# ROYAL SOCIETY OPEN SCIENCE 

royalsocietypublishing.org/journal/rsos

Research


Cite this article: Zhang $\mathrm{G}, \mathrm{He} \mathrm{J}$, Wang L , Mihalache D. 2019 Kink-type solutions of the SIdV equation and their properties. R. Soc. open sci. 6: 191040.
http://dx.doi.org/10.1098/rsos. 191040

Received: 8 June 2019
Accepted: 25 July 2019

## Subject Category:

Mathematics

## Subject Areas:

applied mathematics/differential equations/ mathematical physics

## Keywords:

Darboux transformation, SIdV equation, Korteweg-de Vries equation, kink solution, decomposition, phase shift

## Author for correspondence:

Jingsong He
e-mail: hejingsong@szu.edu.cn; hejingsong@nbu.edu.cn

## Kink-type solutions of the SIdV equation and their properties

Guofei Zhang ${ }^{1}$, Jingsong $\mathrm{He}^{2}$, Lihong Wang ${ }^{1}$

and Dumitru Mihalache ${ }^{3}$

[^0](D) GZ, 0000-0001-5421-351X; JH, 0000-0002-2068-1849

We study the nonlinear integrable equation, $u_{t}+2\left(\left(u_{x} u_{x x}\right) / u\right)=$ $\epsilon u_{x x x}$, which is invariant under scaling of dependent variable and was called the SIdV equation (see Sen et al. 2012 Coтmии. Nonlinear Sci. Numer. Simul. 17, 4115-4124 (doi:10.1016/j.cnsns. 2012.03.001)). The order- $n$ kink solution $u^{[n]}$ of the SIdV equation, which is associated with the $n$-soliton solution of the Korteweg-de Vries equation, is constructed by using the $n$-fold Darboux transformation (DT) from zero 'seed' solution. The kink-type solutions generated by the onefold, twofold and threefold DT are obtained analytically. The key features of these kink-type solutions are studied, namely their trajectories, phase shifts after collision and decomposition into separate single kink solitons.

## 1. Introduction

Sen et al. [1] casually found the following equation:

$$
\begin{equation*}
\hat{u}_{t}+\left(\frac{2 \hat{u}_{x x}}{\hat{u}}\right) \hat{u}_{x}=\hat{u}_{x x x} \tag{1.1}
\end{equation*}
$$

which is the simplest member in a vast hierarchy of nonlinear partial differential equations sharing the single soliton solution expressed in a form as sech ${ }^{2}$ with the well-known Korteweg-de Vries (KdV) equation

$$
\begin{equation*}
\omega_{t}+6 \omega \omega_{x}-\omega_{x x x}=0 \tag{1.2}
\end{equation*}
$$

Equation (1.1) was extended by Sen et al. [1] as

$$
\begin{equation*}
\tilde{u}_{t}+2 a \frac{\tilde{u}_{x} \tilde{u}_{x x}}{\tilde{u}}=\epsilon a \tilde{u}_{x x x}, \quad a \text { and } \epsilon \text { are two constants, } \tag{1.3}
\end{equation*}
$$

[^1]which is called the SIdV equation because of its scale-invariant property and the above relationship with the KdV equation. Two conservation laws and periodic travelling waves of the SIdV equation were given in [1]. Very recently, Silva et al. [2] have put forward the connection between SIdV, Airy (linear KdV), $K d V$ and modified $K d V$ equations. We set $\epsilon a=1$ and $\epsilon=2 / 3$, then equation (1.3) becomes [1,2]
\[

$$
\begin{equation*}
u_{t}+3 \frac{u_{x} u_{x x}}{u}=u_{x x x} \tag{1.4}
\end{equation*}
$$

\]

which admits the following Lax pair:

$$
\begin{equation*}
L=-D_{x}^{2}+\frac{u_{x x}}{u} \quad \text { and } \quad B=4 D_{x}^{3}-6 \frac{u_{x x}}{u} D_{x}-3\left(\frac{u_{x x x}}{u}-\frac{u_{x} u_{x x}}{u^{2}}\right) \tag{1.5}
\end{equation*}
$$

Note that the SIdV equation (1.4) was deduced as early as almost 30 years ago in [3] from a point of view of the governing equation of eigenfunction by eliminating the potential function $\omega$ in Lax pair, and this equation was also re-derived in [4] by revealing the direct links between the well-known Sylvester matrix equation and soliton equations.

If $\omega$ is a solution of the KdV equation (1.2), then a solution of the SIdV equation (1.4) can be obtained by solving the following linear system [2]:
and

$$
\left.\begin{array}{c}
u_{t}+3 \omega u_{x}=u_{x x x}  \tag{1.6}\\
-u_{x x}+\omega u=0
\end{array}\right\}
$$

It is highly non-trivial to get the solution $u$ of the SIdV equation (1.4) from a known solution $\omega$ of the KdV equation from the above coupled linear system of variable coefficient partial differential equations. Silva et al. [2] have obtained a kink-type solution $u$ from a single soliton solution $\omega$ by solving the associated Legendre equation that is reduced from the second formula of equation (1.6). Obviously, the idea to get the solution $u$ from the solution $\omega$ through solving the linear system (1.6) might be not applicable if the known solution $\omega$ is a two-soliton solution or other complicated solution of the KdV equation. Thus, there is an interesting open problem: can we find new solutions $u$ associated with the higher-order solitons $\omega$ of the KdV equation in another way? The purpose of this paper is to provide an affirmative answer to this question by using the Darboux transformation (DT) $[5,6]$ of the KdV equation. We will also study the key properties of interaction of multi-kink solitons of the SIdV equation.

The organization of this paper is as follows. In $\S 2$, we clearly illustrate a crucial relationship between the solution $u$ of the SIdV equation and the eigenfunction $\psi$ of the Lax pair of the KdV equation, and then provide the $n$-fold DT of the SIdV equation. In $\S 3$, three explicit kink-type solutions of the SIdV equation are constructed by using the DT from zero 'seed' solution. Furthermore, the key characteristics of the kink-type solitons of the SIdV equation are studied, namely the trajectories, the phase shifts after collision, and the decomposition into separate single kinks. The conclusion and discussion of results are given in $\S 4$.

## 2. The $n$-fold Darboux transformation of the SIdV equation

The KdV equation admits the following Lax pair:
and

$$
\left.\begin{array}{c}
\psi_{t}=4 \psi_{x x x}-6 \omega \psi_{x}-3 \omega_{x} \psi  \tag{2.1}\\
-\psi_{x x}+\omega \psi=\lambda \psi
\end{array}\right\}
$$

If we set $\lambda \rightarrow 0$, then
and

$$
\left.\begin{array}{c}
\psi_{t}+3 \omega \psi_{x}=\psi_{x x x}  \tag{2.2}\\
-\psi_{x x}+\omega \psi=0
\end{array}\right\}
$$

Comparing the above equations with equation (1.6), it implies a direct relationship between the solutions of the SIdV equation and the eigenfunction $\psi$ of the Lax pair of the KdV equation, namely $u=\left.\psi\right|_{\lambda=0}$. This observation is crucial for us such that we can solve the SIdV equation by using the DT of the KdV equation. Note that a general equation of the eigenfunction $\psi$ was constructed in [3] by eliminating the potential function $\omega$ in equations of the Lax pair; see eqn (2.3) of Konopelchenko [3].

By setting a 'seed' solution $\omega=0$, then the corresponding eigenfunctions are

$$
\begin{equation*}
\psi=\exp k\left(x+4 k^{2} t\right), \quad \text { for } \lambda=-k^{2} \tag{2.3}
\end{equation*}
$$

and

$$
\psi_{n}=\left\{\begin{array}{ll}
\cosh k_{n}\left(x+4 k_{n}^{2} t\right), & n=2 j-1,  \tag{2.4}\\
\sinh k_{n}\left(x+4 k_{n}^{2} t\right), & n=2 j,
\end{array} \quad \text { for } \lambda_{n}=-k_{n}^{2}\right.
$$

Here, $k>0, k_{n}>\cdots>k_{2}>k_{1}>0$.
The $n$-fold DT of the KdV equation yields the new solutions [5,6]

$$
\begin{equation*}
\omega^{[n]}=-2\left(\ln W\left(\psi_{1}, \ldots, \psi_{n}\right)\right)_{x x} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{[n]}=\frac{W\left(\psi_{1}, \ldots, \psi_{n}, \psi\right)}{W\left(\psi_{1}, \ldots, \psi_{n}\right)}, \tag{2.6}
\end{equation*}
$$

from a zero 'seed' solution $\omega=0$. Here

$$
W\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)=\left|\begin{array}{cccc}
\psi_{1} & \psi_{1 x} & \cdots & \psi_{1 x}^{(n-1)} \\
\psi_{2} & \psi_{2 x} & \cdots & \psi_{2 x}^{(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{n} & \psi_{n x} & \cdots & \psi_{n x}^{(n-1)}
\end{array}\right|
$$

is the usual Wronskian determinant of $n$ eigenfunctions $\psi_{1}, \psi_{2}, \ldots, \quad \psi_{n}$, and $\psi_{j x}^{(k)}(j=1,2, \ldots, n ; k=1,2,3, \ldots, n-1)$ denotes the order- $k$ derivative of $\psi_{j}$ with respect to $x$.

Hence the above $n$-fold DT produces

$$
\begin{equation*}
u^{[n]}=\left.\psi^{[n]}\right|_{\lambda=0}, \tag{2.7}
\end{equation*}
$$

which is a new solution of the SIdV equation (1.4) associated with an $n$-soliton solution $\omega^{[n]}$ of the KdV equation. Here $u^{[n]}$ in equation (2.7) is a general expression of the order- $n$ kink type solution of the SIdV equation. Unlike the method given in [2], we get $u^{[n]}$ associated with the $n$-soliton solution $\omega^{[n]}$ without using the complicated associated Legendre equation. By comparing with the solution given in [2], our method is simpler and systematic.

## 3. Three explicit solutions of the SIdV equation

In this section, we present in detail three explicit solutions generated by the onefold, twofold and threefold DT and the key properties of these solutions, including trajectories, phase shifts after collision and decomposition into separate single kinks.

### 3.1. Solution $u^{[1]}$ generated by onefold Darboux transformation

We set $n=1, \psi=\exp k\left(x+4 k^{2} t\right), \psi_{1}=\cosh k_{1}\left(x+4 k_{1}^{2} t\right)$, then equation (2.5) yields the single-soliton solution of the KdV equation

$$
\begin{equation*}
\omega^{[1]}=-2\left[\ln \cosh k_{1}\left(x+4 k_{1}^{2} t\right)\right]_{x x}=-2 k_{1}^{2} \operatorname{sech}^{2} k_{1}\left(x+4 k_{1}^{2} t\right), \tag{3.1}
\end{equation*}
$$

while equation (2.7) implies

$$
\begin{equation*}
u^{[1]}=\left.\psi^{[1]}\right|_{\lambda=0}=-k_{1} \tanh k_{1}\left(x+4 k_{1}^{2} t\right) . \tag{3.2}
\end{equation*}
$$

The above solution $u^{[1]}$ is a single kink-type soliton that is plotted in figure 1 . The line in figure $1 b$ denotes the trajectory of the soliton, which is defined by $x+4 k_{1}^{2} t=0$. It is easy to find that, for all $t \in R, \lim _{x \rightarrow+\infty}$ $u^{[1]}=-k_{1}$ and $\lim _{x \rightarrow-\infty} u^{[1]}=k_{1}$. Note that the solutions given by equations (3.1) and (3.2) are the same as those given in [2], which were obtained by solving the associated Legendre equation.

### 3.2. Solution $u^{[2]}$ generated by the twofold Darboux transformation

We set $n=2$, and we obtain the two-soliton solution of the $K d V$ equation as

$$
\begin{equation*}
\omega^{[2]}=\frac{2\left(k_{1}^{2} \cosh ^{2} k_{2}\left(x+4 k_{2}^{2} t\right)+k_{2}^{2} \cosh ^{2} k_{1}\left(x+4 k_{1}^{2} t\right)-k_{1}^{2}\right)\left(k_{1}^{2}-k_{2}^{2}\right)}{\left(k_{2} \cosh k_{1}\left(x+4 k_{1}^{2} t\right) \cosh k_{2}\left(x+4 k_{2}^{2} t\right)-k_{1} \sinh k_{1}\left(x+4 k_{1}^{2} t\right) \sinh k_{2}\left(x+4 k_{2}^{2} t\right)\right)^{2}}, \tag{3.3}
\end{equation*}
$$



Figure 1. $(a, b)$ The dynamical evolution of the single kink-type solution $u^{[1]}$ with $k_{1}=0.35$. The right panel is the density plot of the left panel.

(b)


Figure 2. The dynamical evolutions of the two-kink solution $u^{[2]}(a)$ and the corresponding two-soliton solution $\omega^{[2]}$ (b) with parameters $k_{1}=0.2, k_{2}=0.8$.
and the two-kink solution of the SIdV equation as

$$
\begin{gather*}
u^{[2]}=\left.\psi^{[2]}\right|_{\lambda=0}=\frac{A_{1}}{B_{1}},  \tag{3.4}\\
A_{1}=k_{1}^{2} k_{2} \cosh k_{2}\left(x+4 k_{2}^{2} t\right) \cosh k_{1}\left(x+4 k_{1}^{2} t\right)-k_{2}^{2} k_{1} \sinh k_{1}\left(x+4 k_{1}^{2} t\right) \\
\sinh k_{2}\left(x+4 k_{2}^{2} t\right), \\
B_{1}=k_{1} \sinh k_{1}\left(x+4 k_{1}^{2} t\right) \sinh k_{2}\left(x+4 k_{2}^{2} t\right)-k_{2} \cosh k_{2}\left(x+4 k_{2}^{2} t\right) \\
\cosh k_{1}\left(x+4 k_{1}^{2} t\right),
\end{gather*}
$$

according to equations (2.5) and (2.7). These solutions are plotted in figure 2.
By simple calculations, $u^{[2]}$ is re-formulated as

$$
\begin{equation*}
u_{a}^{[2]}=k_{1} k_{2} \frac{-\tanh \xi_{2} \cosh \xi_{0} \sinh \xi_{1}+\sinh \xi_{0} \cosh \xi_{1}}{\tanh \xi_{2} \sinh \xi_{0} \sinh \xi_{1}-\cosh \xi_{0} \cosh \xi_{1}} \tag{3.5}
\end{equation*}
$$

Here $\xi_{i}=k_{i}\left(x+4 k_{i}^{2} t\right)(i=1,2), \xi_{0}=(1 / 2) \ln \left(\left(k_{1}+k_{2}\right) /\left(k_{2}-k_{1}\right)\right)$ denotes the phase shift after the interaction of the two kinks. Furthermore, when $\xi_{2} \sim \pm \infty, u_{a}^{[2]} \sim-k_{1} k_{2} \tanh \left(\xi_{0} \mp \xi_{1}\right)$. Similarly, $u^{[2]}$ is also re-expressed by

$$
\begin{equation*}
u_{b}^{[2]}=k_{1} k_{2} \frac{-\tanh \xi_{1} \cosh \xi_{0} \sinh \xi_{2}+\sinh \xi_{0} \cosh \xi_{2}}{\tanh \xi_{1} \sinh \xi_{0} \sinh \xi_{2}-\cosh \xi_{0} \cosh \xi_{2}}, \tag{3.6}
\end{equation*}
$$

which implies that $u_{b}^{[2]} \sim-k_{1} k_{2} \tanh \left(\xi_{0} \mp \xi_{2}\right)$ when $\xi_{1} \sim \pm \infty$. According to the above asymptotic analysis of $u_{a}^{[2]}$ and $u_{b}^{[2]}$, it is easy to find $u^{[2]} \sim k_{1} k_{2}$ when $\xi_{1}$ and $\xi_{2}$ tend to $\pm \infty$ simultaneously. In other words, the heights of higher and lower asymptotic planes of $u^{[2]}$ are $\pm k_{1} k_{2}$, which is confirmed by figure 2 .

We are now in a position to study the decomposition of $u^{[2]}$. As the usual decomposition of a twosoliton solution, we set a trial decomposition of $u^{[2]}$ as a combination of $u_{a}^{[2]}$ with $\xi_{2} \sim-\infty$ and $u_{b}^{[2]}$


Figure 3. The construction of decomposition of $u^{[2]}$ with parameters $k_{1}=0.2, k_{2}=0.8$. (a) $u_{\text {trial }}^{[2]}$ (b) $u_{\text {left' }}^{[2]}$ (c) $u_{\text {right }}^{[2]}$ (d) $u_{\text {dec }}^{[2]}$ (the decomposition of $u^{[2]}$ ), (e) the contour lines defined by $u^{[2]}=0$ (blue, solid) and $u_{\text {dec }}^{[2]}=0$ (red, dash) and ( $f$ ) $u^{[2]}-u_{\text {dec }}^{[2]}$.

$$
u_{\text {trial }}^{[2]} \sim-k_{1} k_{2}\left(\tanh \left(\xi_{0}+\xi_{2}\right)+\tanh \left(\xi_{0}+\xi_{1}\right)\right)
$$

which is plotted in figure $3 a$. It is clear that figure $3 a$ is a worse approximation of the left part in figure $2 a$ for $u^{[2]}$, because the former has three remarkable differences as compared to the latter: (1) the three plateaux, (2) the height of the top asymptotic plateau and (3) the height of the bottom asymptotic plateau. In order to overcome the inaccuracy of $u_{\text {trial }}^{[2]}$, we introduce $z_{1}=-k_{1} k_{2}\left(\tanh \left(\xi_{0}+\right.\right.$ $\left.\left.\xi_{1}\right)+\tanh \left(\xi_{0}+\xi_{2}\right)\right)$ and set

$$
u_{\text {left }}^{[2]}=z_{1} H\left(z_{1}\right)-k_{1} k_{2},
$$

which is an excellent approximation of the left part in figure $2 a$ for $u^{[2]}$; see figure $3 b$. Here $H$ is the Heaviside function, $H(z)=\left\{\begin{array}{ll}0, & \text { if } z<0, \\ 1, & \text { if } z \geq 0 .\end{array}\right.$ Next, we use a combination of $u_{a}^{[2]}$ with $\xi_{2} \sim+\infty$ and $u_{b}^{[2]}$ with $\xi_{1} \sim+\infty$, and we introduce $z_{2}=-k_{1} k_{2}\left(\tanh \left(\xi_{0}-\xi_{1}\right)+\tanh \left(\xi_{0}-\xi_{2}\right)\right)$, then

$$
u_{\text {right }}^{[2]}=z_{2} H\left(z_{2}\right)-k_{1} k_{2}
$$

is an excellent approximation of the right part in figure $2 a$ for $u^{[2]}$ (figure $3 c$ ). Furthermore, using $u_{\text {left }}^{[2]}$ and $u_{\text {right }}^{[2]}$, we provide a decomposition of $u^{[2]}$, namely

$$
u_{\mathrm{dec}}^{[2]}= \begin{cases}z_{2} H\left(z_{2}\right)-k_{1} k_{2}, & \text { if } \xi_{1}, \xi_{2} \gg 0,  \tag{3.7}\\ z_{1} H\left(z_{1}\right)-k_{1} k_{2}, & \text { if } \xi_{1}, \xi_{2} \ll 0 .\end{cases}
$$

Thus, we get an excellent approximate decomposition of $u^{[2]}$, which is shown in figure 3d,e. Here we plot $u_{\text {dec }}^{[2]}$ in figure $3 d$, and in figure $3 e$ we plot the two contour lines defined by $u^{[2]}=0$ (blue, solid) and $u_{\text {dec }}^{[2]}=0$ (red, dash). However figure 3f shows a remarkable discrepancy $u^{[2]}-u_{\text {dec }}^{[2]}$ in a small region of strong interaction of the two kinks, around $t=0$.

### 3.3. Solution $u^{[3]}$ generated by the threefold Darboux transformation

Setting $n=3$ in equations (2.5) and (2.7), a three-soliton solution $\omega^{[3]}$ of the KdV equation and a three-kink solution $u^{[3]}$ of the SIdV equation can be written out explicitly. These two types of soliton solutions are plotted in figure 4. Due to the lack of space, we only provide here the explicit formula of a three-kink solution, namely

$$
\begin{equation*}
u^{[3]}=\left.\psi^{[3]}\right|_{\lambda=0}=\frac{A_{2}}{B_{2}} . \tag{3.8}
\end{equation*}
$$



Figure 4. The dynamical evolutions of the three-kink solution $u^{[3]}(a)$ and of the corresponding three-soliton solution $\omega^{[3]}(b)$ with parameters $k_{1}=0.2, k_{2}=0.8, k_{3}=1.2$.


Figure 5. The decomposition of $u^{[3]}$ with parameters $k_{1}=0.2, k_{2}=0.8$ and $k_{3}=1.2$. (a) $u_{\text {dec }}^{[3]}$ (the decomposition of $u^{[3]}$ ), (b) the contour lines defined by $u^{[3]}=0$ (blue, solid) and $u_{\text {dec }}^{[3]}=0$ (red, dash) and (c) $u^{[3]}-u_{\text {dec }}^{[3]}$.

Here $\xi_{i}=k_{i}\left(x+4 k_{i}^{2} t\right), i=1,2,3$,

$$
\begin{aligned}
A_{2}= & k_{1} k_{2} k_{3}\left[-k_{1}\left(k_{2}-k_{3}\right)\left(k_{2}+k_{3}\right) \cosh \xi_{1} \cosh \xi_{2} \sinh \xi_{3}-k_{3}\left(k_{1}-k_{2}\right)\left(k_{1}+k_{2}\right)\right. \\
& \left.\sinh \xi_{1} \cosh \xi_{2} \cosh \xi_{3}+k_{2}\left(k_{1}-k_{3}\right)\left(k_{1}+k_{3}\right) \sinh \xi_{1} \sinh \xi_{2} \sinh \xi_{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
B_{2}= & k_{1} k_{2} k_{3}\left[-k_{2}\left(k_{1}-k_{3}\right)\left(k_{1}+k_{3}\right) \cosh \xi_{1} \cosh \xi_{2} \cosh \xi_{3}+k_{1}\left(k_{2}-k_{3}\right)\left(k_{2}+k_{3}\right)\right. \\
& \left.\sinh \xi_{1} \sinh \xi_{2} \cosh \xi_{3}+k_{3}\left(k_{1}-k_{2}\right)\left(k_{1}+k_{2}\right) \cosh \xi_{1} \sinh \xi_{2} \sinh \xi_{3}\right] .
\end{aligned}
$$

By a similar calculation as done for $u^{[2]}$, the solution $u^{[3]}$ is decomposed approximately into three separate kinks in the following form, namely:

$$
u_{\mathrm{dec}}^{[3]}=\left\{\begin{array}{cc}
k_{1} k_{2} k_{3}\left[\tanh \left(\eta_{1}-\xi_{1}\right)+\tanh \left(\eta_{3}-\xi_{3}\right)-\left(\tanh \left(\eta_{2}-\xi_{2}\right)\right.\right. &  \tag{3.9}\\
\left.\left.H(y)+\tanh \left(\eta_{2}+\xi_{2}\right) H(-y)\right)\right] H(-z), & \xi_{1}, \xi_{2}, \xi_{3} \gg 0 \\
k_{1} k_{2} k_{3}\left[\tanh \left(\eta_{1}+\xi_{1}\right)+\tanh \left(\eta_{3}+\xi_{3}\right)-\left(\tanh \left(\eta_{2}-\xi_{2}\right)\right.\right. & \\
\left.\left.H(y))+\tanh \left(\eta_{2}+\xi_{2}\right) H(-y)\right)\right] H(z), & \xi_{1}, \xi_{2}, \xi_{3} \ll 0
\end{array}\right.
$$

Here $\quad \eta_{1}=(1 / 2) \ln \left(\left(\left(k_{2}\left(k_{3}^{2}-k_{1}^{2}\right)-k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)+k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right) /\left(k_{2}\left(k_{3}^{2}-k_{1}^{2}\right)-k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)-k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right)\right)\right), \quad \eta_{2}=$ $(1 / 2) \ln \left(\left(\left(k_{2}\left(k_{3}^{2}-k_{1}^{2}\right)+k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)+k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right) /\left(k_{2}\left(k_{3}^{2}-k_{1}^{2}\right)-k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)-k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right)\right)\right), \quad \eta_{3}=(1 / 2) \ln \left(\left(\left(k_{2}\right.\right.\right.$ $\left.\left.\left.\left(k_{3}^{2}-k_{1}^{2}\right)+k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)-k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right) /\left(k_{2}\left(k_{3}^{2}-k_{1}^{2}\right)-k_{3}\left(k_{2}^{2}-k_{1}^{2}\right)-k_{1}\left(k_{3}^{2}-k_{2}^{2}\right)\right)\right)\right), \quad z=k_{1} k_{2} k_{3}\left(\tanh \left(\eta_{3}-\xi_{3}\right) H(y)-\right.$ $\left.\tanh \left(\eta_{3}+\xi_{3}\right) H(-y)\right)$ and $y=x-t$. Moreover, in figure $5 a$ we plot $u_{\mathrm{dec}}[3]$ and in figure $5 b$ we plot the corresponding three contour lines defined by $u^{[3]}=0$ (blue, solid) and $u_{\text {dec }}^{[3]}=0$ (red, dash), which show an excellent agreement between $u^{[3]}$ and $u_{\text {dec }}^{[3]}$. However, figure $5 c$ shows a remarkable discrepancy $u^{[3]}-u_{\text {dec }}^{[3]}$ in a small region of strong interaction of the three kinks, around $t=0$.

## 4. Conclusion

In this paper, the order- $n$ kink-type solution $u^{[n]}$ of the SIdV equation (1.4), which is associated with an $n$-soliton solution of the KdV equation, is constructed by using the $n$-fold DT from zero 'seed' solution. The trajectories, the phase shifts, and the decomposition of the first three kink-type solutions $u^{[n]}(n=1,2$,
3) are studied in detail. A crucial relationship is $u=\left.\psi\right|_{\lambda=0}$, so we can use the DT to construct the solution $u^{[n]}$ without using the solution of the associated Legendre equation as was done in [2]. By comparing with the results reported in [2], we believe that our method presented here is simpler and systematic. Moreover, we mention that the SIdV equation is also used to describe and control the revolution of surfaces $[7,8]$, thus it is an interesting issue to get explicitly the surfaces associated with the order- $n$ kink soliton $u^{[n]}$. These results will be reported elsewhere.

Data accessibility. This article has no additional data.
Authors' contributions. G.F.Z. and J.S.H. carried out the solution and drafted the initial manuscript; L.H.W. participated in numerical analysis of solution; D.M. provided physical consideration and helped draft the manuscript. All authors gave final approval for publication.
Competing interests. We have no competing interests.
Funding. This work is supported by the NSF of China under grant no. 11671219, the Natural Science Foundation of Zhejiang Province under grant nos. LZ19A010001 and LSY19A010002, and the K.C. Wong Magna Fund in Ningbo University.

## References

1. Sen A, Ahalpara DP, Thyagaraja A, Krishnaswami GS. 2012 A KdV-like advection-dispersion equation with some remarkable properties. Commun. Nonlinear Sci. Numer. Simul. 17, 4115-4124. (doi:10.1016/j.cnsns. 2012.03.001)
2. Silva PLD, Freire IL, Sampaio JCS. 2018 A family of wave equations with remarkable properties. Proc. R. Soc. A 474, 20170763. (doi:10.1098/ rspa.2017.0763)
3. Konopelchenko BG. 1990 Soliton eigenfunction equation: the IST integrability and some
properties. Rev. Math. Phys. 2, 399-440. (doi:10.1142/S0129055X90000120)
4. Xu DD, Zhang DJ, Zhao SL. 2014 The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sineGordon equation. J. Nonlinear Math. Phys. 21, 382-406. (doi:10.1080/14029251.2014.936759)
5. Matveev VB, Salle MA. 1991 Darboux transformation and solitons. Berlin, Germany: Springer.
6. Li YS. 1999 Solitons and integrable systems. Shanghai, China: Shanghai

Scientific and Technological Education Publishing Press.
7. Konopelchenko BG. 1996 Surfaces of revolution and their integrable dynamics via the Schrödinger and KdV equations. Inverse Probl. 12, L13-L18. (doi:10.1088/02665611/12/4/001)
8. Beutler R, Konopelchenko BG. 1999 Surfaces of revolution via the Schrödinger equation: construction, integrable dynamics and visualization. Appl. Math. Comput. 101, 13-43. (doi:10.1016/50096-3003(98)00036-8)


[^0]:    ${ }^{1}$ School of Mathematics and Statistics, Ningbo University, Zhejiang 315211, People's Republic of China
    ${ }^{2}$ Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
    ${ }^{3}$ Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Magurele 077125, Romania

[^1]:    © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

