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Based on the factorization in perturbative QCD, a jet cross section in heavy-ion collisions can be
expressed as a convolution of the jet cross section in pþ p collisions and a jet energy loss distribution.
Using this simple expression and the Markov Chain Monte Carlo method, we carry out Bayesian analyses
of experimental data on jet spectra to extract energy loss distributions for both single inclusive and
γ-triggered jets in Pbþ Pb collisions with different centralities at two colliding energies at the Large
Hadron Collider. The average jet energy loss has a dependence on the initial jet energy that is slightly
stronger than a logarithmic form and decreases from central to peripheral collisions. The extracted jet
energy loss distributions with a scaling behavior in x ¼ ΔpT=hΔpTi have a large width. These are
consistent with the linear Boltzmann transport model simulations, in which the observed jet quenching is
caused on the average by only a few out-of-cone scatterings.
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Introduction.—Suppression of jets and large transverse
momentum hadrons known as jet quenching [1,2] in
high-energy heavy-ion collisions is caused by interaction
between jet-shower and medium partons and can be used
to probe properties of the quark-gluon plasma (QGP).
One such fundamental property of QGP is the jet
transport coefficient [3], which characterizes the average
transverse momentum broadening squared per unit length
of a propagating parton and is directly related to the
gluon distribution density of the QGP medium [4]. Its
value at the energy scale of thermal momentum is also
related to the shear viscosity of the QGP [5]. Among
many efforts to extract the jet transport coefficient from
experimental data on suppression of single inclusive
hadron spectra [6–9], the systematic study by the JET
Collaboration [10] has narrowed the uncertainties to
within 40%. Such a systematic approach has still yet
to be applied to other experimental measurements of jet
quenching, such as suppression of single inclusive and
γ-triggered jets.
The study of the medium modification of fully

reconstructed jets in high-energy heavy-ion collisions
[11,12] can provide additional constraints on theoretical
approaches to parton energy loss and the jet transport
coefficient. Though a fully constructed jet contains

partons both from the medium-modified jet-shower
and medium recoil [13–21], one can still define jet
energy loss as the difference between the final jet
energies within the jet cone in vacuum and medium
originating from the same initial hard parton. While the
average jet energy loss is related to both jet and bulk
transport coefficients, the jet energy loss distribution
should contain additional information about jet-medium
interaction. It is important to extract both from exper-
imental data.
In this Letter, we first show that starting from the

factorized form of jet cross section, the jet production
cross section in heavy-ion collisions can be expressed as
the convolution of cross section in proton-proton collisions
and a flavor-averaged jet energy loss distribution. Based
on this simple expression, we use the Markov Chain
Monte Carlo (MCMC) method [22] to carry out the first
Bayesian analyses of experimental data on the medium
modification of both single inclusive and γ-triggered jet
spectra and extract jet energy loss distributions in heavy-ion
collisions at two colliding energies at the Large Hadron
Collider (LHC) with different centralities. Previous efforts
have been carried out to extract the averaged jet and parton
energy loss from suppression of single inclusive jet [23]
and hadron spectra [24,25] based on either a simple average
energy loss or one particular model for parton energy loss
distribution. Our study in this Letter uses Bayesian analyses
with uniform prior distributions of parameters to extract
the jet energy loss distribution assuming a pT-dependent
average jet energy loss and a scaling behavior of the jet
energy loss distribution.
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Jet production cross section.—Within the factorized
parton model in perturbative QCD (PQCD), the double
differential cross section for single inclusive jet production
in pþ p collisions can be factorized [26,27],

dσjetpp
dpTdη

¼
X

a;b;c

Z
fa=p ⊗ fb=p ⊗ Hc

ab ⊗ JcðpT; RjpTcÞ;

ð1Þ

as the convolution of parton distribution functions fa=p,
hard functions Hc

ab for parton scattering subprocesses aþ
b → cþ X and semi-inclusive jet functions JcðpT; RjpTcÞ,
which describe the formation of a jet with transverse energy
pT and jet-cone size R from a parent parton c with initial
transverse momentum pTc. Similarly, the cross section in
Aþ A collisions is given by

dσjetAA
dpTdη

¼
X

a;b;c

Z
d2rd2btAðrÞtAðjb − rjÞ dϕc

2π

× fa=A ⊗ fb=A ⊗ Hc
ab ⊗ J̃cðpT; R; r;b;ϕcjpTcÞ;

ð2Þ

where tAðrÞ is the nuclear thickness function normalized to
A, fa=A is the parton distribution function per nucleon
inside the nucleus [28], r is the transverse coordinate of the
binary nucleon-nucleon collision that produces the initial
hard parton c with the azimuthal angle ϕc, b is the impact
parameter of the nucleus-nucleus collision and J̃c is the
medium-modified semi-inclusive jet function. The range of
integration over the impact parameter b is determined by
the centrality of the nucleus-nucleus collisions according to
experimental measurements.
Interaction between jet-shower and medium partons

during the jet transport through the QGP medium will
lead to transverse diffusion of jet-shower partons to the
outside of the jet cone. Radiated gluons and medium
response, on the other hand, can also fall into the jet cone.
These will lead to an effective jet transverse energy loss
which we define as the difference between the jet transverse
energies in vacuum and medium originating from the same
initial parton c. Note this jet energy loss is very different
from the energy loss of an individual parton. For a given r,
b, and ϕc, the medium-modified jet function can be given
as the convolution,

J̃cðpT;R;r;b;ϕcjpTcÞ¼
Z

dΔpTJcðpT þΔpT;RjpTcÞ

×wcðΔpT;pT þΔpT;R;r;b;ϕcÞ;
ð3Þ

of vacuum jet function with transverse energy pT þ ΔpT
and a pT-dependent jet energy loss distribution wc.

Averaging over the parton production point and propa-
gation direction, the cross section for single inclusive jet
production in Aþ A collision in Eq. (2) can be written as

dσjetAA
dpTdη

¼ NbinðbÞ
X

a;b;c

Z
dΔpTWc

AAðΔpT; pT þ ΔpT; RÞ

× fa=A ⊗ fb=A ⊗ Hc
ab ⊗ JcðpT þ ΔpT; RjpTcÞ;

ð4Þ

where NbinðbÞ ¼
R
d2rd2btAðrÞtAðjb − rjÞ is the number

of binary collisions and the energy loss distribution for a
given centrality class of Aþ A collisions is defined as

Wc
AAðΔpT; pT; RÞ ¼

Z
d2rd2btAðrÞtAðjb − rjÞ dϕc

2π

×
wcðΔpT; pT; R; r;b;ϕcÞ

NbinðbÞ
: ð5Þ

For jet production at a very high transverse energy, one can
neglect nuclear modification of parton distribution func-
tions fa=A ≈ fa=p. The single inclusive jet cross section in
Aþ A collisions can be expressed as the convolution of jet
cross section in pþ p collisions and a flavor-averaged
(quarks and gluon) jet energy loss distribution WAA. The
modification factor for single inclusive jet production in
Aþ A collisions can be written as

RAAðpTÞ ≈
1

dσjetppðpTÞ

Z
dΔpTdσ

jet
ppðpT þ ΔpTÞ

×WAAðΔpT; pT þ ΔpT; RÞ: ð6Þ

This expression for single inclusive jet cross section should
also be valid for γ-triggered jet spectra and has been
postulated [23,29] before. Similar approximate expression
for single inclusive hadron spectra has been used in
Refs. [25,30] assuming a constant average momentum
fraction of hadrons zh ¼ pTh=pT in the energy loss dis-
tribution. This approximation is, however, no longer valid
for hadron- and γ=Z0-triggered hadron spectra and jet
fragmentation functions where hadrons from radiated gluon
and medium response have to be included.
Bayesian analyses with MCMC.—The focus of the rest

of this Letter is to use Bayesian analyses of experimental
data on both single inclusive and γ-triggered jet spectra in
pþ p and Aþ A collisions to extract the jet energy loss
distribution WAA using the convolution expression in
Eq. (6). For this purpose we have to assume a general
functional form for WAA. The average jet energy loss
hΔpTi≡ R

dΔpTΔpTWAAðΔpT; pT; RÞ should be a func-
tion of the vacuum or initial jet energy pT for a given jet-
cone size R. The fluctuation of the energy loss for a given
centrality class of Aþ A collisions is mainly determined
by the variation in the number of jet-medium scatterings
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according to the distribution of the initial jet production
position and azimuthal angle of the propagation. Motivated
by results from linear Boltzmann transport (LBT) simu-
lations [31], we assume the jet energy loss distribution
WAAðΔpT; pT; RÞ ≈WAAðx; RÞ is approximately a function
of the scaled jet energy loss x ¼ ΔpT=hΔpTi. The depend-
ence of WAA on vacuum jet energy pT is only implicit
through the average jet energy loss hΔpTiðpTÞ. We will
take the scaled energy loss distribution as a normalized Γ
function,

WAAðxÞ ¼
ααxα−1e−αx

ΓðαÞ ; ð7Þ

where α is approximately independent of the jet energy.
When α is an integer, the Γ function is in fact a convolution
of α number of exponential distributions. One can empiri-
cally interpret the above energy loss distribution as a
consequence of α number of jet-medium scatterings that
transport partons out of the jet cone with an average jet
energy loss per out-of-cone scattering hΔpTi=α.
The jet energy dependence of the average jet energy loss

is assumed to have the following functional form,

hΔpTiðpTÞ ¼ βpγ
T logðpTÞ; ð8Þ

since the energy loss should be zero at pT ¼ 0. The log
term is motivated by theoretical calculations of parton
energy loss [32]. The problem is then reduced to estimation
of three parameters ½α; β; γ� through Bayesian analyses of
experimental data with MCMC method.
Bayesian analyses have been employed to extract bulk

and heavy quark transport coefficients [33–35] in heavy-
ion collisions from comparisons between experimental data
and model simulations. We use the same statistical analysis
to extract probability distributions of the parameters in
the jet energy loss distribution from experiment data. The
process can be summarized as

PðθjdataÞ ¼ PðθÞPðdatajθÞ
PðdataÞ ; ð9Þ

where PðθjdataÞ is the posterior distribution of parameters
θ ¼ ½α; β; γ� given the experimental data, PðθÞ is the prior
distribution of θ, PðdatajθÞ is the Gaussian likelihood
between experimental data and the output for any given
set of parameters θ and PðdataÞ ¼ R

dθPðθÞPðdatajθÞ is
the evidence. Uncorrelated uncertainties in experimental
data are used in the evaluation of the Gaussian likelihood.
The MCMC method [22] is a strategy for generating θ,
whose distribution mimics an unnormalized probability
distribution ∝ PðθÞPðdatajθÞ, with importance sampling.
In this Letter, PyMC library [36,37] is employed to carry

out the MCMC estimation of the parameters for the jet
energy loss distribution with Metropolis-Hastings random

walk in the parameter space. The maximum a posteriori
(MAP) method is used first in PyMC to get a fast estimation
of the parameters θ. The estimated values are fed as the
initial guess of these parameters in MCMC to sample
16 × 106 sets in the parameter space. The first 8 × 106

samples are treated as burn-in samples which are not used
in the final statistics.
Jet energy loss distributions.—The experimental data

used for the Bayesian analyses in this study are from
ATLAS for single inclusive jet spectra [38,39] and CMS for
γ-triggered jet spectra [40–42] in pþ p and Pbþ Pb
collisions at

ffiffiffi
s

p ¼ 2.76 and 5.02 TeV. The jet spectra
in pþ p collisions beyond the experimental pT range
are provided by PYTHIA simulations [43]. A uniform prior
distribution PðθÞ in the region ½α; β; γ� ∈ ½ð0; 10Þ; ð0; 10Þ;
ð0; 1Þ� is used for the Bayesian analyses. We have also tried
normal prior distributions with model-motivated means
and large variances. The results remain the same as that
with uniform prior distributions. We check the convergence
of the analyses by examining the density distributions and
pair correlations of the parameters, as shown in Fig. 1, e.g.,
for the fit to RAA for single inclusive jet spectra in 0–10%
Pbþ Pb collisions at

ffiffiffi
s

p ¼ 2.76 TeV. Clearly, the three
parameters in the jet energy loss distributions from the
Bayesian fits are strongly correlated.
Shown in Fig. 2 are the final fits (top panel) to the

ATLAS data [38,39] on RAA of single inclusive jets, the
extracted average jet energy loss hΔpTi as a function of
the vacuum jet energy pT (middle panel) and energy loss

FIG. 1. Density distributions and correlations of the parameters
θ ¼ ½α; β; γ� in the jet energy loss distribution from Bayesian fit to
experimental data on single inclusive jet suppression in 0–10%
central Pbþ Pb collisions at

ffiffiffi
s

p ¼ 2.76 TeV.
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distributions WAAðx ¼ ΔpT=hΔpTiÞ (bottom panel) in
0–10% (left column), 20–30% (middle column) Pbþ Pb
at

ffiffiffi
s

p ¼ 2.76 TeV, and 0–10% Pbþ Pb collisions at
ffiffiffi
s

p ¼
5.02 TeV (right column). The blue lines with solid circles
are mean averages from the MCMC Bayesian fits and the
light blue lines are results with one sigma deviation from
the average fits of RAA. Similarly in Fig. 3, we show the fits
(top panel) to the CMS data [40–42] on medium-modified

γ-jet spectra ð1=NγÞdNjγ=dpT , the extracted average jet
energy loss as a function of the vacuum jet energy (middle
panel) and energy loss distributions (bottom panel) in
0–30% (left column), 30–100% (middle column) Pbþ
Pb at

ffiffiffi
s

p ¼ 2.76 TeV and 0–30% Pbþ Pb collisions
at

ffiffiffi
s

p ¼ 5.02 TeV. We can see that the Bayesian fits of
single inclusive and γ-triggered jet spectra based on the
convolution expression in Eq. (6) can describe the exper-
imental data very well. The extracted jet energy loss
distributions as parametrized in Eqs. (7) and (8) are quite
broad and average jet energy loss increases with the
vacuum jet energy a little faster than a logarithmic
dependence. The parameters (mean and one-σ variance
in fits to RAA and γ-triggered jet spectra) for jet energy loss
distributions from the Bayesian fits in Figs. 2 and 3 are
summarized in Table I.
As a comparison, results from LBT model simulations

[21,31] are also plotted in Figs. 2 and 3 (red lines) and
parameters ½α; β; γ� from fits to the corresponding energy
loss distributions are given in parentheses in Table I. LBT
calculations can describe well the medium modification of
single inclusive and γ-triggered jet spectra. Moreover, the
jet energy loss distributions WAAðxÞ from LBTwhich have
a scaling behavior in x ¼ ΔpT=hΔpTi also agree well with
the Bayesian extraction. The effective mean number of out-
of-cone scatterings is also small, which is consistent with
the small extracted value of α as shown in Table I. LBT
results on the averaged jet energy loss at

ffiffiffi
s

p ¼ 5.02 TeV is
slightly higher than Bayesian fits to the data, indicating the
possible running of the effective strong coupling constant
with the colliding energy.

FIG. 2. (Top) Bayesian fits to RAA for single inclusive jets
[38,39], (middle) the extracted average jet energy loss hΔpTi as a
function of the initial jet energy and (bottom) energy loss
distributions WAAðx ¼ ΔpT=hΔpTiÞ in Pbþ Pb collisions at
two LHC energies with different centralities. Blue lines with
solid circles are mean averages from MCMC Bayesian fits and
light blue lines are results with one sigma deviation from the
average fits of RAA. Red lines are from LBT simulations.

TABLE I. Parameters ½α; β; γ� of the jet energy loss distribution
from Bayesian fits to single inclusive and γ-triggered jet spectra
in Pbþ Pb collisions at

ffiffiffi
s

p ¼ 2.76 and 5.02 TeV. Numbers in
parentheses are from fits to LBT results.

Single inclusive jet in Pbþ Pb

(0–10%)2.76 TeV (20–30%)2.76 TeV (0–10%)5.02 TeV

α 3.87� 2.93 4.47� 2.83 4.41� 2.86
ð1.45� 0.01Þ ð1.33� 0.02Þ ð1.58� 0.02Þ

β 1.40� 1.12 1.12� 0.47 1.06� 0.97
ð1.39� 0.06Þ ð1.08� 0.07Þ ð1.56� 0.06Þ

γ 0.21� 0.09 0.15� 0.07 0.26� 0.06
ð0.21� 0.01Þ ð0.20� 0.01Þ ð0.23� 0.01Þ

γ-triggered jet in Pbþ Pb

(0–30%)2.76 TeV (30–100%)2.76 TeV (0–30%)5.02 TeV

α 2.13� 1.28 3.75� 2.81 0.90� 0.09
ð1.95� 0.12Þ ð1.04� 0.06Þ ð1.84� 0.13Þ

β 2.68� 1.40 0.55� 0.44 1.50� 0.85
ð0.72� 0.06Þ ð0.53� 0.04Þ ð0.50� 0.04Þ

γ 0.16� 0.14 0.13� 0.18 0.21� 0.12
ð0.44� 0.02Þ ð0.30� 0.02Þ ð0.56� 0.02Þ

FIG. 3. The same as Fig. 2 except for fits to γ-triggered jet
spectra [40–42] in Pbþ Pb collisions at (left and middle)

ffiffiffi
s

p ¼
2.76 and (right) 5.02 TeV.
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Note that uncertainties as given by one-σ variances for
the parameters from fits to experimental data are quite large
due to large experimental data errors and few data points,
with the exception for γ-jet spectra at

ffiffiffi
s

p ¼ 5.02 TeV that
have smaller errors and more data points. The large
uncertainties come partially from the correlations of the
extracted parameters as shown in Fig. 1 for single jet
analysis. These uncertainties can be reduced as the quality
of experimental data improves as one can see in the case of
the Bayesian analysis of the LBT results. We should also
note that CMS data on γ-jet spectra [40–42] have not been
corrected for detector resolution as done in ATLAS experi-
ment [44], which can lead further corrections to the
extracted jet energy loss distributions.
Summary and discussions.—We have presented the first

attempt to extract jet energy loss distributions from MCMC
Bayesian analyses of experimental data on medium modi-
fication of both single inclusive and γ-triggered jet spectra
in Pbþ Pb collisions at

ffiffiffi
s

p ¼ 2.76 and 5.02 TeV. The
energy loss distributions from both hard processes have a
large width and the average jet energy loss increases with
vacuum jet energy slightly faster than a logarithmic form.
Results from LBT model simulations are consistent with
the data-driven extraction and indicate that a small number
of out-of-cone scatterings are responsible for the observed
jet quenching. Reducing experimental uncertainties in finer
pT bins should improve the precision of the Bayesian
extraction. One can also consider flavor (quarks and
gluons) dependence of the jet energy loss using PQCD
calculations of the initial fraction of jet flavors. Such
systematic extraction of jet energy loss distributions can
help to constrain model uncertainties in the study of jet
transport coefficient and other properties of jet-medium
interaction in high-energy heavy-ion collisions.
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