

UNIVERSITY OF CALIFORNIA PUBLICATIONS

Determination of The Constant of Refraction from Observations made with The Repsold Meridian Circle of The Lick Observatory

DISSERTATION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE UNIVERSITY OF CALIFORNIA PRESENTED IN IgOI BY

$$
\text { Russell Tracy }{ }_{-}^{\text {Crawford }}
$$

[Reprinted from the Proceedings of the California Academy of Sciences, Third Series; Math.-Physics; Vol. I, No. 8.]

DETERMINATION OF THE CONSTANT OF REFRACTION FROM OBSERVATIONS MADE WITH THE REPSOLD MERIDIAN CIRCLE OF THE LICK OBSERVATORY.

BY RUSSELL TRACY CRAWFORD.

CONTEN'TS.

Page.
INTRODUCTION 105

1. The Meridian Circle. 105
2. The Room 107
3. Meteorology. Io8
4. Plan for Observing. II4
Observations II8
5. List II8
6. Details of Observations II9
7. Reduction of Observations. 122
8. The Constant of Refraction 190
9. Latitude. 191
Conclusion 192
AdDENDUM 193

Introduction.

I. The Meridian Circle.-The instrument with which these observations for refraction were made has been fully described by Astronomer Tucker in Volume IV of the "' Publications of the Lick Observatory, 1900." For the sake of completeness, however, it will be described again in this paper.

The instrument was made by Messrs. Repsold and Sons, and was described by Professors Auwers and Krueger to be " in its construction in every way suited to be the chief instrument in an observatory of the first class.' (cf. Vol. I,
" Publications of the Lick Observatory.'")
The aperture of the object glass, which was made by Clark and Sons, is 6.4 inches. Its focal length is 6 feet

4 inches. The tube of the telescope is in two parts, each of which is attached to a central cube. Their diameters decrease from 8.1 inches at the cube to 6.5 inches near their outer ends. An eyepiece giving a power of 90 and a field of $12^{\prime \prime}$ was used for these observations. The star images formed are not exactly round, but are slightly elongated in a direction parallel to the horizontal (declination) thread. There being no component of this elongation parallel to the vertical threads, it can have no effect upon observations for zenith distance.

The axis is 3 feet $21 / 2$ inches long, the distance between the counterpoises being 2 feet 2 inches. The pivots are 3.6 inches in diameter and are protected by brass covers. The telescope is furnished with clamps which, however, were never used during these observations. After the telescope was once set for a star it was not moved again to make the bisection, this being done by means of the declination micrometer. The value of one revolution of the screw of this micrometer is $48^{\prime \prime} .1$. This value has been adopted as the result of many determinations made in past years. The micrometer thread is single.

The instrument has two circles, one of which can be rotated about the axis of the instrument while the other is rigidly fixed to it. They are both graduated to 2^{2}. The degrees, as numbered, increase counter-clockwise. The diameter of the silver circle, upon which the graduations are marked, is 26 inches. There are 130 graduations to the inch. The fixed circle was used throughout these observations.

The four reading microscopes on each side are alike in all respects. They are 26.5 inches long and have clear apertures of 0.55 of an inch. Their powers are 40 and their fields are nearly one degree. The objectives are 5 inches from the circle and their eye ends project 8 inches from the frame holding them. The micrometer heads are divided into 60 parts. One revolution of a micrometer head carries the threads over one minute of arc of the circle. There
are two pairs of threads in every micrometer, but one of which is generally used.

There is a separate broken telescope for setting. This is supported on wyes attached to either pier and is at the level of the lower rim of the circle. By means of this the circle can be seen either from the north or from the south, so that the settings can be made very conveniently.

The illumination for both the field of view and for the circles under the microscopes is furnished by a Rochester lamp placed in a cylindrical case 9 feet from the axis of the instrument. This light also illuminates the heads of the microscope micrometers. Most of the heat from this lamp is carried out of the room by a pipe which extends from directly over the lamp through the roof to the outside air.

A simple mechanism enables the observer to change the system of illumination from a bright field with dark wires to a dark field with bright wires and vice versa; he can also reduce the amount of illumination at will.

The brick piers supporting the instrument are 34 inches by 44 inches at the floor of the room and 22 inches square at the top. The sides next to the telescope are vertical. They are cased in wood with a layer of felt between the surfaces. The platforms for the microscope reader are entirely disconnected from the casing of the piers.

The microscope bearers are 23 inches in diameter and I_{7} inches long. The wyes for the pivots of the instrument are attached to the inner faces of these frames.

The weights of the counterpoises hang from levers 26 inches long. The fulcra are in the centers of the levers and are 6 inches from the inner faces of the microscope bearers.
Two collimators, of same aperture and focal length as the Meridian Circle, are suitably mounted. The collimator micrometers are 35 feet 6 inches apart.
2. The Room.-The Meridian Circle house on Mount Hamilton has been most admirably designed. Its efficiency will become apparent from the meteorological data to be given later.

The observing room is 43 feet long (north and south) and 38 feet wide. All of the walls are double. The outer of the two is a louvre-work of galvanized iron which prevents the sunlight from touching any part of the building proper. The inner wall is of California redwood, and is separated from the outer by a two foot air space. The ceiling is also of redwood. It is about 16 feet above the floor. Above the ceiling is an air space 8 feet high at the observing slit and sloping to meet the east and the west walls.

The observing slit is slightly over three feet in width. The covering for the slit is in four parts which open outward. The ends are closed by shutters, each of which is in two parts opening inwards. Each end is also provided with a single shutter which slides up and down. For stars at zenith distances greater than 72 degrees these shutters have to be lifted. When down they are very efficient wind breaks.

There is a large canopy which can be rolled over the instrument to serve as an additional protection in stormy weather or when the instrument is not in use.

For a more detailed account of the instrument and room see Astronomer Tucker's account of them in Volume IV of the "Publications of the Lick Observatory, r900."
3. Meteorology.-To make quite sure of the condition of the atmosphere at any time during the observations, the thermometers were read, on the average, three times an hour (at nearly equal intervals); and the barometer was observed every hour. - The reading of the wet bulb thermometer was also taken when the dry was read. The relative humidity has not been introduced into the reductions, but it was thought desirable to have it for possible future reductions.

The barometer, Green 2839, hangs on the north wall of the observing room. - It reads to one two-hundredth of an inch. The dry and the wet bulb thermometers (F) hang in the air space between the north walls. . The dry bulb thermometer, used to indicate the external temperatures, is Green 494. This thermometer has been calibrated at the

Yale Observatory. The corrections which have been applied to all the readings have been taken from the following table sent from Yale Observatory: -

$t(\mathrm{~F})$	Cor.
o°	$+\mathrm{o}^{\circ} .1$
32	-0.2
52	-0.1
7^{2}	-0.2
112	-0.1

The table which follows contains the incorrected temperatures (t), the readings of the attached thermometer (T), of the barometer (B), and the times at which they were taken. The readings of the wet bulb thermometer are not given here.
Table of Barometer and Thermometer Readings.

Table of Barometer and Thermometer Readings.-(Con.)

Sid. T	June 28			June 29			June 30			July ${ }_{T}$		${ }_{t}^{\text {July }}{ }_{T}$		
h 14.7	$68^{\circ} 2$	70°	5188	69°.	69°	5191	$66^{\circ} 5$	$70^{1 / 2}$	5178	74.0 7601/2	5164	7 O .2		5167
15:0	68.0			69.			67.2			73.7		70.0		
	67.0			68.2			66.8			73.7		67.9		
. 6	67.2 67.2			68.8 69.3			66.8 65.8	68				69.0 69.0		
.9 16.3	67.2 66.2	$67^{1 / 2}$	5189	69.3 69.6	681/2	5193	65.8 66.3	68	5176	72.0 71.2	5165	69.0 68.9		5167
16.3 .6	66.8			69.3			66.3			70.6		68.8		
17.0	67.6	67	5186	70.5	681/2	5191	66.2	$67^{1 / 2}$	5174	$72.3 \quad 721 / 2$	5161	67.7		5167
. 4	68.4			70.8			66.3			72.2		67.8		
$\begin{array}{r}18 \\ 18.1 \\ \hline\end{array}$	68.4 68.2	671/2	5187	70.0 69.4	69	5190	66.5 66.4	67	5172	71.8 716		67.3 67.0	$671 / 2$	5165
$\begin{array}{r}\text { r. } \\ \hline\end{array}$	67.3			69.2			66.4			72.0		67.8		
. 7	67.2			69.1			66.8			72.0		68.1		
19.0	67.6	67	5187	68.7	69	5188	66.6	67	5169	71.3 : $721 / 2$	5158	68.4		5163
							-			,				
Sid.		uly 5			y 6									
T			B			B								
$\begin{aligned} & 14.7 \\ & 15.0 \end{aligned}$	62.8 67.8		5166			5170		${ }_{22}$ Noteme	On the	of June $7,8,9$	i2, 13.			
$\cdot 3$	62.2			57.6				different	from	en in the col	un S^{2}			
. 6	${ }_{61} 6.8$			57.1				actual	nes of	servations ar	indi			
16.3	${ }^{61.0}$		5167		591/2	5170		before t l	colun	s, on June 7 b	fore t			
6.3 .6	61.0			57.8				t occur	of th	.7, and .8, whin	ations			
17.0	${ }_{6} 61.0$	62	5166		59	5168		instead	f5.9,	in the colum				
.4	61.0 60.9							stead of	6.6, 17	of 17.7, etc.				
18.1	60.5	611/2	5165	58.3	59	5168								
. 4	60.5			58.3										
$\begin{array}{r}.7 \\ 19.0 \\ \hline\end{array}$	60.7 60.4	61	5163	58.2 58.0	581/2	5167								

In this table the unit of B is one two-hundredth of an inch.

From this table the following data have been taken:

$$
\begin{array}{ll}
\text { Maximum temperature } & =74^{\circ} \cdot 0 \text {, July } 3 \\
\text { Minimum temperature } & =55^{\circ} .1 \text {, June } 12 \\
\text { Maximum range } & =18^{\circ} .9 \\
\text { Maximum barometer } & =5194, \text { June } 14 \\
\text { Minimum barometer } & =5145, \text { June } 12^{\circ} \\
\text { Maximum range } & =49 .
\end{array}
$$

During this period of observing, the maximum difference between the dry and the wet bulb thermometers was $75^{\circ} \cdot 5-48^{\circ} .0=22^{\circ} \cdot 5$. This was on June 29. The minimum was $65^{\circ} .0-56^{\circ} .0=9^{\circ} .0$, which occurred June 27.

Concerning the maximum temperature noted above, $74^{\circ} .0$, it should be remarked that this was the first reading of the period, and was taken several minutes before the sun had set.

Besides the regular thermometers in the air space between the north walls, three other thermometers were suspended from the ceiling of the observing room. All three were swung under the observing slit, near the plane of the meridian. One was directly over the instrument, and three or four feet from the ceiling. The other two were hung, one north and one south, about half way between the instrument and the north and south walls respectively, and at such a distance above the floor that the plane of the axis of the instrument and the line of sight of the telescope, pointed at about 83° zenith distance (north and south respectively), would intersect the thermometers near their bulbs.

Before being thus placed, these thermometers were compared with Green 494, so that their readings could be reduced for comparison with those of the external thermometer (Green 494).

During the course of an evening's observations these three thermometers were read just after reading the regular thermometer. The average difference between the inside and the outside thermometers was found to be the same
for all three, and is $o^{\circ} \cdot 3(\mathrm{~F})$. It is nearly always the case (in this hemisphere) that the southern part of a room is a trifle warmer than the northern. But this is not the case on Mount Hamilton. The temperature of the air inside is, on the average, very uniform and but very little ($0^{\circ} \cdot 3$) warmer than the air outside. In his "Untersuchung über die Astronomische Refraction u. s. w.," Dr. Bauschinger notes that the southern part of his observing room in Munich was warmer than the northern, and that at night the average difference between the inside and the outside temperatures is $\mathrm{I}^{\circ} \cdot 3(\mathrm{C})$. From his investigation, he concludes that the temperature of the air within the observing room should be taken into account.

Because of these difficulties, many observers have seriously considered the idea of mounting their instruments under a movable house, so that when at work the instrument will be entirely out of doors, and thus completely obviate this difficulty. But this would needlessly endanger the instrument. To accomplish the same purpose, the Meridian Circle house being built at Kiel is to be constructed in the shape of a cylinder whose axis coïncides with the axis of the instrument. This is undoubtedly the best form of construction.

For the efficiency of the Meridian Circle house on Mount Hamilton, the difference between the inside and the outside thermometers can speak. As has been said, the average difference (in the sense Inside-Outside) is $+\circ^{\circ} \cdot 3(\mathrm{~F})$. The maximum difference noted was one evening, a few minutes before the sun had set, when the difference was. $+\mathrm{I}^{\circ} . \mathrm{I}(\mathrm{F})$. The maximum difference noted here is less than half the average at Munich. After this Meridian Circle house has been completely opened for an hour and a half, the temperature inside is practically the same as it is outside.

During the months October to December, inclusive, a similar set of observations was secured. For these months the average difference between the inside and the outside temperatures is even less than for the summer months. But the range of the difference is much greater for the
fall and the winter months. The maximum differences observed were $-2^{\circ} .0(F)$ and $+2^{\circ} .1(F)$. There was one still larger difference, viz. - $3^{\circ} \cdot 7(\mathrm{~F})$, which can hardly be counted in the series, for it occurred on a poor night, immediately after observing had been suspended because of clouds and poor "seeing." The hot wave, which caused the outside temperature to rise suddenly, undoubtedly destroyed the "seeing." Although the winter months present conditions not so favorable as those of the summer months, nevertheless they also speak well for the efficiency of the Lick Observatory Meridian Circle house.
4. Plan for Observing.-The method of determining the refractions here may be stated as being a quasi converse to Talcott's method of determining the latitude. Instead of eliminating the refractions to get the latitude, the method is to determine the refractions by eliminating the latitude, as follows:

Let
$\mathrm{z}_{\mathrm{s}}=$ the zenith distance of a southern star,
$\mathrm{z}_{\mathrm{n}}=$ the zenith distance of a northern star,
$z_{s}^{\prime}=$ the apparent zenith distance of the southern star,
$z_{\mathrm{n}}^{\prime}=$ the apparent zenith distance of the northern star,
$\delta_{\mathrm{s}}=$ the declination of the southern star,
$\delta_{\mathrm{n}}=$ the declination of the northern star,
$\mathrm{r}_{\mathrm{s}}=$ the refraction of the southern star,
$\mathrm{r}_{\mathrm{n}}=$ the refraction of the northern star,
$\varphi=$ the latitude of the Meridian Circle.
Then

$$
\begin{gather*}
\delta_{\mathrm{n}}=\varphi+\mathrm{z}_{\mathrm{n}}=\varphi+\left(\mathrm{z}_{\mathrm{n}}^{\prime}+\mathrm{r}_{\mathrm{n}}\right) \tag{I}\\
\delta_{\mathrm{s}}=\varphi-\mathrm{z}_{\mathrm{s}}=\varphi-\left(\mathrm{z}_{\mathrm{s}}^{\prime}+\mathrm{r}_{\mathrm{s}}\right) \tag{2}\\
\delta_{\mathrm{n}}-\delta_{\mathrm{s}}=\mathrm{z}_{\mathrm{s}}^{\prime}+\mathrm{z}_{\mathrm{n}}^{\prime}+\mathrm{r}_{\mathrm{s}}+\mathrm{r}_{\mathrm{n}} \tag{3}
\end{gather*}
$$

Let

$$
\begin{align*}
& \mathrm{A}=\delta_{\mathrm{n}}-\delta_{\mathrm{s}} \tag{4}\\
& \mathrm{~B}=\mathrm{z}_{\mathrm{s}}^{\prime}+\mathrm{z}_{\mathrm{n}}^{\prime} \tag{5}
\end{align*}
$$

Then

$$
\begin{equation*}
A=B+r_{s}+r_{n} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{\mathrm{s}}+\mathrm{r}_{\mathrm{n}}=\mathrm{A}-\mathrm{B} \tag{7}
\end{equation*}
$$

If now, the southern and northern zenith distances were the same, and if, at the times of observing them, the conditions of the atmosphere were the same, the two refractions would be the same, i.e.,

$$
r_{s}=r_{n} .
$$

In this case we have

$$
\begin{equation*}
2 \mathrm{r}=\mathrm{A}-\mathrm{B} \tag{I}
\end{equation*}
$$

In practice these ideal conditions are only approximately satisfied. We therefore proceed as follows:

From (7) we have

$$
\begin{equation*}
2 r_{s}-r_{s}+r_{n}=A-B \tag{8}
\end{equation*}
$$

whence

$$
2 r_{s}=(A-B)+\left(r_{s}-r_{n}\right)
$$

and

$$
\left.\begin{array}{l}
r_{s}=1 / 2(A-B)+1 / 2\left(r_{s}-r_{n}\right) \tag{II}\\
r_{n}=1 / 2(A-B)+1 / 2\left(r_{n}-r_{s}\right)
\end{array}\right\}
$$

In case the northern star is at lower culmination we shall have:

$$
\begin{align*}
\delta_{\mathrm{n}} & =180^{\circ}-z_{\mathrm{n}}-\varphi \tag{9}\\
\delta_{\mathrm{s}} & =\varphi-z_{\mathrm{s}} \tag{io}\\
\delta_{\mathrm{n}}+\delta_{\mathrm{s}} & =180^{\circ}-z_{\mathrm{n}}-z_{\mathrm{s}} \tag{II}\\
& =180^{\circ}-\left[z_{\mathrm{n}}^{\prime}+r_{\mathrm{n}}+z_{\mathrm{s}}^{\prime}+r_{\mathrm{s}}\right] . \tag{12}
\end{align*}
$$

Hence

$$
\begin{equation*}
r_{n}+r_{s}=r 80^{\circ}-\left[z_{n}^{\prime}+z_{s}^{\prime}\right]-\left[\delta_{n}+\delta_{s}\right] \tag{I3}
\end{equation*}
$$

and

$$
2 r_{s}=180^{\circ}-\left[z_{n}^{\prime}+z_{s}^{\prime}\right]-\left[\delta_{n}+\delta_{s}\right]+\left[r_{s}-r_{n}\right] . \quad(14)
$$

Calling

$$
\begin{equation*}
\mathrm{A}^{\prime}=\delta_{\mathrm{n}}+\delta_{\mathrm{s}} \tag{ㄷ5}
\end{equation*}
$$

and since

$$
\begin{equation*}
B=z_{\mathrm{s}}^{\prime}+\mathrm{z}_{\mathrm{n}}^{\prime} \tag{5}
\end{equation*}
$$

we have
and

$$
\left.\begin{array}{l}
r_{s}=90^{\circ}-1 / 2\left[A^{\prime}+B\right]+1 / 2\left[r_{s}-r_{n}\right] \\
r_{n}=90^{\circ}-1 / 2\left[A^{\prime}+B\right]+1 / 2\left[r_{n}-r_{s}\right] \tag{III}
\end{array}\right\}
$$

In order to obtain the refractions from (II) and (III) it is necessary to know the declinations of the stars, their apparent zenith distances (or rather the sums of the zenith distances of the pairs of north and south stars), and the differences between the refractions of the pairs. The stars chosen for this work are all fundamental, and in a first approximation their declinations are to be considered
absolute. The list of stars, given later, has been taken from Professor Newcomb's "Catalogue of Fundamental Stars for 1875 and 1900 , reduced to an absolute System." The apparent zenith distances, or the sums of the zenith distances of the several pairs, are obtained from the Meridian Circle observations; and the differences in the refractions are found by computing the refractions from some standard table. In this work the Pulkowa tables have been used. The term $1 / 2\left(r_{8}-r_{n}\right)$ being of the nature of a differential refraction, any error in the constant of refraction of the table used will have practically no effect upon this difference. The more nearly ideal conditions (i.e., when $r_{s}=r_{n}$) are approached, of course, the better the determination of the refractions will be.

This method has both its advantages and its disadvantages. Among the former, the most important are: first, the total elimination of the latitude and hence also of its variation; second, the elimination of the nadir, since $\left(z_{8}^{\prime}+z_{\mathrm{n}}^{\prime}\right)$ is nothing more nor less than the difference between the circle readings, and is therefore independent of the zenith point; third, there is no wait of twelve hours or of six months in order to observe a star at both culminations, as is usually done; and fourth, the simplicity of the reductions.

The greatest disadvantage in this method lies in the fact that the declinations of the stars have to be considered known. But by taking fundamental stars, such as those whose places are given by Professor Newcomb's new Fundamental Catalogue, and by taking a large number of these stars, this difficulty will be nearly completely eliminated.

Having now the new refractions, the correction to the constant of the table used (Pulkowa) is found from the following equation [eq. (701) pg. 672 , Vol. I, Chauvenet, "Spherical and Practical Astronomy"]:

$$
\mathrm{dr}=\mathrm{Ad} a+\mathrm{Bd} \beta
$$

where

$$
\mathrm{A}=\frac{\mathrm{r}}{a}
$$

and

$$
\mathrm{B}=\sin ^{2} \mathrm{Z} \sqrt{\frac{2}{\beta}}\left(\frac{\mathrm{dQ}}{\mathrm{~d} \beta}-\frac{\mathrm{Q}}{2 \beta}\right) .
$$

For this observatory, whose altitude is 4,209 feet and where the mean annual pressure is less than 26 inches, an investigation into the effect of the higher powers of $\Delta \beta$ involved in the factor $\beta=\frac{\mathrm{b}}{\mathrm{B}}=\mathrm{I}+\frac{\mathrm{b}-\mathrm{B}}{\mathrm{B}}=\mathrm{I}+\frac{\Delta \mathrm{b}}{\mathrm{B}}$ (in Bessel's notation for r) was necessary. In his memoir, "Untersuchungen über die Constitution der Atmosphäre und die Strahlenbrechung in Derselben," St. Petersburg, 1866, Gyldén has neglected the squares and higher powers of $\frac{\triangle b}{B}$, since for places at low altitudes $\frac{\Delta b}{B}$ is a very small quantity. This investigation was made by Professor Comstock (Vol. I, "Publications of the Lick Observatory"). From his investigation the conclusion is drawn that "the Pulkowa Refraction Tables may be used for atmospheric pressures as low as 25 inches without taking into account the squares and higher powers of Δb, and the quantities so neglected will not be sensible at zenith distances less than 80°." The minimum reading of the barometer during these observations was 25.72 inches, so that in these reductions no modification of the factor of the refraction depending upon the barometer need be made.

This question having been disposed of, the assumption is here made that all of the error in the refractions is due to an error in the constant of refraction. This amounts to assuming the constant β to be correct or that $\mathrm{d} \beta=\mathrm{o}$. The equation above then reduces to the very simple expression

$$
\mathrm{dr}=\mathrm{Ad} a=\frac{\mathrm{r}}{\mathrm{a}} \mathrm{~d} a ;
$$

hence

$$
\frac{\mathrm{d} a}{a}=\frac{\mathrm{dr}}{\mathrm{r}}
$$

or

$$
\mathrm{d} \log a=\mathrm{d} \log \mathrm{r} .
$$

Having dlogr from the reductions, we thus have doga, and hence d a.

This assumption would perhaps seem somewhat risky for stars whose zenith distances are greater than 80°. But at the conclusion of the reductions, the value of $\operatorname{dlog} a$ deduced
from such stars was found to fit in very well with those deduced from the other stars. Furthermore, down to 85° zenith distance the observing was very good. In consequence of these facts it was decided to take into account all the stars observed. The zenith distances of the stars in this list range from $2 I^{\circ} 2 I^{\prime}$ to $89^{\circ} 12^{\prime}$ (apparent).

From 85° zenith distance down, the quality of the "seeing" decreases quite rapidly. This can be seen from the following table of average weights. These weights were derived from the probable errors of the individual determinations of $\operatorname{dlog} a$.

Z. D.	Av. Wt.
20° to 30°	2.0
50 to 60	7.5
60 to 70	7.5
70 to 80	11.8
80 to 85	14.8
85 to 90	3.6

The small weight for the small zenith distances is due to the fact that in the expression for $\mathrm{d} a$ the refraction occurs in the denominator. The small weight for the stars at zenith distances greater than 85° is, of course, due to uncertainties in observing at such low altitudes.

Observations.

1. List.-The following list of 3 I stars was observed on seventeen nights, from 1899 June 7 to 1899 July 6, inclusive, and have been reduced according to the plan outlined in the preceding section. Eleven other stars were on the same observing list, but they have not been used here. They were put on to obtain data for determining bisection error, and for other purposes.

The numbers of the stars are those of Newcomb's "Catalogue of Fundamental Stars for 1875 and 1900, reduced to an Absolute System."

No.	a (1900)			$\delta(1900)$		
948	$14 h$	$51 m$		-42°	43^{\prime}	52" ${ }^{\prime \prime}$. ${ }^{0}$
190	2	57	33	$+53$		53.92
959	15	5	6	-51	43	6.62
968	15	13	29	$+67$	43	35.08
977	15	21	9	+15	46	46.45
984	15	28	28	-40	49	50.61
225	3	33	28	$+62$	53	$33 \cdot 74$
997	15	39	21	$+6$	44	$24 \cdot 53$
1005	15	47	32	-19	52	5.65
1009	15	51	50	+15	59	16.46
1019	16	-	I	$+58$	49	56.19
264	4	5	6	+85	17	29.06
1032	16	12	21	-49	54	36.79
282	4	24	6	$+53$	41	$37 \cdot 37$
1084	16	52	56	+9	3 I	49.32
1094	17	8	30	+65	50	15.88
I 105	17	15	52	-24	53	59.07
1110	17	20	58	-29	46	35.61
349	5	26	21	$+74$	58	39.95
356	5	29	54	$+85$	8	49.60
I 135	17	40	35	-40		17.65
377	5	46	28	+55	41	1. 68
II56	17	58	51	-50	5	53.20
1162	18	3	48	-45	58	18.07
406	6	10	48	+59	2	50.18
1179	18	19	34	-46	1	24.50
1182	18	21	48	-25	28	37.40
424	6	29	10	+79	40	22.10
438	6	45	29	$+77$		17.47
444	6	48	37	$+58$		14.18
1225	19		42	-27	48	59.80

2. Details of Observations. - A night's program consisted in observing the above list, together with three nadirs, one before, one during, and one after the observing of the stars. As has been pointed out, the nadirs are not necessary for the refraction determinations, but were taken for the reduction of the latitude, which is a problem practically inseparable from the main one undertaken here.

No transits were observed during these observations, the whole attention being devoted to the observations for zenith distance. The telescope was set to the nearest 2^{\prime} and not disturbed until the observation had been completed. The bisection was made (with but a very few exceptions) at the central transit wire, by means of the declination micrometer. For the sake of uniformity every star was bisected but once during its transit. Because of unavoidable circumstances a few of the stars had passed the meridian before the bisection
could have been made. In these cases the readings have been reduced to the meridian.

For the position of the circle four microscopes were read. Settings were made upon two scratches under every microscope. The circle microscopes were usually read after the star had been bisected. In a few cases, because of a following star culminating very soon, the microscopes were read before the bisection. In such cases the position of the circle was quickly checked after the bisection.

The correction for runs for a night was obtained from all of the microscope readings of the night. This correction has been applied to all of the observations. Its values for the several nights of observing are given in the following table:-

Date	R	Date	R	Date.	R
June 7	to". 06	June 19	+o'.02	June 30	+o". 06
8	to. 08		to. 03	July 3^{-3}	to. 07
9	to. 08	22	+0.03	4	to. 08
12	+o.05	27	to. 04	5	to. 05
13	+o.03	28	to.07	6	to. 08
14	to. 07	- 29	to. 06		

These corrections were applied to the circle readings to reduce them to the mean position of the two scratches; so that for a reading of $\mathrm{o}^{\prime \prime}$ the correction is +R , for 60° it is o, and for $120^{\prime \prime}$ it is $-R$.

In the few cases where the bisections were made a little late the reductions to the meridian were computed from the formula,

$$
\delta=\delta^{\prime}-\frac{\sin ^{2} \frac{1}{2}(\tau-\mathrm{m})}{\sin \mathrm{I}^{\prime \prime}} \sin 2 \delta^{\prime}
$$

The horizontal flexure in this instrument is very small. In his work published in Vol. IV, " Publications of the Lick Observatory," Astronomer Tucker adopts the correction o".isin Z. D., which was determined from a series of observations extending over two and a half years. In this work but two observations for flexure were made, one on 1899 June 3, and the other, 1899 July 8. The mean of
the two gives the correction -o".orsin Z. D.; so that for these observations the flexure correction has been considered zero. The mean of the values of one revolution of the declination micrometer, determined at the same time, is $48^{\prime \prime} .05$. The value adopted, as noted before, is $4^{\prime \prime} .1$.

For the computation of the preliminary refractions (called r^{\prime} in the reductions) the Pulkowa tables have been used. The reductions for the barometer, for the attached, and for the external thermometers were taken from Vol. I, "Publications of the Lick Observatory."

The graduation errors of the I° divisions of the fixed circle have been determined by Astronomer Tucker. His results are given in Vol. IV, "Publications of the Lick Observatury." He says there, in part: "The probable error of a reading upon four divisions of the fixed circle due to graduation may be adopted as $\pm 0^{\prime \prime} .15$.
There is some evidence of periodic character in the errors, and it may be assumed, in absence of further data, that the probable error due to errors of graduation is not diminished by reading upon two adjoining divisions under each microscope. * * * The largest error measured is $0^{\prime \prime} .7$ for the mean of four divisions."

The errors are not sufficiently systematic to warrant interpolating for undetermined divisions, so that no correction for division error has been applied.

Three nadirs were observed every night. The changes during a night were usually very small. The following table gives the means of the three determinations on the several nights:

Date		$\begin{aligned} & \text { Nadir } \\ & 134^{\circ} \\ & 57^{\prime} \end{aligned}$	t	Date	$\begin{aligned} & \text { Nadir } \\ & 134^{\circ} 57^{\prime} \end{aligned}$	t
June	7	$22^{\prime \prime} .87$	62°	June 27	$20^{\prime \prime} .95$	66°
	8	22.18	66	28	21.32	67
	9	22.14	69	29	21.40	69
	12	24.41	57	30	21.70	66
	13	22.70	62	July 3	21.43	72
	14	21.61	70	4	21. 46	69
	19	23.81	57	5	22.91	61
	21	22.36	66	6	22 . 10	58
	22	21.59	67			

All of the observations were taken with the fixed circle west. Had more time been available the instrument would have been reversed.

Weights, ranging from 5, the highest, to I (occasionally $1 / 2$), the lowest, were arbitrarily assigned to all the observations. Judgment on a weight was formed from the steadiness of the image during the observation. These weights have been applied all through the reductions.
3. Reduction of Observations.- The first thing done on the reductions was to take the means of the microscope readings and to apply the micrometer corrections, giving the circle readings (called C^{\prime} in the tables following). The means of the microscopes were checked by taking the difference of every microscope reading from the mean of the four. If the sums of these differences for the two opposite pairs of microscopes was the same, the mean was correct. The corrections for the micrometers were checked by duplicating this part of the work.

From the readings C^{\prime} the quantity B [equations (II) and (III)] is obtained. The terms A^{\prime} and A^{\prime} of these equations are obtained from the declinations.

The declinations have been reduced to 1899.0 by means of the data furnished in Newcomb's Catalogue. The reductions to apparent places were computed by using the Besselian Star Numbers from the American Ephemeris. The factors $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime}$ and d^{\prime} were computed from the American Ephemeris data. The reductions to apparent places for the first night (June 7) were computed by means of the Independent Star Numbers also. The places for the remaining nights were checked by differences. The apparent declinations are placed in the columns δ of the tables given later.

The following table exhibits the stars' approximate zenith distances and the stars with which they are grouped in the reductions for the refractions:
M.-P.-Vol. I.] CRAWFORD-CONSTANT OF REFRACTION. 123

Star No.	Z. D.	South	Z. D.	North	Grouped with Star No.
	-	,	\bigcirc	,	
$\begin{aligned} & 948 \\ & \text { I90 l. c. } \end{aligned}$	79	59.9	89	12.0	$\begin{aligned} & 225 l . c . \\ & 959 \end{aligned}$
959	88	$45 \cdot 5$			$\left\{\begin{array}{l} 190 \% . c . \\ 282 l . c . \end{array}\right.$
968			30.	22.9	997
977 984	21 78	33.2 6.6			${ }_{225} 10$ l.c.
225 l.c.			79	41.9	$\left\{\begin{array}{r}948 \\ 984 \\ \text { II35 }\end{array}\right.$
997	30	$35 \cdot 5$			968
1005	57	11.3			$\left\{\begin{array}{l}264 l . c . \\ 356 \text { l.c. }\end{array}\right.$
1009	21	20.7			IOI9
IOI9			21	29.3	$\left\{\begin{array}{r}977 \\ 1009\end{array}\right.$
264 l.c.			57	21.0	1005
$\begin{array}{r}1032 \\ 282 \\ \hline\end{array}$	87	3. I	88	40.0	377 959
1084	27	48.1		40.0	1094
1094			28	29.4	1084
1105	62	12.9			424 l.c.
${ }^{1} 110$	67	5.I			349 l.c.
			67	39.0	${ }_{1} 110$
$\begin{gathered} 356 \\ \mathrm{I} 35 \end{gathered}$	77	22. I	57	29.5	${ }_{225}^{1005} l . c .$
377 l.c.			86	47.2	$\left\{\begin{array}{l}\text { IO32 } \\ \text { II56 }\end{array}\right.$
1156	87	13.9			377 l.c.
1162	83	12.4			$\left\{\begin{array}{l}406 l . c . \\ 444 . c .\end{array}\right.$
406 l. c.			83	30.2	$\left\{\begin{array}{l}\text { II62 } \\ \text { II79 }\end{array}\right.$
1179	83	15.5	.		$\left\{\begin{array}{l}406 l . c . \\ 444 \text { l.c. }\end{array}\right.$
1182	62	$47 \cdot 5$			424 l.c.
424 l.c.			62	57.5	$\left\{\begin{array}{l}1105 \\ 1182\end{array}\right.$
438 l.c.			65	3 I .4	1225
444 l.c.			83	59.3	$\left\{\begin{array}{l}\text { I162 } \\ \text { II79 }\end{array}\right.$
1225	65	$7 \cdot 7$			438 l.c.

It will be noticed from this table that some of the stars are grouped with two others and that one is grouped with three others.

The following tables show the reductions for the new refractions. The column p contains the means of the weights of the pairs of stars. The other columns have already been explained. In the grouping of the pairs on the several dates the northern star is written first and the southern star below it. The numbers of the stars given at the tops are arranged in this same order. The pairs which have their northern stars at upper culmination are placed first. It will be noticed that the headings of the columns for these pairs are slightly different from the later ones containing the lower culmination stars.

Because of very bad "seeing" or of occasional accidents, some of the stars were not observed on some nights. In such cases blanks appear after the dates. No observations have been rejected.
Stars No. $\left\{\begin{array}{l}968 \\ 997\end{array}\right.$

I 26 CALIFORNIA ACADEMY OF SCIENCES．［Proc．3D SEr．

	n	लेख入入		のm	inn	mo	べざい
	λ	$\begin{aligned} & \infty \infty \\ & =\infty \\ & \infty \\ & \hline \alpha \\ & \hline \end{aligned}$		$\underset{\sim}{\dot{\sim}} \underset{\sim}{\circ} \underset{\sim}{\infty}$			$\begin{aligned} & \text { 7ọ } \\ & \text { io } \\ & \text { in } \end{aligned}$
	$\begin{aligned} & \text { a } \\ & \text { y } \\ & \text { s } \end{aligned}$	$=\begin{gathered} \dot{\infty} \\ \dot{\sim} \\ i \\ 0 \end{gathered}$		$\begin{aligned} & \text { in } \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & i n \\ & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \text { n } \\ \underset{\sim}{\alpha} \end{gathered}$	$\begin{gathered} \text { in } \\ \stackrel{\sim}{\sim} \end{gathered}$
	$\begin{aligned} & i^{8} \\ & \frac{i^{n}}{x} \end{aligned}$	$=\begin{gathered} \vec{H} \\ \dot{0} \\ + \end{gathered}$		+ \vdots + +	\circ \vdots + +	m 0 +	$\begin{aligned} & \text { } \\ & \dot{\circ} \\ & + \end{aligned}$
	i				욱 $\stackrel{\infty}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \dot{\sim} \dot{\sim} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \underset{\sim}{\alpha} \end{aligned}$
	∞			$\begin{aligned} & \text { oi } \\ & \stackrel{\sim}{\circ} \end{aligned}$	+	$\begin{aligned} & \text { Y } \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \dot{\sim} \end{aligned}$
	i－			$\begin{aligned} & \text { No } \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \dot{\mathrm{o}} \end{aligned}$	$\begin{aligned} & +\underset{\sim}{\infty} \\ & \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ふٌ } \\ & \dot{\sim} \dot{q} \end{aligned}$	$\begin{aligned} & \text { Noे } \\ & \text { ¿ें } \end{aligned}$
犬í	\％			$\stackrel{\stackrel{\circ}{\dot{\sim}}}{\stackrel{\sim}{c}}$	$\begin{aligned} & \underset{\sim}{\dot{\sim}} \\ & \dot{\sim} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{\sim}} \\ \stackrel{\sim}{\circ} \end{gathered}$	$\begin{aligned} & \tilde{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$
	\cdots			$\begin{aligned} & \infty \infty \\ & \dot{+} \dot{0} \\ & \dot{\sim} \dot{0} \end{aligned}$	® in우	が nio	ஜも nio
	ถั	$\begin{aligned} & \text { a } \\ & \nu \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	op	$\begin{aligned} & \text { m } \\ & \text { 咅 } \end{aligned}$	－	n	\bigcirc

Stars No．$\left\{\begin{array}{r}\text { rol9 } \\ 977\end{array}\right.$

N，	－	－	のの	HH	ज心＊	のm	のn	ぶస్ల	ल゙⿵冂卄	以n	तूले
λ		out	$\begin{aligned} & \text { ம் } \\ & \dot{4} \dot{\circ} \end{aligned}$	$\begin{aligned} & \text { º̛ } \\ & \text { ă } \end{aligned}$	$$		$\begin{aligned} & \text { ant } \\ & \text { aid } \\ & \text { aid } \end{aligned}$	$\begin{aligned} & \text { mod } \\ & \text { cia } \end{aligned}$	$\begin{aligned} & \text { 우ㅇㅜㅜㅇ } \\ & \text { oun } \end{aligned}$		$\begin{aligned} & \text { న్ని } \\ & \text { ふiવ } \end{aligned}$
$\begin{aligned} & \text { a } \\ & 8 \\ & \text { s } \end{aligned}$		$\stackrel{\text { qu }}{\sim}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\rightharpoonup}{j} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \dot{\sim} \end{aligned}$	$\stackrel{\circ}{9}$	$\begin{aligned} & \text { un } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \stackrel{0}{6} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { àn } \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{2}} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{\sigma} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \stackrel{\text { O}}{\alpha} \\ \underset{\sim}{2} \end{gathered}$
$\begin{aligned} & 10 \\ & \frac{i n}{i^{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & \quad \\ & \quad \\ & \vdots \\ & i \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & \text { 毋 } \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{o} \\ & + \end{aligned}$	$\begin{aligned} & \text { o } \\ & \dot{+} \\ & + \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{o} \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{0} \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{+} \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & \cong \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\circ} \\ & + \end{aligned}$
i		$\begin{aligned} & \text { oin } \\ & \dot{4}-\underset{\sim}{\circ} \end{aligned}$		$\begin{aligned} & \text { m̈ } \\ & \text { à } \end{aligned}$	$$	$\begin{aligned} & \text { ৪\% } \\ & \dot{4} \dot{4} \end{aligned}$		$\begin{gathered} \text { ño } \\ \text { aid } \end{gathered}$		$\begin{aligned} & \text { an } \\ & \text { äo } \end{aligned}$	$\begin{aligned} & \text { त্র } \\ & \text { ふu } \\ & \text { an } \end{aligned}$
∞		$\begin{aligned} & \infty \\ & \text { ๗. } \\ & \text { ल్ } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{\sim}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{M} \\ & \underset{\sim}{j} \end{aligned}$	$\begin{aligned} & \text { à } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{+} \\ & \underset{\sim}{\dot{\sim}} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Co } \end{aligned}$	$\begin{aligned} & \text { op} \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$
¿		$\begin{aligned} & \text { దैo } \\ & \text { nio } \end{aligned}$		$\begin{aligned} & \underset{\sim}{9} \infty \\ & \dot{\gamma-\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \text { min } \end{aligned}$	$\begin{aligned} & \text { Nis } \\ & \text { Nibe } \end{aligned}$	ஜૂః －i $\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { NㅡN } \\ & \text { in in } \end{aligned}$ $\hat{\sim}$		$\begin{aligned} & \text { N: } \\ & \dot{0} \text { in } \\ & \text { in } \end{aligned}$	๑ロ in
\％			$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \text { Nu} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{\underset{\sim}{J}}$	$\begin{aligned} & \text { n } \\ & \dot{\sim} \end{aligned}$	$\stackrel{\circ}{\dot{\sim}}$	$\begin{aligned} & 0 \\ & \stackrel{\sim}{n} \end{aligned}$	$\stackrel{\sim}{n}$
\cdots		$\begin{aligned} & \text { inco } \\ & \text { in } \\ & \text { io } \end{aligned}$	$\dot{\infty} \dot{\infty}$	$\begin{aligned} & \text { do } \\ & \text { o } \\ & \text { jin } \end{aligned}$		$\begin{aligned} & \text { 용 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Rit } \\ & 6 \text { in } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \stackrel{y}{n} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Not } \\ & \text { in } \end{aligned}$	にN ∞ in	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$
ถั้	$\begin{aligned} & \text { ~ } \\ & \vdots \\ & \vdots \end{aligned}$	∞	a	$\underset{\sim}{1}$	\cdots	\pm	9	ה	ส	ה	¢

Stars No. $\left\{\begin{array}{c}\text { IoI9 } \\ 977\end{array}\right\}$ (Con.)

Stars No．$\left\{\begin{array}{l}\text { IOI9 } \\ \text { Ioo9 }\end{array}\right.$

P	－	－	mm	HH	No	のm	mm	ナ	－	わい	～～
λ		$\begin{gathered} \text { Nö } \\ \text { ふín } \end{gathered}$	$\begin{aligned} & \text { ỡ } \\ & \text { ög } \end{aligned}$	$\begin{aligned} & \text { 으ㄴㅡㅜ } \\ & \text { oig } \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \text { no } \\ & \text { and } \end{aligned}$	$\begin{aligned} & \text { mi } \\ & \text { ön } \end{aligned}$	눅 ふ்	$\begin{aligned} & \text { aio } \\ & \text { oug } \end{aligned}$	$\begin{aligned} & \text { ơ숭 } \\ & \infty \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \text { H7o } \\ \underset{\sim}{\infty} \end{gathered}$	
$\begin{aligned} & \text { a } \\ & \text { y } \\ & \text { y } \end{aligned}$		9 	$\underset{\sim}{\underset{\sim}{a}}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \underset{\sim}{\circ} \end{aligned}$	$\underset{\sim}{\text { N }}$	$\begin{aligned} & \dot{\sigma} \\ & \dot{\sigma} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \dot{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\sigma}}$
$\frac{17}{i^{n}}$	$=\begin{aligned} & \hat{o} \\ & \dot{0} \\ & \dot{1} \end{aligned}$	$\begin{aligned} & \hat{o} \\ & \dot{0} \\ & 1 \end{aligned}$		$\begin{aligned} & \text { م } \\ & \stackrel{\circ}{\circ} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { م } \\ & \dot{0} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \hat{o} \\ & \dot{0} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \dot{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \dot{\circ} \\ & \text { i } \end{aligned}$	م 0 i	$\begin{aligned} & \hat{0} \\ & \dot{0} \\ & \text { i } \end{aligned}$
i		$\begin{aligned} & \text { oin } \\ & \text { aid } \end{aligned}$		$\begin{aligned} & \text { woun } \\ & \text { ön } \end{aligned}$		$\begin{aligned} & 8 \infty \\ & \stackrel{\circ}{\circ} \\ & \text { aio } \end{aligned}$	$\begin{aligned} & \text { 눙 } \\ & \text { فig } \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \text { ain } \end{aligned}$			
∞		$\underset{\sim}{\text { ה }}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \mathrm{H} \\ & \text { in } \end{aligned}$	in	$\stackrel{\underset{\sim}{m}}{\stackrel{1}{2}}$	$\stackrel{\dot{O}}{\dot{\circ}}$	$\stackrel{\infty}{0}$	$\stackrel{+}{\stackrel{+}{+}}$	$\stackrel{\text { O}}{\substack{~}}$	$\stackrel{\rightharpoonup}{0}$
i			$\stackrel{N}{\underset{\sim}{\sim}}$	$\begin{gathered} \text { ®ig } \\ \dot{\gamma} \dot{2} \end{gathered}$	$\begin{gathered} \text { mop } \\ \text { mos } \end{gathered}$	nio	$\begin{aligned} & \text { かo } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { ㅅo } \\ & \text { in } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \text { a } \\ & \text { in in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { nd } \\ & \text { in } \\ & \text { on } \end{aligned}$	$$
8		$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{gathered} \tilde{\sim} \\ \underset{子}{2} \end{gathered}$	$\begin{aligned} & \mathscr{\sim} \\ & \underset{\sim}{q} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { oి } \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{子}{\dot{子}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{F}} \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{O} \\ & \dot{G} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \dot{\square} \end{aligned}$	$\begin{aligned} & \text { ঞ } \\ & \stackrel{子}{子} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ì子 } \end{aligned}$
\cdots		$\begin{aligned} & \text { in } \\ & \text { in } \\ & \text { iod } \end{aligned}$	$\begin{aligned} & \text { +0. } \\ & \text { no } \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \text { ষ̛̣ } \\ & \text { 广্ণ } \end{aligned}$		$\stackrel{\substack{i} \underset{\sim}{n}}{\substack{\infty}}$		$\begin{aligned} & \text { mid } \\ & \underset{\sim}{n} \\ & \text { Nid } \end{aligned}$	$\begin{aligned} & \text { ®̃ } \\ & \text { へ̃ } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { م } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \stackrel{\sim}{\sim} \\ & \dot{\sigma} \underset{\sim}{\dot{N}} \end{aligned}$
ถั	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \end{aligned}$		a	$\underset{\sim}{\sim}$	\cdots	\pm	9	N	ส̃		$\stackrel{\infty}{\infty}$

Stars No．$\left\{\begin{array}{l}\text { Io94 } \\ \text { 1084 }\end{array}\right.$

1	わい	－	のか	HH	$\cdots \times$	mo	のm	－	＋	カー	\％
λ		$\begin{aligned} & \text { セूN } \\ & \text { வ் } \end{aligned}$		부 シ่ ํ ํ				$\begin{aligned} & \text { mo } \\ & \text { ¢i } \\ & \text { in in } \end{aligned}$	MN	寸ٌ ்் ்ㅜ	－ © in
	$: \begin{gathered} \infty \\ \text { cic } \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{c} \end{aligned}$	$\begin{aligned} & 6 \\ & \text { దे } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\omega} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { b̀ } \end{aligned}$	$\begin{aligned} & \text { 소 } \\ & \text { id } \end{aligned}$	$$	$\begin{aligned} & \text { 冃o } \\ & \dot{j} \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{\sim}{\sim} \end{gathered}$	$\begin{aligned} & \text { ® } \\ & \text { ف் } \end{aligned}$	$\begin{aligned} & \stackrel{+}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$
$\begin{gathered} i^{8} \\ \frac{i^{n}}{x} \end{gathered}$	$=\begin{aligned} & \text { en } \\ & 0 \\ & i \\ & 1\end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{1}{0} \\ & \text { in } \end{aligned}$	$\stackrel{\infty}{0}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \hat{e} \\ & \stackrel{+}{i} \\ & i \end{aligned}$	$\begin{aligned} & \text { è } \\ & \dot{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \text { è } \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{i} \\ \dot{1} \end{gathered}$	$\stackrel{\text {－}}{\substack{\text { en } \\ i}}$	0 0 1 1
＇		둥 ヘ ํ						no			
∞		$\begin{aligned} & \text { è } \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{+}{\dot{N}} \end{aligned}$	$\begin{aligned} & \text { ల్ల } \\ & \stackrel{\sim}{6} \end{aligned}$	$\stackrel{\text { ? }}{\stackrel{\text { ® }}{4}}$	$\begin{aligned} & \text { ๙ } \\ & \underset{\sim}{\infty} \\ & \text { d } \end{aligned}$	$\underset{\sim}{\dot{\infty}}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\infty} \end{aligned}$
i		$\begin{aligned} & \text { な. } \\ & \stackrel{\circ}{\circ} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Poo } \\ & \text { نo } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \quad 7 \\ & \text { in } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \text { or } \\ & \\ & \text { in } \\ & \text { ond } \end{aligned}$	か nio	$\begin{aligned} & \text { ip } \\ & \text { í } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { in } 8 \\ & \text { in } \\ & \text { in } \end{aligned}$	－セ゚무 운		$\begin{aligned} & \infty \sim \\ & 0 \sim \\ & \dot{\sim} \dot{N}^{0} \end{aligned}$
\％	$\begin{array}{ll} : & \stackrel{\infty}{\underset{\sim}{c}} \\ & \stackrel{\infty}{4} \\ 0 & \stackrel{\circ}{n} \end{array}$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{-}}{\stackrel{\sim}{\sim}}$	$\underset{\sim}{\infty}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \stackrel{\circ}{i} \\ & \dot{\sim} \end{aligned}$	ণ্ণ	$\begin{aligned} & \text { ® } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ü } \\ & \dot{e} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \dot{\sim} \end{aligned}$
\cdots		$\begin{aligned} & \text { eno } \\ & \stackrel{\infty}{\dot{-}} \dot{\mathrm{a}} \end{aligned}$	$\begin{aligned} & \text { öog } \\ & \dot{A} \dot{4} \end{aligned}$	$\stackrel{8}{\infty} \stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \text { Woip } \\ & \text { oi } \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \dot{\sim} \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { ờ } \\ & \text { તi } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \neq \tilde{2} \\ & \dot{\sim} \text { in } \end{aligned}$	
ถั้	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\otimes}{E} \end{aligned}$		a	$\underset{\sim}{\sim}$	\cdots	J	9	ล	ส		$\stackrel{\infty}{\infty}$

Stars No. $\left\{\begin{array}{l}\text { Io94 } \\ \text { ro84 }\end{array}\right\}$ (Con.)

Date	δ	A		c^{\prime}			${ }^{B}$			r^{\prime}	$1 / 2\left(r_{\mathrm{s}}^{\prime}-r_{\mathrm{n}}^{\prime}\right)$	1/2(A-B)	r	p
June 29	$\begin{array}{r} 65 \\ +\quad 50 \\ +\quad 94.05 \\ +\quad 35.25 \end{array}$	$\begin{array}{lll} 56 & 18 & 30.80 \end{array}$		$\begin{array}{llll} 286 & 27 & 49 & 17 \\ 342 & 45 & 28.42 \end{array}$			56	17	39.25	$\begin{array}{ll} \circ & 26.19 \\ \circ & 25 \cdot 46 \end{array}$	-0.36	o $\quad 25 \cdot 77$	$\begin{array}{lc} \prime & \prime \prime \\ \hline & 26.13 \\ 0 & 25 \cdot 4 \mathrm{I} \end{array}$	33
30	24.38					49.41 28.18				26.32 25.57		26.08	26.45 25.71	4
	53.44		30.94						38.77		-0.37	26.08	25.71	4
July 3	$\begin{aligned} & 25.38 \\ & 54.01 \end{aligned}$		31.37			47.32 27.88			$40 \cdot 56$	25.94 5.22	-0.36	25.40	25.76 25.04	3 3
4	$\begin{aligned} & 25 \cdot 70 \\ & 54.19 \end{aligned}$		31.5I			47.75 27.6 I			39.86	$\begin{aligned} & 26.21 \\ & 25.45 \end{aligned}$	-0.38	25.82	26.20 25.44	5
5	$\begin{aligned} & 26 . \text { or } \\ & 54.36 \end{aligned}$		31.65			47.90 28.03			40.13	26.56 25.80	-0.38	25.76	26.14 25.38	4
6	$\begin{aligned} & 26.29 \\ & 54.50 \end{aligned}$		31.79			47.79 27.42			39.63	$\begin{aligned} & 26.72 \\ & 25.96 \end{aligned}$	-0.38	26.08	26.46 25.70	3 3

Stars No．$\left\{\begin{array}{l}225 \text { l．c．} \\ 948\end{array}\right.$

2	＋	＊	のm	H＋	\sim	mm	m	＋	ल్లై	わい	तूल
λ				$\underset{\sim}{\infty} \underset{\sim}{\circ} \stackrel{\rightharpoonup}{f}$		$\begin{aligned} & 0.0 \\ & \dot{y} \dot{1} \end{aligned}$	$\begin{aligned} & \text { ồ } \\ & \dot{\sim} \dot{\sim} \dot{\sim} \end{aligned}$				
0 + 4 4 \vdots 8 8			$\underset{\sim}{\underset{\sim}{\star}}$	$\begin{aligned} & \text { ๕ } \\ & \text { ส் } \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\text { ®}} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\begin{gathered} \text { ® } \\ \text { ì } \end{gathered}$	$\underset{\sim}{\text { Ni }}$	$\begin{aligned} & \pm \\ & \underset{\sim}{A} \end{aligned}$	$\begin{aligned} & \hat{6} \\ & \dot{\text { a }} \end{aligned}$	$\begin{aligned} & \text { i } \\ & \dot{\sim} \end{aligned}$
$\frac{18}{i n}$	$\begin{aligned} & \quad \begin{array}{c} \text { ä } \\ + \\ + \end{array} \end{aligned}$	$\begin{aligned} & \text { u } \\ & \dot{j} \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \dot{m} \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \stackrel{子}{+} \\ & + \end{aligned}$	$\begin{aligned} & \aleph \\ & \dot{\infty} \\ & + \end{aligned}$	$\begin{aligned} & \text { H } \\ & \dot{n} \\ & + \end{aligned}$	$\begin{aligned} & \dot{y} \\ & \dot{\sim} \\ & + \end{aligned}$	$\begin{aligned} & \ddot{\alpha} \\ & \dot{m} \\ & + \end{aligned}$	＋ j + +	∞ ∞ +	Y ＋ +
A		๗o		$\begin{aligned} & \text { NX } \\ & \dot{\sim} \dot{\sim} \text { g } \end{aligned}$			－$+\infty$ Ni			$\begin{aligned} & \mathfrak{\sim} \infty \\ & \infty \\ & \infty \\ & \text { in } \end{aligned}$	
∞		$\begin{aligned} & \text { in } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { f } \\ & \dot{8} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{4}}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \underset{8}{8} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { ọ } \\ & \dot{g} \end{aligned}$	$\stackrel{R}{i}$	$\begin{aligned} & \infty \\ & \stackrel{\alpha}{\circ} \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$
i				$\stackrel{\sim}{0} \underset{\sim}{\infty} \underset{\sim}{\dot{\sim}}$		$\begin{aligned} & \hat{\infty} \infty \\ & \dot{\infty} \dot{\sim} \\ & \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ind } \\ & \dot{\sim}{ }_{n}^{2} \end{aligned}$	$\begin{aligned} & \text { oro } \\ & \dot{\sim} \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty+ \\ & \underset{\sim}{\infty} \text { Nu } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { inす } \\ & \text { Nָ } \end{aligned}$	$\begin{aligned} & 8 \times \infty \\ & \dot{\sim} \dot{4} \end{aligned}$
－		$\begin{aligned} & \stackrel{\circ}{\dot{N}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { \& } \\ & \text { ה் } \end{aligned}$	$\begin{aligned} & \text { セ } \\ & \text { di } \end{aligned}$	$\underset{\text { ণ}}{\stackrel{\text { ®}}{1}}$		$\begin{aligned} & \text { م } \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \stackrel{+}{\dot{\sim}} \end{aligned}$	$\begin{aligned} & \text { ir } \\ & \text { a } \end{aligned}$	$\begin{gathered} \underset{\sim}{q} \\ \underset{\sim}{2} \end{gathered}$
∞		$\begin{aligned} & 6 \% \\ & \text { \% } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { FU } \\ & \dot{\sim} 0 \\ & \text { io } \end{aligned}$		$\begin{gathered} \text { Rin } \\ \text { cio } \\ \text { No } \end{gathered}$	$\begin{aligned} & \text { Wo } \\ & \text { of } \\ & \text { di } \end{aligned}$	$\begin{aligned} & \text { +oळ } \\ & \dot{\sim} \dot{\sim} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { an } \\ & \text { ain } \end{aligned}$	が － \mathfrak{q}	
ถั	$\stackrel{\wedge}{ٍ}$		の	$\underset{\sim}{1}$	\cdots	\pm	9	－	สี	A	$\stackrel{\infty}{\sim}$

I34 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D SER.

Stars No. $\left\{\begin{array}{l}\text { 190 l.c. } \\ 959\end{array}\right.$

I36

Stars No．$\left\{\begin{array}{l}282 \text { l．c．} \\ 959\end{array}\right.$

1		लึल゙	のッ	HH	mm	のッ	＋寸	M్ల	ins	तूले
λ		$\begin{aligned} & \stackrel{\circ}{\circ} \dot{8} \\ & \dot{y} \dot{\sim} \\ & \text { Nin } \end{aligned}$	寸o लं in 今A	か～ －㐫 $\underset{\sim}{\infty}$				$\begin{aligned} & \text { in in } \\ & \text { jyi } \\ & \text { Non } \end{aligned}$		
$\begin{aligned} & 6 \\ & \pm \\ & \text { y } \\ & \text { ín } \\ & 8 \end{aligned}$	$\begin{aligned} &: \stackrel{\infty}{\dot{\sim}} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \hat{A} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{\circ}} \\ & \dot{q} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\dot{A}} \\ & \stackrel{\sim}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{-}{\dot{+}} \\ & \dot{\sim} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { i } \\ & \dot{i} \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { in } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{q}} \\ & \text { A } \end{aligned}$
$\frac{10}{i n}$	$\begin{aligned} & \stackrel{\omega}{\bullet} \\ & \dot{\sim} \\ & + \end{aligned}$	$\begin{aligned} & \text { に } \\ & \dot{\ddagger} \\ & + \end{aligned}$	$\begin{aligned} & \text { セ } \\ & \underset{\sim}{\mathbf{u}} \\ & + \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\oplus} \\ & + \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{8} \\ & \underset{H}{1} \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{~}{+} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \dot{\sim} \\ & + \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { セ } \\ & \underset{甘}{4} \\ & + \end{aligned}$
i		ธin in \therefore		คั ∞ ศ่ ∞			$\begin{aligned} & \hat{0} \hat{0} \\ & \text { in } \\ & \text { An } \end{aligned}$			
∞		$\begin{aligned} & \text { セ } \\ & \underset{子}{\text { qu }} \\ & \text { ~ } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	$\stackrel{\circ}{\infty}$ $\stackrel{\aleph}{\sim}$	\circ $\stackrel{\circ}{\circ}$ ヘ	$\begin{aligned} & \text { r} \\ & \text { in } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\sim} \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \underset{i}{2} \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{0}{i n} \\ & \text { is } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{\sim}{\rho} \\ & \text { Q } \end{aligned}$
i		$\begin{aligned} & \text { in } \\ & \text { in } \\ & \text { in } \\ & \hat{A} \end{aligned}$			$\begin{aligned} & \text { ल⿵冂一 } \\ & \text { in } \\ & \text { io } \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \hat{\sim} \\ & \text { in } \\ & \text { N } \\ & \text { N } \end{aligned}$				
i		$\stackrel{\circ}{\sim}$	$\stackrel{\AA}{\stackrel{8}{\leftrightarrows}}$	管	$\begin{aligned} & \underset{\sim}{\underset{\sim}{n}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ๙̀ } \\ & \text { స్ } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{甘} \end{aligned}$
∞		$\begin{aligned} & +\infty \\ & \text { No } \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ờ } \\ & \text { ò } \\ & \text { ing } \end{aligned}$	$\begin{aligned} & \text { 以 } \\ & \text { が } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { \&o } \\ & \dot{\sim} \text { in } \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \infty \stackrel{\infty}{\infty} \\ & \dot{\sim} \dot{\sim} \dot{\sim} \end{aligned}$		$\begin{aligned} & \text { すí } \\ & \text { הin } \end{aligned}$	$\begin{aligned} & \text { か! } \\ & \stackrel{N}{\mathrm{a}} \end{aligned}$
ถั	$\begin{aligned} & \text { N } \\ & \stackrel{y}{D} \end{aligned}$	∞	a	$\underset{\sim}{~}$	\pm	9	む	ส̇		

${ }^{1} 38$ CALIFORNIA ACADEMY OF SCIENCES. [PROC. 3D SER.

May 7, 1903.

Stars No. $\left\{\begin{array}{c}225 \text { l.c. } \\ 1135\end{array}\right.$

142 CALIFORNIA ACADEMY OF SCIENCES．［Proc．3D SEr．

λ	$\begin{aligned} & \text { no } \\ & \text { ino } \\ & \cdots \cdots \\ & +\infty \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { +io } \\ & +\infty \end{aligned}$	$$		
$\begin{aligned} & 6 \\ & + \\ & \vdots \\ & \vdots \\ & \vdots \\ & 1 \\ & 8 \end{aligned}$		$\underset{\sim}{\underset{\sim}{3}}$	$\begin{aligned} & \text { iv } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{1}{6} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & i n \end{aligned}$
	$=\begin{gathered} \underset{\sim}{n} \\ \dot{\sim} \\ 1 \end{gathered}$	$\begin{aligned} & \text { すे } \\ & \text { Nे } \\ & 1 \end{aligned}$	$\begin{gathered} \infty \\ \text { } \\ \text { ì } \\ \text { \| } \end{gathered}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & 1 \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { ~े } \\ & \text { \| } \end{aligned}$
i		$\begin{aligned} & \infty 8 \\ & \infty \times \infty \\ & +\infty \\ & +\infty \end{aligned}$	$$	$\begin{aligned} & 0 \text { o } \\ & \dot{\sigma} \dot{y} \\ & +\infty \end{aligned}$	$\begin{aligned} & \infty \infty \\ & \dot{\sim} \\ & \dot{\sim} \dot{\sim} \\ & +\infty \end{aligned}$
∞		$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \dot{\sim} \end{aligned}$	\neq	\circ
i				$\begin{aligned} & \text { N } \\ & \text { が } \\ & \dot{\sim} \dot{W} \end{aligned}$	
－		$\begin{aligned} & \circ \\ & \text { o } \\ & \text { in } \\ & \text { ~ } \end{aligned}$	$\begin{aligned} & \mathfrak{o} \\ & \dot{\text { an }} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$
∞			$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { go } \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \mathfrak{o} \\ & \infty \\ & \infty=\Omega \\ & 0 \end{aligned}$
ถั	$\begin{aligned} & \text { ®̀ } \\ & \text { む } \\ & \Xi \\ & \vdots \end{aligned}$	m 京	\checkmark	10	\bigcirc

Stars No．$\left\{\begin{array}{l}264 \text { l．c．} \\ \text { 1oo5 }\end{array}\right.$

p	＋	－	no	Hr	a	の๓	m๓	＋	＋	nin	の
λ				$\begin{aligned} & \infty \underset{\sim}{\infty} \\ & \dot{\sim} \\ & \dot{\sim} \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { लु } \\ & \text { íd } \end{aligned}$		$\begin{aligned} & \text { Qin } \\ & \dot{y} \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { int } \\ & \text { id } \end{aligned}$	$\begin{aligned} & \text { mà } \\ & \dot{\sim} \dot{\sim} \end{aligned}$	
$\begin{aligned} & 6 \\ & + \\ & \text { y } \\ & \text { so } \\ & 8 \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hat{\sim} \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \sim \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{1}{\dot{j}} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \underset{\sim}{j} \end{aligned}$	$\begin{gathered} \stackrel{+}{4} \\ \stackrel{\sim}{\sim} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \dot{4} \end{aligned}$
$\frac{10}{i n}$	$=\begin{gathered} \text { ल̃ } \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & \text { d } \\ & \text { i } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \dot{0} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \dot{0} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{0} \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ה } \\ & 0 \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \text { í } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { N} \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { d } \\ & \dot{0} \\ & \text { I } \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & i \\ & 1 \end{aligned}$	$\begin{aligned} & \text { À } \\ & \text { í } \\ & \text { i } \end{aligned}$
－		$\begin{aligned} & \text { ㄷog } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \circ \text { or } \\ & \cdots \\ & \text { not } \end{aligned}$			$\begin{aligned} & \text { ob } \\ & \text { ค } \end{aligned}$	$\begin{aligned} & \stackrel{\wedge}{4} \\ & \text { A- } \end{aligned}$	$\begin{aligned} & 8 \underset{\sim}{m} \\ & \dot{\sim} \sim \end{aligned}$	$\begin{aligned} & \text { Nop } \\ & \dot{\sim} \underset{\sim}{\dot{\sim}} \end{aligned}$	$\begin{aligned} & 8=0 \\ & i n \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { in in } \end{aligned}$
∞	 लै $\underset{G}{\sharp}$	$\begin{aligned} & \text { N } \\ & \text { 今 } \end{aligned}$	$\begin{aligned} & \text { qu } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\underset{\substack{\text { du} \\ \text { d }}}{ }$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\begin{aligned} & \text { に } \\ & \dot{6} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \dot{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{\dot{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\text { ® }} \end{aligned}$
i		$\begin{gathered} \circ \stackrel{\sim}{\sim} \\ \dot{\sim} \\ \stackrel{\sim}{\sim} \end{gathered}$		$\begin{aligned} & \text { ma } \\ & \text { dy } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{n}{\sim} \\ & \dot{\sim} \dot{q} \end{aligned}$	$$		$\begin{aligned} & \text { in } \\ & \text { م } \\ & \infty=\infty \end{aligned}$	$\begin{aligned} & \text { NoN } \\ & \text { op } \end{aligned}$		
̇		\exists $\underset{\sim}{m}$	$\begin{aligned} & \text { + } \\ & \underset{\sim}{\text { In }} \end{aligned}$	$\begin{aligned} & \circ \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \therefore \\ & \equiv \\ & \end{aligned}$	$\begin{aligned} & \text { in } \\ & = \\ & = \end{aligned}$	$\begin{aligned} & \text { in } \\ & \dot{\sim} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { J } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \infty \end{aligned}$	$\stackrel{\circ}{\infty}$
∞		$\begin{aligned} & \text { ü } \\ & \dot{\sim} \text { ob } \end{aligned}$	$\begin{aligned} & \text { №n } \\ & \text { jí } \end{aligned}$	$\begin{aligned} & \text { oi } \\ & \text { ou } \\ & \text { ai } \end{aligned}$		$\begin{aligned} & 8.6 \\ & \stackrel{\circ}{\infty} \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \text { ה } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{=}{0} \end{aligned}$			$\begin{aligned} & \text { 야 } \\ & \text { ம్య } 6 \end{aligned}$	$\begin{aligned} & 0 . ల_{0} \\ & \text { n్ర } \end{aligned}$
ถั	$\begin{aligned} & \text { ^ } \\ & \vdots \\ & \equiv \end{aligned}$		9	\cong	\cdots	\pm	9	a			

I44 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3d SEr.

Stars No. $\left\{\begin{array}{l}356 \text { l.c. } \\ \text { 1oo5 }\end{array}\right.$

I46 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D SER.

Stars No. $\left\{\begin{array}{c}377 \\ \text { 1032 } l . c .\end{array}\right.$

148 CALIFORNIA ACADEMY OF SCIENCES．［Proc．3D SEr．

	Q	ぶざ	－	mm	ぶぶ年	－	ลูง凶
	λ			$\begin{aligned} & 0 \infty \\ & \dot{\sim} \\ & \underset{\sim}{\dot{y}} \\ & \underset{\sim}{z} \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { jo } \\ & \text { B } \\ & z= \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { i } \\ & \text { in } \\ & \text { za } \end{aligned}$	
				$\underset{\text { N }}{\underset{\text { N }}{2}}$	$\begin{aligned} & \text { ٌ } \\ & \text { - } \end{aligned}$	m	$\stackrel{N}{\dot{q}}$
	$\frac{T^{n}}{x+8}$	$\begin{array}{r} \vdots \\ \vdots \\ \vdots \\ + \end{array}$	$\begin{aligned} & \text { ò } \\ & \dot{\sim} \\ & + \\ & + \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \infty \\ & + \\ & + \end{aligned}$	in \sim + +	$\begin{aligned} & \text { ip } \\ & \dot{\sim} \\ & + \\ & + \end{aligned}$
	i		$\begin{aligned} & \text { no } \\ & \text { A } \\ & \text { Ain } \\ & \text { BE } \end{aligned}$				$\begin{aligned} & \text { ma } \\ & \dot{\sim} z \\ & \text { za } \end{aligned}$
	∞	$\begin{aligned} & \text { n } \\ & \dot{1} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { oిల } \\ & \text { /- } \end{aligned}$	oे $\dot{\sigma}$	$\begin{aligned} & \stackrel{R}{\dot{q}} \\ & \dot{+} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & \text { N} \end{aligned}$
	i		$\begin{aligned} & \text { mo } \\ & 0 \text { o } \\ & 00 \end{aligned}$	$\begin{aligned} & \infty z \\ & \dot{j} \underset{y}{0} \\ & a 0 \end{aligned}$	$\begin{aligned} & \text { लুo } \\ & \text { oj } \\ & \text { ó } \end{aligned}$		
	－			$\stackrel{\mathfrak{F}}{\underset{\sim}{ \pm}}$	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \stackrel{y}{n} \end{aligned}$
	\cdots		$\begin{aligned} & \text { co } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { äm } \\ & \dot{\text { in }} \underset{y}{7} \end{aligned}$		$\begin{aligned} & \text { rob } \\ & \text { in } \end{aligned}$	
	ถั	$\begin{aligned} & \text { ì } \\ & \stackrel{0}{\Xi} \\ & \stackrel{1}{2} \end{aligned}$	c	$\stackrel{\vdots}{\Xi}$	＋		\bigcirc

Stars No. $\left\{\begin{array}{l}424 \text { l.c. } \\ \text { I } 105\end{array}\right.$

I5O - CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D SER.
Stars No. $\left\{\begin{array}{c}424 \text { l.c. } \\ \text { IIO5 }\end{array}\right\}$ (Con.)

Stars No. $\left\{\begin{array}{l}349 \text { l.c. } \\ \text { IIIO }\end{array}\right.$

Stars No. $\left\{\begin{array}{c}349 \text { l.c. } \\ \text { IIo }\end{array}\right\}$ (Con.)

Date	δ	A^{\prime}		c^{\prime}		B			r^{\prime}		$1 / 2\left(r_{\mathrm{s}}^{\prime}-r_{\mathrm{n}}^{\prime}\right)$	$90^{\circ}-1 / 2\left(A^{\prime}+B\right)$		r		p
	-. ' 1	。	"	- ,	, "	-		"		"	"		"	,	"	
June 29	+ 745833.85			247	$\begin{array}{ll} 18 & 17.41 \end{array}$				I					I	56.36	4
	$-29 \quad 46 \quad 36.51$	45	II 57.34	382	$2 \quad 30.52$		44	13. 11	I		- 1. 5^{8}	1	54.78	1	53.20	4
30	$\begin{aligned} & 33 \cdot 59 \\ & 36.54 \end{aligned}$		57.05		$\begin{aligned} & 16.93 \\ & \text { 30. } 10 \end{aligned}$			13.17		$\begin{aligned} & 57 \cdot 14 \\ & 53 \quad 97 \end{aligned}$	- 1.58		54.89		56.47 53.31	$4^{41 / 2}$
July 3	$\begin{aligned} & 32.75 \\ & 36.55 \end{aligned}$		56.20		$\begin{aligned} & 1392 \\ & 30.71 \end{aligned}$			16.79		$\begin{aligned} & 55 \cdot 53 \\ & 52 \cdot 37 \end{aligned}$	- 1.58		53.51		55.09 51.93	$21 / 2$ $21 / 2$
4	32.49 36.55		55.94		$\begin{aligned} & 16.55 \\ & 305 \mathrm{I} \end{aligned}$			13.96		$\begin{aligned} & 56.65 \\ & 53.47 \end{aligned}$	- 1.59		55.05		56.64 53.46	5
5	$\begin{aligned} & 32.23 \\ & 36.57 \end{aligned}$		55.66		$\begin{aligned} & 17.98 \\ & 29.69 \end{aligned}$			11.71		$\begin{aligned} & 58.23 \\ & 55.02 \end{aligned}$	-1.60		56.32		57.92 54.72	4
6	$\begin{aligned} & 32.01 \\ & 36.62 \end{aligned}$		$55 \cdot 39$		$\begin{aligned} & 18.15 \\ & 29.29 \end{aligned}$			II. 14		$\begin{aligned} & 58.95 \\ & 55.73 \end{aligned}$	- 1.61		56.74		$\begin{aligned} & 58 \cdot 35 \\ & 55 \cdot 13 \end{aligned}$	3

Date	δ		A^{\prime}	c^{\prime}		B		r^{\prime}	1/2 $\left(r_{\text {s }}^{\prime}-r_{\mathrm{n}}^{\prime}\right)$	$90^{\circ}-1 / 2\left(A^{\prime}+B\right)$	r	p
	- , "	。	, "	- , "	。		"	, '/	"	, "	, "	
June 7	$\begin{array}{rrr} \\ +55 & 41 \\ -50.34 \\ 50 & 50.75\end{array}$	5	35 11.59	$\begin{array}{lll}228 & \text { Io } & 11.24 \\ 402 & \text { II } & 14.82\end{array}$		I	$3 \cdot 58$	$\begin{array}{lll}\text { I1 } & 21.21 \\ \text { I2 } & 30.32\end{array}$	$+34.55$	II $\quad \mathbf{5 2 . 4 2}$	$\begin{array}{lll}\text { I1 } & 17.87 \\ \text { I2 } & 26.97\end{array}$	5 5
8	2.14 50.88		11.26	4.37 18.07			13.70	$\begin{array}{lll}\text { II } & 18.45 \\ \text { I2 } & 26.38\end{array}$	$+33.96$	47.52	$\begin{array}{ccc}\text { II } & 13.56 \\ \text { I2 } & \text { 2I. } & 48\end{array}$	4
9	1. 96		10 93	O. 28 18.41			18.13	$\begin{array}{lll}\text { II } & 16.78 \\ \text { I2 } & 24.25\end{array}$	$+33.73$	45.47	11 II I2 74	3
12												
13	1.33 51.71		9.62	14.90 15.03			0.13	$\begin{array}{lll}\text { I1 } & 22.33 \\ \text { I2 } & 30.88\end{array}$	$+34.27$	55-13	I1 20.86 I2 29.40	$1 / 2$ $1 / 2$
14	$\begin{array}{r} \text { I. } 16 \\ 51.89 \end{array}$		$9 \cdot 27$	O. 34 23.26			22.92	$\begin{array}{lll}\text { II } & 15.85 \\ \text { I2 } & 23.67\end{array}$	+ 3391	43.91	$\begin{array}{lll}11 & 10.00 \\ 12 & 17.82\end{array}$	$31 / 2$ $31 / 2$
19	41 $\begin{array}{r}0.12 \\ 52.49\end{array}$		7.63	14.46 10.18		o	$55 \cdot 72$	$\begin{array}{lll}\text { I1 } & 35.13 \\ \text { I2 } & 45 \cdot 10\end{array}$	+ 34.98	58.33	$\begin{array}{lll}\text { I1 } & 23.35 \\ \text { I2 } & 33.31\end{array}$	3 3
21	$40 \begin{array}{r}59.71 \\ 52.70\end{array}$		7.01	5.27 17.01		1	II. 74	$\begin{array}{lll}\text { II } & 18.89 \\ \text { I2 } & 26.48\end{array}$	+ 33.79	50.63	$\begin{array}{lll}\text { II } & 16.84 \\ \text { I2 } & 24.42\end{array}$	4
22	$\begin{aligned} & 59.50 \\ & 52.86 \end{aligned}$		6.64	998.22 7.03			18.81	$\begin{array}{lll}\text { II } & 17.25 \\ \text { I2 } 24.62\end{array}$	$+33.68$	$47 \cdot 28$	$\begin{array}{lll}11 & 13.60 \\ \text { I2 } 20.96\end{array}$	4
27	$\begin{aligned} & 58.75 \\ & 53.73 \end{aligned}$		5.02	$\text { Io } \begin{array}{r} 2.48 \\ 14.45 \end{array}$			12.97	II 121.65 12 29.00	$+33.67$	51.01	$\begin{array}{lll}11 & 17.34 \\ \text { I2 } & 24.68\end{array}$	5
28	$\begin{aligned} & 58.60 \\ & 53.90 \end{aligned}$		$4 \cdot 70$	$\begin{array}{ll} 9 & 59 \quad 26 \\ 25 \cdot 42 \end{array}$			26. 16	$\begin{array}{ll} \text { II } & 16.63 \\ \text { I2 } & 24.55 \end{array}$	$+33.96$	$44 \cdot 57$	$\begin{array}{ll} \text { II } & 10.61 \\ \text { I2 } & 18 . \\ \hline \end{array}$	3

154
CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D Ser.
Stars No. $\{\underset{1156}{377 \text { l.c. }}\}$ (Con.)

[^0]May 8, 1903.

156
Stars No. $\left\{\begin{array}{c}406 \text { l.c. } \\ \mathrm{II} 62\end{array}\right\}$ (Con.)

Stars No. $\left\{\begin{array}{c}444 \text { l. c. } \\ \text { II62 }\end{array}\right.$

I58 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D SER.

Stars No. $\left\{\begin{array}{c}406 \text { l.c. } \\ \text { II79 }\end{array}\right.$

160 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D Ser:
Stars No. $\left\{\begin{array}{c}\text { II79 } \\ 406 \text { l.c. }\end{array}\right\}$ (Con.)

M．－P．－VoL．I．］CRAWFORD－CONSTANT OF REFRACTION．I6I
Stars No．$\left\{\begin{array}{c}444 \text { l．c．} \\ \text { in79 }\end{array}\right.$

Q	mo	－	ナナ	バが	mm	のッ	＋	－	nin	－
λ		Ni 部 00	$\begin{aligned} & \text { 等 } \\ & \text { in } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { Nín } \\ & \text { oo } \\ & \text { Ne } \end{aligned}$	$8 \div$ in ๑6		ลセ in ט	$\begin{aligned} & \text { nion } \\ & \text { in } \\ & \text { ion } \end{aligned}$	ナお ทั่ －	\＆， 옫 －0
$\begin{aligned} & 6 \\ & + \\ & \vdots \\ & \stackrel{y}{4} \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\text { in }} \end{aligned}$	$\begin{aligned} & \text { } \\ & \dot{\text { j}} \end{aligned}$	$\begin{aligned} & \hat{6} \\ & \dot{\dot{q}} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { ö } \\ \text { ig } \end{gathered}$	$\stackrel{\stackrel{\circ}{\mathbf{~}}}{\stackrel{-}{4}}$	$\stackrel{\underset{\sim}{\underset{\sim}{*}}}{\underset{\sim}{2}}$	$\begin{aligned} & \text { to } \\ & \text { à } \end{aligned}$	$\stackrel{8}{\stackrel{\circ}{\infty}}$
$\frac{i^{n}}{x^{n}}$		$\begin{gathered} \text { on } \\ \stackrel{i}{1} \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{\square}{\circ} \\ \underset{\sim}{\circ} \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { ö } \\ & \dot{a} \\ & i \end{aligned}$	$\begin{gathered} \text { } \\ \dot{a} \\ \text { i } \end{gathered}$	$\begin{gathered} \text { か } \\ \underset{\sim}{a} \\ 1 \end{gathered}$	$\begin{gathered} \text { in } \\ \text { à } \\ \text { i } \end{gathered}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { \& } \\ \stackrel{\circ}{\circ} \\ \text { i } \end{gathered}$
λ		$\begin{aligned} & \text { Neb } \\ & \text { ou } \\ & \text { Nu } \end{aligned}$	N® iか 60		ก웃 หั่ ๑๐	ダコ ∞ 후 －	$\begin{aligned} & 40 \\ & \text { 4o } \\ & \text { no } \end{aligned}$	దిக か $\checkmark 6$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\infty}{+}} \\ & \underset{\sim}{\mathrm{N}} \\ & \text { N } \end{aligned}$	
∞			$\begin{aligned} & \text { H } \\ & \stackrel{\sim}{6} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{子}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\text { ® }}{\dot{\circ}} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{\text { W/ }}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	8 8 $\dot{9}$		$\begin{aligned} & \infty \\ & \text { ñ } \\ & \text { in } \end{aligned}$
i		$\begin{aligned} & \text { tin } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { مo } \\ & \text { ion } \\ & \text { in } \end{aligned}$	oor	$\begin{aligned} & \text { KR } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { J } \\ & \text { i } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ণの } \\ & \text { í } \end{aligned}$	
－		$\begin{aligned} & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { p } \\ & \infty \\ & i n \end{aligned}$	$\stackrel{i}{i n}$	$\stackrel{\text { in }}{\text { in }}$	$\begin{aligned} & \text { bu } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { Ơ } \\ & \text { 무 } \end{aligned}$	$\begin{aligned} & \text { } \\ & \text { ì } \end{aligned}$	
∞		U $\dot{~ ㄷ ~ ષ ~}$	$\begin{aligned} & \neq \stackrel{+}{\circ} \\ & \dot{\sim} \text { - } \end{aligned}$	$\begin{aligned} & \text { オN } \\ & \text { дN } \end{aligned}$	会命 aั	$\begin{aligned} & \forall \infty \\ & \infty \\ & \infty \times \underset{\sim}{\alpha} \end{aligned}$	$\begin{aligned} & \text { దুo } \\ & \stackrel{\sim}{\Delta} \dot{d} \end{aligned}$	$\begin{aligned} & \text { Nou } \\ & \underset{\sim}{\sim} \underset{\sim}{n} \end{aligned}$		
ถั้	$\begin{aligned} & \text { N } \\ & \text { \# } \\ & \text { N } \end{aligned}$		a	\cdots	\pm	9	ล			$\stackrel{\sim}{\sim}$

Date	δ	A^{\prime}	c^{\prime}		${ }^{\text {B }}$	r^{\prime}	$1 / 2\left(r_{\mathrm{s}}^{\prime}-r_{\mathrm{n}}^{\prime}\right)$	$90^{\circ}-1 / 2\left(A^{\prime}+B\right)$	r	p
	- , "	"	- , "	。	"	, "	"	, "	"	
June 29	$+58 \quad 33 \quad 16.40$ $+\quad 46$ 10		$\begin{array}{lll} 230 & 58 & 0.79 \end{array}$			$\begin{array}{ll}6 & 58.92 \\ 6 & 19.47\end{array}$			$\begin{array}{ll}6 & 56.94 \\ 6 & \text { I7. } 50\end{array}$	
	$\rightarrow 46 \quad 1 \quad 24.10$	$12 \quad 31 \quad 52.30$	$398 \quad 12 \quad 54.05$		$14 \quad 53.26$	$6 \quad 19.47$	-19.72	$6 \quad 37.22$	$6 \quad 17.50$	3
30	16.17		0.83 55.33			$\begin{array}{ll}6 & 59.55 \\ 6 & 20.32\end{array}$			$\begin{array}{ll}6 & 56.39 \\ 6 & \text { I7 }\end{array}$	$3{ }^{1 / 2}$
	24.22	51.95	55.33		54.50	$6 \quad 20.32$	- 19.61	36.78	$\begin{array}{lll}6 & 17.17\end{array}$	$31 / 2$
July 3	$\begin{aligned} & 15.4 \mathrm{I} \\ & 24.48 \end{aligned}$	50.93	$\begin{array}{ll}57 & 55.07 \\ & 57.83\end{array}$		62.76	$\begin{array}{ll}6 & 54.01 \\ 6 & \text { 15.12 }\end{array}$	- 19.44	33.16	$\begin{array}{ll}6 & 52.60 \\ 6 & 13.72\end{array}$	3 3
4	15.17 24.58	50.59	$\begin{array}{lr}57 & 58.10 \\ 53.94\end{array}$		55.84	$\begin{array}{ll}6 & 57.66 \\ 6 & 18.90\end{array}$	-19.38	36.79	6 56.17 6 56.41	$4^{1 / 2} 2$ $41 / 2$
5	14.94 24.68	50.26	58 $\begin{array}{r}6.86 \\ 51.19\end{array}$		44.33	7 4.44 6 24.53	- 19.95	42.71	$\begin{array}{rr}7 & 2.66 \\ 6 & 22.76\end{array}$	4
6	$\begin{aligned} & 14.71 \\ & 24.8 \mathrm{I} \end{aligned}$	49.90	$5^{8} \quad \begin{array}{r}6.84 \\ \\ 49.24\end{array}$		42.40	7 6 7.10 	- 20.21	43.85	$\begin{array}{rr} 7 & 4.06 \\ 6 & 23.64 \end{array}$	2

M.-P.-Vol. I.]. CRAWFORD-CONSTANT OF REFRAC7ION. I63
Stars No. $\left\{\begin{array}{c}424 \text { l.c. } \\ \text { I182 }\end{array}\right.$

164

M.-P.-Vol. I.] CRAWFORD-CONSTANT OF REFRACTION. I65
Stars No. $\left\{\begin{array}{c}438 \text { l. } c . \\ \text { I225 }\end{array}\right.$

The following tables contain the reductions for dlogr or its equivalent dloga. The second column contains the logarithms of the computed refractions; the next column contains the logarithms of the observed refractions; the fourth the difference between the two preceding, in the sense of Observed-Computed; the column p contains the weights and the last column the weighted differences. The residuals and their weighted squares are not given. $\log [p r v]$ is given in every case, as is also the resulting probable error of the weighted mean of every set. All of the results in the following tables have been checked.

Star No. 948.

Date	$\log \cdot r^{\prime}$	$\log . r$		\triangle	p		$p \triangle$
June 7	2.42742	2.42617		0.00125	4		0.00500
	2.42399	2.42119	-	280	4		1120
9	2.42126	2.41762	-	364	3	-	1092
12	2.43095	2.42727	-	368	I	-	368
13	2.42658	2.42490	-	168	2	-	336
14	2.42169	2.41838	-	331	3	-	993
19	2.43214	2.42889	-	325	3	-	975
2 I	2.42478	2.42185	-	293	4	-	1172
22	2.42 I 49	2.42042	-	107	$3^{1 / 2}$	-	375
27	2.42459	2.42243	-	216	5	-	Io80
28	2.423 I 3	2.42147	-	166	$21 / 2$	-	415
29	2.42262	2.42014	-	248	$3^{1 / 2}$	-	868
July $\begin{array}{r}30 \\ 3\end{array}$							
July $\begin{aligned} & 3 \\ & 4\end{aligned}$	2.41600	2.41678	+	78	$21 / 2$	\pm	
4	2.41916	2.41816		100	5		500
5	2.42644 2.43042	2.42605 2.42602	-	39 440	3 $1 / 2$	-	117 660
					\triangle	-	0.00205
$[p]=501 / 2 ; \log [p v v]=5.8653$					$p . e .= \pm 0.00015$		

Star No. igo l.c.

Date	$\log . r^{\prime}$	$\log . r$	\triangle	p	$p \triangle$
9	3.09609	3.08699	- 0.00910	3	- 0.02730
12	3. 10852	3.09598	- 1254		- 1254
13	3. 10231	3.10302	+ 71	1/2	+ 35
14 19 19	3.09619	3.09129	- 490	3	- 1470
19	3.10009	3.09349	660		2640
22	3.09543	3.09387	156	$31 / 2$	546
27	3.0985 I	3.09629	222	3/2	IIIO
28	3.09793	3.09046	$\begin{array}{r}747 \\ \hline\end{array}$		2241
29	3. 09748	3.08610	1138	3	3414
July $\begin{array}{r}30 \\ 3 \\ 4 \\ \\ \\ 5 \\ 6\end{array}$	3.09728	3.09563	165	4	660
	3.09289	3.08925	364	5	1820
	3 - 1026 I	3.09713		3	1644
				\triangle	-0.00513

$[p]=38 ; \log [p v v]=6.6 \mathrm{II} 2$
p.e. $= \pm 0.00047$

Star No. 959.-(With 190 l.c.)

Date	$\log . r^{\prime}$	$\log \cdot r$		Δ	p

$$
p . e .= \pm 0.00053
$$

M.-P.-Vol. I.] CRAWFORD-CONSTANT OF REFRACTION. I69

Star No. 959.-(With 282 l. c.)

Date		$\log . r^{\prime}$	$\log \cdot r$		Δ	p

$[p]=511 / 2 ; \log [p v v]=6.3662$
p.e. $= \pm 0.00027$

Star No. 968.

Date	$\log \cdot r^{\prime}$	$\log . r$	\triangle	p	$p \triangle$
June	I. 4565 I	1. 46180	+ 0.00529	4	$+0.02116$
	I. 45383	I. 46553	+ 1170	4	+ 4680
	I. 45149	I. 45637	+ 488	3	+ 1464
	I. 45985	I. 46790	+ 805	I	+ 805
	I. 45614	1. 46225	+ 6II	$11 / 2$	+ 916
	1.45172	I. 45758	+ 586	3	+ 1758
	1. 46276	I. 46879	+ 603	3	+ 1809
	I. 45485	I. 46374	+ 889	$3^{1 / 2}$	+ 3111
	I. 4518 I	I. 46120	+ 939	$31 / 2$	+ 3286
	I. 45453	I. 45652	+ 199	5	+ 995
	I. 45407	I. 46060	+ 653	$21 / 2$	+ 1632
	1. 45340	I. 45984	+ 644	$3^{1 / 2}$	+ 2254
July $\begin{array}{ll}2 \\ & 4 \\ & 5 \\ & 6\end{array}$	1. 44653				
	I. 45114	I. 45408	+ 294	5	+1470
	I. 45656	I. 46835	+ 1179	3	+ 3537
	I. 46066	I. 46850	+ 784	$11 / 2$	+ 1176
-				\triangle	+ 0.00662

p.e. $= \pm 0.00036$

Star No. 977.

Date	$\log \cdot r^{\prime}$	log. r	\triangle	p	$p \triangle$
June 7	I. 28488	I. 28488	\pm o.00000	4	± 0.00000
	1.28218	1. 28892	+ 674	4	+ 2696
9	I. 28019	1.28126	107	3	321
12	I. 28796	I. 29270	474	I	474
13	I. 28439	I. 29491	+ 1052	$11 / 2$	1578 $+\quad 1$
14	1. 28022	1. 29092	+ 1070	3	+ 3210
19	I. 29163	1. 29336	+ 173	3	$+\quad 519$ $+\quad 177$
21	I. 28336	1. 28758	$\begin{array}{r} \\ +\quad 422 \\ \hline\end{array}$	$3{ }^{1 / 2}$	+ 1477
22	I. $250+3$	1. 28149	106 $+\quad 456$	$3{ }^{31 / 2}$	+ $+\quad 371$ $+\quad 680$
27	I. 28302	I. 28758	+ 456	5	+ 2280
28	1. 28288	1. 28533	+ 245		+ 612
29	1. 28206	1.2869I	+ 485	$3^{1 / 2}$	+ 1697
30	1. 28204	I. 28648	+ 444	3/2	1776 $+\quad 1$
July 3	1.27518	1.28171	+ 653	3	
4	I. 28003	I. 28758	$\begin{array}{r} \\ +\quad 755 \\ \hline\end{array}$	5	$+\quad 3775$ $+\quad 333$
5 6	I. 28512	I. 29623	1111 $+\quad 188$	3	$+\quad 3333$
6	1. 28948	1.28870	78	2	156

$[p]=54 \frac{1}{2} ; \log [p v v]=6.795 \mathrm{I}$
p.e. $= \pm 0.00040$

Star No. 984.

Date	$\log \cdot r^{\prime}$	$\log \cdot r$		Δ	p

$$
p . e .= \pm 0.00017
$$

Star No. 225 l. c.-(With 948.)

Star No. 225 l.c.-(With 984.)

Star No. 225 l. c.-(With II35.)

Date		$\log \cdot r^{\prime}$	$\log \cdot r$		Δ

$[p]=531 / 2 ; \log [p v v]=5.7856$
p.e. $= \pm 0.00013$

Star No. 997.

Date	$\log \cdot r^{\prime}$	$\log . r$	\triangle	p	$p \triangle$
June	1. 45932	I. 46479	+ 0.00547	4	$+0.02188$
	I. 45705	I. 46879	+ 1174	4	+ 4696
	I. 45504	I. 45969	+ 465	3	- I395
	1.46180	I. 46967	+ 787	I	787
	I. 45953	I. 46553	+ 600	I $1 / 2$	+ 900
	1. 45544	I. 46120	+ 576	3	+ 1728
	1. 46676	I. 47261	+ 585	3	1755
	I. 45774	I. 46642	868	$31 / 2$	+ 3038
	I. 45588	I. 46509	92 I	$31 / 2$	+ 3223
	I. 45791	I. 45984	+ 193	5	+ 965
	1. 45782	1.46419	+ 637	$21 / 2$	+ 1592
	I. 4567 I	I.463I5	+ 644	$3^{1 / 2}$	2254
July 30 4 					
	1. 45099	I. 45773	+ 674	3	2022
	I. 45436	I. 45712	+ 276	5	1380
	I. 46049	I. 47217	+ 1168	3	+ 3504
	1. 46492	I. 4726 I	+ 769	$11 / 2$	+ II53
				\triangle	+ 0.00652

$[p]=50 ; \log [p v v]=6.6325$
p.e. $= \pm 0.00036$

Star No. 1005.-(With 264 l. c.)

Date	$\log \cdot r^{\prime}$	$\log \cdot r$		\triangle	p		$p \triangle$
	1. 87711	1. 87518	-	0.00193	4	-	0.00772
	1. 87496	I. 87186	-	310	4	-	1240
	I. 87269	I. 86700	-	569	3	-	1707
	1. 87989	I. 87697	-	292	1	-	292
	1. 87719	1.87361	-	358	2	-	716
	1. 87307	I. 87454	+	147	3	+	441
	1. 88455	I.88ı38		317	3		951
	I. 8758 I	I. 87233	-	348	4	-	1392
	1. 87378	I. 86964	-	414	4	-	1656
	I. 87582	I. 87489	-	93	5	-	465
	1. 87565	I. 87093	-	472	5	-	944
	1. 87436	1. 87256	-	180	4	-	720
July ${ }^{3}$	1. 87545	I. 87489	-	56	4	-	224
	1. 86915	I. 86847	-	68	3	-	204
	1. 87220	I. 87157	-	63	5	-	315
	1. 87863	1. 87823	-	40	3	-	120
	1. 88269	1.8788I	-	388	2	-	776
					\triangle	-	0.00215

$[p]=56 ; \log [p v v]=6.2452$

$$
p . e .= \pm 0.0002 \mathrm{I}
$$

Star No. roo5.-(With 356 l. c.)

Date	log. r^{\prime}	$\log . r$		Δ	p

174
Star No. roog.

Date	$\log . r^{\prime}$	$\log .7$	\triangle	p	$p \triangle$
June	I. 27967	1. 27600	-0.00367	4	-0.01468
	1. 27759	1. 28149	+ 390	4	+ 1560
	I. 27515	I. 28149	+ 634	3	+ 1902
	I. 28250	I. 28240	- 10	I	- 10
	I. 27963	I. 28307	+ 344	2	+ 688
	I. 27547	1. 28262	+ $+\quad 75$	3	+ 2145
	I. 28706	1. 28825	+ 119	3	+ 357
	I. 27843	I. 27989	146 $+\quad 102$	4	+ 584
	1.27648	1. 27346	- 302	4	- 1208
	1. 27834	1. 28511	+ 677.	5	+ 3385
	1. 27819	1. 28126	$+\quad 307$ $+\quad 460$	2	+ 614
	I. 27674	I. 28149	475	4	+ 1900
	1.27815	1. 28375	560	4	+ 2240
July $\begin{aligned} & \\ & \\ & 4 \\ & 4 \\ & \\ & \\ & 6\end{aligned}$	1. 27187	1.27300	$1{ }^{1} 3$	3	+ 339
	I. 27473	1. 27807	+ 334	5	$+\quad 1670$
	1.28132	I. 28466	334	3	1002 $+\quad 1068$
	1.28519	1.29003	+ 484	,	$+\quad 968$ $+\quad 0.00298$

$[p]=56 ; \log [p v v]=6.7629$
p.e. $= \pm 0.00038$

Star No. ror9-(With-977.)

Date	$\log . r^{\prime}$	$\log . r$	\triangle	p	$p \triangle$
June	I. 28286	I. 28307	+0.00021	4	+ o. 00084
	I. 28075	I. 28758	683	4	2732
	1.27851	I. 27987	136	3	408
	I. 28578	I. 29048	470	I	470
	I. 28283	I. 29358	+ 1075	$11 / 2$	1612
	1. 27867	1. 28959	+ 1092	3	3276
	I. 29036	I. 29203	167 $+\quad 158$	3	501
	I. 28165	1. 28623	+ 458	$31 / 2$	1603
	I. 27970	I. 28103	133	31/2	465
	I. 28158	I. 28623	+ 465	5	2325
	I. 28158	I. 28398	+ $+\quad 20$ $+\quad 477$	$21 / 2$	600
	I. 27989	I. 28466	+ 477	$31 / 2$	1669
	I. 28139	I. 28601	+ 462	4	+ 1848
July $\begin{array}{r}3 \\ \\ 4 \\ \\ \\ \\ 6 \\ \hline\end{array}$	1.27536	I. 2817 I	635 $+\quad 680$	3	1905
	I. 27798	I. 28578	780 $+\quad 1$	5	a $+\quad 3900$
	I. 28468	1. 29579	+ 1111	3	+ 3333
	I. 28837	1. 28780	- 57	2	114
$\triangle 1+0.00488$					

$[p]=.54 \frac{1}{2} ; \log [p v v]=6.7903$

$$
p . e .= \pm 0.00040
$$

Star No. Iol9-(With ioog.)

Date	$\log \cdot r^{\prime}$	$\log \cdot r$	\triangle	p	$p \triangle$
June	I. 28286	1. 27921	-0.00365	4	-0.01460
	I. 28075	1. 28466	+ 391	4	+ 1564
	I. 2785 I	1. 28466	+ 615	3	+ 1845
	I. 28578	I. 28556	$\cdots 22$	1	- 22
	I. 28283	1. 28623	+ 340	2	+ 680
	I. 27867	I. 28578	+ 711	3	2133
	1. 29036	I. 29137	+ 101	3	+ 303
	I. 28165	1. 28307	+ 142	4	+ 568
	1. 27970	1. 27669	- 301	4	- 1204
	I. 28I58	I. 28825	+ 667	5	$+3335$
	I. 28i58	I. 28443	+ 285	2	+ 570
	I. 27989	I. 28466	+ 477	4	+ 1908
	I. 28139	I. 28691	+ 552	4	+ 2208
July $\begin{array}{r}3 \\ \\ 4 \\ \\ \\ \\ \hline\end{array}$	I. 27536	I. 27623	87 $+\quad 328$	3	+ 261
	1. 27798	I. 28126	328	5	+ 1640
	I. 28468	I. 28780	$+\quad 312$	3	+ 936
	1. 28837	I. 29314	+ 477	2	+ 954
				\triangle	+ 0.00290

$L p]=56 ; \log [p v v]=6.7654$
p.e. $= \pm 0.00038$

Star No. 264 l. c.

Date	log. r^{\prime}	$\log . r$		Δ	p

$$
[p]=56 ; \log [p v v]=6.2338
$$

176 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D Ser.

Star No. ${ }^{2} z_{2}$.

Date	$\log \cdot r^{\prime}$	$\log \cdot r$	\triangle		p	$p \triangle$		
June 7								
13	2.85820	2.860912.85044	+ 0.00271		1	+ 0.00271		
14	2.85280		+ $\quad 236$		$3^{1 / 2}$	- 826		
19	2.86657	2.86178	- 479		3	1437		
21	2.85637	2. 85442	- 195		4			
22	2.8541 I	2.85258	- 153			二 $\quad 780$		
27	2.85620	2.85429	191					
28 29	2.85690	2.85286	404		$21 / 2$		955 IOIO	
29 30	2.85421 2.85600	2.84821 2.84956	644		4	2576	2100	
July 3	2.84957	2.84596	- 361		3	1083		
J 4	2.85239	2.85174	- 65		41/2	292		
	2.86022	2.85728	- $\quad 294$		${ }_{2}^{4} 1 / 2$	1176		
6	2.86417	2.85807			-	1525		
						\triangle	-	. 0317

Star No. 282 l.c.

Date	$\log \cdot r^{\prime}$	$\log . r$		\triangle	p		$p \triangle$
June	3.03250	3.02825	-	0.00425	$4^{1 / 2}$		o.oi912
	3.02963	3.02682	-	28 I	$31 / 2$		983
	3.02804	3.02054	-	750			2250
	3.03690	3.03376	-	314	I	-	314
	3.02661	3.02556	-	105	3	-	315
	3.04241	3.03855	-	386	3	-	1158
	3.03063	3.02586	-	477	4	-	1908
	3.02814	3.02674	-	140	$3^{1 / 2}$		490
	3.03018	3.02586	-	432		-	2160
	3.03140	3.02319	-		$21 / 2$	-	2052
	3.02815	3.01847	-	968	3	-	2904
July 30	3.02989	3.02608	-	381	$4^{1 / 2}$	-	1714
July	3.02636	3.02069	-	567	5	-	2835
	3.03511	3.02968	-	543	$31 / 2$		1900
	3.03907	3.03320	-	587	21/2	-	1467
$\triangle 1-0.00473$							

Star No. 1084.

Star No. IO94.

Date	$\log \cdot r^{\prime}$	$\log \cdot r$	\triangle	p	$p \triangle$
June	1. 42207	I. 42488	+ 0.0028r	5	+ 0.01405
	1. 42036	1.41414	- 622	4	- 2488
	I. 41943	I. 42062	+ 119	3	+ 357
	I. 42492	I. 42423	69	I	69
	I. 42275	I. 42374	+ 99	2	+ 198
	1.41809	1.4163I	178	3	534
	I. 43008	I. 42894	- II4	3	- 342
	1. 42082	1.42210	+ 128	4	+ 512
	1. 41979	1.4'1714	- 265	4	- 1060
	I. 42185	I. 42226	+ 4I	5	+ 205
	I. 41995	I. 42095	+ 100	2	+ 200
	1.41807	1.41714	- 93	3	- 279
	I. 42033	I. 42243	+ 210	4	+ 840
July $\begin{array}{r}3 \\ 4 \\ \\ \\ \\ \\ \hline\end{array}$	I. 41401	1.41095	306	3	918
	1.41844	1.41830	I4	5	70
	I. 424 I 6	I. 4173 I	685	4	2740
	I. 42679	I. 42259	420	3	1260
				\triangle	- o.00104

p.e. $= \pm 0.00034$

Star No. ino5.

Star No. ilio.

Date		log.r	log.r		Δ

$$
p . e .= \pm 0.00018
$$

Star No. 349 l.c.

Date		$\log . r^{\prime}$	$\log . r$		Δ	p

$[p]=58 ; \log [p v v]=6.1255$

$$
p . e .= \pm 0.00018
$$

Star No. 356 l.c.

Date	$\log \cdot r^{\prime}$	$\log . r$		\triangle	p		$p \triangle$
June $\begin{aligned} \text { l } \\ \\ \\ \text { I } \\ 2 \\ 2 \\ 2 \\ 2 \\ 28 \\ 29 \\ 3\end{aligned}$							
	1. 87922	1.8788I	-	0.0004 I	3	-	0.00123
	I. 88536	I. 88349	-	- 187	I	-	187
	I. 88248	I. 88076	-	172	$21 / 2$	-	430
	I. 87854	1. 87898	$+$	44	3	$+$	I32
	1. 88965	1.89009	+	44	3	+	132
	I. 88077	1.87910	-	167	4	-	668
	I. 87968	I. 87858	-	I IO	4	-	440
	I. 88234	1. 88395	$+$	16I	5	$+$	805
	I. 87948	1. 87806	-	142	2	-	284
	I. 87811	I. 8788 I	$+$	70	4	+	280
	1.88005	I. 88173	+	168	4	+	672
July3 	I. 87414	1. 87280	-	134	3	-	402
	I. 87840	1. 87938	+	98	5	+	490
	1.88413	1. 88098	,	315	$31 / 2$	-	1102
	I. 88677	1. 88474	-	203	$21 / 2$	-	507
					\triangle		0.00033

$[p]=491 / 2 ; \log [p v v]=6.0359$

$$
p . e .= \pm \text { o.00019 }
$$

Star No. ili35.

Star No. 377 l. c.-(With roz2.)

Date	log. r^{\prime}	$\log \cdot r$		Δ	p

$[p]=4412 ; \log [p v v]=6.2716$
p.e. $= \pm 0.00028$

Star No. 377 l. c.-(With in56.)

Date	$\log . r^{\prime}$	$\log \cdot r$		Δ	p	$p \Delta$

$$
p . e .= \pm \text { o.00018 }
$$

Star No. il56.

Date	$\log . r^{\prime}$	$\log \cdot r$		\triangle	p		$p \triangle$
June	2.87524	2.87330	-	0.00194	5	-	0.00970
	2.87296	2.87010	-	286	4	-	II44
	2.87172	2.86876	-	296	3	-	888
	2.87557	2.8747 I	-	86	1/2	-	43
	2.87138	2.86795	-	343	$3^{1 / 2}$	-	1200
	2.88372	2.87698	-	674	3	-	2022
	2.87302	2.87182	-	120	4	-	480
	2.87193	2.86980	-	213	4	-	852
	2.87448	2.87197	-	251	5	-	1255
	2.87189	2.86837	-	352	3	-	- 1056
	2.87078	2.86516	-	562	4	-	2248
	2.87246	2.86996	-	250	4	-	1000
July	2.86594	2.86271	-	323	3	-	969
	2.87134	2.86918	-	216	5	-	Io80
	2.87773	2.87437	-	336	$3^{1 / 2}$	-	1176
	2.88028	2.87655	-	373	$21 / 2$	-	. 933
$\triangle \quad 1 \quad-0.00304$							

$p . e .= \pm 0.00016$

Star No. if62.-(With 406 l. c.).

Date	$\log . r^{\prime}$	$\log . r$		Δ	p

Star No. if62-(With 444 l.c.)

Date	$\log . r^{\prime}$	$\log . r$		Δ	p

M.-P.-Vol. I.] CRAWFORD-CONSTANT OF REFRACTION. I83

Star No. 406 l. c.-(With ii62.)

Date	$\log \cdot r^{\prime}$	log.r	\triangle		p	$p \triangle$	
June $\begin{aligned} & 7 \\ & 8\end{aligned}$			- o.00305		$3^{1 / 2}$	- o. 01067	
9	2.59357	2.59052					
13	2. 59683	2.59586	-		1/2	-	
14	2.59350	2.59052	-	298	$3^{1 / 2}$		
19	2.60425	2.59900	-	525	3	-	1575
21	2. 59477	2.59191	-	286	4		1144
22	2.59366	2.59165	-	201	4		804
27	2.59602	2.59413	-	189		-	945
28	2. 59420 -	2. 59097	二	323	$3^{1 / 2}$		1130
29	2.59315	2.59022	-	293	4		1172
July ${ }^{30}$	2. 59432	2.58939	-	493			
July 3	2.58842	2.58491	-	351	$3{ }^{1 / 2}$		1229
4	2. 59297	2.58997	二	300			
	2.59909 2.60148	$\begin{aligned} & 2.59711 \\ & \hline \end{aligned}$	-	198 523	$3{ }^{1 / 2}$		
				52	\triangle	-	1569

Star No. 406 l.c.-(With 1179.)

Date	$\log . r^{\prime}$	log.r			p		
June 7	2.59730	2.59537		193	4		-0772
	2. 59456	2.59219		237	4	-	948
9	2.59357	2.59002	-	355	4	-	1420
12	2.59683	2.59691	+	8	1/2	+	4
14	2.59350	2.59039	-	311	4		1244
19	2.60425	2.60003		422	3		1266
21	2. 59477	2.59104	-	373	4	-	1492
22	2.59366	2.59077	-	289	4	-	1156
27	2.59602	2.59413		189	5	-	945
28	2.59420	2.59084	-	336	$3^{1 / 2}$	-	
29	2.59315	2.59041	-	274	$3^{1 / 2}$		959
July 30	2. 59432	2.59002	-	430	$31 / 2$	-	1505
July 3	${ }^{2} .58842$	2.58574	-	268	$31 / 2$	-	938
4	2. 59297	2.59112	-	185	$4^{1 / 2}$	-	
5	2.59909	2.59686		223	4		892
6	2.60148	2.59683	-	465	3	-	1395
$\triangle 1-0.00292$							

184 CALIFORNIA ACADEMY OF SCIENCES. [Proc. 3D SEr.
Star No. 1179.-(With 406 l. c.)

Date	$\log . r^{\prime}$	$\log \cdot r$	\triangle	p	$p \triangle$
June	2.58409	2.58211	- o.oor98	4	- 0.00792
	2.58167	2.57922	245	4	980
	2.57955	2.57590	365	4	1460
	2.58282	2.58290	+ 8	1/2	+ 4
	2.57953	2.57633	- 320	1/2	- 1280
	2.59007	2.58573	434	3	1302
	2.58069	2.57682	387	4	1548
	2.57955	2. 57657	298	4	1192
	2.58185	2.57990	195	5	975
	2.58049	2.57703			
	2.57918	2. 57635	- 283	$3{ }^{1 / 2}$	- 991
	2.58015	2.57569	446	$3{ }^{1 / 2}$	- ${ }^{1561}$
July3 4 	2.57417	2.57142	275	$3^{1 / 2}$	962
	2.57852	2.57661	191	$4{ }^{1 / 2}$	860
	2.58493	2.58263 2.58255	230 480	4	920
	2.58735	2.58255	480	3	- 1440

$[p]=.58 ; \log [p v v]=5.7112$
p.e. $= \pm$ o.000II

Star No. ir79-(With 444 l. c.)

p.e. $= \pm$ o.00015

Star No. il82.

Date	$\log . r^{\prime}$	$\log . r$		Δ	p

$[p]=59 ; \log [p v v]=6.2272$
$p . e .= \pm 0.00020$

Star No. 424 l. c.-(With IIO5.)

$[p]=501 / 2 ; \log [p v v]=6.1588$
p.e. $= \pm 0.00022$

Star No. 424 l. c.--(With in82.)

Star No. 438 l. c.

Date	$\log \cdot r^{\prime}$	$\log \cdot r$		\triangle	p		$p \triangle$
June	2.02896	2.02882	-	0.00014	3	-	0.00042
	2.02529	2.02288	-	241	4	-	964
	2.02369	2.02263	-	106	4	-	424
	2.02753	2.02727	-	26	$11 / 2$	T	39
	2.02398	2.02841	$+$	443	21/2	+	1107
	2.03351	2.03234	-	117	3	-	351
	2.02530	2.02690	+	160	4		640
	2.02385	2.02420	+	35	4		140
	2.02640	2.02592	-	48	5	-	240
	2.02535	2.02702	$+$	167	4	$+$	668
	2.02403	2.02415	$+$	12	$3^{1 / 2}$	$+$	42
	2.02436	2.02547	$+$	111	4	+	444
July 3	2.01900	2.02057	+	157	3	$+$	471
	2.02276	2.02333	$+$	57	5	+	285
	2.02915	2.02958	+	43	4	$+$	172
	2.03160	2.03338	$+$	178	2	+	356
\qquad							

$p . e .= \pm 0.00017$

Star No. 444 l. c.-(With 1162.)

Date	log. r^{\prime}	log.r		Δ	p	$p \Delta$
June						

$$
[p]=47 \mathrm{I} / 2 ; \log [p v v]=5.794 \mathrm{I}
$$

$$
p . e .= \pm 0.00015
$$

Star No. 444 l. c.-(With II79.)

Date	$\log \cdot r^{\prime}$	$\log \cdot r$		\triangle	p		$p \triangle$
July	2.62762	2.62709	-	0.00053	3	-	o.oor 59
	2.62363	2.62036	-	327	4	-	I308
	2.62193	2.61745	-	448	4	-	1792
	2.62622	2.62405	-	217	1/2	-	108
	2.62223	2.62118	-	105	3	-	315
	2.63245	2.62834	-	41 I	3	-	1233
	2.62367	2.62042	-	325	4	-	1300
	2.62220	2.62048	-	172	4	-	688
	2.62478	2.62270	-	208	5	-	1040
	2.62369	2.62003	-	366	4	-	1464
	2.62213	2.62007	-	206	3	-	618
July 30	2.62278	2.61950	--	328	$31 / 2$	-	1148
July	2.61701	2.61553	-	I48	3	-	444
	2.62082	2.61927	-	155	$41 / 2$	-	698
	2.62784	2.62599	-	185	4	-	740
	2.63053	2.62743	-	310	2	-	620
					\triangle	-	0.0025 I

Star No. 1225.

Date		$\log . r^{\prime}$	$\log \cdot r$		Δ	p

The next table contains the results collected from those preceding. The weights given in the column p have been derived from the probable errors as given in column r. The remaining columns are self-explanatory.

Star	\triangle	r	$\log \cdot r^{2}$	$\log \cdot p$	p	$p \triangle$	
948	- 205	± 15	2.3522	1. 0964	12.5		0.02562
190 l.c.	- 513	47	3.3442	o. 1044	1.3		667
959(1)	- 584	53	3.4486	0.0000	I. 0	-	584
959:2)	- 462	27	2.8627	0. 5859	$3 \cdot 9$	+	1802
968	+662	36	3. 1126	0. 3360	2.2	$+$	1456
977	+ 476	40	3.2041	0.2445	1.8	+	857
984	- 142	17	2.4609	0.9877	9.7		1377
2251) l.c.	211	15	2.3522	1. 0964	12.5	-	2637
225.2) l.c.	- 126	15	2.3522	1. 0964	12.5	-	1675
225'3) l. c.	- 159	13	2.2279	1.2207	16.6	-	2639
997	+652	36	3.1126	0.3360	2.2	$+$	1434
$10051)$	- 215	21	2.6444	0.8042	6.4	-	1376
1005(2)	- 3I	19	2.5575	o.8911	7.8	-	242
1009	+ 298	38	3.1596	0.2890	1.9	$+$	566
1019(1)	$+488$	40	3.2041	0. 2445	1.8	$+$	878
1019(2)	+290 $+\quad 18$	38	3. 1596	0. 2890	1.9	$+$	551
264 l.c.	- 218	20	2.6021	0. 8465	7.0		1526
1032	- 317	29	2.9248	0. 5238	$3 \cdot 3$		1046
282 l.c.	- 473	27	2.8627	0. 5859	3.9	-	1845
1084	- IOI	35	3.0881	0. 3605	2.3	-	232
1094	- 104	34	3.0630	o. 3856	2.4		250
1105	- 29	23	2.7235	0.7251	$5 \cdot 3$	-	154
1110	- 84	18	2.5105	0.938I	8.7	-	731
349 l. c.	- 84	18	2.5105	0.938 I	8.7	-	731
356 l.c.	- 33	19	2.5575	o. 891I	7.8	-	257
1135	- 193	16	2.4065	1.0421	11.0	-	2123
377(1) l.c.	- 336	28	2.8943	o. 5543	3.6	-	1210
37712 l.c.	- 334	18	2.5105	0.938I	8.7	-	2906
1156	- 304	16	2.4065	1.0421	11.0	-	3344
1162:1)	- 330	15	2.3522	1. 0964	12.5	-	4125
I 162(2)	- 297	17	2.4609	0.9877	9.7	-	288 I
406 il l. c.	-318	15	2.3522	I. 0964	12.5	-	3975
$406(2)$ l. c.	- 292	II	2.0828	I. 3658	23.2	-	6774
$1179(1)$		11	2.0828	I. 3658	23.2	-	6983
I I 79 2)	- 276	15	2.3522	1. 0964	12.5	1	3450
1182	+ 12	20	2.6021	o. 8465	7.0	$+$	84
424(1) l.c.	- 31	22	2.6848	0.7638	5.8	-	180
$424(2)$ l.c.	+ 10	20	2.6021	0. 8465	7.0	$+$	70
438 l.c.	+ 40	17	2.4609	0.9877	9.7	$+$	388
444 1) l.c.	- 268	15	2.3522	1. 0964	12.5	-	3350
444(2) l.c	-251	13	2.2279	I. 2207	16.6	-	4167
1225	+ 42	18	2.5105	0.9381	8.7	+	365
					\triangle	-	0.00180

$[p]=340.6$

$$
[p v v]=0.00108489
$$

$$
\triangle=-0.00180 \pm 0.00019
$$

4. The Constant of Refraction.-The value of a deduced by Gyldén for the Pulkowa Tables, as given in bis "Untersuchungen über die Constitution der Atmosphäre u.s.w.," is

$$
a=0.00027985=57^{\prime \prime} \cdot 723
$$

This is for $B=29.5966$ inches at o° and $t=7^{\circ} \cdot 44 R$.
The Pulkowa Tables used here, however, are Gyldén's with μ systematically reduced by - o.oor 24 . Combining this with the value found for $\triangle a$, the correction to Gyldén's constant becomes
and

$$
\begin{aligned}
\triangle a & =-0.00304 a \\
& =- \text { o' }^{\prime \prime} .175
\end{aligned}
$$

This reduced to the condition of 760 mm . pressure at 0° and $o^{\circ} \mathrm{C}$ temperature gives

$$
a=60^{\prime \prime} .159
$$

To this value of a correspond the following:
and

$$
\begin{aligned}
& c=0.00029182 \\
& \mu=1.00029178
\end{aligned}
$$

For the sake of comparison, the most important determinations of the constant of refraction are given below. These values are for the conditions $B=760 \mathrm{~mm}$. at $\mathrm{o}^{\circ} \mathrm{C}$ and external thermometer $=o^{\circ} \mathrm{C}$. (These values are taken from Professor Bauschinger's 'Untersuchungen über die Astronomische Refraction u.s.w.'’).

	a	μ
I. Fund. Astr.	$60^{\prime \prime} \cdot 320$	I. 00029257
2. Tab Reg.	. 440	29315
3. Tab. Pulk.	. 268	29232
4. Fuss.	. 122	2916I
5. Greenw. 1857-ı865	. 120	29160
6. Pulk. 1865.	. 209	29203
7. Greenw. $1877-1886$.	. 192	29195
8. Pulk. 1885	. 058	29130
9. München .	.104	29152

The first and second of these are determinations by Bessel; the third by Gyldén; the fifth by Stone; the sixth by Nyrén ; the seventh by Newcomb; the eighth by Nyrén; and the last by Bauschinger.

Bauschinger gives weight zero to each of Bessel's determinations; to the first, because there was considerable uncertainty in Bradley's meteorological instruments; to the second, because of the uncertainty in reading the Meridian Circle (read by vernier to one second). He gives equal weight to the last seven, and gets for a mean

$$
a=60^{\prime \prime} .153 \text { and } \mu=\mathrm{I} .00029176
$$

5. Latitude.-The following table gives the value of φ deduced separately from the southern and from the northern stars. All of the stars of the list down to $84^{\circ} \mathrm{Z}$. D. were used.

Applying the new refractions found here, the latitudes become from the

$$
\begin{aligned}
& \text { Southern Stars }-\varphi=25^{\prime \prime} .55 \\
& \text { Northern Stars - } \varphi=25.19
\end{aligned}
$$

giving for the mean φ at this epoch (1899 June 22),

$$
\varphi=+37^{\circ} 20^{\prime} 25^{\prime \prime} \cdot 37 .
$$

The remainder of the difference between the values of φ as found from the northern stars and from the southern stars $\left(0^{\prime \prime} \cdot 3^{6}\right)$ is probably due to slight errors in the declinations of the stars used, and to bisection error.

Conclusion.

In conclusion it is desired to state that limitations of time have prevented the complete reduction of these observations and of the series taken during the fall months (1899 Oct.-Dec.). It is hoped that, in the near future, time will be available in which to carry out these reductions by correcting the declinations used and then repeating such portions of these computations as will be necessary. It is also desired to make reductions which will include the relative humidity and a term depending upon the zenith distance.

It will be noticed from the table (p. 189) that there is a large range in the values of \triangle, viz., from - 0.00584 to +0.00662 . This discordance is due partly to the values of the declinations adopted, but is also very clearly a function of the zenith distance. By introducing a term depending upon the zenith distance, and re-solving by Least Squares, this discordance can be greatly diminished.

From this investigation the following conclusions can be drawn:-
I. That this preliminary reduction gives for the Constant of Refraction

$$
\begin{gathered}
a=60^{\prime \prime} .159 \\
\text { for } B=760 \mathrm{~mm} . \text { at } \mathrm{o}^{\circ}(\mathrm{C}) \text { and } t=\mathrm{o}^{\circ}(\mathrm{C}) .
\end{gathered}
$$

2. That for the epoch 1899 June 22 , the latitude of the Lick Observatory Meridian Circle was

$$
\varphi=+37^{\circ} 20^{\prime} 25^{\prime \prime} \cdot 37
$$

3. That the final reduction will show that the Constant of Refraction of the Pulkowa Tables is too large.
4. That the observing room of the Lick Observatory Meridian Circle is of a very good design, and that there is no need of mounting Meridian Circles in the open air.

Addendum.

The table on page 189 shows a large range in the values of \triangle, viz., from +0.00662 to - 0.00584 . Upon plotting these values, using the zenith distance z for abscissa, and \triangle for ordinate, it is easily seen that \triangle varies quite uniformally with the zenith distance. A straight line, inclined about 145° to the zenith distance axis, and cutting it at $\mathrm{z}=$ about 55°, appears to represent \triangle very well. Therefore, assuming Z to be the zenith distance for $\triangle=0$, we can set up an observation equation of the following type for every star:

$$
\log a=\log a_{\mathrm{o}}+[Z-\mathrm{z}] \mathrm{x},
$$

or

$$
\log a-\log a_{o}=\Delta=Z x-z x=D-z x,
$$

where

$$
\mathrm{D}=\mathrm{Zx},
$$

and where a_{o} is the a of the tables used (Pulkowa).
Equations of this kind were, accordingly, formed and solved for Z and x by the method of Least Squares.

Equations of Condition.
$\triangle=D — z$.

No.	Star	D	-	z X	$=$			p
1	948	D	-	80.00 x	$=$	-	0205	12.5
2	190 l. c.		-	89.20	$=$	-	513	I. 3
3	959		-	88.76	$=$	-	487	4.9
4	968		-	30.38	$=$	+	662	2.2
5	977		-	21. 55	$=$	+	476	1.8
6	984		-	78.11	$=$	-	142	9.7
7	225 l. c.		-	79.70	$=$	-	167	41.6
8	997		-	3 C .59	$=$	+	652	2.2
9	1005		-	57. 19	$=$	-	114	14.2
10	1009		-	21. 34	$=$	$+$	298	1.9
II	IoI9		-	21. 49	$=$	+	386	$3 \cdot 7$
12	264 1.c.		-	$57 \cdot 35$	$=$	-	218	7.0
13	1032		-	87.05	$=$	-	317	$3 \cdot 3$
14	282 1. c.		-	88.67	=	-	473	$3 \cdot 9$
15	1084		-	27.80	$=$	-	IOI	2.3
16	1094		-	28.49	$=$	-	104	2.4
17	1105		-	62.21	$=$	-	29	53
18	IIIO		-	67.08	$=$	-	84	8.7
19	349 1. c.		-	67.65	=	-	84	8.7
20	$3561 . \mathrm{c}$.		-	57.49	$=$	-	33	7.8
21	1135		-	77.37	$=$	-	193	11.0
22	377 1. c.		-	86.79	=	-	335	12.3
23	1156		-	87.23	=	-	304	II 0
24	1162		-	83.21	$=$	-	316	22.2
25	$4061 . c$.		-	83.50	$=$	-	301	35.7
26	1179		-	83.26	$=$	-	292	35.7
27	1182		-	62.79	$=$	t	12	7.0
28	424 1. c.		-	62.96	$=$,	9	12.8
29	438 1. c.		-	65.52	$=$	+	40	$9 \cdot 7$
30	444 l. c.		-	83.99	=	-	258	29.1
3 I	1225		-	65.13	$=$	+	42	8.7

To reduce the number of equations, those nearly alike were combined, as follows: Equations No. 1, 6, 7 and 21; 2,3 and 14; 4 and 8 ; 5, 10 and 11 ; 9, 12 and 20 ; 13, 22 and 23 ; 15 and $16 ; 17,27$ and 28 ; 18 and 19; 24, 25, 26 and 30 ; and 29 and 31 , giving the II equations:-

No.	a		b			n		p	$\sqrt{ } p$
1	D	-	79.20	x	=		174	74.8	8.6
2		-	89.78		$=$	-	485	10. I	32
3		-	30.48		$=$	+	657	$4 \cdot 4$	2.1
4		-	21.47		$=$	$+$	385	$7 \cdot 4$	2.7
5		-	57.3 I		$=$	-	II7	29.0	$5 \cdot 4$
6		-	87.00		=	-.	320	26.6	5.2
7		-	27.15		=	-	103	$4 \cdot 7$	2.2
8		-	6275		=	-	7	25.1	5 -
9		-	$67 \cdot 36$		=	-	84	17.4	4.2
Io		-	8349		=	-	291	122.7	II. I
II		-	$65 \cdot 34$		$=$	+	41	18.4	$4 \cdot 3$

Weighted Observation Equations.

$N o$.	a		b		n	
I	8.6	-	68I. 1	$=$		1496
2	3.2	-	284.1	=	-	1552
3	2.1	-	57.9	=	$+$	1248
4	2.7	-	58.0	二	+	1040
5	$5 \cdot 4$	-	309.5	$=$		632
6	5.2	-	452.4	=	-	1664
7	2.2	-	59.7	=	-	227
8	5.0	-	313.7	=	-	35
9	4.2	-	282.9	$=$	-	353
10	II. I	-	926.7	=	-	-3230
11	$4 \cdot 3$	-	281. 0	$=$	t	176

To render these more nearly homogeneous, let $\mathrm{D}=\mathrm{D}$; roox $=y$ and multiply the absolute term by roo. Then we have the following

Weighted Homogencous Observation Equations.

No.			b		n	
1	8.6	-	6.81 I	y		I. 496
2	3.2		2.841	-	-	I. 552
3	2.1	-	-. 579	$=$	+	I. 248
4	2.7	-	- 5880	=	+	1.040
5	$5 \cdot 4$	-	3095	=	-	0.632
6	5.2	-	4.524	$=$	-	1.664
7	2.2	-	-. 597	=	-	0. 227
8	5.0	-	$3 \cdot 137$	=	-	0.035
9	4.2	-	2.829	$=$	-	o. 353
10	II. I	-	9.267	$=$	-	3.230
II	43	-	2810	$=$	$+$	0.176

- Combining these by the method of Least Squares we obtain the following

Normal Equations.

$$
\begin{aligned}
& +34 \mathrm{I} .28 \mathrm{D}-254.5 \mathrm{I} 2 \mathrm{y}=-6 \mathrm{I} .7 \mathrm{I} 88 \\
& -254.5 \mathrm{I}+197 . \mathrm{I} 5 \mathrm{I}=+53.4383
\end{aligned}
$$

Solving these, remembering that the absolute terms had been multiplied by roo, we have
$\log \mathrm{D}=7.75694 ; \log \mathrm{y}=8.00376$ or $\log \mathrm{x}=6.00376$.
Now since $D=Z x$, we have $\log Z=1.75318$,
Whence $\quad x=+0.0001009$ and $Z=56^{\circ} .647=56^{\circ} 38^{\prime} 49^{\prime \prime}$.
Substituting the values of D and x, thus found, in the Weighted Observation Equations, we find $[p v v]=$
0.00024690 , from which the following probable errors have been deduced:

$$
r_{x}=\ddagger 0.0000130 \text { and } r_{Z}= \pm 0^{\circ} .031= \pm 0^{\circ} I^{\prime} 52^{\prime \prime} .
$$

We, therefore, have from this solution

$$
Z=56^{\circ} 38^{\prime} .8 \pm \mathrm{r}^{\prime} .9 \text { and } \mathrm{x}=+0.00010 \mathrm{I} \pm 0.000013 \text {, }
$$

giving

$$
\log a=\log a_{o}+0.000101\left[56^{\circ} 38^{\prime} .8-\mathrm{z}\right] .
$$

We are, therefore, led to the conclusion that the so-called Constant of Refraction needs not only a correction, but a correction for every zenith distance. In other words, the formula from which refractions are computed needs to be modified. Or, the formula may be retained unaltered, and the desired result obtained by correcting the $\log \mu$ table of the refraction tables used (Pulkowa) by the amount
дер. $\triangle \log \mu=0$.OOpIOI $\left[56^{\circ} 38^{\prime} .8-\mathrm{z}\right]$.

R. T. C.

- Mloadfa odly ieds ugramald arnd SH, m 0

YD 04994

$$
114741
$$

MAIEME

[^0]: (5)

