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Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria
which causes bacterial leaf streak (BLS) or bacterial chaff
disease in wheat and barley. The constant competition for zinc
(Zn) metal nutrients contributes significantly in plant–pathogen
interactions. In this study, we have employed a systematic in
silico approach to study the Zn-binding proteins of Xtu. From
the whole proteome of Xtu, we have identified approximately
7.9% of proteins having Zn-binding sequence and structural
motifs. Further, 115 proteins were found homologous to plant–
pathogen interaction database. Among these 115 proteins, 11
were predicted as putative secretory proteins. The functional
diversity in Zn-binding proteins was revealed by functional
domain, gene ontology and subcellular localization analysis.
The roles of Zn-binding proteins were found to be varied in the
range from metabolism, proteolysis, protein biosynthesis,
transport, cell signalling, protein folding, transcription
regulation, DNA repair, response to oxidative stress, RNA
processing, antimicrobial resistance, DNA replication and DNA
integration. This study provides preliminary information on
putative Zn-binding proteins of Xtu which may further help in
designing new metal-based antimicrobial agents for controlling
BLS and bacterial chaff infections on staple crops.
1. Introduction
The bacterial diseases of the crop plants place a major restraint on
crop production and result in significant global food production
losses and food security [1,2]. Xanthomonas translucens pv.
undulosa (Xtu) is a gram-negative bacterial pathogen of crop
plants, wheat and barley [3]. The infection of Xtu on wheat and
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barley causes bacterial leaf streak (BLS) and bacterial chaff diseases. BLS disease is distributed worldwide

and brings about 30–40% yield losses [4]. Wheat crop is one of the staple food crops which feed
approximately 30% of the total population and act as a rich source of macro- and micro-nutrients. The
nutrients acquisition by the pathogen and in response the nutrients immunity provided by the plant
host play critical roles in plant–pathogen interactions [5]. Also, the bacterial pathogens have a
complex association between the metabolic processes, regulation of expression and functioning of
virulence factors [6–8]. The efficient utilization of the available nutrients is required by the pathogenic
bacteria to survive inside the host milieu. The constant competition for the trace transition metal ions
is one of the key factors at the traffic circle of nutrient metabolism and virulence [9,10]. The transition
metal ions are necessary for the survival of all the living organisms. Approximately one-third of
all proteins contain one or more metal ions as cofactor for their structural stability and functional
activity [11].

The transition metal, zinc (Zn) represents the second most abundant metal cofactor after iron [10].
Zinc is stable as divalent cation (Zn2+) with complete filled outer shell d-orbital (3d10) and has no
redox activity [12]. Zinc metal performs a variety of catalytic, structural and regulatory activities in a
number of proteins [13]. Further, these activities assist in various biological and cellular processes like
gene expression, biosynthesis of extracellular peptidoglycans and amino acids, reactive oxygen
species (ROS) detoxifications, DNA repair, production of virulence-related proteins and antibiotic
resistance [13–15]. Zinc ion is the highly competitive divalent metal ion of Irving–Williams series
after copper (Cu) and therefore can easily replace the other metals from their cognate metalloenzyme
[16]. The intracellular pool of ‘free’ Zn in the cells must be kept low because of the high chelating
ability of Zn [17]. In bacteria, the Zn concentration may vary from the range of 0.1–1.0 mM [18].
Although zinc is an essential micronutrient, its higher concentrations result in significant toxicity to
the bacterial cell [18]. Therefore, a great challenge for the bacterial pathogens is to procure an
adequate concentration of Zn for maintaining their growth and survival during the infection.
Previously, it is a known fact that intracellular Zn-binding, Zn-sensing and import or export of Zn
ions helps in maintaining Zn homeostasis in bacteria [19–21]. Studies on Zn-homeostatic mechanisms
regulation of most of the bacteria like E. coli, B. subtilus, B. anthracis, Staphylococcus, Streptococcus has
been made earlier [22–27], which stated that Zn uptake and efflux system play roles in bacterial
virulence. Earlier, a systematic study on zinc proteome of E. coli was made using the assay of
radioactive Zn2+ binding on the total proteins fractionated by two-dimensional gel electrophoresis
[28]. The report stated that most of the newly identified Zn-binding proteins do not have known Zn-
binding motifs that were earlier identified in higher eukaryotes. Further, the usage of traditional
experimental techniques is restricted for the prediction of metalloproteins at complete proteome level.
This is due to time resolution, high cost, sensitivity and need of more expertise to prepare sample
and to handle specialized equipments precisely [29,30]. Therefore, the call of the hour is to use new
high-throughput technologies of post-genomic era for genome-wide identification of metalloproteins
[15,31–33].

A systematic computational approach has been used in the current study to identify and characterize
the Zn-binding proteins from the whole proteome of the Xtu strain 4699 [34]. Furthermore, the identified
Zn-binding proteins were also checked for their probable involvement in plant–pathogen interactions
and virulence. This primarily study provides us putative Zn-binding proteins which probably act as
targets for controlling BLS.
2. Material and methods
2.1. Proteome extraction and identification of Zn-binding proteins
The whole proteome of Xtuwas downloaded from Refseq National Centre for biotechnology Information
(NCBI) server. The complete proteome has 3536 proteins and all these were examined for the presence of
Zn-binding motifs using MetalPDB [35]. MetalPDB is a database of metalloproteins which provide
features of metalloproteins and their minimal functional sites. The information of metalloproteins
stored in MetalPDB is drawn from PDB, Pfam, CATH and SCOP databases. We have collected the
information of Zn-binding proteins from MetalPDB and prepared a local dataset of Zn-binding
proteins to perform stand-alone blastp search on the whole proteome of Xtu at expect value (e-value)
0.00001. The proteins which were found homologous to the Zn dataset of MetalPDB at e-value≤
0.00001 were further selected.
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The short-listed proteins were modelled by protein homology/analogy recognition engine v. 2.0

(Phyre2) program [36]. This is done because three-dimensional structure of the proteins aid to
determine its interactions with metal ions. Phyre2 server is built on hidden Markov model for creation
of three-dimensional structure of the protein. The high-throughput modelled proteins, having
confidence and query coverage more than or equal to 90% and 50%, respectively, were manually
chosen. The modelled proteins were scanned for the putative Zn-binding structural motifs using metal
ion binding site prediction and docking server (MIB) [37], which is built on a fragment transformation
method. In this method, the query protein was aligned to the metal binding templates that were
extracted from metal bound proteins present in PDB. The templates represent the local structure of
metal binding residues within 3.5 Å. According to MIB server, a metal binding site had to contain a
metal ion and at least two residues to quantify as a metal ion binding residues template. Each cluster,
after sequence and structural similarity, acquires a particular score, which is used for prediction of metal
binding sites. For the evaluation of sequence similarity, MIB server uses BLOSUM62 matrix, and for
calculation of structural similarity root mean square deviation of Cα atoms of the alignments was used.
At more than 95% specificity threshold, MIB server predicts the Zn-binding sites with 94.8% accuracy
and 71.1% sensitivity [37]. Ligplot+ visualization tool was further used to check the interactions of MIB
docked Zn2+ metal ion with the protein [38]. We found that interacting residues and interaction radii
provided by MIB vary in a wide range. Therefore, the interaction distance was raised from primary
sphere (up to 3.5 Å) (provided by MIB server) to secondary sphere (5 Å). Also, it was stated earlier that
second shell of interactions helps in stabilizing metal binding site, raises metal affinity and plays a role
in determining physical properties of transition metal complexes [39–41]. Further, we have ignored the
proteins which only bind to backbone (Cα) chain atoms. The proteins which were found to interact with
Zn2+ ion up to 5 Å were finally selected as putative Zn-binding proteins.
2.2. Functional annotation, gene ontology analysis and localization prediction of
Zn-binding proteins

The selected Zn-binding proteins were explored for functional domains, family and super-families using
different bioinformatics databases: InterProScan [42], Pfam [43] and NCBI-CDD [44]. The broad
classification of these proteins was done by literature reviews of identified domains and families.
Further, the clustergram was generated using MEGA6 [45], BioEdit [46] and EvolView [47] servers. To
construct and visualize the gene ontology (GO) [48] based molecular function and biological process
networks, a Cytoscape [49] plug-in ClueGO v. 2.3.3 [50] was used. In these networks, each node
indicates particular GO terms (biological or molecular) and edge indicates connections between GO
terms based on their gene association. The significance of the particular GO term was indicated by the
size of that particular node. The statistical kappa score method [51] was used in order to determine the
functional grouping of these identified GO terms. Further, the selected Zn-binding proteins were
analysed for their subcellular localization using bioinformatics utilities viz. PSORTb, CELLO and
SOSUI-GramN [52–54]. The consensus of these was taken in order to predict precise localization.

2.3. Prediction of putative Zn-binding proteins probably involved in plant–pathogen
interactions

The predicted Zn-binding proteins were examined for their participation in plant–pathogen
interactions using blastp search against the experimentally validated virulent and effector proteins of
bacterial plant pathogens present in Pathogen–Host Interaction database (PHI-base) [55]. The
proteins that were found homologous at e-value ≤ 0.0001 were short-listed and probably considered
to play roles in plant–pathogen interactions. Further, these short-listed proteins were scanned for
their secretory nature using neural network-based computational servers SignalP [56] TatP [57] and
SecretomeP [58], respectively. The proteins showing presence of signal peptide, Tat motif or proteins
having Sec score more than or equal to 0.5 were selected as probable secretory proteins. To avoid
the false positive prediction of secretory Zn-binding proteins, we have checked the presence of
transmembrane α-helix in these selected proteins using transmembrane hidden Markov model
(TMHMM) [59] and hidden Markov model for topology prediction (HMMTOP) [60] servers. The
proteins having single or no transmembrane helix were short-listed further and referred as putative
secretory Zn-binding proteins.
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Figure 1. Interactions of Zn2+ metal ion with amino acid residues. The graph here represents the amino acid residues interacting
with Zn2+ ion. The X-axis represents here the name of amino acid residues and Y-axis is showing number of amino acid residues.
The frequently interacting residues with Zn metal ions were Glu, Asp, His and Cys.
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3. Results
3.1. Zinc-binding proteins and their binding patterns presented by Xtu proteome
Out of the complete proteome of Xtu, 346 proteins showed the occurrence of putative Zn-binding
sequence motifs. Based on the modelling criteria and manual verification of structures’ intactness, 335
proteins were short-listed further (electronic supplementary material, table S1). After Zn-protein
interactions analysis by Liglpot+, 279 proteins showed interactions up to 5 Å which were selected
further as putative Zn-binding proteins (electronic supplementary material, table S2). The interacting
amino acid residues in Zn-binding proteins were Glu > Asp >His > Cys >Arg >Gly >Gln > Thr > Ser =
Lys > Tyr > Leu >Ala >Asn > Val > Ile >Met = Trp > Phe > Pro (figure 1).

3.2. Functional annotation and cellular compartmentalization of predicted Zn-binding proteins
The functional domain investigation of the scanned Zn-binding proteins showed the foremost existence
of short chain dehydrogenase/reductase (SDR), response regulator receiver, alcohol dehydrogenase/
GroES (ADH/GroES), tRNA synthetase and ABC transporter domains. Based on the literature studies
of the identified domains, the Zn-binding proteins were widely classified into 13 classes. Most of the
proteins associated with the classes of metabolic process (122), proteolysis (24), protein biosynthesis
(22), transport (21), cell signalling (20), protein folding (13), DNA repair (12), transcription regulation
(12), response to oxidative stress (11), RNA processing (9), antimicrobial resistance (7), DNA
replication (4) and DNA integration (2). The detailed description is displayed in figure 2 and
electronic supplementary material, table S3. The examination of cellular compartmentalization of
short-listed Zn-binding proteins indicates that 76% of the proteins reside in cytoplasm, 15.8% in
periplasm, 7.2% in inner-membrane, followed by outer-membrane (0.7%) and extracellular space
(0.3%) (figure 3; electronic supplementary material, table S3).

3.3. Gene ontology network analysis of Zn-binding proteins
The GO biological network of Zn-binding proteins was configured on 13 kappa score groups which
contain 122 GO biological process terms and 623 GO biological terms connections (figure 4;
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Figure 2. The functional classification of Zn-binding proteins. The functional classification of identified Zn-binding proteins was done
on the basis of their domains. The clustergram was constructed by MEGA6 [45]. The inner circle of the clustergram represents sequence
ID of the proteins. The middle and outer circle represent the functional domain and broad categories of the Zn-binding proteins. The
most common domains in Zn-binding proteins of Xtu were SDR, response regulator, ADH/GroES, tRNA synthetase and ABC transporter.
These proteins have diverse roles in metabolic processes, proteolysis, protein synthesis and transport.
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Figure 3. Subcellular localization of predicted Zn-binding proteins of Xtu. The pie chart shown here represents subcellular
localization of predicted Zn-binding proteins of Xtu. Most of the proteins found to be localized in cytoplasm. Small number of
proteins found in periplasm and inner-membrane. A little fraction of proteins found in outer-membrane and extracellular space.
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electronic supplementary material, table S4). The GO terms which showed their presence in more than
two functional groups indicate their roles in multiple biological processes. The GO biological terms
cellular iron ion homeostasis and lipid modification represented the most significant groups in the
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GO biological process network. In order to check the involvement of Zn-binding proteins in biological
processes, the analysis of the network was made and the number of interactions was estimated. The
cellular macromolecule metabolic process (GO:0044260) and organic substance biosynthetic process
(GO:1901576) were found as the most connected nodes with 69 links of each (electronic
supplementary material, table S4). Further, to determine the molecular activities of scrutinized Zn-
binding proteins the GO molecular function network was built on 18 kappa score groups. The
network has 71 GO molecular function terms (nodes) and 136 connections (figure 5; electronic
supplementary material, table S5). The most significant groups in the network were transition metal
ion binding, iron ion binding, metallopeptidase activity and oxidoreductase acting on the CH–OH
group of the donors and NAD or NADP as acceptor. The GO:0046872 and GO:0043169 were the
most coupled GO molecular terms with 48 and 46 links of each, respectively (electronic
supplementary material, table S5).
3.4. Zinc-binding proteins probably involved in plant–pathogen interactions
The Zn-binding proteins contribute in plant–pathogen interactions. Therefore, the selected 279
Zn-binding proteins were examined for their probable role in plant–pathogen interactions. Out of 279
proteins, 115 proteins were found homologous to PHI-base (electronic supplementary material, table
S6). Among 115 proteins, 11 proteins were found to be secretory with single or no transmembrane
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helix (electronic supplementary material, table S7). These identified homologous Zn-binding proteins are
probably considered to play important roles in bacterial virulence, survival and plant–pathogen
interactions. The details of functional domains and categories of these proteins are given in table 1
and figure 6.
4. Discussion
The present study focuses on the bioinformatic identification of potential Zn-binding proteins within the
whole proteome of Xtu and their putative roles in its physiology and virulence. We have found 279
putative Zn-binding proteins which represent 7.9% of the whole proteome of Xtu. Previously, it was
reported that Zn proteome of an organism varies in range from 4% to 10% of the whole proteome
[126]. The predicted Zn proteome of Xtu not only contain Zn-binding proteins which exist in proper
coordination (biological relevant assembly), but also Zn-substituted proteins and proteins participate
as Zn buffering system. Earlier, it was stated that cytosolic Zn-binding proteins, transporters localized
in cytoplasmic membranes and sensors of cytoplasmic free Zn ions are the molecules involved in
Zn-homeostatic mechanisms of a cell [17]. Glutamate, aspartate, histidine and cysteine were found as
frequently interacting residues in the binding pocket of Zn-binding proteins. Earlier, it was known
that oxygen atoms of glutamate and aspartate, nitrogen atom of histidine and sulfur atom of cysteine
were commonly interacting with Zn metal ions [127]. Some predicted proteins have one or two
coordinates, i.e. do not have stable coordination. This may be due to the reason that MetalPDB and
MIB rely on asymmetric units rather than biologically relevant assemblies [35,37]. Secondly, it may be
because some ligand atom (water, inorganic or organic molecule) may bind to metal ion for their
stable coordination in the biological active form [12].



Table 1. Zn-binding proteins probably involved in pathogen–host interactions.

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

1 WP_004426362.1 cytoplasmic 2-isopropylmalate synthase,

bacterial-type

metabolic

process

[61]

2 WP_003471682.1 cytoplasmic 3-dehydroquinate synthase metabolic

process

[62]

3 WP_003468654.1 cytoplasmic 3-hydroxyacyl-CoA

dehydrogenase,

NAD-binding domain

metabolic

process

[63]

4 WP_047324684.1 cytoplasmic 3-hydroxyacyl-CoA

dehydrogenase,

NAD-binding domain

metabolic

process

[63]

5 WP_003472081.1 periplasmic alpha/beta hydrolase fold metabolic

process

[64]

6 WP_003465615.1 cytoplasmic CobQ/CobB/MinD/ParA

nucleotide-binding

domain

metabolic

process

[65]

7 WP_038237017.1 cytoplasmic cytochrome P450 metabolic

process

[66]

8 WP_047325129.1 cytoplasmic cytochrome P450 metabolic

process

[66]

9 WP_003465522.1 cytoplasmic enoyl-CoA hydratase/

isomerase

metabolic

process

[67]

10 WP_003468480.1 cytoplasmic enoyl-CoA hydratase/

isomerase

metabolic

process

[67]

11 WP_047325628.1 cytoplasmic enoyl-CoA hydratase/

isomerase

metabolic

process

[67]

12 WP_003465369.1 cytoplasmic fibronectin type III-like

domain

metabolic

process

[68]

13 WP_003466789.1 cytoplasmic GDP-mannose 4,6

dehydratase

metabolic

process

[69]

14 WP_003469871.1 periplasmic glycoside hydrolase

family 10

metabolic

process

[70–72]

15 WP_003469868.1 periplasmic glycoside hydrolase

family 10

metabolic

process

[70–72]

16 WP_047325488.1 periplasmic glycoside hydrolase

family 3

metabolic

process

[70–72]

17 WP_080964854.1 periplasmic glycoside hydrolase

family 3

metabolic

process

[70–72]

18 WP_047324805.1 cytoplasmic imidazoleglycerol-phosphate

dehydratase

metabolic

process

[73]

(Continued.)
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Table 1. (Continued.)

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

19 WP_003468529.1 cytoplasmic isocitrate/isopropylmalate

dehydrogenase

metabolic

process

[74]

20 WP_047325244.1 cytoplasmic isocitrate/isopropylmalate

dehydrogenase

metabolic

process

[74]

21 WP_047324950.1 cytoplasmic NAD-dependent epimerase/

dehydratase family

metabolic

process

[75]

22 WP_047325529.1 cytoplasmic NAD-dependent epimerase/

dehydratase family

metabolic

process

[75]

23 WP_047324797.1 cytoplasmic pantoate ligase metabolic

process

[76]

24 WP_003468806.1 cytoplasmic phosphopantetheine

attachment site

metabolic

process

[77]

25 WP_047325261.1 inner-membrane polysaccharide deacetylase metabolic

process

[78]

26 WP_047324952.1 cytoplasmic pre-ATP-grasp domain metabolic

process

[79]

27 WP_047324777.1 cytoplasmic S-adenosyl-L-methionine-

dependent

methyltransferase

metabolic

process

[80]

28 WP_003465242.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

29 WP_003465445.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

30 WP_003466959.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

31 WP_003467341.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

32 WP_003468804.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

33 WP_003469170.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

34 WP_003472018.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

35 WP_003472098.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

36 WP_004425521.1 periplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

37 WP_047324452.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

(Continued.)
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Table 1. (Continued.)

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

38 WP_047324671.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

39 WP_047324755.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

40 WP_047324951.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

41 WP_047325420.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

42 WP_047325583.1 cytoplasmic short-chain dehydrogenase/

reductase SDR

metabolic

process

[81,82]

43 WP_003473108.1 cytoplasmic trimeric LpxA-like metabolic

process

[83]

44 WP_003470036.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

45 WP_038237239.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

46 WP_038238095.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

47 WP_038238771.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

48 WP_047324470.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

49 WP_047324585.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

50 WP_047324619.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

51 WP_047325089.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

52 WP_047325265.1 cytoplasmic alcohol dehydrogenase

GroES-like domain

metabolic

process

[84–86]

53 WP_004425530.1 periplasmic carboxylesterase family metabolic

process

[87,88]

54 WP_003470615.1 cytoplasmic cyclophilin-type peptidyl-

prolyl cis-trans

isomerase/CLD

protein folding [89,90]

55 WP_004426584.1 periplasmic FKBP-type peptidyl-prolyl

cis-trans isomerase

domain

protein folding [91–93]

(Continued.)
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Table 1. (Continued.)

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

56 WP_038239202.1 periplasmic FKBP-type peptidyl-prolyl

cis-trans isomerase

domain

protein folding [91–93]

57 WP_047324842.1 cytoplasmic HSP40/DnaJ peptide-

binding

protein folding [93,94]

58 WP_003468012.1 cytoplasmic Hsp70 protein/DnaK protein folding [93,94]

59 WP_004426468.1 cytoplasmic Hsp70 protein/DnaK protein folding [93,94]

60 WP_003471408.1 cytoplasmic Peptidyl-prolyl cis-trans

isomerase domain

protein folding [91–93]

61 WP_003470942.1 cytoplasmic EAL domain cell signalling [95]

62 WP_003471228.1 cytoplasmic GGDEF domain cell signalling [96]

63 WP_047324417.1 cytoplasmic GGDEF domain cell signalling [96]

64 WP_003465234.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

65 WP_003465620.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

66 WP_003466157.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

67 WP_003467543.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

68 WP_003469200.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

69 WP_003469280.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

70 WP_003470782.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

71 WP_003472647.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

72 WP_003472648.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

73 WP_003481607.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

74 WP_047324961.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

75 WP_047325048.1 cytoplasmic response regulator receiver

domain

cell signalling [97,98]

76 WP_003466285.1 inner-membrane ABC transporter transport [18,99]

77 WP_003466345.1 inner-membrane ABC transporter transport [18,99]

78 WP_003468030.1 inner-membrane ABC transporter transport [18,99]

79 WP_004425452.1 inner-membrane ABC transporter transport [18,99]

(Continued.)
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Table 1. (Continued.)

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

80 WP_038238334.1 inner-membrane ABC transporter transport [18,99]

81 WP_047325000.1 inner-membrane ABC transporter transport [18,99]

82 WP_003469645.1 inner-membrane cytochrome c oxidase

subunit III

transport [100,101]

83 WP_003471844.1 inner-membrane cytochrome c oxidase

subunit III

transport [100,101]

84 WP_003466735.1 cytoplasmic pilus retraction protein PilT transport [102]

85 WP_003471666.1 cytoplasmic pilus retraction protein PilT transport [102]

86 WP_003467936.1 cytoplasmic ’cold-shock’ DNA-binding

domain

transcription

regulation

[103]

87 WP_003472086.1 cytoplasmic ’cold-shock’ DNA-binding

domain

transcription

regulation

[103]

88 WP_003488188.1 cytoplasmic ’cold-shock’ DNA-binding

domain

transcription

regulation

[103]

89 WP_047324567.1 cytoplasmic histone deacetylase domain transcription

regulation

[104]

90 WP_003473181.1 cytoplasmic MerR HTH family regulatory

protein

transcription

regulation

[105]

91 WP_047324520.1 cytoplasmic Sigma-54 interaction

domain

transcription

regulation

[106]

92 WP_003468516.1 cytoplasmic OmpR/PhoB-type

DNA-binding domain

transcription

regulation

[107]

93 WP_003468538.1 cytoplasmic zinc finger, ClpX C4-type transcription

regulation

[108]

94 WP_003470669.1 cytoplasmic ribosomal protein L2,

bacterial/organellar-type

protein

biosynthesis

[109]

95 WP_003469157.1 cytoplasmic ribosomal protein S12/S23 protein

biosynthesis

[110]

96 WP_047324810.1 cytoplasmic tRNA synthetase class II

core domain

(G H P S and T)

protein

biosynthesis

[111,112]

97 WP_047324986.1 cytoplasmic tRNA synthetases

class II (A)

protein

biosynthesis

[111,112]

98 WP_003472142.1 cytoplasmic tRNA synthetases

class II (D K and N)

protein

biosynthesis

[111,112]

99 WP_003472589.1 cytoplasmic tRNA synthetases

class II (D K and N)

protein

biosynthesis

[111,112]

100 WP_047324979.1 cytoplasmic tRNA synthetases

class II (D K and N)

protein

biosynthesis

[111,112]

(Continued.)
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Table 1. (Continued.)

s. no.

sequence ID of
putative Zn-binding
protein

subcellular
localization functional domain/family

broad functional
class reference

101 WP_003466231.1 periplasmic CopA/multicopper oxidase response to

oxidative

stress

[113]

102 WP_003470527.1 periplasmic copper/zinc superoxide

dismutase (SOD)

response to

oxidative

stress

[114]

103 WP_038238706.1 periplasmic copper/zinc superoxide

dismutase (SOD)

response to

oxidative

stress

[114]

104 WP_047325709.1 cytoplasmic maltose/galactoside

acetyltransferase

response to

oxidative

stress

[115]

105 WP_003472119.1 cytoplasmic MutL C-terminal

dimerization domain

DNA repair [116]

106 WP_003467943.1 cytoplasmic TatD-related DNase DNA repair [117]

107 WP_047324617.1 cytoplasmic UvrA DNA repair [118]

108 WP_003465625.1 outer-membrane penicillin-binding

protein 1B

antimicrobial

resistance

[119,120]

109 WP_047324608.1 inner-membrane penicillin-binding

protein 1C

antimicrobial

resistance

[119,120]

110 WP_003467386.1 cytoplasmic RNase_PH RNA processing [121,122]

111 WP_080964784.1 cytoplasmic RNB domain RNA processing [121,122]

112 WP_004425670.1 cytoplasmic Clp ATPase proteolysis [123]

113 WP_003471337.1 inner-membrane peptidase family M41 proteolysis [124]

114 WP_003477578.1 cytoplasmic integrase core domain DNA integration [125]

115 WP_047324635.1 cytoplasmic integrase core domain DNA integration [125]
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It was documented earlier that Zn-binding proteins act as a cofactor for all the six types of enzymes,
and therefore contribute significantly in various metabolic and other cellular processes, i.e. DNA repair,
cell signalling, ROS detoxification and antimicrobial resistance [13,28,128–132]. Zinc is also known to
bind proteins which are involved in gene expression and regulation, like sigma factor interacting
proteins, RNA polymerases, tRNA synthetases, some ribosomal proteins and transcriptional factors
[133–137]. In our study, SDR, response regulator receiver, ADH/GroES, tRNA synthetase and ABC
transporter domains were commonly found in selected Zn-binding proteins. Further, the broad
classification of these proteins based on domain description indicates their primary roles in
metabolism (carbohydrates, proteins, lipid, nucleotides, etc.), proteolysis, protein biosynthesis,
transport, cell signalling, transcription regulation protein folding and response to oxidative stress. The
GO biological process network was in accordance with the domain-based broad classification. This
network was also found to be enriched with the process of metabolism, signal transduction,
proteolysis, lipid modification, response to ROS, protein peptide propyl isomerization and cellular ion
homeostasis. Further, the GO molecular function network supports the findings of functional domain
and GO biological process network, which signifies that most of the proteins involved in the
metabolism have molecular activities of transition metal binding, nucleotide binding and NAD
binding [9]. Also predicted Zn-binding proteins having hydrolase and transaminase activities may
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contribute in metabolic processes [13]. The proteins having cytochrome oxidase, peptidyl-propyl cis-trans

isomerase and metallopeptidase activity probably specify their roles in transport, protein folding and
proteolysis, respectively [91,100,138]. The subcellular localization of the proteins also determines their
biological function [139]. The cellular compartmentalization of the Zn-binding proteins satisfies the
fact that most of the proteins localized in cytoplasm are involved in metabolism, proteolysis, protein
biosynthesis and cell signalling. Majority of the transporter proteins reside in inner-membrane.

Further, it was well documented earlier that Zn-binding proteins have considerable roles in bacterial
toxin synthesis, virulence, antimicrobial resistance and host–pathogen interactions [14,140,141]. Here, we
have found 115 PHI-base homologous Zn-binding proteins that probably engage in virulence and
survival of Xtu. The Zn ions co-regulate the functioning of secretory proteins and contribute in plant–
pathogen interactions [10], so secretory Zn-binding proteins have also been identified and checked for
their putative roles in bacterial pathogenicity. Eleven proteins were found to be putative secretory
Zn-binding proteins which were homologous to PHI-base.

These 115 proteins were categorized into 12 broad classes on the bases of domain description and their
putative role in virulence (figure 6 and table 1). A total of 53 proteins were found in the category of
metabolic process, out of which 15 proteins have SDR and nine proteins ADH/GroES domains. Earlier it
was documented that SDR acts as a scaffold for redox sensor system and controls metabolic routes,
transcription, cell signalling and stress, which further contributes in bacterial adaptation and pathogenesis
[81,82]. ADH requires Zn metal ion for its catalytic activity and plays significant roles in alcohol
fermentation, stress tolerance and virulence of bacteria [84–86]. Five secretory Zn-binding proteins were
found in the class of metabolic process having glycoside hydrolase (4) and carboxylesterase (1) domain. It
was stated previously that some glycoside hydrolases play role in host–microbe interactions and the
enzymatic activity of some glycoside hydrolases was inhibited by Zn2+ metal ion [70–72]. The
carboxylesterase protein also has affinity for Zn ion [87] and its role to hydrolyse ester bonds and
virulence of bacteria was also known earlier [88,142].

We have found seven proteins that belong to the category of protein folding; among these, five proteins
were confined to cytoplasm having Hsp70/DnaK (2), Hsp40/DnaJ peptide (1), PPIase (1) and cyclophilin-
type PPIase (1) domains. Two proteins were found putative secretory, out of seven. These two proteins are
localized in periplasm and have FKBP-type PPIase domain. Earlier, Linke et al. [94] reported that Zn-centre
II ofDnaJmediates the interactions betweenDnaJ andDnaK,which is crucial for closing theDnaK substrate
binding site and for locking-in the substrate [94]. It was stated previously that PPIase activity of cyclophilin
is inhibited byZn2+ ion inmousemacrophages cell line [89]. Further, a crystal studyonMip proteinwhich is
a propylisomerase of Legionella pneumonia indicated that Zn2+ is required to mediate crystal contacts
between the C-terminal FKBP domains of adjacent Mip dimmers [92]. Previous studies showed that all
these domains are involved in catalysing the step of protein folding which helps the pathogens with
stress adaptation, survival in harsh conditions and further aid in virulence [90,91,93].

A total of 15 cytoplasmic proteins were found in the category of cell signalling. Among these, 12
proteins have response regulator domain, two proteins have GGDEF and one protein has EAL
domain. It was reported earlier that response regulator domain of two-component system is involved
in cell-to-cell communication and adaptation to the different environment inside and outside host
which is prerequisite for pathogenicity [97,98]. The role of GGDEF and EAL domains to mediate
virulence of Xanthomonas has also been noted earlier [95,96].

Six inner-membrane ABC transporter proteins were identified in this study. Previously, it was known
that ABC transporters are involved in import and export of Zn ions and help to maintain Zn homeostasis
which contributes in bacterial virulence [18,99]. Two inner-membrane cytochrome C oxidase (COX3)
proteins and two cytoplasmic pilus retraction proteins (PilT) have also been found in the category of
transport. It was documented earlier that COX3 are present only in bacteria mainly in pathogenic
bacteria and are critical for many anaerobic biological processes, colonizing low oxygen tissues, and
biogenesis of oligomeric membrane proteins [101]. Also, the role of PilT proteins in twitching motility,
cell adherence, biofilm formation and host colonization was known previously [102].

In the class of transcription regulation, we have found eight cytoplasmic Zn-binding proteins. Out of
these, three proteins have Cold-shock DNA-binding domain (CSD). CSD containing proteins are
evolutionarily conserved and extensively distributed nucleic acid binding proteins that aid in
transcription regulation and are involved in numerous cellular processes like low-temperature
adaptation, nutrients stress and cell growth. CSD proteins of plants have additional glycine-rich
regions with CCHC-type zinc fingers. Kim et al. [143] reported that CSD proteins and glycine-rich
RNA-binding proteins from A. thaliana help E. coli to grow and survive better in cold-shock condition,
i.e. promote cold adaptation process [143]. The other five proteins in the category of transcription
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regulation have histone deacetylase, Mer_HTH, Sigma-54 interaction, OmpR/PhoB-type DNA-binding

and ClpX C4-type domains. All these domains require Zn for their catalytic activities, and also the
roles of these in the regulation of transcription, virulence and pathogenicity of bacteria were
previously documented in various studies [104–108].

Seven cytoplasmic proteins were found in the category of protein biosynthesis. Five of having tRNA
synthetase II, one has ribosomal L2 and one has ribosomal S12/S23 domain. It was previously found that
Zn ion helps in structural stability of these identified domains, which are involved in protein biosynthesis
and also act as targets for many biocontrol agents [109–111,144]. A total of four proteins were found in
the class of response to oxidative stress. Out of these, three were periplasmic secretory Zn-binding
proteins having domains copper/zinc superoxide dismutase domain (SOD) (2) and CopA (1). The
roles of these domains in radical oxygen species (ROS) detoxification, Zn homeostasis and bacterial
virulence and survival were listed in earlier studies [113,114]. A cytoplasmic galactoside
acetyltransferase domain containing protein was also found in this class, which is known to aid in
cellular detoxification by acetylating non-metabolizable pyranosides [115].

We have categorized three cytoplasmic proteins having domains UvrA, MutL and TatD in the
category of DNA repair. Earlier, it was reported that Zn ion is involved in structure architecture of
Zn-finger domain of UvrA protein, and the role of C-terminal Zn-finger domain of UvrA protein has
been noticed in regulation of damage-specific DNA binding [118]. MutL domain at its C-terminal
contains a Zn-binding loop, a binding site for clamp DnaN and an endonuclease active site, which are
critical for mismatch repair [116]. The TatD DNase domain has 30-50 exonuclease activity which
digests single-stranded DNA and contributes in H2O2-induced DNA repair [117].

A secretory outer-membrane penicillin-binding protein (PBP) 1B and an inner-membrane PBP_1C
were categorized in the class of antimicrobial resistance. Earlier, it was documented that PBP proteins
not only localized in inner-membrane but also in outer-membrane, require Zn ion for their structural
stability and are involved in antimicrobial resistance [119,120]. Two cytoplasmic proteins having
RNase_PH/S1/KH and RNB domain were grouped in the class of RNA processing. Previous studies
showed that RNase/RNB ribonucleases are critically required for RNA degradation, RNA and protein
quality control and stress response, which results in raising virulence of the pathogens [121,122].

A cytoplasmic Clp ATPase domain containing protein and an inner-membrane peptidase M41 protein
were categorized in class of proteolysis. Prior studies provide evidence that Clp ATPase causes cell
proteolysis and plays central roles in virulence, gene expression, stress response and antimicrobial
resistance [123]. Also, the role of Zn metallopeptidase M41 was previously listed in proteolysis and
virulence [124].

Two cytoplasmic integrase core domain containing proteins were listed in the category of DNA
integration. Formerly, it was known that bacterial integrase mediates site-specific recombination
between bacterial and host cell [125] and further aids in pathogenesis.
5. Conclusion
To conclude, this study represents the first inclusive in silico report on Zn-binding proteins of Xtu. The
functional diversity of Zn-binding proteins of Xtu unveil the facts that these proteins are metabolically
versatile and contribute in various cellular and biological processes. The overall study provides the
putative Zn-binding proteins repository and symbolizes their probable roles in growth, development,
survival, pathogenicity and defence activities of Xtu. The presented repository may serve as starting
material for experimental analysis which further paves the way to get insight into their mechanistic
role in plant–pathogen interactions. Furthermore, in future these Zn-binding proteins may act as
targets for designing metal-based antimicrobial agents in order to improve overall crop yield.
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