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r, i b n a r y

JNIVKRSITY OF

CALIFORNIA.

PREFACE TO THE ELEYENTH EDITION.

The first six books of the present Treatise are precisely

the first six books of Euclid's Elements. No alterations

whatever have been made in the arrangement of the propo-

sitions, nor any of importance in the demonstration of those

of the first four and sixth books. The same does not apply

to the fifth book. The doctrine of Proportion laid down by

Euclid in that book is an admirable specimen of reasoning

based on an abstract definition. In simplicity of treatment,

and in rigour of demonstration, this book leaves nothing to

be desired. But the geometrical representation of what is

essentially an arithmetical multiplication, renders the doc-

trine, as Euclid delivered it, somewhat difficult to be mas

tered. In the present treatise this difficulty has been

obviated by the introduction of the concise language of

algebra, whereby the reasoning is condensed and simpli-

fied, whilst the character of the demonstration remains un-

changed. By this means the steps of the argument are

brought near to one another, and the force of the whole is
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so clearly and distinctly perceived, that no more difficulty

should be experienced in understanding the propositions of

the fifth book than those of any other book of the Elements.

The Supplement consists of three books. The First Book

treats of the rectification and quadrature of the circle. In

the present edition, this book has been condensed and sim-

plified.

The Second Book treats of the intersections of planes, and

contains the most important propositions of the Eleventh

Book of Euclid.

The Third Book treats of Solids, and exhibits, in a simple

form, the most important propositions of the Twelfth Book

of Euclid.

The treatise on Plane Trigonometry has, in the present

edition, been increased by an additional section, containing

some numerical examples, with a popular account of the na-

ture and application of logarithms.

The treatise on Spherical Trigonometry, and the Notes,

are reprinted with little alteration from the last edition.

The whole work is now so well known and appreciated,

that a detailed explanatory preface is altogether superfluous.

PHILIP KELLAND.

College of Edinburgh,

June 1, 185t).
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ELEMENTS OE GEOMETEY.

BOOK FIKST.

DEFINITIONS.

I. A point is that which has position, but not magnitude.*

II. A line is length without breadth.

Corollary. The extremities of a line are points ; and the inter-

sections of one line with another are also points.

III. If two lines are such that they cannot coincide in any two
points, without coinciding altogether, each of them is called

a straight line.

Cor. Hence, two straight lines cannot enclose a space. Neither
can two straight lines have a common segment ; for they can-

not coincide in part, without coinciding altogether.

IV. A superficies is that which has only length and breadth.

Cor. The extremities of a superficies are lines ; and the inter-

sections of one superficies with another are also lines.

Y. A plane superficies is that in which any two points being
taken, the straight line between them lies wholly in that super-

ficies.

VI. A plane rectilineal angle is the inclination of two straight

lines to one another, which a
meet together, but are not
in the same straight line.

N.B.—When several an-
gles are at one point B,
any one of them is ex-
pressed by three letters,

of which the letter that is b c e~
at the vertex of the angle, that is, at the point in which the
straight lines that contain the angle meet one another, is put be-
tween the other two letters, and one of these two is somewhere

* See Notes.
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upon one of those straight lines, and the other upon the other

line : Thus the angle which is contained by the straight lines

AB, CB, is named the angle ABC, or CBA ; that which is con-

tained by AB, BD, is named the angle ABD, or DBA
;
and

that which is contained by DB, CB, is called the angle DBG,

or CBD ; but if there be only one angle at a point, it may be

expressed by a letter placed at that point ; as the angle at E.

VII. When a straight line standing on another

straight line makes the adjacent angles equal

to one another, each of the angles is called a

right angle ; and the straight line which

stands on the other is called a perpendicular

to it.

VIII. An obtuse angle is

that which is greater than

a right angle.

IX. An acute angle is that

which is less than a right

angle.

X. A. figure is that which is enclosed by one or more boundaries.

The space contained within a figure is called the Area of the
Figure.

XL A circle is a plane figure contained by one
line, which is called the circumference, and
is such that all straight lines drawn from a ,

certain point within the figure to the cir- '

cumference are equal to one another.

XII. This point is called the centre of the

circle.

XIII. A diameter of a circle is a straight line drawn through the

centre, and terminated both ways by the circumference.

XIV. A semicircle is the figure contained by a diameter and the

part of the circumference cut off by the diameter.

XV. Rectilineal figures are those which are contained by straight

lines.

XVI. Trilateral figures, or triangles, by three straight lines.

XVII. Quadrilateral, Toy four straight lines.

XVIII. Multilateral figures, or polygons, by more than four

straight lines.

XIX. Ofthree-sided fig-

ures, an equilateral

triangle is that which
has three equal sides.

XX. An isosceles tri-

angle is that which
has (only) two sides equal.

XXI. A scalene triangle is that which has three unequal sides.
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XXII. A right-angled triangle is that which has a right angle.

XXIII An
obtuse-an-

gled trian-

gle is that

which has

an obtuse

angle.

**XIV. An acute-angled triangle is that which has three acute

angles.

XXV. Of four-sided figures, a square

is that which has all its sides equal,

and all its angles right angles.

XXVI. An oblong is that which has

all its angles right angles, but has

not all its sides equal.

XXVII. A rhombus is that which
has all its sides equal, but its

angles are not right angles.

XXVIII. A rhomboid is that which
has its opposite sides equal to

one another, but all its sides are

not equal, nor its angles right angles.

XXIX. All other four-sided figures besides these are called Tra
peziums.

XXX. Straight lines which are in the same
plane, and being produced ever so far both
ways, do

Lines.

not meet, are called Parallel

POSTULATES.

I. Let it be granted that a straight line may be drawn from any
one point to any other points

II. That a terminated straight line may be produced to any length
in a straight line*

III. And that a circle may be described from any, centre, at any
distance from that centre,

AXIOMS.

I. Things which are equal to the same thing are equal to one
another.* ^S y

II. If equals be added to equals, the wholes are equal, r

III. If equals be taken from equals, the remainders are equal. \r

IV. If equals be added to unequals, the wholes are unequal. V^* ^

V. If equals be taken from unequals, the remainders are unequal. \f
VI. Things which are doubles of the same thing, are equal to one

another.

* See Notes,
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VII. Things which are halves of the same thing, are equal to one
another. ^/

VIII. Magnitudes which coincide with one another ; that is, which
exactly fill the same space, are equal to one another.

IX. The whole is greater than its part. &
X. Allright angles are equal to one another.

XI. Two straight lines which intersect one another, cannot be
both parallel to the same straight line.

PROPOSITION I. PROBLEM.
To describe an equilateral triangle upon a given finite

straight line.

Let AB be the given straight line ; it is required to describe an
equilateral triangle upon it.

From the centre A, at the distance

AB, describe (Postulate 3) the circle

BCD ; and from the centre B, at the

distance BA, describe the circle ACE;D [

and from the point C, in which the circles

cut one another, draw the straight lines

(Post. 1) CA, CB, to the points A, B

;

ABC is an equilateral triangle.

Because the point A is the centre of the circle BCD, AC is

equal (Definition 11) to AB ; and because the point B is the
centre of the circle ACE, BC is equal to AB : But it has been
proved that CA is equal to AB ; therefore CA, CB, are each of
them equal to AB ; now, things which are equal to the same
thing are equal to one another (Axiom 1) ; therefore CA is equal
to CB ; wherefore CA, AB, CB, are equal to one another ; and
the triangle ABC is therefore equilateral, and it is described upon
the given straight line AB. Which was required to be done.

PROP. II. PROB.

From a given point to draw a straight line equal to a given
straight line.

Let A be the given point, and BC the given straight line ; it is

required to draw, from the point A, a straight line equal to BC.
From the point A to B draw (Post. 1) the straight line AB

;

and upon it describe (I. 1) the equilateral tri-

angle DAB, and produce (Post. 2) the straight

lines DA, DB, to E and F ; from the centre

B, at the distance BC, describe (Post. 3) the

circle CGH, and from the centre D, at the dis-

tance DG, describe the circle GKL. The straight

line AL is equal to BC.
Because the point B is the centre of the

circle CGH, BC is equal (Def. 11) to BG ; and
because D is the centre of the circle GKL,
DL is equal to DG, and DA, DB, parts of them, are equal
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therefore the remainder AL is equal to the remainder (Ax. 3)

BG : But it has been shown, that BC is equal to BG ; wherefore,

AL and BC are each of them equal to BG ; and things that are

equal to the same thing are equal to one another ; therefore the

straight line AL is equal to BC. Wherefore, from the given

point A, a straight line AL has been drawn equal to the given

straight line BC. Which was to be done.

PROP. III. PROB.

From the greater of two given straight lines to cut off a part
equal to the less.

Let AB and C be the two given straight

lines, whereofAB is the greater. It is re-

quired to cut ofT from AB, the greater,

part equal to C, the less.

From the point A draw (I. 2) the straight

'

line AD equal to C ; and from the centre A,
and at the distance AD, describe (Post. 3)

the circle DEF ; and because A is the centre

of the circle DEF, AE is equal to AD ; but the straight line C is

equal to AD ; whence AE and C are each of them equal to AD
;

wherefore, the straight line AE is equal (Ax. 1) to C, and from
AB the greater of two straight lines, a part AE has been cut off
equal to C the less. Which was to be done.

PROP. IV. THEOREM.
If two triangles have two sides of the one equal to two sides of the

other, each to each; and have likewise the angles contained by

those sides equal to one another, their bases or third sides are

equal ; and the areas of the triangles are equal; and their

other angles are equal, each to each, viz., those to which the

equal sides are opposite *

Let ABC, DEF, be two triangles which have the two sides t

AB, AC equal to the two sides DE, DF, each to each, viz., AB
to DE, and AC to DF ; and let the a d
angle BAG be also equal to the angle
EDF : then shall the base BC be
equal to the base EF ; and the tri-

angle ABC to the triangle DEF
;

and the other angles, to which the

equal sides are opposite, shall be
equal, each to each, viz., the angle
ABC to the angle DEF, and the angle ACB to DFE.

For, if the triangle ABC be applied to the triangle DEF, so

that the point A may be on D, and the straight line AB upon
DE ; the point B must coincide with the point E, because AB is

* The three conclusions in this enunciation are more briefly expressed
by saying, that the triangles arc in every way equal.

t See Notes.
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equal to DE ; and AB coinciding with DE, AC must coincide with
DF, because the angle BAC is equal to the angle EDF ; where-
fore also the point C must coincide with the point F, because AC
is equal to DF : But the point B coincides with the point E ;

wherefore the base BC must coincide with the base EF (Cor. Def.

3), and be equal to it. Therefore also, the whole triangle ABC
must coincide with the whole triangle DEF, so that the spaces

which they contain, or their areas (Ax. 8) are equal, and the

remaining angles of the one must coincide with the remaining
angles of the other, and be equal to them, viz., the angle ABC to

the angle DEF, and the angle ACB to the angle DFE. There-
fore, if two triangles have two sides of the one equal to two sides

of the other, each to each, and have likewise the angles con-

tained by those sides equal to one another; their bases are equal,

and their areas are equal, and their other angles, to which the

equal sides are opposite, are equal, each to each. Which was to

be demonstrated.

PROP. V. THEOR.

The angles at the base of an isosceles triangle are equal to

one another ; and if the equal sides be produced, the angles

upon the other side of the base shall also be equal.

Let ABC be an isosceles triangle, of which the side AB is equal

to AC, and let the straight lines AB, AC be produced to D and
E ; the angle ABC shall be equal to the angle ACB, and the angle

CBD to the angle BCE.
In BD take any point F, and ftom AE the greater cut off

AG equal (I. 3) to AF the less, and join FC, GB.
Because AF is equal to AG, and AB to AC, the two sides FA,

AC are equal to the two GA, AB, each to each ; and they con-

tain the angle FAG common to the two triangles

AFC, AGB ; therefore the base FC is equal (I.

4) to the base GB, and the triangle AFC to the

triangle AGB ; and the remaining angles of the

one are equal (I. 4) to the remaining angles of

the other, each to each, to which the equal sides

are opposite, viz., the angle ACF to the angle F /

ABG, and the angle AFC to the angle AGB:
And because the whole AF is equal to the whole 'd ex

AG, and the part AB to the part AC ; the remainder BF is equal
(Ax. 3) to the remainder CG ; and FC was proved to be equal to

GB ; therefore the two sides BF, FC are equal to the two CG,
GB, each to each ; but the angle BFC is equal to the angle CGB

;

wherefore, the triangles BFC, CGB are equal (I. 4), and their

remaining angles are equal, to which the equal sides are opposite

;

therefore the angle FBC is equal to the angle GCB, and the angle
BCF to the angle CBG. Now, since it has been demonstrated
that the whole angle ABG is equal to the whole ACF, and the
part CBG to the part BCF, the remaining angle ABC is there-

fore equal to the remaining angle ACB, which are the angles at
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the base of the triangle ABC : And it has also been proved, that

the angle FBC is equal to the angle GCB, which are the angles

upon the other side of the base. Therefore, the angles at the

base, &c. Q. E. D.
Cor. Hence, every equilateral triangle is also equiangular.

PROP. VI. THEOR.

If two angles of a triangle be equal to one another, the sides

which subtend, or are opposite to them, are also equal to one
another.

Let ABC be a triangle having the angle ABC equal to the

angle ACB ; the side AB is also equal to the side AC.
For, if AB be not equal to AC, one of them must be greater

than the other : Let AB be the greater, and from it

cut (I. 3) off DB equal to AC the less, and join

DC ; therefore, because in the triangles DBC, ACB,
DB is equal to AC, and BC common to both, the

two sides DB, BC are equal to the two AC, CB,
each to each ; but the angle DBC is also equal to

the angle ACB ; therefore the base DC is equal to _
the base AB, and the area of the triangle DBC is B

equal to that of the triangle (I. 4) ACB, the less to the greater

;

which is absurd. Therefore, AB is not unequal to AC, that is,

it is equal to it. Wherefore, if two angles, &c. Q. E. D.
Cor. Hence, every equiangular triangle is also equilateral.

PROP. VII. THEOR.
Upon the same base, and on the same side of it, there cannot

be two triangles that have their sides which are terminated
in one extremity of the base equal to one another, and likewise

those which are terminated in the other extremity equal to one
another*

Let there be two triangles ACB, ADB, upon the same base

AB, and upon the same side of it, which have their sides CA,
DA terminated in A equal to one another; then their sides CB,
DB, terminated in B, cannot be equal to one c
another.

,
/\v>

Join CD, and if possible let CB be equal to

DB ; then, in the case in which the vertex of
each of the triangles is without the other triangle,

because AC is equal to AD, the angle ACD is

equal (I. 5) to the angle ADC : But the angle
ACD is greater than the angle BCD (Ax. 9) ; a b
therefore also, the angle ADC is greater than BCD ; much more
then is the angle BDC greater than the angle BCD. Again, be-
cause CB is equal to DB, the angle BDC is equal (I. 5) to the
angle BCD ; but it has been demonstrated to be greater than it

;

which is impossible.

* See Notes
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But if one of the vertices, as D, be within the other triangle

ACB
;
produce AC, AD to E, F ; therefore, because AC is equal

to AD in the triangle ACD, the angles

ECD, FDC upon the other side of the

base CD are equal (I. 5) to one another,

but the angle ECD is greater than the

angle BCD (Ax. 9) ; wherefore the angle

FDC is likewise greater than BCD; much
more than is the angle BDC greater

than the angle BCD. Again, because CB is equal to DB, the
angle BDC is equal (1. 5) to the angle BCD ; but BDC has been
proved to be greater than the same BCD ; which is impossible.

The case in which the vertex of one triangle is upon a side of the

other needs no demonstration.

Therefore, upon the same base, and on the same side of it,

there cannot bo two triangles that have their sides which are ter-

minated in one extremity of the base equal to one another, and
likewise those which are terminated in the other extremity equal
to one another. Q. E. D.

PROP. VIII. THEOR.

If two triangles have two sides of the one equal to two sides of
the other, each to each, and have likewise their bases equal

;

the angle which is contained by the two sides of the one is equal
to the angle contained by the two sides of the other*

Let ABC, DEF be two trian-

gles having the two sides AB,
AC, equal to the two sides DE,
DF, each to each, viz., AB to DE,
and AC to DF ; and also the base

BC equal to the base EF. The
angle BAC is equal to the angle

EDF. b c e
For, if the triangle ABC be applied to the triangle DEF, so

that the point B be on E, and the straight line BC upon EF
;

the point C must also coincide with the point F, because BC is

equal to EF ; therefore BC coinciding with EF, BA and AC must
coincide with ED and DF ; for, if BA and CA do not coincide

with ED and FD, but have a different situation as EG and FG,
then, upon the same base EF, and upon the same side of it, there

can be two triangles, EDF, EGF, that have their sides which are

terminated in one extremity of the base equal to one another, and
likewise their sides terminated in the other extremity ; but this is

impossible (I. 7) ; therefore, if the base BC coincide with the base

EF, the sides BA, AC cannot but coincide with the sides ED, DF ;

wherefore likewise, the angle BAC coincides with the angle

EDF, and is equal (Ax. 8) to it. Therefore, iftwo triangles, &c.

Q. E. D.

* See Note to Prop. IV.
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PROP. IX. PROB.

To bisect a given rectilineal angle ; that is, to divide it into two

equal angles.

Let BAC be the given rectilineal angle, it is required to bisect it.

Take any point D in AB, and from AC cut (I. 3) off AE
equal to AD

;
join DE, and upon it describe (1. 1) a

an equilateral triangle DEF ; then join AF ; the

straight line AF bisects the angle BAC.
Because AD is equal to AE, and AF is com-

mon to the two triangles DAF, EAF ; the two

sides DA, AF are equal to the two sides EA, AF,
each to each ; but the base DF is also equal to

the base EF ; therefore the angle DAF is equal

(I. 8) to the angle EAF ; wherefore the given

rectilineal angle BAC is bisected by the straight

line AF. Which was to be done.

PROP. X. PROB.

To bisect a given finite straight line; that is, to divide it into

two equal parts.

Let AB be the given straight line ; it is required to divide it

into two equal parts.

Describe (I. 1) upon it an equilateral triangle ABC, and bisect

(I. 9) the angle AOB by the straight line CD. AB is cut into

two equal parts in the point D.
Because AC is equal to CB, and CD common to the two tri-

angles ACD, BCD ; the two sides AC, CD are
equal to the two BC, CD, each to each : but the
angle ACD is also equal to the angle BCD

;

therefore the base AD is equal to the base (I. 4)
DB, and the straight line AB is divided into
two equal parts in the point D. Which was to

be done.

PROP. XL PROB.
To draw a straight line at right angles to a given straight

line, from a given point in that line.

Let AB be a given straight line, and C a point given in it ; it

is required to draw a straight line from the point C at right angles
to AB.

Take any point D in AC, and (I. 3) make CE equal to CD,
and upon DE describe (I. 1) the equi-
lateral triangle DFE, and join FC ; the
straight line FC, drawn from the given
point C, is at right angles to the given
straight line AB.

Because DC is equal to CE, and FC
is common to the two triangles DCF, .

ECF, the two sides DC, CF are equal to the two EC, CF, each to
each

; but the base DF is also equal to the base EF ; therefore the
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angle DCF is equal (I. 8) to the angle ECF ; and they are adja-

cent angles. But, when the adjacent angles which one straight

line makes with another straight line are equal to one another,

each of them is called a right (Def. 7) angle ; therefore each of

the angles DCF, ECF is a right angle. Wherefore, from the

given point C, in the given straight line AB, FC has been drawn
at right angles to AB. Which was to be done.

PROP. XII. PROB.

To draw a straight line perpendicular to a given straight line,

ofan unlimited length, from a given point without it.

Let AB be a given straight line, which may be produced to any
length both ways, and let C be a point without it. It is required

to draw a straight line perpendicular

to AB from the point C.

Take any point D upon the other

side of AB, and from the centre C,

at the distance CD, describe (Post. 3)

the circle EGF meeting AB in F, G
;

and bisect (1. 10) FG in H, and join

CF, CH, CG; the straight line CH, drawn from the given point
C, is perpendicular to the given straight line AB.

Because FH is equal to HG, and HC is common to the two
triangles FHC, GHC, the two sides FH, HC are equal to the two
GH, HC, each to each; but the base CF is also equal (Def. 11)
to the base CG ; therefore the angle CHF is equal (I. 8) to the
angle CHG ; and they are adjacent angles ; now, when a straight

line standing on a straight line makes the adjacent angles equal
to one another, each of them is a right angle, and the straight

line which stands upon the other is called a perpendicular to it

;

therefore, from the given point C a perpendicular CH has been
drawn to the given straight line AB. Which was to be done.

PROP. XIII. THEOR.
The angles which one straight line makes with another, upon one

side of it, are either two right angles, or are together equal to

two right angles.

Let the straight line AB make with CD, upon one side of it,

the angles CBA, ABD ; these are either two right angles, or are

together equal to two right angles.

For if the angle CBA be equal to ABD, each of them is a
right angle (Def. 7) ; but, if not, from the point B draw BE at

right angles (I. 11) to A E
CD ; therefore the an-
gles CBE, EBD are
two right angles. Now,
the angle CBE is equal
to the two angles CBA,
ABE together ; add the 5 b c d b
angle EBD to each of these equals, and the two angles CBE,
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EBD will be equal (Ax. 2) to the three angles CBA, ABE, EBD.
Again, the angle DBA is equal to the two angles DBE, EBA

;

add to each of these equals the angle ABC ; then will the two

angles DBA, A BC be equal to the three angles DBE, EBA, ABC
;

but the angles CBE. EBD have been demonstrated to be equal to

the same three angles ; and things that are equal to the same
thing are equal (Ax. 1) to one another ; therefore the angles CBE,
EBD are equal to the angles DBA, ABC; but CBE, EBD are

two right angles ; therefore DBA, ABC are together equal to two
right angles. Wherefore, the angles which one straight line,

&c. Q. E. D.

PROP. XIV. THEOR.

If, at a point in a straight line, two other straight lines, upon
the opposite sides of it, make the adjacent angles together

equal to two right angles, these two straight lines are in one and
the same straight line.

At the point B in the straight line AB, let the two straight lines

BC, BD, upon the opposite sides of AB, make the adjacent an-

gles ABC, ABD together equal to two right A
angles. BD is in the same straight line with

CB.
For, if BD be not in the same straight

line with CB, let BE be in the same straight

line with it ; therefore, because the straight /_________e
line AB makes angles with the straight line c b d
CBE, upon one side of it, the angles ABC, ABE are together
equal (I. 13) to two right angles ; but the angles ABC, ABD are

likewise together equal to two right angles ; therefore the angles
CBA, ABE are equal to the angles CBA, ABD : Take away the

common angle ABC, and the remaining angle ABE is equal
(Ax. 3) to the remaining angle ABD, the less to the greater, which
is impossible ; therefore BE is not in the same straight line with
BC. And in like manner, it may be demonstrated, that no other
can be in the same straight line with it but BD, which, therefore,

is in the same straight line with CB. Wherefore, if at a point,

&c. Q.E. D.

PROP. XV. THEOR.

If two straight lines cut one another, the vertical or opposite

angles are equal.

Let the two straight lines AB, CD cut one another in the
point E ; the angle AEC shall be equal to the angle DEB, and
CEB to AED.
For the angles CEA, AED, which the straight line AE makes

with the straight line CD, are together equal (I. 13) to two right
angles ; and the angles AED, DEB, which the straight line

DE makes with the straight line AB are also together equal (1. 13)
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to two right angles ; therefore the two angles CEA, AED are equa<

to the two AED, DEB. Take away the c^

common angle AED, and the remaining

angle CEA is equal (Ax. 3) to the re-

maining angle DEB. In the same man-

ner, it may be demonstrated, that the

angles CEB, AED are equal. Therefore,

if two straight lines, &e. Q. E. D,
^

d

Cor. 1. From this it is manifest, that, if two straight lines cut

one another, the angles which they make at the point of their in-

tersection are together equal to four right angles.

Cor. 2. And hence, all the {simple consecutive) angles made

by any number of straight lines meeting in one point, are to-

gether equal to four right angles.

PROP. XVI. THEOR.

If one side of a triangle is produced, the exterior angle is greater

than either ofth e interior opposite angles.

Let ABC be a triangle, and let its side BC be produced to D,

the exterior angle ACD is greater than

either of the interior opposite angles CBA,
BAC.

Bisect (I. 10) AC in E, join BE and

produce it to F, and make EF equal to BE

;

join also FC, and produce AC to G.
Because AE is equal to EC, and BE to

EF ; AE, EB are equal to CE, EF, each to t

each ; and the angle AEB is equal (1. 15)
]

to the angle CEF, because they are ver-

tical angles ; therefore the base AB is

equal (I. 4) to the base CF, and the tri-

angle AEB to the triangle CEF, and the remaining angles to the

remaining angles, each to each, to which the equal sides are

opposite ; wherefore the angle BAE is equal to the angle ECF
;

but the angle ECD is greater than the angle ECF (Ax. 9) ; there-

fore the angle ECD, that is, ACD, is greater than BAE. In the

same manner, if the side BC be bisected, it may be demonstrated

that the angle BCG, that is, (I. 15) the angle ACD, is greater

than the angle ABC. Therefore, if one side, &c. Q. E. D.

PROP. XVII. THEOR.

Any two angles of a triangle taken together are less than two
right angles.

Let ABC be any triangle ; any two of its angles taken together

are less than two right angles.

Produce BC to D ; and because ACD is the exterior angle of

the triangle ABC, ACD is greater (I. 16) than the interior op-
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posite angle ABC ; to each of these add the angle ACB ; therefore
the angles ACD, ACB are greater than

the angles ABC, ACB; but ACD, ACB
are together equal (I. 13) to two right

angles ; therefore the angles ABC, BCA
are less than two right angles. In like

manner, it may be demonstrated, that

BAC, ACB, as also, CAB, ABC are less

than two right angles. Therefore, any / \

tivo angles, &c. Q. E. D.

PROP. XVIII. THEOR.
The greater side of every triangle has the greater angle opposite

to it.

Let ABC be a triangle of which the side AC is greater than the

side AB ; the angle ABC is also greater than the angle BCA.
From AC, which is greater than AB, cut off (I. 3) AD equal to

AB, and join BD ; and because ADB is the

exterior angle of the triangle BDC, it is

greater (1. 16) than the interior opposite angle

DCB ; but ADB is equal (I. 5) to ABD, be-

cause the side AB is equal to the side AD ;

therefore the angle ABD is likewise greater L~^^ ^
than the angle ACB, wherefore, much more B

is the angle ABC greater than ACB. Therefore, the greater side,

&c. Q. E. D.

PROP. XIX. THEOR.

The greater angle of every triangle is subtended by the greater

side, or has the greater side opposite to it.

juet ABC be a triangle, of which the angle ABC is greater than

the angle BCA ; the side AC is likewise greater than the side AB.
For, if it be not greater, AC must either be equal to AB, or

less than it ; it is not equal, because then the angle ABC would
be equal (I. 5) to the angle ACB ; but it is a
not : therefore AC is not equal to AB ; neither
is it less, because then the angle ABC would
be less (I. 18) than the angle ACB, but it is

not ; therefore the side AC is not less than
AB ; and it has been shown that it is not equal b c
to AB ; therefore AC is greater than AB. Wherefore, the greater
angle, &c. Q. E. D.

PROP. XX. THEOR.
Any two sides of a triangle taken together are greater than the

third side.

Let ABC be a triangle ; any two sides of it taken together are

greater than the third side, viz., the sides BA, AC greater than
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the side BC ; and AB, BC greater than AC ; and BC, CA greater
than AB.

Produce BA to the point D, and make (I. 3) AD equal to AC
;

and join DC.
Because DA is equal to AC, the angle ADC is likewise equal

(I. 5) to ACD ; but the angleBCD is greater
than the angle ACD ; therefore the angle

BCD is greater than the angle ADC ; and
because the angle BCD of the triangle

DCB is greater than its angle BDC, and
because the greater (I. 19) side is opposite .

to the greater angle ; therefore the side
B

DB is greater than the side BC ; but DB is equal to BA and AC
together ; therefore BA and AC taken together are greater than
BC. In the same manner, it may be demonstrated, that the sides

AB, BC are greater than CA, and BC, CA greater than AB.
Therefore, any two sides, &c. Q. E. D.

PROP. XXL THEOR.

Iffrom the ends of one side of a triangle, there he drawn two
straight lines to a point within the triangle, these two lines

shall be less than the other two sides of the triangle, but shall

contain a greater angle.*

Let the two straight lines BD, CD be drawn from B, C, the
ends of the side BC of the triangle ABC, to the point D within it

;

BD and DC are less than the other two sides BA,AC ofthe triangle,

but contain an angle BDC greater than the angle BAC.
Produce BD to E ; and because two sides of a triangle (I. 20)

are greater than the third side, the two sides BA, AE of the
triangle ABE are greater than BE. To each a
of these add EC; therefore, the sides BA, J\
AC are greater than BE, EC : again, because
the two sides CE, ED of the triangle CED
are greater than CD, if DB be added to each,

the sides CE, EB will be greater than CD,
DB ; but it has been shown that BA, AC are

greater than BE, EC ; much more then are

BA, AC greater than BD, DC.
Again, because the exterior angle of a triangle (1. 16) is greater

than the interior opposite angle, the exterior angle BDC of the
triangle CDE is greater than CED ; for the same reason, the ex-
terior angle CEB of the triangle ABE is greater than BAC ; and
it has been demonstrated that the angle BDC is greater than the
angle CEB ; much more then is the angle BDC greater than the
angle BAC. Therefore, iffrom the ends of, &c. Q. E. D.

* See Notes.
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PROP. XXII. PROB.

To construct a triangle of which the sides shall be equal to three

given straight lines ; but any tico whatever of these lines must
be greater than the third (I. 20).*

Let A, B, C be three given straight lines, of which any two
whatever are greater than the third, viz., A and B greater than C ;

A and C greater than B ; and B and C than A. It is required to

make a triangle of which the sides shall be equal to A, B, C, each

to each.

Take a straight line DE, terminated at the point D, but un-

limited towards E, and make (I. 3) DF
equal to A, FG to B, and GH equal to

C ; and from the centre F, at the dis-

tance FD, describe (Post. 3) the circle

DKL ; and from the centre G, at the D
\

distance GH, describe (Post. 3) another
circle HLK ; and join KF, KG ; the

triangle KFG has its sides equal to the

three straight lines, A, B, C.

Because the point F is the centre of

the circle DKL, FD is equal (Def. 11)
to FK ; but FD is equal to the straight line A ; therefore FK is

equal to A : again, because G is the centre of the circle LKH,
GH is equal (Def. 11) to GK ; but GH is equal to C ; therefore

also GK is equal to C ; and FG is equal to B ; therefore the

three straight lines KF, FG, GK are equal to the three A, B, :

and therefore the triangle KFG has its three sides KF, FG, GK
equal to the three given straight lines A, B, C. Which was to

be done.

PROP. XXIII. PROB.

At a given point in a given straight line to make a rectilineal

angle equal to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it,

and DCE the given rectilineal angle ; it is required to make an
angle at the given point A, in the given
straight line AB, that shall be equal to

the given rectilineal angle DCE.
In CD, CE take any points D, E, and

join DE ; and make (I. 22) the triangle
AFG, the sides of which shall be equal ^
to the three straight lines CD, DE, CE, i>

so that CD be equal to AF, CE to AG,
and DE to FG ; and because DC, CE
are equal to FA, AG, each to each, and the base DE to the base
FG ; the angle DCE is equal (I. 8) to the angle FAG. There-

* See Notes.
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fore, at the given point A in the given straight line AB, the

angle FAG is made equal to the given rectilineal angle DCE.
Which was to be done.

PROP. XXIV. THEOR.

If two triangles have two sides of the one equal to two sides of
the other, each to each, but the angle contained by the two

sides of the one greater than the angle contained by the two

sides of the other ; the base of that which has the greater angle
is greater than the base of the other.

Let ABC, DEF be two triangles which have the two sides AB,
AC equal to the two DE, DF, each to each, viz., AB equal to DE,
arid AC to DF ; but the angle BAC greater than the angle EDF

;

the base BC is also greater than the base EF.*
Of the two sides DE, DF, let DE be the side which is not

greater than the other, and at the point D, in the straight line

DE, make (I. 23) the angle EDG equal to the angle BAC ; and
make DG equal (I. 3) to AC or DF, and join EG, GF.

Because AB is equal to DE, and AC to DG, the two sides BA,
AC are equal to the two ED, DG, each to each, and the angle

BAC is equal to the angle EDG

;

therefore the base BC is equal (I. 4)

to the base EG ; and because DG
is equal to DF, the angle DFG is

equal (I. 5) to the angle DGF ;
but

the angle DGF is greater than the

angle EGF ; therefore the angle

DFG is greater than EGF ; much
j^

more is the angle EFG greater than ^v
the angle EGF ; and because the angle EFG of the triangle EFG
is greater than its angle EGF, and because the greater (1. 19) side

is opposite to the greater angle, the side EG is greater than the

side EF ; but EG is equal to BC ; therefore also BC is greater
than EF. Therefore, if two triangles, &c. Q. E. D.

PROP. XXV. THEOR.

If two triangles have two sides of the one equal to two sides of

the other, each to each, but the base of the one greater than
the base of the other ; the angle contained by the sides of that

which has the greater base is greater than the angle contained

by the sides of the other.

Let ABC, DEF be two triangles which have the two sides AB,
AC equal to the two sides DE, DF, each to each, viz., AB equal

to DE, and AC to DF ; but let the base CB be greater than the

base EF ; the angle BAC is likewise greater than the angle EDF.
For, if it be not greater, it must either be equal to it, or less ;

* See Notes.
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but the angle BAC is not equal to the angle EDF, because then

the base BC would be equal (1. 4) to EF ;

but it is not ; therefore the angle BAC is

not equal to the angle EDF ; neither is

it less ; because then the base BC would

be less (I. 24) than the base EF ;
but

it is not ; therefore the angle BAC is

not less than the angle EDF ; and it

was shown that it is not equal to it
; ^ ^ E 1-

therefore the angle BAC is greater
^^F

than the angle EDF. Wherefore, if two triangles, &c. Q. E. D.

PROP. XXVI. THEOR.

If tivo triangles have two angles of the one equal to two angles

of the other, each to each ; and one side equal to one side,

viz., either the sides adjacent to the equal angles, or the sides

opposite to the equal angles in each ; then are the other sides

equal, each to each ; and also the third angle of the one is

equal to the third angle of the other.

Let ABC, DEF be two triangles, which have the angles ABC,
BCA equal to the angles DEF, EFD, A D
viz., ABC to DEF, and BCA to EFD

;

and which have also one side equal to

one side ; and first, let those sides be
equal which are adjacent to the angles

that are equal in the two triangles,

viz., BC to EF ; the other sides shall

be equal, each to each, viz., AB to DE, b c te f
and AC to DF ; and the third angle BAC to the third angle EDF.

For, if AB be not equal to DE, one of them must be the
greater. Let AB be the greater of the two, and make BG equal
to DE, and join GC ; therefore, because BG is equal to DE, and
BC to EF, the two sides GB, BC are equal to the two DE, EF,
each to each ; and the angle GBC is equal to the angle DEF ;

therefore the base GC is equal (I. 4) to the base DF, and the
triangle GBC to the triangle DEF, and the other angles to the
other angles, each to each, to which the equal sides are opposite

;

therefore the angle GCB is equal to the angle DFE ; but DFE is,

by the hypothesis, equal to the angle BCA ; wherefore also the
angle BCG is equal to the angle BCA, the less to the greater,

which is impossible ; therefore AB is not unequal to DE, that is,

it is equal to it ; and BC is equal to EF ; therefore the two AB,
BC are equal to the two DE, EF, each to each ; and the angle
ABC is equal to the angle DEF ; therefore the base AC is equal
(I. 4) to the base DF, and the angle BAC to the angle EDF.

Next, let the sides which are opposite to equal angles in each
triangle be equal to one another, viz., AB to DE ; likewise in this

case, the other sides shall be equal, AC to DF, and BC to EF ;

and also the third angle BAC to the third EDF.
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For, if BC be not equal to EF, let BC be the greater, and
make BH equal to EF, and join AH ; and because BH is equal

to EF, and AB to DE ; the two AB, BH are equal to the two
DE, EF, each to each ; and they con-

tain equal angles ; therefore (I. 4)

the base AH is equal to the base

DF, and the triangle ABH to the tri-

angle DEF, and the other angles are

equal, each to each, to which the

equal sides are opposite ; therefore

the angle BHA is equal to the angle b h c

EFD ; but EFD is equal to the angle BCA ; therefore also the
angle BHA is equal to the angle BCA, that is, the exterior angle
BHA of the triangle AHC is equal to its interior opposite angle
BCA, which is impossible (I. 16) ; wherefore BC is not unequal
to EF, that is, it is equal to it ; and AB is equal to DE ; there-
fore the two AB, BC are equal to the two J)E, EF, each to

each ; and they contain equal angles ; wherefore the base AC
is equal to the base DF, and the third angle BAC to the third

angle EDF. Therefore, if two triangles, &c. Q. E. D.

PROP. XXVII. THEOR.

If a straight line falling upon two other straight lines maizes

the alternate angles equal to one another, these two straight

lines are parallel.*

Let the straight line EF, which falls upon the two straight

lines AB, CD make the alternate angles AEF, EFD equal to

one another ; AB is parallel to CD.
For, if it be not parallel, AB and CD being produced shall meet

either towards B, D, or towards A, C ; let them be produced and
meet towards B, D in the point G ; therefore GEF is a triangle,

and its exterior angle AEF is greater

(1. 16) than the interior opposite angle

EFG ; but it is also equal to it, which
is impossible ; therefore AB and CD
being produced, do not meet towards
B, D. In like manner, it may be
demonstrated, that they do not meet
towards A, C ; but those straight lines

which meet neither way, though produced ever so far, are parallel

(Def. 30) to one another. AB therefore is parallel to CD.
Wherefore, if a straight line, &c. Q. E. D.

BJRAR^ » See Notes.
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PROP. XXVIII. THEOR.

If a straight line falling upon two other straight lines makes
the exterior angle equal to the interior opposite angle, upon
the same side of the line, or makes the interior angles upon
the same side together equal to two right angles, the two straight

lines are parallel to one another."*

Let the straight line EF, which falls upon the two straight

lines AB, CD, make the exterior angle EGB equal to GHD, the

interior opposite angle, upon the same En
side ; or let it make the interior angles \
on the same side BGH, GHD together A V* B
equal to two right angles ; AB is paral- \
lei to CD. \

Because the angle EGB is equal to
c hV d

the angle GHD, and also (I. 15) to \ ^
the angle AGH, the angle AGH is

equal to the angle GHD ; and they are the alternate angles
;

therefore AB is parallel (I. 27) to CD. Again, because the angles
BGH, GHD are equal (by Hyp.) to two right angles, and AGH,
BGH are also equal (I. 13) to two right angles, the angles AGH,
BGH are equal to the angles BGH, GHD. Take away the com-
mon angle BGH ; therefore the remaining angle AGH is equal
to the remaining angle GHD ; and they are alternate angles

:

therefore AB is parallel to CD. Wherefore, if a straight line,

&c. Q. E. D.

PROP. XXIX. THEOR.

Ifa straight line falls upon two parallel straight lines, it makes
the alternate angles equal to one another ; and the exterior

angle equal to the interior opposite angle, upon the same side

;

and likewise the two interior angles upon the same side to-

gether equal to two right angles.*

Let the straight line EF fall upon the parallel straight lines AB,
CD ; the alternate angles AGH, GHD are equal to one another

;

and the exterior angle EGB is equal to the interior opposite angle,

upon the same side, GHD ; and the two interior angles BGH,
GHD, upon the same side, are together equal to two right angles.

For, if AGH be not equal to GHD, let KG be drawn , making
the angle KGH equal to GHD, and produce KG to L ; then
KL will be parallel to CD (I. 27)

;

but AB is also parallel to CD ; there-
fore two straight lines are drawn A
through the same point G, parallel to K-
CD, and yet not coinciding with one
another, which is impossible (Ax.
1 1). The angles AGH, GHD there-
fore are not unequal, that is, they
are equal to one another. Now, the angle EGB is equal to AGH

* See Notes.
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(I. 15) ; and AGH has been proved to be equal to GHD ; there-

fore EGB is likewise equal to GHD : add to each of these the

angle BGH ; therefore, the angles EGB, BGH are equal to the

angles BGH, GHD ; but EGB, BGH are equal (I. 13) to two
right angles ; therefore BGH, GHD are also equal to two right

angles. Wherefore, ifa straight line, &c. Q. E. D.
Cor. If two lines KL and CD make, with EF, the two angles

KGH, GHC taken together less than two right angles, KG and
CH will meet on the side ofEF on which the two angles are, that

are less than two right angles.

For, if not, KL and CD are either parallel, or they meet on the

other side of EF ; but they are not parallel ; for the angles KGH,
GHC would then be equal to two right angles. Neither do they
meet on the other side of EF ; for the angles LGH, GHD would
then be two angles of a triangle, and less than two right angles

;

but this is impossible ; for the four angles KGH, HGL,"CHG,
GHD are together equal to four right angles (I. 13), of which the

two KGH, CHG are by supposition less than two right angles

;

therefore the other two, HGL, GHD are greater than two right

angles. Therefore, since KL and CD are not parallel, and since

they do not meet towards L and D, they must meet if produced
towards K and C.

PROP. XXX. THEOR,

Straight lines which are parallel to the same straight line are
'parallel to one another.

Let AB, CD be each of them parallel to EF ; AB is also

parallel to CD.
Let the straight line GHK cut AB, EF, CD ; and because

GHK cuts the parallel straight lines

AB, EF, the angle AGH is equal (I. \G
29) to the angle GHF. Again, be- A V B

cause the straight line GK cuts the , Vg
parallel straight lines EF, CD, the

E
\

F

angle GHF is equal (I. 29) to the c \ D
angle GKD ; and it was shown that ^V
the angle AGK is equal to the angle

GHF ; therefore also AGK is equal to GKD ; and they are alter-

nate angles ; therefore AB is parallel (I. 27) to CD. Wherefore,
straight lines, &c. Q. E. D.

PROP. XXXI. PROB.

To draw a straight line through a given point parallel to a
given straight line.

Let A be the given point, and BC the given straight line ; it

is required to draw a straight line through the point A, parallel

tp the straight line BC.
In BC take any point D, and join AD ; and at the point A, in the

straight line AD, make (I. 23) the angle DAE equal to the angle

ADC, and produce the straight line EA to F.
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Because the straight line AD, which meets the two straight

lines BC, EF, makes the alternate A
angles EAD, ADC equal to one an-

other, EF is parallel (I. 27) to BC.
Therefore, the straight line EAF is

drawn through the given point A par- ~ u

allel to the given straight line BC. Which was to "be done.

PROP. XXXII. THEOR.

If a side of any triangle is produced, the exterior angle is equal
to the two interior opposite angles ; and the three interior

angles of every triangle are equal to two right angles.

Let ABC be a triangle, and let one of its sides BC be produced
to D ; the exterior angle ACD is equal to the two interior opposite

angles CAB, ABC ; and the three interior angles of the triangle,

viz., ABC, BCA, CAB are together equal to two right angles.

Throughthepoint C draw CE paral-

lel (I. 31) to the straight line AB ; and
because AB is parallel to CE, and AC
meets them, the alternate angles BAC
ACE are equal (I. 29). Again, be-

cause AB is parallel to CE, and BD falls upon them, the exte-

rior angle ECD is equal to the interior opposite angle ABC;
but the angle ACE was shown to be equal to the angle BAC

;

therefore the whole exterior angle ACD is equal to the two inte-

rior opposite angles CAB, ABC ; to these angles add the angle

ACB, and the angles ACD, ACB are equal to the three angles

CBA, BAC, ACB; but the angles ACD, ACB are equal (I. 13)

to two right angles ; therefore also the angles CBA, BAC, ACB
are equal to two right angles. Wherefore, if a side of a triangle,

&c. Q. E. D.
Cor. 1. All the interior angles of any rectilineal figure are

equal to twice as many right angles as the figure has sides
f

wanting four right angles.

For any rectilineal figure ABCDE can be divided into as many
triangles as the figure has sides, by drawing straight lines from a
point F within the figure to each of its angles. And, by the pre-

ceding proposition, all the angles of these triangles are equal

to twice as many right angles as there are j>

triangles, that is, as there are sides of the
figure ; and the same angles are equal to the
angles of the figure, together with the angles
at the point F, which is the common vertex E

^
of the triangles : that is (I. 15. Cor. 2), to-

gether with four right angles. Therefore,
twice as many right angles as the figure has
sides are equal to all the angles of the figure,

together with four right angles, that is, the angles of the figure
are equal to twice as many right angles as the figure has sides,

wantingfour
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Cor. 2. All the exterior angles of any rectilineal figure are

together equal to four rigid angles.

Because every interior angle ABC,
with its adjacent exterior ABD, is

equal (I. 13) to two right angles

;

therefore all the interior, together

with all the exterior angles of the

figure, are equal to twice as many-
right angles as the figure has sides

;

that is, by the foregoing corollary,

they are equal to all the interior

angles of the figure, together with
four right angles. Therefore, all the

exterior angles are equal to four right angles,

PROP. XXXIII. THEOR.

The straight lines which join the extremities of two equal and
parallel straight lines, towards the same parts, are themselves

equal and parallel.

Let AB, CD be equal and parallel straight lines, and joined
towards the same parts by the straight lines AC, BD ; AC, BD
are also equal and parallel.

Join BC ; and because AB is parallel to

CD, and BC meets them, the alternate an-

gles ABC, BCD are equal (I. 29) : and be-

cause AB is equal to CD, and BC common
to the two triangles ABC, DCB, the two
sides AB, BC are equal to the two DC, CB ; and the angle ABC
is equal to the angle BCD ; therefore the base AC is equal (I. 4)

to the base BD, and the triangle ABC to the triangle BCD, and
the other angles to the other angles (I. 4) each to each, to which
the equal sides are opposite : therefore the angle ACB is equal

to the angle CBD ; and because the straight line BC meets the

two straight lines AC, BD, and makes the alternate angles ACB,
CBD equal to one another, AC is parallel (I. 27) to BD ; and
it was shown to be equal to it. Therefore, straight lines, &c.

Q. E. D.

PROP. XXXIY. THEOR.

The opposite sides and angles of a parallelogram are equal to

one another, and the diagonal bisects it, that is, divides it

into two equal parts.

iV. jB.—A Parallelogram is a four-sided figure, of which the opposite sides

are parallel ; and the diagonal is the straight line joining two of its oppo-
site angles.

Let ACDB be a parallelogram, of which BC is a diagonal ; the

opposite sides and angles of the figure are equal to one another

;

and the diagonal BC bisects it.

Because AB is parallel to CD, and BC meets them, the alter-
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nate angles ABC, BCD are equal (I. 29) to one another; and
because AC is parallel to BD and BC meets them, the alternate

angles ACB, CBD are equal (I. 29) to one A B
another : wherefore the two triangles ABC,
CBD have two angles ABC, BCA in the one

equal to two angles BCD, CBD in the other,

each to each, and the side BC, which is c r>

adjacent to these equal angles, common to the two triangles
;

therefore their other sides are equal, each to each, and the third

angle of the one to the third angle of the other (I. 26), viz., the
side AB to the side CD, and AC to BD, and the angle BAC equal
to the angle BDC. And because the angle ABC is equal to the
angle BCD, and the angle CBD to the angle ACB, the whole
angle ABD is equal to the whole angle ACD : And the angle
BAC has been shown to be equal to the angle BDC ; therefore
the opposite sides and angles of a parallelogram are equal to one
another : also, its diagonal bisects it ; for AB being equal to CD,
and BC common, the two AB, BC are equal to the two DC, CB,
each to each ; now the angle ABC is equal to the angle BCD

;

therefore the triangle ABC is equal (I. 4) to the triangle BCD,
and the diagonal BC divides the parallelogram ACDB into two
equal parts. Therefore, &c. Q. E. D.

PROP. XXXV. THEOR.

Parallelograms upon the same base, and between the same pa-
rallels, are equal to one another.

Let the parallelograms ABCD, EBCF be upon the same base
BC, and between the same parallels AF, BC ; the parallelogram
ABCD is equal to the parallelogram EBCF.*

If the sides AD, DF of the parallelograms

ABCD, DBCF, opposite to the base BC, be
terminated in the same point D ; it is plain

that each of the parallelograms is double

(I. 34) the triangle BDC ; and they are there-

fore equal to one another.

But, if the sides AD, EF, opposite to the base BC of the
parallelograms ABCD, EBCF, be not terminated in the same
point ; then, because ABCD is a parallelogram, AD is equal
(I. 34) to BC ; for the same reason EF is equal to BC ; where-
fore AD is equal (Ax. 1) to EF ; and DE is common ; therefore

the whole, or the remainder AE is equal (Ax. 2 or 3) to the
whole or the remain-
der DF ; now AB is r y / -7 r T T
also equal to DC ; \ y / \ I \ I

therefore the two AE,
AB are equal to the
two FD, DC, each to

each; but the exterior

angle FDC is equal (I. 29) to the interior EAB; wherefore the

* See the 2d and 3d figures.
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base EB is equal to the base FC, and the triangle EAB (I. 4) to

the triangle FDC. Take the triangle FDC from the trapezium
ABCF, and from the same trapezium take the triangle EAB ; the

remainders will then be equal (Ax. 3), that is, the parallelogram

ABCD is equal to the parallelogram EBCF. Therefore, paraU
lelograms upon the same base, &c. Q. E. D.

PROP. XXXVI. THEOR.

Parallelograms upon equal bases, and between the same paral-

lels^ are equal to one another.*

Let ABCD, EFGH be parallelograms upon equal bases BC,
FG, and between the same parallels A
AH, BG; the parallelogram ABCD "

is equal to EFGH.
Join BE, CH ; and because BC

is equal to FG, and FG to (I. 34)
EH, BC is equal to EH ; and they
are parallels, and joined towards B

the same parts by the straight lines BE, CH : but straight lines

which join equal and parallel straight lines towards the same
parts, are themselves equal and parallel (I. 33) ; therefore
EB

;
CH are both equal and parallel, and EBCH is a parallelo-

gram ; and it is equal (I. 35) to ABCD, because it is upon the
same base BC, and between the same parallels BC, AH : for the
like reason, the parallelogram EFGH is equal to the same EBCH:
therefore also the parallelogram ABCD is equal to EFGH.
Wherefore, parallelograms, &c. Q. E. D.

PROP. XXXVII. THEOR.

Triangles upon the same base, and between the same parallels,

are equal to one another.

Let the triangles ABC, DBC be upon the same base BC
;
and

between the same parallels, AD, BC; E
the triangle ABC is equal to the tri-

-

angle DBC.
Produce AD both ways to the points

E, F, and through B draw (I. 31) BE
parallel to CA ; and through C draw
CF parallel to BD ; therefore, each B

of the figures EBCA, DBCF is a parallelogram : and EBCA is

equal (1. 35) to DBCF, because they are upon the same base BC,
and between the same parallels BC, EF ; but the triangle ABC
is the half ofthe parallelogram EBCA, because the diagonal AB
bisects it (I. 34) ;

and the triangle DBC is the half of the paral-
ellogram DBCF, because the diagonal DC bisects it : and the
halves of equal things are equal-(Ax. 7); therefore the triangle
ABC is equal to the triangle DBC. Wherefore, triangles. &c.
Q. E. D.

* See Notes.
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PROP. XXXVIII. THEOR.

Triangles upon equal bases, and between the same parallels, are
equal to one another.

Let the triangles ABC, DEF be upon equal bases BC, EF, and
between the same parallels BF

;
AD ; the triangle ABC is equal

to the triangle DEF.
Produce AD both ways to the points G, H, and through B

draw BG parallel (I. 31) to CA, and through F draw FEL parallel

to ED ; then each of the figures f
a r> h

GBCA,DEFH is a parallelogram

;

and they are equal to (I. 36) one
another, because they are upon
equal bases BC, EF, and between
the same parallels BF, GH; and b c e y
the triangle ABC is the half (I. 34) of the parallelogram GBCA,
because the diagonal AB bisects it ; and the triangle DEF is the
half (I. 34) of the parallelogram DEFH, because the diagonal
DF bisects it ; but the halves of equal things are equal (Ax. 7)

;

therefore the triangle ABC is equal to the triangle DEF. "Where-
fore, trianglesj &c. Q. E. D.

PROP. XXXIX. THEOR.
Equal triangles upon the same base, and upon the same side of

it, are between the same parallels.

Let the equal triangles ABC, DBC be upon the same base BC,
and upon the same side of it ; they are between the same pa-
rallels.

Join AD ; AD is parallel to BC ; for, if it be not, through the
point A draw (I. 31) AE parallel to BC, and join EC ; the tri-

angle ABC is equal (I. 37) to the triangle EBC, because it is upon
the same base BC, and between the same pa- K
rallels BC, AE ; but the triangle ABC is

"

equal to the triangle BDC; therefore also, the
triangle BDC is equal to the triangle EBC

;

the greater to the less, which is impossible
;

therefore AE is not parallel to BC. In the
same manner it may be demonstrated that no B c

other line than AD is parallel to BC ; AD is therefore parallel to
it. Wherefore, equal triangles upon, &c. Q. E. D.

PROP. XL. THEOR.
Equal triqjngles, on the same side of bases, which are equal and

in the same straight line, are between the same parallels.

Let the equal triangles ABC, DEF be upon equal bases BC,
EF, in the same straight line BF, and towards the same parts;
they are between the same parallels.

Join AD
; AD is parallel to BF ; for, if it be not, through
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A draw (I. 31) AG parallel to BF, and join GF ;
the triangle

ABO is equal (I. 38) to the triangle GEF, because they are upon
equal bases BC, EF, and between
the same parallels BF, AG; but the

triangle ABC is equal to the triangle

DEF ; therefore also, the triangle

DEF is equal to the triangle GEF

;

the greater to the less, which is im-
possible ; therefore AG is not pa-

rallel to BF. And in the same manner it may be demonstrated

that there is no other parallel to it than AD ; AD is therefore

parallel to BF. Wherefore, equal triangles, &c. Q. E. D.

PROP. XLI. THEOR.

If a parallelogram and a triangle are upon the same oase, and
between the same parallels, the parallelogram is double the

triangle.

Let the parallelogram ABCD and the triangle EBC be upon
the same base BC, and between the same pa- a_
rallels BC, AE ; the parallelogram ABCD
is double the triangle EBC.

Join AC ; then the triangle ABC is equal

(I. 37) to the triangle EBC, because they are

upon the same base BC, and between the

same parallels BC, AE ; but the parallelo- B^~

gram ABCD is double (I. 34) the triangle ABO, because the

diagonal AC divides it into two equal parts ; wherefore ABCD
is also double the triangle EBC. Therefore, if a parallelogram

,

&c. Q. E. D.

PROP. XLII. PBOB.

To describe a parallelogram that shall be equal to a given
triangle, and have one of its angles equal to a given recti-

lineal angle.

Let ABC be the given triangle, and D the given rectilineal

angle ; it is required to describe a parallelogram that shall be
equal to the given triangle ABC, and have one of its angles
equal to D.

Bisect (I. 10) BC in E, join AE, and at the point E in the

straight line EC make (I. 23) the angle CEF equal to D ; and
through A draw (I. 31) AG parallel to BC, and through C draw
CG (I. 31) parallel to EF ; therefore ^_
FECG is a parallelogram ; and be-

cause BE is equal 'to EC, the triangle

ABE is likewise equal (I. 38) to the

triangle AEC, since they are upon
equal bases BE, EC, and between the

same parallels B(3
;
AG ; therefore the

triangle ABC is double the triangle b

AEC; and the parallelogram FECG is likewise double (I. 41)
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the triangle AEC, "because it is upon the same base, and between
the same parallels ; therefore the parallelogram FECG is equal

to the triangle ABC ; and it has one of its angles CEF equal to

the given angle D ; wherefore, a parallelogram FECG has been
described, equal to a given triangle ABC, and having one of its

angles CEF equal to the given angle D, Which was to be done.

PROP. XLIII. THEOR.

The complements of the parallelograms which are about the

diagonal of any parallelogram are equal to one another.

Let ABCD be a parallelogram, of which the diagonal is AC
;

let EH, FG be the parallelograms about AC, that is, through
which AC passes, and let BK, KD be
the other parallelograms, which make
up the whole figure ABCD, and are

therefore called the complements ; the

complement BK is equal to the comple-
ment KD.

Because ABCD is a parallelogram,
and AC its diagonal, the triangle ABC
is equal (I. 34) to the triangle ADC ;

B

and because EKHA is a parallelogram, and AK its diagonal,
the triangle AEK is equal to the triangle AHK ; for the' same
reason, the triangle KGC is equal to the triangle KFC ; then,
because the triangle AEK is equal to the triangle AHK, and the
triangle KGC to the triangle KFC ; the triangle AEK, together
with the triangle KGC, is equal to the triangle AHK, together
with the triangle KFC; but the whole triangle ABC is'equal
to the whole ADC; therefore the remaining complement BK is

equal to the remaining complement KD. Wherefore, the com-
plements, &c. Q. E. D.

PROP. XLIV. PROB.

To a given straight line to apply a parallelogram, which shall

be equal to a given triangle, and have one of its angles equal
to a given rectilineal angle.

Let AB be the given straight line, and C the given triangle,

and D the given rectilineal angle ; it is required to apply to the
straight line AB a pa-
rallelogram equal to the
triangle C, and having
an angle equal to D.
Make (1. 42) the paral-

lelogram BEFG equal
to the triangle C, hav-
ing the angle EBG
equal to the angle D,
and the side BE in the same straight line with AB; produce ¥G
to H, and through A draw (I. 31) AH parallel to BG or EF,
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and join HB ; then, because the straight line HF falls upon
the parallels AH, EF, the angles AHF, HFE are together

equal (I. 29) to two right angles; wherefore the angles BHF,
HFE are less than two right angles ; but straight lines which
with another straight line make the interior angles, upon the

same side, less than two right angles, do meet, if produced
(I. 29, Cor.) ;

therefore HB, FE will meet, if produced ; let

them meet in K, and through K draw KL parallel to EA or

FH, and produce HA, GB to the points L, M ; then HLKF
is a parallelogram, of which the diagonal is HK ; and AG, ME
are the parallelograms about HK; and LB, BF are the com-
plements ; therefore LB is equal (I. 43) to BF ; but BF is

equal to the triangle C ; wherefore LB is equal to the triangle

C ; and because the angle GBE is equal (1. 15) to the angle

ABM, and likewise to the angle D, the angle ABM is equal to

the angle D ; therefore the parallelogram LB, which is applied

to the straight line AB, is equal to the triangle C, and has the

angle ABM equal to the angle D. Which was to be done.

PROP. XLV. PROB.

To describe a parallelogram equal to a given rectilineal figure,

and having an angle equal to a given rectilineal angle.

Let ABCD be the given rectilineal figure, and E the given

rectilineal angle ; it is required to describe a parallelogram equal

to ABCD, and having an angle equal to E.

Join DB, and describe (I. 42) the parallelogram FH equal to

the triangle ADB, and having the angle HKF equal to the angle

E ; and to the straight line GH (I. 44) apply the parallelogram

GM equal to the triangle DBC, having the angle GHM equal to

the angle E ; and because the angle E is equal to each of the

angles FKH, GHM, the angle FKH is equal to GHM ; add to

each of these the angle KHG; therefore the angles FKH, KHG,
are equal to the angles KHG, GHM ; but FKH, KHG are equal

(1.29) to two right

angles; therefore

also KHG, GHM
are equal to two
right angles ; and
because at the

point H, in the

straight line GH,
the two straight

lines KH, HM,
upon the opposite sides of GH, make the adjacent angles equal
to two right angles, KH is in the same straight line (I. 14) with
HM

; and because the straight line HG meets the parallels KM,
FG, the alternate angles MHG, HGF are equal (I. 29) ; add to

each of these the angle HGL ; therefore the angles MHG, HGL
are equal to the angles HGF, HGL ; but the angles MHG,
HGL are equal (I. 29) to two right angles ; wherefore also the
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angles HGF, HGL are equal to two right angles, and FG is

therefore in the same straight line (I. 14) with GL ; and be-

cause KF is parallel to HG, and HG to ML, KF is parallel

(I. 30) to ML ; but KM, FL are parallels ; wherefore KFLM is

a parallelogram ; and because the triangle ABD is equal to the

parallelogram HF, and the triangle DBC to the parallelogram

GM, the whole rectilineal figure ABCD is equal to the whole
parallelogram KFLM ; therefore the parallelogram KFLM has

been described equal to the given rectilineal figure ABCD, having

the angle FKM equal to the given angle E. Which was to be done.

Cor. From this it is manifest how, to a given straight line, to

apply a parallelogram, which shall have an angle equal to a given

rectilineal angle, and shall be equal to a given rectilineal figure,

viz., by applying (I. 44) to the given straight line a parallelo-

gram equal to the first triangle ABD, and having an angle equal

to the given angle.

PROP. XLYL PROB.

To describe a square upon a given straight line.

Let AB be the given straight line ; it is required to describe a

square upon AB.
From the point A draw (I. 11) AC at right angles to AB ; and

make (I. 3) AD equal to AB, and through the point D draw DE
parallel (I. 31) to AB, and through B draw BE parallel to AD

;

therefore ADEB is a parallelogram ; whence AB is equal (I. 34)

to DE, and AD to BE ; but BA is equal to AD ; C

therefore the four straight lines BA, AD, DE, EB
are equal to one another, and the parallelogram

ADEB is equilateral. It is likewise rectangular
;

for the straight line AD meeting the parallels

AB, DE, makes the angles BAD, ADE equal

(I. 29) to two right angles ; bat BAD is a right

angle ; therefore also ADE is a right angle ; now
the opposite angles of parallelograms are equal (1. 34) ; therefore

each of the opposite angles ABE, BED is a right angle ; where-
fore the figure ADEB is rectangular ; and it has been demon-
strated that it is equilateral ; it is therefore a square, and it is de-

scribed upon the given straight line AB. Which was to be done.

Cor. Hence every parallelogram that has one right angle has

all its angles right angles.

PROP. XLVII. THEOR.
In any right-angled triangle, the square which is described upon

the side subtending the right angle, is equal to the squares de-

scribed upon the sides which contain the right angle*

Let ABC be a right-angled triangle having the right angle

BAC ; the square described upon the side BC is equal to the

squares described upon BA, AC.

• See Notes.
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On BC describe (I. 46) the square BDEC, and on BA, AC the

squares GB, HC ; and through A draw (I. 31) AL parallel to BD
or CE, and join AD, FC ; then, because each of the angles BAG.,
BAG is a right angle (Def. 25), the two straight lines AC, AG,
upon the opposite sides of AB, make with it at the pointA the ad-

jacent angles equal to two right angles
;

therefore CA is in the same straight line

(I. 14) with AG; for the same reason,

AB and AH are in the same straight ^

line ; now, because the angle DBC is

equal to the angle FBA, each of them
being a ri^ht angle, adding to each the

angle ABC, the whole angle DBA will

be equal (Ax. 2) to the whole FBC ; and
because the two sides AB, BD are equal

to the two FB, BC, each to each, and the

angle DBA equal to the angle FBC,
therefore the bas* AD is equal (I. 4) to the base FC, and the

triangle ABD to the triangle FBC ; but the parallelogram BL
is double (I. 41) the triangle ABD, because they are upon the

same base BD, and between the same parallels, BD, AL ; and
the square GB is doi die the triangle BFC, because these also are

upon the same base FB, and between the same parallels FB, GC

;

now the doubles of equals are equal (Ax. 6) to one another ; there-

fore the parallelogram B7 is equal to the square GB. And, in

the same manner, by jo: ing AE, BK, it is demonstrated that

the parallelogram CL is equal to the square HC ; therefore the

whole square BDEC is equal to the two squares GB, HC; and the

square BDEC is described upon the straight line BC, and the

squares GB, HC upon BA, AC ; wherefore the square upon the

side BC is equal to the squares upon the sides BA, AC. There-
fore, in any right-angled triangle, &c. Q. E. D.

PROP. XLVIII. THEOR.
If the square described upon one of the sides ofa triangle is equal

to the squares described upon the other two sides of it, the angle
contained by these two sides is a right angle.

If the square described upon BC, one of the sides of the triangle

ABC is equal to the squares upon the other sides BA, AC ; the

angle BAC is a right angle.

From the point A draw (I. 11) AD at right angles to AC, and
make AD equal to BA, and join DC ; then

;
because DA is equal

to AB, the square of DA is equal to the square of
BA ; to each of these add the square of AC

;

therefore the squares of DA, AC are equal to the

squares of BA, AC ; but the square of DC is equal

(I. 47) to the squares of DA, AC, because DAC is

a right angle ; and the square of BC, by hypothesis,

is equal to the squares of BA, AC ; therefore the

square of DC is equal to the square of BC ; and B

therefore also the side DC is equal to the side BC ; and because



BOOK SECOND. 31

the side DA is equal to AB, and AC common to the two triangles

DAC, BAC, and the base DC likewise equal to the base BC, the

angle DAC is equal (I. 8) to the angle BAC ; but DAC is a right

angle ; therefore also BAC is a right angle. Therefore, if thz

squarej &c. Q. E. D.

BOOK SEC

M* r

DEFINITIONS.
#<0/t>y

I. Every right-angled parallelogram, or rectangle, is said to be

contained by any two of the straight lines which are about one

of the right angles.

Thus the right-angled parallelogram AC* is called the rectangle

contained by AD and DC, or by AD and AB, &c. For the sake

of brevity, instead of the rectangle contained by AD and DC,
we shall simply say the rectangle AD, DC, placing a point be-

tween the two sides of the rectangle. Also, instead of the square

of a line, for instance of AD, we shall occasionally write AD2
.

The sign + placed between the names of two magnitudes sig-

nifies that those magnitudes are to be added together ; and the

sign — placed between them signifies that the latter is to be

taken away from the former.
The sign = signifies that the things between which it is placed

are equal to one another.

II. In every parallelogram, any of the parallelograms about a

diagonal, together with the two com-
plements, is called a Gnomon. Thus
the parallelogram HG, together with
the complements AF, FC, is the gno-
mon of the parallelogram AC. This
gnomon may also, for the sake of bre-
vity, be called the gnomon AGK or

EHC.

F

PROP. I. THEOR.
If there he two straight lines, one of which is divided into any
number of parts, the rectangle contained by the two straight

lines is equal to the rectangles contained by the undivided line,

and the several parts of the divided line.

Let A and BC be two straight lines ; and let BC be divided

into any parts in the points D, E; the rectangle A.BC is equal

to the several rectangles A.BD, A.DE, A.EC.
From the point B draw (I. 11) BF at right angles to BC, and

* See the first figure.
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make EG equal (I. 3) to A ; and through G draw (I. 31) GH
parallel to BC ; and through D, E, C draw (I. 31) DK, EL,
CH parallel to BG; then BH, BK, DL,
and EH are rectangles, and BH=BK+
DL+EH; but BH=BG.BC=A.BC, be-

cause BG=A; also BK=BG.BD=A.BD,
because BG = A; and DL=DK.DE=
A.DE, because (I. 34) DK=BG=A. In G ^

like manner EH=A.EC; therefore A.BC
=A.BD+ADE+A..EC ; that is, the rect-

angle A.BC is equal to the several rect-

angles A.BD, A.DE, A.EC. Therefore, if there he two straight

lines, &c. Q. E. D,
Cor. The rectangle contained by one straight line and a part

of another is equal to the difference of the rectangles contained

by the undivided line, and the whole and remaining part of the

divided line.

PROP. II. THEOR.

If a straight line he divided into any two parts, the rectangles

contained hy the whole and each of the parts are together

equal to the square of the whole line.

Let the straight line AB be divided into any two parts in the

point C; the rectangle AB.BC, together with the & c B
rectangle AB.AC, is equal to the square of AB

;

or AB.AC+AB.BC=AB2
.

On AB describe (I. 46) the square ADEB, and

through C draw CF (I. 31) parallel to AD or BE ;

then AF+CE-AE ; but AF=AD.AC=AB.AC.
because AD=AB ; CE=BE.BC=AB.BC; and
AE = AB2

; therefore AB.AC + AB.BC = AB.'
Therefore, if a straight line, &c. Q. E. D.

PROP. III. THEOR.

If a straight line he divided into any two parts, the rectangle

contained hy the whole and one of the parts is equal to the

rectangle contained hy the two parts, together with the square

of the foresaid part.

Let the straight line AB be divided into any two parts in the

point C ; the rectangle AB.BC is equal to the rectangle AC.BC,
together with BC2

.

Upon BC describe (I. 46) the square

CDEB, and produce ED to F, and through

A draw (I. 31) AF parallel to CD or BE
;

then AE=AD+CE ; but AE=AB.BE=
AB.BC, because BE=BC ;

so also AD=
AC.CD=AC.CB ; and CE=BC2

; therefore

AB.BC=AC.CB+BC2
. Therefore, if a

straight line, &c. Q. E. D.
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PROP. IV. THEOR.

G

Ifa straight line be divided into any two parts, the square of
the whole line is equal to the squares of the two parts, together

with twice the rectangle contained by the parts.

Let the straight line AB be divided into any two parts in C
;

the square of AB is equal to the squares of AC, CB, and to twice

the rectangle contained by AC, CB ; that is, AB2=AC2+CB2
-f-

2AC.CB.
Upon AB describe (I. 46) the square ADEB, and join BD ; and

through C draw (I. 31) CGF parallel to AD or BE ; and through

G draw HK parallel to AB or DE ; and because CF is paralle

to AD, and BD falls upon them, the exterior

angle BGC is equal (I. 29) to the interior and
opposite angle ADB ; but ADB is equal (I. 5)

to the angle ABD
;
because BA is equal to AD,

being sides of a square ; wherefore the angle

CGB is equal to the angle GBC ; and therefore

the side BC is equal (I. 6) to the side CG ; but
CB is equal (I. 34) also to GK, and CG to BK

;

wherefore the figure CGKB is equilateral. It is likewise rect-

angular ; for the angle CBK being a right angle, the other an-

gles of the parallelogram CGKB are also right angles (I. 46, Cor.)

;

wherefore CGKB is a square, and it is upon the side CB. For
the same reason HF also is a square, and it is upon the side

HG, which is equal to AC ; therefore HF, CK are the squares of
AC, CB ; and because the complement AG is equal (I. 43) to

the complement GE ; and because AG=AC.CG=AC. CB, therefore

also, GE=AC.CB, and AG+GE=2AC.CB ; now, HF=AC2
, and

CK=CBa
; therefore HF+CK+AG+GE=AC2+CB*H-2AC.CB.

But HF+CK+AG+GE=the figure AE, or AB2
; therefore

AB3=AC2+CB2+2AC.CB. Wherefore, if a straight line be di-

vided, &c. Q. E. D.
Cor. From the demonstration, it is manifest that the parallelo-

grams about the diagonal ofa square are likewise squares.

PROP. V. THEOR.

If a straight line be divided into two equal parts, and also into

two unequal parts ; the rectangle contained by the unequal
parts, together with the square of the line between the points

of section, is equal to the square of half the line.

Let the straight line AB be divided into two equal parts in the
point C, and into two unequal parts in the point D ; the rectangle

AD.DB, together with the square of CD, is equal to the square of
CB, or AD,DB+CD2=CB2

.

Upon CB describe (I. 46) the square CEFB; join BE ; and
through D draw (I. 31) DHG parallel to CE or BF ; and through
H draw KLM parallel to CB or EF ;

and also through A draw
AK parallel to CL or BM ; and because C1I=HF (I. 43), if DM
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be added to both, CM=DF ; but AL=(L 36) CM ; therefore AL==
DF, and adding CH to both, AH=gnomon CMG ; but AH=AD.
DH=AD.DB, because DH=DB

. c D
(II. 4, Cor.) ; therefore gnomon
CMG=AD.DB ; to each add LG
=CD 2

, then gnomon CMG+LG=
AD.DB+CD2 . but CMG+LG=
BC2

; therefore AD.DB+CD2=
BC9

*. Wherefore, if a straight

line, &c. Q. E. D. em*
Cor. From this proposition it is manifest, that the difference of

the squares of two unequal lines AC, CD, is equal to the rect-

angle contained by their sum and difference, or that AC2—CD2=
(AC+CD) (AC-CD).

PROP. VI. THEOR.

Ifa straight line be bisected, and produced to any point; the

rectangle contained by the whole line thus produced, and the

part of it produced, together with the square of half the line

bisected, is equal to the square of the straight line which is

made up of the half and the part produced.

Let the straight line AB be bisected in C, and produced to the

point D ; the rectangle AD.DB, together with the square of CB,
is equal to the square of CD.
Upon CD describe (I. 46) the square CEFD; join DE ; and

through B draw (I. 31) BHG parallel to CE or DF ; and through

H draw KLM parallel to AD or EF, and also through A draw
AK parallel to CL or DM; and be- A c B D
cause AC is equal to CB, the rect-

angle AL is equal (I. 36) to CH

;

but CH is equal (I. 43) to HF

;

therefore also, AL is equal to HF
;

to each of these a*dd CM ; therefore

the whole AM is equal to the gnomon
CMG ; now, AM=AD.DM=AD.DB,
becauseDM (II. 4, Cor.)=DB ; there-

E G T

fore gnomon CMG=AD.DB, and CMG+LG=AD.DB+CB2
;

butCMG+LG=CF=CD2
; therefore AD.DB+CB2=CD2

. There-
fore, ifa straight line, &c. Q. E. D.

PROP. VII. THEOR.

If a straight line be divided into any two parts, the squares of
the whole line, and ofone of the parts, are equal to twice the

rectangle contained by the whole and that part, together with
the square of the other parL

Let the straight line AB be divided into any two parts in the
point C ; the squares of AB, BC are equal to twice the rectangle
AB.BC, together with the square of AC, or AB2+BC2=2AB.BC+

/
K L H
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,A

Upon AB describe (1. 46) the square ADEB, and construct the

figure as in the preceding propositions ; because AG=GE (I. 43)

AG+CK=CE+CK, that is, AK=CE ; and
therefore AK+CE=2AK ; but AK+CE= A

gnomon AKF+CK ; and therefore AKF+
CK=2AK=2AB.BK=2AB.BC, because BK h -

=(II. 4, Cor.) BC; since then, AKF+CK=
2AB.BC, AKF + CK+HF=2AB.BC+HF;
and because AKF+HF=AE=AB2

, AB2+
CK=2AB.BC+HF ; that is (since CK=CB2

.

and HF=AC2
), AB2+CB2=2AB.BC+AC2

.

Wherefore, if a straight line, &c. Q. E. B.

Otherwise

:

Because AB2=-AC2+BC2+2AC.BC (II. 4) adding BC2 to both
AB2+ BC2 = AC2+2BC2 + 2AC.BC; but BC2+AC.BC =AB.BC
(II. 3) ; and therefore, 2BC2+2AC.BC=2AB.BC ; and therefore

AB2+BC2=AC2+2AB BC.
Cor. Hence, the sum of the squares of any two lines is equal

to twice the rectangle contained by the lines, together with the

square of the difference of the lines,

PROP. VIII. THEOR.
If a straight line be divided into any two parts, four times the

rectangle contained by the whole line, and one of the parts, to-

gether with the square of the other part, is equal to the square

of the straight line, which is made up ofthe whole and the first-

mentioned part.

Let the straight line AB be divided into any two parts in the

point C ; four times the rectangle AB.BC, together with the square

of AC, is equal to the square of the straight line made up of AB
and BC together.

Produce AB to D, so that BD be equal to CB, and upon AD
describe the square AEFD ; and construct two figures such as in

the preceding ; because GK is equal (I. 34) to CB, and CB to

BD, and BD to KN, GK is equal to KN. For the same reason,

PR is equal to RO ; and because CB is equal to BD, and KG to

KN, the rectangles CK and BN are equal, as also the rectangles

GR and RN ; but CK is equal (I. 43) to RN, because they are

the complements of the parallelogram CO; therefore also, BN is

equal to GR ; and the four rectangles BN, CK, GR, RN are there-

fore equal to one another ; and so CK+BN+
GR+RN=4CK. Again, because CB is equal
to BD, and BD equal (II. 4, Cor.) to BK,
that is, to CG; and CB equal to GK, that
(II. 4. Cor.) is, to GP ; therefore CGis equal
to GP ; and because CG is equal to GP, and
PR to RO, the rectangle AG is equal to MP,
and PL to RF ; but MP is equal (I. 43) to

PL, because they are the complements of the
parallelogram ML ; wherefore AG is equal also to RF ; there-

B D

G K

P R
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fore the four rectangles AG, MP, PL, RF are equal to one
another, and so AG+MP-fPL+RF=4AG. And it was demon-
strated that CK+BN+GR+RN=4CK ; wherefore, adding equals

to equals, the whole gnomon AOH=4AK ; now AK=AB.BK—
AB.BC, and 4AK=4AB.BC ; therefore gnomon AOH=4AB.BC

;

and adding XH or (II. 4, Cor.) AC2 to both, gnomon AOH+XH
=4ABBC+AC2

; but AOH+XIL=AF=:AD 2
; therefore AD 2=

4AB.BC+A02
. Now AD is the line that is made up of AB and

BC, added together into one line. Wherefore, if a straight line,

&c. Q. E. D.
Cor. 1. Hence, because AD is the sum, and AC the difference

of the lines AB and BC
;
four times the rectangle contained by any

two lines, together with the square of their difference, is equal to

the square ofthe sum ofthe lines.

Cor. 2. From the demonstration it is manifest, that since the

square of CD is quadruple of the square of CB ; the square ofany
line is quadruple of the square of half that line.

Otherwise

:

Because AD is divided anyhow in C (II. 4) AD 2=AC2+CD2+
2CD.AC ; but CD=2CB ; and therefore CD 2=CB2+BD2+2CB.
BD (II. 4)=4CB2

; and also 2CD.AC=4CB.AC; therefore AD2=
AC2+4BC2+4BC.AC ; now BC-+BC.AC = AB.BC (II. 3); and
therefore AD 2=AC2+4AB.BC. Q. E.D.

PROP. IX. THEOR.

If a straight line be divided into two equal, and also into two un-
equal parts, the squares of the tivo unequal parts are together

double of the square of half the line, and of the square of the

line between the points of section.

Let the straight line AB be divided at the point C into two
equal, and at D into two unequal parts ; the squares of AD, DB
are together double the squares of AC, CD.
From the point C draw (I. 11) CE at right angles to AB, and

make it equal to AC or CB, and join EA, EB ; through D draw
(1. 31) DF parallel to CE, and through F draw FG parallel to

AB ; and join AF ; then because AC is equal to CE, the angle

EAC is equal (I. 5) to the angle AEC ; and because the angle

ACE is a right angle, the two others AEC, EAC together make
one right angle (I. 32) ; and they are equal to one another ; each of

them therefore is half a right angle. e
For the same reason, each of the

angles CEB, EBC is half a right

angle ; and therefore the whole AEB
is a right angle ; and because the
angle GEF is half a right angle, and
EGF a right angle, for it is equal
(I. 29) to the interior opposite angle A
ECB, the remaining angle EFG is half a right angle ; therefore
the angle GEF is equal to the angle EFG, and the side EG equal
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(1. 6) to the side GF. Again, because the angle at B is half a right

angle, and FDB a right angle, for it is equal (I. 29) to the in-

terior opposite angle ECB, the remaining angle BFD is half a
right angle ; therefore the angle at B is equal to the angle BFD,
and the sTde DF to (I. 6) the side DB. Now, because AC=CE,
AC2=CE 2

, and AC2+CE 2=2AC2
. But (I. 47) AE 2=AC2

-fCE 2
;

therefore AE 2=2AC2
. Again, because EG=GF, EG2=GF 2

, and
EG2+GF 2=2GF 2

. But EF 2=EG2+GF 2
; therefore EF 2=2GF 2

=2CD 2
, because (I. 34) CD=GF. And it was shown that AE 2=-

2AC 2
; therefore AE 2+EF 2=2AC2+2CD 2

. But (I. 47) AF 2=
AE 2+EF 2

, andAD 2+DF 2=AF 2
, or AD 2+DB2=AF 2

; therefore
also AD 2+DB2=2AC2+2CD 2

. Therefore, if a straight line, &c.
Q. E. D.

Otherwise

:

Because AD2= (II. 4) AC2+CD 2+2AC.CD, and DB2+2BC.CD
= (II.7) BC2+CD 2=AC2+CD 2

, by adding equals to equals, AD 2+
BD 2+2BC.CD=2AC2+2CD 2+2AC.CD; and therefore taking away
the equal rectangles 2BC.CD and 2AC.CD, there remains AD 2

-r-

DB2=2AC2+2CD2
.

PROP. X. THEOR.

If a straight line be bisected, and produced to any point ; the

square of the whole line thus produced, and the square of the

part of it produced, are together double of the square of half
the line bisected, and of the square of the line made up of the

half and the part produced.

Let the straight line AB be bisected in C, and produced to the
point D ; the squares of AD, DB are double the squares of AC,
CD.
From the point C draw (I. 11) CE at right angles to AB, and

make it equal to AC or CB
;
join AE, EB ; through E draw

(I. 31) EF parallel to AB, and through D draw DF parallel to

CE. And because the straight line EF meets the parallels EC,
FD, the angles CEF, EFD are equal (I. 29) to two right angles

;

and therefore the angles BEF, EFD are less than two right an-
gles ; but straight lines which, with another straight line, make
the interior angles upon the same side less than two right angles,

do meet (I. 29, Cor.) if produced far enough ; therefore EB, FD
will meet, if produced towards B, D ; let them meet in G, and
join AG ; then, because AC is equal to CE, the angle CEA is

equal (I. 5) to the angle EAC ; and the angle ACE is a right
angle ; therefore each of the angles CEA, EAC is half a right
angle (I. 32) ; for the same reason, each of the angles CEB, EBC
is half a right angle : therefore AEB is a right angle; and be-
cause EBC is half a right angle, DBG is also (I. 15) half a right
angle, for they are vertically opposite ; but BDG is a right angle,

because it is equal (I. 29) to the alternate angle DCE ; therefore
the remaining angle DGB is half a right angle, and is therefore
equal to the angle DBG ; wherefore also the side DB is equal
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(I. 6) to the side DG. Again, because EOF is half a right angle,

and the angle at F a right angle, be-

ing equal (I. 34) to the opposite angle

ECD, the remaining angle FEG is

half a right angle, and equal to the

angle EGF ; wherefore also the side

GF is equal (I. 6) to the side FE.
And because EC=CA, EC2+CA2=
2CA2

. Now AE 2= (I. 47) AC2+
CE2

: therefore, AE 2=2AC2
. Again, because EF=FG, EF 2=

FG2
, and EF 2+FG2=2EF 2

. But EG2= (I. 47) EF 2+FG2
; there-

fore EG2=2EF 2
; and since EF=CD, EG2=2CD 2

. And it was
demonstrated that AE 2=2AC2

; therefore AE 2+EG2=2AC2+
2CD 2

. Now,AG2=AE 2+EG2
; whereforeAG2=2AC2+2CD 2

; but

AG2 (I. 47) =AD 2+DG2=AD 2+DB2
, because DG=DB ; there-

fore, AD2+DB2=2AC2+2CD 2
. Wherefore, ifa straight line, &c.

Q. E. D.
PROP. XL PROB.

To divide a given straight line into two parts, so that the rect-

angle contained by the whole, and one of the parts, may be

equal to the square of the other part.

Let AB be the given straight line ; it is required to divide it

into two parts, so that the rectangle contained by the whole, and
one of the parts, shall be equal to the square of the other part.

Upon AB describe (I. 46) the square ABDC ; bisect (1. 10) AC in

E, and join BE
;
produce CA to F, and make (I. 3) EF equal to EB,

and upon AF describe (I. 46) the square FGHA ; AB is divided

in H, so that the rectangle AB.BH is equal to the square of AH.
Produce GH to K ; because the straight line AC is bisected in

E, and produced to the point F, the rectangle CF.FA, together

with the square of AE, is equal (II. 6) to the square of EF : but

EF is equal to EB ; therefore the rectangle CF.FA, together with

the square of AE, is equal to the square of EB ;
and the squares

of BA, AE are equal (I. 47) to the square of EB, because the

angle EAB is a right angle ; therefore the rectangle CF.FA, to-

gether with the square of AE, is equal to the squares of BA, AE :

take away the square of AE, which is common to both, therefore

the remaining rectangle CF.FA is equal to

the square of AB. Now, the figure FK is

the rectangle CF.FA, for AF is equal to FG
;

and AD is the square of AB ; therefore FK
is equal to AD : take away the common part

AK, and the remainder FH is equal to the

remainder HD. But HD is the rectangle

AB.BH ; for AB is equal to BD, and FH is

the square of AH ; therefore the rectangle

AB.BH is equal to the square ofAH. Where-
fore the straight line AB is divided in H

;
so

that the rectangle AB.BH is equal to the
square of AH. Which was to be done.
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PROP. XII. THEOR.

In obtuse-angled triangles, if a 'perpendicular be drawn from
any of the acute angles to the opposite side produced, the

square of the side subtending the obtuse angle is greater than
the squares of the sides containing the obtuse angle, by twice

the rectangle contained by the side upon which, when produced,

the perpendicular falls, and the straight line intercepted be-

tween the perpendicular and the obtuse angle.*

Let ABC be an obtuse-angled triangle, having the obtuse angle

ACB, and from the point A let AD be drawn (I. 12) perpendicular

to BC produced : the square of AB is greater than the squares

of AC, CB by twice the rectangle BC.CD.
Because the straight line BD is divided into two parts in the

point C, BD2 = (II. 4) BC 2 + CD 2 +
2BC.CD ; add AD 2 to both ; then BD2

+ AD 2 = BC2 + CD 2 + AD2 + 2BC.CD.
But AB2 = BD 2 + AD2

(I. 47), and AC2

= CD 2 + AD 2 (I. 47) ; therefore, AB2 =
BC2 + AC2 + 2BC.CD ; that is, AB2 is

greater than BC2 + AC2 by 2BC.CD.
Therefore, in obtuse-angled triangles,

&c. Q. E. D.

PROP. XIII. THEOR.

In every triangle, the square of the side subtending any of the

acute angles is less than the squares of the sides containing
that angle, by twice the rectangle contained by either of these

sides, and the straight line intercepted between the perpen-
dicular letfall upon itfrom the opposite angle, and the acute
angle.

Let ABC be any triangle, and the angle at B one of its acute
angles, and upon BC, one of the sides containing it, let fall the
perpendicular (I. 12) AD from the opposite angle ; the square of
AC, opposite to the angle B, is less than the squares of CB, BA
by twice the rectangle CB.BD.

First, Let AD fall within the triangle ABC ; and because the
straight line CB is divided into two parts in

the point D (II. 7) BC2 + BD2 = 2BC.BD
+ CD2

; add to each AD2
; then BC2 +

BD 2 + AD2 = 2BC.BD + CD2+AD2
. But

BD2+AD2=AB2
, and CD2+DA2=AC2 (I.

47) ; therefore BC2+AB2=2BC.BD + AC2
;

that is, AC2 is less than BC2+AB2 by 2BC.
BD.

Secondly, Let AD fall without the triangle ABC ; t then be-

* See Notes. t See figure of the last Proposition.
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cause the angle at D is a right angle, the angle ACB is greater
(I. 16) than a right angle, and AB'^(II. 12) AC2+
BC2+2BC.CD ; add BC2 to each ; then AB2+BC2=
AC2+2BC2+2BC.CD. But because BD is divided

into two parts in C, BC2+BC.CD=(II. 3) BC.BD,
and 2BC2+2BC.CD=2BC.BD ; therefore AB2

-fBO
=AC2+2BC.BD ; or AC2

is less than AB2+BC2 by
2BD.BC.

Lastly, Let the side AC be perpendicular to BC
;

then is BC the straight line between the perpen-

dicular and the acute angle at B ; and it is manifest that (I. 47)
AB2+BC2=AC2+2BC2=AC*+2BC.BC. Therefore, in every tri~

angle, &c. Q. E. D.

PROP. XIV. PROB.

To describe a square that shall be equal to a given rectilineal

figure.

Let A be the given rectilineal figure ; it is required to describe

a square that shall be equal to A.
Describe (I. 45) the rectangular parallelogram BCDE equal to

the rectilineal figure A. If, then, the sides of it, BE, ED are

equal to one another, it is a square, and what was required is

done ; but if they are not equal, produce one of them, BE to F,

and make EF equal to ED, and bisect BF in G; and from the

centre G, at the distance GB or GF, describe the semicircle BHF,
and produce DE to H, and join GH : therefore, because the

straight line BF is divided into two equal parts in G, and into

two unequal parts in E, the rectangle BE.EF, together with the

square of EG, is equal (II. 5) to the square of GF : but GF is equal

to GH ; therefore the rectangle BE.EF, together with the square

of EG, is equal to the square of GH : but the squares of HE and
EG are equal (1. 47) to the square

of GH ; therefore also the rect-

angle BE.EF, together with the

square of EG, is equal to the

squares of HE and EG. Take
away the square of EG, which
is common to both, and the re-

maining rectangle BE.EF is

equal to the square of EH: but BD is the rectangle contained by
BE and EF, because EF is equal to ED ; therefore BD is equal

to the square of EH, and BD is also equal to the rectilineal figure

A ; therefore the rectilineal figure A is equal to the square of EH.
Wherefore a square has been made equal to the given rectilineal

figure A, viz., the square described upon EH. "Which was to be

dorie.
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PROP. A. THEOR.

If one side ofa triangle be bisected, the sum of the squares of the

other two sides is double of the square of half the side bisected,

and of the square of the line drawn from the point of bisection

to the opposite angle of the triangle.

Let ABC be a triangle, of which the side BC is bisected in D.
and DA drawn to the opposite angle ; ^
the squares of BA and AC are together

double the squares of BD and DA.
From A draw AE perpendicular

to BC ; and because BEA is a right

angle, AB2=(I. 47) BE 2+AE2 and
AC2=CE2+AE 2

; wherefore AB2 +
AC2 = BE2 + CE 2 + 2AE 2

. But be-

cause the line BC is cut equally in D, B l> EC
and unequally in E, BE 2+CE 2=(II. 9) 2BD 2+2DE 2

; therefore

AB2+AC2=2BD 2+2DE 2+2AE 2
. Now DE 2+ AE 2=(L 47) AD2

,

and 2DE 2+2AE2=2AD 2
; wherefore AB2+AC2=2BD 2-j-2AD 2

.

Therefore, &c. Q. E. D.

PROP. B. THEOR.

The sum of the squares of the diagonals of any parallelogram
is equal to the sum of the squares of the sides of the paral-
lelogram.

Let ABCD be a parallelogram, of which the diagonals are AC
and BD ; the sum of the squares of AC and BD is equal to the sum
of the squares of AB, BC, CD, DA.
Let AC and BD intersect one another in E ; and because the

vertical angles AED, CEB are equal (I. 15), and also the alter-

nate angles EAD, ECB (I. 29), the tri-

angles ADE, ECB have two angles in

the one equal to two angles in the other, /
v\e

each to each : but the sides AD and BC,
which are opposite to equal angles in _
these triangles, are also equal (I. 34) ; b C

therefore the other sides which are opposite to the equal angles are
also equal (I. 26), viz., AE to EC, and ED to EB. Since, there-

fore, BD is bisected in E, AB2+AD 2=(II. A.) 2BE 2+2AE 2
; and

for the same reason, CD 2+BC2=2BE 2+2EC2=2BE 2+2AE 2
, be-

cause EC=AE ; therefore AB2+AD 2+DC2+BC2=4BE 2+4AE 2
:

but 4BE 2=BD 2
, and 4AE 2=AC2

(II. 8, Cor. 2), because BD and
AC are both bisected in E ; therefore AB2+AD 2+CD 2+BC 2=
BD 2+AC2

. Therefore, the sum of the squares, &c. Q. E. D.
Cor. From this demonstration, it is manifest that the diagonals

of evert/ parallelogram bisect one another.
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PROP. C. THEO'R.

If a straight line be drawn from any point in the base of an
isosceles triangle, or the base 'produced, to the opposite angle,

the rectangle contained by the segments between the point and
the extremities of the base is equal to the difference between the

square of the line drawn to the opposite angle, and the square

ofone of the equal sides.

Let ABC be an isosceles triangle, and let a straight line be
drawn from any point D in the base (fig. 1), or in the base pro-

duced (fig. 2), to the oppo- Fig> i. Fig> 2.

site angle A ; the rectangle a a
BD.DC is equal to the dif-

ference between the squares
of AD and AB. Bisect the

base BC in E (I. 10), and
join EA ; then, because BE
is equal to CE, and EA
common to the two trian-

gles BEA, CEA, there are B E » c b e CD
two sides in the one equal to two sides in the other ; also the base
BA is equal to the base CA ; therefore the angle BEA is equal to

the angle CEA (I. 8), and each is a right angle (I. Def. 7).

And, first, Let D be between E, the middle of the base, and
one of its extremities; then BD.DC+DE 2=(II. 5) BE2

; and,
adding AE 2 to these equals, BD.DC+DE2+EA2=BE 2+EA2

:

but DE 2+EA 2=DA2
(I. 47), and BE2+EA2=BA2

; therefore

BD.DC-fDA2=BA2
, and hence the rectangle BD.DC is equal to

the excess of BA2 above DA. 2

Secondly, Let D be in BC produced; then BD.DC+BE 2=DE 2

(II. 6) ; and, adding AE 2 to these equals, BD.DC+BE2+EA2=
DE 2+EA2

: but BE 2+EA2=BA2
(I. 47) and DE 2+EA2=DA2

;

therefore BD.DC+BA2=DA2
, and the rectangle BD.DC is the

excess of DA2 above BA2
.

Thirdly, When the point D is in the middle of the base, the
truth of the proposition is manifest (I. 47.)
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BOOK THI

A. The radius of a circle is the straight line drawn from +

centre to the circumference.

DEFINITIONS.

I. A straight line is said to touch a,

circle, when it meets the circle, and

being produced, does not cut it.

II . Circles are said to touch one an-

other, which meet, but do not cut

one another.

III. Straight lines are said to be equally dis-

tant from the centre of a circle, when the

perpendiculars drawn to them from the

centre are equal.

IV. And the straight line, on which the greater

perpendicular falls, is said to be farther
from the centre.

B. An arc of a circle is any part of the circumference.

V. A segment of a circle is the figure con-

tained by a straight line, and the arc which
it cuts off.

VI. An angle in a segment is the angle con-
tained by two straight lines drawn from any
point in the circumference of the segment, to

the extremities of the straight line which is

the base of the segment.

VII. And an angle is said to insist or stand
upon the arc intercepted between the
straight lines which contain the angle.

VIII. The sector of a circle is the figure con-

tained by two straight lines drawn from
the centre, and the arc of the circumference
between them.
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IX. Similar segments of a circle are

those in which the angles are equal,

or which contain equal angles. \^\
PROP. I. PROB.

To find the centre of a given circle.

Let ABC be the given circle ; it is required to find its centre.

Draw within it any straight line AB, and bisect (I. 10) it in

D ; from the point D draw (I. 11) DC at right angles to AB, and

produce it to E, and bisect CE in F : the point F is the centre

of the circle ABC.
For, if it be not, let, if possible, G be the centre, and join GA,

GD, GB; then, because DA is equal to DB, and DG common
to the two triangles ADG, BDG, the two sides

AD, DG are equal to the two BD, DG, each

to each ; but the base GA is also equal to the

base GB, because they are radii of the same
circle ; therefore the angle ADG is equal (I. 8)

to the angle GDB. But when a straight line,

standing upon another straight line, makes
the adjacent angles equal to one another, each

of the angles is a right angle (I. Def. 7)

;

therefore the angle GDB is a right angle : but FDB is likewise a
right angle ; wherefore the angle FDB is equal to the angle
GDB, the greater to the less, which is impossible ; therefore G
is not the centre of the circle ABC. In the same manner it can
be shown that no other point than F is the centre ; that is, F is

the centre of the circle ABC. Which was to be found.

Cor. From this it is manifest, that if in a circle a straight
line bisect another at right angles, the centre of the circle is in
the line which bisects the other.

PROP. II. THEOR.

theIf any two points be tahen in the circumference of a circle,

straight line which joins them will fall within the circle.

Let ABC be a circle, and A, B any two points in the circum-
ference ; the straight line drawn from A to B will fall within the
circle.

Take any point in AB as E ; find D, the

centre of the circle ABC
;
join AD, DB, and

DE, and let DE meet the circumference in

F. Then because DA is equal to DB, the an-
gle DAB is equal (I. 5) to the angle DBA;
and because AE, a side of the triangle DAE,
is produced to B, the angle of DEB is greater
(I. 16) than the angle DAE : but DAE is

equal to - the angle DBE ; therefore the angle DEB is greater
than the angle DBE. Now to the greater angle the greater side
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is opposite (L 19); DB is therefore greater than DE : but

DB is equal to DF ;
wherefore DF is greater than DE, and

the point E is therefore within the circle. The same may be

demonstrated of any other point between A and B
;
therefore AB

is within the circle. Wherefore, if any two points, &c. Q. E. D.

PROP. III. THEOR.

If a straight line drawn through the centre of a circle bisect a

straight* line in the circle, which does not pass through the

centre, it will cut that line at right angles ; and, if it cut it at

right angles, it will bisect it.

Let ABC be a circle, and let CD, a straight line drawn through

the centre, bisect -any straight line AB, which does not pass

through the centre in the point F : it also cuts it at right angles.

Take (III. 1) E, the centre of the circle, and join EA, EB
;

then because AF is equal to FB, and FE
#

common to the two

triangles AFE, BFE, there are two sides in

the one equal to two sides in the other : but

the base EA is equal to the base EB ; there-

fore the angle AFE is equal (I. 8) to the angle

BFE. And when a straight line standing upon

another makes the adjacent angles equal to one

another, each of them is a right angle (I. Def.7)

;

therefore each of the angles AFE, BFE is a

right angle: wherefore the straight line CD,
drawn through the centre, bisecting AB, which does not pass

through the centre, cuts AB at right angles.

Again, let CD cut AB at right angles ; CD also bisects AB ;

that is, AF is equal to FB. The same construction being made,
because the radii EA, EB are equal to one another, the angle

EAF is equal (I. 5) to the angle EBF ; and the right angle AFE
is equal to the right angle BFE. Therefore, in the two tri-

angles EAF, EBF there are two angles in the one equal to two
angles in the other ; and the side EF, which is opposite to one

of the equal angles in each, is common to both ; therefore the

other sides are equal (I. 26). AF therefore is equal to FB.
Wherefore, if a straight line, &c. Q. E. D.

PROP. IV. THEOR.

If, in a circle, two straight lines cut one another, in a point

which is not the centre
}
they cannot bisect each other.

Let ABCD be a circle, and AC, BD two straight lines in it,

which cut one another in a point E, which is not the centre ; AC,
BD do not bisect one another.

For, if possible, let AE be equal to EC, and BE to ED ;
if

one of the lines pass through the centre, it is plain that it cannot

be bisected by the other, which does not pass through the centre

;

but if neither of them pass through the centre, take (III. 1) F,

the centre of the circle, and join EF ; and because FE, a straight
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line through the centre, bisects another, AC, which does not pass

through the centre, it must cut it at right (III. 3) angles
; where-

fore FEA is a right angle. Again, because

the straight line FE bisects the straight line

B.J, which does not pass through the centre,

it must cut it at right (III. 3) angles ; where-

fore FEB is a right angle : and FEA was
shown to be a right angle ; therefore FEA
is equal to the angle FEB, the less to the

greater, which is impossible ; therefore AC,
BD do not bisect one another. Wherefore,

if in a circle, &c. Q. E. D.

PROP. V. THEOR.

If two circles cut one another, they cannot have the same centre.

Let the two circles ABC, CDG cut one another in the points

B, C ; they have not the same centre.

For, if it be possible, let E be their centre
;
join EC, and draw

any straight line EFG meeting the circles

in F and G ; and because E is the centre

of the circle ABC, CE is equal to EF.
Again, because E is the centre of the

circle CDG, CE is equal to EG ; but CE
was shown to be equal to EF ; therefore

EF is equal to EG, the less to the

greater, which is impossible ;
therefore

E is not the centre of the circles ABC,
CDG. Wherefore, if two circles, &c. Q. E,

PROP. YI. THEOR.

If two circles touch one another internally, they cannot have the

same centre.

Let the two circles ABC, CDE touch one another internally in

the point C ; they have not the same centre.

For, if they have, let it be F
;
join FC,

and draw any straight line FEB, meeting the

circles in E and B ; and because F is the

centre of the circle ABC, CF is equal to FB.
Also, because F is the centre of the circle

CDE, CF is equal to FE ; but CF was shown
to be equal to FB ; therefore FE is equal to

FB, the less to the greater, which is impossi-

ble; wherefore F is not the centre of the circles ABC, CDE.
Therefore, if two circles, &c. Q. E. D.
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PROP. VII. THEOR.

If any point be taken in the diameter of a circle which is not the

centre, of all the straight lines which can be drawn from it to

the circumference, the greatest is that in which the centre is,

and the other part of that diameter is the least ; and, of any
others, that which is nearer to the line passing through the

centre is always greater than one more remote from it : and
from the same point there can be drawn only two straight

lines that are equal to one another, one upon each side of the

shortest line.

Let ABCD be a circle, and AD its diameter, in which let any
point F be taken which is not the centre ; let the centre be E

;

of all the straight lines FB, FC, FG, &c, that can be drawn from

F to the circumference, FA is the greatest, and FD, the other

part of the diameter AD, is the least ; and of

the others, FB is greater than FC, and FC
than FG.

Join BE, CE, GE ; and because two sides of

a triangle are greater (I. 20) than the third,

BE, EF are greater than BF : but AE is equal

to EB ; therefore AE and EF, that is, AF is

greater than BF. Again, because BE is equal

to CE, and FE common to the triangles BEF,
CEF, the two sides BE, EF are equal to the two CE, EF : but
the angle BEF is greater than the angle CEF ; therefore the
base BF is greater (I. 24) than the base FC ; for the same reason,

CF is greater than GF. Again, because GF, FE are greater
(I. 20) than EG, and EG is equal to ED, GF, FE are greater

than ED ; take away the common part FE, and the remainder
GF is greater than the remainder FD (Ax. 3) ; therefore FA is

the greatest, and FD the least of all the straight lines from F to

the circumference ; and BF is greater than CF, and CF than GF.
Also, there can be drawn only two equal straight lines from the

point F to the circumference, one upon each side of the shortest

line FD : at the point E in the straight line EF, make (I. 23)
the angle FEH equal to the angle GEF, and join FH ; then be-
cause GE is equal to EH, and EF common to the two triangles

GEF, HEF, the two sides GE, EF are equal to the two HE,
EF ; and the angle GEF is equal to the angle HEF ; therefore

the base FG is equal (I. 4) to the base FH : but besides FH, no
straight line can be drawn from F to the circumference equal to

FG; for, if there can, let it be FK; and because FK is equal to

FG, and FG to FH, FK is equal to FH ; that is, a line nearer to

that which passes through the centre is equal to one more re-

mote, which is impossible. Therefore, ifany point be taken, &e.
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PROP. VIII. THEOR.

If any point be taken without a circle, and straight lines be

drawn from it to the circumference, whereof one passes through

the centre ; of those which fall upon the concave circumference,

the greatest is that which passes through the centre ; and of the

rest, that which is nearer to that through the centre is always

greater than the more remote : but of those which fall upon

the convex circumference, the least is that between the point

without the circle, and the diameter ; and of the rest, that

which is nearer to the least is always less than the more remote

:

And only two equal straight lines canbe drawn from the point

unto the circumference, one upon each side of the least.

Let ABC be a circle, and D any point without it, from which

let the straight lines DA, DE, DF, DC be drawn to the circum-

ference, whereof DA passes through the centre. Of those

which fall upon the concave part of the circumference AEFC, the

greatest is AD, which passes through the

centre ; and the line nearer to AD is always

greater than the more remote, viz., DE than

DF, and DF than DC ; but of those which

fall upon the convex circumference HLKG,
the least is DG, between the point D and

the diameter AG; and the nearer to it is

always less than the more remote, viz., DK
than DL, and DL than DH.
Take (III. 1) M, the centre of the circle c

\

ABC, and join ME, MF, MC, MK, ML,
MH ; and because AM is equal to ME, if ^
MD be added to each, AD is equal to EM
and MD: but EM and MD are greater

(I. 20) than ED ; therefore also AD is greater than ED. Again,
because ME is equal to MF, and MD common to the triangles

EMD, FMD; EM, MD are equal to FM, MD: but the angle

EMD is greater than the angle FMD ; therefore the base ED
is greater (I. 24) than the base FD. In like manner it may
be shown that FD is greater than CD ; therefore DA is the

greatest; and DE greater than DF, and DF than DC. And
because MK, KD are greater (1. 20) than MD, and MK is

equal to MG, the remainder KD is greater than the remain-
der GD ; that is, GD is less than KD ; and because MK, DK
are drawn to the point K within the triangle MLD, from M,
D, the extremities of its side MD ; MK, KD are less (I. 21)
than ML, LD, whereof MK is equal to ML ; therefore the re-

mainder DK is less than the remainder DL. In like manner
it may be shown that DL is less than DH ; therefore DG is

the least, and DK less than DL, and DL than DH., Also,

there can be drawn only two equal straight lines from the point

D to the circumference, one upon each side of the least : at the

point M, in the straight line MD, make the angle DMB equal
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to the angle DMK, and join DB ; and because in the triangles

KMD, BMD, the side KM is equal to the side BM, and MD
common to both, and also the angle KMD equal to the angle

BMD, the base DK is equal (I. 4) to the base DB. But, besides

DB, no straight line can be drawn from D to the circumference,

equal to DK ; for, if there can, let it be DN ; then because DN
is equal to DK, and DK equal to DB, DB is equal to DN ; that

is, the line nearer to DG, the least, equal to the more remote,

which has been shown to be impossible. If, therefore, any point,

&c. Q. E. D.

PROP. IX. THEOR.

If a point he taken within a circle, from which more than two
equal straight lines fall upon the circumference, that point is

the centre of the circle*

Let the point D be taken within the circle ABC, from which
more than two equal straight lines, viz., DA, DB, DC, fall on the

circumference, the point D is the centre of the circle.

For, if not, let E be the centre, join DE,
and produce it to the circumference in F,
G ; then FG is a diameter of the circle ABC

:

and because in FG, the diameter of the circle

ABC, there is taken the point D, which is FJ %—

+

Jg
not the centre, DG is the greatest line from
it to the circumference, and DC greater
(III. 7) than DB, and DB than DA ; but
they are likewise equal, which is impossible

;

A B
therefore E is not the centre of the circle ABC. In like manner
it may be demonstrated that no other point than D is the centre.
Wherefore, ifa point be taken, &c. Q. E. D.

PROP. X. THEOR.

One circle cannot cut another in more than two points.

If it be possible, let the circumference FAB cut the circum-
ference DEF in more than two points, viz., in B, G, F ; take the
centre K of the circle ABC, and join KB,
KG, KF ; and because within the circle

DEF the point K is taken, from which more
than two equal straight lines, viz., KB, KG,
KF, fall on the circumference DEF, the
point K is (III. 9) the centre of the circle
DEF

; but K is also the centre of the circle
ABC

; therefore the same point is the centre
of two circles that cut one another, which is

impossible (III. 5). Therefore, one circumference of a circle
cannot cut another in more than two points. Q. E. D.

* See Note3.
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PROP. XI. THEOR.

If two circles touch each other internally, the straight line

which joins their centres being produced, will pass through

the point of contact.*

Let the two circles ABC, ADE touch each other internally in

the point A, and let F be the centre of the circle ABC, and G the

centre of the circle ADE ; the straight line

which joins the centres F, G, being produced,

passes through the point A.
For, if not, let it fall otherwise, if possible,

as FGDH, and join AF, AG ; and because

AG, GF are greater (I. 20) than FA, that is,

than FH, for FA is equal to FH, being radii

of the same circle ; take away the common part

FG, and the remainder AG is greater than the

remainder GH : but AG is equal to GD, therefore GD is greater

than GH ; and it is also less, which is impossible
; therefore the

straight line which joins the points F and G cannot fall otherwise
than on the point A ; that is, it must pass through A. There-
fore, if two circles, &c. Q. E. D.

PROP. XII. THEOR.

If two circles touch each other externally, the straight line which
joins their centres will pass through the point of contact.

Let the two circles ABC, ADE touch each other externally in

the point A ; and let F be the centre of the circle ABC, and G
the centre of ADE ; the
straight line which joins the
points F, G must pass through
the point of contact A.

For, ifnot, let it pass other-
wise, if possible, as FCDG,
and join FA, AG ; and be-
cause F is the centre of the
circle ABC, AF is equal to FC. Also, because G is the centre of
the circle ADE, AG is equal to GD ; therefore FA, AG are equal
to FC, DG ; wherefore the whole FG is greater than FA, AG

:

but it is also less (I. 20), which is impossible; therefore the
straight line which joins the points F, G cannot pass otherwise
than through the point of contact A ; that is, it passes through
A. Therefore, if two circles, &c. Q. E. D.

PROP. XIII. THEOR.
One circle cannot touch another in more points than one, whether

it touch it on the inside or outside.*

For, if it be possible, let the circle EBF touch the circle ABC
in more points than one, and first on the inside, in the points B,

* See Notes.
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D
;
join BD, and draw (I. 10, 11) GH, bisecting BD at right

angles ; therefore, because the points B, D are in the circum-

ference of each of the

circles, the straight line

BD falls within each

(III. 2) of them ; and
therefore their centres b
are (III. 1, Cor.) in the

straight line GH, which
bisects BD at right

angles ; therefore GH
passes through the point of contact (III. 11) ; but it does not pass
through it, because the points B, D are without the straight line

GH, which is absurd. Therefore, one circle cannot touch another
on the inside in more points than one.

Nor can two circles touch one another on the outside in more
than one point * for, if it, be possible, let the circle ACK touch
the circle ABC in the points A, C, and join AC

;

therefore, because the two points A, C are in

the circumference of the circle ACK, the
straight, line AC which joins them falls within
(III. 2) the circle ACK ; and the circle ACK
is without the circle ABC ; and therefore the
straight line AC is also without ABC ; but be-

cause the points A, C are in the circumference
of the circle ABC, the straight line AC is within
(III. 2) the same circle, which is absurd. There-
fore a circle cannot touch another on the out-
side in more than one point ; and it has been shown that a circle

cannot touch another on the inside in more than one point.
Therefore, one circle, &c. Q. E. D.

PROP. XIV. THEOR.
Equal straight lines in a circle are equally distant from the

centre ; and those which are equally distant from the centre
are equal to one another.

Let the straight lines AB, CD in the circle ABDC, be equal
to one another ; they are equally distant from the centre.

Take E the centre (III. 1) of the circle ABDC, and from it

draw EF, EG, perpendiculars to AB, CD; join AE and EC;
then, because the straight line EF passing through the centre
cuts the straight line AB, which does not pass
through the centre, at right angles, it also
bisects (III. 3) it ; wherefore AF is equal to
FB, and AB double AF. For the same rea-
son CD is double CG : but AB is equal to
CD ; therefore AF is equal to CG ; and be-
cause AE is equal to EC, the square of AE
is equal to the square of EC. Now the squares
of AF, FE are equal (I. 47) to the square of
AE, because the angle AFE is aright angle; and, for the lik*
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reason, the squares of EG, GC are equal to the square of EC;
therefore the squares of AF, FE are equal to the squares of CG,
GE, of which the square of AF is equal to the square of CG, be-
cause AF is equal to CG ; therefore the remaining square of FE
is equal to the remaining square of EG, and the straight line EF
is therefore equal to EG ; but straight lines in a circle are said

to be equally distant from the centre when the perpendiculars

drawn to them from the centre are equal (III. Def. 3). There-
fore AB

;
CD are equally distant from the centre.

Next, If the straight lines AB, CD be equally distant from the

centre, that is, if FE be equal to EG, AB is equal to CD ; for

the same construction being made, it may, as before, be demon-
strated, that AB is double AF, and CD double CG, and that the

squares of EF, FA are equal to the squares of EG, GC ; of which
the square of FE is equal to the square of EG, because FE is

equal to EG; therefore the remaining square of AF is equal to

the remaining square of CG ; and the straight line AF is there-

fore equal to CG ; but AB is double AF, and CD double- of CG ;

wherefore AB is equal to CD. Therefore, equal straight lines,

&c. Q. E. D.

PROP. XV. THEOR.

The diameter is the greatest straight line in a circle ; and, of
all others, that which is nearer to the centre is always greater

than one more remote; and the greater is nearer to the centre

than the less.

Let ABCD be a circle, of which the diameter is AD, and the

centre E ; and let BC be nearer to the centre _a
than FG ; AD is greater than any straight

line BC which is not a diameter, and BC greater F /

than FG.
From the centre draw EH, EK perpendi-

culars to BC, FG, and join EB, EC, EF ; and
because AE is equal to EB, and ED to EC,
AD is equal to EB, EC : but EB, EC are greater
(I. 20) than BC ; wherefore also AD is greater rfc^
than BC. And because BC is nearer to the centre than FG, EH
is less (IV. Def. 3) than EK ; but, as was demonstrated in the
preceding, BC is double BH, and FG double FK, and the squares
of EH, HB are equal to the squares of EK, KF, of which the
square of EH is less than the square of EK ; because EH is less

than EK ; therefore the square of BH is greater than the square
of FK, and the straight line BH greater than FK ; and there-
fore BC is greater than FG.

Next, Let BC be greater than FG ; BC is nearer to the centre
than FG,—that is, the same construction being made, EH is less

than EK : because BC is greater than FG, BH likewise is greater

than KF ; but the squares of BH, HE are equal to the squares of
FK, KE, of which the square of BH is greater than the square of
RK, because BH is greater than FK ; therefore the square of EH
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is less than the square of EK, and the straight line EH less than

EK, Wherefore, the diameter, &c. Q. E. D.

PROP. XVI. THEOR.

The straight line drawn at right angles^ to the diameter of a

circle, from the extremity of it, falls without the circle ; and
no straight line can be drawn between that straight line and

the circumference, from the extremity of the diameter, so as

not to cut the circle.

Let ABC be a circle, the centre of which is D, and the dia-

meter AB, and let AE be drawn from A perpendicular to AB

;

AE shall fall without the circle.

In AE take any point F, join DF, and let DF meet the circle

m C. Because DAF is a right angle, it is

greater than the angle AFD (I. 32) ; but the

greater angle of any triangle is subtended

by the greater side (I. 19), therefore DF is

greater than DA ; now DA is equal to DC, ,

therefore DF is greater than DC, and the

point F is therefore without the circle ; and

F is any point whatever in the line AE,
therefore AE falls without the circle,

Again, between the straight line AE and the circumference

no straight line can be drawn from the

point A which does not cut the circle.

Let AG be drawn in the angle DAE ; from
D draw DH at right angles to AG; and
because the angle DHA is a right angle,

ind the angle DAH is less than a right

angle, the side DH of the triangle DAH is

less than the side DA (I. 19) ; the point

H, therefore, is within the circle, and there-

fore the straight line AG cuts the circle.

Cor. From this it is manifest, that the straight line which is

drawn at right angles to the diameter ofa circlefrom the extremity

of it, touches the circle ; and that it touches it only in one point

;

because, if it did meet the circle in two, it would fall within it

(III. 2). Also, it is evident, that there can be but one straight
line which touches the circle in the same point,

PROP. XVII. PROB.

To draw a straight line from a given point, either without or in

the circumference, which shall touch a given circle.

First, Let A be a given point without the given circle BCD ;

it is required to draw a straight line from A which shall touch

che circle.

Find (III. 1) the centre E of the circle, and join AE ; and from
the centre E, at the distance EA, describe the circle AFG j from
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the point D draw (I. 11) DF at right angles to EA ;
join EBF,

and draw AB ; AB touches the circle BCD.
Because E is the centre of the circles BCD,
AFG, EA is equal to EF, and ED to EB,
therefore the two sides AE, EB are equal to

the two FE, ED, and they contain the angle

at E common to the two triangles AEB,
FED ; therefore the base DF is equal to the

base AB, and the triangle FED to the triangle

AEB, and the other angles to the other angles (I. 4) ; therefore

the angle EBA is equal to the angle EDF ; but EDF is a right

angle, wherefore EBA is a right angle ; and EB k drawn from
the centre ; but a straight line drawn from the extremity of a
diameter at right angles to it, touches the circle (III. 16, Cor.)

;

therefore AB touches the circle, and is drawn from the given
point A. Which was to be done. But if the given point be in

the circumference of the circle, as the point D, draw DE to the

centre E, and DF at right angles to DE ; DF touches the circle

(III. 16, Cor.)

PROP. XVIII. THEOR.
If a straight line touch a circle, the straight line drawn from

the centre to the point of contact is perpendicular to the line

touching the circle.

Let the straight line DE touch the circle ABC in the point C
take the centre F, and draw the straight line

FC ; FC is perpendicular to DE.
For, if it be not, from the point F draw

FBG perpendicular to DE ; and because FGC
is a right angle, GCF must be (I. 17) an acute

angle
; and to the greater angle the greater

(I. 19) side is opposite ; therefore FC is

greater than FG : but FC is equal to FB;
therefore FB is greater that FG, the less than d~
the greater, which is impossible ; wherefore FG is not perpendi-
cular to DE. In the same manner it may be shown that no other
line than FC can be perpendicular to DE ; FC is therefore per-
pendicular to DE. Therefore, if a straight line, &c. Q. E. D.

PROP. XIX. THEOR.

Ifa straight line touch a circle, and from the point of contact
a straight line be drawn at right angles to the touching line

t

the centre of the circle is in that line. ^

Let the straight line DE touch the circle

ABC in C, and from C let CA be drawn at
right angles to DE ; the centre of the circle
is in CA.

For, if not, let F be the centre, if possible,
and join CF ; because DE touches the circle
ABC, and FC is drawn from the centre to the
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point of contact, FC is perpendicular (III. 18) to DE ; therefore

FCE is a right angle ; but ACE is also a right angle; therefore

the angle FCE is equal to the angle ACE, the less to the greater,

which is impossible ; wherefore F is not the centre of the circle

ABC. In the same manner it may be shown that no other point

which is not in CA is the centre ; that is, the centre is in CA.
Therefore, if a straight line, &c, Q. E. D.

PROP. XX. THEOR.
The angle at the centre of a circle is double the angle at the cir-

cumference, upon the same base, that is, upon the same part

of the circumference.*

Let ABC be a circle, and BDC an angle at the centre, and
BAC an angle at the circumference, which have the same circum-

ference BC for their base ; the angle BDC is

double the angle BAC.
First, Let D, the centre of the circle, be

within the angle BAC, and join AD, and pro-

duce it to E. Because DA is equal to DB, the

angle DAB is equal (I. 5) to the angle DBA

;

therefore the angles DAB, DBA taken together ^s
are double the angle DAB : but the angle BDE
is equal (I. 32) to the angles DAB, DBA;
therefore also the angle BDE is double the angle DAB : for the

same reason, the angle EDC is double the angle DAC; there-

fore the whole angle BDC is double the whole angle BAC.
Again, Let D, the centre of the circle, be

without the angle BAC, and join AD, and
produce it to E. It may be demonstrated,
as in the first case, that the angle EDC is

[

double the angle DAC, and that EDB, a part e'^

of the first, is double DAB, a part of the
other; therefore the remaining angle BDC
is double the remaining angle BAC. There-
fore, the angle at the centre, &c. Q. E. D.

PROP. XXI. THEOR.
The angles in the same segment of a circle are equal to one

another*

Let ABCD be a circle, and BAD, BED
angles in the same segment BAED ; the an-
gles BAD , BED are equal to one another.
Take F, the centre of the circle ABCD

;

and, first, let the segment BAED be greater
than a semicircle, and join BF, FD ; and be- <

cause the angle BFD is at the centre, and the B

angle BAD at the circumference, both having
the same part of the circumference, viz., BCD,
for their base, therefore the angle BFD is double (III. 20) the

* Sa« Notes.
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angle BAD. For the same reason, the angle BFD is double the

angle BED ; therefore the angle BAD is equal to the angle BED.
But, if the segment BAED be not greater than a semicircle,

let BAD, BED be angles in it ; these also are

equal to one another. Draw AF to the centre,

and produce it to C, and join CE ; therefore

the segment BADC is greater than a semi-

circle; and the angles in it, BAC, BEC, are

equal, by the first case. For the same reason,

because CBED is greater than a semicircle,

the angles CAD, CED are equal ; therefore

the whole angle BAD is equal to the whole
angle BED. Wherefore, the angles in the same segment, &c.

Q. E. D.

PROP. XXII. THEOR.

The .opposite angles of any quadrilateral figure described in a
circle are together equal to two right angles.

Let ABCD be a quadrilateral figure in the circle ABCD ; any
two of its opposite angles are together equal to two right angles.

Join AC, BD ; the angle CAB is equal (III. 21) to the angle

CDB, because they are in the same segment
BADC, and the angle ACB is equal to the

angle ADB, because they are in the same
segment ADCB ; therefore the whole angle

ADC is equal to the angle CAB, ACB. To
each of these equals add the angle ABC ; and
the angles ABC, ADC are equal to the angles

ABC, CAB, BCA: but ABC, CAB, BCA
are equal to two right angles (I. 32) ; therefore also the angles
ABC, ADC are equal to two right angles. In the same manner
the angles BAD, DCB may be shown to be equal to two right
angles. Therefore, the opposite angles, &c. Q. E. D.

PROP. XXIII. THEOR.

Upon the same straight line, and upon the same side of it, there

cannot be two similar segments of circles not coinciding with
one another.

If it be possible, let the two similar segments of circles, viz.,

ACB, ADB be upon the same side of the same straight line

AB, not coinciding with one another ; then, because the circles

ACB, ADB cut one another in the two points A, B, they cannot
cut one another in any other point (III. 10)

;

one of the segments must therefore fall within
the other: let ACB fall within ADB, draw
the straight line BCD, and join CA, DA ; and
because the segment ACB is similar to the
segment ADB, and similar segments of circles ^ B
contain (III. Def. 9) equal angles, the angle ACB is equal to the
•ingle ADB, the exterior to the interior, which is impossible
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(1. 16). Therefore, there cannot he two similar segments of circles

upon the same side ofthe same line which do not coincide, Q. E. D.

PROP. XXIV. THEOR.
Similar segments of circles upon equal straight lines are equal

to one another.

Let AEB, CFD be similar segments of circles upon the equal

straight lines AB, CD ; the segment AEB is equal to the seg-

ment CFD.
For, if the segment AEB be

applied to the segment CFD, so

that the point A may be on C, A.

and the straight line AB upon CD, the point B will coincide with
the point D, because AB is equal to CD ; therefore the straight

line AB coinciding with CD, the segment AEB must (III. 23)
coincide with the segment CFD, and therefore is equal to it.

Wherefore, similar segments, &c. Q. E. D.

PROP. XXV. PROB.
A segment of a circle being given, to describe the circle of which

it is a segment.

Let ABC be the given segment of a circle ; it is required to

describe the circle of which it is a segment.
Bisect (I. 10) AC in D, and from the point D draw (I. 11)

DB at right angles to AC, and join AB. First, Let the angles
ABD, BAD be equal to one another ; then the straight line BD
is equal (I. 6) to DA, and therefore to DC ; and because the three
straight lines DA, DB, DC are all equal, D is the centre of the
circle (III. 9) ; from the centre D, at the distance of any of the
three DA, DB, DC describe a circle ; this shall pass through the
other points ; wherefore the circle of which ABC is a segment is

described : and because the centre D is in AC, the segment ABC
is a semicircle. Next, let the angles ABD, BAD be unequal ; at

the point A, in

the straight line

AB, make (1. 23)
the angle BAP]
equal to the an-

gle ABD, and
produce BD, if A-

necessary, to E, and join EC : and because the angle ABE is

equal to the angle BAE, the straight line BE is equal (I. 6) to

EA; and because AD is equal to DC, and DE common to the

triangles ADE, CDE, the two sides AD, DE are equal to the two
CD, DE, each to each ; and the angle ADE is equal to the angle

CDE, for each of them is a right angle ; therefore the base AE
is equal (I. 4) to the base EC : but AE was shown to be equal to

EB, wherefore also BE is equal to EC ; and the three straight

lines AE, EB, EC are therefore equal to one another ; wherefore
(III. 9) E is the centre of the circle. From the centre E, at the
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distance of any of the three AE, EB, EC, describe a circle this

shall pass through the other points ; and thus the circle of whicn
ABC is a segment is described. Also, it is evident, that if the

angle ABD be greater than the angle BAD, the centre E falls

without the segment ABC, which therefore is less than a semi-

circle ; but if the angle ABD be less than BAD, the centre E falls

within the segment ABC, which is therefore greater than a semi
circle. Wherefore, a segment of a circle being given, the circle is

described of which it is a segment. Which was to be done.

PROP. XXVI. THEOR.

In equal circles, equal angles stand upon equal arcs, whether

they he at the centres or circumferences.

Let ABC, DEF be equal circles, and the equal angies BGC,
EHF at their centres, and BAC, EDF at their circumferences

;

the arc BKC is equal to the arc ELF.
Join BC, EF ; and because the circles ABC, DEF are equal,

the straight lines drawn from their centres are equal ; therefore

the two sides BG, GC are equal to the two EH, HF ; and the

angle at G is equal to the angle

at H ; therefore the base BC is

equal (I. 4) to the base EF ; and
because the angle at A is equal
to the angle at D, the segment
BAC is similar (III. Def. 9) to

the segment EDF ; and they
are upon equal straight lines K L
BC, EF : but similar segments of circles upon equal straight lines

are equal (III. 24) to one another ; therefore the segment BAC is

equal to the segment EDF ; but the whole circle ABC is equal to

the whole DEF ; therefore the remaining segment BKC is equal
to the remaining segment ELF, and the arc BKC to the arc

ELF. Wherefore, in equal circles, &c. Q. E. D.

PROP. XXVII. THEOR.

In equal circles, the angles which stand upon equal arcs are
equal to one another, whether they be at the centres or circum-
ferences.

Let the angles BGC, EHF at the centres, and BAC, EDF at

the circumferences of the equal
circles ABC, DEF, stand upon
the equal arcs BC, EF ; the an-
gle BGC is equal to the angle
EHF, and the angle BAC to

the angle EDF.
If the angle BGC be equal to

the angle EHF, it is manifest
(III. 20) that the angle BAC is also equal to EDF. But, if not,
one of them is the greater : let BGC be the greater, and at the
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point G, in the straight line BG, make the angle (1. 23) BGK
equal to the angle EHF ; and because equal angles stand upon
equal arcs (III. 26) when they are at the centre, the arc BK is

equal to the arc EF : but EF is equal to BC ; therefore also BK
is equal to BC, the less to the greater, which is impossible.

Therefore the angle BGC is not unequal to the angle EHF ; that

is, it is equal to it ; and the angle at A is half the angle BGC,
and the angle at D half the angle EHF ; therefore the angle at

A is equal to the angle at D. Wherefore, in equal circles, &c.

Q. E. D.

PROP. XXVIII. THEOR.

In equal circles, equal straight lines cut off equal arcs, the

greater equal to the greater, and the less to the less.

Let ABC, DEF be equal circles, and BC, EF equal straight

lines in them, which cut off the two greater arcs BAC, EDF,
and the two less BGC, EHF ; the greater BAC is equal to the

greater EDF, and the less BGC to the less EHF.
Take (III. 1) K, L, the centres of the circles, and join BK,

KC, EL, LF ; and because the circles are equal, the straight lines

from their centres are equal

;

therefore BK, KC are equal to

EL, LF; but the base BC is

also equal to the base EF ; there-

fore the angle BKC is equal

(I. 8) to the angle ELF ; and ^>
equal angles stand upon equal
(III. 26) arcs, when they are at

^~g
^""h"

the centres ; therefore the arc BGC is equal to the arc EHF : but
the whole circle ABC is equal to the whole EDF ; the remaining
part, therefore, of the circumference, viz., BAC, is equal to the
remaining part EDF. Therefore, in equal circles, &c. Q. E. D.

PROP. XXIX. THEOR.
In equal circles equal arcs are subtended by equal straight lines.

Let ABC, DEF be equal circles, and let the arcs BGC, EHF
also be equal ; and join BC, EF ; the straight line BC is equal to

the straight line EF.
Take (III. 1) K, L, the centres of the circles, and join BK, KC,

EL, LF ; and because the are
BGC is equal to the arc EHF,
the angle BKC is equal (III. 27)
to the angle ELF : also because
the circles ABC, DEF are equal,

their radii are equal ; therefore
BK, KC are equal to EL, LF ;

and they contain equal angles ;
^g fT

therefore the base BC is equal (I. 4) to tne base EF. Therefore,
in equal circles, &c. Q. E. D #
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PROP, XXX. PROB.

To bisect a given arc, that is, to divide it into two equal parts.

Let ADB be the given arc ; it is required to bisect it.

Join AB, and bisect (I. 10) it in C ; from the point C draw CD
at right angles to AB, and join AD, DB; the arc ADB is bi-

sected in the point D.
Because AC is equal to CB, and CD common to the triangles

ACD, BCD, the two sides AC, CD are equal

to the two BC, CD ; but the angle ACD is

also equal to the angle BCD, because each of

them is a right angle ; therefore the base AD
is equal (I. 4) to the base BD. But equal

straight lines cut off equal (III. 28) arcs, the greater equal to

the greater, and the less to the less ; and AD, DB are each of

them less than a semicircle, because DC passes through the centre

(III. 1, Cor.) Wherefore the arc AD is equal to the arc DB >

and therefore the given arc ADB is bisected in D. Which was
to be done.

PROP. XXXI. THEOR.

In a circle, the angle in a semicircle is a right angle ; but the

angle in a segment greater than a semicircle is less than a
right angle ; and the angle in a segment less than a semicircle

is greater than a right angle.

Let ABCD be a circle, of which the diameter is BC, and centre

E ; draw CA dividing the circle into the segments ABC, ADC,
and join BA, AD, DC ; the angle in the semicircle BAC is a right

angle, and the angle in the segment ABC, which is greater than

a semicircle, is less than a right angle ; and the angle in the

segment ADC, which is less than a semicircle, is greater than a

right angle.

Join AE, and produce BA to F ; and because BE is equal to

EA, the angle EAB is equal (I. 5) to EBA

;

also because AE is equal to EC, the angle

EAC is equal to ECA ; wherefore the whole
angle BAC is equal to the two angles ABC,
ACB. But FAC, the exterior angle of the

triangle ABC, is also equal (I. 32) to the

two angles ABC, ACB ; therefore the angle

BAC is equal to the angle FAC, and each of
them is therefore a right (I. Def. 7) angle

;

wherefore the angle BAC in a semicircle is a right angle. And be-
cause the two angles ABC, BAC of the triangle ABC are together
less (1. 17) than two right angles, and BAC is a right angle, ABC
must be less than a right angle ; and therefore the angle in a
segment ABC, greater than a semicircle is less than a right angle.
Also, because ABCD is a quadrilateral figure in a circle, any
two of its opposite angles are equal (III. 22) to two right angles

;
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therefore the angles ABC, ADC are equal to two right angles •

and ABC is less than a right angle; wherefore the other ADC
is greater than a right angle. Therefore, in a circle, &c. Q. E. D.

Cor. From this it is manifest, that if one angle of a triangle

be equal to the other two, it is a right angle, because the angle

adjacent to it is equal to the same two : and when the adjacent

angles are equal, they are right angles.

PROP. XXXII. THEOR.

// a straight line touch a circle, andfrom the point of contact a
straight line be drawn cutting the circle, the angles made by
this line with the line which touches the circle, are equal to the

angles in the alternate segments of the circle.

Let the straight line EF touch the circle ABCD in B, and
from the point B let the straight line BD be drawn cutting the

circle. The angles which BD makes with the touching line EF
are equal to the angles in the alternate segments of the circle

;

that is, the angle FBD is equal to the angle which is in the seg-

ment DAB, and the angle DBE to the angle in the segment
BCD.
From the point B draw (I. 11) BA at right angles to EF, and

take any point C in the arc BD, and join AD, DC, CB : and be-

cause the straight line EF touches the circle ABCD, in the point

B, and BA is drawn at right angles to it, from the point of con-

tact B, the centre of the circle is (III. 19) in BA ; therefore the
angle ADB, in a semicircle, is a right (III. 31)
angle, and consequently the other two angles

BAD, ABD are equal (I. 32) to a right angle

:

but ABF is likewise a right angle ; therefore

the angle ABF is equal to the angles BAD,
ABD. Take from these equals the common
angle ABD ; and there will remain the angle
DBF equal to the angle BAD, which is in the
alternate segment of the circle. And because I b^"^ f
ABCD is a quadrilateral figure in a circle, the opposite angles
BAD, BCD are equal (III. 22) to two right angles ; therefore the
ungles DBF, DBE, being likewise equal (1. 13) to two right angles,
are equal to the angles BAD, BCD ; and DBF has been proved
equal to BAD ; therefore the remaining angle DBE is equal to the
angle BCD, in the alternate segment of the circle. Wherefore,
ifa straight line, &c. Q. E. D.

PROP. XXXIII. PROB.

Upon a given straight line to describe a segment of a circle, con-
taining an angle equal to a given rectilineal angle.

Let AB be the given straight line, and the angle at C *he given
rectilineal angle ; it is required to describe upon the given straight
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line AB a segment of a circle, containing an angle equal to the

angle C.

First, Let the angle at C be a right angle ; bisect (I. 10) AB
in F, and from the centre F, at the dis-

tance FB. describe the semicircle AHB
the angle AHB being in a semicircle is

(III. 31) equal to the right angle at C.

Bu,t, If the angle C be not a right angle aT~ f
~~
b

at the point A, in the straight line AB, make (I. 23) the angle

BAD equal to the angle C, and from the point A draw (I. 11) AE
at right angles to AD, bisect (I. 10) AB
in F, and from F draw (I. 11) FG at

right angles to AB, and join GB. Then
because AF is equal to FB, and FG com-
mon to the triangles AFG, BFG, the two
sides AF, FG are equal to the two BF,
FG : but the angle AFG is also equal to

the angle BFG ; therefore the base AG
is equal (I. 4) to the base GB ; and the
circle described from the centre G, at the distance GA, will pass
through the point B ; let this be the circle AHB. And because
from the point A, the extremity of the diameter AE, AD is drawn
at right angles to AE, therefore AD (III. 16, Cor.) touches the
circle ; and because AB, drawn from the point of contact A, cuts

the circle, the angle DAB is equal to the
angle in the alternate segment AHB (III.

32) : but the angle DAB is equal to the
angle C, therefore also the angle C is equal
to the angle in the segment AHB. Where-
fore upon the given straight line AB, a
segment, AHB, of a circle is described
which contains an angle equal to the given
angle at C. Which was to be done.

PROP. XXXIV. PBOB.
To cut off a segment from a given circle which shall contain an

angle equal to a given rectilineal angle.

Let ABC be the given circle, and D the given rectilineal angle

;

it is required to cut off a segment from the circle ABC which shall
contain an angle equal to the angle D.
Draw (III. 17) the straight line EF touching the circle ABC in

the point B, and at the point B, in the
straight line BF, make (I. 23) the angle
FBC equal to the angle D ; therefore,
because the straight line EF touches the
circle ABC, and BC is drawn from the
point of contact B, the angle FBC is

equal (III. 32) to the angle in the alter-
nate segment BAC : but the angle FBC ff-
is equal to the angle D ; therefore the E~ B f
angle in the segment BAC is equal to the angle D. Wherefore the
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segment BAC is cut off from the given circle ABC, containing an

angle equal to the given angle D. Which was to be done.

PROP. XXXV. THEOR.

Iftwo straight lines within a circle cut one another, the rectangle

contained by the segments of one of them is equal to the rect-

angle contained by the segments of the other.

Let the two straight lines AC, BD, within the circle ABCD,
cut one another in the point E ; the rectangle

contained by AE, EC is equal to the rectangle

contained by BE, ED.
If AC, BD pass each of them through the

centre, so that E is the centre, it is evident b[-

that AE, EC, BE, ED, being all equal, the

rectangle AE.EC is equal to the rectangle

BE.ED.
But, Let one of them BD pass through the

centre, and cut the otherAC, which does not pass through the centre,

at right angles in the point E : then, if BD be bisected in F, F is

the centre of the circle ABCD. Join AF, and
because BD, which passes through the centre,

cuts the straight line AC, which does not pass

through the centre at right angles inE, AE, EC
are equal (III. 3) to one another ; and because

the straight line BD is cut into two equal parts,

in the point F, and into two unequal, in the point

E, BE.ED+EF 2= (11.5) FB2=AF 2
. But AF 2

=(1.47) AE2+EF 2
; therefore, BE.ED+EF 2=

AE 2+EF 2
; and taking EF 2 from each, BE.ED=AE2=AE.EC.

Next, Let BD, which passes through the centre, cut the other

AC, which does not pass through the centre,

in E , but not at right angles : then, as before,

if BD be bisected in F, F is the centre of the

circle. Join AF, and from F draw (I. 12)

FG perpendicular to AC ; therefore AG is

equal (III. 3) to GC ; wherefore AE.EC+
EG2= (II. 5) AG2

, and adding GF 2 to both
AE.EC+EG2+GF 2=AG2+GF 2

. Now, EG2

+GF 2=EF 2
, and AG2+GF 2=AF 2

; therefore

AE.EC+EF 2=AF 2=FB2
: but FB2= (II. 5) BE.ED+E F 2

; there-

fore AE.EC+EF 2=BE.ED+EF 2
, and taking

EF 2 from both, AE.EC=BE.ED.
Lastly, Let neither ofthe straight lines AC,

BD pass through the centre : take the centre

F, and through E, the intersection of the
straight lines AC, DB, draw the diameter
GEFH : and because, as has been shown,
AE.EC=GE.EH, andBE.ED=GE.EH, there-

fore AE.EC=BE.ED. Wherefore, if two
straight lines, &c. Q, E. D.
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PROP. XXXVI. THEOR.

Iffrom any point without a circle two straight lines he drawn,
one of which cuts the circle, and the other touches it ; the rect-

angle contained by the whole line which cuts the circle, and
the part of it without the circle, is equal to the square of the

line which touches it.

Let D be any point without the circle ABC, and DCA, DB
two straight lines drawn from it, of which DCA cuts the circle,

and DB touches it: the rectangle AD.DC is equal to the square

ofDB.
Either DCA passes through the centre, or it

not. First, Let it pass through the centre

E, and join EB ; therefore the angle EBD is a

right (III. 18) angle. And because the straight

line AC is bisected in E, and produced to the B.

point D, AD.DC+EC 2= (II. 6) ED 2
: but

EC=EB; therefore AD.DC+EB 2=ED2
. Now

ED 2= (I. 47) EB2+BD 2
, bee use EBD is a

right angle ; therefore AD.DC+EB2=EB2+
BD 2

, and taking EB2 from each, AD.DC=
BD 2

.

But, if DCA do not pass through the centre of the circle ABC,
take ( III. 1) the centre E, and draw EF per-

pendicular (I. 12) to AC, and join EB, EC,
ED ; and because the straight line EF, which
passes through the centre, cuts the straight line

AC, which does not pass through the centre at

right angles, it likewise bisects (III. 3) it

;

therefore AF is equal to FC. And because the

straight line AC is bisected in F, and produced
to D, AD.DC+FC2= (II. 6) FD 2

: add FE 2 to

both; then AD.DC+ FC 2+FE2=FD 2+FE2
;

but (I. 47) EC2=FC2+FE 2
, and ED 2=FD 2+

FE 2
, because DFE is a right angle; therefore AD.DC+EC2=

ED2
. Now, because EBD is a right angle,

ED2=EB2+BD 2 = EC2+BD 2
, and therefore

AD.DC+EC2=EC2+BD 2
, and AD. DC=BD 2

.

Wherefore, iffrom any point, &c. Q. E. D.
Cor. If from any point without a circle,

there be drawn two straight lines cutting it, as D
/

AEB, AFC, the rectangles contained by the
tchole lines and the parts ofthem without the
circle, are equal to one another—viz., BA.AE
=CA.AF ; for each of these rectangles is equal
to the square of the straight line A.D which
touches the circle.
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PROP. XXXVII. THEOR.

If from a point without a circle there he drawn two straight

lines, one of which cuts the circle, and the other meets it ; if

the rectangle contained by the whole line, which cuts the circle,

and the part of it without the circle, be equal to the square

of the line which meets it, the line which meets also touches

the circle.

Let any point D be taken without the circle ABC, and from
it let two straight lines DCA and DB be drawn, of which DCA
cuts the circle, and DB meets it; if the rectangle AD.DC be
equal to the square of DB, DB touches the circle.

Draw (III. 17) the straight line DE touching the circle ABC

;

find the centre F, and join FE, FB, FD ; then FED is a right

(III. 18) angle. And because DE touches the
circle ABC, and DCA cuts it, the rectangle

AD.DC is equal (III. 36) to the square ofDE :

but the rectangle AD.DC is, by hypothesis,

equal to the square of DB ; therefore the square
of DE is equal to the square of DB, and the
straight line DE equal to the straight line DB :

but FE is equal to FB ; wherefore DE, EF are
equal to DB, BF. And the base FD is common
to the two triangles DEF, DBF ; therefore the
angle DEF is equal (I. 8) to the angle DBF :

and DEF is a right angle ; therefore also DBF is a right angle

:

but FB, if produced, is a diameter, and the straight line which
is drawn at right angles to a diameter from the extremity of it

touches (III. 16) the circle ; therefore DB touches the circle ABC.
Wherefore, iffrom a point, &c. Q. E. D.

BOOK FOUBTH./ ii> T
* Of

ALii?ORSiaDEFINITIONS.

A rectilineal figure is said to be inscribed in another recti
neal figure, when all the angles of the in-
scribed figure are upon the sides of the figure
in which it is inscribed, each upon each.

I

II. In like manner, a figure is said to be de-
scribed about another figure, when all the
sides of the circumscribed figure pass through u

the angular points of the figure about which it is described,
dach through each.
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III. A rectilineal figure is said to be inscribed

in a circle, when all the angles 01 the inscribed

figure are upon the circumference of the

circle.

IV. A rectilineal figure is said to be described

about a circle, when each side of the circum-

scribed figure touches the circumference of

the circle.

V. In like manner, a circle is said to be in-

scribed in a rectilineal figure when the cir-

cumference of the circle touches each side of

the figure.

VI. A circle is said to be described about a rec-

tilineal figure, when the circumference of the

circle passes through all the angular points of

the figure about which it is described.

VII. A straight line is said to be placed in a
circle when the extremities of it are in the

circumference of the circle.

PROP. I. PROB.

In a given circle to place a straight line, equal to a given straight

line, not greater than the diameter of the circle.

Let ABC be the given circle, and D the given straight line,

not greater than the diameter of the circle.

Draw BC, the diameter of the circle ABC ; then, if BC be equal
to D, the thing required is done ; for,

in the circle ABC, a straight line BC
is placed equal to D : but if BC be not

equal to D, it must be greater. Cut off/

from it (1. 3) CE equal to D, and from!
the centre C, at the distance CE, de-

scribe the circle AEF, and join CA;
therefore because C is the centre of

the circle AEF, CA is equal to CE :
D-

but D is equal to CE ; therefore D is equal to CA. Wherefore, in

the circle ABC, a straight line is placed equal to the given straight

line D, which is not greater than the diameter of the circle.

Which was to be done.

PROP. II. PROB.
In a given circle to inscribe a triangle equiangular to a given

triangle.

Let ABC be the given circle, and DEF the given triangle ; it

is required to inscribe in the circle ABC a triangle equiangular to

the triangle DEF.
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Draw (III. 17) the straight line GAH, touching the circle in

the point A, and at the point A, in the straight line AH, make

(I. 23) the angle HAC equal to the angle DEF ;
and at the point

A, in the straight line AG, make
the angle GAB equal to the angle

DFE, and join BC ; therefore,

because HAG touches the circle

ABC, and AC is drawn from the

point of contact, the angle HAC is

equal (111. 32) to the angle ABC in

the alternate segment ofthe circle

:

but HAC is equal to the angle

DEF • therefore also the angle

ABC is equal to DEF. For the same reason the angle ACB is

equal to the angle DFE ; therefore the remaining angle BAC is

equal (I. 32) to the remaining angle EDF. Wherefore the triangle

ABC is equiangular to the triangle DEF, and it is inscribed in

the circle ABC. Which was to be done.

PROP. III. PROB.

About a given circle to describe a triangle equiangular to a given

triangle.

Let ABC be the given circle, and DEF the given triangle ; it

is required to describe a triangle about the circle ABC equiangu-

lar to the triangle DEF.
Produce EF both ways to the points G, H, and find the centre

K of the circle ABC, and from it draw any straight line KB ; at

the point K in the straight line

KB make (I. 23) the angle

BKA equal to the angle DEG,
and the angle BKC equal to

the angle DFH ; and through
the points A, B, C, draw the

straight lines LAM, MBN
;

NCL touching (III. 17) the
circle ABC ; therefore, because
LM, MN, NL touch the circle

ABC in the points A, B, C, to which from the centre are drawn
KA, KB, KC, the angles at the points A, B, C are right (III. 18)
angles. And because the four angles of the quadrilateral figure

AMBK are equal to four right angles, for it can be divided into

two triangles ; and because two of them KAM, KBM are right

angles, the other two AKB, AMB are equal to two right angles :

but the angles DEG, DEF are likewise equal (I. 13) to two right

angles ; therefore the angles AKB, AMB are equal to the angles

DEG, DEF, of which AKB is equal to DEG ; wherefore the re-

maining angle AMB is equal to the remaining angle DEF. In

like manner, the angle LNM may be demonstrated to be equal to

DFE
; and therefore the remaining angle MLN is equal (I. 32)

to the remaining angle EDF ; wherefore the triangle LMN is
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equiangular to the triangle DEF ; and it is described about the

circle ABC. Which was to be done.

PROP. IV. PROB.

To inscribe a circle in a given triangle.

Let the given triangle be ABC: it is required to inscribe a

circle in ABC.
Bisect (I. 9) the angles ABC, BCA, by the straight lines BD,

CD, meeting one another in the point D, from which draw (I. 12)

DE, DF, DG perpendiculars to AB, BC, CA : then, because

the angle EBD is equal to the angle FBD,
the angle ABC being bisected by BD ;

and
because the right angle BED is equal to the

right angle BFD, the two triangles EBD,
FBD have two angles of the one equal to

two angles of the other ; and the side BD,
which is opposite to one of the equal angles

in each, is common to both ; therefore their

other sides are equal (I. 26) ; wherefore DE
is equal to DF. For the same reason DG is equal to DF ; there-

fore the three straight lines DE, DF, DG are equal to one an-
other, and the circle described from the centre D, at the distance

of any of them, will pass through the extremities of the other two,
and will touch the straight lines AB, BC, CA, because the angles
at the points E, F, G, are right angles

; and the straight line

which is drawn from the extremity of a diameter at right angles
to it, touches (III. 16, Cor.) the circle

; therefore the straight

lines AB, BC, CA, do each of them touch the circle, and the
circle EFG is inscribed in the triangle ABC. Which was to be
done.

PROP. V. PROB.

To describe a circle about a given triangle.

Let the given triangle be ABC; it is required to describe a
circle about ABC.

Bisect (I. 10) AB, AC in the points D, E, and from these

points draw DF, EF at right angles (I. 11) to AB
;
AC ; DF,

EF produced will meet one another ; for, if they do not meet,

they are parallel ; wherefore AB, AC, which are at right angles

to them, are parallel, which is absurd. Let them meet in F, and

join FA; also, if the point F be not in BC
;
join BF, CF : then,
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because AD is equal to DB, and DF common, and at right angles

to AB, the base AF is equal (I. 4) to the base FB. In like

manner, it may be shown that CF is equal to FA; and therefore

BF is equal to FC ; and FA, FB, FC are equal to one another

;

wherefore the circle described from the centre F, at the distance

of one of them, will pass through the extremities of the other

two, and be described about the triangle ABC. Which was to

be done.

Cor. When the centre of the circle falls within the triangle,

each of its angles is less than a right angle, each of them being

in a segment greater than a semicircle ; but when the centre is

in one of the sides of the triangle, the angle opposite to this side,

being in a semicircle, is a right angle ; and if the centre falls

without the triangle, the angle opposite to the side beyond which
it is, being in a segment less than a semicircle, is greater than a

right angle. Wherefore, if the given triangle be acute-angled,

the centre of the circle falls within it ; if it be a right-angled

triangle, the centre is in the side opposite to the right angle

;

and if it be an obtuse-angled triangle, the centre falls without

the triangle, beyond the side opposite to the obtuse angle.

PROP. VI. PROB.

To inscribe a square in a given circle.

Let ABCD be the given circle ; it is required to inscribe a

square in ABCD.
Draw the diameters AC, BD at ri

(

£ht angles to one another,

and join AB, BC, CD, DA; because BE is equal to ED, E being

the centre, and because EA is at right angles to BD, and common
to the triangles ABE, ADE, the base BA is equal (I. 4) to the

base AD : and for the same reason BC, CD
are each of them equal to BA or AD ; there-

fore the quadrilateral figure ABCD is equi-

lateral. It is also rectangular ; for the

straight line BD, being a diameter of the b[(

circle ABCD, BAD is a semicircle ; where-
fore the angle BAD is a right (III. 31)
angle. For the same reason, each of the

angles ABC, BCD, CDA is a right angle
;

therefore the quadrilateral figure ABCD is rectangular, and it

has been shown to be equilateral ; therefore it is a square ; and it

is inscribed in the circle ABCD. Which was to be done.

PROP. VII. PROB.

To describe a square about a given circle.

Let ABCD be the given circle ; it is required to describe a
square about it.

Draw two diameters AC, BD of the circle ABCD, at right

angles to one another, and through the points A, B, C, D draw
(III. 17) FG, GH, HK, KF touching the circle ; and because
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FG touches the circle ABCD, and EA is drawn from the centre

E to the point of contact A, the angles at A are right (III. 18)
angles. For the same reason, the angles at the points B, C, 1)

are right angles ; and because the angle AEB is a right angle, as

likewise is EBG, GH is parallel (I. 28) to
^

AC. For the same reason, AC is parallel to

FK, and, in like manner, GF, HK may
each of them be demonstrated to be parallel

to BED; therefore the figures GK, GC^
AK, FB, BK, are parallelograms ; and GF
is therefore equal (I. 34) to HK, and GH
to FK. And because AC is equal to BD,
and also to each of the two GH, FK, and H .

BD to each of the two GF, HK ; GH, FK
are each of them equal to GF or HK ; therefore the quadrilateral

figure FGHK is equilateral. It is also rectangular ; for GBEA
being a parallelogram, and AEB a right angle, AGB (I. 34) is

likewise a right angle. In the same manner, it may be shown
that the angles at H, K, F are right angles ; therefore the quad-
rilateral figure FGHK is rectangular : and it was demonstrated
to be equilateral ; therefore it is a square ; and it is described

about the circle ABCD. Which was to be done.

f E

V J

PROP. VIII. PROB.

To inscribe a circle in a given square.

Let ABCD be the given square ; it is required to inscribe a
circle in ABCD.

Bisect (I. 10) each of the sides AB, AD in the points F, E,
and through E draw (I. 31) EH parallel to AB or DC, and
through F draw FK parallel to AD or BC ; therefore each of the

figures AK, KB, AH, HD, AG, GC, BG, GD is a parallelogram,

and their opposite sides are equal (I. 34) ; and because AD is

equal to AB, and AE is the half of AD , and
AF the half of AB, AE is equal to AF

;

wherefore the sides opposite to these are

equal, viz., FG to GE. In the same manner,
it may be demonstrated that GH, GK are

each of them equal to FG or GE ; therefore

the four straight lines GE, GF, GH, GK
are equal to one another ; and the circle

described from the centre G, at the distance

of one of them, will pass through the extremities of the other
three, and will also touch the straight lines AB, BC, CD, DA,
because the angles at the points E, F, H, K are right (I. 29)
angles, and because the straight line which is drawn from the
extremity of a diameter, at right angles to it, touches the circle

(III. 16, Cor.) ; therefore each of the straight lines AB, BC, CD,
DA touches the circle, which is therefore inscribed in the square
ABCD. Which was to be done.

r
G

v^ J
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PROP. IX. PROB.

To describe a circle about a given square.

Let ABCD be the given square ; it is required to describe a

circle about it.

Join AC, BD, cutting one another in E ; and because DA is

equal to AB, and AC common to the triangles DAC, BAG, the

two sides DA, AC are equal to the two BA, AC, and the base

DC is equal to the base BC ; wherefore the angle DAC is equal

(I. 8) to the angle BAC, and the angle DAB
is bisected by the straight line AC. In the

same manner, it may be demonstrated that the

angles ABC, BCD, CDA are severally bisected

by the straight lines BD, AC ; therefore be-

cause the angle DAB is equal to the angle

ABC, and the angle EAB is the half of DAB,
and EBA the half of ABC, the angle EAB is

equal to the angle EBA, and the side EA
(I. 6) to the side EB. In the same manner, it may be demon-
strated that each of the straight lines EC, ED is equal to EA or

EB ; therefore the four straight lines EA, EB, EC, ED are equal
to one another ; and the circle described from the centre E, at

the distance of one of them, must pass through the extremities

of the other three, and be described about the square ABCD.
Which was to be done.

PROP. X. PROB.

To describe an isosceles triangle, having each of the angles at the

base double the third angle.

Take any straight line AB, and divide (II. 11) it in the point

C, so that the rectangle AB.BC may be equal to the square of
AC ; and from the centre A, at the distance AB, describe the

circle BDE, in which place (IV. 1) the straight line BD equal to

AC, which is not greater than the diameter of the circle BDE.
Join DA, DC, and about the triangle ADC
describe (IV. 5) the circle ACD ; the triangle

ABD is such as is required, that is, each of
the anglesABD, ADB is double the angle BAD.

Because the rectangle AB.BC is equal to

the square of AC, and AC equal to BD, the

rectangle AB.BC is equal to the square of
BD ; and because from the point B, without
the circle ACD, two straight lines BCA, BD IT^""
are drawn to the circumference, one of which cuts, and the other
meets the circle, and the rectangle AB.BC contained by the whole
of the cutting line, and the part of it without the circle, is equal
to the square of BD which meets it ; the straight line BD touches
(III. 37) the circle ACD : and because BD touches the circle, and
DC is drawn from the point of contact D, the angle BDC is equal
(III. 32) to the angle DAC in the alternate segment of the circle ;
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to each of these add the angle CDA. then the whole angle BDA
is equal to the two angles CDA, DAC. But the exterior angle

BCD is equal (I. 32) to the angles CDA, DAC ; therefore also

BDA is equal to BCD : but BDA is equal (I. 5) to CBD, because

the side AD is equal to the side AB; therefore CBD or DBA is

equal to BCD ; and consequently the three angles BDA, DBA,
BCD are equal to one another ; and because the angle DBC is

equal to the angle BCD, the side BD is equal (I. 6) to the side

DC : but BD was made equal to CA ; therefore also CA is equal

to CD, and the angle CDA equal (I. 5) to the angle DAC ; there-

fore the angles CDA, DAC together are double the angle DAC :

but BCD is equal to the angles CDA, DAC (I. 32) ; therefore

also BCD is double DAC : but BCD is equal to each of the angles

BDA, DBA, and therefore each of the angles BDA, DBA is

double the angle DAB. Wherefore an isosceles triangle ABD is

described, having each of the angles at the base double the third

angle. Which was to be done.

Cor. 1. The angle BAD is the fifth part of two right angles

;

for, since each of the angles ABD and ADB is equal to twice the

angle BAD, they are together equal to four times BAD, and there-

fore all the three angles ABD, ADB, BAD, taken together, are

equal to five times the angle BAD : but the three angles ABD,
ADB, BAD are equal to two right angles ; therefore five times the

angle BAD is equal to two right angles, or BAD is the fifth part

of two right angles.

Cor. 2. Because BAD is the fifth part of two, or the tenth part

of four right angles, all the angles about the centre A are together

equal to ten times the angle BAD, and may therefore be divided

into ten parts each equal to BAD ; and as these ten equal angles

at the centre must stand on ten equal arcs, therefore the arc BD
is one-tenth of the circumference, and the straight line BD, that

is AC, is therefore equal to the side of an equilateral decagon

inscribed in the circle BDE.

PROP. XI. PROB.

To inscribe an equilateral and equiangular pentagon in a
given circle.

Let ABCDE be the given circle, it is required to inscribe an
equilateral and equiangular penta-

gon in the circle ABCDE.
Describe (IV. 10) an isosceles

triangle FGH, having each of the

angles at G, H double the angle at

F ; and in the circle ABCDE in-

scribe (IV. 2) the triangle ACD
equiangular to the triangle FGH,
so that the angle CAD may be equal G

to the angle at F, and each of the angles ACD, CDA equal to the
angle at G or H ; wherefore each of the angles ACD, CDA is

double the angle CAD. Bisect (I. 9) the angles ACD, CDA by
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the straight lines CE, DB, and join AB, BC, DE, EA ; ABCDE
is the pentagon required. Because the angles ACD

;
CDA are

each of them double CAD, and are bisected by the straight lines

CE, DB, the five angles DAC, ACE, ECD, CDB, BDA are equal

to one another ; but equal angles stand upon equal (III. 26) arcs

;

therefore the five arcs AB, BC, CD, DE, EA are equal to one
another : and equal arcs are subtended by equal (III. 29) straight

lines ; therefore the five straight lines AB, BC, CD, DE, EA are

equal to one another ; wherefore the pentagon ABCDE is equi-

lateral. It is also equiangular ; because the arc AB is equal to

the arc DE ; if to each be added BCD, the whole ABCD is equal to

the whole EDCB : and the angle AED stands on the arc ABCD.
and the angle BAE on the arc EDCB ; therefore the angle BAE
is equal (III. 27) to the angle AED. For the same reason, each of

the angles ABC, BCD, CDE is equal to the angle BAE or AED

;

therefore the pentagon ABCDE is equiangular ; and it has been
shown that it is equilateral. Wherefore, in the given circle, an
equilateral and equiangular pentagon has been inscribed. Which
was to be done.

Otherwise

:

Divide the radius of the given circle, so that the rectangle con-
tained by the whole and one of the parts may be equal to the
square of the other (II. 11). Apply in the circle, on each side of
a given point, a line equal to the greater of these parts ; then (IV.

10, Cor. 2) each of the arcs cut off will be one-tenth of the circum-
ference, and therefore the arc made up of both will be one-fifth of
the circumference ; and if the straight line subtending this arc be
drawn, it will be the side of an equilateral pentagon inscribed in

the circle.

PROP. XII. PBOB.

To describe an equilateral and equiangidar pentagon about a,

given circle.

Let ABCDE be the given circle ; it is required to describe an
equilateral and equiangular pentagon about the circle ABCDE.

Let the angles of a pentagon, inscribed in the circle, by the last

proposition, be in the points A, B, C,

D, E, so that the arcs AB, BC, CD,
DE, EA are equal (IV. 11), and through
the points A, B, C, D

;
E draw GH, HK,

KL, LM, MG, touching (III. 17) the H{
circle; take the centre F, and join
FB, FK, FC, FL, FD; and because
the straight line KL touches the circle

ABCDE in the point C, to which FC is

drawn from the centre F, FC is per-
pendicular (III. 18) to KL ; therefore k c l
each of the angles at C is a right angle. For the same reason, the
angles at the points B, D are right angles ; and because FCK is
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a right angle, the square of FK is equal (L 47) to the squares

of FC, CK. For the same reason, the square of FK is equal to

the squares of FB, BK ; therefore the squares of FC, CK are

equal to the squares of FB, BK, of which the square of FC is

equal to the square of FB ; the remaining square of CK is there-

fore equal to the remaining square of BK, and the straight line

CK equal to BK ; and because FB is equal to FC, and FK com-
mon to the triangles BFK, CFK, the two BF, FK are equal

to the two CF, FK ; and the base BK is equal to the base KC

;

therefore the angle BFK is equal (I. 8) to the angle KFC, and the

angle BKF to FKC ; wherefore the angle BFCis double the angle

KFC, and BKC double FKC. For the same reason, the angle CFD
is double the angle CFL, and CLD double CLF : and because the

arc BC is equal to the arc CD, the angle BFC is equal (III. 27)
to the angle CFD; and BFC is double the angle KFC, and CFD
double CFL ; therefore the angle KFC is equal to the angle CFL.
Now the right angle FCK is equal to the right angle FCL ; and
therefore in the two triangles FKC, FLC, there are two angles

of the one equal to two angles of the other, each to each, and the

side FC, which is adjacent to the equal angles in each, is common
to both ; therefore the other sides are equal (I. 26) to the other

sides, and the third angle to the third angle : therefore the straight

line KC is equal to CL, and the angle FKC to the angle FLC

;

and because KC is equal to CL, KL is double KC. In the same
manner, it may be shown that HK is double BK ;

and because BK
is equal to KC, as was demonstrated, and KL is double KC, and
HK double BK, HK is equal to KL. In like manner, it may be
shown that GH, GM, ML are each of them equal to HK or KL

;

therefore the pentagon GHKLM is equilateral. It is also equi-

angular ; for, since the angle FKC is equal to the angle FLC, and
the angle HKL double the angle FKC, and KLM double FLC, as

was before demonstrated, the angle HKL is equal to KLM : and,

in like manner, it may be shown that each of the angles KHG,
HGM, GML is equal to the angle HKL or KLM. Therefore the

Zve angles GHK, HKL, KLM, LMG, MGH, being equal to one
another, the pentagonGHKLM is equiangular; and it is equilateral,

as was demonstrated, and it is described about the circle ABCDE.
Which was to be done.

PROP. XIII. PROB.

To inscribe a circle in a given equilateral and equiangular
pentagon.

Let ABCDE be the given equilateral and equiangular pen-
tagon ; it is required to inscribe a circle in the pentagon ABCDE.

Bisect (I. 9) the angles BCD, CDE by the straight lines CF,
DF, and from the point F, in which they meet, draw the straight

lines FB, FA, FE : therefore, since BC is equal to CD, and CF
common to the triangles BCF, DCF, the two sides BC, CF are

equal to the two DC, CF ; and the angle BCF is equal to the

angle DCF ; therefore the base BF is equal (I. 4) to the base FD,
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and the other angles to the other angles, to which the equal sides

are opposite ; therefore the angle CBF is equal to the angle CDF :

and because the angle CDE is double CDF, and CDE equal to

CBA, and CDF to CBF ; CBA is also double the angle CBF ;

therefore the angle ABF is equal to the

angle CBF ; wherefore the angle ABC is

bisected by the straight line BF. In the

same manner, it may be demonstrated

that the angles BAE, AED are bisected

by the straight lines AF, EF. From
the point F draw (I. 12) FG, FH, FK,
FL, FM perpendiculars to the straight

lines AB, BC, CD, DE, EA ; and be-

cause the angle HCF is equal to KCF,
and the right angle FHC equal to the

right angle FKC, in the triangles FHC, FKC, two angles of the

one are equal to two angles of the other, and the side FC, which

is opposite to one of the equal angles in each, is common to both
;

therefore the other sides are equal (I. 26), each to each ; that is,

the perpendicular FH is equal to the perpendicular FK. In the

same manner, it may be demonstrated that FL, FM, FG are each

of them equal to FH or FK ; therefore the five straight lines FG,
FH, FK, FL, FM are equal to one another; wherefore the circle

described from the centre F, at the distance of one of these five,

will pass through the extremities of the other four, and touch the

straight lines AB, BC, CD, DE, EA, because the angles at the

points G, H, K, L, M are right angles, and a straight line drawn
from the extremity of the diameter of a circle at right angles to

it touches (III. 16, Cor.) the circle; therefore each of the straight

lines AB, BC, CD, DE, EA touches the circle. Wherefore the

circle is inscribed in the pentagon ABCDE. Which was to be done.

PROP. XIV. PROB.

To describe a circle about a given equilateral and equiangular
pentagon.

Let ABCDE be the given equilateral and equiangular pentagon
;

it is required to describe a circle about it.

Bisect (I. 9) the angles BCD, CDE by the straight lines CF, FD,
and from the point F, in which they meet, draw the straight lines

FB, FA, FE to the points B, A, E. It may
be demonstrated, in the same manner as in the

preceding proposition, that the angles CBA,
BAE, AED are bisected by the straight lines B^
FB, FA, FE ; and because the angle BCD
is equal to the angle CDE, and FCD is the
half of the angle BCD, and CDF the half of
CDE; the angle FCD is equal to FDC;
wherefore the side CF is equal (I. 6) to the
side FD. In like maimer, it may be demonstrated that FB, FA,
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FE are each of them equal to FC or FD ; therefore the five straight

lines FA, FB, FC, FD, FE are equal to one another ; and the
circle described from the centre F, at the distance of one of them,
will pass through the extremities ofthe other four, and be described
about the equilateral and equiangular pentagon ABODE. Which
was to be done.

PROP. XV. PROB.

To inscribe an equilateral and equiangular hexagon in a given
circle.

Let ABCDEF be the given circle ; it is required to inscribe an
equilateral and equiangular hexagon in it.

Find the centre G of the circle ABCDEF, and draw the diameter
AGD ; and from D as a centre, at the distance DG, describe the

circle EGCH
;
join EG, CG, and produce them

to the points B, F ; and join AB, BC, CD, DE,
EF, FA: the hexagon ABCDEF is equi-

lateral and equiangular. Because G is the

centre of the circle ABCDEF, GE is equal

to GD ; and because D is the centre of the

circle EGCH, DE is equal to DG; wherefore
GE is equal to ED, and the triangle EGD
is equilateral ; and therefore its three angles

EGD, GDE, DEG are equal to one another
(I. 5, Cor.) : and the three angles of a tri-

angle are equal (I. 32) to two right angles
;

therefore the angle EGD is the third part of
two right angles. In the same manner, it may be demonstrated
that the angle DGC is also the third part of two right angles ; and
because the straight line GC makes with EB the adjacent angles

EGO, CGB equal (I. 13) to two right angles ; the remaining angle

CGB is the third part of two right angles ; therefore the angles

EGD, DGC, CGB, are equal to one another ; and also the angles

vertical to them; BGA, AGF, FGE (1. 15); therefore the six angles

EGD, DGC, CGB, BGA, AGF, FGE are equal to one another.

But equal angles at the centre stand upon equal (III. 26) arcs
;

therefore the six arcs AB, BC, CD, DE, EF, FA are equal to one
another ; and equal arcs are subtended by equal (III. 29) straight

lines ; therefore the six straight lines are equal to one another, and
the hexagon ABCDEF is equilateral. It is also equiangular ; for,

since the arc AF is equal to ED, to each ofthese add the arc ABCD;
therefore the whole arcFABCD shall be equal to the wholeEDCBA;
and the angle FED stands upon the arc FABCD, and the angle

AFE upon EDCBA ; therefore the angle AFE is equal to FED.
In the same manner, it may be demonstrated that the other angles

of the hexagon ABCDEF are each of them equal to the angle

AFE or FED ; therefore the hexagon is equiangular ; it is also

equilateral, as was shown ; and it is inscribed in the given circle

ABCDEF. Which was to be done.

Cor. From this it is manifest, that the side of the hexagon is
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equal to the straight line from the centre, that is, to the radius of

the circle

And if; through the points A, B, C, D, E, F, there be drawn

straight lines touching the circle, an equilateral and equiangular

hexagon shall be described about it, which may be demonstrated

from what has been said of the pentagon ; and likewise a circle

may be inscribed in a given equilateral and equiangular hexagon,

and circumscribed about it, by a method like to that used for the

pentagon.

PROP. XVI. PROB.

To inscribe an equilateral and equiangular quindecagon in a
given circle.

Let ABCD be the given circle ; it is required to inscribe an equi-

lateral and equiangular quindecagon in the circle ABCD
Let AC be the side of an equilateral

triangle inscribed (IV. 2) in the circle,

and AB the side of an equilateral and

equiangular pentagon inscribed (IV. II)

in the same ; therefore, of such equal Bjt

parts as the whole circumference ABCDF
|

contains fifteen, the arc ABC, being the ^\
third part of the whole, contains five

;

and the arc AB, which is the fifth part of

the whole, contains three ; therefore BC,
their difference, contains two of the same
parts : bisect (III. 30) BC in E

; therefore BE, EC are each of

them the fifteenth part of the whole circumference ABCD : there-

fore if the straight lines BE, EC be drawn, and straight lines

equal to them be placed (IV. 1) around in the whole circle, an equi-

lateral and equiangular quindecagon will be inscribed in it. Which
was to be done.

And, in the same manner, as was done in the pentagon, if through
the points of division made by inscribing the quindecagon, straight

lines be drawn touching the circle, an equilateral and equiangular

quindecagon may be described about it ; and likewise, as in the

pentagon, a circle may be inscribed in a given equilateral and
equiangular quindecagon, and circumscribed about it.



78 ELEMENTS OF GEOMETRY.

BOOK FIFTH.

In the demonstrations of this book there are certain signs or cha-
racters which it has been found convenient to employ.

I. The letters A, B, C, &c, are used to denote magnitudes of any
kind. The letters m, n, p, q are used to denote numbers only.

II. The sign -f (plus), written between two letters that denote mag-
nitudes or numbers, signifies the sum of those magnitudes or

numbers. Thus A+B is the sum of the two magnitudes denoted
by the letters A and B ; m-\-n is the sum of the numbers denoted
by m and n.

III. The sign — (minus), written between two letters, signifies the

excess of the magnitude denoted by the first of these letters,

which is supposed the greatest, above that which is denoted by
the other. Thus A—B signifies the excess of the magnitude A
above the magnitude B.

IV. When a number, or a letter denoting a number, is written

close to another letter denoting a magnitude of any kind, it

signifies that the magnitude is multiplied by the number. Thus,
3A signifies three times A ; raB, m times B, or a multiple of B
by m. When the number is intended to multiply two or more
magnitudes that follow, it is written thus, m(A+B), which sig-

nifies the sum of A and B taken m times ; m(A- B) is m times

the excess ofA above B.
Also, when two letters that denote numbers are written close to

one another, they denote the product of those numbers, when
multiplied into one another. Thus, mn is the product ofm into

n ; and ranA is A multiplied by the product of m into n.

V. The sign = signifies the equality of the magnitudes denoted

by the letters that stand on the opposite sides of it ; A=B sig-

nifies that A is equal to B ; A+B=C—D signifies that the sum
of A and B is equal to the excess of C above D.

VI. The sign "7* is used to signify that the magnitudes between
which it is placed are unequal, and that the magnitude to which
the opening of the lines is turned is greater than the other.

Thus A/'B signifies that A is greater than B ; and A^iB sig-

nifies that A is less than B.

DEFINITIONS.

I. A less magnitude is said to be a part of a greater magnitude,

when the less measures the greater ; that is, when the less is

contained a certain number of times exactly in the greater.
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II. A greater magnitude is said to be a multiple of a less, when
the greater is measured by the less, that is, when the greater

contains the less a certain number of times exactly.

III. Ratio is a mutual relation of two magnitudes, of the same
kind, to one another in respect of quantity.

IV. Magnitudes are said to be of the same hind, when the less

can be multiplied so as to exceed the greater
; and it is only

such magnitudes that are said to have a ratio to one another.

V. If there be four magnitudes, and if any equimultiples whatso-
ever be taken of the first and third, and any equimultiples what-
soever of the second and fourth, and if, according as the multiple

of the first is greater than the multiple of the second, equal to

it, or less, the multiple of the third is also greater than the mul-
tiple of the fourth, equal to it, or less ; then the first of the mag-
nitudes is said to have to the second the same ratio that the

third has to the fourth.*

VI. Magnitudes are said to be proportionals, when the first has

the same ratio to the second that the third has to the fourth
;

and the third to the fourth the same ratio which the fifth has to

the sixth, and so on, whatever be their number.
When four magnitudes, A, B, C, D are proportionals, it is

usual to say that A is to B as C to D, and to write them thus,

A : B : : C : D ; or thus, A : B=C : D.

VII. When of the equimultiples of four magnitudes, taken as in

the fifth definition, the multiple of the first is greater than that

of the second, but the multiple of the third is not greater than
the multiple of the fourth ; then the first is said to have to the

second & greater ratio than the third magnitude has to the fourth;

and, on the contrary, the third is said to have to the fourth a

less ratio than the first has to the second.

VIII. When there is any number of magnitudes greater than
two, of which the first has to the second the same ratio that the

second has to the third, and the second to the third the same
ratio which the third has to the fourth, and so on, the magni-
tudes are said to be continual proportionals,

IX. When three magnitudes are continual proportionals, the
second is said to be a meanproportional between the other two.

X. When there is any number of magnitudes of the same kind,

the first is said to have to the last the ratio compounded of the

ratio which the first has to the second, and of the ratio which
the second has to the third, and of the ratio which the third has
to the fourth, and so on unto the last magnitude.

For example, if A, B, C, D be four magnitudes of the same kind,

the first A is said to have to the last D, the ratio compounded
of the ratio of A to B, and of the ratio of B to C, and of the

* See Notes.
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ratio of C to D ; or the ratio of A to D is said to be compounded
of the ratios of A to B, B to C, and C to D.

And ifA : B : : E : F ; and B : C : : G : H ; and C : D : : K : L,
then, since by this definition, A has to D the ratio compounded
of the ratios of A to B, B to C, C to D : A may also be said to

have to D the ratio compounded of the ratios which, are the same
with the ratio of E to F, G to H, and K to L.

In like manner, the same things being supposed, if M has to N
the same ratio which A has to D, then, for shortness' sake, M
is said to have to N a ratio compounded of the same ratios,

which compound the ratio ofA to D ; that is, a ratio compounded
of the ratios of E to F, G to H, and K to L.

XI. If three magnitudes are continual proportionals, the ratio of

the first to the third is said to be duplicate of the ratio of the

first to the second.

Thus, ifA be to B as B to C, the ratio of A to C is said to be du-
plicate of the ratio of A to B. Hence, since by the last defini-

tion, the ratio of A to C is compounded of the ratios of A to B,
and B to C, a ratio, which is compounded of two equal ratios, is

duplicate of either of these ratios.

XII. If four magnitudes are continual proportionals, the ratio of
the first to the fourth is said to be triplicate of the ratio of the

first to the second, or of the ratio of the second to the third, &c.

So also, if there are live continual proportionals, the ratio of the

first to the fifth is called quadruplicate of the ratio of the first

to the second ; and so on, according to the number of ratios.

Hence, a ratio compounded of three equal ratios is triplicate of
any one of those ratios ; a ratio compounded of four equal ratios,

quadruplicate, &c.

XIII. In proportionals, the antecedent terms of the ratios are said

to be homologous to one another, and the consequents of the

ratios are said to be homologous to one another.

Geometers make use of the following technical words to signify

certain ways of changing either the order or magnitude of pro-

portionals, so as that they continue still to be proportionals :

—

XIV. Permutando, or altemando, by permutation, or alter-

nately : This word is used when there are four proportionals,

and it is inferred, that the first has the same ratio to the third

which the second has to the fourth ; or that the first is to the
third as the second to the fourth. See Prop. 16 of this Book.

XV. Invertendo, by inversion: When there are four propor-

tionals, and it is inferred, that the second is to the first as the

fourth to the third. Prop. A., Book 5.

XVI. Componendo
1
by composition : When there are four pro-

portionals, and it is inferred, that the first, together with the

second, is to the second as the third, together with the fourth,

is to the fourth. 18th Prop., Book 5.
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XVII. Dividendo, by division : When there are four propor-
tionals, and it is inferred, that the excess of the first above the

second to the second, as the excess of the third above the

fourth is to the fourth. 17th Prop., Book 5.

XVIII. Convertendo, by conversion : When there are four pro-

portionals, and it is inferred, that the first is to its excess above
the second as the third to its excess above the fourth. Prop.
D., Book 5.

XIX. Ex cequali (sc. distantia), or ex cequo, from equality of dis-

tance: When there is any number of magnitudes more than two,

and as many others, so that they are proportionals when taken
two and two of each rank, and it is inferred, that the first is to

the last of the first rank of magnitudes as the first is to the last

of the others. Of this there are the two following kinds, which
arise from the different order in which the magnitudes are taken
two and two.

XX. Ex cequali, from equality : This term is used simply by itself,

when the first magnitude is to the second of the first rank as

the first to the second of the other rank ; and as the second is

to the third of the first rank, so is the second to the third of the
other ; and so on in order, and the inference is as mentioned in

the preceding definition ; whence this is called ordinate propor-
tion. It is demonstrated in the 22d Prop., Book 5.

XXI. Ex cequali, in proportione perturbata seu inordinata,
from equality, in perturbate or disorderly proportion : This term
is used when the first magnitude is to the second of the first

rank as the last but one is to the last of the second rank ; and
as the second is to the third of the first rank, so is the last but two
to the last but one of the second rank ; and as the third is to

the fourth of the first rank, so is the third from the last to the
last but two of the second rank ; and so on in a cross, or in-

verse order ; and the inference is as in the 19th definition. It

is demonstrated in the 23d Prop, of Book V.

AXIOMS.

I. Equimultiples of the same, or of equal magnitudes, are equal to

one another.

II. Those magnitudes of which the same, or equal magnitudes, are

equimultiples, are equal to one another.

III. A multiple of a greater magnitude is greater than the same
multiple of a less.

IV. The magnitude of which a multiple is greater than the same
multiple of another, is greater than that other magnitude.
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PROP. I. THEOR.

If any number of magnitudes be equimultiples of as many
others, each of each, what multiple soever any one of the first

is of its part, the same multiple is the sum of all the first of the

sum of a 11 the rest.

Let any number of magnitudes A, B, and C be equimultiples of
as many others, D, E, F, each of each ; A+B+C is the same mul-
tiple of D+E+F that A is of D.
Let A contain D, B contain E, and C contain F, each the same

number of times, as, for instance, three times. Then, because A
contains D three times, A=D+D+D.
For the same reason, B=E+E+E ;

And also, C=F+F+F.
Therefore, adding equals to equals (I. Ax. 2), A+B+C is equal

to D+E+F, taken three times. In the same manner, if A, B, and
C were each any other equimultiple of D, E, and F, it would be

shown that A+B+C was the same multiple of D+E+F. There-
fore, &c. Q. E. D.

Cor. Hence, if m be any number, 7nD+mE+mF=m(D+E+
F). For mT>, mE, and mj? are multiples of D, E

?
and F by m,

therefore their sum is also a multiple of D+E+F by m.

PROP. II. THEOR.

If to a multiple ofa magnitude by any number, a multiple of the

same magnitude by any number be added, the sum will be the

same multiple of that magnitude that the sum of the two num-
bers is of unity.

Let A=mC, and B=nC ; A+B=(m+n)C.
For, since A=mC, A=C+C+C+ &c. C being repeated m times.

For the same reason, B—C+C+ &c. C being repeated n times.

Therefore, adding equals to equals, A+B is equal to C taken m-\-n

times ; that is, A+B=(m+n)C. Therefore A+B contains C as

oft as there are units in m-\-n. Q. E. D.
Cor. 1. In the same way, if there be any number of multiples

whatsoever, as A=mE, B=nE, C=pE, it is shown that A+B+C
=(m+n+p)~E.

Cor. 2. Hence also, since A+B+C=(m+w+j?)E, and since A=
mE, B=riE, and C=pE, mE+nE+pE=:(m+?i+p)E.

PROP. III. THEOR.

If the first of three magnitudes contain the second as oft as there

are units in a certain number, and if the second contain a third

also, as often as there are units in a certain number, the first

will contain the third as oft as there are units in theproduct of
these two numbers.

Let A=mB, and B=nC : then A=mnC.
Since B=nC, mB=nC+nC+&c. repeatedm times. ButwC+wC
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&c, repeated m times is equal (V. 2, Cor. 2) to C multiplied by
n+n+ &c, n being added to itself m times ; but n added to itselfm
times, is n multiplied by m, or mn. Therefore nC+nC+ &c. re-

peated m times=mnC ; whence also mB=mnC, and by hypothesis
A=mB, therefore A—mnG. Therefore, &c. Q. E. D.

PROP. IV. THEOR.

If the first of four magnitudes has the same ratio to the second
which the third has to the fourth, and if any equimultiples
ivhatever be taken of the first and third, and any whatever of
the second and fourth ; the multiple of the first shall have the

same ratio to the multiple of the second,'that the multiple of the

third has to the multiple of the fourth.

Let A : B : : C : D, and let m and n be any two numbers ; mA :

nB : : mC : nD.
Take of mA and mC equimultiples by any number p, and of nB

and nD equimultiples by any number q. Then the equimultiples

of mA and mC by p, are equimultiples also of A and C, for they
contain A and C as oft as there are units in pm (V. 3), and are

equal to pmA andpmC For the same reason, the multiples of nB
and nD by q, are qnB, qnD. Since, therefore, A : B : : C : D, and
of A and C there are taken equimultiples, viz., pmA and pmC, and
of B and D, equimultiples, viz., qnB, qnD, ifpmA be greater than
qnB, pmC must be greater than qnD (V. Def. 5) ; if equal, equal

;

and if less, less. But pinA, pmO are also any equimultiples what-
ever ofmA and mC, and qnB, qnD are any equimultiples what-
ever of nB and nD ; therefore (V. Def. 5), mA : nB : : mC : nD.
Therefore, &c. Q. E. D.

Cor. In the same manner, it may be demonstrated that if

A:B::C:D, and of A and C equimultiples be taken by any
number m, viz., mA and mC ; mA : B : : mC : D. This may also

be considered as included in the proposition, and as being the case

when n=l.

PROP. V. THEOR.

If one magnitude be the same multiple of another, which a mag-
nitude taken from the first is of a magnitude taken from the

other; the remainder is the same multiple of the remainder
that the whole is of the whole.

Let mA and wB be any equimultiples of the two magnitudes
A and B, of which A is greater than B ; mA—mB is the same
multiple ofA—B that mA is of A ; that is, mA—mB—m{A—B).

Let D be the excess ofA above B, then A—B=D ; and, adding

B to both, A=D+B ; therefore (V. 1) mA—mD+mB ; take mB
from both, andmA—mB=mD : but D=A—B ; therefore mA—mB
=m(A-B). Therefore, &c. Q. E. P^ > ,

xj 1 15 Lv A I

i
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PROP. VI. THEOR.

If from a multiple of a magnitude by any number a multiple of
the same magnitude by a less number be taken away, the re-

mainder will be the same multiple of that magnitude, that the

difference of the numbers is of unity.

Let mA and nA be multiples of the magnitude A, by the num-
bers m and n, and let m be greater than n ; mA—nA contains A
as oft as m—n contains unity, or mA—nA=(m—ri)A.

Let m—n—q ; then m=n-\-q. Therefore (V. 2) mA=nA+^A ;

take nA from both, and mA—nA=qA. Therefore mA—nA con-

tains A as oft as there are units in q, that is, in m—n, or mA—
nA=(m-n)A. Therefore, &c. Q. E. D.

Cor. When the difference of the two numbers is equal to unity,

or m—n=l, then mA—nA=A.

PROP. A. THEOR.

Iffour magnitudes be proportionals, they are proportionals also
when taken inversely.

If A : B : : C : D, then also B : A : : D : C.

Let mA and mC be any equimultiples of A and C ; nB and nD
any equimultiples of B and D. Then, because A : B : : C : D,
if mA be less than nB, mC will be less than nD (V. Def. 5) ; that

is, if nB be greater than mA, nD will be greater than mC. For
the same reason, if wB=mA, nD=mC, and if wBzmA, nD^mQ.
But nB, nD are any equimultiples of B and D, and mA, mC any
equimultiples of A and C, therefore (V. Def. 5), B : A : : D : C.

Therefore, &c. Q. E. D.

PROP. B. THEOR.
If the first be the same multiple of the second, or the same part

of it, that the third is of the fourth, the first is to the second as
the third to the fourth.

First, If mA, mB be equimultiples of the magnitudes A and
B ; mA : A : : mB : B.

Take of mA and mB equimultiples by any number n, and of
A and B equimultiples by any number p : these will be (V. 3)
nmA, pA, nmB, pB. Now, if nmA be greater than pA

}
nm is

also greater than p ; and if nm be greater than p, nmB is greater
thanpB ; therefore, when nmA is greater thanpA, ninB is greater
than^B. In the same manner, if nmA=pA, wmB=pB, and if

nmAzJpA, nmB^/pTS. Now, nmA, nmB are any equimultiples
of mA and mB ; and pA, pB are any equimultiples of A and B,
therefore, mA : A : : mB : B (V. Def. 5).

Next, Let C be the same part of A that D is of B ; then A is

the same multiple of C that B is of D, and therefore, as has been
demonstrated, A : C : : B : D, and inversely (V. A) C : A : : D : B.
Therefore, &c. Q. E. D.
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PROP. C. THEOR.

If the first be to the second as the third to the fourth ,• and if the

first be a multiple or apart of the second, the third is the same
multiple or the same part of the fourth.

Let A : B : : C : D, and first, let A be a multiple of B ; C is the

same multiple of D ; that is, if A=mB, C=mD.
Take of A and C equal multiples by any number as 2, viz., 2

A

and 2C ; and of B and D take equimultiples by the number 2m,
viz., 2mB, 2mD (V. 3); then, because A=mB, 2A=2mB; and
since A:B::C:D, and since 2A=2mB, therefore 2C=2mD
(V. Def. 5), and C=mD, that is, C contains D m times, or as

often as A contains B.

Next, Let A be a part of B, C is the same part of D ; for,

since A : B : : C : D, inversely (V. A), B : A : : D : C. But A being
a part of B, B is a multiple of A, and therefore, as is shown
above, D is the same multiple of C, and therefore C is the same
part of D that A is of B. Therefore, &c. Q. E. D.

PROP. VII. THEOR.

Equal magnitudes have the same ratio to the same magnitude,
and the same has the same ratio to equal magnitudes.

Let A and B be equal magnitudes, and C any other ; A : C :

:

B : C.

Let mA, mB be any equimultiples of A and B, and nC any
multiple of C.

Because A=B, mA=mB (V. Ax. 1) : wherefore, if mA be
greater than nC, mB is greater than nC ; and if mA=nC, mB=
nC ; or, if mAzwC, mB^inC. But mA and mB are any equi-

multiples of A and B, and nC is any multiple of C, therefore

(V. Def. 5) A : C : : B : C.

Again, If A = B ; C:A::C:B; for, as has been proved,
A : C : : B : C, and inversely (V. A), C : A : : C : B. Therefore,

&c. Q. E. D.

PROP. VIII. THEOR.
Of unequal magnitudes , the greater has a greater ratio to the

same than the less has ; and the same magnitude has a greater
ratio to the less than it has to the greater.

Let A+B be a magnitude greater than A, and C a third magni-
tude

;
A+B has to C a greater ratio than A has to C ; and C has

a greater ratio to A than it has to A-f-B.
Let m be such a number that mA and mB are each of them

greater than C ; and let nC be the least multiple of C that exceeds
mA-l-mB ; then nC—C, that is (n—1) C (V. 1) will be less than
mA+?nB ; or mA+mB, that is, m (A+B) is greater than (n—1) 0.

But because nC is greater than mA+mB, and C less than mB,
nC—C is greater than mA, or mA is less than nC—C, that is, than
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(n—1) C. Therefore the multiple of A+B by m exceeds the mul-
tiple of C by n—1, but the multiple of A by m does not exceed
the multiple of C by n—1 ; therefore A+B has a greater ratio to

C than A has to C (V. Def. 7).

Again, because the multiple of C by n—1 exceeds the multiple

ofA by m, but does not exceed the multiple of A+B by m, C has

a greater ratio to A than it has to A+B (V. Def. 7). Therefore,

&c. Q. E. D.

PROP. IX. THEOR.
Magnitudes which have the same ratio to the same magnitude are

equal to one another; and those to which the same magnitude
has the same ratio are equal to one another.

If A:C::B:C; A=B.
For, if not, let A be greater than B ; then, because A is greater

than B, two numbers, m and n, may be found, as in the last pro-

position, such that mA shall exceed nC, while mB does not exceed
nC. But because A : C : : B : C ; if mA exceed wC, mB must also

exceed nC (V. Def. 5) ; and it is also shown that mB does not ex-

ceed nC, which is impossible. Therefore A is not greater than B

;

and in the same way, it is demonstrated that B is not greater than
A ; therefore A is equal to B.

Next, Let C : A : : C : B ; A=B. For, by inversion (V. A),

A : C : : B : C ; and therefore by the first case, A=B.

PROP. X. THEOR.
That magnitude, which has a greater ratio than another has to

the same magnitude, is the greater of the two ; and that mag-
nitude, .to which the same has a greater ratio than it has to

another magnitude, is the less of the two.

If the ratio of A to C be greater than that ofB to C ; A is greater

than B.

Because A : C/'B : C, two numbers, m and n, may be found,

such that mAs'nG, and mB^inG (V. Def. 7). Therefore also

mA^mB, and A^B (V. Ax. 4).

Again, Let C : B^C : A; then, B^iA. For two numbers, m
and «., may be found, such that mC/'^B, and mG^LnA (V. Def. 7).

Therefore, since riB is less, and nA greater than the same magni-
tude mC, wB^wA, and B^iA. Therefore, &c. Q. E. D.

PROP. XI. THEOR.
Ratios that are equal to the same ratio are equal to one another.

IfA:B::C:D; and also C : D :: E : F ; then A: B : :E : F.

Take mA, mC, mE, any equimultiples of A, C, and E ; and wB,
nD, n¥ , any equimultiples of B, D, and F. Because A : B : : C : D,
if mA7wB, mG^nD (V. Def. 5) ; but if mC^nJ), mE^™F
(V. Def. 5), because C : D : : E : F ; therefore ifmA7wB, mE^wF.
In the same manner, if wA=%B, mE=nF ; and if mAz«B, mE
^inF. Now, mA, mE are any equimultiples whatever of A and



BOOK FIFTH. 87

E ; and nB, wF any whatever ofB and F ; therefore A : B : : E . F
(V. Def. 5). Therefore, &c. Q. E. D.

PROP. XII. THEOR.

If any number of magnitudes be proportionals, as one of the an-
tecedents is to its consequent, so are all the antecedents, taken

together, to all the consequents.

If A : B : : C : D, and C : D : : E : F ; then also A : B : : A+C+
E : B+D+F.
Take mA, mC, mE, any equimultiples of A, C, and E , and kB,

nD, n¥, any equimultiples of B, D, and F. Then, because A : B
: : C : D, if mA^nB, mCzjiD (V. Def. 5) ; and when mCznD,
raE^nF, because C : D : : E : F. Therefore if mA, Z^nB, mA+
mC+mE/'nB+nD+nF . In the same manner, if mA=nB, mA
+mC+mE=nB+nD+wF ; and if mAzwB, mA+mC+mE^nB
+nD+nF. Now,raA+mC+mE:=ra(A+C+E) (V. Cor. 1), so that

mA and mA+mC+mE are any equimultiples of A, and of A-fC
+E. And for the same reason, nB, and wB+wD+wF are any
equimultiples of B, and of B+D+F; therefore (V. Def. 5) A: B
: : A+C+E : B+D+F. Therefore, &c. Q. E. D.

PROP. XIII. THEOR.

If the first have to the second the same ratio which the third has to

the fourth, but the third to the fourth a greater ratio than the

fifth has to the sixth; the first has also to the second a greater

ratio than the fifth has to the sixth.

If A : B : : C : D ; but C : D/\E : F ; then also, A : B^E : F.
Because C : D/'E : F, there are two numbers, m and n, such that

mC7wD, but mE^_nF (V. Def. 7). Now, if mC^nD, mA^yiB,
because A : B : : C : D. Therefore mA^nB, and mE^jiF, where-
fore, A : B^E : F (V. Def. 7). Therefore, &c. Q. E. D.

PROP. XIV. THEOR.

If the first have to the second the same ratio which the third has
to the fourth, and if the first be greater than the third, the

second shall be greater than the fourth ; if equal, equal ; and
if less, less.

If A : B : : C : D ; then if A/-C, B^D ; if A=C, B=D ; and
if A^iC, B^iD.

First, Let A^C ; then A : B^C : B (V. 8), but A : B : : C : D
;

therefore C : D^C : B (V. 13), and therefore B^D (V. 10).

In the same manner, it is proved that if A=C, B=D ; and if

A^iC, B^D. Therefore, &c. Q. E. D.

PROP. XV. THEOR.
Magnitudes have the same ratio to one another which their

equimultiples have.

If A and B be two magnitudes, and m any number ; A : B : :

mAimB.
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Because A:B::A:B;A:B:: A+A : B-f-B (V. 12), or A : B :

:

2A : 2B. And in the same manner, since A : B : : 2A : 2B, A : B :

:

A+2A : B+2B (V. 12), or A : B : : 3A : 3B ; and so on, for all

the equimultiples of A and B. Therefore, &c. Q. E. D.

PROP. XVI. THEOR.

Iffour magnitudes of the same Tcind "be proportionals, they will

also be proportionals when taken alternately.

If A:B: : C : D, then alternately, A:C:: B:D.
Take mA, mB, any equimultiples of A and B, and nC, nD, any

equimultiples of C and D. Then (V. 15) A : B : : mA : mB

;

now A : B : : C : D ; therefore (V. 11) C : D : : mA : mB. But
C . D : : nC : nV (V. 15) ; therefore mA : mB : : nC : nD (V. 11)

;

wherefore if mA^nC, mB^nD (V. 14) ; if mA=nC, mB=nt),
or if mAz^C, mB^inJ) ; therefore (V. Def. 5), A : C : : B : D.
Therefore, &c. Q. E. D.

PROP. XVII. THEOR.

If magnitudes, taken jointly, be proportionals, they will also be

proportionals when taken separately ; that is, if the first, to-

gether with the second, have to the second the same ratio which
the third, together with thefourth, has to the fourth, the first

will have to the second the same ratio which the third has to

the fourth.

If A+B : B : : C+D : D, then, by division, A : B : : C : D.
Take mA and nB, any multiples of A and B, by the numbers m

and n ; and first let mAznB ; to each of them add mB, then mA
-fmBz-mB+nB. But raA+raB=ra (A-fB) (V. 1, Cor.), and mB
+nB= (m-f») B (V. 2, Cor.), therefore m (A+B) 5" (m-f-n) B.

And because A+B : B : : C+D : D, if m (A+B) 7 (m+ti) B,

m (C+D) "7" (m-\-n)D, or mC+mD/'mD+nD, that is, taking mT>
from both, mC^nJ). Therefore, when mA is greater than nB,
mC is greater than nD. In like manner it is demonstrated that

if mA=7iB, mC=nD, and if mA^.nB, that wCzwD ; therefore

A : B : : C : D (V. Def. 5). Therefore, &c. Q. E. D.

PROP. XVIII. THEOR.

If magnitudes, taken separately, be proportionals, they will also

be proportionals when taken jointly ; that is, if the first be to

the second as the third to the fourth, the first and second to-

gether will be to the second as the third and fourth together

to thefourth.

If A : B : : C : D, then, by composition, A+B : B : : C+D : D.
Take m (A+B) and nB any multiples whatever of A+B and

B : and first, let m be greater than n. Then because A+B is

also greater thanB, m (A+B) s^nB. For the samereason, m(C+D)
'P'riD. In this case, therefore, that is, when m ~m, m (A+B) is

greater than nB, and m (C+D) is greater than wD. And in the
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same manner it may be proved that when m=n, m (A-j-B) is

greater than nB, and m (C+D) greater than nD.
Next, Let m^.n, or nz^m, then m (A+B) may be greater than

nB, or may be equal to it, or may be less ; first, let m (A+B) be
greater than nB ; then also, mA+mBz^nB; take mB, which, is

less than n'B, from both, and mA.'7'nB—mB, or mA7 (n—m) B
(V. 6). But if mA7 (w-m) B, mC/' (n—m) D, because A : B : :

C : D. Now (n—m) T>=nD—mT> (V. 6), therefore mC^nD
-mD, and adding raD to both, mC+mD^wD, that is (V. 1)

m (C+D)^nD. If, therefore, m (A+B) /"nB, m (C+D) /^riD.

In the same manner it may be proved that if m (A+B) =nB,
m (C+D) =?iD ; and ifm (A+B) ^itiB, m (C+D) z«D ; therefore

(V. Def. 5), A+B : B : : C+D : D. Therefore, &c. Q. E. D.

PROP. XIX. THEOR.

Ifa whole magnitude he to a whole as a magnitude taken from
the first is to a magnitude taken from the other ; the re-

mainder will be to the remainder as the whole to the tchole.

If A : B : : C : D, and if C be less than A,
A-C : B-D : : A : B.

Because A : B : : C : D, alternately (V. 16), A : C : : B : D

;

and therefore, by division (V. 17), A-C : C : : B-D : D. Where-
fore, again, alternately, A—C : B—D : : C : D, but A : B : : C : D,
therefore (V. 11) A-C : B-D : : A : B. Therefore, &c. Q. E. D.

Cor. A-C : B-D : : C : D.

PROP. D. THEOR.

Iffour magnitudes be proportionals , they are also proportionals
byconversion; that is, the first is to its excess above the se-

cond as the third to its excess above the fourth.

If A : B : : C : D, by conversion,

A : A-B : : C : C-D.
For, since A : B : : C : D, by division (V. 17), A-B : B : :

C-D : D, and inversely (V. A), B : A-B : : D : C-D ; therefore,

by composition (V. 18), A : A-B : : C : C-D. Therefore, &c.

Q. E. D.
Cor. In the same way it may be proved that A : A+B : : C:

C+D.

PROP. XX. THEOR.

If there be three magnitudes, and other three, which, taken two
and two, have the same ratio ; if the first be greater than the

third, the fourth is greater than the sixth; if equal, equal;
and if less, less.

If there be three magnitudes, A, B, and C,
and other three, D, E, and F ; and if A : B : :

D : E ; and also B : C :: E : F, then if A/-C,
D^F ; if A=C, D=F ; and if A^C, D^F.

A, B, C,

D, E, F.

First, Let A/-C ; then A : B/-C : B (V. 8). But A : B : : D :
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E, therefore also D : E^C : B (V. 13). Now, B : C : : E : F,
and inversely (V. A), C : B : : F : E ; and it has been shown that
D : E/-C : B, therefore D : E^\F : E (V. 13), and, consequently,
D^F (V. 10).

Next, Let A=C ; then A : B : : C : B (V. 7), hut A : B : : D :

E ; therefore C : B : : D : E, but C : B : : F : E, therefore D :

E : : F : E (V. 11) and D=F (V. 9).

Lastly, Let A</C ; then C/'A, and because, as was already
shown, C : B : : F : E, and B : A : : E : D ; therefore, by the first

case, if C^A
;
F/-D, that is, if A^_0, D^F. Therefore, &c.

Q. E. D.

PROP. XXI. THEOR.

If there he three magnitudes , and other three, which have the

same ratio, taken two and two, but in a cross order; if the

first magnitude be greater than the third, the fourth is greater

than the sixth; if equal, equal; and if less, less.

If there be three magnitudes, A, B; C, and other three, D, E,
and F, such that A : B : : E : F, and B : C : : D : E ; if A^C,
D^F ; if A=C, D=F : and if A^iC, D^iF.

First, Let A7-C ; then A : B^C : B (V. 8),

but A : B : : E : F, therefore E : F^C : B
(V. 13). Now, B : C : : D : E, and inversely,

C : B : : E : D ; therefore E : Ft-E : D (Y. 13),

wherefore D/-F (V. 10).

Next, Let A=C ; then (V. 7) A : B : : C : B ; but A : B : :

E : F, therefore, C : B : : E : F (V. 11) ; but B : C : : D : E, and
inversely, C : B : : E : D, therefore (V. 11) E : F : : E : D, and,

consequently, D=F (V. 9).

Lastly, Let A^iC ; then C/'A, and, as was already proved,

C : B : : E : D ; and B : A : : F : E, therefore, by the first case,

since C^A, F^D, that is, D^iF. Therefore, &c. Q. E. D.

PROP. XXII. THEOR.

If there be any number of magnitudes, and as many others,

which, taken two and two in order, have the same ratio ; the

first will have to the last of the first magnitudes the same ratio

which the first of the others has to the last.*

First, Let there be three magnitudes, A, B, C, and other three,

D, E, F, which, taken two and two in order,

have the same ratio, viz., A : B : : D : E,
and B : C : : E : F ; then A : C : : D : F.

Take of A and D any equimultiples what-
ever, mA, rriD ; and of B and E any what-
ever, wB, nE ; and of C and F any whatever,
^C, ^F. Because A : B : : D : E, mA : ?iB : : mD : nE (V. 4)

;

A, B, c,

D, E, F,

mA, nB, qC,

mT>, nE, q¥.

" ex aequo.

N.B.—This proposition is usually cited by the words " ex ceqiiali," or

ceauo."
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and, for the same reason, nB : qC : : nE : qF. Therefore (V. 20),

according as raA is greater than qC, equal to it, or less, raD is

greater than qF, equal to it, or less : but raA, raD are any equi-

multiples of A and D ; and gC, qF are any equimultiples of C and

F ; therefore (V. Def. 5), A : C : : D : F.
Again, Let there be four magnitudes, and other four, which,

taken two and two in order, have the same ratio, viz., A : B : : E
: F ; B : C : : F : G ; C : D : : G : H, then A : D : : E : H.

For, since A, B, C are three magni-
tudes, and E, F, G other three, which,

taken two and two, have the same ratio,

by the foregoing case, A : C : : E : G.

And because also C : D : : G : H, by that same case, A : D : :

E : H. In the same manner is the demonstration extended to

any number of magnitudes. Therefore, &c. Q. E. D.

PROP. XXIII. THEOR.

If there be any number of magnitudes, and as many others,

which, taken two and two, in a cross order, have the same
ratio ; the first will have to the last of the first magnitudes the

same ratio which the first of the others has to the last,*

First, Let there be three magnitudes, A, B, C, and other three,

D, E, and F, which, taken two and two, in a cross order, have the

same ratio, viz., A : B : : E : F, and B : C : : D : E, then A : C :

:

D:F.
Take of A, B, and D any equimultiples, raA, ?/?B, mD; and of

C, E, F any equimultiples, nC, nE, nF.
Because A : B : : E : F, and because also A : B : : raA : raB

(V. 15), and E : F : : nE : nF ; therefore raA : raB : : nE : nF
(V. 11). Again, because B : C : : D : E,
raB : nC : : raD : nE (V. 4) ; and it has been
just shown that raA : mB : : nE : nF

;

therefore, if mAT^nC, mDx'nF (V. 21) ; if

mA=nC, raD=nF
; and if raA^nC, mb^_

nF. Now, mA and mD are any equi-

multiples of A and D, and nC, nF any equimultiples of C and F ;

therefore A : C : : D : F (V. Def. 5).

Next, Let there be four magnitudes, A, B, C, and D, and other

four, E, F, G and H, which, taken two and two, in a cross order,

have the same ratio, viz., A : B : : G :

A, B, c,

D, E, F,

raA, mB, nC,
raD, nE, nF.

A, B, C, D,
E, F, G, H.

H ; B : C : : F : G, and C : D : : E :

F, then A : D : : E : H. For, since

A, B, C are three magnitudes, and F,
G, H other three, which, taken two and two, in a cross order,

have the same ratio, by the first case, A : C : : F : H. But C :

D : : E : F, therefore, again, by the first case, A : D : : E : H.
In the same manner may the demonstration be extended to any
number of magnitudes. Therefore, &c. Q. E. D.

* N.B.—This proposition is usually cited by the words " ex cequali in pro-
portione perlurbata ;

" or, " ex cequo, inversely,'*
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PROP. XXIV. THEOR.

If the first has to the second (he same ratio which tl<e third has

to the fourth; and the fifth to the second, the same ratio which
the sixth has to the fourth; the first and fifth, together, shall

have to the second the same ratio which the third and sixth

together have to the fourth.

Let A : B : : C : 1), and also E : B : : F : D, then A+E : B : :

C+F : D.
Because E : B : : F : D, by inversion, B : E : : D : F. But,

by hypothesis, A : B : : C : D, therefore, ex cequali (V. 22), A :

E : : C : F, and, by composition (V. 18), A+E : E : : C+F : P.

And again, by hypothesis, E : B : : F : D, therefore, ex cequali

(V. 22), A+E : B : : C+F : D. Therefore, &c. Q. E. D.

PROP. E. THEOR.

If four magnitudes he proportionals, the sum of the first two is

to their difference as the sum of the other two to their differ-

ence.

Let A : B : : C : D ; then if A/-B,
A+B : A-B : : C+D : C-D ; or if A^B,
A+B : B-A : : C+D : D-C.

For, if A^B, then, because A : B : : C : D, by division (V. 17),

A-B : B : : C-D : D, and by inversion (V. A),

B : A-B : : D : C-D. But, by composition (V. 18),

A+B : B : : C+D : D, therefore, ex cequali (V. 22),

A+B : A-B : : C+D : C-D.
In the same manner, if B/*A, it is proved that

A+B : B-A : : C+D : D-C. Therefore, &c. Q. E. D.

PROP. F. THEOR.

Ratios, which are compounded of equal ratios, are equal to one
another.

Let the ratios of A to B, and of B to C, which compound the

ratio of A to C, be equal, each to each, to the ratios of D to

E, and E to F, which compound the ratio of D to F ; A : C : :

D:F.
For, first , If the ratio of A to B be equal

to that of D to E, and the ratio of B to C
equal to that of E to F, ex cequali (V. 22),

A : C : : D : F.

And, next. If the ratio of A to B be equal to that of E to F,
arid the ratio of B to C equal to that ofD to E, ex cequali, inversely

(V. 23), A : C : : D : F. In the same manner may the proposi-

tion be demonstrated, whatever be the number of ratios. There-
fore, &c. Q. E. D .*

* See Notes.
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4

BOOK SIXTH.

DEFINITIONS.

I. Similar rectilineal figures are those which have their several

angles equal, each to each, and the

sides about the equal angles pro-

portionals.

II. Two sides of one figure are said to be reciprocally propor-
tional to two sides of another, when one of the sides of the first

is to one of the sides of the second, as the remaining side of the

second is to the remaining side of the first.

III. A straight line is said to be cut in extreme and mean ratio,

when the whole is to the greater segment as the greater seg-

ment is to the less.

IV. The altitude of any figure is the straight line

drawn from its vertex perpendicular to its base.

PROP. I. THEOR.

Triangles and parallelograms, of the same altitude, are one to

another as their bases.

Let the triangles ABC, ACD, and the parallelograms EC, CF
have the same altitude, viz., the perpendicular drawn from the
point A to BD ; then, as the base BC is to the base CD, so is

the triangle ABC to the triangle ACD, and the parallelogram
EC to the parallelogram CF.

Produce BD both ways to the points H, L, and take any num-
ber of straight lines BG, GH, each equal to the base BC ; and
DK, KL, any number of them,
each equal to the base CD ; and
join AG, AH, AK,AL. Then,
because CB, BG, GH are all equal,

the triangles AHG, AGB, ABC
are all equal (I. 38) : therefore,

whatever multiple the base HC
is of the base BC, the same mul-
tiple is the triangle AHC of the triangle ABC. For the same
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reason, whatever multiple the base LC is of the base CD, the

same multiple is the triangle ALC of the triangle ADC. But if

the base HC be equal to the base CL, the triangle AHC is also

equal to the triangle ALC (I. 38) ; and if the base HC be greater

than the base CL, likewise the triangle AHC is greater than the

triangle ALC ; and if less, less. Therefore, since there are four

magnitudes, viz., the two bases BC
;
CD, and the two triangles

ABC, ACD ; and of the base BC and the triangle ABC, the first

and third, any equimultiples whatever have been taken, viz., the

base' HC, and the triangle AHC ; and of the base CD and tri-

angle ACD, the second and fourth, have been taken any equimul-
tiples whatever, viz., the base CL and triangle ALC ; and since it

has been shown that if the base HC be greater than the base CL,
the triangle AHC is greater than the triangle ALC ; and if equal,

equal ; and if less, less : therefore (V. Def. 5), as. the base BC
is to the base CD, so is the triangle ABC to the triangle ACD.
And because the parallelogram CE is double the triangle ABC

(I. 41), and the parallelogram CF double the triangle ACD, and
because magnitudes have the same ratio which their equimultiples

have (V. 15) ; as the triangle ABC is to the triangle ACD, so is

the parallelogram EC to the parallelogram CF. And because it

has been shown that, as the base BC is to the base CD, so is the

triangle ABC to the triangle ACD, and as the triangle ABC to

the triangle ACD, so is the parallelogram EC to the parallelogram

CF ; therefore, as the base BC is to the base CD, so is (V. 11)

the parallelogram EC to the parallelogram CF. Wherefore, tri-

angles, &c. Q. E. D.
Cor. From this it is plain, that triangles and parallelograms

that have equal altitudes are to one another as their bases.

Let the figures be placed so as to have their bases in the same
straight line

;
and having drawn perpendiculars from the vertices

of the triangles to the bases, the straight line which joins the ver-

tices is parallel to that in which their bases are (I. 33), because

the perpendiculars are both equal and parallel to one another.

Then, if the same construction be made as in the proposition, the

demonstration will be the same.

PROP. II. THEOR.

If a straight line be drawn parallel to one of the sides of a tri-

angle, it will cut the other sides, or the other sides produced,
proportionally : and if the sides, or the sides produced, be

cut proportionally , the straight line which joins the 'points of
section will be parallel to the remaining side of the triangle.

Let DE be drawn parallel to BC, one of the sides of the tri-

angle ABC ; BD is to DA as CE to EA.
Join BE, CD ; then the triangle BDE is equal to the triangle

CDE (I. 37), because they are on the same base DE, and between
the same parallels DE, BC : but ADE is another triangle, and
equal magnitudes have, to the same, the same ratio (V. 7) ; there-

fore, as the triangle BDE to the triangle ADE, so is the triangle
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but as the triangle BDE to the

BD to DA, because, having the
CDE to the triangle ADE ;

triangle ADE, so is (VI. 1)

same altitude, viz., ^
the perpendicular

drawn from the

point E to AB,
they are to one

another as their

bases; and, for the

same reason, as the

triangle CDE to

the triangle ADE, * c

so is CE to EA. Therefore, as BD to DA, so is CE to EA (V. 11).

Next, Let the sides AB, AC of the triangle ABC, or these sides

produced, be cut proportionally in the points D, E ; that is, so that

BD be to DA as CE to EA, and join DE ; DE is parallel to BC.
The same construction being made, because, as BD to

s

DA, so

is CE to EA ; and as BD to DA, so is the triangle BDE to

the triangle ADE (VI. 1) ; and as CE to EA, so is the triangle

CDE to the triangle ADE ; therefore the triangle BDE is to the

triangle ADE as the triangle CDE to the triangle ADE ; that

is, the triangles BDE, CDE have the same ratio to the triangle

ADE ; and therefore (V. 9) the triangle BDE is equal to the

triangle CDE : And they are on the same base DE ; but equal

triangles on the same base are between the same parallels

(I. 39) ; therefore DE is parallel to BC. Wherefore, if a
straight line, &c. Q. E. D.

PHOP. III. THEOR.

If the vertical angle of a triangle be bisected by a straight line

which also cuts the base, the segments of the base shall have
the same ratio which the other sides of the triangle have to one
another : and if the segments of the base have the same ratio

which the other sides of the triangle have to one another, the

straight line drawn from the vertex to the point of section

bisects the vertical angle.

Let the vertical angle BAC, of any triangle ABC, be divided
into two equal angles by the straight line AD ; BD is to DC as

BA to AC.
Through the point C draw CE parallel (I. 31) to DA, and let

BA produced meet CE in E. Because the straight line AC meets
the parallels AD, EC, the angle ACE ^/E
is equal to the alternate angle CAD
(I. 29). But CAD, by the hypothesis,

is equal to the angle BAD ; wherefore
BAD is equal to the angle ACE.
Again, because the straight line BAE
meets the parallels AD, EC, the exte-

rior angle BAD is equal to the interior

opposite angle AEC. But the angle n B c

ACE has been proved equal to the angle BAD ; therefore, also,
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ACE is equal to the angle AEC, and, consequently, the side AE is

equal to the side (I. 6) AC. And because AD is drawn parallel

to one of the sides of the triangle BCE, viz., to EC, BD is to DC
as BA to AE (VI. 2) ; but AE is equal to AC; therefore, as BD
to DC, so is BA to AC (V. 7.)

Next, Let BD be to DC as BA to AC, and join AD ; the angle

BAC is divided into two equal angles by the straight line AD.
The same construction being made ; because, as EJ) to DC, so

is BA to AC ; and as BD to DC, so is

BA to AE (VI. 2), because AD is pa-

rallel to EC ; therefore AB is to AC
as AB to AE (V. 11) : consequently

AC is equal to AE (V. 9), and the an-

gle AEC is therefore equal to the angle

ACE (I. 5). But the angle ^ AEC is

equal to the exterior opposite angle

BAD ; and the angle ACE is equal to

the alternate angle CAD (I. 29) :

B

Wherefore also, the angle BAD is equal to the angle CAD.
Therefore the angle BAC is cut into two equal angles by the

straight line AD. Therefore, if the angle, &c. Q. E. D.

PROP. A. THEOR.

If the exterior angle ofa triangle be bisected by a straight line

which also cuts the base produced, the segments between the bi-

secting line and the extremities of the base have the same ratio

which the other sides of the triangle have to one another : and

if the segments of the base produced have the same ratio which

the other sides of the triangle have
}
the straight line, drawn

from the vertex to the point of section, bisects the exterior angle

of the triangle.

Let the exterior angle CAE of any triangle ABC be bisected

by the straight line AD, which meets the base produced in D ; BD
is to DC as BA to AC.
Through C draw CF parallel to AD (I. 31) : and because the

straight line AC meets the parallels AD, FC, the angle ACF is

equal to the alternate angle CAD (I. 29). But CAD is equal to the

angle DAE (Hyp.) ; therefore, also,DAE is equal to the angle ACF.
Again, because the straight line FAE meets the parallels AD, FC,
the exterior angle DAE is equal to the

interior opposite angle CFA. But the

angle ACF has been proved to be equal

to the angle DAE ; therefore also the

angle ACF is equal to the angle CFA,
and, consequently, the side AF is equal

to the side AC (I. 6) ; and because AD B

is parallel to FC, a side of the triangle BCF, BD is to DC as BA
to AF (VI. 2) ; but AF is equal to AC ; therefore, as BD is to

DC, so is BA to AC.
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Now, let BD be to DC as BA to AC, and join AD ; the angle
CAD is equal to the angle DAE.
The same construction being made, because BD is to DC as BA

to AC ; and also BD to DC as BA to AF (VI. 2) ; therefore BA
is to AC as BA to AF (V. 11) ; wherefore AC is equal to AF (V.

9), and the angle AFC equal (I. 5) to the angle ACF . But the

angle AFC is equal to the exterior angle EAD, and the angle
ACF to the alternate angle CAD ; therefore, also, EAD is equal to

the angle CAD. Wherefore, if the exterior, &c. Q. E. D.

PROP. IV. THEOR.

The sides about the equal angles ofequiangular triangles are pro-
portionals ; and those which are opposite to the equal angles
are homologous sides, that is, are the antecedents or consequents

of the ratios.

Let ABC, DCE be equiangular triangles, having the angle ABC
equal to the angle DCE, and the angle ACB to the angle DEC,
and, consequently (I. 32), the angle BAC equal to the angle CDE

;

the sides about the equal angles of the triangles ABC, DCE are

proportionals ; and those are the homologous sides which are oppo-
site to the equal angles.

Let the triangle DCE be placed, so that its side CE may be con-

tiguous to BC, and in the same straight line with it : and because
the angles ABC, ACB are together less than two right angles (I.

17), ABC and DEC, which is equal to ACB, are also less than two
right angles; wherefore BA, ED produced shall

meet (I. 29, Cor.) ; let them be produced and
meet in the point F ; and because the angle

ABC is equal to the angle DCE, BF is parallel

(I. 28) to CD. Again, because the angle ACB
is equal to the angle DEC, AC is parallel to

FE (I. 28) ; therefore FACD is a parallelo-

gram; and, consequently, AF is equal to CD, b c e
and AC to FD (I. 34). And because AC is parallel to FE, one of
the sides of the triangle FBE, BA : AF : : BC : CE (VI. 2) : but
AF is equal to CD ; therefore (V. 7), BA : CD : : BC : CE ; and
alternately, BA : BC : : DC : CE (V. 16). Again, because CD is

parallel to BF, BC : CE : : FD : DE (VI. 2) : but FD is equal to

AC ; therefore BC : CE : : AC : DE ; and, alternately, BC : CA : :

CE : ED. Therefore, because it has been proved that AB : BC :

:

DC : CE; andBC : CA : : CE : EI), ex cequali,BA : AC : : CD :DE.
Therefqre, the sides, &c. Q. E. D.

PROP. V. THEOR.
If the sides of two triangles, about each of their angles, be pro-
portionals, the triangles shall be equiangular, and have their

equal angles opposite to the homologous sides.

Let the triangles ABC, DEF have their sides proportionals, so

that AB is to BC as DE to EF ; and BC to CA as EF to FD

;
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and, consequently, ex cequali, BA to AC, as ED to DF ; the triangle

ABO is equiangular to the triangle DEF, and their equal angles

are opposite to the homologous sides, viz., the angle ABC being
equal to the angle DEF, and BCA to EFD, and also BAC to EDF.
At the points E, F, in the straight line

EF, make (I. 23) the angle FEG equal to

the angle ABC, and the angle EFG equal

to BCA ; wherefore the remaining angle

BAC is equal to the remaining angle EGF
(I. 32), and the triangle ABC is therefore

equiangular to the triangle GEF ; and,

consequently, they have their sides oppo- b c

site to the equal angles proportionals (VI. 4). Wherefore,
AB : BC : : GE : EF ; but, by supposition,

AB : BC : : DE : EF, therefore (V. 11)

DE : EF : : GE : EF ; therefore DE and
GE have the same ratio to EF, and, consequently, are equal (V. 9).

For the same reason, DF is equal to FG. And because, in the

triangles DEF, GEF, DE is equal to EG, and EF common, and
also the base DF equal to the base GF ;

therefore the angle DEF
is equal (I. 8) to the angle GEF, and the other angles to the other

angles, which are subtended by the equal sides (I. 4). Wherefore
the angle DFE is equal to the angle GFE, and EDF to EGF

;

and because the angle DEF is equal to the angle GEF, and GEF
to the angle ABC ; therefore the angle ABC is equal to the angle

DEF. For the same reason, the angle ACB is equal to the angle

DFE, and the angle at A to the angle at D. Therefore the tri-

angle ABC is equiangular to the triangle DEF. Wherefore, if

the sides, &c. Q. E. D.

PROP. VI. THEOR.
If two triangles have one angle of the one equal to one angle of

the other, and the sides about the equal angles proportionals,

the triangles shall be equiangular, and shall have those angles

equal which are opposite to the homologous sides.

Let the triangles ABC,DEF have the angleBAC in the one equal

to the angle EDF in the other, and the sides about those angles

proportionals ; that is, BA to AC as ED to DF ; the triangles

ABC, DEF are equiangular, and have the angle ABC equal to the

angle DEF, and ACB to DFE.
At the points D, F, in the straight line

DF, make (I. 23) the angle FDG equal
to either of the angles BAC, EDF ; and
the angle DFG equal to the angle ACB

;

wherefore the remaining angle at B is

equal to the remaining angle at G (I.

32) , and, consequently, the triangleABC
is equiangular to the triangle DGF ; and therefore

BA : AC : : GD : DF (VI. 4) ; but, by hypothesis,
BA : AC : : ED : DF

; and therefore

ED : DF : : GD : DF (V. 11) ; wherefore ED ifi
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equal (V. 9) to DG ; and DF is common to the two triangles EDP
',

GDF ; therefore the two sides ED, DF are equal to the two sides

GD, DF ; but the angle EDF is also equal to the angle GDF
;

wherefore the base EF is equal to the base FG (I. 4), and the

triangle EDF to the triangle GDF, and the remaining angles to

the remaining angles, each to each, which are subtended by the

equal sides. Therefore the angle DFG is equal to the angle DFE,
and the angle at G to the angle at E. But the angle DFG is equal

to the angle ACB ; therefore the angle ACB is equal to the angle

DFE, and the angle BAG is equal to the angle EDF (Hyp.)

;

wherefore, also, the remaining angle at B is equal to the remaining
angle at E. Therefore the triangle ABC is equiangular to the

triangle DEF. Wherefore, if two triangles, &c. Q. E. D.

PROP. VII. THEOR.

If two triangles have one angle of the one equal to one angle of
the other, and the sides about tivo other angles proportionals,

then, if each of the remaining angles be either less or not less

than a right angle, the triangles shall be equiangular, and
have those angles equal about which the sides are proportionals.

Let the two triangles ABC, DEF have one angle in the one
equal to one angle in the other, viz., the angle BAC to the angle
EDF, and the sides about two other angles ABC, DEF propor-
tionals, so that AB is to BC as DE to EF ; and, in the first case,

let each of the remaining angles at C, F be less than a right angle
;

the triangle ABC is equiangular to the triangle DEF, that is, the
angle ABC is equal to the angle DEF, and the remaining angle
at C to the remaining angle at F.

For, ifthe angles ABC, DEF be not equal, one of them is greater
than the other. Let ABC be the greater, and at the point B, in

the straight line A B. make the A
angle ABG equal to the angle

(I. 23) DEF : and because the

angle at A is equal to the angle
at D, and the angle ABG to the
angle DEF ; the remaining / _^-—^"\G

angleAGB is equal (I. 32) to the /^^ \

remaining angle DFE. There- B c E

fore the triangle ABG is equiangular to the triangle DEF ;

wherefore (VI. 4) AB : BG : : DE : EF ; but
by hypothesis, DE : EF : : AB : BC,
therefore, AB : BC : : AB : BG (V. 11) ;

and because AB has the same ratio to each of the lines BC, BG

;

BC is equal (V. 9) to BG, and therefore the angle BGC is equal to

the angle BCG (I. 5). But the angle BCG is, by hypothesis, less

than a right angle ; therefore also the angle BGC is less than a
right angle, and the adjacent angle AGB must be greater than a
right angle (I. 13). But it was proved that the angle AGB is

equal to the angle at F ; therefore the angle at F is greater than
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a right angle ; but, by the hypothesis, it is less than a right angle,

which is absurd. Therefore the angles ABC, DEF are not un-
equal, that is, they are equal. And the angle at A is equal to the

angle at D ; wherefore the remaining angle at C is equal to the

remaining angle at F. Therefore the triangle ABC is equiangular

to the triangle DEF.
Next, Let each of the angles at C, F be not less than a right

angle ; the triangle ABC is also, in this case, equiangular to the

triangle DEF.
The same construction being made, it may be proved, in like

manner, that BC is equal to BG, A.

and the angle at C equal to the

angle BGC. But the angle at C ^ /
jr>

is not less than a right angle

;

therefore the angle BGC is not
less than a right angle. Where-
fore, two angles of the triangle B

BGC are together not less than two right angles, which is impos-
sible (I. 17) ; and therefore the triangle ABC may be proved to

be equiangular to the triangle DEF, as in the first case.

PROP. VIII. THEOR.

In a right-angled triangle, if a perpendicular be drawn from
the right angle to the base ; the triangles on each side of it are

similar to the whole triangle, and to one another.

Let ABC be a right-angled triangle, having the right angle

BAC ; and from the point A let AD be drawn perpendicular to

the base BC ; the triangles ABD, ADC are simiar to the whole
triangle ABC, and to one another.

Because the angle BAC is equal to the angle ADB, each of them
being a right angle, and the angle at B common to the two triangles

ABC, ABD ; the remaining angle ACB is equal to the remaining
angle BAD (I. 32) ; therefore the tri-

angle ABC is equiangular to the triangle

ABD, and the sides about their equal

angles are proportionals (VI. 4) ; where-
fore the triangles are similar (VI. Def. 1).

In like manner, it may be demonstrated g-
that the triangle ADC is equiangular and
similar to the triangle ABC : and the triangles ABD, ADC, being
each equiangular and similar to ABC, are equiangular and similar

to one another. Therefore, in a right-angled, &c. Q. E. D.
Cor. From this it is manifest, that the 'perpendicular drawn

from the right angle of a right-angled triangle, to the base, is a
meanproportional between the segments of the base; and also, that

each of the sides is a mean proportional between the base and its

segment adjacent to that side. For, in the triangles BDA, ADC,
BD : DA : : DA : DC (VI. 4)

;

and in the triangles ABC, BDA, BC : BA : BA : BD (VI. 4)

;

and in the triangles ABC, ACD, BC : CA : : CA : CD (VI. 4).
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PROP. IX. PROB.

From a given straight line to cut off any part required, that is, a

part which shall be contained in it a given number oftimes.

Let AB be the given straight line ; it is required to cut off from

AB a part which shall he contained in it a given number of times.

From the point A draw a straight line AC making any angle

with AB ; and in AC take any point D, and take AC such that it

shall contain AD as oft as AB is to contain the

part which is to be cut off from it
;
join BC, and

draw DE parallel to it : then AE is the part re-

quired to be cut off.

Because ED is parallel to one of the sides of the

triangle ABC, viz., to BC, CD : DA : : BE : EA
(VI. 2) ; and, by composition (V. 18), CA : AD : :

BA : AE. But CA is a multiple of AD ; there-

fore (V. 6) BA is the same multiple ofAE , or con-

tains AE the same number of times that AC contains AD ; and
therefore, whatever part AD is of AC, AE is the same of AB

;

wherefore, from the straight line AB the part required is cut off.

Which was to be done.

PROP. X. PROB.

To divide a given straight line similarly to a given divided

straight line, that is, into parts that shall have the same ratios

to one another which the parts of the divided given straight

line have.

Let AB be the straight line given to be divided, and AC the

divided line ; it is required to divide AB similarly to AC.
Let AC be divided in the points D, E ; and let AB, AC be

placed so as to contain any angle, and join BC, and through the

points D, E draw (I. 31) DF, "EG parallel to BC ; and through
D draw DHK parallel to AB ; therefore each a
of the figures FH, HB is a parallelogram;
wherefore DH is equal (1. 34) to FG, and HK
to GB ; and because HE is parallel to KC, one
of the sides of the triangle DKC, CE : ED :

:

KH:HD(VI. 2). But KH=BG, and HD=
GF ; therefore CE : ED : : BG : GF. Again,
because FD is parallel to EG, one of the sides

of the triangle AGE, ED : DA : : GF : FA.
But it has been proved that CE : ED :

B K C
: : BG : GF ; therefore the

given straight line AB is divided similarly to AC. Which was
to be done.

LIBRA U V

UN J VKJiSITV OF
/ * i I r 11/ v i
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PROP. XL PROB.

To find a third proportional to two given straight lines.

Let AB, AC be the two given straight lines, and let them, be

placed so as to contain any angle ; it is \

required to find a third proportional to
r

AB, AC.
Produce AB, AC to the points D, E

; BJ.

and make BD equal to AC ; and having

joined BC, through D draw DE parallel

to it (I. 31).

Because BC is parallel to DE, a side of

the triangle ADE, AB : BD : : AC : CE
(VI. 2). But BD=AC ; therefore AB : AC : :: AC : CE. Where-
fore, to the two given straight lines AB, AC, a third proportional

CE is found. Which was to be done.

PROP. XII. PROB.

To find a fourth proportional to three given straight lines.

Let A, B, C be the three given straight lines ; it is required to

find a fourth proportional to A, B, C.

Take two straight lines DE, DF, containing any angle EDF ;

and upon these make DG equal to A, GE equal to B, and DH
equal to C ; and having joined

GH, draw EF parallel (I. 31) to

it through the point E. And
because GH is parallel to EF,
one of the sides of the triangle

DEF, DG : GE : : DH : HF
(VI. 2). But DG=A, GE-B,
and DH=C; and therefore A :

B : : C : HF. Wherefore, to the
three given straight lines A, B,
found. Which was to be done.

fourth proportional HF is

PROP. XIII. PROB.

To find a mean proportional between two given straight lines.

Let AB, BC be the two given straight lines ; it is required to

find a mean proportional between them.
Place AB, BC in a straight line, and upon AC describe the

semicircle ADC, and from the point B ^ O^
(I. 11) draw BD at right angles to AC,
and join AD, DC.

Because the angle ADC in a semicir-
cle is a right angle (III. 31), and because i

in the right-angled triangle ADC, DB is jf

drawn from the right angle perpendicular to the base, DB is a
mean proportional between AB, BC, the segments of the base
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(VI. 8, Cor.) ; therefore, between the two given straight lines

AB, BC, a mean proportional DB is found. Which was to be
done.

PROP. XIV. THEOR.
Equal parallelograms which have one angle of the one equal to

one angle of the other, have their sides about the equal angles
reciprocally proportional: and parallelograms which have
one angle of the one equal to one angle of the other, and their

sides about the equal angles reciprocally proportional, are
equal to one another.

Let AB, BC be equal parallelograms, which have the angles at

B equal, and let the sides DB, BE be
placed in the same straight line ; where-
fore, also, FB, BG are in one straight

line (I. 14) : the sides of the parallelo-

grams AB, BC about the equal angles
are reciprocally proportional ; that is,

DB is to BE as GB to BF.
Complete the parallelogram FE

;

and because the parallelograms AB, BC are equal, and FE is

another parallelogram,

AB : FE : : BC : FE (V. 7)

;

but because the parallelograms AB, FE have the same altitude,

AB : FE : : DB : BE (VI. 1), also

BC : FE : : GB : BF (VI. 1) ; therefore

DB : BE : : GB : BF (V. 11). Wherefore,
the sides of the parallelograms AB, BC about their equal angles

are reciprocally proportional.

But let the sides about the equal angles be reciprocally propor-
tional, viz., as DB to BE, so is GB to BF ; the parallelogram AB
is equal to the parallelogram BC.

Because DB : BE : : GB : BF, and DB : BE : : AB : FE, and
GB : BF : : BC : EF, therefore AB : FE : : BC : FE (V. 11).

Wherefore, the parallelogram AB is equal (V. 9) to the parallelo-

gram BC. Therefore, equal parallelograms, &c. Q. E. D.

PROP. XV. THEOR.
Equal triangles which have one angle of the one equal to one

angle of the other, have their sides about the equal angles re-

ciprocally proportional : and triangles which have one angle
in the one equal to one angle in the other, and their sides

about the equal angles reciprocally proportional, are equal to

one another.

Let ABC, ADE be equal triangles, which have the angle BAC
equal to the angle DAE ; the sides about the equal angles of these

triangles are reciprocally proportional ; that is, CA is to AD as

EA to AB.
Let the triangles be placed so that their sides CA, AD be in

one straight line ; wherefore, also, EA and AB are in one straight
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line (I. 14) ;
join BD. Because the triangle ABC is equal to the

triangle ADE, and ABD is another
,

triangle ; therefore triangle CAB

:

triangle BAD : : triangle EAD : tri-

angle BAD ; but CAB : BAD : : CA

:

AD, and EAD : BAD : : EA : AB
;

therefore CA : AD : : EA : AB (V.

11), wherefore the sides of the tri-

angles ABC, ADE about the equal

angles are reciprocally proportional.

But let the sides of the triangles ABC, ADE about the equal
angles be reciprocally proportional, viz., CA to AD as Ex\ to AB

;

the triangle ABC is equal to the triangle ADE.
Having joined BD as before ; because CA : AD : : EA : AB

;

and since CA : AD : : triangle ABC : triangle BAD (VI. 1) ; and
also EA : AB : : triangle EAD : triangle BAD (V. 11) ; there-

fore triangle ABC : triangle BAD : : triangle EAD : triangle

BAD ; that is, the triangles ABC, EAD have the same ratio to

the triangle BAD ; wherefore the triangle ABC is equal (V. 9) to

the triangle EAD Therefore, equal triangles, &c. Q. E. D.

PROP. XVI. THEOR.

If four straight lines be proportionals, the rectangle contained
by the extremes is equal to the rectangle contained by the means

:

and if the rectangle contained by the extremes be equal to the

rectangle contained by the means, the four straight lines are
proportionals.

Let the four straight lines AB, CD, E, F be proportionals,

viz., as AB to CD, so is E to F ; the rectangle contained by AB
and F is equal to the rectangle contained by CD and E.
From the points A, C draw (I. 11) AG, CH at right angles to

AB, CD ; and make AG equal to F, and
CH equal to E, and complete the paral- E-

lelograms BG, DH. Because AB : CD : : f-
E : F ; and since E=CH, and F=AG, _

AB : CD (V. 7) : : CH : AG ; therefore
G

the sides of the parallelograms BG, DH
abo ut the equal an gles are reciprocally pro-
portional; but parallelograms which have
their sides about equal angles reciprocally proportional are equal

to one another (VI. 14) ; therefore the parallelogram BG is equal

to the parallelogram DH ; and the parallelogram BG is contained

by the straight lines AB and F, because AG is equal to F ; and
the parallelogram DH is contained by CD and E, because CH is

equal to E ; therefore the rectangle contained by the straight lines

AB and F is equal to that which is contained by CD and E.
And if the rectangle contained by the straight lines AB, F be

equal to that which is contained by CD, E ; these four lines are

proportionals, viz., AB is to CD as E to F.
The same construction being made, because the rectangle con-

H

\ B C D
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tained by the straight liner AB, F is equal to that which is con-

tained by CD, E, and the rectangle BG is contained by AB, F,
because AG is equal to F ; and the rectangle DH by CD, E, be-

cause CH is equal to E ; therefore the parallelogram BG is equal

to the parallelogram DH ; and they are equiangular; but the

sides about the equal angles of equal parallelograms are recipro-

cally proportional (VI. 14) : wherefore AB : CD : : CH : AG ; but

CH=E, and AG=F, therefore AB : CD : : E : F. Wherefore, •/
four, &c. Q. E. D.

PROP. XVII. THEOR.

If three straight lines be proportionals, the rectangle contained
by the extremes is equal to the square of the mean : and if
the rectangle contained by the extremes be equal to the square

of the mean, the three straight lines are "proportionals.

Let the three straight lines A, B, C be proportionals, viz., as A
to B, so is B to C ; the rectangle contained by A, C is equal to the

square of B.

Take D equal to B ; and because as A to B, so is B to C, and B
is equal to D ; A is (V. 7) to B as D to C ; but if four straight

lines be proportionals, the rectangle contained A
by the extremes is equal to that which is con- B
tained by the means (VI. 16) ; therefore the rect-

angleA.C=the rectangle B.D; but the rect-

angle B.D is equal to the square of B, because

B=D ; therefore the rectangle A.C is equal to the square of B.

And if the rectangle contained by A, C be equal to the square

of B ; A : B : : B : C.

The same construction being made, because the rectangle con-

tained by A, C is equal to the square of B, and the square of B is

equal to the rectangle contained by B, D, because B is equal to D
;

therefore the rectangle contained by A, C is equal to that contained

by B, D ; but if the rectangle contained by the extremes be equal

to that contained by the means, the four straight lines are propor-

tionals (VI. 16) ; therefore A : B : : D : C ; but B=D ; wherefore
A : B : : B : C. Therefore, if three straight lines

)
&c. Q. E. D.

PROP. XVIII. PROB.
Upon a given straight line to describe a rectilineal figure similar,

and similarly situated, to a given rectilineal figure.

Let AB be the given straight line, and CDEF the given recti-

lineal figure of four sides ; it is required, upon the given straight

line AB, to describe a rectilineal figure similar, and similarly situ-

ated to CDEF.
Join DF, and at the points A, B in the straight line AB, make

(I. 23) the angle BAG equal to the angle at C, and the angle ABG
equal to the angle CDF ; therefore the remaining angle CFD is

equal to the remaining angle AGB (I. 32) ; wherefore the triangle

FCD is equiangular to the triangle GAB. Again, at the points
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G, B in the straight line GB, make (I. 23) the angle BGH equal
to the angle DFE, and the angle GBH equal to FDE ; therefore
the remaining angle FED
is equal to the remaining
angle GHB, and the tri-

angle FDE equiangular to

the triangle GBH
; then,

because the angle AGB is

equal to the angle CFD,
and BGH to DFE, the
whole angle AGH is equal to the whole CFE ; for the same reason,
the angle ABH is equal to the angle CDE ; also, the angle at A is

equal to the angle at C, and the angle GHB to FED. Therefore
the rectilineal figure ABHG is equiangular to CDEF. But like-

wise these figures have their sides about the equal angles propor-
tionals ; for the triangles GAB, FCD being equiangular,

BA : AG : : DC : CF (VI. 4) ; for the same reason,

AG: GB : : CF : : FD ; and because of the equiangular
triangles, BGH, DFE, GB : GH : : FD : FE ;

therefore, ex cequali

(V. 22), AG : GH : : CF : FE. In the same manner, it may be
proved that

AB:BH::CD:DE. Also (VI 4),

GH : HB : : FE : ED. Wherefore, because the recti-

lineal figures ABHG, CDEF are equiangular, and have their sides

about the equal angles proportionals, they are similar to one
another (VI. Def. 1).

Next, Let it be required to describe upon a given straight line

AB, a rectilineal figure, similar, and similarly situated to the five-

sided rectilineal figure CDKEF.
Join DE, and upon the given straight line AB describe the rec-

tilineal figure ABHG, similar, and similarly situated to the qua-
drilateral figure CDEF, by the former case ; and at the points B,
H, in the straight line BH, make the angle HBL equal to the angle

EDK, and the angle BHL equal to the angle DEK ; therefore the

remaining angle at K is equal to the remaining angle at L ; and
because the figures ABHG, CDEF are similar, the angle GHB is

equal to the angle FED, and BHL is equal to DEK ; wherefore
the whole angle GHL is equal to the whole angle FEK ; for the

same reason, the angle ABL is equal to the angle CDK ; therefore

the five-sided figures AGHLB, CFEKD are equiangular ; and
because the figures AGHB, CFED are similar, GH is to HB as

FE to ED; and as HB to HL, so is ED to EK (VI. 4); there-

fore, ex cequali (V. 22), GH is to HL as FE to EK ; for the same
reason, AB is to BL as CD to DK ; and BL is to LH as (VI. 4)

DK to KE, because the trianglesBLH ,DKE are equiangular ; there-

fore, because the five-sided figures AGHLB, CFEKD are equi-

angular, and have their sides about the equal angles proportionals,

they are similar to one another ; and in the same manner, a recti-

lineal figure of six or more sides may be described upon a given

straight line similar to one given, and so on. Which was to be
done.
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PROP. XIX. THEOR.
Similar triangles are to one another in the duplicate ratio of

their homologous sides.

Let ABC, DEF be similar triangles, having the angle B equal
to the angle E, and let AB
be to BC as DE to EF, so

that the side BC is homo-
logous to EF (V. Def. 13)

;

the triangle ABC has to the

triangleDEF the duplicate

ratio of that which BC has

toEF.
Take BG a third propor- b g c e

tional to BC and EF (VI. 11), or such that BC : EF : : EF : BG,
and join GA. Then, because

AB : BC : : DE : EF, alternately (V. 16),

AB:DE::BC,:EF; but

BC : EF : : EF: BG ; therefore (V. 11)

AB : DE : : EF : BG ; wherefore the sides of the triangles

ABG, DEF, which are about the equal angles, are reciprocally

proportional ; but triangles which have the sides about two equal

angles reciprocally proportional are equal to one another (VI. 15)

;

therefore the triangle ABG is equal to the triangle DEF ; and
because BC is to EF as EF to BG ; and when three straight lines

are proportionals, the first has to the third the duplicate ratio of
that which it has to the second ; BC therefore has to BG the dupli-

cate ratio of that which BC has to EF. But as BC to BG, so is

(VI. 1) the triangle ABC to the triangle ABG; therefore the

triangle ABC has to the triangle ABG the duplicate ratio of that

which BC has to EF ; and the triangle ABG is equal to the triangle

DEF ; wherefore also, the triangle ABC has to the triangle DEF
the duplicate ratio of that which BC has to EF. Therefore, similar

triangles, &c. Q. E. D.
Cor. From this it is manifest, that if three straight lines be pro-

portionals, as the first is to the third, so is any triangle upon the

first to a similar, and similarly described triangle upon the second.

PROP. XX. THEOR.
Similar polygons may be divided into the same number of similar

triangles, having the same ratio to one another that thepolygons
have ; and the polygons have to one another the duplicate ratio

of that which their homologous sides have.

Let ABCDE, FGHKL be similar polygons, and let AB be the

homologous side to FG ; the polygons ABCDE, FGHKL may be
divided into the same number of similar triangles, whereof each
has to each the same ratio which the polygons have ;

and the polygon
ABCDE has to the polygon FGHKL a ratio duplicate of that

which the side AB has to the side FG.
Join BE, EC

;
GL, LH ; and because the polygon ABCDE is
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similar to the polygon FGHKL, the angle BAE is equal to the
angle GFL (VI. Def. 1), and BA : AE : : GF : FL (VI. Def. 1) ;

wherefore, because the A
triangles ABE, FGL have
an angle in one equal to

an angle in the other, and
their sides about these

equal angles proportion-

als, the triangle ABE is

equiangular (VI. 6), and
therefore similar to the triangle FGL (VI. 4) ; wherefore the

angle ABE is equal to the angle FGL ; and, because the polygons
are similar, the whole angle ABC is equal (VI. Def. 1) to the whole
angle FGH ; therefore the remaining angle EBC is equal to the

remaining angle LGH ; now, because the triangles ABE, FGL are

similar, EB : BA : : LG : GF ;

and also, because the polygons are similar,

AB : BC : : FG : GH (VI. Def. 1) ; therefore

ex cequali (V. 22), EB : BC : : LG : GH ; that is, the

sides about the equal angles EBC, LGH are proportionals ; there-

fore (VI. 6) the triangle EBC is equiangular to the triangle LGH,
and similar to it (VI. 4). For the same reason, the triangle ECD
is likewise similar to the triangle LHK ; therefore the similar
polygons ABCDE, FGHKL are divided into the same number of
similar triangles.

Also, these triangles have, each to each, the same ratio which
the polygons have to one another, the antecedents being ABE,
EBC, ECD, and the consequents FGL, LGH, LHK ; and the

polygon ABCDE has to the polygon FGHKL the duplicate ratio

of that which the side AB has to the homologous side FG.
Because the triangle ABE is similar to the triangle FGL, ABE

has to FGL the duplicate ratio (VI. 19) of that which the side BE
has to the side GL ; for the same reason, the triangle BEC has to

GLH the duplicate ratio of that which BE has to GL ; therefore,

as the triangle ABE to the triangle FGL, so (V. 11) is the triangle

BEC to the triangle GLH. Again, because the triangle EBC is

similar to the triangle

LGH, EBC has to LGH
the duplicate ratio of that
which the side EC has to

the side LH ; for the same
reason, the triangle ECD
has to the triangle LHK
the duplicate ratio of that D
which EC has to LH ; therefore, as the triangle EBC to the tri-

angle LGH, so is (V. 11) the triangle ECD to the triangle LHK
;

but it has been proved that the triangle EBC is likewise to the
triangle LGH as the triangle ABE to'the triangle FGL. There-
fore, as the triangle ABE is to the triangle FGL, so is the triangle
EBC to the triangle LGH, and the triangle ECD to the triangle
LHK; and therefore, as one of the antecedents to one of the con-
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sequents, so are all the antecedents to all the consequents (V. 12).

Wherefore, as the triangle ABE to the triangle FGL, so is the

polygon ABCDE to the polygon FGHKL ; but the triangle ABE
has to the triangle FGL the duplicate ratio of that which the side

AB has to the homologous side FG. Therefore also the polygon
ABCDE has to the polygon FGHKL the duplicate ratio of that

which AB has to the homologous side FG. Wherefore, similar

polygons, &c. Q. E. D.
Cor. 1. In like manner, it may be proved, that similar figures

offour sides, or of any number of sides, are one to another in the

duplicate ratio of their homologous sides ; and the same has already

been proved of triangles ; therefore, universally, similar recti-

lineal figures are to one another in the duplicate ratio of their

homologous sides.

Cor. 2. And if to AB, FG, two of the homologous sides, a third

proportional M be taken, AB has (V. Def. 11) to M the duplicate

ratio of that which AB has to FG ; but the four-sided figure, or

polygon, upon AB has to the four-sided figure, or polygon, upon
FG likewise the duplicate ratio -of that which AB has to FG

;

therefore, as AB is to M, so is the figure upon AB to the figure

upon FG, which was also proved in triangles (VI. 19, Cor.). There-
fore, universally, it is manifest, that if three straight lines be pro-
portionals, as the first is to the third, so is any rectilineal figure
upon the first to a similar and similarly described rectilineal

figure upon the second.

Cor. 3. Because all squares are similar figures, the ratio of any
two squares to one another is the same with the duplicate ratio of
their sides ; and hence, also, any two similar rectilineal figures
are to one another as the squares of their homologous sides.

PROP. XXI. THEOR.

Rectilinealfigures which are similar to the same rectilineal

figure, are also similar to one another.

Let each of the rectilineal figures A, B be similar to the recti-

lineal figure C ; the figure A is similar to the figure B.

Because A is similar to C, they are equiangular, and also have
their sides about the equal angles proportionals (VI. Def. 1).

Again, because B is similar to

C, they are equiangular, and
have their sides about the equal

angles proportionals (VI. Def.

1) ; therefore the figures A, B
are each of them equiangular

to C, and have the sides about
the equal angles of each ofthem,
and of C, proportionals. Wherefore the rectilineal figures A and
B are equiangular (I. Ax. 1), and have their sides about the equal

angles proportionals (V. 11). Therefore, A is similar (VI. Def. 1)

to B. Q. E. D.
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PROP. XXII. THEOR.

If four straight lines be proportionals, the similar rectilineal

figures similarly described upon them shall also be propor-

tionals; and ifthe similarrectilinealfigures similarly described

upon four straight lines be proportionals, those straight lines

shall be proportionals.

Let the four straight lines AB, CD, EF, GH be proportionals,

viz., AB to CD, as EF to GH ; and upon AB, CD let the similar

rectilineal figures KAB, LCD be similarly described ; and upon

EF, GH the similar rectilineal figures MF, NH, in like manner;
the rectilineal figure KAB is to LCD as MF to NH.
To AB, CD take a third proportional (VI. 11) X; and to EF,

GH a third proportional O ; and because

AB : CD : : EF : GH, and

CD : X : : GH : (V. 11), ex cequali (V. 22),

AB:X:: EF : 0. But
AB : X : : KAB : LCD (VI. 20, Cor. 2) ; and

EF : O : : MF : NH (VI. 20, Cor. 2) ; therefore

KAB : LCD : : MF : NH (V. 11).

And if the figure KAB be to the figure LCD as the figure MF
to the figure NH, AB is to CD as EF to GH.
Make (VI. 12) as AB to CD, so EF to PR, and upon PR de-

scribe (VI. 18) the rectilineal figure SR, similar and similarly situ-

ated to either

of the figures

MF,NH;then,
because as AB
to CD, so is EF
to PR, and up-

on AB, CD are

described the

similar and si-

milarly situa-

ted rectilineals

KAB, LCD, K *" w a u r

and upon EF, PR, in like manner, the similar rectilineals MF,
SR ; KAB is to LCD as MF to SR ; but, by the hypothesis, KAB
is to LCD as MF to NH ; and, therefore, the rectilineal MF
having the same ratio to each of the two NH, SR, these two are

equal (V. 9) to one another ; they are also similar and similarly

situated ; therefore GH is equal to PR ; and because as AB to CD,
so is EF to PR, and because PR is equal to GH, AB is to CD as

EF to GH. Therefore, iffour straight lines, &c. Q. E. D.

PROP. XXIII. THEOR.
Equiangular parallelograms have to one another the ratio which

is compounded of the ratios of their sides.

Let AC, CF be equiangular parallelograms, having the angle

BCD equal to the angle ECG ; the ratio of the parallelogram AC

M N
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to the parallelogram CF is the same with the ratio which is com-

pounded of the ratios of their sides.

Let BC, CG be placed in a straight line ;
therefore DC and CE

are also in a straight line (1. 14); complete the parallelogram DG;
and, taking any straight line K, make (VI. A, D H
12) as BC to CG, so K to L ; and as DC
to CE, so make (VI. 12) L to M ; there-

fore the ratios of K to L, and L to M,
are the same with the ratios of the sides,

or of BC to CG, and of DC to CE. But
the ratio of K to M is that which is said to

be compounded (V. Def. 10) of the ratios

of K to L, and L to M; wherefore, also,

K has to M the ratio compounded of the

ratios of the sides of the parallelograms. Now, because as BC to

CG, so is the parallelogram AC to the parallelogram CH (VI. 1)

;

and as BC to CG, so is K to L, therefore (V. 11) K is to L as

the parallelogram AC to the parallelogram CH. Again, because

as DC to CE, so is the parallelogram €H to the parallelogram

CF ; and as DC to CE, so is L to M ; therefore (V. 11) L is to M
as the parallelogram CH to the parallelogram CF ; therefore,

since it has been proved that as K to L, so is the parallelogram

AC to the parallelogram CH ; and as L to M, so the parallelo-

gram CH to the parallelogram CF ; ex cequali (V. 22), K is to M
as the parallelogram AC to the parallelogram CF ; but K has to

M the ratio which is compounded of the ratios of the sides ; there-

fore, also, the parallelogram AC has to the parallelogram CF
the ratio which is compounded of the ratios of the sides. Where-
fore, equiangular parallelograms, &c. Q. E. D.

PROP. XXIV. THEOR.
The parallelograms about the diameter of any parallelogram are

similar to the whole, and to one another.

Let ABCD be a parallelogram, of which the diameter is AC
;

and EG, HK the parallelograms about the diameter ; the paral-

lelograms EG, HK are similar, both to the whole parallelogram
ABCD and to one another.

Because DC, GF are parallels, the angle ADC is equal (I. 29)
to the angle AGF ; for the same reason, because BC, EF are

parallels, the angle ABC is equal to the angle AEF ; also, the

angles BCD, EFG being each equal to the

opposite angle DAB (I. 34), are equal to

one another, wherefore the parallelograms

ABCD, AEFG are equiangular. And be-

cause the angle ABC is equal to the angle
AEF, and the angle BAC common to the
two triangles BAC, EAF, they are equian-
gular to one another ; therefore (VI. 4) as

AB to BC, so is AE to EF ; and because the opposite sides of

parallelograms are equal to one another (I. 34), AB is (V. 7) to
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AD as AE to AG ; and DC to CB as GF to FE ; and also CD
to DA as FG to GA ; therefore the sides of the parallelograms

ABCD, AEFG about the equal angles are proportionals; and
they are therefore similar to one another (VI. Def. 1) ; for the

same reason, the parallelogram ABCD is similar to the paral-

lelogram FHCK. Wherefore each of the parallelograms, GE
;

KH is similar to DB ; but rectilineal figures which are similar to

the same rectilineal figure, are also similar to one another (VI. 21)

;

therefore the parallelogram GE is similar to KH. Wherefore,
the parallelograms, &c. Q. E. D.

PROP. XXV. PROB.

To describe a rectilinealfigure which shall be similar to one, and
equal to another given rectilineal figure.

Let ABC be the given rectilineal figure, to which the figure to

be described must be similar, and D that to which it must be

equal ; it is required to describe a rectilineal figure similar to

ABC, and equal to D.
Upon the straight line BC describe (I. 45, Cor.) the parallelo-

gram BE equal to the figure ABC ; also upon CE describe

(I. 45, Cor.) the parallelogram CM equal to D, and having the

angle FCE equal to the angle CBL ; therefore BC and CF are

in a straight line (I. 29, I. 14), as also LE and EM: between

BC and CF find (VI. 13) a mean proportional GH, and upon
GH describe (VI. 18) the rectilineal figure KGH similar, and

similarly situated, to the figure ABC. And because BC is to GH
as GH to CF, and if three

straight lines be proportion-

als, as the first is to the third,

so is (VI. 20, Cor. 2) the

figure upon the first to the

similar and similarly de-

scribed figure upon the se-

cond ; therefore, as BC to

CF, so is the figure ABC to

the figure KGH; but as BC to CF, so is (VI. 1) the parallelo-

gram BE to the parallelogram EF ; therefore, as the figure ABC '

is to the figure KGH, so is the parallelogram BE to the parallelo-

gram EF (V. 11) : but the rectilineal figure ABC is equal to the

parallelogram BE ; therefore the rectilineal figure KGH is equal

(V. 14) to the parallelogram EF ; but EF is equal to the figure

D ; wherefore, also, KGH is equal to D ; and it is similar to

ABC. Therefore, the rectilineal figure KGH has been described

similar to the figure ABC, and equal to D. Which was to be

done.
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PROP. XXVI. THEOR.

If two similar parallelograms have a common angle, and he

similarly situated, they are about the same diameter.

Let the parallelograms ABCD, AEFGbe similar and similarly

situated, and have the angle DAB common ; ABCD and AEFG
are about the same diameter.

For, if not, let, if possible, the parallelogram BD have its dia-

meter AHC in a different straight line from
AF, the diameter of the parallelogram EG,
and let GF meet AHC in H ; and through

H draw HK parallel to AD or BC ; there-

fore the parallelograms ABCD, AKHG, be-

ing about the same diameter, are similar to

one another (VI. 24) ; wherefore, as DA to B c
AB, so is (VI. Del 1) GA to AK • but because ABCD and AEFG
are similar parallelograms, as DA is to AB, so is GA to AE ;

therefore (V. 11), as GA to AE, so is GA to AK ; wherefore GA
has the same ratio to each of the straight lines AE, AK ; and,

consequently, AK is equal (V. 9) to AE, the less to the greater,

which is impossible ; therefore ABCD and AKHG are not about
the same diameter ; wherefore ABCD and AEFG must be about
the same diameter. Therefore, if two similar, &c. Q. E. D.

PROP. XXVII. THEOR.

Of all the rectangles contained by the segments ofa given straight

line, the greatest is the square which is described on half the

line.

Let AB be a given straight line, which is bisected in C, and
let D be any point in it; the square on
ACis greater than the rectangle AD.DB* A C D B

For, since the straight line AB is divided into two equal parts

in C, and into two unequal parts in D, the rectangle contained by
AD and DB, together with the square of CD, is equal to the
square of AC (II. 5). The square of AC is therefore greater

than the rectangle AD.DB. Therefore, &c. Q. E. D.

PROP. XXVIII. PROB.

To divide a given straight line, so that the rectangle contained
by its segments may be equal to a given space ; but that space
must not be greater than the square ofhalf the given line.*

Let AB be the given straight line, and let the square upon the

given straight line C be the space to which the rectangle con-

tained by the segments of AB must be equal, and this square, by
the determination, is not greater than that upon half the straight

line AB.

* See Notes.
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Bisect AB in D, and if the square upon AD be equal to the

square upon C, the thing required is done ; but if it be not equal

to it, AD must be greater than C, according to the determina-

tion. Draw DE at right angles to AB,
and make it equal to C

;
produce ED to F,

so that EF may be equal to AD or DB,
and from the centre E, at the distance

EF, describe a circle meeting AB in G.

JoinEG ; and because AB is divided equally

in D, and unequally in G, AG.GB+DG2=
(II. 5) DB2 = EG2

. But (I. 47) ED2 + DG2 = EG2
; therefore

AG.GB+DG2=ED2+DG2
, and taking away DG2

, AG.GB^ED2
.

Now, ED=C, therefore the rectangle AG.GB is equal to the

square of C ; and the given line AB is divided in G, so that the

rectangle contained by the segments AG, GB is equal to the square

upon the given straight line C. Which was to be done.

PROP. XXIX. PROB.

To produce a given straight line, so that the rectangle contained

by the segments between the extremities of the given line, and
the point to which it is produced, may be equal to a given

space.*

Let AB be the given straight line, and let the square upon the

given straight line C be the space to which the rectangle under

the segments ofAB produced must be equal.

Bisect AB in D, and draw BE at right angles to it, so that BE
may be equal to C ; and having joined DE,
from the centre D, at the distance DE,
describe a circle, meeting AB produced in

G. And because AB is bisected in D,
and produced to G (II. 6), AG.GB+DB2=
DG2=DE2

. But (I. 47) DE 2=DB2+BE2
,

therefore AG.GB+DB2=DB2+BE2
, and —c~

AG.GB=:BE2
. Now, BE=C ; wherefore the straight line AB is

produced to G ; so that the rectangle contained by the segments
AG, GB of the line produced is equal to the square of C. Which
was to be done.

PROP. XXX. PROB.

To cut a given straight line in extreme and mean ratio.

Let AB be the given straight line ; it is required to cut it in

extreme and mean ratio.

Upon AB describe (I. 46) the square BC, and produce CA to

D, so that the rectangle CD.DA may be equal to the square CB
(VI. 29). Take AE equal to AD, and complete the rectangle

DF under DC and AE, or under DC and DA. Then, because

* See Notes.
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E

the rectangle CD.DA is equal to the square CB, the rectangle

DF is equal to CB. Take away the common
part CE from each, and the remainder FB is

equal to the remainder DE. But FB is the rect-

angle contained by FE and EB, that is, by AB
and BE ; and DE is the square upon AE ;

there-

fore AE is a mean proportional between AB
and BE (VI. 17), or AB is to AE as AE to EB.
But AB is greater than AE ; wherefore AE is

greater than EB (V. 14) : therefore, the straight

line AB is cut in extreme and mean ratio in E
(VI. Def. 3). Which was to be done.

Otherwise

:

Let AB be the given straight line ; it is required to cut it in

extreme and mean ratio.

Divide AB in the point C, so that the rectangle contained by
AB, BC may be equal to the square of AC
(II. 11) : then, because the rectangle AB.BC A C B
is equal to the square of AC, as BA to AC, so is AC to CB
(VI. 17) : therefore, AB is cut in extreme and mean ratio in C
(VI. Def. 3). Which was to be done.

PROP. XXXI. THEOR.

In right-angled triangles, the rectilineal figure described upon
the side opposite to the right angle is equal to the similar and
similarly described figures upon the sides containing the right

angle.

Let ABC be a right-angled triangle, having the right angle

BAC. The rectilineal figure described upon BC is equal to the

similar and similarly described figures upon BA, AC.
Draw the perpendicular AD ; therefore, because in the right-

angled triangle ABC, AD is drawn from the right angle at A
perpendicular to the base BC, the triangles ABD, ADC are similar

to the whole triangle ABC, and to one
another (VI. 8) ; and because the tri-

angle ABC is similar to ADB, as CB
to BA, so is BA to BD (VI. 4) ; and
because these three straight lines are

proportionals, as the first to the third,

so is the figure upon the first to the

similar and similarly described figure

upon the second (VI. 20, Cor. 2). There-
fore, as CB to BD, so is the figure upon CB to the similar and
similarly described figure upon BA ; and inversely (V. B), as

DB to BC, so is the figure upon BA to that upon BC ; for the

same reason, as DC to CB, so is the figure upon CA to that upon
CB. Wherefore, as BD and DC together to BC, so are the

figures, upon BA and on AC, together to the figure upon BC
(V. 24) ; therefore the figures on BA and on AC are together
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equal to that on BC, and they are similar figures. Wherefore,

in right-angled triangles, &c. Q. E. D.

PROP. XXXII. THEOR.

Iftwo triangles, which have two sides of the one proportional to

two sides of the other, bejoined at one angle, so as to have their

homologous sides parallel to one another, the remaining side

shall be in a straight line.

Let ABC, DCE be two triangles which have two sides BA, AC
proportional to the two CD, DE, viz., BA to AC, as CD to DE ;

and let AB be parallel to DC, and AC to DE ; BC and CE are in

a straight line.

Because AB is parallel to DC, and the straight line AC meets

them, the alternate angles BAC, ACD are equal (I. 29); for the

same reason, the angle CDE is equal to the angle ACD ; where-
fore, also, BAC is equal to CDE. And,
because the triangles ABC, DCE have
one angle at A equal to one at D, and the \ X. d
sides about these angles proportionals,

viz., BA to AC, as CD to DE, the tri-

angle ABC is equiangular (VI. 6) to

DCE. Therefore, the angle ABC is equal b
to the angle DCE. And the angle BAC was proved to be equal

to ACD. Therefore, the whole angle ACE is equal to the two
angles ABC, BAC ; add the common angle ACB, then the angles

ACE, ACB are equal to the angles ABC, BAC, ACB. But ABC,
BAC, ACB are equal to two right angles (I. 32) ; therefore, also,

the angles ACE, ACB are equal to two right angles. And since,

at the point C, in the straight line AC, the two straight lines BC,
CE, which are on the opposite sides of it, make the adjacent angles

ACE, ACB equal to two right angles ; therefore (I. 14) BC and
CE are in a straight line. Wherefore, if two triangles, &c. Q. E. D.

PROP. XXXIII. THEOR.
In equal circles, angles, whether at the centres or circumferences,

have the same ratio which the arcs, on which they stand, have
to one another. So also have the sectors.

Let ABC, DEF be equal circles ; and at their centres the angles

BGC, EHF, and the angles BAC, EDF at their circumferences

;

as the arc BC to the arc EF, so is the angle BGC to the angle

EHF, and the angle BAC to the anarle EDF ; and also the sector

BGC to the sector EHF.
Take any number of arcs CK, KL, each equal to BC, and any

number whatever FM, MN, each equal to EF ; and join GK, GL,
HM, HN. Because the arcs BC, CK, KL are all equal, the angles

BGC, CGK, KGL are also all equal (III. 27). Therefore, what
multiple soever the arc BL is of the arc BC, the same multiple is

the angle BGL of the angle BGC ; for the same reason, whatever
multiple the arc EN is of the arc EF, the same multiple is the



BOOK SIXTH. 117

angle EHN of the angle EHF. But if the arc BL be equal to the

arc EN, the angle BGL is also equal (III. 27) to the angle EHN

;

or if the arcBL be greater

than EN, likewise the A^
angle BGL is greater than

EHN ; and if less, less.

There being then four

magnitudes, the two arcs

BC, EF, and the two an-

gles BGC, EHF ; and of

the arc BC, and of the

angle BGC have been taken any equimultiples whatever, viz., the

arc BL, and the angle BGL ;
and of the arc EF, and of the angle

EHF, any equimultiples whatever, viz., the arc EN, and the angle

EHN. And it has been proved, that if the arc BL be greater than

EN, the angle BGL is greater than EHN ; and if equal, equal ; and
if less, less. As, therefore, the arc BC to the arc EF, so (V. Def. 5)

is the angle BGC to the angle EHF. But as the angle BGC is to

the angle EHF, so is (Y. 15) the angle BAC to the angle EDF,
for each is double of each (III. 20). Therefore, as the circumfer-

ence BC is to EF, so is the angle BGC to the angle EHF, and the

angle BAC to the angle EDF.
Also, as the arc BC to EF, so is the sector BGC to the sector

EHF. Join BC, CK, and in the arcs BC, CK take any points X,
O, and join BX, XC, CO, OK. Then, because in the triangles

GBC, GCK, the two sides BG, GC are equal to the two CG, GK,
and also contain equal

angles ; the base BC is

equal (I. 4) to the base

CK, and the triangle

GBC to the triangle

GCK. And because the

arc BC is equal to the arc

CK, the remaining part

of the whole circumfer-

ence of the circle ABC
is equal to the remaining part of the whole circumference of the

same circle. Wherefore, the angle BXC is equal to the angle COK
(III. 27) ; and the segment BXC is therefore similar to the seg-

ment COK (III. Def. 9) ; and they are upon equal straight lines

BC, CK. But similar segments of circles upon equal straight lines

are equal (III. 24) to one another. Therefore, the segment BXC
is equal to the segment COK. And the triangle BGC, is equal to

the triangle CGK ; therefore the whole, the sector BGC, is equal

to the whole, the sector CGK. For the same reason, the sector

KGL is equal to each of the sectors BGC, CGK ; and in the same
manner, the sectors EHF, FHM, MHN may be proved equal to

one another. Therefore, what multiple soever the arc BL is of
the arc BC, the same multiple is the sector BGL of the sector BGC.
For the same reason, whatever multiple the arc EN is of EF, the

same multiple is the sector EHN of the sector EHF. Now, if the
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arc BL be equal to EN, the sector BGL is equal to the sector EHN

;

and if the arc BL be greater than EN, the sector BGL is greater
than the sector EHN ; and if less, less. Since, then, there are

four magnitudes, the two arcs BC, EF, and the two sectors BGC,
EHF ; and of the arc BC, and sector BGC, the arc BL and the

sector BGL are any equimultiples whatever ; and of the arc EF,
and sector EHF, the arc EN and sector EHN are any equimul-
tiples whatever ; and it has been proved, that if the arc BL be
greater than EN, the sector BGL is greater than the sector EHN

;

if equal, equal ; and if less, less ; therefore (V. Def. 5), as the arc

BC is to the arc EF, so is the sector BGC to the sector EHF.
Wherefore, in equal circles, &c. Q. E. D.

PROP. B. THEOR.
If an angle of a triangle be bisected by a straight line, which

likewise cuts the base ; the rectangle contained by the sides of
the triangle is equal to the rectangle contained by the segments

of the base, together with the square of the straight line bisect-

ing the angle.

Let ABC be a triangle, and let the angle BAC be bisected by
the straight line AD ; the rectangle BA.AC is equal to the rect-

angle BD.DC, together with the square ofAD.
Describe the circle (IV. 5) ACB about the

triangle, and produce AD to the circumfer-

ence in E, and join EC. Then, because the
angle BAD is equal to the angle CAE, and
the angle ABD to the angle (III. 21) AEC,
for they are in the same segment ; the tri-

angles ABD, AEC are equiangular to one
another. Therefore, BA : AD : : EA : AC
(VI. 4) and, consequently, BA.AC= (VI. 16)
AD.AE=ED.DA+DA2 (II. 3). But ED.DA=BD.DC (III. 35),
therefore, BA.AC=BD.DC+DA2

. Wherefore, if an angle, &c
Q. E. D.

y
'

'

PROP. C. THEOR.
Iffrom any angle ofa triangle a straight line be drawn perpen-

dicular to the base ; the rectangle contained by the sides of the
triangle is equal to the rectangle contained by the perpendicular

,

and the diameter of the circle described about the triangle.

Let ABC be a triangle, and AD the perpendicular from the
angle A to the base BC; the rectangle BA.AC
is equal to the rectangle contained by AD
and the diameter of the circle described about
the triangle. b/

Describe (IV. 5) the circle ACB about the
triangle, and draw its diameter AE, and join

EC. Because the right angle BDA is equal
(111. 31) to the angleECA in a semicircle, and
the angle ABD to the angle AEC in the same e^
segment (III. 21) ; the triangles ABD, AEC are equiangular.
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Therefore (VI. 4), BA to AD, so is EA to AC ;
and, consequently,

the rectangle BA.AC is equal (VI. 16) to the rectangle EA.AD.
Therefore, iffrom an angle, &c. Q. E. D.

PROP. D. THEOR.

The rectangle contained by the diagonals of a quadrilateral in-

scribed in a circle, is equal to both the rectangles contained by

its opposite sides.*

Let ABCD be any quadrilateral inscribed in .a circle, and let

AC, BD be drawn ; the rectangle AC.BD is equal to the two rect-

angles AB.CD, and AD.BC.
Make the angle ABE equal to the angle DBC ; add to each of

these the common angle EBD, then the angle ABD is equal to

the angle EBC ; and the angle BDA is equal

to (III. 21) the angle BCE, because they are

in the same segment ; therefore the triangle

ABD is equiangular "to the triangle BCE.
Wherefore (VI. 4), BC : CE : : BD : DA, and,

consequently (VI. 16), BC.DA= BD.CE.
Again, because the angle ABE is equal to the

angle DBC, and the angle (III. 21) BAE to

the angle BDC, the triangle ABE is equiangular to the triangle

BCD; therefore BA: AE : : BD : DC, and BA.DC = (VI. 16)
BD.AE: but it was shewn that BC.DA=BD.CE ; wherefore
BC.DA + BA.DC == BD.CE+BD.AE = BD.AC (II. 1). That is,

the rectangle contained by ±sD and AC is equal to the rectangles

contained by AB and CD, and AD and BC. Therefore, the

rectangles, &c. Q. E. D.

PROP. E. THEOR.

If an arc of a circle be bisected, and from the extremities of
the arc and from the point of bisection straight lines be drawn
to any point in the circumference ; the sum of the two lines

drawn from the extremities of the arc will have to the line

drawn from the point of bisection the same ratio which the

straight line subtending the arc has to the straight line sub-
tending half the arc.

Let ABD be a circle, of which AB is an arc bisected in C, and
from A, C, and B to D, any point whatever
in the circumference, let AD, CD, BD be
drawn ; the sum of the two lines AD and DB
has to DC the same ratio that BA has to AC.

For, since ACBD is a quadrilateral inscribed

in a circle, of which the diagonals are AB and
CD, AD.CB+DB.AC (VI. D) =AB.CD ; but
AD.CB + DB.AC=AD.AC+DB.AC, because
CB=AC. Therefore, AD.AC+DB.AC, that c

is (II. 1), (AD+DB) AC=AB.CD. And because the sides of

* See Notes.
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equal rectangles are reciprocally proportional (VI. 14), AD+DB

.

DC : : AB : AC. Wherefore, &c. Q. E. D.

PROP. F. THEOR.

If two points be taken in the diameter of a circle, such that the

rectangle contained by the segments intercepted between tliem

and the centre of the circle be equal to the square of the radius ;

and if from these points two straight lines be drawn to any
point whatsoever in the circumference of the circle, the ratio

of these lines will be the same with the ratio of the segments
intercepted between the two first-mentioned points and the cir-

cumference of the circle.

Let ABC be a circle, of which the centre is D, and in DA
produced let the points E and F be such that the rectangle

ED.DF is equal to the square of AD ; from E and F to any
point B in the circumference, let EB, FB be drawn ; FB : BE
: : FA : AE.

Join BD and BA, and because the rectangle FD.DE is equal

to the square of AD, that is, of DB, FD : DB : : DB : DE
(VI. 17).

The two triangles FDB,
BDE have therefore the sides

proportional that are about
the common angle D ; hence
they are equiangular (VI. 6),

the angle DBE being equal

to the angle DFB. Again,
since DB is equal to DA, the

angle DBA is equal to DAB
(I. 5) ; but DBA is the sum of DBE and EBA, and DAB is the
sum of AFB and FBA (I. 32) ; therefore the sum of DBE and
EBA is equal to the sum of AFB and FBA; from these equals
take away the equal angles DBE and AFB, and the remaining
angles EBA and FBA will be equal. Thus, it appears that, in
the triangle FBE, the line BA bisects the angle FBE ; therefore.

FB : BE : : FA : AE (VI. 3). Therefore, &c. Q. E. D.
Cor. The ratio of the straight lines FB, BE is also the same

with the ratio of FC, CE, C being the point in which FE pro-
duced meets the circle. For, produce FB to G, and join BC.
Because the angles FBE, EBG make together two right angles
(I. 13), and therefore are equal to twice the sum of ABE and
EBC, which make one right angle ; and it has been shown that
FBE is double ABE, therefore EBG is double EBC; hence it

appears that the outward angle EBG is bisected by BC ; there-
fore, FB : BE : : FC : CE (VI. A).
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PROP. G. THEOR.

Iffrom the extremity of the diameter of a circle a straight line

be drawn in the circle, and if either ivithin the circle, or pro-
duced without it, it meet a line perpendicular to the same dia-

meter ; the rectangle contained by the straight line drawn in
the circle, and the segment of it, intercepted between the ex-

tremity of the diameter and the perpendicular, is equal to the

rectangle contained by the diameter, and the segment of it cut

off by the perpendicular.

Let ABC be a circle, of which AC is the diameter, let DE be
perpendicular to

the diameter AC,
and let AB meet
DE in F; the

rectangle BA.AF
is equal tothe rect-

angle CA.AD.
Join BC, and be-

cause ABC is an
angle in a semi-

circle, it is a right angle (III. 31). Now, the angle ADF is also

a right angle (Hyp.) ; and the angle BAC is either the same with

DAF, or vertical to it ; therefore the triangles ABC, ADF are

equiangular, and BA : AC : : AD : AF (VI. 4) ; therefore, also, the

rectangle BA.AF, contained by the extremes, is equal to the rect-

angle ACAD contained by the means (VI. 16). If therefore,

&c. Q. E. D.

PROP. H. THEOR.

The perpendiculars drawn from the three angles of any triangle

to the opposite sides intersect one another in the Same point.

Let ABC be a triangle, and BD, CE two perpendiculars inter-

secting one another in F ; let AF
be joined, and produced if neces-

sary ; let it meet BC in G ; AG is

perpendicular to BC.
Join DE, and because AEF is a

right angle, a circle described about
the triangle AEF will have AF
for a diameter (III. 31). Also,

because ADF is a right angle, a
circle described about the triangle

ADF will have AF for a diameter

;

therefore the points A, E, F, D
are in the circumference of the same B

circle. And because the angles BEC, BDC are right angles,
it may be shown, in the same manner, that the points B, E,
D, C are in the circumference of the same circle, viz., that
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which has BC for its diameter. Let the circle AEFD, and the

semicircle BEDC, be described (III. 31). Then, the angles FED,
FAD, or CED, GAC, being in the same segment, will be equal

(III. 21). And, in like manner, it appears that the angle CBD
is equal to CED (III. 21) ; therefore the angle CBD is equal to

GAC. The two triangles CBD, CAG have, therefore, the angle

CBD equal to CAG, and the angle GCD common ; wherefore,

the remaining angles CEB, CGA are equal (I. 32) ; now CEB is

a right angle ; therefore CGA is also a right angle, and AG is

perpendicular to BC. Therefore, &c. Q. E. D.
Cor. The triangle ADE is similar to the triangle ABC. For

the two triangles BAD, CAE, having the angles at D and E right

angles, and the angle at A common, are equiangular, and there-

fore BA : AD : : CA : AE, and alternately, BA : CA : : AD : AE
;

therefore the two triangles BAC, DAE, have the angle at A com-
mon, and the sides about that angle proportionals, therefore they
are equiangular (VI. 6) and similar.

Hence the rectangles BA.AE, CA.AD are equal.

PROP. K. THEOR.

If from any angle of a triangle a perpendicular he drawn to

the opposite side or base ; the rectangle contained by the sum
and difference of the other two sides is equal to the rectangle

contained by the sum and difference of the segments, into which
the base is divided by the perpendicular.

Let ABC be a triangle, and AD a perpendicular drawn from
the angle A on the base BC, so that BD, DC are the segments

of the base; (AB+AC) (AC-AB)=(BD+DC) (DC-BD).

Because AB2=BD2+DA2 (I. 47), and AC2=DC2+DA2
, there-

fore AC2-AB2=DC 2-BD2
. But AC2-AB2=(AC+AB) (AC-

AB) (II. 5, Cor.), and DC2-BD2=(DC+BD) (DC-BD) ; therefore

(AC + AB) (AC-AB)=(DC+BD) (DC-BD). Therefore, &c.

Q. E. D.
Cor. 1. The rectangle contained by the sum and difference of

the two sides is equal to twice the rectangle contained by the base,

and the segment between the middle of the base and the perpen-
dicular on it from the opposite angle.

Let E be the middle point of the base ; then, in fig. 1, BD+
DC=BC, and DC-BD=ED+EC-BD=ED+EB-BD=ED+ED
=2ED, therefore (AB+AC) (AC-AB)=2BC.ED. In fig. 2, DC
-BD=BC, and BD + DC = BD + BD+BC=2EC+2BD=2ED;
therefore, also (AB+AC) (AC-AB)=2BC.ED.

Cor. 2. From the demonstration it is evident that the dif-
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ference betiveen the squares of any two sides of a triangle is equal
to the difference between the squares of the segments, into vjhich

the remaining side is divided by a perpendicular from the oppo-
site angle.

PROP. L. THEOR.

If the bases offour rectangles be proportionals, and also their al-

titudes; the rectangles themselves shall be proportionals.

Let A, B, C, D be the bases of four rectangles, and E, F, G,

H their altitudes , and let A : B : : C : D, and E : F : : G : H ; the

rectangles A.E, B.F, C.G, D.H are proportionals.

For the ratio of the rectangle AE to the rectangle B.F is com-
pounded of the ratios of A to B, and ofE to F (VI. 23), which, by
hypothesis, are the same as the ratios of C to D, and of G to H ;

but the ratio of the rectangle C.G to the rectangle D.H is com-
pounded of the same ratios (VI. 23) ; therefore the rectangle A.E
is to the rectangle B.F as the rectangle C.G to the rectangle D.H
(V. F). Q. E. D.

PROP. M. THEOR.

Jfperpendiculars be drawnfrom the extremities of the base of a
triangle on a straight line, which bisects the angle opposite to the

base; the area ofthe triangle is equal to the rectangle contained
by either of the perpendiculars, and the segment of the bisecting

line between the angle and the other perpendicular.

Let ABC be any triangle, of which
BC is the base, AD a line bisecting the
opposite angle, and BD, CE perpendi-
culars on that line ; the area of the
triangle ABC is equal to the rectangle
JE.AD ; and it is also equal to the rect-

angle BD.AE.
Produce CE, the perpendicular drawn

from one of the extremities of the base,

to meet the opposite side in F ; the lines CF, BD will manifestly
be parallel, and DE perpendicular to them both (I. 27). And be-

cause in the triangles AEC, AEF the angle AEC is equal to AEF,
EAC to EAF, and the side AE is common, the triangles are in all

respects equal (I. 26) ; therefore CF is bisected in E. Again, be-
cause the triangle BAC is the sum of the triangles ACF, BCF, and
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the triangle ACF is equal to the rectangle contained by CE and
AB I. 41), and the triangle BCF to the rectangle contained by
CE and DE (I. 41) ; therefore the triangle ABC is equal to the
sum of the rectangles contained by CE and AE, CE and DE, and
hence it is equal to the rectangle CE.AD (II. 1). And because the
triangles BAD, CAE are equiangular, AD : BD : : AE : CE (VI. 4)

;

therefore, the rectangle CE.AD is equal to BD.AE (VI. 16), where-
fore, either of these is equal to the area of the triangle ABC.
Therefore, &c. Q. E. D.
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OP THE QUADRATURE OF THE CIRCLE.

DEFINITIONS.

I. A chord of an arc of a circle is the straight line joining the ei-
remities of the arc ; or the straight line which subtends the arc.

II. The perimeter of any figure is the length of the line, or lines,

by which it is bounded.

AXIOM I.

The least line that can be drawn between two points is a straight

line ; and if two figures have the same straight line for their

base, that which is contained within the other, if its bounding
line or lines be not anywhere convex towards the base, has the

less perimeter.

Cor. 1. Hence the perimeter ofany polygon inscribed in a circle

is less than the circumference of the circle.

Cor. 2. If from a point two straight lines be drawn touching a
circle, these two lines are together greater than the arc inter-

cepted between them ; and hence the perimeter of any polygon
described about a circle is greater than the circumference of
the circle.

AXIOM II.

The space which is greater than any polygon that can be inscribed

in a given circle, and less than any polygon that can be described

about it, is equal to the circle.
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PROP. I. THEOR.

Equilateral polygons, of the same number of sides, inscribed in

circles, are similar, and are to one another as the squares of the

diameters of the circles.

Let ABCDEF and GHIKLM be two equilateral polygons of the

same number of sides inscribed in the circles ABD and GHK ;

ABCDEF and GHIKLM are similar, and are to one another as

the squares of the diameters of the circles ABD, GHK.
Find N and the centres of the circles

;
join AN and BN, as

also GO and OH, and produce AN and GO till they meet the cir-

cumferences in D and K.
Because the straight

lines AB, BC, CD, DE,
EF,FA are all equal, the

arcs AB, BC, CD, DE,
EF, FA are also equal

(III. 28). For the same
reason, the arcs GH, HI,
IK, KL, LM, MG are

all equal, and they are equal in number to the others ; therefore,

whatever part the arc AB is of the whole circumference ABD, the

same is the arc GH of the circumference GHK. But the angle

ANB is the same part of four right angles, that the arc AB is of

the circumference ABD (VI. 33) , and the angle GOH is the same
part of four right angles that the arc GH is of the circumference

GHK (VI. 33), therefore the angles ANB, GOH are each of them
the same part of four right angles ; and therefore they are equal

to one another. The isosceles triangles ANB, GOH are therefore

equiangular (VI. 6), and the angle ABN equal to the angle GHO.
In the same manner, by joining NC, 01, it may be proved that

the angles NBC, OHI are equal to one another, and to the angle

ABN. Therefore, the whole angle ABC is equal to the whole
GHI ; and the same may be proved of the angles BCD, HIK, and
of the rest. Therefore, the polygons ABCDEF and GHIKLM
are equiangular to one another ; and since they are equilateral,

the sides about the equal angles are proportionals ; the polygon

ABCDEF is therefore similar to the polygon GHIKLM (VI. Def.

1). And because similar polygons are as the squares of their ho-

mologous sides (VI. 20, Cor. 3), the polygon ABCDEF is to the

polygon GHIKLM as the square of AB to the square of GH ; but

because the triangles ANB, GOH are equiangular, the square of

AB is to the square of GH as the square of AN to the square of

GO (VI. 4), or as four times the square of AN to four times the

square (V. 15) of GO, that is, as the square of AD to the square

of GK (II. 8, Cor. 2). Therefore, also, the polygon ABCDEF is

to the polygon GHIKLM as the square of AD to the square of

GK ; and they have also been shown to be similar. Therefore,

&c. Q. E. D.
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PROP. II. THEOR.

The side of any equilateral polygon inscribed in a circle being

given, to find the side of a polygon of the same number of sides

described about the circle.

Let ABCDEF be an equilateral polygon inscribed in the circle

ABD ; it is required to find the side of an equilateral polygon of

the same number of sides described about the circle.

Find G the centre of the circle ;
join GA, GB, bisect the arc

AB in H, and through H draw KHL touching the circle in H,

and meeting GA and GB produced in K and L ; KL is the side

of the polygon required.

Produce GF to N, so that GN may be equal to GL, join KN,
and from G draw GM at right angles to KN

;
join also HG.

Because the arc AB is bisected in H, the angle AGH is equal to

the angle BGH (III. 27) : and the angles LHG, KHG are right

angles (III. 16), but the side GH is com-

mon to the two triangles LGH, KGH

;

therefore they are equal (I. 26), and GL
is equal to GK. Again, in the triangles

KGL, KGN, because GN is equal to GL
and GK common, and also the angle K^
LGK equal to the angle KGN ; there-

fore the base KL is equal to the base

KN, and the angle GHK to GKN (1. 4).

But the angles GMK, GHK are right

angles ; wherefore, the triangles GM K,

GHK are equal (I. 26), and the side GM is equal to the side GH ;

wherefore, the point M is in the circumference of the circle ; and
because KMG is a right angle, KM touches the circle. And, in

the same manner, by joining the centre and the other angular

points of the inscribed polygon, an equilateral polygon may be de-

scribed about the circle, the sides of which will each be equal to

KL, and will be equal in number to the sides of the inscribed

polygon. Therefore, KL is the side of an equilateral polygon,

described about the circle, of the same number of sides with the

inscribed polygon ABCDEF ; which was to be found.

Cor. 1. Because GL, GK, GN, and the other straight lines drawn
from the centre G to the angular points of the polygon described

about the circle ABD are all equal ; if a circle be described from
the centre G, with the distance GK, the polygon will be inscribed

in that circle ; and, therefore, it is similar to the polygon ABCDEF
(I. Sup. 1).

Cor. 2. It is evident that AB, a side of the inscribed polygon,

is to KL, a side of the circumscribed, as the perpendicular from G
upon AB, to the perpendicular from G upon KL, that is, to the

the radius of the circle ; therefore, also, because magnitudes have
the same ratio with their equimultiples (V. 15), the perimeter of
the inscribed 'polygon is to the perimeter of the circumscribed , as

the perpendicular from the centre, on a side of the inscribed poly-

gon, to the radius of the circle.
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PROP. III. THEOR.

A circle being given, two similar polygons may be found, the one

described about the circle, and the other inscribed in it, which

shall differ from one another by a space less than any given

space.

Let ABC be the given circle, and the square of D any given

space ; a polygon may be inscribed in the circle ABC, and a similar

polygon described about it, so that the difference between them
shall be less than the square of D.

In the circle ABC apply the straight line AE equal to D, and
by continual bisection of the arc AC (III. 30), find a circumference

AF which shall be less than the circumference AE. Find the

centre G ; draw the diameter AC, as also the straight lines AF
and FG ; and having bisected the circumference AF in K, join

KG, and draw HL touching the circle in K, and meeting GA and
GF produced in H and L ;

join CF.
Because the isosceles triangles HGL and AGF have the common

angle AGF, they are equiangular (VI. 6), and the angles GHK,
GAF are therefore equal to one another. But the angles GKH,
CFA are also equal, for they are right angles ; therefore the tri-

angles HGK, ACF are likewise equiangular (1 . 32).

And because the arc AF is contained a certain number of times

exactly in the whole circumference ABC, the straight line AF is

the side of an equilateral polygon inscribed in the circle ABC.
Wherefore, also, HL is the side of an equi-

lateral polygon, of the same number of sides,

described about ABC (I. Sup. 2). Let the

polygon described about the circle be called

M, and the polygon inscribed be called N

;

then, because these polygons are similar (I.

Sup. 2, Cor. 1), they are as the squares of the

homologous sides HL andAF (VI. 20,Cor. 3),

that is, because the triangles HLG, AFG are
similar, as the square of HG to the square of AG, that is, of GK.
But the triangles HGK, ACF have been proved to be similar, and
therefore the square of AC is to the square of CF as the polygon
M to the polygon N ; and, by conversion, the square of AC is to

its excess above the square of CF, that is, to the square of AF
(I. 47) as the polygon M to its excess above the polygon N. But
the square of AC, that is, the square described about the circle

ABC, is greater than the equilateral polygon of eight sides described
about the circle, because it contains that polygon ; and, for the
same reason, the polygon of eight sides is greater than the poly-
gon of sixteen, and so on ; therefore the square of AC is greater
than any polygon described about the circle by the continual bisec-

tion of the arc AC ; it is therefore greater than the polygon M.
Kow, it has been demonstrated that the square of AC is to the
square of AF as the polygon M to the difference of the polygons

,

therefore, since the square of AC is greater than M, the square of
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AF is greater than the difference of the polygons (V. 14). But
AF is less than D ; therefore the difference of the polygons is

less than the square of D, that is, than the given space. There-
fore, &c. Q. E. D.

Cor. Because the polygons M and N differ from one another
more than either of them differs from the circle, the difference be-
tween each of them and the circle is less than the given space, viz.,

the square of D. And, therefore, however small any given space
may be, a polygon may be inscribed in the circle, and another de-

scribed about it, each of which shall differ from the circle by a
space less than the given space.

PROP. IV. THEOR.
The area of any circle is equal to the rectangle contained by

the semidiameter, and a straight line equal to half the cir

cumference.*

Let ABC be a circle, of which the centre is D, and the dia-

meter AC ; if in AC produced there be taken AH equal to half
the circumference, the area of the circle is equal to the rectangle

contained by DA and AH.
Let AB be the side of any equilateral polygon inscribed in the

circle ABC ; bisect the cir-

cumference AB in G, and
through G draw EGF touch-
ing the circle, and meeting
DA produced in E, and DB
produced in F ; EF will be
the side of an equilateral

polygon described about the

circle ABC (I. Sup. 2). In
AC produced take AK equal to half the perimeter of the polygon
whose side is AB ; and AL equal to half the perimeter of the

polygon whose side is EF. Then AK will be less, and AL
greater than the straight line AH (I. Sup. Ax. 1). Now, because
in the triangle EDF, DG is drawn perpendicular to the base,

the triangle EDF is equal to the rectangle contained by DG and
the half of EF (I. 41) ; and as the same is true of all the other

equal triangles having their vertices in D, wThich make up the

polygon described about the circle ; therefore the whole polygon
is equal to the rectangle contained by DG and AL, half the peri-

meter of the polygon (II. 1), or by DA and AL. But AH is less

than AL, therefore the rectangle DA.AH is less than the rectangle

DA.AL, that is, than any polygon described about the circle ABC.
Again, the triangle ADB is equal to the rectangle contained

by DM the perpendicular, and one half of the base AB, and it is

therefore less than the rectangle contained by DG or DA and the

half of AB. And as the same is true of all the other triangles

having their vertices in D, which make up the inscribed polygon,

therefore the whole of the inscribed polygon is less than the rect-

* Soe Notes.
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angle contained by DA and AK, half the perimeter of the poly-

gon. Now, the rectangle DA.AK is less than DA.AH ; much
more, therefore, is the polygon whose side is AB less than
DA.AH ; and the rectangle DA.AH is therefore greater than
any polygon inscribed in the circle ABC. But the same rectangle

DA.AH has been proved to be less than any polygon described

about the circle ABC ; therefore the rectangle DA.AH is equal

to the circle ABC (I. Sup. Ax. 2). Now, DA is the semidiameter

of the circle ABC, and AH the half of its circumference. There-
fore, &c. Q. E. D.

Cor. Because DA : AH : : DA2
: DA.AH (VI. 1), and be-

cause, by this proposition, DA.AH^the area of the circle, of

which DA is the radius ; therefore, as the radius ofany circle to

the semicircumference, or as the diameter to the whole circum-

ference, so is the square of the radius to the area of the circle.

PROP. V. THEOR.
The areas of circles are to one another in the duplicate ratio,

or as the squares, of their diameters.

Let ABD and GHL be two circles, of which the diameters are

AD and GL ; the circle ABD is to the circle GHL as the square

of AD to the square of GL.

Let ABCDEF and GHKLMN be two equilateral polygons of the

same number of sides in-

scribed in the circlesABD, //^ ~^\ H ^ -^K
GHL ; and let Q be such

a space that the square

of AD is to the square

of GL as the circle ABD
to the space Q. Because
the polygons ABCDEF
and GHKLMN are equi-

lateral, and of the same
number of sides, they are

similar (I. Sup. 1), and
their areas are as the

squares of the diameters

of the circles in which
they are inscribed. There-
fore, AD 2

: GL2
: : polygon ABCDEF : polygon GHKLMN

;

but AD 2
: GL2

: : circle ABD : Q ; and, therefore, ABCDEF :

GHKLMN : : circle ABD : Q. Now, circle ABD/-ABCDEF

;

therefore Q/-GHKLMN (V. 14), that is, Q is greater than any
polygon inscribed in the circle GHL.

In the same manner it is demonstrated that Q is less than any
polygon described about the circle GHL ; wherefore the space Q
is equal to the circle GHL (I. Sup. Ax. 2). Now, by hypothesis,
the circle ABD is to the space Q as the square of AD to the

square of GL ; therefore the circle ABD is to the circle GHL as

the square of AD to the square of GL. Therefore, &c. Q. E. D.
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Cor. Hence (I. Sup. 4 Cor.; the circumferences of circles are

to one another as their diameters.

PROP. VI. THEOR.

The perpendicular drawnfrom the centre of a circle on the chord

ofany arc is a mean proportional between half the radius

and the line made up of the radius and the perpendicular

drawn from the centre on the chord of double that arc : And
the chord of the arc is a mean proportional between the dia-

meter and a line which is the difference between the radius

and the foresaid perpendicularfrom the centre.

Let ADB be a circle, of which the centre is C; DBE any arc,

and DB the half of it ; let the chords DE, DB be drawn ; as also

CF and CG, at right angles to DE and
DB ; if CF be produced, it will meet the

circumference in B ; let it meet it again in

A, and let AC be bisected in H ; CG is a

mean proportional between AH and AF ;

and BD a mean proportional between AB
and BF, the excess of the radius above CF.

Join AD ; and because ADB, CGB are

right angles, the triangles ABD, CGB are

equiangular, and AB : AD : : BC : CG (VI. 4), or alternately,

AB : BC : : AD : CG; and, therefore, because AB is double BC,
AD is double CG, and the square of AD therefore equal to four

times the square of CG.
But, because ADB is a right-angled triangle, and DF a per-

pendicular on AB, AD is a mean proportional between AB and
AF (VI. 8, Cor.), and AD 2=AB.AF (VI. 17), or since AB is=
4AH, AD 2=4AH.AF. Therefore, also, because 4CG2=AD 2

,

4CG2=4AH.AF, and CG2=AH.AF ; wherefore CG is a mean
proportional between AH and AF, that is, between half the ra-

dius and the line made up of the radius, and the perpendicular on
the chord of twice the arc BD.

Again, it is evident, that BD is a mean proportional between
AB and BF (VI. 8, Cor.), that is, between the diameter and the

excess of the radius above the perpendicular, on the chord of twice

the arc DB. Therefore, &c. Q. E. D.

PROP. VII. THEOR*
The circumference of a circle exceeds three times the diameter,

by a line less than ten of the parts of which the diameter con-

tains seventy
',
but greater than ten of the parts whereof the dia-

meter contains seventy-oneA

Let ABD be a circle, of which the centre is C, and the dia-

* In this proposition, the character + placed after a number, signifies

that something is to be added to it ; and the character — , on the other
hand, signifies that something is to be taken away from it.

t See Notes.
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meter AB; the circumference is greater than three times AB,

by a line less than —-, or _ of AB, but greater than - - of AB.
j

7o' 7 71

In the circle ABD apply the straight line BD equal to the

radius BC. Draw DF perpendicular to BC,
and let it meet the circumference again in

E ; draw also CG perpendicular to BD
;

produce BC to A
;
bisect AC in H, and join

CD.
It is evident that the arcs BD, BE are

each of them one-sixth of the circumference

(IV. 15 Cor.), and that therefore the arc

DBE is one-third of the circumference.

Wherefore the line (I. Sup. 6) CG is a mean proportional be-

tween AH, half the radius, and the line AF. Now, because the

sides BD, DC of the triangle BDC are equal, the angles DCF,
DBF are also equal; and the angles DFC, DFB being equal, and
the side DF common to the triangles DBF, DCF, the base BF is

equal to the base CF, and BC is bisected in F.

Therefore, if AC or BC=1000, AH=500, CF=500, AF=1500,
and CG being a mean proportional between AH and AF, CG2=
(VI. 17) AH.AF=500x 1500=750,000; wherefore CG=866.0254-h.
Hence, also, AC+CG=1866.0254+.
Now, as CG is the perpendicular drawn from the centre C, on

the chord of one-sixth of the circumference; ifP=the perpendi-

cular from C on the chord of one-twelfth of the circumference, P
will be the mean proportional between AH (I. Sup. 6) and AC+
CG, and P2=AH (AC + CG) = 500 x 1866.0254 + = 933,012.7+.
Therefore, P=965.9258+.

Again, if Q=the perpendicular drawn from C on the chord

of one twenty-fourth of the circumference
; Q2=AH (AC+P)=

500xl965.9258+=982,962.9+ ; and, therefore, Q=991.4449+.
In like manner, if S be the perpendicular from C on the chord

of one forty-eighth of the circumference, S2=AH (AC+Q)=500x
1991.4449+=995,722.45+ ; and S=997.8589+.

Lastly, If T be the perpendicular from C on the chord of one
ninety-sixth of the circumference, T2 = AH (AC + S) = 500x
1997.8589+, =998,929.45+, and T=999.46458+.

But, by the last proposition, the chord of one ninety-sixth part

of the circumference is a mean proportional between the diameter
and the excess of the radius above S, the perpendicular from the

centre on the chord of one forty-eighth of the circumference.

Therefore, the square of the chord of one ninety-sixth of the cir-

cumference=AB (AC-S) =2000x2.1411-, =4282.2- ;
and there-

fore the chord itself=65.4386— . Now, the chord of one ninety-

sixth of the circumference, or the side of an equilateral polygon
of ninety-six sides inscribed in the circle, being 65.4386—, the

perimeter of that polygon will be = (65.4386-) 96=6282.1056-.
Let the perimeter of the circumscribed polygon of the same num-

ber of sides be M, then (I. Sup. 2, Cor. 2) T : AC : : 6282.1056-
• M, that is (since T = 999.46458 +, as already shown),



BOOK FIRST. 133

999.46458+ : 1000 : : 6282.1056— : M. But 999.46458 : 1000 :

:

6282.1056 : 6285.461- ; therefore the perimeter of the polygon cir-

cumscribed about the circle is less than 6285.461 ; now, the cir-

cumference of the circle is less than the perimeter of this polygon
;

wherefore it is less than 6285.461 of those parts of which the

radius contains 1000. The circumference, therefore, has to the

diameter a less ratio (V. 8) than 6285.461 has to 2000, or than

3142.7305 has to 1000 ; but the ratio of 22 to 7 is greater than

the ratio of 3142.7305 to 1000, therefore the circumference has

a less ratio to the diameter than 22 has to 7, or the circumference

is less than 22 of the parts of which the diameter contains 7.

It remains to demonstrate, that the part by which the cir-

cumference exceeds three times the diameter is greater than —
of the diameter.

It was before shown, that CG2=750,000 ; wherefore CG=
866.02545- ; and AC+CG=1866.02545-.

Also, P2=AH (AC+CG) = 500xl866.02545-=933,012.73-;
and P=965.92585-.

Again, Q2=AH (AC+P) =500x1965.92585 - = 982,962.93-
;

and Q,=991.44495
In like manner, S2 = AH (AC + Q) = 500 x 1991.44495 - =

995,722.475- and S=997.85895-.
But the square of the chord of the ninety-sixth part of the cir-

cumference=AB (AC-S)=2000 (2.14105+)=4282.1+, and the

chord itself=65.4377+. Now, the chord of one ninety-sixth part

of the circumference being =65.4377+, the perimeter of a poly-

gon of ninety-six sides inscribed in the circle = (65.4377+) 96=
6282.019+. But the circumference of the circle is greater than
the perimeter of the inscribed polygon ; therefore the circumfer-

ence is greater than 6282.019 of those parts of which the radius

contains 1000 ; or than 3141.009 of the parts of which the radius

contains 500, or the diameter contains 1000. Now, 3141.009 has

to 1000 a greater ratio than 3 + — to 1 ; therefore the circumfer-

ence of the circle has a greater ratio to the diameter than 3 +—

-

has to 1 ; that is, the excess of the circumference above three times
the diameter is greater than ten ofthose parts ofwhich the diameter
contains 71 ; and it has already been shown to be less than ten of
those of which the diameter contains 70. Therefore, &c. Q. E. D.

Cor. 1. Hence the diameter of a circle being given, the cir-

cumference may be found nearly, by making as 7 to 22, so the

given diameter to the circumference.
Cor. 2. As 7 to 22, so is the square of the radius to the area

of the circle nearly.

For it has been shown, that (I. Sup. 4, Cor) the diameter of
a circle is to its circumference as the square of the radius to the

area of the circle ; but the diameter is to the circumference nearly
as 7 to 22, therefore the square of the radius is to the area of the

circle nearly in that same ratio.
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OF THE INTERSECTION OF PLANES.

DEFINITIONS.

I. A straight line is perpendicular, or at right angles to a plane,
when it makes right angles with every straight line which it

meets in that plane.

II. A plane is perpendicular to a plane, when the straight lines

drawn in one of the planes perpendicular to the common section

of the two planes are perpendicular to the other plane.

III. The inclination of a straight line to a plane is the acute

angle contained by that straight line, and another drawn from
the point in which the first line meets the plane, to the point in

which a perpendicular to the plane, drawn from any point of the

first line, meets the same plane.

IV. The angle made by two planes which cut one another, is the

angle contained by two straight lines drawn from any, the same
point in the line of their common section, at right angles to that

line, the one in the one plane, and the other in the other. Of
the two adjacent angles made by two lines drawn in this manner,
that which is acute is also called the inclination of the planes
to one another*

V. Two planes are said to have the same, or a like inclination to

one another, which two other planes have, when the angles of
inclination above defined are equal to one another.

VI. A straight line is said to be parallel to a plane, when it does

not meet the plane, though produced ever so far.

VII. Planes are said to be parallel to one another, which do not
meet, though produced ever so far.

VIII. A solid angle is an angle made by the meeting of more than
two plane angles, which are not in the same plane, in one point.*

• See Notes.
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PROP. I. THEOR.
One part of a straight line cannot be in a plane and another

part above it.

If it be possible, let AB, part of the straight line ABC, be in the

plane, and the part BC above it ; and since the straight line AB
is in the plane, it can be produced in that

plane (I. Post. 2), let it be produced to D. / Q

Then ABC and ABD are two straight ^- X >

lines, and they have the common segment \ / \
AB, which is impossible (I. Def. 3, Cor.) \ a b d \
Therefore, ABC is not a straight line. ^

Wherefore, one party &c. Q. E. D.

PROP. II. THEOR.
Any three straight lines which meet one another, not in the same

point, are in one plane.

Let the three straight lines AB, CD, CB meet one another in

the points B, C, and E ; AB, CD, CB are in one plane.

Let any plane pass through the straight line

EB, and let the plane be turned about EB, pro-

duced, if necessary, until it pass through the

point C. Then, because the points E, C are

in this plane, the straight line EC is in it (I.

Def. 5) : for the same reason, the straight line

BC is in the same ; and, by the hypothesis, EB
is in it ; therefore the three straight lines EC,
CB, BE are in one plane ; but the whole of the

lines DC, AB, and BC produced, are in the same plane with the

parts of them EC, EB, BC (LI. Sup. 1). Therefore, AB, CD, CB,
are all in one plane. Wherefore, &c. Q. E. D.

Cor. It is manifest, that any two straight lines which cut one

another are in one plane. Also, that any three points whatever

are in one plane.

PROP. III. THEOR.

If two planes cut one another, their common section is a straight

line.

Let two planes AB, BC cut one another, and let B and D be
two points in the line of their common section.

From B to D draw the straight line BD ; and
because the points B and D are in the plane
AB, the straight line BD is in that plane
(I. Def. 5) : for the same reason, it is in the
plane CB ; the straight line BD is therefore

common to the planes AB and BC, or it is the
common section of these planes. Therefore,
&c. Q. E. D.
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PROP. IV. THEOR.

If a straight line stand at right angles to each of two straight

lines in the point of their intersection, it will also be at right

angles to the plane in ivhich these lines are.*

Let the straight line AB stand at right angles to each of the

straight lines EF, CD in A, the point of their intersection ;• AB
is also at right angles to the plane passing through EF, CD.
Through A draw any line AG in the plane in which are EF and

CD ; take D any point in CA, and
make AF=AD ;

join FD, meeting AG
in G ; and bisect FD in H (1. 10), and
join AH, BD, BG, BH, BF. Then,
because AD=AF and AB is common
to the two triangles DAB, FAB, and
the angle DAB equal to the angle FAB
(each of them being a right angle)

;

the side DB is equal to the side FB
(I. 4). And because DH=HF and
HA common to the triangles DHA,
FHA and the base DA=FA ; the angle DHA=FHA (I. 8); there-

fore each of them is a right angle. Similarly each of the angles
DHB, FHB is a right angle. Hence, in the triangle DGB, DB2+
2DG.GH=DG 2+GB2 (II. 12). But DB2=DA2+AB2

(I. 47) ;

therefore DA2+AB2+2DG.GH=DG2+GB2
. And in the triangle

DGA, DA2+2DG.GH=DG2+GA2 (II. 12), therefore DG2+GA2+
AB2+2DG.GH=DG2+GB2+2DG.GH, and by taking away the
common part DG2+2DG.GH, we have GA2+AB2=GB2

; therefore

(I. 48) the angle GAB is a right angle. In the same manner it

may be shown that AB is at right angles to any other straight

line in the plane of the lines AD, AF
;

it is therefore at right

angles to the plane itself. Therefore, &c. Q. E. D.

PROP. V. THEOR.
If three straight lines meet all in one point, and a straight line

stand at right angles to each of them in thatpoint ; these three

straight lines are in one and the same plane.

Let the straight line AB stand at right angles to each of the

straight lines BC, BD, BE in B, the point where they meet j BC,
BD, BE are in one and the same plane.

If not, let BD and BE, if possible, be in one
plane, and BC be above it ; and let a plane pass

through AB, BC, the common section of which,

with the plane in which BD and BE are, shall

be a straight (II. Sup. 3) line ; let this be BF

;

therefore the three straight lines AB, BC, BF
are all in one plane, viz., that which passes

through AB, BC ; and because AB stands at

right angles to each of the straight lines BD,
BE, it is also at right angles (II. Sup. 4) to the

plane passing through them ; and therefore makes right angles

* See Notes.
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with every straight line meeting it in that plane ; but BF which
is in that plane meets it ; therefore the angle ABF is a right angle

;

but the angle ABC, by the hypothesis, is also a right angle ; there-

fore the angle ABF is equal to the angle ABC, and they are both
in the same plane, which is impossible ; therefore the straight

line BC is not above the plane in which are BD and BE. Where-
fore the three straight lines BC, BD, BE are in one and the same
plane. Therefore, if three straight lines, &c. Q. E. D.

PROP. VI. THEOR.

Two straight lines tohich are at right angles to the same plane
are parallel to one another.

Let the straight lines AB, CD be at right angles to the same
plane BDE ; AB is parallel to CD.

Let them meet the plane in the points B, D. Draw DE at right

angles to DB, in the plane BDE, and let E be any point in it.

Join AE, AD, EB. Because ABE is aright angle,

AB2+BE 2= (I. 47) AE 2
, and because BDE is a

right angle, BE 2=BD 2+DE 2
; therefore AB2+BD 2

+DE2=AE 2
; now,AB2+BD 2=AD 2

, becauseABD
is a right angle, therefore AD 2-f-DE 2=AE 2

, and
ADE is therefore (I. 48) a right angle. There-
fore ED is perpendicular to the three lines BD, B^

DA, DC, whence these lines are in one plane (II.

Sup. 5). But AB is in the plane in which are BD,
DA, because any three straight lines which meet
one another not in the same point are in one plane
(II. Sup. 2). Therefore AB, BD, DC are in one plane ; and each
of the angles ABD, BDC is a right angle ; therefore AB is parallel
(I. 28) to CD. Wherefore, if two straight lines, &c. Q. E. D.

PROP. VII. THEOR.

If two straight lines are parallel, and one of them is at right
angles to a plane ; the other is also at right angles to the same
plane.*

Let AB, CD be two parallel straight lines, and let one of them
AB be at right angles to a plane ; the
other CD is at right angles to the same
plane.

For, if CD be not perpendicular to the
plane to which AB is perpendicular, let
DGbe perpendicular to it. Then(II. Sup 6) ? h
DG is parallel to AB ; DG and DC there- \
fore are both parallel to AB, and are drawn \_J
through the same point D, which is im-
possible (I. Ax. 11). Therefore, &c. Q. E. D.

D

* See Notes,
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PROP. VIII. THEOR.

Two straight lines which are each of them parallel to the same
straight line, though not both in the same plane with it, are

parallel to one another.

Let AB, CD be each of them parallel to EF, and not in the

same plane with it ; AB shall be parallel to CD.
In EF take any point G, from which draw, in the plane passing

through EF, AB
?
the straight line GH at R

right angles to EF ; and in the plane

passing through EF, CD, draw GK at

right angles to the same EF. And be-

cause EF is perpendicular both to GH
and GK, it is perpendicular (II. Sup. 4)

to the plane HGK passing through them
;

and EF is parallel to AB ; therefore AB is at right angles (II.

Sup. 7) to the plane HGK. For the same reason, CD is likewise

at right angles to the plane HGK. Therefore AB, CD are each

of them at right angles to the plane HGK ; but if two straight

lines are at right angles to the same plane, they are parallel

(II. Sup. 6) to one another. Therefore AB is parallel to CD.
Wherefore, two straight lines , &c. Q. E. D.

PROP. IX. THEOR.

If two straight lines meeting one another be parallel to two others

that meet one another, though not in the same plane with the

first two; the first two and the other two shall contain equal

angles.

Let the two straight lines AB, BC, which meet one another, be
parallel to the two straight lines DE, EF, which meet one another,

and are not in the same plane with AB, BC
,

the angle ABC -is equal to the angle DEF.
Take BA, BC, ED, EF, all equal to one an-

other; and join AD, CF, BE, AC, DF. Be-
cause BA is equal and parallel to ED, therefore

AD is (I. 33) both equal and parallel to BE.
For the same reason, CF is equal and parallel to

BE. Therefore AD and CF are each of them
equal and parallel to BE. But straight lines

that are parallel to the same straight line, though
not in the same plane with it, are parallel (II.

Sup. 8) to one another. Therefore AD is parallel to CF ; and
it is equal to it, and AC, DF join them towards the same parts

;

therefore (I. 33) AC is equal and parallel to DF. And because
AB, BC are equal to DE, EF, and the base AC to the base DF ;

the angle ABC is equal (I. 8) to the angle DEF. Therefore, if
two straight lines, &c. Q. E. D.
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PROP. X. PROB.

To draw a straight line perpendicular to a plane from a given

point above it.

Let A be the given point above the plane BH ; it is required

to draw from the point A a straight line perpendicular to the

plane BH.
In the plane draw any straight line BC, and from the point A

draw (I. 12) AD perpendicular to BC. If, then, AD be also per-

pendicular to the plane BH, the thing required is already done

;

but if it be not, from the point D draw
(I. 11), in the plane BH, the straight line

DE at right angles to BC ; and from the

point A draw AF perpendicular to DE

;

and through F draw (I. 31) GH parallel to

BC. And because BC is at right angles to

ED and DA; BC is at right angles (II. B d c

Sup. 4) to the plane passing through ED, DA ; and GH is pa-
rallel to BC ; but if two straight lines be parallel, one of which is

at right angles to a plane, the other shall be at right (II. Sup. 7)
angles to the same plane ; wherefore GH is at right angles to the

plane through ED, DA, and is perpendicular (II. Sup. Def. 1)

to every straight line meeting it in that plane. But AF, which
is in the plane through ED, DA, meets it. Therefore GH is

perpendicular to AF, and, consequently, AF is perpendicular to

GH ; and AF is also perpendicular to DE. Therefore AF is

perpendicular to each of the straight lines GH, DE ; but if a
straight line stands at right angles to each of two straight lines

in the point of their intersection, it is also at right angles to the
plane passing through them (II. Sup. 4). And the plane passing
through ED, GH is the plane BH ; therefore AF is perpendicular
to the plane BH, so that from the given point A, above the plane
BH, the straight line AF is drawn perpendicular to that plane.

Which was to be done.

Cor. If it be required from a point C in a plane to erect a per-
pendicular to that plane, take a point A above the plane, and
draw AF perpendicular to the plane ; then, if from C a line be
drawn parallel to AF, it will be the perpendicular required ; for,

being parallel to AF, it will be perpendicular to the same plane
to which AF is perpendicular (II. Sup. 7).

PROP. XL THEOR.
From the same point in a plane there cannot be two straight

lines at right angles to the plane, upon the same side of it

;

and there can be but one perpendicular to a plane from a
point above it.

For, if it be possible, let the two straight lines AC, AB be at

right angles to a given plane from the same point A in the plane,
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and upon the same side of it ; and let a plane pass through BA,
AC ; the common section of this plane with the given plane is a
straight line passing through A (II. Sup. 3). Let DAE be their

common section. Therefore the straight lines AB, AC, DAE are

in one plane. And because CA is at right

angles to the given plane, it makes right

angles with every straight line meeting it in

that plane. But DAE, which is in that plane,

meets CA; therefore CAE is a right angle.

For the same reason, BAE is a right angle.

Wherefore the angle CAE is equal to the angle

BAE ; and they are in one plane, which is impossible. Also,
from a point above a plane there can be but one perpendicular to

that plane ; for, if there could be two, they would be parallel

(II. Sup. 6) to one another, which is absurd. Therefore, from
the same point, &c. Q. E. D.

PROP. XII. THEOR.

Planes to which the same straight line is perpendicular are

parallel to one another.

Let the straight line AB be perpendicular to each of the planes
CD, EF ; these planes are parallel to one another.

If not, they must meet one another when produced, and their

common section must be a straight line GH, in

which take any point K, andjoin AK, BK.
Then, because AB is perpendicular to the plane
EF, it is perpendicular (II. Sup. Def. 1) to the
straight line BK which is in that plane, and
therefore ABK is a right angle. For the same
reason, BAK is a right angle ; wherefore the
two angles ABK, BAK, of the triangle ABK,
are equal to two right angles, which is impos-
sible (I. 17). Therefore the planes CD, EF,
though produced, do not meet one another;
that is, they are parallel (II. Sup. Def. 7).

&c. Q. E.D.

PROP. XIII. THEOR.

If two straight lines meeting one another he parallel to two
straight lines which also meet one another, hut are not in the
same plane with the first two ; the plane which passes through
the first two is parallel to theplane passing through the others.

Let AB, BC, two straight lines meeting one another, be parallel
to DE, EF that meet one another, but are not in the same plane
with AB, BC ; the planes through AB

;
BC, and DE, EF shall

not meet, though produced.
From the point B draw BG perpendicular (II. Sup. 10) to the

plane which passes through DE
;
EF, and let it meet that plane

Therefore, planes,
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in G ; and through G draw GH parallel to ED (I. 31), and GK
parallel to EF. And because BG is perpendicular to the plane

through DE, EF, it must make right

angles with every straight line meeting

it in that plane (II. Sup. Def. 1). But

tne straight lines GH, GK in that plane

meet it. Therefore each of the angles

BGH, BGK is a right angle. And be-

cause BA is parallel
k
(II. Sup. 8) to GH

(for each of them is parallel to DE), the

angles GBA, BGH are together equal (I. 29) to two right angles

;

and BGH is a right angle ; therefore, also, GBA is a right angle

;

and GB perpendicular to BA. For the same reason, GB is per-

pendicular to BC. Since, therefore, the straight line GB stands

at right angles to the two straight lines BA, BC, that cut one an-

other in B ; GB is perpendicular (II. Sup. 4) to the plane through
BA, BC ; and it is perpendicular to the plane through DE, EF

;

therefore BG is perpendicular to each of the planes through AB,
BC, and DE, EF ; but planes to which the same straight line is

perpendicular are parallel (II. Sup. 12) to one another ; there-

fore the plane through AB, BC is parallel to the plane through
DE, EF. Wherefore, if two straight lines, &c, Q. E. D.

Cor. It follows from this demonstration, that if a straight line

meet two parallel planes, and be perpendicular to one of them,
it must be perpendicular to the other also.

PROP. XIV. THEOR.

If two parallel planes be cut by another plane, their common
sections with it are parallels.

Let the parallel planes AB, CD be cut by the plane EFHG,
and let their common sections with it be
EF, GH

;
EF is parallel to GH.

For the straight lines EF and GH are

in the same plane, viz.,EFHG, which cuts

the planes AB and CD ; and they do not
meet though produced ; for the planes in

which they are do not meet ; therefore EF
and GH are parallel (I. Def. 30). Q.E.D.
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PROP. XV. THEOR.

Iftwo parallel planes be cut by a third plane, they have the

same inclination to that plane.

Let AB and CD be two parallel planes, and EH a third plane
cutting them ; the planes AB and CD are equally inclined to
EH.

Let the straight lines EF and GH be the common section of
the plane EH with the two planes AB and CD ; and from K, any
point in EF, draw in the plane EH the straight line KM at right
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angles to EF, and let it meet GH in L ; draw also KN at right

angles to EF in the plane AB ; and through the straight lines

KM, KN let a plane be made to pass, cutting the plane CD in

the line LO. And because EF and GH are the common sections

of the plane EH with the two
parallel planes AB and CD, EF is

parallel to GH (II. Sup. 14). But
EF is at right angles to the plane

that passes through KN and KM
(II. Sup. 4), because it is at right

angles to the lines KM and KN ;
B>

therefore GH is also at right

angles to the same plane (II. Sup.

7), and it is therefore at right angles to the lines LM, LO, which
it meets in that plane. Therefore, since LM and LO are at right

angles to LG, the common section of the two planes CD and EH,
the angle OLM is the inclination of the plane CD to the plane
EH (II. Sup. Def. 4). For the same reason, the angle MKN is

the inclination of the plane AB to the plane EH. But because
KN and LO are parallel, being the common sections of the
parallel planes AB and CD with a third plane, the interior angle

NKM is equal to the exterior angle OLM (I. 29) ; that is, the

inclination of the plane AB to the plane EH is equal to the inclina-

tion of the plane CD to the same plane EH. Therefore, &c.

Q. E. D.
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PROP. XVI. THEOR.

If two straight lines be cut by parallel planes they shall be cut

in the same ratio.

Let the straight lines AB, CD be cut by the parallel planes

GH, KL, MN, in the points A, E, B ; C, F, D ; as AE is to EB,
so is CF to FD.

Join AC, BD, AD, and let AD meet the plane KL in the point

X; and join EX, XF. Because the two
parallel planes KL, MN are cut by the

plane EBDX, the common sections EX,
BD, are parallel (II. Sup. 14). For the

same reason, because the two parallel planes

GH, KL are cut by the plane AXFC, the

common sections AC, XF are parallel.

And because EX is parallel to BD, a side K^-

of the triangle ABD, as AE to EB, so is

(VI. 2) AX to XD. Again, because XF is

parallel to AC, a side of the triangle ADC,
as AX to XD, so is CF to FD. And it was
proved that AX is to XD as AE to EB

:

therefore (V. 11), as AE to EB, so is CF
to FD. Wherefore, if two straight lines, &c. Q. E. D.
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PROP. XVII. THEOR.

If a straight line he at right angles to a plane, everyplane which

passes through that line is at right angles to the first men-
tioned plane.

Let the straight line AB be at right angles to a plane CK ; every

plane which passes through AB is at right angles to the plane CK.
Let any plane DE pass through AB, and let CE be the com-

mon section of the planes DE, CK : take any point F in CE
;
from

which draw FG, in the plane DE, at right angles to CE. And
because AB is perpendicular to the plane CK, therefore it is also

perpendicular to every straight line meet- D g a h
ing it in that plane (II. Sup. Def. 1)

;

and, consequently, it is perpendicular to

CE. Wherefore ABF is a right angle

;

but GFB is likewise a right angle ; there- V
fore AB is parallel (I. 28) to FG. And N

AB is at right angles to the plane CK

;

therefore FG is also at right angles to

the same plane (II. Sup. 7). But one plane is at right angles to

another plane, when the straight lines drawn in one of the planes,

at right angles to the common section, are also at right angles to

the other plane (II. Sup. Def. 2) ; and any straight line FG in the
plane DE, which is at right angles to CE, the common section of
the planes, has been proved to be perpendicular to the other plane
CK ; therefore the plane DE is at right angles to the plane CK.
In like manner, it may be proved that all the planes which pass
through AB are at right angles to the plane CK. Therefore, ifa
straight line, &c. Q. E. D.

,K

F B

PROP. XVIII. THEOR.

If two planes cutting one another be each of them perpendicular
to a third plane, their common section is perpendicular to the

same plane.

Let the two planes AB, BC be each of them perpendicular to

a third plane, and let BD be the common section of the first two

;

BD is perpendicular to the plane ADC.
From D, in the plane ADC, draw DE perpendicular to AD,

and DF to DC. Because DE is perpendicular to
AD, the common section of the planes AB and
ADC ; and because the plane AB is at right angles
to ADC, DE is at right angles to the plane AB
(II. Sup. Def. 2), and therefore, also, to the straight
line BD in that plane (I. Sup. Def. 2). For the
same reason, DF is at right angles to DB. Since
DB is therefore at right angles to both the lines
DE and DF, it is at right angles to the plane in
which DE and DF are, that is, to the plane ADC ^ ¥

(II. Sup. 4). Wherefore, &c. Q. E. D.
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PROP. XIX. PROB.

Two straight lines not in the same 'plane being given in position,

to draw a straight line perpendicular to them both.

Let AB and CD be the given lines, which are not in the same

plane ; it is required to draw a straight line which shall be per-

pendicular both to AB and CD.
In AB take any point E, and through E draw EF parallel to

CD, and let EG be drawn perpendicu-

lar to the plane which passes through

EB EF (II. Sup. 10). Through AB
and EG let a plane pass, viz., GK,
and let this plane meet CD in H ; from
H draw HK perpendicular to AB

;

and HK is the line required. Through
H draw HG parallel to AB.

Then, since HK and GE, which
are in the same plane, are both at

right angles to the straight line AB, they are parallel to one
another. And because the lines HG, HD are parallel to the lines

EB, EF, each to each, the plane GHD is parallel to the plane
(II. Sup. 13) BEF ; and therefore EG, which is perpendicular to

the plane BEF, is perpendicular also to the plane (II. Sup. 13,

Cor.) GHD. Therefore, HK, which is parallel to GE, is also

perpendicular to the plane GHD (II. Sup. 7), and it is therefore

perpendicular to HD (I. Sup. Def. 2), which is in that plane ; but
it is also perpendicular to AB ; therefore HK is drawn perpendi-
cular to the two given lines, AB and CD. Which was to be done.

PROP. XX. THEOR.
If a solid angle be contained by three plane angles, any two of

these angles are greater than the third.

Let the solid angle at A be contained by the three plane angles

BAC, CAD, DAB ; any two of them are greater than the third.

If the angles BAC, CAD, DAB be all equal, it is evident that

any two of them are greater than the third. But if they are not,

let BAC be that angle which is not less than d
either of the other two, and is greater than
one of them, DAB ; and at the point A, in

the straight line AB, make, in the plane
which passes throughBA, AC, the angle BAE
equal (I. 23) to the angle DAB ; and make
AE equal to AD, and through E draw BEC, B EC
cutting AB, AC in the points B, C, and join DB, DC. And be-
cause DA is equal to AE, and AB is common to the two triangles
ABD, ABE, and also the angle DAB equal to the angle EAB

;

therefore the base DB is equal (1. 4) to the base BE. And because
BD, DC are greater (I. 20) than CB, and one ofthem BD has been
proved equal to BE

;
a part of CB, therefore the other DC is greater
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than the remaining part EC. And because DA is equal to AE, and

AC common, but the base DC greater than the base EC, therefore

the angle DAC is greater (I. 2o) than the angle EAC ; and, by

the construction, the angle DAB is equal to the angle BAE
; where-

fore the angles DAB, DAC are together greater than BAE, EAC,
that is, than the angle BAC. But BAC is not less than either of

the angles DAB, DAC ; therefore BAC, with either of them, is

greater than the other. Wherefore, if a solid angle, &c. Q. E. D.

PROP. XXI. THEOR.

The plane angles, which contain any solid angle, are together

less thanfour right angles.

Let A be a solid angle contained by any number of plane angles

BAC, CAD, DAE, EAF, FAB ; these together are less than four

right angles.

Let the planes which contain the solid angle at A be cut by an-

other plane, and let the section of them by that plane be the rec-

tilineal figure BCDEF. And because the solid

angle at B is contained by three plane angles CBA,
ABF, FBC, ofwhich any two are greater (II. Sup.

20) than the third; the angles CBA, ABF are

greater than the angle FBC. For the same rea-

son, the two plane angles at each of the points C,

D, E, F, viz., the angles which are at the bases

of the triangles having the common vertex A, are

greater than the third angle at the same point,

which is one of the angles of the figure BCDEF ; therefore all the
angles at the bases of the triangles are together greater than all the
angles of the figure; and because all the angles of the triangles

are together equal to twice as many right angles as there are tri-

angles (I. 32), that is, as there sides in the figure BCDEF ; and
because all the angles of the figure, together with four right angles,

are likewise equal to twice as many right angles as there are sides

in the figure (I. 32, Cor. 1) ; therefore all the angles of the tri-

angles are equal to all the angles of the rectilineal figure, together
with four right angles. But all the angles at the bases of the tri-

angles are greater than all the angles of the rectilineal figure, as

has been proved. Wherefore, the remaining angles of the tri-

angles, viz., those at the vertex, which contain the solid angle at

A, are less than four right angles. Therefore, every solid angle,
&c. Q. E. D.

Otherwise

:

Let the sum of all the angles at the bases of the triangles=S

;

the sum of all the angles of the rectilineal figure BCDEF=2 ; the
sum of the plane angles at A=X, and let R=a right angle.

Then, because S+X= (I. 32) twice as many right angles as there

are triangles, or as there are sides of the rectilineal figure BCDEF,
and as 2-J-4R is also equal to twice as many right angles as there

are sides ofthe same figure ; therefore S-fX=2-r-4R. But because
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(II. Sup. 20) of the three plane angles which contain a solid angle,

any two are greater than the third, St^2 ; and, therefore, X^:4R

;

that is, the sum of the plane angles which contain the solid angle

at A is less than four right angles. Q. E. D.

SCHOLIUM.
It is evident, that when any of the angles of the figure BCDEF

is exterior, like the angle at D, in the annexed figure, the reason-

ing in the above proposition does not hold,

because the solid angles at the base are not

all contained by plane angles, of which two
belong to the triangularplanes, having their

common vertex in A, and the third is an in-

terior angle of the rectilineal figure or base.

Therefore, it cannot be concluded that S is

necessarily greater than 2. This proposi-

tion, therefore, is subject to a limitation, which is further explained
in the notes on this book.

BOOK THIRD.

OF THE COMPARISON OF SOLIDS.

DEFINITIONS.

I. A solid is that which has length, breadth, and thickness.

II. Similar solid figures are such as are contained by the same
number of similar planes, similarly situated, and having like in-

clinations to one another.*

III. A pyramid is a solid figure contained by planes that are con-

stituted betwixt one plane and a point above it in which they
meet.

IV. A prism is a solid figure contained by plane figures, of which
two that are opposite are equal, similar, and parallel to one an-

other ; and the others are parallelograms.

V. A parallelepiped is a solid figure contained by six quadrilateral

figures, whereof every opposite two are parallel.

VI. A cube is a solid figure contained by six equal squares.

VII. A sphere is a solid figure described by the revolution of a
semicircle about a diameter, which remains unmoved.

* See Notes.
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VIII. The axis of a sphere is the fixed straight line about which
the semicircle revolves.

IX. The centre of a sphere is the same with that of the semicircle.

X. The diameter of a sphere is any straight line which passes

through the centre, and is terminated both ways by the super-

ficies of the sphere.

XL A cone is a solid figure described by the revolution of a right-

angled triangle about one of the sides containing the right angle,

which side remains fixed.

XII. The axis of a cone is the fixed straight line about which the

triangle revolves.

XIII. The base of a cone is the circle described by that side, con-

taining the right angle, which revolves.

XIV. A cylinder is a solid figure described by the revolution of
a right-angled parallelogram about one of its sides, which re-

mains fixed.

XV. The axis of a cylinder is the fixed straight line about which

the parallelogram revolves.

XVI. The bases ofa cylinder are the circles described by the two
revolving opposite sides of the parallelogram.

XVII. Similar cones and cylinders are those which have their

axes, and the diameters of their bases proportionals.

PROP. I. THEOR.
If two solids be contained by the same number of equal and si-

milar planes, similarly situated, and if the inclination of any
two contiguous planes in the one solid be the same with the in-

clination of the two equal, and similarly situated planes in

the other, the solids themselves are equal and similar*

Let AG and KQ be two solids contained by the same number
of equal and similar planes, similarly situated, so that the plane

AC is similar and equal to the plane KM, the plane AF to the

plane KP, BG to LQ, GD to QN, DE to NO, and FH to PR.
Let also the inclination of the plane AF to the plane AC be the

same with that of the plane KP to the plane KM, and so of the

rest ; the solid KQ is equal and similar to the solid AG.
Let the solid KQ be applied

to the solid AG, so that the bases

KM and AC, which are equal

and similar, may coincide (I. Ax.

8), the point N coinciding with Dl^

the point D, K with A, L with
B, and so on. And because the A- B K L

plane KM coincides with the plane AC, and, by hypothesis, the

inclination of KR to KM is the same with the inclination of AH
to AC, the plane KR will be upon the plane AH, and will coin-

* See Notes.
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cide with it, because they are similar and equal (I. Ax. 8), ana
because their equal sides KN and AD coincide. And, in the same
manner, it is shown that the other planes of the solid KQ, coin-

cide with the other planes of the solid AG, each with each : where-

fore the solids KQ and AG do wholly coincide, and are equal and
similar to one another. Therefore, &c. Q. E. D.

PROP. II. THEOR.

Ifa solid be contained by six planes, two and two of which are

parallel, the opposite planes are similar and equal parallelo-

grams.

Let the solid CDGH be contained by the parallel planes AC,
GF ; BG, CE ; FB, AE : its opposite planes are similar and
equal parallelograms.

Because the two parallel planes BG, CE are cut by the plane

AC, their common sections AB, CD are parallel (II. Sup. 14).

Again, because the two parallel planes BF, AE are cut by the

plane AC, their common sections AD, BC are parallel (II. Sup.

14) : and AB is parallel to CD ; therefore AC is a parallelogram.

In like manner, it may be proved that each of the figures CE, FG,
GB, BF, AE is a parallelogram. Join AH, DF ; and because

AB is parallel to DC, and BH to CF, the

two straight lines AB, BH, which meet one
another, are parallel to DC and CF, which
meet one another ; wherefore, though the

first two are not in the same plane with the

other two, they contain equal angles (II.

Sup. 9) ; the angle ABH is therefore equal

to the angle DCF. And because AB, BH
are equal to DC, CF, and the angle ABH
equal to the angle DCF ; therefore the base AH is equal (I. 4) to

the base DF, and the triangle ABH to the triangle DCF. For
the same reason, the triangle AGH is equal to the triangle DEF

;

and therefore the parallelogram BG is equal and similar to the

parallelogram CE. In the same manner, it may be proved that

the parallelogram AC is equal and similar to the parallelogram

GF, and the parallelogram AE to BF. Therefore, if a solid, &c.

Q. E. D.

PROP. III. THEOR.

If a solid parallelepiped be cut by a plane parallel to two of its

opposite planes, it will be divided into two solids, which will be

to one another as their bases.

Let the solid parallelepiped ABCD be cut by the plane EV,
which is parallel to the opposite planes AR, HD, and divides the

whole into the solids ABFV, EGCD ; as the base AEFY to the

base EHCF, so is the solid ABFV to the solid EGCD.
Produce AH both ways, and take any number of straight lines

HM, MN, each equal to EH, and any number AK, KL, each

equal to EA, and complete the parallelograms LO, KY, HQ, MS,

G
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and the solids LP, KR, HU, MT ; then, because the straight

lines LK, KA, AE are all equal, and also the straight lines KO,
AY, EF, which make equal angles with LK, KA, AE, the paral-

lelograms LO, KY, AF are equal and similar (I. 36, & VI. Def.

1) ; and likewise the parallelograms KX, BK, AG ; as also (III.

Sup. 2) the parallelo-

grams LZ, KP, AR,
because they are op-

posite planes. For
the same reason, the

parallelograms EC,
HQ, MS, are equal

(I. 36, & VI. Def. 1);
u * ^ *

and the parallelograms HG, HI, IN, as also (III. Sup. 2) HD,
MU, NT ; therefore three planes of the solid LP are equal and
similar to three planes of the solid KR, as also to three planes of

the solid AV : but the three planes opposite to these three are

equal and similar to them (III. Sup. 2) in the several solids
;

therefore the solids LP, KR, AV are contained by equal and si-

milar planes. And because the planes LZ, KP, AR are parallel,

and are cut by the plane XV, the inclination of LZ to XP is equal

to that of KP to PB ; or of AR to BV (II. Sup. 15) : and the

same is true of the other contiguous planes, therefore the solids

LP, KR, and AV are equal to one another (III. Sup. 1). For
the same reason, the three solids ED, HU, MT are equal to one
another ; therefore what multiple soever the base LF is of the

base AF, the same multiple is the solid LV of the solid AV ; for

the same reason, whatever multiple the base NF is of the base

HF, the same multiple is the solid NV of the solid ED. And ii

the base LF be equal to the base NF, the solid LV is equal (III.

Sup. 1) to the solid NV ; and if the base LF be greater than the

base NF, the solid LV is greater than the solid NV ; and if less,

less. Since, then, there are four magnitudes, viz., the two bases

AF, FH, and the two solids AV, ED, and of the base AF and
solid AV, the base LF and solid LV are any equimultiples what-
ever ; and of the base FH and solid ED, the base FN and solid

NV are any equimultiples whatever; and it has been proved that

if the base LF is greater than the base FN, the solid LV is

greater than the solid NV ; and if equal, equal ; and if less, less.

Therefore (V. Def. 5), as the base AF is to the base FH, so is

the solid AV to the solid ED. Wherefore, if a solid, &c. Q. E. D.
Cor. Because the parallelogram AF is to the parallelogram FH

as YF to FC (VI. 1), therefore the solid AV is to the solid ED
as YF to FC.

PROP. IV. THEOR.

If a solid parallelepiped be cut by a plane passifig through the

diagonals of two of the opposite planes, it will be cut into two
equal prisms.

Let AB be a solid parallelepiped, and DE, CF the diagonals

of the opposite parallelograms AH, GB
;

viz., those which are
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drawn "betwixt the equal angles in each ;
and because CD, FE

are each of them parallel to GA, though not in the same plane

with it, CD, FE are parallel (II. Sup. 8); c e
wherefore the diagonals CF, DE are in the

plane in which the parallels are, and are

themselves parallels (II. Sup. 14) : the plane
CDEF cuts the solid AB into two equal
parts.

Because the triangle CGF is equal (I. 34)
to the triangle CBF, and the triangle DAE
to DHE ; and since the parallelogram CA is

equal (III. Sap. 2) and similar to the opposite

one BE ; and the parallelogram GE to CH ;

**

therefore the planes which contain the prisms CAE, CBE are

equal and similar, each to each ; and they are also equally in-

clined to one another, because the planes AC, EB are parallel, as

also AF and BD, and they are cut by the plane CE (II. Sup. 15).

Therefore the prism CAE is equal to the prism CBE (III. Sup.

1), and the solid AB is cut into two equal prisms by the plane

CDEF. Q. E. D.

N.B.

—

The insisting straight lines of a parallelepiped, men-
tioned in the following propositions, are the sides of the paral-
lelograms betwixt the base and the plane parallel to it.

PROP. V. THEOR.
Solid parallelepipeds upon the same base, and of the same alti-

tude, the insisting straight lines of which are terminated in

the same straight lines in the plane opposite to the base, are

equal to one another.

Let the solid parallelepipeds AH, AK be upon the same base

AB, and of the same altitude, and let their insisting straight

lines AF, AG, LM, LN be terminated in the same straight line

FN, and let the insisting lines CD, CE, BH, BK be terminated

in the same straight line DK ; the solid AH is equal to the solid

AK.
Because CH, CK are parallelograms. CB is equal (I. 34) to

each of the opposite sides DH, EK ; wherefore DH is equal to

EK ; add, or take away the common part HE ; then DE is equal

K

1

\\ "XV° /> W
o HK. Wherefore, also, the triangle CDE is equal (I. 38) to

he triangle BHK ; and the parallelogram DG is equal (I. 36)
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to the parallelogram HN. For the same reason, the triangle

AFG is equal to the triangle LMN, and the parallelogram CF
is equal (III. Sup. 2) to the parallelogram BM, and CG to BN

;

for they are opposite. Therefore the planes which contain the

prism DAG are similar and equal to those which contain the

prism HLN, each to each ; and the contiguous planes are also

equally inclined to one another (II. Sup. 15), because that the

parallel planes AD and LH, as also AE and LK are cut by the

same plane DN ; therefore the prisms DAG, HLN are equal (III.

Sup. 1). If, therefore, the prism LNH be taken from the solid,

of which the base is the parallelogram AB
;
and FDKN the plane

opposite to the base ; and if from this same solid there be taken
the prism AGD, the remaining solid, viz., the parallelepiped AH,
is equal to the remaining parallelepiped AK. Therefore, solid

parallelepipeds, &c. Q. E. D.

PROP. VI. THEOR.

Solid parallelepipeds upon the same base, and of the same alti-

tude, the insisting straight lines of which are not terminated

in the same straight lines, in the plane opposite to the base, are
equal to one another.

Let the parallelepipeds CM, CN be upon the same base AB,
and of the same altitude, but their insisting straight lines AF,
AG, LM, LN, CD, CE, BH, BK, not terminated in the same
straight lines ; the solids CM, CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one an-

other in the points 0, P, Q, R ; and join AO, LP, BQ, CR.
Because the planes (III. Sup. Def. 5) LBHM and ACDF are

parallel, and because the

plane LBHM is that in

which are the parallels

LB, MHPQ (III. Sup.

Def. 5), and in which
also is the figure BLPQ

;

and because the plane

ACDF is that in which
are the parallels AC,
FDOR, and in which
also is the^ figure CAOR

;

therefore the figures

BLPQ, CAOR are in pa-
rallel planes. In like If
manner, because the planes ALNG and CBKE are parallel, and
the plane ALNG is that in which are the parallels AL, OPGN,
and in which also is the figure ALPO, and the plane CBKE is

that in which are the parallels CB, RQEK, and in which also is

the figure CBQR ; therefore the figures ALPO, CBQR are in
parallel planes.

^
But the planes ACBL, ORQP are also parallel

;

therefore the solid CP is a parallelepiped. Now the solid paral-
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lelepiped CM is equal (III. Sup. 5) to the solid parallelepiped

CP ; because they are upon the same base, and their insisting

straight lines AF, AO, CD, CR; LM, LP, BH, BQ are termi-

nated in the same straight lines FR, MQ ; and the solid CP is

equal (III. Sup. 5) to the solid CN ; for they are upon the same
base ACBL, and their insisting straight lines AO, AG, LP, LN

;

CR, CE, BQ, BK are terminated in the same straight lines ON,
RK. Therefore the solid CM is equal to the solid CN. Where-
fore, solid parallelepipeds, &c. Q. E. D.

PROP. VII. THEOR.

Solid parallelepipeds which are upon equal bases
}
and of the

same altitude, are equal to one another.

Let the solid parallelepipeds AE, CF be upon equal bases

AB
;
CD, and be of the same altitude ; the solid AE is equal to

the solid CF.
Case 1. Let the insisting straight lines be at right angles to

the bases AB, CD, and let the bases be placed in the same plane,

and so as that the sides CL, LB be in a straight line ; therefore

the straight line LM, which is at right angles to the plane in

which the bases are, in P F_
the point L, is common
(II. Sup. 11) to the two
solids AE, CF ; let the
other insisting lines of
the solids be AG, HK,
BE; DF, OP, CN ; and,
first, let the angle ALB
be equal to the angle
CLD ; then AL, LD are
in a straight line (I. 14). Produce OD, HB, and let them meet
in Q, and complete the solid parallelepiped LR, the base of which
is the parallelogram LQ, and of which LM is one of its insisting

straight lines ; therefore, because the parallelogram AB is equal
to CD, as the base AB is to the base LQ, so is (V. 7) the base
CD to the same LQ ; and because the solid parallelepiped AR is

cut by the plane LMEB, which is parallel to the opposite planes
AK, DR ; as the base AB is to the base LQ, so is (III. Sup. 3)
the solid AE to the solid LR ; for the same reason, because the
solid parallelepiped CR is cut by the plane LMFD, which is pa-
rallel to the opposite planes CP, BR ; as the base CD to the base
LQ, so is the solid CF to the solid LR ; but as the base AB to

the base LQ, so the base CD to the base LQ, as has been proved
;

therefore, as the solid AE to the solid LR, so is the solid CF to

the solid LR ; and, therefore, the solid AE is equal (V. 9) to the
solid CF.

But let the solid parallelepipeds, SE, CF be upon equal bases
SB, CD, and be of the same altitude, and let their insisting

straight lines be at right angles to the bases ; and place the baseb
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SB, CD in the same plane, so that CL, LB be in a straight line
;

and let the angles SLB, OLD be unequal
;
the solid SE is also in

this case equal to the solid CF. Produce DL, TS until they

meet in A, and from B draw BH parallel to DA ; and let HB,
OD produced meet in Q, and complete the solids AE, LR ; there-

fore the solid AE, of which the base is the parallelogram LE,
and AK the plane opposite to it

;
is equal (III. Sup. 5) to the

solid SE, of which the p_ 3?- R
base is LE, and SX the

plane opposite ; for they
are upon the same base
LE, and of the same al-

titude, and their insist-

ing straight lines, viz.,

LA, LS,BH, BT; MG,
MU, EK, EX are in the

same straight lines AT,
GX ; and because the parallelogram AB is equal (I. 35) to SB, for

they are upon the same base LB, and between the same parallels

LB, AT ; and because the base SB is equal to the base CD

;

therefore the base AB is equal to the base CD ; but the angle
ALB is equal to the angle CLD ; therefore, by the first case, the
solid AE is equal to the solid CF ; but the solid AE is equal to

the. solid SE, as was demonstrated; therefore the solid SE is

equal to the solid CF.
Case 2. If the insisting straight lines AG, HK, BE, LM

;

CN, RS, DF, OP be not
at right angles to the
bases AB, CD ; in this

case, likewise, the solid

AE is equal to the solid

CF. Because solid paral-
lelepipeds on the same
base, and of the same
altitude, are equal (III.

Sup. 6), if two solid parallelepipeds be constituted on the bases
AB and CD of the same altitude with the solids AE and CF,
and with their insisting lines perpendicular to their bases, they
will be equal to the solids AE and CF ; and, by the first case of
this proposition, they will be equal to one another ; wherefore the
solids AE and CF are also equal. Wherefore, solid parallele-
pipeds, &c. Q. E. D.

PROP. VIII. THEOR.

Solid parallelepipeds which have the same altitude are to one
another as their bases.

Let AB, CD be solid parallelepipeds of the same altitude ; they
are to one another as their bases

; that is, as the base AE to the
base CF, so is the solid AB to the solid CD.
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To the straight line FG apply the parallelogram FH equal

(I. 45, Cor.) to AE, so that the angle FGH be equal to the angle

LCG ; and complete the solid parallelepiped GK upon the base

FH, one of whose insisting lines is FD, whereby the solids CD,

GK must be of the same altitude. Therefore the solid AB is

equal (III. Sup. 7) to the solid GK, because they are upon equal

bases AE, FH, and are of

the same altitude ; and be-

cause the solid parallele-

piped CK is cut by the

plane DG, which is parallel

to its opposite planes, the

base HF is (III. Sup. 3) to

the base FC as the solid HD to the solid DC. But the base HF
is equal to the base AE, and the solid GK to the solid AB ; there-

fore, as the base AE to the base CF, so is the solid AB to the

solid CD. Wherefore, solid parallelepipeds, &c. Q. E. D.
Cor. 1. From this it is manifest, that prisms upon triangular

bases, and of the same altitude, are to one another as their bases.

Let the prisms BMN, DPG, the bases of which are the triangles

AEM, CFG, have the same altitude ; complete the parallelograms

AE, CF, and the solid parallelepipeds AB, CD, in the first of

which let AN, and in the other let CP, be one of the insisting

lines. And because the solid parallelepipeds AB, CD have the

same altitude, they are to one another as the base AE is to the base

CF ; wherefore the prisms, which are their halves (III. Sup. 4),

are to one another as the base AE to the base CF ; that is, as the

triangle AEM to the triangle CFG.
Cor. 2. Also, a prism and aparallelepiped, which have the same

altitude, are to one another as their bases; that is, the prism

BMN is to the parallelepiped CD as the triangle AEM to the pa-

rallelogram LG. For, by the last Cor., the prism BNM is to the

prism DPG as the triangle AME to the triangle CGF, and, there-

fore, the prism BNM is to twice the prism DPG as the triangle

AME to twice the triangle CGF (V. 4) ; that is, the prism BNM
is to the parallelepiped CD as the triangle AME to the parallelo-

gram LG.

PROP. IX. THEOR.
Solid parallelepipeds are to one another in the ratio that is com-
pounded of the ratios of the areas of their bases, and oftheir
altitudes.

Let AF and GO be two solid parallelepipeds, of which the bases

are the parallelograms AC and GK, and the altitudes, the perpen-

diculars let fall on the planes of these bases from any point in the

opposite planes EF and MO ; the solid AF is to the solid GO in

a ratio compounded of the ratios of the base AC to the base GK,
and of the perpendicular on AC to the perpendicular on GK.

Case 1. When the insisting lines are perpendicular to the bases

AC and GK, or when the solids are upright.
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In GM, one of the insisting lines of the solid GO, take GQ equal

to AE, one of the insisting

lines of the solid AF, and

through Q let a plane pass

parallel to the plane GK,
meeting the other insisting

lines of the solid GO in the

points R, S. and T. It is

evident that GS is a solid

parallelepiped (III. Sup.

Def. 5), and that it has the

same altitude with AF, viz.,

GQ or AE. Now the solid

AF is to the solid GO in a ratio compounded of the ratios of the

solid AF to the solid GS (V. Def. 10), and of the solid GS to the

solid GO : but the ratio of the solid AF to the solid GS is the

same with that of the base AC to the base GK (III. Sup. 8), be-

cause their altitudes AE and GQ are equal ; and the ratio of the

solid GS to the solid GO is the same with that of GQ to GM (III.

Sup. 3) ; therefore the ratio which is compounded of the ratios of

the solid AF to the solid GS, and of the solid GS to the solid GO,
is the same with the ratio which is compounded of the ratios of

the base AC to the base GK, and of the altitude AE to the alti-

tude GM (V. F). But the ratio of the solid AF to the solid GO
is that which is compounded of the ratios of AF to GS, and of GS
to GO ; therefore the ratio of the solid AF to the solid GO is com-
pounded of the ratios of the base AC to the base GK, and of the

altitude AE to the altitude GM.
Case 2.When the insisting linesnrenotperpendicidarto the bases.

Let the parallelograms AC and GK be the bases as before, and
let AE and GM be the altitudes of the two parallelepipeds Y and
Z on these bases. Then, if the upright parallelepipeds AF and
GO be constituted on the bases AC and GK, with the altitudes

AE and GM, they will be equal to the parallelepipeds Y and Z
(III. Sup. 7). Now the solids AF and GO, by the first case, are

in the ratio compounded of the ratios of the bases AC and GK,
and of the altitudes AE and GM ; therefore, also, the solids Y and
Z have to one another a ratio that is compounded of the same ratios.

Therefore, &c. Q. E. D.
Cor. 1. Hence, two straight lines may be found having the

same ratio with the two parallelepipeds AF and GO. To AB, one

of the sides of the parallelogram AC, apply he parallelogram BV
equal to GK, having an angle equal to the angle BAD (I. 44) ; and
as AE to GM, so let AV be to AX (VI. 12), then AD is to AX as

the solid AF to the solid GO. For the ratio of AD to AX is

compounded of the ratios (V. Def. 10) of AD to AV, and of AV
to AX ; but the ratio of AD to AV is the same with that of the

parallelogram AC to the parallelogram BV (VI. 1) or GK ; and
the ratio of AV to AX is the same with that of AE to GM

;

therefore the ratio of AD to AX is compounded of the ratios of

AC to GK, and of AE to GM (V. E). But the ratio of the solid
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AF to the solid GO is compounded of the same ratios ; there-

fore as AD to AX, so is the solid AF to the solid GO.
Cor. 2. IfAF and GO are P n

two parallelepipeds, and if

to AB, to the perpendicular

from A upon DC, and to

the altitude of the parallele-

piped AF, the numbers L,

M, N be proportional ; and
if to AB, to GH, to the per-

pendicular from G on LK,
and to the altitude of the

parallelepiped GO, the num-
bers L, £, m

7
n be propor-

tional ; the solid AF is to the solid GO as LxMxN to Ixmxn.
For it may be proved, as in the 1st case of the Prop., that

LxMxN is to Ixmxn in the ratio compounded of the ratio ofLxM
to Ixm, and of the ratio of N to n. Now, the ratio of LxM to

Ixm is that of the area of the parallelogram AC to that of the pa-

rallelogram GK ; and the ratio of N to n is the ratio of the alti-

tudes of the parallelepipeds, by hypothesis ; therefore the ratio of

LxMxN to Ixmxn is compounded of the ratio of the areas of the

bases, and of the ratio of the altitudes of the parallelepipeds AF
and GO ; and the ratio of the parallelepipeds themselves is shown,

in this proposition, to be compounded of the same ratios ; there-

fore it is the same with that of the product LxMxN to the pro-

duct Ixmxn.
Cor. 3. Hence, all prisms are to one another in the ratio com-

pounded of the ratios of their bases, and of their altitudes. For
every prism is equal to a parallelepiped of the same altitude with

it, and of an equal base (III. Sup. 8, Cor. 2).

PROP. X. THEOR.
Solid parallelepipeds, which have their bases and altitudes reci-

procally proportional, are equal; andparallelepipeds which are

equal have their bases and altitudes reciprocally proportional.

Let AG and KQ be two solid parallelepipeds, of which the bases

are AC and KM, and the altitudes AE and KO, and let AC be to

KM as KO to AE ; the solids AG and KQ are equal.

As the base AC to the base KM, so let the straight line KO be

to the straight line S. Then,
since AC is to KM as KO to

S, and also, by hypothesis, AC
to KM as KO to AE ; KO has

the same ratio to S that it has

to AE (V. 11) ; wherefore AE
is equal to S (Y. 9). But the

solid AG is to the solid KQ,
in the ratio compounded of the
ratios of AE to KO, and of AC to KM (III. Sup. 9), that is, in the
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ratio compounded of the ratios of AE to KO, and of KO to S. And
the ratio of AE to S is also compounded of the same ratios (V. Def.

10) ; therefore the solid AG has to the solid KQ the same ratio

that AE has to S. But AE was proved to be equal to S, therefore

AG is equal to KQ.
Again, if the solids AG and KQ be equal, the base AC is to the

base KM as the altitude KO to the altitude AE. Take S, so that

AC may be to KM as KO to S, and it will be shown, as was done

above, that the solid AG is to the solid KQ as AE to S ; now the

solid AG is, by hypothesis, equal to the solid KQ ; therefore

AE is equal to S ; but, by construction, AC is to KM as KO is to

IS ; therefore AC is to KM as KO to AE. Therefore, &c. Q. E. D.
Cor. In the same manner, it may be demonstrated that equal

prisms have their bases and altitudes reciprocally proportional,

and conversely.

PROP. XI. THEOR.
Similar solid parallelepipeds are to one another in the triplicate

ratio of their homologous sides.

Let AG, KQ be two similar parallelepipeds, of which AB and

KL are two homologous sides ; the ratio of the solid AG to the

solid KQ is triplicate of the ratio of AB to KL.
Because the solids are similar, the parallelograms AF, KP are

similar (III. Sup. Def. 2), as also the parallelograms AH, KR ;

therefore the ratios of AB to KL,
of AE to KO, and of AD to KN
are all equal (VI. Def. 1). But the

ratio of the solid AG to the solid

KQis compounded of the ratios of l>l

AC to KM, and of AE to KO.
Now, the ratio of AC to KM, be- B K
cause they are equiangular parallelograms, is compounded (VI. 23)
of the ratios AB to KL, and of AD to KN. Wherefore the ratio

of AG to KQ is compounded of the three ratios of ABto KL, AD
to KN, and AE to KO ; and these three ratios have already been
proved to be equal ; therefore the ratio that is compounded of

them, viz., the ratio of the solid AG to the solid KQ is triplicate

of any of them (V. Def. 12) ; it is therefore triplicate of the ratio

of AB to KL. Therefore, similar solid parallelepipeds, &c.

Q. E. D.
Cor. 1. If as AB to KL, so KL to m, and as KL to m, so is

m to n, then AB is to n, as the solid AG to the solid KQ. For
the ratio of AB to n is triplicate of ratio of AB to KL (V. Def.

12), and is therefore equal to that of the solid AG to the solid KQ.
Cor. 2. As cubes are similar solids, therefore the cube on AB

is to the cube on KL in the triplicate ratio of AB to KL, that is,

in the same ratio with the solid AG to the solid KQ. Similar
solid parallelepipeds are, therefore, to one another as the cubes
on their homologous sides.

Cor. 3. In the same manner, it is proved that similar prisms
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are to one another in the triplicate ratio, or in the ratio of the

cubes, of their homologous sides.

PROP. XII. THEOR.

If two triangular pyramids, which have equal bases and alti-

tudes, be cut by planes that are parallel to the bases, and at

equal distances from them, the sections are equal to one an-
other.

Let ABCD and EFGH be two pyramids, having equal bases

BDC and FGH, and equal altitudes, viz., tbe perpendiculars AQ
and ES, drawn from A and E upon tbe planes BDC and FGH

:

and let them be cut by planes parallel to BDC and FGH, and at

equal altitudes QR and ST above those planes, and let the sec-

tions be the triangles KLM, NOP ; KLM and NOP are equal to

one another.

Because the plane ABD cuts the parallel planes BDC, KLM,
the common sections BD and KM are parallel (II. Sup. 14). For
the same reason, DC and ML are parallel. Since, therefore, KM
and ML are parallel to BD and DC, each to each, though not in

the same plane with them, the
angle KML is equal to the

angle BDC (II. Sup. 9). In
like manner, the other angles
of these triangles are proved to

be equal ; therefore the tri-

angles are equiangular, and, con-

sequently, similar ; and the same
is true of the triangles NOP,
FGH.
Now, since the straight lines

ARQ, AKB meet the parallel

planes BDC and KML, they are cut by them proportionally (II.

Sup. 16), or QR : RA : : BK • KA ; and AQ : AR : : AB : AK
(V. 18) ; for the same reason, 'ES : ET : : EF : EN ; therefore,

AB : AK : : EF : EN, because AQ is equal to ES, and AR to

ET. Again, because the triangles ABC, AKL are similar,

AB : AK : : BC : KL ; and, for the same reason,

EF : EN : : FG : NO ; therefore,

BC : KL : : FG : NO. And when four straight

lines are proportionals, the similar figures described on them are
also proportionals (VI. 22) ; therefore the triangle BCD is to the
triangle KLM as the triangle FGH to the triangle NOP ; but
the triangles BDC, FGH are equal ; therefore the triangle KLM
is also equal to the triangle NOP (V. 14). Therefore, &c.

Q. E. D.
Cor. 1. Because it has been shown that the triangle KLM is

similar to the base BCD ; therefore any section of a triangular

pyramid parallel to the base is a triangle similar to the base.

And, in the same manner, it is shown that the sections parallel to

the base of a polygonal pyramid are similar to the base.
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Cor. 2. Hence, also, in polygonal pyramids of equal bases and
altitudes, the sections parallel to the bases, and at equal dis-

tancesfrom them, are equal to one another.

PROP. XIII. THEOR.

A series of prisms of the same altitude may be circumscribed

about any pyramid, such that the sum of the prisms shall ex-

ceed the pyramid by a solid less than any given solid.

Let ABCD be a pyramid, and Z* a given solid ; a series of

prisms, having all the same altitude, may be circumscribed about

the pyramid ABCD, so that their sum shall exceed ABCD by a

solid less than Z.

Let Z be equal to a prism standing on the same base with the

pyramid, viz., the triangle BCD, and having for its altitude the

perpendicular drawn from a certain point

E in the line AC upon the plane BCD.
It is evident that CE, multiplied by a cer-

tain number m, will be greater than AC

;

divide CA into as many equal parts as

there are units in m, and let these be CF,
FG, GH, HA, each of which will be less

than CE. Through each of the points F,

G, H let planes be made to pass parallel

to the plane BCD, making, with the sides

of the pyramid, the sections FPQ,
GRS, HTU, which will be all similar to

one another, and to the base BCD (III.

Sup. 12, Cor. 1). From the point B draw,

in the plane of the triangle ABC, the

straight line BK parallel to CF, meeting

FP produced in K. In like manner, from
D draw DL parallel to CF, meeting FQ
in L. Join KL, and it is plain that the solid KBCDLF is a
prism (III. Sup. Def. 4). By the same construction, let the prisms
PM, RO, TV be described. Also, let the straight line IP, which
is in the plane of the triangle ABC, be produced till it meet BC
in h.; and let the line MQ be produced till it meet DC in g. Join
hg ; then hCgQFP is a prism, and is equal to the prism PM (III.

Sup. 8, Cor. 1). In the same manner is described the prism mS
equal to the prism RO, and the prism qU equal to the prism TV.
The sum, therefore, of all the inscribed prisms 7/,Q, mS, and ^U
is equal to the sum of the prisms PM, RO, and TV, that is, to the
sum of all the circumscribed prisms except the prism BL ; where-
fore BL is the excess of the prisms circumscribed about the
pyramid ABCD above the prisms inscribed within it. But the
prism BL is less than the prism which has the triangle BCD for

its base, and for its altitude the perpendicular from E upon the
plane BCD ; and the prism which has BCD for its base, and the

* The solid Z is not represented in the figure of this or the following
Proposition.
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perpendicular from E for its altitude, is, by hypothesis, equal to

the given solid Z : therefore the excess of the circumscribed

above the inscribed prisms is less than the given solid Z. But
the excess of the circumscribed prisms above the inscribed is

greater than their excess above the pyramid ABCD, because

ABCD is greater than the sum of the inscribed prisms. Much
more, therefore, is the excess of the circumscribed prisms above
the pyramid less than the solid Z. A series of prisms of the

same altitude has therefore been circumscribed about the pyra-

mid ABCD, exceeding it by a solid less than the given solid Z.

Q. E. D.

PROP. XIV. THEOR.

Pyramids that have' equal bases and altitudes are equal to

one another.

Let ABCD, EFGH be two pyramids that have equal bases

BCD, FGH, and also equal altitudes, viz., the perpendiculars

drawn from the vertices A and E upon the planes BCD, FGH
;

the pyramid ABCD is equal to the pyramid EFGH.
If they are not equal, let the pyramid EFGH exceed the

pyramid ABCD by the

solid Z. Then, a series

of prisms of the same
altitude may be de-

scribed about the py-
ramid ABCD that

shall exceed it by a
solid less than Z (III.

Sup. 13) ; let these be
the prisms that have
for their bases the tri-

angles BCD, NQL,
ORI, PSM. Divide
EH into the same
number of equal parts into which AD is divided, viz., HT, TU,
UV, VE, and through the points T, U, and V, let the sections

TZW, UHX, V<£^ be made parallel to the base FGH. The
section NQL is equal to the section WZT (III. Sup. 12) ; as also

ORI to XHU, and PSM to Y<£V ; and therefore, also, the prisms
that stand upon the equal sections are equal (III. Sup. 8, Cor. 1),

that is, the prism which stands on the base BCD, and which is

between the planes BCD and NQL, is equal to the prism which
stands on the base FGH, and which is between the planes FGH
and WZT ; and so of the rest, because they have the same alti-

tude : wherefore the sum of all the prisms described about the
pyramid ABCD is equal to the sum of all those described about
the pyramid EFGH. But the excess of the prisms described
about the pyramid ABCD above the pyramid ABCD is less than
Z (III. Sup 13) ; and, therefore, the excess of the prisms described

about the pyramid EFGH above the pyramid ABCD is also less
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than Z. But the excess of the pyramid EFGH above the pyra-

mid ABCD is equal to Z, by hypothesis ; therefore the pyramid
EFGH exceeds the pyramid ABCD, more than the prisms de-

scribed about EFGH exceed the same pyramid ABCD. The
pyramid EFGH is therefore greater than the sum of the prisms

described about it, which is impossible. The pyramids ABCD,
EFGH, therefore, are not unequal, that is, they are equal to one

another. Therefore, pyramids, &c. Q. E. D.

PROP. XV. THEOR.

Every 'prism having a triangular base may be divided into three

pyramids that have triangular bases, and that are equal to

one another.

Let there be a prism, of which the base is the triangle ABC, and
let DEF be the triangle opposite the base. The prism ABCDEF
may be divided into three equal pyramids having triangular bases.

Join AE, EC, CD ; and because ABED is a parallelogram, ot

which AE is the diameter, the triangle ADE is equal (I. 34) to

the triangle ABE ; therefore the pyramid of which the base is the

triangle ADE, and vertex the point C, is equal

(III. Sup. 14) to the pyramid, of which the base

is the triangle ABE, and vertex the point C.

But the pyramid of which the base is the tri-

angle ABE, and vertex the point C ; that is, the

pyramid ABCE is equal to the pyramid DEFC
(III. Sup. 14), for they have equal bases, viz.,

the triangles ABC, DEF, and the same altitude,

viz., the altitude of the prism ABCDEF. There-
fore the three pyramids ADEC, ABEC, DFEC
are equal to one another. But the pyramids
ADEC, ABEC, DFEC make up the whole prism
ABCDEF ; therefore the prism ABCDEF is divided into three
equal pyramids. Wherefore, &c. Q. E. D.

Cor. 1. From this it is manifest, that every pyramid is the

third part ofa prism which has the same base, und the same
altitude with it ; for if the base of the prism be any other figure
than a triangle, it may be divided into prisms having triangular
bases.

Cor. 2. Pyramids of equal altitudes are to one another as
their bases ; because the prisms upon the same bases, and of the
same altitude, are (III. Sup. 8,Cor.l) to one another as their bases.

PROP. XVI. THEOR.

Iffrom any point in the circumference of the base ofa cylinder,
a straight line be drawn perpendicular to theplane of the base,
it will be wholly in the cylindric superficies.

Let ABCD be a cylinder, of which the base is the circle AEB,
DFC the circle opposite to the base, and GH the axis ; from E,
any point in the circumference AEB, let EF be drawn perpendi-
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cular to the plane of the circle AEB ; the straight line EF is in

the superficies of the cylinder.

Let F be the point in which EF meets the plane DFC opposite

to the base
;
join EG and FH ; and let AGHC

be the rectangle (III. Sup. Def. 14) by the re-

volution of which the cylinder ABCD is de-

scribed.

Now, because GH is at right angles to GA,
the straight line which by its revolution de-

scribes the circle AEB, it is at right angles to

all the straight lines in the plane of that circle

which meet it in G, and it is therefore at right

angles to the plane of the circle AEB. But
EF is at right angles to the same plane ; there-

fore EF and GH are parallel (II. Sup. 6), and
in the same plane. And since the plane through GH and EF cuts

the parallel planes AEB, DFC, in the straight lines EG and FH,
EG is parallel to FH (II. Sup. 14). The figure EGHF is there-

fore a parallelogram, and it has the angle EGH a right angle,

therefore it is a rectangle, and is equal to the rectangle AH, be-

cause EG is equal to AG. Therefore, when in the revolution of

the rectangle AH, the straight line AG coincides with EG, the

two rectangles AH and EH will coincide, and the straight line

AC will coincide with the straight line EF. But AC is always
in the superficies of the cylinder, for it describes that superficies

;

therefore EF is also in the superficies of the cylinder. Therefore,

&c. Q. E. D.

PROP. XVII. THEOR.

A cylinder and a parallelepiped having equal bases and alti-

tudes, are equal to one another.

Let ABCD be a cylinder, and EF a parallelepiped having equal

bases, viz., the circle AGB and the parallelogram EH, and having
also equal altitudes ; the cylinder ABCD is equal to the parallele-

piped EF.
If not, let them be unequal ; and, first, let the cylinder be less

than the parallelepiped ^^EF ; and from the paral- ^^*T :^:=:=^

lelepiped EF let there

be cut off a part EQ, by
a plane PQ parallel to

NF, equal to the cylin-

der ABCD. In the circle

AGB inscribe the poly-
gonAGKBLM that shall

differ from the circle by
a space less than the pa-
rallelogram PH (I. Sup.
3, Cor.), and cut off*

from the parallelogram EH, a part OR equal to the polygon

//
V,

PRN
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AGKBLM. The point R will fall between P and N. On the

polygon AGKBLM let an upright prism AGBCD be consti-

tuted of the same altitude with the cylinder, which will therefore

be less than the cylinder, because it is within it (III. Sup. 16) ;

and if through the point R a plane RS parallel to NF be made
to pass, it will cut off the parallelepiped ES equal (III. Sup 8,

Cor. 2) to the prism AGBC, because its base is equal to that of

the prism, and its altitude is the same. But the prism AGBC is

less than the cylinder ABCD, and the cylinder ABCD is equal to

the parallelepiped EQ, by hypothesis ; therefore ES is less than
EQ, and it is also greater, which is impossible. The cylinder

ABCD, therefore, is not less than the parallelepiped EF ; and, in

the same manner, it may be shown not to be greater than EF.
Therefore they are equal. Q, E. D.

PROP. XVIII. THEOR.

If a cone and a cylinder have the same base and the same alti-

tude, the cone is the third part of the cylinder.

Let the cone ABCD, and the cylinder BFKG have the same
base, viz., the circle BCD, and the same altitude, viz., the perpen-
dicular from the point A upon the plane BCD ; the cone ABCD
is the third part of the cylinder BFKG.

If not, let the cone ABCD be the third part of another cylinder

LMNO, having the same alti-

tude with the cylinder BFKG,
but let the bases BCD and
LIM be unequal ; and, first, let

BCD be greater than LIM.
Then, because the circle BCD

is greater than the circle LIM,
a polygon may be inscribed in

BCD that shall differ from it

less than LIM does (I. Sup. 3),

and which, therefore, will be
greater than LIM. Let this be
the polygon BECFD ; and upon BECFD let there be constituted

the pyramid ABECFD, and the prism BCFKHG.
Because the polygon BECFD is greater than the circle LIM,

the prism BCFKHG is greater than the cylinder LMNO, for they
have the same altitude, but the prism has the greater base. But
the pyramid ABECFD is the third part of the prism (III. Sup. 15)
BCFKHG, therefore it is greater than the third part of the cylin-

der LMNO. Now, the cone ABECFD is, by hypothesis, the third

part of the cylinder LMNO ; therefore the pyramid ABECFD
is greater than the cone ABCD, and it is also less, because it is

inscribed in the cone, which is impossible. Therefore the cone
ABCD is not less than the third part of the cylinder BFKG.
And, in the same manner, by circumscribing a polygon about the
circle BCD, it may be shown that the cone ABCD is not greater
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than the third part of the cylinder BFKG ; therefore it is equal

to the third part of that cylinder. Q. E. D.

PROP. XIX. THEOR.

If a hemisphere and a cone have equal bases and altitudes, a
series of cylinders may be inscribed in the hemisphere, and an-
other series may be described about the cone, having all the

same altitudes with one another, and such that their sum shall

differfrom the sum of the hemisphere, and the cone, by a solid

less than any given solid.

Let ADB be a semicircle, of which the centre is C, and let

CD be at right angles to AB ; let DB and DA be squares de-

scribed on DC, draw CE, and let the figure thus constructed re-

volve about DC; then the sector BCD, which is the half of the

semicircle ADB, will describe a hemisphere having C for its centre

(III. Sup. Def. 7), and the triangle CDE will describe a cone,

having its vertex at C, and having for its base the circle (III.

Sup. Def. 11) described by DE, equal to that described by BC,
which is the base of the hemisphere. Let W be any given solid.

A series of cylinders may be inscribed in the hemisphere ADB,
and another described about the cone ECI, so that their sum shall

differ from the sum of the hemisphere and the cone by a solid less

than the solid W.
Upon the base of the hemisphere let a cylinder be constituted

equal to W, and let its altitude be CX. Divide CD into such
a number of equal parts, that each of them shall be less than CX;
let these be CH, HG, GF, and FD. Through the points F, G,
H, draw FN, GO, HP parallel to CB, meeting the circle in the

points K, L, and M ; and the straight line CE in the points Q,
R, and S. From the points K, L, M draw K/J hg, Mh perpendi-
cular to GO, HP, and CB ; and from Q, R, and S, draw Qq, Rr,

Ss perpendicular to the same lines. It is evident, that the figure

being thus constructed, if the whole revolve about CD, the rect-

i r> F
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angles F/, Gg, Hh will describe cylinders (III. Sup. Def. 14)
that will be circumscribed by the hemisphere BDA ; and that the
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rectangles DN, Yq, Gr, Hs will also describe cylinders that will

circumscribe the cone ICE. Now, it may be demonstrated, as

was done of the prisms inscribed in a pyramid (III. Sup. 13),

that the sum of all the cylinders described within the hemisphere,

is exceeded by the hemisphere by a solid less than the cylinder

generated by the rectangle HB, that is, by a solid less than W,
for the cylinder generated by HB is less than W. In the same
manner, it may be demonstrated, that the sum of the cylinders cir-

cumscribing the cone ICE is greater than the cone by a solid less

than the cylinder generated by the rectangle DN, that is, by a
solid less than W. Therefore, since the sum of the cylinders in-

scribed in the hemisphere, together with a solid less than W, is

equal to the hemisphere ; and, since the sum of the cylinders de-

scribed about the cone is equal to the cone together with a solid less

than W ; adding equals to equals, the sum of all these cylinders,

together with a solid less than W, is equal to the sum of the hemi-
sphere and the cone together with a solid less than W. There-
fore, the difference between the whole of the cylinders and the sum
of the hemisphere and the cone, is equal to the difference of two
solids, which are each of them less than W ; but this difference

must also be less than W, therefore the difference between the two
series of cylinders and the sum of the hemisphere and cone is less

than the given solid W. Q. E. D.

PROP. XX.

The same things being supposed as in the last proposition, the

sum of all the cylinders inscribed in the hemisphere, and de-

scribed about the cone, is equal to a cylinder, having the same
base and altitude with the hemisphere.

Let the figure DCB be constructed as before, and supposed to

revolve about CD ; the cylinders inscribed in the hemisphere, that

is, the cylinders described by the revolution of the rectangles H&,
Gg, ¥f, together with those described about the cone, that is, the

cylinders described by the revolution of the rectangles Hs, Gr, Fg,
and DN are equal to the cylinder described by the revolution of

the rectangle DB.
Let L be the point in which GO meets the circle ABD, then

because CGL is a right angle, if CL be joined, the circles de-

scribed with the distances CG and GL are equal to the circle de-

scribed with the distance CL (I. Sup. 5,) or GO ; now, CG is equal

to GR, because CD is equal to DE, and therefore, also, the circles

described with the distances GR and GL are together equal to the

circle described with the distance GO, that is, the circles described

by the revolution of GR and GL about the point G, are together

equal to the circle described by the revolution of GO about the

same point G ; therefore, also, the cylinders that stand upon the

two first of these circles having the common altitudes GH, are

equal to the cylinder which stands on the remaining circle, and
which has the same altitude GH. The cylinders described by the
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revolution of the rectangles Gg and Gr are therefore equal to the

cylinder described by the rectangle GP. And as the same may be
shown of all the rest, therefore the cylinders described by the rect-

angles HA, Gg, F/J and by the rectangles Hs, Gr, F^, DN, are

together equal to the cylinder described by DB, that is, to the

cylinder having the same base and altitude with the hemisphere.

Q. E. D.

PROP. XXI.

Every sphere is two-thirds of the circumscribing cylinder.

Let the figure be constructed as in the two last propositions,

and if the hemisphere described by BDC be not equal to two-thirds

of the cylinder described by BD, let it be greater by the solid W.
Then, as the cone described by CDE is one-third of the cylinder

(III. Sup. 18) described by BD, the cone and the hemisphere to-

gether will exceed the cylinder by W. But that cylinder is equal
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to the sum of all the cylinders described by the rectangles TDi, Gg,

¥f, Hs, Gr, F#, DN (III. Sup. 20), therefore the hemisphere and
the cone added together exceed the sum of all these cylinders by
the given solid W, which is absurd ; for it has been shown (III.

Sup. 19) that the hemisphere and the cone together diifer from the

sum of the cylinders by a solid less than W. The hemisphere is

therefore equal to two-thirds of the cylinder described by the rect-

angle BD ; and therefore the whole sphere is equal to two-thirds

of the cylinder described by twice the rectangle BD, that is, to two-
thirds of the circumscribing cylinder. Q. E. D.



ELEMENTS OF PLANE TRIGONOMETRY."

1. Trigonometry is the application of arithmetic to geometry, or,

more precisely, it is the application of number to express the pro-

perties of angles or of circular arcs, as well as to exhibit the

mutual relations of the sides and angles of triangles to one an-

other. It, therefore, necessarily supposes the elementary opera-

tions of arithmetic to be understood, and it borrows from that

science several of the signs and characters which peculiarly belong
to it. With these operations and characters we shall suppose the

student to be acquainted.

The science of Plane Trigonometry divides itself into three parts,

which will be treated of in separate sections ; the first contains

the properties of one arc or angle ; the second, those of two or
more arcs or angles ; and the third, those of triangles. The
fourth section will exhibit the rules of trigonometrical calcula-

tion derived from the preceding ; and the fifth will apply those

rules.

SECTION I.

PROPERTIES OF ONE ARC OR ANGLE.

An angle is defined in trigonometry to be the opening between
two straight lines which meet one another. This definition at

once indicates that the arc described about their point of inter-

section as a centre increases together with the angle; and the

following propositions will show that the numerical value of the

former correctly indicates the magnitude of the latter.

2. PROP. I.

An angle at the centre ofa circle is to four riglit angles as the

arc on which it stands is to the whole circumference.

Let ABC be an angle at the centre of the circle ACF, standing

* It may be remarked, that sections III. and IV. contain all the rules ab-
solutely necessary for the solution of triangles ; those sections, together with
the definitions, are sometimes all that are studied ; but this is by no means
to be recommended.



168 PLANE TRIGONOMETRY.

on the circumference AC. Draw BD at right angles to AB.
Then, because ABC, ABD are two angles

at the centre of the circle ACF,
angle ABC : angle ABD : : arc AC : arc AD
(VI. 33);
therefore, also, angle ABC : 4ABD : : arc Eh

AC : 4AD (V. 4). But 4AD is the whole

circumference ACF ; therefore

angle ABC : 4 right angles : : arc AC :

whole circumference ACF. Q. E. D.

3. PROP. II.

Equal angles at the centres ofdifferent circles, stand on arcs

which have the same ratio to their circumferences.

Let GHK be another circle concentric with ACF ; then

arc AC : whole circumf. ACF : : angle ABC : four right angles

(Prop. 1) ; and arc GET : whole circumference GHK : : angle

GBH : four right angles; therefore (V. 11) arc AC : whole cir-

cumference ACF : : arc GH : whole circumference GHK. Q. E. D.
Hence the arcs which subtend the same angle are the same part

of the whole circumference, whatever be the radii with which they

are described; and, consequently, the arc is a proper measure of

the angle.
4. DEFINITIONS.

I. If the circumference of a circle be divided into 360 equal parts,

each of these parts is called a degree; and if a degree be divided

into 60 equal parts, each of these is called a minute ; and if a
minute be divided into 60 equal parts, each of these is called a
second; and so on. And the number of degrees, minutes, &c,
which an arc contains, is the measure of the angle subtended

by it at the centre of the circle.

II. If two angles together make up a right angle, the one is called

the complement of the other.

III. If two angles together make up two right angles, the one is

called the supplement of the other.

IV. A straight line drawn through one extremity of an arc at

right angles to the diameter which passes through the other

extremity, is called the sine of the arc, or of the angle which is

measured by the arc.

V. The portion of the diameter intercepted between the centre of
the circle and the foot of the sine is called the cosine of the

arc or of the angle.

VI. A straight line touching the circle at one extremity of the

arc, and extending to the diameter which passes through the

other extremity, is called the tangent of the arc or of the angle.

VII. The straight line between the centre and the extremity of
the tangent is called the secant of the arc or of the angle.

VIII. The segment of the diameter passing through one extre-
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mity of an arc, which lies between the sine and that extremity,

is called the versed sine of the arc or of the angle.

IX. A straight line touching the circle at the distance of a qua-

drant from one extremity of the arc, and extending to the dia-

meter which passes through the other extremity, is called the

cotangent of the arc or of the angle.

X. The straight line between the centre and the extremity of the

cotangent is called the cosecant of the arc or of the angle.

In the figure, ACF is a circle described

about the centre B ; AE, DC, BH are

at right angles to AB; and KH at right

angles to BH ; then, to radius AB, CD
is the sine of the arc AC, or of the angle

ABC ; BD is its cosine ; AE its tangent

;

BE its secant ; AD its versed sine ; HK
its cotangent ; BK its cosecant.

5. Cor. 1. The sine of a quadrant (a quarter of the circum-

ference), or of a right angle, is equal to the radius ; and that of
zero, as also of the semi-circumference, or of two right angles, is

zero. The cosine of zero is equal to the radius, and that ofa
quadrant or of a right angle is zero.

6. Cor. 2. The chord of an arc is equal to twice the sine of
half the arc. For, if CD be produced to meet the circumference,

the chord will be bisected in D (III. 3) ; and the angle ABC will

be half the angle which the chord subtends at the centre (I. 8)

;

and, consequently, the arc AC will be half the arc cut off by the

chord (III. 26).

7. Cor. 3. Hence (III. 29) the sines of equal arcs are equal to

one another.

8. The word function is sometimes employed to express any of

the trigonometrical lines ; thus, the function of an arc or angle

is its sine, or cosine, or tangent, &c, as the case may be. It is

evident that when the angle is less than a right angle, the co-

function of the angle is the function of its complement.

9. PROP. III.

To express the relations which exist between the sine and cosine

ofan angle, and those of its complement, supplement, <$cc.

Let A denote the angle BAC, expressed in

degrees, of which the complement is CAD.
Produce BA, CA, DA to E, F, G; make
AF=AC, and draw CB, CD, FE, FG at

right angles to EB, DG respectively. Then
the triangles CAB, FAE are equal in every
respect (I. 26), and CB=FE, AB=AE. Si-

milarly, CD=FG and AD=AG. And be-

cause DB, EG are parallelograms (I. 28), AB
=DC, &c. (I. 34). Hence, to radius AC,

") c

is /_

T Cr
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cos (90-A)=cos CAD=AD=CB=sin CAB=sin A;
cos (90+A)=cos CAG=AD=CB=sin A*

;

sin (90+A)=CD=AB=cos A

;

sin (180-A)=sin CAE=CB=sin A ;

cos (180-A)=AB*=cos A*

;

sin (180+A)=sin BAF, *.e.=sin (BAD-fDAF)=FE=CB*=sin
A*;
cos (180+A)=AE=AB*=cos A*

;

whence it appears that if an angle be added to or taken from
two right angles, the function (sine or cosine) of the sum or

difference is the same (abstracting from sign) as that of the

angle itself; but if an angle be added to, or taken from one
right angle, the function of the sum or difference is the comple-
mentary function of the angle itself In the same way it may
be proved that if an angle be added to or taken from any even

number of right angles, the function (sine or cosine) of the sum
or difference is the same as that of the angle itself; but if an
angle be added to or taken from any odd number of right angles,

the function of the sum or difference is the complementary func-

tion of the angle itself.

10. PROP. IV.

To express the relations which exist between the differentfunctions

of the same angle.

Let the angle ABC be denoted by A. Retaining the figure

and construction of Art. 4, we obtain,by

similar triangles,

AE : AB : : CD : BD (VI. 4),

therefore (Art. 4), tan A : R : : sin A :

cos A
; (1)

BE : BA : : BC : BD,
therefore, sec A : R : : R : cos A

; (2)
HK : BH : : CL : BL

: : BD : CD,
therefore, cot A : R : : cos A : sin A ; (3)

HK : BH : : AB : AE,
therefore, cot A : R : : R : tan A ; (4)

BK : BH : : BC : CD,
therefore, cosec A : R : : R : sin A

; (5).

By (I. 47) DC2+BD2=BC2
; therefore, sin 2A+cos 2A=R2

(6)

;

BA2+AE 2=BE2
;
therefore, R 2

-ftan
2A=sec2A (7); BH2+HK,J=

BK2
; therefore, R2+cot 2A=cosec 2A (8).

11. Cor. By means of these eight relations we can determine
the properties of all the trigonometrical functions, when we know
those of the sine and cosine. For example, if B=90+A ; by (1)
tan B : R : : sin B : cos B ; but sin B and cos B are (Art. 9) re-

spectively cos A* and sin A ; therefore, tan B : R : : cos A* :

# Abstracting from its sign, which is —. See Art. 18.
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sin A ; but cot A : R : : cos A : sin A (by 3) ; therefore, tan

B*=cot A. Again, if C=180-A, tan C : R : : sin C : cos C by
(1) : : sin A : cos A* (Art. 9) ; therefore, tan C*=tan A.

The same may be shown of all the other trigonometrical func-

tions ; hence, the conclusion of Art. 9 is not confined to the sine

and cosine, but applies to them all.

Many writers on trigonometry define only the sine and cosine

from the construction, regarding the other trigonometrical func-

tions simply as lines which possess the properties exhibited by
the proportions given in Art. 10. This method has some advan-

tages.

12. PROP. V.

The trigonometrical functions of the same angle to different

radii are to one another respectively as the radii.

Let BC, BN be the radii of the cir-

cles AC, MN ; then CD, NO are the

sines of the angle ABC to these radii

respectively ; BD, BO the cosines

;

AE, MP the tangents; BE, BP the

secants ; AD, MO the versed sines.

By similar triangles (VI. 4) ;

CD
BD
AK
BE

Also, BC
Therefore, by conversion, BC

And, alternately, BC

NO
BO
MP
BP
BD
AD

B

: BC : BN,
: BC : BN,
:BA: BM,
: BA : BM,
: BN : BO,
: BN : MO,

BN : : AD : MO,
which are the propositions to be proved. And therefore, if tables

be constructed exhibiting, in numbers, the sines, tangents, secants,

and versed sines of certain angles to a given radius, they will

exhibit the ratios of these functions of the same angles to any
radius whatever.

In such tables, which are called trigonometrical tables, the ra-

dius is generally supposed to be either 1, or the tenth power of

10. In arithmetical computations it is more convenient to sup-

pose it to bel, because, when it appears as a multiplier, it may
then be omitted altogether. We shall consequently adopt this

value of the radius in all our arithmetical calculations.

13. PROP. VI.

To find the arithmetical relations between the different functions

of the same angle.

The arithmetical expression for a rectangle is the product of

the numbers which represent the containing lines (VI. 23). Now,

* Abstracting from the sign, which is negative, Art 18.
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when four straight lines are proportionals, the rectangle con-

tained by the extremes is equal to the rectangle contained by
the means (VI. 16) ; consequently, the arithmetical product of the

extremes is equal to that of the means, or, which is the same
thing, the quotient of the first antecedent by its consequent is

equal to that of the second antecedent by its consequent.

Retaining, therefore, the hypothesis that the radius is 1, we
obtain from the proportions given in Art. 10,

tan A= S-^ (1) ; sec A= -J~r(2) ;
cos A x ' cos A x '

cot A=^4 P) ; cot A=—^ (4) ;sinA w ' tan A v J

cosec A=-—-r (5) ; sin 2A+cos 2A=1 (6) ;

1+tan 2A=sec 2A (7) ; 1+cot 2A=cosec 2A (8).

14. PROP. VII.

To exhibit the sine and cosine arithmetically.

By similar triangles (Fig. Prop. V.), CD : CB : : NO : BN

;

Therefore (arithmetically) ^ = ^^

But sin A = CD = ^, since CB = 1

;

m , „ . NO perpendicular
1 nereiore Bin A = ,-r^y = f—*— :

BN hypotenuse

a . ., , . BO base
Similarly cos A = t^ = -. •

J BN hypotenuse

^
These expressions are employed by many writers as the defini-

tions of the sine and cosine ; and the circle is altogether dispensed
with.

15. Example 1.— To find the arithmetical values of the sine,

cosine, and tangent o/45°.

Let ABC be an isosceles right-angled triangle,

BC=1. Then BCA=45°, and sin BCA=AB.
Now AB2+AC 2=BC2

(I. 47) =1 ; or 2AB2=1;

therefore, sin 45°=AB=—^.

Similarly, cos 45° = -^ ; and, therefore, c

sin 45° ,
tan 45°= r^,=l.

cos 45°
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16. Example 2.

—

To find the arithmetical values of the sine,

cosine, and tangent of 60° and 30.°

Let ABC be an equilateral triangle ; AB=1. Draw CD per-

pendicular to the base AB; then it bisects AB
(I. 26). Hence cos 60°=cos ABC=BD=£BA=£,
and BD*+CD 2=CB2=1 (I. 47) ; which gives 1+

CD 2 = 1, and CD 2 = £, or CD=^ ; therefore

sin 60°=CD=
V3

:

2 ;

also tan 60°
sin 60°

"cos 60°

Now, sin 30°=cos 60°=%
; cos 30'

1

=V3.

sin 60°= -£- ; and, there-

fore, tan 30°=
V3.

17. Example 3.

—

To find the sine of 18°, or cosine of 72°.

The triangle which is constructed in Prop. 10, Book IV. is

such that B=D=2A ; and, consequently, all the

angles together are equal to 5A ; therefore,

5A=180° (I. 32); or A=36°. Let AB=1

;

then, by construction, AC2=AB.BC ; whence
AC2 = BC, and AC2 + AC=BC+AC=AB=1.

Vo—

1

Now —s— when squared and added to itself

V5—

1

gives unity; therefore, AC=
'

; and sin 18°

or cos 72°=J chord 36° (Art. 6) =JBD=JAC=^^.

t 18* PROP. VIII.

To ascertain the changes of sign of the trigonometrical functions.

For the purpose of generalization, that is, of rendering expres-
sions which have been obtained from one particular figure appli-

cable to every case which the enunciation is capable of including,

it is necessary that some of the trigonometrical functions should,

for certain values of the angle, be negative in sign. To ascertain

when this will happen, relative to the sine and the cosine, we
must examine how the values of these functions vary as the angle

varies. We perceive, then, that as the angle increases from to

90°, the sine also increases ; and as the angle increases from 90°

to 180, the sine diminishes. But, in every case, the line which
represents the sine is drawn in the same direction from the re-

volving radius to the fixed one. When the angle is greater than
180°, it is not so ; this line is drawn in the opposite direction, and
must, therefore, be negative in sign.

* The student should omit all articles marked f at the first readiDg.
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Again, the cosine diminishes as the angle increases from 0° to

90° in such a manner that cos 0°=1, and cos 90°=0. As the angle

increases from 90° to 180°, the cosine is drawn in the opposite di-

rection, and must be negative in sign. It may be remarked that,

when the figure is drawn as we have drawn it (Art. 4), the circle

is divided into two semicircles by a horizontal line, in the upper

ofwhich the sine is positive, and in the lower negative; but it is

divided into two semicircles by a vertical line, in the further of
which the cosine is positive, and in the nearer, negative.

Having thus determined the sign of the sine and the cosine, the

relations exhibited in Art. 10, enable us to determine the signs of

the other trigonometrical functions. For, since tan A : R : : sin A :

cos A, the tangent will be positive when the sine and the cosine

have the same sign, but negative when they have contrary signs.

The same is true of the cotangent. Also, since sec A : JR, : : R

:

cos A, the secant will have the same sign as the cosine. In like

manner it may be shown that the cosecant will have the same sign

as the sine. Lastly, the versed sine is manifestly always positive.

These signs are exhibited in the following table :

—

Arc terminating Sine and Cosine and Tangent and
within the Cosecant. Secant. Cotangent.

First Quadrant. + + +
Second Quad. + — —
Third Quad. — — +
Fourth Quad. — + —

t 19. Cor. It has been shown in Art. 9, that (abstracting from
sign) cos (90+A) =sin A &c. We are now enabled to write the

values of these expressions with their proper sign ; thus, cos

(90+A) = - sin A, sin (90+A) = cos A ; sin (180-A) = sin A

;

cos (180-A) = - cos A ; sin (180+A) = -sin A ; cos (180+A)=
—cos A.



SECTION II.

PROPERTIES OF TWO OR MORE ANGLES.

20. PROP. I.

Given the sines and cosines of two angles, to find the sines and
cosines of their sum and difference.

Let ABC=A, CBD=B, be the two an-

gles, of which A is the greater.

Then, in Fig. 1, ABD is the sum of A
and B ; and in Fig. 2, ABD is their dif-

ference. With radius BA=R, describe

the circle ACD. Draw DE, DF at right

angles to BA, BC ; FG, FH at right

angles to BA, DE, and CK at right an-

gles to BA.
Then (Fig. 1) rectangle R sin (A+B)

= BC.DE = BC.EH + BC.HD (II. 1) =
BC.GF+BCHD
And by similar triangles, BC : KC : : BF

:

GF, therefore (VI. 16) BC.GF=KC.BF.
Moreover, the angles ABC, HDF are

equal, being both the complements of the

angle between BC and ED ; hence the

triangles BGF, DHF are similar ; there-

fore BC : BK : : FD : HD ; and, con-

sequently (VI. 16), BC.HD=BK.FD;
whence

R sin (A+B)=KC.BF+BK.FD
=sin A cos B-fcos A sin B.

Again (Fig. 2), R sin (A-B)=BC.DE=BC.EH-BC.HD
=BC.GF-BC.HD
=KC.BF-BK.FD
=sin A cos B—cos A sin B.

In like manner (Fig. 1), R cos (A+B)=BC.BE
=BC.BG-BC.EG=BC.BG-BC.HF.
But by similar triangles, BG : BF : : BK : BC ; therefore BC.BG

=BK.BF ; also, HF : FD : : CK : BC ; therefore BC.HF=CK.FD
;

consequently, R cos (A+B)=BK.BF-CK.FD
=cos A cos B—sin A sin B.

Also (Fig. 2), R cos (A-B)=BC.BE=BC.BG-fBC.EG
=BC.BG+BC.HF
=BK.BF+CK.FD
=cos A cos B-f-sin A sin B.

EA
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21. The preceding proposition may be proved more simply by
adopting the definitions given in Art. 14 ; for then the circle is

altogether dispensed with, and all that is required is to reduce the
two fractions, whose sum or difference makes up the sine or cosine,
into compound fractions, by introducing in each, as a denominator,
the hypotenuse of the triangle to which the numerator belongs
Thus,

sin (A+B)=gg = EH+HD = GF+HD
1 ^ ; BD BD BD

= GF HD
BD + BD

= GFBF HDDF
BFBD + DF*BD

— sin A cos B-j-cos A sin B,
and similarly of the others.

22. Cor. Given the sine and cosine of A, to find those of2A.

Let B=A in the last proposition
;

then, sin 2A=sin A cos A-fcos A sin A,
=2 sin A cos A (1)

;

cos 2A=cos A cos A—sin A sin A,
=cos 2A-sin 2A (2) ;

or =l-sin 2A-sin 2A (Art. 13),
=1-2 sin 2A (3) ;

or =2 cos 2A-(cos 2A-fsin 2A),
=2 cos 2A-1 (4) (Art. 13).

23. LEMMA.—If there fo two unequal magnitudes, half their

difference added to half their sum is equal to the greater ; and
half their difference taken from half their sum is equal to the
less.

Let AB and BC be two unequal magnitudes, of which AB is the
greater ; suppose AC bisected in D, and AE equal to BC. It is

manifest that AC is the sum, and
EB the difference of the two mag- A E D B C
nitudes. And because AC is bi-

sected in D, AD is equal to DC ; but AE is also equal to BC, there-

fore DE is equal to DB, and DE or DB is half the difference of
the magnitudes. But AB is equal to BD and DA, that is to half
the difference added to half the sum ; and BC is equal to the excess

of DC, half the sum, above BD, half the difference. Q. E. D.
Cor. 1. Hence, if from half the sum of two magnitudes, the less

be taken, there will remain a magnitude equal to half their dif-

ference.

Cor. 2. Hence, also, if from the greater of two magnitudes
half the sum be taken, there will remain a magnitude equal to

half the difference.
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t 24. By adding and subtracting the expressions found in Art
20, we have

R sin (A+B)+R sin (A-B)=2 sin A cos B

;

R sin (A+B)-R sin (A-B)=2 cos A sin B;
R cos (A+B)+R cos (A-B)=2 cos A cos B;
R cos (A-B)-R cos (A+B)=2 sin A sin B.

If we write S in place of the sum A+B, D in place of the dif-

ference A—B, S and D will be two angles of which S is the greater

;

and A=i (S+D), B=J (S-D) (Lemma) ; so that the above ex-
pressions become

R (sin S+sin D)=2 sin J (S+D) cos J (S-D)

;

R (sin S-sin D)=2 cos | (S+D) sin | (S-D)

;

R (cos S+cos D)=2 cos J (S+D) cos | (S-D)

;

R (cos D-cos S)=2 sin £ (S+D) sin J (S-D)

;

which are of considerable utility in effecting reductions in the
higher branches of the mathematics.

t 25. Cor. Sin S+sin D : sin S-sin D : : sin i (S+D) cos £
(S-D) : cos i (S+D) sin J (S-D).

But sin i (S+D) : cos J (S+D) : : tan J (S+D) : R,
cos £ (S-D) : sin | (S-D) : : R : tan J (S-D),

therefore (VI. L), sin } (S+D) cos J (S-D) : cos £ (S+D) sin

J (S-D) : : tan £ (S+D) : tan J (S-D) ; consequently,

sin S+sin D : sin S-sin D : : tan J (S+D) : tan ( (S-D). Similarly
cos D-cos S : cos D+cos S : : tan J (S+D) . tan \ (S-D) : R2

.

t 26. PROP. 2. Given the tangents ofA and B, to find those of
A-\-B and A—B, when the radius is unity.

By Art. 13, tan (A+B) = —1^±^,J
*

v
' cos (A+B)'

__ sin A cos B+cos A sin B •. .

91
v

cos A cos B—sin A sin B " ''

sin A cos B cos A sin B
_ cos A cos B ""cos A cos B

cos A cos B sin A sin B
cos A cos B cos A cos B

by dividing both the numerator of this fraction by cos A cos B.

Now r = tan A (Art. 13) ; hence
cos A

* / a . -d\
tan A + tan B

tan(A+B)^
1_tanAtanB

>

, , ., t / v -o\ tan A — tan B
In like manner, tan (A—B) = -— n. s

"

v ' 1+tan A tan B

^- r* m « a tan A+tan A
t 27. Cor. Tan 2A = =-~—±— r1—tan A tan A

_ 2 tan A
""l-tan^A"
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28. Example 1. To find the sine and cosine of 75°. Since

75°=45°-f30°, sin 75°=sin 45° cos 30°+cos 45° sin 30° (Art.

21).

But sin 45° = i, cos 45° =
-J-

; sin 30° = L, cos 30 =^

.

therefore sin75o = ^_:^ +^.^
_ V3 + 1

2V2
Again, cos 75° = cos 45° cos 30°- sin 45° sin 30°

\/2* 2 */2* 2

_ V3-1
2V2

29. Cob. Sin 15° = cos 75°=~=^,

cos 15°= sin 75° = ^
3+1 = .96592582627.

30. Ex. 2. To find the cosines of 7J°, 3|°, &c.

Since cos 2A = 2 cos 2A-1, cos 2A = 1 + cos2A
'

2

/l 4- cos 15°
therefore cos 7J°= \/ ~ = ^91445 nearly.

Socos3f° = a/
1 + C

^

S 7i
°

= .997859 nearly.

31. PROP. III.

To find approximately the ratio of the circumference of a circle

to its diameter.

Let polygons of 48 equal sides he inscribed in and described

ahout the circle ; and let the radius of the circle be unity. Then
the perimeter of the inscribed polygon is 48 chord 7£°, and, con-

sequently (Art. 6), the semi-perimeter is 48 sin 3J°. In like

manner, the semi-perimeter of the polygon described about the

circle is 48 tan. 3f°. But the semi-circumference of the circle is

greater than one of these, and less than the other (I. Sup. Ax. 1).

Now 48 sin 31° = 48 VI - cos 2
3J° (Art. 13 (6) ) =

V2304 - (48 x .997859) 2 (Ex. 2) = 3.14 nearly: and tan 3|°
3 30sin 3|°=
^Iq = 3.14.... ; hence we conclude that 3.14 is a very close

cos O^"

approximation to the semi-circumference of a circle whose radius
is unity. Also, it has been proved (Art. 12) that, in circles of
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different radii, the sides of an inscribed or circumscribed polygon
of a given number of sides are as the radii ; hence the semi-cir-

cumference of a circle whose radius is unity is the ratio of the

semi-circumference to the radius, whatever the radius may be ; or,

which is the same thing, 3.14 is a near approximation to the ratio

of the circumference of a circle to its diameter. By carrying the

process still farther, we obtain 3.1416 ; an approximation suffi-

ciently close for practical purposes.

32. PROP. IV.

Construction of Trigonometrical Tables.

The processes which we have given serve for the determination

of the arithmetical values of the trigonometrical functions of a
large number of arcs. For, if we know the value of one such
function, we can, by constantly halving it, determine those of
others. In this way, the cosine of 1°, 52', 30", and its successive

halves may be determined. Thus, after twelve bisections of the

arc of 60°, the cosine of 52" 44'", 3"", 45""' is found ; and thence

also the sine of the same arc. But it is manifest that the sines of
very small arcs are to one another nearly as the arcs themselves.

For it has been shown (I. Sup. 3) that the number of the sides of
an equilateral polygon inscribed in a circle may be so great, that

the perimeter of the polygon and the circumference of the circle

may differ by a line less than any given line, or, which is the

same thing, may be nearly to one another in the ratio of equality.

Therefore, their like parts will also be nearly in the ratio of

equality, so that the side of the polygon will be to the arc which
it subtends nearly in the ratio of equality ; and, therefore, half

the side of the polygon to half the arc subtended by it, that is to

say, the sine of any very small arc will be to the arc itself nearly

in the ratio of equality. Hence, we shall have sin 1' : sin 52",

44'", 3"", 45'""
: : 256 : 225, from which the sine of 1' becomes

known. It is found to be = .000,2908882. The sine of 1' being
found, the sines of 2', 3', or of any number of minutes, are found
by Art. 21 ; and their cosines by Art. 13 (6) ; thence their tangents,

by (1), their secants by (2), their cotangents by (3) or (4), and
their cosecants by (5) of the same article. Moreover, as we know
by other methods the sines and cosines of certain arcs, we may
either use these as starting-points from which to determine the

values of others, or may proceed in a series of calculations from
other commencements until we arrive at these, in which their

values, independently obtained, furnish us with the means of
verifying the accuracy of our operations.
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SECTION III.

PROPERTIES OF TRIANGLES.

33. PROP. I.

In a right-angled plane triangle, as the hypotenuse to either of
the sides, so is the radius to the sine of the angle opposite to

that side; and as either of the sides is to the other side, so is

the radius to the tangent of the angle opposite to the latter.

Let ABC be a right-angled plane triangle, of which BC is the

hypotenuse. From the centre C, with any radius CD, describe

the arc DE ; draw DF at right angles to CE, and from E draw
EG touching the circle in E, and meeting CB in G ; DF is the

sine, and EG the tangent of the arc DE, or of the angle C.

The two triangles DFC, BAC are equiangular, because the

angles DFC, BAC are right angles, and the angle at C is common.
Therefore, CB : BA : : CD : DF ; but

CD is the radius, and DF the sine of
the angle C (Def. 4) ; therefore CB :

BA : : R : sin C.

Also, because EG touches the circle

in E, CEG is a right angle, and there-

fore equal to the angle BAC ; and
since the angle at C is common to the

triangles CBA, CGE, these triangles C

are equiangular, wherefore, CA : AB : : CE : EG; but CE is the
radius, and EG the tangent of the angle C ; therefore, CA : AB : :

R : tan C.

34. Cor. 1. As the radius to the secant of the angle C, so is

the side adjacent to that angle to the hypotenuse. For CG is

the secant of the angle C (Def. 7), and the triangles CGE, CBA
being equiangular, CA : CB : : CE : CG, that is, CA : CB : : R :

sec C.

35. Cor. 2. As either side is to the other, so is radius to the

cotangent of the angle opposite to the former. For B is the com-
plement of C ; and, therefore, tan C=cot B.

36. SCHOLIUM.

The proposition just demonstrated is most easily remembered,
by stating it thus :

—

Ifin a right-angled triangle the hypotenuse
be made the radius

9
the sides become the sines of the opposite
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angles ; and if one of the sidesbe made the radius, the other side
becomes the tangent, and the hypotenuse the secant of the opposite
angle,

37. PROP. II.

The sides of a plane triangle are to one another as the sines of
the opposite angles.

From A any angle in the triangle ABC, let AD be drawn per-
pendicular to BC. And because the triangle ABD is right angled
at D, AB : AD : : R : sin B ; and, for

the same reason, AC : AD : : R : sin C,

and, inversely, AD : AC : : sin C : R
;

therefore, ex cequo inversely, AB : AC
: : sin C : sin B. In the same manner,
it may be demonstrated that AB : BC : :

sin C : sin A. Therefore, &c. Q. E. D.
Cor. If A be a right angle, sin A=R (Art. 5) ; therefore, CB :

BA : : R : sin C
;
which was proved in Prop. I.

38. PROP. III.

In any triangle, twice the rectangle contained by any two sides

is to the difference between -the sum of the squares of those

sides and the square of the base, as the radius to the cosine of
the angle included by the tivo sides.

Let ABC be any triangle, 2AB.BC is to the difference between
AB2+BC2 and AC2 as radius to cos B. A
From A draw AD perpendicular to BC,

and (II. 12 and 13) the difference between
the sum of the squares of AB and BC and
the square of AC is equal to 2BC.BD.
But BC.BA : BC.BD : : BA : BD : : R

:

cos B ; therefore, also, 2BC.BA : 2BC.BD
: : R : cos B. Now 2BC.BD is the difference between
BC2 and AC2

; therefore, twice
the rectangle AB.BC is to the
difference between AB2+BC2

and AC2
, as radius to the co-

sine of B. Wherefore, &c.
Q. E. D.

39. Cor. 1. If B be an acute
angle, and the radius=l, 2AB.
BC cos B=AB2+BC2-AC2 (VI.

16.)

t But if B be an obtuse angle, BD is no longer to BA as R to
cos B, but as R to cos (180-B), which (Art. 19) is the same
thing in value but different in sign. Also, in this case, the square
of AC is greater than the sum of the squares of AB,BC. Hence
both sides of the above equality are negative in sign. But as the
negatives of equal things are equal, the same expression will re-

AB2+
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present the relation between the sides and angle of the triangle

also in this case.

JA n Q ^ AB2+BC2-AC2

40. Co*. 2, cos B= ^-^
41. PROP. IV.

If a perpendicular be drawn from any angle of a triangle to the

opposite side or base, the sum of the segments of the base is to

the sum of the other two sides of the triangle as the difference

of those sides to the difference of the segments of the base.

For (VI. K) the rectangle under the sum and difference of the

segments of the base is equal to the rectangle under the sum and
difference of the sides, and, therefore (VI. 16), the sum of the

segments of the base is to the sum of the sides as the difference of

the sides to the difference of the segments of the base. Q. E. D.

42. PROP. V.

The sum of any two sides of a triangle is to their difference as

the tangent of half the sum of the angles opposite to those sides

to the tangent of half their difference.

Let ABC be a triangle having the side AB greater than the

side AC. With A as centre, and with radius AC describe the

semicircle ECD cutting AB in E and BA produced in D. Join

EC, and draw EF parallel

to BC. Then DAC =
C+B(L32); but DEC is / Xc
thehalfofDAC(IIL 20); / f
therefore DEC is half the

sum of C and B. Take _
away DEF, which is equal D
to B, and the remainder CEF will be equal to half the difference
of C and B (Art. 23). But (VI. 2) DB : BE : : DC : CF ; and
DB is the sum of AB and AC ; BE their difference ; and because
DCE is a right angle (III. 31), DC and CF are the tangents of
the angles CED, CEF to the radius CE ; therefore, AB+AC :

AB-AC : : tan CED : tan CEF to radius CE ; and, therefore
(Art. 12), to any radius whatever. Consequently, AB-j-AC :

AB-AC : : tan J (C+B) : tan J (C-B). Therefore, &c. Q. E. D.

t 43. PROP. VI.

Four times the rectangle contained by any two sides of a tri-

angle is to the rectangle contained by two straight lines, of
which one is the base or third side of the triangle increased by
the difference of the two sides, and the other the base dimi-
nished by the same difference, as the square of the radius to

the square of the sine of half the angle included between the
two sides of the triangle.

Let ABC be any triangle, of which BC is the base, and AB the
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greater of the two sides. Draw AD bisecting the angle A, and
draw CE, BD perpendicular on AD

;

4AB.AC : (BC+(BA-AC)} {BC-(BA
-AC)} : : R2

: sin2
J A. Produce CE,

and draw BH at right angles to it, and
let CE cut BA in F. Then BHED is

a parallelogram (I. 28). And because
in the triangles AEC, AEF, the two
angles AEC, EAC are equal respectively

to the two AEF, EAF, and the side AE common, the triangles

are equal in every respect (I. 26) ; and have AF=AC, and EF=
EC ; consequently, BF=BA—AC. Now, since FC is bisected in

E, and BH is drawn perpendicular to it from the opposite angle
(BC+BF) (BC-BF)=2FC.EH (VI. K, Cor. 1) ; and 2FC=4CE,
and EH=BD ; therefore,

{BC-f(BA-AC)}{BC-(BA-AC)}=4BD.CE.
But AB : BD : : R : sin J A (Prop. I),

therefore, 2AB : 2BD : : R : sin i A (V. 15),

similarly, 2AC : 2CE : : R : sin J A,
therefore (VI. L), 4AB.AC : 4BD.CE : : R2

: sin2 £ A, and, con-
sequently (V. 7),

4AB.AC : {BC+(BA-AC)}{BC-(BA-AQ} : : R2
: sin2 i A.

Therefore, &c. Q. E. D.

t 44. Cor. Hence, 2V AB.AC : V {BC + (BA - AQ)}

V{BC-(BA-AC)} : : R : sin J A.

f 45. PROP. VII.

Four times the rectangle contained by any two sides of a tri-

angle is to the rectangle contained by two straight lines, of
which the one is the sum of those sides increased by the base of
the triangle, and the other the sum of the same sides dimi-
nished by the base, as the square of the radius to the square of
the cosine of half the angle included between the two sides of
the triangle.

Let ABC be the triangle, of which BC is

the base, and AB the greater of the two
sides, 4AB.AC : (AB+AC+BC) (AB +
AC-BC) : : R2

: cos 2£ A. Bisect the
angle BAC by the straight line AD, and
through C draw CF parallel to AD, meet-
ing BA produced in F. From A, B, and
C draw perpendiculars AG, BDH, CE on
CF. AGHD, AGCE are parallelograms
(I. 28). And because AD is parallel to FH, the angle BAD is

equal to the angle BFH, and CAD to ACF (I. 29), therefore
ACF=AFC, and AF=AC (I. 6) ; and BF=BA+AC : also the
triangles ACG, AFG are equal in every respect (I. 26), therefore
CG=GF. And because in the triangle BCF, the base CF is bi-
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sected in G, and BH is drawn perpendicular to it from the oppo-
site angle (FB+BC) (FB-BC)=2GH.FC (VI. K, Cor. 1) ; but
GH=AD (I. 34), and FC=2CG=2AE ; therefore (BA+AC+BC)
(BA+AC-BC)=4AD.AE. Now AB : AD : : R : sin ABD
(Prop. I.) : : R : cos BAD ; therefore 2AB : 2 AD : : R : cos £ A;
similarly, 2AC : 2AE : : R : cos J A ; therefore (VI. L) 4AB.AC :

4AD.AE : : R2
: cos2 £ A, and, consequently (V. 7),

4AB.BC : {BA + AC + BC} {BA + AC - BC} : : R2
: cos 2JA.

Therefore, &c. Q. E. D.

t 46. Cob. 1. Hence 2VAB.AC : V(BA+AC+BC) (BA+AC-
BC) : : R : cos JA.

t 47. Con. 2. By Cor. 1, invers

V(BA+AC+BC) (BA+AC-BC) : 2VAB.AC : : cos JA : R, and
by Cor. Prop. 6,

2VAB.AC : V{BC+AB-AC} {BC-(AB-AC)} : : R : sin J A ;

therefore, ex aequo,

V(BA+AC+BC) (BA+AC-BC) : V{BC+AB-AC} {BC-(AB-

AC)}
: : cos JA : sin JA
: :R: tan^A (Art. 10).

If a, b, c be written for BC, AC, and AB respectively, and 2p
= a+ 6+c; thenBA+AC-BC = 2p-2a=20?-a); BC+ AB--
AC=2(p-b)

;
and BC-(AB-AC)=2(p-c) ; therefore, Vp (p-a) :

V(p-fc) (p-c) : : R : tan JA.

t 48. PROP. VIII.

Four times the area of any triangle is a mean proportional be-

tween two rectangles, viz., one contained by a straight line equal
to the sum of the sides increased by the base, and a straight

line equal to the sum of the sides diminished by the base ; and
the other contained by a straight line equal to the base increased
by the difference of the sides, and a straight line equal to the

base diminished by the difference of the sides.

Let ABC be a triangle, and let BC, any one of the sides, be taken
as its base ; four times the area of the

triangle is a mean proportional between
these two rectangles.

(BA+AC+BC) (BA+AC-BC,
{BC+(BA-AC)} {BC-(BA -AC)}.

Draw AD bisecting the angle opposite
to the base, and draw CE, BD perpen-
diculars on AD. Because the triangles

ABD, ACE are similar,

AD:DB::AE:£C(VI. 4).

Now, AD : DB : : AD.AE : DB.AE (VI. 1).

And AE : EC : : BD.AE : BD.EC (VI. 1).
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Therefore AD.AE : DB.AE : : BD.AE : BD.EC,
And 4AD.AE : 4DB.AE : : 4BD.AE : 4BD.EC.

But 4AD.AE=(AB+AC+BC) (AB+AC-BC) (Prop. 7).

And 4DB.AE=four times the area of the triangle ABC (VI. M),

And 4BD.EC={BC+(BA-AC)} {BC-(BA-AC)} (Prop. 6).

Therefore

(BA+AC+BC) (BA+AC-BC) : 4Tr.ABC : : 4Tr. ABC :

{BC+(BA-AC)} {BC-(BA-AC)}.
Therefore, &c. Q. E. D.

t 49. Cor. By the notation of Art. 47, this conclusion gives

p (p-a) : Tr.ABC : : Tr.ABC : (p-b) (p-c).

SECTION IV.

THE RULES OF TRIGONOMETRICAL CALCULATION.

The General Problem which Trigonometry proposes to resolve

is :

—

In any plane triangle, ofthe three sides and the three angles,

any three being given, and one of these three being a side, to find
any of the other three.

The things here said to be given are understood to be expressed

by their numerical values ; the angles in degrees, minutes, &c.

;

and the sides in feet, or any other known measure.
The reason of the restriction in this problem to those cases in

which at least one side is given, is evident from this, that, by the

angles alone being given, the magnitudes of the sides are not de-

termined. Innumerable triangles, equiangular to one another,

may exist, without the sides of any one of them being equal to

those of any other ; though the ratios of their sides to one another
will be the same in them all (VI. 4). If, therefore, only the three

angles are given, nothing can be determined of the triangle but
the ratios of the sides, which may be found by trigonometry, as

being the same with the ratios of the sines of the opposite angles.

For the conveniency of calculation, it is usual to divide the

general problem into two.; according as the triangle has, or has
not, one of its angles a right angle.

PROB. I.

Solution ofright-angled triangles.

It is evident, that when one of the acute angles of a right-angled

triangle is given, the other is given, being the complement of the

former to a right angle ; it is also evident, that the sine of any of
the acute angles is the cosine of the other.

This problem admits of several cases, and the solutions, or rules
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for calculation, which all depend on the first Proposition of Section

III., may be conveniently exhibited in the form of a Table ; where
the first column contains the things given ; the second, the things

required ; and the third, the rules or proportions by which they

are found.

GIVEN. SOUGHT. SOLUTION. CASES.

The hypotenuse CB,
and an acute angle B.

AC.
AB.

R : sin B : : CB : AC.
R : cos B : : CB : AB.

1

2

A side AC, and an
acute angle C.

BC.
AB.

Cos C : R : : AC : BC.
R : tan C : : AC : AB.

3
4

The hypotenuse CB,
and a side AB.

C.

AC.
CB : BA : : R : sin C.

R:cosC::CB:AC.
5
6

The two sides AB,
AC.

C.

CB.
AC : AB : : R : tan C.

CosC:R::AC:CB.
7
8

Remarks on the Solutions in the Table.

In the second case, when AC and C are given to find the hypo-
tenuse BC, a solution may also be obtained by help of the secant,

for CA : CB : : R : sec C ; if, therefore, this proportion be made,
R : sec C : : AC : CB, CB will be found.

In the third case, when the hypotenuse BC and the side AB are
given to find AC, this may be done either as directed in the Table,
or by the 47th of the first Book ; for, since AC2=BC2-BA2

, AC=
V(BC2—BA2

). This value of AC will be easy to calculate by loga-
rithms, if the quantity BC2—BA2 be separated into two multipliers,

which may be done ; because (II. 5 Cor.), BC2-BA2=(BC+BA) .

(BC-BA). Therefore AC=V[BC+BA) (BC-BA)].
When AC and AB are given, BC may be found from the 47th,

as in the preceding instance, for BC=V(BA2+AC2
). But BA2+AC2

cannot be separated into two multipliers ; and, therefore, when BA
and AC are large numbers, this rule is inconvenient for computa-
tion by logarithms. It is best in such cases to seek first for the
tangent of C, by the analogy in the Table, AC : AB : : R : tan C

;

but if C itself is not required, it is sufficient, having found tan C
by this proportion, to take from the Trigonometrical Tables the
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cosine that corresponds to tan C, and then to compute CB from the

proportion cos C : R : : AC : CB.

PROB. II.

Solution of oblique-angled triangles.

This problem has four cases, in each of which the solution de-

pends on some of the propositions of the last section.

CASE I.

Two angles A and B, and one side AB, of a triangle ABC, be-

ing given, to find the other sides.

solution.

Because the angles A and B are given, C
is also given, being the supplement of A-j-B

;

and (Prop. 2),

Sin C: sin A:: AB:BC; also,

Sin C : sin B : : AB : AC.

CASE II.

Two sides AB and AC, and the angle B opposite to one of them
being given, to find the other angles A and C, and also the other

side BC.
SOLUTION.

The angle C is found from this proportion, AC : AB : : sin B :

sin C. Also, A=180°-B-C : and then, sin B : sin A : : AC : CB,
by Case 1.

In this case, the angle C may have two values ; for its sine be-

ing found by the proportion above, the angle belonging to that

sine may either be that which is found in the tables, or it may be
the supplement of it (Art. 9). This ambiguity, however, does

not arise from any defect in the solution, but from a circumstance
essential to the problem, viz., that

whenever AC is less than AB, and B
is an acute angle, there are two tri-

angles which have the sides AB, AC,
and the angle at B of the same mag-
nitude in each, but which are never-
theless unequal, the angle opposite

to AB in the one, being the supple- ^- ^/^^ ^^c ~~

ment of that which is opposite to it

in the other. The truth of this appears by describing from the

centre A with the radius AC, an arc intersecting BC in C and C

;

then, if AC and AC' be drawn, it is evident that the triangles

ABC, ABC' have the side AB and the angle at B common, and the

sides AC and AC' equal, but have not the remaining side of the

one equal to the remaining side of the other, that is, BC to BC,
nor their other angles equal, viz., BC'A to BCA, nor BAC to

BAC. But in these triangles the angles ACB, AC'B are the

supplements of one another. For the triangle CAC is isosceles,
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and the angle ACC'=the angle AC'C, and, therefore, AC'B, which
is the supplement of AC'C, is also the supplement ofACC or ACB

;

and these two angles ACB, AC'B are the angles found by the

computation above.

From these two angles, the two angles BAC
;
BAC' will be found ;

the angle BAC is the supplement of the two angles ACB, ABC
(I. 32), and therefore its sine is the same with the sine of the sum
of ABC and ACB. But BAC' is the difference of the angles ACB,
ABC ; for it is the difference of the angles AC'C and ABC, be-

cause AC'C, that is, ACC is equal to the sum of the angles ABC,
BAC 7

(I. 32). Therefore to find BC, having found C, make sin C :

sin (C+B) : : AB : BC ; and again, sin C : sin (C-B) : : AB : BC.
Thus, when AB, the side adjacent to the given acute angle, is

greater than AC, the side opposite to it, there are two triangles

which satisfy the conditions of the question. But when AC is

greater than AB, the intersections C and C fall on opposite sides

of B, so that the two triangles have not the same angle at B com-
mon to them, and the solution ceases to be ambiguous, the angle

required being necessarily less than B, and therefore an acute

angle.

CASE III.

Two sides, AB and AC, and the angle A, between them, being
given, to find the other angles B and C, and also the side BC.

SOLUTION.

First, By Prop. V., AB+AC : AB-AC : : tan J (C+B) : tan

J (C—B). Then, since J (C+B) is known being the complement
of \ A ; \ (C—B), and thence B and C may be found. For C =
i (C+B) + i (C-B)

;
and B=i (C+B)~i (C-B) (Lemma).

To find BC.

Having found B, sin B : sin A : : AC : BC.
But BC may also be found without seeking for the angles B

and C ; for, when the radius is unity, BC=V[AB2—2 cos Ax
AB.AC+AC2

] (Prop. 3, Cor. 1).

This method of finding BC is extremely useful in many geome-
trical investigations, but it is not very well adapted for computa-
tion by logarithms, because the quantity under the radical sign

cannot be separated into simple multipliers. Therefore, when
AB and AC are expressed by large numbers, the other solution,

by finding the angles, and then computing BC, is preferable.

CASE IV.

The three sides AB, BC, AC being given, to find the angles

A, B, C.

SOLUTION I.

Take F such that BC : BA+AC : : BA-AC : F, then F is

either the sum or the difference of BD, DC, the segments of the

base (Prop. 4). If F be greater than BC, F is the sum, and BC
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the difference of BD, DC ; but if F be less than BC, BC is the
sum, and F the difference of BD and DC. In either case, the

sum of BD and DC, and their difference being given, BD and
DC are found. {Lemma).
Then (Prop. 1) CA : CD : : R : cos C ; and BA : BD : : R :

cos B ; wherefore C and B are found, and, consequently, A.

SOLUTION II.

Let D be the difference of the sides AB, AC.
Cor.) 2V (AB.BC) : V[(BC+D) (BC-D)] : : R :

Then (Prop. 6,

sin J BAC.

SOLUTION III.

Let S be the sum of the sides BA and AC. Then (Prop. 7,
Cor. 1) 2V(AB.AC) : V[(S+BC) (S-BC)] : : R : cos J BAC.

SOLUTION IV.

S and D retaining the same significations as above (Prop. 7,

Cor. 2), V[(S+BC) (S-BC)] : V[(BC+D) (BC-D)] : : R : tan

J BAC ; or, \/p(p—a) : ^(p—b) (p- c) : : R : tan J A.
It may be observed of these four solutions, that the first has

the advantage of being easily remembered, but that the others

are rather more expeditious in calculation. The second solution

is preferable to the third, when the angle sought is less than a
right angle ; on the other hand, the third is preferable to the

second, when the angle sought is greater than a right angle ; and
in extreme cases, that is, when the angle sought is very acute or

very obtuse, this distinction is very material to be considered.

The reason is, that the sines of angles, which are nearly =0°, or

the cosines of angles, which are nearly =90°, vary very little for

a considerable variation in the corresponding angles, as may be
seen from a table of sines and cosines. The consequence of this

is, that when the sine or cosine of such an angle is given (that is,

a sine or cosine nearly equal to the radius), the angle itself can-

not be very accurately found. If, for instance, the natural sine

.9998500 is given, it will be immediately perceived from the tables,

that the arc corresponding is between 89° and 89° 1'
; but it can-

not be found true to seconds, because the sines of 89° and of 89°

V differ only by 50 (in the two last places), whereas the arcs

themselves differ by 60 seconds. Two arcs, therefore, that differ

by 1", or even by more than 1", have the same sine in the tables,

if they fall in the last degree of the quadrant.
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The fourth solution, which finds the angle from its tangent, is

not liable to this objection ; nevertheless, when an arc approaches
near to 90°, the variations of the tangents become very great, and
too irregular to allow the proportional parts to be found with
exactness, so that when the angle sought is extremely obtuse, and
its half of consequence very near to 90°, the third solution is the

best.

It may always be known, whether the angle sought is greater

or less than a right angle by the square of the side opposite to it

being greater or less than the squares of the other two sides.

It may be useful to have all the solutions of the oblique-angled

triangle reduced to a form purely arithmetical, not requiring the

inspection of a diagram, and brought together in one table.

Let A, B, C be the angles of the triangle, and a, b, c the sides

respectively opposite to them.

1.

GIVEN. SOUGHT. SOLUTION.

A, B, and c.

0,
a,

C=180-A-B.
sin Aa—-—^ xc.
sm (J

, sin B
b=-r—^xc

,

sin O

2. b, c
y
and B.

A,
c,

a.

sin 0=j- x sin B.

A=180-B-C.
sin A ,a=-—^xb.
sm B

3. b, c, and A.
B,

c,
a,

area.

C+B=180-A

tan } (C-B) =^tan J (C+B)

t sin A , ta=——^sXt>; also
sin B

a=V[c2-2fc cos A+b2
].

be . .

area=—sm A.
2i

4. a, b, c.

A,
B,

0,

j
area.

i

Let 2p=a+b+c.

tan£A=^-bHf-^
area=V[p (p—a>) {p—&) (p—c)]'
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SECTION V.

PROBLEMS.

I. Problems on angles.

1. The distance of the sun from the earth is 95 millions of miles,

and his mean apparent diameter seen from the earth, and con-

sidered as a circular arc, is 32'. What is the sun's diameter in

miles ?

By Art. 31, the circumference of the circle, of which the radius

is the distance of the sun from the earth, is 3.1416x2x95,000,000=
596,904,000,000, and we have 360x60 : 32 : : 596,904,000,000 :

884,302 miles for the diameter of the sun, regarded as a circular

arc. The linear diameter is actually about 883,000 miles.

2. How many miles is the earth carried round the sun in an
hour. Ans. 68,000.

3. The moon's diameter is 2160 miles, and her apparent size is,

on the average, just the same as that of the sun ; what is her dis-

tance from the earth ?

By Art. 3, we . have 883,000 : 2160 : : 95,000,000 : 232,396
miles. The mean distance of the moon from the earth is actually

about 237,000 miles, or 60 radii of the earth.

4. The parallax of the nearest fixed star ec Centauri, or the

angle which the earth's distance from the sun subtends at it, is

very nearly 1". Required the distance of this star from the earth.

We have, 1 : 360 x 60 x 60 : : 95,000,000 : circumference

of circle, of which the radius is the distance of the star=
123,120,000,000,000, which, divided by 2 and by 3.1416, gives

nearly 19,600,000,000,000, or about 20 millions of millions of
miles as the distance of the nearest fixed star from the earth or sun.

We conclude that there is no star so near to the sun as within

6 or 7000 times the distance of the planet Neptune.
5. Civil engineers allow 8 inches of depression to the mile, on

account of the curvature of the earth. What do they suppose
the earth's diameter to be ?

If, in the figure (III. 32) CF be drawn perpendicular to BF ;

CF will be the depression, provided BC be a mile. Now, the

triangles CBF, CAB will be similar ; hence,

CF : BC : : BC : BA, i. e.

8 in. : 63360 in. : : 1 mile : 7920 miles, the earth's diameter
required.
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Cor. Since the depression varies as the square of the tangent
(VI. 20, Cor. 2), the depression in 2 miles of distance will be 32
inches, and in half a mile, 2 inches.

6. The distances of Venus from the sun and the earth are

nearly in the proportion of 2J : 1. From observations made of
the transit of Venus over the sun's disk, it appears the perpendi-

cular distance between the paths, as seen from stations at oppo-
site extremities of a diameter of the earth, which is perpendicular

to the line of direction of Venus and the sun, is about ¥Mh or

JL.th of the sun's diameter. Required the sun's diameter, and his

distance from the earth.

If EA be a diameter of the earth ; SD the perpendicular dis-

tance between the paths on the sun's disc, we have
SD : EA : : SV : EV

: : 2£ : 1
.-. SD=2J of 7920 miles=19800 miles,

and the sun's diameter is about 44J of 19800 miles=881,100
miles.

Now this subtends (Problem 1) an angle of 32' at the earth
;

hence,

32 : 360x60 : : 881,100 : circumference of a circle at the dis-

tance of the sun .*. distance required = 94J millions of miles

nearly.

7. A man standing upright is observed to subtend an angle of
10' to the eye. How far off is he, supposing him to be of the
average height of 68 inches? Ans. 1954 feet.

II. Problems on the trigonometrical functions of angles.

1. If a person could be elevated to a height above the earth

equal to one-fourth of the earth's radius ; how much would he see

of the surface of the earth ?

Let E in the figure to Prop. 4, Sect. I., be the point to which
he is elevated : EA the tangent is the distance to which he can
see.

Now EA*=EB2-BA2=^R2_R2= ^R*,
16 16

3
hence EA= T R.

4
and since sec : R : : R : cos (Prop. 4.)

5
and sec=—R ; we have

4

cos=—R,
5

also R : tan : : cos : sin,

gives R : —R : : —R : sin=-R.

;

the visible arc in any direction is therefore the arc of which the

3
sine is — of the radius, and the whole visible arc is an arc of
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i*

which the chord is — the radius ; and is, consequently (IV. 15),
o

greater than one-sixth the circumference, or greater than an arc

of 60°. It is in fact 73° 45'.

2. How many miles in an hour is an inhabitant of the Fitful

Head (Shetland, lat. 60°) carried about the earth's axis ?

The radius of the daily circle described in lat. 60° is the sine of
30° to radius 3960=J of 3960 (Art. 16)=1980, so that the arc de-

scribed in an hour is 52 miles.

3. Given that the tangent of 67° 22%' is 2£ to radius 1 ; required

the other functions of this angle.

Relation (4) Art. 10 gives cot : R : : It : tan

5
hence cot=jo-

144 169
Relation (7) gives sec2=R2+tan2=l+-2g = -sg

hence sec=-£-
n

5
and cos^-q ; also, since R : tan : : cos : sin"13 s

12 5 , 12 , 13
we have 1 : -jr : : tq : sin = ro, and cosec = •rx*

III. Problems on Triangles.

1. Suppose a ladder cannot be placed within 15° of the vertical,

how high will a ladder reach which is 20 feet long ?

We have height : length of ladder : : cos 15° : R (Art. 33)

: : .9659 : 1 (Art. 29)
.-.height = 19.3185.

2. From the top of a tower of known height to make such ob-

servations as shall determine the height of another tower in the

same horizontal plane.

Suppose the required height greater than that of the known
tower. Take the angle of elevation of the summit of the tower,

i.e., the angle which its direction makes with the horizontal line

—

call it A ; take also the angle of depression of the base of the

tower, i.e., the angle which its direction below the horizontal line

makes with that line—call it B
;

then , distance of towers : height of tower known : : R : tan B (33)

difference of heights of towers : distance of towers : : tan A : R
.•. difference of heights of towers : height of known tower : : tan

A : tan B (V. 22),

and height of tower required : height of tower given : : tan A-f-

tan B : tan B.

3. The two shorter sides of a triangle are 1 and V2, and the

least angle is 30° ; find the other side and the other angles.

Let ABC be the triangle, having AC=1, AB=V2, and ^iB=
30°; then,

AC : AB : ; sin 30° : sin C (Art. 37)

;

K
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or, 1 : V2 : : £ : sin C=-^ gives C=45° (Art. 15),

and BC=AB cos B-fAC cos C to radius 1

V
2 ^V2 V2 •

also, A=105°.
4. The angle of elevation of the top of a tower is 45°. On ad-

vancing 100 feet nearer, the angle of elevation becomes 60°. Re-
quired the height of the tower.

The distance of the first station from the foot of the tower is

equal to the height of the tower ; hence the distance of the
second station is height—100 :

consequently, height : height-100 : : tan 60° : R (Art. 33)
: : V3 : 1 (Art. 16)

A height : 100 : : V3 : V3-1

height=100^|
i
=236.

5. The three si.des of a triangle are, 2, V6;
and 1+V3 ; required

the angles.

By Art. 40, the radius being 1, we have
AB2+BC2-AC2 4+6-(4+2V3) 3-V3 V3-1

C0S ~ 2AB.BC ~ 4V6 " 2^6 ~ 2V2
-

cos 75° (Cor. Art. 28);
hence B=75° ; hence (1.32) A+C=105°.

Again, sin C : sin B : : 2 : 1+V3 (Art. 37) ;

or, sin C :

V
J^ : : 2 : 1+V3 (Art. 28),

gives sin C= -tt, and C=45° (Art. 15) ;

hence, A = 60°.

6. Given two sides of a triangle equal to V3 and 1, and the

angle contained between them 30°, to solve the triangle.

Let AB=V3, AC=1, A=30° ;

then B+C=150° ; and by Art. 42,

AB+AC : AB-AC : : tan J (C+B) : tan J (C-B)
i.e., V3+1 : V3-1 : : tan 75° : tan J (C-B).

Now tan 75°=^|±i (Art. 28)

.-. tan J (C-B)=l (15) ; J (C-B)=45°, C-B=90° ;

whence C=120°
;
B=30°, and BC=AC=1.

IV. Logarithms.

It will be evident, from the examples given above, that, except

in a very limited number of cases, the operation of solving a tri-

angle will require complicated multiplications and divisions of
decimals. To facilitate such multiplications and divisions is the

object of logarithms. These are numbers based on the following

definition: the logarithm ofaproduct is the sum of the logarithms

of the numbers multiplied. As an immediate corollary from this
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definition, it follows that the logarithm of a quotient is the

logarithm of the dividend diminished by that of the divisor.

With the additional fact that the common or tabular logarithm

of 10 is 1, we have in few words the basis of logarithmic compu-
tation. The tables are framed by means of algebraic formulae

;

but the student who desires thoroughly to understand their nature

will do well to compute a few logarithms from arithmetical con-

siderations alone in the following manner :

—

PROB. I.

To find the logarithms of 100, 1000, dbc., and of I.

Log 100=log 10xl0=log 10+log 10 (Def.)=2.

Log 1000=log 10xl0xl0=log 10+log 10+log 10=3.
Log 10=log lxl0=log 1+log 10. -.log 1=0.
Hence the logarithms of 1, 10, 100, 1000, &c.

are 0, 1, 2, 3, &c.

Cob. 1. The logarithm of a number less than 10 is less than 1

;

that of a number between 10 and 100 lies between 1 and 2 and so on

;

consequently, the integral part of a logarithm is the number which
represents one less than the number of places of figures in the

number ; for example, the logarithm of 527 is 2 and a fraction
;

that of 5274 is 3 and a fraction.

Cor. 2. The logarithm of a proper fraction is negative. That
2

of — , for example, is log 2—log 3, of which the latter is the larger.
o

PROB. II.

To find the numbers of which the logarithms are — > — » —, &c.
JL o "±

Since V10 multiplied into itself produces 10, and that — added

to itself produces 1 ; and since the logarithm of 10 is 1, it follows

that the logarithm of V10 is —

•

Again, log #10=!
'
f°r 1=1°g *

10=loS ^10 : ^10 '
^10

=log . #10+log . #10+log . #10 (Def.)=3 log . #10.

But 1=3 times 1 .\ log #10=1
3

8 3

Similarly, log #10 or log VV10=~

log #10 or log VVV10=i.
8

Again, log #100=-? : for 2=log 100=log #100 . #l00 . .

o

#100=3 log . #100. But 3 times |=2 /. log . #100=^
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Similarly, log ##100= |.

By extracting these roots we find,

—

log 1.333=.125
log 3.162=.5 ; log 4.641=666
log 2.154=.333 ; log 1.66=.222
log 1.77=.25 ; and so on.

PROB. III.

From the results of Prob. 2, to find approximate values for log 2
and log 3.

We have log 1J=.125 nearly
and log if=.222 „

Now log|=log l|^-li=log lfr-log H
=.222 . . . -.125=.097.

But log|=log ^=log 10-log 8=l-log 2x2x2=1-3 log 2

.-. 3 log 2=1- . 097= . 903
and log 2=.301.

But log lJ=log |=log 4-log 3

=2 log 2-log 3=.602-log 3
.-. log 3=.602-125=.477.

PROB. IV.

Given log 2=.301 and log 3=.477, to find the logarithms of
4, 5, 6, 8, 9 and 2400.

log log 2x2=2 log 2=.602

log 5=log —=log 10-log 2=l-log 2=.699

log 6=log 2x3=log 2+log 3=.778
log 8=log 2x2x2=3 log 2=.903
log 9=log 3x3=2 log 3=.954
log 2400=log 3x8x10x10

=log 3+log 8+2 log 10=3.380.
Cor. Since the logarithm of 10,000 is 4, and that of 1000 is 3,

the logarithms of consecutive numbers between 10,000 and 1000

differ from one another on the average by about
Qftoo

=.00011.

Hence, to three places of decimals, the logarithm of 2401 is the

same as that of 2400, viz., 3.380.

Now, 2401=7x7x7x7

or log 2401=4 log 7 .'. log 7=i of 3.380=.845

to three places of decimals.
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PROB. V.

To find the logarithms of V2, V3, V5, &c, V20, V30, &c> #2, &c
Since V2xV2=2 ; logV2+logV2=log 2.

Now, log 2=.301 .-. logV2=.1505
Similarly, logV3=.2385 ; logy 5=.34947
Again, log 20=1.301 .\ logV20=.6505

log 30=1.477 /. logV30=.7385

Lastly, #2x^2x^2=2 .-. 3 log#2=log 2=.301

andlog^2=.10034.

PROB. VI.

To explain the logarithms of trigonometrical functions.

These are better found by algebraic formulae, but an idea of

their values and nature may be obtained by the following examples.

It must be premised, that the radius adopted in logarithmic

tables is 1010 , so that its logarithm is 10. Hence the logarithms

of the sines of tolerably small angles are positive, which (Cor. 3,

Prop. 1) would not be the case were the radius unity.

10 10

Thus the logarithms of sin 45° is (Art. 15), log—

-

= 10-i log 2 = 10-1505=9.8495

and log cos 45° is the same.

1010

Again, log sin 30° = log-y = 10 - log 2 (Art. 16) = 9.699

log cos 60° is the same.

Log sin 60°=10 + log 2j2 =10 + | log 3 - log 2 = 9.9375

log cos 30° is the same.

Log tan 30°= 10 + log -L = 10- i log 3 = 9.76144.

The trigonometric functions of all angles from 1' to 90° are given

in tables to every minute, and these, with the logarithms of num-
bers, constitute the most important portion of a volume of loga-

rithmic tables. With such tables, the solution of triangles is a

matter of simple addition and subtraction.

PROB. VII.

To solve triangles by the aid of logarithms.

1st, Without the tables, simply as an illustration.

1. Two angles of a triangle are 30° and 45°, and the side oppo-

site the latter is 10V2, what is the side opposite to the former?

we have sin 45° : sin 30° : : 10V2 : side required

.-. log side required = log 10V2 + log sin 30°— log sin 45*
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= 1+ I log 2 -f 9.699-9.8495 (Prob. 6).
m

= 1.1505+ 9.699-9.8495
= 1.

and the side required = 10.

2. Find the area of the triangle of which the sides are 13, 12,

and 5 feet.

The result of Art. 49 is usually expressed in the following

words :—
Add the three sides together, and take half their sum ; from

the half sum subtract each side separately ; multiply the

halfsum and the three remainders continually together, and
extract the square root of the product for the area.

Here the half sum is 15, and the remainders are 2, 3, and 10 :

hence the area = V15x2x3xl0

and log area = - {i g 15 + log 2 -f log 3 + log 10} (Def.)

=
2 {log 3 + log 5 + log 2 + log 3 + log 10}

= \{ . 477 + . 699 + . 301 + . 477 + 1} (Prob. 5.)

= 1.477
= log 30

,\ area = 30 feet.

2d, By the tables.

3. The two sides of a right-angled triangle are V20 and V30,
what are the angles ?

tan C : It : : AB : AC (33)
: : V20 : V30

,\ log tan C = \ log20 - \ log 30+10

= 9.91195
= log tan 39° 14' by the tables.

4. A person on the top of a hill observes two milestones on the

plain, lying in a right line from the hill ; the angle of depression

of the nearer is 40°, and of the farther 25° ; required the height

of the hill.

We have, distance of nearer milestone : 1 mile : : sin 15° : sin

25° ; and height of hill : distance of nearer milestone : : sin 40° : R.

1 i • w i^™ sin 15° sin 40° . ,

hence, height = 1760 —.—^ • —^— in yards
sin AO Jtv

log height = log 1760-f-log sin 15°+log sin 40°

-log 25°-10
= 2.84063

height = 693 yards.



ELEMENTS OF SPHEKICAL TEIGONOMETEY.

SECTION I.

PROP. I.

If a sphere be cut by a plane through the centre, the section is

a circle, having the same centre with the sphere, and equal
to the circle by the revolution of which the sphere has been de-

scribed.

For all the straight lines drawn from the centre to the superfi-

cies of the sphere are equal to the radius of the generating semi-

circle (III. Sup. Def. 7) ; hence the common section of the sphe-

rical superficies, and of a plane passing through the centre, is a

line lying in one plane, and having ali its points equally distant

from the centre of the sphere ; therefore it is the circumference of
a circle (I. Def. 11), having for its centre the centre of the sphere,

and for its radius the radius of the sphere ; that is, of the semi-

circle by which the sphere has been described. It is equal, there-

fore, to the circle of which that semicircle was a part. Q. E. D.

DEFINITIONS.

I. Any circle which is a section of a sphere by a plane passing

through its centre, is called a great circle of the sphere.*

Cor. 1. All great circles of a sphere are equal (Prop. 1.)

Cor. 2. Any two great circles bisect one another. For the straight

line (II. Sup. 3) in which their planes intersect one another,

passes through both their centres.

II. The pole of a great circle is that point in which a perpendi-

cular to its plane from the centre of the sphere meets the

sphere.

Cor. Every great circle has two poles at the opposite extremities

of a diameter.

III. A spherical angle is the angle contained by the arcs of two
great circles, and is the same with the angle contained by the

tangents to the arcs at their point of intersection.

• "We shall frequently call it simply a circle, inasmuch as none but great

circles occur in this science*
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Cor. It is equal to the angle contained by their planes (II. Sup.
Def. 4).

IV. The side of a spherical triangle is that arc of a great circle

intercepted between two others, which is less than a semicircle.

. PROP. II.

If a point on the surface of a sphere be distant by a quadrant
from each of two points in a given great circle, not at opposite

extremities of a diameter, it is the pole of that circle.

Let the point A be distant by a quadrant

from each of the points B, C, in the circle

BC, not at the opposite extremities of a dia-

meter ; A is the pole of BC.
Let D be the centre of the sphere

;
join

DA, DB, DC.
Then, because AB, AC are quadrants, the

angles ADB, ADC are right angles ; there-

fore DA is at right angles to the plane BDC
(II. Sup. 4) ; and A is the pole of BC (Def. 2).

Q. E. D.

PROP. III.

If the pole of a great circle be the same with the intersection of
other two great circles, the arc of the first-mentioned circle in-

tercepted between the other two is the measure of the spherical

angle which the same two circles make with one another.

Let the great circles BA, CA on the superficies of a sphere, of

which the centre is D, intersect one another in A, and let BC be
an arc of another great circle, of which the

pole is A ; BC is the measure of the spherical

angle BAC.
Join DA, DB, DC, and draw AE, AF tan-

gents at A. Then because A is the pole of
BC, the angles ADB, ADC are right angles

;

and DAE, DAF are also right angles (III. 15)

;

therefore (I. 29) AE is parallel to BD, and
AF to DC ; consequently (II. Sup. 9) the angle

BDC is equal to the angle EAF
;
that is, to the

spherical angle BAC (Def. 3). Therefore the

arc BC is the measure of the spherical angle BAC. Q. E. D.

PROP. IV.

If the planes of two great circles of a sphere be at right angles to

one another, the circumference of each of the circles passes
through the poles of the other ; and if the circumference of one
great circle pass through the poles of another, the planes of
these circles are at right angles.

Let ACBD, AEBF be two great circles, the planes of which
are at right angles to one another ; the poles of the circle AEBF
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are in the circumference ACBD, and the poles of the circle ACBD
in the circumference AEBF.
From G the centre of the sphere, draw GC, GE in the planes

ACBD, AEBF respectively, perpendicular to AB. Then CGE
is the angle contained by the planes (II. Sup.

Def. 4), and is therefore aright angle. Con-

sequently, CG is at right angles to both GB
and GE, and therefore, (II. Sup. 4) CG is

at right angles to the plane AEBF ; hence

(Def. 2) C is the pole of the circle AEBF
;

and if CG be produced to D, D is the other

pole of the circle EB.
In the same manner it is shown that E

and F are the poles of the circle CB. Therefore, the poles of
each of these circles are in the circumference of the other.

Again, if C be one of the poles of the circle EB, the great

circle CB which passes through C is at right angles to the circle

EB. For CG being drawn from the pole to the centre of the

circle EB is at right angles to the plane of that circle (Def. 2)

;

and, therefore, every plane passing through CG (II. Sup. 17) is at

right angles to the plane AEBF ; now, the plane ACBD passes

through CG. Therefore, &c. Q. E. D.

Cor 1. // of two great circles the first passes through the poles

of the second, the second also passes through the poles ofthe first.

For, if the first passes through the poles of the second, the plane
of the first must be at right angles to the plane of the second, by
the second part of this proposition ; and, therefore, by the first

part of it, the circumference of each passes through the poles of
the other.

Cor. 2. All great circles that have a common diameter have
their poles in the circumference ofa circle, the plane ofwhich is

perpendicular to that diameter.

PROP. V.

The angle suhtended at the centre of the sphere by the poles of
two great circles is equal to the angle between the circles them-
selves.

Let AB, AC be two great circles, EF their poles, D the centre

of the sphere ; then, if DE, DF be joined,

the angle EDF is equal to the spherical

angle A. Let the plane FDE cut the

circles AB, AC in B and C, join DB,
DC. Because E is the pole of AB, the

angles EDA, EDB are right angles ; and
because F is the pole of AC, the angles

FDA, FDC are right angles. Hence,
both the angles EDA, FDA are right j£
angles, and therefore (II. Sup. 4) DA is

at right angles to the plane FDE. Hence, ADC, ADB are right
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angles, and, consequently, the angle BDC is equal to the spherical

angle A (Prop. 3). But EDB, FDC being both right angles, are

equal to one another ; take away the common angle EDO, and the

remainder BDC is equal to the remainder EDF. But BDC is

equal to the spherical angle A ; therefore, also, EDF is equal to

the spherical angle A. Q. E. D.
Cor. 1. A is the pole of EF ; that is, if the poles of any two

circles be joined by a third, the pole of that circle will be the

point of intersection of the other two.

Cor. 2. Hence, if the three poles of the three arcs which form
a spherical triangle be joined, they willforma triangle, the poles

of whose arcs are the angular points of the original triangle.

This triangle is called the polar triangle.

PROP. VI.

The original triangle and the polar triangle are so connected,

that the sides of the one are the supplements of the arcs which
measure the angles of the other.

Let A, B, C be a spherical triangle ; D, E, F the poles of the arcs

BC, AC, and AB. Then, if DEF T
be joined by arcs of circles, DEF is

a spherical triangle, such that EF is

the supplement of the arc which mea-
sures the angle A ; DF the supplement
of that which measures the angle B ;

and DE the supplement of that which
measures the angle C. Produce CA,
CB to meet the arc DE in G and H.
Then C is the pole of DE (Prop. £-

5, Cor. 1), and therefore the arc GH
is the measure of the spherical angle C (Prop. 3). And because

D and E are the poles of BC and AC respectively, the arcs DH
and EG are quadrants. But DH and GE together make up DE
and GH together. That is, DE and GH together make up a
semicircle. Therefore, DE is the supplement of GH, which mea-
sures the spherical angle C. In the same manner it may be shown
that DF is the supplement of the measure of the angle B, and EF
of that of A. Therefore, &c. Q. E. D.

t PROP. VII.

The angles at the base ofan isosceles spherical triangle are equal

to one another*

Let ABC be the spherical triangle, having the side AB equal

to the side AC ; the spherical angles B and C are likewise equal.

Let D be the centre of the sphere ; join DA, DB, DC. Draw

* The student should omit all propositions marked f at the first reading.
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AG at right angles to the plane DBC, and GE, GF at right
angles to DB, DC, and join AE, AF.
Then AD2 = AG2+ GD2 (I. 47), and GD2 =GE2+ED2

; there-

fore, AD 2 = AG 2 + GE2 + ED2
, and AG2 + GE2 = AE2

; there-

fore, AD2 = AE 2 + ED 2
; consequently (I. 48) AED is a right

angle. In the same manner it may "be

shown that AFD is a right angle. There-
fore (Def. 3, Cor.) the angles AEG, AFG
are equal respectively to the spherical

angles B and C. Again, because AB= AC,
the sine AE (PI. Tr. Art. 7) is equal to

the sine AF, and, therefore, AE2 = AF 2
;

but AE2 = AG2 + GE 2
, and AF 2 = AG2 +

GF 2
; therefore, GE2 = GF2

, and GE =
GF, and the angle AEG equal to the angle

AFG (I. 8). Therefore, &c. Q. E. D.

t PROP. VIII.

If the angles at the base of a spherical triangle are equal, the

triangle is isosceles.

Retaining the same construction, we may show, as in the last

proposition, that AE, AF are at right angles to DB, DC, and
AEG, AFG equal to the spherical angles B, C. Consequently,
the angles AEG, AFG are equal to one another, and the angles

at G are right angles, and the side AG common ; therefore (I.

26) the triangles AGE, AGF are equal in every respect, and AE
=AF. But AE2+ED 2=AF 2+FD 2

, because each is equal to AD 2
;

therefore, ED 2=FD 2
, and ED=FD, and (I. 8) the angle ADE=

the angle ADF, and, therefore, the arc AB equal to the arc AC
(III. 26). Q. E. D.

t PROP. IX.

Any two sides of a spherical triangle are greater than the third.

Let ABC be a spherical triangle, any two sides AB, BC are
greater than the third side AC.

Let D be the centre of the sphere ; join

DA, DB, DC.
The solid angle at D is contained by

three plane angles ADB, ADC, BDC, any
two of which, ADB, BDC are greater
than the third ADC (II. Sup. 20), and,
therefore, any two of the arcs AB, AC,
BC, which measure these angles, as AB
and BC, must also be greater than the third AC.
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t PROP. X.

The three sides of a spherical triangle are less than the

circumference of a great circle.

Let ABC be a spherical triangle as "before, the three sides AB,
BC, AC are less than the circumference of a great circle.

Let D be the centre of the sphere : the solid angle at D is

contained by three plane angles BDA, BDC, ADC, which to-

gether are less than four right angles (II. Sup. 21), therefore, the

arcs AB, BC, AC, which are the measures of these angles, are

together less than four quadrants described with the radius AD,
that is, than the circumference of a great circle. Q. E. D.

t PROP. XL
In a spherical triangle, the greater angle is opposite to the

greater side, and conversely.

Let ABC be a spherical triangle, the A

greater angle A is opposed to the greater

side BC.
Let the angle BAD be made equal to

the angle B, and then BD, DA will be
equal (Prop. 8), and therefore AD, DC
are equal to BC ; but AD, DC are greater .

than AC (Prop. 9) ; therefore, BC is
B

greater than AC, that is, the greater angle A is opposite to the

greater side BC. The converse is demonstrated as Elem. I. Prop.

19. Q. E. D.

t PROP. XII.

According as the sum of two of the sides of a spherical triangle

is greater than a semicircle, equal to it, or less, each of the

interior angles at the base is greater than the exterior and
opposite angle at the base, equal to it, or less ; and also the

sum, of the two interior angles at the base greater than two

right angles, equal to two right angles or less than two right

angles.

Let ABC be a spherical triangle, of which the sides are AB
and BC

;
produce any of the two sides as AB, and the base AC,

till they meet again in D ; then the arc ABD is a semicircle (Def.

I., Cor. 2), and the spherical angles at A and D are equal, because

each of them is the inclination of the circle ABD to the circle

ACD.
1. If AB, BC be equal to a semicircle, that is, to AD, BC will

be equal to BD, and, therefore (Prop.

7), the angle D or the angle A will be
equal to the angle BCD, that is, the
interior angle at the base equal to the
exterior and opposite.

2. If AB, BC together be greater
than a semicircle, that is, greater than ABD, BC will be greater
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than BD, and therefore (Prop. 11) the angle D, that is, the angle

A is greater than the angle BCD.
3. In the same manner it is shown, if AB, BC together be less

than a semicircle, that the angle A is less than the angle BCD.
Now, since the angles BCD, BCA are equal to two right angles,

if the angle A be greater than BCD, A and ACB together will

be greater than two right angles. If A be equal to BCD, A and
ACB together will be equal to two right angles ; and if A be less

than BCD, A and ACB will be less than two right angles. Q. E. D.

t PROP. XIII.

The three angles of a spherical triangle are greater than two and
less than six right angles.

The measures of the angles A, B, C, in the triangle ABC, to-

gether with the three sides of the polar triangle DEF, are equal

to three semicircles (Prop. 6) ; but the three sides of the triangle

FDE are less than two semicircles (Prop. 10) ; therefore the mea-
sures of the angles ABC are greater than a semicircle, and
hence the angles ABC are greater than two right angles.

And because the interior angles of any triangle, together with
the exterior, are equal to six right angles, the interior alone are

less than six right angles. Q. E. D.

t PROP. XIV.

In a right-angled spherical triangle, the sides containing t/ie

right angle are of the same affection with the angles opposite

to them ; that is, if the sides be greater or less than quadrants,
the opposite angles will be greater or less than right angles,

and conversely.

Let ABC be a spherical triangle, right-

angled at A, any side AB will be of the

same affection with the opposite angle

ACB. In AC, produced if necessary,

take AD a quadrant
;
join DB.

Then, because DA is a quadrant, and
the angle at A a right angle, D is the

pole of AB (Prop. 4) ; therefore, DB is at right angles to AB
(Prop. 4). Hence, if AC is less than AD, the angle ABC is less

than ABD, and, consequently, less than a right angle. And if

AC be greater than AD, the angle ABC is greater than a right

angle. In the same manner may the converse be demonstrated.

Therefore, &c. Q. E. D.

t PROP. XV.

If the two sides of a right-angled spherical triangle about the

right angle be of the same affection, the hypotenuse will be

less than a quadrant ; and if they be of different affection, the

hypotenuse ivill be greater than a quadrant.

Let ABC be a right-angled spherical triangle; according aa
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the two sides AB, AC are of the same or of different affection,

the hypotenuse BC will be less or greater

than a quadrant.

Let D be the centre of the sphere
;
join

DA, and draw DE, DF at right angles to

DA ; draw CG parallel to DF, and join GB,
BC, GE, EC.

1. If AC, AB be each less than a qua-

drant, G lies between D and A ; therefore

(III. 7) GB is less than GE. But F is the

pole of AE (Prop. 4), therefore DF is at

right angles to the plane AE ; and because

CG is parallel to DF, which is at right an-

gles to the plane ADE, CG is also at right angles to that plane

(II. Sup. 7) ; therefore CGB, CGE are right angles. Hence, CB2=
CG2+GB2 and CE 2=CG2+GE2

,
of which GB is less than GE ;

therefore CB is less than CE. But the arcs CB, CE are arcs of
equal circles, of which the chord CB is less than the chord CE

;

therefore the arc CB is less than the arc CE. Now, E is the pole

of AC, therefore CE is a quadrant, consequently BC is less than a
quadrant. In the same manner, if AB, AlC be each greater than
a quadrant, it may be shown that BC is less than a quadrant.

2. If AB be greater than a qua-

drant, and AC less. The same
construction being made; GB is

greater than GE ; and, therefore,

as in case 1, CB is greater than

CE, and the arc CB than the

arc CE, that is, than a quadrant.

Q. E. D.
Cor. 1. Hence, conversely, if

the hypotenuse of a right-angled

triangle be greater or less than a
quadrant, the sides will be of dif-

ferent or the same affection.

Cor. 2. Since (Prop. 14) the oblique angles of a right-angled

spherical triangle have the same affection with the opposite sides,

therefore, according as the hypotenuse is greater or less than a
quadrant, the oblique angles will be ofdifferent or of the same af-
fection.

Cor. 3. Because the sides are of the same affection with the op-

posite angles, therefore, when an angle and the side adjacent are

of the same affection, the hypotenuse is less than a quadrant; and
conversely.
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t PROP. XVI.

In any spherical triangle, if the perpendicular upon the base

from the opposite angle fall within the triangle, the angles at

the base are of the same affection ; and if the perpendicular

fall without the triangle, the angles at the base are of different

affection.

Let ABC be a spherical triangle, and let the arc CD be drawn
from C perpendicular to the base AB.

1. Let CD fall within the triangle ; then, since ADC, BDC are

right-angled spherical triangles, the angles A, B must each be of

the same affection with CD (Prop. 14).

2. Let CD fall without the triangle ; then (Prop. 14) the angle

B is of the same affection with CD ; and the angle CAD is of

the same affection with CD ; therefore, the angle CAD and B
are of the same affection, and the angles CAB and B are therefore

of different affections. Q. E. D.
Cor. Hence, if the angles A and B be of the same affection, the

perpendicular will fall within the base ; for if it did not, A and
B would be of different affection. And if the angles A and B be

of different affection, the perpendicular will fall without the tri-

angle ; for if it did not, the angles A and B would be of the same
affection, contrary to the supposition.

PROP. XVII.

In any spherical triangle, the sines of the sides are to one another

as the sines of the angles opposite to them.

Let ABC be a spherical triangle, sin AB : sin AC : : sin ACB :

sin ABC ; &c.

Let D be the centre of the sphere
;
join

DA, DB, DC, and draw AG at right angles
to the plane BDC ; and GE, GF at right

angles to DB, DC
;
join AE, AF, DG.

Then, because AGD is a right angle, AD 2=
AG2+GD2

(I. 47) ; and because DEG is a
right angle, DG2=EG2 + DE2

; therefore,

AD2=AG2+EG2+D E2
. But because AGE

is a right angle, AG2+EG2=AE 2
; therefore, finally, AD2=AE2+

DE2
; and, consequently (I. 48), the angle AED is a right angle.

Therefore, the angle AEG is the inclination of the planes ADB,
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CDB (II. Sup. Def. 4), and is equal to the spherical angle B. In
the same manner it may be shown that AFG is equal to the sphe-

rical angle C. Also, since AE, AF are at right angles to DB,
DC, they are the sines of the arcs, AB, AC respectively.

Now, AE : AG : : R : sin AEG (PL Tr. Art. 33) : and AG : AF :

:

sin AFG : R ;

therefore, ex cequo, AE : AF : : sin AFG : sin AEG,
that is, sin AB : sin AC : : sin ACB : sin ABC. Similarly,

it may be shown that

sin AB : sin BC : : sin ACB : sin BAC, &c. Therefore, &c.

Q. E. D.
Cor. If A be a right angle, sin A=R (PL Tr. Art. 5) ; there-

fore, sin AB : sin BC : : sin A€B : R.

PROP. XVIII.

When the radius is unity, the cosine of any side of a spherical

triangle is equal to the product of the cosines of the other two
sides, together with the continued product of their sines

;
and

the cosine ofthe angle contained by them.

Draw AE, AF tangents at A to the arcs AB, AC respectively,

meeting DB, DC produced in E and F
;
join EF.

Then (PL Trig. Art. 39) 2DE.DF cos EDF=DE 2+DF 2-EF 2
;

but (I. 47) DE 2=EA2+AD2
,

andDF 2=FA2+AD 2
; there-

fore, 2DE.DF cos EDF=EA2

+FA2+2AD2-EF2
.

But (PL Trig. Art. 39)
EA2+ FA2-EF 2= 2AE.AF
cos A ; therefore, 2DE.DF
cos EDF=2AD 2+2AE.AF
cos A; and the angle EDF
is measured by the arc BC

;

consequently, 2DE.DF cos

BC=2AD2+2AE.AF cos A.

Divide each side by 2ED.DF ; and

_„ AD 2 EAAF AcosBC=ED^F+ED-DF COsA -

_, AD AT3 AD . n EA
But py:=cos AB, jyp = cos AC, -nr\

= sm AB,

AF
DF"

cos BC=cos AB cos AC+sin AB sin AC cos A. Q. E. D.
Cor. It is convenient to write a, b, c for the sides of the sphe-

rical triangle, opposite, respectively, to the angles A, B, C By
this means the relation is expressed thus ;>

—
cos a= cos b cos c-f sin b sin c cos A ; or, by subtraction

and division,

cos a—cos b cos c

ED"
= sin AC (PL Trig. Art. 14) ; therefore,

cos A=
sin 6 sin c
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PROP. XIX.

When the radius is unity, the cosine of any angle of a spherical

triangle, increased by the product of the cosines of the other

two angles, is equal to the continued product of the sines oj

those angles, and the cosine ofthe side which lies between them.

Let A, B, C be the angles, and a,b, c the sides of the polar or
supplemental triangle; then (Prop, 18)

cos a=cos b cos c-j-sin 6 sin c cos A.
Now (Prop. 6) a is the supplement of A, &c. ; therefore, cos a

——cos A (PL Tr. Art. 19) sin fc=sin B, &c. ; consequently,
—cos A=cos B cos C—sin B sin C cos a

;

or, which is the same thing,

cos A+cos B cos C=sin B sin C cos a. Q. E. D.
The theorems contained in Props. 17, 18, and 19, comprise all

the essential properties of spherical triangles.

NAPJER'S RULES OF THE CIRCULAR PARTS, AND SOME
OTHER THEOREMS.

The rules of the Circular Parts, invented by Napier, are of

great use in Spherical Trigonometry, \>y reducing all the theorems
employed in the solution of right-angled triangles to two. These
two are not new propositions, but are merely enunciations, which,

by help of a particular arrangement and classification of the parts

of a triangle, include all the three propositions, 17, 18, 19, which
have been demonstrated above, as applied to right-angled triangles.

They are perhaps the happiest example of artificial memory that

is known.

DEFINITIONS.

I. If in a spherical triangle, we set aside the right angle, and
consider only the five remaining parts of the triangle, viz., the

three sides and the two oblique angles, then the two sides which
contain the right angle, and the complements of the other three,

namely, of the two angles and the hypotenuse, are called the

Circular Parts.

Thus, in the triangle ABC right angled at A, the circular parts

are AC, AB with the complements of B, BC, and C. These
parts are called circular ; because, when they are named in the

natural order of their succession, they go round the triangle.

II. When of the five circular parts any one is taken for the middle

part, then of the remaining four, the two which are immediately

adjacent to it, on the right and left, are called the adjacent

parts ; and the other two, each of which is separated from the

middle by an adjacent part, are called opposite parts
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Thus, in the right-angled triangle ABC, A being the right

angle, AC, AB, 90°-B, 90°-BC, 90°-

C, are the circular parts, by Def. 1

;

and if any one, as AC, be reckoned

the middle part, then AB and 90°—C,
which are contiguous to it on different

sides, are called adjacent parts ; and
90°-B, 90°-BC are the opposite parts.

In like manner, if 90°—C is taken for the

middle part, AC and 90°—BC are the adjacentparts ; 90°—B, and
AB are the opposite. Or if 90°—BC be the middle part, 90°—B,
90°—C are adjacent ; AC and AB opposite, &c.

This arrangement being made, Napier's rules of the circular

parts are contained in the following proposition.

PROP. XX.

In a right-angled spherical triangle, the rectangle by the radius
and the sine of the middle part, is equal to the rectangle by
the tangents of the adjacent parts ; or to the rectangle by the

cosines of the opposite parts.

DEMONSTRATION.

Let ABC be a spherical triangle right angled at A.

Draw AE, AF tangents to the

arcs AB, AC meeting the radii DB,
DC in E and F ; draw AG at right

angles to DB, and join GF. Then,
because FAE is a right angle by
hypothesis, and FAD by construc-

tion, FA is at right angles to the D
plane DAE (II. Sup. 4), and there-

fore to the line AG.
Hence (1. 47) GF 2 = GA2+ AF*.
But DF 2 = DA2 + AF 2

,

andDA2 = DG2 + GA2
;

therefore DF 2 = DG-+ GA2 + AF2

= DG2 + GF 2
; wherefore (I. 48) the angle DGF

is a right angle ; and the angle FGA
is equal to the spherical angle B
(Def. 3, Cor.) : consequently (PI.

Trig. Art. 35), in the first place,

AG : AF : : cot B : R ; that is,

sin c : tan b : : cot B : R ; therefore

(VI. 16)
II sin c = tan b cot B (1).

In the same manner, if AH be
drawn at right angles to DC, and
EH be joined, it may be shown that
EH is at right angles to DC, and
that the angle AHE is equal to the spherical angle C ; and, there-
fore, R sin b = tan c cot C (2.)
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Secondly, by similar triangles (VI. 4),

AG : AD : : AE : ED

;

and R (AD) : sin a : : ED : EH
(PI. Trig. Art. 33), therefore, ex aequo, AG : sin a : : AE : EH;

: : sin C : R

;

whence R sin c = sin a sin C (3).

In the same manner it may be shown that R sin b = sin a sin

B(4).
Thirdly, AG : GF : : cos B : R (PI. Tr. Art. 33) ;

GF : GD : : R : cot a (PL Tr. Art. 35) ;

therefore, ex aequo * AG : GD : : cos B : cot a;

but AG : GD : : tan c : R;
therefore tan c : R : : cos B : cot a

;

and, consequently, R cos B = tan c cot a (5)

;

similarly, R cos C = tan b cot a (6).

Fourthly, cos B : R (AD) : : AG : GF

;

and, by similar triangles (VI. 4), AD : AE : : DG : AG

;

therefore, ex aequo, inversely, cos B : AE : : DG : GF

;

but DG : GF : : HD : HE (VI. 4)

;

therefore (V. 11), cos B : AE : : HD : HE

;

and, alternately (V. 16), cos B : HD : : AE : HE

;

but AE : HE : : sin C : R;
therefore cos B : HD : : sin C : R

;

and HD = cos b; therefore (VI. 16),

R cos B = cos b sin C (7)

;

similarly, R cos C = cos c sin B (8).

Lastly, cos a : R : : DG : DF
;

R : cos 6: : DF : DA;
therefore, ex aequo, cos a : cos b : : DG : DA,

: : cos c : R

;

consequently, R cos a = cos 6 cos c (9) :

and DG : DF : : cos a : R (AD)

;

DF : AF : : DA : AH

;

therefore, ex aequo, DG : AF : : cos a : AH :

also DG : AG : : DA : AE

;

AG : AF : : cot B : R (AD)

;

therefore, ex aequo, inversely, DG : AF : : cot B : AE

;

but DG : AF : : cos a: AH;
therefore cot B : AE : : cos a : AH ;

and, alternately, cot B : cos a : : AE : AH,
: : R : cot C

;

consequently, R cos a = cot B cot C (10).

These are Napier's Rules, and, as is easily seen, are all com-
prised in the enunciation above.

Otherwise

:

The demonstration of these rules is very much simplified by
adopting the definitions given in PL Trig. Art. 14, and writing
fractions instead of proportions ; thus, instead of A : B : : C : D,

Q
writing A = B -^ • For we have (the radius being unity)
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AG AG AF .-d. x.^^AD^AF *AD
= COt]Btan6

'

AE AE EH . „ ,smc =
ED

= EH
,

EB = sinCsina '

^c -o AG AG GD .

GF
=
GD ' GF

=
° a;

AE
and writing AG = GD .« for the proportion AG : GD : : AE

AD, derived from similar triangles, and GF = GD. jjt> we get

co:E
_Ag_ 'AD _ AE HD

GD HD
= sin C cos b

;

cos a =m =m • m = cos c cos 6;

AG DA
_DG AU AE AG AH

cos a-gp- DA = AF* AEA 'AH
= cot B cot C.

THIRD DEMONSTRATION.

A third demonstration is effected by exhibiting the particular

results of Props. 17, 18, 19, when the angle A is a right angle,

which will give six of the rules ; and then by combining these

results the remaining four are immediately obtained.

Since A = 90°, sin A = 1, cos A = 0, radius being unity.

Therefore, first (Prop. 17),
sin b : sin a : : sin B : 1 ; whence
sin b = sin a sin B (1)

;

similarly, sin c = sin a sin C (2).

Secondly, Since by Prop. 18, cos a = cos b cos c + sin b sin c

cos A ; we have
cos a = cos b cos c (3).

Thirdly, By Prop. 19, cos A + cos B cos C = sin B sin C
cos a

}

therefore, cos B cos C = sin B sin C cos a,

dividing by siu B sin C ; this gives

cos a = cot B cot C (4)

,

also, cos B + cos A cos C = sin A sin C cos b,

gives cos B = sin C cos 6 (5)

;

similarly, cos C = sin B cos c (6).

Fourthly, Having b as the middle part only once, we must have
it again.
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Now sin b = sin a sin B by (1),

and sin a = ——~ by (2),
sin C J v '

. T3 cos C /m
sin B = by (6),

cos c J x '

. , sin c cos C
therefore, sin t> = -r- n' sin (J cos c

= tan c cot C (7) ;

similarly, sin c = tan b cot B (8).

Lastly, cos B = sin C cos b by (5),

and sin C= by (2),
sin a J K '

cos a ,ov
cos b = by (3),

cos c ' v y

A r D Sin C C0S a
therefore, cos B=- —

sin a cos c

= tan c cot a (9) ;

similarly, cos C = tan b cot a (10).

These rules are so important, that we do not deem an apology
necessary for having given three different forms of the demon-
stration ofthem. It is worthy of remark that the radius is merely
a multiplier of the sine of the middle part, which can immediately
be substituted from the knowledge of the fact, that it requires a

rectangle to be equal to a rectangle; which, on the hypothesis

that cosines and tangents are lines, the product of two cosines or

two tangents amounts to. In practice, however, the radius is

usually considered to be unity.

t PROP. XXI.

If,from an angle ofa spherical triangle there be drawn a per-

pendicular to the opposite side or base, the rectangle contained

by the tangents of half the sum, and of half the difference of
the segments of the base, is equal to the rectangle contained by

the tangents of half the sum, and of half the difference of the

two sides of the triangle.

Let ABC be a spherical triangle, and let the arc CD be drawn
from the angle C, at right angles to the base AB

;

tan } (BD-t-AD) tan £ (BD-AD)=tan } (a+b) tan J (a-b).

By Napier's rules, E, cos a=cos CD cos BD,
R cos b=cos CD cos AD,

therefore, cos b : cos a : : cos AD : cos BD,
and cos b—cos a : cos fc-fcos a : : cos AD—cos BD : cos AD+
cos BD,
therefore, tan £ (a+b) tan i (a-b) : R2

: : tan J (AD+BD) tan J
(BD-AD) : R2 (PL Tr. Art. 25).

consequently, tan J (BD+AD) tan J (BD-AD)=tan £ (a+b) tan \
(a-b). Q. E. D.

Cor. Since when the perpendicular CD falls within the triangle,
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BD+AD=AB the 'base ; and when it falls without, BD—AD=
AB; therefore, in the first case,

tan J c tan J (BD—AD)=tan J (a+b) tan J (a—b) ;

and, in the second case,

tan J c tan £ (BD+AD)=tan J (a+b) tan J (a-&).

LIBRARY
HlVKBSiTT OF

CALIFORNIA.
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SECTION II.

PROBLEM I.

Solution ofright-angled spherical triangles.

This problem has sixteen cases, the solutions of which, when
the radius is unity, are contained in the following table, where

ABC is any spherical triangle, right angled at A. They are all

derived from Napier's rules.

GIVEN. SOUGHT. SOLUTION.

a and B.

b.

c.

C.

sin b=s'm ax sin B.
tan c=tan axcos B.

cot C=cos axtan B.

1

2

3

b and C.

c.

a.

B.

, tan c=sin fcxtan C.

tan b
tan a= tt.

cos U
cos B=cos bxsin C.

4

5

6

b and B.

c.

a.

a

sin c=tan ?>Xcot B.
sin b

sin a=—

—

ts.sinB
. ~ cos B

sin C= r •

cos

7

8

9

a and b.

c.

B.

C.

cos a
cos c= r.

cos

. ^ sin b
sm B=- .

sm a
cos C=tan bxcot a.

10

11

12

13

14

14

b and c.

a.

B.

C.

cos a=cos fcxcos c.

tanb
tan B=- .

sm c

„ tan c
tan C=-—r.

sm b

B and C.

c.

b.

a.

cos C
cos c=-—=5.

sin B
, cos B

cos b=-—~.
sin C

cos a=cot Cxcot B.

15

15

16
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TABLE for determining the affections of the sides and angles

found by the preceding rules.

AC and B of the same affection, . . (14) 1

If BCL/90 , AB and B of the same affection, otherwise

different, .... (15 Cor.) 2

If BC^90°, C and B of the same affection, otherwise dif-

ferent, ; . . . . (15) 3

AB and C are of the same affection, . . (14) 4
If AC and C are of the same affection, BC^90° otherwise

BC/-90 , (15 Cor.) 5
B and AC are of the same affection, . . (14) 6

Ambiguous, ...... 7
Ambiguous, ...... 8
Ambiguous, ...... 9

When BC^90°, AB and AC of the same ; otherwise of

different affection, .... (15) 10
AC and B of the same affection, . . (14) 11
When BC^90°, AC and C of the same ; otherwise of dif-

ferent affection, . . . . (15 Cor.) 12

BC^90°, when AB and AC are of the same affection,

(15 Cor. 1) 13
B and AC of the same affection, . . (14) 14
C and AB of the same affection, . . (14) 14

AB and C of the same affection, . . (14) 15
AC and B of the same affection, . . (14) 15
When B and C are of the same affection, BC^:90o

, other-

wise, BC/-90 , . . . . (15) 16

The cases marked ambiguous are those in which the thing

sought has two values, and may either be equal to a certain angle,

or to the supplement of that angle. Of these there are three, in

all of which the things given are a side, and the angle opposite to

it; and, accordingly, it is easy to show that two right-angled
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spherical triangles may always be found that have a side and the

angle opposite to it the same in both, but of which the remaining
sides, and the remaining angle of the one are the supplements of
the remaining sides and of the remaining angle of the other, each
of each.

Though the affection of the arc or angle found may in all the

other cases be determined by the rules in the second of the pre-

ceding tables, it is of use to remark, that all these rules, except
two, may be reduced to one, viz., That when the thing found by
the rules in the first table is either a tangent or a cosine ; and
when, of the tangents or cosines employed in the computation oj

it, one only belongs to an obtuse angle, the angle required is

also obtuse.

Thus, in the 15th case, when cos AB is found, if C be an obtuse

angle, because of cos C, AB must be obtuse ; and in case 16, if

either B or C be obtuse, BC is greater than 90°
; but if B and C

are either both acute, or both obtuse, BC is less than 90°.

It is evident that this rule does not apply when that which is

found is the sine of an arc ; and this, besides in the three am-
biguous cases, happens also in other two, viz., the 1st and 11th.

The ambiguity is obviated in these two cases by this rule, that

the sides of a spherical right-angled triangle are of the same
affection with the opposite angles.

Two rules are, therefore, sufficient to remove the ambiguity in

all the cases of the right-angled triangle in which it can possibly

be removed.

upoumA.



218 SPHERICAL TRIGONOMETRY.

PROBLEM II.

Solution of oblique-angled spherical triangles.

In this Table the references (c. 4) (c. 5), &c, are to the cases in

the preceding Tables (16), (17), &c, to the propositions in Sphe-
rical Trigonometry.

1

GIVEN. SOUGHT. SOLUTION.

The construction is the same
as in Prop. 16.

Cos A tan B = tan AD, gives

One of the AD (c. 2) ; therefore, BD
is known, and sin CD = sin

other A sin b (c. 1) gives CD ;

therefore, sin BD = tan CD

Two sides angles B. cot B (c. 7) ; B and A are

of the same or different

c, &,
affection, according as AB
is greater or less than BD

2

and the
(16).

AD, BD, and CD are found
included

The third
as above, and cos a m cos

CD cos BD (c. 13); ac-
angle A.

side
cording as the segments
AD and DB are of the

same or different affection,
a.

b and a will be of the same

3

or different affection (c. 13).

Cot ACD = cos b tan A (c. 3),

sin CD = sin A sin b (c. 1) ;

therefore, BCD and CD are

The side known, and cos BCD = tan

Two angles CD cot a (c. 5) ; a is less or

a. greater than 90°, according

A and C, as CD and BCD, i.e. (14)
as A and BCD are of the

4

and

6,

same or different affection.

BCD and CD are found as
) above ; and cos B = cos CD

the side The third sin BCD (c. 6) ; B and A
are of the same or different

between them. angle affection, according as CD
falls within or without the

B. triangle, that is, according

as ACB is greater or less

i

—

than BCD (16).
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TABLE—Continued.

Two sides

b and a,

and an

angle A

opposite to

one of them,

a.

Two angles

A,B,

and a side

o

opposite to

them,

B.

The angle

B
opposite to

the other

given side

The angle

C
contained by
the given

sides

b and a.

The third

side

c.

SOLUTION.

Sin a : sin b : : sin A : sin B
(17) ; the affection of B is

ambiguous, unless it can be
determined by this rule,

that according as AC -f BC
is greater or less than 180°,

A + B is also greater or

less than 180° (12).

From C, the angle sought,

draw CD perpendicular to

AB; then ACD and CD
may be found as in the last

case ; and cos BCD = tan

CD cot a (c. 12). ACD ±
BCD = ACB, and ACB is

ambiguous, because of the

ambiguous sign + or —

.

ACD is found as above, and
tan AD = cos A tan b (c. 1),

cos A = cos CD cos DB
(c. 13), e = AD ± BD

;

wherefore, c is ambiguous.

The side

a
opposite to

the other

given
angle A.

The side

c

adjacent to

the given
angles A, B.

Sin B : sin A : : sin b : sin a

(17) ; the affection of BC
is uncertain, except when
it can be determined by
this rule, that according

as A+B is greater or less

than 180°, a+b is also

greater or less than 180°

(12).

CD is found as in the last

case ; and tan AD=tan b

cos A (c. 2) ; and sin BD=
tan CD cot B (c. 7) ; BD
is ambiguous, and therefore
c=AD=*=BD may have four

values, some of which will

be excluded by this condi-

tion that c must be less

than 180°.
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TABLE—Continued.

10

GIVEN. SOUGHT. SOLUTION.

CD is found as "before ; and

Two angles

A,B,
and a side

b

opposite to

one of them,
B.

The third

cos AC=cot A cot ACD
cos B=cos CD sin BCD.
The affection of BCD is

angle

C.

uncertain, and therefore C
=ACD±BCD has four va-

lues, some of which may
be excluded by the condi-

tion that C is less than

11

180°.

The three

sides One of

12

and
a.

the

angles A.

cos a-cos b cos c

sm b sin c
v

'

The sides of the polar triangle

are the supplements of A,
B, C respectively. Find

The three One of by the last case the angle

of this triangle opposite to

angles the sides the side 180°-A, and it

will be the supplement of

A, B, C. a. the side of the given tri-

angle opposite to the angle

A, that is, of a (4) ; and
therefore a is found.

In the foregoing table, the rules are given for ascertaining the

affection of the arc or angle found, whenever it can be done.

Most of these rules are contained in this one rule, which is of ge-

neral application, viz., that when the thingfound is either a tan-

gent or a cosine, and of the tangents or cosines employed in the

computation of it, either one or three belong to obtuse angles,

the angle found is also obtuse. This rule is particularly to be at-

tended to in cases 5 and 7, where it removes part of the ambiguity.
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NOTES ON THE ELEMENTS.

DEFINITIONS.

I.

In the definitions a few changes have been made, of which it is

necessary to give some account. One of these changes respects

the first definition, that of a point, which Euclid has said to be,
" That which has no parts, or which has no magnitude. 11 Now,
it has been objected to this definition, that it contains only a nega-
tive ; and that it is not convertible, as every good definition ought
certainly to be. It is accordingly changed here by the addition of

an affirmative clause, which includes all that is essential to a point.

This addition is that which is given in Scarburgh's English Euclid
(fol. Oxf. 1705) as the interpretation of a sign (oypelov). A point
or sign is a certain position without any quantity.

II.

Euclid has introduced, as his third definition, the following,
11 the extremities of aline are points." Now, this is certainly not

a definition, but an inference from the definitions of a point and
a line. Accordingly, Playfair has judiciously put it down as a

corollary to the second definition, and has added, that the inter-

sections ofone line with another are points, as this affords a good
illustration of the nature of a point, and is an inference exactly of
the same kind with the preceding. The same thing has been done
with the fourth definition, where that which Euclid gave as a sepa-

rate definition is made a corollary to the fourth, because it is, in

fact, an inference deduced from comparing the definitions of a su-

perfices and a line.

III.

Euclid has defined a straight line to be a line which (as we
translate it) " lies evenly between its extreme points.' 1 Great di-

versity of opinion exists relative to this definition ; many persons

rejecting it altogether as useless, whilst others rest satisfied with
condemning its obscurity. The former class manifestly regard a
definition as the expression of some property characteristic of the
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thing defined, and accordingly require that the definition itself be
appealed to, not only to verify the terms of an enunciation but also

to regulate the manner of a demonstration. And finding that

Euclid " has not attempted to deduce from his definition any pro-

perty whatsoever of a straight line," they exclude it altogether

from the Elements, and substitute in its place a property which
characterises such a line. Playfair has done this, and it is neces-

sary to remind the reader that his object is to render the argument
as free as possible from any appeal to the senses, by referring for

the test of straightness, not to such an operation as that of look-

ing along a gun barrel, or reflecting on a plumb-line, but to the

mere intellectual comparison of the terms of the definition. In
this way, the knowledge of straightness comes subsequent to the

property, and is, in fact, collected from it. Thus it is immediately
perceived that a gun barrel is straight, and that a circular arc is

not.

The other class of objectors have not rightly considered the fact,

that Euclid is all along endeavouring to convey to another, by any
means, a notion of what the thing defined is. He is not seeking

to illustrate its properties ; and, accordingly, he adopts the phrase,

11 i'aov, evidently referring to the act of looking along a stick or a
wall. In his Catoptrica, the definition is so expressed as more
clearly to denote this circumstance. A straight line is that of
which all the intermediate points rest on the extremities, Plato,

also referring to the same operation, makes a straight line that

whose extremities darken its middle points. From which it is

manifest, that the obscurity which exists in the definition, as Euclid

delivered it, arises from the necessity of expressing the idea in a
simple phrase.

It will be seen that Playfair's definition differs slightly from
Euclid's axiom, and this difference is assuredly in favour of the

former. For Euclid has found it necessary to admit two axioms,

as equivalent to this definition, viz., Axiom x., Two straight lines

cannot inclose a space ; and Axiom xi., all right angles are equal
to one another. It is true Playfair retains the latter, but, as we
shall show in its proper place, unnecessarily, inasmuch as, with his

definition, it is a proposition capable of demonstration, which, with
Euclid's axiom, it is not.

The definition of a plane is given from Dr Simson ; and it is a

paraphrase of Euclid's. To lie evenly to the straight lines within

itself, is evidently such (as Scarburgh remarks) that, " if we im-

agine straight lines to be everywhere seated in a plane superfices,

the straight lines shall wholly, and in every part, touch the super-

fices, so as to be just in it, with a mutual agreement to one another.

As Sextus the sceptic cites, p. 101, lib. iii., adversus Geometras,

E^r/Vgdoj/ Tvy%a,vav ol ij xotTKyoftivY) evdeia ttoioi ro7g p'iQiai dwreret.

Planum id esse per quod circumacta linea recta omni ex parte

eidem congruit."
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XXV.

A part of the definition of a square is superfluous, since it is

shown in the corollary to Prop. 46 of this Book, that every paral-

lelogram, which has one right angle, has all its angles right angles.

For a more critical examination of the definitions, the reader is

referred to the Editor's Lectures, On the Principles of Demon-
strative Mathematics.

AXIOMS.

Among the Axioms there have been made only two alterations.

The 10th Axiom in Euclid is, that two straight lines cannot in-

close a space, which, having become a corollary to our definition

of a straight line, ceases of course to be ranked with self-evident

propositions. It is
;
therefore, removed from among the Axioms,

and that which was before the 11th is accounted the 10th.

The 12th Axiom of Euclid is, that if a straight line meets two
straight lines, so as to make the two interior angles on the same
side of it, taken together, less than two right angles, these straight

lines being continually produced, shall at length meet upon that

side on which are the angles which are less than two right angles.

Instead of this proposition, which, though true, is by no means
self-evident, another that appeared more obvious, and better en-

titled to be accounted an Axiom, has been introduced, viz., that

two straight lines, which intersect one another, cannot be both

parallel to the same straight line. On this subject see the note

to the 29th Proposition of this Book.

X.

This Axiom is a proposition capable of demonstration, by our
definition of a straight line. Let ABC, fig. 1, EBC, fig. 2, be
right angles : they are equal to one another.

For, if not, let EBC be the greater
; produce CB in both figures

to D ; and place fig. 1 Fig. 1.

upon fig. 2, so that the a
point B of the one shall

fall on the point B of the
other, and the straight

line BC on the straight

line BC; then (Def. 3)
the straight line BD of 5 B c D a c

the one shall coincide with the straight line BD.of the other. But,
since the angle EBC is greater than the angle ABC, the straight

line BA shall lie between BE and BC, as in fig. 2. Now, the angle
ABC is equal to the angle ABD, fig. 1 (by Def. 7) ; therefore the
angle ABC is equal to the angle ABD, fig. 2. But EBC is greater
than ABC, therefore EBC is also greater than ABD ; and EBC is

equal to EBD (Def. 7) ; therefore, also, EBD is greater than ABD,
the less than the greater, which is impossible. Therefore the
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angle EBC is not greater than the angle ABC. In the same way
it may be shown that it is not less ; therefore, it is equal to it.

Q. E. D.

PROPOSITIONS.

The propositions of this Book may be divided into two parts

;

the first part extending to the 26th Prop., and embraces the com-
parison of lines, angles, and triangles, so far as it can be done
without the aid of parallels ; the latter part completes their com-
parison, and gives these properties which are dependent on pa-
rallels.

The student will do well to omit Props. 2 and 3, regarding them
as additional postulates. He may, also, at the first reading, omit
Props. 44 and 45 of this Book.

PROPS. IV., VIII., and XXVI. B. 1.

The fourth, eighth, and twenty-sixth propositions of the first

book are the foundation of all that follows with respect to the com-
parison of triangles. They are demonstrated by what is called the

method of supraposition, that is, by laying the one triangle on
the other, and proving that they must coincide. An appeal, direct

or indirect, to this process is made in the demonstration of every

proposition of Euclid, so that the eighth axiom, magnitudes which
coincide with one another, that is, which exactly Jill the same
space, are equal to one another, may be said to be the definition of

equality.

In the fourth proposition, it is supposed to be demonstrated
that the areas of the triangles are equal, which can hardly be said

to be the case, unless we admit with Proclus, that Euclid confined

himself to lines in a plane, and, therefore, assumed as necessary

to his enunciation that the planes must coincide. This assumption,

whether made by Euclid or not, is unnecessary ; for it can be

proved from our definition of a plane, that iftwo planes coincide

in three points, not in the same straight line, they must coincide

altogether ; thus, let the triangle ABC be placed on the triangle

DEF, as in the proposition, then the D A
straight line AB falls upon the straight

line DE and coincides with it ; BC with
EF, and CA with FD. If the plane
ABC do not coincide altogether with the

plane DEF, let G be a point in the

plane ABC, which is not also in the

plane DEF. Take any point H in the E ^ v

straight line AB, join HG ; the straight line HG is in the plane
ABC (Def. 5) ;

produce it to meet the straight line AC, which is

in that plane in K. Then the points HK are also in the straight
lines DE, DF, and are, consequently, in the plane DEF ; there-
fore the straight line HK is also wholly in that plane (Def. 5),
and the point G which is in that straight line is in the plane DEF.
-iiut it was supposed not to be in that plane, which is absurd. In
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the same way it may be proved that every point which is in the

plane ABC is also in the plane DEF. Therefore, &c. Q. E. D.
This demonstration proves likewise that the areas are equal in

the 8th and 26th propositions.

The 8th proposition is proved directly by Proclus in the fol-

lowing manner :

—

Let ABC, DEF a
be two triangles,

which have the sides

BA, AC equal to the

two ED, DF re-

spectively ; and like-

wise the base BC
equal to the base

EF ; the triangle

ABC shall be equal

to the triangle DEF
in every respect.

Let the triangle DEF be placed so that the straight line EF
shall fall on the straight line BC and coincide with it ; but let the

point D fall below the triangle ABC, as at G, in the same plane

with it. Join AG ; then, because CA is equal to CG, the angle

CAG is equal to the angle CGA (I. 5) ; and because BA is equal

to BG, the angle BAG is equal to the angle BGA ; therefore,

adding equals to equals (I. Def. 4), the whole angle BAC is equal

to the whole angle BGC. Consequently, the two triangles BAC,
BGC have two sides, and the contained angle of the one equal

respectively to two sides and the contained angle of the other,

and are therefore (I. 4) equal in every respect. Therefore, &c.

Q. E. D.

PROP. VII.

Dr Simson has very properly changed the enunciation of this

proposition, which, as it stands in the original, is considerably

harsh. His enunciation, with little variation, is retained here.

This proposition contains two cases, and yet in all the MSS. and
the early editions, only one is given. That both cases were ori-

ginally in Euclid has been argued by Simson from the existence

of the second case of Prop. 5, which Proclus expressly states was
added on account of this proposition. What purpose it served

does not appear, since Proclus himself gives a separate demon-
stration of the second case, which we have adopted. Peyrard,

however, finds that by completing two figures, and producing the

lines BC, BD in both, viz., in the one figure downwards, and in

the other upwards, the demonstration which Euclid gives is com-
plete without changing a single word in the Greek text.

PROP. XXL
It is essential to the truth of this proposition, that the straight

lines drawn to the point within the triangle be drawn from the
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two extremities of the base ; for if they be drawn from other

points of the base, their sums may exceed the sum of the two sides

of the triangle in any ratio less than that of two to one, as is de-

monstrated by Pappus Alexandrinus in the third book of his Ma-
thematical Collections.

PROP. XXII.

Some writers object to the demonstration of this proposition,

because it contains no proof that the

two circles made use of in the con-

struction cut one another. This ob-

jection may be removed in the follow-

ing manner, which is nearly the same
as is given by Proclus. If the circles

do not cut one another, the one must
lie either wholly without or wholly

within the other. The one cannot lie

wholly without the other, for then FD
and GH together would be less than

FG, which they are not ; neither can the one lie wholly within

the other ; for if the circle whose centre is G lie wholly within

the circle whose centre is F, FG and GH together would be less

than FD, which they are not. Therefore, &c. Q. E. D.

PROP. XXIV.

In this proposition, the Greek text gives only one case, whereas

Proclus, and, after him, Campanus,
Commandine, and others, make
three. To avoid this, Simson in-

troduces the restriction, that the

side on which a new triangle is

constructed shall be that u which
•is not greater than the other ;" but
he neglects to show how this re- ^
lieves him from the necessity of

three cases. He ought to have proved that the point F will, on
that account, lie below the line EG. This is easily effected thus :

Let DF, produced if necessary, cut EG in the point H ; then
because DE is not greater than DG, the angle DGE is not greater

than the angle DEG (I. 5 and 18). But the angle DHG is greater
than the angle DEG (I. 16) ; therefore DHG is greater than
DGH ; and therefore, also, the side DG is greater than the side

DH (I. 19). But DF is equal to DG, therefore, also, DF is

greater than DH, and the point H lies between D and F. Q. E. D.

PROPS. XXVIL, XXVIIL, XXIX.
The subject of parallel lines has caused more trouble and vexa-

tion than any other in Elementary Geometry. It has accordingly
been treated in a variety of ways, none of which can be said to

have given entire satisfaction. The difficulty consists in con-
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verting the twenty-seventh and twenty-eighth of Euclid, or in

demonstrating that parallel lines, or lines which do not meet one
another, when they meet a third line, make equal angles with it

on opposite sides. This difficulty has been attempted to be got
over in three different ways. 1. By a new definition of parallel

lines. 2. By introducing a new axiom concerning parallel lines,

more obvious than Euclid's. 3. By reasoning from the definition

of parallels, and the properties of lines already demonstrated,
without the assumption of any new axiom. 1. One of the defi-

nitions which has been substituted for Euclid's is, that straight

lines are parallel, which preserve always the same distance from
one another. It is adopted by Wolfius, Boscovich, and others,

and ingeniously, but perhaps undesignedly, involves a new axiom
of a straight line, viz., the possibility of its keeping always at the

same distance from another straight line. And this is, in fact,

just such an axiom as is required for the subject. For it may be
remarked that the difficulty about parallels arises from the cir-

cumstance that the tests of straightness and of parallelism are

opposed to each other
; the former requires that two lines shall

be placed together, the latter, that they shall not. If then we
assume two properties of a straight line, first, that two such lines,

coinciding in two points, shall coincide altogether ; and, secondly,

that two such lines being equidistant in two points, shall be equi-

distant altogether, it is manifest that we are provided with two
tests of rectitude (or two consequences of it), which, taken to-

gether, amount to the same thing in fact, and very flimsily con-

ceal the same in form, as Euclid admits, viz., one property of
rectitude and another of parallelism.

Similar remarks apply to all the definitions of parallels which
have been substituted for Euclid's, with a view to obviate the

necessity of introducing an axiom.
2. Those who have substituted another axiom, of a character

different from Euclid's, have, for the most part, adopted a far

more difficult one to deal with, so that, as such a proceeding
neither relieves geometry of its supposed blemish, nor tends to

the simplification of its existing processes, I may be allowed to

pass the subject by altogether, merely remarking that Playfai

has judiciously adopted from Ludlam that which appears to bt>

the best form in which this axiom can be exhibited.

3. The attempts which have been made to deduce the properties

of parallels from the definition, and from the properties of straight

lines already demonstrated, without any further aid, are of two
kinds ; the one such as rest on the demonstrations of common
geometry ; the other such as appeal to the consideration of limits.

The former appear, in all cases, to have originated in a miscon-

ception of the nature of the difficulty to be overcome, and exhibit,

in consequence, a lamentable demonstration of the folly of at-

tempting impossibilities. A critical examination of a great num-
ber of the attempts to which we refer, will be found in Col.

Thompson's Geometry without Axioms. A transition from pro-

perties depending en a necessity for coinciding, to others depend-
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ing on a necessity for not coinciding, cannot possibly be effected

(as we conceive) by means of elementary geometry. It may,
however, be effected in a logical manner, by having recourse to

the doctrine of limits or of infinites, where a very small magni-
tude is repeatedly multiplied, so as to make a finite magnitude,
or a finite, so as to make one indefinitely great, which is the latter

mode of proceeding mentioned. But as this kind of proof is un-

suited to our present purpose, we shall simply refer the reader to

Legendre's Geometry, and the Penny Cyclopaedia, Art. Parallel.

Upon BC describe

PROP. XXXV. and following

These propositions aiford the best illustration of the method of

supraposition, which Euclid exclusively adopts in his elementary

demonstrations. For instance, in Prop. 35, in the case where the

angular point E of the one parallelogram lies within the side

AD of the other; the triangle EAB is simply removed from the

parallelogram ABCD, and placed in FDC, thus converting it

into the parallelogram FEBC. Similar remarks apply to all the

other cases.

PROP. XLVIL

The following mode of demonstrating this proposition exhibits

more clearly to the eye the equality of the square described on
the hypotenuse of the triangle, with the sum of the squares de-

scribed on the sides.

Let ABC be a triangle right angled at A.

the square BDEC
;
produce AC to F ; and

through D and E draw DG and EF pa-
rallel to AB ; and through B and E draw
BH, EI parallel to AC.

Because BH is parallel to AC, and AB
meets them, the angles ABH, BAC are

(I. 29) equal to two right angles ; but BAC
is a right angle, therefore ABH is a ri^ht

angle. Similarly, it may be shown that

the angles AGH, AFE are right angles.

And because the right angle DBC is equal

to the right angle ABH, take away the common part HBC, and
the remaining angle DBH is equal to the remaining angle ABC

;

also the angle BHD is equal to the angle ABH (I. 29), which is

equal to the angle A, each being a right angle
; therefore the

triangles DBH, ABC have two angles of the one equal to two an-
gles of the other, each to each, and the sides DB, BC opposite to

equal angles in each equal ^therefore the triangle DBH is equal
to the triangle ABC, in every respect, and the side BH is equal
to the side AB. Hence, ABHG is a square, and it is the square
described on AB. Similarly, it may be shown that the triangle

EFC is equal to the triangle EDI ; and, consequently, that EIGF
is a square. Again, because the angles ABC and ACB make up



NOTES. 229

a right angle (I. 32), and the angles ACB, ECF also make up a

right angle (I. 13) ; take away the common angle ACB, and the

remainder ABC is equal to the remainder ECF ; and the angles

at A and F are right angles ; therefore, as before (I. 26), the tri-

angles ECF, ABC are equal in every respect, and EF is equal to

AC. Hence, EFGI is the square described on AC ; and BHGA
has been shown to be the square described on AB. Therefore,

the figure ABH1EFA is the sum of the squares described on the

sides AB, AC.
Bat it has been shown that the triangles DBH, DEI are equal

respectively to the triangles CAB, CEF. To each of these equals

add the figure BHIECB ; then the square BDEC is equal to the

figure ABHIEFA ; that is, the square described on BC is equal

to the sum of the squares described on AB, AC. Therefore, &c.

Q. E. D.

BOOK II.

PROPS. XII. and XIII.

These propositions, which are of great use in trigonometry,

may be included under the following enunciation. In any tri-

angle, the square of the side subtending an angle differs from
the sum of the squares of the sides which contain that angle, by
twice the rectangle contained by one of them,, and the line inter-

cepted between^ a perpendicular on it (produced if necessary)

from the opposite angle and the given angle.

The proof may be exhibited briefly thus

:

AB2=AD2+DB2
(I. 47) ; but DB2 differs from DC2+BC2 by

2BC.CD (II. 4 and 7) ; therefore,

AB2 differs from AD 2+DC2+BC2 by 2BC.CD.
Now AD 2+DC2=AC2

(I. 47) ; therefore,

AB 2 differs from AC2+BC 2 by 2BC.CD. Q. E. D.
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BOOK III.

DEFINITIONS.

The definition which Euclid makes the first of this book is that

of equal circles, which he defines to be " those whose diameters

are equal." If this be supposed to assert that circles which have
equal diameters have equal areas, it is a proposition capable of
demonstration by the method of supraposition, employed in B. I.

Prop. 4. See the note on that proposition.

PROP. IX.

In the Greek text we find two demonstrations of this proposi-

tion each open to objection. Editors have usually omitted either

the one or the other of these. Simson retains that which is given
in the text, but it is evidently imperfect, since no use whatever is

made of the line DA in the demonstration. The proposition is,

in truth, a corollary to Prop. 7. For since it is there proved that

only two equal straight lines can be drawn from any point within

the circle which is not the centre to the circumference, it neces-

sarily follows, that if more than two equal straight lines can be
drawn from a point, that point is the centre.

PROP. XI.

In this proposition it is proved only that the line which joins

the centres of the circles, being produced in the direction of the

centre of the smaller circle, passes through a point of contact.

PROP. XIII.

The demonstration here given is not in the Greek text, but is

the second part of that which Campanus has translated from the

Arabic. Dr Simson' s reason for preferring it to Euclid's is,

" that it is easier to imagine that two circles may touch one an-

other within, in more points than one on the same side, than upon
opposite sides of them ; but the construction in the Greek text

would not have suited with this figure so well, because the centres

of the circles must have been placed near the circumferences."

This is manifestly an insufficient reason for rejecting a demon-
stration. Another and a better may be urged, in that Euclid as-

sumes the line which joins the centres of the two circles to pass

through both points of contact, which has not been proved in

Prop. 11. His argument is this :
" because the line passes through

both points of contact, it is bisected by each of the centres, which
is absurd." The demonstration given in the text is equally faulty,

inasmuch as it is assumed that there can be but two points of

contact. This may, however, be very readily proved by Prop. 9.



NOTES. 231

PROP. XX.

It has been remarked of this demonstration, that it takes for

granted that if two magnitudes be double of two others, each of
each, the sum or difference of the first two is double of the sum
or difference of the other two, which are two cases of the 1st and
5th of Book V. The proof is easily given.

Let A and B, C and D be four magnitudes, such that A=2U,
and B=2D; then A+B=2 (C+D). For, since A=C+C, and
B = D + D, adding equals to equals, A+B= (C+ D) + (C+D)=
2 (C+ D). So also, if A be greater than B, and therefore C
greater than D, taking equals from equals, A—B= (C—D) +C—D=
2 (C—D). The axiom which is made the basis of this demonstra-
tion is that which is the foundation of all arithmetic, a total ope-

ration is rightly effected by a series ofpartial operations. Thus,
a number of A's added to an equal number of B's is the same thing
as a set containing each of the A's added to each of the B's.

PROP. XXI.

The first case only is given in the Greek text. The necessity

for a second case arises from Euclid's inadequate definition of an
angle, which excludes angles equal to or greater than two right

angles. By admitting angles of any degree of magnitude, it is

proved in Prop. 20 that the angle at the centre is double the angle
at the circumference, even when the latter is greater than a right

angle ; and, consequently, the first case alone of this proposition

is required.

The same hypothesis renders Prop. 22 manifest. For the angle
at A is the half of one of the angles at the centre, and the angle

at C half of the other. Therefore the angles at A and C together

are half of the whole angle at the centre ; that is, the half of four

right angles.

This hypothesis also renders Prop. 31 evident without demon-
stration as a Cor. to Prop. 20.

LIB
I 17JV r-rr T ,

BOOK V.
v &HS ]'i

DEFINITIONS.

III. and VI.

U$

These definitions of ratio and proportion are the popular expo-
sition of the nature of those relations. They are, however, not

made use of by Euclid in any of his demonstrations. Simson, in-

deed, conjectures that they are the addition of some less skilful

editor. On this matter, it is impossible to attain any certainty.
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We may well enough imagine that Euclid was desirous of setting

down the original conception of proportion, although the genera-

lity of his processes excluded its application. At any rate, it is

highly advisable for the student to strive, in the first place, to en-

tertain clear notions of the nature of Euclid's demonstrations, by
applying them to arithmetical quantities ; for he will then see that

the process employed is a remarkably simple one, and thoroughly

in unison with the most popular conception of comparison. I shall

consequently insert, as a comment on definitions 5 and 7, an ex-

position of the nature of proportion, with its application to the

demonstration of the propositions of this book, so far as they in-

clude commensurable quantities only.

Y. and VII.

These definitions, which are the foundation of all that follows

them in this Book, express the condition requisite in order that

four magnitudes may be proportional, or the contrary. The very

general terms in which the fifth definition is couched render it

difficult to be understood by students. To obviate this difficulty,

it is requisite, as a preliminary step, to show how it arises out of

the arithmetical idea of proportion, which is easy enough to under-

stand. Our simplest conception of proportionality makes it, in

fact, a comparison of equimultiples. Thus, a shilling has to

penny the same ratio that a foot has to an inch, because the former

is twelve times the latter in both cases. So also, a shilling has to

a pound the same ratio that a hundredweight has to a ton, because

the latter is twenty times the former in both cases. Nor is it more
difficult to understand, although by no means so easy to express

the reason, that a shilling has to fivepence the same ratio that a

foot has to five inches ; or that seven shillings has to a pound the

same ratio that seven hundredweight has to a ton. Euclid, how-
ever, proceeds on a simple and consistent plan. Having seen

that the reason why a shilling has to a penny the same ratio that

a foot has to an inch is because the first magnitude is twelve times

the second, and the third also twelve times the fourth ; and the

reason why a shilling has to a pound the same ratio that a hundred-

weight has to a ton is because twenty times the first make up the

second, and twenty times the third also make up the fourth, he is

naturally led to express the reason why a shilling has to fivepence

the same ratio that a foot has to H\e inches, by saying, that five shil-

lings make up twelve fivepences, and five feet also make up twelve

five inches. In the same way, seven shillings has to a pound the

same ratio that seven hundredweight has to a ton, because twenty

of the first make up seven of the second, and twrenty of the third

also make up seven of the fourth. It is clear, therefore, that if all

magnitudes of the same kind could be multiplied so as to be made
equal, Euclid's fifth definition would have been, If there be four
magnitudes such that a multiple of the first is equal to a number
of times the second, and the same multiple of the third equal to

the like number of times the fourth ; then the first of the magnU
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tildes is said to have to the second the same ratio that the third

has to the fourth.
Magnitudes which can be multiplied so as to become equal are

termed commensurable with one another ; and magnitudes which
cannot be multiplied so as to become equal are termed incom-
mensurable with one another. The side and diagonal of a square

are of the latter class. Notwithstanding the circumstance, that

two such magnitudes cannot be multiplied so as to become equal,

we can compare them mentally well enough. For example, it is

evident that the side of one square is to its diagonal as the side of

another square to its diagonal. But to give a test by means of

which the fact of their proportionality may be exhibited is not so

easy. Euclid, however, adopts the very simplest mode of doing
this, viz., by admitting inequality of multiples as his mode of com-
parison. If a multiple of the first can be made equal to a number
of times the second, then the same multiple of the third will be
equal to the like number of times the fourth ; but if it cannot, we
may still obtain a test of proportionality by comparison of their

multiples in the following manner : If one multiple of the first be
greater than a certain number of times the second, the same mul-
tiple of the third is greater than the like number of times the

fourth ; and if another multiple of the first be less than a certain

number of times the second, the same multiple of the third is like-

wise less than the like number of times the fourth. By assuming
that the like relation (viz., excess or defect) amongst the multiples

of the first and second, and the same multiples of the third and
fourth respectively exists for every possible set of multiples, we
have a sufficient condition of proportionality.

We repeat, then, that for commensurable magnitudes the test of
proportionality is equality of corresponding multiples ; but for

incommensurable magnitudes like inequality of corresponding
multiples, by every possible multiplication. Thus, 8 : 6 : : 24 : 18,

because three times 8 is equal to four times 6, and likewise three

times 24 equal to four times 18. Again, if ABC
be an equilateral triangle, and CD be drawn per-

pendicular to the base, the square described upon
AC is to the square described upon CD as the
angle at A to half a right angle.

For, since AD=DB (I. 26), AD=£ AC; con-
sequently, the square described on AC is equal to a

-

four times the square described on AD (II. 8, Cor. 2). But AD2+
CD 2=AC2

(I. 47), therefore CD 2=3AD 2 or the square described
on AC contains four, and the square described on CD three of the
square described on AD ; and, therefore, three times the square on
AC is equal to four times the square on CD. Again, three times
the angle A is equal to two right angles (I. 32), and four times
half a right angle is two right angles, therefore three times the
angle A is equal to four times half a right angle. Consequently,
since three times the first is equal to four times the second, and
three times the third equal to four times the fourth, the first is to
the second as the third to the fourth.
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But if the magnitudes are not commensurable, or are not known
to be commensurable, we cannot find such multiples as shall be
equal to one another. In this case we require to take multiples

which are unequal, and to compare, not one set alone but every
possible set. Otherwise we have no test of proportionality of the

magnitudes. Thus, in Prop. I. B. VI., it is easily seen that what-
ever number of bases CB, BG, GH are taken each equal to CB,
the same number of triangles ACB, ABG, AGH will be obtained

each equal to ACB, and similarly of CD and ACD.* It is also

evident, that whether the base HC exceed or fall short of the base

CL, the triangle AHC will do the same relative to the triangle

ACL, whatever be the multiples taken. The test is, therefore,

not equality of multiples, but like inequality of multiplesfor every

conceivable multiplication, and by satisfying it, the four magni-
tudes are shown to be proportional. In a similar way, a want of

proportionality is detected ; thus, 6 : 7, 4 : 5. Take three times 6
and twice 7 ; then three times 6 is greater than twice 7, but three

times 4 is also greater than twice 5. and these multiples fail to

detect the want of proportionality. They do not, however, prove
the numbers to be proportional; for the relation is only shown to

hold good for one set of multiples, and not for any whatever. In

fact, if we take eleven times 6 and nine times 7, eleven times 6 is

greater than nine times 7, but eleven times 4 is less than nine

times 5 ; consequently, the four numbers are not proportionals

;

but (Def. 7) 6 has to 7 a greater ratio than 4 has to 5.

A few words will explain the nature of the propositions of this

Book. They consist in deducing, 1. proportionality from property
;

2. property from proportionality ; 3. proportionality from pro-

portionality ; 4, 5, 6, the same relative to want of proportionality.

1. Proportionality from property. Prop. 7 is of this kind, and
the argument is as follows : On account of the equality of A and
B, if any multiple whatever of A exceed a multiple of C, the same
multiple of B does so too ; and if any multiple whatever of A fall

short of a multiple of C, the same multiple of B does so likewise
;

therefore, by the definition, A : C : : B : C.

2. Property from proportionality. Prop. 9. From the given

proportion arises this relation, that equimultiples of A and B lie

always both on the same side of any multiple of C. If, then, A
and B be unequal, by taking a sufficiently large multiplier, their

multiples may evidently be made to diiFer by a magnitude greater

than C ; and, consequently, one of them must be greater and the

other less than a certain multiple of C, which is contrary to the

hypothesis. Therefore, A and B are equal.

3. Proportionality from proportionality. Prop. 4. On account

of the given proportionality, certain relations exist betwixt the

multiples ; but these are shown to be relations between the mul-
tiples of the magnitudes whose proportionality it is required to

establish, and the latter multiples are any whatever; consequently,

the latter magnitudes are proportionals.

* The figure gives the same multiple of BC and CD, which is, of course,
not necessary.
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Prop. 11. On account of the proportionality of A, B, C, D, a
certain relation exists between their multiples ; and on account of

the proportionality of C, D, E, F, a like relation exists between
their multiples. Having then two relations, we combine them
arithmetically, and obtain a third relation of the same kind, be-

tween the multiples of A, B, E, F, which, as the multiples are any
whatever, shows these magnitudes to be proportionals.

4. Want of proportionality from property. Prop. 8. The de-

monstration consists in showing arithmetically, that if two unequal
magnitudes be sufficiently multiplied, the difference of their mul-
tiples may be made greater than any given third magnitude, so tha*

one multiple of this last lies between them ; and, therefore, b^

Def. 7, the want of proportionality is established.

Similarly of the other cases.

We proceed now to the demonstration of the propositions for

commensurable magnitudes, applying the definition given at p. 232.

Props. 1, 2, and 3, are simply arithmetical propositions, and
may be taken for granted.

Prop. 4 Let A : B : : C : D ; then mA:nB::mC: nD,
Take^? times mA == q times wB ; then (Prop. 3) p times mA =

pm times A, and q times nB = qn times B ; therefore pm times

A = qn times B. Now, since A : B : : C : D, and pm, times A =
qn times B, it follows, from the definition, that pm times C = qn
times D. And this last equality is, by Prop. 3, converted into p
times mC = q times wD. We have, therefore,

p times mA = q times nB, and p times mC = q times nD ; whence,
by the definition mA : nB : : mC : nD.

t may not be deemed superfluous to add, that the order in

which the demonstration proceeds is as follows :

We commence by taking multiples of the fifth and sixth mag-
nitudes, and our object is to connect them with like multiples of

the seventh and eighth. Now the fifth and sixth % 3
are arithmetically connected with the first and se- ,,

—

~\ /o~~T\
cond ; our first step, then, leads us to these ; but >-' Jr > ' J'
the multiples of the first and second are, by the ^ l » *il—

"

definition of proportion, connected with those of * *

the third and fourth ; we therefore pass to the latter ; and these

are again connected arithmetically with the seventh and eighth.

We are thus led to connect the multiples of the fifth and sixth

with the multiples of the seventh and eighth ; and the result so

obtained proves that the four are proportionals.

Props. 5 and 6 are arithmetical.

Prop. 7. Let A = B, then A : C : : B : C.

Take mA = tiC. Then, because A = B, mA = wB
;
but mA =

v 0, therefore mB = wC. We have, therefore, mA = nQ
}
and mB

as wC, which establishes the proportion.

Prop. 8. A + B : C ^ A : C.

Take mA = nC ; then since m (A + B) 7^ mA, m (A + B) x"

nC, and we have
m (A + B) T7 nC, whilst mA = nC, whence (Def. 7) the want of

proportionality is established
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Prop. 9. If A:C: : B : C, A = B.

Take mA == nC ; then, because of the proportionality, we have
mB = nC. Consequently, mA == mB, and A = B.

Prop. 10. As Euclid's.

Prop. 11. If A : B : : C : D (1), and also C : D : : E : F (2),
then A : B : : E : F (3).

Take mA = nB ; then, on account of (1), mC = nD ; hence, also,

on account of (2), mE = nF.
We have, therefore, mA = nB, and mE = nF, which establishes

the proportion (3).

Prop. 12. If A : B : : C : D (1), and C : D : : E : F (2)

;

then, also, A:B::A + C + E:B + D+F (3).

Take mA = nB ; then, on account of (1), mC = nD ;

hence, also, on account of (2), mE = nF
;

therefore, by addition,

mA + mC + mE = nB + nD -f- nF, or, which is the same thing

(Prop. 5, Cor. 1),

m (A + C + E) = n (B + D + F). We have, therefore, mA =
nB, and m (A + C + E) = n (B + D + F), which establishes the

proportion (3).

Prop. 13. If A : B : : C : D (1), but C : D ^ E : F (2)

;

then, also, A:B/-E : F (3).

Take mE = nF ; then, on account of (2), mC ~7 nT>, and, there-

fore, on account of (1) , mA ^ nB. We have, therefore, mA 7^

nB, and niE = nF, whence the want of proportionality (3) is esta-

blished.

Props. 14 and 15 are self-evident for commensurables.
Prop. 16. If A : B : : C : D, then A : C : : B : D.
Take mA = r?B, and also pA = ^C ; then, since A : B : : C : D,

we have, by the definition, mC = nt> ; and it remains for us to

establish by arithmetic the equality of pB to qT). This may be

effected thus

:

since mA = nB, p times mA = p times nB ; and
since mC = nD, q times mC = q times nD ; also,

since pA = gC, m times pK = m times ^C.

But m times pA = p times mA, which has been shown equal to

p times nB ; and m times qC = q times mC, which has been
shown equal to q times nD ; therefore p times nB = q times nD,
or n times pB = n times qD ; and, consequently, pB == #D. We
have, therefore, pA = qC, and pB = #D, whence, by the defini-

tion, A : C : : B : D.
Prop. 17. If A + B : B : : C + D : D (1), then

A : B : : C : D (2).

Take m (A + B) = nB ; then, on account of (1), m (C + D) =
nD.
Now, since m (A + B) = mA + mB (V. 1, Cor.) mA + mB =

nB ; and, by taking equals from equals, mA = nB — mB,
= (n — m) B (V. 6).

Similarly, it may be proved that mC = (n — m) D.

We have, therefore, mA = (n — m) B and mC = (n — m) D,

which proves the truth of (2).
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Prop. 18. If A : B : : C : D (1) ; then A + B:B::C + D:D
(2). Take mA = nB, then, on account of (1), mC = nD.
And because mA = nB by addition, mA + iriB = ?zB + m'B.

But mA + mB = m (A + B) (V. 1, Cor.), and nB + mB = (n + m)
B (V. 2, Cor. 2) ;

therefore m (A + B) = (n + m) B.

Similarly, it may be proved that m (C + D) = (n + m) D. We
have, therefore, m (A + B) = (n + m) B and m (C + D) = (n -J- m)
D, which pro\es the truth of (2).

Prop. ltf. If A : B : : C : D (1) ; then A-C:B-D::A:B
(2)-

Take mA = nB ; then, on account of (1), mQ = riD, and since

C is less than A, mQ is less than mA ; similarly, nD is less than
nB ; therefore, by subtraction,

mA — mC = nB — ?iD, that is (V. 5)

m(A-C)=n(B-D).
We have, therefore, m (A— C) = n(B—D) and n*A= nB, which

establishes (2).

These propositions will suffice to give the student an acquaint-

ance with the nature of the argument. After he has carefully

studied them, he may proceed with the text of this Book. Those
who desire a critical examination of the fifth definition may con-

sult the Editor's Lectures, already referred to.

PBOP. IV.

In the construction preceding the demonstration of this propo-
position, the words A sTv%e

f
&ny whatever, are twice wanting in

the Greek, and have been omitted, or placed where they are not

admissible, by the majority of editors, not excepting Playfair.

The proposition is given correctly in the text of the present ed'-

tion. It is also correct in Scarburgh's English Euclid, fol. Oxf
1705, and in Simson's Euclid. It is very remarkable that

words on which the whole force of the argument depends should

be omitted or misplaced in all the Greek manuscripts, and in al-

iitost every edition in whatever language. It is evident, first,

that the multiples of A, B, C, D are not any whatever : for if m
is an even number (as it may be) then no odd multiple of A can
have been taken ; it is also evident, secondly, that the multiples

of mA, nB, mC, nD are any whatever. And this is what the

proposition requires; for if four magnitudes are proportionals

the relation exists between any multiples which may happen to be

taken ; but in order to establish the fact of the proportionality of

four magnitudes, it is requisite to show that this relation exists

for any conceivable multiplication.

PROP. F.

Playfair has omitted two propositions which usually appear as

part of this Book, viz., Prop. A of Simson, and Prop. 25 of Euclid.

They are as follows :

—
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PROP. A.

If the first of four magnitudes have to the second the same
ratio which the third has to the fourth, then if the first be greater

than the second, the third shall be greater than the fourth. The
reason why this was omitted is, doubtless, that as the relation ex-

pressed by the fifth definition must be true for any multiples

whatever, it must be true also when the multiplier is unity, which
gives the proposition itself. Of the other proposition we shall

supply the demonstration.

PROP. XXV.

If four magnitudes are proportionals, the greatest and least of

them together are greater than the other two together. Let
A : B : : : D, and let A be the greatest of the four magnitudes,
then (V. 14) D is the least.

Because A : B : : C : D, A-C : B-D : : A : B (V. 19) ; but A
is greater than B, therefore A—C is greater than B—D. To each

add C+D, and A-fD/-B+C. Therefore, &c. Q. E. D.

BOOK VI.

PROPS. XXVII., XXVIII., XXIX.

These are not Euclid's propositions, but only particular cases

of them. As, in the Second Book, Euclid restricts his reasoning
to rectangles, when he might have extended it to similar parallelo-

grams, so here Playfair has judiciously retained the same restric-

tion, thus rendering the propositions more suited to an elementary
work.

PROPS. A, B, C, &c.

Dr Simson gave four propositions as supplementary to the

Sixth Book of Euclid ; to these Professor Playfair added five, and
Professor Wallace again five more. In the present edition, three

of these last have been transferred to the Treatise on Trigono-
metry, to which they properly belong.
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BOOK I.

PROPS. IV. and V., Ac.

The demonstrations of the fourth and fifth propositions require

the method of exhaustions, that is to say, they prove a certain pro-

perty to belong to the circle, because it belongs to the rectilinear

figures inscribed in it, or described about it, according to a certain

law, even when those figures approach to the circle so nearly as

not to fall short of it, or to exceed it, by any assignable difference.

This principle is general, and is the only one by which we can

possibly compare curvilineal with rectilineal spaces, or the length

of curve lines with the length of straight lines, whether we follow

the methods of the ancient or of the modern geometers. It is,

therefore, a great injustice to the latter methods to represent

them as standing on a foundation less secure than the former

;

they stand, in reality, on the same, and the only difference is, that

the application of the principle, common to them both, is more
general and expeditious in the one case than in the other.

PROP. VII.

This enunciation is the same with that of the third of the Di-
mensio Circuit of Archimedes ; but the demonstration is different,

though it proceeds, like that of the Greek geometer, by the con-
tinual bisection of the sixth part of the circumference.

BOOK II.

DEF. IV. and PROP. IX.

The definition of the angle made by two planes which cut one
another, takes for granted the truth of Prop. 9 ; and may be sup-

posed to follow that proposition.
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DEF. VIII. and PROP. XX.

Solid angles, which are defined here in the same manner as in

Euclid, are magnitudes of a very peculiar kind, and are particu-

larly to be remarked for not admitting of that accurate compari-
son, one with another, which is common in the other subjects of
geometrical investigation. It cannot, for example, be said of one
solid angle, that it is the half or double of another solid angle,

nor did any geometer ever think of proposing the problem of

bisecting a given solid angle. In a word, no multiple or sub-

multiple of such an angle can be taken ; and we have no way of

expounding, even in the simplest cases, the ratio which one of

them bears to another.

PROPS. IV. and VI.

These demonstrations, are different from Euclid's.

PROP. VII.

Playfair has demonstrated this proposition very simply by
means of the axiom, that a perpendicular to a given plane from
a given point always exists.

The admission of such axioms is, however, contrary to the

spirit of Euclid's methods, although unobjectionable in itself.

PROP. XXL
This proposition is subject to a restriction in certain cases.

When the section of the pyramid formed
by the planes which contain the solid angle
is a figure that has none of its angles exte-
rior, such as a triangle, a parallelogram,
&c. , the truth of the proposition cannot be
questioned. But when the aforesaid sec-

tion is a figure like the one annexed,
ABCD having an angle exterior, or, as it

B

is sometimes called, re-entrant, the proposition is not necessarily
true, and it is plain that the demonstration which we have given,
and which is the same with Euclid's, will no longer apply. See
Hist, et Mem. de l'Acad. des Sciences, 1756. Hist. p. 77.
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BOOK III.

DEF. II. and PROP. I.

The equality of solids, it is natural to expect, must be proved
like that of plane figures, by showing that they may be made to

coincide, or to occupy the same space. But, though it is true

that all solids which can be shown to occupy the same space are

equal, yet it does not hold conversely, that all solids which are

equal can be made to coincide. For example, if we divide a py-
ramid which stands on a triangular base (the triangle being equi-

lateral), by a plane which passes through the vertex, bisecting

one of the angles at the base, the parts into which the pyramid
is divided are manifestly equal, and yet they cannot be so applied

to one another as to coincide. For if we apply the one half of

-rhe triangular base to the other, so as to make them coincide, it

will be seen that the vertex of the one half of the pyramid lies in

an opposite direction from the base to the vertex of the other.

It may be said, then, on what grounds do we conclude the py-
ramids to be equal ? The answer is, because their construction

is entirely the same, and the conditions that determine the mag-
nitude of the one are identical with those that determine the mag-
nitude of the other ; so that there is nothing that can determine
one of them to be greater than the other. The pyramids are,

therefore, concluded to be equal, because each of them is deter-

mined to be of a certain magnitude rather than of any other, by
conditions which are the same in both, so that there is no reason

for the one being greater than the other. This axiom may be
rendered general by saying, that things, of which the magnitude
is determined by conditions which are exactly the same, are equal

to one another. This is no other than the principle so celebrated

in the philosophy of Leibnitz, under the name of the Principle

of Sufficient Reason,
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BOOK I.

1. At a given point in a straight line, there cannot be more than

one perpendicular to the line, on the same side of it.

PROP. IV.

2. The straight line which bisects the vertical angle of an isos-

celes triangle bisects the base perpendicularly.

3. If two four-sided rectilineal figures have three consecutive

sides of the one equal respectively to three consecutive sides of

the other, and, likewise, the angles contained by the equal sides

equal in each, the figures shall be equal in every respect.

4. If two equal triangles have one side, and an adjacent angle in

the one, equal to one side and an adjacent angle in the other,

the remaining sides and angles shall be equal, each to each.

V.

5. If the base of an isosceles triangle be produced both ways, the

exterior angles which it makes with the equal sides shall be

equal.

6. The diameters of a rhombus bisect one another at right angles.

VII.

7. Prove that two circles, whose centres are given, do not cut

each other in more than two points.

* The Roman Numerals indicate the Proposition by means of which the

Exercise is to be solved. It may be necessary to add, that although the ex-

ercise is generally appropriate to the proposition under which it is placed,

there are some cases in which it is more appropriate to a preceding propo-

sition, although requiring the aid of that under which it is placed; but in

no case does the solution require the aid of any subsequent proposition*
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VIII.

8. If from the middle points of the three sides of a triangle, three

straight lines be drawn at right angles to the sides, they shall

all meet in the same point : and that point is equidistant from
the three angular points of the given triangle.

XI.

9. In a straight line given in position, of indefinite length, to find

a point which shall be equidistant from each of two given points.

Is this always possible ?

10. To describe a circle which shall pass through three given
points. Is this always possible ?

XIV.
11. Only one straight line can be drawn at right angles to another
from a given point without it.

XV.
12. In a given straight line to find a point such that the straight

lines drawn from it to two given points shall make equal angles

with the given straight line.

XIX.

13. Of all the straight lines which can be drawn to a given
straight line from a given point without it, the perpendicular is

the least ; and of the rest, that which is nearer to the perpen-
dicular is always less than one more remote : and there cannot

be drawn more than two equal straight lines from the given
point to the given line.

14. If from the vertical angle of a triangle, three straight lines be
drawn to the base, one bisecting the vertical angle, another

bisecting the base, and the third perpendicular to the base, the

first is always intermediate, both in magnitude and position to

the other two.

XX.
15. Any side of a triangle is greater than the difference between

the other two sides.

16. The three sides of any triangle are together greater than the

double of any one side; and less than the double of any two
sides.

17. Any side of a polygon is less than the sum of the other sides.

18. The sum of two sides of a triangle is greater than double the

straight line drawn from the vertex to the middle of the base.

19. The sum of two sides of a triangle is greater than double the

straight line drawn from the vertex to the base, bisecting the

vertical angle.

Definition. The distance of a point from a straight line is the

length of the perpendicular drawnfrom the point to the line.

20. If the point A be equidistant from the point B and the straight
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line CD, any point in AB is nearer to B than to the straight

line, but any point in BA produced from B to A is further from
B than from the straight line.

21. In a given straight line to find a point such that the sum of

two straight lines drawn to it from two points without the given
line, shall be less than the sum of any two lines drawn from
the same points, and terminated at any other point in the same
line.

22. In two given straight lines to find two points such that the

three straight lines which join them with two given points

without the lines respectively, and with each other, shall be the

least possible.

23. To determine a point in a line given in position to which
lines drawn from two given points which are at unequal dis-

tances from the given line, may have the greatest difference

possible.

XXI.
24. If a trapezium and a triangle stand upon the same base, and

on the same side of it, and the one figure fall within the other,

that which has the greater surface shall have the greater peri-

meter.

XXVI.
25. Through a given point to draw a straight line which shall

make equal angles with each of two given straight lines.

26. Through a given point to draw a straight line such that the

segments, intercepted by perpendiculars let fall upon it from
two given points, shall be equal.

XXVII.
27. A rhombus and a rhomboid are both parallelograms.

XXVIII.
28. Every rectangular four-sided figure is a parallelogram.

XXIX.
29. If two straight lines be respectively parallel to two others, the

angle contained by the first two is equal to the angle contained

by the other two.

30. To trisect a right angle.

XXXI.
31. Of all triangles which have the same vertical angle, and whose

bases pass through the same point, the least is the one whose
base is bisected in that point.

32. Through a given point between two given straight lines, to

draw a straight line to meet them and be bisected at the given

point.
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XXXII.
33. A circle described from the point of bisection of the hypote-

nuse of a right-angled triangle as a centre, at the distance of

half the hypotenuse, will pass through the summit of the right

angle.

34. If the opposite angles of a quadrilateral figure be equal to one
another, the figure is a parallelogram.

35. If two straight lines which cut one another be respectively

perpendicular to two others which cut one another, the angles

contained by the first two are respectively equal to the angles

contained by the others.

36. If from the extremities of the base of a triangle, two segments
be cut off, each equal to its adjacent side, and straight lines be
drawn from the vertex to the points of section, these straight

lines will contain an angle equal to half the sum of the angles

at the base of the triangle.

37. If three straight lines be drawn, mating equal angles with the

three sides of a triangle, towards the same parts, they will form
a triangle equiangular with the given triangle.

38. If four points be taken at equal distances from the angular
points of a square, the figure which is formed by joining them
is also a square.

39. If two straight lines which meet one another be cut by a third,

and from the points of section two other straight lines be drawn,
making with the first two the same angles which the cutting line

makes with them respectively, the angle contained by the last

two lines shall be double of the angle contained by the first two.

40. The hypotenuse of a right-angled triangle, together with the

perpendicular on it from the right angle, are greater than the

other two sides of the triangle.

XXXIV.
41. The diagonals of a parallelogram bisect each other, and con-

versely.

42. If one side of a triangle be bisected, and through the point of

bisection a straight line be drawn parallel to another side, this

straight line bisects the third side ; and conversely.

43. Cor. The quadrilateral formed by joining the points of bisec-

tion of the sides of a quadrilateral is a parallelogram.

44. To draw a straight line terminated by the sides of a given tri-

angle, which shall be equal to one given straight line, and pa-

rallel to another.

45. In the base of a triangle to find a point from which lines drawn
to each side of the triangle, and parallel to the other, shall be

equal.

46. If from any point in the base of an isosceles triangle, two
straight lines be drawn, making equal angles with the base, and
terminated by the opposite sides, their sum is the same what-

ever point be taken.
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47- If the point in the last problem is in the base produced, the
sum is changed into difference.

48. To divide a given straight line into any number of equal parts.

XXXVI.
49. To bisect a parallelogram by a straight line drawn through a

given point in one of its sides.

XXXVII.
50. Of all equal triangles standing upon the same base, the isosceles

triangle has the least perimeter.

51. To construct a triangle which shall be equal to a given tra-

pezium, and shall have one side equal to a side of the trapezium.

XXXVIII.
52. Two triangles whose common base is any line taken in the

diagonal of a parallelogram, or the diagonal produced, and whose
vertices are the opposite angular points of the parallelogram,

are equal to one another.

53. Of the three triangles whose common vertex is any point with-

in a parallelogram, and whose bases are two adjacent sides and
the included diagonal of the parallelogram, the last is equal to

the difference between the other two.

54. The straight line drawn from the vertex of a triangle to the
point of bisection of the opposite side, bisects every straight

line which is parallel to that side, and terminated by the other

sides of the triangle.

55. The straight lines drawn from the three angles of a triangle

to the points of bisection of the opposite sides meet all in one
point,* which is the point of trisection of each of them ; and
they divide the triangle into six equal parts.

56. Through a given point lying between two given straight lines,

to draw a straight line such that if the three lines are produced
they shall all meet in the same point.

57. To bisect a triangle by a straight line drawn through a given
point in one of its sides.

XXXIX.
58. If from two points in a straight line equal lines be drawn,
making equal angles with it, the line which joins the extremi-

ties of these two lines is parallel to the given line.

XL.
59. The two triangles whose vertex is any point within a paral-

lelogram, and whose bases are two of the opposite sides of the

parallelogram, are together equal to half the parallelogram.

60. The same is true if the point is taken without the parallelo-

gram, provided it lies between the two bases produced ; if other-

wise, the difference of the triangles is equal to half the area of
the parallelogram.

* This point is the centre of gravity of the triangle.
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XLIL
61. To describe a parallelogram which both in perimeter and in

area shall be equal to a given triangle.

XLVII.

62. If two right-angled triangles have the hypotenuse and one

side of the one equal to the hypotenuse and one side of the

other, the triangles shall be equal in every respect.

63. If a straight line be at right angles to a finite straight line,

the difference of the squares of the straight lines which join a

point in the former with the extremities of the latter, is the same
whatever point be taken.

64. Conversely, if from each of two points in a straight line two
lines be drawn to the extremities of a finite line ; and the differ-

ence of the squares of the first two be equal to the difference of

the squares of the other two, that line is at right angles to the

finite straight line.

65. The perpendiculars from the angular points of a triangle on
the opposite sides meet all in one point.

66. To find a square which shall be equal to the difference between
two given squares.

67. To divide a given straight line into two parts such that the

sum of their squares shall be equal to a given square.

BOOK IT.

PROP. I.

1. The sum of the perpendiculars drawn from any point within an
equilateral triangle to the three sides of the triangle, is equal to

the perpendicular drawn from any of the angles to the opposite

side. If the point be without any side, sum is changed to dif-

ference for that side.

IV.

2. If a straight line be divided into any number of parts, the

square of the whole line is equal to the sum of the squares of the

parts, together with twice the sum of the rectangles contained

by every two of them.
3. If from the extremities of the hypotenuse of a right-angled

triangle, segments be cut off equal to the adjacent sides, divid-

ing the hypotenuse into three parts ; the square of the middle
part will be equal to twice the rectangle contained by the other

two.

4. To divide a given straight line into two such parts that the

difference of their squares shall be equal to twice their rectangle.



248 EXERCISES.

V.

5. If from a point in the base of an isosceles triangle a straight

line be drawn to the opposite angle, the square of this line shall

be less than the square of one of the equal sides of the triangle

by the rectangle contained by the segments of the base.

6. To construct a rectangle which shall be equal to a given square,

and have its sides together equal to a given straight line. Is

this always possible ?

VIII.

7. If a straight line be divided into live equal parts, the square of

the whole line is equal to the sum of the squares of the straight

lines, which are made up respectively of four and of three of
these parts.

VIII. Cor. 2.

8. The squares of the three sides of an equilateral triangle are

together equal to four times the square of the perpendicular

drawn from one of the angles on the side opposite to it.

IX.

9. If a straight line be divided into two equal, and also into two
unequal parts, the squares of the two unequal parts are equal

to twice their rectangle, together with four times the square of
the line between the points of section.

10. To divide a given straight line into two such parts that the

squares of the whole line, and of one of the parts, shall be equal

to twice the square of the other part.

XII. and XIII.

11. If a perpendicular be drawn from either of the equal angles

of an isosceles triangle on the opposite side, twice the rectangle

contained by that side, and the part of it intercepted between
the foot of the perpendicular and the base is equal to the square

of the base.

12. If squares be described upon the three sides of any triangle,

and their angular points be joined by three straight lines, the

squares of these lines are together equal to three times the

squares of the sides of the triangle.

A.

13. If two points be taken in the diameter of a circle, equally dis-

tant from the centre, and if straight lines be drawn from them
to any point in the circumference, the sum of the squares of
these lines is the same whatever be that point.

14. The sum of the squares of the sides of a right-angled triangle

is three times the sum of the squares of the sides of the triangle

formed on the hypotenuse, by joining the points of its trisec-

tion with the right angle.
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BOOK III.

PROP. I.

1. If two circles cut each other, the straight line which joins their

points of intersection is bisected at right angles by the straight

line which joins their centres.

III.

2. Perpendiculars from the extremities of a diameter of a circle

upon any chord cut off equal segments.

3. The straight lines which join the adjacent extremities of pa-

rallel chords in a circle are equal.

4. If two circles cut one another, and through the points of section

two parallel chords be drawn terminated by both circles, they
shall be equal.

5. Through a given point within a circle to draw a chord which
shall be bisected at that point.

XII.

6. If two circles touch each other externally, and a straight line

be drawn through the point of contact, cutting them both, the

diameters drawn through the points of section shall be parallel.

XIV.

7. In a circle, two chords which cut a diameter in the same point

at equal angles are equal.

XV.
8. The shortest chord which can be drawn through a given point

within a circle is that which is perpendicular to the diameter
passing through the point.

XVI.
9. To describe a circle which shall have a given radius, and shall

have its centre in a given straight line, and shall also touch

another given straight line.

10. To describe a circle which shall pass through a given point,

and touch a given straight line in a given point of the same.

11. To describe a circle which shall touch a given circle, and also

touch a given straight line in a given point.

XVII.

12. To find a point without a given circle, from which, if two
straight lines be drawn touching the circle, they shall form an
equilateral triangle with the chord which joins the points of

contact.
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XVIII.

13. If a chord to the greater of two concentric circles be a tangent
to the less, it is bisected at the point of contact.

14. Two tangents to a circle drawn from a given point without it

are equal.

15. If on the diameter of a circle as a base, a right-angled triangle

be described, the tangent drawn from the point in which the

hypotenuse cuts the circumference of the circle will bisect the
perpendicular.

16. To draw a straight line which shall touch each of two given
circles.

17. If the one circle be wholly without the other, two tangents to

them both can be drawn of unequal length. Show that the

difference of the squares of these lines is equal to the rectangle

by the diameters of the circles.

XX.
18. If two chords of a circle cut one another, the angle between
them is half the sum or difference of the angles subtended at

the centre by the arcs intercepted between them, according as

they cu one another within or without the circle.

XXI.
19. If from any point in the circumference of the circle described

about an equilateral triangle, three straight lines be drawn to

the angular points of the triangle, the greatest of these shall be
equal to the other two together.

20. Of all triangles upon the same base and between the same
parallels, the isosceles triangle has the greatest vertical angle.

21. If two circles cut one another, and from any point in the cir-

cumference of the one, straight lines be drawn through the

points of intersection to meet the other, the angle contained by
the segment which they intercept, is always the same, what-
ever point be taken, and in whichever circle.

XXII.

22. A circle may be described about any quadrilateral figure, of

which the opposite angles are equal to two right angles.

23. If a figure of any even number of sides be inscribed in a

circle, the sum of its alternate angles is equal to half the sum
of all the angles of the figure.

XXVI.
24. If any chord of a circle be produced, until the part produced

is equal to the radius, and its extremity be joined with the

centre of the circle, and produced to the circumference, of the

two arcs included between these two straight lines, the one is

three times the other.

XXVII.
25. If from the extremities of a given line there be drawn any
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number of pairs of straight lines, which meet on the same side

of the line, and make always the same angle with one another,

the straight lines which bisect those angles pass all through the

same point.

26. If through a point in the circumference of a circle two chords

be drawn, and the arcs which they cut off be bisected, the

straight line which joins the points of bisection shall cut off

equal portions of the chords measured from the given point.

XXVIII.

27. Through a given point to draw a straight line which shall

cut off a given arc from a given circle.

XXIX.
28. If two equal circles cut one another, and through one of the

points of intersection a straight line be drawn, cutting them
both, the points of section are equidistant from the other point

of intersection of the circles.

XXXI.
29. If a circle be described on the radius of another circle, any

chord in the latter, drawn from the point in which the circles

meet, is bisected by the former.

30. If two circles cut one another, and from one of the points of

intersection two diameters be drawn, their other extremities

and the other point of contact will be in one straight line.

31. If two tangents to a circle cut one another, the straight lim,

drawn from the centre to the point of section is parallel to the

straight line drawn from one point of contact to the extremity

of the diameter which passes through the other.

32. From one extremity of the diameter of a circle to draw a

straight line to the tangent at the other extremity, which shall

be bisected at the circumference of the circle.

XXXII.
33. If two circles touch one another either internally or externally,

and a line cutting both be drawn through the point of contact,

the arcs cut off shall subtend equal angles at the centres of their

respective circles.

34. If from one extremity of a chord of a circle there be drawn a

tangent, and a perpendicular to the diameter which passes

through the other extremity ;. the angle between these two lines

will be bisected by the chord.

35. If any chord to a circle be produced equally both ways, and
from the extremities tangents be drawn to the circle, on oppo-
site sides of the chord, the straight line which joins the points

of contact shall bisect the chord.

XXXIII.
36. To construct a triangle, of which the base, the sum of the other

two sides, and the vertical angle are given.
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I

A

37. To construct a triangle, of which the base, the difference of
the other two sides, and the vertical angle are given.

38. To construct a triangle, of which the base, the altitude, and
,/ >the vertical angle are given.

39. To construct a triangle, of which the perimeter, the altitude,
and the vertical angle are given.

40. To find a point from which the three straight lines drawn to

three given points shall make equal angles with each other.
41. In the circumference of a circle to find a point from which a

given straight line shall subtend an angle equal to a given angle,
whenever it is possible.

XXXV.
42. If two chords in a circle intersect each other at right angles,

the sum of the squares of their four segments is equal to the
square of the diameter.

43. In a circle, the rectangle by the segments of a chord is equal
to the difference of the squares of the radius, and of the straight
line joining the centre with the point of section.

44. In a circle, if a perpendicular be drawn from any point in a
chord to a diameter, the rectangle by the segments of the dia-

meter is equal to the rectangle by the segments of the chord,
together with the square of the perpendicular.

45. If two tangents be drawn at the extremities of the diameter
of a circle, and a third tangent be drawn at any other point, to

meet them, the rectangle by its segments between the two other
tangents and the point of contact is equal to the square described
on the radius.

XXXVI.
46. If a given circle be cut by any number of circles which all pass
through two given points without it, the straight lines which
join the points of intersection are either parallel, or all meet,
if produced, in the same point.

47. If two circles touch one another externally, and a common
tangent be drawn, not meeting both at the same point, the
square of the part of this line intercepted between the points

of contact is equal to the rectangle contained by the diameters
of the circles.

XXXVII.
48. If three circles touch one another externally, the tangents at

the points of contact meet all in one point.

49. To describe a circle which shall pass through two given points,

and touch a given straight line.

50. To describe a circle which shall have its centre in a given
straight line, shall pass through a given point, and touch a given
straight line.

51. To describe a circle which shall touch each of two given
straight lines and a given circle.
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BOOK IV. ' ' V (

prop. in. \2tt^{JliXl\
1. An equilateral triangle inscribed in a circle is a

an equilateral triangle described about the same circle.

2. If a triangle be described about a given circle, the rectangle by
the perimeter of the triangle and the radius of the circle is

double the area of the triangle.

IV.

3. To describe a circle which shall touch the base of a given tri-

angle and the other sides produced.

4. If a circle be inscribed in a triangle, the distance of any angle

of the triangle from the point of contact of the circle with one
of the sides which contain it, is equal to half the excess of the

sum of these sides above the side opposite to the angle.

5. The square of the side of an equilateral triangle inscribed in a

circle is triple the square of the side of a hexagon inscribed in

the same circle.

6. The diameter of the circle inscribed in a right-angled triangle

is equal to the excess of the sum of the sides which contain the

right angle above the hypotenuse.

7. A circle may be inscribed in any quadrilateral figure, provided

the sums of its opposite sides are equal.

V.

8. The diameter of the circle described about an equilateral tri-

angle is double the diameter of the circle inscribed in the same
triangle.

9. The angle contained by two straight lines drawn from either

of the angular points of a triangle to the centres of its inscribed

and circumscribing circles is half the difference between the

other angles of the triangle.

VI.

10. In a given circle to inscribe a rectangle equal to a given recti-

linear figure.

VII.

11. In a given circle to inscribe four equal circles, mutually touch-

ing each other, and the given circle.

X.

12. The base of the triangle described in Prop. X. is the side of

a regular decagon inscribed in the larger circle, and of a regular

pentagon inscribed in the smaller circle.

13. In an isosceles triangle which has each of the angles at the

base double the third angle, the difference of the squares of one
side and the base is equal to their rectangle.
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XI.

14. Upon a given straight line to describe an equilateral and equi-

angular pentagon.

XV.
15. Upon a given straight line to describe an equilateral and equi-

angular hexagon.

BOOK V.

PROP. XVI.

1. If the first of four magnitudes of the same kind have to the

second a greater ratio than the third has to the fourth, the first

shall have to the third a greater ratio than the second has to

the fourth.

XVII. and XVIII.

2. If four magnitudes of the same kind be proportionals, of which
the first is the greatest, the sum of the two extremes is greater

than the sum of the two means.
3. If of four magnitudes, the first, together with the second, have

to the second a greater ratio than the third, together with the

fourth, has to the fourth, the first shall have to the second a

greater ratio than the third has to the fourth.

4. If the first have to the second a greater ratio than the third

has to the fourth, the first, together with the second, shall have
to the second a greater ratio than the third, together with the

fourth, has to the fourth.

5. If the first have to the second a greater ratio than the third has

to the fourth, the first, together with the third, shall have to the

second, together with the fourth, a greater ratio than the third

has to the fourth, but a less ratio than the first has to the second.

6. If there be three magnitudes of the same kind, of which the

first is less than the second, the first, together with the third,

shall have to the second, together with the third, a greater ratio

than the first has to the second.

7. If the first, together with the second, have to the second a

greater ratio than the third, together with the fourth, has to the

fourth, then shall the first, together with the second, have to the

first a less ratio than the third, together with the fourth, has to

the third.

XXII.
8. If the first have to the second the same ratio which the fourth

has to the fifth, but the second to the third a greater ratio than

\he fifth has to the sixth, the first shall have to the third a greater

>atio than the fourth has to the sixth.
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XXIII.

. If the first have to the second the same ratio which the fifth has
to the sixth, but the second to the third a greater ratio than the

fourth has to the fifth, the first shall have to the third a greater
ratio than the fourth has to the sixth.

BOOK VI.fr.tfj>>,

PROP. I. T 1 -rPROP. I. Q4
; ;

1. Triangles and parallelograms which have equal bases, are to

one another as their altitudes.

II.

2. The straight lines which join the extremities of parallel radii

of two unequal circles, when produced, pass all through the same
point.

3. From a given point to draw a straight line which shall cut off

from the two lines which contain a (riven rectilineal angle, parts

which have a given ratio to one another.

III.

4. If a straight line be divided in a given point, to construct upon
it a triangle having a given vertical angle, and its other sides

in the same proportion as the segments of the base.

III. A. and IV.

5. If one angle at the base of a triangle be double of the other,

the less side is equal to the sum or difference of the segments
of the base made by the perpendicular from the vertex, accord-

ing as the angle is greater or less than a right angle.

IV.

6. The diameter of a circle is a mean proportional between the sides

of an equilateral triangle and hexagon described about the circle.

7. If two triangles have an angle of the one equal to an angle of
the other, the triangles are to one another as the rectangle by
the sides about those angles respectively.

8. A straight line drawn from the vertex of a triangle to the base,

cuts all straight lines which are parallel to the base, and termi-

nated by the other sides of the triangle in the same ratio as the

.

segments of the base.

9. If from a point without a circle there be drawn two straight

lines, the one touching and the other cutting the circle, and
chords be drawn from the point of contact to the two points of

section, the whole of the cutting line has to the part of it with-

out the circle the duplicate ratio of the greater chord to the less.
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10. If one side of a triangle be produced and another shortened by
the same quantity, the line which joins the points of section will

be divided by the base, in the inverse ratio of the sides.

X.

11. To divide a given circular arc into two such parts that the

chords of its segments shall have a given ratio.

XV.
12. To describe an isosceles triangle which shall be equal to a given

triangle, and have one of its angles equal to an angle of the

given triangle.

XVI.

13. Double the area of a triangle is to the rectangle contained by
any two of its sides as the third side to the diameter of the cir-

cumscribing circle.

D.

14. If ABCD be any parallelogram, and if a circle be described
passing through the point A, and cutting the sides AB, AC, and
the diagonal AD, in the points F, G, H respectively ; then the

rectangle AD.AH is equal to the sum of the rectangles AB.AF
and AC.AG.

MISCELLANEOUS.

1. If a straight line be drawn from an angle of a scalene triangle

to the point of bisection of the base, the distance of any point in

that line from the greater of the other two angles of the triangle

is less than its distance from the less ; and the difference between
the two distances is less than the difference between the two
sides of the triangle which are opposite to those angles.

2. If a straight line be drawn from an angle of a scalene triangle,

at right angles to the opposite side, the distance of any point in

that line from the greater of the other two angles of the triangle

is less than its distance from the less ; and the difference between
the two distances is greater than the difference between the two

sides of the triangle which are opposite to those angles.

3. The square of the side of a regular pentagon inscribed in a given

circle, is equal to the square of the side of a regular decagon,

together with the square of the side of a regular hexagon both

inscribed in the circle.

4. If in the figure of Prop. 2, Book VI., BE and DC intersect one

another in F, and AF be joined and produced, this line will bi-

sect both BC and DE.
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5. If a square piece of wood be divided into four equal squares, of

which one is removed, prove that the remaining gnomon may
be made into a square by cutting it into four parts only.*

6. If CD be drawn bisecting the angle C of the triangle ABC

;

and AB be produced to E, a point equidistant from C and D

;

prove that the rectangle AE.EB is equal to the square of ED.
7. The square inscribed in a semicircle is to the square inscribed

in the circle as 2 : 5.

8. The three straight lines drawn from the angular points of a tri-

angle perpendicular to the opposite sides, bisect the angles of

the triangle which is formed by joining the points in which they

meet the sides of the original triangle.

9. If on a given finite straight line a semicircle and a quadrant be
described, the area of the lune which is contained between them
is equal to that of the triangle whose base is the given straight

line, and its vertex the centre of the circle of which the quadrant
is a part.

10. To divide a given circle into any number of equal parts by
means of concentric circles.

11. If the diameter of a circle be divided into any number of equal

parts, and a series of semicircles be described on one side of the

diameter, all passing through one extremity of it, and having
for their diameters respectively, one, two, &c, of the equal parts,

and the same be done at the other extremity of the diameter on
the other side of it, the circle shall itself be divided into the same
number of equal parts, and the containing arcs shall be of equal

length. .

12. If on the three sides of a right-angled triangle three semicircles

be described, the area of the triangle is equal to the sum of the
areas of the two lunes inclosed by the circles.

13. If from the semi-perimeter of a triangle there be subtracted

successively two sides, the rectangle by the remainders is equal
to the rectangle by the radii of the two circles which touch re-

spectively the base and the two sides, and the base and the two
sides produced.

14. If on the three sides of a triangle, three equilateral triangles

be described, the straight lines which join their three centres of
gravity (Book I., Ded. 55) shall form an equilateral triangle.

1 5. If from any point in a circular arc perpendiculars be drawn to

its bounding radii, the distance of the points at which they meet
the radii is always the same.

* This Problem may be solved by five-arid-twenty different methods.

THK END.
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