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We study the nonlinear integrable equation, ut + 2((uxuxx)/u) =
ϵuxxx, which is invariant under scaling of dependent variable
and was called the SIdV equation (see Sen et al. 2012 Commun.
Nonlinear Sci. Numer. Simul. 17, 4115–4124 (doi:10.1016/j.cnsns.
2012.03.001)). The order-n kink solution u[n] of the SIdV
equation, which is associated with the n-soliton solution of the
Korteweg–de Vries equation, is constructed by using the n-fold
Darboux transformation (DT) from zero ‘seed’ solution. The
kink-type solutions generated by the onefold, twofold and
threefold DT are obtained analytically. The key features of
these kink-type solutions are studied, namely their trajectories,
phase shifts after collision and decomposition into separate
single kink solitons.
1. Introduction
Sen et al. [1] casually found the following equation:

ût þ 2ûxx
û

� �
ûx ¼ ûxxx, (1:1)

which is the simplest member in a vast hierarchy of nonlinear
partial differential equations sharing the single soliton solution
expressed in a form as sech2 with the well-known Korteweg–de
Vries (KdV) equation

vt þ 6vvx � vxxx ¼ 0: (1:2)

Equation (1.1) was extended by Sen et al. [1] as

~ut þ 2a
~ux~uxx
~u

¼ ea~uxxx, a and e are two constants, (1:3)
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which is called the SIdV equation because of its scale-invariant property and the above relationship with

the KdV equation. Two conservation laws and periodic travelling waves of the SIdV equation were given
in [1]. Very recently, Silva et al. [2] have put forward the connection between SIdV, Airy (linear KdV),
KdV and modified KdV equations. We set ϵa = 1 and ϵ = 2/3, then equation (1.3) becomes [1,2]

ut þ 3
uxuxx
u

¼ uxxx, (1:4)

which admits the following Lax pair:

L ¼ �D2
x þ

uxx
u

and B ¼ 4D3
x � 6

uxx
u

Dx � 3
uxxx
u

� uxuxx
u2

� �
: (1:5)

Note that the SIdV equation (1.4) was deduced as early as almost 30 years ago in [3] from a point of view
of the governing equation of eigenfunction by eliminating the potential function ω in Lax pair, and this
equation was also re-derived in [4] by revealing the direct links between the well-known Sylvester matrix
equation and soliton equations.

If ω is a solution of the KdV equation (1.2), then a solution of the SIdV equation (1.4) can be obtained
by solving the following linear system [2]:

ut þ 3vux ¼ uxxx

and �uxx þ vu ¼ 0:

)
(1:6)

It is highly non-trivial to get the solution u of the SIdV equation (1.4) from a known solution ω of the KdV
equation from the above coupled linear system of variable coefficient partial differential equations. Silva
et al. [2] have obtained a kink-type solution u from a single soliton solution ω by solving the associated
Legendre equation that is reduced from the second formula of equation (1.6). Obviously, the idea to get
the solution u from the solution ω through solving the linear system (1.6) might be not applicable if the
known solution ω is a two-soliton solution or other complicated solution of the KdV equation. Thus, there
is an interesting open problem: can we find new solutions u associated with the higher-order solitons ω of
the KdV equation in another way? The purpose of this paper is to provide an affirmative answer to this
question by using the Darboux transformation (DT) [5,6] of the KdV equation. We will also study the key
properties of interaction of multi-kink solitons of the SIdV equation.

The organization of this paper is as follows. In §2, we clearly illustrate a crucial relationship between
the solution u of the SIdV equation and the eigenfunction ψ of the Lax pair of the KdV equation, and then
provide the n-fold DT of the SIdV equation. In §3, three explicit kink-type solutions of the SIdV equation
are constructed by using the DT from zero ‘seed’ solution. Furthermore, the key characteristics of the
kink-type solitons of the SIdV equation are studied, namely the trajectories, the phase shifts after
collision, and the decomposition into separate single kinks. The conclusion and discussion of results
are given in §4.
2. The n-fold Darboux transformation of the SIdV equation
The KdV equation admits the following Lax pair:

ct ¼ 4cxxx � 6vcx � 3vxc

and �cxx þ vc ¼ lc:

)
(2:1)

If we set λ→ 0, then

ct þ 3vcx ¼ cxxx

and �cxx þ vc ¼ 0:

)
(2:2)

Comparing the above equations with equation (1.6), it implies a direct relationship between the solutions
of the SIdV equation and the eigenfunction ψ of the Lax pair of the KdV equation, namely u = ψ|λ=0. This
observation is crucial for us such that we can solve the SIdV equation by using the DT of the KdV
equation. Note that a general equation of the eigenfunction ψ was constructed in [3] by eliminating
the potential function ω in equations of the Lax pair; see eqn (2.3) of Konopelchenko [3].

By setting a ‘seed’ solution ω = 0, then the corresponding eigenfunctions are

c ¼ exp k(xþ 4k2t), for l ¼ �k2 (2:3)
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and

cn ¼
cosh kn(xþ 4k2nt), n ¼ 2j� 1,

sinh kn(xþ 4k2nt), n ¼ 2j,

(
for ln ¼ �k2n: (2:4)

Here, k > 0, kn > · · · > k2 > k1 > 0.
The n-fold DT of the KdV equation yields the new solutions [5,6]

v[n] ¼ �2( lnW(c1, . . . , cn))xx (2:5)

and

c[n] ¼ W(c1, . . . , cn, c)
W(c1, . . . , cn)

, (2:6)

from a zero ‘seed’ solution ω = 0. Here

W(c1, c2, . . . , cn) ¼

c1 c1x � � � c(n�1)
1x

c2 c2x � � � c(n�1)
2x

..

. ..
. . .

. ..
.

cn cnx � � � c(n�1)
nx

����������

����������
is the usual Wronskian determinant of n eigenfunctions ψ1, ψ2,…, ψn, and
c(k)

jx (j ¼ 1, 2, . . . , n; k ¼ 1, 2, 3, . . . , n� 1) denotes the order-k derivative of ψj with respect to x.
Hence the above n-fold DT produces

u[n] ¼ c[n]jl¼0, (2:7)

which is a new solution of the SIdV equation (1.4) associated with an n-soliton solution ω[n] of the KdV
equation. Here u[n] in equation (2.7) is a general expression of the order-n kink type solution of the SIdV
equation. Unlike the method given in [2], we get u[n] associated with the n-soliton solution ω[n] without
using the complicated associated Legendre equation. By comparing with the solution given in [2], our
method is simpler and systematic.
3. Three explicit solutions of the SIdV equation
In this section, we present in detail three explicit solutions generated by the onefold, twofold and
threefold DT and the key properties of these solutions, including trajectories, phase shifts after
collision and decomposition into separate single kinks.

3.1. Solution u[1] generated by onefold Darboux transformation
We set n = 1, ψ = exp k(x + 4k2t), c1 ¼ cosh k1(xþ 4k21t), then equation (2.5) yields the single-soliton
solution of the KdV equation

v[1] ¼ �2[ ln cosh k1(xþ 4k21t)]xx ¼ �2k21sech
2k1(xþ 4k21t), (3:1)

while equation (2.7) implies

u[1] ¼ c[1]jl¼0 ¼ �k1 tanh k1(xþ 4k21t): (3:2)

The above solution u[1] is a single kink-type soliton that is plotted in figure 1. The line in figure 1b denotes
the trajectory of the soliton, which is defined by xþ 4k21t ¼ 0. It is easy to find that, for all t∈R, lim x→+∞

u[1] =−k1 and lim x→−∞ u[1] = k1. Note that the solutions given by equations (3.1) and (3.2) are the same as
those given in [2], which were obtained by solving the associated Legendre equation.

3.2. Solution u[2] generated by the twofold Darboux transformation
We set n = 2, and we obtain the two-soliton solution of the KdV equation as

v[2] ¼ 2(k21 cosh
2 k2(xþ 4k22t)þ k22 cosh

2 k1(xþ 4k21t)� k21)(k
2
1 � k22)

(k2 cosh k1(xþ 4k21t) cosh k2(xþ 4k22t)� k1 sinh k1(xþ 4k21t) sinh k2(xþ 4k22t))
2 , (3:3)
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Figure 1. (a,b) The dynamical evolution of the single kink-type solution u[1] with k1 = 0.35. The right panel is the density plot of
the left panel.
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Figure 2. The dynamical evolutions of the two-kink solution u[2] (a) and the corresponding two-soliton solution ω[2] (b) with
parameters k1 = 0.2, k2 = 0.8.
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and the two-kink solution of the SIdV equation as

u[2] ¼ c[2]jl¼0 ¼
A1

B1
, (3:4)

A1 ¼ k21k2 cosh k2(xþ 4k22t) cosh k1(xþ 4k21t)� k22k1 sinh k1(xþ 4k21t)

sinh k2(xþ 4k22t),

B1 ¼ k1 sinh k1(xþ 4k21t) sinh k2(xþ 4k22t)� k2 cosh k2(xþ 4k22t)

cosh k1(xþ 4k21t),

according to equations (2.5) and (2.7). These solutions are plotted in figure 2.
By simple calculations, u[2] is re-formulated as

u[2]a ¼ k1k2
� tanh j2 cosh j0 sinh j1 þ sinh j0 cosh j1
tanh j2 sinh j0 sinh j1 � cosh j0 cosh j1

: (3:5)

Here ji ¼ ki(xþ 4k2i t) (i ¼ 1, 2), ξ0 = (1/2) ln((k1 + k2)/(k2− k1)) denotes the phase shift after the interaction
of the two kinks. Furthermore, when ξ2∼ ±∞, u[2]a � �k1k2 tanh (j0 + j1). Similarly, u[2] is also
re-expressed by

u[2]b ¼ k1k2
� tanh j1 cosh j0 sinh j2 þ sinh j0 cosh j2
tanh j1 sinh j0 sinh j2 � cosh j0 cosh j2

, (3:6)

which implies that u[2]b � �k1k2 tanh (j0 + j2) when ξ1∼ ±∞. According to the above asymptotic analysis
of u[2]a and u[2]b , it is easy to find u[2]∼ k1k2 when ξ1 and ξ2 tend to ±∞ simultaneously. In other words, the
heights of higher and lower asymptotic planes of u[2] are ±k1k2, which is confirmed by figure 2.

We are now in a position to study the decomposition of u[2]. As the usual decomposition of a two-
soliton solution, we set a trial decomposition of u[2] as a combination of u[2]a with ξ2∼−∞ and u[2]b



(b) (c)(a)

(e) ( f )(d)

–0.15

–0.15
20

10

–10

–20

10 20–20 –10 0

–0.10

–0.05

–40
40–10 0 1020–20 200

–0.10
–0.05

0.05
0.10
0.15

0

t

t

t

x

x

x

–0.15
–40

40 –10 0 10 20–20 200
–40

40 –10 0 10 20–20 200

–0.10
–0.05

0.05
0.10
0.150.3

0.2
0.1

0
–0.1
–0.2
–0.3

0

–0.15
–0.10
–0.05

0.05
0.10
0.15

0

tt x

–40
40 –10 0 10 20 15

15105–5–10–15 0
1050–5–20 200

tx

x

Figure 3. The construction of decomposition of u[2] with parameters k1 = 0.2, k2 = 0.8. (a) u[2]trial, (b) u
[2]
left, (c) u

[2]
right, (d ) u

[2]
dec (the

decomposition of u[2]), (e) the contour lines defined by u[2] = 0 (blue, solid) and u[2]dec ¼ 0 (red, dash) and ( f ) u[2] � u[2]dec.
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with ξ1∼−∞, namely

u[2]trial � �k1k2( tanh (j0 þ j2)þ tanh (j0 þ j1)),

which is plotted in figure 3a. It is clear that figure 3a is a worse approximation of the left part in figure 2a
for u[2], because the former has three remarkable differences as compared to the latter: (1) the three
plateaux, (2) the height of the top asymptotic plateau and (3) the height of the bottom
asymptotic plateau. In order to overcome the inaccuracy of u[2]trial, we introduce z1 =−k1k2(tanh (ξ0 +
ξ1) + tanh (ξ0 + ξ2)) and set

u[2]left ¼ z1H(z1)� k1k2,

which is an excellent approximation of the left part in figure 2a for u[2]; see figure 3b. Here H is the

Heaviside function, H(z) ¼ 0, if z , 0,
1, if z � 0:

�
Next, we use a combination of u[2]a with ξ2∼ +∞ and u[2]b

with ξ1∼ +∞, and we introduce z2 =−k1k2(tanh (ξ0− ξ1) + tanh (ξ0− ξ2)), then

u[2]right ¼ z2H(z2)� k1k2

is an excellent approximation of the right part in figure 2a for u[2] (figure 3c). Furthermore, using u[2]left and
u[2]right, we provide a decomposition of u[2], namely

u[2]dec ¼
z2H(z2)� k1k2, if j1, j2 � 0,
z1H(z1)� k1k2, if j1, j2 � 0:

�
(3:7)

Thus, we get an excellent approximate decomposition of u[2], which is shown in figure 3d,e. Here we plot
u[2]dec in figure 3d, and in figure 3e we plot the two contour lines defined by u[2] = 0 (blue, solid) and
u[2]dec ¼ 0 (red, dash). However figure 3f shows a remarkable discrepancy u[2] � u[2]dec in a small region of
strong interaction of the two kinks, around t = 0.
3.3. Solution u[3] generated by the threefold Darboux transformation
Setting n = 3 in equations (2.5) and (2.7), a three-soliton solution ω[3] of the KdV equation and a three-kink
solution u[3] of the SIdV equation can be written out explicitly. These two types of soliton solutions are
plotted in figure 4. Due to the lack of space, we only provide here the explicit formula of a three-kink
solution, namely

u[3] ¼ c[3]jl¼0 ¼
A2

B2
: (3:8)
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Figure 4. The dynamical evolutions of the three-kink solution u[3] (a) and of the corresponding three-soliton solution ω[3] (b) with
parameters k1 = 0.2, k2 = 0.8, k3 = 1.2.
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Here ji ¼ ki(xþ 4k2i t), i ¼ 1, 2, 3,

A2 ¼ k1k2k3[� k1(k2 � k3)(k2 þ k3) cosh j1 cosh j2 sinh j3 � k3(k1 � k2)(k1 þ k2)
sinh j1 cosh j2 cosh j3 þ k2(k1 � k3)(k1 þ k3) sinh j1 sinh j2 sinh j3]

and

B2 ¼ k1k2k3[� k2(k1 � k3)(k1 þ k3) cosh j1 cosh j2 cosh j3 þ k1(k2 � k3)(k2 þ k3)
sinh j1 sinh j2 cosh j3 þ k3(k1 � k2)(k1 þ k2) cosh j1 sinh j2 sinh j3]:

By a similar calculation as done for u[2], the solution u[3] is decomposed approximately into three
separate kinks in the following form, namely:

u[3]dec ¼
k1k2k3[tanh(h1 � j1)þ tanh(h3 � j3)� (tanh(h2 � j2)

H(y)þ tanh (h2 þ j2)H(� y))]H(�z), j1, j2, j3 � 0,
k1k2k3[tanh (h1 þ j1)þ tanh(h3 þ j3)� (tanh(h2 � j2)

H(y))þtanh (h2 þ j2)H(�y))]H(z), j1, j2, j3 � 0:

8>><
>>: (3:9)

Here h1 ¼ (1=2) ln(((k2(k23 � k21)� k3(k22 � k21)þ k1(k23 � k22))=(k2(k
2
3 � k21)� k3(k22 � k21)� k1(k23 � k22)))), η2 =

(1=2) ln(((k2(k23 � k21)þ k3(k22 � k21)þ k1(k23 � k22))=(k2(k
2
3 � k21)� k3(k22 � k21)� k1(k23 � k22)))), h3 ¼ (1=2) ln(((k2

(k23 � k21)þ k3(k22 � k21)� k1(k23 � k22))=(k2(k
2
3 � k21)� k3(k22 � k21)� k1(k23 � k22)))), z= k1k2k3(tanh(η3− ξ3)H(y)−

tanh(η3 + ξ3)H(− y)) and y= x− t. Moreover, in figure 5a we plot u[3]dec, and in figure 5b we plot the
corresponding three contour lines defined by u[3] = 0 (blue, solid) and u[3]dec ¼ 0 (red, dash), which show an
excellent agreement between u[3] and u[3]dec. However, figure 5c shows a remarkable discrepancy u[3] �u[3]dec
in a small region of strong interaction of the three kinks, around t= 0.
4. Conclusion
In this paper, the order-n kink-type solution u[n] of the SIdV equation (1.4), which is associated with an
n-soliton solution of the KdV equation, is constructed by using the n-fold DT from zero ‘seed’ solution.
The trajectories, the phase shifts, and the decomposition of the first three kink-type solutions u[n] (n= 1, 2,
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3) are studied in detail. A crucial relationship is u =ψ|λ=0, so we can use the DT to construct the solution u[n]

without using the solution of the associated Legendre equation as was done in [2]. By comparing with the
results reported in [2], we believe that our method presented here is simpler and systematic. Moreover, we
mention that the SIdV equation is also used to describe and control the revolution of surfaces [7,8], thus it is
an interesting issue to get explicitly the surfaces associated with the order-n kink soliton u[n]. These results
will be reported elsewhere.
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