
1

                                                                                           

OBJECT COUNTING AND DENSITY CALCULATION

USING MATLAB

Submitted by

PREM KUMAR. V, BARATH. V, PRASHANTH. K

For more information contact: premkumarbullets@gmail.com,                            
prem91914@gmail.com             

                                     

  



2

ABSTRACT

Counting the number of objects is an integral part of image processing. 

Knowing the number of objects present in the image can be useful for further 

analysis in a wide range of applications. In this project we propose a simple 

method for automatically determining the number of objects in an image . Once 

the number of objects are determined the objects per unit area or the density can 

also be estimated. Existing methods involve counting based on area of objects, 

color of objects, applying edge detection techniques etc. There are also 

applications that involve a large amount of hardware components for counting  

that further adds to the cost and maintenance which is a tedious work. The 

proposed system  involves converting the input image into a format such that 

the number of objects can be calculated based on the connected components 

present in the enhanced image. This project work also aims at determining the 

correct value of density by clearing the objects touching the borders of the 

image. In this project three applications are taken into account and using Matlab 

with  image processing toolbox the count and density values are calculated for 

each.



3

                                                          CHAPTER 1

1.INTRODUCTION

Images contain a wealth of objects and patterns which may convey 

information about underlying mechanism and methods. Counting involves 

estimating the number of objects in an image or a still video frame. Counting 

arises in many real-time applications such as counting cells in microscopic 

images, number of people, number of vehicles on road etc.

This goal is to accurately estimate the count, but however we evade the 

hard task of localizing or drawing boundary around the objects. Object detection 

is a very hard problem to be solved, especially in case of overlapping objects. 

Once the count is known , the density of objects or the number of objects 

per unit area can be estimated.

As mentioned earlier, the existing works under counting involve a large 

amount of hardware which also adds to the cost. Now with a simple image 

processing software such as matlab many parameters can be estimated from 

images. In this paper we have dealt with  3 such applications namely-

 Cell counting

 People counting based on faces

 Vehicle counting

1.1 Cell counting:

COUNTING cells is often a necessary but tedious step for in vitro cell 

culture.         Consistent cell concentrations ensure experimental reproducibility 

and accuracy. Cell counts are important for monitoring cell health and 

proliferation rate, assessing immortalization or transformation, seeding cells for

subsequent experiments, transfect ion or infection, and

Preparing for cell-based assays. 



4

We propose a system for counting cells in image  by using matlab and image 

processing toolbox. It can be used for accurate calculation of object  and density 

of image

1.2 Counting people based on the faces detected:

One of the important applications of counting includes counting people 

say in a hall or in a shopping mall etc,. People can be counted based on the 

number of faces detected. Face detection is the process in which the human 

faces are detected from a color image. Once the number of faces are detected 

the density can be calculated. There are many ways by which faces can be 

detected one such method is skin based detection. Rectangles can be used to 

map the faces in the image. Nowadays Face detection is used in many day to 

day application.

1.3 Vehicle counting:

Transportation research involves counting number of vehicles on road as 

well as finding the density of traffic in a particular area. There are many 

methods of detecting vehicles on road such as motion detection, installing lasers 

on both sides of the road, etc., which is tedious and involves large number of 

hardware. This method uses image processing techniques to count the number 

of vehicles on road and estimate the density. The  number of vehicles found can 

be used for surveying or controlling the traffic signal.



5

1.4 EXISTING SYSTEMS:

1.4.1 CELL COUNT:

 Methods include counting based on the area of objects, color of 

objects, applying edge detection techniques etc.

         1.4.2 Counting people based on the faces:

 Existing methods based on skin detection provide inaccurate 

count.

 Existing method involves  complex algorithms and difficult to 

compute the faces.

 Existing method of people counting involves a lot of hardware 

components.

1.4.3 VEHICLE COUNT:

 In existing system a timer based traffic operation is used which 

does not estimate traffic parameters. This results in green light 

being shown to an empty road.

 Various sensors have been employed to estimate traffic parameters 

for updating traffic information, magnetic loop detectors have been 

the most used technologies in the existing system.

1.4.4 DEMERITS OF THE EXISTING SYSTEM:

• Existing methods involve a large amount of hardware components.

• Maintenance and cost are inconvenient.

• Calculating the number of objects per unit area are not accurate.

• The installation and maintenance of  vehicle counting systems are very 

high.



6

1.5 PROPOSED SYSTEM:

1.5.1 CELL COUNTING:

Counting cells in Drosophila is a complex task, due to variability in 

image quality resulting from different cell markers. Cells are segmented 

according to their characteristics. But cell shape changes with cell state 

(i.e. arrest, mitosis, or apoptosis). For instance, during mitosis the shape is 

irregular and it can be difficult to determine when a dividing cell can be

considered as two daughter cells. Nuclei and glia cells have a more regular 

shape, between elliptical and circular. Apoptotic cells have initially a very 

irregular shape, later on very round, and can appear subdivided into 

different parts depending on the timing within apoptosis. Depending on the 

kind of cells or cell state to be visualised, a different cell marker (i.e. 

antibody) is employed. As a result, different image-processing methods 

must be developed to quantify cells of different qualities.

Formula used:

OBJECTS PER UNIT AREA =        NO OF OBJECTS

                                                                 TOTAL SIZE OF IMAGE

1.5.2 PEOPLE COUNTING:

 In this proposed method we use skin based face detection for 

counting people.

 In this method multiple faces can be detected at a time or even a 

group of people can be detected.

 This method not only detects the faces but also count them.

 From count the density can also be derived.

 Both image and video can be given as  input to the compiler.



7

1.5.3 VEHICLE COUNTING:

 This proposed system of counting vehicles involves comparing the 

images of road with and without vehicles.

 On comparing two images we can find the difference between 

images.

 Based on the difference obtained, the number of vehicles as well as 

count can be estimated. 

1.6 SOFTWARE REQUIREMENTS:

 MATLAB R2010a with image processing toolbox .



8

                                                   CHAPTER 2

2. LITERATURE SURVEY:

2.1 CELL COUNT:

Victor Lempitsky and Andrew Zisserman-“Learning To Count 

Objects in Images” deals with the counting problem is the estimation of 

the number of objects in a still image or video frame. It arises  in many 

real-world applications including cell counting in microscopic images, 

monitoring crowds in surveillance systems, and performing wildlife 

census or counting the number of trees in an aerial image  of a forest. We 

take a supervised learning approach to this problem, and so require a set 

of training images with annotation. 

Christian Wolf  and Jean-Michel Jolion of Technical Report LIRIS 

discussed about  Object count/Area Graphs for the Evaluation of Object 

Detection and Segmentation Algorithms Evaluation of object detection

algorithms is a non-trivial task: a detection result is usually evaluated by 

comparing the bounding box of the detected object with the bounding

box of the ground truth object.

Andr´e R.S. Mar¸cal Faculdade de Ciˆencias, Universidade do 

Porto DMA-‘Alternative Methods for Counting Overlapping Grains in 

Digital Images’ deals with Standard granulometry methods are used to 

count the number of disjoint grains in digital images



9

2.2 PEOPLE COUNT:

Bhaskar Gupta , Sushant Gupta , Arun Kumar Tiwari of  ABES 

Engineering College, Ghaziabad discussed about  Face Detection using 

Gabor Feature and Artificial Neural Network which uses a Gabor filter 

feature to extract facial features from the local image.

Sanjay Kr. Singh1, D. S. Chauhan2, Mayank Vatsa3, Richa Singh3 

of Engineering Institute of Engineering and Technology Jaunpur, India

discussed about a Robust Skin Color Based Face Detection Algorithm. 

They have compared the algorithms based on the color spaces 

RGB,YCbCr and HSI and have combined them to get a new skin color 

based face detection algorithm which gives higher accuracy.

Gary Chern, Paul Gurney, and Jared Starman discussed about Face 

detection using Color based masking. They developed an algorithm 

capable of locating each face in a color image of the class. They were 

given seven training images along with the corresponding ground truth 

data to develop and train algorithms on .

In 2003 Waqar Mohsin, Noman Ahmed, Chung-Tse Mar of 

Stanford university discussed about an method to detect faces in an color 

image using rejection based classification.

         



10

2.3 VEHICLE COUNT:

From the proceedings of the 26th National IT conference 

,Colombo,Sri Lanka M. Pancharatnam, D.U.J. Sonnadara  of Department 

of physics, University of Colombo, Sri Lanka discussed about Vehicle 

Counting and Classification from a Traffic Scene using adoptive 

background subtraction technique. After the background subtraction, 

using threshold and median filters, isolated image blobs are identified as 

individual vehicles.

Erhan ˙INCE from Department of Electrical and Electronic 

Engineering, Eastern Mediterranean University, Famagusta, North 

Cyprus, via Mersin 10 TURKEY discussed about Measuring traffic flow 

and classifying vehicle types: A surveillance video based approach 

based on invariant moments and shadow aware foreground masks.

Pejman Niksaz  Science &Research Branch, Azad University of 

Yazd, Iran discussed about Automatic Traffic Estimation Using Image 

Processing based on background elimination and lane masking . 

From the paper of L.G.C Wimalaratna1 and D.U.J. Sonnadara2, 
1Virtusa (Pvt.) Ltd., Trans Asia Commercial Complex, Colombo 2, 
2Department of Physics, University of Colombo, Colombo 3 which deals 

with the Estimation of the Speeds of Moving Vehicles from Video 

Sequences the concept of pre-processing video images using gray scale 

and median filter to extract moving vehicles from a traffic scene is 

surveyed. This method finds the difference between three consecutive 

video frame and filters through edge detection filter Blob counting.



11

                                                   CHAPTER 3

3. BLOCK DIAGRAM:

3.1 CELL COUNT:

                                    Fig 3.1 Block diagram of the cell count

EXPLANATION:

First the input image is given to matlab, using imread() 

function the image is converted from color to binary. Then the objects 

touching the borders are identified and removed. The remaining objects 

are counted and the density is carried out.

3.2 PEOPLE COUNT:

                       Fig 3.2 Block diagram of the people count  

INPUT IMAGE
IDENTIFYING 

BORDER
TOUCHING OBJECT

REMOVING BORDER
TOUCHING OBJECTS

COUNTING REMAINING
OBJECTS & CALCULATING 

DENSITY

CONVERT COLOR TO 
BINARY

INPUT IMAGE
CONVERSION FROM 

RGB TO LAB

APPLY GRAY THRESHOLD 
AND EQUALISE 

BRIGHTNESS

DISPLAY NO. OF 
PEOPLE AND DENSITY

SHOW BLOBS AREA >1500 CONVERT TO BINARY



12

            EXPLANATION:

First the input image is fed into matlab. The image is 

converted from rgb to lab. Then the gray threshold is applied to the 

converted image and brightness equalization is done. Then the equalized 

image is converted to binary. The blobs in the image are opened when the 

blobs area is greater than 1500. The number of people and density are 

displayed.

3.3 VEHICLE COUNTING:

                              Fig 3.3 Block diagram of the vehicle count     

EXPLANATION:

In vehicle counting two input images are given, one without cars 

and the other with cars in it. The input image is then converted from rgb to gray. 

Now compare the two images and find the difference. Then the image is 

converted to binary. The blobs in the image are opened when the blob area is 

greater than 4000. Finally the count and the density are displayed.

INPUT IMAGE WITH 
EMPTY ROADS

INPUT IMAGE WITH 
CARS ON ROAD

COMPARE TWO IMAGES 
AND FIND DIFFERENCE

DISPLAY COUNT 
AND DENSITY

CONVERTING FROM 
RGB TO GRAY

FIND BLOBS OF 
AREA >4000

CONVERT TO 
BINARY



13

CHAPTER 4

4. ALGORITHM:

4.1 CELL COUNT:

      Step 1)Start the program

Step 2)Get the input image using imread ()

Step 3)Convert color to gray if it is a color image.

Step 4)Use clear borders command if any object is touching the 
border.

Step 5)Choose an appropriate threshold value using graythresh () 
command

     Step 6)Fill blobs that occur with holes

      Step 7)Apply morphological operation by using a filter of ones

    Step 8)Display all blobs that have an area>100

     Step 9)Count them using conncomp () command

      Step 10) Calculate the density

     Step 11) Stop the program



14

         4.2 PEOPLE COUNT :

   Step 1: Start the program

   Step 2: Get the input image

   Step 3: Change the color space from rgb to lab

   Step 4: Convert to binary based on gray level value

  Step 5: If patches are present  fill  with holes

  Step 6: Set a threshold value for opening area above some value.

  Step 7: Use connected components method to determine the
               number of objects present        
       
  Step 8: Draw bounding box

  Step 9: Display output count and density

  Step 10:  End the program



15

4.3 VEHICLE COUNT :

Step1:Start the program.

Step2:Read the input background image of the empty road.

Step3:Read the new image with vehicles on road.

Step4:Convert  the images to grayscale format  using double 
precision.

Step5:Find the width and height of the image.

Step6:Set threshold value =11

Step7:Find the difference between frames based on the threshold.

Step8:If frame diff > than 11 then assign that image to a variable 
else “0” if no difference is found.

Step9: Increase the contrast of the output image using imadjust()

Step10:Find a graythreshhold value using graythresh() command.

Step11:Add Gaussian noise to the output difference.

Step12:Apply Weiner filter to filter the blobs

Step13:Convert to binary image

Step14:Fill holes to the blobs 

Step15:Open all blobs having area greater than 5000

Step16:Count the number of cars using bwconncomp or bwlabel

Step17:Display the output image 

Step18:Stop the program



16

                                                   CHAPTER 5

5. FLOWCHART:

5.1CELL COUNT:

                       Fig 5.1 Flow chart of the cell count 

START

GET INPUT IMAGE

      CONVERTING COLOR TO GRAY IMAGE

USE CLEAR BORDER COMMAND

CHOOSE THRESHOLD VALUE

FILL BLOBS

APPLY MORPHOLOGICAL OPERATION

CALCULATE THE DENSITY

STOP

COUNT THE OBJECTS

DISPLAY BLOBS 
WHO’S AREA >100



17

5.2 PEOPLE COUNT :
                                            

YES

NO

START

Getting the input

Changing color space from RGB to LAB

Binary to gray level value

If patches 
are present

Fill with holes

Setting threshold value

Determining number of 
objects present

Draw boundary box

Output display

End



18

                       Fig 5.2 Flow chart of the people count
5.3 VEHICLE COUNT:

NO           YES

START

READ THE BACKGROUND IMAGE

READ THE NEW IMAGE

CONVERT TO GRAYSCALE 
FORMAT

DETERMINATION OF WIDTH AND 
HEIGHT OF IMAGE

SET THRESHOLD VALUE=11

FINDING DIFFERENCE BETWEEN 
FRAMES BASED ON THRESHOLD

IF FRAME 
DIFF>11

ASSIGN 0 IF NO 
DIFFERENCE IS

FOUND

ASSIGN A 
VARIABLE TO 
THAT IMAGE

INCREASING CONTRAST OF 
OUTPUT IMAGE USING imadjust() 

FINDING GRAYTHRESHOLD 
VALUE USING graythresh()

ADDING GAUSSIAN NOISSE TO THE 
OUTPUT DIFFERENCE

A



19

                             Fig 5.3 Flow chart of the vehicle count 

APPLYING WEINER FILTER

CONVERTING TO BINARY 
IMAGE

FILLING HOLES

OPENING BLOBS OF AREA 
GREATER THAN 5000

COUNTING THE NO. OF CARS 
USING bwconncomp or bwlabel

DISPLAYING THE 
OUTPUT IMAGE

END

A



20

CHAPTER 6

         

6. MODULE DESCRIPTION:

6.1 CELL COUNT:

6.1.1 Image acquisition:

Imread() -Getting the input imagereads a grayscale or color 

image from the file specified by the string filename. If the file is 

not in the current folder, or in a folder on the MATLAB path, 

specify the full pathname.

imshow(I,[low high])- displays the grayscale image I, 

specifying the display range for I in [low high]. The value low (and 

any value less than low) displays as black; the value high (and any 

value greater than high) displays as white. Values in between are 

displayed as intermediate shades of gray, using the default number 

of gray levels.

6.1.2Color to gray conversion:

graythresh(J(:,:,2)) -computes a global threshold (level) that 

can be used to convert an intensity image to a binary image with 

im2bw. level is a normalized intensity value that lies in the range 

[0, 1].The graythresh function uses Otsu's method, which chooses 

the threshold to minimize the intraclass variance of the black and 

white pixels. Multidimensional arrays are converted automatically 

to 2-D arrays using reshape. The graythresh function ignores any 

nonzero imaginary part of I.



21

BW1=im2bw(J(:,:,2),L) -converts the grayscale image I to a 

binary image. The output image BW replaces all pixels in the input 

image with luminance greater than level with the value 1 (white) 

and replaces all other pixels with the value 0 (black). Specify level

in the range [0,1]. This range is relative to the signal levels possible 

for the image's class. Therefore, a level value of 0.5 is midway 

between black and white, regardless of class.

6.1.3 Image enhancement:

imfill(BW1,'holes')-displays the binary image BW on the 

screen and lets you define the region to fill by selecting points 

interactively by using the mouse. To use this interactive syntax, 

BW must be a 2-D image.

bwareaopen(bw2,100)removes from a binary image all 

connected components (objects) that have fewer than P pixels, 

producing another binary image, BW2. The default connectivity is 

8 for two dimensions, 26 for three dimensions.

6.1.4 Connected components:

    Cc = bwconncomp()- it used for calculating objects in image.

6.1.5 Density:

Objects per_unit_area=cc.NumObjects/(size(bw4,1)*size(bw4,2))-    

Density is equal to connected components divided by size of image.



22

6.2 PEOPLE COUNT:

6.2.1 Getting the input image:

Imread() reads a grayscale or color image from the file 

specified by the string filename. If the file is not in the current folder, or 

in a folder on the MATLAB path, specify the full pathname.

6.2.2 Displaying the image:

imshow(I,[low high]) displays the grayscale image I, 

specifying the display range for I in [low high]. The value low (and any 

value less than low) displays as black; the value high (and any value 

greater than high) displays as white. Values in between are displayed as 

intermediate shades of gray, using the default number of gray levels.

6.2.3 Changing the color space:

makecform('srgb2lab') creates the color transformation 

structure C that defines the color space conversion specified by type. To 

perform the transformation, pass the color transformation structure as an 

argument to the applycform function. In this case the RGB color space is 

converted to LAB color space.

6.2.4 Finding gray thresh value:

graythresh(J(:,:,2)) computes a global threshold (level) that 

can be used to convert an intensity image to a binary image with im2bw. 

level is a normalized intensity value that lies in the range [0, 1]. The 

graythresh function uses Otsu's method, which chooses the threshold to 

minimize the intraclass variance of the black and white pixels.



23

Multidimensional arrays are converted automatically to 2-D arrays using 

reshape. The graythresh function ignores any nonzero imaginary part of I. 

6.2.5 Converting to binary image:

BW1=im2bw(J(:,:,2),L) converts the grayscale image I to a binary 

image. The output image BW replaces all pixels in the input image with 

luminance greater than level with the value 1 (white) and replaces all 

other pixels with the value 0 (black). Specify level in the range [0,1]. This 

range is relative to the signal levels possible for the image's class. 

Therefore, a level value of 0.5 is midway between black and white, 

regardless of class.

6.2.6 Filling patches with holes:

imfill(BW1,'holes') displays the binary image BW on the screen 

and lets you define the region to fill by selecting points interactively by 

using the mouse. To use this interactive syntax, BW must be a 2-D image.   

6.2.7 Opening area greater than a value:

bwareaopen(bw2,1890) removes from a binary image all connected 

components (objects) that have fewer than P pixels, producing another 

binary image, BW2. The default connectivity is 8 for two dimensions, 26 

for three dimensions.



24

6.2.8 Finding density:

bwconncomp(bw3) returns the connected components CC found in 

BW3. The binary image BW3 can have any dimension. comp for finding 

the density of people in image.

6.2.9 Bwlabel:

Labels connected components in 2-D binary image.

6.2.10 Measuring properties of image:

Regionprops(labeledImage,'all') measures a set of properties for 

each connected component (object) in the binary image, BW. The image 

BW is a logical array; it can have any dimension.

6.2.11 Drawing bounding box:

The imagesc function scales image data to the full range of the 

current colormap and displays the image. imagesc(C) displays C as an 

image. Each element of C corresponds to a rectangular area in the image. 

The values of the elements of C are indices into the current colormap that 

determine the color of each patch. 

6.3 VEHICLE COUNT:

6.3.1 Getting the input image:

Imread() reads a grayscale or color image from the file specified by 

the string filename. If the file is not in the current folder, or in a folder on 

the MATLAB path, specify the full pathname.In this module we get two 



25

input image  one is the image with vehicles and the other is a background 

image without vehicles in it.

6.3.2 Converting color image to gray:

Rgb2gray() converts both the images to gray images. Convert both 

the images into gray level by using double precision.

6.3.3 Foreground detection:

Set threshold value=11, find the difference between the two images 

by using abs() [absolute], abs can help find the absolute between the two 

images. If the difference between the two images is greater than the 

threshold value of 11 then those will be displayed as blobs at the output.

6.3.4 Morphological operation:

imageadjust(imadjust()) used to adjust the image intensity values to 

the color map.

graythresh() used to set a suitable gray threshold value for the 

output image.

Add Gaussian noise to the output image and filter it using wiener 

filter. 

Convert image to binary and fill holes if necessary. Open blobs of   

area greater than 5000, this will help detect vehicles.

6.3.5 Counting and density calculation:

Count the no of blobs by using bwconncomp, the number of blobs 

gives the number of vehicles present in the image. From the count the 

density of traffic can be estimated



                                              

7. SIMULATION RESULT

7.1 RICE COUNT:

7.1.1 Input Image

                                Fig 7.1.1 Input image
7.1.2 CONVERTING INTO BINARY IMAGE

`
                                Fig 7.1.2 Binary image

26

                                                CHAPTER 7

RESULTS:

Input Image:

Fig 7.1.1 Input image of the rice count
2 CONVERTING INTO BINARY IMAGE:

Fig 7.1.2 Binary image of the count



27

OUTPUT:

existing
Cc = 
Connectivity: 8
ImageSize: [256 256]
NumObjects: 95
PixelIdxList: {1x95 cell}
Objects_per_unit_area =
0.0014

7.1.3 PADDING ZEROS:

      Fig 7.1.3 Objects cleared at two side borders
OUTPUT:

padding
cc = 
    Connectivity: 8
ImageSize: [256 256]
NumObjects: 85
PixelIdxList: {1x85 cell}
objects_per_unit_area_2 =     0.0013

                  
           



28

          7.1.4 PROPOSED WAY OF CALCULATING DENSITY:

                          Fig 7.1.4 Objects cleared at four side borders

OUTPUT:

cc = 
    Connectivity: 8
ImageSize: [256 256]
NumObjects: 69
PixelIdxList: {1x69 cell}
objects_per_unit_area_3 =
    0.0012



29

7.2 CELL COUNT:

7.2.1 INPUT IMAGE :

                               Fig 7.2.1 Input image of the cell count

7.2.2 CONVERTING INTO BINARY IMAGE:                         

                                  Fig 7.2.2 Binary image of cell count 
Output :

cellseg 
objects_per_unit_area =  8.0601e-005
Connectivity: 8

       ImageSize: [530 515]
      NumObjects: 99
    PixelIdxList: {1x99 cell}



30

7.2.3 Using proposed method:

                              Fig 7.2.3 output image of the cell count
OUTPUT:

cellseg 
objects_per_unit_area =
  2.0517e-004
cc = 
    Connectivity: 8
       ImageSize: [530 515]
      NumObjects: 56
    PixelIdxList: {1x56 cell} 



31

7.3 PEOPLE COUNTING:

7.3.1 Getting the input image:

                   Fig 7.3.1 Input image

               7.3.2 RGB color converted LAB color :

                              Fig  7.3.2  Converted LAB imag



32

7.3.3 Equalise brightness to get skin area:

     7.3.4 Converting to binary image:



33

7.3.5 Filling patches with holes:

7.3.6 Opening area greater than a value:

  



34

7.3.7 Final output:

OUTPUT:

cc = 

Connectivity: 8

       ImageSize: [225 300]

      NumObjects: 7

PixelIdxList: {1x7 cell}

density =  1.0370e-004

numberOfPeople =7

Original with bounding boxes

50 100 150 200 250 300

50

100

150

200



35

7.4 VEHICLE COUNT :

OUTPUT:

cc = 

Connectivity: 8

       ImageSize: [480 640]

      NumObjects: 2

    PixelIdxList: {[39316x1 double]  [9899x1 double]}

    6.5104e-006

7.4.1 Orignal Frame:

200 400 600

100

200

300

400

7.4.2 Converted Frame:

7.4.3 BACKGND Frame: 7.4.4 Foreground:

200 400 600

100

200

300

400



36

                                        CHAPTER 8

8. CONCLUSION:

In this project work, a simple way of counting objects in the images and

determining the correct value of density has been implemented. The number of 

objects and the density values are determined and verified for cell, people and 

vehicle counting applications. In cell count, the problem of counting many cells 

automatically as well as determining the accurate value of density has been 

solved. In people counting based on faces, even if too much skin is shown by a 

person in the image the algorithm can detect faces correctly. This provides an 

accurate count and density. Finally in vehicle counting, the algorithm used can 

detect the number of vehicles accurately including two wheelers without use of 

any hardware components.

In future, the same algorithm can be extended too many other 

applications other than the three applications covered in this project. Also, the 

present mat lab code used in cell count can be extended to find the correct count 

even if cells tend to overlap in the image. In people counting, if the two faces 

touch each other then inaccurate counts can be obtained. Hence methods to 

segment such images can be developed. In vehicle count, the same method can 

be extended to classify vehicles on the road such as car, truck, bike etc. Finally, 

the same counting applications can be shown in a simpler manner using other 

image processing software such as Python, ImageJ etc. 



37

REFERENCES

Cell count:

[1] http://www.robots.ox.ac.uk/%7Evgg/research/counting/index.html.

[2] S.-Y. Cho, T. W. S. Chow, and C.-T.Leung.A neural-based crowd 

estimation by hybrid global learningalgorithm. IEEE Transactions on Systems, 

Man, and Cybernetics, Part B, 29(4):535–541, 1999.

[3] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-

class object layout. ICCV, 2009.

[4] X. Descombes, R. Minlos, and E. Zhizhina. Object extraction using a 

stochastic birth-and-death dynamics incontinuum. Jthisnal of Mathematical 

Imaging and Vision, 33(3):347–359, 2009.

[5] L. Dong, V. Parameswaran, V. Ramesh, and I. Zoghlami. Fast crowd 

segmentation using shape indexing.ICCV, pp. 1–8, 2007.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.

[7] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural 

svms. Machine Learning, 77(1):27–59, 2009.

[8] N. Ahuja and S. Todorovic.Extracting texels in 2.1d natural textures.ICCV, 

pp. 1–8, 2007.

[9] S. An, P. Peursum, W. Liu, and S. Venkatesh. Efficient algorithms for 

subwindow search in object detectionand localization. CVPR, pp. 264–271, 

2009.

[10] D. Anoraganingrum. Cell segmentation with median filter and 

mathematical morphology operation.ImageAnalysis and Processing, 

International Conference on, 0:1043, 1999.

[11] O. Barinova, V. Lempitsky, and P. Kohli. On the detection of multiple 

object instances using Hough transforms.CVPR, 2010.



38

[12] J. L. Bentley. Programming pearls: Algorithm design techniques. Comm. 

ACM, 27(9):865–871, 1984.

[13] J. L. Bentley. Programming pearls: Perspective on performance. Comm. 

ACM, 27(11):1087–1092, 1984.

[14] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[15] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd 

monitoring: Counting peoplewithout people models or tracking. CVPR, 2008.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/workshop/index.html.

The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results.

People count:

L. H. Liang, A. H. Zhou, G. Y. Xu, B. Zhang and L. H. Zhao, "A survey 
of human face detection," Chinese Jthisnal of Computers, Vol. 25, No 5, 
pp. 450-458, 2002.

1. P. Viola and M. Jones, "Rapid object detection using a boosted cacade of 
simple features," Proceedings of IEEE Conference on Computer Vision 
and Pattern Recognition, Vol. 1, pp. 511-518, 2001.

2. L. M. Luo, Z. Y. Peng and G. Y. Xu, "The feature of skin color," Jthisnal 
of Software, Vol. 12, No 7, pp. 1032-1040, 2001.

3. R. L. Hsu, M. Abdel-Mottaleb and A. K. Jain, "Face detection in color 
images," IEEE Transactions on Pattern Analysis and Machine 
Inteligence, Vol. 24, pp. 696-706, 2002.

4. X. Tian, "Color space-based skin color subspace," Jthisnal of Xi'an 
University of Science and Technology, Vol. 12, No 4, pp. 369-371, 
2001.

5. X. S. Gao, X. Z. Zhang and C. Y. Ji, "Face detection in color images," 
Techniques of Automation and Applications, Vol. 24, No. 10, pp. 54-56, 
2005.

6. Y. Freund, "Boosting a weak learning algorithm by majority," 
Information and Computation, Vol. 121, No 2, pp. 256-285, 1995.



39

7. P. Viola and M. Jones, "Robust real-time face detection," International 
Jthisnal of Computer Vision, Vol. 57, No 2, pp. 137-154, 2001.   

8. H. X. Liu and Y. C. Liu, "A face detection methord based on adaboost 
algorithm," Jthisnal of Shanghai Jiaotong University, Vol. 42, No 7, pp. 
1119-1123, 2008.

9. M. Yang and D. J. Kriegman, "Detecting Faces in Images A Survey", 
IEEE Transactions On Pattern Analysis And Machine Intelligence, 
Vol.24, No 1, pp.34-58, 2002.

G. Yang and T. S. Huang, "Human Face Detection in Complex 
Background", Pattern Recognition, Vol.27, No 1, pp.53-63, 1994.
[CrossRef]

10.C. Kotropoulos and I. Pitas, "Rule-Based Face Detection in Frontal 
Views", Proc. Int. Conf. Acoustics, Speech and Signal Processing, Vol.4, 
pp.2537-2540, 1997.

11.Sanjay K. Singh, D.S. Chauhan, MayankVatsa, Richa Singh, "A Robust 
Skin Color Based Face Detection Algorithm", Tamkang Jthisnal of 
Science and Engineering, Vol.6, No 4, pp.227-234, 2003.

12.K. Sobottka and I. Pitas, "Face Localization and Feature Extraction Based 
on Shape and Color Information", Proc. IEEE Int. Conf. Image 
Processing, Vol.3, pp.483-486, Lausanne, 1996.

13.J. Miao, B. Yin, K. Wang, L. Shen, et X. Chen, "A Hierarchical 
Multiscale and Multi-angle System for Human Face Detection in a 
Complex Background Using Gravity-Center Template", Pattern 
Recognition, Vol.32, No 7, pp.1237-1248, 1999.
[CrossRef]

[14] H. A. Rowley, S. Baluja, and T. Kanade, "Neural Network-Based Face 
Detection", School of Computer Science, Carnegie Mellon University, 
Pittsburg Research Center, 1998.

Vehicle count:



40

[1] R. Chellappa “Vehicle detection and tracking
using acoustic and video sensors”, 2004

[2] Sensor Line, Classax, Traffic Data Acquisition
System, Germany, www.sensorline.de

[3] S. Gupte, “Detection and Classification of
Vehicles”, University of Minnesota 2002.

[4] E. Atkociunas, "Image Processing in Road
Traffic Analysis", Vilnius University, 2005

[5] B. Coifman "A Real-Time Computer Vision
System for Vehicle Tracking and Traffic
Surveillance" University of California, 1998

[6] C. Zhang "Adaptive Background Learning for
Vehicle Detection and Spatio-
TemporalTracking", IEEE, 2003

[7] R. Cucchiara “Vehicle Detection under Day and
Night Illumination" Proc. of ISCS-IIA, Special
session on vehicle traffic and surveillance, 1999

[8] Z.W. Kim "Fast Vehicle Detection with
Probabilistic Feature Grouping and its
Application to Vehicle Tracking", CiteSeer,
2001

[9] L. Di Stefano, ”Vehicle Detection and Tracking
Using the Block Matching Algorithm",
Department of Electronics, Computer Science
and Systems (DEIS) University of Bologna, ITALY

                                                   APPENDIX  I

MATLAB  CODING



41

CODE FOR CALCULATING NUMBER OF CELLS AND DENSITY IN 
IMAGES

I = imread('dna.jpeg');%call image

bw0=imclearborder(I);

imshow(bw0),title('img 1');

bw1 = im2bw(bw0, graythresh(bw0));%apply threshold

figure;imshow(bw1),title('img 2');

bw2 = imfill(bw1,'holes');%fill hole in the image

figure;imshow(bw2),title('img 3');

bw3 = imopen(bw2, ones(5,5));%perform morphological ops in image

figure;imshow(bw3),title('img 4');

bw4 = bwareaopen(bw3, 100);%removes from a binary image all connected 
comp of area less than 100 pixels

figure;imshow(bw4),title('img 5');

cc=bwconncomp(bw4)%count

objects_per_unit_area=cc.NumObjects/(size(bw4,1)*size(bw4,2))%Density



42

CODE FOR PEOPLE COUNT BASED ON FACES

%get the input image

I=imread('faces.jpg');

imshow(I),title('Image:1');

%change the color space

cform = makecform('srgb2lab');

J=applycform(I,cform);

figure;imshow(J),title('Image:2');

%equalise brightness to get skin area

K=J(:,:,2);% 2nd page of 3-d vector j

figure;imshow(K),title('Image:3');

L=graythresh(J(:,:,2));% find appropriate gray thresh value

BW1=im2bw(J(:,:,2),L);% convert to binary image based on threshold

figure;imshow(BW1),title('Image:4');

bw2=imfill(BW1,'holes');% fill patches with holes

figure;imshow(bw2)

bw3 = bwareaopen(bw2,1890); %opens area greater than 1890

cc=bwconncomp(bw3)% connected comp for finding the density of people in 

image

density=cc.NumObjects / (size(bw3,1) * size(bw3,2))

figure;imshow(bw3)

labeledImage = bwlabel(bw3, 8);%same as connected components

figure;imshow(labeledImage)

blobMeasurements = regionprops(labeledImage,'all');%measure all properties of 

the image

numberOfPeople = size(blobMeasurements, 1)% count the number of people

% draw bounding boxes

imagesc(I);



43

hold on;

title('Original with bounding boxes');

for k = 1 : numberOfPeople % Loop through all blobs.

% Find the mean of each blob. 

% directly into regionprops. 

thisBlobsBox = blobMeasurements(k).BoundingBox; % Get list of pixels in 

current blob.

x1 = thisBlobsBox(1);%1st side

y1 = thisBlobsBox(2);%2nd side

x2 = x1 + thisBlobsBox(3);%3rd side

y2 = y1 + thisBlobsBox(4);%4th side

x = [x1 x2 x2 x1 x1];

y = [y1 y1 y2 y2 y1];

%subplot(3,4,2);

plot(x, y, 'LineWidth', 2);

end



44

CODE FOR VEHICLE COUNT AND DENSITY OF TRAFFIC

clc;

clear all;

MV = imread('cars1.png'); %To read image

MV1 = imread('backgnd.png');

A = double(rgb2gray(MV));%convert to gray

B= double(rgb2gray(MV1));%convert 2nd image to gray

[height width] = size(A); %image size?

h1 = figure(1);

     %Foreground Detection

    thresh=11;

    fr_diff = abs(A-B);

    for j = 1:width

        for k = 1:height

        if (fr_diff(k,j)>thresh)

            fg(k,j) = A(k,j);

        else

                    fg(k,j) = 0;

        end

        end

    end

    subplot(2,2,1) , imagesc(MV), title (['Orignal Frame']);

    subplot(2,2,2) , imshow(mat2gray(A)), title ('converted Frame');

    subplot(2,2,3) , imshow(mat2gray(B)), title ('BACKGND Frame ');

    sd=imadjust(fg);% adjust the image intensity values to the color map

    level=graythresh(sd);

    m=imnoise(sd,'gaussian',0,0.025);% apply Gaussian noise



45

    k=wiener2(m,[5,5]);%filtering using Weiner filter

    bw=im2bw(k,level);

    bw2=imfill(bw,'holes');

    bw3 = bwareaopen(bw2,5000);

    labeled = bwlabel(bw3,8);

    cc=bwconncomp(bw3)

    Densityoftraffic = cc.NumObjects/(size(bw3,1)*size(bw3,2));

    blobMeasurements = regionprops(labeled,'all');

numberofcars = size(blobMeasurements, 1);

    subplot(2,2,4) , imagesc(labeled), title (['Foreground']);

    hold off;

    disp(numberofcars);% display number of cars

    disp(Densityoftraffic);%display number of vehicles

                   



46


