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PREFACE.

Aju increased interest in the history of the exact sciences

manifested in recent years by teachers everywhere, and the

attention given to historical inquiry in the mathematical

class-rooms and seminaries of our leading universities, cause

me to believe that a brief general History of Mathematics

will be found acceptable to teachers and students.

The pages treating— necessarily in a very condensed

form— of the progress made during the present century,

are put forth with great difl&dence, although I have spent

much time in the effort to render them accurate and

reasonably complete. Many valuable suggestions and criti-

cisms on the chapter on "Eecent Times" have been made

by Dr. E. W. Davis, of the University of Nebraska. The

proof-sheets of this chapter have also been submitted to

Dr. J. E. Davies and Professor C. A. Van Velzer, both of the

University of Wisconsin ; to Dr. G. B. Halsted, of the

University of Texas ; Professor L. M. Hoskins, of the Leland

Stanford Jr. University ; and Professor G. D. Olds, of Amherst

College, — all of whom have afforded valuable assistance.

I am specially indebted to Professor F. H. Loud, of Colorado

College, who has read the proof-sheets throughout. To all

the gentlemen above named, as well as to Dr. Carlo Veneziani
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VI PEEFACB.

of Salt Lake City, who read the first part of my work in

manuscript, I desire to express my hearty thanks. But in

acknowledging their kindness, I trust that I shall not seem

to lay upon them any share in the responsibility for errors

which I may have introduced in subsequent revision of the

text.

ELORIAN CAJORI.

CoLOEADO CoLLEOB, December, 1893.
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A HISTORY OF MATHEMATICS.

INTRODUCTION.

The contemplation of the various steps by which mankind

has come into possession of the vast stock of mathematical

knowledge can hardly fail to interest the mathematician. He
takes pride in the fact that his science, more than any other,

is an exact science, and that hardly anything ever done in

mathematics has proved to be useless. The chemist smiles

at the childish efforts of alchemists, but the mathematician

finds the geometry of the Greeks and the arithmetic of the

Hindoos as useful and admirable as any research of to-day.

He is pleased to notice that though, in course of its develop-

ment, mathematics has had periods of slow growth, yet in

the main it has been pre-eminently a progressive science.

The history of mathematics may be instructive as well as

agreeable ; it may not only remind us of what we have, but

may also teach us how to increase our store. Says De Morgan,

" The early history of the mind of men with regard to mathe-

matics leads us to point out our own errors; and in this

respect it is well to pay attention to the history of mathe-

matics." It waras us against hasty conclusions ; it points out

the importance of a good notation upon the progress of the

science; it discourages excessive specialisation on the part of

1



2 A HISTORY OF MATHEMATICS.

investigators, by showing how apparently distinct branches

have been found to possess unexpected connecting links ; it

saves the student from wasting time and energy upon prob-

lems which were, perhaps, solved long since; it discourages

him from attacking an unsolved problem by the same method

which has led other mathematicians to failure ; it teaches that

fortifications can be taken in other ways than by direct attack,

that when repulsed from a direct assault it is well to recon-

noitre and occupy the surrounding ground and to discover the

secret paths by which the apparently unconquerable position

can be taken.' The importance of this strategic rule may
be emphasised by citing a case in which it has been violated.

An untold amount of intellectual energy has been expended

on the quadrature of the circle, yet no conquest has been made

by direct assault. The circle-squarers have existed in crowds

ever since the period of Archimedes. After innumerable fail-

ures to solve the problem at a time, even, when investigators

possessed that most powerful tool, the differential calculus,

persons versed in mathematics dropped the subject, while

those who still persisted were completely ignorant of its his-

tory and generally misunderstood the conditions of the prob-

lem. " Our problem," says De Morgan, " is to square the

circle with the old allowance of means: Euclid's postulates

and nothing more. We cannot remember an instance in which

a question to be solved by a definite method was tried by the

best heads, and answered at last, by that method, after thou-

sands of complete failures." But progress was made on this

problem by approaching it from a different direction and by

newly discovered paths. Lambert proved- in 1761 that the

ratio of the circumference of a circle to its diameter is incom-

mensurable. Some years ago, Lindemann demonstrated that

this ratio is also transcendental and that the quadrature of

the circle, by means of the ruler and compass only, is impos-
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He thus showed by actual proof that which keeur

minded mathematicians had long suspected ; namely, that the

great army of circle-squarers have, for two thousand years,

been assaulting a fortification which is as indestructible as

the firmament of heaven.

Anothe* reason for the desirability of historical study is

the value of historical knowledge to the teacher of mathe-

matics. The interest which pupils take in their studies may
be greatly increased if the solution of problems and the cold

logic of geometrical demonstrations are interspersed with

historical remarks and anecdotes. A class in arithmetic will

be pleased to hear about the Hindoos and their invention of

the "Arabic notation"; they will marvel at the thousands

of years which elapsed before people had even thought of

introducing into the numeral notation that Columbus-egg—
the zero ; they will find it astounding that it should have

taken so long to invent a notation which they themselves can

now learn in a month. After the pupils have learned how to

bisect a given angle, surprise them by telling of the many
futile attempts which have been made to solve, by elementary

geometry, the apparently very simple problem of the trisec-

tion of an angle. When they know how to construct a square

whose area is double the area of a given square, tell them

about the duplication of the cube— how the wrath of Apollo

could be appeased only by the construction of a cubical altar

double the given altar, and how mathematicians long wrestled

with this problem. After the class have exhausted their ener-

gies on the theorem of the right triangle, tell them the legend

about its discoverer—how Pythagoras, jubilant over his great

accomplishment, sacrificed a hecatomb to the Muses who in-

spired him. When the value of mathematical training is

called in question, quote the inscription over the entrance into

the academy of Plato, the philosopher r
" Let no one who is
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unacquainted with geometry enter here." Students in analyt-

ical geometry should know something of Descartes, and, after

taking up the differential and integral calculus, they should

become familiar with the parts that Newton, Leibniz, and

Lagrange played in creating that science. In his historical

talk it is possible for the teacher to make it plain to the

student that mathematics is not a dead science, but a living

one in which steady progress is made.''

The history of mathematics is important also as a valuable

contribution to the history of civilisation. Human progress

is closely identified with scientific thought. Mathematical

and physical researches are a reliable record of intellectual

progress. The history of mathematics is one of the large

windows through which the philosophic eye looks into past

ages and traces the line of intellectual development.



ANTIQUITY.

THE BABYLONIANS.

The fertile valley of the Euphrates and Tigris was one of

the primeval seats of human society. Authentic history of

the peoples inhabiting this region begins only with the foun-

dation, in Chaldaea and Babylonia, of a united kingdom out

of the previously disunited tribes. Much light has been

thrown on their history by the discovery of the art of reading

the cuneiform or wedge-shaped system of writing.

In the study of Babylonian mathematics we begin with the

notation of numbers. A vertical wedge ¥ stood for 1, while

the characters .^ and V^. signified 10 and 100 respec-

tively. Grotefend believes the character for 10 originally to

have been the picture of two hands, as held in prayer, the

palms being pressed together, the fingers close to each other,

but the thumbs thrust out. In the Babylonian notation two

principles were employed— the additive and multiplicar

tive. Numbers below 100 were expressed by symbols whose

respective values had to be added. Thus, i V stood for 2,

y y y for 3, y^* for 4, ^r, for 23, ^ ^ ^ for 30. Here the

symbols of higher order appear always to the left of those of

lower order. In writing the hundreds, on the other hand, a

smaller symbol was placed to the left of the 100, and was, in

that case, to be multiplied by 100. Thus, • W ^^ signified

g
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10 times 100, or 1000. But this symbol for 1000 was itself

taken for a new unit, which could take smaller coefficients to

its left. Thus, ^ ^ I
:*- denoted, not 20 times 100, but

10 times 1000. Of the largest numbers written in cuneiform

symbols, which have hitherto been found, none go as high as

a million.^

If, as is believed by most specialists, the early Sumerians

were the inventors of the cuneiform writing, then they were,

in all probability, also familiar with the notation of numbers.

Most surprising, in this connection, is the fact that Sumerian

inscriptions disclose the use, not only of the above decimal

system, but also of a sexagesimal one. The latter was used

chiefly in constructing tables for weights and measures. It is

full of historical interest. Its consequential development,

both for integers and fractions, reveals a high degree of

mathematical insight. We possess two Babylonian tablets

which exhibit its use. One of them, probably written between

2300 and 1600 b.c, contains a table of square numbers up to

60^. The numbers 1, 4, 9, 16, 25, 36, 49, are given as the

squares of the first seven integers respectively. We have next

1.4 = 8^ 1.21 = 9^ 1.40 = 10^ 2.1 = 11^, etc. This remains

unintelligible, unless we assume the sexagesimal scale, which

makes 1.4= 60 + 4, 1.21 = 60 + 21, 2.1 = 2.60 + 1. The second

tablet records the magnitude of the illuminated portion of the

moon's disc for every day from new to full moon, the whole disc

being assumed to consist of 240 parts. The illuminated parts

during the first five days are the Series 5, 10, 20, 40, 1.20

(=80), which is a geometrical progression. From here on

the series becomes an arithmetical progression, the numbers

from the fifth to the fifteenth day being respectively 1.20, 1.36,

1.52, 2.8, 2.24, 2.40, 2.56, 3.12, 3.28, 3.44, 4. This table not

only exhibits the use of the sexagesimal system, but also indi-

cates the acquaintance of the Babylonians with progressions.
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Not to be overlooked is the fact that in the sexagesimal nota-

tion of integers the '^principle of position" was employed.

Thus, in 1.4 (=64), the 1 is made to stand for 60, the unit

of the second order, by virtue of its position with respect to

the 4. The introduction of this principle at so early a date

is the more remarkable, because in the decimal notation it

was not introduced till about the fifth or sixth century after

Christ. The principle of position, in its general and syste-

matic application, requires a symbol for zero. We ask. Did

the Babylonians possess one? Had they already taken the

gigantic step of representing by a symbol the absence of

units? Neither of the above tables answers this question,

for they happen to contain no number in which there was

occasion to use a zero. The sexagesimal system was used also

in fractions. Thus, in the Babylonian inscriptions, ^ and ^
are designated by 30 and 20, the reader being expected, in

his mind, to supply the word "sixtieths." The Greek geom-

eter Hypsicles and the Alexandrian astronomer Ptolemeeus

borrowed the sexagesimal notation of fractions from the

Babylonians and introduced it into Greece. From that time

sexagesimal fractions held almost full sway in astronomical

and mathematical calculations until the sixteenth century,

when they finally yielded their place to the decimal fractions.

It may be asked. What led to the invention of the sexagesi-

mal system ? Why was it that 60 parts were selected ? To

this we have no positive answer. Ten was chosen, in the

decimal system, because it represents the number of fingers.

But nothing of the human body could have suggested 60.

Cantor offers the following theory : At first the Babylonians

reckoned the year at 360 days. This led to the division of

the circle into 360 degrees, each degree representing the daily

amount of the supposed yearly revolution of the sun around

the earth. Now they were, very probably, familiar with the
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fact that the radius can be applied to its circumference as a

chord 6 times, and that each of these chords subtends an arc

measuring exactly 60 degrees. Fixing their attention upon

these degrees, the division into 60 parts may have suggested

itself to them. Thus, when greater precision necessitated a

subdivision of the degree, it was partitioned into 60 minutes.

In this way the sexagesimal notation may have originated.

The division of the day into 24 hours, and of the hour

into minutes and seconds on the scale of 60, is due to the

Babylonians.

It appears that the people in the Tigro-Euphrates basin had

made very creditable advance in arithmetic. Their knowledge

of arithmetical and geometrical progressions has already been

alluded to. lamblichus attributes to them also a knowledge

of proportion, and even the invention of the so-called musical

proportion. Though we possess no conclusive proof, we have

nevertheless reason to believe that in practical calculation

they used the abacus. Among the races of middle Asia, even

as far as China, the abacus is as old as fable. Now, Babylon

was once a great commercial centre,— the metropolis of many
nations,— and it is, therefore, not unreasonable to suppose that

her merchants employed this most improved aid to calculation.

In geometry the Babylonians accomplished almost nothing.

Besides the division of the circumference into 6 parts by its

radius, and into 360 degrees, they had some knowledge of

geometrical figures, such as the triangle and quadrangle, which

they used in their auguries. Like the Hebrews (1 Kin. 7 : 23),

they took tt = 3. Of geometrical demonstrations there is, of

course, no trace. " As a rule, in the Oriental mind the intui-

tive powers eclipse the severely rational and logical."

The astronomy of the Babylonians has attracted much

attention. They worshipped the heavenly bodies from the

earliest historic times. When Alexander the Great, after
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the battle of Arbela (331 b.c), took possession of Babylon,

Callisthenes found there on burned brick astronomical records

reaching back as far as 2234 b.c. Porphyrius says that these

were sent to Aristotle. Ptolemy, the Alexandrian astrono-

mer, possessed a Babylonian record of eclipses going back to

747 B.C. Kecently Epping and Strassmaier * threw considera-

ble light on Babylonian chronology and astronomy by explain-

ing two calendars of the years 123 b.c. and 111 b.c, taken

from cuneiform tablets coming, presumably, from an old

observatory. These scholars have succeeded in giving an

account of the Babylonian calculation of the new and full

moon, and have identified by calculations the Babylonian

names of the planets, and of the twelve zodiacal signs and

twenty-eight normal stars which correspond to some extent

with the twenty-eight nakshatras of the Hindoos. We append

part of an Assyrian astronomical report, as translated by

Oppert :
—

"To the King, my lord, thy faithful servant, Mar-Istar."

"... On the first day, as the new moon's day of the month Tham-

muz declined, the moon was again visible over the planet Mercury, as

I had already predicted to my master the King. I erred not."

THE EGYPTIAl^S.

Though there is great difference of opinion regarding the

antiquity of Egyptian civilisation, yet all authorities agree in

the statement that, however far back they go, they find no

uncivilised state of society. " Menes, the first king, changes

the course of the Nile, makes a great reservoir, and builds the

temple of Phthah at Memphis." The Egyptians built the

pyramids at a very early period. Surely a people engaging in
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enterprises of such magnitude must have known something of

mathematics— at least of practical mathematics.

All Greek writers are unanimous in ascribing, without

envy, to Egypt the priority of invention in the mathematical

sciences. Plato in Phcedrus says :
" At the Egyptian city

of iNaucratis there was a famous old god whose name was

Theuth; the bird which is called the Ibis was sacred to

him, and he was the inventor of many arts, such as arithmetic

and calculation and geometry and astronomy and draughts

and dice, but his great discovery was the use of letters." '

Aristotle says that mathematics had its birth in Egypt,

because there the priestly class had the leisure needful for

the study of it. Geometry, in particular, is said by Herodotus,

Diodorus, Diogenes Laertius, lamblichus, and other ancient

writers to have originated in Egypt." In Herodotus we find

this (II. c. 109) :
" They said also that this king [Sesostris]

divided the land among all Egyptians so as to give each one a

quadrangle of equal size and to draw from each his revenues,

by imposing a tax to be levied yearly. . But every one from

whose part the river tore away anything, had to go to him

and notify what had happened; he then sent the overseers,

who had to measure out by how much the land had become

smaller, in order that the owner might pay on what was left,

in proportion to the entire tax imposed. In this way, it

appears to me, geometry originated, which passed thence to

Hellas."

We abstain from introducing additional Greek opinion

regarding Egyptian mathematics, or from indulging in wild

conjectures. We rest our account on documentary evidence.

A hieratic papyrus, included in the Ehind collection of the

British Museum, was deciphered by Eisenlohr in 1877, and

found to be a mathematical manual containing problems in

arithmetic and geometry. It was written by Ahmes some
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time before 1700 B.C., and was founded on an older work

believed by Birch, to date back as far as 3400 b.c. ! This

curious papyrus— the most ancient mathematical handbook

known to us— puts us at once in contact with the mathe-

matical thought in Egypt of three or five thousand years

ago. It is entitled " Directions for obtaining the Knowledge

of all Dark Things." We see from it that the Egyptians

cared but little for theoretical results. Theorems are not

found in it at all. It contains " hardly any general rules of

procedure, but chiefly mere statements of results intended

possibly to be explained by a teacher to his pupils." ° In

geometry the forte of the Egyptians lay in making con-

structions and determining areas. The area of an isosceles

triangle, of which the sides measure 10 ruths and the base

4 ruths, was erroneously given as 20 square ruths, or half

the product of the base by one side. The area of an isosceles

trapezoid is found, similarly, by multiplying half the sum
of the parallel sides by one of the non-parallel sides. The

area of a circle is found by deducting from the diameter

\ of its length and squaring the remainder. Here ir is

taken = (J^)^= 3.1604 •.-, a very fair approximation.^ The

papyrus explains also such problems as these,— To mark

out in the field a right triangle whose sides are 10 and 4

units ; or a trapezoid whose parallel sides are 6 and 4, and

the non-parallel sides each 20 units.

Some problems in this papyrus seem to imply a rudi-

mentary knowledge of proportion.

The base-lines of the pyramids run north and south, and

east and west, but probably only the lines running north and

south were determined by astronomical observations. This,

coupled with the fact that the word harpedonaptoe, applied to

Egyptian geometers, means "rope-stretchers," would point to

the conclusion that the Egyptian, like the Indian and Chinese
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geometers, constructed a right triangle upon a given line, by

stretching around three pegs a rope consisting of three parts

in the ratios 3:4:5, and thus forming a right triangle.^ If

this explanation is correct, then the Egyptians were familiar,

2000 years b.c, with the well-known property of the right

triangle, for the special case at least when the sides are

in the ratio 3:4:6.

On the walls of the celebrated temple of Horus at Edfu

have been found hieroglyphics, written about 100 b.c, which

enumerate the pieces of land owned by the priesthood, and

give their areas. The area of any quadrilateral, however

irregular, is there found by the formula ""T . ^-^— Thus,

for a quadrangle whose opposite sides are 6' and 8, 20 and

15, is given the area 113| \? The incorrect formulae of

Ahmes of 3000 years B.C. yield generally closer approxima-

tions than those of the Edfu inscriptions, written 200 years

after Euclid!

The fact that the geometry of the Egyptians consists

chiefly of constructions, goes far to explain certain of its

great defects. The Egyptians failed in two essential points

without which a science of geometry, in the true sense of

the word, cannot exist. In the first place, they failed to

construct a rigorously logical system of geometry, resting

upon a few axioms and postulates. A great many of their

rules, especially those in solid geometry, had probably not

been proved at all, but were known to be true merely from

observation or as matters of fact. The second great defect

was their inability to bring the numerous special cases under

a more general view, and thereby to arrive at broader and

more fundamental theorems. Some of the simplest geo-

metrical truths were divided into numberless special cases

of which each was supposed to require separate treatment,
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Some particulars about Egyptian geometry can be men-

tioned more advantageously in connection with tbe early

Greek mathematicians who came to the Egyptian priests for

instruction.

An insight into Egyptian methods of numeration was ob-

tained through the ingenious deciphering of the hieroglyphics

by Champollion, Young, and their successors. The symbols
^

used were the following: 1 for 1, f\ for 10, (J for 100,

S for 1000, f for 10,000, ^ for 100,000, ^ for 1,000,000,

O for 10,000,000.' The symbol for 1 represents a vertical

staff; that for 10,000 a pointing finger; that for 100,000 a

burbot; that for 1,000,000, a man in astonishment. The

significance of the remaining symbols is very doubtful.

The writing of numbers with these hieroglyphics was very

cumbrous. The unit symbol of each order was repeated as

many times as there were units in that order. The principle

employed was the additive. Thus, 23 was written f\ iTl 1 i D

Besides the hieroglyphics, Egypt possesses the hieratic and

demotic writings, but for want of space we pass them by.

Herodotus makes an important statement concerning the

mode of computing among the Egyptians. He says that

they " calculate with pebbles by moving the hand from right

to left, while the Hellenes move it from left to right.''

Herein we recognise again that instrumental method of

figuring so extensively used by peoples of antiquity. The

Egyptians used the decimal scale. Since, in figuring, they

moved their hands horizontally, it seems probable that they

used ciphering-boards with vertical columns. In each column

there must have been not more than nine pebbles, for ten

pebbles would be equal to one pebble in the column next

to the left.

The Ahmes papyrus contains interesting information on

the way in which the Egyptians employed fractions. Their
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methods of operation were, of course, radically different from

ours, fractions were a subject of very great diflftculty with

the ancients. Simultaneous changes in both numerator and

denominator were usually avoided. In manipulating fractions

the Babylonians kept the denominators (60) constant. The

Romans likewise kept them constant, but equal to 12. The

Egyptians and Greeks, on the other hand, kept the numerators

constant, and dealt with variable denominators. Ahmes used

the term "fraction" in a restricted sense, for he applied it

only to unit-fractions, or fractions having unity for the numer-

ator. It was designated by writing the denominator and then

placing over it a dot. Fractional values which could not be

expressed by any one unit-fraction were expressed as the

sum of two or more of them. Thus, he wrote ^ -jij- in place

of
f.

The first important problem naturally arising was, how
to represent any fractional value as the sum of unit-fractions.

This was solved by aid of a table, given in the papyrus, in

2
which all fractions of the form (where n designates

successively all the numbers up to 49) are reduced to the

sum of unit-fractions. Thus, ^=\ -i^; fV = ts tws- When,

by whom, and how this table was calculated, we do not know.

Probably it was compiled empirically at different times, by

different persons. It will be seen that by repeated applica-

tion of this table, a fraction whose numerator exceeds two

can be expressed in the desired form, provided that there

is a fraction in the table having the same denominator that

it has. Take, for example, the problem, to divide 5 by 21.

In the first place, 5 = 1-1-2-1-2. From the table we get

A = iV ?V- Then A =^ + (tV i) + (tV A) =^ + (A ^f)
= Ti T A- = T A = T tV TiT-

The papyrus contains problems

in which it is required that fractions be raised by addition

or multiplication to given whole numbers or to other fractions.
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For example, it is required to increase i i rtr Tir A' *° ^

The common denominator taken appears to be 45, for the

numbers are stated as 11^, 5^ |, 4i-, li, 1. The sum of these

is 23^ \ \ forty-fifths. Add to this ^ -^^j, and the sum is f.

Add \, and we have 1. Hence the quantity to be added to

the given fraction is ^ |- ^.
Having finished the subject of fractions, Ahmes proceeds to

the solution of equations of one unknown quantity. The un-

known quantity is called ' hau * or heap. Thus the problem,

"heap, its ^, its whole, it makes 19," i.e. - -|- a; = 19. In this

case, the solution is as follows : — = 19; - = 2^|-; x = 16^ ^.

But in other problems, the solutions are effected by various

other methods. It thus appears that the beginnings of algebra

are as ancient as those of geometry.

The principal defect of Egyptian arithmetic was the lack of

a simple, comprehensive symbolism— a defect which not even

the Greeks were able to remove.

The Ahmes papyrus doubtless represents the most advanced

attainments of the Egyptians in arithmetic and geometry. It

is remarkable that they should have reached so great profi-

ciency in mathematics at so remote a period of antiquity. But

strange, indeed, is the fact that, during the next two thousand

years, they should have made no progress whatsoever in. it.

The conclusion forces itself upon us, that they resemble the

Chinese in the stationary character, not only of their govern-

ment, but also of their learning. All the knowledge of geom-

etry which they possessed when Greek scholars visited them,

six centuries B.C., was doubtless known to them two thousand

years earlier, when they built those stupendous and gigantic

structures— the pyramids. An explanation for this stagnation

of learning has been sought in the fact that their early dis-

coveries in mathematics and medicine had the misfortune of
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being entered upon their sacred books and that, in after ages,

it was considered heretical to augment or modify anything

therein. Thus the books themselves closed the gates to

progress.

THE GEEEKS.

About the seventh century b.c. an active commercial inter-

course sprang up between Greece and Egypt. Naturally there

arose an interchange of ideas as well as of merchandise.

Greeks, thirsting for knowledge, sought the Egyptian priests

for instruction. Thales, Pythagoras, (Enopides, Plato, De-

mocritus, Eudoxus, all visited the land of the pyramids.

Egyptian ideas were thus transplanted across the sea and

there stimulated Greek thought, directed it into new lines,

and gave to it a basis to work upon. Greek culture, therefore,

is not primitive. Not only in mathematics, but also in my-

thology and art, Hellas owes a debt to older countries. To

Egypt Greece is indebted, among other things, for its element-

ary geometry. But this does not lessen our admiration for

the Greek mind. Prom the moment that Hellenic philoso-

phers applied themselves to the study of Egyptian geometry,

this science assumed a radically different aspect. " Whatever

we Greeks receive, we improve and perfect," says Plato. The

Egyptians carried geometry no further than was absolutely

necessary for their practical wants. The Greeks, on the other

hand, had within them a strong speculative tendency. They

felt a craving to discover the reasons for things. They found

pleasure in the contemplation of ideal relations, and loved

science as science.

Our sources of information on the history of Greek geometry

before Euclid consist merely of scattered notices in ancient

writers. The early mathematicians, Thales and Pythagoras,
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left behind no written records of their discoveries. A full

history of Greek geometry and astronomy during this period,

written by Eudemus, a pupil of Aristotle, has been lost. It

was well known to Proclus, who, in his commentaries on

Euclid, gives a brief account of it. This abstract constitutes

our most reliable information. We shall quote it frequently

under the name of Eudemian Summary.

The Ionic School.

To Thales of Miletus (640-546 b.c), one of the " seven wise

men," and the founder of the Ionic school, falls the honour of

having introduced the study of geometry into Greece. During

middle life he engaged in commercial pursuits, which took

him to Egypt. He is said to have resided there, and to have

studied the physical sciences and mathematics with the Egyp-

tian priests. Plutarch declares that Thales soon excelled his

masters, and amazed King Amasis by measuring the heights

of the pyramids from their shadows. According to Plutarch,

this was done by considering that the shadow cast by a verti-

cal staff of known length bears the same ratio to the shadow

of the pyramid as the height of the staff bears to the height

of the pyramid. This solution presupposes a knowledge of

proportion, and the Ahmes papyrus actually shows that the

rudiments of proportion were known to the Egyptians. Ac-

cording to Diogenes Laertius, the pyramids were measured by

Thales in a different way ; viz. by finding the length of the

shadow of the pyramid at the moment when the shadow of a

staff was equal to its own length.

The Eudemian Summary ascribes to Thales the invention

of the theorems on the equality of vertical angles, the equality

of the angles at the base of an isosceles triangle, the bisec-

tion of a circle by any diameter, and the congruence of two
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triangles having a side and the two adjacent angles equal re-

spectively. The last theorem he applied to the measurement

of the distances of ships from the shore. Thus Thales was

the first to apply theoretical geometry to practical uses. The

theorem that all angles inscribed in a semicircle are right

angles is attributed by some ancient writers to Thales, by

others to Pythagoras. Thales was doubtless familiar with

other theorems, not recorded by the ancients. It has been

inferred that he knew the sum of the three angles of a tri-

angle to be equal to two right angles, and the sides of equi-

angular triangles to be proportional.* The Egyptians must

have made use of the above theorems on the straight line, in

some of their constructions found in the Ahmes papyrus, but

it was left for the Greek philosopher to give these truths,

which others saw, but did not formulate into words, an

explicit, abstract expression, and to put into scientific lan-

guage and subject to proof that which others merely felt to

be true. Thales may be said to have created the geometry

of lines, essentially abstract in its character, while the Egyp-

tians studied only the geometry of surfaces and the rudiments

of solid geometry, empirical in their character.'

With Thales begins also the study of scientific astronomy.

He acquired great celebrity by the prediction of a solar eclipse

in 585 B.C. Whether he predicted the day of the occurrence,

or simply the year, is not known. It is told of him that

while contemplating the stars during an evening walk, he fell

into a ditch. The good old woman - attending him exclaimed,

" How canst thou know what is doing in the heavens, when
thou seest not what is at thy feet ? "

The two most prominent pupils of Thales were Anaximander

(b. 611 B.C.) and Anaximenes (b. 570 b.c). They studied

chiefly astronomy and physical philosophy. Of Anaxagoras, a
pupil of Anaximenes, and the last philosopher of the Ionic
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school, we know little, except that, while in prison, he passed

his time attempting to square the circle. This is the first

time, in the history of mathematics, that we find mention of

the famous problem of the quadrature of the circle, that rock

upon which so many reputations have been destroyed. It

turns upon the determination of the exact value of tt. Approx-

imations to IT had been made by the Chinese, Babylonians,

Hebrews, and Egyptians. But the invention of a method to

find its exact value, is the knotty problem which has engaged

the attention of many minds from the time of Anaxagoras

down to our own. Anaxagoras did not offer any solution of

it, and seems to have luckily escaped paralogisms.

About the time of Anaxagoras, but isolated from the Ionic

school, flourished CEnopides of Chios. Proclus ascribes to him

the solution of the following problems : From a point without,

to draw a perpendicular to a given line, and to draw an angle

on a line equal to a given angle. That a man could gain a

reputation by solving problems so elementary as these, indi-

cates that geometry was still in its infancy, and that the

Greeks had not yet gotten far beyond the Egyptian con-

structions.

The Ionic school lasted over one hundred years. The

progress of mathematics during that period was slow, as

compared with its growth in a later epoch of Greek history.

A new impetus to its progress was given by Pythagoras.

The School of Pythagoras.

Pythagoras (580?-500? b.c.) was one of those figures which

impressed the imagination of succeeding times to such an

extent that their real histories have become difficult to be

discerned through the mythical haze that envelops them. The

following account of Pythagoras excludes the most doubtful
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statements. He was a native of Samos, and was drawn by

the fame of Pherecydes to tlie island of Syros. He then

visited the ancient Thales, who incited him to study in Egypt.

He sojourned in Egypt many years, and may have visited

Babylon. On his return to Samos, he found it under the

tyranny of Polycrates. Failing in an attempt to found a

school there, he quitted home again and, following the current

of civilisation, removed to Magna Grsecia in South Italy. He
settled at Croton, and founded the famous Pythagorean school.

This was not merely an academy for the teaching of philosophy,

mathematics, and natural science, but it was a brotherhood,

the members of which were united for life. This brotherhood

had observances approaching masonic peculiarity. They were

forbidden to divulge the discoveries and doctrines of their

school. Hence we are obliged to speak of the Pythagoreans

as a body, and find it difficult to determine to whom each

particular discovery is to be ascribed. The Pythagoreans

themselves were in the habit of referring every discovery back

to the great founder of the sect.

This school grew rapidly and gained considerable political

ascendency. But the mystic and secret observances, intro-

duced in imitation of Egyptian usages, and the aristocratic

tendencies of the school, caused it to become an object of

suspicion. The democratic party in Lower Italy revolted and

destroyed the buildings of the Pythagorean school. Pythago-

ras fled to Tarentum and thence to Metapontum, where he was

murdered.

Pythagoras has left behind no mathematical treatises, and

our sources of information are rather scanty. Certain it is

that, in the Pythagorean school, mathematics was the principal

study. Pythagoras raised mathematics to the rank of a science.

Arithmetic was courted by him as fervently as geometry. In

fact, aritKmetic is the foundation of his philosophic system.
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The Eudemian Summary says that "Pythagoras changed

the study of geometry into the form of a liberal education,

for he examined its principles to the bottom, and investigated

its theorems in an immaterial and intellectual manner." His

geometry was connected closely with his arithmetic. He was

especially fond of those geometrical relations which admitted

of arithmetical expression.

Like Egyptian geometry, the geometry of the Pythagoreans

is much concerned with areas. To Pythagoras is ascribed the

important theorem that the square on the hypotenuse of a

right triangle is equal to the sum of the squares on the other

two sides. He had probably learned from the Egyptians the

truth of the theorem in the special case when the sides are

3, 4, 5, respectively. The story goes, that Pythagoras was so

jubilant over this discovery that he sacrificed a hecatomb. Its

authenticity is doubted, because the Pythagoreans believed in

the transmigration of the soul and opposed, therefore, the

shedding of blood. In the later traditions of the Neo-Pythago-

reans this objection is removed by replacing this bloody sacri-

fice by that of " an ox made of flour "
! The proof of the law

of three squares, given in Euclid's Elements, I. 47, is due to

Euclid himself, and not to the Pythagoreans. What the Py-

thagorean method of proof was has been a favourite topic for

conjecture.

The theorem on the sum of the three angles of a triangle,

presumably known to Thales, was proved by the Pythagoreans

after the manner of Euclid. They demonstrated also that the

plane about a point is completely filled by six equilateral

triangles, four squares, or three regular hexagons, so that it

is possible to divide up a plane into figures of either kind.

Prom the equilateral triangle and the square arise the solids,

namely the tetraedron, octaedron, icosaedron, and the cube.

These solids were, in all probability, known to the Egyptians,
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excepting, perhaps, the icosaedron. In Pythagorean philos-

ophy, they represent respectively the four elements of the

physical world; namely, fire, air, water, and earth. Later

another regular solid was discovered, namely the dodecaedron,

which, in absence of a fifth element, was made to represent

the universe itself. lamblichus states that Hippasus, a Py-

thagorean, perished in the sea, because he boasted that he first

divulged " the sphere with the twelve pentagons." The star-

shaped pentagram was used as a symbol of recognition by the

Pythagoreans, and was called by them Health.

Pythagoras called the sphere the most beautiful of all solids,

and the circle the most beautiful of all plane figures. The

treatment of the subjects of proportion and of irrational

quantities by him and his school will be taken up under the

head of arithmetic.

According to Eudemus, the Pythagoreans invented the prob-

lems concerning the application of areas, including the cases

of defect and excess, as in Euclid, VI. 28, 29.

They were also familiar with the construction of a polygon

equal in area to a given polygon and similar to another given

polygon. This problem depends upon several important and

somewhat advanced theorems, and testifies to the fact that

the Pythagoreans made no mean progress in geometry.

Of the theorems generally ascribed to the Italian school,

some cannot be attributed to Pythagoras himself, nor to his

earliest successors. The progress from empirical to reasoned

solutions must, of necessity, have been slow. It is worth

noticing that on the circle no theorem of any importance was

discovered by this school.

Though politics broke up the Pythagorean fraternity, yet

the school continued to exist at least two centuries longer.

Among the later Pythagoreans, Philolaus and Archytas are

the most prominent. Philolaus wrote a book on the Pythago
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rean doctrines. By him were first given to the world the

teachings of the Italian school, which had been kept secret

for a whole century. The brilliant Archjrtas of Tarentum

(428-347 B.C.), known as a great statesman and general, and

universally admired for his virtues, was the only great geome-

ter among the Greeks when Plato opened his school. Archy-

tas was the first to apply geometry to mechanics and to treat

the latter subject methodically. He also found a very ingeni-

ous mechanical solution to the problem of the duplication of

the cube. His solution involves clear notions on the genera-

tion of cones and cylinders. This problem reduces itself to

finding two mean proportionals between two given lines.

These mean proportionals were obtained by Archytas from

the section of a half-cylinder. The doctrine of proportion

was advanced through him.

There is every reason to believe that the later Pythagoreans

exercised a strong influence on the study and development of

mathematics at Athens. The Sophists acquired geometry from

Pythagorean sources. Plato bought the works of Philolaus,

and had a warm friend in Archytas.

The Sophist School.

After the defeat of the Persians under Xerxes at the battle

of Salamis, 480 b.c, a league was formed among the Greeks

to preserve the freedom of the now liberated Greek cities on

the islands and coast of the .^Egaean Sea. Of this league

Athens soon became leader and dictator. She caused the

separate treasury of the league to be merged into that of

Athens, and then spent the money of her allies for her own.

aggrandisement. Athens was also a great commercial centre.

Thus she became the richest and most beautiful city of an-

tiquity. All menial work was performed by slaves. The
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citizen of Athens was well-to-do and enjoyed a large amount

of leisure. The government being purely democratic, every

citizen was a politician. To make his influence felt among

his fellow-men he must, first of all, be educated. Thus there

arose a_ demand for teachers. The supply came principally

from Sicily, where Pythagorean doctrines had spread. These

teachers were called Sophists, or "wise men." Unlike the

Pythagoreans, they accepted pay for their teaching. Although

rhetoric was the principal feature of their instruction, they

also taught geometry, astronomy, and philosophy. Athens

soon became the headquarters of Grecian men of letters, and

of mathematicians in particular. The home of mathematics

among the Greeks was first in the Ionian Islands, then in

Lower Italy, and during the time now under consideration,

at Athens.

The geometry of the circle, which had been entirely

neglected by the Pythagoreans, was taken up by the Sophists.

Nearly all their discoveries were made in connection with

their innumerable attempts to solve the following three

famous problems :
—

(1) To trisect an arc or an angle.

(2) To " double the cube," i.e. to find a cube whose volume

is double that of a given cube.

(3) To "square the circle," i.e. to find a square or some

other rectilinear figure exactly equal in area to a given circle.

These problems have probably been the subject of more

discussion and research than any other problems in mathe-

matics. The bisection of an angle was one of the easiest

problems in geometry. The trisection of an angle, on the

other hand, presented unexpected diflB-Culties. A right angle

had been divided into three equal parts by the Pythagoreans.

But the general problem, though easy in appearance, tran-

scended the power of elementary geometry. Among the first
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to wrestle with it was Hippias of Ells, a contemporary of

Socrates, and born about 460 b.c. Like all tlie later geome-

ters, lie failed in effecting the trisection by means of a ruler

and compass only. Proolus mentions a man, Hippias, presum-

ably Hippias of Elis, as the inventor of a transcendental curve

which served to divide an angle not only into three, but into

any number of equal parts. This same curve was used later

by Deinostratus and others for the quadrature of the circle.

On this account it is called the quadratrix.

The Pythagoreans had shown that the diagonal of a square

is the side of another square having double the area of the

original one. This probably suggested the problem of the

duplication of the cube, i.e. to find the edge of a cube having

double the volume of a given cube. Eratosthenes ascribes to

this problem a different origin. The Delians were once suf-

fering from a pestilence and were ordered by the oracle to

double a certain cubical altar. Thoughtless workmen simply

constructed a cube with edges twice as long, but this did not

pacify the gods. The error being discovered, Plato was con-

sulted on the matter. He and his disciples searched eagerly

for a solution to this "Delian Problem." Hippocrates of Chios

(about 430 b.c), a talented mathematician, but otherwise slow

and stupid, was the first to show that the problem could be

reduced to finding two mean proportionals between a given

line and another twice as long. For, in the proportion a : x

= x:y = y:2a, since x' = ay and y' = 2ax and x* = a'y', we

have a;* = 2 a'x and a^ = 2 a?. But he failed to find the two

mean proportionals. His attempt to square the circle was

also a failure ; for though he made himself celebrated by

squaring a lune, he committed an error in attempting to apply

this result to the squaring of the circle.

In his study of the quadrature and duplication-problems,

Hippocrates contributed much to the geometry of the circle.
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The subject of similar figures was studied and partly

developed by Hippocrates. This involved the theory of

proportion. Proportion had, thus far, been used by the

Greeks only in numbers. They never succeeded in uniting

the notions of numbers and magnitudes. The term "number"

was used by them in a restricted sense. What we call

irrational numbers was not included under this notion. Not

even rational fractions were called numbers. They used the

word in the same sense as we use "integers." Hence num-

bers were conceived as discontinuous, while magnitudes were

continuous. The two notions appeared, therefore, entirely

distinct. The chasm between them is exposed to full view

in the statement of Euclid that "incommensurable magni-

tudes do not have the same ratio as numbers." In Euclid's

Elements we find the theory of proportion of magnitudes

developed and treated independent of that of numbers. The

transfer of the theory of proportion from numbers to mag-

nitudes (and to lengths in particular) was a difllcult and

important step.

Hippocrates added to his fame by writing a geometrical

text-book, called the Elements. This publication shows that

the Pythagorean habit of secrecy was being abandoned

;

secrecy was contrary to the spirit of Athenian life.

The Sophist Antiphon, a contemporary of Hippocrates, intro-

duced the process of exhaustion for the purpose of solving

the problem of the quadrature. He did himself credit by

remarking that by inscribing in a circle a square, and on its

sides erecting isosceles triangles with their vertices in the

circumference, and on the sides of these triangles erecting

new triangles, etc., one could obtain a succession of regular

polygons of 8, 16, 32, 64 sides, and so on, of which each

approaches nearer to the circle than the previous one, until

the circle is finally exhausted. Thus is obtained an inscribed
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polygon whose sides coincide with the circumference. Since

there can be found squares equal in area to any polygon,

there also can be found a square equal to the last polygon

inscribed, and therefore equal to the circle itself. Bryson

of Heraclea, a contemporary of Antiphon, advanced the prob-

lem of the quadrature considerably by circumscribing poly-

gons at the same time that he inscribed polygons. He erred,

however, in assuming that the area of a circle was the arith-

metical mean between circumscribed and inscribed polygons.

Unlike Bryson and the rest of Greek geometers, Antiphon

seems to have believed it possible, by continually doubling

the sides of an inscribed polygon, to obtain a polygon coin-

ciding with the circle. This question gave rise to lively

disputes in Athens. If a polygon can coincide with the

circle, then, says Simplicius, we must put aside the notion

that magnitudes are divisible ad infinitum. Aristotle always

supported the theory of the infinite divisibility, while Zeno,

the Stoic, attempted to show its absurdity by proving that

if magnitudes are infinitely divisible, motion is impossible.

Zeno argues that Achilles could not overtake a tortoise; for

while he hastened to the place where the tortoise had been

when he started, the tortoise crept some distance ahead, and

while Achilles reached that second spot, the tortoise again

moved forward a little, and so on. Thus the tortoise was

always in advance of Achilles. Such arguments greatly con-

founded G-reek geometers. No wonder they were deterred

by such paradoxes from introducing the' idea of infinity into

their geometry. It did not suit the rigour of their proofs.

The process of Antiphon and Bryson gave rise to the cum-

brous but perfectly rigorous "method of exhaustion." In

determining the ratio of the areas between two curvilinear

plane figures, say two circles, geometers first inscribed or

circumscribed similar polygons, and then by increasing indefi-
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nitely the number of sides, nearly exhausted the spaces

between the polygons and circumferences. From the theo-

rem that similar polygons inscribed in circles are to each

other as the squares on their diameters, geometers may have

divined the theorem attributed to Hippocrates of Chios that

the circles, which differ but little from the last drawn poly-

gons, must be to each other as the squares on their diameters.

But in order to exclude all vagueness and possibility of doubt,

later Greek geometers applied reasoning like that in Euclid,

XII. 2, as follows : Let C and c, D and d be respectively the

circles and diameters in question. Then if the proportion

D^:d^ = C:cis not true, suppose that D^:cP = G: c'. If c'< c,

then a polygon p can be inscribed in the circle c which comes

nearer to it in area than does c'. If P be the corresponding

polygon in C, then P : p = D" : cP= G:c', and P : C= p : c'.

Since p > c', we have P> G, which is absurd. Next they

proved by this same method of rediictio ad absurdum the

falsity of the supposition that <^ '>c. Since c' can be neither

larger nor smaller than c, it must be equal to it, q.b.d.

Hankel refers this Method of Exhaustion back to Hippo-

crates of Chios, but the reasons for assigning it to this early

writer, rather than to Eudoxus, seem insufBcient.

Though progress in geometry at this period is traceable only

at Athens, yet Ionia, Sicily, Abdera in Thrace, and Cyrene

produced mathematicians who made creditable contributions

to the science. We can mention here only Democritus of

Abdera (about 460-370 b.c), a pupil of Anaxagoras, a friend

of Philolaus, and an admirer of the Pythagoreans. He
visited Egypt and perhaps even Persia. He was a successful

geometer and wrote on incommensurable lines, on geometry,

on numbers, and on perspective. None of these works are

extant. He used to boast that in the construction of plane

figures with proof no one had yet surpassed him, not even
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the so-called harpedonaptse (" rope-stretchers ") of Egypt. By

this assertion he pays a flattering compliment to the skill

and ability of the Egyptians.

The Platonic School.

During the Peloponnesian War (431-404 b.c.) the progress

of geometry was checked. After the war, Athens sank into

the background as a minor political power, but advanced more

and more to the front as the leader in philosophy, literature,

and science. Plato was born at Athens in 429 B.C., the year

of the great plague, and died in 348. He was a pupil and

near friend of Socrates, but it was not from him that he

acquired his taste for mathematics. After the death of Soc-

rates, Plato travelled extensively. In Gyrene he studied

mathematics under Theodoras. He went to Egypt, then to

Lower Italy and Sicily, where he came in contact with the

Pythagoreans. Archytas of Tarentum and Timeeus of Loeri

became his intimate friends. On his return to Athens, about

389 B.C., he founded his school in the groves of the Academia,

and devoted the remainder of his life to teaching and writing.

Plato's physical philosophy is partly based on that of the

Pythagoreans. Like them, he sought in arithmetic and

geometry the key to the universe. When questioned about

the occupation of the Deity, Plato answered that " He geom-

etrises continually." Accordingly, a knowledge of geometry

is a necessary preparation for the study of philosophy. To

show how great a value he put on mathematics and how
necessary it is for higher speculation, Plato placed the inscrip-

tion over his porch, "Let no one who is unacquainted with

geometry enter here." Xenocrates, a successor of Plato as

teacher in the Academy, followed in his master's footsteps, by

declining to admit a pupil who had no mathematical training,
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with the remark, "Depart, for thou hast not the grip of

philosophy." Plato observed that geometry trained the mind

for correct and vigorous thinking. Hence it was that the

Eudemian Summary says, " He filled his writings with mathe-

matical discoveries, and exhibited on every occasion the re-

markable connection between mathematics and philosophy."

With Plato as the head-master, we need not wonder that

the Platonic school produced so large a number of mathemati-

cians. Plato did little real original work, but he made

valuable improvements in the logic and methods employed

in geometry. It is true that the Sophist geometers of the

previous century were rigorous in their proofs, but as a rule

they did not reflect on the inward nature of their methods.

They used the axioms without giving them explicit expression,

and the geometrical concepts, such as the point, line, surface,

etc., without assigning to them formal definitions. The Py-

thagoreans called a point "unity in position," but this is a

statement of a philosophical theory rather than a definition.

Plato objected to calling a point a " geometrical fiction." He
defined a point as the " beginning of a line " or as " an indivis-

ible line," and a line as " length without breadth." He called

the point, line, surface, the ' boundaries ' of the line, surface,

solid, respectively. Many of the definitions in Euclid are to

be ascribed to the Platonic school. The same is probably

true of Euclid's axioms. Aristotle refers to Plato the axiom

that " equals subtracted from equals leave equals."

One of the greatest achievements of Plato and his school is

the invention of analysis as a method of proof. To be sure,

this method had been used unconsciously by Hippocrates and

others ; but Plato, like a true philosopher, turned the instinc-

tive logic into a conscious, legitimate method.

The terms synthesis and analysis are used in mathematics

in a more special sense than in logic. In ancient mathematics
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they had a different meaning from what they now have. The

oldest definition of mathematical analysis as opposed to syn-

thesis is that given in Euclid, XIII. 5, which in all probability

was framed by Eudoxus :
" Analysis is the obtaining of the

thing sought by assuming it and so reasoning up to an

admitted truth ; synthesis is the obtaining of the thing

sought by reasoning up to the inference and proof of it."

The analytic method is not conclusive, unless all operations

involved in it are known to be reversible. To remove all

doubt, the Greeks, as a rule, added to the analytic process

a synthetic one, consisting of a reversion of all operations

occurring in the analysis. Thus the aim of analysis was to

aid in the discovery of synthetic proofs or solutions.

Plato is said to have solved the problem of the duplication

of the cube. But the solution is open to the very same objec-

tion which he made to the solutions by Archytas, Eudoxus,

and Mensechmus. He called their solutions not geometrical,

but mechanical, for they required the use of other instruments

than the ruler and compasses. He said that thereby " the good

of geometry is set aside and destroyed, for we again reduce it

to the world of sense, instead of elevating and imbuing it with

the eternal and incorporeal images of thought, even as it is

employed by God, for which reason He always is God." These

objections indicate either that the solution is wrongly attrib-

uted to Plato or that he wished to show how easily non-geo-

metric solutions of that character can be found. It is now

generally admitted that the duplication problem, as well as

the trisection and quadrature problems, cannot be solved by

means of the ruler and compass only.

Plato gave a healthful stimulus to the study of stereometry,

which until his time had been entirely neglected. The sphere

and the regular solids had been studied to some extent, but

the prism, pyramid, cylinder, and cone were hardly known to
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exist. All these solids became the subjects of investigation

by the Platonic school. One result of these inquiries was

epoch-making. Menaechmus, an associate of Plato and pupil

of Eudoxus, invented the conic sections, which, in course of

only a century, raised geometry to the loftiest height which

it was destined to reach during antiquity. Menaechmus cut

three kinds of cones, the 'right-angled,' 'acute-angled,' and

'obtuse-angled,' by planes at right angles to a side of the

cones, and thus obtained the three sections which we now call

the parabola, ellipse, and hyperbola. Judging from the two

very elegant solutions of the " Delian Problem " by means of

intersections of these curves, Menaechmus must have succeeded

well in investigating their properties.

Another great geometer was Dinostratus, the brother of

Menaechmus and pupil of Plato. Celebrated is his mechanical

solution of the quadrature of the circle, by means of the quadr

ratrix of Hippias.

Perhaps the most brilliant mathematician of this period was

Eudoxus. He was born at Cnidus about 408 b.c, studied under

Archytas, and later, for two months, under Plato. He was

imbued with a true spirit of scientific inquiry, and has been

called the father of scientifib astronomical observation. From

the fragmentary notices of his astronomical researches, found

in later writers, Ideler and Schiaparelli succeeded in recon-

structing the system of Eudoxus with its celebrated representa-

tion of planetary motions by " concentric spheres." Eudoxus

had a school at Cyzicus, went with his pupils to Athens, visit-

ing Plato, and then returned to Cyzicus, where he died 355

B.C. The fame of the academy of Plato is to a large extent

due to Eudoxus's pupils of the school at Cyzicus, among
whom are MenEBchmus, DinostratuSj Athenseus, and Helicon.

Diogenes Laertius describes Eudoxus as astronomer, physician,

legislator, as well as geometer. The Eudemian Summary
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says that Eudoxus "first increased the number of general

theorems, added to the three proportions three more, and

raised to a considerable quantity the learning, begun by Plato,

on the subject of the section, to which he applied the analyt-

ical method." By this ' section ' is meant, no doubt, the

"golden section" {sectio aurea), which cuts a line in extreme

and mean ratio. The first five propositions in Euclid XIII.

relate to lines cut by this section, and are generally attributed

to Eudoxus. Eudoxus added much to the knowledge of solid

geometry. He proved, says Arehimedes, that a pyramid is

exactly one-third of a prism, and a cone one-third of a cylinder,

having equal base and altitude. The proof that spheres are

to each other as the cubes of their radii is probably due to

him. He made frequent and skilful use of the method of

exhaustion, of which he was in all probability the inventor.

A scholiast on Euclid, thought to be Proclus, says further that

Eudoxus practically invented the whole of Euclid's fifth book.

Eudoxus also found two mean proportionals between two

given lines, but the method of solution is not known.

Plato has been called a maker of mathematicians. Besides

the pupils already named, the Eudemian Summary men-

tions the following: Theaetetus of Athens, a man of great

natural gifts, to whom, no doubt, Euclid was greatly indebted

in the composition of the 10th book,' treating of incommensu-

rables ; Leodamas of Thasos ; Neocleides and his pupil Leon,

who added much to the work of their predecessors, for Leon

wrote an Elements carefully designed, both in number and

utility of its proofs ; Theudius of Magnesia, who composed a

very good book of Elements and generalised propositions,

which had been confined to particular cases ; Hermotimus of

Colophon, who discovered many propositions of the Elements

and composed some on loci; and, finally, the names of Amyclas

of Heraclea, Cyzicenus of Athens, and Philippus of Mende.
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A skilful mathematician of whose life and works we have

no details is Aristaeus, the elder, probably a senior contempo-

rary of Euclid. The fact that he wrote a work on conic

sections tends to show that much progress had been made in

their study during the time of Mensechmus. Aristaeus wrote

also on regular solids and cultivated the analytic method.

His works contained probably a summary of the researches

of the Platonic school.'

Aristotle (384-322 e.g.), the systematiser of deductive logic,

though not a professed mathematician, promoted the science

of geometry by improving some of the most difficult defini-

tions. His Physics contains passages with suggestive hints

of the principle of virtual velocities. About his time there

appeared a work called Mechanica, of which he is regarded

by some as the author. Mechanics was totally neglected by

the Platonic school.

The First Alexandrian School.

In the previous pages we have seen the birth of geometry

in Egypt, its transference to the Ionian Islands, thence to

Lower Italy and to Athens. We have witnessed its growth

in Greece from feeble childhood to vigorous manhood, and

now we shall see it return to the land of its birth and there

derive new vigour.

During her declining years, immediately following the

Peloponnesian War, Athens produced the greatest scientists

and philosophers of antiquity. It was the time of Plato

and Aristotle. In 338 e.g., at the battle of Chseronea, Athens

was beaten by Philip of Macedon, and her power was broken

forever. Soon after, Alexander the Great, the son of Philip,

started out to conquer the world. In eleven years he built

up a great empire which broke to pieces in a day. Egypt
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fell to the lot of Ptolemy Soter. Alexander tad founded

the seaport of Alexandria, which soon became "the noblest

of all cities.'' Ptolemy made Alexandria the capital. The

history of Egypt during the next three centuries is mainly

the history of Alexandria. Literature, philosophy, and art

-were diligently cultivated. Ptolemy created the university

of Alexandria. He founded the great Library and built labo-

ratories, museums, a zoological garden, and promenades. Alex-

andria soon became the great centre of learning.

Demetrius Phalereus was invited from Athens to take

charge of the Library, and it is probable, says Gow, that

Euclid was invited with him to open the mathematical school.

Euclid's greatest activity was during the time of the first

Ptolemy, who reigned from 306 to 283 B.C. Of the life of

Euclid, little is known, except what is added by Proclus to

the Eudemian Summary. Euclid, says Proclus, was younger

than Plato and older than Eratosthenes and Archimedes, the

latter of whom mentions him. He was of the Platonic sect, and

well read in its doctrines. He collected the Elements, put

in order much that Eudoxus had prepared, completed many

things of Theaetetus, and was the first who reduced to unob-

jectionable demonstration the imperfect attempts of his prede-

cessors. When Ptolemy once asked him if geometry could

not be mastered by an easier process than by studying the

Elements, Euclid returned the answer, "There is no royal

road to geometry." Pappus states that Euclid was distin-

guished by the fairness and kindness of his disposition, par-

ticularly toward those who could do anything to advance

the mathematical sciences. Pappus is evidently making a

contrast to Apollonius, of whom he more than insinuates the

opposite character.' A pretty little story is related by Sto-

bseus :
* "A youth who had begun to read geometry with

Euclid, when he had learnt the first proposition, inquired.
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' What do I get by learning these things ?
' So Euclid called

his slave and said, ' Give him threepence, since he must

make gain out of what he learns.' " These are about all the

personal details preserved by Greek writers. Syrian and

Arabian writers claim to know much more, but they are unre-

liable. At one time Euclid of Alexandria was universally

confounded with Euclid of Megara, who lived a century

earlier.

The fame of Euclid has at all times rested mainly upon his

book on geometry, called the Elements. This book was so far

superior to the Elements written by Hippocrates, Leon, and

Theudius, that the latter works soon perished in the struggle

for existence. The Greeks gave Euclid the special title of

" the author of the Elements." It is a remarkable fact in the

history of geometry, that the Elements of Euclid, written two

thousand years ago, are still regarded by many as the best

introduction to the mathematical sciences. In England they

are used at the present time extensively as a text-book in

schools. Some editors of Euclid have, however, been inclined

to credit him with more than is his due. They would have

us believe that a finished and unassailable system of geometry

sprang at once from the brain of Euclid, " an armed Minerva

from the head of Jupiter." They fail to mention the earlier

eminent mathematicians from whom Euclid got his material.

Comparatively few of the propositions and proofs in the

Elements are his own discoveries. In fact, the proof of the

" Theorem of Pythagoras " is the only one directly ascribed to

him. Allman conjectures that the substance of Books I., II.,

IV. comes from the Pythagoreans, that the substance of Book

VI. is due to the Pythagoreans and Eudoxus, the latter con-

tributing the doctrine of proportion as applicable to incom-

mensurables and also the Method of Exhaustions (Book XII.),

that Thesetetus contributed much toward Books X. and XIII.,
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that the principal part of the original work of Euclid himself

is to be found in Book X.' Euclid was the greatest systema-

tiser of his time. By careful selection from the material

before him, and by logical arrangement of the propositions

selected, he built up, from a few definitions and axioms, a

proud and lofty structure. It would be erroneous to believe

that he incorporated into his Elements all the elementary

theorems known at his time. Archimedes, Apollonius, and

even he himself fefer to theorems not included in his Ele-

ments, as being well-known truths.

The text of the Elements now commonly used is Theon's

edition. Theon of Alexandria, the father of Hypatia, brought

out an edition, about 700 years after Euclid, with some altera-

tions in the text. As a consequence, later commentators,

especially Eobert Simson, who laboured under the idea that

Euclid must be absolutely perfect, made Theon the scape-

goat for all the defects which they thought they could discover

in the text as they knew it. But among the manuscripts sent

by Napoleon I. from the Vatican to Paris was found a copy of

the Elements believed to be anterior to Theon's recension.

Many variations from Theon's version were noticed therein,

but they were not at all important, and showed that Theon

generally made only verbal changes. The defects in the

Elements for which Theon was blamed must, therefore, be

due to Euclid himself. The Elements has been considered as

offering models of scrupulously rigorous demonstrations. It

is certainly true that in point of rigour it compares favourably

with its modern rivals ; but when examined in the light of

strict mathematical logic, it has been pronounced by C. S.

Peirce to be " riddled with fallacies." The results are correct

only because the writer's experience keeps him on his guard.

At the beginning of our editions of the Elements, under

the head of definitions, are given the assumptions of such
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notions as the point, line, etc., and some verbal explanations.

Then follow three postulates or demands, and twelve axioms.

The term ' axiom ' was used by Proclus, but not by Euclid.

He speaks, instead, of ' common notions '— common either

to all men or to all sciences. There has been much contro-

versy among ancient and modern critics on the postulates and

axioms. An immense preponderance of manuscripts and the

testimony of Proclus place the ' axioms ' about right angles

and parallels (Axioms 11 and 12) among the postulates.''^"

This is indeed their proper place, for they are really assump-

tions, and not common notions or axioms. The postulate

about parallels plays an important r61e in the history of non-

Euclidean geometry. The only postulate which Euclid missed

was the one of superposition, according to which figures

can be moved about in space without any alteration in form

or magnitude.

The Elements contains thirteen books by Euclid, and two,

of which it is supposed that Hypsicles and Damascius are

the authors. The first four books are on plane geometry.

The fifth book treats of the theory of proportion as applied

to magnitudes in general. The sixth book develops the

geometry of similar figures. The seventh, eighth, ninth

books are on the theory of numbers, or on arithmetic. In the

ninth book is found the proof to the theorem that the number

of primes is infinite. The tenth book treats of the theory of

incommensurables. The next three books are on stereometry.

The eleventh contains its more elementary theorems ; the

twelfth, the metrical relations of the pyramid, prism, cone,

cylinder, and sphere. The thirteenth treats of the regular

polygons, especially of the triangle and pentagon, and then uses

them as faces of the five regular solids ; namely, the tetraedron,

octaedron, icosaedron, cube, and dodecaedron. The regular

solids were studied so extensively by the Platonists that they
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received the name of "Platonic figures." The statement of

Proclus that the whole aim of Euclid in writing the Elements

was to arrive at the construction of the regular solids, is

obviously wrong. The fourteenth and fifteenth books, treat-

ing of solid geometry, are apocryphal.

A remarkable feature of Euclid's, and of all Greek geometry

before Archimedes is that it eschews mensuration. Thus the

theorem that the area of a triangle equals half the product

of its base and its altitude is foreign to Euclid.

Another extant book of Euclid is the Data. It seems to

have been written for those who, having completed the Ele-

ments, wish to acquire the power of solving new problems

proposed to them. The Data is a course of practice in analy-

sis. It contains little or nothing that an intelligent student

could not pick up from the Elements itself. Hence it contrib-

utes little to the stock of scientific knowledge. The following

are the other extant works generally attributed to Euclid

:

Phmnomena, a work on spherical geometry and astronomy;

Optics, which develops the hypothesis that light proceeds

from the eye, and not from the object seen; Catoptrica, con-

taining propositions on reflections from mirrors ; De Divisioni-

hus, a treatise on the division of plane figures into parts

having to one another a given ratio ; Sectio Canonis, a work

on musical intervals. His treatise on Porisms is lost ; but

much learning has been expended by Kobert Simson and

M. Chasles in restoring it from numerous notes found in the

writings of Pappus. The term ' porism ' is vague in meaning.

The aim of a porism is not to state some property or truth,

like a theorem, nor to effect a construction, like a problem,

but to find and bring to view a thing which necessarily exists

with given numbers or a given construction, as, to find the

centre of a given circle, or to find the G.C.D. of two given

numbers.* His other lost works are Fallacies, containing
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exercises in detection of fallacies ; Conic Sections, in four

books, whicli are the foundation of a work on the same sub-

ject by Apollonius ; and Loci on a Surface, the meaning of

which title is not understood. Heiberg believes it to mean

"loci which are surfaces."

The immediate successors of Euclid in the mathematical

school at Alexandria were probably Conon, Dositheus, and

Zeuxippus, but little is known of them.

Archimedes (287?-212 b.c), the greatest mathematician of

antiquity, was born in Syracuse. Plutarch calls him a rela-

tion of King Hieron; but more reliable is the statement of

Cicero, who tells us he was of low birth. Diodorus says he

visited Egypt, and, since he was a great friend of Conon and

Eratosthenes, it is highly probable that he studied in Alexan-

dria. This belief is strengthened by the fact that he had

the most thorough acquaintance with all the work previously

done in mathematics. He returned, however, to Syracuse,

where he made himself useful to his admiring friend and

patron. King Hieron, by applying his extraordinary inventive

genius to the construction of various war-engines, by which

he inflicted much loss on the Romans during the siege of

Marcellus. The story that, by the use of mirrors reflecting

the sun's rays, he set on fire the Eoman ships, when they

came within bow-shot of the walls, is probably a fiction. The

city was taken at length by the Eomans, and Archimedes

perished in the indiscriminate slaughter which followed. Ac-

cording to tradition, he was, at the time, studying the diagram

to some problem drawn in the sand. As a Eoman soldier

approached him, he called out, "Don't spoil my circles."

The soldier, feeling insulted, rushed upon him and killed

him. No blame attaches to the Eoman general Marcellus,

who admired his genius, and raised in his honour a tomb

bearing the figure of a sphere inscribed in a cylinder. When
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Cicero was in Syracuse, he found the tomb buried under

rubbish.

Archimedes was admired by his fellow-citizens chiefly for

his mechanical inventions ; he himself prized far more highly

his discoveries in pure science. He declared that " every kind

of art which was connected with daily needs was ignoble and

vulgar." Some of his works have been lost. The following

are the extant books, arranged approximately in chronological

order : 1. Two books on Equiponderance of Planes or Centres

of Plane Oravities, between which is inserted his treatise on

the Quadrature of the Parabola; 2. Two books on the Sphere

and Cylinder ; 3. The Measurement of the Circle ; 4. On Spirals;

5. Conoids and Spheroids; 6. The Sand-Counter ; 7. Two books

on Floating Bodies; 8. Fifteen Lemmas.

In the book on the Measurement of the Circle, Archimedes

pro\res first that the area of a circle is equal to that of a

right triangle having the length of the circumference for its

base, and the radius for its altitude. In this he assumes that

there exists a straight line equal in length to the circumference

— an assumption objected to by some ancient critics, on

the ground that it is not evident that a straight line can equal

a curved one. The finding of such a line was the next prob-

lem. He first finds an upper limit to the ratio of the circum-

ference to the diameter, or tt. To do this, he starts with an

equilateral triangle of which the base is a tangent and the

vertex is the centre of the circle. By successively bisecting

the angle at the centre, by comparing ratios, and by taking the

irrational square roots always a little too small, he finally

arrived at the conclusion that w < 3^. Next he finds a lower

limit by inscribing in the circle regular polygons of 6, 12, 24,

48, 96 sides, finding for each successive polygon its perimeter,

which is, of course, always less than the circumference. Thus

he finally concludes that "the circumference of a circle ex-
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ceeds three times its diameter by a part whicli is less than |
but more than

-ff of the diameter." This approximation is

exact enough for most purposes.

The Quadrature of the Parabola contains two solutions to

the problem— one mechanical, the other geometrical. The

method of exhaustion is used in both.

Archimedes studied also the ellipse and accomplished its

quadrature, but to the hyperbola he seems to have paid less at-

tention. It is believed that he wrote a book on conic sections.

Of all his discoveries Archimedes prized most highly those

in his Sphere and Cylinder. In it are proved the new

theorems, that the surface of a sphere is equal to four times

a great circle ; that the surface of a segment of a sphere is

equal to a circle whose radius is the straight line drawn from

the vertex of the segment to the circumference of its basal

circle ; that the volume and the surface of a sphere are f of

the volume and surface, respectively, of the cylinder circum-

scribed about the sphere. Archimedes desired that the figure

to the last proposition be inscribed on his tomb. This was

ordered done by Marcellus.

The spiral now called the "spiral of Archimedes," and

described in the book On Spirals, was discovered by Archi-

medes, and not, as some believe, by his friend Conon.' His

treatise thereon is, perhaps, the most wonderful of all his

works. Nowadays, subjects of this kind are made easy by

the use of the infinitesimal calculus. In its stead the ancients

used the method of exhaustion. Nowhere is the fertility of

his genius more grandly displayed than in his masterly use of

this method. With Euclid and his predecessors the method

of exhaustion was only the means of proving propositions

which must have been seen and believed before they were

proved. But in the hands of Archimedes it became an instru-

ment of discovery.'
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By the word ' conoid/ in his book on Conoids and

Spheroids, is meant the solid produced by the revolution

of a parabola or a hyperbola about its axis. Spheroids

are produced by the revolution of an ellipse, and are long

or flat, according as the ellipse revolves around the major

or minor axis. The book leads up to the cubature of these,

solids.

We have now reviewed briefly all his extant works on geom-

etry. His arithmetical treatise and problems will be consid-

ered later. We shall now notice his works on mechanics.

Archimedes is the author of the first sound knowledge on this

subject. Archytas, Aristotle, and others attempted to form

the known mechanical truths into a science, but failed. Aris-

totle knew the property of the lever, but could not establish

its true mathematical theory. The radical and fatal defect

in the speculations of the Greeks, says Whewell, was "that

though they had in their possession facts and ideas, the ideas

were not distinct and appropriate to the facts." For instance,

Aristotle asserted that when a body at the end of a lever is

moving, it may be considered as having two motions ; one in

the direction of the tangent and one in the direction of the

radius ; the former motion is, he says, according to nature, the

latter contrary to nature. These inappropriate notions of

' natural ' and ' unnatural ' motions, together with the habits

of thought which dictated these speculations, made the per-

ception of the true grounds of mechanical properties impos-

sible." It seems strange that even after Archimedes had

entered upon the right path, this science should have remained

absolutely stationary till the time of Galileo— a period of

nearly two thousand years.

The proof of the property of the lever, given in his Equi-

ponderance of Planes, holds its place in text-books to this day.

His estimate of the efficiency of the lever is expressed in the
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saying attributed to him, "Give nie a fulcrum on which to

rest, and I will move the earth."

While the Equiponderance treats of solids, or the equilib-

rium of solids, the book on Floating Bodies treats of hydro-

statics. His attention was first drawn to the subject of

specific gravity when King Hieron asked him to test whether

a crown, professed by the maker to be pure gold, was not

alloyed with silver. The story goes that our philosopher was

in a bath when the true method of solution flashed on his

mind. He immediately ran home, naked, shouting, "I have

found it
! " To solve the problem, he took a piece of gold and

a piece of silver, each weighing the same as the crown. Ac-

cording to one author, he determined the volume of water

displaced by the gold, silver, and crown respectively, and

calculated from that the amount of gold and silver in the

crown. According to another writer, he weighed separately

the gold, silver, and crown, while immersed in water, thereby

determining their loss of weight in water. From these data

he easUy found the solution. It is possible that Archimedes

solved the problem by both methods.

After examining the writings of Archimedes, one can well

understand how, in ancient times, an ' Archimedean problem

'

came to mean a problem too deep for ordinary minds to solve,

and how an ' Archimedean proof ' came to be the synonym for

unquestionable certainty. Archimedes wrote on a very wide

range of subjects, and displayed great profundity in each. He
is the Newton of antiquity.

Eratosthenes, eleven years younger than Archimedes, was a

native of Cyrene. He was educated in Alexandria under

Callimachus the poet, whom he succeeded as custodian of

the Alexandrian Library. His many-sided activity may be

inferred from his works. He wrote on Good and Evil, Meas-

urement of the Earth, Comedy, Geography, Chronology, Constel-
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lations, and the Duplication of the Cube. He was also a

philologian and a poet. He measured the obliquity of the

ecliptic and invented a device for finding prime numbers.

Of his geometrical writings we possess only a letter to

Ptolemy Euergetes, giving a history of the duplication prob-

lem and also the description of a very ingenious mechanical

contrivance of his own to solve it. In his old age he lost

his eyesight, and on that account is said to have committed

suicide by voluntary starvation.

About forty years after Archimedes flourished ApoUonius of

Perga, whose genius nearly equalled that of his great prede-

cessor. He incontestably occupies the second place in dis-

tinction among ancient mathematicians. ApoUonius was

born in the reign of Ptolemy Euergetes and died under

Ptolemy Philopator, who reigned 222-206 B.C. He studied at

Alexandria under the successors of Euclid, and for some time,

also, at Pergamum, where he made the acquaintance of that

Eudemus to whom he dedicated the first three books of his

Conic Sections. The brilliancy of his great work brought him

the title of the " Great Geometer." This is all that is known

of his life.

His Conic Sections were in eight books, of which the first

four only have come down to us in the original Greek. The

next three books were unknown in Europe till the middle of

the seventeenth century, when an Arabic translation, made

about 1250, was discovered. The eighth book has never been

found. In 1710 Halley of Oxford published the Greek text

of the first four books and a Latin translation of the remain-

ing three, together with his conjectural restoration of the

eighth book, foijnded on the introductory lemmas of Pappus.

The first four books contain little more than the substance

of what earlier geometers had done. Eutocius tells us that

Heraclides, in his life of Archimedes, accused ApoUonius of
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having appropriated, in his Conic Sections, the unpublished

discoveries of that great mathematician. It is difficult to

believe that this charge rests upon good foundation. Eutocius

quotes Geminus as replying that neither Archimedes nor

ApoUonius claimed to have invented the conic sections, but

that ApoUonius had introduced a real improvement. While

the first three or four books were founded on the works of

Mensechmus, Aristseus, Euclid, and Archimedes, the remaining

ones consisted almost entirely of new matter. The first three

books were sent to Eudemus at intervals, the other books

(after Eudemus's death) to one Attains. The preface of the

second book is interesting as showing the mode in which

Greek books were ' published ' at this time. It reads thus

:

" I have sent my son ApoUonius to bring you (Eudemus) the

second book of my Conies. Eead it carefully and communi-

cate it to such others as are worthy of it. If Philonides, the

geometer, whom I introduced to you at Ephesus, comes into

the neighbourhood of Pergamum, give it to him also." ^

The first book, says ApoUonius in his preface to it, "con-

tains the mode of producing the three sections and the conju-

gate hyperbolas and their principal characteristics, more fully

and generally worked out than in the writings of other

authors." We remember that Mensechmus, and all his suc-

cessors down to ApoUonius, considered only sections of right

cones by a plane perpendicular to their sides, and that the

three sections were obtained each from a different cone.

ApoUonius introduced an important generalisation. He pro-

duced all the sections from one and the same cone, whether

right or scalene, and by sections which may or may not be

perpendicular to its sides. The old names for^the three curves

were now no longer applicable. Instead of calling the three

curves, sections of the 'acute-angled,' 'right-angled,' and

' obtuse-angled ' cone, he called them ellipse, parabola, and
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hyperbola, respectively. To be sure, we find the words ' parab-

ola ' and ' ellipse ' in tbe works of Archimedes, but they are

probably only interpolations. The word ' ellipse ' was applied

because y'<px,p being the parameter; the word 'parabola'

was introduced because y^ =px, and the term ' hyperbola

'

because y'>px.

The treatise of ApoUonius rests on a unique property of

conic sections, which is derived directly from the nature of

the cone in which these sections are found. How this property

forms the key to the system of the ancients is told in a mas-

terly way by M. Chasles.^ " Conceive,'' says he, " an oblique

cone on a circular base ; the straight line drawn from its

summit to the centre of the circle forming its base is called

the axis of the cone. The plane passing through the axis,

perpendicular to its base, cuts the cone along two lines and

determines in the circle a diameter ; the triangle having this

diameter for its base and the two lines for its sides, is called

the triangle through the axis. In the formation of his conic

sections, ApoUonius supposed the cutting plane to be perpen-

dicular to the plane of the triangle through the axis. The

points in which this plane meets the two sides of this triangle

are the vertices of the curve ; and the straight line which joins

these two points is a diameter of it. ApoUonius called this

diameter latus transversum. At one of the two vertices of the

curve erect a perpendicular {latus rectuni) to the plane of the

triangle through the axis, of a certain length, to be determined

as we shall specify later, and from the extremity of this per-

pendicular draw a straight line to the other vertex of the

curve ; now, through any point whatever of the diameter of

the curve, draw at right angles an ordinate : the square of this

ordinate, comprehended between the diameter and the curve,

will be equal to the rectangle constructed on the portion of

the ordinate comprised between the diameter and the straight
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line, and the part of the diameter comprised between the first

vertex and the foot of the ordinate. Such is the characteristic

property which Apollonius recognises in his conic sections and

which he uses for the purpose of inferring from it, by adroit

transformations and deductions, nearly all the rest. It plays,

as we shall see, in his hands, almost the same role as the

equation of the second degree with two variables (abscissa and

ordinate) in the system of analytic geometry of Descartes.

"It will be observed from this that the diameter of the

curve and the perpendicular erected at one of its extremities

suffice to construct the curve. These are the two elements

which the ancients used, with which to establish their theory

of conies. The perpendicular in question was called by them

latus erectum; the moderns changed this name first to that of

latus rectum, and afterwards to that of parameter."

The first book of the Conic Sections of Apollonius is almost

wholly devoted to the generation of the three principal conic

sections.

The second book treats mainly of asymptotes, axes, and

diameters.

The third book treats of the equality or proportionality

of triangles, rectangles, or squares, of which the component

parts are determined by portions of transversals, chords,

asymptotes, or tangents, which are frequently subject to a

great number of conditions. It also touches the subject of

foci of the ellipse and hyperbola.

In the fourth book, Apollonius discusses the harmonic divis-

ion of straight lines. He also examines a system of two

conies, and shows that they cannot cut each other in more

than four points. He investigates the various possible relative

positions of two conies, as, for instance, when they have one

or two points of contact with each other.

The fifth book reveals better than any other the giant
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intellect of its author. Difficult questions of maxima and

minima, of which few examples are found in earlier works, are

here treated most exhaustively. The subject investigated is,

to find the longest and shortest lines that can be drawn from

a given point to a conic. Here are also found the germs of

the subject of evolutes and centres of osculation.

The sixth book is on the similarity of conies.

The seventh book is on conjugate diameters.

The eighth book, as restored by Halley, continues the sub-

ject of conjugate diameters.

It is worthy of notice that Apollonius nowhere introduces

the notion of directrix for a conic, and that, though he inciden-

tally discovered the focus of an ellipse and hyperbola, he did

not discover the focus of a parabola.* Conspicuous in his

geometry is also the absence of technical terms and symbols,

which renders the proofs long and cumbrous.

The discoveries of Archimedes and Apollonius, says M.

Chasles,^' marked the most brilliant epoch of ancient geometry.

Two questions which have occupied, geometers of all periods

may be regarded as having originated with them. The first

of these is the quadrature of curvilinear figures, which gave

birth to the infinitesimal calculus. The second is the theory

of conic sections, which was the prelude to the theory of

geometrical curves of all degrees, and to that portion of

geometry which considers only the forms and situations

of figures, and uses only the intersection of lines and surfaces

and the ratios of rectilineal distances. These two great

divisions of geometry may be designated by the names of

Geometry of Measurements and Geometry of Forms and Situa-

tions, or. Geometry of Archimedes and of Apollonius.

Besides the Conic Sections, Pappus ascribes to Apollonius

the following works : On Contacts, Plane Loci, Inclinations,

Section of an Area, Determinate Section, and gives lemmas
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from which attempts have been made to restore the lost

originals. Two books on De Sectione Rationis have been

found in the Arabic. The book on Contacts, as restored by

Vieta, contains the so-called " Apollonian Problem " : Given

three circles, to find a fourth which shall touch the three.

Euclid, Archimedes, and Apollonius brought geometry to

as high a state of perfection as it perhaps could be brought

without first introducing some more general and more powerful

method than the old method of exhaustion. A briefer sym-

bolism, a Cartesian geometry, an infinitesimal calculus, were

needed. The Greek mind was not adapted to the invention of

general methods. Instead of a climb to still loftier heights

we observe, therefore, on the part of later Greek geometers, a

descent, during which they paused here and there to look

around for details which had been passed by in the hasty

ascent.'

Among the earliest successors of Apollonius was Ificomedes.

Nothing definite is known of him, except that he invented the

conchoid ("mussel-like"). He devised a little machine by

which the curve could be easily described. With aid of the

conchoid he duplicated the cube. The curve can also be used

for trisecting angles in a way much resembling that in the

eighth lemma of Archimedes. Proclus ascribes this mode of

trisection to Nicomedes, but Pappus, on the other hand, claims

it as his own. The conchoid was used by Newton in con-

structing curves of the third degree.

About the time of Nicomedes, flourished also Diodes, the

inventor of the cissoid ("ivy-like"). This curve he used for

finding two mean proportionals between two given straight

lines.

About the life of Perseus we know as little as about that of

Nicomedes and Diodes. He lived some time between 200 and

100 B.C. From Heron and Geminus we learn that he wrote a
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work on the spire, a sort of anchor-ring surface described by

Heron as being produced by the revolution of a circle around

one of its chords as an axis. The sections of this surface

yield peculiar curves called spiral sections, which, according to

Geminus, were thought out by Perseus. These curves appear

to be the same as the Hippopede of Eudoxus.

Probably somewhat later than Perseus lived Zenodorus. He
wrote an interesting treatise on a new subject; namely, iso-

perimetrical figures. Fourteen propositions are preserved by

Pappus and Theon. Here are a few of them : Of isoperimet-

rical, regular polygons, the one having the largest number of

angles has the greatest area ; the circle has a greater area than

any regular polygon of equal periphery ; of all isoperimetrical

polygons of n sides, the regular is the greatest ; of all solids

having surfaces equal in area, the sphere has the greatest

volume.

Hypsicles (between 200 and 100 b.c.) was supposed to be

the author of both the fourteenth and fifteenth books of

Euclid, but recent critics are of opinion that the fifteenth

book was written by an author who lived several centuries

after Christ. The fourteenth book contains seven elegant

theorems on regular solids. A treatise of Hypsicles on Risings

is of interest because it is the first Greek work giving the

division of the circumference into 360 degrees after the fash-

ion of the Babylonians.

Hipparchus of Nicaea in Bithyuia was the greatest astron-

omer of antiquity. He established inductively the famous

theory of epicycles and eccentrics. As might be expected, he

was interested in mathematics, not per se, but only as an aid

to astronomical inquiry. No mathematical writings of his

are extant, but Theon of Alexandria informs us that Hippar-

chus originated the science of trigonometry, and that he calcu-

lated a " table of chords " in twelve books. Such calculations
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must have required a ready knowledge of arithmetical and

algebraical operations.

About 100 B.C. flourished Heron the Elder of Alexandria.

He was the pupil of Ctesibius, who was celebrated for his

ingenious mechanical inyentions, such as the hydraulic organ,

the water-clock, and catapult. It is believed by some that

Heron was a son of Ctesibius. He exhibited talent of the

same order as did his master by the invention of the eolipile

and a curious mechanism known as " Heron's fountain."

Great uncertainty exists concerning his writings. Most au-

thorities believe him to be the author of an important Treatise

on the Dioptra, of which there exist three manuscript copies,

quite dissimilar. But M. Marie " thinks that the Dioptra is

the work of Heron the Younger, who lived in the seventh or

eighth century after Christ, and that Geodesy, another book

supposed to be by Heron, is only a corrupt and defective copy

of the former work. Dioptra contains the important formula

for finding the area of a triangle expressed in terms of its

sides; its derivation is quite laborious and yet exceedingly

ingenious. " It seems to me difficult to believe," says Chasles,

"that so beautiful a theorem should be found in a work so

ancient as that of Heron the Elder, without that some Greek

geometer should have thought to cite it." Marie lays great

stress on this silence of the ancient writers, and argues from

it that the true author must be Heron the Younger or some

writer much more recent than Heron the Elder. But no reli-

able evidence has been found that there actually existed a

second mathematician by the name of Heron.

" Dioptra," says Venturi, were instruments which had great

resemblance to our modern theodolites. The book Dioptra is

a treatise on geodesy containing solutions, with aid of these

instruments, of a large number of questions in geometry, such

as to find the distance between two points, of which one only
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is accessible, or between two points wbicb are visible but both

inaccessible ; from a given point to draw a perpendicular to a

line which cannot be approached; to find the difference of

level between two points ; to measure the area of a field with-

out entering it.

Heron was a practical surveyor. This may account for the

fact that his writings bear so little resemblance to those of

the Greek authors, who considered it degrading the science

to apply geometry to surveying. The character of his geom-

etry is not Grecian, but decidedly Egyptian. This fact is the

more surprising when we consider that Heron demonstrated

his familiarity with Euclid by writing a commentary on the

Mements."^ Some of Heron's formulas point to an old Egyp-

tian origin. Thus, besides the above exact formula for the

area of a triangle -in terms of its sides. Heron gives the for-

mula -^—- X -, which bears a striking likeness to the for-

mula '"]r ^ X ^l"
^ for finding the area of a quadrangle,

found in the Edfu inscriptions. There are, moreover, points

of resemblance between Heron's writings and the ancient

Ahmes papyrus. Thus Ahmes used unit-fractions exclusively

;

Heron uses them oftener than other fractions. Like Ahmes
and the priests at Edfu, Heron divides complicated figures

into simpler ones by drawing auxiliary lines ; like them,

he shows, throughout, a special fondness for the isosceles

trapezoid.

The writings of Heron satisfied a practical want, and for

that reason were borrowed extensively by other peoples. We
find traces of them in Eome, in the Occident during the Middle

Ages, and even in India.

Geminus of Rhodes (about 70 b.c.) published an astronomi-

cal work still extant. He wrote also a book, now lost, on the

Arrangement of Mathematics, which contained many valuable
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notices of the early history of Greek mathematics. Proclus

and Eutocius quote it frequently. Theodosius of Tripolis is

the author of a book of little merit on the geometry of the

sphere. Dionysodorus of Amisus in Pontus applied the inter-

section of a parabola and hyperbola to the solution of a prob-

lem which Archimedes, in his Sphere and Cylinder, had left

incomplete. The problem is " to cut a sphere so that its seg-

ments shall be in a given ratio."

We have now sketched the progress of geometry down to

the time of Christ. Unfortunately, very little is known of

the history of geometry between the time of Apollonius and

the beginning of the Christian era. The names of quite a

number of geometers have been mentioned, but very few of

their works are now extant. It is certain, however, that there

were no mathematicians of real genius from Apollonius to

Ptolemy, excepting Hipparchus and perhaps Heron.

The Second Alexandrian School.

The close of the dynasty of the Lagides which ruled Egypt

from the time of Ptolemy Soter, the builder of Alexandria,

for 300 years ; the absorption of Egypt into the Koman Em-

pire ; the closer commercial relations between peoples of the

East and of the West ; the gradual decline of paganism and

spread of Christianity, — these events were of far-reaching

influence on the progress of the sciences, which then had their

home in Alexandria. Alexandria became a commercial and

intellectual emporium. Traders of all nations met in her

busy streets, and in her magnificent Library, museums, lecture-

halls, scholars from the East mingled with those of the

West ; Greeks began to study older literatures and to com-

pare them with their own. In consequence of this interchange

of ideas the Greek philosophy became fused with Oriental
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philosophy. Neo-Pythagoreanism and Neo-Platouism were the

names of the modified systems. These stood, for a time, in

opposition to Christianity. The study of Platonism and

Pythagorean mysticism led to the revival of the theory of

numbers. Perhaps the dispersion of the Jews and their

introduction to Greek learning helped in bringing about this

revival. The theory of numbers became a favourite study.

This new line of mathematical inquiry ushered in what we

may call a new school. There is no doubt that even now

geometry continued to be one of the most important studies

in the Alexandrian course. This Second Alexandrian School

may be said to begin with the Christian era. It was made

famous by the names of Claudius Ptolemseus, Diophantus,

Pappus, Theon of Smyrna, Theon of Alexandria, lamblichus,

Porphyrins, and others.

By the side of these we may place Serenus of Antissa, as

having been connected more or less with this new school.

He wrote on sections of the cone and cylinder, in two books,

one of which treated only of the triangular section of the cone

through the apex. He solved the problem, "given a cone

(cylinder), to find a cylinder (cone), so that the section of

both by the same plane gives similar ellipses." Of particular

interest is the following theorem, which is the foundation

of the modern theory of

harmonics : If from D we

draw DF, cutting the tri-

angle ABC, and choose

H on it, so that DE : DF
= EH: HF, and if we draw

the line AH, then every transversal through D, such as

DG, will be divided by AH so that DK: DG = KJ: JQ.

Menelaus of Alexandria (about 98 a.d.) was the author of

/Sphoerica, a work extant in Hebrew and Arabic, but not
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in Greek. In it lie proves the theorems on the congruence

of spherical triangles, and describes their properties in

much the same way as Euclid treats plane triangles. In

it are also found the theorems that the sum of the three

sides of a spherical triangle is less than a great circle, and

that the Sum of the three angles exceeds two right angles.

Celebrated are two theorems of his on plane and spherical

triangles. The one on plane triangles is that, "if the three

sides be cut by a straight line, the product of the three seg-

ments which have no common extremity is equal to the

product of the other three." The illustrious Carnot makes

this proposition, known as the ' lemma of Menelaus,' the base

of his theory of transversals. The corresponding theorem for

spherical triangles, the so-called ' regula sex quantitatum,' is

obtained from the above by reading "chords of three seg-

ments doubled," in place of " three segments."

Claudius Ptolemaeus, a celebrated astronomer, was a native of

Egypt. Nothing is known of his personal history except that

he flourished in Alexandria in 139 a.d. and that he made the

earliest astronomical observations recorded in his works, in

125 A.D., the latest in 151 a.d. The chief of his works are

the Syntaxis Mathematica (or the Almagest, as the Arabs call

it) and the Geographica, both of which are extant. The

former work is based partly on his own researches, but mainly

on those of Hipparchus. Ptolemy seems to have been not

so much of an independent investigator, as a corrector and

improver of the work of his great predecessors. The Almagest

forms the foundation of all astronomical science down to

Copernicus. The fundamental idea of his system, the "Ptole-

maic System," is that the earth is in the centre of the uni-

verse, and that the sun and planets revolve around the earth.

Ptolemy did considerable for mathematics. He created, for

astronomical use, a trigonometry remarkably perfect in form.
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The foundation of this science was laid by the illustrious

Hipparchus.

The Almagest is in 13 books. Chapter 9 of the first book

shows how to calculate tables of chords. The circle is divided

into 360 degrees, each of which is halved. The diameter is

divided into 120 divisions ; each of these into 60 parts, which

are again subdivided into 60 smaller parts. In Latin, these

parts were called partes minutce primoB and partes minutae

secundce. Hence our names, ' minutes ' and ' seconds.' ' The

sexagesimal method of dividing the circle is of Babylonian

origin, and was known to Geminus and Hipparchus. But

Ptolemy's method of calculating chords seems original with

him. He first proved the proposition, now appended to

Euclid VI. (D), that "the rectangle contained by the diag-

onals of a quadrilateral figure inscribed in a circle is equal

to both the rectangles contained by its opposite sides." He
then shows how to find from the chords of two arcs the

chords of their sum and difference, and from the chord of any

arc that of its half. These theorems he applied to the calcu-

lation of his tables of chords. The proofs of these theorems

are very pretty.

Another chapter of the first book in the Almagest is devoted

,to trigonometry, and to spherical trigonometry in particular.

Ptolemy proved the ' lemma of Menelaus,' and also the ' regula

sex quantitatum.' Upon these propositions he built up his

trigonometry. The fundamental theorem of plane trigonome-

try, that two sides of a triangle are to each other as the chords

of double the arcs measuring the angles opposite the two

sides, was not stated explicitly by him, but was contained

implicitly in other theorems. More complete are the proposi-

tions in spherical trigonometry.

The fact that trigonometry was cultivated not for its own
sake, but to aid astronomical inquiry, explains the rather
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startling fact that spherical trigonometry came to exist in a

developed state earlier than plane trigonometry.

The remaining books of the Almagest are on astronomy.

Ptolemy has written other works which have little or no bear-

ing on mathematics, except one on geometry. Extracts from

this book, made by Proclus, indicate that Ptolemy did not

regard the parallel-axiom of Euclid as self-evident, and that

Ptolemy was the first of the long line of geometers from

ancient time down to our own who toiled in the vain attempt

to prove it.

Two prominent mathematicians of this time were Nicomar

chus and Theon of Smyrna. Their favourite study was theory

of numbers. The investigations in this science culminated

later in the algebra of Diophantus. But no important geom-

eter appeared after Ptolemy for 150 years. The only occupant

of this long gap was Seztus Julius Africanus, who wrote an

unimportant work on geometry applied to the art of war,

entitled Oestes.

Pappus, probably born about 340 a,d., in Alexandria, was

the last great mathematician of the Alexandrian school. His

genius was inferior to that of Archimedes, ApoUonius, and

Euclid, who flourished over 500 years earlier. But living,

as he did, at a period when interest in geometry was declin-

ing, he towered above his contemporaries " like the peak

of TenerifEa above the Atlantic." He is the author of a Com-

mentary on the Almagest, a Commentary on Euclid^s Elements,

a Commentary on the Analemma of Diodorus,— a writer of

whom nothing is known. All these works are lost. Proclus,

probably quoting from the Commentary on Euclid, says that

Pappus objected to the statement that an angle equal to a

right angle is always itself a right angle.

The only work of Pappus still extant is his Mathematical

Collections. This was originally in eight books, but the first
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and portions of the second are now missing. The Mathemat-

ical Collections seems to hare been written by Pappus to supply

the geometers of his time with a succinct analysis of the most

difficult mathematical works and to facilitate the study of

them by explanatory lemmas. But these lemmas are selected

very freely, and frequently have little or no connection with the

subject on hand. However, he gives very accurate summaries

of the works of which he treats. The Mathematical Collections

is invaluable to us on account of the rich information it

gives on various treatises by the foremost Greek mathemati-

cians, which are now lost. Mathematicians of the last century

considered it possible to restore lost works from the risumi

by Pappus alone.

We shall now cite the more important of those theorems in

the Mathematical Collections which are supposed to be original

with Pappus. First of all ranks the elegant theorem re-dis-

covered by Ouldin, over 1000 years later, that the volume

generated by the revolution of a plane curve which lies wholly

on one side of the axis, equals the area of the curve multiplied

by the circumference described by its centre of gravity.

Pappus proved also that the centre of gravity of a triangle is

that of another triangle whose vertices lie upon the sides of

the first and divide its three sides in the same ratio. In the

fourth book are new and brilliant propositions on the quadra-

trix which indicate an intimate acquaintance with curved

surfaces. He generates the quadratrix as follows : Let a

spiral line be drawn upon a right circular cylinder ; then the

perpendiculars to the axis of the cylinder drawn from each

point of the spiral line form the surface of a screw. A plane

passed through one of these perpendiculars, making any con-

venient angle with the base of the cylinder, cuts the screw-

surface in a curve, the orthogonal projection of which upon

the base is the quadratrix. A second mode of generation is
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no less admirable : If we make the spiral of Archimedes the

base of a right cylinder, and imagine a cone of revolution

having for its axis the side of the cylinder passing through

the initial point of the spiral, then this cone cuts the cylinder

in a curve of double curvature. The perpendiculars to the

axis drawn through every point in this curve form the surface

of a screw which Pappus here calls the plectoidal surface. A
plane passed through one of the perpendiculars at any con-

venient angle cuts that surface in a curve whose orthogonal

projection upon the plane of the spiral is the required quadra-

trix. Pappus considers curves of double curvature still further.

He produces a spherical spiral by a point moving uniformly

along the circumference of a great circle of a sphere, while

the great circle itself revolves uniformly around its diameter.

He then finds the area of that portion of the surface of the

sphere determined by the spherical spiral, "a complanation

which claims the more lively admiration, if we consider that,

although the entire surface of the sphere was known since

Archimedes' time, to measure portions thereof, such as spher-

ical triangles, was then and for a long time afterwards an

unsolved problem."' A question which was brought into

prominence by Descartes and Newton is the "problem of

Pappus." Given several straight lines in a plane, to find the

locus of a point such that when perpendiculars (or, more

generally, straight lines at given angles) are drawn from it to

the given lines, the product of certain ones of them shall be in

a given ratio to the product of the remaining ones. It is

worth noticing that it was Pappus who first found the focus

of the parabola, suggested the use of the directrix, and pro-

pounded the theory of the involution of points. He solved

the problem to draw through three points lying in the same

straight line, three straight lines which shall form a triangle

inscribed in a given circle.' Prom the Mathematical Collections
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many more equally difficult theorems might be quoted which

are original with Pappus as far as we know. It ought to be

remarked, however, that he is known in three instances to

have copied theorems without giving due credit, and that he

may have done the same thing in other cases in which we
have no data by which to ascertain the real discoverer. ,

About the time of Pappus lived Theon of Alexandria. He
brought out an edition of Euclid's Elements with notes, which

he probably used as a text-book in his classes. His commen-

tary on the Almagest is valuable for the many historical notices,

and especially for the specimens of Greek arithmetic which it

contains. Theon's daughter Hypatia, a woman celebrated for

her beauty and modesty, was the last Alexandrian teacher of

reputation, and is said to have been an abler philosopher and

mathematician than her father. Her notes on the works of

Diophantus and Apollonins have been lost. Her tragic death

in 415 A.D. is vividly described in Kingsley's Hypatia.

Prom now on, mathematics ceased to be cultivated in

Alexandria. The leading subject of men's thoughts was

Christian theology. Paganism disappeared, and with it pagan

learning. The Neo-Platonic school at Athens struggled on a

century longer. Proclus, Isidorus, and others kept up the

" golden chain of Platonic succession." Proclus, the successor

of Syrianus, at the Athenian school, wrote a commentary on

Euclid's Elements. We possess only that on the first book,

which is valuable for the information it contains on the

history of geometry. Damascius of Damascus, the pupil of

Isidorus, is now believed to be the author of the fifteenth

book of Euclid. Another pupil of Isidorus was Eutocius of

Ascalon, the commentator of ApoUonius and Archimedes.

Simplicius wrote a commentary on Aristotle's De Caelo. In

the year 529, Justinian, disapproving heathen learning, finally

closed by imperial edict the schools at Athens.
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As a rule, the geometers of the last 500 years showed

a lack of creative power. They were commentators rather

than discoverers.

The principal characteristics of ancient geometry are :
—

(1) A wonderful clearness and definiteness of its concepts

and aji almost perfect logical rigour of its conclusions.

(2) A complete want of general principles and methods.

Ancient geometry is decidedly special. Thus the Greeks

possessed no general method of drawing tangents. "The

determination of the tangents to the three conic sections did

not furnish any rational assistance for drawing the tangent to

any other new curve, such as the conchoid, the cissoid, etc." "

In the demonstration of a theorem, there were, for the ancient

geometers, as many different cases requiring separate proof

as there were different positions for the lines. The greatest

geometers considered it necessary to treat all possible cases

independently of each other, and to prove each with equal

fulness. To devise methods by which the various cases could

all be disposed of by one stroke, was beyond the power of the

ancients. " If we compare a mathematical problem with a

huge rock, into the interior of which we desire to penetrate,

then the work of the Greek mathematicians appears to us like

that of a vigorous stonecutter who, with chisel and hammer,

begins with indefatigable perseverance, from without, to

crumble the rock slowly into fragments ; the modern mathe-

matician appears like an excellent miner, who first bores

through the rock some few passages, from which he then bursts

it into pieces with one powerful blast, and brings to light the

treasures within." ^°
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GREEK ARITHMETIC.

Greek mathematicians were in. the habit of discriminating

between the science of numbers and the aH of calculation.

The former they called arithmetica, the latter logistica. The

drawing of this distinction between the two was very natural

and proper. The difference between them is as marked as

that between theory and practice. Among the Sophists the

art of calculation was a favourite study. Plato, on the other

hand, gave considerable attention to philosophical arithmetic,

but pronounced calculation a vulgar and childish art.

In sketching the history of Greek calculation, we shall first

give a brief account of the Greek mode of counting and of

writing numbers. Like the Egyptians and Eastern nations,

the earliest Greeks counted on their fingers or with pebbles.

In case of large numbers, the pebbles were probably ar-

ranged in parallel vertical lines. Pebbles on the first line

represented units, those on the second tens, those on the third

hundreds, and so on. Later, frames came into use, in which

strings or wires took the place of lines. According to tra^

dition, Pythagoras, who travelled in Egypt and, perhaps, in

India, first introduced this valuable instrument into Greece.

The abacris, as it is called, existed among different peoples and

at different times, in various stages of perfection. An abacus

is still employed by the Chinese under the name of Swan-pan.

We possess no specific information as to how the Greek abacus

looked or how it was used. Boethius says that the Pytha-

goreans used with the abacus certain nine signs called apices,

which resembled in form the nine "Arabic numerals." But

the correctness of this assertion is subject to grave doubts.

The oldest Grecian numerical symbols were the so-called

Herodianic signs (after Herodianus, a Byzantine grammarian of

about 200 A.D., who describes them). These signs occur fre-
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quently in Athenian inscriptions and are, on that account, now

generally called Attic. For some unknown reason these sym-

bols were afterwards replaced by the alphabetic numerals, in

which the letters of the Greek alphabet were used, together

with three strange and antique letters f, 9 , and ^, and the

symbol M. This change was decidedly for the worse, for the

old Attic numerals were less burdensome on the memory, inas-

much as they contained fewer symbols and were better adapted

to show forth analogies in numerical operations. The follow-

ing table shows the Greek alphabetic numerals and their

respective values :
—

ajSySe'i^'qd i/c\/u-v£oir9
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900 1000 2000 3000

M
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medes to Gelon, king of Syracuse. In it Archimedes shows

that people are in error who think the sand cannot be counted,

or that if it can be counted, the number cannot be expressed

by arithmetical symbols. He shows that the number of grains

in a heap of sand not only as large as the whole earth, but as

large as the entire universe, can be arithmetically expressed.

Assuming that 10,000 grains of sand sufiice to make a little

solid of the magnitude of a poppy-seed, and that the diameter

of a poppy-seed be not smaller than ^ part of a finger's

breadth ; assuming further, that the diameter of the universe

(supposed to extend to the sun) be less than 10,000 diameters

of the earth, and that the latter be less than 1,000,000 stadia,

Archimedes finds a number which would exceed the number

of grains of sand in the sphere of the universe. He goes on

even further. Supposing the universe to reach out to the fixed

stars, he finds that the sphere, having the distance from the

earth's centre to the fixed stars for its radius, would contain

a number of grains of sand less than 1000 myriads of the

eighth octad. In our notation, this number would be lO*" or

1 with 63 ciphers after it. It can hardly be doubted that one

object which Archimedes had in view in making this calcula-

tion was the improvement of the Greek symbolism. It is not

known whether he invented some short notation by which to

represent the above number or not.

We judge from fragments in the second book of Pappus that

ApoUonius proposed an improvement in the Greek method of

writing numbers, but its nature we do not know. Thus we

see that the Greeks never possessed the boon of a clear, com-

prehensive symbolism. The honour of giving such to the world,

once for all, was reserved by the irony of fate for a nameless

Indian of an unknown time, and we know not whom to thank

for an invention of such importance to the general progress of

intelligence.*
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Passing from the subject of logistica to that of arithmetica,

our attention is first drawn to the science of numbers of

Pythagoras. Before founding his school, Pythagoras studied

for many years under the Egyptian priests and familiarised

himself with Egyptian mathematics and mysticism. If he

ever was in Babylon, as some authorities claim, he may have

learned the sexagesimal notation in use there ; he may have

picked up considerable knowledge on the theory of proportion,

and may have found a large number of interesting astronomical

observations. Saturated with that speculative spirit then

pervading the Greek mind, he endeavoured to discover some

principle of homogeneity in the universe. Before him, the

philosophers of the Ionic school had sought it in the matter

of things ; Pythagoras looked for it in the structure of things.

He observed various numerical relations or analogies between

numbers and the phenomena of the universe. Being convinced

that it was in numbers and their relations that he was to find

the foundation to true philosophy, he proceeded to trace the

origin of all things to numbers. Thus he observed that musi-

cal strings of equal length stretched by weights having the

proportion of ^, |, f,
produced intervals which were an octave,

a fifth, and a fourth. Harmony, therefore, depends on musi-

cal proportion ; it is nothing but a mysterious numerical lelor

tion. Where harmony is, there are numbers. Hence the

order and beauty of the universe have their origin in numbers.

There are seven intervals in the musical scale, and also seven

planets crossing the heavens. The same numerical relations

which underlie the former must underlie the latter. But where

numbers are, there is harmony. Hence his spiritual ear dis-

cerned in the planetary motions a wonderful ' harmony of the

spheres.' The Pythagoreans invested particular numbers with

extraordinary attributes. Thus 07ie is the essence of things

;

it is an absolute number ; hence the origin of all numbers and
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SO of all things. Four is the most perfect number, and was in

some mystic way conceived to correspond to the human soul.

Philolaus believed that 5 is the cause of color, 6 of cold, 7 of

mind and health and light, 8 of love and friendship.^ In

Plato's works are evidences of a similar belief in religious

relations of numbers. Even Aristotle referred the virtues to

numbers.

Enough has been said about these mystic speculations to

khow what lively interest in mathematics they must have

created and maintained. Avenues of mathematical inquiry

were opened up by them which otherwise would probably

have remained closed at that time.

The Pythagoreans classified numbers into odd and even.

They observed that the sum of the series of odd numbers

from 1 to 2 w + 1 was always a complete square, and that

by addition of the even numbers arises the series 2, 6, 12, 20,

in which every number can be decomposed into two factors

differing from each other by unity. Thus, 6 = 2-3, 12 = 3'4,

etc. These latter numbers were considered of suflScient im-

portance to receive the separate name of heteromedc (not

equilateral).' Numbers of the form
^^""^—^ were called tri-

2 •
angular, because they could always be arranged thus, JJA •

••••
Numbers which were equal to the sum of all their possible

factors, such as 6, 28, 496, were called perfect; those exceed-

ing that sum, excessive; and those which were less, defective.

Amicable numbers were those of which each was the sum of

the factors in the other. Much attention was paid by the

Pythagoreans to the subject of proportion. The quantities

a, 6, c, d were said to be in arithmetical proportion when
a — b = c — d; in geometrical proportion, when a : b = c: d; in

harmonic proportion, when a — b -b — c = a: c. It is probable

that the Pythagoreans were also familiar with the musical
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proportion a :
"

'J =—^ : b. lamblichus says that Py-

thagoras introduced it from Babylon.

In connection with arithmetic, Pythagoras made extensive

investigations into geometry. He believed that an arithmet-

ical fact had its analogue in geometry, and vice versa. In

connection with his theorem on the right triangle he de-

vised a rule by which integral numbers could be found, such

that the sum of the squares of two of them equalled the

square of the, third. Thus, take for one side an odd number

(2 n -1- 1) ; then "
r,

=2n'^ + 2n = the other side, and

{^n'' -\-2n-\-V) = hypotenuse. If 2 m -f- 1 = 9, then the other

two numbers are 40 and 41. But this rule only applies to

cases in which the hypotenuse differs from one of the sides

by 1. In the study of the right triangle there doubtless arose

questions of puzzling subtlety. Thus, given a number equal

to the side of an isosceles right triangle, to find the number

which the hypotenuse is equal to. The side may have been

taken equal to 1, 2, |, \, or any other number, yet in every

instance all efforts to find a number exactly equal to the

hypotenuse must have remained fruitless. The problem may
have been attacked again and again, until finally " some rare

genius, to whom it is granted, during some happy moments,

to soar with eagle's flight above the level of human think-

ing,'' grasped the happy thought that this problem cannot be

solved. In some such manner probably arose the theory of

irrational quantities, which is attributed by Eudemus to the

Pythagoreans. It was indeed a thought of extraordinary

boldness, to assume that straight lines could exist, differing

from one another not only in length,— that is, in quantity,—
but also in a quality, which, though real, was absolutely

invisible.' Need we wonder that the Pythagoreans saw in



70 A HISTORY OP MATHEMATICS.

irrationals a deep mystery, a symbol of the unspeakable ?

We are told that the one who first divulged the theory of

irrationals, which the Pythagoreans kept secret, perished in

consequence in a shipwreck. Its discovery is ascribed to

Pythagoras, but we must remember that all important Py-

thagorean discoveries were, according to Pythagorean custom,

referred back to him. The first incommensurable ratio known

seems to have been that of the side of a square to its diagonal,

as 1 : V2. Theodorus of Cyrene added to this the fact that the

sides of squares represented in length by VS, VS, etc., up to

Vl7, and Thesetetus, that the sides of any square, represented

by a surd, are incommensurable with the linear unit. Euclid

(about 300 B.C.), in his Elements, X. 9, generalised still further

:

Two magnitudes whose squares are (or are not) to one another

as a square number to a square number are commensurable

(or incommensurable), and conversely. In the tenth book, he

treats of incommensurable quantities at length. He investi-

gates every possible variety of lines which can be represented

by VVa ± Vb, a and 6 representing two commensurable lines,

and obtains 25 species. Every individual of every species

is incommensurable with all the individuals of every other

species. " This book," says De Morgan, " has a completeness

which none of the others (not even the fifth) can boast of;

and we could almost suspect that Euclid, having arranged his

materials in his own mind, and having completely elaborated

the tenth book, wrote the preceding books after it, and did not

live to revise them thoroughly." ' The theory of incommen-

surables remained where Euclid left it, till the fifteenth

century.

Euclid devotes the seventh, eighth, and ninth books of his

Elements to arithmetic. Exactly how much contained in

these books is Euclid's own invention, and how much is

borrowed from his predecessors, we have no means of knowing.
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Witliout doubt, much is original with Euclid. The seventh

book begins with twenty-one definitions. All except that for

' prime ' numbers are known to have been given by the

Pythagoreans. Next follows a process for finding the

G.C.D. of two or more numbers. The eighth book deals with

numbers in continued proportion, and with the mutual relar

tions of squares, cubes, and plane numbers. Thus, XXII., if

three numbers are in continued proportion, and the first is a

square, so is the third. In the ninth book, the same subject is

continued. It contains the proposition that the number of

primes is greater than any given number.

After the death of Euclid, the theory of numbers remained

almost stationary for 400 years. Geometry monopolised

the attention of all Greek mathematicians. Only two are

known to have done work in arithmetic worthy of mention.

Eratosthenes (275-194 b.c.) invented a 'sieve' for finding prime

numbers. All composite numbers are 'sifted' out in the

following manner : Write down the odd numbers from 3 up,

in succession. By striking out every third number after the

3, we remove all multiples of 3. By striking out every fifth

number after the 5, we remove all multiples of 5. In this way,

by rejecting multiples of 7, 11, 13, etc., we have left prime

numbers only. Hypsicles (between 200 and 100 b.c.) worked

at the subjects of polygonal numbers and arithmetical pro-

gressions, which Euclid entirely neglected. In his work on

'risings of the stars,' he showed (1) that in an arithmetical

series of 2 n terms, the sum of the last n terms exceeds the sum

of the first n by a multiple of n^
; (2) that in such a series of

2ra-|-l terms, the sum of the series is the number of terms

multiplied by the middle term
; (3) that in such a series of

2n terms, the sum is half the number of terms multiplied by

the two middle terms."

Eor two centuries after the time of Hypsicles, arithmetic
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disappears from tistory. It is brought to light again about

100 A.D. by Nicomaehus, a Neo-Pythagorean, who inaugurated

the final era of Greek mathematics, rrom now on, arithmetic

was a favourite study, while geometry was neglected. Nico-

machus wrote a work entitled Introductio Arithmetica, which

was very famous in its day. The great number of commen-

tators it has received vouch for its popularity. Boethius

translated it into Latin. Lucian could pay no higher

compliment to a calculator than this :
" You reckon like

Nicomachus of Gerasa." The Introductio Arithmetica was

the first exhaustive work in which arithmetic was treated

quite independently of geometry. Instead of drawing lines,

like Euclid, he illustrates things by real numbers. To be

sure, in his book the old geometrical nomenclature is retained,

but the method is inductive instead of deductive. " Its sole

business is classification, and all its classes are derived from,

and exhibited by, actual numbers." The work contains few

results that are really original. We mention one important

proposition which is probably the author's own. He states

that cubical numbers are always equal to the sum of successive

odd numbers. Thus, 8 = 2' = 3 + 5, 27 = 3^ = 7 + 9 + 11, 64

== 4' = 13 + 15 + 17 + 19, and so on. This theorem was used

later for finding the sum of the cubical numbers themselves.

Theon of Smyrna is the author of a treatise on " the mathe-

matical rules necessary for the study of Plato." The work is

ill arranged and of little merit. Of interest is the theorem,

that every square number, or that number minus 1, is

divisible by 3 or 4 or both. A remarkable discovery is a

proposition given by lamblichus in his treatise on Pythagorean

philosophy. It is founded on the observation that the

Pythagoreans called 1, 10, 100, 1000, units of the first, second,

third, fourth ' course ' respectively. The theorem is this

:

If we add any three consecutive numbers, of which the highest
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is divisible by 3, then add the digits of that sum, then, again,

the digits of that sum, and so on, the final sum will be 6.

Thus, 61 + 62 + 63 = 186, 1 + 8 + 6= 16, 1 + 5 = 6. This

discovery was the more remarkable, because the ordinary

Greek numerical symbolism was much less likely to suggest

any such property of numbers than our "Arabic" notation

would have been.

The works of Nicomachus, Theon of Smyrna, Thymaridas,

and others contain at times investigations of subjects which

are really algebraic in their nature. Thymaridas in one place

uses the Greek word meaning " unknown quantity " in a way
which would lead one to believe that algebra was not far

distant. Of interest in tracing the invention of algebra are

the arithmetical epigrams in the Palatine Anthology, which con-

tain about fifty problems leading to linear equations. Before

the introduction Qf algebra these problems were propounded

as puzzles. A riddle attributed to Euclid and contained in

the Anthology is to this effect : A mule and a donkey were

walking along, laden with corn. The mule says to the

donkey, "If you gave me one measure, I should carry twice

as much as you. If I gave you one, we should both carry

equal burdens. Tell me their burdens, most learned master

of geometry." ^

It will be allowed, says Gow, that this problem, if authentic,

was not beyond Euclid, and the appeal to geometry smacks of

antiquity. _A far more difficult puzzle was the famous ' cattle-

problem,' which Archimedes propounded to the Alexandrian

mathematicians. The problem is indeterminate, for from only

seven equations, eight unknown quantities in integral numbers

are to be found. It may be stated thus : The sun had a herd

of bulls and cows, of different colours. (1) Of Bulls, the

white (,"PF) were, in number, {\ + \) of the blue {E) and yel-

low (F) : the 5 were (i. + ^)'of the Fand piebald (P) : the
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P were
(J- + \) of the TFand T. (2) Of Cows, whieli had the

same colours {w, b, y, p),

v=={\ + \){B + b):h={\ + \){P+p):p^{\ + \){T+y)

Find the number of bulls and cows.' Another problem in the

Anthology is quite familiar to school-boys :
" Of four pipes,

one fills the cistern in one day, the next in two days, the third

in three days, the fourth in four days : if all run together, how

soon will they fill the cistern ? " A great many of these

problems, puzzling to an arithmetician, would have been solved

easily by an algebraist. They became very popular about the

time of Diophantus, and doubtless acted as a powerful stimu-

lus on his mind.

Diophantus was one of the last and most- fertile mathemar

ticians of the second Alexandrian school. He died about

330 A.D. His age was eighty-four, as is known from an epitaph

to this effect : Diophantus passed \ of his life in childhood, -^-^ in

youth, and \ more as a bachelor; five years after his marriage

was born a son who died four years before his father, at half

his father's age. The place of nativity and parentage of

Diophantus are unknown. If his works were not written in

Greek, no one would think for a moment that they were the

product of Greek mind. There is nothing in his works that

reminds us of the classic period of Greek mathematics. His

were almost entirely new ideas on a new subject. In the

circle of Greek mathematicians he stands alone in his spe-

cialty. Except for him, we should be constrained to say that

among the Greeks algebra was always an unknown science.

Of his works we have lost the Porisms, but possess a frag-

ment of Polygonal Numbers, and seven books of his great work

on Arithmetica, said to have been written in 13 books.

If we except the Ahmes papyrus, which contains the first
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suggestions of algebraic notation, and of the solution of

equations, then his Arithmetica is the earliest treatise on

algebra now extant. In this work is introduced the idea of

an algebraic equation expressed in algebraic symbols. His

treatment is purely analytical and completely divorced from

geometrical methods. He is, as far as we know, the first to

state that " a negative number multiplied by a negative num-

ber gives a positive number." This is applied to the multi-

plication of differences, such as (a; — 1) (a; — 2). It must be

remarked, however, that Diophantus had no notion whatever

of negative numbers standing by themselves. All he knew
were differences, such as (2 a; — 10), in which 2 x could not be

smaller than 10 without leading to an absurdity. He appears

to be the first who could perform such operations as {x — 1)

X (» — 2) without reference to geometry. Such identities as

(a -\- iy = a' + 2 ah -{ W, which with Euclid appear in the ele-

vated rank of geometric theorems, are with Diophantus the

simplest consequences of the algebraic laws of operation. His

sign for subtraction was //i, for equality i. For unknown

quantities he had only one symbol, s. He had no sign for

addition except juxtaposition. Diophantus used but few sym-

bols, and sometimes ignored even these by describing an oper-

ation in words when the symbol would have answered just

as well.

In the solution of simultaneous equations Diophantus adroitly

managed with only one symbol for the unknown quantities and

arrived at answers, most commonly, by the method of tentative

assumption, which consists in assigning to some of the unknown

quantities preliminary values, that satisfy only one or two of

the conditions. These values lead to expressions palpably

wrong, but which generally suggest some stratagem by which

values can be secured satisfying all the conditions of the

problem.
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Diophantus also solved determinate equations of the second

degree. We are ignorant of his method, for he nowhere goes

through with the whole process of solution, but merely states

the result. Thus, "Sia^ + 7 x=7, whence x is found = \."

Notice he gives only one root. His failure to observe that a

quadratic equation has two roots, even when both roots are

positive, rather surprises us. It must be remembered, how-

ever, that this same inability to perceive more than one out of

the several solutions to which a problem may point is common
to all Greek mathematicians. Another point to be observed

is that he never accepts as an answer a quantity which is

negative or irrational.

Diophantus devotes only the first book of his Arithmetica to

the solution of determinate equations. The remaining books

extant treat mainly of indeterminate quadratic equations of the

form Ax^+Bx+ 0=y% or of two simultaneous equations of the

same form. He considers several but not all the possible

cases which may arise in these equations. The opinion of

Kesselmann on the method of Diophantus, as stated by Gow,

is as follows :
" (1) Indeterminate equations of the second

degree are treated completely only when the quadratic or

the absolute term is wanting: his solution of the equations

Ax'+C= y^ and Av?-\-Bx+C= y^ is in many respects cramped.

(2) For the 'double equation' of the second degree he has a

definite rule only when the quadratic term is wanting in both

expressions : even then his solution is not general. More com-

plicated expressions occur only under specially favourable

circumstances." Thus, he solves Bx+ C^ = y% B^x -f- C^ = y^.

The extraordinary ability of Diophantus lies rather in

another direction, namely, in his wonderful ingenuity to re-

duce all sorts of equations to particular forms which he knows
how to solve. Very great is the variety of problems considered.

The 130 problems found in the great work of Diophantus coft-
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tain over 50 different classes of problems, which are strung

together without any attempt at classification. But still more

multifarious than the problems are the solutions. General

methods are unknown to Diophantus. Each problem has its

own distinct method, which is often useless for the most

closely related problems. "It is, therefore, difiicult for a

modern, after studying 100 Diophantine solutions, to solve

the 101st.'"

That which robs his work of much of its scientific value is

the fact that he always feels satisfied with one solution, though

his equation may admit of an indefinite number of values.

Another great defect is the absence of general methods. Mod-

ern mathematicians, such as Euler, La Grange, Gauss, had to

begin the study of indeterminate analysis anew and received

no direct aid from Diophantus in the formulation of methods.

In spite of these defects we cannot fail to admire the work

for the wonderful ingenuity exhibited therein in the solution

of particular equations.

It is still an open question and one of great difficulty

whether Diophantus . derived portions of his algebra from

Hindoo sources or not.

THE EOMAJ^S.

Nowhere is the contrast between the Greek and Eoman
mind shown forth more distinctly than in their attitude toward

the mathematical science. The sway of the Greek was a

flowering time for mathematics, but that of the Eoman a

period of sterility. In philosophy, poetry, and art the Eoman

was an imitator. But in mathematics he did not even rise to

the desire for imitation. The mathematical fruits of Greek

genius lay before him untasted. In him a science which had
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no direct bearing on practical life could awake no interest.

As a consequence, not only the higher geometry of Archimedes

and Apollonius, but even the Elements of Euclid, were en-

tirely neglected. What little mathematics the Romans pos-

sessed did not come from the Greeks, but from more ancient

sources. Exactly where and how it originated is a matter of

doubt. It seems most probable that the " Eoman notation,"

as well as the practical geometry of the Romans, came from

the old Etruscans, who, at the earliest period to which our

knowledge of them extends, inhabited the district between the

Arno and Tiber.

Livy tells us that the Etruscans were in the habit of repre-

senting the number of years elapsed, by driving yearly a nail

into the sanctuary of Minerva, and that the Romans continued

this practice. A less primitive mode of designating numbers,

presumably of Etruscan origin, was a notation resembling the

present " Roman notation." This system is noteworthy from

the fact that a principle is involved in it which is not met

with in any other ; namely, the principle of subtraction. If a

letter be placed before another of greater value, its value is

not to be added to, but subtracted from, that of the greater.

In the designation of large numbers a horizontal bar placed

over a letter was made to increase its value one thousand fold.

In fractions the Romans used the duodecimal system.

Of arithmetical calculations, the Romans employed three

different kinds : Reckoning on the fingers, upon the abacus,

and by tables prepared for the purpose.^ Finger-symbolism

was known as early as the time of King Numa, for he had

erected, says Pliny, a statue of the double-faced Janus, of

which the fingers indicated 365 (355?), the number of days in

a year. Many other passages from Roman authors point out

the use of the fingers as aids to calculation. In fact, a finger-

symbolism of practically the same form was in use not only in
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Rome, but also in Greece and throughout the East, certainly

as early as the beginning of the Christian era, and continued

to be used in Europe during the Middle Ages. We possess no

knowledge as to where or when it was invented. The second

mode of calculation, by the abacus, was a subject of elemen-

tary instruction in Eome. Passages in Roman writers indicate

that the kind of abacus most commonly used was covered with

dust and then divided into columns by drawing straight lines.

Each column was supplied with pebbles (calculi, whence ' cal-

culare'and 'calculate') which served for calculation. Addi-j

tions and subtractions could be performed on the abacus quite

easily, but in multiplication the abacus could be used only for

adding the particular products, and in division for performing

the subtractions occurring in the process. Doubtless at this

point recourse was made to mental operations and to the mul-

tiplication table. Possibly finger-multiplication may also have

been used. But the multiplication of large numbers must, by

either method, have been beyond the power of the ordinary

arithmetician. To obviate this difficulty, the arithmetical

tables mentioned above were used, from which the desired

products could be copied at once. Tables of this kind were

prepared by Victorius of Aquitania. His tables contain a

peculiar notation for fractions, which continued in use through-

out the Middle Ages. Victorius is best known for his canon

paschalis, a rule for finding the correct date for Easter, which

he published in 457 a.d.

Payments of interest and problems in interest were very old

among the Romans. The Roman laws of inheritance gave

rise to numerous arithmetical examples. Especially unique is

the following : A dying man wills that, if his wife, being with

child, gives birth to a son, the son shall receive f and she J of

his estates ; but if a daughter is born, she shall receive ^ and

his wife f. It happens that twins are born, a boy and a girl.
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How shall the estates be divided so as to satisfy the will?

The celebrated Roman jurist, Salvianus Julianus, decided that

the estates shall be divided into seven equal parts, of which

the son receives four, the wife two, the daughter one.

We next consider Eoman geometry. He who expects to

find in Eome a science of geometry, with definitions, axioms,

theorems, and proofs arranged in logical order, will be disap-

pointed. The only geometry/ known was & practical geometry,

which, like the old Egyptian, consisted only of empirical rules.

This practical geometry was employed in surveying. Treatises

thereon have come down to us, compiled by the Eoman sur-

veyors, called agrimensores or gromatici. One would naturally

expect rules to be clearly formulated. But no ; they are left

to be abstracted by the reader from a mass of numerical exam-

ples. "The total impression is as though the Roman gromatic

were thousands of years older than Greek geometry, and as

though a deluge were lying between the two." Some of their

rules were probably iaherited from the Etruscans, but others

are identical with those of Heron. Among the latter is that

for finding the area of a triangle from its sides and the approx-

imate formula, ^ a% for the area of equilateral triangles (a

being one of the sides). But the latter area was also calculated

by the formulas ^(a^+a) and ^a", the first of which was

unknown to Heron. Probably the expression ^a* was derived

from the Egyptian formula —'^— "]" for the determina-

tion of the surface of a quadrilateral. This Egyptian formula

was used by the Romans for finding the area, not only of rec-

tangles, but of any quadrilaterals whatever. Indeed, the gromar

tici considered it even sufficiently accurate to determine the

areas of cities, laid out irregularly, simply by measuring their

circumferences.' Whatever Egyptian geometry the Romans
possessed was transplanted across the Mediterranean at the
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time of Julius Cossar, who ordered a survey of the whole

empire to secure an equitable mode of taxation. Ceesar also

reformed the calendar, and, for that purpose, drew from

Egyptian learning. He secured the services of the Alexan-

drian astronomer, Sosigenes.

In the fifth century, the Western Eoman Empire was fast

falling to pieces. Three great branches— Spain, Gaul, and

the province of Africa— broke off from the decaying trunk.

In 476, the Western Empire passed away, and the Visigothic

chief, Odoacer, became king. Soon after, Italy was conquered

by the Ostrogoths under Theodoric. It is remarkable that

this very period of political humiliation should be the one

during which Greek science was studied in Italy most zeal-

ously. School-books began to be compiled from the elements

of Greek authors. These compilations are very deficient, but

are of absorbing interest, from the fact that, down to the

twelfth century, they were the only sources of mathematical

knowledge in the Occident. Foremost among these writers is

Boethius (died 524). At first he was a great favourite of King

Theodoric, but later, being charged by envious courtiers with

treason, he was imprisoned, and at last decapitated. While

in prison he wrote On the Consolations of Philosophy. As a

mathematician, Boethius was a Brobdingnagian among Eoman
scholars, but a Liliputian by the side of Greek masters. He
wrote an Institutis Arithmetica, which is essentially a transla-

tion of the arithmetic of Nicomaehus, and a Geometry in

several books. Some of the most beautiful results of Nico-

machus are omitted in Boethius' arithmetic. The first book

on geometry is an extract from Euclid's Elements, which con-

tains, in addition to definitions, postulates, and axioms, the

theorems in the first three books, without proofs. How can

this omission of proofs be accounted for ? It has been argued

by some that Boethius possessed an incomplete Greek copy of
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the Elements; by others, that he had Theon's edition before

him, and believed that only the theorems came from Euclid,

while the proofs were supplied by Theon. The second book,

as also other books on geometry attributed to Boethius,

teaches, from numerical examples, the mensuration of plane

figures after the fashion of the agrimensores.

A celebrated portion in the geometry of Boethius is that

pertaining to an abacus, which he attributes to the Pythago-

reans. A considerable improvement on the old abacus is

there introduced. Pebbles are discarded, and apices (probably

small cones) are used. Upon each of these apices is drawn

a numeral giving it some value below 10. The names of

these numerals are pure Arabic, or nearly so, but are added,

apparently, by a later hand. These figures are obviously the

parents of our modern " Arabic " numerals. The is not

mentioned by Boethius in the text. These numerals bear

striking resemblance to the Gubar-numerals of the West-

Arabs, which are admittedly of Indian origin. These facts

have given rise to an endless controversy. Some contended

that Pythagoras was in India, and from there brought the

nine numerals to Greece, where the Pythagoreans used them

secretly. This hypothesis has been generally abandoned, for

it is not certain that Pythagoras or any disciple of his ever

was in India, nor is there any evidence in any Greek author,

that the apices were known to the Greeks, or that numeral

signs of any sort were used by them with the abacus. It is

improbable, moreover, that the Indian signs, from which the

apices are derived, are so old as the time of Pythagoras.

A second theory is that the Geometry attributed to Boethius

is a forgery ; that it is not older than the tenth, or possibly

the ninth, century, and that the apices are derived from the

Arabs. This theory is based on contradictions between pas-

sages in the Anthmetica and others in the Geometry, But
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there is an Encyclopsedia written by Oassiodorius (died about

570) in which both the arithmetic and geometry of Boethius

are mentioned. There appears to be no good reason for doubt-

ing the trustworthiness of this passage in the Encyclopaedia.

A third theory (Woepcke's) is that the Alexandrians either

directly or indirectly obtained the nine numerals from the

Hindoos, about the second century a.d., and gave them to

the Eomans on the one hand, and to the Western Arabs

on the other. This explanation is the most plausible.



MIDDLE AGES.

THE HINDOOS.

The first people who distinguished themselves in mathe-

matical research, after the time of the ancient Greeks, belonged,

like them, to the Aryan race. It was, however, not a Euro-

pean, but an Asiatic nation, and had its seat in far-off India.

Unlike the Greek, Indian society was fixed into castes. The

only castes enjoying the privilege and leisure for advanced

study and thinking were the Srahmins, whose prime business

was religion and philosophy, and the Kshatriyas, who attended

to war and government.

Of the development of Hindoo mathematics we know but

little. A few manuscripts bear testimony that the Indians

had climbed to a lofty height, but their path of ascent is no

longer traceable. It would seem that Greek mathematics grew

up under more favourable conditions than the Hindoo, for in

Greece it attained an independent existence, and was studied

for its own sake, while Hindoo mathematics always remained

merely a servant to astronomy. Furthermore, in Greece

mathematics was a science of the people, free to be cultivated

by all who had a liking for it ; in India, as in Egypt, it was in

the hands chiefly of the priests. Again, the Indians were in

the habit of putting into verse all mathematical results they

obtained, and of clothing them in obscure and mystic language,

84
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which, though well adapted to aid the memory of him who

already understood the subject, was often unintelligible to the

uninitiated. Although the great Hindoo mathematicians

doubtless reasoned out most or all of their discoveries, yet

they were not in the habit of preserving the proofs, so that

the naked theorems and processes of operation are all that

have come down to our time. Very different in these respects

were the Greeks. Obscurity of language was generally

avoided, and proofs belonged to the stock of knowledge quite

as much as the theorems themselves. Very striking was the

difference in the bent of mind of the Hindoo and Greek ; for,

while the Greek mind was pre-eminently geometrical, the

Indian was first of all arithmetical. The Hindoo dealt with

number, the Greek with form. Numerical symbolism, the

science of numbers, and algebra attained in India far greater

perfection than they had previously reached in Greece. On
the other hand, we believe that there was little or no geom-

etry in India of which the source may not be traced back to

Greece. Hindoo trigonometry might possibly be mentioned

as an exception, but it rested on arithmetic more than on

geometry.

An interesting but difficult task is the tracing of the rela-

tion between Hindoo and Greek mathematics. It is well

known that more or less trade was carried on between Greece

and India from early times. After Egypt had become a

Koman province, a more lively commercial intercourse sprang

up between Rome and India, by way of Alexandria. A priori,

it does not seem improbable, that with the traffic of merchan-

dise there should also be an interchange of ideas. That

communications of thought from the Hindoos to the Alexan-

drians actually did take place, is evident from the fact that

certain philosophic and theologic teachings of the Manicheans,

Neo-Platonists, Gnostics, show unmistakable likeness to
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Indian tenets. Scientific facts passed also from Alexandria

to India. This is shown plainly by the Greek origin of some

of the technical terms used by the Hindoos. Hindoo astron-

omy was influenced by Greek astronomy. Most of the geo-

metrical knowledge which they possessed is traceable to

Alexandria, and to the writings of Heron in particular. In

algebra there was, probably, a mutual giving and receiving.

We suspect that Diophantus got the first glimpses of algebraic

knowledge from India. On the other hand, evidences have

been found of Greek algebra among the Brahmins. The

earliest knowledge of algebra in India may possibly have been

of Babylonian origin. When we consider that Hindoo scien-

tists looked upon arithmetic and algebra merely as tools

useful in astronomical research, there appears deep irony in

the fact that these secondary branches were after all the only

ones in which they won real distinction, while in their pet

science of astronomy they displayed an inaptitude to observe,

to collect facts, and to make inductive investigations.

We shall now proceed to enumerate the names of the

leading Hindoo mathematicians, and then to review briefly

Indian mathematics. We shall consider the science only in

its complete state, for our data are not sufficient to trace the

history of the development of methods. Of the great Indian

mathematicians, or rather, astronomers,— for India had no

mathematicians proper,— Aryabhatta is the earliest. He was

born 476 a.d., at Pataliputra, on the upper Ganges. His

celebrity rests on a work entitled Aryabhattiyam, of which

the third chapter is devoted to mathematics. About one

hundred years later, mathematics in India reached the highest

mark. At that time flourished Brahmagupta (born 598). In

628 he wrote his Brahma-sphuta-siddhanta ("The Eevised Sys-

tem of Brahma "),oi which the twelfth and eighteenth chapters

belong to mathematics. To the fourth or fifth century belongs
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an anonymous astronomical work, called Surya-siddhanta

("Knowledge from the Sun"), wMch. by native authorities

was ranked second only to the Brahmorsiddlianta, but is of in-

terest to us merely as furnishing evidence that Greek science

influenced Indian science even before the time of Aryabhatta.

The following centuries produced only two names of impor-

tance; namely, Cridhara, who wrote a Ganita-sara ("Quintes-

sence of Calculation"), and Padmanabha, the author of an

algebra. The science seems to have made but little progress

at this time ; for a work entitled Siddhantaciromani (" Diadem

of an Astronomical System "), written by Bhaskara Acarya in

1150, stands little higher than that of Brahmagupta, written

over 600 years earlier. The two most important mathematical

chapters in this work are the Lilavati (= "the beautiful," i.e.

the noble science) and Vigorganita (=" root-extraction"), de-

voted to arithmetic and algebra. From now on, the Hindoos

in the Brahmin schools seemed to content themselves with

studying the masterpieces of their predecessors. Scientific

intelligence decreases continually, and in modern times a very

deficient Arabic work of the sixteenth century has been held

in great authority.'

The mathematical chapters of the Brahma-siddhanta and

Siddhantaciromani were translated into English by H. T.

Colebrooke, London, 1817. The Surya-siddhanta was trans-

lated by E. Burgess, and annotated by W. D. Whitney, New
Haven, Conn., 1860.

The grandest achievement of the Hindoos and the one

which, of all mathematical inventions, has contributed most

to the general progress of intelligence, is the invention of

the principle of position in writing numbers. Generally we

speak of our notation as the " Arabic " notation, but it should

be called the " Hindoo " notation, for the Arabs borrowed it

from the Hindoos. That the invention of this notation was
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not SO easy as we might suppose at first thought, may be

inferred from the fact that, of other nations, not even the

keen-minded Greeks possessed one like it. We inquire, who

invented this ideal symbolism, and when? But we know

neither the inventor nor the time of invention. That our

system of notation is of Indian origin is the only point of

which we are certain. From the evolution of ideas in general

we may safely infer that our notation did not spring into

existence a completely armed Minerva from the head of

Jupiter. The nine figures for writing the units are supposed

to have been introduced earliest, and the sign of zero and the

principle of position to be of later origin. This view receives

support from the fact that on the island of Ceylon a notation

resembling the Hindoo, but without the zero has been pre-

served. We know that Buddhism and Indian culture were

transplanted to Ceylon about the third century after Christ,

and that this culture remained stationary there, while it made

progress on. the continent. It seems highly probable, then,

that the numerals of Ceylon are the old, imperfect numerals

of India. In Ceylon, nine figures were- used for the units,

nine others for the tens, one for 100, and also one for 1000.

These 20 characters enabled them to write all the numbers up

to 9999. Thus, 8725 would have been written with six signs,

representing the following numbers : 8, 1000, 7, 100, 20, 5.

These Singhalesian signs, like the old Hindoo numerals, are

supposed originally to have been the initial letters of the corre-

sponding numeral adjectives. There is a marked resemblance

between the notation of Ceylon and the one used by Aryabhatta

in the first chapter of his work, and there only. Although the

zero and the principle of position were unknown to the scholars

of Ceylon, they were probably known to Aryabhatta; for, in

the second chapter, he gives directions for extracting the square

and cube roots, which seem to indicate a knowledge of them.
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It would appear that the zero and the accompanying principle

of position were introduced about the time of Aryabhatta.

These are the inventions which give the Hindoo system its

great superiority, its admirable perfection.

There appear to have been several notations in use in

different parts of India, which differed, not in principle, but

merely in the forms of the signs employed. Of interest is

also a symbolical system of position, in which the figures

generally were not expressed by numerical adjectives, but by

objects suggesting the particular numbers in question. Thus,

for 1 were used the words moon, Brahma, Creator, or form;

for 4, the words Veda, (because it is divided into four parts)

or ocean, etc. The following example, taken from the Surya-

siddhanta, illustrates the idea. The number 1,577,917,828 is

expressed from right to left as follows : Vasu (a class of 8

gods) + two + eight + mountains (the 7 mountain-chains)

+ form + digits (the 9 digits) + seven + mountains + lunar

days (half of which equal 15). The use of such notations

made it possible to represent a^ number in several different

ways. This greatly facilitated the framing of verses con-

taining arithmetical rules or scientific constants, which could

thus be more easily remembered.

At an early period the Hindoos exhibited great skill in

calculating, even with large numbers. Thus, they tell us of

an examination to which Buddha, the reformer of the Indian

religion, had to submit, when a youth, in order to win the

maiden he loved. In arithmetic, after having astonished his

examiners by naming all the periods of numbers up to the

53d, he was asked whether he could determine the number

of primary atoms which, when placed one against the other,

would form a line one mile in length. Buddha found the

required answer in this way : 7 primary atoms make a very

minute grain of dust, 7 of these make a minute grain of dust.
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7 of these a grain of dust whirled up by the wind, and so on.

Thus he proceeded, step by step, until he finally reached the

length of a mile. The multiplication of all the factors gave

for the multitude of primary atoms in a mile a number con-

sisting of 15 digits. This problem reminds one of the ' Sand-

Counter ' of Archimedes.

After the numerical symbolism had been perfected, figuring

was made much easier. Many of the Indian modes of

operation differ from ours. The Hindoos were generally

inclined to follow the motion from left to right, as in writing.

Thus, they added the left-hand columns first, and made the

necessary corrections as they proceeded. Por instance, they

would have added 254 and 663 thus: 2 + 6 = 8, 5-f-6=ll,

which changes 8 into 9, 4 -f 3 = 7. Hence the sum 917. In

subtraction they had two methods. Thus in 821 — 348 they

would say, 8 from 11 = 3, 4 from 11 = 7, 3 from 7 = 4. Or

they would say, 8 from 11 = 3, 5 from 12 = 7, 4 from 8 = 4.

In multiplication of a number by another of only one digit, say

569 by 5, they generally said, 5-5 = 25, 5-6 = 30, which

changes 25 into 28, 5-9 = 46, hence the must be increased by

4. The product is 2845. In the multiplication with each

other of many-figured numbers, they first multiplied, in the

manner just indicated, with the left-hand digit of the multi-

plier, which was written above the multiplicand, and placed

the product above the multiplier. On multiplying with the

next digit of the multiplier, the product was not placed in

a new row, as with us, but the first product obtained was

corrected, as the process continued, by erasing, whenever

necessary, the old digits, and replacing them by new ones,

until finally the whole product was obtained. We who possess

the modern luxuries of pencil and paper, would not be likely

to fall in love with this Hindoo method. But the Indians

wrote " with a cane-pen upon a small blackboard with a white,
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root extracted, addition of 8, and division by 10, gives the

number 2 ? " The process consists in beginning with 2 and

working backwards . Thus, (2 • 10- 8) ^+ 62= 196, Vl96= 14,

and 14 • f • 7 • ^ -i- 3 = 28, the answer.

Here is another example taken from Lilavati, a chapter in

Bhaskara's great work :
" The square root of half the number

of bees in a swarm has flown out upon a jessamine-bush, | of

the whole swarm has remained behind ; one female bee flies

about a male that is buzzing within a lotus-flower into which

he was allured in the night by its sweet odour, but is now

imprisoned in it. Tell me the number of bees." Answer, 72.

The pleasing poetic garb in which all arithmetical problems

are clothed is due to the Indian practice of writing all school-

books in verse, and especially to the fact that these problems,

propounded as puzzles, were a favourite social amusement.

Says Brahmagupta :
" These problems are proposed simply for

pleasure; the wise man can invent a thousand others, or he

can solve the problems of others by the rules given here. As

the sun eclipses the stars by his brilliancy, so the man of

knowledge will eclipse the fame of others in assemblies of the

people if he proposes algebraic problems, and still more if he

solves them."

The Hindoos solved problems in interest, discount, partner-

ship, alligation, summation of arithmetical and geometric

series, devised rules for determining the numbers of combina^

tions and permutations, and invented magic squares. It may

here be added that chess, the profoundest of all games, had its

origin in India.

The Hindoos made frequent use of the " rule of three," and

also of the method of " falsa positio," which is almost identi-

cal with that of the "tentative assumption" of Diophantus.

These and other rules were applied to a large number of

problems.
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Passing now to algebra, we shall first take up the symbols

of operation. Addition was indicated simply by juxtaposition

as in Diopbantine algebra ; subtraction, by placing a dot over

the subtrahend ; multiplication, by putting after the factors,

bha, the abbreviation of the word bhavita, " the product "
;

division, by placing the divisor beneath the dividend ; square-

root, by writing ka, from the word Mrana (irrational), before

the quantity. The unknown quantity was called by Brahma-

gupta ydvattdvat {quantum tantum) . When several unknown

quantities occurred, he gave, unlike Diophantus, to each a

distinct name and symbol. The first unknown was designated

by the general term "unknown quantity." The rest were

distinguished by names of colours, as the black, blue, yellow,

red, or green unknown. The initial syllable of each word

constituted the symbol for the respective unknown quantity.

Thus yd meant x ; kd (from kdlaka = black) meant y; yd kd

bha, " X times y" ;ka 15 ka 10, " VlS — VlO."

The Indians were the first to recognise the existence of

absolutely negative quantities. They brought out the differ-

ence between positive and negative quantities by attaching to

the one the idea of ' possession,' to the other that of ' debts.'

The conception also of opposite directions on a line, as an

interpretation of -|- and — quantities, was not foreign to them.

They advanced beyond Diophantus in observing that a quad-

ratic has always two roots. Thus Bhaskara gives a; = 50 and

a; = — 5 for the roots of a;* — 45 a; = 250. " But," says he,

"the second value is in this case not to be taken, for it is

inadequate
;
people do not approve of negative roots." Com-

mentators speak of this as if negative roots were seen, but not

admitted.

Another important generalisation, says Hankel, was this,

that the Hindoos never confined their arithmetical operations

to rational numbers. For instance, Bhaskara showed how,
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by the formula V^T^=^J«±^^ +^j^
-Va'-b

2 ^ 2
the square root of tlie sum of rational and irrational numbers

could be found. The Hindoos never discerned the dividing

line between numbers and magnitudes, set up by the Greeks,

which, though the product of a scientific spirit, greatly re-

tarded the progress of mathematics. They passed from mag-

nitudes to numbers and from numbers to magnitudes without

anticipating that gap which to a sharply discriminating mind

exists between the continuous and discontinuous. Yet by

doing so the Indians greatly aided the general progress of

mathematics. "Indeed, if one understands by algebra the

application of arithmetical operations to complex magnitudes

of all sorts, whether rational or irrational numbers or space-

magnitudes, then the learned Brahmins of Hindostan are the

real inventors of algebra." '

. Let us now examine more closely the Indian algebra. In

extracting the square and cube roots they used the formulas

(a + by = a' + 2ab + b'' and (a -|- by= a^ + Sa'b + 3aly' + ¥.

In this connection Aryabhatta speaks of dividing a number

into periods of two and three digits. From this we infer that

the principle of position and the zero in the numeral notation

were already known to him. In figuring with zeros, a state-

ment of Bhaskara is interesting. A fraction whose denomi-

nator is zero, says he, admits of no alteration, though much be

added or subtracted. Indeed, in the same way, no change

takes place in the infinite and immutable Deity when worlds

are destroyed or created, even though numerous orders of beings

be taken up or brought forth. Though in this he apparently

evinces clear mathematical notions, yet in other places he

makes a complete failure in figuring with fractions of zero

denominator.

In the Hindoo solutions of determinate equations. Cantor
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thinks he can see traces of Diophantine methods. Some

technical terms betray their Greek origin. Even if it be true

that the Indians borrowed from the Greeks, they deserve great

credit for improving and generalising the solutions of linear

and quadratic equations. Bhaskara advances far beyond the

Greeks and even beyond Brahmagupta when he says that

"the square of a positive, as also of a negative number,

is positive ; that the square root of a positive number is

twofold, positive and negative. There is no square root

of a negative number, for it is not a square." Of equa-

tions of higher degrees, the Indians succeeded in solving

only some special cases in which both sides of the equation

could be made perfect powers by the addition of certain

terms to each.

Incomparably greater progress than in the solution of deter-

minate equations was made by the Hindoos in the treatment

of indeterminate equations. Indeterminate analysis was a

subject to which the Hindoo mind showed a happy adaptation.

We have seen that this very subject was a favourite with Dio-

phantus, and that his ingenuity was almost inexhaustible in

devising solutions for particular cases. But the glory of

having invented general methods in this most subtle branch

of mathematics belongs to the Indians. The Hindoo indeter-

minate analysis differs from the Greek not only in method,

but also in aim. The object of the former was to find all

possible integral solutions. Greek analysis, on the other hand,

demanded not necessarily integral, but simply rational answers.

Diophantus was content with a single solution ; the Hindoos

endeavoured to find all solutions possible. Aryabhatta gives

solutions in integers to linear equations of the form ax± by=c,

where a, h, c are integers. The rule employed is called the

pulveriser. For this, as for most other rules, the Indians give

no proof. Their solution is essentially the same as the one of
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Euler. Euler's process of reducing ^ to a continued fraction

amounts to the same as the Hindoo process of finding the

greatest common divisor of a and 6 by division. This is fre-

quently called the Diophantine method. Hankel protests

against this name, on the ground that Diophantus not only

never knew the method, but did not even aim at solutions

purely integral.^ These equations probably grew out of prob-

lems in astronomy. They were applied, for instance, to

determine the time when a certain constellation of the planets

would occur in the heavens.

Passing by the subject of linear equations with more than

two unknown quantities, we come to indeterminate quadratic

equations. In the solution of xy = ax + hy + c, they applied

the method re-invented later by Euler, of decomposing {ah -f- c)

into the product of two integers m • n and of placing x = m + b

and y = n + a.

Remarkable is the Hindoo solution of the quadratic equa-

tion cy^ = ax^+h. With great keenness of intellect they

recognised in the special case y'^ = aa? -f- 1 a fundamental

problem in indeterminate quadratics. They solved it by the

cyclic method. " It consists," says De Morgan, " in a rule for

finding an indefinite number of solutions of y^ = aa? -f- 1 (a be-

ing an integer which is not a square), by means of one solution

given or found, and of feeling for one solution by making a

solution of y^= aa? -J- 6 give a solution of y^= asi? -\- b". It

amounts to the following theorem : If p and q be one set ot

values of x and y in y^ = an? -j- & and p' and q' the same or

another set, then qp + pq' and app' + qq' are values of .x and y

in / = ax^ + W. Erom this it is obvious that one solution of

y'^ = axP + 1 may be made to give any number, and that if,

taking 6 at pleasure, y^ = ax^ + b" can be solved so that x and y

are divisible by b, then one preliminary solution of y^ = aa^+ 1
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can be found. Another mode of trying for solutions is a

combination of the preceding with the cuttaca (pulveriser)."

These calculations were used in astronomy.

Doubtless this "cyclic method" constitutes the greatest

invention in the theory of numbers before the time of La-

grange. The perversity of fate has willed it, that the equation

y^ = ax^ + 1 should now be called Pell's problem, while ia

recognition of Brahmin scholarship it ought to be called the

"Hindoo problem." It is a problem that has exercised the

highest faculties of some of our greatest modern analysts.

By them the work of the Hindoos was done over again ; for,

unfortunately, the Arabs transmitted to Europe only a small

part of Indian algebra and the original Hindoo manuscripts,

which we now possess, were unknown in the Occident.

Hindoo geometry is far inferior to the Greek. In it are

found no definitions, no postulates, no axioms, no logical

chain of reasoning or rigid form of demonstration, as with

Euclid. Each theorem stands by itself as an independent

truth. Like the early Egyptian, it is empirical. Thus, in the

proof of the theorem of the right triangle, Bhaskara draws

the right triangle four times in the square of the hypotenuse,

so that in the middle

there remains a* square

whose side equals the

difference between the

two sides of the right

triangle. Arranging this square and the four triangles in a

different way, they are seen, together, to make up the sum

of the square of the two sides. "Behold!" says Bhaskara,

without adding another word of explanation. Bretschneider

conjectures that the Pythagorean proof was substantially the

same as this. In another place, Bhaskara gives a second

demonstration of this theorem by drawing from the vertex of
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the right angle a perpendicular to the hypotenuse, and com-

paring the two triangles thus obtained with the given triangle

to which they are similar. This proof was unknown in Europe

till Wallis rediscovered it. The Brahmins never inquired

into the properties of figures. They considered only metrical

relations applicable in practical life. In the Greek sense, the

Brahmins never had a science of geometry. Of interest is

the formula given by Brahmagupta for the area of a triangle

in terms of its sides. In the great work attributed to Heron

the Elder this formula is first found. Whether the Indians

themselves invented it, or whether they borrowed it from

Heron, is a disputed question. Several theorems are given

by Brahmagupta on quadrilaterals which are true only of

those which can be inscribed on a circle— a limitation which

he oniits to state. Among these is the proposition of Ptole-

maeus, that the product of the diagonals is equal to the sum

of the products of the opposite sides. The Hindoos were

familiar with the calculation of the areas of circles and their

segments, of the length of chords and perimeters of regular

inscribed polygons. An old Indian tradition makes tt = 3,

also = VlO ; but Aryabhatta gives the value m^g . Bhaskara

gives two values, — the ' accurate,' fff^, and the ' inaccurate,'

Archimedean value, ^. A commentator on Lilavati says

that these values were calculated by beginning with a regu-

lar inscribed hexagon, and applying repeatedly the formula

AD = -\2 — V 4 — AB', wherein AB is the side of the given

polygon, and AD that of one with double the number of

sides. In this way were obtained the perimeters of the

inscribed polygons of 12, 24, 48, 96, 192, 384 sides. Taking

the radius = 100, the perimeter of the last one gives the value

which Aryabhatta used for ir.

Greater taste than for geometry was shown by the Hindoos

for trigonometry. Like the--'Babylonians and Greeks, they
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divided the circle into quadrants, each quadrant into 90 de-

grees and 5400 minutes. The whole circle was therefore

made up of 21,600 equal parts. From Bhaskara's 'accurate'

value for tt it was found that the radius contained 3438 of

these circular parts. This last step was not Grecian. The

Greeks might have had scruples about taking a part of a

curve as the measure of a straight line. Each quadrant was

divided into 24 equal parts, so that each part embraced 225

units of the whole circumference, and corresponds to 3f degrees.

Notable is the fact that the Indians never reckoned, like the

Greeks, with the whole chord of double the arc, but always

with the sine (joa) and versed sine. Their mode of calculating

tables was theoretically very simple. The sine of 90° was

equal to the radius, or 3438; the sine of 30° was evidently

half that, or 1719. Applying the formula sin^a + cos^a = r^,

they obtained sin 45° =-»)— = 2431. Substituting for cos a

its equal sin (90 — a), and making a — 60°, they obtained

sin 60° = 2:^= 2978. With the sines of 90, 60, 45, and 30

as starting-points, they reckoned the sines of half the angles

by the formula ver sin 2 a = 2 sin^ a, thus obtaining the sines

of 22° 30', 11° 16', 7° 30', 3° 45'. They now figured out the

sines of the complements of these angles, namely, the sines

of 86° 15', 82° 30', 78° 45', 75°, 67° 30' ; then they calculated

the sines of half these angles; then of their complements;

then, again, of half their complements ; and so on. By this

very simple process they got the sines of angles at intervals of

3° 45'. In this table they discovered the unique law that if

a, 6, c be three successive arcs such that o — 6 = 6 — c = 3° 45',

then sin a — sin 6 = (sin 6 — sin c) ———. This formula was
225

afterwards used whenever a re-calculation of tables had to

be made. No Indian trigonojj^EmS. 'tVaS^^'Jl the triangle
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is extant. In astronomy they solved plane and spherical

right triangles."

It is remarkable to what extent Indian mathematics enters

into the science of our time. Both the form and the spirit

of the arithmetic and algebra of modern times are essentially

Indian and not Grecian. Think of that most perfect of

mathematical symbolisms— the Hindoo notation, think of the

Indian arithmetical operations nearly as perfect as our own,

think of their elegant algebraical methods, and then judge

whether the Brahmins on the banks of the Ganges are not

entitled to some credit. Unfortunately, some of the most

brUliant of Hindoo discoveries in indeterminate analysis

reached Europe too late to exert the influence they would

have exerted, had they come two or three centuries earlier.

THE AEABS.

After the flight of Mohammed from Mecca to Medina in

622 A.D., an obscure people of Semitic race began to play an

important part in the drama of history. Before the lapse of

ten years, the scattered tribes of the Arabian peninsula were

fused by the furnace blast of religious enthusiasm into a

powerful nation. With sword in hand the united Arabs

subdued Syria and Mesopotamia. Distant Persia and the

lands beyond, even unto India, were added to the dominions

of the Saracens. They conquered Northern Africa, and nearly

the whole Spanish peninsula, but were finally checked from

further progress in Western Europe by the firm hand of

Charles Martel (732 a.d.). The Moslem dominion extended

now from India to Spain ; but a war of succession to the

caliphate ensued, and in 765 the Mohammedan empire was

divided,— one caliph reigning at Bagdad, the other at Cordova
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in Spain. Astounding as was the grand march of conquest by

the Arabs, still more so was the ease with which they put

aside their former nomadic life, adopted a higher civilisation,

and assumed the sovereignty over cultivated peoples. Arabic

was made the written language throughout the conquered

lands. With the rule of the Abbasides in the East began a

new period in the history of learning. The capital, Bagdad,

situated on the Euphrates, lay haK-way between two old

centres of scientific thought,— India in the East, and Greece

in the West. The Arabs were destined to be the custodians

of the torch of Greek and Indian science, to keep it ablaze

during the period of confusion and chaos in the Occident, and

afterwards to pass it over to the Europeans. Thus science

passed from Aryan to Semitic races, and then back again

to the Aryan. The Mohammedans have added but little to

the knowledge in mathematics which they received. They

now and then explored a small region to which the path had

been previously pointed out, but they were quite incapable of

discovering new fields. Even the more elevated regions in

which the Hellenes and Hindoos delighted to wander—
namely, the Greek conic sections and the Indian indeterminate

analysis— were seldom entered upon by the Arabs. They

were less of a speculative, and more of a practical turn of

mind.

The Abbasides at Bagdad encouraged the introduction of

the sciences by inviting able specialists to their court, irre-

spective of nationality or religious belief. Medicine and

astronomy were their favourite sciences. Thus Haroun-al-

Easchid, the most distinguished Saracen ruler, drew Indian

physicians to Bagdad. In the year 772 there came to the

court of Caliph Almansur a Hindoo astronomer with astronom-

ical tables which were ordered to be translated into Arabic.

These tables, known by the Arabs as the Sindhind, and
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probably taken from the Brahma-sphuta-siddhanta of Brahmar

gnpta, stood in great authority. They contained the important

Hindoo table of sines.

Doubtless at this time, a,nd along with these astronomical

tables, the Hindoo numerals, with the zero and the principle

of position, were introduced among the Saracens. Before the

time of Mohammed the Arabs had no numerals. Numbers

were written out in words. Later, the numerous computations

connected with the financial administration over the conquered

lands made a short symbolism indispensable. In some locali-

ties, the numerals of the more civilised conquered nations

were used for a time. Thus in Syria, the Greek notation was

retained; in Egypt, the Coptic. In some cases, the numeral

adjectives may have been abbreviated in writing. The Diwani-

numerals, found in an Arabic-Persian dictionary, are supposed

to be such abbreviations. Gradually it became the practice to

employ the 28 Arabic letters of the alphabet for numerals, in

analogy to the Greek system. This notation was in turn

superseded by the Hindoo notation, which quite early was

adopted by merchants, and also by writers on arithmetic. Its

superiority was so universally recognised, that it had no rival,

except in astronomy, where the alphabetic notation continued

to be used. Here the alphabetic notation offered no great

disadvantage, since in the sexagesimal arithmetic, taken from

the Almagest, numbers of generally only one or two places

had to be written.''

As regards the form of the so-called Arabic numerals, the

statement of the Arabic writer Alhiruni (died 1039), who
spent many years in India, is of interest. He says that the

shape of the numerals, as also of the letters in India, differed

in diiierent localities, and that the Arabs selected from the

various forms the most suitable. An Arabian astronomer

says there was among people much difference in the use of
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symbols, especially of those for 5, 6, 7, and 8. The symbols

used, by the Arabs can be traced back to the tenth century.

We find material differences between those used by the

Saracens in the East and those used in the West. But

most surprising is the fact that the symbols of both the East

and of the West Arabs deviate so extraordinarily from the

Hindoo Devanagari numerals (= divine numerals) of to-day,

and that they resemble much more closely the apices of

the Eoman writer Boethius. This strange similarity on the

one hand, and dissimilarity on the other, is difficult to explain.

The most plausible theory is the one of Woepcke : (1) that

about the second century after Christ, before the zero had

been invented, the Indian numerals were brought to Alexan-

dria, whence they spread to Kome and also to West Africa

;

(2) that in the eighth century, after the notation in India had

been already much modified and perfected by the invention of

the zero, the Arabs at Bagdad got it from the Hindoos
; (3) that

the Arabs of the West borrowed the Columbus-egg, the zero,

from those in the East, but retained the old forms of the nine

numerals, if for no other reason, simply to be contrary to their

political enemies of the East
; (4) that the old forms were

remembered by the West-Arabs to be of Indian origin, and

were hence called Oubar-numerals (= dust-numerals, in mem-
ory of the Brahmin practice of reckoning on tablets strewn

with dust or sand; (5) that, since the eighth century, the

numerals in India underwent further changes, and assumed

the greatly modified forms of the modern Devanagari-numer-

als.' This is rather a bold theory, but, whether true or not,

it explains better than any other yet propounded, the relations

between the apices, the Gubar, the East-Arabic, and Devana-

gari numerals.

It has been mentioned that in 772 the Indian Siddhanta was

brought to Bagdad and there translated into Arabic. There
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is no evidence that any intercourse existed between Arabic

and Indian astronomers either before or after this time, ex-

cepting the travels of Albiruni. But we should be very slow

to deny the probability that more extended communications

actually did take place.

Better informed are we regarding the way in which Greek

science, in successive waves, dashed upon and penetrated Arabic

soil. In Syria the sciences, especially philosophy and medi-

cine, were cultivated by Greek Christians. Celebrated were the

schools at Antioch and Emesa, and, first of all, the flourishing

Nestorian school at Edessa. Erom Syria,' Greek physicians

and scholars were called to Bagdad. Translations of works

from the Greek began to be made. A large number of Greek

manuscripts were secured by Caliph Al Mamun (813-833) from

the emperor in Constantinople and were turned over to Syria.

The successors of Al Mamun continued the work so auspic-

iously begun, until, at the beginning of the tenth century, the

more important philosophic, medical, mathematical, and as-

tronomical works of the Greeks could all be read in the Arabic

tongue. The translations of mathematical works must have

been very deficient at first, as it was evidently difficult to

secure translators who were masters of both the Greek and

Arabic and at the same time proficient in mathematics. The

translations had to be revised again and again before they

were satisfactory. The first Greek authors made to speak in

Arabic were Euclid and Ptolemseus. This was accomplished

during the reign of the famous Haroun-al-Easchid. A revised

translation of Euclid's Elements was ordered by Al Mamun.

As this revision still contained numerous errors, a new trans-

lation was made, either by the learned Honein ben Ishak, or

by his son, Ishak ben Honein. To the thirteen books of the

Elements were added the fourteenth, written by Hypsicles,

and the fifteenth by Damasciixs. But it remained for Tabit
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ben Korra to bring forth an Arabic Euclid satisfying every

need. Still greater difficulty was experienced in securing an

intelligible translation of the Almagest. Among other impor-

tant translations into Arabic were the works of Apollonius,

Archimedes, Heron, and Diophantus. Thus we see that in

the course of one century the Arabs gained access to the vast

treasures of Greek science. Having been little accustomed to

abstract thought, we need not marvel if, during the ninth cen-

tury, all their energy was exhausted merely in appropriating

the foreign material. No attempts were made at original

work in mathematics until the next century.

In astronomy, on the other hand, great activity in original

research existed as early as the ninth century. The religious

observances demanded by Mohammedanism presented to as-

tronomers several practical problems. The Moslem dominions

being of such enormous extent, it remained in some localities

for the astronomer to determine which way the "Believer"

must turn during prayer that he may be facing Mecca. The

prayers and ablutions had to take place at definite hours dur-

ing the day and night. This led to more accurate determina-

tions of time. To fix the exact date for the Mohammedan
feasts it became necessary to observe more closely the motions

of the moon. In addition to all this, the old Oriental supersti-

tion that extraordinary occurrences in the heavens in some

mysterious way affect the progress of human affairs added

increased interest to the prediction of eclipses.''

For these reasons considerable progress was made. Astro-

nomical tables and instruments were perfected, observatories

erected, and a connected series of observations instituted. This

intense love for astronomy and astrology continued during the

whole Arabic scientific period. As in India, so here, we hardly

ever find a man exclusively devoted to pure mathematics. Most

of the so-called mathematicians were first of all astronomers.
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The first notable author of mathematical books was Moham-

med ben Musa Al Hovarezmi, who lived during the reign of Caliph

Al Mamun (813-833) . He was engaged by the caliph in mak-

ing extracts from the Sindhind, in revising the tablets of Ptole-

mseus, in taking observations at Bagdad and Damascus, and in

measuring a degree of the earth's meridian. Important to us

is his work on algebra and arithmetic. The portion on arith-

metic is not extant in the original, and it was not till 1357

that a Latin translation of it was found. It begins thus

:

" Spoken has Algoritmi. Let us give deserved praise to God,

our leader and defender.'' Here the name of the author, Al

Hovarezmi, has passed into Algoritmi, from which comes our

modern word algorithm, signifying the art of computing in

any particular way. The arithmetic of Hovarezmi, being

based on the principle of position and the Hindoo method of

calculation, "excels," says an Arabic writer, "all others in

brevity and easiness, and exhibits the Hindoo intellect and

sagacity in the grandest inventions." This book was followed

by a large number of arithmetics by later authors, which dif-

fered from the earlier ones chiefly in the greater variety of

methods. Arabian arithmetics generally contained the four

operations with integers and fractions, modelled after the

Indian processes. They explained the operation of casting out

the 9's, which was sometimes called the "Hindoo proof." They

contained also the regula falsa and the regula duorum falsorum,

by which algebraical examples could be solved without algebra.

Both these methods were known to the Indians. The regula

falsa or falsa positio was the assigning of an assumed value to

the unknown quantity, which value, if wrong, was corrected

by some process like the " rule of three." Diophantus used a

method almost identical with this. The regula duorum fal-

sorum was as follows : ' To solve an equation f(x) = V, assume,

for the moment, two values for x ; namely, a; = a and x = b.
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Then form /(a) = A and f(b) = B, and determine the errors

r-A = E,andr-B= Et; then the required x = ^^° ~ "-^>

is generally a close approximation, but is absolutely accurate

whenever f{x) is a linear function of x.

We now return to Hovarezmi, and consider the other part

of his work,— the algebra. This is the first book known to

contain this word itself as title. Eeally the title consists of

two words, aldshebr walmukabala, the nearest English transla-

tion of which is "restoration" and "reduction." By "res-

toration" was meant the transposing of negative terms to the

other side of the equation; by "reduction," the uniting of

similar terms. Thus, x^ — 2x = 5x + 6 passes by aldshebr into

a!^ = 5a; + 2a;-t-6; and this, by walmukabala, into ii?=7 x + 6.

The work on algebra, like the arithmetic, by the same author,

contains nothing original. It explains the elementary opera-

tions and the solutions of linear and quadratic equations.

From whom did the author borrow his knowledge of algebra ?

That it came entirely from Indian sources is impossible, for

the Hindoos had no such rules like the "restoration" and
" reduction." They were, for instance, never in the habit of

making all terms in an equation positive, as is done by the

process, of "restoration." Diophantus gives two rules which

resemble somewhat those of our Arabic author, but the proba-

bility that the Arab got all his algebra from Diophantus is

lessened by the considerations that he recognised both roots

of a quadratic, while Diophantus noticed only one ; and that

the Greek algebraist, unlike the Arab, habitually rejected irra-

tional solutions. It would seem, therefore, that the algebra

of Hovarezmi was neither purely Indian nor purely Greek,

but was a hybrid of the two, with the Greek element pre-

dominating.

The algebra of Hovarezmi contains also a few meagre
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fragments on geometry. He gives the theorem of the right

triangle, but proves it after Hindoo fashion and only for the

simplest case, when the right triangle is isosceles. He then

calculates the areas of the triangle, parallelogram, and circle.

Por IT he uses the value 3^, and also the two Indian, tt = VlO
and TT = fUff. Strange to say, the last value was after-

wards forgotten by the Arabs, and replaced by others less

accurate. This bit of geometry doubtless came from India.

Later Arabic writers got their geometry almost entirely from

Greece.

Next to be noticed are the three sons of Musa ben Sakir,

who lived in Bagdad at the court of the Caliph Al Mamun.

They wrote several works, of which we mention a geometry

in which is also contained the well-known formula for the

area of a triangle expressed in terms of its sides. We are

told that one of the sons travelled to Greece, probably to

collect astronomical and mathematical manuscripts, and that

on his way back he made acquaintance with Tabit ben Korra.

Eecognising in him a talented and learned astronomer, Mo-

hammed procured for him a place among the astronomers at

the court in Bagdad. Tabit ben Korra (836-901) was born

at Harran in Mesopotamia. He was proficient not only in

astronomy and mathematics, but also in the Greek, Arabic,

and Syrian languages. His translations of ApoUonius, Ar-

chimedes, Euclid, Ptolemy, Theodosius, rank among the best.

His dissertation on amicable numbers (of which each is the

sum of the factors of the other) is the first known specimen

of original work in mathematics on Arabic soil. It shows

that he was familiar with the Pythagorean theory of numbers.

Tabit invented the following rule for finding amicable num-

bers: If jp = 3-2"-l, g = 3.2"-i-l, r = 9.2^-i-l (n being

a whole number) are three primes, then a = 2"pq, b = 2"r are

a pair of amicable numbers. Thus, if n = 2, then p = 11,
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q = 5, r = 71, and a = 220, 6 = 284. Tabit also trisected aa

angle.

Foremost among the astronomers of the ninth century

ranked Al Battani, called Albategnius by the Latins. Battan

in Syria was his birthplace. His observations were celebrated

for great precision. His work, De scientia stellarum, was trans-

lated into Latin by Plato Tiburtinus, in the twelfth century.

Out of this translation sprang the word ' sinus,' as the name

of a trigonometric function. The Arabic word for "sine,"

dschiba, was derived from the Sanscrit jiva, and resembled

the Arabic word dscJiaib, meaning an indentation or gulf.

Hence the Latin " sinus." ' Al Battani was a close student

of Ptolemy, but did not follow him altogether. He took an

• important step for the better, when he introduced the Indian

"sine" or half the chord, in place of the whole chord of

Ptolemy. Another improvement on Greek trigonometry made

by the Arabs points likewise to Indian influences. Proposi-

tions and operations which were treated by the Greeks geo-

metrically are expressed by the Arabs algebraically. Thus,

Al Battani at once gets from an equation = D, the value^
jj^ cose

'

of 6 by means of sin 6 = — ,
— a process unknown to

the ancients. He knows, of course, all the formulas for

spherical triangles given in the Almagest, but goes further,

and adds an important one of his own for oblique-angled

triangles; namely, cos a = cos 6 cose -1- sin 6 sine cosA
At the beginning of the tenth century political troubles

arose in the East, and as a result the house of the Abbasides

lost power. One province after another was taken, till, in

945, all possessions were wrested from them. Fortunately,

the new rulers at Bagdad, the Persian Buyides, were as much

interested in astronomy as their predecessors. The progress

of the sciences was not only unchecked, but the conditions



110 A HISTOEY OF MATHEMATICS.

for it became even more favourable. The Emir Adud-ed-daula

(978-983) gloried in having studied astronomy himself. His

son Saraf-edrdaula erected an observatory in the garden of his

palace, and called thither a whole group of scholars.' Among
them were Abul Wefa, Al Kuhi, Al Sagani.

Abul Wefa (940-998) was born at Buzshan in Chorassan, a

region among the Persian mountains, which has brought forth

many Arabic astronomers. He forms an important exception

to the unprogressive spirit of Arabian scientists by his brill-

iant discovery of the variation of the moon, an inequality

usually supposed to have been first discovered by Tycho

Brahe." Abul Wefa translated Diophantus. He is one of the

last Arabic translators and commentators of Greek authors.

The fact that he esteemed the algebra of Mohammed ben

Musa Hovarezmi worthy of his commentary indicates that

thus far algebra had made little or no progress on Arabic soil.

Abul Wefa invented a method for computing tables of sines

which gives the sine of half a degree correct to nine decimal

places. He did himself credit by introducing the tangent into

trigonometry and by calculating a table of tangents. The

first step toward this had been taken by Al Battani. Unfor-

tunately, this innovation and the discovery of the moon's

variation excited apparently no notice among his contempo-

raries and followers. " We can hardly help looking upon this

circumstance as an evidence of a servility of intellect belong-

ing to the Arabian period." A treatise by Abul Wefa on

"geometric constructions" indicates that efforts were being

made at that time to improve draughting. It contains a neat

construction of the corners of the regular polyedrons on the

circumscribed sphere. Here, for the first time, appears the

condition which afterwards became very famous in the Occi-

dent, that the construction be effected with a single opening

of the compass.
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Al Kuhi, the second astronomer at the observatory of the

emir at Bagdad, was a close student of Archimedes and

Apollonius. He solved the problem, to construct a segment

of a sphere equal in volume to a given segment and having

a cuived surface equal in area to that of another given seg-

ment. He, Al Sagani, and Al Biruni made a study of the

trisection of angles. Abul Gud, an able geometer, solved the

problem by the intersection of a parabola with an equilateral

hyperbola.

The Arabs had already discovered the theorem that the

sum of two cubes can never be a cube. Abu Mohammed Al

Hogendi of Chorassan thought he had proved this, but we are

told that the demonstration was defective. Creditable work

in theory of numbers and algebra was done by Al ICarhi of

Bagdad, who lived at the beginning of the eleventh century.

His treatise on algebra is the greatest algebraic work of the

Arabs. In it he appears as a disciple of Diophantus. He
was the first to operate with higher roots and to solve equa-

tions of the form a^ -|- oa;" = 6. For the solution of quadratic

equations he gives both arithmetical and geometric proofs.

He was the first Arabic author to give and prove the theorems

on the summation of the series :
—

2n+l
V + 2' + 3^+ — + n' = {l + 2+ — +n)-s-,

1' + 2^ + 3' + +-n? = {l + 2 + +ny.

Al Karhi also busied himself with indeterminate analysis.

He showed skill in handling the methods of Diophantus, but

added nothing whatever to the stock of knowledge already

on hand. As a subject for original research, indeterminate

analysis was too subtle for even the most gifted of Arabian

minds. Eather surprising is the fact that Al Karhi's algebra

shows no traces whatever of Hindoo indeterminate analysis.
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But most astonisliing it is, that an arithmetic by the same

author completely excludes the Hindoo numerals. It is con-

structed wholly after Greek pattern. Abul Wefa also, in the

second half of the tenth century, wrote an arithmetic in which

Hindoo numerals find no place. This practice is the very

opposite to that of other Arabian authors. The question,

why the Hindoo numerals were ignored by so eminent authors,

is certainly a puzzle. Cantor suggests that at one time there

may have been rival schools, of which one followed almost

exclusively Greek mathematics, the other Indian.

The Arabs were familiar with geometric solutions of quad-

ratic equations. Attempts were now made to solve cubic

equations geometrically. They were led to such solutions by

the study of questions like the Archimedean problem, demand-

ing the section of a sphere by a plane so that the two seg-

ments shall be in a prescribed ratio. The first to state this

problem in form of a cubic equation was Al Mahani of Bagdad,

while Abu Gafar Al Eazin was the first Arab to solve the

equation by conic sections. Solutions were given also by

Al Kuhi, Al Hasan ben Al Haitam, and others.^ Another

di£B.cult problem, to determine the side of a regular heptar

gon, required the construction of the side from the equation

a^ — x' — 2x+ l = 0. It was attempted by many and at last

solved by Abul Gud.

The one who did most to elevate to a method the solution

of algebraic equations by intersecting conies, was Omar al

Hayyami of Chorassan, about 1079 a.d. He divides cuhics into

two classes, the trinomial and quadrinomial, and each class

into families and species. Each species is treated separately

but according to a general plan. He believed that cubics

could not be solved by calculation, nor bi-quadratics by geom-

etry. He rejected negative roots and often failed to discover

all the positive ones. Attempts at bi-quadratic equations
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were made by Abul Wefa,^ who solved geometrically a;* = a

and «' + aa^ = 6.

The solution of cubic equations by intersecting conies was

the greatest achievement of the Arabs in algebra. The foun-

dation to this work had been laid by the Greeks, for it was

Meneechmus who first constructed the roots of x^ — a = or

a? — 2a?=0. It was not his aim to find the number corre-

sponding to X, but simply to determine the side a; of a cube

double another cube of side a. The Arabs, on the other

hand, had another object in view : to find the roots of given

numerical equations. In the Occident, the Arabic solutions

of cubics remained unknown until quite recently. Descartes

and Thomas Baker invented these constructions anew. The

works of Al Hayyami, Al Karhi, Abul Gud, show how the

Arabs departed further and further from the Indian methods,

and placed themselves more immediately under Greek influ-

ences. In this way they barred the road of progress against

themselves. The Greeks had advanced to a point where

material progress became dif&cult with their methods ; but the

Hindoos furnished new ideas, many of which the Arabs now

rejected.

With Al Karhi and Omar Al Hayyami, mathematics among

the Arabs of the East reached flood-mark, and now it begins to

ebb. Between 1100 and 1300 a.d. come the crusades with

war and bloodshed, during which European Christians proflted

much by their contact with Arabian culture, then far superior

to their own; but the Arabs got no science from the Christians

in return. The crusaders were not the only adversaries of the

Arabs. During the first half of the thirteenth century, they

had to encounter the wild Mongolian hordes, and, in 1256, were

conquered by them under the leadership of Hulagu. The

caliphate at Bagdad now ceased to exist. At the close of the

fourteenth century still anpther empire was formed by Timur
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or Tamerlane, the Tartar. . During such, sweeping turmoil, it

is not surprising that science declined. Indeed, it is a marvel

that it existed at all. During the supremacy of Hulagu, lived

Nasir Eddin (1201-1274), a man of broad culture and an able

astronomer. He persuaded Hulagu to build him and his asso-

ciates a large observatory at Maraga. Treatises on algebra,

geometry, arithmetic, and a translation of Euclid's Elements,

were prepared by him. Even at the court of Tamerlane in

Samarkand, the sciences were by no means neglected. A
group of astronomers was drawn to this court. Ulug Beg

(1393-1449), a grandson of Tamerlane, was himself an

astronomer. Most prominent at this time was Al Kaschi, the

author of an arithmetic. Thus, during intervals of peace,

science continued to be cultivated in the East for several

centuries. The last Oriental writer was BeJia Eddin (1547-

1622) . His Essence of Arithmetic stands on about the same

level as the work of Mohammed ben Musa Hovarezmi, written

nearly 800 years before.

"Wonderful is the expansive power of Oriental peoples,

with which upon the wings of the wind they conquer half

the world, but more wonderful the energy with which, in

less than two generations, they raise themselves from the

lowest stages of cultivation to scientific efforts." During

all these centuries, astronomy and mathematics in the Orient

greatly excel these sciences in the Occident.

Thus far we have spoken only of the Arabs in the East.

Between the Arabs of the East and of the West, which were

under separate governments, there generally existed consider-

able political animosity. In consequence of this, and of the

enormous distance between the two great centres of learning,

Bagdad and Cordova, there was less scientific intercourse

among them than might be expected to exist between peoples

having the same religion and written language. Thus the
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course of science in Spain was quite independent of that in

Persia. While wending our way westward to Cordova, we

must stop in Egypt long enough to observe that there, too,

scientific activity was rekindled. Not Alexandria, but Cairo

with its library and observatory, was now the home of learn-

ing. Foremost among her scientists ranked Ben Junus (died

1008), a contemporary of Abul Wefa. He solved some difficult

problems in spherical trigonometry. Another Egyptian astron-

omer was Ibn Al Haitam (died 1038), who wrote on geometric

loci. Travelling westward, we meet in Morocco Abul Hasan

Ali, whose treatise 'on astronomical instruments' discloses a

thorough knowledge of the Conies of ApoUonius. Arriving

finally in Spain at the capital, Cordova, we are struck by the

magnificent splendour of her architecture. At this renowned

seat of learning, schools and libraries were founded during the

tenth century.

Little is known of the progress of mathematics in Spain.

The earliest name that has come down to us is Al Madshriti

(died 1007), the author of a mystic paper on 'amicable num-

bers.' His pupils founded schools at Cordova, Dania, and

Granada. But the only great astronomer among the Saracens

in Spain is Gabir ben Aflah of Sevilla, frequently called Geber.

He lived in the second half of the eleventh century. It was

formerly believed that he was the inventor of algebra, and that

the word algebra came from ' Gabir ' or ' Geber.' He ranks

among the most eminent astronomers of this time, but, like so

many of his contemporaries, his writings contain a great deal

of mysticism. His chief work is an astronomy in nine books, of

which the first is devoted to trigonometry. In his treatment

of spherical trigonometry, he exercises great independence of

thought. He makes war against the time-honoured procedure

adopted by Ptolemy of applying " the rule of six quantities,"

and gives a new way of his own, based on the ' rule of four
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quantities.' This is : If PP^ and QQi be two arcs of great

circles intersecting in A, and if PQ and PxQi be arcs of great

circles drawn perpendicular to QQd then we have the propor-

tion
sinAP : sin PQ = sin AP^ : sin PiQi-

I'rom this he derives the formulas for spherical right triangles.

To the four fundamental formulas already given by Ptolemy,

he added a fifth, discovered by himself. If a, 6, c, be the sides,

and A, B, G, the angles of a spherical triangle, right-angled at

A, then cos B = cos 6 sin C. This is frequently called " Geber's

Theorem." Eadical and bold as were his innovations in

spherical trigonometry, in plane trigonometry he followed

slavishly the old beaten path of the Greeks. Not even did he

adopt the Indian ' sine ' and ' cosine,' but still used the Greek

'chord of double the angle.' So painful was the departure

from old ideas, even to an independent Arab ! After the time

of Gabir ben Aflah there was no mathematician among the

Spanish* Saracens of any reputation. In the year in which

Columbus discovered America, the Moors lost their last foot-

hold on Spanish soil.

We have witnessed a laudable intellectual activity among

the Arabs. They had the good fortune to possess rulers

who, by their munificence, furthered scientific research. At

the courts of the caliphs, scientists were supplied with libra-

ries and observatories. A large number of astronomical and

mathematical works were written by Arabic authors. Yet

we fail to find a single important principle in mathematics

brought forth by the Arabic mind. Whatever discoveries

they made, were in fields previously traversed by the Greeks

or the Indians, and consisted of objects which the latter had

overlooked Ln their rapid march. The Arabic mind did not

possess that penetrative insight and invention by which mathe-

maticians in Europe afterwards revolutionised the science.
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The Arabs were learned, but not original. Their chief service

to science consists in this, that they adopted the learning of

Greece and India, and kept what they received with scrupu-

lous care. When the love for science began to grow in the

Occident, they transmitted to the Europeans the valuable

treasures of antiquity. Thus a Semitic race was, during the

Dark Ages, the custodian of the Aryan intellectual possessions.

EUKOPE DUEING THE MIDDLE AGES.

With the third century after Christ begins an era of migra-

tion of nations in Europe. The powerful Goths quit their

swamps and forests in the North and sweep onward in steady

southwestern current, dislodging the Vandals, Sueves, and

Burgundians, crossing the Roman territory, and stopping and

recoiling only when reaching the shores of the Mediterranean.

From the Ural Mountains wild hordes sweep down on the

Danube. The Roman Empire falls to pieces, and the Dark

Ages begin. But dark though they seem, they are the germi-

nating season of the institutions and nations of modern Europe.

The Teutonic element, partly pure, partly intermixed with the

Celtic and Latin, produces that strong and luxuriant growth,

the modern civilisation of Europe. Almost all the various

nations of Europe belong to the Aryan stock. As the Greeks

and the Hindoos— both Aryan races— were the great thinkers

of antiquity, so the nations north of the Alps became the great

intellectual leaders of modern times.

Introduction of Roman Mathematics.

We shall now consider how these as yet barbaric nations of

the North gradually came in possession of the intellectual
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treasures of antiquity. With the spread of Christianity the

Latin language was introduced not only in ecclesiastical but

also in scientific and all important worldly transactions. Nat-

urally the science of the Middle Ages was drawn largely from

Latin sources. In fact, during the earlier of these ages Ko-

man authors were the only ones read in the Occident. Though

Greek was not wholly unknown, yet before the thirteenth

century not a single Greek scientific work had been read or

translated into Latin. Meagre indeed was the science which

could be gotten from Koman writers, and we must wait several

centuries before any substantial progress is made in mathe-

matics.

After the time of Boethius and Cassiodorius mathematical

activity in Italy died out. The first slender blossom of science

among tribes that came from the North was an encyclopaedia

entitled Origines, written by Isidorus (died 636 as bishop of

Seville). This work is modelled after the Eoman encyclopae-

dias of Martianus Capella of Carthage and of Cassiodorius.

Part of it is devoted to the quadrivium, arithmetic, music,

geometry, and astronomy. He gives definitions and grammat-

ical explications of technical terms, but does not describe the

modes of computation then in vogue. After Isidorus there

follows a century of darkness which is at last dissipated by

the appearance of Bade the Venerable (672-735), the most

learned man of his time. He was a native of Ireland, thet

the home of learning in the Occident. His works contain

treatises on the Computus, or the computation of Easter-time,

and on finger-reckoning. It appears that a finger-symbolism

was then widely used for calculation. The correct determina-

tion of the time of Easter was a problem which in those days

greatly agitated the Church. It became desirable to have at

least one monk at each monastery who could determine the

day of religious festivals and could compute the calendar.
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Such determinations required some knowledge of arithmetic.

Hence we find that the art of calculating always found some

little corner in the curriculum for the education of monks.

The year in which Bede died is also the year in which

Alcuin (735-804) was born. Alcuin was educated in Ireland,

and was called to the court of Charlemagne to direct the prog-

ress of education in the great Frankish Empire. Charlemagne

was a great patron of learning and of learned men. In the

great sees and monasteries he founded schools in which were

taught the psalms, writing, singing, computation (computus),

and grammar. By computus was here meant, probably, not

merely the determination of Easter-time, but the art of com-

putation in general. Exactly what modes of reckoning were

then employed we have no means of knowing. It is not likely

that Alcuin was familiar with the apices of Boethius or with

the Roman method of reckoning on the abacus. He belongs

to that long list of scholars who dragged the theory of num-

bers into theology. Thus the number of beings created by

God, who created all things well, is 6, because 6 is a perfect

number (the sum of its divisors being 1 + 2+3 = 6); 8, on

the other hand, is an imperfect number (1 + 2 + 4 < 8) ; hence

the second origin of mankind emanated from the number 8,

which is the number of souls said to have been in Noah's ark.

There is a collection of "Problems for Quickening the

Mind" (propositiones ad acuendos iuvenes), which are certainly

as old as 1000 a.d. and possibly older. Cantor is of the opin-

ion that they were written much earlier and by Alcuin. The

following is a specimen of these " Problems " A dog chasing

a rabbit, which has a start of 150 feet, jumps 9 feet every time

the rabbit jumps 7. In order to determine in how many leaps

the dog overtakes the rabbit, 150 is to be divided by 2. In

this collection of problems, the areas of triangular and quad-

rangular pieces of land are found by the same formulas of
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approximation as those used by the Egyptians and given by

Boethius in his geometry. An old problem is the "cistern-

problem " (given the time in which several pipes can fill a

cistern singly, to find the time in which they fill it jointly),

which has been found previously in Heron, in the Greek An-

thology, and in Hindoo works. Many of the problems show that

the collection was compiled chiefly from Eoman sources. The

problem which, on account of its uniqueness, gives the most

positive testimony regarding the Eoman origin is that on the

interpretation of a will in a case where twins are born. The

problem is identical with the Eoman, except that different

ratios are chosen. Of the exercises for recreation, we mention

the one of the wolf, goat, and cabbage, to be rowed across a

river in a boat holding only one besides the ferry-man. Query

:

How must he carry them across so that the goat shall not eat

the cabbage, nor the wolf the goat? The solutions of the

"problems for quickening the mind" require no further knowl-

edge than the recollection of some few formulas used in

surveying, the ability to solve linear equations and to per-

form the four fundamental operations with integers. Ex-

traction of roots was nowhere demanded; fractions hardly

ever occur.^

The great empire of Charlemagne tottered and fell almost

immediately after his death. War and confusion ensued.

Scientific pursuits were abandoned, not to be resumed until

the close of the tenth century, when under Saxon rule in Ger-

many and Capetian in France, more peaceful times began.

The thick gloom of ignorance commenced to disappear. The

zeal with which the study of mathematics was now taken up

by the monks is due principally to the energy and influence

of one man,— Gerbert. He was born in Aurillac in Auvergne.

After receiving a monastic education, he engaged in study,

chiefly of mathematics, in Spain. On his return he taught
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school at Eheims for ten years and became distinguished for

his profound scholarship. By King Otto I. and his successors

Gerbert was held in highest esteem. He was elected bishop

of Eheims, then of Ravenna, and finally was made Pope under

the name of Sylvester II. by his former pupil Emperor Otho

III. He died in 1003, after a life intricately involved in many

political and ecclesiastical quarrels. Such was the career of

the greatest mathematician of the tenth century in Europe.

By his contemporaries his mathematical knowledge was con-

sidered wonderful. Many even accused him of criminal inter-

course with evil spirits.

Gerbert enlarged the stock of his knowledge by procuring

copies of rare books. Thus in Mantua he found the geometry

of Boethius. Though this is of small scientific value, yet it

is of great importance in history. It was at that time the

only book from which European scholars could learn the ele-

ments of geometry. Gerbert studied it with zeal, and is

generally believed himself to be the author of a geometry.

H. Weissenborn denies his authorship, and claims that the

book in question consists of three parts which cannot come

from one and the same author.^' This geometry contains

nothing more than the one of Boethius, but the fact that

occasional errors in the latter are herein corrected shows that

the author had mastered the subject. "The first mathemat-

ical paper of the Middle Ages which deserves this name,"

says Hankel, "is a letter of Gerbert to Adalbold, bishop of

Utrecht," in which is explained the reason why the area of a

triangle, obtained " geometrically " by taking the product of

the base by half its altitude, differs from the area calculated

"arithmetically," according to the formula ^a (a 4-1), used

by surveyors, where a stands for a side of an equilateral tri-

angle. He gives the correct explanation that in the latter

formula all the small squares, in which the triangle is sup-
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posed to be divided, are counted in -wholly, even though parts

of them project beyond it.

Gerbert made a careful study of the arithmetical works of

Boethius. He himself published two works,— Rule of Com-

putation on the Abacus, and A Small Book on the Division of

Numbers. They give an insight into the methods of calcu-

lation practised in Europe before the introduction of the

Hindoo numerals. Gerbert used the abacus, which was prob-

ably unknown to Alcuin. Bernelinus, a pupil of Gerbert,

describes it as consisting of a smooth board upon which geome-

tricians were accustomed to strew blue sand, and then to draw

their diagrams. Tor arithmetical purposes the board was

divided into 30 columns, of which 3 were reserved for frac-

tions, while the remaining 27 were divided into groups with

3 columns in each. In every group the columns were marked

respectively by the letters G (centum), D {decern), and

S (singularis) or M {monas). Bernelinus gives the nine

numerals used, which are the apices of Boethius, and then

remarks that the Greek letters may be used in their place.'

By the use of these columns any number can be written

without introducing a zero, and all operations in arithmetic

can be performed in the same way as we execute ours without

the columns, but with the symbol for zero. Indeed, the

methods of adding, subtracting, and multiplying in vogue

among the abacists agree substantially with those of to-day.

But in a division there is very great difference. The early rules

for division appear to have been framed to satisfy the following

three conditions : (1) The use of the multiplication table shall

be restricted as far as possible; at least, it shall never be

required to multiply mentally a figure of two digits by another

of one digit. (2) Subtractions shall be avoided as much as

possible and replaced by additions. (3) The operation shall

proceed in a purely mechanical way, without requiring trials'
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That it should be necessary to make such conditions seems

strange to us ; but it must be remembered that the monks of

the Middle Ages did not attend school during childhood and

learn the multiplication table while the memory was fresh.

Gerbert's rides for division are the oldest extant. They are

so brief as to be very obscure to the uninitiated. They were

probably intended simply to aid the memory by calling to

mind the successive steps 'in the work. In later manuscripts

they are stated more fully. In dividing any number by another

of one digit, say 668 by 6, the divisor was first increased to 10

by adding 4. The process is exhibited in the adjoining figure.'

As it continues, we must imagine the digits

which are crossed out, to be erased and then

replaced by the ones beneath. It is as follows

:

600 -i- 10 = 60, but, to rectify the error, 4 x 60,

or 240, must be added ; 200 -f- 10 = 20, but 4 x 20,

or 80, must be added. We now write for

60 + 40 + 80, its sum 180, and continue thus :

100 -H 10 = 10 ; the correction necessary is 4 x 10,

or 40, which, added to 80, gives 120. Now
100 H- 10 = 10, and the correction 4 x 10, to-

gether with the 20, gives 60. Proceeding as

before, 60 h- 10 = 6 ; the correction is 4 x 6 = 24.

Now 20 -^ 10 = 2, the correction being 4x2 = 8.

In the column of units we have now 8 + 4 + 8,

or 20. As before, 20 -h 10 = 2 ; the correction

is 2 x 4 = 8, which is not divisible by 10, but

only by 6, giving the quotient 1 and the re-

mainder 2. All the partial quotients taken

together give 60 + 20 + 10 + 10 + 6+2 + 2 + 1 = 111, and

the remainder 2.

Similar but more complicated, is the process when the

divisor contains two or more digits. Were the divisor 27,

'c'
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then the next higher multiple of 10, or 30, would be taken

for the divisor, but corrections would be required for the 3.

He who has the patience to carry such a division through

to the end, will understand why it has been said of Gerbert

that "Eegulas dedit, quae a sudantibus abacistis vix intelli-

guntur." He will also perceive why the Arabic method of

division, when first introduced, was called the divisio aurea,

but the one on the abacus, the divisio ferrea.

In his book on the abacus, Bernelinus devotes a chapter to

fractions. These are, of course, the duodecimals, first used

by the Eomans. For want of a suitable notation, calculation

with them was exceedingly difficult. It would be so even to

us, were we accustomed, like the early abacists, to express

them, not by a numerator or denominator, but by the appli-

cation of names, such as uncia for Jj, quincunx for ^, dodrans

for^.

In the tenth century, Gerbert was the central figure among

the learned. In his time the Occident came into secure posses-

sion of all mathematical knowledge of the Eomans. During

the eleventh century it was studied assiduously. Though

numerous works were written on arithmetic and geometry,

mathematical knowledge in the Occident was still very insig-

nificant. Scanty indeed were the mathematical treasures

obtained from Eoman sources.

Translation of Arabic Manuscripts.

By his great erudition and phenomenal activity, Gerbert

infused new life into the study not only of mathematics, but

also of philosophy. Pupils from France, Germany, and Italy

gathered at Eheims to enjoy his instruction. When they

themselves became teachers, they taught of course not only

the use of the abacus and geometry, but also what they had
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learned of the philosophy of Aristotle. His philosophy was

known, at first, only through the writings of Boethius. But

the growing enthusiasm for it created a demand for his com-

plete works. Greek texts were wanting. But the Latins

heard that the Arabs, too, were great admirers of Peripatetism,

and that they possessed translations of Aristotle's works and

commentaries thereon. This led them finally to search for

and translate Arabic manuscripts. During this search, mathe-

matical works also came to their notice, and were translated

into Latin. Though some few unimportant works may have

been translated earlier, yet the period of greatest activity

began about 1100. The zeal displayed in acquiring the

Mohammedan treasures of knowledge excelled even that of

the Arabs themselves, when, in the eighth century, they

plundered the rich coffers of Greek and Hindoo science.

Among the earliest scholars engaged in translating manu-

scripts into Latin was Athelard of Bath. The period of his

activity is the first quarter of the twelfth century. He
travelled extensively in Asia Minor, Egypt, and Spain, and

braved a thousand perils, that he might acquire the language

and science of the Mohammedans. He made the earliest

translations, from the Arabic, of Euclid's Elements and of

the astronomical tables of Mohammed ben Musa Hovarezmi.

In 1857, a manuscript was found in the library at Cambridge,

which proved to be the arithmetic by Mohammed ben Musa

in Latin. This translation also is very probably due to

Athelard.

At about the same time flourished Plato of Tivoli or Plato

Tiburtinus. He effected a translation of the astronomy of

Al Battani and of the Sphcerica of Theodosius. Through the

former, the term sinus was introduced into trigonometry.

About the middle of the twelfth century there was a group

of Christian scholars busily at work at Toledo, under the



126 A HISTORY OF MATHEMATICS.

leadership of Raymond, then archbishop of Toledo. Among

those who worked under his direction, John of Seville was

most prominent. He translated works chiefly on Aristotelian

philosophy. Of importance to us is a liber algorismi, com-

piled by him from Arabic authors. On comparing works like

this with those of the abacists, we notice at once the most

striking difference, which shows that the two parties drew

from, independent sources. It is argued by some that Ger-

bert got his apices and his arithmetical knowledge, not from

Boethius, but from the Arabs in Spain, and that part or the

whole of the geometry of Boethius is a forgery, dating from

the time of Gerbert. If this were the case, then the writings

of Gerbert would betray Arabic sources, as do those of John

of Seville. But no points of resemblance are found. Gerbert

could not have learned from the Arabs the use of the abacus,

because all evidence we have goes to show that' they did not

employ it. Nor is it probable that he borrowed from the

Arabs the apices, because they were never used in Europe

except on the abacus. In illustrating an example in division,

mathematicians of the tenth and eleventh centuries state an

example in Koman numerals, then draw an abacus and insert

in it the necessary numbers with the apices. Hence it seems

probable that the abacus and apices were borrowed from the

same source. The contrast between authors like John of

Seville, drawing from Arabic works, and the abacists, consists

in this, that, unlike the latter, the former mention the Hin-

doos, use the term algorism, calculate with the zero, and do

not employ the abacus. The former teach the extraction of

roots, the abacists do not; they teach the sexagesimal frac-

tions used by the Arabs, while the abacists employ the duo-

decimals of the Romans.^

A little later than John of Seville flourished Gerard of

Cremona in Lombardy. Being desirous to gain possession of
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the Almagest, he went to Toledo, and there, in 1175, translated

this great work of Ptolemy. Inspired by the richness of

Mohammedan literature, he gave himself up to its study. He
translated into Latin over 70 Arabic works. Of mathematical

treatises, there were among these, besides the Almagest, the

15 books of Euclid, the Sphcerica of Theodosius, a work of

Menelaus, the algebra of Mohammed ben Musa Hovarezmi, the

astronomy of Dshabir ben Aflah, and others less important.

In the thirteenth century, the zeal for the acquisition of

Arabic learning continued. Foremost among the patrons of

science at this time ranked Emperor Frederick II. of Hohen-

staufen (died 1250). Through frequent contact with Mo-

hammedan scholars, he became familiar with Arabic science.

He employed a number of scholars in translating Arabic

manuscripts, and it was through him that we came in posses-

sion of a new translation of the Almagest. Another royal

head deserving mention as a zealous promoter of Arabic

science was Alfonso X. of Castile (died 1284). He gathered

around him a number of Jewish and Christian scholars, who
translated and compiled astronomical works from Arabic

sources. Rabbi Zag and lehuda ben Mose Cohen were the

most prominent among them. Astronomical tables prepared

by these two Jews spread rapidly in the Occident, and con-

stituted the basis of all astronomical calculation till the

sixteenth century.' The number of scholars who aided in

transplanting Arabic science upon Christian soil was large.

But we mention only one more. Giovanni Campano of Novara

(about 1260) brought out a new translation of Euclid, which

drove the earlier ones from the field, and which formed the

basis of the printed editions.'

At the close of the twelfth century, the Occident was in

possession of the so-called Arabic notation. The Hindoo

methods of calculation began to supersede the cumbrous meth-
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ods inherited from Rome. Algebra, with its rules for solving

linear and quadratic equations, had been made accessible to

the Latins. The geometry of Euclid, the Sphcerica of Theodo-

sius, the astronomy of Ptolemy, and other works were now

accessible in the Latin tongue. Thus a great amount of new

scientific material had come into the hands of the Christians.

The talent necessary to digest this heterogeneous mass of

knowledge was not wanting. The figure of Leonardo of Pisa

adorns the vestibule of the thirteenth century.

It is important to notice that no work either on mathematics

or astronomy was translated directly from the Greek previous

to the fifteenth century.

The First Awakening and its Sequel.

Thus far, France and the British Isles have been the head-

quarters of mathematics in Christian Europe. But at the

beginning of the thirteenth century the talent and activity

of one man was sufficient to assign the mathematical science

a new home in Italy. This man was not a monk, like Bede,

Alcuin, or Gerbert, but a merchant, who in the midst of

business pursuits found time for scientific study. Leonardo

of Pisa is the man to whom we owe the first renaissance of

mathematics on Christian soil. He is also called Fibonacci,

i.e. son of Bonaccio. His father was secretary at one of the

numerous factories erected on the south and east coast of the

Mediterranean by the enterprising merchants of Pisa. He
made Leonardo, when a boy, learn the use of the abacus. The

boy acquired a strong taste for mathematics, and, in later years,

during his extensive business travels in Egypt, Syria, Greece,

and Sicily, collected from the various peoples all the knowl-

edge he could get on this subject. Of all the methods of,

calculation, he found the Hindoo to be unquestionably the
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best. Returning to Pisa, he published, in 1202, his great

work, the lAber Abaci. A revised edition of this appeared in

1228. This work contains about all the knowledge the Arabs

possessed in arithmetic and algebra, and treats the subject in

a free and independent way. This, together with the other

books of Leonardo, shows that he was not merely a compiler,

or, like other writers of the Middle Ages, a slavish imitator

of the form in which the subject had been previously pre-

sented, but that he was an original worker of exceptional

power.

He was the first great mathematician to advocate the adop-

tion of the " Arabic notation.'' The calculation with the zero

was the portion of Arabic mathematics earliest adopted by

the Christians. The minds of men had been prepared for the

reception of this by the use of the abacus and the apices.

The reckoning with columns was gradually abandoned, and

the very word abacus changed its meaning and became a

synonym for algorism. For the zero, the Latins adopted

the name zephirum, from the Arabic sifr {sifra= empty)

;

hence our English word cipher. The new notation was

accepted readily by the enlightened masses, but, at first,

rejected by the learned circles. The merchants of Italy used

it as early as the thirteenth century, while the monks in the

monasteries adhered to the old forms. In 1299, nearly 100

years after the publication of Leonardo's Liber ApUci, the

Florentine merchants were forbidden the use of the Arabic

numerals in book-keeping, and ordered either to employ the'

Roman numerals or to write the numeral fjdjectives out in

full. In the fifteenth century the abacufj with its counters

ceased to be used in Spain and Italy. In France it was used

later, and it did not disappear in Englaad and Germany before

the middle of the seventeenth century /''^ xhus, in the Winter's

Tale (iv. 3), Shakespeare lets the clown be embarrassed by
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a problem which he could not do without counters. lago

(in Othello, i. 1) expresses his contempt for Michael Cassio,

" forsooth a great mathematician," by calling him a " counter-

caster." So general, indeed, says Peacock, appears to have

been the practice of this species of arithmetic, that its rules

and principles form an essential part of the arithmetical

treatises of that day. The real fact seems to be that the old

methods were used long after the Hindoo numerals were in

common and general use. With such dogged persistency does

man cling to the old

!

The Liber Abaci was, for centuries, the storehouse from

which authors got material for works on arithmetic and

algebra. In it are set forth the most perfect methods of

calculation with integers and fractions, known at that time

;

the square and cube root are explained ; equations of the first

and second degree leading to problems, either determinate

or indeterminate, are solved by the methods of 'single' or

' double position,' and also by real algebra. The book con-

tains a large number of problems. The following was pro-

posed to Leonardo of Pisa by a magister in Constantinople,

as a difficult problem : If A gets from B 7 denare, then A's

sum is five-fold B's ; if B gets from A 5 denare, then B's sum

is seven-fold A's. How much has each? The Liber Abaci

contains another problem, which is of historical interest,

because it was given with some variations by Ahmes, 3000

years earlier : 7 old women go to Rome ; each woman has

7 mules, each mule carries 7 sacks, each sack contains 7 loaves,

with each loaf are 7 knives, each knife is put up in 7 sheaths.

What is the sum total of all named? Ans. 137,266.^

In 1220, Leonardo^of Pisa published his Practica Geometrice,

which contains all thA knowledge of geometry and trigonom-

etry transmitted to him\. The writings of Euclid and of some

other G-reek masters weie known to him, either from Arabic
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manuscripts directly or from the translations made by his

countrymen, Gerard of Cremona and Plato of Tivoli. Leo-

nardo's Geometry contains an elegant geometrical demon-

stration of Heron's formula for the area of a triangle, as a

function of its three sides. Leonardo treats the rich material

before him with skill and Euclidean rigour.

Of still greater interest than the preceding works are those

containing Fibonacci's original investigations. We must here

preface that after the publication of the Liber Abaci, Leonardo

was presented by the astronomer Dominicus to Emperor

Frederick II. of Hohenstaufen. On that occasion, John of

Palermo, an imperial notary, proposed several problems, which

Leonardo solved promptly. The first problem was to find a

number x, such that 3? + 5 and o? — 5 are each square numbers.

The answer is x = B^; for {3^y + 5 = {4^y, {Z^y-5
= {2r^y. His masterly solution of this is given in his liber

quadratorum, a copy of which work was sent by him to

Frederick II. The problem was not original with John of

Palermo, since the Arabs had already solved similar ones.

Some parts of Leonardo's solution may have been borrowed

from the Arabs, but the method which he employed of building

squares by the summation of odd numbers is original with him.

The second problem proposed to Leonardo at the famous

scientific tournament which accompanied the presentation of

this celebrated algebraist to that great patron of learning,

Emperor Frederick II., was the solving of the equation

a? + 2oe' + 10x = 20. As yet cubic equations had not been

solved algebraically. Instead of brooding stubbornly over

this knotty problem, and after many failures still entertaining

new hopes of success, he changed his method of inquiry and

showed by clear and rigorous demonstration that the roots

of this equation could not be represented by the Euclidean

irrational quantities, or, in other words, that they could not be
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constructed with the ruler and compass only. He contented

himself with finding a very close approximation to the

required root. His work on this cubic is found in the Flos,

together with the solution of the following third problem

given him by John of Palermo: Three men possess in com-

mon an unknown sum of money t ; the share of the first

is -: that of the second, -; that of the third, -. Desirous of
2 '3 '6

depositing the sum at a safer place, each takes at hazard a

certain amount ; the first takes x, but deposits only -; the sec-

ond carries y, but deposits only |; the third takes z, and

deposits -• Of the amount deposited each one must receive
6

exactly \, in order to possess his share of the whole sum.

rind X, y, z. Leonardo shows the problem to be indetermi-

nate. Assuming 7 for the sum drawn by each from the

deposit, he finds < = 47, a; = 33, 2/ = 13, 2 = 1.

One would have thought that after so brilliant a beginning,

the sciences transplanted from Mohammedan to Christian soil

would have enjoyed a steady and vigorous development. But

this was not the case. During the fourteenth and fifteenth

centuries, the mathematical science was almost stationary.

Long wars absorbed the energies of the people and thereby

kept back the growth of the sciences. The death of Frederick

II. in 1254 was followed by a period of confusion in Germany.

The German emperors and the popes were continually quarrel-

ling, and Italy was inevitably drawn into the struggles between

the Guelphs and the Ghibellines. France and England were

engaged in the Hundred Years' War (1338-1453). Then

followed in England the Wars of the Roses. The growth of

science was retarded not only by war, but also by the inju-

rious influence of scholastic philosophy. The intellectual

leaders of those times quarrelled over subtle subjects in meta-
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physics and theology. Frivolous questions, such as "How-

many angels can stand on the point of a needle?" were dis-

cussed with great interest. Indistinctness and confusion of

ideas characterised the reasoning during this period. Among
the mathematical productions of the Middle Ages, the works

of Leonardo of Pisa appear to us like jewels among quarry-

rubbish. The writers on mathematics during this period were

not few in number, but their scientific efforts were vitiated

by the method of scholastic thinking. Though they possessed

the Elements of Euclid, yet the true nature of a mathematical

proof was so little understood, that Hankel believes it no

exaggeration to say that " since Fibonacci, not a single proof,

not borrowed from Euclid, can be found in the whole literature

of these ages, which fulfils all necessary conditions."

The only noticeable advance is a simplification of numerical

operations and a more extended application of them. Among
the Italians are evidences of an early maturity of arithmetic.

Peacock ^ says : The Tuscans generally, and the Florentines

in particular, whose city was the cradle of the literature and

arts of the thirteenth and fourteenth centuries, were celebrated

for their knowledge of arithmetic and book-keeping, which

were so necessary for their extensive commerce ; the Italians

were in familiar possession of commercial arithmetic long

before the other nations of Europe ; to them we are indebted

for the formal introduction into books of arithmetic, under

distinct heads, of questions in the single and double rule of

three, loss and gain, fellowship, exchange, simple and com-

pound interest, discount, and so on.

There was also a slow improvement in the algebraic nota-

tion. The Hindoo algebra possessed a tolerable symbolic

notation, which was, however, completely ignored by the Mo-

hammedans. In this respect, Arabic algebra approached

much more closely to that of Diophantus, which can scarcely
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be said to employ symbols in a systematic way. Leonardo of

Pisa possessed no algebraic symbolism. Like the Arabs, he

expressed the relations of magnitudes to each other by lines

or in words. But in the mathematical writings of the monk

iMca Pacioli (also called Lucas de Burgo sepulchri) symbols

began to appear. They consisted merely in abbreviations of

Italian words, such as p for piu (more), m for meno (less), co

for cosa (the thing or unknown quantity). "Our present

notation has arisen by almost insensible degrees as conven-

ience suggested different marks of abbreviation to different

authors ; and that perfect symbolic language which addresses

itself solely to the eye, and enables us to take in at a glance

the most complicated relations of quantity, is the result of a

large series of small improvements." ^

We shall now mention a few authors who lived during the

thirteenth and fourteenth and the first half of the fifteenth

centuries. About the time of Leonardo of Pisa (1200 a.d.),

lived the German monk Jordanus Nemorarius, who wrote a once

famous work on the properties of numbers (1496), modelled

after the arithmetic of Boethius. The most trifling numeral

properties are treated with nauseating pedantry and prolixity.

A practical arithmetic based on the Hindoo notation was

also written by him. John Halifax (Sacro Bosco, died 1256)

taught in Paris and made an extract from the Almagest con-

taining only the most elementary parts of that work. This

extract was for nearly 400 years a work of great popularity

and standard authority. Other prominent writers are Albertus

Magnus and George Purbach in Germany, and Roger Bacon in

England. It appears that here and there some of our modern

ideas were anticipated by writers of the Middle Ages. Thus,

Nicole Oresme, a bishop in Normandy (died 1382), first con-

ceived a notation of fractional powers, afterwards re-dis-

covered by Stevinus, and gave rules for operating with them.
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His notation was totally different from ours. Thomas Brad-

wardine, archbishop of Canterbury, studied star-polygons,— a

subject which has recently received renewed attention. The

first appearance of such polygons was with Pythagoras and

his school. We next meet with such polygons in the geom-

etry of Boethius and also in the translation of Euclid from

the Arabic by Athelard of Bath. Bradwardine's philosophic

writings contain discussions on the infinite and the infini-

tesimal— subjects never since lost sight of. To England

falls the honour of having produced the earliest European

writers on trigonometry. The writings of Bradwardine, of

Kichard of Wallingford, and John Maudith, both professors

at Oxford, and of Simon Bredon of Winchecombe, contain

trigonometry drawn from Arabic sources.

The works of the Greek monk Maximus Planudes, who lived

in the first half of the fourteenth century, are of interest only

as showing that the Hindoo numerals were then known in

Greece. A writer belonging, like Planudes, to the Byzantine

school, was Moschopulus, who lived in Constantinople in the

early part of the fifteenth century. To him appears to be

due the introduction into Europe of magic squares. He wrote

a treatise on this subject. Magic squares were known to the

Arabs, and perhaps to the Hindoos. Mediaeval astrologers

and physicians believed them to possess mystical properties

and to be a charm against plague, when engraved on silver

plate.

In 1494 was printed, the Summa de Arithmetica, Geometria,

Proportione et Proportionalita, written by the Tuscan monk

Lucas Pacioli, who, as we remarked, first introduced symbols

in algebra. This contains all the knowledge of his day on

arithmetic, algebra, and trigonometry, and is the first com-

prehensive work which appeared after the Liber Abaci of

Fibonacci. It contains little of importance which cannot be
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found in ribonacoi's great work, pnblislied three centuries

earlier.-^

Perhaps the greatest result of the influx of Arabic learn-

ing was the establishment of universities. What was their

attitude toward mathematics ? The University of Paris, so

famous at the beginning of the twelfth century under the

teachings of Abelard, paid but little attention to this science

during the Middle Ages. Geometry was neglected, and Aris-

totle's logic was the favourite study. In 1336, a rule was

introduced that no student should take a degree without

attending lectures on mathematics, and from a commentary

on the first six books of Euclid, dated 1536, it appears that

candidates for the degree of A.M. had to give an oath that

they had attended lectures on these books.' Examinations,

when held at all, probably did not extend beyond the first

book, as is shown by the nickname "magister matheseos,"

applied to the Theorem of Pythagoras, the last in the first

book. More attention was paid to mathematics at the Univer-

sity of Prague, founded 1384. For the Baccalaureate degree,

students were required to take lectures on Sacro Bosco's

famous work on astronomy. Of candidates for the A.M. were

required not only the six books of Euclid, but an additional

knowledge of applied mathematics. Lectures were given on

the Almagest. At the University of Leipzig, the daughter of

Prague, and at Cologne, less work was required, and, as late

as the sixteenth century, the same requirements were made at

these as at Prague in the fourteenth. The universities of

Bologna, Padua, Pisa, occupied similar positions to the ones

in Germany, only that purely astrological lectures were given

in place of lectures on the Almagest. At Oxford, in the

middle of the fifteenth century, the first two books of Euclid

were read.*

Thus it will be seen that the study of mathematics was
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maintained at the universities only in a half-hearted manner.

No great mathematician and teacher appeared, to inspire the

students. The best energies of the schoolmen were expended

upon the stupid subtleties of their philosophy. The genius

of Leonardo of Pisa left no permanent impress upon the age,

and another Eenaissance of mathematics was wanted.



MODERN EUROPE.

We find it convenient to choose the time of the capture of

Constantinople by the Turks as the date at which the Middle

Ages ended and Modern Times began. In 1453, the Turks

battered the walls of this celebrated metropolis with cannon,

and finally captured the city ; the Byzantine Empire fell,- to

rise no more. Calamitous as was this event to the East, it

acted favourably upon the progress of learning in the West.

A great number of learned Greeks fled into Italy, bringing

with them precious manuscripts of Greek literature. This

contributed vastly to the reviving of classic learning. Up
to this time, Greek masters were known only through the

often very corrupt Arabic manuscripts, but now they began

to be studied from original sources and in their own language.

The first English translation of Euclid was made in 1570 from

the Greek by Sir Henry Billingsley, assisted by John Dee/"

About the middle of the fifteenth century, printing was in-

vented ; books became cheap and plentiful ; the printing-press

transformed Europe into an audience-room. Near the close of

the fifteenth century, America was discovered, and, soon after,

the earth was circumnavigated. The pulse and pace of the

world began to quicken. Men's minds became less servile;

they became clearer and stronger. The indistinctness of

thought, which was the characteristic feature of mediaeval

learning, began to be remedied chiefly by the steady cultiva^

138
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tion of Pure Mathematics and Astronomy. Dogmatism was

attacked ; there arose a long struggle with the authority of

the Church and the established schools of philosophy. The

Copernican System was set up in opposition to the time-hon-

oured Ptolemaic System. The long and eager contest between

the two culminated in a crisis at the time of Galileo, and

resulted in the victory of the new system. Thus, by slow

degrees, the minds of men were cut adrift from their old

scholastic moorings and sent forth on the wide sea of scientific

inquiry, to discover new islands and continents of truth.

THE EENAISSAITCE.

With the sixteenth century began a period of increased

intellectual activity. The human mind made a vast effort to

achieve its freedom. Attempts at its emancipation from

Church authority had been made before, but they were stifled

and rendered abortive. The first great and successful revolt

against ecclesiastical authority was made in Germany. The

new desire for judging freely and independently in matters

of religion was preceded and accompanied by a growing spirit

of scientific inquiry. Thus it was that, for a time, Germany

led the van in science. She produced Regiomontanns, Coper-

nicus, Bhceticus, Kepler, and Tycho Brake, at a period when

Prance and England had, as yet, brought forth hardly any

great scientific thinkers. This remarkable scientific produc-

tiveness was no doubt due, to a great extent, to the commer-

cial prosperity of Germany. Material prosperity is an essential

condition for the progress of knowledge. As long as every

individual is obliged to collect the necessaries for his subsist-

ence, there can be no leisure for higher pursuits. At this

time, Germany had accumulated considerable wealth. The
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Hanseatic League commanded the trade of tlie North. Close

commercial relations existed between Germany and Italy.

Italy, too, excelled in commercial activity and enterprise.

We need only mention Venice, whose glory began with the cru-

sades, and Florence, with her bankers and her manufacturers

of silk and wool. These two cities became great intellectual

centres. Thus, Italy, too, produced men in art, literature, and

science, who shone forth in fullest splendour. In fact, Italy

was the fatherland of what is termed the Eenaissance.

For the first great contributions to the mathematical sciences

we must, therefore, look to Italy and Germany. In Italy

brilliant accessions were made to algebra, in Germany to

astronomy and trigonometry.

On the threshold of this new era we meet in Germany with

the figure of John Mueller, more generally called Regiomon-

tanus (1436-1476). Chiefiy to him we owe the revival of

trigonometry. He studied astronomy and trigonometry at

Vienna under the celebrated George Purbach. The latter

perceived that the existing Latin translations of the Almagest

were full of errors, and that Arabic authors had not remained

true to the Greek original. Purbach therefore began to make

a translation directly from the Greek. But he did not live to

finish it. His work was continued by Eegiomontanus, who

went beyond- his master. Eegiomontanus learned the Greek

language from Cardinal Bessarion, whom he followed to Italy,

where he remained eight years collecting manuscripts from

Greeks who had fled thither from the Turks. In addition to

the translation of and the commentary on the Almagest, he

prepared translations of the Conies of ApoUonius, of Archi-

medes, and of the mechanical works of Heron. Eegiomontanus

and Purbach adopted the Hindoo sine in place of the Greek

chord of double the arc. The Greeks and afterwards the Arabs

divided the radius into 60 equal parts, and each of these again
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into 60 smaller ones. The Hindoos expressed the length of

the radius by parts of the circumference, saying that of the

21,600 equal divisions of the latter, it took 3438 to measure

the radius. Regiomontanus, to secure greater precision, con-

structed one table of sines on a radius divided into 600,000

parts, and another on a radius divided decimally into 10,000,000

divisions. He emphasised the use of the tangent in trigonom-

etry. Eollowing out some ideas of his master, he calculated

a table of tangents. German mathematicians were not the

first Europeans to use this function. In England it was known

a century earlier to Bradwardine, who speaks of tangent {umbra

recta) and cotangent (umbra versa), and to John Maudith.

Eegiomontanus was the author of an arithmetic and also of

a complete treatise on trigonometry, containing solutions of

both plane and spherical triangles. The form which he gave

to trigonometry has been retained, in its main features, to the

present day.

Eegiomontanus ranks among the greatest men that Germany

has ever produced. His complete mastery of astronomy and

mathematics, and his enthusiasm for them, were of far-

reaching influence throughout Germany. So great was his

reputation, that Pope Sixtus IV. called him to Italy to

improve the calendar. Eegiomontanus left his beloved city

of Niirnberg for Eome, where he died in the following year.

After the time of Purbach and Eegiomontanus, trigonome-

try and especially the calculation of tables continued to occupy

German scholars. More refined astronomical instruments were

made, which gave observations of greater precision ; but these

would have been useless without trigonometrical tables of cor-

responding accuracy. Of the several tables calculated, that

by Oeorg Joachim of Peldkirch in Tyrol, generally called

Rhaeticus, deserves special mention. He calculated a table of

sines with the radius =10,000,000,000 and from 10" to 10";
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and, later on, another with the radius = 1,000,000,000,000,000,

and proceeding from 10" to 10". He began also the con-

struction of tables of tangents and secants, to be carried to

the same degree of accuracy ; but he died before finishing them.

For twelve years he had had in continual employment several

calculators. The work was completed by his pupil, Valentine

Otho, in 1596. This was indeed a gigantic work,— a monu-

ment of German diligence and indefatigable perseverance.

The tables were republished in 1613 by Pitiscus, who spared

no pains to free them of errors. Astronomical tables of

so great a degree of accuracy had never been dreamed of

by the Greeks, Hindoos, or Arabs. That Ehaeticus was not a

ready calculator only, is indicated by his views on trignomet-

rical lines. Up to his time, the trigonometric functions had

been considered always with relation to the arc ; he was the

first to construct the right triangle and to make them depend

directly upon its angles. It was from the right triangle that

Ehaiticus got his idea of calculating the hypotenuse ; i.e. he

was the first to plan a table of secants. Good work in trigo-

nometry was done also by Vieta and Romanus.

We shall now leave the subject of trigonometry to witness

the progress in the solution of algebraical equations. To do

so, we must quit Germany for Italy. The first comprehensive

algebra printed was that of Lucas Pacioli. He closes his

book by saying that the solution of the equations a^ + mx = n,

a^ + n = mx is as impossible at the present state of science as

the quadrature of the circle. This remark doubtless stimu-

lated thought. The first step in the algebraic solution of

cubics was taken by Scipio Ferro (died 1626), a professor of

mathematics at Bologna, who solved the equation a;^ + mx = n.

Nothing more is known of his discovery than that he imparted

it to his pupil, Floridas, in 1505. It was the practice in those

days and for two centuries afterwards to keep discoveries
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secret, in order to secure by that means an advantage over

rivals by proposing problems beyond their reach. This prac-

tice gave rise to numberless disputes regarding the priority of

inventions. A second solution of cubios was given by Nicolo

of Brescia (1506(?)-1557). When a boy of six, Nicolo was

so badly cut by a French soldier that he never again gained

the free use of his tongue. Hence he was called Tartaglia,

i.e. the stammerer. His widowed mother being too poor to

pay his tuition in school, he learned to read and picked up a

knowledge of Latin, Greek, and mathematics by himself.

Possessing a mind of extraordinary power, he was able to

appear as teacher of mathematics at an early age. In 1530,

one Colla proposed him several problems, one leading to the

equation a?+px^ — q. Tartaglia found an imperfect method

for solving this, but kept it secret. He spoke about his secret

in public and thus caused Ferro's pupil, Floridas, to proclaim

his own knowledge of the form a? + mx = n. Tartaglia, belicT-

ing him to be a mediocrist and braggart, challenged him to a

public discussion, to take place on the 22d of February, 1536.

Hearing, meanwhile, that his rival had gotten the method

from a deceased master, and fearing that he would be beaten

in the contest, Tartaglia put in all the zeal, industry, and

skill to find the rule for the equations, and he succeeded in it

ten days before the appointed date, as he himself modestly

says.^ The most difficult step was, no doubt, the passing from

quadratic irrationals, used in operating from time of old, to

cubic irrationals. Placing a; = Vi — Vm, Tartaglia perceived

that the irrationals disappeared from the equation v?-\- mx = n,

making n=t — u. But this last equality, together with

{\mf = tu, gives at once

'=^(i)'+(i)*+l ""VgJ
. , mY_n

' 2) 2'
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This is Tartaglia's solution of a?+ mx = n. On the 13th of

February, he found a similar solution for a^= ma; + m. The

contest began on the 22d. Each contestant proposed thirty-

problems. The one who could solve the greatest number within

fifty days should be the victor. Tartaglia solved the thirty

problems proposed by Floridas in two hours ; Tloridas could

not solve any of Tartaglia's. From now on, Tartaglia studied

cubic equations with a will. In 1641 he discovered a general

solution for the cubic a? ± pai' =±q,'bj transforming it into

the form a? ± mx =±n. The news of Tartaglia's victory

spread all over Italy. Tartaglia was entreated to make known

his method, but he declined to do so, saying that after his

completion of the translation from the Greek of Euclid and

Archimedes, he would publish a large algebra containing his

method. But a scholar from Milan, named Hieronimo Cardano

(1501-1576), after many solicitations, and after giving the

most solemn and sacred promises of secrecy, succeeded in

obtaining from Tartaglia a knowledge of his rules.

At this time Cardan was writing his Ars Magna, and he

knew no better way to crown his work than by inserting the

much sought for rules for solving cubics. Thus Cardan broke

his most solemn vows, and published in 1645 in his Ars Magna

Tartaglia's solution of cubics. Tartaglia became desperate.

His most cherished hope, of giving to the world an immortal

work which should be the monument of his deep learning and

power for original research, was suddenly destroyed ; for the

crown intended for his work had been snatched away. His

first step was to write a history of his invention ; but, to com-

pletely annihilate his enemies, he challenged Cardan and his

pupU Lodovico Eerrari to a contest : each party should propose

thirty-one questions to be solved by the other within fifteen

days. Tartaglia solved most questions in seven days, but the

other party did not send in their solution before the expiration
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of the fifth month ; moreover, all their solutions except one

were wrong. A replication and a rejoinder followed. Endless

were the problems proposed and solved on both sides. The

dispute produced much chagrin and heart-burnings to the par-

ties, and to Tartaglia especially, who met with many other

disappointments. After having recovered himself again, Tar-

taglia began, in 1566, the publication of the work which he

had had in his mind for so long; but he died before he reached

the consideration of cubic equations. Thus the fondest wish

of his life remained unfulfilled ; the man to whom we owe the

greatest contribution to algebra made in the sixteenth century

was forgotten, and his method came to be regarded as the dis-

covery of Cardan and to be called Cardan's solution.

Remarkable is the great interest that the solution of cubics

excited throughout Italy. It is but natural that after this

great conquest mathematicians should attack bi-quadratic equa-

tions. As in the case of cubics, so here, the first impulse was

given by Colla, who, in 1540, proposed for solution the equar

tion x*+ &!!? + 36 = &0x. To be sure. Cardan had studied

particular cases as early as 1639. Thus he solved the equation

13x'' = a^ + 2a^ + 2x + l by a process similar to that em-

ployed by Diophantus and the Hindoos ; namely, by adding

to both sides 3 oa' and thereby rendering both numbers

complete squares. But Cardan failed to find a general solu-

tion ; it remained for his pupil Ferrari to prop the reputa-

tion of his master by the brilliant discovery of the general

solution of bi-quadratic equations. Ferrari reduced CoUa's

equation to the form {a^+ 6y = 60x + 6x'. In order to

give also the right member the form of a complete square

he added to both members the expression 2(x^ + 6)y + y'',

containing a new unknown quantity y. This gave him {or' + 6

+ yy= {6 + 2y)x' + 60x+ (12y + y'). The condition that

the right member be a complete square is expressed by the
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cubic equation (2 y + 6) (12 y + y^)= 900. Extracting the

square root of the bi-quadratic, he got x^ + 6 + y = x V2 y + 6

H

—

, Solving the cubic for y and substituting, it re-

V2y + 6

mained only to determine x from the resulting quadratic.

Ferrari pursued a similar method with other numerical bi-

quadratic equations.'' Cardan had the pleasure of publishing

this discovery in his Ars Magna in 1545. Ferrari's solution

is sometimes ascribed to Bombelli, but he is no more the dis-

coverer of it than Cardan is of the solution called by his

name.

To Cardan algebra is much indebted. In his Ars Magna

he takes notice of negative roots of an equation, calling them

fictitious, while the positive roots are called real. Imaginary

roots he does not consider; cases where they appear he calls

impossible. Cardan also observed the difficulty in the irre-

ducible case in the cubics, which, like the quadrature of the

circle, has since " so much tormented the perverse ingenuity of

mathematicians." But he did not understand its nature. It re-

mained for Raphael Bombelli of Bologna, who published in 1572

an algebra of great merit, to point out the reality of the appar-

ently imaginary expression which the root assumes, and thus

to lay the foundation of a more intimate knowledge of imagi-

nary quantities.

After this brilliant success in solving equations of the third

and fourth degrees, there was probably no one who doubted,

that with aid of irrationals of higher degrees, the solution of

equations of any degree whatever could be found. But all

attempts at the algebraic solution of the quintic were fruitless,

and, finally, Abel demonstrated that all hopes of finding alge-

braic solutions to equations of higher than the fourth degree

were purely Utopian.

Since no solution by radicals of equations of higher degrees
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could be found, tliere remained nothing else to be done than

the devising of rules by which at least the numerical values of

the roots could be ascertained. Cardan applied the Hindoo

rule of " false position " (called by him regula awed) to the

cubic, but this mode of approximating was exceedingly rough.

An incomparably better method was invented by Franciscus

Vieta, a French mathematician, whose transcendent genius

enriched mathematics with several important innovations.

Taking the equation f{x) = Q, wherein f{x) is a polynomial

containing different powers of x, with numerical coeflBcients,

and Q is a given number, Vieta first substitutes in f{x) a

known approximate value of the root, and then shows that

another figure of the root can be obtained by division. A repe-

tition of the same process gives the next figure of the root,

and so on. Thus, in a;^+14a; = 7929, taking 80 for the approx-

imate root, and placing as = 80 4- 6, we get

(80 -f 6)^ + 14 (80 + 6) = 7929,

or 174 6 -F 6^ = 409.

Since 174 6 is much greater than 6^, we place 174 6 = 409, and

obtain thereby 6 = 2. Hence the second approximation is 82.

Put a = 82 -f c, then (82 + c)H14(82 + c) = 7929, or ITSc+e'

= 57. As before, place 178 c = 57, then c = .3, and the third

approximation gives 82.3. Assuming x = 82.3 + d, and substi-

tuting, gives 178.6 d + (P = 3.51, and 178.6 d = 3.51, .-. d = .01

;

giving for the fourth approximation 82.31. In the same way,

e = .009, and the value for the root of the given equation is

82.319... For this process, Vieta was greatly admired by his

contemporaries. It was employed by Harriot, Oughtred, Pell,

and others.. Its principle is identical with the main principle

involved in the methods of approximation of Newton and

Horner. The only change lies in the arrangement of the
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work. This alteration was made to afford facility and secur-

ity in the process of evolution of the root.

We pause a moment to sketch the life of Vieta, the most

eminent French mathematician of the sixteenth century. He
was born in Poitou in 1540, and died in 1603 at Paris. He
was employed throughout life in the service of the state,

under Henry III. and Henry IV. He was, therefore, not a

mathematician by profession, but his love for the science was

so great that he remained in his chamber studying, sometimes

several days in succession, without eating and sleeping more

than was necessary to sustain himself. So great devotion to

abstract science is the more remarkable, because he lived at a

time of incessant political and religious turmoil. During the

war against Spain, Vieta rendered service to Henry IV. by

deciphering intercepted letters written in a species of cipher,

and addressed by the-Spanish Court to their governor of Neth-

erlands. The Spaniards attributed the discovery of the key

to magic. ^

An ambassador from Netherlands once told Henry IV. that

France did not possess a single geometer capable of solving a

problem propounded to geometers by a Belgian mathematician,

Adrianus Eomanus. It was the solution of the equation of

the forty-fifth degree :
—

45y - 37952/' + 95634 2/« + 94:5f - 45y^ + y^=a

Henry IV. called Vieta, who, having already pursued similar

investigations, saw at once that this awe-inspiring problem

was simply the equation by which C= 2 sin <^ was expressed

in terms of y = 2 sin^ ^ ; that, since 45 = 3 • 3 • 5, it was

necessary only to divide an angle once into 5 equal parts, and

then twice into 3,— a division which could be effected by cor-

responding equations of the fifth and third degrees. Brilliant

was the discovery by Vieta of 23 roots to this equation, instead
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of only one. The reason why he did not find 45 solutions, is

that the remaining ones involve negative sines, which were

unintelligible to him. Detailed investigations on the famous

old problem of the section of an angle into an odd number of

equal parts, led Vieta to the discovery of a trigonometrical

solution of Cardan's irreducible case in cubics. He applied

the equation (2 cos
-I-

<^)^ —3 (2 cos-| <^) = 2 cos <(> to the solution

of X* — 3 a'x = d'b, when a > ^ 6, by placing x = 2a cos ^ <^, and

determining (jt from 6 = 2 a cos <j>.

The main principle employed by him in the solution of

equations is that of reduction. He solves the quadratic by

making a suitable substitution which will remove the term

containing x to the first degree. Like Cardan, he reduces the

general expression of the cubic to the form x^+mx+n=0;
then, assuming x = {^a — z^)-v-z and substituting, he gets

•^ —W — -^j a? = 0. Putting ^ = y, he has a quadratic. In

the solution of bi-quadratics, Vieta still remains true to his

principle of reduction. This gives him the well-known cubic

resolvent. He thus adheres throughout to his favourite prin-

ciple, and thereby introduces into algebra a uniformity of

method which claims our lively admiration. In Vieta's algebra

we discover a partial knowledge of the relations existing

between the coefS-cients and the roots of an equation. He
shows that if the coef&cient of the second term in an equation

of the second degree is minus the sum of two numbers whose

product is the third term, then the two numbers are roots of

the equation. Vieta rejected all except positive roots ; hence

it was impossible for him to fully perceive the relations in

question.

The most epoch-making innovation in algebra due to Vieta

is the denoting of general or indefinite quantities by letters

of the alphabet. To be sure, Eegiomontanus and Stifel in

Germany, and Cardan in Italy, used letters before him, but
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Vieta extended the idea and first made it an essential part of

algebra. The new algebra was called by him logistica speciosa

in distinction to the old logistica numerosa. Vieta's formalism

differed considerably from that of to-day. The equation a' +
Sa'b + S alf -\-V = {a + by was written by him "a cubus -f- h

in a quadr. 3 4- * in & quadr. 3 + 6 cubo sequalia a + b cnbo."

In numerical equations the unknown quantity was denoted by

N, its square by Q, and its cube by C. Thus the equation

a?-?,a? + l&x= AO was written 1G-%Q + 1&N mqual. 40.

Observe that exponents and our symbol (= ) for equality were

not yet in use; but that Vieta employed the Maltese cross

(+) as the short-hand symbol for addition, and the (— ) for

subtraction. These two characters had not been in general

use before the time of Vieta. " It is very singular," says

Hallam, "that discoveries of the greatest convenience, and,

apparently, not above the ingenuity of a village schoolmaster,

should have been overlooked by men of extraordinary acute-

ness like Tartaglia, Cardan, and Ferrari; and hardly less so

that, by dint of that acuteness, they dispensed with the aid of

these contrivances in which we suppose that so much of the

utility of algebraic expression consists." Even after improve-

ments in notation were once proposed, it was with extreme

slowness that they were admitted into general use. They

were made oftener by accident than design, and their authors

had little notion of the effect of the change which they were

making. The introduction of the + and — symbols seems

to be due to the Germans, who, although they did not enrich

algebra during the Renaissance with great inventions, as did

the Italians, still cultivated it with great zeal. The arith-

metic of John "Widmann, printed a.d. 1489 in Leipzig, is the

earliest book in which the -f and — symbols have been found.

There are indications leading us to surmise that they were in

use first among merchants. They occur again in the arith-
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metic of Grammateus, a teacher at the University of Vienna.

His pupil, Christoff Eudolff, the writer of the first text-book

on algebra in the German language (printed in 1525), employs

these symbols also. So did Stifel, who brought out a second

edition of Rudolff's Coss in 1553. Thus, by slow degrees,

their adoption became universal. There is another short-hand

symbol of which we owe the origin to the Germans. In a

manuscript published sometime in the fifteenth century, a dot

placed before a number is made to signify the extraction of a

root of that number. This dot is the embryo of our present

symbol for the square root. Christoff Kudolff, in his algebra,

remarks that "the radix quadrata is, for brevity, designated

in his algorithm with the character ^/j as y/i." Here the dot

has grown into a symbol much like our own. This same

symbol was used by Michael Stifel. Our sign of equality is due

to Robert Records (1510-1558), the author of The Wlietslone of

Witte (1557), which is the first English treatise on algebra.

He selected this symbol because no two thijigs could be more

equal than two parallel lines =. The sign -=- for division was

first used by Johann Heinrich Rahn, a Swiss, in 1659, and

was introduced in England by John Pell in 1668.

Michael Stifel (1486 ?-1567), the greatest German algebraist

of the sixteenth century, was born in Esslingen, and died in

Jena. He was educated in the monastery of his native place,

and afterwards became Protestant minister. The study of the

significance of mystic numbers in Eevelation and in Daniel

drew him to mathematics. He studied German and Italian

works, and published in 1544, in Latin, a book entitled

Arithmetica integra. Melanchthon wrote a preface to it. Its

three parts treat respectively of rational numbers, irrational

numbers, and algebra. Stifel gives a table containing the nu-

merical values of the binomial coefficients for powers below the

18th. He observes an advantage in letting a geometric progres-
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sion correspond to an arithmetical progression, and arrives at

the designation of integral powers by numbers. Here are the

germs of the theory of exponents. In 1545 Stifel published

an arithmetic in German. His edition of RudolfE's Coss con-

tains rules for solving cubic equations, derived from the

the writings of Cardan.

We remarked above that Vieta discarded negative roots of

equations. Indeed, we find few algebraists before .and during

the Eenaissance who understood the significance even of

negative quantities. Fibonacci seldom uses them. Pacioli

states the rule that "minus times minus gives plus," but

applies it really only to the development of the product of

(a — 6) (c — d); purely negative quantities do not appear in

his work. The great German " Cossist " (algebraist), Michael

Stifel, speaks as early as 1544 of numbers which are " absurd "

or " fictitious below zero," and which arise when " real numbers

above zero " are subtracted from zero. Cardan, at last, speaks

of a " pure minus " ; " but these ideas," says Hankel, " remained

sparsely, and until the beginning of the seventeenth century,

mathematicians dealt exclusively with absolute positive quan-

tities." The first algebraist who occasionally places a purely

negative quantity by itself on one side of an equation, is

Harriot in England. As regards the recognition of negative

roots, Cardan and Bombelli were far in advance of all writers

of the Eenaissance, including Vieta. Yet even they mentioned

these so-called false or fictitious roots only in passing, and

without grasping their real significance and importance. On

this subject Cardan and Bombelli had advanced to about the

same point as had the Hindoo Bhaskara, who saw negative roots,

but did not approve of them. The generalisation of the con-

ception of quantity so as to include the negative, was an

exceedingly slow and difiicult process in the development of

algebra.
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We shall now consider the history of geometry during the

Eenaissanoe. Unlike algebra, it made hardly any progress.

The greatest gain was a more intimate knowledge of Greek

geometry. No essential progress was made before the time of

Descartes. Eegiomontanus, Xylander of Augsburg, Tartaglia,

Commandinus of Urbino in Italy, Maurolycus, and others,

made translations of geometrical works from the Greek. John

Werner of Niirnberg published in 1522 the first work on

conies which appeared in Christian Europe. Unlike the

geometers of old, he studied the sections in relation with the

cone, and derived their properties directly from it.' This mode

of studying the conies was followed by Maurolycus of Messina

(1494r-1575) . The latter is, doubtless, the greatest geometer

of the sixteenth century. Erom the notes of Pappus, he

attempted to restore the missing fifth book of Apollonius

on maxima and minima. His chief work is his masterly

and original treatment of the conic sections, wherein he dis-

cusses tangents and asymptotes more fully than Apollonius

had done, and applies them to various physical and astronomi-

cal problems.

The foremost geometrician of Portugal was Nonius ; of

France, before Vieta, was Peter Ramus, who perished in the

massacre of St. Bartholomew. Vieta possessed great famil-

iarity with ancient geometry. The new form which he gave

to algebra, by representing general quantities by letters, en-

abled him to point out more easily how the construction of

the roots of cubics depended upon the celebrated ancient prob-

lems of the duplication of the cube and the trisection of an

angle. He reached the interesting conclusion that the former

problem includes the solutions of all cubics in which the radi-

cal in Tartaglia's formula is real, but that the latter problem

includes only those leading to the irreducible case.

The problem of the quadrature of the circle was revived in
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this age, and was zealously studied even by men of eminence

and mathematical ability. The army of circle-squarers became

most formidable during the seventeenth century. Among the

first to revive this problem was the German Cardinal Nicolaus

Cusanus (died 1464), who had the reputation of being a great

logician. His fallacies were exposed to full view by Kegio-

montanus. As in this case, so in others, every quadrator of

note raised up an opposing mathematician : Orontius was met

by Buteo and Nonius ; Joseph Scaliger by Vieta, Adrianus

Eomanus, and Clavius ; A. Quercu by Peter Metius. Two
mathematicians of Netherlands, Adrianus Romanus and Ludolph

van Ceulen, occupied themselves with approximating to the

ratio between the circumference and the diameter. The for-

mer carried the value tz to 16, the latter to 35, places. The

value of tr is therefore often named "Ludolph's number." His

performance was considered so extraordinary, that the num-

bers were cut on his tomb-stone in St. Peter's church-yard, at

Leyden. Eomanus was the one who propounded for solution

that equation of the forty-fifth degree solved by Vieta. On
receiving Vieta's solution, he at once departed for Paris, to

make his acquaintance with so great a master. Vieta pro-

posed to him the Apollonian problem, to draw a circle touching

three given circles. " Adrianus Eomanus solved the problem

by the intersection of two hyperbolas ; but this solution did not

possess the rigour of the ancient geometry. Vieta caused him

to see this, and then, in his turn, presented a solution which

had all the rigour desirable."^ Eomanus did much toward

simplifying spherical trigonometry by reducing, by means of

certain projections, the 28 cases in triangles then considered

to only six.

Mention must here be made of the improvements of the

Julian calendar. The yearly determination of the movable

feasts had for a long time been, connected with an untold
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amount of confusion. The rapid progress of astronomy led

to the consideration of this subject, and many new calendars

were proposed. Pope Gregory XIII. convoked a large number

of mathematicians, astronomers, and prelates, who decided

upon the adoption of the calendar proposed by the Jesuit

Lilius Clavius. To rectify the errors of the Julian calendar

it was agreed to write in the new calendar the 16th of

October imniediately after the 4th of October of the year

1582. The Gregorian calendar met with a great deal of oppo-

sition both among scientists and among Protestants. Clavius,

who ranked high as a geometer, met the objections of the

former most ably and effectively ; the prejudices of the latter

passed away with time.

The passion for the study of mystical properties of numbers

descended from the ancients to the moderns. Much was

written on numerical mysticism even by such eminent men

as Pacioli and Stifel. The Numerorwm Mysteria of Peter

Bungus covered 700 quarto pages. He worked with great

industry and satisfaction on 666, which is the number of the

beast in Kevelation (xiii. 18), the symbol of Antichrist. He
reduced the name of the ' impious ' Martin Luther to a form

which may express this formidable number. Placing a = 1,

6 = 2, etc.. A: = 10, Z = 20, etc., he finds, after misspelling the

name, that Mjso) Ajy Kjjo) i(ioo) 1(9) -'-'(«) 1^(20) ' (200) l(ioo)-'^(5)l''(so)-^(i)

constitutes the number required. These attacks on the great

reformer were not unprovoked, for his friend, Michael Stifel,

the most acute and original of the early mathematicians of

Germany, exercised an equal ingenuity in showing that the

above number referred to Pope Leo X.,— a demonstration

which gave Stifel unspeakable comfort.^

Astrology also was still a favourite study. It is well

known that Cardan, Maurolycus, Eegiomontanus, and many

other eminent scientists who lived at a period even later than
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this, engaged iu deep astrological study ; but it is not so gen-

erally known that besides the occult sciences already named,

men engaged in the mystic study of star-polygons and magic

squares. " The pentagramma gives you pain," says Faust to

Mephistopheles. It is of deep psychological interest to see

scientists, like the great Kepler, demonstrate on one page a

theorem on star-polygons, with strict geometric rigour, while

on the next page, perhaps, he explains their use as amulets

or in conjurations.^ Playfair, speaking of Cardan as an astrol-

oger, calls him "a melancholy proof that there is no folly

or weakness too great to be united to high intellectual attain-

ments."^ Let our judgment not be too harsh. The period

under consideration is too near the Middle Ages to admit of

complete emancipation from mysticism even among scientists.

Scholars like Kepler, Napier, Albrecht Duerer, while in the

van of progress and planting one foot upon the firm ground

of truly scientific inquiry, were still resting with the other

foot upon the scholastic ideas of preceding ages.

VIETA TO DESCARTES.

The ecclesiastical power, which in the ignorant ages was an

unmixed benefit, in more enlightened ages became a serious

evil. Thus, in France, during the reigns preceding that of

Henry IV., the theological spirit predominated. This is pain-

fully shown by the massacres of Vassy and of St. Bartholo-

mew. Being engaged in religious disputes, people had no

leisure for science and for secular literature. Hence, down

to the time of Henry IV., the French " had not put forth a

single work, the destruction of which would now be a loss to

Europe." In England, on the other hand, no religious wars

were waged. The people were comparatively indifferent about
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religious strifes ; ttey concentrated their ability upon secular

matters, and acquired, in the sixteenth century, a literature

which is immortalised by the genius of Shakespeare and

Spenser. This great literary age in England was followed

by a great scientific age. At the close of the sixteenth cen-

tury, the shackles of ecclesiastical authority were thrown off

by France. The ascension of Henry IV. to the throne was

followed in 1598 by the Edict of Nantes, granting freedom

of worship to the Huguenots, and thereby terminating religious

wars. The genius of the French nation now began to blossom.

Cardinal Eichelieu, during the reign of Louis XIII., pursued

the broad policy of not favouring the opinions of any sect, but

of promoting the interests of the nation. His age was re-

markable for the progress of knowledge. It produced that

great secular literature, the counterpart of which was found

in England in the sixteenth century. The seventeenth cen-

tury was made illustrious also by the great French mathema-

ticians, Koberval, Descartes, Desargues, Fermat, and Pascal.

More gloomy is the picture in Germany. The great changes

which revolutionised the world in the sixteenth century, and

which led England to national greatness, led Germany to

degradation. The first effects of the Reformation there were

salutary. At the close of the fifteenth and during the six-

teenth century, Germany had been conspicuous for her scien-

tific pursuits. She had been the leader in astronomy and

trigonometry. Algebra also, excepting for the discoveries in

cubic equations, was, before the time of Vieta, in a more

advanced state there than elsewhere. But at the beginning

of the seventeenth century, when the sun of scienc% began to

rise in France, it set in Germany. Theologic disputes and

religious strife ensued. The Thirty Years' War (1618-1648)

proved ruinous. The German empire was shattered, and

became a mere lax confederation of petty despotisms. Com-
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merce was destroyed; national feeling died out. Art disap-

peared, and in literature there was only a slavish imitation

of French artificiality. Nor did Germany recover from this

low state for 200 years ; for in 1756 began another struggle,

the Seven Years' War, which turned Prussia into a wasted

land. Thus it followed that at the beginning of the seven-

teenth century, the great Kepler was the only German mathe-

matician of eminence, and that in the interval of 200 years

between Kepler and Gauss, there arose no great mathematician

in Germany excepting Leibniz.

Up to the seventeenth century, mathematics was cultivated

but little in Great Britain. During the sixteenth century, she

brought forth no mathematician comparable with Vieta, Stifel,

or Tartaglia. But with the time of Eecorde, the English

became conspicuous for numerical skill. The first important

arithmetical work of English authorship was published in

Latin in 1522 by Cuthbert Tonstall (1474-1569). He had

studied at Oxford, Cambridge, and Padua, and drew freely

from the works of Pacioli and Eegiomontanus. Eeprints of

his arithmetic appeared in England and France. After

Eecorde the higher branches of mathematics began to be

studied. Later, Scotland brought forth Napier, the inventor

of logarithms. The instantaneous appreciation of their value

is doubtless the result of superiority in calculation. In Italy,

and especially in France, geometry, which for a long time had

been an almost stationary science, began to be studied with

success. Galileo, Torricelli, Eoberval, Fermat, Desargues,

Pascal, Descartes, and the English Wallis are the great revo-

lutioners. of this science. Theoretical mechanics began to be

studied. The foundations were laid by Fermat and Pascal

for the theory of numbers and the theory of probability.

We shall first consider the improvements made in the art

of calculating. The nations of antiquity experimented thou-
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sands of years upon numeral notations before they happened

to strike upon the so-called "Arabic notation." In the simple

expedient of the cipher, which was introduced by the Hindoos

about the fifth or sixth century after Christ, mathematics re-

ceived one of the most powerful impulses. It would seem that

after the " Arabic notation " was once thoroughly understood,

decimal fractions would occur at once as an obvious extension

of it. But " it is curious to think how much science had

attempted in physical research and how deeply numbers had

been pondered, before it was perceived that the all-powerful

simplicity of the 'Arabic notation' was as valuable and as

manageable in an infinitely descending as in an infinitely

ascending progression." ^ Simple as decimal fractions appear

to us, the invention of them is not the result of one mind or

even of one age. They came into use by almost imperceptible

degrees. The first mathematicians identified with their his-

tory did not perceive their true nature and importance, and

failed to invent a suitable notation. The idea of decimal

fractions makes its first appearance in methods for approxi-

mating to the square roots of numbers. Thus John of Seville,

presumably in imitation of Hindoo rules, adds 2n ciphers

to the number, then finds the square root, and takes this

as the numerator of a fraction whose denominator is 1 fol-

lowed by n ciphers. The same method was followed by

Cardan, but it failed to be generally adopted even by his

Italian contemporaries ; for otherwise it would certainly have

been at least mentioned by Oataldi (died 1626) in a work

devoted exclusively to the extraction of roots. Cataldi finds

the square root by means of continued fractions — a method

ingenious and novel, but for practical purposes inferior to

Cardan's. Orontius Finaeus (died 1555) in France, and Wil-

liam Buckley (died about 1550) in England extracted the

square root in the same way as Cardan and John of Seville.
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The invention of decimals is frequently attributed to Eegio-

montanus, on the ground that instead of placing the sinus

totus, in trigonometry, equal to a multiple of 60, like the

Greeks, he put it = 100,000. But here the trigonometrical

lines were expressed in integers, and not in fractions. Though

he adopted a decimal division of the radius, he and his suc-

cessors did not apply the idea outside of trigonometry and,

indeed, had no notion whatever of decimal fractions. To

Simon Stevin of Bruges in Belgium (1648-1620), a man who

did a great deal of work in most diverse fields of science, we

owe the first systematic treatment of decimal fractions. In

his La Disme (1585) he describes in very express terms the

advantages, not only of decimal fractions, but also of the

decimal division in systems of weights and measures. Stevin

applied the new fractions "to all the operations of ordinary

arithmetic." ^ What he lacked was a suitable notation. In

place of our decimal point, he used a cipher ; to each place in

the fraction was attached the corresponding index. Thus, in

0123
his notation, the number 5.912 would be 5912 or 5®9®1®2(D.
These indices, though cumbrous in practice, are of interest,

because they are the germ of an important innovation. To

Stevin belongs the honour of inventing our present mode of

designating powers and also of introducing fractional expo-

nents into algebra. Strictly speaking, this had been done much

earlier by Oresme, but it remained wholly unnoticed. Not even

Stevin's innovations were immediately appreciated or at once

accepted, but, unlike Oresme's, they remained a secure posses-

sion. No improvement was made in the notation of decimals

till the beginning of the seventeenth century. After Stevin,

decimals were used by Joost Biirgi, a Swiss by birth, who pre-

pared a manuscript on arithmetic soon after 1592, and by

Johann Hartmann Beyer, who assumes the invention as his own.

In 1603, he published at Erankfurt on the Main a Logistica
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Decimalis. With Biirgi, a zero placed underneath, the digit

in unit's place answers as sign of separation. Beyer's nota^

tion resembles Stevin's. The decimal point, says Peacock, is

due to Napier, who in 1617 published his Rabdologia, contain-

ing a treatise on decimals, wherein the decimal point is used

in one or two instances. In the English translation of Napier's

Mirifioi logarithmorum canonis descriptio, executed by Edward
Wright in 1616, and corrected by the author, the decimal

point occurs in the tables. There is no mention of decimals

in English arithmetics between 1619 and 1631. Oughtred in

1631 designates the fraction .56 thus, 0|66. Albert CHrard,

a pupil of Stevin, in 1629 uses the point on one occasion.

John Wallis in 1657 writes 12 1 345, but afterwards in his

algebra adopts the usual point. De Morgan says that " to the

first quarter of the eighteenth century we must refer not only

the complete and final victory of the decimal point, but also

that of the now universal method of performing the operations

of division and extraction of the square root." ^ We have

dwelt at some length on the progress of the decimal notation,

because "the history of language ... is of the highest order

of interest, as well as utility : its suggestions are the best

lesson for the future which a reflecting mind can have." ^

The miraculous powers of modern calculation are due to

three inventions : the Arabic Notation, Decimal Fractions, and

Logarithms. The invention of logarithms in the first quarter

of the seventeenth century was admirably timed, for Kepler

was then examining planetary orbits, and Galileo had just

turned the telescope to the stars. During the Eenaissance

German mathematicians had constructed trigonometrical

tables of great accuracy, but this greater precision enormously

increased the work of the calculator. It is no exaggeration

to say that the invention of logarithms " by shortening the

labours doubled the life of the astronomer." Logarithms were
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invented by John Ifapier, Baron of Merchiston, in Scotland

(1550-1617). It is one of the greatest curiosities of the

history of science that Napier constructed logarithms before

exponents were used. To be sure, Stifel and Stevin made

some attempts to denote powers by indices, but this notation

was not generally known,— not even to Harriot, whose algebra

appeared long after Napier's death. That logarithms flow

naturally from the exponential symbol was not observed until

much later. It was Euler who first considered logarithms as

being indices of powers. What, then, was Napier's line of

thought ?

Let AB be a definite line, DE a line extending from D in-

definitely. Imagine two points starting at the same moment

;

the one moving from

i. £ ? A toward B, the other

from D toward E. Let

.D "f e the velocity during the

first moment be the

same for both : let that of the point on line DE be uniform

;

but the velocity of the point on AB decreasing in such a way

that when it arrives at any point C, its velocity is proportional

to the remaining distance BG. While the first point moves

over a distance AG, the second one moves over a distance DF.

Napier calls DF the logarithm of BG.

Napier's process is so unique and so different from all other

modes of presenting the subject that there cannot be the

shadow of a doubt that this invention is entirely his own ; it

is the result of unaided, isolated speculation. He first sought

the logarithms only of sines ; the line AB was the sine of 90°

and was taken = 10' ; BG was the sine of the arc, and DF its

logarithm. We notice that as the motion proceeds, BG de-

creases in geometrical progression, while DF increases in

arithmetical progression. Let AB = a = 10', let x = DF,
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y = BO, then AG = a — y. The velocity of the point G is

-^^

—

~^^ = y ; this gives — nat. log y = t + c. When t = 0,

then y = a and c = — nat. log a. Again, let — = a be the
dt

velocity of the point F, then x = at. Substituting for t and c

their values and remembering that a = 10' and that by defini-

tion X = Nap. log y, we get

10'
Nap. log y = 10' nat. log

y

It is evident from this formula that Napier's logarithms are

not the same as the natural logarithms. Napier's logarithms

increase as the number itself decreases. He took the logar

rithm of sin 90 = ; i.e. the logarithm of 10' = 0. The loga-

rithm of sin a increased from zero as a decreased from 90°.

Napier's genesis of logarithms from the conception of two

flowing points reminds us of Newton's doctrine of fluxions.

The relation between geometric and arithmetical progressions,

so skilfully utilised by Napier, had been observed by Archi-

medes, Stifel, and others. Napier did not determine the base

to his system of logarithms. The notion of a " base " in fact

never suggested itself to him. The one demanded by his

reasoning is the reciprocal of that of the natural system, but

such a base would not reproduce accurately all of Napier's

figures, owing to slight inaccuracies in the calculation of the

tables. Napier's great invention was given to the world in

1614 in a work entitled Mirifici logarithmorum canonis de-

scriptio. In it he explained the nature of his logarithms, and

gave a logarithmic table of the natural sines of a quadrant

from minute to minute.

Henry Briggs (1566-1631), in Napier's time professor of

geometry at Gresham College, London, and afterwards

professor at Oxford, was so struck with admiration of

Napier's book, that he left his studies in London to do
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homage to the Scottish philosopher. Briggs was delayed in

his journey, and Napier complained to a common friend, "Ah,

John, Mr. Briggs will not come." At that very moment

knocks were heard at the gate, and Briggs was brought into

the lord's chamber. Almost one-quarter of an hour was

spent, each beholding the other without speaking a word. At

last Briggs began: "My lord, I have undertaken this long

journey purposely to see your person, and to know by what

engine of wit or ingenuity you came first to.think of this most

excellent help in astronomy, viz. the logarithms; but, my
lord, being by you found out, I wonder nobody found it out

before, when now known it is so easy." ^ Briggs suggested

to Napier the advantage that would result from retaining zero

for the logarithm of the whole sine, but choosing 10,000,000,000

for the logarithm of the 10th part of that same sine, i.e. of

5° 44' 22" Napier said that he had already thought of the

change, and he pointed out a slight improvement on Briggs'

idea ; viz. that zero should be the logarithm of 1, and

10,000,000,000 that of the whole sine, thereby making the

characteristic of numbers greater than unity positive and

not negative, as suggested by Briggs. Briggs admitted this

to be more convenient. The invention of " Briggian loga-

rithms" occurred, therefore, to Briggs and Napier indepen-

dently. The great practical advantage of the new system

was that its fundamental progression was accommodated to

the base, 10, of our numerical scale. Briggs devoted all

his energies to the construction of tables upon the new plan.

Napier died in 1617, with the satisfaction of having found

in Briggs an able friend to bring to completion his un-

finished plans. In 1624 Briggs published his Artthmetica logor

rithmica, containing the logarithms to 14 places of numbers,

from 1 to 20,000 and from 90,000 to 100,000. The gap from

20,000 to 90,000 was filled up by that illustrious successor of
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Napier and Briggs, Adrian Vlacq of Gouda in Holland. He
publislied in 1628 a table of logarithms from 1 to 100,000, of

which. 70,000 were calculated by himself. The first publication

of Briggian logarithms of trigonometric functions was made

in 1620 by Gunter, a colleague of Briggs, who found the loga.

rithmic sines and tangents for every minute to seven places.

Gunter was the inventor of the words cosine and cotangent.

Briggs devoted the last years of his life to calculating more

extensive Briggian logarithms of trigonometric functions, but

he died in 1631, leaving his work unfinished. It was carried

on by the English Henry Gellibrand, and then published by

Vlacq at his own expense. Briggs divided a degree into 100

parts, but owing to the publication by Vlacq of trigonometrical

tables constructed on the old sexagesimal division, Briggs'

innovation remained unrecognised. Briggs and Vlacq published

four fundamental works, the results of which " have never been

superseded by any subsequent calculations."

The first logarithms upon the natural base e were published

by John Speidell in his 27ew Logarithmes (London, 1619), which

contains the natural logarithms of sines, tangents, and secants.

The only possible rival of John Napier in the invention of

logarithms was the Swiss Justus Byrgius (Joost Biirgi). He
published a rude table of logarithms six years after the

appearance of the Canon Miriflcus, but it appears that he

conceived the idea and constructed that table as early, if not

earlier, than Napier did his. But he neglected to have the

results published until Napier's logarithms were known and

admired throughout Europe.

Among the various inventions of Napier to assist the

memory of the student or calculator, is "Napier's rule of

circular parts" for the solution of spherical right triangles.

It is, perhaps, "the happiest example of artificial memory

that is known."
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The most brilliant conquest in algebra during tlie sixteenth

century had been the solution of cubic and bi-quadratic equa-

tions. All attempts at solving algebraically equations of higher

degrees remaining fruitless, a new line of inquiry— the prop-

erties of equations and their roots— was gradually opened up.

We have seen that Vieta had attained a partial knowledge of

the relations between roots and coefficients. Peletarius, a

Frenchman, had observed as early as 1558, that the root of an

equation is a divisor of the last term. One who extended the

theory of equations somewhat further than Vieta, was Albert

Girard (1590-1634), a Flemish mathematician. Like Vieta,

this ingenious author applied algebra to geometry, and was

the first who understood the use of negative roots in the

solution of geometric problems. He spoke of imaginary quan-

tities ; inferred by induction that every equation has as many

roots as there are units in the number expressing its degree;

and first showed how to express the sums of their powers in

terms of the coefficients. Another algebraist of considerable

power was the English Thomas Harriot (1560-1621). He

accompanied the first colony sent out by Sir Walter Ealeigh

to Virginia. After having surveyed that country he returned

to England. As a mathematician, he was the boast of his

country. He brought the theory of equations under one

comprehensive point of view by grasping that truth in its

full extent to which Vieta and Girard only approximated ; viz.

that in an equation in its simplest form, the coefficient of

the second term with its sign changed is equal to the sum of

the roots ; the coefficient of the third is equal to the sum

of the products of every two of the roots ; etc. He was the

first to decompose equations into their simple factors ; but,

since he failed to recognise imaginary and even negative roots,

he failed also to prove that every equation could be thus

decomposed. Harriot made some changes in algebraic nota-
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tion, adopting small letters of the alphabet in place of the

capitals used by Vieta. The symbols of inequality > and <
were introduced by him. Harriot's work, Artis Analyticm

praxis, was published in 1631, ten years after his death.

William Oughtred (1574-1660) contributed vastly to the propa-

gation of mathematical knowledge in England by his treatises,

which were long used in the universities. He introduced x
as symbol of multiplication, and : : as that of proportion. By
him ratio was expressed by only one dot. In the eighteenth

century Christian Wolf secured the general adoption of the

dot as a symbol of multiplication, and the sign for ratio was

thereupon changed to two dots. Oughtred's ministerial duties

left him but little time for the pursuit of mathematics during

daytime, and evenings his economical wife denied him the

use of a light.

Algebra was now in a state of sufficient perfection to enable

Descartes to take that important step which forms one of the

grand epochs in the history of mathematics,— the application

of algebraic analysis to define the nature and investigate the

properties of algebraic curves.

In geometry, the determination of the areas of curvilinear

figures was diligently studied at this period. Paul Guldin

(1677-1643), a Swiss mathematician of considerable note,

rediscovered the following theorem, published in his Centro-

haryca, which has been named after him, though first found

in the Mathematical Collections of Pappus : The volume of a

solid of revolution is equal to the area of the generating

figure, multiplied by the circumference described by the centre

of gravity. We shall see that this method excels that of

Kepler and Cavalieri in following a more exact and natural

course ; but it has the disadvantage of necessitating the deter-

mination of the centre of gravity, which in itself may be a

more difficult problem than the original one of finding the
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volume. Guldin made some attempts to prove his theorem,

but Cavalieri pointed out the weakness of his demonstration.

Johannes Kepler (1671-1630) was a native of Wiirtemberg

and imbibed Copernican principles while at the University of

Tubingen. His pursuit of science was repeatedly interrupted

by war, religious persecution, pecuniary embarrassments, fre-

quent changes of residence, and family troubles. In 1600 he

became for one year assistant to the Danish astronomer, Tycho

Brahe, in the observatory near Prague. The relation between

the two great astronomers was not always of an agreeable

character. Kepler's publications are voluminous. His first

attempt to explain the solar system was made in 1596, when he

thought he had discovered a curious relation between the

five regular solids and the number and distance of .the planets.

The publication of this pseudo-discovery brought him much

fame. Maturer reflection and intercourse with Tycho Brahe

and Gralileo led him to investigations and results more worthy of

his genius— " Kepler's laws." He enriched pure mathematics

as well as astronomy. It is not strange that he was interested

in the mathematical science which had done him so much

service ; for " if the Greeks had not cultivated conic sections,

Kepler could not have superseded Ptolemy."" The Greeks

never dreamed that these curves would ever be of practical

use ; Aristseus and Apollonius studied them merely to satisfy

their intellectual cravings after the ideal
;

yet the conic

sections assisted Kepler in tracing the march of the planets in

their elliptic orbits. Kepler made also extended use of logar

rithms and decimal fractions, and was enthusiastic in diffusing

a knowledge of them. At one time, while purchasing wine, he

was struck by the inaccuracy of the ordinary modes of deter-

mining the contents of kegs. This led him to the study of

the volumes of solids of revolution and to the publication of

the Stereometria Doliorum in 1615. In it he deals first with the
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solids known to Archimedes and then takes up others. Kepler

introduced a new idea into geometry ; namely, that of infinitely

great and infinitely small quantities. Greek mathematicians

always shunned this notion, but with it modern mathematicians

have completely revolutionised the science. In comparing

rectilinear figures, the method of superposition was employed

by the ancients, but in comparing rectilinear and curvilinear

figures with each other, this method failed because no addition

or subtraction of rectilinear figures could ever produce curvi-

linear ones. To meet this case, they devised the Method of

Exhaustion, which was long and difficult ; it was purely

synthetical, and in general required that the conclusion should

be known at the outset. The new notion of infinity led

gradually to the invention of methods immeasurably more

powerful. Kepler conceived the circle to be composed of an

infinite number of triangles having their common vertices at

the centre, and their bases in the circumference ; and the

sphere to consist of an infinite number of pyramids. He
applied conceptions of this kind to the determination of the

areas and volumes of figures generated by curves revolving

about any line as axis, but succeeded in solving only a few of

the simplest out of the 84 problems which he proposed for

investigation in his Stereometria.

Other points of mathematical interest in Kepler's works are

(1) the statement of the earliest problem of inverse tan-

gents
; (2) an investigation which amounts to the evaluation of

the definite integral
| sin i^d<^ = 1 — cos

<f> ; (3) the assertion

that the circumference of an ellipse, whose axes are 2 a and

26, is nearly t (a -f- 6) ; (4) a passage from which it has been

inferred that Kepler knew the variation of a function near its

maximum value to disappear
; (6) the assumption of the prin-

ciple of continuity (which differentiates modern from .ancient

geometry), when he shows that a parabola has a focus at
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infinity, that lines radiating from this "csecus focus" are

parallel and have no other point at infinity.

The Stereometria led Cavalieri, an Italian Jesuit, to the

consideration of infinitely small quantities. Bonaventura

Cavalieri (1598-1647), a pupil of Galileo and professor at

Bologna, is celebrated for his Geometria indivisibilibus con-

tinuorum nova quadam ratione promota, 1635. This work

expounds his method of Indivisibles, which occupies an inter-

mediate place between the method of exhaustion of the Greeks

and the methods of Newton and Leibniz. He considers lines

as composed of an infinite number of points, surfaces as com-

posed of an infinite number of lines, and solids of an infinite

number of planes. The relative magnitude of two solids or

surfaces could then be found simply by the summation of

series of planes or lines. For example, he finds the sum of the

squares of all lines making up a triangle equal to one-third

the sum of the squares of all lines of a parallelogram of equal

base and altitude ; for if in a triangle, the first line at the apex

be 1, then the second is 2, the third is 3, and so on ; and the

sum of their squares is

12+ 2^ + 3^
-I-

• •• + n^ = n (n -f 1) (2n -f 1) -r- 6.

In the parallelogram, each of the lines is n and their number is

n; hence the total sum of their squares is n^. The ratio

between the two sums is therefore

since n is infinite. Prom this he concludes that the pyramid

or cone is respectively ^ of a prism or cylinder of equal base

and altitude, since the polygons or circles composing the for-

mer decrease from the base to the apex in the same way as the

squares of the lines parallel to the base in a triangle decrease

from base to apex. By the Method of Indivisibles, Cavalieri
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solved the majority of tlie problems proposed by Kepler.

Thougb expeditious and yielding correct results, Cavalieri's

method lacks a scientific foundation. If a line has absolutely

no width, then no number, however great, of lines can ever

make up an area ; if a plane has no thickness whatever, then

even an infinite number of planes cannot form a solid. The

reason why this method led to correct conclusions is that one

area is to another area in the same ratio as the sum of the

series of lines in the one is to the sum of the series of lines in

the other. Though unscientific, Cavalieri's method was used

for fifty years as a sort of integral calculus. It yielded solu-

tions to some difficult problems. Guldin made a severe attack

on Cavalieri and his method. The latter published in 1647,

after the death of Guldin, a treatise entitled Exercitationes

geometricoe sex, in which he replied to the objections of his

opponent and attempted to give a clearer explanation of his

method. Guldin had never been able to demonstrate the

theorem named after him, except by metaphysical reasoning,

but Cavalieri proved it by the method of indivisibles. A
revised edition of the Geometry of Indivisibles appeared in

1653.

There is an important curve, not known to the ancients,

which now began to be studied with great zeal. Eoberval

gave it the name of " trochoid," Pascal the name of " roulette,"

Galileo the name of " cycloid." The invention of this curve

seems to be due to Galileo, who valued it for the graceful form

it would give to arches in architecture. He ascertained its

area by weighing paper figures of the cycloid against that of

the generating circle, and found thereby the first area to be

nearly but not exactly thrice the latter. A mathematical

determination was made by his pupil, Evangelista Torricelli

(1608-1647), who is more widely known as a physicist than

as a mathematician.
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By the Method of Indivisibles he demonstrated its area to

be triple that of the revolving circle, and published his

solution. This same quadrature had been effected a few years

earlier by Eoberval in France, but his solution was not known

to the Italians. Eoberval, being a man of irritable and

violent disposition, unjustly accused the mild and amiable

Torricelli of stealing the proof. This accusation of plagiarism

created so much chagrin with Torricelli that it is considered

to have been the cause of his early death. Vincenzo Viviani,

another prominent pupil of Galileo, determined the tangent

to the cycloid. This was accomplished in France by Descartes

and Fermat.

In France, where geometry began to be cultivated with

greatest success, Eoberval, Fermat, Pascal, employed the

Method of Indivisibles and made new improvements in it.

Giles Persona de Roberval (1602-1675), for forty years pro-

fessor of mathematics at the College of France in Paris,

claimed for himself the invention of the Method of Indivis-

ibles. Since his complete works were not published until

after his death, it is diflB.cult to settle questions of priority.

Montucla and Chasles are of the opinion that he invented the

method independent of and earlier than the Italian geometer,

though the work of the latter was published much earlier

than Eoberval's. Marie finds it difficult to believe that the

Frenchman borrowed nothing whatever from the Italian, for

both could not have hit independently upon the word Indi-

visibles, which is applicable to infinitely small quantities, as

conceived by Cavalieri, but not as conceived by Eoberval.

Eoberval and Pascal improved the rational basis of the

Method of Indivisibles, by considering an area as made up

of an indefinite number of rectangles instead of lines, and

a solid as composed of indefinitely small solids instead of

surfaces. Eoberval applied the method to the finding of
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areas, volumes, and centres of gravity. He effected the quad-

rature of a parabola of any degree 2/" = a"~'^x, and also of a

parabola y"= a"'~"a5". We bave already mentioned his quadra-

ture of the cycloid. Koberval is best known for his method

of drawing tangents. He was the first to apply motion to

the resolution of this important problem. His method is

allied to Newton's principle of fluxions. Archimedes con-

ceived his spiral to be generated by a double motion. This

idea Eoberval extended to all curves. Plane curves, as for

instance the conic sections, may be generated by a point

acted upon by two forces, and are the resultant of two

motions. If at any point of the curve the resultant be

resolved into its components, then the diagonal of the par-

allelogram determined by them is the tangent to the curve

at that point. The greatest difSoulty connected with this

ingenious method consisted in resolving the resultant into

components having the proper lengths and directions. Eober-

val did not always succeed in doing this, yet his new idea was

a great step in advance. He broke off from the ancient

definition of a tangent as a straight line having only one point

in common with a curve,— a definition not valid for curves of

higher degrees, nor apt even in curves of the second degree to

bring out the properties of tangents and the parts they may

be made to play in the generation of the curves. The subject

of tangents received special attention also from Fermat,

Descartes, and Barrow, and reached its highest development

after the invention of the differential calculus. Eermat and

Descartes defined tangents as secants whose two points of

intersection with the curve coincide ; Barrow considered a

curve a polygon, and called one of its sides produced a tangent.

A profound scholar in all branches of learning and a mathe-

matician of exceptional powers was Pierre de Fermat (1601-

1665). He studied law at Toulouse, and in 1631 was made
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councillor for the parliament of Toulouse. His leisure time

was mostly devoted to mathematics, which he studied with

irresistible passion. Unlike Descartes and Pascal, he led a

quiet and unaggressive life. Fermat has left the impress of

his genius upon all branches of mathematics then known. A
great contribution to geometry was his De maximis et minimis.

About twenty years earlier, Kepler had first observed that the

increment of a variable, as, for instance, the ordinate of a

curve, is evanescent for values very near a maximum or a

minimum value of the variable. Developing this idea, Fermat

obtained his rule for maxima and minima. He substituted

x + e for X in the given function of x and then equated to each

other the two consecutive values of the function and divided

the equation by e. If e be taken 0, then the roots of this

equation are the values of x, making the function a maximum

or a minimum. Fermat was in possession of this rule in 1629.

The main difference between it and the rule of the differential

calculus is that it introduces the indefinite quantity e instead

of the infinitely small dx. Fermat made it the basis for his

method of drawing tangents.

Owing to a want of explicitness in statement, Fermat's

method of maxima and minima, and of tangents, was severely

attacked by his great contemporary, Descartes, who could

never be brought to render due justice to his merit. In the

ensuing dispute, Fermat found two zealous defenders in Eober-

val and Pascal, the father; while Mydorge, Desargues, and

Hardy supported Descartes.

Since Fermat introduced the conception of infinitely small

differences between consecutive values of a function and ar-

rived at the principle for finding the maxima and minima,

it was maintained by Lagrange, Laplace, and Fourier, that

Fermat may be regarded as the first inventor of the differ-

ential calculus. This point is not well taken, as will be seen
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from the words of Poisson, himself a Frenchman, who rightly

says that the differential calculus "consists in a system of

rules proper for finding the differentials of all functions,

rather than in the use which may be made of these infinitely

small variations in the solution of one or two isolated prob-

lems."

A contemporary mathematician, whose genius excelled even

that of the great Fermat, was Blaise Pascal (1623-1662) . He
was born at Clermont in Auvergne. In 1626 his father retired

to 'Paris, where he devoted himself to teaching his son, for he

would not trust his education to others. Blaise Pascal's genius

for geometry showed itself when he was but twelve years

old. His father was well skilled in mathematics, but did not

wish his son to study it until he was perfectly acquainted with

Latin and Greek. All mathematical books were hidden out of

his sight. The boy once asked his father what mathematics

treated of, and was answered, in general, "that it was the

method of making figures with exactness, and of finding out

what proportions they relatively had to one another." He
was at the same time forbidden to talk any more about it,

or ever to think of it. But his genius could not submit to be

confined within these bounds. Starting with the bare fact

that mathematics taught the means of making figures infalli-

bly exact, he employed his thoughts about it and with a piece

of charcoal drew figures upon the tiles of the pavement, trying

the methods of drawing, for example, an exact circle or equi-

lateral triangle. He gave names of his own to these figures

and then formed axioms, and, in short, came to make perfect

demonstrations. In this way he arrived unaided at the theo-

rem that the sum of the three angles of a triangle is equal to

two right angles. His father caught him in the act of study-

ing this theorem, and was so astonished at the sublimity and

force of his genius as to weep for joy. The father now gave
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him Euclid's Elements, which he, without assistance, mastered

easily. His regular studies being languages, the boy employed

only his hours of amusement on the study of geometry, yet he

had so ready and lively a penetration that, at the age of six-

teen, he wrote a treatise upon conies, which passed for such a

surprising effort of genius, that it was said nothing equal to it

in strength had been produced since the time of Archimedes.

Descartes refused to believe that it was written by one so

young as Pascal. This treatise was never published, and is

now lost. Leibniz saw it in Paris and reported on a portion

of its contents. The precocious youth made vast progress in

all the sciences, but the constant application at so tender an

age greatly impaired his health. Yet he continued working,

and at nineteen invented his famous machine for performing

arithmetical operations mechanically. This continued strain

from , overwork resulted in a permanent indisposition, and he

would sometimes say that from the time he was eighteen,

he never passed a day free from pain. At the age of

twenty-four he resolved to lay aside the study of the human

sciences and to consecrate his talents to religion. His Pro-

vincial Letters against the Jesuits are celebrated. But at

times he, returned to the favourite study of his youth. Being

kept awake one night by a toothache, some thoughts un-

designedly came into his head concerning the roulette or

cycloid ; one idea followed another ; and he thus discovered

properties of this curve even to demonstration. A corre-

spondence between him and Fermat on certain problems was

the beginning of the theory of probability. Pascal's illness

increased, and he died at Paris at the early age of thirty-nine

years.*" By him the answer to the objection to Cavalieri's

Method of Indivisibles was put in the clearest form. Like

Eoberval, he explained " the sum of right lines " to mean " the

sum of infinitely small rectangles." Pascal greatly advanced
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the knowledge of the cycloid. He determined the area of a

section produced by any line parallel to the base; the volume

generated by it revolving around its base or around the axis

;

and, finally, the centres of gravity of these volumes, and also

of half these volumes cut by planes of symmetry. Before

publishing his results, he sent, in 1658, to all mathematicians

that famous challenge offering prizes for the first two solu-

tions of these problems. Only Wallis and A. La Loufere com-

peted for them. The latter was quite unequal to the task

;

the former, being pressed for time, made numerous mistakes

:

neither got a prize. Pascal then published his own solutions,

which produced a great sensation among scientific men. Wal-

lis, too, published his, with the errors corrected. Though not

competing for the prizes, Huygens, Wren, and Fermat solved

some of the questions. The chief discoveries of Christopher

Wren (1632-1723), the celebrated architect of St. Paul's

Cathedral in London, were the rectification of a cycloidal arc

and the determination of its centre of gravity. Fermat

found the area generated by an arc of the cycloid. Huygens

invented the cycloidal pendulum.

The beginning of the seventeenth century witnessed also

a revival of synthetic geometry. One who treated conies still

by ancient methods, but who succeeded in greatly simplifying

many prolix proofs of Apollonius, was Claude Mydorge in

Paris (1585-1647), a friend of Descartes. But it remained

for Girard Desargues (1693-1662) of Lyons, and for Pascal, to

leave the beaten track and cut out fresh paths. They intro-

duced the important method of Perspective. All conies on

a cone with circular base appear circular to an eye at the apex.

Hence Desargues and Pascal conceived the treatment of the

conic sections as projections of circles. Two important and

beautiful theorems were given by Desargues : The one is on

the "involution of the six points,'' in which a transversal
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meets a conic and an inscribed quadrangle ; the other is that,

if the vertices of two triangles, situated either in space or in

a plane, lie on three lines meeting in a point, then their sides

meet in three points lying on a line ; and conversely. This

last theorem has been employed in recent times by Brianchon,

Sturm, Gergonne, and Poncelet. Poncelet made it the basis

of his beautiful theory of homoligical figures. We owe to

Desargues the theory of involution and of transversals ; also

the beautiful conception that the two extremities of a straight

line may be considered as meeting at infinity, and that paral-

lels differ from other pairs of lines only in having their points

of intersection at infinity. Pascal greatly admired Desargues'

results, saying (in his Essais pour les Coniques), "I wish to

acknowledge that I owe the little that I have discovered on

this subject, to his writings." Pascal's and Desargues' writ-

ings contained the fundamental ideas of modern synthetic

geometry. In Pascal's wonderful work on conies, written

at the age of sixteen and now lost, were given the theorem

on the anharmonic ratio, first found in Pappus, and also that

celebrated proposition on the mystic hexagon, known as

" Pascal's theorem," viz. that the opposite sides of a hexagon

inscribed in a conic intersect in three points which are col-

linear. This theorem formed the keystone to his theory. He
himself said that from this alone he deduced over 400 corol-

laries, embracing the conies of ApoUonius and many other

results. Thus the genius of Desargues and Pascal uncovered

several of the rich treasures of modern synthetic geometry;

but owing to the absorbing interest taken in the analytical

geometry of Descartes and later in the differential calculus,

the subject was almost entirely neglected until the present

century.

In the theory of numbers no new results of scientific value

had been reached for over 1000 years, extending from the
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times of Diophantus and the Hindoos until the beginning of

the seventeenth century. But the illustrious period we are

now considering produced men who rescued this science from

the realm of mysticism and superstition, in which it had been

so long imprisoned; the properties of numbers began again

to be studied scientifically. Not being in possession of the

Hindoo indeterminate analysis, many beautiful results of the

Brahmins had to be re-discovered by the Europeans. Thus

a solution in integers of linear indeterminate equations was

re-discovered by the Frenchman Bachet de Me'ziriac (1681-

1638), who was the earliest noteworthy European Diophantist.

In 1612 he published Problimes plaisants et electables qui se

font par les nombres, and in 1621 a Greek edition of Diophantus

with notes. The father of the modern theory of numbers is

Fermat. He was so uncommunicative in disposition, that he

generally concealed his methods and made known his results

only. In some cases later analysts have been greatly puzzled

in the attempt of supplying the proofs. Eermat owned a copy

of Bachet's Diophantus, in which he entered numerous mar-

ginal notes. In 1670 these notes were incorporated in a new

edition of Diophantus, brought out by his son. Other theorems

on numbers, due to Fermat, were published in his Opera varia

(edited by his son) and in Wallis's Gommercium epistolicum

of 1658. Of the following theorems, the first seven are found

in the marginal notes :
—

(1) K" 4- 2/" = z" is impossible for integral values of x, y,

and z, when n > 2. Remark :
" I have found for this a truly

wonderful proof, but the margin is too small to hold it."

Repeatedly was this theorem made the prize question of

learned societies. It has given rise to investigations of

great interest and difficulty on the part of Euler, Lagrange,

Dirichlet, and Kummer.

(2) A prime of the form 4 n+l is only once the hypothenuse
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of a right triangle ; its square is twice ; its cube is three

times, etc. Example :
52= 3^ + 42; 25^ = IS'' + 20^ = 7' + 24?

;

1252 = 76'' + 1002 = 352 + 120^ = 442 + 1172.

(3) A prime of the form. 4 n + 1 can be expressed once, and

only once, as the sum of two squares. Proved by Euler.

(4) A number composed of two cubes can be resolved into

two other cubes in an infinite multiplicity of ways.

(5) Every number is either a triangular number or the sum

of two or three triangular numbers; either a square or the

sum of two, three, or four squares ; either a pentagonal number

or the sum of two, three, four, or five pentagonal numbers;

similarly for polygonal numbers in general. The proof of this

and other theorems is promised by Eermat in a future work

which never appeared. This theorem is also given, with

others, in a letter of 1637(?) addressed to Pater Mersenne.

(6) As many numbers as you please may be found, such

that the square of each remains a square on the addition to

or subtraction from it of the sum of all the numbers.

(7) x* + y*= z' is impossible.

(8) In a letter of 1640 he gives the celebrated theorem

generally known as "Eermat's theorem," which we state in

Gauss's notation : If j) is prime, and a is prime to p, then a^~'

= 1 (modp). It was proved by Euler.

(9) Fermat died with the belief that he had found a long-

sought-for law of prime numbers in the formula 2" + 1 = a

prime, but he admitted that he was unable to prove it rigor-

ously. The law is not true, as was pointed out by Euler in the

example 22°+! = 4,294,967,297 = 6,700,417 times 641. The

American lightning calculator Zerah CoJhurn, when a boy,

readily found the factors, but was unable to explain the

method by which he made his marvellous mental computation.

(10) An odd prime number can be expressed as the differ-

ence of two squares in one, and only one, way. This theorem,
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given in the Relation, was used by Fermat for the decomposi-

tion of large numbers into prime factors.

(11) If the integers a, b, c represent the sides of a right

triangle, then its area cannot be a square number. This was

proved by Lagrange.

(12) Fermat's solution of ax' +l = y', where a is integral

but not a square, has come down in only the broadest outline,

as given in the Relation. He proposed the problem to the

Frenchman, Bernhard Frenicle de Bessy, and in 1657 to all

living mathematicians. In England, Wallis and Lord Brounker

conjointly found a laborious solution, which was published in

1658, and also in 1668, in an algebraical work brought out by

John .Pell. Though Pell had no other connection with the

problem, it went by the name of " Pell's problem." The first

solution was given by the Hindoos.

We are not sure that Fermat subjected all his theorems to

rigorous proof. His methods of proof were entirely lost

until 1879, when a document was found buried among the

manuscripts of Huygens in the library of Leyden, entitled

Relation des dicouvertes en la science des nombres. It appears

from it that he used an inductive method, called by him la

descente infinie ou indefinie. He says that this was particularly

applicable in proving the impossibility of certain relations, as,

for instance. Theorem 11, given above, but that he succeeded

in using the method also in proving affirmative statements.

Thus he proved Theorem 3 by showing that if we suppose

there be a prime 4 n + 1 which does not possess this property,

then there will be a smaller prime of the form 4m + 1 not

possessing it; and a third one smaller than the second, not

possessing it ; and so on. Thus descending indefinitely, he

arrives at the number 6, which is the smallest prime factor

of the form 4 to + 1. From the above supposition it would

follow that 6 is not the sum of two squares— a conclusion
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contrary to fact. Hence the supposition is false, and the

theorem is established. Fermat applied this method of de-

scent with success in a large number of theorems. By this

method Euler, Legendre, Dirichlet, proved several of his

enunciations and many other numerical propositions.

A correspondence between Pascal and Fermat relating to a

certain game of chance was the germ of the theory of proba-

bilities, which has since attained a vast growth. Chevalier de

Mer^ proposed to Pascal the fundamental problem, to deter-

mine the probability which each player has, at any given

stage of the game, of winning the game. Pascal and Fermat

supposed that the players have equal chances of winning a

single point.

The former communicated this problem to Fermat, who

studied it with lively interest and solved it by the theory of

combinations, a theory which was diligently studied both by

him and Pascal. The calculus of probabilities engaged the

attention also of Huygens. The most important theorem

reached by him was that, if A has p chances of winning a sum

a, and q chances of winning a sum 6, then he may expect to

win the sum P^ ^ . The next great work on the theory of

probability was the Ars conjectandi of Jakob Bernoulli.

Among the ancients, Archimedes was the only one who

attained clear and correct notions on theoretical statics. He
had acquired firm possession of the idea of pressure, which

lies at the root of mechanical science. But his ideas slept

nearly twenty centuries, until the time of Stevin and Galileo.

Stevin determined accurately the force necessary to sustain

a body on a plane inclined at any angle to the horizon. He
was in possession of a complete doctrine of equilibrium. While

Stevin investigated statics, Galileo pursued principally dynam-

ics. Galileo was the first to abandon the Aristotelian idea

that bodies descend more quickly in proportion as they are
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heavier ; he established the first law of motion ; determined

the laws of falling bodies ; and, having obtained a clear notion

of acceleration and of the independence of different motions,

was able to prove that projectiles move in parabolic curves.

Up to his time it was believed that a cannon-ball moved

forward at first in a straight line and then suddenly fell

vertically to the ground. Galileo had an understanding of

centrifugal forces, and gave a correct definition of momentum.

Though he formulated the fundamental principle of statics,

known as the parallelogram of forces, yet he did not fully

recognise its scope. The principle of virtual velocities was

partly conceived by Guido Ubaldo (died 1607), and afterwards

more fully by Galileo.

Galileo is the founder of the science of dynamics. Among
his contemporaries it was chiefly the novelties he detected in

the sky that made him celebrated, but Lagrange claims that

his astronomical discoveries required only a telescope and

perseverance, while it took an extraordinary genius to dis-

cover laws from phenomena, which we see constantly and of

which the true explanation escaped all earlier philosophers.

The first contributor to the science of mechanics after Galileo

was Descartes.

DESCARTES TO NEWTON.

Among the earliest thinkers of the seventeenth and eigh-

.teenth centuries, who employed their mental powers toward the

destruction of old ideas and the up-building of new ones, ranks

Rene Descartes (1596-1650). Though he professed orthodoxy

in faith all his life, yet in science he was a profound sceptic.

He found that the world's brightest thinkers had been long

exercised in metaphysics, yet they had discovered nothing
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certain; nay, had even flatly contradicted each other. This

led him to the gigantic resolution of taking nothing whatever

on authority, but of subjecting everything to scrutinous exam-

ination, according to new methods of inquiry. The certainty

of the conclusions in geometry and arithmetic brought out in

his mind the contrast between the true and false ways of

seeking the truth. He thereupon attempted to apply mathe-

matical reasoning to all sciences. " Comparing the mysteries

of nature with the laws of mathematics, he dared to hope that

the secrets of both could be unlocked with the same key."

Thus he built up a system of philosophy called Cartesianism.

Great as was Descartes' celebrity as a metaphysician, it

may be fairly questioned whether his claim to be remembered

by posterity as a mathematician is not greater. His philosophy

has long since been superseded by other systems, but the ana-

lytical geometry of Descartes will remain a valuable possession

forever. At the age of twenty-one, Descartes enlisted in the

army of Prince Maurice of Orange. His years of soldiering

were years of leisure, in which he had time to pursue his

studies. At that time mathematics was his favourite science.

But in 1626 he ceased to devote himself to pure mathematics.

Sir William Hamilton is in error when he states that Descartes

considered mathematical studies absolutely pernicious as a

means of internal culture. In a letter to Mersenne, Descartes

says :
" M. Desargues puts me under obligations on account of

the pains that it has pleased him to have in me, in that he

shows that he is sorry that I do not wish to study more in geom-

etry, but I have resolved to quit only abstract geometry, that

is to say, the consideration of questions which serve only to

exercise the mind, and this, in order to study another kind of

geometry, which has for its object the explanation of the

phenomena of nature. . . . You know that all my physics is

nothing else than geometry.'' The years between 1629 and
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1649 were passed by him in Holland, in the study, principally,

of physics and metaphysics. His residence in Holland was

during the most brilliant days of the Dutch state. In 1637 he

published his Discours de la Mithode, containing among others

an essay of 106 pages on geometry. His Geometry is not easy

reading. An edition appeared subsequently with notes by his

friend De Beaune, which were intended to remove the dif-

ficulties.

It is frequently stated that Descartes was the first to apply

algebra to geometry. This statement is inaccurate, for Vieta

and others had done this before him. Even the Arabs some-

times used algebra in connection with geometry. The new
step that Descartes did take was the introduction into geom-

etry of an analytical method based on the notion of variables

and constants, which enabled him to represent curves by alge-

braic equations. In the Greek geometry, the idea of motion

was wanting, but with Descartes it became a very fruitful

conception. By him a point on a plane was determined in

position by its distances from two fixed right lines or axes.

These distances varied with every change of position in

the point. This geometric idea of co-ordinate representation,

together with the algebraic idea of two variables in one equa-

tion having an indefinite number of simultaneous values, fur-

nished a method for the study of loci, which is admirable for

the generality of its solutions. Thus the entire conic sections

of ApoUonius is wrapped up and contained in a single equa-

tion of the second degree.

The Latin term for "ordinate," used by Descartes comes

from the expression lineoe ordinatce, employed by Eoman sur-

veyors for parallel lines. The term abscissa occurs for the

first time in a Latin work of 1659, written by Stefano degli

Angeli (1623-1697), a professor of mathematics in Kome.^

Descartes' geometry was called " analytical geometry," partly
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because, unlike the synthetic geometry of the ancients, it is

actually analytical, in the sense that the word is used in

logic ; and partly because the practice had then already

arisen, of designating by the term analysis the calculus with

general quantities.

The first important example solved by Descartes in his

geometry is the "problem of Pappus"; viz. "Given several

straight lines in a plane, to find the locus of a point such that

the perpendiculars, or more generally, straight lines at given

angles, drawn from the point to the given lines, shall satisfy

the condition that the product of certain of them shall be in

a given ratio to the product of the rest." Of this celebrated

problem, the Greeks solved only the special case when the

number of given lines is four, in which case the locus of the

point turns out to be a conic section. By Descartes it was

solved completely, and it afforded an excellent example of

the use which can be made of his analytical method in the

study of loci. Another solution was given later by Newton

in the Principia.

The methods of drawing tangents invented by Eoberval

and Fermat were noticed earlier. Descartes gave a third

method. Of all the problems which he solved by his geometry,

none gave him as great pleasure as his mode of constructing

tangents. It is profound but operose, and, on that account,

inferior to Permat's. His solution rests on the method of

Indeterminate Coefficients, of which he bears the honour of

invention. Indeterminate coefBcients were employed by him

also in solving bi-quadratic equations.

The essays of Descartes on dioptrics and geometry were

sharply criticised by Fermat, who wrote objections to the

former, and sent his own treatise on "maxima and minima"

to show that there were omissions in the geometry. Descartes

thereupon made an attack on Fermat's method of tangents.



DESCAETES TO NEWTON. 187

Descartes was in the wrong in this attack, yet he continued

the controversy with obstinacy. He had a controversy also

with Roberval on the cycloid. This curve has been called

the " Helen of geometers," on account of its beautiful proper-

ties and the controversies which their discovery occasioned.

Its quadrature by Eoberval was generally considered a brill-

iant achievement, but Descartes commented on it by saying

that any one moderately well versed in geometry might have

done this. He then sent a short demonstration of his own.

On Eoberval's intimating that he had been assisted by a

knowledge of the solution, Descartes constructed the tangent

to the curve, and challenged Eoberval and Fermat to do the

same. Fermat accomplished it, but Eoberval never succeeded

in solving this problem, which had cost the genius of Des-

cartes but a moderate degree of attention.

He studied some new curves, now called "ovals of Des-

cartes," which were intended by him to serve in the con-

struction of converging lenses, but which yielded no results

of practical value.

The application of algebra to the doctrine of curved lines

reacted favourably upon algebra. As an abstract science,

Descartes improved it by the systematic use of exponents and

by the full interpretation and construction of negative quanti-

ties. Descartes also established some theorems on the theory of

equations. Celebrated is his " rule of signs " for determining

the number of positive and negative roots ; viz. an equation

may have as many -f- roots as there are variations of signs, and

as many — roots as there are permanencies of signs. Descartes

was charged by Wallis with availing himself, without acknowl-

edgment, of Harriot's theory of equations, particularly his mode

of generating equations ; but there seems to be no good ground

for the charge. Wallis also claimed that Descartes failed to

observe that the above rule of signs is not true whenever the
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equation has imaginary roots ; but Descartes does not say that

the equation always has, but that it may have so many roots.

It is true that Descartes does not consider the case of imagi-

naries directly, but further on in his Geometry he gives

incontestable CTidence of being able to handle this case

also.

In mechanics, Descartes can hardly be said to have advanced

beyond Galileo. The latter had overthrown the ideas of

Aristotle on this subject, and Descartes simply "threw himself

upon the enemy " that had already been " put to the rout.''

His statement of the first and second laws of motion was an

improvement in form, but his third law is false in substance.

The motions of bodies in their direct impact was imperfectly

understood by Galileo, erroneously given by Descartes, and

first correctly stated by Wren, Wallis, and Huygens.

One of the most devoted pupils of Descartes was the learned

Princess Elizabeth, daughter of Frederick Y. She applied the

new analytical geometry to the solution of the " Apollonian

problem." His second royal follower was Queen Christina,

the daughter of Gustavus Adolphus. She urged upon Des-

cartes to come to the Swedish court. After much hesitation

he accepted the invitation in 1649. He died at Stockholm one

year later. His life had been one long warfare against the

prejudices of men.

It is most remarkable that the mathematics and philosophy

of Descartes should at first have been appreciated less by his

countrymen than by foreigners. The indiscreet temper of

Descartes alienated the great contemporary French mathemar

ticians, Eoberval, Fermat, Pascal. They continued in investi-

gations of their own, and on some points strongly opposed

Descartes. The universities of France were under strict

ecclesiastical control and did nothing to introduce his mathe-

matics and philosophy. It was in the youthful universities of
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Holland that the effect of Cartesian teachings was most

immediate and strongest.

The only prominent Frenchman who immediately followed

in the footsteps of the great master was De Beaune (1601-1652).

He was one of the first to point out that the properties of a

curve can be deduced from the properties of its tangent. This

mode of inquiry has been called the inverse method of tangents.

He contributed to the theory of equations by considering for

the first time the upper and lower limits of the roots of

numerical equations.

In the Netherlands a large number of distinguished mathema-

ticians were at once struck with admiration for the Cartesian

geometry. Foremost among these are van Schooten, John de

Witt, van Heuraet, Sluze, and Hudde. Van Schooten (died 1660),

professor of mathematics at Leyden, brought out an edition

of Descartes' geometry, together with the notes thereon by

De Beaune. His chief work is his Exercitationes Mathematics,

in which he applies the analytical geometry to the solution of

many interesting and difficult problems. The noble-hearted

Johann de Witt, grand-pensioner of Holland, celebrated as a

statesman and for his tragical end, was an ardent geometrician.

He conceived a new and ingenious way of generating conies,

which is essentially the same- as that by projective pencils of

rays in modern synthetic geometry. He treated the subject

not synthetically, but with aid of the Cartesian analysis.

Rene Francois de Sluze (1622-1685) and Johann Hudde (1633-

1704) made some improvements on Descartes' and Fermat's

methods of drawing tangents, and on the theory of maxima and

minima. With Hudde, we find the first use of three variables

in analytical geometry. He is the author of an ingenious rule

for finding equal roots. We illustrate it by the equation

a? — a;^ — 8a;-|-12 = 0. Taking an arithmetical progression

3, 2, 1, 0, of which the highest term is equal to the degree of
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the equation, and multiplying each term of the equation respec-

tively by the corresponding term of the progression, we get

3a?— 2x'—8x = 0, or 3a^ — 2a;— 8 = 0. This last equation

is by one degree lower than the original one. Tind the G.C.D.

of the two equations. This is x — 2; hence 2 is one of the two

equal roots. Had there been no common divisor, then the

original equation would not have possessed equal roots. Hudde

gave a demonstration for this rule.^

Heinrich van Heuraet must be mentioned as one of the earli-

est geometers who occupied themselves with success in the

rectification of curves. He observed in a general way that the

two problems of quadrature and of rectification are really

identical, and that the one can be reduced to the other. Thus

he carried the rectification of the hyperbola back to the

quadrature of the hyperbola. The semi-cubical parabola

2/^= ax' was the first curve that was ever rectified absolutely.

This appears to have been accomplished independently by Van

Heuraet in Holland and by William Neil (1637-1670) in Eng-

land. According to Wallis the priority belongs to Neil. Soon

after, the cycloid was rectified by Wren and Fermat.

The prince of philosophers in Holland, and one of the

greatest scientists of the seventeenth century, was Christian

Huygens (1629-1695), a native of the Hague. Eminent as a

physicist and astronomer, as well as mathematician, he was

a worthy predecessor of Sir Isaac Newton. He studied at

Leyden under the younger Van Schooten. The perusal of

some of his earliest theorems led Descartes to predict his

future greatness. In 1651 Huygens wrote a treatise in which

he pointed out the fallacies of Gregory St. Vincent (1584-1667)

on the subject of quadratures. He himself gave a remarkably

close and convenient approximation to the length of a circular

arc. In 1660 and 1663 he went to Paris and to London. In

1666 he was appointed by Louis XIV. member of the French
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Academy of Sciences. He was induced to remain in Paris

from that time until 1681, when he returned to his native

city, partly for consideration of his health and partly on

account of the revocation of the Edict of Nantes.

The majority of his profound discoveries were made with

aid of the ancient geometry, though at times he used the

geometry of Descartes or of Cavalieri and Eermat. Thus,

like his illustrious friend, Sir Isaac Newton, he always showed

partiality for the Greek geometry. Newton and Huygens

were kindred minds, and had the greatest admiration for each

other. Newton always speaks of him as the " Summus

Hugenius."

To the two curves (cubical parabola and cycloid) previously

rectified he added a third,— the cissoid. He solved the

problem of the catenary, determined the surface of the

parabolic and hyperbolic conoid, and discovered the proper-

ties of the logarithmic curve and the solids generated by it.

Huygens' De horologio oscillatorio (Paris, 1673) is a work that

ranks second only to the Principia of Newton and constitutes

historically a necessary introduction to it.^ The book opens

with a description of pendulum clocks, of which Huygens

is the inventor. Then follows a treatment of accelerated

motion of bodies falling free, or sliding on inclined planes, or

on given curves,— culminating in the brilliant discovery that

the cycloid is the tautochronous curve. To the theory of

curves he added the important theory of "evolutes." After

explaining that the tangent of the evolute is normal to the

involute, he applied the theory to the cycloid, and showed by

simple reasoning that the evolute of this curve is an equal

cycloid. Then comes the complete general discussion of the

centre of oscillation. This subject had been proposed for

investigation by Mersenne and discussed by Descartes and

Koberval. In Huygens' assumption that the common centre
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of gravity of a group of bodies, oscillating about a horizontal

axis, rises to its original height, but no higher, is expressed

for the first time one of the most beautiful principles of

dynamics, afterwards called the principle of the conservation

of vis viva.^^ The thirteen theorems at the close of the work

relate to the theory of centrifugal force in circular motion.

This theory aided Newton in discovering the law of gravita^

tion.

Huygens wrote the first formal treatise on probability. He
proposed the wave-theory of light and with great skill applied

geometry to its development. This theory was long neglected,

but was revived and successfully worked out by Young and

Tresnel a century later. Huygens and his brother improved

the telescope by devising a better way of grinding and polish-

ing lenses. With more e£B.cient instruments he determined

the nature of Saturn's appendage and solved other astro-

nomical questions. Huygens' Opuscula posthuma appeared

in 1703.

Passing now from Holland to England, we meet there one

of the most original mathematicians of his day— John Wallis

(1616-1703). He was educated for the Church at Cambridge

and entered Holy Orders. But his genius was employed

chiefly in the study of mathematics. In 1649 he was appointed

Savilian professor of geometry at Oxford. He was one of

the original members of the Eoyal Society, which was founded

in 1663. Wallis thoroughly grasped the mathematical methods

both of Cavalieri and Descartes. His Conic Sections is the

earliest work in which these curves are no longer considered

as sections of a cone, but as curves of the second degree, and

are treated analytically by the Cartesian method of co-or-

dinates. In this work Wallis speaks of Descartes in the

highest terms, but in his Algebra he, without good reason,

accuses Descartes of plagiarising from Harriot. We have
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already mentioned elsewhere Wallis's solution of the prize

questions on the cycloid, which were proposed by Pascal.

The Arithmetic of Infinites, published in 1655, is his greatest

work. By the application of analysis to the Method of Indi-

visibles, he greatly increased the power of this instrument for

effecting quadratures. He advanced beyond Kepler by mak-

ing more extended use of the " law of continuity " and placing

full reliance in it. By this law he was led to regard the

denominators of fractions as powers with negative exponents.

Thus, the descending geometrical progression a?, a^, x^, x", if

continued, gives x~^, x~'^, x~\ etc. ; which is the same thing

as -, — , — . The exponents of this geometric series are in
X of or

continued arithmetical progression, 3, 2, 1, 0, — 1, — 2, — 3.

He also used fractional exponents, which, like the negative,

had been invented long before, but had failed to be generally

introduced. The symbol oo for infinity is due to him.

Cavalieri and the French geometers had ascertained the

formula for squaring the parabola of any degree, y = a;", m
being a positive integer. By the summation of the powers

of the terms of infinite arithmetical series, it was found that

the curve y = aj" is to the area of . the parallelogram having

the same base and altitude as 1 is to m + 1. Aided by the law

of continuity, Wallis arrived at the result that this formula

holds true not only when m is positive and integral, but also

when it is fractional or negative. Thus, in the parabola

y = Vpa;, 7)i =
"I"

; hence the area of the parabolic segment

is to that of the circumscribed rectangle as 1 : 1^, or as 2 : 3.

Again, suppose that in y = x"', ni = — ^ ; then the curve is a

kind of hyperbola referred to its asymptotes, and the hyper-

bolic space between the curve and its asymptotes is to the

corresponding parallelogram as 1 ^. If m = — 1, as in the

common equilateral hyperbola y = x~'^ or xy = 1, then this

ratio is 1 : — 1 -f- 1, or 1 : 0, showing that its asymptotic space
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is infinite. But in tlie case when m is greater than unity and

negative, Wallis was unable to interpret correctly his results.

For example, if m = — 3, then the ratio becomes 1 : — 2, or

as unity to a negative number. What is the meaning of this ?

Wallis reasoned thus : If the denominator is only zero, then

the area is already infinite ; but if it is less than zero, then the

area must be more than infinite. It was pointed out later by

Varignon, that this space, supposed to exceed infinity, is really

finite, but taken negatively ; that is, measured in a contrary

direction.'' The method of Wallis was easily extended to

eases such us y = ax" + hxi by performing the quadrature

for each term separately, and then adding the results.

The manner in which Wallis studied the quadrature of the

circle and arrived at his expression for the value of rr is

extraordinary. He found that the areas comprised between

the axes, the ordinate corresponding to x, and the curves

represented by the equations y = {l—a?y, y = (l — x'y, y =
(1 — x^y, y=(l — a^y, etc., are expressed in functions of the

circumscribed rectangles having x and y for their sides, by the

quantities forming the series

X,

X — -jar,

« — f a^ + IS/-",

a; — I
»' + I ar' — -^ a;', etc.

When a; = l, these values become respectively 1, f, ^, j^,
etc. Now since the ordinate of the circle is y ={1 — a^)*, the

exponent of which is ^ or the mean value between and 1, the

question of this quadrature reduced itself to this : If 0, 1, 2,

3, etc., operated upon by a certain law, give 1, f, ^, y^,
what will ^ give, when operated upon by the same law ? He

attempted to solve this by interpolation, a method first brought

into prominence by him, and arrived by a highly complicated
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and difficult analysis at the following very remarkable ex-

pression :

ir 2.2. 4.4. 6.6 -8.8

-

2 1 . 3.3 . 6.6 . 7.7 . 9

He did not succeed in making the interpolation itself,

because he did not employ literal or general exponents, and

could not conceive a series with more than one term and less

than two, which it seemed to him the interpolated series must

have. The consideration of this difficulty led Newton to the

discovery of the Binomial Theorem. This is the best place to

speak of that discovery. Newton virtually assumed that the

same conditions which underlie the general expressions for

the areas given above must also hold for the expression to be

interpolated. In the first place, he observed that in each

expression the first term is x, that x increases in odd powers,

that the signs alternate + and — , and that the second terms

4 s', la^, § a^, -I a^, are in arithmetical progression. Hence the

first two terms of the interpolated series must be a; — 2—.

He next considered that the denominators 1, 3, 5, 7, etc., are in

arithmetical progression, and that the coefficients in the nu-

merators in each expression are the digits of some power of

the number 11 ; namely, for the first expression, 11° or 1 ; for

the second, 11^ or 1, 1 ; for the third, 11^ or 1, 2, 1 ; for the

fourth, 11^ or 1, 3, 3, 1 ; etc. He then discovered that, having

given the second digit (call it m), the remaining digits can

be found by continual multiplication of the terms of the series

m — m — 1 m — 2 m —

3

12 3 4
etc. Thus, if m = 4, then

4 . gives D ; D .—-— gives 4 ; 4 . gives 1. Ap-
2 o 4

plying this rule to the required series, since the second term

is -2—, we have m = ^, and then get for the succeeding co-

I
3
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efficients in the numerators respectively — ^, + Yt> ~ tIt'

etc.; hence the required area for the circular segment is

1 3^ 1 yS 1 3.7

X — 2— 1— li etc. Thus he found the interpolated
o o 7

expression to be an infinite series, instead of one having more

than one term and less than two, as Wallis believed it must

be. This interpolation suggested to Newton a mode of ex-

panding (1 — a^)*, or, more generally, (1 — a;^)", into a series.

He observed that he had only to omit from the expression

just found the denominators 1, 3, 5, 7, etc., and to lower

each power of x by unity, and he had the desired expression.

In a letter to Oldenburg (June 13, 1676), Newton states the

theorem as follows : The extraction of roots is much shortened

by the theorem

n 2n 3n

where A means the first term, P», B the second term, C the

third term, etc. He verified it by actual multiplication, but

gave no regular proof of it. He gave it for any exponent

whatever, but made no distinction between the case when the

exponent is positive and integral, and the others.

It should here be mentioned that very rude beginnings of

the binomial theorem are found very early. The Hindoos and

Arabs used the expansions of (a + 6)^ and (a + 6)' for extract-

ing roots; Vieta knew the expansion of (a + 6)*; but these

were the results of simple multiplication without the discovery

of any law. The binomial coefficients for positive whole expo-

nents were known to some Arabic and European mathema-

ticians. Pascal derived the coefficients from the method of

what is called the " arithmetical triangle." Lucas de Burgo,

Stifel, Stevinus, Briggs, and others, all possessed something

from which one would think the binomial theorem could hav e
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been gotten -with a little attention, " if we did not know that

such simple relations were difficult to discover."

Though Wallis had obtained an entirely new expression for

TT, he was not satisfied with it ; for instead of a finite number

of terms yielding an absolute value, it contained merely an

infinite number, approaching nearer and nearer to that value.

He therefore induced his friend, Lord Brouncker (1620 ?-1684),

the first president of the Royal Society, to investigate this

subject. Of course Lord Brouncker did not find what they

were after, but he obtained the following beautiful equality :
—

14—1
2-\ ^

2 +-^
2+, ^^

2 + etc.

Continued fractions, both ascending and descending, appear to

have been known already to the Greeks and Hindoos, though

not in our present notation. Brouncker's expression gave

birth to the theory of continued fractions.

Wallis' method of quadratures was diligently studied by

his disciples. Lord Brouncker obtained the first infinite

series for the area of an equilateral hyperbola between its

asymptotes. Nicolaus Mercator of Holstein, who had settled

in England, gave, in his Logarithmotechnia (London, 1668), a

similar series. He started with the grand property of the

equilateral hyperbola, discovered in 1647 by Gregory St. Vin-

cent, which connected the hyperbolic space between the

asymptotes with the natural logarithms and led to these

logarithms being called hyperbolic. By it Mercator arrived

at the logarithmic series, which Wallis had attempted but

failed to obtain. He showed how the construction of logarith-
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mic tables could be reduced to the quadrature of hyperbolic

spaces. Following up some suggestions of Wallis, William

Neil succeeded in rectifying the cubical parabola, and Wren in

rectifying any cycloidal arc.

A prominent English mathematician and contemporary of

Wallis was Isaac Barrow (1630-1677). He was professor of

mathematics in London, and then in Cambridge, but in 1669

he resigned his chair to his illustrious pupil, Isaac Newton,

and renounced the study of mathematics for that of divinity.

As a mathematician, he is most celebrated for his method of

tangents. He simplified the method of Fermat by introduc-

ing two infinitesimals instead of one, and approximated to the

course of reasoning afterwards followed by Newton in his doc-

trine on Ultimate Eatios.

He considered the infinitesimal right triangle ABB' having

for its sides the difference between two successive ordinates,

the distance between them, and the portion of the curve inter-

cepted by them. This triangle is similar to BPT, formed by

the ordinate, the tangent, and the sub-tangent. Hence, if we

know the ratio of B'A to BA, then we know the ratio of the

ordinate and the sub-tangent, and the tangent can be con-

structed at once. For any curve, say y^ = px, the ratio of B'A

to BA is determined from its

equation as follows : If x re-

ceives an infinitesimal incre-

ment PP'= e, then y receives

an increment B'A = a, and the

equation for the ordinate B'P'

becomes y^+2ay+a^ =px+pe.

Since j^=px, we get 2ay -^a?= pe; neglecting higher powers

of the infinitesimals, we have 2ay=pe, which gives

a: e=p: 2y=p: 2^px.
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But a: e = the ordinate : the sub-tangent ; hence

p : 2 -Vpx = Vpa; ; sub-tangent,

giving 2 X for the value of the sub-tangent. This method dif-

fers from that of the differential calculus only in notation.^^

NEWTON TO EULEE.

It has been seen that in France prodigious scientific progress

was made during the beginning and middle of the seventeenth

century. The toleration which marked the reign of Henry IV.

and Louis XIII. was accompanied by intense intellectual

activity. Extraordinary confidence came to be placed in the

power of the human mind. The bold intellectual conquests

of Descartes, Fermat, and Pascal enriched mathematics with

imperishable treasures. During the early part of the reign

of Louis XIV. we behold the sunset splendour of this glorious

period. Then followed a night of mental effeminacy. This

lack of great scientific thinkers during the reign of Louis XIV.

may be due to the simple fact that no great minds were born

;

but, according to Buckle, it was due to the paternalism, to

the spirit of dependence and subordination, and to the lack

of toleration, which marked the policy of Louis XIV.

In the absence of great French thinkers, Louis XIV. sur-

rounded himself by eminent foreigners. Eomer from Den-

mark, Huygens from Holland, Dominic Cassini from Italy,

were the mathematicians and astronomers adorning his court.

They were in possession of a brilliant reputation before going

to Paris. Simply because they performed scientific work in

Paris, that work belongs no more to France than the dis-

coveries of Descartes belong to Holland, or those of Lagrange

to Germany, or those of Euler and Poncelet to Eussia. We
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must look to other countries than France for the great scien-

tific men of the latter part of the seventeenth century.

About the time when Louis XIV. assumed the direction

of the French government Charles II. became king, of Eng-

land. At this time England was extending her commerce

and navigation, and advancing considerably in material pros-

perity. A strong intellectual movement took place, which

was unwittingly supported by the king. The age of poetry

was soon followed by an age of science and philosophy. In

two successive centuries England produced Shakespeare and

Newton

!

Germany still continued in a state of national degradation.

The Thirty Years' War had dismembered the empire and

brutalised the people. Yet this darkest period of Germany's

history produced Leibniz, one of the greatest geniuses of

modern times.

There are certain focal points in history toward which

the lines of past progress converge, and from which radiate

the advances of the future. Such was the age of Newton

and Leibniz in the history of mathematics. During fifty

years preceding this era several of the brightest and acutest

mathematicians bent the force of their genius in a direction

which finally led to the discovery of the infinitesimal calculus

by Newton and Leibniz. Cavalieri, Eoberval, Fermat, Des-

cartes, Wallis, and others had each contributed to the new
geometry. So great was the advance made, and so near

was their approach toward the invention of the infinitesimal

analysis, that both Lagrange and Laplace pronounced their

countryman, Fermat, to be the true inventor of it. The dif-

ferential calculus, therefore, was not so much an individual

discovery as the grand result of a succession of discoveries

by different minds. Indeed, no great discovery ever flashed

upon the mind at once, and though those of Newton will
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influence mankind to the end of tlie world, yet it must be

admitted that Pope's lines are only a " poetic fancy "
:—

" Nature and Nature's laws lay hid in night

;

God said, ' Let Newton he,' and all was light."

Isaac Newton (1642-1727) was born at Woolsthorpe, in

Lincolnshire, the same year in which Galileo died. At his

birth he was so small and weak that his life was despaired of.

His mother sent him at an early age to a village school, and

in his twelfth year to the public school at Grantham. At

first he seems to have been very inattentive to his studies

and very low in the school; but when, one day, the little

Isaac received a severe kick upon his stomach from a boy

who was above him, he laboured hard till he ranked higher

in school than his antagonist. From that time he continued

to rise until he was the head boy.^ At Grantham, Isaac

showed a decided taste for mechanical inventions. He con-

structed a water-clock, a wind-mill, a carriage moved by the

person who sat in it, and other toys. When he had attained

his fifteenth year his mother took him home to assist her in

the management of the farm, but his great dislike for farm-

work and his irresistible passion for study, induced her to

send him back to Grantham, where he remained till his

eighteenth year, when he entered Trinity College, Cambridge

(1660). Cambridge was the real birthplace of Newton's

genius. Some idea of his strong intuitive powers may be

drawn from the fact that he regarded the theorems of ancient

geometry as self-evident truths, and that, without any prelimi-

nary study, he made himself master of Descartes' Geometry.

He afterwards regarded this neglect of elementary geometry

a mistake in his mathematical studies, and he expressed to

Dr. Pemberton his regret that " he had applied himself to the

works of Descartes and other algebraic writers before he had
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considered the Elements of Euclid with that attention which

so excellent a writer deserves." Besides Descartes' Geometry,

he studied Oughtred's Clavis, Kepler's Optics, the works of

Vieta, Schooten's Miscellanies, Barrow's Lectures, and the

works of Wallis. He was particularly delighted with Wallis'

Arithmetic of Infinites, a treatise fraught with rich and varied

suggestions. Newton had the good fortune of having for

a teacher and fast friend the celebrated Dr. Barrow, who

had been elected professor of Greek in 1660, and was made

Lucasian professor of mathematics in 1663. The mathe-

matics of Barrow and of Wallis were the starting-points

from which Newton, with a higher power than his masters',

moved onward into wider fields. Wallis had effected the

quadrature of curves whose ordinates are expressed by any

integral and positive power of (1 — a^). We have seen how

Wallis attempted but failed to interpolate between the areas

thus calculated, the areas of other curves, such as that of

the circle; how Newton attacked the problem, effected the

interpolation, and discovered the Binomial Theorem, which

afforded a much easier and direct access to the quadrature

of curves than did the method of interpolation ; for even

though the binomial expression for the ordinate be raised

to a fractional or negative power, the binomial could at once

be expanded into a series, and the quadrature of each separate

term of that series could be effected by the method of Wallis.

Newton introduced the system of literal indices.

Newton's study of quadratures soon led him to another

and most profound invention. He himself says that in 1665

and 1666 he conceived the method of fluxions and applied

them to the quadrature of curves. Newton did not com-

municate the invention to any of his friends till 1669, when

he placed in the hands of Barrow a tract, entitled De Analysi

per ^quationes Numero Terminorum Infinitas, which was sent
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by Barrow to Collins, who greatly admired it. In this treatise

the principle of fluxions, though distinctly pointed out, is only

partially developed and explained. Supposing the abscissa

to increase uniformly in proportion to the time, he looked

upon the area of a curve as a nascent quantity increasing

by continued fluxion in the proportion of the length of the

ordinate. The expression which was obtained for the fluxion

he expanded into a finite or infinite series of monomial terms,

to which Wallis' rule was applicable. Barrow urged Newton

to publish this treatise ; " but the modesty of the author, of

which the excess, if not culpable, was certainly in the present

instance very unfortunate, prevented his compliance." ^ Had
this tract been published then, instead of forty-two years

later, there would probably have been no occasion for that

long and deplorable controversy between Newton and Leibniz.

'For a long time Newton's method remained unknown, ex-

cept to his friends and their correspondents. In a letter

to Collins, dated December 10th, 1672, Newton states the fact

of his invention with one example, and then says :
" This

is one particular, or rather corollary, of a general method,

which extends itself, without any troublesome calculation, not

only to the drawing of tangents to any curve lines, whether

geometrical or mechanical, or anyhow respecting right lines

or other curves, but also to the resolving other abstruser

kinds of problems about the crookedness, areas, lengths,

centres of gravity of curves, etc. ; nor is it (as Hudden's

method of Maximis and Minimis) limited to equations which

are free from surd quantities. This method I have inter-

woven with that other of working in equations, by reducing

them to infinite series."

These last words relate to a treatise he composed in the

year 1671, entitled Method of Fluxions, in which he aimed

to represent his method as an independent calculus and as
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a complete system. This tract was intended as an introduc-

tion, to an edition of Kinckhuysen's Algebra, which he had

undertaken to publish. " But the fear of being involved in

disputes about this new discovery, or perhapis the wish to

render it more complete, or to have the sole advantage of

employing it in his physical researches, induced him to aban-

don this design." ^

Excepting two papers on optics, all of his works appear

to have been published only after the most pressing solicita-

tions of his friends and against his own wishes.** His re-

searches on light were severely criticised, and he wrote in

1675 :
" I was so persecuted with discussions arising out of

my theory of light that I blamed my own imprudence for

parting with so substantial a blessing as my quiet to run

after a shadow."

The Method of Fluxions, translated by J. Colson from New-

ton's Latin, was first published in 1736, or sixty-five years

after it was written. In it he explains first the expansion

into series of fractional and irrational quantities,— a subject

which, in his first years of study, received the most careful

attention. He then proceeds to the solution of the two fol-

lowing mechanical problems, which constitute the pillars, so

to speak, of the abstract calculus :
—

"I. The length of the space described being continually

(i.e. at all times) given ; to find the velocity of the motion at

any time proposed.

" II. The velocity of the motion being continually given ; to

find the length of the space described at any time proposed."

Preparatory to the solution, Newton , says : "Thus, in the

equation y = «?; ii y represents the length of the space at any

time described, which (time) another space x, by increasing

with an uniform celerity x, measures and exhibits as described:

then 2xx will represent the celerity by which the space y,
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at the same moment of time, proceeds to be described; and

contrarywise."

" But whereas we need not consider the time here, any far-

ther than it is expounded and measured by an equable local

motion; and besides, whereas only quantities of the same

kind can be compared together, and also their velocities of

increase and decrease ; therefore, in what follows I shall have

no regard to time formally considered, but I shall suppose

some one of the quantities proposed, being of the same kind,

to be increased by an equable fluxion, to which the rest may be

referred, as it were to time ; and, therefore, by way of analogy,

it may not improperly receive the name of time." In this

statement of Newton there is contained a satisfactory answer

to the objection which has been raised against his method,

that it introduces into analysis the foreign idea of motion. A
quantity thus increasing by uniform fluxion, is what we now

call an independent variable.

Newton continues :
"Now those quantities which I consider

as gradually and indefinitely increasing, I shall hereafter call

fluents, or flowing quantities, and shall represent them by the

final letters of the alphabet, v, x, y, and z; . . . and the veloci-

ties by which every fluent is increased by its generating motion

(which I may call fluxions, or simply velocities, or celerities),

I shall represent by the same letters pointed, thus, v, x, y, z.

That is, for the celerity of the quantity v I shall put v, and so

for the celerities of the other quantities x, y, and «, I shall put

X, y, and z, respectively." It must here be observed that New-

ton does not take the fluxions themselves infinitely small.

The " moments of fluxions," a term introduced further on, are

infinitely small quantities. These " moments," as defined and

used in the Method of Fluxions, are substantially the differen-

tials of Leibniz. De Morgan points out that no small amount of

confusion has arisen from the use of the word fluxion and the
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notation x by all the English writers previous to 1704, except-

ing Newton and Cheyne, in the sense of an infinitely small in-

crement.^ Strange to say, even in the Commercium EpistoUcum

the words moment and fluxion appear to be used as synonymous.

After showing by examples how to solve the first problem,

Newton proceeds to the demonstration of his solution :
—

"The moments of flowing quantities (that is, their indefi-

nitely small parts, by the accession of which, in infinitely

small portions of time, they are continually increased) are as

the velocities of their flowing or increasing.

" Wherefore, if the moment of any one (as x) be represented

by the product of its celerity x into an infinitely small quantity

(i.e. by off), the moments of the others, v, y, z, will be repre-

sented by *0, yO, 2O ; because uO, xO, yO, and zO are to each other

as V, X, y, and z.

" Now since the moments, as aO and yO, are the indefinitely

little accessions of the flowing quantities x and y, by which

those quantities are increased through the several indefinitely

little intervals of time, it follows that those quantities, x

and y, after any indefinitely small interval of time, become

x + xO and y + yO, and therefore the equation, which at all

times indifferently expresses the relation of the flowing quan-

tities, will as well express the relation between a; -1- a;0 and

y + yO, as between x and y ; so that x + xO and y + yO may
be substituted in the same equation for those quantities, in-

stead of X and y. Thus let any equation a? — aa? + axy — y^ =
be given, and substitute x +M for x, and y + yO for y, and

there will arise

a? + Sx'xO + 3xMxO + a^O^ ^

— aa? — 2 axAO — axOAO

-1- axy -\- ayxQ -}- axQyO

-\-axyQ

-f -SyhjO -ZyyOyQ-f(f

r
=0.

3» J
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" Now, by supposition, a;' — av? + axy — 2/^ = 0, which there-

fore, being expunged and the remaining terms being divided

by 0, there will remain

33?x — 2 axx + ayx + axy — Sy^y + 3 xxxO — axxO + axi/O

— 3yyy0 + i^OO - y^O = 0.

But whereas zero is supposed to be infinitely little, that it

may represent the moments of quantities, the terms that are

multiplied by it will be nothing in respect of the rest {termini

in earn ducti pro nihilo possunt haberi cum aliis collati) ; there-

fore I reject them, and there remains

Sx'x — 2axx + ayx + axy — 3y^y = 0,

as above in Example I." Newton here uses infinitesimals.

Much greater than in the first problem were the difiiculties

encountered in the solution of the second problem, involving,

as it does, inverse operations which have been taxing the skUl

of the best analysts since his time. Newton gives first a

special solution to the second problem in which he resorts

to a rule for which he has given no proof.

In the general solution of his second problem, Newton

assumed homogeneity with respect to the fluxions and then

considered three cases : (1) when the equation contains two

fluxions of quantities and but one of the fluents
; (2) when

the equation involves both the fluents as well as both the flux-

ions
; (3) when the equation contains the fluents and the flux-

ions of three or more quantities. The first case is the easiest

since it requires simply the integration of -i=f(x), to which

his "special solution" is applicable. The second case de-

manded nothing less than the general solution of a dif-

ferential equation of the first order. Those who know what

efforts were afterwards needed for the complete exploration

of this field in analysis, will not depreciate Newton's work
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even though he resorted to solutions in form of infinite series.

Newton's third case comes now under the solution of partial

differential equations. He took the equation 2x— z + xy =
and succeeded in finding a particular integral of it.

The rest of the treatise is devoted to the determination of

maxima and minima, the radius of curvature of curves, and

other geometrical applications of his fluxionary calculus. All

this was done previous to the year 1672.

It must be observed that in the Method of Flvxions (as well

as in his De Analyst and all earlier papers) the method

employed by Newton is strictly infinitesimal, and in substance

like that of Leibniz. Thus, the original conception of the

calculus in England, as well as on the Continent, was based

on infinitesimals. The fundamental principles of the fluxionary

calculus were first given to the world in the Principia; but its

peculiar notation did not appear until published in the second

volume of Wallis' Algebra in 1693. The exposition given in

the Algebra was substantially a contribution of Newton ; it

rests on infinitesimals. In the first edition of the Principia

(1687) the description of fluxions is likewise founded on

infinitesimals, but in the second (1713) the foundation is

somewhat altered. In Book II. Lemma II. of the first edition

we read :
" Cave tamen intellexeris particulas finitas. Momenta

quam primum finitae sunt magnitudinis, desinunt esse momenta.

Finiri enim repugnat aliquatenus perpetuo eorum incremento vel

decremento. Intelligenda sunt principia jamjam nascentia

finitorum magnitudinum." In the second edition the two

sentences which we print in italics are replaced by the

following: "Particulse finitae non sunt momenta sed quanti-

tates ipsae ex momentis genitse." Through the difficulty of

the phrases in both extracts, this much distinctly appears,

that in the first, moments are infinitely small quantities.

What else they are in the second is not clear.® In the
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Quadrature of Curves of 1704, the infinitely small quantity is

completely abandoned. It lias been shown that in the Method

of Fluxions Newton rejected terms involving the quantity 0,

because they are infinitely small compared with other terms.

This reasoning is evidently erroneous ; for as long as is a

quantity, though ever so small, this rejection cannot be made

without affecting the result. Newton seems to have felt this,

for in the Quadrature of Curves he remarked that " in math-

ematics the minutest errors are not to be neglected " (errores

quam minimi in rebus mathematicis non sunt contemnendi)

.

The early distinction between the system of Newton and

Leibniz lies in this, that Newton, holding to the conception

of velocity or fluxion, used the infinitely small increment as a

means of determining it, while with Leibniz the relation of the

infinitely small increments is itself the object of determination.

The difference between the two rests mainly upon a difference

in the mode of generating quantities.**

We give Newton's statement of the method of fluxions or

rates, as given in the introduction to his Quadrature of Curves.

"1 consider mathematical quantities in this place not as

consisting of very small parts, but as described by a continued

motion. Lines are described, and thereby generated, not by

the apposition of parts, but by the continued motion of points

;

superficies by the motion of lines; solids by the motion of

superficies ; angles by the rotation of the sides
;
portions of

time by continual flux : and so on in other quantities. These

geneses really take place in the nature of things, and are

daily seen in the motion of bodies. . . .

"Fluxions are, as near as we please {quam proxime), as the

increments of fluents generated in times, equal and as small as

possible, and to speak accurately, they are in the prime ratio

of nascent increments
;
yet they can be expressed by any lines

whatever, which are proportional to them."
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Newton exemplifies this last assertion by the problem of

tangency : Let AB be the abscissa, BG the ordinate, VCH
the tangent, Ec the increment of the ordinate, which pro-

duced meets Fifat T, and Cc the increment of the curve.

The right line Cc being produced to K, there are formed

three small triangles, the rectilinear CEc, the mixtilinear

CEc, and the rectilinear GET. Of these, the first is evidently

the smallest, and the last the greatest. Now suppose

the ordinate 6c to move into the place BO, so that the

point c exactly co-

incides with the

point G; GK, and

therefore the curve

Gc, is coincident

with the tangent

CH, Ec is abso-

lutely equal to ET,

and the mixtilinear

evanescent triangle GEc is, in the last form, similar to the

triangle GET; and its evanescent sides GE, Ec, Gc, will be

proportional to GE, ET, and GT, the sides of the triangle

GET. Hence it follows that the fluxions of the lines AB,

BG, AG, being in the last ratio of their evanescent increments,

are proportional to the sides of the triapgle GET, or, which is

all one, of the triangle VBG similar thereunto. As long as

the points G and c are distant from each other by an interval,

however small, the line GK will stand apart by a small angle

from the tangent GH. But when GK coincides with GH, and

the lines GE, Ec, cG reach their ultimate ratios, then the

points G and c accurately coincide and are one and the same.

Newton then adds that " in mathematics the minutest errors

are not to be neglected." This is plainly a rejection of the

postulates of Leibniz. The doctrine of infinitely small quan-
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titles is here renounced in a manner which would lead one

to suppose that Newton had never held it himself. Thus it

appears that Newton's doctrine was different in different

periods. Though, in the above reasoning, the Charybdis of

infinitesimals is safely avoided, the dangers of a Scylla stare

us in the face. We are required to believe that a point may
be considered a triangle, or that a triangle can be inscribed

in a point ; nay, that three dissimilar triangles become similar

and equal when they have reached their ultimate form in one

and the same point.

In the introduction to the Quadrature of Curves the fluxion

of x" is determined as follows :
—

"In the same time that x, by flowing, becomes a; + 0, the

power x" becomes (x+O)", i.e. by the method of infinite series

x" + nO x"-' + "HlJZJIo^ X"-' + etc.,
z

and the increments

and nO a;"-^ + '"l^^Q^x^-^ + etc.,

are to one another as

1 to wx"-' + 'J-=^0 X"-'' + etc.

" Let now the increments vanish, and their last proportion

will be 1 to nx""^ : hence the fluxion of the quantity x is to

the fluxion of the quantity x" as 1 : nx"~^

" The fluxion of lines, straight or curved, in all cases what-

ever, as also the fluxions of superficies, angles, and other

quantities, can be obtained in the same manner by the method

of prime and ultimate ratios. But to establish in this way

the analysis of infinite quantities, and to investigate prime

and ultimate ratios of finite quantities, nascent or evapescent,

is in harmony with the geometry of the ancients ; and I have

endeavoured to show that, in the method of fluxions, it is not
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necessary to introduce into geometry infinitely small quanti-

ties." This mode of differentiating does not remove all the

difficulties connected with the subject. When becomes

nothing, then we get the ratio - = nx^~^, which needs further

elucidation. Indeed, the method of Newton, as delivered by

himself, is encumbered with difficulties and objections. Among
the ablest admirers of Newton, there have been obstinate dis-

putes respecting his explanation of his method of " prime and

ultimate ratios."

The so-called " method of limits " is frequently attributed

to Newton, but the pure method of limits was never adopted

by him as his method of constructing the calculus. All he

did was to establish in his Principia certain principles which

are applicable to that method, but which he used for a different

purpose. The first lemma of the first book has been made the

foundation of the method of limits :
—

" Quantities and the ratios of quantities, which in any finite

time converge continually to equality, and before the end of

that time approach nearer the one to the other than by any

given difference, become ultimately equal."

In this, as well as in the lemmas following this, there are

obscurities and difficulties. Newton appears to teach that a

variable quantity and its limit will ultimately coincide and be

equal. But it is now generally agreed that in the clearest

statements which have been made of the theory of limits, the

variable does not actually reach its limit, though the variable

may approach it as near as we please.

The full title of Newton's Principia is Philosophice Natura-

lis Principia Mathematica. It was printed in 1687 under

the direction, and at the expense, of Dr. Edmund Halley.

A second edition was brought out in 1713 with many altera-

tions and improvements, and accompanied by a preface from
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Mr. Cotes. It was sold out in a few months, but a pirated

edition published in Amsterdam supplied the demand.^ The

third and last edition which appeared in England during

Newton's lifetime was published in 1726 by Henry Pemberton.

The Principia consists of three books, of which thg first two,

constituting the great bulk of the work, treat of the mathe-

matical principles of natural philosophy, namely, the laws and

conditions of motions and forces. In the third book is drawn

up the constitution of the universe as deduced from the fore-

going principles. The great principle underlying this memor-

able work is that of universal gravitation. The first book

was completed on April 28, 1686. After the remarkably short

period of three months, the second book was finished. The

third book is the result of the next nine or ten months'

labours. It is only a sketch of a much more extended elabora-

tion of the subject which he had planned, but which was never

brought to completion.

The law of gravitation is enunciated in the first book. Its

discovery envelops the name of Newton in a halo of perpetual

glory. The current version of the discovery is as follows : it

was conjectured by Hooke, Huygens, Halley, Wren, Newton,

and others, that, if Kepler's third law was true (its absolute

accuracy was doubted at that time), then the attraction

between the earth and other members of the solar system

varied inversely as the square of the distance. But the proof

of the truth or falsity of the guess was wanting. In 1666

Newton reasoned, in substance, that if g represent the acceler-

ation of gravity on the surface of the earth, r be the earth's

radius, R the distance of the moon from the earth, T the time

of lunar revolution, and a a degree at the equator, then, if the

law is true,

a— = 47r—, or q =— ( — i • ISOo.i/jj2 ^ 272' y T\r)
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The data at Newton's command gave iJ= 60.4 r, r = 2,360,628

seconds, but a only 60 instead of 69 J English miles. This

wrong value of a rendered the calculated value of g smaller

than its true value, as known from actual measurement. It

looked as though the law of inverse squares were not the true

law, and Newton laid the calculation aside. In 1684 he casu-

ally ascertained at a meeting of the Eoyal Society that Jean

Picard had measured an arc of the meridian, and obtained a

more accurate value for the earth's radius. Taking the cor-

rected value for a, he found a figure for g which corresponded

to the known value. Thus the law of inverse squares was

verified. In a scholium in the Principia, Newton acknowl-

edged his indebtedness to Huygens for the laws on centrifugal

force employed in his calculation.

The perusal by the astronomer Adams of a great mass of

unpublished letters and manuscripts of Newton forming the

Portsmouth collection (which remained private property

until 1872, when its owner placed it in the hands of the

University of Cambridge) seems to indicate that the diflS.cul-

ties encountered by Newton in the above calculation were of a

different nature. According to Adams, Newton's numerical

verification was fairly complete in 1666, but Newton had not

been able to determine what the attraction of a spherical shell

upon an external point would be. His letters to Halley show

that he did not suppose the earth to attract as though all its

mass were concentrated into a point at the centre. He could

not have asserted, therefore, that the assumed law of gravity

was verified by the figures, though for long distances he might

have claimed that it yielded close approximations. When
Halley visited Newton in 1684, he requested Newton to deter-

mine what the orbit of a planet would be if the law of attrac-

tion were that of inverse squares. Newton had solved a

similar problem for Hooke in 1679, and replied at once that it
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was an ellipse. After Halley's visit, Newton, with Picard's

new value for the earth's radius, reviewed his early calcula-

tion, and was able to show that if the distances between the

bodies in the solar system were so great that the bodies might

be considered as points, then their motions were in accordance

with the assumed law of gravitation. In 1685 he completed

his discovery by showing that a sphere whose density at any

point depends only on the distance from the centre attracts

an external point as though its whole mass were concentrated

at the centre.'*

Newton's unpublished manuscripts in the Portsmouth col-

lection show that he had worked out, by means of fluxions and

fluents, his lunar calculations to a higher degree of approxima^

tion than that given in the Principia, but that he was unable

to interpret his results geometrically. The papers in that col-

lection throw light upon the mode by which Newton arrived

at some of the results in the Principia, as, for instance, the

famous construction in Book II., Prop. 25, which is unproved

in the Principia, but is demonstrated by him twice in a draft

of a letter to David Gregory, of Oxford.'*

It is chiefly upon the Principia that the fame of Newton

rests. Brewster calls it " the brightest page in the records of

human reason." Let us listen, for a moment, to the comments

of Laplace, the foremost among those followers of Newton who

grappled with the subtle problems of the motions of planets

under the influence of gravitation: "Newton has well estab-

lished the existence of the principle which he had the merit

of discovering, but the development of its consequences and

advantages has been the work of the successors of this great

mathematician. The imperfection of the infinitesimal calcu-

lus, when first discovered, did not allow him completely to

resolve the difiicult problems which the theory of the universe

offers ; and he was oftentimes forced to give mere hints, which
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were always uncertain till confirmed by rigorous analysis.

Notwithstanding these unavoidable defects, the importance

and the generality of his discoveries respecting the system of

the universe, and the most interesting points of natural phi-

losophy, the great number of profound and original views,

which have been the origin of the most brilliant discoveries of

the mathematicians of the last century, which were all pre-

sented with much elegance, will insure to the Principia a last-

ing pre-eminence over all other productions of the human

mind."

Newton's Arithmetica Universalis, consisting of algebraical

lectures delivered by him during the first nine years he was

professor at Cambridge, were published in 1707, or more than

thirty years after they were written. This work was pub-

lished by Mr. Whiston. We are not accurately informed how

Mr. Whiston came in possession of it, but according to some

authorities its publication was a breach of confidence on his

part.

The Arithmetica Universalis contains new and important

results on the theory of equations. His theorem on the

sums of powers of roots is well known. Newton showed

that in equations with real coefficients, imaginary roots always

occur in pairs. His inventive genius is grandly displayed

in his rule for determining the inferior limit of the number

of imaginary roots, and the superior limits for the number

of positive and negative roots. Though less expeditious than

Descartes', Newton's rule always gives as close, and generally

closer, limits to the number of positive and negative roots.

Newton did not prove his rule. It awaited demonstration

for a century and a half, until, at last, Sylvester established

a rematkable general theorem which includes Newton's rule

as a special case.

The treatise on Method ofFluxions contains Newton's method
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of approximating to tlie roots of numerical equations. This

is simply the method of Vieta improved. The same treatise

contains '' Newton's parallelogram," which enabled him, in an

equation, f(x, y) = 0, to find a series in powers of x equal to

the variable y. The great utility of this rule lay in its deter-

mining the form of the series ; for, as soon as the law was

known by which the exponents in the series vary, then the

expansion could be effected by the method of indeterminate

coefficients. The rule is still used in determining the infinite

branches to curves, or their figure at multiple points. Newton

gave no proof for it, nor any clue as to how he discovered it.

The proof was supplied half a century later, by Kaestner and

Cramer, independently.^

In 1704 was published, as an appendix to the Opticks, the

Enumeratio linearum tertii ordinis, which contains theorems

on the theory of curves. Newton divides cubics into seventy-

two species, arranged in larger groups, for which his com-

mentators have supplied the names "genera" and "classes,"

recognising fourteen of the former and seven (or four) of the

latter. He overlooked six species demanded by his principles

of classification, and afterwards added by Stirling, Murdoch,

and Cramer. He enunciates the remarkable theorem that the

five species which he names "divergent parabolas" give by

their projection every cubic curve whatever. As a rule, the

tract contains no proofs. It has been the subject of frequent

conjecture how Newton deduced his results. Eecently we have

gotten at the facts, since much of the analysis used by Newton

and a few additional theorems have been discovered among the

Portsmouth papers. An account of the four holograph man-

uscripts on this subject has been published by W. W. Rouse

Ball, in the Transactions of the London Mathematical Society

(vol. XX., pp. 104-143). It is interesting to observe how

Newton begins his research on the classiiication of cubic
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curves by the algebraic method, but, finding it laborious,

attacks the problem geometrically, and afterwards returns

again to analysis.'^

Space does not permit us to do more than merely mention

Newton's prolonged researches in other departments of science.

He conducted a long series of experiments in optics and is the

author of the corpuscular theory of light. The last of a

number of papers on optics, which he contributed to the Eoyal

Society, 1687, elaborates the theory of "fits." He explained

the decomposition of light and the theory of the rainbow. By
him were invented the reflecting telescope and the sextant

(afterwards re-discovered by Thomas Godfrey of Philadelphia^

and by John Hadley). He deduced a theoretical expression

for the velocity of sound in air, engaged in experiments on

chemistry, elasticity, magnetism, and the law of cooling, and

entered upon geological speculations.

During the two years following the close of 1692, Newton

suffered from insomnia and nervous irritability. Some thought

that he laboured under temporary mental aberration. Though

he recovered his tranquillity and strength of mind, the time

of great discoveries was over ; he would study out questions

propounded to him, but no longer did he by his own accord

enter upon new fields of research. The most noted investi-

gation after his sickness was the testing of his lunar theory

by the observations of Mamsteed, the astronomer royal. In

1695 he was appointed warden, and in 1699 master, of the

mint, which ofBce he held until his death. His body was

interred in Westminster Abbey, where in 1731 a magnificent

monument was erected, bearing an inscription ending with,

" Sibi gratulentur mortales tale tantumque exstitisse humani

generis decus." It is not true that the Binomial Theorem is

also engraved on it.

We pass to Leibniz, the second and independent inventor
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of the calculus. Gottfried Wilhelm Leibniz (1646-1716) was

born in Leipzig. No period in the history of any civilised

nation could have been less favourable for literary and scientific

pursuits than the middle of the seventeenth century in Ger-

many. Yet circumstances seem to have happily combined

to bestow on the youthful genius an education hardly other-

wise obtainable during this darkest period of German history.

He was brought early in contact with the best of the culture

then existing. In his fifteenth year he entered the University

of Leipzig. Though law was his principal study, he applied

himself with great diligence to every branch of knowledge.

Instruction in German universities was then very low. The

higher mathematics was not taught at all. We are told that

a certain John Kuhn lectured on Euclid's Elements, but that

his lectures were so obscure that none except Leibniz could

understand them. Later on, Leibniz attended, for a half-year,

at Jena, the lectures of Erhard Weigel, a philosopher and

mathematician of local reputation. In 1666 Leibniz published

a treatise, De Arte Gombinatoria, in which he does not pass

beyond the rudiments of mathematics. Other theses written

by him at this time were metaphysical and juristical in

character. A fortunate circumstance led Leibniz abroad. In

1672 he was sent by Baron Boineburg on a political mission

to Paris. He there formed the acquaintance of the most

distinguished men of the age. Among these was Huygens,

who presented a copy of his work on the oscillation of the

pendulum to Leibniz, and first led the gifted young German

to the study of higher mathematics. In 1673 Leibniz went

to London, and remained there from January till March. He
there became incidentally acquainted with the mathematician

Pell, to whom he explained a method he had found on the

summation of series of numbers by their differences. Pell

told him that a similar formula had been published by Mouton
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as early as 1670, and then called his attention to Mercator's

work on the rectification of the parabola. While in London,

Leibniz exhibited to the Eoyal Society his arithmetical ma-

chine, which was similar to Pascal's, but more efficient and

perfect. After his return to Paris, he had the leisure to study

mathematics more systematically. With indomitable energy

he set about removing his ignorance of higher mathematics.

Huygens was his principal master. He studied the geometric

works of Descartes, Honorarius Pabri, Gregory St. Vincent,

and Pascal. A careful study of infinite series led him to the

discovery of the following expression for the ratio of the

circumference to the diameter of the circle, previously discov-

ered by James Gregory :
—

-—X s-tis r^s '^^'^

This elegant series was found in the same way as iSlercator's

on the hyperbola. Huygens was highly pleased with it and

urged him on to new investigations. 'Leibniz entered into a

detailed study of the quadrature of curves and thereby became

intimately acquainted with the higher mathematics. Among
the papers of Leibniz is still found a manuscript on quadrar

tures, written before he left Paris in 1676, but which was

never printed by him. The more important parts of it were

embodied in articles published later in the Acta Eruditorum.

In the study of Cartesian geometry the attention of Leibniz

was drawn early to the direct and inverse problems of tan-

gents. The direct problem had been solved by Descartes for

the simplest curves only; while the inverse had completely

transcended the power of his analysis. Leibniz investigated

both problems for any curve ; he constructed what he called

the triangulum characteristicum— an infinitely small triangle

between the infinitely small part of the curve coinciding with

the tangent, and the differences of the ordinates and abscissas.
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A curve is here considered to be a polygon. The triangulum

characteristicum is similar to the triangle formed by the tan-

gent, the ordinate of the point of contact, and the sub-

tangent, as well as to that between the ordinate, normal,

and sub-normal. It was first employed by Barrow in Eng-

land, but appears to have been reinvented by Leibniz. From
it Leibniz observed the connection existing between the direct

and inverse problems of tangents. He saw also that the latter

could be carried back to the quadrature of curves. All these

results are contained in a manuscript of Leibniz, written in

1673. One mode used by him in effecting quadratures was

as follows : The rectangle formed by a sub-tangent p and

an element a (i.e. infinitely small part of the abscissa) is

equal to the rectangle formed by the ordinate y and the ele-

ment I of that ordinate ; or in symbols, pa = yl. But the

summation of these rectangles from zero on gives a right

triangle equal to half the square of the ordinate. Thus,

using Cavalieri's notation, he gets

omn. pa = omn. yl = f- (omn. meaning omnia, all).

But 2/ = omn.Z; hence

omn. omn. I
I omn. 1?

a 2a

This equation is especially interesting, since it is here that

Leibniz first introduces a new notation. He says :
" It will

be useful to write j for omn., as ( I for omn. I, that is, the

sum of the I's " ; he then writes the equation thus :
—

2a-Jja
Erom this he deduced the simplest integrals, such as
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Since the symbol of summation f raises the dimensions, he

concluded that the opposite calculus, or that of differences

d, would lower them. Thus, if f Z = ya, then I = s—. The

symbol d was at first placed by Leibniz in the denominator,

because the lowering of the power of a term was brought

about in ordinary calculation by division. The manuscript

giving the above is dated October 29th, 1675.'" This, then,

was the memorable day on which the notation of the new

calculus came to be,— a notation which contributed enor-

mously to the rapid growth and perfect development of the

calculus.

Leibniz proceeded to apply his new calculus to the solution

of certain problems then grouped together under the name

of the Inverse Problems of Tangents. He found the cubical

parabola to be the solution to the following: To find the

curve in which the sub-normal is reciprocally proportional

to the ordinate. The correctness of his solution was tested

by him by applying to the result Sluze's method of tangents

and reasoning backwards to the original supposition. In the

solution of the third problem he changes his notation from

- to the now usual notation dx. It is worthy of remark
d
that in these investigations, Leibniz nowhere explains the

significance of dx and dy, except at one place in a marginal

note: "Idem est dx et -, id est, differentia inter duas x
d

proximas." Nor does he use the term differential, but

always difference. Not till ten years later, in the Acta

Eruditorum, did he give further explanations of these sym-

bols. What he aimed at principally was to determine the

change an expression undergoes when the symbol | or d is

placed before it. It may be a consolation to students wres-

tling with the elements of the differential calculus to know
that it required Leibniz considerable thought and atten-



NEWTOK TO EULEK. 223

tion^ to determine whether dxdy is the same as d(xy'), and

— the same as d-. After considering these questions at
dy y
the close of one of his manuscripts, he concluded that the

expressions were not the same, though he could not give the

true value for each. Ten days later, in a manuscript dated

November 21, 1675, he found the equation ydx = dxy — xdy,

giving an expression for d{xy), which he observed to be true

for all curves. He succeeded also in eliminating dx from

a differential equation, so that it contained only dy, and

thereby led to the solution of the problem under considerar

tion. " Behold, a most elegant way by which the problems

of the inverse methods of tangents are solved, or at least

are reduced to quadratures ! " Thus he saw clearly that the

inverse problems of tangents could be solved by quadratures,

or, in other words, by the integral calculus. In course of a

half-year he discovered that the direct problem of tangents,

too, yielded to the power of his new calculus, and that thereby

a more general solution than that of Descartes could be

obtained. He succeeded in solving all the special problems

of this kind, which had been left unsolved by Descartes.

Of these we mention only the celebrated problem proposed

to Descartes by De Beaune, viz. to find the curve whose

ordinate is to its sub-tangent as a given line is to that part

of the ordinate which lies between the curve and a line drawn

from the vertex of the curve at a given inclination to the axis.

Such was, in brief, the progress in the evolution of the new

calculus made by Leibniz during his stay in Paris. Before

his departure, in October, 1676, he found himself in possession

of the most elementary rules and formulae of the infinitesimal

calculus.

From Paris, Leibniz returned to Hanover by way of London

and Amsterdam. In London he met Collins, who showed him
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a part of his scientific correspondence. Of this we shall speak

later. In Amsterdam he discussed mathematics with Sluze,

and became satisfied that his own method of constructing

tangents not only accomplished all that Sluze's did, but even

more, since it could be extended to three variables, by which

tangent planes to surfaces could be found; and especially,

since neither irrationals nor fractions prevented the immediate

application of his method.

In a paper of July 11, 1677, Leibniz gave correct rules for

the differentiation of sums, products, quotients, powers, and

roots. He had given the differentials of a few negative and

fractional powers, as early as November, 1676, but had made

some mistakes. For d -\/x he had given the erroneous value

—p, and in another place the value — ^x~^; for d-^ occurs in
y/x

2
^

one place the wrong value, -, while a few lines lower is

o a?

given — —, its correct value.

In 1682 was founded in Berlin the Adta Eruditorum, a

journal usually known by the name of Leipzig Acts. It

was a partial imitation of the Prench Journal des Savans

(founded in 1665), and the literary and scientific review

published in Germany. Leibniz was a frequent contributor.

Tschirnhaus, who had studied mathematics in Paris with

Leibniz, and who was familiar with the new analysis of

Leibniz, published in the Acta Eroditorum a paper on quad-

ratures, which consists principally of subject-matter com-

municated by Leibniz to Tschirnhaus during a controversy

which they had had on this subject. Fearing that Tschirnhaus

might claim as his own and publish the notation and rules of

the differential calculus, Leibniz decided, at last, to make

public the fruits of his inventions. In 1684, or nine years

after the new calculus first dawned upon the mind of Leibniz,

and nineteen years after Newton first worked at fluxions,



NEWTON TO EULEE. 225

and three years before the publication of Newton's Principia,

Leibniz published, in the Leipzig Acts, his first paper on the

differential calculus. He was unwilling to give to the world

all his treasures, but chose those parts of his work which were

most abstruse and least perspicuous. This epoch-making paper

of only six pages bears the title :
" Nova methodus pro maximis

et minimis, itemque tangentibus, quae nee fractas nee irrar

tionales quantitates moratur, et singulare pro illis calculi

genus." The rules of calculation are briefly stated without

proof, and the meaning of dx and dy is not made clear. It has

been inferred from this that Leibniz himself had no definite

and settled ideas on this subject. Are dy and dx finite or

infinitesimal quantities ? At first they appear, indeed, to have

been taken as finite, when he says :
" "We now call any line

selected at random dx, then we designate the line which is to

dx as y is to the sub-tangent, by dy, which is the difference of

y." Leibniz then ascertains, by his calculus, in what way a

ray of light passing through two differently refracting media,

can travel easiest from one point to another ; and then closes

his article by giving his solution, in a few words, of De
Beaune's problem. Two years later (1686) Leibniz published

in the Acta Eruditorum a paper containing the rudiments of

the integral calculus. The quantities dx and dy are there

treated as infinitely small. He showed that by the use of his

notation, the properties of curves could be fully expressed by

equations. Thus the equation

f = V2 9; — ar'-J-J

dx

V2a!-a!^

characterises the cycloid.'*

The great invention of Leibniz, now made public by his

articles in the Leipzig Acts, made little impression upon the

mass of mathematicians. In Germany no one comprehended
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the new calculus except Tschirnhaus, who remained indif-

ferent to it. The author's statements were too short and suc-

cinct to make the calculus generally understood. The first

to recognise its importance and to take up the study of it

were two foreigners,— the Scotchman John Craig, and

the Swiss James Bernoulli. The latter wrote Leibniz a

letter in 1687, wishing to be initiated into the mysteries

of the new analysis. Leibniz was then travelling abroad,

so that this letter remained unanswered till 1790. James

Bernoulli succeeded, meanwhile, by close application, in un-

covering the secrets of the differential calculus without assist-

ance. He and his brother John proved to be mathematicians

of exceptional power. They applied themselves to the new

science with a success and to an extent which made Leibniz

declare that it was as much theirs as his. Leibniz carried on

an extensive correspondence with them, as well as with other

mathematicians. In a letter to John Bernoulli he suggests,

among other things, that the integral calculus be improved by

reducing integrals back to certain fundamental irreducible

forms. The integration of logarithmic expressions was then

studied. The writings of Leibniz contain many innovations,

and anticipations of since prominent methods. Thus he made

use of variable parameters, laid the foundation of analysis in

situ, introduced the first notion of determinants in his effort

to simplify the expression arising in the elimination of the

unknown quantities from a set of linear equations. He

resorted to the device of breaking up certain fractions into

the sum of other fractions for the purpose of easier integration
;

he explicitly assumed the principle of continuity ; he gave the

first instance of a " singular solution," and laid the foundation

to the theory of envelopes in two papers, one of which contains

for the first time the terms co-ordinate and axes of co-ordinates.

He wrote on osculating curves, but his paper contained the
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error (pointed out by John Bernoulli, but not admitted by

him) that an osculating circle will necessarily cut a curve in

four consecutive points. Well known is his theorem on the

nth differential coefficient of the product of two functions of a

variable. Of his many papers on mechanics, some are valuable,

while others contain grave errors.

Before tracing the further development of the calculus we

shall sketch the history of that long and bitter controversy

between English and Continental mathematicians on the inven-

tion of the calculus. The question was, did Leibniz invent it

independently of Newton, or was he a plagiarist ?

We must begin with the early correspondence between the

parties appearing in this dispute. Newton had begun using

his notation of fluxions in 1666." In 1669 Barrow sent Collins

Newton's tract, De Analysi per Equationes, etc.

The first visit of Leibniz to London extended from the 11th

of January until March, 1673. He was in the habit of com-

mitting to writing important scientific communications received

from others. In 1890 Gerhardt discovered in the royal library

at Hanover a sheet of manuscript with notes taken by Leibniz

during this journey.*' They are headed " Observata Philoso-

phica in itinere Anglicano sub initium anni 1673." The sheet

is divided by horizontal lines into sections. The sections

given to Chymica, Mechanica, Magnetica, Botanica, Anatomica,

Medica, Miscellanea, contain extensive memoranda, while those

devoted to mathematics have very few notes. Under Geo-

metrica he says only this :
" Tangentes omnium figurarum.

Mgurarum geometricarum explicatio per motum puncti in

moto lati." We suspect from this that Leibniz had read

Barrow's lectures. Newton is referred to only under Optica.

Evidently Leibniz did not obtain a knowledge of fluxions

during this visit to London, nor is it claimed that he did by

his opponents.
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Various letters of Kewton, Collins, and others, up to the

beginning of 1676, state that Newton invented a method by

which tangents could be drawn without the necessity of freeing

their equations from irrational terms. Leibniz announced in

1674 to Oldenburg, then secretary of the Eoyal Society, that

lie possessed very general analytical methods, by which he had

found theorems of great importance on the quadrature of the

circle by means of series. In answer, Oldenburg stated

Newton and James Gregory had also discovered methods of

quadratures, which extended to the circle. Leibniz desired to

have these methods communicated to him; and Newton, at

the request of Oldenburg and Collins, wrote to the former the

celebrated letters of June 13 and October 24, 1676. The first

contained the Binomial Theorem and a variety of other mat-

ters relating to infinite series and quadratures; but nothing

directly on the method of fluxions. Leibniz in reply speaks

in the highest terms of what Newton had done, and requests

further explanation. Newton in his second letter just men-

tioned explains the way in which he found the Binomial

Theorem, and also communicates his method of fluxions and

fluents in form of an anagram in which all the letters in the

sentence communicated were placed in alphabetical order.

Thus Newton says that his method of drawing tangents was

6accdce ISeff 7i 31 9n io 4grr 4s 9t 12i;a;.

The sentence was, " Data sequatione quotcunque fluentes

quantitates involvente fluxiones invenire, et vice versa."

("Having any given equation involving never so many flowing

quantities, to find the fluxions, and vice versa.") Surely this

anagram afforded no hint. Leibniz wrote a reply to Collins,

in which, without any desire of concealment, he explained the

principle, notation, and the use of the diflEerential calculus.

The death of Oldenburg brought this correspondence to a
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close. Nothing material happened till 1684, when Leibniz

published his first paper on the differential calculus in the

Leipzig Acts, so that while Newton's claim to the priority of

invention must be admitted by all, it must also be granted

that Leibniz was the first to give the full benefit of the calcu-

lus to the world. Thus, while Newton's invention remained a

secret, communicated only to a few friends, the calculus of

Leibniz was spreading over the Continent. No rivalry or

hostility existed, as yet, between the illustrious scientists.

Newton expressed a very favourable opinion of Leibniz's

inventions, known to him through the above correspondence

with Oldenburg, in the following celebrated scholium (^Princi-

pia, first edition, 1687, Book II., Prop. 7, scholium):—
'' In letters which went between me and that most excellent

geometer, G. G. Leibniz, ten years ago, when I signified that

I was in the knowledge of a method of determining maxima

and minima, of drawing tangents, and the like, and when I

concealed it in transposed letters involving this sentence (Data

sequatione, etc., above cited), that most distinguished man

wrote back that he had also fallen upon a method of the same

kind, and communicated his method, which hardly differed

from mine, except in his forms of words and symbols."

As regards this passage, we shall see that Newton was aftei--

wards weak enough, as De Morgan says :
" First, to deny tht;

plain and obvious meaning, and secondly, to omit it entirely

from the third edition of the Principia." On the Continent,

great progress was made in the calculus by Leibniz and his

coadjutors, the brothers James and John Bernoulli, and

Marquis de I'Hospital. In 1695 Wallis informed Newton by

letter that " he had heard that his notions of fluxions passed

in Holland with great applause by the name of 'Leibniz's

Calculus Differentialis.'" Accordingly Wallis stated in the

preface to a volume of his works that the calculus differen-
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tialis was Newton's method of fluxions wHch. had been

communicated to Leibniz in the Oldenburg letters. A review

of Wallis' works, in the Leipzig Acts for 1696, reminded the

reader of Newton's own admission in the scholium above

cited.

For fifteen years Leibniz had enjoyed unchallenged the

honour of being the inventor of his calculus. But in 1699 Fate

de Duillier, a Swiss, who had settled in England, stated in a

mathematical paper, presented to the Eoyal Society, his con-

viction that Newton was the first inventor; adding that,

whether Leibniz, the second inventor, had borrowed anything

from the other, he would leave to the judgment of those who

had seen the letters and manuscripts of Newton. This was

the first distinct insinuation of plagiarism. It would seem that

the English mathematicians had for some time been cherishing

suspicions unfavourable to Leibniz. A feeling had doubtless

long prevailed that Leibniz, during his second visit to London

in 1676, had or might have seen among the papers of Collins,

Newton's Analysis per cequationes, etc., which contained appli-

cations of the fluxionary method, but no systematic develop-

ment or explanation of it. Leibniz certainly did see at least

part of this tract. During the week spent in London, he took

note of whatever interested him among the letters and papers

of Collins. His memoranda discovered by Gerhardt in 1849 in

the Hanover library fill two sheets.** The one bearing on our

question is headed "Excerpta ex tractatu Newtoni Msc. de

Analysi per sequationes numero terminorum infinitas." The

notes are very brief, excepting those De Besolutione cequa-

tionum affectarum, of which there is an almost complete copy.

This part was evidently new to him. If he examined

Newton's entire tract, the other parts did not particularly

impress him. From it he seems to have gained nothing per-

taining to the infinitesimal calculus. By the previous intro-



NEWTON TO EULEE. 231

duction of his own algorithm he had made greater progress

than by what came to his knowledge in London. Nothing

mathematical that he had received engaged his thoughts in

the immediate future, for on his way back to Holland he com-

posed a lengthy dialogue on mechanical subjects.

Diiillier's insinuations lighted up a flame of discord which a

whole century was hardly suf&cient to extinguish. Leibniz,

who had never contested the priority of Newton's discovery,

and who appeared to be quite satisfied with Newton's admis-

sion in his scholium, now appears for the first time in the

controversy. He made an animated reply in the Leipzig Acts,

and complained to the Eoyal Society of the injustice done him.

Here the affair rested for some time. In the Quadrature of

Curves, published 1704, for the first time, a formal exposition

of the method and notation of fluxions was made public. In

1705 appeared an unfavourable review of this in the Leipzig

Acts, stating that Newton uses and always has used fluxions

for the differences of Leibniz. This was considered by New-

ton's friends an imputation of plagiarism on the part of their

chief, but this interpretation was always strenuously resisted

by Leibniz. Keill, professor of astronomy at Oxford, under-

took with more zeal than judgment the defence of Newton.

In a paper inserted in the Philosophical Transactions of 1708,

he claimed that Newton was the first inventor of fluxions and
" that the same calculus was afterward published by Leibniz,

the name and the mode of notation being changed." Leibniz

complained to the secretary of the Koyal Society of bad treat-

ment and requested the interference of that body to induce

Keill to disavow the intention of imputing fraud. Keill was

not made to retract his accusation; on the contrary, was

authorised by Newton and the Royal Society to explain and

defend his statement. This he did in a long letter. Leibniz

thereupon complained that the charge was now more open than
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before, and appealed for justice to the Boyal Society and to

Newton himself. The Eoyal Society, thus appealed to as a

judge, appointed a committee which collected and . reported

upon a large mass of documents—mostly letters from and to

Newton, Leibniz, Wallis, Collins, etc. This report, called the

Commercium Epistolicum, appeared in the year 1712 and again

in 1726, with a Kecensio prefixed, and additional notes by Keill.

The final conclusion in the Commercium Epistolicum was

that Newton was the first inventor. But this was not to the

point. The question was not whether Newton was the first

inventor, but whether Leibniz had stolen the method. The

committee had not formally ventured to assert their belief

that Leibniz was a plagiarist. Yet there runs throughout the

document a desire of proving Leibniz guilty of more than

they meant positively to affirm. Leibniz protested only in

private letters against the proceeding of the Eoyal Society,

declaring that he would not answer an argument so weak.

John Bernoulli, in a letter to Leibniz, which was published

later in an anonymous tract, is as decidedly unfair towards

Newton as the friends of the latter had been towards Leibniz.

Keill replied, and then Newton and Leibniz appear as mutual

accusers in several letters addressed to third parties. In a

letter to Conti, April 9, 1716, Leibniz again reminded Newton

of the .admission he had made in the scholium, which he was

now desirous of disavowing; Leibniz also states that he

always believed Newton, but that, seeing him connive at

accusations which he must have known to be false, it was

natural that he (Leibniz) should begin to doubt. Newton

did not reply to this letter, but circulated some remarks among

his friends which he published immediately after hearing

of the death of Leibniz, November 14, 1716. This paper

of Newton gives the following explanation pertaining to the

scholium in question : " He [Leibniz] pretends that in my
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book of principles I allowed him the invention of the calculus

differentialis, independently of my own ; and that to attribute

this invention to myself is contrary to my knowledge there

avowed. But in the paragraph there referred unto I do not

find one word to this purpose." In the third edition of the

Principia, 1726, Newton omitted the scholium and substituted

in its place another, in which the name of Leibniz does not

appear.

National pride and party feeling long prevented the adoption

of impartial opinions in England, but now it is generally ad-

mitted by nearly all familiar with the matter, that Leibniz

really was an independent inventor. Perhaps the most tell-

ing evidence lio show that Leibniz was an independent inven-

tor is found in the study of his mathematical papers (collected

and edited by C. I. Gerhardt, in six volumes, Berlin, 1849-

1860), which point out a gradual and natural evolution of the

rules of the calculus in his own mind. " There was through-

out the whole dispute," says De Morgan, " a confusion between

the knowledge of fluxions or differentials and that of a calcvr-

lus of fluxions or differentials ; that is, a digested method with

general rules."

This controversy is to be regretted on account of the long

and bitter alienation which it produced between English and

Continental mathematicians. It stopped almost completely

all interchange of ideas on scientific subjects. The English

adhered closely to Newton's methods and, until about 1820,

remained, in most cases, ignorant of the brilliant mathematical

discoveries that were being made on the Continent. The loss

in point of scientific advantage was almost entirely on the

side of Britain. The only way in which this dispute may be

said, in a small measure, to have furthered the progress of

mathematics, is through the challenge problems by which

each side attempted to annoy its adversaries.
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The recurring practice of issuing cliallenge problems was

inaugurated at this time by Leibniz. They were, at first, not

intended as defiances, but merely as exercises in the new cal-

culus. Such was the problem of the isochronous curve (to

find the curve along which a body falls with uniform velocity),

proposed by him to the Cartesians in 1687, and solved by

James Bernoulli, himself, and John Bernoulli. James Ber-

noulli proposed in the Leipzig Journal the question to find the

curve (the catenary) formed by a chain of uniform weight

suspended freely from its ends. It was resolved by Huygens,

Leibniz, and himself. In 1697 John Bernoulli challenged the

best mathematicians in Europe to solve the difiicult problem,

to find the curve (the cycloid) along which a body falls from

one point to another in the shortest possible time. Leibniz

solved it the day he received it. Newton, de I'Hospital, and

the two BernouUis gave solutions. Newton's appeared anony-

mously in the Philosophical Transactions, but John Bernoulli

recognised in it his powerful mind, " tanquam," he says, " ex

ungue leonem." The problem of orthogonal trajectories (a

system of curves described by a known law being given, to

describe a curve which shall cut them all at right angles) had

been long proposed in the Acta Eruditorwm, but failed at

first to receive much attention. It was again proposed in

1716 by Leibniz, to feel the pulse of the English mathema-

ticians.

This may be considered as the first defiance problem pro-

fessedly aimed at the English. Newton solved it the same

evening on which it was delivered to him, although he was

much fatigued by the day's work at the mint. His solution,

as published, was a general plan of an investigation rather

than an actual solution, and was, on that account, criticised by

Bernoulli as being of no value. Brook Taylor undertook the

defence of it, but ended by using very reprehensible language.
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Bernoulli was not to be outdone in incivility, and made a

bitter reply. Not long afterwards Taylor sent an open de-

fiance to Continental mathematicians of a problem on the

integration of a fluxion of complicated form which was known

to very few geometers in England and supposed to be beyond

the power of their adversaries. The selection was injudicious,

for Bernoulli had long before explained the method of this

and similar integrations. It served only to display the skill

and augment the triumph of the followers of Leibniz. The

last and most unskilful challenge was by John KeiU. The

problem was to find the path of a projectile in a medium

which resists proportionally to the square of the velocity.

Without first making sure that he himself could solve it,

Keill boldly challenged Bernoulli to produce a solution. The

latter resolved the question in very short time, not only for a

resistance proportional to the square, but to any power of the

velocity. Suspecting the weakness of the adversary, he re-

peatedly offered to send his solution to a confidential person

in London, provided Keill would do the same. Keill never

made a reply, and Bernoulli abused him and crueUy exulted

over him.^

The explanations of the fundamental principles of the cal-

culus, as given by Newton and Leibniz, lacked clearness and

rigour. For that reason it met with opposition from several

quarters. In 1694 Bernard Nieuwentyt of Holland denied

the existence of differentials of higher orders and objected to

the practice of neglecting infinitely small quantities. These

objections Leibniz was not able to meet satisfactorily. In his

reply he said the value of -^ in geometry could be expressed

as the ratio of finite quantities. In the interpretation of dx

and dy Leibniz vacillated. At one time they appear in his

writings as finite lines ; then they are called infinitely small
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quantities, and again, quantitates inassignabiles, which spring

from quantitates assignabiles by the law of continuity. In this

last presentation Leibniz approached nearest to Newton.

In England the principles of fluxions were boldly attacked

by Bishop Berkeley, the eminent metaphysician, who argued

with great acuteness, contending, among other things, that

the fundamental idea of supposing a finite ratio to exist

between terms absolutely evanescent— "the ghosts of de-

parted quantities," as he called them— was absurd and unin-

telligible. The reply made by Jurin failed to remove all the

objections. Berkeley was the first to point out what was

again shown later by Lazare Carnot, that correct answers were

reached by a " compensation of errors." Berkeley's attack

was not devoid of good results, for it was the immediate cause

of the work on fluxions by Maclaurin. In France Michel

Rolle rejected the differential calculus and had a controversy

with Varignon on the subject.

Among the most vigorous promoters of the calculus on the

Continent were the Bernoullis. They and Euler made Basel

in Switzerland famous as the cradle of great mathematicians.

The family of Bernoullis furnished in course of a century

eight members who distinguished themselves in mathematics.

We subjoin the following genealogical table :
—

Nicolaus Bernoulli, the Father

Jacob, 1654^1706 Nicolaus Johann, 1667-1748

Nicolaus, 1687-1759 Nicolaus, 1695-1726

Daniel, 1700-1782

Johann, 1710-1790

Daniel Johann, 1744-1807 Jacob, 1758-1789

Most celebrated were the two brothers Jacob (James) and

Johann (John), and Daniel, the son of John. James and
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John were staunch, friends of Leibniz and worked hand in

hand with him. James Bernoulli (1654-1705) was born in

Basel. Becoming interested in the calculus, he mastered it

without aid from a teacher. Erom 1687 until his death he

occupied the mathematical chair at the University of Basel.

He was the first to give a solution to Leibniz's problem of the

isochronous curve. In his solution, published in the Acta

Eruditorum, 1690, we meet for the first time with the word

integral. Leibniz had called the integral calculus calculus

summatorius, but in 1696 the term calculus integralis was

agreed upon between Leibniz and John Bernoulli. James

proposed the problem of the catenary, then proved the correct-

ness of Leibniz's construction of this curve, and solved the

more complicated problems, supposing the string to be (1) of

variable density, (2) extensible, (3) acted upon at each point

by a force directed to a fixed centre. Of these problems he

published answers without explanations, while his brother

John gave in addition their theory. He determined the shape

of the " elastic curve " formed by an elastic plate or rod fixed

at one end and bent by a weight applied to the other end ; of

the " lintearia,'' a flexible rectangular plate with two sides

fixed horizontally at the same height, filled with a liquid ; of

the " volaria," a rectangular sail filled with wind. He studied

the loxodromic and logarithmic spirals, in the last of which

he took particular delight from its remarkable property of

reproducing itself under a variety of conditions. Following

the example of Archimedes, he willed that the curve be en-

graved upon his tombstone with the inscription "eadem mutata

resurgo." In 1696 he proposed the famous problem of isoper-

imetrical figures, and in 170! published his own solution. He
wrote a work on Ars Conjectandi, which is a development of

the calculus of probabilities and contains the investigation

now called "Bernoulli's theorem" and the so-called "numbers
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of Bernoulli," which are in fact (though not so considered by

him) the coefficients of — in the expansion of (e*— 1)-^ Of
nl

his collected works, in three volumes, one was printed in 1713,

the other two in 1744.

John Bernoulli (1667-1748) was initiated into mathematics

by his brother. He afterwards visited France, where he met

Malebranche, Cassini, De Lahire, Varignon, and de I'Hospital.

For ten years he occupied the mathematical chair at Groningen

and then succeeded his brother at Basel. He was one of the

most enthusiastic teachers and most successful original inves-

tigators of his time. He was a member of almost every learned

society in Europe. His controversies were almost as numerous

as his discoveries. He was ardent in his friendships, but

unfair, mean, and violent toward all who incurred his dislike

•— even his own brother and son. He had a bitter dispute

with James on the isoperimetrical problem. James convicted

him of several paralogisms. After his brother's death he

attempted to substitute a disguised solution of the former for

an incorrect one of his own. John admired the merits of

Leibniz and Euler, but was blind to those of Newton. He
immensely enriched the integral calculus by his labours.

Among his discoveries are the exponential calculus, the line

of swiftest descent, and its beautiful relation to the path

described by a ray passing through strata of variable density.

He treated trigonometry by the analytical method, studied

caustic curves and trajectories. Several times he was given

prizes by the Academy of Science in Paris.

Of his sons, Nicholas and Daniel were appointed professors

of mathematics at the same time in the Academy of St.

Petersburg. The former soon died in the prime of life; the

latter returned to Basel in 1733, where he assumed the chair

of experimental philosophy. His first mathematical publi-
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cation was the solution of a differential equation proposed bj"^

Eiccati. He wrote a work on hydrodynamics. His investiga-

tions on probability are remarkable for their boldness and

originality. He proposed the theory of moral expectation,

which he thought would give results more in accordance with

our ordinary notions than the theory of mathematical prob-

ability. His " moral expectation " has become classic, but no

one ever makes use of it. He applies the theory of probability

to insurance ; to determine the mortality caused by small-pox

at various stages of life ; to determine the number of survivors

at a given age from a given number of births ; to determine

how much inoculation lengthens the average duration of life.

He showed how the differential calculus could be used in the

theory of probability. He and Euler enjoyed the honour of

having gained or shared no less than ten prizes from the

Academy of Sciences in Paris.

Johann Bernoulli (born 1710) succeeded his father in the

professorship of mathematics at Basel. He captured three

prizes (on the capstan, the propagation of light, and the

magnet) from the Academy of Sciences at Paris. Kicolaus

Bernoulli (born 1687) held for a time the mathematical chair

at Padua which Galileo had once filled. Johann Bernoulli

(born 1744) at the age of nineteen was appointed astronomer

royal at' Berlin, and afterwards director of the mathematical

department of the Academy. His brother Jacob took upon

himself the duties of the chair of experimental physics at

Basel, previously performed by his uncle Jacob, and later

was appointed mathematical professor in the Academy at St.

Petersburg.

Brief mention will now be made of some other mathemati-

cians belonging to the period of Newton, Leibniz, and the

elder Bernoullis.

Guillaume Francois Antoine I'Hospital (1661-1704), a pupil
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of John Bernoulli, has already been mentioned as taking

part in the challenges issued by Leibniz and the BernouUis.

He helped powerfully in making the calculus of Leibniz better

known to the mass of mathematicians by the publication of a

treatise thereon in 1696. This contains for the first time the

method of finding the limiting value of a fraction whose two

terms tend toward zero at the same time.

Another zealous French advocate of the calculus was Pierre

Varignon (1654-1722). Joseph Saurin (1659-173T) solved the

delicate problem of how to determine the tangents at the

multiple points of algebraic curves. Francois Nicole (1683-

1758) in 1717 issued the first systematic treatise on finite

differences, in which he finds the sums of a considerable

number of interesting series. He wrote also on roulettes,

particularly spherical epicycloids, and their rectification. Also

interested in finite differences was Pierre Raymond de Montmort

(1678-1719). His chief writings, on the theory of probabil-

ity, served to stimulate his more distinguished successor, De
Moivre. Jean Paul de Gua (1713-1785) gave the demonstration

of Descartes' rule of signs, now given in books. This skilful

geometer wrote in 1740 a work on analytical geometry, the

object of which was to show that most investigations on curves

could be carried on with the analysis of Descartes quite as

easily as with the calculus. He shows how to find the tan-

gents, asymptotes, and various singular points of curves of all

degrees, and proved by perspective that several of these points

can be at infinity. A mathematicianwho clung to the methods

of the ancients was Philippe de Lahire (1640-1718), a pupil of

Desargues. His work on conic sections is purely synthetic,

but differs from ancient treatises in deducing the properties of

conies from those of the circle in the same manner as did

Desargues and Pascal. His innovations stand in close relation

with modern synthetic geometry. He wrote on roulettes, on
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graphical methods, epicycloids, conchoids, and on magic

squares. Michel RoUe (1652-1719) is the author of a theorem

named after him.

Of Italian mathematicians, Eiocati and Fagnano must not

remain unmentioned. Jacopo Francesco, Count Riccati (1676-

1764) is best known in connection with his problem, called

Eiooati's equation, published in the Acta Eruditorum in 1724.

He succeeded in integrating this differential equation for some

special cases. A geometrician of remarkable power was Giulio

Carlo, Count de Fagnano (1682-1766). He discovered the fol-

lowing formula, Tr=2ilog—^^^, in which he anticipated Euler
1 + i

in the use of imaginary exponents and logarithms. His studies

on the rectification of the ellipse and hyperbola are the start-

ing-points of the theory of elliptic functions. He showed, for

instance, that two arcs of an ellipse can be found in an in-

definite number of ways, whose difference is expressible by a

right line.

In Germany the only noted contemporary of Leibniz is

Ehrenfried Walter Tschirnhausen (1651-1708), who discovered

the caustic of reflection, experimented on metallic reflectors

and large burning-glasses, and gave us a method of transform-

ing equations named after him. Believing that the most

simple methods (like those of the ancients) are the most

correct, he concluded that in the researches relating to the

properties of curves the calculus might as well be dispensed

with.

After the death of Leibniz there was in Germany not a

single mathematician of note. Christian Wolf (1679-1754),

professor at Halle, was ambitious to flgure as successor of

Leibniz, but he "forced the ingenious ideas of Leibniz into a

pedantic scholasticism, and had the unenviable reputation of

having presented the elements of the arithmetic, algebra, and
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analysis developed since the time of the Eenaissance in the

form of Euclid,— of course only in outward form, for into the

spirit of them he was quite unable to penetrate." '°

The contemporaries and immediate successors of Newton in

Great Britain were men of no mean merit. We have refer-

ence to Cotes, Taylor, Maclaurin, and De Moivre. We are

told that at the death of Roger Cotes (1682-1716), Newton

exclaimed, " If Cotes had lived, we might have known some-

thing." It was at the request of Dr. Bentley that Cotes

undertook the publication of the second edition of Newton's

Principia. His mathematical papers were published after his

death by Robert Smith, his successor in the Plumbian pro-

fessorship at Trinity College. The title of the work, Har-

monia Mensurarum, was suggested by the following theorem

contained in it : If on each radius vector, through a fixed point

0, there be taken a point B, such that the reciprocal of OS be

the arithmetic mean of the reciprocals of OBd OB^, •• 0B„,

then the locus of B will be a straight line. In this work

progress was made in the application of logarithms and the

properties of the circle to the calculus of fluents. To Cotes

we owe a theorem in trigonometry which depends on the

forming of factors of x" — 1. Chief among the admirers of

Newton were Taylor and Maclaurin. The quarrel between

English and Continental mathematicians caused them to work

quite independently of their great contemporaries across the

Channel.

Brook Taylor (1685-1731) was interested in many branches

of learning, and in the latter part of his life engaged mainly in

religious and philosophic speculations. His principal work,

Methodus incrementorum directa et inversa, London, 1715-1717,

added a new branch to mathematics, now called " finite differ-

ences." He made many important applications of it, par-

ticularly to the study of the form of movement of vibrating
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strings, first reduced to mechanical principles by him. This

work contains also "Taylor's theorem," the importance of

which was not recognised by analysts for over fifty years,

until Lagrange pointed out its power. His proof of it does not

consider the question of convergency, and is quite worthless.

The first rigorous proof was given a century later by Cauchy.

Taylor's work contains the first correct explanation of astro-

nomical refraction. He wrote also a work on linear per-

spective, a treatise which, like his other writings, suffers for

want of fulness and clearness of expression. At the age of

twenty-three he gave a remarkable solution of the problem of

the centre of oscillation, published in 1714. His claim to

priority was unjustly disputed by John Bernoulli.

Colin Maclaurin (1698-1746) was elected professor of mathe-

matics at Aberdeen at the age of nineteen by competitive

examination, and in 1725 succeeded James Gregory at the Uni-

versity of Edinburgh. He enjoyed the friendship of Newton,

and, inspired by Newton's discoveries, he published in 1719 his

Oeometria Organica, containing a new and remarkable mode

of generating conies, known by his name. A second tract,

De Linearum geometricarum Proprietatibus, 1720, is remarkable

for the elegance of its demonstrations. It is based upon two

theorems : the first is the theorem of Cotes ; the second is

Maclaurin's : If through any point a line be drawn meeting

the curve in n points, and at these points tangents be drawn,

and if any other line through O cut the curve in i?i, R2, etc.,

and the system of n tangents in ri, ra, etc., then %—— = %-—-.
OB Or

This and Cotes' theorem are generalisations of theorems of

Newton. Maclaurin uses these in his treatment of curves of

the second and third degree, culminating in the remarkable

theorem that if a quadrangle has its vertices and the two

points of intersection of its opposite sides upon a curve of the
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third degree, then the tangents drawn at two opposite vertices

cut each other on the curve. He deduced independently

Pascal's theorem on the hexagram. The following is his ex-

tension of this theorem (Phil. Trans., 1735) : If a polygon

move so that each of its sides passes through a fixed point,

and if all its summits except one describe curves of the degrees

m, n, p, etc., respectively, then the free summit moves on a

curve of the degree 2 mnp ••, which reduces to mnp • when

the fixed points all lie on a straight line. Maclaurin wrote on

pedal curves. He is the author of an Algebra. The object of

his treatise on Fluxions was to found the doctrine of fluxions

on geometric demonstrations after the manner of the ancients,

and thus, by rigorous exposition, answer such attacks as Berke-

ley's that the doctrine rested on false reasoning. The Fluxions

contained for the first time the correct way of distinguishing

between maxima and minima, and explained their use in the

theory of multiple points. " Maclaurin's theorem " was pre-

viously given by James Stirling, and is but a particular case

of " Taylor's theorem." Appended to the treatise on Fluxions

is the solution of a number of beautiful geometric, mechanical,

and astronomical problems, in which he employs ancient

methods with such consummate skill as to induce Clairaut to

abandon analytic methods and to attack the problem of the

figure of the earth by pure geometry. His solutions com-

manded the liveliest admiration of Lagrange. Maclaurin in-

vestigated the attraction of the ellipsoid of revolution, and

showed that a homogeneous liquid mass revolving uniformly

around an axis under the action of gravity must assume the

form of an ellipsoid of revolution. Newton had given this

theorem without proof. Notwithstanding the genius of Mac-

laurin, his influence on the progress of mathematics in Great

Britain was unfortunate ; for, by his example, he induced his

countrymen to neglect analysis and to be indifferent to the
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wonderful progress in the higher analysis made on the Con-

tinent.

It remains for us to speak of Abraham de Moivre (1667-1754),

who was of French descent, but was compelled to leave France

at the age of eighteen, on the Eevocation of the Edict of Nantes.

He settled in London, where he gave lessons in mathematics.

He lived to the advanced age of eighty-seven and sank into a

state of almost total lethargy. His subsistence was latterly

dependent on the solution of questions on games of chance and

problems on probabilities, which he was in the habit of giving

at a tavern in St. Martin's Lane. Shortly before his death he

declared that it was necessary for him to sleep ten or twenty

minutes longer every day. The day after he had reached the

total of over twenty-three hours, he slept exactly twenty-four

hours and then passed away in his sleep. De Moivre enjoyed

the friendship of Newton and Halley. His power as a math-

ematician lay in analytic rather than geometric investigation.

He revolutionised higher trigonometry by the discovery of the

theorem known by his name and by extending the theorems on

the multiplication and division of sectors from the circle to the

hyperbola. His work on the theory of probability surpasses

anything done by any other mathematician except Laplace.

His principal contributions are his investigations respecting

the Duration of Play, his Theory of Recurring Series, and

his extension of the value of Bernoulli's theorem by the aid

of Stirling's theorem.^ His chief works are the Doctrine of

Chances, 1716, the Miscellanea Analytica, 1730, and his papers

in the Philosophical Transactions.
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EULEE, LAGRANGE, AND LAPLACE.

During the epoch of ninety years from 1730 to 1820 the French

and Swiss cultivated mathematics with most brilliant success.

No previous period had shown such an array of illustrious

names. At this time Switzerland had her Euler ; France, her

Lagrange, Laplace, Legendre, and Monge. The mediocrity of

French mathematics which marked the time of Louis XIV.

was now followed by one of the very brightest periods of all

history. England and Germany, on the other hand, which

during the unproductive period in France had their Newton

and Leibniz, could now boast of no great mathematician.

France now waved the mathematical sceptre. Mathematical

studies among the English and German people had sunk to

the lowest ebb. Among them the direction of original research

was ill-chosen. The former adhered with excessive partiality

to ancient geometrical methods ; the latter produced the com-

binatorial school, which brought forth nothing of value.

The labours of Euler, Lagrange, and Laplace lay in higher

analysis, and this they developed to a wonderful degree. By
them analysis came to be completely severed from geometry.

During the preceding period the effort of mathematicians

not only in England, but, to some extent, even on the conti-

nent, had been directed toward the solution of problems

clothed in geometric garb, and the results of calculation

were usually reduced to geometric form. A change now

took place. Euler brought about an emancipation of the

analytical calculus from geometry and established it as an

independent science. Lagrange and Laplace scrupulously

adhered to this separation. Building on the broad foun-

dation laid for higher analysis and mechanics by Newton

and Leibniz, Euler, with matchless fertility of mind,, erected
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an elaborate structure. There are few great ideas pursued

by succeeding analysts wbicli were not suggested by Euler,

or of which he did not share the honour of invention.

With, perhaps, less exuberance of invention, but with more

comprehensive genius and profounder reasoning, Lagrange

developed the infinitesimal calculus and put analytical

mechanics into the form in which we now know it. La-

place applied the calculus and mechanics to the elaboration

of the theory of universal gravitation, and thus, largely ex-

tending and supplementing the labours of Newton, gave a full

analytical discussion of the solar system. He also wrote an

epoch-marking work on Probability. Among the analytical

branches created during this period are the calculus of Varia-

tions by Euler and Lagrange, Spherical Harmonics by Lar

place and Legendre, and Elliptic Integrals by Legendre.

Comparing the growth of analysis at this time with the

growth during the time of Gauss, Cauchy, and recent mathe-

maticians, we observe an important difference. During the

former period we witness mainly a development with refer-

ence to form. Placing almost implicit confidence in results of

calculation, mathematicians did not always pause to discover

rigorous proofs, and were thus led to general propositions,

some of which have since been found to be true in only special

cases. The Combinatorial School in Germany carried this

tendency to the greatest extreme ; they worshipped formalism

and paid no attention to the actual contents of formulae. But

in recent times there has been added to the dexterity in the

formal treatment of problems, a much-needed rigour of demon-

stration. A good example of this increased rigour is seen in

the present use of infinite series as compared to that of Euler,

and of Lagrange in his earlier works.

The ostracism of geometry, brought about by the master-

minds of this period, could not last permanently. Indeed, a
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new geometric school sprang into existence in France before

the close of this period. Lagrange would not permit a single

diagram to appear in his Micanique analytique, but thirteen

years before his death, Monge published his epoch-making

Qiometrie descriptive.

Leonhard Euler (1707-1783) was born in Basel. His father,

a minister, gave him his first instruction in mathematics and

then sent him to the University of Basel, where he became a

favourite pupil of John Bernoulli. In his nineteenth year he

composed a dissertation on the masting of ships, which re-

ceived the second prize from the French Academy of Sciences.

When John Bernoulli's two sons, Daniel and Nicolaus, went to

Russia, they induced Catharine I., in 1727, to invite their friend

Euler to St. Petersburg, where Daniel, in 1733, was assigned to

the chair of mathematics. In 1736 the solving of an astrono-

mical' problem, proposed by the Academy, for which several

eminent mathematicians had demanded some months' time,

was achieved in three days by Euler with aid of improved

methods of his own. But the effort threw him into a fever

and deprived him of the use of his right eye. With still

superior methods this same problem was solved later by the

illustrious Gauss in one hour !
*'' The despotism of Anne I.

caused the gentle Euler to shrink from public affairs and to

devote all his time to science. After his call to Berlin by

Frederick the Great in 1747, the queen of Prussia, who

received him kindly, wondered how so distinguished a scholar

should be so timid and reticent. Euler naively replied,

" Madam, it is because I come from a country where, when one

speaks, one is hanged." In 1766 he with difficulty obtained

permission to depart from Berlin to accept a call by Catha-

rine II. to St. Petersburg. Soon after his return to Eussia he

became blind, but this did not stop his wonderful literary

productiveness, which continued for seventeen years, until the
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day of his death/* He dictated to his servant his Anleitung

zur Algebra, 1770, which, though purely elementary, is meri-

torious as one of the earliest attempts to put the fundamental

processes on a sound basis.

Euler wrote an immense number of works, chief of which

are the following : Tntroductio in analysin inflnitorum, 1748,

a work that caused a revolution in analytical mathematics, a,

subject which had hitherto never been presented in so general

and systematic manner ; Institutiones calculi differentialis, 1766,

and Institutiones calculi iniegralis, 1768-1770, which were the

most complete and accurate works on the calculus of that time,

and contained not only a full summary of everything then

known on this subject, but also the Beta and Gamma Func-

tions and other original investigations ; MethoduS inveniendi

tineas curvas maximi minimive proprietate gaudentes, 1744,

which, displaying an amount of mathematical genius seldom

rivalled, contained his researches on the calculus of variations

(a subject afterwards improved by Lagrange), to the invention

of which Euler was led by the study of isoperimetrical curves,

the braohistochrone in a resisting medium, and the theory of

geodesies (subjects which had previously engaged the attention

of the elder BernouUis and others) ; the Theoria motuum plane

-

tarum et cometarum, 1744, Theoria motus lunce, 1763, Theoria

motuum lumje, 1772, are his chief works on astronomy ; Ses

lettres d, une princesse d'Allemagne sur quelques sujets de

Physique et de Philosophie, 1770, was a work which enjoyed

great popularity.

We proceed to mention the principal innovations and inven-

tions of Euler. He treated trigonometry as a branch of

analysis, introduced (simultaneously with Thomas Simpson in

England) the now current abbreviations for trigonometric

functions, and simplified formulae by the simple expedient

of designating the angles of a triangle by A, B, G, and the
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opposite sides by a, b, c, respectively. He pointed out the

relation between trigonometric and exponential functions. In

a paper of 1737 we first meet the symbol tt to denote 3.14159. ••.^'

Euler laid down the rules for the transformation of co-ordinates

in space, gave a methodic analytic treatment of plane curves

and of surfaces of the second order. He was the first to

discuss the equation of the second degree in three variables,

and to classify the surfaces represented by it. By criteria

analogous to those used in the classification of conies he

obtained five species. He devised a method of solving bi-

quadratic equations by assuming x = Vp + s/q + s/r, with the

hope that it would lead him to a general solution of algebraic

equations. The method of elimination by solving a series of

linear equations (invented independently by Bezout) and the

method of elimination by symmetric functions, are due to him.^

Far reaching are Euler's researches on logarithms. Leibniz

and John Bernoulli once argued the question whether a

negative number has a logarithm. Bernoulli claimed that

since (— a)^ = (+a)^, we have log(— a)^ = log(+a)'^ and

2 log (—a) = 2 log (4- a), and finally log (— a) = log (+ a).

Euler proved that a has really an infinite number of logar

rithms, all of which are imaginary when a is negative, and all

except one when a is positive. He then explained how

log(— a)^ might equal log(-fa)^, and yet log (—a) not

equal log (+a).

The subject of infinite series received new life from him.

To his researches on series we owe the creation of the theory of

definite integrals by the development of the so-called Eulerian

integrals. He warns his readers occasionally against the use

of divergent series, but is nevertheless very careless himself.

The rigid treatment to which infinite series are subjected now

was then undreamed of. No clear notions existed as to what

constitutes a convergent series. Neither Leibniz nor Jacob
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and John Bernoulli had entertained any serious doubt of the

correctness of the expression ^ = 1 — 1 + 1 — 1 + "-. Guido

Grandi went so far as to conclude from this that ^ = + -f

+ ". In the treatment of series Leibniz advanced a meta-

physical method of proof which held sway over the minds of

the elder BernouUis, and even of Euler.* The tendency of

that reasoning was to justify results which seem to us now

highly absurd. The looseness of treatment can best be seen

from examples. The very paper in which Euler cautions

against divergent series contains the proof that

• ••— H |-l + n + ji^+-" = Oas follows:
w n

n + rv'+..-=~^^, 1+1 + 1+...=.
"

1 —n n 7)? n—1
these added give zero. Euler has no hesitation to write

1 — 3 + 5 — 7+"- = 0, and no one objected to such results

excepting Nicolaus Bernoulli, the nephew of John and Jacob.

Strange to say, Euler finally succeeded in converting Nicolaus

Bernoulli to his own erroneous views. At the present time

it is difficult to believe that Euler should have confidently

written sin <^ — 2 sin 2^ + 3 sin 3^ — 4 sin 4 <^ + • • • = 0, but

such examples afford striking illustrations of the want of

scientific basis of certain parts of analysis at that time.

Euler's proof of the binomial formula for negative and

fractional exponents, which has been reproduced in elemen-

tary text-books of even recent years, is faulty. A remarkable

development, due to Euler, is what he named the hypergeo-

metric series, the summation of which he observed to be

dependent upon the integration of a linear differential equa-

tion of the second order, but it remained for Gauss to point

out that for special values of its letters, this series represented

nearly all functions then known.

Euler developed the calculus of finite differences in the first
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chapters of his Institutiones calculi differentialis, and then

deduced the differential calculus from it. He established a

theorem on homogeneous functions, known by his name, and

contributed largely to the theory of differential equations, a

subject which had received the attention of Newton, Leibniz,

and the BernouUis, but was still undeveloped. Clairaut,

Fontaine, and Euler about the same time observed criteria of

integrability, but Euler in addition showed how to employ

them to determine integrating factors. The principles on

which the criteria rested involved some degree of obscurity.

The celebrated addition-theorem for elliptic integrals was first

established by Euler. He invented a new algorithm for

continued fractions, which he employed in the solution of

the indeterminate equation ax + by = c. We now know that

substantially the same solution of this equation was given

1000 years earlier, by the Hindoos. By giving the factors of

the number 2^+1 when n = 5, he pointed out that this ex-

pression did not always represent primes, as was supposed by

Fermat. He first supplied the proof to "Format's theorem,"

and to a second theorem of Fermat, which states that every

prime of the form 4 n -f 1 is expressible as the sum of two

squares in one and only one way. A third theorem of Fermat,

that x" + y" = z", has no integral solubion for values of n

greater than 2, was proved by Euler to be correct when n = 3.

Euler discovered four theorems which taken together make

out the great law of quadratic reciprocity, a law independently

discovered by Legendre.^* Euler enunciated and proved a

well-known theorem, giving the relation between the number

of vertices, faces, and edges of certain polyhedra, which,

however, appears to have been known to Descartes. The

powers of Euler were directed also towards the fascinating

subject of the theory of probability, in which he solved some

difficult problems.
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Of no little importance are Euler's labours in analytical

mechanics. Says Whewell: "The person who did most to

give to analysis the generality and symmetry which are now

its pride, was also the person who made mechanics analytical

;

I mean Euler."" He worked out the theory of the rotation of

a body around a fixed point, established the general equations

of motion of a free body, and the general equation of hydrody-

namics. He solved an immense number and variety of mechan-

ical problems, which arose in his mind on all occasions. Thus,

on reading Virgil's lines, "The anchor drops, the rushing keel

is staid," he could not help inquiring what would be the

ship's motion in such a case. About the same time as Daniel

Bernoulli he published the Principle of the Conservation of

Areas and defended the principle of " least action," advanced

by Maupertius. He wrote also on tides and on sound.

Astronomy owes to Euler the method of the variation of

arbitrary constants. By it he attacked the problem of per-

turbations, explaining, in case of two planets, the secular vari-

ations of eccentricities, nodes, etc. He was one of the first

to take up with success the theory of the moon's motion by

giving approximate solutions to the " problem of three bodies."

He laid a sound basis for the calculation of tables of the moon.

These researches on the moon's motion, which captured two

prizes, were carried on while he was blind, with the assistance

of his sons and two of his pupils.

Most of his memoirs are contained in the transactions of

the Academy of Sciences at St. Petersburg, and in those of

the Academy at Berlin. From 1728 to 1783 a large portion

of the Petropolitan transactions were filled by his writings.

He had engaged to furnish the Petersburg Academy with

memoirs in sufficient number to enrich its acts for twenty

years— a promise more than fulfilled, for down to 1818 the

volumes usually contained one or more papers of his. It has
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been said that an edition of Euler's complete works would fill

16,000 quarto pages. His mode of working was, first to con-

centrate his powers upon a special problem, then to solve

separately all problems growing out of the first. No one

excelled him in dexterity of accommodating methods to special

problems. It is easy to see that mathematicians could not

long continue in Euler's habit of writing and publishing. The

material would soon grow to such enormous proportions as to

be unmanageable. We are not surprised to see almost the

opposite in Lagrange, his great successor. The great French-

man delighted in the general and abstract, rather than, like

Euler, in the special and concrete. His writings are con-

densed and give in a nutshell what Euler narrates at great

length.

Jean-le-Rond D'Alembert (1717-1783) was exposed, when

an infant, by his mother in a market by the church of St.

Jean-le-Eond, near the Notre-Dame in Paris, from which he

derived his Christian name. He was brought up by the wife

of a poor glazier. It is said that when he began to show signs

of great talent, his mother sent for him, but received the

reply, "You are only my step-mother; the glazier's wife is

my mother." His father provided him with a yearly income.

D'Alembert entered upon the study of law, but such was his

love for mathematics, that law was soon abandoned. At the

age of twenty-four his reputation as a mathematician secured

for him admission to the Academy of Sciences. In 1743

appeared his Traiti de dynamique, founded upon the important

general principle bearing his name : The impressed forces are

equivalent to the effective forces. D'Alembert's principle

seems to have been recognised before him by Fontaine, and

in some measure by John Bernoulli and Newton. D'Alembert

gave it a clear mathematical form and made numerous appli-

cations of it. It enabled the laws of motion and the reason-
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ings depending on them to be represented in the most general

form, in analytical language. D'Alembert applied it in 1744

in a treatise on the equilibrium and motion of fluids, in 1746

to a treatise on the general causes of winds, which obtained

a prize from the Berlin Academy. In both these treatises, as

also in one of 1747, discussing the famous problem of vibrating

chords, he was led to partial differential equations. He was

a leader among the pioneers in the study of such equations.

d^v d y
To the equation ~ = a?-^ arising in the problem of vibrat-

ing chords, he gave as the general solution,

y =f{x + at) + <i,{x - at),

and showed that there is only one arbitrary function, if y be

supposed to vanish for a; = and x = l. Daniel Bernoulli,

starting with a particular integral given by Brook Taylor,

showed that this differential equation is satisfied by the

trigonometric series

2/ = asm— cos— + ;8sin—--cos—- -|
,

and claimed this expression to be the most general solution.

Euler denied its generality, on the ground that, if true, the

doubtful conclusion would follow that the above series repre-

sents any arbitrary function of a variable. These doubts were

dispelled by Fourier. Lagrange proceeded to find the sum

of the above series, but D'Alembert rightly objected to his

process, on the ground that it involved divergent series.''*

A most beautiful result reached by D'Alembert, with aid

of his principle, was the complete solution of the problem of

the precession of the equinoxes, which had baffled the talents

of the best minds. He sent to the French Academy in 1747,

on the same day with Clairaut, a solution of the problem of

three bodies. This had become a question of universal inter-
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est to mathematicians, in wMch each vied to outdo all others.

The problem of two bodies, requiring the determination of

their motion when they attract each other with forces in-

versely proportional to the square of the distance between

them, had been completely solved by Newton. The " problem

of three bodies " asks for the motion of three bodies attracting

each other according to the law of gravitation. Thus far,

the complete solution of this has transcended the power of

analysis. The general differential equations of motion were

stated by Laplace, but the diflficulty arises in their integration.

The " solutions " hitherto given are merely convenient methods

of approximation in special cases when one body is the sun,

disturbing the motion of the moon around the earth, or where

a planet moves under the influence of the sun and another

planet.

In the discussion of the meaning of negative quantities, of

the fundamental processes of the calculus, and of the theory of

probability, D'Alembert paid some attention to the philosophy

of mathematics. His criticisms were not always happy. In

1754 he was made permanent secretary of the French Academy.

During the last years of his life he was mainly occupied with

the great Trench encyclopaedia, which was begun by Diderot

and himself. D'Alembert declined, in 1762, an invitation of

Catharine II. to undertake the education of her son. Frederick

the Great pressed him to go to Berlin. He made a visit, but

declined a permanent residence there.

Alexis Claude Clairaut (1713-1765) was a youthful prodigy.

He read I'Hospital's works on the infinitesimal calculus and on

conic sections at the age of ten. In 1731 was published his

Becherches sur les courbes d double courbure, which he had ready

for the press when he was sixteen. It was a work of remark-

able elegance and secured his admission to the Academy of

Sciences when still under legal age. In 1731 he gave a proof of
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the theorem enunciated by Newton, that every cubic is a pro-

jection of one of five divergent parabolas. Clairaut formed the

acquaintance of Maupertius, whom he accompanied on an expe-

dition to Lapland to measure the length of a degree of the

meridian. At that time the shape of the earth was a subject

of serious disagreement. Newton and Huygens had concluded

from theory that the earth was flattened at the poles. About

1713 Dominico Cassini measured an arc extending from Dunkirk

to Perpignan and arrived at the startling result that the earth

is elongated at the poles. To decide between the conflicting

.opinions, measurements were renewed. Maupertius earned by

his work in Lapland the title of " earth flattener " by disprov-

ing the Cassinian tenet that the earth was elongated at the

poles, and showing that Newton was right. On his return, in

1743, Clairaut published a work, Thiorie de la figure de la Terre,

which was based on the results of Maclaurin on homogeneous

ellipsoids. It contains a remarkable theorem, named after

Clairaut, that the sum of the fractions expressing the ellipticity

and the increase of gravity at the pole is equal to 2^ times the

fraction expressing the centrifugal force at the equator, the

unit of force being represented by the force of gravity at the

equator. This theorem is independent of any hypothesis with

respect to the law of densities of the successive strata of the

earth. It embodies most of Clairaut's researches. Todhunter

says that " in the figure of the earth no other person has

accomplished so much as Clairaut, and the subject remains at

present substantially as he left it, though the form is different.

The splendid analysis which Laplace supplied, adorned but did

not really alter the theory which started from the creative

hands of Clairaut."

In 1762 he gained a prize of the St. Petersburg Academy

for his paper on Thiorie de la Lune, in which for the first time

modern analysis is applied to lunar motion. This contained
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the explanation of tlie motion of the lunar apsides. This

motion, left unexplained by Newton, seemed to him at first

inexplicable by Newton's law, and he was on the point of

advancing a new hypothesis regarding gravitation, when, tak-

ing the precaution to carry his calculation to a higher degree

of approximation, he reached results agreeing with observa-

tion. The motion of the moon was studied about the same

time by Euler and D'Alembert. Clairaut predicted that

"Halley's Comet," then expected to return, would arrive at

its nearest point to the sun on April 13, 1759, a date which

turned out to be one month too late. He was the first to-

detect singular solutions in differential equations of the first

order but of higher degree than the first.

In their scientific labours there was between Clairaut and

D'Alembert great rivalry, often far from friendly. The grow-

ing ambition of Clairaut to shine in society, -where he was a

great favourite, hindered his scientific work in the latter part

of his life.

Johann Heinrich Lambert (1728-1777), born at Miihlhausen

in Alsace, was the son of a poor tailor. While working at his

father's trade, he acquired through his own unaided efforts a

knowledge of elementary mathematics. At the age of thirty he

became tutor in a Swiss family and secured leisure to continue

his studies. In his travels with his pupils through Europe he

became acquainted with the leading mathematicians. In 1764

he settled in Berlin, where he became member of the Academy,

and enjoyed the society of Euler and Lagrange. He received

a small pension, and later became editor of the Berlin Ephem-

eris. His many-sided scholarship reminds one of Leibniz.

In his Cosmological Letters he made some remarkable prophe-

cies regarding the stellar system. In mathematics he made

several discoveries which were extended and overshadowed by

his great contemporaries. His first research on pure mathe-
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matics developed in an infinite series the root x of tlie equation

x" +px = q. Since eacli equation of the form aaf + baf = d

can be reduced to x" +px = q in two ways, one or the other of

the two resulting series was always found to be convergent,

and to give a value of x. Lambert's results stimulated Euler,

who extended the method to an equation of four terms, and

particularly Lagrange, who found that a function of a root of

a — a; + <^(a;) = can be expressed by the series bearing his

name. In 1761 Lambert communicated to the Berlin Academy

a memoir, in which he proves that » is irrational. This proof

is given in Note IV. of Legendre's Giometrie, where it is

extended to w^. To the genius of Lambert we owe the intro-

duction into trigonometry of hyperbolic functions, which he

designated by sink x, cosh x, etc. His Freye Perspective, 1759

and 1773, contains researches on descriptive geometry, and

entitle him to the honour of being the forerunner of Monge.

In his effort to simplify the calculation of cometary orbits, he

was led geometrically to some remarkable theorems on conies,

for instance this :
" If in two ellipses having a common major

axis we take two such arcs that their chords are equal, and

that also the sums of the radii vectores, drawn respectively

from the foci to the extremities of these arcs, are equal to

each other, then the sectors formed in each ellipse by the arc

and the two radii vectores are to each other as the square

roots of the parameters of the ellipses." ^

John Landen (1719-1790) was an English mathematician

whose writings served as the starting-point of investigations

by Euler, Lagrange, and Legendre. Landen's capital discov-

ery, contained in a memoir of 1755, was that every arc of the

hyperbola is immediately rectified by means of two arcs of an

ellipse. In his "residual analysis" he attempted to obviate

the metaphysical difficulties of fluxions by adopting a purely

algebraic method. Lagrange's Calcul des Fonctions is based
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upon this idea. Landen showed how the algebraic expression

for the roots of a cubic equation could be derived by applicar

tion of the differential and integral calculus. Most of the

time of this suggestive writer was spent in the pursuits of

active life.

Etienne Bezout (1730-1783) was a French writer of popular

mathematical school-books. In his TMorie gin&rale des Equw

tions Algihriques, 1779, he gave the method of elimination by

linear equations (invented also by Euler) . This method was

first published by him in a memoir of 1764, in which he uses

determinants, without, however, entering upon their theory.

A beautiful theorem as to the degree of the resultant goes by

his name.

Louis Arbogaste -(1759-1803) of Alsace was professor of

mathematics at Strasburg. His chief work, the Calcul des

Derivations^ 1800^ gives the method known by his name, by

which the successive coefficients of a development are derived

from one another when the expression is complicated. De
Morgan has pointed out that the true nature of derivation

is differentiation accompanied by integration. In this book

for the first time are the symbols of operation separated from

those of quantity. The notation Bj/ for -^ is due to him.

Maria Gaetana Agnesi (1718-1799) of Milan, distinguished as

a linguist, mathematician, and philosopher, filled the mathe-

matical chair at the University of Bologna during her father's

sickness. In 1748 she published her Instituzioni Analitiche,

which was translated into English in 1801. The "witch of

Agnesi " or " versiera " is a plane curve containing a straight

line, a; = 0, and a cubic f
-

) + 1 = - •

VJ ^
Joseph Louis Lagrange (1736-1813), one of the greatest

mathematicians of all times, was born at Turin and died at

Paris. He was of French extraction. His father, who had
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charge of the Sardinian military chest, was once wealthy, but

lost all he had in speculation. Lagrange considered this loss

his good fortune, tor otherwise he might not have made math-

ematics the pursuit of his life. While at the college in Turin

his genius did not at once take its true bent. Cicero and Vir-

gil at first attracted him more than Archimedes and Newton.

He soon came to admire the geometry of the ancients, but the

perusal of a tract of Halley roused his enthusiasm for the

analytical method, in the development of which he was des-

tined to reap undying glory. He now applied himself to

mathematics, and in his seventeenth year he became professor

of mathematics in the royal military academy at Turin.

Without assistance or guidance he entered upon a course of

study which in two years placed him on a level with the

greatest of his contemporaries. With aid of his pupils he

established a society which subsequently developed into the

Turin Academy. In the first five volumes of its transactions

appear most of his earlier papers. At the age of nineteen he

communicated to Euler a general method of dealing with

" isoperimetrical problems,'' known now as the Calculus of

Variations. This commanded Euler's lively admiration, and

he courteously withheld for a time from publication some

researches of his own on this subject, so that the youthful

Lagrange might complete his investigations and claim the

invention. Lagrange did quite as much as Euler towards the

creation of the Calculus of Variations. As it came from Euler

it lacked an analytic foundation, and this Lagrange supplied.

He separated the principles of this calculus from geometric

considerations by which his predecessor had derived them.

Euler had assumed as fixed the limits of the integral, i.e. the

extremities of the curve to be determined, but Lagrange

removed this restriction and allowed all co-ordinates of the

curve to vary at the same time. Euler introduced in 1766 the
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name " calculus of variations," and did much to improve this

science along the lines marked out by Lagrange.

Another subject engaging the attention of Lagrange at

Turin was the propagation of sound. In his papers on this

subject in the Miscellanea Taurinensia, the young mathemati-

cian appears as the critic of Newton, and the arbiter between

Euler and D'Alembert. By considering only the particles

which are in a straight line, he reduced the problem to the

same partial differential equation that represents the motions

of vibrating strings. The general integral of this was found by

D'Alembert to contain two arbitrary functions, and the ques-

tion now came to be discussed whether an arbitrary function

may be discontinuous. D'Alembert maintained the negative

against Euler, Daniel Bernoulli, and finally Lagrange,— argu-

ing that in order to determine the position of a point of the

chord at a time t, the initial position of the chord must be

continuous. Lagrange settled the question in the affirmative.

By constant application during nine years, Lagrange, at the

age of twenty-six, stood at the summit of European fame.

But his intense studies had seriously weakened a constitution

never robust, and though his physicians induced him to take

rest and exercise, his nervous system never fully recovered its

tone, and he was thenceforth subject to fits of melancholy.

In 1764 the French Academy proposed as the subject of

a prize the theory of the libration of the moon. It demanded

an explanation, on the principle of universal gravitation, why
the moon always turns, with but slight variations, the same

phase to the earth. Lagrange secured the prize. This suc-

cess encouraged the Academy to propose as a prize the theory

of the four satellites of Jupiter,— a problem of six bodies,

more difficult than the one of three bodies previously solved

by Clairaut, D'Alembert, and Euler. Lagrange overcame the

difficulties, but the shortness of time did not permit him to
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exhaust the subject. Twenty-four years afterwards it was

completed by Laplace. Later astronomical investigations of

Lagrange are on cometary perturbations (1778 and 1783), on

Kepler's problem, and on a new method of solving the prob-

lem of three bodies.

Being anxious to make the personal acquaintance of leading

mathematicians, Lagrange visited Paris, where he enjoyed the

stimulating delight of conversing with Clairaut, D'Alembert,

Condorcet, the Abbe Marie, and others. He had planned a

visit to London, but he fell dangerously ill after a dinner in

Paris, and was compelled to return to Turin. In 1766 Euler

left Berlin for St. Petersburg, and he pointed out Lagrange as

the only man capable of filling the place. D'Alembert recom-

mended him at the same time. Prederick the Great there-

upon sent a message to Turin, expressing the wish of "the

greatest king of Europe " to have " the greatest mathemati-

cian " at his court. Lagrange went to Berlin, and staid there

twenty years. Finding all his colleagues married, and being

assured by their wives that the marital state alone is happy,

he married. The union was not a happy one. His wife

soon died. Frederick the Great held him in high esteem,

and frequently conversed with him on the advantages of per-

fect regularity of life. This led Lagrange to cultivate regular

habits. He worked no longer each day than experience taught

him he could without breaking down. His papers were care-

fully thought out before he began writing, and when he wrote

he did so without a single correction.

During the twenty years in Berlin he crowded the transac-

tions of the Berlin Academy with memoirs, and wrote also

the epoch-making work called the M&canique Analytique. He
enriched algebra by researches on the solution of equations.

There are two methods of solving directly algebraic equa-

tions, — that of substitution and that of combination. The
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former method was developed by Ferrari, Vieta, Tchirnhausen,

Euler, B&out, and Lagrange ; the latter by Vandermonde and

Lagrange.^ In the method of substitution the original forms

are so transformed that the determination of the roots is made

to depend upon simpler functions (resolvents). In the method

of combination auxiliary quantities are substituted for certain

simple combinations ("types") of the unknown roots of the

equation, and auxiliary equations (resolvents) are obtained for

these quantities with aid of the coefficients of the given equa-

tion. Lagrange traced all known algebraic solutions of equa-

tions to the uniform principle consisting in the formation and

solution of equations of lower degree whose roots are linear

functions of the required roots, and of the roots of unity. He
showed that the quintic cannot be reduced in this way, its

resolvent being of the sixth degree. His researches on the

theory of equations were continued after he left Berlin. In

the Resolution des equations numdriques (1798) he gave a

method of approximating to the real roots of numerical equa-

tions by continued fractions. Among other things, it contains

also a proof that every equation must have a root,— a theorem

which appears before this to have been considered self-evident.

Other proofs of this were given by Argand, Gauss, and Cauchy.

In a note to the above work Lagrange uses Fermat's theorem

and certain suggestions of Gauss in effecting a complete alge-

braic solution of any binomial equation.

While in Berlin Lagrange published several papers on the

theory of numbers. In 1769 he gave a solution in integers of

indeterminate equations of the second degree, which resembles

the Hindoo cyclic method ; he was the first to prove, in 1771,

"Wilson's theorem," enunciated by an Englishman, John

Wilson, and first published by Waring in his Meditationes

Algebraicce; he investigated in 1775 under what conditions

± 2 and ± 5 (— 1 and ± 3 having been discussed by Euler)
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are quadratic residues, or non-residues of odd prime numbers,

q\ he proved in 1770 Meziriac's tlieorem that every integer is

equal to the sum of four, or a less number, of squares. He
proved Eermat's theorem on a;" + y" = 2", for the case n = 4,

also Format's theorem that, if a? -\-W = <?, then ab is not a

square.

In his memoir on Pyramids, 1773, Lagrange made consider-

able use of determinants of the third order, and demonstrated

that the square of a determinant is itself a determinant. He
never, however, dealt explicitly and directly with determi-

nants; he simply obtained accidentally identities which are

now recognised as relations between determinants.

Lagrange wrote much on differential equations. Though

the subject of contemplation by the greatest mathematicians

(Euler, D'Alembert, Clairaut, Lagrange, Laplace), yet more

than other branches of mathematics did they resist the sys-

tematic application of fixed methods and principles. Lagrange

established criteria for singular solutions {Calcul des Fonctions,

Lessons 14-17), which are, however, erroneous. He was the

first to point out the geometrical significance of such solutions.

He generalised Euler's researches on total differential equa-

tions of two variables, and of the ninth order ; he gave a solu-

tion of partial differential equations of the first order (Berlin

Memoirs, 1772 and 1774), and spoke of their singular solutions,

extending their solution in Memoirs of 1779 and 1785 to equa-

tions of any number of variables. The discussion on partial

differential equations of the second order, carried on by

D'Alembert, Euler, and Lagrange, has already been referred

to in our account of D'Alembert.

While in Berlin, Lagrange wrote the "Michanique Analytique,"

the greatest of his works (Paris, 1788). From the principle

of virtual velocities he deduced, with aid of the calculus of

variations, the whole system of mechanics so elegantly and
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harmoniously that it may fitly be called, in Sir William

Rowan Hamilton's words, " a kind of scientific poem." It is a

most consummate example of analytic generality. Geometrical

figures are nowhere allowed. " On ne trouvera point de figures

dans cet ouvrage" (Preface). The two divisions of mechanics

— statics and dynamics— are in the first four sections of each

carried out analogously, and each is prefaced by a historic

sketch of principles. Lagrange formulated the principle of

least action. In their original form, the equations of motion

involve the co-ordinates x, y, z, of the different particles m or

dm, of the system. But x, y, z, are in general not independent,

and Lagrange introduced in place of them any variables ^, ^,

<\>, whatever, determining the position of the point at the time.

These may be taken to be independent. The equations of

motion may now assume the form

ddT_dT ^^Q,
dtdi' di^ '

or when B, ^, <^, . . . are the partial differential coefficients

with respect to |, i/r, <^, . . . of one and the same function V,

then the form
d^dT_dT dV^Q
dt dff di di

The latter is par excellence the Lagrangian form of the equa-

tions of motion. With Lagrange originated the remark that

mechanics may be regarded as a geometry of four dimensions.

To him falls the honour of the introduction of the potential

into dynamics.*' Lagrange was anxious to have his Micanique

Analytique published in Paris. The work was ready for print

in 1786, but not till 1788 could he find a publisher, and then

only with the condition that after a few years he would pur-

chase all the unsold copies. The work -was edited by
Legendre.
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After the death of Frederick the Great, mea of science

were no longer respected in Germany, and Lagrange accepted

an invitation of Louis XVI. to migrate to Paris. The French

queen treated him with regard, and lodging was procured for

him in the Louvre. But he was seized with a long attack of

melancholy which destroyed his taste for mathematics. For

two years his printed copy of the Micanique, fresh from the

press,—the work of a quarter of a century,— lay unopened on

his desk. Through Lavoisier he became interested in chem-

istry, which he found " as easy as algebra." The disastrous

crisis of the French Kevolution aroused him again to activity.

About this time the young and accomplished daughter of the

astronomer Lemonnier took compassion on the sad, lonely

Lagrange, and insisted upon marrying him. Her devotion to

him constituted the one tie to life which at the approach of

death he found it hard to break.

He was made one of the commissioners to establish weights

and measures having units founded on nature. Lagrange

strongly favoured the decimal subdivision, the general idea of

which was obtained from a work of Thomas Williams, London,

1788. Such was the moderation of Lagrange's character, and

such the universal respect for him, that he was retained as presi-

dent of the commission on weights and measures even after it

had been purified by the Jacobins by striking out the names

of Lavoisier, Laplace, and others. Lagrange took alarm at the

fate of Lavoisier, and planned to return to Berlin, but at the

establishment of the Ecole Normale in 1795 in Paris, he was

induced to accept a professorship. Scarcely had he time to

elucidate the foundations of arithmetic and algebra to young

pupils, when the school was closed. His additions to the

algebra of Euler were prepared at this time. In 1797 the

Ecole Polytechnique was founded, with Lagrange as one of

the professors. The earliest triumph of this institution was
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the restoration of Lagrange to analysis. His mathematical

activity burst out anew. He brought forth the Th&orie des

fonctions analytiques (1797)^ Legons sur le calcul des fonctions,

a treatise on the same lines as the preceding (1801), and the

Resolution des Equations numeriques (1798). In 1810 he

began a thorough revision of his Micanique analytique, but

he died before its completion.

The ThSorie des fonctions, the germ of -which is found in a

memoir of his of 1772, aimed to place the principles of the

calculus upon a sound foundation by relieving the mind of the

difficult conception of a limit or infinitesimal. John Landen's

residual calculus, professing a similar object, was unknown to

him. Lagrange attempted to prove Taylor's theorem (the

power of which he was the first to point out) by simple algebra,

and then to develop the entire calculus from that theorem.

The principles of the calculus were in his day involved in

philosophic difficulties of a serious nature. The infinitesimals

of Leibniz had no satisfactory metaphysical basis. In the

differential calculus of Euler they were treated as absolute

zeros. In Newton's limiting ratio, the magnitudes of which it

is the ratio cannot be found, for at the moment when they

should be caught and equated, there is neither arc nor chord.

The chord and arc were not taken by Newton as equal before

vanishing, nor after vanishing, but when they vanish. " That

method," said Lagrange, "has the great inconvenience of con-

sidering quantities in the state in which they cease, so to

speak, to be quantities ; for though we can always well con-

ceive the ratios of two quantities, as long as they remain

finite, that ratio offers to the mind no clear and precise idea,

as soon as its terms become both nothing at the same time."

D'Alembert's method of limits was much the same as the

method of prime and ultimate ratios. D'Alembert taught

that a variable actually reached its limit. When Lagrange
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endeavoured to free the calculus of its metaphysical difficulties,

by resorting to common algebra, he avoided the whirlpool of

Charybdis only to suffer wreck against the rocks of Scylla.

The algebra of his day, as handed down to him by Euler, was

founded on a false view of infinity. No correct theory of

infinite series had then been established. Lagrange proposed

to define the differential coefficient of f(x) with respect to x

as the coefficient of h in the expansion of f{x -\- h) by Taylor's

theorem, and thus to avoid all reference to limits. But he

used infinite series without ascertaining that they were con-

vergent, and his proof that f{x + h) can always be expanded

in a series of ascending powers of h, labours under serious

defects. Though Lagrange's method of developing the calculus

was at first greatly applauded, its defects were fatal, and to-day

his "method of derivatives," as it was called, has been gen-

erally abandoned. He introduced a notation of his own, but

it was inconvenient, and was abandoned by him in the second

edition of his Micanique, in which he used infinitesimals. The

primary object of the TMorie des fonctions was not attained,

but its secondary results were far-reaching. It was a purely

abstract mode of regarding functions, apart from geometrical

or mechanical considerations. In the further development

of higher analysis a function became the leading idea, and

Lagrange's work may be regarded as the starting-point of the

theory of functions as developed by Cauchy, Eiemann, Weier-

strass, and others.

In the treatment of infinite series Lagrange displayed in

his earlier writings that laxity common to all mathematicians

of his time, excepting Nicolaus Bernoulli II. and D'Alembert.

But his later articles mark the beginning of a period of greater

rigour. Thus, in the' Calcul de fonctions he gives his theorem

on the limits of Taylor's theorem. Lagrange's mathematical

researches extended to subjects which have not been men-
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tioned here— such as probabilities, finite differences, ascend-

ing continued fractions, elliptic integrals. Everywhere his

wonderful powers of generalisation and abstraction are made

manifest. In that respect he stood without a peer, but

his great contemporary, Laplace, surpassed him in practical

sagacity. Lagrange was content to leave the application of

his general results to others, and some of the most important

researches of Laplace (particularly those on the velocity of

sound and on the secular acceleration of the moon) are im-

plicitly contained in Lagrange's works.

Lagrange was an extremely modest man, eager to avoid

controversy, and even timid in conversation. He spoke in

tones of doubt, and his first words generally were, "Je ne

sais pas." He would never allow his portrait to be taken,

and the only ones that were secured were sketched without

his knowledge by persons attending the meetings of the

Institute.

Pierre Simon Laplace (1749-1827) was born at Beaumont-

en-Auge in Normandy. Very little is known of his early

life. When at the height of his fame he was loath to speak

of his boyhood, spent in poverty. His father was a small

farmer. Some rich neighbours who recognised the boy's

talent assisted him in securing an education. As an extern

he attended the military school in Beaumont, where at an

early age he became teacher of mathematics. At eighteen

he went to Paris, armed with letters of recommendation to

D'Alembert, who was then at the height of his fame. The

letters remained unnoticed, but young Laplace, undaunted,

wrote the great geometer a letter on the principles of me-

chanics, which brought the following enthusiastic response

:

" You needed no introduction
;
you have recommended your-

self; my support is your due." D'Alembert secured him a

position at the Ecole Militaire of Paris as professor of mathe-
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matics. His future was now assured, and lie entered upon

those profound researches whicli brought him the title of " the

Newton of France." With wonderful mastery of analysis,

Laplace attacked the pending problems in the application

of the law of gravitation to celestial motions. During the

succeeding fifteen years appeared most of his original contri-

butions to astronomy. His career was one of almost uninter-

rupted prosperity. In 1784 he succeeded Bezout as examiner

to the royal artillery, and the following year he became mem-
ber of the Academy of Sciences. He was made president of

the Bureau of Longitude ; he aided in the introduction of the

decimal system, and taught, with Lagrange, mathematics in

the Ecole Normale. When, during the Revolution, there arose

a cry for the reform of everything, even of the calendar,

Laplace suggested the adoption of an era beginning with the

year 1250, when, according to his calculation, the major axis

of the earth's orbit had been perpendicular to the equinoctial

line. The year was to begin with the vernal equinox, and the

zero meridian was to be located east of Paris by 185.30 degrees

of the centesimal division of the quadrant, for by this meridian

the beginning of his proposed era fell at midnight. But the

revolutionists rejected this scheme, and made the start of the

new era coincide with the beginning of the glorious French

Eepublic.™

Laplace was justly admired throughout Europe as a most

sagacious and profound scientist, but, unhappily for his repu-

tation, he strove not only after greatness in science, but also

after political honours. The political career of this eminent

scientist was stained by servility and suppleness. After the

18th of Brumaire, the day when Napoleon was made emperor,

Laplace's ardour for republican principles suddenly gave way

to a great devotion to the emperor. Napoleon rewarded this

devotion by giving him the post of minister of the interior,
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but dismissed Mm after six months for incapacity. Said

Napoleon, "Laplace ne saisissait aucune question sous son

veritable point de vue; il chercbait des subtilit^s partout,

n'avait que des idees problematiqties, et portait enfin I'esprit

des infiniment petits jusque dans I'administration." Desirous

to retain bis allegiance, Napoleon elevated bim to the Senate

and bestowed various otber honours upon him. Nevertheless,

he cheerfully gave his voice in 1814 to the dethronement of

bis patron and hastened to tender bis services to the Bourbons,

thereby earning the title of marquis. This pettiness of his

character is seen in bis writings. The first edition of the

Syst&me du monde was dedicated to the Council of Five Hun-

dred. To the third volume of the Micanique CMeste is prefixed

a note that of all the truths contained in the book, that most

precious to the author was the declaration he thus made of

gratitude and devotion to the peace-maker of Europe. After

this outburst of affection, we are surprised to find in the editions

of the Thiorie analytique des prohahilitis, which appeared after

the Restoration, that the original dedication to the emperor is

suppressed.

Though supple and servile in politics, it must be said that

in religion and science Laplace never misrepresented or con-

cealed his own convictions however distasteful they might be

to others. In mathematics and astronomy his genius shines

with a lustre excelled by few. Three great works did he give

to the scientific world,— the Micanique CSleste, the Exposition

du systime du monde, and the Thiorie analytique des probabili-

ties. Besides these he contributed important memoirs to the

French Academy.

We fijst pass in brief review bis astronomical researches.

In 1773 he brought out a paper in which he proved that the

mean motions or mean distances of planets are invariable or

merely subject to small periodic changes. This was the first
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and most important step in establishing the stability of the

solar system." To Newton and also to Euler it had seemed

doubtful whether forces so numerous, so variable in position,

so different in intensity, as those in the solar system, could be

capable of maintaining permanently a condition of equilibrium.

Newton was of the opinion that a powerful hand must inter-

vene from time to time to repair the derangements occa-

sioned by the mutual action of the different bodies. This

paper was the beginning of a series of profound researches by

Lagrange and Laplace on the limits of variation of the various

elements of planetary orbits, in which the two great mathema-

ticians alternately surpassed and supplemented each other.

Laplace's first paper really grew out of researches on the

theory of Jupiter and Saturn. The behaviour of these planets

had been studied by Euler and Lagrange without receiving

satisfactory explanation. Observation revealed the existence

of a steady acceleration of the mean motions of our moon and

of Jupiter and an equally strange diminution of the mean mo-

tion of Saturn. It looked as though Saturn might eventually

leave the planetary system, while Jupiter would fall into the

sun, and the moon upon the earth. Laplace finally succeeded

in showing, in a paper of 1784-1786, that these variations

(called the "great inequality") belonged to the class of ordi-

nary periodic perturbations, depending upon the law of attrac-

tion. The cause of so influential a perturbation was found in

the commensurability of the mean motion of the two planets.

In the study of the Jovian system, Laplace was enabled to

determine the masses of the moons. He also discovered cer-

tain very remarkable, simple relations between the movements

of those bodies, known as " Laws of Laplace.'' His theory of

these bodies was completed in papers of 1788 and 1789.

These,, as well as the other papers here mentioned, were pub-

lished in the M&moirs prisentSs par divers savans. The year
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1787 was made memorable by Laplace's announcement that

the lunar acceleration depended upon tlie secular changes in

the eccentricity of the earth's orbit. This removed all doubt

then existing as to the stability of the solar system. The uni-

versal validity of the law of gravitation to explain all motion

in the solar system was established. That system, as then

known, was at last found to be a complete machine.

In 1796 Laplace published his Exposition du systlme du

monde, a non-mathematical popular treatise on astronomy,

ending with a sketch of the history of the science. In this

work he enunciates for the first time his celebrated nebular

hypothesis. A similar theory had been previously proposed

by Kant in 1755, and by Swedenborg ; but Laplace does not

appear to have been aware of this.

Laplace conceived the idea of writing a work which should

contain a complete analytical solution of the mechanical prob-

lem presented by the solar system, without deriving from

observation any but indispensable data. The result was the

Micanique Cileste, which is a systematic presentation embrac-

ing all the discoveries of Newton, Clairaut, D'Alembert, Euler,

Lagrange, and of Laplace himself, on celestial mechanics.

The first and second volumes of this work were published in

1799 ; the third appeared in 1802, the fourth in 1805. Of the

fifth volume, Books XI. and XII. were published in 1823;

Books XIII., XIV., XV. in 1824, and Book XVI. in 1825. The

first two volumes contain the general theory of the motions

and figure of celestial bodies. The third and fourth volumes

give special theories of celestial motions,— treating particu-

larly of motions of comets, of our moon, and of other satel-

lites. The fifth volume opens with a brief history of celestial

mechanics, and then gives in appendices the results of the

author's later researches. The Micanique CMeste was such a

master-piece, and so complete, that Laplace's successors have



EULEE, LAGEAKGE, AND LAPLACE. 275

been able to add comparatively little. The general part of

the work was translated into German by Joh. Karl Burk-

hardt, and appeared in Berlin, 1800-1802. Nathaniel Bowditch

brought out an edition in English, with an extensive com.-

mentary, in Boston, 1829-1839. The Micanique Gileste is not

easy reading. The diflculties lie, as a rule, not so much in the

subject itself as in the want of verbal explanation. A compli-

cated chain of reasoning receives often no explanation what-

ever. Biot, who assisted Laplace in revising the work for

the press, tells that he once asked Laplace some explanation

of a passage in the book which had been written not long

before, and that Laplace spent an hour endeavouring to recover

the reasoning which had been carelessly suppressed with the

remark, "II est facile de voir." Notwithstanding the impor-

tant researches in the work, which are due to Laplace himself,

it naturally contains a great deal that is drawn from his pred-

ecessors. It is, in fact, the organised result of a century of

patient toil. But Laplace frequently neglects to properly

acknowledge the source from which he draws, and lets the

reader infer that theorems and formulae due to a predecessor

are really his own.

We are told that when Laplace presented Napoleon with a

copy of the Micaniqae CMeste, the latter made the remark,

" M. Laplace, they tell me you have written this large book on

the system of the universe, and have never even mentioned

its Creator." Laplace is said to have replied bluntly, "Je

n'avais pas besoin de cette hypothese-la." This assertion,

taken literally, is impious, but may it not have been intended

to convey a meaning somewhat different from its literal one ?

Newton was not able to explain by his law of gravitation all

questions arising in the mechanics of the heavens. Thus,

being unable to show that the solar system was stable, and

suspecting in fact that it was unstable, Newton expressed the
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opinion that the special intervention, from time to time, of a

powerful hand was necessary to preserve order. Now Laplace

was able to prove by the law of gravitation that the solar

system is stable, and in that sense may be said to have felt

no necessity for reference to the Almighty.

We now proceed to researches which belong more properly

to pure mathematics. Of these the most conspicuous are on

the theory of probability. Laplace has done more towards

advancing this subject than any one other investigator. He
published a series of papers, the main results of which were

collected in his TMorie analytique des probdbilitis, 1812. The

third edition (1820) consists of an introduction and two books.

The introduction was published separately under the title,

Essai philosophique sur les probabilitis, and is an admirable

and masterly exposition without the aid of analytical formulae

of the principles and applications of the science. The first

book contains the theory of generating functions, which are

applied, in the second book, to the theory of probability.

Laplace gives in his work on probability his method of

approximation to the values of definite integrals. The solu-

tion of linear differential equations was reduced by him to

definite integrals. One of the most important parts of the

work is the application of probability to the method of least

squares, which is shown to give the most probable as well as

the most convenient results.

The first printed statement of the principle of least squares

was made in 1806 by Legendre, without demonstration. Gauss

had used it still earlier, but did not publish it until 1809.

The first deduction of the law of probability of error that

appeared in print was given in 1808 by Eobert Adrain in the

Anodyst, a journal published by himself in Philadelphia.'

Proofs of this law have since been given by Gauss, Ivory,

Herschel, Hagen, and others; but all proofs contain some
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point of difllculty. Laplace's proof is perhaps tlie most satis-

factory.

Laplace's work on probability is very difficult reading, par-

ticularly the part on the method of least squares. The

analytical processes are by no means clearly established or

free from error. "No one was more sure of giving the

result of analytical processes correctly, and no one ever took

so little care to point out the various small considerations on

which correctness depends " (De Morgan)

.

Of Laplace's papers on the attraction of ellipsoids, the most

important is the one published in 1786, and to a great extent

reprinted in the third volume of the Micanique Cileste. It

gives an exhaustive treatment of the general problem of

attraction of any ellipsoid upon a particle situated outside

or upon its surface. Spherical harmonics, or the so-called

" Laplace's coefficients," constitute a powerful analytic engine

in the theory of attraction, in electricity, and magnetism.

The theory of spherical harmonics for two dimensions had

been previously given by Legendre. Laplace failed to make

due acknowledgment of this, and there existed, in con-

sequence, between the two great men, "a feeling more

than coldness." The potential function, V, is much used by

Laplace, and is shown by him to satisfy the partial diiferential

equation —— -{ + —-- = 0. This is known as Laplace's
da? dy^ dz'

equation, and was first given by him in the more complicated

form which it assumes in polar co-ordinates. The notion

of potential was, however, not introduced into analysis by

Laplace. The honour of that achievement belongs to La-

grange.*'

Among the minor discoveries of Laplace are his method of

solving equations of the second, third, and fourth degrees,

his memoir on singular solutions of differential equations, his
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researches in finite differences and in determinants, the estab-

lishment of the expansion theorem in determinants which had

been previously given by Vandermonde for a special case, the

determination of the complete integral of the linear differen-

tial equation of the second order. In the Mecanique Cileste he

made a generalisation of Lagrange's theorem on the develop-

ment of funcftions in series known as Laplace's theorem.

Laplace's investigations in physics were quite extensive.

We mention here his correction of Newton's formula on the

velocity of sound in gases by taking into account the changes

of elasticity due to the heat of compression and cold of rarefac-

tion ; his researches on the theory of tides ; his mathematical

theory of capillarity ; his explanation of astronomical refrac-

tion ; his formulae for measuring heights by the barometer.

Laplace's writings stand out in bold contrast to those of

Lagrange in their lack of elegance and symmetry. Laplace

looked upon mathematics as the tool for the solution of physi-

cal problems. The true result being once reached, he spent

little time in explaining the various steps of his analysis, or

in polishing his work. The last years of his life were spent

mostly at Arcueil in peaceful retirement on a country-place,

where he pursued his studies with his usual vigour until his

death. He was a great 'admirer of Euler, and would often

say, "Lisez Euler, lisez Euler, c'est notre maitre a tons."

Abnit-The'ophile Vandermonde (1735-1796) studied music

during his youth in Paris and advocated the theory that all

art rested upon one general law, through which any one could

become a composer with the aid of mathematics. He was the

first to give a connected and logical exposition of the theory

of determinants, and may, therefore, almost be regarded as

the founder of that theory. He and Lagrange originated the

method of combinations in solving equations.^

Adrian Marie Legendre (1752-1833) was educated at the
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College Mazarin in Paris, where he began the study of mathe-

matics under Abbe Marie. His mathematical genius secured

for him the position of professor of mathematics at the mili-

tary school of Paris. While there he prepared an essay on

the curve described by projectiles thrown into resisting media

(ballistic curve), which captured a prize offered by the Koyal

Academy of Berlin. In 1780 he resigned his position in order

to reserve more time for the study of higher mathematics.

He was then made member of several public commissions.

In 1795 he was elected professor at the Normal School and

later was appointed to some minor government positions.

Owing to his timidity and to Laplace's unfriendliness toward

him, but few important public offices commensurate with his

ability were tendered to him.

As an analyst, second only to Laplace and Lagrange, Legen-

dre enriched mathematics by important contributions, mainly

on elliptic integrals, theory of numbers, attraction of ellip-

soids, and least squares. The most important of Legendre's

works is his Fonctions elliptiques, issued in two volumes in

1825 and 1826. He took up the subject where Euler, Landen,

and Lagrange had left it, and for forty years was the only one

to cultivate this new branch of analysis, until at last Jacobi and

Abel stepped in with admirable new discoveries.^^ Legendre

imparted to the subject that connection and arrangement

which belongs to an independent science. Starting with an

integral depending upon the square root of a polynomial of

the fourth degree in x, he showed that such integrals can be

brought back to three canonical forms, designated by F{<t>),

-B(<^), and n((^), the radical being expressed in the form

A(<^) = Vl — K' sin^^. He also undertook the prodigious task

of calculating tables of arcs of the ellipse for different degrees

of amplitude and eccentricity, which supply the means of

integrating a large number of differentials.
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An earlier publication whicli contained part of Ms researches

on elliptic functions was his Calcul intigral in three volumes

(1811, 1816, 1817), in which he treats also at length of the

two classes of definite integrals named by him Eulerian. He
tabulated the values of log T(p) for values of p between

1 and 2.

One of the earliest subjects of research was the attraction

of spheroids, which suggested to Legendre the function P^
named after him. His memoir was presented to the Academy

of Sciences in 1783. The researches of Maclaurin and Lagrange

suppose the point attracted by a spheroid to be at the surface

or within the spheroid, but Legendre showed that in order to

determine the attraction of a spheroid on any external point

it suffices to cause the surface of another spheroid described

upon the same foci to pass through that point. Other memoirs

on ellipsoids appeared later.

The two household gods to which Legendre sacrificed with

ever-renewed pleasure in the silence of his closet were the

elliptic functions and the theoiy of numbers. His researches

on the latter subject, together with the numerous scattered

fragments on the theory of numbers due to his predecessors

in this line, were arranged as far as possible into a systematic

whole, and published in two large quarto volumes, entitled

TMorie des nombres, 1830. before the publication of this

work Legendre had issued at divers times preliminary articles.

Its crowning pinnacle is the theorem of quadratic reciprocity,

previously indistinctly given by Euler without proof, but for the

first time clearly enunciated and partly proved by Legendre.**

While acting as one of the commissioners to connect Green-

wich and Paris geodetically, Legendre calculated all the tri-

angles in France. This furnished the occasion of establishing

formulae and theorems on geodesies, on the treatment of the

spherical triangle as if it were a plane triangle, by applying



ETTLEK, LAGEANGE, AND LAPLACE. 281

certain corrections to the angles, and on the method of least

squares, published for the first time by him without demon-

stration in 1806.

Legendre wrote an EUments de OiomUrie, 1794, which

enjoyed great popularity, being generally adopted on the

Continent and in the United States as a substitute for Euclid.

This great modern rival of Euclid passed through numerous

editions ; the later ones containing the elements of trigonom-

etry and a proof of the irrationality of w and i^. Much
attention was given by Legendre to the subject of parallel

lines. In the earlier editions of the EUments, he made direct

appeal to the senses for the correctness of the " parallel-axiom."

He then attempted to demonstrate that " axiom," but his

proofs did not satisfy even himself. In Vol. XII. of the

Memoirs of the Institute is a paper by Legendre, containing

his last attempt at a solution of the problem. Assuming

space to be infinite, he proved satisfactorily that it is impossible

for the sum of the three angles of a triangle to exceed two

right angles ; and that if there be any triangle the sum of

whose angles is two right angles, then the same must be true

of all triangles. But in the next step, to show that this sum

cannot be less than two right angles, his demonstration neces-

sarily failed. If it could be granted that the sum of the three

angles is always equal to two right angles, then the theory of

parallels could be strictly deduced.

Josepi Fourier (1768-1830) was born at Auxerre, in central

France. He became an orphan in his eighth year. Through

the influence of friends he was admitted into the military

school in his native place, then conducted by the Benedictines

of the Convent of St. Mark. He there prosecuted his studies,

particularly mathematics, with surprising success. He wished

to enter the artillery, but, being of low birth (the son of a

tailor), his application was answered thus: "Fourier, not
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being noble, could not enter the artillery, although he were

a second Newton.""' He was soon appointed to the mathe-

matical chair in the military school. At the age of twenty-

one he went to Paris to read before the Academy of Sciences

a memoir on the resolution of numerical equations, which

was an improvement on Newton's method of approximation.

This investigation of his early youth he never lost sight of.

He lectured upon it in the Polytechnic School ; he developed

it on the banks of the Nile ; it constituted a part of a work

entitled Analyse des equationes determines (1831), which was

in press when death overtook him. This work contained

"Fourier's theorem" on the number of real roots between

two chosen limits. Budan had published this result as early

as 1807, but there is evidence to show that Pourier had estab-

lished it before Budan's publication. These brilliant results

were eclipsed by the theorem of Sturm, published in 1835.

Pourier took a prominent part at his home in promoting

the Revolution. Under the Prench Revolution the arts and

sciences seemed for a time to flourish. The reformation of

the weights and measures was planned with grandeur of con-

ception. The Normal School was created in 1795, of which

Pourier became at first pupil, then lecturer. His brilliant

success secured him a chair in the Polytechnic School, the

duties of which he afterwards quitted, along with Monge and

BerthoUet, to accompany Napoleon on his campaign to Egypt.

Napoleon founded the Institute of Egypt, of which Pourier

became secretary. In Egypt he engaged not only in scientific

work, but discharged important political functions. After

his return to Prance he held for fourteen years the prefecture

of Grenoble. During this period he carried on his elaborate

investigations on the propagation of heat in solid bodies,

published in 1822 in his work entitled La Theorie Analytique

de la Chaleur. This work marks an epoch in the history of
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mathematical physics. " Fourier's series " constitutes its

gem. By this research a long controversy was brought to a

close, and the fact established that any arbitrary function

can be represented by a trigonometric series. The first

announcement of this great discovery was made by Fourier

in 1807, before the French Academy. The trigonometric

series 2 (a„ sin na; + 6„ cos na;) represents the function i^(a!)
n=0 J /'IT

for every value of x, if the coefiB.cients a„=- I 4>(p) smnxdx,

and 6„ be equal to a similar integral. The weak point in

Fourier's analysis lies in his failure to prove generally that

the trigonometric series actually converges to the value of

the function. In 1827 Fourier succeeded Laplace as president

of the council of the Polytechnic School.

Before proceeding to the origin of modern geometry we shall

speak briefly of the introduction of higher analysis into Great

Britain. This took place during the first quarter of this cen-

tury. The British began to deplore the very small progress

that science was making in England as compared with its

racing progress on the Continent. In 1813 the "Analytical

Society" was formed at Cambridge. This was a small club

established by George Peacock, John Herschel, Charles Bab-

bage, and a few other Cambridge students, to promote, as it

was humorously expressed, the principles of pure "Z)-ism,"

that is, the Leibniziau notation in the calculus against those

of "dot-age,'' or of the Newtonian notation. This struggle

ended in the introduction into Cambridge of the notation

-^, to the exclusion of the fluxional notation y. This
dx
was a great step in advance, not on account of any great

superiority of the Leibnizian over the Newtonian notation,

but because the adoption of the former opened up to English

students the vast storehouses of continental discoveries. Sir

William Thomson, Tait, and some other modern writers find
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it frequently convenient to use both notations. Herschel,

Peacock, and Babbage translated, in 1816, from the Frencli,

Lacroix's treatise on the differential and integral calculus, and

added in 1820 two volumes of examples. Lacroix's was one

of the best and most extensive works on the calculus of that

time. Of the three founders of the "Analytical Society,"

Peacock afterwards did most work in pure mathematics.

Babbage became famous for his invention of a calculating

engine superior to Pascal's. It was never finished, owing

to a misunderstanding with the government, and a conse-

quent failure to secure funds. John Herschel, the eminent

astronomer, displayed his mastery over higher analysis in

memoirs communicated to the Royal Society on new applica-

tions of mathematical analysis, and in articles contributed

to cyclopaedias on light, on meteorology, and on the history

of mathematics.

George Peacock (1791-1858) was educated at Trinity College,

Cambridge, became Lowndean professor there, and later, dean

of Ely. His chief publications are his Algebra, 1830 and 1842,

and his Report on Recent Progress in Analysis, which was the

first of several valuable summaries of scientific progress printed

in the volumes of the British Association. He was one of the

first to study seriously the fundamental principles of algebra,

and to fully recognise its purely symbolic character. He
advances, though somewhat imperfectly, the " principle of the

permanence of equivalent forms." It assumes that the rules

applying to the symbols of arithmetical algebra apply also

in symbolical algebra. About this time D. P. Gregory wrote

a paper "on the real nature of symbolical algebra," which

brought out clearly the commutative and distributive laws.

These laws had been noticed years before by the inventors

of symbolic methods in the calculus. It was Servois who
introduced the names commutative and distributive in 1813.
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Peacock's investigations on the foundation of algebra were

considerably advanced by De Morgan and Hankel.

James Ivory (1765-1842) was a Scotch mathematician who

for twelve years, beginning in 1804, held the mathematical

chair in the Royal Military College at Marlow (now at Sand-

hurst). He was essentially a self-trained mathematician, and

almost the only one in Great Britain previous to the organisa-

tion of the Analytical Society who was well versed in conti-

nental mathematics. Of importance is his memoir (PhU.

Trans., 1809) in which the problem of the attraction of a

homogeneous ellipsoid upon an external point is reduced to

the simpler problem of the attraction of a related ellipsoid

upon a corresponding point interior to it. This is known as

" Ivory's theorem." He criticised with undue severity Laplace's

solution of the method of least squares, and gave three proofs

of the principle without recourse to probability ; but they are

far from being satisfactory.

The Origki of Modern Geometry.

By the researches of Descartes and the invention of the cal-

culus, the analytical treatment of geometry was brought into

great prominence for over a century. Notwithstanding the

efforts to revive synthetic methods made by Desargues, Pas-

cal, De Lahire, Newton, and Maclaurin, the analytical method

retained almost undisputed supremacy. It was reserved for

the genius of Monge to bring synthetic geometry in the

foreground, and to open up new avenues of progress. His

Giomkrie descriptive marks the beginning of a wonderful

development of modern geometry.

Of the two leading problems of descriptive geometry, the

one— to represent by drawings geometrical magnitudes— was

brought to a high degree of perfection before the time of
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Monge ; the other— to solve problems on figures in. space

by constructions in a plane— had received considerable at-

tention before his time. His most noteworthy predecessor

in descriptive geometry was the Frenchman Frezier (1682-

1773). But it remained for Monge to create descriptive

geometry as a distinct branch of science by imparting to it

geometric generality and elegance. All problems previously

treated in a special and uncertain manner were referred

back to a few general principles. He introduced the line

of intersection of the horizontal and the vertical plane as

the axis of projection. By revolving one plane into the

other around this axis or ground-line, many advantages were

gained.**

Gaspard Monge (1746-1818) was born at Beaune. The con-

struction of a plan of his native town brought the boy under

the notice of a colonel of engineers, who procured for him an

appointment in the college of engineers at Mezieres. Being

of low birth, he could not receive a commission in the army,

but he was permitted to enter the annex of the school, where

surveying and drawing were taught. Observing that all the

operations connected with the construction of plans of fortifi-

cation were conducted by long arithmetical processes, he sub-

stituted a geometrical method, which the commandant at first

refused even to look at, so short was the time in which it

could be practised ; when once examined, it was received with

avidity. Monge developed these methods further and thus

created his descriptive geometry. Owing to the rivalry

between the Trench military schools of that time, he was not

permitted to divulge his new methods to any one outside of

this institution. In 1768 he was made professor of mathemat-

ics at Mezieres. In 1780, when conversing with two of his

pupils, S. F. Lacroix and Gayvernon in Paris, he was obliged

to say, " All that I have here done by calculation, I could have
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done with the ruler and compass, but I am not allowed to

reveal these secrets to you." But Lacroix set himself to

examine what the secret could be, discovered the processes, and

published them in 1796. The method was published by Monge

himself in the same year, first in the form in which the short-

hand writers took down his lessons given at the Normal School,

where he had been elected professor, and then again, in revised

form, in the Journal des Scoles normales. The next edition

occurred in 1798-1799. After an ephemeral existence of only

four months the Normal School was closed in 1795. In the

same year the Polytechnic School was opened, in the estab-

lishing of which Monge took active part. He taught there

descriptive geometry until his departure from France to accom-

pany Napoleon on the Egyptian campaign. He was the first

president of the Institute of Egypt. Monge was a zealous

partisan of Napoleon and was, for that reason, deprived of all

his honours by Louis XVIII. This and the destruction of the

Polytechnic School preyed heavily upon his mind. He did

not long survive this insult.

Monge's numerous papers were by no means confined to de-

scriptive geometry. His analytical discoveries are hardly less

remarkable. He introduced into analytic geometry the me-

thodic use of the equation of a line. He made important

contributions to surfaces of the second degree (previously

studied by Wren and Euler) and discovered between the

theory of surfaces and the integration of partial differential

equations, a hidden relation which threw new light upon both

subjects. He gave the differential of curves of curvature,

established a general theory of curvature, and applied it to the

ellipsoid. He found that the validity of solutions was not

impaired when imaginaries are involved among subsidiary

quantities. Monge published the following books : Statics,

1786 ; Applications de I'algkhre d, la gSomitrie, 1805 ; Applica-
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Hon de I'analyse d, la giometrie. The last two contain most of

his miscellaneous papers.

Monge was an inspiring teacher, and he gathered around

him a large circle of pupils, among which were Dupin, Servois,

Brianchon, Hachette, Biot, and Poncelet.

Charles Dupin (1784-1873), for many years professor of

mechanics in the Conservatoire des Arts et. Metiers in Paris,

published in 1813 an important work on D&veloppements de

giomitrie, in which is introduced the conception of conjugate

tangents of a point of a surface, and of the indicatrix.^ It

contains also the theorem known as "Dupin's theorem."

Surfaces of the second degree and descriptive geometry were

successfully studied by Jean Nicolas Pierre Hachette (1769-

1834), who became professor of descriptive geometry at the

Polytechnic School after the departure of Monge for Rome and

Egypt. In 1822 he published his Trait& de g&omitrie descriptive.

Descriptive geometry, which arose, as we have seen, in

technical schools in France, was transferred to Germany at

the foundation of technical schools there. G. Schreiber,

professor in Karlsruhe, was the first to spread Monge's

geometry in Germany by the publication of a work thereon

in 1828-1829.''* In the United States descriptive geometry was

introduced in 1816 at the Military Academy in West Point

by Claude Crozet, once a pupil at the Polytechnic School in

Paris. Crozet wrote the first English work on the subject.^

Lazare Nicholas Marguerite Carnot (1753-1823) was born at

Nolay in Burgundy, and educated in his native province.

He entered the army, but continued his mathematical studies,

and wrote in 1784 a work on machines, containing the earliest

proof that kinetic energy is lost in collisions of bodies. With
the advent of the Revolution he threw himself into politics,

and when coalesced Europe, in 1793, launched against France

a million soldiers, the gigantic task of organising fourteen
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armies to meet the enemy was achieved by him. He was

banished in 1796 for opposing Napoleon's coup d'itat. The

refugee went to Geneva, where he issued, in 1797, a work

still frequently quoted, Entitled, Siflexions sur la Mitaphysique

du Calcul Infinitesimal. He declared himself as an " irrecon-

cilable enemy of kings." After the Russian campaign he

offered to fight for France, though not for the empire. On
the restoration he was exiled. He died in Magdeburg. His

Giomitrie de position, 1803, and his Essay on Transversals,

1806, are important contributions to modern geometry. While

Monge revelled mainly in three-dimensional geometry, Carnot

confined himself to that of two. By his effort to explain

the meaning of the negative sign in geometry he established

a "geometry of position," which, however, is different from

the "Geometrie der Lage" of to-day. He invented a class

of general theorems on projective properties of figures, which

have since been pushed to great extent by Poncelet, Chasles,

and others.

Jean Victor Poncelet (1788-1867), a native of Metz, took

part in the Eussian campaign, was abandoned as dead on the

bloody field of Krasnoi, and taken prisoner to Saratoff. De-

prived there of all books, and reduced to the remembrance

of what he had learned at the Lyceum at Metz and the Poly-

technic School, where he had studied with predilection the

works of Monge, Carnot, and Brianchon, he began to study

mathematics from its elements. He entered upon original

researches which afterwards made him illustrious. While

in prison he did for mathematics what Bunyan did for

literature,— produced a much-read work, which has remained

of great value down to the present time. He returned to

France in 1814, and in 1822 published the work in question,

entitled, Traiti des Propriitis projectives des figures. In it

he investigated the properties of figures which remain un-
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altered by projection of the figures. The projection is not

effected here by parallel rays of prescribed direction, as with

Monge, but by central projection. Thus perspective projec-

tion, used before him by Desargues, Pascal, Newton, and Lam-

bert, was elevated by him into a fruitful geometric method.

In the same way he elaborated some ideas of De Lahire,

Servois, and Gergonne into a regular method— the method

of "reciprocal polars." To him we owe the Law of Duality

as a consequence of reciprocal polars. As an independent

principle it is due to Gergonne. Poncelet wrote much on

applied mechanics. In 1838 the Faculty of Sciences was

enlarged by his election to the chair of mechanics.

While in Prance the school 'of Monge was creating modern

geometry, efforts were made in England to revive Greek

geometry by Robert Simson (1687-1768) and Matthew Stewart

(1717-1785). Stewart was a pupil of Simson and Maclaurin,

and succeeded the latter in the chair at Edinburgh. During

the eighteenth century he and Maclaurin were the only promi-

nent mathematicians in Great Britain. His genius was ill-

directed by the fashion then prevalent in England to ignore

higher analysis. In his Four Tracts, Physical and Mathe-

matical, 1761, he applied geometry to the solution of difficult

astronomical problems, which on the Continent were ap-

proached analytically with greater success. He published, in

1746, General Theorems, and in 1763, his Propositiones geo-

metricce more vetertim demonstratoe. The former work con-

tains sixty-nine theorems, of which only five are accompanied

by demonstrations. It gives many interesting new results

on the circle and the straight line. Stewart extended some

theorems on transversals due to Giovanni Ceva (1648-1737),

an Italian, who published in 1678 at Mediolani a work con-

taining the theorem now known by his name.
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Never more zealously and successfully has mathematics

been cultivated than in this century. Nor has progress, as

in previous periods, been confined to one or two countries.

While the French and Swiss, who alone during the preceding

epoch carried the torch of progress, have continued to develop

mathematics with great success, from other countries whole

armies of enthusiastic workers have wheeled into the front

rank. Germany awoke from her lethargy by bringing for-

ward Gauss, Jacobi, Dirichlet, and hosts of more recent men

;

Great Britain produced her De Morgan, Boole, Hamilton,

besides champions who are still living; Eussia entered the

arena with her Lobatchewsky ; Norway with Abel; Italy with

Cremona ; Hungary with her two Bolyais ; the United States

with Benjamin Peirce.

The productiveness of modern writers has been enormous.

" It is difficult," says Professor Cayley,"* " to give an idea of

the vast extent of modern mathematics. This word ' extent

'

is not the right one : I mean extent crowded with beautiful

detail,— not an extent of mere uniformity such as an object-

less plain, but of a tract of beautiful country seen at first in

the distance, but which will bear to be rambled through and

studied in every detail of hillside and valley, stream, rock,

wood, and flower." It is pleasant to the mathematician to

think that in his, as in no other science, the achievements of

291
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every age remain possessions forever ; new discoveries seldom

disprove older tenets ; seldom is anything lost or wasted.

If it be asked wherein the utility of some modern exten-

sions of mathematics lies, it must be acknowledged that it is

at present difficult to see how they are ever to become appli-

cable to questions of common life or physical science. But

our inability to do this should not be urged as an argument

against the pursuit of such studies. In the first place, we

know neither the day nor the hour when these abstract

developments will find application in the mechanic arts, in

physical science, or in other branches of mathematics. For

example, the whole subject of graphical statics, so useful

to the practical engineer, was made to rest upon von Staudt's

Geometrie der Lage ; Hamilton's " principle of varying action "

has its use in astronomy ; complex quantities, general inte-

grals, and general theorems in integration offer advantages in

the study of electricity and magnetism. " The utility of such

researches," says Spottiswoode,*' "can in no case be discounted,

or even imagined beforehand. Who, for instance, would have

supposed that the calculus of forms or the theory of substitu-

tions would have thrown much light upon ordinary equations
;

or that Abelian functions and hyperelliptic transcendents

would have told us anything about the properties of curves

;

or that the calculus of operations would have helped us in

any way towards the figure of the earth ? " A second reason

in favour of the pursuit of advanced mathematics, even when

there is no promise of practical application, is tjiis, that math-

ematics, like poetry and music, deserves cultivation for its

own sake.

The great characteristic of modern mathematics is its gen-

eralising tendency. Nowadays little weight is given to iso-

lated theorems, " except as affording hints of an unsuspected

new sphere of thought, like meteorites detached from some
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undiscovered planetary orb of speculation." In mathematics,

as in all true sciences, no subject is considered in itself alone,

but always as related to, or an outgrowth of, other things.

The development of the notion of continuity plays a leading

part in modern research. In geometry the principle of con-

tinuity, the idea of correspondence, and the theory of projec-

tion constitute the fundamental modern notions. Continuity

asserts itself in a most striking way in relation to the circular

points at infinity in a plane. In algebra the modern idea finds

expression in the theory of linear transformations and invari-

ants, and in the recognition of the value of homogeneity and

symmetry.

SYITTHETIC GEOMETEY.

The conflict between geometry and analysis which arose

near the close of the last century and the beginning of the

present has now come to an end. Neither side has come

out victorious. The greatest strength is found to lie, not in

the suppression of either, but in the friendly rivalry between

the two, and in the stimulating influence of the one upon the

other. Lagrange prided himself that in his Mecanique Ana-

lytique he had succeeded in avoiding all figures ; but since his

time mechanics has received much help from geometry.

Modern synthetic geometry was created by several investi-

gators about the same time. It seemed to be the outgrowth

of a desire for general methods which should serve as threads

of Ariadne to guide the student through the labyrinth of theo-

rems, corollaries, porisms, and problems. Synthetic geometry

was first cultivated by Monge, Carnot, and Poncelet in France
;

it then bore rich fruits at the hands of Mobius and Steiner in

Germany and Switzerland, and was finally developed to still
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higher perfection by Chasles in Trance, von Staudt in Ger-

many, and Cremona in Italy.

Augustus Ferdinand Mbbius (1790-1868) was a native of

Schulpforta in Prussia. He studied at Gottingen under

Gauss, also at Leipzig and Halle. In Leipzig he became, in

1815, privat-docent, the next year extraordinary professor of

astronomy, and in 1844 ordinary professor. This position he

held till his death. The most important of his researches

are on geometry. They appeared in Crelle's Journal, and in

his celebrated work entitled Der Barycentrische Calcul, Leipzig,

1827. As the name indicates, this calculus is based upon

properties of the centre of gravity.^ Thus, that the point

S is the centre of gravity of weights a, b, c, d placed at the

points A, B, C, D respectively, is expressed by the equation

(a + 6 + c + d)8 = aA + hB+ cG+ dD.

His calculus is the beginning of a quadruple algebra, and con-

tains the germs of Grassmann's marvellous system. In desig-

nating segments of lines we find throughout this work for the

first time consistency in the distinction of positive and negar

tive by the order of letters AB, BA. Similarly for triangles

and tetrahedra. The remark that it is always possible to give

three points A, B, C such weights a, /S, y that any fourth point

M in their plane will become a centre of mass, led Mobius

to a new system of co-ordinates in which the position of a

point was indicated by an equation, and that of a line by

co-ordinates. By this algorithm he found by algebra many
geometric theorems expressing mainly invariantal properties,

— for example, the theorems on the anharmonic relation.

Mobius wrote also on statics and astronomy. He generalised

spherical trigonometry by letting the sides or angles of tri-

angles exceed 180°.
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Jacob Steiner (1796-1863), "the greatest geometrician since

the time of Euclid," was born in Utzendorf in the Canton of

Bern. He did not learn to write till he was fourteen. At

eighteen he became a pupil of Pestalozzi. Later he studied

at Heidelberg and Berlin. When Crelle started, in 1826, the

celebrated mathematical journal bearing his name, Steiner and

Abel became leading contributors. In 1832 Steiner published

his Systematische Entwickelung der Abhdngigkeit geometrischer

Gestalten von einander, "in which is uncovered the organism

by which the most diverse phenomena {Erscheinungen) in

the world of space are united to each other." Through the

influence of Jacobi and others, the chair of geometry was

founded for him at Berlin in 1834. This position he occupied

until his death, which occurred after years of bad health. In

his Systematische Entwickelungen, for the first time, is the

principle of duality introduced at the outset. This book and

von Staudt's lay the foundation on which synthetic geometry

in its present form rests. Not only did he fairly complete the

theory of curves and surfaces of the second degree, but he

made great advances in the theory of those of higher degrees.

In his hands synthetic geometry made prodigious progress.

New discoveries followed each other so rapidly that he often

did not take time to record their demonstrations. In an

article in Crelle's Journal on Allgemeine Eigenschaften Alge-

braischer Ciirven he gives without proof theorems which were

declared by Hesse to be "like Ferraat's theorems, riddles to

the present and future generations." Analytical proofs of

some of them have been given since by others, but Cremona

finally proved them all by a synthetic method. Steiner dis-

covered synthetically the two prominent properties of a sur-

face of the third order; viz. that it contains twenty-seven

straight lines and a pentahedron which has the double points

for its vertices and the lines of the Hessian of the given sur-
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face for its edges.'' The first property was discovered ana-

lytically somewhat earlier in England by Cayley and Salmon,

and the second by Sylvester. Steiner's work on this subject

was the starting-point of important researches by H. Schroter,

P. August, L. Cremona, and R. Sturm. Steiner made investi-

gations by synthetic methods on maxima and minima, and

arrived at the solution of problems which at that time alto-

gether surpassed the analytic power of the calculus of variar

tions. He generalised the hexagrammum mysticum and also

Malfatti's problem.^" Malfatti, in 1803, proposed the problem,

to cut three cylindrical holes out of a three-sided prism in

such a way that the cylinders and the prism have the same

altitude and that the volume of the cylinders be a maximum.

This problem was reduced to another, now generally known

as Malfatti's problem : to inscribe three circles in a triangle

that each circle will be tangent to two sides of a triangle and

to the other two circles. Malfatti gave an analytical solution,

but Steiner gave without proof a construction, remarked that

there were thirty-two solutions, generalised the problem by

replacing the three lines by three circles, and " solved the

analogous problem for three dimensions. This general prob

lem was solved analytically by C. H. Schellbach (1809-1892)

and Cayley, and by Clebsch with the aid of the addition

theorem of elliptic functions."'

Steiner's researches are confined to synthetic geometry. He
hated analysis as thoroughly as Lagrange disliked geometry.

Steiner's Gesammelte WerJce were published in Berlin in 1881

and 1882.

Michel Chasles (1793-1880) was born at Epernon, entered

the Polytechnic School of Paris in 1812, engaged afterwards

in business, which he later gave up that he might devote all

his time to scientific pursuits. In 1841 he became professor of

geodesy and mechanics at the Polytechnic School; later,
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' Professeur de Greom6fcrie sup^rieure & la Faculty des Sciences

de Paris." He was a voluminous writer on geometrical sub-

jects. In 1837 he published his admirable Apergu historique

sur I'origine et le diveloppement des mithodes en g&omkrie, con-

taining a history of geometry and, as an appendix, a treatise

"sur deux principes generaux de la Science." The Apergu

historique is still a standard historical work ; the appendix

contains the general theory of Homography (CoUineation) and

of duality (Reciprocity). The name duality is due to Joseph

Diaz Gergonne (1771-1869). Chasles introduced the term

anharmonic ratio, corresponding to the German Doppelver-

lialtniss and to Clifford's cross-ratio. Chasles and Steiner

elaborated independently the modern synthetic or projective

geometry. Numerous original memoirs of Chasles were pub-

lished later in the Journal de I'Ecole Polytechnique. He gave

a reduction of cubics, different from Newton's in this, that the

five curves from which all others can be projected are sym-

metrical with respect to a centre. In 1864 he began the pub-

lication, in the Comptes rendus, of articles in which he solves

by his " method of characteristics " and the " principle of cor-

respondence" an immense number of problems. He deter-

mined, for instance, the number of intersections of two curves

in a plane. The method of characteristics contains the basis

of enumerative geometry. The application of the principle of

correspondence was extended by Cayley, A. Brill, H. G. Zeu-

then, H. A. Schwarz, G. H. Halphen (1844-1889), and others.

The full value of these principles of Chasles was not brought

out until the appearance, in 1879, of the Kalkiil der Ahzdlil-

enden Geometrie by Hermann Schubert of Hamburg. This

work contains a masterly discussion of the problem of enumer-

ative geometry, viz. to determine how many geometric figures

of given definition satisfy a suflScient number of conditions.

Schubert extended his enumerative geometry to n-diraensioual

space.^
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To Chasles we owe the introduction into projective geometry

of non-projective properties of figures by means of the infi-

nitely distant imaginary sphere-circle.'^ Remarkable is his

complete solution, in 1846, by synthetic geometry, of the

difQcult question of the attraction of an ellipsoid on an exter-

nal point. This was accomplished analytically by Poisson in

1835. The labours of Chasles and Steiner raised synthetic

geometry to an honoured and respected position by the side

of analysis.

Karl Georg Christian von Staudt (1798-1867) was born in

Eothenburg on the Tauber, and, at his death, was professor

in Erlangen. His great works are the Geometrie der Lage,

Niirnberg, 1847, and his Beitrdge zur Geometrie der Lage, 1856-

1860. The author cut loose from algebraic formulae and from

metrical relations, particularly the anharmonic ratio of Steiner

and Chasles, and then created a geometry of position, which

is a complete science in itself, independent of all measure-

ments. He shows that projective properties of figures have

no dependence whatever on measurements, and can be estab-

lished without any inention of them. In his theory of what

he calls "Wiirfe," he even gives a geometrical definition of

a number in its relation to geometry as determining the posi-

tion of a point. The Beitrdge contains the first complete and

general theory of imaginary points, lines, and planes in pro-

jective geometry. Representation of an imaginary point is

sought in the combination of an involution with a determi-

nate direction, both on the real line through the point.

While purely projective, von Staudt's method is intimately

related to the problem of representing by actual points and

lines the imaginaries of analytical geometry. This was sys-

tematically undertaken by C. F. Maximilien Marie, who worked,

however, on entirely different lines. An independent attempt

has been made recently (1893) by P. H. Loud of Colorado
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College. Von Staudt's geometry of position was for a long

time disregarded, mainly, no doubt, because his book is

extremely condensed. An impulse to tbe study of tMs subject

was given by Culmann, who rests his graphical statics upon

the work of von Staudt. An interpreter of von Staudt was

at last found in Theodor Keye of Strassburg, who wrote a

Oeometrie der Lage in 1868.

Synthetic geometry has been studied with much success by

Luigi Cremona, professor in the University of Rome. In

his Introduzione ad una teoria geometrica delle curve piane

he developed by a uniform method many new results and

proved synthetically all important results reached before that

time by analysis. His writings have been translated into

German by M. Curtze, professor at the gymnasium in Thorn.

The theory of the transformation of curves and of the corre-

spondence of points on curves was extended by him to three

dimensions. Ruled surfaces, surfaces of the second order,

space-curves of the third order, and the general theory of

surfaces have received much attention at his hands.

Karl Culmann, professor at the Polytechnicum in Zurich,

published an epoch-making work on Die graphische Statik,

Zurich, 1864, which has rendered graphical statics a great

rival of analytical statics. Before Culmann, B. E. Cousinery

had turned his attention to the graphical calculus, but he

made use of perspective, and not of modern geometry.^ Cul-

mann is the first to undertake to present the graphical calculus

as a symmetrical whole, holding the same relation to the new

geometry that analytical mechanics does to higher analysis.

He makes use of the polar theory of reciprocal figures as

expressing the relation between the force and the funicular

polygons. He deduces this relation without leaving the plane

of the two figures. But if the polygons be regarded as pro-

jections of lines in space, these lines may be treated as recipro-
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cal elements of a " NuUsystem." This was done by Clerk

Maxwell in 1864, and elaborated further by Cremona."^ The

graphical calculus has been applied by 0. Mohr of Dresden

to the elastic line for continuous spans. Henry T. Eddy, of

the Eose Polytechnic Institute, gives graphical solutions of

problems on the maximum stresses in bridges under concen-

trated loads, with aid of what he calls "reaction polygons."

A standard work. La Statique graphique, 1874, was issued by

Maurice Levy of Paris.

Descriptive geometry (reduced to a science by Monge in

France, and elaborated further by his successors, Hachette,

Dupin, Olivier, J. de la Gournerie) was soon studied also in

other countries. The French directed their attention mainly

to the theory of surfaces and their curvature ; the Germans

and Swiss, through Schreiber, Pohlke, Schlessinger, and par-

ticularly Fiedler, interwove projective and descriptive geome-

try. Bellavitis in Italy worked along the same line. The

theory of shades and shadows was first investigated by the

French writers just quoted, and in Germany treated most

exhaustively by Burmester.^^

During the present century very remarkable generalisations

have been made, which reach to the very root of two of the

oldest branches of mathematics,— elementary algebra and

geometry. In algebra the laws of operation have been ex-

tended; in geometry the axioms have been searched to the

bottom, and the conclusion has been reached that the space

defined by Euclid's axioms is not the only possible non-

contradictory space. Euclid proved (I. 27) that " if a straight

line falling on two other straight lines make the alternate

angles equal to one another, the two straight lines shall be

parallel to one another." Being unable to prove that in every

other case the two lines are not parallel, he assumed this to

be true in what is generally called the 12th " axiom," by some
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the 11th "axiom." But this so-called axiom is far from

axiomatic. After centuries of desperate but fruitless attempts

to prove Euclid's assumption, the bold idea dawned upon

the minds of several mathematicians that a geometry might

be built up without assuming the parallel-axiom. While

Legendre still endeavoured to establish the axiom by rigid

proof, Lobatchewsky brought out a publication which assumed

the contradictory of that axiom, and which was the first of

a series of articles destined to clear up obscurities in the

fundamental concepts, and to greatly extend the field of

geometry.

Nicholaus Ivanovitch Lobatchewsky (1793-1856) was born at

Makarief, in Nischni-Nowgorod, Eussia, studied at Kasan, and

from 1827 to 1846 was professor and rector of the University

of Kasan. His views on the foundation of geometry were

first made public in a discourse before the physical and mathe-

matical faculty at Kasan, and first printed in the Kasan

Messenger for 1829, and then in the Oelelirte Schriften der

Unimrsitdt Kasan, 1836-1838, under the title, " New Elements

of Geometry, with a complete theory of Parallels." Being

in the Russian language, the work remained unknown to

foreigners, but even at home it attracted no notice. In 1840

he published a brief statement of his researches in Berlin.

Lobatchewsky constructed an "imaginary geometry," as he

called it, which has been described by Clifford as "quite

simple, merely Euclid without the vicious assumption." A
remarkable part of this geometry is this, that through a

point an indefinite number of lines can be drawn in a plane,

none of which cut a given line in the same plane. A similar

system of geometry was deduced independently by the Bolyais

in Hungary, who called it " absolute geometry."

Wolfgang Bolyai de Bolya (1775-1856) was born in Szekler-

Land, Transylvania. After studying at Jena, he went to
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Gottingen, where he became intimate with Gauss, then nine-

teen years old. Gauss used to say that Bolyai was the only

man who fully understood his views on the metaphysics of

mathematics. Bolyai became professor at the Eeformed Col-

lege of Maros-V^sarhely, where for forty-seven years he had

for his pupils most of the present professors of Transylvania.

The first publications of this remarkable genius were dramas

and poetry. Clad in old-time planter's garb, he was truly

original in his private life as well as in his mode of thinking.

He was extremely modest. 'No monument, said he, should

stand over his grave, only an apple-tree, in memory of the

three apples ; the two of Eve and Paris, which made hell out

of earth, and that of Newton, which elevated the earth again

into the circle of heavenly bodies.** His son, Johann Bolyai

(1802-1860), was educated for the army, and distinguished

himself as a profound mathematician, an impassioned violin-

player, and an expert fencer. He once accepted the challenge

of thirteen officers on condition that after each duel he might

play a piece on his violin, and he vanquished them all.

The chief mathematical work of Wolfgang Bolyai appeared

in two volumes, 1832-1833, entitled Tentamen juventutem

studiosam in elementa matheseos puree . . . introducendi. It

is followed by an appendix composed by his son Johann on

The Science Absolute of Space. Its twenty-six pages make the

name of Johann Bolyai immortal. He published nothing else,

but he left behind one thousand pages of manuscript which

have never been read by a competent mathematician ! His

father seems to have been the only person in Hungary who

really appreciated the merits of his son's work. For thirty-

five years this appendix, as also Lobatchewsky's researches,

remained in almost entire oblivion. Finally Eichard Baltzer

of the University of Giessen, in 1867, called attention to the

wonderful researches. Johann Bolyai's Science Absolute oj
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Space and Lobatohewsky's Geometrical Researches on the

Theory of Parallels (1840) were rendered easily accessible to

American readers by translations into English made in 1891

by George Bruce Halsted of the University of Texas.

The Eussian and Hungarian mathematicians were not the

only ones to whom pangeometry suggested itself. A copy of

the Tentamen reached Gauss, the elder Bolyai's former room-

mate at Gottingen, and this Nestor of German mathematicians

was surprised to discover in it worked out what he himself

had begun long before, only to leave it after him in his

papers. As early as 1792 he had started on researches of that

character. His letters show that in 1799 he was trying to

prove a priori the reality of Euclid's system ; but some time

within the next thirty years he arrived at the conclusion

reached by Lobatchewsky and Bolyai. In 1829 he wrote to

Bessel, stating that his "conviction that we cannot found

geometry completely a priori has become, if possible, still

firmer," and that "if number is merely a product of our

mind, space has also a reality beyond our mind of which we

cannot fully foreordain the laws a priori." The term non-

Euclidean geometry is due to Gauss. It has recently been

brought to notice that Geronimo 8accheri, a Jesuit father of

Milan, in 1733 anticipated Lobatchewsky's doctrine of the

parallel angle. Moreover, G. B. Halsted has pointed out

that in 1766 Lambert wrote a paper " Zur Theorie der Parallel-

linien," published in the Leipziger Magazin fur reine U7id

angewandte Mathematik, 1786, in which : (1) The failure of

the parallel-axiom in surface-spherics gives a geometry with

angle-sum > 2 right angles
; (2) In order to make intuitive

a geometry with angle-sum < 2 right angles we need the aid

of an "imaginary sphere" (pseudo-sphere); (3) In a space

with the angle-sum differing from 2 right angles, there is

an absolute measure (Bolyai's natural unit for length).
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In 1864, nearly twenty years later, Gauss heard from his

pupil, Eiemann, a maryellous dissertation carrying the dis-

cussion one step further by developing the notion of n-ply

extended magnitude, and the measure-relations of which a

manifoldness of n dimensions is capable, on the assumption

that every line may be measured by every other. Eiemann

applied his ideas to space. He taught us to distinguish

between " unboundedness " and "infinite extent." According

to him we have in our mind a more general notion of space,

i.e. a notion of non-Euclidean space ; but we learn by experience

that our physical space is, if not exactly, at least to high

degree of approximation, Euclidean space. Eiemann's pro-

found dissertation was not published until 1867, when it

appeared in the Gottingen Abhandlungen. Before this the

idea of n dimensions had suggested itself under various

aspects to Lagrange, Pliicker, and H. Grassmann. About the

same time with Eiemann's paper, others were published from

the pens of HelmhoUz and Beltrami. These contributed pow-

erfully to the victory of logic over excessive empiricism. This

period marks the beginning of lively discussions upon this sub-

ject. Some writers— Bellavitis, for example— were able to

see in non-Euclidean geometry and w-dimensional space noth-

ing but huge caricatures, or diseased outgrowths of mathe-

matics. Helmholtz's article was entitled Thatsachen, welche

der Geometrie zu Grunde liegen, 1868, and contained many of

the ideas of Eiemann. Helmholtz popularised the subject in

lectures, and in articles for various magazines.

Eugenio Beltrami, born at Cremona, Italy, in 1835, and now
professor at Eome, wrote the classical paper Saggio di inter-

pretazione della geometria non-eudidea (Oiom. di Matem., 6),

which is analytical (and, like several other papers, should be

mentioned elsewhere were we to adhere to a strict separation

between synthesis and analysis). He reached the brilliant
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and surprising conclusion that the theorems of non-Euclidean

geometry find their realisation upon surfaces of constant nega-

tive curvature. He studied, also, surfaces of constant positive

curvature, and ended with the interesting theorem that the

space of constant positive curvature is contained in the space

of constant negative curvature. These researches of Beltrami,

Helmholtz, and Riemann culminated in the conclusion that

on surfaces of constant curvature we may have three geome-

tries,— the non-Euclidean on a surface of constant negative

curvature, the spherical on a surface of constant positive cur-

vature, and the Euclidean geometry on a surface of zero curva-

ture. The three geometries do not contradict each other, but

are members of a system,— a geometrical trinity. The ideas

of hyper-space were brilliantly expounded and popularised in

England by Clifford.

William Kingdon Clifford (1845-1879) was born at Exeter,

educated at Trinity College, Cambridge, and from 1871 until

his death professor of applied mathematics in University Col-

lege, London. His premature death left incomplete several

brilliant researches which he had entered upon. Among these

are his paper On Classification of Loci and his Theory of

Graphs. He wrote articles On the Canonical Form and

Dissection of a Riemann's Surface, on Biqiiaternions, and

an incomplete work on the Elements of Dynamic. The

theory of polars of curves and surfaces was generalised by

him and by Eeye. His classification of loci, 1878, being a

general study of curves, was an introduction to the study

of n-dimensional space in a direction mainly projective.

This study has been continued since chiefly by G. Veronese

of Padua, C. Segre of Turin, E. Bertini, E. Aschieri, P. Del

Pezzo of Naples.

Beltrami's researches on non-Euclidean geometry were fol-

lowed, in 1871, by important investigations of Felix Klein,
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resting upon Cayley's Sixth Memoir on Quantics, 1859. The

question whether it is not possible to so express the metrical

properties of figures that they will not vary by projection (or

linear transformation) had been solved for special projections

by Chasles, Poncelet, and E. Laguerre (1834-1886) of Paris,

but it remained for Cayley to give a general solution by defin-

ing the distance between two points as an arbitrary constant

multiplied by the logarithm of the anharmonic ratio in which

the line joining the two points is divided by the fundamental

quadric. Enlarging upon this notion, Klein showed the inde-

pendence of projective geometry from the parallel-axiom, and

by properly choosing the law of the measurement of distance

deduced from projective geometry the spherical, Euclidean,

and pseudospherical geometries, named by him respectively

the elliptic, parabolic, and hyperbolic geometries. This sug-

gestive investigation was followed up by numerous writers,

particularly by G. Battaglini of Naples, E. d' Ovidio of Turin,

R. de Paolis of Pisa, F. Aschieri, A. Cayley, F. Lindemann

of Munich, E. Schering of Gottingen, W. Story of Clark

University, H. Stahl of Tubingen, A. Voss of Wiirzburg,

Homersham Cox, A. Bucbheim.'^ The geometry of n dimen-

sions was studied along a line mainly metrical by a host of

writers, among whom may be mentioned Simon Newcomb of

the Johns Hopkins University, L. Schlafli of Bern, W. I.

Stringham of the University of California, W. Killing of

Miinster, T. Craig of the Johns Hopkins, R. Lipschitz of

Bonn. E. S. Heath and Killing investigated the kinematics

and mechanics of such a space. Regular solids in n-dimen-

sional space were studied by Stringham, EUery W. Davis

of the University of Nebraska, R. Hoppe of Berlin, and

others. Stringham gave pictures of projections upon our

space of regular solids in four dimensions, and Schlegel at

Hagen constructed models of such projections. These are
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among the most curious of a series of models published by

L. Brill in Darmstadt. It has been pointed out that if a

fourth dimension existed, certain motions could take place

which we hold to be impossible. Thus Newcomb showed the

possibility of turning a closed material shell inside out by sim-

ple flexure without either stretching or tearing ; Klein pointed

out that knots could not be tied; Veronese showed that a

body could be removed from a closed room without breaking

the walls ; C. S. Peirce proved that a body iu four-fold space

either rotates about two axes at once, or cannot rotate without

losing one of its dimensions.

ANALYTIC GEOMETKY.

In the preceding chapter we endeavoured to give a flash-

light view of the rapid advance of synthetic geometry. In

connection with hyperspace we also mentioned analytical

treatises. Modern synthetic and modern analytical geome-

try have much in common, and may be grouped together

under the common name "projective geometry." Each has

advantages over the other. The continual direct viewing of

figures as existing in space adds exceptional charm to the

study of the former, but the latter has the advantage in this,

that a well-established routine in a certain degree may outrun

thought itself, and thereby aid original research. While in

Germany Steiner and von Staudt developed synthetic geome-

try, Pliicker laid the foundation of modern analytic geometry.

Julius Pliicker (1801-1868) was born at Elberfeld, in Prus-

sia. After studying at Bonn, Berlin, and Heidelberg, he spent

a short time in Paris attending lectures of Monge and his

pupils. Between 1826 and 1836 he held positions successively

at Bonn, Berlin, and Halle. He then became professor of
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physics at Bonn. Until 1846 his original researches were on

geometry. In 1828 and in 1831 he published his Analytisch-

Geometrische Entwicklungen in two volumes. Therein he

adopted the abbreviated notation (used before him in a more

restricted way by Bobillier), and avoided the tedious process

of algebraic elimination by a geometric consideration. In the

second volume the principle of duality is formulated analyti-

cally. With him duality and homogeneity found expression

already in his system of co-ordinates. The homogenous or

tri-linear system used by him is much the same as the co-or-

dinates of Mobius. In the identity of analytical operation

and geometric construction Pliicker looked for the source of

his proofs. The System der Analytischen Geometrie, 1835, con-

tains a complete classification of plane curves of the third

order, based on the nature of the points at infinity. The

TTieorie der Algebraischen Curven, 1839, contains, besides an

enumeration of curves of the fourth order, the analytic rela-

tions between the ordinary singularities of plane curves

known as "Pliicker's equations," by which he was able to

explain "Poncelet's paradox." The discovery of these rela-

tions is, says Cayley, "the most important one beyond all

comparison in the entire subject of modern geometry." But

in Germany Pliicker's researches met with no favour. His

method was declared to be unproductive as compared with

the synthetic method of Steiner and Poncelet ! His rela-

tions with Jacobi were not altogether friendly. Steiner once

declared that he would stop writing for Crelle's Journal if

Pliieker continued to contribute to it.^ The result was that

many of Pliicker's researches were published in foreign jour-

nals, and that his work came to be better known in France

and England than in his native country. The charge was

also brought against Pliicker that, though occupying the chair

of physics, he was no physicist. This induced him to relin-
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quish matliematics, and for nearly twenty years to devote

Ms energies to physics. Important discoveries on Fresnel's

wave-surface, magnetism, spectrum-analysis were made by

him. But towards the close of his life he returned to his

first love,— mathematics,— and enriched it with new discov-

eries. By considering space as made up of lines he created

a "new geometry of space." Regarding a right line as a

curve involving four arbitrary parameters, one has the whole

system of lines in space. By connecting them by a single

relation, he got a " complex " of lines ; by connecting them

with a twofold relation, he got a "congruency " of lines. His

first researches on this subject were laid before the Eoyal

Society in 1865. His further investigations thereon appeared

in 1868 in a posthumous work entitled Neue Oeometrie des

Baumes gegriindet auf die Betrachtung der geraden Linie ah

Raumelement, edited by Felix Klein. Pliicker's analysis lacks

the elegance found in Lagrange, Jacobi, Hesse, and Clebsch.

For many years he had not kept up with the progress of

geometry, so that many investigations in his last work had

already received more general treatment on the part of others.

The work contained, nevertheless, much that was fresh and

original. The theory of complexes of the second degree, left

unfinished by Pliicker, was continued by Felix Klein, who
greatly extended and supplemented the ideas of his master.

Ludwig Otto Hesse (1811-1874) was born at Konigsberg, and

studied at the university of his native place under Bessel,

Jacobi, Richelot, and F. Neumann. Having taken the doctor's

degree in 1840, he became decent at Konigsberg, and in 1845

extraordinary professor there. Among his pupils at that time

were Durege, Carl Neumann, Clebsch, Kirchhoff. The Konigs-

berg period was one of great activity for Hesse. Every new

discovery increased his zeal for still greater achievement.

His earliest researches were on surfaces of the second order,
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and were partly synthetic. He solved the problem to construct

any tenth point of such a surface when nine points are given.

The analogous problem for a conic had been solved by Pascal

by means of the hexagram. A difB.cult problem confronting

mathematicians of this time was that of elimination. Pliicker

had seen that the main advantage of his special method in

analytic geometry lay in the avoidance of algebraic elimina-

tion. Hesse, however, showed how by determinants to make

algebraic elimination easy. In his earlier results he was

anticipated by Sylvester, who published his dialytic method

of elimination in 1840. These advances in algebra Hesse

applied to the analytic study of curves of the third .order. By

linear substitutions, he reduced a form of the third degree in

three variables to one of only four terms, and was led to an

important determinant involving the second differential coeffi-

cient of a form of the third degree, called the "Hessian."

The " Hessian " plays a leading part in the theory of invari-

ants, a subject first studied by Cayley. Hesse showed that

his determinant gives for every curve another curve, such that

the double points of the first are points on the second, or

"Hessian." Similarly for surfaces (Crelle, 1844). Many of

the most important theorems on curves of the third order are

due to Hesse. He determined the curve of the 14th order,

which passes through the 56 points of contact of the 28 bi-

tangents of a curve of the fourth order. His great memoir on

this subject (Crelle, 1855) was published at the same time as

was a paper by Steiner treating of the same subject.

Hesse's income at Kouigsberg had not kept pace with his

growing reputation. Hardly was he able to support himself

and family. In 1855 he accepted a more lucrative position at

Halle, and in 1856 one at Heidelberg. Here he remained until

1868, when he accepted a position at a technic school in

Munich.*^ At Heidelberg he revised and enlarged upon his
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previous researches, and published in 1861 Ms Vorlesungen

iiber die Analytische Geometrie des Raumes, insbesondere iiber

Fldchen 2. Ordnung. More elementary works soon followed.

While in Heidelberg he elaborated a principle, his " Uebertra-

gungsprincip." According to this, there corresponds to every

point in a plane a pair of points in a line, and the projective

geometry of the plane can be carried back to the geometry of

points in a line.

The researches of Pliicker and Hesse were continued in Eng-

land by Cayley, Salmon, and Sylvester. Itmay be premised here

that among the early writers on analytical geometry in England

was James Booth (1806-1878), whose chief results are embodied

in his Treatise on Some New Geometrical Methods; and James

MacCuUagh (1809-1846), who was professor of natural philos-

ophy at Dublin, and made some valuable discoveries on the

theory of quadrios. The influence of these men on the

progress of geometry was insignificant, for the interchange of

scientific results between different nations was not so complete

at that time as might have been desired. In further illustra-

tion of this, we mention that Chasles in France elaborated

subjects which had previously been disposed of by Steiner in

Germany, and Steiner published researches which had been

given by Cayley, Sylvester, and Salmon nearly five years

earlier. Cayley and Salmon in 1849 determined the straight

lines in a cubic surface, and studied its principal properties,

while Sylvester in 1851 discovered the pentahedron of such a

surface. Cayley extended PMcker's equations to curves of

higher singularities. Cayley's own investigations, and those

of M. Nother of Erlangen, G. H. Halphen (1844-1889) of the

Polytechnic School in Paris, De La Gournerie of Paris, A.

Brill of Tubingen, lead to the conclusion that each higher sin-

gularity of a curve is equivalent to a certain number of simple

singularities,—the node, the ordinary cusp, the double tangent,
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and the inflection. Sylvester studied the " twisted Cartesian,"

a curve of the fourth order. Salmon helped powerfully

towards the spreading of a knowledge of the new algebraic and

geometric methods by the publication of an excellent series of

text-books {Oonic Sections, Modern Higher Algebra, Higher

Plane Curves, Geometry of Three Dimensions'), which have

been placed within easy reach of German readers by a free

translation, with additions, made by Wilhelm Fiedler of the

Polytechnicum in Zurich. The next great worker in the field

of analytic geometry was Clebsch.

Rudolf Friedrich Alfred Clebsch (1833-1872) was born at

Konigsberg in Prussia, studied at the university of that place

under Hesse, Eichelot, F. Neumann. From 1858 to 1863 he

held the chair of theoretical mechanics at the Polytechnicum

in Carlsruhe. The study of Salmon's works led him into

algebra and geometry. In 1863 he accepted a position at the

University of Giesen, where he worked in conjunction with

Paul Gordan (now of Erlangen). In 1868 Clebsch went to

Gottingeu, and remained there until his death. He worked

successively at the following subjects : Mathematical physics,

the calculus of variations and partial differential equations of

the first order, the general theory of curves and surfaces,

Abelian functions and their use in geometry, the theory of

invariants, and " Flachenabbildung." ^ He proved theorems

on the pentahedron enunciated by Sylvester and Steiner ; he

made systematic use of "deficiency" (Geschlecht) as a funda-

mental principle in the classification of algebraic curves. The
notion of deficiency was known before him to Abel and Eie-

mann. At the beginning of his career, Clebsch had shown
how elliptic functions could be advantageously applied to

Malfatti's problem. The idea involved therein, viz. the use

of higher transcendentals in the study of geometry, led him
to his greatest discoveries. Not only did he apply Abelian
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functions to geometry, but conversely, he drew geometry into

the service of Abelian functions.

Clebsch made liberal use of determinants. His study of

curves and surfaces began with the determination of the points

of contact of lines which meet a surface in four consecutive

points. Salmon had proved that these points lie on the inter-

section of the surface with a derived surface of the degree

11 n — 24, but his solution was given in inconvenient form.

Clebsch's investigation thereon is a most beautiful piece of

analysis.

The representation of one surface upon another {Fldchenab-

hildung), so that they have a (1, 1) correspondence, was

thoroughly studied for the first time by Clebsch. The repre-

sentation of a sphere on a plane is an old problem which

drew the attention of Ptolemaeus, Gerard Mercator, Lambert,

Gauss, Lagrange. Its importance in the construction of maps

is obvious. Gauss was the first to represent a surface upon

another with a view of more easily arriving at its properties.

Pliioker, Chasles, Cayley, thus represented on a plane the

geometry of quadric surfaces ; Clebsch and Cremona, that of

cubic surfaces. Other surfaces have been studied in the same

way by recent writers, particularly M. Nother of Erlangen,

Armenante, Felix Klein, Korndorfer, Caporali, H. G. Zeuthen

of Copenhagen. A fundamental question which has as yet

received only a partial answer is this : What surfaces can be

represented by a (1, 1) correspondence upon a given surface ?

This and the analogous question for curves was studied by

Clebsch. Higher correspondences between surfaces have been

investigated by Cayley and Nother. The theory of surfaces

has been studied also by Joseph Alfred Serret (1819-1885), pro-

fessor at the Sorbonne in Paris, Jean Gaston Darboux of Paris,

John Casey of Dublin (died 1891), W. R. W. Roberts of Dub-

lin, H. Schrbter (1829-1892) of Breslau. Surfaces of the
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fourth order were investigated by Kummer, and Fresnel's

wave-surface, studied by Hamilton, is a particular case of

Kummer's quartic surface, with sixteen canonical points and

sixteen singular tangent planes.''^

The infinitesimal calculus was first applied to the determi-

nation of the measure of curvature of surfaces by Lagrange,

Euler, and Meunier (1754-1793) of Paris. Then followed the

researches of Monge and Dupin, but they were eclipsed by

the work of Gauss, who disposed of this diflBcult subject in a

way that opened new vistas to geometricians. His treat-

ment is embodied in the Disquisitiones generates circa super-

ficies curvas (1827) and Untersuchungen vher gegenstande der

hoheren Geoddsie of 1843 and 1846. He defined the measure

of curvature at a point to be the reciprocal of the product

of the two principal radii of curvature at that point. Prom

this flows the theorem of Johann August Grunert (1797-1872

;

professor in Greifswald), that the arithmetical mean of the

radii of curvature of all normal sections through a point is the

radius of a sphere which has the same measure of curvature

as has the surface at that point. Gauss's deduction of the

formula of curvature was simplified through the use of deter-

minants by Heinrich Richard Baltzer (1818-1887) of Giessen.^

Gauss obtained an interesting theorem that if one surface be

developed {abgewickelt) upon another, the measure of curva-

ture remains unaltered at each point. The question whether

two surfaces having the same curvature in corresponding

points can be unwound, one upon the other, was answered

by F. Minding in the afiirmative only when the curvature is

constant. The case of variable curvature is difficult, and was

studied by Minding, J. Liouville (1806-1882) of the Poly-

technic School in Paris, Ossian Bonnet of Paris (died 1892).

Gauss's measure of curvature, expressed as a function of cur-

vilinear co-ordinates, gave an impetus to the study of differ-
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ential-invariants, or differential-parameters, which, have been

investigated by Jacobi, C. Neumann, Sir James Cockle,

Halphen, and elaborated into a general theory by Beltrami,

S. Lie, and others. Beltrami showed also the connection

between the measure of curvature and the geometric axioms.

Various researches have been brought under the head of

"analysis situs." The subject was first investigated by

Leibniz, and was later treated by Gauss, whose theory of

knots ( Verschlingungen) has been employed recently by J. B.

Listing, 0. Simony, F. Dingeldey, and others in their "topo-

logic studies." Tait was led to the study of knots by Sir

William Thomson's theory of vortex atoms. In the hands

of Kiemann the analysis situs had for its object the deter-

mination of what remains unchanged under transformations

brought about by a combination of infinitesimal distortions.

In continuation of his work, Walter Dyck of Munich wrote on

the analysis situs of three-dimensional spaces.

Of geometrical text-books not yet mentioned, reference

should be made to Alfred Clebsch's Vorlesungen ilher Geome-

trie, edited by Ferdinand Lindemann, now of Munich ; Frost's

Solid Geometry; Durege's Ehene Ourven dritter Ordnung.

ALGEBRA.

The progress of algebra in recent times may be considered

under three principal heads : the study of fundamental laws

and the birth of new algebras, the growth of the theory of

equations, and the development of what is called modern

higher algebra.

We have already spoken of George Peacock and D. P.

Gregory in connection with the fundamental laws of algebra.

Much was done in this line by De Morgan.
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Augustus De Morgan (1806-1871) was born at Madura (Mar

dras), and educated at Trinity College, Cambridge. His scru-

ples about the doctrines of the established church prevented

him from proceeding to the M.A. degree, and from sitting

for a fellowship. In 1828 he became professor at the newly

established University of London, and taught there until

1867, except for five years, from 1831-1835. De Morgan was

a unique, manly character, and pre-eminent as a teacher. The

value of his original work lies not so much in increasing our

stock of mathematical knowledge as in putting it all upon a

thoroughly logical basis. He felt keenly the lack of close

reasoning in mathematics as he received it. He said once:

"We know that mathematicians care no more for logic than

logicians for mathematics. The two eyes of exact science are

mathematics and logic: the mathematical sect puts out the

logical eye, the logical sect puts out the mathematical eye;

each believing that it can see better with one eye than with

two." De Morgan saw with both eyes. He analysed logic

mathematically, and studied the logical analysis of the laws,

symbols, and operations of mathematics ; he wrote a Formal

Logic as well as a Double Algebra, and corresponded both with

Sir William Hamilton, the metaphysician, and Sir William

Eowan Hamilton, the mathematician. Few contemporaries

were as profoundly read in the history of mathematics as

was De Morgan. No subject was too insignificant to receive

his attention. The authorship of "Cocker's Arithmetic" and

the work of circle-squarers was investigated as minutely as was

the history of the invention of the calculus. Numerous arti-

cles of his lie scattered in the volumes of the Penny and Eng-

lish Cyclopmdias. His Differential Calculus, 1842, is still a

standard work, and contains much that is original with the

author. For the Encyclopmdia Metropolitana he wrote on the

calculus of functions (giving principles of symbolic reasoning)
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and on the theory of probability. Celebrated is his Budget of

Paradoxes, 1872. He published memoirs " On the Foundation

of Algebra" {Trans, of Cam. Phil. Soc, 1841, 1842, 1844, and

1847).

In Germany symbolical algebra was studied by Martin Ohm,

who wrote a System der Mathematik in 1822. The ideas of

Peacock and De Morgan recognise the possibility of algebras

which differ from ordinary algebra. Such algebras were

indeed not slow in forthcoming, but, like non-Euclidean

geometry, some of them were slow in finding recognition.

This is true of Grassmann's, Bellavitis's, and Peirce's dis-

coveries, but Hamilton's quaternions met with immediate

appreciation in England. These algebras offer a geometrical

interpretation of imaginaries. During the times of Descartes,

Newton, and Euler, we have seen the negative and the imagi-

nary, V— 1, accepted as numbers, but the latter was still

regarded as an algebraic fiction. The first to give it a geomet-

ric picture, analogous to the geometric interpretation of the

negative, was H. Kiihn, a teacher in Danzig, in a publication of

1750-1751. He represented aV— 1 by a line perpendicular

to the line a, and equal to a in length, and construed V— 1 as

the mean proportional between -1- 1 and — 1. This same idea

was developed further, so as to give a geometric interpretation

of a -I- V— &, by Jean-Bobert Argand (1768- ?) of Geneva,

in a remarkable JEssai (1806).™ The writings of Kvihn and

Argand were little noticed, and it remained for Gauss to break

down the last opposition to the imaginary. He introduced i as

an independent unit co-ordinate to 1, and a -{- ib as a " complex

number." The connection between complex numbers and

points on a plane, though artificial, constituted a powerful

aid in the further study of symbolic algebra. The mind

required a visual representation to aid it. The notion of

what we now call vectors was growing upon mathematicians.
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and the geometric addition of vectors in space was discovered

independently by Hamilton, Grassmann, and others, about the

same time.

William Rowan Hamilton (1805-1865) was born of Si3otch

parents in Dublin. His early education, carried on at home,

was mainly in languages. At the age of thirteen he is said to

have been familiar with as many languages as he had lived

years. About this time he came across a copy of Newton's

Universal Arithmetic. After reading that, he took up succes-

sively analytical geometry, the calculus, Newton's Prindpia,

Laplace's Micanique Celeste. At the age of eighteen he

published a paper correcting a mistake in Laplace's work. In

1824 he entered Trinity College, Dublin, and in 1827, while he

was still an undergraduate, he was appointed to the chair of

astronomy. His early papers were on optics. In 1832 he

predicted conical refraction, a discovery by aid of mathe-

matics which ranks with the discovery of Neptune by

Le Verrier and Adams. Then followed papers on the Prin-

ciple of Varying Action (1827) and a general method of

dynamics (1834^1836). He wrote also on the solution of

equations of the fifth degree, the hodograph, fluctuating

functions, the numerical solution of differential equations.

The capital discovery of Hamilton is his quaternions, in

which his study of algebra culminated. In 1835 he published

in the Transactions of the Royal Irish Academy his Theory of

Algebraic Couples. He regarded algebra " as being no mere

art, nor language, nor primarily a science of quantity, but

rather as the science of order of progression." Time appeared

to him as the picture of such a progression. Hence his defini-

tion of algebra as "the science of pure time." It was the

subject of years' meditation for him to determine what he

should regard as the product of each pair of a system of per-

pendicular directed lines. At last, on the 16th of October,



ALGEBRA. 319

1843, while walking witli his wife one evening, along the

Koyal Canal in Dublin, the discorery of quaternions flashed

upon him, and he then engraved with his knife on a stone ill

Brougham Bridge the fundamental formula i'=f = fc^ = ijk =
— 1. At the general meeting of the Irish Academy, a month

later, he made the first communication on quaternions. An
account of the discovery was given the following year in the

Philosophical Magazine. Hamilton displayed wonderful fer-

tility in their development. His Lectures on Quaternions,

delivered in Dublin, were printed in 1852. His Elements of

Quaternions appeared in 1866. Quaternions were greatly

admired in England from the start, but on the Continent they

received less attenttion. P. G-. Tait's Elementary Treatise

helped powerfully to spread a knowledge of them in England.

Cayley, Clifford, and Tait advanced the subject somewhat by

original contributions. But there has been little progress in

recent years, except that made by Sylvester in the solution of

quaternion equations, nor has the application of quaternions

to physics been as extended as was predicted. The change

in notation made in France by Hoiiel and by Laisant has been

considered in England as a wrong step, but the true cause for

the lack of progress is perhaps more deep-seated. There is

indeed great doubt as to whether the quaternionic product can

claim a necessary and fundamental place in a system of vector

analysis. Physicists claim that there is a loss of naturalness

in taking the square of a vector to be negative. In order to

meet more adequately their wants, J. W. Qibbs of Yale Uni-

versity and A. Macfarlane of the University of Texas, have

each suggested an algebra of vectors with a new notation.

Each gives a definition of his own for the product of two

vectors, but in such a way that the square of a vector is

positive. A third system of vector analysis has been used by

Oliver Seaviside in his electrical researches.
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Hermann Grassmann (1809-1877) was born at Stettin,

attended a gymnasium at his native place (where his father

was teacher of mathematics and physics), and studied theology

in Berlin for three years. In 1834 he succeeded Steiner as

teacher of mathematics in an industrial school in Berlin, but

returned to Stettin in 1836 to assume the duties of teacher of

mathematics, the sciences, and of religion in a school there."

Up to this time his knowledge of mathematics was pretty

much confined to what he had learned from his father, who

had written two books on " Eaumlehre " and " Grossenlehre."

But now he made his acquaintance with the works of Lacroix,

Lagrange, and Laplace. He noticed that Laplace's results

could be reached in a shorter way by some new ideas advanced

in his father's books, and he proceeded to elaborate this

abridged method, and to apply it in the study of tides. He
was thus led to a new geometric analysis. In 1840 he had

made considerable progress in its development, but a new

book of Schleiermacher drew him again to theology. In

1842 he resumed mathematical research, and becoming thor-

oughly convinced of the importance of his new analysis,

decided to devote himself to it. It now became his ambition

to secure a mathematical chair at a university, but in this he

never succeeded. In 1844 appeared his great classical work,

the Lineale Ausdehnungslehre, which was full of new and

strange matter^ and so general, abstract, and out of fashion in

its mode of exposition, that it could hardly have had less

influence on European mathematics during its first twenty

years, had it been published in China. Gauss, Grunert, and

Mobius glanced over it, praised it, but complained of the

strange terminology and its " philosophische Allgemeinheit."

Eight years afterwards, Bretschneider of Gotha was said to be

the only man who had read it through. An article in Crelle's

Journal, in which Grassmann eclipsed the geometers of that
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time by constructing, witli aid of his metliod, geometrically

any algebraic curve, remained again unnoticed. Need we mar-

vel if Grassmann turned his attention to other subjects,— to

Schleiermacher's philosophy, to politics, to philology ? Still,

articles by him continued to appear in Crelle's Journal, and in

1862 came out the second part of his Ausdehnungslehre. It

was intended to show better than the first part the broad

scope of the Ausdehnungslehre, by considering not only geo-

metric applications, but by treating also of algebraic functions,

infinite series, and the differential and integral calculus. But

the second part was no more appreciated than the first. At the

age of fifty-three, this wonderful man, with heavy heart, gave

up mathematics, and directed his energies to the study of Sans-

krit, achieving in philology results which were better appreci-

ated, and which vie in splendour with those in mathematics.

Common to the Ausdehnungslehre and to quaternions are geo-

metric addition, the function of two vectors represented in qua-

ternions by Safi and Fa/S, and the linear vector functions. The

quaternion is peculiar to Hamilton, while with Grassmann we

find in addition to the algebra of vectors a geometrical algebra

of wide application, and resembling Mobius's Barycentrische

Calcul, in which the point is the fundamental element. Grass-

mann developed the idea of the "external product," the "inter-

nal product," and the " open product." The last we now call

a matrix. His Ausdehnungslehre has very great extension,

having no limitation to any particular number of dimen-

sions. Only in recent years has the wonderful richness of

his discoveries begun to be appreciated. A second edition of

the Ausdehnungslehre of 1844 was printed in 1877. C. S.

Peirce gave a representation of Grassmann's system in the

logical notation, and E. W. Hyde of the University of Cin-

cinnati wrote the first text-book on Grassmann's calculus in

the English language.
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Discoveries of less value, which in part covered those of

Grassmann and Hamilton, were made by Saint-Venant (1797-

1886), who described the multiplication of vectors, and the

addition of vectors and oriented areas; by Cauchy, whose

"clefs algebriques" were units subject to combinatorial mul-

tiplication, and were applied by the author to the theory of

elimination in the same way as had been done earlier by

Grassmann; by Justus Bellavitis (1803-1880), who published

in 1835 and 1837 in the Annali delle Scienze his calculus of

aequipoUences. Bellavitis, for many years professor at Padua,

was a self-taught mathematician of much power, who in his

thirty-eighth year laid down a city office in his native place,

Bassano, that he might give his time to science.^

The first impression of Grassmann's ideas is marked in the

writings of Hermann Hankel (1839-1873), who published in

1867 his Vorles'ungen iiber die Complexen Zahlen. Hankel,

then docent in Leipzig, had been in correspondence with

Grassmann. The "alternate numbers" of Hankel are sub-

ject to his law of combinatorial multiplication. In consider-

ing the foundations of algebra Hankel affirms the principle of

the permanence of formal laws previously enunciated incom-

pletely by Peacock. Hankel was a close student of mathe-

matical history, and left behind an unfinished work thereon.

Before his death he was professor at Tubingen. His Com-

plexe Zahlen was at first little read, and we must turn to

Victor Schlegel of Hagen as the successful interpreter of Grass-

mann. Schlegel was at one time a young colleague of Grass-

mann at the Marienstifts-Gymnasium in Stettin. Encouraged

by Clebsch, Schlegel wrote a System der Raumlehre which

explained the essential conceptions and operations of the

Ausdehnungslehre.

Multiple algebra was powerfully advanced by Peirce, whose

theory is not geometrical, as are those of Hamilton and Grass-
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mann. Benjamin Peirce (1809-1880) was born at Salem, Mass.,

and graduated at Harvard College, having as undergraduate

carried the study of mathematics far beyond the limits of the

college course.^ When Bowditch was preparing his transW

tion and commentary of the M4canique C&leste, young Peirce

helped in reading the proof-sheets. He was made professor at

Harvard in 1833, a position which he retained until his death.

For some years he was in charge of the Nautical Almanac

and superintendent of the United States Coast Survey. He
published a series of college text-books on mathematics, an

Analytical Mechanics, 1855, and calculated, together with Sears

C. Walker of Washington, the orbit of Neptune. Profound

are his researches on Linear Associative Algebra. The first of

several papers thereon was read at the first meeting of the

American Association for the Advancement of Science in 1864.

Lithographed copies of a memoir were distributed among friends

in 1870, but so small seemed to be the interest taken in this

subject that the memoir was not printed until 1881 {Am. Jour.

Math., Vol. IV., No. 2). Peirce works out the multiplication

tables, first of single algebras, then of double algebras, and so

on up to sextuple, making in all 162 algebras, which he shows

to be possible on the consideration of symbols A, B, etc.,

which are linear functions of a determinate number of letters

or units i,j, k, I, etc., with coefficients which are ordinary ana-

lytical magnitudes, real or imaginary, — the letters i, j, etc.,

being such that every binary Combination i^ ij, ji, etc., is equal

to a linear function of the letters, but under the restriction of

satisfying the associative law.** Charles S. Peirce, a son of

Benjamin Peirce, and one of the foremost writers on mathe-

matical logic, showed that these algebras were all defective

forms of quadrate algebras which he had previously discovered

by logical analysis, and for which he had devised a simple

notation. Of these quadrate algebras quaternions is a simple
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example ; nonions is another. C. S. Peirce showed that of all

linear associative algebras there are only three in which divis-

ion is unambiguous. These are ordinary single algebra,

ordinary double algebra, and quaternions, from which the

imaginary scalar is excluded. He showed that his father's

algebras are operational and matricular. Lectures on multiple

algebra were delivered by J. J. Sylvester at the Johns Hopkins

University, and published in various journals. Tliey treat

largely of the algebra of matrices. The theory of matrices

was developed as early as 1858 by Cayley in an important

memoir which, in the opinion of Sylvester, ushered in the

reign of Algebra the Second. Clifford, Sylvester, H. Taber,

C. H. Chapman, carried the investigations much further. The

originator of matrices is really Hamilton, but his theory, pub-

lished in his Lectures on Quaternions, is less general than that

of Cayley. The latter makes no reference to Hamilton.

The theory of determinants'^ was studied by Hoene Wronski

in Italy and J. Binet in France ; but they were forestalled by

the great master of this subject, Cauchy. In a paper {Jour,

de I'ecole Polyt., IX., 16) Cauchy developed several general

theorems. He introduced the name determinant, a term

previously used by Gauss in the functions considered by him.

In 1826 Jaeobi began using this calculus, and he gave brUliant

proof of its power. In 1841 he wrote extended memoirs on

determinants in Crelle's Journal, which rendered the theory

easily accessible. In England the study of linear transforma-

tions of quantics gave a powerful impulse. Cayley developed

skew-determinants and Pfaffians, and introduced the use of

determinant brackets, or the familiar pair of upright lines.

More recent researches on determinants appertain to special

forms. "Continuants" are due to Sylvester; "alternants,"

originated by Cauchy, have been developed by Jaeobi, N. Trudi,

H. Nagelbach, and G. Garbieri ;
" axisymmetric determinants,"
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first used by Jacobi, have been studied by V. A. Lebesgue,

Sylvester, and Hesse ; " circulants " are due to E. Catalan of

Lifege, W. Spottiswoode (1825-1883), J. W. L. Glaislier, and

K. F. Scott ; for " centro-symnjetric determinants " we are

indebted to G. Zehfuss. E. B. Christoffel of Strassburg and

G. Frobenius discovered the properties of " Wronskians," first

used by Wronski. V. Nachreiner and S. Gunther, both of

Munich, pointed out relations between determinants and con-

tinued fractions ; Scott uses Hankel's alternate numbers in his

treatise. Text-books on determinants were written by Spot-

tiswoode (1851), Brioschi (1854), Baltzer (1867), Gunther

(1875), Dostor (1877), Scott (1880), Muir (1882), Hanus

(1886).

Modern higher algebra is especially occupied with the

theory of linear transformations. Its development is mainly

the work of Cayley and Sylvester.

Arthur Cayley, born at Richmond, in Surrey, in 1821, was

educated at Trinity College, Cambridge.'* He came out Senior

Wrangler in 1842. He then devoted some years to the study

and practice of law. On the foundation of the Sadlerian pro-

fessorship at Cambridge, he accepted the offer of that chair,

thus giving up a profession promising wealth for a very

modest provision, but which would enable him to give all his

time to mathematics. Cayley began his mathematical publi-

cations in the Cambridge Mathematical Journal while he was

still an undergraduate. Some of his most brilliant discoveries

were made during the time of his legal practice. There is

hardly any subject in pure mathematics which the genius of

Cayley has not enriched, but most important is his creation

of a new branch of analysis by his theory of invariants.

Germs of the principle of invariants are found in the writ-

ings of Lagrange, Gauss, and particularly of Boole, who
showed, in 1841, that invariance is a property of discrimi-



326 A HISTORY OF MATHEMATICS.

nants generally, and who applied it to the theory of orthogonal

substitution. Cayley set himself the problem to determine

a priori what functions of the coefB^cients of a given equation

possess this property of invariance, and found, to begin with,

in 1845, that the so-called " hyper-determinants " possessed it.

Boole made a number of additional discoveries. Then Syl-

vester began his papers in the Cambridge and Dublin Mathe-

matical Journal on the Calculus of Forms. After this,

discoveries followed in rapid succession. At that time Cay-

ley and Sylvester were both residents of London, and they

stimulated each other by frequent oral communications. It

has often been difficult to determine how much really belongs

to each.

James Joseph Sylvester was born in London in 1814, and

educated at St. Johns College, Cambridge. He came out

Second Wrangler in 1837. His Jewish origin incapacitated

him from taking a degree. In 1846 he became a student at

the Inner Temple, and was called to the bar in 1850. He
became professor of natural philosophy at University College,

London ; then, successively, professor of mathematics at the

University of Virginia, at the Eoyal Military Academy in

Woolwich, at the Johns Hopkins University in Baltimore,

and is, since 1883, professor of geometry at Oxford. His

first printed paper was on Fresnel's optic theory, 1837. Then

followed his researches on invariants, the theory of equations,

theory of partitions, multiple algebra, the theory of numbers,

and other subjects mentioned elsewhere. About 1874 he took

part in the development of the geometrical theory of link-

work movements, originated by the beautiful discovery of

A. Peaucellier, Capitaine du Genie k Nice (published in

Nouvelles Annates, 1864 and 1873), and made the subject

of close study by A. B. Kempe. To Sylvester is ascribed the

general statement of the theory of contravariants, the dis-
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covery of the partial differential equations satisfied by the

invariants and covariants of binary quantics, and the subject

of mixed concomitants. In the American Journal of Mathe-

matics are memoirs on binary and ternary quantics, elaborated

partly with aid of F. Franklin, now professor at the Johns

Hopkins University. At Oxford, Sylvester has opened up a

new subject, the theory of reciprocants, treating of the func-

tions of a dependent variable y and the functions of its differ-

ential coefficients in regard to x, which remain unaltered by

the interchange of x and y. This theory is more general than

one on differential invariants by Halphen (1878), and has

been developed further by J. Hammond of Oxford, McMahon
of Woolwich, A. R. Forsyth of Cambridge, and others. Syl-

vester playfully lays claim to the appellation of the Mathe-

matical Adam, for the many names he has introduced into

mathematics. Thus the terms invariant, discriminant, Hessian,

Jacobian, are his.

The great theory of invariants, developed in England mainly

by Cayley and Sylvester, came to be studied earnestly in Ger-

many, Erance, and Italy. One of the earliest in the field was

Siegfried Heinrich Aronhold (1819-1884), who demonstrated

the existence of invariants, S and T, of the ternary cubic.

Hermite discovered evectants and the theorem of reciprocity

named after him. Paul Gordan showed, with the aid of

symbolic methods, that the number of distinct forms for a

binary quantic is finite. Clebsch proved this to be true for

quantics with any number of variables. A very much simpler

proof of this was given in 1891, by David Hilbert of Konigs-

berg. In Italy, F. Brioschi of Milan and Fad, de Bruno

(1825-1888) contributed to the theory of invariants, the

latter writing a text-book on binary forms, which ranks by

the side of Salmon's treatise and those of Clebsch and

Gordan. Among other writers on invariants are E. B. Chiis-
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toffel, Wilhelm Fiedler, P. A. McMahon, J. "W. L. Glaislier of

Cambridge, Emory McClintock of New York. McMahon dis-

covered that the theory of semi-invariants is a part of that of

symmetric functions. The modern higher algebra has reached

out and indissolubly connected itself with several other

branches of mathematics— geometry, calculus of variations,

mechanics. Clebsch extended the theory of binary forms to

ternary, and applied the results to geometry. Clebsch, Klein,

Weierstrass, Burckhardt, and Bianchi have used the theory of

invariants in hyperelliptic and Abelian functions.

In the theory of equations Lagrange, Argand, and Gauss

furnished proof to the important theorem that every algebraic

equation has a real or a complex root. Abel proved rigorously

that the general algebraic equation of the fifth or of higher

degrees cannot be solved by radicals (Crelle, I., 1826). A modi-

fication of Abel's proof was given by Wantzel. Before Abel,

an Italian physician, Paolo Bu_ffini (1765-1822), had printed

proofs of the insolvability, which were criticised by his

countryman Malfatti. Though inconclusive, EufRni's papers

are remarkable as containing anticipations of Cauchy's theory

of groups.^' A transcendental solution of the quintic involving

elliptic integrals was given by Hermite {Gompt. Rend., 1858,

1865, 1866). After termite's first publication, Kronecker, in

1858, in a letter to Hermite, gave a second solution in which

was obtained a simple resolvent of the sixth degree. Jerrard, in

his Mathematical Researches (1832-1835), reduced the quintic

to the trinomial form by an extension of the method of

Tschirnhausen. This important reduction had been effected

as early as 1786 by E. S. Bring, a Swede, and brought out

in a publication of the University of Lund. Jerrard, like

Tschirnhausen, believed that his method furnished a general

algebraic solution of equations of any degree. In 1836 Wil-

liam E. Hamilton made a report on the validity of Jerrard's
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method, and showed that by his process the quintic could be

transformed to any one of the four trinomial forms. Ham-
ilton defined the limits of its applicability to higher equations.

Sylvester investigated this question, What is the lowest degree

an equation can have in order that it may admit of being

deprived of i consecutive terms by aid of equations not higher

than ith degree. He carried the investigation as far as i = 8,

and was led to a series of numbers which he named "Hamilton's

numbers." A transformation of equal importance to Jerrard's

is that of Sylvester, who expressed the quintic as the sum of

three fifth-powers. The covariants and invariants of higher

equations have been studied much in recent years.

Abel's proof that higher equations cannot always be solved

algebraically led to the inquiry as to what equations of a given

degree can be solved by radicals. Such equations are the

ones discussed by Gauss in considering the division of the

circle. Abel advanced one step further by proving that an

irreducible equation can always be solved in radicals, if, of

two of its roots, the one can be expressed rationally in terms

of the other, provided that the degree of the equation is

prime ; if it is not prime, then the solution depends upon

that of equations of lower degree. Through geometrical con-

siderations, Hesse came upon algebraically solvable equations

of the ninth degree, not included in the previous groups.

The subject was powerfully advanced in Paris by the youthful

Evariste Galois (born, 1811; killed in a duel, 1832), who
introduced the notion of a group of substitutions. To him are

due also some valuable results in relation to another set of

equations, presenting themselves in the theory of elliptic

functions, viz. the modular equations. Galois's labours gave

birth to the important theory of substitutions, which has been

greatly advanced by 0. Jordan of Paris, J. A. Serret (1819-

1885) of the Sorbonne in Paris, L. Kronecker (1823-1891) of
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Berlin, Klein of Gottingen, M. Nother of Erlangen, C.

Hermits of Paris, A. Capelli of Naples, L. Sylow of Fried-

riohshald, E. Netto of Giessen. Netto's book, the Substitu-

tionstheorie, has been translated into English, by F. N. Cole of

the University of Michigan, -who contributed to the theory.

A simple group of 504 substitutions of nine letters, discovered

by Cole, has been shown by E. H. Moore of the University of

Chicago to belong to a doubly-infinite system of simple groups.

The theory of substitutions has important applications in the

theory of differential equations. Kronecker published, in 1882,

his Grundziiye einer Arithmetischen Theorie der Algebraischen

Grossen.

Since Fourier and Budan, the solution of numerical equsr

tions has been advanced by W. Q. Horner of Bath, who gave

an improved method of approximation (^Philosophical Transac-

tions, 1819). Jacques Charles Francois Sturm (1803-1865), a

native of Geneva, Switzerland, and the successor of Poisson

in the chair of mechanics at the Sorbonne, published in 1829

his celebrated theorem determining the number and situation

of roots of an equation comprised bet-ween given limits. Sturm

tells us that his theorem stared him in the face in the midst

of some mechanical investigations connected with the motion

of a compound pendulum." This theorem, and Horner's

method, offer together sure and ready means of finding the

real roots of a numerical equation.

The symmetric functions of the sums of powers of the roots

of an equation, studied by Newton and Waring, was considered

more recently by Gauss, Cayley, Sylvester, Brioschi. Cayley

gives rules for the " weight " and " order " of symmetric func-

tions.

The theory of elimination was greatly advanced by Sylves-

ter, Cayley, Salmon, Jacobi, Hesse, Cauchy, Brioschi, and

Gordan. Sylvester gave the dialytic method {Philosophical
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Magazine, 1840), and in 1852 established a theorem relating

to the expression of an eliminant as k determinant. Cayley

made a new statement of Bezout's method of elimination and

established a general theory of elimination (1852).

ANALYSIS.

Under this head we find it convenient to consider the sub-

jects of the differential and -integral calculus, the calculus of

variations, infinite series, probability, and differential equa-

tions. Prominent in the development of these subjects was

Cauchy.

Augustin-Louis Cauchy™ (1789-1857) was born in Paris,

and received his early education from his father. Lagrange

and Laplace, with whom the father came in frequent contact,

foretold the future greatness of the young boy. At the

Eeole Gentrale du Pantheon he excelled in ancient classical

studies. In 1805 he entered the Polytechnic School, and two

years later the £cole des Ponts et Chaussees. Cauchy left for

Cherbourg in 1810, in the capacity of engineer. Laplace's

Micanique Cileste and Lagrange's Fonctions Analytiques were

among his book companions there. Considerations of health

induced him to return to Paris after three years. Yielding to

the persuasions of Lagrange and Laplace, he renounced engi-

neering in favour of pure science. We find him next holding

a professorship at the Polytechnic School. On the expulsion

of Charles X., and the accession to the throne of Louis Philippe

in 1830, Cauchy, being exceedingly conscientious, found him-

self unable to take the oath demanded of him. Being, in

consequence, deprived of his positions, he went into volun-

tary exile. At Fribourg in Switzerland, Cauchy resumed his

studies, and in 1831 was induced by the king of Piedmont to
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accept the chair of mathematical physics, especially created

for him at the university of Turin. In 1833 he obeyed the

call of his exiled king, Charles X., to undertake the education

of a grandson, the Duke of Bordeaux. This gave Cauchy an

opportunity to visit various parts of Europe, and to learn how

extensively his works were being read. Charles X. bestowed

upon him the title of Baron. On his return to Paris in 1838,

a chair in the College de France was offered to him, but the

oath demanded of him prevented his acceptance. He was

nominated member of the Bureau of Longitude, but declared

ineligible by the ruling power. During the political events of

1848 the oath was suspended, and Cauchy at last became

professor at the Polytechnic School. On the establishment of

the second empire, the oath was re-instated, but Cauchy and

Arago were exempt from it. Cauchy was a man of great

piety, and in two of his publications staunchly defended the

Jesuits.

Cauchy was a prolific and profound mathematician. By a

prompt publication of his results, and the preparation of

standard text-books, he exercised a more immediate and

beneficial influence upon the great mass of mathematicians

than any contemporary writer. He was one of the leaders

in infusing rigour into analysis. His researches extended

over the field of series, of imaginaries, theory of numbers,

differential equations, theory of substitutions, theory of func-

tions, determinants, mathematical astronomy, light, elasticity,

etc.,— covering pretty much the whole realm of mathematics,

pure and applied.

Encouraged by Laplace and Poisson, Cauchy published in

1821 his Cours d'Analyse de VEcole Boyale Polytechnique, a

work of great merit. Had it been studied more diligently by

writers of text-books in England and the United States, many
a lax and loose method of analysis hardly as yet eradicated
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from elementary text-books would have been discarded over

half a century ago. Cauchy was the first to publish a

rigorous proof of Taylor's theorem. He greatly improved

the exposition of fundamental principles of the differential

calculus by his mode of considering limits and his new theory

on the continuity of functions. The method of Cauchy and

Duhamel was accepted with favour by Hoiiel-and others. In

England special attention to the clear exposition of funda-

mental principles was given by De Morgan. Kecent American

treatises on the calculus introduce time as an independent vari-

able, and the allied notions of velocity and acceleration— thus

virtually returning to the method of fluxions.

Cauchy made some researches on the calculus of variations.

This subject is now in its essential principles the same as

when it came from the hands of Lagrange. Recent studies

pertain to the variation of a double integral when the limits

are also variable, and to variations of multiple integrals in

general. Memoirs were published by Gauss in 1829, Poisson

in 1831, and Ostrogradsky of St. Petersburg in 1834, without,

however, determining in a general manner the number and

form of the equations which must subsist at the limits in case

of a double or triple integral. In 1837 Jacobi published a

memoir, showing that the difficult integrations demanded by

the discussion of the second variation, by which the existence

of a maximum or minimum can be ascertained, are included

in the integrations of the first variation, and thus are super-

fluous. This important theorem, presented with great brevity

by Jacobi, was elucidated and extended by V. A. Lebesgue,

C. E. Delaunay, Eisenlohr, S. Spitzer, Hesse, and Clebsch. An
important memoir by Sarrus on the question of determining

the limiting equations which must be combined with the

indefinite equations in order to determine completely the

maxima and minima of multiple integrals, was awarded a
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prize by the rrencli Academy in 1845, honourable mention

being made of a paper by Delaunay. Sarrus's method was

simplified by Cauchy. In 1862 G. Mainardi attempted to

exhibit a new method of discriminating maxima and minima,

and extended Jacobi's theorem to double integrals. Mainardi

and F. Brioschi showed the value of determinants in exhibit-

ing the terms of the second variation. In 1861 Isaac Tod-

hunter (1820-1884) of St. John's College, Cambridge, published

his valuable work on the History of the Progress of the Calculus

of Variations, which contains researches of his own. In 1866

he published a most important research, developing the theory

of discontinuous solutions (discussed in particular cases by

Legendre), and doing for this subject what Sarrus had done

for multiple integrals.

The following are the more important authors of systematic

treatises on the calculus of variations, and the dates of publi-

cation: Eobert Woodhouse, Fellow of Caius College, Cam-

bridge, 1810 ; Richard Abbatt in London, 1837 ; John Hewitt

Jellett (1817-1888), once Provost of Trinity College, Dublin,

1850; Gr. W. Strauch in Zurich, 1849; Moigno and Lindelof,

1861; Lewis Buffett Carll of Mushing in New York, 1881.

The lectures on definite integrals, delivered by Dirichlet in

1858, have been elaborated into a standard work by G. F.

Meyer. The subject has been treated most exhaustively by

D. Bierens de Haan of Leiden in his Expos6 de la tMorie des

integrals difinies, Amsterdam, 1862.

The history of infinite series illustrates vividly the salient

feature of the new era which analysis entered upon during the

first quarter of this century. Newton and Leibniz felt the

necessity of inquiring into the convergence of infinite series,

but they had no proper criteria, excepting the test advanced

by Leibniz for alternating series. By Euler and his contem-

poraries the formal treatment of series was greatly extended.
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while the necessity for determining the convergence was gen-

erally lost sight of. Euler reached some very pretty results

on infinite series, now well known, and also some very

absurd results, now quite forgotten. The faults of his time

found their culmination in the Combinatorial School in Ger-

many, which has now passed into deserved oblivion. At the

beginning of the period now under consideration, the doubtful,

or plainly absurd, results obtained from infinite series stimu-

lated profounder inquiries into the validity of operations with

them. Their actual contents came to be the primary, form a

secondary, consideration. The first important and strictly

rigorous investigation of series was made by Gauss in con-

nection with the hypergeometric series. The criterion devel-

oped by him settles the question of convergence in every case

which it is intended to cover, and thus bears the stamp of

generality so characteristic of Gauss's writings. Owing to the

strangeness of treatment and unusual rigour, Gauss's paper

excited little interest among the mathematicians of that time.

More fortunate in reaching the public was Cauohy, whose

Analyse Algihrique of 1821 contains a rigorous treatment of

series. All series whose sum does not approach a fixed limit

as the number of terms increases indefinitely are called diver-

gent. Like Gauss, he institutes comparisons with geometric

series, and finds that series with positive terms are convergent

or not, according as the nth root of the nth term, or the ratio

of the (ji + l)th term and the ?ith term, is ultimately less

or greater than unity. To reach some of the cases where

these expressions become ultimately unity and fail, Cauchy

established two other tests. He showed that series with neg-

ative terms converge when the absolute values of the terms

converge, and then deduces Leibniz's test for alternating

series. The product of two convergent series was not found

to be necessarily convergent. Cauchy's theorem that the
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product of two absolutely convergent series converges to the

product of the sums of the two series was shown half a cen-

tury later by F. Mertens of Qraz to be still true if, of the two

convergent series to be multiplied together, only one is abso--

lutely convergent.

The most outspoken critic of the old methods in series

was Abel. His letter to his friend Holmboe (1826) contains

severe criticisms. It is very interesting reading, even to

modern students. In his demonstration of the binomial theo-

rem he established the theorem that if two series and their

product series are all convergent, then the product series will

converge towards the product of the sums of the two given

series. This remarkable result would dispose of the whole

problem of multiplication of series if we had a universal

practical criterion of convergency for semi-convergent series.

Since we do not possess such a criterion, theorems have been

recently established by A. Pringsheim of Munich and A. Voss

of Wiirzburg which remove in certain cases the necessity of

applying tests of convergency to the product series by the

application of tests to easier related expressions. Pringsheim

reaches the following interesting conclusions: The product

of two semi-convergent series can never converge absolutely,

but a semi-convergent series, or even a divergent series, multi-

plied by an absolutely convergent series, may yield an abso-

lutely convergent product.

The researches of Abel and Cauchy caused a considerable

stir. We are told that after a scientific meeting in which

Cauchy had presented his first researches on series, Laplace

hastened home and remained there in seclusion until he had

examined the series in his Micanique G&leste. Luckily, every

one was found to be convergent ! We must not conclude,

however, that the new ideas at once displaced the old. On the

contrary, the new views were generally accepted only after a
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severe and long struggle. As late as 1844 De Morgan began a

paper on " divergent series " in this style :
" I believe it will

be generally admitted tbat the beading of this paper describes

the only subject yet remaining, of an elementary character, on

which a serious schism exists among mathematicians as to the

absolute correctness or incorrectness of results."

First in time in the evolution of more delicate criteria of

convergence and divergence come the researches of Josef Lud-

wig Eaabe (Grelle, Vol. IX.); then follow those of De Morgan

as given in his calculus. De Morgan established the loga-

rithmic criteria which were discovered in part independently

by J. Bertrand. The forms of these criteria, as given by

Bertrand and by Ossian Bonnet, are more convenient than

De Morgan's. It appears from Abel's posthumous papers

that he had anticipated the above-named writers in estab-

lishing logarithmic criteria. It was the opinion of Bonnet

that the logarithmic criteria never fail ; but Du Bois-Eey-

mond and Pringsheim have each discovered series demon-

strably convergent in which these criteria fail to determine

the convergence. The criteria thus far alluded to have

been called by Pringsheim special criteria, because they all

depend upon a comparison of the nth. term of the series

with special functions a", n", n(logw)'', etc. Among the

first to suggest general criteria, and to consider the subject

from a still wider point of view, culminating in a regulax

mathematical theory, was Kummer. He established a theorem

yielding a test consisting of two parts, the first part of

which was afterwards found to be superfluous. The study

of general criteria was continued by IT. Dini of Pisa, Paul

Du Bois-Eeymond, G. Kohn of Minden, and Pringsheim.

Du Bois-Keymond divides criteria into two classes : criteria

of the first kind and criteria of the second kind, according as

the general nth term, or the ratio of the (n -l-l)th term and



338 A HISTORY OP MATHEMATICS.

the nth. term, is made the basis of research. Kummer's is a

criterion of the second kind. A criterion of the first kind,

analogous to this, was invented by Pringsheim. From the

general criteria established by Du Bois-Eeymond and Prings-

heim respectively, all the special criteria can be derived. The

theory of Pringsheim is very complete, and offers, in addition

to the criteria of the first kind and second kind, entirely new-

criteria of a third kind, and also generalised criteria of the

second kind, which apply, however, only to series with never

increasing terms. Those of the third kind rest mainly on the

consideration of the limit of the difference either of consecu-

tive terms or of their reciprocals. In the generalised criteria

of the second kind he does not consider the ratio of two con-

secutive terms, but the ratio of any two terms however far

apart, and deduces, among others, two criteria previously given

by Kohn and Ermakoff respectively.

Difficult questions arose in the study of Fourier's series.^'

Cauchy was the first who felt the necessity of inquiring into

its convergence. But his mode of proceeding was found

by Dirichlet to be unsatisfactory. Dirichlet made the first

thorough researches on this subject {Crelle, Vol. IV.). They

culminate in the result that whenever the function does not

become infinite, does not have an infinite number of dis-

continuities, and does not possess an infinite number of

maxima and minima, then Fourier's series converges toward

the value of that function at all places, except points of

discontinuity, and there it converges toward the mean of

the two boundary values. Schlafli of Bern and Du Bois-

Reymond expressed doubts as to the correctness of the mean

value, which were, however, not well founded. Dirichlet's

conditions are sufficient, but not necessary. Lipschitz, of

Bonn, proved that Fourier's series still represents the func-

tion when the number of discontinuities is infinite, and
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established a condition on which it represents a function

having an infinite number of maxima and minima. Dirich-

let's belief that all continuous functions can be represented

by Fourier's series at all points was shared by Eiemann and

H. Hankel, but was proved to be false by Du Bois-Eeymond

and H. A. Schwarz.

Kiemann inquired what properties a function must have,

so that there may be a trigonometric series which, whenever

it is convergent, converges toward the value of the function.

He found necessary and sufficient conditions for this. They

do not decide, however, whether such a series actually repre-

sents the function or not. Eiemann rejected Cauchy's defini-

tion of a definite integral on account of its arbitrariness, gave

a new definition, and then inquired when a function has an

integral. His researches brought to light the fact that con-

tinuous functions need not always have a differential coeflOl-

cient. But this property, which was shown by Weierstrass to

belong to large classes of functions, was not found necessarily

to exclude them from being represented by Fourier's series.

Doubts on some of the conclusions about Fourier's series were

thrown by the observation, made by Weierstrass, that the

integral of an infinite series can be shown to be equal to the

sum of the integrals of the separate terms only when the series

converges uniformly within the region in question. The sub-

ject of uniform convergence was investigated by Philipp Lud-

wig Seidel (1848) and G. G. Stokes (1847), and has assumed

great importance in Weierstrass' theory of functions. It

became necessary to prove that a trigonometric series repre-

senting a continuous function converges uniformly. This was

done by Heinrich Eduard Heine (1821-1881), of Halle. Later

researches on Fourier's series were made by G. Cantor and

Du Bois-Eeymond.

As compared with the vast development of other mathe-
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matical branches, the theory of probability has made very

insignificant progress since the time of Laplace. Improve-

ments and simplications in the mode of exposition have been

made by A. De Morgan, G. Boole, A. Meyer (edited by E.

Czuber), J. Bertrand. Cournot's and Westergaard's treatment

of insurance and the theory of life-tables are classical. Appli-

cations of the calculus to statistics have been made by L. A. J.

Quetelet (1796-1874), director of the observatory at Brussels;

by Lexis ; Harald Westergaard, of Copenhagen ; and Dvising.

Worthy of note is the rejection of inverse probability by the

best authorities of our time. This branch of probability had

been worked out by Thomas Bayes (died 1761) and by Laplace

(Bk. II., Ch. VI. of his TJiiorie Analytique). By it some

logicians have explained induction. For example, if a man,

who has never heard of the tides, were to go to the shore of the

Atlantic Ocean and witness on m successive days the rise of the

sea, then, says Quetelet, he would be entitled to conclude that

there was a probability equal to ^ that the sea would rise

next day. Putting m = 0, it is seen that this view rests upon

the unwarrantable assumption that the probability of a totally

unknown event is ^, or that of all theories proposed for inves-

tigation one-half are true. "W. S. Jevons in his Principles of

Science founds induction upon the theory of inverse proba-

bility, and F. Y. Edgeworth also accepts it in his Mathematical

Psychics.

The only noteworthy recent addition to probability is the

subject of " local probability," developed by several English

and a few American and French mathematicians. The earliest

problem on this subject dates back to the time of BufEon, the

naturalist, who proposed the problem, solved by himself and

Laplace, to determine the probability that a short needle,

thrown at random upon a floor ruled with equidistant parallel
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lines, will fall on one of the lines. Then came Sylvester's

four-point problem: to find the probability that four points,

taken at random within a given boundary, shall form a re-

entrant quadrilateral. Local probability has been studied in

England by A. E. Clarke, H. McColl, S. Watson, J. Wolsten-

holme, but with greatest success by M. W. Crofton of the

military school at Woolwich. It was pursued in America by
E. B. Seitz ; in France by C. Jordan, E. Lemoine, E. Barbier,

and others. Through considerations of local probability,

Crofton was led to the evaluation of certain definite integrals.

The first full scientific treatment of differential equations

was given by Lagrange and Laplace. This remark is especially

true of partial differential equations. The latter were investi-

gated in more recent time by Monge, Pfaff, Jacobi, ifimile Bour

(1831-1866) of Paris, A. Weiler, Clebsch, A. N. Korkine of St.

Petersburg, G. Boole, A. Meyer, Cauchy, Serret, Sophus Lie,

and others. In 1873 their reseaohes, on partial differential

equations of the first order, were presented in text-book form

by Paul Mansion, of the University of Gand. The keen

researches of Johann Friedrich Pfaff (1795-1825) marked a

decided advance. He was an intimate friend of young Gauss

at Gottingen. Afterwards he was with the astronomer Bode.

Later he became professor at Helmstadt, then at Halle. By a

peculiar method, Pfaff found the general integration of par-

tial differential equations of the first order for any number

of variables. Starting from the theory of ordinary differential

equations of the first order in n variables, he gives first their

general integration, and then considers the integration of the

partial differential equations as a particular case of the former,

assuming, however, as known, the general integration of differ-

ential equations of any order between two variables. His

researches led Jacobi to introduce the name "Pfaffian prob-

lem." From the connection, observed by Hamilton, between
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a system of ordinary differential equations (in analytical

mechanics) and a partial differential equation, Jacobi drew

the conclusion that, of the series of systems whose successive

integration Pfaff's method demanded, all but the first system

were entirely superfluous. Clebsch considered Pfaff's problem

from a new point of view, and reduced it to systems of simul-

taneous linear partial differential equations, which can be

established independently of each other without any integra-

tion. Jacobi materially advanced the theory of differential

equations of the first order. The problem to determine un-

known functions in such a way that an integral containing

these functions and their differential coefficients, in a pre-

scribed manner, shall reach a maximum or minimum value,

demands, in the first place, the vanishing of the first variation

of the integral. This condition leads to differential equations,

the integration of which determines the functions. To ascer-

tain whether the value is a maximum or a minimum, the

second variation must be examined. This leads to new and

difficult differential equations, the integration of which, for

the simpler cases, was ingeniously deduced by Jacobi from

the integration of the differential equations of the first variar

tion. Jacobi's solution was perfected by Hesse, while Clebsch

extended to the general case Jacobi's results on the second

variation. Cauchy gave a method of solving partial differ-

ential equations of the first order having any number of

variables, which was corrected and extended by Serret, J. Ber-

trand, 0. Bonnet in France, and Imschenetzky in Russia.

Fundamental is the proposition of Cauchy that every ordinary

differential equation admits in the vicinity of any non-singular

point of an integral, which is synectic within a certain circle

of convergence, and is developable by Taylor's theorem.

Allied to the point of view indicated by this theorem is that

of Kiemann, who regards a function of a single variable as
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defined by the position and nature of its singularities, and

who has applied this conception to that linear differential

equation of the second order, which is satisfied by the hyper-

geometric series. This equation was studied also by Gauss

aud Kummer. Its general theory, when no restriction is

imposed upon the value of the variable, has been considered

by J. Tannery, of Paris, who employed Fuchs' method of

linear differential equations and found all of Kummer's

twenty-four integrals of this equation. This study has been

continued by ifidouard Goursat of Paris.

A standard text-book on Differential Equations, including

original matter on integrating factors, singular solutions, and

especially on symbolical methods, was prepared in 1869 by

George Boole (1815-1864), at one time professor in Queen's

University, Cork, Ireland. He was a native of Lincoln, and a

self-educated mathematician of great power. His treatise on

Finite Differences (1860) and his Laws of Thought (1854) are

works of high merit.

The fertility of the conceptions of Cauchy and Kiemann

with regard to differential equations is attested by the

researches to which they have given rise on the part of

Lazarus Fuchs of Berlin (born 1835), Felix Klein of Gottingen

(born 1849), Henri Poincare of Paris (born 1854), and others.

The study of linear differential equations entered a new

period with the publication of Fuchs' memoirs of 1866

and 1868. Before this, linear equations with constant co-

efficients were almost the only ones for which general methods

of integration were known. While the general theory of

these equations has recently been presented in a new light

by Hermite, Darboux, and Jordan, Fuchs began the study

from the more general standpoint of the linear differential

equations whose coefficients are not constant. He directed

his attention mainly to those whose integrals are all regular.
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If the variable be made to describe all possible paths enclos-

ing one or more of the critical points of the equation, we

have a certain substitution corresponding to each of the

paths ; the aggregate of all these substitutions being called

a group. The forms of integrals of such equations were

examined by Fuchs and by Gr. Frobenius by independent

methods. Logarithms generally appear in the integrals of

a group, and Fuchs and Frobenius investigated the conditions

under which no logarithms shall appear. Through the study

of groups the reducibility or irreducibility of linear differ-

ential equations has been examined by Frobenius and Leo

Konigsberger. The subject of linear differential equations,

not all of whose integrals are regular, has been attacked by

Gr. Frobenius of Berlin, W. Thome of Greifswald (born 1841),

and Poincard, but the resulting theory of irregular integrals

is as yet in very incomplete form.

The theory of invariants associated with linear differential

equations has been developed by Halphen and by A. E. Forsyth.

The researches above referred to are closely connected with

the theory of functions and of groups. Endeavours have thus

been made to determine the nature of the function defined by

a differential equation from the differential equation itself,

and not from any analytical expression of the function, obtained

first by solving the differential equation. Instead of studying

the properties of the integrals of a differential equation for all

the values of the variable, investigators at first contented them-

selves with the study of the properties in the vicinity of a

given point. The nature of the integrals at singular points

and .at ordinary points is entirely different. Albert Briot

(1817-1882) and Jean Claude Bouquet (1819-1885), both of

Paris, studied the case when, near a singular point, the dif-

ferential equations take the form (x — Xo)~= |
(xy). Fuchs

dx J
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gave tte deyelopment in series of the integrals for th.e partic-

ular case of linear equations. Poincar6 did the same for the

case when the equations are not linear, as also for partial

differential equations of the first order. The developments for

ordinary points were given by Cauchy and Madame Kowalevsky.

The attempt to express the integrals by developments that

are always convergent and not limited to particular points in

a plane necessitates the introduction of new transcendents, for

the old functions permit the integration of only a small num-

ber of differential equations. Poincar6 tried this plan with

linear equations, which were then the best known, having

been studied in the vicinity of given points by Euchs, Thom6,

Frobenius, Schwarz, Klein, and Halphen. Confining himself to

those with rational algebraical coefficients, Poincar6 was able

to integrate them by the use of functions named by him Fuch-

sians."^ He divided these equations into " families.'' If the

integral of such an equation be subjected to a certain trans-

formation, the result will be the integral of an equation

belonging to the same family. The new transcendents have a

great analogy to elliptic functions ; while the region of the

latter may be divided into parallelograms, each representing a

group, the former may be divided into curvilinear polygons,

so that the knowledge of the function inside of one polygon

carries with it the knowledge of it inside the others. Thus

Poincar6 arrives at what he calls Fuchsian groups. He found,

moreover, that Fuchsian functions can be expressed as the

ratio of two transcendents (theta-fuchsians) in the same way

that elliptic functions can be. If, instead of linear substitu-

tions with real coefficients, as employed in the above groups,

imaginary coefficients be used, then discontinuous groups are

obtained, which he called Kleinians. The extension to non-

linear equations of the method thus applied to linear equa-

tions has been begun by Fuchs and Poincard.
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We have seen that among the earliest of the several kinds

of " groups " are the finite discontinuous groups (groups in

the theory of substitution), which since the time of G-alois

have become the leading concept in the theory of algebraic

equations; that since 1876 Felix Klein, H. Poincare, and

others have applied the theory of finite and infinite discontin-

uous groups to the theory of functions and of differential

equations. The finite continuous groups were first made

the subject of general research in 1873 by Sophus Lie, now

of Leipzig, and applied by him to the integration of ordinary

linear partial differential equations.

Much interest attaches to the determination of those linear

differential equations which can be integrated by simpler

functions, such as algebraic, elliptic, or Abelian. This has

been studied by C. Jordan, P. Appel of Paris (bom 1868), and

Poincare.

The mode of integration above referred to, which makes

known the properties of equations from the standpoint of the

theory of functions, does not suf&ce in the application of

differential equations to questions of mechanics. If we con-

sider the function as defining a plane curve, then the general

form of the curve does not appear from the above mode of

investigation. It is, however, often desirable to construct

the curves defined by differential equations. Studies having

this end in view have been carried on by Briot and Bouquet,

and by Poincar^.*^

The subject of singular solutions of differential equations

has been materially advanced since the time of Boole by G.

Darboux and Cayley. The papers prepared by these mathe-

maticians point out a difficulty as yet unsurmounted : whereas

a singular solution, from the point of view of the integrated

equation, ought to be a phenomenon of universal, or at least of

general occurrence, it is, on the other hand, a very special and
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exceptional phenomenon from the point of view of the differ-

ential equation.*' A geometrical theory of singular solutions

resembling the one used by Cayley was previously employed

by W. W. Johnson of Annapolis.

An advanced Treatise on Linear Differential Equations

(1889) was brought out by Thomas Craig of the Johns Hop-

kins University. He chose the algebraic method of presenta-

tion followed by Hermite and Poincar^ instead of the geometric

method preferred by Klein and Schwarz. A notable work, the

Traits d'Analyse, is now being published by ifimile Picard of

Paris, the interest of which is made to centre in the subject of

differential equations.

THEORY OF FUNCTIONS.

We begin our sketch of the vast progress in the theory of

functions by considering the special class called elliptic func-

tions. These were richly developed by Abel and Jaoobi.

Niels Henrick Abel (1802-1829) was born at Findoe in Nor-

way, and was prepared for the university at the cathedral

school in Christiania. He exhibited no interest in mathe-

matics until 1818, when B. Holmboe became lecturer there,

and aroused Abel's interest by assigning original problems

to the class. Like Jacobi and many other young men who

became eminent mathematicians, Abel found the first exercise

of his talent in the attempt to solve by algebra the general

equation of the fifth degree. In 1821 he entered the Uni-

versity in Christiania. The works of Euler, Lagrange, and

Legendre were closely studied by him. The idea of the inver-

sion of elliptic functions dates back to this time. His extraor-

dinary success in mathematical study led to the offer of a

stipend by the government, that he might continue his studies
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in Germaay and France. Leaving Norway in 1825, Abel vis-

ited the astronomer, Schumacher, in Hamburg, and spent six

months in Berlin, where he became intimate with August

Leopold Crelle (1780-1856), and met Sterner. Encouraged by

Abel and Steiner, Crelle started his journal in 1826. Abel

began to put some of his work in shape for print. His proof

of the impossibility of solving the general equation of the fifth

degree by -radicals,— first printed in 182.4 in a very concise

form, and difficult of apprehension,—was elaborated in greater

detail, and published in the first volume. He entered also

upon the subject of infinite series (particularly the binomial

theorem, of which he gave in Orelle's Journal a rigid general

investigation), the study of functions, and of the integral

calculus. The obscurities everywhere encountered by him

owing to the prevailing loose methods of analysis he endeav-

oured to clear up. For a short time he left Berlin for Frei-

berg, where he had fewer interruptions to work, and it was

there that he made researches on hyperelliptic and Abelian

functions. In July, 1826, Abel left Germany for Paris with-

out having met Gauss ! Abel had sent to Gauss his proof of

1824 of the impossibility of solving equations of the fifth

degree, to which Gauss never paid any attention. This slight,

and a haughtiness of spirit which he associated with Gauss,

prevented the genial Abel from going to Gottingen. A similar

feeling was entertained by him later against Cauchy. Abel

remained ten months in Paris. He met there Dirichlet,

Legendre, Cauchy, and others ; but was little appreciated.

He had already published several important memoirs in

Crelle's Journal, but by the French this new periodical was

as yet hardly known to exist, and Abel was too modest to

speak of his own work. Pecuniary embarrassments induced

him to return home after a second short stay in Berlin. At
Christiania he for some time gave private lessons, and served
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as decent. Crelle secured at last an appointment for him at

Berlin ; but the news of it did not reach Norway until after

the death of Abel at Froland.*^

At nearly the same time with Abel, Jacobi published articles

on elliptic functions. Legendre's favourite subject, so long

neglected, was at last to be enriched by some extraordinary

discoveries. The advantage to be derived by inverting the

elliptic integral of the first kind and treating it as a function

of its amplitude (now called elliptic function) was recognised

by Abel, and a few months later also by Jacobi. A second

fruitful idea, also arrived at independently by both, is the

introduction of imaginaries leading to the observation that

the new functions simulated at once trigonometric and expo-

nential functions. For it was shown that while trigonometric

functions had only a real period, and exponential only an imag-

inary, elliptic functions had both sorts of periods. These two

discoveries were the foundations upon which Abel and Jacobi,

each in his own way, erected beautiful new structures. Abel

developed the curious expressions representing elliptic func-

tions by infinite series or quotients of infinite products.

Great as were the achievements of Abel in elliptic functions,

they were eclipsed by his researches on what are now called

Abelian functions. Abel's theorem on these functions was

given by him in several forms, the most general of these

being that in his MSmoire sur une proprUti ginSrale d'une

classe tr^s-itendue de fonctions transcendentes (1826). The his-

tory of this memoir is interesting. A few months after his

arrival in Paris, Abel submitted it to the French Academy.

Cauchy and Legendre were appointed to examine it ; but said

nothing about it until after Abel's death. In a brief statement

of the discoveries in question, published by Abel in Crelle's

Journal, 1829, reference is made to that memoir. This led

Jacobi to inquire of Legendre wha* had become of it. Le-
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gendre says that the manuscript was so badly -written as to be

illegible, and that Abel was asked to hand in a better copy,

which he neglected to do. The memoir remained in Cauchy's

hands. It was not published until 1841. By a singular mis-

hap, the manuscript was lost before the proof-sheets were

read.

In its form, the contents of the memoir belongs to the inte-

gral calculus. Abelian integrals depend upon an irrational

function y which is connected with x by an algebraic equa-

tion F{x, y) = 0. Abel's theorem asserts that a sum of such

integrals can be expressed by a definite number p of similar

integrals, where p depends merely on the properties of the

equation F(x, y) = 0. It was shown later that p is the defi-

ciency of the curve F(x, y) = 0. The addition theorems of

elliptic integrals are deducible from Abel's theorem. The

hyperelliptic integrals introduced by Abel, and proved by him

to possess multiple periodicity, are special cases of Abelian

integrals whenever p= or > 3. The reduction of Abelian to

elliptic integrals has been studied mainly by Jacobi, Hermite,

Konigsberger, Brioschi, Goursat, E. Picard, and 0. Bolza of

the University of Chicago.

Two editions of Abel's works have been published : the first

by Holmboe in 1839, and the second by Sylow and Lie in

1881.

Abel's theorem was pronoimced by Jacobi the greatest dis-

covery of our century on the integral calculus. The aged

Legendre, who greatly admired Abel's genius, called it "mon-

umentum aere perennius." During the few years of work

allotted to the young Norwegian, he penetrated new fields of

research, the development of which has kept mathematicians

busy for over half a century.

Some of the discoveries of Abel and Jacobi were anticipated

by Gauss. In the Disquisitiones Arithmeticae he observed



THEORY OP FUNCTIONS. 351

that the principles which, he used in the division of the circle

were applicable to many other functions, besides the circular,

and particularly to the transcendents dependent on the integral

/
dx

rz -.• From this Jacobi*^ concluded that Gauss hadVl — a!

thirty years earlier considered the nature and properties of

elliptic functions and had discovered their double periodicity.

The papers in the collected works of Gauss confirm this con-

clusion.

Carl Gustav Jacob Jacobi ^ (1804-1851) was born of Jewish

parents at Potsdam. Like many other mathematicians he was

initiated into mathematics by reading Euler. At the Univer-

sity of Berlin, where he pursued his mathematical studies

independently of the lecture courses, he took the degree of

Ph.D. in 1825. After giving lectures in Berlin for two years,

he was elected extraordinary professor at Konigsberg, and two

years later to the ordinary professorship there. After the

publication of his Fundamenta Nova he spent some time in

travel, meeting Gauss in Gottingen, and Legendre, Eourier,

Poisson, in Paris. In 1842 he and his colleague, Bessel, at-

tended the meetings of the British Association, where they

made the acquaintance of English mathematicians.

His early researches were on Gauss' approximation to the

value of definite integrals, partial differential equations, Le-

gendre's coefficients, and cubic residues. He read Legendre's

Exercises, which give an account of elliptic integrals. When
he returned the book to the library, he was depressed in spirits

and said that important books generally excited in him new
ideas, but that this time he had not been led to a single origi-

nal thought. Though slow at first, his ideas flowed all the

richer afterwards. Many of his discoveries in elliptic func-

tions were made independently by Abel. Jacobi communicated

his first researches to Crelle's Journal. In 1829, at the age
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of twenty-five, he published his Fundamenta Nova Theorice

Functionum Ellipticarum, which contains in condensed form

the main results in elliptic functions. This work at once

secured for him a wide reputation. He then made a closer

study of thetarfunctions and lectured to his pupils on a new

theory of elliptic functions based on the theta-functions. He
developed a theory of transformation which led him to a mul-

titude of formulse containing q, a transcendental function of

the modulus, defined by the equation g=e~"''^'- He was also

led by it to consider the two new functions H and 0, which

taken each separately with two different arguments are the

four (single) theta-functions designated by the ©i, ®2, ©3, ®i.^

In a short but very important memoir of 1832, he shows that

for the hyperelliptic integral of any class the direct functions

to which Abel's theorem has reference are not functions of a

single variable, such as the elliptic sn, en, dn, but functions of

p variables.*' Thus in the case j3 = 2, which Jacobi especially

considers, it is shown that Abel's theorem has reference to

two functions X{u, v), Xi(m, v), each of two variables, and

gives in effect an addition-theorem for the expression of the

functions X{u + u', v + v'), \i{u + u', v + v') algebraically in

terms of the functions \{u,v), \i{u,v), \{u',v'), \i{u',v'). By
the memoirs of Abel and Jacobi it may be considered that the

notion of the Abelian function of p variables was established

and the addition-theorem for these functions given. Recent

studies touching Abelian functions have been made by Weier-

strass, E. Picard, Madame Kowalevski, and Poincard. Jacobi's

work on differential equations, determinants, dynamics, and

the theory of numbers is mentioned elsewhere.

In 1842 Jacobi visited Italy for a few months to recuperate

his health. At this time the Prussian government gave him

a pension, and he moved to Berlin, where the last years of his

life were spent.
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The researches on functions mentioned thus far have been

greatly extended. In 1858 Charles Hermits of Paris (born 1822),

introduced in place of the variable q of Jacobi a new variable (u

connected with it by the equation q = e''™, so that <d = ik'/Ic, and

was led to consider the functions <^((d), i/'(<u), xC")-** Henry

Smith regarded a theta-function with the argument equal to

zero, as a function of m. This he called an omega-function,

while the three functions <^(o)), </'(»)), xC""); ^^e his modular

functions. Researches on thetarfunctions with respect to real

and imaginary arguments have been made by Meissel of Kiel,

J. Thomae of Jena, Alfred Enneper of Gottingen (1830-1885).

A general formula for the product of two theta-functions was

given in 1864 by H. Sohroter of Breslau (1829-1892). These

functions have been studied also by Cauchy, Konigsberger of

Heidelberg (born 1837), F. S. Eichelot of Konigsberg (1808-

1875), Johann Georg Eosenhain of Konigsberg (1816-1887),

L. Schlafli of Bern (born 1818). «=

Legendre's method of reducing an elliptic differential to its

normal form has called forth many investigations, most impor-

tant of which are those of Richelot and of Weierstrass of

Berlin.

The algebraic transformations of elliptic functions involve

a relation between the old modulus and the new one which

Jacobi expressed by a differential equation of the third order,

and also by an algebraic equation, called by him "modular

equation." The notion of modular equations was familiar to

Abel, but the development of this subject devolved upon later

investigators. These equations have become of importance in

the theory of algebraic equations, and have been studied by

Sohnke, E. Mathieu, L. Konigsberger, E. Betti of Pisa (died

1892), C. Hermite of Paris, Joubert of Angers, Francesco

Brioschi of Milan. Schlafli, H. Schroter, M. Gudermann of

Cleve, Gutzlaff.
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Felix Klein of Gottingen has made an extensive study of

modular functions, dealing with a type of operations lying

between the two extreme types, known as the theory of substi-

tutions and the theory of invariants and covariants. Klein's

theory has been presented in book-form by his pupil, Robert

Fricke. The bolder features of it were first published in his

Ikosaeder, 1884. His researches embrace the theory of mod-

ular functions as a specific class of elliptic functions, the

statement of a more general problem as based on the doctrine

of groups of operations, and the further development of the

subject in connection with a class of Riemann's surfaces.

The elliptic functions were expressed by Abel as quotients

of doubly infinite products. He did not, however, inquire

rigorously into the convergency of the products. In 1845

Cayley studied these products, and found for them a complete

theory, based in part upon geometrical interpretation, which

he made the basis of the whole theory of elliptic functions.

Eisenstein discussed by purely analytical methods the general

doubly infinite product, and arrived at results which have

been greatly simplified in form by the theory of primary

factors, due to Weierstrass. A certain function involving a

doubly infinite product has been called by Weierstrass the

sigma-function, and is the basis of his beautiful theory of

elliptic functions. The first systematic presentation of Weier-

strass' theory of elliptic functions was published in 1886 by

G. H. Halphen in his TMorie des fonctions elUptiques et des

lews applications. Applications of these functions have been

given also by A. G. Greenhill. Generalisations analogous to

those of Weierstrass on elliptic functions have been made

by Felix Klein on hyperelliptic functions.

Standard works on elliptic functions have been published by

Briot and Bouquet (1859), by Konigsberger, Cayley, Heinrich

Dur&ge of Prague (1821-1893), and others.
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Jacobi's work on Abelian and theta-functions was greatly

extended by Adolph Gopel (1812-1847), professor in a gym-

nasium near Potsdam, and Johann Georg Rosenhain of Konigs-

berg (1816-1887). Gopel in his Theorioe transcendentium primi

ordinis adumbratio levis (Crelle, 36, 1847) and Kosenhain in

several memoirs established each independently, on the analogy

of the single theta-functions, the functions of two variables,

called double thetarfunctions, and worked out in connection

with them the theory of the Abelian functions of two variables.

The theta-relations established by Gopel and Eosenhain re-

ceived for thirty years no further development, notwithstand-

ing the fact that the double theta series came to be of increasing

importance in analytical, geometrical, and mechanical prob-

lems, and that Hermite and Konigsberger had considered the

subject of transformation. Finally, the investigations of C. W.
Borchardt of Berlin (1817-1880), treating of the representation

of Kummer's surface by Gopel's biquadratic relation between

four theta-functions of two variables, and researches of H. H.

Weber of Marburg, 'F. Prym of Wiirzburg, Adolf Krazer, and

Martin Krause of Dresden led to broader views. Researches

on double theta-functions, made by Cayley, were extended to

quadruple theta-functions by Thomas Craig of the Johns

Hopkins University.

Starting with the integrals of the most general form and

considering the inverse functions corresponding to these in-

tegrals (the Abelian functions of p variables), Riemann

defined the theta-functions of p variables as the sum of a

j)-tuply infinite series of exponentials, the general term de-

pending on p variables. Eiemann shows that the Abelian

functions are algebraically connected with theta-functions of

the proper arguments, and presents the theory in the broadest

form.°^ He rests the theory of the multiple theta-functions

upon the general principles of the theory of functions of a

complex variable.
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Through the researches of A. Brill of Tubingen, M. Nother

of Erlangen, and Ferdinand Lindemann of Munich, made

in connection with Eiemann-Roch's theorem and the theory

of residuation, there has grown out of the theory of Abelian

functions a theory of algebraic functions and point-groups on

algebraic curves.

Before proceeding to the general theory of functions, we

make mention of the " calculus of functions," studied chiefly

by C. Babbage, J. I". W. Herschel, and De Morgan, which was

not so much a theory of functions as a theory of the solution

of functional equations by means of known functions or

symbols.

The history of the general theory of functions begins with

the adoption of new definitions of a function. With the

BernouUis and Leibniz, y was called a function of x, if there

existed an equation between these variables which made it

possible to calculate y for any given value of x lying any-

where between — oo and -f oo. The study of Fourier's theory

of heat led Dirichlet to a new definition : y is called a function

of X, if y possess one or more definite values for each of certain

values that x is assumed to take in an interval x^ to x^. In

functions thus defined, there need be no analytical connection

between y and x, and it becomes necessary to look for possible

discontinuities. A great revolution in the ideas of a function

was brought about by Cauchy when, in a function as defined

by Dirichlet, he gave the variables imaginary values, and when

he extended the notion of a defijiite integral by letting the

variable pass from one limit to the other by a succession of

imaginary values along arbitrary paths. Cauchy established

several fundamental theorems, and gave the first great impulse

to the study of the general theory of functions. His researches

were continued in France by Puiseux and Liouville. But more

profound investigations were made in Germany by Eiemann.
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Georg Friedrich Bemhard Riemann (1826-1866) was born at

Breselenz in Hanover. His father wished him to study-

theology, and he accordingly entered upon philological and

theological studies at Gottingen. He attended also some lec-

tures on mathematics. Such was his predilection for this

science that he abandoned theology. After studying for a

time under Gauss and Stern, he was drawn, in 1847, to Berlin

by a galaxy of mathematicians, in which shone Dirichlet,

Jacobi, Steiner, and Eisenstein. Keturning to Gottingen in

1850, he studied physics under Weber, and obtained the

doctorate the following year. The thesis presented on that

occasion, Orundlagen fur eine allgemeine Theorie der Funktionen

einer verdnderlichen complexen Gfrosse, excited the admiration of

Gauss to a very unusual degree, as did also Riemann's trial

lecture, Ueber die Hypothesen welche der Oeometrie zu Qrunde

Uegen. Eiemann's Habilitationsschrift was on the Eepresen-

tation of a Function by means of a Trigonometric Series, in

which he advanced materially beyond the position of Dirich-

let. Our hearts are drawn to this extraordinarily gifted but

shy genius when we read of the timidity and nervousness

displayed when he began to lecture at Gottingen, and of his

jubilation over the unexpectedly large audience of eight students

at his first lecture on differential equations.

Later he lectured on Abelian functions to a class of three

only,— Sobering, Bjerknes, and Dedekind. Gauss died in 1855,

and was succeeded by Dirichlet. On the death of the latter,

in 1859, Eiemann was made ordinary professor. In 1860 he

visited Paris, where he made the acquaintance of French

mathematicians. The delicate state of his health induced

him to go to Italy three times. He died on his last trip at

Selasca, and was buried at Biganzolo.

Like all of Eiemann's researches, those on functions were

profound and far-reaching. He laid the foundation for a



358 A HISTORY OF MATHEMATICS.

general theory of functions of a complex variable. The theory

of potential, which up to that time had been used only in

mathematical physics, was applied by him in pure mathe-

matics. He accordingly based his theory of functions on the

partial differential equation, —- -\ = Am = 0, which must
da? dy^

hold for the analytical function iv = u-\-iv of z = x+ iy. It

had been proved by Dirichlet that (for a plane) there is always

one, and only one, function of x and y, which satisfies Am = 0,

and which, together with its differential quotients of the first

two orders, is for all values of x and y within a given area

one-valued and continuous, and which has for points on the

boundary of the area arbitrarily given values.^ Riemann

called this " Dirichlet's principle," but the same theorem was

stated by Green and proved analytically by Sir William

Thomson. It follows then that w is uniquely determined for

all points within a closed surface, if u is arbitrarily given

for all points on the curve, whilst v is given for one point

within the curve. In order to treat the more complicated

case where w has n values for one value of z, and to observe

the conditions about continuity, Riemann invented the cele-

brated surfaces, known as "Eiemann's surfaces," consisting

of n coincident planes or sheets, such that the passage from

one sheet to another is made at the branch-points, and that the

n sheets form together a multiply-connected surface, which

can be dissected by cross-cuts into a singly-connected surface.

The w-valued function w becomes thus a one-valued function.

Aided by researches of J. Liiroth of Freiburg and of Clebsch,

W. K. Clifford brought Eiemann's surface for algebraic functions

to a canonical form, in which only the two last of the n leaves

are multiply-connected, and then transformed the surface into

the surface of a solid with p holes. A. Hurwitz of Zurich

discussed the question, how far a Eiemann's surface is deter-
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minate by the assignment of its number of sheets, its branch-

points and branch-lines.*''

Eiemann's theory ascertains the criteria which will deter-

mine an analytical function by aid of its discontinuities and

boundary conditions, and thus defines a function indepen-

dently of a mathematical expression. In order to show that

two different expressions are identical, it is not necessary to

transform one into the other, but it is suflBcient to prove the

agreement to a far less extent, merely in certain critical points.

Eiemann's theory, as based on Dirichlet's principle (Thom-

son's theorem), is not free from objections. It has become

evident that the existence of a derived function is not a con-

sequence of continuity, and that a function may be integrable

without being differentiable. It is not known how far the

methods of the infinitesimal calculus and the calculus of

variations (by which Dirichlet's principle is established) can

be applied to an unknown analytical function in its generality.

Hence the use of these methods will endow the functions with

properties which themselves require proof. Objections of this

kind to Eiemann's theory have been raised by Kronecker,

Weierstrass, and others, and it has become doubtful whether

his most important theorems are actually proved. In con-

sequence of this, attempts have been made to graft Eiemann's

speculations on the more strongly rooted methods of Weier-

strass. The latter developed a theory of functions by start-

ing, not with the theory of potential, but with analytical

expressions and operations. Both applied their theories to

Abelian functions, but there Eiemann's work is more gen-

eral.*^

The theory of functions of one complex variable has been

studied since Eiemann's time mainly by Karl Weierstrass of

Berlin (born 1815), Gustaf Mittag-Leffler of Stockholm (born

1846), and Poincare of Paris. Of the three classes of such
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functions (viz. functions uniform throughout, functions uni-

form only in lacunary spaces, and non-uniform functions)

Weierstrass showed that those functions of the first class

which can be developed according to ascending powers of x

into converging series, can be decomposed into a product of an

infinite number of primary factors. A primary factor of the

species n is the product (1 )
e^M, P^,, being an entire poly-

nomial of the nth degree. A function of the species n is one,

all the primary factors of which are of species n. This classi-

fication gave rise to many interesting problems studied also

by Poincare.

The first of the three classes of functions of a complex

variable embraces, among others, functions having an infinite

number of singular points, but no singular lines, and at the

same time no isolated singular points. These are Fuchsian

functions, existing throughout the whole extent. Poincare

first gave an example of such a function.

Uniform functions of two variables, unaltered by certain

linear substitutions, called hyperfuchsian functions, have been

studied by E. Picard of Paris, and by Poincare. '"^

Functions of the second class, uniform only in lacunary

spaces, were first pointed out by Weierstrass. The Fuchsian

and the Kleinian functions do not generally exist, except in

the interior of a circle or of a domain otherwise bounded, and

are therefore examples of functions of the second class.

Poincare has shown how to generate functions of this class,

and has studied them along the lines marked out by Weier-

strass. Important is his proof that there is no way of

generalising them so as to get rid of the lacunae.

Non-uniform functions are much less developed than the

preceding classes, even though their properties in the vicinity

of a given point have been diligently studied, and though
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mucli light has been thrown on them by the use of Eiemann's

surfaces. With the view of reducing their study to that of

uniform transcendents, Poincar^ proved that if y is any

analytical non-uniform function of x, one can always find a

variable z, such that x and y are uniform functions of z.

Weierstrass and Darboux have each given examples of con-

tinuous functions having no derivatives. Formerly it had

been generally assumed that every function had a derivative.

Ampfere was the first who attempted to prove analytically

(1806) the existence of a derivative, but the demonstration

is not valid. In treating of discontinuous functions, Darboux

established rigorously the necessary and sufficient condition

that a continuous or discontinuous function be susceptible of

integration. He gave fresh evidence of the care that must

be exercised in the use of series by giving an example of a

series always convergent and continuous, such that the series

formed by the integrals of the terms is always convergent, and

yet does not represent the integral of the first series. '^

The general theory of functions of two variables has been

investigated to some extent by Weierstrass and Poincare.

H. A. Schwarz of Berlin (born 1845), a pupil of Weierstrass,

has given the conform representation (Abbildung) of various

surfaces on a circle. In transforming by aid of certain

substitutions a polygon bounded by circular arcs into another

also bounded by circular arcs, he was led to a remarkable

differential equation >j/ (u', i) = <f/{u, t), where ij/ {u, i) is the

expression which Cayley calls the " Schwarzian derivative,"

and which led Sylvester to the theory of reciprocants.

Schwarz's developments on minimum surfaces, his work on

hypergeometric series, his inquiries on the existence of solu-

tions to important partial differential equations under prescribed

conditions, have secured a prominent place in mathematical

literature.
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The modem theory of functions of one real variable was

first worked out by H. Hankel, Dedekind, G. Cantor, Dini, and

Heine, and then carried further, principally, by Weierstrass,

Schwarz, Du Bois-Reymond, Thomae, and Darboux. Hankel

established the principle of the condensation of singularities

;

Dedekind and Cantor gave definitions for irrational numbers

;

definite integrals were studied by Thomae, Du Bois-Reymond,

and Darboux along the lines indicated by the definitions of

such integrals given by Cauchy, Dirichlet, and Eiemann. Dini

wrote a text-book on functions of a real variable (1878), which

was translated into German, with additions, by J. Liiroth and

A. Schepp. Important works on the theory of functions are

the Gours de M. Hermite, Tannery's TJidorie des Fonctions

d'une variable seule, A Treatise on the Theory of Functions by

James Harkness and Frank Morley, and Theory of Functions of

a Complex Variable by A. R. Forsyth.

THEORY OF NUMBERS.

"Mathematics, the queen of the sciences, and arithmetic,

the queen of mathematics." Such was the dictum of Gauss,

who was destined to revolutionise the theory of numbers.

When asked who was the greatest mathematician in Ger-

many, Laplace answered, Pfaff. When the questioner said

he should have thought Gauss was, Laplace replied, "PfafP

is by far the greatest mathematician in Germany ; but Gauss

is the greatest in all Europe."^ Gauss is one of the three

greatest masters of modern analysis, — Lagrange, Laplace,

Gauss. Of these three contemporaries he was the youngest.

While the first two belong to the period in mathematical his-

tory preceding the one now under consideration, Gauss is the

one whose writings may truly be said to mark the , beginning
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of our own epoch. In him that abundant fertility of inven-

tion, displayed by mathematicians of the preceding period,

is combined with an absolute rigorousness in demonstration

which is too often wanting in their writings, and which the

ancient Greeks might have envied. Unlike Laplace, Gauss

strove in his writings after perfection of form. He rivals

Lagrange in elegance, and surpasses this great Frenchman in

rigour. Wonderful was his richness of ideas ; one thought fol-

lowed another so quickly that he had hardly time to write

down even the most meagre outline. At the age of twenty

Gauss had overturned old theories and old methods in all

branches of higher mathematics ; but little pains did he take

to publish his results, and thereby to establish his priority.

He was the first to observe rigour in the treatment of infinite

series, the first to fully recognise and emphasise the impor-

tance, and to make systematic use of determinants and of

imaginaries, the first to arrive at the method of least squares,

the first to observe the double periodicity of elliptic functions.

He invented the heliotrope and, together with Weber, the

bifilar magnetometer and the declination instrument. He
reconstructed the whole of magnetic science.

Carl Friedrich Gauss ^' (1777-1855), the son of a bricklayer,

was born at Brunswick. He used to say, jokingly, that he

could reckon before he could talk. The marvellous aptitude

for calculation of the young boy attracted the attention of

Bartels, afterwards professor of mathematics at Dorpat, who
brought him under the notice of Charles William, Duke of

Brunswick. The duke undertook to educate the boy, and sent

him to the Collegium Carolinum. His progress in languages

there was quite equal to that in mathematics. In 1796 he

went to Gottingen, as yet undecided whether to pursue philol-

ogy or mathematics. Abraham Gotthelf Kastner, then pro-

fessor of mathematics there, and now chiefly remembered for
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his Geschichte der Mathematik (1796), was not an inspiring

teacher. At the age of nineteen Gauss discovered a method of

inscribing in a circle a regular polygon of seventeen sides, and

this success encouraged him to pursue mathematics. He worked

quite independently of his teachers, and while a student at

Gottingen made several of his greatest discoveries. Higher

arithmetic was his favourite study. Among his small circle

of intimate friends was Wolfgang Bolyai. After completing

his course he returned to Brunswick. In 1798 and 1799 he

repaired to the university at Helmstadt to consult the library,

and there made the acquaintance of Pfaff, a mathematician of

much power. In 1807 the Emperor of Eussia offered Gauss a

chair in the Academy at St. Petersburg, but by the advice of

the astronomer Olbers, who desired to secure him as director

of a proposed new observatory at Gottingen, he declined the

offer, and accepted the place at Gottingen. Gauss had a

marked objection to a mathematical chair, and preferred the

post of astronomer, that he might give all his time to science.

He spent his life in Gottingen in the midst of continuous

work. In 1828 he went to Berlin to attend a meeting of

scientists, but after this he never again left Gottingen, except

in 1864, when a railroad was opened between Gottingen and

Hanover. He had a strong will, and his character showed

a curious mixture of self-conscious dignity and child-like

simplicity. He was little communicative, and at times

morose.

A new epoch in the theory of numbers dates from the publi-

cation of his Disquisitiones Arithmetics, Leipzig, 1801. The

beginning of this work dates back as far as 1795. Some of its

results had been previously given by Lagrange and Euler, but

were reached independently by Gauss, who had gone deeply

into the subject before he became acquainted with the writ-

ings of his great predecessors. The Disquisitiones Arithmeticce
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was already in print when Legendre's TMorie des Nomhres

appeared. The great law of quadratic reciprocity, given in

the fourth section of Gauss' work, a law which involves the

whole theory of quadratic residues, was discovered by him by

induction before he was eighteen, and was proved by him one

year later. Afterwards he learned that Euler had imperfectly

enunciated that theorem, and that Legendre had attempted

to prove it, but met with apparently insuperable difficulties.

In the fifth section Gauss gave a second proof of this " gem "

of higher arithmetic. In 1808 followed a third and fourth

demonstration; in 1817, a fifth and sixth. No wonder that

he felt a personal attachment to this theorem. Proofs were

given also by Jacobi, Eisenstein, Liouville, Lebesgue, A.

Genoochi, Kummer, M. A. Stern, Chr. Zeller, Kronecker,

Bouniakowsky, E. Sobering, J. Petersen, Voigt, E. Busche,

and Th. Pepin.^* The solution of the problem of the repre-

sentation of numbers by binary quadratic forms is one of the

great achievements of Gauss. He created a new algorithm by

introducing the theory of congruences. The fourth section

of the Disquisitiones Arithmeticce, treating of congruences of

the second degree, and the fifth section, treating of quadratic

forms, were, until the time of Jacobi, passed over with universal

neglect, but they have since been the starting-point of a long

series of important researches. The seventh or last section,

developing the theory of the division of the circle, was received

from the start with deserved enthusiasm, and has since been

repeatedly elaborated for students. A standard work on

Kreistheilung was published in 1872 by Paul Bachmann, then

of Breslau. Gauss had planned an eighth section, which was

omitted to lessen the expense of publication. His papers on

the theory of numbers were not all included in his great treatise.

Some of them were published for the first time after his death

in his collected works (1863-1871). He wrote two memoirs on
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the theory of biquadratic residues (1825 and 1831), the second

of which contains a theorem of biquadratic reciprocity.

Gauss was led to astronomy by the discovery of the planet

Ceres at Palermo in 1801. His determination of the elemepts

of its orbit with sufficient accuracy to enable Olbers to redis-

cover it, made the name of Gauss generally known. In 1809

he published the Theoria motus corporum coelestium, which

contains a discussion of the problems arising in the deter-

mination of the movements of planets and comets from

observations made on them under any circumstances. In it

are found four formulae in spherical trigonometry, now usually

called "Gauss' Analogies," but which were published some-

what earlier by Karl Brandon MoUweide of Leipzig (1774-

1825), and earlier still by Jean Baptiste Joseph Delambre

(1749-1822).'" Many years of hard work were spent in the

astronomical and magnetic observatory. He founded the

German Magnetic Union, with the object of securing con-

tinuous observations at fixed times. He took part in geodetic

observations, and in 1843 and 1846 wrote two memoirs, Ueber

Gegenstdnde der hoheren Geodesic. He wrote on the attrac-

tion of homogeneous ellipsoids, 1813. In a memoir on capil-

lary attraction, 1833, he solves a problem in the calculus of

variations involving the variation of a certain double integral,

the limits of integration being also variable ; it is the earliest

example of the solution of such a problem. He discussed the

problem of rays of light passing through a system of lenses.

Among Gauss' pupils were Christian Heinrich Schumacher,

Christian Gerling, Friedrich Nicolai, August Ferdinand

Mobius, Georg Wilhelm Struve, Johann Frantz Encke.

Gauss' researches on the theory of numbers were the start-

ing-point for a school of writers, among the earliest of whom
was Jacobi. The latter contributed to Crelle's Journal an article

on cubic residues, giving theorems without proofs. After the
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publication of Gauss' paper on biquadratic residues, giving

the law of biquadratic reciprocity, and his treatment of com-

plex numbers, Jacobi found a similar law for cubic residues.

By the theory of elliptical functions, he was led to beautiful

theorems on the representation of numbers by 2, 4, 6, and 8

squares. Next come the researches of Dirichlet, the expounder

of Gauss, and a contributor of rich results of his own.

Peter Gustav Lejeune Dirichlet** (1805-1869) was born in

Diiren, attended the gymnasium in Bonn, and then the

Jesuit gymnasium in Cologne. In 1822 he was attracted to

Paris by the names of Laplace, Legendre, Fourier, Poisson,

Cauchy. The facilities for a mathematical education there

were far better than in Germany, where Gauss was the only

great figure. He read in Paris Gauss' Disquisitiones Arith-

meticoe, a work which he never ceased to admire and study.

Much in it was simplified by Dirichlet, and thereby placed

within easier reach of mathematicians. His first memoir on

the impossibility of certain indeterminate equations of the

fifth degree was presented to the French Academy in 1825.

He showed that Fermat's equation, x" + y" = z", cannot exist

when n = 5. Some parts of the analysis are, however,

Legendre's. Euler and Lagrange had proved this when n is 3

and 4, and Lame proved it when n = 7. Dirichlet's acquaint-

ance with Fourier led him to investigate Fourier's series. He
became decent in Breslau in 1827. In 1828 he accepted a

position in Berlin, and finally succeeded Gauss at Gottingen

in 1855. The general principles on which depends the aver-

age number of classes of binary quadratic forms of positive

and negative determinant (a subject first investigated by

Gauss) were given by Dirichlet in a memoir, Ueber die Bestim-

mung der mittleren Werthe in der Zahlentheorie, 1849. More

recently F. Mertens of Graz has determined the asymptotic

values of several numerical functions. Dirichlet gave some
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attention to prime numbers. Gauss and Legendre had given

expressions denoting approximately the asymptotic value of

the number of primes inferior to a given limit, but it remained

for Eiemann in his memoir, Ueher die Anzahl der Primzahlen

unter einer gegebenen Grdsse, 1859, to give an investigation of

the asymptotic frequency of primes which is rigorous. Ap-

proaching the problem from a different direction, Patnutij

Tchehycheff, formerly professor in the University of St. Peters-

burg (born 1821), established, in a celebrated memoir, Sur les

Nomhres Premiers, 1850, the existence of limits within which

the sum of the logarithms of the primes P, inferior to a given

number x, must be comprised.^ This paper depends on very

elementary considerations, and, in that respect, contrasts

strongly with Eiemann's, which involves abstruse theorems

of the integral calculus. Poincare's papers, Sylvester's con-

traction of Tchebycheff's limits, with reference to the distri-

bution of primes, and researches of J. Hadamard (awarded the

Grand prix of 1892), are among the latest researches in this

line. The enumeration of prime numbers has been undertaken

at different times by various mathematicians. In 1877 the

British Association began the preparation of factor-tables,

under the direction of J. W. L. Glaisher. The printing, by

the Association, of tables for the sixth million marked the

completion of tables, to the preparation of which Germany,

Prance, and England contributed, and which enable us to

resolve into prime factors every composite number less than

9,000,000.

Miscellaneous contributions to the theory of numbers were

made by Cauchy. He showed, for instance, how to find all

the infinite solutions of a homogeneous indeterminate equation

of the second degree in three variables when one solution is

given. He established the theorem that if two congruences,

which have the same modulus, admit of a common solution,
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the modulus is a divisor of their resultant. Joseph Liouville

(1809-1882), professor at the College de Erance, investigated

mainly questions on the theory of quadratic forms of two, and

of a greater number of variables. Profound researches were

instituted by Ferdinand Gotthold Eisenstein (1823-1852), of

Berlin. Ternary quadratic forms had been studied somewhat

by Gauss, but the extension from two to three indeterminates

was the work of Eisenstein who, in his memoir, Neue Theo-

reme der hoheren Arithmetik, defined the ordinal and generic

characters of ternary quadratic forms of uneven determinant;

and, in case of definite forms, assigned the weight of any order

or genus. But he did not publish demonstrations of his re-

sults. In inspecting the theory of binary cubic forms, he was

led to the discovery of the first covariant ever considered in

analysis. He showed that the series of theorems, relating to

the presentation of numbers by sums of squares, ceases when

the number of squares surpasses eight. Many of the proofs

omitted by Eisenstein were supplied by Henry Smith, who

was one of the few Englishmen jvho devoted themselves to the

study of higher arithmetic.

Henry John Stephen Smith* (1826-1883) was born in Lon-

don, and educated at Rugby and at Balliol College, Oxford.

Before 1847 he travelled much in Europe for his health,

and at one time attended lectures of Arago in Paris, but

after that year he was never absent from Oxford for a

single term. In 1861 he was elected Savilian professor of

geometry. His first paper on the theory of numbers appeared

in 1855. The results of ten years' study of everything pub-

lished on the theory of numbers are contained in his Eeports

which appeared in the British Association volumes from 1859

to 1865. These reports are a model of clear and precise

exposition and perfection of form. They contain much orig-

inal matter, but the chief results of his own discoveries were
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printed in the Philosophical Transactions for 1861 and 1867.

They treat of linear indeterminate equations and congruences,

and of the orders and genera of ternary quadratic forms. He
established the principles on which the extension to the gen-

eral case of n indeterminates of quadratic forms depends.

He contributed also two memoirs to the Proceedings of the

Boyal Society of 1864 and 1868, in the second of which he

remarks that the theorems of Jacobi, Eisenstein, and Liou-

ville, relating to the representation of numbers by 4, 6, 8

squares, and other simple quadratic forms are deducible by a

uniform method from the principles indicated in his paper.

Theorems relating to the case of 5 squares were given by

Eisenstein, but Smith completed the enunciation of them, and

added the corresponding theorems for 7 squares. The solu-

tion of the cases of 2, 4, 6 squares may be obtained by elliptic

functions, but when the number of squares is odd, it involves

processes peculiar to the theory of numbers. This class of

theorems is limited to 8 squares, and Smith completed the

group. In ignorance of Smijbh's investigations, the French

Academy offered a prize for the demonstration and comple-

tion of Eisenstein's theorems for 5 squares. This Smith had

accomplished fifteen years earlier. He sent in a dissertation

in 1882, and next year, a month after his death, the prize was

awarded to him, another prize being also awarded to H. Min-

kowsky of Bonn. The theory of numbers led Smith to the

study of elliptic functions. He wrote also on modern geome-

try. His successor at Oxford was J. J. Sylvester.

Ernst Eduard Kummer (1810-1893), professor in the Uni-

versity of Berlin, is closely identified with the theory of num-

bers. Dirichlet's work on complex numbers of the form a+ib,

introduced by Gauss, was extended by him, by Eisenstein,

and Dedekind. Instead of the equation cc* — 1 = 0, the roots

of which yield Gauss' units, Eisenstein used the equation
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!C^ — 1 = and complex numbers a + bp (p being a cube root

of unity), the theory of which resembles that of Gauss' num-

bers. Kummer passed to the general case a;" — 1 = and got

complex numbers of the form a = UiA^ + ttiA^ + a^A^ -\ ,

where «( are whole real numbers, and At roots of the above

equation.*' Euclid's theory of the greatest common divisor

is not applicable to such complex numbers, and their prime

factors cannot be defined in the same way as prime factors of

common integers are defined. In the effort to overcome this

difiiculty, Kummer was led to introduce the conception of

"ideal numbers." These ideal numbers have been applied by

G. Zolotareff of St. Petersburg to the solution of a problem

of the integral calculus, left unfinished by Abel {Liouville's

Journal, Second Series, 1864, Vol. IX.). Julius Wilhelm Richard

Dedekind of Braunschweig (born 1831) has given in the second

edition of Dirichlet's Vbrlesungen iiher Zdhlentlieorie a new
theory of complex numbers, in which he to some extent

deviates from the course of Kummer, and avoids the use of

ideal numbers. Dedekind has taken the roots of any irreduci-

ble equation with integral coefficients as the units for his com-

plex numbers. Attracted by Kummer's investigations, his

pupil, Leopold Kronecker (1823-1891) made researches which

he applied to algebraic equations.

On the other hand, efforts have been made to utilise in the

theory of numbers the results of the modern higher algebra.

Following up researches of Hermite, Paul Bachmann of Munster

investigated the arithmetical formula which gives the auto-

morphics of a ternary quadratic form.^ The problem of the

equivalence of two positive or definite ternary quadratic forms

was solved by L. Seeber ; and that of the arithmetical auto-

morphics of such forms, by Eisenstein. The more difficult prob-

lem of the equivalence for indefinite ternary forms has been

investigated by Edward Selling of Wvirzburg. On quadratic
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forms of four or more indeterminates little has yet been done

Hermite showed that the number of non-equivalent classes o

quadratic forms having integral coefficients and a given dis

criminant is finite, while Zolotareff and A. N. Korkine, bot]

of St. Petersburg, investigated the minima of positive quadratii

forms. In connection with binary quadratic forms, Smitl

established the theorem that if the joint invariant of twc

properly primitive forms vanishes, the determinant of eithei

of them is represented primitively by the duplicate of th(

other.

The interchange of theorems between arithmetic and algebrj

is displayed in the recent researches of J. W. L. Glaishei

of Trinity College (born 1848) and Sylvester. Sylvester gave

a Constructive Theory of Partitions, which received additions

from his pupils, P. Pranklin and G. S. Ely.

The conception of "number" has been much extended ir

our time. With the Greeks it included only the ordinary

positive whole numbers ; Diophantus added rational fractions

to the domain of numbers. Later negative numbers and
imaginaries came gradually to be recognised. Descartes fully

grasped the notion of the negative ; Gauss, that of the imagi-

nary. With Euclid, a ratio, whether rational or irrational, was
not a number. The recognition of ratios and irrationals as

numbers took place in the sixteenth century, and found expres-

sion with Newton. By the ratio method, the continuity of the

real number system has been based on the continuity of space,

but in recent time three theories of irrationals have been
advanced by Weierstrass, J. W. R. Dedekind, G. Cantor, and
Heine, which prove the continuity of numbers without borrow-

ing it from space. They are based on the definition of numbers
by regular sequences, the use of series and limits, and some
new mathematical conceptions.
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Notwithstanding the beautiful developments of celestial

mechanics reached by Laplace at the close of the eighteenth

century, there was made a discovery on the first day of the

present century which presented a problem seemingly beyond

the power of that analysis. We refer to the discovery of Ceres

by Piazzi in Italy, which became known in Germany just after

the philosopher Hegel had published a dissertation proving a

priori that such a discovery could not be made. From the

positions of the planet observed by Piazzi its orbit could not

be satisfactorily calculated by the old methods, and it remained

for the genius of Gauss to devise a method of calculating

elliptic orbits which was free from the assumption of a small

eccentricity and inclination. Gauss' method was developed

further in his Theoria Motus. The new planet was re-dis-

covered with aid of Gauss' data by Olbers, an astronomer

who promoted science not only by his own astronomical

studies, but also by discerning and directing towards astro-

nomical pursuits the genius of Bessel.

Friedrich Wilhelm Bessel"^ (1784-1846) was a native of

Minden in Westphalia. Fondness for figures, and a distaste

for Latin grammar led him to the choice of a mercantile

career. In his fifteenth year he became an apprenticed clerk

in Bremen, and for nearly seven years he devoted his days to

mastering the details of his business, and part of his nights to

study. Hoping some day to become a supercargo on trading

expeditions, he became interested in observations at sea. W^ith

a sextant constructed by him and an ordinary clock he deter-

mined the latitude of Bremen. His success in this inspired

him for astronomical study. One work after another was

mastered by him, unaided, during the hours snatched from
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sleep. From old observations he calculated the orbit of

Halley's comet. Bessel introduced himself to Olbers, and

submitted to him the calculation, which Olbers immediately-

sent for publication. Encouraged by Olbers, Bessel turned

his back to the prospect of affluence, chose poverty and the

stars, and became assistant in J. H. Schroter's observatory at

Lilienthal. Four years later he was chosen to superintend

the construction of the new observatory at Konigsberg.'^ In

the absence of an adequate mathematical teaching force, Bessel

was obliged to lecture on mathematics to prepare students for

astronomy. He was. relieved of this work in 1825 by the

arrival of Jacobi. We shall not recount the labours by which

Bessel earned the title of founder of modern practical astron-

omy and geodesy. As an observer he towered far above

Gauss, but as a mathematician he reverently bowed before the

genius of his great contemporary. Of Bessel's papers, the one

of greatest mathematical interest is an " Untersuchung des

TJieils der planetarischen Storungen, welcher aus der Bewegung

der Sonne ensteht" (1824), in which he introduces a class of

transcendental functions, J'„(a;), much used in applied mathe-

matics, and known as "Bessel's functions." He gave their

principal properties, and constructed tables for their eval-

uation. Eecently it has been observed that Bessel's func-

tions appear much earlier in mathematical literature.^

Such functions of the zero order occur in papers of Daniel

Bernoulli (1732) and Euler on vibration of heavy strings sus-

pended from one end. All of Bessel's functions of the first

kind and of integral orders occur in a paper by Euler (1764) on

the vibration of a stretched elastic membrane. In 1878 Lord

Eayleigh proved that Bessel's functions are merely particular

cases of Laplace's functions. J. W. L. Glaisher illustrates

by Bessel's functions his assertion that mathematical branches

growing out of physical inquiries as a rule " lack the easy flow
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or homogeneity of form which is characteristic of a mathemati-

cal theory properly so called." These functions have been

studied by C. Th. Anger of Danzig, 0. Schlomilch of Dresden,

E. Lipschitz of Bonn (born 1832), Carl Neumann of Leipzig

(born 1832), Eugen Lommel of Leipzig, I. Todhunter of St.

John's College, Cambridge.

Prominent among the successors of Laplace are the follow-

ing: Simion Denis Poisson (1781-1840), who wrote in 1808

a classic Mimoire sur les in&galitis siculaires des moyens mouve-

ments des plankes. Giovanni Antonio Amadeo Plana (1781-

1864) of Turin, a nephew of Lagrange, who published in 1811

a Memoria sulla teoria dell' attrazione degli sferoidi ellitici, and

contributed to the theory of the moon. Peter Andreas Hansen

(1795-1874) of Gotha, at one time a clockmaker in Tondern,

then Schumacher's assistant at Altona, and finally director of

the observatory at Gotha, wrote on Various astronomical sub-

jects, but mainly on the lunar theory, which he elaborated in

his work Fimdamenta nova investigationes orbitce verce quam

Luna perlustrat (1838), and in subsequent investigations

embracing extensive lunar tables. George Biddel Airy (1801-

1892), royal astronomer at Greenwich, published in 1826 his

Mathematical Tracts on the Lunar and Planetary Theories.

These researches have since been greatly extended by him.

August Ferdinand Mobius (1790-1868) of Leipzig wrote, in 1842,

Elemente der MechaniJc des Himmels. Urbain Jean Joseph Le

Verrier (1811-1877) of Paris wrote, the Becherches Astrono-

miques, constituting in part a new elaboration of celestial

mechanics, and is famous for his theoretical discovery of

Neptune. John Couch Adams (1819-1892) of Cambridge

divided with Le Verrier the honour of the mathematical dis-

covery of Neptune, and pointed out in 1853 that Laplace's

explanation of the secular acceleration of the moon's mean

motion accounted for only half the observed acceleration.
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Charles Eugene Delaunay (born 1816, and drowned off Cher-

bourg in 1872), professor of mechanics at the Sorbonne in

Paris, explained most of the remaining acceleration of the

moon, unaccounted for by Laplace's theory as' corrected by

Adams, by tracing the effect of tidal friction, a theory

previously suggested independently by Kant, Eobert Mayer,

and William Ferrel of Kentucky. George Howard Darwin of

Cambridge (born 1845) made some very remarkable inves-

tigations in 1879 on tidal friction, which trace with great

certainty the history of the moon from its origin. He has

since studied also the effects of tidal friction upon other

bodies in the solar system. Criticisms on some parts of his

researches have been made by James Nolan of Victoria. Simon

Newcomb (born 1836), superintendent of the Nautical Almanac

at Washington, and professor of mathematics at the Johns

Hopkins University, investigated the errors in Hansen's tables

of the moon. For the last twelve years the main work of the

U. S. Nautical Almanac office has been to collect and discuss

data for new tables of the planets which will supplant the

tables of Le Verrier. G. W. Hill of that office has contributed

an elegant paper on certain possible abbreviations in the com-

putation of the long-period of the moon's motion due to the

direct action of the planets, and has made the most elaborate

determination yet undertaken of the inequalities of the moon's

motion due to the figure of the earth. He has also computed

certain lunar inequalities due to the action of Jupiter.

The mathematical discussion of Saturn's rings was taken up

first by Laplace, who demonstrated that a homogeneous solid

ring could not be in equilibrium, and in 1851 by B. Peirce,

who proved their non-solidity by showing that even an irregu-

lar solid ring could not be in equilibrium about Saturn. The

mechanism of these rings was investigated by James Clerk

Maxwell in an essay to which the Adams prize was awarded.



APPLIED MATHEMATICS. 377

He concluded that they consisted of an aggregate of uncon-

nected particles.

The problem of three bodies has been treated in various

ways since the time of Lagrange, but no decided advance

towards a more complete algebraic solution has been made,

and the problem stands substantially where it was left by him.

He had made a reduction in the differential equations to the

seventh order. This was elegantly accomplished in a different

way by Jacobi in 1843. R. Badau {Comptes Rendus, LXVII.,

1868, p. 841) and AlUgret {Journal de MatMmatiques, 187S,

p. 277) showed that the reduction can be performed on the

equations in their original form. Noteworthy transformations

and discussions of the problem have been given by J. L. T.

Bertrand, by Emile Bour (1831-1866) of the Polytechnic School

in Paris, by Mathieu, Hesse, J. A. Serret. H. Bruns of Leipzig

has shown that no advance in the problem of three or of n

bodies may be expected by algebraic integrals, and that we
must look to the modem theory of functions for a complete

solution {Acta Math., XL, p. 43).=""

Among valuable text-books on mathematical astronomy rank

the following works : Manual of Spherical and Practical Astron-

omy by Chauvenet (1863), Practical and Spherical Astronomy

by Robert Main of Cambridge, Tlieoretical Astronomy by James

C. Watson of Ann Arbor (1868), Traite iUmentaire de Meca-

nique Gileste of H. Resal of the Polytechnic School in Paris,

Cours d'Astronomic de I'JEcole Polytechnique by Faye, Traiti

de Micanique Cileste by Tisserand, Lehrbuch der Bahnbestim-

mung by T. Oppolzer, Mathematische Theorien der Planeten-

bewegung by 0. Dziohek, translated into English by M. W.
Harrington and W. J. Hussey.

During the present century we have come to recognise the

advantages frequently arising from a geometrical treatment of

mechanical problems. To Poinsot, Chasles, and Mobius we
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owe the most important developments made in geometrical

mechanics. Louis Poinsot (1777-1859), a graduate of the

Polytechnic School in Paris, and for many years member of

the superior council of public instruction, published in 1804

his Elements de Statique. This work is remarkable not only

as being the earliest introduction to synthetic mechanics, but

also as containing for the first time the idea of couples, which

was applied by Poinsot in a publication of 1834 to the theory

of rotation. A clear conception of the nature of rotary

motion was conveyed by Poinsot's elegant geometrical repre-

sentation by means of an ellipsoid rolling on a certain fixed

plane. This construction was extended by Sylvester so as

to measure the rate of rotation of the ellipsoid on the plane.

A particular class of dynamical problems has recently been

treated geometrically by Sir Robert Stawell Ball, formerly

astronomer royal of Ireland, now Lowndean Professor of

Astronomy and Geometry at Cambridge. His method is given

in a work entitled Theory of Screws, Dublin, 1876, and in

subsequent articles. Modern geometry is here drawn upon,

as was done also by Clifford in the related subject of Bi-

quaternions. Arthur Buchheim of Manchester (1869-1888),

showed that Grassmann's Ausdehnungslehre supplies all the

necessary materials for a simple calculus of screws in elliptic

space. Horace Lamb applied the theory of screws to the ques-

tion of the steady motion of any solid in a fluid.

Advances in theoretical mechanics, bearing on the in-

tegration and the alteration in form of dynamical equations,

were made since Lagrange by Poisson, William Eowan Hamil-

ton, Jacobi, Madame Kowalevski, and others. Lagrange had

established the " Lagrangian form " of the equations of

motion. He had given a theory of the variation of the

arbitrary constants which, however, turned out to be less

fruitful in results than a theory advanced by Poisson.^ Pols-
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son's theory of the variation of the arbitrary constants and

the method of integration thereby afforded marked the first

onward step since Lagrange. Then came the researches of

Sir William Eowan Hamilton. His discovery that the inte-

gration of the dynamic differential equations is connected with

the integration of a certain partial differential equation of the

first order and second degree, grew out of an attempt to deduce,

by the undulatory theory, results in geometrical optics previ-

ously based on the conceptions of the emission theory. The

Philosophical Transactions of 1833 and 1834 contain Hamil-

ton's papers, in which appear the first applications to me-

chanics of the principle of varying action and the characteristic

function, established by him some years previously. The

object which Hamilton proposed to himself is indicated by

the title of his first paper, viz. the discovery of a function

by means of which all integral equations can be actually

represented. The new form obtaiued by him for the equation

of motion is a result of no less importance than that which

was the professed object of the memoir. Hamilton's method

of integration was freed by Jacobi of an unnecessary complica-

tion, and was then applied by him to the determination of a

geodetic line on the general ellipsoid. With aid of elliptic co-

ordinates Jacobi integrated the partial differential equation

and expressed the equation of the geodetic in form of a

relation between two Abelian integrals. Jacobi applied to

differential equations of dynamics the theory of the ultimate

multiplier. The differential equations of dynamics are only

one of the classes of differential equations considered by

Jacobi. Dynamic investigations along the lines of Lagrange,

Hamilton, and Jacobi were made by Liouville, A. Desboves,

Serret, J. C. F. Sturm, Ostrogradsky, J. Bertrand, Donkin,

Brioschi, leading up to the development of the theory of a

system of canonical integrals.
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An important addition to the theory of the motion of a solid

body about a fixed point was made by Madame Sophie de

KowalevsW (1853-1891), who discovered a new case in which

the difEerential equations of motion can be integrated. By
the use of theta-functions of two independent variables she

furnished a remarkable example of how the modern theory of

functions may become useful in mechanical problems. She

was a native of Moscow, studied under Weierstrass, obtained

the doctor's degree at Gottingen, and from 1884 until her

death was professor of higher mathematics at the University

of Stockholm. The research above mentioned received the

Bordin prize of the French Academy in 1888, which was

doubled on account of the exceptional merit of the paper.

There are in vogue three forms for the expression of the

kinetic energy of a dynamical system: the Lagrangian, the

Hamiltonian, and a modified form of Lagrange's equations in

which certain velocities are omitted. The kinetic energy

is expressed in the first form as a homogeneous quadratic

function of the velocities, which are the time-variations of the

co-ordinates of the system; in the second form, as a homo-

geneous quadratic function of the momenta of the system

;

the third form, elaborated recently by Edward John Eouth

of Cambridge, in connection with his theory of " ignoration of

co-ordinates," and by A. B. Basset, is of importance in. hydro-

dynamical problems relating to the motion of perforated solids

in a liquid, and iu other branches of physics.

In recent time great practical importance has come to be

attached to the principle of mechanical similitude. By it one

can determine from the performance of a model the action of

the machine constructed on a larger scale. The principle was

first enunciated by Newton (Principia, Bk. II., Sec. VIII.,

Prop. 32), and was derived by Bertrand from the principle

of virtual velocities. A corollary to it, applied in ship-build-
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ing, goes by the name of William Froude's law, but was enun-

ciated also by Eeech.

The present problems of dynamics differ materially from

those of the last century. The explanation of the orbital and

axial motions of the heavenly bodies by the law of universal

gravitation was the great problem solved by Clairaut, Euler,

D'Alembert, Lagrange, and Laplace. It did not involve the

consideration of frictional resistances. In the present time

the aid of dynamics has been invoked by the physical

sciences. The problems there arising are often complicated

by the presence of friction. Unlike astronomical problems of

a century ago, they refer to phenomena of matter and motion

that are usually concealed from direct observation. The great

pioneer in such problems is Lord Kelvin. While yet an

undergraduate at Cambridge, during holidays spent at the

seaside, he entered upon researches of this kind by working

out the theory of spinning tops, which previously had been

only partially explained by Jellet in his Treatise on the Theory

of Friction (1872), and by Archibald Smith.

Among standard works on mechanics are Jacobi's Vorlesun-

gen iiber DynamiJc, edited by Clebsch, 1866 ; Kirchhoff's Vorle-

sunyen iiber mathematische Physik, 1876 ; Benjamin Peirce's

Analytic Mechanics, 1855; Somoff's Theoretische Mechanilc,

1879; Tait and Steele's Dynamics of a Particle, 1856; Minchin's

Treatise on Statics; Routh's Dynamics of a System of Rigid

Bodies; Sturm's Cours de Micanique de VEcole Polytechnique.

The equations which constitute the foundation of the theory

of fluid motion were fully laid down at the time of Lagrange,

but the solutions actually worked out were few and mainly

of the irrotational type. A powerful method of attacking

problems in fluid motion is that of images, introduced in 1843

by George Gabriel Stokes of Pembroke College, Cambridge.

It received little attention until Sir William Thomson's dis-
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covery of electrical images, whereupon the theory was extended

by Stokes, Hicks, and Lewis. In 1849, Thomson gave the

maximum and minimum theorem peculiar to hydrodynamics,

which was afterwards extended to dynamical problems in

general.

A new epoch in the progress of hydrodynamics was created,

in 1856, by Helmholtz, who worked out remarkable properties

of rotational motion in a homogeneous, incompressible fluid,

devoid of viscosity. He showed that the vortex filaments in

such a medium may possess any number of knottings and twist-

ings, but are either endless or the ends are in the free surface

of the medium ; they are indivisible. These results suggested

to Sir William Thomson the possibility of founding on them a

new form of the atomic theory, according to which every atom

is a vortex ring in a non-frictional ether, and as such must be

absolutely permanent in substance and duration. The vortex-

atom theory is discussed by J. J. Thomson of Cambridge

(born 1866) in his classical treatise on the Motion of Vortex

Rings, to which the Adams Prize was awarded in 1882.

Papers on vortex motion have been published also by Horace

Lamb, Thomas Craig, Henry A. Eowland, and Charles Chree.

The subject of jets was investigated by Helmholtz, Kirch-

hoff. Plateau, and Eayleigh ; the motion of fluids in a fluid by

Stokes, Sir W. Thomson, Kopcke, Greenhill, and Lamb ; the

theory of viscous fluids by Navier, Poisson, Saint-Venant,

Stokes, 0. E. Meyer, Stefano, Maxwell, Lipschitz, Craig,

Helmholtz, and A. B. Basset. Viscous fluids present great

dif&culties, because the equations of motion have not the same

degree of certainty as in perfect fluids, on account of a defi-

cient theory of friction, and of the difficulty of connecting

oblique pressures on a small area with the differentials of the

velocities.

Waves in liquids have been a favourite subject with Eng-
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lish mathematicians. The early inquiries of Poissou and

Cauchy were directed to the investigation of waves produced

by disturbing causes acting arbitrarily on a small portion

of the fluid. The velocity of the long wave was given

approximately by Lagrange in 1786 in case of a channel of

rectangular cross-section, by Green in 1839 for a channel of

triangular section, and by P. Kelland for a channel of any

uniform section. Sir George B. Airy, in his treatise on Tides

and Waves, discarded mere approximations, and gave the exact

equation on which the theory of the long wave in a channel of

uniform rectangular section depends. But he gave no general

solutions. J. McCowan of University College at Dundee

discusses this topic more fully, and arrives at exact and

complete solutions for certain cases. The most important

application of the theory of the long wave is to the explana-

tion of tidal phenomena in rivers and estuaries.

The mathematical treatment of solitary waves was first

taken up by S. Earnshaw in 1845, then by Stokes ; but the first

sound approximate theory was given by J. Boussinesq in 1871,

who obtained an equation for their form, and a value for the

velocity in agreement with experiment. Other methods of

approximation were given by Eayleigh and J. McCowan. In

connection with deep-water waves, Osborne Eeynolds gave in

1877 the dynamical explanation for the fact that a group

of such waves advances with only half the rapidity of the

individual waves.

The solution of the problem of the general motion of an

ellipsoid in a fluid is due to the successive labours of Green

(1833), Clebsch (1856), and Bjerknes (1873). The free

motion of a solid in a liquid has been investigated by W.
Thomson, Kirchhoff, and Horace Lamb. By these labours, the

motion of a single solid in a fluid has come to be pretty well

understood, but the case of two solids in a fluid is not devel-
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oped so fully. The problem has been attacked by W. M.

Hicks.

The determination of the period of oscillation of a rotating

liquid spheroid has important bearings on the question of the

origin of the moon. G. H. Darwin's investigations thereon,

viewed in the light of Riemann's and Poincare's researches,

seem to disprove Laplace's hypothesis that the moon separated

from the earth as a ring, because the angular velocity was too

great for stability ; Darwin finds no instability.

The explanation of the contracted vein has been a point of

much controversy, but has been put in a much better light by

the application of the principle of momentum, originated by

Fronde and Eayleigh. Eayleigh considered also the reflection

of waves, not at the surface of separation of two uniform

media, where the transition is abrupt, but at the confines of

two media between which the transition is gradual.

The first serious study of the circulation of winds on the

earth's surface was instituted at the beginning of the second

quarter of this century by H. W. Dov6, William C. Bedfield, and

James P. Espy, followed by researches of W. Reid, Piddington,

and Elias Loomis. But the deepest insight into the wonder-

ful correlations that exist among the varied motions of the

atmosphere was obtained by William Ferrel (1817-1891). He
was born in Fidton County, Pa., and brought up on a farm.

Though in unfavourable surroundings, a burning thirst for

knowledge spurred the boy to the mastery of one branch after

another. He attended Marshall College, Pa., and graduated

in 1844 from Bethany College. While teaching school he

became interested in meteorology and in the subject of tides.

In 1856 he wrote an article on " the winds and currents of the

ocean." The following year he became connected with the

Nautical Almanac. A mathematical paper followed in 1858

on "the motion of fluids and solids relative to the earth's



APPLIED MATHEMATICS. 385

surface." The subject was extended afterwards so as to

embrace the mathematical theory of cyclones, tornadoes,

water-spouts, etc. In 1885 appeared his Recent Advances in

Meteorology. In the opinion of a leading European meteor-

ologist {Julius Hann of Vienna), Ferrel has "contributed more

to the advance of the physics of the atmosphere than any

other living physicist or meteorologist."

Ferrel teaches that the air flows in great spirals toward the

poles, both in the upper strata of the atmosphere and on the

earth's surface beyond the 30th degree of latitude ; while

the return current blows at nearly right angles to the above

spirals, in the middle strata as well as on the earth's surface,

in a zone comprised between the parallels 30° N. and 30° S. The

idea of three superposed currents blowing spirals was first

advanced by James Thomson, but was published in very

meagre abstract.

Ferrel's views have given a strong impulse to theoretical

research in America, Austria, and Germany. Several objec-

tions raised against his argument have been abandoned, or

have been answered by W. M. Davis of Harvard. The mathe-

matical analysis of F. Waldo of Washington, and of others,

has further confirmed the accuracy of the theory. The trans-

port of Krakatoa dust and observations made on clouds point

toward the existence of an upper east current on the equator,

and Pernter has mathematically deduced from Ferrel's theory

the existence of such a current.

Another theory of the general circulation of the atmosphere

was propounded by Werner Siemens of Berlin, in which an

attempt is made to apply thermodynamics to aerial currents.

Important new points of view have been introduced recently

by Helmholtz, who concludes that when two air currents blow

one above the other in different directions, a system of air

waves must arise in the same way as waves are formed on the
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sea. He and A. Oberbeck showed that when the waves on the

sea attain lengths of from 16 to 33 feet, the air waves must

attain lengths of from 10 to 20 miles, and proportional depths.

Superposed strata would thus mix more thoroughly, and their

energy would be partly dissipated. From hydrodynamical

equations of rotation Helmholtz established the reason why

the observed velocity from equatorial regions is much less in

a latitude of, say, 20° or 30°, than it would be were the move-

ments unchecked.

About 1860 acoustics began to be studied with renewed

zeal. The mathematical theory of pipes aud vibrating strings

had been elaborated in the eighteenth century by Daniel Ber-

noulli, D'Alembert, Euler, and Lagrange. In the first part of

the present century Laplace corrected Newton's theory on the

velocity of sound in gases, Poisson gave a mathematical dis-

cussion of torsional vibrations ; Poisson, Sophie Germain, and

Wheatstoue studied Chladni's figures ; Thomas Young and the

brothers Weber developed the wave-theory of sound. Sir J.

F. W. Herschel wrote on the mathematical theory of sound for

the Encyclopcedia Metropolitana, 1845. Epoch-making were

Helmholtz's experimental and mathematical researches. In

his hands and Eayleigh's, Fourier's series received due

attention. Helmholtz gave the mathematical theory of beats,

difference tones, and summation tones. Lord Rayleigh (John

William Strutt) of Cambridge (born 1842) made extensive

mathematical researches in acoustics as a part of the theory of

vibration in general. Particular mention may be made of his

discussion of the distiirbance produced by a spherical obstacle

on the waves of sound, and of phenomena, such as sensitive

flames, connected with the instability of jets of fluid. In 1877

and 1878 he published in two volumes a treatise on The Theory

ofSound. Other mathematical researches on this subject have

been made in England by Donkiu and Stokes.
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The theory of elasticity''^ belongs to this century. Before

1800 no attempt had been made to form general equations for

the motion or equilibrium of an elastic solid. Particular prob-

lems had been solved by special hypotheses. Thus, James

Bernoulli considered elastic laminae; Daniel Bernoulli and

Euler investigated vibrating rods ; Lagrange and Euler, the

equilibrium of springs and columns. The earliest investiga-

tions of this century, by Thomas Young ("Young's modulus of

elasticity ") in England, J. Binet in Erance, and G. A. A. Plana

in Italy, were chiefly occupied in extending and correcting the

earlier labours. Between 1830 and 1840 the broad outline of the

modern theory of elasticity was established. This was accom-

plished almost exclusively by Erench writers, — Louis-Marie-

Henri Navier (1785-1836), Poisson, Cauchy, Mademoiselle

Sophie Germain (1776-1831), Eelix Savart (1791-1841).

Simeon Denis Poisson*" (1781-1840) was born at Pithiviers.

The boy was put out to a nurse, and he used to tell that when

his father (a common soldier) came to see him one day, the

nurse had gone out and left him suspended by a thin cord to a

nail in the wall in order to protect him from perishing under

the teeth of the carnivorous and unclean animals that roamed

on the floor. Poisson used to add that his gymnastic efforts

when thus suspended caused him to swing back and forth, and

thus to gain an early familiarity with the pendulum, the study

of which occupied him much in his maturer life. His father

destined him for the medical profession, but so repugnant was

this to him that he was permitted to enter the Polytechnic

School at the age of seventeen. His talents excited the inter-

est of Lagrange and Laplace. At eighteen he wrote a memoir

on finite differences which was printed on the recommendation

of Legendre. He soon became a lecturer at the school, and

continued through life to hold various government scientific

posts and professorships. He prepared some 400 publications.
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mainly on applied mathematics. His Traiti de M&canique,

2 vols., 1811 and 1833, was long a standard work. He wrote

on the mathematical theory of heat, capillary action, probar

bility of judgment, the mathematical theory of electricity and

magnetism, physical astronomy, the attraction of ellipsoids,

definite integrals, series, and the theory of elasticity. He was

considered one of the leading analysts of his time.

His work on elasticity is hardly excelled by that of Cauchy,

and second only to that of Saint-Venant. There is hardly a

problem in elasticity to which he has not contributed, while

many of his inquiries were new. The equilibrium and motion

of a circular plate was first successfully treated by him.

Instead of the definite integrals of earlier writers, he used

preferably finite summations. Poisson's contour conditions

for elastic plates were objected to by Gustav KirchhofE of

Berlin, who established new conditions. But Thomson and

Tait in their Treatise on Natural Philosophy have explained

the discrepancy between Poisson's and Kirchhoff's boundary

conditions, and established a reconciliation between them.

Important contributions to the theory of elasticity were

made by Cauchy. To him we owe the origin of the theory

of stress, and the transition from the consideration of the

force upon a molecule exerted by its neighbours to the con-

sideration of the stress upon a small plane at a point. He
anticipated Green and Stokes in giving the equations of iso-

tropic elasticity with two constants. The theory of elasticity

was presented by Gabrio Piola of Italy according to the prin-

ciples of Lagrange's Micanique Analytique, but the superiority

of this method over that of Poisson and Cauchy is far from

evident. The influence of temperature on stress was first

investigated experimentally by Wilhelm Weber of Gottingen,

and afterwards mathematically by Duhamel, who, assuming

Poisson's theory of elasticity, examined the alterations of
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form which the formulse undergo when we allow for changes

of temperature. Weber was also the first to experiment

on elastic after-strain. Other important experiments were

made by different scientists, which disclosed a wider range

of phenomena, and demanded a more comprehensive theory.

Set was investigated by Gerstner (1756-1832) and Eaton

Hodgkinson, while the latter physicist in England and Vicat

(1786-1861) in France experimented extensively on absolute

strength. Vicat boldly attacked the mathematical theories of

flexure because they failed to consider shear and the time-ele-

ment. As a result, a truer theory of flexure was soon pro-

pounded by Saint-Venant. Poncelet advanced the theories of

resilience and cohesion.

Gabriel Lame''' (1795-1870) was born at Tours, and gradu-

ated at the Polytechnic School. He was called to Kussia

with Clapeyron and others to superintend the construction of

bridges and roads. On his return, in 1832, he was elected

professor of physics at the Polytechnic School. Subsequently

he held various engineering posts and professorships in Paris.

As engineer he took an active part in the construction of the

flrst railroads in Prance. Lame devoted his fine mathemati-

cal talents mainly to mathematical physics. In four works

:

Legons sur les fonctions inverses des transcendantes et les sur-

faces isothermes ; Sur les coordonn&es curvilignes et leurs diverses

applications; Sur la tMorie analytique de la chaleur; Sur la

thione matMmatique de Vilasticiti des corps solides (1852) , and

in various memoirs he displays fine analytical powers ; but a

certain want of physical touch sometimes reduces the value of

his contributions to elasticity and other physical subjects. In

considering the temperature in the interior of an ellipsoid

under certain conditions, he employed functions analogous to

Laplace's functions, and known by the name of " Lame's func-

tions." A problem in elasticity called by Lamp's name, viz.
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to investigate tlie conditions for equilibrium of a spherical

elastic envelope subject to a given distribution of load on

the bounding spherical surfaces, and the determination of the

resulting shifts is the only completely general problem on

elasticity which can be said to be completely solved. He
deserves much credit for his derivation and transformation

of the general elastic equations, and for his application of

them to double refraction. Rectangular and triangular mem-

branes were shown by him to be connected with questions in

the theory of numbers. The field of photo-elasticity was

entered upon by Lame, F. E. Neumann, Clerk Maxwell.

Stokes, Wertheim, E. Clausius, Jellett, threw new light upon

the subject of " rari-constancy " and " multi-constancy," which

has long divided elasticians into two opposing factions. The

uni-constant isotropy of Kavier and Poisson had been ques-

tioned by Cauchy, and was now severely criticised by Green

and Stokes.

Barre de Saint-Venant (1797-1886), ingenieur des ponts et

chaussees, made it his life-work to render the theory of

elasticity of practical value. The charge brought by practical

engineers, like Vicat, against the theorists led Saint-Venant to

place the theory in its true place as a guide to the practical

man. Numerous errors committed by his predecessors were

removed. He corrected the theory of flexure by the considera-

tion of slide, the theory of elastic rods of double curvature by

the introduction of the third moment, and the theory of tor-

sion by the discovery of the distortion of the primitively

plane section. His results on torsion abound in beautiful

graphic illustrations. In case of a rod, upon the side surfaces

of which no forces act, he showed that the problems of flexure

and torsion can be solved, if the end-forces are distributed

over the end-surfaces by a definite law. Clebsch, in his

Lehrbuch der Elasticitdt, 1862, showed that this problem is
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reversible to the case of side-forces without end-forces.

Clebsch ^ extended the research to very thin rods and to very

thin plates. Saint-Venant considered problems arising in the

scientific design of built-up artillery, and his solution of them

differs considerably from Lamp's solution, which was popular-

ised by Eankine, and much used by gun-designers. In Saint-

Venant's translation into Trench of Clebsch's Elasticitat, he

develops extensively a double-suffix notation for strain and

stresses. Though often advantageous, this notation is cum-

brous, and has not been generally adopted. Karl Pearson,

professor in University College, London, has recently exam-

ined mathematically the permissible limits of the application

of the ordinary theory of flexure of a beam.

The mathematical theory of elasticity is stiU in an unsettled

condition. Not only are scientists still divided into two

schools of " rari-constancy " and " multi-constancy," but differ-

ence of opinion exists on other vital questions. Among the

numerous modern writers on elasticity may be mentioned

Emile Mathieu (1835-1891), professor at Besanqon, Maurice

Levy of Paris, Charles Chree, superintendent of the Kew Ob-

servatory, A. B. Basset, Sir William Thomson (Lord Kelvin)

of Glasgow, J. Boussinesq of Paris, and others. Sir William

Thomson applied the laws of elasticity of solids to the investi-

gation of the earth's elasticity, which is an important element

in the theory of ocean-tides. If the earth is a solid, then its

elasticity co-operates with gravity in opposing deformation

due to the attraction of the sun and moon. Laplace had

shown how the earth would behave if it resisted deformation

only by gravity. Lame had investigated how a solid sphere

would change if its elasticity only came into play. Sir

William Thomson combined the two results, and compared

them with the actual deformation. Thomson, and afterwards

G. H. Darwin, computed that the resistance of the earth to
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tidal deformation is nearly as great as though it were of steel.

This conclusion has been confirmed recently by Simon New-

comb, from the study of the observed periodic changes in

latitude. Eor an ideally rigid earth the period would be 360

days, but if as rigid as steel, it would be 441, the observed

period being 430 days.

Among text-books on elasticity may be mentioned the works

of Lame, Clebsch, Winkler, Beer, Mathieu, W. J. Ibbetson, and

!F. Neumann, edited by 0. E. Meyer.

Eiemann's opinion that a science of physics only exists since

the invention of differential equations finds corroboration even

in this brief and fragmentary outline of the progress of mathe-

matical physics. The undulatory theory of light, first ad-

vanced by Huygens, owes much to the power of mathematics

:

by mathematical analysis its assumptions were worked out

to their last consequences. Thomas Young'^ (1773-1829) was

the first to explain the principle of interference, both of

light and sound, and the first to bring forward the idea

of transverse vibrations in light waves. Young's explana-

tions, not being verified by him by extensive numerical calcu-

lations, attracted little notice, and it was not until Augustin

Fresnel (1788-1827) applied mathematical analysis to a much

greater extent than Young had done, that the undulatory

theory began to carry conviction. Some of Fresnel's mathe-

matical assumptions were not satisfactory; hence Laplace,

Poisson, and others belonging to the strictly mathematical

school, at first disdained to consider the theory. By their

opposition Eresnel was spurred to greater exertion. Arago

was the first great convert made by Fresnel. When polarisa-

tion and double refraction were explained by Young and

Fresnel, then Laplace was at last won over. Poisson drew

from Fresnel's formulae the seemingly paradoxical deduction

that a small circular disc, illuminated by a luminous point.



APPLIED MATHEMATICS. 393

must cast a shadow with a bright spot in the centre. But

this was found to be in accordance with fact. The theory

was taken up by another great mathematician, Hamilton, who
from his formulee predicted conical refraction, verified experi-

mentally by Lloyd. These predictions do not prove, however,

that Fresnel's formulae are correct, for these prophecies might

have been made by other forms of the wave-theory. The

theory was placed on a sounder dynamical basis by the writ-

ings of Cauchy, Biot, Green, C. Neumann, Kirchhoff, McCullagh,

Stokes, Saint-Venant, Sarrau, Lorenz, and Sir* William Thom-

son. In the wave-theory, as taught by Green and others, the

luminiferous ether was an incompressible elastic solid, for

the reason that fluids could not propagate transverse vibra-

tions. But, according to Green, such an elastic solid would

transmit a longitudinal disturbance with infinite velocity.

Stokes remarked, however, that the ether might act like

a fluid in case of finite disturbances, and like an elastic solid

in case of the infinitesimal disturbances in light propagation.

Fresnel postulated the density of ether to be different in

different media, but the elasticity the same, while C. Neumann

and McCullagh assume the density uniform and the elasticity

different in all substances. On the latter assumption the

direction of vibration lies in the plane of polarisation, and not

perpendicular to it, as in the theory of Fresnel.

While the above writers endeavoured to explain all optical

properties of a medium on the supposition that they arise

entirely from difference in rigidity or density of the ether in

the medium, there is another school advancing theories in

which the mutual action between the molecules of the body

and the ether is considered the main cause of refraction and

dispersion.'™" The chief workers in this field are J. Boussinesq,

W. Sellmeyer, Helmholtz, E. Lommel, E. Ketteler, W. Voigt,

and Sir William Thomson in his lectures delivered at the
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Johns Hopkins Uniyersity in 1884. Neither this nor the

first-named school succeeded in explaining all the phenomena.

A third school was founded by Maxwell. He proposed the

electro-magnetic theory, which has received extensive develop-

ment recently. It will be mentioned again later. According

to Maxwell's theory, the direction of vibration does not lie

exclusively in the plane of polarisation, nor in a plane perpen-

dicular to it, but something occurs in both planes—a magnetic

vibration in one, and an electric in the other. Fitzgerald and

Trouton in Dublin verified this conclusion of Maxwell by

experiments on electro-magnetic waves.

Of recent mathematical and experimental contributions to

optics, mention must be made of H. A. Rowland's theory of

concave gratings, and of A. A. Michelson's work on interfer-

ence, and his application of interference methods to astro-

nomical measurements.

In electricity the mathematical theory and the measure-

ments of Henry Cavendish (1731-1810), and in magnetism

the measurements of Charles Augustin Coulomb (1736-1806),

became the foundations for a system of measurement. Tor

electro-magnetism the same thing was done by Andre Marie

Ampere (1775-1836) . The first complete method of measure-

ment was the system of absolute measurements of terrestrial

magnetism introduced by Gauss and Wilhelm Weber (1804-

1891) and afterwards extended by Wilhelm Weber and F.

Kohlrausch to electro-magnetism and electro-statics. In 1861

the British Association and the Royal Society appointed a

special commission with Sir William Thomson at the head, to

consider the unit of electrical resistance. The commission

recommended a unit in principle like W. Weber's, but greater

than Weber's by a factor of 10'.'°^ The discussions and labours

on this subject continued for twenty years, until in 1881 a

general agreement was reached at an electrical congress in Pa,ris,
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A function of fundamental importance in the mathematical

theories of electricity and magnetism is the " potential." It

was first used by Lagrange in the determination of gravita-

tional attractions in 1773. Soon after, Laplace gave the

celebrated differential equation,

dx^ dAf dz^

which was extended by Poisson by writing — 47rA; in place of

zero in the right-hand member of the equation, so that it

applies not only to a point external to the attracting mass,

but to any point whatever. The first to apply the potential

function to other than gravitation problems was George ©reen

(1793-1841). He introduced it into the mathematical theory

of electricity and magnetism. Green was a self-educated man
who started out as a baker, and at his death was fellow of

Caius College, Cambridge. In 1828 he published by subscrip-

tion at Nottingham a paper entitled Essay on the application

of mathematical analysis to the theory of electricity and magne-

tism. It escaped the notice even of English mathematicians

until 1846, when Sir William Thomson had it reprinted in

Orelle's Journal, vols. xliv. and xlv. It contained what is now

known as " Green's theorem " for the treatment of potential.

Meanwhile all of Green's general theorems had been re-dis-

covered by Sir William Thomson, Chasles, Sturm, and Gauss.

The term potential function is due to Green. Hamilton used

the word forcefunction, while Gauss, who about 1840 secured

the general adoption of the function, called it simply potential.

Large contributions to electricity and magnetism have been

made by William Thomson. He was born in 1824 at Belfast,

Ireland, but is of Scotch descent. He and his brother James

studied in Glasgow. From there he entered Cambridge, and

was graduated as Second Wrangler in 1845. William Thom-
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son, Sylvester, Maxwell, Clifford, and J. J. Thomson are a group

of great men who were Second Wranglers at Cambridge. At

the age of twenty-two W. Thomson was elected professor of

natural philosophy in the University of Glasgow, a position

which he has held ever since. For his brilliant mathematical

and physical achievements he was knighted, and in 1892 was

made Lord Kelvin. His researches on the theory of potential

are epoch-making. What is called "Dirichlet's principle"

was discovered by him in 1848, somewhat earlier than by

Dirichlet. We owe to Sir William Thomson new synthetical

methods of great elegance, viz. the theory of electric images

and the method of electric inversion founded thereon. By

them he determined the distribution of electricity on a bowl,

a problem previously considered insolvable. The distribution

of static electricity on conductors had been studied before this

mainly by Poisson and Plana. In 1845 P. E. Neumann of

Konigsberg developed from the experimental laws of Lenz the

mathematical theory of magneto-electric induction. In 1855,

W. Thomson predicted by mathematical analysis that the dis-

charge of a Leyden jar through a linear conductor would in

certain cases consist of a series of decaying oscillations. This

was first established experimentally by Joseph Henry of

Washington. William Thomson worked out the electro-static

induction in submarine cables. The subject of the screening

effect against induction, due to sheets of different metals, was

worked out mathematically by Horace Lamb and also by

Charles Niven. W. Weber's chief researches were on electro-

dynamics. Helmholtz in 1851 gave the mathematical theory

of the course of induced currents in various cases. Gustav

Robert Kirchhoff '^ (1824-1887) investigated the distribution of

a current over a flat conductor, and also the strength of current

in each branch of a network of linear conductors.

The entire subject of electro-magnetism was revolutionised
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by James Clerk Maxwell (1831-1879). He was born near

Edinburgh, entered the University of Edinburgh, and became

a pupil of Kelland and Forbes. In 1850 he went to Trinity

College, Cambridge, and came out Second Wrangler, E. Eouth

being Senior Wrangler. Maxwell then became lecturer at

Cambridge, in 1856 professor at Aberdeen, and in 1860

professor at King's College, London. In 1865 he retired to

private life until 1871, when he became professor of physics

at Cambridge. Maxwell not only translated into mathematical

language the experimental results of Earaday, but established

the electro-magnetic theory of light, since verified experimen-

tally by Hertz. His first researches thereon were published

in 1864. In 1871 appeared his great Treatise on Electricity

and Magnetism. He constructed the electro-magnetic theory

from general equations, which are established upon purely

dynamical principles, and which determine the state of the

electric field. It is a mathematical discussion of the stresses

and strains in a dielectric medium subjected to electro-magnetic

forces. The electro-magnetic theory has received developments

from Lord Kayleigh, J. J. Thomson, H. A. Rowland, E. T.

Glazebrook, H. Helmholtz, L. Boltzmann, 0. Heaviside, J. H.

Poynting, and others. Hermann von Helmholtz turned his

attention to this part of the subject in 1871. He was born

in 1821 at Potsdam, studied at the University of Berlin, and

published in 1847 his pamphlet Ueber die Erhaltung der Kraft.

He became teacher of anatomy in the Academy of Art in

Berlin. He was elected professor of physiology at Konigs-

berg in 1849, at Bonn in 1865, at Heidelberg in 1858. It was

at Heidelberg that he produced his work on Tonempjindung.

In 1871 he accepted the chair of physics at the University of

Berlin. Erom this time on he has been engaged chiefly on

inquiries in electricity and hydrodynamics. Helmholtz aimed

to determine in what direction experiments should be made to
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decide between the theories of W. Weber, F. E. Neumann,

Eiemann, and Clausius, who had attempted to explain electro-

dynamic phenomena by the assumption of forces acting at a dis-

tance between two portions of the hypothetical electrical fluid,

—

the intensity being dependent not only on the distance, but also

on the velocity and acceleration, — and the theory of Faraday

and Maxwell, which discarded action at a distance and assumed

stresses and strains in the dielectric. His experiments favoured

the British theory. He wrote on abnormal dispersion, and

created analogies between electro-dynamics and hydrody-

namics. Lord Eayleigh compared electro-magnetic problems

with their mechanical analogues, gave a dynamical theory of

diffraction, and applied Laplace's coefficients to the theory of

radiation. Rowland made some emendations on Stokes' paper

on diffraction and considered the propagation of an arbitrary

electro-magnetic disturbance and spherical waves of light.

Electro-magnetic induction has been investigated mathemati-

cally by Oliver Heaviside, and he showed that in a cable it is

an actual benefit. Heaviside and Poynting have reached

remarkable mathematical results in their interpretation and

development of Maxwell's theory. Most of Heaviside's papers

have been published since 1882 ; they cover a wide field.

One part of the theory of capillary attraction, left defective

by Laplace, namely, the action of a solid upon a liquid, -and

the mutual action between two liquids, was made dynamically

perfect by Gauss. He stated the rule for angles of contact

between liquids and solids. A similar rule for liquids was

established by Ernst Franz Neumann. Chief among recent

workers on the mathematical theory of capillarity are Lord

Eayleigh and E. Mathieu.

The great principle of the conservation of energy was

established by Robert Mayer (1814-1878), a physician in

Heilbronn, and again independently by Colding of Copen-
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liagen, Joule, and Helmlioltz. James Prescott Joule (1818-

1889) determined experimentally the mechanical equivalent

of heat. Helmholtz in 1847 applied the conceptions of the

transformation and conservation of energy to the various

branches of physics, and thereby linked together many well-

known phenomena. These labours led to the abandonment

of the corpuscular theory of heat. The mathematical treat-

ment of thermic problems was demanded by practical con-

siderations. Thermodynamics grew out of the attempt to

determine mathematically how much work can be gotten out

of a steam engine. Sadi-Camot, an adherent of the corpuscular

theory, gave the first impulse to this. The principle known

by his name was published in 1824. Though the importance

of his work was emphasised by B. P. E. Glapeyron, it did not

meet with general recognition until it was brought forward

by William Thomson. The latter pointed out the necessity

of modifying Carnot's reasoning so as to bring it into accord

with the new theory of heat. William Thomson showed in

1848 that Carnot's principle led to the conception of an

absolute scale of temperature. In 1849 he published "an

account of Carnot's theory of the motive power of heat, with

numerical results deduced from Kegnault's experiments." In

February, 1850, Rudolph Clausius (1822-1888), then in Zurich

(afterwards professor in Bonn), communicated to the Berlin

Academy a paper on the same subject which contains the

Protean second law of thermodynamics. ' In the same month

William John M. Rankine (1820-1872), professor of engineer-

ing and mechanics at Glasgow, read before the Royal Society

of Edinburgh a paper in which he declares the nature of

heat to consist in the rotational motion of molecules, and

arrives at some of the results reached previously by Clausius.

He does not mention the second law of thermodynamics, but

in a subsequent paper he declares that it could be derived
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from equations contained in his first paper. His proof of

ttie second law is not free from objections. In March, 1851,

appeared a paper of William Thomson which contained a

perfectly rigorous proof of the second law. He obtained it

before he had seen the researches of Clausius. The state-

ment of this law, as given by Clausius, has been much

criticised, particularly by Eankine, Theodor Wand, P. G.

Tait, and Tolver Preston. Eepeated efforts to deduce it from

general mechanical principles have remained fruitless. The

science of thermodynamics was developed with great suc-

cess by Thomson, Clausius, and Eankine. As early as 1852

Thomson discovered the law of the dissipation of energy,

deduced at a later period also by Clausius. The latter desig-

nated the non-transformable energy by the name entropy,

and then stated that the entropy of the universe tends

toward a maximum. For entropy Eankine used the term

thermodynamic function. Thermodynamic investigations have

been carried on also by Gr. Ad. Hirn of Colmar, and Helm-

holtz (monocyclic and polycyclic systems). Valuable graphic

methods for the study of thermodynamic relations were de-

vised in 1873-1878 by J. Willard Gibbs of Yale College.

Gibbs first gives an account of the advantages of using

various pairs of the five fundamental thermodynamic quanti-

ties for graphical representation, then discusses the entropy-

temperature and entropy-volume diagrams, and the volume-

energy-entropy surface (described in Maxwell's Theo'ry of

Heat). Gibbs formulated the energy-entropy criterion of

equilibrium and stability, and expressed it in a form appli-

cable to complicated problems of dissociation. Important

works on thermodynamics have been prepared by Clausius

in 1876, by E. Eiihlmann in 1875, and by Poincard in 1892.

In the study of the law of dissipation of energy and the

principle of least action, mathematics and metaphysics met on
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common ground. The doctrine of least action was first pro-

pounded by Maupertius in 1744. Two years later lie pro-

claimed it to be a universal law of nature, and the first

scientific proof of the existence of God. It was weakly sup-

ported by him, violently attacked by Konig of Leipzig, and

keenly defended by Euler. Lagrange's conception of the prin-

ciple of least action became the mother of analytic mechanics,

but his statement of it was inaccurate, as has been remarked

by Josef Bertrand in the third edition of the Micanique Ana-

lytique. The form of the principle of least action, as it now

exists, was given by Hamilton, and was extended to electro-

dynamics by F. E. Neumann, Clausius, Maxwell, and Helm-

holtz. To subordinate the principle to all reversible processes,

Helmholtz introduced into it the conception of the "kinetic

potential." In this form the principle has universal validity.

An offshoot of the mechanical theory of heat is the modern

kinetic theory of gases, developed mathematically by Clausius,

Maxwell, Ludwig Boltzmann of Munich, and others. The first

suggestions of a kinetic theory of matter go back as far as the

time of the Greeks. The earliest work to be mentioned here is

that of Daniel Bernoulli, 1738. He attributed to gas-molecules

great velocity, explained the pressure of a gas by molecular

bombardment, and deduced Boyle's law as a consequence of

his assumptions. Over a century later his ideas were taken

up by Joule (in 1846), A. K. Kronig (in 1866), and Clausius

(in 1857). Joule dropped his speculations on this subject

when he began his experimental work on heat. Kronig

explained by the kinetic theory the fact determined experi-

mentally by Joule that the internal energy of a gas is not

altered by expansion when no external work is done. Clausius

took an important step in supposing that molecules may have

rotary motion, and that atoms in a molecule may move rela-

tively to each other. He assumed that the force acting
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between molecules is a function of their distances, tliat tem-

perature depends solely upon the kinetic energy of molecular

motions, and that the number of molecules which at any

moment are so near to each other that they perceptibly influ-

ence each other is comparatively so small that it may be

neglected. He calculated the average velocities of molecules,

and explained evaporation. Objections to his theory, raised

by Buy's-Ballot and by Jochmann, were satisfactorily answered

by Clausius and Maxwell, except in one case where an addi-

tional hypothesis had to be made. Maxwell proposed to him-

self the problem to determine the average number of molecules,

the velocities of which lie between given limits. His expres-

sion therefor constitutes the important law of distribution of

velocities named after him. By this law the distribution of

molecules according to their velocities is determined by the

same formula (given in the theory of probability) as the dis-

tribution of empirical observations according to the magnitude

of their errors. The average molecular velocity as deduced

by Maxwell differs from that of Clausius by a constant factor.

Maxwell's first deduction of this average from his law of dis-

tribution was not rigorous. A sound derivation was given by

0. E. Meyer in 1866. Maxwell predicted that so long as

Boyle's law is true, the coefficient of viscosity and the coefS.-

cient of thermal conductivity remain independent of the press-

ure. His deduction that the coefiicient of viscosity should

be proportional to the square root of the absolute temperature

appeared to be at variance with results obtained from pendu-

lum experiments. This induced him to alter the very foun-

dation of his kinetic theory of gases by assuming between

the molecules a repelling force varying inversely as the fifth

power of their distances. The founders of the kinetic theory

had assumed the molecules of a gas to be hard elastic spheres

;

but Maxwell, in his second presentation of the theory in 1866,
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went on th.e assumption that the molecules behave like cen-

tres of forces. He demonstrated anew the law of distribution

of velocities ; but the proof had a flaw in argument, pointed

out by Boltzmann, and recognised by Maxwell, who adopted

a somewhat different form of the distributive function in a

paper of 1879, intended to explain mathematically the effects

observed in Crookes' radiometer. Boltzmann gave a rigorous

general proof of Maxwell's law of the distribution of velocities.

None of the fundamental assumptions in the kinetic theory

of gases leads by the laws of probability to results in very

close agreement with observation. Boltzmann tried to estab-

lish kinetic theories of gases by assuming the forces between

molecules to act according to different laws from those pre-

viously assumed. Clausius, Maxwell, and their predecessors

took the mutual action of molecules in collision as repulsive,

but Boltzmann assumed that they may be attractive. Ex-

periment of Joule and Lord Kelvin seem to support the latter

assumption.

Among the latest researches on the kinetic theory is Lord

Kelvin's disproof of a general theorem of Maxwell and Boltz-

mann, asserting that the average kinetic energy of two given

portions of a system must be in the ratio of the number of

degrees of freedom of those portions.



ADDENDA.

Page 14. The new Akhmim papyrus, written in Greek, is probably the

copy of an older papyrus, antedating Heron's works, and is the oldest

extant text-book on practical Greek arithmetic. It contains, besides

arithmetical examples, a table for finding "unit-fractions," identical in

scope with that of Ahmes, and, like Ahmes's, without a clue as to its mode

of construction. See Biblioth. Math., 1893, p. 79-89. The papyrus is

edited by J. Baillet (^Memoires publies par les membres de la mission

archeologique franqaise au Caire, T. IX., 1" fascicule, Paris, 1892, p.

1-88).

Page 39. Chasles's or Simson's definition of a Porism is preferable to

Proolus's, given in the text. See Gow, p. 217-221.

Page 114. Nasir Eddin for the first time elaborated trigonometry inde-

pendently of astronomy and to such great perfection that, had his work

been known, Europeans of the 15th century might have spared their

labours. See Biblioth. Math., 1893, p. 6.

Page 116. This law of sines was probably known before Gabir ben

Aflah to Tabit ben Korra and others. See Biblioth. Math., 1893, p. 7.

Page 125. Athelard was probably not the first to translate Euclid's

Elements from the Arabic. See M. Cantor's VoKLEsnrrGEN, Vol. II.,

p. 91, 92.

Page 240. G. Enestrom argues that Taylor and not Nicole is the real

inventor of finite differences. See Biblioth. Math., 1893, p. 91.

Page 250. An earlier publication in which 3.14159 • is designated by

IT, is W. Jones's Synopsis palmariorum matheseos, London, 1706, p. 243,

263 et seq. See.BiBLioTH. Math., 1894, p. 106.

Page 335. Before Gauss a theorem on convergence, usually attributed

to Cauchy, was given by Maclauriu (^Fluxions, § 350). A rule of con-

vergence was deduced also by Stirling. See Bull. N. T. Math. Soc, Vol.

III., p. 186.

Page 358. The surface of a solid with p holes was considered before

Clifford by Tonelli, and was probably used by Riemann himself. See

Math. Annalen, Vol. 45, p. 142.

Page 861. As early as 1835, Lobachevsky showed in a memoir the

necessity of distinguishing between continuity and differentiability. See

G. B. Halsted's transl. of A. Vasiliev's Address on Lobachevsky, p. 23.

Becent deaths. Johann Rudolf Wolf, Dec. 6, 1893 ; Heinrich Hertz,

Jan. 1, 1894 ; Eugene Catalan, Feb. 14, 1894 ; Hermann von Helmholtz,

Sept. 8, 1894 ; Arthur Cayley, Jan. 26, 1895.
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Abacists, 126.

Abacus, 8, 13, 63, 79, 82, 119, 122, 126,

129.

Abbatt, 334.

Abel, 347, 348; ref. to, 146, 279, 291,

312, 328, 336, 337, 350, 353, 371.

Abelian functions, 292, 312, 328, 346,

348, 349, 352, 355-357, 359.

Abelian integrals, 350, 379.

Abel's theorem, 352.

Absolute geometry, 301.

Absolutely convergent series, 335, 337,

338.

Abul Gud, 111; ref. to, 113.

Abul Hasan, 115.

Abul Wefa, 110; ref. to, 112, 113.

Achilles and tortoise, paradox of, 27.

Acoustics, 262, 270, 278, 386.

Action, least, 253, 366, 101 ; varying,

292, 318, 379.

Adams, 375 ; ref. to, 214.

Addition theorem of elliptic integrals,

252, 350, 396.

Adrain, 276.

.a)quipollences, 322.

Agnesi, 260.

Agrimensores, 80.

Ahmes, 10-15; ref . to, 17, 18, 53, 74, 130.

Airy, 375 ; ref. to, 383.

Al Battani, 109; ref. to, 110, 125.

Albertus Magnus, 134.

Albiruni, 111 ; ref. to, 102, 104.

Alcuin, 119.

Alembert, D'. See D'Alembert.

Alexandrian School (first) , 34-54
;
(sec-

ond), 84-62.

Alfonso's tables, 127.

Algebra: Beginnings in Egypt, 15

early Greek, 73; Diophantus, 74-77

Hindoo, 93-96 ; Arabic, 107, 111, 115

Middle Ages, 133, 135 ; Renaissance,

140, 142-150, 152; seventeenth cen-

tury, 166, 187, 192; Lagrange, 267;

Peacock, 284; recent, 315-331; ori-

gin of terms, 107, 115. See Nota-
tion.

Algebraic functions, 346; integrals,

377.

Algorithm, origin of term, 106; Mid-
dle Ages, 126, 129.

Al Haitam, 115 ; ref. to, 112.

Al Hayyami, 112; ref. to, 113.

Al Hazin, 112.

Al Hogendi, 111.

Al Karhi, 111, 113.

Al Kaschi, 114.

AlKuhi, HI; ref . to, 112.

AlMgret, 377.

Allman, IX., 36.

Al Madshriti, 115.

Almagest, 56-58 ; ref. to, 105, 109, 127,

134, 136, 140.

Al Mahani, 112.

Alphonso's tables, 127.

Al Sagani, 111.

Alternate numbers, 322.

Ampfere, 394 ; ref. to, 361.

Amyclas, 33.

Analysis (in synthetic geometry), 30,

39; Descartes', 186; modern, 331-

334.

Analysis situs, 226, 315.

Analytic geometry, 185-189, 191, 193,

240, 287, 307-315.
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Analytical Society (in Cambridge),

283.

Anaxagoras, 18 ; ref . to, 28.

Anaximander, 18.

Anaximenes, 18.

Angeli, 185.

Anger, 375.

Anharmonic ratio, 178, 294, 297, 306.

Anthology, Palatine, 73, 120.

Antiphon, 26 ; ref. to, 27.

Apices of Boethius, 82; ref. to, 63,

103, 119, 126, 129.

Apollonian Problem, 50, 154, 188.

Apollonius, 45-50; ref. to, 35, 37,40,

54, 61, 66, 78, 105, 108, 115, 140, 153,

154.

Appel, 346.

Applied mathematics, 373-403. See

Astronomy, Mechanics.

Arabic manuscripts, 124r-128.

Arabic numerals and notation, 3, 73,

87, 102, 112, 127-129, 159.

Arabs, 100-117.

Arago, XI., 332, 392.

Arbogaste, 260.

Archimedes, 40-45; ref. to, 2, 35, 37,

39, 45, 47, 49, 50, 54, 61, 65, 73, 78, 90,

105, 108, 140, 144, 169, 173, 182.

Archytas, 23; ref. to, 29, 31, 32, 43.

Areas, conservation of, 253.

Arenarius, 65.

Argand, 317; ref. to, 264.

AristEBUs, 34 ; ref. to, 46.

Aristotle, 34; ref. to, 9, 17, 27, 43, 61,

68, 125.

Arithmetic: Pythagoreans, 20, 67-70;

Platonists, 29 ; Euclid, 38, 70 ; Greek,
63-77; Hindoo, 90-92; Arabic, 106;

Middle Ages, 119, 122, 123, 126, 130,

133, 134 ; Renaissance, 150, 151, 158-

161. See Numbers, Notation.
Arithmetical machine, 220, 284.

Arithmetical triangle, 196.

Armemante, 313.

Ameth, X.
Aronhold, 327.

Aryabhatta, 86; ref. to, 88, 91, 98.

Aschieri, 305, 306. ^
Assumption, tentative, 75, 92. See
Regula falsa.

Astrology, 155.

Astronomy: Babylonian, 8 ; Egyptian,

10 ; Greek, 18, 24, 32, 39, 51, 56 ; Hin-

doo, 86; Arabic, 100, 101, 105,115;

Middle Ages, 127; Newton, 212-216;

more recent researches, 253, 257,

262, 271-274, 366, 373-377. See Me-

chanics.

Athelard of Bath, 125 ; ref. to, 135.

Atheneeus, 32.

Atomic theory, 382.

Attains, 46.

Attraction, 277. See Gravitation, El-

lipsoid.

August, 296.

Ausdehnungslehre, 320, 321, 378.

Axioms (of geometry), 30, 37, 38, 281,

300, 315.

Babbage, 283, 356.

Babylonians, 5-9 ; ref. to, 19, 51.

Bachet de Meziriac. See Me'ziriac.

Bachmann, 371; ref. to, 365.

Bacon, R., 134.

Baker, Th., 113.

Ball, Sir K. S., 378.

Ball, W. W. R., X., 217.

Ballistic curve, 279.

Baltzer, R., 314; ref. to, 302, 325.

Barbier, 341.

Barrow, 198; ref. to, 173, 202, 203,

221, 227.

Basset, 380, 382.

Battaglini, 306.

Bauer, XH.
Baumgart, XI.

Bayes, 340.

Beaumont, XI.

Beaune, De. See De Beaune.

Bede, the Venerable, 118.

Beer, 392.

Beha Eddin, 114.

Bellavitis, 322; ref. to, 300, 304, 317.

Beltrami, 304, 305 ; ref. to, 315.

.

Ben Junus, 115.

Berkeley, 236.

Bernelinus, 122.

Bernoulli, Daniel, 238; ref. to, 255,

262, 386, 401.

Bernoulli, Nicolaus (born 1695), 238.

Bernoulli, Nicolaus (born 1687), 239,

251, 269.
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Bernoulli, James (born 1654) , 237, 238

;

ref. to, 182, 226, 229, 251.

Bernoulli, James (born 1758), 239, 356,

387.

Bernoulli, John (born 1667), 238; ref.

to, 226, 229, 232, 234, 237, 243, 250,

251, 356.

Bernoulli, John (born 1710) , 239.

Bernoulli, John (born 1744) , 239.

BernouUis, genealogical table of, 236.

Bernoulli's theorem, 237.

Bertini, 305.

Bertrand, 337, 340, 342, 377, 379, 380,

401.

Bessel, 373-376; ref. to, 303, 309, 351.

Bessel's functions, 374.

Bessy, 181.

Beta function, 249.

Betti, 353.

Beyer, 160.

Be'zout, 260; ref. to, 250, 264.

Bezout's method of elimination, 260,

331.

Bhaskara, 87; ref. to, 92-95, 97, 152.

Bianchi, 328.

Billingsley, 138.

Binet, 324, 387.

Binomial formula, 195, 196, 202, 251,

348.

Biot, 275, 288, 393.

Biquadratic equation, 112, 146, 149.

Biquadratic residues, 366.

Biquaternions, 378.

Bjerknes, C. A., XIII., 357, 383.

Bobillier, 308.

Bocher, XIV.
Bode, 341.

Boethius, 81 ; ref. to, 63, 72, 103, 118,

121, 134, 135.

Bois-Reymond,P.du,XIII.,337-339,362.

Boltzmann, 397, 403.

Bolyai, Johann, 302; ref. to, 291.

Bolyai, Wolfgang, 301, 302; ref. to,

291,364.

Bolza, 350.

Bombelli, 146 ; ref. to, 152.

Bonnet, O., 314; ref. to, 337, 342.

Boole, 343; ref. to, 291, 325, 340, 341,

346.

Booth, 311.

Borohardt, 355.

Bouniakowsky, 365.

Bouquet, 344; ref. to, 346, 354.

Bour, 341, 377.

Boussinesq, 383, 391, 393.

Bowditch, 275, 323.

Boyle's law, 401.

Brachistochrone (line of swiftest de-

scent), 234, 238.

Bradwardine, 135 ; ref. to, 141.

Brahe, Tycho, 110, 139, 168.

Brahmagupta, 86; ref. to, 92, 95, 98,

102.

Bredon, 135.

Bretschneider, IX., 97, 320.

Brianchion, 178, 288, 289.

Briggs, 163.

Brill, A., 297, 311, 356.

Brill, L., 307.

Bring, 328.

Brioschi, 327 ; ref. to, 325, 330, 334, 350,

353, 379.

Briot, 344; ref. to, 346, 354.

Brouncker, 197.

Bruno, Faa de, 327.

Bruns, 377.

Bryson of Heraclea, 27.

Buchheim, 378 ; ref. to, 306.

Buckley, 159.

Budan, 282.

Buddha, 89.

Buffon, 340.

Bungus, 165.

Biirgi, 160; ref. to, 165.

Burkhardt, H., XII., 328.

Burkhardt, J. K., 275.

Burmester, 300.

Busche, 365.

Buteo, 154.

Buy's-Ballot, 402.

Byrgius. See BUrgi.

Caesar, Julius, 81.

Calculating machines, 220, 284.

Calculation, origin of word, 79.

Calculus. See Differential Calculus.

Calculus of operations, 292 ; of varia-

tions, 247, 249, 261, 265, 296, 328,

333-334,356,366.

Calendar, 9, 81, 141, 154, 271.

Callisthenes, 9.

Canon paschalis, 79.
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Cantor, G., 339, 362, 372.

Cantor, M., IX., X., 112.

Capelli, 330.

Capillarity, 278, 366, 388, 398.

Caporali, 313.

Cardan, 144; ref. to, 149, 152, 155, 156,

159.

Carll, 334.

Carnot, Lazare, 288, 289; ref. to, 56,

236, 293.

Carnot, Sadi, 399.

Casey, 313.

Cassinl, D., 257.

Cassiodorius, 83, 118.

Casting out the 9's, 91, 106.

Catalan, K., 325.

(Jataldi, 159.

Catenary, 191, 234, 237.

Cattle-problem, 73.

Cauchy, 331-333; ref. to, 243, 247, 264,

322, 324, 328, 330, 335, 338, 339, 341,

342, 345, 348, 349, 350, 353, 356, 362,

368, 383, 387, 388, 390, 393.

Caustics, 238, 241.

Cavalieri, 170; ref. to, 167, 193, 221.

Cavendish, 394.

Cayley, 325, 326; ref. to, XII., XIV.,

291, 296, 297, 306, 308, 311, 313, 319,

324, 330, 346, 354, 355.

Centre of gravity, 177, 191 ; of osciUa-
• tion, 191, 243.

Centres of osculation, 49.

Centrifugal force, 183, 192, 214.

Ceulen, van. See Ludolph.

Ceva, 290.

Chapman, 324.

Characteristics, method of, 297.

Chasles, 296-298; ref. to, X., 39, 47,

49, 52, 172, 289, 294, 306, 311, 313, 377.

Chauvenet, 377.

Chess, 92.

Cheyne, 206.

Chinese, 19.

Chladni's figures, 386.

Chree, 382, 391.

ChristofEel, 325, 327.

Circle, 19, 24-28, 31, 41, 52, 154, 194;

degrees of, 7, 271; division of, 329,

365.

Circle-squarers, 2, 19, 190, 316.

Cissoid, 50, 191.

Clairaut, 256-258; ref. to, 244, 252, 255,

262.

Clapeyron, 399.

Clarke, 341.

Clausius, 399; ref. to, 390, 398, 400-

402.

Clavius, 155 ; ref. to, 154.

Clebsch, 312, 313 ; ref. to, XH., 296, 309,

315, 322, 327, 328, 333, 341, 342, 358,

381, 383, 390-392.

Clifford, 305, 306 ; ref. to, 297, 319, 324,

358, 378, 396.

Cockle, 315.

Colburn, Z., 180.

Colding, 398.

Cole, 330.

Colebrooke, 87.

Colla, 143, 145.

Collins, 203, 223, 227, 228, 230, 232.

Colson, 204.

Combinatorial School, 247, 335.

Commandinus, 153.

Commercium epistolicum, 206, 232.

Complex quantities, 292, 317. See Im-
aglnaries.

Complex of lines, 309.

Computus, 118, 119.

Comte, X.
Concentric spheres of Eudoxus, 32.

Conchoid, 50.

Condensation of singularities, 362.

Conform representation of surfaces,

361.

Congruencies, theory of, 365.

Congruency of lines, 309.

Conic sections, Greek, 32, 34, 40, 41,

45^9, 55; Arabs, 101, 112; Renais-

sance, 153; Kepler, 168; more re-

cent researches, 176-178, 192. See

Geometry.
Conon, 40 ; ref. to, 42.

Conservation of areas, 253 ; of energy,

397, 398 ; of vis viva, 192.

Continued fractions, 159, 197, 252, 270.

Continuity, 169, 193, 226, 293, 333, 359,

372.

Contracted vein, 384.

Contravariants, 326.

Convergence of series, 334-339.

Co-ordinates, 185, 294, 308, 314, 379;

first use of term, 226.
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Copernican System, 139.

Copernicus, 56, 139.

Correspondence, principle of, 293, 297.

Cosine, 165.

Coss, term for algebra, 152.

Cotangent, 141, 165.

Cotes, 242 ; ref . to, 243.

Coulomb, 394.

Cournot, 340.

Cousinery, 299.

Govariants, 327, 354, 369.

Cox, 306.

Craig, J., 226.

Craig, T., 306, 347, 355, 382.

Cramer, 217.

Crelle, 348 ; rel. to, 349.

Crelle's Journal, 295.

Cremona, 299; ref. to, 291, 294r-296,

300, 313.

Cridhara, 87.

Criteria of conTergence, 334r-339.

Crofton, 341.

Crozet, 288.

Ctesibius, 52.

Cube, duplication of. See Duplication

of tbe cube.

Cube numbers, 72, 111, 180.

Cubic curves, 217, 257, 297.

Cubic equations, 112, 113, 142-145, 149,

152, 153. See Algebra.

Cubic residues, 366.

Culmann, 299, 300.

Curtze, M., 299.

Curvature, measure of, 314.

Curve of swiftest descent, 234, 238.

Curves, osculating, 226 ;
quadrature of,

42, 49, 177, 190, 193, 202, 220; tbeory

of, 226, 240, 242, 243, 292, 321. See
Cubic curves. Rectification, Geom-
etry, Conic sections.

Cusanus, 154.

Cyclic method, 96, 97.

Cycloid, 171, 173, 176, 187, 190, 191,

225, 234, 240.

Cyzicenus, 33.

Czuber, 340.

D'Alembert, 254-256 ; ref. to, 254, 258,

262, 265, 268-270, 386.

D'Alembert's principle, 254.

Damascius, 61 ; ref. to, 38, 104.

Darboux, XIII., 313, 343, 346, 361, 362.

Darwin, 376 ; ref. to, 384, 391.

Data (Euclid's), 39.

Davis, E. W., 306.

Davis, W. M., 385.

De Baune, 189 ; ref. to, 185, 223, 225.

Dee, 138.

Decimal fractions, 159-161.

Decimal point, 161.

Dedekind, 371; ref. to, 357, 362, 372.

Deficiency of curves, 312.

Definite integrals, 169, 334, 339, 341,

351, 362.

Deinostratus. See Dinostratus.

De Labire, 285, 290.

Delambre, 366.

Delaunay, 376 ; ref. to, 333, 334.

Delian problem. See Duplication of

tbe cube.

Del Pezzo, 305.

Demooritus, 28 ; ref. to, 16.

De Moivre, 240, 242, 245. "

De Morgan, 316 ; ref. to, X., XI., 1, 2,

70, 96, 161, 205, 229, 233, 260, 277,

285, 291, 333, 337, 340, 356.

De Paolis, 306.

Derivatives, method of, 269.

Desargues, 177 ; ref. to, 174, 184, 240,

285, 290.

Desboves, 379.

Descartes, 183-189; ref. to, 4, 48, 60,

113, 167, 173, 174, 189, 191, 192, 216,

220, 223, 240, 317 ; rule of signs, 187,

193.

Descriptive geometry, 286-288, 300.

Determinants, 226, 265, 278, 313, 324,

325, 334, 363.

Devanagari-numerals, 103.

Dialytic method of elimination, 330.

Differences, finite. See Finite dif-

ferences.

Differential calculus, 200, 221-227, 236-

242 (see BernouUis, Euler, La-
grange, Laplace, etc.) ; controversy

between Newton and Leibniz, 227-

233; alleged invention by Pascal,

174; philosophy of, 236, 256, 259, 268,

289, 333.

Differential equations, 239, 252, 265,

278, 314, 318, 321, 333, 341-347.

Differential invariants, 327,
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Dingeldey, 316.

Dini, 337; ref. to, 362.

Dinostratus, 32 ; ref. to, 25.

Diodes, 50.

Diodorus, 10, 40, 58.

Diogenes Laertius, 17, 32.

Dionysodorus, 54.

Diophantus, 74-77 ; ref. to, 55, 61, 86,

93, 95, 96, 105, 106, 107, 110, 111, 179,

372.

Directrix, 49, 60.

Dirichlet, 367-369; ref. to, XHI., 179,

291, 334, 338, 339, 348, 356, 357, 359,

362, 371, 396.

Dissipation of energy, 400.

Divergent parabolas, 217, 257.

Divergent series, 255, 337.

Division of the circle, 7, 271, 329,

365.

Diwani-numerals, 102.

Donkin, 379.

Dositheus, 40.

Dostor, 325.

Dove, 384.

D'Ovidio, 306.

Dronke, XII.

Duality, 290, 297, 308.

Duhamel, 333, 388.

Diihring, E., X.
Duillier, 230.

Duodecimals, 124, 126.

Dupin, 288, 289; ref. to, 300, 314.

DupUcation of the cuhe, 23-25, 31, 32,

45, 50, 153.

Durfege, 354; ref. to, 309, 315.

Durer, A., 156.

Dusing, 340.

Dyck, 315. See Groups.

Dynamics, 318, 378-381.

Dziobek, Xm., 377.

Earnshaw; 383.

Earth, figure of, 257, 292; rigidity of,

391 ; size of, 214, 215.

Eddy, 300.

Edfu, 12, 63.

Edgeworth, 340.

Egyptians, 9-16, 19.

Eisenlohr, 333.

EisenStein, 369; ref. to, 354, 357, .365,

370, 371.

Elastic curve, 237.

Elasticity, 278, 387-392.

Electricity, 394r-398.

Electro-magnetic theory of light, 394.

Elements (Euclid's) , 36-39, 61, 104, 114,

125, 127, 128, 133, 136, 136, 138. See

Euclid.

Elimination, 250, 308, 310, 330, 331. See

Equations.

Elizabeth, Princess, 188.

Ellipsoid (attraction of), 215, 277, 280,

285, 298, 366, 378, 379; motion of,

383.

Elliptic co-ordinates, 379.

Elliptic functions, 241, 279, 280, 296,

329, 345, 346, 347-354, 363, 367, 370.

Elliptic geometry. See Non-Euclidean
geometry.

Elliptic integrals, 247, 252, 328, 349,

350.

Ely, 372.

Encke, 366.

Energy, conservation of, 397, 398.

Enestrom, XI.

Enneper, 353; ref. to, XIII.

Entropy, 400.

Enumerative geometry, 297.

Epicycles, 51.

Epping, IX., 9.

Equations, solution of, 15, 149, 163,

186, 260, 260, 263, 277, 348; theory

of, 75, 166, 189, 193, 216, 240, 241,

250, 328-331; numerical, 147, 264,

282. See Cubic equations, Algebra,

Theory of numbers.
Eratosthenes, 44 ; ref. to, 25, 35, 40, 71.

Errors, theory of. See Least squares.

Espy, 384.

Ether, luminiferous, 393.

Euclid, 35-40, 70, 71; ref. to, 17, 21,

22, 26, 30, 31, 33, 34, 42, 46, 50, 53,

57, 68, 61, 72, 73, 78, 81, 97, 104, 108,

114, 126, 127, 136, 138, 144, 162, 281,

303.

Euclidean space. See Non-Euclidean

geometry.
Eudemian Summary, 17, 21, 30, 32, 33,

35.

Eudemus, 17, 22, 45, 46, 69.

Eudoxus, 32, 33 ; ref. to, 16, 28, 31, 32,

35, 36, 51.
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Euler, 248-254; ref. to, 77,96, 179, 180,

239, 241, 246, 250, 258, 259, 261, 262,

264, 265, 267, 268, 273, 278, 279, 280,

287, 314, 317, 334, 364, 365, 367, 374,

386, 387, 401.

Euleiian integrals, 280.

Eutocius, 61 ; ref. to, 45, 46, 54, 65.

Evolutes, 49, 191.

Exhaustion, method of, 26, 28, 33, 36,

42, 169.

Exponents, 134, 152, 160, 162, 187, 202,

241.

Factor-tables, 368.

Fagnano, 241.

Fahri des Al Karhi, 111.

Falsa positio, 92, 147.

Faraday, 398.

Favaro, XII.

Faye, 377.

Fermat, 173, 179-182; ref. to, 172, 173,

177, 198, 252, 264, 265, 367.

Fermat's theorem, 180, 252.

Ferrari, 145 ; ref. to, 144, 264.

Ferrel, 384 ; ref. to, 376.

Ferro, Scipio, 142.

Fibonacci. See Leonardo of Pisa.

Fiedler, 300, 312, 328.

Figure of the earth, 257, 292.

Finseus, 159.

Fine, XII.

Finger-reckoning, 63, 118.

Finite differences, 240, 242, 251, 270,

278, 343.

Fink, XII.

Fitzgerald, 394.

Flachenabbildung, 313.

Flamsteed, 218.

Floridas, 142, 144.

Flexure, theory of, 389.

Fluents, 205, 206.

Fluxional controversy, 227-233.

Fluxions, 200, 202-213, 333.

Focus, 49, 60, 169, 170.

Fontaine, 252, 254.

Forbes, 397.

Force-function, 395. See Potential.

Forsyth, XII., 327, 344, 362.

Four-point problem, 341.

Fourier, 281-284; ref. to, 174, 255, 351,

366, 367.

Fourier's series, 283, 338, 339, 367,

386.

Fourier's theorem, 282.

Fractions, Babylonian, 7; Egyptian,

13; Greek, 26, 64, 65; Koman, 78;

Hindoo, 94; Middle Ages, 120, 124;

decimal, 159, 160; sexagesimal, 7,

57, 65, 67, 126 ; duodecimal, 124, 126

;

continued, 159, 197, 252, 270. See

Arithmetic.

FrankUn, 327, 372.

Frantz, XIII.

Fresnel, 392.

Fresnel's wave-surface, 209, 314.

Frezier, 286.

Fricke, 354.

Friction, theory of, 382.

Frobenius, 325, 344, 345.

Frost, 315.

Fronde, 381, 384.

Fuchs, 343 ; ref. to, 344, 345.

Fuchsian functions, 345, 360.

Fuchsian groups, 345.

Functions, definition of, 356; theory
of, 268, 269, 345, 356-362; arbitrary,

262, 283. ,See Elliptic functions,

Abelian functions, Hyperelliptio

functions, Theta functions. Beta
function. Gamma function. Omega
function, Sigma function, Bessel's

function. Potential.

Funicular polygons, 299.

Gabir ben Aflah, 115 ; ref. to, 127.

Galileo, 182 ; ref. to, 43, 139, 161, 168,

170, 171, 188.

Galois, 329.

Gamma function, 249.

Garbieri, 324.

Gases, Kinetic theory of, 401-403.

Gaiiss, 363-367; ref. to, 77, 158, 247,

248, 251, 264, 276, 291, 294, 302, 303,

304, 313, 314, 315, 317, 320, 324, 325,

239, 330, 333, 335, 343, 348, 360, 351,

357, 362, 373, 398.

Gauss' Analogies, 366.

Geber. See Gabir ben Aflah.

Geber's theorem, 116.

Geminus, 53 ; ref. to, 46, 50, 57.

Gellibrand, 165.

Genocchi, 365.
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Gfeodesics, 249, 379.

Geodesy, 366.

Geometry, Babylonian, 8; Egyptian,
10-18; Greek, 17-62, 69; Hindoo, 97,

98; Roman, 80; Arabic, lOi, 108,

110, 113, 114; Middle Ages, 121, 125,

127, 128, 130, 131 ; Renaissance, 138,

153, 154, 158, 167 ; analytic, 186-189,

191, 193, 287, 307-315; modern syn-

thetic, 240, 285-290, 293-307; de-

scriptive, 286-288, 300. See Curves,

Surfaces, Curvature, Quadrature,
Rectification, Circle.

Gerard of Cremona, 126.

Gerbert, 120-124.

Gergonne, 297 ; ref. to, 178, 290.

Gerhardt, XI., 227, 230, 233.

Gerling, 366.

Germain, Sophie, 387 ; ref. to, 386.

German Magnetic Union, 366.

Gerstner, 389.

Gibbs, 400; ref. to, XII., 319.

Giovanni Campano, 127.

Girard, 166 ; ref. to, 127, 161.

Glaisher, 372; ref. to, XIII., 325, 328,

374, 368.

Glazebrook, 397; ref. to, XIV.
Gobar numerals, 82, 103.

Godfrey, 218.

Golden section, 33.

Gopel, 355.

Gordan, 312, 327, 330.

Gournerie, 300, 311.

Goursat, 343 ; ref. to, 350.

Gow, IX., 35.

Graham, XII.

Grammateus, 151.

Grandi, 251.

Graphical statics, 292, 299.

Grassmann, 320-321; ref. to, 294, 304,

317, 318, 378.

Gravitation, theory of, 213, 258, 271,

275.

Greeks, 16-77.

Green, 395 ; ref. to, 358, 383, 388, 390,

393, 395.

Greenhill, 354, 382.

Gregorian Calendar, 154.

Gregory, David F., 215, 284, 315.

Gregory, James, 228, 243.

Gromatici, 80.

Groups, theory of, 328-330, 344r-346.

Papers by W. Dyck (Math. Ann., 20

and 22) and by O. Holder (Math.

Ann., 34) should have been men-

tioned on p. 330.

Grunert, 314; ref. to, 320.

Gua, de, 240.

Gubar-numerals, 82, 103.

Gudermann, 353.

Guldin, 167 ; ref. to, 59, 171.

Guldinus. See Guldin.

Gunter, E., 165.

Giinther, S., IX., X., XI., 325.

Gutzlaff, 353.

Haan, 334.

Haas, XII.

Hachette, 288, 300.

Hadamard, 368.

Hadley, 218.

Hagen, 276.

Halifax, 134; ref. to, 136.

Halley, 45, 213, 214, 261.

Bailey's Comet, 258, 374.

Halphen, 311; ref. to, 297, 316, 327,

344, 345, 354.

Halsted, X., 303.

Hamilton, W., 184, 316.

Hamilton, W. R., 318, 319; ref. to,

266, 291, 292, 314, 316, 317, 321, 324,

328, 341, 378, 379, 393, 401.

Hamilton's numbers, 329.

Hammond, J., 327.

Hankel, 322 ; ref. to, IX., X., 28, 93,

96, 285, 325, 339, 362.

Hann, 385.

Hansen, 375.

Hanus, 325.

Hardy, 174.

Harkness, 362.

Harmonics, 55.

Haroun-al-Raschid, 104.

Harrington, 377.

Harriot, 166 ; ref. to, 147, 152, 162, 187,

192.

Hathaway, XI.

Heat, theory of, 399-401.

Heath, 306.

Heaviside, 319, 397, 398.

Hebrews, 19.

Hegel, 373.
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Heine, 339; ref. to, 362, 373f-

Helen of geometers, VJi^

Helicon, 32.

Heliotrope, 363.
-'

Helmholtz, 397, 398; ref. to, 304, 305,

382, 385, 386, 393, 396, 400, 401.

Henrici, XHI.
Henry, 396.

Heraclides, 45.

Hermite, 353; ref. to, XHI., 328, 330,

343, 347, 350, 365, 362, 372.

Hermotimus, 33.

Herodianic signs, 63.

Heron the Elder, 52 ; ref. to, 50, 54, 65,

80, 98, 105, 131, 140.

Hersohel, J. F. W., 386; ref. to, X.,

276, 283, 284, 356.

Hesse, 309-311; ref. to, 295, 309, 312,

325, 329, 330, 333, 342, 377.

Hessian, 295, 310, 327.

Heuraet, 190.

Hexagrammum mysticum, 178, 296.

Hicks, 382, 384.

Hilbert, 327.

Hill, 376.

Hindoos, 84-100; ref. to, 3.

Hipparchus, 51; ref. to, 64, 56.

Hippasus, 22.

Hippias of Elis, 26.

Hippocrates of Chios, 25, 28, 30.

Hippopede, 51.

Hirn, 400.

History of mathematics. Its value, 1-4.

Hodgkinson, 389.

Holder, O. See Groups.

Holmboe, 336, 347, 350.

Homogeneity, 293, 308.

Homological figures, 178.

Honein ben Ishak, 104.

Hooke, 213.

Hoppe, 306.

Horner, 147, 330.

Hospital, r, 239, 240.

Houel, 319.

Hovarezmi, 106; ref. to, 107, 110, 114,

125, 127.

Hudde, 189; ref. to, 203.

Hurwitz, 358.

Hussey, 377.

Huygens, 190-192; ref. to, 177, 182,

188, 213, 214, 219, 234, 257, 392.

Hyde, 321.

Hydrodynamics, 239, 255, 380, 381-384.

See Mechanics.

Hydrostatics, 44, 255. See Mechanics.

Hypatia, 61 ; ref. to, 37.

Hyperbolic geometry. See Non-Eucli-

deail geometry.

Hyperelliptic functions, 292, 328, 348,

354, 360.

Hyperelliptic integrals, 352.

Hypergeometric series, 335, 361.

Hyperspaoe, 304, 305.

Hypsicles, 51; ref. to, 7, 38, 71, 104.

lamblichus, 72; ref. to, 10, 22, 69.

Ibbetson, 392.

Ideal numbers, 371.

Ideler, 32.

lehuda ben Mose Cohen, 127.

Ignoration of co-ordinates, 380.

Images, theory of, 381.

Imaginary geometry, 301.

Imaginary points, lines, etc., 298.

Imaginary quantities, 146, 166, 241,

287, 349, 363, 372.

Imschenetzky, 342.

Incommensurables, 36, 38, 70. See

Irrationals.

Indeterminate analysis, 95, 101, 111.

See Theory of numbers.

Indeterminate coefficients, 186.

Indeterminate equations, 95, 101, 111.

See Theory of numbers.

Indian mathematics. See Hindoos.

Indian numerals. See Arabic numer-

als.

Indices. See Exponents.

Indivisibles, 170-173, 176, 193.

Induction, 340.

Infinite products, 349, 354.

Infinite series, 197, 203, 208, 220, 247,

250, 255, 259, 269, 283, 334^339, 348,

349, 361, 363.

Infinitesimal calculus. See Differen-

tial calculus.

Infinitesimals, 135, 169, 207, 208, 211.

Infinity, 27, 135, 169, 178, 193, 269, 293,

304, 308 ; symbol for, 193.

Insurance, 239, 340.

Integral calculus, 171, 223, 348, 350,

368, 371 ; origin of term, 237.
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iDterpolation, 191.

Invariant, 293, 310, 325, 328, 344, 354.

Inverse probability, 340.

Inverse tangents (problem of), 169, 189,

220, 222, 223.

Involution of points, 60, 177.

Ionic School, 17-19.

Irrationals, 22, 26, 69, 94, 107, 362,372.

See Incommensurables.
Irregular integrals, 344.

Ishak ben Honein, 104.

Isidorus of Seville, 118 ; ref . to, 61.

Isochronous curve, 234.

Isoperimetrical figures, 51, 237, 249,

261. See Calculus of variations.

Ivory, 285 ; ref. to, 276.

Ivory's theorem, 285.

Jacobi, 351-352; ref. to, 279, 291, 295,

308, 309, 315, 324, 330, 333, 341, 347,

349, 350, 353, 357, 365, 367, 370, 374,

377, 378, 379, 381.

Jellet, 334; ref. to, 381, 390.

Jerrard, 328.

Jets, 382, 386.

Jevons, 340.

Joachim. See Rhseticus.

Jochmann, 402.

John of Seville, 126, 159.

Johnson, 347.

Jordan, 329; ref. to, 341, 343, 346.

Jordanus Nemorarius, 134.

Joubert, 353.

Joule, 399; ref. to, 401, 403.

Julian calendar, 81.

Jurin, 236.

Kaestner, 363; ref. to, 217.

Kant, 274, 376.

Kauffmaun. See Mercator, N.

Keill, 231, 232, 235.

Kelland, 383, 397.

Kelvin, Lord, 395-396; ref. to, 283, 315,

358, 381, 382, 383, 388, 391, 393, 394,

395, 399, 400, 403. See Thomson, W.
Kempe, 326.

Kepler, 168-170; ref . to, 139, 156, 158,

161, 167, 171, 174, 202, 213, 263.

Kepler's laws, 168, 213.

Kerbedz, XIII.

Ketteler, 393.

Killing, 30bl'

Kinckhuysen, iu:*'

Kinetic theory of gases, 401-403.

Kirchhoff, 396; ref. to, 309, 381, 382,

383, 388, 393, 396.

Klein, 343; ref. to, XII., 305, 306, 307,

309, 313, 328, 330, 345, 346, 347, 354.

Kleinian groups, 345.

Kleinian functions, 360.

Kohlrausch, 394.

Kohn, 337.

Konig, 401.

Konigsberger, 353; ref. to, 344, 350,

354, 355.

Kopcke, 382.

Korkine, 372; ref. to, 341.

Korndorfer, 313.

Kowalevsky, 380 ; ref. to, 345, 352, 378.

Krause, 355.

Krazer, 355.

Kronecker, 329 ; ref. to, 328, 330, 359, 365.

Kronig, 401.

Kiihn, H., 317.

Kuhn, J., 219.

Kummer, 370, 371 ; ref. to, XIII., 179,

314, 337, 338, 343, 355, 365.

Lacroix, 284, 286, 287, 320.

Laertius, 10.

Lagrange, 260-270; ref. to, 4, 77, 174,

179, 183, 244, 246, 247, 248, 254, 255,

259, 273, 277, 278, 279, 280, 293, 296,

304, 309, 313, 314, 325, 362, 363, 364,

367, 378, 383, 386, 387, 401.

Laguerre, 306.

Lahire, de, 240.

Laisant, 319.

La Louere, 177.

Lamb, 378, 382, 383, 396.

Lambert, 258-259; ref. to, 2, 290, 303,

313.

Lame, 389; ref. to, 367, 389, 392.

Lame's functions, 389.

Landen, 259 ; ref. to, 268, 279.

Laplace, 270-278; ref. to, 174,215,245,

246, 256, 263, 279, 285, 320, 336, 340,

362, 363, 373, 375, 376, 384, 386, 392,

395, 398.

Laplace's coeiflcients, 277.

Latitude, periodic changes in, 392.

Latns rectum, 48.
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Laws of Laplace, 273.

Laws of motion, 183, 188, 213.

Least action, 253, 266, 401.

Least squares, 276, 281, 285, 363.

Lebesgue, 325, 333, 365.

Legendre, 278-281; ref. to, 247, 252,

259, 266, 276, 301, 349, 350, 351, 353,

365,367.

Legendre's function, 280.

Leibniz, 219-235; ref. to, 4, 158, 176,

200, 208, 209, 210, 237, 241, 250, 251,

252, 268, 315, 334, 356.

Lemoine, 341.

Lemonnier, 267.

Leodamas, 33.

Leon, 33.

Leonardo of Pisa, 128 ; ref. to, 133, 137.

Leslie, X.
Le Verrier, 375 ; ref. to, 376.

Levy, 300, 391.

Lewis, 382.

Lexis, 340.

Leyden jar, 396.

L'Hospital, 239, 240; ref. to, 229, 234.

Lie, 346 ; ref. to, 341, 350.

Light, theory of, 218, 390.

Limits, method of, 212, 268.

Lindelof , 334.

Lindemann, 315; ref. to, 2, 306, 356.

Linear associative algebra, 323.

Lintearia, 237.

Liouvllle, 369; ref. to, 314, 356, 365,

370, 379.

Lipschitz, 306 ; ref. to, 338, 375, 382.

Listing, 316. jf'

Lloyd, 393.

Lobatchewsky, 301 ; ref. to, 291, 303.

Local probability, 340.

Logarithmic criteria of convergence,
337.

Logarithmic series, 197.

Logarithms, 158, 161-165, 168, 197, 242,

250.

Logic, 37, 316, 323, 343.

Lommel, 375, 393.

Long wave, 383.

Loomis, 384.

Lorenz, 393.

Loria, XI.

Loud, 298.

Lucas de Burgo. See Paoioli.

Ludolph, 154.

Ludolph's number, 154.

Lune, squaring of, 25.

Luroth, 358 ; ref. to, 362.

MacCullagh, 311; ref. to, 393.

Macfarlaue, 319.

Machine, arithmetical, 220, 284.

Maclaurin, 243; ref. to, 236, 244, 280,

285, 290.

Macmahon, 327.

Magic squares, 92, 135, 241.

Maglster matheseos, 136.

Main, 377.

Mainardi, 334.

MaUatti, 296, 328.

Malfatti's problem, 296, 312.

Mansion, 341.

Marie, Abb^, 279.

Marie, C.F.M., 298.

Marie, M., X., 52, 172.

Mathieu, 391; ref. to, 363, 377, 392,

398.

Matrices, 321, 324.

Matthiessen, X.
Maudith, 135 ; ref. to, 141.

Maupertius, 253, 267, 401.

Maurofycus, 163 ; ref. to, 155.

Maxima and mininja, 49, 174, 186, 189,

208, 244, 333, 334, 339, 342.

Maxwell, 397; ref. to, 300, 376, 382,

390, 394, 396, 398, 400, 401, 402, 403.

Mayer, 398; ref. to, 376.

McClintock, 328.

McCoU, 341.

McCowan, 383.

McCullagh, 311, 393.

McMahon, 328.

Mechanics: Greek, 23, 34, 43 ; Stevin

and Galileo, 158, 182; Descartes,

Wallis Wren, Huygens, Newton,

188, 191, 192, 212-216; Leibniz, 227,-

BernouUis, 237, 238; Taylor, 243;

Euler, 253; Lagrange, 266; La-

place, 274; more recent work, 290,

328, 346, 377-381, 401. See Dynam-
ics, Hydrodynamics, Hydrostatics,

Graphic statics. Laws of motion. As-

tronomy, D'Alembert's principle.

Meissel, 363.

Mensechmus, 32; ref. to, 31, 34, 46, 113.
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Menelaus, 55 ; ref . to, 57, 157.

Mercator, G., 313.

Mercator, N., 197 ; ref. to, 220.

Mere, 182.

Mersenne, 180, 191.

Mertens, 336, 367.

Meteorology, 384-386.

Method of characteristics, 297.

Method of exhaustion, 28 ; ref. to, 83,

36, 42, 169.

Metius, 154.

Meunier, 314.

Meyer, A., 340, 341.

Meyer, G. F., 334.

Meyer, 0. E., 382, 392, 402.

Meziriac, 179 ; ref. to, 265.

Michelson, 394.

Middle Ages, 117-137.

Midorge, 174.

Minchin, 381.

Minding, 314.

Minkowsky, 370.

Mittag-Leffler, 359.

Mobius, 294; ref. to, 293, 320, 321, 366,

375, 377.

Modern Europe, 138 et seq.

Modular equations, 329, 353.

Modular functions, 354.

Mohammed ben Mnsa Hovarezmi, 106

;

ref. to, 107, 110, 114, 125, 127.

Mohr, 300.

Moigno, 334.

Moivre, de, 240, 242, 245.

MoUweide, 366.

Moments in flusionary calculus, 205,

206.

Monge, 286-288 ; ref. to, 248, 259, 282,

293, 300, 314, 341.

Montmort, de, 240.

Montucla, X., 172.

Moon. See Astronomy.
Moore, 330.

Moors, 115, 116, 125.

Moral expectation, 239.

Morley, 362.

Moschopulus, 135.

Motion, laws of, 183, 188, 213.

Mouton, 219.

Muir, XII., 325.

Miiller, X.
MuUer, J. See Eegiomontanus.

Multi-constancy, 390, 391.

Multiplication of series, 335, 336.

Musa ben Sakir, 108.

Musical proportion, 8.

Mydorge, 177.

Nachreiner, 325.

Nagelbach, 324.

Napier, J., 162, 163; ref. to, 156, 161,

164, 165.

Napier, M., X.
Napier's rule of circular parts, 165.

Nasir Eddin, 114.

Nautical almanac. United States, 376.

Navier, 387; ref. to, 382, 390.

Nebular hypothesis, 274.

Negative quantities, 93, 152, 187, 356,

372. See Algebra.

Negative roots, 93, 112, 146, 149, 152,

166. See Algebra..

Neil, 190; ref. to, 198.

Neocleldes, 33.

Neptune, discovery of, 375.

Nesselmann, 76.

Netto, 330.

Neumann , C, 375 ; ref. to, 309, 315, 393.

Neumann, F. E., 398; ref. to, 309, 312,

390, 392, 396, 401.

Newcomb, 376 ; ref. to, 306, 307, 392.

Newton, 201-218; ref. to, 4, 50, 60,

147, 173, 186, 191, 192, 195, 200, 238,

243, 244, 252, 254, 257, 258, 262, 268,

282, 285, 290, 297, 302, 317, 330, 334,

372, 380, 386.

Newton, controversy with Leibniz,

227-233.

Newton's discovery of binomial the-

orem, 195, 196.

Newton's discovery of universal grav-
itation, 213.

Newton's parallelogram, 217.

Newton's Principia, 191, 208, 212-215,

229, 233, 242.

Nicolai, 366.

Nicole, 240.

Nicolo of Brescia. See Tartaglia.

Nicomachus, 72; ref. to, 58, 81.

Nicomedes, 50.

Nieuwentyt, 235.

Nines, casting out the, 106.

Niven, 396.
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Nolan, 376.

Non-Euclidean geometry, 38, 300-307.

Nonius, 153 ; ref . to, 154.

Notation: in algebra, 15, 75, 93, 133,

134, 149, 150,. 151, 160, 167; Baby-
lonian numbers, 5-7 ; Egyptian num-
bers, 13; Greek numbers, 64 ; Arable

notation, 3, 73, 87, 102, 112, 127-129,

159 ; Roman, 78 ; decimal fractions,

160; trigonometry, 249; differential

calculus, 205, 221, 222, 260, 269, 283.

See Exponents, Algebra.

Niither, 311, 313, 330, 356.

Numbers : amicable, 68, 108, 115 ; ex-

cessive, 68; heteromecic, 68; per-

fect, 68; defective; 68; triangular,

180; definitions of numbers, 372 ; the-

ory of numbers, 55, 76, 95, 108, 119,

131, 178-182, 252, 264, 280, 362-372.

Numbers of Bernoulli, 238.

Numerals: Egyptian, 13; Babylonian,

5-7; Greek, 64; Arabic, 87, 102, 103,

112. See Apices.

Oberbeck, 386.

CEnopides, 19; ref. to, 16.

Ohm, M., 317.

Ohrtmann, X.
Olbers, 364, 373.

Oldenburg, 228.

Olivier, 300.

Omega-function, 353.

Operations, calculus of, 292.

Oppolzer, 377.

Optics, 39.

Oresme, 134 ; ref. to, 160.

Orontius, 154.

Oscillation, centre of, 191, 243.

Ostrogradsky, 333, 379.

Otho, 142.

Oughtred, 167; ref. to, 147, 161, 202.

Ovals of Descartes, 187.

tt: values for; Babylonian and He-

brew, 8; Egyptian, 11; Archime-

dean, 41; Hindoo, 98; Arabic, 108;

Ludolph's, 154; Wallis', 194, 195;

Brouncker's, 197; Fagnano's, 241;

Leibniz's, 220 ; selection of letter ir,

250; proved to be irrational, 259,

281 ;
proved to be transcendental, 2.

Pacioli, 135 ; ref. to, 134, 142, 152, 155,

158, 196.

Padmanabha, 87.

Palatine anthology, 73, 120.

Pappus, 58-61 ; ref. to, 35, 39, 45, 49,

50, 55, 65, 66, 153, 178, 186.

Parabola, 42, 70, 198; semi-cubical,

190. See Geometry.
Parabolic geometry. See Non-Euclid-

ean geometry.

Parallelogram of forces, 183.

Parallels, 38, 281, 300, 301, 303, 306.

Parameter, 48.

Partial differential equations, 208, 255,

287, 341 et seq., 379.

Partition of numbers, 372.

Pascal, 175-177 ; ref. to, 178, 182, 196,

220, 240, 284, 285, 290, 310.

Pascal's theorem, 178.

Peacock, 284; ref. to, X., 130, 133, 161,

283, 315.

Pearson, 391.

Peauoellier, 326.

Peirce, B., 323; ref. to, 291, 317, 376,

381.

Peirce, C. S., 323; ref. to, 37, 307, 321.

Peletarius, 166.

Pell, 147, 151, 181, 219.

Pell's problem, 97, 181.

Pemberton, 201.

Pendulum, 191.

Pepin, 365.

Perier, Madame, X.
Periodicity of functions, 349, 350.

Pernter, J. M., 385.

Perseus, 50.

Perspective, 177. See Geometry.
Perturbations, 273.

Petersen, 365.

Pfaff, 341, 342; ref. to, 362.

PfafBan problem, 341, 342.

Pherecydes, 20.

Philippus, 33.

Philolans, 22 ; ref. to, 28, 68.

Philonides, 46.

Physics, mathematical. See Applied
mathematics.

Piazzi, 373.

Picard, E., 347, 350, 360.

Picard, J., 214, 215.

Piddington, 384.
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Piola, 388.

Pitiscus, 142.

Plana, 375, 387, 396.

Plauudes, M., 135.

Plateau, 382.

Plato, 29-31 ; ref. to, 3, 10, 16, 23, 32, 33,

34, 35, 63, 68.

Plato of Tivoli, 109, 125.

Plato Tiburtinus. See Plato of Tivoli.

Platonic figures, 39.

Platonic School, 29-34.

Playfair, X., 156.

Plectoidal surface, 60.

Plucker, 307-309; ref. to, 304, 308, 313.

Plus and minus, signs for, 150.

Pohlke, 300.

Poincare', 343; ref. to, XIII., 345, 346,

347, 352, 359, 368, 384, 400.

Poinsot, 378 ; ref. to, 377.

Poisson, 387 ; ref. to, 175, 298, 330, 333,

351, 375, 378, 382, 383, 386, 387, 390,

392, 395, 396.

Poncelet, 289, 290; ref. to, 178, 288,

293, 306, 308, 389.

Poncelet's paradox, 308.

Porisms, 39.

Porphyrius, 55.

Potential, 277, 358, 395.

Poynting, 397, 398.

Preston, 400.

Primary factors, Weierstrass' theory

of, 354, 360.

Prime and ultimate ratios, 198, 212,

268.

Prime numbers, 38, 45, 71, 179, 180,

368.

Princess Elizabeth, 188.

Principia (Newton's), 191, 208, 212-

215, 229, 233, 242.

Pringsheim, 336-338.

Probability, 158, 182, 192, 237, 239,

240, 245, 252, 270, 276, 285, 340, 341.

Problem of Pappus, 60.

Problem of three bodies, 253, 256, 377.

Proclus, 61 ; ref. to, 17, 19, 33, 35, 38,

39, 50, 54, 58.

Progressions, first appearance of arith-

metical and geometrical, 8.

Projectiye geometry, 307.

Proportion, 17, 22, 23, 26, 33, 36, 38,

67,68.

Propositiones ad acuendos iuvenes,

119, 120.

Prym, 355.

Ptolemseus. See Ptolemy.
Ptolemaic System, 56.

Ptolemy, 56-58; ref. to, 7, 9, 54, 55,

98, 104, 106, 108, 109, 115, 139, 313.

Puiseux, 356.

Pulveriser, 95.

Purbach, 134 ; ref. to, 140.

Pythagoras, 19-23, 67-70; ref. to, 3,

16, 18, 24, 29, 36, 63, 82, 97, 135.

Pythagorean School, 19-23.

Quadratic equations, 76, 93, 107, 111,

112. See Algebra, Equations.

Quadratic reciprocity, 252, 280, 365.

Quadratrix, 25, 32, 59, 60.

Quadrature of the circle. ,See Circle;

also see Circle-squarers, ir.

Quadrature of curves, 42, 49, 177, 190,

193, 220, 222.

Quaternions, 318, 319; ref. to, 317.

Quercu, a, 154.

Quetelet, 340; ref. to, X.

Eaabe, 337.

Radau, 377.

Radiometer, 403.

Eahn, 151.

Ramus, 153.

Rankine, 399 ; ref. to, 400.

Rari-constancy, 390.

Ratios, 372.

Rayleigh, Lord, 386; ref. to, 374, 383,

384, 397, 398.

Reaction polygons, 300.

Reciprocal polars, 290.

Eeciprocants, 327, 361.

Recorde, 151 ; ref. to, 158.

Rectification of curves, 169, 177, 190,

198. See Curves.

Redfield, 384.

Eeductio ad absurdum, 28.

Reech, 381.

Regiomontanus, 140, 141 ; ref. to, 139,

149, 153, 154, 155, 158, 160.

Regula aurea. 5ee Falsa positio.

Regula duorum falsorum, 106.

Regula falsa, 106.

Regular solids, 21, 31, 34, 38, 51, 110, 168.
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Eeid, 384.

Keiff, XI.

Beuaissance, 139-156.

Kesal, 377.

Eeye, 299; ref. to, 305.

Keynolds, 383.

Rhseticus, 141 ; rel. to, 139, 142.

Bheticus, See Ebseticus.

Khind papyrus, 10-15.

Kiccati, 241 ; ref. to, 239.

Kichard o£ Wallingtord, 135.

Eichelot, 353; ref. to, 309, 312.

Riemann, 357-359; ref. to, 304, 305,

312, 315, 339, 342, 354, 355, 356, 3B2,

368, 384, 392, 398.

Eiemann's surfaces, 358 ; ref. to, 356.

Roberts, 313.

Eoberval, 112^ ref. to, 172, 187, 191.

EoUe, 241 ; ref. to, 236.

Eoman mathematics in Occident, 117-

124.

Romans, 77-83.

Eomanus, 154; ref. to, 142, 148, 154.

Eomer, 199.

Eosenberger, XIV.
Rosenhain, 355 ; ref. to, 353.

Roulette, 171.

Eouth, 380; ref. to, 381, 397.

Rowland, 382, 394, 397, 398.

Rudolff, 151.

Euffini, 328.

Eiihlmann, 400.

Eule of signs, 187, 193.

Rule of tliree, 92, 106.

Saccheri, 303.

Sachse, XIII.

Sacro Bosco. See Halifax.

Saint-Venant, 390; ref. to, 322, 382,

389, 393.

Salmon, XII., 295, 311-313, 330.

Sand-counter, 65, 90.

Sarrau, 393.

Sarrus, 333.

Saturn's rings, 192, 376.

Saurin, 240.

Savart, 387.

Scaliger, 154.

Schellbaeh, 296.

Schepp, 362.

Sobering, 306; ref. to, 357, 365.

Scbiaparelli, 32.

Schlafli, 306; ref. to, 338, 353.

Schlegel, 322 ; ref. to, XII., 306.

Schlessinger, 300.

Schlomilch, 375.

Schmidt, XII.

Schooten, van, 189; ref. to, 190, 202.

Schreiber, 288, 300.

Schroter, H., 313; ref. to, 296, 353.

Schroter, J. H., 374.

Schubert, 297.

Schumacher, 366 ; ref. to, 348.

Schuster, XIII.

Schwarz, 361; ref. to, 297, 339, 345,

347, 362.

Schwarzian derivative, 361.

Scott, 325.

Screws, theory of, 378.

Secants, 142.

Sectio aurea, 33.

Section, the golden, 33.

Seeber, 371.

Segre, 305.

Seidel, 339.

Seitz, 341.

Selling, 371.

Sellmeyer, 393.

Semi-convergent series, 336.

Semi-cuhical parabola, 190.

Semi-invariants, 328.

Serenus, 55.

Series, 111, 245. See Infinite series,

Trigonometric series, Divergent
series. Absolutely convergent series.

Semi-convergent series, Fourier's

series, Uniformly convergent series.

Serret, 313 ; ref. to, 341, 342, 377, 379.

Servois, 284, 288, 290.

Sexagesimal system, 7, 57, 65, 67, 126.

Sextant, 218.

Sextus Julius Africanus, 58.

Siemens, 385.

Sigma-function, 354.

Signs, rule of, 187, 193.

Similitude (mechanical), 380.

Simony, 315.

Simplicius, 61.

Simpson, 249.

Simson, 290; ref. to, 37, 39.

Sine, 99, 102, 109, 116, 125, 140, 141;

origin of term, 109.
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Singular solutions, 226, 266, 277.

Slaze, 189; ref. to, 222, 224.

Smith, A., 381.

Smith, H., 369, 370; ref. to, Xni., 353,

372.

Smith, R., 242.

Sohnke, 353.

Solid of least resistance [Prin. II., 25],

215.

Solitary wave, 383.

Somoff', 381.

Sophist School, 23-29.

Sosigenes, 81.

Sound, velocity of, 270, 278. See
Acoustics.

Speidell, 165.

Spherical Harmonics, 247.

Spherical trigonometry, 56, 115, 280,

294.

Spheroid (liquid), 384.

Spirals, 42, 60, 237.

Spitzer, 333.

Spottiswoode, 325; ref. to, XII., 292.

Square root, 65, 94, 159.

Squaring the circle. See Quadrature
of the circle.

Stahl, 306.

Star-polygons, 22, 135, 156.

Statics, 44, 182. See Mechanics.
Statistics, 340.

Staudt, von. See Von Staudt.

Steele, 381.

Stefano, 382.

Steiner, 295, 296; ref. to, 293, 297, 298,

308, 311, 312, 320, 348, 357.

Stereometry, 31, 33, 38, 168.

Stern, 357, 365.

Stevin, 160; ref. to, 134, 162, 182.

Stevinus. See Stevin.

Stewart, 290.

Stifel, 151 ; ref. to, 149, 151, 155, 162.

Stirling, 244.

Stokes, 381; ref. to, 339, 382, 383, 386,

388, 390, 393, 398.

Story, 306.

Strassmaier, IX.

Strauch, 334.

Strings, vibrating, 242, 255, 262.

Stringham, 306.

Strutt, J. W., 386. See Kayleigh.

Struve, 366.

Sturm, J. C. F., 330; ref. to, 178, 282,

379, 381.

Sturm, E., 296.

Sturm's theorem, 330.

St. Vincent, Gregory, 190, 197.

Substitutions, theory of, 292, 329.

Surfaces, theory of, 250, 287, 295, 299,

309, 310, 314.

Suter, X.
Swedenborg, 274.

Sylow, 330; ref. to, 350.

Sylvester, 326 ; ref. to, XIII., 216, 296,

310, 311, 312, 319, 324, 325, 328, 330,

341, 361, 368, 370, 378, 396.

Sylvester II. (Gerbert), 120-124.

Symmetric functions, 250, 328, 330.

Synthetic geometry, 293-307.

Synthesis, 30, 31.

Taber, 324.

Tabit ben Korra, 108 ; ref. to, 105.

Tait, 283, 319, 381, 388, 400.

Tangents, in geometry, 62, 173, 186;

in trigonometry, 110, 141, 142.

Tangents, direct problem of , 198, 223

;

inverse problem of, 169, 189, 220, 222,

223.

Tannery, 343 ; ref. to, 362.

Tartaglia, 143-145; ref. to, 152, 153.

Tautochronous curve, 191.

Taylor, B., 242; ref. to, 234, 255.

Taylor's theorem, 243, 268, 269, 333,

342.

Tchebycheff, 368.

Tchirnhausen, 241; ref. to, 224, 226,

264, 328.

Tentative assumption, 75, 92. See

Begula falsa.

Thales, 17, 18 ; ref. to, 16, 20, 21.

Theaetetus, 33 ; ref. to, 35, 36, 70.

Theodorus, 70; ref. to, 29.

Theodosius, 54; ref. to, 108, 125, 127.

Theon of Alexandria, 61; ref. to, 37,

51, 55, 65, 82.

Theon of Smyrna, 55, 58, 72.

Theory of equations. See Equations.

Theory of functions, 268, 269, 344, 345,

346, 347-362. See Functions.

Theory of numbers, 55, 76, 95, 108, 119,

131, 178-182, 252, 264, 280, 362-372.

Theory of substitutions, 329, 354.
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Thermodynamics, 385, 398-401.

Theta-lunctious, 352, 353, 355, 380.

Theta-fuchsians, 345.

Theudius, 33.

Thomae, 353, 362.

Thome, 344; ref. to, 345.

Thomson, J., 385.

Thomson, J. J., 382; ref. to, 396, 397.

Thomson, Sir William, 395, 396; ref.

to, 283, 315, 358, 381, 382, 383, 388,

391, 393, 394, 395, 399, 400, 403. See

Kelvin (Lord).

Thomson's theorem, 359.

Three hodies, problem of, 253, 256, 37T.

Thymaridas, 73.

Tides, 278, 383.

Timaeus of Loori, 29.

Tisserand, 377.

Todhanter, 334; ref. to, XI., 375.

Tonstall, 158.

Torrieelli, 171.

Trajectories, 234, 238.

Triangulum characteristieura, 220.

Trigonometric series, 283, 339, 357. See

Fourier's series.

Trigonometry, 51, 56, 98-100, 109, 110,

115, 135, 140, 141, 154, 160, 161, 165,

238, 242, 245, 249, 259; spherical, 57,

116, 280, 294.

Triseotion of angles, 24, 31, 50, 153.

Trochoid, 171.

Trenton, 394.

Trudi, 324.

Tucker, XIII.

Twisted Cartesian, 312.

Tycho Brahe, 110, 139, 168.

Ubaldo, 183.

Ultimate multiplier, theory of, 379.

Ulug Beg, 114.

Undulatory theory of light, 192, 339,

379, 392-394.

Universities of Cologne, Leipzig, Ox-
ford, Paris, and Prague, 136.

Valson, XIII.

Van Ceulen. See Ludolph.

Vandermonde, 278 ; ref. to, 264, 278.

Van Schooten, 189 ; ref. to, 190, 202.

Variation of arbitrary consonants, 378.

Varignon, 240; ref. to, 236.

Varying action, principle of, 292, 318,

379.

Venturi, 52.

Veronese, 305 ; ref. to, 307.

Versed sine, 99.

Vibrating rods, 387.

Vibrating strings, 242, 255, 262.

Vicat, 389; ref . to, 390.

Victorius, 79.

Vieta, 147; ref. to, 50, 142, 152, 153,

154, 167, 196, 202, 217, 264.

Vincent, Gregory St., 190, 197.

Virtual velocities, 34, 265.

Viviani, 172.

Vlacq, 165.

Voigt, XIII, 365, 393.

Volaria, 237.

Von Helmholtz. See Helmholtz.

Von Staudt, 298, 299; ref. to, 292, 294.

295.

Vortex motion, 382.

Vortex rings, 382.

Voss, 306 ; ref. to, 336.

Waldo, 385.

Walker, 323.

Wallis, 192-195; ref. to, 98, 161, 177,

179, 187, 188, 197, 202, 229.

Waltershausen, XI.
Wand, 400.

Wantzel, 328.

Warring, 264, 330.

Watson, J. C, 377.

Watson, S., 341.

Wave theory. See Undulatory theory.

Waves, 382-385.

Weber, H. H., 355.

Weber, W. E., 394; ref. to, 357, 363,

388, 396, 398.

Weierstrass, 359 ; ref. to, 328, 339, 352,

353, 354, 359, 361, 362, 372.

Weigel, 219.

Weiler, 341.

Werner, 153.

Wertheim, 390.

Westergaard, 340.

Wheatstone, 386.

Whewell, IX., 43, 253.

Whiston, 216.

Whitney, 87.

Widmanii, 150.
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Wiener, XI.

Williams, 267.

Wilson, 264.

Wilson's theorem, 264.

Winds, 384-386.

Winkler, 392.

Witch of Agnesi, 260.

Wittstein, XII.

Woepeke, 83, 103.

Wolf, C, 241; ref. to, 167.

Wolf, R., XI.

Wolstenholme, 341.

Woodhouse, 334.

Wren, 177; ref. to, 188, 198, 213, 287.

Wronski, 324.

Xenocrates, 29.

Xylander, 153.

Young, 392; ref. to, 386, 387.

Zag, 127.

Zahn, Xn.
Zehfuss, 325.

Zeller, 365.

Zeno, 27.

Zenodorus, 51.

Zero (symbol for), 7, 88; origin of

term, 129.

Zeuthen, 313; ref. to, IX., 297.

Zeuxippus, 40.

Zolotareff, 371 ; ref. to, 372.
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DODGSON • Works by Charles L. Dodgson, M.A.
Euclid. Books I. and II. i2mo. 60 cents.

Euclid and his Modem Rivals. Second Edition. i2mo. ;Ji.6o.

Curiosa Mathematica. Part I. A New Theory of Parallels. i2mo.
75 cents.

DREW : A Geometrical Treatise on Conic Sections. By W. H. Drew,
M.A. Sixth Edition. i2mo. 1(1.25.

DUPUIS; Elementary Synthetic Geometry of the Point, Line, and Circle
in the Plane. By N. F. Dupuis, M.A. i6mo. |i.io.

Elements of Synthetic Solid Geometry. i2mo. ^1.60.

DYER : Exercises in Analytical Geometry. By J. M. Dyer, M.A. With
Illustrations. i2mo. il.2.^.

EAGLES : Constructive Geometry of Plane Curves. With Examples. By
T. H. Eagles, M.A. i2mo. $3.25.

EDGAR and PRITCHARD : Note-book on Practical Solid or Descriptive
Geometry. Containing Problems with Help for Solution. By J. H.
Edgar, M.A., and G. S. Pritchard. Fourth Edition, Enlarged. By
Arthur G. Meeze. i6mo. Ji.io.

FERRERS : A Treatise on Trilinear Co-ordinates, the Method of Recip-
rocal Polars, and the Theory of Projections. By the Rev. N. M.
Ferrers. Fourth Edition. i2mo. 31.75.
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FROST : Works by Percival Frost, D.Sc, F.R.S.

An Elementary Treatise on Curve Tracing. 8vo. ^3.00.

Solid Geometry. A New Edition, Revised and Enlarged, of the Treatise

by Frost and Wolstenholme. Third Edition. 8vo. ;?6.oo.

Hints for the Solution of Problems in the Third Edition of Solid

Geometry. 8vo. S3.00.

GRAHAM: The Geometry of Position. By Robert H. Graham, C.E.,

author of "Graphic and Analytical Statics." Illustrated. l2rao. S1.75.

HALL and STEVENS : A Text-book of Euclid's Elements. Including

Alternative Proofs, together with additional Theorems and ' Exercises,

Classified and Arranged. By H. S. Hall, M.A., and F. H. Stevens, M.A.
Books I.-VI. Globe 8vo. jii.io.

Also sold separately

:

Book I. 30 cents. Books I. and II. 50 cents.

Books I. -IV. 75 cents. Books III.-VI. 75 cents.

Book XL 30 cents. Books V.-VI.-XI. 70 cents.

Key to Examples in Books I.-IV., ^1.75; Books I.-VI. and XI., $2.25.

HAYWARD : The Elements of Solid Geometry. By. R. Baldwin Hay-
ward, M.A., F.R.S. l2mo. 75 cents.

HEATH (R. S.) : Treatise on Geometrical Optics. 8vo. ;?3.5o.

An Elementary Treatise on Geometrical Optics. $i.2~i.

JOHNSTON (W. J.) : An Elementary Treatise on Analytic Geometry.
|!2.6o.

KITCHENER: Geometrical Note-book. Containing Easy Problems in

Geometrical Drawing, preparatory to the Study of Geometry. By F. E.

Kitchener, M.A. New Edition. 4to. 55 cents.

LACHLAN (R.) : An Elementary Treatise on Modern Pure Geometry.
,8vo. iS2.25.

LOCK : Euclid for Beginneis. Being an Introduction to the Existing Text-

books. By the Rev. J. B. Lock, M.A. Senior Fellow, Assistant Tutor

and Lecturer, Gonville and Caius College, Cambridge. l6mo. (/»
the Press.)

First Book of Euclid's Elements. i6mo. 60 cents.

McClelland : The Geometry of the Circle. By W. J. McClelland,
M.A., Trinity College, Dublin; Head Master of Santry School. Crown
8vo. Illustrated. $2.60.

MCDOWELL : Exercises on Euclid and in Modem Geometry, containing

Applications of the Principles and Processes of Modern Pure Geometry.

By J. McDowell, M.A., F.R.A.S. Third Edition, Revised. S1.50.

MILLAR : Elements of Descriptive Geometry. By J. B. Millar, B.E.

i2rao. 51.50.

MILNE and DAVIS : Geometrical Conies. By J. J. Milne and R. F. Davis.
Part I. The Parabola. i2mo. 60 cents.

MUKHOPADHAY : Geometrical Conic Sections. By Asutosh Mukhopa-
DHAY, M.A.,. Fellow of the University of Calcutta. Globe 8vo.

jSi.io.

NIXON : Euclid. Revised. Containing the Essentials of the Elements of

Plane Geometry as given by Euclid. With Additional Propositions

and Exercises. Edited by R. C. J. NixOn, M.A. $1.50.

Books I. to IV. i2mo. 75 cents. Books V. and VI. i2mo. 75 cents.
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Geometry in Space. Containing parts of Euclid's Eleventh and Twelfth
Books and some Properties of Polyhedra and Solids of Revolution, with
Exercises. Edited by R. C. J. NixON, M.A. i2mo. go cents^

PLANT : Practical Plane Geometry. By E. C. Plant. (/« the Press.)

PUCKLE: An Elementary Treatise on Conic Sections and Algebraic
Geometry. With Examples and Hints for their Solution. By G.
Hale Puckle, M.A. Fifth Edition, Revised and Enlarged. i2mo.
^1.90.

RICHARDSON: The Progressive Euclid. Books. I.-II. With Notes,
Exercises, and Deductions. By A. T. Richardson, M.A. 60 cents.

RICHARDSON and RAMSAY: Modern Plane Geometry. By G.
Richardson and A. S. Ramsay, ^i.oo.

RUSSELL (J. W.) : An Elementary Treatise on Pure Geometry. With
Numerous Examples. ;j2.6o.

SMITH : Works by Charles Smith, M.A., Fellow and Tutor of Sidney Sus-

sex College, Cambridge.

An Elementary Treatise on Conic Sections. Seventh Edition. r2mo.
$1.(X3.

Solutions to Conic Sections. i2mo. JS2.60.

An Elementary Treatise on Solid Geometry. i2mo. ^2.50.

SMITH : Introductory Modern Geometry of the Point, Ray, and Circle.

By William B. Smith, Ph.D., Professor of Mathematics in Missouri

State University, Columbia, Mo. Part I., 75 cents. Complete Edition,

jSr.io.

SYLLABUS OF PLANE GEOMETRY : (Corresponding to Euclid, Books
I.-IV.) Revised and brought into correspondence with the text-book

prepared by the Association for the Improvement of Geometrical
Teaching. New Edition. 1 6mo. 30 cenis.

SYLLABUS OF MODERN PLANE GEOMETRY: Paper. i2mo. 30 cents.

TAYLOR: Elements of Geometry. i8mo. Books I. and II., 50 cents.

Books III. and IV., 50 cents. Books I. to IV., 90, cents. Books V.
and VI., 40 cents. Edited by H. M. Taylor, M.A.

Solutions to the Exercises in Euclid. Books I.-IV. By W. W. Taylor,
M.A. S1.75.

TODHUNTER: The Elements of Euclid. By Isaac Todhunter, F.R.S.
l8mo. 90 cents.

Key. i2mo. ^1.75.
Plane Co-ordinate Geometry, as Applied to the Straight Line and

the Conic Sections. i2mo. i$ 1.80.

Key. By C. W. Bourne, M.A. i2mo. S2.60.
Examples in Analytical Geometry of Three Dimensions. New

Edition, Revised. i2mo. ^i.oo.

VYVYAN: Analytical Geometry for Schools. By T. G. Vyvyan. jSi.io.

Analytical Geometry for Beginners. Part I. 60 cents.

WEEKS : Exercises in Euclid. Graduated and Systematised. By Wil-
liam Weeks, Lecturer on Geometry, St. Luke's Training College,

Exeter. i8mo. 60 cents.

WILLIS : An Elementary Treatise on Geometrical Conic Sections.

By H. G. Willis, M.A. $ 1.25.
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WILSON: Works by Rev. J. M. Wilson, M.A. Late Head Master of

Clifton College.

Elementary Geometry.
Books I.-V. Containing the Subjects of Euclid's First Six Books. Fol-

lowing the Syllabus of the Geometrical Association. New Edition.

i6mo. $i.io.

Solid Geometry and Conic Sections. With Appendices on Transversals

and Harmonic Division. i6mo. 90 cents.

MENSURATION.

MOORE: An Elementary Treatise on Hensuration. By B. T. Moore,
M.A. With Numerous Examples. 90 cents.

STEVENS : Elementary Mensuration. With Exercises on the Mensura-
tion of Plane and Sohd Figures. By F. H. Stevens, M.A. (/» the

Press.)

TODHUNTER: Mensuration for Beginners. By Isaac Todhunter, F.R.S.
i8mo. 75 cents.

Key. By Rev. Fr. L. McCarthy. i2mo. $ 1.90.

TRIGONOMETRY.

BEASLEY: An Elementary Treatise on Plane Trigonometry. With
Examples. By R. D. Beasley, M.A. Ninth Edition, Revised and
Enlarged. l2mo. 90 cents.

BOTTOMLEY: Four-Figure Mathematical Tables. Comprising Loga-
rithmic and Trigonometrical Tables, and Tables of Squares, Square
Roots, and Reciprocals. By J. T. Bottomley, M.A., F.R.G.S., F.C.S.

8vo. 70 cents.

DYER and WHITCOMBE : Trigonometry, The Elements of. By J. M.
Dyer, M.A., and the Rev. H. R. Whitcombe, M.A. $ 1.25.

HALL and KNIGHT : Elementary Trigonometry. By H. S. Hall, M.A.,
and S. R. Knight, B.A., M.B., Ch.B. i6mo. $ i.io.

HAYWARD: The Algebra of Co-Planar Vectors and Trigonometry.
By R. B. Hayward, M.A., F.R.S. $ 2.00.

HOBSON : Treatise on Plane Trigonometry. By E. W. Hobson. 8vo.

;?3.oo.

An Elementary Treatise on Plane Trigonometry for the Use of

Schools. By E. W. Hobson, M.A., and C. M. Jessop, M.A. $ 1.25.

JONES : Logarithmic Tables. Royal 8vo. $1.00.

JOHNSON : Treatise on Trigonometry. By W. E. Johnson, M.A. For-

merly Scholar of King's College, Cambridge. 1 2mo. jS 2.25.

LEVETT and DAVISON : The Elements of Trigonometry. By Rawdon
Levett and A. F. Davison, Masters at King Edward's School, Birming-
ham. Crown 8vo. jSi.60.

LOCK: Works by J. B. Lock, M.A., Assistant Tutor and Lecturer in Gon-
ville and Caius College, Cambridge
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Trigonometry for Beginners. As far as the Solution of Triangles.

l6mo. 75 cents.

Key. JS1.7S.

Elementary Trigonometry. Sixth Edition. (In this edition the chapter

on Logarithms has been carefully revised.) i6mo. %\.\o.

Key. j!2.25.

Higher Trigonometry. Fifth Edition. i6mo. ^i.oo.

Two Parts in one volume. #1.90.

The Trigonometry of One Angle. i2mo. Cloth, 65 cents.

A Treatise on Elementary and Higher Trigonometry. i6mo. $1.90.

LONEY: Plane Trigonometry. By S. L. Loney, M.A. An Elementary
Course, excluding the Use of Imaginary Quantities. Fcap. 8vo.

PaktI. il.40. Complete. S1.90.

McClelland and PRESTON : a Treatise on Spherical Trigonometry.
With Applications to Spherical Geometry, and Numerous Examples. By
William J. McClelland, M.A., and Thomas Preston, B.A. i2mo.

Part I. ;^i.io. Part II. jSi.25. Two Parts in one volume, ^2.25.

NIXON : Elementary Plane Trigonometry. By R. C. J. Nixon. ^1.90.

PALMER : Practical Logarithms and Trigonometry, Text-Book of. By

J. H. Palmer. i6mo. jSi.io.

SNOWBALL : The Elements of Plane and Spherical Trigonometry. By

J. C. Snowball, M.A. Fourteenth Edition. i2mo. jSi.go.

TODHUNTER : Works by Isaac Todhunter, F.R.S.

Trigonometry for Beginners. New Edition. i8mo. 60 cents.

Key. $2.25.

Plane Trigonometry. i2mo. ^1.30.

Key. $2.60.

A Treatise on Spherical Trigonometry. For the Use of Colleges and
Schools. i2mo. ^I.io.

TODHUNTER and HOGG : Plane Trigonometry. By Isaac Todhunter.
Nevir Edition. Revised by R. W. Hogg, M.A., Fellow of St. John's
College, Cambridge. i2mo. ^i.io.

VYVYAN: Introduction to Plane Trigonometry. By the Rev. T. G.
Vyvyan, M.A. Third Edition, Revised and Corrected. 90 cents.

WARD (G. H.) : Trigonometry Examination Papers. 60 cents.

WOLSTENHOLME : Examples for Practice in the Use of Seven-Figure
Logarithms. By Joseph Wolstenholme, D.Sc. 8vo. $1.25.

PROBLEMS AND QUESTIONS IN MATHEMATICS.
ARMY PRELIMINARY EXAMINATION (Specimens of Papers set at

the), 1882-89. With Answers to the Mathematical Questions. Sub-
jects : Arithmetic, Algebra, Euclid, Geometrical Drawing, Geography,
French, English, Dictation. i2mo. 90 cents.

BALL : Mathematical Recreations and Problems. By W. W. Rouse
Ball. ^2-25.

CAMBRIDGE Senate-House Problems and Riders, with Solutions.

1875. Problems and Riders. Edited by A. G. Greenhill, M.A.
i2mo. S2.25.
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1878. Solutions by the Mathematical Moderators and Examiners.
Edited by J. W. L. Glaisher, M.A. 8vo. S3.00.

CHRISTIE: A Collection of Elementary Test-Questions in Pure and
Mixed Mathematics. With Answers and Appendices on Synthetic

Division, and on the Solution of Numerical Equations by Horner's

Method. By James R. Christie, F.R.S. i2mo. %2.2.t,.

DEAKIN : Rider Papers on Euclid. Books I. and II. Graduated and

Arranged in Order of Difficulty, with an Introduction on Teaching

Euclid. By Robert Deakin, M.A., Balliol College, Oxford, Head
Master of icing Edward's School, Stourbridge. l8mo. Cloth. 35 cents.

DYER : Mathematical Examples. A Collection of Examples in Arithmetic

Pure and Mixed, Algebra, Trigonometry, Mensuration, Theory of Equa-

tions, Analytical Geometry, Statics and Dynamics. With Answers, etc.

By J. M. Dyer, M.A., and R. Prowde Smith, M.A. ^1.50.

FILIPOWSKI (H. E.) : A Table of Anti-Logarithms. Natural Numbers
answering to all Logarithms from .00001 to .99999, etc. Third Edition.

»3-50-

LAMB : Hydrodynamics. A Treatise on the Mathematical Theory of Fluid

Motion. By Horace Lamb, M.A. Svo. S3.00.

MATTHEWS : Manual of Logarithms. By G. F. Matthews, M.A. Svo.

$1.60.

MEDHURST (J. T.) : Examination Papers on Book-keeping. Compiled
and Arranged by J. T. Medhurst, A.K.C. Second Edition. 75 cents.

MILNE :' Works by the Rev. John T. Milne.
Weekly Problem Papers. With Notes intended for the Use of Students

preparing for Mathematical Scholarships. i8mo. ^i.oo.

Solutions to the " Weekly Problem Papers." i2mo. ^2.75.

A Companion to the "Weekly Problem Papers." Intended for the

Use of Students preparing for Mathematical Scholarships, and for the

Junior Members of the University who are reading for Mathematical

Honors. i2mo. $2.(io.

RICHARDSON (A. T.) : Progressive Mathematical Exercises for Home
Work. In Two Parts. By A. T. Richardson, M.A., Senior Mathe-
matical Master at the Isle of Wight College, formerly Scholar of Hert-

ford College, Oxford. Intended for use in the lower forms of schools

together with the ordinary text-books, so that the learner's progress

can from time to time be tested. 60 cents.

SANDHURST MATHEMATICAL PAPERS for Admission into the
Royal Military College, for the Years 1881-1889. Edited by E. J.

Brook-Smith, B.A., LL.M., St. John's College, Cambridge. i2mo.
^gi.oo.

SMITH : Mathematical Examples. By R. Prowde Smith. t\.tfi.

WARD : Trigonometry, Examination Papers in. By G. H. Ward, M.A.
60 cents.

Key (for Tutors only). $1.25.

WRIGLEY : Collection of Examples and Problems in Arithmetic, Algebra,

Geometry, Logarithms, Trigonometry, Conic Sections, Mechanics, etc.,

with Answers and Occasional Hints. By the Rev. A. Wrigley. Tenth
Edition, Twentieth Thousand. Svo. ^2.00.

A Key or Companion to the above. Second Edition. IS2.60.
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WOLSTEWHOLME : Works of Joseph Wolstenholme, D.Sc.

Mathematical Problems on Subjects Included in the First and Second
Division of the Schedule of Subjects for the Cambridge Mathe-
matical Xripos Examination. New Edition, Enlarged. 8vo. JS4.50.

Seven-Figure Logarithms. Examples for Practice in the Use of.

For'CoUeges and Schools. 8vo. jSl.25.

WOOLWICH MATHEMATICAL PAPERS for Admission into the Royal
Military Academy, for the Years 1880-1888. Edited by E. J.

Brook-Smith, B.A., LL.M., St. John's College, Cambridge; Instructor

of Mathematics at Royal Military Academy, Woolwich. i2mo. JjSi.75.

HIGHER PURE MATHEMATICS.
AIRY : Works by Sir G. B. Airy, K.C.B., formerly Astronomer-Royal.

Elementary Treatise on Partial Differential Equations. With Dia-

grams. Second Edition. I2mo. ^1.50.

On the Algebraical and Numerical Theory of Errors of Observations
and the Combination of Observations. Second Edition, Revised.

I2mo. ^1.75.

BESANT : Notes on Roulettes and Glissettes. By W. H. Besant, D.Sc,
F.R.S. Second Edition, Enlarged. ^(1.25.

BOOLE : A Treatise on the Calculus of Finite Differences. By the late

George Boole. Edited Ijy J. F. Moulton. Third Edition. i2mo.

;?2.6o.

CAYLEY : Elementary Treatise on Elliptic Functions. By Arthur
CAYtEY, D.Sc, F.R.S. {^New Edition preparing.)

EDWARDS : Differential Calculus. With Applications and Numerous
Examples. An Elementary Treatise. By Joseph Edwards, M.A.
i2mo. S2.75.

Differential Calculus for Beginners. i6mo. ^i.io.

FERRERS : An Elementary Treatise on Spherical Harmonics and Sub-
jects Connected with Them. By Rev. N. M. Ferrers, D.D., F.R.S.

i2mo. ^1.90. (^Out ofprint.')

A Treatise on Trilinear Co-ordinates. New Edition. j!i.75.

FORSYTH: Works by Andrew Russell Forsyth, M.A.
A Treatise on Differential Equations. 8vo. ^3.75.

Theory of Differential Equations. Part I. Exact Equations and PfafPs

Problems. 8vo. ^3.75.

A Treatise on the Theory of Functions of a Complex Variable. Royal

Svo. $8.50.

FLEISCHER: A System of Volumetric Analysis. With Illustrations.

;j2.oo.

FROST: An Elementary Treatise on Curve Tracing. By Percival

Frost, M.A. 8vo. S3.00.

GREENHILL: Differential and Integral Calculus. With Applications.

By Alfred George Greenhill, M.A. i2mo. ^2.00.

Application of Elliptic Functions. 8vo. S3.00.

HEMMING : An Elementary Treatise on the Differential and Integral

Calculus. By G. W. Hemming, M.A. Svo. J2.50.
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HUNTER (H. St. J.) : Decimal Approximations. i8mo. 40 cents.

A Key to Dr. Todhunter's Differential Calculus. )?2.6o.

KELLAND and TAIT: Introduction to Quaternions. With Examples.
By P. Kelland, M.A., and P. G. Tait, M.A. Second Edition. i2mo.

$2.00.

KEMPE : How to Draw a Straight Line. A Lecture on Linkages. By
A. B. Kempe, B.A. With Illustrations. i2mo. 50 cents.

KNOX : Differential Calculus for Beginners. With Examples. By Alex-
ander Knox, B.A. i6mo. 90 cents.

LOVE: Treatise on the Mathematical Theory of Elasticity. 8vo. Vol.1.

$3.00. Vol. II. ^3.00.

MESSENGER OF MATHEMATICS : Edited by J. W. L. Glaisher. Pub-

lished Monthly. 35 cents each number.

MORLEY and HARKNESS : The Theory of Functions. By Frank Mor-
ley, M.A., Professor of Mathematics, Haverford College, Pa., and James
Harkness, M.A., Professor of Mathematics, Bryn Mawr College, Pa.

8vo. J5.00.

MUIR : Works by Thomas Muir, Mathematical Master in the High School,

Glasgow.

A Treatise on the Theory of Determinants. With Examples. i2mo.
New hdition. JS2.25.

The Theory of Determinants in the Historical Order of its Develop-
ment. Part I. Determinants in General. Leibnitz (1693) to Cay-
ley (1841). 8vo. ^2.50.

PRICE: Treatise on Infinitesimal Calculus. By Bartholomew Price,

M.A., F.R.S., Professor of Natural Philosophy, Oxford.

Vol. I. Differential Calculus. Second Edition. 8vo. J?3.75.

'

Vol. II. Integral Calculus, Calculus of Variations, and Differential

Equations. 8vo. {Heprinting.)

Vol. hi. Statics, including Attractions ; Dynamics of a Material
Particle. 8vo. $4.00.

Vol. IV. Dynamics of Material Systems. Together with a Chapter
on Theoretical Dynamics, by W. F. DONKIN, M.A. Svo. $4.50.

SCOTT : A Treatise on the Theory of Determinants and their Applica-
tions in Analysis and Geometry. By Robert Scott, M.A. Svo.

;fS3-50-

SMALLEY: Facts and Formulae in Pure Mathematics and Natural
Philosophy. Containing Facts, Formulae, Symbols, and Definitions.

By the late G. R. Smalley, B.A., F.R.A.S. New Edition by J. M'Dow-
ELL, M.A., F.R.A.S. i6mo. 70 cents.

SMITH : Mathematical Papers of the late Rev. J. S. Smith, Savilian

Professor of Geometry in the University of Oxford, With Portrait and
Memoir. 2 vols. 4to. (/« Preparation.')

TAIT : An Elementary Treatise on Quaternions. By P. G. Tait, M.A.,
Professor of Natural Philosophy in the University of Edinburgh. Third
Edition, Much Enlarged. 8vo. ^5.50.

TODHUNTER : Works by Isaac Todhunter, F.R.S.

An Elementary Treatise on the Theory of Equations. lamo. S1.80.

A Treatise on the Differential Calculus. i2mo. $2.60. Key. iS2.6o.
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A Treatise on tbe Integral Calculus and its Applications. i2mo.
S2.60. Key. S2.6o.

An Elementary Treatise on Laplace's Lame's and Bessel's Func-
tions, lamp. j!2.6o. (^Out ofprint.')

WATSON and B^RBURY : A Treatise on the Application of General-
ized Co-ordinates to the Kinetics of a Material System. By H. W.
Watson and S. H. Burbury. 8vo. JS1.50.

WELD: A Short Course in the Theory of Determinants. By Laenas
GiFFORD Weld, B.S., M.A. I1.90.

WHITWORTH: Trilinear Co-ordinates, and other methods of Modern
Analytical Geometry of Two Dimensions. An Elementary Treatise.

By W. Allen Whitworth, M.A. 8vo. j!4.oo.

MECHANICS.

ALDIS : Rigid Dynamics, An Introductory Treatise on. By W. Stead-
man ALDis, M.A. Jji.oo.

ALEXANDER and THOMPSON : Elementary Applied Mechanics. Part
II. Transverse Stress. $2.^$.

BALL : Experimental Mechanics. A Course of Lectures delivered to the

Royal College of Science for Ireland. By Sir R. S. Ball, LL.D., F.R.S.

Second Edition. With Illustrations. I2mo. iSl.50.

BASSET : A Treatise on Hydrodynamics. 2 vols. 8vo. ^9.00.

An Elementary Treatise on Hydrodynamics and Sound. 8vo. $3.00.

A Treatise on Physical Optics. 8vo. ^6.00.

BAYNES : Lessons on Thermodynamics. By R. E. Baynes, M.A. i2mo.
iSi.90.

BESANT: a Treatise on Hydromechanics. Fifth Edition, Revised.

Part I. Hydrostatics. i2mo. $1.25.

A Treatise on Dynamics, jii.75.

Elementary Hydrostatics. i6mo. $1.00.

Solutions to the Examples. {In the Press.)

CLIFFORD : Works by W. KiNGDON Clifford, F.R.S.
Elements of Dynamic. An Introduction to the Study of Motion and

Rest in Solid and Fluid Bodies.

Part I. Books I.-III. i2rao. jSi.90.

Part II. Book IV. and Appendix. i2mo. jSi.75.

COTTERILL ; Applied Mechanics. An Elementary General Introduction
to the Theory of Structures and Machines. By James H. Cotterill,
F.R.S. 8vo. JS5.00.

COTTERILL and SLADE : Elementary Manual of Applied Mechanics.
By Prof J. H. Cotterill, F.R.S., and J. H. Slade. i2mo. Si. 25.

CREMONA (LuiGi) : Graphical Statics. Two Treatises on the Graphical
Calculus and Reciprocal, Figures in Graphical Calculus. Authorized
English Translation by ?. Hudson Beare. 8vo. $2.25.

GARNETT: Elementary Dynamics, A Treatise on. For the Use of
Colleges and Schools. By William Garnett, M.A., D.C.L. Fifth

Edition, Revised, jii.50.
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GOODWIN Elementary Statics. By H. Goodwin, D.D., Bishop of Car-

lisle. Second Edition. 75 cents.

GREAVES. Works by John Greaves, M.A.
A Treatise on Elementary Statics. Second Edition, Revised. lamo.

JfSi.go.

Statics for Beginners. i6mo. 90 cents.

Treatise on Elementary Hydrostatics. i2mo. jti.io.

GREENHILL : Hydrostatics. By A. G. Greenhill. izmo. S1.90.

GUILLEMIN (A.) : The Applications of Physical Forces. Translated and
Edited by J. Norman Lockyer, F.R.S. With Colored Plates and
Illustrations. Royal 8vo. $(i.yi.

HICKS : Elementary Dynamics of Particles and Solids. By W. M. Hicks.
I2mo. ^1.60.

HOROBIN : Elementary Mechanics. Stage I. By J. C. Horobin, B.A.
With Numerous Illustrations. i2mo. Cloth. 50 cents. Stages II.

and III. (/k Preparation.)
Theoretical Mechanics. Division I. (/» the Press.)

HOSKINS : The Elements of Graphic Statics. A Text-book for Students

of Engineering. By L. M. HOSKINS, C.E., M.S. 8vo. JS2.25.

JEILETT : A Treatise on the Theory of Friction. By John H. Jellett,
B.D., late Provost of Trinity College, Dublin. 8vo. $2.25.

JESSOP: The Elements of Applied Mathematics, including Kinetics,

Statics, and Hydrostatics. By C. M. Jessop. 1(1.25.

KENWEDY : The Mechanics of Machinery. By Alexander B. W. Ken-
nedy, F.R.S. With Illustrations. i2mo. ^3.50.

LAMB : Hydrodynamics. A Treatise on the Mathematical Theory of Fluid

Motion. By H. Lamb. 8vo. $3.00.

LOCK : Works by the Rev. J. B. Lock, M.A.
Dynamics for Beginners. i6mo. jSi.oo.

Elementary Statics. i6mo. $1.10. Key. i2mo. S2.25.
Mechanics for Beginners. Fart I. 90 cents. Mechanics of Solids.

Elementary Hydrostatics. (/« Preparation.)
Mechanics of Solids. i6mo. (/« the Press.)

Mechanics of Fluids. i6mo. {In the Press.)

LONEY: A Treatise on Elementary Dynamics. New and Enlarged
Edition. By S. L. Loney, M.A. l2mo. i^l.go.

Solutions of the Examples contained in the Above. i2mo, $1.90.
The Elements of Statics and Dynamics.
Part I. Elements of Statics. #1.25.
Part II. Elements of Dynamics, ^i.oo.

Complete in one volume. i2mo. $1.90. Key. l2mo. Jr.90.
Mechanics and Hydrostatics for Beginners. i6mo. $1.25.

MACGREGOR: ^n Elementary Treatise on Kinematics and Dynamics.
By James Gordon Macgregor, M.A., D.Sc, Munro Professor of

Physics, Dalhousie College, Halifax. l2mo. ;^2.6o.

MINCHIN: Works by G. M. MlNCHiN, M.A.
A Treatise on Statics. Third Edition, Corrected and Enlarged.

Vol. I. Equilibrium of Coplanar Forces. 8vo. ^2.25.

Vol. II. Statics. 8vo. $4.00.

Uniplanar Kinematics of Solids and Fluids. i2mo. jSi.90.

Hydrostatics and Elementary Hydrokinetics. ^2.60.
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PARKINSON (R. M.) : Structural Mechanics. ;?i.io.

PARKINSON: A Treatise on Elementary Mechanics. For the use of
the Junior Classes at the University and the Higher Classes in Schools.
With a collection of Examples by S. Parkinson, F.R.S. Sixth Edition.

i2mo. ^(2.25.

PIRIE : Lessons on Rigid Dynamics. By the Rev. G. Pirie, M.A. i2mo.
^1.50.

RAWLINSON : Elementary Statics. By G. Rawlinson, M.A. Edited by
E. Sturges. 8vo. $i.\o.

ROUTE : Works by E. J. RouTH, LL.D., F.R.S.

A Treatise on the Dynamics of a System of Rigirf Bodies. With
Examples. New Edition, Revised and Enlarged. 8vo. In Two Parts.

Part I. Elementary. Fifth Edition, Revised and Enlarged. $Z-Ti'
Part II. Advanced. ^53.75.

Stability of a Given State of Motion, Particularly Steady Motion.
8vo. S2.25.

A Treatise on Analytical Statics. With Numerous Examples. Vol. I.

8vo. S3-75'

SANDERSON : Hydrostatics for Beginners. By F. W. Sanderson, M.A.
l6mo. ;?t.io.

SELBY; Elementary Mechanics of Solids and Fluids, gi.90.

SYLLABUS OF ELEMENTARY DYNAMICS.
Part I. Linear Dynamics. With an Appendix on the Meanings of the

Symbols in Physical Equations. Prepared by the Association for the

Improvement of Geometrical Teaching. 4to. 30 cents.

TAIT and STEELE : A Treatise on Dynamics of a Particle. By Professor

Tait, M.A., and W. J. Steele. Sbsth Edition, Revised. i2mo. ^(3.00.

TAYLOR : Resistance of Ships, and Screw Propulsion. By D. W. Taylor.

«3-75-

TODHUNTER. Works by Isaac ToDHUNTER, F.R.S.

Mechanics for Beginners. With Numerous Examples. New Edition.

i8mo. ^i.io. Key. Si. 75.

A Treatise on Analytical Statics. Fifth Edition. Edited by Professor

J. D. Everett, F.R.S. i2mo. ^2.60.

WALTON : Mechanics, A Collection of Problems in Elementary. By W.
Walton, M.A. Second Edition. $1.50.

Problems in Theoretical Mechanics. Third Edition, Revised. With the

addition of many fresh Problems. By W. Walton, M.A. 8vo. #4.00.

WEISBACH and HERRMANN : The Mechanics of Hoisting Machinery,
including Accumulators, Excavators, and Pile-Drivers. A Text-Book
for Technical Schools, and a Guide for Practical Engineers. By Dr.

Julius Weisbach and Professor Gustav Herrmann. Authorized
Translation from the Second German Edition. By Karl P. Dahl-
STROM, M.E., Instructor of Mechanical Engineering in the Lehigh
University. With 177 Illustrations. $3.75.

ZIWET : An Elementary Treatise on Theoretical Mechanics. In.Three
Parts : Kinematics, Statics, and Dynamics. By Alexander Ziwet,
University of Michigan.

Part I. JS2.25. Part II. ^52.25. Part III. (Jn Preparation^
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AIRY. Works by Sir G. B. Airy, K.C.E., formerly Astronomer-Royal.
On Sound and Atmospheric Vibrations. With the Mathematical Ele-

ments of Music. Designed for the Use of Students in the University.

Second Edition, Revised and Enlarged. i2mo. $2.50.

Gravitation. An Elementary Explanation of the Principal Perturbations

in the Solar System. New Edition. i2mo. J! 1. 90.

ALDIS : Geometrical Optics. An Elementary Treatise. By W. Steadman
Aldis, 6J.A. Third Edition, Revised. i2mo. ^i.oo.

CLAUSIUS : Mechanical Theory of Heat. By R. Clausius. Translated

by Walter R. Browne, M,A. i2mo. $2.60.

DANIELL: A Text-Book of the Principles of Physics. By Alfred
Daniell, D.Sc. Illustrated. New Edition, Revised and Enlarged.

8vo. 1(3.50.

DAUBENY'S Introduction to the Atomic Theory. i6mo. ti-^Q.

DONKIN (W. F.) : Acoustics. Second Edition. i2mo. $i.<^.

EVERETT: Units and Physical Constants. By J. D. Everett, F.R.S.,

Professor of Natural Philosophy, Queen's College, Belfast. New Edi-

tion. i6mo. $1.25.

FERRERS : Spherical Harmonics and Subjects Connected with them.
By Rev. N. M. Ferrers, D.D., F.R.S. i2mo. gi.90.

FISHER: Physics of the Earth's Crust. By Osmond Fisher. Second
Edition, Enlarged. 8vo. t'i-^o.

FOURIER : The Analytical Theory of Heat. By Joseph Fourier. Trans-
lated with Notes, by A. Freeman, M.A. 8vo. $4.50.

GALLATLY: Physics, Examples in Elementary. Comprising Statics,

Dynamics, Hydrostatics, Heat, Light, Chemistry, and Electricity. With
Examination Papers. By W. Gallatly, M.A. $1.00.

GARNETT : Heat, An Elementary Treatise on. By W. Garnett, M.A.,
D.C.L. Fifth Edition, Revised and Enlarged. ^I.io.

GLAZEBROOK : Heat. By R. T. Glazebrook, M.A., F.R.S. $i.oa.

Light. Cambridge Natural Science Manuals. $1.00.

HEATH : Treatise on Geometrical Optics. By R. S. Heath. 8vo. ;Jl3.so.

An Elementary Treatise on Geometrical Optics. By R. S. Heath.
i2mo. $1.25.

HOGG'S (Jabez) Elements of Experimental and Natural Philosophy.
With Index and upwards of 400 Woodcuts. ;^I.50.

IBBETSON: The Mathematical Theory of Perfectly Elastic Solids.

With a Short Account of Viscous Fluids. By W. J. Ibbetson, late

Senior Scholar of Clare College, Cambridge. 8vo. $^.<x>.

JELLETT (John H. B. D.) : A Treatise on the Theory of Friction. 8vo.

iS2.25.

JONES : Examples in Physics. By D. E. Jones, B.Sc. i6mo. 90 cents.

Sound, Light, and Heat. An Elementary Text-book. By D. E. Jones,

B.Sc, author of " Examples in Physics," etc. With Illustrations.

l6mo. 70 cents.

Lessons in Heat and Light. i6mo. $1.00.
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LOEWY. Works by B. Loewy, F.R.A.S.
Experimental Physics. Questions and Examples in Physics, Sound,

Light, Heat, Electricity, and Magnetism. l6mo. 50 cents.

A Graduated Course of Natural Science, Experimental and Theoreti-
cal, for Schools and Colleges. Part I. First Year's Course for Ele-

mentary Schools and the Junior Classes of Technical Schools and
Colleges. i6mo. 60 cents. Part II. 60 cents.

LOVE : Treatise on the Mathematical Theory of Elasticity. 8vo. Vol.

I. ^3.00. Vol. II. ^3.00.

LUPTON: Numerical Tables and Constants in Elementary Science.
By Sydney Lupton. i6mo. 70 cents.

MACFARLANE: Physical Arithmetic. By Alexander Macfarlane,
Professor of Physics, University of Texas. i2mo. ^1.90.

MAXWELL : The Scientific Papers of James Clerk Maxwell, M.A., LL.D.
B.Sc, etc., etc. Edited by W. D. NiVEN, M.A., F.R.S. With Steel

Portraits and Page Plates. 2 vols. 4to. ^25.00.

McAULAY (A.) : Utility of Quaternions in Physics. 8vo. jSi.60.

MOLLOY : Gleanings in Science. A Series of Popular Lectures on Scien-

tific Subjects. By the Rev. Gerard Molloy, D.D., D.Sc. 8vo.

JS2.25.

NEWTON'S Principia. Edited by Professor Sir W. Thomson and Professor

Blackburn. (Latin Text.) 4to. ^12.00.

This volume does not contain an English Translation.

First Book. Sections I., II., III. With Notes and Problems. By P.

Frost, M.A. Third Edition. Svo. ^3.00.

The First Three Sections of Newton's Principia, with an Appendix;
and the Ninth and Eleventh Sections. By J. H. EvANS, M.A. The
Fifth Edition, edited by P. T. Main. ^i.oo.

PARKER : A Treatise on Thermodynamics. By T. Parker, M.A., Fel-

low of St. John's College, Cambridge. ;?2.2S.

PARKINSON: A Treatise on Optics. By S. Parkinson, D.D., F.R.S.
Fourth Edition, Revised and Enlarged. i2mo. 1^2.50.

PEARSON : A History of the Theory of Elasticity. By Isaac Todhun-
TER. Edited by Professor Karl Pearson. Vol. I. Galilei to Saint-

Venant, 1639-1850. 8vo. ;f6.00. Vol. II. Saint-Venant to Lord
Kelvin (Sir William Thomson). In Two Parts. I7.50.

PERRY: An Elementary Treatise on Steam. By John Perry. With
Woodcuts, Numerical Examples, and Exercises. i8mo. ;^I.Io.

PRESTON : The Theory of Light. By Thomas Preston. With Illustra-

tions. 8vo. ^53.25.

The Theory of Heat. By the same author. Svo. JS5.S0.

RAYLEIGH: The Theory of Sound. By Lord Rayleigh, M.A., F.R.S.

Svo. New edition in two volumes. (/« ike Press.')

Vol. I. I3.25. {Out of Prinl.')

Vol. II. I3.25.
Vol. III. {In the Press.)

SAINT-VENANT (Barri de) : The Elastic Researches of. Edited for

the Syndics of the Cambridge University Press by Karl Pearson, M.A.
Svo. ^2.75.
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SHANN : An Elementary Treatise on Heat in Relation to Steam and
the Steam-Engine. By G. Shann, M.A. With Illustrations. i2mo.
^I.IO.

SHAW : Practical Work at the Cavendish Laboratory. Edited by W. N.
Shaw.

Heat. 8vo. 90 cents.

SPOTTISWOODE : Polarization of Light. By W. Spottiswoode, LL.D.
Illustrated. l2mo. S1.25.

STEWART. Works by Balfour Stewart, F.R.S.

Lessons in Elementary Physics. With Illustrations and colored Dia-

grams. i6mo. JiSi.io.

Questions on the Same for Schools. By T. H. Core. 40 cents.

A Treatise on Heat. With Numerous Woodcuts and Diagrams. Fourth

Edition. i6mo. $1.90.

STEWART and GEE : Lessons on Elementary Practical Physics. By
Balfour Stewart, M.A., LL.D., F.R.S., and W. W. Haldane Gee.

Vol. I. General Physical Processes. i2mo. ^1.50.

Vol. II. Electricity and Magnetism. ^2.25.

Vol. III. Optics, Heat, and Sound. {In the Press.)

Practical Physics for Schools and the Junior Students of Colleges.

Vol. I. Electricity and Magnetism. i6mo. 60 cents.

Vol. II. Optics, Heat, and Sound. (/« the Press.)

STOKES. Works by George Gabriel Stokes, F.R.S.

On Light. Burnett Lectures. On the Nature of Light. On Light as a

Means of Investigation. On the Beneficial Effects of Light. l2mo.

iS2.oo.

Mathematical and Physical Papers. 8vo.

Vol. I. $3.75. Vol. II. ^3.75. Vol. III. (/» the Press.)

STONE: Elementary Lessons on Sound. By W. H. Stone, M.B.
,
With

Illustrations. l6mo. 90 cents.

TAIT. Works by P. G. TAiT, M.A., Sec. R.S.E.

Lectures on Some Recent Advances in Physical Science. With Illus-

trations. Third Edition, Revised and Enlarged, with the Lecture on
Force Delivered before the British Association. i2mo. ;^2.50.

Heat. With Numerous Illustrations. l2mo. JS2.00.

Light. An Elementary Treatise. With Illustrations. l2mo. IS2.00,

Properties of Matter. Second Edition, Enlarged. i2mo. $2.25.

TAYLOR: Sound and Music. An Elementary Treatise on the Physical

Constitution of Musical Sounds and Harmony. By Sedley Taylor,
M.A. Illustrated. Second Edition. l2mo. ^2.50.

THOMSON. Works of J. J. Thomson, Professor of Experimental Physics in

the University of Cambridge.
A Treatise on the Motion of Vortex Rings. An Essay. With Dia-

grams. 8vo. ^1.75.

Application of Dynamics to Physics and Chemistry. i2mo. jSi.90.

THOMSON. Works of Sir W. Thomson, F.R.S. Professor of Natural

Philosophy in the University of Glasgow.

Mathematical and Physical Papers.
Vol. I. 8vo. ^5.00. Vol. II. 8vo. $4.50. Vol. III. 8vo. 85.50.

Popular Lectures and Addresses on Various Subjects in Physical
Science.
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Vol. I. Constitution of Matter. i2nio. $2.00.

Vol. II. Geology and General Physics. i2ino. $2.00.

Vol. III. Navigational Affairs. With Illustrations. i2mo. J2.00.
On Elasticity. 4to. ^1.25.

On Heat. 4to. J!i.25.

TODHUWTER : A History of the Theory of Elasticity. By Isaac Tod-
hunter. Edited by Professor Karl Pearson.

Vol. I. Galilei to Saint-Venant, 1639-1850. 8vo. td.ao.

Vol. II. Saint-Venant to Lord Kelvin (Sir William Thomson). In Two
Parts. %T.yi.

TURNER : A Collection of Examples on Heat and Electricity. By H. H.
Turner, B.A. i2mo. 75 cents.

WALKER: The Theory and Use of a Physical Balance. By James
Walker, M.A. With Illustrations in Collotype and Photolithography.

8vo. 90 cents.

WATSON and BURBURY. Works by H. W. Watson, D.Sc, and S. H.
EUEEURY, M.A.

A Treatise on the Application of Generalized Co-ordinates to the
Kinetics of a Material System. 8vo. S1.50.

WOOD: Light. By Sir H. Truman Wood. i6mo. 60 cents.

WOOLCOMBE: Practical Work in Heat. For Use in Schools and Col-

leges. By W. G. WooLCOMBE, M.A., B.Sc, Senior Science Master in

King Edward's High School, Birmingham. Crown 8vo. pp.61. jSx.oo.

WRIGHT: Light. A Course of Experimental Optics, Chiefly with the

Lantern. By LEWIS Wright. With nearly 200 Illustrations. i2mo.

S2.50.

ELECTRICITY AND MAGNETISM.

ALLSOP (F. C.) : Practical Electric Light Fitting. 200 Illustrations.

% 1.50.

BENNETT : The Telephoning of Great Cities. Paper. 35 cents.

BLAICESLEY : Alternating Currents of Electricity. Third Edition, En-
larged. (/« the Press.)

BONNEY (G. E.) : Induction Coils. $ i.oo.

Electrical Experiments. A Manual of Instructive Amusement. With
144 Illustrations. i2mo. 75 cents.

BOTTONE (S. R.) : Electricity and Magnetism. With 103 Illustrations.

l6mo. 90 cents.

How to Manage the Dynamo. A Handbook for Ship Engineers, Elec-

tric Light Engineers, etc. l5mo. 60 cents.

A Guide to Electric Lighting. By S. R. Bottone, author of " Electric
' Bells, and All About them," " Electromotors : How Made, and How

Used," etc. With Many Illustrations, 75 cents.

CAVENDISH : The Electrical Researches of the Honourable Henry Cav-
endish, F.R.S. Written between 1771 and 1781. Edited from the

original manuscripts of the late J. Clerk Maxwell, F.R.S. 8vo.

^55. 00.
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CUMMING : An Introduction to the Theory of Electricity. By Linn^us
Gumming, M.A. With Illustrations. i2mo. ^2.25.

DAY : Electric Light Arithmetic. By R. E. Day, M.A. i8mo. 40 cents.

EMTAGE : An Introduction to the Mathematical Theory of Electricity

and Magnetism. By W. T. A. Emtage, M.A., of Pembroke College,

Oxford. i2mo. $ 1.90.

GRAY: The Theory and Practice of Absolute Measurements in Elec-

tricity and Magnetism. By Andrew Gray, M.A., F.R.S.E. In

two volumes. Vol. I., l2mo. $Z-2S. Vol. II. (in two parts). $6.25.

Absolute Measurements in Electricity and Magnetism for Beginners.
By Andrew Gray, M.A., F.R.S.E. Students' Edition, Abridged from

the larger work. i6mo. i$ 1.25.

GUILLEMIN: Electricity and Magnetism. A Popular Treatise. By
Am£d£e Guillemin, author of " The Forces of Nature," " The Applica-

tions of Physical Forces," etc. Translated and edited, with Additions

and Notes, by Professor SiLVANUS P. Thompson, author of " Elemen-
tary Lessons in Electricity and Magnetism," etc. With 600 Illustra-

tions. Super royal 8vo. $ 8.00.

HAWKINS and WALLIS : The Dynamo. Its Theory, Design, and Manu-
facture. By C. C. Hawk_.:s and F. Wallis. With 190 Illustrations.

$ 30O-

HEAVISIDE (Oliver): Electrical Papers. For Advanced Students in

Electricity. 2 vols. 8vo. $ 10.00.

HERTZ (H.) : Researches in the Propagation of Electrical Forces. Au-
thorized Translation by D. E. Jones, B.Sc. Illustrated. 8vo. $ 3.00.

JACKSON (D. C.) : A Text-Book on Electro-Magnetism and the Construc-

tion of Dynamos. By DuGALD C. Jackson, B.S., C.E., Professor uf

Electrical Engineering, University of Wisconsin. i2mo. ;y2.25.

LODGE (Oliver J.) : Modern Views of Electricity. By Oliver J. Lodge,
LL.D., D.Sc, F.R.S. Illustrated. ;j2.oo.

Lightning Conductors and Lightning Guards. With Numerous Illustra-

tions. $ 4.00.

MAXWELL : An Elementary Treatise on Electricity. By James Clerk
Maxwell, M.A. Edited by William Garnett, M.A. Second Edi-

tion. 8vo. )f 1.90.

A Treatise on Electricity and Magnetism. By James Clerk Max-
well, M.A. 2 vols. 8vo. Second Edition. $ 8.00.

Supplementary volume, by J. J. Thomson, M.A. {54.50.

MAYCOCK: A First Book of Electricity and Magnetism. For the Use
of Elementary Science and Art and Engineering Students and General
Readers. By W. Perren Maycock, M.I.E.E. With 84 Illustrations.

Crown 8vo. 60 cents.

Electric Lighting and Power Distribution. Illustrated. Complete in

three parts. l6mo. Paper. 75 cents each.

MURDOCK: Notes on Electricity and Magnetism. Designed as a com-
panion to Silvanus P. Thompson's " Elementary Lessons in Electricity

and Magnetism." By J. B. Murdock, Lieut. U.S.N. i8mo. New
Edition. 60 cents.

POOLE : The Practical Telephone Handbook. By Joseph Poole. With
227 Illustrations. Small crown 8vo. $ I.CO.
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PREECE and STUBBS : A Manual of Telephony. By Wm. Henry
Pkeece and Arthur J. Stuebs. i!4.5o.

RUSSELL : Electric Light Cables and the Distribution of Electricity.

By Stuart A. Russell, A.M., I.C.E. With over loo Illustrations.

i2ino. $2.25.

STEWART and GEE : Practical Physics for Schools and Junior Stu-
dents of Colleges. By Balfour Stewart, M.A., LL.D., F.R.S., and
W. W. Haldane Gee, B.Sc.

Vol. I. Electricity and Magnetism. i6mo. 60 cents.

Lessons in Elementary Practical Physics. By Balfour Stewart,
M.A., LL.D., F.R.S., and W. W. Haldane Gee, B.Sc.

Vol. II. Electricity and Magnetism. i2mo. $2.2.tj.

THOMSON : Notes on Recent Researches in Electricity and Magnetism.
Intended as a Sequel to Professor Clerk Maxwell's "Treatise on
Electricity and Magnetism." By J. J. Thomson. 8vo. ^64.50.

THOMSON : Reprints of Papers of Electrostatics and Magnetism. By
Sir William Thomson, D.C.L., LL.D., F.R.S., F.R.S.E. 8vo. ;?5.oo.

THOMPSON : Elementary Lessons in Electricity and Magnetism. By
SiLVANUS P. Thompson, D.Sc, B.A., F.R.A.S. New Edition. With
Illustrations. l6mo. $1.25.

Notes to the same, by J. B. Murdock. 60 cents.

WALKER: How to Light a Colliery by Electricity. 4to. Limp. 75
cents.

Town Lighting by Electricity. (/« the Press.')

WATSON and BURB0RY: The Mathematical Theory of Electricity

and Magnetism. By H. W. Watson, D.Sc, F.R.S., and S. H. Bur-
bury, M.A.

Vol. I. Electrostatics. 8vd. % 2.75.

II. Magnetism and Electrodynamics. Svo. If) 2,60.

HISTORICAL.

BALL : Works by Walter W. Rouse Ball.
A Short Account of the History of Mathematics. i2mo. JS2.60.

History of the Study of Mathematics at Cambridge. i2mo. $ 1.90.

BARROW : Mathematical Works. Edited by W. Whewell. ^12.25.

CAYLEY (Arthur) : The Collected Mathematical Papers of. To be
completed in ten volumes. Vols. I.-VI. published. ^5.50 each.

GOW : A Short History of Greek Mathematics. By J. Gow, Svo. S3.00.

HEATH: Diophantos of Alexandria. A Study in the History of Greek
Algebra. By T. L. Heath, B.A. Svo. $2.25.

KLEIN : Lectures on Mathematics. The Evanston Colloquium. Reported
by Alexander Ziwet. Si. 50.

SMITH (Henry J. S.) : Mathematical Papers. With Portrait and Me-
moir. 2 vols. (/« the Press^

WOOLWICH: Mathematical Papers. Edited by E.J. Brooksmith, B.A.
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"While technical and exact enough to be of value to the specialist in mathematics as a
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By WALTER W. ROUSE BALL.

i2mo. JS1.90.
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OF
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By JAMES GOW.

8vo, $Z-^o.

"... Evidently the production of a scholar, and the result of years of laborious research.
Mr. Gow divides his history into three parts. The first treats of the decimal scale and Egyp-
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