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Fractional killing, which is a significant impediment to
successful chemotherapy, is observed even in a population of
genetically identical cancer cells exposed to apoptosis-
inducing agents. This phenomenon arises not from genetic
mutation but from cell-to-cell variation in the activation
timing and level of the proteins that regulates apoptosis. To
understand the mechanism behind the phenomenon, we
formulate complex fractional killing processes as a first-
passage time (FPT) problem with a stochastically fluctuating
boundary. Analytical calculations are performed for the FPT
distribution in a toy model of stochastic p53 gene expression,
where the cancer cell is killed only when the p53 expression
level crosses an active apoptotic threshold. Counterintuitively,
we find that threshold fluctuations can effectively enhance
cellular killing by significantly decreasing the mean time that
the p53 protein reaches the threshold level for the first time.
Moreover, faster fluctuations lead to the killing of more cells.
These qualitative results imply that fluctuations in threshold
are a non-negligible stochastic source, and can be taken as a
strategy for combating fractional killing of cancer cells.
1. Introduction
Resistance to chemotherapeutic agents remains a major obstacle to
effective cancer treatment. Much effort has been devoted to
understanding resistance mechanisms to improve the therapeutic
effect. Previous studies considered that drug resistance emerges
due to specific mutations in a subset of tumour cells, and it is
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Figure 1. Threshold crossing can be modelled as a first-passage time (FPT) problem. (a) A realistic example involving FPT, where cells
must reach a threshold level of p53 to execute apoptosis and this apoptotic threshold changes with time [3], here only shown its
fluctuating extent. (b) Two gene models, where the model for gene p53 assumes that the gene is expressed in a burst manner
whereas that for gene A assumes that the gene is expressed in a constitutive manner. (c) A FPT problem with fluctuating
threshold, where A(t) represents the threshold curve that p53(t) hits for the first time, and the inset shows the FPT distribution.
(d ) A one-dimensional FPT problem with fluctuating threshold is transformed into a two-dimensional FPT problem with fixed
threshold. The shadow region represents an absorbing domain of FPT in the (p53, A) plane, defined by
D ¼ {(p53, A)jp53 � A}, where an event is triggered once p53 crosses A, the line of A ¼ p53 represents the boundary of
region D, and arrows represent the possible directions of threshold crossing. (e) The expression level of gene p53 changes over
time, where the dashed red line represents a critical threshold that the gene product crosses, and the inset shows the FPT
distribution. ( f ) Schematic for an absorbing domain of FPT, where the empty circles with arrow represent threshold crossing.
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those mutated cells that survive during chemotherapy treatment [1]. However, recent experimental
investigations into genetically identical populations of tumour cells exposed to apoptosis-inducing
agents revealed that drug resistance also emerges through mechanisms of non-genetic mutations, often
through stochastic fluctuations in key factors in response to drugs. Drug resistance means that some
cells are killed while others survive during treatment. This phenomenon is known as fractional killing [2].

Single-molecule measurement technologies have shed much light on the underlying molecular
mechanisms of cell-to-cell variability in fractional killing [2–5]. For example, experiments verified that
genetic mutations in BCR-ABL can give rise to fractional killing of cancer cells or lead to the drug
ineffectiveness, but in two-thirds of cases no genetic mutations was found [6]. In the case of apoptosis
mediated by tumour necrosis factor-related apoptosis-inducing ligand, it is common that some of the
tumour cells of a clonal population are killed while the others survive [2]. In human cell lines,
fractional killing arises from cell-to-cell variability in the timing and probability of death, and this
variability is thought to originate from the differences in the levels of the proteins that regulate
receptor-mediated apoptosis [3]. Another experimental observation is that the cell-to-cell variability in
p53 dynamics can result in fractional killing, where a cell’s death probability depends on the time and
level of p53 and the cell must reach a fluctuating threshold to execute apoptosis (referring to
figure 1a) [3]. In spite of these case-to-case experimental efforts, how non-genetic variability in the
timing and level of key proteins regulating apoptosis impacts fractional killing of cancer cells remains
to be fully understood, and model efforts are required to address this intriguing yet important issue,
especially in the case of fluctuations in apoptotic threshold.

As is well known, for many cancer types, the p53 transcription factor is a key regulator in the cellular
response to DNA damage induced by chemotherapy [7]. Experimental evidence supports that increasing
upstream p53 abundance can trigger the transcription of multiple genes in various downstream
programmes including cell apoptosis and cell-cycle arrest [8]. Previous works suggested a threshold
mechanism where the choice between different programmes depends on p53 protein levels [9,10]. In
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the corresponding models, low levels of p53 trigger cell-cycle arrest and high levels of p53 lead to

apoptosis. Subsequently, some studies [11,12] showed that the dynamics of p53 plays a role in the
specificity of the response with pulsed p53 favouring DNA repair and cell-cycle arrest genes and
sustained p53 triggering activation of senescence and apoptotic genes. Recently, Paek et al. [3], used
live-cell imaging to investigate the role of p53 dynamics in fractional killing of colon cancer cells in
response to chemotherapy. They showed that both surviving and dying cells reach similar levels of
p53, implying that cell death is not determined by a fixed p53 threshold. Conversely, a cell’s death
probability depends on the time and levels of p53. They also showed that cells must reach a threshold
level of p53 to execute apoptosis and this threshold increases with time. The increase in p53 apoptotic
threshold is due to drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors
of apoptosis family. These quantitative experiments call for a corresponding modelling effect that
addresses the question of how fluctuations in apoptotic threshold affects fractional killing of cancer cells.

In order to address this issue, we first formulate complex fractional killing processes as a first-passage
time (FPT) problem and then analyse a simplified model of stochastic p53 dynamics, where the cancer
cell is killed only when the p53 expression level crosses a fluctuating apoptotic threshold. Analytical
calculations are performed for the FPT distribution in this model. Counterintuitively, we find that
fluctuations in apoptotic threshold can effectively enhance cellular killing by significantly decreasing
the mean time that the p53 protein reaches the threshold level for the first time. And faster
fluctuations can lead to the killing of more cells. These qualitative results indicate that stochastic
fluctuations in apoptotic threshold are a non-negligible noisy source that can facilitate killing of cancer
cells. Therefore, tuning this variability would be a potential strategy for combating fractional killing
and thus improving drug efficacy.
2. Material and methods
2.1. Modelling fractional killing processes as a FPT problem
Fractional killing generally results from the cross-talk between complex apoptosis and survival
pathways. These complexly structured and heterogeneous processes as well as the paucity of
experimental data hamper efforts to construct detail models. However, fractional killing processes are
essentially threshold-crossing events. To reveal the essential mechanism of how fluctuating threshold
impacts the dynamics of threshold crossing, we consider a toy model of gene regulation (referring to
figure 1b), where a timing event is triggered once the expression level of a gene (denoted its product
by p53) crosses the expression level of another gene (denoted its product by A) for the first time.
Indeed, simple mathematical models are important tools towards understanding the essential
mechanisms of important biological processes such as cell apoptosis and interpreting experimental
phenomena [13–16]. They can also provide guidelines for experimental designs with a growing
interest in combining clinical and molecular data.

Specifically, we use a stochastic model of p53 gene expression to investigate the effect of stochastic
fluctuations in apoptotic threshold on fractional killing of cancer cells. This model takes explicitly into
account ‘molecular noise’ in the p53 protein that regulates apoptosis in the emergence of drug
resistance during treatment, and variability in apoptotic threshold. Indeed, fluctuating threshold has a
strong biological background and is ubiquitous in biological regulatory systems. For example, we
consider a representative activity function of Hill type [17–19] activation ¼ Zn=(Zn þ Kn), where n is
the Hill coefficient, and K is a function of stochastically generated external signals S, and represents
fluctuating thresholds of Z. For a gene whose expression must reach fluctuating threshold level,
expression noise and threshold fluctuations can all lead to variability in the event timing. This raises
questions: how these two stochastic origins impact threshold crossing, and which regulatory strategies
can control variability in the event timing. Most previous studies have focused on the first-passage
properties of stationary threshold crossing [17,18,20–22], while comparatively very few studies have
investigated how fluctuating threshold impacts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22–26] or experimentally [3].

Now, we formulate the stochastic temporal timing of events as FPT problem to a fluctuating
threshold. Denote by p53 and A the p53 protein and the apoptotic threshold, respectively. Cells must
reach an apoptotic threshold level of p53 to execute apoptosis, and this threshold fluctuates with time.
Assume that { p53(t)}t�0 is a temporally homogeneous stochastic process with initial p530, and {A(t)}t�0
represents a fluctuating threshold (boundary or barrier) with initial A0. Without loss of generality, we
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here set p530 , A0. This setting is natural since A represents the critical threshold that p53 will cross. Note

that the union of two trajectories p53(t) and A(t), (p53(t),A(t)) constitutes a new system. Define T as the
time that trajectory p53(t) hits trajectory A(t) for the first time, i.e.

T ¼ min {t: p53(t) � A(t)jp53(0) ¼ p530,A(0) ¼ A0} ð2:1Þ
which is called the first-passage time (FPT) [20–22]. Apparently, T is a random variable since both p53(t)
and A(t) are stochastic, referring to figure 1a. The left issue is how the distribution of T including
statistical quantities is correlated to stochastic dynamics of p53(t) and A(t). Our basic idea is to
transform a one-dimensional FPT problem with fluctuating threshold into a two-dimensional FPT
problem with a fixed boundary.

For analysis convenience, we consider a two-gene expression model to mimic p53-induced tumour
cell apoptosis, in which p53 molecules are produced in a burst manner whereas A molecules are
generated in a constitutive manner. The produced counts of protein molecule A are used to construct
a stochastically fluctuating threshold that the molecular number of protein p53 reaches. Assume that
p53(t) [ {0, 1, 2, . . .} is the level of protein p53 at time t, and protein p53 is generated with a Poisson
rate gðmÞ

p53
(where superscript (m) means that feedback regulation is considered, but it may be omitted

in the absence of feedback regulation) and degrades at a constant rate dp53. The translation burst
approximation is based on the assumption of short-lived mRNAs, meaning that each mRNA degrades
instantaneously after producing a burst of B protein molecules, where B follows a geometric
distribution [27–30],

PB¼k ; PB(B ¼ k) ¼ bk

(1þ b)kþ1
, k ¼ 0, 1, 2, � � � ð2:2Þ

with b mean translation burst size. Thus, PB�k ; PB(B � k) ¼ (b=(1þ b))k, k ¼ 0,1, 2, � � �. Similarly,
assume that A(t) [ {0, 1, 2, . . .} represents the level of protein A at time t, and follows a Poisson
distribution with two characteristic parameters gðnÞ

A
(where the meaning of superscript (n) is similar to

that of superscript (m)) and dA, representing, respectively, the transcription and degradation rates of
protein A when A(t) ¼ n. Moreover, the time evolution rule of (p53(t),A(t)) is defined as follows:
(p53(t),A(t)) starting from (p53(t) ¼ m,A(t) ¼ n) with m , n at time t is updated through the following
probabilities of timing events in the infinitesimal time interval (t, tþ dt],

P(p53(tþ dt) ¼ mþ B,A(tþ dt) ¼ njp53(t) ¼ m,A(t) ¼ n) ¼ gðmÞp53dt;

P(p53(tþ dt) ¼ m� 1,A(tþ dt) ¼ njp53(t) ¼ m,A(t) ¼ n) ¼ mdp53dt;

P(p53(tþ dt) ¼ m,A(tþ dt) ¼ nþ 1jp53(t) ¼ m,A(t) ¼ n) ¼ gðnÞA dt;
P(p53(tþ dt) ¼ m,A(tþ dt) ¼ n� 1jp53(t) ¼ m,A(t) ¼ n) ¼ ndAdt;

9>>>>>>=
>>>>>>;

ð2:3Þ

The apoptosis event occurs if the cumulative number of protein p53 molecules exceeds the number of
protein Amolecules. Here, A(t) described event threshold is not a constant but fluctuates over time. Next,
we will focus to investigate the effect of the noise in A(t) on threshold-crossing events, and compare the
FPT characters between two cases of fluctuating (i.e. A(t) stochastically changes) and fixed (i.e.
A(t) ¼ constant) threshold. Note that the more threshold-crossing events there are, the more cancer
cells are killed, and otherwise, the fewer cancer cells are killed.
2.2. Master equation for FPT problem with a fluctuating threshold
The FPT problem with fluctuating threshold arises in many scientific fields such as biology, statistics and
engineering. However, in contrast to fixed threshold FPT problem, it seems to us that there have been no
methods to handle fluctuating threshold FPT problem. For the above example, we successfully transform
a one-dimensional FPT problem with a fluctuating threshold into a two-dimensional FPT problem with a
fixed boundary. It is worth pointing out that this transform can easily be extended to a more complex
case.

Now, we introduce an absorption domain D, which consists of those points (p53,A) that satisfies
p53 � A, that is, D ¼ {(p53,A)jp53 � A}. Let Pm,n represent the probability that a two-dimensional
system is at state (m,n) at time t, i.e.

Pm,n(t) ¼ Prob{ p53(t) ¼ m,A(t) ¼ njp53(0),A(0)} ð2:4Þ
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Pm,n(t) is sometimes also denoted by PS(t), i.e. PS(t) ¼ Pm,n(t), where S ¼ (p53,A) represents state. Note

that the survival probability is equal to the sum of the probabilities of all the states that do not belong to
the absorbing region, i.e. S ¼P

S�D PS(t), and the probability density function for the FPT (denoted by
fTðtÞ) satisfies fTðtÞ ¼ Prob{T � t}.

The relation between the protein molecules p53 and A can be considered as a trajectory in the domain
{(p53,A)jp53(t) , A(t)}. The corresponding forward master equation (FME) describing the time evolution
of protein pair p53 and A can be described as the following master equation [20,29,30]:

dPm,n(t)
dt

¼
Xm�1
i¼0

gðiÞp53PB¼m�iPi,n(t)þ gAPm,n�1(t)þ (mþ 1)dp53Pmþ1,n(t)

þ (nþ 1)dAPm,nþ1(t)� (gðmÞp53PB�1 þ gA þmdp53 þ ndA)Pm,n(t), ð2:5Þ

where m , n. Thus, FPT distribution (fTðtÞ) can be formally expressed as [22,31,32]

fT(t) ¼
X
m�0
ðmþ 1ÞdAPm,mþ1(t)þ

X
n.m�0

g(m)
p53PB�n�mPm,n(t): ð2:6Þ

In numerical simulation, we constrain n ¼ 1, 2, . . . ,C (where C is a pre-given positive integer),
implying that m ¼ 0, 1, 2, � � � ,C� 1.
7:190462
2.3. Statistical quantities of FPT distribution
Although the FPT distribution in principle provides complete characterization of the threshold-crossing
event timing, we are particularly interested in the lower-order statistical moments of FPT distribution
ðfTðtÞÞ. Starting from a general FME, we can obtain analytical formulae for the first- and second-order
moments of FPT. For this, we first establish the relation between distribution fTðtÞ and state S, and
then give the formal expression of fTðtÞ. Assume that all states {S(t)}t�0 with S(t) ¼ ( p53(t),A(t))
constitute a Markov process. The vector form of FME can be then written as [20,29,30]

@P(t)
@t
¼MP(t), ð2:7Þ

where P(t) is a column vector consisting of all PS(t), and M is a certain linear operator, depending on a
process of interest. Here, every component of P(t) is the probability that the system {S(t)}t�0 arrives at the
absorbing domain D at time t and M is actually a state transition matrix. P(Sf , tjS, t0) is denoted by the
probability that the state S(t) reaches the absorbing state Sf at time t, given an initial state S ¼ S(t0) at time
t0 with S(t0) ¼ ( p530,A0) (t0 ¼ 0 can be set). Let S(t,Sf jS,t0) be the survival probability that the trajectory
{S(t)} starting from S at time t0 has not yet been absorbed to state Sf at time t, that is,
S(t,Sf jS,t0) ¼

P
S0=Sf P(S

0,tjS,t0). By the definition of survival probability, we have Prob{T � t} ¼
1� S(t,Sf jS,t0). Thus, the probability density function of the FPT, fT(t), is given by (see electronic
supplementary material, S1 for more details)

fT(t) ¼WTP(t) ¼WTexp(Mt)P(0), ð2:8Þ
where W is a column vector of transition rates from all accessible states to the absorbing state and the
superscript T represents transpose [22,31,32].

Once fT(t) is given or found, raw moments of random variable T are given by (see electronic
supplementary material, S1 for derivation)

hTki ¼
ðþ1
0

tkfT(t) dt ¼ k!(�1)keT(M�1)kP(0), k ¼ 1, 2, � � � ð2:9Þ

with eT ¼ [1, 1, � � � , 1] constant vector. This indicates that the moments of FPT can be calculated directly
based on the FME once initial transition probability P(0) is set. In particular, the timing mean, i.e. mean
FPT (MFPT), is obtained by

MFPT ¼ hTi ¼ �eTM�1P(0), ð2:10Þ
which is a statistical quantify of our main interest. Moreover, the intensity of the noise in T (defined as the
ratio of variance over the square of mean), which represents the timing variability or reflects the precision
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in the event timing, is calculated by

CVT ¼ hT
2i � hTi2
hTi2 ¼ 2eT(M�1)

2
P(0)

[eTM�1P(0)]2
� 1: ð2:11Þ

Other higher-order moments such as skewness and kurtosis can be also formally given, detailed in
electronic supplementary material, S1. Obviously, the key to calculating these statistical quantities is to
calculate the inverse of matrix M. Note that the more the mean FPT hTi is, the fewer cancer cells are
killed, and the smaller the timing variability CVT is, the more precise threshold crossing is.

It should be pointed out that the molecule number of protein p53 or A may be infinite in theory,
implying that M in equation (2.7) is an infinite-dimensional matrix. Therefore, equations (2.9)–(2.11)
have only theoretical significance since they give only the formal expressions of FPT distribution and
statistical quantities. Owing to such infinity, the FPT problem we study here is essentially different
from a traditional FPT problem in which matrix M is finitely dimensional due to the fixed threshold.
The infinite-dimensional FPT problem is in general intractable, thus it is needed to develop
computational methods. Here, we propose a so-called truncation approach to solve this tough
problem. This approach is developed based on the finite state projection [33].

2.4. An efficient method for solving FPT problem with a fluctuating threshold
For above FPT model, we introduce our truncation method to solve FPT problem, which can be generic
and applied to more complex cases. Next algorithm description is given.

First, the finite state projection approach [33] tells us that matrix M can be replaced by a k � k
submatrix Mk, so that the approximation P(t) � exp (Mkt)~P(0) holds, where ~P(0) replaces the original
P(0) in some order. As a result, the state vector ( p53i, Ai) constitutes a finite state projection, where
i [ {1, 2, . . . , k}.

Second, we define Gk ¼ eT exp (Mkt)~P(0), which represents the sum of the components of vector P(t).
According to the finite state projection approach, we can prove that if Gk � 1� 1 with 1 being a small
positive number, we have

exp (Mkt)~P(0) � P(t) � exp (Mkt)~P(0)þ 1 � e: ð2:12Þ

Based on the above analysis, we develop the following truncation algorithm:

Inputs. Propensity functions and stoichiometry for all reactions.
Initial probability density vector ~P(0)
Final time of interest, tf .
Total amount of acceptable error, 1.
Initial finite set of states, (p530,A0).
Initialize a counter, k ¼ 0.
Step 0 Calculate Mk ¼ Submatrix (M), which depends on ( p53k, Ak), and Gk ¼ eT exp (Mkt)~P(0).
Step 1 If Gk � 1� 1, Stop.
exp (Mkt)~P(0) approximates the probability P(p53k,Ak, tf ) with error 1.
Step 2 Add more states, (p53kþ1,Akþ1) ¼ expand ( p53k,Ak), and take k k þ 1. Increment k and return

to Step 1.

Owing to the effectiveness of the truncation approach proposed above (referring to figure 2), we may
assume that matrix M is finitely dimensional (otherwise, we use finitely dimensional matrix, Mk). To
derive the expression of matrix M in the above gene model, a special absorbing domain is considered by

D1 ¼ {(p53,A)jp53 ¼ p53(t) � A(t) ¼ A}: ð2:13Þ

Electronic supplementary material, S1 performs analysis for three other kinds of absorbing domains.
Introduce the numerical cut-offs for the numbers of proteins p53 and A, respectively: p53max for p53(t)

and Amax for A(t), and without loss of generality, assume p53max ¼ Amax ¼ C (a known integer). Therefore,
as for the above gene model (figure 1f ), we have m [ {0, 1, 2, 3, . . . ,C� 1} and n [ {1, 2, 3, . . . ,C}. That
means that the corresponding finite state-space for birth–death process can be considered by

V ¼ {(m,n)jm , n, m ¼ 0, 1, 2, � � � ,C� 1, n ¼ 1, 2, � � � ,C}: ð2:14Þ
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Figure 2. Verification of the effectiveness of the truncation algorithm with the model described in figure 1b. (a) Timing mean as a
function of p53max. (b) Timing variability as a function of p53max. (c) The FPT distribution for p53max ¼ 30. (d ) The difference
between exact and approximate results of timing mean as a function of p53max. (e) The difference between exact and
approximate results of timing variability as a function of p53max. ( f ) The Kullback–Leibler divergence between exact and
approximate FPT distribution as a function of p53max. In (a–f ), empty circles represent the results obtained by Gillespie
stochastic simulation and are therefore viewed as ‘exact’, whereas the curve represents the results obtained by our algorithm
and are therefore viewed as ‘approximate’. The parameter values are set as gp53 ¼ 5, dp53 ¼ 1, b ¼ 1, gA ¼ 10, dA ¼ 1.
And the mean value of A (i.e. event threshold) is Athreshold ¼ 10 in the p53 cut-offs, p53max ¼ 15 � 35.
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By this finite state-space, vector P(t) is rewritten as P ¼ [P�,1,P�,2,P�,3, . . . ,P�,C]T, where P�,k represents
P�,k ¼ [P0,k,P1,k , . . . ,Pk�1,k, 0, . . . , 0], k [ {1, 2, . . . ,C}, and time t is omitted. Also, we introduce an
operator, denoted by LðiÞ (i ¼ 1,2, � � � ,n), which acts on matrix with the operation rule being:
LðiÞM ¼M(i), where M(i) is a matrix whose order is the same as that of M but some components are
possibly zero, e.g. if M ¼ (aij)3�3, then Lð2ÞM ¼M(2) ¼ (bij)3�3, where (bij)2�2 ¼ (aij)2�2 and the other
elements are equal to zero. Thus, above matrix M in equation (2.7) can be expressed as the following
form:

M ¼

D1 U1
L1 D2 U2

L2 D3 U3

. .
. . .

. . .
.

LC�2 DC�1 UC�1
LC�1 DC

2
66666664

3
77777775
, ð2:15Þ

where

Ui ¼ (iþ 1)LðiÞ(dAIC), i ¼ 1,2, � � � ,C� 1;
Di ¼ LðiÞ(Mgp53 þMdp53 � (gA þ idA)IC), i ¼ 1,2, � � � ,C;
Li ¼ LðiÞ(gAIC)(i ¼ 1, 2, . . . ,C� 1), i ¼ 1, 2, . . . ,C� 1:

8><
>:

Here, IC is an identity matrix. Matrix Mdp53 ¼ dp53diag([1,2, . . . , C� 1],1)� dp53diag([0,1 . . . , C� 1], 0),
where symbol diag(v, k) represents that the elements of vector v are placed on the kth diagonal. Note that
k ¼ 0 corresponds to the main diagonal, k . 0 corresponds to above the main diagonal, and k , 0
corresponds to below the main diagonal. Matrix Mgp53 ¼ gp53Mburst, where Mburst ¼ �PB�1ICþPC�1

k¼1 PB¼kdiag(eTC�k,� k). In the presence of feedback, implying that gp53 depends on the molecule
number (m) of protein p53, we have MgðmÞ

p53
¼MburstG, where G ¼ diag([gð0Þp53, g

ð1Þ
p53 . . . , g

ðC�1Þ
p53 ], 0) (See

electronic supplementary material, S1 for the formal expressions of these matrices).
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Moreover, given a numerical cut-off (C), the FPT distribution in equation (2.8) can be rewritten as (see
electronic supplementary material, S1 for more details)

fT(t) ¼
XC�1
m¼0

(mþ 1)dAPm,mþ1(t)þ
XC
n¼1

Xn�1
m¼0

g(m)
p53PB�n�mPm,n(t)

¼WT
dAPm,n(t)þWT

gp53Pm,n(t)

; WTPm,n(t), ð2:16Þ
where W ¼ [WT

1 ,W
T
2 , . . . ,W

T
C]

T with Wn ¼ ndy1n þ
Pn�1

m¼0 g
(m)
p53PB�n�m1mþ1, n ¼ 1, 2 . . . ,C. Here, we

define a column vector of length C, 1i ¼ (0, . . . 0, 1, 0, . . . , 0)T in which only the ith element is equal to
1 and other elements are all zero.

For a given P(0), mean FPT hTi and timing variability CVT can be calculated by equations (2.10) and
(2.11), respectively, where a key step is to calculate the inverse of matrix M through equation (2.15), while
FPT distribution fT(t) is easily calculated through equation (2.16). In a word, through the calculation of
these quantities, we can analyse characteristics of timing events with fluctuating thresholds, including
the mean first passage time and variability in the timing. For the sake of simplicity, we will not consider
feedback regulation implying that g(m)

p53 ; gp53 and g(n)A ; gA are independent of m and n.
sci.7:190462
3. Results
3.1. The effectiveness of truncation algorithm
In order to verify the effectiveness of the truncation algorithm proposed above, we perform numerical
calculation using the gene model described in figure 1b. Numerical results are shown in figure 2.

Figure 2a,b shows the dependence of mean FPT and timing variability on the cut-off of the protein p53
molecular numbers, respectively. With increasing the cut-off constant, both can well approximate the
‘exact’ values (empty circles) obtained by the Gillespie stochastic algorithm [34]. For example, the
approximate mean FPT is nearly equal to the exact mean FPT at p53max � 23 whereas the approximate
timing variability is nearly equal to the timing variability at p53max � 25. Figure 2c shows the FPT
distribution for a given cut-off constant, p53max ¼ 30.

Figure 2d demonstrates the dependence of the difference between the exact mean FPT obtained by the
Gillespie stochastic algorithm [34] and the approximate mean FPT obtained by the finite state projection
on the cut-off constant p53max. We observe that this difference quickly tends to zero as the cut-off constant
is beyond some value. The similar change tendency holds for timing variability, referring to figure 2e. In
addition, figure 2f more clearly displays that two kinds of FPT distributions are in agreement since the
Kullback–Leibler divergence [35] between them tends to zero as the cut-off constant p53max increases,
further verifying the effectiveness of the proposed truncation algorithm.

In the remainder of this article, we will use the above numerical method to compute two statistical
quantities of FPT distribution, timing mean (mean FPT) and timing variability. The former characterizes
the response time that p53 reaches the apoptosis threshold, i.e. the shorter the timing mean (mean FPT)
is, the more cells are killed. The latter quantifies the timing precision in threshold crossing. Lower
variability implies more robust cell-killing strategy.
3.2. Stochastic fluctuations in apoptotic threshold can accelerate tumour cell apoptosis
First, the conception of event threshold is introduced for convenience, which means the average level of
protein A that is equal to the ratio of the generation rate (gA) over the degradation rate (dA), e.g. the event
threshold Athreshold ¼ gA=dA. An event threshold is nothing but a fixed threshold in the deterministic case
(i.e. no fluctuations case), but, in the case of fluctuations, an event threshold may not be equal to the fixed
threshold, due to the stochastic fluctuations effect.

To show how fluctuating threshold impacts the timing of events, we plot figure 3 where numerical
results in the case of fixed threshold are also shown for comparison. Figure 3a shows two curves for
the dependence of mean FPT on event threshold in two cases of fixed and fluctuating threshold. And
the mean FPT curve of fluctuating threshold case is always below that in the case of fixed threshold
as event threshold increases, which implies that threshold fluctuations always shorten the time that
regulatory proteins reach a critical threshold, or accelerate the response of intracellular events to
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external cues. Figure 3b further demonstrates the dependence of the difference between their mean FPTs
in two cases on event threshold, and this difference monotonically increases with event threshold
increased. This difference can be also explained by FPT distribution, such as two special FPT
distributions for Athreshold ¼ 4 and Athreshold ¼ 13, referring to the inset of figure 3b, which corresponds
to empty circle and triangle indicated, respectively.

Figure 3c demonstrates how event threshold impacts variability in the timing. From this figure, we
observe that there is a critical event threshold (denoted by RP) such that the timing variability in the
case of fluctuating threshold is smaller than that in the case of fixed threshold as the event threshold
is beyond RP, but the former is larger than the latter as the event threshold is below RP. In other
words, for a high event threshold, threshold fluctuations can reduce the timing variability or can raise
the precision in the timing. There is also an even threshold such that timing variability is least
(referring to the stars indicated), implying event threshold can make the timing precision reach
optimality in both cases of fixed and fluctuating threshold. Figure 3d, which is a different
demonstration of the results in figure 3c, further shows the difference between their timing
variabilities in two cases of fixed and fluctuating threshold, which is a monotonically increasing
function of event threshold. The dependence of the critical event threshold (RP) on transcription rate,
gp53, is shown by the inset of figure 3d, demonstrating that the critical event threshold (RP) increases
with gp53 increased.

In short, figure 3a,c shows our main results, that is, fluctuations in threshold can accelerate the
response of intracellular events to external cues by shortening the time that regulatory proteins reach
the apoptotic threshold for the first time; fluctuations in high event threshold can raise the timing
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precision by reducing timing variability; and there is an even threshold such that the timing variability

reaches optimality in both cases of fixed and fluctuating thresholds. These results imply that threshold
fluctuations are an important factor affecting the timing of events, and that fluctuations in apoptotic
threshold can facilitate the killing of cancer cells.

Note that our above results can also be explained theoretically [36,37]. For the case of fixed threshold,
we define Tfixed ¼ min {t: p53(t) � hA(t)ijp53(0) ¼ p530,A(0) ¼ A0} is the apoptotic timing of random
variable Tfixed, where hA(t)i is mean apoptotic threshold. Obviously, it is different with the defined
variable T of equation (2.1) in the case of fluctuating threshold, rewritten by Tfluctuating ¼
min {t: p53(t) � A(t)jp53(0) ¼ p530,A(0) ¼ A0}. As for nonlinear function, these two mean FPTs are not
equal, i.e. hTfluctuating(A(t))i= hTfixed(hA(t)i)i, implying that the average apoptotic timing response
probability is generally not the same as the timing response probability for the average apoptotic
threshold signal. Although it is difficult to deduce their size relationship directly theoretically in our
model, according to numerical calculation results, we can show this result that the mean FPF in the case
of fluctuating threshold is less than that in the case of fixed threshold.

The above model only discusses one case of absorbing domain, referring to figure 1d, but in electronic
supplementary material, S1 the other three cases of different absorbing domains are given, and numerical
results for their mean FPT and timing variability are also shown, which are a function of event threshold.
From electronic supplementary material, figures S6A, S7A and S8A, we can observe that the absorbing
domains specified above are smaller than the one in figure 1d. Comparing with the results of figure 3,
electronic supplementary material, figures S6–S8 also demonstrate that threshold fluctuations can
affect mean FPT, and event threshold can impact timing variability. For a high event threshold,
fluctuations in threshold can improve the event response and shorten mean FPT, and the
corresponding variability tendency in the timing can raise the timing precision.
3.3. Fast fluctuations in apoptotic threshold can lead to killing of more cancer cells
In the above subsection, we have shown that fluctuation in threshold has important influences on event
timing. However, factors leading to such fluctuations may be diverse. Here, we focus on investigating the
effects of timescales on timing mean and timing variability.

To better understand the characterization of timescale, we first give the definition of timescale in our
model. If the production rate (gp53 or gA) and degradation rate (dp53 or dA) of protein p53 or A are
simultaneously enlarged by ap53 or aA times, then the factor ap53 or aA is defined as the timescale of
protein p53 or A. In general, the larger the factor ap53 or aA is, the larger are the fluctuations in
protein p53 or A. Therefore, ap53 or aA is an important factor leading to fluctuations in protein p53 or
A. Small ap53 or aA corresponds to slow fluctuations whereas large ap53 or aA to fast fluctuations. We
can prove that the variability in event timing depends only on the ratio of aA over ap53, ðaA=ap53Þ,
independent of their sizes (see electronic supplementary material, S1 for details).

Next, we investigate the influence of timescales on mean FPT and variability in the event timing.
Numerical results are shown in figure 4. Specifically, figure 4a,d demonstrates how two timescales of
proteins p53 and A together affect the mean FPT and timing variability, respectively. We observe that
the mean FPT in the case of small ap53 is always larger than that in the case of large ap53,
independent of aA (referring to the red dashed line). For a fixed yet small ap53 (referring to the blue
dashed line), the mean FPT in the case of small aA is also larger than that in the case of large aA.
These imply that two kinds of timescales (internal for p53 and external for A) can all significantly
impact the mean FPT. Moreover, a larger external timescale leads to a less mean FPT for small
internal timescale, but a smaller internal timescale leads to a larger mean FPT for small external
timescale. However, this relationship is different in the case of timing variability, referring to figure 4d.
We observe that there is a strip region (indicated by orange) in the plane of ap53 and aA, such that the
variability in the timing is largest. More precisely, if two boundary lines of this region are denoted as
‘1 and ‘2, which are described by aA ¼ a1ap53 and aA ¼ a2ap53, where a1 and a2 are both positive
constants satisfying a1 , a2, the timing variability below ‘1 or beyond ‘2 is less than that in the strip
region, and the timing variability below ‘1 is less than that beyond ‘2 (referring to the dashed line
with arrow). These indicate that in the outside of the strip region, if the timescale of protein A is
dominant, the timing variability becomes smaller, and conversely, if the timescale of protein p53 is
dominant, the timing variability also becomes smaller. Since timescale factors ap53 and aA determine
the noise in proteins p53 and A (called intrinsic and extrinsic noise), respectively, both intrinsic and
extrinsic noise can significantly contribute to the timing variability, but this contribution depends on
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which noise is dominant. This is an interesting phenomenon similar to the resonance that takes place as
the internal frequency is approximately equal to the external frequency [38].

From figure 4b,c, we also observe that mean FPT is a monotonically decreasing function of the timescale
of proteins A and p53, respectively, and that the former is a convex-downward curve for a timescale ap53

when aA ¼ 1, whereas the latter, given ap53 ¼ 1, is fundamentally a line for a timescale aA. These results
are practically special results shown in figure 4a, where ap53 ¼ 1 and aA ¼ 1, respectively, correspond to
blue and red dashed lines. Figure 4b,c shows that internal and external (or threshold) timescales can all
shorten mean FPT, further implying that timescales can speed up timing response.

Figure 4e, which corresponds to the red dashed linewith arrow in figure 4d, shows how the rate between
the timescales of proteins p53 and A, g ¼ aA=ap53, impacts the variability in the event timing. Interestingly,
we observe that there is an optimal rate between external and internal timescales, gcritical, such as the timing
variability is maximal, implying that the precision in the event timing is worst for this optimal timescale.
Furthermore, timing variability increases as the rate g satisfying g , gcritical increases, whereas it
fundamentally decreases when the rate g satisfying g . gcritical increases. The former implies that when
the rate of external timescale over internal timescale, g, is less than the critical rate, gcritical, this rate
weakens the precision in the event timing, and conversely, it fundamentally enhances this precision.

In a word, the timescales of proteins p53 and A are two non-negligible factors in the event timing,
since they can significantly affect timing precision and mean FPT. And there is a strip region in the
plane of external and internal timescales such that the timing variability is largest (implying that the
timing precision is worst).
3.4. Effects of p53 transcription and degradation rates on fractional killing of cancer cells
In our model, apart from parameters associated with promoter kinetics, there are the protein
transcription and degradation rates involved. The curves shown in figure 4 correspond to a special
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value of the transcription or degradation rate of protein. However, these two rates can be regulated by
external signals, leading to changes in biologically reasonable intervals. This raises a question: how
the two parameters impact the mean FPT and variability in the event timing. Here, we numerically
analyse this impact, with results shown in figure 5.

Figure 5a (or figure 5b) shows a heatmap for the dependence of mean FPT on both event threshold and
transcription rate (or degradation rate). For a given special event threshold, mean FPT monotonically
decreases, as transcription rate ðgp53Þ increases (referring to figure 5a) or degradation rate ðdp53Þ
decreases (referring to figure 5b), implying that the transcription rate of protein p53 shortens mean FPT
or accelerates threshold crossing, whereas its degradation rate increases mean FPT. From figure 5a,b, we
further observe that for a fixed transcription rate ðgp53Þ or degradation rate ðdp53Þ, mean FPT is a
monotonically increasing function of event threshold, implying that event threshold slows down the
threshold crossing.

However, the dependence of timing variability on both event threshold and transcription rate (or
degradation rate) are shown in figure 5c,d. We observe that for a given special event threshold, timing
variability monotonically decreases with the increase of transcription rate ðgp53Þ (referring to figure 5c)
while it is a monotonically increasing function of degradation rate ðdp53Þ (referring to figure 5d ), and
the minimal timing variability falls on the red line. Figure 5c also shows that for a fixed transcription
rate ðgp53Þ, timing variability first decreases and then increases with the increase of event threshold,
implying there is an optimal event threshold such that timing variability is least (referring to stair-like
line). The stair-like line in figure 5c is composed of the points corresponding to the minimal timing
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variability. From figure 5d, we also observe that for a fixed degradation rate ðdp53Þ, there exists a minimal
timing variability (referring to stair-like line).

In a short, both smaller transcription rates and larger event thresholds or both larger degradation rates
and larger event thresholds lead to larger mean FPTs, implying that fewer cancer cells are killed. Moreover,
there is minimal timing variability for a fixed transcription or degradation rate, and this result is the same
as the result shown in figure 3c. If event threshold is given, then larger transcription rates or smaller
degradation rates make timing variability become small, and then enhance the timing precision.

3.5. Effect of burst size in p53 on fractional killing of cancer cells
Here, we investigate the influence of burst size on mean FPT and timing variability, with results shown in
figure 6. From figure 6a, we observe that mean FPT is a monotonically decreasing function of mean burst
size (b) in two cases of fixed and fluctuating threshold, demonstrating mean burst size can shorten mean
FPT. Moreover, the red curve of mean FPT in fluctuating threshold case is always below the blue curve in
fixed threshold case, implying that fluctuating threshold accelerates threshold crossing. Figure 6b shows
the dependence of timing variability on the mean burst size (b) for two different cases of fixed and
fluctuating threshold. Timing variability curves firstly decreases and then increases with the increase
of mean burst size (b). There is optimal b in figure 6b such that timing variability is least, implying the
mean burst size can make timing precision reach the optimality in both fixed and fluctuating
threshold cases. Also, there is a critical b (denoted by RP) such that the timing variability in the case
of fluctuating threshold is smaller than that in the case of fixed threshold when b is below RP, but the
former is larger than the latter if b is beyond RP. It shows that for a small b, threshold fluctuations can
reduce the timing variability or raise the precision in the timing.



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:190462
14
Further, figure 6c,d, respectively, show the heatmap for the dependence of mean FPT and timing

variability on both event threshold and mean burst size. From figure 6c, we observe that larger mean
FPT appear in the region of the right-down corner, which corresponds to both smaller mean burst size
and larger event thresholds. Specifically, for a given special event threshold, a larger mean burst size
leads to the reduction of mean FPT, implying that translation burst can accelerate response by
shortening mean FPT arriving at the fluctuating threshold, which is similar to the results in figure 6a.
While for a fixed mean burst size, a larger event threshold leads to the increase of mean FPT,
implying that fluctuating threshold can slow down response by prolonging mean FPT arriving at the
fluctuating threshold. In figure 6d, we find that larger timing variability appears approximately in the
region of the lower-left corner, which corresponds to both smaller mean burst size and smaller event
threshold. Specifically, for a given small event threshold, a smaller mean burst size leads to the
increase of timing variability, implying that translation burst can slow down response to the event
timing. And there exists an optimal mean burst size such that the timing precision is best for almost
large event threshold (referring to red curve in figure 6d ). In addition, for a fixed large mean burst
size, a larger event threshold can reduce timing variability, implying that fluctuating threshold can
enhance timing precision. However, there exists an optimal event threshold such that the timing
precision is best for almost large mean (referring to white stair-like curve in figure 6d ).

In short, translation burst (internal noise) accelerates threshold crossing, implying that more cancer cells
are killed. There is a critical mean burst size such that translation burst enhances timing precision as the
mean burst size is below this critical value, but reduces timing precision as the mean burst size is
beyond this critical value. And there is an optimal mean burst size such that the timing precision is best.

Finally, we further discuss another distribution of burst size B in electronic supplementary material,
S1, since burst size B follows a geometric distribution in the above model. We focus on how fluctuations
affect mean FPT and timing variability if B follows a Poisson distribution. We observe that these results
are analogous to those obtained above, implying that burst size distributions have little influence on
mean FPT and timing variability, shown in electronic supplementary material, figures S9 and S10. For
three other cases of different absorbing domains where burst size follows a Poisson distribution, the
mean FPT and timing variability change trends, similar to those in the above respective three cases, as
the fluctuating threshold increases. Numerical results are shown in electronic supplementary material,
figures S11–S13.
4. Conclusion and discussion
While fractional killing is a major impediment to the treatment of cancer, viruses and microbial
infections, non-genetic variability plays a pivotal role in fractional killing. Sources of this variability
may be complex: apart from molecular noise inherent to gene expression, there is the stochastic
fluctuations in apoptotic threshold [2,3]. In this paper, we have systematically investigated a stochastic
gene expression system underlying the process of fractional killing, where the cell is killed only when
the p53 expression level crosses a fluctuating threshold for the first time. The main contributions and
insights can be summarized as follows: (i) fluctuations in apoptotic threshold accelerate timing
response, and a faster fluctuation leads to a smaller mean FPT or to killing of more cancer cells; (ii)
there is an optimal event threshold such that the timing variability is least; (iii) there is an optimal
mean burst size such that the timing repression is best or the timing variability is smallest; (iv) for a
high enough threshold, fluctuations in threshold can raise timing precision; and (v) the timescales
between transcription and degradation rates can adjust the precision in the timing, independent of the
ratio of transcription rate over degradation rate. These results indicate that in contrast to fixed
apoptotic thresholds, fluctuating apoptotic threshold can significantly influence the timing of events
or killing of cancer cells.

Although we used a simple stochastic model to investigate fractional killing processes involving
timing events, our theoretical framework, i.e. a one-dimensional FPT problem with a fluctuating
boundary is transformed into a two-dimensional FPT problem with a fixed boundary, can be easily
extended to other complex or general cases. In fact, timing events can be attributed to a canonical
mechanism of threshold crossing (that can occur in many cellular processes ranging from responses of
cells to their environmental cues to cell cycles and circadian clocks), by which a molecular event
triggering a cellular behaviour is accumulation to a threshold [17,18,39–42]. In this mechanism,
molecules are steadily produced by the cell, and once the molecule number crosses a particular
threshold, the behaviour is initiated. Most of these threshold-crossing processes are based on gene
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expression, e.g. an activated gene may be required to reach in a precise time a threshold level of gene

expression that triggers a specific downstream pathway. However, a gene may reach a critical
threshold of expression with substantial cell-to-cell variability even among isogenic cells exposed to
the same constant stimulus. This variability is a necessary consequence of the inherently stochastic
nature of gene expression [43–49]. Apart from this internal stochastic origin of timing, fluctuating
threshold can also result in variability in the event timing required to reach a critical threshold level.
It is possible that the intrinsic ‘molecular noise’ in intracellular processes is responsible for such cell-
to-cell variability in the event timing. This is experimentally difficult to verify, but may beg theoretical
analysis as done in this paper.

How robust are our results to noise sources and key modelling assumptions? For example, our model
only considers the intrinsic noise in gene product levels but ignores the extrinsic noise in gene expression
machinery [50,51]. To incorporate such extrinsic noise, one may alter the transcription rate to kiZ (ki is an
external parameter), where Z may be drawn from an a priori probability distribution at the start of gene
expression (t ¼ 0) and remains fixed till the threshold is reached. Our model also ignored feedback
regulation, which, however, exists widely in biological regulatory systems. Recent work has
investigated the impact of feedback regulation on the timing of events in the case of fixed threshold
[17,18,42]. Interestingly, it was found that there is an optimal feedback strategy to regulate the
synthesis of a protein to ensure that an event will occur at a precise time, while minimizing deviations
or noise about the mean. Despite this, how feedback regulation controls or impacts the timing of
events in the case of fluctuating threshold is unclear. Using our analysis framework, one can also
study the effect of feedback regulation on the timing of events in the case of fluctuating threshold. In
our case, if changes in burst size, transcription rate or degradation rate are taken as the consequence
of feedback regulation, the effect of feedback regulation on the timing of events will become clear in
the case of fluctuating threshold. In addition, complex regulatory network composed of apoptosis-
related proteins also plays an important role in fractional killing. It is promising for future work to
study how cross-talk between the apoptosis pathway and survival pathways affect fractional killing [52].

Regulating some parameter rates of biochemical reactions is an experimental challenge. In our model,
the noise regulating threshold crossing has an important impact on apoptosis control strategies. For
example, Dar et al. had also shown that we can modulate noise in gene expression to enhance
threshold crossing without changing mean expression [53]. For this noise control strategy, it will be
further studied to regulate both the protein production and degradation rates in our future work. In
addition, our model only considers cell apoptotic occurs in the lifetime of the cell, but the cell cycle is
not considered in our FPT theoretical framework. Some earlier papers have shown that both cell
division and cell cycle arrest could affect a cell fate, and has major implications for anti-cancer
therapies. Specially, cell-fate decision happens early in the lifetime of a cell, and the apoptotic fate of
daughter cell is to a large extent determined by its mother, and is affected by its mother division [54–
56]. If we consider that protein p53 apoptosis occurs before cell division, we can improve our model
to discuss their FPT problems by adding to a time constraint on the random variable of equation (2.1),
t � tD, denoted by tD the cell cycle, referring to the schematic diagram of electronic supplementary
material, figure S14(A) in S1. However, as for the case after cell division, the decision-making on
apoptosis is a complex mechanism, referring to electronic supplementary material, figure S14(B) in S1.
For example, Chakrabarti et al. had shown that sister cell has similar fate and shares the same fate
(death or survival) about 80% of the time, regardless of whether they were born before or after
cisplatin treatment [56]. When early cell-fate determination phenomenon is also discussed in our
model, we should need to record the amount of proteins p53 reaching the cell cycle tD, and then
determine the extent that they are away from apoptotic threshold, to obtain the apoptosis probability
of daughter cell in the next cycle. This theoretical analysis can provide research ideas and directions
for our future research.

Next, we simply discuss potential biological implications of our results in the context of fractional
bacterial killing and p53 dynamics.

4.1. Connecting theoretical insights to fractional killing
Exposure of an isogenic bacterial population to a cidal antibiotic typically fails to eliminate a small
fraction of refractory cells. In order to interpret this phenomenon, Roux et al. [5] investigated the basis
of fractional cell killing by TRAIL and antibody agonists of DR4 and DR5 receptors. They
demonstrated the existence of a threshold in initiator caspase activity (referred to as C8) that must be
exceeded for cells to die. Interestingly, they found that, in cells that go on to die, C8 activity rises



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:190462
16
rapidly and monotonically until the threshold is reached and mitochondrial outer membrane

permeabilization ensues, whereas in cells that survive, C8 activity rises more slowly for 1–4 h, never
achieving the level required for death, and then falls back to pre-treatment levels over the next 4–8 h
due to proteasome-mediated protein degradation. This finding, which can be reproduced by analysis
of our model through the proposed method, implies that Mycobacterium smegmatis can dynamically
persist in the presence of a drug, and the stable number of cells characterizing this persistence was
actually a dynamic state of balanced division and death.

4.2. Connecting theoretical insights to drug therapy
Many chemotherapeutic drugs only kill a fraction of cancer cells, limiting their effectiveness. Paek et al. [3]
used live-cell imaging to check the role of p53 dynamics in fractional killing of colon cancer cells in
response to chemotherapy. They found that both surviving and dying cells reach similar levels of p53,
indicating that cell death is not determined by a fixed p53 threshold. Instead, a cell’s death probability
relies on the time and levels of p53. Cells must reach a critical threshold level of p53 to execute
apoptosis, and this threshold increases over time. The increase in p53 apoptotic threshold is due to
drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors of apoptosis
family. While that study underlined the importance of measuring the dynamics of key players in
response to chemotherapy to determine mechanisms of resistance and optimize the timing of
combination therapy, our study here provided quantitative results for this importance.

Finally, from a theoretical point of view, our work provides a mathematical and computational
framework for studying how fluctuation in threshold influences the statistics of FPT. Our methods can
be also extended to the analysis of fluctuations of derivative thresholding [5], integral thresholding
[57] and oscillation [58]. Exploring these constraints in more detail will be an important avenue for
future research. In addition, analytical results and insights obtained here have broader implications
for timing phenomenon in chemical kinetics, epidemic spreading, ecological modelling and statistical
physics. Moreover, our methods may allow us to better understand the complex patterns of
sequentially ordered biochemical events that are often observed in development and cell-fate decision
presumably require an effective control of event timing [59–63].
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