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Dengue is a debilitating and devastating viral infection spread
by mosquito vectors, and over half the world’s population
currently live at risk of dengue (and other flavivirus) infections.
Here, we use an integrated epidemiological and vector ecology
framework to predict optimal approaches for tackling dengue.
Our aim is to investigate how vector control and/or vaccination
strategies can be best combined and implemented for dengue
disease control on small networks, and whether these optimal
strategies differ under different circumstances. We show that a
combination of vaccination programmes and the release of
genetically modified self-limiting mosquitoes (comparable to
sterile insect approaches) is always considered the most
beneficial strategy for reducing the number of infected
individuals, owing to both methods having differing impacts
on the underlying disease dynamics. Additionally, depending
on the impact of human movement on the disease dynamics,
the optimal way to combat the spread of dengue is to focus
prevention efforts on large population centres. Using
mathematical frameworks, such as optimal control, are essential
in developing predictive management and mitigation strategies
for dengue disease control.
1. Introduction
Approximately 3.9 billion people live at risk of contracting dengue
[1], a viral infection transmitted by Aedes mosquitoes [2]. Vectors
become infected upon ingesting blood from an infected host, and
then pass on the disease by biting susceptible individuals. Current
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estimates suggest that 390 million people are infected with dengue each year, of which 96 million display

clinical symptoms [3]. Owing to the method of transmission, the disease is prevalent in tropical and sub-
tropical climates across the globe, most commonly in urban environments, where dense populations and
stagnant water sources create ideal mosquito breeding grounds [4]. The steady increase in sudden
outbreaks and an increase in the epidemic potential highlights dengue as a serious, and growing, concern
for public health [5].

Dengue has atypical epidemiology. Five serotypes have so far been identified, all of which are
capable of inducing the same critical health problems [6] (note that the fifth serotype was only recently
discovered, and much of the existing literature still refers to only four serotypes). When a susceptible
individual contracts dengue, they enter an infectious state followed by a brief period of cross-immunity
to all serotypes once they have recovered. However, this immune period wanes and individuals become
highly susceptible to the other dengue serotypes, with an astonishingly high increase of morbidity and
mortality. This effect is known as antibody-dependent enhancement [7].

Although vaccine development continues to advance [8,9], currently, the primary method of
suppressing dengue is through vector control. By limiting mosquito densities, transmission of the
virus is directly reduced as a result of the population sizes of vectors falling below an entomological
threshold. While vector control has focussed on insecticides, an increasingly promising approach is the
use of genetically modified mosquitoes. Building on approaches developed for agricultural pest
management, the sterile insect technique (SIT), whereby modified, infertile male insects are released
into the environment to mate with wild-types, has been proven to reduce the number of live young
produced, and subsequently suppress total population size. This SIT method has been a tremendous
success in some situations [10], but many studies have begun to show the limitations of the technique
owing to distribution and dispersal issues [11]. Genetic-based methods similar to the SIT method have
been developed whereby lethal genes switch on at key stages in the insect’s life cycle to induce
mortality [12]. The overall effect is to then reduce the mosquito population size, albeit in a self-
limiting way, as once mass releases stop, the control effect diminishes and populations may resurge
and disease control may be lost.

As a result, combining these vector intervention methods to combat dengue outbreaks continues to be
explored. One particularly exciting combination is with the increasing availability of dengue vaccinations
being produced to aid disease control efforts.

In early 2016, the first dengue vaccine, Dengvaxia, was registered for use in several countries across
southeast Asia [13]. Ongoing clinical results, however, show that the vaccine currently displays limited
efficacy [14], suggesting that it may not be feasible to tackle the crisis of this disease through
vaccination alone. Indeed Robinson & Durbin [15] report that while vaccines currently may reduce the
immediate dengue burden, population-level impact will probably be limited over time. While a recent
published model of dengue dynamics [16] investigates how combined control interventions for
dengue on small networks could be developed, optimal strategies for adequately controlling dengue
epidemics remain difficult to determine. Here, we address this by developing on the framework [16]
as a basis for investigating the effectiveness of each approach (vaccination, vector control), seeking an
optimal strategy to managing dengue outbreaks under varying circumstances.

In the next section, we introduce the mathematical model and the optimal control formulation. We then
investigate how the dynamical impact of these disease prevention methods affects the spread of disease,
and how they may be best combined and employed across differing scenarios. In the discussion, we
highlight the potential of the work for explaining the interplay between these two imperfect methods of
disease prevention.
2. Methods
2.1. Governing ordinary differential equations
For the dengue disease management, our optimal control problem has been developed around a
mathematical framework presented by Hendron & Bonsall [16]. The model describes the population
dynamics of both vectors and hosts by describing the complex epidemiology associated with dengue
infections. These states are summarized in table 1, and schematics of this epidemiology are illustrated in
figure 1. For the dengue epidemiology, the model framework only considers two potential serotypes
(labelled A and B). As well as simplifying the necessary mathematics, it is unusual for more than two
serotypes to be in circulation in a small population at one time [17]. Dengue infections lead to complex
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Figure 1. Epidemiological frameworks. (a) Schematic illustration of the epidemiological framework for two serotypes of dengue
circulating in a host population. (b) Schematic illustration of the epidemiological framework for the mosquito vector dynamics.
All state variables are defined in table 1.

Table 1. Definitions of the state variables considered in the model framework following Hendron & Bonsall [16].

state variable definition

S hosts susceptible to either serotype

IA hosts infected with serotype A, as a primary infection

RA hosts recovered from serotype A

SB2 hosts now susceptible to serotype B, as a secondary infection

IB2 hosts infected with serotype B, as a secondary infection

IB hosts infected with serotype B, as a primary infection

RB hosts recovered from serotype B

SA2 hosts now susceptible to serotype A, as a secondary infection

IA2 hosts infected with serotype A, as a secondary infection

R hosts recovered from all serotypes

J juvenile vectors

M mature vectors

X vectors infected with serotype A

Y vectors infected with serotype B
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individual host patterns of infection, and two distinct serotypes can create two possible routes of infection
(as shown in figure 1).

An initial susceptible pool of hosts (S) transfers to a state of primary infection (IA or IB), as individuals
are bitten by a mosquito infected with the respective serotype. Eventually, they recover from this primary
infection, entering a brief period of cross-immunity (RA or RB). While remaining immune to the primary
serotype they were infected with, hosts then enter a state of susceptibility to a secondary infection (SA2 or
SB2 ). They may then be bitten and infected with the other serotype (IA2 or IB2 ), before eventually
recovering again into a period of complete recovery (R).

Mosquitoes display a simpler dynamic (figure 1b). Upon hatching, mosquitoes start in a juvenile state
(J), where they cannot yet bite a host. Eventually, they mature into an adult state (M) susceptible to
dengue virus infection. Upon biting an infected host, these mature mosquitoes then enter a state of
infection with either serotype A or B (X or Y, respectively). It has been shown experimentally that
Aedes mosquitoes will resist infection of a second serotype [18], hence our assumption that mosquitoes
may be infected with serotype A or B, but not both.



Table 2. Model constants and control variables.

expression description value

b1 conversion rate of S to IA/B 0.38 [19]

b2 conversion rate of SA2=B2 to IA2=B2 0.57 [19]

α1 mortality rate of hosts with a primary infection 4.57 × 10−4 [20]

α2 mortality rate of hosts with a secondary infection 8.33 × 10−3 [21]

ρ1 recovery rate from a primary infection 0.17 [19]

ρ2 recovery rate from a secondary infection 0.17 [19]

η rate of loss of cross-immunity 8.33 × 10−3 [19]

a biting rate of adult mosquitoes 0.5 [19]

g eggs laid by adult mosquitoes per day 0.7 [19]

δ density-dependent parameter 0.1 [22]

ϕ juvenile mosquito maturation rate 0.0541 [19]

μ adult mosquito mortality rate 0.0741 [19]

c conversion rate into dengue vectors 0.38 [19]

ξ (im)perfect vaccine switch 0 or 1

ψi maximum possible number of released modified mosquitoes 10 × Z0
ε gene lethality 0.9

mS proportion of susceptible population that migrates 0.1

mI proportion of primary infected population that migrates 0.1

mI2 proportion of secondary infected population that migrates 0.01

mR proportion of recovered population that migrates 0.1

u1(t) proportion of susceptible population being vaccinated 0≤ u1≤ 1

u2(t) proportion of total possible SIT modified mosquitoes released 0≤ u2≤ 1

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:181843
4

A key feature of the model framework is its description of human movement on a small network [16].
Nodes (settlements) are considered with their own distinct host/vector populations and disease
dynamics, but with the assumption that hosts may travel from their home settlement to another
location (perhaps a place of work). Primarily, we will focus on a ‘hub-spoke’ network, where several
satellite town settlements have a percentage of their populations migrate into a central city settlement
temporarily, before returning to their home settlement.

The governing equations follow Hendron & Bonsall [16] (where a more detailed description of the
model is available). The dynamics of susceptible hosts in settlement i (where i∈ {1, 2,…, n}, n being
the total number of settlements) can be described by

dSi
dt

¼ � 1�
Xn
j¼1
j= i

w jimS

0
BB@

1
CCA Siab1(Xi þ Yi)

Ni þVi
�
Xn
j¼1
j= i

w jimS
Siab1(Xj þ Yj)

Nj þV j
� ui1Si, (2:1)

where the first term on the right hand side (RHS) of equation (2.1) represents the members of Si who are
removed from this state by being bitten by an infected mosquito while in their home settlement. The
second term represents those hosts who are bitten by an infected mosquito while in a different
settlement they have migrated to. Finally, the third term represents those who have left the class by
being vaccinated, where the variable ui1 represents the proportion of the population of Si who are
being vaccinated. As such, 0 � ui1 � 1. wji is a switch variable where either wji = 1, meaning there
exists migration from settlement i to settlement j, or wji = 0, meaning there is no migration from i to j.
mS is a constant, defining the proportion of a settlement’s susceptible population that will migrate. All
rate constants are defined in table 2. Note that the values used, as shown in table 2, are taken from
experimental works with the intention of using values of accurate magnitude in relation to one
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another. The timescale of the model is presented where t is the number of days from initialization. Ni is

the total host population of settlement i, Zi is the total adult mosquito population of settlement i, and Ωi is
the total net movements of hosts into, and out of, settlement i. Formally,

Ni ¼ Si þ IAi þ RA
i þ SB2

i þ IB2
i þ IBi þ RB

i þ SA2
i þ IA2

i þ Ri,

Zi ¼ Mi þ Xi þ Yi

and Vi ¼
Xn
j¼1

j= i

wij(mSSj þmI(IAj þ IBj )þmR(RA
j þ RB

j þ SA2
j þ SB2

j þ Rj)þmI2 (I
A2
j þ IB2

j ))

� wji(mSSi þmI(IAi þ IBi )þmR(RA
i þ RB

i þ SA2
i þ SB2

i þ Ri)þmI2 (I
A2
i þ IB2

i )):

As such, (Ni +Ωi) represents the total population of site i during the day, as Ni represents the native
human population, and Ωi deducts those who have migrated out of settlement i during the day, and
includes those who have migrated in for the day from other settlements. This allows for the
simulation of the event where an individual host could migrate to a settlement, contract dengue,
return home, and then infect their native vector populations. Note that infection rates above were
divided by (Ni +Ωi) in the differential equation for Si to factor in the likelihood of a vector infecting a
susceptible individual, and not another member of the population belonging to the (Ni +Ωi) class.
Logically, a smaller susceptible population implies a lower rate of infection.

The governing dynamics of individuals infected with serotype A, IA, are described by

dIAi
dt

¼
 
1�

Xn
j¼1
j= i

w jimS

!
Siab1Xi

Ni þVi
þ
Xn
j¼1
j= i

w jimS
Siab1Xj

Nj þV j
� IAi (a1 þ r1): (2:2)

Similar to equation (2.1), the first term on the RHS represents those individuals who became
infected while in their home settlement, and the second term represents those who become infected
in another settlement. The third term represents those who leave the class either by recovering, or
by death.

Equation (2.3) shows the behaviour of individuals recovering from serotype A, RA
i :

dRA
i

dt
¼ r1I

A
i � hRA

i : (2:3)

People enter the class by recovering from the infection (at rate ρ1), and leave after the period of cross-
immunity fades (at rate η). Equations (2.4) and (2.5) explain the secondary infections, and follow the
same logic as equations (2.1) and (2.2):

dSB2
i

dt
¼ hRA

i �
 
1�

Xn
j¼1
j= i

wjimR

!
SB2
i ab2Yi

Ni þVi
�
Xn
j¼1
j= i

wjimR
SB2
i ab2Yj

Nj þV j
(2:4)

and

dIB2
i

dt
¼
 
1�

Xn
j¼1
j= i

wjimR

!
SB2
i ab2Yi

Ni þVi
þ
Xn
j¼1
j= i

wjimR
SB2
i ab2Yj

Nj þV j
� IB2

i (a2 þ r2): (2:5)

Equations (2.6)–(2.10) describe the alternate route of infection by initially acquiring serotype B (figure 1a).
The only difference is in equation (2.7), where the final term on the RHS allows for the possibility that
vaccination only protects against one particular serotype, hence moving an individual from S to RB
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instead of R:

dIBi
dt

¼
 
1�

Xn
j¼1

j= i

wjimS

!
Siab1Yi

Ni þVi
þ
Xn
j¼1

j= i

wjimS
Siab1Yj

Nj þV j
� IBi (a1 þ r1), (2:6)

dRB
i

dt
¼ r1I

B
i �hRB

i þ (1� j)ui1Si, (2:7)

dSA2
i

dt
¼ hRB

i �
 
1�

Xn
j¼1

j= i

wjimR

!
SA2
i ab2Xi

Ni þVi
�
Xn
j¼1

j= i

wjimR
SA2
i ab2Xj

Nj þV j (2:8)

and
dIA2

i

dt
¼
 
1�

Xn
j¼1

j=i

wjimR

!
SA2
i ab2Xi

Ni þVi
þ
Xn
j¼1

j= i

wjimR
SA2
i ab2Xj

Nj þV j
� IA2

i (a2 þ r2): (2:9)

Finally, the ordinary differential equation (ODE) for the final, fully recovered, class is

dRi

dt
¼ r2(I

A2
i þ IB2

i )þ jui1Si: (2:10)

Note again the possibility that vaccination can move susceptible hosts directly to this class. Choosing ξ to
be 0 or 1 dictates whether the vaccination moves susceptible hosts to a fully protected class, R or only
protected against one serotype (RB).

The final four ODEs describe the dynamic behaviour of the vector populations, as shown in figure
1b. The mosquito dynamics are divided into juvenile and adult states. The juvenile dynamics are
described by

dJi
dt

¼ gZi
Zi

Zi þ ciui2
þ (1� e)

ciui2
Zi þ ciui2

� �
� Ji ln (1þ dJi)� fJi, (2:11)

where the juvenile mosquitoes are born at a rate g, while being slowed by the amount of modified
mosquitoes (Zi=(Zi þ ciui2)þ (1� e)ciui2=(Zi þ ciui2)) in the population that compete with mating wild-
types. ui2 is a variable that describes the proportion of the total possible matings by SIT mosquitoes, ψi,
that have been released in settlement i. ε represents the actual effectiveness of the SIT, dictating how
many of the modified mosquitoes have been correctly made infertile. ε = 1 represents a fully efficacious
mosquito sterilization treatment, while ε = 0 would signify that none of the released mosquitoes
were successfully sterilized. Note therefore that, if no SIT mosquitoes are released, and ui2 ¼ 0,
then (Zi=(Zi þ ciui2)þ (1� e)(ciui2=(Zi þ ciui2))) reduces to (Zi/Zi + (1− ε)(0/Zi)) = 1. Hence, with no
SIT mosquito release, the birth rate of juvenile mosquitoes (Ji) is simply gZi. Similarly, if it was set
that ε = 0, meaning that the modified mosquito treatment was entirely unsuccessful, then
(Zi=(Zi þ ciui2)þ (1� e)(ciui2=(Zi þ ciui2))) reduces to ((Zi þ ciui2)=(Zi þ ciui2)) ¼ 1, which similarly
results in a growth rate of solely gZi. The second term on the RHS, (Jiln(1 + δJi)), reflects juvenile
mosquito mortality owing to density-dependent intraspecific competition. This form of monotonic
growth to a fixed point is well discussed [22]. The final term (ϕJi) is the juvenile maturation rate.

Equation (2.12) describes the adult mosquito population:

dMi

dt
¼ � acMi

Ni þVi

 
(IAi þ IBi )

 
1�

Xn
j¼1
j= i

w jimI

!
þ (IA2

i þ IB2
i )

 
1�

Xn
j¼1
j= i

w jimI2

!!

� acMi

Ni þVi

 Xn
j¼1

j= i

wij(mI(IAj þ IBj )þmI2 (I
A2
j þ IB2

j ))

!
þ fJi � mMi,

(2:12)

where the first term on the RHS represents a mosquito becoming infected upon biting an infected host
native to settlement i, while the second term represents biting an infected host who has migrated from a
different settlement. The third term is the rate of maturation of the juveniles entering the class Mi, and
finally again the natural death rate of the uninfected vectors.
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Lastly, equations (2.13) and (2.14) describe the dynamics for mosquitoes infected with serotypes A

and B, respectively. Their form is comparable to equation (2.12), but only the infected hosts with the
associated serotype are considered:

dXi

dt
¼ acMi

Ni þVi

 
IAi (1�

Xn
j¼1

j= i

w jimI)þ IA2
i (1�

Xn
j¼1

j= i

w jimI2 )

!

þ acMi

Ni þVi

Xn
j¼1

j= i

wij(mIIAj þmI2 I
A2
j )� mXi

(2:13)

and

dYi

dt
¼ acMi

Ni þVi

 
IBi (1�

Xn
j¼1
j= i

w jimI)þ IB2
i (1�

Xn
j¼1
j= i

w jimI2 )

!

þ acMi

Ni þVi

Xn
j¼1

j= i

wij(mIIBj þmI2 I
B2
j )� mYi:

(2:14)

Because the model is measured over a timescale of days, new host birth events are negligible, and we
consider a fixed starting human population. This also means that our final cost function will not be
affected by the simulated time period, as we consider the total time until all hosts have reached a
model state whereby they can no longer be aided by control measures.

2.2. Optimal control problem
Disease dynamics are readily amenable to optimal control problems; often the key epidemiological
question is—what is the optimal choice of disease intervention measures (vaccines, vector-control
methods) to minimize the number of infected individuals while also trying to minimize the
economic cost of such measures. Traditional SIR networks are well formulated for optimal control
approaches, and are commonly used in identifying optimal vaccination programmes [23], often in
parallel with other methods and/or treatments [24]. One simple example is presented by Yusuf &
Benyah [25].

A more in-depth introduction and explanation of optimal control problems is given in the electronic
supplementary material, S1 appendix. In short, these are problems whereby a certain objective is desired,
and is limited by certain constraints. In our particular case, we wish to minimize the number of infected
individuals; however, we are limited in some form by how much we can apply disease-prevention
methods, both logistically and economically. An optimal control problem is most commonly
formulated around a model of differential equations, explaining the interaction between several
variables of interest. These variables are denoted as either state variables, variables which cannot be
directly impacted, or as control variables, variables that can be directly altered. In our case, our
control variables are ui1, the proportion of individuals in settlement i being vaccinated, and ui2 the
proportion of the total possible SIT mosquitoes, ψi, being released into settlement i. Owing to
the ongoing research and development of the Dengvaxia vaccine, we do not attempt to simulate the
specific attributes of this particular vaccine. We instead consider application of the vaccine to the
naive population, representing an idealized aim of this sort of treatment. All other variables are state
variables, as we cannot directly change these variables, and they instead change dynamically as we
alter our control variables.

For this dengue control problem, we are considering 14n state variables and 2n control variables,
where n is the total number of settlements being considered. A desired objective is then to either
maximize or minimize a certain number of state variables, while also trying to minimize the total
magnitude of the control variables themselves. This desired outcome is compiled as an objective
functional; a total expression that we wish to minimize. Combined with the fact that we clearly wish
to minimize the number of infected individuals, our objective functional to be considered is,

min
ðt f
0

Xn
i¼1

C1(IAi
2 þ IBi

2 þ IA2
i

2 þ IB2
i

2
)þ C2ui1

2 þ C3ui2
2
, (2:15)
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where C1, C2 and C3 are the daily costs associated with treating those infected with dengue, vaccinating a

population and releasing SIT mosquitoes, respectively. Estimating realistic values for these cost
parameters is inherently difficult, and hence the model is run for varying cost values to investigate
the impact that choice of cost has on the results. Note also that we seek to minimize the number
of infected individuals (IAi

2, IBi
2, IA2

i
2
, IB2

i
2
) as opposed to disease-induced deaths. Our model

formulation shows that a set proportion (α1 and α2) of the infected classes will die as a result of the
disease, representing a linear relationship between the infected population and the disease-induced
mortality. As such, seeking to minimize the infected population provides the same result as seeking
to minimize host mortality. We seek the optimal choices of ui1 and ui2 so as to minimize the cost
function (equation (2.15)). The decision to square the variables in our cost function (equation (2.15))
represents a nonlinear cost. While this simplifies the resulting mathematical analysis, more
importantly, it also increases the range of information our optimal control system can provide. When
using a linear control constraint, the optimality condition does not produce a characterization of the
control, and as such can only return a piecewise continuous optimal control variable, known as a
‘bang-bang control’. More information can be found in Lenhart & Workman [26]. In short, using a
quadratic control in equation (2.15) provides us with a more versatile cost framework for analysis.
Elsewhere, the results of choice of cost function on optimal control outcomes for vector-borne disease
control has been investigated [27].

The choice of the objective functional is a key assumption in an optimal control problem, as we
impose structure upon the system. As such, it is important to mention the impact that different
choices of formulation can have on the final results. One simplification we make is to combine both
primary and secondary infections under the same cost value, C1. This is despite secondary infections
resulting in a more severe host response as mentioned above. This decision was made owing to,
firstly, a lack of information as to the likely increase in hospitalization costs within an already wide
spectrum of treatment costs between cases. Secondly, the model dynamics show that secondary
infections will always be less populous than primary infections, and the impact of control measures
within our case studies reduce secondary infections to a near-negligible level. Thirdly, the underlying
dynamics of the objective functional represents a balance between minimizing infected individuals
and minimizing the application of control measures, creating a ‘tug-of-war’ effect. As such, and as
model simulations showed, the dynamical behaviour of our optimal solution reacted such that
increasing C1 would be dynamically equivalent to decreasing C2 or C3. All of our case studies
included feature variations on cost parameters to display this feature.

As with all optimal control problems, we begin by formulating the Hamiltonian, H = F(t, x, u) +
λ(t)f(t, x, u), where F(t, x, u) is our cost function (equation (2.15)), λ(t) our adjoint functions and f (t, x,
u) our governing ODEs (equations (2.1)–(2.14) above). We give our specific Hamiltonian in full in the
electronic supplementary material, S2 appendix. Adjoint equations are defined as dλ/dt =−∂H(t, x�(t),
u�(t), λ(t))/∂x. The adjoint equations represent the costs that would be incurred by breaking the
constraints of the minimization problem. For notational ease, our adjoint functions will be written as
lij, where i refers to the settlement of the associated state variable, and j to which of the 14 state
variables it is associated with. For example, li2 is the adjoint function associated with IAi . As such we
will have 14n adjoint terms in total, n being the number of settlements. By using the optimality
condition, ∂H/∂u = 0, at the optimal state, we can acquire an expression for our control variables in
terms of our adjoints and state variables. Namely,

ui1 ¼
Si
2C2

(li1 � li7(1� e)� li10j)

and ui2 ¼
1
3

�2Zi

ci
þ Z3

i

c3
i
þ 27li11egZ

2
i

4C3ci
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27li11egZ

5
i

2C3c
4
i

þ 729(li11eg)
2Z4

i

16C3
2c2

i

s !1=30
@

1
A

þ Z2
i

3c2
i

Z3
i

c3
i
þ 27li11egZ

2
i

4C3ci
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Finally, all that remains is to provide the adjoint equations. Owing to the large number of variables all
interacting within the Hamiltonian, a key assumption was made to simplify the derivation of the
adjoint equations. We always assume a spoke-and-hub network, whereby a central settlement (the hub),
which we shall always define as the settlement i = 1, has hosts migrate into it from the other, satellite,
settlements (the spokes). No hosts will migrate out from the central city settlement, and no hosts will
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Figure 2. Network example. A spoke-and-hub network example (n = 6 settlements) used to investigate dengue disease dynamics.
Movement only occurs from the outer settlements (spoke) into the central settlement (hub).
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migrate from the smaller, outside settlements to one another. Note however that this does not represent a
permanent migration, instead just a temporary change in location. All hosts have a designated ‘home
node’ which they always return to, but may migrate to another node, creating another opportunity to
become infected in a different location. This is shown in figure 2 and the adjoint equations are given
in full in the electronic supplementary material, S3 appendix.
3. Results
We present results from a series of case studies. For the first three cases, we consider a situation with only
a single settlement. Unless stated otherwise, the values of the constants remain at that defined in table 2.
Unless stated otherwise, for the numerics, we use the following initial conditions: S0 = 2 000 000, IA0 ¼ 1,
IB0 ¼ 1, J0 = 75 000 000, Z0 = 4 000 000, M0 = 3 996 000, X0 = 2000 and Y0 = 2000. State variables not
specified are initialized at 0. All computations were undertaken in MATLAB and code is available here:
https://osf.io/vspxe/ [28].
3.1. Case 1: vector-control (sterile insect technique) only
We start by considering a case without vaccines within just one settlement (i.e. we define u1 to always
be equal to 0 for this case). Carrasco et al. [29] used data from the Singapore Ministry of Health
to estimate the hospitalization costs per case per day. This was found to be modelled by a truncated
normal distribution with a mean of $431 (US dollars; USD) and standard deviation $597 (USD),
bounded below at 0. This large variance in cost is owing to the differences in symptomatic expression
among hosts. With this in mind, we choose C1 = $510 (USD), the zero-bounded mean of the above
distribution, as an estimate of expected healthcare costs. This distribution was calculated as an
average for each hospitalized case, and while not all cases of dengue may result in hospitalization,
this captures our inherent desire to minimize human illness, by interpreting each host infection as a
potential for hospitalization. For C3, Alphey et al. [19] sets the total costs of setting up and
maintaining a 5-year SIT programme as ranging from 0.342 to 1.109 million USD. Figure 3 below
shows a sensitivity analysis in choosing values of C3 ranging from 342 000

5(365) � 190 to 1 109 000
5(365) � 610. We do

not perform sensitivity analyses upon initial model parameters, as this was undertaken in the original

https://osf.io/vspxe/
https://osf.io/vspxe/
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publication [16], revealing no impact to model dynamics. Upon seeing how closely these results
clustered, even larger values of C3 were also considered.

Figure 3 shows that, for all control costs (C3), it is always optimal to apply the maximum possible SIT-
mosquito release at the start of the outbreak. The control is then later reduced, at earlier points in time for
larger values of C3. This reflects how, for higher control costs, it becomes more economically optimal to
start gradually reducing control measures. Note that these optimal decreases to the control variable
always occur at the end of the disease outbreak, as by this point vector populations will have already
been reduced by the earlier control efforts. As such, there is a reduced risk of infection at this later
time, meaning there is less demand for disease prevention methods. Evidently, the release of modified
mosquitoes is a highly desirable technique, as even when the SIT programme costs (C3) are roughly
100 times greater than the healthcare costs (C1), a high release of modified mosquitoes is still of great
benefit in managing dengue infections. This will largely be in part to the costs associated with the
benefits of mosquito control outweighing the costs associated with the high numbers of infected hosts.
3.2. Case 2: both vaccination and vector control
We now include the potential for fully efficious vaccination (u1) in the optimal control of dengue
infections in a single settlement. Specific values for the daily cost of a vaccination programme are
difficult to define precisely, however, Carrasco et al. [29] estimates the annual cost of control methods
at $50,000,000 (≈ $136,990 d−1). We begin with the most idealized version of the vaccine, one which
instantly moves susceptible hosts to the fully recovered class R (ξ = 1), and which is fully effective,
and able to be administered to the entire population. We fix the other costs, C1 = 510 and C3 = 400,
and present our optimal solutions for varying vaccination costs (C2) in figure 4.

Figure 4 shows that the optimum solution for all control costs is to provide the maximum amount of
vaccine and SIT-mosquito coverage from as early as possible. These controls are slowly reduced to zero,
reflecting how, as the host population moves from the susceptible to the recovered class by vaccine
application, it becomes unnecessary to provide further vaccination. As the cost of controls increases,
SIT and vaccination can be reduced at earlier points in time. u2 is reduced to zero at earlier points in
time as the cost, C2, increases, however u1 is always applied to some degree in the system
until approximately day 22. Unsurprisingly, even when the cost of vaccination programmes (C2)
reaches 10 000 times the magnitude of vector control cost (C3), the desirable impact of vaccination
ensures it is always considered worthwhile. However, as the value of C2 increases, we see the optimal
recommended amount of u1 begins to recede, while u2 slowly increases. This result shows how the
increasing cost of applying u1 necessitates putting more emphasis on vector-targeted control methods
to avoid an increase in the infected population. Of interest is that the optimal solution always involves
a combination of both control methods. The rapid decline through time is owing to the vaccine
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moving susceptible hosts to the recovered class, and hence reducing the potential for further infections,
removing the need for further vaccination. To help understand the underlying dynamical impact, the
electronic supplementary material, S4 appendix displays the dynamical behaviour of the underlying
model state variables under this optimal scheme.

We repeat this analysis to investigate when the vaccine is imperfect (ξ = 0). Imperfect vaccination
moves susceptible hosts to RB instead of R. These results are shown in figure 5.

Even though the vaccine is imperfect, vaccine delivery remains a feasible way to control dengue
infection (figure 5a). However, coupling this with SIT vector control, can further reduce the impact
from the primary and secondary dengue infections caused by the imperfect vaccine strategy (figure
5b). Interestingly, there is a single optimal solution to vector control releases for all vaccination costs
under imperfect vaccines, this is owing to the new, limited effectiveness of the vaccine. Because all
people will be at risk of a secondary infection, vector control methods will always be required in
equal measure to tackle this threat, regardless of how many vaccines are administered.

To explore this interplay between vaccination and vector control further, we investigate restrictions in
vaccine coverage. It is unrealistic to assume a vaccine can be applied to the entire population
simultaneously. For this reason, we introduce a new constant (σ = 0.5), to describe reduced
effectiveness of vaccine coverage. Linked to this, Hadinegoro et al. [30] have suggested that Dengvaxia
may lead to imperfect resistance and efficacy. ξ is kept at 0 as well for this case. The governing
equations (and associated adjoints) for S, RB and R are now,

dS
dt

¼ �Sab1(X þ Y)
N

� su1S,

dRB

dt
¼ r1I

B � hRB þ s(1� j)u1S

and
dR
dt

¼ r2(I
B2 þ IA2 )þ sju1S:

Figure 6 displays the optimal controls for a variety of vaccine costs (C2).
Weaker coverage slightly reduces the effectiveness of the vaccine. However, a prolonged application

of both controls at the highest possible level remains the optimal solution (figure 6). Again, the single line
in figure 6b represents the single best control u2 for all varying vaccination costs.
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3.3. Case 3: high initial dengue infection
The first two cases have dealt with epidemic cases, where our system started with just two infected hosts,
and only 4000 infected vectors. We now consider disease scenarios with far larger initial infected
populations. For this case scenario, we keep our canonical choices of C1 = 510, C3 = 400, ξ = 0 and σ =
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0.5, but we increase our initial value of infected hosts to IA0 ¼ 1 000 000 and IB0 ¼ 1 000 000. Figure 7 shows
our optimal results for a variety of choices of C2.

In cases of high infected populations, there is clearly a greater need for integrated control efforts. Both
vaccination and vector control need to be sustained longer to achieve control. A rapid decline in
vaccination is then expected as the population of susceptible hosts, S, is moved to a recovered class
hence reducing the need for further vaccination (figure 7a). To maintain the disease control, high
levels of modified mosquito releases are needed to ensure the control is cost-effective (figure 7b). The
constraint(s) of cost-effective disease control within a feasible time frame (e.g. t = 0 days →t = 80 days)
is commonly seen in our optimal control results, where controls may be sharply curtailed at the end,
in an effort to reduce cost before the impact on the number of infected can be realized.

3.4. Case 4: multiple settlements
Finally, we consider a case with inter-settlement dynamics under epidemic dengue dynamics
(IA0 ¼ IB0 ¼ 1). We consider a perfectly acting vaccine that provides immunity to only one serotype
(ξ = 0, σ = 1). All towns start with the same initial conditions of Si0 ¼ 10 000, Ji0 ¼ 400 000 and
Mi

0 ¼ 20 000 for i∈ {2, 3,…, n}. All other town states begin at 0. Note that the towns begin with no
infection, either in their hosts or vectors. Costs are set at similar values to above (C1 = 510, C2 = 4000 and
C3 = 400).

Figure 8a,b display the optimal control variables within the central city for an increasing network size
and total settlement numbers, n. Figure 8c,d meanwhile display the optimal control variables for the
town settlements for the same varieties of n. Similar to the previous cases, vaccination (u1) is
optimally administered at the maximum level at the beginning of the disease outbreak, before
eventually being reduced to zero by approximately day 22. While this is optimal for both the central
hub and the outer towns, coverage is reduced at a slower rate from an earlier point in time than for
the central city. In the case of SIT-mosquito releases (u2), these modified insects are optimally applied
in high amounts within the central cities, but only released at very small levels in the outer towns.
Interestingly, within the central city the optimal control strategies are the same regardless of the
number of small towns. This is probably owing to the relative size of the towns compared to the city.
As only a very small percentage of hosts move from each town this has very little impact on the total
epidemiological dynamics. Note that the optimal result displayed is the same for each individual town.
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The same optimal control results are recommended for each town, regardless of how many towns
there may be in the network. This is linked directly to the relatively small impact the number of
towns had on the overall dynamics within the city (as seen in figures 8a,b). Adding an additional
spoke settlement tends not to affect the central city, which is the only way towns could ever be seen
to ‘communicate’. However, the form of control in towns is different to that recommended for the
central city. Relatively low levels of coverage and declines in vaccination and vector control (after an
initial increase) are the optimal strategy. It seems optimal control methods for the spokes and hub
remain somewhat independent.

A final sensitivity analysis was made to observe the effects of varying the rate of migration of
susceptible hosts (mS) on control outcomes. All other constants were kept as initially stated for case 4
and we chose n = 5 as a fixed number of settlements. These results are shown in figure 9. Changing
the value of mS had no impact on the control scheme for the city (figure 9a,b), however, movement
of susceptible hosts had a dramatic influence on the optimal controls for the towns themselves
(figure 9c,d ). This is to be expected, as these outer towns are initialized with no infected hosts or
vectors. As such, the settlement may only become infected owing to the migration effect, with hosts
becoming infected in the central node, and then returning to the outer node to infect the vector
population. This greater level of migration results in a more erratic optimal u1 for the outer towns
(figure 9c) owing to the rapidly changing influxes of infected individuals owing to a greater migration
constant. Note also how recommended increases to u1 and u2 gradually decrease as mS increases in value.
4. Discussion
Here, we have investigated how vaccination and SIT-focused vector control approaches can be best
combined to manage dengue disease dynamics in small networks. Using optimal control approaches,
we have shown that a combination of control measures is always an optimal choice, regardless of all
the factors explored in the above case studies. This key finding corroborates that presented by
Hendron & Bonsall [16], whose work highlighted the synergistic relationship between vaccine
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coverage and vector control across small networks. Our optimal control approach has further elucidated
this relationship and demonstrated how these treatments can be most effectively combined and
implemented to achieve cost-effective control. Furthermore, we have revealed how unique factors of
an outbreak can alter the optimal course of action.

A key finding, throughout all the scenarios we investigated, is howminimizing the infected population
is always of the greatest economic importance. As shown in figure 3, evenwhen increasing the cost of vector
control to a far higher value than is realistic, any control method is always financially advantageous. While
calculating specific hospitalization costs is difficult, an in-depth review by Stahl et al. [31] found that
countries which invested greatly in vector control methods had lower total costs owing to dengue
per capita. For some countries, treatment costs are still greater than vector control costs, and this presents
a significant financial burden [32].

Our results have also shown that a combination of prevention methods is always preferred, even
when there is considerable disparity between their respective costs (figure 4). Other studies on the
control of dengue transmission draw similar conclusions (e.g. [33]). This disparity in costs is best
explained from our analysis of imperfect vaccines (figure 5). The two methods target two different
frameworks; hosts and vectors. As these methods affect separate targets, the impact of one on the
model cannot be perfectly offset by the other. When an imperfect vaccine was considered, the optimal
application of modified mosquito release methods remained the same for all vaccine costs, owing to
the vaccine being unable to transfer hosts beyond the risk of secondary infection (hosts were moved
to RB instead of R), hence vector control methods were always required to mitigate this consistent flux
of susceptibles. A recent study showed similar results; Fitzpatrick et al. [34], using a dynamic Markov
approach, showed that vector control remains a cost-effective treatment strategy even in the presence
of a medium-efficacy vaccine. Together with our findings, this suggests that vector control schemes
should always be employed as a safeguard against imperfect vaccines.

Case 3, an instance of a higher initially infected population (IA0 ¼ 1 000 000 and IB0 ¼ 1 000 000), further
strengthens the argument for a strong vector control programme regardless of vaccine availability. When a
high initial disease burden was considered (S0 = 2 000 000, IA0 ¼ 1 000 000, IB0 ¼ 1 000 000), a consistent
maximum application of modified mosquito release was considered optimal, as well as a strong initial



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:181843
16
supply of vaccines. The epidemiological reasoning behind this is that the two million hosts that begin the

case study with a primary infection, will never be able to benefit from a vaccine, as the framework does
not provide them with an option to then receive such treatment. Biologically, this can be interpreted by
drawing parallels from cost-effective inventions to control epidemic and endemic cholera [35]. While
cholera vaccines proved very cost-effective treatments in small epidemic outbreaks, under endemic
parameters vaccines were ineffective and it was considered more cost-effective to focus on the provision
of safe drinking water and clearing the surrounding environment of the bacteria. While the
epidemiology is different, the phenomena is the same, where vaccines are no longer capable of providing
a herd immunity effect [36] alternative solutions to mitigate disease burden need to be sought.

One key result (in case 4) is where control schemes in the main city were unaffected by changes to the
nature of the surrounding towns (figure 8). This result suggests that city-wide control measures may not
need to factor migration into their disease-prevention programmes. A programme that effectively aids
the city will effectively aid those that migrate in by definition, even when not specifically vaccinating
those that live in the outer towns. It confirms that focusing efforts on the largest population centres is
by far the best strategy. This is in agreement with the general theoretical findings that, when vaccine
supply is limited, they are best distributed among the groups who are most crucial to transmission
[37]. To aid outer towns further, our results suggest a very small-scale vaccination programme and
SIT mosquito release within the towns themselves would be appropriate. This would probably just
strengthen a herd-immunity effect. By far the biggest impact on minimizing outbreaks in outer towns
however is ensuring the central cities are kept under control to minimize the chances of the disease
even reaching these towns. We do, however, see that in cases of higher migration (figure 9d ), a longer
sustained town-based SIT mosquito release plan is suggested to help protect the town itself.

While an optimal control was quickly found for the city settlements, an optimal solution within the
outer towns was more complicated. When the migration rate mS was increased, the method took longer
to converge and displayed more unpredictable results (figure 9c). This result suggests that the most
effective way to control disease outbreaks in the towns was an effective city-based control scheme.
The application of vector control interventions in the towns was less efficacious, and therefore no clear
‘optimal solution’ could easily be found. Also, the fact that the optimal controls in the towns were of
such small value, their input into the cost function was somewhat negligible. This explains an
undocumented phenomena where convergence was more easily acquired for large cost values of C2

and C3. This warrants further investigation and suggests it could be wise to re-consider the
formulation of the cost function, perhaps changing the controls to represent a volume of application as
opposed to a proportion (0≤ u1/u2≤ 1).

While the specific values of the control variables may have varied for different case studies, all of
these supported a strong initial programme of vaccines (to push as many hosts into the recovered
class as quickly as possible) followed by modified mosquito release (which in turn suppress the
number of infected mosquitoes through the season). Often modified mosquito releases need to be
sustained longer than vaccination programmes to achieve disease control. Although dengue vaccines
can reduce susceptible numbers, mosquito control acts to suppress population sizes below the key
entomological threshold to prevent further primary and secondary infections emerging. This critical
combination of control interventions achieves dengue suppression most effectively in all cases.
4.1. Coda
The optimal control problem of combining vector interventions and vaccination has yielded key insights
into dengue disease management. However, a number of caveats require more careful consideration.

As is always the case, our mathematical model is a major simplification of biological reality, and
several steps could be taken to improve the model. We note that our cost function could be greatly
improved. As well as the ideas posed above, as it stands, the cost of fully vaccinating a small town is
the same per day as vaccinating the large city under our model. This is a clearly a convenient fiction
and requires further investigation. Likewise, the cost of SIT programmes is complicated by the fact
that an initial set-up cost is always required to build the breeding facility. Many of our optimal results
eventually push the vector control (u2) to zero to remove all cost. However, the averaged ‘daily cost’
of having built the facility needs to be considered. The nature of the model also urges an optimal
result to maximize flow of hosts into the fully recovered class, R, whereas it may be more realistic to
consider a delay, where recovered individuals may be temporarily fully immune (R) before rejoining
one of the susceptible pools (S, SA2 or SB2 ) and then being exposed to a different strain of dengue.
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The limit on migration only occurring into the central city was an important step for formulating a

simple network model of dengue disease dynamics. Indeed, our case studies will only represent certain
particular cases of dengue epidemics. Many dengue-endemic areas can be characterized by recurring
outbreaks, while our current formulation focuses on only one contained outbreak. Considering inter-
town dynamics and travel between smaller towns and villages, could give key insight on how to combat
the disease across all settlements outside of cities. Several more key scenarios can be considered, for
example, larger settlements with a large host population, and high vector populations, would pose a
significant challenge.

From a computational perspective, the convergence and efficiency of optimal control methods is very
sensitive to certain parameters. Run-time was significantly reduced when generating a new expression
for u by choosing a weighting of u = (0.7 � uold + 0.3 � unew), to save time lost owing to ‘over-shooting’.
Because this in an iterative procedure, converging to the optimal u, using the more standard update
criteria of u = (0.5 � uold + 0.5 � unew) was found to repeatedly overcompensate in this instance, by
making unnecessarily large adjustments to uold. Developing aspects of Pontryagin’s maximum
principle for networks is clearly in its infancy and there is much to be done in developing the
mathematics for approaching these challenging real-world problems.

All the caveats notwithstanding, the optimal control approach and insights developed here provides
a key tool in developing a richer understanding of how to combine integrated vector-control programmes
in managing the public health burden of dengue.
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