$$
\begin{aligned}
& \text { Whoweyt screm }
\end{aligned}
$$

$$
418 x \quad 157
$$

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

Microprocessor Generated
Vertical Gyrohorizon Instrument
for the Blue Bird Simulator
by
Marc A. Lucchesi
December 1980

Thesis Advisor: D. M. Layton

Approved for public release; distribution unlimited

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE	BEFERED INSTRUGTYNS
	3. Recin ient's Catalog number
	3. TyPE OF REPORT A PERIOD COVERED Master's Thesis; 6. PERFORMing Dra Repor 1980 6. Perfonming ong. remport number
Marc A. Lucchesi, LT, USN	- contract or gant number(o)
	10. PROGRAMEEEMENT PROJECT, TASK
	12. REPORT DATE December 1980 13. NUMEEROFPAGES 39
Naval Postgraduate School Monterey, California 93940	

16. DISTRIBUTION STATEMENT (OI IHIO ROPORI)

Approved for public release; distribution unlimited.
17. DISTAIBUTION STATEMENT (Of the abetrect entered in Block 20. If differani troen Repori)
13. SUPPLEMENTARY NOTES
19. KEY WOROS (Conifnue on peveree elde If neceeeary and ldenilty by bloch number)

Cathode Ray Tubes (CRT)
Microprocessor
Vertical Gyrohorizon Instrument (VGI)
 display for use in a high-performance aircraft simulator facility as a Vertical Gyrohorizon Instrument was investigated. A microprocessor was used to generate the correct angle for the display corresponding to the analog equations of motion of the simulator. An unfavorable displayed result was obtained. Detailed conclusions and reccomendations for further study are presented.

Approved for public release; distribution unlimited
Microprocessor Generated Vertical Gyrohorizon Instrument for the Blue Bird Simulator

by

Marc A. Lucchesi Lieutenant, United States Navy B.S., Miami University, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

> from the

NAVAL POSTGRADUATE SCHOOL
December, 1980

Theinis
18913
$C 1$

ABSTRACT

An $X-Y$ cathode ray tube display for use in a high-performance aircraft simulator facility as a Vertical Gyrohorizon Instrument was investigated. A microprocessor was used to generate the correct angle for the display corresponding to the analog equations of motion of the simulator. An unfavorable displayed result was obtained. Detailed conclusions and recommendations for further study are presented.
table of contents
I. INTRODUCTION 7
A. BACKGROUND 7
B. THE PROBLEM 8
II. APPROACH 10
III. HARDWARE DEVELOPMENT 12
IV. SOFTWARE DEVELOPMENT 19
V. RESULTS AND CONCLUSIONS 24
VI. RECOMMENDATIONS 26
APPENDIXA: INTEL 8035 DETAILS 28
APPENDIX B: TEXAS INSTRUMENTS TI-59 PROGRAM 29
APPENDIX C: DISPLAY PROGRAM 32
LIST OF REFERENCES 38
INITIAL DISTRIBUTION LIST 39

LIST OF FIGURES

1. SET-UP TIMES 14
2. LOGIC FLOW 16
3. CIRCUIT DIAGRAM (TOP) 17
4. CIRCUIT DIAGRAM (BOTTOM) 18
5. FLOW CHART 21
6. CRT SCALING 23

-

ACKNOWLEDGEMENTS

I would like to express my appreciation for the guidance and assistance provided by Professor Donald M. Layton that led to the completion of this thesis. Technical aid was provided throughout the construction of this project by Mr . Ted Dunton and Mr. Ray Garcia of the Aeronautics Department, Naval Postgraduate School.

The support and understanding of my wife and son, for which I am forever grateful, were invaluable to me in completing this task.

I. INTRODUCTION

In any academic environment there exists a vast separation between the course work (theory) and practical experience (laboratory). At the Naval Postgraduate School, in order to bridge this gap, some laboratory sessions of the Aeronautics Department use a large computer to simulate real world conditions. By inserting certain parameters into the computer one can observe the effects these parameters have on the modeled world. However, this type of simulation has several drawbacks, two of which are very detrimental to the learning process: one is the lack of instant response which causes a loss of interest in any problem and the other is the lack of realism which causes a loss of stimulation for the learning process itself.

A. BACKGROUND

For laboratory simulation of aircraft dynamics, it is desired to utilize a device that; (a) presents to the operator (pilot) a realistic cockpit environment and (b) provides external monitoring of inputs and outputs. Such a device may range from a relatively simple, fixed-based, two-degree-of-freedom simulator to a more complex, moving base, six-degree-of-freedom device. And, although a wide range of commercial simulators are available, not only are these devices costly, but they require extensive modifications to meet the demanding requirements of academic laboratory exercises.

Therefore, to circumvent this situation, it was decided to install a Cockpit Procedures Trainer (CPT) and to convert it to a six-degree-of-freedom, fixed-based simulator, the "Blue-Bird". In order to get this simulator to. "fly", James H. Aldrich devised complex and extensive analog programs simulating the F-4 Phantom II aircraft equations of motion. After completion of this task (Ref. 1), the simulator could be used for supplemental instruction in courses in the Aeronautics Department (Static Stability and Control, AE 2036; Dynamic Stability, AE 4301; Flight Evaluation Techniques, AE 4323). Unfortunately these analog programs were so complex that there was little difference between using this system and putting numbers into a large digital computer. To simplify the programming, simple spring-mass-damper equations

$$
m \ddot{x}+c \dot{x}+k x=f(t)
$$

were used for the analog programs (Ref. 2) which allows for a quicker understanding of aircraft motion.

At this point one could sit in the cockpit, move the flight controls, and watch the results on strip chart recorders, but there was no visual display of longitudinal or lateral motion in the cockpit. This, of course, still did not provide all the realism desired, but it was a vast improvement over the large digital computer.
B. THE PROBLEM

The problem therefore, was to design and construct a two-dimensional visual display apparatus that would simulate 8
a Vertical Gyrohorizon Instrument (VGI) of an actual aircraft. This display would accept inputs from the new analog computer program output (pitch angle and bank angle), and display this information in a dynamic manner. The visual display was meant to simulate an actual VGI, but was not intended to have the exact visual characteristics of any actual instrument. It should have the generic characteristics acceptable by those pilots who might use the facility. This would provide one more step to the complete simulator.
电

II. APPROACH

There are three basic ways to address the problem of constructing a VGI: purely mechanical, purely video, or computer generated. Combination of these three are, or course, feasible, but will not be discussed in detail.

1. The purely mechanical approach would probably require a purchase of a VGI display specifically designed for the F-4 aircraft or a VGI instrument designed for flight simulator use. In either case, the installation would require a high frequency alternating current source and some sort of servo drive system that would respond to a varying voltage, direct-current output. In addition to being expensive, nothing would really be learned from this approach.
2. The purely video approach, again, would be very expensive, requiring the purchase of a video camera, and the building of a gimbled platform that would be linked to the equations of motion for roll and pitch. Although challenging from a design viewpoint, this is not very practical. 3. The computer generated approach, therefore, seemed the most fruitful. The low cost of computer chips, the available documentation to develop a circuit, the relatively small size of the computer board, and the fact that the simulator contains all the necessary power, made this approach the most practical one.

In any design procedure chosen, however, the input voltage to the VGI device (adjustable up to a positive/negative ten volts of direct current) needed to be massaged to produce a display with the following characteristics; (a) at least a sixty degree bank angle in either direction, (b) at least a twenty degree nose up/nose down pitch angle, and (c) at least a twenty-five degree per second roll rate, These parameters were considered the absolute minimum to insure realism of any type of VGI design.

III. HARDWARE DEVELOPMENT

Once a computer generated design was decided upon, the type of computer needed to be addressed. The design application called for a computer that would receive input from the analog equations of motion, massage the data, and put it out to some sort of display device. Inasmuch as this was to be a "real time" simulation, a computer was needed that was fast enough for real time. It was decided that, since the job required little actual memory, a microprocessor based system would be utilized. Of all the microprocessors available on the open market that would be useful, the Intel 8035 was chosen. Although the 8035 is not the fastest computer (cycle time of twenty-five micro-seconds) available, its all-in-one chip design, its quickness and variety of its instructions set (no instruction took longer than two cycles), and its availability made this chip the perfect choice. (Details on the 8035 are presented in Appendix A.)

Next, the matter of a cockpit display device needed to be addressed. The nature of a VGI lends itself to the concept of an $X-Y$ plotter. In other words, if two sets of coordinates are put on a plotter, a straight line can be drawn between the two points. In order to accomplish this task, an oscilloscope with a horizontal input with calibration was needed. Since the two inputs (horizontal and vertical) were supplied to the oscilloscope, a $X-Y$ cathode ray tube (CRT) was produced.

Next the circuit for connecting the computer to the input and output devices needed to be constructed. To change the analog data from the equations of motion, two eight-bit analog to digital converters were used. One converter was used for the pitch equation of motion, and the other for the roll equation of motion. The AD570S analog to digital converter was chosen because of its extremely fast conversion time (twenty-five micro-seconds) and its availability. These were connected to an Intel 8255 A programmable peripheral interface chip which provided the necessary communication between the converters and the computer chip. These three chips comprised the input section.

The output section, on the other hand, was comprised of essentially only one chip: the Burr-Brown MP-10 microprocessor interfaced, eight-bit, analog output system. This chip contained one 8255 and two digital-to-analog converters on board. Therefore, only one chip provided the two outputs needed for the X Y concept. Although these converters are slow for digital-to-analog converters (twenty-five micro-seconds), the one chip design far outweighed any increase in speed. The only problem with this device was synchronizing its timing with that of the 8035 computer. This was overcome by the use of two 74121 one shot chips. These chips were needed to delay the write pulse from the computer 600 nano-seconds to allow for a longer address set-up time on the MP-10. (figure 1)

The other chips required were from one to three Intel 8708 electrically programmable read only memory (EPROM) and on Intel

FIGURE 1 SET-UP TIMES

8212 eight-bit input/output port used as an address latch to hold data for addressing the $8255 \mathrm{~A}, \mathrm{MP}-10$, and the 8700 chips.

The other two chips of the board were used as follows: the 7402 dual input NOR gate was used for external system reset and for external test for altitude and airspeed inputs, and the 74155 demultiplexer was used to select between the three 8708 memory chips.

Following the preliminary design it was necessary to construct the computer board. It was decided that since there were so many connections to be made (figure 2), "bread boarding" would not be the most practical approach. By using a photo-etching technique all the interconnections would automatically be made and, as a result, tracing probable errors would become relatively simple. Therefore, a two sided board was designed and etched (figures 3 \& 4).

Finally, several power supplies were required. All the chips on the board required a positive five volts. Additionally, the MP-10 and the two AD570Ss required a positive and negative fifteen volts, and the 8708 s required a positive twelve and a negative five volts.

LOGIC FLOW
FIGURE 2

I

IV. SOFTWARE DEVELOPMENT

The program logic flow was a relatively straight-forward process (figure 5). The basic format was to bring in the roll and pitch motions separately, couple them, and put them out to the X-Y CRT. The input needed to be brought in only once to produce the desired output. The design called for the first end point to be at the far left of the CRT and the second endpoint to be at the far right. (Since the input and output devices are bipolar, i.e., accept both positive and negative voltages, the scaling of the output is as shown in figure 6.) The theory dictates that if a vertical voltage is applited to the CRT (roll motion) then the position on the Y axis should change in opposite directions at the two endpoints. And if the switching between these endpoints were done quickly enough a straight line at any angle should be formed.

With this theory as a reference point, the program began to take shape. To start the sequence of operation, the 8255 A and the MP-10 chips needed to be initialized. The MP-10 is a straightforward, two step process (Ref. 3), while the 8255A is quite another story. There are many modes to the 8255A that can be programmed as either input or output. The design called for two input ports and one split input/output port for communication to the analog-to-digital converters. Therefore, ports A and B are pure input while port C was the split one (Ref. 4). Once the chips have been initialized, the computer
then requests the data from the analog-to-digital converters. The program then uses the data from the converters to select the proper output data that was fed to the MP-10. The output data is stored on a sine look-up table in order to arrive at the correct angle. (A Texas Instruments TI-59 programmable calculator was used to generate the sine look-up table appearing in the main program. The TI-59 program is in appendix B.) Once the data is received from the look-up table it was put out as follows: Y position on output 1 (sine of the angle), and X position on output 2 (cosine of the angle) of the MP10. The pitch was added to the Y position to move the center of the line either up or down.

Once the program was written it was keyed into the Intel Prompt 80/85. This device does not belong to the MCS-48 computer systems (it is part of the MCS-80 system or better known as the 8080 A based system), but its ability to program the 8708 EPROMS made this system indispensible. (Appendix C)

FIGURE 5 FLOW CHART

FIGURE 5 (CONTINUED)

FIGURE 6 CRT SCALING

V. RESULTS AND CONCLUSIONS

Once the 8708 EPROM had been programmed it was put onto the board with the other chips, thereby making a complete computer.

Testing of the computer was accomplished with the use of a "bread board" box to supply the necessary power. A joystick was also connected through the "bread board" and used as the lateral and longitudinal inputs to simulate motion. The oscilloscope used for the $X-Y$ CRT was the same as that for the cockpit display: the Textronix Type 504 single trace, tube type oscilloscope.

When power was applied to the computer with the joy-stick in the neutral position, i.e., center, the face of the CRT lit up with a straight line from left to right across the center of the scope. This was exactly as predicted, but as the joy-stick was moved, the straight line expanded into a rectangle instead of a skewed straight line. This rectangle formed a square at the forty-five degree position of the joystick, then another rectangle, until at the ninety degree position of the joy-stick a vertical straight line was formed.

What was not recognized from the outset of this project was the fact that a CRT does not behave the same as a normal $X-Y$ plotter. In other words, on a plotter the X and Y coordinates are put to a device before a point is printed, whereas on the CRT each coordinate is displayed independently.

Therefore, unless the X and Y coordinates are outputed to the display device simultaneously a box will be formed. Since it is impossible to have simultaneous data when using only one computer, the conclusion must be made that using only the endpoints of a line will not produce the desired skewed straight line.

VI. RECOMMENDATIONS

There exist a few areas of study that could produce the desired results of a skewed straight line. Unfortunately, time constraints have prevented the author from pursuing any of these.

1. Using the basic program to the point just after the data is retrieved from the look-up-table, one can divide this data into sixteen parts thereby producing a seventeen segmented output. This produces at any angle a straight line of sorts. In other words, the actual coordinates produce a small stair-step line the width of the scope. The seventeen segmented display should be small enough, however, so that the output is not distracting. The only problem with this approach is that the output may not be "real time"; i.e., there may be too much delay between the stick motion in the cockpit and what is perceived on the scope.
2. A hardware add-on which might be addressed is that of a resistor network in conjunction with a 555 timing chip to produce a rastor scan on the oscilloscope. This essentially produces a stair-step, but the size of the step can be varied. Problems with this might lie in the fact that the line may not be able to be reversed; i.e., the scope would show only one direction of bank.
3. One other change is to use a different type of display. The Aeronautics Department has a television type monitor that accepts video like any other monitor, but is also gear driven to produce a skewed picture. By removing the video tube and supplying a motor to drive the screen, one can produce the desired effect. This makes for a much simpler software problem, but the current needed to drive the available motors are much beyond the output current of the computer.
4. If any of the above approaches accomplishes the desired effect, there should be further study to produce a "flying" simulator. The areas that need to be addressed are coupling for the airspeed and the altitude read outs. The present system allows only the operator to supply the necessary voltages to move the dials in the cockpit. Probably the best means of displaying the information would be to remove the present gauges and use digital displays. When this segment has been completed the simulator will be "flyable" in the true sense.

APPENDIX A

The Intel 8035 is part of the overall Intel MCS-48 family of computer systems. Designed as a special purpose system it can be adapted to most situations requiring small space and memory. (Reference 4)

The only difference between the 8035 and the other chips of the family was that the 8035 had no on board memory. This proved to be extremely useful because the number of 8708 memory chips available made program changes quicker than would have been trying to change only on 8748 computer chip.

APPENDIX B

TEXAS INSTRUMENTS TI-59 PROGRAM

000	76	1BL	
001	11	A	; DECIMAL TO BINARY ; CONVERSION SUBROUTINE
002	29	CP	; CLEAR T REGISTER
003	42	STO	
004	10	10	;STORE NUMBER AT REGISTER 10
005	00	0	
006	42	STO	
007	11	11	;STORE ZERO IN REGISTER 11
008	42	STO	
009	02	02	;AND REGISTER 2
010	76	LBL	
011	87	IFF	;WORKING SUBROUTINE
012	53	(
013	43	RCL	
014	10	10	;PUT NUMBER INTO WORKING
015	55	1	; REGISTER
016	02	2	
017	54)	
018	42	STO	
019	01	01	;STORE NUMBER/2 IN 1
020	59	INT	; INTEGER VALUE OF NUMBER/2
021	42	STO	; AND STORE IT IN 10
022	10	10	
023	53	(
024	43	RCL	;PUT NUMBER/2 INTO
025	01	01	;WORKING REGISTER
026	22	INV	
027	59	INT	; KEEP ONLY NUMBER RIGHT ;OF DECIMAL POINT
028	69	OP	
029	10	10	
030	65	*	
031	01	1	
032	00	,	
033	45	Y \uparrow T	;RAISE THIS NUMBER TO THE
034	43	RCL	;POWER IN REGISTER 2
035	02	02	
036	54)	
037	44	SUM	
038	11	11	;ADD THIS TO REGISTER 11
039	69	OP	

040	22	22	; INCREMENT REGISTER 2
041	43	RCL	
042	10	10	
043	22	INV	
004	67	EQ	; IF THIS NUMBER IS NOT
045	87	IFF	; EQUAL TO ZERO GO BACK TO ; START OF THE SUBROUTINE
046	43	RCL	
047	11	11	; DISPLAY THIS NUMBER AND
048	92	RTN	;RETURN TO CALLED PLACE
049	76	L	; START OF THE PROGRAMBL
050	13	C	; SEQUENCE
051	42	STO	
052	20	20	; STORE BEGINNING NUMBER
053	01	1	
054	02	2	
055	08	8	
056	42	STO	;STORE 128 IN ZERO FOR A
057	00	00	; COUNTER
058	01	1	
059	42	STO	
060	05	05	;STORE 1
061	00	0	
062	42	STO	
063	06	06	; CLEAR REGISTER 6
064	43	RCL	
065	05	05	
066	69	OP	; PRINT REGISTER 5
067	06	06	
068	43	RCL	
069	06	06	
070	85	+	
071	43	RCL	
072	20	20	; ADD REGISTERS 6\&20
073	95	=	
074	42	STO	
075	06	06	;STORE THIS SUM IN 6 AGAIN
076	38	SIN	
077	65	*	
078	05	5	
079	55	/	
080	93	.	
081	00	0	
082	03	3	
083	09	9	
084	03	3	
085	07	7	
086	95	$=$; 5 * SIN(X)/.03937
087	69	OP	
088	06	06	;PRINT THIS

089	59	INT	;INTERGERIZE IT		
090	11	A	;AND CALL SUBROUTINE A		
091	69	OP			
092	06	06	;PRINT THE OUTPUT OF SUB-		
			;ROUTINE A		
093	98	ADV	;ADVANCE THE PAPER		
094	69	$0 P$;INCREMENT REGISTER 5		
095	25	25	;DECREMENT REGISTER ZERO		
096	97	DSZ	;AND SKIP TO THE END IF		
097	00	00	ITTIS ZERO		
098	00	00	;OTHERWISE GO TO		
099	64	64	STEP 64		
100	92	RTN	;STOP		

APPENDIX C

DISPLAY PROGRAM

0000	00	NOP	
0001	27	CLR A	; CLEAR ACCUMULATOR
0002	17	INC A	
0003	AF	MOV R7, A	;PUT "1' INTO REG 7
0004	17	INC A	
0005	AE	MOV R6, A	;PUT "2" INTO REG 6
0006	17	INC A	
0007	A8	MOV R0,A	; PUT "3" INTO REG 0-ADDRESS ;FOR 8255A
0008	23	MOV A, \#	; SELECT 8255 AND PUT MODE ; WORD OUT
0009	93	10010011 B	; MODE 0; A, B, C LOWER ARE
000A	90	MOVX @R0, A	; INPUT, C UPPER IS OUTPUT)
000 B	B9	MOV R1, \#	; PUT ADDRESS FOR MP-10 INI-
000C	83	10000011 B	;TIALIZATION INTO REG 1
000 D	23	MOV A, \#	
000E	80	10000000 B	
000 F	AD	MOV R5,A	; STORE INITIALIZATION DATA
0010	91	MOVX @R1,A	;SELECT MP-10 AND INITIALIZE
0011	FE	MOV A, R6	
0012	A9	MOV Rl, A	$\text { ;PUT } 2 \text { INTO REG } 1 \text { (PORT C OF }$
0013	47	SWAP A	; NOW THE BLANK AND CONVERT ;PIN IS SET
0014	AC	MOV R4, A	;PUT 00100000 INTO REG 4
0015	91	MOVX @R1, A	; INSURE BIT 6 IS HIGH TO ; START DATA CONVERSION
0016	56	JT 1	; JUMP IF THERE IS NO A/S OR
0017	53	01010011 B	; ALT INPUT
0018	27	CLR A	
0019	91	MOVX @R1,A	;INSURE BIT 6 IS LOW TO HOLD ; DATA
001 A	81	MOVX A.@R1	; CHECK FOR DATA READY BITS
001 B	53	ANL A, \#	
001C	0 C	00001100 B	
001 D	96	JNZ	; TRY AGAIN IF BITS 2\&う ARE
001 E	1 A	00011010 B	;HIGH, BECAUSE THEY ARE NOT ;READY
001 F	85	CLR F0	
0020	95	CPL F0	; INSURE FLAG IS HIGH
0021	A8	MOV RO, A	; INSURE R0 IS CLEARED
0022	80	MOVX A , @R0	; BRING IN FORE AND AFT STICK

0023	AB	MOV R3,A	; POSITION
0024	18	INC R0	
0025	80	MOVX A, @R0	; BRING IN LEFT AND RIGHT
0026	AA	MOV R2,A	;STICK POSITION
0027	FC	MOV A,R4	
0028	91	MOVX @R1,A	; INSURE BIT IS HIGH FOR FREE ; DATA CONVERSION
0029	FA	MOV A, R2	;BRING BACK LEFT/RIGHT STICK ; POSITION
002A	F2	JB 7	;JUMP IF BIT 7 IS HIGH
002B	2D	00101101 B	
002C	85	CLR R0	; IF L/R INPUT IS NEG THEN ; CLEAR FLAG
002 D	53	ANL A, \#	;STRIP OFF BIT 7 AND DISCARD
002 E	7F	01111111 B	
002 F	AA	MOV R2,A	
0030	E3	MOVP3 A, @A	; BRING VALUE FROM LOOK UP ;TABLE (5*SIN(Y))
0031	B6	JF 0	; IF FLAG 0 IS SET DO NOT
0032	34	00110100 B	; COMPLEMENT (5*SIN(Y))
0033	37	CPL A	
0034	6B	ADD A,R3	;ADD 5*SIN(Y)+X FOR VERTICAL ; SCOPE INPUT
0035	AB	MOV R3,A	
0036	FA	MOV A, R2	;BRING BACK LEFT/RIGHT STICK ;POSITION
0037	37	CPL A	;COMPLEMENT THE INPUT FOR ; COSINE LOOK UP TABLE
0038	53	ANL A, \#	;STRIP OFF BIT 7 AND DISCARD
0039	7F	01111111 B	
003 A	E3	MOVP3 A,@A	;BRING IN VALUE FROM LOOK ;UP TABLE
003 B	B6	JF 0	; IF F0 IS SET DON'T
003 C	3E	00111110 B	; COMPLEMENT
003 D	37	CPL A	
003 E	37	CPL A	
003 F	AA	MOV R2,A	
0040	FD	MOV A,R5	
0041	A8	MOV R0,A	;REG 0 CONTAINS 10000000
0042	FB	MOV A,R3	
0043	37	CPL A	
0044	90	MOVX @R0,A	;OUTPUT VERTICAL(LEFT)
0045	FA	MOV A, R2	
0046	37	CPL A	
0047	18	INC R0	
0048	90	MOVX @R0,A	;OUTPUT HORZ. (LEFT)
0049	C8	DEC R0	
004A	FB	MOV A, R3	
004B	90	MOVX @R0,A	;OUTPUT VERTICAL (RIGHT)
004C	18	INC R0	

004D	FA	MOV A, R2	
004 E	90	MOVX @R0,A	; OUTPUT HORZ. (RIGHT)
004 F	FE	MOV A, R6	; PUT 2 INTO ACC
0050	A9	MOV R1, A	
0051	04	JMP	
0052	16	00010110 B	
0053	FD	MOV A,R5	
0054	A8	MOV R0,A	;PUT 10000000 INTO REG 0
0055	90	MOVX @R0,A	;OUTPUT ZERO VERTICAL (LEFT)
0056	18	INC R0	
0057	23	MOV A, \#	
0058	FF	11111111B	
0059	90	MOVX @R0, A	;OUTPUT NEG HORZ (LEFT)
005A	C8	DEC R0	
005 B	FD	MOV A,R5	
005C	90	MOVX @R0,A	;OUTPUT ZERO VERTICAL (RIGHT)
005 D	27	CLR A	
005 E	18	INC R0	
005 F	90	MOVX @R0,A	;OUTPUT POS HORZ (RIGHT)
0060	04	JMP	
0061	16	00010110 B	

0300	80	10000000 B	; LOOK UP TABLE
0301	81	10000001 B	
0302	83	10000011 B	
0303	84	10000100 B	
0304	86	10000110 B	
0305	87	10000111 B	
0306	89	10001001 B	
0307	8A	10001010 B	
0308	8C	10001100 B	
0309	8D	10001101 B	
030 A	8F	10001111 B	
030 B	91	10010001 B	
030 C	92	10010010 B	
030 D	94	10010100 B	
030 E	95	10010101 B	
030 F	97	10010111 B	
0310	98	10011000 B	
0311	9A	10011010 B	
0312	9B	10011011 B	
0313	9 D	10011101 B	
0514	9E	10011110 B	
0315	A0	10100000 B	
0316	AI	10100001 B	
0317	A3	10100011 B	
0318	A4	10100100 B	
0319	A6	10100110B	
031 A	A 7	10100111 B	
031 B	A9	10101001 B	
031 C	AA	10101010 B	
031 D	AC	10101100 B	
031 E	AD	10101101B	
031 F	AF	10101111 B	
0320	B0	10110000 B	
0321	B2	10110010 B	
0322	B 3	10110011 B	
0323	B4	10110100 B	
0324	B6	10110110 B	
0325	B 7	10110111B	
0326	B9	10111001 B	
0327	BA	10111010 B	
0328	BB	10111011 B	
0329	B D	10111101 B	
032 A	BE	10111110 B	
032 B	BF	10111111 B	
032C	C1	11000001 B	
032 D	C2	11000010 B	
032E	C3	11000011 B	
032 F	C5	11000101 B	
0330	C6	11000110 B	
0331	C 7	11000111 B	

0332	C9	11001001 B
0333	CA	11001010 B
0334	CB	11001011 B
0335	CC	11001100 B
0036	CE	11001110 B
0337	CF	11001111 B
0338	DO	11010000 B
0339	D1	11010001 B
033 A	D2	11010010 B
033 B	D4	11000100 B
033 C	D5	11000101 B
033 D	D6	11000110 B
033 E	D7	11000111 B
033 F	D8	11001000 B
0340	D9	11011001 B
0341	DA	11011010 B
0342	DB	11011011 B
0343	DD	11011101 B
0344	DE	11011110 B
0345	DF	11011111 B
0346	E0	11100000 B
0347	E1	11100001 B
0348	E2	11100010 B
0349	E3	11100011 B
034 A	E4	11100100 B
034 B	E5	11100101 B
034 C	E6	11100110 B
034 D	E6	11100110 B
034 E	E7	11100111 B
034 F	E8	11101000 B
0350	D9	11101001 B
0351	EA	11101010 B
0352	EB	11101011 B
0353	EC	11101100 B
0354	EC	11101100 B
0355	ED	11101101 B
03362	F6	11101110 B
0363	F7	11110111 B
0357	EF	11101111 B
0358	F0	11110000 B
0359	F0	11110000 B
035 F	F1	11110001 B
035 B	F2	11110010 B
035 C	F2	11110010 B
035 D	F3	11110011 B
035 F	F4	11110100 B
035 F	11110100 B	
03110101 B		
03110101 B		
03		

0364	F7	11110111 B
0365	F8	11111000 B
0366	F8	11111000 B
0367	F9	11111001 B
0368	F9	11111001 B
0369	F9	11111001 B
036 A	FA	11111010 B
036 B	FA	11111010 B
036 C	FB	11111011 B
036 D	FB	11111011 B
036 E	FB	11111011 B
036 F	FC	11111100 B
0370	FC	11111100 B
0371	FC	11111100 B
0372	FD	11111101 B
0373	FD	11111101 B
0374	FD	11111101 B
0375	FD	11111101 B
0376	FE	11111110 B
0377	FE	11111110 B
0378	FE	11111110 B
0379	FE	11111110 B
037 A	FE	11111110 B
037 B	FF	11111111 B
037 C	FF	11111111 B
037 D	FF	11111111 B
037 E	FF	1111111 B
037 F	FF	11111111 B

LIST OF REFERENCES

1. Aldrich, J.H., A Simulator Evaluation of Pilot Response to an Aircraft Cockpit Spin Indicator Svstem, MS Thesis, Naval Postgraduate School, California, 1979.
2. Lucchesi, M.A., Longitudinal Equations of Motion verses Spring Mass Damper System, paper presented for course AE3815, spring, 1980.
3. Burr-Brown General Catalog, p. 5-95-5-102, 1979.
4. Intel, MCS-48 Microcomputer User's Manual, 1976.
5. Intel, Application Techniques for the MCS-48 Family, p. 3-8, 1977.
6. National, Digital Integrated Circuits, p. 1-5, 1-75, 1-87, 1974.
7. Intel, Prompt 80 Microcomputer User's Manual, 1976.

INITIAL DISTRIBUTION LIST

No. copies

1. Defense Technical Information Center 2 Cameron Station Alexandria, VA 22314
2. Library, Code 0142 2
Naval Postgraduate School Monterey, CA 93940
3. Department Chairman, Code 67 1
Department of Aeronautics Naval Postgraduate School Monterey, CA 93940
4. Professor D. M. Layton 5
Code 67Ln
Department of Aeronautics Naval Postgraduate School Monterey, CA 93940
5. Lt Marc A. Lucchesi, USN 2
VA-128
Naval Air Station, Whidbey Island Oak Harbor, WA 98277

