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Collective foraging, based on positive feedback and quorum
responses, is believed to improve the foraging efficiency of
animals. Nutritional models suggest that social information
transfer increases the ability of foragers with closely aligned
nutritional needs to find nutrients and maintain a balanced
diet. However, whether or not collective foraging is adaptive
in a heterogeneous group composed of individuals with
differing nutritional needs is virtually unexplored. Here we
develop an evolutionary agent-based model using concepts
of nutritional ecology to address this knowledge gap. Our
aim was to evaluate how collective foraging, mediated by
social retention on foods, can improve nutrient balancing in
individuals with different requirements. The model suggests
that in groups where inter-individual nutritional needs are
unimodally distributed, high levels of collective foraging
yield optimal individual fitness by reducing search times that
result from moving between nutritionally imbalanced foods.
However, where nutritional needs are highly bimodal (e.g.
where the requirements of males and females differ) collective
foraging is selected against, leading to group fission. In this
case, additional mechanisms such as assortative interactions
can coevolve to allow collective foraging by subgroups
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of individuals with aligned requirements. Our findings indicate that collective foraging is an
efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and
exhibiting a range of social forms.

1. Introduction
Many species live in heterogeneous environments in which essential resources are patchily distributed.
Foraging decisions, which have a large impact on fitness, can be especially complex, leading some
animals to exploit social information emanating from their conspecifics in locating and selecting foods
[1,2]. In gregarious animals, such as many insects, fish, birds and ungulates, social information transfer
may result in collective foraging decisions whereby all (or most) individuals in the group decide
to exploit the same food resource from several available alternatives [3–5]. Typically, these collective
dynamics are driven by positive feedback and quorum responses, whereby the probability of an
individual choosing a resource varies positively and nonlinearly with the number of individuals already
exploiting that resource [4,6]. Through these processes, groups often make faster and/or more accurate
decisions than isolated animals, a phenomenon known as swarm intelligence [4,6]. To date, research
on collective foraging behaviour has largely focused on identifying the mechanisms that underpin
collective decision-making. However, little is known about the evolutionary roots of this widespread
phenomenon [7].

Insightful data come from studies on insects, which exemplify how relatively simple social
interactions, such as social retention on, or attraction to, foods based on the number of conspecifics
already exploiting that food, can impact the foraging decisions and efficiency of individuals [6,8–10].
Informal comparisons of experimental data suggest that the fitness benefits of collective foraging depend
on a subtle interplay between the strength of social effects in a species and the availability of resources
in their environment. For instance, studies on domiciliary cockroaches (Blattella germanica) illustrate how
the number of conspecifics already feeding on a food can influence the choice of an individual, with larger
groups being more likely to attract new recruits [11,12]. It is hypothesized that this simple mechanism
provides an individual cockroach with an honest signal about the quantity and/or quality of a food
source enabling grouped cockroaches to make more accurate decisions than isolated conspecifics [12]. By
contrast, experiments in tent caterpillars (Malacosoma disstria) indicate that the strength of social retention
may compromise the quality of nutritional decisions, which individuals alone make with some accuracy
[13]. These differential findings highlight an interesting potential trade-off between group foraging,
which may increase the efficiency of individual decision-making, and the specific nutritional needs of
the individual.

Conceptual progressions in nutrition research show that foraging decisions are intrinsically
complicated by the fact that individuals must take into account their needs for multiple nutrients, which
may be contained in differing amounts and ratios in those foods available [14]. Ultimately studies on
the evolution of collective foraging decisions must capture the complex multidimensional nature of
nutrition, rather than solely focusing on the acquisition of a single resource (e.g. energy [15]). Recently,
Lihoreau et al. [16] developed an agent-based model (ABM) derived from nutritional geometry, a state-
space modelling framework for conceptualizing the nutritional decisions of animals (figure 1a and box 1)
[14,17,18] to explore the efficiency of collective foraging in complex multi-nutrient environments. Their
model suggests that an optimal level of social retention (termed Ksoc), whereby foragers are more likely
to remain on and eat from heavily occupied food sources, improves the nutritional performance of
individuals. This simple form of information transfer is sufficient to enable individuals to efficiently
comprise a balanced diet from individually imbalanced, but collectively complementary, foods [18].
While this is an important first step, this approach overlooks inter-individual variation in nutritional
requirements, which is likely to be present in most animal groups (cf. [15]). A recent meta-analysis
exemplifies the probable ubiquity of such variability in species from different trophic levels and a
wide range of taxonomic groups [24]. In part, this variation may be readily predictable based on
phenotype, for example if the nutrient requirements of an individual vary with age or sex [14,25].
However, even where groups of individuals appear to be outwardly homogeneous, as for instance
in a cohort of same sex individuals, heterogeneity in other traits such as metabolic rate may result
in variance in nutritional requirements [24]. Given that the nutritional needs of all individuals in a
group may never be perfectly aligned, does collective foraging still improve the foraging efficiency
of individuals?
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Figure 1. Nutritional geometry models. (a) Nutritional geometry (see box 1) model for two nutrients, e.g. protein on the x-axis and
carbohydrate on the y-axis. In this example, the individuals’ requirements are given by a single coordinate known as the intake target
(IT; grey cross hair). The environment contains two foods. Food A is rich in carbohydrate (10 parts to each part protein) and food B is rich
in protein. An individual has been able to move its nutritional state (NS) towards the IT, by eating food A for meal 1 and food B for meal
2 (sequence of black arrows). (b) While a single IT may adequately represent the mean requirements of all individuals in a group (grey
cross hair), in reality there is likely to be within-group variance, with each individual having its own IT (for a hypothetical group of 20
individuals given here by black points). (c) In some instances, variance in nutritional requirements may be predictable. For example, if
the group is composed of individuals with two phenotypes with distinct nutritional requirements (e.g. male and female), individual ITs
(black points) may be bimodally distributed in two subgroups around an overall mean (grey cross hair).

Box 1. Key principles of nutritional geometry.

Nutritional geometry is a state-based modelling approach for studying the nutritional strategies
of animals, based on graphic representations of individuals, their nutritional requirements,
foods and the interactions thereof in a geometric space [14,17,18]. Over recent years, this
conceptual framework has become increasingly used to study how animals regulate their
acquisition of multiple nutrients simultaneously, and how this varies across feeding guilds,
trophic levels and taxonomic groups. In the most basic nutritional geometry models, two
nutrients (such as the macronutrients protein and carbohydrate) are depicted in a two-
dimensional Cartesian coordinate system forming a nutrient space (see example in figure 1a).
An individual’s nutritional state (NS) is denoted by its (x, y) coordinates, and moves through
the nutrient space when foods are eaten. Foods are radials projecting through the nutrient
space at angles from the origin determined by the ratio of the component nutrients contained
(nutritional rails; figure 1a). The nutritional requirements of an individual are given by a
single coordinate or a broader region within the nutrient space known as the intake target (IT,
figure 1a) [14]. Multiple ITs may maximize different life-history traits in the same individual
(e.g. maximize growth, reproduction or longevity [19,20]). However, evolutionary theory and
experimental evidence suggest that animals evolve strategies that attempt to reach the IT that
maximizes overall evolutionary fitness [14,19,21,22]. While most previous nutritional geometry
models have assumed that a single IT would maximize the fitness of all individuals within a
group or population (e.g. [23]), it is becoming increasingly clear that inter-individual variation
in ITs is abundant (figure 1b) [24]. In the relatively homogeneous groups, this variation may
be captured by a unimodal distribution of individual ITs surrounding the group mean IT
(figure 1b). In more heterogeneous groups, these ITs may have discrete distributions, separating
the group into distinct subgroups, as for example, in the case of sex-specific nutritional needs
where the ITs of mixed-sex groups may be bimodally distributed (figure 1c).

Here we explored the costs and benefits of collective foraging for nutrient balancing in groups
with increasing levels of inter-individual variance in nutritional requirements. We have developed a
nutritional geometry focused ABM in which we assigned each agent an individual value of the group
retention parameter Ksoc. Allowing Ksoc to mutate across generations, we then used an evolutionary
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algorithm to explore how ecological and nutritional aspects of the environment affect optimal levels of
group retention. Among those factors explored, we tested how aspects of inter-individual variation in
nutrient needs interact with the composition and number of foods available to govern the degree of Ksoc

that optimizes an individual’s ability to meet its nutritional requirements.

2. Material and methods
2.1. Agent-based model overview
All models were coded and simulation experiments performed in the ABM programming environment
Netlogo 5.1 [26]. Model data were analysed and plotted in the statistical programming environment R v.
3.1.2 [27]. Below, we describe our model using the overview, design and details format as is now widely
adopted for ABMs [28–30]. All Netlogo code can be found in the electronic supplementary material, S2
‘Netlogo Code’.

2.1.1. Purpose

The ABMs have been programmed to evaluate how within-group heterogeneity affects the efficacy of
social retention as a mechanism to improve individual foraging in a complex nutritional environment.
Previous models suggest that a relatively high level of social retention is optimal when all individuals
have equal needs [15,16]. Here, we use an evolutionary algorithm to explore how this optimal level of
social retention varies with inter-individual variation in nutrient requirements.

2.1.2. Entities, states, variables and scales

The ABM is made up of individuals and their environment. The environment is a two-dimensional
Cartesian coordinate system representing the space available for two nutrients (i.e. figure 1a;
implemented as in Senior et al. [23]). Each individual’s nutritional state (NS; all parameters and variables
are summarized in table 1) is given by its (x, y) coordinates. An individual’s fitness (F) is maximized when
its NS reaches its intake target (IT; figure 1a,b). Individuals are given a fixed period to reach their IT before
the next generation begins, and generations are non-overlapping. The group has a mean IT of (μx, μy)
and we alter the distribution of individual ITs around this mean. An individual’s NS moves as it eats.
There are Nfood foods in the environment, each defined by a nutritional rail: a radial projecting through
the nutrient space at an angle corresponding to the nutrient balance (V) of that food (figure 1a). That
is, increasing Nfood increases the diversity of foods, but not their total abundance. Individuals can only
eat one food at a time and thus their NS moves in parallel to the nutritional rail for the food consumed
(figure 1a). After eating an amount of a food (ϕ), an individual may seek an alternative, based on its own
nutritional requirements and the number of other individuals consuming that food. The importance
ascribed to these two factors is governed by a social retention parameter, Ksoc, which evolves. The higher
the value of Ksoc, the lower the probability an individual will leave a popular food. We assume that foods
can be patchily distributed in space and that there is a travel time (T) associated with moving between
foods; we have explored the effects of different values of this time-cost on the evolution of Ksoc. The
distribution of individual ITs is governed by σ IT and B (B is a fixed global parameter which governs the
degree of bimodality in ITs; table 1, figure 1c). We also explored variation in ability to consume food, ϕ,
although no effects were observed (see electronic supplementary material, S1 and figure S1). The model
runs for 1000 generations with Ksoc values randomly mutating at each generation, and F governing an
individual’s representation in the subsequent generation. Note that our aim is not to precisely mimic
evolution by natural selection but to explore optimal levels of Ksoc under different environments and
levels of group heterogeneity.

2.1.3. Process overview and scheduling

On each iteration of the ABM, the following three processes occur (detailed below, and in figure 2a):
(i) ‘Find Food’, where those individuals not located on a food find one; (ii) ‘Eat’, where individuals
located on a food eat some of it (i.e. move their NS through the environment); and (iii) ‘Leave Food’,
where individuals may decide to leave a food on which they are feeding to seek an alternative. A new
generation begins after 500 iterations. Data on the evolution of Ksoc are recorded after 1000 generations.
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Table 1. All model parameters and variables, their notation, level of operation and values (s.d.= standard deviation).

variable/parameter notation level description value

nutritional state NS individual an individual’s nutritional state, as
tracked by its (x, y) position in the
nutrient space

variable (x, y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fitness F individual an individual’s fitness, which is a
function of the Euclidean distance
between an individual’s NS and its
IT

variable (equation
(2.5))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

intake target IT individual an individual’s IT is the (x, y) coordinate
in the nutrient space that
maximizes F

variable (x, y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

group mean IT (μx,μy) global the mean IT (i.e. requirements) of the
group for the nutrients on x- and
y-axes

(500, 500)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of foods Nfood global the number of food types (i.e. food
rails) present in environment

2, 3 or 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nutrient balance V global the amount of y-axis nutrient present
within a food, relative to each part
of the x-axis nutrient (e.g.
carbohydrate to protein in figure 1a)

0.0625, 0.25 1, 4 and 16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

capacity to eat
food

ϕ individual the maximum amount of food that an
individual can eat on one time step

2; see [25]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

social retention K soc individual the degree to which an individual takes
into account the popularity of a
food, when evaluating whether to
seek an alternative

variable and evolvable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

time-cost T global the time-cost associated with finding
an alternative food

0–4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

standard
deviation in IT

σ IT global the s.d. in ITs (inter-individual) 0–75

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bimodality B global the degree of bimodality in ITs (see
equations (2.1) and (2.2))

0–0.5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deviation from
the mean IT

ε individual the amount that an individual’s IT
deviates from the group mean

random-normal with
mean= 0,
s.d.= σ IT

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

distance to the IT D individual the Euclidean distance between an
individual’s NS and their IT

variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ideal food rail α ideal individual the angle in radians of the ideal food
rail connecting an individual’s NS
with their IT

variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

food ‘popularity’ P individual the proportion of the group located on
the same food as a given individual

variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

assortative
interactions

Aint individual a binary variable denoting whether an
individual is able to discriminate
between and interact with
conspecifics on the basis of their
nutritional needs (1), or not (0)

0 or 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2. Themodel’s implementation of nutritional geometry. (a) Overview of the flowof events in the agent-basedmodel. The cycle of
events is repeated 500 times, before the next generation. Generations are non-overlapping and individuals are processed randomly (see
details inMaterial andmethods). (b) A schematic of themodel’s implementation of nutritional geometry [14]. The individual’s nutritional
state (NS) is given as an open point, with its intake target (IT) given as a grey cross hair. The individual is eating a food with a food rail
denoted by a solid black line. A hypothetical ideal food (given by the grey dashed line) would allow the individual to reach the IT. The
amount of the actual food to eat (i.e. distance to move) to minimize the Euclidean distance between the individual’s NS and the IT is
found by multiplying D by the angular difference between the ideal food rail and the angle of the actual food rail (arctangent of V/1). All
parameters and variables are given in table 1. Adapted from Senior et al. [23].

2.2. Design concepts
Basic principles. We are interested in understanding how inter-individual variance in nutrient
requirements influences optimal social retention during foraging.

Emergence. We are interested in the emergence of social retention, as given by the evolution of the
parameter Ksoc. We observe how this parameter evolves under varying distributions of nutritional
requirements and environments.

Adaptation. An individual cannot adapt, but Ksoc does evolve across generations.

Objectives. All individuals aim to reach their IT, which is the point in nutritional space that maximizes
fitness, before the end of the generation.

Sensing. Individuals can sense the proportion of the group that is feeding on the same food as themselves.

Stochasticity. Many events in the ABM occur via Bernoulli trials and certain individual traits vary by
values drawn from random distributions. For example, random variation in ITs is drawn from a random-
normal distribution (see below for details).

Collectives. Collections of individuals can form on foods, the size of which will be dependent on the
current values of Ksoc.

Observation. Mean Ksoc values of the entire group are observed after 1000 generations, where each
generation consists of 500 model iterations.

2.3. Details

2.3.1. Initialization

The model is initialized with 100 individuals with a NS of (0,0), and Ksoc = 0. Individuals set an
individual IT as given by either equation (2.1) or (2.2) with equal probability:

IT(x, y) = (μx + ε + μxB, μy + ε − μyB) (2.1)
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and

IT(x, y) = (μx + ε − μxB, μy + ε + μyB), (2.2)

where μx and μy are the group mean requirements of the nutrients given on the x- and y-axes, B is a
fixed global parameter taking values between 0 and 0.5 and governing the degree of bimodality in the
ITs of all individuals (figure 1c) and ε is a value drawn from a random-normal distribution with a mean
of 0 and standard deviation of σ IT. Thus, as σ IT increases, random variation is added to an individual’s
IT in both the x- and y-dimensions simultaneously, and as B increases individual ITs separate into two
subgroups.

2.3.2. Find food

Those individuals that are not located on a food must find one. We assume a patchy environment, and
thus every time an individual leaves a food they must spend T iterations searching. After T iterations
without food an individual is randomly assigned a food from one of those available (all foods are
assigned with equal probability). T may thus be thought of as the travel time between foods, or more
conceptually how patchily foods are distributed. Given individuals have a fixed generation time to reach
the IT, the inclusion of T thus constitutes a time-cost associated with moving between foods, which
induces the selection pressure on Ksoc. The order of magnitude of T is only relevant in the context of the
amount of time individuals are given to reach the IT. However, the specific value of T will impact the
strength of selection on Ksoc. Previous models constrain T to a single value (T = 2 [16]), however, here
we relax this constraint and explore a range of T values, including 0, which gives us an estimate of the
evolution of Ksoc in an environment where different foods are continuously distributed.

2.3.3. Eat

Eating constitutes an individual moving its NS through the nutrient space in parallel to the nutritional
rail of the food consumed. The distance moved (i.e. amount eaten) is given by:

distance moved = min{ϕ, D cos |αideal − arctan V|}, (2.3)

where ϕ is the maximum amount of food that an individual is capable of eating on one iteration, D
is the Euclidean distance between the individual’s IT and their NS, αideal is the angle (in radians) of
a hypothetical ideal food rail connecting the individual’s NS with their IT and the arctangent of V is
the angle of the food rail of the food being consumed (a graphical representation of this model is given
in figure 2b). Accordingly, individuals follow the ‘closest distance rule of compromise’ as defined by
Simpson & Raubenheimer [14], whereby when possible individuals consume a food to minimize the
Euclidean distance between their NS and IT (also see [16,23]).

2.3.4. Leave food

An individual’s decision to leave a food is a probabilistic function of its own nutritional requirements (i.e.
whether the food will allow the individual to reach its IT), and the choice of the rest of the population.
The balance between these two factors is controlled by an individual’s Ksoc via:

probability of leaving = max{0.05, (1 − Ksoc)|αideal − arctan V| + Ksoce−7P}, (2.4)

where e is the base of the natural logarithm, P is the proportion of the group currently consuming
the same food as the individual (or the food’s ‘popularity’) and all other parameters are as above.
Accordingly, individuals with high Ksoc are highly influenced by the behaviour of the rest of the group
(P), and individuals with lower Ksoc values pay more attention to whether the food will meet their
own nutritional needs (|αideal – arctanV|). We also assume that all individuals have an innate minimum
probability of leaving a food of 0.05 (representing the likelihood an individual may make an imperfect
decision; following [16]).

2.3.5. Next generation

After 500 iterations of the above a new daughter generation begins. The fitness (F) of all individuals from
the parental generation is calculated via

F = e−2D, (2.5)

where all variables are as above. Thus, as individuals near their IT, their F approaches 1. The size of the
daughter generation is fixed at 100 individuals. Each individual inherits a value of Ksoc from a parent of
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the previous generation. At the point of inheritance (i.e. between generations), Ksoc mutates by a value
drawn at random from a normal distribution with a mean of 0 and standard deviation of 0.025 (and
Ksoc is bound at 0 and 1). All individuals in the parent group with F ≥ 0.25 (F < 0.25 is not considered fit
enough to reproduce) have a probability of being selected as the parent of an individual in the daughter
group proportional to F (for details see Senior et al. [23]). Individuals within the daughter generation
have an initial NS of (0, 0), and define their IT following ‘Initialization’ above. The parent generation is
then replaced.

3. Results
We varied the individual heterogeneity variables, σ IT and B (values given in table 1) and measured the
group mean level of Ksoc at the end of 1000 generations under each set of variables. For each parameter
set we performed 30 model runs and report here the mean and 0.025–0.975 quantile of the results. We
explored those effects in differing nutritional environments (i.e. different Nfood and V; table 1), and under
differing assumptions about time-costs associated with finding foods (T).

3.1. Time-costs to foraging
First, we examined the efficiency of collective foraging in groups of individuals with the same IT (e.g.
figure 1a). In an environment with two nutritionally imbalanced but complementary foods and in the
absence of a time-cost to moving between foods (T = 0), low levels of Ksoc evolved and selection was
weak (i.e. highly variable values of evolved Ksoc; figure 3a). However, with any time-cost to searching
for foods (T ≥ 1), Ksoc evolved to be high and selection was strong (i.e. a narrow 0.025–0.975 quantile;
figure 2a). At T ≥ 1, mean Ksoc = 0.89 (0.025–0.975 quantile = 0.86–0.92), which is equivalent to the optimal
Ksoc estimated by Lihoreau et al. [16] in their systematic exploration of the same parameter space. By way
of contrast, with the inclusion of a third food that is nutritionally balanced relative to the group IT (rail
passing through the IT), increasing T resulted in only slight increases in mean Ksoc and in a very high
variance (at T = 4, mean Ksoc = 0.53 and 0.025–0.975 quantile = 0.20–0.85; figure 3b).

To explore the mechanisms underlying the evolution of social retention, we re-ran the model with
fixed Ksoc values (0.3 or 0.9) and T = 4 for a single generation. In both instances, we recorded the
movements of individuals through the nutrient space and the time they spent foraging. In the two-food
environment, low Ksoc individuals moved frequently in order to regulate their intake of nutrients, but
as a consequence spent a great deal of time foraging (figure 3c,e). By contrast, high Ksoc individuals
moved less frequently and took a wider path through the nutrient space (figure 3c). Consequently,
high Ksoc individuals spent roughly half as much time foraging as those with lower Ksoc (figure 3e).
In the three-food environment, all individuals spent little time foraging regardless of Ksoc, because
they quickly found the nutritionally balanced food and no longer searched for alternatives (figure 3d,f ).
Ultimately, in the absence of balanced foods containing an optimal nutrient mix for all group members,
high levels of social retention were selected for by reducing individual search times for nutritionally
complementary resources.

Further explorations of the model suggest that increasing the number of foods (Nfood = 4) selects for
lower Ksoc. In these conditions, high Ksoc forces individuals to move more often between foods, thereby
precluding groups from forming on a given food, preventing foragers from efficiently tracking their IT.
These effects are discussed in detail in the electronic supplementary material, S2 and figure S2.

3.2. Unimodal variation in individual nutrient requirements (σ IT)
Next, we examined the efficacy of collective foraging in heterogeneous groups, wherein each individual
had its own IT. Here, all ITs were unimodally distributed around the group mean (e.g. figure 1b) and
there was a high time-cost to moving between foods (T = 4). In these conditions, no single food was
balanced for all individuals. In a two-food environment, increasing variability in individual ITs (σ IT) had
no effect on evolved levels of Ksoc (figure 4a). However, the inclusion of a third food, which contained
an ideal mix of nutrients for the mean requirements of the group (rail passing through the mean group
IT), dramatically altered these effects. Counterintuitively, increasing σ IT selected for increases in Ksoc

(figure 3b). For example, in this three-food environment with σ IT = 0, mean Ksoc = 0.54 (0.025–0.975
quantile = 0.25–0.81), but with σ IT = 75, mean Ksoc = 0.84 (0.025–0.975 quantile = 0.52–0.93; figure 4b).

To understand the mechanisms underlying these effects, we re-ran the model and recorded the
movements of individuals through the nutrient space with fixed high or low Ksoc (0.3 or 0.9), T = 4 and
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Figure 3. Time-costs to foraging and the evolution of collective foraging. Mean and 0.025–0.975 quantile of K soc after 1000 generations
at differing levels of T based on 30model runs in (a) a two-food and (b) a three-food environment for homogeneous groups of individuals
with a single IT. Embedded in each panel is a geometric depiction of the nutritional environment showing the modelled food rails (V).
Traces of the movement of 100 agents through the nutrient space (grey lines), and their intake targets (grey cross hair) where T = 4 and
K soc = 0.3 (i) and K soc = 0.9 (ii) in (c) a two-food environment and (d) a three-food environment. The mean (±0.025–0.975 quantile)
proportion of that model run spent foraging (i.e. moving between foods), by those individuals in (e) a two-food environment and (f ) a
three-food environment.σ IT = 0 in all instances (see table 1 for all parameters and variables).

σ IT = 75 for a single generation. In the two-food environment, the benefits of group retention were high,
despite a large degree of variability in individual ITs. In these conditions, high Ksoc individuals spent less
time foraging than low Ksoc individuals (figure 4c,e). Thus, the benefits of reducing time spent foraging
outweighed any benefits associated with closely tracking an individual IT. In the three-food environment,
the presence of a food passing through the mean group IT (and thus being close to the requirements of
most individuals) caused variability in ITs to select for group retention. Where Ksoc is low, high variance
in individual ITs caused individuals to leave the food that passed through the mean group IT in order
to closely track their own ITs, spending a great deal of time foraging (cf. figure 3d,f, where σ IT = 0 and
Ksoc = 0.3, with figure 4d,f, where σ IT = 75 and Ksoc = 0.3). By contrast, high Ksoc (0.9) drew individuals
to the food with an equal ratio of nutrients, which had a nutrient balance that was relatively close to each
individual’s IT (although not meeting it exactly; figure 4d). Being attracted to this relatively balanced
food reduced the amount of time an individual spent foraging, allowing individuals to get closer to their
own IT than if they moved between foods frequently (figure 4df ). Therefore, despite high inter-individual
variation in nutritional needs, social retention still enhances the ability of individuals to balance their diet
from multiple complementary foods in this case.

3.3. Bimodality in nutrient requirements
As well as unimodal variance in nutritional requirements, we also explored a more discrete form of
heterogeneity by generating groups with bimodal distributions of ITs (e.g. figure 1c). Overall, we detected
an interaction between the degree of bimodality (B) in ITs and the time-cost associated with locating
foods (T). As one would predict, in a two-food environment, increasing B decreased the mean level of



10

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150638

................................................

0 7560453015

(b)

pr
op

. t
im

e 
fo

ra
gi

ng

pr
op

. t
im

e 
fo

ra
gi

ng

sIT

0 7560453015
sIT

0

0.2

0.4

0.6

K
so

c
0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

K
so

c

0.8

1.0
(a)

(d)(c) (i) (ii) (i) (ii)

( f )(e)

Ksoc = 0.3 Ksoc = 0.9 Ksoc = 0.3 Ksoc = 0.9

Ksoc = 0.3 Ksoc = 0.9 Ksoc = 0.3 Ksoc = 0.9

Figure4. Unimodal variance in individual nutrient requirements and theevolutionof collective foraging.Meanand0.025–0.975quantile
of K soc after 1000 generations at differing levels of σ IT and T = 4 based on 30 model runs in (a) a two-food and (b) a three-food
environment. Embedded in each panel is a geometric depiction of the nutritional environment showing the modelled food rails (V),
and a visualization of variation in individual ITs at certain values (σ IT of 0, 37.5 and 75 are shown). Traces of the movement of 100 agents
through the nutrient space (grey lines) and their intake targets (black points), where T = 4,σ IT = 75 and K soc = 0.3 (i) and K soc = 0.9
(ii) in (c) a two-food environment and (d) a three-food environment. The mean (±0.025–0.975 quantile) proportion of that model run
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evolved Ksoc. However, decreases in Ksoc were only observed at higher levels of B (e.g. B > 0.25), and
with low levels of B mean evolved Ksoc remained high (figure 4). The degree to which Ksoc decreased at
high B was dependent on T. At low to moderate T (i.e. T = 1–3), high B only slightly reduced the evolved
level of Ksoc (mean Ksoc ≈ 0.7; figure 5). However, where both T and B were high, evolved Ksoc was low
(e.g. T = 4 and B = 0.5, mean Ksoc ≈ 0.3; figure 5).

The presence of a third food rail that meets the mean group IT (but of none of the individual
ITs) produced different results (shown in the electronic supplementary material, figure S3). In general,
in highly bimodal groups, collective foraging is not an efficient strategy, especially in environments
containing foods with balances of nutrients that meet the mean requirements of the group.

3.4. Assortative interactions
A simple mechanism to overcome the constraints that discrete distributions in ITs place on the evolution
of social retention may be assortative interactions, whereby group members only forage with those that
share their nutritional needs. To explore this, we included a trait that allows individuals to discriminate
between conspecifics on the basis of their ITs (Aint; table 1), which may coevolve with Ksoc. We assume
that Aint is a binary and heritable trait, where Aint = 1 allows individuals to interact only with those that
share their needs, and Aint = 0 does not (the probability of mutating from one state to the other was
0.01). Given that there may be time-costs associated with the processing of information for evaluating
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individuals prior to making a foraging decision, we also assume that individuals with Aint = 1 take an
additional iteration to locate a food source (i.e. the time-cost of moving between foods = T + Aint).

We found that where Aint could evolve, the constraints that B had on the evolution of Ksoc were
overcome. For example, in a two-food environment with high T and high B (4 and 0.5, respectively),
and where Aint and Ksoc can coevolve, Ksoc evolved to around 0.9 (figure 6a). This result contrasts with
the evolved Ksoc of 0.2 obtained under equivalent model setting where Aint could not evolve (figure 4).
We also found selection for Aint, despite the associated cost. Where B and T are high, Aint evolved to be
around 0.9 on average, but was selected against in all other areas of the parameter space (figure 6b). Thus,
time-costs associated with foraging as well as distinct bimodality in nutrient requirements may select
for the evolution of assortative foraging, whereby groups segregate into subgroups of individuals with
similar nutritional needs. See the electronic supplementary material, S3, figures S4 and S5, for equivalent
results in three- and four-food environments.

4. Discussion
Many animals, from insects to mammals, make collective decisions that enhance the speed and/or
accuracy of individual choices [5,31,32]. While previous studies show how collective foraging enables
individuals to select the richest or the largest available food resources in their environment [8–10],
little is known about whether and how individuals can also collectively regulate their acquisition of
vital nutrients from multiple imbalanced foods [15,16]. Our evolutionary model, based on concepts of
nutritional geometry, indicates that collective foraging is often an efficient strategy for nutrient balancing,
even in groups of individuals with different needs.

4.1. Collective foraging is adaptive in heterogeneous groups
In cases where nutrient intake must be balanced from complementary foods and there is a time-cost to
foraging, our model shows that social retention is an effective mechanism for preventing individuals
from over-investing in the time spent foraging. This prediction remained true in a number of instances
where the specific requirements of individuals actually varied, only appearing to be suboptimal when
the group contained an incredibly high degree of bimodality (i.e. figure 5). However, the presence
of a food that met the mean requirements of the group (i.e. a food rail passing through the mean
group IT) interacted with the distribution of ITs to determine optimal levels of social retention. When
such a food was present and intra-group variation in ITs was low, social retention was only weakly
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selected for, despite costs associated with foraging. Surprisingly, in this environment, increasing inter-
individual variance around a single mean (and therefore increasing potential conflict of interest between
individuals) selected for stronger social retention (i.e. figure 4b). Here, collective foraging caused
individuals to converge on a food that would meet their needs approximately, rather than over-investing
(in terms of foraging time) in attempting to accurately cater to the idiosyncrasies of their own dietary
requirements. Ecological scenarios such as those identified by our model may help explain how group
retention can evolve to be so strong that it effectively traps individuals on nutritionally imbalanced foods,
overriding their own nutritional needs, such as has been observed in the forest-tent caterpillar [13], where
experimental conditions do not necessarily match natural nutritional environments.

Given the above, we can make a number of predictions about where organisms might, or might not,
be expected to display collective foraging based on simple mechanisms of group retention. Namely,
our model states that social retention becomes maladaptive under three circumstances: (i) where there
is no cost associated with nutrient balancing (e.g. foods are nutritionally balanced or not patchily
distributed); (ii) when the environment becomes increasingly complex (large numbers of different types
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of foods patchily distributed), and individuals are too sparsely scattered across patches to effectively
aggregate; and (iii) when the group has a highly bimodal distribution of requirements. Accordingly,
we may expect organisms that inhabit stable environments falling under one, or more, of the above
categories not to display social retention, whereas in the reciprocal environment the trait should evolve.
Testing such a prediction would necessitate cross-taxa comparative study. However, in organisms that
live in fluctuating environments, we might expect individuals to update and adapt their use of social
information in response to environmental change [2,33]. For such species, nutritional geometry provides
an experimental framework with which to evaluate the use of social information for nutrient balancing.
Foods with known nutritional composition can be created, allowing one to manipulate the composition
and distribution of foods in the environment [14]. In addition, if the species does not intrinsically contain
individuals with differing nutritional needs it may be possible to experimentally modify the distribution
of inter-individual requirements by manipulating individual NS (e.g. feeding individuals with differing
foods prior to the trial).

4.2. Assortative foraging and group heterogeneity
In the extreme case where inter-individual variance has a highly discrete (multimodal) distribution,
for instance, when groups are composed of distinct subsets of individuals with divergent needs, social
retention tended to be selected against. Bimodal distributions of ITs may be common in mixed groups
composed of males and females. Such observations have been made, for example, in field crickets
(Teleogryllus commodus) [25] and fruit flies (Drosophila melanogaster) [34,35], where females maximize
their reproductive fitness on diets richer in protein than males. Our results suggest that where the
differences between sexes in nutritional requirements are large, collective foraging may be selected
against. However, the constraints that sex-specificity in nutritional requirements place on the evolution
of group foraging are easily overcome if individuals interact in an assortative manner, for instance by
preferentially following individuals of the same sex rather than the group as a whole.

Sexual segregation of foraging groups has been observed in taxa ranging from marine and terrestrial
mammals to fish [36–38]. Numerous competing hypotheses have been proposed to explain this
behaviour [38], and comparative analyses restricted to large herbivores have provided perhaps the
best insights. A leading hypothesis, termed the ‘forage selection’, or ‘nutritional needs’ hypothesis,
explicitly states that sexual segregation results from differential dietary requirements of the sexes [37].
While support from comparative studies for this hypothesis has been mixed [37,39], data have focused
on looking for differences in ‘diet-quality’ (e.g. nitrogen content) between males and females, rather
than differences in diet composition per se (i.e. required ratios and amounts of nutrients, or ITs). Our
model suggests that bimodality in nutritional requirements, in combination with selective pressures that
favour collective foraging (e.g. time-costs associated with foraging), can lead to the emergence of such
sexual segregation.

4.3. Collective nutrient regulation and the evolution of group complexity
It has long been suggested that nutritional constraints, such as limited access to key nutrients, may
promote the evolution of cooperation and division of labour in animal groups [40–42]. However, the
lack of a conceptual framework for testing these hypotheses has long hampered such research. Our
theoretical exploration of the costs and benefits of social retention across multiple levels of group
heterogeneities suggests that nutritional factors such as spatial/temporal distribution of foods and
individual nutrient requirements are potential drivers of the evolution of collective foraging. Recently,
it has been proposed that levels of intra-group variance in ITs and NSs may become greater with
increasing degrees of social complexities, as one moves from forming temporary aggregations to living
in permanent and fully eusocial colonies that forage from a central sedentary location [15]. Group
living may increase inter-individual variance in requirements because of the simultaneous effects of
competition over nutrient acquisition, age structures or differential parental nourishment, all of which
are associated with cooperation and division of labour [43–45]. Ultimately, these factors may lead to
the evolution of highly integrated social groups containing multiple classes of individuals with discrete
ITs, as for instance the different castes of individuals that characterize the colonies of eusocial insects
(e.g. ants, bees, wasps, termites) [46]. Although not its primary aim, our model predicts an evolutionary
relationship between group heterogeneity (as measured by inter-individual variance in ITs) and social
interactions (collective foraging) that is modulated by the nutritional environment (nutrient balance of
available foods), partially supporting the above hypothesis.
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Our results further suggest that collective foraging is not selected for in groups composed of

individuals with highly divergent nutritional needs (i.e. bimodal distribution of ITs). However, this
does not necessarily mean that intra-group variance is incompatible with sociality. As we have shown,
in such species, additional mechanisms can evolve to mitigate the costs of collective foraging. For
instance, eusocial insects have evolved sophisticated collective regulatory behaviour whereby a subset
of individuals (the foragers) attempts to collect amounts and balances of nutrients that address the
divergent nutritional needs of all colony members. In these advanced societies, foragers are able to gather
foods that meet the high protein requirements of larvae and the queens, as well as the other adults that
are more reliant on carbohydrates, based on a complex system of nutritional feedback between colony
members [47–51].

4.4. Further development and conclusions
Our model, derived from nutritional geometry, provides a theoretical platform for exploring the costs
and benefits of collective foraging in complex nutritional environments. A major advantage of this
approach is that it generates specific predictions that can be empirically tested using well-established
experimental designs from nutritional geometry [18]. Using this framework, it is possible to combine
behavioural observations of groups of interacting animals feeding on chemically defined diets and to
correlate individual nutrient intakes with measures of fitness traits both at the individual and collective
levels [18]. Our model assumes a perhaps simplistic nutritional environment (i.e. foods are not finite and
do not shift spatially), as our focus is primarily on heterogeneity in individual needs, in an environment
that can be experimentally replicated. Future developments of our multidimensional approach, however,
could integrate spatio-temporal distributions of finite foods constituting different compositions of
essential nutrients, which ultimately determine the probability of a forager locating resources [52,53].
These factors constitute perhaps the most realistic costs to foraging in complex and ecologically
relevant environments. Temporal and spatial variability in food abundance will alter the value of
social information, thus affecting the nutritional strategy or strategies that will be optimal, both for an
individual and groups. What is more, finite food sources will intrinsically capture aspects of intra-group
conflict over a limiting resource, which will further affect the cost–benefit trade-off of group living.

Previous models demonstrate that simple mechanisms of social retention can optimize nutrient
balancing in groups with homogeneous nutritional requirements. Here we present the first evolutionary
ABM that re-evaluates the efficacy of such mechanisms for groups with heterogeneous nutritional
needs. Our model suggests that simple mechanisms of social retention can improve foraging efficiency
by reducing foraging times, even in relatively heterogeneous groups. Further, counterintuitively in
some nutritional environments, heterogeneity in nutritional needs may select for increased collective
decision-making. However, in groups with highly bimodal distributions of nutritional requirements (e.g.
where needs of the sexes differ greatly) additional mechanisms of assortative foraging must coevolve
alongside mechanisms of group retention, a potential route to the evolution of sexual segregation. Finally,
our model may imply an evolutionary relationship between nutritional requirements, the ecological
costs associated with foraging and the evolution of sociality, and provides a powerful framework for
investigating such relationships.
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