

they must be made so by a process to be described hereafter.

Being made equal, the moment of each wedge about the point S

has to be ascertained, and the two moments have then to be added

together, because, still calling v the volume of the wedge, we have

v x fcfc' = v(fcS + Sfc'),

and it is convenient to calculate h S and S ti separately. We also

require to know the total volume, V, or the displacement, and the

positions of the upright centre of buoyancy, B, and of the centre of

gravity, G. Without each and all of these particulars, Atwood's

formula cannot be applied; with them, the statical stability at

any angle can be obtained with certainty and accuracy.

What has thus far been said will not enable a reader to make
calculations of stability, but it will enable him to understand in

what manner curves of stability are constructed, and what it is

that they really represent. The common curve of stability re-

presents nothing more than the lengths of GZ (or of its products

when multiplied by the weight of the ship), obtained, by such

calculations as have been indicated, or otherwise, at various angles

4
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of inclination, and thence inferred for all intermediate angles, by

the common process of setting up the calculated G Z's as ordinates

along a line representing angles of inclination, and drawing a

curve through the extremities of these ordinates. This curve of

G Z's will equally well represent the curve of moments of stability,

if the scale be altered accordingly.

For example, Fig. 84* is the curve of stability of a mail steamer,

having at the time for which it was calculated a displacement of

nSSjOOO Ft. Tons

20,000

15,000

1.0,000

- 5,000

Fig.34.

about 8,000 tons. It is in this case a curve of moments of stability,

as will be seen on looking at the scale on the left of the figure

which represents foot-tons, but the curve would be precisely the

same if it represented leverages, or GZ's, only the ordinates would

have to be read on a scale 8,000 times greater than that represented.

The scale as shown represents 16,000 foot-tons for each inch of

ordinate. If treated as a scale of GZ's each inch of ordinate

would therefore represent 2 feet (VS0
) of length of righting lever.

In constructing this curve the length of G Z was found for a

few specific angles of inclination, and multiplied by 8,000, a point

on the curve being thus obtained for each such angle. A sufficient

number of these points to fix the form of the curve being deter-

mined, the curve was then passed through them, and, that done,

the stability at any intermediate angle could be measured by

measuring the ordinate to the curve at the corresponding angle.

In examining or employing such curves one must be careful

to observe the scale upon which the angles of inclination are

set off along the base, otherwise very false impressions may be

formed. No fixed relation at present exists between the scale

adopted for angles along the base, and the scale adopted for

either "moments" or "levers" of stability in setting up the

ordinates. It may, therefore, happen that curves of stability



CHAP. IV.] SCALES OF STABILITY CURVES. 51

25,000 'Firons

constructed on scales relatively very different, may come together
under consideration, and should the scales of ordinates happen to

be alike or nearly alike, while the

scales of abscissae (angles of inclination),

differ materially, a hasty view of them
may lead to serious misconceptions.

To illustrate this we give in Fig. 35 the

same curve of stability as is shown in

Fig. 34, with the ordinates on the same
scale, but with the scale of abscissae

reduced to one-third of what it there

is. For all purposes of measurement

and careful comparison these curves

are precisely the same; but any one

looking at them, and not observing their differences of scale,

might regard them as signifying very different amounts of stability.

There is, however, as has been said, no difference between them.

If we look again at the fundamental formula

—

0° 10' 20° 30" 40° 50° GO" 70' 80" 00

GZ v x hhf

—

V

B G sin. aP

we shall see that its value must ordinarily vary not only with

every change of inclination, but with every change in the displace-

ment and draught of water, and with every change in the position

of the centre of gravity.

As regards changes of inclination it is obvious that in a given

ship v and h h! will both vary as the angle a varies, because the

magnitude and form of the wedges must change with the angle.

As regards changes of displacement and draught of water, B,

and therefore B G, must vary, and v and hh' will also vary.

As regards changes in the position of the centre of gravity, G,

these affect only the value of the second part of the formula, viz.,

B G sin. a. This fact has suggested the device referred to in the

last chapter, of imagining the centre of gravity, G, to be coincident

with the centre of buoyancy, B, and getting out the value of GZ
(which then becomes BR) on that supposition, and calling the

value so obtained " surface stability/
7

or " stability of form/' or

" stability due to form." We have already said, and it will now be

clearly seen, that although the value of B R is independent of the

position of the centre of gravity, it can only be called the arm of

the stability couple^ or regarded as the lever of stability, on the
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supposition that G is coincident with B, and therefore gravity, and

not form alone, enters just as much into this measure of stability as

into any other. At the same time, it is quite obvious that by the

device of assuming G to be situated at B, and treating the length of

BR as the measure of " form stability" at a given angle, you obtain

a quantity which leaves the position of G out of consideration for

the time being, and depends on the geometrical form and dimensions

of the ship, and from this you can at once obtain the value of G Z

for any and every position of G by subtracting B G sin. a from it,

or by adding B G sin. a to it, should G fall below B ; for it will

be evident from our inspection of Fig. 32 that if G should fall

below B, G Z would be greater than BR by the quantity B

G

sin. a.

One method, therefore, of constructing a curve of stability would

be that of ascertaining the values of B R for successive angles of

inclination, and constructing a curve with these values for ordinates,

then (presuming G to be above B, as it usually is) setting off another

curve of which the ordinates are the sines of the corresponding

angles multiplied in each case by BG. The differences between

the ordinates of these curves would furnish another set of

ordinates, which would represent those of the ordinary curve of

stability.

Fig" 36 illustrates this mode of procedure, AB being the curve

of which each ordinate is the B R of the corresponding angle
;
C D,

10 Fee Fig.36.
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the curve of which the ordinates are B G, sin. a at each point; and

EF the curve of stability, the ordinates of E F being equal

to the difference between the ordinates of A B and CD at each

point.

The ordinary curve of stability is applicable only to one given

draught of water, and one corresponding displacement for a given

ship, and to one definite position only of her centre of gravity; we
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have now seen that it can have a more extended character given to

it by making it a curve of B B's, instead of a curve of G Z's so to

speak, because in this latter form it can be made directly available

for all conditions of stowage in the ship, i.e., for all possible heights

of centre of gravity, care being taken to reduce it from a curve of

B B/s to a curve of GZ's, when the position of the centre of gravity

becomes known, by cutting off from its ordinates at every part a

length equal to B G x sine of angle of inclination.

Instead of proceeding, as is indicated in Fig. 36, the process may
be conducted as is indicated in Fig. 37, in which A B is the curve

of B B/s as before, but the ordinates of the curve of sines are set

down from this curve of B R's, and a new curve is drawn through

the points so obtained, this new curve, E F, being the ordinary

curve of stability as in Fig. 36.

However the curve of stability may be obtained, it is obvious

that if extended over a sufficient angle, it furnishes an exhaustive

record of the stability, under the condition, that all the quantities

given in the fundamental formula are known and remain unaltered.

It also appears from what has just before been explained, that if

the curve of B B's be constructed—which is the so-called curve of

" surface stability," or curve of " stability of form "— it may be

made available for indicating the limits within which the stability

at any given angle of inclination must lie, provided the limits

within which the centre of gravity, G, lies are known. For from

the curve, A B, Fig. 37, can be set down two sets of points, one

set corresponding to B G sin. a, when G is at its highest limit,

and the other set corresponding to B G sin. a, when G is at its

lowest limit; and if curves be passed through these two sets of

points, the lower of the two (that nearest the base) will represent

the least stability at every point which the vessel can have at the
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given immersion, and the upper curve will represent the greatest

stability at every point, which she can have at that immersion.

Next, we have to consider cases in which the immersion varies,

whether from change of loading, consumption of fuel and stores,

or any other cause ; we shall here have our fundamental expression,

v x Ti hfGZ = -— B6 sin. a,
V

undergoing changes of value from a cause which thus far we have

not much considered, namely, the change of V or of the displace-

ment. With V, v and h h' will also usually change, from point to

point, and so will the distance BG. For every given immersion,

however, curves of stability can be constructed in accordance with

either of the methods which have just before been described, and a

very complete record of the stability may therefore be obtained

for all possible conditions. It is manifest that if we calculate

curves of B R's or curves of stability of form, for the greatest

immersion contemplated, for the least immersion, and for a few
intermediate displacements, and apply the method previously set

forth for obtaining the maximum and minimum curves of actual

stability at each of these immersions, we shall thus put ourselves

into possession of all, or nearly all, the information which can be

required concerning the statical stability of a given ship. The
stability of a ship which has undergone injury, and become more or

less water-logged, is deferred for special consideration hereafter.

A little reflection will show that as the " stability due to form "

can be obtained for all degrees of displacement, and for all angles

of inclination, without taking the actual position of a ship's centre

of gravity into account, something more than we have yet con-

sidered may be done in the way of grouping the measures of her

stability. For instance, it is perfectly practicable to select two
extremes of displacement, one due to the weight at launching,

and the other due to the greatest loaded weight, and also a certain

number of intermediate displacements, and for each of these to

calculate the position of the centre of buoyancy with the ship

upright, and the length of B E at the given angles of inclination.

Through the centre of buoyancy for any one of the given displace-

ments, a line may be drawn at the requisite inclination to the

horizontal, and equal in length to the calculated B R, and by
repeating this process the BR's may be obtained for various dis-
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placements and inclinations. Curves drawn through the extremities

of the lines so obtained, will furnish a

ready means of obtaining the lengths of

B R for all intermediate draughts of

water at corresponding angles. This is

illustrated in Fig. 38. B, B' are centres

of buoyancy, corresponding to the load

draught and light draught respectively

;

B Rp BR
2 ,
BR

3,
BR

4, are the EE's
as calculated for each given angle of

inclination at load draught, and applied

as previously described ; B' R'
1? B' R'

2 ,

B' B/
3, B' R'

4, are the respective B R's

for light draught. Other points upon
R

x
R'

15
R

2
R'

2,
&c, may be similarly ob-

tained for intermediate draughts of

water, and the curves, R^ R^ R
2 R'o»

R3
R'

3 ,
R

4
R'4, be drawn. They will evi-

dently be in each case the locus of the feet of perpendiculars from
the upright positions of the centre of buoyancy at different draughts

of water upon the verticals through the centre of buoyancy when
the ship is inclined at the given angle, and the length of B R for

any position of the centre of buoyancy comprised between B and B',

and for either of the given inclinations, may be readily ascertained

by drawing a line through the centre of buoyancy at the given

inclination until it meets the curve corresponding to that inclination.

But this extension of the subject we shall not pursue until we
come to consider the more advanced stages of the science of stability,

and more especially the system of M. Daymard, who grounds his

exhaustive process of calculation upon such curves as those just

explained.

We must now turn for a time to the question of what is known
as " metacentric stability." Referring back to Fig. 32, page 46, let us

suppose the angle of inclination,W S W, and therefore B M' R to be so

very small thatW andW almost coincide, and M' becomes the meta-

centre. The point, S, may then be regarded as situated at the

middle point of WL, or of W'L' The sectional area of either

wedge will be
S L x L 1/

2
and

(as L L' = L S x sin. a)
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1
this will equal ^ LS2 sin. a. till' may be taken as equal to

2 42XgLS = gLS, and, therefore, if v' be the sectional area of the

wedge of immersion, we have

4 1
v' x h h' = g L S x g L S2 sin. a

2= g L S3 sin. a.

But obviously the sectional area, v\ cannot represent v, for that is

the volume of the whole varying wedge of immersion extending

right fore and aft the ship. To represent this, we will suppose the

fore and aft length of this wedge to be represented by x, and

imagine this to be divided into an indefinite number of short pieces

each of a length, dx, and then the quantity above given, if mul-

2
tiplied by d x (or ~ L S3 sin. a x d x), will be the value of v x h h!

o

for one of these very short lengths of the wedge ; and its value for

every other such short length will be represented by a similar

expression, in which, however, L S must be supposed to alter as the

half-breadth of the ship at the water-line alters. Bringing the

integral calculus to our aid, as a convenient means of summing up

all these little quantities into one, we shall thus get

v x hit =
| j

LS3 sin. a dx
}

and it will follow that

p 2 [LS3 sin, a , Rp .

Ur /j ~
g J

=y (X X — Jd \j sm. CI.

Which is substantially Atwood's fundamental expression for the

stability of a ship at an evanescent angle of inclination. Putting

y — the half-breadth at the water-line, and 9 for the very small

angle (instead of a), the above expression takes the well-known

form,

GZ =
~f

sin. 0 - B G sin. 6.

If in this wTe put B G = 0, which is equivalent to making G
coincident with we shall have
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GZ = BR = BM sin. 0 =
| j sin. 6,

or

BM
3 J V

which is the general expression for the height of the metacentre, M,

above the centre of buoyancy, B, and is identical with the expression

given in the last chapter.

The result here arrived at is clearly independent of the position

of the centre of gravity, and expresses the geometrical relation

between the metacentre and the centre of buoyancy. A demonstra-

tion, conducted on the lines of the foregoing, but leaving the position

of the centre of gravity altogether out of the question, would bring

us to precisely the same expression for the distance of the centre of

buoyancy from the corresponding pro-metacentre, or, in other words,

for the radius of curvature of the curve of buoyancy at the point,

viz.

:

r> \r _ ^ f y
s dx

where y would be the half-breadth of the corresponding water-

line.

The height of a ship's metacentre, and of any pro-metacentre, above

her corresponding centre of buoyancy is thus seen, as we saw to be

the case with prismatic bodies, to depend solely on her water-line

breadths, her length, and her volume immersed, or displacement.

It will also be seen that as her breadth at every point enters into

the expression in its third power, or is multiplied by itself twice

over, the breadth of the ship—not her breadth amidships only, but

her breadth at each point all along her length—has very much to

do with her metacentric stability, or stability at and near the

upright position.

As the value just given for the height of the metacentre above

the centre of buoyancy is in part identical with the Moment of

Inertia of the water-line area (or area of the plane of flotation), and

as the moment of inertia of this area is therefore frequently spoken

of as an essential element of a ship's stability, it is desirable here

(for the convenience of some of our readers) to briefly explain what

is meant. Let Fig. 39 represent the area of a ship's water-line

section, and let pqrs be a very small rectangular portion thereof,

the length of which p q or rs~dx. Let us take an extremely
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narrow strip of this, parallel to the axis, A B, whose distance from
A B is y and whose breadth is d y. Now the moment of inertia of a

body being the sum of the products obtained by multiplying the

mass of each of its particles by the square of its distance from the

given axis, we shall have (dealing with areas only in lieu of masses

and therefore neglecting weight) that the moment of inertia about

AB of the strip, whose length is dx and whose breadth is dy,

will be

dx x dy x y
2
,

and the expression for the moment of inertia of the whole water-

line area becomes

2

3 j y
3 dx.

This is identical with the numerator of the fraction representing the

height, BM, and therefore we may write the equation for the height

of the metrecentre thus—

-

BM- moment of inertia of water-line area

volume of displacement

When we have to deal with large inclinations we must revert to

Atwood's main formula,

v x kh'GZ — B G sin. a.

In applying this to a ship, the displacement (V) and the positions

of the centres of gravity and buoyancy (which are separated by the

distance, B G) have to be either known or calculated ; and B G sin. a

is of course known for any given value of a. The quantities, h h!

and v are what have to be found in order to complete the known
terms of the expression.

The manner in which Atwood deals with this part of the subject

is as follows :—The object, of course, is to find by actual measure-
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ment and calculation the solid contents of the wedges immersed and

emersed on opposite sides of the ship throughout its length, and the

distance apart of their centres of gravity. A small portion of these

wedges comprised between two transverse planes, WWL'L and

w' w V I, is shown in Fig. 40. The planes are only a few feet apart

represented by Xx — W w = From the drawings of the ship

the areas of XLI/ (embracing the segment bounded by the line

representing the curved side of the ship) and of x I V can be calcu-

lated, and the mean of these two areas multiplied by the thickness,

X x, will give the solid contents of as much of the depressed or

immersed wedge (viz., a portion, X x, in length) as is shown in the

figure. The aggregate of all such wedges, calculated so as to

comprise the whole length of the ship, will be the solid contents

of the whole immersed wedge. The solid content of the opposite

or emersed wedge must be similarly calculated, and should be equal

to that of the immersed wedge. If the two be found unequal, the

second water-line must be raised or lowered, and the calculations

repeated until an equality between the immersed and emersed

wedges is established. The centres of gravity of these wedges are

similarly obtained.

It follows from what has gone before that the stability of a

ship at any given angle of inclination will remain the same all the

time the displacement, the distance apart of the centres of gravity

and buoyancy, and the form and magnitude of the wedges of

immersion and emersion remain unchanged. The form of the

vessel below these wedges may be altered in any way, and to any

extent, without changing the value of G Z, subject to the condition

that the total displacement and the distance apart of the centres of

gravity and buoyancy remain unaltered.

But other variations may follow without changing the stability.

It is obvious that the ship's sides, which bound the wedges of im-
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mersion and emersion, may undergo any changes of form which are

compatible with the equal volumes of the wedges, and equal dis-

tances apart of their centres of gravity ; in other words, compatible

with h h! and v remaining unchanged in amount. If we turn again

for a time to the case of prismatic bodies (for simplicity's sake), in

which we can take the sectional areas to represent the volumes,

it will be obvious that h h' and v will be the same in two bodies,

of which one has the sides spreading outward above the water, but

is vertical below the water-line (as in Fig. 41), and the other has

them vertical above the water-line, and spreading equally below

water, as would be the case if Fig. 41 were turned upside down.

The stability of the two bodies will, therefore, be the same if

V, B G, and the angle of inclination are the same.

Precisely the same may be said if the sides of the ship, instead

of spreading outward above and below the water-line respectively,

closed inwards, as in Fig. 42, and in that figure reversed. The

stabilities in these two vessels would be alike, other things being

equal as before. The equations of stability take the same form in all

four of the above cases ; but with like dimensions the values in the

cases of Fig. 41 are different from those of case 42.

Again, if the sides of a body, in the region of emersion and

immersion, are straight and at equal inclinations throughout, it is

of no consequence whether they spread outwards above the water,

as in Fig. 43, or spread outwards as in Fig. 44.

Atwood, in his " Royal Society " Papers, gives a demonstration

of each of the foregoing equalities ; he also shows that the equation

of stability is precisely the same for a body with vertical sides, and
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Fig44*

for a body whose sides form arcs of a conic parabola. The equa-

tion in both cases is

GZ = (cos. 6 + sec. 6) - B G sin. 0,

where b — the breadth at the water-line, and 0 is the angle of

inclination.

We have already seen how Atwood proceeded to apply his for-

mula to an actual ship, by equating the volumes of immersion and

emersion for the whole length of the ship. But in referring to this

matter before, we simply pointed out that if these wedges did not

prove to be equal, it was necessary to so shift the new water-line

as to make them equal.

He suggests two methods of doing this—assuming for the time

being that, although the sections of the body are of irregular form,

they are all equal, and the body is prismatic.

It will presently be seen that both these methods rest upon the

obvious consideration that, presuming the difference between the vol-

umes of the wedges of immersion and emersion, which are first found,

not to be very large—and with usual forms of ships it will not be

—

then it may be taken for granted that, if we divide the difference

of volume by the area of the inclined water-line plane, we shall get

the thickness of the slice that must be added to, or deducted from,

the whole immersed volume of the ship in order to make the

wedges equal. This will readily be seen by aid of what follows.

1st Method.—Let WCL (Fig. 45) be the section, W L the water-
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line with vessel upright ; bisect it in D
;
through D drawW D L'

inclined to W L at the given angle of inclination, 9 ; let the areas of

the figures, LDL' andWDW (taken out to the ship's side what-

ever its form), be found, and suppose that the former comes out

greater than the latter by an amount represented by a. From D
along D L set off D S, so that

W L' sin. 0
'

A line, wBl, drawn through S parallel to W 1/ will cut off the

area, L S I, very nearly equal to the area, WSm Conseqently,

w I will be the correct water-line.

2nd Method (same figure).—This method consists in first cal-

culating the whole immersed area below W I/, and if this is found

unequal to the whole immersed area below WL with the vessel

upright, and the difference is represented by a, a distance, D S, is

set off equal to

a

W 1/ sin. 0
9

and the line w I drawn as before.

Coming to actual ships, with gradually changing sections, it is

no longer possible to simplify the investigations dealing with one

section only, even in the determination of the inclined water-line,

for the midship wedge sections may be equal and the whole volumes

nevertheless unequal, or the midship wedge sections may be unequal

and the whole volumes nevertheless equal. It is the equality of the

volumes that has to be secured.

The first object is to fix the point, S, which is, of course, the

same for all sections, and Atwood, in dealing with the matter,

divides the vessel into a large number of equidistant cross sections,

and calculates the areas of the triangles of immersion and emersion

at every section with an approximate inclined water-line through

the middle point of the upright water-line, by the rules for approxi-

mating to the areas of surfaces bounded on one side by a curve.

From these sectional areas he obtains by similar rules the entire

volumes of the wedges of immersion and emersion. If these prove

unequal he obtains a point, S (Fig. 45) by means of the equation

j) g
difference between the wedge volumes.

Area of approximate water section, x sin. a
}

a being the angle of inclination,
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^

The water-line drawn through S is the corrected one. This
being drawn on each cross section of the ship, the areas of the
triangles of immersion and emersion are calculated anew, and being
summed up as before, will give the volumes of the wedges of

if

w \ D

10\

c

immersion and emersion, which will now be equal. The moments
of these wedges about the axis through S can also thus be found,
and their sum (v x h h') introduced into the equation of stability.

The whole process is well described by Atwood, in his 1798 Paper,

in which he practically applies it to an actual ship, employing 34
vertical sections, at a common interval of 5 feet.

In his great work, entitled The Modern System of Naval Archi-
tecture, published in 1865, which may be regarded as a monument of

the ability and labour which the late Mr. J. Scott Russell devoted to

his profession, and which bears upon every page the impress of his own
peculiar methods of treating naval science, the question of stability

is discussed with even more than the author's usual originality

and abandonment of known and accepted usages. He bases his

stability investigations and modes of calculation upon the principle

that the portion of the ship which is situated near the water-line

may be regarded as the " shoulders" of the ship, tending to keep her

upright, while the portion below may be regarded as tending to

upset her. The amount of labour and skill devoted by him to the

development of this view of stability was enormous, but it cannot

be said to have secured for it general approbation and adoption.

Recalling all this labour and skill, and cherishing, as we do, so

many grateful and pleasant memories of the truly remarkable man
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who exercised them, it is with regret that we are unable to share

the satisfaction felt by him with this mode of treating the stability

of floating bodies, which, indeed, appears to us open to many

objections.

In the first place, we are unable to regard the distinction

between the so-called "shoulders" and the so-called "upsetting"

part of a ship as sufficiently well defined, or as sufficiently well

definable. Mr. Scott Kussell's definition was this :
" The shoulder

of a ship is that part which, being under water when the ship leans

over one way, is then left bare, out of water, when she leans as far

over the other way." As an example, he takes the case of a ship

leaning over to one side, far enough to immerse on that side 2 feet

more of her skin than is immersed when she is upright, and then

leaning over the other way, far enough to emerse 2 feet of her skin

which was in the water when she was upright ; then " those 4 feet

of her skin in each side which lie between these extreme positions

are what I call the shoulders of the ship." He goes on to say: " If

we take away from the body of the ship the two shoulders, the

remainder of the bottom, which never leaves the water, I call the

< under-water body of the ship/ and this under-water body is the

part tending to upset her."

It is obvious that the above "definitions" are altogether too

indefinite for any practical purpose. To say nothing of the oversight

of describing the mere "skin" of the ship as "shoulders," the

language employed leaves out of consideration altogether the fact

that for every different angle of inclination there is a different

volume for the wedges of immersion and emersion, and likewise

leaves out of account all changes depending upon differences of

draught. It is not surprising, therefore, that later on we find the

author giving some extension to the previous definitions by saying

that " we may take the shoulders as meaning those portions of a

ship which, in heeling contrary ways, rise out of, and sink into, the

water," although we here come upon the verbal anomaly of describ-

ing as a " shoulder," which is by its buoyancy to sustain weight,

the portion of the ship which "rises out of" the water.

There is no reason to doubt that, notwithstanding this want of

clearness in the definitions of what is intended—arising, as it is

easy to see, from the peculiar method of treatment adopted—Mr.

Scott Kussell's system of calculation, carefully carried out, gives

the same results as other methods. But with the progress of time

the calculations of stability are being so extended, and are now
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made to comprise so many variations of draught of water and
angular inclination, that no practical convenience can result from

describing as shoulders the wedges of immersion and emersion, or

from employing this somewhat involved and arbitrary mode of

viewing the matter. The simpler method of treatment seems to be

the usual one of estimating the lateral movement of the common
centre of buoyancy, and from this ascertaining the "couple" of

stability.

5
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CHAPTER V.

Longitudinal Metacentre—General Expression for B M—Change of Trim—Effect on

Stability of Admitting Water into Central Water-tight Compartments

—

Consequent Change in Height of Metacentre—Table of Heights of Metacentres

—

Inferences therefrom—Effect when Compartments are not Central—Table of

Metacentric Heights under this condition—Inferences therefrom—Effect of

Water-tight Decks.

Hitherto we have only dealt with the transverse metacentre ; we
will now give a short account of the longitudinal metacentre,

observing that the scientific principles underlying both cases are

precisely the same. When a vessel is inclined longitudinally, the

vertical line through the centre of buoyancy in the inclined position

intersects the vertical through the centre of buoyancy in the up-

right or initial position in a certain point. In the limiting position,

when the angle of inclination is very small, this point is called the

longitudinal metacentre. We can, therefore, see that a determina-

tion of this point is of great service in determining changes of trim,

caused by shifting the weights already on board a vessel in a fore

and aft direction, or by putting moderate weights into her, or taking

them out of her. Keferring to Fig. 46, let W L represent the water-

line of a vessel, B and G her centres of buoyancy and gravity

respectively, BGM the vertical through these points. Now,

suppose a weight, w, on board the vessel to be moved forward

through a distance, d, the water-line now becoming W' L'. Let

B' and Gr' be the altered positions of the centres of buoyancy and

gravity respectively. A vertical through these points will intersect

the original vertical through B and G in a point, M, which, when
the angle of inclination is indefinitely small, is the longitudinal

metacentre for the water-line, WL. Through B draw BR per-

pendicular to B M. It is evident that BR = BM tan. 6, where 0

is the angle of inclination of the vessel, also that the wedges, L'PL
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and WPW are equal, and B R the distance moved through by
the centre of buoyancy parallel to W L is equal to the horizontal

w xl.

w G

IB B
G'

distance between the centre of buoyancy of the wedges, multiplied

V
by , where V = the volume of either of the wedges, and D = the

volume of the total displacement, or expressed otherwise—

Therefore, B

moment of wedges about P
displacement

°

, a _ moment of wedges about P
tan. u — —n

-. —
,

displacement

To determine the moment of the wedges about P, which axis

evidently contains the centre of gravity of the water-plane repre-

sented by its trace, W L, referring to Fig. 47, let A B C D and

A' B' 0' D' represent sections of one of the wedges made by planes,
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perpendicular to the water-plane, W L, and to the longitudinal

vertical plane of the vessel,. at a horizontal distance, dx, apart; the

vertical distance apart of the two planes at that place being x tan. 0;

then the volume of the prism intervening between the two planes

=ADxAA' x AB = #tan. 6 x dxxy = x y dx tan. 0. But xydx
= the moment of the section about the axis, P P. Supposing

the wedges to be divided into an infinitely large number of such

prisms ; then the volume of the wedges would equal the moment of

the water-line area about the axis, P F, multiplied by tan. 0, and in

the limiting position, therefore, the volume of the wedges is equal to

the moment of the water-line area about the axis, P P'. Again, the

moment of each of the small prisms = its volume (xydx tan. 6)xx^
x2 y dx tan. 6 ;

and, therefore, the moment of the wedges about the

axis = the moment of inertia of the water-line area, W L, about the

same axis multiplied by tan. 9.

t> tut , a moment of inertia of water-line area X tan. 6
»

6

. x> M tan. v = ———

—

BM

volume of displacement.

moment of inertia'of water-line area

volume of displacement.

In practice, it is usual to obtain the moment of inertia of the

water-plane with reference to an axis corresponding to the middle

ordinate, and having obtained this, the necessary modification in

order to determine the moment of inertia about a parallel axis

passing through the centre of gravity of the water section is readily

obtained by deducting from the result the area of the water-plane

multiplied by the square of the distance of its centre of gravity from

the axis taken, this process depending upon a well-known property

of the moment of inertia.

Having thus determined the height of the longitudinal meta-

centre above the centre of buoyancy, we may now call attention to

longitudinal inclinations or changes of trim. In the first place,

difference of trim signifies the difference of the draughts of water

at the extremities of a vessel, and the vessel is said to trim by the

head or stern respectively, as the draught of water there is the

greatest. Suppose now the trim is changed, by moving a weight

on board forward or aft through a certain distance, or by other

means, .then the change of trim is the sum of the increase in the

draught of water at one extremity, and the decrease in the draught

of water at the other extremity.
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In Fig. 46 let 8 be the longitudinal inclination as before-men-

tioned clue to change of trim. The change of trim evidently equals

I x tan. (9, where I is the length of the water-plane ; and the shift of

the centre of gravity caused by moving the weight, w, through a

distance, d, evidently equals

consequently, GG' =
jy

but G G' ~ G M tan. 0. Therefore, tan. 0 = ^
WC
1^ T ;D x GM

and change of trim = I tan. 6 = ts* ^/I^& D x GM
Supposing we wish to know the moment required to change trim

1 inch at the water-plane, we have

JL — ^ x w x ^
12

~~ D x GM ;

. , Dx GM
therefore, wd = ~

7 . ^ ;

I X 12 '

and this may be expressed in words as follows :—~The moment in

foot-tons required to change the trim 1 inch at the water-line is

equal to the displacement in tons, multiplied by the height of the
longitudinal metacentre above the centre of gravity, in feet, divided

by twelve times the length of the water-line.

When adding moderate weights to a vessel the change of trim is

determined in the following manner:—The weight in the first

instance is supposed to be placed in the vessel directly over the
centre of gravity of the load-water-plane, which will cause her to

retain the same trim, but to displace more water, dependent of

course upon the amount of the weight. The weight may be now
moved to its required position, and the question simply resolves

itself into the change of trim when a given weight on board is

shifted through a certain known distance in a fore or aft direction,

taking into account, of course, the increased displacement due to the

weight added.

When taking moderate weights out of a vessel an operation

the reverse of that just described is performed, in order to determine
the change of trim due to such readjustment.*

* The object of the longitudinal metacentre, and of its use in determining changes
of trim, was discussed substantially as in the text, and with somewhat greater fullness,

in a paper read by Mr. F. K. Barnes, of the Admiralty, at the Institute of Naval
Architects in the year 1864.
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The stability of a vessel fitted with water-tight compartments,

and having water admitted to one or more of them by means of

collision or otherwise, deserves consideration. It will only be

necessary, however (after what has already been said about

longitudinal trim), to consider the matter here in its relation to

transverse stability. There may be several distinct conditions

set up :—

1. A compartment may be totally filled with water which it

completely encloses.

2. A compartment may be partially filled by water which it

completely encloses.

3. A compartment may have water in it in free communication

with the sea, and at the sea-level for all inclinations.

It is evident that in the first of these cases the stability will be

affected in much the same manner as it would be were the enclosed

water replaced by a solid body equal in weight, and having its

centre of gravity in the same place. This is the case of a water-

ballast compartment being wholly filled with water. If the surface of

the enclosed water be such as to remain always below the surface

of the sea during the rolling of the vessel, it is of little consequence

whether it be wholly enclosed or in communication with the sea,

the result being equivalent in each case to a corresponding loss of

displacement. The admission of this water would, however, as will

be obvious, bring about a change of position in the water-line, the

centre of buoyancy, and the metacentre, which must be newly

calculated, if it is desired to ascertain their new positions.

When, however, as in our 2nd case, a compartment is not full,

and the volume of water within it, although completely enclosed, is

free to alter its form and position as the vessel rolls, we have a

wholly different state of things, something more even than a statical

investigation of the stability at given angles being now necessary.

This is the case of a vessel with a water-ballast compartment partly

filled only ; or of a vessel carrying liquid at large in a tank im-

perfectly filled ; and may be approximated to in some cases by loose

cargoes of quasi-fluid, grain, &c, badly stowed in bulk.

But although the complete determination of the change of

stability induced by a case of this kind involves dynamical con-

siderations, an indication of its amount, sufficient for most practical

purposes, may be obtained from statical investigations, which take

into account the form and position of the free water at various

angles of inclination of the ship.
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Mr. F. K. Barnes, of the Admiralty, of whose contributions to

the science of stability we have so frequently had occasion to speak

with praise, has dealt with this branch of the question also, and we

need do little more than go over the ground which he long since

laid out.* We may, however, deal somewhat differently from him

with the details of the investigation.

Let us consider with him, in the first place, the case of a central

compartment being laid open to the sea and filled with water, and

let us, for simplicity's sake, presume the vessel to be prismatic, and

of rectangular section. Fig. 48 represents its elevation, W L being

w' Jj
f!-

1

w <V'"\"' " TII. ^
a d'

^ \f

i

its water-line before the vessel is injured, and W X/ its water-line

afterwards. As the weight of the body proper is not altered by the

admission of the water, the displacement must be the same before

and after the injury; from which it follows that the displacement

of the two end compartments below the line, WL',.must be equal

to the whole displacement below W L, and consequently (as the

breadth is everywhere the same), if I be the whole length, V the

length of the inside compartment, d the depth below W L, and

d! the depth belowW U, we shall have

d' (l-l') = dl

and

d; = d
I

This, therefore, is the new draught of water.

The centre of buoyancy before injury is, of course, at one-half

* See a paper u On Water-Tight Compartments in Ships as Affording Security

against Foundering," in the Transactions of the Institute of Naval Architects^ for 1867,

vol. viii.
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the draft (^j from the bottom ; after injury it is — , and the value

of d! in terms of d has just been seen.

If b equals the breadth, then before the injury the height of

the metacentre above the centre of buoyancy is

i v
Ibd 12 d

after the injury this height of metacentre becomes

Ibd ~~12 d K C) *

If we desire to know the height of these metacentres above the

bottom of the vessel, we must in each case add the half-draught, or

d d!

2> in the first case, and in the second case.

Mr. Barnes prepared a table of corresponding heights of meta-

centres which is worth reproduction. In order to adapt it to a

variety of cases, he assumed the breadth to vary from d, the

original immersed depth, or draught of water, up to four times that

amount; and he assumed the length of the central or injured

compartment to vary from one-hundredth of the whole length to

one-half of that length, V equalling in succession
y^Q> |,

and

|. The following is the table slightly modified to suit our nomen-

clature, and omitting the cases in which V is supposed to be

x^th part of I, leaving the remaining three cases :

—
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Metacentre above Centre of
Buoyancy.

Metacentre above Keel.

Value of o. Value of T.

Before the
Compartment

Fills.

After the
Compartment

Fills.

Before the
Compartment

Fills.

After the
Compartment

Fills.

cZ

Z
•083 d •075 d •583 d •6305 d

»>

I

4 5J
•0625 cZ 53

•7292 cZ

»> 2 JJ
•0416 d

) 1
1-0416 d

2d Z

10
•3 d •3300 cZ •83 d •85 d

a
I

4
Z

2

5 5

5 5

•250 d

•166 cZ

if
•916 cZ

1-166 tZ

3 d

? ?

Z

10

z

4

•75 cZ •675 cZ

•5625 d

1-25 cZ

j •>

1-230 cZ

1-2291 cZ

5 >

Z

2
Z

10

z

4
z

2

5)
•375 cZ 5)

1-375 cZ

4 d 1-3 cZ 1 -200 d

1-000 cZ

•6 d

1-83 d

5 5

J 5

1-75 d

1'6 cZ

1-6 d

Mr. Barnes infers from this table that in all cases " when the

breadth is equal to the depth, and to twice the depth, the height

of the metacentre above the lower edge of the keel is greater after

the compartment is injured than it was before
;
and, as already

stated, we assume that the volume of the iron forming the sides of

the compartment is equal to zero, and that when the compartment

is empty the centre of gravity of the ship remains unaltered ; con-

sequently, also, the stability of the ship is in all these cases greater

after the compartment is injured than it was before. It follows,

therefore, that if sufficient freeboard be given to such ships, to

admit of their immersion being increased to the extent due to the

volume of any one or more of its compartments, they will be quite

safe when the said compartments are injured. It also follows that

ships of the above forms and relative proportions would be lost by

going down bodily in the Vater and losing their freeboard, and not
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from losing their stability and turning over. The same remark is

practically applicable to the case in which the breadth is equal to

three times the depth.

" Where the breadth is equal to four times the depth, the meta-

centre falls slightly between the limits taken; but it manifestly

rises again as the bulkheads are placed nearer the extremities of

the ship.

" As the breadth increases above this in proportion to the depth,

the relative depression of the metacentre by injury to the com-

partments will be increased ; but it must be borne in mind that in

such cases the metacentre, before injury to the compartments^

would be exceedingly high."

The foregoing investigation and remarks assume that the injured

compartment is exactly central, and that the ship, therefore, becomes

additionally immersed without change of trim. If this assumption

be not approximately correct, and if a strict investigation be needed,

the same general consideration will apply, but the change of trim

consequent on the admission of the water must be calculated, and

the resulting change in the area of the water-line must be taken

into account in the expression for the height of metacentre. In the

case of the prismatic vessel of rectangular section, it will be obvious

that any change of longitudinal trim, which does not immerse any

portion of the top or deck of the vessel, nor emerge any part of

the bottom, must, with any given displacement, give an increase of

metacentric height, whether the vessel be uninjured or injured,

because it must increase the length, and (in this case), therefore, the

area of the load water-plane.

The case of a vessel divided into longitudinal water-tight com-

partments is also considered by Mr. Barnes, who assumes her to

possess two longitudinal water-tight bulkheads equidistant from

the sides, say one at a distance, b\ from each side ;
and, as provision

is always made for letting water into such compartments, if neces-

sary, he assumes that the sea is let into both sides of the ship at

once, the central space between the bulkheads being kept free of

water. Using the same notation as before, and observing that in

this case I remains always unaltered, and b only undergoes diminu-

tion, we shall have

d'(b-2b') = db
and
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The centre of buoyancy, which before injury is ^ above the bottom,

d!
is after injury -, and the value of d' we now know.

The height of the metacentre above the centre of buoyancy,
lb2

which, as we previously saw, is ^ ^ before injury, becomes after

injury

Ibd

Putting for b', this expression becomes

Ibd

3 cl \2 n)

For the height of the metacentre above the bottom of the vessel,

we must add the half-draught in each case.

In this case also Mr. Barnes has tabulated the heights of the

metacentres for the cases in which b equals d, 2 d
9
and 4 d respec-

tively, and n equals 100, 10, 4, and 2 respectively. We omit as

before the case of n = 100, and give the others :—

Values of b. Values of n.

Metacentre above
Centre of Buoyancy. Metacentre above Keel.

Before the
Compartments

Fill.

After the
Compartments

Fill.

Before the
Compartments

Fill.

After the
Compartments

Fill. ,

d 10 •083 d •0426 d •583 d •6676 d

3 5 4
5 5

•0104 c?
j > i-omd

33 2
5 >

•0000
3 3 GO

2d 10 •3d •1706 d •83 <2 •7956 d

J3 4
5 5 3 3 l-0416d

3 3
2 5)

3 5 CO

4:d 10 l'3d •6826 l-83d 1-3076 d

3 3
4 ?> 1*666 d

5J

33 2 35 •0000
>3 GO
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Jn view of this table Mr. Barnes makes the following remarks :

—

« Where the breadth is equal to the depth, the height of the

metacentre above the bottom of the vessel is greater after the com-

partments are filled than it was before
;
and, since from the supposi-

tions we have made, the centre of gravity of the ship is unaltered,

the ship, if stable before the compartments are filled, will be more

stable after they are filled.

" When the breadth is equal to twice the draught of water, the

metacentre descends when the vertical longitudinal bulkhead is very

close to the ship's side, and it reaches its lowest position when the

bulkheads are fixed somewhere between one-fourth and one-tenth of

the breadth from the ship's side. From this position, as the bulk-

heads are placed nearer to the middle line, the metacentre con-

tinually rises as they approach the middle line. The same remarks

apply when the breadth is equal to four times the draught of water;

but the lowest position of the metacentre will not be reached until

the bulkheads are relatively much nearer to the middle line than

when the breadth of the ship is equal to twice the draught of water,"

In lieu of, or in addition to, water-tight bulkheads, water-tight

decks may be employed for dividing a ship into compartments, and

this case needs some remark. If a compartment so formed be com-

pletely filled, without being laid freely open to the sea
?
the water so

admitted is approximately equivalent to any equal weight in the

form of a solid being introduced into the ship, with its centre of

gravity in the position occupied by the centre of gravity of the

volume of 'tween-deck water admitted. Presuming that the addi-

tion of this weight to the ship does not materially change the area

or form of the water-line plane, then, whether the stability will be

diminished, unaltered, or increased, depends upon whether the centre

of gravity of the added weight be above, coincident with, or below

that of the added displacement.* In the case of water admitted

* The above proposition is demonstrated in Shipbuilding : Theoretical and

Practical, of which Mr. Barnes was one of the authors. The substance of the demon-

stration, which was doubtless due to him, was as follows:—Taking W as the original

weight, w the added weight, a the distance of the centre of gravity of the latter

above the original centre of buoyancy, and c the centre of gravity of the added dis-

placement above the centre of buoyancy : then, 6 being the angle of inclination, and

the usual notation adopted, we shall have for the original value of the righting lever,

G Z
W'BM-sin. 6 - W-BG-sin. 0;

and for the new value, after the weight, w
y
is on board,

(W + w) Bx Mi sin. 6 - (W x w) Bx Gx sin. 6. - - (1.)
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from the sea, its centre of gravity never can be situated above that

of the added displacement; and can only be near to .it when it

happens to be admitted above a water-tight deck, just beneath the

original water-line of the ship. In all cases, therefore, the admission

of water sufficient to fill such a 'tween-deck compartment must add

to the stability, and usually must add considerably to it, the amount

added being proportional to the size of the compartment and to its

depth below the water's surface.

Now, if A be the volume of either of the wedges of immersion and emersion in the

first case, and b the distance between their centres of gravity, and Ai and bi be the

corresponding volume and distance for the new water-line ; then

WxBM sin. 0 = b A 5 .

and

(W + w) BiMx sin. 0 = b 4 A x .

Again,

Bx Gi = BG + G Gjl - B Bi

;

(any reader who follows the argument can make for himself the diagram, putting Bi a

little above B, and Gi a little above G) ; and therefore,

(W + id) Bi G = W • B a + wBG* + (W + w) GGi - (W + w) BB 1#

But w B G + (W + w) G G is the moment of the weights added (w) about the original

centre of buoyancy = wa; and (W + w) BB X is the moment of the additional dis-

placement about the original centre of buoyancy = w c.

Substituting in equation (1.), we have the stability of the ship at the new water-

line,

= bL A1
- W -BGsin. 6 - w {a - c) sin. e. - - (2.)

The stability at the first water-line was

= 6A - WBGsin.e. - (3.)

Subtracting (3.) from (2.), we have the difference of stability in the two cases—

= bi Ai - b A - iv (a - c) sin. 0. - - - (4.

)

If we assume that the weight, w, which has been added, is moderate, and, therefore,

that the form of the water-line area has not materially changed, and that the same

may be said of the wedges of immersion and emersion, then b± A± is practically equal

to & A; and the difference of stability at the two draughts becomes simply

=2 - w (a - c) sin. 0
;

and if a = c, this quantity becomes nothing, and there is no change in the stability

consequent on the introduction of the weight, w. This is the case when the centre of

gravity of the weight introduced coincides wTith the centre of gravity of the displace-

ment added. If it be above it, a will be greater than c, and the stability will be

diminished [by w {a - c) sin. 0], and vice versa.

There is an error at this point in Shipbuilding; Theoretical and PracHcal~~vr6btibly a misprint) W
being put for w.
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l||To the case of a 'tween-deck compartment being slightly injured,

and the water admitted to it being kept down to a small amount,
Mr. Barnes gives special consideration, substantially as follows:—In
Fig. 49 let W L represent the upright water-line of the vessel, and

Fig.4.9*

w I the surface of the free water in the compartment. Let G and B
be the centres of gravity and buoyancy, and M the metacentre of

the whole ship when upright with the free water on board. Now,
let the ship have a very small inclination, 6, given to her, and let

L
1?
w

1
lv be the new water-planes corresponding to W L and w I,

and B
t
the new centre of buoyancy. The shift of the free water

from the upright to the inclined position occasions a transfer of the

common centre of gravity of the ship and free water to the point Gv
along a line nearly parallel to B Br

Let Mj be the intersection of the vertical through the point, Gv
with the original vertical, B M. Now, since the angle of inclination

is very small,

2

BM = -

where y is the half-breadth of the water-line and D is the displace-
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ment. If the process of investigation which led to this expression be
applied to the case of the free water it will be found that

2
y\dx

1
— W

where yx
is the half-breadth of the free water surface; and it is

evident that when GM
X
is less than GM (or when - ( V

* dx
is less

3 J W
than

3 J W B G^ the ship wil1 float safely 5
if GM

i
is greater

than GM the ship is unstable ; and when GM
1

is equal to GM the
equilibrium is indifferent.

Taking now the case, already mentioned, of free water in a com-
partment above a water-tight flat, AC, situated a very short distance
below the water-line of the vessel, in Fig. 50, let W L represent the

Fig.60.

water-line of a vessel, w I the surface of the free water in the com-
partment under consideration. Let G and B be the centres of

gravity and buoyancy respectively, and M the metacentre. Let
6 be the inclination, and B

1
the new position of the centre of

buoyancy. It is evident that if from G a line, GG
1?

be drawn
equal and parallel to B B

1?
that G

t
is the new position of the centre

of gravity of the vessel, because the wedge of water within the
vessel corresponds exactly with what is known as the wedge of
immersion of the vessel itself, and the distance between G

±
and the

line, B
x
M,—in other words, the length, G

3
P,—multiplied by the

displacement of the ship, is the moment of the upsetting couple,

and
- W x B

X
G

X
sin. e - W x B G sin, 0.
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The maximum upsetting force, up to an inclination of 90°, due

to such water is evidently when the surface of the free water meets

the water-tight flat at the vessel's side, for in that case the moment
of inertia of the plane of flotation is the same as that of the free

water surface ; for any further inclination, the moment of inertia of

the plane of flotation exceeds that of the surface of the free water,

and the capsizing force therefore diminishes. The position of equi-

librium will only be reached after much further inclination.

From the preceding remarks it will be clear that in such a

condition as that just described a vessel will not float upright, as we
have shown that the position is one of instability.

When a compartment is in free communication with the sea, and

the surface of the water in it is at the sea level for any inclination,

this condition evidently has the same effect as if that portion of the

vessel so occupied with water were, so to speak, not part of the

vessel's volume, and in this case the vessel would have an increased

immersion in volume equal to the volume of water in the damaged

compartment, and the centre of buoyancy and metacentre will

therefore have a new position.

We may, however, further remark that when the moment of

inertia of the surface of the free water on any water-tight flat about

a longitudinal axis is equal to, or greater than, the moment of inertia

of the water-plane about its longitudinal axis, provided also that the

centre of gravity of the vessel is above its centre of buoyancy, the

upright position of the vessel will be one of instability, and she will

loll over to an inclination, dependent of course on the quantity of

water in the compartment, until she arrives at a position of stable

equilibrium. It must, however, be clearly borne in mind that this

condition is based on the assumption that the centre of gravity is

above the centre of buoyancy; if the centre of buoyancy were

situated above the centre of gravity (which is very unusual in a

ship), the upright position would be one of stable equilibrium.



CHAP. VI.] 81

CHAPTER VI.

Purpose of " Metacentric Diagrams "—Their Construction—Association of Metacentric
Diagram with Displacement Curve—Also with Midship Section of Vessel-
Distinction between Curve of Metacentres and Metacentric—Form of Curve
of Buoyancy Theoretically Considered—Variety in Form of Curves of Meta-
centres—Curves of Metacentres and of Buoyancy of some Prismatic Bodies-
Examples of such Curves for Ships—Capacity and Stowage Diagram—Stability

of the Captain— Stability of a Transatlantic Passenger Steamer—Stability
of the Austral — Stability of a Raised Quarter- Deck Steamer — Other
Examples of Stability Curves—Effect on Stability of Decreased Breadth and of

Increased Freeboard—Relation of Beam to Stability Illustrated by Case of

Prism—Further Examples of Stability Curves.

We have now seen that the height of the metacentre of a given

ship above her centre of buoyancy, at a given draught of water, can
be obtained by dividing the moment of inertia of the water-line

area about the longitudinal middle line by the volume of displace-

ment. In order to ascertain, and to describe graphically, the varia-

tions which the initial stability of a ship undergoes when her
draught of water varies, it has become usual to calculate this height
of the metacentre above the centre of buoyancy for several different

draughts of water, and thus to get a series of such heights for the

corresponding water-lines and displacements. Having obtained
these, both the centres of buoyancy and the metacentres are set

off on a diagram, and a curve is passed through each set of points.

It is then assumed (and correctly assumed for ordinary forms of

ships) that the height of the metacentre above the centre of

buoyancy may be ascertained at any intermediate draught of water,
lying within the limits of the calculated points of these curves, by
simply measuring the vertical distance between the two curves.

The positions of the centres of gravity, when known, can also be
indicated in their correct relation to the metacentres and centres of
buoyancy.

Such a diagram, known as a " Metacentric Diagram " (and first

constructed, employed, and made public by that able naval architect

and calculator, Mr. P. K. Barnes, of the Admiralty), is usually

arranged as shown in Fig. 51. A series of horizontal lines, wl,
w'T, &c, are drawn at heights representing on some convenient

6
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scale the various mean draughts of water at which the positions of

the metacentres and centres of buoyancy have been calculated. An
oblique line, o p, is drawn across these horizontal water-lines, inclined

to them at an angle of 45 degrees ; and from the points at which

this line intersects the respective water-lines are drawn vertical

lines, upon which are set off, on the same scale as before, the

distances down of the centres of buoyancy, b, b', b'\ &c., below the

corresponding water-lines, and from these centres of buoyancy are

set up the corresponding metacentres, m, m', m", &c. A fair curve

passed through all the metacentres so obtained, and another passed

through all the centres of buoyancy, will respectively be a curve

or locus of metacentres, and a curve or locus of centres of buoyancy.

For a " metacentric diagram " alone what has been described is

all that is required ; but it is often found convenient to have the

scale of displacement represented on the same diagram. For this

purpose a vertical line is drawn through the intersection of the

oblique line before-mentioned with the water-line corresponding to

the load-draught of the ship. From this vertical line are set off, on

any convenient scale of tons, in a horizontal direction the calculated

displacements at the draughts represented by the water-lines before

used ; a fair curve passed through all the points thus obtained is the

curve of displacement, as shown in Fig. 51. From this complete

diagram the position of the metacentre can be obtained for any

given displacement, draught of water, or position of centre of buoy-

ancy within the given limits; and in like manner, for any given
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value of either of the latter, the other corresponding positions can
be obtained.

For example, suppose it is desired to know the metacentric
height corresponding to a draught of 10 feet, for the vessel whose
various conditions are represented by Fig. 51:—A line drawn
parallel to either of the water-lines, from the 10 feet mark on the
vertical scale will cut the oblique line at the point, W. A vertical
line drawn through that point will cut the curve of metacentres
at M, which will be the required position of metacentre; thejsame
vertical will cut the curve of centres of buoyancy at B, which
will be the position of the centre of buoyancy corresponding to
the 10 feet draught, and B M is of course the height of the meta-
centre above that centre of buoyancy. If the 10 feet water-line be
continued, it will cut the curve of displacement at D, and a per-
pendicular dropped from that point on to the scale of tons will
give the displacement corresponding to that draught of water.

Although the method just described is the one usually employed
for arranging metacentric diagrams, there are many others that
may be adopted according to the object in view when constructing
them; but, whatever the method employed, the curves recorded
are essentially the same. For example, it is sometimes found
convenient, instead of placing the curve of displacements and the
metacentric diagram in the relative positions shown in Fig. 51,
to apply them in positions respectively at right angles thereto'
observing that by constructing the curves, as we have seen, about
an oblique line inclined at 45° to the water-lines and verticals, the
same scale of linear measurements can be employed for measure-
ments at right angles to each other. It is a mere matter of con-
venience, therefore, to decide in what relation to each other the
displacement and metacentric diagrams shall be placed.

Again, for certain purposes it is convenient to have the curve
of metacentres shown upon the midship section of the vessel, so
that her metacentric stability under various conditions of draught
may be at once clearly seen. This is illustrated by Fig. 52, which
shows the metacentric curve and that of the centres of buoyancy,
the lines used in their construction being suppressed, excepting the
oblique line, which is necessary for defining the positions of the
centres of buoyancy and metacentres at any given draught of water,
as indicated by dotted lines. This figure represents the section and
curves of metacentres and buoyancy for an actual ship about 370
feet long, and 45 feet broad. W L is her water-line, when fully
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equipped- for sea, with cargo, coals, and water-ballast on board.

M and B are respectively the position of the metacentre and centre

of buoyancy corresponding to this condition; w I is her water-line,

w L

1 /
1 /

w

\ /
1 /
1 /\/ 1

/ i ^B

when ready for sea, but without cargo, coals, or ballast on board;

and m and b are the corresponding metacentre and centre of

buoyancy respectively.

In considering such curves it must be most carefully borne in

mind that the locus of metacentres thus recorded is a wholly

different locus from that which, following Bouguer, we call the

metacentric, that being the locus of pro-metacentres, all pertaining

to one given displacement, and this (Figs. 51 and 52) indicating

merely the rise and fall of the metacentre as the ship's draught

is changed, she always remaining in the upright position. We here

see that much confusion is avoided by the introduction of the wTord

"pro-metacentre;" it is no longer necessary to speak of the metacentric

as a locus of metacentres, or a metacentric curve, but as a locus

of pro-metacentres, the designations, "locus of metacentres" and

" metacentric curve " being now strictly confined to such curves as

that shown in Fig. 51, which are necessarily associated with varying

displacements.

The diagram just mentioned presents to us at once the limit to

which it is possible, at every draught of water within its range,

to raise the centre of gravity of the ship and its cargo or other

load, without sacrificing all metacentric stability. The metacentric

curve furnishes this limit. Let any draught of water whatever,

comprised within the diagram, Fig. 51, be taken, say that already

used as an illustration, viz., 10 feet. All the time the centre of
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gravity is situated below the point M, the ship will possess meta-

centric stability, and will float in the upright position in smooth

water. If the centre of gravity should be situated at some point,

G, above the metacentre, M, then the ship, even in still water, will

roll either to port or starboard, in search of a position of stable

equilibrium. When and where she will find one can only be

ascertained by bringing into use, in some form or other, the

fundamental formula of stability for larger angles of inclination, viz:

v x li In!GZ =—y
— — B G sin. a.

In constructing such curves, although their use is limited within

certain fixed light and load draughts of water, it is usually desirable

to calculate points in the curves of buoyancy and metacentres lying

somewhat beyond these limits, in order to ensure correctness in

the curves within the required limits; otherwise, unless the number

of points calculated is unusually large, there is a risk of inaccuracy

in drawing in the curves through the points obtained.

The curve of buoyancy for ordinary ships does not depart very

materially from a straight line, especially between the limits of

load and light draught. When it does depart, it is usually concave

to the base-line, but with special forms of vessels it is sometimes

convex to that line, or concave upwards. It is easy to see why all

this should be so. For any body of regular form, say a prismatic

body of rectangular, or triangular, or parabolic section,"' the centre

of buoyancy at any given draught of water will be at a fixed

proportion of the draught of water below the water's surface.

With a rectangular section it will always be at one-half the depth,

of course; with a triangular, at one-third; with a parabolic, at two-

fifths, and so forth. The respective loci of all such centres of

buoyancy, therefore, constructed as we have described, must of

necessity, in each case, be a straight line. It is also easy to see

that the straight line, representing the locus of centres of buoyancy

for a rectangular section, must lie at a less inclination to the base

(i.e., to the horizontal) than a line representing the locus of such

centres for a parabolic section, and this again at a less inclination

than a line representing the locus of such centres for . a triangular

section, because the angle of inclination is in these cases that of

* Although ships are not of prismatic or parallel form, we may calculate for them

a mean section, and then assume them to be prismatic, for the purposes of such

general investigations as the present.
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which the tangent is
-J, f, and §, respectively. A ship of irregular

but ordinary form would approximate to a compound of, or a

compromise between these three figures, and as at the region of

the water-line the form tends to the rectangular, the curve will

usually be flattest, or at the least inclination to the horizontal near

the top, or when the ship is most immersed, becoming somewhat

steeper as the water falls and leaves the more rectangular parts of

the section, and as the parts of the section remaining in the water

approximate more and more towards the parabolic or triangular

form.

Hence the usual concavitv of the curve towards the base-line.

On the other hand, great flare in an immersed section near the load

water-line tends to lift the upper part of the curve of centres of

buoyancy, and, therefore, tends to give the curve convexity down-

wards, but this convexity is very unusual. In his work on the

Modem System of Naval Architecture, the late Mr. J. Scott Russell

gives twenty-five different forms of sections, and tabulates their

particulars; and out of these there are but five with curves of

buoyancy which have their convexity towards the base, whilst

three give straight lines (within the limits of the three draughts

of water which alone are given), and eighteen exhibit downward

concavity, the concavity in most cases being very small.

The " curve of metacentres " is susceptible of a great variety

of forms. Being set up, at each calculated position, from the centre

of buoyancy, and the curve of buoyancy, as we have just seen,

approximating to a straight line, the form of the curve of meta-

centres reflects directly and somewhat closely the varying actual

heights of the metacentres at different draughts of water.

Let us consider the cases of a few prismatic bodies of simple

section. Taking, first, a body of rectangular section, floating with

two sides horizontal and two upright, let us observe what form

its curve of metacentres will take. The formula for the height

of the metacentre above the centre of buoyancy is, as we have seen,

^ moment of inertia of water-line area
Jd 1V1 ~ —=

;
—

displacement.

Let us put b for the breadth of the body, and h for the immersed

depth. Then, as the body is prismatic, we may take b to represent

the area of the water-line, and b x h to represent the volume of

the displacement ; and we shall have
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BM = 12 b2

b x h 12 h*

This is the height of the metaeentre above the centre of buoyancy

for each draught of water. If we now give successive values to h

(which means successive draughts of water), say h = 1, 2, 4, 8, 16

y, yi yh yi yi

successively, we shall have _ , ttt , ~tk 3 tttt and v^ respectively, forJ? 12 24
' 48 ?

96 192 r 17

the heights required. The height, B M, will obviously become less

and less as the depth to which the rectangular body is immersed

becomes greater and greater. This state of things is represented

in Fig. 53, which shows the curves of centres of buoyancy marked

Fig.58*
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B, and of metacentres marked M, for this case of such a rectangular

prism. The height up of the centre of buoyancy above the base-

h
line will of course be ~ for every draught of water. The fraction

£2~
-T-, diminishing in value as the height, h, increases (the breadth, b

y

I Z lb . . . .
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remaining unaltered), it is clear that the curve of metacentres will

approach continually nearer to the curve of centres of buoyancy
as the immersion is increased. On the other hand, as the height, h,

b2
diminishes, the value of the fraction -j- increases, and the curve of

metacentres rises continually higher above the curve of centres of

buoyancy, and of course springs to immense heights as the draught
of water approaches zero. If, for example, we assume the figures

with which we have been dealing to be feet, and put the breadth
b = 25 feet, the height, BM, will for a draught of 5 feet, be
slightly over 10 feet, while for a draught of 1 foot, it will be 52
feet, for a draught of 6 inches, 104 feet, and for a draught of 1 inch,

625 feet, the limit being infinitely great.

If, instead of a rectangular prismatic body, we consider a trian-

gular one with two equal sides floating apex downwards, calling b

the breadth at the water-line (so that b will now vary with the

draft of water), and h the immersed depth as before, we shall have

A8

-Divr 12 b2

~
-A.

~ M
2

the displacement now obviously being one-half of what it was
before. The form of the locus of metacentres, therefore, it is at

once seen, will be very different from that in the last case (with

rectangular section), because of the variation of b, the breadth,

which will now take place.

If we call the angle of the immersed apex, 2 6, we shall then
establish a fixed relation between b and It, because we shall have
b

•^-j = tan. 6
}
and b = 2h tan. 0, and we can then write

p M 4 h2 tan. 2 9 2
7 , 9 n

= Wk = 3
h tan

-

6 -

As the tangent of an angle increases from zero up to infinity, as

the angle increases from 0 to 90° (being 1 at 45°), and as we have
here the square of the tangent entering into the expression for

B M, it is easy to see that the height of the metacentre above the
centre of buoyancy increases largely with the increase of the angle
immersed, and therefore we shall have a different locus of meta-
centres for every change of this angle. But, presuming the apex
angle to be fixed, and called 2 a, we shall then have
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2BM = •

-• h tan. 2
a.

Tan.2 a will now be a fixed quantity, and this multiplied by frds

the immersed depth of the triangle, will be the height of its meta-

eentre above its centre of buoyancy. That height will therefore

vary directly with the immersed depth of the triangle, increasing

as the depth increases, and diminishing as it diminishes. This

locus of metacentres must therefore be a straight line, as illustrated

in Fig. 53, for the triangle there shown by the line marked M
x , the

corresponding locus of centres of buoyancy being marked Br It

will be always a straight line for a triangular prism, whatever be

the apex angle.

Loci of centres of buoyanc}^ and metacentres for a prismatic

vessel of circular section will both be straight lines, the locus of

centres of buoyancy being an inclined line, and the locus of meta-

centres a horizontal line, the metacentre for every draught of water

being at the centre of the section. This is shown in Fig. 53, where

the line, B
2 , is the locus of the centres of buoyancy, and the line, M

2 ,

that of the metacentres. The locus of centres of buoyancy and that

of the metacentres in this case meet when the whole section is

immersed, the centre of buoyancy and the metacentre being then

coincident,'" In the figure they are only carried to the immersion

of the lower semicircle.

It has been said that the curve of metacentres for actual ships is

always convex to the base of the diagram ; but this is not correct,

as any one who carefully considers the expression for MB, and

remembers what various forms ships assume, will readily discern.

In his Theoretical Naval Architecture, Mr. Thearle gives a diagram

of metacentric curves such as we produce in Fig. 54, in which curve

A A represents certain of H.M. gun-boats ; B B ships with a pro-

jecting armour shelf like that of H.M.S. Devastation; CG an

ordinary broadside iron-clad ; and D D, which is concave to the

base-line, a man-of-war brig with a rising floor. M M he gives as

representing curves of the character ordinarily met with, the value

of B M usually increasing very rapidly as the draught diminishes.

" This is especially the case," he correctly says, " in vessels having

a very flat floor; as the moment of inertia of the water-plane

* In the paper, " On Curves of Buoyancy and the Metacentre for Vertical dis-

placements," by Mr. Stanbury, in the Annual of the Eoyal School of Naval Architec-

ture and Marine Engineering, for 1872, several equations for such curves will be found,
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remains very considerable, while the displacement becomes almost

zero. If, however, the vessel has a very rising or a hollow floor,

the curve of metacentres is flatter, being, indeed, in some cases

slightly concave with regard to the water-lines in the diagram."

In a " Note on the Geometry of Metacentric Diagrams," read at the

Institution of Naval Architects in 1878, Mr. W. H. White gives cor-

roborative diagrams calculated at the Admiralty, which we have

reproduced in Fig. 55. We have brought the several curves into a

single figure, making the horizontal dotted line the common load

water-line of all the cases. A A is given as a common case for war-

ships of ordinary form. B B illustrates the case of a "Symondite" or

" peg-top " vessel, in which again the curve of metacentres is con-

cave to the base-line, and the height of the metacentre above the

curve of buoyancy decreases as we pass from load to light draught.

C C is given as representing such a ship as the Inconstant, the

curve of metacentres being nearly horizontal ; and D D exhibits

a case in which this curve drops slightly as it passes from the load

draught to a lighter draught, then becomes horizontal, and after-

wards rises as it passes to a still lighter draught. In speaking of

a similar curve in his Manual of Naval Architecture, Mr. White

D\
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Fig.55.

A

says the condition of things described in our last sentence "fre-

quently occurs in merchant-ships of deep draught (in proportion

to their beam) when fully laden, and with approximately vertical

sides in the region between the load and light lines." . . .
" The

highest position of the metacentre on these ships/' he adds, " usually

corresponds to the light line,

and the lowest to a draught

intermediate between the load

and light lines. Very fre-

quently the heights at the load

and light lines are nearly

equal, and the metacentric w—-"^sr — ———2

locus lies wholly below the ~ ~- yT"

load line. In war-ships, on the

contrary, that locus usually

lies wholly above the load line,

the ratio of breadth to load

draught being greater than the

corresponding ratio for mer-

chant-ships— the range of

draught from the load to the

light condition being much
less for war-ships than for

merchant-ships."

The principal value of these

diagrams of metacentres at

various draughts of water lies, of course, in the facility they give for

indicating the stability of the ships at those various draughts when

the corresponding positions of the centres of gravity are known.

Mr. John Inglis, shipbuilder, of Pointhouse Shipyard, Glasgow, has

taken a leading part in the development of this very important

matter. Fig. 56 is a reduced copy of a diagram with which he has

favoured the author, and which exhibits the system that he pur-

sues/" The horizontal scales at the bottom of the figure are two in

number, the one being a scale of feet for showing the height above

the floor and ceiling available for the cargo, the zero being at the

top of keel, and the cargo space commencing somewhat more than

2 feet above it ; the other being a scale (also in feet) of draught of

water, and the stowage of cargo, on the assumption that the cargo

is of such a specific gravity as to bring the ship (when filled with it)

* See also. White's Manual of Naval ArcJiitecture, second edition, p. 94.
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to her designed load draught, and is poured in, so to speak, in such

manner as to keep its surface always level. The upright scales are

also two in number, the one being a scale of cargo capacity in cubic

feet, from which may be read off the quantity of the homogeneous

cargo on board at any time by means of the " curve of capacity " to

be presently mentioned; and the other being a scale of feet, set off

00,000

SO, 000

70,000

CO, 000 1

50,000

40,000

30,000

20,000

10,000

above the top of the keel, serving as a scale of heights for centres

of gravity and metacentres. The curve, A A, is the curve of capacity

before-mentioned; by taking any point upon this curve, and pro-

jecting it horizontally upon the vertical scale of capacity, the

number of cubic feet on board (from which the number of tons
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which it weighs may be inferred, there being allowed in this

instance 58*5 cubic feet per ton of dead weight, or a specific gravity

of *615) can at once be seen ; while projecting the same point ver-

tically downwards upon the horizontal scales, the corresponding

depth of cargo in the hold, and the corresponding draught of water

of the vessel, can be read off. The curve marked G C, exhibits from

point to point the heights of the centre of gravity of the homo-

geneous cargo, these heights being read off from the vertical scale of

feet at the side of the figure ; the curve, G G, represents the heights

of the common centre of gravity of both the ship and the cargo

;

and the curve, M M, represents the heights of the metacentres

(within the requisite limits), both of these latter sets of heights being

read off from the same vertical scale at the side of the figure. A
comparison of the curves, G G and M M, at any point exhibits the

measure of metacentric stability which the ship possesses, with the

corresponding quantity of homogeneous cargo of the given specific

gravity on board.

In arranging this diagram, and making the assumptions as to

specific gravity of cargo and stowage on which it rests, it is pre-

sumed that the worst case which need arise is provided for, because

the cargo is the lightest possible compatibly with its being homo-

geneous, and yet bringing the ship down to her load draught,

observing that its assumed specific gravity (*G15) is less than one-

half that of coal. If any part of the cargo be heavier than the

homogeneous cargo here considered, it may be inferred that this

heavier part may be placed low, so as to bring down the centre of

gravity and add to the stability—add to it, both by being itself

placed low, and by displacing, so to speak, part of the lighter

homogeneous cargo. It may be feared, however, that the exigencies

of trade under which ships are loaded do not always admit of

the heaviest portion of the cargo being placed low down in the

hold ; in fact, cases have often come to our knowledge, and must

have come to the knowledge of many, in which parts of machinery,

armour-plates,* and other heavy materials have come to the wharf

for shipment after most of the cargo was on board, and doubtless

have often brought the centre of gravity so near to the metacentre

as to leave much too small a margin of stability for sea conditions.

* We remember an instance of two ships, sailing from the Humber on successive

Saturdays, being sunk on the Dogger Bank in consequence of armour-plates delivered

late for shipment, and stowed high, getting adrift, and breaking their way out

through the bottom.
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But the greater the tendency that exists in trade conditions to

disturb the conditions of stowage which science would suggest,

and which the shipbuilder would fain provide, the greater is the

necessity for all those who have to do with ships being thoroughly

informed respecting the elements essential to safety ; and this con-

sideration it is which adds so much to the merit of Mr. Xnglis, and
of all those who contribute to formulate, and exhibit in diagrams,

the actual conditions of merchant ships.

An examination of the diagram, Fig. 56, reveals the fact that

when all the cargo is out of the ship, the curve of centres of

gravity has crossed the curve of metacentres, and the metacentre

has fallen below the centre of gravity. In the light condition,

therefore, the ship is unstable in the upright position, and needs

ballast to enable her to float in that position. How much ballast

was essential to safety this diagram does not show, because that

depends upon the greater or less rapidity with which the ship

acquires stability as she inclines from the upright, and upon the

magnitude of the angle of inclination, through which the continued

acquisition of stability proceeds. This can only be shown by the

ship's " curve of stability,
5
' or by some equivalent means—a fact

which should put the reader on his guard against attributing to

these " curves of metacentres " and of centres of gravity any more
value than they possess as indications of the stability of vessels,

in the upright or nearly upright position in various conditions

of lading. They cannot of themselves furnish any complete or

satisfactory account of a given ship's stability. Unless more is

known of it they must not be relied upon, even when indicating

a good " metacentric height." * When curves of stability at various

draughts of water have once been worked out, or when similar facts

are known for ships of closely similar forms, then the relation

between the metacentric curve and the curve of common centres of

gravity of ship and cargo may be sufficient ; but the " metacentric

stability " of cargo-carrying ships cannot alone be regarded as a

sufficient indication of safety at sea, even for a steamship, and still

less for a sailing ship.

A signal instance of the impropriety of taking the curve of

metacentres to furnish a complete account of a ship's stability is

illustrated in Figs. 57 and 58. Fig. 57 shows the relative positions

* The " metacentric height 5

;

is the height of the metacentre above the centre of
gravity.
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of the metacentre, centre of gravity, and centre of buoyancy under

various conditions for H. M. late S. Captain, and Fig. 58 shows the

curve of stability of the same ship

calculated to a mean draught of

25 feet 4 inches, or corresponding

to a displacement of 7,907 tons,

Fig.57.

M

G--

G,

G„

G,
G,

and with a metacentric height of

2*66 feet. Eeferring in the first

case to Fig. 57, M M is there the

curve of metacentres, and B B the

curve of centres of buoyancy at

corresponding draughts of water.

G
x
the centre of gravity for a dis-

placement of 7,907 tons with 617

tons of coal, and fully equipped,

giving a metacentric height of 2*66

feet, at a mean draught of water

of 25 feet 4 inches; G
2

is the

centre of gravity corresponding

to a displacement of 7,790 tons

with 500 tons of coal, and fully

equipped, giving a metacentric

height of 2*6 feet at a mean draught of 25 feet \ inch. Similarly,

G
s>
G

4 ,
G

5 , are centres of gravity corresponding to different con-

ditions of .thejjship with varying displacement, but in each case

M

Fig.58.the metacentric height is less

than that due to a displace-

ment of 7,907 tons, including

617 tons of coal, and the

ship fully equipped at mean

draught of 25 feet 4 inches, viz. :—2*66 feet. Now, referring

to Fig. 58, which is the curve of stability calculated to those

conditions of the ship which give the greatest metacentric height,

we see that the curve reveals the fact that the range of stability

is only 54|°, and the maximum stability is reached at 21
0

9 where

it is only 7,100 foot-tons ; or the arm of the righting couple is less

than 1 foot. These features of danger would in many cases be

overlooked should the curve of metacentres alone be held to afford

sufficient information concerning a ship's stability.

It may be added that Mr. White, in his work before quoted,

gives an example of a ship in which the metacentre is below the
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centre of gravity, not only when the ship is light (as in Fig. 56),

but also when she is loaded, and he says with reference to it, " this

vessel represents a class which is successfully employed in certain

trades, with the frequent use of water-ballast when homogeneous

cargoes are carried."

In Figs. 59 and 60 we give the case of a transatlantic passenger

steamship, with tracings and full particulars of which we have been

favoured by Messrs. J. & G. Thomson, of Glasgow. The curve of

metacentres, Fig. 59, shows the relative positions of the metacentre

and centre of gravity of the ship in several conditions. The fol-

lowing are some of the valves of the "metacentric height":

—

A draught of water of 25 feet corresponds to the conditions of

2,500 tons of cargo, and 900 tons of coal being on board. G
1
is the

centre of gravity in this case, when the cargo is all below the lower

deck, and the coal-bunkers are full. The metacentric height is then

2 6 feet. If the cargo be supposed homogeneous and to occupy the

holds and 'tween-decks up to the main-deck, the centre of gravity

is then raised 1'5 feet, leaving a metacentric height of 1*1 feet.

A draught of 23 feet corresponds to the condition of the cargo

on board being 2,400 tons, with coals out, but ballast-tanks full.

G
2
is the centre of gravity in this case, when the cargo is all below

the lower deck. The metacentric height is then 2*9 feet. If the

cargo be supposed homogeneous, and to fill the ship up to the main-

deck, the centre of gravity is then raised 1*9 feet, leaving a meta-

centric height of 1 foot.

A draught of 22 feet corresponds to the condition of 2,300 tons

of cargo being on board, the ship being without coals or water

ballast. G
3
is the centre of gravity in this case, when the cargo is

all below the lower deck. The metacentric height is then 1*7 feet.

If the cargo be homogeneous, and extend up to main-deck, the

centre of gravity is then raised 2 #0 feet, leaving no metacentric height,

the centre of gravity in this case being '3 foot above the metacentre.

If now 900 tons of cargo be taken out and 900 tons of coals (the full

supply) be put into the bunkers, the draught of water will of course

remain the same, but, presuming the remaining 1,500 tons of cargo

be stowed away below the lower deck, G
4
will be the new centre of

gravity, giving a metacentric height of 1*2 feet. But if the 1,500

tons of cargo be homogeneously disposed up to the main-deck, the

centre of gravity will be raised 1*1 feet above G
4 ,

leaving a meta-

centric height of *1 foot.

With coal-bunkers and water-ballast tanks full, but with no
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cargo on board, the ship draws 187 feet, G
5
is her centre of gravity,

and her metacentric height is '5 foot.

Fig.59.

With 550 tons in coal-bunkers and water-tanks all full, the ship

draws 17*7 feet, and her metacentric height is 1 foot, G
6
being then

her centre of gravity.

With coal-bunkers full and no water-ballast or cargo on board,

the draught is an inch or two less, but the centre of gravity is then

7
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•9 foot above the metacentre. The necessity of the water-ballast

is in this case manifest.

In remarking upon this case, Messrs. Thomson say :—" If we
assume that the cargo is homogeneously stowed to the main-deck

instead of to the lower, then, instead of 2*6 feet, 1*7 feet, and 2*9

feet, as given above, we shall have 11 feet, *3 foot, and 1*0 foot.

These last conditions are neither of them likely to exist, as in most

cargoes there is sufficient variation in density to allow of the centre

of gravity of the cargo being very much lower than it would be if

homogeneous, by merely putting the heavier parts below. From

this, however, it will be seen that the worst possible condition the

ship can get in, when water-ballast is available, is with a metacentric

height of 1 foot. The condition of no cargo in, but all bunkers and

ballast-tanks full, is shown. The metacentric height in this condition

is
e5 foot. This is scarcely sufficient to enable her to be worked

easily in port. But with her bunkers filled to the lower-deck, and

ballast-tanks full, she would have a metacentric height of '9 foot."

Fig. 60 shows the stability of this ship under various conditions,

at all angles of keel from the upright to beam-ends position. The

following table gives the principal particulars in a convenient form:

—

To Lower-Deck. To Main-Deck.

Draught. 22 ft. 22 ft. 23 ft. 25 ft. 22 ft. 22 ft. 23 ft. 25 ft.

Condition.
1500 Tons
Cargo,
Coals in.

2400 Tons
Cargo,
Coals
out.

2600 Tons
Cargo,
Coals
out,

Ballast-
tanks
full.

2500 Tons
Cargo,
Coals
and

Stores in.

1500
Tons
Cargo,
Coals
in.

2400
Tons
Cargo,
Coals
out.

2600 Tons
Cargo,

Coals out,

Ballast-
tanks
full.

2500
Tons
Cargo,
Coals
and

Stores
in.

GM, 1-205 1-7 2-9 2-6 •17 -•31 10 LI

BG, 6*78 6'28 4-70 4-55 7'8 8-26 6'61 6-12

Displacement, . ... 6,450 6,450 6,852 7,575 6,450 6,450 6,852 7,575

Righting moment )

when deck edge is >

immersed, . . .
)

6,654 8,286 13,656 12,975 3,310 1,805 6,136 6,423

Maximum righting
\

moment, . . . .
\

13,867 13,384 24,701 19,316 8,385

I

5,830 11,785 9,809

Rightingmomen t at 90°

,

7,160 11,255 19,528 13,783 806 0 4,933 2,878

Angle of maximum
)

stability, . . . .
\

59 '25° 60° 64° 60° 56° 51° 59° 50°
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The curve of greatest stability, A A, Fig. 60, corresponds to the

condition of 23 feet draught, with 2,600 tons of cargo stowed below

lower-deck, with all the coals consumed, but with her water-ballast

tanks full. This would roughly correspond to the state in which
such a ship, having left Europe with a full cargo of European

exports (which are usually much heavier, bulk for bulk, than a

homogeneous cargo filling the ship up to her main-deck at the

same draught) would, after a protracted passage, arrive at New
York.

The next best condition as to amount of stability is that illus-

trated by curve, BB. The ship is still stowed as just stated, as to

cargo, but now has her bunkers full of coal in lieu of water-ballast.

She then draws 25 feet of water.

The curve of stability next in order of magnitude is G C,

corresponding to the same amount and stowage of cargo as before,

but with coals and stores consumed, and the water-ballast tanks

empty, the draught now being 22 feet.

On comparing the curves, B B and G 0, it will be seen that the

lever or arm of stability at moderate angles of inclination is con-

siderablv reduced as the coal and stores are consumed ; but at the

large angle of 56 degrees the two curves cross, and the lengths of

the righting levers become equal in amount ; while from that incli-

nation onward they do not greatly differ. The amount of the

stabilities, of course, differ in proportion to the differences of

displacement.

Curve DD illustrates the state of the stability (as to righting

lever) at a draught of 22 feet with coals in, and 1,500 tons of cargo

below the lower-deck.

In all the above cases it will be seen that the righting lever

increases up to angles of nearly 60 degrees, and the lowest of the

curves indicates a maximum length of lever of over 2 feet.

The worst condition in which a ship of this description need find

herself, as regards stability, is that of having on board at sea homo-

geneous cargo stowed up to the main-deck, and with all her coals

and stores consumed. In this remark we take no account of the

ship's condition when without cargo, because, however inconvenient

it may be to have ships (as so many recent ones are) devoid of

initial stability in port, or possessing extremely small stability there,

their condition ought to be understood, and danger ought to be

avoided. But a ship at sea is liable to various displacements and to

protracted voyages, and may unavoidably find herself with coal and
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stores gone, but cargo remaining, and in this state exposed to stormy

weather. This vessel would then have no metacentric stability

without water-ballast, but, with water-ballast in, she would possess

the amount of stability indicated by curve E E, with a maximum

righting lever of If feet.

It is true that such a ship as this would have much less stability

than the last-mentioned at large angles of inclination, with her coal

on board, and a homogeneous cargo to the main-deck, then drawing

25 feet of water, and therefore too deep to use water-ballast freely

;

but she would still possess a very large range of stability, and her

stability could be continually increased by the substitution, weight

for weight, of water-ballast for coal consumed, always approaching

the condition indicated by curve E E.

of metacentres of the Orient Line

steamship Austral, as produced at

the time of the inquiry into her

loss. Bl^is the curve of buoy-

ancy, and M Mx
the curve of meta-

centres. Two other curves, DD
and D

x
Dp are curves of displace-

ment, the former for fresh-water

and the latter for salt-water ; E E

is a curve representing the tons

per inch of immersion at various

draughts of water. The vertical

lines in this diagram indicate the

draughts of water measured upon

the scale at the bottom of the

diagram. The heights of the meta-

centres and centres of buoyancy

are measured upon the vertical scale

of feet on the right-hand side

of the diagram. The centres of

gravity are shown upon the same

scale, being joined with the metacentres by a dark line in each case.

Centre of gravity, G (with its corresponding metacentre and centre

of buoyancy) is for the load-draught of the ship (26 feet 6 inches)

laden with a homogeneous cargo (measuring 100 cubic feet per ton)

and with bunkers, tanks, &c, full G
1

is the centre of gravity

laden with the same cargo as before, but with coals, water, and

stores consumed, and ballast-tanks full. The position, G
2 ,
was given

Fig. 61 represents the curve
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as the centre of gravity at the time of the accident which occurred

to this ship in Sydney Harbour, 11th November, 1882. It will be

seen that in all the above cases the centre of gravity is given as a

little (about 1 foot 3 inches) below the metacentre. G
3
is the centre

of gravity when the ship is laden with a homogeneous cargo, but

with all coals, water, and stores consumed, and shows the vessel to

have, when in this condition, a negative metacentric height, when
upright, of about four-tenths of a foot, which would cause her to

loll over until a position of rest was found. G
4
represents the posi-

tion of the centre of gravity when the ship was inclined at Glasgow
on the 6th August, 1883, after her return from the scene of the

accident, and indicates that, under the conditions of the inclining

experiment, she possessed a metacentric height of about 1*6 feet.

G
5

is the centre of gravity of the hull and machinery of the ship

without coals, cargo, or stores, but with the water-ballast tanks

filled, the draught of water being 19 feet 3 inches. G
6
is the centre

of gravity of the hull and machinery under similar conditions, but

with the important exception of the water-ballast tanks being

empty, and shows the vessel to have, when in this condition, a nega-

tive metacentric height of eight-tenths of a foot, and represents the

condition under which she would leave the hands of the builders,

with water-tanks empty. It will be observed, however, from the

position of G
5
and G

6
in this diagram that the metacentric height of

the ship, when light—that is without cargo, coals, or stores—may
be increased by over 2 feet by simply filling the water-ballast tanks

with water. The vertical scale of tons on the right-hand side of

this diagram represents the displacement of the ship at various

draughts.

Fig. 62 represents curves of stability prepared by Mr. Thomas

Phillips, Lloyd's Surveyor, for a raised quarter-decked screw-steamer

of the well-decked type. The dimensions of this vessel are—Length,
267'5 feet

;
breadth, 35'5 feet

; depth, 197 feet
;
tonnage under deck,
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1,509 tons; gross tonnage, 1,866 tons; net register tonnage, 1,009

tons. Curve A represents the ship laden with a homogeneous cargo,

which entirely fills the cargo holds, the bunkers being assumed as

quite full of coal, the boilers filled with water, all stores on board,

but no water in ballast-tanks, the vessel otherwise being in sea-

going condition. The displacement of the ship under the above

conditions is 3,870 tons, the mean draught of water 19 feet 4i inches,

the freeboard 2 feet 4\ inches, and the metacentric height *85 foot.

Fig. 63 shows a transverse half-section of the ship in the above con-

dition, denoting the positions of the centre of buoyancy, centre of

gravity of ship and cargo, the metacentre, and the height of the

respective decks. It will be observed from the curve (Fig. 62) that

the angle of maximum stability is degrees, and the righting

moment in foot-tons at this angle is 4,218 ; the angle of vanishing

stability is 96J degrees ; and the angles at which the edges of the

exposed main-deck, raised quarter-deck, and bridge-deck become

immersed are 10 degrees, 22 degrees, and 30 degrees respectively.

Curve B, Fig. 62, represents the vessel under all the conditions

as described for curve A, but assuming the forewell to be filled

with water, amounting to 267 tons. The displacement is 4,137 tons,

the mean draught 20 feet 6J inches, the freeboard 1 foot 2i inches,

and the metacentric height 4 feet. Fig. 64 is a transverse half-

section showing the position of the centre of buoyancy and meta-

centre at this draught, and also the position of the common centre

of gravity of the ship, cargo, and water in well ; and the height of

the various decks at this immersion. The angle of maximum
stability is reached at 46J degrees, the righting moment at this angle

being 1,820 foot-tons 0 The angles at which the respective deck edges

Fig.63. Fig.GJf^ Fig.65.
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become immersed are 6 degrees, 18 degrees, and 27 degrees, and

the angle of vanishing stability is 80J degrees. Curve C, Fig. 62,

represents the vessel when laden with a heavier cargo than in curve

A, the holds not being full, as in the case of the heaviest description

of coals. The displacement and draught are the same as in curve A,

but the metacentric height is increased to 1*6 feet. Fig. 65 is a

transverse half-section showing the respective positions of the centre

of buoyancy, common centre of gravity of ship and cargo, metacentre,

and decks when in the above condition. The angle of maximum
stability is 60 degrees, and the righting moment at this point is

6,656 foot-tons. The angles at which the edges of the various decks

become immersed are the same as those given in the description of

curve A, the draught of the vessel being the same. The range

of stability is much increased, the vanishing point being at 112\

degrees.

Fig. 66 shows the profile and plan of the vessel referred to

Fig.66.

in the preceding curves of stability, and exhibits the respective

lengths of the raised quarter-deck, poop, bridge, and forecastle.

Taking the load displacement, as in curves A and C, namely

3,870 tons, the surplus buoyancy due to the parts of the ship above

the water-line is 1,967 tons, or 33*7 per cent, of what would be the

total displacement if it were wholly submerged. The portion of

the ship between the load-line and the main-deck gives 560 tons

displacement, or 12*6 per cent, surplus; that due to the sheer of

the vessel is 301 tons, which, added to 560 tons, gives 18*2 per cent;

that due to the quarter-deck is 307 tons, which, added to 861 tons,

gives 23*2 per cent.; that due to the poop is 196 tons, which, added

to 1,168 tons, gives 261 per cent.; that due to the bridge is 465

tons, which, added to 1,364 tons, gives 321 per cent.; that due to

the forecastle is 138 tons, which, added to 1,829 tons, gives the

total 33*7 per cent, surplus buoyancy.
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In some remarks* upon the stability of Well-deck Steamers,

based upon curves of stability supplied by Mr. Martell (of Lloyd's

Eegister Office), Professor Elgar has considered the case of such a

vessel, 257 feet by 35^- feet by 18J feet, with a well 60 feet in length,

bulwarks 5 feet high, and has assumed that there is no other outlet

for the volume of water filling the well than that which it finds

by pouring itself out over the bulwarks as the vessel inclines. The
diagram which he gives shows that although the volume of water

which the well holds (186 tons), reduces the initial stability to

nothing, and keeps the ship unstable up to 10° of inclination, the

stability becomes positive at that angle, when only 98 tons of water

remain in the well. At 20° this water is reduced to 28 tons, and
at 30° the stability becomes the same as if the well did not exist,

and remains the same for all larger angles of inclination. His

conclusion is that, " so far as stability is concerned, the well cannot

be regarded as a serious element of danger."

Other examples of cargo steamers worked out in Lloyd's

Eegister Office in London, and presented by Mr. Martell to the

Load-Line Committee, are given in Figs. 67 to 71 inclusive. Curve

A, Fig. 67, represents the curve of stability of a cargo-carrying

steamer of the following registered dimensions : length 289*5 feet,

breadth 32*1 feet, depth moulded 23*1 feet. The centre of gravity

of the vessel was ascertained by an inclining experiment, no cargo

being on board at the time, and the boilers empty, but with 60 tons

of coal in the bunkers, it was found to be '98 foot below the

metacentre. Two hundred and forty tons of additional coal were

then assumed to be placed in the bunkers, and the cargo holds and

* See a "Paper on the Use of Stability Calculations in Regulating the Loading of

, Steamers," read at the Institution of Naval Architects, April, 1881
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'tween-decks completely filled with a homogeneous cargo, which

occupied 61 '2 cubic feet to the ton, the vessel having, when so

laden, 4 feet 7 inches freeboard, which is that required by Lloyd's

Tables of Freeboard. It will be observed that the angle of

maximum stability is reached at about 40°, the length of the

righting lever at this point being *68 foot, and the stability vanishes

at 77°.

The effect on the stability by decreasing the breadth of this

vessel by 2 feet is well illustrated by curve B, in the above Fig. 67,

the length, depth, freeboard, and the assumed conditions as to the

nature and amount of the cargo remaining the same. The curve

is much reduced, the maximum length of the righting lever being

only '43 foot. Assuming this vessel to be fitted with water-ballast

tanks, 2 feet high above the floors of the fore and after holds, thus

raising the position of the centre of gravity of the cargo, which is

taken to be similar in all respects to that previously described, the

vessel's stability is reduced from curve A to curve B, as shown in

the stability for the same vessel by an increase in the freeboard,

the cargo being in each case supposed to fill the vessel; and also

Feed



106 STABILITY OF SHIPS. [CHAP. VI.

the effect of variations in the density of the cargo. Curves A and B
show the difference in the stability, with 6 inches additional free-

board, the homogeneous cargo with which she is filled being pro-

portionately lighter than that which fills her with 4 feet 7 inches

freeboard. There is no material change in the stability under

these conditions, other than that a part of the area of curve A at

small angles of heel is transferred to larger angles of heel, and

somewhat increases the stability at these angles. Curve C re-

presents the stability when the vessel is laden with cargo of the

same density as in curve A, but, having a freeboard of 5 feet 1 inch,

the spaces in the 'tween-decks at the ends of the vessel being left

empty. This curve exhibits a marked improvement in the stability

of the ship, from which it will be seen that, in cases where vessels

have insufficient stability when laden with homogeneous cargo

which practically fills them, it will generally be effective to restrict

the amount of cargo stowed between decks.

Fig. 70 is a longitudinal section of this vessel without water-

ballast tanks, filled with a homogeneous cargo which gives her

Fig.yO.

5 feet 1 inch freeboard, but with the spaces shaded in the 'tween-

decks left empty. This vessel has the stability represented by

curve C, Fig 69. The space available for cargo with this arrange-

ment is 102,600 cubic feet, and the spaces in the 'tween-decks

which are left empty contain 6,700 cubic feet. Fig. 71 shows the

\

vessel fitted with water-ballast tanks in the fore and after holds,

which reduce the space available for cargo by 6,000 cubic feet.

Assuming her under these circumstances to be filled with a homo-

geneous cargo which gives her 4 feet 7 inches freeboard, her

stability would be reduced to curve A, Fig. 68, that is, if the

spaces shaded in the 'tween-decks were left empty. This shows
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that she could be safely laden to 4 feet 7 inches freeboard, with

all cargoes which do not exceed the density of 584 cubic feet per

ton. If 90 tons of ballast consisting of kentledge, or an equal

weight of water in the water-ballast tanks be placed in the bottom

of the vessel, she could load to the same freeboard with a full cargo of

61 cubic feet to the ton, and still have the same stability as is

represented by this curve, but for all lighter cargoes both the

freeboard and stability would be increased.

We have shown in the preceding illustration the effect on the

stability of a vessel of reducing her beam by 2 feet, and there have

been, without doubt, many vessels built of late years in which the

breadth is so reduced, relatively to the depth, that their margin of

stability is insufficient for safety when filled with homogeneous

cargoes.

Perhaps the relation of beam to stability can be better illustrated

by taking a prism of rectangular section 50^ feet broad, and immer-

sing it 21 feet in the water, leaving feet freeboard, and assuming

the centre of gravity to be 3 feet below the water-line, and con-

structing for this floating body a curve of stability marked A, Fig.

72; it will be seen that the angle of maximum stability is 20 degrees,

and the curve has a range of 38f degrees. By increasing the beam

of this floating prism by 2J feet, the curve of stability at the same

draught is represented by B in the figure, the angle of maximum
stability being the same as before, namely, 20 degrees, but the

range is extended to 41J degrees. By adding successive increments

of 2J feet to the beam up to 60 feet, and retaining the same amount

of freeboard, 6J feet, the curves, C, D, E, would indicate respec-

tively the stability due to these additions, and assuming the

position of the centre of gravity to remain unaltered, the position of
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the angle of maximum stability will remain unaltered also, although

the amount of stability will be more than doubled, and it would

absorb more than twice the amount of applied force, to heel the

broad prism to an angle of, say 10 degrees, than it would to heel

the narrow prism to the same angle. It will be observed that the

curves, A, B, C, D, E, Fig. 72, produced by varying the beam in this

manner, rapidly leave each other at starting, and converge again at

large angles of inclination, finally meeting in a point at 90 degrees,

or when the prism is on its side and the top and bottom become

vertical, at which point the amount of instability in all cases is the

same. *

Useful particulars relating to the stability of merchant-ships

have at various times been placed before the Institution of Naval

Architects at its annual meetings, and we will add here a few of

the most interesting of them :

—

In March, 1882, Mr. J. H. Biles read a paper on " Curves of

Stability of some Mail Steamers," his illustrations being taken

exclusively from ships built by Messrs. J. & G. Thomson. We
reproduce these curves in Fig. 73, and have put the particulars

Feel

0' 10' 20' SO' 40' 50' 60' 70' S&' 90'

relating to them in tabular form further on. The curve, S, is that

of the Cunard Koyal Mail S.S. Service, when she has 1,700 tons of

coal and 3,000 tons of cargo on board, assumed .to be stowed homo-
geneously. Her deck edge becomes immersed at an angle of 34°,

* For this and other illustrations see an able "Paper on the Relative Influence of

Breadth of Beam and Height of Freeboard in Lengthening out Curves of Stability,"

by Mr. 2s
T

. Barnaby, C.B., Director of Naval Construction, Admiralty, in vol. xii.

of the Transactions of the Institution of Naval Architects.
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and her stability reaches its maximum at 62°, the value of the

righting moments at these angles being given in the table. The

break in the curve at 63J° is due to the assumed admission of water

into the forecastle by the forecastle door, which begins to be

immersed at that angle.

The curve, Ca . 1 . is that of another Cunard Liner, the Catalonia,

when she has 970 tons of coal and 2,950 tons of cargo on board,

assumed to be stowed homogeneously up to the lower-deck. The

curve, Ga . 2 . is for the same ship and same weights, but with the

cargo assumed to be stowed up to the main-deck. Her deck edge

becomes immersed at an inclination of 32J°, and her stability

attains its maximum at 67° in the first case, and at 65° in the

second.

The curve, T, is that of the Thames, a fine-lined passenger

steamer belonging to the Peninsular and Oriental Company, assumed

to be loaded with 600 tons of coal and 2,700 tons of cargo stowed

homogeneously to the main-deck. Under these conditions her deck

edge becomes immersed at an inclination of 30°, and her maximum
stability is reached at 67^°.

The four curves, CI (with suffixes 1, 2, 3 and 4), are those of the

S.S. Claymore, a vessel running between Glasgow and the North of

Scotland. She is an awning-decked vessel, but has an opening the

full breadth of the ship in the awning-deck forward at the fore-

hatch, so that if steadily heeled until the deck edge became immersed,

she would begin to take in water at this opening. The curve, CI . 1
.,

was calculated on the assumption that no cargo is carried above

the main-deck, and that no wrater gets into the opening forward.

The curve, CI . 2 ., assumes the cargo to be carried homogeneously

to the upper or awning-deck. In calculating the curve, CI . 3 it

was assumed that the cargo is so arranged that its centre of gravity

is at the same height as in curve, CI . 1 ., but that none of the space

between the upper and main decks, except the poop, excludes

water. For the curve, CI . 4 the centre of gravity was assumed

to be at the same height, and the ship under the same conditions

as to water-tightness as for curve CI . 3 . The stability of the ship

would probably never be better than in curve CI . 1 ., and it need

not be worse than in curve CI . 4 .; generally it would be something

between those, depending on the stowage of cargo.

The table referred to on the preceding page is as follows :—
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Length
between
perpen-
diculars

Meta-
centric
Height
above

Eighting Moments.

Maxi-
111 Ulll

Eight-
ing

Lever.

Name of Vessel. Breadth
Mean

Draught
Dis-
place-
ment.

"When
Deck
Edge is

Im-
m pvQprlIliC1! toCU..

Maxi-
mum. At 90°.

Servia, . •

ft. in.

515 0

ft. in.

52 0

ft. in.

26 0

tons.

12,360

feet.

3'6

ft.-tons. ft.-tons.

50 500

ft.-tons.

42 700

feet.

4-81

Catalonia, (1) 430 0 43 0 24 0 8,285 2 '46 15,450 32,750 25,900 3-95

S3 (2) 33 33
1-0 8,500 21,100 13,800 2-5

Thames, » 392 0 42 0 24 0 7,348 5 5,000 24,100 15,200 3*28

Claymore, (1) 220 0 29 6 14 0 1,445 2 '4 2,730 4,565 4,170 3*16

5 3
* (2) 5 J 3 J 3 J 3 3

1-75 2,200 3,740 3,735 2-59

3 3 (3) 33 3 3 3 3 3 3
2-4 585 1,415 • • •

98

3? (4) 3 5 J 1 3 3 3 3
1-75 440 830 •58

Diagrams, Fig. 74 to Fig. 77, are also derived from the Transac-

tions of the Institution of Naval Architects, occurring in a paper

read by Mr. W. H. White in 1881. In Fig. 74 are shown the curves

of metacentres and centres of buoyancy for a cargo-carrying screw-

steamer, whose dimensions are given in the table which follows.

She has a deep water-ballast tank above her floors. When this ship

is in the light condition, with no water in the ballast tank, but with

her boilers full, the common centre of gravity is at G, about 1*25 feet

above the metacentre, M. If the whole of the cargo spaces were

filled with homogeneous cargo, G
x
would be the position of the

centre of gravity, about '8 foot above the metacentre, her draught in

this condition being 18 feet 3 inches. Fig. 75 shows the curve of

stability, B, given by this position of the centre of gravity.

Assuming the cargo to be so stowed as to give a metacentric height
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of 2*25 feet with the same draught of water, the centre of gravity

would be at G2 ,
Fig. 74, and A, Fig. 75, is the corresponding curve

of stability.

Fig. 76 shows the curves of metacentres and centres of buoyancy
for a cargo and passenger steamer of the dimensions given in the

table below. G is the position of the centre of gravity when the

ship is light and without water-ballast, the metacentre, M, being then

Fig.76,

•7 foot below the centre of gravity. Assuming the ship to be filled

with a homogeneous cargo giving her a draught of 23 feet, G
x
is the

centre of gravity, coinciding, in this case, with the metacentre.
The curve of stability corresponding to this assumed condition is

shown by the curve A in Fig. 77. If the cargo were so stowed as to

give, with the same draught of water (23 feet) a metacentric height
of 2-25 feet, the centre of gravity would be at G

3 ,
Fig. 76, and the

corresponding curve of stability is shown by the curve B in Fig; 77.

G
2
is the position of the centre of gravity, assuming the ship to be

laden with a homogeneous cargo, which would give her a draught of

25 feet; the metacentre would then be about 6 feet above the centre
of gravity.

Type of Ship. Length. Breadth. Moulded
Depth.

Light
Draught.

Light
Displace-
ment.

Load
Draught.

Load
Displace-
ment.

ft. in. ft. in. ft. in. ft. in. tons. ft. in. tons.

Cargo-carrying Steamer, 320 0 34 0 22 3 11 4 1,880 18 3 3,570

Cargo and Passenger \
Steamer, . . J

390 0 39 0 31 0 13 6 3,200

1

23 0 6,330

In Fig. 78 we give two curves of stability which are of special

interest, being those of two steamers, in the launching condition,



112 STABILITY OF SHIPS. [CHAP. VI.

which were successfully launched upon the Clyde. The ship whose

curve is marked A has a length of 275 feet ; she is 35 feet broad and

21 feet 6 inches deep; her mean draught at launching was 6 feet

8 inches. The ship of which B is the curve is 430 feet long, has a

0* 10* 20* 30* 40* 50* GO* 70* SO* 90'

breadth of 43 feet, and a depth of 35 feet 1 inch, her draught at

launching being nearly 11 feet 8 inches. Curve A may be taken as

illustrating the large amount of stability up to comparatively large

angles that a ship may have in the launching condition, while curve

B shows the small amount that may be made sufficient when careful

precautions are taken. The striking contrast between the two

curves illustrates in a very marked manner the great difference that

may exist in different types of ship under approximately the same

conditions. In curve A the stability increases very rapidly at small

angles, attains its maximum at an angle of about 46 degrees ; and

then decreases as rapidly, being lost completely at 90 degrees. In

curve B, on the other hand, the stability increases very gradually

up to an inclination of 50 degrees, then a little more rapidly until its

maximum is reached at about 75 degrees; thence it decreases very

gradually, being comparatively little less than the maximum at

90 degrees.
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CHAPTER VII.

Stability of Certain War-Ships—Stability of the Frigates Inconstant, Invincible,

Iron Duke, &c—Stability of War-Vessels Comparatively easy to Ascertain—
List of War-Ships whose Curves of Stability are Given—Admiralty Form for

Metacentric Heights and Stability— Serious Diminution of Stability Caused by
Low Freeboard—Monarch's and Captain's Compared—Case of the Atalanta—
Effects upon Stability of Differences of Form and Relative Proportions-
Tabulated Examples—Amount of Stability Requisite in Merchant-Ships—
Stability at Large Angles of Heel—The Torpedo-ram Polyphemus—Comparison
of her Section with Wall-sided Section—Investigations in the Geometry of

Curves of Metacentres.

In the last chapter we considered the stability at various draughts

of water of several merchant-ships, taking into consideration condi-

tions of stowage both favourable and unfavourable. It will be both

instructive and interesting to pursue this branch of the subject, and
in the next place to bring into comparison with those cases the

stability of some of H.M. ships of war, and more especially such of

them as have had their stability more or less called in question,

observing that the height of the centre of gravity undergoes less

variation in a war-ship than in a merchant-ship, owing to most of

the weights of the war-ship being fixed in amount and in position.

In 1871 a large committee of scientific and nautical gentlemen,

presided over by Lord Dufferin, reported to the Admiralty, at their

Lordships' request, upon the qualities of several ships of the Royal
Navy. Among other things they said—" Naval architects have been
induced" (in order to secure accuracy in the fire of their guns) " to

seek steadiness of platform by diminishing, as far as safety would,

allow, the statical stability and stiffness of the ship. In some recent

instances {e.g., the Inconstant and the Invincible) this was carried

to a degree which, together with an alteration in the distribution of

weights during construction, has led to a considerable weight of

ballast being placed on board these ships in order to correct the

crankiness so caused." It may be well to state at once that the

displacement of the Inconstant was 5,782 tons, and the amount of

ballast put into her was 180 tons, or slightly over 3 per cent.; while

the displacement of the Invincible was nearly 6,000 tons, and the

8
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Fig.79.

amount of ballast put into her 135 tons, or a little over 2 per cent.

It will at once be seen from these figures how little " crankiness
"

there was to correct

!

The initial stability of the Inconstant in different conditions as

to weights on board is illustrated in Fig. 79, which represents the

relative positions of the metacentre, centre of gravity, and centre of

buoyancy under such conditions.

MM is the curve of metacentres

and BB the curve of the centres

of buoyancy at corresponding

draughts of water.

The height of the centre of

gravity, G
x , which was ascertained

by experiment, was found to be

1*8 feet below the metacentre, 90

tons of ballast being on board at

the time, the draught of water

being 22 feet 9J inches. A fur-

ther 90 tons of ballast was placed

in the ship, which, with the other

weights put on board had the

effect of increasing the draught of

water to 23 feet 10J inches, and

the metacentric height to 2*8

feet, the centre of gravity of

the ship when in this condition

being indicated on the diagram

by G
2

.

When the vessel was at a lighter draught, viz., 21 feet 2 inches

with the 180 tons of ballast on board, but with the boilers and con-

densers empty—a condition of things which need never take place

at sea—the ship still had a metacentric height of 1*66 feet, G
3
being

the position of the centre of gravity. When all coal,"provisions, and

water were consumed, the boilers and condensers being filled—

a

condition of things which might possibly happen at sea—the meta-

centric height was increased to 2*05 feet, the draught of water being

21 feet 'inches. G4 on the diagram represents the position of

the centre of gravity in this case.

Fig. 80 is the curve of statical stability of the Inconstant when
the ship is floating at a mean load-draught of water of 23 feet

10J inches, the displacement at that draught being 5,782 tons;
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the centre of gravity below the metacentre, or the metacentric

height, at this draught being 2*8 feet, as illustrated in the preceding

figure. The height of the edge of the upper-deck above water,

when floating at this draught, is 15 feet 3| inches, and from the

curve it will be observed that the vessel heels over to an angle of

Fig.80»

3 .'Feet

33° before the edge of the deck becomes immersed; the righting

moment at this point being 11,362 foot-tons. The angle of maxi-

mum stability is 52J°, and the righting moment at this angle is

16,276 foot-tons, the length of the arm of the righting lever, G Z,

being 2*82 feet.

When this vessel has been heeled over to an angle of 72 1°, it

will be observed that she possesses the same amount of righting

force to return her to the upright position as she had at the

moment the edge of the upper-deck became immersed, the length

of the righting lever being about 2 feet. The range of stability of

the Inconstant when in the loaded condition is very large, the

stability not vanishing even with the ship on her beam-ends.

The following are the principal particulars illustrated by this

curve of stability :—

-

Gueve of Stability of the Inconstant.

5?

Angle at which edge of deck is just immersed,

of maximum stability,

„ no stability, .....
where stability is the same as at 33°, .

Stability with deck just immersed,

Maximum stability, .....
Displacement in tons, .

Mean draught of water,

33°

105i°
72i°

11,362 foot-tons.

16,276

5,782 „

23 ft 10J ins.
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Fig. 81 shows the relative positions of the metacentre, centre of

gravity, and centre of buoyancy of the Iron Duke, which is a sister-

ship to the Invincible, under various conditions of draught of

water and weights on board. M M is the curve of metacentres,

and B B the curve of centres of buoyancy. G
1

is the centre of

gravity when the vessel is floating at the constructed load-draught

of 22 feet. Owing to the disposition of weights on board, it will be

observed that the vessel has a meta-

centric height of 3 feet when loaded for

sea. G
2
is the centre of gravity of the

ship when floating at a draught of water

of 20 feet 11 inches, and shows the vessel

to have a metacentric height of 1*88 feet.

The centre of gravity of the Iron Duke

was ascertained by an inclining experi-

ment, and its position is indicated on the

diagram by G3 , the draught of water at

the time being 19 feet 10 inches, and the

metacentric height about \\ feet. G
4

is

the centre of gravity of the vessel when

all coals, provisions, and water are con-

sumed, and with the boilers and engine

condensers empty. The metacentric

height when in this condition is *65 foot, and the draught of water

18 feet 9 inches. This is a condition in which the vessel should

never be placed, even although the whole of the consumable stores

are exhausted. There is no reason why the boilers and engine

condensers should remain empty, and thus unnecessarily reduce the

metacentric height.

It will be noted that, in order to construct the metacentric

diagram of the Iron Duke more accurately, an offset has been cal-

culated at the comparatively shallow draught of water of 14 feet

8 inches, at which draught the centre of buoyancy has been found,

and the point set off on its corresponding vertical, the curve of

centres of buoyancy being extended and made to pass through this

point. The corresponding position of the metacentre has also been

ascertained, and set off on the vertical above this centre of buoy-

ancy, which enables the direction of the curve of metacentres to be

continued accurately beyond the points previously obtained as

described above.

Fig. 82 is the curve of stability of the Iron Duke when the ship
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is floating at a mean load-draught of 22 feet. This curve has been

constructed in disregard of the increase of stability derived, at large

angles of inclination, from the continuous bulwarks on the upper-deck,

and the ship is treated as if she had no bulwarks or forecastle, the

n 2-5 Feet
Fig.Si

space enclosed by the central armour-plated battery only being

taken into consideration. It will be seen from the curve that the

angle at which the edge of the upper deck becomes immersed is

314°, the length of the arm of the righting lever being 1*7 feet, the

amount of righting force at this point being about 10,000 foot-tons.

The angle of maximum stability is about 45°, the length of righting

lever 2*4 feet, and the maximum righting moment 14,000 foot-tons.

When the vessel has been heeled over to the large angle of 63°, the

righting moment would be precisely the same as when she was so

inclined that the edge of the upper-deck became just immersed.

The angle at which the stability of the Iron Duke vanishes is

84°, that is, supposing the space enclosed by the central armour-

plated battery to remain water-tight, and this space has been

considered in constructing this curve as contributing, as it mani-

festly must, to the stability of the vessel at large angles of inclina-

tion, and more especially as opposing sudden inclining forces. In

the event of the space enclosed by the battery not remaining

wholly water-tight, and water finding access from any cause to the

interior of the battery, such, for instance, as the doors being open

which lead into the battery, then the stability of the ship would be

proportionately diminished, the curve of stability under these con-

ditions being marked A A on the diagram. Supposing these doors

to be open in the battery after the vessel had heeled to about 50°,

the water would flow into the enclosed armoured space and reduce

the range of stability of the ship to about 76°, as illustrated in the

diagram.
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The following are the particulars relating to the curves of

stability of the Iron Duke

:

—

-

Curves of Stability of the Iron Duke.

Angle at which edge of deck is just immersed, . 31 J°
Angle of maximum stability, ..... 44|°

„ „ no stability, 84°

„ where stability is the same as at 31°, . .
63°

Stability with deck just immersed, . . . 10,021*5 foot-tons.

Maximum stability, 14,000*6 „

Displacement in tons, . . . . . . 5,895

Mean draught of water, ...... 22 feet.

In Fig. 83 we have brought together the curves of statical

stability of several of H.M. ships, a careful study of which, in

Fig.83*

1. Glatton. 6. Captain. 11. Custozza.

2. Mjolner. 7. Inconstant. 12. IronDuJce.

3. Miantonomoh. 8. Radetzhy. 13. Kaiser,

4. Devastation. 9. Achilles. 14. Serapis.

5. Peter the Great 10. Monarch.

conjunction with the table of particulars which follows, will be

found interesting and instructive. To add to its interest we give

also, in the same figure, some curves of ships belonging to foreign

powers, the particulars of which will also be found below. These

curves all refer to the fully laden condition. The low freeboard

ships in our own Navy, such as the Devastation, Glycops, &c,
differ considerably from the simple monitor, such, for instance,

as the Mjolner of the Norwegian Navy, by having a central breast-

work of great volume, which adds materially to the effective height
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Name of Vessel.

Length
between

Perpendicu-
lars.

Breadth,
Extreme.

Draught,
Mean.

Displace-
ment in
Tons.

Height
of Meta-
centre
above
Centre

of
Gravity.

Low-Sided Ships.
ft. in. ft. in. ft. in. it.

Glatton, . . . 245 0 54 0 19 0 4,910 • • t

f Pure
Mjolner, . . . 187 6 45 6 11 4 1,566 13-8

1 Monitors.

iviiantononion, 250 0 55 2 14 3 XO O

jjevasiaiiion, . 285 0 62 3 26 14 O OO JJ 1 ca& l)~ VYUI Ji

JTcLol 111(3 UrI c)ct lij . 321 0 64 0 23 9 °, 6fi2

Oaptam, . . 320 0 53 3 25 4 7 01 (\
/ ,y±o ...

High-Sided Ships.

Inconstant, . . 337 4 50 3 23 104 5,782 2-8 ...

Radetzky, . . 253 0 47 0 23 2 4,033 3*32 ...

Achilles, . . 380 0 58 26 5 9,484 • CO ...

Monarch, . . 330 0 57 6 26 0 8,306 2*37 • • •

Custozza, . . , 287 0 71 24 10 7,390 * • *

Iron Duke, . . 280 0 54 0 22 0 6,000 3*0 a • t

Kaiser, .... 285 0 62 0 24 6 7,600 * • • *

Serapis, .... 360 0 49 0 19 5 5,976 » * a • * •

of freeboard, and, beyond the angle at which the water-line meets

the junction of the breast-work with the deck, entirely changes the

character of the curve from that of a simple monitor. The curve is

very much modified beyond this point by an increase in the length

of the ordinates, and by the greater angle to which the ship may
incline before losing her stability. The Mjolner is a pure monitor,

or vessel with a nearly flat deck a little raised above the water,

upon the centre of which deck a turret is supported. She is without

masts, designed purely for defensive purposes; the amount and

range of her stability are obtained by means of a very great meta-

centric height; this is as much as 13*8 feet, as may be seen by
reference to the table.

The Miantonomoh, of the United States Navy, is a low freeboard

monitor of the type originated by Ericsson, with a freeboard of only
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2 feet 6 inches amidships. In fact she is, in many respects, a re-

production of the old Miantonomoh, being of the same type and
arrangements, and nearly of the same dimensions. The Peter the

Great, of the Imperial Eussian Navy, is a breast-work monitor similar

to our Devastation, but larger and more powerful, having a breast-work

which extends to the full width of the deck, with a forecastle that

extends to the breast-work, and a flying deck over all : her large

amount and range of stability are likewise obtained by a great

metacentric height, which is 8*64 feet, or nearly double that of the

Devastation.

The Radetzhy, of the Imperial Austrian Navy, is a fast un-

armoured steam frigate with high sides, owing to which she

possesses a large range of stability, and her power to resist inclina-

tion compares favourably with that of other vessels of known good

sailing qualities. The Custozza, also of the Imperial Austrian Nav}',

is a powerful ironclad with projecting battery, and possessing, as

will be seen from the diagram, a very large range of stability.

The Kaiser, of the Imperial German Navy, a sister-ship to the

Deutschland, was built from the designs of the author, has a central

battery, and a large amount and range of stability.

The vessels belonging to our own Navy, the curves of which are

given, are too well-known to require any description in this place

beyond what is to be found in the table.

The complete knowledge of the stability of a war-vessel in the

various conditions of load- and light-draught can be much more

readily arrived at, and more accurately determined than that of a

merchant-ship, because in the latter the variations of the distribution

of weight due to the differences in kind, and consequently in the

stowage of the cargoes she may have to carry, make it necessary to

assume conditions of stowage for the purposes of calculation, to

which the actual conditions in practice may approximate only in a

greater or less degree; whereas, when the distribution of weight

for a war-vessel has once been arranged in a design it is practically

fixed (as already intimated), and the deviations from that arrange-

ment for different conditions of draught due to the consumption of

stores, coal, &c, can be made with any required degree of accuracy.

To this is doubtless due in large measure the fact that, whereas,

no information relating to the stability of their ships has, until

recently, been given to the commanders of merchantmen, it has

for some time past been the practice with the Admiralty to include

a " statement of stability " in the information supplied for each of
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H. M. ships. This " statement" gives the metacentric height when
fully equipped, and also when light/ what is considered the light

condition being clearly specified. The angle of heel at which the

ship reaches her maximum stability when in the load condition is

also given, as well as the angle at which her stability completely

vanishes in that condition. These angles are not given for the

light condition, because the " reduction in metacentric height gener-

ally lessens these angles more than greater freeboard increases

them." The form in which this information is supplied is as

follows:—

H.M.S.

STATEMENT OF METACENTRIC HEIGHTS AND STABILITY.

CONDITIONS FEET

V* Mil" linn nii.m,m»jMU!*u».>

REMARKS

The ship when fully equipped at a mean draught

of feet inches has a metacpntnV.

height of

When lightened to a mean draught of fe,p,t

inches, or when boilers are

engine condensers empty, and all coals, water,

provisions, and one-half Warrant Officers' and

Engineers' stores consumed, the metacentric

height is

* The angle at which the ship reaches her maximum
stability in the load condition, and beyond

which the righting force diminishes, is .

* The angle at which her stability entirely vanishes

in the load condition, is . . .

DEGREES

Admiralty, 188

* These are not calculated for the light condition. Reduction in metacentric
height generally lessens these angles more than greater freeboard increases them,



122 STABILITY OF SHIPS, [CHAP. VII.

Mr. W. H. White says* in connection with this subject, and

speaking of the Royal Navy, "in cases where special precautions

are needed, special standing orders are given. For instance, in

some low freeboard ships it is stringently ordered that a certain

maximum load-draft shall not be exceeded, because any diminution

of the corresponding freeboard would cause an objectionable decrease

in the range and area of the curve of stability. Again, in some

vessels, as coals and stores are consumed, the stability is considerably

diminished, and then orders are given that the ship shall not be

lightened beyond a certain minimum draught, that draught being

maintained, if necessary, by the admission of water-ballast. All

these regulations are based upon careful experiment and detailed

calculations/'

The very serious diminution in the stability of a ship at con-

siderable angles of inclination that may be caused by low freeboard,

when this is not compensated for in some way (by a lowering of

the centre of gravity, for instance, or by increased beam) is

strikingly illustrated by the case of the Captain. For purposes

of comparison we will take the Monarch as an example of a ship

with high freeboard, and will consider both ships in their fully

equipped condition, ready for sea. Fig. 84* represents upon the

same scale the curves of statical stability for the two vessels,

CG being that of the Captain and MM that of the Monarchy

There are three things to be noted in examining these curves:

First, their very small difference up to an inclination of 16°, the

Captain having slightly the advantage of the Monarch, her

* In Nature, dated 15th November, 1883.

f The curve of stability of the Captain was given in a previous chapter, to

illustrate a somewhat different point ; it is convenient to reproduce it here.
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righting levers being somewhat longer
;
second, the great difference

in amount of the maximum stability of the two vessels, and in

the angles of inclination at which the maximum occurs—that of

the Captain being reached at 21°, and amounting to a righting

lever of only lOf inches, whereas, when the Captain's stability

has thus alarmingly decreased, the Monarch's has not ceased to

grow with every increase of inclination, attaining its maximum at

40°, where the length of righting lever is 21 § inches, or double the

maximum of the Captain's ; third, the very great righting power
still possessed by the Monarch when the Captain has reached

her extreme limit of stability at 54^°.

This enormous difference between the statical stability of the two
ships arises solely from the one ship having a low freeboard, and the

other a high freeboard. As we have seen, the stability of the low
freeboard ship compares favourably with that of the high freeboard

ship up to an inclination of 16 degrees; but it is precisely at that

inclination that the edge of the Captain's deck begins to be immersed,

and to this fact is due her decrease of stability compared with the

Fig.85.

M

V

Tons
per
Inch

Dispt,
in

Tons

Mean

Draft

Ft.-- ins

1062 17-4k

G"
:'

u
0

It

G

/
1065 17-4 /988 /e-9 EC
947 16-5 LL /
880 15-11 FLC

B

Monarch, as the inclination increases. If, all other conditions of the

Captain remaining unaltered, her side had been as high as the

Monarch's, she would have retainedfan advantage over the latter at

all angles of inclination.
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Fig. 85 is a diagram showing the curves of metacentres, curve of

centres of buoyancy, and positions of centres of gravity of the late

training-ship, Atalanta (which disappeared at sea*) as calculated in

the Admiralty Office. BB' is the curve of buoyancy, and MM' is

the curve of metacentres. The centres of gravity at the draughts of

water shown, and under the conditions hereafter stated, are situated

in each case respectively at the lower ends of the dark portions of

the vertical lines drawn downward from the respective metacentres.

The upper group of three water-lines, LW L (one of which is short)

represent the load conditions of the ship, with guns removed, but

with small variations of load, the highest line (the short one) of the

three answering to an extra 10 tons of ballast, the centre of gravity

is at G. The line next below this group (at draught 16 feet 9 inches),

marked EC for "Experimental Condition," corresponds to the con-

dition of the ship when the experiment for ascertaining the position

of the ship's centre of gravity was made at Pembroke. The centre

of gravity for this condition is marked G. The next line, marked

LL, answers to the usual light condition of the ship, but with half of

her hold water-tank full. The centre of gravity is at G". The lowest

group of lines, marked FLC, indicates the final light condition,

with all the hold water-tanks (109 tons) empty, and provisions and

culinary coals consumed. The centre of gravity is at G"'. The

short lines in each case indicate the extra immersion due to the

extra 10 tons of ballast, &c. Some further consideration will be

given to this case hereafter.

Table I.

Registered Dimensions.

f-i

a
Proportions.

<+-<

o
3

Tonnage

u:

Deck.

Load-
Draught.

Load
Displace-
ment.

Light-
Draught.

Light
Displace-
ment.

Eeferen^

Letter. Length.

L
Breadth

B
Depth.

D
D
B

L
B

.2 fl

o ©
SS.S

o

Feet. Feet. Feet. Tons. Ft. Ins. Tons. Ft. Ins. Tons.

A 273-0 43*1 23-6 1,931 19 11 3,980 9 74 1,440 •54 6*3 •59

B 267*0 39-3 23-3 1,571 20 1£ 3,407 9 11 1,235 •59 6-8 •56

C 230*3 37*9 23-1 1,280 19 9 2,910 10 3 1,180 •60 6-0 •59

D 197*5 32-2 19-9 799 17 3 1,775 8 64 643 •61 6-1 •56

E 197*4 33-9 21-0 853 19 6i 1,990 10 84 767 •61 5-8 •53

F 148"0 26*9 14-1 340 12 74 787 6 5 290 •52 5-5 •54

*The Atalanta was originally the beautiful Symondite, 28 guns, sailing frigate

Juno,



CHAP. VII.] STABILITY OF SOME MERCHANT-SHIPS. 125

We next proceed to consider the curves of metacentres of several

ships, in order to further show the effects upon stability of differences

of form and relative proportions. We give their principal dimen-

sions and other particulars in Table I. above, assigning to each ship

a distinguishing letter for the purpose of future reference.

* In Table II. Ave give the heights of the metacentres and centres

of buoyancy above the bottom of keel, for the light- and load-

draughts respectively, and also the heights of the centre of gravity

of the ship when light, and of the homogeneous cargo, as well as

the height of the common centre of gravity of the hull and cargo

—

all these heights being taken above the bottom of keel. We give

besides the position of the centre of gravity relative to the meta-

centre for the light and load conditions respectively:

—

Table II.

Light-Draught.

Height

of

Centre

of

Gravity

of

Homogeneous

Cargo.

Load-Draught.

Eeference

Lett

Height

of

Centre

of

Buoyancy.

Height

of

Metacentre.

Centre

of

Gravity

Light,

above

or

below

Metacentre.

Height

of

Centre

!

of

Gravity

Light.

Height

of

Centre

of

Buoyancy.

Height

of

Metacentre.

Height

of

Centre

of

Gravity

of

Hull

and

Cargo.

Centre

of

Gravity

of

Hull

and

Cargo

below

Metacentre.

Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet. Feet.

A 6-0 23-6 2-7 below. 20'9 16-4 11-5 19-9 18*0 1-9

B 6'2 20'6 1*3 above. 21-9 16*0 11-9 18 '7 18'0 •7

C 6 '4 19-9 0'9 „ 20*8 15-7 11 «6 18 '4 17-7 •7

D 5 '4 17'0 0*8 below. 16-2 13-5 10-2 15-45 14-5 9

E 7-0 17-7 0"8 „ 16-9 14-0 12-1 17-9 15-1 2-8

F 4-2 14-8 2'0 „ 12-8 9'2 7'5 12-9 10-5 2-4

In examining the fourth column of Table II. it will be seen that

two of the vessels, viz., B and C, have their centre of gravity above
the metacentre, in the light condition, and would be therefore unable

to remain upright without the aid of ballast. Ships D and E have
the centre of gravity a little below the metacentre, while A and F
possess sufficient metacentric height in the light condition to enable

them to be shifted about in harbour with perfect safety. The

* Tables I. and II. are abridged from the Report on Masting, principally written

by Mr, W. John for the Committee of Lloyd's Register.
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metacentric heights given in the last column of Table II, are those

obtained by assuming that each ship is stowed with a homogeneous

cargo of such a density as would bring her down to her assigned

load-line. These metacentric heights are in every case less than

should be possessed by a sailing-ship about to proceed to sea, though

there are evidently considerable differences in their approach to what

would be considered a sufficient metacentric height. For instance,

assuming the requirement to be a height of 3J feet, and considering

the relative amounts of dead weight the ships would require with

similar cargoes to bring them into this condition, we can see clearly

that ships, A, E, and F, whose metacentric heights are already con-

siderable, would require very much less than B, C, D, whose meta-

centric heights are so small. Another interesting comparison to be

made from Table II. is that of the differences between the meta-

centric heights of the several ships in their light and load conditions.

For instance, ship A has a metacentric height of 2*7 feet when light,

which when loaded is reduced to 1 89 feet. Ship F has nearly the

same metacentric height (slightly more) when loaded as when light,

"Whereas, ship E, whose metacentric height is only '8 foot when

light, has, when loaded, the very greatly increased one of 2*8 feet.

These differences can to a certain extent be explained by a reference

to the 3rd and 8th columns of Table II., giving the heights of the

metacentre above the keel at the light- and load-draughts respec-

tively. We find that for ship A the metacentre at the load-line is

3*7 feet lower than at the light-line ; for ship F it is 1/9 feet lower

at the load- than at the light-line ; and for ship E it is *2 foot higher

at the load- than at the light-line. "By filling ship A, therefore,

with a homogeneous cargo having a centre of gravity 6%5 feet below

the light centre of gravity, and 7*2 feet below the light metacentre,

the common centre of gravity is lowered 2*9 feet ; but, owing to the

metacentre going down 3*7 feet, the metacentric height, when so

loaded, is actually less than it was when the ship was light by
*8 foot. By filling ship E, on the other hand, with a homogeneous

cargo having its centre of gravity 2*9 feet below that of the ship

when light, the common centre of gravity is lowered 1*8 feet, and

owing, in this case, to the metacentre rising *2 foot, the metacentric

height, when loaded, is increased 2.0 feet, making 2*8 feet loaded,

against -8 foot when light."—Report on "Masting"

These variations will be still more clearly seen and readily under-

stood by a study of the curves of metacentres for these ships,

Fig. 86 to Fig. 91 inclusive, taken from the Report just quoted.
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In each figure the curve of metacentres, curve of centres of buoy-

ancy, and the light- and load-lines are shown, and on the latter are

Fig.86. Fig.81.

marked the corresponding displacements in tons. The difference

in form of some of the curves is very noticeable. For instance, that

in Fig. 90 for ship E, with those in Figs. 86 and 89 for ships A
Fig.90.

f
i990
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and D, may be compared respectively. The metacentric curve in

Fig. 90, starting from the load-line, drops as the ship lightens, and

continues to do so until it reaches its lowest point at about

14 feet draught, when it commences to rise, and continues rising

slowly as the draught decreases, until at the light-draught it is

•2 foot lower than at the load-draught. The curve in Fig. 89, on the

other hand, drops but very little for a short distance, and then

commences to rise slowly at first, but more rapidly as the ship

reaches her light-draught, where it is 1*5 feet higher than at the

load-draught. The curve in Fig. 91 is almost level for some

distance, and then commences to rise rapidly as the ship lightens,

reaching a position 8*7 feet higher at the light-line than that it

occupied at the load-line.

In order to complete the comparison of the stability of the

several ships we have been considering, we give in Fig. 92 curves

FigM
Feet

showing their stability at large angles of keel. These curves were

all obtained by assuming a metacentric height of 3| feet in each

case. The angle at which the deck edge becomes immersed is

indicated by an ordinary dotted line in each case, and that at

which the maximum stability is reached is indicated by a different

kind of dotted line. The curves of the sailing-ships are marked

with the reference letter used in the preceding tables. -Those of

H.M. ships are drawn with dotted lines; that marked ID being

for the Iron Duke, that marked M for the Monarch, and that

marked Ca for the Captain. It will be noticed that the curves of

four out of the five sailing-ships have a greater range than those of

either of H.M. ships, the angle at which the stability vanishes being

very large. This is, of course, due to the fact that, although the

ships of the Royal Navy possess much greater proportionate beam

than merchant-ships, and have greater metacentric height, the
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heavy weights of armour and guns -which they have to carry

above the water raise their centres of gravity very high, and, there-

fore, at large angles of heel they stand at a disadvantage as

compared with merchant-ships. The angle of maximum stability

(Fig. 92) varies from about 40° to 50°. The ship whose curve is

marked A was struck by a heavy squall in the Indian Ocean, and

capsized when on her way home with a cargo of cotton ; she had a

metacentric height of about 3 or 3J- feet. A very large amount
of canvas was spread, and she was doubtless in a very critical

position relative to the wave-surface when struck by the squall,

considering the large resistance to capsizing which her curve shows

her to have possessed.

The torpedo-ram, Polyphemus, presents an unusual and interest-

ing example, as regards the stability of special types of ships, As
first described, and as illustrated in Mr. King's War-ships and
Navies of the World, she is without the superstructures with which
she was ultimately built, and it is in her original condition that she

presents the most interesting features. The vessel is essentially a

torpedo-ram, her means of attack being the ram and the torpedo,

and these only. She carries no guns, or only such as will suffice

to protect her against small torpedo-boats—viz., Nordenfelt guns.

The object aimed at apparently was to produce a vessel as low
down in the water as is consistent with safety, so as to be as little

liable to be struck by shot as possible, having great speed and great

manoeuvring power, these latter elements being pre-eminently

essential to her intended mode of attack. She is 240 feet long,

40 feet wide, draws 20 feet of water, and has a displacement of

2,640 tons. The total depth of her hull (exclusive of certain super-

structures) is 24 feet, so that the height above water of the hull

proper is only 4 feet. The transverse section of the vessel is very
similar to the section of a peg-top, and is indicated on the accom-
panying Fig. 93 by the drawn line. The line, WW, is the load

water-line. It will be seen that the vessel had originally no sides

above water such as are possessed by an ordinary ship. The upper
rounded surface of the hull formed the upper-deck, or turtle-back
deck, and this sloped away obliquely into the water, only extending

4 feet above the water along its middle. In the side view, or

elevation of the hull proper, the turtle-back deck rounded down-
ward at each end to a point several feet below water. The fine

portions of the hull, forward and aft, below which would constitute

the fore-foot and heel were cut away to improve the manoeuvring
power. 9
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A novel and interesting feature in this ship is the carrying of

300 tons of cast-iron ballast in large blocks, in a recess or groove

along the bottom of the ship, at the keel, so attached that they can

be detached from the ship when required and allowed to sink.

Their detachment may be regarded as a means of acquiring so much

.Fig.93.

additional buoyancy available in case of necessity/and as compensat-

ing, in some measure at least, for the smallness of the capacity of the

ship above water. If an ordinary war-vessel be badly hit in action

and water enters the hull, she will sink in the water and draw upon

her spare buoyancy, until the additional volume of displacement is

equal to the volume of the water which has entered the vessel.

This process will go on if compartment after compartment be flooded

—supposing the ship to remain stable—until the whole of the spare

buoyancy has disappeared, when the ship will sink. In such a

ship the displacement per inch of additional immersion (or the

weight necessary to sink the ship 1 inch at that draught) would

remain nearly constant for several feet of immersion ;
whereas, in

the Polyphemus, the tons per inch of additional immersion would

rapidly decrease with every inch of additional immersion, and after

a comparatively small increase of immersion would disappear] for

all useful purposes. The 300 tons of ballast may be regarded as

representing about 20 inches of spare immersion, which would be at

once used in the event of serious damage.

The peculiar form of section adopted in the Polyphemus was

designed to give her a high centre of buoyancy and a low centre of

gravity., since the stability she can derive from her form must be
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very small indeed. She is worse off in this respect than the low-
sided monitors, as these vessels derive great stability from their
form until their edge of deck enters the water, when it rapidly
decreases. But the Polyphemus (as shown by Mr. King) has
strictly speaking, no height of side above water, or, at any rate, what
may be called her sides slope inwards so much that, as regards
stability of form, the vessel has not very much more stability than
the monitor class, when their deck has entered the water The
reason of this will be at once seen. Compare the condition of the
ship with that of a ship having the same bottom, and the same
height above water, but with vertical sides, as indicated by the
dotted lines, acde, Fig. 93. Let B be the centre of buoyancy of
this vessel, and suppose G her centre of gravity. The vertical
through B must also pass through G, and in order that the ship
may have stability initially when she is heeled through a small
angle, the vertical through the new centre of buoyancy must cross
the original vertical through B and G at a point situated above G.
buppose the vessel heeled so as to float at the water-line, W W.
Let B' be the position of the new centre of buoyancy, and' let the
vertical through it intersect the original vertical through B and G
in the point M.

We see that in this case the wedge of displacement, which travels
from one side to the other and is lightly shaded in the figure is
very much smaller than that (W 0 W) for the wall-sided ship,
neither does it travel over through such a great distance; the
centres of gravity of the two wedges of hull displacing the water,
would be situated about as indicated, viz., g' and h! for the Poly-
phemus, and g and h for the upright side. Hence, the centre of
buoyancy will move through a very much shorter distance. Its new
position for this case is indicated by 6, and the corresponding
metacentre by m, and we see that if G were in the same position
as that chosen for the wall-sided ship, the force of buoyancy would
pass on the left of the centre of gravity, so that the couple formed
by this force, and the weight of the ship would tend to heel her
further from the upright, and the vessel would turn over. The
centre of gravity must therefore be much lower, and is probably
situated at or near the centre of buoyancy. As the wall-sided
vessel heels over, the distance through which the wedge of displace-
ment is shifted increases until the edge of deck passes into the
water, when it begins to decrease very rapidly; but in the case of
the Polyphemus, this distance begins to decrease at once as the



132 STABILITY OF SHIPS* [CHAP. VII.

water passes over the round top of the deck ;
hence, as we have

stated, the stability due to form in the Polyphemus is approximately

the same as in the monitor class when the water reaches the edge

of the deck.

Mr. W. H. White has worked out some interesting considerations

connected with the geometry of curves of metacentres * which may

be briefly noticed here. He first investigated the conditions under

which the curve becomes horizontal, which corresponds, of course,

to the circumstances that, notwithstanding differences of draught

of water, the metacentre remains at the same height on the axis

of the ship throughout the range of the curve's horizontally. We
have seen that in the case of a prism of circular section, and of a

sphere, the curve of metacentres is throughout horizontal ; and wo

have also had before us repeated instances of curves of metacentres

for actual ships in which the curves were horizontal for a greater or

less distance. Mr. White shows that one geometrical condition

corresponding to this state of things is, that the principal transverse

sections of the surfaces of flotation and buoyancy must be concen-

tric ; in other words, that the centre of curvature of the curve of

flotation must be coincident with the metacentre, a condition which

is obviously fulfilled in the case of a spherical vessel, and of a

cylindrical vessel floating with its axis horizontal. He proves the

propositions generally by showing that the height of the metacentre

above the water-line has for its value, under such circumstances,

the expression, ^ , or the differential of the moment of inertia,

divided by the differential of the volume displaced, presuming the

i . . dl
draught of water to be slightly varied, and this expression, jy
has been shown by M. Leclert (as we shall see hereafter), to be

also the value of the radius of curvature of the curve of flotation.

Another particular case, says Mr. White, is that where a ship is

" wall-sided " in the neighbourhood of the given water-line. The

centre of curvature then lies in the water-line (eZI being zero),

and if the curve of metacentres has a horizontal tangent at

that water-line, the metacentre must lie on that line, that being,

* See Transactions of Institution of Naval Architects, vol. xix>, 1878.
^

Mr.

White designates them "metacentric curves," a designation which, as previously

stated, we desire to reserve for curves known as " metacentrics " [les mttacentriques

of Bouguer).
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in fact, the horizontal tangent. This, of course, presumes the wall-
sidedness to exist from stem to stern—a very unusual case.

It will be seen hereafter that Professor Leclert suggests the
construction of a curve, of which values of V, the volume of dis-

placement, shall form the abscissae, and values of r ~r, the radius

of curvature of the surface of flotation at different draughts, should
form the ordinates. Such curves (but having moments of inertia
for ordinates) were employed by Mr. White (when teaching Naval
Architecture at the Royal School at Greenwich) to illustrate the
fact that a curve of metacentres may become horizontal at more
places than one, and the following are two examples given by him
as having been constructed by pupils of his:—Fig. 94 represents a
curve of metacentres obtained from an actual ship, and it is hori-
zontal both at A' and at C. Fig. 95 is a companion curve, con-

Fig.94-

structed as just described, with volumes of displacement set off
along B D, and moments of inertia (I) of the water-line areas set
up as ordinates of the curve, AC. A tangent to the curve at anv

point represents the ratio,
, and consequently expresses the

value of the corresponding radius of curvature of the plane of flota-
tion. To the point, A', on the diagram, Fig. 94, corresponds the
ordinate, A B, on Fig. 95. Hence, according to the general principle

above stated, the ratio ~ at the point, A; should be equal to the
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height of A' above the corresponding water-line; this height is

indicated by the length of A' B' in Fig. 94, and is 14*8 feet, which

d I
exactly equals the ratio of -^y given by Fig. 95 at the point A.

Similarly it will be seen that at the point, C, in Fig. 95, the ratio,

d I / /

-^y- = 5*5, which again is exactly equal to the height, C D' of the

metacentre above the corresponding water-line when the tangent

(at C) to the curve of metacentres is horizontal. Figs. 96 and 97

Fig.96.

Displacements

illustrate the corresponding conditions for another ship where the

points, A', B', 0' on Fig. 96, at which the curve of metacentres has

horizontal tangents, correspond to A, B, and C respectively, on Fig.

d I
97. In each case the ratio -jy equals the height of the metacentre

above its appropriate water-line. Calling the tangential angles at

A, B, and C respectively, a, /3 and y, it was found that tan. a

4-25x10 aa „ , Q
4-8 x 10 0 . y

6-2 x 10
1 7=— — = 6"6o;tan. (3 =

6
= 8; tan. Y—^— - 10 7.

Having had occasion, in this and the preceding chapter, to bring

into view curves of stability constructed for different draughts of

water in connection with curves of metacentres and of centres of

gravity, it is fitting that we should here describe the ordinary

English method by which a curve of stability for a vessel at a

given draught is deduced from a known curve of stability for

another draught. This method was worked out by the Admiralty

draughtsmen, and is now generally used. It was first publicly
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described in a paper by Mr. G. F. Stanbury, M.I.N.A., in the
Annual of the Royal School of Naval Architecture, of which
he is a distinguished Fellow.

"Most of the readers of this Annual? remarks Mr. Stanbury,
" will be acquainted with the fact that the range—or position of the
angle of vanishing stability—of the curve of stability is considerably
less for ordinary ships when all the coals, water, provisions, stores,

&c, are consumed, than when these things are on board. This arises

from the fact that, in all ordinary cases, the centre of gravity of a
vessel ascends as the coals, stores, &c, are consumed, to such an
extent as to more than counterbalance the contrary effect of the
additional freeboard in lengthening out the curve of stability. In
the case of a comparatively low freeboard vessel, an increase of
freeboard due to the stores, coals, &c, being consumed, has, of course,
a greater proportionate effect on the form and range of the curve
than an equal increase would have in the case of a high freeboard
vessel. Hence, in practice we generally find that the differences in
the ranges of the load and light curves of stability is less with a
low freeboard vessel than it is with a high freeboard. The fore-
going remarks, of course, apply only to vessels properly stowed or
equipped, or, in other words, it is assumed that the centre of gravity
of the total weight of consumable stores, coals, &c, is below the
centre of gravity of the whole vessel fully equipped. Heavy deck
cargoes or bad stowage might, and no doubt often do, seriously
modify the above statements. In such cases the curve for the fully
laden condition might have a shorter range than the light curve.

" Taking for granted the importance of calculating the curve of
stability for the light condition of lading—especially for ocean-going
vessels carrying a large spread of canvas—let us enquire what the
worst conditions as regards the positions of weights on board would
be. This is generally taken to be the case when—(1) The boilers are
empty; (2) the tanks are empty; (3) all provisions consumed; (4)
no water in engine condensers; (5) all coals consumed; (6) all

consumable stores used. Some persons may consider this to be a
very improbable condition for any captain to allow his vessel to get
into. While admitting this, it must be regarded as a possible con-
dition

;
and the curve calculated for such a case must be considered

as indicating the lowest limit to a vessel's statical stability ; while
the curve for the fully-equipped condition shows the highest limit.

" The weight of coals, stores, &c, consumed, and the vertical

position of the centre of gravity of the vessel in her light condition
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being calculated, let us now proceed to deduce the curve of stability

for this condition from the calculations for the curve at deep draught.

The corrections to be made on the known curve are—(1) That due

to alteration in mean draught
; (2) that due to the vertical rise of

the centre of gravity. Any small alteration of trim is not taken

into account in making these calculations, because it has been shown,

in the paper already referred to, that the curve is not affected to any

appreciable extent by it."

The following is the Admiralty method of proceeding as described

by Mr. Stanbury : Let d represent the total weight of the stores,

water, coal, &c, consumed, or the layer of displacement between the

light and load water-lines. If D be the displacement of the fully-

equipped vessel and D1 the displacement when light, then

D1 + d = D.

In Fig. 98,* let AW be the load water-line, A
x
W

x
the light line,

the displacement between AW and A
1
W

l
being equal to d ;

B the

Fig.98.

centre of buoyancy for the upright position at deep draught, G the

centre of gravity at that draught, and Q
±
the centre of gravity at

light draught. Then G G
l

is the rise of the centre of gravity.

Now, suppose the vessel heeled to an angle, 0, for which the righting

couple, GZ, has been calculated in the fully-equipped case, the

load displacement remaining constant for all angles of heel, E F can

* This figure has been so drawn as to show all the points of the process, and not to

represent any actual case.
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be drawn in its true position from the results of the calculations

just referred to. Find by the usual process the position of the

water-line, H K, cutting off a layer of displacement of thickness, t,

equal to d ; also the centre of gravity of the layer. Let a be the

horizontal distance between the centre of gravity of the layer and

the line, S N. Then B B
1
- B S sin. 0 is the distance between the

perpendicular through the centre of buoyancy, B
x
(in fully-equipped

condition), and S N. Again, a + (B B
t
- B S sin. 0) equals the

distance of the centre gravity of the layer from B
x
L. Taking

moments about B
x
L, we have

dja + (BB
1
- BS sin, 6)

J
- D

x
(B

X
B

2)

;

OX",

d \a + (BBi-BSsin. 6) V
Bi B2

= „_L _ .

The arm of the righting couple for the angle, 0, may now be found

from the equation

G
x
Z

x
— B B

2
— BGj sin. 0.

The values of BB
2
and G

1
Z

1
should be calculated for each of

the angles at which the length, G Z, has been calculated.

We may extend this chapter by giving a place to the following

ingenious and instructive note on a case of a floating body in which

the metacentre is below the centre of buoyancy, which appeared

in the Annual just referred to, bearing the well-known initials of

Mr. Crossland, late of the Admiralty :—

"In all ordinary cases of floating bodies the metacentre is

necessarily above the centre of buoyancy. There is, however, a

case in which the metacentre is below the centre of buoyancy.

Suppose a box without a lid placed in the water with its mouth

* 4 'It often happens," says Mr. Stanbury, "that the line, BX L, and sometimes

that the centre of the layer, are on different sides of S N for different angles of heel.

The signs in the expression j a + (B Bx
- B S sin. 6) j should therefore be carefully

considered for each angle. In the case of a vessel with high freeboard, the centre of

gravity of the layer at the angles of inclination just before the edge of the deck is

immersed, is on the immersed side of S N, then, of course, B2 falls on the opposite

side of Bx L, to that shown in Fig. 98, These simple points are mentioned merely to

call to them the attention of those readers who may not be conversant with the

principles upon which the stability calculations are based. If B2 is on the immersed

side of BiL (as in the figure), then BxB2 should be added to BBi ;
if on the emersed

side, it should be subtracted."
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downwards and bottom upwards. Suppose it to be of such a

weight as to float, the water being kept down by the air inside,

as in the case of a diving-bell. Let AB, Fig. 99, be the water-line

outside the box, and 0 D the water-line inside the box. If the

thickness of the box be neglected, then A B D C is the displacement.

If we suppose a small angular displacement to take place, the two
water-lines become a b and c d. It will be seen that the variation

of the water-line, A B, has the effect of moving the centre of

Fig.100.

buoyancy to the right, while the variation in the water-line, C D,

has the effect of moving the centre of buoyancy to the left. And
if y and yf be put for S B and S' D, it will be readily seen that the

height of metacentre above the centre of buoyancy is

^ {
jy* dx -

f
y's dx]

A)jx { f-^}-
And it is obvious that in the case of the box, if A B be less than

C D, the metacentre will then be below the centre of buoyancy.

I have not here investigated the positions of the two water-lines

with reference to the elasticity of the air, &c, as I conclude that

it would not affect the truth of this proposition as to the mere
metacentric stability.

"If we turn the box up the other way, and let it float as in

Fig. 100, with its open side uppermost, and if we suppose it to be

partially filled with water, then the same principle applies if we
assume, as we may, that the displacement is A B D C, A B being

the water-line outside the box, and CD the water-line inside the box.

If y and y' have the same meaning, we get the same expression

for the height of metacentre above the centre of buoyancy. From
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this it is obvious, that if such a box have any tumble home/the

metacentre would be below the centre of buoyancy. These con-

siderations show the great importance, with regard to^ stability, of

water in the hold of the ship if capable of washing from side to side."

It is obvious that a curve of metacentres might be perfectly well

constructed for a case like this, should the necessity for it arise.

Since the previous part of this chapter was written, Mr. P.

Jenkins, M.I.N.A. (a Surveyor to Lloyd's Eegister), has contributed

to the Institution of Naval Architects* soriie further considerations

in connection with the construction of metacentric diagrams and

the initial stability of vessels, which exhibit much ability, and

probably give practical completeness to the geometry of metacentric

diagrams. Observing how closely the curve of centres of buoyancy

for an ordinary ship approximates (as we have seen previously) to

a straight line—especially where it corresponds to draughts of

water which are not very remote from the load draught—Mr.

Jenkins observes that we can determine the straight line to which

the locus of the centres of buoyancy will then closely approximate,

by getting an expression for the tangent to that curve in terms of

the elements usually ascertained in the calculations for displacement,

&c. Such an expression may readily be obtained, indeed it may

be written down at once by any one familiar with the subject,

and with the doctrine of limits, in the form

in which B B
x
are centres of buoyancy at two draughts indefinitely

cot. 0 =
A Ifi

(Fig. 101),B C V

Fig.lOL

* In the Session of 1884.
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near, C is the point in which a horizontal line through B meets

a vertical line through B^ 9 is the angle which the curve of

buoyancy makes with the vertical, A is the area of water-plane,

V is the displacement, and h is the height of the water-plane

above B. It follows that for each foot of change in draught,

within the limits in which the tangent may be taken to represent

the locus of B, the rise or fall of the centre of buoyancy is

We have here, evidently, a ready and useful means of approxi-

mating to a ship's curve of buoyancy.

A corresponding equation can be obtained for the tangent to

the curve of metacentres, but, as Mr. Jenkins points out, this cannot

be reduced to an available form, " owing to the fact that it involves

the ratio of the increment of the moment of inertia of the water-

plane to the increment of the volume of displacement, or its equiv-

alent the radius of curvature of the curve of flotation." The
equation referred to, which Mr. Jenkins gives—using A, V, and h,

as before, calling the angle with the vertical 0, M and M
1
being

immediately adjacent metacentres, E the point of intersection of a

horizontal through M
x
and a vertical through M, and I the moment

of inertia of the water-plane (see Fig. 102)—-is

— - - COt <A -M
X
E ~ cot

'
^ 3

dl
or, putting for r, the radius of curvature of the curve of

flotation, and m for the height of the metacentre M, above the

centre of buoyancy,

A A
cot. cj) r= — _(m — A-r)=y JC}

where h is the distance of the metacentre, M, below the centre of

curvature of the curve of flotation.

The resemblance of this expression for the cotangent of the

angle which the locus of metacentre makes at a given point with

the upright, to that for the cotangent of the angle which we just

saw that the locus of the centres of buoyancy makes therewith

is notable. The relation between the two expressions is thus

geometrically illustrated by Mr. Jenkins. If, in Fig. 103, the

curve MMM represent the locus of the metacentre, FFF the
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locus of the centre of curvature of the curve of flotation, and B B
the locus of the centre of buoyancy, the cotangent of the inclin-

ation of the curve to the line Y Y is expressed in the one case by

Fig.103.

the product of y- into the corresponding ordinate between the

A
curves MMM and FFF, and in the other by the product of -y

into the ordinate between the

diagonal D D and the curve B B

;

observing that if the centre of

curvature of the curve of flotation

be above M, cot. <p is positive, and

vice versa.

The relation between 0 and cj>

may be obtained from the fore-

going equations, and is

h
cot. (p = cot. 0

h

and as cot. 9 is very nearly con-

stant, cot. <p will practically vary

as the ratio of h to h varies. Where the curves MMM and F F F
intersect, k~o, <p becomes 90°, and the tangent to the curve MMM
at that point is parallel to the water-plane. This agrees with the

result of Mr. White, which has been previously set forth in this

chapter. It is also evident that where the curve F F F intersects

dl
the diagonal D D, ^-y becomes zero, the centre of curvature of the

curve of flotation lies in the water-plane, and the moment of inertia

of that plane is a maximum or a minimum. Above that point of

intersection, Fig. 103, the centre of curvature of the curve of

flotation lies below the water-plane, and above it at lighter

draughts.

From what has gone before, and more especially from the expres-

sion first obtained for cot. <p 9
it will be seen that the radius of

curvature of the curve of flotation may be obtained directly from the

tangent to the locus of metacentres, and, therefore, without con-

structing a curve of moments of inertia of the water-planes.

In illustrating the relations which exist between the position

of the centre of gravity of a body and the positions of those of its

water-planes which give to the initial righting moment maximum
and minimum values, Mr. Jenkins points out that these relations
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are all conformable to a fixed law, which he defines as follows :

—

" For any given position of the centre of gravity, the initial righting

moment is either a maximum or a minimum, when the water-plane

is so placed that the centre of curvature of the curve of flotation is

at the same height in the vessel as the centre of gravity." He gives

a demonstration of this law, and a set of curves illustrating it. He
also refers to the cross curves of stability given in Professor Elgar's

Eoyal Society Papers, which will be fully explained in a later

chapter, and shows, as we shall see there, the application to such

curves of the above principle.
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CHAPTER VIII.

Elements to be Determined in Calculating Stability—Atwood's Method of Calculating

Volumes of Wedges—Mr. Samuel Read's Method—Mr. Barnes' Method

—

Moments of the Wedges—Modifications of Mr. Barnes' Method by Messrs.

White and John—Mr. Amsler-Laffon's Mechanical Integrator—Example of Mr.
Barnes' Method—Explanation of Preliminary and Combination Tables—Tables

—Mr. Benjamin's Method of Calculating Statical Stability-—Loci of Centres of

Buoyancy—Curves of Draughts—Stability Model—Tables—Modification of Mr.

Benjamin's Method—Direct Explanation of Diagram.

We have previously seen that the calculation of a ship's stability

at any considerable angle of inclination resolves itself, in accordance

with what has gone before, into the determination of the following

elements, viz. :—

-

1. The whole volume of displacement below the given water-

line plane when the ship is upright.

2. The position of a new water-line plane inclined to the given

one at the required angle, and having below it precisely the same

volume as in 1.*

3. The volume of displacement comprised between the first and
second water-line planes, on either side of the fore and aft line in

which these planes intersect; or, in other words, the volume of

the immersed wedge of displacement, or of the emersed wedge,

which is equal to that immersed. (The wedge immersed is usually

called the " In," and that emersed the " Out.")

4. The horizontal distance apart, measured parallel to the new
water-line, of the centres of gravity of the volumes of the wedges
of immersion and emersion.

If the process of calculation adopted is such (as it sometimes is)

* We shall hereafter describe systems of calculation in which it is not necessary

to provide for cutting off fixed volumes of displacement.
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as to give at once the product of the volume mentioned in (3), and of

the horizontal distance mentioned in (4), or, in other words, the

moment of the wedge about the longitudinal axis, there is obviously

no necessity for obtaining these quantities separately.

5. The height of the centre of gravity of the ship above the

centre of buoyancy in the upright position.

The sine of the angle of inclination needs no separate calcula-

tion, being readily taken from a table of natural sines.

With these items ascertained, the righting arm or lever of

stability can be at once determined by substituting these ascer-

tained values for V, A, 6, and d in the formula

GZ bA
"V

d sin. 0.

The methods of calculating the displacement of the whole immersed

ship when upright, and of its centre of gravity (the centre of buoy-

ancy) need not be discussed here; nor need we stay at this point

to explain either how the centre of gravity of the ship is approxi-

mately calculated, or how it is experimentally ascertained from the

actual ship. But this is a suitable place in which to speak of the

methods of calculating the volumes of the wedges, and the positions

of their centres of gravity.

The manner in which Atwood's method may be applied has been

summarised as follows :*—Let HDB (Fig. 104) be part of the half

of a vertical transverse section
F%gm

'
11

of a ship, T B being the pro-

jection of the water section

corresponding to the upright

position, and HS the projection

of the inclined plane of flota-

tion, cutting T B in the point,

S, so that the volume im-

mersed, of which HDBS is

the base, may be equal to the

volume emersed (brought from

the opposite side of the ship)
?

of which B S' B is the base. Join H B, BE. Then conceive the

area, HDBS, to be made up of the [triangle, SHE, and a por-

tion, H D B N, of a common parabola. By drawing S D so as

* See Report of Messrs. Read, Chatfield, and Creuze.
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to bisect H B in N, and taking S Q = ^ S N, we obtain, Q, the

centre of gravity of the triangle. The centre of gravity of the

2
parabola, HDBN, is ascertained by taking a point at = of N D

o

from N. Then, drawing lines from this point, and from Q at

right angles to S H, and meeting it in Kyi and M, we have the hori-

zontal distances of the centres of gravity of the triangle, H S B, and
the parabola, H D B H, respectively shown by S M and S m. Hence,
the horizontal moment of the " sectorial " area, SHB, about the point,

S, is equal to triangle, SHB x S M, plus the parabola H D B x S m.
Similarly all the sectorial areas for all the transverse sections, and
their horizontal moments about the axis through S may be obtained,

and then summed tip by any suitable approximate method. In

like manner the whole moment of the wedge of emersion, B S' R,

may be obtained, and the two moments be then added together,

thus giving the quantity, b A, of the formula.

In order to simplify the calculations, the late Mr. Samuel Read,
of the School of Naval Architecture, devised and often employed
a method of calculating the wedges of immersion and emersion by
means of radial ordinates, the following account of which is by
himself :—

*

The theorem upon which this novel method is founded may be thus demon-
strated :-~Let H A X (Fig. 105) "be a transverse vertical section of a ship, above or

below the water's surface, as the case may be, the point, S, being the intersection
of the two planes of flotation corresponding to the vertical and inclined positions of
the ship respectively, passing through S A and S' X on opposite sides of the middle
line, Y Z, and A S T, coincident with the water's surface ; and let the angle, ASH,

* See Transactions of Institution of Naval Architects, vol. ii., for 1861.

10
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of inclination be bisected by the line, S P, passing through the point, P, in the ship's

side, A P H. Let the middle vertical line be Y T Z, and AS'X be the corresponding

inclined position of the volume emerged ; then the hydrostatical conditions of the

ship involve the consequence of the equality of this volume with that of the volume

immersed in the volume of the total displacement, which is a constant quantity.

Now bisect the side, A S, of the triangle, A S P, in the point, M, and the side, S P,

in the point, N; join PMandHN; and take MQ = -| MP, andNR ~ -| NH;

then Q will be the centre of gravity of triangle, PSA, and R that of H S P. Draw
Q G- and RB perpendicular to H S, and Q C parallel to AS, CP perpendicular to

H S ; also R E parallel to P S. Then* putting A S = y± ; P S = y2 ; and H S = y8 ;

and the angle ASH = 6; we shall have the moment of the triangle, ASP, from the

point, S, in the direction S H, equal to

or,

(y2 cos. |- + Vx cos.
0^

2/1 2/2
sin. 1

;

6 ' 2

and the moment of the triangle, P S H, in the same direction, will be

0\vq y2 .
0

or,

(
V* + ^ cos

U/s +V2 cos.
g-J

-

sin. -

0 ^^2 sin.4
o 2

Consequently, the aggregate moments of the two triangles, or the moment of the

triangle, A S H, from the point, S, in the horizontal direction, S H, will be found

equal to

^ j^Vs + V2 cos.
J-^

?/3 + (y2 cos. |- + yx cos. y^ y2 sin. ~ .

This is not a valuable formula at the present time, when it has

become the general and laudable practice to calculate the stability

at large angles of inclination ; but it has been given as an example

of the treatment of the sectional wedge areas by means of radial

ordinates. When devised and employed by the late Mr. Read, it

was simplified by limiting the supposed inclination to 8 degrees,

below which it was assumed that no serious error was introduced by

supposing the cosines of ^ and 0 to be equal to the radius, or 1.

The expression then became

1

g{ (2/3 + 2/2) y* + + 2/1) 2/1
sin

-

2
;

and the operations pointed out by it in this form were not

laborious.

* SC^4-i3 p>
andSE^i SH ; DC = CQxcos. 0, and EB=ER x cos.
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Mr. F. K. Barnes, of the Admiralty, produced at the Institution

of Naval Architects in 1861 a very practical and satisfactory method
of calculating the volumes and moments of the wedges of immersion
and emersion for any angle of inclination, giving the following

account of it (which we condense), observing that it " admits of any
degree of accuracy, and can be readily applied by persons who are

but indifferent mathematicians." It has been generally employed
in this country ever since its introduction, as it well deserved to be.

Let S H, Fig. 106, represent a portion only of one of the wedges

FigdOG.

of immersion or emersion, cut off by planes, S L
x
L, E F H, perpen-

dicular to S S', the intersection of two planes of flotation. Imagine
the wedge to be divided into a large number of thin slices by equi-

distant planes, all perpendicular to S S', or parallel to the bounding
planes, SL^ and E F H, and imagine, further, each of these thin

slices to be divided into the same large number of thin wedges by
planes passing through S S', each such plane being inclined to its

adjacent planes at the small angle, a. The volume of the whole

wedge, S L
x
H, is equal to the sum of all the very small wedges into

which it is divided by the two sets of planes. The volume of one

of these very small wedges, as S L
x
M shaded in the figure, is equal

to the small triangular figure, S L
x
N, multiplied by the breadth of

the wedge, which is the same as the distance, SI, between the

transverse planes of division. Now, since the angle, L
X
SN (= a),

is very small, the side, L
x
N, of the triangle, L

x
S N, may be regarded

as a small portion of an arc of a circle with centre, S, and is there-

fore equal to SL
X x a ; and the area of the small triangle (or

1
sector), S L

x
N (which is equal to - S L

x
x L

x
N), is equal to

% X S hi; and the volume of the one small wedge is | x S I x S L£
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Fig.101.

In proceeding to find the aggregate volume of air the similar

small wedges in the upper series (bounded above by the inclined

water section and below by the adjacent plane), Mr. Barnes resorted

to the device of setting off the wedge volumes as ordinates of a

curve, and then finding the area of the curvilinear area so obtained.

To do this he took a line, SE, Fig. 107, equal to SE in Fig. 106,

and divided it into two equal

parts at A, as S E is divided

by the transverse plane,

ABD, in Fig. 106, and

through the points of division

in Fig. 107 he drew lines

perpendicular to S E, setting

offupon them quantities equal

at each point to the square of

the corresponding ordinate

in Fig. 106. The ordinate,
2 2SXP at S, Fig. 107, was, of course, equal to SL
lf
that at A was AB

;

and that at E was EF2

, the parabolic curve, X
x
X

2
X

3 ,
being drawn

through the points. The whole curvilinear area, S X
3 ,
when mul-

tiplied by ~, was equal to the whole volume of the very thin wedge,

S N F. Kepresent this area, S X
x
X

3
E by B. In the same manner

curvilinear areas may be found to represent each of the series of

thin wedges which together make up the whole wedge, S L
x
H, and

CO

the sum of all these curvilinear areas, multiplied by
^

3
will give the

volume of the whole wedge, S L
x
H.

But in order to reduce the work thus set before us, Mr. Barnes

introduces a further artifice. He takes a line, P Q R, Fig. 108, to

represent the angle, I, of the ship's inclination, and divides it into

as many equal portions as the whole wedge, S Lx
H, Fig. 106, is

divided into very thin wedges, S N F, &c, drawing, at the points of

division, ordinates perpendicular to P R. On these ordinates he sets

oft* distances numerically equal to the curvilinear areas (of Fig. 107)

which, when multiplied by ^, represent the several volumes of the

wedges comprised in S L
x
H. Joining the extremities of the ordinates

so determined by a parabolic curve, he obtains a curvilinear area, the

divisions of which (viz., the small areas between the consecutive

ordinates) represent the volumes of the successive wedge-slices,.
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SNF, &c., and the whole curvilinear area of which will represent

the volume of the whole wedge, SI^H. In this case, however, as

in the previous one, instead of dealing with every ordinate, he deals

only with the two extreme ones, and an intermediate one, which
here is S 0 G, Fig. 106, dividing the angle, L S Lv into two equal

portions. Q is the corresponding point in Fig. 108. The curvi-

linear areas, SYjYgE and
SZ

1
Z

3
E, in Fig. 107, are

found representing the vol-

umes of the thin wedges
adjacent to S 0 G, and to the

upright water-plane respec-

tively, and these are repre-

sented by C and D respec-

tively, so that C x ~ and
V

a
13 x

2
w^ ^e numerica^y

equal to the volumes of these thin wedges. Then in Fig. 108 set off

perpendicular to PE, PM
X
= B, QM

2
= 0, and KM

3
= D, and pass

a parabolic curve through Mv M2 , and M3
. The area of the curvi-

linear area bounded by this line will be equal to the entire volume
of the wedge, S L

x
H.

The above processes must, of course, be applied throughout the
whole length of the ship, and the complete volume of the wedge of

immersion or of emersion may be thus obtained. Like processes

are pursued for obtaining the moments of the wedges of immersion
and emersion. Mr. Barnes pointed out the great difficulty of

getting these wedges exactly equal, and adopted the usual method
of equalising them by drawing a new water-plane parallel to the
inclined water-plane, and at a distance, d, from it given by the
formula

d
Difference of wedofe volumes.

Area of inclined water section.

The determination of the exact water-line by this means is some-
times not practised, the inclined water-plane section being supposed
to pass through the middle point of the upright water-section (as

projected on the plane of the ship's body-plan), corrections for the
error thus involved being subsequently introduced.

In proceeding to find the moments of the ins and outs, i.e., the

moments of all the small wedges into which the large wedge, S L
x
H,
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has been divided, Mr. Barnes points out that it is manifest that the

distance of the centre of gravity of one of the small wedges, SKN
from SS1?

Fig. 106, is the same as that of the small triangular area,

S L N or - SL; and, therefore, the moment of that wedge about

S Sx
is

=SIx|x SL2

lX |SL13

= S I x | x S Li.

Also, the moment of any other small wedge in the upper series

about S S' is similarly equal to S I X | X cube of ordinate measured

on the water-line section parallel to S Lr
The moment of the whole thin wedge may, therefore, be found

in the same manner as its volume was found.

Using the same figure, 107, set off the distance Sxv numerically

equal to Sl£; also, make Ax
2
numerically equal to ABj and Ex^

to EF 3
;
through the points xv x

2)
aud x

s
draw a parabolic curve,

and the area thus enclosed will represent the moment of the upper

thin wedge about S S', and if multiplied by | will be numerically

equal to it.

Similarly the moment of the wedge, S P 0, may be dealt with,

observing that, as the distance of its centre of gravity from S has to

be measured in the direction of S Lv or parallel thereto, and not in

the direction of SO, we shall have to multiply the distance

| S 0 by the cosine of the angle (|)
which its centre line makes

with S L ; and, therefore, the expression for the moment of this

wedge, S P 0, becomes

SI x | x cos. * x SO 3
.

T

The co-efficient SI X | X cos.g will be the same for all the small

wedges lying next (below) the plane, S 0 G, and their moments will

vary only as the cubes of the ordinates. Proceeding as before,

therefore, we may construct the curve, yv yv y3 ,
Fig. 107, and the

area lying within it will represent the moment of the entire thin
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wedge adjacent to the plane, SOG
1?

and when multiplied by
a I
^ cos. ^ will be numerically equal to it.

In like manner the area S0
X
0
3
E may be made to represent the

moment of the lowest series of their wedges, and when multiplied by

K cos. I
x
will be numerically equal to it.

Now, let P R, Fig. 108, be taken to represent the ship's angle of

inclination ; bisect it in Q, and draw ordinates through P Q R
perpendicular to P R—all as before. Make P F

x
numerically equal

to the curvilinear area, Sx
3 ; Q F

2
equal to the area, Sy

3 ,
multiplied

I
by cos. ^ ; and R F3

to the area, S#
3 ,
multiplied by cos. I. Draw the

parabolic curve, F
15
F

2 ,
F

3 , and the area lying within it will represent

1
the moment of the entire wedge, S L

x
H about S S', and ^rd the

o

area obtained by the common rule will be numerically equal to the

moment.

This calculation, like that for the volume of the wedge, must, of

course, be extended for the whole wedge extending from end to end

of the ship, and for both the wedges (ins and outs). Their sum will

be the quantity
v x hti

of Atwood's fundamental formula.

In the Paper of Messrs. White & John, read at the Institution of

Naval Architects in 1871, an account was given of the extensions

and modifications which the above system of calculation, introduced

by Mr. Barnes many years before, had subsequently undergone in

meeting the wholly modern conditions under which stability has

now frequently to be calculated, more especially in the Admiralty

Office. With the sanction of the Admiralty Council of Construction,

an official specimen calculation was produced, and to this we shall

presently revert when we come to explain the formal methods of

conducting calculations of stability.

All the time such calculations had to be effected without direct

mechanical aid, it was a matter of much importance to facilitate

them by the introduction of whatever devices tended to simplify,

shorten, and relieve from the risk of errors and oversights the actual

processes of calculation. But the invention and employment for

this purpose of Mr. J. Amsler-Laffon's mechanical integrator has

brought about a great change, enabling the draughtsman, as it .does,
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to ascertain the area, the statical moment, and the moment of inertia

of any closed curvilinear area, by simply passing a pointer along its

boundaries, and reading off the results. In using this instrument,

the areas and moments of the wedges of immersion and emersion

are found directly from the body-plan of the ship. The readings of

these areas and moments are set off as ordinates of new curvilinear

figures of which the abscissae are given by the positions of the

stations at which the sectional areas have been taken. The areas

of these new curvilinear figures are then obtained by means of the

instrument, and are equal to the volumes and moments of the

wedges. When this instrument was first brought to the notice of

naval architects, it was thought that it would be chiefly valuable as

furnishing a ready check upon calculations made by the method
of Mr. Barnes. But those calculators who have now had great

experience with it, claim for it, not only greater simplicity, but

greater accuracy likewise, and both these combined with much
economy of time, and with the further economy of enabling the

calculations to be effected by young and inexpensive persons. The
perfect success with which young apprentice boys (and in some

instances girls) are found to make calculations of stability with the

Amsler Integrator has frequently been mentioned to the author, one

ingenious friend observing—" I find boys more accurate in these

calculations than men, who have a lot to think about." But further

remarks on this instrument must be deferred until the ordinary

process of calculation has been described.

We will now give an illustration, taken from the author's office

records, of Mr. Barnes' method of calculating stability. We select

the case of the Kaiser, an ironclad central-battery ship, 285 feet

long, 62 feet beam, and about 7,600 tons displacement, designed by
the author for the Imperial German Government. The example

shown consists of the " Preliminary " and " Combination " * tables,

for the ship inclined to an angle of 34 degrees from the upright, and

is accompanied by a description of the tables.

It may be again noted that the calculation relating to the alteration

in the position of the longitudinal centre of gravity, caused by the

heeling of the vessel, is found in general practice to be unnecessary,

as the alteration is so slight as not to practically affect the righting

moment, even at large angles of heel. The following is a description

of the method of calculating the stabilities set forth in the accom-

panying tables :—

* See, Messrs. White & John's Paper on " Stability," Transactions, /. iV. A.
3
1871.
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The vessel is assumed to be floating in still water. The body-

plan is prepared from transverse sections 26*64 feet apart, with

additional sections 13*32 feet apart, at the extremities of the ship.

The load water-line of the vessel is drawn, and through the inter-

section of this and the middle line, radial lines are drawn at such

angular intervals as to allow one of them to pass through the edge

of the deck when that is just immersed. This interval is in the

example 8^- degrees.

The lengths of the ordinates of the transverse sections measured

along the radial lines are arranged in the " Preliminary " table (page

1 55), as also the squares and cubes of the ordinates, under the heading

of the respective wedges, both " Immersed " and " Emerged." These

quantities are then treated by Simpson's rule; from which the

functions of the ordinates of the inclined water-plane are obtained,

in order to find its area ; the functions of the squares of the ordinates,

in order to obtain the position of its centre of gravity, and also the

excess of the volume of one of the wedges over the other ; and the

sum of the functions of the cubes of the ordinates, in order to deter-

mine the moment of inertia.

It will be observed that the functions above referred to are

divided by 3, so that the common factor for use in the " Combina-

tion" table for areas, moments, &c, is the longitudinal interval.

In the " Combination" table (pages 156-7), the various angles of

inclination, from the body-plan, are entered up to the one to which it

is desired to calculate the stability, and the results or functions from

the " Preliminary " table above described are arranged in the proper

columns opposite their respective angles, observing that it is

necessary to prepare a " Preliminary " table for each angle of

inclination used in the calculation. These are treated by the

correct multipliers, and care must be taken to make the angle

at which the deck becomes immersed a stopping-point in the

integration in order to avoid discontinuity. The area of the

inclined water-section is now ascertained, as also the position of

its centre of gravity; the calculation showing the excess of the

volume of either of the wedges over the other is next proceeded

with, and is obtained from the functions of the squares of the

ordinates for volume of wedges, for the various angles of inclina-

tion, taken from the respective preliminary tables.

Should this excess prove to be on the "Emerged" side, as in

our example, it shows that the total displacement of the ship

at this inclined line is less than when in the upright position*
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In order to make the necessary correction for this deficiency, and

find the true water-line at this inclination, the volume of the

layer, after correcting for appendages, is found and divided by

the area of the inclined water-section, which gives its thickness.

This thickness is added to the assumed height of the water-

section, and gives the true position of the inclined water-line.

If, on the contrary, the "Immersed" wedge is in excess, the

thickness of the layer must be deducted.

The sums of the functions of the cubes of the ordinates as taken

from the respective " Preliminary " tables are now dealt with by the

same multipliers, and their products multiplied by the cosines of

the angles of inclination. The sum of the functions thus obtained

being divided by 3, and multiplied by the longitudinal interval,

and also by one-third the angular interval, gives the moment of the

wedges of " Immersion " and " Emersion," uncorrected, taken about

the intersection of the middle line and the inclined water-section.

The corrections for the appendages and layer are now taken into

account, observing that for the latter the centre of gravity of the

layer lies toward the immersed side, and the emerged wedge being

the greater, the correction must be added. Had this centre of

gravity been toward the emerged side the correction would have

had to be deducted. Dividing the result, after the necessary correc-

tions have been made, by the total displacement in cubic feet, the

horizontal distance (BR in the table) between the centre of buoyancy

in the upright position and the centre of buoyancy in the inclined

position is obtained. Deducting from this distance the vertical

height between the centre of buoyancy and the centre of gravity of

the ship when in the upright position (B G in the table), multiplied

into the sine of the angle of inclination, the length of the arm of the

righting lever (G Z in the table) is obtained, and this, multiplied by

the displacement, gives the righting moment in foot-tons.

The moment of the wedges, uncorrected, for the dynamical

stability is obtained by multiplying the same products of the sums

of the functions of cubes of the ordinates as were used for the

statical stability, by the sines of the angles of inclination, dividing

the sum of the functions so obtained by 3, and multiplying by the

longitudinal interval and by g of the angular interval. Corrections

for the appendages and layer are now made, observing that in finding

the dynamical stability the correction for the latter is always deducted,

irrespective of the position of the centre of gravity of the layer.
. ,
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PRELIMINARY TABLE,

Water-Section inclined at 34 Degrees.

Immersed Wedge.

No.

Sec-
tion.

Ordi-
nates.

Multipliers.
Functions of

Ordinates.

Squares
of

Ordi-
nates.

Multipliers.

Functions
of Squares.

Cubes of
Ordinates.

Multipliers.

Functions of

Cubes.

1

2
3
4
5
6

7

8

9

10

104
li

U
12-8

21-3

26'0

27-5
29-1

301
30- 1

30-0
29-9

28-9
26*3

20-5

l
2

2

14
4
2
4
2
4
2

4
lix 2

2
i

2

Q
25-6

31'9

104-0
55-0

116'4
60*2

120-4
60'0

119-6
43-3
52-6

10-2

0
163-8

453-7

676-0
756-2
846-8

906-0
906-0
900-0
894-0

835-2

691-7
420-2

l

2

2

14
4
2
4
2 -

4
2
4
14
2

i
2

o
327*6

680-5

2,704-0
1,512-4

3,387-2

|
5,436-0

1,800-0

3,576-0

1,252-8

1,383-4
210*1

0
2,097*2

9,663-6

17,576-0
20,796-9
24,642-2

27,270-9

27,270-9
27,000-0
26,730'9

24,137-6
18,191-4

8,615-1

1.
2

2

14
4
2
4
2

4
2

4

H
2

i
o
>•*

0
4,194-4

14,495-4

70,304-0
41,593-8

98,568-8

1 163,625-4

54,000-0

106,923-6

36,206*4
36,382-8

4,307*5

3)799-2 3)22,270-0 3)630,602-1

266*4 7,423-3 Immersed,
Emerged, . .

210,200-7

204,298-3

Sum, . . . 414,499-0

Emerged Wedge.

1

14
2

3
4
5
6

7
8
9

10

104
ii

•3

9'1

15'6

25*0

29-6

31-4
32-3
32-3

31'2

27*7
20-6

14-7

.
5-3

1

2

2

li
4
2
4
2
4
2
4
14
2

i

2

•1

18-2

23-4

100-0

59 2
125-6
64-6

129-2

62-4

110-8
30-9

29-4
2-6

•1

82-8

243-4

625-0
876*2
985-9

1,043-3

1,043-3
973-4
767-3
424-4
216-1

28-1

1
2

2

14
4
2
4
2
4
2
4

14
2

i

,
2

0
165-6
365-1

2,500-0

1,752-4

3,943-6

|
6,259-8

1,946-8

3,069-2
636-6
432-2
14-0

0
753-6

3,796-4

15,625-0

25,934-3
30,959-1

33,698-3

33,698-3

30,371-3
21,253-9

8,741-8

3,176-5
148-9

.1

2

2
1

1

4
2
4
2
4
2

4

2
i

2

0
1,507-2

5,694-6

62,500-0

51,868-6

123,836*4

|
202,189-8

60,742-6
85,015-6

13,112-7

6,353-0
74-4

3)756-4 3)21,085-3 3)612,894-9

252-1 7,028*4 204,298-3
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This result divided by the displacement in cubic feet gives the

distance (B
1
R in the table), on a vertical line drawn through the

centre of buoyancy in the inclined position, between that centre and

a horizontal line drawn through the position of the centre of buoy-

ancy in the upright position. The vertical height between the

centre of gravity of the ship and its centre of buoyancy in the

upright position, multiplied by the versed sine of the angle of

inclination is now deducted, and the remainder multiplied by

the total displacement in tons represents the work expended in

foot-tons in heeling the vessel to the angle of 34 degrees.

Mr. Ludwig Benjamin has recently devised a method of arranging

and carrying out the calculations of statical stability in a novel

manner, which is employed by some firms upon the Clyde, and

is marked by considerable skill and ingenuity. Mr. Benjamin's

object has been to indicate in a single diagram " the stability for

every angle of heel, every draught, and every position of the centre

of gravity," and to accomplish this object " in less time than the

usual method required for one draught only." Mr. Benjamin further

regards his results as at least as correct as those of the usual method.

An account of his system will be of interest, at least as a means of re-

garding the doctrines of stability from somewhat novel points of view.

In Fig. 109 is illustrated the first step taken in following his

method, a line, K I, being drawn through the upright axis of the

Fig.109.

ship at the height of the top of the keel, at any given inclination of

the ship, say a, from the upright. From the centre of gravity, G,

and also from the new centre of buoyancy, B'
?
draw perpendiculars
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upon K I. Calling (as he does) the perpendicular from B', <x, and

that from G, 6, and the height, KG, H, we have the lever of

stability = a — b ; and b = Ii sin. a. Values of the latter (H sin. a)

may be conveniently obtained for varying values of H and of sin. a

by constructing a diagram, Fig. 110, in which the lines radiating

from a fixed point, 0, are drawn for numerous values of a, from 0

up to 90°, and circular arcs are described about the point 0, with

radii corresponding to various heights of the centre of gravity above

the top of keel. It is obvious that if we measure the horizontal

distance from the upright line of any point of intersection of a

radial line with a circular arc, we shall have the value of H sin. a

for the corresponding height of G and the corresponding draught

of water. For example, p q (Fig. 110) = H sin. a, when H = 10 ft.,

and a — 40°.

Mr. Benjamin next calculates the Displacement and the Centre

of Buoyancy of the ship for various draughts of water, as in

Fig. Ill, and further calculates the position of the centre of buoyancy

for a series of successive inclinations, and describes the loci of these

centres for each of the successive given inclinations, and at the

respective draughts, as illustrated by the curves, leb, in Fig. 112.*

*See also Fig. 38, chap. iv. We think it right to state that, although Mr.

Benjamin's method finds a place here, and Mons. Daymard's comes later in this work.
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Upon these loci, or curves, are marked the points which correspond

to the different upright draughts. To facilitate this operation, Mr.

Benjamin makes use of curves such as those shown in Fig. 113,

marked d c b, which represent the distances, at various inclinations,

of the centre of buoyancy from any given water-line (the first in

the MS. of Mons. Daymard was in our hands several months before Mr. Benjamin's

system came to our knowledge.
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this case). An ordinary displacement scale being made from the

results of the calculations, the distances from the given water-line

of the centres of buoyancy corresponding to the calculated displace-

ments are also set up to scale from the base-line, and curves passed

through them. From these curves the distance from the given

IDisplacement in Tons

water-line of the centre of buoyancy for any displacement and
inclination can be readily obtained.

The curves marked s d in Fig. 112 are obtained by joining those

centres of buoyancy at the different inclinations which correspond

to the same displacement, and are used only as a means of checking

the calculations.

By aid of Fig. 112 measurements of the value of a (the per-

pendicular from B' upon KI, Fig, 109) can now be made for

different draughts and different inclinations, and can be set off

horizontally in Fig. 110 from the upright line through 0, and curves

being then passed through the points thus obtained corresponding

to each draught, a new series of curves is described which Mr.

Benjamin designates " Curves of Draughts.
7
' The diagram, Fig. 110,

being thus finished, constitutes a complete representation of the

statical stability for every inclination up to 90 degrees, and for every

draught of water between the limits employed in the construction of

the figure. To find in this diagram the lever of stabilit}^ for a given

draught and inclination, it is only necessary to mark the two points

upon which the line for the given angle of inclination is intersected

by the " curve of draughts," and by the circle of centres of gravity

respectively, and to measure the distances of these points from the

11
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vertical axis, Oo°, of the figure : the difference of these distances is

the stability lever. When the circle lies within the curve of

draughts the lever is a righting lever, because b will be less than a

in the previous expression for the lever, a — b; when the circle falls

outside of the curve of draughts, the lever will be an upsetting one.

In dealing with the case of the deck-edge becoming immersed, Mr.

Benjamin, in order to get his curves exact, in the first place

supposes the side continued up (as is often done in other systems),

afterwards making deductions for the deficiency caused by the deck

entering the water. Quarter-decks, bridge-houses, &c, are accounted

for in like manner.

Mr. Benjamin has conceived and carried out the idea of employing

the "curves of draughts" in the construction of a model whose

horizontal sections correspond to the respective draughts of water,

the planes of which consequently may be supposed to intersect the

model, and may be easily drawn upon it. Eadial planes corresponding

to the respective inclinations are also supposed to intersect the model,

and their intersections may likewise be readily drawn upon it. If

the model be built up of annular sections, corresponding to the

circular arcs in Fig. 110 (which represent heights of centres of

gravity), the intersections of such arcs with the surface of the model

will also be shown. From such a model measurements giving the

levers of stability may obviously be readily measured. Mr.

Benjamin considers that this model will facilitate comparisons

between ships, and help to convey to captains of ships and others,

in a more impressive form than a drawing, the necessary informa-

tion with respect to the stability of the vessels in which they are

concerned.

The calculations necessary to obtain the displacements and posi-

tions of centres of buoyancy required for the construction of such a

diagram as Fig. 110 can be readily made by the aid of Amsler's

Integrator ; but as this instrument is not in general use, we give

below a specimen of each of two tables used by Mr. Benjamin in

making his calculations directly from the body-plan of a ship. His

mode of applying well-known rules will be found somewhat different

from that usually pursued in such cases, but will be easily under-

stood by means of the following explanation.

The two Tables given, which contain the figures for an actual

ship, are used to find the required data for one inclination only

(15°), and similar tables would have to be used for each inclination

for which the data may be required. Eeferring to Fig. Ill, the
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water-lines (arbitrarily chosen) used for this inclination are there

shown upon the body-plan of the ship, as well as the axis, R S
(arbitrarily fixed), relative to which the abscissae of the centres of

buoyancy are to be calculated, this axis being so chosen that all

moments taken about it shall be to the same side of it. In the

column to the extreme left of Table I. the numbers of the transverse

sections used are placed, and in the next "Simpson's multipliers"

corresponding to them. It will be seen that each water-line has

four columns devoted to it. In the first of these are entered the

breadths of the ordinates at the several sections (as m, Fig. Ill),

and in the third the distances of their centres from the axis, R S

2~ — n or — + n, as the case may bej. The ordinates are multi-

plied by Simpson's multipliers, and the products placed in the second

column ; their sum being divided by the sum of the multipliers, the

length of the mean ordinate is obtained. The fourth column con-

tains the functions of moments of the ordinates about the axis, R S
?

these being arrived at by multiplying the quantities in the second

column by those in the third : their sum is divided by the sum of

the multipliers, the result being the mean moment.
In Table II. the first column on the left contains the numbers of

the water-lines used, and the second their distances (in multiples

of the interval) from the 1st water-line ; in the third are placed the

mean ordinates for the several water-lines, and in the fourth the

mean moments, the two latter being taken from Table I. The fifth,

sixth, seventh, and eighth columns form a group headed "Up to 1st

W. L.," and the remaining columns comprise similar groups. The
fifth column contains Simpson's multipliers corresponding to the

numbers of the water-lines, by which the mean ordinates in the

third column are multiplied ; and the results (functions of mean
ordinates) are placed in the sixth column ; their sum is divided by
the sum of the multipliers, and the mean of all the ordinates is thus

obtained, which, being multiplied by the distance between the

extreme water-lines, and by the length of the ship, gives the volume
of displacement. The seventh column contains the functions of

vertical moments, arrived at by multiplying the quantities in the

sixth by the numbers in the second column, and the sum of these

functions being divided by the sum of the functions of mean
ordinates (sixth column), the result is the vertical distance (in

multiples of the interval) of the centre of buoyancy below the 1st

water-line ; this multiplied by the interval gives the same distance
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in feet. In the eighth column are placed the functions of mean level

moments, obtained by multiplying the mean level moments (fourth

column) by the multipliers (fifth column) ; and their sum being

divided by the sum of the functions of mean ordinates (sixth

column), the result is the distance, parallel to the water-lines, of the

centre of buoyancy from the axis, R S. The results obtained in the

groups headed " between 1st and 4th W. L. " and " between 2nd and

4th W. L." are combined with the results of other groups, in order to

give the positions of the centre of buoyancy for displacements up to

2nd water-line and up to 4th water-line.

The displacements and vertical and level distances of the centres

of buoyancy are recorded at the foot of the table, and these results

are used for constructing the loci of centres of buoyancy in Fig. 112

—as already explained.



CHAP, VIII.] 165

O
rHH

o

o
Ph

CO

*<<>

*0

T—

I

rH
1

<!

En

o

8o
SO
e

3

•
•

O
rH

io

rH

rH lO

rH

co •
•

C5
CN^ CM

• i—l

Q •

•
•

CO cb

CO

CM cb

LO

LO

• •

- • to
•

rH JO
• •

O
ip

CM
tH

H
+2
«£>

rH CO
Tin

lO
<M

•

co o
rH

• CO
CO
rH

!>.

O 6
•

o CN

CO

CN CN cb

•

o o

•

CO
OS

rH

rH

CO rH

CO

CO

rH
rH
rH

CS
rH

CM
CI

*

m • 9
LO
CO
*

CN
CN

LO
CN 9

LO
CN •

P G> CO ID LO LO 10 0) •

-4-3 •

co

C5

lO
CO

C5
rH CO

(-»>>

Ci

cb
rH

tH
CO
rH

•

CM

13-76

f , * CO 0)
L0 L0

L0 CO
r—4

O o CN CO CO CO CN CO 6
CO
co
rH

O
CM

CO
CM
CO

CO
CO
CO
CO

o
CO
<M

CO
CO
rH

•
• CO

CO
CM

CO
rH

m
rH •

* 9
LO
CO rrs o 1^

CO
•

hi ft •

CO CO CO
• •

* •
Ci CO CO

•

lO
lO

CO

O
CM

•
• f—f

CM
o
CO O

rH

CO o
rH

rH
CO

CO
(N

• o
CO

U
O 6 10

75 CO

6
CN

CN

CD
CN

CO

CO
JCM_

CM

CO
CN_

O
CN

LOa
•

o

•

o
CM CM

!>•

CO

co
<M

lO
CO
00

o
<M

OX
rH

o
CMo
CO

"co-
co
rH

r4

4-3
02
•rH

Q
«
•
•

12

CO CO

IN*i

N
1

h-

LO
CO
•

CM
•

* *
•

• •

cm o p cp CO lO J>.

3rd
• CO

CO
cb
CO

o
rH

io
no

GiO
rH

CO
Ci
(N

«
•
• COo CM

CM

CO O L0 CO
•

CO
LO

CD
•

•

i

•

O 6 CD
CN CN CM CN

CO
CN

o •
•
•

•
•
•

co
CM
CM

rH CO
CO CO

o o
*

lO

co
CM

CO
in
rH

• rH
•
•

LO LO
10

CN
Q 0) O CO CO • •

P •

LO CO CD CO CO CD CO

a •

•

rH CO
CO

o
rH

ib
Id

CO
6io

CO

cb
CO

p
cb
CO

•
•
•

CO
•

CM
TH

CO
CM

u • CO
LO
LO
«

CN
*

•

O o 6
CN

ib
CN CN

•

CN CN CN
CO o

•

•

<*>

CM

CO
CO
CM

CO
lO
CO

TH

CO

rH
v

1

1

;

CO <M

CO

CM
•
•

2553

CM

rH

+3
03

• i-H
/«>,

LO
O

LO
o CN

CP
LO

•

H
ib CO CO CO cb ib ib

•

1st

W
*

p CO

CO
CO

CO
•

00o
rH

00

LO O
rH

cp

cb
CO

CM
•

CO
43062

P
CO
CM

•

LO

9 9 CN
•

LO
CO

•

O o CN
CN

ib
CN CM CN CM CN

CO o
•saeiidwiri]^

s.uosdrats CM rH (M tH CM CO
rH

w
Pi
c«

•suonoag
jo :om rH CM CO TH lO CO 00 C5

«



STABILITY OF SHIPS, [CHAP. VIII.

•4
•

•^uotnojft ioaoi
jo noi^onn^g;

: CO CM 00 . . .

: no i>» co . . •

rH CO rH ' *
*

00
Oi
Oi

• CO "

: • :
•

een

2nd

and

4th

^
•^noraopi >i9A
jo noi^oun^

. t- C© 00 . .

I CO rH rH '. 1 I

00 CO
rH

rH
•

CO
CM

00 CO
01 Oi

rH CO •

ons. feet.

•g^mpio
jo uoiionnji

. 00 CO . . .

• CO o o • • •

CM OS CM

rH
ib
CO
rH

: : cm
CM

O
Oi

CM
CO

141

t
15-19 4

06

Betw

• • • •

CO • • >
• e •
• •

•
•
•

4 •;n9raoj\[ J9A9T;
jo uoi^orm^

r\i *rW Q
jc^o co : : :H^>CH . . .

00
CM
rH

:gi :

* co
• •

r

een

1st

and

4th

^
•^nguioji '^joa
jouoi^oim^

;H^00 . . .

• rH CO rH " I I

t>. co co
-H

rH

OS
CO
CM

CO rH
rH rH .
• • .
rH lO .

ons.

feet.

•e^mpjo
jo noi^onn^g;

O rH rH CO . . .

CO rH 00 O - • i

CM t>»CO CM

•

CO
00
rH

co
Oi

• .

> CM
CM

rHo
•>

rH

!>• Oi
o 9s ^
2 cm cb^ rH

Betw rH CO CO rH : ; ; 00 • • •

• « •

rb
1

•^noraopi I9A9T;
jo noi^oim^

• • • • O 00 *
• • • • ii •
• • • • •

CO
00

co
: ^ :
' rH

•

O
-t^>

ft

P

•^uoraoj^ '^i9A
jo uoipnn^

CM 00.... lO i>».... ^ .

CM CO

o
CO

Oi

rH Oi
CO rH -

rH ib :

rH
•

•

•o^nipjo
jo uoiiotmjj

00 r}H

. . . . 00 00 -

• • • CO rH *

rH

CM
•

rH
CM

rH
- . CM
* • *

rH
rH
Oi

rH

CO
914

t<

10-96
6*90

• HN Ho*
(M CO

• • •
• • .
. • •

'5.U9raOI^[ I9A91
jo uoi^onn^

. . 00 O 00 00 .
• • CO rH rH rH •

' " rH CO rH
!>.
Oi

: oi :

*cb
* •

Up

to

3rd

W.

L.
•^n9moj\[ '^J9A
jo noT^otm^

CO 00
. . ^ ^ lp !>*

: : ib !>• cm cb :

rH tH 00 CO
CM

Oi
rH

TfH

co co
rH Oi

cb o :

rH

•
•
• Of"

45 CD
~

•o^tsmpjo
jo noi^onn^

,
rH rH

'
• w n o :

00 (M H

00
lp

o
rH
rH

CM
. . CO
• • •

- • 1C
rH

/*V|UN
oo
Oi
rH
CO

a •

^cot-

: : ho»> h«
• rH rH rH CM OI

• • •
« • •

•
•
*

"rci9IIIOJ\[ I9A91
jo nopoun^

rvi pa {o oo cy~i

rH CO CO rH rH rH '

rH CO CO CO rH '.

rH
Oi
rH

•S -

• • *

co

•
•
•

4
•^agraopf *^J9a
jo nopjotm^

CO 00
. 00 00 CM ip !>• .

Oi Oi rH 00 CO
CM

TP
rH

CM
CO
lO

O CM

CM t- •

^'

tons,
feet.

Up

to

li

• 'o^nipjo
jo uoi^oim^

rp TP
Oi 00 rH rjH *p 00

cb rH ib cm © rH :

CM Oi rH 00 CM rH

CO
Oi

rH
00
CM

O
. . GO
• • •

• • 00
rH

lO
lO
rH

rh
CO

aj
r-i

22 ^ Oi

HO* —i'CH

rH rH CM rH rH CM
lO
rH

From

Table

I.
'!^U9ra0J\f I9A9T[ CM 00 00 O Oi rH .

-HH lO CO CO J>. CM •

r-i r—{ r-i

• •

•+3
O
o>

rH .do
•g^nipjo

:
n^9j\[

CO CM
Oi j>» i>. co *>

CO CO CM O CO 1>» O
CM CM CM CM rH

Distance

of

C.

B.

Mean

Ordinate

,

me

in

Cubic .
no

i—

i

aj

Displacement

Vertical

Dist.

of

Level

Distance

of

•iju9raoj\[ *?J9A
joj jLoiidpHtiM

Ho<lOO rH CM CO rM

•sami-j[9^j^ jo -otf rH CM CO TiH lO CO !>•
r—

t

O



CHAP. VIII.] MODIFICATION OF MR. BENJAMIN'S METHOD. 167

Subsequent to the writing of the above account of Mr. Ben-

jamin's method of calculating the statical stability of vessels, that

gentleman has communicated to the author a modification of his

system, by means of which he dispenses with the calculation of the

position of the centre of buoyancy in relation to the water-line,

requiring only its position in relation to the vertical axis which he

uses, in order to determine the line of action of the resultant pres-

sure of the water upon the immersed hull of the vessel. Mr.

Benjamin's own exposition of his modified method is as follows :—

" If a vessel is immersed in water in an inclined position there

are two forces acting—viz., the weight of the vessel, and the

resultant pressure of the water, which is equal and opposite to the

resultant of the weight of that body of water which is displaced

by the vessel. Both forces are acting in lines vertical to the sur-

face of the water, and equal to the displacement, D. If the distance

between their lines of action is a, the moment of the couple thus

formed is

Da,

which is the moment of stability. In Fig. 114 the line of resultant

pressure is shown by P. Its position is known, if the point, A,

is riven, in which it intersects the middle line of the section repre-

senting the vessel. I shall call this the point of action. Let its

height above the top of keel be = H, and that of the centre of

gravity — g, then

H — q — h =a
sin, a

when a is the angle of inclination; Mg.iU.

and thus, for a given angle of heel,

the distance between G and A
bears a certain proportion to the

lever of stability. When G lies

below A, the stability is positive

;

when G lies above A, it is nega-

tive; while, when G and A fall

together, there is equilibrium. The

value of h depends on two items

—

viz., the height of the centre of

gravity, G, and the height of the

point of action, A. The first is due to the distribution of

weights, the latter to the shape of the vessel. Only H, therefore,

needs to be calculated. But

a
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Hb
sin. a

Where b is the distance of the line of the pressure, P, from an
axis, x x, through the top of the keel, and vertical to the surface of
the water

; and we need, therefore, only to calculate the different

values of b.

"Now, if the inclination is constant and the displacement variable,

as indicated in Fig. 115 from 0
X to 0

5 , the line of pressure passes

through the different positions, Px to P
5 , and the. point of action

from A
x
to A

6
. The height of the latter above the top of keel

varies from H
x to H

5 , while the distances of the line of pressure from
the axis, x x, vary from \ to b

5
.

" Suppose the values of b for different displacements to be cal-

culated, and divided by sin. a
;
then, as

sin. a

we have as the result of the calculations the displacements, Dlf D2,
D

3 ,

&c, and the heights, H
2 ,
H

3 , &c. We can construct a curve
(Fig. 116) using the displacements as abscissae and the heights as

ordinates. If now any position of the centre of gravity is given,

the height, h, which is wanted, is

and if we draw a straight line parallel to the axis of Fig. 116 at the

distance, g, the distances of the points of the curve from this line

represent the heights, h. If this is carried through for different

angles of keel, the diagram (Fig. 117) is produced.

"By means of a displacement curve, as shown in Fig. 117, we
find those abscissae which correspond to given upright draughts, and
the corresponding ordinates give the heights, H and h

}
respectively.
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" As this diagram is not very handy for use, and only gives the

heights of the points of action above the centre of gravity, and not

Fir/. 117.
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the levers of stability themselves, and as the lines are generally

confusing, I transform it into another diagram (Fig. 118). In this

diagram the heights, H, are used as ordinates, and the angles of
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heel are used as abscissae, which form, according to their nature, a

system of polar co-ordinates starting from the point, K, on the

" The ordinates for that abscissa in Fig. 117, which corresponds to

a given displacement, are placed in Fig. 118, on the different lines

for angles of heel, measuring from K, and form thus a curve for

that displacement, and any number of such curves can be produced

without further calculation.

"Any given height of the centre of gravity evidently produces

a circle, as it remains constant for all angles of keel.

" Thus, for a given condition of the vessel, the heights, h, are

found as the distances between one of the circles and one of the

curves of the diagram, while the righting lever

A = h sin. a,

is found as the difference of the distances of the points in which

the line for the angle intersects the curve and the circle.

" A model is formed by placing each of the curves of Fig. 118 in

parallel planes; this model is intersected by a system of polar planes,

which pass through the angled lines, and are vertical to the system

of parallel planes, and the intersections of these polar planes with

the surface of the model evidently are the curves of Fig. 117. In

the model the circles for the centres of gravity produce cylindrical

surfaces, and using these the model can be constructed of annular

cylindrical pieces, which can be readily separated.

" On each of these, and on the curved surface, the lines are to be

shown in which they are intersected by the two sets of planes.

" For a given centre of gravity, only that part of the model which

lies between the corresponding cylindrical and the curved surface

has to be considered; it gives by the distances between the sets

of lines the heights, h, for any displacement and any angle of keel.

" The only calculations necessary for this method are to find the

positions of the lines of action for different draughts at given angles

of heel. Taking the moments round the axis, x x, Fig. 114, we have

bB = j y d D,

where y is the distance from x x of a particle, d D, of the displaced

volume of water; therefore, only a common moment calculation, is

needed to find b. This can. be done for all angles of heel by means

of the tables already given, leaving out those columns used for ;the

calculation of the vertical position of the centre of buoyancy. For
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an indefinitely small angle of heel, i.e., for the upright position, it

is necessary to consider that the point of action, A, falls into the

metacentre, and that the curve in Fig. 117, for the heights, H, in

the upright position is, therefore, a curve of metacentric heights,

which can be calculated by Ativood's formula.

Direct Explanation of the Diagram.

"In. Fig. 119 the vessel is shown under different angles of heel,

in such a manner that the top of keel remains a fixed point, and

that the angles are measured from an axis, x x, which coincides with

the middle line in the upright

position of the vessel; thus, this
Fig.iw.

axis always remains vertical to

the surface ofthewater, and the

latter takes the positionsO
0
,Op

0
2,03 ,

successively. The line of <k.

pressure passes fromP0
to P1}P2 ,

&c, and the centre of gravity

from G
0

to G1?
G

2, &c. The

point of action passes on acurve

A
0 ,
Av )

A
2 , the distances of

which are measured on the

angled lines, given by the suc-

cessive middle lines of the vessel, which all pass through K, forming

with x x the angles of heel, av a
2 ,
&c, and A moves therefore on

one of the curves, as shown by the diagram, Fig. 118, while the

centre of gravity moves evidently on a circle, so that, in heeling

the vessel in this manner, the diagram is produced.

" It will be distinctly understood that the centre of buoyancy

has no bearing on the question of stability. However, if for com-

parison with other methods, its position is wanted, it must be

remembered that it always lies on the line of action, and that

while for a constant angle the latter passes through P
1?
P

2 ,
&c, Fig.

115, it moves on the locus of centre of buoyancy, as shown in

Fig. 112. Here a double moment calculation would be necessary,

and this can be made, if Simpson's Rules are adhered to, by the

tables already given. To get on these curves the points which

correspond to given draughts, the diagram Fig. 118 needs to be

constructed, and the points on the different loci of centre of

buoyancy corresponding to the same displacement give the usual

curves of centres of buoyancy."
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CHAPTER IX.

Mr. Macfarlane Gray's System of Diagrams and Calculations—Stability Curve-

Alteration of Position of Centre of Gravity—Stability Diagrams—Polar

Diagram—Construction of Same—Template Arc—Example of Practical Appli-

cation of Mr. Gray's System—Importance of Position of Centre of Gravity

—

Stability of Example compared with that of the Captain—Stability Diagrams

for the Athulchni—Forms for Amsler's Integrator—Co-ordinates of Centres of

Buoyancy—Explanation of Use of Forms—Determination of Righting Levers

from Functions of Displacements—Other Forms—Explanation of Use of Same.

A special system of diagrams and calculations now used in the

Board of Trade for stability (and longitudinal strength) has been

contrived by Mr. J. Macfarlane Gray, an able officer of that Depart-

ment. A paper on "Polar Diagrams of Stability" by him was

published in the Transactions of the Institution of Naval Archi-

tects for 1875, giving " practicable methods of constructing stability

diagrams that might be adopted by naval architects, and drawn

upon the midship-section in the plans furnished to the owner, to be

a guide in stowage, and a help in settling freeboard." Only the

last of the methods there given has been used practically; the others

are now regarded by Mr. Gray as merely interesting and suggestive

features in the geometry of stability,* by which he was led to the

simple practical diagram now used. Since the date of that paper

Mr. Macfarlane Gray's system has been improved and extended, and

the following account of the methods pursued is now prepared from

notes kindly supplied by him, with the permission of the authorities

of the Board of Trade. We give also the preliminary features,

although these are not discernible in the practical diagram.

Beginning with Fig. 120, the well-known diagram, G is the

centre of gravity of the hull ; B is the centre of buoyancy; M B is

the vertical line through B ; and G Z, the perpendicular from G upon

MB, is the righting arm. We might have indicated GZ (as in

* Other gentlemen are nevertheless now engaged, as we have just seen, and shall see

again hereafter, in carrying out systems of calculation, based upon the same funda-

mental considerations, and turning them to practical account for determining

exhaustively the stability of ships.
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Fig. 121) upon the hull upright on the page, but with the water-

line** inclined. If the inclination of the water-line alone is to be

noted, the water-line itself may be erased, and G Z will sufficiently

denote the inclination.

Let these GZ arms be drawn for a number of inclinations, with

the centre of gravity in assumed coincidence with the upright centre

of buoyancy for a given displacement, the line drawn through a

series of these Z points is the stability curve given in Fig. 122,

which represents a prism of square section immersed ^ths of its

depth. The GZ lines may now be erased, and for any required

Fig. 122.

inclination a GZ line can be drawn (limited in length by the

stability curve) giving the righting arm for that inclination with the

centre of gravity at G, the centre of the upright buoyancy. The

curve as drawn is for a capsize through 180°.

The reading of the curve is indicated by the skeleton hulls

sketched in; the shading marks the part of the hull that is

immersed, and the radial line through G gives the inclination of the

water-line. The water is always at the same side of that line as it

turns round. The skeleton hulls are all vertical on the page,

A stability diagram for any point, G, as origin is at once con-
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verted into a stability diagram for any other position of the centre

of gravity by merely describing a circle on the line joining these

two points, and taking the G Z, shortened by the chord of the circle

at each inclination, as the stability lever. The reason of this will

be seen by reverting to the general expression for GZ, which is the

difference of two lengths, the one being the length, B R, which is

equivalent to G Z, presuming G to coincide with B, and the other is

BG sin. 6. This latter length, BG sin. 6, is clearly equal to the

chord of a semi-circle described upon the height B G, the said chord

being drawn from B at any angle, 0, to the horizontal. As the

stability curve is drawn through the centre of buoyancy for the

upright position, that point is now, Fig. 123, lettered B, and the

Fig. 123.

G

ei \

/ A
C

actual position of the centre of gravity is lettered G. For any

inclination, at the same displacement, the righting arm is the

segment of the inclined line between the circle and the stability

curve. If the intersections of the radial line and the circle are

lettered g, and those with the curve are lettered 6, then, reading

from the centre, ^ is a righting arm, and b g is an upsetting

arm. Reading round the diagram through 180° from the right, the

arms are g b at first, or righting. At c the arm is nil ; this is

a position of unstable equilibrium, and the hull will turn over from

that to d, impelled by the capsizing force acting on the upsetting

arm, bg. At cl the condition is stable equilibrium, that is to say,

the vessel will settle with the masts at the angle, dBG, below the

water level, but perhaps at the opposite side to that they entered

at, according as d is near to B, or distant from B, having regard to

the dynamic feature of the diagram. From d to e the arms are
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righting levers (with reference to the last position of stable

equilibrium corresponding to d) as indicated by g h : at e, another

position of unstable equilibrium occurs, and beyond that point the

arms are upsetting levers until the position B is reached, when the

vessel is bottom up and in stable equilibrium.

The usefulness of this diagram, as was pointed out by Mr. Gray

in 1875, is impaired by the acuteness of the angles at the inter-

sections near the upright position. At an inclination of 90°, how-

ever, the intersections are nearly at right angles, and if we could

transfer this quality to the neighbourhood of the upright position,

we should then have the sharp definition where it is most'required

in a stability diagram.

In Fig. 124, on the left side, stability diagrams are drawn, as

described above, from the prism whose transverse section is given.

Fig.lH-

The stability curves, 0 a A and 0 c A, are for the centre of gravity

at the point 0, and for the two displacements indicated by the two

water levels shown.

"It may seem a ridiculous position," says Mr. Gray, "for the

centre of gravity, so far to one side ; but that is only a device to get

a curve that will give definite intersections at moderate inclina-

tions. For the centre of gravity at the point, E, describe a circle

on OE, as diameter, viz., OF A, that circle and the stability

curve for the immersion constitute a stability diagram. At the

immersion, a, the righting arm at 30°, inclination is F B. In this

figure, the skeleton hulls are shown on an arbitrary circle of

degrees."

The sense in which the arm acts in the first quadrant is that
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when the circle intersection is within the curve, it is a righting arm,

when beyond the curve, it is a capsizing arm. At 160°, GZ is a

capsizing arm, because the action in the second quadrant, being

represented at the opposite end of the radius vector, has the opposite

sense.

The outcome of all these methods of representing stability for

different positions of the centre of gravity is the polar diagram,

given on the right-hand side of Fig. 124, which Mr. Macfarlane

Gray regards as practically accurate, but justly describes as "not

mathematically correct." About the centre, C, a point in the

vertical centre line, an arc of 90° is described through the point

A, the mean position of the centre of gravity. (The radius may be

conveniently 8 inches, if the beam is more than 32 feet, and the scale

half-inch to a foot.) The righting arms are set off on the radial

lines from the circular arc towards the centre, C, on their respective

lines of inclination, and a curve drawn through the points, thus

obtained, is the stability curve for the corresponding immersion,

with the centre of gravity at A. The stability diagram for any
position of the centre of gravity, E, and the same immersion, is

completed by describing an arc with the same radms|through K
and E. Practically the original quadrant arc is erased, and a

card-board template applied to the fixed point, K, and to the position

of the centre of gravity, giving at once, without drawing, the

complete diagram of stability. The assumption which underlies

this device obviously is, that the originally assumed ^centre of

gravity and the new one, and consequently the centres of the

circular arc in the two cases, will in practice be sufficiently near to

each other to justify the assumption that the radial distance between
the two arcs may be taken as always equal to the distance apart of

the two centres of gravity multiplied by the sine of the angle of

inclination— an assumption which may fairly enough be made
for the average run of office-work, but which it would be unsafe to

make in many supposable cases of ship stability.

The two curves shown, Fig. 124, are for water levels, a and c.

It is obvious that the first part of the curve from K, is a portion of

a circular arc that would pass through the upright metacentre for

that immersion, and that its radius is C K. It is also obvious that

the height of the point, L, is determined by the intersection of the

horizontal normal of the curve of buoyancy with the vertical centre

line.

Since the date of the paper referred to, the template arc has
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Fig. 125.

Fig. 126.

been modified, as shown in Fig. 125. The quadrant is completed,

but beyond the quadrant the template line falls outside the circular

arc. This makes the template applicable for positions of the centre

of gravity below as well as above the original

point, A. For use in the Board of Trade, the

range of stability does not require to be con-

sidered through even 90°, and a further refine-

ment is then available. The template is made

to lie slightly outside the circular arc from

78°, touching the arc again at 90°. This is

so very little that its effect is generally not

appreciable, and for any practical use this

may be neglected. The set off beyond 90° is of greater amount, and

it does not in any other way impair the usefulness of the template.

The following is an example of the practical application of

Mr. Macfarlane Gray's system to a

case which came under the con-

sideration of the Board of Trade,

taken in substance from a Parlia-

mentary Paper.* S S, Fig. 126,

represents a midship section of the

vessel. From any point, C, in the

vertical axis, with any radius, C k,

an arc of a circle was described

cutting the axis in g. (The point,

g, should be near to the lowest

position of the centre of gravity.)

Badial lines were drawn at equal

angles, and upon these were set off

from the arc, kg, the righting

arms for the centre of gravity at

the point, g ; that is, a b was made

equal to the length of the righting

arm for 40° inclination, &c, the points, h, b
2 ,

bv b, k
}
were joined

by a fair curve, which was the curve of stability for radius, C k.

As the point, g, was taken arbitrarily, and in ignorance of the actual

position of the centre of gravity, the arc, kag, was then erased.

* We do not reproduce the full particulars of the case, or the name of the vessel, as

there was a misunderstanding involved as to the draught and freeboard contemplated;

but the example is none the less instructive and interesting as an illustration of the

system.

12
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The peculiar property of this stability diagram is that, if a

hollow curve (circular arc) be cut out of paper to radius, C Jc, and

applied to the point, k, and also to any point on the vertical centre

line, as B for example, it will cut the radial lines at a distance from

the stability curve equal to the length of the righting arms at the

respective angles, if the centre of gravity be at the point, B. "When

the radius, C Jo
f
is great in proportion to the length of righting arm,

as in this diagram, the departure from mathematical exactness is very

small. In Fig, 126 the points, M and B, are respectively the meta-

centre and the centre of buoyancy of the vessel, and the distance,

M B, is 8 feet 8 inches. The usual position of the centre of gravity

was assumed for this case about 4 feet below the metacentre, and

the circular arc, h B, was therefore drawn with radius = GJc; Jc'BhbJc

was then the complete diagram of stability for centre of gravity

at B, with centre of gravity 3 feet 8 inches below the metacentre.

The stability curve begins at h, as a portion of the diagram arc

through M, " diagram arc " signifying an arc of a circle with C Jc

radius; the same arc is used for all positions of the centre of

gravity.

In his description of this case, Mr. M'Farlane Gray said :— 6 The

stability curve at first inclines to the inside of the arc, that is, to

give greater stability than that due to a constant metacentre. At
the point, c, however, the gunwale being just immersed, the stability

curve begins to turn outward, giving less stability. With one foot

more freeboard the stability curve would have kept within the arc

for another 5°, and it would have terminated at the point I, and the

stability curve* would have been Jc e I. The radial lines between

the curve hel and the arc Jc B, increasing up to 60° of heeling,

represent the righting arms at the respective angles in an ordinary

sea-going vessel of this size, according to the authorities cited above.

f

By reason of the unusually low freeboard, the stability curve is

moved from Jcel to Jc b K; that side of the diagram is the result of

form of hull, the arc side, as &B, is the result of stowage. . . .

The importance of the position of the centre of gravity is seen by

considering the condition of stability that would obtain with the

centre of gravity placed at Ji, that is, 6 feet below the load water-

line. The maximum righting arm would be at 34°—it would be

only one foot, or about the length of righting arm usual for 15° of

* This curve lias not been constructed except for points Jc, e, I.

t Rankine, Barnes, Napier, and Watts, in Shipbuilding: Theoretical and

Practical.
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heel in ordinary vessels ; and another way of stating this is : the
heeling force which would incline an ordinary vessel of this size 15°,

would capsize the present vessel, even if the centre of gravity were
as much as 6 feet below the load water-line."

Mr. Gray further says :—" In comparing the stability of a special

vessel with that of other vessels of known character, it is advisable
to draw all the diagrams to one radius

;
say, as in this example, to

10 feet radius, or 5 inches, using a scale £-inch = l foot. An arc of
horn, 5 inches radius convex, rather more than a quadrant, is the
standard arc, and it can have engraved upon it the curves for some
reference vessels, as that of the Captain. The point C is not
necessarily always on the deck -line. To make the annexed diagram
complete in itself, I have applied," he adds, a the diagram for the
Captain to the curve for the other vessel, viz., the portion of the
diagram that is shaded. It is shown by the arc, k h, falling within
the field of the diagram of the Captain's stability, that the righting
arm in the other vessel, with centre of gravity at h, would be for

these angles less than that of the Captain. The metacentric
depth of the centre of gravity was, in the Captain, 2 feet 8 inches;

with the centre of gravity at h in this case the metacentric depth of

the centre of gravity is M& = 2 feet 4 inches. It may be thought
that that would be quite right, this being a smaller vessel. The
reverse of that is the proper relation ; the smaller the vessel the
longer should be the righting arm." s s in the figure represents the
midship section of the Captain.

These Board of Trade methods of calculating stability are further

illustrated by the polar stability diagrams, Fig. 127 (next page), for

the s.s. Athulchni, a vessel (which disappeared at sea when grain

laden) having an equivalent of about 200 tons of empty cellular

bottom space. A, B, and G are the curves of stabilitv calculated for

draughts of water of 16, 18, and 20 feet respectively from top of

keel, M16
,
M18

, M20 being the corresponding metacentres ; the curves

marked 18°, 36°, and 54° being the curves of righting levers at

those inclinations. D E is the curve of displacement.

The righting arms are calculated by means of Amsler's Integrator,

the readings of this instrument being entered on Forms similar to that

which follows this description (page 187). It will be observed that

the labour of calculation is greatly reduced by using logarithms, and
the arrangement of the tables in these Forms is such that they can
be worked out by practically unskilled persons. It is immaterial
that the inclined water-lines by this method should cut off any
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particular displacement, as we obtain for each inclination a function

of the displacement cut off, and also the length of the righting arm

Fig. 127.

Fig. 128.

corresponding to that inclination and displacement, and this is

adapted to intermediate displacements or draughts of water by a

method which will be described here-

after. Thus we do away with the

necessity of calculating moments of

correcting layers, and the wedges of

immersion and emersion are ignored,

as we deal only with the total displace-

ments up to the several inclined water-

lines, and with the centres of buoyancy

corresponding thereto.

It is very clear that by fully

determining the position of the centre

of buoyancy, and having an assumed

position of the centre of gravity at the intersection of the upright

water-line and the middle line of the body-plan, we can readily
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determine the length of the righting lever in terms of the co-ordi-

nates of the centre of buoyancy. In Fig. 128 let G be the position

of the centre of gravity, and B the position of the centre of buoy-

ancy corresponding to the inclined water-line, W
x
L

15
with reference

to which it is desired to obtain the length of the righting arm for

this position of G. Through G draw G Z perpendicular to the

upward line of action of buoyancy through B, and draw B H, B K,

parallel to W L and H G respectively, and through H draw H C
parallel to G Z. Then, if 0—- inclination, and x and y are the co-

ordinates of B referred to the middle-line of the body, and to the

upright water-line as axes, we have G Z = x cos. Q — y sin. 9. From
this value are obtained the lengths of the righting levers for any

possible position of the centre of gravity by means of the template

mould previously explained.

In order to obtain the values of the co-ordinates, x, y, the body-

plan is first prepared by taking transverse sections at equal distances

apart, and so that the number of ordinates shall always be odd; they

are numbered 0, 1, 2, 3, 4, 5, 6, 7, 8. . . . 12, commencing from

the foremost ordinate, and arranged in pairs; thus, if there are 13

ordinates, they are grouped 1 and 11, 3 and 9, 5 and 7, 7 and 5;

and 0 and 12, 2 and 10, 4 and 8, 6; and each group is styled odds

or evens, according as the numbers representing the ordinates are

odd or even. It will be observed that the midship ordinate, or

number 6, is not combined with any other ordinate, there being

none left for it to be paired with ; this will cause a slight modifica-

tion of the system of traversing the sections, which we shall refer

to hereafter. This simple form of numbering the ordinates has been

found to be very convenient in practice, as the sum of the numbers

of any pair of ordinates is equal to the number of the last ordinate,

and thus affords a very simple aid to memory when traversing the

sections with the pointer of the Integrator.

A circle is now drawn sufficiently large to enclose the whole of

the body-plan,* and diameters of this circle are drawn, having the

same inclination to one another as the angles for which it is desired

to calculate the righting arms. In our example (given in the

following Table) these angles are 18 degrees; but, of course, if

greater accuracy is desired, the respective angles of inclination must

be smaller. The tracing of the body-plan is now fixed over the

* This is usually done on a separate sheet of paper, and a tracing of the body-

plan is placed over it.
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circle, with the intersection of the upright water-line and the middle

line of the body coincident with its centre, and with the upright

water-line in the body-plan corresponding with the horizontal or

zero diameter, or the diameter from which the inclinations are set

off, observing that this water-line is taken at about the mean posi-

tion of the centre of gravity.

We will now explain how the Form (shown on page 187) is

practically employed. The guide-batten of the Integrator'" is set

parallel to the middle-line of the body-plan by means of the

gauge which accompanies the instrument, and fixed, in that

position ; the Integrator is then placed on the guide-batten,

and its pointer brought to the centre of the circle. Just pre-

vious to starting, the readings of the instrument for area and

moments are taken and recorded in the 1st and 3rd columns

respectively at the top of the table headed " axis vertical." The

letters 0 and E on the left-hand side of the table indicate odds

and evens respectively, the inclined line against them thusoo
\ / indicating the direction of the radial line under considera-
E E

to

tion, with reference to the upright water-line. The signs y 4~"

are guides to indicate to the operator that the upper column has to

be subtracted from the lower, and the lower subtracted from the

upper respectively, the horizontal arm of these signs being in a line

with the column on the right-hand side, where the results of the

subtraction are to be placed. The sign ^ signifies " repeat in next

column below," and the sign + on the right-hand side of the column

means that the figures in the column are to be added together, and

the result tabulated below. The thick line on each of these sets of

columns denotes the position of the decimal point of the figures

tabulated.

The Forms arranged by Mr. Macfarlane Gray, as described, are

convenient for applying a slightly modified form of Simpson's Rule

to the finding of the volume and centre of gravity of displacement.

The first and last ordinates being usually very small, and their

effect upon the final results being insignificant, they are ignored by

Mr. Gray when preparing the columns, so that the only multipliers

necessary are 2 and 1, and their application is easily recognised in

the Form itself

* The reader who is unacquainted with the Integrator will find its construction

and use fully described later on in this work.
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As the tables are exactly the same for all inclined water-lines at

any draught of water, and also applicable for determining the dis-

placement and the centre of buoyancy at any draught of water,

when the vessel is upright, it will be quite sufficient to describe the

manner of dealing with one of them
;
observing that when the ship

is upright, the value of sin. 6 is struck out.

Proceeding, we traverse the pointer of the integrator along the

radial line corresponding to the inclination under consideration,

until we reach the 1st odd numbered section, and then continue

round this section to the middle line of the body-plan; thence along

the section paired with the one already traced, to the previous radial

line produced through the centre of the circle, and along this radial

line to the starting point. We now traverse the same radial line as

at first, until we come to the second odd numbered section, and pro-

ceed similarly until we have traversed the whole of the odds, and

the pointer reaches the .starting point. The readings are now taken

for areas and moments, and placed directly under the corresponding

readings taken previously. We traverse the evens in exactly the

same manner as for the odds, but previous to starting we take the

readings of the instrument and record them in their proper columns,

as in the event of the operator being interrupted the instrument

may possibly be shifted. We include in the evens the midship

ordinate previously adverted to; in this case, however, we traverse

round the section to the middle line of its body-plan, and then up

this to the starting point, when the readings are taken, and entered

in proper columns directly under the previous corresponding read-

ings. It should be stated that the pointer is always traced round

the sections in the direction of the movement of the hands of a

clock. Having traced the whole of the odds and evens for this

inclination of the radial line, we proceed to perform the same tracing

of the sections for the opposite inclination of the same radial line,

and record the readings as before.

It is evident that by subtracting the readings for area and

moment obtained at starting, from those readings when the complete

traverse has been made, we determine the exact readings due to the

traverse, which would have been the readings had the indices been

set at zero before commencing to traverse in each case; we thus

avoid the necessity of setting each index at zero before starting. It

must be observed that the change from subtracting the upper read-

ing for moments from the lower, to subtracting the lower reading

from the upper in the columns for axis vertical is due to the fact
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that, although the instrument indicates statical moments, it gives no

indication of the position of the centre of gravity relatively to the

axis, and on reference to a body-plan with inclined water-line in the

position indicated by the tables at this place, it will be seen that the

centre of gravity of the volume will evidently lie on the off side

of the axis, and therefore should have a negative sign, and to make
the columns for moments additive, recourse is had to the system

adopted in the tables. We repeat the operation of tracing, &c, for

all the inclined water-lines for this depth of immersion, and also for

any other draught of water, both when the vessel is upright and

when she is inclined, for which we should wish to calculate the

curve of stability, before the guide-batten is removed from its

position parallel to the middle line of the body-plan. It should,

however, be observed that since the axes remain the same for all

draughts of water, and the position of the centre of buoyancy

obtained with reference to these axes in each case, the lengths of

the righting arms obtained from the tables are all for the same

assumed position of the centre of gravity.

The guide-batten is now placed in a position parallel to the

upright water-line, using the same means as before, and the oper-

ation of reading and recording is again proceeded with, the readings

being put in the columns headed " axis horizontal " in this case.

We thus have determined submultiples of areas, and statical

moments of the immersed sections up to the radial line under

consideration, and when these submultiples are affected as described

and indicated by the tables, the results marked A, in columns

headed "axis vertical" and "axis horizontal" should practically

agree, because each is the same function of the volume of displace-

ment; of course the functions of moments in each set of tables,

marked B, will not agree, because they are taken about different

axes—viz., the upright water-line and the middle line of body. It

is evident that if B be divided by A, in each case, and the result

multiplied by a number which depends on the integrator and the

scale of the drawing,* we thus find the distance of the centre of buoy-

ancy from the two axes, or, in other words, the co-ordinates of the

centre of buoyancy. Its position for a displacement, of which A is

* In this case the integrator readings for areas should be multiplied by 15 to give

actual results, and the readings for moments by 40, if the scale of the drawing is 1 inch

= 1 foot. The scale however being I inch = 1 foot, we have ^ *
^ = ^§ ;

therefore, lOf is, the multiplier in the case before us.
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the function, the vessel being inclined to the angle under consider-

ation,, is therefore fully determined.

We can now determine in the manner described previously, the

righting arm corresponding to the assumed position of the centre of

gravity from the data before us. In the table herewith it will be

seen that logarithms are used to determine the lengths of the

righting levers and the amount of the displacement ; the several

steps of the operation being of the usual character, and so clearly

shown, need not be detailed—they are self-evident.

Although the displacement may be readily found from the

tables, it is not necessary for determining the curve of stability, the

function of the displacement being quite sufficient. It must be

clearly borne in mind that the length of the righting lever obtained

as described is the righting lever for a displacement of which A is

the function, and for the inclination we are considering, with the-

centre of gravity in the assumed position, and not corresponding to

the displacement cut off by the upright water-plane, which, how-

ever, as we have indicated, must be calculated by similar tables.

This point should not be overlooked, as the whole merit of this

method of calculating stability is intimately connected with it.

The expressions marked A, in the tables calculated for each angle

of inclination, and each draught of water, are evidently proportional

to the displacements ; if therefore the numbers representing them

are set off from any point on a base-line to a certain scale, they will

have the same relative position one to the other as the corresponding

displacements would. In Fig. 129, let A B and C be the positions

of numbers representing functions of displacements marked A in

the tables, corresponding to draughts of water of 16, 18, and 20 feet
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respectively from top of keel, and set off on the base-line, D E, to a

certain scale from a fixed point, the vessel being upright in each

case. If through these points we draw ordinates representing in

length the corresponding draughts of water, and pass a curve

through their extremities, we shall thus determine the curve of

displacements, FG, for the vessel upright, such that any ordinate

represents the draught of water, and the corresponding abscissa the

the function of displacement. On the base-line we now set off, from

the fixed point, the functions of displacements taken from the tables

for the inclined water-lines at each inclination, and through these

points so obtained draw ordinates equal in length to the corres-

ponding righting levers obtained from the tables, and pass curves

through the extremities of the ordinates for the same angle of

inclination. We thus obtain curves of righting levers for each

angle of inclination as indicated in the figure, and for any draught

of water comprised between the limits of the curve of displacement.

To determine the length of the righting levers for any draught of

water comprised between these limits, we have to determine the point

on the base-line, DE, whose ordinate to the curve of displacement

represents the draught of water under consideration, the length of

this ordinate between the base-line and any curve of righting levers

is evidently the length of the righting lever for that inclination and

immersion, and for the assumed position of the centre of gravity.

The mode of setting off the lengths thus obtained to form the

polar curve of stability, and the use of the template mould for

applying this curve for any position of the centre of gravity have

been previously described.

The polar stability diagrams for the steamship Athulchni, pre-

viously adverted to in Fig. 127, are slightly modified from the

previous description, the mode of calculating the lengths of the

righting levers, however, being exactly the same. It was found

after calculating the lengths of the righting levers with the centre

of gravity at a height of 16 feet, that it would make the diagram

more serviceable to make the centre of gravity normally at a height

of 15 feet. To attain this end a quadrant was drawn from G, Fig.

127, with a radius equal to the difference in height of the centre of

gravity, viz., 1 foot, and the 8-inch radius quadrant was described

for the datum-line. The length of the righting arms were set off

from the arc or datum-line on the corresponding radii, with the

additions due to the 1 foot difference obtained by measuring from

the points, p, q, r, respectively, normally to the line C K.
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The method described in the preceding pages may be applied to

ascertain the lengths of the righting levers when the vessel has a

list to one side, by applying the marked point on the template to

the line, C K, as far from the point K, Fig. 127, towards the centre

C, as the centre of gravity of the vessel has shifted, keeping the

other end of the template to the original position of the centre of

gravity; the template then cuts the stability curve at the angle of

list, and the lengths of the righting levers may be taken as pre-

viously described.

The lengths of the arms of the righting levers for the several

angles of inclination may also be obtained by means of a set of

tables similar to those previously described, by dealing with a zone or

belt of displacement, in order to determine the position of its centre

of buoyancy. The first set of tables are much preferable when we
are dealing with several draughts of water ; but when only one

draught of water is necessary, the method we are about to describe

is employed.

By reference to the set of tables (shown on page 191) it will be

observed that they are arranged specially for inclined water-sections,

but the same form is adapted for determining the displacement and

the centre of buoyancy when the vessel is upright. Although for

our purpose we do not require the actual displacement in cubic feet

or tons, still it can be determined easily, and the several steps are

indicated very clearly in the tables. The sheet contains two forms

;

the upper one is for the sections, and the lower for the zone or belt.

When the vessel is upright the upper form only is used, and the

righting arm is the distance between the centre of gravity and

centre of buoyancy. In order to fix the guide-batten in position,

throughout the work, the body-plan is arranged in a manner which

we will proceed to describe.

The body-plan being prepared, and the sections numbered and

paired, as previously described, a position of the centre of gravity is

assumed such that if possible the lengths of the righting levers may
all be positive. A circle, with diameters inclined at the angles of

inclination under consideration, is fixed on the drawing board, and

a tracing of the body-plan placed over it, with the assumed position

of the centre of gravity coincident with the centre. The tracing is

so arranged on a pivot or turn-table at the centre of the circle that

it can move about that point. The guide-batten for the integrator

is fixed so that the axis of the integrator shall pass through the

centre of gravity, and also allow the tracing of the body-plan to
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move under it with a covering of tracing paper. The covering paper

has the axis of the instrument marked on it, and is secured so that

it can only move parallel to that axis. It has also two lines square

to the axis in a convenient position, these lines in every case repre-

senting the inclined water-line and the corresponding water-line of

the zone or belt of displacement on moving the lines into position

corresponding thereto. By proceeding as described, the guide-batten

may be fixed throughout the whole operation of tracing.

We first deal with the upright water-section. The body-plan

being placed in position with its water-line parallel to the axis of

the instrument, with the bilge towards the guide-batten, we proceed

to read the indexes, record the readings, traverse the sections, and

so on, as detailed previously. In this case we traverse the sections

twice, when the difference of readings in the two cases will be the

same, if the readings are taken correctly. Proceeding as indicated

in the Form, we determine the function of displacement and the

length of the righting lever corresponding to that draught of water.

The inclined water-lines are all taken to pass through the inter-

section of the upright water-section and the middle line of the body-

plan for the draught of water under consideration. We treat each

inclined water-section in the manner previously described, and we

obtain in the upper part of the Forms the length of the righting

lever and the function of displacement. The layers for each set of

sections are affected similarly to the sections, and we obtain similar

results for them in the lower part of the forms. We now obtain the

difference between the functions of displacement when the vessel is

upright, and when she is inclined at the angle under consideration.

This difference is affected by the submultiple of the distance of the

centre of buoyancy of the zone or belt from the axis, in order to

obtain the function of moment due to the excess or defect of the

displacement up to the inclined water-line, the assumption in this

step being that the centre of buoyancy of the zone or belt of

displacement agrees with the centre of buoyancy of the layer

required to correct the displacement up to the inclined water-line.

The function of moment due to the layer is added to or sub-

tracted from the function of moment for the inclined water-plane,

and we thus obtain the function of moment due to the inclined

position, corresponding to the displacement when the vessel is

upright at the draught of water we are considering. It will always

be indicated by the tables if the function of moment for the layer is

positive or negative. From this result we can readily deduce the
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distance of the centre of buoyancy in the inclined position from the

axis of the instrument, and this distance is evidently the length of

the righting lever for the inclination we are considering, with the

centre of gravity in the assumed position. These lengths of the

righting levers are adapted for any special position of the centre of

gravity by an application of the template mould previously de-

scribed.

The several steps in the calculation which we have described

may be clearly seen by aid of the table herewith, where, as before,

Logarithms are used to reduce the labour of calculation.
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CHAPTER X.

Professor Elgar's Vertical or Cross-Curves of Stability—For Homogeneous Prismatic

Bodies—For an Actual Ship—Variation in Position of Centre of Gravity—
Analogy between Light-draught and Deep-draught Stability—Remarks of Mr.

Jenkins on these Curves—Cross-Curves of Stability described by Mr. Denny

—

Mr. Fellows' Method—Mr. Couwenberg's Method.

Since the manuscript of this volume drew near to completion, Pro-

fessor Elgar has contributed to the Royal Society a Paper on " The

Variation of Stability with Draught of Water in Ships," from which

it appears that it has been his practice for some time past to con-

struct what we may call vertical curves of stability, or curves crossing

the ordinary curves of stability, and formed from them. After

calculating ordinary curves of stability at load draught, at light

draught, and at an intermediate draught or two, he has constructed

from them cross-curves exhibiting the righting forces at different

draughts, each such curve corresponding, be it observed, to some one

given angle of inclination. In accomplishing this object, Professor

Elgar has availed himself of the fact that the ordinates of the

ordinary curve of stability represent (as we have fully seen in

previous chapters) the differences between the B R/s, and B G sin.

0's, so to speak, or between the levers of stability of form, and the

lever due to the height of the centre of gravity above the centre of

buoyancy. It is obvious that when a curve of stability, with B R's

as ordinates, has been formed for each of several different draughts of

water, it is easy to take a vertical line, to set off horizontal lines in-

tersecting it at corresponding draughts of water, and to set off upon

these horizontal lines, from the vertical line, lengths corresponding

to the ordinates of the curves of stability (B R's) at a given angle of

inclination. Lines drawn through the points so obtained will form

a vertical curve of stability at that angle of inclination. The

stability, at that angle, and at any draught of water (within the

range of the curve) may then be measured by merely taking the

length of the horizontal ordinate of this curve at a point correspond-

ing to the given draught. Similar cross-curves, or vertical curves of
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Fig. 130.

stability may be constructed for other angles of inclination by a like

graphic process. By employing these curves in their turn, as

furnishing B E's for different inclinations and different draughts of

water, the number of ordinary curves of stability may be increased

to any desired extent. In this way a very full record of a ship's

stability may be quickly obtained.

As Professor Elgar's " Royal Society " Paper furnishes the first

exposition of this essentially English method of investigating the

stability of ships at different draughts, and as he appears to have

been, and doubtless was, the first person to devise it and put it in

practice, we shall now give his own description of his diagrams :

—

"Fig. ISO shows cross-curves of sta-

bility* at an angle of inclination of 30°

for two prismatic forms of homogeneous

floating bodies ; one being rectangular and

the other elliptical in cross sections. The

shorter axis is vertical when the bodies

are upright, and is two-thirds of the longer

axis, or extreme breadth. The measure-

ments in the direction of O Y give the

depths of immersion, and those in the

direction of 0 X represent moments. The
curve A P 0 gives the values of the hori-

zontal shift of the centre of buoyancy

multiplied by the immersed volume or

B R x V. Thus if 0 a be any draught

of water, the ordinate a x gives the value

of B R x V at that draught. The curve

A Q 0 is the corresponding curve of

* " It should be remarked here that in dealing with cross-curves of stability, and thus

considering the variation of stability with draught of water, the curves of righting '

moments require to be constructed, and not merely curves of lengths of righting

arm, as G Z. The ordinary curve of stability usually has for its ordinates the lengths

of G Z at the various angles of inclination. This is right enough for the conditions

under which such curves are constructed, because the displacement is then constant,

and the curves represent either lengths of righting arm or righting moments, according

to the scale upon which the ordinates are measured. In the cross-curves of stability,

however, draught is one of the variable conditions, and the displacement varies

accordingly. A cross-curve whose ordinates represent the lengths of righting

arm at various draughts, is therefore quite different in character from a cross-curve of

righting moments, whose ordinates are length of righting arm, or G Z, x displacement.

It is necessary, in order to judge accurately of the variation of stability with draught

of water, to use curves of righting moments, and not merely curves of G Z, such as are

considered sufficient when the draught of water is fixed,"

13
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moments for a prismatic body of elliptical section, and equal

length to the above. The axes of the ellipse are of the same length

as the sides of the rectangular section taken in the former case; the

minor axis being two-thirds of the major, and the minor axes being

vertical when the body is upright. A p 0 and A q 0 are the corre-

sponding curves of G Z x V at the various draughts of water, and

are obtained by deducting V x B G sin 30° from the ordinates of

the curves A P 0 and A Q 0. The bodies being homogeneous G
is taken at the middle of their depth. These curves therefore

represent the actual righting moments of the two bodies under con-

sideration at all draughts of water. The ordinates measured to the

right of A 0 give righting moments, and those to the left, if there

were any, would be upsetting moments. It will be seen that the

whole of the curves in Fig. 130 are similar with respect to a line

drawn parallel to 0 X at one-half the depth of total immersion.

The elliptical figure tends to return to the upright, when at the

inclination of 30°, at all draughts of water, and exerts the maximum
efforts to do so when immersed to the middle of its depth. The
rectangular figure, when inclined to the same angle, also tends to

return to the upright at all depths of immersion, but the maximum
righting moment is not when floating at the middle of its depth, but

at draughts which are at equal distances above and below it.

"Fig 131 represents similar curves

for a prismatic body, the upper half of

whose section is rectangular, and the

lower half elliptical ; the extreme dimen-

sions of the section being the same as in

the previous cases. This form of section

is an example of the kind of departure

from symmetry of form which exists in

ships. It has been seen that if homo-

geneous bodies of symmetrical form be

altered in density so as to float alter-

nately at water-lines which are at equal

distances above and below the centres of

such bodies, the righting moments at

equal angles of inclination will in each

case be the same at these draughts. In

the body for which the curves in Fig. 131

have been constructed, the departure

from similarity between the immersed and out of water volume
;
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causes a variation in the righting moments at the draughts described.

A O and A P
2
0 represent the curves of B E x V at angles of

inclination of 30° and 60° respectively, and Ap1 0, Ap2
0 are the

corresponding curves of GZ x T, or curves of righting moments
when G is taken in the position it would have if the body were

homogeneous. The lines, and indicate draughts at which

equal volumes are cut off above and below water, and m m shows

the depth at which the immersed volume is one-half of the total

displacement of the body.

" It will be seen that the righting moments are greater at 30° and
60° of inclination when the body is deeply immersed, than when it

is floating at light draught with equal volumes below water to what
there are above in the other case. The relation between the right-

ing moments at the two extremes of draught in a ship is, however,

largely determined by the position of the centre of gravity, which

in this case has been taken for a homogeneous body. This will be

seen by the next example.

"Fig. 132 gives curves of BR
X V for an actual ship, at 30°, 60°,

and 90° of inclination respectively.

The vessel for which these have

been constructed is 400 feet in

length, 44 feet in breadth, and 32

feet 6 inches in moulded depth.

The extreme depth from the top of

keel to the highest point of the

sheer of the upper deck, is 40 feet.

A
Fig. 13$.

3S-

36-

55 26-

a ,

"

a 9 A

10,000 20,000 30,000 AO,000 , 503000

Scale of Foot-tons for Moments

the highest point of the sheer of the <3

deck, and A
1
the lowest point of

the upper deck at side, from which
the freeboard is measured. The
horizontal ordinates of these curves

represent the moments BE x Tat
the draughts to which they correspond. The displacement of the

vessel when wholly immersed is 11,800 tons; and when displacing

half this amount—or 5,900 tons—she draws 20 feet 6 inches of

water, and the depth of flotation, with the corresponding value of

BE x V are shown by the ordinate drawn at the point, a. a
2

represents the draught of water at which the vessel was launched,

and a
t
the draught at which there is an equal volume out of water
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to what there is below water at the draught a
2

. The draught of

water at the point a
2
is 11 feet, and the freeboard above the point

a
x
is 7 feet.

" If the centre of gravity be taken at 1.9 feet above the top of

keel at all draughts of water— it always varies, and in some cases

considerably, with the draught, as has been stated, but 19 feet is

found to be a fair mean height for the ship in question—and the

moment, V x B G sin. Q, be deducted from the ordinates of the

curves in Fig. 132, we obtain new ordinates which represent the

curves of righting moments, V X GZ; and these are shown in Fig,

133. It will be seen that the curves of righting moments, which

correspond with the ordinary curves of stability show much larger

moments at deep draughts than at light draughts. For instance,

the ordinary curve of stability for the launching draught of 11

feet at a
2 ,
gives very much smaller moments than the corresponding

curve for the deep draught at av where there is an equal volume

above water to what there is below in the other case, and the

freeboard is only 7 feet.

" The centre of gravity taken in Fig. 133 is 1*1 feet below

where it would be if the external surface of the ship enclosed

a homogeneous volume. The relation which it bears to the posi-

tion of the centre of {gravity of a homogeneous body of the same
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form, largely determines the stability at all except small angles of

inclination, and also the relation between the stability of light and
deep draughts. Figs. 134 and 135 show what Fig. 4 becomes changed

into if the centre of gravity is, first, raised 1*1 feet so as to be in the

same position as if the ship were a homogeneous body, and 2nd,

if it is raised a farther 1*1 feet so as to be as much above this point

in Fig. 135 as it is below in Fig. 133. A comparison of these

figures will show that, except in the case of a very high centre of

gravity, the stability at light draughts, with various positions of

centre of gravity, is less than at deep draughts.

It appears therefore that in the case of the ship in question, and
she is a type of many mercantile passenger steamers, the proposition

respecting the equality of the stability at light and deep draughts

in homogeneous symmetrical bodies, requires modification in a

direction which is disadvantageous to light draughts. When there

are equal volumes above and below water in this vessel, the righting

moments at the light draughts are generally much less than at the

deep draughts, except when the centre of gravity is raised ex-

cessively, and for this class of ship unusually, high.

"The analogy that exists between light-draught and deep-

draught stability in forms that are approximately symmetrical, and
particularly the point of resemblance afforded by the fact that what
is a wedge of immersion in one case is that of emersion in the

other, and vice versd, cannot fail to have struck some who have had
to calculate the stability of bodies floating at light draughts, but

attention has never been prominently called to it. It is time, how-
ever, that the connection between the two cases were fully realised,

and the dangers peculiar to very light draughts of water appreciated

as thoroughly as are those which attach to low freeboard."

It is of these curves of Professor Elgar that Mr. Jenkins remarked

(in his Paper on "Metacentric Diagrams," previously quoted)—" These

curves exhibit the peculiarities to which I have referred in connection

with curves of initial righting moment,

and the conditions which ensure maximum Fig.rse.

and minimum values of the moment are

even more simple than those which hold

in the upright condition." In illustrating

and commenting upon this, he proceeds as

follows :—

"In Fig. 136, if WL be the water-plane at which

a vessel inclined through an angle, 0, is floating, the
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righting moment will be proportional to V.GZ. If, now, the draught be increased by

A a; to Wi Li, A V be the increase in volume, and y the distance of the centre of

gravity of the layer from the vertical through B, we obtain by taking moment about

the vertical through B

a p 7 — y

'

~ V + A V
and

H+AH = (V + AV) (GZ + AGZ) = 2/AV + V-GZ +
rAV-GZ.

If V . G Z be subtracted from this expression, we obtain—

AH = ?/AV + GZ* AV.

AH d H
= y + G Z, and -^y- = V + G Z.AV

Fig.137.

When the righting moment is a maximum or minimum y = - G Z, and the centre of

gravity of the water-plane, and therefore also the centre of curvature of the curve of

notation and G lie in the same vertical line.

" Maximum values of the righting moment occur where the locus of the centre of

gravity of the water-plane cuts the vertical through the centre of gravity of the

vessel in passing from right to left in the diagram as the draught increases, and

minimum values occur where the locus of the centre of gravity of the water-plane

cuts the vertical through the centre of gravity of the vessel in passing from the left to

the right as the draught increases. A very good illustration of the above property

can be afforded by reference to one of the bodies for which curves were given by

Professor Elgar. The rectangle, Fig. 137, is a section of a homogeneous prism, which

is immersed at an inclination of 30°. The

depth is two-thirds the breadth, and the line

a b c d is the locus of the centre of gravity of

the water-plane, as the draught changes.

The line g g is the vertical through the centre

of gravity of the prism. At the point e,

where the two lines first intersect, the locus

of the centre of gravity of the plane of flota-

tion is passing from the right to the left as

the draught increases, and the righting

moment is a maximum ; at the next point of

intersection, /, the moment is a minimum, and

at h it is again a maximum.
4

' The direction of the tangent to a cross-

curve of stability at any draught is capable of being readily expressed. Thus, we
d H dH

have in the above equation = y + G Z, and this reduces to the form -=— =
Co V Co X

A (y + GZ), which gives the inclination of the tangent at any point of the curve. As

the area of the water-plane and the position of its centre of gravity are both estimated

in the determination of the value of G Z at a given draught of water, the drawing of

the tangent for each value of G Z calculated will involve but little additional labour,

and will enable the curve to be drawn with a fewer number of spots.

" If the practice of constructing cross-curves of stability, to which an impulse has

already been given, becomes more general—and they appear to be indispensable to a

complete knowledge of the stability of a vessel under all the conditions of draught

and lading in which she is liable to be placed—the above property will be of assistance

in their construction, and in determining the exact depths of immersion at which the

righting moment attains its maximum and minimum values."
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Mr. W. Denny has also devoted himself, and the scientific staff

of the firm of Messrs. Denny Brothers of Dumbarton, of which he is

a member, to the production of cross-curves of stability. "Shortly

after the Daphne inquiry," he writes, "it occurred to me that as

stability curves were required for at least four draughts for each

steamer, it would be well if some method of obtaining these curves

could be arrived at which would facilitate their construction." In

pursuing this idea, Mr. Denny observed that the four conditions of

draught at which such curves are usually required are the launching

condition, the finished condition without weights on board, the fully

loaded condition with coals in bunkers, and the same condition but

with the coals consumed; and it occurred to him that, if in addition

to the stability curves corresponding to these conditions, a curve

were calculated for a draught intermediate between the finished

condition without weights on board and the fully laden condition

with coals consumed, he would then possess curves of stability at

five fairly-distributed . draughts, from which cross-curves could

readily be constructed. As a matter of fact, he has since found it

better to adopt six different draughts of water instead of five. He
has also developed the fact that, with the systems of calculation

pursued at Dumbarton, it is preferable to calculate these "cross-

curves" first, and from them to measure off the righting levers

requisite for constructing the usual curves of stability at given

draughts. The account of his system, with which Mr. Denny has

been good enough to furnish the author, involves such close refer-

ence to the use of the Amsler Integrator that we deem it better not

to attempt here a complete record of his improvements, but to con-

tent ourselves with describing the characteristics of the Dumbarton

system.

Mr. Denny and his scientific assistant, Mr. F. Purvis, have em-

ployed two methods of proceeding—one suggested by Mr. Fellows,

and the other by Mr. Couwenberg, both draughtsmen and calculators

engaged under them. Mr. Denny thus describes the method of Mr.

Fellows :
—

" A tracing or drawing, having upon it the ordinary

displacement sections of the steamer, was pinned to the disc,* a

centre of gravity being assumed in its middle line, and made coinci-

dent with the centre of the disc. The disc was then turned round,

so that the centre line of the drawing formed an angle of 10° or 15°

with the axis of the integrator, and a number of parallel water-lines

* This disc or turntable enables the tracing or drawing to be turned round, thus

obviating the necessity of shifting the axis of the integrator.
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were drawn across the sections at right angles to the axis-line of the

integrator, dividing the range of draught of water into a suitable

number of intervals. These extended from a draught somewhat

under the launching condition to a draught somewhat over the

loaded condition, so as to afford a sufficient number of spots for the

cross-curves. The disc being fixed at the given angle, work was

begun, each section up to the lowest water-line being circumscribed

by the pointer of the integrator, and the results for the area, and

the moment of the area, noted upon forms prepared for the purpose.

The areas and moments of areas up to each water-line were then

plotted off upon a base-line representing the length of the steamer

between the extreme displacement ordinates, and upon this were set

up at the proper distances of the sections, ordinates of length cor-

responding to the areas and moments of areas at these different

sections. Curves being drawn through these points, the integrator

was again employed for their integration. The quotient obtained

by dividing the areas of the curve of moments by the area of the

curve of areas is the length of the righting or upsetting arm, as the

case may be, with the assumed centre of gravity. The product of

the area of the curve of areas and a suitable multiplier is the dis-

placement at a given draught." The same operations being per-

formed for each draught at the given angle of the inclination, the

righting arms thus obtained are set up as ordinates from, a horizontal

base-line, each ordinate having for its abscissa the calculated dis-

placement to which it corresponds. A curve passed through the

extremities of these ordinates is the cross-curve of stability for the

given angle. Any variation in the position of the centre of gravity

from that assumed in the calculations can, of course, be readily

taken into account, as in other methods. It is the custom of Mr.

Denny's staff to work out cross-curves for angles at intervals of 15°

up to an inclination of 90°, though in special cases it may be

desirable to reduce the interval to 10°. For this method complete

sections for both the fore and after bodies of the ship are

necessary.

Mr. Couwenberg arrives at the same results as Mr. Fellows, but

by a different method. " The general principle upon which he pro-

ceeded was," says Mr. Denny, " that for any inclination the integral

of the statical moments of the number of parallel water-lines about

a given axis will give the statical moment of the immersed part of

the ship about that axis. The integral of the areas of these water-

lines will give the displacement of the same part of the ship. From
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these two integrals we therefore get the means of finding the

righting arm at any inclined draught by dividing the integral of the

statical moments by the integral of the areas of the water-lines."

For this method half-sections only for the fore and after bodies, such

as are ordinarily used, are required. The number and positions of

the water-lines for any given angle having been chosen, an axis

normal to them is fixed upon, about which to take the moments.

The inclined water-lines are drawn out in a manner similar to that

for the water-lines of an ordinary half-breadth plan, a horizontal

line representing the fixed axis being taken to correspond to the

ordinary centre line, and the widths of the various sections measured

on either side of it. When the water-lines for the given inclination

have been thus set out, the integrator is used to integrate them, by

which means are obtained their areas and their moments about

the fixed axis. These areas and moments are then set up as

ordinates from a horizontal base-line, their abscissae being the

distances between the water-lines, and curves are passed through

the extremities of the ordinates. Integrating these curves by means

of the integrator up to any draught, and dividing the area of the

curve of moments by that of the curve of areas, the righting lever

for the given inclination is obtained for that draught. In this

method, as in that of Mr. Fellows, the centre of gravity is assumed

to be in a certain position on the middle line of the vessel, and the

normal axes to the various water-lines are made to pass through

that point. The displacement and righting arms for the different

draughts at the required inclinations having been ascertained, it is

easy to construct cross-curves of stability, as already explained.
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CHAPTER XI

Brief Historical Survey of Geometrical Aspect of Stability—Bouguer's Investigations

—Position of Centre of Gravity—Metacentre and Metacentric—Exposition of

First Principles of Stability—Determination of Height of Metacentre—Expres-

sion for Same—Locus of Centre of Buoyancy—Change in Form of Displacement

—Change in Dimensions of Displacement—Method of Finding Centre of Gravity

—Great Value of Bouguer's Work—Bernoulli's Investigations—Differential

Expression for Righting Moment—Boiling and Pitching—Don Juan d'Ulloa's

Investigations—Formula for Inclining Experiment—Euler's Investigations

—

Three Different States of Equilibrium—" Measure " of Stability—Moments of

the Wedges—Moment of Inertia—Position of Centre of Gravity—Euler's

Expression for Stability—Chapman's Investigations—Homme's Investigations

—

Homme's Expression for Stability—Determination of Centre of Gravity,

In the progress we have thus far made, we have been brought more

than once to considerations which might be regarded more especially

as unfolding the geometrical aspect of our subject, and much ad-

vantage will result if from this point we take a rapid survey of the

developments which the doctrines of stability originally underwent

in this respect. This survey is essential to a proper apprehension of

the recent developments of the science with which we shall have

presently to deal.

Although much was written on the subject at the end of the 17th,

and in the first half of the 18th century, and even great and famous

controversies then took place—notably that originated in the great

work of the famous Jesuit, Pere 1' Hoste, in 1693—it is not necessary

for our purpose to go back farther than the middle of the last

century, when the illustrious Frenchman, Bouguer, of the Eoyal

Academy of Sciences, formerly Hydrographer Eoyal at Croisie and

Havre-de-Grace, published his famous Traite du Favire, in which,

as we have seen, the "Metacentre" was first described, and the Meta-

centric Theory of Stability was given to the world. This great

work treated of many subjects connected with the construction and

movements of ships, besides that of stability, but upon these we have

not here even to touch. It is in his second book that he enters

upon the consideration of "the ship afloat," and under this head

most of his remarks on stability are ranged.

Bouguer first shows that a ship afloat in still water must displace a
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volume of water equal in weight to itself, and that the resultant fluid

pressure exerted upon the immersed bottom of the ship must act up-

wards through the centre of gravity of the volume of displacement.

He explains that the wreight of the ship in tons may be directly

ascertained by dividing this volume of displacement expressed in

cubic feet, by the number of cubic feet of water which weigh a ton;

and he describes various methods of approximating to the volume of

displacement from the drawings of a ship. One of these methods

differs from the method at present employed only in the use of the

common " trapezoidal rule " instead of the ordinary (i Simpson's

Rule " for calculating irregular areas. &c*
Bouguer next proceeds to treat of the distribution of the weight

of a ship, and of the position which should be given to the centre of

gravity. He first describes the method of determining a ship's

centre of buoyancy. This, he says, can be done practically by sus-

pending a solid block model of the immersed portion of the ship in

different positions, and ascertaining the intersection of the lines of

suspension ; or it can be done by calculations based upon the ship's

drawings, the method of doing this which he describes, resembling

that now practiced by Naval Architects in all respects excepting the

use of Simpsou's Rules.

We next arrive at an investigation of the maximum height at

which the centre of gravity of a ship may be placed ; in which phrase

is shadowed forth that conception of the " Metacentre " which he

proceeds to develop, and which obviously involves the idea of a

limit We are therefore not left in doubt, as some have supposed,

of the true meaning of the word metacentre, as it was originally, and

long afterwards employed. At the same time it must be borne in

mind that Bouguer himself, as we saw previously, extended the

meaning of the word so as to embrace within it the points of inter-

section of adjacent verticals through the centre of buoyancy at large

angles of inclination. His 5th chapter (book ii., section 2), is

headed " On more extended investigations on the metacentres, and

on the curved line which these points form when the ship is in-

clined," which curve he designates the metacentric (metacentrique).

It is described as being what we have in previous chapters seen

it to be, viz., the locus of the centres of curvature of the curve

* These and cognate matters occupy the 1st, 2nd, and 3rd chapters of the 1st

section of book ii. In chapters 4, 5, and 6, Bouguer digresses into a dis-

cussion of the Tonnage of Ships, exposing the faults of the Tonnage Rules then

employed.
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of buoyancy, and each point of it, even for considerable angles from

the upright, is undoubtedly regarded by Bouguer as itself a meta-

centre. In fact, with him, the metacentric was neither more nor less

than the locus of his metacentres, just as it is now with us, in this

work, the locus of pro-metacentres.

In giving the following summaries of Bouguer's investigations,

we shall take the liberty of modifying the diagrams, and especially

their lettering as far as may seem convenient.*

Having determined the centre of gravity of the volume of dis-

placement, he says:

—

" The point is now known in which the pressure of the water is concentrated, and

through which the vertical line of action of that pressure passes. The centre of

gravity of the ship is always situated in the same vertical line, otherwise the pressure

of the water would not be directly opposed to the weight and could not sustain it;

these two forces could not counterbalance or neutralise (suspendroient) each other's

action. This does not suffice however to keep the ship in a permanent position;

because the particles of water, like those of all other liquids, are in continual motion,

and so it happens constantly that some of these particles strike the ship's bottom

harder on one side than on the other ; f and this suffices to produce an inclination

which is perhaps insensible at first, but would not fail to increase if the centre of

Fig.lSS.

gravity of the ship were too high." He illustrates this by referring to the instability

of a rod made to float end-on in water, and then proceeds:

—

4 'Suppose WEL (Fig.

* In translating and abridging the substance of what is said in this chapter on

Stability by Bouguer, Euler, and one or two other early writers, I avail myself in some

degree of certain abridgments prepared for me some years ago by Mr. W. H. White,

whose competence to perform such work with skill and accuracy is well known.

+ " Bouguer considered this force " (the disturbing force of the moving water)

" as exclusively produced by the blows exerted by the crests of the waves on the top-

sides, and made it pass above the centre of gravity."

—

Bertin.



CHAP. XI.] METHOD OF DETERMINING METACENTEE. 205

138) to represent a transverse section of a ship, G being the centre of gravity, and B the

centre of buoyancy in the upright position, for the displacement W E L, B A being then

vertical. If the ship is inclined to an infinitely small extent (which may result from

the irregular shock of the smallest particle of air or water) and W L' be the new

position of the water surface, the upward pressure of the water will no longer be

concentrated in B, the centre of gravity of W E L, but in B the centre of gravity of

W'EL', the part actually immersed; and as the new vertical, B' A', instead of passing

through the centre of gravity, G, of the ship passes on the side opposite to that inclina-

tion, it is clear that the upward pressure, instead of tending to restore the ship to

the upright tends to incline her more. The ship cannot, therefore, remain upright,

there being no force to retain her in that position, while the smallest force wr
ill make

her begin to move from it, after which commencement she inclines further by

herself. . . .

"But if the centre of -gravity of the ship were below the intersection M of B A
and B ' A as at G the pressure of the water would always tend to restore her to

the upright if she were inclined, because its direction would always be placed on the

inclined * side with respect to G\ Consequently there would always be a power to

keep the ship upright, or at least to tend to restore her, however little she might be

inclined, and this would increase according to the necessity. Hence is seen the great

importance of the knowledge of the point of intersection, M, which not only shows the

maximum height which may be given to the centre of gravity of the ship, but also

distinguishes the case of a ship which will maintain an upright position from that of

one which will upset even in harbour, and which cannot remain upright a single instant.

"The point, M, which may justly be styled the metacentre, is the limit which

the height of the centre of gravity of the ship must not pass or even reach
; f for if

the centre of gravity coincides with M, the ship will no more seek the upright than an

inclined position—the two positions will be equally indifferent to her, and she will

consequently be incapable of righting herself if heeled over by any outside influence."

Having thus clearly stated the conditions of the problem, Bouguer

proceeds to illustrate his remarks by considering the case of a

hemisphere, and then describes in detail "the method of deter-

mining the metacentre." To find the metacentre, M, at a very small

inclination it is necessary to determine the corresponding centre of

buoyancy, B'; and the shift of this centre from B to B' he shows to

be due to the immersion ofWSW and the emersion of L S I/. His

investigation of the change of position of the centre of buoyancy is

both simple and correct. Assuming that gx
and g29

Fig. 138, are the

centres of gravity of the wedges of emersion and immersion, and

that g3
is the centre of gravity of the common part, WSL'E, he

shows that, since the wedges are of equal volume, the ratio of gB
B to

B g, must be the same as that of g2
B' to B' g2 \ so that the line B B'

must be parallel to the line g1 g2}
joining the centres of gravity of

* Here and in the preceding remarks Bouguer uses the phrase edits de Vinclination

in the sense of immersed side.

t The precise language here employed is important, as it is the original definition

of the word " metacentre." Bouguer's words are— " Le point qu'on pent a juste Hire

nomrner metacentre est la terme que la hauteur du centre de graviU G, ne dcit pas passer,

et ne doit pas m&me attendre."
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the wedges. He says:—"The whole displacement, that of the small

part L S L', and the distance g1 g2
of the centres of gravity, of L S 1/

and W S W, form three terms of a proportion of which the length

B B' is the fourth term." This is a perfectly sound conclusion, as

we have seen, and upon it he bases his further investigations.*

In these he assumes that the form of the load-water section is

known ; that for any longitudinal abscissa, x, measured along the

middle-line of that section the corresponding half-breadth ordinate

is y, and that the infinitesimal calculus may be used. He then

proceeds to calculate the volumes and moments of the small wedges.

For the volume of an element of the wedge he obtains the expression

^ y
2 d x; and for the moment he has ^ y

2 d x x | y, or y
z d x;

|

being the tangent of the infinitely small angle of inclination.

Integrating these quantities, and making use of the proposition

previously stated for finding the length B B', he obtains the expres-

sion,

bb/ = 2 e fyB d x
.

3 & P
'

where P = the volume of displacement ; and thence gets BM^BB'
X cotangent of angle of inclination,

2 fyz dx=
3 P~~'

the well-known expression for the metacentric height still in use.

In applying this formula to the case of an actual ship, Bouguer

proposes to integrate the cubes of equidistant ordinates measured

on the load-water section by means ofthe trapezoidal rule
;
here, again,

differing from present practice only in the rule he uses. He further

illustrates his method by applying it to particular forms.

In the next chapter (5) (to which we have already referred, and

the heading of which we have quoted) Bouguer, after stating that

the limitation of the inclination in his previous solution rendered it

insufficient, and pointing out the fact that, as the inclination of the

ship increased, the line of action of the fluid pressure, which passed

above the centre of gravity at small inclinations, might pass below it

and so tend to upset the ship, goes on to show that the investigation

previously given for finding the shift of the centre of buoyancy is

* All this agrees with what we saw from Atwood in a former chapter, but it must

be remembered that Bouguer wrote a half-a-oentury eaxiier than Atwood,
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general, holding even for irregular bodies. Hence, he concludes that

the locus of the centre of buoyancy is a curve of which any infinitely

small piece is parallel to the corresponding water surface, and of

which the curvature is continuous. Also, that "the pressure of

the water always acts along a normal to the curve, which is the

locus of the centre of buoyancyf and that "all these normals must

by their intersection form another curve, which may be termed the

metacentric, of which we as yet only know the point M (Fig. 138),

and which is the involute of the curve of the centres of buoyancy."

In afterwards dealing with this curve he falls into a serious error,

as we shall presently see.

Fig.139.
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Fig.1.40.

Applying the conclusions just reached, he says—-u If it be desired

to know whether any vessel, O E C (Figs. 139 and 140), of which

the centre of gravity is placed below the metacentre M, in the

upright position, will be safe, it is necessary first to determine all
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portions of equal displacement with WEL (when the ship is up-

right). . . . Then to determine the locus, B B' B", of the centre

of buoyancy, which can be done by determining the distances of

various points on the curve from the line E A and another line at

right angles to it." Throughout all these remarks Bouguer grasps

the subject effectively, and illustrates his meaning by the simple

cases of vessels with rectangular cross-sections, as well as of others

with straight sides near the water-line, describing the character of

the loci of the centres of buoyancy, as well as that of the loci of the

intersection of consecutive planes of flotation. Passing thence to

the general case, he says—"The method previously explained for

finding the height of the metacentre is generally applicable. It is

only necessary to consider the plane of flotation when the ship is

inclined: the axis or greatest diameter of this plane will not coincide

with the middle-line because of its irregularity; but that axis must

be made to pass through the centre of gravity of the plane, in order

that the two small solids of immersion and emersion may be always

equal, and the volume of displacement remain constant."

He then shows that all the change consequent on this want of

symmetry is that the cubes of the half-breadth measurements on

either side of the axis of an inclined water-section have to be inte-

grated separately, and summed, instead of one side only being dealt

with, and the result doubled, as in the upright position. His practical

deduction from these considerations is "that the form of a ship ought

to gain in breadth, or at least maintain its full breadth, up to the

height to which the side is immersed when the ship is most in-

clined ;" because the curve of centres of buoyancy would then be

either a hyperbola or a parabola, and the branches, MP, MB, of the

metacentric curve (Fig. 139) would rise above M, the metacentre in

the upright position. In such a case, he adds, up to the inclination

considered, " the centre of gravity of the vessel would depart further

from the direction B" A" of the upward fluid pressure . . . and

would contribute to increase the length of the arm of the lever to

which the upward pressure of the water is continually applied."

It is here that Bouguer falls into the serious error to which we have

adverted, and which was clearly pointed out by Atwood. Bouguer

assumes quite erroneously that the mere rise of the metacentre (using

the term here to express any point on the metacentric curve) will be

attended by a decrease of stability. This is not necessarily the case,

as we have already seen more than once.

Having laid down his general principles, Bouguer proceeds to
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urge most strongly the desirability of calculating carefully the posi-

tions of the centre of gravity and metacentre in a newly-designed

ship, and argues that the amount of work involved is probably over-

estimated, in proof of which he gives an account of the calculations

made by him for a frigate. He supplements this by some state-

ments respecting the position of the centres of gravity in the ships

of that period, and illustrates the variations produced in that position

by changes in the weights carried.

Less practical departments of the subject next come under con-

sideration, viz., the changes in position of the metacentre resulting

from changes in the form of the displacement. Here Bouguer dis-

plays considerable ingenuity, and uses his fundamental formula for

the height of the metacentre in the solution of several of the ques-

tions he propounds. He supposes changes to be made in the length,

the breadth, and the draught of a ship, and (with certain assump-

tions) he investigates the effects produced in the positions of the

centre of buoyancy and metacentre. All these are, however, little

more than geometrical exercises, and have no great value now
beyond the evidence they afford that Bouguer's investigations

extended over most branches of the subject.

The most noteworthy of his examples is that where the length

FigJ41.

and breadth of a ship are supposed to be unchanged, while the

draught is diminished. Assuming that the displacement is made to

vary directly as the draught, he describes a graphical method of

14
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representing the various positions occupied by the metacentre as

follows :

—

" If a perpendicular, E H (Fig. 141) be drawn at the foot of the vertical, S E, and

E D be made equal to the height of the centre of buoyancy, B, while E H equals the

height of the metacentre, M, above E, then D H = BM ; and if the hyperbola, hH hr

,

be traced, passing through H, and having S L and S D for asymptotes, all the other

ordinates, such as e h, drawn parallel to E H will mark the height of the metacentre

above the bottom, e, of the ship for all the different draughts."

This assumes that the centre of buoyancy always divides the

total draught of the ship in the same ratio, and then, as Bouguer

points out, the straight line, S D, will represent the locus of the

centres of buoyancy at different draughts, while the line, S/, drawn

at an angle of 45 degrees with S L will represent the corresponding

water surface at any draught. Bouguer in this particular case

indicates, therefore, a method of graphical representation very

similar to that now used for the metacentric and centre of buoyancy

curves of ships floating at different draughts.

Going a step further, he considers " the changes in the force of

the ship to keep upright resulting from changes in the dimensions

of the displacement." He here defines the " stability " of a ship as

the " force " with which she attempts to return to the upright position

when moved out of it ; and he fully explains the now familiar fact

that the righting force on a ship inclined equals the product of the

displacement into the distance of the centre of gravity from the

vertical line up which the fluid pressure acts. His various cases of

changes in length, breadth, and draught, closely resemble those pre-

viously taken in connection with their effects upon the height of the

metacentre, and rest upon similar assumptions, so that they have

little practical value.

Some of his remarks are, however, interesting. For example, he

says—" As very large breadths are now given to ships, it would not

be proper to increase those breadths much, except towards the bow

and stern, and when thus increased, the ship's stability would be

made greater." Again, for ships of the same length and draught,

but of different breadths, he says, " the stabilities are as the cubes of

the breadths," provided that the centre of gravity coincides with the

centre of buoyancy—" a condition/' said Atwood 50 years afterwards,

with needless asperity, perhaps, " which may be deemed amongst

the most extreme cases that can be devised, and such as is rarely

known to exist." Attention is also given by Bouguer to the effect

upon the stability of various arrangements of ballast.



CHAP. XL] METHOD OF FINDING CENTKE OF GRAVITY. 211

Next follows a clearly stated account of a method of finding the

centre of gravity of a ship by inclining her in smooth water. Fig.

142 illustrates this account. Pis the weight used to incline the

ship, B'A is the vertical line along which the fluid pressure acts

when the ship is heeled, and G is the centre of gravity of the ship.
IC As the inclination increases," says Bouguer, " the distance of G
from the vertical B'A increases, and the distance, G Z, from this line,

is continually proportional to the sine of the inclination, so long as the

angle is small. Knowing this distance, as well as the total weight
of the ship, the moment of the force tending to restore her to the

upright can be found. And since the situation and weight of P pro-

ducing the inclination are equally ascertainable, the moment of this

weight about B' A must equal that of the ship's stability, and so it

will be easily discovered whether the centre of gravity is in the

position desired." He proceeds to urge the necessity for great care

in measuring the angle of inclination of the ship, and in keeping
" all the circumstances absolutely unchanged throughout the experi-

ment, in order that the inclination may be due solely to the weight

P." People on board should occupy fixed positions during the time

all the observations and measurements are being made; and the

angle of inclination might be taken by means of a long plumb-line

hung from the mast-head. He thinks that in some cases the weight

of the crew of a ship might be sufficient to produce the necessary

inclination. Having thus determined the position of the centre of

gravity, G, " it will be easy," he says, " to discover how much it is

below the metacentre."

Bouguer assigns the credit of first suggesting such an experiment

to Pere 1' Hoste, but he is himself evidently entitled to the honour of

putting it into the form described, His recommendation is to use
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this experimental method as a test of the accuracy of the calculated

position of the centre of gravity, in cases where such a calculation is

made when the design is prepared. In cases where no such calcu-

lation is made, and where the metacentre is unknown, he suggests

that the inclining experiment might be made as a test of the proper

storage of the weights carried. He concludes this section of his

subject by remarking that it is necessary to know more than the

weight and position of the centre of gravity of a ship, in order to

deal with the question of rolling ; and in the next section devotes

attention to the " distribution of a ship's weight in relation to her

rolling motion."

Those who are familiar with the condition of naval science

before the appearance of the Traite dio Navire will be in the best

position for fully estimating the value of Bouguer's work ; but the

foregoing account of his investigations, however imperfect, can

hardly fail to convey to the reader the just impression that they

were as brilliant as they were original, and such as to furnish a

sound and lasting foundation for the science of the stability of ships.

We do not think full justice has been done in this country to

Bouguer's labours in connection with this particular branch of our

science. Too much stress has been laid upon his errors, which are

rare; and too frequently he has been spoken of as having dis-

regarded the differences that may exist, and do exist, between the

amounts of stability existing at small and at large angles of inclination.

We have seen that he by no means deserves this reproach, at least

in so far as a perfect appreciation of those differences, their causes,

and their magnitudes are concerned.

Soon after the production of Bouguer's Treatise, appeared in 1757,

Daniel Bernoulli's famous work upon Eydrostatical and Mechanical

Principles ; or, Memoir on the Means of Diminishing Rolling and

Pitching, in which, notwithstanding some serious misconceptions,

was laid the foundation of the accepted theory of " Rolling," and

which treats preliminarily ofthe question of "Statical Stability." The

memoir first lays down the fundamental conditions of equilibrium

for a floating body, then follows a discussion of the change in the

moment of stability produced by a very small inclination. Bernoulli

follows a method very much resembling Bouguer's investigation for

the metacentre, only he does not consider the position from which

the inclination is measured to be one of equilibrium, but obtains

what may be termed the differential expression for the righting
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moment. Using Fig. 143, he supposes b d to be the water-line for

an inclination, or, from the verti-

cal, and m n to be the water-line, Fig.143.

making an angle, d <r, with d b.

Then, taking s as the centre of

gravity, and / and g as the posi-

tions of the centres of buoyancy-

corresponding respectively to the

water-lines, b d and m n, he ob-

tains an expression for the differ-

ence between the two values of

what we should call the corre-

sponding arms of the levers (G Z) for statical stability, He expresses

this as

dr ( <f

\12m
d

where q = breadth b d of water-line ; r = 6Z in our notation

;

m = area of immersed section ; and s = vertical height of the centre

of gravity above the centre of buoyancy. It will be obvious that

for a very small inclination from the upright this formula would

become identical with Bouguer's for metacentric stability.

Having established the formula for a particular cross-section,

Bernoulli applies it to several prismatic bodies of known geometrical

forms of cross-section, putting these investigations forward simply

as examples illustrating the fact that the two most important

elements in stability are the form of the water-section and the

height of the centre of gravity above the centre of buoyancy. He
does not give any practical rule applicable to ships.

In the second chapter the connection between stability and

rolling or pitching motions is discussed, the opening passage being

as follows :—

"An uniform and constant force acting upon a ship can only incline her to a

certain angle depending solely upon her stability; and the greater her stability the

less will she be inclined. For ordinary ships the sines of the angles of inclination

will be nearly proportional to the forces producing them. In this respect increased

stability is advantageous, because it is desirable for the vessel to remain as nearly as

possible upright. A ship sailing in a wind may sometimes be heeled over 15 or even

20 degrees, if the spread of sail is not reduced ; and when thus heeled she will still

continue subject to oscillations similar to those occurring when she is upright. The

masting will obviously be much more strained, however, when the mean position is

greatly inclined than when it coincides with the upright. . , , Besides, the ship
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would always be in danger of capsizing, and the least accident might be fatal, more

especially . because the righting moments only grow with the sine of the angle of

inclination, and consequently increase less rapidly as greater inclinations are reached.

. . . Hence it appears that only an advantage can result from an increase in the

stability to the greatest extent consistent with other good qualities in the ship.

"

Into the question of the oscillations of ships it is not our present

purpose to follow Bernoulli.

In 1771 was published in Spanish, and in 1783 was translated

into French by M. Leveque, the great treatise, entitled Examen
Maritime, of Don George Juan d' Ulloa. This work was chiefly

notable for an elaborate theory of the resistance of fluids ; but it treats,

although in a limited way, of stability, and deserves a brief notice.

The treatise consists of two volumes, the first being wholly devoted

to demonstrations of the principles of mechanics, hydrostatics, &c,

and the second containing the applications of the investigations

made in the first volume to the qualities and performances of ships,

of the properties of the metacentre, and an investigation of a formula

for its height above the centre of buoyancy. In these respects he

scarcely goes beyond Bouguer, except in suggesting that the longi-

tudinal, as well as the transverse, metacentre should be found, and

in determining an expression for its height. His proposed method

for making the numerical calculations incidental to determining the

metacentres is complicated, and not so good as Bouguer's rule for the

transverse metacentre. Like Bouguer, Don Juan urges the import-

ance of finding the centre of gravity of a ship, and gives an example

of such a calculation. He also suggests that an inclining experiment

should be made on a ship similar to the new design, in order to

reduce the labour of finding the centre of gravity of the latter by

calculation. His formula for the inclining experiment is

—

Metacentric height __ Weights moved x their distances,

(above C G) ~~ Displacement x sine of inclination,

and differs from that still in use only in having the sine instead of

the tangent of the angle of inclination— an unimportant matter, so

long as only small angles are reached. He proposes to determine

the inclination by "measuring carefully the extent to which the

ship's side amidships is emerged from the water by the inclination."

Lengthy calculations follow, illustrating the use of the formula, and

various estimates are made of the value of GM (height of meta-

centre above centre of gravity) for different classes of the ships of
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that period ; but the results appear for the most part to be hypo-

thetical, and not based upon experiment. Don Juan considered

Bouguer's estimate of 1 or 2 feet as the value of GM in three-

deckers to be far too small, and thought 8 or 9 feet nearer the

truth.

We have now to notice the very remarkable work of Leonard

Euler, entitled Complete Theory of Construction and Properties of

Vessels, which was published in Petersburgh in 1773, and trans-

lated into English in 1790, by Colonel Henry Watson.* Euler's

method of investigation is more analytical than that of Bouguer,

but the results arrived at by him are substantially the same. After

stating the fundamental conditions of equilibrium in a floating body,

Euler defines the three different states of equilibrium, and illustrates

them by the case of a ship which is made to alter her trim slightly.

He says, however, that the same kind of reasoning applies to trans-

verse heeling, and remarks that ships should be stable in the upright

position. After showing that for any inclined position the stability

depends upon the relative positions of the vertical lines passing

respectively through the centre of gravity and the centre of

buoyancy, he says :—
"In order to form proper conclusions respecting the state of equilibrium in a

vessel, it is necessary to make researches respecting both the axes (longitudinal and

transverse), for the case might easily happen that a vessel had sufficient stability

with respect to one of these axes, whilst its equilibrium with respect to the other

might be indifferent or even unstable. It is likewise as certain that when a vessel

shall have a sufficient stability with respect to the two principal axes, it will also

have sufficient with respect to all the other intermediate axes round which the vessel

may receive any inclination."

Passing on, Euler remarks that the " measure " of stability must

be the " moment of the forces with respect to the axis round which

the inclination is made," which axis he considers to be some hori-

zontal line passing through the centre of gravity of the vessel,

although he does not assume the centre of gravity to be a fixed

point. Using Fig. 144 to represent a longitudinal section of a ship,

* Of this work, Dr. Woolley in his celebrated Paper, read at the opening of the

Institution of Naval Architects in 1860, said:— '* Making allowances for the imper-

fection of his theory of resistances, there was no work published before the com-

mencement of the nineteenth century which would better repay perusal than this.

His mode of treating his subject is simple, philosophical, and highly instructive.

"

Dr. Woolley notes, however, that Euler's propositions have appeared in a more

inodern form in later works,
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of which A B was the water-line previously, and a b is the water-

line corresponding to an inclined position produced by the action of

a force, K, along the line K H, he says, that K x G H measures the

moment of this force, if G be the centre of gravity, which moment
must be balanced by " the efforts which the vessel exerts in order to

re-establish itself in its state of equilibrium/' or, as we should say,

by "the moment of stability" at that inclination. For small xncli-

Fig. 144.

K
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0
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nations, he says, the " moment of force requisite to maintain the

vessel in its inclined state will always have the form S x t x sin. i;

where S denotes a certain absolute force, t a certain line, and sin. i

the sine of the angle i, the radius being supposed unity." The pro-

duct, S t, is what he "means by the term stability'' and he justifies

its separation from the sine of the angle of inclination by the remark,

that in speaking of stability, "we form to ourselves an idea that no

ways depends on the quantity of the inclination, seeing that the same

idea must belong as well to the state of equilibrium itself (the

upright) as to all possible inclinations."

Upon this assumption he shows how to apply his measure in

calculating the comparative stability of two ships when inclined to

equal, but very small, angles; and for estimating the stability of the

same ship at different angles, supposing S t to remain constant.

This reasoning, he admits, is applicable only to very small angles of

inclination, and he urges the importance of providing a ,large reserve

of stability, " many times greater than the greatest efforts which the

vessel can ever be exposed to."

Again, making use of Fig. 144, and taking 0 as the centre of

buoyancy of the original volume of displacement, ALB, Euler con-

siders separately the effect of the fluid pressures corresponding to

that volume, and the volumes of the wedges of immersion and

emersion. For A L B he shows that the moment about G equals

M x O G sin. I, where M is the weight of the ship, and I is the angle
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of inclination. This would tend to augment the inclination, and it

is pointed out that if the wedges " should not furnish a moment of

force opposite to and greater than the effects of the first, the vessel

would not have any stability, and the least inclination would over-

turn it entirely."

Supposing the angle, I, to be very small, Euler investigates an

expression for the moments of these wedges, using differential co-

efficients, and ultimately arrives at an expression for the righting

moment, including both the wedges and the volume, A L B (so as to

measure the effect of the new volume of displacement, a L 6). This

is done in a manner very similar to that described by Bouguer, and

the result, as stated by Euler (but put into modern notation) gives,

as his fundamental expression for stability.

Sighting moment —
M
V sin. 1 1

jyl dy^ x yl dy2
^

M x 0 G sin. I,

where M£= weight of ship, V = volume of displacement, yx
= I P,

and y2
= I Q, P p and Q q being elementary pieces of the two

wedges.

Euler draws attention to the fact that the terms under the

integral signs depend principally upon the form of the water-section,

and that they express the moment of inertia of that section, or

the sums of all the particles contained in the section of the water

(AB, Fig. 144), each multiplied by the square of its distance from

the intersection, I, which intersection, on account of the equality

of the wedges, must be a line passing through the centre of gravity

of the section A B.

Fig. 145 is taken as a plan of the water-section represented by

A B in Fig. 144, and on this

plan, AB represents the fore

and aft middle line, I corre-

sponds to the same letter in

Fig. 144, and CD is perpen-

dicular to AB. Euler then

demonstrates at length the

well-known principle in dy-

namics, that when the mo-

ments of inertia of the plane

about the two principal axes,

AB and CD, are known, it is

easy to calculate the moment

c

1 m
I

D
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of inertia about any other axis, such as MN, of which the inclination

to AB is known. As bounding cases, between which the actual

form of a ship's water-section would lie, he takes a rectangle and a

rhombus formed by setting two equal isosceles triangles base to base

[C D in Fig. 145, corresponding to this base]. For these two figures

he finds the moments of inertia with respect to the axis, AB, the

results being

For rectangle = ^-AB x C

D

3
,

„ rhombus = A B x 0 D3
,

and he remarks that similar expressions would represent the

moments of inertia about C D. Calling attention to the fact that

the numerical coefficients in these expressions bear to one another

the same proportion as the squares of the areas of the water-sections,

he proposes to avoid the labour of integrating for the moments of

inertia in an actual ship by the following device:—Find the

proportion which the squares of the areas of the water-section and

of the circumscribing rectangle bear to one another, and take this as

the numerical coefficient of the product, A B x C D 3
7

or, C D x AB3
.

He tests this on an ellipse, and finds it approximately true. As-

suming that this method removes all difficulty in finding the

moment of inertia of the water-section, Euler proceeds to consider

the remaining terms in his formula for the stability. He shows

that, other things being equal, the stability " is always proportional

to the weight of the vessel." Then he takes Fig. 146 to represent

the immersed part of a ship, and approximates to what would

now be termed limiting values of "coefficients of fineness "for the
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area of the water-section and for the volume of displacement. For

the water-section he concludes that in the area = « x AB x CD,
Fig. 146, a is less than 1 and greater than |- ; for the volume of

displacement, say ™ a/3 x AB xCD x IE, a/3 is less than 1 and

greater than J ; and for the depth, 0 F, of the centre of buoyancy,

(0), below the water he thinks a good approximation might be made

from the equation

:

OF = @— IE
/3 + 1

'

where /3 is less than 1 and greater than J.

This latter equation is based upon three cases only, viz.—ships

with rectangular or with triangular cross-sections, and a ship which is

a pyramid with its apex in E. Respecting the position of the centre

of gravity, G, he says— F G depends upon the weight of the whole

vessel, and according to different distributions it may happen that

G will be more or less elevated above the section of the water, or

that it may even fall below it."

Calling the quotient of the moment of inertia divided by the

volume of displacement, Z, Euler writes the expression for stability

in the form,

M(l -00),

and says that for stable equilibrium, I must be greater than 0 G.

The least value of I being that for transverse inclinations (about the

axis, A B), he concludes that this is the critical case, and that if it

gives stable equilibrium, the ship will be stable with respect to all

other axes.

Acting on this conclusion, Euler considers this critical case with

a view to providing the requisite stability. His methods of approxi-

mation are continuations of those previously described, the same

coefficients of fineness being used, and his practical rule for moments

of inertia being applied. With these assumptions he reduces his

fundamental expression for stability to the form—

a CD2
j3Mii^Tr~i^ IE ~ FG

and for stable equilibrium gets the condition

—

C D2 > m . I

E

2 + n . I E x F G,
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Illustrations follow of the application of this condition, with

assumed values for a, /3 and F G. No interest attaches to them

now, but the evident intention on Euler's part was to fix some

proportion between the breadth, 0 D, and draught, I E.

Chapman's famous Treatise on Shipbuilding was published in

Sweden in 1775, and possessed the merit of being much less specu-

lative than most of the works that had been previously published.

It added but little, however, to the doctrines of stability. His

method of determining the height of the metacentre was essen-

tially the same as Bouguer's ; but in the numerical example which

he gave, he improved upon Bouguer's process by making use of

Simpson's ordinary rule, in lieu of the trapezoidal, for integrating

the cubes of the half-breadths of the load water-line section. In a

later work Chapman adopted and detailed a method of finding the

vertical position of the centre of gravity by arranging the weights

into two divisions, having their centres of gravity respectively above

the centre of buoyancy, and coincident with or below it. This is

followed by an investigation (resembling Bouguer's) of the effects

produced upon the height of the metacentre by changes in the

under-water form and displacement of a ship. Into this discussion

of rolling motions, and of the rise and fall of the centre of gravity

during rolling, we need not enter.*

In his notable work, LArt de la Marine, published by M. Eomme

in 1787, a chapter is devoted to the stability and rolling of ships.

Romrne lays down correctly the conditions of equilibrium for a

floating body, and his investigation of an expression for the stability

is very like Bouguer's in principle, and in being limited to very

small angles of inclination, but no use is made of the metacentre.

Eomme's expression for the stability takes the form—

* Chapman's work was translated into French by M. Vial de Clairbois, who was

Chef des Constructions Navales et Directeur d' etudes de VEcole d* application du G6nie

Maritime, and who somewhat later published, himself, an Elementary Treatise on the

Construction of Ships, which seems to have been designed as a text-book for general

use. It does not add materially to the other existing knowledge of the subject.

Chapman was also translated into English in 1820 by Dr. Inman, then at the head of

the School of Naval Architecture, who appended many useful notes and comments,

with which we have not this place to deal.
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~ j I
s

- sin. 0 . d E - 2
f

(ec m) GP sin. 6 d E *

or, as it might be better arranged in modern notation,

qi 1.-1-4- _ (Moment of inertia of load-water section | gjn q
\ —Volume of displacement X B G j

It will be seen, therefore, that Eomme's final result agrees with

Bouguer's, only Eomme prefers to keep separate the two terms

which depend respectively upon the moment of inertia of the load-

water section and the distance (B G, as we should say) between the

centres of buoyancy and gravity.

Assuming that, as a rule, the centre of gravity of a ship lies

above the centre of buoyancy, Eomme arrives at the following

practical deductions:—"To ensure stability to a vessel, the trans-

verse vertical sections must be made upright in the neighbourhood

of the water-line on the midship section ; this should be done from

two or three feet above water to an equal distance below: for sec-

tions nearer the extremities the upright part need not be so long as

amidships, but may be reduced in the ratio of the respective

breadths of the sections at the water-line." He again and again,

in subsequent remarks, insists upon the advantages to be gained

from following this course.

Turning to the first term in his expression, he shows that a

rectangle would be the form of water-section giving a maximum

value to the moment of inertia ; but adds that such a " form is in-

admissible, seeing that it would be detrimental to other good

qualities of the ship." As regards the second term, he advocates a

reduction, so far as possible, in the distance between the centres of

gravity and buoyancy, in order to increase the stability. He
expresses the opinion that, in ships of war especially, little can

be done towards lowering the centre of gravity, and, therefore

recommends that suitable modifications should be made in the form

of the ship, filling her as much as possible at the water-line, and

fining her below in order to raise the centre of buoyancy, and at the

same time to increase the moment of inertia of the water-section.

* In this formula I = breadth of cross-section at L . W . L.

(e c m) =2 half-area of immersed cross-section.

GP = distance between centres of gravity and buoyancy for that

cross-section.

d E — element of length.

0 = ano;le of inclination.
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Throughout his treatise Eomme illustrates the points he raises

by reference to the cases of actual ships; and here he cites the case

of a 74-gun vessel named the JScipion, which proved very crank

when completed in 1779. At first, attempts were made to remedy

the error by altering the stowage, and putting in additional ballast

instead of a part of the water supply originally carried ; but these

failing, thick doubling planks were worked in the neighbourhood of

the water-line, and with more satisfactory results. Eomme goes

very fully into this case, and contrasts the vessel with other more

successful ships. The only noteworthy passage occurring in this

connection is, however, that in which he suggests that the vertical

position of the centre of gravity may be found by experiment.

Supposing the ship to be heeled under sail to a certain angle, and

then to be further heeled by shifting known weights—such as guns-
through known distances, from the windward to the leeward side,

he shows how the difference in the stabilities at the two inclinations

may be made to determine the position of the centre of gravity in

relation to the centre of buoyancy, and thence in relation to the

water-line.

Up to this point Eomme considers only transverse inclinations,

but he remarks in passing, that his method of investigation is just

as applicable to inclinations which take place about any other axis

besides a longitudinal one. He also declines to enter into the dis- *

cussion of the effect produced upon the stability of a ship by her

progression through the water, expressing the opinion that it would

be " very little different from, or superior to, that of the same ship

floating at rest in still water," and sums up as follows :—

" The general principles by which the stability of a sea-going ship may be

assured, leave undetermined the form of the greater part of the displacement, pre-

serving only a large area for the plane of flotation, and for the water-lines lying near

to it, and a smaller area for the lower water-lines. The contours of the displacement

consequently remain unfixed, and may be determined in accordance with the parti-

cular conditions which secure the other qualities that are desirable in sea-going

ships."
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CHAPTER XII.

Dupin 's Investigations ; their Generality—Positions of Equilibrium—Surface of Buoy-

ancy—Surface of Flotation—Geometrical Nature of these Surfaces—Surface of

Buoyancy a Closed Surface—Tangent Planes to Surface of Buoyancy—Normals

to Surface of Buoyancy Correspond to Positions of Equilibrium—The Three

Kinds of Equilibrium—Direction of Greatest and Least Curvature

—

Indicatrix

Curve of Surface of Buoyancy—Planes of Symmetry—Relation of Surface of

Buoyancy to Surface of Flotation—Greatest and Least Radius of Curvature

—

General Theorems—Value of Radius of Curvature—Possible Positions of Equili-

brium of Floating Body—Positions of Equilibrium Round a Fixed Axis

—

Resulting Theorems—Mixed Equilibrium—Absolute Number of Positions of

Equilibrium when Axis is not Fixed—Absolute and Relative Stability—Inter-

mediate Positions of Stability—M. Leclert's Formulae.

It has been already intimated that the eminent French investigator,,

Dupin, took a very broad and general view of the question, and his

researches brought him lasting fame, both as a geometer and as a

participator in the higher developments of the theory of naval

architecture.* Dupin was both a very able and a very eloquent

writer, and his productions were received with unwonted approval

and admiration by some of the most distinguished men of science of

his day. It is not possible to do justice either to our subject or to

him without devoting considerable attention to the results of his

labours, although this book will probably have many readers by

whom a mastery of all that follows in this chapter need not be

regarded as essential.

It will be seen that Dupin sought to give the utmost generality

to his work when we say that he started his inquiries from the

centre of the earth as a fixed point, and proceeded to show the

value of a vertical axis, and of a horizontal plane perpendicular

thereto, to geometers and mechanics. We may here, however, pass

over his remarks upon centres of gravity and the equilibrium of

fluids, and take note at once of the fact that, for the purpose of

* Charles Dupin, it appears, was an "ingenieur de la marine" when in 1814 he

submitted his <£ Memoir on the Stability of Floating Bodies" to the Institution of

France, and on the title-page of the volume in which it appeared, with other
6 ' Memoirs," in 1822, he is described as an "Qfficier Sup6rieur au Corps du G6nie

Maritime"
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developing his process of investigation, he assumed, for the time

being, as he clearly was entitled to do, that the centre of gravity o£

a floating body may be shifted about without thereby changing the

weight of the body; and in connection with this assumption he

shows, what we need only state, viz., that no merely vertical move-

ment of the centre of gravity, either up or down, can either produce

equilibrium, if it does not exist, or take it away, if it does exist. It

is equally obvious that if a body be floating in equilibrium, no mere

movement of the body up or down can bring it into a new position

of equilibrium, because it cannot thus be brought into any other

position in which the weight and the buoyancy will be equal.

From this reasoning it follows that in the case of a partially-immersed

floating body, say Fig. 1 47, by suitably placing its centre of gravity,

it is possible to find a position of equilibrium in which the plane of

flotation, w I, v/ V, or w" I", for example, shall be parallel to any plane,

A A', A A", A A'", given in position in the solid. This proposition is

equally true if the body be turned upside down. It further follows

that if we suppose the centre of gravity of the solid, instead of

remaining in the same vertical, to be moved into another straight

line, which we then regard as a vertical, a position of equilibrium

can be found for the body to suit these new conditions when floating,

both in the new upright position and upside down. The new planes

of flotation will be perpendicular, not to the original vertical, but

to the new vertical.

Let us conceive, says Dupin (whom we render freely and briefly)*

that the divers planes of flota-

^W- tion, wl>w'V,w"V\ &c. (Fig.

147), have been determined re-

spectively parallel to all the

planes, A A! , A A", A A'", &c,

that can be drawn from the

point, A, of the solid. To each

new plane of flotation thus de-

termined will correspond a centre

of buoyancy, b or V or b", &c.

All these centres of buoyancy

will form in the aggregate a sur-

face, called the surface of centres of buoyancy, B, or more simply, the

surface of buoyancy.] All the planes of flotation envelope or form

* We also modify the lettering of the diagrams as seems convenient,

f This is a usual abbreviation, not Dupin 's.
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by their lines of intersection another surface, F, similarly deter-

mined, called the surface envelope of flotations, or more simply, sur-

face of flotation. These two surfaces (of buoyancy and flotation)

possess remarkable properties in relation to the equilibrium of
floating bodies.

The planes of flotation are determined, as we have seen, by the
single condition that they each . cut off from the solid a segment of
given and constant volume ; each centre of buoyancy is merely the
centre of the mean distances of the geometric volume of such a seg-

ment. Dupin says, therefore, that the "surface of buoyancy " and
the "surface of flotation" have a definition purely geometrical/and
"altogether independent of the gravity of the floating body."*
The foregoing property, which is based on geometrical considera-

tions, serves as the basis of all Dupin's subsequent work.
Adverting for a moment to the question of centres of gravity,

and more especially to the fact that the centre of gravity of two
masses is always situated between them, he points out that, from an
extension of this consideration, it follows that the centre of gravity
of any continuous volume whatever must always lie within the limit

of the volume itself. This is not, however, strictly correct
;
many

examples to the contrary will readily

occur to the reader; for example, a
Fig.148.

rod much bent, or a curved frame
timber of a ship, or a twin-vessel may / ^\
have its centre of gravity altogether / \
outside of it; but the limits of the / A
author's meaning will be seen without L^^^—j^
difficulty, and are substantially sup-

""~~"T" /

plied by himself in a foot-note, and \
j \ J

in a more lengthy note appended to \4 ~VT' \/
his treatise. He goes on to say that,

for the reason stated, the surface of

buoyancy, B (Fig. 147), necessarily has all its points within the
interior of the floating body. Therefore, in bodies of finite extent
(such as ships) the surface of buoyancy must always itself be of

finite extent, and usually closed in all its parts.

Let wFl, w' F l\ Fig. 148, be two planes of flotation indefinitely

* This last phrase must be taken with due limitation, because the gravity of the
body obviously determines the magnitude of the volume to be cut off by the plane of
flotation. What Dupin intended was correct, as he clearly had in his mind not the
amount, but the disposition of gravity.

15
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near each other. In order that the buoyancy may be the same

with each, it is necessary that the two segments, w Fw', IFV,

by means of which alone they could differ, should be equal, the

part below w'Fl being common to both cases. Let h, h' be the

centres of gravity of the equal volumes, w~Fw', IT? I' respec-

tively, and draw through the centre of buoyancy, &, of the

volume w c I, the straight line, p b q, parallel to h h\ The dis-

tance from the centre of buoyancy of w' c l\ to the line p b q 9

will evidently be proportional to the difference of the moments of

w F w' and IF I' about that line. Now, this difference is nothing,

since wFw' is equal to ZF V, and hp is equal to h' q. Therefore,

the centre of buoyancy, V of w' c l\ is situated in the line pbq,

which is parallel to hh'. The angle of inclination being infinitely

small, and the line h h' being nevertheless comprised within that

angle, it will follow that its parallel, pbb' q, can depart but infini-

tely little from parallelism to the plane of flotation, wFl There-

fore, the tangents through b to the surface of buoyancy are parallel

to the corresponding plane of flotation. Hence follows the general

property that: If through one of its points 6, considered as an

individual centre of buoyancy, we draw a plane parallel to the

plane of flotation, which limits the volume of buoyancy, this will

be the tangent plane to the surface of buoyancy, B, at the

point 6.

Hence, also, for each position of equilibrium, the tangent plane

to the surface of buoyancy through the corresponding centre of

buoyancy is horizontal, because the plane of flotation, or fluid sur-

face to which it is parallel, is necessarily horizontal.

The surface of buoyancy also possesses the property of having

for normals the straight lines drawn through each of the centres of

buoyancy of which it is formed, and through that position of the

centre of gravity of the floating body which, when the body is in

equilibrium, corresponds to the centre of buoyancy. The condition

of equilibrium is, that the centres of gravity and buoyancy shall be

in the same vertical ; and when the tangent plane of a surface is

horizontal, the corresponding normals must be vertical.

Since the straight lines which join corresponding centres of

buoyancy and gravity, in positions of equilibrium, are normals to

the surface of buoyancy, B, all the properties which belong to

normals of surfaces belong equally to these straight lines. There-

fore, these normals taken together present two distinct systems ot

developable surfaces; the developable surfaces of one system are cut
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at right angles by all the developables of the other system ; each of

these cut the surface B through one of its lines of curvature, &e.

It is, says Dupin, from these developable surfaces^ and the curves

and centres of curvature, which correspond to them, that we learn

the general conditions of the stability of floating bodies.

Next, suppose that a floating body, placed first in one of its

positions of equilibrium, is very slightly disturbed, without any

change in the position of its centre of gravity. Suppose, further,

for greater facility, that the weight of the body, and the immersed

volume also remain unchanged during this very slight disturbance.

We have to see whether the equilibrium still subsists, or tends to

re-establish itself, or tends, so to speak, to further disturbance. Let

b, Fig. 149, be the centre of buoyancy corresponding to the given posi-

tion of equilibrium of which the

vertical is frG^G being the cen- Fig.149.

tre of gravity. In consequence

of the slight disturbance, the cen-

tre of buoyancy finds itself now
at b', immediately consecutive

to b, on the surface of buoyancy,

and the new vertical, V c, like

the former, is normal to the sur-

face of buoyancy, B. Further,

suppose for facility's sake, that

the plane of projection of Fig. \/
149 is parallel to the two con-

secutive normals, be and V c.

Then the shortest distance be-

tween these two consecutive nor-

mals will have for its vertical

projection the single point, c, the intersection of the two

projections. It is evident that cb = cb\ since c is on the

normal, b c, the centre of curvature of the element, b V. This

point, therefore, was neither raised nor lowered by the inclination,

and the movement of the floating body was the same as if the

shortest distance between c b and 0 b
f

had been a fixed axis round

which the body had been inflnitesimally turned. The whole system

may be supposed to receive any vertical motion of translation, either

downward or upward.

It will now be seen : (1.) that if the centre of gravity is at G,

below the centre of curvature c, the weight will operate to bring
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back the normal c 6 to its primitive vertical position
; (2.) that if

the centre of gravity is at G', above the centre of curvature of the

element, b b\ it will operate to carry the normal, c b, still farther away

from its primitive position ; and (3.) if the centre of gravity be at c,

the centre of curvature of b b', it will have no perturbing effect at

all, and the body will not be solicited to turn either way by any

force. We have here respectively the three cases of stable, unstable,

and indifferent equilibrium. It is evident that in the first case the

centre of gravity, G, is nearer the corresponding centre of buoyancy,

6, than it is to any^other centre of buoyancy, V or b'\ &c, on the line

b V b" &c. In the second case, the centre of gravity, G', is farther

from b than from any other of those centres of buoyancy (supposed

always exceedingly near to b). In the last case (3) the distances,

cb, cb' are equal. Hence, Dupin deduces the following theorem :—

In comparing a position of equilibrium of a floating body with

positions very near thereto, the distance of its centre of gravity from

its centre of buoyancy is a minimum or maximum, according as the

equilibrium is stable or unstable ; in indifferent equilibrium this

distance is constant, or more correctly, the difference of the distances

is of an order infinitely less than in the case of the maximum or

minimum.

The action of the weight of the body concentrated in G', or in G
x

is evidently proportional to the distance, G' 7! or G
1
Zv of G' or G

t

from the axis fixed at c. Therefore the more the centre of gravity

is raised the more is the stability diminished ; on the contrary, the

more the centre of curvature, c, is raised, the more is the stability

increased.

If the different centres which, on the same normal, b c, belong to

the normal sections of the surface of buoyancy, B, are considered, it

will be seen that they must all lie between two centres,'" c and cv the

one of the least and the other of greatest curvature of the surface B.

The line which we have regarded as a horizontal axis of moments

(and which is defined by the condition of its being perpendicular to

cb and cb' passing through each) appertains to the position of

maximum stability when it passes through the centre, c, of least

curvature of B. On the contrary, when it passes through cv the

centre of greatest curvature of B, it will appertain to the position of

minimum stability. Therefore, when the stability is greatest, the

* The centre, c, of least curvature is very important for the determination of the

stability of ships, says Dupin in a foot-note. It is the point that Bouguer has

named the metacenlre.
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axis of rotation is parallel to the direction of greatest curvature

of the surface of buoyancy; and when the stability is least,

that axis is parallel to the direction of least curvature of that

surface.

We have previously seen Dupin regard the surface of buoyancy

as closed, and incapable of having more than two tangent planes,

a be, a f

b'c\ Fig. 150, parallel to each other; or rather, of having

more than one other tangent plane

parallel to any given tangent plane, Fig.uo.

for that is what is meant. These

properties require that the two

curvatures of the surface (meeting

at the point of contact with a tan-

gent plane) shall always be directed

towards the same side, i.e., both

diverge from their common tangent

plane. The proposition is correct,

but Dupin's attempted proof of it

is unsatisfactory.

The two curvatures of the surface of buoyancy are nevertheless

on the same side, and in surfaces possessing this property, the centres

of mean curvature are always situated on the normal between the

two centres of greatest and least curvature. It follows that if the

centre of gravity, G (Fig. 149) of the floating body finds itself below

the centre of greatest curvature, cv the stability, for the position of

equilibrium which is under consideration, will take place in all pos-

sible directions (i.e., in whatever direction the body may be inclined);

and this stability Dupin, therefore, designates absolute. If the

centre of gravity is at G, above the centre, ev of greatest curvature,

but remains below the centre, c, of least curvature, the equilibrium

will be stable in the direction of least curvature (i.e., stable on

taking for its axis of rotation the horizontal axis perpendicular to

that direction), but it will no longer be stable in the direction of

greatest curvature. If, then, it is desired to determine which, among

all the intermediate sections, are those that separate the directions

in which there is stability from those in which there is not, it is

necessary to regard the centre of gravity, G, as the centre of curva-

ture of a normal section through b of the surface of buoyancy, and

to find the position of this section. Dupin shows how this may be

done by means of the indicatrix curv© of the surface of buoyancy,

as set forth in his Developpements de Gtometrie, Memoire Premier.
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It is not necessary to pursue the matter further here.* Finally, if

the centre of gravity of the body finds itself at G', Fig. 149, above
the centre, <?, of least curvature, the equilibrium will not be stable in

any direction. In all cases for each (very small) inclination of the

floating body supposed to be turning round an axis parallel to the

directions of greatest or least stability, there will correspond a
second inclination symmetrically situated in relation to those direc-

tions, as well as to the centres of gravity and buoyancy. The
degree of stability will be the, same for both. Whence is inferred

the following theorem :

—

« In the equilibrium of a body floating on
a fluid, and bounded by any surface whatever (regular or irregular)

the stability, considered in the divers directions in which it may be
disturbed, is always symmetrical with respect to two vertical planes
normal to each other."

These planes of symmetry (passing, of course, through the
centres of both gravity and buoyancy) are identical in direction

with the two principal curvatures of the surface of buoyancy. In
the case of ships, formed symmetrically with respect to a vertical

longitudinal plane, this plane is one of the planes of symmetry, and
the other is normal to it. In bodies which are not thus symmetrical,
and in which the planes of symmetry are not therefore indicated a
priori, it is necessary to determine the principal curvatures through
the centre of buoyancy, corresponding to the given position of equili-

brium. For this purpose it is necessary to take the planes of
flotation, &c., into consideration.

The « Surface of Flotation," as we have seen, is the envelope of
all possible planes of flotation which can be obtained by placing a
body, without change of total weight, or of exterior form, into all

conceivable positions of equilibrium. This surface of flotation, like
the surface of buoyancy, is, says Dupin, closed in all its parts, and

The investigation of the amount of stability when the vessel is displaced
round an axis intermediate between these (axes of greatest and least stability) is very
elegant, and is made to depend on the properties of the indicatrix, which is the
section of the locus of centres of buoyancy made by a plane parallel to the plane
touching this surface in the inclined position, i.e., parallel to the inclined water-line,
and indefinitely near it. This curve is always [an ellipse, whose greater and lesser
axes are parallel to the directions of greatest and least stability. The stabilities in
different directions are proportional to the squares of the corresponding diameters
of the indicatrix, and these are proportional to the corresponding radii of curvature
of the surface."-From Dr. Joseph Woolley's Paper "On the Mathematical Theory of
Naval Architecture," Transactions I. N. A. 1860.
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the demonstration before employed in connection with the latter

surface, shows, he considers, that this also has two principal curva-

tures always directed towards the same side. This, however, is

inaccurate. He next attempted to demonstrate that the surface of

buoyancy and the surface of flotation of a floating body can never

penetrate each other, but must always wholly surround each other,

either after the manner shown in section only in our Figs. 2 and 3,

chap, i., where the cylindrical portion of the surface of flotation, F F',

wholly embraces the surface of buoyancy, B B', or after the manner

similarly shown in Fig. 4, where the reverse is the case. Dupin, in

a note, more conveniently employs a sphere for illustrating this

principle, but obviously our Figs. 2, 3, and 4, chap, i., will serve

perfectly well for that purpose, representing the sectional state of

the sphere in every conceivable position. The proposition itself,

however, is not correct, and his attempted demonstration is, in our

Fig.15L

opinion, altogether invalid, as can be made to appear at once by the

simple process of reversing the figure which he employs in his

demonstration. In the interesting Paper on Stability* previously

adverted to, Messrs. White and John have adduced repeated cases in

which the surfaces of buoyancy and of flotation penetrate each other.

* "On the Calculation of the Stability of Ships, and some Matters of Interest

connected therewith."— Transactions of Institution of Naval Architects, vol. xii., for

1373.
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One of them is shown in Fig. 151, which is that of a prism of

triangular and equilateral section, immersed as indicated. The
curve of flotation, FF, has six cusps, and intersects the curve of

buoyancy, B B, at 12 points, each curve being made up of six

branches of hyperbolas. The authors of the Paper here referred to

have also pointed out that Dupin does not appear to have contem-

plated the possibility of cusps in the curve of flotation resulting

from the immersion of the edges of the decks of ships, and add,

"For ships, the occurrence of cusps in the curve of flotation may,
however, be regarded as the rule rather than as the exception; and
for other bodies of various forms the same thing is possible."

It follows from what has just been said and shown that the pro-

position of Dupin, which affirms that the two principal curvatures

of the surface of flotation always lie on the same side, cannot be

sustained. The existence of cusps in sections of the surface of flota-

tion is incompatible with this condition.

Dupin next considers the question of the point of contact of the

plane of flotation with the surface of flotation
;
and, supposing two

planes of flotation, wF£, w' F l\ Fig. 152, indefinitely near each other,

shows that, in accordance with
Figd52.

geometrical theory of the

envelopes of surfaces, the line of

contact of the plane, w F I, with

the surface envelope is neces-

sarily identical with the inter-

section of the two consecutive

tangent planes, this line of con-

tact being represented in projec-

tion by the point, F, the tangent

planes being represented (in the

plane of the figure) by their

traces, w¥l, w'FT. He goes on

to show that the volumes of the infinitesimally small wedges,

w F w', l~Fl\ must equal each other, and thence (as did Bouguer long

before) deduces the property that " the intersection of two planes of

flotation, infinitely near, always passes through the centre of gravity

of the area of the plane of flotation of the body;" and herce infers

the following definition, viz., " The Surface of Flotation is the Locus

of the Centres of Gravity of the Areas of all the Planes of Flota-

tion," these areas being, of course, bounded on all sides by the

exterior surface of the body.
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Having first shown that, taking Fig. 153 to represent a

solid floating body, and supposing

FAA'F', FBB'F', two water-line

planes, infinitely near each other,

the volume of the very small wedge,

FA F' B, divided by the tangent of

A MB, is equal to the sum of the

moments of the area, FAF, about

the axis, FF', Dupin proceeds as

follows:—If now we multiply the

area, a a' a" a'" — a a' x a a" by

\ (Ma + Ma") 2
, we shall have the

moment of that element about the

axis, FF'. The sum of all such

moments, extended over the whole

area, FAF', will be the moment of

inertia of that area. But the volume of the little solid, ab"\ being

ijaa' X a a" (M.a + Ma") tan. AM
B
|

,

its moment about the same axis will be

i a a' x a a" (Ma + Ma")
2

tan. A MB,

whence results the important theorem :

—

The moment of the wedge, FAF'B (Fig. 153), divided by the

tangent of the angle, AMB, is equal to the moment of inertia of

the area, FAF', FF' being the axis of the moments.

Dupin shows later on that the moments of the two infinitesimal

wedges on opposite sides of FF' divided by tan. AMB, and by the

displacement, are together equal to the radius of curvature of the arc,

/3 /3', of the curve of buoyancy (Fig. 153), when the plane of flotation

ceases to be FA A' F', and becomes F B B r F r

. Therefore, the radius

of curvature of j3 /3' is equal to the moment of inertia of the total area,

FAF' a (about FF'), divided by the constant volume of displace-

ment. (This is a more general form of the expression for the height

of the metacentre given by Bouguer, who anticipated substantially

the steps of Dupin's demonstration.) As the radius of curvature

and the sum of the moments of inertia bear a constant relation,

they will have at the same time maximum and minimum values.
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These results are summed up in the following theorhmes

remavquables :

—

I. The greatest radius of curvature of the surface of buoyancy at

a given point is equal to the greatest moment of inertia of the area

of the corresponding plane of flotation, divided by the volume of

displacement.

II. The least radius is, on the contrary, equal to the least of

these moments of inertia, divided by the displacement.*

III. The direction of greatest curvature of the surface of buoy-

ancy is that of the axis of the greatest moment of inertia of the

area of the plane of flotation.

IV. The direction of least curvature of that surface is that of

the axis of the least moment of inertia of the area of the plane of

flotation.

Since the lines of greatest and least curvature of any surface

whatever always cross each other at right angles, the principal axes

of the greatest and least moments of inertia of the area of the plane

of flotation are always at right angles to each other, whatever may

be the form of that area. "We thus come, says Dupin, by another

route, to the admirable properties which Euler discovered relative

to the principal axes of bodies.

{ After demonstrating what he just before virtually assumed (as

we saw) that the small shift of the centre of buoyancy from ft to ft\

in Fig. 153, is equal to the sum of the moments of the small wedges

divided by the volume of displacement, Dupin points out that the

vertical, ft c, does not pass, except in very special cases, through the

intersection of consecutive planes of flotation, and says that this does

not affect the generality of his proof. We can always pass, he says,

and shows, from the general case in which the plane of the moments

does not contain the vertical, ft c, to the particular case in which it

does contain it; therefore, under all hypotheses, the expression given

for the radius of curvature, /3 c, is correct. He adds that we can at

will displace horizontally the area of the plane of notation, so long

as the centres of gravity and of buoyancy remain at the same height,

without varying either of the radii of curvature of the surface of

buoyancy for the given position of equilibrium.

* The above propositions may be conveniently expressed by the equations

—

i 2 A/3 dx _ I
r = V =

3 V '
;

' ~ V 5

where r and II represent the principal radii of curvature, and i and I the principal

moments of inertia of the plane of flotation.
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Dupin next enters upon an argument which has for its object to

show that no changes which it would be possible to make in the

figure of a floating body would at all alter its stability, all the while

they caused no variation in the distance of the centre of buoyancy

from the centre of gravity, nor in the curvature of the surface of

buoyancy about the given centre of buoyancy, the weight of the

body remaining constant. In pursuing this course of reasoning he

requires to make use of, and therefore he demonstrates, the general

property of projections of centres of gravity, afterwards applying it,

with much skill and ingenuity, to the purpose stated. As the

inquiry is almost wholly a geometrical exercise, and as the pro-

position to be demonstrated admits of readier proof, it is unnecessary

to reproduce the investigation here.

The next section of the MSmoire has to do with lines and radii

of curvature of the surface of flotation. He first lays down the

preliminary theorem, that, of all the tangent planes of a surface

which make the same infinitely small angle with the tangent plane

at a given point, the plane which lies most distant from that point

appertains to the line of least curvature, and the plane which lies

nearest belongs to the line of greatest curvature, observing in a

foot-note that, if we suppose these two lines of curvature to revolve

about the normal to the surface, at the given point, of the two lines

of least and greatest curvature, the former will envelope all the

surface about the point, and the latter will be constantly enveloped

by it. Dupin goes on to illustrate the principle by reference to

sections of curvature of bodies of cylindrical form, and proceeds to

show generally for infinitesimal angles and for irregular bodies (that

which he had previously shown for finite angles of inclination, viz.),

that (unless of cylindrical or other like section), a floating body,

when inclined from a position of equilibrium, has usually to seek a

new plane of flotation, separated from the former by a small interval,

in order to equalise the wedges of immersion and emersion. The
distance between this plane of flotation and a parallel plane through

the centre of gravity of the original plane of flotation is determined

(as we have already seen) by the obvious fact that this distance

multiplied by the area of the plane of flotation will give the small

volume of the layer lying between the two parallel planes ; and (as

the whole immersed volume must remain unaltered) the volume of

the layer must be equal to the difference between the volumes of

the wedges of immersion and emersion, supposing the second plane

of flotation to pass through the centre of gravity of the first.
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As has been already said, of all the planes of flotation making an

infinitesimal angle with the surface of flotation about F, Fig. 154,

that which makes the distance,
F^tl5Jf" F F', a maximum, is a tangent to

the line of least curvature, and

that which makes it a minimum
is a tangent to the line of greatest

curvature. Therefore, in order

to find at any point, F, the

directions of the lines of least and

greatest curvature of the surface

of flotation, it is sufficient to

determine for which plane of

flotation the thickness, F M, consequently the volume of the layer,

b B B' b\ and consequently also the difference of the wedges, a F b,

A F B is a minimum or a maximum.
If the body be a cylinder floating with its axis vertical, the

sides being everywhere parallel, the wedges of immersion and emer-

sion will always be equal without change of the point, F. Conse-

quently, if we regard such irregular figures as are shown at Figs.

155 and 156, in order that the difference of their two segments

Fig,l55.

Fig.156.

a F &, A F B, may be a maximum or minimum, it is sufficient to

make a maximum or a minimum of the total volumes of the

triangular parts, a b c, A B C comprised between the two planes of

flotation infinitesimally separated from each other, and the vertical
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cylinder having for its base the area of the plane of flotation, and

the sides, a b, A B of the floating body. To determine the volume

of these parts, extending throughout the length of the water-line

plane—for example, that of a b c—as the angle a c b differs but ex-

b c
tremely little from a right angle, let us call T the ratio —

Oj c

be X CC G
the tangent of angle b a c. Area of a b c = —^ , and there-

Qj G^
fore = T x Designating by d w the tangent of the infinitely

small angle made by the planes, a F A and b F B, we have,

a c = F a x d u\ Therefore,

,
7

(clwf(¥a) 2 T
area ot triangle a b g = J—~

.

If we multiply this product by d E, the thickness of an infinitesimal

volume compressed between two vertical planes parallel to a given

plane, we shall have,

for the volume of this element of the solid. The sum of such

elements will be the volume of the whole solid.

In order to give this expression a form more convenient for our

subsequent use, he supposes the triangular element to be divided

into parts of constant thickness inflnitesimally small, by planes

normal to the contour of the water-plane, and puts 6 for T, and d s

for an element of the contour of the plane of flotation, then the sum

of the elements
w

)
(-^ a

)
@
x g ^ wm total volume

required. Whence results, says our author, the remarkable

theorem :—
" If we apply to each point of the contour of the plane of flota-

tion, a weight proportional to the tangent, 6, of the angle which

the vertical forms, at this point, with the surface of the floating

body, a heavy continuous line will be produced; and the principal

axes of the greatest and least moments of inertia of this line will be

respectively parallel to the lines of least and of greatest curvature of

the surface of flotation."

It is evident, he says, that we shall have respectively for those

two axes, represented successively in projection by the point F,

d s x the constant (dw) 2 = a maximum or a minimum.
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Fig.151.

Dupin next finds the lengths of the radii of curvature of the

surface of flotation at the point F. He takes a small arc, F N K,

Fig. 157, of the osculatory circle coinciding with the radius of curva-

ture under consideration, of

which arc LN is the versed

sine; the tangent, F' N = F' F,

will differ from one-fourth of

the chord, FK, only by an

infinitesimal quantity of the

second order. Therefore, the

F L2
.

radius of the circle is

, , 2FF' 2

equal to .

2 LN
This is the

value of the radius sought.

To render it explicit, it should

be observed that d w, being the tangent of the angle formed by a A

and b B (Figs. 154 to 157), we have dw =^ = EIJ by nedect-

ing the indefinitely small quantities of the second order. Therefore,

FF' 1 , 2FF /2 2FM
Fi =» and IT =

(dwyz'
But the 1W F h

'

h B

B

'> of which

the volume is expressed by the primitive area of flotation, say A,

multiplied by the thickness, F M, is equal in volume to the trian-

gular element, of which the volume is the sum of the elements,

(dw)2
[ / \

2

~2~
J

® (^ /
" ^ ^ua**n& ^is w^n A x F M, we may thence

obtain

2F
/

6 (Faf.ds
(d w) 2

'

which last is therefore the value of the radius of curvature of the

surface
'
of flotation. But j 6 (Faj .dsis the moment of inertia of

the contour of the plane of flotation, supposing each element, d s,

thereof charged with a weight, as we just now saw. It follows

that if we divide the greatest or the least moment of inertia of the

contour of the plane of flotation, weighted proportionally to the

tangent, d, by the area of the plane of flotation, the quotient

obtained will be the radius of the least or greatest curvature of the

surface of flotation (multiplied by the unit of weight).

The next subject which engages Dupin's attention is that of the
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divers positions of equilibrium which a given body can take up in

floating upon a fluid. Hitherto he has considered the centre of

gravity to be movable at will ; he now regards it as occupying a

fixed position. Eecalling what has been previously demonstrated

with respect to the surface of buoyancy, and introducing the condi-

tion of a constant position for the centre of gravity, he lays down as

a first theorem this : The total number of positions of equilibrium

which a floating body of invariable form can take up is equal to the

number of normals to the surface of buoyancy, which can be drawn

from the centre of gravity. In determining how many of these

there can be, he supposes the body to be turned round any fixed

axis, horizontal or not, but passing through the centre of gravity.

For each position of the body there will be a corresponding centre

of buoyancy, and the ensemble of these will form a closed curve of

buoyancy. When a position of equilibrium is arrived at, the tangent

to the curve will always be horizontal. (But the normal to this

curve, drawn through the centre of gravity, may not now be an

absolute vertical, because of the axis being fixed.)

Eecalling the proposition before demonstrated—that the equili-

brium is stable when the distance of the centre of gravity from the

centre of buoyancy is a minimum, and unstable when that distance

is a maximum—-he takes the Fig. 158 and infers that the total

number of positions of equilibrium will be equal to the number of

normals which can be drawn from the centre of gravity, G, to the

curve of buoyancy, gg' g", &c, and the positions of equilibrium

(stable or unstable) are respectively those in which the length of the
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normals is a maximum or a minimum. He proceeds to prove that

the number of such normals which can be drawn from any point, G,

whatever is generally an even number.

And first he shows that the maxima and minima normals,

Gg, Gg', Gg", &c, must be successively less and greater than the

corresponding radii of curvature. He supposes that through G
straight lines are drawn to g/9 g, g', g", . . . &c, and that these

are set down in Fig. 158 from the base-line, h/f h, h', &c. (which is

an expansion of gy , g, g', &c.) at right angles to it. Then the points,

g„g9 g
f

,
&c, become i

y
,i,i', &c, the lengths Gg/9 Gg, Gg', &c,

becoming h
f
i

4 ,
hi, h' i\ &c, respectively. If two points, gt

and g,

indefinitely near each other, are placed on the curve, g, g', g" ,
&c,

at an equal distance from the point G, the two ordinates, h
/
i

/
and

h i, in the expansion will be equal, indefinitely near, and parallel.

Therefore the element, i
t
i of ii'' i''

',
&c, is, at i, perpendicular to the

ordinate, hi, whence follows this principle : To each point, g, where

Gg is normal to the curve, g, g\ g", &c, there corresponds a point,

h, at which the straight line, hi, is normal to the curve, ii' i", &c,

reciprocally. But when a curve, ii' i", &c, is put in relation to

rectangular co-ordinates, if we consider only the ordinates, hi, h' i',

h"i", &c, which are normal to the curve, they are alternately

greater and less than those immediately adjacent to them, at least

when there is no point of inflection. Therefore, if we determine the

length of all the normals, Gg, Ggn &c, which can be drawn from G
on gg' g", &c; and if we pass successively from one to the other,

travelling round the curve of buoyancy, these normals will be alter-

nately a maximum and a minimum in relation to the distances

from G to the intermediate points of the curve. But when one set

of lines which start from the same point are alternately a maximum
and a minimum, the number of maxima must evidently be equal to

the number of minima. Therefore, first, the total numbers of these

lines are even; and in any closed curve, gg' g", &c, the number of

normals which can be drawn from any point whatever is even.

Connecting all this with what was already proved, Dupin lays

down the theorems —
(1.) The total number of positions of equilibrium, around a fixed

axis, is an even number
;

(2.) In the equilibrium of a floating body of any figure whatever

moving round a fixed axis, the number of positions of stable

equilibrium is equal to the number of the unstable positions, and

these positions recur alternately.
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Dupin points out that the foregoing reasoning is open to the

objection that it does not hold unless the assumption that the

ordinates, hi, h'i',8zc., which are intersected at right angles by the

curve, i i! i", &c, are maxima or minima, which they are not

necessarily ; and he shows that a demonstration of the same

principle given by the famous Poisson, is open to the same objection.

The occurrence of a single case of mixed equilibrium, from which the

body may return to a position of stable equilibrium (or unstable, as

the case may be) without reaching the alternate position, so to

speak, would bring about an uneven number of positions of equi-

librium. To avoid this difficulty, Dupin suggests the treatment of

a case of mixed equilibrium as one in which there is a reunion of

stable and unstable equilibrium, which have moved up to one

another. Whether this view be adopted, or whether we " suppress by

thought," as he puts it, the case of mixed equilibrium, and leave it out

of consideration altogether, the generality of his demonstration would

remain. This he takes the pains to demonstrate in a simple manner.

The next consideration is the absolute number of positions of

equilibrium which are possible when the restriction of the axis being

fixed is removed. We have already seen (1) that the total number

of positions is equal to the total number of possible normals to the

surface of buoyancy from the centre of gravity
; (2) that, either of

these normals being vertical, the equilibrium is stable or unstable

according as its length (from the centre of gravity to the centre of

buoyancy) is a minimum or a maximum. To determine these,

suppose the body to revolve about any axis whatever through the

centre of gravity, and the surface of buoyancy thus made to describe

a surface embracing or enveloping all its successive positions. This

"envelope," and the surface of buoyancy will touch at a series of

points which will together form a closed curve, and at each of these

points the normal common to the surface of buoyancy and its

enveloping surface will pass through the axis. Among all the

normals common to the two surfaces we must find those which pass

through the centre of gravity of the body—the axis, be it re-

membered, passing always through this centre. We must now
suppose that the " nidridien" of the envelope has been determined,

and that from the centre of gravity we have to draw to this

"mdridien" all possible normals. We have just before dealt with a

problem of this kind ; we have seen (1) that the number of such

normals to a closed curve is even ; and (2) that they are alternately

a maximum and a minimum, in relation to the neighbouring

16
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normals through the centre of gravity. (Here the positions of

mixed equilibrium, which, as we just now saw, present a difficulty,

are regarded as double, or " suppressed by thought," as before). We
have now considered all the normals absolutely that can be drawn

from the centre of gravity to the surface of buoyancy. Since the

surface of revolution, which envelopes the surface of buoyancy,

touches it in all the points at which the normals intersect the axis

of revolution, there must be included among these points all those

for which the normals pass through a particular point of that axis

—the centre of gravity. But for each such point there is a position

of equilibrium. Hence we have now, in the most general form

possible, the principles established—(1) that the total number of

positions of equilibrium of any freely-floating body whatever is

always even; and (2) that positions of stable and unstable equili-

brium (neglecting cases of mixed equilibrium) alternate.

" Absolute stability exists," says Dupin, " only when all around

a given position of equilibrium, the floating body returns of itself to

that position, whatever may be the direction of the inclination given

to it. But the stability is relative only, if, in a single direction, the

body tends to move still further from its primitive position when

it undergoes the least disturbance. It follows from this that the

number of positions of absolute stability cannot, at most, exceed the

total number of positions of relative stability and absolute in-

stability." He then goes on to show that the number of positions

of equilibrium yielding absolute stability is always equal to the

number yielding absolute instability ; and also that a floating body,

whatever be its figure, can take at least one position of absolute

stability and one of absolute instability.

In demonstrating these propositions he employs a series of

imaginary spheres, having for their centre the centre of gravity

of the body, but of variable radii. When the sphere has the shortest

normal to the surface of buoyancy for its radius, it is in contact

tangentially with that surface internally, and indicates a position of

absolute stability. Since that surface is closed and continuous, an

exterior sphere, corresponding to this interior one, can be drawn,

touching the surface in at least one point, and marking a position of

absolute instability. If the radius of this variable sphere is supposed

to increase from its lesser to its greater value, it will become, at any

intermediate position of equilibrium, a tangential sphere to the

surface of buoyancy, and, according to the degree of its contact, will

determine a position of absolute or relative stability or instability.
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If it lies completely outside the surface at the vicinity of the point

of contact it makes absolute instability, and then, says Dupin, there

may always be found another sphere lying between it and the
largest sphere of all, and having internal contact, and there will

always be a corresponding position of absolute stability. He then
deals with the remaining possible cases, and rebuts some objections

to its generality, which may be brought against this method of

demonstration.

Hitherto have been considered only those inclinations which, for

a given position of equilibrium, have corresponded to the directions

of greatest and least stability. Dupin concludes by some remarks
upon intermediate positions of stability. In doing this he deter-

mines, for a position of equilibrium with its corresponding centre of

buoyancy, the indicatrix (Vellipse indicatrice) of the surface of

buoyancy. He designates as "conjugate stabilities" those which
the floating body will possess when inclined successively in

the direction of the two conjugate diameters of this indicatrix.

These stabilities possess this property, that their sum, taken two and
two, is constant, and is equal to the sum of the greatest and least

stabilities of the floating body. They are, therefore, connected with
the " principal stabilities " by an equation of the first degree. With
the demonstration of the property aforesaid, Dupin concludes his

extremely able and suggestive Mdmoire.
In devoting to that MSmoire so large an amount of space, we are

not unmindful that much of it is of an abstract character, and not
essential to the investigation of a ship's stability, because it is suffi-

cient for all practical purposes to calculate the stability of a ship (or

other such floating body) about one axis, or at most about two axes.

Still, as has been well said by Dr. Woolley, a thorough appreciation

of it " cannot fail to be of the greatest service to the naval architect

in giving depth and breadth to his views," and therefore we have
considered it desirable to set forth its substance at some length in a

comprehensive work of this description.

M. Emile Leclert, of Paris, in 1870,* placed before our Institution

of Naval Architects certain theorems respecting the geometry of

ships, which extended in an elegant manner Dupin's investigations

concerning the Surface of Flotation. Writing Dupin's expression for

the radius of curvature of the transverse section of this surface in

the form

* M. Leclert was then a professor- of the Ecole Imperiale du Genk Maritime , in Paris.
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(where d s indicates an infinitesimal element of the perimeter of the

water section, a the inclination of the ship's side to the vertical,

and £2 the area of the water section), he proceeded first to establish

certain new formulae of his own as consequences of (1), and after-

wards demonstrated them independently.

In deducing them from (1) he took the section of a body, as in

Fig. 159, with two parallel water-

planes, F L and 0 A, separated by

the distance, Az. Q, i being re-

spectively the area and moment of

inertia of the water-plane, F L,

which cuts off a volume of buoy-

ancy, V, we have d V = £2 d z. The

volume cut off by <p A, may be

called V + A V, and the moment

of inertia of the water-plane, (p A,

about its longitudinal axes, i + A i.

Now, if we project the two planes

of flotation through F L and <p A,

upon a horizontal water section, as

in Fig. 159, Ai will be the moment

of inertia of the area lying between

the projections. Let m n — d s an

elementary portion of the peri-

meter of F L, and draw m p and

n q normals to the perimeter. Then

0, being the ordinate and a the

angle made by the ship's side

with the vertical through m, we

have

m p — A z tan. a.

Area mn p q * == Az tan. ads

Ai = 2 2/
2 A 2 tan. ads

A z S y
1 tan. a d s.

d % f

Whence j f^ « d s -

* Neglecting small quantities of the 2nd order
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Consequently, by virtue of equation (1)

1 d i

£2 dz

d%
~ dY

Transforming this equation, and employing it in connection with

Dupin's expression for the radius of curvature of the curve of
V

buoyancy, viz., r —
y, we may write

d i i
:

IT ~~T
Ydi - idY

r
i ~

T

Whence

YdY

FigJGO.

To this last formula M. Leclert gives preference, as it expresses r
1

in terms of the quantities r and V, which are usually shown in the

French calculations for various values of z.

In establishing this formula independently, M. Leclert employed

Fig. 160, and 1st, for a volume of displacement, V, took F L as the

upright water section, and F
1
L

x

as a water section inclined to

it at a very small angle, 0

C and G
1
were the correspond-

ing centres of buoyancy, m the

metacentre, and r the height

m 0. 2nd, for a volume of

displacement, Y+AYV the up-

right water section was 0 A,

the slightly inclined one, fa \v
and r+A r, the height, y jul.

Call the centres of buoyancy

of the slices comprised between

the upright and the inclined

water sections respectively A and a.

* Messrs. White and John make the just observation that this expression for the

radius of curvature of the surface of buoyancy is quite in accordance with their own
statement that cusps will occur in the curve of flotation, " seeing that whenever the

edge of the deck of a ship becomes immersed there is a break in the continuity." They
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The point of intersection, O, of the lines A 0, perpendicular to

F L and a O, perpendicular to F
x
L

1?
tends to coincidence with the

centre of curvature of the surface of notation corresponding to V as

A V approaches zero ; and at the same time A 0 tends to equality

with r
t ; yx

lies on the straight line, G
1
a, and since Oa

}
julj1 m G

t
are

parallel, the point fx divides the distance, mO, in the same ratio as y
divides 0 A, and we thus obtain this set of equations, viz.:

—

OmJAJm-C A V+ A V
m /ul~~ G y~ m jui— Gy ~~ AV

We have also

Om-CA=(Om+Am)-(CA+Am) =OA-Cm=OA-r;
and m ^-Cy~(ym+m/i)-(C y+ ym) = yim— Gm=Ar.
The two last terms of the set of equations among the ratios enable

us to write down
OA-r ^ Y+AY
Ar AY ;

or OA-r=(Y+AY)^"
In the limit this becomes

rT dr

which agrees with formula (2).

"This method of calculation," says Professor Leclert, "is that

which is usual in such cases—-to take for =—— the ratio —= rela-
te V A V

tively to two consecutive groups of simultaneous values of r and V.

It is very easy, moreover, to draw a curve of which V is the abscissa

and r the ordinate. Theoretically, formula (2) gives, with the help

of this curve, a very simple construction for r, whatever be the

scales oil which V and r are set off. In any case such a curve will

be a graphic auxiliary to the computation above-mentioned."

In what has gone before the vessel has only been considered as

upright. If it were inclined, the analogous expressions correspond-

ing to those for r
y
r
x
would be those for the radii of curvature of the

go on to observe that, "at the water section passing through the edge of the

deck, any increase in the immersion, and consequently in the displacement, is

accompanied by a decrease in the moment of inertia; whereas, at smaller inclinations,

an increase in immersion and displacement is accompanied by an increase in the

moment of inertia. Hence, it is clear that a change in sign of radius of curvature

occurs at the angle where the edge of deck is immersed, and this points to a cusp,

or some singular point."
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Fig.161

.

curves of buoyancy and flotation corresponding to the given inclina-

tion. This the author shows by a demonstration appended to his

paper.

Professor Leclert points out also that we can pass in succession

from the upright to any series of inclined positions by calculating

for each of them, such as F' 1/ (Fig. 161), the position of its centre

of gravity, A", and the radius

of curvature of the curve of

buoyancy; because, if F"L",

making a small angle, 6, with

F'L' cuts off the same dis-

placement, it will cut F' 1/ at

a point, a!, such that

A' a' = r/. tan. \ 9,

r' — y will be the radius of

curvature of the curve of buoy-

ancy ; and = r' + V

will be the radius of curvature of the envelope of flotation. The

ratio, employed for getting the coefficient, will be found by

means of one or two auxiliary water-plane sections parallel to F' I/,

and very near to it.

The desirability of checking the last of the inclined sections

does not escape the notice of M. Leclert, who recommends its verifi-

cation by a direct calculation of the volume of displacement by some

ordinary method. If a correction is found necessary, it can be

attended by any other necessary corrections of the intermediate

sections by means of interpolations obtained with the help of the

auxiliary water sections. " They may even be settled," he observes,

" by the simple consideration of the continuous character of the varia-

tion of the lengths, A' a', a' A", A" a", ... in consequence of

the equality of the angles, 0, which the successive water sections,

F'L', F"L", F'"L'", . . . make with one another." The

author (doubtless having in mind the beautiful process.of M. Beech*)

goes on to add that there are not wanting methods of tracing the

evolute of the curve of buoyancy by means of the calculated lengths

of the radii of curvature, r, r\ &c, of that curve. If it should

* To be fully given in the next chapter.
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become necessary to plot the flotation envelope and the evolute of

the curve of buoyancy for various values of V, it would obviously

be easy to give the extension necessary for this purpose to the

artifice of introducing the auxiliary water-plane sections just ad-

verted to.

The great merit of Professor Leclert's formulae no doubt is, that

they connect the surfaces of buoyancy and flotation in a novel and

elegant, although not at all in a surprising, manner (for the intimate

relations of the two surfaces must often have been vaguely conjec-

tured before), and thus, in addition to any value they may possess

in the calculations of the naval architect, lead, as he says, "as a

question of pure analysis, to some interesting considerations relating

to the geometrical interdependence of these two classes of surfaces."

It is only necessary to add that by using capitals for the longi-

tudinal radii of curvature, in lieu of the small letters employed for

the transverse radii, we may complete M. Leclert's formulae by

writing down the following equations :—

dl
«

; and Bj = R + V
d V dV
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CHAPTER XIII.

French Systems of Calculating Stability—Dargnies 5 Method—Determination of Radii

of Curvature—Reech's Method of Co-ordinates—Risbec's System of Calculation

—Translation of Reech's Memoire—Risbec's Note on Reech's Memoire—-*

Explanation of Risbec's Calculation Form—Ferranty's Investigations.

We have seen that the exact calculation of a ship's stability at

various finite angles of inclination by the English method originated

by Atwood, involves the detailed calculation of the volumes and

centres of gravity of the wedges of immersion and emersion, com-

monly known as the Ins and the Outs, at the respective angles of

inclination. The employment of the "Amsler Integrator" has so

greatly reduced the expenditure of labour and time requisite for the

performance of all such calculations, as previously stated, that ap-

proximate methods of estimating stability will now be less sought

for or considered than they were previously. But other systems of

calculation which avoid the labour of calculating the ins and outs are

nevertheless of great interest and importance, even when they are

but approximate, and deserve the careful study of all those who
would become masters of this subject. Among the most instructive

and valuable of such approximate systems are those which grow out

of the consideration that the metacentric is the evolute of the curve

of buoyancy, traced out by the extremities of successive radii of

curvature of that curve, and that the righting levers of stability are

the perpendiculars successively let fall from the centre of gravity

upon these radii.

In France the science of stability has undergone some important

and highly interesting developments in the direction thus suggested,

the earliest of these, so far as we can trace, having been attempted

by the late M. G. Dargnies, naval architect of the Messageries Im-

perials at La Ciotat, and formerly a pupil of the Ecole $application

du Genie Maritime, as long ago as 1863, at which time—some of

our English naval architects will be surprised to hear—stability

calculations were made in France for angles of 10, 20, 30, and 40
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degrees, and for four or five different draughts of water, from the

light up to the load draught. The method of M. Dargnies essentially

consists in calculating the several radii of curvature of the curve of

buoyancy (from the water-line area and the displacement), and in

then laying down by means of them, and, by a kind of trial and

error process (" tdtonnement ") the evolute of the curve of buoyancy;

or, in other words, the metacentric. He therefore dispenses with

the calculation of the positions of the centres of buoyancy, and thus

greatly reduces the work.

The method which he adopts is based upon the principle that

the length of an arc of the evolute or " metacentric " is equal to the

difference of the radii of curvature of the involute corresponding to

the extremities of the arc. After having found the length of the

radii of curvature (instead of the curve of buoyancy) for the inclina-

tions 0°, 10°, 20°, &c, he constructs the metacentric evolute by means

of the successive differences of these radii only. Let m, Fig. 162, be

the metacentre of the upright position of the ship. Supposing the

lengths known are m A, A B, B C, &c, he determines the points of

intersection a, b, c, &c, of the tangents to the evolute in such manner

that the lengths ma, a A, A 6, &B, Be, cC, form a continuous

series. This process he regards as sufficiently exact, especially for

the part of the curve near the point of departure, m. In order to

determine the various radii of curvature of the curve of buoyancy

he proceeds as follows:—AB, Fig. 163, is the horizontal plane of

flotation corresponding to the given displacement; he finds (in a

manner not very unlike that pursued in this country) the plane of
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flotation, C D, inclined at 10° and corresponding to the same dis-

placement; also the centre of gravity, G, of this plane of flotation,

and the length of the corresponding radius of curvature. The curve

enveloped by the planes of flotation (or "curve of flotation") is

tangential to A B at 0, and to C D at G. The positions of the three

points, 0, a, G, enable us to determine very approximately the

point, b, where the plane of flotation, C D, is intersected by the plane

of flotation, E F, and thence the area of that plane of flotation

and the radius of curvature at the corresponding point of the

curve of buoyancy. Before tracing by the same process the plane

of flotation, KH, inclined at 30°, we should modify the posi-

tion of the point, b, if necessary, in accordance with the position

of the point, G. The calculations may be similarly pursued as far

as desired.

In order to study the evolute of a ship in a complete manner, it

suflices, on this plan of M. Dargnies, to find the metacentric radii for

the inclinations, 0°, 10°, 20°, 30, and 40°, for the displacements cor-

responding to the various water-lines. After having obtained all

these values, it is well to verify them (and here we come to a very

important part of the system of M. Dargnies) by drawing two series

of curves, each series comprising as many curves in the one case as

there are different draughts of water, and in the other as there are

different angular positions, viz.:

—

I. Curves corresponding to a constant displacement, having for

ordinates the metacentric radii, and for abscissae the angles of

inclination.

II. Curves corresponding to a constant inclination, having for

ordinates the metacentric radii, and for abscissae the draughts of

water.

The ensembles of these curves indicate the general form, and

the transformations of the evolutes, for all the region comprised

between the launching and load-line planes of flotation. The points

of change of curvature (cusps) are determined by the maxima and

minima of the curves of the series I., and by the envelope of the

curves of series II. The curves of series II. enable us to draw

immediately the evolute for any draught of water whatever

comprised between the light draught of water and the load

draught.
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The method pursued by M. Dargnies was submitted by him

to the consideration of M. Reech, then at the head of the Ecole

d' Application du Genie Maritime, whose distinguished labours in

that position are held in the highest esteem by all those who had

the advantage of coming within the sphere of his professional

influence. We have not been able to obtain any published record

of M. Reech's writings on this subject, but we are able to give on

good authority the following account of his labours in connection

with this investigation, and our readers will soon discover that these

labours have resulted in a very beautiful and valuable extension of

the theory of stability.*

M. Reech, while recognising and allowing the merit of M.

Dargnies' proposals, and attracted by the value of his graphic mode

of representation, at the same time adopting the polar equation

principle, was led by his further study of the subject to dismiss

all consideration of the evolute, and to substitute for it a rigidly

correct determination of the vertical and horizontal co-ordinates of

the centre of buoyancy for the inclined positions of the ship. He
formally described two methods, but as they were, in fact, really

one and the same in substance, his process may here be considered

as one only. It is founded on the principle of graphical representa-

tions, by which geometrical interpolations are readily made. He
observed that if the value of p (the radius of curvature) for any angle

and draught be known, the corresponding co-ordinates (vertical and

horizontal, with reference to the upright position of the ship) of

the corresponding inclined centre of buoyancy can be found from an

application of the well-known theorem, that, if d s be an elementary

portion of the length of the curve of buoyancy, ds = pdO, and it

readily follows (since this radius is a normal to the curve),

that dy = ds cos. 0 = p cos. 0 d 0,

dz = ds sin. 0 = p sin. 6d9,

y being measured horizontally from, and z vertically on, the axis of

the vessel. Hence, yx
= / p cos. OdO; z

% = p sin. 0d6
} y1

and
Jo J 0

* M. Reech's paper was in fact printed in the Memorial du Genie Maritime

(3me Livraison, 1864, page 168), but of this wehavenot been able to obtain a copy (1883). f

t Since the above was written, we have, through the courtesy and good offices of

M. Daymard, obtained a copy of M. Reech's Paper, and the assent of its venerable

author to make it public in this work. We produce it further on in this chapter (1884).
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z
x
being these co-ordinates for an angle of inclination, Qv Hence, a

sufficient number of values of p being found, and p cos. 6, p sin. 6

being obtained—graphically, as M. Reech proposes— the correspond-

ing values of y1
and z

1
are at once obtained by the usual rules for

approximation.

M. Eeech got over the difficulty of calculating the radii of

curvature at each angle of inclination for a constant displacement

very ingeniously. His process requires that a scale of displacement,

extending of course beyond the load-draught, be laid down, and a

sufficient number of centres of buoyancy be calculated at the same

time. If, then, z, being the draught of water, and yv z
1
the co-

ordinates of the centre of buoyancy be known, he proposes to lay

down curves F (z,y
x )
= 0, and F (0,%) = 0. Hence, if a sufficient

number of values of y1
and zv corresponding to any value of z be

found, curves may be constructed having their draughts for abscissas,

and for ordinates the corresponding value of yx
and zv and therefore

enabling us to find y1
and z

1
for any other values of z.

Hence it follows that we are not limited to finding the radii of

curvature and corresponding values of y1
and z

l
for a constant

draught (or displacement) for different angles of inclination
;

but, if

we can find them for different draughts corresponding to different

angles of inclination, the above curve can be constructed with these

data, and the values of yx
and z

x
corresponding to the same draught

can be taken off from these curves; and so the curve of buoyancy,

in the ordinary meaning of the term, i.e., for a constant volume, can

be constructed.

He therefore draws water-lines, always through the axis of

symmetry of the upright line of flotation, inclined at the different

angles of 10°, 20°, 30°, 40°, and more, if requisite ; calculates the

corresponding volumes, and therefore draughts; and the corresponding

radii of curvature; and all the elements of these auxiliary curves

are then found.

Thus, if for an inclination, 0, the ordinates along the in and out

scale be measured, and called y' and y" respectively, and

A be put for
j
y' dx + j y" dx,

and C „ „ „ i f y'* dx + i (y" s dx;
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and if v be the volume of displacement in the upright position, and

V that for angle Q1

Y = v + f
1

BdQ,
J o

C-— c-~
and p = — y —

v+ BdQ
J 0

Hence, when for a sufficient number of values of B, / B d 0,
J o

has been obtained by summation in the ordinary way, v + I B d 0,
J o

or the volume of displacement is found ; the corresponding draught,

z + $ z (z being that for v) is taken from the scale of displacement

;

p calculated as above, can be laid down as an ordinate. The curve

connecting z and p can be laid down, if necessary ; but by using the

above value of p in the equations,

Vi = \ p cos. 6 d 0, and z
1
— I p sin. 0 d 0,

Jo Jo

and erecting y1 and zx as ordinates in the several curves correspond-

ing to the draught, z + 8 z, these two subsidiary curves F (z, zx)
— 0,

F' (y, 2/1) = 0, can be laid down, and the values of zx
and yv corre-

sponding to the draught, z, can be taken off from the curve.

Hence all the elements for calculating stability are obtained.

This process is rigorous, and seems to offer great advantages for

calculation.

When 2/1 and zv corresponding to an angle, 0l7 and to a given

draught, z, for the upright position (i.e., corresponding to a volume

equal to the volume in the upright position with draught z) are

known ; if C be the corresponding centre of buoyancy for the

upright position, the length of the perpendicular from C on the

normal = y1 cos. 0X + z± sin. 0X ; and if (a) be the distance C G (G

being the centre of gravity of the ship), then the arm of the righting

couple — 2/1 cos. 0i + zx sin. 01
— a sin. 6V

Those of our readers who have read with care the foregoing

exposition of the system of M. Beech will probably be disposed to

agree with a very eminent English authority on the subject, Dr

Joseph Woolley, who, in a note to us, says—" Beech's method is so

simple, and founded on so well-known a property, that it seems

wonderful that it never occurred to any one before." He adds, " I
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am convinced that if ever the present system of calculating stability

in this country be superseded, it will be by Beech's, or some other

founded on it and equivalent to it."

The advantages of the system were so striking that it was not

long in becoming practically adopted in France, and in 1870, M.

Kisbec, whose labours in naval science are well known and much

esteemed in this country, prepared a paper upon the method,

together with a Calculation Form for use in applying it. M.

Bisbec, having pointed out the length of the calculations by which

alone particulars of a ship's stability could previously be ascertained,

went on to say that the method of M. Beech had removed this

difficulty and made it possible to carry out the full calculation of a

ship's stability (with the aid of tables of squares and cubes) as easily

as the ordinary calculations of displacements, &c.

M. Bisbec's method involves the use of the Trapezoidal Bule in

obtaining the values of I B d 6, y1
and zv which is equivalent to

J o

joining the points of a curve in each section by straight lines, and

assuming the area to be equal to the sum of the triangles so found,

thus ignoring the segmental areas included between these chords

and the curve. This degree of approximation has been deliberately

adopted by the highly-accomplished naval architects of France as

being amply sufficient, and it certainly possesses the merit of making

calculations simple and easy. If, however, a closer approximation

be deemed desirable, by taking an additional number of water-lines,

bisecting the angles contained by the others (inclined successively

at 10°) we can readily apply Simpson's rule. The additional labour

of taking off from the body-plan additional ordinates, and enlarging

the rule, is not very great, and in the estimation of most English

naval architects would be considered fully compensated by the

increased accuracy of the result. We reproduce, however (later on

in this chapter), on a reduced scale, the form employed in France

for carrying out M. Beech's method.

Looking to the remarkable character and great value of M.

Beech's Mdmoire, we will now reproduce it, as promised a few pages

back in a foot-note, with but very slight abbreviations, and still

slighter departures from an exact translation of the original :—
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CONSTRUCTION OF METACENTRIC EVOLUTES FOR A VESSEL UNDER DIFFERENT

Conditions of Lading. By M. Reech, late Directeur de VEcole cVapplication

du Ginie Maritime.

Paris, 16th February, 1864.

I.

M. Dargnies, IngSnieur de la Cif des Messageries Imperiales at la Ciotat, late free

student at the Ecole d1

applications du Genie Maritime, has submitted for my approval

some pages of text and figures relating to the construction of the metacentric

evolutes . . . under different conditions of lading. The calculations have been

worked out for inclinations of 10, 20, 30, and 40 degrees.

It is well known what a long and tedious operation it would be to obtain the

important results arrived at by M. Dargnies, if, in conformity with the definitions

and rules in common use, each of the volumes of displacement, V, were divided into

parallel layers, in order to determine the co-ordinates of the centres of buoyancy. It

is well known also, that in that case, the curves of centres of buoyancy could be

drawn, and the evolutes of these curves determined graphically, without its being

necessary to calculate the radii of curvature, p, of the curves of centres of buoy-

ancy.

M. Dargnies has been able to avoid the long operations just spoken of by pro-

ceeding in an inverse manner, that is to say, by calculating the radii of curva-

ture p, and constructing the metacentric evolutes immediately, without troubling

himself about the positions of the centres of buoyancy.

The shortness of M. Dargnies' procedure is due to this, that the author deter-

mines simply enough, and with a degree of approximation doubtless sufficient, each

of the planes of flotation, which, at inclinations of 10, 20, 30, and 40 degrees, cut off

the same volume, V, of the lower part of the ship. It is necessary to calculate the

position of the centre of gravity of the area of each of the planes of flotation. The

author also advises the direct verification (with all the tediousness that would entail)

of the position of the last plane of flotation inclined at 40°, and the making of slight

rectifications, if necessary, before calculating definitely the values of p by means of

the known formula

—

hfy'*dx ±iy"*dx

y\ y" being the ordinates of a plane of flotation, about an axis passed longitudinally

through the centre of the area of flotation.

The values found for p are set off as abscissas upon horizontal straight lines, of

which the heights, z, are the draughts of water corresponding to the volume, V, of

displacement in the upright position of the vessel. M. Dargnies thus obtains auxiliary

curves, by means of which he can obtain graphically the values of p for any given

value of V between the light and load conditions at inclinations respectively equal to

0, 10, 20, 30, and 40 degrees. Other auxiliary curves enable him to obtain the inter-

mediate values of p for any given inclination, of the ship from 0 to 40 degrees. By
means of the known values of p for the same value of V at different inclinations, and

by conforming to certain graphic rules of interpolation, the author constructs a meta-

centric evolute, the form of which seems to be such that it should inspire a degree of

confidence generally sufficient. The work of M. Dargnies is worthy of praise, and

deserves, in my opinion, to be inserted in the Memorial du Gdnie Maritime, and the

more so, as in my last revision of the course on the stability of floating bodies, I have

developed with some minuteness the following considerations
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Let us suppose that a certain relation, such as p = / (<?), has been found to exist
between the radius of curvature, p, of a curve of centres of buoyancy and the corre-
sponding inclination, 0, of a ship. Let us take y, z, to be the rectangular co-ordinates
of

^

the extremity of an arc, s, of the curve of centres of buoyancy. Let us con-
ceive the axis of z as being directed vertically upwards in the initial position of
equilibrium, through the corresponding centre of buoyancy as origin (Fig. 164), we
shall have

:

d s = p d 0,

dy = ds cos. 0 = p cos. 0 d 0,

dz = d s sin. 0 = p sin. 0 d 0,

and integrating from 0 = 0 to 0 — 0,

y' = J 9 cos. 0 d 0,

p sin. 0 d 0.

It will be easy to construct a curve

of which the radii vectores, starting

from a point as origin, shall be the

values of p, making angles, 0, with
a fixed straight line. It will also

be easy to pass through different points of such a curve straight lines perpendicular
and parallel to the fixed straight line, in such a manner as to find the values of the
products, p cos. 0, p sin. 0.

^

Again, it will be easy to trace two other curves of which the rectangular co-
ordinates, x, y, shall be such as to give respectively—

x = 0 y = p cos. 0,

and x = 0 y ~ p sin. 0.

Lastly, we shall be able to determine the areas of these curves, that is to say, the
integrals,

c'

y dx,

which will be the value of the co-ordinates, yl3 zly of the curve, s, of the centres of
buoyancy. ^When a series of points, yu zu are known, as well as the inclinations, 0,

of the radii of curvature, p, passing through these points, we can construct at the
same time a curve of centres of buoyancy, and the evolute of that curve.

These considerations on the subject of an expression of the form, p =f(0), are
evidently allied to the procedure of M. Dargnies. They serve to complete this pro-
cedure in a manner rigorously satisfactory; that is why I think that the whole
deserves to be inserted in the Memorial du Genie Maritime.

II.

Reflection on what is new and convenient in M. Dargnies' procedure shows that
the principal auxiliary curves of the author, those of which the co-ordinates are

{> and z, could be determined without its being necessary that the different inclined
lines of flotation at 0°, 10°, 20°, 30°, and 40° respectively, should each cut off a volume
equal to V. There is reason, therefore, to suppose that the procedure of M. Dargnies
is susceptible of advantageous modification, and that the system of operation at the
same time most convenient and most exact by which to determine the metacentric
evolutes of a vessel is decidedly the following

17
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Let us call V the volume of displacement, /E I, Fig. 165, which, in the upright

position of the ship, will correspond to a draught of water, 0 1 = Z. Let us suppose

that the operations necessary to obtain a scale of volumes (displacements) have "been

performed, so that such corresponding values of V and of Z as we may require can

be obtained. Let us consider particularly the line of flotation, fl, of one of the

volumes V; and represent the axis of symmetry of the line, fl, in the diametral

plane by I, Fig. 165. Let us draw through this axis a series of radial planes, F' L',

FigL..16S.

F"L" . . ; making angles respectively equal to d6, 2d0, Zd6, . . . with

the plane, f 1.

Let F L be any one of these oblique lines of flotation. Let us take from the plan

of the ship the ordinates y
r on the starboard side, and the ordinates y" on the port

side of the plane, F L. Let us consider the common line of intersection of the planes,

fl, F'L', F" L" . . . as the axis of x, and let us calculate by means of the

method of quadratures, for each of the lines, F L, three quantities, A, B, G, such

that we may have respectively—

A

B

y
f dx + I y" dx,

= \ j
y' 2 dx - i j

y" 2 dx,

G = i y'
3 dx + i y

n
* dx.

In this manner A will be the area of the plane of flotation, F L.

Calling n the distance of the centre of figure of the area, A, from the axis of x,

we shall have
B

n ~ A'

Calling d V the difference of the volumes of the wedges comprised between the

plane. F L, and a subsequent plane, we shall have
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The volume of displacement cut off by a plane of flotation, FL, will be

therefore

V = v + I Bdd.
J o

Evidently to find the values of V, it will be necessary to take the trouble to

determine the areas of an auxiliary curve of which the rectangular co-ordinates, x, y,

will be x = 4, y = B. Such an auxiliary curve being supposed to be constructed, we

can have recourse to the method of quadratures in order to determine the values of

the integral

—

y dx = j Bdi,

and consequently the values of V.

The moment of inertia of an area, A, about a straight line drawn through the

centre of figure of the area, A, parallel to the axis of x will be

C - A v
2

,

and consequently we shall find the value of p by putting

B 2

_ C - Ai? 2 _ 0 -Bq C ~A
p— y ~ V 7d

~*

v + I B d 6

" o

As the scale of volumes gives the draught of water, z, which, in the upright position

of the ship, will correspond to any value, V, of the volume of displacement, it will be

easy to construct a point of which the co-ordinates will be p and z for any given

value of 6.

Supposing the operations just described to have been performed, first for a

certain value of v and for different values of 6, then for other values of v, and for

the same values of 6, we shall arrive at the construction of the same auxiliary lines,

and consequently the same final lines, as those of M. Dargnies. We shall arrive at it

by the aid of a regular procedure perfectly exact, without any experiment.

It should be remarked that the numerator of the expression for p may be

calculated differently by means of the following equivalent expression:

—

i P (y
f ~ dx + ± p (y

u + ^ dx.

III.

If we call h the depth of the centre of buoyancy, C (Fig. 165), of one of the

volumes, v
9
below the plane, fl, and yi, %i, the co-ordinates of the centre of buoy-

ancy, Ci, of the volume, V,* with reference to a point in the axis, I, of the line fl,

as origin, we can easily obtain the following relations:

—

* The volume V is the sum of % and an infinity of prisms constructed with dx for height upon a

triangular base of an extent equal to the product,

The horizontal and vertical distances of the centre of gravity of the prism from the axis of x are-=

| y cos. 6 and § y sin. 8.

The two moments of a prism are consequently—

| ?/3 cos. 9 d 9 dx and § y% sin. 9 d9 dx.

Integrating first with regard to x, then with regard to 9, and taking account of the moment of the

volume v, we obtain the expressions given above for Xi, Zi.
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VYi= C cos. & d 6,

J o

f
d

YZi = vh+ I sin. 6 d &.

J o

As already explained, we have

f
9

V = v +
J

B d
Jo

Consequently it will not be difficult to find the values of Yi, Zi, provided that we

have determined beforehand the volumes, v, as well as the positions of the centres of

gravity of the volumes, v.

These new equations will be sufficiently simple to be developed numerically if,

instead of calculating the values of p, we choose to construct auxiliary curves, of

which the co-ordinates will be respectively

(Yl5 Z) and (Z 1? Z),

for the same values of V and for a common value of L

Supposing such auxiliary curves to be constructed, it will be easy to find the

values of Y and Z, which will correspond to the same value of V for different values

of L It will consequently be easy to construct different curves of centres of

buoyancy, and at the same time the evolutes of these lines.

We thus obtain a second mode of operations which will be still more simple than

the preceding, if we are not anxious to calculate the values of p. On the contrary, if

we do wish to calculate the values of p, it will be preferable to return to the expres-

sions for Yx ,
Zu and develop numerically those of y ti zj, which are—

rO

I
p cos. 6 d @

J o

f
B

I p sin. & d L
J o

IV.

That which distinguishes the two processes which I have just made known, from

those generally in use, is the employment of polar co-ordinates from the light line of

flotation, f0 l0 , to the load line of flotation, fx lx ; also the inutility of making oblique

sections of the volume of a ship above the axis of the line, fo 1$.

That which distinguishes the same two processes from that of M. Dargnies is

simplicity and exactitude, and consequently the complete absence of tentative

processes.

I do not see that it is possible to do better than use one or other of the processes

which have been explained ; but it may be useful to add to what has been said some

means of checking the determination of the values of V, and of those of V Yi,

VZ X .
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Let us consider two volumes of displacement, V, V', cut off^by
[
parallel

planes, PL, F'L', Fig. 166. The

volume, V, may be considered as

being the sum of V and an infinity of

parallel slices, forwhich the differential

expression is

—

A dz cos. 6.

We shall have, consequently,

V - V = cos.
0J

Adz.

The co-ordinates of the centre of

gravity of a differential slice, with

reference to the origin, 0, of the

draughts of water, z, in the longitudinal

middle-line plane are—

-

v cos. 6, z + n sin. L

If we call (Y, Z), (Yy

,
Z'), the corresponding co-ordinates of the centres of gravity of

the volumes, Y, V', we shall have—

V Y' - VY- Adx cos. 6
} r\ cos. 4 = cos. 2 6

V'Z' - VZ = J Adz cos. e (z + n sin. 0) = cos. e I Az dz + cos. 4 sin. A B dz,

J z J z J z

These expressions will serve to find the quantities, V', V'Y', V'Z', when the

corresponding values of V, V Y, V Z, are known ; but the operations to be performed

will be far less simple than those of the polar integrations previously discussed.

The results of the two systems of operations not being at variance, there must be

certain relations between the different integrals, which will extend from ztoz', and

from 0 to 6; but nothing would be gained by developing these relations algebraically.

Their existence is due to the fact that in taking at the same time from the plan of the

vessel the horizontal ordinates, y, of the lines of flotation, fl,f
f V . . Fig. 155,

and the oblique ordinates, y, y", of the inclined lines of flotation, FL, F'L', we
obtain lengths which are implicitly dependent upon one another.

Consequently certain relations must exist between the values of the integrals

which are dependent upon y and upon z only, and between those which are dependent

upon y
f

,
y", z and 6,

The only developments upon which, I think, I should dwell in connection with

this subject, have for their object to make it clear that when we restrict the value of

V to a constant, the expressions for Yi, Zi, agree with those for yl9 z\ t

Let us represent by/E I, F E L, F' E L', Fig. 167, displacements, the volumes of

which are respectively v, V, and V + d V. I and I' are the projections oftwo parallel

straight lines through which the diametral plane is cut by the planes, FL, F'L'.

Let us draw through the straight line projected in F, a plane, Fi Li, parallel to F L :

we have—
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Mcj.167.

Z = OI.

^ = angle L

1

1— angle L i I;

d 6 = angle L' I' Lx = angle X/ i L;

cZs = 1 1'
5

and dV = Ads cos. & + Ayd0 - A (dz cos. ^ + *kU)

It is geometrically evident from Fig. 157, that we shall have dz cos. 0 = il, dL

Tims we see that the expression, d V, is reduced to

d V = A (il + n) dt.

Let y (Fig. 167) be the centre of figure of the area A, and let us call m the

distance, iy,
we shall have rji = i I + y,

and consequently dV = A n\ d 6,

Consequently, if we wish V to be constant, we must have vi — 0. That means that

the line of intersection, i, of the planes, FL, F'L', must pass through the centre

of figure of the area, A, of the line of notation, F L.

The value of d z, which will be dependent upon the condition, ij x = 0, will be

such that we shall have

—

B
7

d z cos. 6 = — n d & — -
j£
d 6.

This granted, VYi, VZ l5 being the moments of the volume, FEL, and V'Y y

l5

V'Z'i, those of the volume, F/EL', if we consider as the origin the point, I, we find

easily,

VY'i - VYi = Adz cos. 6 x tj cos. 0 + C cos. 0 d 0;

VZ'i - VZi = Adz cos. 0 x y sin. 6 + 0 sin. d 0.

That becomes again,

d (VYi) = B cos. 2
^ + C cos. 6 d 6

;

d (V

2

X) = B cos. 4 sin. 0 dz + C sin. ^> d 4.
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If we differentiate the expressions for yi, z±, we find

—

d yi = p cos. 6 d 6
;

d Z\ = p sin. 4 c£ L

But in that case it is understood that we have

V = constant.

In order that V may be constant, we must have

B
dz cos. & — -y]d&— -r- cU

;

and then the differential expressions for Yl5 Zi, become again—

VdY1 = (c cos. Od 0;

YdZ t = (p~~^ sin. 6d6.

Thus we see that it is necessary and sufficient to have the known relation,

>-?
P = 3

v
in order to get

dYi — dyi ; dZi = d z±.

(Reech.)

Having thus given the valuable investigations of M. Reech, it

will be well to add the following translation of part of M. Eisbec's

note upon it :—

"M. Reech's method rests upon this observation, that, if we consider only the

planes of flotation perpendicular to the transverse vertical plane of the ship, any plane

whatever will be completely determined by the angle, 6, which it makes with the

horizontal, and by the volume, V, which it cuts off. It follows that all the quantities

that are dependent upon the volume cut off by this plane are solely functions of the

two independent variables, 6 and V. So that for one of these quantities, Z—f(J\ V),

it is only necessary to perform a certain number of numerical operations (and the most

convenient will be chosen) in order to arrive at the graphic knowledge of the surface,

Z —f{h V), and hence the possibility of finding immediately the value of Z for such

values as we please of 6 and of V. In reality, we do not procure first of all for

independent variable the quantity, V (which must be calculated), but the draught of

water (I) relative to the line in which the plane drawn at an angle, 6, cuts the vertical

longitudinal plane. But we shall see that, the values of V being known, we are

obliged in the graphic construction to use t in the condition of a function of V and

of 0, which are the true independent variables.

"The most convenient choice of the series of volumes, upon which to perform the

numerical operations, seems to be that indicated in the first case by M. Reech ;
it

consists, starting from one of the horizontal water-lines, in drawing through its axis

of symmetry a series of planes making equal angles with one another, and operating

by successive summations upon the whole of the volumes thus cut off. M. Reech

gives the formula by which can be calculated for each of these volumes—1st, its

volume ; 2nd, the co-ordinates of its centres of buoyancy ; 3rd, the corresponding

metacentric height.
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"The Table (which will be found at the end of this volume) is only the realisation
of the type of calculation which results from these formula? after their transformation
by the practical method of quadrature.

"The calculation will have to be repeated upon a certain number of identical
tables for so many horizontal water-lines, starting from which we wish to perform the
operations.

" The number of water-lines chosen, and consequently the number of tables to be
filled, will depend upon the extent of the limits between which we wish to know with
exactitude the different functions enumerated above.

" In order to represent the surfaces, of which the functions thus determined are
the ordinates, the most natural method consists in making in these surfaces a series

of sections parallel to one of the co-ordinate planes, and projecting upon this plane
the curves obtained, affecting each of them by an index, which is nothing else than
the number of the plane of the section. Thus, in the surface, Z =/ V), we should
project upon the plane (Z V) the sections made parallel to this plane, indicating
upon the projected curves the values of 6 corresponding to each section.

"The calculations being finished, we shall have then first to carry to a line of
abscissas all the values of V obtained.

" Above, in a parallel position, we shall draw, at a convenient distance, straight
lines, representing by their intervals (to scale) the horizontal water-lines, starting
from which we have operated in the calculations. It will be convenient to set off
above the line of abscissas the values of Y (abscissas of the centres of buoyancy, or
distances from the longitudinal vertical plane), and those of p (metacentric heights),
and to set off the values of Z (ordinates of the centres of buoyancy, or distances from
the horizontal water-line) downwards from the parallel lines which were previously
drawn.

4
* Each point will be marked by the indication of the value of 6, with which it

agrees.

" There will only remain then to join for each kind of curve the points which
correspond to the same value of 6, and the surfaces, Y Z and P , will be completely
represented.

" We may observe now that the parallel lines drawn in the upper part represent,
by their distances above a certain origin, the different values of draught of water, t

•

their intersections with the ordinates erected at the abscissas, V, which correspond to
them respectively, represent, therefore, points of the surface, t = / (^ V). provided
that we affect each point by the index of the value of 0, with which it agrees.

"Thus, given an arbitrary value of 6 and one for V, we can measure on these
curves the corresponding values of the functions,

Y, Z, p and t

(because, for values of 4 intermediate between those indicated, it will suffice to make
an auxiliary section perpendicular to the axis of the V's).

"We see, consequently, that these curves make it possible to construct the
curve of centres of 4 Isocarenes

' (equal buoyancies, so to speak) for a given displace-
ment of the ship (within the limits of the calculation), and for all inclinations. The
metacentric heights that we obtain at the same time serve only as a graphic verifica-

tion; because we know a priori at each point the direction of the normal to the curve
of the centres of ' Isocarenes.'

" As to the curves, t = f {eL V), they allow us to draw immediately the successive
inclined flotations, since they give the position of the points where these flotations cut
the vertical longitudinal plane. To sum up ; all the quantities we require are to be
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obtained from the same ordinate, corresponding to the abscissa?, V, under considera-

tion."

In order to make the Table at the end of the'volume perfectly

clear, we append the following remarks in farther explanation

of it, observing that we shall use M. Bisbec's notation in all

but one or two instances. We will also state at once that

throughout his calculations M. Risbec, in accordance with the

general practice in France, uses what is known as the trapezoidal

rule.

In the column at the extreme left of the table the numbers of

the transverse sections used are arranged, the midship section being
called M, and the others numbered from it forward and aft, F P
being the fore perpendicular, and A P the after perpendicular. The
upright water-section being exceptional on account of its symmetry
about the longitudinal vertical plane, we shall take the " water-line
for 10°

" to illustrate the method followed for each inclined water-
line. In the first and second columns, marked I and E, of this

division of the table, the ordinates measured along the inclined
water-line on the immersed and emersed sides are respectively
entered

:
* the sum total (s) of the sums of the two columns being

multiplied by the longitudinal interval (X), the product (sX) gives
the total area of the inclined water-plane (A

x).
In the third and

fourth columns, marked I and E, are entered the squares of the
immersed and emerged ordinates f respectively, which also represent
the functions of squares of ordinates, and the difference (S) of their
sums being divided by 2 and multiplied by the longitudinal
interval (X), the result (JSX) gives the moment (BJ of the water-
plane relative to the longitudinal axis. This moment is multiplied
by half the angular interval (i

0), and the product is the excess
of the volume of the wedge of immersion over that of the wedge of
emersion, and consequently the excess of the "inclined displacement"
over the « upright displacement." In the fifth and sixth columns,
marked I and E, are entered respectively the cubes of the immersed
and emerged ordinates J which also represent functions of cubes of
ordinates, and the sum total 0) of their sums, being divided by 3
and multiplied by the longitudinal interval (X), the result o- X)

* The trapezoidal rule being used, the quantities in these columns also represent
the functions of ordinates for areas, provided that only half the actual ordinate is
inserted opposite F P and A P.

+ Half the square of the whole ordinate must be inserted opposite F P and A P.
$ Half the cube of the whole ordinate must be inserted opposite F P and A P.
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gives the moment of inertia of the water-plane (G,). This moment
is multiplied by half the angular interval, and by the sine of the

angle of inclination, the product (J Cx
6 {sin. 10°]) being the moment

(gj) of the wedges relatively to the longitudinal plane
;
multiplying

by the cosine instead of the sine, the product (^G
1
B[co8. 10°]), is

the moment (jQ of the wedges relative to the horizontal water-plane.

The same operations having been performed for each inclined

water-line
J,
the final results are worked out at the right of the table.

The displacements (vv v2i &c.) cut off by the different inclined water-

planes are first obtained, by adding to the displacement in the

upright (v
0)
the successive increments (bv b

2 ,
&c.) due to the inclina-

tions. Next, the abscissae (Yv Y2 ,
&c.) of the centres of buoyancy

corresponding to each inclination are obtained, by adding the

successive moments (fv /2 ,
&c.) and dividing by the displacement

corresponding to the inclination. The ordinates (Zv Z2,
&c.) of the

centres of buoyancy corresponding to each angle of inclination are

obtained by subtracting the successive moments (e
l9

e
2 ,

&c.) from the

moment of the original centre of buoyancy about the horizontal

water-line, and dividing the remainder by the corresponding dis-

placement. The lengths of the radii of curvature (pv p2 ,
&c.) for

each inclination are obtained by applying the formula p =—^

—

with the value of each term proper to the inclination. The

remainder of the space at the bottom of the table is occupied by

general data which it is found convenient to have at hand.

We have another French investigator of this branch of naval

science to notice before concluding this chapter. The late M. de

Ferranty (father-in-law of M. Daymard, of Marseilles), laboured

with marked ability and success at the simplification of stability

calculations for large angles of inclination, down to the very eve of

his death, in 1882. His latest and best method of procedure was

deduced from the study of our English methods, and led both to

their extension and to their simphfication. In view of the other

systems of calculation described in this work, and more especially of

the very recent one of M. Daymard, who is familiar with M. de

Ferranty's labours, we deem it unnecessary to do more here than

describe in outline the course of investigation pursued by M. de

Ferranty, and bear our testimony to the skill and ingenuity displayed

by him in devising forms for the practical application of his results.
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Suppose that through the axis of the water-line when upright,

ten radial planes are drawn (FL, in Fig. 168 being the water-line,

Fig,168..

and T Q the longitudinal vertical plane) at equal angular distances
;

upon them we measure off from the sections the ordinates, I, on the

immersed side and, E, on the emerged side.* Let V be the volume

of displacement, supposed in the first place for the upright position,

and Z the distance of the centre of buoyancy from the normal

water-line, FL; a very simple analysis shows first that calling A x,

the interval between the transverse sections, we have :

—

V = Aa;A0(i2E§ + :£E! + 2Ei . . . . + SE? + SE| + JSE*)

= A x A 9 A,

VZ — |A^A0(SE^ sin. 10° + 2E| sin. 20° .... + 2 E* sin. 80°

+ i2E*) = A ^ A 0 B,
.

calling A, and B, respectively the quantities between brackets.

Passing on to the stability, let us consider one of the radial

planes, /„ ln , for instance, Fig. 169, at an inclination to the

upright water-line of 9 ( = 10$; let fn'ln' be the oblique water-line

parallel to fn lw cutting off the isocarene (immersed volume of equal

buoyancy) of the ship, and consequently cutting off with FL, the

* " The calculations could be made for an indefinite number of radial planes, but it

TT

seems more simple to deal with ten, drawn at intervals of 10°, A 0 == —
, as practice

shows that, for ships of ordinary form, this number suffices to obtain useful results

with a sufficient degree of approximation, "—if. de Ferranty's 318.
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two equal wedges L S ln
r

, and F S/w', the volume of which we will

call W. What we want to find is the value of V p for this isocarene
;

P being the displacement, and p the arm of the lever of the righting

Fig.169.

couple. Now the fundamental formula of the theory of stability for

finite inclinations gives :

—

P|)=:Ww X Hff-Pasin. 0, .... (1.)

calling, as usual, a the distance of the centre of buoyancy from the

centre of gravity of the ship, m the density of sea-water, H and H'

the projections upon//^' of the centres of gravity a and a! of the

two wedges, W.
We proceed to express (and this is the essence of the method)

the quantities, W and HH', as functions of the other quantities

dependent upon the ordinates obtained from our radial planes. Let

Vj and vf be the two unequal volumes, L 0 ln, F Ofn comprised

between the radial plane, fn lw and the water-line, F L ; v and v' the

two volumes, OSim ln\ and 0 Sfnfn\
The figure shows that

n = W + v, vl — W — v', whence u — v! — v + v'

:

this last equality can be written immediately, since it expresses the

fact that the total volume of the larger, fnfn' ln ln
' is equal to the

difference of the volumes, L 0 ln and F 0fn .

The water-line, ln\ will be above the point, 0, if the second

wedge be greater than the first, and below it in the opposite case,

which is that of ships of usual forms.
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Let a
y
b, c, be the centres of gravity of the volumes W, u and v

on the immersed side, and a\ b\ <S those of the corresponding volumes

W, uf and v' on the emerged side, and A B, a straight line perpendi-

cular to ln
f

passing through the point 0. Let us apply to the

three first points, respectively, the forces W,— u, and v, and to the

three last the forces — W, u'
9
and v', all in a direction parallel to

A B. The three forces of each group being in equilibrium, the sum

of their moments about A B is nil, and we have, calling respectively

g, h, m and g\ h\ m' their distances from this straight line :

g—uh+v m= 0 for the side of immersion,

i'+ u' li' +v' rnJ= 0 for the side of emersion,

whence we deduce

:

W(g+g') = uh+u'h'— (yiii--v'm') .... (2.)

The quantity, vm— v' m\ representing the moment of the whole layer,

fnfn> °^ which the volume is u—u', as we have seen above, if

we call d the distance of its centre of gravity from the line A B, we
shall have

vm — v m f= (it— u') d>

Now, considering the moderate thickness of the layer, ln l^t

"we may admit," says M. de Ferranty, "that d is equal to the

distance of the centre of gravity of the section of the radial plane,

fn ln , from the longitudinal axis projected in 0"—an assumption

which, it must be acknowledged, might, in many conceivable cases,

be not very justifiable.

Adopting* the usual notation of the French tables, d~—-, s

being the sum of the ordinates (2 E+ 2 I), and 8 the difference of the

squares (2

1

2— 2 E2
) . . . we have then:

W(g+ g') orWxHE-uH v! li ~ (u- u') JL
;

substituting in formula (1.) we have finally :

Pj9==w|^A+ i6
,

A
/ — (u— u')-^ | — Pasin. 0 .... (3.)

Under this form it becomes possible, and even easy, to calculate all

the terms of the second member for the different values of 6 equal to

10°, 20°, .... 80°, and 90°.

In proceeding towards this object, M. de Ferranty first puts the

second member into the following form ;
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by putting

M = (uh + u'h')w,

$ = Pa sin. 0.

and finds the values of M, jul, and <I>, for the various inclinations

under consideration. He obtains by a brief analysis, which we
need not here reproduce, the following general expressions for these

values :

—

= w x ^AxA0[vn cos. 0° + 2 <jn„ t
cos. 10° + . . + 2 ^ cos. (n—1)

X 10° + ap0
cos. n X 10°]

;

gand^ = (wn -un')oi5^

= iA8A0<» x ~^ [281 + 2S
2 + 2 83 + .... .+ 2 8^ + 8,].

Further, as 0 = (10 x n)°,

$ = Pa sin. (10 x n)°; the calculation of this last term present-

ing no difficulty.
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CHAPTER XIV.

Merrifield's Suggested Mode of Approximating to Evolute of Curve of Buoyancy—
Rankine's Improvement thereof—Dr. Woolley's Extension of Similar Methods
to Stability at Large Angles of Inclination—Curve of Radii of Curvature—Dr.
Woolley's Formula and its Proof—Positions of Cusps in Metacentric Evolute—
Amount of Error involved in the Process.

In 1867, the late Mr. Charles W. Merrifleld, then Honorary Secretary

of the Institution of Naval Architects, read at that institution a

Paper on Stability Calculations, with an important note there-

upon by the late Professor Macquorn Rankine, improving upon and

extending the method ofapproximately calculating stability suggested

by Mr. Merrifleld. The fundamental assumption which Mr. Merri-

fleld made was that the locus of centres of buoyancy, or the curve

of buoyancy, can be regarded with sufficient accuracy as a Conic;

the stability being measured as usual by the perpendicular from the

centre of gravity upon the normal due to the inclination. Of the

assumed Conic we already know, or can by usual methods find, the

vertex, and the tangent and curvature at the vertex, these being

given by the upright centre of buoyancy and the metacentre. For

the complete determination of the Conic is required the length of

another radius of curvature corresponding to a known inclination.

To simplify the work of obtaining this, Mr. Merrifleld formed and

employed a iC Mean Section " for the given ship, and thus reduced

the process of so fixing the water-liDe as to cut off the proper

volume of buoyancy to an easy problem of plane geometry-—an

approximate process, of course, but regarded by him as sufficiently

near for ordinary purposes.

Assuming the second radius of curvature corresponding to an

angle of inclination, 6, thus obtained, and calling it pQ}
then, from the

properties of the Conic we have
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.

Pe ^
T\ ,2 • Po = a(l - e

2
).

(1 — eA sm.A Op

From these expressions Mr. Merrifield drew the equations necessary
for completely calculating the Conic.

Professor Kankine suggested that the calculation might be
simplified by assuming for the approximate form of the metacentric
involute, or curve of buoyancy, not a conic, but the involute of the

involute of a circle, the locus of its centres of curvature, or the
"Metacentric evolute " being assumed itself to be the involute of a
circle. He then went on to say :—

"The involute of the involute of a circle is distinguished by the following
property. Let r be the radius of the circle, p0 , that radius of curvature of the
involute of the involute which touches the involute at its cusp, and p another radius
of curvature of the same curve making the angle, 0, with the radius, p0 ; then,

rd2

P~Po + ~2~, (1.)

Having found, then, the radii of curvature of the metacentric involute in an
upright position and at a given angle of inclination, <?l5 let p0) and Pl) be those radii

respectively ; then make

This will be the radius of the required circle ; and its positive or negative sign will

show whether it is to be laid off downwards or upwards from the metacentre. For
any given angle of inclination the radius of curvature of the metacentric involute will

be given by equation (1.), which may also be put in the following form :—

e2

P = Po + (pi - Po)~2> .... (3.)

"l

Let X, be the depth of the ship's centre of gravity below her metacentre, and p the

perpendicular let fall from that centre of gravity upon the radius of curvature of the

metacentric involute at any given angle of inclination, 0
;
then,

p = (\ - 7-) sin. 6 + r 6, . . . . (4.)

and the moment of stability is

p x displacement; (5.)

Mr. Merrifield gave the geometry of Professor Rankine's formula as

follows :—
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Let MP, Fig. 170, be the metacentric evolute
;
MQ

;
the circle of

which it is assumed to be the

involute; BB', the curve of Mg.no.

buoyancy, or metacentric invo-

lute
;
BPB', the angle of the

ship's inclination, supposed = 9.

Since Q P winds off the circle,

it is obvious that it is perpen-

dicular to Q C, and equal to the

arc, QM. It is also perpen-

dicular to the arc, M P, and its

tangent, PB'. Hence, CQ is

parallel to P B', and Q C P = 6.

Hence, Q P = arc Q M = r 0.

Hence, we obtain the values of r

and p, quoted above in the extract

from Professor Rankine's note.

Further, since Q P is the radius of curvature of the arc P M at

P, the arc PI is obtained from the well-known formula, ds = pdO;
and

Jo

Let us call P B', p6:
and M P, p0 ;

then,

P9 = Po + i r ®l<

Now, let G be the centre of gravity, and MG = X; draw G

F

Z
perpendicular to P B'. Then,

GC = X-r,
GF = G G sin. 6 = (X - r) sin. 9,

FZ-QP^r0,
p = GZ=:GF + FZ,
= (\ — r) sin. 6 + r 6,

= X sin. 9 + v (9 — sin. 9),

X sin. 6 gives the metacentric portion of the stability, so to speak,

and the rest of the expression gives the correction for the second

centre of curvature. We may write the last equation

—

p = X sin. 0 + 2 (9 - sin. 6) ;

18
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or,

p = A sin. 0 + 2 (fil
-

Po)| - 2 (Pt - Po)
•

Of these three terms, each must be calculated separately.

While perfectly well aware of its essentially approximate

character, and holding the process involved as inferior to that

of M. Reech, previously described, which has the merit of being,

not approximate, but exact, Dr. Joseph Woolley (whose complete

mastery of this subject is well known, both at home and abroad)

has favoured me with a very able and highly interesting extension

of the above system, preserving the fundamental assumption of

Eankine, that the curve of buoyancy is the involute of the involute

of a circle, but rendering the process of calculation available for

large angles of inclination.

Dr. Woolley's method consists in finding the radii of curvature

to the curve of buoyancy at convenient angles of inclination of the

vessel, not necessarily equal ; then assuming that the portion of the

involute of a circle lying between any two successive radii of

curvature practically coincides with the corresponding portion of the

evolute itself; and in then obtaining a succession of perpendiculars

on the inclined normals, on subtracting from which the corresponding

product, B G sin. 0, the arms of the righting levers at the several

inclinations can be obtained, and thus the curve of stability readily

laid down. This method differs from M. Beech's process in the

circumstance that the latter obtains, from the same elements, the

co-ordinates (parallel and perpendicular to the axis of the ship) of

the successive centres of buoyancy.

As regards the possibility of including a cusp—a point which has

been suggested—and the means of knowing beforehand where such
a point is reached, it may be observed that a cusp corresponds to a

maximum or minimum value of the radius of curvature. The radius

of curvature = -
J

dx + -
j

y"B dx
P
depends on the greater or

less dimensions of the inclined water-line; and this in turn will

depend on the form of the ship. Generally speaking, so long as the

sides of the ship flare out, it may be expected for general forms of

ship that the successive radii of curvature will go on increasing ; and
as soon as they tumble home, they will begin to diminish. When
the radius of curvature first begins to diminish, a cusp has been
reached. If a curve be formed,, of which the abscissae are the angles
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of inclination, and the ordinates are the radii of curvature, the

position of a cusp is readily found by the position of the maximum
or minimum radius of curvature. Such a curve, it may be observed,

is of the essence of M. Eeech ?

s process. Thus, in Fig. 171, represent-

ing such a curve, the dotted line at cp would represent a maximum,
and the dotted line at

<f>
a minimum, and the corresponding angles,

<jy and (j>\ may be read off from the scale. It will be seen further on

that as the successive angles of inclination, Qv 0
2 ,

03? . .

are not necessarily equal, there is no difficulty in finding the involute

up to the cusp, and from the cusp, when the radii of curvature
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diminish ; the generating circle changes in position, and the radii on

which the involutes depend become negative in the formulae, which

otherwise retain the same form.

The following is Dr. Woolley's proof of the formula which - he

employs :

—

In Fig. 172, M is the metacentre, M P
1?
B

1
P2>

P
2
P

3 , are successive

arcs of involutes of circles described as hereafter explained, the

points, P
1?
P

2 ,
P

3 ,
being assumed to correspond fairly to the corre-

sponding points of the true evolute; MP
1

is the arc between the

inclination of 0° and 9
1 ;

P^, between 61
and 6

2 ;
P

2
P

3 >
&c.,

between 62
and 0

3 , &c. ; and so on. Tn_1
'Pn is the arc between dn __ x

and 0n . B, B
1?
B

2 ,
B

3 ,
&c, . . . . Bn , are the corresponding centres

of buoyancy. Let p0
be the metacentric height, BM, i.e., radius of

curvature to the curve of buoyancy at B
; pv p2 , p3 , . . .

be the radii of curvature to the same curve at Bv B2 ,
B

3 , . . &c, . . Bn .

Then, the angle between B M and B
1
P

x
= 0X ; the angle between

B x Px
and B

2
P

2
= 0

2 ; and so on. (In the figure, angles up to 03

only are shown).

BR
X ,
BR

2,
BE

3
&c, . . . BEwJ are perpendiculars from

B, on Px B 1?
P

2
B

2 , . . . &c, . . . Pw Bn .

B X R'2 ,
B

2
R'

3J
&c, are perpendiculars from B

t
. B

2
. . &c, succes-

sively on P
2
B

2 ,
P

3
B

3 , &c.

Then, since the angle between the perpendiculars on two straight

lines is equal to the angle between the lines themselves, the angle

between B R1
and B R

2
(R

x
B R

2)
is equal to the angle between

Px B x
and P

2
B

2
= 6

2 ; and so the angle between B R
2 , or Bx

R'2 and

P3
B

3
— 0

3 , and so on.

M Q x
is a circle described through M with a centre, C1?

in B M
;

Ql being so taken that Qt
G± cX)

being drawn inclined to B M, at an

angle 0lf
the arc, M Ql5

being unwrapped from this circle, traces out

the involute, M P
1?

corresponding to radii of curvature, p0
and pv

Similarly, Bx Q2 , is an arc of a circle described about a point, C2 ,
in

P-l B13 Q2 G2 c2,
making an angle, 62 with B1

B1 ; and Px
P2 is the arc

of the involute corresponding to radii of curvature, p t
and p2 ,

and

so on.

Join B B
x ,
Bx B2 ,

B2 B3 , . , &c.

From the mode of generation, C^Pi is perpendicular to both

Qi Oi and Px B x,
and therefore parallel to B Rx. Q2 P2 is perpen-

dicular to both Q2 C2 and P2 B2?
and therefore parallel to B R2

and

B x R'2 ; Q3
P

3
similarly is parallel to B B3 , or B2 R'2 .

Let r
1?
r2;

r« &c, be the radii of the circles, M CX9
P

x C2> P2 C3 ,
&c.
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Then, Qx Px
= are Q X

M = r
t 6V

Q2
-P2 = arc Q 2 Pi = r2 0,

arc Q3
P2

277

!2 ^2

Q3
P

3

r

2>

: B C±

: (BM
= (po

-
B

x
= Px B x

-(2.) Bx R

+ Ci Rx
= B C x

sin. 0X + Q x
P

x

r - M d) sin. 6 + Qi P x

rx) sin. 0 + rx 01#

Px R\ = Px B x
-

~

Pi r-

Qi Oi - d ^
i ~ (j°o

- ri) cos «

c2 -Ri

J.
A.

Bx R'2
= B x c2 + c2 R'2

= Bi G2 sin. 02 +
= (pi — r

2) sin. 02 + r
2 02 .

R'2 B2
= P2 B2 - P2 R'2

= P2
< B

2
- Q 2 c2

>2 ^2

i°2

- * —'2 ~~ Q2 C2

(pi ~ f
2) C0S

- ^2-

Similarly, B2 R'3
= (p2

— r
3)

sin. 03 + r
3 03 .

R'g B
3

&c.

Ps

&c.

*3 - (Pa - ^3) cos
« 03- >C.

J

B^R^ =
(Pn^ ~ rj sin. ft

rt + rn dn .

Tn ~ (Pn-l ~ rJ C0S
- ^«

Now, BR2 is evidently the projection of BB
X
on BR2 + B

1
R/

2

(= ^R^; and the projection of BBj is the sum of the projections of

B R
x
and R

x
B

x
on the same line, and, as shown before, the angle

which B R
t
makes with B R2

= 62, and the angle which R
x
B

l
makes

with B R2 = Rx
X R2

= +
2

Therefore the projection of

BB
3

>
x
= BR

X
cos. 62 + R

x
B

x
cos.

i

(Po

7T \
-y+ 62 )= B R

x
cos. 02

— R
x
B

;l

sin.

r
x)

sin. 0
X
cos. 62 + r

x 0X
cos. 62

— — r
2)

sin. 62

+ (Po
~~ r

i)
cos

- #i sin
- ^2

= (po
™ ri) sin. (0X + 02)

- (pi - sin. 02 + r
x 0t

cos. 02
.

Hence,

BR2
=

(Po
- rx) sin. (0! + 02)

-
(Pl - sin. 02 + rx 0X

cos. 0
S

+ (pi - ^2) sin. 02 + r2 6,

= (p0-n) sin.(0
1+ 02

)~(r
s

Also,

- (Pi n) sm. 0a + rx 0! cos. tf2

+ 02

r2"~ ri) sin. 02+ ^i 0i cos. 02+ r2 02 . . . (/3.)

BR
3
= Projection of BB

X on BR
3 + projection of B1 B2 on BR,

+ B2 R'g.
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Projection of BB^ Sum of projections of B R
x
and R

x
B 1? which make

with BE3
respectively, the.angles, 62 + 03 and -|- + (02 + 03)

= (po~ Ti) sin - ft cos - (ft+ ft)+n ft cos. (02+

e

3
) - - n) sin. (02+

0

3)

+ (p0 - ^l) C0S
- ft Sin

« (ft + ft)

= (PO ~ Tl) Sin
' (ft+ ft + ft)- r0 Sin

« (02 + ft) + 7
1 ft C0S

* (02 + ft)-

Similarly the projection of BX B2 , or sum of projections of B^'g

and R' 2 B 2 ,
making angles, 03

and + ft respectively, with B E
3 ,

= - r2) sin. (02 + 03)
- ~~ r2) sin. 03 + r2 62 cos. 03

.

Hence,

BR
3
= (p0

- r
x) sin. (0X+ 02+ 08) - (Pl n) sin. (02 + 03) + r

x 0x cos. (02+ 03)

+ (pi - sin. (02 + 03)
- (^2 - r2) sin. 03 + r2 02 cos. 03

+ (P2 ~ *s)
sin

° ft + r
s ft

= (po - Ti) sin - (ft + ft + ft)
-

(
r2 - n) sin 6 (02 + 03)

- (r
8 - r2) sin. 03

+ ^1 0i cos. 02 + ft + r2 02 cos. 03 + r
3 03 . .. . . (7.)

Similarly, B R
4

=
(Po
- r

t) sin. (0X + ft + ft)
~~ (r2 - n) sin. (02 + 03 + 04)

(r
3
- r2) sin. (03 + 04) - (r

4
- r

8)
sin. 04

+ rx 0X cos. (02 + 03 + 04) + r2 02 cos. (03 + 04)

+ r
3 03

cos. 04 + r
4 04 ,

•

. . . (8.)

and so on.

Generally, if there be (ri) angles, 01? 62 , • • • . 0n~i> 0^5 ^ — sum

of projections of BB
1?

BjBg, B2 B3
. . . . Bn _ 2 Bw_ x

and B^ B
9l ,

corresponding to which are the angles,

(02 + 03 + .... + ft-i +ft)and-^- + (ft + 03 + . . . . + ft. x + ft),

(08 + 04 +•...+ 6n) and -|- + (08 + 04+ . . . . + 6n),

and

0n and + 0W

and 0.
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Hence, we get by proceeding in the same way,

BJ&n = (p0
— rt) sin. (Qx + 02 + ....+ 6n)

— (r2 — r
x) sin. (62 + 0S + .... + 6n)

— (r
3
— r2) sin. (03 + 04 + . . . . + 0J

— (rw _! — rn) sin. 0„ + r
x
^-cos. (02 + $3 + • • - • +

+ r2 02 cos. (03 + ....+ 0W)+ r
3 03 cos. (04 +.... + 0W)

-|- . . . . -f" y*n-l @n-l COS. 0n -\- Tn 0n.

To determine T
l7
t2 ,

Let Pm_xPw,
Fig. 173, be any one of the involutes, so that arc

Pn l ~Pn = difference of radii of curvature

at Pw _x, and Pw.

method, being the moments of inertia about the axis of the centre of

figure of the areas of the several inclined water-lines.

In this way the several arms, B R
1?
B R2 . B E

3 , ...... B R%,

being found, the corresponding arms of righting levers niciy Siv one©

be found.

Thus, G Fi = B - B \ = B Et
- B G sin. B G ht

= B Rx
— b sin. 6, putting b = B G.

Similarly, G F2
= B R2 - B h2 = B R2 - b sin. (9l + $2),

G F3
= B E3

- b sin. (01 + d2 + 08),

gf„ = bb„ - b 800.(6! + e2 + es + . . . .. . + ej,

Putting n =z 1, % 3, . n, respectively,
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Fig.174-

and from these several values the curve of stability may be at once

laid down as usual.

In this demonstration the radii of curvature are supposed to

increase from p0
to pn .

If, on the contrary, they diminish, we shall have, rx
— ^ ^ 1

g2

^

-
~ 2 %~ Pl)

, and is negative
;
r, =

2^&l) ='
' ^'^

,

a negative quantity.

In the Fig. 174, draw the circle M Q 1?
on BM produced: let

M Pt be the arc of the involute described by

unwrapping the string, M Qx,
so that as before,

P
x Q 1

— arc M Qi = o\ 6lf Cx Qx ct being drawn

at an angle, (91? with B M produced.

Then, M P2
== M B — Px Bx = p0

— pu

Pi c, = n Qd = n ft,

and, B Rx
= B c[ - Rx et

= B sin. ft — Rt
c

L

=
(j°o + r0 sin. 0 ~ t

x ft,

and K
x
B

x
= Px B x

- Px Rx = Px Bx
- Qx

c
t

= P, B, - (O x cx
- Cx QO,

= Px B, + Ox Qx
- Cx

B cos. ft,

= pi + ri
- (po + cos. ft.

We shall obtain expressions of a similar

form for Bx
R'2 ,

R'
2
B2 ,

&c., &c, and the general

expression will become in this case—

BRw= (p0
-r

1)sin.(ft + ft + . . . + 6n) + fa -r^ sin. (ft + ft+ . . ft)

+ (r
2
- r

3)
sin. (ft + ft + . . . ft) + . . . + OVi - rw) sin. ft,

— rx 0X
cos. (ft + ft + . . . + ft) - r2 ft cos. (ft + . . . + ft)

^n-l @n-l ®n ~"~ ftw

which may be obtained at once from the former by putting

-rv - r2
- rn, for r

t . r2
r

tt
.

If the radii at first increase and then diminish, i.e., if the meta- .

centric evolute pass through a cusp, the formula must be slightly

modified. Let the cusp correspond to the angle, ftn , m being less

than n.

Then, p0, pt . . . . . pm) are all positive, and

Pn~.ii Pup 3T§ negative, and the formula takes the form—
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B Rn = (p0
- r[) sin. (0X + e2 + 6n)

— (r
2
— r

t)
sin. (02 + 03 + . . . . 0„) — . . . .

~~
(
Tm ~~ rm+l) Sln

' (®m + ®m+l + J

+ r
x 6t

cos. (62 + 6S + 0J) + r2 62 cos. (03 + 04 + . . . . 0n)

+ rm em cos.(em+1 + . . .

.

en) - rm+1 em+1 cos.(em+2 +. ...+en)

^n-l^n-l COS. 9n Tn Qn .

How to find the exact position of a cusp has been pointed out;

but it is essential to the success of this method that series of

successive involutes shall commence and terminate at cusps.

It is hence seen that this method is not founded on the principle

of finding the radius of curvature in any extreme position ; but on a

succession at given convenient finite angles. In this, as in other

methods, such as Beech's, the successive values of B B
1>
B R

2 , B R3

B EM involve all that precede it.

If, as would generally be the case, the angles, 6V 02 ,
03 . . . . 6n , be

taken equal, the formulae become modified.

Thus, B R^ =
(J

o
0
— r

x)
sin. n 6

1
— (r

2
— i\) sin. (n — 1) Q

x

— (r
3
— r

2)
sin. (n — 2) ^ —

. . .
— (rn — rn _ t) sin. 0

1

+ r
x 61

cos. (n — 1) 6 + r
2 9t

cos. (n — 2) 0 + ....

+ *Vi0i cos. <9
X + rw 0r

But if, for convenience, supposing the series to terminate in a

cusp, the first (n — 1) angles be taken equal and the last, 9n , be

different, we shall have—

B RH
~

(p0
— r

x) sin. (n Q1 + 6n) — (r2 — rx) sin. (w, — 2 0X + 0,n)

~-~
(^tj

~"~
^n-i) sm» 0n

+ tx Qx cos. - 2 0X + 0n) + r
2 Qx cos. (n — 3 0X + 0TO)

+ Vi #1 cos
- ^ + r^

In a test case to which Dr. Woolley applied this method, viz., to

a prism with a rectangular section, having a breadth of 70 feet and

a depth, 29*36 feet, which just brings one of the lower angles to the
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surface of the water at 40°, he employed this as his maximum angle,

because the error would be very sensible. Assuming the centre of

gravity of the vessel to be 7*5 feet above the centre of buoyancy in

the upright position, and supposing the displacement to be 10,000

tons, he found the righting moment, at an inclination of 40°, to be

on the approximate method, 68,697 foot-tons ; and on the direct or

true method, 71,624 foot-tons, giving a defect of 2,927 foot-tons,

which, is about ^-th part of the true value in defect*

If the calculation is made at intervals of 5° instead of 10°, this

error is reduced by about \, or to ^th part of the true value.

These errors are probably greater than would be found in the case

of a vessel of an ordinary form. Moreover if, in order to make the

approximation closer, angles of 5° are taken instead of 10°, the labour

of the calculation is considerably increased, and little if any advan-

tage is gained from this point of view. Of course, as said before,

Reech's method, which obtains at once the co-ordinates of the

centre of buoyancy, is to be preferred.
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CHAPTER XV„

Dynamical Stability—Different Views of Same—Canon Moseley's Paper on Dyna-

mical Stability—M. Moreau's Memoire on the Subject—Fundamental Doctrines

set forth by Canon Moseley—Vis Viva and Work—Formulae for Dynamical

Stability—Amount of Error in Same—-Application of Canon Moseley's Formulae

to Ships—Criticism on Moseley's General Equation—M. Bertin's view of

Dynamical Stability—View of MM. Bisbec and Duhil de Benaze—M. G-uyou's

Paper on a New Theory of Stability—Interesting Investigation of Surface

of Buoyancy and its Podaire—An Imaginative Method of Explaining the

Doctrines of Stability—Maxima, Minima, and Mixed Normals—Application

of M. Guyou's Method to Dynamical Stability.

We come now to consider the dynamical aspects of the subject.

Let us first endeavour to make understood, in plain terms, and with

the fewest possible technical phrases, what is ordinarily meant by
" Dynamical Stability." One view of it may be obtained in this

way :—We have already observed that the forces which resist the

inclination of the ship are vertical forces, the weight of the ship

acting downwards, and the buoyancy acting upwards with an equal

pressure. If we could follow the action of the inclining forces closely

throughout the inclination of the ship to a given angle, we should

find them continually overcoming these resisting forces (of weight

and buoyancy) through successive infinitesimalry small spaces, their

action taking effect either in actually raising the centre of gravity,

or in lowering the centre of buoyancy, or in both. If we could mul-

tiply the force (weight of ship) at every point into the very small

vertical spaces through which these centres move, we should obtain

the effect (known technically as the "work" done) from point to

point, and adding all these small effects together (or subtracting

them, as the case may be), we should get the total "work" done

during the given amount of inclination. This we cannot possibly do

in detail, as we cannot handle infinitesimal quantities ; but what we
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can do is this : we can find the total vertical distance through, which

the centres of gravity and buoyancy have separated during the

inclination, and multiply this by the weight of the ship, and in this

way obtain the result we desire. For it is obvious that if we mul-

tiplied the weight into each infinitesimal space in succession, and

then added all the products together, we should obtain exactly the

same result as we obtain by adding all the small spaces together first

(that is, by taking the total separation of the centres), and multi-

plying the sum by the weight. In either case we should obtain the

equivalent of the total "work" done upon the ship by the inclining

force, and that total work is the dynamical stability *

Another view of the matter may be obtained as follows :—The

dynamical stability developed during the inclination of the ship

from one angle to another only infinitesimally greater, will obviously

be equal to the product of the statical stability at the given angle

into the infinitesimally small space through which it acts. And, in

like manner, the dynamical stability developed during the inclination

of the ship through a finite angle will be equal to the sum of a series

of such products. But we have seen that the statical stability is, at

every point, proportional to the length of the lever, G Z, and conse-

quently the dynamical stability from point to point will be propor-

tional to the product of that lever into an infinitesimally small

space. For example, let Fig. 175 represent the curve of statical

stability of a ship at moderate angles of inclination ; then the

dynamical stability developed by inclining the ship, say from 7° to

an angle slightly exceeding 7°, will be equal to AB multiplied into

* See Naval Science, vol. L
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a very short portion of the space between 7 and 14° ; and that

product is obviously approximately equal to the very small rectan-

gular area, A B b a. Similarly the dynamical stability developed

during a further very small angle of inclination will be equal to the

rectangular area, abed; and so we may proceed from point to point

until we have covered the whole space between A B and E F with

very small rectangles, the sum of which will approximately represent

(by being proportional to) the whole dynamical stability or work
done during the inclination of the ship from an angle of 7° to an

angle of 14°. In other words, the dynamical stability exerted during

the inclination of the ship from one angle to another is represented

by the corresponding portion of the curvilinear area in such diagrams

of statical stability as we have been considering.

It is obvious that the curvilinear area lying between 0° of inclin-

ation and any given angle can be calculated, and the result made
the ordinate of a new curve. By repeating the operation, a series of

points may be obtained, and a curve passed through all such points

will represent at every point the dynamical stability that must be

overcome in inclining the ship from the upright position to the angle

indicated. By subtracting one ordinate from another, the dynamical

stability exerted in inclining the ship from the angle indicated by
the one ordinate to that indicated by the other can be found. In

Fig. 176 is indicated, by CD S, the carve of dynamical stability of

an unarmoured corvette, whose section, curve of flotation, F F, curve

of buoyancy, B B, and loci of movicentres, M M, are shown in Fig.

177. The curve, CDS, was obtained by graphic integration from

the curve of statical stability, CSS. Fig. 178 exhibits curves of

statical and dynamical stability for the armour-plated, flat-bottomed

ram, whose section, curves of flotation, and buoyancy, &c, are shown
in Fig. 179. The curves, No. 1, correspond to the usual condition of

the ship with its sides intact ; the curves, No. 2, correspond to its



286 STABILITY OF SHIPS. [CHAP. XV.

Fig.17%

Fig.178.
A

0° 18 27° ?,G° IF \|// &

Fig.179.

w

condition with certain unarmoured ends riddled. The following is

a comparison between the statical and dynamical stabilities in the

two cases :—*

Condition No. 1
?

No. 2,2?

B »

9 m a . %

Maximum
Righting Lever.

3-85 feet.

1-7
5 ?

Angle of

Maximum Stability.

34 degrees.

23
5 J

Range
of Stability.

76J degrees.

50* „

The question of dynamical stability may be viewed in a some-

what different manner. Reverting to Fig, 175, the ordinate (AB,

say) represents the arm of the couple,- GZ, at the extremities of

* See Transactions, Institution of Naval Architects for 1877, vol. xviii.—Mr,

White's Account of the Work done by the Students of the Royal Naval College.
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which the weight of the ship and the buoyancy of the ship (equal

to the weight) are acting vertically; and, in the case of further

inclination of the ship taking place, we may obviously assume one

of these extremities of the lever, G Z, remains at rest and the other

moves—no matter which 0 For a very small, an infinitesimal,

amount of motion, the weight of the ship may be presumed to

prevail, and to move through a very small vertical space, which may
be represented by d 0. Then G Z d 6 will represent the space moved
through, and WxfiZ d 6 will equal the " work " done by the

inclining force in effecting the very small change of inclination.

The whole work done in inclining the ship from the upright through

an angle, 0, will therefore be

f W x GZdO;
J 0

and the work done in inclining her from an angle, 6ly
to an angle, 02 ,

will be

j &

That this agrees perfectly with what has been said respecting

Fig. 175 will be obvious, for AB there corresponds to GZ; B6 to

d 0\ and the areas, as already explained, are equivalent to the

integrations suggested by the above expressions. But we need not

further anticipate the late Canon Moseley's investigations.

At the commencement of his famous Paper on "Dynamical
Stability," read at the Eoyal Society in 1850, Moseley, after speaking

of the oscillations of floating bodies under the action of disturbing

forces, and of the different amounts of " work " done upon them, the

most stable requiring the greatest amount, said—"It is this condition

of stability, dependent upon dynamical considerations, to which, in

the following Paper? the name of Dynamical Stability is given;"

adding—" I cannot find that the question has before been considered

in this point of view, but only in that which determines whether

any given position be one of stable, unstable, or mixed equilibrium,

or which determines what pressure is necessary to retain the body

at any given inclination from such a position." It has been suggested

that, although Moseley was well acquainted with the works of

Poisson, Poncelet, and other Continental philosophers, this passage

seems to indicate that he was not in a position to do justice to the

actual condition of the science of naval architecture in France at
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the time of writing his paper/or he must have known that the

dynamical conditions of floating bodies, with reference to their

oscillations in still water, had, before 1850, received both distinct

recognition and skilful treatment. "We are at present in possession

(by the courtesy of M. E. L. Bertin) of a work published at Brest in

1830 from the pen of M. Moreau (then Professor of the Ecole Eoyale

du Genie Maritime, and an Ingenieur de premiere classe au Corps

Royal du Genie Maritime), entitled " Principes Fondamentaux de

VEquilihre et du Mouvement des Corps Flottans Dans deux Milieux

Resistans" in which the dynamical aspect of the subject is kept in

view throughout; and this work was not a mere geometrical

exercise thrown out for the study of savans, but was expressly

printed for the use of the pupils of the Royal School. M. Moreau

commenced his treatise by stating that the mechanical principle laid

down by Maupertuis, under the name of the " Law of Repose," was

perfectly applicable to floating bodies, although it had never pre-

viously been applied to them, and he proceeded to set forth and to

demonstrate, as one of the fundamental principles of naval science,

that " in the state of equilibrium of a body immersed in ponderable

fluids, the centre of gravity of the system (the floating body and the

fluids). is the lowest or the highest possible." He added that this

theorem, when combined with the uformule de la dynamique" will

enable us to resolve with great facility the problem of the small

oscillations of floating bodies. In investigating the equilibrium of

the floating body in still water, he treated it as partly immersed in

two fluids, the air as well as the water, and thus added much, and

somewhat unnecessarily, to the extent and complication of his

mathematical equations; he also adopted the device (which we shall

presently see again resorted to more than once by French investiga-

tors) of considering the water which floats the body as contained in

a basin or closed vessel—a device which he doubtless introduces for

the express purpose of facilitating the dynamical treatment of the

subject.

We have carefully considered the Mimoire of M. Moreau, and are

willing to accord to it great merit as a sound exposition of the

dynamical conditions of a floating body subject to very small

oscillations; but it dealt only with very small motions, and dealt

with them for the limited purpose of obtaining maximum and

minimum values of the height of the centre of gravity. Moseley

took a wholly different, and very much wider, view of the question,

dealing with large angles of inclination, and applying the principles.
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of vis viva and " work " for a very different object. We cannot see

that it would have made any difference in his treatment of the

subject had he been ever so familiar with M. Moreau's investiga-

tions, able and interesting as they undoubtedly were.

Much of Moseley's paper was occupied with an account of

experiments made in Portsmouth Dockyard by the late Mr. John
Fincham and Mr. Kawson, which were interesting and valuable at

the time, but which would not now assist the appreciation of the

doctrine of dynamical stability. It will be well, however (especially

as the original paper is difficult of access to most persons), to state

here the fundamental doctrines, and some of the inferences which
Moseley set forth.

His investigations were based, as has been intimated, upon the

principles of vis viva and work, the primary of which principles he
thus rendered :—

"When, being acted upon by given forces, a body or system of

bodies has been moved from a state of rest, the difference between
the aggregate work of those forces whose tendencies are in the

directions in which their points of application have been moved,
and that of the forces whose tendencies are in the opposite direction,

is equal to one-half the vis viva of the system."

If 2 u
x

represent the aggregate work of the forces displacing

the body from rest, and 2 u
2
the aggregate %vovk of the other forces

applied to it; and if the terms composing 2^ and 2 u2
be taken

positively or negatively, according as the forces at work tend to move
their points of application in the directions in which they do move, or

in opposite directions, then, putting for the aggregate vis viva of the

1
body - 2 w v2

,

2^ + 2^
2 = i 2wv2 - . . . . (1).

2^
2
may be presumed known, because that expression repre-

sents the aggregate work of the operating forces which move the
body from rest to a new position, and 2 u

t
may therefore be deter-

mined in terms of the vis viva; or conversely. When a body
oscillates, it comes to rest for an instant in its extreme position, and
there its vis viva consequently disappears, and we have

2 u
x + 2 u

2
= 0 . . . . (2).

This equation, therefore, determines either the extreme position; or
;

19
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that position being given, determines the forces producing the

motion.

But, by a well-known property, the vis viva of a system is a

maximum when it passes through a stable position of equilibrium,

and a minimum when it passes through an unstable position of

equilibrium. The position of final rest is therefore that in which

2^ + 2 u
2
has a maximum value. The body will therefore rest in

a very different position from that which it occupies when in the

extreme position of its oscillation.

Of different bodies, requiring different amounts of work to

incline them to a given extent, that is the most stable which requires

the greatest amount of work to be done upon it in inclining it to

that extent, 2 u
x
being in that case the greatest. If all such bodies

are respectively brought into positions of unstable equilibrium, the

corresponding values of 2 u
x
then represent the work requisite to

overthrow it. In the former case, 2^ represents the relative,

and in the latter case the absolute, stability of the body. The

absolute stability of a given body may be greater than that of

another, notwithstanding that its relative stability, with reference

to a given inclination, may be less.

Canon Moseley represents the absolute dynamical stability of a

body by IT, and its relative dynamical stability, corresponding to an

inclination, 0
y
by U (9). XT is, of course, the maximum of U (6).

The work opposed by the weight of a body to any change in its

position is measured by the product of its weight by the vertical

elevation of its centre of gravity. If W be its weight, A H the

vertical displacement of the centre of gravity occasioned by the

inclination of the body through the angle, 6 (this displacement being

in a direction opposite to that in which the force applied to it acts),

we have 2 u2
= W . A H, and, consequently (from equation (2) ),

U((9)-~WAH-0 . . . (3).

The absolute dynamical stability of a body resting on a rigid

surface is therefore measured (if no force other than its weight

oppose its overthrow) by the product of its weight by the height

through which its centre of gravity must be raised to bring it from

a position of stable to one of unstable equilibrium.

The foregoing considerations are of general application to al]

heavy bodies. We will now give their application to floating bodies

in Canon Moseley's own language :—
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Let a body be conceived to float, acted upon by no other forces than its weight,

W, and the upward pressure of the water (equal to its weight); which forces may be
conceived to be applied respectively to the centre of gravity of the body, and to the

centre of gravity of the displaced fluid ; and let it be supposed to be subjected to

the action of a third force whose direction is parallel to the surface of the fluid. Let
AHx represent the vertical displacement of the centre of gravity of the body thereby

produced, and AH2 that of the centre of gravity of its immersed part. Let, more-

over, the volume of the immersed part be conceived to remain unaltered whilst the

body is in the act of displacement. If each centre of gravity be assumed to ascend,

the work of the weight of the body will be represented by - W. A Hi, and that of

the upward pressure of the fluid by + |W. AH2 , the negative sign being taken in the

former case, because the force acts in a direction opposite to that in which the point

of application is moved, and the positive sign in the latter, because it acts in the

same direction, so that the aggregate work, 2w2 (see equation 1), of the forces which

constituted the equilibrium of the body in the state from which it has been disturbed

is represented by
- W . a Hi + W . a H2 .

If the centre of gravity of the body or of the displaced fluid descends (a property

which will be found to characterise a large class of vessels), A Hi in the one case,

and A H2 in the other, must be taken with the negative sign, since the weight of the

body will be applied in the same direction, and the pressure of the fluid in an

opposite direction to that in which their respective points of application are moved.

Moreover, the system put in motion includes, with the floating body, the particles of

the fluid displaced by it as it changes its position, so that if the weight of any element

of the floating body be represented by w\, and of the fluid by w2 , and if their

velocities be Vi and -y
2 , the whole vis viva is represented by

1 1

g g
2

and we have (by equation 1),

UW - W(aHi - aH2)= isw^! +
frg
*w2 v% .... (4).

In the extreme position into which the body is made to roll and in

which 2 wi v\ =0,

UM=W.(AHi-AH2
)+i w 2 v* (5);

a g

or, if the inertia of the displaced fluid be neglected,

U(rf)= W.(aHx
- AH2 ) (6).

Whence it follows that the work necessary to incline a floating body through any

given angle is equal to that necessary to raise it bodily through a height equal to the

difference of the vertical displacements of its centres of gravity and of that of its

immersed part, so that, other things being the same, that ship is the most stable, the

product of whose weight by this difference is the greatest. In the case in which the

centre of gravity of the displaced fluid descends, the sum of the displacements is to

be taken instead of the difference.

Canon Moseley points out that this conclusion is in error in the

following respects :—
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1st. It supposes that throughout the motion the weight of the

displaced fluid remains equal to that of the floating body, which

equality cannot accurately have been preserved by reason of the

inertia of the body and of the displaced fluid. From this cause

there cannot but result small vertical oscillations of the body about

those positions which, whilst it is in the act of inclining, correspond

to this equality, which oscillations are independent of its principal

oscillation.

2ndly. It involves the hypothesis of absolute rigidity in the

floating body, so that the motion of every part and its vis viva may
cease at once when the principal oscillation terminates. The frame

of a ship and its masts are, however, elastic, and by reason of this

elasticity there cannot but result oscillations, which are independent

of, and may not synchronise with, the principal oscillation of the

ship as she rolls, so that the vis viva of every part cannot be

assumed to cease and determine at the same instant, as it has

been supposed to do.

Srdly. No account has been taken of the work expended in com-

municating motion to the displaced fluid, measured by half its

1
vis viva, and represented by the term ~ - 2 w2 v\ in equation (5).

I g
From a careful consideration of these causes of error, Moseley

was led to conclude that they would not affect that practical applica-

tion of the formula which he had principally in view in investigating

it, especially as in certain respects they tended to neutralise one

another. The experiments made at Portsmouth, previously adverted

to, confirmed this view.

In applying his formulae to ships, Moseley deals first with the

case of vessels whose athwartship sections (where subject to immer-

sion and emersion) are circular, having their centres in a common
longitudinal axis ; these vessels being of two types, viz. (1) such as

are shown in Fig. 180, in which the lower part of the ship's section

extends below the completed circle ; and (2) such as are shown in

Fig. 181, in which the lower part lies within the completed circle.

E T F is the circular part in both figures, C being its centre. G
x
is

the projection of the centre of gravity
;
G

2
that of the part SDET

(supposing it filled with water); = C G
x ;

h
2
=CG

2 ;
Wv weight of

vessel
;
W

2 ,
weight SDET (supposed to be water) ; and 0 the

inclination of the ship. The whole volume of the fluid displaced

remains constant during the inclination, and so also do that of the

immersed circular part and that of the part SDRT. The
:
]water-
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line, P Q, is the same distance from C as was A B, so that C neither

rises nor falls.

The forces operating in the upright position of equilibrium were
the weight of the vessel and the equal weight of the fluid displaced.

Since C has not been vertically displaced, the work of the former

force (weight of vessel) is that done during the rise of G through a

space =\ versin. 6. The work of the latter is equal to that of the

upward pressure of the water which would occupy the circular space,

having PTQ for sectional area, increased by that of the water,

represented by SDRT in the case of Fig. 180, and diminished by
that in the case of Fig. 181. Eut the centre of gravity of the

circular part, PTQ, remains always at C, and neither rises nor

falls; and therefore the work done by the upward force acting

upon it is zero. The whole work done by the upward pressure

of the water is therefore that done upon SDET, which must
receive the positive sign in Fig. 180 and the negative sign in Fig. 181,

so that its general expression is ±W
2
h

2
versin. 6. On the whole,

therefore, the work Hu
2
of those forces, which, in the vertical position

of the body, constituted its equilibrium, is thus expressed—

the minus sign being prefixed to W
1

versin. 6, because the point

of application (Gx) of the ship's weight has been moved upward, and

therefore in the opposite direction to that in which the weight tends

to act.

^Representing therefore the Dynamical Stability, 2 uv by U0, we
have, by equation (2),

2 u2
= — Wj h x versin. 6 ± W2 h2 versin. 6y
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110 - (Wx hx qpW2
h
2)

versin. 0, . . . (7)

;

in which expression the sign + is to be taken according as the cir-

cular area, A T B, lies wholly within ADB, as in Fig. 180, or partly

without it, as in Fig. 181. Other things being equal, therefore,

Fig. 180 is a more stable form than Fig. 181.

" The work of the upward pressure of the water upon the vessel represented in

Fig. 181, being," says Moseley, "a negative quantity, -W2 7t2 ,
versin. d, it follows

that the point of application of the pressure must be moved in a direction opposite to

that in which the pressure acts ; but the pressure acts upwards, therefore its point of

application, i.e., the centre of gravity of the displaced fluid descends. This property

may be considered to distinguish mechaniccdly the class of vessels whose type is

Fig. 180, from that whose type is Fig. 181; as the property of including wholly or

only partly, within the area of any of their athwart sections, the corresponding cir-

cular area. E T F, distinguishes them geometrically.

"

We now come to the general case of the Dynamical Stability of

a vessel of any given form.

Conceive the vessel, at the end of an oscillation, to be for an

instant at rest, and let RS, Fig. 182, represent its plane of notation

then, and P Q its plane of flo-

tation when it was upright,

GAD being a vertical section

of the vessel; G, centre of

gravity of vessel when she was

vertical; H, centre of gravity

of fluid then displaced ; gy
that

of fluid displaced by the por-

tion QOS; h, that of fluid

which would be displaced by

part POR, if immersed ; G M,
H N, g m, h n, K L, perpen-

diculars upon the plane RS. Also, let W be weight of vessel,

or of fluid displaced ; w, weight of water displaced by either of the

equal wedge portions, P 0 R, Q 0 S
;
H

x,
depth of centre of gravity

of vessel in vertical position
;
H

2 ,
depth of centre of gravity of dis-

placement in that position ; AH1?
elevation of centre of gravity of

vessel ; AH2 ,
elevation of centre of gravity of displaced water; 0, the

inclination; rj, the inclination of the line 0, in which planes PQ and

RS intersect to the line about which plane PQ is symmetrical;

z = hn + mg; and A = K L.

Now adopt the device of supposing the water displaced by

the vessel to be, on the contrary, contained by it, and the water
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which thus would occupy the space Q 0 S to pass into the space

POE, the whole then, becoming solid. Further, let A

H

3
represent

the corresponding elevation of the centre of gravity of the whole

contained fluid, so that A H2 + AH
3
will represent the total eleva-

tion of the centre of gravity of this fluid as it passes from the

position it occupied when the vessel was vertical into the position

PA Q. This is obviously the same as though the fluid had assumed

the solid state when the body was vertical, and had revolved with

it. It is therefore represented by KH-NH. Therefore,

Further, by raising the water, Q 0 S (whose weight is w), to 0 P R,

and its centre of gravity through the height (gm + hn), the centre

of gravity of the mass of fluid of which it forms a part (and the

weight of which is W), is raised through the space, A H3 ; it follows

(from the property of the centre of gravity of a system) that,

and

AH2 + AH3
= KH - NH;

AH3
= KH - NH - AH2*

W AH3
~ w (gm + h n),

and therefore,

W(KH - NH - AH
2)
= w(gm + hn).

But,

NH = KH cos. 6 - KL,
= H

2
cos. 6 — X

;

Therefore,

KH~NH = H0 versin. 0 + X,

and,

mg + nil = z;

Therefore,

W (H
2
versin. 6 + X — A H2)

— w z;

And consequently,

Also,

Therefore

WAH2
= W (H

2
versin. 0 + X) - wz;

A H
2
= K — M G — H

x
— (HlCos.0 - X)

;

= H
2
versin. 9 + X

;

W(AH
1 + AH2) = W (^ + H2) versin. 0 + wz;

And, from equation (6),

U(0, r?) == W(H + H2) versin. 6 + wz . . . . . . . (8.)
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"The sign + being taken," says Moseley, "according as the vessel is

of the class represented in Fig. 181, in which the centre of gravity

of the displaced fluid ascends, or of that represented in Fig. 180, in

which it descends."

We have reproduced all the above equations of Moseley just as

he gives them, but not with the satisfaction which we could desire,

as regards the signs employed in the last equation (8). It must

strike the reader as strange that, in a general equation for Dynamical

Stability, signs should appear requiring the explanation which we

have just quoted from Moseley. No exception need be taken to the

use made of the types indicated in Figs. 180 and 181, in framing and

interpreting equation (7), because there the relation of the + and —
signs are an essential part of the arguments employed. But even in

relation to Figs. 180 and 181, and to equation (7) one cannot but

feel that, except for prismatic bodies, the employment of the

sections shown as typical of actual ships is not very satisfactory, on

account of the extreme incongruity that exists between the midship

section, and many other transverse sections of actual ships. In a

general equation, it is quite out of the question to refer the

investigator to Figs. 180 and 181, as indicating in what way the

formula is to be applied to different classes of ships. To ascertain

whether a particular ship should be classed with Fig. 180, or with

Fig. 181, would in itself sometimes be no light and no desirable

task. The fact seems to be that the term, " H
x + H2

" was imported

into equation (8) by an oversight—probably by hasty inference

from equation (7), where the two signs were correctly employed.

The upward vertical displacement of the centre of buoyancy, H1?
will

always (with Moseley's Notation) be expressed by H
2
versin. 6 + A,

and the vertical position of the centre of buoyancy of the ship, after

the given inclination, must be determined by taking account of the

immersed and emersed wedges, which themselves occasion a vertical

w
displacement of the centre of buoyancy expressed by ^ (g m + n h)

= ~ z. The general equation must therefore always be without the

double + signs which Moseley places between Ux
and H

23
and be

written thus :

—

U (0, r?) = W (H
x
- H

2)
versin. 0 + w z.

This equation truly expresses the work done, and whether the
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centre of buoyancy rises or falls depends upon whether wz is

greater or less than the quantity, H
2
versin. 6 + A.

Canon Moseley, in the paper with which we have been dealing,

employs Dupin's Surface of Flotation in determining the true axis

of oscillation of a ship, and proceeds to infer thence the time of

rolling, &c, but it would carry us beyond the limits prescribed for

this volume to follow him in those investigations.

It is obvious that the relation between statical and dynamical

stability, though always essentially the same, may be very variously

considered. Writing the moment of statical stability, as we have

seen, may be done in the French form,

M = — P (p — a) sin. 0.

M. E. L. Bertin, in his admirable " Notes on Waves and Rolling,"

regards the dynamical problem as follows :—Each element of the

" work " performed by the couple of stability P (p — a) sin. <j> d cj>

during an inclination of the ship is obviously equal to the differential

of the moment P (p — a) cos. <p of the weight of the water displaced,

with respect to the centre of gravity, G, and consequently with

respect to the water's surface. Now, every change in this last

moment corresponds to an element of " work "—equal to and in the

same direction as that of the weight—on the water which surrounds

the ship. The work of the hydrostatic pressure is then fundamentally

only the work of the weight of the portion of the liquid which

ascends or descends, according as the centre of displacement ascends

or descends. Upon this principle might be established the equation

of motion
d 2 6

2 m r2 being the moment of inertia of the floating body round the

axes passing through the point G. " We may remark " says M.

Bertin, " that the hull exerts on the water a reaction the work of

which is equal and opposite to the work of the pressure; we see that

the whole work of the forces which act, whether on the ship or on

the water, is limited to a work of the weight; that is evident a

priori, since the weight is the only external force in play."

In an able and well-known memoir on " The Complete Motion of

a Ship Oscillating in Still Water," presented by MM. Risbec and

Duhil de Benaze to the French Academy of Sciences in June, 1873,

those gentlemen presented the following view of the matter.* The
* See Naval Science, vol, iii., 1874.
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only force in play being gravity (resistance being neglected), the

effective work proceeds solely from the vertical displacements of the

centre of gravity and centre of buoyancy. The displacement of the

centre of gravity is evident in itself; that of the centre of buoyancy,

or at least the work which it causes, is not less real. To prove the

latter, let us consider at first a limited portion of the liquid of weight

E, upon which a body of displacement, P, floats without motion ; the

moment of this liquid about the surface can be expressed by the

difference of the moment of the whole volume—including the dis-

placement of the body—and the moment of that displacement ; it

will be
(E + P) H — P h,

where H equals the distance of the centre of gravity of the whole

volume from the surface, and h equals the distance of the centre of

buoyancy of the body from the surface. If now we make the body

occupy another inclined position, without altering its displacement,

its centre of buoyancy will come to a distance h
t
(other than h) from

the surface of the liquid ; if the latter remain invariable, it is clear,

since the displacement is the same, that the moment of the liquid

calculated as before will become

(E + P) H - P K.

Thus this moment will have varied by exactly the quantity

_ p (Ji
_ Jh^ i

by which also the moment of the displacement has

varied. Consequently, the centre of gravity of the liquid will have

P
been displaced vertically by a quantity — g Qi — opposite in

direction to the displacement of the centre of buoyancy. The

lowering of the centre of buoyancy corresponds then effectively to a

certain elevation of the centre of gravity (and vice versa), if the free

surface does not change ;
and, in consequence of the equality of the

P
moments (that is, the equality - P (h - = ^ (h - \ X E) the

work of gravity in the liquid is precisely expressed by that of the

pressure (weight taken in the contrary sense) on the centre of

buoyancy.

Mons. M. E. Guyou, of the French Navy, contributed to the

Revue Maritime et Coloniale (I believe in 1879) a highly interesting-

paper, entitled " Theorie Nouvelle de la Stabilite de l'Equilibre des

Corps Flottans/' which started from the consideration of a floating

body supported by a given volume of water, like that of MM.
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Eisbec and Duhil de Benaze, and terminated with a somewhat novel

presentation of the doctrine of dynamical stability, Jbut one which

perfectly agrees with the accepted theory of the subject. There is

so much that is novel to English naval architects in M. Guyou's

paper, that we readily give the following rather full account of it.

He lays great stress in the opening part of his paper on the imper-

fections which have characterised the ordinary statical theories of

stability from Bouguer downwards, and insists that the investigation

of the equilibrium of a system is a purely dynamical problem which

cannot be completely treated by the methods adopted by Bouguer

and Dupin. When we speak of a material system being in equilib-

rium, we mean, he says, that if it is made to undergo a finite but

small disturbance it will, after a series of oscillations, necessarily

return to its first position. Coming closer to the subject, M. Guyou

shows, first, that if any body whatever, floating on a given quantity

of water contained in a vessel is caused to move without change of

trim, the common centre of gravity of the system (liquid and floating

body) cannot descend below a certain level ; and its height above a

given horizontal plane shall be a minimum when, the fluid surface

being free, the body displaces a quantity of water equal in weight to

itself. He demonstrates this, and shows that when the weight of

the liquid displaced is less than that of the floating body, the

common centre of gravity of the system, as well as that of the

floating body will descend ; but when the weight of the displaced

liquid is greater than that of the floating body, the centre of gravity

of the system will rise. Fig. 183 (next page) represents a body floating

within a vessel as suggested
; g is its centre of gravity, g' is the centre

of gravity of the fluid when the body floats as shown, G is the common

centre of gravity of the body of the liquid, and F is the centre of

gravity of the interior volume of the vessel below the water-line,

L L'. C is a point in the surface of buoyancy of the floating body.

P
The internal volume of the vessel below L X/ is equal to i.e., the

weight of the liquid which would fill it is equal to the weight of the

system (liquid and body), which call P. M M' is any horizontal line

whatever, and C E, g K, F F, G D, and g
f Q are verticals let fall upon

it. The water-line, L X/, will not be altered by changes of position

of the floating body all the time the body and the water are left

free. Putting p for the weight of the floating body, and p' that of

the liquid in the vessel (so that P = p + p')> we shall have, by

taking moments
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Fig.188.

Q D'F K B

P x GD = p
/ x#/

Q+£> X(/K;
but

p' x cj Q = P x rF-# OE,

therefore

PxGD = PxrFx|)((/K-CE);

and if we draw through G a plane parallel to L L', and put p for the

distance, g S, of the point g above this plane, and h for the height,

G D, we shall have

Pi = PxTFxj)().

The point r is fixed in the system, and we can cause the horizontal

plane from which we take our heights to pass through it ; we shall

then have F F — 0, and then the previous equation will become

P h = p p .

But as the tangent plane to the surface of buoyancy is parallel to

L I/, therefore C S is a tangent to that surface at C
?
and p is the

distance of the centre of gravity of the body from that tangent plane,

perpendicular to the axis, A K. Consequently, if we take a quantity

P
equal to h — that is equal to p, and set it down from g, upon the

IP

vertical, G K, we shall obtain, as the body is rotated in all directions,

a locus of all such points as S in the figure, and these will constitute

a surface. It will be by its construction, the locus of the feet of the

perpendiculars let fall from the centre of gravity upon the tangent
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planes to the surface of buoyancy, and this locus M. Guyou desig-

nates, after the manner of French men of science, the podaire of

the surface of buoyancy, with respect to the centre of gravity, g.

He calls it the surface S, and the surface of buoyancy the surface C.

It follows from what has gone before, he says " that, if we refer the

heights of the centre of gravity of the system to a horizontal plane

passing through the fixed point T, the minimum value of the product

P h
y
for any given trim of the body, will be equal to the product jp p,

or the weight of the body multiplied by the radius vector of the

surface, S, corresponding to the axis of trim (orientation)."

M. Guyou next considers, in an extremely interesting manner,

the different forms which the surface S can take in relation to the

surface C. If the centre of gravity is situated within the surface of

buoyancy, as shown in section in Fig. 184, the curve S everywhere

envelopes the curve C, and therefore the point g also. S S' and S"

are points in the former curve, and C C' points in the latter. Wher-

ever the radius vector drawn from g is normal to both curves, the

two curves touch.

If the centre of gravity lie outside of the surface of buoyancy, as

shown in section in Fig. 185, the curve S has an internal loop. Let

g A and g B be tangents drawn from g to the curve C, and g D and

g E be perpendiculars to these tangents. These lines, g D and g E,

are tangents to the internal loop of the curve S. This loop

corresponds with the arc, A C B, of the curve of buoyancy C, and

with negative values of g being below the centre of buoyancy

;
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the larger or external loop corresponds with the arc, ACB, of the

curve C, and with positive values of p. By the device of adding to

Fig.185.

the values of p a constant quantity greater than the greatest of the

negative values, the author can transform the surface S into another

surface, 2, which will have radii vectores always positive, so that 2

will always envelope g. The surfaces C, S, and 2, will have all their

normals on common axes.

We now come to a very imaginative device of M. Guyou,

adopted for the purpose of indicating the limits and circumstances

of the stability of the floating body, observing that he resorts to it

for the purpose of imparting clear conceptions of his meaning when

he speaks of normales maxima, normales minima, and normales

mixtes—which latter Dupin, it will not be forgotten, endeavoured,by a

like process, to elucidate. Let us imagine, says M. Guyou, that from

about point g as centre we describe a sphere of less radius than the

least of the radii vectores of the surface, S (Fig. 184), and let us suppose

that the radius of this sphere gradually increases. There arrives a

moment when, as it grows, it will touch internally the surface, S,

and to the point of contact will correspond a minimum normal. As

the sphere still grows on, it will intersect the surface, S, in a line,
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surrounding on all sides the foot of the normal. But instead of

speaking of " intersection/' let us imagine our sphere to be a sphere

of liquid, so that as it first touches the dry interior of the surface,

S, it begins to wet and submerge it. If it enlarges sufficiently it

will ultimately submerge the whole interior of that surface, but

before this expansion is reached, and after it has begun to submerge

parts of the surface, S, the latter will be divided into isles and lakes.

If S0
be the foot of the minimum normal which the sphere has first

touched, there will gradually, as the sphere expands, be formed

round S
0
a little lake ; and as the sphere grows, the lake will extend,

the tongues of land always receding, and there will arrive a moment
when the original lake will be on the point of joining another. To
the point of junction there will correspond a mixed normal, and it

will obviously be relatively near to a minimum normal. If p0 be

the length of the minimum normal, and p0
' the length of the neigh-

bouring mixed normal, we see that, so long as the radius of the

sphere is comprised between p0
and p0

', the lake around S0
can

contain only one minimum normal
;
and, on the contrary, when the

sphere's radius exceeds p0

'

9
the lake will contain at least two normals

of this character.

Further, let us suppose that at the precise instant when the

radius of the sphere is equal to p0\ we join the point, g, by straight

lines with every point in the circumference of the lake surrounding

S0 ; we shall thus obtain a perfectly defined cone, which may be

properly called the cone of stability corresponding to the axis, g S0
.

Returning now to the body, of weight floating in a given

vessel containing a certain quantity of liquid, and putting H for the

height of the centre of gravity of the system (of weight P) in any

position whatever in which the free surface of the fluid is not

horizontal, and letting the trim and the elevation of the floating

body be any whatever, and calling R a quantity such that we have

X II =z p X

if we further call h the minimum height of G for the given trim of

the body, and p the corresponding radius vector of the surface, S,

we have, as before,

¥h=p P ,

and as H is greater than h, R must also be greater than p. Con-

sequently, if from g as centre, with radius equal to R ^—
?-XJ?^

,
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we trace a liquid sphere, the point, S, where the vertical axis through

g pierces the surface, 8, must be submerged ; and if the radius, R,

is less than the greatest radius vector of the surface, S, the liquid

sphere will detach upon this surface a certain number of lakes, into

one of which will descend the actual vertical axis through g. And,

still further, if we now suppose the system to receive a movement

such that the product, P x H, could not surpass the value, p X R,

it is evident that the body could not at any time take an inclination

such that its vertical axis through g would pierce the surface, S,

outside of the lake which we have defined. Consequently, the

oscillations of the body about the vertical would be limited by the

cone before referred to.

Still keeping in view the system of a given body floating in a

fixed quantity of fluid in a vessel, we know that the pressures upon

the sides of the vessel balance each other, and the pressure upon the

free surface of the fluid is also balanced. Presuming the weight

above to be acting, let us assume the body to be floating in

equilibrium, and therefore with a minimum normal, which we will

call jO
0,

then, in the case of any small disturbance from the position

of equilibrium, either of the liquid or of the floating body, which

converts the height, h
Q , of the centre of gravity of the system into

H
0, and impresses upon the system a certain vis viva, which may be

written 2 mv% and if the system be now left to itself, " the laws of

the movement which the liquid and the floating body will undergo

will depend," says our author, "on a multitude of circumstances

that we cannot analyse with precision, but this movement will

necessarily fulfil the equation-

's ??w2 - 2mvj) = P x H0
- P x H;*"

or,

~ Smv2 + P x H = i 2 mvl + P x H0
[a)

Putting

|sm^ + P x H0 =i>B0 ,

* "The difference between the aggregate work done upon the machine during

any time, by those forces which tend to accelerate the motion, and the aggregate

work, during the same time, of those which tend to retard the motion, is equal to the

aggregate number of units of work accumulated in the moving parts of the machine

during that time, if the former aggregate exceed the latter, and loss from them during

that time if the former aggregate fall short of the latter."—Moseley. The work

accumulated by a freely-falling body, and which it is capable of reproducing, is equal

to one-half its vis viva, as we have previously seen.
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this becomes,

| 2 mv1 + P x H ~ x E
0

.

1
As - 2 mv2

is essentially positive, we shall always have

PxH<pxE
0

.

Consequently, if from g as a centre, with a radius equal to E
0, we de-

scribe a sphere, this sphere will detach around the primitive normal,

pQ ,
a lake, and the cone formed by joining its contour at every point

with g will define the limit beyond which the vertical axis of the
floating body cannot pass during its oscillations under the conditions

prescribed. In returning to its initial position (in which H
0 again

becomes h
0), the work performed must be equal to P x H0

- P x h
Q ,

and the vis viva imparted must be

\ Smvg; and asPxfc
0 =pxp0,

we have

\ Imvl + PxH0 -Pxi0 =pxE,-j) Po =p (R
0
-

Po). . {b)

It will be seen from this that if the work imparted to the system be
small, the radius, E, will be but little greater than the primitive
normal pQ9

and the cone of oscillation will be very small a property
belonging only to positions of equilibrium which correspond to

minima normals. The author demonstrates the reverse of this for
maxima normals, and shows that for mixed normals the sphere
described with the radius, E

0 ,
exceeding as little as we please the

normal of equilibrium, will always cut off a lake of finite extent,

composed of two parts united by a narrow strait.

In showing that a body slightly disturbed from a position of

equilibrium corresponding to a minimum normal, will return neces-

sarily to that position, M. Guyou observes that if, instead of imagining
a material system to be perfect, we consider a natural system, it

becomes necessary to introduce into equation (a) a term representing
the work of the passive forces, and we have

i 2m?;2 + P x H + = | 2mv* + P x H0
.

If we cut off P hQi having regard to equation (6), we shall have

\ Smtf + P (H - h
0) =p(R0 - Po)

- 0 = <p.(R
0
- ± -

Po). . (o)

20
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$ represents in this formula the sum of the passive forces exerted

during the interval, t — t
0 ; therefore it is essentially positive. Let

us suppose that at the instant, t, the system again becomes perfect,

and let us call 2 mv' 9, its vis viva, and H' the height of the centre of

gravity at the instant, f
,
posterior to t, we should have

mv"" — ^ 2 Tfiv
1 = P x H — P x H'

;

2 " " vJ*
2

or,

I 2 mv'* + PxH'-Pxft, = g + P (H — h
0).

And finally, having regard to equation (c),

sSm^ + P x E! - Vh0
=zp(B,

0
-2- - Po). • . . . .

(d)

This equation has the same form as (6), and we see, as before, that

the movement which it represents is limited by the cone of oscilla-

tion obtained by describing the sphere with a radius, E, equal to

R
0
- ; that is to say, by a cone less open than that in which the

P
system would have oscillated if the passive resistances had not

diminished its vis viva. In other words, the passive resistances

have to some extent dried the lake.

Now, if p0
be a minimum normal, p0

' the nearest mixed normal,

and the energy imparted to the system such that E0
shall be less

than jo
0
', it follows from what has gone before that the lake corre-

sponding to this case will surround p0?
will gradually dry up, so to

speak, and the cone of oscillation will close up round jo0
until it

becomes identical with that normal, when we shall have (from

equation, d),

K
0
— p0

~~ — — 0,

and necessarily,

P

2 m' if* = 0, and H' = h

In fact, the second member of equation (d) being nothing, the body

must float with p0
upright ; and as in this position IT is always at

least equal to h
0 , the first member can only become nil when

W = h
0 , and the vis viva is also nil. The equilibrium is, of course,

stable. If the energy imparted to the system be such that the

initial cone of oscillation passes beyond the cone of stability, the
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corresponding lake would comprise at least no minima normals, and
whether the body will come to rest (as the lakes are dried up by the
diminution of the oscillations), with the axis of the cone of oscilla-

tion remaining in one or other branch of the lake, will depend upon
whether it happens to be situated in the one or the other at the
moment when the strait between the two lakes is left dry. The
body will come to rest with the minimum normal situated in the
lake in which the axis of the cone of oscillation remains in an
upright position. The body may therefore capsize.

In order that the floating body may not capsize it is necessary

that ^ 2 mvl + P (H
0
- h

0) shall be such that E0 shall be less than

Pq ; but we have

the maximum "energy of stability" which the body can receive

without capsizing is therefore equal to p (Po
' — p0) }

i.e., to the work
which would be done by the weight of the body falling through the
height, Po

' -
Po .

Therefore, if p 0? p l9 p2 , . . . . . are different minima normals that
can be drawn from the centre of gravity of the floating body to the

surface, S (or to its surface of buoyancy, C), and p0

'

? p/, p/, . . . .

are their neighbouring " mixed normals/' the energy of stability of

the equilibrium (which is the minimum energy which the body can
receive without capsizing) corresponding to any normal p of the

first series will be equal to the work which would be done by the

body falling through a height, p' -
p.

By a similar process of reasoning M. Guyou demonstrates that

under all circumstances it must be with a minimum normal alone

upright that the body can come to rest, and that equilibrium about
either mixed normals or maximum normals is impossible in nature.

All the foregoing principles are applicable generally to the

equilibrium of floating bodies, in open water as well as elsewhere,

because the previous investigations have nowhere been dependent
upon the dimensions of the containing vessel, or upon the quantity

of water employed.

It will be seen that the whole treatment of stability by M.
Guyou is thoroughly dynamical, and therefore contrasts strongly

with the ordinary English methods of treatment, which were almost

wholly of a statical character up to the time of the appearance of
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Canon Moseley's Royal Society Paper in 1850. M. Guyou's method

obviously admits, as will be seen, of special application to the measure-

ment of what is known among us, since Moseley's time, as the

Dynamical Stability of Ships, or the work performed in inclining

them through finite and large angles. In giving it this application

it becomes desirable to abandon the generality of the previous

investigations, and to limit our inquiry to the case of inclination

about a given longitudinal axis.

Fig. 186 represents a transverse plane through the centre of

gravity of the floating body

;

F&186
' let Co, Cb C 2 ,

indicate the

curve of buoyancy of the ship

;

S
0 ,
S l5 S 2 ,

the podaire of that

curve, or M. Guyou's curve, S

;

and let C
2
and S

2
be two

corresponding points on those

curves. The righting couple

tending to return the body

from the position in which

g S2
is vertical, to the upright

position shown, in which g S0

is vertical, will have for its

moment, p X g A2 ,
which is

equal to p X C2 S2 . Further,

the work done in inclining

the ship from g S0
upright, to g S2

upright, we have seen to be equal

t0 p(g$2 - g S0) ;
if, therefore, in accordance with the usage

previously adopted, we call the arm of the lever of dynamical

stability the quotient obtained by dividing the work requisite for

inclining the ship by p, we shall have the following rule for

determining in practice the two arms or leverages of a ship's

stability, viz., C being the centre of buoyancy corresponding to the

given inclination, if we draw at this point the tangent to the curve,

C, and let fall from the point, g, a perpendicular, g S, upon this

tangent, the line C S will represent the arm of the lever of statical

stability, and the excess of the other side g S (which with C S

forms the right angle) over the distance g S0 ,
that of dynamical

stability.

M. Guyou remarks that the quantities, g S, g S0 ,
and C S, are

given directly by the tables employed in the calculations of stability.

He then proceeds to compare the rule just enunciated with the
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W
\\

ordinary rule—a comparison which is hardly necessary, as it is

obvious that the difference between g S and g S
0
is the measure of

the vertical distance through which the centres of gravity and of

buoyancy have become separated by the inclination, and that is

with us, as well as with the French savants, the measure of dyna-

mical stability. He proves that the arm of the lever furnished by

the integration of the curve of stability is equal to the increase of the

radius vector of the curve, S. In doing this he employs Fig. 187, in

which C
1
and C

2
are the points

of the curve of buoyancy, C,

infinitely near each other; m C
:i

and m C
2

are the two corre-

sponding normals to that curve,

and m is its centre of curva-

ture. Let fall g A1
and g A2 ,

perpendiculars from the point,

g, upon the said normals, and

draw A
1
B

1
perpendicular to

g A2.
Neglecting a very small

quantity of the second order, we
shall have

A-l Bx
— g A±

d 9.

Describe from the point, m, as

centre, the infinitely small arc, A
1
A

1

/

, and consider, as we may, that

Cx
C

2
is also an arc of a circle about m, and consequently, m C

2
=m Ci;

therefore, A{ C2 = A
1
Gl9 and A/ A 2

= C 2 A 2
— C

2
A

x ;
and, finally, if

we observe that g S 2= C2 A2 , and g Sx
= Ci Al5

it will follow that as

XdB \

we shall have

A
}
Ag —- A| 33^ — g A^ d 0,

g Ax
d6 = gS — g S, = dgS

;

and therefore, integrating from zero to 0,

g A±
d 9 = g S

1
- g C0 ,

^ 0

which is the equality that was to be established. " We see, there-

fore," says M. Guyou in conclusion, " that it is useless to make for

each inclination the graphic integration of the curve of stability in
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order to obtain the arm of the lever of dynamic stability for ships

:

this arm can henceforth be taken either on the drawing by a mere

opening of the compasses, or from the tables employed in calculating

the elements of statical stability/'
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CHAPTER XVI.

M. Daymard's Process of
i
Stability Calculation—Pantocarenes Isoclines—Fundamental

Formula—Construction of Pantocarenes-—Isocarenes Pantoclines—Deduction

of Righting Levers from these Curves—Relation between Righting Levers and

Co-ordinates- of Centres of Buoyancy—M. Daymard's Method of Operating

—

Graphic Process for Facilitating the Work—Auxiliary Curves—Tracing out

of the Pantocaine.

It has already been stated (in chapter iv.) that M. Daymard, of

Marseilles, has devised an exhaustive process of stability calculation,

in which curves passed through the extremities of what we have

called the B K's, for different draughts of water, and for successive

angular intervals (see Fig/38, page 55), form a fundamental element.

In explaining his process,* and the considerations which led up to

it, M. Daymard states that it was while he was pursuing the investi-

gations of his father-in-law, the late M. de Ferranty, that it first

occurred to him to join by continuous lines the extremities of the

arms of the righting levers (presuming the centre of gravity to be

identical with the centre of buoyancy) corresponding to the same

angle of inclination. He perceived that if he had, for all angles

from 10° upwards, the curves thus drawn, which he proposes to call

curves of stability,
" Pantocarenes isoclines" he could obtain from

them at once, and with complete exactitude, and for all possible

cases, the usual curves of statical stability.

Having obtained the means of determining the two extremities

of each " Pantocarene" and of calculating directly, and in a

* In a communication to the author, and subsequently in a paper contributed to

the Institution of Naval Architects, session 1884.
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mathematical manner, as many intermediate points as he wished,

he prepared a sample table of calculations by means of which he

could, in a comparatively short time (about 40 hours) arrive at the

complete representation of these curves for a ship, at intervals of

10°, from 0° to 180°, and for all draughts of water, and consequently

at the entire solution of the problem of the stability of the ship.

The fundamental formula of statical stability for a ship of dis-

placement P, is

P^ = co x HIT -Pa sin. 6 (1)

in which p is the righting lever, G R, to is the displacement of either

of the two equal wedges, F I/, L 1 1 (Fig. 188): H H' the distance

JFtg.188.

i

i

i

»

* i—

\ ^

Q^-——

—

along / 1, between the perpendiculars from the centres of gravity

g and g', of these wedges ; and a the height of the centre of gravity

above the centre of buoyancy.

Therefore,

p — ~ x HH'-a sin. 6 ;
or

p = ^-x HH; — a sin. 6.

W and V being the volumes corresponding to to and P.

Also,

G R, or p = C K - C Q ; and C Q = a sin. 6 \
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Consequently,

GE = ^ x HH' . . . . (2).

The length C K, would be the righting lever itself, if the

centre of gravity coincided with the centre of buoyancy (when

a ~ 0)', calling it b
y
we have

b =. p + a sin. 9 . . . . (3).

From this formula (3) it is easy to construct (for a given displace-

ment) a curve such as that described in chapter iv., Figs. 36 and 37,

which represents the value b (or B E) at successive angles of

inclination
;
then, for each value of a

y
to trace (as is also done in

the figure aforesaid, viz., Fig. 36, chapter iv.) the curve representing

a sin. 6; the algebraic difference of the ordinates at the same angles

gives the ordinates of the usual curve of stability, or of values of p.

M. Daymard dispenses with the tracing of the auxiliary curves

j
Fig.190,

(A B and C D, Fig. 36) in the following manner :—Suppose that, by

any method, we have obtained the values of b at 10° inclination, for

a series of centres of buoyancy, C 15 C2 ,
C

3
. . . sufficiently close

together (Fig. 189); we can draw, in the vertical section, and to a

convenient scale, the righting levers, C x
K 1? C2

K2 ,
C

3
K

3 . . . .

corresponding to successive values of 6, parallel to each other, and
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respectively equal say to b2
10 &3

10
, &c; joining the points

K1? K2 , K3 . . . we shall have a curve from which we can

at once obtain intermediate values of b, by drawing from any

point Cm within the limits C 1? C2,
C3 , a straight line parallel to

Cx Kx . . . till it meets K1? K2 ,
K3 in Km . The length, 0m Km,

will represent for 10° inclination the value of the arm of the lever,

bm, for the displacement whose centre of buoyancy is, Cm , in the

upright position. On account of this property M. Daymard gives to

the locus, Kj. K2 K3 . . , the name " Curve of geometrical

stability Pantocarene," at 10°; or, by abbreviation, " Pantocarene

"

at 10°.

This Pantocarene at 10° is also the locus of the feet of perpendi-

Fig.191,

culars let fall from the upright centres of buoyancy, G-b C2 ,
Cm (Fig.

190) upon the normals C /

1 J1,C
,

2
J2 , . . . C'm Jm to the water-

line at 10° inclination, drawn from the corresponding centres of

buoyancy, C'
2

. . . C'm in the oblique position,
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Supposing a series of Pantocarenes for 10°, 20° . . . 170°,

180° inclination to be traced, the general appearance of these curves

for vessels of ordinary form is indicated in (Fig. 191), and they can

be employed as follows :—If from any point, Gm (Fig. 192) of the

Fig.192.

vertical axis, taken as the centre of buoyancy of an upright displace-

ment (known from ordinary calculations), we draw radii vectores,

inclined at 10°, 20°
. . . 170° and 180° to the horizontal, till

they meet at a,
/3, y . . . the corresponding Pantocarenes, we

obtain a series of values of b from 10° to 180° at intervals of 10°

;

and if G is the centre of gravity of the ship, by describing on

Cm G, = ci
)
a circle which has for its polar equation (Qm being the

pole) p = a sin. 0, the values of p, or b — a sin, 0, are then the

portions, a a, b /3 . . . &c. (of the radii vectores) intercepted

between the corresponding Pantocaine and the circumference.

These lengths can be taken directly from the figure, if we desire to

draw, with rectangular co-ordinates, the curve of values o£p, i.e., the

usual curve of stability.



S16 STABILITY OF SHIPS. [CHAP. XVI.

M. Daymard now takes another important step—Passing a con-

tinuous line through the points, a, /3, y . . . (Fig. 193), he obtains

Fig.193.

the curve of values of b in polar form. That curve is closed (with

or without loop) at its pole, Cm , the centre of the upright displace-

ment, and it is also the locus of the feet of the perpendiculars let

fall from Gm on the tangents, a a, /3f3', yy . . ., to the metacentric

evolute, which tangents are normal to the successive inclined water-

sections, and are drawn through the corresponding oblique centres

of buoyancy. He gives the name of " Isocarene Pantocline " to the

locus, a, /3, y . . ., &c. It results that the values ofp are the portions

of the radii vectores intercepted between the circumference described

on Cm G (Fig. 192) as a diameter, and the "Isocarene Pantocline"

curve. It will be obvious that this curve, when drawn, enables us to de-

termine with what height of centre of gravity the stability will vanish

at a given angle, M Cm 0 (Fig. 194), for, by describing through the

points, Cm and 0, a circle having its centre on the axis, Gm G, the

extremity, G, of the vertical diameter is the limit of height which

the centre of gravity must not exceed, in order that the stability

shall not vanish before the inclination, M Gm 0, is reached. More-

over, with the Pantocaine at angle, (9, viz., the curve, P G
e

(Fig.
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Fig.m. Fig.195.

FiffJ96>

195), we can see at once the variation of p at 6 inclination when the

draught of water varies. We have only to draw A B parallel to the

axis, T Q, at the distance, MN=a sin. 6 cos. 6 ; for any centre of

buoyancy, Cm , p is the portion, t K, of Qm K, drawn at the inclina-

tion, 6, intercepted between AB and the pantocaine. Also the

centre of gravity, G, being supposed fixed in

the ship (Fig. 196), we obtain p for the

inclination, 6, and the displacement whose

upright centre of buoyancy is Cm ,
by drawing

G R inclined to T Q at the angle, 6 ; the value,

p, is the portion, Ks, of Cm Ks drawn at 6

inclination, intercepted between the panto-

caine and the straight line, GR.

The pantocaine curves by furnishing the

points, a, /3, y . . . (Fig. 193), for a given dis-

placement, enable us to obtain the meta-

centric evolute which is the envelope of the

straight lines, a a, /3 /3', yy . . ., of which we

know the direction ;
and, the ordinary calcula-

tions supplying the position of the metacentre,

m, for the upright flotation, we are able, using

the property of evolutes, to trace the involute,

C, C" C'", or the locus of centres of buoyancy

at various inclinations and with a constant displacement, "In
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short, our curves give," says M. Daymard, "for any draught of

water, and whatever be the position of the centre of gravity, not

only the usual curve of stability, but also all the elements of stability

which can be desired for all inclinations. They are, so to speak, the

synthesis of the series of metacentric evolutes, and form, with the

loci of centres of buoyancy at a given angle, on the one hand, and

with the isocarenes pantoclines, the metacentric evolutes, and the

successive centres of buoyancy of a given displacement, on the other

hand, a double system of curves (Fig, 197) capable of being deduced

Fig..197.

one! from] the other, but of which they^ the pantocarenes, are the

most useful for solving problems of naval architecture."

In Fig. 197 the curves marked A are curves of stability, "Panto-

carene-isocline," i.e., for varying displacements and constant inclina-

tions. Those marked B are loci of centres of buoyancy for varying

displacements and constant inclinations. Those marked 0 are loci



CHAP. XVI.] daymakd's investigations. 319

MffJ98.

of centres of buoyancy for constant displacements and varying

inclinations. Those marked D are curves of stability, " Isocarene-

pantocline," i.e., for constant displacements and varying inclinations.

Those marked E are ordinary metacentric evolutes.

Considering floating bodies of geometrical form, their pantocarenes

are of a very simple nature; for prisms of circular or polygonal

section they are straight lines, branches of hyperbola, or algebraic

curves of a degree not exceeding the fourth.

From Fig. 1 98 may be seen the relation between the values, 6,

of the arms of the lever, and the

co-ordinates, Y and Z, of the

corresponding centres of buoy-

ancy;

b = Y cos. 0 + (d- Z) sin. 6,

d being the distance from the

water-line, FL, of the upright

centre of buoyancy, C. Panto-

carenes can therefore be con-

structed from the calculations

giving Y and Z; but altogether,

it is more convenient to get

directly the values, b, in the

manner to be presently indicated.

The two extremities of each

pantocarene are very easily deter-

mined, and that circumstance greatly facilitates the tracing of these

curves. In the first place, all pantocarenes converge to the centre, 0,

of the total volume of the ship (centre of bulk)
;
for, when the floating

body is totally submerged, the centre of buoyancy, whatever the

inclination, must coincide with the centre of form. On the other

hand, with the displacement continually decreasing so as to arrive,

as a limit, at displacement = 0, the ship in that extreme case (only

possible as a geometrical conception) will be inclined by rolling on

her midship or lowest section, the lowest point of which is the limit

of the locus of the centres of buoyancy when the displacement tends

to zero. It follows that by letting fall from the top of the keel, Q
(Fig. 199), a perpendicular, QP

?
upon the normal, MN, to the

midship section, inclined at an angle 0 to the axis T Q, the inter-

section, P, is the second limiting point of the pantocarene at 6.

For the calculation of intermediate points or values of b for a
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series of draughts of water and various inclinations, M. Daymard,

following M. Keech, dispenses with water-lines corresponding exactly

to a given displacement, and makes his calculations for inclined

planes of flotation, radiating from a given point of the axis, and

respectively inclined to the horizontal at 10°, 20°, . . . 170°, 180°.

By a process of reasoning somewhat resembling that pursued by M.

de Ferranty in chapter xiii., and using a similar notation, he demon-

strates the equation,

W x H x H/ = uh + u'h' — (u — u') d sin. 0.

Consequently,

, uh + u'h' — 0 d sin. 6 .

6 = y ^ . . . . (4J

;

(in which
<f>

is the difference between the wedges of immersion and

emersion)—a formula of which we can compute all the quantities in

the second member by means of ordinates, starting from V (a point

in the axis) and by mathematical methods enabling any degree of

approximation to be obtained.

The mode of operating is described by M. Daymard as follows :—

After having made for the upright vessel, and for the total volume, the ordinary

calculations by means of horizontal water-lines giving the displacement scale, curves

of centres of buoyancy, and metacentric heights, let us choose on the vertical axis

different points, U, U', U", . . . (Fig. 200), which can be named points of stations

;

and for each of these points, such as U, let us perform the following operations
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Draw from 0° to 90° a series of straight lines representing the traces of radial

planes equidistant angularly, 6 (in practice, 6 - 10°); take on those traces, starting

from U, the ordinates of the equidistant sections (generally 20 in number) on the side

Fig.%00.

T

of immersion (I), as well on the side of emersion (E), and draw up a table like that
annexed,* containing the ordinates (I) and (E), their squares, their cubes, the sums,
21, 2 E, 2(F), 2(E2

), 2 (I
3
), 2 (Es

), and the quantities, [2 (I)
2 - 2 (E)2

] = d

2 (I
3

) + 2 (E3
) = or ; we shall then have the necessary elements for calculating a series

of values of b.

For, in the successive radial planes we have, by the usual formulae of polar
integration, A x being the interval of the sections, A $ the arc of 10° in a circle with
radius, 1

:

At 10° : 01O

20° : 02O

30° : 030

• • a •

= |~ AxA$ x a1#

= j A#A0 (2 8X + $2).

• a * >

Finally, at 90° : 09 = 08 + - A*A0 (s8 + 59 ),

giving for index to <5 the figure which represents the multiple of 10°, at which the

corresponding radial plane is drawn.

Knowing 0, we shall have (V + 0) for each radial plane, V being given by the

displacement scale.

On the other hand, the curves of heights of the upright centres of buoyancy
supply the distances, d\ and d2f from F0 L0 of the centres corresponding to V and to

(V + 0), and by the rule of moments we have,

* See end of Volume,

21
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uh + u'h' - chd sin. 0 , , , , 7 ,

it remains only in the formula : b = V + 0 calculate uh + uti.

Then a very simple analysis made by taking the moments of the elementary

wedges relative to the radial plane under consideration, shows that calling Mi, M2 . . .

the sums, uh + u!hl
9 and adopting for indices of M and <r the same rule as for 8

9
we

have,

for 10° : Mi = ~AxA6 Oi + cr0 cos. 10°).

20° : M2 = \ A x A 0 (<r2 + 2 vx cos. 10° + c0 cos. 20°).

b

30° : Mo = \ A x A 0 (<xs + 2 <r2 cos. 10° + 2 °i cos. 20° + <r0 cos - 30°)-
• •

'

o

w x 10° : Mw = i- Ax A 0 [<r„ + 2 o-(w_ 1} cos. 10° + ... 2 o-j. cos. (w - 1) 10°

D

+ O"o cos - (w x 10)°]

Finally,

90° : M9
i A £c A 0 (o-9 + 2 <r8 cos. 10° + .... 2 ci cos. 80°).

We can obtain the values, M l5 M2 , . . . rapidly by a graphic process ;
for that

purpose we draw through the vertex, 0, of a right angle, LOR (Fig. 201), a series of

radii inclined 10°, 20°, . . . 80°, to the

Fig^ot. horizontal, OR; we describe from O as a

centre, arcs with lengths, ^ °0j °l> a2> • • •
c9i

to a convenient scale; and the distances

from OL of the intersections of the radii

with the arcs, give us the series of values,

<rn cos. h 0, of which are formed the quanti-

ties, Mi, M2 , . . . M9 .

We have then for each radial plane,/ I

(of angle, 0, and volume, V + 0), the "geo-

metrical arm of lever," b =
^

Drawing through the centre, Ci (Fig.

202), of the upright hull a parallel to fl,

and with the length, Oi K = b, the point,

K, is one point of the pantocaine, 0.

We determine, besides, a second point

belonging to the pantocaine (180 - 0). For each oblique water-line,/?, cuts off two

distinct hulls ; one inclined 0 of volume (V + <p), the other inclined (180 - 0), having

for volume [V2 - (V + <£)], V being the total volume of the floating body.

Let C2 be the upright centre of the volume [Vi - (V + 4>)\ the arm of lever, b
89

corresponding to C2 , and inclination (180 - 0), is given by the equation—

j*. ^%—--J
l

mj^Ll sin. 0 - b
1

Vi - (V - 0) Vi - (v + $y

X) x and ®2 being the distances of Ca and 02 to the centre of bulk, 0.
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This equation is easily deduced from considerations of elementary geometry.
In fact, the series of radial planes from 0° to 90° supplies a series of values of b

T
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and corresponding points of pantocarenes for all angles, at intervals of 10°, from 0° to

180°, As from 180° to 360° the elements of the stability are symmetrical, having the

same values as from 180° to 0°, we may conclude that the radial planes from 0° to

90° give the results for all possible inclinations.

Having thus determined as many series of points, K and K
5

, as we have con-

sidered stations, U, we should be able to trace out the pantocarenes.

It will be useful, however, first to join the points, K and K
s ,

given by a single

station; by virtue of the continuity of the lines of the ship, the curves so formed

ought to show a certain regularity. Moreover, they should pass through the centre

of bulk, O, because whatever be the station, we return by the radial plane at 90° to

the longitudinal plane of symmetry, and to the half vertical volume of the ship.

Those conditions should check the results of the calculations. These auxiliary curves

will have the form (X) or Qi) (Fig. 203), according as the statiou is below or above the

centre of bulk.

What we have said about their continuity can be more or less invalidated, when
the ships are of unusual forms, with armoured breast-works or other peculiarities, but

in that case we cau, by proceedings analogous to those which we apply to the

calculations of surfaces bounded by discontinuous curves, make use of radial planes

placed more closely together, and meeting the intersections of the deck with the

sides.

In any case, after having completed the operations for the number of stations

deemed necessary (practice proves that the knowledge of the terminal points for

three stations suffices in ordinary cases), and traced enough curves of the kind (x) or

it only remains to join the points, K, corresponding to the same inclination, and
to prolong, when necessary, the lines so obtained, on one side to the centre of bulk,

on the other side to the ending point, which we have given the means of

determining.

We have then completed the pantocarenes of the ship.

The sample table of calculations found herewith will supply, we hope, sufficient

explanations to elucidate what our exposition may have left incomplete or obscure,

This table contains every calculation for one station. With little assistance,

one person may fill it in eight hours, all included. That corresponds to the complete

tracing of the pantocarenes, by 10° intervals from 0° to 180°, in about forty hours.

We may remark that any method giving a sufficient number of arms of lever,

CK, would enable us to trace the pantocarenes, and also in the case where these

arms of levers have been found by inclining a model ; a process open to objections,

but nevertheless sometimes used.

Our table, of course, can be used with ships designed to any condition of trim.

But we reserve the explanation of the means of obtaining from the pantocarenes

corresponding to the horizontal keel the measurement of the stability, whatever be
the trim.
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CHAPTER XVIL

Amsler-Laffon's Mechanical Integrator—Description of the Instrument and Expla-

nation of its Principle—Readings for Area—Readings for Statical Moment

—

Readings for Moment of Inertia—Improvements by Dr. Amsler—Dr. Amsler's

Method of Using the Integrator in Stability Calculations—Specimen Cal-

culations.

We propose in this chapter to give a description of Mr. J. Amsler-

Laffon's Mechanical Integrator, an instrument which, as has been

previously stated, is of especial value in Naval Architecture for cur-

tailing calculations which, when otherwise made, are both lengthy

and tedious. It is now largely used in the profession, as it possesses

advantages which cannot be neglected. Greater accuracy is obtained,

as the instrument records quite as correctly for a discontinuous

curve as for a continuous one
;

and, operating mechanically, is but

little liable to error. Much less work is necessary, as by the move-

ment of a pointer round the boundary of any figure we determine

readings for the area, statical moment, and moment of inertia, and

therefore, there is a great saving of time and labour. The work by

its aid may be performed by comparatively unskilled labour subject

to skilled direction, with an occasional check on the accuracy of the

instrument, as a broken pivot-point, or some small mishap, may give

rise to very erroneous and curious readings.

It is therefore necessary that the instrument should be carefully

handled in placing it on, and taking it off the drawing board, its

bearings should be kept clean and free from dust ; and should any

inaccuracy in the readings reveal itself, the adjustments should not

be tampered with by any but an expert instrument maker. As to

unskilled labour being employed on the several calculations for

which the instrument is used, we may observe that drawing-office

apprentices are usually so employed, and generally the younger

lads. Although in most private shipbuilding establishments these

lads are now required to pass an examination, similar to that which
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candidates for Shipwright Apprentices in Her Majesty's Dockyards

undergo, they need only possess sufficient intelligence to become

acquainted with the instrument, take the readings correctly, record

them in prepared tables, and to perform the simple arithmetical

operations necessary. This is more especially the case, when we

employ the tables prepared by Mr. Macfarlane Gray, where each

step is indicated in a clear and simple manner.

On reference to Fig. 204, it will be seen that the instrument

consists of a pointer rigidly connected (so far a^ horizontal motion is

concerned) to a disc formed by two arcs of circles described

about the same centre with different radii. To each of these arcs,

pinions are geared, and so placed that the three centres are in a line

perpendicular to the axis. On the radii of these pinions, roller

wheels are fitted, and each wheel is connected with a counter, so

that they record the spaces traversed by their respective pinions.

These vital parts, as we may call them, are secured on a carriage, and

balanced by means of a weight, d. The whole instrument is made to

run on wheels, in order to reduce the friction which would take place

if sliding motion occurred, and is confined to rectilinear motion, by

means of these wheels running in a V-shaped groove along a steel

batten fixed parallel to the axis, about which we wish to determine

the statical moment and moment of inertia.

It is evident that for any angular motion, a, of the circular arc, each

pinion has an angular motion, j3, such that a and /3 are inversely

proportional to the respective radii. The principle of the machine will

be more clearly seen by taking any one of the pinions in combination

with the corresponding circular arc to which it is attached. Let

A B, Fig. 205 (next page), represent the axis of the instrument

;

D E, the arc to which the pointer is attached, and F G, the pinion

geared to the arc, DE. It will be seen from the preceding remarks

that the centre, 0, is free to move along the axis. Taking n : 1 as

the ratio of the radius of D E, to that of F G, and c as a constant,

dependent on the initial position of F G ; for any angular motion, a,

ofthe arc, the pinion has an angular motion, /3, such that fi
= na + e.

It is evident that when the pointer traverses a closed curve, the

readings from the roller due to angular motion are nil, because the

angular movement is exactly the same in opposite directions. For

a traverse of the pointer through an angle, a, however, lidx

represent the linear motion of the centres, the roller evidently

records a constant multiple of - d x cos. j8, taking the direction

of motion of the pointer as positive. The complete record due to
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the traverse of the pointer round the whole boundary of the curve

is -jdx cos. /3 ; or - j d

x

cos. (n a + c). Eeferring to rectangular

Fig.205.
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co-ordinates, we see that the ordinate, y, is always proportionate
to sin. a, and therefore we only require to know the value of c,

the constant, in order to express the value cos. (n a + c) in terms
of y, or sin. a. Now, n : 1 being the ratio of the radii of D E
and FG, taking

y
k

n—l and c= — ~ we have cos. (tta+ c) = cos. (a - |) = sin. a =

h being constant (the distance of the pointer from the centre). It is

therefore seen that the difference between two readings of the

rolling wheel gives a quantity always proportionate to fydoc, and

since j d x, disappears for a closed curve, we have a result which

gives the area.

The rolling wheel for areas, however, is attached to the pointer,
as by this means the machine is made more compact than it would
be if a circular arc of equal effect were used.

When n= 2 taking o = 0 we have

cos. (na+ c) = cos. 2 a= 1 - 2 sin.2 a= 1 - 2-^

The difference between two readings of the rolling wheel gives a

quantity in this case proportional to fy
2 d x, and since the term
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jd x disappears for a closed curve, this expression evidently gives

the statical moment.

Taking n = 8 and c = — - we have
2

cos. a + c) = cos. (oa— -Wsin.3 a= 3 sin. a— 4sin.3 a— 3 - — 4 -f-

We therefore obtain the difference between the momentjof inertia

and a fixed multiple of the area.

The area and statical moments are obtained direct from the

readings of the instrument, but to obtain the moment of inertia the

necessary subtraction has to be performed by the operator.

The adjustments of the axles for the three rollers is determined

as follows:—We have shown
j

Q = na+ c. Now, when a = 0, or the

pointer is in the initial position, /3 = c
}
and as we have shown that

c = — ~ for the determination of the area and moment of inertia,

it is evident that the rollers for these items must, in their initial

position, have their axles parallel to the axis, and the motion of the

wheels perpendicular to the axis. On the other hand, since we have

shown c must = 0 for statical moments, the position of the axle for

the rolling wheel must be perpendicular to the axis. Now, Amsler's

integrator has the circular arcs of radii compared to the smaller

pinions, as 2 : 3, and they, therefore, record readings which, on being

affected by multipliers dependent on the size of the instrument and

on simple calculation, give the actual statical moment and moment
of inertia about the axis respectively. The reading from the wheel

attached to the pointer, on being similarly affected by the multiplier

dependent on the size of the instrument, gives the actual area.

As before stated, the integrator is restricted to rectilinear motion

by means of the wheels of the carriage running in a groove in

the straight-edged batten, or guide-batten, this batten being fixed

parallel to the axis by means of the gauge accompanying the instru-

ment, and marked L in Fig. 204. The rollers are marked A, M, I,

and deal with areas, statical moments about the axis, and moments

of inertia about the axis, respectively. The pointer, P, is traversed

round the outline of the figure to be dealt with, which causes the

rollers to rotate and slide. The rotatory motion in each case can be

read off from the index attached to each roller, in the manner

described in the following instructions* :

—

* These instructions are chiefly derived from Mr. Amsler's pamphlet.
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The result of reading from any roller is a number of four figures,

the counting disc gives the first figure on the left, which, represents a

whole number ; the three following figures are directly taken from

the roller and vernier, and form the decimals of the number. The

reading of the roller, as shown in Fig. 204, for example, is 1*417.

The mark of the roller (in the example the 41) which has just passed

the fixed mark, 0, of the vernier, gives the first and second decimal; the

mark of the vernier, which is opposite to a mark of the roller (the 7

in the example), gives the last decimal of the number. The counting

disc counts the complete revolutions of the roller. When the mark,

0, on the roller is at the mark, 0, of the vernier, a mark of the

counting disc should be opposite the fixed index mark.

Readings for Area.

! The pointer of the integrator being moved round the outline

of the figure in the direction of the movement of the hands of a

watch, at the end position the roller, A, will have moved forward

from the starting position, that is to say, in the direction of the

increasing numbers. The last reading, av must therefore always be

larger than the reading, a
Q9
at the starting position, and the difference

a
t
— a

0
will be a positive value.

It often happens that the last reading is apparently smaller than

the first reading—say, for example, the first reading is 8*325 and

the last 1*256. This means that the mark, 0, of the counting disc has

passed the fixed index mark, so that the revolution performed by

the roller will equal 11*256 — 8*325, if the mark of the counting

disc has passed the fixed index mark once only during the traverse

;

or, in other words, 10*000 must be added to the last reading for each

time the 0 mark of the counting disc passes the index mark.

Readings for Statical Moment.

The manner of taking the readings for thi§ roller differs from the

preceding, owing to the peculiarity of the statical moments being

positive or negative, according to the position of the centre of

gravity with reference to the axis. According to usual practice the

moments are positive when the centre of gravity lies between the

axis and the guide-batten, and negative when it lies on the other

side of the axis. If the negative moments are greater than the
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positive, the result is negative, and its amount is what the roller, M,

has gone back. As in the readings for area, the mark, 0, of the

counting disc may pass once or several times the fixed index mark.

In this case, however, the number 10*000 multiplied by the number

of these passages is to be added to the second reading if the roller

moves forward, and added to the first reading if it moves backward.

For example, let the first reading be 2*432, and last reading 5*657,

and suppose the marks 2, 1, 0, 9, 8, 7, 6, of the counting disc to have

passed the index in succession, then the true reading due to the

traverse will be 5*657 - 12*432 = - 6*775.

In most cases the position of the centre of gravity relatively to

the axis may be judged without difficulty, and it is therefore not

necessary to observe the movement of the roller, M, and its counting

disc; when the position of the centre of gravity is near the axis, the

difference of the readings at starting and finish of traverse will be

small, so that a mistake about the direction of rotation of the roller

is not likely to occur, even without having observed the movement

of the roller.

Readings for Moment of Inertia.

These are taken in the same manner as for areas if the roller

moves generally forward. If, however, the arm of the moment of

inertia for the figure under consideration exceeds 4 inches, the

roller moves backwards, the difference of readings then becomes

negative, and they are dealt with as explained for statical moments.

Let a
Q9
m

0 ,
i
0 , be the zero readings, or readings at starting from the

indexes, A, M, and I respectively, and mh iv the readings after a

complete traverse of the pointer round the figure under considera-

tion, the inch being taken as the unit of length ; the area of the

figure will be (a
x
- a

0) 15 ; the statical moment about the axis

= 40 (m
1
—m

0)
; the moment of inertia relatively to the axis

= 240 (a
x
— a

0)
— 100 (i

t
— %); the distance of the neutral axis from

the axis of the instrument = 40 (
™}~~m

\) = 8 ffi
~ m

°) ; the
\1 5 {a

x
— a

0y \S (% - a
0)/

" constants" being entirely dependent on the size of the instrument

and the proportion of its parts. If, however, we are dealing with

1
a figure drawn to a scale of - inch = 1 foot, then the modification

necessary is as follows. The area in this case will be 15 n? (<% — a
0).

The statical moment about the axis = 40 ns (m1
—m

0),
and the
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moment of inertia about the axis 240 (a
t
— a

Q)
— 100 (i

t
— i

0),

the foot being the unit of length.

From these remarks it will be seen that actual results may be
obtained, even when the drawing which we are considering is made
to two different scales, one in the direction of the length of the

figure under consideration, and the other perpendicular to it. The
modification then necessary is obvious from the preceding details.

The usefulness of the integrator in naval architecture is thus

apparent, it being used for determining displacement, centre of

buoyancy, height of transverse and longitudinal metacentres, the

neutral axis and moment of inertia of the section of the material

of a ship, and also for curves of stability, both statical and dynamical.

It would occupy too much space to detail separately the manner
of dealing with each item ; suffice it to say that the methods for

calculating curves of stability by means of this instrument are

varied, some shipbuilders preferring to deal with the wedges of

immersion and emersion and their moments, whilst others take the

whole inclined body and its moment, determining in each of these

cases, by means of layers, the exact inclined water-line corresponding

to the displacement under consideration. In the Board of Trade
plan, where the displacement in the inclined position is not
necessarily the same as when the vessel is upright, the lengths of

the righting levers are obtained for the displacement correspond-

ing to the inclined water-line, as described in a previous chapter.

Dr. Anisler, son of the inventor of the instrument, has spent

some months in the scientific branch of the works of Messrs. Denny,
of Dumbarton, in studying the calculations of naval architecture,

and in extending the application of the integrator to them. An arm
of variable length has been supplied to Mr. Denny which can be
fitted to the arm of the ordinary integrator, in order to increase the

range and to allow the rollers to move on a surface independent of

the paper which bears the diagram to be measured. This involves

the introduction of fresh constants for its readings. On reference to

Fig. 206, which shows the integrator with the long arm, it will be
seen that the body-plan to be used is placed on a turntable, similar

to that used by Mr. Macfarlane Gray, and the axis of the integrator

therefore remains fixed throughout the work. Mr. Amsler, sen.,

has designed a parallelogrammatic mechanism, as shown in Fig. 207,

which can be fitted to any integrator without involving any change
of the constants. Though not increasing the range, this allows the

rollers to move on a specially chosen paper instead of running on
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the drawing. The accuracy is not influenced. This latter addition

to the integrator proves very useful. Further, an integrator of a

Fig.206.

TURNTABLE AMD INTEGRATOR WITH LOM'3 ARM

new kind has been made for Mr. Denny. As in the ordinary

integrator, a carriage runs to and fro on a railway, when the pointer

Fig.207.

TURNTABLE WITH INTEGRATOR WITH LINK MOTION
1 1

I I": I TRANSFERRED AXIS

travels round a figure. The recording rollers, instead of moving
directly on the drawing surface, move on a special disc which turns

on a vertical axis at the same rate as the carriage shifts along the

rail. In consequence of the rollers running on the disc indepen-

dently of the drawing surface, and this disc giving the rollers by its



STABILITY OF SHIPS. [CHAP. XVII.

rotation a much greater motion than they would get by rolling

directly on the drawing, the accuracy acquired is considerably

greater.

Dr. Amsler has favoured the author with an account of his

method of using the integrator in stability calculations. He has

endeavoured to reduce the taking of readings as much as possible.,

to avoid the shifting of the straight edge of the integrator (which

may involve considerable errors and inconvenience) and to arrange

the measurements so as to check each other without repetitions.

We take the following from his communication* :—

"For avoiding the shifting of the straight edge, I do not

measure directly the arm of the righting moment, but the co-

ordinates of the centre of buoyancy of the inclined body relatively

to the two axes. Fore-body and after-body are measured at the

same time. I proceed in the following way :—The integrator is set

to the centre line of the body-plan as the axis of moments ; then the

wedges between the water-lines from 0° up to 45° are measured,

moving the pointer round all the sections to be multiplied by the

same Simpson's multiplier; I thus reduce the number of readings

considerably, viz., the reading at the starting position of the

pointer ; the reading after having gone round the first and last

sections; then after the odd sections, and then after the even sec-

tions ; the last reading is to be used as the starting reading for the

next wedge, as the straight edge has not to be shifted. The method

of checking will be obvious on the specimen I enclose. When the

wedges are measured up to 45°, the volumes of the immersed and

emerged wedges are compared, and layers drawn where neces-

sary. The volumes and moments of the layers are then measured

with the integrator on the body-plan, and the water-line at 45° cor-

rected.

" This done, the straight edge of the integrator is adjusted to a

horizontal axis, and the wedges from the correct water-line at 45°

up to 90°, as well as the layers, are measured in the same way.

This is the whole integrator work to be done. The results obtained

are the horizontal shifts of the centre of buoyancy from the upright

to 45° on the one hand, and on the other hand the vertical shifts of

centre of buoyancy from its position at 45° up to 90°.

" The vertical shifts from 0° to 45°, and the horizontal shifts

from 45° to 90°, are then found by the following method, which has

* Dated 18th March, 1881
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been suggested to me by Mr. Purvis, and which I put into a

practical form.

" B (Fig. 208), may be the centre of buoyancy corresponding to

the inclination 9; x&n&y the co-ordinates of B. The tangent at B

Fig.%08,

to the curve of centres of buoyancy is parallel to the corresponding

water-line,W W, and contains therefore with the x axis the angle 0.

dy
dx

y

= tan. 6.

J o

tan. 0 dx.

" This integral represents the area of a curve, the ordinates of

which are the tangents of the inclination, and the abscissa the

corresponding values of x found by measurement. As tan. 6 grows

very rapidly for values of 0 beyond 60°, I use for 6> 45° another

curve. . Instead of considering 0, I consider now 90° - 0, and

dx
dy

= tan. (90° -

"y

x=z i tan. (90° -0)dy.
2/45°

The values of x taken from the curve, the area of which represents

this integral, are then the horizontal shifts of centre of buoyancy

from 45° up to the heel, 0.

" The curves for finding the two integrals are very easily drawn,

and are generally fair curves. The results obtained from them are

quite as exact as if found by direct measurement on the body-plan.

" I can, by means of the method explained, easily get out the

co-ordinates of the centre of buoyancy for seven different inclina-
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tions (10°, 20°, 30°, 45°, 60°, 75°, 90°) in about seven hours—the

time depending, of course, on the number of sections of the body-

plan."

The specimen calculation referred to by Dr. Amsler is given on a

separate page opposite.

A paper, descriptive of the integrator, giving further examples

of calculations made by means of it, was read at the Institution of

Naval Architects, in April, 1884, by Dr. Amsler, and of which

examples we propose to give (at the end of the volume) those relating

to the determination of the displacement and vertical position of the

centre of buoyancy, displacement per inch of immersion, and trans-

verse and longitudinal metacentres, in order to more fully describe

the uses of this important and valuable instrument.
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CHAPTER XVIII.

Rolling of Ships at Sea—Relation of Curve of Statical Stability to Curve of Dynamical
Stability—Comparison of Stability of Monarch and Captain with same Wind-
Pressure—Effect of Canvas upon Ships Sailing among Waves—Limit to which
Ships may be Safely Inclined in Waves—Report of Admiralty Committee on

Designs—Curve of Wind-Pressures—Comparative Stability of Monarch and

Captain-*—Objections to Foregoing Report—Quantitative Values of Wind-Pres-

sures in Relation to Stability—Examples of Stability of Ships in Waves.

It does not lie within the scope of this work to discuss the rolling

and other motions of ships at sea. To do that effectually it would

be necessary to consider also, and at much length, the constitution

and movements of waves, together with other matters which

concern not so much the stability of ships, as the external relations,

so to speak, of that stability. It seems desirable, nevertheless, to

bring together a few considerations of a dynamical kind, which

admit of ready and sufficient exposition.

Great confusion has existed in past times, and some confusion

still exists, as to the relation that holds between a ship's stability

and her steadiness in a sea-way. It was formerly considered by
many that the excessive rolling of ships was usually due to a too-

elevated centre of gravity, and when armour-plated ships were

introduced, and found frequently to roll greatly, top-heaviness was

the cause most commonly assigned, both in England and in France.

No improvement being found to result, however, from the lowering

of the centre of gravity, but substantial improvement usually

following the raising thereof, the matter soon came to be regarded

with more care and judgment, In the mercantile marine the

violent rolling that resulted from a too-low centre of gravity, such

as attended cargoes of iron rails, or other heavy cargoes, when
stowed low, also came to be well understood, and remedied by the

obvious means of raising the centre of gravity. The scientific

investigations of the late Mr. JFroude and others have placed the

true principles of the matter beyond all question. Nor is any great

amount of scientific investigation needful to a true appreciation of

22
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the subject. If a ship possessing a very low centre of gravity, and

consequently great stability, be forcibly moved from the upright

position in still water, and then left free to go back, she will

(neglecting the question of her moment of inertia) return with

violence to the upright position; pass, by virtue of the moment

acquired, beyond the upright, and there come to rest ; return again

through the upright position; and so on, ^oscillating about that

position through decreasing angles, until the momentum imparted

to her becomes expended, and she is brought eventually to rest. The

whole of her movements are the result of her efforts to seek her

original upright position, or of the efforts of the water to place her

there, in which position her axis of symmetry is at right angles to

the waters surface. If now, we imagine that, instead of the ship

being moved from the upright, the water is lifted out of the

horizontal, say, into the position of a wave-slope, thus immersing

(with a constant displacement) more of the ship on one side than on

the other, it is reasonable and just to expect that the ship will

consequently be turned from the upright to an inclined position, in

response to this increase of pressure on one side and diminution on

the other; and also that the urgency with which she will be so

moved, will be proportioned to the forces which in still water urged

her to the upright position, viz., to her statical stability. This idea,

while needing manifold developments and qualifications, is the

fundamental idea which regulates, if we may so speak, a ship's

behaviour in waves ; and it points immediately and directly to the

doctrine that, within certain limits, a very stable ship may be

regarded as tending to violent rolling in waves, while a ship of

small stability may be regarded as having much less inducement to

violent rolling. The limit on the side of great stability is to be

found in the fact that were the stability of a ship infinite, an exact

conformity to changes of mean wave-slope would be the condition

of maximum motion ; the limit on the side of small stability is of

course to be found in the well-understood danger of capsizing from

excessive crankness.

The ordinary curve of stability furnishes a ready means of

viewing the stability of a ship, under given conditions, in relation

to forces tending to incline her. Fig. 175, chap, xv., represents (as

an interesting illustration of the principles involved), a portion

of the statical curve of stability of the late ship, Captain, and,

as we said, the dynamical stability exerted during the inclination

of the ship from one angle to another is represented by the
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corresponding curvilinear area. It follows* that when a steady

breeze is keeping the ship at an inclination of 7°, if the wind

slowly increases until she is inclined to an angle of 14°, the

amount of dynamical stability expended during the further in-

clination by the increase of wind will be represented by the

area B F G, for the whole dynamical stability developed during the

further inclination is equal to the area ABFE, of which the

portion AB6E is due to the original force of the wind, leaving

the remainder as the result of the wind's increase. Next, if we

suppose that the wind, instead of increasing slowly, suddenly

springs up to the full force which we have been considering, the

increase of work which it will perform upon the ship will be

represented by the rectangle BHFG, and the ship will have to

perform an equal amount of work in resisting this sudden increase

of wind. This she can only do by inclining through a still

further angle, and afterwards finding her way back again to the

angle of 14°, at which the increased wind will ultimately keep

her steady. It is easy to see how much further she will go ; for

what she has to do is clearly to exert an excess of work equal to

the excess of work which the wind has exerted, and which is

represented by B H F. She will therefore incline to such an

angle that FIJ shall be equal in area to B H F. We thus see

why a reserve of dynamical stability is necessary, and how it is

called into play by a sudden increase of wind—a mere gust or

squall often lasting quite long enough to produce upon an un-

stable ship all the effects of a permanent increase of wind.

Let us now, as an instructive example of the use of such

curves, compare the cases of the Captain and Monarch, both

sailing under a steady breeze at a permanent inclination of 14°.

This is a rather large inclination, but it is selected for two

reasons: First, it is an angle at which the righting leverage of

the Captain was slightly greater than that of the Monarch, and

secondly, 14° is the angle at which the Captain was actually

sailing a few hours before her loss. With both ships steadily in-

clined at 14° then, let us now suppose the wind to suddenly increase

in a gust or squall, sufficiently to heel the Monarch over con-

siderably further, and to keep her, say at 20°
5
during the con-

tinuance of the squall, or until the sail is shortened. Let us

now see what happens to the Monarch Fig. 210 shows us. The

* Many of the remarks which follow are reproduced from Naval Science, Yol. i,

edited by the author.
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Fig.n0.

L

force of the wind springs suddenly from A B to A H, and drives

the ship over to an angle of 26°, by which time the total extra

dynamical " wind-work " (so to speak), represented by BHJK
has found its equivalent in the resisting work represented by
BIE, the portion B F J K being common to both, and B H F
equal to F J I. But the extra wind-work having thus been

absorbed by the stability, the ship now finds herself under the

action of a force of stability, represented by E I, which is con-

siderably greater than the force of the wind (AH or E J), and
she will consequently be forced back to the angle of 20°, where
the force of the wind and of the stability will exactly balance

each other. As a matter of fact, the stability will force her back

beyond this position until the excess of stability is absorbed,

and then the wind will drive her back again beyond 20°, but

to a less extent ; and so on, the ship oscillating for a time about

the balanced position—20°—and at length steadying herself

there. It will be observed, however, that, even when over at

nearly 26°, she still has a reserve of stability of considerable

amount, represented by the area of the figure I L M.

Next, let us see what happens to a ship like the Gaptain under

precisely similar circumstances—assuming, for convenience, that the

weights of the two ships (which only differed by about 4 per cent.)

are identical, and that the relative ordinates of the diagrams (or

levers of stability) therefore represent the stability in foot-tons in

each case. As the same force of wind holds the two ships at the

same angle, where the righting forces are about alike, we may also

assume that the increase of wind will affect both ships equally.
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Hence we may consider that B I K, Fig. 210, which represents the

extra work done upon the Monarch, represents also the extra work

which will be imposed by the wind upon the Captain, and will be

deducted from the reserve of work, or dynamical stability, which

she possesses before the squall springs up, and which reserve is

represented by the area, BLM* Fig. 211. But this is not equal in

Fig,211.
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amount to B I K ; the whole of B LM will therefore be absorbed,

the ship will incline to an angle of 34°, and still leave a small part

of the wind's demand unsatisfied. With this unsatisfied demand

pressing upon her, she will, of course, go on inclining still farther,

her stability getting smaller and smaller as she goes, until at 54^°

she ceases to have any at all, and will then turn bottom upwards.

Here we see that, although under slowly-increasing wind, free from

gusts and squalls, the Captain would have been safe, though inclined

to an angle of more than 20°, she was unsafe even at an angle of 14°

if exposed, as all ships are at sea in squally weather, to the sudden

rising of the wind. This is why we see greater cause for alarm in

considering the dynamical stability of such a ship than we had

already seen in considering the statical stability.

Thus far we have considered the conditions of vessels upon the

assumption that the level of the sea is uniform
;

or, in other words,

we have considered "smooth-water" circumstances only. It now
becomes necessary to observe that the existence of waves must

make a very considerable difference. Probably the simplest (though

not the most exact) way of looking at the subject is to consider that

a ship inclined under canvas is affected by waves in the same

manner and degree as she would be affected by them if inclined to

the same extent by any other means, and that under this aspect the

effect of setting canvas upon a ship, and thus inclining her to a

given angle, will simply be to diminish the angles through which

* BM should not be quite parallel to the base-line, on account of the diminution

of the wind's moment as the ship inclines.
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she can roll with safety by that amount. If, for example, we
should, for the moment, consider the angle at which a ship attains

her maximum stability to be the limit of the angle through which

she can roll with safety, from the upright position to either side,

whether with or without sails, then that angle, diminished by her

greatest inclination under a given spread of canvas and given force

of wind (allowing for gust), will be the limit through which she can

roll with safety under that spread of canvas and that force of wind.

The angle of maximum stability for the Captain was 21° ; that for

the Monarch, 40°; that for the Vanguard, 44f°. When sailing

under a steady breeze, capable of inclining them at 7° in smooth

water, and not allowing for gusts, these ships would therefore (on

the suppositions laid down) have respectively the following limits of

safe rolling :—

Captain, . . . 21° - 7° = 14°

Monarch, . . .
40° - 7° = 33°

Vanguard, . 44f
° - 7° = 37|°

When sailing under a wind that would incline them 14° in smooth
water (again neglecting gusts), they would have these limits

respectively reduced by 7°.

We here have presented, in a mournful light (although not

nearly the worst light), the danger of low freeboard in sailing ships.

The Captain's 21° of maximum stability compare badly enough
with the Monarch's 40° under any circumstances, seeing that she

was intended for sailing; but when we come to reduce these

respective amounts to an equal extent, as we undoubtedly must do

when the ships are equally pressed by canvas, and consider the

remainders left for safety, we see that the high freeboard ship has

nearly three times the amount of stability possessed by the Captain.

This was the normal condition of these two rigged ships at sea, and
the stability remaining in her when inclined under sail (and not the

stability with no sail spread) was the capital, so to speak, with
which the Captain was to purchase immunity from squall and
storm and from the action of the waves of the sea.

The view just presented of the effect of canvas uponja ship

sailing among waves is not strictly correct, for several! reasons.

First, there is no sufficient reason for limiting the extreme aggre-

gate inclination to the angle of maximum stability; secondly, the

angle through which waves will cause a ship to roll is usually less
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when she has canvas spread than when she has none
;
thirdly, the

mean angle of inclination—about which position the ship may he

supposed to roll to either side—will be greater in waves than in

smooth water under an equal force of wind ; and fourthly, the modi-

fications of motion resulting from causes of this nature will change

the ship's relation to the waves, and to the wave-periods, and thus

modify the forces impressed upon her.

To the first point we shall recur hereafter. As to the second-

that a ship with canvas spread will roll less in waves than she would

roll under similar circumstances without canvas, is obvious, and a

matter of common experience. Even if no wind blows, the sails will

act as huge atmospheric keels, so to speak, diminishing the rolling

motions in the same manner as bilge keels below water diminish

them. This action is obviously favourable to a ship the stability of

which vanishes at moderate angles. But the third of the modifying

causes just enumerated—the increase of the mean angle of inclina-

tion—is increased by the action of the wind upon the sails, as may be

easily shown. First, let us suppose the ship, with her sail spread,

to be set uniformly oscillating by the waves, with no wind blowing.

The resistance of the air upon the canvas will obviously be the same

as she moves to either side, and the vessel will oscillate about the

upright position as the mean position. Next, suppose the air to

move from left to right, and to have a velocity equal to the mean

velocity of the sails, the consequence will be (not quite exactly,

but very nearly) that the sails will experience no resistance in

moving from left to right, and a greatly increased resistance in

moving from right to left. The ship will therefore move further to

the right of the upright position than to the left of it, and the oscilla-

tions will consequently take place, not about the upright position, but

about a mean position, which will be inclined at an angle to it, and

on the right side of it. The same is evidently true in various degrees

whatever be the force of the wind. That the angle of inclination of

this mean position in waves will be greater than that produced by

the inclining force of an equal wind on the ship in smooth water,

arises from the fact that the force of the wind varies with the square

of the velocity, and not as the velocity itself. If we suppose, for

example, that the velocity of the wind is represented by 12, and that

of the sails by 4, then the relative velocities of the wind and sails m
the opposite directions respectively will be 8 and 16; and the forces

of the wind upon the sails moving from the wind, the sails at rest,

and the sails moving against the wind, respectively, will be propor-



STABILITY OF SHIPS. [CHAP. XVIII,

tional to 64, 144, and 256, respectively. The decrease of force on the

sails due to their moving away from the wind will therefore be pro-

portional to 80 (144-64), and the increase due to their moving back
against it will be proportional to 112 (256-144). The resultant

effect will obviously be to increase the mean angle of inclination.

While, therefore, the effect of the wind is on the one hand to

diminish the angle of rolling of the ship under canvas, on the other

hand its effect is to lay her over to a greater angle than she would
incline to in smooth water, and compel her to make her diminished

oscillations about that position. What is the precise relation between
these two effects, or how far the fourth cause above referred to—the
change of the wave-action which results—tends, in combination with

them, to modify the simple aspect of the subject which we have
given, we have not attempted to investigate.

We now revert to the question of the limit to which a ship

may be safely inclined by the joint action of the wind and waves,

to the consideration of which we promised to recur. In our com-
parison of the Captain and Monarch we for the moment assumed
the angle of maximum stability to be that limit. It will be obvious,

however, that a ship will not necessarily be capsized because she is

driven over to that angle ; on the contrary, she may with safety be
laid over much further, under favourable conditions. This subject

is dealt with in one of the published reports of the late Admiralty
Committee on Designs, the following view of it being taken—it

being necessary for the reader to observe that, as a ship is inclined

by a given force of wind, the effect of the wind upon the sails

gradually diminishes, and therefore the moments of the wind forces,

set off to scale on a curve analogous to a curve of stability, will be
represented by a curve gradually approaching the base, as we just

now stated in a foot-note, and not by a straight line parallel to the

base. Professor Eankine, who drew up the Committee's Keport,

writes as follows :—
" 1. The curve of stability of a ship being given with ordinates

proportional to the righting moments at different angles of heel, con-

ceive to be drawn a curve with ordinates proportional to the moments
of pressure of the wind, of an altitude such that the segment cut off

by it from the top of the curve of stability shall cover an angle equal

to the angle of vanishing stability required in order that the ship

may be safe against the heave of the waves alone. This curve of

moments of wind will divide the curve of stability into three arcs

;

and the angle covered by the arc cut off at the commencement of the
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curve of stability will be the limit which ought not to be exceeded

by the greatest angle of heel produced by the wind alone, allowing

for the dynamical effect of a sudden squall. The angle of steady

heel ought not to exceed about one-half of the before-mentioned

angle.

" 2. From the limiting angle of steady heel may be deduced, by

the help of the curve of stability, the greatest safe steady heeling

moment of the wind pressure, and thence the greatest safe pressure

of wind with a given spread of canvas.

" 3. As an elementary means of performing the construction men-

tioned in paragraph 1, conceive the diagram showing the curve of

stability to be wrapped on a cylindrical surface, so that the points

marked 0° and 90° on the base-line of the diagram shall be at the

two ends of a diameter of a cylinder; draw the projection of the

diagrams on a plane traversing that diameter and the axis of the

cylinder ; then through the point marked 90°, draw a straight line

by trial, so as to cut off from the top of the new diagram a segment,

covering an angle equal to the angle of vanishing stability required

for safety against the heave of the waves alone. The interval from

the point marked 0° to the commencement of that segment will

correspond to the greatest angle of safe heel by a squall ; and half

the ordinate at the commencement of the segment will represent,

very nearly, the greatest safe leverage of the moment due to the

steady pressure of the wind. That leverage multiplied by the dis-

placement will be the required moment.

"
4i. The following are examples :—

""I. The Captain, with 6J feet freeboard

—

" Angle of vanishing stability required for safety against the heave

of the waves alone, say 39°

" Top segment cut off from curve C in diagram begins at .

9°

(Being the greatest safe heel by a squall when rolling

in the trough of a long swell.)

" Half the lever of stability at that angle, . . . 0*23 foot.

" Displacement—say 7,700 tons ; therefore greatest safe moment of

pressure of wind . . .
.
-7,700 x *23 = 1,771 foot-tons

= 3,967,000 foot-lbs.

" Moment of all plain sail, with a pressure of 1 lb. per square foot

= 2,500,000 foot-lbs.

"Greatest safe pressure of wind, when all plain sail is set

= 1 59 lb. on the square foot.
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a

II. The Monarch at 24 feet 8 inches draught-

Angle of vanishing stability required for safety against the heave

of the waves alone, ...... say 39°

" Top segment cut off from diagram of stability begins at . 27^°

(Being the greatest safe heel by a squall when rolling in a

trough of a long swell.)

" Displacement—8,306 tons ; therefore greatest safe moment of

pressure of wind . . = 8,306 X '74 = 6,146 foot-tons

= 13,768,000 foot-lbs.

" Moment of all plain sail, with a pressure of 1 lb. on the square

foot . = 2,540,000 foot-lbs.

a Greatest safe steady pressure of wind when all plain sail is set

= 5*42 lbs. on the square foot.

" Summary of the comparative stability of the Captain and

Monarch

:

—
Captain. Monarch.

"Least safe angle of vanishing stability

without canvas, say, .... 39° 39°

Greatest safe angle of heel by a squall,

when rolling in the trough of a long

swell, . . . . . .9° 27J°

Greatest safe moment of steady pressure

of wind^ft.-tons), . . . . 1,771 6,146

Greatest safe pressure of wind on all plain

sail (lbs. on the sq. ft.), . . . 1*59 5*42"

The Committee, having considered the preceding paper, approved

of it generally, subject to the following observations :

—

"I. As a means of comparing together two given designs of

ships with respect to margin of stability under canvas, the method

above described is valid.

" II. Hence, it appears that a heel of 4J° under canvas gave only

the same margin of stability to the Captain, that a heel of 13§°

gives to the Monarch.
<C
III. The absolute value of 39° is assumed for the least safe angle

of vanishing stability without canvas, because of its having been the

smallest value of that angle found to be sufficient by the Scientific

Sub-Committee in their reports on unmasted ships. It does not

take account of the steadying effect of friction, or of bilge-keels, or

of canvas.

"IV. The estimate that the greatest safe moment of steady
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pressure of wind is only one-half of that corresponding to the

greatest safe angle of heel by a sudden squall probably errs on the

safe side ; because it leaves out of account the diminution of the

pressure of the wind due to the velocity with which the ship yields

to it in rolling.

" V. The Committee are not prepared to say that the Monarch

may not be safely sailed at an angle of steady heel greater than 13f°.

They consider that she will be a perfectly safe ship when managed

according to the ordinary rules and usages of seamanship.

"

Diagrams from which Figs. 212 and 213 have been reduced are

Feet FigM2.

appended to the above report of the Admiralty Committee. The

lettering upon these diagrams is our own, for further use presently,

0 H indicating the angle marked by the Committee as the " greatest

safe heel by a squall," when the ship is rolling in the trough of a

long swell.

Exceptions were taken to the foregoing report. The first

objection was that it fixes a definite angle as the limit of a ship's

range of stability when not under sail, although no satisfactory

means of determining such a limit exists. It is quite true, m
our opinion, that no such means have yet been laid down with

exactness, or with a sufficiently close approximation to the truth

to justify a designer in fixing a much lower limit to safe rolling
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without sail than other considerations point to. But this objection

can scarcely be opposed with fairness to the method of the Com-

mittee (although it may to some of its applications), for the method

may be sound, although the means of fixing the limiting angle of

wave-rolling may remain undetermined. The Committee's mode

of estimating the combined effect of wind and waves has been

objected to, even accepting the angle of wave-rolling as fixed.

The objection is founded on the assumption that if the curve from

A to H C (Fig. 212 or 213), is sufficient to provide for the effect of

sail, under both breeze and squall, then all the remainder of the

curve, except such as the steady breeze demands, is available

to resist the roll caused by the waves or heave of the sea ; and

the objection is that, in the Committee's method, resistance to the

squall is provided twice over—viz., in both ends of the curve.

This objection is no doubt valid, for the cause of the extreme

heel to H C will already have ceased before even the inclination

to H is reached. Further, as a <c radical objection to the whole

method " of the Committee, it has been said that, " the two actions,

of the sea and the wind, must generally go on together, and extend

over the same portion of the curve of stability, so that it appears

improper to devote one portion to the gusts of wind and another

to the heave of the sea. It would be more nearly consistent with

the conditions of a ship under sail and rolling in waves, to suppose

her to be rolling in the worst waves she is likely to meet, and to

suppose her sails struck by a squall at that part of her roll at which

the gust would be most dangerous." In illustrating this view, the

case of a ship " assumed to be rolling to leeward under the in-

fluence of waves alone," has been taken, a state of things which

presumes that no wind is blowing, although the "worst waves"

are supposed to be running, the object being to bring into view

the worst possible effects of wind upon the canvas ; and also the

case of a ship rolling among waves with a steady pressure of

wind, the power of which suddenly becomes doubled at the worst

part of the roll. This latter case is represented in Fig. 214
?
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where KB is the wind-curve for the steady pressure, J K and H C

are the extremes of the roll before the power of the wind is in-

creased, and J G E is the wind-curve for the suddenly increased

intensity which is assumed to take place when the ship is in the

position J K. " The gust will cause the roll to be lengthened,

say to the position D F, the area HGEF being equal to the area

JKCG; and in this case the ship will be safe so long as the area

H6LF is greater than the area JKCG." This is, no doubt, a

very instructive way of treating the question, although not by any

means free from objection, because the curve of stability has

reference in all such methods to the inclination of the ship to the

wave-surface, while the wind-curve has reference to her inclination

to the horizon. This difficulty, however, can, we think, be pretty

satisfactorily overcome by a process which we will endeavour

briefly to describe. We may suppose that between the squalls

the vessel rolls as she would do were she without canvas; by

Professor Bankine's method we can determine approximately the

angle to which she rolls—to the horizon, as well as to the wave-

surface. Let us for illustration suppose she would roll, as the

Devastation was estimated to roll, among waves with a maximum

slope of 36°—viz., 15° to the horizon and 21°,, to the wave-slope.

Fig. 215 shows the positions she would occupy at the two extremes

of a roll without the action of the wind, these positions occurring

on the steepest parts of the wave, and the ship keeping time with

the waves. Suppose now the wind blowing from left to right, and

to strike the vessel when she is at the extreme of her roll to wind-

ward. It is evident that, instead of rolling to the position E' F,

she will go over to some position beyond it, as G H, in order to

absorb the work stored up by the action of the wind on the sails.
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We may also fairly assume that the period of the roll is not

materially altered by the action of the wind, although the range

is increased, and that the extreme position still occurs about the

mid-height of the wave. The position, H G, can be found as

follows:—In Fig. 216; A B and CD mark the positions of the

Fig.216.

extreme rolls without canvas, 21° to the wave-slope, x y9
xx yv mark

the same positions of the ship, but with respect to the horizon

—

viz., 15°. The vessel would, by the action of the waves alone,

have rolled to C D, expending an amount of work, 0 C D, equal to

O AB, which would be stored up as vis viva as she passed the

upright position
;
consequently, when she reaches C D, she has still

to expend work equal to the area x y, xx yv due to the wind. She

therefore continues her roll to the position H G, which is deter-

termined by the condition that the area C D GH shall be equal

to x y, xx yv plus the area x
1 yv x

2 y2, due to the wind through a

range y1 y2 ,
equal to the additional range CH (Fig. 216), or the

angle E' 0 G, Fig. 215.

In the case of a ship liable to sudden squalls, but with a steady

pressure of wind between them, the principles involved are identical

with the preceding, except that the rolling between the squalls

cannot be treated as that of a mastless ship. The extreme of the

roll to windward would still be the worst position in which the

squall could strike her, but it is impossible to determine with any

degree of accuracy, in the present state of our knowledge, what

the extent of that inclination might be expected to be. Gould we

determine that, it would only be necessary to draw the wind-curve

representing the force of the squall above that of the steady wind-

pressure, and to measure the area between the two wind-curves for

the stored-up energy, instead of taking it to the base-line, as in the

former case.

Let us now consider the matter, having regard to the quantitative

values of wind-pressures in relation to the stability of ships. And,

first we will take the case of a sailing vessel of 1,600 tons, whose
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stability has already been discussed in a previous chapter.* Her

displacement at a mean load draught of 20 feet 1 inch is 3,400 tons.

The area of her plain sail, i.e., the courses, topsails, and topgallant sails

on each mast, together with the jib and foresail, is 23,517 square

feet, the total area of all her sails being 38,472 square feet. In order

to determine the resistance to heeling offered by her stability with

any given pressure of wind, it is necessary to assume a certain

condition of stowage ; we shall assume her to be laden with a cargo

of such a density., and so stowed, that the common centre of gravity

of the hull and cargo is 3J feet below the metacentre at the load line

given above, viz., 20 feet 1 inch. Her curve of stability for this

assumed condition is represented in Fig. 217, in which the curve, B,

shows the lengths of the arms of righting levers from 0° to 100°.

The angle at which the deck-edge becomes immersed, 18°, is indicated

by an ordinary dotted line, and that at which her maximum stability

is reached, 47^°, by a different kind of dotted line. From this curve

of stability we can readily find, in the manner previously described,

the exact angle of heel at which the ship would be held over by any

given steady pressure of wind upon the sails. Assuming all plain

sail to be set, a steady pressure of wind upon the beam equal to a

force of one pound upon each square foot of sail would keep the

ship inclined at an angle of 5°, because the moment obtained by

multiplying the area of the sail set by the pressure of wind per

square foot, and by the distance of the centre of effort of the sail

above the centre of lateral resistance, would there be exactly equal

to the moment of stability tending to restore the ship to the upright

position. It must be understood that in this and in similar cases

we assume the sails to be braced round in a position exactly per-

* Chapter vii., page 125, ship B,
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pendicular to the direction of the wind, i.e., exactly " fore and aft."

With the same sail set a pressure of two pounds to the square foot

would keep the ship inclined to an angle of 9°, somewhat less than

twice as great an angle as that to which she w;as inclined by a

pressure of wind of exactly one-half the force ; this is, of course,

partly owing to the fact that the sails are less square to the direction

of the wind in the more inclined position. To keep her inclined at

an angle of 4*7^ degrees, i.e., her angle of maximum stability, with

the same sail set, a pressure of 17*6 pounds per square foot would be

required, nearly equal to the force of a hurricane. Although the

assumption of such a force of wind would be inconsistent with those

of carrying all plain sail, and of smoothness of water, still it is

instructive to consider what an enormous pressure is necessary to

heel the ship over to her angle of maximum stability. The very

greatly increased effect upon a ship of the sudden application of a

given pressure of wind, instead of a gradual application of the same

pressure, has already been shown. The pressure which, applied

suddenly to this ship when in the upright position, would throw her

over upon her beam-ends is represented in Fig. 217 by the curve,

NOP, which is a curve of wind-pressures drawn in a manner

previously explained, so that the area, M 0 N, is equal to the area

of that portion of the stability curve comprised above the portion,

0 P, of the line, NOP. If this same pressure of 10 pounds on the

square foot were to be applied gradually and steadily, instead of

suddenly, it would incline the ship and keep her over to an angle

corresponding to the point, O, where the line, NOP, intersects the

curve of stability, B, i.e., an angle of about 33°.

In Fig. 217 we also illustrate the case of another sailing vessel

of 800 tons, whose stability has also been discussed
t

in a previous

chapter.'" Her displacement at a mean load draught of 17 feet

3 inches is 1,775 tons. The area of her plain sail is 10,983 square

feet, the total area of all her sails being 17,331 square feet. Her

curve of stability, marked D, was calculated on the assumption that

her stowage was similar to that in the previous case, i.e., such as to

give her a metacentric height of 3J feet. Her deck-edge becomes

immersed at an angle of 17 degrees, as indicated, and her angle of

maximum stability is reached at 50 degrees.

The wind-curve, N'O'F, drawn so that the area, MO'N', is

equal to the area, P O' P' (continued), determines the pressure of

* Chapter vii,j page 125, ship D.
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wind which, applied suddenly to the ship when in the upright
position with her plain sail set, would be sufficient to capsize her
If this same pressure, of 21-4 lbs. on the square foot, were to be
applied gradually and steadily, instead of suddenly, it would incline
the ship and keep her over to an angle corresponding to the point
0', where the line, W 0' F, intersects the curve of stability, D, i.e.
an angle of about 39 degrees.

'

In what has been said of the last two examples, we have assumed
the ships to have been acted upon by the wind when floating in
still water. When we consider their action amongst waves, we find
that the effects of wind-pressure previously shown may be greatly
modified, for the reason that the righting power of a ship amongst
waves depends upon her inclination to a normal to the effective
wave-slope, instead of upon her inclination to the vertical, while the
pressure of the wind upon the sails has to be considered with
reference to her inclination to the vertical, as is the case when the
ship is in still water. Another question to be taken into account is
the relative periods of the ship and of the wave, because, if that of
the ship be less than that of the wave, the ship will roll away from
the slope of the wave, and if greater, she will roll towards it.

In Fig. 218 we show a vessel rolling towards the wave-slope.

FicjMS.

She is supposed to be rolling through an angle of 20 degrees on each
side of the normal to the wave-slope, the latter being inclined at

8 degrees to the vertical ; in this case her greatest angle to the
vertical is 12 degrees. In Fig. 223 the ship is shown rolling away
from the wave-slope, her period being less than that of the wave.
In this case her greatest angle to the vertical is seen to be 28

23
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degrees. Fig. 219 represents a curve of stability for this vessel pro-

duced as a negative curve on the left of OP, which corresponds to

the upright position of the ship. The ordinates marked A B and

0 D, mark the extreme angles of roll of the ship, corresponding to

the positions A B and C D, in Fig. 218. The curve, x
L
x2

x
s ,
repre-

sents a pressure of wind of 2 lbs. per square foot, having the direction

indicated by the arrows in Fig. 218. Assuming the wind to strike

the ship suddenly when inclined to the position A B, the work done
by the wind on the sails during the roll from this position to that of

CD, would be about the same as that done during a roll from 12

degrees on one side of the vertical to 12 degrees on the other side,

in still water. If we ignore the reduction of the wind-pressure due
to the rolling of the ship, this work would be measured by the area,

xl Vi x
2 This, however, as can be easily seen, admits of con-

siderable error.*

"In the case of a ship rolling from 12 degrees on the windward
side of the vertical to 12 degrees on the leeward side in 5 seconds,

with the centre of effort of the sails 70 feet above the axis of

rotation, the mean velocity of the sails at this point would be about
7*3 feet per second." The speed of a wind of 2 lbs. per square foot

is known to be 30 feet per second. " The relative velocity of the

wind and the sails is therefore 22*7 feet per second, or about fths

only of the actual velocity of the wind ; and as the wind-pressures

vary nearly as the square of the relative velocity, the moment of the

sails may be taken to be reduced to about one-half on account of

the velocity of the sails away from the wind.
" This reduction is obviously still greater when the ship rolls

away from the wave-crest, because her movements are quicker and
the relative velocity is therefore less. The method adopted above is

only a rough approximation as will be seen from the following

considerations :—

* The paragraphs which follow are quoted from the Lloyd's Report on "Masting,"
before referred to.



CHAP. XVIII.]" STABILITY OF SHIPS IN WAVES 355

" 1. The velocit}?- of the ship in her angular motion is not

uniform.

"2. Owing to the wind-pressures varying as the square of the

relative velocity, it is not exact to take the motion of a centre of

effort fixed in its height from the deck, as representing in effect the

motion of the whole of the sails.

" The variation in the angular velocity for a still-water roll can

be ascertained, neglecting resistance from the curve of stability, in

the following way'":—

-

" In Fig. 220, AD E is the curve of statical stability, A B C is

the corresponding curve of dynamical stability, and GH K is a

curve whose ordinates to the base, F G, give the angular velocity at

any point. The straight line, L M, drawn so as to make the rectangle,

F G L M, equal to the area, F K H G, will give the mean velocity.

The variation of the wind-pressures due to the velocity of the sails

varying in proportion to their height above the axis, and the conse-

quent change in the height of the resultant of those pressures, are of

not less importance than the variation of the angular velocity of the

ship. As the ship rolls away from the wind, the pressures per

square foot on the upper sails must be less than on the lower ones,

and conversely, when the ship rolls up towards the wind, the

pressures on the upper sails the greater. To find the height of the

real centre of effort at any instant during the roll, if w be the

angular velocity of the ship, V the velocity of the wind, and y the

height of any unit of area above the axis, and if y be the height of

this centre of effort, we have-

—

I (V cos. 9 — wy) 2
y dy

y = L
(
/ (V cos. 6 — w y)

2, d y.

* For particulars see Transactions of Institution of Naval Architects, vol. xii.,

page 95,
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" The value of y will obviously be a maximum when the vessel

is passing the upright towards the wind, and a minimum when in

the same position, but moving in the opposite direction. In this

position 0 = 0, and the equation becomes

—

(V - wyfydy
y = J-

J(V-«* yf d y;

and from it the range through which the centre of effort rises and

falls can be determined, when the velocity of the wind and the

angular velocity of the ship are known.
" The extreme angle of roll on the leaward side to the position,

G H (Fig. 218) can be found by making the area of the stability

curve comprised between G H (Fig. 219) and the axis, 0 P, equal to

the whole work done by the wind in the roll of the ship from 12

degrees on the windward side to the extreme angle of inclination on

the leeward side corresponding to the inclination, G H, to the wave-

normal. Thus the area, CDGH, will be equal to about half the

area, x
± y1 xs ys , where the distance between G H and x

3 y3
corre-

sponds to the wave-slope. The corresponding case in still water

would be represented by Figs. 221 and 222, and in rolling from
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A B to C D, the work accumulated by the wind on the sails would

be the area, x-^ y-^ Xq 2/2* less a reduction for the angular velocity of

the ship, and the position, G H, would be found by making C D GH
equal to about one-third of the area, x

t y1
x
s y3

.

" When the vessel rolls away from the crest, it will be clear that

the lee-roll will be taking place when the crest of the wave is

passing the vessel, instead of when the hollow is passing the

vessel, as in the former case. This is represented by Fig. 223,

where the angles of slope and the vessel's inclination to the normal

remain the same as before. The work done by the wind in the roll

from AB to CD will in this case be measured by a proportion

found to be one-fifth of the area, x
1 yt

x2 y2
(Fig. 224) which shows

the action of the wind in a roll from 28 degrees windward to 28

degrees leeward of the vertical. And if GH in the same figure

represent the position to which the vessel ultimately rolls, then the

area, C D G H, will be equal to about one-fifth of the area, x
x yx

x
3 ys ,

where x
z yz

is 8 degrees, or the wave-slope, beyond G H;
as before."
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It will be seen, from the above, that although there is very little

difference in the extreme angle of leeward roll to the wave-normal,

which the vessel reaches whether rolling towards the crest of the

wave or away from it, there is a difference of 15J degrees in the

extreme angle to the vertical, between the two conditions.
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CHAPTER XIX.

Importance of Determining Longitudinal and Vertical Positions of Centre of Gravity-

Method of doing same—Method of Determining Position of Centre of Gravity

when the Vessel is Afloat—Precautions to be Taken—Account of Experiment

Performed by the Author—Calculation of Position of Centre of Gravity from

Drawings of Ship—Taylor's Stability Indicator.

It will have been repeatedly made clear throughout the course of

this work that, although the form and the immersion determine

very important elements which enter into the stability of a ship,

there can be no determination of that stability, and no estimate

formed of its amount, unless and until the position of the centre

of gravity is either known or assumed. It remains, therefore, for

us to consider by what means the position of a ship's centre of

gravity can be determined. In order to fix its position accurately,

we must obviously ascertain its height, its fore and aft position, and

whether it lies or does not lie on the longitudinal vertical plane

about which most ships are symmetrical, or supposed to be. The

last of these conditions may usually be assumed, and seldom need

be made a matter of calculation ; but it is of great importance in

designing a ship to determine its longitudinal, or fore and aft

position very approximately, and to provide for it being in the

same vertical as the centre of buoyancy, in order that the trim

of the ship may be that which the designer intends. But more

important even than this, is the correct determination of the

height of the centre of gravity, for upon this depends, as the reader

well knows, that transverse stability of the - ship which transcends

all other elements in vital interest.

The centre of gravity of a ship, or of any other body, being

the common centre of gravity of all its parts, it is manifest that

its position can be ascertained, by first ascertaining the weight

and the centre of gravity of each part, and thence deducing
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the common centre of gravity. If the weight of each part be
multiplied by the perpendicular distance of its centre of gravity
from a given plane, the products thus obtained be all added
together, and their sum divided by the aggregate weight of the
parts, the quotient will be the distance of the centre of gravity
of the whole ship from that plane. As the plane may be any-
where, and anyhow placed, it follows that if we take in succession

a horizontal and a vertical transverse plane, and proceed with
reference to each as just stated, we shall obtain respectively the

vertical height and the fore and aft position of the ship's centre

of gravity. This principle was fully understood by the old writers

on naval architecture—Pere 1' Hoste, Bouguer, Don Juan d'Ulloa,

Chapman, and others.

But in the days of wooden ships, the specific gravities of the
timber entering into them differed so considerably, and methods
of detailed calculation were so crude, or so imperfectly applied,

that the position of the centre of gravity calculated as above
described could not be relied upon, and consequently an ex-

perimental method of ascertaining its position after the ship was
built and floated, was sought for, and devised, the nature of which
we shall presently observe. In these days of iron ships, when
but comparatively little timber enters into their construction,

the centre of gravity can be ascertained by calculation with much
more exactness, although there still remains the difficulty of dealing
with the undevelopable surface of the ship's skin plating, the great
variety of her fittings and equipments, the weights and centres

of gravity of which usually can be but imperfectly ascertained, &c.
This difficulty is not, however, insurmountable, especially by those
who have the advantage of large experience, and of accumulated
information, and the calculation of the centre of gravity of a new
ship, from the particulars of her design and specifications, is a
common practice of the best class of naval architects. In fact,

a naval design cannot be prepared in a trustworthy manner without
a large resort to this class of calculations in the case of ships of
war, and of other ships in which the disposable weights to be
carried by the completed ships are small; for in such cases both
the trim and the stability of the ship are determined in the
drawing office. In the case of cargo ships, where so much
disposable weight remains to be dealt with after the ship is

built, engined, and equipped, such calculations are not usually
pressed so far; but even with them, as more or less homogeneous
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cargoes have often to be carried, the designer should determine

beforehand by calculation, approximately, the position of the centre

of gravity. When designing a vessel of a known type this need

not be done ; the data may be taken from a vessel of like type

which has had the exact position of the centre of gravity deter-

termined in the vertical direction by experiment, the necessary

modifications being made.

When a vessel is afloat, the vertical position of the centre of

gravity may be determined with exactitude by a well-known

method, which depends in principle upon an elementary doctrine of

mechanics.

All the practice of the question resolves itself into merely

moving a weight and measuring an angle : and even the latter is

not practically necessary at the ship, the measurement of two sides

of a right-angled triangle, which, of course, determine the angle,

being all that is necessary. It is not usually quite so easy as it

may at first sight seem, however, to perform an actual experiment

upon a large ship
;
because, in the first place, it requires the transfer

of many tons of weight to incline her to an appreciable angle
;
then,

again, there are many things on board a ship when in progress that

form no permanent part of her, or of her fittings, and these have to

be accounted for
;
again, there are many things that do belong to

her, which are often not on board at the time convenient for the

experiment ; there are also the disturbing operations of work in

progress ;
and, finally, as it is necessary to cast off during the

experiment all the lashings of the ship (excepting a bow and stern

hawser, or both), a very little wind suffices to disturb the ship and

embarrass the operation. By carefully performing the experiment,

however, and by duly accounting for the several items to be placed

into the vessel to complete her, and for those requiring to be taken

out, an exact measurement of the vertical position of her centre of

gravity may be obtained.

The principle upon which the experiment rests is a simple one.

We know that if any one of a system of heavy bodies be moved

through any distance in a given direction, the centre of gravity of

the whole system will move in the same direction, and through a

distance which bears the same ratio to the distance traversed by the

moved body, as the weight of that body does to the total weight of

the system.

In Fig. 225, let G represent the centre of gravity of a ship and

of all weights on board; WL, the water-line, and B the centre of
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buoyancy. Let w represent a weight on the deck which is to be

moved through a distance, d, to produce the necessary inclination.

If w be moved from one side to the other, it will cause the vessel to

Fig.225.

incline through an angle, 0, which may be accurately measured.

Let W
t
L

x
be the new water-line, and G1

the new position of the

centre of gravity. Then, if D = the total weight of the vessel and

all on board, we have—

D x G G-t = w x d

;

GG
X
being drawn parallel to the line joining the two positions of

the centre of gravity of the movable weight, w, before and after it

has been moved. But we have GG^GM tan. 6 ;
and therefore—

D X GM tan. 9 = w d

;

and

D tan. 6'

In practice the weight, w, is so small, as compared with the whole

displacement, that the point, M, or the intersection of the verticals

through the consecutive centres of gravity, is the metacentre, or

sufficiently near it for all practical purposes. But the height of the

metacentre, M, above the centre of buoyancy, and therefore its true
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height, can readily be calculated from the drawings of the vessel

;

and thence, setting down the value of G M, we determine the

position of the centre of gravity.

Should the weight, w, be sufficient to incline the vessel to any

large angle, the intersections of the verticals through the original

centre of gravity and the new centre of gravity may be found as

follows *
: Draw B R parallel to the inclined water-plane. Let v be

the weight of water equivalent in volume to either of the wedges of

immersion or emersion. From g and gv the centres of gravity of

these wedges, let fall perpendiculars on the new water-line, W
x
L

1?

and let h represent the distance along W
x
L

x
between these perpen-

diculars. Since, so to speak, the wedge of displacement has been

shifted through a distance, h
9
due to the transfer of the weight, w,

from one side of the ship to the other side, the centre of buoyancy

of the vessel must have moved in the same direction through a

h> v
distance, jy, as we saw in a former chapter ; but

B R = B M sin. 0 = (G M + B G) sin. 9
;

and

G M sin. fl=:GK = 66
1
cos. 0 =^ cos. 9.

Therefore,

-j-j i-> h V W d COS. 6 , T> rN • f\B R or ^ = ^ h B G sin. 6D JD

and

hv — w d cos. 9

D sin. 0

From this equation the distance, B G, can readily be found, and

being set off from the centre of buoyancy, will determine the centre

of gravity.

In performing the experiment at the ship great care has to be

observed that the ship is cleared of all free-water ; and all articles

likely to shift during the experiment should be secured, as it is most

important that only the weights that are to be used and accounted

for should be moved during the operation of inclining. A fine day

should be chosen, with the water calm. The ship is attached to the

* See Mr. Barnes' Paper on " Experiments on Board H.M, Ships in 1855-57," in

vol. i., Transactions of Institution of Naval Architects.
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shore by bow and stern hawsers, which will not affect her inclination,

in a position head or stern on to the wind, should there be any,

and plumbed, or made vertical, as nearly as possible. Battens are

placed at the principal hatchways, usually two or three at the

middle-line, and plumb-bobs hung therefrom. At a distance of 10 and

sometimes 20 feet from the point of suspension, horizontal battens

are fixed, so that the horizontal shift of the plumb-bob, due to the

inclination, may be accurately measured. We will give the actual

experiment as performed by the Author on H.M.S. Prince Consort,

careened in Keyham Basin, with 70 tons of ballast. At the time of

the experiment the ship was fitted with her armour and machinery

complete ; she was also masted, had her lower yards crossed on the

gunwale, and her lower and topmast standing rigging in place. She

had other weights on board, the amounts and positions of all of

which were carefully ascertained, but into the details of which it is

unnecessary to enter here. The draught of water at the time

was : forward, 19 feet 5i inches
;

aft, 23 feet 0J inch, which gave a

mean draught of 21 feet 3 inches. The displacement to this line

was 5,126*3 tons ; the corresponding centre of buoyancy, 8-141 feet

below this line ; and the height of the metacentre above the centre

of buoyancy was 17*238 feet. The first experiment consisted in

moving 20 '718 tons of ballast from port to starboard (on the main

deck), through a distance of 33'4 feet, and 4*6134 tons of fire-bars

(which happened to be stacked upon the deck) through a distance,

in the same direction, of 45-583 feet. This produced a horizontal

traverse of the plumb-line bobs of 16 inches in a length of 20 feet

—the measurements being taken in two different hatchways, 200

feet apart, in this case, to ensure accuracy.

The next experiment consisted in moving the above-mentioned

ballast and fire-bars to their original position, and in addition 46'132

tons of ballast from starboard to port through a distance of 36 '4

feet. This produced an inclination of precisely 12 inches in 20 feet.

Substituting these quantities in the equation, G M = ^ ^ g
, we

obtain the following results :—

FEET.

Centre of gravity below metacentre, -

„ above centre of buoyancy,

,, above the then water-line,

6'53

10-7

2.7

These distances were calculated independently from the two separate
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experiments before described, and were found to differ only by xJ-oth

part of an inch.

At the time of the experiment the equipment of the ship was

incomplete, the guns, coals, provisions, ammunition, &c, having to

go on board ; and the articles before referred to as forming no part of

the equipment, to be taken out of her. A detailed calculation of the

whole of these weights was made, and their effect in altering the

height of the centre of gravity determined. This effect was found

to be that the centre of gravity was lowered 7*75 inches when the

ship was completed for sea, and when her mean draught of water

was 25 feet 5^ inches, her displacement 6,696 tons, her centre of

buoyancy below the new water-line 9*98 feet, and the height of the

metacentre above the centre of buoyancy 13*84 feet. Consequently,

we have when the ship is thus ready for sea, and immersed to her

load-line, the following results :—

and we therefore thus obtain the exact vertical position of the

centre of gravity.*

With respect to the longitudinal position of this point, it is

evidently in the transverse vertical section which contains the

centre of buoyancy, and therefore is obtained directly from the

drawings of the ship, and we thus obtain the full determination

of the centre of gravity.

It is not within the province of this work to enter into the

details of calculating the centre of gravity of a vessel complete, by

means of estimating the weight and centre of gravity of each item

forming part of the vessel's hull, equipment, &c, as previously

described in this chapter. It may be stated, however, that these

calculations are made direct from the drawings of the vessel before

they leave the designer's hands, and it may be repeated that great

experience and care are necessary throughout the work in order to

deduce trustworthy results. Each item of the vessel's hull, equip-

ment, &c, is calculated separately, and its weight and the distance of

its centre of gravity from two planes of reference, are obtained. From

these are calculated its moment relatively to the planes of reference.

* For a Paper by the Author on this subject
3
from which the above figures, &c,

are taken, see the Transactions of the Institution of Naval Architects, vol. v., 1864,

FEET*

Centre of gravity below metacentre, -

„ above centre of buoyancy,

„ below the load water-line,

601
7*83

215
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These planes are usually the load water-plane, and that of the mid-

ship ordinate. The several items are summarised in tables, and the

total weight and moments obtained, and thence the distance of the

centre of gravity from each plane of reference.* There are, how-

ever, elements of uncertainty existing in calculations of this descrip-

tion, even when the greatest pains are taken. In using paint,

cement, white and red lead, &c, for example, some builders are more

heavy-handed than others with these items, and the estimate for each

item has to be based on known weights of similar materials placed in

certain ships. Similar approximations have to be made for cabin

bulk-heads, mess-tables, &c, and these will of course again depend on

the accommodation requisite. It has been found in practice that

there are almost always some items not taken into account at all, or

incorrectly estimated, and it is therefore usual to add a small per-

centage to these estimated weights (from 2 to 5 per cent, on the

total) to cover such deficiencies. To limit error, however, these cal-

culations are made independently by two persons.

So many examples of the heights of centres of gravity in actual

ships have been given in former chapters of this work that no

additions need here be made to them.

Mr. Alexander Taylor, M.I.N.A., has invented and applied to

several vessels an apparatus which he designates a Stability In-

dicator, but which " does " he says, " exactly the same work as is

done in an ordinary inclining experiment." It is intended to be

fixed permanently in the ship, and to be employed under suitable

conditions for determining the height of the centre of gravity for

various displacements and dispositions of cargo. Its essential

principle consists in the employment of two tanks of given volume,

placed one on each side of the ship, and connected by a pipe, in lieu

of iron ballast or other shifting weights.

* In Mr. Mackrow's very handy and useful Naval Architect's and Shipbuilder's

Pocket-Book (pp. 159-61) are given Rules and Tables for determining the position of

the centre of gravity of the bottom plating of a ship's hull when of uniform thickness

throughout.
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Data taken from the displace- sin 10°= '1736 IC^cos 10°) = sin 20° == '3420 4C2 6>(cos 20°)=-
sin 30° = .5000 \Gz e (cos 30°) = sin 40° =1= -6428 4 C4 5 (cos 40°) =

I

ment CALCULATIONS.
cos 10° = •9848 A

3 3

cos 20° == "9397 /«
5 3

.3660 fs
3 3

cos 40° == -7660

1

1 Displacement up to the 1

cos 30° =
— -——— i - - - ——— ——

. .
, , ,

BODY PLAN.

RESULTS.

Displacements V.

at 0° vo

33
10° =z Vo -hb 1 =

3 3
20° = v1 + b2 =

33
30° = v2 + b3 =

3 3
40° v4= vs + b

4:
=

Note.—The values b have the sign of the differences d.

Abscissae oe Centres of Buoyancy,

at 0° Y0 = o

fo+fi
3?

10° Y1= -

33

,
20° Y2=/o

+ 2/l+^=
V2

30° Y —'f0--?^1 + 2^*2 —

40° Y !

2
4

t'4

Ordinates oe Centres oe Buoyancy.

(Distances below the horizontal Water-line.)

at 0° Z0 = A

„ 10° =

20° Z2 = -0-- ~ 2̂ 61 + e^
^2

„ 30° Z3=

33
40° Z4

v0 h -{2ei + 2e2 + es ) _

v0 Ji -(2e!+2e2 + 2e3 + e4

v4

Length of Radii of Curvature of the Curve
of Centres of Buoyancy.

Apply the formula p

C
B2 ^ b

A

General Formulae

y' ~ immersed ordinates \

y" — emerged ordinates /

A= fy' dx+ fy
dx

B=kfy"dx-kfP dx

C = ify'*dx + ify"*
d *

V =v0+rBd6J o

J o

Y Z=vh-f9 Csm6ddJ o

C
P

B2

A
Y

Y
to the quantities A,

B, C, V, corresponding to each inclination.

Po= Ps =

Pi- Pi =

P2 =





TABLE II.

] TABLE FOR THE CALCULATION OF GENERAL CURVES OF STABILITY (OR PANTOCARENE-ISOCLINES) OF A SHIP mOM 0° TO 180° OF INCLINATION.

(

General Observations.—-Before commencing the table below, it is necessary to cal-

|

culate, for the upright position, the scale of displacement and the curve of heights of
centres of buoyancy for the total volume of the ship, that is to say, to make the ordinary
calculations with horizontal water-lines taken up to the height of the upper deck.

1. The first operation consists in drawing radial planes angularly equidistant through
a longitudinal horizontal axis 0, and taking from each the ordinates, for 20 equidistant
sections, on both the immersed and emerged sides; these ordinates are then inserted in
the tables below, as well as their squares and cubes taken from tables. The number of
the ordinates may be less than 20. Care should be taken in this case to insert only half of
the numbers of the last ordinate.

2. For ships of ordinary form, it is sufficient to make the angle contained between the
radial planes and the horizontal water-line vary from 10 to 10 degrees, and to operate for
3 stations such as O.

3. The ordinates need not be taken to more than two places of decimals. One only is
sufficient for the squares, and whole numbers for the cubes, increasing the last figure by 1
when the decimal portion is equal to or greater than i.

4. The result is that each column contains only numbers of 5 figures, which considerably
reduces the calculations.

5. Only half the numbers which belong to the first and last ordinates are inserted in
these tables, m order that the net total of each column may be directly obtained.
Care must be taken to put in the tables the half of the squares and cubes of the whole
ordinates.

6. The position of each ordinate is determined by its distance from the after perpen-
dicular A. T.

Calculation of V= A x A 0 A, and of Z=
I'D A

Decrees
of lami-
nation.

Volume V of Dis-
placement. *

Distance Z of the Centre
of Buoyancy

from the Water-line.

2SE3

Name of the Ship

:

sin 6

0°

10°

20° •

30'
1

3? 0

•174

•342

•500

•643

•766

•866

•940

•989

l i l ^

2SE
sin d

0

We have, for the station under consideration

:

Draught of water, mean
Depth of hull

Corresponding displacement (without keel)V =
Height of transverse metacentre above keel.

Height of centre of buoyancy above keel.

h3=

(B)

A=

1-5A =
1*5 A

=Z

N.B.—The values of V and Z in the adjoin-
ing table should not differ much from those
indicated by the curves of displacement and
centres of buoyancy obtained by the hori-

zontal water-lines, at the draught of water of
the station. The results of the table really
serve only for verification.

It is well, for the execution of the calcula-

tions of these tables, to use paper in book
form, and not in loose sheets. The operations
can then be verified in case of error.

LEGEND.
. . . Constant interval between two adjacent ordinates; usually equal to a

twentieth part of the length of the ship from perpendicular to perpen-

dicular.

. . . Ordinates on the immersed side; I2 squares, and I3 cubes of these

ordinates.

E . . . , Ordinates on the emerged side ; E2 squares, and E3 cubes of these ordinates.

SI, SI2
, SI3

3
Sum of ordinates on the immersed side, sum of their squares, and sum of

their cubes respectively.

E, SE2
, SE3

, Similar sums on the emerged side.

£=SI2 —SE2
, For each raidal plane (o is negative when SE2

is >SI2
). The sign should

always be indicated.

«r=S I3 -f-SE3
, Eor each radial plane.

The preceding quantities, taken in a certain direction, are designated by an index
representing the ordinal number of the radial plane to which they correspond.

The method is complete in two Tables.

Remarks.—There is no difficulty in taking off the ordinates when the radial planes
meet the sides of the ship ; but when they cut the deck of the ship, it may, perhaps, be
useful to indicate a practical and rapid way of obtaining them.

Project upon each of these planes the extremity of each of the sections, taking account
of the round of the deck ; which is done by joining with a square, the extremity (at the
upper deck) of the midship section with the point of intersection of the radial plane with
the round of the deck, and projecting with the square, in the direction thus given, the

extremities of the sections upon the radial plane under consideration.

The radial plane at 90° passing through the longitudinal axis of the ship, the ordinates

of this plane are limited by the -sheer at middle on one side and the top of keel on the other.

It sometimes happens that certain oblique ordinates meet a section at three points (see

the figure above), the value of the ordinate should then be taken as c - b + a; the square as

e2 - b2 -f a2
; the cube as c3 - 63 + a3

. The ultimate value only is inserted in the columns.





TABLE III.

DAYMARD. TABLE FOR THE CALCULATION OF GENERAL CURVES OF STABILITY (OR PANTOCARENE-ISOCLINES) OF A SHIP FROM 0' TO 180° OF INCLINATION.

90"

DEN
a, u'

9,9'
H, H'
h, h'

V
Vi
Co
Ci
c2

z
AO

d(, di d$
b

b.

P

LEGEND.

Transverse section of the ship.

Volumes of the opposite wedges L O I and F 0/
Centres of gravity of the above wedges.
Projection on/2 of the centres g and g'.

Distances I H, I H'.

Volume of displacement (ship upright).

Total volume of the ship.

Centre of buoyancy for the water-line P L.

Centre of buoyancy for the water-line ~E\ L
(

.

Centre of buoyancy for the water-line Fj Iy
Distance of the centre of buoyancy from the water-line F L.

Arc between 2 consecutive radial planes; when they form an angle of 10°, it is

equal to ^=-174533.

Distances from the centre of total volume of the centres of buoyancy Co Ci C2 .

Arm of lever to the centre of buoyancy Cj.

Arm of lever to the centre of buoyancy Cj for 180° - 9°.

Arm of lever to the centre of gravity G.

CALCULATION OF VALUES OF M — {uh + u /*')• 8u°

40°
SO"

30°

10°

20°

M
Totals or values of r .-

—

7rs z

Values of M -

Values of n -

Values of M -/u =

4 <r0 cos 10° =
4 o-j cos 0°=

4 <>o cos 20°=
"i 003 10°=

4 "a cos 0°=

4 °o cos 30° =
o-
x cos20°=

o-j cos 10°=
\ o-3 cos 0° =

4 "o cos 40°—
0j cos 30°=
<r2 cos 20°=
<r3 COS 10°=

4^4 COS 0°=

2 =

4
<r
0 COs50°:

<r
1 cos 40°

a2 cos 30°:

03 cos 20°

»4 cos 10°

4 05 cos 0°

DU

70°

4 00 cos so"

=

0j cos 70°=
<r2 cos 60°=
0g COS JU —
0-4 cos 40°=
0-5 cos 30° —

0,5 cos 20° =

07 cos 10" =

4 0g cos 0° =

4 "a cos 90° 0
0iCos8O°=
02 cos 70° =
0.5 cos 60° =
rr . r'ltu —V ^ wo if\J —
05 003 40°=
0O cos 30°=-

<r
r cos 20° =

0g cos 10° =
4 09 cos 0° =

4 00 cos 70°

=

01 cos 60°=
cos 5' ' =

o3 cos 40° =
0-4 cos 30° =
05 cos 20° =
0C cos 10° =

4 07 cos 0° =

4 »o uos 60°=
0 1 cos 50 =
(t2 cos 40°=
03 cos 30° =
04 cos 20° =
0
5 cos 10°=

4 0e cos 0° =

2 = 2 = 2 = 2 =

Inclinations.
Natural
Sines.

0° and 180°

10° „ 170°

20° „
30° „

40° „

50° „

60° „
70° „
80° „

90°

160°

150°

140°

130°

120°

110°

100°

•000

•174

•342

•500

•643

•766

•866

•940

•985

1-000

Natural
GosineB.

+ 1000

+ -985

± -940

± -866

± -766

± -643

+ -500

+ "342

+ -174

± •000

To use the quadrant above, we set off along the horizontal O A (which is also the line

of values of <r cos 0°), the values of (0) indicated in Table No. 1, setting off only half of the values

of <r0 , which are always to be divided by 2. Through the points thus obtained we describe, from
the point 0, a series of arcs of circles.

M
The products which enter into the value of are then obtained by taking the

distance from the axis O D of the intersections of these arcs with the lines of the desired inclina-

tions.—Even when operating with so small a scale, we obtain, with a little care, all the
approximation desirable.

Calculations of values of (6) for variable volumos (V+<p) and V, -(V + <*>), and for angles increasing by 10° fromO° to 180°.

Height above keel of the centre of total volume

=

Volumes cut offby each radial plane ZotolPv^lv + *)=

=9

0°

180°

10°

170°

20°

160°

30°

150°

40°
)

140°

50°

130°

60°

120°

70°

110°

80°

100°

90°

V+<J>

and

Vx -(V+03)

v=

vx -v=

Draughts of
Water to
Volumes of

preceding
Column.

Centres of

Buoyancy
above Keel
for Volumes
of Col. 4.

Distances of

adjoining
C of Buoyancy
from Centre of

Total Volume
=d1 and i/2

d0 =

tf2 =

d! =

rf2 =

rfj =

<h =

«/,=

('„ =

dy =

d2 =

d,=

rf2
=

di =

rf2 =

d,=

rfj =

d1 = ds
=

<pe-{Y + <f>)d1

<pd- <j>d sin 0

10 11

6=

6=

6-

Calculation for Supplementary Angles.

3%
v+»

=/

(ds +/)«hi8 6X y+<t>

12

6=

6=

100°

110°

120°

130°

140°

150°

160°

170°

180°

13 14 15

g-r

=6.

16

Name of the Ship

:

We have, for the station under consideration

:

6=

General atpeci o/* the Curvet

i

Draught of water, mean

Depth of hull

Volume of displacement (ship upright) without

keel V =

Height of transverse metacentre above keel

Height of centre of buoyancy above keel

Height of centre of gravity above keel

Total volume of the ship (without keel) Vj=

OBSERVATIONS.

Column 2 represents the differences of volumes of the

wedges. (Be careful with the signs).

Column 3 represents the accummulations of the

differences of the wedges, as its title indicates; it is,

perhaps, well to note that the value of (q) and of (<p)

is the same at 10°, as there is yet no accumulation.

(Be very careful with the signs).

In the 4th column, the (V + ff>) at 90°, represents the

half total volume of the ship; this value should differ

little for the 3 stations.

Columns 5 and 6 are deduced from the curves of

displacement and centres of buoyancy obtained from

the horizontal water-lines, and as stated in the general

observations of Table No. 1.

Column 7 is easily obtained; the centre of total

volume is the centre of buoyancy of the ship com
pletely immersed.

The 8th column is obtained by the difference of the

moments : of (V + 0) multiplied by the corresponding

distance of the centre of buoyancy in col. 7, and (tp)

multiplied by the height («) of the centre of total

volume above the initial water-line.

To obtain the 9th column, the constant moment
(V dr,) is added to the preceding column. (The values

of this column are always positive).

The titles of the subsequent columns sufficiently

indicate how they are formed.

See the
Note.-Columns 11 and 16 give, at the angle of inclination under consideration and for the displacement (V + *), the arms of levers (b) of the righting couples (the centre of gravity being supposed to coincide with the centre of buoyancy),

figure on the left of this table where (b) is shown, in length and direction, by the straight line Ci K.

The Pantocarenes are the locus of the points K for each inclination ; their ordinary aspect is represented by the small figure above. They are drawn as follows:
_ _

First of all a vertical is drawn above and starting from the lower edge of rabbet (top of keel for iron ships), and on this are set off the heights of the centres of buoyancy from column 6 ;
through these points straight lines are drawn representing, m

length^^^l^n^JTb))^V^)^^cZl^ll andSo; this is don
P
e for all the stations'that have been calculated The Pantocaine for 10° 20°, &c or m ^<^.£»^ %^%JS£jfa SfftSX°wSX

of &ve« cor^rmndintr to this inclination 0 -The drawing of the Pantocaine is facilitated by the knowledge of its two extremities: one being the centre of total volume of the ship and the other the foot of the perpendicular let tall irom the lower edge

ofiKIoTKffi^Zformal to toSifJSli™, makm, the angle 0 with tJ vertical axis" (It may be useful to draw, as auxiliary curves, continuous lines joining the extremiUes of the arms of levers given by the same station. They

serve as a verification of the calculations; these curves, coincident for fl = 90°, should all cut one another at the centre of total volume of the ship)

The Pantocarenes once drawn, we obtain very raj

upright displacement, D, a series of straight Hoes or radii

comprised between the circumference and the Pantocarenes,

values of (p) as ordinates.





TABLE IV,

DISPLACEMENT AND VERTICAL POSITION OF CENTRE OF BUOYANCY.- [AMSLER.]

Horizontal interval between Sections, 24 ft. Height of axis of moments above keel h = 20 ft. Scale of body plan, £" = 1 ft.

INTEGRATOR ADJUSTED TO THE HORIZONTAL AXIS.

Sections.

Sections.

}

Simpson's Multipliers

Bottom to I. ...
(Functions) . ...
+ I. to II

= Bottom to II. . .

(Functions) . . . .

+ 11. to III. . . .

— Bottom to III. . .

(Functions) ....
+ III. to IV. . . .

= Bottom to IV. . .

(Functions) ....
+ IV. to V. ...
= Bottom to V. . .

Bottom to V. direct .

(Functions) ....

READINGS OF ROLLER FOR AREAS.

Reading at
Starting
Position.

9*385

1-487

17 &1
(first & last)

Difference
* Reading

161 i±. 14, 4;

12, 6 ; 10, 8.

Difference

4-394

7'940

1-308

5-150

i
2

•003

002

•004

•007

004

•006

•013

•007

•004

•017

009

•005

•022

•024

•012

Reading

16 & 2.

Difference
>

9 '388

1-491

4-400

7*944

1-313

5-174

2

1-013

2 026

1-510

2-523

5046

I-651

4-174

8-348

1 -705

5-879

II-758

1-772

7-651

7-649

15298

0-401

3-001

6-051

9*649

3-085

2-823

•041

•061

•115

156

•234

•179

•335

•502

•236

•571

•856

•282

•853

•855

1-283

Reading

0-442

3-116

6-230

15,3; 13,5; 11, 7;
9 & centre line.

9-885

3-367

3-678

Difference

4

1-045

4180

1-565

2-610

10440

1*710

4*320

17280

1776

6-096

24384

1-783

7-879

7-876

31-504

Reading

RESULTS.

1-487

4-681

7-940

1-661

5-150

1-554

Sum of
Functions.

A

6-269

15-724

26137

37007

48097

Displ. in tons
=Factorx A
(Factor=
1461).

Factor

=2x-

—

K.

916

2297

Obtained
by

Ordinary
Calculation.

919

3819

5407

2301

3815

5399

7027

Simpson's Multipliers

Bottom to I. ...
(Functions) . . , .

+ I. to II. . . . .

= Bottom to II. .

(Functions) ....
+ II. to III. . . .

= Bottom to III. . .

(Functions) . . 4 .

+ III. to IV. . . .

= Bottom to IV. .

(Functions) . . . .

+ IV. to V. ...
= Bottom to V. . .

Bottom to V. direct .

(Functions) ....

READINGS OF ROLLER FOR MOMENTS. RESULTS.

17 & 1 lGhU\ 14,4;
12, 6; 10, 8.

16 & 2.
15,3; 13, 5; 11, 7;
9 & centre line.

Sum of
Functions.

M

Factor x A
=Centre of
Buoy, below
Axis. (Factor

=7-938.)

O. B. above
Keel.
(h—20)

ObiainouJ

Ordinary
Calculation.

Reading at

Staiting
Position.

Difference
» Reading

Difference

[Reading
Difference

Reading
Difference

Reading Factor-^ , Qn M
* -»

i 2 H 4

2*549 •009 2-540 2-236 0-304 •089 0-215 2-307 7-908

005 4-472 •133 9228 13-838 1763 2-37 2-38

7-908 •007

•016

7 901 2-644

4-880

5-257 •195

•284

5-062 2-737

5-044

2-325

008 9760 •426 2C176 30-370 1543 457 4-58

2-632 •005

•021

2-627 2-060

6-940

0-567 •222

•506

0*345 2 135

7' 79

8 '210

•Oil 13-880 •759 2E '716 43-365 13-25 675 6-74

8-210 •003

•024

8-207 1-291

8*231

6*916 •174

•680

6-742 1 '. >ij3

8-/U2

u-409

•0i2 16-462 1020 34\)48 51-542 1112 888 8-87

5-565 •002

•026

5-563 •433

8-664

5-130 •070

•750

5-060 '150

8-062

4-610

•

4-610 •027 4-583 8-655 5-928 •748 5-180 8-953 6-227

014

vt%m*wrwanes*esw

17-310 1122 35 8S2 54-258 903 10 99
|

10-99

Note.—The complete Integrator and arithmetical wor took two hours.
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INDEX.

Absolute Stability, Dupin, 242.

,, • Moseley, 290.

Achilles, Stability of, 118.

Amsler's Integrator, 151, 182, 325-336.

Atalanta, Metacentric Diagram of, 123.

Atliulchni, Stability of, 179-186.

Atwood's Fundamental Formula, 49.

,, Method of Calculating Wedges,

[144.

Method of Equalising Wedges,

61.

Austral^ Metacentric Diagram of, 100.

Barnes' Method of Calculating Wedges,

147-157.

Barnes on Water-tight Compartments,

71-76.

Benjamin's Method of Treating Stability,

158-171.

Bernoulli's Investigations, 212-214.

Bertin on Dynamical Stability, 297.

,, the Metacentre, 18, 36-38.

Bouguer's Investigations, 202-212.

Buoyancy, Curves of, 5, 32.

Locus of Centres of, 82.

,, Locus of Centres of, Theo-

retical, 85-89.

Surface of, 5, 224, 229-231.

Calculation of Wedges, 143-158.

Capacity, Curve of, 92.

Captain, Metacentric Diagram of, 95.

Stability of, 118, 122, 179, 339-

342, 345.

Catalonia, Stability of, 109.

Centre of Curvature of Curve of Buoy-

ancy, 16, 17,

Centre of Gravityby Experiment, 361-365.

,, Bouguer, 211.

,, ,, ,, Juan d'Ulloa, 214.

,, ,, Determination of, 359-366.

Centres of Buoyancy, Co-ordinates of,

181-184, 187, 252-255, 257.

Centres of Buoyancy, Locus of, 82, 85-89.

Chapman on Stability, 220.

Claymore, Stability of, 109.

Co-ordinates of Centres of Buoyancy—
Macfarlane Gray, 181-184, 187.

Reech, 252-255, 257, 260.

Risbec, 255, 263-266.

Cross-Curves of Stability, Denny, 197-201.

Elgar, 192-197.

Curvature, Centre of, 16, 17.

Radii of, 57.

,, Dargnies, 251.

,, Dupin, 234.

Leclert, 243-248.

,, ,, Rankine, 272.

,, ,, Woolley, 274.

Curves of Buoyancy, 5, 32.

,, ,, Evolutes of, 16, 17,

23.

,, Capacity, 92.

5 , Centres of Buoyancy, 82.

,, ,, j, Theoretical,

85-89.

„ Flotation, 5, 32.

j, Metacentres, 23, 84.

„ ,, Geometry of,

132-142.

„ Pro-Metacentres, 24, 32.

Sines, 52.

Stability, 8 a

55 Double-Branch, 1L
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Curves of Wind-Pressures, 347-358.

Cusps in Metacentric Evolute, Woolley,

274, 280.

Custozza, Stability of, 118.

Cylinder, Homogeneous, 4.

,, Non-homogeneous, 6-12.

Dargnies' Investigations, 250, 251.

Daymard on Light-Draught Stability,

38-41.

Daymard's Investigations, 311-324.

Devastation, Curve of Metacentres of, 89.

Stability of, 118.

Double-Branch Curves of Stability, 11.

Dupin's Investigations, 223-243.

Dynamical Stability, 283-310, 337-841.

„ „ Bertin, 297.

„ Guyou, 298-310.

Moreau, 288.

} , „ Moseley, 287-297.

„ ,, Risbec, 297.

Elements of Stability, 143.

Elgar on Light-Draught Stability, 34.

Well-decked Steamers, 104.

Elgar 's Cross-Curves of Stability, 192-

197.

Equilibrium, Indifferent or Neutral, 4,

Dupin, 228.

Stable and Unstable, 3.

„ „ Dupin,

228, 239.

Euler's Investigations, 215-219.

Evolute of Curve of Buoyancy, 16, 23.

9> „ Dargnies, 250-252.

Merrifield, 272.

5J
Rankine, 272.

„ Woolley, 274-281.

Ferranty's Investigations, 266-270.

Flotation, Curve of, 5, 32.

„ Planes of, Dupin, 230, 232, 236.

Surface of, 5.

Dupin, 225, 229-237.

French Stability Nomenclature, 36-44.

Geometry of Metacentric Curves, White,

132-142,

Geometry of Metacentric Evolute, Merri-

field, 273.

Qlatton, Stability of, 118.

Gravity, Centre of, by Experiment, 361-

365.

,, Bouguer, 211.

,,-Juand'Ulloa, 214.

Determination of, 359-366.

Gray's Stability Diagrams and Calcula-

tions, 172-191.

Guyou's Investigations, 298-310.

Height of Metacentre, Expression for, 30.

History of Science of Stability, 202-282.

Inclining Experiment, 364.

Inconstant, Curve of Metacentres of, 90,

114.

Stability of, 115, 118.

Inertia, Moment of, 57.

Euler, 217.

Initial Metacentre, 19.

Integrator, Amsler's, 151, 182, 325-336.

Invincible, Stability of, 116.

Iron Duke, Stability of, 116, 118.

Isocarenes, Daymard, 316-318.

Juan d' Ulloa's Treatise on Stability, 214.

Kaiser, Stability of, 118.

99 ,,
Specimen Calculation,

152-158.

Leclert's Investigations, 243-248.

Lever, Righting, 8.

Light-Draught Stability, 33.

J5 ,,
Daymard, 38-41.

Elgar, 34.

„ John, 35.

,,
Stanbury, 135.

Longitudinal Metacentre, 66.

Merchant Vessels. Stability of, 101-107,

110-112, 125-129.

Metacentre, 4, 14-23.

„ Bouguer, 203-205.

Expression for Height of, 30.

Position of, 28.

Shifting, 17, 18.

Metacentres, Curve of, 23, 84.

Metacentric, 15-23, 84.

Bouguer, 203.

Geometry of, 132-142.

Metacentric Diagrams, 81-84,89-100, 127.

„ Evolute, Geometry of, 273.

„ Stability, 55-57.

Miantonomoh, Stability of, 118,
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Mjdlner, Stability of, 118.

Moment of Inertia, 57.

Euler, 217.

„ Righting,- 7, 8, 49.

5 j Bernoulli, 212.

Moments of Wedges, 149.

Monarch, Stability of, 118, 122, 339-342,

345.

Moreau on Dynamical Stability, 288.

Moseley's Investigations, 287-297.

Normals to Surface of Buoyancy, Dupin,

226.

a Guyou, 302.

Pantooakenes, Daymard, 311-324.

Peter the Great, Stability of, 118.

Planes of Flotation, Dupin, 232, 236.

Polar Stability Diagrams, 173-180.

Polyphemus, Stability of, 129-132.

Prince Consort, Centre of Gravity of, 364.

Prisms, Square, 12, 13, 24-34.

Pro-Metacentres, 17, 23, 26.

„ Curve of, 24, 32,

„ Position of, 28.

Radetzhy, Stability of, 118.

Rankine on Metacentric Evolute, 272.

Beech's Investigations, 252-263.

Relative Stability, Dupin, 242.

„ Moseley, 290.

Righting Lever, 8.

„ Moment, 7, 8, 49.

99 99 Bernoulli, 212.

Risbec on Co-ordinates of Buoyancy, 255,

263-266.

Risbec on Dynamical Stability, 297.

Romme's Investigations, 220-222.

Russell's Treatment of Stability, 63.

Scales of Stability Curves, 50,

Serapis, Stability of, 118.

Servia, Stability of, 108.

Shifting Metacentre, 17, 18.

Sines, Curves of, 52.

Square Prisms, 12, 13, 24-34.

Stability, Elements of, 143.

Indicator, 366.

,, of Form, 514.

Stability of Achilles, 118,

Stability of Atalanta, 123.
'

„ Athulchni, 179, 186.

,, Austral, 100.

„ Captain, 118, 122, 179, 339-

342, 345.

,, Catalonia, 109.

,, Claymore, 109.

,, Custozza, 118.

,, Devastation, 118.

,, Glatton, 118.

,, Inconstant, 114, 115, 118.

,, Iron Duke, 116, 118.

,, Kaiser, 118.

„ Mail Steamers, 108-110.

,, Miantonomoh, 118.

Merchant Vessels, 101-107,

110-112, 125-129.

,, Mjoiner, 118.

,, Monarch, 118, 122, 339-342,

345.

,, Peter the Great, 118.

Polyphemus, 129-132.

Radelzhy, 118.

,, Serapis, 118.

,, Servia, 108.

„ Thames, 109.

,, War Vessels, 113-124.

Submarine Vessels, Stability of, 2.

Surface of Buoyancy, 5.

„ Dupin, 224, 229-231.

,, Flotation, 5.

Dupin, 225, 229-237.

Surface Stability, 37, 51.

Taylor's Stability Indicator, 366.

Template Arc, Macfarlane Gray's, 177.

Thames, Stability of, 109.

Trim, Change of, 69.

Vertical Curves of Stability, 192-201.

Vis Viva, 289.

War Vessels, Stability of, 113-124.

Water-tight Compartments, 70-80.

Wedges of Immersion and Emersion, 47,

61.

Wedges, Calculation of, 143-158.

,, Moments of, 149.

Well-decked Steamer, Stability of, 101 -104.

Wind-pressures, Curves of, 347-358.

Woolley's Investigations, 274-282.
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A Selection from Charles Griffin and Company'*s Catalogue.

Published with Concurrence of the Surveyors-General of New South Wales

and Victoria.

Half-Bound, Folio, Price 30s.

Computed to 4 Places Decimals for every Minute of Angle up to 100 of Distance,

FOR THE USE OF SURVEYORS AND ENGINEERS.

1. The Tables are calculated to Single Minutes, and to 100 of Distance.

2. The Traverses are given to four places of decimals, so that the Sines and Cosines

for a distance of twelve miles can be ascertained correctly to within half an inch.

3. Simplicity and economy of labour in calculation. One Opening- of the Tables

gives the information which, when sought by the usual method, involves four

references to the book of logarithms, two additions, and the writing out of forty-

eight more figures than are required in the use of Traverse Tables.

" Those who have experience in exact Survey-work will "best know how to appreciate the enormous

amount of labour represented by this valuable book. The computations enable the user to ascertain the

sines and cosines for a distance of twelve miles to within half an inch, and this by reference to but One

Tab'le, in place of the usual fifteen minute computations required. This alone is evidence of the assist-

ance which the Tables ensure to every user, and as every Surveyor in active practice has felt the want of

such assistance, few knowing of their publication will remain without them."—Engineer'.

"We cannot sufficiently admire the heroic patience of the author, who, in order to prevent error,

calculated each result by two different modes, and, before the work was finally placed in the Printer's

hands, repeated the operation for a third time on revising the Proofs."—Engineering.

"Mr. Gurden is to be thanked for the extraordinary labour which he has bestowed on facilitating

the work of the Surveyor. . . . An almost unexampled instance of professional and literary industry

. . . "When the anxious and laborious work of one man affords the means of such a saving of toil for

all those who avail themselves of his work, the patient and careful tabulator deserves the name of a

benefactor of his profession, and of a good servant of his fellows.
1'—Athenaeum.

" These Tables are characterised by absolute simplicity, and the saving of time effected by their

use is most material. . . . The Author has done much to reduce the cost and burden of the Surveyor's

work. Every one connected with Engineering or Survey should be made aware of the existence of this

elaborate and useful set of Tables."—Builder.

"From the enormous amount of time and labour which the Tables will save, they may safely be

recommended to every Surveyor and Engineer."—Mining Journal.

" Up to the present time, no Tables for the use of Surveyors have been prepared which in minute-

ness of detail can be compared with those compiled by Mr. E. L. Gurden. . . . With the aid of

this book the toil op calculation is reduced to a minimum; and not only is time saved, but the risk of

error is avoided. . . . The profession is under an obligation to Mr. Gurden for ensuring that in the

calculation of triangles and traverses inaccuracies are for the future impossible. . . . Mr. Gurden's

BOOK HAS BUT TO BE KNOWN, AND NO ENGINEER'S OR SURVEYOR'S OFFICE WILL BE WITHOUT A COPY."—

•

BY

E. LLOYD G-URDEN,
AUTHORISED SURVEYOR FOR THE GOVERNMENTS OF NEW SOUTH WALES AND VICTORIA.

DSST1 MOTIVE FEATURES:

Architect.

LoKDOKt CHARLES GREFHltf & 00*, Eieter Street, Stband,



A Selection from Charles Griffin and Company
1

s Catalogue.

Royal 8uo, 764 pp., cloth. With over 200 Illustrations drawn to Scale, and
reduced in many instances from Working Drawings. Price 84s.

ELEMENTS OF METALLURGY:
A Practical Treatise on the Art of Extracting Metals from their Ores.

BY

J. A&THXJR PHILLIPS, C.E., F.C.S., F.G.S.,

Anoien Eleve de l'Ecole des Mines, Paris.

*
#
* The Fourth Edition of

65 The Manual of Metallurgy " Enlarged, Remodelled,

and Rewritten,

GENERAL CONTENTS.
I. A Treatise on Fuels and Refractory Materials.

II. A Description of the principal Metalliferous Minerals with, their Distri-

bution.

III. Statistics of the amount of each Metal annually produced throughout the

world, obtained from official sources, or, where this has not been practicable,

from authentic private information.

IV. The Methods of Assaying, the different Ores, together with the Processes of

Metallurgical Treatment, comprising—
t

Refractory Materials.
Fire Clays.
Fuels, &c.

Antimony,
Arsenic.
Zinc.

Iron.
Cobalt.
Nickel,

Mercury.
Bismuth.
Lead.

Aluminium.
Copper,
Tin.

Gold.
Silver.
Platinum, &c.

•"Elements of Metallurgy' possesses intrinsic merits of the highest degree. Such a work is pre-

cisely wanted by the great majority of students and practical workers, and its very compactness is in

itself a first-rate recommendation. The author has treated with great skill the metallurgical operations

relating to all the principal metals. The methods are described with surprising clearness and exactness,

placing an easily intelligible picture of each process even before men of less practical experience, and
illustrating the most important contrivances in an excellent and perspicuous manner. ... In our
opinion the best work ever written on the subject with a view to its practical treatment."— Westminster
Review.

" In this most useful and handsome volume, Mr. Phillips has condensed a large amount of valuable

practical knowledge. We have not only the results of scientific inquiry most cautiously set forth, but

the experiences of a thoroughly practical man very clearly given. ... A careful study of the first

division of the book, on Fuels, will be found to be of great value to every one in training for the practical

applications of our scientific knowledge to any of our metallurgical operations."—Athenseum.
" For twenty years the learned author, who might well have retired with honour on account of his

acknowledged success and high character as an authority in Metallurgy, has been making notes, both as

a Mining Engineer and a practical Metallurgist, and devoting the most valuable portion of his time to the

accumulation of materials for this, his Masterpiece. There can be no possible doubt that ' Elements of

Metallurgy ' will be eagerly sought for by Students in Science and Art, as well as by Practical "Workers

in Metals. . . . Two hundred and fifty pages are devoted exclusively to the Metallurgy of Iron, in

which every process of manufacture is treated, and the latest improvements accurately detailed. . . .

The arrangement of subjects is practically clear, and calculated to facilitate the ready discovery by
Students of any special knowledge they may seek to acquire."—Colliery Guardian.

"The value of this work is almost inestimable. There can be no question that the amount of time

and labour bestowed on it is enormous. . . . There is certainly no Metallurgical Treatise in the

language calculated to prove of such general utility to the Student really seeking sound practical informa-

tion upon the subject, and none which gives greater evidence of the extensive metallurgical knowledge
Of its Etutb.Ol'" JkjLXTVVflCf JouvTictl*

"Such a work was much needed, and the need could hardly have been better supplied than it has
been by Mr. Phillips."

—

Quarterly Journal of Science.

"Mr. Phillips deserves well of the Metallurgical interests of this country, for having produced a work
which is equally valuable to the Student as a Text-book, and to the practical Smelter as a Standard
Work of Eeference. . * . The Illustrations are admirable examples of Wood Engraving."—Chemical
News.

London: CHARLES GRIFFIN & CO., Exeter Street, Strand,
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Published with the Approval of the Director-General of Telegraphs

in India.

Crown 8vo, cloth, 15s. Second Edition.

A MANUAL OF

TELEGRAPH CONSTRUCTION:
THE MECHANICAL ELEMENTS OF ELECTRIC TELEGRAPH

ENGINEERING.

BY

JOHN CHRISTIE DOUGLAS,
MEM. SOC. TELEGRAPH ENGINEERS; EAST INDIA GOVT. TELEGKAPH DEPARTMENT.

This Work has been prepared to supply the existing want of a Text-Book

on the Mechanical Principles and Practice of Telegraph Engineering, and

is the only treatise in the language specially devoted to the subject. It

gives the result of many years' practical experience on the part of the

Author, and is intended for use by the Student as well as by the Engineer

actually engaged in Design and Construction.

GENERAL CONTENTS.
Part I.-GENERAL PRINCIPLES OF STRENGTH AND STABILITY, compris-

ing the Strength of Materials ; the Distribution of Load and Stress in Telegraph

Structures, such as Poles—simple, strutted, tied, stayed, coupled, and trussed

;

the Catenary, with application of its Formulae to the cases of Wires and

Cables; Theory of the Submersion of Cables, &c.

Part II.-PROPERTIES AND APPLICATIONS OF MATERIALS, OPERA-
TIONS, AND MANIPULATION, including the Principles and Practice

of, and Numerical Data for, designing Simple Structures, such as Poles of

Iron and Wood; Iron and Wooden Masts—simple and compound; Specifica-

tions for Wire, &c. ; Soldering; Surveying; the Raising of heavy Masts;

Insulating Materials and their Applications, &c.

Part III.-TELEGRAPH CONSTRUCTION, MAINTENANCE,AND ORGANISA-
TION, treating of the Application of the Information conveyed in Parts I.

and II. to the case of Combined Structures, including the Construction of

Overground, Subterranean, and Subaqueous Lines; Office Fittings; Estimat-

ing; Organisation, &c.

" Mr. Douglas deserves the thanks of Telegraph Engineers for the excellent ' Manual' now before us

. he has ably supplied an existing want ... the subject is treated with great clearness and
judgment . . . good practical information given in a clear, terse styles—Engineering.

"Mr. Douglas's work is, we believe, the first of its kind. . . . The author is evidently a practical

Tele o-raphic Engineer. . . . The amount of information given is such as to render this volume a most

useful guide to any one who may be engaged in any branch of Electric Telegraph Engineering."—

Athenseum.
" The book is calculated to be of great service to Telegraphic Engineers ... the arrangement is

so judicious that with the aid of the full Table of Contents, reference to any special point should be

easy."—Iron.

London : CHARLES GUIEFIN & CO., Exeter Street, Strand.
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UNIVERSITY TEXT-BOOKS.

MR- CRUTTWELUS CLASSICAL WORKS,
Third Edition, crown 8vo, cloth, 8s. 6d.

1. A HISTORY OF ROMAN LITERATURE, from the Earliest Period
to the Times of the Antonin.es. By 0. T. Cruttwell, M. A., Fellow of Merton College, Oxford.

Head Master of Malvern College.

"Nothing at all equal to it has hitherto been published in England."—British Quarterly Review.

"A most serviceable—indeed indispensable—guide for the student. . . . The 'general reader'

will be both charmed and instructed."—Saturday Review.

COMPANION VOLUME.

2. SPECIMENS OF ROMAN LITERATURE, from the Earliest Period
to the Times of the Antonines. Second Edition Revised.

Part I.—ROMAN THOUGHT—Religion, Philosophy and Science, Art and Letters, 6s.

Pake II.—ROMAN STYLE —Descriptive, Rhetorical, and Humorous Passages, 55.

In 1 Vol., with Synopsis and Indices complete, 10s. Gd.

Edited by 0. T. Cruttwell, M.A., Merton College, Oxford; and Peake Banton, M.A., some time

Scholar of Jesus College, Cambridge.

"A work with a standing-ground of its own. . . . Not only useful, but necessary, for many
classes of readers. . . . The sound judgment exercised in arranging the plan and in the selection of

the Passages calls for hearty commendation."

—

Saturday Review.

PROFESSOR RAMSAY'S CLASSICAL WORKS.
In crown 8vo, cloth.

1. A MANUAL OF ROMAN ANTIQUITIES : Law, Constitution, Army
and Navy, Public and Social Life, Agriculture, Religion, &c. For the Use of Advanced Students.
By William Ramsay, M.A., Trinity College, Cambridge, late Professor of Humanity in the
University of Glasgow. With Map, numerous Engravings, and very copious Index. Twelfth
Edition. 8s. 6d.

2. AN ELEMENTARY MANUAL OF ROMAN ANTIQUITIES. Adapted
for Junior Classes. With numerous Illustrations. Seventh Edition. 4s.

3. A MANUAL OF LATIN PROSODY. Illustrated by Copious Examples
and Critical Remarks. Sixth Edition. 5s.

DR. BRYCE'S VIRGIL.
VIRGILII OPERA. Edited by A. Hamilton Bryce, D.C.L., LL.D., Senior

Classical Moderator in the University of Dublin. Text from Heyne and Wagner. English
Notes, Original and Selected, from the leading German and English Commentators. Illustra-

tions from the Antique. Fourteenth Edition. In 1 Vol., fcap. 8vo, cloth, 6s. ; or in Three Parts:—

Part I.-BUCOLICS and GEORGICS, 2s. 6d.

Part II.—THE 2ENEID, Books I —VI., 2s. 6d.

Part III.—THE JENEID, Books VII.—XII., 2s. 6d.

" Contains the pith of what has been written by the best scholars on the subject."—Athenmum.

UNIFORM WITH THE ABOVE.

HORATII OPERA, Edited by Joseph Currie, formerly Head Classical
Master in Glasgow Academy. Text from Orellius. English Notes, Original and Selected, from
the best Commentators. Illustrations from the Antique. In 1 Vol., fcap. 8vo, cloth, os. ; or iv

Two Parts:—

Part L—CARMINA, 3s.

Part II.—SATIRES and EPISTLES, 3s.

"The notes are excellent and exhaustive.
1'—Quarterly Journal of Education.

THE VOCABULARY OF PHILOSOPHY: Mental, Moral, and Metaphysi-
cal. With Quotations and References for the Use of Students. By William Fleming, D.D., late

Professor of Moral Philosophy in the University of Glasgow. Revised and Edited by Henry"
Calderwood, LL.D., Professor of Moral Philosophy in the University of Edinburgh. Crown 8vo,
cloth, bevelled, 10s. 6d. Third Edition.

London: OHAELES GRXEEIN & 00., -Exeter Street, Strand.



A Selection from Charles Griffin and Company's Catalogue.

STANDARD PRESENTATION WORKS
THE STANDARD DICTIONARY OF QUOTATIONS.

First Series, Thirty-Third Edition, Second Series, Eighth Edition.

THOUGHTS OJT MANY M]
A TBEASUBY OF BEEEBENCE,

Consisting of Selections from the Writings of the most Celebrated Authors.

FIRST AND SECOND SERIES, Compiled and Analytically Arranged.

By HENRY SOTJTHGATE.

5 J 5 9

In square 8vo, elegantly printed on toned paper.

Presentation Edition, Cloth and Gold, . . 12s. 6d. each Volume.
Library Edition, Half-bound Roxburghe, . . 14s .

Do., Do., Morocco Antique, . . . 21s.

Each Series is complete in itself, and sold separately.

"The produce of years of research."—Examiner.
"A treasure to every reader fortunate enough to possess it."—Journal of EducationA Magnificent Gift-Book, appropriate to all times and seasons."-Freemason's Magazine

T*a$™^l°^„^£ la™ that^ *« * ccmiparis'on with 'Many
" The Second Series fully sustains the deserved reputation of the Fibst."—John Bull.

Nineteenth Edition, royal 8vo, handsome cloth, 10s. Gd.

[ House!

R I

By SPENCER THOMSON", M.D., L.B.C.S.,

AND

J. C. STEELE, M.D.,
Of Guy's Hospital.

With Appendix on the Management of the Sick Room, and many
Hints for the Diet and Comfort of Invalids.

" Worth its weight in gold."—Oxford Herald.

^l^^^J^t^^T^^ *he ^Wi° a ™t amount of useful professional

FES80R CRAIK'8 ENGLISH LITERATURE.
A HISTORY OF ENGLISH LITERATURE AND OF THE ENGLISHLANGUAGE FROM THE NORMAN CONQUEST.

With Numerous Excerpts and Specimens.

By GEOBGE LILLIE CRAIK, LL.D.,
Late Professor of History and English Literature, Queen's College, Belfast.

" Professor Craik's book going, as it does, through the whole history of the language urobablv take-?a place quite by itself. The great value of the work is its thorough comprehensS
clear and straightforward, and deals not in theories but in tacts."-Saturday Eeview

3

LIBRARY EDITION, in Two Vols., royal 8vo, handsome cloth, 25s. Neio Edition.
A MANUAL OF ENGLISH LITERATURE, for the Use of Colleges, Civil

bervice, and other Competitive Examinations. Selected from the larger Work
by Dr. Craik. Crown 8vo, cloth, 7s. 6d. Ninth Edition, Revise!.

'

"A Manual of English Literature from so experienced and well-read a scholar as Professor Craikneeds no other recommendation than the mention of its existence."Spectator.
^ webbui wait.

London
: CHABLES GRXEEIN & CO., Exeter Street, Strand.



A Selection from Charles Crijin and Company^ Catalogue.

Comprising the Principles of Statics and Cinematics, and Theory of Structures,

Mechanism,, and Machines. With numerous Diagrams. Crown 8vo, cloth,

12s. 6d. Eleventh Edition.

» Cannot fail to be adopted as a text-book.' . . The whole of the information is so admirably

arranged, that there is eve*y facility for VQfevence."—Mining Journal.

Comprising Engineering Surveys, Earthwork, Foundations, Masonry, Carpentry,

Metal Work, Roads, Railways, Canals, Rivers, Waterworks, Harbours, &c.

With numerous Tables and Illustrations. Crown 8vo, cloth, 16s. JJiJteent/i

Edition.

« Far surpasses in merit every existing work of the kind. As a ' Manual' for the hands of
'

the pro-

fessional Civil Engineer it is sufficient and unrivalled; and even when we say this we fall shoit of that

high appreciation of Dr. Eankine's labours which we should like to express."-^ Engineer.

Comprising the Geometry, Motions, Work, Strength, Construction, and Objects of

Machines, &e. Illustrated with nearly 300 Woodcuts. Crown 8vo, cloth,

12s. 6d. Fifth Edition.

"Fully maintains the high reputation which Professor Kankine enjoys as a
f

scientific writer
;
higher

praise it is difficult to awafd to any book. ... It cannot fail to be a lantern to the feet of every

Engineer."—The Engineer.

With numerous Tables and Illustrations, and a Diagram of the Mechanical Properties

of Steam. Crown 8vo, cloth, 12s. 6d. Eleventh Edition.

For Architects, Builders, Engineers, Founders, Mechanics, Shipbuilders, Surveyors,

&c. With Appendix for the use of Electrical Engineers. By Principal

Jamieson, M.S.T.E., F.RS.E. Sixth Edition, 10s. U.

"A necessitv of the Engineer."

—

Athenseum. , .,„,,.. T _ 7

•« Undoubtedly the most useful collection of engineering data hitherto produced."-J/wwiflr Journal.

A Practical and Simple Introduction to the Study of Mechanics. By Professor

Rankine and K F. Bamber, C.E. With numerous Illustrations. Grown bvo,

cloth, 9s. Third Edition.

\ The "Mechanical Text-Book" was designed by Professor Rankine as an Introduction toihi

above Series of Manuals.

Lotoon ; CHAELES GRIFFIN & QO.
}
Exeteb Stbeet* Straw,



A Selection from Charles Griffin and Company's Catalogue.

In Two Parts, Demy 8vo.

A MANUAL OF GEOLOGY,
P,Y

JOHN PHILLIPS M.A., LL.D., F.R.S.,
Late Professor of Geology in the University of Oxford.

Ke-Written and Edited by

ROBERT ETHERIDGE F.R.S.,
Of the Natural Hist. Department, British Museum, late Paleontologist to the Geological Survey

of Great Britain, Past-President of the Geological Society ; and

HARRY GOYIER SEELEY, E.R.S.,
Professor of Geography in King's College, London.

Part I.—Physical Geology and Paleontology. By Prof. Seeley. 18s.

Part II.—Stratigraphical Geology and Paleontology. By R. Etheridge, F.R.S.

With Numerous Tables, Sections, and Figures of Characteristic Fossils.

Second Edition, Revised. Poclcet-Size, 504 pp., leather, 7s. 6d.

A POCKET-BOOK OF
ELECTRICAL RULES AND TABLES.

By J. MUNRO, C.E., and A. JAMIESON, E.R.S.E., C.E., M.S.T.E.

GENERAL CONTENTS.
Units—Measures— Testing— Conductors— Dielectrics—Submarine Cables-

Telegraphy—Electro-Chemistry and Metallurgy—Batteries—Dynamos
and Motors—Electric Lighting—Miscellaneous Recipes—Logarithms.

" "Wonderfully perfect. . . . Worthy of the highest commendationwe can give it.' '—Electrician.

"The sterling value of Messrs. Munro & Jameson's Pocket-Book."—Electrical Revieic.

Compiledfrom Official Sources. First Issue. Price Is. 6d.

YEAR-BOOK OF THE SCIENTIFIC AND LEARNED SOCIETIES OF GREAT

BRITAIN AND IRELAND.

Giving an Account of over 500 {Societies engaged in the following

Departments of Research :

—

§ 8. Naval and Military Science.

§ 9. Agriculture and Horticulture.

§ 10. Law.
§ 11. Medicine.
§ 12. Literature.

§ 13. Psychology.
§ li. Archeeology.

§ 1. Science Generally.

§ 2. Mathematics and Physics.

§ 3. Chemistry and Photography.
§ 4. Geology, Geography, and Mineralogy.

§ 5. Biology, Microscopy, and Anthropology.

§ 6. Economic Science and Statistics.

§ 7. Mechanical Science and Architecture.

With Appendix, comprising a List oe the Leading Scientific

Societies throughout the World.

" The Year-Book of Societies meets an obvious want. . . . Promises to become a valuable work

" Invaluable to all engaged in the pursuit of science."— Western Mercury.

Crown Svo, cloth, 4s. Qd.

THE STUDENT'S MECHANICS:
AN INTRODUCTION TO THE STUDY OF FORCE AND MOTION,

By WALTER R. BROWNE, M.A.
" Deserves the attention of all who have to teach or learn the elements of mechanics. . . An

excellent conception."— Westminster Review.

London : CHARLES GRIFFIN & CO., Exeter Street, Strand,


