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PREFACE.

Ix presenting a revision of their " Plane and Solid Geom-

etry " (Boston, 1895), the authors feel that an explanation of

its distinctive features may be of service to the teacher.

It is sometimes asserted that we should break away from

the formal proofs of Euclid and Legendre and lead the student

to independent discovery, and so we find text-books that give

no proofs, others that give hints of the demonstrations, and

still others that draw out the demonstration by a series of

questions which, being capable of answer in only one way,

merely conceal the Euclidean proof. But, after all, the

experience of the world has been that the best results are

secured by setting forth a minimum of formal proofs as

models, and a maximum of unsolved or unproved propositions

as exercises. This plan has been followed by the authors,

and the success of the first edition has abundantly justified

their action.

There is a growing belief among teachers that such of the

notions of modern geometry as materially simplify the ancient

should find place in our elementary text-books. With this

belief the authors are entirely in sympathy. Accordingly

they have not hesitated to introduce the ideas of one-to-one

correspondence, of anti-parallels, of negative magnitudes, of

general figures, of prismatic space, of similarity of point

systems, and such other concepts as are of real value in the

early study of the science. All this has been done in a con-
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iv rUEFACE.

servative way, and such material as the first edition showed

to be at all questionable has been omitted from the present

revision.

Within comparatively recent years the question of methods

of attack has interested several leading writers. Whatever

has been found to be usable in elementary work the authors

have inserted where it will prove of most value. To allow the

student to grope in the dark in his efforts to discover a proof,

is such a pedagogical mistake that this innovation in American

text-books has been generally welcomed. Upon this point

the authors have freely drawn from the works of Petersen of

Denmark, and of Eouche and de Comberousse of France, and

from the excellent treatise recently published by Hadamard

(Paris, 1898).

With this introduction of modern concepts has necessarily

come the use of certain terms and symbols which may not

generally be recognized by teachers. These have, however,

been chosen only after most conservative thought. None is

new in the mathematical world, and all are recognized by the

leading writers of the present time. They certainly deserve

place in our elementary treatises on the ground of exactness,

of simplicity, and of their general usage in mathematical

literature.

The historical notes of the first edition have been retained,

it being the general consensus of opinion that they add

materially to the interest in the work. For teachers who

desire a brief but scholarly treatment of the subject the

authors refer to their translation of Fink's "History of

Elementary Mathematics" (Chicago, The Open Court Pub-

lishing Co., 1899). For the limitations of elementary geom-

etry, the impossibility of trisecting an angle, squaring a

circle, etc., teachers should read the authors' translation of
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Klein's valuable work, "Famous Problems of Elementarv

Geometry " (Boston. Ginn & Company).

It is impossible to make complete acknowledgment of the

helps that have been used. The leading European text-books

have been constantly at hand. Special reference, however, is

due to such standard works as those of Henrici and Treutlein,

" Lehrbuch der Elementar-Geometrie," the French writers

already mentioned, and the noteworthy contributions of the

recent Italian school represented by Faifofer, by Socci and

Tolomei, and by Lazzeri and Bassani.

Teachers are urged to consider the following suggestions in

using the book

:

1. Make haste slowly at the beginning of plane and of solid

geometry.

2. Never attempt to give all of the exercises to any class.

Two or three hundred, selected by the teacher, should suffice.

3. Eequire frequent written work, thus training the eye, the

hand, and the logical faculty together. The authors' Geometry

Tablet (Ginn & Company) is recommended for this work.

W. W. BEMAN, Anx Arbor, Mich.

D. E. SMITH, Brockport, N. Y.

June 15, 1899.
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PLANE AND SOLID GEOMETKY.

3>^C

PLANE GEOMETRY.

INTRODUCTION.

1, ELEMENTARY DEFINITIONS.

1. In Arithmetic the student has considered the science of

numbers, and has found, for example, that a number which

ends in 5 or is divisible by 5.

In Algebra he has studied, among other things, the equation,

and has found that if J x — 1 — 5, x must equal 12.

In Geometry he is to study form, and he will find, for

example, that two triangles must necessarily be equal if the

three sides of the one are respectively equal to the three sides

of the other.

Before beginning the subject, however, there are certain

terms which, although familiar, are used with such exactness

as to require careful explanation. These terms are solid, sur-

face, line, angle (with various kinds of each), and point. As

with most elementary mathematical terms, such as number,

space, etc., it is difficult to give them simple and satisfactory

definition. Explanations can, however, be given which will

lead the student to a reasonable understanding of them.

2. The space with which we are familiar and in which we

live is evidently divisible. Any limited portion of space is

called a solid.

In geometry no attention is given to the substance of which

the solid is composed. It may be water, or iron, or air, or
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wood, or it m?y be a vacuum. Indeed, geometry considers

only the space occupied by the substance. This space is called

a geometric solid, or simply a solid, while the substance is called

a physical solid. Thus, a ball is a physical solid ; the space

which the ball occupies is a geometric solid.

3. That which separates one part of space from an adjoin-

ing part is called a surface. So we speak of the surface of a

ball, the surface of the earth, etc.

4. Every surface is divisible. That which separates one

part of a surface from an adjoining part is called a line.

5. Every line is divisible. That which separates one part

of a line from an adjoining part is called a point.

A point is not divisible.

Thus, in the figure the surface of the block separates the space occu-

pied by the block from all the rest of space. This surface is divisible in

many ways ; for example, it is divided into

two parts by the line passing from A through

§ B and C and back to A. This line is divisible

\ in many ways ; for example, it is separated

\ into three parts by the points A, B, C. In the

case of a line that returns into itself,

—

i.e. a

closed line, like the one just mentioned, — two points are necessary com-

pletely to separate one part from the other.

It is impossible to draw mechanically a geometric line. A
chalk mark, a thread, a fine wire, an ink mark, are all very

thin physical solids used to represent lines ; for this purpose

they are very helpful. So, too, a dot may be used to represent

a point, and a sheet of paper may be used to represent a surface,

although each is really a physical solid.

6. The preceding definitions start from the solid and take

the surface, line, and point in order. It is also possible to

start with the point and proceed in reverse order.

The point is the simplest geometric concept ; it lias position,

but not magnitude.
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A moving point describes a line.

This may be represented by a pencil point moving on a piece of paper.

A moving line describes, in general, a surface.

This may be represented by a crayon lying flat against the blackboard,

and moving sidewise. How may a line move so as not to describe a

surface ?

A moving surface describes, in general, a solid.

Thus, the surface of a glass of water, as it moves upward, may be said to

describe a solid. How may a surface move so as not to describe a solid ?

7. Through two points any number of lines may be imagined

to pass.

For example, through the points Pi, I
(read " P-one, P-two") the lines q, r,

may be imagined to pass.

A straight line is a line which is determined by any two of

its points.

In the figure, s represents a straight line, for, given the points Pu P2

on the line, its position is fixed ; it is determined.

But q and r do not represent straight lines, because Pi and P2 do not

determine them.

The word line, used alone, is to be understood to refer to a

straight line.

The expression straight line is used to mean both an unlim-

ited straight line and a portion of such a line. In case of

doubt, line-segment, or merely segment, is used to mean a

limited straight line.

As has been seen, a point is usually named by some capital

letter. A segment is usually
A B C

named by naming its end points, !
1

—

or by a single small letter.

In the annexed figure, AB, AC, BC, and o are marked off.

Two segments are said to be equal when they can be made

to coincide.
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8. If three points, A, B, C, are taken in order on a line,

as in the preceding figure, then the line-segment AC is called

the sum of the line-segments AB and BC, and AB is called the

difference between AC and BC.

9. If a point divides a line-segment into two equal seg-

ments, it is said to bisect the line-segment and
p

is called its mid-point.

A line is easily bisected by the use of a straight-

edge and compasses, thus :

With centers A and B, and equal radii, describe

arcs intersecting at P and P'. A~

Draw PP'. This bisects AB.

The proof of this fact is given later.

10. If a segment is drawn out to greater

length, it is said to be produced. 'p^

To produce AB means to extend it through B, toward C, in the second

figure in § 7. To produce BA means to extend it through A, away from B.

11. A line not straight, but made

up of straight lines, is called a broken

line.

12. Through three points, not in a straight line, any num-

ber of surfaces may be imagined

to pass.

For example, through the points A, B,

C the surfaces P and S may be imagined

to pass.

A plane surface (also called a plane) is a surface which is

determined by any three of its points not in a straight line.

In the figure, P represents a plane, for it is determined by the points

A, B, C. But S does not represent such a surface.

A plane is indefinite in extent unless the contrary is stated.

To produce it means to extend it in length or breadth.
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13. If two lines proceed from a point, they are said to form

an angle, the lines being called the arms, and the point the

vertex, of that angle.

The size of the angle is independent of the length of the

arms ; the size depends merely upon the amount of turning

necessary to pass from one arm to the other.

The methods of naming an angle will be seen from the

annexed figures. It is convenient to letter an angle around

the vertex, as indicated by the arrows, that is, opposite to the

course of clock-hands, or counter-clockwise.

C
-A

\ ^

Angle m. Angle 0. Angle A OB. Angle a b. Angle AOB.

A line proceeding from the vertex, turning about it counter-

clockwise from the first arm to the second, is said to turn

through the angle, the angle being greater as the amount of

turning is greater.

14. If the two arms of an angle lie in the same straight

line on opposite sides of the vertex, a straight angle is

said to be formed. If the angle still further increases, until

the moving arm has performed a complete revolution, thus

passing through two straight angles, a perigon is said to be

formed.

For practical purposes angles are measured in degrees, min-

utes, and seconds. A
perigon is said to con- b £
tain 360°. ° A

In general, if tWO lines A0B ' a stT&iS^t angle. A perigon, or angle

_ BOA, a straight angle. of 360°.

are drawn irom O, two

angles, each less than a perigon, are formed. Of these the

smaller is always to be understood if "the angle at 0" is

mentioned, unless the contrary is stated.
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15. If a line turns through an angle, all points or line-

segments through which it passes in its turning, except the

vertex, are said to be within the angle. Other points or lines

are either on the arms or without the angle.

16. Two angles, ab, a'b', are said to be equal when, without

changing the relative position of a and b, angle ab may be

placed so that a lies along a', and b along b'.

This equality is tested by placing one angle on the other, the vertices

coinciding. Then if the arms can he made to coincide, the angles are

equal, otherwise not.

17. If three lines, OA, OB, OC, proceed from a common
point 0, OB lying within the angle AOC,
then angles A OB and BOC are called ad-

jacent angles. Angle AOC is called the sum

of the angles A OB, BOC. Either of the

adjacent angles is called the difference be-

tween angle AOC and the other of the adjacent angles.

As two angles may be added, so several may be added.

18. If a line divides an angle into two equal angles, it is

said to bisect the angle and is called its

bisector.

In the annexed figure, if angle A OY equals

angle YOB, then OY is the bisector of angle

A OB.

And, in general, to bisect any magnitude means

to divide it into two equal parts.

An angle is easily bisected by the use of a

straight-edge and compasses, thus

:

If AOB is the given angle, mark off with the

compasses OC equal to OD.

Then with C and D as centers and CD as a

radius draw two arcs intersecting at P and P'.

The line joining PorF with is the required bisector. The proof

of this fact is given later.
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19. A right angle is half of a straight angle,

It follows from this definition that the sum of two rigid

angles is a straight angle; and from the

definitions of a straight angle and of a

perigon, that the sum of two straight an-

gles, or of four right angles, is a perigon. C

It also follows that a straight angle

contains 180° and a right angle contains 90°.

20. If two lines meet and form a right angle, each line is

said to be perpendicular to the other.

Each is also spoken of as a perpendicular to the other.

Thus, in the preceding figure, BO is perpendicular to CA, or

is a perpendicular to CA. The segment PO is called the per-

pendicular from P to CA, since it will presently be proved that

it is unique ; that is, that there is one and only one perpendic-

ular. is called the foot of that perpendicular.

The word unique, meaning one and only one, is frequently

used in mathematics.

A line is easily drawn perpendicular to another line by the use of a

straight-edge and compasses. This is seen in the figure in § 9, where

PP" is perpendicular to A B.

21. An angle less than a right angle is said to be acute ; one

greater than a right angle but less than a straight angle is said

to be obtuse ; one greater than a straight angle but less than a

perigon is said to be reflex or convex.

22. Two lines which form an acute, obtuse, or reflex angle

are said to be oblique to each other.

Acute, obtuse, and reflex angles are classed under the gen-

eral term oblique angles.

The meaning of the expressions oblique lines, an oblique, foot of an

oblique, will be understood from § 20.

Draw a figure representing acute, obtuse, and reflex angles, oblique

lines, an oblique from P to CA, the foot of an oblique.
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23. Two angles are said to be complements of each other if

their sum is a right angle. Two angles are said to be supple-

ments of each other if their sum is a straight angle. Two
angles are said to be conjugates of each other if their sum is a

perigon.

If one angle is the complement of another, the two angles

are said to be complemental or comple-

mentary. Similarly, if one angle is the

supplement of another, the two angles are

c_ / a said to be supplemental or supplementary.

In the annexed figure, angles AOB and BOC
are supplemental, also angles BOC and COD,

D etc.

24. If two lines, CA, DB, intersect at 0, as in the above

figure, the angles AOB and COD are called vertical or opposite

angles; also the angles BOC and DOA.

Exercises. 1. How many degrees in a right angle ? How many
minutes ? How many seconds ?

2. What is the complement of one-half of a right angle ? of one-

fourth ?

3. How many degrees in the supplement of an angle of (a) 75° ?

(b) 90°? (c) 150°? (d) 179°?

4. Also in the complement of an angle of (a) 75° ? (b) 1° ? (c) 89° ?

(d)45°? (e) 90°? (f)0°?

5. Also in the conjugate of an angle of (a) 270° ? (b) 180° ? (c) 359° ?

(d) 90°? (e) 1°? (f) 360°?

6. Draw a figure showing that two straight lines determine one point

;

also one showing that three straight lines determine, in general, three

points.

7. How many degrees in each of the two conjugate angles which the

hour and minute hands of a clock form at 4 o'clock ?

8. If six lines, proceeding from a point, divide a perigon into six

equal angles, express one of those angles (a) in degrees, (b) as a fraction

of a right angle, (c) as a fraction of a straight angle.



Secs. 25-27.1 DEMONSTRATIONS OF GEOMETRY.

2. THE DEMONSTRATIONS OF GEOMETRY.

25. The object of geometry is the investigation of truths con-

cerning combinations of lines and points, and of the methods

of making certain constructions from lines and points.

26. A proposition is a statement of either a truth to be

demonstrated or a construction to be made.

For example, geometry investigates this proposition : If two lines

intersect, the vertical angles are equal. It also investigates the methods

of drawing a line perpendicular to another line, and various other propo-

sitions requiring some construction.

Propositions are divided into two classes— theorems and

problems.

A theorem is a statement of a geometric truth to be demon-

strated.

A problem is a statement of a geometric construction to be

made.

For example : Theorem, If two lines intersect, the vertical angles are

equal. — Problem, Required through a point in a line to draw a perpen-

dicular to that line.

27. There are a few geometric statements so obvious that the

truth of them may be taken for granted, and a few geometric

operations so simple that it may be assumed that they can be

performed. Such a statement, or the claim to perform such

an operation, is called a postulate.

The geometric operations thus assumed require the use of the

straight-edge and compasses. The straight-edge and the compasses are

the only instruments recognized in elementary geometry.

The postulates used in this work are set forth from time to

time as required. At present three general classes suffice,

as follows

:
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28. Postulates of the Straight Line.

1. Two points determine a straight line.

This follows from the definition.

2. Two straight lines in a plane determine a point.

3. A straight line may be drawn and revolved about one

of its points as a center so as to include any assigned point

in space.

4. A straight line-segment may be produced.

5. A straight line is divided into two parts by any one of

its points.

29. Postulates of the Plane.

1. Three points not in a straight line determine a plane.

This follows from the definition.

2. A straight line through two points in a plane lies wholly

in the plane.

Thus, if part of a straight line lies in an unlimited plane blackboard,

the whole line lies in the blackboard.

3. A plane may be passed through a straight line and re-

volved about it so as to include any assigned point in space.

4. A portion of a plane may be produced.

5. A plane is divided into two parts by any one of its

straight lines, and space is divided into two funis by any

plane.

30. Postulate of Angles.

All straight angles are equal.

31. There arc also a number of simple statements, of a

general nature, so obvious that- the truth of them may be

taken for granted. These are called axioms.

The following arc the axioms mosl frequently used in geometry, and

they arc so important that they should be learned by number.
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32. Axioms.

1. Tilings which are equal to the same thing, or to equal

things, are equal to each other.

That is, (1) if A = JJ, and C = B, then 4 = C. Or, (2) if J. = B, and

7> = C, and C = D, then J. = Z).

2. If equals are added to equals, the sums are equal.

That is, if A = B, and if C = B. then A + C = B + D.

f>. If equals are subtracted from equals, the remainders are

equal.

That is, if A = B, and if C = 1), then A - C = B - D.

^4. If equals ore added to unequals, the sums are unequal in

the same sense.

That is, if A = B. and if C is greater than D, then A + C is greater

than B ~ I).

h^ If equals are subtracted from unequals, the remainders

are unequal in the same sense.

That is, if ^4 = B, and if C is greater than D, then C — A is greater

than D - B.

6. If equals are multiplied by equals, the products are equal.

That is, if A = B. and m is any number, then mA = mB.
s

7. If equals are divided by equals, the quotients are equal.

A B
That is, as in axiom 6, — =— • It will be seen that axiom 6 coversm m

axiom 7. for m may be a fraction.

8. The whole is greater than any of its parts, and equals

the sum of all its parts.

The latter part of this axiom is merely the definition of whole.

9. If three magnitudes are so related that the first is greater

than the second, while the second is greater than, or equal to,

the third, then the first is g renter than the third.

E.g. if A is greater than 7?. and if B is greater than, or equal to, C,

then A is greater than C.
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33. Symbols and Abbreviations.

The following are used in this work, and are inserted here

merely for reference, and not for memorizing :

e.g. Latin, exempli gratia, for

example.

i.e. Latin, id est, that is.

since.

therefore,

pt., pts. point, points,

rt. right,

st. straight.

ax. axiom,

post. postulate,

def. definition,

prop. proposition,

th. theorem,

pr. problem,

cor. corollary,

subst. substitution,

prel. preliminary,

const. construction,

ppd. parallelepiped.

^ arc.

O, (s) circle, circles.

A, A triangle, triangles.

, Q[] square, squares.

I I. \j~\ rectangle, rectangles.

O, UJ parallelogram, parallelo-

grams.

Z., A angle, angles.

+ pins, increased by.

— minus, diminished by.

X , •
, and absence of sign, de-

note multiplication.

/. de-

>
<

>
<

and fractional form,

note division.

is equal, or equivalent, to.

is identical with, as AB = AB,
or coincides with.

is congruent to.

is similar to.

approaches as a limit.

is greater than.

is less than.

is not equal to, i.e. > or <

.

is not greater than, i.e. = or < .

is not less than, i.e. = or >.

is perpendicular to, or a per-

pendicular.

is parallel to, or a parallel.

and so on.

The above take the plural also;

thus, = means are equal, as well

as is equal.

The manner of reading some of the

familiar symbols is suggested, as

follows

:

P', P-prime; P", P-second ; P'",

P-third, etc.

P1? P-one ; P2 , P-two, etc.

A'B', A-prime B-prime, etc.

A{, A-one-prime, etc.

References to preceding propositions are made by book and proposi-

tion thus, I, prop. IV ; if the first Roman numeral is omitted, the prop-

osition is in the current book. Section references are also used.

Other simple abbreviations are occasionally used, but they will be

easily understood.
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3. PRELIMINARY PROPOSITIONS.

34. The following theorems are designed to show to the

beginner the nature of a geometric proof, and to lead him by

easy steps to appreciate the logic of geometry. Some of them

might properly have been incorporated in Book I, and others

might have been omitted altogether ; but they form a group of

simple propositions which lead the student up to the more diffi-

cult work of geometry, and for that reason they are inserted

here. The student and the teacher are advised to proceed

slowly until the logic of the subject is understood, and under

no circumstances to allow mere memorizing of the proofs.

Proposition I.

35. Theorem, All right angles are equal.

Suggestion, The only angles of whose equality we are thus far

assured are straight angles. Hence in some way we must base our proof

of this theorem on the postulate of angles, which asserts this fact. We
then consider how a right angle is related to a straight angle, and the

proof is at once suggested.

any two right angles, r, r\

that r = r'.

Given

To prove

Proof, 1. r and r are halves of straight angles. Def . rt. Z
(§ 19. A right angle is half of a straight angle.)

2. All straight angles are equal. § 30

3. .'. all right angles, and hence r and ?•', are equal.

Ax. 7

(If equals are divided by equals, the quotients are equal.)
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Proposition II.

36. Theorem. At a given point in a given line not more

than one perpendicular can be drawn to that line in the same

plane.

Y ,.7

V

Given YYf

_L XX at 0.

To prove that no other perpendicular can be drawn to XX\
at 0, in the same plane.

Proof. 1. Suppose that another _L, ZZ', could be drawn.

2. Then ZXOZ would be a rt. Z. Def. ±
(If two lines meet and form a rt. Z, each is said to be ± to the other.

)

3. But Z XOY is a rt. Z. Given ; def. _L § 20

(For it is given that YY' _L XX', and the def. of a _L is given in step 2.)

4. .-. Z XO Y would equal Z XOZ. Prop. I

(All right angles are equal.)

5. J>ut this is impossible. Ax. 8

(The whole is greater than any of its parts, etc.)

6. .'. the supposition of step 1 is absurd, and a second

perpendicular is impossible.

Note. In prop. I we proved directly from the definition of straight

angle that all right angles are equal. In prop. II a different method of

proof is followed. We have here supposed that the theorem is false and
have shown that this supposition is absurd. Such proofs have long been

known by the name " reductio ad ahs/tnlnm," a reduction to an absurd-

ity. They are also called indirect proofs.
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Proposition III.

37. Theorem. The complements of equal angles are equal.

Suggestion*. Three lines of proof may present themselves. We may
base our proof on the equality of straight angles, as we did in prop. I, or

we may take an indirect proof as in prop. II, beginning by supposing the

theorem false and showing the absurdity of this supposition, or we may
base the proof on prop. I. Since the complements suggest right angles,

which of the three methods would it probably be best to follow ?

A 0' A'

Given two equal A, AOB, A'O'B', and their complements.

BOC, B'O'C, respectively.

To prove that ABOC = A B'O'C.

Proof. 1. A AOC and A'O'C are rt. A. Def. compl.

(§ 23. Two A are said to be complements if their sum is a rt. Z.)

2. .'. Z AOC= Z A'O'C. Prop. I

(All right angles are equal.)

3. But Z AOB = Z A'O'B'. Given

4. .\ A BOC = A B'O'C Ax. 3

(If equals are subtracted from equals, the remainders are equal.)

Proposition IV.

38. Theorem. The supplements of equal angles are equal.

Let the student draw the figure and give the proof after the manner of

prop. III. Use only four steps in the proof.

Given

To prove

Proof.
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Proposition V.

39. Theorem. The conjugates of equal angles are equal.

Given two equal angles, ab, a'b'.

To prove that Aba — A b'a'.

Proof. 1. The given A may be so placed that a lies along a',

and b along b'. Def. equal A
(§ 16. Two A, ab, a'b', are said to be equal when Z ab can be placed

so that a lies along a', and 6 along b'.)

2. But then A ba must equal A b'a'. Def. equal A

Proposition VI.

40. Theorem. If two lines cut each other, the vertical

angles are equal.

Suggestion. After examining the figure the student might say that

because Z a + Z b = st. Z, and Z b + Z a' = st. Z, .-. Z a + Z 6 = Z 6

+ Z a', and then subtract Z 6 from these equals ; or he might say that

Za — Za' because each is the supplement of Z b. He should always feel

encouraged to try various proofs, selecting the shortest and the clearest.

Does the following proof meet these requirements ?

Given two lines cutting each oilier,

forming two pairs of opposite

angles, a, a', and b, b'.

To prove that A a — A a '.

Proof. 1. Aa and A a' are supplements of Ab. Def. suppl.

(§ 23. Two A are said to be supplements if their sum is a st. Z.)

2. .\Aa = A«'. Prop. IV
(The supplements <>1" equal angles are equal.)
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Proposition VII.

41. Theorem. A line-segment can be bisected in only one

point.

P

A ST B

Given a line-segment AB, bisected at M.

To prove that there is no other point of bisection.

Proof. 1. Suppose another point of bisection exists, as P. be-

tween M and B.

2. Then since AM and AP are both halves of A P. they

are equal. Ax. 7
(State ax. 7.)

3. But this is impossible, for AM is part of AP. Ax. 8

(State ax. 8.)

4. .'. the supposition that there is a second point of

bisection is absurd.

(Another reductio ad absurdum, as in prop. II.)

Proposition VIII.

42. Theorem. An angle can be bisected by only one line.

(The student may prove this after the manner of prop. VII.)

Exercises. 9. Of two supplemental angles, a and b, (a) suppose

a — 2b, how many degrees in each ? (b) suppose a = 3 6, how many ?

10. How many straight lines are, in general, determined by three

points? by four? (The points in the same plane.)

11. If of five angles, a, b. c, d, e. whose sum is a perigon, a = 20°,

b = 30°, c — 40°, d = 50°, how many degrees in e ?

12. Of three angles whose sum is a perigon, the first is twice the sec-

ond, and the second three times the third; how many degrees in each ?
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Proposition IX.

43. Theorem. The bisectors of two adjacent angles formed

by one line cutting another are perpendicular to each other.

Suggestion. Considering the figure, we see that to prove OA _L OB
we must show that Z A OB is a rt. Z. Now the only way that we have as

yet of showing an angle to be a right angle is to show that it is half of a

straight angle. But evidently Z AOY is half of Z XOY, because Z XOY
is bisected ; similarly, Z YOB is half of Z YOX', and this suggests the

following proof.

Given two lines, XX', YY', cutting at ;
also OA, OB,

bisecting A XOY, YOX'. respectively.

that OA _L OB.

AAOY = \AXOY.

Z YOB = ±A YOX'.

To prove

Proof. 1.

2.

3. ;.ZAOB = \AXOX'.
(If equals are added to equals, the sums are equal.)

4. .-. Z AOB = i of a st. Z. Def. st. Z
(§ 14. If the two arms of an Z lie in the same st. line on opposite sides

of the vertex, a st. Z is said to be formed.)

Given; § 18

(liven; § 18

Ax. 2

5. .-. Z AOB = ait. Z.

(§ 19. A rt. Z is half of a st. Z.)

6. .-. 0A± OB.

Def. rt. Z

Def. _L

(§ 20. If two lines meet and form a rt. Z, each line is said

to be ± to the other.)
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Proposition X.

44. Theorem. The bisectors of the four angles which two

intersecting lines make with each other form two straight

lines.

B

Given XX' intersecting YY' at O, OA bisecting Z XOY,
OB bisecting AYOX'. 00 bisecting AX'OY'
and OD bisecting Z Y'OX.

To prove that COA and DOB are straight lines.

Proof. 1. A AOB and BOO are rt. A. Prop. IX

(State prop. IX.)

2. .'.the two together form a st. angle. Def. it. Z
(§ 19. State the definition.)

3. .*. 00A is a st. line. Def. st. Z
(§ 14. State the definition.)

4. Similarl v for DOB.

45. The nature of a logical proof should now be understood.

Before continuing, however, the following points should be

emphasized

:

a. Every statement in a proof must be based upon a postu-

late, an axiom, a definition, or some proposition previously

considered of which the student is prepared to give the proof

again when he refers to it.
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b. No statement is true simply because it appears to be true

from a figure which the student may have drawn, no matter

how carefully. Many cases will be found, for example, where

angles appear equal when they are not so.

c. The arrangement of the discussion of a theorem is as

follows

:

Given. Here is stated, with reference to the figure which

accompanies the proof, whatever is given by the theorem.

To prove. Here is stated the exact conclusion to be de-

rived from what is given.

Proof. Here are set forth, in concise steps, the statements

to prove the conclusion just asserted. If the proof is written

on the blackboard, the steps should be numbered for convenient

reference by class and teacher. The teacher will state how
much in the way of written or indicated authorities shall be

required after each step.

Corollarv. A corollary is a proposition so connected with

another as not to require separate treatment. The proof is

usually simple, but it must be given with the same accuracy

as that of the proposition to which it is attached. It is usually

sufficient to say, This is proved in step 4 ; or, This follows

from steps 2 and 5 by axiom 3, etc. In every case the stu-

dent should (1) clearly prove the corollary, but (2) do so as

concisely as possible. A corollary may also follow from a

definition; thus, from the definitions of Proposition and Theo-

rem the following might be stated as a corollary : Every

theorem is a proposition, but not every proposition is a theo-

rem; and as a part of our definition of a Perigon we incor-

porated the corollary (the term then being undefined) that a

perigon equals two straight angles.

Note. Any item of interest may be inserted under this head.

Exercises. 13. Of the proofs of the preliminary theorems, state which

are direct and which indirect. (See note on p. 14.)

14. How can you form a right angle by paper folding ? Prove it.



BOOK I.— RECTILINEAR FIGURES.

1. TRIANGLES.

46. A figure is any combination of lines and points formed

under given conditions.

E.g. an angle is a figure, for it is a combination of two lines and one

point formed under the condition that the two lines proceed from the point.

47. A rectilinear figure is a figure of which all the lines are

straight.

Plane geometry treats of figures in one plane,—plane figures.

Hence in plane geometry, which in this work extends through Books

I to V inclusive, the word figure used alone denotes a plane figure, and

all propositions and definitions refer to such figures placed in one plane.

48. If the two end-points of a broken line coincide, the fig-

ure obtained is called a polygon, and the broken line its perim-

eter. The vertices of the angles made by the segments of the

perimeter are called the vertices of the polygon, and the seg-

ments between the vertices are called the sides of the polygon.

49. The perimeter of a polygon divides the plane into two

parts, one finite (the part inclosed),

the other infinite. The finite part

is called the surface of the polygon.

or for brevity simply the polygon.

A point is said to be within or

without the polygon according as it

lies within or without this finite part. A polygon.

The figure ABCBE is a polygon (the sides being produced for a sub-

sequent definition).

21
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50. In passing counter-clockwise around the perimeter of a

polygon the angles on the left are called the interior angles of

the polygon, or for brevity simply the angles of the polygon.

Such are the angles CBA, DCB, EDC, in the figure on p. 21.

51. If the sides of a polygon are produced in the same order,

the angles between the sides produced and the following sides

are called the exterior angles of the polygon.

Such are the angles XBC, YCD, in the figure on p. 21. They

are the angles through which one would turn, at the successive corners,

in walking around the polygon.

52. A line joining the vertices of any two angles of a poly-

gon which have not a common arm, is called a diagonal.

Such a line would be the one joining A and C in the figure on p. 21.

The sides, angles, and diagonals of a polygon are often called its paints.

53. A polygon which has

all of its sides equal is called

equilateral.

54. Two polygons are said

to be mutually equilateral, or

one is said to be equilateral

to the other, when the sides of

the one are respectively equal

to the sides of the other.

A polygon which has all of

its angles equal is called equi-

angular.

Two polygons are said to

be mutually equiangular, or

one is said to be equiangular

to the other, when the angles of

the one are respectively equal

to the angles of the other.

55. A polygon of three sides is called a triangle; one of

four sides, a quadrilateral.
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56. Any side of a polygon may be called its base, the side

on which the hgnre appears to stand being usually so called,

as AB in the figure on p. 21.

In the case of a triangle, the vertex of the angle opposite

the base is called the vertex of the triangle, the angle itself

being called the vertical angle of the triangle, and the other

two angles the base angles.

Thus, in the first triangle on p. 25, C is the vertex of the triangle, Z C

57. Two figures which may be made to coincide in all their

parts by being placed one upon the other are said to be con-

gruent.

For example, two line-segments may be congruent, or two angles, or

two triangles, etc.

58. The operation of placing one figure upon the other so

that the two shall coincide is called superposition, and the

figures are sometimes called superposable (a synonym of con-

gruent).

This is illustrated in prop. I.

Superposition is an imaginary operation. It is assumed as

a postulate (§ 61) that figures may be moved about in space

with no other change than that of position. The actual move-

ment is, however, left for the imagination.

59. It will hereafter be explained and defined that polygons

of the same shape are called similar, the symbol of similarity

being ^, and that those of the same area are called equal or

equivalent, the symbol being =. Congruent figures are both

similar and equal, and hence the symbol for congruence is =,

a symbol used in modified form by the great mathematician

Leibnitz.

The symbol ~~ is derived from the letter S, the initial of

the Latin simills, similar.
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Many writers use equal for congruent, and equivalent for

equal, as above defined. But because of the various meanings

of the word equal, and its general use as a synonym for

Equality. Similarity. Congruence.

equivalent, the more exact word congruent with its suggestive

symbol is coming to be employed. The student should be

familiar with this other use of the words equal and equivalent.

60. It is customary to designate the sides

of a triangle by the small letters correspond-

ing to the capital letters which designate the

opposite vertices. A

Thus, in the figure, side a is opposite vertex A, etc.

61. It now becomes necessary to assume three other pos-

tulates.

Postulates of Motion.

1. A figure may he moved about in space with no other

change than that of position, and so that any one of its points

may be made to coincide with any assigned point in space.

That is, we may pick up one polygon and place it on another without

changing its shape or size.

2. A figure may be moved about in space while one of its

points remains fixed.

Such movement is called rotation about a center, the center being the

fixed point.

3. A figure may be moved about in space while two of its

points remain fixed.

Such movement is called rotation about an axis, the axis being the line

determined by the two points.
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Proposition I.

62. Theorem. If two triangles have two sides and the in-

cluded angle of the one respectively equal to two sides and

the included angle of the other, the triangles are congruent.

Given

A c b A'

the A ABC, A'B'C such that

c = c',

b = b', and

ZA = ZA'.

To prove that A ABC ^ A A'B'C.

Proof. 1. Place A A'B'C on A ABC so that

A' falls on A, and

c' coincides with its eqnal c.

2. Then b' may be caused to fall on b,

because Z A' = Z A.

3. Then C will fall at C,

because b' = b.

4. will coincide with a,

§61,1

§ 61, 2

Given
; § 61, 3

Given; § 57

§28,1

5.

(Two points determine a straight line.)

AABC= AA'B'C, by definition of congruence.

§ 57
Notes. This is a proof by superposition.

The theorem may be stated, A triangle is determined when two sides

and the included angle are given.

In the exercises hereafter given, the proofs are to be given in full

;

when a question is asked, a proof of the answer is to be given ; when a

theorem is suggested, it is to be completely stated and then proved.
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Proposition II.

63. Theorem. If two triangles have two angles and the

included side of the one respectively equal to two angles and

the included side of the other, the triangles are congruent.

K

B B

Given the A ABC and A'B'C such that

Z.C = ZC,
ZB = Z B', and

a = a'.

To prove that A ABC ^ A A'B'C

Proof. 1. Place A A'B'C on A ABC so that a' falls on a and

Z C coincides with its equal Z C.

2. Then B' will fall on B because a' = a.

3. Then c' will fall on c because Z-B'
'

= /LB.

4. .*. A' will coincide with A.

(Two straight lines determine a point.)

5. .'. A ABC ^ A A'B'C, by definition of congruence.

§ 57
Note. Prop. II, and prop. Ill following, are attributed to Thales.

§ 61

Given

Given

§ 28, 2

Exercises. 15. In the figure on p. 19, given

that OA bisects angle XOY, and that OB is

perpendicular to OA, prove that OB bisects

angle YOX'.

16. Show that the distance BA across a lake

may be measured by setting up a stake at 0, A'

sighting across it to fix the lines A'B and B'A,

laying off OA' — OA, and OB' — OB, and then measuring B'A'
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64. Reciprocal Theorems. The student will notice that prop-

ositions I and II have a certain similarity. Indeed, if the

words side and angle are interchanged in prop. I. it becomes

prop. II, and if interchanged in prop. II that becomes prop. I.

Theorems of this kind are called reciprocal. The relation is

more clearly seen by resorting to parallel columns.

Prop. I. If two triangles have Prop. II. If two triangles Lave

two sides and the included angle of two angles and the included side of

the one respectively equal to two the one respectively equal to two

sides and the included angle of the angles and the included side of the

other, the triangles are congruent. other, the triangles are congruent.

Moreover, if small letters and capitals are interchanged in

the proof of prop. I, the proof becomes that of prop. II.

65. The principle involved is called the Principle of Reci-

procity, and is extensively used in geometry. But the student

must not suppose that because a theorem is true its reciprocal

theorem is also true ; in elementary geometry, involving

measurements, the reciprocal is often false. The principle

is, however, of great value even here, for it leads the student

to see the relation between propositions, and it often suggests

new possible theorems for investigation. For these purposes

we shall use it.

At present it is sufficient to say that for many theorems of

plane geometry reciprocal theorems may be formed by re-

placing the words

point by line,

line by point,

(ingles of a triangle by (opposite^ sides of a triangle,

sides of a triangle by (opposite) angles of a triangle.

Exercises. 17. F.xplain this statement and tell why it is true : Any two

sides and the included angle of a triangle determine the remaining parts.

18. State the reciprocal of ex. 17 and tell whether it is true, and why.
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Proposition III.

66. Theorem. If two sides of a trionigle are equal, the

angles opposite those sides are equal.

Given the A ABC with AC = BC.

To prove that AA=Z.B.

Proof. 1. Suppose m to bisect Z. ba.

2. Then v b = a, Given

and Z. bin — A ma,

and m = m,

3. .
' . A AMC £ A BMC, Prop. I

(State prop. I.)

and AA—/-B, by definition of congruence. § 57

Corollary. If a triangle is equilateral, it is also equi-

angular.

For by the theorem the angles opposite the equal sides are equal.

67. Definitions. The line from any vertex of a triangle to

the mid-point of the opposite side is called the median to that

side.

In the above figure, CM is the median to AB.

If a triangle has two equal sides, it is called an isosceles

triangle.
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The third side is called the base of the isosceles triangle,

and the equal sides are called the sides.

A triangle which has no two sides equal is called a scalene

triangle.

The distance from one point to another is the length of the

straight line-segment joining them.

The distance from a point to a line is the length of the per-

pendicular from that point to that line.

That this perpendicular is unique will be proved later.

This is the meaning of the word distance in plane geometry. In

speaking of points on a curved surface (for example, the earth's surface),

distance may be measured on a curved line.

68. In the figure of prop. Ill,

A AMC^ A BMC, as proved.

.\AM=MB,
and Z CMA = Z BMC,

and hence each is a right angle.

In cases of this kind the points A and B are said to be

symmetric with respect to an axis. Hence, in the figure, CM is

called an axis of symmetry. And, in general, two systems of

points, A x , B x , C\, , A 2 , B2 , C2 , , are said to be symmetric

vitlt respect to an axis when all lines, A XA 2, B X
B2 , , are

bisected at right angles by that axis.

Also, two figures are said to be symmetric with respect to an

axis when their systems of points are symmetric.

A single figure, like that of prop. Ill, is said to be sym-

metric with respect to an axis when this axis divides it into

two svmmetric figures.

Exercises. 19. If four lines go out from a point making four angles

of which the first and third are equal, and the second and fourth are

equal, prove that the four lines form two intersecting straight lines.

20. In the figure on p. 10, if a line passes through and bisects

angle XOA, prove that it also bisects angle X'OC
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Proposition IV.

69. Theorem. If two angles of a triangle are equal, the

sides opposite those angles are equal.

A B

Given the A ABC with Z A = Z B.

To prove that a = b.

Proof. 1. Suppose that a =£ b,

and that a > b.

2. Then let BX, a part of a, equal &, and join A and A'

3. Then '.'ZB=Z.BAC, Given

and J£ = AB,

.'.AABC^A BAX. Why ?

4. .'.the supposition leads to an absurdity, for

AABO A BAX, Ax. 8

(State ax. 8.)

and .
' . a~jj> b.

In the same way it may be shown that a <£ b,

and .
' . a = b.

Corollary. If a triangle is equiangular, it is a /so equi-

lateral. (Why ?)

Exercise. 21. If four points, A, B, C, D, are placed in order on a

line, and if AC = BD, prove that AB = CD.
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Proposition V.

70. Theorem. If any side of a triangle is produced, the

exterior angle is greater than either of the interior angles

not adjacent to it.

C

A B

Given the A ABC, with AB produced to X.

To prove that Z XBC > Z C, and also > Z BA C '.

Proof. 1. Suppose BC bisected at 31. AM drawn and produced

to P so that 3IP = AM, and BP drawn.

Why ?

Why ?

§ 57

Why ?

Why ?

Similarly, by producing CB, bisecting AB at X,

producing CX, etc.. it can be shown that an angle

equal to Z XBC is greater than ABAC.

2.
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Proposition VI.

71. Theorem. If two sides of a triangle are unequal, the

opposite angles are unequal and the greater side has the

greater angle opposite.

Given the AABC, with a > b.

To prove that ZA>ZB.
Proof. 1. Suppose Z C bisected by YY' cutting AB at D, CA'

made equal to CA, and DA' drawn.

2. Then A.IDC ^ A.4'DC, and ZA = Z CA 'D. Why?

3. But Z CA'D > AB. Prop. V

(§ 70. If any side of a A is produced, the exterior angle is greater than

either of the int. A not adjacent to it.)

4. ..ZA>ZB. Subst. 2 in 3

Exercises. 26. State, without proof, the reciprocal of prop. VI.

27. Can a scalene triangle have two, equal angles ? Proof.

28. Prove prop. VI by drawing AA' instead of DA', and proving that

Z A > Z A'AC = Z CA'A > Z B.

29. ABCD is a quadrilateral of which DA is the longest side and BC
the shortest. Which is greater, ZB or ZD? Prove it. (Suggestion :

Draw BD.) Also Z C or Z A ? Prove it.

30. How many perpendiculars can be drawn to a given line from a

point outside that line? Show that any other supposition violates

prop. V.

31. ABC is a triangle having Z B = twice ZA; Z B is bisected by a

line meeting b at D
;
prove that AD — BD.
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Proposition VII.

72. Theorem. If two angles of a triangle are unequal,

the opposite sides are unequal and the greater angle has the

greater side opposite.

Given the A ABC with Z A > Z B.

To prove that a > b.

Proof. 1. a 4- b, for if a = b, then Z A = Z B. Why ?

2. a < b, for if a < b, then Z .i< Z J5.

Prop. VI. State it.

3. .'.a must be greater than b.

Note. It must not be inferred from props. VI, VII that, because one

angle of a triangle is twice as large as another, one side is twice as long

as another.

Exercises. 32. Prove that if the bisector of any angle of a triangle is

perpendicular to the opposite side, the triangle is isosceles.

33. Suppose any point taken on the perpendicular bisector of a line
;

is it equally or unequally distant from the ends of the line ? Give the

proof in full.

34 a. Prove that in an isosceles

triangle ABC, where a =b, the

bisector of Z C, produced to c,

bisects side c.

34 b. Prove that in an isosceles

triangle abc, where ZA = ZB, the

bisector of side c, joined to C,

bisects Z C.

35. After reading § 73, state the converse of each of the following

:

(a) prop. Ill
;

(b) prop. IV
;

(c) prop. VI
;

(d) prop. VII
;

(e) this state-

ment, If the animal is a horse, then the animal has two eyes. Of these

converses, how many are true ?

36. What kind of a triangle is formed by joining the mid-points of the

sides of an equilateral triangle ? Prove it.
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73. The Law of Converse. Two theorems are said to be the

converse, each of the other, when what is given in the one is

what is to be proved in the other, and vice versa.

E.g. props. VI and VII. The converse of a theorem must not be con-

fused with its reciprocal. Props. I and II are reciprocal, but not converse.

Because a theorem is true its converse is not necessarily true.

For example, prel. prop. I may be stated thus : Given that A r and r
/

are rt. A, to prove that Z r = Z r' ; the converse is, Given that Zr = Zr',

to prove that they are rt. A. This converse is evidently false, for Z r

could equal Zr' without their being rt. A.

But there is one important class of converse theorems, illus-

trated by props. IV and VII, that should be mentioned. When-

ever three theorems have the following relations, their converses

must be true :

1. If it has been proved that when A> B, then X > Y, and

2. " " " A = B, " X = T, "

3. " " " A < B, « X < Y,

then the converse of each of these is true. For

1'. If X > Y, then A can neither be equal to nor less than

B, without violating 2 or 3 ; .. A > B. (Converse of 1.)

2'. If A'= Y, then A can neither be greater nor less than B,

without violating 1 or 3 ; .'. A = B. (Converse of 2.)

3'. If X < Y, then A can neither be greater than nor equal to

B, without violating 1 or 2 ; .'. A < B. (Converse of 3.)

The law just proved will hereafter be referred to as the Law

of Converse. By its use the proof of the converse of many
theorems, where true, is made very simple.

The student should not proceed further unless the Law of

Converse is thoroughly understood, and its proof mastered.

Prop. VII may now be proved by the Law of Converse,

thus :

If a > b, then Z A > Z B. Prop. VI

If a = b
y

" Z A = Z B. " III

Ifa<b, " ZA<ZB. " VI

.
*

. eaeh converse is true, and if Z A > Z B, then a > b.
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74. Suggestions as to the Treatment of the Exercises. Tims

far the student has been left to his own ingenuity in treating

the exercises. A few suggestions should now be given.

1. In attacking a. theorem take the most generalfigurepossible.

E.g. if a theorem relates to a triangle, draw a scalene triangle ; an

equilateral or an isosceles triangle often deceives the eye, and leads

away from the demonstration. Draw all figures accurately ; an accurate

figure often suggests the demonstration. But the student who relies

too much upon the accuracy of the figure in the demonstration itself is

liable to go astray.

2. Be certain that what is given and what is to be proved

arc clearly stated, with reference to the letters of the figure.

This has been done in all of the theorems thus far proved. The neglect

to do so in the exercises is one of the most fruitful sources of failure.

3. Then begin by assuming the theorem true .- see what fol-

lows from that assumption • then see if this can be proved true

without the assumption ; if so, try to reverse the process.

E.g. suppose PO _L X'X, and PB, PA two obliques cutting off OA > OB,

as in the figure, and that it is required to prove

PA > PB. Assume it true ; then Z b > Z a.

Now see if Zb> Z a without the assumption
;

Zb>Zc, which = Z d. which > Z a, by prop. V
;

.-. Zb> Z a, without the assumption. Xow re- * o B A

verse the process ; v Z 6 > Za, .-. PA > PB
by prop. VII.

4. Or begin by assuming the theorem false, and endeavor to

show the absurdity of the assumption. \
lied actio ad absurdum.)

5. To secure a clearer understanding of the theorem it is

often well to follow Pascal's advice and substitute the defini-

tion for the name of the thing defined.

E.g. suppose it is to be proved that the median to the base of an isos-

celes triangle is perpendicular to the base. Instead of saying :

'• Given CAT the median to the base of the isosceles triangle ABC" (see

figure on p. 28), it is often better to say :

"Given A ABC, with AC = B<7, and M taken on AB so that AM
- MB,'' for then the facts stand out prominently without any confusing

terms.
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Proposition VIII.

75. Theorem. The sum of any two sides of a triangle is

greater than the third side.

X

Given the A ABC.

To prove that a + b > c.

Proof. 1. Suppose Z C bisected by CD.

Then Z CDA >ZDCB. Prop. V. State it

2. And •
.

' Z A CD = ZDCB, Step 1

.•.ZCfDi>ZiCr

i).

.*. o > AD. Prop. VII. State it

Similarly, a > DB.

3. .'.a + b>c.

Corollary. The difference of any two sides of a triangle

is less than the third side.

For if a + b > c, and c > 6, then a > c — &, by ax. 5.

Exercises. 37. Two equal lines, ^4C and AD, are drawn on oppo-

site sides of a line AB and making equal angles with it ; BC and BD are

drawn. Show that BC and BD also make equal angles with AB.

38. P, Q, E are points on the sides AB, BC, CA, respectively, of an

equilateral triangle ABC, such that AP = i?Q = Ctf
;
joining P, Q, and

R, prove that A PQE is equilateral. (Notice that ex. 36 is merely a

special case of this one.)

39 a. The bisectors of the equal

angles of an isosceles triangle form,

with the base, an isosceles triangle.

39 b. The mid-points of the equal

sides of an isosceles triangle form,

with the vertex, the vertices of an

isosceles triangle.
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Proposition IX.

76. Theorem. Iffrom the ends of a side of a triangle two

lines are drawn to a point within the triangle, their sum is

less than the sum of the other two sides of the triangle, hut

they contain a greater angle.

C

Given the A ABC, P a point within, and BP and PA
drawn.

To prove that (1) BP + PA < a + b, (2) Z APB > Z C.

Proof. 1. Produce AP to meet a at X.

Then

XP + PA = XA < XC + b, Ax. 8
;
prop. VIII

(State ax. 8 and prop. VIII.)

and BP < BX + XP. Prop. VIII

2. .-.BP + XP + PA < BX + XC + XP + b.

3. .'. BP + PA < a + h.

which proves (1). Why ?

4. Also,

Z APB > Z PXB > Z C which proves (2). Why ?

Exercises. 40 a. If the equal 40 6. If the equal angles of an

sides of an isosceles triangle are isosceles triangle are bisected, the

bisected, the lines joining the points angles formed by the lines of bi-

of bisection with the vertices of the section and the equal sides are

equal angles are equal. equal.

41. The perimeter of a quadrilateral is less than twice the sum of its

two diagonals.
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Proposition X.

77. Theorem. If two triangles have two sides of the one

respectively equal to two sides of the other, but the included

angles unequal, then the third sides are unequal, the greater

side being opposite the greater angle.

Fig. 2. Fig. 3.

Given the A A XBX CX and A2B2C2, with a x
= a 2 , b x

= b2, but

Z.CX >Z. C2 .

To prove that cx > c2 .

Proof. 1. Suppose A A 2B2C2 placed on AA
X
B

X CX so that b2

and b x , being equal, coincide. § 61

Then ' .' Z C\ > Z C2 , side a 2 must fall within Z Cx,

as in Fig. 3.

2. Suppose CM drawn bisecting Z B2CB X , and B2M
drawn.

3. Then in A BXMC, B23IC,

CBX
= CB2 ,

Given

CM = CM,

Z MCB
X
= Z B2CM. Step 2

4. .\AB
X
MC^AB2MC,

and MB, = MB2 . Prop. I

5. But AM + MB2 > All,. Prop. VIII

.'. AM' + MBX > AB2 ,

or c
x > c2 .

The proof is the same when B2 falls above A XBX .
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Proposition XL

78. Theorem. If two triangles have two sides of the one

respectively equal to two sides of the other, but the third sides

unequal, then the included angles are unequal, the greater

angle being opposite the greater third side.

Given A A lB l Cl and A 2B2C2 . with a, = </,. h
x
= b2, c\ > c2.

To prove that Z. C\ > Z C2 .

Proof. 1. It lias been shown that if a x
= a 2 , b x

= b2 ,

and if Z C, > Z 6*,, then c, > c2 . Prop. X
2. And if Z C\ = « « « = " Prop. I

3. « " Z d < " « « < " Prop. X
4. .'. the converses are true, which proves the theorem.

§ 73. Law of Converse

(Explain the Law of Converse. Since this law is so often used,

it should be reviewed frequently.)

Exercises. 42. Are props. X and XI reciprocals ? converses ?

43. In A ABC, suppose CA > AB, and that points P, Q are taken on

AB, CA respectively, so that PB = CQ. Prove that BQ < CP.

44. Investigate ex. 43 when P is taken on AB produced, and Q on AC
prodHeed.

45. The equal sides, AC, BC, of an isosceles triangle ABC are pro-

duced through the vertex to P and Q respectively, so that AP = BQ.
Prove that BP = AQ.

46. Prove that the straight line joining any two points is less than any

broken line joining them.

47. Prove that the perimeter of a triangle is less than twice the sum
of the three medians.

48. In a quadrilateral, prove that the sum of either pair of opposite

sides is less than the sum of its two diagonals.

49. If the perpendicular from any vertex of a triangle to the opposite

side divides that side into two segments, how does each of these segments

compare in length with its adjacent side of the triangle ? Prove it.
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Proposition XII.

79. Theorem. If two triangles have the three sides of the

one respectively equal to the three sides of the other, the tri-

angles are congruent.

C

Given A ABC, AB'C, with AB = AB', BC = B'C, and

AC = AC.

To prove that A ABC ^ A AB'C.

Proof. 1. Suppose no side longer than AC. Then the A,

being mutually equilateral, may be placed with AC
in common, and on opposite sides of AC. Draw BB'.

2. Then Z CBB' = Z BB'C, Prop. Ill

and Z B'BA = Z AB'B. Why ?

3. .-. Z CBA = Z AB'C. Why ?

4. • .'.A ABC ^ A AB'C. Why?

^4C is evidently an axis of symmetry (§ 6S) in the

figure.

Exercises. 50. Suppose three sticks to be hinged together to form

a triangle, could the sides be moved so as to change the angles ? On
what theorem does the answer depend ? How would it be with a hinged

quadrilateral ?

51. Ascertain and prove whether or not a quadrilateral is determined

when the four sides and either diagonal are given in fixed order.

52. Also when the four sides and one angle are given in fixed order.

53. How many braces would it take to stiffen a three-sided plane

figure ? four-sided ? five-sided ?
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Proposition XIII.

80. Theorem. If two triangles have two angles of the one

respectively equal to tivo angles of the other, and the sides

opposite one pair of equal angles equal, the triangles are

congruent.

X B Y

Given A AB C, A'B' C, with Z A =Z A', ZB=Z B\ b = b'.

To prove that A ABC^ A A'B'C.

Proof. 1. Place A A'B'C on A ABC so that A' falls at A,

A'B' lies along AB, and C and C both lie on the

same side of AB. 61

2. Then because Z A = Z A', and b = b', b' coincides

with b, and C ' with C.

3. Now B' cannot fall between A and B, as at X, for

then Z CXJ, which = Z B', would be greater than

Z B. Prop. V. State it

4. Neither can i?' fall on AB produced, as at Y, for then

Z Y, which = Z I?', would be less than Z B.

Prop. V
5. .*. B' must fall at 2?, and the A are congruent. § 57

Exercises. 54. If YO meets X'X at O, and YA, YB are drawn meet-

ing X'X dXA,B; and if YA = YB, and AO^OB, which is the greater,

A A YO or Z Y7i ?

55. Consider the diagonals of an equilateral quadrilateral, (a) as to

their bisecting each other, (6) as to the kind of angles they make with

each other. State the theorems which you discover and prove them.
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Proposition XIV.

81. Theorem. If tivo triangles have tivo sides of the one

respectively equal to two sides of the other, and the angles

opposite one pair of equal sides equal, then the angles opposite

the other pair ofequal sides are either equal or supplemental,

and if equal the triangles are congruent.

C' C'

A^ ~~X B U "BT
X' ^B'

Given A ABC, A'B'C, with a = a',b = b', Z B = Z B'.

To prove that either (1) Z A = Z A' and A ABC^A A'B'C,

or (2) ZA + ZA' = st. Z.

Proof. 1. Place A A'B'C on Ai^Cso that B' falls at B,

a' coincides with its equal a, and A' and A fall on

the same side of a. § 61

2. Then v Z.B = AB', B'A' lies along BA.

3. Then either A' falls at ^4, the A are congruent and

Z^4 = Z^4'; or else A' falls at some other point on

BA, as at X, and A A'B'C ^ A XJ5C.

4. But v CX=b' = b,

.'. Z.A = Z. CXA. Prop. III. State it

5. And

v Z CXA + Z J5X<? = st. Z, § 14, def. st. Z
.-. Z,4 + Z.4' = st. Z.

Exercises. 56. In prop. XIV, step 3, X may lie on BA produced, in

some cases. Draw the figure and prove.

57. In prop. XIV prove that ZA and A A' must be equal, if (1) they

are of the same species (i.e. both right, both acute, or both obtuse); or

(2) angles B and B' are both right angles ; or (3) b <£ a.
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2. PARALLELS AND PARALLELOGRAMS.

82. Definitions. If two straight lines in the same plane do

not meet, however far produced, they

are said to be parallel. _^
E.g. A and B in the annexed figure. B— \

The fact that A is parallel to B is indi- \

cated by the symbol A II B.

A line cutting two or more lines is called a transversal of

those lines.

In the figure of the parallel lines, T is a transversal of A and B.

The adjacent figure shows a transversal of

two non-parallel lines. The figure on p. 46 b/a
shows a transversal of three lines.

The angles formed by a transver-

sal cutting two lines (parallel or not)

have received special names. Thus, in the annexed figure,

a, b
}

c', d' are called exterior angles

;

a', b', c, d are called interior angles

;

a and c' are called alternate angles; also b and d\ c and a\

b' and d ;

a and a' are called corresponding angles ; also b and //. c and c\

d and d'.

Exercises. 58. Angle A, of triangle ABC, is bisected by a line meet-

ing BC at P. Which is the longer, AB or BP ? Prove it. Also CA
or PC ? Prove it.

59. State the reciprocal of prop. XIII, and tell whether it is true

without modification. In what proposition is your statement proved ?

60. If a quadrilateral has two pairs of equal sides, prove that it must

have one pair and may have two pairs of equal angles, depending upon

the arrangement of the sides.
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Proposition XV.

83. Theorem. If a transversal of two lines makes a pair

of alternate angles equal, then (1) any angle is equal to its

alternate angle, (2) any angle is equal to its corresponding

angle, and (3) any two interior, or any two exterior, angles

on the same side of the transversal are supplemental.

Given a transversal cutting two lines, making equal alter-

nate A d and b' as in the figure.

To prove that (1) /.a = Z.c',

(2) Z.a = Za',

(3) Z b + Z c' = st. Z.

Proof. 1. Z d + Z a = st. Z,

and Z V + Z c' = st. Z. § 14, del st. zl

2. .\Z<2-fZ« = Z&' + Zc'. Why?

3. .'.Zfl^Zc' which proves (1). Ax. (?)

4. V Z c' = Z a', .'.Zft= Za', which proves (2).

5. Now v Z ft' = Z rf, and Zd = Zb, Why ?

.\Zfi'=Z&. Why?
But vZ£' + Zc' = st. Z, §14, def. st. Z

.-. Z5 + Zc' = st. Z.

Corollaries. 1. //* tapo corresponding angles are equal,

the same three conclusions follow.

2. If two interior or two exterior angles on the same side of

the transversal are supplemental, the same conclusions follow.
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Proposition XVI.

84. Theorem. If a transversal of two lines makes a pair

of alternate angles equal, the two lines are parallel.

Given P. and P', two lines, cut by a transversal T, making

equal alternate A c and a'.

To prove that P II P\

Proof. 1. P, P' cannot meet towards P', for then Z c would

be an ext. Z of a A, and .'.Ac would be greater

than Z a'. Prop. V. State it

2. P, P' cannot meet towards P, for then Z a' would

be greater than Z c. Why ?

3. .. P, P' cannot meet at all, and P II P'. Def. parallel

Similarly any other two alt. A may be taken equal.

Corollaries. 1. If two corresponding angles are equal,

the lines are parallel.

For then two alt. A are equal. Prop. XV, cor. 1, which says— (?)

2. If two interior or two exterior angles on the same side of

the transversal are supplemental, the lines are parallel.

For then two alt. A are equal. Prop, XV, cor. 2, which says— (?)

3. Two lines perpendicular to the same line are parallel.

(Why?)

Exercises. 61. In prop. XVI would lines

bisecting Z. a' and Z c be parallel ? Prove it.

62. Show that if a draughtsman's square

slides along a ruler, as in the annexed figure,

BXCX II B2cl and A XCX II A 2C2 .
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85. Postulate of Parallels. It now becomes necessary to

assume another postulate, and upon it rests much of the ele-

mentary theory of parallels. It is : Tivo intersecting straight

lines cannot both be parallel to the same straight line.

Corollary. A line cutting one of two parallel lines cuts

the other also, the lines being unlimited.

(Show that the corollary is necessarily true if the postulate is.)

Proposition XVII.

86. Theorem. The alternate, angles formed by a trans-

versal with two parallels are equal.

Given P and P' two parallels, and T, sl transversal.

To prove that any Z c equals its alternate Z a'.

Proof. 1. Suppose Z c > Z a', and that Q is drawn as in the

figure, making an Z equal to Z.a'.

2. Then Q would be parallel to P'

.

Why ?

3. But this would be impossible, V P II P\ § 85

(Two intersecting straight lines cannot both be parallel to the same

straight line.)

4. Similarly, it is absurd to suppose that Z <i' > Ac.

Corollaries. 1. A line perpendicular to one of two paral-

lels is perpendicular to the other also.

For it cuts the other (§ 85, cor.) and the alternate angles are equal

right angles.
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2. A line cutting two parallels makes corresponding angles

equal, and the interior, or the exterior, angles on the same side

of the transversal supplemental.

For the alternate angles are equal (prop. XVII), and hence prop. XV
applies.

3. If the alternate or the corresponding angles are unequal,

or if the interior angles on the same side of the transversal

are not supplemental, then the Jims are not parallel, but meet

on that side of the transversal on which the sum of the inte-

rim' angles is less than a straight angle.

For the lines cannot be parallel, by prop. XVII and cor. 2.

Further, suppose Z c + Z b' < st. Z
;

then v Za'-f //)'= st. Z,

it follows that Zc < Za'.

.-. P and P/ cannot meet towards P\ for then Z c would be greater

than Z a', prop. V.

Let the student give the proof in fidl furni, in steps.

4. Two lines respectively perpendicular to two intersecting

lines cannot be parallel.

For, in the annexed figure, let AB _L X. CD _L Y; y^

join A and C. Then Z EAC < rt. Z, and ZACD
< rt. Z ;

.-. their sum is < st. Z ;
.-. cor. 3 applies. A/~

Give proof in full form in steps. \p /q

5. If the arms of one angle are parallel or perpendicular

to the arms of another, the angles are equal or supplemental.

The proof is left to the student.

Exercises. 63. In the figure of prop. XV, suppose a = c' — 120° 30',

how large is each of the other angles ?

64. In the same figure, suppose a + d' = st. Z, and a — 2 d. how large

is each of the other angles ?

65. If a transversal cuts two lines making the sum of the two interior

angles on the same side of the transversal a straight angle, one of them

being 30° 27', how large is each of the other angles ?
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Proposition XVIII.

87. Theorem. Lines parallel to the same line are paral-

lel to each other.

Given A II M, and B II M.

To prove that A II B.

Proof. 1. Suppose T a transversal, making corresponding

A a, m, b, with A, 31, B, respectively.

2. Then v A\\M,

.-.Aa = A m. Prop. XVII, cor. 2

3. And v B\\ M, .\Z.b = Z.m.

4. .\/.a = £b. . Why?

5. .'. AWB. Prop. XVI, cor. 1. State it

Exercises. 66. In prop. XVIII, if T cuts A, must it necessarily cut

M ? Why ? If it cuts M, must it necessarily cut B ? Why ?

67. Prove that a line parallel to the base of an isosceles triangle

makes equal angles with the sides or the sides produced. (The line may
pass above, through, or below the triangle, or through the vertex.)

68. If through any point equidistant from two parallels, two transver-

sals are drawn, prove that they will cut off equal segments of the parallels.

69. ABC is a triangle, and through P, the point of intersection of

the bisectors of Z B and ZC,a line is drawn parallel to BC, meeting AB
at M, and CA at N. Prove that MN = MB + CN.

70. Through the mid-point of the segment of a transversal cut off by

two parallels, a straight line passes, terminated by the parallels. Prove

that this line is bisected by the transversal.



Prop. XIX.] PARALLELS AND PARALLELOGRAMS. 49

Proposition XIX.

88. Theorem. In any triangle, (1) any exterior angle equals

the sum of the two interior non-adjacent angles ; (2) the sum

of the three interior angles is a straight angle.

A B

Given A ABC, with AB produced to X.

To prove that (1) AXBC = AA + A C;

(2) AA + AB + AC = st. Z.

Proof. 1. Suppose BY II AC, and A named as in the figure.

2. Then Z x = Z a, Why ?

and Ay = Ac. Why ?

3. .'.Ax + Ay, or Z XBC, = Z « + Ac,

which proves (1). Ax. 2

4. But Ax + Ay + Ab = st. A. Def. st. Z
5. .'. Aa + Ab + Ac = st. Z,

by substituting 3 in 4, which proves (2).

Notes. 1. Prop. XIX, (2), is attributed to Pythagoras.

2. The theorem is one of the most important of geometry. To it and

to its corollaries (p. 50) frequent reference is hereafter made.

Exercises. 71. PQR is a triangle having PQ = PR ; RP is produced

to S so that PS = RP; QS is drawn. Prove that QS _L RQ.

72. Prove prop. XIX, (2), by drawing through C, in the figure given,

aline II AB.

73. Also by assuming any point P on AB, drawing PC, and showing

that Z BPC + Z CPA = st. Z , and also equals the sum of the interior

angles.

74. State the reciprocal of prop. VIII, and prove or disprove it.
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Corollaries to prop. XIX. 1. If a triangle has one

rigid angle, or one obtuse angle, the other angles are acute.

For the sum of all three is a straight angle.

2. Every triangle has at least two acute angles. V
For if it had none or only one, the sum of the others would equal or

exceed what kind of an angle, and thus violate what theorem ?

3. From a point outside a given line not more than one

perpendicular can be drawn to that line.

For if two could be drawn, a triangle could be formed having how
many right angles, thus violating what corollary ?

4. If a triangle has a right angle, the two acute angles are

complemental.

For the sum of all three must equal two right angles ; therefore, etc.

5. If tivo triangles have tivo sides of the one respectively

equal to two sides of the other, and the angles opposite one

pair of equal sides right angles, or equal obtuse angles, the

triangles are congruent. I

For prop. XIV then applies ; the oblique angles cannot be supplemental.

6. If two angles of one triangle equal two angles of another,

the third angles are equal. (Why ?)

7. Two triangles are congruent if two angles and any side

of the one are respectively equal to the corresponding ptarts of

the other. (Why ?)

8. Each angle of an equilateral triangle is one-third of a

straight angle. (Why ?)

89. Definitions. A triangle, one of whose angles is a right

angle, is called a right-angled triangle.

A triangle, one of whose angles is an obtuse angle, is called

an obtuse-angled triangle.

A triangle, all of whose angles are acute, is called an acute-

angled triangle.

The side opposite the right angle of a right-angled triangle

is called the hypotenuse.
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90. Summary of Propositions concerning Congruent
Triangles. Two triangles are congruent if the following

parts of the one are equal to the corresponding parts of the

other :

1. Two sides and the included angle. Prop. I

2. Two angles and the included side. Prop. II

3. Three sides. Prop. XII

4. Two angles and the side opposite one, Prop. XIII

or, more generally, two angles and a side.

Prop. XIX, cor. 7

5. Two sides and the angle opposite one, provided that angle

Js not acute. Prop. XIV, and prop. XIX, cor. 5

If the angle is acute, then from two sides and the acute angle opposite

one of them two different triangles may be possible. This is therefore

known as the ambiguous case. If the side opposite the acute angle is not

less than the given adjacent side, the case is not ambiguous. Why ? Draw
the figures illustrating the ambiguous case.

These propositions can be summarized in one general propo-

sition : A triangle is determined 'when any three independent

parts are given, except in the ambiguous case.

It should be noted that the three angles are not three independent parts,

since when any two of them are given the third is determined. (Prop.

XIX.)

Exercises. 75. In a right-angled triangle, the mid-point of the hypote-

nuse is equidistant from the three vertices. (Suppose a line drawn from

the vertex C of the right angle making with a an angle equal to Z B.)

76. In a right-angled triangle, a perpendicular let fall from the vertex

of the right angle, upon the hypotenuse, cuts off two triangles mutually

equiangular to the original triangle.

77. If a JL x and b ± y, and x intersects y, then Zab — Z xy.

78. In the annexed figure, Z aai = Z bb x . Prove that

(1) Z aa\ — Z ab + Z ba-i
; (2) Z bb x = Z 6a i + Z ai&i. b,l

79. How many degrees in each angle of an isosceles /"b

right-angled triangle ? also of an isosceles triangle whose

vertical angle is 72° ? 178°? 60°?
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Proposition XX.

91. Theorem. Of all lines drawn to a given line from a

given external point, the perpendicular is the shortest; of

others, those making equal angles with the perpendicular

are equal ; and of two others, that which makes the greater

angle with the perpendicular is the greater.

Given PO±XX'; FA, FA', FB, oblique to XX1

, with

Z A'FO = Z OFA < Z OFB.

To prove
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Corollaries. 1. From a given externalpoint tit ere can be

two, and only two, equal obliques of given length to a given line.

Prove it by a reductio ad absurdum.

2. If from a point not on a perpendicular drawn t<> a line

at its mid-point, lines are drawn to the ends of the line, these

lines are unequal and the one cutting the perpendicular is the

greater. ,

Let Z be the point, not on OP, in the figure. Suppose ZA' to cut OP
at Y. Then ZA' = ZY+YA>ZA.

3. The converse of cor. 2 is true.

For if ZA' cuts OP, then ZA' > ZA, by cor. 2.

" ZA " " " " <• » '• " "

" Z is on " " " = " (Why ?)

.-. the Law of Converse (§ 73) evidently applies to this case.

4. Of two obliques from a point to a line, that which meets

the line at the greater distance from the foot of the perpen-

dicular is the greater.

For if OR>OA, then Z OPB > Z OPA. (Why ?) .-. prop. XX applies.

5. Two obliques from a point to a line, meeting that line at

equal distances from the foot of the perpendicular, are equal,

make equal angles with this line and also with the perpen-

dicular.

Give the proof in full.

6. Two equal obliques from a point to a line cut off equal

segments from the foot of the perpendicular.

Draw the figure. It will then be seen that prop. XIX, cor. 5, applies.

The _L is evidently an axis of symmetry (§ 68).

Exercises. 80. -A line perpendicular to the bisector of any angle of a

triangle makes an angle with either arm of that angle equal to half the

sum of the other two angles ; and, unless parallel to the base, it makes an

angle with the line of the base equal to half the difference of those angles.

81. In an isosceles triangle, the perpendicular from the vertex, the

median to the base, and the bisector of the vertical angle all coincide.
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92. Definitions. A polygon is said to be convex when no

side produced cuts the surface of the polygon.

A polygon is said to be concave when a side produced cuts

the surface of the polygon.

A polygon is said to be cross when the perimeter crosses

itself.

The word polygon is understood, in elementary geometry, to refer to

a convex or concave polygon unless the contrary is stated.

Convex. Concave. Cross.

A general quadrilateral.

If all of the sides of a polygon are indefinitely produced,

the figure is called a general

polygon.

If a polygon is both equi-

angular and equilateral, it is

said to be regular.

By the term regular polygon, a

regular convex polygon is under-

stood unless the contrary is stated.

A polygon is called a tri-

angle, quadrilateral, penta-

gon, hexagon, heptagon,

octagon, nonagon, decagon,

dodecagon, pentedecagon, n-gon

has 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, ...

The student, even if unacquainted with Latin or Greek, should under-

stand the derivation of these common terms. From the Latin are derived

the words and prefix tri-angle (three-angle), quadri-lateral (four-side),

nona- (nine) ; from the Greek are derived poly-gon (many-angle), penta-

(five), hexa- (six), hepta- (seven), octo- (eight), deca- (ten), dodeca- (twelve),

Much light will be thrown on the meaning of various geometric

terms by consulting the Table of Etymologies in the Appendix.

Regular convex
polygon.

Regular cross

polygon.

according as it

?i-sides.
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Proposition XXI.

93. Theorem. The sum of the interior angles of an n-gon

is (n — 2) straight angles.

P

Given 1\ a polygon of n sides.

To prove that the sum of the interior angles is (u — 2) straight

angles.

Proof. 1. P may be divided into (n — 2) A by diagonals which

do not cross
; for,

(a) A 4-gon (quadrilateral) is a A + a A,

.-. 'J A, or (4-2) A.

(b) A 5-gon (pentagon) is a 4-gon + a A,

.-. 3 A, or (5-2) A.

(c) A 6-gon (hexagon) is a 5-gon + a A,

.-. 4 A. or (6-2) A.

(d) And every addition of 1 side adds 1 A.

(e) .*. for an n-gon there are (n — 2) A.

2. The sum of the A of each A is a st. Z. Prop. XIX

3. .*. the sum of the interior A of an w-gon is (// — 2)

st. A, because these equal the sum of the A of the A.

Corollary. If each of two angles of a quadrilateral is a

right angle, the other two angles are supplemental. (Why ?)

Exercise. 82. How many diagonals in a common convex pentagon ?

hexagon ?
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94. Generalization of Figures. If a thermometer registers 70°

above zero, it is ordinarily stated, in scientific works, that it

registers + 70°, while 10° below zero is indicated by — 10°,

the sign changing from + to — as the temperature decreases

through zero. Similarly, west longitude is represented by the

sign -f-, while longitude on the other side of 0° (i.e. east) is

represented by the sign — , the longitude changing its sign in

passing through zero. So in speaking of temperature it is

said that 10° + (— 10°) = 0, meaning thereby that if the tem-

perature rises 10° from 0, and then falls 10°, the result of

the two movements is the original temperature, 0.

This custom holds in geometry. Thus, in this figure, if the

segment between B and C is thought of as extending from B
to C, it would be named BC ; and,

as is usually done in geometry with
,

~

lines thought of as extending to the

right, it would be considered Sijyositive line. But if it is thought

of as extending from C to B, it would be named CB, and con-

sidered a negative line. Hence it is said that BC + CB = 0,

an expression borrowed from algebra, where it would appear

in a form like x + (— x) = 0.

Similarly, with regard to angles : the turning of an arm in

a sense opposite to that of a clock-hand, counter-clockwise,

is considered positive, while the turning

in the opposite sense is considered nega-

tive. Thus, Z XOA is considered posi-

tive, but the acute Z AOX is considered

negative, and this is indicated by the state-

ment, — Z.XOA — acute Z A OX. Hence, as in the case of

lines, Z XOA + (- Z XOA) = Z XOA + acute Z AOX= zero.

On this account we pay special attention to the manner of

lettering angles, distinguishing between Z XOA and Z A OX.

It is only recently that negative angles have been considered

in elementary geometry, and hence the older works paid no

attention to the order of the naming of the arms.
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95. These considerations enable us to generalize man)- fig-

ures, with interesting results. Thus, prop. XXI is true for a

cross polygon as well as for the simple cases usually consid-

ered. If, in Fig. 1, P is moved through AB to the position

C

Fig. 1. Fig. 2.

shown in Fig. 2, we shall still have Z A (which has passed

through and has become negative) + Zi?-fZC + ZP
(which is now reflex) = 2 st. angles.

Exercises. 83. Prove the last statement made above.

84. How many points of intersection, at most, of the sides of a gen-

eral quadrilateral ? pentagon ?

85. How many diagonals, at most, has a general quadrilateral ?

86. Prove prop. XXI by connecting each vertex with a point within

the figure, thus forming n &, giving n st. A, and then subtracting the two

around 0.

87. In an isosceles triangle, the perpendiculars from the ends of the

base to the opposite sides are equal.

88. H the bisector of the vertical angle of a triangle also bisects the

base, the triangle is isosceles.

89. H the base AB of A ABC is produced to X, and if the bisectors

of Z XBC and ABAC meet at P, what fractional part is A P of A C ?

90. Given two parallels and a transversal, what angle do the bisectors

of the interior angles on the same side of the transversal make with each

other ?

91. H one angle of an isosceles triangle is given, and it is known
whether it is the vertical angle or not, then the other two angles are

determined.
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Proposition XXII.

96. Theorem. The sum of the exterior angles of any poly-

gon is a perigon.

Given P and Q, two ^-gons.

To prove that the sum of the exterior A = 360° in each »-gon.

Proof. 1. In P, each interior Z -f its adjacent exterior Z
= 180°. § 14, def. st. Z

2. /. sum of int. and ext. A— n -180

3. But sum of int. A = (n - 2) • 180°.

Ax. 6

Why ?

Ax. 34. .-. sum of ext. A = 2 • 180° = 360°.

The proof for Q is the same, if Z a is considered negative.

Exercises. 92. Each exterior angle of an equilateral triangle equals

how many times each interior angle ?

93. Each exterior angle of a regular heptagon equals what fractional

part of each interior angle ?

94. Each exterior angle of a regular n-gon equals what fractional

part of each interior angle ? See if the result found is true if n = 3, or 4.

95. Is it possible for the exterior angle of a regular polygon to be

70° ? 72°? 75°? 120°?

96. Prove prop. XXII independently of prop. XXI by taking a point

anywhere in the plane of the figure (inside or outside

the polygon, or on the perimeter) and drawing par-

allels to the sides from that point, and showing that

the sum of the exterior angles equals the perigon

about that point.
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97. Definitions. A quadrilateral whose opposite sides are

parallel is called a parallelogram.

A quadrilateral that lias one pair of opposite sides parallel

is called a trapezoid.

Trapezium is a term often applied to a quadrilateral no two of whose
sides are parallel.

By the definition of trapezoid here given it will be seen that the paral-

lelogram may be considered a special form of the trapezoid.

The parallel sides of a trapezoid are called its bases, and are distin-

guished as upper and lower.

If the two opposite non-parallel sides of a trapezoid are equal, the

trapezoid is said to be isosceles.

Q Upper Base
c

Lower Base

D^
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Proposition XXIII.

98. Theorem. Any two consecutive angles of a parallelo-

gram are supplemental, and any two opposite angles are

equal.

D

7

Given O ABCD.

To prove that . (1) Z A + Z B = st. Z,

(2) AA = AC.

Proof. 1. Z ^ + Z 7? = st. Z, which proves (1).

Prop. XVII, cor. 2

2. Z B + Z C = st. Z. Why ?

3. .\ZA + ZB = ZB + ZC. Why ?

4. .-. Z .4 = Z C, which proves (2). Why ?

Corollary. 7/ o«e angle of a parallelogram is a right

angle, all of its angles are right angles. (Why ?)

99. Definitions. If one angle of a parallelogram is a right

angle, the parallelogram is called a rectangle.

By the corollary, all angles of a rectangle are right angles.

A parallelogram that has two adjacent sides equal is called

a rhombus.

It is shown in prop. XXIV, cor. 1, that all

of its sides are equal.

A rectangle that has two adjacent

sides equal is called a square.

It is shown in prop. XXIV, cor. 1, that all

of its sides are equal. A square is thus seen to be a special form of a

rhombus.

Rhombus. Square.
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Proposition XXIV.

100. Theorem. In any varallelogram, (1) either* diagonal

divides it into two congruent triangles, (2) the opposite sides

are equal.

B

Given O ABCD.

To prove that (1) A ABC s? A CDA,

(2) AB = DC.

Proof. 1. In the figure, Zx = Z.x', Ay — Z-y 1

, and AC = AC.

Prop. (?)

2. .-. A ABC^A CDA, which proves (1). Prop. II

3. .'. AB = DC, which proves (2). § 57

Similarly for diagonal BD, and sides BC and AD.

Corollaries. 1. If two adjacent sides of a parallelogram

are equal, all of its sides are equal.

For by step 3 the other sides are equal to these.

Hence, as stated in § 99, all of the sides of a rhombus are equal.

2. The diagonals of a parallelogram bisect each other.

For if diagonal BD cuts AC at O, then, by prop. II, A ABO= A CDO,
whence AO = OC, and BO = OB.

In the annexed figure, if a and a' are perpendicular to P and P' , two

parallels (prop. XVII, cor. 1), they are parallel

(prop. XVI, cor. 3). Hence a = a', by prop. P

XXIV. This fact is usually expressed by p—
saying,

3. Tico parallel lines are everywhere equidistant from each

other.
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Proposition XXV.

101. Theorem. If a convex quadrilateral has tivo opposite

sides equal and parallel, it is a parallelogram.

Given a convex quadrilateral ABCD, with AB — DC, and

AB II DC.

To prove that ABCD is a parallelogram.

Proof. 1. In the figure Z x = Z x',

BD = BD, and AB = DC.

2. .\A ABD 5£ A GOB, and Zy = Z y'.

3. .-. #C II JlA

4. .'. ABCD is a O by definition.

Prop. (?)

Given

Prop. (?)

Prop. XVI

Exercises. 104. It is shown in Physics that if two forces are pulling

from the point J5, and the first force is represented (see fig. to prop. XXV)
by BA, and the second by BC, the resultant (resulting force) will be rep-

resented by the diagonal BD. Show that, if the two forces do not pull in

the same line, the resultant is always less than the sum of the two forces.

105. If two equal lines bisect each other at right angles, what figure

is formed by joining the ends ?

106. If the diagonals of a rectangle are perpendicular to each other,

prove that the rectangle is a square.

107. On the diagonal BD of O ABCD, P and Q are so taken that

BP = QD. Show that APCQ is a parallelogram. Suppose P is on DB
produced, and Q on BD produced.

108. Prove that the diagonals of a rectangle are equal. Prove that

the diagonals of a rhombus arc perpendicular to each other and bisect

the angles of the rhombus.

1
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Proposition XXVI.

102. Theorem. If two parallelograms have two adjacent

*ides and any angle of the one respectively equal to the

corresponding parts of the other, they are congruent.

B' A A B

Given LU ABCD, A'B'CD', in which AB = A'B\ AD =
A'D'. andZD = ZD'.

To prove that O ABCD ^ O A'B'CD'.

Proof. 1. ZA = ZA'.ZB = Z B\ Z C = Z C, for they are

equal or supplemental to D or D'. Prop. XXIII

2. CD = CD', BC = B'C, for they are equal to sides

that are known to be equal. Pro}). XXIV

3. Apply lj ABCD to O A'B'CD' so that AB coin-

cides with its equal A'B', A falling on A'. Then AD
can be placed on AD' because Z A = Z .!'. Then

D will fall on D', because AD = A'D'. Similarly,

C will fall on C\ and C£ on C'£\

Corollaries. 1. Two rectangles are congruent if two ad-

jacent sides of the one are equal to any two adjacent sides of

the other. (Why ?)

2. Two squares are congruent if a side of the one equals ><

side of the other. (Why?)

Exercises. 109. Is a parallelogram determined when any two sides

and either diagonal are given ? when two adjacent sides and either diag-

onal are given ?

110. The angle- at either base of an isosceles trapezoid are equal.
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Proposition XXVII.

103. Theorem. If there are two pairs of lines, all of which

are parallel, and if the segments cut off by each pair on any

transversal are equal, then the segments cut off on any other

transversal are equal also.

Given four parallels, of which JPX , P2 cut off a segment a,

and P3 j P4 cut off an equal segment b, on a trans-

versal T, and cut off segments a', b', respectively,

on transversal T.

To prove that
v

a' = b'.

Proof. 1. Suppose x and y II T as in the figure.

2. Then, in the figure, Z wx = Z P2T = Z P4
T = Z zy.

Prop. XVII, cor. 2

3. And Z a'w = Z b'z. Why ?

4. And x = a = b = y. Prop. XXIV

5. .'.A wa'sc = A zb'y, and a' = b'. Prop. XIX, cor. 7

Corollaries. 1. 7^ «- system of paral-

lels cuts off equal segments on one trans-

versal, it does on every transversal.

For if a = 6i or b-2 , a' = b\ or 0%, respectively,

and similarly for the other transversals.

2. The line through the mid-point of one side of a triangle^

parallel to another side, bisects the third side.

Draw a third parallel through the vertex. Then cor. 1 proves it.



Prop. XXVII.] PARALLELS AND PARALLELOGRAMS. 65

3. The line joining the mid-points of two sides of a triangle

is parallel to the third side.

For if not, suppose through the mid-point of one of those sides a line

is drawn parallel to the base ; then this must bisect the other side, by

cor. 2 ; .-.it must coincide with the line joining the mid-points, or else a

side would be bisected at two different points. (This is the converse of

cor. 2. Draw the figure.)

4. The line joining the mid-points of two sides of a triangle

equals half the third side. (Prove it.)

Exercises. 111. The line joining the mid-points of the non-parallel

sides of a trapezoid is parallel to the bases.

112. In a right-angled triangle the mid-point of the hypotenuse is

equidistant from the three vertices. (This exercise has

been given before, and will be repeated, since it is

important and admits of divers proofs. It is here

easily proved by prop. XXVII, cor. 2 ; for if a = b,

then a' — b' \ but p II e, .-. p ± a'. .-. x = b = a.) a ' b
'

113. The lines joining the mid-points of the sides of a triangle divide

it into four congruent triangles.

114. If one of the equal sides CB of an isosceles triangle ABC is pro-

duced through the base, and if a segment BD is laid off on the produced

part, and an equal segment AE is laid off on the other equal side, then

the line joining D and E is bisected by the base. (Consider the cases in

which BD< CB, BD = CB, BD>CB.)

115. If the mid-points of the adjacent sides of any quadrilateral are

joined, the figure thus formed is a parallelogram. (Consider this theorem

for cases of concave, convex, and cross quadrilaterals, and for the special

case of an interior angle of 180°.)

116. The lines joining the mid-points of the opposite sides of a quadri-

lateral bisect each other. Consider for the special cases mentioned in

ex. 115.

117. The line joining the mid-points of the diagonals of a quadri-

lateral, and the lines joining the mid-points of its opposite sides, pass

through the same point.

118. P and Q are the mid-points of the sides AB and CD of the

parallelogram ABCD. Prove that PD and BQ trisect (divide into three

equal segments) the diagonal A C.
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EXERCISES.

119. "What is the sum of the interior angles of a polygon of 20 sides ?

of 30 sides ?

120. How many degrees in each angle of a regular polygon of 12 sides ?

of 20 sides ?

121. How many sides has a polygon the sum of whose interior angles

is 48 right angles ?

122. The vertical angle of a certain isosceles triangle is 11° lo' 20";

how large are the base angles ?

123. The exterior angle of a certain triangle is 140°, and one of the

interior non-adjacent angles is a right angle ; how many degrees in each

of the other two interior angles ?

124. Each exterior angle of a certain regular polygon is 10° ; how
many sides has the polygon ?

125. If P is any point on the side BC of A ABC, then the greater of

the sides AB, AC, is greater than AP.

126. If the diagonals of a quadrilateral bisect each other, prove that the

quadrilateral is a parallelogram. Of what corollary is this the converse ?

Prove that the diagonals of an isosceles trapezoid are equal.

127. Conversely, prove that if the diagonals of a trapezoid are equal,

the trapezoid is isosceles.

128. Is a parallelogram determined when its two diagonals are given ?

when its two diagonals and their angle are given ?

129. ABC is a triangle ; AC is bisected at M; BM is bisected at N;
AN meets BC at P; MQ is drawn parallel to AP to meet BC at Q.

Prove that BC is trisected (see ex. 118) by P and Q.

130. A, C are points on the same side of XX' ; B is the mid-point of

AC; through A, B, C parallels are drawn cutting XX in A', B', C*
Prove that AA' + CC = 2 BB'.

131. A straight line drawn perpendicular to the base AB of an isos-

celes triangle ABC cuts the side CA at B and BC produced at E
;
prove

that CEB is an isosceles triangle.

132. ABC is a triangle, and the exterior angles at B and C are

bisected by the straight lines BB, CB respectively, meeting at B
;
prove

that Z. CBB + jZi = a right angle.

133. In the triangle ABC the side BC is bisected at E, and AB at G;

AE is produced to F so that EF = AE, and CG is produced to H so

that Gil = CG. Prove that F, B, iJare in one straight line.
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3. PROBLEMS.

104. Definitions. A curve is a line no part of which is

straight.

Cire«2£/W£%

105. A circle is the finite portion of a plane bounded by a

curve, which is called the circumference,

and is such that all points on that line

are equidistant from a point within the

figure called the center of the circle.

A circle is evidently described by a line-seg-

ment making a complete rotation in a plane,

about a fixed point (the center).

106. A straight line terminated by the center and the cir-

cumference is called a radius, and a straight line through the

center terminated both ways by the circumference is called

a diameter of the circle.

107. A part of a circumference is called an arc.

Note. The above definitions are substantially those usually met in

elementary geometries. The student will find, after leaving this subject,

that the word circle is often used for circumference. Indeed, there is

good authority for so using the word even in elementary geometry.

108. From the above definitions the following corollaries

may be accepted without further proof :

1. A diameter of a circle is equal to the sum of two radii of

that circle.

2. Circles having the some rodii ore congruent.

3. A point is within a circle, on its circumference, or outside

the circle, according as the distance from that point to the

center is less than, equal to, or greater than, the radius.
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109. It now becomes necessary to assume certain postulates

relating to the circle.

Postulates of the Circle.

1. All radii of the same circle are equal, and hence all

diameters of the same circle are equal.

2. If an unlimited straight line passes through a point

within a circle, it must cut the circumference at least twice,

and so for any closed figure.

That it cannot cut the circumference more than twice is proved in III,

prop. VI, cor.

3. If one circumference intersects another once, it intersects

It again.

4. A circle has but one center.

5. A circle may be constructed with any center, and with a

radius equal to any given line-segment.

This postulate requires the use of the compasses. As has been stated,

the only instruments allowed in elementary geometry are the compasses and

the straight-edge, a limitation due to Plato. In the more advanced

geometry, where other curves than the circle are studied, other instru-

ments are permitted.

110. Order to be observed in the solution of problems

:

Given. For example, the angle A.

Required. For example, to bisect that angle.

Construction. A statement of the process of solving,

using only the straight-edge and compasses in drawing the

figure described.

Proof. A proof that the construction has fulfilled the

requirements. %

Discussion. Any consideration of special cases, of the

limitations of the problem, etc. If a problem has but a

single solution, as that an angle may be bisected but once,

the solution is said to be unique.
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Proposition XXVIII.

111. Problem. To bisect a given angle.

Given the A AOB.

Required to bisect it.

Construction. 1. With center describe an arc cutting AO&t
C, and OB at D. § 109, post, of O

2. Draw DC. § 28. post. st. line

3. Describe arcs with centers D, C, and radius DC.
Post. (?)

4. Join their intersection P, with 0. Post. (?)

Then Z AOB is bisected, YY' being an axis of

symmetry (§ 68).

Proof. 1. Draw DP, CP';

then OD = DC, DP = DC, DC = CP.

..DP = CP.

OP = OP.

.'.A OCP^A ODP,

and Z COP = ZPOD.

§ 109, 1

Ax. (?)

But

COROJ

Prop. XII

An angle may be divided into 2, Jf, 8, 16,

£", equal angles. (How ?)
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112. Note on Assumed Constructions. It has been assumed, up to

prop. XXVIII, that all constructions were made as required for the

theorems. Thus an equilateral triangle has been frequently mentioned,

although the method of constructing one has not yet been indicated
;

a regular heptagon has been mentioned in ex. 93, and reference might

be made to certain results following from the trisection of an angle,

although the solutions of the problems, to construct a regular heptagon,

and to trisect any angle, are impossible by elementary geometry. But

the possibility of solving such problems has nothing to do with the

logical sequence of the theorems ; one may know that each angle of a

regular heptagon is 5 • ISO , whether the regular heptagon admits of

construction or not. Nevertheless, an important part of geometry con-

cerns itself with the construction of certain figures— a part of utmost

practical value and of much interest to the student of mathematics.

113. Suggestions on the Solution of Problems. The methods

of logically undertaking the solution of problems will be dis-

cussed at the close of Book III. But at present one method,

already suggested on p. 35, should be repeated : In attempting

the solution of a problem, assume that the solution has been

accomplished ; then analyze the figure and see what results

follow; then reverse the process, making these results precede

the solution.

For example, in prop. XXVIII, assume that ZAOB has been bisected

by YY' ; if that were done, and if any point, P, on YY' were joined

to points equidistant from O, on the arms, say C and D, then A OCP
would be congruent to A ODP ; now reverse the process and attempt to

make A OCP congruent to A ODP ; this can be done if OD can be made
equal to OC, and PD to PC, because OP= OP ; but this can be done

by § 109, 5.

This method of attacking a problem, without which the

student will grope in the dark, is called Geometrical Analysis.

Exercises. 134. Give the solution of prop. XXVIII, using P' instead

of P. Why is P better than P' for practical purposes ? In what case

would the construction fail for the point P' ? In that case how many
degrees in Z AOB ?

135. In prop. XXVIII, in what case would P' fall below O ? Give

the solution in that case, after connecting P' and and producing P'O.
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Proposition X XIX.

114. Problem. To draw a perpendicular to a given line

from a given internal point.

y

\

o \c

Xp
Y

Solution. This is merely a special case of prop. XXVIII,
the case in which Z AOB is a straight angle. (Why ?) The

construction and. proof are identical with those of prop.

XXVIII, and the student should give them to satisfy himself

of this fact.

Exercises. 136. What kind of a quadrilateral is CPDP' ? Prove it.

137. Prove that any point on BA is equidistant from P and P'. Also

that any point on YY' is equidistant from D and C.

138. In step 3 of the construction of prop. XXVIII might the radius

equal two times DC ? If so, complete the solution. Is there any limit

to the length of the radius in that step ?

139. In the figure of prop. XXVIII, suppose ZPCO = 130°. Find

the number of degrees in the various other angles, not reflex, of the

figure.

140. In the figure of prop. XXVIII, prove that the reflex angle BOA
is bisected by YY', that is, by PO produced.

141. Also prove that YY' is the perpendicular bisector of DC.

142. Also prove that if is connected with P and with P', OP* will

fall on OP. (Prel. prop. VIII.)
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Proposition XXX.

115. Problem. To draw a perpendicular to a given line

from a given external point.

A

s / /

A
s
—

"\

Given the line XX' and the external pt. P.

Required to draw a perpendicular from P to XX'.

Construction. 1. Draw PR cutting XX'. § 28

2. With center P and radius PR const, a O.

§ 109, post, of O

3. Join A and A', where the circumference cuts XX',

with P. § 28, post, of st. line

4. Bisect Z A'PA. Prop. XXVIII

The bisector, PO, is the required perpendicular.

Proof. 1. PA = PA',
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Proposition XXX I.

116. Problem. To bisect a given line.

Given the line AB.

Required to bisect it.

Construction. 1. With, centers A. B, and equal radii describe

arcs intersecting at P and P'. Post. (?)

2. Draw PP'. Post. (?)

3. Then PP' bisects AB.

Proof.

(Let the student give it. Draw AP\ P'B, BP, PA.)

Exercises. 145. Through a given point t<:> draw a line making equal

angles with the arms of a given angle. Discuss for various relative posi-

tions of the point.

146. To draw a perpendicular to a line from one of its extremities,

when the line cannot be produced. (Ex. 112 suggests a plan.)

147. Through two given points on opposite sides of a given line draw

two lines which shall meet in the given line and include an angle which

is bisected by that line.

148. If two isosceles triangles have a common base, the straight line

through their vertices is a perpendicular bisector of the base.
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Proposition XXXII.

117. Problem. From a given point in a given line to draw

a line making with the given line a given angle.

C B

Given the line AB, the point P in it, and the angle 0.

Required from P to draw a line making with AB an angle

equal to Z 0.

Construction. 1. On the arms of ZO lay off OC — OB by

describing an arc with center O and any radius OC.

§ 109, post, of O
2. Draw CD. § 28, post, of st. line

3. With center P and radius OC, describe a circum-

ference cutting PB in C. Post. (?)

4. With center C and radius CD, describe an arc cut-

ting the circumference in D'. Post. (?)

Draw PD, and this is the required line.

Proof. Draw CD'; then,

A PCD' and A OCD being mutually equilateral,

Why ?

A PCD ^ A OCD,

and Z CPD' = Z COD. Prop. XII

Exercises. 149. Prove that, the circumferences must cut at D' as

stated in step 4.

150. See if the solution of prop. XXXII is general enough to cover

the cases where the Z O is straight, reflex, a perigon.

151. From a given point in a given line to draw a line making an
angle supplemental to a given angle.
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Proposition XXXIII.

118. Problem. Through a given point to draw a line paral-

lel to a given line.

V

Given the line AB and the point P.

Required through P to draw a line parallel to AB.

Construction. 1. Join P with any point. 0, on AB.

§ 28. post, of st. line

2. From P draw PC making Z OPC = Z POA. (?)

Then PC is the required line.

Proof. PCWAB. Why?

Discussion. The solution fails if P is on the unlimited line AB.

Exercises. 152. Through a given point to draw a line making a given

angle with a given line. Notice that the solution is not unique.

153. Through a given point to draw a transversal of two parallels,

from which the parallels shall cut off a given segment. Discussion should

show when there are two solutions, when only one, when none.

154. To construct a polygon (say a hexagon) congruent to a given

polygon.

155. Through two given points to draw two lines forming with a

given unlimited line an equilateral triangle.

156. Three given lines meet in a point ; draw a transversal such that

the two segments of it, intercepted between the given lines, may be equal.

Is the solution unique ?

157. From P, the intersection of the bisectors of two angles of an equi-

lateral triangle, draw parallels to two sides of the triangle, and show that

these parallels trisect (see ex. 118) the third side.

fl
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Proposition XXXIV.

119. Problem. To construct a triangle, given the three

,.

Given a, b, c, three sides of a triangle.

Required to construct the triangle.

Construction. 1. With the ends of b as centers, and with radii

a, c, describe circumferences. § 109

2. Connect either point of intersection of these circum-

ferences with the ends of b. § 28

Then is the required A constructed.

Proof. It was constructed on b, and the other sides equal a, c.

§ 109, 1

Discussion. If the two circumferences do not intersect, a

solution is impossible, for then either a > b + c,

a = b + c, a = c — b, or a < c — b, and in none of

.
these cases is a triangle possible.

Prop. VIII and cor.

Corollary. To construct an equilateral triangle on a given

line-segment.

The first proposition of Euclid's "Elements of Geometry." Euclid

proceeded upon the principle of logical sequence of propositions, with

no attempt at grouping the theorems and the problems separately. He
found this corollary (a problem) the best proposition with which to begin

his system.

Exercise. 158. In a given triangle inscribe a rhombus, having one of

its angles coincident with a given angle of the triangle, and the other

three vertices on the three sides of the triangle.
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Propositiox XXXV.

120. Problem. To construct a triangle, given two sides and

the included angle.

b

Given the sides a, b, and the included angle k.

Required to construct the triangle.

Construction. 1. From either end of b draw a line making with

b the angle k. Prop. XXXII

2. On that line mark off a by describing an arc of

radius a. § 109

3. Join the point thus determined with the other end

of b. § 28

Then the triangle is constructed.

Proof. By step 2 the line marked off equals a, and by step 1

Z-b = Z. k, and it is constructed on b.

Exercises. 159. To trisect a right angle. (Construct an equilateral

triangle on one arm.)

160. On the side AC of A ABC to find the point P such that the par-

allel to AB, from P, meeting BC at Z>, shall have PD = A P.

161. To construct a triangle, having given two angles and the perpen-

dicular from the vertex of the third angle to the opposite side.

162. Draw a line parallel to a given line, so that the segment inter-

cepted between two other given lines may equal a given segment.

163. Given the three mid-points of the sides of a triangle, to construct

the triangle.

164. Through a given point P in an angle AOB to draw a line, termi-

nated by OA and 07?, and bisected at P. (Through P draw a II to BO
cutting OA in X ; on XA lay off XY = OX ; draw YP.)

'0/li-o*
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Proposition XXXVI.

121. Problem. To construct a triangle, given two sides and

the angle opposite one of them.

Given two sides of a triangle, a, b, and Z k opposite a.

Required to construct the triangle.

Construction. 1. At either end of b draw a line making with b

an angle equal to Z k. Prop. (?)

2. With the other end of b as a center, and a radius a,

describe a circumference. Post. (?)

3. Join the points where the circumference cuts the

line of step 1, with the center. Post. (?)

Then the triangle is constructed.

Proof. For it has the given side b, and the given Z k, and

the lines of step 3 equal a. § 109, 1

Discussion. If the circumference cuts the line twice, two solu-

tions are possible, and the triangle is ambiguous

(see prop. XIV). If it touches the line without

cutting it, what about the solution ? If it does not

meet the line, no solution is possible. If Z k is

right or obtuse, or if a<£b, only one solution is

possible (prop. XIX, cor. 5),

Draw a figure for each of these cases, and show from the drawings

that the statements made in the discussion are true.

Exercise. 165. XX% YY', are two given lines through 0, and P is a

given point ; through P to draw a line to XX', which shall he hisected

by YY'. Investigate for various positions of P. as where P is within

the ZXOY. the Z YOX\ on OY, or on OX.
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Proposition XXXVII.

122. Problem. To construct a triangle, given two angles

and the included side.

X
A A B B A B

Given two angles, A, B, and the included side AB.

Required to construct the triangle.

Construction. 1. From A draw AX making with AB an angle

equal to Z A. Prop. XXXI

1

2. Similarly, from B draw BY, making an angle equal

to Z B." Prop. XXXII
C being the intersection of AX, BY, then ABC is

the required A.

Proof. (Let the student give it.)

Discussion. If AX, BY, do not intersect, what follows ?

Proposition XXXVIII.

123. Problem. To construct a triangle, given two angles

and a side opposite one of them.

Solution. Subtract the sum of the angles (found by prop.

XXXII) from 180° and thus find the third angle (prop. XIX).

The problem then reduces to prop. XXXVII.

Proposition XXXIX.

124. Problem. To construct a square on a given line as

a side.
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4. LOCI OF POINTS.

125. The place of all points satisfying a given condition is

called the locus of points satisfying that condition.

Indeed, the word locus (Latin) means simply place (English, locality,

locate, etc.) ; the plural is loci.

For example, if points are on this page and are one inch from the left

edge, their locus is evidently a straight line parallel to the edge.

Furthermore, the locus of points at a given distance r from a fixed

point is the circumference described about with a radius r. This

statement, although very evident, is made a theorem (prop. XL) because

of the frequent reference to it.

Of course in this discussion, as elsewhere in Books I—V,

the points are all supposed to be confined to one plane.

In Plane Geometry the loci considered will be found to con-

sist of one or more straight or curved lines.

It is a common mistake to assume that a locus, which one is trying to

discover, consists of a single line. It may consist of two lines, as in prop.

XLII.

126. In proving a theorem concerning the locus of points it

is necessary and sufficient to prove two things :

1. That anypoint on the supposed locus satisfies the condition;

2. That any point not on the supposed locus does not satisfy

the condition.

For if only the first were proved, there might be some other

line in the locus ; and if only the second were proved, the sup-

posed locus might not be the correct one.

Exercise. 166. State, without proof, what is (1) the locus of points

\ in. from a given straight line
; (2) the locus of points equidistant from

two parallel lines.

k
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Proposition XL.

127. Theorem. The locus of points at a given distance

from a given point is the circumference described about that

point as a center, with a radius equal to the given distance.

Given the point 0, the line r. and the circumference C
described about with radius /.

To prove that C is the locus of points r distant from 0.

Proof. 1. Let P x , P2, P3 be points on C\ within the circle, and

without the circle, respectively.

Let OP2 produced meet C in B. and OP3 meet Cm A.

2. Then OP1
= OB = OA = r, § 109, 1

and OP, < OB, and OPz > OA. Ax. 8

3. .*. any point on C is r distant from 0, and any point

not on C is not r distant from 0.

Exercises. 167. Has it been proved in prop. XL that the required

locus may not be merely the arc cut off by r and OP\ ? If so, where ?

168. What is the locus of points at a distance of i in. from the above

circumference, the distance being measured on a line through 0?

169. Lighthouses on two islands are 10 miles apart ; show that there

are two points at sea which are exactly 12 miles from each.

170. How would you find, by the intersection of two loci, a point on

this page 1 in. from in the above figure, and 3 in. from the right edge

of the paper ?
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Proposition XLI.

128. Theorem. The locus of points equidistant from two

given points is the perpendicular bisector of the line joining

them.

Y

Given two points Xand X\ and IT' _L XX' at the mid-

point 0.

To prove that YY' is the locus of points equidistant from X
and X\

Proof. 1. Let P be any point on YY', and P' be any point not

on YY'.

Draw PX, PX', P'X, P'X'.

2. Then PX= PX', Prop. XX, cor. 5

and P'X' > P'X. Prop. XX, cor. 2

3. Hence any point on YY' is equidistant from X and

X', but any point not on YY' is unequally distant

from X and A"'.

.-. YY' is the locus. § 125, def.

Exercises. 171. Required to find a point which is 1 in. from X and

| in. from X' in the above figure. Is there more than one such point ?

172. Required to find a point which is equidistant from X and X' in

the above figure, and 1 in. from 0. Is there more than one such point ?
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Proposition XLII.

129. Theorem. The locus of points equidistant from two

given lines consists of the- bisectors of their included angles.

Given OA and OB, two lines intersecting at 0, and XX'
and YY' the bisectors of the angles at 0.

To prove that XX' and YY' form the locus of points equidis-

tant from OA and OB.

Proof. 1. Let Q be any point on neither XX' nor YY'; let

QB _L OB, QA _L OA, QA cut OX in P, PA' _L 0#.

Draw QA'.

Since $ may be moved, P may be considered as any

point on OX.

2. Then A OAP ^ A OA'P,

and JP = A'P. Prop. XIX, cor. 7

3. Also, A'P + PQ> A'Q > BQ. Why ?

4. .-. AQ,ovAP + PQ> BQ. Why?

5. .\ any point P on XX' (or on 77') is equidistant

from OA and 0^, but any point Q on neither XXi

nor 77' is unequally distant from OA and OB.
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Corollaries. 1. If the given lines are parallel, the locus

is a parallel midway between them. (Prove it.)

The student should imagine the effect of keeping points A, A' fixed,

and moving farther to the left. YY' moves with 0, but XX' keeps

its position as the lines approach the condition of being parallel.

2. The locus ofpoints at a given distance from a given line

consists of a pair ofparallels at that distance, one on each side-

of the fixed line. (Prove it.)

130. Definitions.

Three or more lines which Three or more points which

meet in a point are said to be lie in a line are said to be

concurrent. collinear.

Proposition XLIII.

131. Theorem. The perpendicular bisectors of the three

sides of a triangle are concurrent.

Given a triangle of sides a, b, c, and x, y, z their respective

perpendicular bisectors.

To prove that x, y, z are concurrent.

Proof. 1. x and y must meet as at P. Prop. XVII, cor. 4

2. Then P is equidistant from B and C, and C and A.

Prop. XLI

3. .'. P is on the perpendicular bisector of c ; Why ?

i.e. z passes through P.
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Corollaries. 1. The point equidistant from three non-

coUinear points is the intersection of the perpendicular bisectors

of any two of the lines joining them.

Step 2.

2. There Is one circle, and only one, whose circumference

passes through three non-collinear points.

Let A, B, C be the three points. Then by step 2 they are equidistant

from P, the intersection of x and y.

And v x and y contain all points equidistant from A, B, and C, and

can intersect but once, there is only one point P.

And v there is only one center and one radius, there is one and only

one circle.

3. Circumferences having three points in common are iden-

tical.

Otherwise cor. 2 would be violated.

4. If from a point more than two lines to a circumference

are equal, that point Is the center of the circle.

For suppose a circumference through A, B. C, and suppose PA = PB
= PC.

Now with center P and radius PA a circumference can be described

through A, B, C, because it is given that

PA=PB = PC. § 108, cor. 3

And this is identical with the given circumference.

Prop. XLIIL cor. 3

.-. its center must be identical with the given center, since a O cannot

have two centers. § 109, 4

Exercises. 173. The proof of prop. XLIII is, of course, the same if

the triangle is right-angled or obtuse-angled. The figures, however,

show interesting positions for P ; consider them.

174. Required to find a point at a given distance d from a fixed point

0, and equidistant from two given intersecting lines. How many such

points can be found in general ?

175. Required to find a point equidistant from two given intersecting

lines, and equidistant from two given points. How many such points

can be found in general ?
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Proposition XL IV.

132. Theorem. The bisectors of the interior and exterior

angles of a triangle are concurrent four times by threes.

.-'/^

F
>-' A.

XR

Given the A ABC, and the bisectors of the interior and

exterior angles, lettered as in the figure.

To prove that these bisectors are concurrent four times by

threes ; that is, 3 meet at P1? 3 at P2 , etc.

Proof. 1. v Z CAM > Z CBM, .'. Z GAM > Z HBM. Prop. V

2. .-. AG and BR meet as at P3 . Prop. XVII, cor. 3

3. Z HBM+ ZP^ < Z 5 + Z A < 180°. Prop. XIX
.'. BH and .^P meet as at Pv Prop. XVII, cor. 3

4. PP_L PiT, and AG _L JP, Prel. prop. IX

.*. PP and AG meet as at P4 . Prop. XVII, cor. 4

5. Also, Px is equidistant from a and c, from c and b,

and .'. from a and &, Prop. XLII

,\PX lies on CT. Similarly for P4 . Prop. XLII

6. Similarly, P2 and P3 lie on CN. .'. the four points

Px , P2 , P3 , P4 , are points of concurrence of the

bisectors.
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Proposition XLV.

133. Theorem. The perpendiculars from the vertices of a

triangle to the opposite sides are concurrent.

A\

Z

X'

Given the A ABC.

To prove that the perpendiculars from A, B, C, to a, b, c,

respectively, are concurrent.

Proof. 1. Through A, B, C, respectively, suppose B'C II CB,

A'C II CA, A'B' II BA.

2. Then ABCB' and ABAC are UJ. Def. O
3. .-. B'C = AB= CA'. and C is the mid-point of B'A\

Prop. XXIV; ax. 1

4. Similarly, A and B are mid-points of B'C\ CA'.

5. If AX, BY, CZ±B'C, CA', A'B', respectively, they

are concurrent, as at 0. Prop. XLIII

6. And they are also the perpendiculars from A, B, C

to a, b, c. Prop. XVII, cor. 1

Note. The theorem is due to Archimedes.

134. Definition. To trisect a magnitude is to cut it into

three equal parts.

Exercise. 176. In prop. XLIV suppose C moves down to the side c.

What becomes of Pi, P2 , P3 , P4 ?
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Proposition XLVI.

135. Theorem. The medians of a triangle are concurrent

in a trisection point of each.

Given the A ABC and the medians BY, AX, intersecting

at 0.

To prove that (1) the median from C must pass through 0,

(2) OX= I AX, OY=iBY, etc

Proof. 1. Suppose CO drawn, and produced indefinitely,

cutting AB at Z.

2. Suppose AP II OB
; CO must cut AP, as at P. § 85

3. Draw PB. Then V CY= YA, .'. CO = OP.

Prop. XXVII, cor. 2

4. And V CO = OP, and CX= XB, .'. OX II PB.
Prop. XXVII, cor. 3

5. .'. APBO is &EJ, AZ = ZB. and OZ = ZP.

Prop. XXIV, cor. 2

6. .
' . OZ is a median, and it passes through 0.

7. And v 0Z= £ OP, .'. O^= £ CO, or J CZ. Simi-

larly for OF and OA:

Exercise. 177. The sum of the three medians of a triangle is greater

than three-fourths of its perimeter.
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136. Definitions. The point of concurrence of the perpen-

dicular bisectors of the sides of a triangle is called the cir-

cumcenter of the triangle. (Prop. XLIII.)

The reason will appear later when it is shown that this point is the

center of the circum-scvihed circle. (See Table of Etymologies.)

137. The point of concurrence of the bisectors of the interior

angles of a triangle is called the in-center of the triangle ; the

points of concurrence of the bisectors of two exterior angles

and one interior are called the ex-centers of the triangle.

(Prop. XLIV.)

It will presently be proved that the in-center is the center of a circle,

in-side the triangle, just touching the sides ; and that the ecc-centers are

centers of circles, out-side the triangle, just touching the three lines of

which the sides of the triangle are segments. Hence the names in-center

and ex-center.

138. The point of concurrence of the three perpendiculars

from the vertices to the opposite sides is called the orthocenter

of the triangle. (Prop. XLY.)

139. The point of concurrence of the three medians of a tri-

angle is called the centroid of that triangle. (Prop. XLYI.)

It is shown in Physics that this point is also the center of mass, or

center of gravity of the plane surface of the triangle. It is, therefore,

sometimes called bv those names.

Exercises. 178. If a triangle is acute-angled, prove that both the

circumcenter and the orthocenter lie within the triangle.

179. In prop. XLVI, if X, Y, Z be joined, prove that the A XYZ
will be equiangular with the A ABC.

180. Is there any kind of a triangle in which the in-center, circum-

center. orthocenter, and centroid coincide ? If so, what is it ? Prove it.

181. In the figure of prop. XLVI, connect X, F, Z, and prove that

is also the centroid of A XYZ.

182. In ex. 179, prove that if the mid-points of the sides of A XYZ
are joined, is also the centroid of that triangle ; and so on*.



BOOK II.— EQUALITY OF POLYGONS.

1. THEOREMS.

140. Definitions. Two polygons are said to be adjacent if

they have a segment of their perimeters in common.

141. Suppressing the common segment of the perimeters of

two adjacent polygons, a polygon results which

is called the sum of the two polygons. Simi-

larly for the sum of several polygons, and for

the difference of two overlapping polygons.

142. Surfaces which may be divided into the

same number of parts respectively congruent, or which are the

differences between congruent surfaces, are said to be equal.

This property is often designated by the expressions equivalent, equal

in area, of equal content, etc.; but the use of the word congruent, for

identically equal, renders the word equal sufficient.

The definition is more broadly treated in Book V.

143. The altitude of a trapezoid is

the perpendicular distance between

the base lines.

Hence a trapezoid can have but one alti-

tude, a, unless it becomes a parallelogram.

144. The altitude of a triangle with

reference to a given side as the base,

is the distance from the opposite ver-

tex to the base line.

Hence a triangle can have three distinct

altitudes, viz. au a2 , a3 , in the figure.

90
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Proposition I.

145. Theorem. Parallelograms on the same base or on

equal bases and between the same parallels are equal.

Given UJ ABCD, ABC'D', on the same base AB, and

between the same parallels P. P'.

To prove that O ABCD = O ABCD'.

Proof. 1. AD = BC, AD' = BC. DC = AB = D'C. Why ?

2. In Fig. 1, adding CD'. DD' = CC. Ax. 2

3. .'.ABC'C^AAD'D. Why?

4. But ABC'D = ABC'D.

.

'

. O ABCD = O ABC !D. Ax. 3

Similarly for Figs. 2 and o. In Fig. 2, CZ)' has become

zero ; in Fig. 3, it has become negative.

The meaning of •• between the same parallels " is apparent.

Corollaries. 1. A parallelogram equals a rectangle of the

same base and the same altitude. (Why ?)

2. Parallelograms hawing equal bases and equal altitudes

are equal. (Why ?)

3. Of two parallelograms having equal altitudes, that is the

greater ivhich has the greater base ; and of two having equal

bases, that is the greater which has the greater altitude. (Why ?)

4. Equal parallelograms on the same base or on equal bases

have equal altitudes.

Law of Converse, § 73, after cors. 2 and 3. Give it in full.
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Proposition II.

[Be. il

146. Theorem. Triangles on the same base or on equal

bases and between the same parallels are equal.

Given A ABC, ABC on the base AB, and between the

same parallels AB, C'C.

To prove that A ABC = A ABC.

Proof. 1. In the figure, suppose AD II BC, BD' II AC.
Then ABCD, ABD'C are equal UJ. Why ?

2. And, since A ABC, ABC are their halves,

I, prop. XXIV
.\AABC=AABC. Ax. 7

Corollaries. 1. A triangle equals halfofaparallelogram,

or half of a rectangle, of the same base and the same altitude

as the triangle.

By step 2, and prop. I, cor. 1.

2. Triangles having equal bases and equal altitudes are eq ual.

3. Of two triangles having equal altitudes, that is the greater

which has the greater base ; and of two having equal bases, that

is the g?*eater ivhich has the greater altitude. (Why ?)

4. Equal triangles on the same base or on equal bases have

equal altitudes. (Why ?)

Note. In props. I and II if the figures are on equal bases they can

evidently be placed on the same base. Hence the proofs given are

sufficient.
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Proposition III.

147. Theorem. A trapezoid is equal to half of the rect-

angle whose base is the sum of the two parallel sides, and

whose altitude is the altitude of the trapezoid.

b\i L
B D

Given the trapezoid ABCD.

To prove that ABCD equals half of a rectangle with the same

altitude, and with base equal to AB -f- DC.

Proof. 1 . About 0, the mid-point of B C. revolveABCD through

180° to the position A'CBD', leaving its original trace.

2. Then, '' Zc' = Z c, and Zb + Zc = st. Z,

.-. Z b + Z c' = Z b + Z c = st. Z,

and .
•

. ABD' is a st. line. § 14, clef. st. Z
. Similarly, DCA' is a st. line.

3. Also, v ZD' = ZD, and ZA + ZD=st. Z.

.'.ZA + ZD' = ZA + ZD = st. Z,

.'. D'A' li AD, I, prop. XVI, cor. 2

and .-. ADA'D is a O. § 97, def. O
4. The base of the O = AB + DC,

and the O = 2 • ^CD. Why ?

5. .'. ^LBOZ> = £ O = £ required . Prop. I, cor. 1

Exercises. 183. P is any point within O ABCD. Prove that A PAB
+ A PCD = £ O ABCD. Suppose P is outside of LJ ABCD.

184. A quadrilateral equals a triangle of which two sides equal the a \
diagonals of the quadrilateral, and the included angle of those sides <f

equals the included angle of the diagonals.
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Proposition IV.

148. Theorem. If through a point on a diagonal of a par-

allelogram parallels to the sides are drawn, the parallelo-

grams on opposite sides of that diagonal are equal.

Given

A E B

O AB CD, and through P, a point on A C, the lines

GF II AB, TIE II DA, and the parts lettered as in the

figure.

To prove that b = b'.

Proof. 1. a + b -f- c = a' + V + c',

,\b=b l

I, prop. XXIV

Ax. 3

149. Definitions. Since all rectangles which have two adja-

cent sides equal to two given lines a, b, are congruent (I, prop.

XXVI, cor. 1), any such rectangle is spoken of as the rectangle

of a and b.

This is indicated by the symbol ab, or, if the adjacent sides are AB
and CD, by the symbol AB CD. These symbols are read "The rect-

angle of a and 6," "The rectangle of AB and CD, 1
' or, briefly, "The

rectangle <z&," "The rectangle AB (pause) CD." Since there is no mul-

tiplication of lines by lines, by any definition thus far known to the stu-

dent, the readings "a times &," " AB times CD" are not recommended.

In like manner, any square whose side is equal to a given

line is spoken of as the square on (or of) that line.

The square on a line AB is indicated by the symbol AH1
;
on a line a

by the symbol a2
; read "The square on (or of) AB," or, briefly, "iB-

square "
; and similarly for a.

Squares, rectangles, and polygons in general are often designated by

the letters of two vertices not consecutive.
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150. A point in a line-segment is said to divide it internally
;

a point in a produced part of a line-segment is said to divide

it externally.

In the figure, AB is di- ^
-

^
vided internally at P, and

externally at P'. AP, PB are called segments of AB: and

AP'. P'B are also called segments of AB.

The propriety of calling AP, PB, and AP", P'B, segments of AB is

apparent, since AP + PB = AB, and also AP" + P'B (which is negative)

= AB.

Exercises. 185. If the sides BC, CA, AB, of A ABC, are produced

to X, Y, Z, respectively, so that CX = BC, AY = CA, BZ = AB, prove

that A XYZ = 7 • A ABC.

186. The medians of a triangle divide it into six equal triangles. (In

what kind of a triangle are the six triangles congruent ?)

187. Prove prop. Ill by bisecting BC at 0, drawing DO to meet AB
produced at D', and proving that A BIYO ^ A CDO, that A AB'D =
trapezoid, etc.

188. Discuss prop. IV when P moves to C ; through C on AC pro-

duced.

189. If two equal triangles are on opposite sides of a common base the

line of that base bisects the line joining their vertices.

190. A triangle X is equal to a fixed triangle T and has a common
base with T'; what is the locus of the vertex of X ? (Is the locus a single

line or a pair of lines ?)

191. P is any point on the diagonal BB of A7 ABCB. Prove that

APAB = APBC.

192. In ex. 191, suppose P moves to B ; moves through D on BB
produced.

193. The sides AB, CA of a triangle are bisected in C , B', respectively

;

CC cuts BB' at P. Prove that A PBC = quadrilateral AC'PB'.

194. If P is a point on the side AB, and Q a point on the opposite

side CD of O ABCD, prove that A PCD = A QA 11.

195. If the mid-points of the sides of any convex quadrilateral are

joined, in order, then (1) a parallelogram is formed. (2) which equals

half the quadrilateral.

ii
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Proposition Y.

151. Theorem. The rectangle of two given lines equals the

sum of the rectangles contained by one of them and the several

segments into which the other is divided.

ax a 2

X
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152. Positive and Negative Polygons. In general, a line AB
is thought of as positive ; but if, in the discussion of a propo-

sition, A is thought of as approaching B, then, when A reaches

B, AB becomes zero ; and if A is thought of as passing through

B, then AB is considered as having passed through zero and

become negative ; that is, BA = — AB.
A similar agreement exists as to triangles.

In general, A ABC is thought of as posi-

tive ; but if, in the discussion of a propo-

sition, C moves down to rest on AB, then

A ABC becomes zero; and as C passes

through AB, A ABC passes through zero

and is considered as havin

negative ; that is, A ACB =

In Book I, to accustom students to this convention (that A ACB
= — A ABC), triangles were always named by taking the letters in the

counter-clockwise (or positive) order, except in a few cases where a

departure from this rule seemed advisable.

A similar agreement exists as to rectangles, which illustrates

the law of signs in algebra. In the figure, I has for its alti-

tude and base -f a and + b* and

the rectangle is spoken of as 4- ah.

But if h shrinks to zero, + ah also

shrinks to zero, and as h passes

changed its sign and become

A ABC.

II

-ab4
-bthrough zero and becomes nega- X^

—

tive, so ah is considered to pass +ab -|a

through zero and to become nega-

tive : that is, II = — ah. If, now,

a shrinks to zero, and passes

through zero, changing its sign, so does — ah ; that is, III

= + ah. And finally, as — h again passes through zero, so

does ah, and therefore IV = — ah.

r

a +ab
+b

Exercise. 197. If P is any point in the plane of A ABC, then

A PAB -f A PBC + A PCA =AA BC. (Monge.)
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In the case of polygons in general, the law of signs will be readily

understood from the annexed figures. In Figs. 1,2, 3 both the upper

and lower parts of the polygon are considered as positive ;
in Fig. 4. P

p

fi
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Corollaries. 1. The square on a line equals four times

the square on half that Vine.

Make x — y in step 4.

Then (2 a;)
2 = .r

2 + x2 + 2 x2
,

or (2xf = 4x2
.

That is. if 2x is the line, the square upon it equals four

times the square on x.

2. The square on the difference of two lines equals the sum

of the squares on those lines minus twice their rectangle.

D
Xy
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Proposition VII.

154. Theorem. The difference of the squares on two lines

equals the rectangle of the sum and difference of those lines.

x-y
xO»
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155. Reciprocity between Algebra and Geometry. From props.

V. VI, VII, it is evident that a reciprocity exists between

algebra and geometry which is likely to be of great advantage

to each. This reciprocity will be more clearly seen by resort-

ing to parallel columns.

Geometric Theorems.

If x, y, are line-segments,

and xy, xz, represent the

rectangles of x and y, x and

z, , and x(y-\-z) represents

the rectangle of x and y + z,

and x2 represents the square

on x, then

1. x(y + z)= xy-\-xz.

Prop. V

2. (x + yf=x 2 + y
2 + 2xy.

Prop. VI

Algebraic Theorems.

If a, b, are numbers,

and ab, ac represent the

products of a and b, a and r,

, and a(b + e) represents

the product of a and b + e,

and a 2 represents the second

power of a, then

1. a (b + e) = ab + ac.

2. (a + by- = « 2 + b
2 + 2ab.

3. x 2 = ±

Prop. VI, cor. 1

4. (x — y)
2 = x 2

-f y
2— 2 xy.

Prop. VI, cor. 2

5. x 2 — y
2 =(x-\-y)(x — y)

.

Prop. VII

"-=<!)'

4. (a-by=a?+ b2-2ab.

5. a2 -b2 = (a+b)(a-b).

This correspondence of one symbol, one operation, one

result, etc., of algebra, to one symbol, one operation, one

result, etc., of geometry, or, as it is called, this "one-to-one

correspondence" suggests many theorems jof geometry that

might otherwise remain unnoticed. This correspondence is

the basis of the treatment of Proportion, Book IV.

Exercise. 200. Prove geometrically that (x -f y)'2 — (x — y)
2 = 4xy.

*l
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Proposition VIII.

156. Theorem. In a riglit-angled triangle the square on

the hypotenuse equals the sum of the squares on the other

two sides.

,K

suppose

E F G

Given the right-angled A ABC, Z C being right.

To prove that a2 + b
2 = <r.

Proof. 1. Let BLMC = a2
, ACKH = b

2
, AEGB = c

2

CF II AE, and HB and CE drawn.

2. Then v AKCA, ACB, are right, their sum = st. Z,

and .'. BCK is a st. line. § 14, def. st. Z

3. And v Z CAH= Z EAB, Prel. prop. I

.\ Z BAH=ZEAC, by adding Z BAC. Ax. 2

4. And v AC= #11, and ^^ = £J, § 99, def.

.
•

. A ABH^ A ^^C. Why ?

DJ^= twice AAEC,
b2 = twice A J7?jy.

.'. AF, or ABAD, = b
2

.

6. Similarly, 7?^, or 7L4 • BD, = a2
.

7. .'. a2 + b
2 =[3AF + £^= c

2
.

5. But

and Why?
Ax. 6

Axs. 2, 8
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157. Note. The first proof of this theorem is said to have been

given by Pythagoras about 540 b.c, although the theorem itself was

known long before that time. From this fact it is generally known as

the Pythagorean Proposition. It is one of the most important in geometry.

There have been many proofs devised for the Pythagorean

proposition. In the subsequent exercises occasional proofs

will be suggested, that the student may see the great variety

of ways in which the theorem may be attacked. That the

proposition would naturally be suggested to a people using

tile floors is seen from Fig. 1, although the proof following

Fig. 2.

Fig. 1.

from such a figure is special, being limited to the case of the

isosceles right-angled triangle.

In Fig. 2 is given a suggestion of the conjectured proof of

Pythagoras : If A 1, 2, 3, 4 are taken from the figure, the

square on the hypotenuse remains ; and if the two CD AP,

PB, are taken away, the sum of the squares on the two sides

remains ; but since the two rectangles equal the four triangles,

these remainders are equal.

Exercises. 201. What is the use of steps 2 and 3 in the proof of

prop. VIII ?

202. In the figure of prop. VIII, prove that AK II BM.

203. Also that H, C, L are collinear.

204. Twice the sum of the squares on the medians of a right-angled

triangle equals thrice the square on the hypotenuse.
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Fig. 3 is that of Bhaskara, the Hindu : The inside square

is evidently (a — b)
2
, and each of the four triangles is \ ab

;

.'. & 4 .\ ab = (a - bf = a2 + b2 - 2 ab ;
.'. c

2 = a2 + b\

a /

^ A

Fig. 3. Fig. 4.

Fig. 4 is one of the most simple : If from the whole figure

there are taken A b, there remains the square on the hypote-

nuse ; or if the equal A a are taken, there remains the sum of

the squares on the two sides.

158. Definition. The projection of a point on a line is the

foot of the perpendicular from the point to the line.

Thus A' and B', Figs. 1,2, are the projections of A and B on X'X.

The projection of a line-segment on another line in the same

plane is the segment cut off by the projections of its end-

points, e.g. in Figs. 1 and 2, A'B' is the projection of AB.

A
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Proposition IX.

159. Theorem. In an obtuse-angled triangle the square on

the side opposite the obtuse angle equals the sum of the

squares on the other two sides, together with twice the rect-

angle of either side and the projection of the other on the

line of that side.

Given A abc, obtuse-angled opposite c, and a' the projection

of a on the line of b.

To prove that c
2 = a 2 + b

2
-f 2 ba '.

Proof. 1. In the figure, h _L a', § 158, clef, projection

.\h 2 -\-(a'+b) 2 = c
2
,

Why?
or h 2 + a'

2 + b
2 + 2 a'b = c\ Prop. VI

.-. a 2 +b 2 + 2a'b Prop. VIII

Exercises. 205. In the figure of prop. VIII, prove that, if IIK and

LMaxe produced to meet at P, then AE = and II PC, and BG = and II PC.

206. If the diagonals of a quadrilateral intersect at right angles, prove

that the sum of the squares on one pair of opposite sides equals the sum
of the squares on the other pair.

207. In the annexed figure, equilateral triangles

are constructed on the sides of a right-angled

triangle; M is the mid-point of CA. Prove (1)

A ABK^ A AEC\ (2) MK II BC, (3) A BCM =
A BCK, (4) A BRM = A RCK, (5) A ABE =
AACK + AABM = A ACE + iAABC, (6)

.-. from (1) and (5) AAEC = AACE + i A ABC.
(7) similarly, A CEB = A BLC + £ A ABC, (8)

.-. figure AEBC = figure ABLCE, (9) .-. A AEB
= A BLC + A ACE. State in full form the

theorem proved in (9).
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Corollaries. 1. In any triangle the square on the side

opposite an acute angle equals the sum of the squares on the

other two sides, less twice the rectangle of either side and the

projection of the other side on it.

b

For, in the above figure,

h°~ + (b- a')
2 = c\

.-. h2 + b2 + a'*-2a'b = c*.

.-. a2 + b*-2a'b = c
2

.

The truth of the corollary is, however, evident from prop. IX ; for if

Z ba becomes 90°, a' = and prop. IX becomes prop. VIII
;
and if Z b<i

becomes acute, a' passes through and becomes negative, and a'b

becomes negative ;
.-. step 2 becomes a2 + b'

2 — 2 a'b = c2 .

2. Converse of props. VIII, IX, and prop. IX, cor. 1. The

angle opposite a given side of a triangle is right, obtuse, or

acute, according as the square on that side is equal to, greater

or less than the sum of the squares on the other two sides.

Law of Converse (§ 73). Write out the proof in full.

Exercises. 208. In the figure of prop. VIII, the medians of A ABC
are perpendicular to and equal to half of KM, HE, LG, respectively.

(Complete the \3 BCAV, and prove CV — and JL KM, etc.)

209. XOY is any angle, and from B, on OY. BA is drawn JL OX
;

from B is drawn BZ II OX ; now if P can be found on BA, so that OP
produced to cut BZ in Q, makes PQ = 2 OB, then Z XOQ = $ Z XOY.
(That is, A XOY is trisected. It has been proved that this famous

problem of the Greeks, to trisect any angle, cannot be solved by

elementary geometry, that is, by using the compasses and straight-edge

only. There are various solutions if other instruments are allowed.)

210. Prove algebraically that if n is an even number, then n, \ n2 — 1,

-}n2 + 1 are numerically the sides of a right-angled triangle (Plato), and

that they are integers.
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Pboposition X.

160. Theorem. The sum of the squares on any two sides of

a triangle equals twice the sum of the squares on one-half the

third side and on the median to that side.

c

Given the A abc. and m the .median to c.

To prove that <<- + b
2

[(i)"-]
Proof. 1. Let mJ be the projection of m on c and suppose

Z cm acute.

2. Then a1 =( | J
+ m? - 2

( | J
///, Prop. IX, cor. 1

?and /,- = - -f „r + 21- ///'. Why

..«.+if=2 [(!)"+»-] Ax. 2

If Z cw is obtuse, then Z ?ytc is acute, and the proof

merely interchanges a. b without affecting step 3.

If Z cm is right, then m' = in step 2, but 3 is not

affected.

Exercises. 211. In prop. X. prove that 4 m 2 = 2 (a2 + b2 ) - c2 . Hence

show that in a right-angled triangle (in which a2
-f fr

2 = c2 ) the median

to the hypotenuse equals half the hypotenuse.

212. From ex. 211, what is the locus of the vertex of the right angle

of a right-angled triangle with a given hypotenuse ?

213. The sides of a triangle are 10. 12, 15 inches. Is the triangle

right-angled ? ohtuse-an^led ?

V \
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Proposition XI.

161. Theorem. The sum of the squares on the sides of a

quadrilateral equals the sum of the squares on the diagonals

plus four times the square on the line joining the mid-points

of the diagonals.

Pr

Given a quadrilateral abed, convex, concave, or cross, with

diagonals e, f and with m joining the mid-points

of e, f.

To prove that a2 + b
2 + c2 + d2 = e

2 +f2 + 4 m2
.

Proof. 1. In the figure, a2 + d2 = 2 x2 + 2 I % J
, Why ?

•GO-
?

00
?and b

2 + c
2 = 2y2 + 2 (% • Why?

2. .'. a2 + 62 + c
2 + d2 = 2 (x2+ y

2
) + 4

( { )
Ax. 2

2

Prop. X
= e

2 +/ 2 + 4 m2
. Prop. VI, cor. 1

Corollary. The sum of the squares on the diagonals of a

parallelogram equals the sum of the squares on the sides.

For then m = 0; I, prop. XXIV, cor. 2.

Note. The theorem is due to Euler. The corollary was, however,

known to the Greeks.

^
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2. PROBLEMS.

Proposition XII.

162. Problem. To construct a triangle equal to a given

polygo)i.

D •

Fig. 2.

Given polygon ABCDE.

Required to construct a A equal to ABCDE.

Construction. 1. Produce BA, join D and A, draw EF II DA,
meeting BA produced at F ;

draw DF.

§ 28, post, of st. line ; I, prop. XXXIII

2. Then polygon FBCD has one less side than ABCDE,
and will be proved equal to it. Continue the process

until a A is reached (Fig. 2).

Proof. 1. v EFW DA,

.-.A ADF = A ADE, having same base AD.
Prop. IT

2. Adding polygon ABCD, FBCD = ABCDE. Ax. 2

3. Similarly thereafter. In Pig. 2. A FGD is the tri-

angle required.

Exercise. 214. To construct a rhombus equal to a given parallelo-

gram, and on the same base. Discuss for impossible cases.
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Proposition XIII.

163. Problem. To construct a square equal to a given

polygon.

^'—-E h

\S

D E G
C

Prop. XII

Given polygon G.

Required to construct a square equal to G.

Construction. 1. Construct a A equal to G.

2. By drawing a line through the vertex of this A II to

the base, and erecting _L's from an extremity and

the mid-point of the base, construct a , as ABCD,
equal to this A. I, props. XXIX, XXXI, XXXIII

Then if AB == DA, ABCD is the required .
3. If not, produce AD to E, making DE = CD; § 28

bisect AE at 0, I, prop. XXXI
and with center and radius OE, describe a semi-

circumference. § 109, post, of O

4. Produce CD to meet circumference at F, § 28

and construct a square on DF. I, prop. XXX IX

Then DF 2
, S in the figure, is the required .

Proof. 1. Draw OF, let r = OF = OA = OE, and x = OD\

then CD = DF = r — x,

and AD = r + x.

2. Then (r -f x) (r - a-) = r1 - x2 Prop. Vil

+ DF' •a = &F*. Why?

3. Hut (r + x)(r — x) =U}ABCD
and .*. DF 2 = polygon <

>

<;. Const. 2

Ax. 1
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EXERCISES.

215. If one angle of a triangle is two-thirds of a straight angle, show
that the square on the opposite side equals the sum of the squares on the

other two sides, together with their rectangle.

216. Prove prop. XI for a concave quadrilateral.

217. If ZP = 180° and SP = PQ. show that prop. XI reduces to a

previous theorem.

218. Prove prop. XI. cor. directly from prop. X without reference to "%
prop. XL

219. If ABCD is any quadrilateral, and the mid-points of the diagonals

^ "are joined by a line bisected at -If, and if P is any point, then PA 2 + PB2

+ PC2 - PD- = MA* + MB2 + M& + ML2 + 4 PM*.

220. To construct a parallelogram equal

to a given triangle, and having one of its C D E

"angles equal to a given angle. V^v / /

221. To construct a parallelogram equal \ \^s/ / /
to a given square, on the same base and V___y_^Ny Xn

having an angle equal to half the angle of A M B

the square.

222. To construct an isosceles triangle equal to a given triangle, and
on the same base.

223. To construct a triangle equal to a given parallelogram, and having

one of its angles equal to a given angle.

224. To construct a parallelogram equal to a given triangle, and having

its perimeter equal to that of the triangle. (In the figure of ex. 220 how
must 3ID compare with BC + CA ?)

225. To construct a square equal to the sum of two given squares.

(Apply prop. VIII.)

226. On a given line to construct a rectangle equal to a given rectangle.

227. On one side of a triangle as a diagonal to construct a rhombus

equal to the given triangle.

228. Prove that in any triangle three times the sum of the squares on

the sides equals four times the sum of the squares on the three medians.

229. Also that three times the sum of the squares on the lines joining

the centroid to the vertices equals the sum of the squares on the sides.

230. If one angle of a triangle is one-third of a straight angle, show
that the square on the opposite side equals the sum of the squares on the

other two sides less their rectangle.



112 PLANE GEOMETRY. [Bk. II,

3. PRACTICAL MENSURATION.

164. For practical purposes a surface is measured as

follows :

1. A square unit is defined as a square which is one linear

unit long and one linear unit wide.

That is, a square inch is a square that is 1 in. long and 1 in. wide ; a

square meter is a square that is 1 m. long and 1 m. wide, etc. In the

figure the shaded square is considered as a square unit.

2. If two sides of a rectangle are 3 in. and 5 in. respec-

tively, then, in the figure, the area of the

strip AB is 5 X 1 sq. in., and the total area

is 3 X 5 X 1 sq. in., or 15 sq. in. ^ B

Theoretically, a rectangle rarely has sides Jj~
———

—

both of which exactly contain any linear

unit, however small. Such cases are discussed in Book IV.

But for practical purposes the above method is approximate

to any required degree.

At present it is necessary for the student to learn that geometry gives

him an instrument for practical work. It will accordingly be assumed

that the measurements can be made to any degree of approximation, and

that the expressions area, measure, etc. , are understood in their ordinary

sense. It has already been explained that the rectangle of two lines

corresponds to the product of two numbers ; hence, in practice, lines ar<J

represented by numbers, and their rectangles by the products of those

numbers. This practical measurement will be exemplified hereafter, as

it has already been to some extent, in the numerical exercises.

Exercises. 231. A field is in the form of a rhombus, the obtuse angle

being twice the acute angle ; the shorter diagonal is 300 feet. Find the

area of the field in square feet.

232. A railroad embankment extends through a farm 1 mile long, its

rails being in straight lines perpendicular to the two parallel sides of the

farm ;
the embankment is 80 ft. wide at the bottom at one end, and 00 ft.

at the other. How much land was taken for railroad purposes?
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EXERCISES.

233. A road running across a farm is i mile long and 3 rods wide;

the road being rectangular, find its area in acres.

234. The side of an equilateral triangle is 15. Find the area.

235. In excavating for a canal 30 ft. deep, 200 ft. wide at the top, and

160 ft. wide at the bottom, what is the area of a cross-section '?

236. One diagonal of a quadrilateral is 100. and the perpendiculars,

from the other two vertices, upon it, are 50 and 40. Find the area.

237. The area of a triangle is a and the altitude is h. Find the base.

Investigate for a = 325.85, h = 38 ; also for a = 100, h — 100.

238. The area of a trapezoid is a and the two bases are bi, b2 . Find

the altitude. Investigate for a = 223.375. &i = 13.5, 62 = 6.4 ; also for

a = 10. &! = 0. b2 = 10.

239. The area of a trapezoid is 542.5. the altitude is 21.7, and the

difference between the parallel sides is 11.2. Find those sides.

240. The area of a square is 2. Find the side of a square of twice the

area ; thrice the area ; four times the area.

241. The altitude of an equilateral triangle is 160. Find the area.

242. The base of an isosceles triangle is f of one of the equal sides,

and the altitude is 10. Find the area.

243. Two sides of a right-angled triangle are 1036 and 1173. Find

the hypotenuse and the area.

244. Find to three decimal places the diagonal of a square whose area

is 1.

245. In a right-angled triangle the perpendicular from the vertex of

the right angle divides the hypotenuse into two segments, 2.88 and 5.12.

Find the two sides.

246. From the vertex A of A ABC. AD ± BC. Find the lengths of

BD. CD. knowing that AB = 307.8. CA = 480.168, BC = 689.472.

247. A surveyor, wishing to erect a perpendicular to a line on the

ground, drives two stakes, A, B. 12 links apart; to

these he fastens the ends of a 24-link segment, and

stretches the chain, at the end of the 9th link from

A, to C. Show that AC ± AB. (This method of

erecting perpendiculars was known to the temple

and pyramid builders, and surveyors employed for

this purpose were called '-rope stretchers." The method is still used in

practical field work.)
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165. Definitions. A circle is the finite portion of a plane

bounded by a curve, which is called the circumference, and is

such that all points on that line are equidistant from a point

within the figure called the center of the circle.

For corollaries and postulates, see §§ 108, 109.

Certain definitions are here repeated for convenience.

If two equal figures are necessarily congruent, as in the case of circles,

angles, squares, and line-segments, the word equal is ordinarily used to

express congruence. Hence congruent circles (see § 108, 2) are ordinarily

•called simply equal.

A straight line terminated by the

center and the circumference is called

a radius.

A straight line through the center

terminated both ways by the cir-

cumference is called a diameter.

166. The straight line joining any

two points on a circumference is called a chord.

Hence a diameter is a chord passing through the center. In the

figure, AE and BB are chords.

The expressions center, radius, diameter, chord, of a circumference

are sometimes used instead of center, etc., of a circle.

167. The line of which a chord is a segment is called a

secant, as XY in the figure.

168. A part of a circumference is called an arc.

In the figure, BCD is an arc. As in naming an angle, the counter-

clockwise order is followed, and arcs so named are considered positive.

114
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169. One-half of a circumference is called a semicircum-

ference.

170. A fourth part of a circumference is called a quadrant.

171. An angle formed by two radii is called a central angle.

In the figure, AAOB, BOE are central angles.

172. A central angle is said to stand upon the arc which lies

within the angle and is cut off by the arms.

A AOB. BOE stand upon AB, BE, respectively.

173. The arc upon which the sum of two central angles

stands is called the sum of the arcs upon which those angles

stand. Similarly for the difference of two arcs.

Thus, AE = AB + BE. and AB = AD - BI).

174. Two arcs are said to be complements of each other if

their sum is a quadrant ; supplements of each other if their

sum is a semicircumference ; conjugates of each other if their

sum is a circumference.

In the figure. AB is the supplement of BE and the conjugate of BA.

175. An arc greater than a semicircumference is called a

major arc ; one less than a semicircumference. a minor arc.

In the figure, AB, BI). DE are minor arcs ; BEA is a major arc.

176. Conjugate arcs are said t<> be subtended by their com-

mon chord.

In the figure. BI) and I)B are each said to be subtended by chord BI).

The word suhtend is variously used in geometry. It means to extend

under or to be opposite to. Hence in a triangle a side is said to subtend

an opposite angle, a chord is said to subtend an arc, etc.

177. A portion of a circle cut off by an arc and two radii

drawn to its extremities is called a sector, and the central

angle standing on that arc is called the angle of the sector.

In the figure. OAB is a sector, and LAOB is its angle.
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1. CENTRAL ANGLES.

Proposition I.

178. Theorem. In the sa?ne circle or in equal circles, if

two central angles are equal, the arcs on which they stand

are equal also, and of two unequal central angles the greater

stands on the greater arc.

Given M, M', two equal circles, and central angles

AOB = A'O'B', AOOA'O'B'.

To prove that AB = A^B', and AC > jVB'.

Proof. 1. Place O M ' on OM so that Z A'O'B' coincides with

its equal Z A OB.

Then A' coincides with A, and B' with B.

§ 165, def.

2. Then A'B' coincides with AB, because its points are

equidistant from 0. § 165, def. O

3. Also, v ZAOOZ A'O'B',

.-.ZAOO ZAOB.

4. .*. C is not in Z A OB, and AC > IB. Ax. 8

5. And v AB = ATB', .'. AC > ArB'. Ax. 9

The proof is essentially the same for a single circle,

and so in general when equal circles are involved.
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Corollaries. 1. Sectors of the same circL or of equal

circles, which have equal angles,' are equal.

For, by steps 1, 2, they coincide..

2. Sectors of the same circle, or of equal circles, which have

unequal angles, are unequal, the greater having the greater

angle.

This is proved by superposition in steps 3. 4. 5, of the proposition.

3. The two arcs into which the circumference is divided by

a diameter are equal

.

For their central angles are straight angles, and these being equal the

arcs are equal by the proposition.

4. The two figures into which a circle is divided by a diam-

eter are equal.

For their central angles are straight angles. Hence by cor. 1 they

are equal.

This corollary is attributed to Thales.

179. Definition. The figure formed by a semicircumference

and the diameter joining its extremities is called a semicircle.

It is proved (cor. 4) that all semicircles, cut from the same circle, are

equal. Hence the name, semi- meaning half.

180. Since the 360 equal angles, into which the perigon

at the center of a circle is imagined to be divided, stand on

equal arcs by prop. I, the ordinary mensuration of angles by

degrees is also used for arcs. Similarly for minutes, seconds,

and other measurements. Hence the common expression, an

angle at the center is measured by the subtended arc.

The expression is not strictly correct ; we do not measure an angle by
an arc, but the angle and arc have the same numerical measure, as will

be proved in § 254. We might as truly say that an arc is measured by
its central angle. But the expression is so commonly used, and has found

its way into so many text-books and examination papers, that the student

needs to become familiar with it.
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Proposition II.

181. Theorem. In the same circle or in equal circles, if

two arcs are equal, the central angles which they subtend are

equal also, and of two unequal arcs the greater subtends the

greater central angle.

Proof. If and 0' are two central angles, and A, A' are the

arcs on which they stand, it has been proved in prop. I

that

If > 0', then A > A',

« = 0', " A = A',

« < 0', « A< A'.

Hence the converses are true, by the Law of Converse, § 73.

Corollaries. 1. In the same circle or in equal circles,

equal sectors have equal angles; and of two unequal sectors,

the greater has the greater angle.

Law of Converse, § 73, from prop. I, cors. 1, 2.

2. A central angle is greater than, equal to, or less than, a

right angle, according as the arc on which, it stands is greater

than, equal to, or less than, a quadrant. (Why ?)

Exercises. 248. If two lines drawn to a circumference, from a point

within the circle, are equal, they subtend equal central angles.

249. Prove the converse of ex. 248.

250. Two circumferences cannot bisect each other.

251. Suppose from the point P on a circumference two equal chords,

PA, PB, are drawn. Prove (1) that these chords subtend equal central

angles, (2) that they subtend equal arcs.

252. The arc AB is bisected by the point M, and MC is a diameter
;

prove that chord AC = chord BC.

253. How many degrees in the central angle standing on a third of a

circumference? a fourth ? a fifth ?
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2. CHORDS AND TANGENTS.

Proposition III.

182. Theorem. In the same circle or in equal circles, if

two arcs are equal they are subtended by equal chords, and

of two unequal minor arcs the greater is subtended by the

greater chord.

Given two equal circles, M, M' ; two equal arcs, K, K'
;

and two unequal minor arcs, K > K".

To prove that, as lettered in the figure, chords AB = A'B',

AB > CA'.

Proof. 1. Draw the radii OA, OB, O'A', O'B', O'C. Then

v K= K', .'. Z AOB = Z A'O'B'. Prop. II

2. But v OM=OM',
.-. OA = OB= O'A' = O'B' = O'C.

3. .'.A OAB ^ A O'A'B', and AB = A'B'. Why ?

4. Also,

V K> K", r.A AOB > Z CO'A', Prop. II

.-. AB > CA'. I, prop. X

Corollary. In the same circle or in equal circles, of two

unequal major arcs, the greater is subtended by the less chord.
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Proposition IV.

183. Theorem. In the same circle or in equal circles, if

two chords are equal they subtend equal major and equal

minor arcs ; and of two unequal chords the greater subtends

the greater minor and the less major arc.

Proof. Let C, C be two chords of the same circle or of equal

circles ; JVJ N' their corresponding minor arcs
;

J
}
J' " " major arcs.

From prop. Ill,

if N > N', or if J < J\ then C > C,

'< N=N', " « J=J', « C = C,

" JY<N', « « J>J', " C<C.
Hence the converses are true, by the Law of Converse, § 73.

Exercises. 254. If through a point in a circle two chords are drawn

making equal angles with the diameter through that point, these chords

cut off equal arcs of the circle.

255. The intersecting chords joining the extremities of two equal arcs

of a circle are equal.

256. What is meant" by an arc of 75° ? by one of 300° ? Can the sum

of two arcs ever exceed an arc of 300°? Draw a figure to illustrate

your answer.

257. Does the chord subtending the arc 2 a equal twice the chord sub-

tending the arc a ? Prove your statement.

258. May the chord subtending the arc 2 a ever equal the chord sub-

tending the arc a ? If not, show why ; if so, tell how many degrees in

the arc a.

259. How many degrees in the supplement of the arc 90°? 175°?

180°? 190°?

260. How many degrees in the conjugate of the arc 180°? 360°?

360°? 400°?

261. How does the length of the chord subtending an arc of 60° com-

pare with that subtending an arc of 90° ? 300° ? (Call the radius r, and

determine each in terms of r.)
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Proposition V.

184. Theorem. A diameter which is perpendicular to a

chord bisects the chord and its subtended arcs.

Given the diameter BD perpendicular to chord AC at E.

To prove that (1) AE = EC,

(2) AB = jfC, (3) DA = CD.

Proof. 1. Drawing radii OA, OC, then

OA = OC, § 109, post, of O
and AE = EC, I, prop. XX, cor. 6

.'.ZAOE= Z EO C. I, prop. XX, cor. 5

2. .'.AB = BC. Why?

3. And v Z DOA = Z COD, Prel. prop. IV

.-.DA = CI). Why?

Corollaries. 1. Conversely, a diameter which bisects a

chord is perpendicular to it.

For v AE — EC, and OA = 00, .-. DB has two points equidistant

from A and C. Hence, being determined by these points, it is ± to AC,
by I, prop. XLI.

2. The perpendicular bisector of a chord passes through the

center of the circle and bisects the subtended arcs.

Eor the center is equidistant from the ends of the chord, by definition

of a circle ; .-. it lies on the perpendicular bisector of the chord, by

I, prop. XLI.
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Proposition VI.

185. Theorem. All points in a chord lie within the circle ;

and all points in the same line, but not in the chord, lie

without the circle.

Given the points Px in a chord AB, and P2 in AB pro-

duced.

To prove that I\ is within the circle, and P2 is without.

Proof. 1. Suppose the center, and OA, OB, OP1} OP2 drawn,

and 031 A. AB.

Then M is between A and B. Prop. V

2. And '

•
• Z AOM> Z Pl OM,

.'.AO>P1 0, I, prop. XX
and .-. P x

is within the O. § 108, def. O, cor. 3

3. And v Z MOP, > Z MOB,
.-. P20> BO, I, prop. XX

and .*. P2 is without the O. § 108, def. O, cor. 3

Corollary. A straight line cannot meet a circumference

in more than two points.

For every other point on that line must be either between or not

between those two points, and hence must lie either within or without

the circle.

Exercises. 262. Prove that, in general, two chords of a circle can-

not bisect each other. What is the exception ?

263. What is the locus of the mid-points of a pencil of parallel

chords of a circle ? Why ?



Prop. VII. CHORDS AND TANGENTS. 123

Proposition VII.

186. Theorem. In the same circle or in equal circles, equal

chords are equidistant from the center; and of tiro unequal

chords the greater is nearer the center.

Given two equal © M. M', with chords AB = A'B", AE >
A'B', and OC, 01), O'C _L's from center to AB,

AE. and from center O 1

to A'B'.

To prove that (1) OC=0'C, (2) OD < O'C

Proof. 1. C, C bisect AB, A'B', Prop. V
AC = A'C", being halves of equal chords. Ax. 7

OA = O'A'Draw OA, O'A'; then

and ZC = Z C", Prel. prop. I

.'. A A CO ^ A A' CO', I. prop. XIX, cor. 5

and OC = O'C, which proves (1).

3. And v AE > A'B',

then AE > AB, which equals A'B'. Ax. 9

4. .'. minor AEE > AFB,

so that E does not lie on AEB. Prop. IV

5. And V and AB are on opposite sides of AE,

.-. OC cuts AE, as at G, and OD < OG.

I, prop. XX
6. And v OG < OC, r. OD < OC. Ax. 9

7. And V OC = O'C, .-. 0/> < O'C". Ax. 9
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Proposition VIII.

187. Theorem. In the same circle or in equal circles,

chords that are equidistant from the center are equal ; and

of two chords unequally distant, the one nearer the center is

the greater.

Proof. If c, c' are two chords of the same circle or of equal

circles, and d, d' are the respective perpendiculars from

the center upon them ; then from prop. VII,

If c > c', then d < d',

" c = c', " d = d',

" c < c', " d > d'.

Hence the converses are true by the Law of Converse, § 73.

Corollary. The diameter is the greatest chord in a circle.

For its distance from the center is zero.

Exercises. 264. AB is a fixed chord of a circle, and XY is any

other chord having its mid-point P on AB. What is the greatest and

what is the least, length that XY can have ?

265. What is the locus of the mid-points of equal chords of a circle ?

266. Two parallel chords of a circle are 6 inches and 8 inches, respec-

tively, and the distance between them is 1 inch. Find the radius.

267. Two chords are drawn through a point on a circumference so as

to make equal angles with the radius drawn to that point. Prove that

the chords subtend equal arcs.

268. If from the extremities of any diameter perpendiculars to any

secant are drawn, the segments between the feet of the perpendiculars

and the circumference will be equal. Draw the various figures.

269. If two equal chords of a circle intersect, the segments of the

one are equal respectively to the segments of the other.

270. Find the shortest chord which can be drawn through a given

point in a circle.

271. The circumference of a circle whose center lies on the bisector of

an angle cuts equal chords, if any. from the arms.
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Proposition IX.

188. Theorem. Of all lines passing through a point on a

circumference, the perpendicular to the radius drawn to that

point is the only one that does not meet the circumference

again.

Given point P on the circumference of a O with center 0,

and AB, PC, respectively perpendicular and oblique

to OP at P.

To prove that AB does not meet the circumference again, but

that PC does.

Proof 1. Let 031 A. PC, and OX be any oblique to AB.

Then 031 < OP, I, prop. XX
and .. 31 is within the O, and PC cuts the circum-

ference again. §§ 108, 109

2. Also, OX > OP, Why ?

and .". X, any point except P on AB. is without

the O. § 108, def. O, cor. .3

3. .'. the perpendicular does not meet the circumference

again, but an oblique does.

189. Definitions. The unlimited straight line which meets

the circumference of a circle in but one point is said to touch,

or be tangent to, the circle at that point. The point is called

the point of contact, or point of tangency, and the line is called

a tangent.
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A tangent from a point to a circle is to be understood as the

segment of the tangent between the point and the circle.

If the two points in which a secant cuts a circumference continually

approach, the secant approaches the condition of tangency. Hence the

tangent is sometimes spoken of as a secant in its limiting position.

Corollaries. 1. One, and only one, tangent can be drawn

to a circle at a given point on the circumference.

For the tangent is perpendicular to the radius at that point, and there #

is only one such perpendicular. (Has this been proved ?)

2. Any tangent is perpendicular to the radius drawn to the

point of contact. (Why?)

3. A line perpendicular to a radius at its extremity on the

circumference is tangent to the circle. (Why?)

4. The center of a circle lies on the perpendicular to any

tangent at the point of contact.

For the radius to that point is perpendicular to the tangent, and as

there is only one such perpendicular at that point (prel. prop. II), that

perpendicular must be the radius.

5. The perpendicular from the center to a tangent meets it

at the point of contact.

For the radius to that point is perpendicular to the tangent, and there

is only one perpendicular from the center to the tangent.

Exercises. 272. Show that of these three properties of a line, (1) the

passing through the center of a circle, (2) the being perpendicular to a

given chord, (3) the bisecting of that chord, any two in general necessi-

tate the third. In what special case is there an exception ?

273. If a chord is bisected by a second chord, and the second by a

third, and the third by a fourth, and so on, the points of bisection

approach nearer and nearer the center.

274. Tangents drawn to a circle from the extremities of a diameter

are parallel.

275. The diameter of a circle bisects all chords which are parallel to

the tangent at either extremity.
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Proposition X.

190. Theorem. An unlimited straight line cuts a circum-

ference, touches the circle, or does not meet the circle, accord-

ing as its distance from the center of the circle is less than,

equal to, or greater than, the radius.

Given OA, OB, OC, the perpendiculars from center of

O M, to lines S, T, X, and respectively less than,

equal to, greater than, the radius.

To prove that S is a secant, T a tangent, N a line not meet-

ing M.

Proof. 1. A, B, C are respectively within the O, on the circum-

ference, or without the O. § 108, def. O, cor. 3

*2. .'. Sis a secant. § 109, 2

3. And T is a tangent. Prop. IX, cor. 3

4. N II T. I, prop. XVI, cor. 3

5. And .". jVcannot meet OM because it cannot cross T.

Corollary. The converses are true.

Let the student state this corollary in full, and show that the Law of

Converse (§ 73) applies.

Exercises. 276. What is the locus of the extremities of equal tan-

gents drawn from points on a circumference ?

277. Two tangents meet at a point the length of a diameter distant

from the center of the circle. How many degrees in their included

angle ?
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3. ANGLES FORMED BY CHORDS, SECANTS,

AND TANGENTS.

191. Definitions. A segment of a circle is either of the two

portions into which the circle is cut by a chord.

If a segment is not a semicircle, it is called a major or a

minor segment according as its arc is a major or minor arc.

E.g. BBC is a minor segment, and BDE is a

major segment.

The fact that the word segment is used to mean

a part of a line, and also a part of a circle, will

not present any difficulty, since the latter use is

rare, and the sense in which the word is used is

always evident. It means "a part cut off," and

is therefore applicable to both cases.

192. The angle, not reflex, formed by two chords which

meet on the circumference is called an inscribed angle, and is

said to stand upon, or be subtended by, the arc which lies

within the angle and is cut off by the arms.

It is also called an angle inscribed in, or simply an angle in, the segment

whose arc is the conjugate of the arc on which it stands.

/.ABB is an inscribed angle, standing on AB ; it is also an angle in

the segment BCBEA. Similarly. ABBA is in the segment BAG and

stands on BA.

193. Points lying on the same circumference are called

coneyclic.

Exercises. 278. If from the extremities of any chord perpendiculars

to that chord are drawn, they will cut off equal segments measured from

the extremities of any diameter. (Draw a perpendicular from the center

to the chord.)

279. If a tangent from a point B on a circumference meets two tan-

gents from A, C, on the circumference, in points X, Y ; and if the lines

joining the center to A, X, Y, C, are a, x, ?/, c, respectively, then Zxy =

/ax -\- / ye, and XY = AX + YC.
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Proposition XI.

194. Theorem. An inscribed angle equals half the central

an;jle standing on the same arc.

Fig. 2. Fio. 3.

Given AVB an inscribed angle, and AOB the central angle

on the same arc AB.

To prove that Z AVB = £ Z A OB.

Proof. 1. Suppose VO drawn through center 0, and produced

to meet the circumference at X.

Then Z XVB = Z VBO. I, prop. Ill

2. And Z XOB = Z XVB + Z FJ50, Why ?

= 2 Z XTO. Step 1

3. r.A.XVB = \£XOB. Ax. 7

4. Similarly Z .! FA = JZAOX (each = zero in Fig. 2),

and .•.ZJF5 = iZJ05. Ax. 2

The proof holds for all three figures, point A having moved

to X (Pig. 2), and then through X (Pig. 3).

195. The theorem is often stated thus : An inscribed angle

is measured by half its intercepted arc

This expression, like that mentioned in § 180 is not strictly correct.

The angle and the arc simply have the same numerical measure as proved

later in § 254.
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Corollaries. 1. Angles in the same segment, or in equal

segments, of a circle are equal. (Why ?)

2. If from a point on the same side of a chord as a given

segment, lines are drawn to the ends of that chord, the angle

included by those lines is greater than, equal to, or less than,

an angle in that segment, according as the point is within, on

the arc of, or without, the segment.

This follows from cor. 1 and from I, prop. IX. Draw the figure and

prove.

3. The converse of cor. 2 is true by the Law of Converse.

Hence the locus of the vertex of a constant angle whose arms

pass through two fixed points is an arc.

Let the student state the converse in full, and give the proof.

Exercises. 280. In the figures on p. 129, prove that if P is taken

' anywhere on BY, then Z PBV + Z BVP is constant.

281. In Fig. 3, p. 129, if BO is produced to meet the circumference

at W, and the point of intersection of BW and AV is called F, prove

that A YVB and "MM Fare mutually equiangular.

282. What is the locus of the vertex of a triangle on a given base

and with a given vertical angle ? Prove it.

283. In Fig. 1, p. 129, suppose A to move freely on the arc VAXB,
and suppose A AVB, VBA bisected by lines meeting at P. Show that

the locus of P is a constant arc.

284. If the vertices of a hexagon are concyclic, the sum of any three

alternate interior angles is a perigon. (That is, the sum of three angles,

taking every other one.)

285. Two equal chords with a common extremity are symmetric with

respect to the diameter through that extremity, as an axis
; so also are

their corresponding arcs.

286. If from any point P. on the diameter AB, PX and PY are

drawn to the circumference on the same side of AB and making

ZXP^l = ZBPY. then & APX and YPB are mutually equiangular.

287. If any number of triangles on the same base and on the same side

of it have equal vertical angles, the bisectors of the angles are concurrent.

288. Prove that two chords perpendicular to a third chord at its

extremities are equal.
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Proposition XII.

196. Theorem. An angle in a segment is greater than,

equal to, or less than, a right angle, according as the segment

is less than, equal to, or greater than, a semicircle.

Given the segments ABE, ACE, ABE of a circle with

center 0, respectively less than, equal to. greater

than, a semicircle.

To prove that A AEB, AEC, AEB are respectively greater

than, equal to, less than, a right angle.

Proof. 1. Draw OB, OB.

Then v Z AEB = \ reflex AAOB, Prop. XI

.'./.AEB > rt. Z.

' Z AEC = i st. Z AOC, Why ?

..ZAEC= it. Z.

Z A EB = \ oblique ZAOB, Why ?

.-.A AEB < rt, Z.

2. And

And

Corollary. A segment is less than, equal to, or greater

than, a semicircle, according as the angle in it is greater than,

equal to, or less than, a right angle.

From prop. XII, by the Law of Converse, § 73. Let the student write

out the proof.

Note. The discovery that an angle in a semicircle is a right angle is

attributed to Thales, who, tradition asserts, sacrificed an ox to the gods

in honor of the event.
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Propositiox XIII:

197. Theorem. An angle formed by a tangent and a chord

of a circle equals half of the central angle standing on the

intercepted arc.

C

Given AB a chord, XX' a tangent through A, and the

center of the circle.

To prove that Z XAB = i Z A OB,

and ZBAX' = iZBOA.

Proof. 1. Produce AO to meet the circumference at C.

Then A XAC =\AAOC,
= \ st. Z. Why ?

2. And •.' ZBAC =±ZBOC, Why?
.-. Z XAB = i Z AOB. Ax. 3

3. Also, V Z C^X' = | Z COJ, Why ?

.-. Z #4X' = }Z 1*0.4. Ax. 2

Corollary. Tangents to a circle from the same external

jjoint are equal.

For, connect the points of tangency, and two angles of the triangle

are equal by this theorem.

198. The theorem is often stated thus: An angle formed by

a tangent and a chord of a circle is measured by half its inter-

cepted arc.

See § 195.

&Y
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Proposition XIV.

199. Theorem. An angle formed by two unlimited inter-

secting lines which meet the circumference equals either the

sum or the difference of half the central angles on the inter-

cepted arcs, according as the point of intersection is within or

without the circle.

Fig. 1. Fig. 2.

Given two lines XX', YY' meeting a circumference at

A, A' and B, B', respectively, and intersecting at P.

To prove that Z A'PB' equals half the central angle on A'B'

plus or minus half that on AB, according as P is

within or without the circle.

Proof. Suppose AB' drawn.

Then Z A'PB' = Z A'AB' ± Z AB'B. § 88

== J cent, Z on AB' ± | cent. Z on AB.

Prop. XI

The theorem is thus re-stated for two of the special cases

:

Corollaries. 1. An angle formed by two chords equals the

sum, of half the central angles on the intercepted arcs.

See Fig. 1. (State this as suggested in § 195.)

2. An angle formed by two secants intersecting without tin-

circle equals the difference of half the central angles on the

intercepted arcs.

See Fig. 2. (State this as suggested in § 195.)
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Prop. XIV is, of course, true for tangents as well as chords

and secants. The following figures represent special cases.

Fig. 3. Fig. 4.

Fig. 5. Fig. 6.

Fig. 7.

Fig. 3 is a special case where P is at 0, and merely affirms that

a central angle equals itself. Fig. 4 shows that prop. XI is a special case

of prop. XIV. Fig. 6 shows the same for prop. XIII.

Corollary. 3. An angle formed by a secant and a tan-

gent, or by two tangents, equals the difference of half the

central angles on the intercepted arcs.

See Figs. 7 and 8.
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Proposition XV.

200. Theorem. If two parallel liar* intercept arcs on a

circumference, those arcs are equal.

Given two parallel lines. I and II. intercepting arcs AB.
'

' I>. on the circumference of a circle with center 0.

To prove that AB = CI).

Proof. 1. Suppose YOY _L I. and to cut BC at 31 Fig. 1.

Then YY' ± II. I. prop. XVII, cor- 1

2. And BM= MC, and AM= JIB. Prop. V

3. .'.AB=CD. Ax. 3

Note. The proof is the same for Figs. 2. 3 ; in Fig. 2. BC equals zero;

and in Fig. 3, DA also equals zero. It should be noticed that Figs. 1, 2,

3, respectively, may be considered as special, or at least as limiting cases

of Figs. 2. 7. and 8 of prop. XIV. In prop. XIV as P moves farther

and farther to the right the lines come nearer and nearer to being parallel,

the angle APB approaches nearer and nearer zero, and hence the cen-

tral angles on arcs BA, A'B' approach nearer and nearer equality. It

might therefore be inferred that when the lines become parallel, the arcs

become equal, as proved in prop. XV.

Exercise. 289. The chords which join the extremities of two equal

arcs are either parallel, or else they intersect and are equal and cut off

equal segments from each other.
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INSCRIBED AND CIRCUMSCRIBED TRIANGLES AND
QUADRILATERALS.

201. Definitions. If the ver-

tices of the angles of a poly-

gon lie on a circumference,

the polygon is said to be in-

scribed in the circle, and the

circle is called a circumscribed

circle.

Inscribed quadrilateral.

Circumscribed circle.

If the lines of the sides of

a polygon are tangent to a

circle, the polygon is said to

be circumscribed about the cir-

cle, and the circle is called

an inscribed or escribed circle,

according as it lies within or

without the polygon.

Circumscribed quadrilateral.

Inscribed circle.

Inscribed cross quadrilateral.

Circumscribed circle.

Circumscribed quadrilateral.

Escribed circle.

The words inscriptible, circumscriptible, escriptible mean capable of

being inscribed in, circumscribed about, escribed to, a circle.

Exercise. 290. Tf any two chords cut within the circle, at right

angles, the sum of the squares on their segments equals the square on

the diameter.



Prop. XVI.] VIBCLE8 AND POLYGONS. L37

Proposition XVI.

202. Theorem. A circumference can be described to pass

through the three vertices of any triangle. (Circumscribed

circle.)

c

Given the points A, B, C, the vertices of A ABC.

To prove that a circumference can be described to pass through

A, B, C.

Proof. 1. There is such a circumference. $ 131, cor. 2

2. And the center of the O can be found. § 131, cor. 1

Note. The relation between prop. XVI and prop. XVII should be

noticed. Similarly for props. XVIII and XIX, and for XX and XXI.

Exercises, 291. Prove from prop. XVI and prop. XI that the sum of

the interior angles of any triangle equals a straight angle.

292. If the hypotenuse of a right-angled triangle is the diameter of a

circle, the circumference passes through the vertex of the right angle.

(Corollary. The median from the vertex of the right angle of a right-

angled triangle equals half of the hypotenuse.)

293. A line-segment of constant length slides so as to have its extremi-

ties constantly resting on two lines perpendicular to each other. Find

the locus of its mid-point.

294. If a circle is described on the line joining the orthocenter to any

vertex, as a diameter, prove that the circumference passes through the

feet of the perpendiculars from the other vertices to the opposite sides.

295. Prove that the perpendiculars from the vertices of a triangle to

the opposite sides bisect the angles of the triangle formed by joining their

feet ; the so-called Pedal Triangle.
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Proposition XVII.

203. Theorem. A circle can be described tangent to the

three lines of any triangle. {Inscribed and escribed circles.)

t
Given the lines a, b, c, forming a A ABC.

To prove that a circle can be described tangent to a, b, c.

Proof. 1. Let be the in-center, O x , 2, 3 the ex-centers.

Let OP, OQ, OB± a, b, c.

Then A AB 5£ A AQ 0,

and ABBO^ABPO. I, prop. XIX, cor. 7

2. .-. OQ = OB= OP. Why ?

3. .'. P, Q, B are concyclic § 108, def. O, cor. 3

4. And V AB _L OB, AB is a tangent.

Prop. IX, cor. 3

Similarly, a, b, c, are tangent to the other three (D.

Corollary. A circle can be described tangent to three

lines not all parallel nor concurrent.
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Proposition XVIII.

204. Theorem. In an inscribed quadrilateral the swn or

difference of two opposite angles equals the sum or differ-

ence of the other two opposite angles, according as the quad-

rilateral is convex or cross.

Given the inscribed convex quadrilateral ABCD.

To prove that in Fig. l,Zi +ZC = Z5 + ZD.

Proof for Fig. i. 1. Z A + Z C = \ central Z on 1W + DB
= st. Z. Prop. XI

2. Similarly, ZB+Z i>= st. Z.

3. ,'.Zi + Z(J= Z5 + ZJ). § 30

Proof for Fig. 2. If the quadrilateral is cross, Z. C — Z. A
= Z.D — /LB, since each equals zero. Why ?

Corollaries. 1. A parallelogram inscribed in a circle has

all of its angles equal, and is therefore a rectangle. (Why ?)

2. The opposite angles of an inscribed convex quadrilateral

are supplemental.

Exercises. 296. In the figure of prop. XIII, if P is the mid-point

of arc AB, prove that P is equidistant from AX and AB. Suppose the

arc BCA is taken, instead of AB.

297. If a circle is described on one side of a triangle as a diameter,

prove that the circumference passes through the feet of the perpendiculars

drawn to the other two sides from the opposite vertices.
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Proposition XIX.

205. Theorem. In a circumscribed quadrilateral the sum

or difference of two opposite sides equals the sum or differ-

ence of the other two opposite sides, according as the quadri-

lateral is convex or cross.

b,

Fig. 1. Fig. 2.

Given the circumscribed convex quadrilateral abed.

To prove that in Fig. 1, a + c = b + d.

Proof for Fig. z, as lettered.

1. ax
= d2 , a2 = b

x , c x
= b2 , c2 = d x . Prop. XIII, cor.

2. .'. at + a2 + cx + c2 — b x + b2 + r/
x + d2 . Ax. 2

.3. Or, a'-\-c = b + d. Ax. 8

Proof for Fig. 2. If the quadrilateral is cross, c — a = d — b.

1. v c x = b2, and c2 = d
x ,

.'. c = />.
: + r^.

2. v ax = r/2 , and a2 = b
x ,

.'. a = b
x + d2 .

3. .'
. r — a = d — b. Ax. 3

Corollary. ^4 parallelogram circumscribed about a circle

has all of its sides equal, and is therefore a rhombus. (Why?)

Exercises. 298. The bisector of an angle formed by a tangent and

chord bisects the intercepted arc.

299. Given two pairs of parallel chords, ABWA'IV, and BCW B'C
;

prove that AC' WA'C.
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Proposition XX.

206. Theorem. If the sum of two opposite angles of a

quadrilateral equals the sum of the other two opposite angles,

the quadrilateral is inscriptible.

Given the quadrilateral ABCD such that

Z.A + Z.C = £B + £D.

To prove that ABCD is iuscriptible.

Proof. 1. Suppose the circumference determined by A, B, C not

to pass through D, but to cut CD at E. Prop. XVI
Draw AE. Then £B + £ AEC = ZC + Z BAE.

Prop. XVI I [

2. But Z B + Z2> = Z C + A A,

and .-. Z AEC - Z D = Z ^J^ - Z /I,

or, Z ^JZ> = - Z £\m I, prop. XIX

But this is absurd : hence step 1 is absurd.

The proof is the same for D'.

Corollary. If two opposite angles of a quadrilateral are

supplemental, the quadrilateral is inscriptible.

Exercises, 300. A square is inscriptible.

301. Every equiangular quadrilateral is inscriptible.

302. The intersection of the diagonals of an equiangular quadrilateral

is the center of the circumscribed circle.

303. A circle is described on one of the equal sides of an isosceles

triangle as a diameter. Prove that the circumference bisects the base.
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Proposition XXI.

207. Theorem. If the sum of two opposite sides of a

quadrilateral equals the sum of the other two opposite sides,

the quadrilateral is circumscriptible.

D E p
/

A

"B

Given the quadrilateral ABCD such that

AB + CD = BC + DA.

To prove that ABCD is circumscriptible.

Proof. 1. Suppose the O tangent to AB, BC, CD not to be

tangent to DA, but to be tangent to EA.

Prop. XVII
Then AB + CE = BC + EA. Prop. XIX

2. But AB + CD = BC + DA, Given

and .'. CD - CE, or ED, = DA- EA. Ax. 3

But this is absurd ; hence step 1 is absurd.

I, prop. VIII, cor.

The proof is the same for D'.

Exercises. 304. A square is circumscriptible. (Notice the relation

between exs. 300-302 and exs. 304-306.)

305. Every equilateral quadrilateral is circumscriptible.

306. The intersection of the diagonals of an equilateral quadrilateral

is the center of the inscribed circle.

307. A', B" are the feet of perpendiculars from A . B on a. b in A ABC
;

M is the mid-point of AB. Prove that Z B'A'M - Z MB'A' = AC.
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5. TWO CIRCLES.

208. Definitions. Two circles are said to touch or to be tan-

gent when their circumferences have one, and only one, point

in common.

They are said to be internally or externally tangent according as one

circle lies within or without the other. The more accurate expression,

a tangent circumference, is often used instead of a tangent circle.

The line determined by the centers of two circles is called

their center-line ; the segment of the center-line, between the

centers, is called their center-segment.

If two circles have a common center, they are said to be

concentric.

The expression concentric circumferences is also used.

Exercises. 308. A triangle is inscribed in a circle. Prove that the

sum of three angles, one in each segment of the circle, exterior to the

triangle, equals a perigon.

309. Prove that a perpendicular from the orthocenter of a triangle

to a side, produced to the circumference of the circumscribed circle, is

bisected by that side.

310. Prove that the bisectors of any angle of an inscribed quadri-

lateral and the opposite exterior angle meet on the circumference.

311. If the diagonals of an inscribed quadrilateral bisect each other,

what kind of a quadrilateral is it ?

312. Prove that if two consecutive sides of a convex hexagon inscribed

in a circle are respectively parallel to their opposite sides, the remaining

sides are parallel to each other.

313. Prove that the bisectors of the angles formed by producing the

opposite sides of an inscribed quadrilateral to meet, are perpendicular to

each other. (A proof may be based on cors. 1 and 2 of prop. XIV.)

314. Prove that if the diagonals of an inscribed quadrilateral are

perpendicular to each other, the line through their intersection perpen-

dicular to any side bisects the opposite side. (Brahmagupta's theorem.)
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Proposition XXII.

209. Theorem. If two circumferences meet in a 'point

which is not on their center-line, then (1) they meet in one

other point, (2) their center-line is the perpendicular bisector

of their common chord, (3) their center-segment is greater

than the difference and less than the sum of the radii.

Fig. 1. Fig. 2.

Given 31 and iV, two circumferences with centers A, B,

meeting at P not on AB.

To prove that (1) they meet again, as at P';

(2) AB _L PP' and bisects it, as at C\

(3) AB > the difference between AP and BP
and < AP + BP.

Proof. 1. In Fig. 1, suppose AABP revolved about AB as an

axis of symmetry, thus determining A AP'B.

Then V AP 1 = AP, and BP' = BP,

.'. P' is on both M and N, which proves (1).

§ 108, def. O, cor. 3

2. In Fig. 2, V AP = AP, and BP = BP, § 109, 1

3. .'. A and B lie on the _L bisector of PP', which

proves (2). I, prop. XLI

4. AB > the difference between AP and BP and

< AP + BP, which proves (3). § 75 and cor.

Corollary. If two circumferences meet at one point only^

that point is on their center-line. \ Why ?)
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Proposition XXIII.

210. Theorem. If two circles meet on their center-line,

they are tangent.

P

0' A

Given and O', the centers of two circles with radii OA,

0'A
}
which meet on their center-line at A.

To prove that the circles are tangent.

Proof. 1. Let P be any point, other than A, on circumference

with center 0, and draw OP, OP.

Then 00' + O'P > OP or its equal OA.

I, prop. VIII

2. And v 00'= OA - O'A,

.-. OA- 0'A+ OP> OA,

or OP > OA,

by adding O'A and subtracting OA. Axs. 4. 5

3. .". P is without the circle with center 0'.

§ 108. def. O, cor. 3

4. And ".' the © have only one point in common,
.'. they are tangent. § 208

Corollaries. 1. If two circumferences intersect, neither

'point of intersection is on the center-line. (Why?)

2. If two circles touch, they have a common tangent-line at

the 'point of contact.

For a perpendicular to their center-line at that point is tangent to

both. (Why ?)

Exercise. 315. Find the locus of the centers of all circles tangent

to a given circle at a given point.

y.
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6. PROBLEMS.

Proposition XXIV.

211. Problem. To bisect a given arc.

Solution. 1. Draw its chord AB.

2. Draw PCI AB at its rnid-point.

Then PC bisects the arc.

§ 28

§§ 114, 116

Prop. V, cor. 2

Proposition XXV.

212. Problem. To find the center of a circle, given its

circumference or any arc.

Given a circumference, or an arc ABC.

Required to find the center of the circle.

Solution. 1. Draw two chords from B, as BA, BC. § 28

2. Draw their _L bisectors DD\ EE\ §§ 114, 116

intersecting at the center O. § 131, cors. 1, 4

Note. Hereafter it will be assumed that the center is known if an

arc is known, for it may always be found by this problem.
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Proposition XXVI.

213. Problem. To draw a tangent to a given circle from

a given point.

1. If the point is on the circumference.

Solution. 1. At the given point erect a perpendicular to the

radius drawn to the point. I, prop. XXIX

2. This is the required tangent, and the solution is

unique. Prop. IX, cors. 3, 1

2. If t tie point is without tlie circle.

Given a circle PP'B, with center 0; also an external

point A.

Required from A to draw a tangent to O PPB.

Construction. 1. Draw AO. §28

2. Bisect AO at M. I, prop. XXXI

3. Describe a O with center 3L radius MO. § 109

4. Join A to intersections of circumferences. § 28

Then these lines, AP, AP', are the required tangents.

Proof. 1. The circumferences will have two points in common,

and only two. Prop. XXII; I. prop. XLIIL cor. 3

2. And v A APO, OP'A are rt. A, Why ?

.'. AP, AP' are tangents. Why ?

(Would this solution hold for case 1 ?)
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Proposition XXVII.

214. Problem. To draw a common tangent to two given

circles.

Fig. 1, Fig. 2.

Given two circles A, B, with radii r, r' (r > ?•'), and centers

0, 0', respectively.

Required to draw a common tangent to them.

Construction. 1. Describe © A x , A% (Figs. 1 and 2), with centers

0, and radii /• — r' and r + >•', respectively. § 109

2. From 0' draw tangents 0'C\, 0'CSJ to © A x , A*.

Prop. XXVI
3. Draw OC\, OC2, cutting circumferences A at Ex , E2 .

§ 28

4. Draw 0'DX II OEx , and O'D, II â O. § IIS

5. Draw ^7)^ E2D2 ; they are the tangents.

Proof. 1. Zs C1? C2 are rt. A Why?

2. In Fig. 1,

V CXEX
= 0^ - 0CX

= /• - (;• - r') = r',

.'. CXEX
= and II 0'DX . Const. 1, 4

3. .'. Cx O'D xEx
is a , and A Ex , 1\ are rt. A,

I, props. XXV. XXIII. cor.

and .'. D X
E

X
is tangenl to CD A. /»'. Prop. IX. cor. 3
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Similarly, in Fig. 2, E2C2 = and II D2 0', and E2D2 0'C2 is a

, and D2E2 is a tangent. In both figures a second tangent

can evidently be drawn, the solution being analogous to that

above given. Hence there are four tangents in general.

Note. The following special cases are of interest.

Fig. 3. Fig. 4.

(3
Fig. 5. Fig.

In Fig. 3 the two circles have moved to external tangency, and the

two interior tangents have closed up into one. In Fig. 4 the circumfer-

ences intersect and the interior tangents have vanished. In Fig. 5 the

circles have become internally tangent and the two exterior tangents have

closed up into one. In Fig. 6 the circle B lies wholly within the circle A,

and the tangents have all vanished. In all cases the center-line is evi-

dently an axis of symmetry.

Exercises. 316. All tangents drawn from points on the outer of two

concentric circumferences to the inner are equal.

317. Find the locus of the centers of all circles touching two intersect-

ing lines. (Show that it is a pair of perpendiculars.) Suppose the two

lines were parallel instead of intersecting.
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Proposition XXVIII.

215. Problem. On a given line-segment as a chord to con-

struct a segment of a circle containing a given angle.

c
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216. Definitions. Two intersecting arcs are said to form an

angle, meaning thereby the angle included by their respective

tangents at the point of intersection.

An arc and a secant are said to form an angle, meaning thereby

the angle included by the secant and the tangent to the arc at

the point of meeting.

E.g. in the figure of prop. XXVIII, OB is said to make a right angle.

with the circumference EBA, because it is perpendicular to the tangent

at B.

Exercises. 318. The bisectors of the interior and the exterior verti-

cal angles of a triangle meet the circumscribed circumference in the

mid-points of the arcs into which the base divides that circumference,

and the line joining those points is the diameter which bisects the base.

319. A triangle whose angles are, respectively, 30°, 50°, 100° is inscribed

in a circle ; the bisectors of the angles meet the circumference in A, B, C.

Find the number of degrees in the angles of A ABC.

320. The three sides of A ABC are, respectively, 412 in., 506 in.,

514 in.; required the lengths of the six segments formed by the three

points of tangency of the inscribed circle.

321. The radii of two concentric circles are 29 in. and 36 in., respec-
-Ac-

tively. In the larger circle a chord is drawn tangent to the smaller;

required its length.

322. Two circumferences of circles of radii 0.5 ft. and 1.2 ft. intersect

so that the tangents drawn at their point of intersection are perpendicu-

lar to each other. Required the distance between the centers.

323. The distance between the centers of two circles of radii 7 in. and

4 in., respectively, is 8 in. Required the length of their common tan-

gent, between the points of tangency. Is there more than one answer ?

324. The distance between the centers of two circles of radii 327 in.

and 115 in., respectively, is 729 in. Required the length of their com-

mon exterior tangent, between the points of tangency.

325. The distance between the centers of two circles is 165 in. ; the

radii are 62 in. and 48 in., respectively. Calculate, correct to 0.001, the

length of the longest line parallel to the center-line and 30 in. from it,

limited by the circumferences.

326. Through the point A, 6 in. from the center of a circle of radius

4.5 in., two tangents, AT, A T', are drawn. Calculate the length of the

chord TT' and its distance from the center.

X



APPENDIX TO BOOK III. — METHODS.

217. The student has already been informed of three im-

portant methods of attacking a proposition

:

(1) By Analysis (§ 113).

(2) By Intersection of Loci (I, props. XLIII, XLIY).

(3) By Reductio ad Absurdum (§ 74).

He is now prepared to discuss these somewhat more fully.

218. I. Method of Analysis. This method, first found

in Euclid's Geometry, though attributed to Plato, may be thus

described : Analysis is a kind of inverted solution; it assume*

the 'proposition proved, considers what results follow, and con-

tinues to trace these results until a known proposition is reached.

It then seeks to reverse the process and to give the usual, or

Synthetic, proof.

A more modern form of analysis is sometimes known as the

Method of Successive Substitutions. In this the student sub-

stitutes in place of the given proposition another upon which

the given one depends, and so on until a familiar one is reached.

The student reasons somewhat as follows

:

1. I can solve A if I can solve B.

2. And I can solve B if I can solve C.

3. But I can solve C.

Or he reasons thus:

1. A is true if B is true.

2. And B is true if C is true.

3. But C is true.

4. Hence A and B are true.

162
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Illustrative Exercises. 1. Through a given point to

draw a line to make equal angles with two Intersecting lines.

Analysis. Suppose x, y the lines, P the point, and I the

required line ; then, in the figure, Z. c = Z. a + Z b ; but "•' Z a

is to equal Ah. :.Z' , = 2Za; .'.if Zeis bisected, and

a line is drawn through P parallel to this bisector, the con-

struction is effected. Now that the method is discovered,

give the solution in the ordinary way.

2. Tli rough a given point to draw a line such that the seg-

ments intercepted, by the perpendiculars let fall upon it from

two given points shall be equal.

B

\P
x D \ D

X
A'

Analysis. Suppose P the given point through which the

line x is to be drawn, and A and B the other given points

;

then, in the figure, AD and BD' _L x, and DP is to equal PD'.

Further, if AP is produced to meet BD' produced at A', then

A DPA 5£ A D'PA'j and .'. AP = PA'. But V A and P are

given, AP can be drawn, and PA' found ;
.'.A' can be found,

and .*. A'B; then from Pal can be drawn to A'B, and the

problem is solved. Always give the solution in the ordinary

way.
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3. If two circles are tangent, any secant drawn through

their point of contact cuts off segments from one that contain

angles equal to the angles in the segments of the other.

Analysis. 1. Let CD be the common tangent to © 0, 0' at

their point of contact P. Ill, prop. XXIII, cor. 2

2. Then an Z in segment A = an Z in segment A', if

Za = Z a'. Ill, prop. XIII

3. But Za = Z a'. Prel. prop. VI

.
C Vd^T 7\

Y
Exercises. 327. To construct a trap-

ezoid, given the four sides.

Analysts. Assume the figure drawn.

Then if d is moved parallel to itself and

between c and a, to the position FZ, the

A XYZ can easily be constructed (I,

prop. XXXIV). The process may now be reversed and the trapezoid

constructed.

328. To place a line so that its extremities shall rest upon two given

circumferences, the line being equal and

parallel to another line.

Analysis. If and O' are the given

circles, &nd>AB the given line, and if

O 0' is moved along a line parallel and

equal to AB, then either XY or X'Y'

answers the conditions. Hence the

process may be reversed ; first describe

O 0", and then from T, T draw YX
and Y'X' = and II BA.
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EXERCISES.

329. Given two parallels, AT. X Y'. with a transversal WZ limited

by AT and X'Y' ; also two points A, B. not between the parallels, and

on opposite sides of them. Required to join A and B by the shortest

broken line which shall have MN,
the intercept between AFand X'Y\
parallel to WZ.
A nalysis. If anyMN in the figure

is moved along NB parallel to its

original position, until N coincides

with B and M is at P, then AMXP <
AM2P or AMSP (I, prop. VIII)

;

hence AM\N\B is the shortest broken line. Hence the process may be

reversed ; first draw BP II and = ZW; then join A and P, thus fixing M\ :

and then draw M\N\ II WZ.

330. Through one of the two points of inter-

section of two circumferences to draw a line from

which the two circumferences cut off chords having

a. given difference. (The projection of the center-

segment on the required line equals half the given

difference ; hence move this projection to the position

OA ; the right-angled A OCA can now be constructed, and the required

line will be parallel to OA.)

331. In ex. 330, show that if the two chords lie on opposite sides of P.

the sum replaces the difference.

332. In a given circle to draw a chord equal and parallel to a given line.

333. From a ship two known points are seen under a given angle;

the ship sails a given distance in a given direction, and now the same two

points are seen under another known angle. Find the positions of the

ship. (On the line joining the known points, construct segments to

contain the given angles; the problem then reduces to ex. 328.)

334. Construct a trapezoid, given the diagonals, their included angle,

and the sum of two adjacent sides.

335. To construct a triangle given a and the orthocenter. /%

336. Also, given a and the centroid. * xv $A
337. To draw a tangent to a given circle, perpendicular to a given line.

338. To construct a triangle, ABC, having given c. Z C, and the foot

of the perpendicular from C to c.

339. Find the locus of the points of contact of tangents drawn from a

fixed point to a system of concentric circles.

*
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219. II. Method of Intersection of Loci. This method,

adapted chiefly to the solution of problems, has already been

used in Book I (props. XLIII, XLIV). So long as it is known

merely that a point is on one line, its position is not definitely

known ; but if it is known that the point is also on another

line, its position may be uniquely determined. For example,

if it is known that a point is on each of two intersecting lines,

the point is uniquely determined as their point of intersection

;

but if the point is on a straight line and a circumference which

the line intersects, it may be either of the two points of inter-

section.

For convenience of reference the following theorems are

stated, and will be referred to by the letters prefixed

:

a. The locus ofpoints at a given distance from a given point

is the circumference described about that point as a center, with

a radius equal to the given distance. (§ 127.)

b. The locus of points at a given distance from a given line

consists of a pair ofparallels at that distance, one on each side

of the fixed line. (§ 129, cor. 2.)

c. The locus of points equidistant from two given points is

the perpjendicular bisector of the line joining them. (§ 128.)

d. The locus of points equidistant from two given lines con-

sists of the bisectors of their included angles ; if the lines are

parallel, it is a parallel midway between them. (§ 129.)

e. The locus of points from which a given line subtends a

given angle is an arc subtended by that chord. (§ 195, cor. 3.)

Abbreviations. The following abbreviations will be used :

In the triangle ABC the altitudes on the sides a
}

b, c will

be designated by hn , h h , hc , respectively ; the corresponding

medians by ma, m b , m c ; the corresponding angle-bisectors

terminated by a, b, c, by va , vb , vc ; the radii of the inscribed

and circumscribed circles by r, B, respectively ; the radius of

the escribed circle touching a, and touching b and c produced,

by ra , and similarly for r
b, rc .
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220. Definition. A triangle is said to be inscribed in

another when its vertices lie respectively on the sides of the

other.

Exercises. 340. To describe a circumference with a given radius, and
*

(1) Passing through two given points. (Combine a and c.)

X (2) Passing through one given point and touching a given line, (a, b.)

(3) Passing through one given point and touching a given circle, (a.

)

(4) Touching a given line and a given circle, (a, 6.)

(5) Touching two given circles, (a.)

341. In a given triangle to inscribe a triangle with two of its sides

given, and the vertex of their included angle given, (a.)

-V- 342. To describe a circumference passing through a given point and

touching a given line, or a given circle, in a given point, (c.)

-X 343. On a given circumference to find a point having a given distance

from a given line. '(6.)

f344.
On a given line, not necessarily straight, to find a point equi

distant from two given points, (c.)

t345.
Describe a circumference touching two parallel lines and passing

through a given point, (d, a.)

346. Find a point from which two given line-segments are seen under

cf (or subtend) given angles, (e.) (Pothenot's problem.)

347. Construct the triangle ABC. given o, //,„ ma.

348. Also, given ZA, a, h (l . —
— 349. Also, given ZA, a, ma .

* 350. Also, given a, h b , h c .

I X 351. Also, given Z A, h a , va. (First construct the right-angled tri-

angle with side ha and hypotenuse va .)

352. Also, given ha , ma, B. (First construct the right-angled triangle

with side hn and hypotenuse m a ; then find the circumcenter by a, c.)

353. Also, given a, R. h b . (First construct the right-angled triangle

with side h b and hypotenuse a ; then find the circumcenter by a.)

354. Also, given c, r, ZA = 90° ; c, r,. Z A = 90° ; 6. r. ZA = 90°
;

or 6, rc , Z A = 90°.

355. Describe two circles of given radii /v r2 , to touch one another,

and to touch a given line on the same side of it.
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MISCELLANEOUS EXERCISES.

356. If two circumferences intersect, any two parallel lines drawn

through the points of intersection and terminated by the respective

circumferences are equal.

357. If the center-segment of two circles is (1) greater than, (2) equal

to, the sum of the two radii, the circumferences (1) do not meet, (2) are

tangent.

358. The greatest of all lines joining two points, one on each of two

given circumferences, is greater than the center-segment by the sum of

the radii.

359. If two circles, whose centers are O, (7, are tangent at P, and a

line through P cuts the circumferences at A, A', prove that OA II (/A '.

Two cases ; external and internal tangency. Show that the proposition

is true for any number of circles.

360. Through a vertex of a triangle to draw a straight line equally

distant from the other vertices.

361. Describe a circle of given radius to touch two given lines. Show

that a solution is, in general, impossible if the lines are parallel, but that

otherwise there are four solutions.

362. From what two points in the plane are two circles seen under

equal angles ?

363. Given an equilateral triangle, ABC, find a point P such that the

circles circumscribing 4 PBC, PCA, PAB are all equal.

364. To divide a circle into two segments so that the angle contained

in one shall be double that contained in the other.

365. From two given points to draw lines meeting a given line in a

point and making equal angles with that line, the points being on (1) the

same side of the given line, (2) opposite sides of the given line.

366. To draw, through a given point, a secant from which two equal

circumferences shall cut off equal chords. Discuss the number of solu-

tions for various positions of the given point.

367. Through one of the points of intersection of two circumferences

to draw a chord of one circle which shall be bisected by the circumference

of the other.

368. Two opposite vertices of a given square move on two lines at

right angles to each other. Find the locus of the intersection of the

diagonals.

369. Find the locus of the intersection of two lines passing through two

fixed points on a circumference and intercepting an arc of constant length.



BOOK IV.— RATIO AND PROPORTION.

1. FUNDAMENTAL PROPERTIES.

221. Introductory Xote. The inference was drawn in

Book II (§ 155) that a relation exists between algebra and

geometry with the following correspondence

:

Geometry. Algebra.

A line-segment. A number.

The rectangle of two line-segments. The product of two numbers.

And as it was assumed that a straight line may be represented

by a number, so it may be assumed that any other geometric

magnitude, such as an arc, an angle, a surface, etc., may be

represented by a number. With these assumptions, the fun-

damental properties of Batio and Proportion may be proved

either "by algebra or by geometry, as may be most convenient,

the proof being valid for both of these subjects. The purely

geometric treatment is too difficult for the beginner.

222. Definitions. To measure a magnitude is to find how
many times it contains another magnitude of the same kind,

called the unit of measure.

223. A ratio is the quotient of the numerical measure of

one magnitude divided by the numerical measure of another

magnitude of the same kind.

Tor example, the ratio of a line 8 ft. long to one 16 ft. long is T
8
? , or \ ;

that of one 16 ft. long to one 8 ft. long is 2.

The ratio of a to b is expressed by the symbols - • a : 6, a/5, or a -4- b.

If the ratio r = r, then a = r • b.
b

159
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224. The practical method of finding the ratio of two

magnitudes is to measure them, and to divide the numerical

result of one measurement by that of the other. But if two

line-segments have a common measure, their ratio and their

common measure may be found by the following process

:

Let AB and CD be the

two lines. A«

—

-.b

Apply CD as often as pos- F
, , , p

sible to AB, and suppose that

AB = 2 CD + EB, EB < CD.

Similarly, apply EB to CD, and suppose that

CD = 2EB + FD, FD < EB.

Similarly, apply FD to EB, and suppose that

EB = FD+ GB, GB < FD.

Similarly, apply GB to FD, and suppose that

FD = 3 GB with no remainder.

Then FD = 3 GB.

EB = FD + GB= 4 GB.

CD = 2EB + FD= 8 GB + 3 GB = 11 GB.

AB = 2 CD + EB = 22 GB + 4 GB = 26 ££\

.*. Gi? is a common measure, and the ratio of CZ> to AB is

i£ by definition of ratio.

225. Definitions. Two magnitudes that have a common

measure are said to be commensurable; if they have no com-

mon measure they are said to be incommensurable.

For example, two surfaces having areas 10 sq. in. and 15 sq. in. are

said to be commensurable, there being the common measures 5 sq. in.,

1 sq. in., 2.5 sq. in., etc. But if the length of one line is represented

by V2, and the length of another by 1, then there is no common measure,

and the lines are said to be incommensurable.

A ratio may therefore be an integer, or a fraction, or an irrational

number such as V2.
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For practical purposes all magnitudes may be looked upon

as commensurable, since a unit of measure can be so taken

that the remainder may be made as small as we wish.

226. In the ratio a : b, a and b are called the terms of the

ratio, — the former, a, being called the antecedent, and the

latter, b, the consequent.

227. If the ratio a : b equals the ratio c : d, the four terms

are said to form a proportion.

The four terms are also said to be in proportion. The terms

a and b are also said to he proportional to c and d.

(I c
This equality of ratios is indicated by the symbol =, e.g., t=^'

a : b = c : d, or a/b = c/d, read "a is to b as c is to cZ.'
1 Instead of the

parallel bars (= ), the double colon (: :) is also used in this connection

as a sign of equality, the proportion being written a : b : : c : d. The

double colon is not. however, as extensively used as formerly.

228. The first and last terms of a proportion are called the

extremes, and the other terms the means.

Thus in the proportion 2:3 = 6: 9, 3 and 6 are the means and 2 and 9

are the extremes.

Proposition I.

229. Theorem. If a : b = c : d, then ad = be.

(Jb C
Proof. From j- = ;v it folloAvs, by multiplying equals by bd,

that ad = be. Ax. 6

Hence

If four numbers are in pro- If four lines are in propor-

portion, the product of the tion, the rectangle of the

means equals the product of means equals the rectangle of

the extremes. the extremes.
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Proposition II.

230. Theorem. If ad = be, then a : b = c : d.

Proof. Divide the given equals by bd.

Hence

If the product of two num-

bers equals the product of two

other numbers, either two may
be made the means and the

other two the extremes of a

proportion.

Ax.

If the rectangle of two lines

equals the rectangle of two

other lines, either two may
be made the means and the

other two the extremes of a

proportion.

Proposition III.
-*

231. Theorem. If a : b = c : d, then (1) a : c = b : d,

(2) d : b = c : a, and (3) b : a = d : c.

Proof. 1.

and

and

2. And

3.

Hence

If four numbers are in pro-

portion, the following inter-

changes may be made : (1) the

means, (2) the extremes, (3)

each antecedent and its cor-

responding consequent.

Prop. I

Prop. II

Prop. II

Stepl

Prop. II

If four magnitudes are in

proportion, the following in-

terchanges may be made: (1)

the means, (2) the extremes,

(3) each antecedent and its

corresponding consequent.

ad -
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Definitions. The proportion a : c = b : d is often spoken of

as the proportion a : b = e : d taken by alternation.

The proportion b : a = d : e is also spoken of as the propor-

tion a:b = c:d taken by inversion.

Hence prop. Ill may be stated: If four magnitudes are

in proportion they are in proportion by alternation and also

by inversion.

But to take a proportion by alternation, the magnitudes must be similar.

Thus 12 :$4 = $8 :| 16, therefore, by alternation, 82 : 88 = 84 : $16.

But the proportion 82:84 = 8 days : 16 days cannot be taken by alter-

nation, for $2:8 days = 84 : 16 days means nothing, $2:8 days not

being a ratio (§ 223).

Proposition IV.

232. Theorem. If a : b = c : d,

then (1) ka : b = kc : d,

and (2) a : kb = c : kd.

01 G
Proof. From - = -> it follows, by multiplying by k,

that — = -7 j which proves (1). Ax. 6
b d v 7

a c
And also, — = — > by dividing by /.', which proves (2).

nO KCL

Ax. 7

Hence if four magnitudes are in proportion, and both ante-

cedents or both consequents are multiplied by the same num-

ber, the magnitudes are still in proportion.

Corollary. If four magnitudes are in proportion, and all

are multiplied by the same number, the results are in proportion.

Note. The number k may be integral, fractional, or irrational.
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Proposition V<.

233. Theorem. If a : b = c : d,

then (1) a±b:b = c±d:d,

(2) a ± b : a = c ± cl : c,

and (3) a±b:a=f:b = c±d:cq=d.

Proof. 1. From t = v it follows
6 a

Axs. 2, 3

which proves (1).

Prop. Ill

Axs. 2, 3

that
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Proposition* VI.

234. Theorem. If ^ =
J-
2
- = ^ = , the terms all beinq

\ b
2

b
3

y

magnitudes of the same kind, then

a-. a9-± or — or
bj + b

2
+ bj b

Proof. 1. ^i = |l, Prop. Ill

aud ...fd^s^-iiJs. p v
«2 ^2

2. ...^±?=fS Prop. Ill
#1 + 6 2 #2

3. Then, as in steps 1, 2,

a
x + a 2 + a 3 a3

Given

&1 + &2 + &3 l>%

and so on, however many ratios there may be.

Proposition VII.

235. Theorem. If a : b = c : d, then a2 : b2 = c2 : d2
.

_ a c az c
Proof. ,._ = _,..._=_ Ax . 6

Hence

If four numbers are in pro- If four lines are in propor-

portion, their squares are also tion, the squares on those lines

in proportion. are also in proportion.

Corollary. If a : b = c : d, and m : n = x : y, then am : bn
= ex : dy.
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Proposition VIII.

236. Theorem, a : b = ka : kb.

Proof. kab = kab, or a • kb = b • ka.

.'. a : b = ka : kb. Prop. 11

Note. The number k may be integral, fractional, or irrational.

237. Definitions. If a : b = c : x, x is called the fourth pro-

portional to a, b, c.

Corollaries. 1. By three of the four terms of a proportion

the other is determined.

For if a :'b = c : x, or x : b = c : a, or c :x = d : 6, etc., it follows that

ax= be, whence x = bc/a, a fixed number.

2. If a : b = a : x, then b = x.

For if, in the proof of cor. 1, c = a, then 6 = x.

238. If, in a proportion, the two means are equal, as in

a : x = x : b, this common mean is called the mean proportional,

or geometric mean, between the two extremes.

Corollaries.

The mean proportional be- The geometric mean be-

tween two numbers equals the tween tivo lines equals the side

square root of their product. of that square which equals

their rectangle.

Because the number representing the square units of area

of a rectangle is the product of the two numbers representing

the linear units in two adjacent sides, the expression product

of two lines is often used for rectangle of two lines.

Exercises. 370. Find a mean proportional between 2 and 32.

371. Find a fourth proportional to 3, 7, 15.

372. What number must be added to each of the numbers 2, 1, 5, 3, to

have the results in proportion ?
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2. THE THEORY OF LIMITS.

239. Definitions. A quantity is called a variable if, in the

course of the same investigation, it may take indefinitely

many values ; on the other hand, a quantity is called a con-

stant if. in the course of the same investigation, it keeps the

same value.

M, M 2
M 3

B

E.g. if a line AB is bisected at Mt, and MXB at M2, and M2B at 3f3 ,

and so on, and if x represents the line from A to any of the points Jfj

,

M2 , then £ is a variable, but AB is a constant.

It is customary, as in algebra, to represent variables by the last letters

of the alphabet, and constants by the first letters.

240. If a variable x approaches nearer and nearer a con-

stant a. so that the difference between x and a can become

and remain smaller than any quantity that may be assigned.

then a is called the limit of x.

E.g. in the above figure. AB is the limit of x.

But if the point M simply slides along the line, passing through B,

then, although the difference between AM and AB. or x and a, can

become smaller than any quantity which may be assigned, it does not

remain smaller, for when M passes through B this difference increases.

Hence AB is not then the limit of x.

That " x approaches as its limit a n
is indicated by the

symbol x = a.

Corollary. If x = a, then a — x is a variable whose limit

is zero : thai is, a — x = 0.

Although the variable has been taken, in this discussion, as increasing

towards its limit, it may also be taken as decreasing. Thus if we bisect

a line, bisect its half, and continue to bisect indefinitely, the variable

segment is evidently approaching a limit zero.
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Proposition IX.

241. Theorem. If, while approaching their respective limits,

tivo variables have a constant ratio, their limits have that same

ratio.

B C
_j j. U-

D

Given X and X', two variables, such that as they increase

they approach their respective limits AB, or L, and

AC, or L', and have a constant ratio r.

To prove that L : V = r, or that X : X' = L : X'.

Proof. If the ratio X: X' is not equal to the ratio L : L',

then (1) it must equal the ratio of L to something

less than L', or (2) it must equal the ratio of L to

something greater than V.

It will be shown that both of these suppositions are absurd.

I. To show that (1) is absurd.

1. Suppose X:X' = L:L'-DC.
Then '.' X:X'= r,

.'.X=rX',

and L = r(V - DC). § 223, def. ratio

2. Then L- X= r(L' -DC- X'). Ax. 3

3. But v X'=L)
.'. L' — X' can become as small as we please.

" " " less than DC,

and .'. r(L' — X' — DC) can become negative.

4. But V X> Lj .'. L — X cannot become negative.

5. .*. step 2 is absurd, for a negative quantity cannot

equal one not negative.



Prop. IX.] THE THEORY OF LIMITS. 169

II. To show that (2) is absurd.

1. Suppose X: X' = L : V + CD'.

Then £ - X = /• (X' + CD' - X'),

as in step 2, p. 168.

2. But r(D' 4- CD' — X') cannot become less than

r • CD'.

3. And L — X— 0, because L is the limit of X.

4. .'.if step 1 were true, a quantity, L — X, which can

become as small as we please, would equal a quan-

tity not less than r • CD', which is absurd.

The proof would be substantially the same if the two

variables were supposed to decrease toward a limit.

Corollaries. 1. If, while approaching their respective

limits, two variables are always equal, their limits are equal.

For their ratio is always 1.

2. If, while approaching their respective limits, two variables

have a constant ratio, and one of them is always greater than

the other, the limit of the first is greater than the limit of the

second.

For the limits have the same ratio as the variables.

Exercises. 373. If a : b — c : d,

prove that a2bd + b~c + be = ab'2c + abd + ad.

1. Since be = ad, Prop. I

the equation is true if a-bd + b'
2c = ab2c + abd.

2. Now if in place of each ad we put be, we see that the equation is

true if ab'2c -f b2c — ab2c + b2c.

But this is an identity. Hence the proof is complete.

374. lia:b = c:d,

prove that a — c : b — d = V a- + c- : V&2 + d2
.

Also that Va2 + c2 : \lb2 + d2 = A/ac + - : \Jbd + —

Also that a + mb • a — nb = c. + md : c — nd.
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3. A PENCIL OF LINES CUT BY PARALLELS.

242. Definitions. Through a point any number of lines can

be passed. Such lines are said to form a pencil of lines.

The point through which a pencil of lines passes is called

the vertex of the pencil.

A

A pencil of three lines. A pencil of four parallels.

The annexed pencil of three lines is named "V — ABC."
To conform to the idea of a general figure, set forth in §§ 94, 95, the

word pencil is also applied to parallel lines, the vertex being spoken of as

" at infinity."

243. Definition. Two lines are said to be divided proportion-

ally when the segments of the one have the same ratio as the

corresponding segments of the other.

Exercises. 375. If a : b = c : d, prove that

(1) a + b + c + d:b + d = c + d:d.

(2) in (a + mb) :n(a — nb) = m(c + md) : n(c — nd).

(3) a (a + b + c + d) = (a + 6) (a + c).

(4) a?c + ad2 : b2d + bd2 = (a + c) 3
: (b + d)*.

376. If b is a mean proportional between a and c, prove that

a2 - b'
2 + c2

1 1 1

P ~ P +
<*

b*.

377. Show that there is no finite number which, when added to each

of four unequal numbers in proportion, will make the resulting sums in

proportion.

378. If a :b = c :d, and u :v = x :y,

prove that au + bv : au — bv = ex -f dy -. ex — dy.
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Proposition X.

244. Theorem. The segments of a transversal of a pencil

of parallels are 'proportional to the corresponding segments

of any other transversal of the same pencil.

I
1
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245. Proof for incommensurable case.

[Bk. IV

1. Suppose A divided into equal segments I, and that

A — nl,

while B = n'l + some remainder, x, such that x < /.

Then if ll's to P are drawn from the points of divi-

sion, C is the sum of n equal segments m, and D is

the sum of n' equal segments m, + a remainder y
such that y < m.

2. Then Z^ lies between n'l and (w' + 1) /. Step 1

3. .'. — lies between —- and -r—
A nl nl

4jt

in the figure, between — and
(>/ )

D n'm (n[ + 1) m
while — lies between and L

( nm, nm

4. .'. — and — both lie between — and
A C n n

and .'. they differ by less than

(In the figure, by less than \.)

1
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5. And v - can be made smaller than any assumed
n

difference, by increasing n
}

.'.to assume any differ-

ence leads to an absurdity.

a .
B D A C

JJTb. 'A =r 0T ^
==
D'

PropI11

Corollaries. 1, A line parallel to one side of a triangle

divides the other two sides proportionally.

For in the figure, if BCO is the triangle, the lines OB. OC are cut by

parallels. Hence BBX :

B

xO = CCX : C x O.

2. The corresponding segments of the lines of a pencil cut

off (from the vertex) by parallel transversals are proportional.

In the above figure, 0.4 : 0A X
= OB : 0BX = OC : 0C\ = by

prop. X.

3. The segments of the lines of a pencil cut off {from the

vertex) by parallel transversals are proportional to the corre-

sponding segments of the transversals.

To prove that, in the above figure, AB : A XB X
= OA :OAi= OB : 0BV

Draw through A x a line II to OB cutting AB at X.

Then AB : XB = OAiOAx = OB : 0BX. Prop. X
But XB - AiBv I, prop. XXIV

4. Parallel transversals are divided proportionally by the

lines of a pencil.

To prove that, in the above figure, AB \BC = A\B\\ B XC X .

By cor. 3, AB : A X B X = BO : B x = BC : BX C X . Hence, etc.
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Proposition XI.

246. Theorem. A line can be divided, internally or ex-

ternally, into segments having a given ratio, except that if it

is divided externally the ratio cannot be unity.

Given

Fig. l. Fig. 2.

the line AB, and two lines s1} s 2 having a given ratio.

To prove that AB can be divided in the ratio Sj : s2 , except that

in the case of external division s x cannot equal s2 .

Proof. 1. Suppose AM drawn making, with AB, an angle

< 180°; that AC be taken = s1} and CD = s2 ; that

DB be drawn, and CP II DB.

2. Then AP : PB = s x : s 2 , as required. Prop. X, cor. 1

3. In Pig. 2, if st
= s2 , where does D fall ? What is

then the relation of CP to AB ? Hence show that

the division is impossible in this case.

Corollary. The point of internal division is unique ; like-

wise the point of external division.

From step 2, AB : PB = Si + s2 : s2 , AB, Si -f s2 , and s2 , all being

constants ; but by three terms of a proportion the fourth is determined.

(§ 237, def. of 4th proportional, cor. 1.)

247. Note. Instead of saying that the external division, if the ratio

is unity, is impossible, it is often said that the point of division, P, is at

infinity.

In the case of internal division, the ratios AP : PB and AC : CD are

evidently positive ; but in the case of external division each ratio is

evidently negative because PB and CD are negative. In both cases

step 2 is evidently true.
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Proposition XII.

248. Theorem. A line which divides two sides of a triangle

proportionally is parallel to the third.

Given the triangle ABC, and DE so drawn that AD : DC
= BE : EC.

To prove that DE II AB.

Proof. 1. Suppose DE not ii AB, but that DX II AB.

Then BX : XC = AD : D C. Prop. X, cor. 1

2. But this is impossible, for the division of BC in the

ratio AD : DC is unique. Prop. XI, cor.

3. .'. DX must be identical with DE, and DE II AB.

The proof is the same for all of the figures.

Exercises. 379. In the above figures, ifAD : DC = BE : EC = m : n, ^ {

and if the line through A and E cuts the line through B and D at P,

then prove that J.P : PE = BP : PD = m + n : n.

380. If ex. 379 has been proved, show from it that the centroid of a

triangle divides the medians in the ratio of 2:1.

381. Prove prop. XI on the following figures :

n
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Proposition XIIL

249. Theorem. If any angle of a triangle is bisected, in-

ternally or externally, by a line cutting the opposite side,

then the opposite side is divided, internally or externally,

respectively, in the ratio of the other sides of the triangle.

Given A ABC, the bisector of Z C meeting AB at P.

To prove that AP : PB = AC : BC.

Proof. 1. Let BE II PC, meeting AC produced at E, in Fig. 1.

Then Z EBC = Z PCB = Z ACP = Z CEB.

Given ;
I. prop. XVII, cor. 2

2. .'.BC=CE. Why?

3. But in A A BE, AP : PB = A C : CE, Prop. X, cor. 1

and .'. AP : PB = AC : BC Why ?

The proof for Pig. 2 is the same if step 1 is changed

to Z CBE = ZBCP = Z PCX = Z BEC

250. Definition. When a line is divided internally and

externally into segments having the same ratio, it is said to

be divided harmonically.

If the internal and external points of division of AB, in prop. XIII,

are P and P' then AB is divided harmonically by P and P'.

Exercise. 382. The hypotenuse of a ri^ht-ancled triangle is divided

harmonically by any pair of lines through the vertex of the right angle,

making equal angles with one of its arms.
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4, A PENCIL CUT BY ANTIPARALLELS OR BY A
CIRCUMFERENCE.

251. Definitions. If a pencil of two lines — XY is cut

by two parallel lines AB, MX, and if MX revolves, through a

straight angle, about the bisector of Z XOY as an axis, falling

in the position A
V
BU then AB and AXBX are said to be anti-

parallel to each other.

OA and 0AX are called corresponding segments of the pencil,

as are also OB and 0B
X

. A and A x are called corresponding

l>oints, as are also B and Bx .

Corollary. If Z A — Z A x, in the above figure, then AB
and A XB X are antiparallel to each other.

Exercises. 383. From P, a given point in the side AB of A ABC,
draw a line to AC produced so that it will be bisected by BC.

384. Investigate ex. 383 when P is on AB produced.

385. If the vertices of A XYZ lie on the sides of A abc so that x II a,

y II b, z II c, then X, F, Z bisect «, b, c.

386. In prop. XIII, suppose Z B = Z A ; also, suppose ZB<Z^.
387. In any triangle the line joining the feet of the perpendiculars

from any two vertices to the opposite sides is antiparallel to the thiru side.

388. In A ABC, suppose that a ± c, and the bisectors of the interior

and exterior angles at C meet AB at Pi, P2 . Prove that if a circum-

ference passes through Pi, P2 , and C, (1) P1P2 is the diameter, (2) AC is

a tangent.
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Proposition XIV.

252. Theorem. If a pencil of two lines is cut by two anti-

parallel lines, the corresponding segments form a proportion.

Given the pencil — XY, cut by the antiparallels AB,

A XBX , A and A x being corresponding points.

To prove that OA : OA x = OB : OB x .

Proof. 1. Suppose MN the parallel to AB which, revolving,

fixed A XBX .

Then OA x
= OM, and OB x

= OX. Def . antipar. § 251

2. But OA : OM= OB : OX. Prop. X, cor. 2

and .'. OA: OA x = OB : OB x . Substitution

Corollary. If two antiparallels cut a pencil of two Hues.

the product of the segments of one line equals the product of

the segments of the other.

Why ? What is meant by " product of two segments " ?

Exercises. 389. In the above figures. AB : ^4i7>! = OA : OA
OB-.OBx . (Prop. X, cor. 3, etc.)

390. In the above figures, if ^4i coincides with B. and if OB = b,

OA = a, OBx = b x , then 62 = ab x .

391. If from the vertex of a right-angled triangle a perpendicular p is

drawn cutting the hypotenuse c into two segments x, y, adjacent to sides

a, 6, respectively, then (1) a and p are antiparallels of the pencil 6, c

;

(2) a is a mean proportional between c and x
; (3) p is a mean propor-

tional between x and y ; (4) 62 = cy, a2 = ex, and .-. a2 + b2 = c (x + y)

= c2 . (Thus a new proof is found for the Pythagorean proposition.)

,= *
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Proposition XV.

253. Theorem. If a pencil of lines cuts a circumference,

the product of the two segments from the vertex is constant,

whichever line is taken.

A,

A,

Fig. 1.— The point O on

the chord.

Fig. 2.— The point O on

the chord produced.

Given AB
X
and A

X
B, two chords, each divided at into

two segments.

To prove that AO • OB x
= A x O • OB.

Proof. 1. Suppose AB, A XB X
drawn.

Then £A = £ Av Why ?

2. .'. AB and A
X
BX are antiparallel, § 251, cor.

and .'. AO OBx
= A x O OB. Prop. XIV, cor.

The proposition is entirely general and . should be proved for the fol-

lowing cases.

Fig. 3. — The point O at

the end of the chord.

FIG. 4. — Chord A
X
B

becomes zero.

Fig. 5. —Chord ABY
also

becomes zero.

Corollary. The tangent from the vertex of a pencil to a

circumference is a mean proportional between the two segments

of any other line of the pencil

.

In Fig. 4, AO BxO=A xO • BO=B02
. Therefore AO : BO=BO : Bx O.

W'
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Proposition XVI.

254. Theorem. In the same circle or in equal circles

central angles are proportional to the arcs on which they

stand.

Given A and B, two central angles standing on arcs C and

D, respectively.

To prove that A: B = C : D.

Proof. 1. If A and B are in different circles, they may be

placed in the relative positions shown in the figure.

§ 108, def. O, cor. 2

Suppose A and B divided into equal A x,

and suppose A = nx, and B = n'x.

(In the figure, n = 6, nf = 4.)

2. Then C is divided into n equal arcs y,

" y. Ill, prop. Iand
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255. Proof for incommensurable case.

181

1. Suppose A divided into equal A x, and suppose

A = nx, while B = n'x + some remainder w, such

that w < x.

Then C is divided into u equal arcs y, and D is the

sum of n' equal arcs y + a remainder .?, such that

z < y.

2. Then B lies between n'x and (»*' + 1) x,

and D lies between n'y and (V + 1) y.

B , 2> v ^ '.
,

«' '»' +

1

3. .*..— and — both he between — andAC n n

(In the figure, between | and f.)

J) T) 1

And .*. — and — differ by less than -AC- n

Why ?

Why ?

Why ?

Why ?

4, And '.' - can be made smaller than any assumed
n

difference, by increasing n.

.'. to assume any difference leads to an absurdity.

B D . AC
5. .-._ = -, whence - = -•

Corollary. In the same circle or in equal circles sectors

are proportion"! to their angles or to their arcs.

256. This proposition is often stated,

A central angle is measured by its intercepted arc. See § 180.

,v-
v
*3
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5. SIMILAR FIGURES.

257. Definitions. We have (§ 59) roughly defined similar

figures as figures having the same shape. But this is unsatis-

factory because the word shape is not defined. We therefore

proceed scientifically to define

1. Similar systems of jioints, and then

2. Similar figures.

Two systems of points, A x , Bx, C1}
and A 2 , B2 , C2 , , are

said to be similar when they can be so placed that all lines,

A XA 2 , B^B2 , Cx C2, ,
joining corresponding points form a

pencil whose vertex, 0, divides each line into segments having

a constant ratio r.

In the figure, OA x : OA 2 = OBx : OB2 =

258. Two figures are said to be similar when their systems

of points are similar.

The symbol of similarity w*, already mentioned, is due to Leibnitz.

It is derived from the letter S.

The following are illustrations of similar figures involving

circles:

Concentric circles. Any circles.
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The following are illustrations of similar rectilinear figures

A 2

v
Any line-segments. Four similar triangles. Three similar quadrilaterals.

259. When two similar figures are so placed that lines

through their corresponding points form a pencil, they are

said to be placed in perspective, and the vertex of that pencil

is called their center of similitude.

The figures above and on p. 182 are placed in perspective, and in each
case is the center of similitude.

Two similar figures may evidently be so placed that the center of

similitude will fall within both, or between them, or on the same side of

both, as is seen in the above illustrations.

260. Two systems of points, A1} Blf Cx , and A.2 , B2 , C.2 ,

, are said to be symmetric with respect to a center when
all lines, A^4 2 , B X

B2, CX C2 , , are bisected by 0.

261. Two figures are said to be symmetric with respect to a

center when their systems of points are symmetric -with respect

to that center.

E.g. in the figure, A A xBiCi, A 2B2C2 are symmetric with respect to 0.
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262. In similar figures, if the ratio, r, known as the ratio of

similitude, is 1, the figures are evidently symmetric with respect

to a center. Hence Central Symmetry is a special case of

Similar Figures in Perspective.

The term Center of Similitude is due to Euler.

Corollaries. 1. Congruent figures are similar.

For if made to coincide, any point in their plane is evidently a center

of similitude, the ratio of similitude being 1. Or, they may be placed in

a position of central symmetry.

2. To any ])oint in a system there is one and only one corre-

sponding point of a similar system with respect to a given

center. *

If A\ and A % are corresponding

points in two similar systems in per-

spective, and is the center of simili-

tude, then every point Pi on OAi has

a unique corresponding point P2 on

OA 2 .

For OA l :OA 2 = OP^ : OP2 ,

.-. 0P2 is unique. § 237, cor. 1

Exercises. 392. What is the limit of 1/x as x increases indefinitely ?

of 1/(1 + x) as x = ? as x = 1 ?

393. In A ABC, P is any point in AB, and Q is such a point in CA
that CQ — PB ; if PQ and BC, produced if necessary, meet at X, prove

that CA : AB = PX : QX. (From P draw a line \\ AC.)

394. In the annexed figure of a "Diagonal Scale," AB
is 1 centimeter. Show how, by means of the scale and a

pair of dividers, to lay off 1 millimeter, 0.5 millimeter, 0.3

millimeter, etc. On what proposition or corollary does this

measurement of fractions of a millimeter depend ?

/" 395. ABCD is a parallelogram ; from A a line is drawn cutting BD
I in E, BC in F, and DC produced in G. Prove that AE is a mean pro-

j
portional between EF and EG.

396. ABC is a triangle, and through D, any point in c, DE is drawn

II a to meet b in E ; through C, CF is drawn II EB to meet c produced in

F. Prove that AB is a mean proportional between AD and A F.

V

1

6

4 '

.1
'

:•

l
-
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Proposition XVII.

263. Theorem. Tivo triangles are similar if they have two

angles of the one equal to two angles of the other, respectively.

Given the A A XBXCX , A2B2C2 , with ZA l
= Z.A 2 , ZC1

=
ZC2 .

To prove that A A
XB X C1

^ A A 2B2 C.

Proof. 1. Place one A on the other so that Z C\ coincides with

Z C2 , as at 0, OA 2 falling on OA
x

. Let OX2Xx be

any line through 0, cutting A2B2 at X2 , and A XBX

at Xx .

. Then \- Z.A 2 = ZA X ,

.'. A 2B2 II A
XB X

. I, prop. XVI, cor. 1

2. .'. OA x : OA2 = OB x : OB2 = OXx : OX2
= = r.

Prop. X, cor. 2

V 3. And all points on OA x
and OB x have their corre-

sponding points on OA2 and OB2 , respectively.
V

§ 262, cor. 2

4. .'. the A are similar, being the center of simili-

tude. § 258

Corollaries. 1. Mutually equiangular triangles are similar.

2. If two triangles have the sides of the one respectively

parallel or perpendicular to the sides of the other, they are

similar.

For by § 86, cor. 5, they can be proved to be mutually equiangular.
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Proposition XVIII.

264. Theorem. If two triangles have one angle of the one

equal to one angle of the other, and the including sides pro-

portional, the triangles are similar.

Given A A XBX C^ A 2B2C2, such that Z C\ = Z C2 and ax : a2

= h : b 2 .

To prove that A AXBX C\ v-~ A A 2B2 C2 .

Proof. 1. v Z C2 = Z Cu AA2B2C2 can be placed on AA 1B1C1

so that C2 falls at C1? i?2 on a 1? and J 2 on Z>P

2. Then V C^ 2 : CXA X
= C\B2 : C^l5

.-. A 2B2 II J^. Props. XII, V

3. .'.A A lB1 Cl and A A 2B2C1 are mutually equiangular.

I, prop. XVII, cor. 2

4. .'. AA^iCi^ AA2B2 C\ and its congruent AA 2B2C2 .

Prop. XVII, cor. 1

Exercises. 397. ABC, DBA are two triangles with a common side

AB. If P is any point on AB, and PX II AC, and PF II AD, meeting

BC and PD in X and F, respectively, prove that A YBX -~ A DPC.

398. ABCD is a quadrilateral. Prove that if the bisectors of A A, C
meet on diagonal BD, then the bisectors of AB, D will meet on diago-

nal AC.

399. Construct a triangle, having given the base, the vertical angle,

and the ratio of the remaining sides. (Intersection of loci and prop. XIII.)

400. In A ABC, CM is a median ; A BMC, CMA are bisected by

lines meeting a and b in B and Q, respectively. Prove that QR II AB.
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Proposition XIX.

265. Theorem. If tivo triangles have their sides propoi

tional, they are similar.

C, Cs

Given AA-^Bi^C^ A 2B2C2 such that a
x

: a, — bx : I> 2 = c x : c2 °

To prove that A A
l
B l C1

^ A A 2B2 C2 .

Proof. 1. On CXA X , C\B X lay off C\X = b 2 , and CXY= a 2 , and

draw XY.
Then

o

3. But

and

4.

and

5.

and

'.' a 1 :a2 = b1 : b2 , and Z. C\ = Z. C\,

'. A XYC\ ^ A A
X
B

X CX . Prop. XVIII

a
x : a 2 = Cj : r

27 Given

a
x : a 2

= c, : A'3~. Prop. X, cor. 3

.'. Cl :r 2
= c, :J7, Why?

A AXBXd — A A 2B2 C2 .

I. prop. XII

Steps 2, 5

Exercises. 401. The product of the two segments of any chord

drawn through a given point within a circle equals the square of half

the shortest chord that can be drawn through that point.

402. If P is a point on AB produced, the tangents fiom P to all

circumferences through A and B are equal, and hence such points are

concyclic.

403. If from any point P on the side CA of a right-angled triangle

ABC, PQ is drawn perpendicular to the hypotenuse AB at Q, then

AP • A C = AQ AB. Suppose P to be taken (1) at C
; (2) at A

; (3) on

A C produced.

h'
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Proposition XX.

266. Theorem. Similar triangles have their corresponding

sides proportional and their corresponding angles equal.

Given two similar triangles, A XBX CX , A2B2C2 , A x correspond-

ing to A 2, Bx to B2 , Cx to C2 .

To prove that A XBX : A 2B2 = B X CX : B2 C2
= and that ZBX

= Z-B2

Proof. 1. Suppose the A placed in perspective.

Then OA x : OA 2 = OB x : OB2
= OCx

: OC2 . § 258

2. .". A XBX II A 2B2, and so for other sides.

Props. XII, V
3. .-. Z OB

x
A x
= ^ OB2A 2 , and Z Cx

B x O = Z C2B2 0.

I, prop. XVII, cor. 2

4. .'./]>! = Z7> 2 , and so for other angles. Ax. 2

5. Also, OB, : OB2 = A
X
B X : A 2B2 ,

= BXCX : B2C2 . Prop. X, cor. 3

6. .*. A XBX : A 2B2
= BXCX : B2C2 , and so for other sides.

Note. This is the converse of props. XVII, XIX.

Corollaries. 1. The corresponding altitudes of two similar

triangles have the same ratio as any two corresj»>mling sides.

Why?

2. The corresponding sides of similar triangles are opposite

the equal angles.

In what step is this proved ?
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267. Summary of Propositions concerning Similar Triangles.

Two triangles are similar if

1. (a) Two angles of the one equal two angles of the other.

Prop. XVII

(b) They are mutually equiangular. Prop. XVII, cor. 1

(c) The sides of the one are parallel to the sides of the

other. Prop. XVII, cor. 2

(d) The sides of the one are perpendicular to the sides of

the other. Prop. XVII, cor. 2

2. One angle of the one equals one angle of the other and the

including sides are proportional. Prop. XVIII

3. Their corresponding sides are proportional. Prop. XIX

If two triangles are similar,

1. They are mutually equiangular. Prop. XX
2. Their corresponding sides are proportional. Prop. XX
3. Their corresponding altitudes are proportional to their

corresponding sides. Prop. XX, cor. 1

268. It should further be observed that, in general,

Three conditions determine congruence. (See § 90.)

Two conditions determine similarity.

For these conditions are

1. Two angles equal. (Prop. XVII.)

2. One angle and one ratio. (Prop. XVIII.)

3. Two ratios ; for if the sides are a, b, c, and a', b', c', then if

-==—-, and - = —, the A are similar, since - must also equal — *

b b' c c' c c'

Exercises. 404. If X is any point in the side a, or a produced, of

A ABC, and if r& and rc are the radii of circles circumscribed about

A ABX and A AXC, respectively, then rh :rc — c\b. (Join the centers

and prove two triangles similar.)

405. If one of the parallel sides of a trapezoid is double the other,

prove that the diagonals intersect one another in a point of trisection.
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Proposition XXI.

269. Theorem. If two polygons are mutually equiangular

and have their corresponding sides proportional, they are

similar.

B,Z ^Z ^^>

Given two polygons, A
X
BXCX and A2B2C2 , such that

ZA X = ZA 2 , ZB X
= ZB2 , ,

and A
X
BX : A 2B2 = BXCX : B2C2 =

To prove that J^Ci ^ A, B2 C2

Proof. 1. Place A 2B2 II A
XB X . Then v the A of one polygon

== the corresponding A of the other, the remaining

sides may be made parallel respectively.

I, prop. XVII, cor. 5

2. If A
X
B X > A 2B2 , then BX CX > B2 C2 , , because

the ratios are equal.

3. Draw A
X
A 2 , B X

B2 , Then A XB X
B2A 2 is not a O;

also B
X C\C2B2 , etc.; and A XA 2 meets B X

B2 as at 0,

B
X
B2 meets C^CVas at 0', etc. I, prop. XXIV

4. But B
x
0'

: B2
0' = B X CX : B2C2

= A XB X
: A 2B2 = Bx O: B2 0,

» Prop. X, cor. 3

which/is impossible unless and 0' coincide.

Prop. XI, cor.

5. .'. the two figures are similar, and (> is the center

of similitude. § 258
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In step 2, if A XB X
= A2B2 , then BXCX

= B2C2 , , and the

polygons are congruent and therefore similar. § 262. cor. 1

Corollaries. 1. If two polygons are similar, titer/ are

mutually equiangular and their corresponding sides are pro-

portional.

For if placed in perspective as on p. 190,

1. OA x : OA 2 = OB x : OB2 . § 258

2. .-. A XBX II A 2B2 , and so for other sides. Prop. XII

3. .-. ZL'i = Z B2 , and so for other angles. I, prop. XVII, cor. 5

4. Also A XBX : A2B2 = B xO : B2 = B X CX : B2C2 = Prop. X, cor. 3

2. Polygons similar to the same polygon are similar to each

other.

For they have angles equal to those of the third polygon, and the

ratios of their sides equal the ratios of the sides of the third polygon.

3. The perimeters of similar polygons have the same ratio

as the corresponding sides.

For by cor. 1, A XBX : A 2B2 = B XC X : B2C2 = = r. .-. A XBX + BXCX

+ :A 2 B2 + B2C2 + = r. (Why ?)

4. Two similar polygons can be divided into the same num-

ber of triangles similar each to each, and similarly placed.

For and (X coincide, and the figures can be placed having within

each. The triangles A xOBx , A 2OB2 are then similar, by prop. XVII.

Exercises. 406. If from a point outside a circle a pair of tangents

and a secant are drawn, the quadrilateral formed by joining in succes-

sion the four points thus determined on the circumference has the rect-

angles of its opposite sides equal.

407. AB is a diameter, and from A a line is drawn to cut the circum-

ference in C and the tangent from B in D. Prove that the diameter is

the mean proportional between A C and AD.

408. In O ABCD. P, Q are points in a line parallel to AB ; PA and

QB meet at R, and PB and QC meet at S. Prove that RS II AB.

409. Chords AB, CB are produced to meet at P, and PF is drawn

parallel to BA to meet CB produced in F. Prove that PF is the mean
proportional between FB and FC.
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Proposition XXII.

270. Theorem. In a right-angled triangle the perpendicu-

lar from the vertex of the right angle to the hypotenuse

divides the triangle into two triangles which are similar to

the whole and to each other.

D

Given A ABC, with Z C a right angle, and CD _L AB.

To prove that (l)AiCD^A ABC.

(2) A CBD ~ A ABC.

(3) AACD^A CBD.

Proof. 1. '
.

• Z CDA = ZACB, Why ?

and Z A = Z A,

.'.AACD^AABC, which proves (1).

Prop. XVII

2. Similarly A CBD ~ A ABC, which proves (2).

Prop. XVII

3. .*. A ACD ~ A CBD, which proves (3).

Prop. XXI, cor. 2

Corollaries. 1. Either side of a right-angled triangle is

the mean proportional between the hypotenuse and its segment

adjacent to that side.

For from step 1, AB : AC = AC : AD ; and from 2, AB.BC = BC-.DB.

2. The perpendicular from the vertex of the right angle to

the hypotenuse is the mean proportional between the segments

of the hypotenuse.

For from step 3, AD : CD = CD : DB.
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EXERCISES.

410. Prove the converse of prop. XXII : If the perpendicular drawn
from the vertex of a triangle to the base is the mean proportional

i between the segments of the base, the triangle is right-angled.

Jfflr\ 411. Prove that any chord of a circle is the mean proportional

I between its projection on the diameter from one of its extremities, and

the diameter itself.

412. In the figure on p. 192, if AD represents three units, and DB
represents one unit, what number is represented by CD ?

413. Prove that if a perpendicular is let fall from any point on a cir-

cumference, to any diameter, it is the mean proportional between the

segments into which it divides that diameter.

414. Prove that if two fixed parallel tangents are cut by a variable

IV tangent, the rectangle of the segments of the latter is constant.

415. Through any point in the common chord of two intersecting

j£. circumferences two chords are drawn, one in each circle. Prove that

the four extremities of these chords are concyclic.

416. If the bisectors of the interior and exterior angles at B, in the

figure of prop. XXII, meet b at F and E, respectively, prove that BC is

the mean proportional between FC and CE.

i/ 417. Calculate each of the segments into which the bisectors of the

y\ angles of a triangle divide the opposite sides, the lengths of the sides

being 9 in., 12 in., and 15 in., respectively.

J& 418. From the points A, B, on a line AB, 25 in. long, perpendiculars

AC, BD are erected such that AC = 13 in., BD = 7 in. On AB the

point is taken such that ZBOD = ZCOA. Calculate the distances

AO, OB.

419. Given a trapezoid ABCD, with the non-parallel sides AD, BC
divided at E, F, respectively, in the ratio of 2 to 3, to calculate the length

of EF, knowing that AB = 12.45 in., and DC = 38.5 in.

420. Calculate the sides of a right triangle, knowing that their respec-

tive projections on the hypotenuse are 2.88 in. and 5.12 in.

421. The two sides of a right triangle are respectively 10 in. and 24 in.

Required the lengths of their projections on the hypotenuse, and the

distance of the vertex of the right angle from the hypotenuse. (To 0.001.)

422. The two sides of a right triangle are respectively 3.128 in. and
4.275 in. Required the lengths of the two segments into which the

bisector of the right angle divides the hypotenuse. (To 0.001.)
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6. PROBLEMS.

Proposition XXIII.

271. Problem. To divide a line-segment into parts propor-

tional to the segments of a given line.

Given the line OX', and the line OX divided into segments

OA, AB,

Required to divide OX' into segments proportional to OA,

AB,

Construction. 1. Placing the lines oblique to each other at a

common end-point 0, draw XX'

.

§ 28

2. From A, B, draw lines II XX', cutting OX' at

A', B', I, prop. XXXIII

Then OX' is divided as required.

Proof. '.' OX, OX' are two transversals of a pencil of ll's, the

corresponding segments are in proportion. Prop. X

Corollaries. 1. A given line can be divided into parts

proportional to any number of given lines.

For that number of given lines may be laid off as OA, AB, BC,

on OX.

2. A line can be divided into any number of equal parts.

Note. While a straight line can be divided into any number of equal

parts, by means of the straight edge and the compasses, a circumference

cannot be divided into 7, 9, 11, 13, and, in general, any prime number of

equal parts beyond 5. The exceptions are noted in Book V.
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Proposition XXIV.

272. Problem. To find the fourth proportional to three

given lines.

Given three lines, a, b, c.

Required to find x such that a : b = c : x.

Construction. 1. From the vertex of a pencil of two lines, with

the compasses lay off a, b, in order, on one line, and

c on the other line.

2. Join the end-points of a, c, remote from the vertex,

by I § 28

3. From the end-point of b, remote from a. draw a line

parallel to I. I, prop. XXXIII

This will cut off x, the line required.

Proof. a : b — c : x. Prop. X, cor. 1

273. Definition. If a : b = b : x, x is called the third pro-

portional to a and b.

Corollary. The third proportional to two given lines van

be found.

For to find x such that a : b = b : x. make c = b in the above solution.

Exercises. 423. The problem admits of a considerable variation of

the figure, as suggested by the figure given in ex. 383. Invent another

solution from this suggestion.

424. How many inches in the fourth proportional to lines respectively

2 in.. 3 in.. 5 in. long? In the third proportional to lines respectively

2 in. , 7 in. long ?
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Proposition XXV.

274. Problem. To find the mean proportional between

two given

D B

Given two lines, AD, DB.

Required to find the mean proportional between them.

Construction. 1. Placing AD, DB end to end in the same line,

bisect AB at 0. I, prop. XXXI

2. With center and radius OB, describe a circle.

§ 109

3. Prom D draw DC J- AB, to meet circumference

at C. I, prop. XXIX
Then CD is the mean proportional.

Proof. AD : CD = CD : DB. Prop. XXII, cor. 2, and § 238

275. Definition. A line is said to be divided in extreme and

mean ratio by a point when one of the segments is the mean

proportional between the whole line and the other segment.

Thus, AB is divided internally in extreme and mean ratio at P, if

AB : AP = AP : PB ; and externally in
f p

such ratio at P', if AB : AP* = AP' : P'B. E 1

To say that AB : AP = AP : PB is
A B

merely to say that AP2 = AB • PB. This division is often known as

the Golden Section or the Median Section.

If the student understands quadratic equations he will see that if the

length of AB is 6, and if AP = x, then PB = G — x, and

v AP2 = AB • PB,

... x2 = 6 (6 - x),

or x2 + 6x - 36 - 0. Solving, x = - 3 =fc 3 VE.
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Proposition XXVI.

276. Problem. To divide a line i)i extreme and mean ratio.

Given the line AB.

Required to divide AB in extreme and mean ratio ; i.e. to

find P such that AB • PB = AP2
.

Construction. 1. Draw CB J_ AB and —\AB.

2. Describe a O with center C and radius CB.

3. Draw AC cutting the circumference in A' and Y.

4. Describe two arcs with center A and radii AX and

A Y, thus fixing points P, P'.

These are the required points.

Proof for point P. Proof for point P'.

AB2 = AX- AY
= AP(AX+XY)
= AP (AP + AB)

= AP2 + AP • AB.

.'
. AB (AB - AP) = AP2

.

.'.AB'PB = AP2
.

AB2 = AY- AX
= P'A (A Y - XY)
= P'A (P'A - AB)

= P'A 2 - AB • P'A.

AB (AB + P'^) = P'A2
.

.'.AB-P'B = P'A2
.

.'. AB is divided internally at P and externally at P' in

Golden Section.

It should be noticed that if the sense of the lines as positive or nega-

tive is considered (that is, considering AP — — PA), the above solutions

would be identical if X and Y were interchanged, and P' substituted

for P.
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Proposition XXVII.

277. Problem. On a given line-segment as a side corre-

sponding to a given side of a given polygon, to construct a

polygon similar to that polygon.

D ^C

Fig. 2.

Given the polygon ABCD and the line-segment A'B'.

Required to construct on A'B' as a side corresponding to A B,

a polygon A'B' CD' ~ ABCD.

Construction. 1. In Fig. 1, place A'B' II AB. I, prop. XXXIII

Draw AA', BB', meeting at 0; draw OC, OD. § 28

Draw B'C II BC, CD' II CD. I, prop. XXXIII

Draw D'A'. Then A'B'C'D' — ABCD.

Proof. 1. v OA:OA'=OB:OB'=OC:OC'=OD:OD', §244

.-. D'A' II DA. Prop. XII

2. v A'B':AB= OB': OB = B'C:BC = »

Prop. X, cor. 3

and Z C'B'A' = Z CBA, and so for the other A,

I, prop. XVII, cor. 2; ax. 3

.
•

. A'B'CD' ~ AB CD. Prop. XXI

If A'B'= AB, as in Fig. 2, draw from C, D IPs to AA';

otherwise the construction is as above. It is left to

the student to prove D'A' II DA, and A'B'C'D' ^
ABCD. .'. A'B'C'D' ~~ ABCD by § 262, cor. 1.



BOOK V.— MENSURATION OF PLANE FIGURES.

REGULAR POLYGONS AND THE CIRCLE.

1. MENSURATION OF PLANE FIGURES.

Proposition I.

278. Theorem. Tivo rectangles having equal altitudes are

proportional to their bases. ,

Given two rectangles R and R', with altitude a, and with

bases b, b', respectively.

To prove that R : R' = b:b'.

Proof. 1. Suppose b and b' divided into equal segments, /,

and suppose b = nl, and b' = n'l.

(In the figures, n = 6, n' = 4.)

Then if _k are erected from the points of division,

R = n congruent rectangles al,

and R' = ?i' " " «

R
R'

n - al

u' -al
Why ?

Note. The above proof assumes that b and b' are commensurable,

and hence that they can be divided into equal segments I. The proposi-

tion is, however, entirely general. The proof on p. 200 is valid if b and

b' are incommensurable.

199
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279. Proof for incommensurable case.

R'

[Bk. V.

1. Suppose b divided into equal segments I,

and suppose b = nl,

while b' = ?i'l + some remainder x,

such that x < I.

Then if _L's are erected from the points of division,

R = n congruent rectangles al,

and 22'= ?

such that ax < al.

al + a remainder ax,

Why ?2. Then b' lies between n'l and (V + 1) I,

(In the figure, between 4 1 and 5 Z.

)

and B' lies between n' • <zZ and (V + 1) al. Why ?

// 7."

3. .*. — and — both lie between — and
b R n

(In the figure, between \ and f.)

and .*. they differ by less than -•

(In the figure, by less than \.)

w' + l Why ?

Why?

4. And v - can be made smaller than any assumed

difference, by increasing n,

.'.to assume any difference leads to an absurdity.

K V R' , R b
5. .'.- =— ? whence —=-•

b R R' b'

Note. The proof will be noticed to be essentially that of pp. 171, 181.
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Corollaries. 1. Rectangles having equal bases are pro-

portioned to their altitudes.

For they can be turned through 90° so as to interchange base and
altitude.

2. Triangles having equal altitudes are proportional to their

bases; having equal bases, to their altitudes. (Why?)

3. Parallelograms having equal bases are proportional to

their altitudes; having equal altitudes, to their bases.

Proposition II.

280. Theorem. Two rectangles have the same ratio as the

products of {the numerical measures of) their bases and

altitudes.

Given two rectangles E, Pi, with bases b, b', and altitudes

a, a\ respectively.

To prove that B:B'= ab : a'b'.

Proof. 1. Let X be a rectangle of altitude a and base b'.

E b

X_^o_
E'~ a''

2. .-.— = —— , by multiplying corresponding

members of the two equations. Ax. 6

Note. Thus again appears the relation between geometry and algebra

set forth in § 221, that to the product of two numbers corresponds the

rectangle of two lines.

Then

and

Prop. I

Prop. I, cor. 1
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281. Definition. To measure a surface is to find its ratio to

some unit. The unit of measure, multiplied by this ratio, is

called the area.

Thus, in a surface 4 ft. long by 2 ft. broad, the ratio of the surface to

1 sq. ft. is 8, and 8 sq. ft. is the area.

Corollaries. 1. Parallelograms (or triangles) have the same

ratio as the products of their bases and altitudes. (Why ?)

For a parallelogram equals a rectangle of the same base and the same

altitude, II, prop. I, cor. 1. See also (for the triangle) II, prop. II, cor. 1.

2. The area of a rectangle equals the product of its base and

altitude.

That is, the number which represents its square units of area is the

product of the two numbers which represent its base and altitude.

For in prop. II, if B' = 1, the square unit of area, then a' and b' must

each equal 1, the unit of length. Hence R/l = ab/l, or E = ab.

3. The area of a, parallelogram equals the product of its base

and altitude ; of a triangle, half that product.

See the proof under cor. 1.

4. The area of a square equals the second power of its side.

This is the reason that the second poiver of a number is called its square.

5. The area of a trapezoid equals the product of its altitude

and half the sum of its bases. (Why ?)

See II, prop. III.

Exercises. 425. Prove that any quadrilateral is divided by its inte-

rior diagonals into four triangles which form a proportion.

426. ABC is a triangle, and P is any point in BC ; from P are drawn

two parallels to CA, BA, meeting AB, AC in X, Y, respectively. Prove

that A AXY is a mean proportional between A BPX and A PCY. In-

vestigate when P is on CB produced.

427. Suppose D, E, the mid-points of sides b, a of A ABC, to be

joined ; draw AE and ED, intersecting at 0. Prove that ABEO is a

mean proportional between A DOE and ABO. Investigate when BE II

AB, but D and E are not mid-points of b, a.
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Proposition III.

282. Theorem. Triangles, or parallelograms, which have

an angle in one equal to an angle in the other, have the same

ratio as the products of the including sides.

A B B

Given two triangles ABC, AB'C, having an angle, A, of

one equal to an angle, A, of the other.

To prove that A ABC : A AB'C = AB AC : AB' • AC.

Proof. 1. Suppose them placed with Z A in common; draw

BC, B'C

Then AABCiA AB'C = AB : AB'. Why ?

2. And AAB'C:AAB'C = AC: AC,

their bases being AC, AC. Why ?

3. .-. A ABC: A AB'C = AB - AC : AB' AC. Ax. 6

4. And '•' the UJ in the figure are double the A, the

theorem is true for parallelograms.

Corollary. Similar triangles have the same ratio as the

squares of their corresponding sides.

For if the A are similar, BC II B'C. and the ratio AB : AB' equals,

and may be substituted for, the ratio AC :AC\ thus making the second

member of step 3, AB2
: AB' 2

.

Exercises. 428. Prove prop. Ill, changed to read, "an angle in one

supplemental to an angle in the other."

429. Prove the converse of prop. Ill, cor. : If two triangles have the

same ratio as the squares of any two corresponding sides, they are

similar.
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Proposition IV.

283. Theorem. Similar polygons have the same ratio as

the squares of their corresponding sides.

Given P and P', two similar polygons; sides a, b, ,

corresponding to sides a', b', ; diagonal s corre-

sponding to diagonal s'.

To prove that P : P' = a2
: a'

2
.

Proof. 1. Suppose P and P' divided into similar A of bases

a and a', b and b', , by diagonals from corre-

sponding points 0, 0'. IV, prop. XXI, cor. 4

Then A Oa : A O'a' = a2
: a'

2
,

Prop. Ill, cor.

and A Oa : A O'a' = s
2

: s'
2 = A Ob : A O'b' =

Why?
2. .'.AOft+OH : A O'a'+ O'b'+ = AOa:A O'a'.

IV, prop. VI

3. '.'AOa + Ob + = P, and A 0'a'+ 0'b'+ = P',

.'.P:P' = a2 :a'2
.

Exercises. 430. If the vertices, A, B, C, of a triangle are joined to

a point within the triangle, and if AO produced cuts a at D, then

A ABO: A AOC = BD: DC.

431. If two triangles are on equal bases and between the same paral-

lels, then any line parallel to their bases, cutting the triangles, will cut

off equal triangles.

432. Two equilateral triangles have their areas in the ratio of 1 : 2.

Find the ratio of their sides to the nearest 0.01.
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2. PARTITION OF THE PERIGON.

Proposition V.

284. Problem. To bisect a perigon.

Construction and Proof. A special case under I, prop. XXVIII.

Corollary. A perigon com be divided into 2n equal angles.

Proposition VI.

285. Problem. To trisect a perigon.

R

Given the perigon with vertex 0.

Required to trisect it.

Construction. 1. On any line OA, from 0, construct an equi-

lateral A OAB. Authority ?

2. Produce AO to C, and bisect Z COB by OB.

Then the perigon is trisected by OB, C, OB.

Proof. 1. v ZAOB = 60°, I, prop. XIX, cor. 8

.-.ZBOC, supplement of Z.AOB = 120°.

2. .'. Z COB, conjugate of Z BOC = 240°.

3. .-. Z COD = Z BOB = 120°. Const. 2
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Corollary. A perigon can be divided into 3 • 2" equal

angles.

For if n = 0, then 3 • 2M = 3 • 1 = 3, so that the corollary reduces to the

problem itself. If n = 1, then 3 • 2n = 6, and by bisecting A BOC, COD,
DOB, the perigon is divided into 6 equal angles. Similarly, by bisecting

again, the perigon is divided into 3 • 2 2 = 12 equal angles, and so on.

Proposition VII.

286. Problem. To divide a perigon into five equal angles.

Y

Given

M P A

the perigon with vertex 0.

Required to divide it into five equal angles.

Construction. 1. Draw OA, and divide it at P so that OP • OA
= PA 2

. IV, prop. XXVI

2. Draw MY, the _L bisector of OP. I, prop. XXXI

3. With center P and radius PA describe an arc cutting

MYinB. §109

4.
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2. v A OPB is isosceles, OB = PB = PJ, the radius.

3. Also, 0Aa + OB1 = AB2 + 2 0Jf • OA
II, prop. IX, cor. 1

And •.-2 03I=OP,

.'. 041 + OP 2 = ^P2 + OP OA.

4. And V OB2 = PA 2 = OP • OJ,

.-. OA2 + OP2 = ^4P2 + OB2
, from step 3,

.-. OA2 = AB2
,

and .-. 0.1 = AB.

5. .-. Z 0P.4 = Z0 = Z BPO, I, prop. Ill

= AA + Z. PBA. I, prop. XIX

And v £A = £ PBA, I, prop. Ill

.\Z0 = 2ZJ.

6. .'. Z is f of a st. Z, or £ of a perigon.

I, prop. XIX

Corollary, yl perigon can be divided into 5 • ,J" equal parts.

For if n = 0, then 5 • 2n = 5 • 1 = 5, so that the corollary reduces to the

problem itself. If n = 1, then 5 • 2n = 5 • 2 = 10, and by bisecting Z A OB,

the resulting angle is jL f a perigon. Similarly, by bisecting again, ^ f

a perigon is formed, and so on.

Exercises. 433. In the figure on p. 200, let OP= x, PA = r ; then show

that x--(VE — 1). (Omit exs. 433, 434 if the student has not had

quadratic equations.)

434. In the same figure, if OP = x and OA = a, show that x =

|(S-V6).

435. On the sides a, b, c. of an equilateral triangle, points X, Y, Z
are so taken that BX : XG - CY : YA = AZ : ZB = 2 : 1. Find the

ratio of A XYZ to A .4£C.
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Proposition VIII.

287. Problem. To divide a perigon into fifteen equal angles.

D\ \
C /B

A

Solution. 1. Make Z. AOB — \ of a perigon. Prop. VII

2. Make Z ^40D = ^ of a perigon. Prop. VI

3. Bisect Z BOD. I, prop. XXVIII

4. Then /. BOC'=£(£ — £) perigon = ^ of a perigon.

Corollary. ^4 perigon can be divided into 15 • #* equal

angles.

Explain.

288. Note. That a perigon could be divided into 2", 3 2", 5 2W
,

15 • 2n equal angles, was known as early as Euclid's time. By the use of

the compasses and straight edge no other partitions were deemed possible.

In 1796 Gauss found, and published the fact in 1801, that a perigon could

be divided into 17, and hence into 17 • 2n equal angles ; furthermore, that

it could be divided into 2m -f 1 equal angles if 2m + 1 was a prime number

;

and, in general, that it could be divided into a number of equal angles

represented by the product of different prime numbers of the form

2m -f 1. Hence it follows that a perigon can be divided into a number

of equal angles represented by the product of 2n and one or more different

prime numbers of the form 2m -f 1. It is shown in the Theory of Num-
bers that if 2m + 1 is prime, m must equal 2p

; hence the general form for

the prime numbers mentioned is 22P + 1. Gauss's proof is only semi-

geometric, and is not adapted to elementary geometry.

Exercises. 436. Including the divisions of a perigon suggested by

Gauss, there are 25 possible divisions below 100. What are they ?

437. As in ex. 43G, there are 13 possible divisions between 100 and

300. What are they ?
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3. REGULAR POLYGONS.

Proposition IX.

289. Problem. To inscribe in a circle a regular 'polygon

having a given number of sides.

Given a circle with center and radius OA.

Required to inscribe in the circle a regular ?i-gon.

Construction. 1. Divide the perigon into n equal parts (n

being limited as in props. V-VIII and cors.) as AOB,
BOC, COD, , B, C, D, lying on the circum-

ference.

2. Draw AB, BC, CD § 28

Then ABCD is an inscribed regular %-gon.

Proof. 1. AAOB^ABOC^ACOD^ ,

and AB = BC = CD = I, prop. I

2. .'. AB = BC= CD= Ill, prop. IV

3. .\ZDCB = Z. CBA = ,

'.' each staDds on (n — 2) arcs equal to AB.

Ill, prop. XI, cor. 1

4. .". ABCD is an inscribed regular polygon.

§§ 92, 201
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Corollaries. 1. The side of an inscribed regular hexagon

equals the radius of the circle.

Then Z AOB = \ of 360° = GO ;
.-. Z BA 0, which = Z OBA = 60°.

.-. A ABO is equilateral.

2. An inscribed equilateral polygon is regular.

For by step 3 of the proof it is also equiangular ; and being both equi-

lateral and equiangular, it is regular.

Proposition X.

290. Problem. To circumscribe about a circle a regular

polygon having a given number of

Given a circle with center and radius OA.

Required to circumscribe about this circle a regular ?i-gon.

Construction. 1. Divide the perigon O into n equal parts {ii

being limited as in props. V—VIII and cors.) by lines

OW, OX, OY,

2. Bisect A WOX
}
XO Y, by radii to A, Ii,

I, prop. XXVIII

3. From A, B, C, draw tangents to meet OJJ'at 7>,

OX at E, Ill, prop. XXVI

Then DEFG is the required polygon.
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Proof. 1. v DE± OA, EF± OB, , III, prop. IX, cor. 2

.-.A OAE^A OBE, and AE = BE, OE = OK
I, prop. II

2. .'. the tangents from A and 7> meet X at the same

point, E.

3. And v Z.DOE = A EOF,

and Z OEZ) = Z i^O,

.'. A DOE^A EOF, and Z># = ##

Const. 1

Step 1

Why ?

4. Also, v Z GEE = A FED, each being the supple-

ment of an Z equal to Z WOX, (Xame the Z.)

I, prop. XXI, cor.

.'. DEFG is a circumscribed regular polygon.

§§ 92, 201

Corollaries. 1. The side of a regular hexagon circum-

scribed about a circle of diameter 1, is 1/V3, or i v3.

For it is (as in prop. IX, cor. 1) the side of an equilateral A whose

altitude is ^. This is easily shown to be 1/Vs. (Show it.)

2. A circumscribed equiangular polygon is regular.

Prove that any two adjacent sides are equal.

Exercises. 438. In a right-angled triangle, any polygon on the hypote-

nuse equals the sum of two similar polygons described on the sides as

corresponding sides of those polygons.

(Suggestion : P2 : Pz =z b2 : c2 ;

.-. P2 + P3 :P3 = &a + c2 : C2

= a 2
: c2 = P1 :PZ ;

.-. P2 + P3 : Pi = P3 : Ps = 1. This is one s

of the generalized forms of the Pythago-

rean theorem.)

439. If r is the radius of the circle, and

8 is the side of the inscribed equilateral

triangle, then s = r V3.
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Proposition XI.

291. Problem. To circumscribe a circle about a given

regular polygon.

E
D

C

B

Given the regular polygon ABCD

Required to circumscribe a circle about it.

Construction. Bisect A DCB, CBA, the bisectors meeting at 0.

Then is the center and OB the radius.

Proof. 1. Draw OA, OD, OE, Then V A OCB, CBO are

halves of oblique A, each is less than a rt. Z.

2. .'. CO and BO cannot be II, and they meet as at 0.

3. And v ZCBO = Z OBA, Const,

and AB = BC, § 92, clef. reg. pol.

4. .'.A ABO £ A C50, and 6U = OC. Why ?

Similarly each of the lines OB, OD, = OC.

5. .*. is the center, and OA, OB, are radii. § 108

292. Note. The inscription and circumscription of regular polygons

are seen to depend upon the partition of the perigon. Elementary geometry

is thus limited to the inscription and circumscription of regular polygons

of 2", 3-2", 5 • 2", 15 • 2n sides ; or, since the discovery by Gauss, to poly-

gons the number of whose sides is represented by the product of 2n and

one or more different prime numbers of the form 2m + 1.

In addition to regular convex polygons, cross polygons can also be

regular, the common five-pointed star being an example.
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Proposition XII.

293. Problem. To inscribe a circle in a given regular

polygon.

Given a regular polygon WXY
Required to inscribe a circle in it.

Construction. 1. Circumscribe a circle about it. Prop. XI

2. From center of tins O draw OA _L WX.
I, prop. XXX

With center 0, and radius OA, a O may be inscribed.

Proof. 1. Draw OB, OC, _L XY, YZ,

Then v OA bisects WX, .'.A lies between W and

X, and so for B, C, Ill, prop. V

2. And*.' WX=XY= , .\ OA = OB =
Ill, prop. VII

3. .'.if with center and radius OA a O is described,

then WX, XY, will be tangent to the O,

III, prop. IX, cor. 3

and .'. the O is inscribed in the polygon.

§ 201, def. inscr. O

Exercises. 440. Solve prop. XI by bisecting the sides AB, BC by

perpendiculars, thus determining 0.

441. Inscribe a regular cross pentagon in a circle. (The regular cross

pentagon, the pentagram, was the badge of the Pythagorean school.)



214 PLANE GEOMETRY. [Bk. V.

Corollaries. 1. The inscribed and circumscribed circles of

a regular polygon are concentric.

For from step 2 of the construction and step 2 o^f: the proof, is the

center of both circles.

2. The bisectors of the angles of a regular polygon meet in

the common in- and circumcenter.

For by the proof of prop. XI they meet in O, and by cor. 1 is the

common in- and circumcenter.

3. The perpendicular bisectors of the sides of a regular

polygon meet in the common in- and circumcenter. (Why ?)

294. Definitions. The radius of the circumscribed circle is

called the radius of a regular polygon ; the radius of the

inscribed circle, the apothem of that polygon ; the common
center of the two circles, the center of that polygon.

E.g. in the figure below, r is the radius, m the apothem, and the

center of the regular polygon, part of which is shown as inscribed in the

circle.

Proposition XIII.

295. Theorem. The area of a regular polygon equals half

the product of the apothem and perimeter.

Given an inscribed regular polygon, of area a, perimeter

p, apothem m.

To prove that a = ^ mp.
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Proof. Let be the center and /• the radius of the circum-

scribed circle.

Let t be one of the A formed by joining to two

consecutive vertices, and s a side of the polygon.

Then area t equals
-J-
ms. "Why ?

.'. the area of the polygon equals the sum of the

areas of the triangles = \m X the sum of the sides

= \ mp. Ax. 2

Corollaries. 1. The areas of regular polygons of the

same number of sides are proportional to the squares of their

%pothemSj of their radii, or of their sides.

For - = i^L = J^L
;
and from similar & and IV, prop. XX,

a $ mp mp
m r s p . . .j. a m2 r2 s2— = — = — = —• .-.by substitution — = —^ = — = — •

m r s p a m'2 r 2 s-

2. The 'perimeters of regular polygons of the same number

of sides are proportional to their apothems, their radii, or

their sides.

Proved with cor. 1.

Exercises. 442. The distance from the center to a side of the inscribed

equilateral triangle equals r/2.

443. Draw a diameter AB of a circle with center ; then with

center A and radius A draw an arc cutting the circumference in C, D
;

draw CD. DB, BC, and prove A BCD equilateral.

444. The area of an inscribed regular hexagon is a mean propor-

tional between the areas of the inscribed and circumscribed equilateral

triangles.

445. Show how, with compasses alone, to divide a circumference into

six equal arcs.

446. Prove that if AB, CD, two diameters of a circle, are perpen-

dicular to each other, then ACBD is an inscribed square.

447. Let OX be the perpendicular bisector of line-segment AB at ;

lay off on OX, OD = AO ; and, on DX, lay off DC = DB ; then prove

that C is the center of the O circumscribed about the regular octagon of

which AB is a side.
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4. THE MENSURATION OF THE CIRCLE.

296. Postulate of Limits. The circle and its circumference

are the respective limits which the inscribed and circum-

scribed regular polygons and their perimeters approach, if

the number of their sides increases indefinitely.

The following may be read by the student in connection

with the postulate, although it does not constitute a proof

:

1. In the figure, suppose an in- and circumscribed regular ?i-gon rep-

360°
resented. Then each exterior angle equals in each figure.

360° 180°
2. .-. each interior angle equals 180° > and .-. Z a = 90°° n n
3. .-. if n increases indefinitely, Za = 90°, and p = r.

4. .-. the inscribed polygon = the circle, and its perimeter

circumference. Similarly for the circumscribed polygon.

the

Coeollaries. 1. The circumscribed regular polygon and

its perimeter are respectively greater than the circle and its

circumference ; the inscribed, and its perimeter, less.

2. If, on any finite closed curve, n points

are assumed equidistant from each other, and

each connected with the succeeding point by

a straight line, then the curve is the limit which the broken

line approaches if n increases indefinitely.
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Proposition XIV.

297. Theorem. The ratio of the circumference to the

diameter of a circle is constant.

Proof. 1. Suppose any two circles, of circumferences c, c',

radii r, r', and diameters d, d', respectively, to have

similar regular polygons inscribed in them, of

perimeters p, p\ respectively.

Then p :p' = r :
>•', Prop. XIII, cor. 2

= 2r:2r' = d: d'. IV, prop. VIII

2. And v >\ ?•', d, d' do not change when the number of

sides of the polygons is doubled, quadrupled,
,

§ 294, def. radius polyg.

and '.' p = c, and p* = e', § 296, post, of limits

r.c:c' = d:d'. IV, prop. IX

3. .'
. c : d = c' : d' = the same for any (D. IV, prop. Ill

Note. This constant ratio c : d is designated by the symbol it (pi),

the initial letter of the Greek word for circumference (periphereia).

The value of it is discussed in prop. XVII.

Corollaries. 1. c = 7rd, or 2tti\

For if - = 7t, then c = nd.
d

2. If the radius of a, circle is 1, then Q, = 2ir, or a semi-

circumference equals it.

3. The circumferences of two circles are proportional to

their radii.

_, c 2 nr r
For - = = — •

c
/

2 itr' r'

Exercises. 448. Find, in terms of the radius of the circle, r, the side,

apothem, and area of the inscribed and circumscribed equilateral triangle.

449. Also of the inscribed and circumscribed square.
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Proposition XV.

298. Problem. Griven the sides of the regular inscribed

and circumscribed n-gons, to find the side of the regidar

circumscribed 2 n-gon.

A' M' C

Solution. 1. In the figure,

let AB = a side of the regular inscribed w-gon, in ;

" A'B' = " « " circumscribed " en.

Then BM

'

= " " " inscribed 2?i-gon, i2n ;

and BC
= J " " " circumscribed " c2n .

2. But v OC bisects Z M'OB', Why ?

.'. CB':M'C= OB': OM' (= OB),

IV, prop. XIII

= A'B' : .47?, IV, prop. X, cor. 3

= c« k>

3. .'. CB' + M'C : J/'C = cn + s : in,
IV, prop. V

or M'B':M'C = cn + in : /„.

4. .
' . 2 M'B' :2M'C = cn + in : in. IV, prop. VIII

5. .-.
, cB :c2B = c

fI
+ /„:/,„

or Hn
n + '»
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Proposition XVI.

299. Problem. Given the sides of the regular inscribed

n-gon and the regular circumscribed 2 n-gon, to find the side

of the regular inscribed 2 n-gon.

Solution. 1. In the figure on p. 218,

A M'BM - A CM'D. . Why ?

.\ M'B : BM = CM' : JI'I). Why ?

2- Or h. :*<. = **.:*»,,, Why?

* .•.^ = iV2^./,, Why?

Corollaries. 1. //'p
n . p2n> Pn? ^n represent the perimeters

of the polygons with sides in , i2n, cn , c2n, respectively, then,

(!) P^» = ¥irt' and
(
2
) ft- = viv^-r n I p n

For c2n = Pi>„/2?i, cw = P„/w, /*„ =p2 «/-«, and i„ = pn/n; substi-

tute these in the tinal steps of props. XV, XVI. From prop. XV,

P-j» _ P„/n-p„/n _ Pn-Pn/n
2n Pn/n + pn / » P« + P»

2
" P»+P»

From prop. XVI,

P2

2ra

» = I /JT 5J? .
Pn

i 2 \ 2n n

P2n= ^Pn-P'2i

2. cn = — =? where r ?s f/^p radius.
Vr2 -iin

2

>2f = f : Jf2 - (|V = r : Vr^ - i tf.

/' l " by multiplying by in.
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Proposition XVII.

300. Theorem. The approximate value of it is 3.14159 +.

Proof. 1. In a regular hexagon inscribed in a circle of diam-

eter 1, iG = J, and .'.^
6 = 3. Prop. IX, cor. 1

2. Of the regular hexagon circumscribed about that O,

c6 = l/V3. Prop. X, cor. 1

3. .\Pa = 6-c6 = 3.4641016

4. From jh and P6 can be found p^ and P12 .

Props. XV, XVI

5. From p>\2 and P12 can be found ^>24 and P24 , and

so on. Props. XV, XVI
If the process were continued to a 1536-gon, ^1536

would be found to be 3.1415904, and P1536 would be

found to be 3.1415970.

6. And '.' c, or ird, which equals it • 1 or ir, lies between

pn and P„, however large n may be,

§ 296, post, of limits, cor. 1

.". 7T lies between 3.1415904 and 3.1415970, and is,

' therefore, approximately 3.14159 +.

Exercises. 450. The diagonals of a regular pentagon cut each other

in extreme and mean ratio.

451. If ABODE is a regular pentagon, and AD cuts BE at P, prove

that AP : AE = AE : AD.

452. To construct a regular pentagon equal to the sum of two given

regular pentagons.

453. Find, in terms of the radius of the circle, r, the side of the

inscribed regular pentagon. (Omit unless ex. 433 was taken.)

454. Also of the inscribed and circumscribed regular hexagon.

455. Also of the inscribed and circumscribed regular dodecagon.

456. Also of the inscribed regular decagon. (Depends on ex. 453.)
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301. Notes. The computation in prop. XVII, which the

student is not expected to make, is as follows

:

So. of sides

6



222 PLANE GEOMETRY. [Bk. V.

303. Definition. It is now necessary fro extend our idea of

equal surfaces. The definition at the beginning of Book II,

§ 142, is true, and it suffices for the cases there under con-

sideration. But when curvilinear figures are compared with

rectilinear, it is impossible to cut the surfaces into parts

respectively congruent. Hence, we enlarge the definition,

thus : Two surfaces are said to be equal if they have the

same numerical measure in terms of a common unit.

Thus, a circle having an area of 2 m2 would equal a rectangle 2 m long

by 1 m broad, even though they could not be cut into parts respectively

congruent.

304. Table of Values. The following table of values of

expressions involving ir will be found useful in computations

concerning the circle, sphere, cylinder, cone, etc.

:

it = 3.14159 Vtt = 1.77245 180°/ tt = 57°. 29578

;r/4 = 0.78540 1/Vtt = 0.56419 tt/180 = 0.01745

1 / it = 0. 31831 it V2 = 4. 44288 Approximate values

:

7T2 = 9.86960 V^72 = 1.25331 % = -2
T
2- = 3}, fff.

The table is repeated, with other tables of value in numerical compu-

tations, at the end of this work.

305. Radian Measure of Angles and Arcs. Since if A = any

central angle and a = its arc,

Aist.Z. = a: semi#ircumf. = a : wr.

.'. A : st. Z./ir = a:r,

or A: 180° /ir =a:r,

or ^:57°.29+ = a : r.

That is, the ratio of a central angle to st. Z./nr equals the

ratio of its arc to an arc of the same length as the radius.

Just as the "degree" is the unit for both angle and arc

measure, it being understood to be ^^ of a perigon in the

one case and ^^ of a circumference in the other, so a special

name is given to st. Z /ir and to an arc which equals a radius

in length ; this name is radian. In other words, a radian
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is — of a st. Z., in angle measure, and — of a semicircumfer-
IT IT

ence, or an arc equal to a radius in length, in arc measure.

Since r = — 180°, .*. r = 57°.29 + , where r stands for radian.
IT

irr it
Also v 180° = 7T/-, .". 1° = ——

- or —— of a radian, or

.01745.33 of a radian.

In most work in advanced mathematics the radian measure

is used exclusively. In common measurements the degree is

used. It is necessary in this work to use both.

It is customary to express an angle in radians by the Greek

letters a (alpha), (3 (beta), y (gamma), , the first letters of

that alphabet.

306. Corollary. The length of an arc equals the product

of the radius by the angle iIn radians.

For if a = length of arc, and a = its Z in radians, then - =—

,

9 ^v C 2 7T

.-. a = a = a r.

27t

Exercises. 457. Express the following in radians : 10°, 21° 20', 57°,

58°, 90°.

458. Express the following in degrees: 1.3090 r, .8058 r, .3636 r,

.1687 r, .0029 r.

459. Express the following in radians : 100°, 180°, 270°.

460. Express the following in degrees : 3.4907 r, 5.2359 r, 0.2832 r, nr.

461. Find the lengths of arcs of 47° 50', 61° 20', 75° 40', the radius

being 10.

462. Given the lengths of the following arcs, to find the radii of the

various circles : 75° 10', 131.19 ;
32° 20', 2.822 ; 4°, .0698.

463. Show that the perimeters of the inscribed and circumscribed

squares, the diameter of the circle being 1, are respectively 2.8284271

and 4 ; hence, find the perimeters of the inscribed and circumscribed

regular octagons, and thus show that the value of it may be approxi-

mated in this way.

464. The circumferences of certain © are 43.9823, 84.8230, 128.8053,

185.5340, 204.2035 ; find the diameters.
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Proposition XVIII.

307. Theorem. The area of a circle equals half the prod-

uct of its circumference and radius.

Given a, c, r, the area, circumference, and radius of a circle.

To prove that a = ^ cr.

Proof. 1. If a', p represent the area and perimeter of a cir-

cumscribed regular polygon, then the apothem of

that polygon is r. § 294

2. And a' = \pr. Prop. XIII

3. But a' = a, and \ pr = \ cr. § 296, post, of limits

4. .'. a = \ cr. IV, prop. IX, cor. 1

Corollaries. 1. a = ttv
2

.

For c = 2 7tr.

2-« = £- (Why?)
.

3. If s represents the area of a sector, and a its angle in

radians, then s = v
2a/2.

For s : itr2 = a : 2 it. (IV, prop. XVI, cor.)

4. Of two unequal circles, the greater has the greater circum-

ference.

c2

For, by cor. 2, a =
4 it

.-. 4 na = c2 .

.-. as the area increases, the circumference increases also.

5. The areas of two circles are proportional to the squares

of their radii.

„ a itr2 r2
For - = —- = —

a itr 2 r"2
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308. Historical Note on Quadrature of the Circle. The ex-

pression, " to square the circle," means to find the side of a square whose
area equals that of a given circle. The solution of this problem by
elementary geometry has been proved to be impossible. It nevertheless

occupied the attention of many mathematicians before this impossibility

was shown, and many ignorant people still attempt it. Some of the

Pythagorean school claimed to have solved it, Anaxagoras (died 428 b.c.)

wrote upon it, and hundreds of writers since then have discussed the sub-

ject. It is closely related to finding a straight line equal to a given circum-

ference ("to rectify the circumference"), and the two depend upon
finding the value of it exactly. That it cannot be expressed exactly, nor

as the root of a rational algebraic equation, was shown by Lindemann
in 1882.

For the mathematical discussion, see Klein's "Famous Problems of

Elementary Geometry," translated by the authors. (Boston, Ginn & Co.)

Exercises. 465. What is the radius of that circle of which the number
of square units of area equals the number of linear units of circumference ?

466. Also, of which the number of square units of area equals the

number of linear units of radius ?

467. Give a formula for a in terms of d, and the constant it.

468. A circle equals a triangle of which the base equals the circumfer-

ence and the altitude equals the radius.

469. Find the areas of circles with radii 5, 7, 21, 35, 47, 50. (In these

computations, for uniformity let it = 3.1416.) j

470. Also with diameters 2, 8, 11, 31, 42, 97.
^

471. Find the radii of circles of areas 78.5398, 2042.8206, 4536.4598.

472. Also the diameters of circles of areas 2123.7166, 3318.3072,

56.745017.

473. Also the circumferences of circles of areas 95.0332, 452.3893.

\y 474. Also the areas of circles of circumferences 267.0354, 191.6372.

475. The area of the ring formed between the circumferences of two

*
concentric circles of radii rj., r2 , where T\ > r2 , is it (rx + r2) (j\ — r2).

476. The area of that portion of the ring of ex. 475 cut off by the arms

of the central angle a radians is \a{rx i- r2) (ri — r2 ) ; or, if ai, a2 are

arcs bounding that portion, the area = I (cii + a2) (ri — r2).

Note. The remainder of the work may be omitted without destroying

the integrity of the course.



APPENDIX TO PLANE GEOMETRY.

1. SUPPLEMENTARY THEOREMS IN MENSURATION.

Proposition XIX.

309. Theorem. If the sides of a triangle are a, b, c, and

if s = i (a + b 4- c), s
x
= s — a, s2

= s — b, s3
= s — <3, then the

area equals Vs • 8
1

- s2
• s

3
.

Fig.

b

Fig. 2.

Proof. 1. a 2 = b
2 + c

2 ^2 be', 2 be' taking the sign - for Fig. 1,

+ for Fig. 3, and being for Fig. 2. § 159

.*. c' = ± (b
2 + c

2 — a 2

) /2 b, by solving the above

equation for c'. Axs. 2, 7

2. But h
2 = c

2 - c'
2 = (c + c') (c - c') § 154

= [e+ (b
2 + c

2 - a2
) /2 ft] [c - (6

2 + c
2- a2

) /2 ft], by

substituting the value of c' given in step 1.

.-. K1 = (2 be + £ 2 + c
2 - a2

) (2 6c - 62 - c
2 + a2

) /4 ft
2
,

by removing parentheses and simplifying.

3. .'. 4 b
2h 2 = [<7, + c)

2 - a2
] [a2 - (b - c)

2
], by multi-

plying by 4 &
2 and factoring.

.-.4 ^A2 = (b + c -f </)(/, + c - a)(a +b- c)(a -b + c),

by factoring still farther.

226



Prop. XX.] THEOREMS IX MENSURATION. 227

4. But if a + b + c = 2 s. as given,

then 6 + c — a = 2 (s - a) = 2 sb

and a — b + c = 2 (s — b) = 2s2,

and a +6 - c = 2(s - c) = 2s3 .

5. .•.4&2A2 = 2s.2s1 -2s2 -2s3. Subst. in 3

6. .'. area = \bh — Vs • s x s2 s3 . Y. prop. II, cor. 3

Note. This is known as Hero's formula for the area of a triangle. Of

course a, b, c represent numerical values as explained under V, prop. II,

cor. 2.

Proposition XX.

310. Theorem. The radius, r, of the circle circumscribed

about the triangle abc of area t, equals abc/4t.

c

Proof. 1. Suppose CX = d a diameter, CD (or A) _L AB. and

2LY drawn.

Then A ADC ~ A X£C, IV, prop. XYII

and .\d:a = b:h. Why?

2. .-./• = a£/2 A- IV, prop. I ; ax. 7

3. But v i he = t. V, prop. II, cor. 3

.-. r = abc jit. Subst. 3 in 2

Note. The value of t can be found by Hero's formula.

Exercise. 477. Find the areas of the triangles with sides (1) 13, 14.

15; (2) 3, o, 8
; (3) 7, 10, 18; (4) a, a, a; (5) 3, 4, 5.
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Proposition XXI.

311. Theorem. The product of the diagonals of an inscrip-

tible quadrilateral equals the sum of the products of. the

opposite sides.

D

Given ABCD, an inscriptible quadrilateral, with sides a, b,

c, d, and diagonals e, f.

To prove that ef=ac-\- bd.

Proof. 1. Let ABCD be inscribed, the sides arranged as in the

figure, chord AK = BC, and DK drawn cutting AC
at L.

Then Z ADK = Z BDC, and Z CAD = Z CJ5D,

and .-. AALD^ ABCD. Why?

2. Also v Z DG'X = Z Di?.4, and Z LDC = Z .4D^,

III, prop. XI, cor. 1 ; ax. 2

.-. A CDL ~ A BDA. Why ?

3. From 1, AL :d = b:e, or ^4Z = bd/e; IV, prop. XX
from 2, LC :c = a:e, or LC = ac/e. IV, prop. XX

4. .'. ^LL + LC, or JC, or/= (ac + M)/e. Ax. 2

5. .'. ef= ac + 6d. Ax. 6

Note. Ptolemy's theorem.

Exercise. 478. Is prop. XXI true when b = zero ?

(ty
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2. MAXIMA AND MINIMA.

312. Definitions. If a geometric magnitude can, by con-

tinuous change, increase until a value is reached at which the

magnitude begins to decrease, such value is called a maximum

value ; if it can similarly decrease until a value is reached at

which it begins to increase, such value is called a minimum

value.

In general, a magnitude can have more than one maximum or

minimum value, as in the annexed /""~rX
figure where «i, « 2 , a$ represent _ s^\ /
maximum, and &i, &g, minimum /A ^^r'a i ^^r a

3'

values of the ordinates of F. In ^ '•

"!
! ^i [_^

the elementary geometry of the line

and circle, however, only one maximum or minimum exists, so that the

words here mean greatest and least.

E.g. the maximum chord of a circle is the diameter (III, prop. VIII,

cor.), and the minimum chord is spoken of as zero, since zero is the limit

which constantly decreasing chords of a circle approach.

A magnitude at its maximum value is called a maximum; similarly,

a minimum. E.g. a chord of a circle is a maximum when it is a

diameter.

313. Figures having equal perimeters are said to be isoperi-

metric.

Exercises. 479. Draw a line AB, bisect it at M, and take a point

X on AM ; then show that AX 1 + XB2 = 2 AM- + 2 XM2
, and that

this is a minimum when XM = ; hence show that the sum of the

squares on the two segments of a given line is a minimum when the seg-

ments are equal.

480. Also that AX • XB = MB2 — XM'2
, and that this is a maximum

when XM = ; that is, that the rectangle of the two segments into which

a given line can be divided is a maximum when the given line is bisected.

481. If the diagonals of an inscribed quadrilateral are perpendicular

to each other, then the sum of the products of the two opposite sides

equals twice the area of the quadrilateral.
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Proposition XXII.

314. Theorem. Of all triangles formed with the same two

given sides, that is the maximum ivhose sides contain a right

angle.

AD B

Given the A ABCl9 ABC2, with A Cx
= A C2 , and A C2 _L AB.

To prove that A ABC2 > A ABCV

Proof. Suppose C\D J_ AB.

Then AC\ > DCl9 I, prop. XX
and .'. its equal AC2 > BC\.

.'.AABC2 > AABC19 II, prop. II, cor.

3

since they have the same bases but different altitudes.

Exercises. 482. Find in radians the angle a: of a sector of a circle of

radius r, such that the number of square units of its area equals the

number of linear units of its entire perimeter.

483. Interpret the result of ex. 482 for r = 2 ( 1 + -Y Discuss it for

r <£ 2. Discuss it for r < 2 (l + -Y

484. In the Sulvasutras, early semi-theological writings of the Hindus,

it is said: "Divide the diameter into 15 parts and take away 2; the

remainder is approximately the side of the square equal to the circle."

From this compute their value of it.

485. On AB describe a semicircle, and in it inscribe the isosceles tri-

angle ABC ; on BC and CA describe semicircles opposite the A ABC.
Show that A ABC = the sum of the two limes thus formed. (The limes

of Hippocrates.)

486. Six lights are placed regularly on the circumference of a circle

of radius 21 ft.; what are the distances of each from each of the others ?

(To 0.01.)



Prop. XXIII.] MAXIMA AX1) MIXIMA. 231

Proposition XXIII.

315. Theorem. Of all isoperimetric triangles on the same

base the isosceles is the maximum.

^B'

Given two isoperiuietric A ABC and ABX, A ABC being

isosceles, with AC — BC.

To prove that AABC> A ABX.

Proof. 1. On AC produced, let CB' = AC; draw B'B, B'X;
suppose CD II AB.

Then v AC = CB',

.-. BD = DB'. I, prop. XXVII, cor. 2

2. And v CB = AC,

.-. CB= CB', and CDA.BB'. Why ? Ax. 1

3. .
•

. A C + CJB = ^ C + CT' < AX+ X£'.

Ax. 2 ; I, prop. VIII

4. *
.

' .IX -f- X£ = A C + G#, Why ?

.'. AT+ X£ < AX + X#',

and .-. XB<XB'. Why?

5. .'. X and .IZ> lie on the same side of CD,

I, prop. XX, cor. 3

and .'.A ABC > A ABX. II, prop. II, cor. 3

Corollary. Of all isoperimetric triangles, that which is

equilateral is the maximum. (Why ?)
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Proposition XXIV.

316. Theorem. Of all triangles having the same base and

area, the isosceles has the minimum perimeter.

Given the A ABC and ABX having the same base and

area, with AC = BC.

To prove that perimeter ABC < perimeter ABX.

Proof. 1. Suppose CYWAB; AC produced so that CB' = AC;
B'X drawn ; and B'B drawn cutting CY at D.

Then v A ABC = A ABX,

.'. CY passes through X. II, prop. II, cor. 4

2. And v AC= CB',

,\BD = DB'. I, prop. XXVII, cor. 2

3. And v A BBC ^ A B'DC, I, prop. XII

.-.CDA.BB', Why?

and .'. XB = XB'. I, prop. XX
4. But AC + CB' < AX+ XB', I, prop. VIII

and .'. AC + CB < AX + XB.

5. .-. perim. ABC < perim. ABX. Why ?

Corollary. Of all equal triangles, that which is equi-

lateral has the minimum perimeter.

For whatever side is taken as the base, the perimeter is less if the other

two sides are equal.
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Proposition XXV.

317. Theorem. If the ends of a line of given length are

joined by a straight line, and the area of the figure enclosed

is a maximum, it takes the form of a semicircle.

P
__

Given a line APB (the curve in the figure), of given

length, and AB joining its end-points.

To prove that, if the area of the figure ABP is a maximum,

ABP is a semicircle.

Proof. 1. Let P be any point on the line; then joining A and

P, B and P, let the segments cut off by AP, BP be

called s1} s 2 , and A ABP called t, as in the figure.

Then Z P is a right angle ; for if not, without

changing su s2 , the area of t could be increased

by making Z P right. Prop. XXII

2. But this is impossible if ABP is a maximum, and

similarly for any other point on APB. Why ?

3. .'. the area enclosed is a maximum when the line

connecting A and B subtends a right angle at every

point on the curve.

Note. It will be seen that examples of maxima or minima involve

also the idea of symmetry (§ 68). This fact is of value in solving problems

in maxima and minima.

Exercise. 487. Given the points A, B, on the same side of line X'X,

to find on X'X a point P such that Z X'PA = Z BPX. Prove that

AP + PB is the shortest path from A to X'X and back to B. (Reflected

ray of light.)
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Proposition XXYI.

318. Theorem. Of all isoperimetric plane figures the

maximum is a circle.

Proof. Suppose A, B points bisecting the given perimeter,

AB cutting the figure into two segments, su s2 .

Then are maxima when they are semicircles,

and AB is a diameter, Why ?

Proposition XXVII.

319. Theorem. Of all equal plane figures the circle has

the minimum perimeter.

Given circle C — plane figure P.

To prove that circumference C < perimeter P.

Proof. 1. Suppose X a circle of circumference equal to perim-

eter P.

Then P < X, Prop. XXVI
and .'. C < X. Subst.

2. .*. circumference C < circumference A', § 307, cor. 4

and .
*

. circumference C < perimeter P. Subst.
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Proposition XXVIII.

320. Theorem. A polygon with given sides is a maximum
when it is inscriptible.

Given two polygons, F and P', with given sides a, b, c ,

F being inscribed in a circle, and F' not inscriptible.

To prove that F > F'.

Proof. 1. Name the circular segments on a, b, (opposite P),

A, B, ; suppose congruent segments constructed

on a, b, (opposite P').

Then F + A + B + > F' + A + B +
Prop. XXVI

2. .\P> P' Why?

Exercises. 488. If the diagonals of a parallelogram are given, its

area is a maximum when it is a rhombus.

489. What is the minimum line from a given point to a given line ?

Where has this been proved ?

490. Into what two parts must a given number be divided so that the

product of those parts shall be a maximum ? (Compare ex. 479.)

491. As a corollary to ex. 479, show that of isoperimetric rectangles

the square is the maximum.

492. Find the point in a given straight line such that the tangents

drawn from it to a given circle contain the maximum angle.

493. A straight ruler, 1 foot long, slips between the two edges of the

floor (the edges making a right angle). Find the position of the ruler

when the triangle formed by the edges and ruler is a maximum; also

the area of that triangle.
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Proposition XXIX.

321. Theorem. Of all isojjerimetric polygons of a given

number of sides, the maximum is regular.

B X

Given P, the maximum polygon of a given perimeter and

a given number of sides.

To prove that P is regular.

Proof. 1. Any two adjacent sides, AB, BC, must be equal.

For if unequal, as AX, XC, then A AXC could be

replaced by AABC, having AB= BC, thus enlarging

P without changing the perimeter. But this is im-

possible because P is a maximum. Prop. XXIII

2. And hence P is inscriptible because its sides are

given. Prop. XXVIII

3. .". P is regular. V, prop. IX, cor. 2

Exercises. 494. Considering only the relation of space enclosed to

amount of wall, what would be the most economical form for the ground

plan of a house ?

495. Of all triangles in a given circle, what is the shape of the one

having the greatest area ? Prove it.

496. Through a point of intersection of two circumferences draw the

maximum line terminated by the two circumferences.

497. Of all triangles of a given base and area, the isosceles has the

greatest vertical angle.

498. Draw the minimum straight line between two non-intersecting

circumferences.
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Proposition XXX.

322. Theorem. Of two isoperimetric regular polygons,

that having the greater number of sides is the greater.

Proof. 1. Let ABCD be a square, P a point on DA, A PCX
isoperimetric with A PCD and having CX= PX.

Then A PCX > A PCD, Prop. XXIII

and .-. pentagon ABCXP > ABCD. Ax. 4

2. But pentagon ABCXP would, with the same perim-

eter, be greater if it were regular. Prop. XXIX

3. .'. a regular pentagon is greater than an isoperi-

metric square. Similarly, a regular hexagon would

be greater than an isoperimetric regular pentagon,

and so on.

Exercises. 499. A cross-section of a bee's cell is a regular hexagon.

Show that this is the best form for securing the greatest capacity with

a given amount of wax (perimeter).

500. Find the maximum rectangle inscribed in a given semicircle.

501. Find the minimum square inscribed in a given square.

502. Draw the minimum tangent from a variable point in a given

line to a given circle.

503. What is the area of the largest triangle that can be inscribed in

a circle of radius 5 ?

504. Given a square of area 1. Find the area of an isoperimetric

(1) equilateral triangle, (2) regular hexagon, (3) circle.
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3. CONCURRENCE AND COLLINEARITY.

Proposition XXXI.

323. Theorem. If X, Y, Z are three points on the sides a-

b, c, respectively, of a triangle ABC, such that the pterpen-

diculars to the sides at these points are concurrent, then

(BX2 - XC 2
) + (CY2 - YA2

) + (AZ2 - ZB2
) = ;

and conversely.

Proof. Let P be the point of concurrence, and draw PA,
PB, PC.

Then (BX2 - XC2
) + (CY2 - YA 2

) + (AZ2 - ZB2

)

= PB 2 - PC 2 + PC 2 - PA 2 + PA 2 - PB 2 = 0,

for BX 2 - XC 2 = (BP2 - PX2
)
- (PC 2 - PX2

)
=

BP2 -PC 2
, and so for the rest.

Conversely: 1. Suppose the _b from X, Y, to meet at P;
and suppose PZ' _L c.

Then as above,

(BX2 - XC2
) + (CY2 - YA 2

) + (AZ' 2 - ZB2
) = 0.

2. But (BX2 -XC2
) + (CY2 - YA 2

) + (AZ2 - ZB2
) = 0,

and AZ'2 - Z'B2 = AZ2 - ZB2
. Why ?

3. .'. AZ'2 - AZ2 = Z'B2 - ZB 2
- but those differences

have opposite signs and cannot be equal unless each

is zero.

4. .*. Z must coincide with Z'.
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Proposition XXXII.

324. Theorem. If three lines, x, y, z, drawn from the

vertices of triangle ABC to meet a, b, c in X, Y, Z, are con-

current, then
AZ EX CI'

ZB XC
—— = 1 ; and conversely.

Proof. 1. Let P be the point of concurrence. Then v A APC,
PBC have the base PC, they are proportional to

their altitudes, and .'.to AZ, ZB. Why ?

AZ A .IPC
2.

and

and

ZP A PPG'

BXABPA
XC~ A APC 9

CY APBC
YA~ ABBA

_
.
AZ BX CY

3 -

' ZBXC'YA
= 1- Ax ' 6

Conversely : Let CP meet c in Z' ; then as above,

.4Z' PA' CT_
ZP * XC ' YA

~

K
_ . ^ px cr

°- But zpxg'T^
= l Glven

6.
' ' Z?B~ ZB

7. .'. Z' must coincide with Z. IV, prop. XI, cor.

Note. Ceva's theorem.
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Proposition XXXIII.

325. Theorem. If three points, X, Y, Z, lying respectively

on the three sides a, b, c of triangle ABC, are collinear, then

and conversely.

AZ BX CY
ZB ' XC ' YA

-1

2. And similarly,

and

3. Ax. 6

Proof. 1. Let I, m, n be perpendiculars from A, B, C onlF.

Then by similar A, ZB being here negative,

AZ I

ZB~ -m
BX_m
XC~

n

CY_n
YA~

I

AZ BX CY
*''

ZB' XC' YA

Conversely : Let XY meet AB in Z' ; then as above,

AZ' BX CY
Z'B' XC YA

AZ BX CY
ZB XC YA

AZ' AZ
•'* Z'B~ ZB

7. .'. Z' must coincide with Z. IV, prop. XI, cor.

Note. Menelaus's theorem.

4.

But

1.

-1. Given
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Proposition XXXIV.

326. Theorem. If a circumference intersects the sides,

a, b, c, of a triangle ABC, in the points Ai and A2 , Bi and B 2 ,

Ci and C2 , respectively, then

ACi BAi CBi AC2 BA2 CB2 _ 1
CiB ' AiC " B XA " C2B A 2C ' B2A ~~

*

Proof. 1. AC1 -AC2 = BlA-B2A, Why?
and BAX

• BA2 = C\B • C2B,

and CBl
- CB2 = A X C - A 2 C.

2. .'. by axs. 6 and 7, the above result follows.

Note. This theorem, known as Carnot's theorem, is not a proposi-

tion in concurrence or collinearity. It is introduced as leading to the

proof of the very celebrated theorem following, one commonly known as

the Mystic Hexagram, discovered by Pascal at the age of 16.

The theorem is also easily proved when the triangle is inscribed or

circumscribed.

Exercises. 505. By means of Ceva's theorem, prove that the three

medians of a triangle are concurrent.

506. Also, that the bisectors of the three interior angles of a triangle

are concurrent.

507. Also, that the bisectors of two exterior and of the other interior

angles of a triangle are concurrent.

508. Also, that the perpendiculars from the vertices of a triangle to

the opposite side are concurrent.
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Proposition XXXV.

327. Theorem. If the opposite sides of an inscribed hex-

agon intersect, they determine three collinear points.

Given an inscribed hexagon, ABCDEF, such that BA and

DE meet at P, CD and AF at Q, BC and FE at R.

To prove that P, Q, R are collinear.

Proof. 1. Call the A determined by AB, CD, and EF, LMX.
as in the figure.

Then from Menelaus's theorem,

LP MD NE

and

and

PM DN
MQ NF
QN
NR
RL

FL
LB
BM

EL
LA
AM
MC
CN

= -1,

= -1,

= -1.

2. .'. By multiplying and recalling Camof s theorem,

LP MQ NR
PM ' QN ' RL~

3. .'. by Menelaus's theorem, P, Q, R are collinear.
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MISCELLANEOUS EXERCISES.

509. Show that the following is a special case of prop. XXXI: The
perpendicular bisectors of the sides of a triangle are concurrent.

510. Also, the perpendiculars from the vertices of a triangle to the

opposite sides are concurrent.

511. If three circumferences intersect in pairs, the common chords

are concurrent.

512. By means of Menelaus's theorem, prove that the points in which

the three bisectors of the exterior angles of a triangle meet the opposite

sides are collinear.

513. Also, that the points in which the two bisectors of two interior

angles of a triangle and the other exterior angle meet the opposite sides

are collinear.

514. The orthocenter, 0, of A ABC is determined by the perpendicu-

lars AD, BE. Prove that AO • 01) = BO OE.

515. Draw a circle with a central right angle ^4 05. A and B being

on the circumference; bisect ZAOB by 031, meeting AB at 31; draw

MP __ OA ; then see if the following is true in general : AB = chord

AB + PA. (Consider special cases, AB = 120°, 180°, 360°.)

516. Given the base and the vertical angle of a triangle ; construct it

so that its area shall be a maximum.

517. AB is a diameter of a circle of center O ; from any point P on

the circumference, PC is drawn perpendicular to AB) from C a perpen-

dicular CE is drawn to OP. Prove that PC is a mean proportional

between OA and PE.

518. On side a of A ABC, point P is taken such that Z PAC = Z B.

Prove that CP . CB = AP 2
: AB~. Investigate for three cases, ZA<,

=,>ZB.
519. ABC is a triangle right-angled at C ; CD±c. Prove that

AD-.LB = CA--.BC 2
.

520. If O, C are the centers of two fixed circles, such that the cir-

cumference of C passes through O. and if a tangent to circumference of

at T cuts circumference of 0" at X, Y. then OX OY is constant. (If

the center-line meets the circumference of C at A, A XTO <-" A AYO.)

521. If is the orthocenter of triangle ABC, and A', B'', C are the

mid-points of a.b,c; 3Ia . 3Th . 3IC are the mid-points of AO, BO, CO;
Pa , P}j, Pc are the feet of the perpendiculars from A. B, C to a. b. c

;

prove that A\ B' . C", Ma, 3Ib . 3E. Pa , Pb , Pc are coneyclic. (The
•• Nine Points Circle.")



SOLID GEOMETRY.

BOOK VI. — LINES AND PLANES IN SPACE.

1. THE POSITION OF A PLANE IN SPACE. THE STRAIGHT
LINE AS THE INTERSECTION OF TWO PLANES.

328. Definitions. Through three points, not in a straight

line, any number of surfaces may
be imagined to pass.

For example, through the points A, B, _/_ A^

C the surfaces P and S may be imagined

to

329. A plane surface (also called & plane) is a surface which

is determined by any three of its points not in a straight line.

In the figure, P represents a plane, for it is determined by the points

A, B, C. But S does not represent such a surface.

A plane is, of course, supposed to be indefinite in extent.

This definition, and the following postulates, are repeated, for con-

venience, from the Plane Geometry.

In drawing a figure it should be remembered that a plane,

like a line, has no thickness, and that it is indefinite in extent.

Nevertheless, it aids the eye in understanding the figure, if we

represent the plane as a rectangle, lying in perspective, and

having a slight thickness.

Exercises. 522. Show that if there are given four points in space,

no three being collinear, the number of distinct straight lines determined

by them is six ; if there are five points, the number of lines is ten.

523. Hold two pencils in such a way as to show that a plane cannot,

in general, contain two straight lines taken at random in space.

244



Prop. I.] LINES AND PLANES IN SPACE. 245

330. Postulates of the Plane. (See § 29.)

1. Three points not in a straight line determine a plane.

2. A straight line through two points in a plane lies wholly

in the plane.

3. A plane may be pjassed through a straight line and

revolved about it so as to include any assigned point in space.

4. A portion of a plane may be produced.

5. A plane is divided into two parts by any one of its

straight lines, and space is divided into two parts by any plane.

331. Solid Geometry treats of figures whose parts are not

all in one plane.

Proposition I.

332. Theorem. A plane is determined by a straight line

and a point not in that line.

Given the line AB, and the point P not in that line.

To prove that AB and P determine a plane.

Proof. 1. Only one plane contains pts. A, B, and P. § 330, 1

(§ 330, 1. Three points not in a straight line determine a plane.)

2. And that plane contains line AB. § 330, 2

(§ 330, 2. A straight line joining two points in a plane lies wholly

in the plane.)

3. .*. only one plane contains AB and P.

333. Definition. Lines or points which lie in the same plane

are said to be coplanar.
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Corollaries. 1. A plane is determined by two intersecting

lines.

Let the lines AB, CD intersect at 0.

Then only one plane contains AB and C. Prop. I

And that plane contains the point 0, for lies in the line AB.

§ 330, 2

And since that plane contains C and O, it contains CD. § 330, 2

2. A plane is determined by tiuo parallel lines.

For the parallels lie in one plane, by definition (§ 82).

And only one plane can contain these parallels, since a plane is deter-

mined by either line and any point of the other.

Draw the figure.

3. If a plane contains one of two ])arallel lines and any

point of the other, it contains both parallel lines.

For it must be identical with the plane determined by the two paral-

lels ; otherwise more than one plane could contain either parallel and any

point in the other.

Proposition II.

334. Theorem. The intersection of two planes is a straight

line.

/N

Given two intersecting planes, M, N.

To prove that their intersection is a straight line.



Prop. II.] LINES AND PLANES IN SPACE. 247

Proof. 1. Let P be a point common to M and N.

Then a pencil of lines through P, in the plane X,

must lie partly on one side of 21 and partly on the

other, because 21 divides space into two parts.

§ 330, 5

2. Hence, in general, a line connecting a point in the

pencil on one side of 21, with a point on the other

side, must cut 21 at some other point than P, —
say at Q.

3. Then 21 and X have two points in common.

4. Then every point in the straight line through P and

Q lies in plane 21, § 330, 2

and also in plane X, for the same reason.

5. .'. the straight line PQ is common to both planes.

6. If there were any point not in PQ, common to 21

and X, the planes would coincide. Prop. I

Corollary. A point common to two planes lies in their

line of intersection.

Proved in step 6.

Exercises. 524. State the four methods, already mentioned, of

determining a plane.

525. Is it possible for three planes to have a straight line in common ?

Draw a figure to illustrate.

526. If two planes have three points in common, will they necessarily

coincide ?

527. Four planes, no three containing the same line, intersect in pairs
;

how many straight lines do they determine by their intersections ?

528. What is the only rectilinear polygon that is necessarily plane ?

Why?
529. Prove that all transversals of two parallel lines are coplanar with

the parallels.

530. What is the reason that a three-legged chair is always stable on

the floor while a four-legged one may not be ?
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Proposition III.

335. Theorem. If three planes, not containing the same

line, intersect in pairs, the three lines of intersection are

either concurrent or parallel.

Given planes AD, CF, EB, intersecting in AB, CD, EF.

To prove that AB, CD, EF are either concurrent or parallel.

Proof. Case I. If CD meets AB, as at 0, to show the three

lines concurrent.

1. v is in AB, it is in plane EB. § 330, 2

2. Similarly, V is in CD, it is in plane CF. Why ?

3. V is in planes EB and CF, EF passes through 0.

Prop. II, cor.

4. .'. AB, CD, EF are concurrent in 0.

Case II. If CD II AB, to show the three lines parallel.

1. If AB were not II EF, CD would pass through their

common point. Case I

2. But this is impossible, for CD II AB. Given

3. If CD were not II EF, AB would pass through their

common point. Case I

4. But this is impossible, for CD II AB. . Given

5. .*. as no two can meet, and as each pair is coplanar,

they are parallel. Def. II lines

Corollary. If tivo intersectl»<j planes pass through two

parallel lines, their intersectio)/ is parallel to these lines.
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Proposition IV.

336. Theorem. Lines parallel to the same line are parallel

to each other.

Given AB II EF, CD II EF.

To prove that AB II CD.

Proof. 1. AB and EF determine a plane. Prop. I, cor. 2

(A plane is determined by two II lines.)

2. CD and EF determine a plane. Why ?

3. AB and any point C of CD determine a plane.

Prop. I

4. Suppose this last plane to intersect plane ED in CX,

another line than CD.

Then CX would be II to both EF and AB.

Prop. Ill, cor.

(If two intersecting planes pass through two II lines, their intersection

is II to these lines.)

5. But v CD II EF, this is impossible.

Post, of parallels

(§ 85. Two intersecting straight lines cannot both be II to the same

straight line.)

6. .'. CD is the intersection of the planes through AB
and C, and EF and C,

and .'.CD II AB. Prop. Ill, cor.

Exercise. 531. Why will not the proof of this theorem as given in

plane geometry apply to this case in solid geometry ?
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Proposition V.

337. Theorem. If two intersecting lines are respectively

parallel to two others, the angles made by the first pair are

equal or supplemental to those made by the second pair.

Given two intersecting lines x, y, respectively parallel to

two other lines x', if.

To prove that the angles made by x and y are equal or supple-

mental to those made by x' and f.

Proof. 1. Suppose the intersections and 0' are joined, and

from any points A, B, on x, y, parallels to 00' are

drawn.

2. '.'00', x, and x' are coplanar (Why?), the parallel

from A meets x' as at A'. Similarly, B' is fixed.

Prop. I, cor. 3

3. Draw AB, A'B'.

'.' AA' II 00', and BB' II 00', .'. AA' II BB'. Prop. IV

4. '.•OA ,,OB'axeU],.\AA'=00'= BB'. I, prop. XXIV

5. .-. ABBA' is a O. I, prop. XXV
6. .'. OA = O'A', OB = O'B', AB = A'B'. I, prop. XXIV

7. .'. A ABO S A A'B'O', and Z AOB = Z A' O'B'.

I, prop. XII

§
After proving one pair of angles equal, the rest are

evidently equal or supplemental by the theorems con-

cerning vertical and supplemental angles.
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2. THE RELATIVE POSITION OF A LINE AND A PLANE.

Proposition VI.

338. Theorem. If a line is perpendicular to each of two

intersecting lines, it is perpendicular to every other line

lying in their plane and passing through their point oj

intersection.

Given x and z, two lines intersecting at 0, and w perpen-

dicular to x and to z ; also y, any line through

coplanar with x, z.

To prove that w _L y.

Proof. 1. On w suppose OP' = PO ; let any transversal cut

x, y, z at A, B, C
;
join P and P' with A, B, C.

Then AP = AP', and CP = CP'. I, prop. XX, cor. 5

2. And '.- AC = AC,

.-.AACP^A A CP'. I, prop. XII

3. .'.by folding A ACP over AC as an axis, it can be

brought to coincide with A A CP'. § 57

4. /.A BOP ^ A BOP',

and Z POB is a rt. Z, and w J_ y.

I, prop. XII

Why ?
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339. Definitions. A line is said to be perpendicular to a plane

when it is perpendicular to every line in that plane which

passes through its foot, — i.e. the point where it meets the

plane. The plane is then said to be perpendicular to the line.

If a line meets a plane, and is not perpendicular to it, it is

said to be oblique to the plane.

Corollaries. 1. If a line is perpendicular to each of two

intersecting lines, it is perpendicular to their plane.

2. The locus of points equidistant from two given joints is

the plane bisecting at right angles the line joining those points.

Proposition VII.

340. Theorem. If a line is perpendicular to each of three

concurrent lines at their point of concurrence, the three lines

are coplanar.

Given OY±OA, OB, OC.

To prove that OA, OB, OC are coplanar.

Proof. 1. Suppose M the plane determined by OA, OB; and

N the plane determined by OY, OC.

Suppose that OC is not in M, and call OX the inter-

section of M and N.
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2. Then must OY± OX. Prop. VI

3. But v OY± OC, this is impossible. Prel. prop. II

4. .'. it is absurd to suppose OC not in M with OA
and OB.

Corollaries. 1. Lines perpendicular to the same line at

the same point are coplanar.

2. Through a given point in a -plane there cannot be drawn

more than one line perpendicular to that plane.

Suppose OP and OQ _L plane M. Then each would be perpendicular

to QX, the line of intersection of their plane N with the given plane M,
thus violating prel. prop. II.

3. Through a given point in a line there cannot be drawn

more than one plane perpendicular to that line.

For if two planes could be drawn perpendicular to the line, then three

lines in each would be perpendicular to the given line, and hence the two

planes would coincide.

Exercises. 532. Prove that if the hand of a clock is perpendicular

to its moving axle, it describes a plane in its revolution. Prove the

converse.

533. How many straight lines are determined by six points, three

being collinear ?

534. How many planes in general are determined by four points in

space, no three being collinear ?

535. In the left-hand figure of prop. Ill, suppose point to move

farther from BDF, and to continue to do so indefinitely. What is the

limiting figure which the left-hand figure is approaching?



254 SOLID GEOMETRY. [Bk. VI.

Proposition VIII.

341. Theorem. Lines perpendicular to the same plane are

parallel.

A

Given Y, XA _L plane MN at 0, X.

To prove that Y II XA.

Proof. It is necessary first to show that Y, XA are

coplanar ; then that they are _L to OX.

1. Let XZ± OX in plane MN, and = OY.

Draw OZ, ZY, XY.

v XZ= OY, OX= OX,

ZXOY=ZOXZ=vt.Z,
.AXOY^A OXZ,

OZ = XY. I, prop. I

\'ZY=ZY, .'.AXYZ^AOZY,

Z YXZ = Z.ZOY= rt. Z. I, prop. XII

'. XA, XY, XO are coplanar. Why ?

'. YO lies in that same plane. § 330, 2

v YO and AX ± OX, § 339

.*. YO II AX, and similarly for all other Js.

I, prop. XVI, cor. 3

Corollary. Front a point outside of a ])la?ie, not more

than one line can be drawn perpendicular to that plane.

2.
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Proposition IX.

342. Theorem. If one of two parallel lines is perpendicu-

lar to a plane, the other is also.

Given OY II O'Y', OF _L plane Jf2Vat 0, and O'Y' meeting

plane 3IJY at 0'.

To prove that 0'Y'±MN.

Proof. 1. Let OA, OB be any lines from 0, in MN, O'A' II OA,

and O'B' II OB.

2. Then A YOA, YOB are rt. A. § 339

3. But Z YOA = Z Y'O'A', Z YOB = Z Y'O'B'. Prop. V

4. .'. A Y'O'A', Y'O'B' are also rt. A, Prel. prop. I

and O'Y'A-MN. §339

343. Definitions. The projection of a point on a plane is the

foot of the perpendicular through that point to the plane.

The projection of a line on a plane is the locus of the pro-

jections of all of its points.

Exercises. 536. Are lines which make equal angles with a given

line always parallel ? (Answer by drawing figures to illustrate.)

537. Show how to determine the perpendicular to a plane, through a

given point, by the use of two carpenter's squares.

538. Prove prop. VI on the following outline : Assume B on y, and

draw ABC so that AB = BC (How is this done?); prove 2PB 2 4-

2 • BC 2 = PA2 + PC 2 = 2 • PO 2 + OC 2 + OA 2 = 2 -PO 2 + 2 OB 2 +
2 • BC 2

;
.-. PB 2 = PO 2 + OB 2

;
.-. Z POB is a rt. Z.
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Proposition X.

344. Theorem. The projection of a straight line on a plane

is the straight line which jiasses through the projections of

any two of its points.

Given A', P', B', the projections of A, P, B, points in the

line AB, on the plane MN.

To prove that the projection of AB is the straight line A'B'.

Why ?

Prop. I, cor. 2

Why ?

Prop. I, cor. 3

Prop. II

Proof. 1. AA' II BB' II PP'.

2. .'*. A, A', B, B' are coplanar.

3. .'. P is in that same plane.

4. .*. PP' is in that same plane.

5. .'.A', P', B' are collinear.

6. Also any other point in A'B' is the projection of some

point in AB. For a _L to MN from such a point

is II to AA' (§ 341) and lies in plane AA'B'B (§ 82),

and therefore meets AB in some point.

345. Definitions. The smallest angle formed by a line and

its projection on a plane is called the inclination of the line to

the plane or the angle of the line and the plane.

A figure is said to be projected on a plane when all of its

points are projected on the plane.

The plane determined by a line and its projection on anot her

plane is called the projecting plane.

In the figure of pro]). X, Z B'OB is the incjination of A B to MN. The

plane determined by AB, A'T¥ is the projecting plane.
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Proposition XL

346. Theorem. Of all lines that can be drawn from a

point to a plane,

1. The perpendicular is the shortest;

2. Obliques with equal inclinations are equal, and con-

versely ;

3. Obliques with equal projections are equal, and con-

versely.

1. Given PO J_ plane MN, PX oblique to MN.

To prove that PO < PX.

Proof. V Z XOP = rt. Z. (Why?) .\PO< PX. I, prop. XX

2. Given PO ZJIX. ZPYO = ZPXO.

To prove that PY=PX, which is true because APOY =
A POX. I, prop. XIX, cor. 7

Conversely : Given PO _L MN, PY=PX.
To prove that ZPYO = ZPXO, which is true because

APOT^ A POX. I, prop. XIX, cor. 5

3. Given PO ± JIX, OY= OX.

To prove that PY=PX, which is true because APOY^
A POX. I, prop. I

Conversely : Given PO _1_ JIX, PY=PX.
To prove that OY=OX, which is true because APOY^

A POX. I, prop. XIX, cor. 5
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Proposition XII.

347. Theorem. From a point to a plane,

1. Of two obliques with unequal inclinations, that having

the greater inclination is the shorter, and conversely ;

2. Of two obliques with unequal projections, that having

the longer projection is the longer, and conversely.

1. Given PO _L MN9
PY and PA two obliques such that

Z.PAO> APYO.

To prove that PA<PY.

Proof. 1. Suppose X taken on OA so that OX = Y.

2. Then APOX^APOY, and PX = P Y. Why ?

3. But PX, and .-.its equal PY, > PA. I, prop. XX

Conversely :

Given PO ± MX, PY and PA two obliques such that

PA < PY.

To prove that Z PAD > Z P YO.

Proof. 1. Suppose X taken on OA so that OX= Y.

2. Then A POX ^ A PO Y, Z PXO =ZPYO, and

PX=PY. Why?

3. ..PA< PX, '.' PA <PY. Given

4. X cannot fall on A, for then PA = PA'.

5. Nor between and A, for then PA > PX. Why?
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6. .'. X is on OA produced,

and .'.ZPAO> Z PXO. I, prop. V

7. .'. Z PJ > Z P FO. Subst.

2. Given PO J_ MN, PY and P.4 two obliques such that

OA < OY.

To prove that PA<PY.
Proof. 1. Suppose X taken on OA so that OX = OY.

2. Then APOX^APOY, and PX= PY. I, prop. I

3. And v (XI < OF, or OX,

.*. P.4 < PX, or ?7. Why ?

Conversely :

Given PO _L MN, PY and PA two obliques such that

PA < PY.

To prove that OA < OY.

Proof left for the student.

Definition. The length of the perpendicular from a point to

a plane is called the distance from that point to the plane.

E.g. in the figure on p. 258, the distance from P to MN is the length

of PO.

Exercises. 539. Prove that if three concurrent lines meet a fourth

line, not in the same point, the four lines are coplanar.

540. Why does folding a sheet of paper give a straight edge ?

541. Suppose it known that a point P is in each of the three planes

X, Y, Z. Is P probably fixed ? Is it necessarily fixed ?

542. If the triangles ABC, A'B'C, in different planes, are such that

AB and A'B' meet when produced, as also BC and B'C, and CA and

C'A\ then the lines AA\ BB\ CC are either concurrent or parallel.

543. How many planes are determined by n concurrent lines, no three

of which are coplanar ?

544. If a line cuts one of two parallel lines, must it cut the other ? If

it does, are the corresponding angles equal ?
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Proposition XIII.

348. Theorem. The acute angle which a line makes with

its own projection on a plane is the least angle ivhich it makes

with any line in that plane.
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Proposition XIV.

349. Theorem. Parallel lines intersecting the same plane

are equally inclined to it.

?'

M

Given two parallels. PA, P'A', intersecting a plane MN at

A, A' ; and 0, 0' the projections of P, P.

To prove that Z PAD = Z P'A'O'.

Proof. 1. vP0andP'0'_LJAV.
.-.POWP'O'. Why?

2. .-. Z OPA = Z OP'A'. Prop. V
(Let the student complete the proof.)

350. Definition. Two straight lines, not coplanar, are re-

garded as forming an angle which is equal to the one formed

by either line and a line drawn, from a point upon it, parallel

to the second.

E.g. in the figure of prop. XIV. the angle made by AO and P'A' is

considered as Z P'A' (J or Z PAD.

t
Exercises. 549. Parallel line-segments are proportional to their pro-

j
<

- e t i
< »ns on a plane.

550. In general, which is the longer, a line-segment or its projection ?

Is there any exception ?

551. Show how, with a 10 ft. pole marked in feet, to determine the

foot of the perpendicular let fall to the floor from the ceiling of a room

8 ft. high.

552. Show how a line 1 in. long and another 2 in. long may have

equal projections on a plane.

553. If any two lines are parallel, respectively, to two others, an angle

made by the first pair equals one made by the second.
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Proposition XV.

351. Theorem. If a line intersects a plane, the line in the

plane perpendicular to the projection of the first line at the

point of intersection is perpendicular to the line itself

Given AB intersecting the plane MN at A, B' the projec-

tion of B on MN, and DC _L AB 1

at A.

To prove that DC A. AB.

Proof. 1. On DC let EA = AE'
;

join E, E' to B and B'.

2. Then A AB'E ^ A AB'E', and EB' = E'B'. Why ?

3. Then A EBB' ^ A E'BB', and EB = E'B. Why ?

4. Then A ^'^Z? ^ A JE45, and Z E'AB = Z £^j£
Why ?

5. .\DC ±AB, by defs. of rt. Z and J_.

352. Definition. A line is said to be parallel to a plane when

it never meets the plane, however far produced. In that case,

also, the plane is said to be parallel to the line.

Exercises. 554. Prove prop. XV on the following outline : draw

through B' a line II to DC
;
prove this parallel perpendicular to plane

AB'B ;
.-. DC ± plane AB'B, .: DC ± AB.

555. Prove prop. XV by showing that AE"2
-f AB2 = BE'2

, .and that

therefore Z E'AB is right.

556. In the figure of prop. XV prove that the area and perimeter of

I\AB'B are respectively less than those of AEB'B.
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Proposition XVI.

353. Theorem. Any plane containing only one of two par-

allel lines is parallel to the other.

Given the parallel lines AB, A'B', and the plane MN con-

taining AB but not A'B'.

To prove that MN II A'B'.

Proof. 1. AB and A'B' determine a plane P. Prop. I, cor. 2

2. v AB and A'B' lie wholly in P, .-. if ^'^' meets JlfiV

it meets AB. § 85

3. But v AB II A'B', this is impossible. § 82, del II lines

Exercises. 557. A line which is parallel to a plane is parallel to its

projection on that plane.

558. Through a point without a straight line any number of planes

can pass parallel to that line.

559. If a line is parallel to a plane, the intersection of that plane with

any plane passing through that line is parallel to the line.

560. If from two points on a line parallel to a plane, parallel lines are

drawn to and terminated by that plane, these parallel lines are equal.

561. If a line is parallel to a plane, and if from any point in the plane

a line is drawn parallel to the first line, then the second line lies wholly

in the plane.

562. If, through a line parallel to a plane, several planes pass so as to

intersect that plane, these lines of intersection are parallel.

563. If the distances from two given points on the same side of a

plane, to that plane, are equal, the line determined by those points is

parallel to the plane.
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Proposition XVII.

354. Theorem. Between two lines not in the same plane,

one, and only one, common perpendicular can be drawn.

M

Given two lines K, L, not coplanar.

To prove that one, and only one, common perpendicular can

be drawn between them.

Proof. 1. Let MN be the plane, through K, II L. (Can such a

plane exist ?) Let L' be the projection of L on MN.

2. Then K is not II to L', for then it would be II to L.

Why ?

Let K intersect V at P.

3. A _L to L and K is _L to MN. Why ?

4. Then v L' is the locus of the feet of all Js from

points in L, on plane MN, § 343, def. projection

.". P is the unique point in which a _L from a point

on L, to K, can meet K.

5. .'. if PQ is drawn _L to L, it is _L, and the only _L,

to both L and A".

Corollary. The common perpendicular is the shortest line-

segment between two lines not in the same i>lnne.

For if QfP II QP, then QP = Q'P' < QfR. Prop. XI, 1

355. Definition. The length of the common perpendicular

from one line to another is called the distance between those

lines.

K



Sbcs. 350-358.] PENCIL OF PLANES. 265

3. PENCIL OF PLANES.

356. Definitions. Any number of planes containing the

same line are said to form a pencil of planes ; the line is

called its axis.

357. Any two planes of a pencil are said to form a dihedral

angle.

LMN, a pencil of planes ; AB, the

axis of the pencil.

Dihedral angles formed by the

planes M and ^V. Dihedral angle

MN measured by plane angle

BOC. AOthe edge of the dihe-

dral angle.

The two planes of a dihedral angle are called the faces, and

the axis of the pencil is called the edge of the dihedral angle.

Two intersecting planes form more than one dihedral angle, just as

two intersecting lines form more than one plane angle, the latter term

now being used to designate an angle made by lines in a plane.

358. A plane of a pencil turning about the axis from one

face of a dihedral angle to the other is said to turn through

the angle, the angle being greater as the amount of turning is

greater.

Since the size of a dihedral angle depends only upon the

amount of turning just mentioned, it is independent of the

extent of the faces.
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359. If perpendiculars are erected from any point in the

edge of a dihedral angle, one in each face, the size of the plane

angle thus formed evidently varies as the size of the dihedral

angle. Hence a dihedral angle is said to be measured by that

plane angle, or, strictly, to have the same numerical measure.

360. A dihedral angle is said to be acute, right, obtuse,

oblique, reflex, straight, according as the measuring plane

angle is so, and it is usually named by its measuring plane

angle, or merely by its faces in counter-clockwise order.

The terms adjacent angles, bisector, sum and difference of

dihedral angles, point within or without the angle, complement,

supplement, conjugate, and vertical angles will readily be

understood from the corresponding terms in plane geometry.

As with plane angles the smallest angle made by two intersecting

lines is, in general, to be understood unless the contrary is stated, so

with dihedral angles.

If a dihedral angle is right, the planes are said to be perpen-

dicular to each other.

E.g. in the following figure, ZY ± MN..

Proposition XVIII.

361. Theorem. If a line is perpendicular to a plane, any

jolane containing this line is also perpendicular to that plane.

Given OY perpendicular to the plane MN, and ZY any

plane containing OY.

To prove that ZY± MN.



Prop. XIX.] PENCIL OF PLANES. 267

Proof. 1. Suppose OX, in MN, _L OZ, the intersection of MN
and ZY.

Then A YOZ, XO Y are right A. Why ?

2. But v Z Z07 fixes the measure of the dihedral Z,

§359
.'. Zr_L JlfiV. Def.

Proposition XIX.

362. Theorem. If two planes are perpendicular to each

other, any line in one of them, perpendicular to their inter-

section, is perpendicxdar to the other.

Given the planes ZYA.MN, OZ their intersection, and

OX, in MX, _L OZ.

To prove that OX 1. ZY.

Proof. 1. Let OY, in ZY, he ± to OZ at 0.

Then Z A^OY is the measuring angle. § 359

* 2.
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2. Through a point without a line not more than one plane

can pass perpendicular to that line.

For if through Y another plane could pass _L OX, it would pass through

O, v A XOY = rt. Z, and only one _L can be drawn from Y to OX.
But the plane would also include line OZ, else there would be two Js

from to OX in the plane MN.

Proposition XX.

363. Theorem. If each of two intersecting planes is per-

pendicular to a third plane, their line of intersection is also

perpendicular to that plane.

Given two planes, Q, R, intersecting in OP, and each per-

pendicular to plane M.

To prove that OP _L M.

Proof. 1. A _L to Jffrom lies in Q and in R. Prop. XIX, cor. 1

2. .'. it coincides with OP, the only line common to

Q and 22. .\ OP J_ M.

Exercises. 564. To construct a plane containing a given lino, and

parallel to another given line. (Assumed in step 1 of prop. XVII.)

565. Prove that vertical dihedral angles are equal.

566. How many degrees in the measure of the dihedral angle between

the plane of the earth's equator and the ecliptic ?

567. Prove that the edge of a dihedral angle is perpendicular to the

plane of the measuring angle.

568. Prove that a line and its projection on a plane determine a

second plane perpendicular to the first.
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Proposition XXI.

364. Theorem. Any point in a plane which bisects a

dihedral angle is equidistant from the faces of the angle.

Given a dihedral angle, with faces Q, B, and edge CD,

bisected by plane B; P, any point in B, with

PX± Q, PY±B.
To prove that PX=PY.
Proof. 1. Let M be the plane of PX, PF, and D its intersec-

tion with CD.

2. Then vPJlft .'. MA. Q. Why?

3. Similarly, M _1_ R. Why?

4. .'.MA. CD. Prop. XX
5. .

' . CD _L DX, D Y, DP, whose A therefore measure

the dihedral A. § 359

6. .'.AXDP = APDY.
And v A X= A Y= rt. Z, and DP = DP,

7. .'.A DXP ^ADYP, and PX = PY. § 88, cor. 7

Corollary. TAe focz^s of points that are equidistant from

two intersecting planes is the pair of planes bisecting their

dihedral angles.
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Proposition XXII.

365. Theorem. If from any point lines are drawn per-

pendicular to two intersecting planes, the angle formed by

these perpendiculars has a measure equal or supplemental

to that of the dihedral angle of the planes.

Given the planes M, Q, intersecting in i ; lines PX _L M,

PY J_ Q-, and plane PYX cutting i at A.

To prove that Z YPX is equal or supplemental to the dihe-

dral angle MQ.

Proof. 1. Plane YXP _L M, also _L Q. Prop. XVIII

2. .-. plane YXP _L i. Prop. XX
3. .'. XA and YA J_ i. § 339

4. .-. Z XA Y measures dihedral Z MQ. § 359

5. But vZZ=Zr=rt. Z, Given

.*. Z YPX is supplemental to AXAY, or dihedral

Z Jf©. I, prop. XXI, cor.

Corollary. If the point is within the dihedral angle, the

angles are supplemental.

Definition. If two planes do not meet, however far pro-

duced, they are said to be parallel.

The term "pencil of parallels is applied to planes as well as to lines.



Prop. XXIII.] PENCIL OF PLANES. 271

Proposition XXIII.

366. Theorem. Planes perpendicular to the same straight

line are parallel

I
x

1

M \

r~^\

Given two planes, M, X, J_ line XY, at X, Y, respectively.

To prove that 31 II X.

Proof. If M and X should meet, as at P, then two planes

would pass through P _L XY, which is impossible.

Prop. XIX, cor. 2

Exercises. 569. Prove that through a point without a plane any

number of lines can pass parallel to the plane.

570. Problem : To bisect a dihedral angle.

571. To find the locus of points equidistant from two fixed planes, and

equidistant from two fixed points.

I 572. To find a point equidistant from two given planes, equidistant

from two given points, and also at a given distance from a third plane.

573. Prove prop. XXII for the case in which the point P is taken in

plane M.

574. In the figure on p. 270, as Z XA Y increases from zero to a

straight angle, what change does Z YPX undergo ?

575. Also, suppose Z XAY = 120°; what angle will PY make with

plane M, if produced through Q to M ?

576. Given two points, F, W, in two intersecting planes, If, Q,

respectively. Find Z in the line of intersection of M and Q, such that

VZ + ZW shall be a minimum.

577. If from two points on a line parallel to a plane, parallel lines are

drawn to that plane, a parallelogram is formed.
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Proposition XXIV.

367. Theorem. The lines in which two p>arallel planes

intersect a third plane are parallel.

Given two parallel planes, M, N, intersected by a third

plane, T, in lines a, b.

To prove that a II b.

Proof. 1. a and b are in the same plane T.

2. And they cannot meet, because they are in M and N
respectively, and M II N.

3. .'. they are parallel by definition.

Corollary. A line perpendicular to one of two parallel

planes is perpendicular to the other.

Pass two planes through that line and apply prop. XXIV and the def.

of a plane ± to a line.

Exercises. 578. Through a given point only one plane can pass

parallel to a given plane.

579. If two parallel planes intersect two other parallel planes, the

four lines of intersection are parallel.

580. Parallel lines have parallel projections on any plane. (Suppose,

as a special case, that the lines are perpendicular to the plane.)

581. If two lines are at right angles, are their projections on any plane

also at right angles ?

582. If two planes are perpendicular to each other, any line perpen-

dicular to one of them is either parallel to or lies in the other.
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Proposition XXV.

368. Theorem. If two straight lines are cut by parallel

planes, the corresponding segments are proportional.

Given ABC, DEF, two lines cut by planes P, Q, R, in

points A, B, C and 1), E, F.

To prove that AB : BC = BE : EF.

Proof. 1. Suppose the line GIIF, drawn through F, II ABC,
cutting P, Q at G, H, respectively.

Then AC, GF determine a plane; also DF, GF.

Prop. I, cors. 2, 1

2. .-. AGWBH II CF, and DG II EH. Why ?

3. .-. AB = GH, and BC = HF. I, prop. XXIV

4. But v GH: HF=DE: EF, TV, prop. X, cor. 1

.'. AB:BC = I>E: EF. Subst. 3 in 4

Exercises. 583. In a gymnasium swimming tank the water is 5 ft.

deep, and the ceiling is 9 ft. above the water; a pole 18 ft. long rests

obliquely on the bottom of the tank and touches the ceiling. How much

of the pole is in the water ?

584. In the figure of prop. XXV, connect C and D, and prove the

theorem without using the line FG.
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4. POLYHEDRAL ANGLES.

369. Definitions. When a portion of space is separated

from the rest by three or more planes which meet in but one

point, the planes are said to form, or to include, a polyhedral

angle.

A polyhedral angle is also called a solid angle.

As two intersecting lines form an infinite number of plane angles, but

the smallest is considered unless the contrary is

stated, and similarly with two intersecting planes, V

so three or more intersecting planes form an infi-

nite number of polyhedral angles, but, as with

plane and dihedral angles, only the smallest is

considered.

VAB, VBC, , the

faces.

The lines of intersection of the planes

of a polyhedral angle, each with the next,

are called the edges of the polyhedral angle. ilP^i^^B
C

On account of the complexity of the general Apolyhedral angle .

figure, the planes which form a polyhedral angle v-ABCB. r,thever-

are considered as cut off by the edges, as in the tex ; VA, VB, VC,

above figure. So also the edges, which may be ^'J^^jf
s; pla"es

produced indefinitely, are considered as cut off by

the vertex unless the contrary is stated.

The portions of the planes which form a polyhedral angle,

limited by the edges, are called the faces of the angle.

370. Polyhedral angles contained by 3, 4, , n planes are

termed respectively trihedral, tetrahedral, /7-hedral angles.

A polyhedral angle is specifically designated by a letter at its vertex,

or by J,hat letter followed by a hyphen, and letters on the successive

edges.

371. Congruent polyhedral angles are such as have their

dihedral angles equal, and the plane angles of their faces also

equal and arranged in the same order.
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372. Symmetric polyhedral angles are such as have their dihe-

dral angles equal, and the plane angles of their faces also

equal, but arranged in reverse order.

A X C

B B

Symmetric polyhedral angles. Opposite polyhedral angles.

Thus, in the above figure, V and V are symmetric trihedral angles,

the letters showing the reverse arrangement.

Some idea of this reverse arrangement may be obtained by thinking of

two gloves, fitting the right and left hands respectively. As two such

gloves are not congruent, so, in general, two symmetric polyhedral angles

are not congruent.

373. Opposite polyhedral angles are such that each is formed

by producing the edges and faces of the other through the

vertex.

Exercises. 585. How many edges in an n-hedral angle ? How many
dihedral angles ? How many plane face angles ? How many vertices ?

586. If a straight line is oblique to one of two parallel planes, it is to

the other.

587. If a plane intersects all the faces of a tetrahedral angle, what

kind of a plane figure is formed by the lines of intersection ? What, in

the case of a trihedral angle ?

588. Does the magnitude of a polyhedral angle depend upon the

lengths of the edges ? «

589. Construct from stiff paper two symmetric trihedral angles, with

face angles of about 30°, 60°, 45°, and see if they are congruent. (No

proof required.)

590. If each of two intersecting lines is parallel to a plane, so is the

plane of those lines.
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Proposition XXVI.

374. Theorem. Opposite polyhedral angles are symmetric.

B'

Given V-ABCD, any polyhedral angle, and V-A'B'C'D', its

opposite polyhedral angle.

To prove that V-ABCD and V-A'B'C'D' are symmetric.

Proof. 1. Z.AVB = AA'VB',

ZBVC = ZB' VC, Prel. prop. VI

2. Dihedral A with edges VB, VB', being formed by

the same planes, have equal (vertical) measuring

angles. Prel. prop. VI

3. So for the other dihedral A. But the order of

arrangement in the one is reversed in the other.

.*. the polyhedral A are symmetric.

Note. That the order of the angles is reversed appears more clearly

to the eye by making two opposite trihedral angles of pasteboard. It is

also seen by tipping the upper angle over, as has been done in the figure

to the right.

Exercises. 591. If the edges of one polyhedral angle are respectively

perpendicular to the faces of a second polyhedral angle, then the edges of

the latter are respectively perpendicular to the faces of the former.

592. Two parallel planes intersecting two parallel lines cut off equal

segments.



Prop. XXVII.] POLYHEDRAL ANGLES. 277

Proposition XXYII.

375. Theorem. In any trihedral angle the sum of any

two face-angles is greater than the third.

Given the trihedral angle V-XYZ.

To prove that ZLYVZ + ZZ VX > Z XV Y.

Proof. 1. If Z XVY> either Z YVZ or Z ZVX, no proof is

necessary. Why not ?

2. If ZA7T > either Z FFZ or Z ZVX, suppose it

> A ZVX.

3. Then in plane VXY suppose VW drawn, making

Z XVW = Z ZVX.

Suppose VC taken on VZ, equal to VP on VW, and

a plane passed through C, P, and any point A of

FX. Let this plane intersect VY at P.

4. Then A ^ FP ^ A ^ TC, and A C = AP. I, prop. I

5. But v AC+CB> AB, or AP + PB, Why ?

.-. CP > PB. Why?

6. .'. in APF^and CVB, ZBVO ZPVB.
I, prop. XI

7. .
• . Z C FJ +Z £ J

rC> ZA VP +Z PVB, or Z yl FP.

Or Z TFZ -f- Z ZVX > Z IFF. Ax. 4
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Corollaries. 1. In any trihedral angle the difference of

any two face-angles is less than the third.

For if the face-angles are a, 6, c, then since a + 6 > c, .-.a>c — b.

2. In any 'polyhedral angle any face-angle is less than the

sum of all the other face-angles.

For the polyhedral angle may be divided into a number of trihedral

angles, and prop. XXVII repeatedly applied.

Note. Prop. XXVII and corollaries suppose that each face-angle is

less than a straight angle. This is in accordance with the note under

the definition of a polyhedral angle.

376. Definition. A polyhedral angle is said to be convex

when any polygon formed by a plane cutting every face, is

convex ; otherwise it is said to be concave.

Proposition XXVIII.
p*

377. Theorem. In any convex polyhedral angle the sum

of the face-angles is less than a perigon.

Given any convex polyhedral angle, V-ABC

To prove that Z A VB + Z B VC + Z C VI) + < perigon.

Proof. 1. Let the faces of the angle be cut by a plane. This

will form a convex polygon of n sides (n = 5 in the

figure), abc Def. convex polyh. Z
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Let Sv
= sum of plane A a Vb, bVc, , at the

vertex

;

Sb
= sum of plane AbaV, Vba, cbV, , at

the bases of the A
;

and ^ = sum of plane A cba, deb, , of the

polygon.

2. Then Sp = (n - 2) st. A, or Sp + 2 st. A = n st. A.

I, prop. XXI

3. And Sv + Sb
= n st. A, since there is a st. Z for

each A. I, prop. XIX

4. .". 8V + Sb
= ^ + perigon. Steps 2 and 3 ; ax. 1

5. And V Sb > Sp ,
Prop. XXVII

.'. Sv < perigon.

Exercises. 593. The three planes which bisect the three dihedral

angles of a trihedral angle intersect in a common line whose points are

equidistant from the three faces. (See prop. XXI, cor., and I, prop.

XLIV.)

594. Suppose a polyhedral angle formed by three, four, five equilateral

triangles. What is the sum of the face-angles at the vertex ?

595. If lines through any point and the vertices, A, B, C, , of

a polygon, cut a plane parallel to the plane of that polygon in A', B', C",

, prove that A'B'C *>~ ABC and that the ratio of similitude

is that of OA' to OA.

596. In ex. 595, the more remote is from the planes ABC ,

A'B'C' , the more nearly do AA', BB', CC become parallel;

suppose they become parallel, state and prove the resulting theorem.

597. In ex. 595, if plane A'B'C were not parallel to plane ABC
, prove that the corresponding sides, AB, A'B', and BC, B'C, and

CD, CD', , would, in general, meet in points on the intersection of

the two planes.

598. Two planes, each parallel to a third plane, are parallel to each

other.

599. Ex. 598 is analogous to I, prop. XVIII. State the theorem and

corollaries analogous to I, prop. XVII and its corollaries, and prove them.
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5. PROBLEMS.

Proposition XXIX.

378. Problem. Through a given point to pass a plane

perpendicular to a given line : (1) the point being without

the line, (2) the point being on the line.

1. Given the line YY', and point P without.

Required through P to pass a plane _L YY'.

Construction. 1. From P draw PO _L YY'. I, prop. XXX

2. From draw another line OX A. YY'.

I, prop. XXIX
Then MN, the plane of OP, OX, is the required

plane.

Proof. V YY'±OP,
and YY' _L OX,

.'. YY'±MX. §339

2. Given the line YY', and the point upon it.

Required through to pass a plane _L IT.

Construction and Proof. Draw OP and 0X1. YY'. This can

be done because the three lines are not required to

be coplanar.

Then the plane XOP 1 V V. § 339
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Proposition XXX.

379. Problem. Through a given point to pass a plane

parallel to a given plane.

Solution. Draw two intersecting lines in the given plane.

Through the given point draw two lines parallel to these lines,

thus determining the required plane.

Proposition XXXI.

380. Problem. Through a given point to draw a line per-

pendicular to a given plane : (1) the point being without the

plane, (2) the point being in the plane.

1. Given the plane MN, and the point P without.

Required to draw a perpendicular from P to MN.

Construction. 1. Draw PC ±AB, any line in MN.
I, prop. XXX

2. In MN draw CE _L AB. I, prop. XXIX

Draw PP' _L CE. I, prop. XXX
Then PP' is the required perpendicular.

Proof. 1. CA _L plane CPP'. Prop. VI, cor. 1

2. Draw P'D II CA ; then P'D _L plane CPP'. Prop: IX

3. .-. Z DP'P is right, and PP' X P'D. § 339

4. But PP' _L CP'. and .'. PP' ± MX. Prop. VI, cor. 1
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2. Given the plane MN, and the point R within it.

[Bk. VI.

Required through R to draw a perpendicular to MN.

Construction. 1. From any external point S draw ST JL MN.
Case 1

2. From R draw RQ II TS. I, prop. XXXIII

Proof. Then RQ is the required perpendicular. Why ?

Exercises. 600. From the point of intersection of two lines to draw

a line perpendicular to each of them.

> 601. To determine the point whose distances from the three faces of

a given trihedral angle are given. Is it unique ?

602. From the vertex of a trihedral angle to draw a line making equal

angles with the three edges.

f 603. The three planes, through the bisectors of the face-angles of a

trihedral angle, perpendicular to those faces, intersect in a common line

wdiose points are equidistant from the edges. (See I, prop. XLIII.)

604. In how many ways can a polyhedral angle be formed with equi-

lateral triangles and squares ?

605. Prove that a straight line makes equal angles with parallel planes.

606. If each of two intersecting planes is parallel to a given line, prove

that their intersection is coplanar with that line.

607. Frove that parallel lines make equal angles with parallel planes.

608. Are planes perpendicular to the same plane parallel ?

609. In the figure of prop. XXV, without drawing FG, draw CD and

AF; then show that the four lines CD, CA, FD, FA intersect plane Q
in the vertices of a parallelogram.

610. Given two lines, not coplanar, and a plane not containing either

line, required to draw a straight line which shall cut both given lines and

shall be perpendicular to the plane. (Project both lines on the plane.)
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1. GENERAL AND REGULAR POLYHEDRA.

381. Definitions. A solid whose bounding surface consists

entirely of planes is called a polyhedron; the polygons which

bound it are called its faces ; the sides of those polygons, its

edges ; and the points where the edges meet, its vertices.

382. If a polyhedron is such that no straight line can be

drawn to cut its surface more than twice, it is said to be

convex; otherwise it is said to be concave.

Unless the contrary is stated, the word polyhedron means convex poly-

hedron. The word convex will, however, be used wherever necessary for

special emphasis.

383. If the faces of a polyhedron are congruent and regular

polygons, and the polyhedral angles are all congruent, the

polyhedron is said to be regular.

Exercises. 611. Draw a figure of a polyhedron of four faces. Count

the edges, faces, and vertices, and show that the number of edges plus

two equals the number of faces plus the number of vertices.

612. Do the same for a polyhedron of five faces ; also of six faces.

613. Take a piece of chalk, apple, or potato, and see if a seven-edged

polyhedron can be cut from it.

614. What is the locus of points on the surface of a polyhedron equi-

distant from two given vertices ? (The distances are to be taken as usual

on a straight line, and not necessarily on the surface.)

615. What is the locus of points equidistant from two given non-

parallel faces of a given polyhedron ?

616. To find a point equidistant from two given vertices of a polyhe-

dron, and from two given non-parallel faces.

283
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Proposition I.

384. Theorem. If a convex polyhedron has e edges, v ver-

tices, and f faces, then e + 2 = f + v.

Given

To prove

Proof. 1

ABC Z, a convex polyhedron of e edges, v ver-

tices, / faces.

that e + 2=f+v.
Imagine ABC Z formed by adding adjacent faces,

beginning with any face as ABCD of a sides,

then adding face M, of b sides, and so on.

(It is advisable to build up a rectangular box of paste-board

while reading the proof.)

Let er = the number of edges, and vr = the number

of vertices, after r faces have been put together.

(Thus when we put 2 rectangles together in building up the

box, we have located 7 edges and 6 vertices; i.e. e» = 7,

v2 = C, in this case.)

2. Then, since the first face had a sides, .*. ex
= a and

v l
= a.

(In the box, e x = 4, vi = 4.)

3. v adding an adjacent face 71/, of b sides, gives only

(b — 1) new edges, and (b — 2) new vertices (Why ?),

(In the box, adding a second rectangle to the first gives

only 3 new edges because we have 1 in common with the

first face, and 2 new vertices because we have 2 in common
with the first face.)

.'. e2 = a -f- b — 1, v2
= a + b — 2, so that ea — v2

= 1.

(In the box, e2 = 4 + 4 - 1 = 7, v2 = 4 + 4 - 2 = C, so

that e2 — «a = 1.)
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4. Therefore we have

e2 = *>a + 1.

Now while the number of edges common to two

successive open surfaces will vary according to the

way in which the additions are made, the addition

of a new face evidently increases e by one more

unit than it increases v.

.-.es^Vs + 2,

€i = r4 + 3,

and, in general,

er = vr + r - 1,

or er
— vr = r — 1.

5. But the addition of the last, or /th face, as XYZ,
after all the others have been put together, gives no

new edges or vertices,

•'• ef - l
'f
= e/-i - vf-i =f~ 2 '

(In the box, adding the last face merely puts on the cover,

adding no new edges or vertices. .-. e6 — »e = e5 — v5 = 4,

which is evidently true, because 12, the number of edges,

minus 8, the number of vertices, is 4.)

6. That is, e - v =f- 2, so that e + 2 =/+ u; for

ef = e, and vf = v.

Corollary. For every polyhedron there is another which,

with the 8<i.me number of edges, has as many faces as the first

has vertices, and as many vertices as the first has faces.

It is easily seen that a polyhedron can be inscribed with a vertex at the

center of each face, the number of edges remaining the same.

Note. This theorem is known as Euler's, although Descartes knew
and employed it. The theorem is very useful in the study of crystals.

Exercise. 617. If the faces of a polyhedron are all triangular, the

number of faces is even and is four less than twice the number of ver-

tices. (Since there are 3 edges to every face, but each edge belongs to

2 adjacent faces, e = 3//2 ; substitute in e + 2 =/ + v.)

I
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Proposition II.

385. Theorem. There cannot be more than jive regular

convex polyhedra.

Proof. 1. Let n = number of sides in one face, and a = number

of degrees in each plane Z of the faces of a regular

convex polyhedron.

Then a = (n - 2) • 180°/ n, I, prop. XXI

and if n = 6, then a = 120°, and 3 a = 360°.

2. .'. if n = 6 or more, there can be no solid angle.

VI, prop. XXVIII

3. And if n = 5, then a = 108°, and 3a = 324°,

and .'.3 regular pentagons, but no more, can form a

solid angle. VI, prop. XXVIII

4. And if n = 4, then a = 90°, 3 a = 270°, 4 « = 360°,

and .'.3 squares, but no more, can form a solid

angle. VI, prop. XXVIII

5. And if n = S, a = 60°, 3 a = 180°, 4 a = 240°,

5 a = 300°, 6a = 360°,

and .*. 3, 4, or 5 equilateral A, but no more, can

form a solid angle: VI, prop. XXVIII

6. .'. there cannot be more than 5 regular -convex

polyhedra, viz. those formed by regular pentagons

(3 at each vertex), squares (3 at each vertex), equi-

lateral triangles (3, 4, or 5 at each vertex).

-

Note. There are five regular convex polyhedra ; but the complete

proof of the fact is not of enough importance to insert it in the body of

the work. It may be given as an exercise, since it involves no new
principles. These five polyhedra have been called the Platonic Bodies,

from the attention given them in Plato's school, although they were

known to the Pythagoreans. The three simpler forms enter largely into

crystallography, usually somewhat modified.

The five regular polyhedra are given on page 287.
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The regular tetrahedron

(or triangular pyramid),

formed by 4 equilateral

triangles.

The regular hexahedron

(or cube), formed by

6 squares.

The regular octahedron,

formed by 8 equilateral

triangles.

The regular dodecahedron, formed by
12 regular pentagons.

The regular icosahedron, formed by

20 equilateral triangles.

The five regular polyhedra can be constructed from cardboard by-

marking out the following, cutting through the heavy lines and half

through the dotted ones, and then bringing the edges together.

Tetrahedron. Hexahedron. Octahedron.

Dodecahedron. Icosahedron.
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2. PARALLELEPIPEDS.

386. Definitions. A Parallelepiped is a solid bounded by-

three pairs of parallel planes.

The four lines through a parallelepiped, joining the oppo-

site vertices, are called its diagonals.

Proposition III.

387. Theorem. The opposite faces of a parallelepiped are

congruent parallelograms ; and any section of it, made hrj

a plane cutting two pairs of opposite faces without cutting

the remaining pair, is a parallelogram.

Given the parallelepiped AG, and PQfiS a plane section

cutting the parallel faces AF, DG, and AH, BG.

To prove (1) that A C and KG are congruent UJ,

(2) that PQHS is a O.

Proof. 1. EF II HG II DC II AB II EF,

and BC II FG II EH II AD II BC, VI, prop. XXIV

and .'.all faces are UJ. §
(

.)7, del O
2. .

. AB = EF = JIG = D C,

and BC = FG = Ell = A J). I, prop. XXIV



Prop. HI.] PARALLELEPIPEDS. 289

3. And v Z JEKff = Z 7/J Z>, VI, prop. V
.-. O AC^ CD EG, which proves (1). I, prop. XXVI

Similarly for other opposite faces.

4. And v PQ II SB, and P,S' II QE, XI, prop. XXIV
.-. Pi? is a O, which proves (2). § 97. def. O

Corollary. A parallelepiped has three sets of pta.rallel

and equal edges, four in each set.

388. Definition. If the faces of a parallelepiped are all

rectangles, it is called a rectangular parallelepiped.

It will be noticed that as axes of symmetry enter into the study of

plane figures (§ 68), and especially of regular figures, so planes of sym-

metry and axes of symmetry enter into the study of solids. A plane of

symmetry divides the solid into halves, related to each other as a figure is

related to its image in a mirror. Planes of symmetry play an important

part in the study of crystals. The term axis of symmetry will be under-

stood from Plane Geometiy.

Exercises. 618. Prepare a table showing the number (1) of faces,

(2) of edges, (3) of vertices, (4) of sides in each face, (5) of plane angles

at each vertex, of all of the five regular polyhedra.

619. How many degrees in the sum of the face-angles at one vertex

of a regular tetrahedron? hexahedron? octahedron? dodecahedron?

icosahedron ?

620. The perpendiculars to the faces, through their centers, of a ^
regular tetrahedron are concurrent in n point equidistant from all of the

vertices, from all of the faces, and from all of the edges.

621. Prove that no polyhedron can have less than six edges.

622. In a regular tetrahedron three times the square on an altitude -W*

equals twice the square on an edge.

623. Certain crystals have their corners cut off, that is, the vertices of

their polyhedral angles replaced by planes. Suppose a regular hexa-

hedral crystal has its trihedral angles replaced by planes, how many faces

has the new crystal ? How many edges ? vertices ? Is Euler's theorem

satisfied ?

624. How many planes of symmetry and how many axes of sym-

metry has a regular hexahedron ? octahedron ?

f
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Pkopositiox IV.

389. Theorem. In any parallelepiped,

1. The four diagonals are concurrent in the mid-point

of each.

2. The sum of the squares on the four diagonals equals

the sum of the squares on the twelve edges.

A B

Given a parallelepiped with diagonals AG, BH, CE, DF.

To prove that (1) the diagonals are concurrent at 0, the mid-

point of each

;

(2) AG2 + BH 2 + CE 2 + BE 2 = AB2 + BC 2 +

Proof. 1. v BF= and II BR, Why ?

.-.DBFH is a. CJ. Why?

2. .'. ED and BH bisect each other at 0. § 100, cor. 2

Similarly,BH and CE, CE and A G, bisect each other.

3. And '.' there is only one point of bisection of BH
and CE, § 41

.
*

. BH, CE, A G, and DF are concurrent at 0.

4. And v AG 2 + CE 2 = AC 2 + CG 2
-f- GE2 + EA*

}

and DF 2 + BH2 = BF 2 + FH 2
h HB2 + BB2

,

II, prop. XI, cor.

5. .'. by adding, and noting that AC 2 + 7>/>
>2 = AB2 +

BC 2 + CD2 + i>vi'
2
, etc., the theorem is proved.
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3. PRISMATIC AND PYRAMIDAL SPACE.

PRISMS AND PYRAMIDS.

390. Definitions. A prismatic surface is a surface made up

of portions of planes, the intersections of which are all parallel

to one another.

391. If, counting from any plane of a prismatic surface

as the first, each plane

intersects its succeeding

plane, and the last one

intersects the first, the sur-

face is said to enclose a

prismatic space.

The lines of intersec-

tion are called the edges,

and the portions of the

planes between the edges,

the faces, of the prismatic space

A prismatic sur-

face.

A portion of a prismatic

space, quadrangular

and convex. ABCD,
a right section.

The edges and the faces are supposed to be unlimited in length. It

will be readily seen that a prismatic space is related to entire space as a

plane polygon is to its entire plane. It will therefore be inferred that

theorems relating to polygons have corresponding theorems relating to

prismatic spaces.

392. A section of a prismatic space, made by a plane cutting

its edges, is called a transverse section. If it is perpendicular

to the edges, it is called a right section.

393. A prismatic space is said to be triangular, quadrangular,

rectangular, pentagonal, , n-gonal, according as a transverse

section is a triangle, quadrilateral, rectangle, pentagon, ,

n-gon, and to be convex or concave according as a transverse

section is a convex or a concave polygon.
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Prismatic spaces may be such that transverse sections are convex, con-

cave, or cross polygons. All theorems not involving mensuration will

at once be seen to apply to each class. But on account of the complexity

of the figures, the third form (cross) is not considered in this work.

394. The portion of a prismatic space included between twro

parallel transverse sections is called a prism, the two transverse

sections being called the bases of the prism.

Thus in the figure on p. 293 the portion of the prismatic space P,

between S and S', is a prism. S and S' are the basis.

The signification of the terms edges, faces, and prismatic surface of a

prism, upper and lower bases of a prism, triangular prisms, etc., will be

inferred from the above definitions. By transverse and right sections of

a prism are to be understood the transverse and right sections of its

prismatic space.

The sides of the bases of a prism are also called edges ; where con-

fusion is liable to arise these are called base edges, and the edges of the

prismatic space are called lateral edges.

:#

Exercises. 625. In the figure of prop. IV, prove that Oi, 0, 2 are

collinear.

626. Also that X = EA/2.

627. Also that if AG is a rectangular parallelepiped, 0\0 is perpen-

dicular to line EG.

628. Also that if the diagonals of all the faces are drawn, and the

points of intersection of the diagonals of the opposite faces are con-

nected, these connecting lines are concurrent at O, the mid-point of each.

629. Prove that the square on a diagonal of a rectangular parallele-

piped equals the sum of the squares on three concurrent edges.

630. If the edge of a cube is represented by Vs, find the diagonal.

631. Prove that the four diagonals of a rectangular parallelepiped

are equal.

632. Show that the edge, diagonal of a face, and diagonal, of a cube,

are proportional to 1, V2, Vij.

633. If the plane PR, of prop. Ill, were also to cut the faces UF
and 1)1>, what would be the plane figure resulting? What would be the

relation of its opposite sides?
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Proposition V.

395. Theorem. Parallel transverse sections of a prismatic

space are congruent polygons.

Given the prismatic space P, with S, S', two parallel trans-

verse sections.

To prove that S^ S'.

Proof. 1. '•' the sides of S II sides of S', respectively,

VI, prop. XXIV
.\ A of £ = A of S', respectively. VI, prop. V

2. And '•* the sides of >S' also equal the sides of S',

respectively, I, prop. XXIV
.'. by superposition, S is evidently congruent to S'.

Corollaries. 1. The bases of a prism are congruent poly-

gons.

2. The faces of a j^rism are parallelograms.

3. The lateral edges of a prism are equal.

Exercise. 634. Suppose in the figure of prop. Ill, another plane II to

PR, cutting the same faces as PR, hut not the other faces. Prove that

it would cut out a parallelogram congruent to PR.
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396. Definitions. A pyramidal surface is a surface made up

of portions of planes which have but one point in common.

A pyramidal surface. A portion of a pyramidal space, quad-

rangular and convex. V, the vertex;

ABCD, a transverse section; V-ABCD,
a pyramid, ABCD being its base.

397. If, counting from any plane of a pyramidal surface as

the first, each plane intersects its succeeding plane, and the

last one intersects the first, the surface is said to contain a

pyramidal space.

Unlike a prismatic space, a pyramidal space is double, its parts lying

on opposite sides of the common point.

The lines of intersection of the planes are called the edges,

the portions of the planes between the edges, the faces, and

the point of intersection of the edges, the vertex, of the

pyramidal space.

The edges and faces are supposed to be unlimited in length.

398. A section of a pyramidal space, made by a plane

cutting all of its edges on the same side of the vertex, is called

a transverse section.

399. The terms triangular, , n-gonal, concave, convex

pyramidal space are defined as the like terms for prismatic

space.
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400. The portion of a pyramidal space included between

the vertex and a transverse section is called a pyramid, the

transverse section being called its base, and the vertex of the

space, the vertex of the pyramid.

Thus the figure V-ABC below is a pyramid, ABC being the base and

V the vertex.

The distance from the vertex of a pyramid to the plane of

its base is called the altitude of the pyramid.

Thus in the figure below, YV is the altitude of pyramid V-ABC.
The signification of the terms edges, faces, transverse section, base edges,

etc. , of a pyramid can be inferred from the preceding definitions.

401. The portion of a pyramidal space included between

two transverse sections on the same side of the vertex is

called a truncated pyramid ; if the transverse sections are

parallel, it is called a frustum of a pyramid, the two sections

being called the bases of the frustum.

A frustum of a pyramid is therefore a special form of a truncated

pyramid.

A pyramid is also a special case of a truncated pyramid, the upper

base being zero.

The distance from any point in one base of a frustum of a

pyramid to the plane of the other base is called the altitude

of the frustum.

T, a truncated pyramid ; ABCXYZ, a frustum of the pyramid V-ABC
;

VV, the altitude of the pyramid ; ABC, XYZ, the lower and upper

bases of the frustum ; XX , the altitude of the frustum.
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Proposition VI.

402. Theorem. Parallel transverse sections of a pyrami-

dal space are similar polygons, whose areas are proportional

to the squares of the distances from the vertex to the cutting

planes.

Given P, a pyramidal space with vertex V, cut by two

parallel planes, B, B', making transverse sections

ABC = S, A'B'C = S', respectively ; VXA. B,

VX' _L B'.

To prove that (1) S~ S',

(2) S:S'= VX 2
: VX'2

.

Proof. 1. v the sides of S are II to the sides of S',

VI, prop. XXIV
.*. VA: VA'= VB: VB' = and so on for other

points. IV, prop. X, cor. 2

2. .'. S~ S', which proves (1). § 258, def. sim. figs.

3. And v AB : A'B' = VA : VA' = VX : VX',

IV, prop. X, cors. 1, 3

and 8 : S' = AJi2
: A'V><\ V, prop. IV

.'. S: S' = VX* : VX". IV, prop. VII
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Note. The definition of similar figures, given in Book IV, § 258, is

general ; the center of similitude and the given figures may or may not

be in the same plane. Thus in the figure on p. 296, V is the center of

similitude of the triangles ABC and A'B'C, and in the figure on p. 295,

V is the center of similitude of the triangles XYZ and ABC. Neither

is the definition limited to plane figures ; we may have similar solids as

well. Thus two balls are similar, or two cubes, or two regular tetra-

hedra, etc.

Corollaries. 1. If a pyramid is cut by a plane parallel

to the base, (1) the edges and altitude are divided proportion-

ally, (2) the section is similar to the base.

If the planes in the proof on p. 296 are on the same side of F, step 3

proves (1), and step 2 proves (2). Or, in the figure on p. 295,

VV'-.XX' = VA :XA,

and A ABC^ A XYZ.

2. In pyramids having equal bases and equal altitudes,

transverse sections parallel to the bases, and equidistant from
them, are equal ; if the bases are congruent, so are the sections.

1. Let s, s' be the areas of the sections, b, b' the areas of the bases, d

the distance of the section from the vertex, and a the altitude.

2. Then from prop. VI,
s : b = d2

: a2
,

and s' : b' = d2
: a2 .

.-. s:b = s' : b'. Ax. 1

3. But b = b\

.-. s = s'.

4. And if the bases are congruent, so are the sections, since they are

both similar and equal to the bases.

3. The bases of a frustum of a pyramid are similar figures.

For they are parallel transverse sections of a pyramidal space. Hence

step 2, p. 296, proves the corollary.

Exercise. 635. In the figure on p. 296, suppose Z. ABC a right angle,

AB = 3 in., AC = 5 in., VB = 10 in., and the area of A A'B'C' = 12 sq. in.

;

find the length of VB'.
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4. THE MENSURATION OF THE PRISM.

403. Definition. The area of the prismatic surface of a

prism is called the lateral area of the prism.

Similarly for the pyramid, and for the cylinder and cone, to be defined

hereafter.

Proposition VII.

404. Theorem. The lateral area of a prism equals the

product of an edge and the perimeter of a right section.

Given the prism P; a right section R with sides su s2, ;

f,f2 ,
the faces of the prism; e, an edge.

To prove that the lateral area of P is e • (st + s2 + ).

Proof. 1. ' •
' by definition of right section, B _L e,

.

'
. s x _L e. § 339

2. V/u f*> are UJ, Prop. V, cor. 2

.'. area/! = e-s x . V, prop. II, cor. 3

3. And V the edges are equal, Prop. V, cor. 3

.'. area f2 — e-s2 , and so for the other faces.

4. .*. lateral area= e\«i + e- s 2 + == e • (st + s 2 + )•

Ax. 2
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405. Definitions. A prism whose edges are perpendicular

to the base is called a right prism ; if the edges are oblique to

the base it is called an oblique prism.

E.g. on p. 301 R is a right prism and is an oblique prism. So a

cube is a special kind of a right prism, and the parallelepiped illustrated

on p. 290 is an oblique prism.

The distance from any point in one base of a prism to the

plane of the other base is called the altitude of the prism.

Similarly for a parallelepiped, which is a special kind of prism.

Corollary. The lateral area of a right prism equals the

product of the altitude and the perimeter of the base.

For the altitude here equals the edge.

Exercises. 636. Required the lateral area of a prism of edge 3 in.,

the right section being an equilateral triangle of area i V3 sq. in. Also

the lateral area of one of edge 3 in. , the right section being a square of

diagonal V2 in.

637. Required the lateral area of a right prism whose base is a square

of area 9 sq. in., and whose altitude equals the diagonal of the base.

Also required the total area.

638. Required the total area of a right prism whose base is an equi-

lateral triangle of area ± V3, and whose altitude equals a base edge.

639. Required the total area of a right prism whose base is a regular

hexagon whose side is 1 in., the altitude of the prism being equal to the

diameter of the circle circumscribing the base.

640. Required the lateral area of a prism of edge |, the right section

being a regular hexagon of area § Vs.

641. Required the total area of the prism mentioned in ex. 640,

supposing it to be a right prism.

642. A converse of prop. VI is as follows : If two similar polygons

have their corresponding sides parallel, and lie in different planes, the

lines through their corresponding vertices are concurrent. Prove it.

(A generalization of the idea of similar figures in perspective ; see the

definition of similar figures § 258, and the note at the top of p. 297.)

643. Investigate and prove whether or not any three faces of a tetra-

hedron are together greater than the fourth.



300 SOLID GEOMETRY. [Bk. VII.

Proposition VIII.

406. Theorem. Prisms cut from the same prismatic space

and having equal edges are equal.

Given two prisms, P, P', cut from the same prismatic

space S, and having equal edges e.

To prove that P = P.

Proof. 1. If 7T=the portion of the prismatic space between

P and P, then by adding e to the edges of K, each

edge of P + K= an edge of K -f- P. Ax. 2

2. Then '•' P + K can evidently slide along in the

prismatic space and occupy the position of K -f P',

.'.P + K*zK+P'. §57

3. ..P = P. Ax. 3

Corollaries. 1. Right jyrisms having equal altitudes and

congruent bases are congruent.

2. An oblique prism is equal to a right prism whose base

and altitude are respectively a right section and edge of the

oblique j)ris7ti.
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Proposition IX.

407. Theorem. The two triangular prisms into which any

parallelepiped is divided by a plane through two opposite

edges are equal.

Given and E, parallelepipeds with equal edges, cut from

a prismatic space, B being right ; also, P, a plane

through two opposite edges of that space, cutting

R, into two triangular prisms, Tx and T2 , Xx and

X2 , respectively.

To prove that (1) Tx
= T2 , (2) A\ = X2 .

Proof. 1. The base of Tl ^ the base of T% . I, prop. XXIV

2. '•' they have the same altitude, .". Tx
= T2 . Why ?

3. Xi = -Tu and X2 = T2 . Prop. VIII

4. And v Tx
= T2 ,

.'. X, = X2 . Ax. 1

Corollary. A trianrjular prism is half of a parallele-

piped of the same altitude, whose base is the parallelogram of

which one side of the triangular base is the diagonal and the

other two are the sides. (Why ?)
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Proposition X.

408. Theorem. Any parallelepiped is equal to a rectan-

gular parallelepiped of equal base and equal altitude.

Given a parallelepiped, III.

To prove that III equals a rectangular parallelepiped as I, of

equal base and equal altitude.

Proof. 1. Let II be a parallelepiped on the same base, />, as

III, formed by a rectangular prismatic space, B,

cutting the prismatic space S of the figure.

Let I be a rectangular parallelepiped cut from B,

with a base B' = B, and a base edge e' consequently

equal to base edge e of II. II, prop. I, cor. 4

2. Then III = II, being part of S and having a com-

mon edge. Prop. VIII

3. And I = II, being part of B and having an equal

edge. Prop. VIII

4. Ill = I. Ax. 1
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Proposition XI.

409. Theorem. Two rectangular parallelepipeds having

congruent bases are proportional to their altitudes.

R' pj^

Given two rectangular parallelepipeds, R and R', with alti-

tudes a and a' respectively, and with bases b.

To prove that R : R' = a : a'.

Proof. 1. Suppose a and a' divided into equal segments, I, and

suppose a = nl, and a' = n'l.

(In the figures, n — 6, n' = 4.)

Then if planes pass through the points of division,

parallel to the bases,

R = n congruent rectangular ppds. bl,

and R' = n' " " " «

7i - bl n _a
~ar2. .-.=: =

hi
Why

Note. The student should notice the resemblance between this

theorem and Bk. V, prop. X. The above proof assumes that a and a'

are commensurable, and hence that they can be divided into equal

segments I. The proposition is, however, entirely general. The proof

on p. 304 is valid if a and a' are incommensurable.

Exercise. 644. Given the diagonals, a, 6, c, of three unequal faces "»-.,

of a rectangular parallelepiped, to compute the edges.
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410. Proof for incommensurable case.

R

a\\\

1. Suppose a divided into equal segments /,

and suppose a — nl, while a' = n'l + some remainder

x, such that x < I.

Then if planes pass through the points of division,

parallel to the bases,

R = n congruent rectangular ppds. bl,

and R' = 71' « « " " + a re-

mainder bx such that bx < bl.

2. Then a' lies between n'l and (V + 1) /,

and H' lies between ?i' • bl and (n' + 1) bl.

3. .'. — lies between — and >

a n n

while -=- lies between — and
li n n

Why ?

Why?

a' li' 1
4. .*. — and — differ by less than -

a R J n
Why ?

5. And v — can be made smaller than any assumed

difference, by increasing n,

.'.to assume any difference leads to an absurdity.

a' R' . R a
6. .'. — = — 5 whence — = —:

a R R' a'
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Proposition XII.

411. Theorem. Two rectangular parallelepipeds of equal

altitudes are proportional to their bases.

P P'

a. "I a a

Given » two rectangular parallelepipeds, P, P', having alti-

tudes a, and bases be and yz, respectively.

To prove that P : P' = bc: yz.

Proof. 1. Suppose a rectangular parallelepiped Q to have an

altitude a and a base ?/c.

2. Then v ac may be considered the base of P and Q,

. ^_^

Q c
3. And similarly, -^ = —

P
P'

Prop. XI

Why ?

Why ?

412. Definition. The length, breadth, and thickness of a

rectangular parallelepiped are called its three dimensions.

Exercise. 645. If through a point on a diagonal plane of a parallele-

piped planes are passed parallel to the two pairs of faces not intersected

by the diagonal, the parallelepipeds on opposite sides of that diagonal

plane are equal. (See II, prop. IV.)
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Proposition XIII.m
413. Theorem. Two rectangular parallelepipeds are pro-

portional to the products of their three dimensions.

Given two rectangular parallelepipeds, P, P', of dimen-

sions a, b, c, and a', b', c', respectively.

To prove that P : P' = abc : a'b'c'.

Proof. 1. Suppose a rectangular parallelepiped Q to have the

three dimensions a', b, c'.

2. Then

and

3.

Corollaries. 1. The volume of a rectangular parallele-

piped equals the product of its three dimensions.

This means that the number which represents the volume is the product

of the three numbers representing the dimensions. That is, the number
of times the unit of volume is contained in the given parallelepiped, is the

product of the numbers of times the unit of length is contained in three

concurrent edges.

If T" is a cube, of edges 1, 1, 1; then P' is the unit of measure of

volume. But P : P' then becomes 7*
: 1 , and abc s 1 • 1 • 1 theu becomes

abc : 1. .«. P: 1 = abc : 1, or P = abc.

P ac

Q~ a'c
r



Prop. XIII.] THE MENSURATION OE THE PRISM. 307

2. The volume of any parallelepiped equals the product of

its base and altitude.

For (prop. X) it equals a rectangular parallelepiped of equal base and

equal altitude.

3. The volume of a, triangular prism equals the product of

its base and altitude.

Cor. 2 with prop. IX, cor. Let the student give the proof in detail.

4. The volume of any prism equals the product of its base

and altitude.

For it can be cut into triangular prisms by diagonal planes through

a lateral edge, the sum of the bases of the triangular prisms being the

base of the given prism. .-. cor. 3 applies. Let the student draw the

figure and give the proof in detail.

5. Any prism equals a rectangular parallelepiped of equal

base and equal altitude.

Cors. 4, 2.

6. The volume of an oblique prism equals the product of an

edge and a, right section.

Cor. 4 with prop. VIII, cor. 2.

7. Prisms having equal bases are proportional to their alti-

tudes.

For if a is the altitude and b the base, then P = ab, and P' = a'b'.

If b — &', then P' = a'b. Hence P : P' — ab : a'b — a-.a'.

8. Prisms having equal altitudes are proportional to their

bases. Prisms having equal bases and equal altitudes are

equal.

Let the student give the proof.

Exercises. 646. What is the edge of the cube whose volume equals

that of a rectangular parallelepiped with edges 2.4 m, 0.9 m, 0.8 m ?

647. From the given edge e of a cube, compute (1) the cube's entire

surface, (2) its diagonal, (3) its volume.

648. Draw a figure illustrating geometrically the formula

(a + bf = a3 + &3 + 3 a 2b + 3 ab2
.
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5. MENSURATION OF THE PYRAMID.

414. Definitions. A regular pyramid is a pyramid whose

base is a regular convex polygon, the perpendicular to which,

at its center, passes through the vertex of

the pyramid.

415. The slant height of a regular pyramid

is the distance from the vertex to any side of

the base.

E.g. VB in the annexed figure.

416. The portion of the slant height of a

regular pyramid cut off by the bases of a

frustum is called the slant height of the

frustum.

Corollary. The slant height of a regular pyramid, or of

a frustum of a regular pyramid, is the same on ivhatever face

it is measured.

Let the student show that the faces are all congruent ; hence that the

slant heights are equal.

Exercises. 649. To pass a plane through a given pyramid parallel to

the base, so that the section shall equal half the base.

650. The edges of a rectangular parallelepiped are 3, 4, 5 ; required

the total area of the faces, the areas of its diagonal planes, the length of

its diagonal line, andjthe lengths of the diagonals of its faces. Similarly

for a cube of edge V2.

651. If a cubic block of sandstone at a temperature of 0° Centigrade

has an edge 1 m long, and if for every 1° Centigrade increase of tempera-

ture the edge increases 0.000012 of its length at 0°, find the volume at 40°

Centigrade.

652. A brick has the dimensions 25 cm, 12 cm, 6 cm, but on account

of sbrinkage in baking, the mold is 27.5 cm long, and proportionally

wide and deep. What per cent does the volume of the brick decrease in

baking ?
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Proposition XIV.

417. Theorem. The lateral area of the frustum of a

regular pyramid equals half the product of its slant height

and the sum of the perimeters of its bases.

Given BB', a frustum of a regular pyramid, h its slant

height, s a side of base B and p its perimeter, s' a

side of base B' and p' its perimeter, I the lateral

area.

To prove that I = \ h (jp + p*).

Proof. 1. The area of each face = \h (s + $')-

V, prop. IT, cor. 5

2. Adding all the faces, and remembering that p is

the sum of the sides s, and p' of the sides s', we

have I = ih(p +p r

).

Corollary. The lateral area of a regular pyramid equals

half the product of its slant height and theperimeter of its base.

For in the above theorem, let B' = ; then s' and p' = ; .-. I = } hp.

Exercises. 653. Prove the above corollary independently of the

theorem.

654. What is the lateral area of a regular pyramid whose base is a

a
triangle of altitude % V3, and whose slant height is a ?

655. What is the total area of a frustum of a regular hexagonal

pyramid whose base edges are respectively 3 — v3 and 3 + v3, and

whose slant height is 10 ?
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Proposition XV.

418. Theorem. Pyramids having equal bases and equal

altitudes are equal.

V

Given pyramids VAZ, V'A'Z', having equal bases, and

having equal altitudes h.

To prove that pyramid VAZ= pyramid YA'ZK

Proof. 1. Suppose their bases in the same plane M, and their

vertices on the same side of M.

Suppose their altitude It, divided into n equal parts

and planes passed through the division-points par-

allel to 31.

Then these planes will make equal corresponding

transverse sections because the bases are equal.

Prop. VI, cor. 2

2. Suppose planes passed through the sides of these

sections parallel to an edge of the pyramid, making

a set of prisms in each pyramid, A, B, and

A', B>,

3. Then V A = A',

and B = B', Prop. XIII, cor. 8

.'. A + B + = A' + B'+ Ax. 2
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4. But if n increases indefinitely,

A + B + =pyr. VAZ,

and A' + B' + = pyr. VA'Z*.

5. /. pyr. VAZ = pyr. VAZ'. IV, prop. IX, cor. 1

Corollaries. 1. A pyramid having a parallelogram for

its base is divided into equal pyramids by a plane through its

vertex and two opposite vertices of the base.

For the two pyramids have equal bases and a common altitude.

2. A pyramid having a parallelogram for its base equals

twice a triangular pyramid of the same altitude, tvhose base

equals half that parallelogram. (Why?)

3. A triangular pyramid can be constructed equal to any

given n -gonad pyramid.

II, prop. XII, and this theorem.

Exercises. 656. Find the area of the entire surface of a regular

tetrahedron of altitude h.

657. Find the altitude of a regular tetrahedron of total area a.

658. Find, by § 417, the total area of a cube of edge e.

659. What is the length of the base edge of a regular triangular

pyramid which is equal to a regular hexagonal pyramid of the same

altitude, the base edge being 1 ?

660. In prop. XIV, cor., B' was supposed to decrease to ; supposing^

instead, that B' increases until it equals B, show that step 2 of the

theorem gives the usual formula for the lateral area of a prism.

f 661. Prove that frustums of pyramids having equal bases and equal

altitudes, which themselves have equal altitudes, are equal.

662. A pyramid has for its base a regular hexagon with its shorter

diagonal Vs ; the altitude equals the longer diagonal; required the

lateral area of the pyramid.

663. Find the total area of the pyramid mentioned in ex. 662.

664. The lower base of a frustum of a regular pyramid is a square

of area s2 ; the area of the upper base is half that of the lower one ; the

slant height is s ; required the lateral area.
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Proposition XVI.

419. Theorem. A triangular prism can be divided into

three equal triangular pyramids.

D
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3. The volume of a pyramid equals one-third the product of

its base and altitude.

Cor. 2, and prop. XIII, cor. 4.

4. Pyramids having equal bases are proportional to their

altitudes; having equal altitudes, to their l>ases.

-^ , t t / , ,w i V %ab ab
For if p = | ao, and p =|ao, then — = =

p' % a'b' a'h'

, < , t/ ,
ab a

And it 6 = o r then = — •

a'6' a'

Or if a = a , then = —

.

a'b' b'

Or if a. — a' and b = b\ then — = 1, orp = p', as stated in prop. XV.
P'

420. Definitions. A polyhedron which has for bases any

two polygons in parallel planes, and for lateral faces triangles

or trapezoids which have one side in common with one base

and the opposite vertex or side in common with the other

base, is called a prismatoid.

The altitude of a prismatoid is the perpendicidar distance

between the planes of its bases.

Exercises. 665. Find the volume of the pyramid mentioned in ex. 662.

666. A church-tower is capped by a regular octagonal pyramid whose

height is 55.5 m, and whose base edge is 4.9 m. Required the volume.

667. A pentagonal pyramid has equal lateral and base edges, 1 in.

Find the lateral area.

668. Find the volume of a cube the diagonal of whose face is a V2.

669. Each face of a given triangular pyramid is an equilateral

triangle whose side is 3. Find the total area.

670. Find the volume of the tetrahedron mentioned in ex. 656.

671. Also of the pyramid mentioned in ex. 667.

672. An edge of a regular octahedron is 1 in. Find the volume

673. A pyramid stands on a square base of edge 1 m ; the lateral edge

of the pyramid is also 1 m. Find the lateral area and volume.
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Proposition XVII.

421. Theorem. The volume of a prismatoid of bases b and

1/, altitude h, and transverse section m midway between the

bases, is expressed by the formula

v = - {b + b' + 4?>i).

Fig. 1. Fig. 2. Fig. 3.

Proof. 1. If any face, ABFE, of the prismatoid P, is a trape-

zoid, divide it into two triangles by a diagonal EB.

Let V be any point in m
;
join F to the vertices of

P ; then P will be divided into two pyramids (Fig. 2)

of bases b, V and vertex V, and also pyramids of

vertex V and triangular bases ABE, etc. (Pig. 3.)

Let EB meet m at D; call A TDC mv (Fig. 3.)

2. Then the volume of

r-b = ib-t

and V-b' = j-6'. - Prop. XVI, cor. 3

This completes Fig. 2.

3. Pyramid V-ABE = E-CVD + B-C1P) + V-ABC.

Ax. 8

4. Of these,

and Prop. XVI, cor. 3
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5. But F-ABC = twice V-CBD (or B-CVD),

v AABC = twice A C£D,

having edge AB = 2 • CD, and a common altitude.

Prop. XV I. cor. 4

6. .-. V-ABC = | /«!•-/

7

.

.
•

. py ram id V-ABE= - • 4% A x s . 2, 8

and .". the sum of the pyramids of the form of

V-ABE = ^±m. Axs. 2
3
8

8. .-.P = |(ft' + ft' + 4i»). Axs. 2. 8
u

Note. The Prismatoid Formula, o = - (6 + // + 4 ???), is of great value
G

in the mensuration of solids. From it can be derived formulae for the

volumes of all of the solids of elementary geometry. f^.-

Coeollary. The volume of the frustum of a pyramid, of

bases b, b'. and altitude h, is -(b + b' 4- Vbb').
o

Fur if e, e' are corresponding sides of 6, b\ then | (e -f e') is the corre-

sponding side of to. (Why ?)

e %/
& ,

e
' ^

•' -n - = —7=
i
and — 7- = -7= •

, prop. IV.)

, and .-. 2 Vwi = V 6 + v&'.
i (e + e') Vm

.-. 4to = 6 + 6' + 2 VW, which may be substituted in the Prismatoid

Formula.

Exercises. 674. By letting (1) b' = 0, and (2) b' — b, show that

(1) prop. XVI, cor. 3, and (2) prop. XIII, cor. 4, follow, as special

cases, from the Prismatoid Formula.

675. Calling a prismatoid whose lower base b is a rectangle of length I

and width t*>, and whose upper base b' is a line e parallel to a base edge,

and whose altitude is h, a icedge, find a formula for the volume of a

wedge.
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EXERCISES.

676. The base of a wedge is 4 by 6, the altitude is 5, and the edge e

is 3. Find the volume. (See ex. 675 ) Also, when e = 0.

677. The altitude of a pyramid is divided into five equal parts by

planes parallel to the base. Find the ratios of the various frustums to

one another and to the whole pyramid.

678. Two pyramids, P, P', have square bases, and are such that the

altitude of P equals twice the altitude of P', but the base edge of P is

half as long as the base edge of P'. Find the ratio of their volumes.

679. Find the volume of a cube whose diagonal is Vo.

680. A frustum of a pyramid has for its bases squares whose sides are

respectively 0.6 m, 0.5 m; the altitude of the frustum is 0.9 m. Find

the volume.

681. Given the volume v, and the bases 6, &', of a frustum of a

pyramid, to find a formula for (1) its altitude, (2) the altitude of the

whole pyramid.

682. A granite monument is in the form of a frustum of a square

pyramid, surmounted by a pyramid ; the sides of the bases of the frustum

are 1 m and 0.8 m, and the altitude of the frustum is 1.8 m ; the altitude

of the pyramidal top is 0.45 m. A cubic meter of water weighs a metric

ton, and granite is three times as heavy as water. Find the weight of the

monument.

683. An excavation 1.5 m deep, rectangular at top and bottom, and
in the form of a frustum of a pyramid, has its upper base 10 m wide and

16 m long, and the lower base 7.5 m wide. How many cubic meters of

earth would it take to fill it to a depth of 0.75 m ?

684. The volume of a cube is six times that of the regular octahedron

formed by joining the centers of the faces of the cube.

685. Find the volume of a prismatoid of altitude 3.5 cm, the bases

being rectangles whose corresponding dimensions are 3 cm by 2 cm, and

3.5 c^n by 5 cm.

686. It is usual to find the volume of a pile of broken stones by taking

the product of the altitude and the area of a transverse mid-section.

Compare this with the Prismatoid Formula and find what relation it

assumes between m and b -f b'. Is this relation true in the case of a

pyramid ?

687. The volume of a pyramid equals the product of the altitude and

a transverse section (parallel to the base) how far from the vertex ?



BOOK VIII. — THE CYLINDER, CONE, AND
SPHERE. SIMILAR SOLIDS.

1. THE CYLINDER.

422. Definitions. A curved surface is a surface no part of

which is plane.

The number of kinds of curved surfaces is unlimited, just as the

number of kinds of curves in a plane is unlimited. But as among plane

curves the circumference is the best known, so there are certain curved

surfaces which are better known than others, and these are treated in

this book.

423. A cylindrical surface is a surface generated by a straight

line, called the generatrix, which moves so as constantly to

pass through a given curve, called the directrix, and to remain

parallel to its original position.

The surface of a piece of straight pipe, or the surface of the paper

in a roll, is an example.

424. A straight line in any position of

the generatrix is called an element of the

cylindrical surface.

425. If the directrix is a closed curve,

the cylindrical surface incloses a space of

unlimited length, called a cylindrical space.

426. A section of a cylindrical space,

made by a plane cutting its elements, is

called a transverse section. If it is perpen-

dicular to the elements, it is called a right

section.

317

One form of a cylindric-

al surface. AB CBD,
the directrix ; BB', an

element ; BCB',a. por-

tion of a cylindrical

space.
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As a transverse section of a prismatic space may be a convex, con-

cave, or cross polygon, so a transverse section of a cylindrical space

may be a curve of any shape if only its end-points meet. All theorems,

if the signs are properly considered, will be seen to apply to each of the

three forms of transverse section, corresponding to convex, concave, and

cross polygons. The third is, however, too complex for treatment in

elementary works.

427. The portion of a cylindrical space included between

two parallel transverse sections is called a cylinder.

E.g. the portion between planes P and P' in the figure on p. 310.

• The terms bases and altitude of a cylinder will be understood, without

further definition, from the corresponding definitions under the prism.

The student should, throughout this section, notice the relation of cylin-

drical spaces to prismatic spaces.

A cylinder is considered as having the same directrix as its

cylindrical space, and as having for elements the segments of

the elements of the cylindrical surface included between its

bases.

A cylinder is said to be right or oblique according as its

elements are perpendicular or oblique to the bases.

If the base of a cylinder is a circle, the cylinder is said to

be circular.

428. Postulate of the Cylinder. A cylindrical surface may
be constructed with any directrix and with any original posi-

tion of the generatrix.

In solid geometry constructions are allowed which require other

instruments than the compasses and straight-edge. For example, this

postulate requires the generatrix to move constantly parallel to its origi-

nal position, a construction manifestly impossible by the use of merely

these two instruments.

Exercises. 688. Draw a figure of a convex cylinder; a concave

cylinder ; a cross cylinder.

689. Prove that if a transverse section of a cylindrical space is per-

pendicular to one element it is a right section.
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Proposition I.

429. Theorem. Parallel transverse sections of a cylin-

drical space are congruent.

Given a cylindrical space S, cut by two parallel planes,

P, P', so as to form two transverse sections, L, L'.

To prove that L = L'.

Proof. 1. Let AA', BB\ CC be segments of elements between

P and P\ any point in P, and 00' II AA', meeting

P' at 0'
;
join to A, B, C, and 0' to A', B', C".

2. Then 00', AA' determine a plane. VI, prop. I, cor. 2

3. And v OA I! O'A', OB II 0'5', OC II O'C, § 367

.-.Z^O# = Z^'0'.£'
3
ZAOC = ZA'0'C, §337

4. Also, OA = 0'^', 0^ = O'B', T, prop. XXIV
.'.if L is placed on V so that falls on 0' and (L4

lies on O'A', A will fall on A', B on £', etc.

5. Similarly, for every point of L there is a single

corresponding point of L' on which it will fall.

.'. the figures are congruent. § 57, def. congruence

Corollaries. 1. The bases of a cylinder are congruent.

• 2. The elements of a cylinder are equal. (Why ?)
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Proposition II.

430. Theorem. Cylinders cut from the same cylindrical

space, and having equal elements, are equal.

Given two cylinders, AD, A'D', cut from the same cylin-

drical space S, and having equal elements AC, A'C

To prove that AD = A'D'.

Proof. 1. .'AC = A'C'
J

and A'C = A'C,

.:AA'=CC'. Ax. 3

2. Similarly for BB' and DD', and for all other seg-

ments of the same elements, included between AB,

A'B', and CD, CD'.

3. And v CD^AB, and C'D'^A'B', Prop. I

.*. solid CD' can be made to slide along in S and

coincide with solid AB', since they are equal in all

their parts.

4." Adding the common part A'D,

AD = A'D'. Ax. 2

Corollary. The cylindrical surfaces of two cylinders cut

from the same cylindrical space, and having equal elements,

are equal.

For it is proved, in step 3, that they can be made to coincide.
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2. THE CONE.

431. Definitions. A conical surface is a surface generated by

a straight line which moves so as constantly to pass through

a given curve and contain a given point

called the vertex.

The terms generatrix, directrix, elements will be

understood from §§ 423, 424.

432. The portions of the conical surface

on opposite sides of the vertex are called the

nappes, and are usually distinguished as upper

and lower.

433. If the directrix is a closed curve, the

conical surface incloses a double space, on

opposite sides of the vertex, known as a

conical space.

A section of a conical space made by a

plane cutting all of its elements on the same

side of the vertex is called a transverse section.

A conical surface.

DX, the directrix;

V, the vertex ; N.
X', the lower and
upper nappes;
V-JJX, a cone, with

base the closed

figure DX.

434. The portion of a conical space included between the

vertex and a transverse section is called a cone, the transverse

section being called its base.

A cone is considered as having the same directrix and vertex

as its conical space, and the segments of the elements between

the vertex and base are called the elements of the cone.

The distance from the vertex of a cone to the plane of the

base is called the altitude of the cone.

If the base of a cone is a circle, the cone is said to be

circular. In that case the line determined by the vertex and

the center of the base is called the axis of the cone. If this

axis is perpendicular to the base, the cone is called a right

circular cone ; if oblique, an oblique circular cone.
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A right circular cone is often called a cone of revolution,

because it can be generated by the revolution of a right-angled

triangle about one of its shorter sides. A right circular

cylinder is often called a cylinder of revolution. (Why ?)

435. Postulate of the Cone. A conical surface may be con-

structed with any directrix and any vertex.

436. Relation of Cone and Pyramid. If points A, B, C,

are taken on the perimeter of the base of a cone, and joined to

the vertex V, and if planes be passed through VA and VB,

VB and VC, , a pyramid will be formed, called an inscribed

pyramid.

If the base of the cone is bounded by a convex curve, the base of the

pyramid will be a polygon inscribed in it. But whether the base is

convex or not, the pyramid is called an inscribed pyramid.

Pyramids inscribed in cones. The first figure is a right circular cone. The
inscribed pyramids are indicated by dotted lines. It, the altitude.

437. If the base of the cone is a circle, and a regular

polygon is circumscribed about it, the planes determined by

the sides of the polygon and the vertex of the cone form,

with the polygon, a pyramid which is said to be circumscribed

about the circular cone.

There are other forms of circumscribed pyramids, but the one here

mentioned is the only one that is necessary for this work.

The slant height of a right circular cone is denned as the

slant height of the circumscribed pyramid. (Why V)
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438. If a pyramid is inscribed in or circumscribed aLoui a

cone, a transverse section of the pyramid and cone cuts off,

toward the base, a frustum of a cone and an inscribed or circum-

scribed frustum of a pyramid.

A

ABC, a circumscribed frustum of a pyramid ; A'B'C, an inscribed frustum of s,

regular pyramid ; s, the slant height of the frustum of the cone.

The terms bases, altitude, and lateral surface will be understood from

the terms used with the pyramid and the frustum of a pyramid.

439. From the above definitions it is evident that, if the

inscribed or circumscribed frustum of a pyramid has equilateral

bases, then if the number of lateral faces increases indefinitely,

the frustum of the pyramid, its bases, and its lateral surface,

approach as their respective limits the frustum of the cone, its

bases, and its lateral surface, but that the altitude does not

vary. If a frustum of a right pyramid be circumscribed about

the frustum of a right circular cone, the slant height of the

frustum of the pyramid may be called the slant height of the

frustum of the cone. Hence the following

440. Corollary. If F is the frustum of a cone, and F' the

inscribed or circumscribed frustum of a pyramid, of equilateral

bases, and if b 1? b2 , 1, v are the bases, lateral surface, and

volume, respectively, of F, and b/, b2
', l

f

, v' the bases, lateral

surface, and volume, respectively, of' F', then if the number of

faces of F' increases indefinitely,

V^bx, b2
' = l),, l'= l, v' = v.
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Proposition III.

441. Theorem. The lateral area of a frustum of a right

circular cone equals one-half the product of the slant height

and the sum of the circumferences of its bases.

Given a frustum of a right circular cone, I its lateral area,

c x
and c2 the circumferences of its upper and lower

bases, respectively, and 5 its slant height.

To prove that I — J s(cx + c2).

Proof. 1. Let I', pi, 2h, s be the lateral area, the perimeters

of the upper and lower bases, and the slant height,

respectively, of the circumscribed frustum F of a

regular pyramid.

2. Then V = %s(Pl + p 2). VII, prop. XIV

3. But if the number of faces of F increases indefi-

nitely, V = I, jh == (
'i ? 2h == c2, while the slant height

is the same. § 440

4. .'. I = £s (c x + c2). IV, prop. IX, cor. 1

Corollaries. 1. If the radii of the upper and lower bases

are r1? r2 , respectively, then 1 = 7rs (r L -f- r 2).

2. If r3
= the radius of the circle midway between the bases

of the frustum, then 1 = 2 7rr3s.

For r3 = (r 1 + r2)/2. Why?

J 3. The lateral area of a right circular cone equals half the

product of its slant height and the circumference of the base.

If the upper base of a frustum of a cone decreases to zero, what does

the frustum become ? At the same time what does C\ of step 4 become ?

4. The lateral area of a right circular cylinder equals the

product of its altitude and the circumference of the base.

If, in step 4, c x = c2 , what does / equal ? What does s equal ?
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Proposition IV.

442. Theorem. The volume of the frustum of a cone of

bases hv b
2
and altitude h is expressed by the formula

=
3 (\ + b

2 + Vb^).

Proof. 1. Let v', h, V> b2 be the volume, altitude, and bases,

respectively, of an inscribed frustum of a pyramid

with an equilateral base.

h
2. Then v' = - (V + bj + VVV). VII, prop. XVII

o

3. But if the number of faces of v' increases indefinitely,

v' = v, bx — bu b.2
' — b2 , while h is constant. § 440

4. .". v = - (b
x + b2 + ^s/b

xb2). IV, prop. IX, cor. 1
o

Corollaries. 1. If the frustum is circular, and the radii

of b : , b2 are i\, r 2, respectively, then v = \ 7rh (i\
2 + r2

2 + r
1
r2).

2. If v3 = the radius of the circle midway between the bases

of a frustum of a circular cone, and if h is the altitude, and xx ,

r2 are the radii of the bases, then v = i 7rh (i^
2 + r2

2
-f- 4 r3

2
).

See prop. Ill, cor. 2.

3. The volume of a cone of base b and altitude h is expressed

by the formula v = \ hb.

Let b2 — in prop. IV.

4. The volume of a circular cone, the radius of whose base is

r, is expressed by the formula v = \ 7rr
2h.

5. The volume of a cylinder of base b and altitude h is

expressed by the formula v = hb.

Let &i = 62 .

6. The volume of a cylinder of altitude h and base radius r

is expressed by the formula v = 7rr
2
h.
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3. THE SPHERE.

443. Definitions. A sphere is the finite portion of space

bounded by a surface, which is called a spherical surface and is

such that all points upon it are equidistant

from a point within called the center of the

sphere.

A straight line terminated by the center

and the spherical surface is called a radius,

and a straight line through the center,

terminated both ways by the spherical

surface, is called a diameter of the sphere.

A section of a sphere made by a plane

is called a plane section.

A sphere. O,the center.

OA,OB, radii. AB, a

diameter.

444. Corollaries. 1. A diameter of a sphere is equal to

the sum of tivo radii of that sphere.

2. Spheres having the same radii are congruent, and con-

versely.

3. A point is within a sphere, on its surface, or outside the

sphere, according as the distance from that point to the center

is less than, equal to, or greater than, the radius.

445. Postulates of the Sphere. (Compare § 109.)

1. All radii of the same sphere are equal, and hence all

ilia meters of the same sphere are equal.

2. If an unlimited straight line passes through a point

within a sphere, it must cut the surface at least twice.

3. If an unlimited plane, or if a spherical surface, intersects

a spherical surface, it must intersect it in a closed line.

4. A sphere has but one center.

5. A sphere may be constructed with any center, and with a

radius equal to any given line segment.
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Proposition V.

446. Theorem. A plane section of a sphere is a circle.

Given a sphere with center 0, and a section ABDC made

by a plane M.

To prove that ABDC is a circle.

Proof. 1. M intersects the sphere in a closed line. § 445, 3

2. Suppose joined to two points AB on that line,

and OC±3I; draw CA, CB.

3. Then v A OCB, OCA are rt, and OC = OC, and

OB = OA,

.'. A CBO ^ A CAO, and CB = CA. § 88, cor. 5

So for any other points on the closed line.

4. .'. ABDC is a circle and C is its center.

§ 165, def. O

447. Definitions. A great circle of a sphere is a circle

passing through its center ; a small circle, one not passing

through its center.

Corollaries. 1. The line determined by the center of a

sphere and the center of any small circle of that sphere is

perpendicular to that circle.

For the line OC from the center of the sphere perpendicular to the

circle has been proved to coincide with the line determined by the center

of the circle and the center of the sphere, and there is only one line from

the center of the sphere perpendicular to the circle.



328 SOLID GEOMETRY. [Bk. VIII.

2. Of two circles of a sphere, the first is greater than, equal

to, or less than, the second, according as its distance from the

center is less than, equal to, or greater than, that of the second.

For AC2 - f2 — OC2
;

.-. the smaller OC, the greater AC, etc.

3. A great circle has the same center and radius as the

sphere itself ; hence all great circles of a given sphere are equal.

4. A great circle bisects the sphere and the spherical surface.

For if the two parts are applied one to the other, they will coincide
;

if they did not, the definition of sphere would be violated.

5. Two great circles bisect each other.

They have the same center, and hence a common diameter.

448. The student should notice the relation between the

sphere and circle. Thus in prop. V and its corollaries :

The Circle. The Sphere.

A portion of a line cut off by a A portion of a plane cut off by

circumference is a chord. a spherical surface is a circle.

The greater a chord, the less its The greater a circle, the less its

distance from the center. distance from the center.

A diameter (great chord) bisects A great circle bisects the sphere

the circle and the circumference. and the spherical surface.

Two diameters (great chords) Two great circles bisect each

bisect each other. other.

Hence may be anticipated a line of theorems on the sphere, derived

from those on the circle, by making the following substitutions:

1. Circle, 2. circumference, 1. Sphere, 2. spherical surface,

3. line, 4. chord, 5. diameter. 3. plane, 4. circle, 6. great circle.

449. Definitions. The diameter of a sphere, perpendicular

to a circle of that sphere, is called the axis of that circle, and

its extremities are called the poles of that circle.

The two equal parts into which a great circle divides a

sphere are called hemispheres, their curved surfaces being

called hemispherical surfaces.

Corollary. The axis of a circle pusses through its center.
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Proposition VI.

450. Theorem. The straight lines joining any tivo points

on the circumference of a circle of a sphere to one of the

poles of that circle are equal.

Given the circle ABC, and its poles P, P'; PA, PB con-

necting P with any two points on the circumference.

To prove that PA = PB.

Proof. 1. v OP±Q ABC at C, .'. OP±AC and BC. Why?

2. And V PC = PC, and CA = CB, § 109

'.'. A ACP ^ A BCP, and PA = PB. Why ?

Corollary. Great-circle arcs from a pole of a circle to

points on the circumference of that circle are equal. (Why ?)

451. Definitions. The length of the great-circle arc joining

a pole to any point on the circumference of a circle is called

the polar distance of the circle.

The shorter polar distance of small circles is to be understood.

A fourth of the circumference of a great circle is called a

quadrant.

Corollaries. 1. Circles of the same sphere, having equal

polar distances, are equal. (Why ?)

2. The polar distance ofa great circle is a quadrant. (Why ?)
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Proposition VII.

452. Theorem, If on a spherical surface, each of the

great-circle arcs joining a point to two other points {not the

extremities of a diameter of the sphere) is a quadrant, then

that point is a pole of the great circle through those points.

Given P, A, B, three points on a spherical surface, and

such that PA = PB = a quadrant; A, B are not

extremities of a diameter ; is the center.

To prove that P is the pole of the great circle ABO.

Proof. 1. '•' PA = PB = a quadrant,

.*. Z POA = Z POB = a rt. Z. Ill, prop. II, cor. 2

2. .-. PO _L O ABO. VI, prop. VI, cor. 1

3. ,\ P is a pole of O ABO. § 449, def. pole

Exercises. 690. How many points on a spherical surface determine

a small circle ? How many, in general, determine a great circle ?

691. Prove that parallel circles of a sphere have the same poles.

692. In the theorem : A diameter which is perpendicular to a chord

bisects it, make the substitutions suggested in § 448, and prove the result-

ing proposition.

693. Similarly for III, prop. VI.

694. What is the locus of points at a given distance r from a fixed

point C ?
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Proposition YIII.

453. Theorem. Of all planes through a point on a sphere

the plane perpendicular to the radius drawn to that point is

the only one that does not meet the sphere again.

Given point P on a sphere with center 0, and M, N, two

planes respectively perpendicular and oblique to OP
at P.

To prove that M does not meet the spherical surface again,

but that N does.

Proof. 1. Let OB _L X, and OA be any oblique to M.

Then v OP is oblique to N
}

Why ?

.-. OB < OP. VI, prop. XI

2. And v OP ± M
t

.-. OA> OP. VI, prop. XI

3. .". B is within, and ^1 without, the sphere.

§ 444, cor. 3

4. .'. N meets the spherical surface in more than one

point. § 445, 3

5. And v A is any point in M
3
except P, Step 3

.'. M meets the surface onlv at P.
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454. Definitions. A plane (or line) which, meeting a spher-

ical surface in one point, does not meet it again, is said to

be tangent to the sphere at that point. The point is called

the point of tangency, or point of contact, and the plane (or line)

is called a tangent plane (or line).

Corollaries. 1. One and only one plane can be passed

through a given point on a sphere, tangent to that sphere.

(Why?)

2. Any tangent plane is perpendicular to the radius at the

point of contact.

For it cannot be oblique and be a tangent plane. Step 4.

3. A plane perpendicular to a radius at its extremity on the

spherical surface is tangent to the sphere.

k

Exercises. 695. To find a point in a given plane, equidistant from

two fixed points in that plane, and at a given distance ci! from a point C
not in that plane. Discuss for 0, 1, 2 solutions.

696. Prove that the lateral area of any right cylinder equals the

product of its altitude and the perimeter of the base. (Inscribe a prism

and apply the theorem of limits.)

697. How many square feet in the surface of a cylindrical water tank,

open at the top, its height being 40 ft., and its diameter 40 ft. ?

698. Considering the moon as a circle of diameter 21G0.6 miles whose

center is 234,820 miles from the eye, what is the volume of the cone

whose vertex is the eye and whose base is the full moon ?

699. Find a point whose distance from a fixed point is d and whose

distance from each of two intersecting planes is cV. Discuss the solution

as to impossible cases, and the number of such points for possible cases.

700. Find the locus of points equidistant from two given points, and

at a given distance d from a given point.

701. To determine a plane which shall pass

(1) through a given line and be (2) through a given point and be

at a given distance from a given at a given distance from a given

point. line.
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Proposition IX.

455. Theorem. Four jjoints, not coplanar, determine a

spherical surface.

Given four points, A, B, C, D, not coplanar.

To prove that A, B, C, D determine a spherical surface.

Proof. 1. Draw AB, BC, CD, DA, AC.

Let E be the circumcenter of A ACD, F of A ABC,
EH 1. ACD, FJ±ABC.

2. Then F, F are on the _L bisectors of AC; call these

_L bisectors GF, OF. I, prop. XLI

3. And v FA = EC = ED (Why ?),

.'. any point on EH is equidistant from A, C, D.

VI, prop. XI, 3

Similarly, any point on FJ is equidistant from

A, B, C.

4. But CA ± plane EOF. Why ?

5. .'. planes ABC, ACD _1_ EOF. Why ?

G. .'. both EH and FJ lie in plane EOF.
VI, prop. XIX, cor. 1

7. And V FJ meets EH, uniquely, as at P,

I, prop. XVII, cor. 4

.*. P is the center of a sphere whose surface passes

through A, B, C, D, and there is only one such sphere.
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456. Definitions. A sphere is said to be circumscribed about

a polyhedron if the vertices of the polyhedron all lie on the

spherical surface ; the polyhedron is then said to be inscribed

in the sphere.

Corollaries. 1. Two spherical surfaces having four

common points, not coplanar, coincide.

For by step 7 they have the same center, P, and the same radius.

2. The perpendiculars to the four faces of a tetrahedron,

through the circumcenters of those faces, are concurrent.

For each of these perpendiculars passes through P, the center of the

sphere whose surface is determined by the four vertices.

3. A sphere can be circumscribed about any tetrahedron.

457. The angle between two great-circle arcs is defined as

being the plane angle between tangents to those arcs at their

point of meeting.

P

E.g. the angle made by arcs AP, BP is defined as the plane

angle A'PB'.

458. From this definition follow these corollaries :

1. The angle made by two arcs has the same numerical

measure as the dihedral angle of their planes. (§ 359.)

2. An angle made by tivo arcs has the same numerical meas-

ure as the arc which these arcs intercept on the circumference

of the great circle of wh ich the vertex is the pole.

That is, Z APB = /.A'PB'- ZAOB, which has the same numerical

measure as AB.
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459. A spherical polygon is a portion of a spherical surface

bounded by arcs of great circles.

The words sides, angles, vertices, etc., are used as with plane polygons.

460. A spherical polygon is said to be convex when each

side produced leaves the entire polygon on the same hemi-

sphere ; otherwise it is said to be concave.

In the figure, ABP is a convex polygon, for if any side, as PB, is

produced it leaves the entire polygon on the hemisphere to the left of PB.
But QRS T is concave, because side SB, or QR, produced, leaves part of

the polygon on one hemisphere thus formed, and part on the other.

461. Corollary. No side of a convex spherical polygon is

greater than a semicircumference.

For if AP> semicircumference, suppose XP = a semicircumference.

Then v great circles bisect each other (prop. V, cor. 5), PB must pass

through X ; but then PB produced would leave part of the polygon on

one hemisphere and part on the other, so that it could not be convex.

462. A lune is a portion of a spherical surface bounded by

the semicircumferences of two great circles. The angle of a

lune is that angle towrard the lune made by the bounding arcs.

In the figure, PAP'B is a lune, and Z. APB, or /. BP'A, is its angle.

The limiting cases of a lune are evidently a semicircumference, when
the angle is zero, and a spherical surface, when the angle is 360°.

463. Corollary. Limes on the same sphere, and having

the same angle, are congruent.

For one can evidently be made to coincide with the other.
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Proposition X.

464. Theorem. On the same sphere or on equal spheres

lunes are proportional to their angles.

(In this figure the eye is supposed to be looking down on the sphere

from above the angle of the lune, as on the North Pole of the earth. This

allows only half of each lune to be seen.)

Given two lunes, C and D, with angles A and B respec-

tively.

To prove that A : B = C : D.

Proof. 1. If C and D are on different spheres, they can be

placed in the relative positions shown in the figure.

§ 444, cor. 2

Suppose A and B divided into equal A, x, and sup-

pose A = nx, and B = n'x.

(In the figure n = 6, n' = 4.)

2. Then C is divided into n congruent lunes, y,

and D " " n' " « § 463

3. m

*
m
A = 2L=*=3L = l. Why?B n'x n' n'y D y '

Exercise. 702. The six planes perpendicular to the six edges of a

tetrahedron at the mid-points of its edges, meet in a point, (Is this

point the center of a particular sphere ?)
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465. Proof for incommensurable case. (Compare § 410.)

1. Suppose A divided into equal A, x, and suppose

A = nx, while B = n'x + some remainder w, such

that w < x.

Then C is divided into n congruent lunes, y, and

D is the sum of n' congruent lunes, y, + a remain-

der z, such that z < y.

2. Then B lies between n'x and (n* + 1) x, Why ?

and D " " n'y " (%' + 1) */. Why ?

3. .". — lies between — and —
, Why?

A nx nx

... 2> v . ra'v , (V + 1W
while — lies between —— and — •

C ny ny

4. .
' .
— and — both lie between — and
A 6 n n

7? T) 1

5. .*. — and — differ by less than - Why ?
j\. o n>

6. And v - can be made smaller than any assumed
n J

difference, by increasing n,

.*.to assume any difference leads to an absurdity.

B D . AC
7. /. 2 =

-, whence -==-•
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466. Definition. The solid bounded by a lune and two

semi-circles is called a spherical wedge.

The angle of the lune is called the angle of the wedge.

The word iingula is sometimes used for spherical wedge.

Corollaries. 1. A lune is to the spherical surface on

which it lies as the angle of the lune is to a perigon.

For the spherical surface may be considered as a lune whose angle is

a perigon.

2. A spherical ivedge is to the sphere of which it is a part

as the angle of the wedge is to a perigon.

In the proof of prop. X, if we should substitute the word wedge for

the word lune, and consider the sphere as a wedge whose angle is a

perigon, the corollary would evidently be proved.

*

Exercises. 703. To draw a plane tangent to a given sphere, from a

point on the sphere. (See III, prop. XXVI.) Also, to draw one from

an external point.

704. To find the locus of centers of spheres whose surfaces (1) pass

through two given points
; (2) are tangent to two given coplanar lines

;

(3) are tangent to two given planes. (As special cases, the lines may be

parallel and the planes may be parallel.)

705. What is the locus of the centers of spheres whose surfaces (1) pass

through the vertices of a given triangle ? (2) are tangent to the sides of a

given triangle ?

706. To find the center of a sphere whose surface includes both a

given circumference and a point not in the plane of that circumference.

(As a special case, suppose the point is on the perpendicular to the plane

of the given circle through the center.)

707. In the figure of prop. IX show that E, G, F, P are concyclic.

Hence show that six circumferences intersect by threes in the ciivum-

centers of the faces of a tetrahedron, and all intersect in the center of the

circumscribed sphere.

708. To construct a sphere of given radius whose surface shall contain

three given points.

709. Also, of given radius whose surface shall contain two given

points and be tangent to a given plane.
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The Relation of Spherical Polygons to Polyhedral

Angles.

467. If the center of a sphere is at the vertex of a pyramidal

space, the pyramidal surface cuts from the spherical surface

two spherical polygons.

In the above figure the two polygons are ABCD, A'B'C'D'.

These polygons have their like-lettered angles and sides

equal respectively.

For example. /. A = Z A', since they have the same numerical measure

as the opposite dihedral angles of planes ADOD'A' and ABOB'A'. Also,

AB = A'B\ since the central angles BOA and B'OA' are equal.

468. But the equal elements of these polygons are arranged

in reverse order. And as the polyhedral angles are called

opposite and are proved (VI, prop. XXVI) symmetric, so the

spherical polygons are called opposite spherical polygons. And
since these have just been shown to have their corresponding

elements equal but arranged in reverse order, they are called

symmetric spherical polygons.

Thus all opposite polygons are symmetric ; but since polygons can

slide around on the sphere, it follows that symmetric polygons are not

necessarily opposite, although they are congruent to opposite polygons.
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469. Since the dihedral angles of the polyhedral angles have

the same numerical measure as the angles of the spherical

polygons, and the face angles of the former have the same

numerical measure as the sides of the latter, it is evident that

to each property of a polyhedral angle corresponds a reciprocal

property of a spherical polygon, and vice versa. This relation

appears by making the following substitutions :

Polyhedral Angles. Spherical Polygons.

a. Vertex. a. Center of Sphere.

b. Edges. b. Vertices of Polygon.

c. Dihedral Angles. c. Angles of Polygon.

d. Pace Angles. d. Sides.

470. In addition to the correspondences between poPyhedral

angles and spherical polygons, it will be observed that a

relation exists between a straight line in a plane and a great-

circle arc on a sphere. Thus, to a plane triangle corresponds

a spherical triangle, to a straight line perpendicular to a

straight line corresponds a great-circle arc perpendicular to a

great-circle arc, etc. The word arc is always understood to

mean great-circle arc, in the geometry of the sphere, unless the

contrary is stated.

It is very desirable that every school have a spherical blackboard, with

large wooden compasses for the drawing of both great and small circles.

It is only by the use of such helps that students come to a clear knowl-

edge of spherical geometry. If such a blackboard is at hand, it is recom-

mended that many problems and exercises of Book I be investigated on

the sphere. E.g. the problem, To bisect a given arc, corresponds to

I, prop. XXXI, and the solutions are quite similar. Likewise the prob-

lems, To bisect a given angle, To draw a perpendicular to a given line

from a given internal point, etc., have their corresponding problems in

spherical geometry.

Exercise. 710. State without proof the proposition in the geometry

of the sphere corresponding to the following : Every face angle of a con-

vex polyhedral angle is less than a straight angle.
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Proposition XI.

471. Theorem.

(a) In any trihedral angle,

each face angle being less

than a straight angle, the

sum of any tico face angles is

(a') In any spherical tri-

angle, each side being less

than a semicircumference,

the sum of any two sides is

greater, and their difference greater, and their difference

less, than the third angle. less, than the third side.

Proof. In VI, prop. XXVII, with its cor. 1, (a) has been

proved. Hence (a') is also proved. § 469

Proposition XII.

472. Theorem.

(a) In any polyhedral angle,

eachface angle being less than

a straight angle, any face an-

gle is less than the sum of the

remaining face angles.

(a') In any spherical poly-

gon, each side being less than

a semicircumference, any side

is less than the sum of the

remaining sides.

Proof. In VI, prop. XXVII, cor. 2, (a) has been proved.

Hence (a') is also proved. § 469

Proposition XIII.

473. Theorem.

(a) In any convex polyhe- (a') In any convex spherical

dral angle the sum of the face polygon the sum of the sides

angles is less than a perigon. is less than a circumference.

Proof. In VI, prop. XXVIII, (a) has been proved.

Hence (a') is also proved. § 469
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Proposition XIV.

474. Theorem.

(a) Noface angle ofa convex (a') No side of a convex

p>olyhedral angle is greater spherical polygon is greater

than a straight angle. than a semicircumference.

Proof. From § 461, (a') is true.

Hence (a) is also proved. § 469

475. Definitions. If ABC If O-ABC is a trihedral

is a spherical triangle, and A', angle, and OA', OB', OC are

z? ^r

B', C are the poles of a, b, c,

respectively, and if A and A',

B and B', C and C lie on the

same side of a, b, c, respec-

tively, then A A'B'C is called

the polar triangle of ABC.

perpendiculars to a, b, c, the

faces opposite A, B, C, respec-

tively, and if A and A', B and

B', C and C lie on the same

side of a, b, c, respectively,

then trihedral Z O-A'B'C is

called the polar trihedral angle

of O-ABC.

In referring to polar triangles ABC, A'B'C', the above arrangement

of elements will always be intended. Also, in referring to symmetric

spherical triangles, ABC and A'B'C, it will always be understood that

Z.A = /. A', etc., and AB — A'B' , etc.

The polar triangle of ABC is often called the polar of ABC.
It is evident from the one-to-one correspondence of § 475, that to

every proposition concerning polar triangles corresponds a proposition

concerning polar trihedral angles, and vice versa.
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PROrOSTTTOX XV.

476. Theorem. If one spherical triangle is the polar of a

second, then the second is also the polar of the first.

Given a spherical triangle, ABC, and A'B'C its pol^r.

To prove that A ABC is the polar of A A'B'C.

Proof. 1. In the figure suppose AC, AB', drawn.

2. Then, v B1
is a pole of b,

.'. AB' is a quadrant. Prop. VI, cor. 2

Similarly, v C is a pole of c,

.'. AC is a quadrant.

3. .'.A is a pole of a'. Prop. VII

Similarly, B and C are poles of J' and c', respectively.

4. And v A, A' are on the same side of a', and so

for the other vertices and sides,

.'.A ABC is the polar of A A'B'C. § 475

Corollary. If one trihedral angle is the polar of a second,

then the second is also the polar of the first.

For from the one-to-one correspondence of § 475, the proof is evi-

dently identical with the above.

Note. One triangle may fall entirely within or entirely without its

polar ; or one may be partly within and partly without the other. Simi-

larly, one trihedral angle may fall entirely within or entirely without its

polar trihedral angle, or may be partly within and partly without the latter.



344 SOLID GEOMETRY. [Bk. VIII.

Proposition XVI.

477. Theorem. Any angle of a spherical triangle has the

same numerical measure as the supplement of the opposite

side of its polar.

Given ABC, a spherical triangle, and A'B'C its polar.

To prove that the numerical measure of any angle C is

180° -c'; of 6", 180° - c.

Proof. 1. Suppose a, b to cut c' in E\ D\ respectively, and a\

V to cut c in E, D, respectively.

2. Measure of Z C = that of tTe\ § 458, 2

But D% = AE' + IVB' - AB<

= 90o 4-90 o -i7
fe' = 180°-c'. Why 90°?

3. Similarly for Z C, substituting A, B, D, E, for

A, B', D\ E\ and vice versa, in the above proof.

Corollaries. 1. If two spherical triangles arc mutually

equiangular, theirpolars are mat mi 11;/ equilateral ; if mutually

equilateral, their polars arc mutually equiangular.

2. The sum of the angles of 2'. The sum of the dihedral

a spherical triangle is greater angles of a trihedral angle is

than one and less than three greater than one and less than

straight angles. three straight angles.
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For by prop. XIII (a'), < a' + b' + c' < 360°.

.-. by subtracting from 3 180°,

3 • 180°> (180°- a') + (180°- b') + (180°- c') > 180c

.-. by prop. XVI, 3 180°>Z A + Z B + ZC >180c

478. Definitions. If ABCD
A' is a spherical polygon,

and A\ B', C, D', are the

poles of XA, AB, BC, CD,

, respectively, and if A',

B', lie on the same side

of XA, AB, that the

polygon does, then A'B'C'D'

If O-ABCD X is a poly-

hedral A, and OA', OB', OC,
OD', are _b to planes OXA,
OAB, OBC, , respectively,

and if A', B', lie on the same

side of planes OXA, OAB,

OBC, that the polyhedral

angle does, then O-A'B'C'D'

is called the polar polygon is called the polar poly-

of ABCD hedral angle of O-ABCD
Polar trihedral angles are also called supplemental trihedral angles.

479. A spherical triangle is said to be birectangular if it has

two right angles, trirectangular if it has three.

Proposition XVII.
480. Theorem.

(a) Two opposite or two

symmetric trihedral angles

are congruent if each has

two equal dihedral angles, or

two equal face angles.

(a') Two opposite or two

symmetric spherical triangles

are congruent if each has tiro

equal angles or two equal

sides.

Proof for (a'). 1. Their sides and angles are respectively equal

but arranged in reverse order. § 468

2. But if to the order ABC corresponds B'A'C,

and if B 1 = A', then B' and A' may be interchanged.

3. Then to the order ABC will correspond A'B'C,

and the A are congruent by superposition.



346 SOLID GEOMETRY. [Bk. VIIL

Proposition XVIII.

481. Theorem. Tivo symmetric spherical triangles on the

same sphere or on equal spheres are equal.

Given two symmetric spherical triangles, ABC, A'B'C, on

the same sphere.

To prove that A ABC = A A'B'C.

Proof. 1. The plane of A, B, C determines a small circle.

2. Let be the pole of the O, and similarly for 0' and

spherical A A'B'C.

3. Then V side AB = side A!B\ .'. chord AB = chord

A'B'. (In the figure they are not drawn because

AB is so nearly straight.) Ill, prog. 1 1 L

Similarly for chords BC, B'C, and CA, CA'.

4. .'. plane A ABC ^ plane A A'B'C. I, prop. XII

5. .'. O ABC — O A'B'C, being circumscribed about,

congruent plane A. Why ?

6. .-. 0?1 = 0?i = 6C = OA' = (fji' = CC'. Why ?

7. .". spherical A JO/7 £ .-l'O'T?', BOC £ 5'0'C,

C04 ^ C"0'4'. §§ 468, 480 (a')

8. .'. A .!/;(/ = A A'B'C. Ax. 2
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Proposition XIX.

482. Theorem. Two triangles on the same sphere, or on

equal spheres, are either congruent or symmetric and equal if

(a) two sides and the in- (b) two angles and the in-

cluded angle eluded side

of the one figure are equal to the corresponding parts of the

other.

Proof. If the parts are arranged in the same order, the

triangles can be brought into coincidence, as in I,

props. I, II.

If they are arranged in reverse order, then one

triangle is congruent to the triangle symmetric to

the other. Why?

Corollary. Two triliedral angles are either congruent or

symmetric and equal if

(a) two face angles and the (b) two dihedral angles and the

included dihedral angle included face angle

of the one figure are equal to the corresponding parts of the

other.

For from the one-to-one correspondence of § 475, the proof is

evidently identical with the above, without the labor of drawing the

figures.
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Proposition XX.

483. Theorem.

(a) If a trihedral angle has (a') If a spherical triangle

two dihedral angles equal to has two angles equal to each

each other, the opposite face other, the opposite sides are

angles are equal. equal.

Given the A ABC, with ZA = ZB.

To prove that a = b.

Proof. 1. Let A A'B'C be symmetric to A ABC, so that

a = a', b = b', etc.

2. Then v ZA = ZB,
.'. ZA' must equal ZB', and the A are congruent

and a' = b. Prop. XIX

3. But '•' a = a\ and a' = b,

.'. a = b, which proves (a'). Ax. 1

Hence (a) is also proved. § 469

Corollaries.

1. (a) If a trihedral angle (a') ^4?? equiangular spher-

has its three dihedral angles ical triangle is equilateral,

equal, it has also its three

face angles equal.

In A ABC, if Z A = Z B, then a = b ; and if Z C also equals Z B,

c also equals b.

.: if Z A = Z B = Z C, a = b = c. Ax. 1

2. (a) If a trihedral angle (a') If a spherical triangle

has two face angles equal to has two sides equal to each

each other, the opposite dihe- other, the opposite angles are

dral angles are equal. equal.

The proof is almost identical

with that of I, prop. Ill, and

hence is left for the student.
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Proposition XXI.

484. Theorem. Two triangles on the same sphere, or on

equal spheres, are either congruent or symmetric and equal if

(a) the three sides (b) the three angles

of the one figure are equal to the corresponding parts of the

other.

(a) Given A ABC, A'B'C, mutually equilateral, the sides being

arranged in the same order ; also A ACX symmetric

to A A'B'C.

To prove that A ABC = A A'B'C, A ABC is symmetric to

A ACX.

Proof. 1. Place A ACX as in the figure ;
draw BX.

Then Z BXC = Z CBX,

and Z AXB = Z XBA. Prop. XX, cor. 2

2. .\ZAXC = ZCBA,

i.e. ZB =ZX = ZB'.

Similarly with the other angles.

3. .\ A A'B'C ^ A ABC.

4. And A ABC is symmetric to A ACX

Ax. 3

Why ?

Why t
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(b) Given (Let the student state it.)

To prove (Let the student state it.)

Proof. 1. Their polars are mutually equilateral. Why ?

2. .'. their polars are congruent or symmetric. Why ?

3. .*. A ABC and A A'B'C are mutually equilateral.

Props. XV, XVI, cor. 1

4. .'.AABC*£ or symmetric to A A'B' 6". Prop. XXI (a)

Corollary. Two trihedral angles are either congruent or

symmetric and equal if

(a) the three face angles (b) the three dihedral angles

of the one figure are equal to the corresponding parts of the other.

Exercises. 711. A plane isosceles triangle can have its equal sides of

any length. Discuss as to a spherical isosceles triangle on a given sphere.

712. As with plane triangles, the pole (circuracenter) may fall outside

the triangle, or on a side. Prove theorem 481 for those cases.

713. Prove I, prop. XII (a corresponding theorem of Plane Geometry)

by the method of prop. XVIII.

714. Draw the figure of a spherical quadrilateral and its polar; also

of a four-faced polyhedral angle and its polar.

715. Prove that if one spherical polygon is the polar of another, then

the second is the polar of the first. State the reciprocal theorem for

polyhedral angles. (The special case of the quadrilateral may be taken.)
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Proposition XXII.

485. Theorem. For a great circle to be perpendicular to a

small circle, it is necessary and it is sufficient that the circum-

ference of the former pass through a pole of the latter.

Given a small circle S, with P and P' its poles, G a great

circle, and the center of the sphere.

To prove that for G to be J_ to S it is necessary and it is

sufficient that its circumference pass through P.

Proof. 1. PP' _L 8. Def. pole

2. And if G passes through P it passes through PP',

and G ± S. VI, prop. XVIII

3. .*. it is sufficient that G contain P.

4. Furthermore it is necessary; for if G _L S, then PP
lies in G or else PP' II G. Why ?

5. But PP' is not II to G, for each contains 0. Why ?

6. .'. it is necessary, and it is sufficient, that 6r contain P.

Corollaries. 1. Through a poi?it X, within or on a, sphere,

it is possible to pass one great circle perpendicular to a given

circle S, and only one unless X is on the straight line through

the poles of S.

For PP' passes through the center 0, and PP' and X determine a great

circle _L S, unlessX is on PP'. (Why ?) May X be without the sphere ?
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2. If the circumferences of two great circles are drawn per-

pendicular to a third circumference, they will intersect at the

poles of the circle of that third circumference.

486. Definition. If a great circle is perpendicular to a small

circle, their circumferences are said to be perpendicular to each

other.

Proposition XXIII.

487. Theorem. If from a point on a sphere arcs of great

circles both perpendicular and oblique, are drawn to any

circumference, then,

1. The shorter perpendicular is less than any oblique;

2. Two obliques cutting off equal arcs from the foot

of this perpendicular are equal

;

3. Of two obliques cutting off unequal arcs from the

foot of this perpendicular, the one cutting off the greater

arc is the greater.

Given S, any circle of a sphere ; P any point on the

spherical surface; minor arcs, PC J_ circumference

S, PA, PB, PD obliques ; PC = CD, and AC > CD
or its equal BC.

To prove that (1) PC < PB ;

(2) PB = PD
;

(3) Rk > PD or its equal PB.
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Proof. 1. Suppose N the pole of S, on the same side of S as

P; draw NA, NB, ND.

2. CP produced passes through X. Prop. XXII, cor. 2

3. NB, or its equal NC, < NT + PB. Prop. XI, (a')

4. .'.PC<PB. Why?

5. The radius of O S through C is _L to chord PD and

bisects it as at Q (not shown in figure). Why ?

6. .'.I)B± plane iVP C. Why ?

7. .\ plane ABQP = PQB, Why?

and plane A #PD ^ ()PP. I, prop. I

8. .\PB = PB. Ill, prop. IV

9. Pi7 + EB > PB, and pQ > 7^P. Why ?

10. .'. PE+ PA, or PA, > PB.

488. Definition. The excess of the sum of the angles of

a spherical n-gon over (ii — 2) straight angles is called the

spherical excess of the ?i-gon.

Hence the spherical excess of a 2-gon (lime), 3-gon (triangle), 4-gon,

is the excess of the sum of its angles over 0, 1, 2, straight angles.

Exercises. 716. Prove that if in prop. XVI the word polygon is sub-

stituted for triangle, the resulting theorem is true, and state the corollary

that follows from it, analogous to corollary 1 of prop. XVI.

717. What is meant by the spherical excess of a spherical decagon ?

What is the spherical excess, in degrees, of a triangle whose angles are

75°, 90°, 100°?

718. What is the spherical excess, in radians, of a triangle whose

angles are 80°, 90°, 100°? Also of a triangle whose angles are 1, 2, and

3 radians, respectively ?
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Proposition XXIV.

489. Theorem. A spherical triangle equals a lune icJwse

angle is half the spherical excess of the triangle.

B'

Given T, a spherical triangle, with angles a, b, c.

To prove that T = a lime whose angle is \ (a + b -f c — st. Z).

Proof. 1. Let A, B, C = limes of A a, b, c, respectively (in

the figure they are AA', BB', CC), and S= surface

of sphere.

2. A AB'C and ABC are mutually equilateral, for

AC + CA = semicircumference = AC + CA ; hence

AC = AC, and so for the other sides. Ax. 3

3. .'. A AB'C = A ABC, so that T + A AB'C = hme A.

Prop. XXI
4. .\A + (B- T) + (C-T) =$S, Ax. 8

or T=±(A + B + C-iS). Axs. 3, 7

5. But '.* i S = a lime whose Z is a st. Z, § 402

.'. T = a lune whose Z is
J-
(a + /> + c — st. Z).

Corollary. A spherical polygon equals a lune whose angle

is half the spherical excess of the polygon.

For the polygon can he cut into triangles as in Plane Geometry.

The practical method of measuring a spherical polygon is given in

§ 493, cor. 3.
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4. THE MENSURATION OF THE SPHERE.

Proposition XXV.

490. Theorem. The area of the surface of a sphere of

radius r is -I 7rr2 .

B

A' M' B'O

Proof. 1. A semicircle cut off by a diameter XX, revolving

about X'X as an axis, generates a sphere.

2. Let AB be one of a number of chords inscribed in

arc XBX', forming half of a regular polygon.

Let 031 ± AB, thus bisecting it

;

III, prop.V

let AA', MM, BB', all be _L to X'X, and AC II X'X.

3. Then AB, revolving about axis X'X, generates the

surface I= 2 it - AB M'M Prop. Ill, cor. 2

4. But V A ACB — A J/J/' 0, Why ?

.-. 03f : J/'J/ = AB : J C = A B :
.!'£'.

5. .'. ^LB • ITIf= A'B' • OK IV. pr0p. I

6. .'. Z = 2it • .!'£' • OM. Subst. in 3

7. Summing for all frustums, including two cones, the

sum of the lateral surfaces = 2 7r • OM • (X'A 1 +
A'B' + ) = 2tt • OM -2 r. Axs. 2, 8

8. But if the number of sides increases indefinitely, the

sum of the lateral surfaces == surface of sphere, s,

and OM= r
;

.'. * = 2ir • r • 2r = 4 7rr\ IV, prop. IX, cor. 1
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491. Definitions. That part of a spherical surface which

is included between two parallel planes which cut or touch

the surface, is called a

zone. /

—

—

\

The solid bounded

by the zone and the

two parallel planes is
x r Zones and spherical segments. In first figure,

Called a Spherical seg- lower base is zero.

ment.

The distance between the two parallel planes determining a

zone and a spherical segment is called the altitude of the zone

and the segment.

The circumferences in which the planes intersect the spher-

ical surface are called the bases of the zone, and the circles are

called the bases of the segment.

In case of tangent planes the bases may one or both reduce to zero.

If one base only reduces to zero, the zone, or segment, is said to have

one base.

492. Definition. As a plane ' angle is often said to be

measured by the ratio of the intercepted arc to the whole

circumference (§ 256), so a polyhedral angle is said to be

measured by the ratio of the intercepted spherical polygon to

the whole spherical surface.

The practical method of measuring a polyhedral angle is given in

§ 493, cor. 4.

493. Corollaries. 1. The area of a zone of altitude a, on

a sphere of radius r, is 2 7rra.

For, prop. XXV, step 7, the sum of the lateral surfaces may approach

zs their limit a zone, in which case X'A' + A'B' + = a, and OM == r.

2. The area ofa lune ofangle a (expressed in radian measure)

on a sphere of radius r, is 2 a?2
.

By prop. X, I : 4 7tr2 = a : 2 it.

3. The area of a spherical polygon of spherical excess a

(expressed in radian measure) is av2
.
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For by prop. XXIV, the polygon equals the lune whose angle is a/2.

.-. the area = 2 • — • r- = ar2
, by cor. 2.

4. The measure of a polyhedral angle whose intercepted

spherical polygon has a spherical excess a is

For by definition, § 490, it is

a

4-7T

ar'2

4 7tr2

5. The area generated by a chord of a circle revolving about

a diameter which does not cut it, equals 2tt times the product

of its projection on that diameter, and the distance from the

center to the chord. (Why ?)

G. The areas of two spheres are propjortional to the squares

of their radii.

_ a 4 7T/-2 r °-

For — = = —
a 4 tit 1 r 2

Exercises. 719. What is the area of a spherical triangle the sura of

whose angles is 4 radians, on a sphere of radius 1 ft. ?

720. Also of one the sum of whose angles is 270°, r being 2 ft. ?

721. Also of one the sum of whose angles is 180°, on any sphere ?

722. Also of one the sum of whose angles is 237° 29', r being 10 in. ?

723. Also of a spherical quadrilateral the sum of whose angles is

417° 29', on a sphere of radius 2 in. ?

724. Also of a spherical pentagon the sum of whose angles is 4 straight

angles, on a sphere of radius 5 in. ?

725. What is the measure in radians of a polyhedral angle the spherical

excess of whose intercepted spherical polygon is 8 it ?

726. What is the ratio of a trihedral angle the sum of the angles of

whose intercepted spherical triangle is 1.5 7r radians, to a tetrahedral

angle the sum of the angles of whose intercepted spherical quadrilateral

is 2.5 it radians ?

727. What is the area of a spherical triangle whose angles are 70°,

80°, 90°, on a sphere of diameter 20 in. ?

728. Show that a trirectangular triangle is its own polar.

729. The locus of points on a sphere, from which great-circle arcs

perpendicular to the arms of an angle are equal, is the great-circle arc

bisecting that angle.
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Proposition XXVI.

494. Theorem. Two solids lying between two parallel

planes, and such that the ttvo sections made by any plane

parallel to the given planes are equal, are themselves equal.

Given two solids, S, S', lying between parallel planes,

M, N, and such that the two sections A, A\ or B,

B\ , made by any plane Q, or R, , are equal,

i.e. A = A'B = B\

To prove that s=sr

Proof. 1. Let K, K' be two segments of S, S', lying between

the sections A and B, and A' and B' ; let the alti-

tude of K, K' be 1/n of the altitude h of S and S'.

2. Suppose two straight lines to move so as always to

be perpendicular to Q, and to touch the perimeters

of A, A', thus generating two cylinders (or prisms,

or combinations of cylinders and prisms) of altitude

h/n as in Fig. 2. As the volumes of both prisms

and cylinders are expressed by the same formula,

v = bh
}
we may speak of these solids as cylinders,

C, C.

3. Then C = C, since they have equal bases and alti-

tudes
; and so for other pairs of cylinders described

in the Same wav. with altitude h/n.
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4. .'. the sum of the solids like C = the sum of the

solids like C", whatever n equals.

5. But if n increases indefinitely, h/n decreases in-

definitely, and it is evident that the sum of the

solids like C = S, while the sum of the solids like

6" = S\

6. .'. S= S'. IV, prop. IX, cor. 1

495. This important proposition is known as Cavalieri's

theorem. It will be seen that VII, prop. XV, is merely a

special case of this proposition. We shall base the mensura-

tion of the volume of the sphere upon it. Solids of this kind

are often called Cavalieri bodies.

Exercises. 730. A spherical triangle is to the surface of the sphere

as the spherical excess is to eight right angles.

731. The locus of points on a sphere, from which great-circle arcs to

two fixed points on the sphere are equal, is the circumference of a great

circle perpendicular to the arc joining those points at its mid-point.

732. There is evidently a proposition of plane geometry analogous to

Cavalieri's theorem, beginning, "Two plane surfaces lying between two

parallel lines " State this proposition and prove it.

733. From ex. 732 prove that triangles having equal bases and equal

altitudes are equal.

734. What is the ratio of the surface of a sphere to the entire surface

of its hemisphere ?

735. Prove that the areas of zones on equal spheres are proportional

to their altitudes.

736. Find the ratio of the surfaces of two spheres, in terms of their

radii, i\ and r2 .

737. What is the ratio of the area of a great circle of a sphere to the

area of its spherical surface ?

738. If a meter is 0.0000001 of a quadrant of the earth's circumfer-

ence, and the earth is assumed to be a sphere, how many square myria-

meters of surface has the earth ?

739. What is the radius of the sphere whose area is 1 square unit ?

Answer to 0.001.
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Proposition XXVII.

496. Theorem. The volume of a sphere of radius r is

expressed by the formula v = j 77-r
3

.

Proof. 1. Suppose the sphere circumscribed by a cylinder,

and suppose two cones formed with the bases of

the cylinder as their bases, and their vertices at the

center of the sphere.

Suppose the solid to be cut by a plane Q, parallel

to the bases, and x distant from the center of the

sphere.

2. Then since x also equals the radius of the O cut

—^ from the cone, because the altitude of the cone

equals the radius of its base,

.*. area of ring CD between cone and cylinder

= 7r(r2 -a-2
).

3. But the area of the O AB cut from the sphere is

also it (r2 — x2
), because its radius is Vr* — .>'-.

4. .'. the sphere and the difference between the cone

and cylinder are two Cavalieri bodies, and .'. they

are equal. Prop. XXVI

5. .'. v = tt>-
2

• 2r - Trr
2 ",'* =

i
tt/-

8
. Why ?
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Corollaries. 1. The volume of a sphere equals two-

thirds the volume of the circumscribed cylinder. (Arehimedes's

theorem.)

/

The volume of the circumscribed cylinder is evidently itr- • 2 r, or 2 7tr\

2. The volume of a sphere equals the product of its surface

by one-third of its radius.

For the surface is -4 7rr'
2

,
prop. XXV ; and

f itf1 r • 4 7tr~.

3. The volumes of two spheres are proportional to the cubes

of their radii.

4. The volume of a spherical segment of one hasp, of altitude

a, is expressed by the formula v = \ 7ra
2
(3 r — a).

For, as in the theorem, it equals the difference between a circular

cylinder of radius r and altitude a, and the frustum of a cone, of the

same altitude and with bases of radii r and (r — a).

.-. v = itr-a — \na \r- + (r — a)'2 + r (r — a)] Prop. IV, cor. 1

= i7ra2 (3r-a).

497. Definitions. A spherical sector is the portion of a sphere

generated by the revolution of a circular

sector about any diameter of its circle as

an axis.

The base of the spherical sector is the

zone generated by the arc of the circular

sector, and the altitude is the altitude of

that zone.

If the base of the spherical sector is a

zone of one base only, the spherical sector

is called a spherical cone.

Spherical sectors. The
upper one a spherical

cone.
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Corollaries. 1. The volume of a spherical cone, whose base

b has an altitude a, is expressed by the formula v = J 7rr
2
a, or

v = i br.

For it evidently equals the sum of a cone and a spherical segment

of one base. What does the latter equal, by § 496, cor. 4 ? Show that

the cone = \ it (r — a) [r2 — (r — a) 2
]. Then add the results, and show

that the sum is § itr2a. But 6 = 2 nra. (Why ?)

2. The volume of a spherical sector, whose base is b and alti-

tude a, is expressed by the formula v = §7rr2
a, or v = ± br.

For it equals the difference between two spherical cones.

Suppose these to have altitudes a\ , « 2 ,

and bases b { , b2 ,

and volumes Vi , v2 , respectively.

Then v = Vi — v2 = j nr2a\ — §
7tr2a2 — § nr2

(<3i — a2).

But ci! - a2 = a. (Why ?)

.-. u = 1 7rr2a. Now show that v = \br.-

Exercises. 740. Show that if the directrix of a cylinder is the cir-

cumference of a great circle of a sphere, and the generatrix is perpen-

dicular to that circle, and the bases of the cylinder are circles tangent

to the sphere, then the cylinder may be said to be circumscribed about

the sphere.

741. After considering ex. 740, show that the surface of a sphere is

two-thirds the entire surface of the circumscribed cylinder. (Archimedes.

)

742. Find the ratio of a spherical surface to the cylindrical surface of

the circumscribed cylinder.

743. What is the radius of that sphere the number of square units of

whose area equals the number of linear units in the circumference of one

of its great circles ?

744. What is the ratio of the entire surface of a cylinder circum-

scribed about a sphere to the entire surface of its hemisphere ?

745. What is the area of the entire surface of a spherical segment the

radii of whose bases are n, r2 , the radius of the sphere being r ?

746. A cone has for its base a great circle of a sphere, and for its

vertex a pole of that circle. Find the ratio of the curved surfaces of the

cone and hemisphere ; of the entire surfaces.

747. Show that the area of a zone of one base (the other base is zero)

equals that of a circle whose radius is the chord of the generating arc.
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Proposition XXVIII.

498. Theorem. The volume of a spherical segment of

altitude a, whose bases have radii rv r
2 , is expressed by

the formula
v = i vra [3 (i-!

2 + r 2
2
) + a2

] , or

v = 1 7ra (i*!
2 + r2

2
) + § 7ra

3
.

Proof. 1. Let the above figure represent a segment cut from

the figure of prop. XXVII.

2. Then if the distances of the circles of radii i\ and

r2 , from the center 0, are x x and x2 , respectively,

the radii of the bases of the frustum of the cone

are x x and x2 . ^Vhy ?

3. v = cylinder — frustum, Prop. XXVII, step 4

= iri^a — i Tra (xt* + x 2 + x lx 2) Prop. IV, cors. 1, 6

= i ira (6 >»
2 - 2 a^ 2 - 2 a^ - 2 ay2

)

= i tt« [3 (>-
2 - x,2) + 3 (r2 - x2

2
) + («, - z2)

2
].

4. But '•'
<x = x

x
— x2 , and rx

2 = i
2 — a-!

2
,

and r2 = ^ — x2
2
,

.'.v = ±7ra[3(r l

2 + r2
2
) + a2

]

= i7ra(r
1

2 + 7-
2
2
) + ^7ra3

.

Exercise. 748. Within an equilateral triangle of side s is inscribed

a circle ; the triangle revolves about one of its axes of symmetry, thus

generating a sphere and a cone. Find the ratio of their curved surfaces.

749. Also find the ratio of their entire surfaces.
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5. SIMILAR SOLIDS.

499. The definitions of similar systems of points and similar

figures given in §§ 257, 258 are not limited to plane figures.

The lines forming the pencil need not be coplanar. In case

they are not coplanar, a pencil of lines is often called a sheaf

of lines. The similar figures may then be plane, or they may
be curved surfaces, or solids, etc. The definitions and corol-

laries on pages 182-184 are therefore the same for solid

figures as for plane, and should be reviewed as part of this

section.

Polyhedra which have equal face and equal dihedral angles,

and equal edges, but have these parts arranged in reverse

order, are said to be symmetric.

The polyhedral angles are then respectively symmetric.

Proposition XXIX.

500. Theorem. If two polyhedra are similar, their corre-

sponding face and dihedral angles are equal, their correspond-

ing p>olyhedral angles are either congruent or symmetric, and

their corresponding edges are in proportion, the constant

ratio being the ratio of similitude.

D,

Given two similar polyhedra, J
l
B

l
Cl and A.Ji.J\ ,

or A
X
B

X
CX

and ASB9CB
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To prove that (1) Z B
l
A

1
I) 1

= Z B%AJ>% or Z B3A ZD3 ;

(2) dihedral angle with edge A XB X
= dihedral angle

with edge A 2B2 , or with edge A 3B3 ;

(3) polyhedral angle A x = polyhedral angle A 2 and

is symmetric to polyhedral angle A 3 as arranged in

the figure ; and

(4) AXBX : A 2B2 = the ratio of similitude.

Proof. 1. Let the polyhedra be placed in perspective (§ 259),

the center of similitude, AyBxCx and A
2
B

2C2

on one side of 0, and A 3B3 C3 on the other.

2. Then as in IV. prop. XX, AXBX II A
2
B

2
II A 3B3 and

ZV^i II A4 II I)ZA 3 .

3. .'. Z B1A lI) 1
= Z B

2AJ)2
= Z B3A 3D3 , and similarly

for other face angles, which proves (1). VI, prop. V

4. The trihedral Z A
x = Z X because the face Z are

respectively equal and similarly placed, and is sym-

metric to Z A 3 because the face angles are respec-

tively equal and placed in reverse order.

Prop. XXI, cor.

5. So for the other trihedral Z. And V polyhedral

Z, as D x , D2 , D3 , can be cut into congruent or

symmetric trihedral A similarly placed, as by the

planes A l C\D1 , A 2 C2D2 , A3C3D3 , they too are con-

gruent or symmetric.

6. .'. the dihedral Z are equal, which proves (2), and

the corresponding polyhedral Z are congruent or

symmetric, which proves (3).

7. The corresponding edges, as A
l
B

l , A 2B2 , A 3B3 ,

being corresponding sides of similar A OA
x
B x ,

OA2B2 , OA 3B3 , have the ratio of similitude, which

proves (4).
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Corollaries. 1. If the ratio of similitude is 1, the poly-

hedra are either congruent or symmetric.

2. Corresponding faces of similar polyhedra are propor-

tional to the squares of any two corresponding edges.

Step 7, and V, prop. IV.

Proposition XXX.

501. Theorem. Tivo similar polyhedra can be divided

into the same number of tetrahedra similar each to each

and similarly placed.

Proof. 1. In the figure below, the plane of A lf Clf Dl and the

plane of A
2 , C2 , D2 cut off tetrahedra A lBi ClD1 ,

2. Any point P1 in the one has a corresponding point

P
2
in the other, such that OPx : OP

2
= the ratio of

similitude. Why ?

3. Hence the tetrahedra are similar.

Proposition XXXI.

502. Theorem. The volumes of similar polyhedra are to

each other as the cubes of their corresponding edges.

Given the similar polyhedra A
lBl C1 , A 2

I>.,(\, ,

AtBsCg having volumes vu v.,, vs , respec-

tively.
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To prove that >\ : r
2
= AXB? : J.,/;,'

;

. >\ : r 3 = .I^3
: A%B£.

Proof. 1. Place the polyhedra in perspective, as in the figure,

the center of similitude being 0.

Divide the polyhedra into similar tetrahedra, simi-

larly placed, A XBX CXD X , A 2
B2 C2D2 , A 3B3C3D3 , being

corresponding tetrahedra. Prop. XXX
Let t x , t.

2 , ts represent the volumes of these respec-

tive tetrahedra, pu p2} jh their altitudes from D
x ,

D2 , JJ3 , and alf a
2 , a 3 the areas of AA 1BlC1 ,

A 2B2C2 , A 3B3 C3 .

2. Then v*
l = Jjpla1 ,

and t.2 = i
2?2a2 >

.\t l :t2
= jh«i -Ptfh'

3. But a, : a, = A XB X

2
: A2B.2

2
,

V, prop. IV

and p x :

i>
2
= D1A1 : D2A 2

= A XBX : A2B2 .

IV, prop. XX
4. .'. p xa x

' lha 2
= A XBX

Z
: A 2

B.?

.

IV, prop. VII, cor.

5. .'. tv : t2 = A XB X

3
: A2B}. From steps 2, 4

Similarly the other tetrahedra are proportional to

the cubes of their corresponding edges, which edges

are proportional to the particular edges A XBX and

A 2B2 .

6. .'. the sum of the tetrahedra making up the polyhe-

dron A 1B1 C\ has the same ratio to the sum of

the tetrahedra making up the polyhedron A 2
B2 C2

as A XB X

Z has to A
2
B.?, or

vt : v2
= A XB X

3
: A 2B 3

.

Similarly v x : r 3
= A XB X

3
: A 3B3

3
,

v2
'. v3

= A 2 £> 2
'• A 3u 3 ,

= Jj 2 i^ 2
'. Jj 3 C 3 ,

= C2D 3
: C3D 3

, etc.
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Proposition XXXII.

503. Theorem. Any two spheres are similar.

Proof. Let the spheres be placed in concentric position.

Then V the ratio of their radii is constant any

point on the surface of the one has on the surface

of the other its similar point, with respect to the

center, the ratio being i\ : r2 .

.'. the spheres are similar.

Proposition XXXIII.

504. Theorem. Two right circular cylinders are similar

if their elements have the same ratio as the radii of the ir

bases.

Proof. 1. Let the cylinders have the radii r19 r.2 , and the alti-

tudes hlt h
2 , respectively, and be placed with their

axes in the same line, their mid-points coincid-

ing at 0.

Let the semi-altitudes be OA1} OJ.
2 , and let aline

from cut the bases in Blf B2 , not necessarily

on the circumferences, and one from cut the

cylindrical surfaces in Clt C2 , respectively.

2. Then '•' the altitudes are proportional to the radii,
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.'. OAj : OA2
= r

x
:r2 .

And ••'

A

X
B

X
\\A.

2B,, Why?
.-.OB,: OB,, = OA

1
: OA, = r, : r2. IV, prop. X

3. And '•' the axes coincide .\ the elements are parallel,

and .*. OC,: OC, = rx :r2.

.'. the points of the respective cylinders are similar

with respect to as a center.

Corollaries. 1. The areas of the cylindrical surfaces of

two similar cylinders are proportional to the squares of their

altitudes.

For «i = 2 7tri7ii and a2 = 2 7tr2h 2 .

ai _ rdii
' ' a2 foho

But v ^ =^ by prop. XXXIII,

'

' a2 h2
2

2. The volumes of two similar rigid circular cylinders are

proportional to the cubes of their altitudes.

Proposition XXXIV.

505. Theorem. Two right circular cones are similar if

their altitudes have the same ratio as the radii of their

bases.

Place the bases in concentric position. The proof is then so similar to

that of prop. XXXIII that it is left for the student.

Corollaries. 1. The areas of the surfaces of two similar

right circular cones are proportional to the squares of their

altitudes.

2. The volumes of two similar right circular cones are pro-

portional to the cubes of their altitudes.
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EXERCISES.

750. The mean radii of the earth and moon are respectively 3956

miles, 1080.3 miles. Show that their volumes are as 49 to 1, nearly.

751. The mean diameter of the planet Jupiter being 80,657 miles,

find the ratio of its volume to that of the earth.

752. The sun's diameter is about 109 times the earth's. Find the

ratio of their volumes.

753. What is the radius of that sphere whose number of square units

of surface equals the number of cubic units of volume ?

754. Also of that whose number of cubic units of volume equals the

number of square units of area of one of its great circles.

755. Also of that whose number of cubic units of volume equals the

number of linear units of the circumference of a great circle.

756. Two planes cut a sphere of radius 1 m, at distances 0.8 m and

0.5 m from the center. Find (1) the area of the zone between them,

(2) the volume of the corresponding spherical segment.

757. A solid cylinder 20 cm long and 2 cm in diameter is terminated

by two hemispheres. The solid is melted and molded into a sphere.

Find the diameter of the sphere.

758. A meter was originally intended to be 0.0000001 of a quadrant

of the circumference of the earth. Assuming it to be such, and the earth

to be a sphere, find its radius in kilometers.

759. A cone, a sphere, and a cylinder have the same altitudes and

diameters. Show that their volumes are in arithmetical progression.

760. Given a sphere of radius 10. How far from its center must the

eye be in order to see one-fourth of its surface ?

761. If a tetrahedron is cut by a plane parallel to one of its faces, the

tetrahedron cut off is similar to the first.

762. The areas of the surfaces of two similar polyhedra are proportional

to the squares of their corresponding edges.
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Formula or Mensuration. The numbers refer to the pages. Ab-
breviations : b, base ; h, altitude ; r, radius ; a, area ; c, circumference

;

p. perimeter; s, slant height; », volume; m, mid-section.

Parallelogram, 202, a = bh. Circle, 217, 224, c = 27rr.

Triangle, 202, a = \ bh. a = nr2
.

Trapezoid, 202, a = $ (b + b') h. Arc, 223, = a • r.

Parallelepiped, 307, v = bh.

Prism, 307, v — bh.

Lateral area, right prism, 298, a = ph.

Prismatoid, 314, v = \h{b + 6' + 4 m).

Pyramid, 313, v = %bh.

Lateral area, regular pyramid, 309, a = ^s.
Frustum of pyramid, 315, v = i- h (b + b' + V&&').

Lateral area, frustum of regular pyramid, 309, a = £ (p + p') s.

Right circular cylinder, 324, 325, v = bh = xr-h. Lateral a = ch = 2 nrh.

Right circular cone, 324, 325, v = \bh = J 7rr2/i.

Lateral a = £ cs = 7frs.

Frust. of rt. circ. cone, 325, v — ^ith (i\2 + r2
2 + rir2 ).

Sphere, 355, 360, v = 1 7rr3 . a = 4 tzT2 .

Lune, 356, a = 2 ar2
.

Spherical polygon, 356, a = ar2
.

Zone, 356, a = 2 ;rWL

Spherical segment, 363, v = \nh [3 (n« + r2
2
) + ft

2
].

Spherical sector, 362, v = f 7Tr2ft = £&r.

Most Important Expressions involving 7T.

* = 3.141693. 1/7T = 0.31830989. 180°/ ?r = 57°.29578.

7T/4 = 0.785398. tt2 = 9.86960440. tt/180 = 0.01745.

?r/3 = 1.047198. V# = 1.77245385. Approximate values
;

| tt = 4.188790. 1/Var = 0.56418958.

Certain Numerical Results frequently used.

V2 = 1.4142. VlO = 3.1623. VE = 1.7100.

V3= 1.7821. VJ =0.7071. V6 =1.8171.

V5 =2.2361. V2 =1.2599. V7 =1.9129.

V6 = 2.4495. V3 = 1.4422. V9 = 2.0801.
3 "

V7 =2.6458. VI =1.5874. VlO 2.1544.



372 BIOGRAPHICAL TABLE.

507. BIOGRAPHICAL TABLE.

The following table includes only those names mentioned in this work,

although numerous others might profitably be considered by the student.

The history of geometry may be said to begin in Egypt, the work of

Ahmes, copied from a treatise of about 2500 B.C., containing numerous

geometric formulae. The scientific study of the subject did not begin,

however, until Thales visited that country, and carried the learning of

the Egyptians back to Greece. The period of about four hundred years

from Thales to Archimedes may be called the golden age of geometry.

The contributions of the latter to the mensuration of the circle and of

certain solids practically closed the scientific study of the subject in

ancient times. Only a few contributors, such as Hero, Ptolemy, and

Menelaus, added anything of importance during the eighteen hundred

years which preceded the opening of the seventeenth century. Within

the past three hundred years several important propositions and numerous

improvements in method have been added, but the great body of ele-

mentary plane geometry is quite as Euclid left it. In recent times a

new department has been created, known as Modern Geometry, involving

an extensive study of loci, collinearity, concurrence, and other subjects

beyond the present range of the student's knowledge.

The pronunciations here given are those of the Century Cyclopedia of

Names. The first date indicates the year of birth, the second the year of

death. All dates are a.d. unless the contrary is indicated by the sign —

.

The letter c. stands for circa, about, b. for born, d. for died. Numbers

after the biographical note refer to pages in this work.

Key. L. Latin, G. Greek, dim. diminutive, fern, feminine,

a fat, a fate, a far, a fall, a ask, a fare,

e met, e mete, e her, i pin, i pine, o )i<>/.

o note, 6 move, 6 nor, u tub, u mute, u pull.

h French nasalizing n. ch German ch.

s as in leisure. t as in nature.

A single dot under a vowel indicates its abbreviation.

A double dot under a vowel indicates that the vowel approaches the

short sound of u, as in put.
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Ahmes (a'mes). c. — 1700. Egyptian priest Wrote the oldest

extant work on mathematics 221

Anaxagoras (an-aks-ag'0-ras). - 499, - -428. Greek philosopher

and mathematician 225

Archimedes (ar-M-mS'dk). -287, -212. Syracuse, Sicily. The

greatest mathematician, and physicist of antiquity . 87. 221, 353, 354

Aryabhatta (ar-ya-bha'ta). b. 470. One of the earliest Hindu

mathematicians. Wrote on Algebra and Geometry 221

Bhaskara (bhas'ka-ra). 12th cent. Hindu mathematician . . . 104

Brahmagupta (brah-ma-gop'ta). b. 508. Hindu mathematician.

One of the earliest Indian writers 143, 221

Carnot (kar-no'), Lazare Nicholas Marguerite. 1753, 1823. French

physicist and mathematician. Contributed to Modern Geom-

etry 241. 242

Oavalieri (ka-va-le-a'iv). Bonaventnra. 1598, 1647. Prominent Ital-

ian mathematician 351

Ceulen (koilen). Ludolph van. 1540. 1010. Dutch geometrician . 221

Ceva (cha'va), Giovanni. 1048, c. 1737. Italian geometrician, 239. 241

Dase (da'ze), Zacharias. 1824, 1861. Famous German computer . 221

Descartes (da-kart'), Kene. 1596, 1650. Eminent French mathe-

matician, physicist, and philosopher. Founder of the science of

Analytic Geometry 285

Euclid (u'klid). c. — 300. Eminent writer on Geometry in the

Alexandrian School, at Alexandria, Egypt, His "Elements,"

the first scientific text-book on the subject, is still the standard

in the schools of England 76, 152, 208

Euler (oiler), Leonhard. 1707, 1783. Swiss. One of the greatest

mathematicians of modern times 99, 108, 285, 289

Gauss (gous), Karl Friedrich. 1777. 1855. German. One of the

greatest mathematicians of modern times 208, 212

Hero (he'ro)of Alexandria. More properly Heron (he'ron). c. — 110.

Celebrated Greek surveyor and mechanician 221. 227

Hippocrates (hi-pok'ra-tez) of Chios, b. c. — 470. Author of the

first elementary text-book on Geometry 230

Jones (jonz), William. 1675-1749. English teacher 221

Klein (kiln), Christian Felix. 1849. Professor at Gottingen . . 225

Leibnitz (lib'nits), Gottfried Wilhelm. 1646, 1716. Equally cele-

brated as a philosopher and a mathematician. One of the founders

of the science of the Calculus 23, 182

Lindemann (lin'de-man), Ferdinand, b. 1852. German professor 225
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Meister (mis'ter), Albrecht. 1724-1788. German mathematician . 98

Menelaus (men-e-la/us). c. 100. Greek mathematician and astrono-

mer. One of the early writers on Trigonometry . . 240, 242, 243

Metius (metius). Anthonisz, Adrisen. Called Metius from Metz,

his birthplace. 1527-1607 221

Monge (mohzh), Gaspard. 1746, 1818. French. Founder of the

science of Descriptive Geometry. One of the founders of the

Polytechnic School of Paris 97

CBnopides (e-nop'i-dez). c. - 465. Early Greek Geometer ... 72

Pascal (pas-kal'), Blaise. 1623, 1662. Celebrated French mathemati-

cian, physicist, and philosopher 241

Plato (pla'to). c. — 429, — 348. Greek philosopher and founder

of a school that contributed extensively to Geometry, 68, 106, 152, 286

Pothenot (po-te-no'), Laurent, d. 1732. French professor . . .157

Ptolemy (tore-mi). Claudius Ptolemseus. 87, 165. One of the

greatest of astronomers, geographers, and geometers of the later

Greeks 221, 228

Pythagoras (pi-thag'o-ras). c. — 580, c. — 501. Founder of a cele-

brated school in Lower Italy. One of the foremost of the early

mathematicians 49, 103, 286

Richter (rich'ter). 1854. German computer 221

Thales (tha'lez). - 640, - 548. One of the Seven Wise Men of

Greece. Introduced the study of Geometry from Egypt, 26, 117, 131

Vega, Georg, Freiherr von. 1756-1802. Professor of mathe-

matics at Vienna 221



TABLE OF ETYMOLOGIES.

This table includes such of the pronunciations and etymologies of the

more common terms of Geometry as are of greatest value to the student.

The equivalent foreign word is not always given, but rather the primitive

root as being more helpful. The pronunciations and etymologies are

those of the Century Dictionary. See Biographical Table, p. 372.

Abscissa (ab-sis'a). L. cut off.

Acute (a-kut'). L. acutus, sharp.

Adjacent (a-ja'sent). L. ad, to, +
jacere, lie.

Angle (ang'gl). L. angulus, a cor-

ner, an angle ; G. ankylos, bent.

Antecedent (an-te-se'dent). L. ante,

before, + ceclere, go.

Bisect (bi-sekf). L. 6*'-, two-, +
sectus, cut.

Center (sender). L. centrum, center;

G. kentron, from kentein, to prick.

Centroid (sen'troid). G. kentron,

center, + eiclos, form.

Chord (kord). G. chorde, string.

Circle (sir'kl). L. circulus, dim. of

circus (G. kirkos), a ring.

Circumference (ser-kum'fe-rens)

.

L. circum, around (see Circle),

+ ferre, to bear.

Collinear (ko-lin'e-ar). L. com-,

together, + linea, line.

Commensurable (ko-men'su-ra-bl)

,

L. com-, together, + mensurare,

measure.

Complement (kom'ple-ment). L.

complementum, that which fills,

from com- (intensive) + plere, fill.

Concave (kon'-kav). L. com- (in-

tensive) + cavus, hollow.

Concentric (kon-sen'trik). L. con-,

together, + centrum, center.

Concurrent (kon-kur'ent). L. con-,

together, + currere, run.

Concyclic (kon-sik'lik). L. con-,

together, + cyclicus, from G.

kyklikos, from kyklos, a circle,

related to kyliein, roll (compare

Cylinder).

Congruent (kong/
gro-ent). L. con-

gruere, to agree.

Consequent (kon'se-kwent). L.

con-, together, + sequi, follow.

Constant (kon'stant). L. con-, to-

gether, + stare, stand.

Converse (kon'vers). L. con-, to-

gether, + vertere, turn.

Convex (kon'veks). L. convexus,

vaulted, from con-, together, -f

vehere, carry.

Corollary (kor'o-la-ri). L. corolla-

Hum, a gift, money paid for a

garland of flowers, from corolla,

dim. of corona, a crown.

Cylinder (sirin-der). G. kyllndros,

from kyliein, roll.

375
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Decagon (dek'a-gon). G. deka, ten,

+ gonia, an angle.

Degree (de-gre'). L. de, down, 4-

gradus, step.

Diagonal (dl-ag'o-nal). G. dia,

through, + gonia, a corner, an

angle.

Diameter (di-am'e-ter). G. dia,

through, 4- metron, a measure.

Dihedral (dl-he'dral). G. di-, two,

+ hedra, a seat.

Dimension (di-men'shpn). L. dis-,

apart, 4- metiri, measure. See

Measure.

Directrix (di-rek'triks). L. fem.

of director, from directus, direct.

Dodecahedron (do"dek-a-he'drpn).

G. dodeka, twelve, + hedra, a

seat.

Equal (e'kwal). L. cequalis, equal,

from cequus, plain.

Equiangular (e-kwi-ang'gu-liir). L.

cequus, equal, + angulus, angle.

Equilateral (e-kwi-lat'e-ral). L.

cequus, equal, + latus, side.

Equivalent (e-kwiv'a-lent). L.

cequus, equal, 4- valere, be strong.

Escribed (es-krlbd')- L. e, out, +
scribere, write.

Excess (ek-ses'). L. ex, out, -f

cedere, go ; i.e. to pass beyond.

Frustum (frus'turn). L. a piece.

Generatrix (jen'e-ra-triks). L. fem.

of generator, from generare, beget,

from genus, a race.

Geometry (je-om'e-tri). G. ge, the

earth, + metron, a measure,

-gon, a termination, G. gonia, an

angle.

Harmonic (har-mon'ik). G. har-

monia, a concord, related to har-

mos, a joining. A line divided

internally and externally in the

ratio 2:1, is cut into segments

representing 1, f, £. Pythago-

ras first discovered that a vibrat-

ing string stopped at half its

length gave the octave of the

original note, and stopped at

two-thirds of its length gave

the fifth. Hence the expression

"harmonic division " of a line.

Hemisphere (hem'i-sfer). G. hemi-,

half, + sphaira, a sphere.

-hedron, a termination, G. hedra,

a seat.

Hepta-, in combination, G. seven.

Hexa-, in combination, G. six.

Hexagram (hek'sa-gram). G. hex,

six, 4- gramma, a line.

Hypotenuse (hi-pot'e-nus). G. hypo,

under, 4- teinein, stretch.

Inclination (in-kli-na'shon). L. in,

on, 4- clinare, lean.

Incommensurable (in-ko-men'su-

ra-bl). L. in-, not, 4- com-, to-

gether, 4- mensurare, measure.

Infinity (in-fin'i.-ti). L. in-, not,

4 finitus, bounded.

Inscribed (in-skribd
7

). L. in, in,

4- scribere, write.

Isosceles (i-sos'e-lez). G. isos,

equal, -f skelos, leg.

Lateral (lat'e-ral). L. latus, a

side.

Locus (lo'kus). L. a place. Com-

pare locality.

Lune (lun). L. luna, the moon.

Major (ma/jor). L. greater, com-

parative of magnus, great.

Maximum (mak'si-mum). L. great-

est, superlative of magnus,

great.

Mean (men). L. medius, middle.
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Measure (mezh'iir). L. mensura,

a measuring. See Dimension.

Median (me'di-au). See Mean.

Mensuration (men-su-ra'shon). See

Measure.

Minimum (min'i-nium). L. least.

Minor (mi'nor). L. less.

Nappe (nap). French, a cloth,

sheet, surface.

Oblique (ob-lek
7
or ob-Hk'). L. ob,

before, + liquis, slanting.

Obtuse (ob-tus'). L. obtusus, blunt,

from ob, upon, + twidere, strike.

Octo-, octa-, in combination, L. and

G., eight.

Opposite (op'o-zit). L. ob, before,

against, + ponere, put, set.

Ordinate (or'di-nat). L. ordo (or-

din-), a row.

Orthocenter (Or'tho-sen-ter). G.

ortho-, straight, -j- kentron, center.

Orthogonal (or-thog'o-nal). G.

orthos, right, + gonia, an angle.

Parallel (par'a-lel). G. para, be-

side, + allelon, one another.

Parallelepiped (par-a-lel-e-pip'ed or

-pl'ped). Gr. parallelos, parallel,

+ epipedon, a plane surface, from

epi, on, -f pedon, ground.

Parallelogram (par-a-lel'S-grani)

.

G. parallelos, parallel, +gram ma,
line.

Pedal (ped'al or pe'dal). L. peda-

lis. pertaining to the foot, from

pes (ped-). foot.

Pencil (pen'sil). L. penic ilium, a

painters 1

pencil, a brush.

Perigon (per'i-gon). G. peri,

around, + gonia, a corner, angle.

Perimeter (pe-rim'e-ter). G. peri,

around, + metron, measure.

Perpendicular (per-pen-dik u-lar).

L. perpendiculum , a plumb-line,

from per, through, -f pcndere.

hang.

Perspective (per-spek'tiv). L. per,

through, + specere, see.

it (pi). Initial of G. periphereia,

periphery, circumference.

Pole (pol). G. polos, a pivot, hinge,

axis, pole.

Polygon (pol'i-gon). G. polys,

many, + gonia, corner, angle.

Polyhedron, (pol-i-he'drpn) G.

polys, many, + hedra, seat.

Postulate (pos'tu-lat). L. postula-

tum, a demand, from poscere,

ask.

Prism (prizm). G. prisma, some-

thing sawed, from priein. saw.

Prismatoid (priz'ma-toid). G. pris-

ma (t~), + eidos, form.

Projection (pro-jek'skpn). L. pro,

forth, + jacere, throw.

Pyramid (pir'a-mid). G. pyramis,

a pyramid, perhaps from Egyp-

tian pir-em-us, the slanting edge

of a pyramid.

Quadrant (kwod'rant). L. quad-

rants, a fourth part. See

Quadrilateral.

Quadrilateral (kwod-ri-lat'e-ral). L.

quattuor (quadri-), four, -f latus,

(later-), side.

Radius (ra'di-us). L. rod, spoke

of a wheel.

Ratio (ra'shio). L. a reckoning,

calculation, from reri, think,

estimate.

Reciprocal (re-sip'ro-kal). L. re-

ciprocus. returning, from re-,

back, and pro. forward, with

two adjective terminations.

Rectangle (rek'tang-gl). L. rectus,
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right, + angulus, an angle. See

Angle.

Rectilinear (rek-ti-lin'-ar). L. rec-

tus, right, + linea, a line.

Reflex (re'fleks or re-fleks'). L.

re-, back, -f flectere, bend.

Regular (reg
/
u-lar). L. regula, a

rule, from regere, rule, govern..

Rhombus (rom'bus). G. rhombos,

a spinning top.

Scalene (ska-len'). G. skalenos,

uneven, unequal ; related to skel-

los, crooked-legged.

Secant (se'kant). L. secare, cut,

as also Sector, Section, Seg-

ment.

Segment (seg'ment). See Secant.

Semicircle (sem'i-ser-kl). L. semi-,

half, + circulus, circle.

Similar (sim'i-lar). L. similis, like.

Solid (sol'id). L. solidus, firm,

compact.

Sphere (sfer). G. sphaira, a ball.

Square (skwar). L. quadra, a

square, from quattuor, four.

Straight (strat). Anglo-Saxon,

streht, from streccan, stretch.

Subtend (sub-tend'). L. sub, under,

-f tendere, stretch.

Successive (suk-ses'iv). L. sub, un-

der, + cedere, go.

Sum (sum). L. summa, highest

part. Compare Summit.

Superposition (su'per-po-zish'qn).

L. super, over, + ponere, lay.

Supplement (sup'le-ment). L. sub.,

under, + plere, fill ; to fill up.

Surface (ser-fas). L. superficies,

surface, from super, above, +
fades, form, figure, face.

Symbol (sim'bpl). G. symbolos, a

sign by which one infers some-

thing, from sun, together, + bal-

lein, put.

Tangent (tan'j.ent). L. tangere,

touch.

Tetrahedron (tet-ra-he'drpn). G.

tetra-, four, -|- hedra, seat.

Theorem (the'o-rem). G. theorema,

a sight, a principle contemplated.

Transversal (trans-ver'sal). L.

trans, across, -f vertere, turn.

Trapezium (tra-pe'zi-um). G. tra-

pezion, a table, dim. of trapeza,

a table, from tetra, four, + pous,

foot.

Trapezoid (tra-pe'zoid). G. trapeza,

table, + eidos, form.

Tri-, in composition, L. tres (tri-),

G. treis (tri-), three. See Secant,

-hedron, Angle, for meaning of

trisect, trihedral, triangle.

Truncate (trung'kat). L. truncare,

cut off, from Old L. troncus, cut

off, mutilated.

Unique (u-nek'). L. unicus, from

unus, one.

Vertex (ver'teks). L. vertere, turn.

Zone (zon). G. zone, a girdle,

belt.
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Acute angle 6, 266
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" polygons .... 90

Alternate angles 43

Alternation 163

Altitude 90, 295, 313, 321, 350, 361

Ambiguous case 51

Analysis 70, 152

Angle . 5, 115, 151, 256, 261,

265, 334, 335

Antecedent 161

Antiparallel 177

Apothem 214

Arc 67, 114

Area 112, 202

Arm 5

Assumed constructions ... 70

Axioms 11

Axis .... 29, 265, 321, 328

Base, 23, 29, 59, 292, 295, 321,

350, 361

Birectangular triangle . . . 345

Bisect 4, 5, 266

Broken line -
. 4

Cavalieri's theorem .... 359

Center 67, 114, 326
" line 143

" of mass (gravity) . . 89

" of polygon .... 214

" of similitude .... 183

PAGF

Center of symmetry . . .183
" segment 143

Central angle .115
" symmetry . . . .183

Centroid 89

Chord 114

Circle 67, 114. 327

Circular cone . . . .321, 322

" cylinder 318

Circumcenter 89

Circumference ... 67, 114

Circumscribed, 136, 212, 322, 334

Collinear 84, 238

Commensurable 160

Complement . . . 8, 115, 266

Composition 164

Concave 54, 283, 335

Concentric 143

Concurrent 84, 238

Coneyclic 128

Cone 321, 322, 361

" of revolution .... 322

Congruent 23, DO

Conical surface, space . . .321

Conjugate . . . . 8, 115, 266

Consecutive angles .... 59

Consequent 161

Constant 167

Contact 125, 332

Converse 34

Convex . . . . 7, 54, 283, 335

Coplanar 245

379
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Corollary 20

Corresponding angles ... 43

" segments, points,

179, 182

Counter-clockwise

Cross polygons

Curve ....
Curved surface

Cylinder . . .

" of revolution .

Cylindrical surface, space

Degree . .

Determined

Diagonal

Diagonal scale

Diameter .

Difference .

Dihedral

Dimensions

Directrix

Distance

Distributive law

Division . . .

Division, internal

o

. 54

. 67

. 317

. 318

. 322

. 317

5, 222

. 3, 25, 51

. 22, 288

. . .184

67, 114, 326

90, 115, 266

. . . 265

. . . 305

. 317, 321

29, 259, 264

... 96

. 164, 170

and external,

95, 176

Edges . 265, 274, 283, 291, 294

Element 317, 321

Equal . . 6, 24, 90, 114, 222

Equiangular 22

Equilateral 22

Equivalent 24, 90

Escribed ....... 136

Ex-center 89

Excess, Spherical . . . .353

Exterior angles . . . . 22, 43

Extreme and mean ratio . . 196

Extremes 161

Faces . 265, 274, 283, 291, 294

Figure 21

Fourth proportional .... 166

Frustum 295, 322
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General polygon 54

Generalization of figures . . 56

Generatrix 317, 321

Geometry 1, 9, 21

Geometric mean 166

Golden section . . . 196, 197

Great circle 327

Harmonic division .... 176

Hemisphere 328

Hero's formula 227

Hexagram, Mystic .... 241

Hypotenuse 50

In-center 89

Inclination 256

Incommensurable . . . .160

Indirect proof 14

Infinity 170, 174

Inscribed, 128, 136, 157, 212,

322, 334

Instruments of geometry . . 208

Interior angles . . . . 22, 43

Inversion 163

Isoperimetric 229

Isosceles 28, 59

Lateral area 298

Law of Converse 34

Limit .... 167, 216, 323

Line 2, 3

Locus 80, 156

Ludolphian number . : . .221

Lune 335

Major 115, 128

Maximum 229

Mean proportional .... 166

Means 161

Measure, 112, 117, 129, 159,

202, 266, 356

Median 28

" section 196

Mensuration, 112, 226, 298, 356

Methods of attack . 35,70,152
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Mid-point 4

Minimum 229

Minor 115, 128

Motion ........ 24
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Obtuse-angled triangle ... 50
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Orthogonal 104
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Prismatoid 313

Problem 9
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Proposition 9

Pyramid 295

Pyramidal surface, space . . 294

Pythagorean Theorem, 102,
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Quadrant 115, 329
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Radius ... 67, 114, 214, 326

Ratio 159, 184
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Rectangle 60, 94
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Sheaf of lines 364

Side 21
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figures ... 23, 182, 364
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" Geometry 245
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" excess 353
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Square 60, 94
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Tables 371

Tangent .... 125, 143, 332
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Tetrahedral 274

Theorem 9

Third proportional . . . .195

Touch 125, 143

Transversal 43

Transverse section,

291, 294, 317, 321

Trapezium .59
Trapezoid 59

Triangle 22, 342

Trihedral 274

Trisect 87

Truncated pyramid .... 295

Unique 7

Unit 112, 159, 202

Variable 167

Vertex, 5, 21, 23, 170, 283,

294, 295, 321

Vertical 8, 266

Wedge 315, 338
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